The Humongous Book of Calculus Problems

1,000 calculus problems with comprehensive solutions for all the major topics of Calculus I and II

Translated for People who don't speak Math!! by W. Michael Kelley

.l The
 HumongousCalculus

 Problems

 Problems}Translated for people who don't Speak Math!!
W. Michael Kelley

ALPHA BOOKS

Published by the Penguin Group
Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, U.S.A.
Penguin Group (Canada), 10 Alcorn Avenue, Toronto, Ontario, Canada M4V 3B2 (a division of Pearson Penguin Canada Inc.)
Penguin Books Ltd, 80 Strand, London WC2R 0RL, England
Penguin Ireland, 25 St Stephen’s Green, Dublin 2, Ireland (a division of Penguin Books Ltd)
Penguin Group (Australia), 250 Camberwell Road, Camberwell, Victoria 3124, Australia (a division of Pearson Australia Group Pty Ltd)
Penguin Books India Pvt Ltd, 11 Community Centre, Panchsheel Park, New Delhi-110 017, India
Penguin Group (NZ), cnr Airborne and Rosedale Roads, Albany, Auckland 1310, New Zealand (a division of Pearson New Zealand Ltd)
Penguin Books (South Africa) (Pty) Ltd, 24 Sturdee Avenue, Rosebank, Johannesburg 2196, South Africa
Penguin Books Ltd, Registered Offices: 80 Strand, London WC2R 0RL, England

Copyright © 2006 by W. Michael Kelley

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of information contained herein. For information, address Alpha Books, 800 East 96th Street, Indianapolis, IN 46240.

International Standard Book Number: 978-1-59257-512-1
Library of Congress Catalog Card Number: 2006930703
$\begin{array}{lllllllllll}08 & 07 & 06 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
Interpretation of the printing code: The rightmost number of the first series of numbers is the year of the book's printing; the rightmost number of the second series of numbers is the number of the book's printing. For example, a printing code of 06-1 shows that the first printing occurred in 2006.

Printed in the United States of America

Note: This publication contains the opinions and ideas of its author. It is intended to provide helpful and informative material on the subject matter covered. It is sold with the understanding that the author and publisher are not engaged in rendering professional services in the book. If the reader requires personal assistance or advice, a competent professional should be consulted.

The author and publisher specifically disclaim any responsibility for any liability, loss, or risk, personal or otherwise, which is incurred as a consequence, directly or indirectly, of the use and application of any of the contents of this book.

Most Alpha books are available at special quantity discounts for bulk purchases for sales promotions, premiums, fund-raising, or educational use. Special books, or book excerpts, can also be created to fit specific needs.

For details, write: Special Markets, Alpha Books, 375 Hudson Street, New York, NY 10014.

Contents

Introduction ix
Chapter 1: Linear Equations and Inequalities Problems containing x to the first power 1
Linear Geometry...............reating, graphing, and measuring lines and line segments 2
Linear Inequalities and Interval Notation Goodbye equal sign, helloparentheses and brackets. 5
Absolute Value Equations and Inequalities Solve two things for the price of one 8
Systems of Equations and Inequalities Find a common solution. 11
Chapter 2: Polynomials Because you can't have exponents of I forever 15
Exponential and Radical Expressions Powers and sauare roots 16
Operations on Polynomial Expressions ...Add, subtract, multiply and divide polynomials 18
Factoring Polynomials Reverse the multiplication process 21
Solving Quadratic Equations Equations that have a highest exponent of ? 23
Chapter 3: Rational Expressions Fractions, fractions, and more fractions 27
Adding and Subtracting Rational Expressions ..Remember the least common denominator? 28
Multiplying and Dividing Rational Expressions ...Multiplying $=$ easy, dividing $=$ almost as easy 30
Solving Rational Equations Here comes cross multiplication 33
Polynomial and Rational Inequalities . Critical numbers break up your number line 35
Chapter 4: Functions Now you'll start seeing $f(x)$ all over the place 41
Combining Functions Do the usual ($t,-x$) or plug 'em into each other 42
Graphing Function Transformations stretches, squishes, flips, and slides 45
Inverse Functions Functions that cancel other functions out 50
Asymptotes of Rational Functions....Equations of the untouchable dotted line 53
Chapter 5: Logarithmic and Exponential Functions Functions like $\log _{3} x, \ln x, 4^{x}$, and e^{x} 57
Exploring Exponential and Logarithmic FunctionsHarmess al! those. powers 58
Natural Exponential and Logarithmic Functions . Bases of. e, and change. of base formula 62
Properties of Logarithms Expanding and sauishing !og expressions. 63
Solving Exponential and Logarithmic Equations. Exponents and logs cancel each other out. 66
Chapter 6: Conic Sections Parabolas, circles, ellipses, and hyperbolas 69
ParabolasGraphs of guadratic equations 70
CirclesCenter.t.radius. - round shapes.and easy.problems 76
EllipsesFancy word for "ovals" 79
Hyperbolas......Two-armed parabola-looking things 85
Chapter 7: Fundamentals of Trigonometry lnject sine, cosine, and tangent into the mix 91
Measuring Angles..... Radians, degrees, and revolutions 92
Angle Relationshipsoterminal, complementary and supplementary angles 93
Evaluating Trigonometric Functions. Right triangle trig and reference angles 95
Inverse Trigonometric Functions|nput a number and output an angle for a change 102
Chapter 8: Trigonometric Graphs, Identities, and Equations Trig equations and identity proofs 105
Graphing Trigonometric Transformations.........tretch and Shift wavy graphs 106
Applying Trigonometric Identitiesimplify expressions and prove identities 110
Solving Trigonometric Equations Solve for θ instead of x 115
Chapter 9: Investigating Limits What height does the function INTEND to reach? 123
Evaluating One-Sided and General Limits Graphically......ind limits on a function graph 124
Limits and Infinity What happens when x or $f(x)$ gets huge? 129
Formal Definition of the LimitEpșilon-delta problems are no fun at al! 134
Chapter 10: Evaluating Limits Calculate limits without a graph of the function 137
Substitution Method As easy as plugging in for x 138
Factoring Method The first thing to try if substitution doesn't work 141
Conjugate Method Break this out to deal with troublesome radicals 146
Special Limit Theoremsimit formulas you should memorize 149
Chapter 11: Continuity and the Difference Quotient Unbreakable graphs 151
Continuity........... Limit exists...............ion defined = continuous 152
Types of Discontinuity...Holes vs. breaks, removable vs. nonremovable 153
The Difference Quotient The "long way" to find the derivative 163
Differentiability 166
Chapter 12: Basic Differentiation Methods The four heavy hitters for finding derivatives 169
Trigonometric, Logarithmic, and Exponential DerivativesMemorize these formulas 170
The Power Ruleinally a shortcut for differentiating things like . $x^{\prime \prime}$ 172
The Product and Quotient Rules. Differentiate functions that are multiplied or divided 175
The Chain Rule Differentiate functions that are plugged into functions 179
Chapter 13: Derivatives and Function Graphs what signs of derivatives tell you about graphs 187
Critical Numbers Numbers that break up wiggle graphs 188
Signs of the First Derivative Use wiggle graphs to determine function direction. 191
Signs of the Second Derivative Points of inflection and concavity 197
Function and Derivative Graphs..... How are the graphs of f, f^{\prime}, and $f^{\prime \prime}$. related? 202
Chapter 14: Basic Applications of Differentiation Put your derivatives skills to use 205
Equations of Tangent Lines. Point. of tangency + . derivative $=$ equation of tangent. 206
The Extreme Value Theorem Every function has its highs and lows 211
Newton's Methodsimple derivatives can approximate the zeroes of a function 214
L'Hôpital's Rule........Find limits that used to be imposssible 218
Chapter 15: Advanced Applications of Differentiation Tricky but interesting uses for 223
The Mean Value and Rolle's Theorems.....Average slopes. =.instant.slopes. 224
Rectilinear Motion Position velocity and acceleration functions 229
Related RatesFigure out how quickly the variables change in a function 233
Optimization...............nd the biggest or smallest values of a function 240
Chapter 16: Additional Differentiation Techniques Yet more ways to differentiate 247
Implicit DifferentiationEssential when you can't solve a function for y 248
Logarithmic Differentiation 255
Differentiating Inverse Trigonometric Functions 'Cause the derivative of $\tan ^{-1} x \operatorname{ain}^{\prime}+\sec ^{-2} x$ 260
Differentiating Inverse Functions without even knowing what they are! 262
Chapter 17: Approximating Area Estimate the area between a curve and the x-axis 269
Informal Riemann Sums Left, right, midpoint, upper, and lower sums 270
Trapezoidal RuleSimilar to Riemann sums but much more accurate 281
Simpson's Rule Approximates area beneath curvy functions really wel! 289
Formal Riemann Sums you'll want to poke your "i"s out 291
Chapter 18: Integration Now the derivative's not the answer, it's the question 297
Power Rule for Integration .. Add ! to the exponent and divide by the new power 298 Trigintegrals look nothing like trig derivativesIntegrating Trigonometric and Exponential Functions.301
The Fundamental Theorem of Calculus......!ntegration and area are closely related 303
Substitution of Variables Usually called u-substitution 313
Chapter 19: Applications of the Fundamental Theorem Things to do with definite integrals 319
Calculating the Area Between Two Curves Instead of just a function and the x-axis. 320
The Mean Value Theorem for Integration Rectangular area matches the area beneath a curve 326
Accumulation Functions and Accumulated Change ..!ntegrals with x limits and "rea! !ife".. uses 334
Chapter 20: Integrating Rational Expressions Fractions inside the integral 343
SeparationMake one big ugly fraction into smaller less ugly ones 344
Long Division Divide before you integrate 347
Applying Inverse Trigonometric Functions ...Very useful but only in certain circumstances 350
Completing the SquareFor quadratics down below and no variables up top 353
Partial Fractions A fancy way to break down big fractions 357
Chapter 21: Advanced Integration Techniques Even more ways to find integrals 363
Integration by Parts|t's like the product rule, but for integrals 364
Trigonometric Substitution ...Using identities and lit+le right triangle diagrams 368
Improper Integrals Integrating despite asymptotes and infinite boundaries 383
Chapter 22: Cross-Sectional and Rotational Volume 389
Volume of a Solid with Known Cross-Sections Cut the solid into pieces and measure those instead 390
Disc Method.......ircles are the easiest.posssible cross-sections 397
Washer Method Find volumes even if the "solids". aren't solid 406
Shell Method......... Something to fall back on when the washer method fails 417
Chapter 23: Advanced Applications of Definite Integrals More bounded integral problems 423
Arc Length How far is it from point A to point B along a curvy road? 424
Surface AreaMeasure the "skin" of a rotational solid 427
Centroids Find the center of gravity for a two-dimensional shape 432
Chapter 24: Parametric and Polar Equations Writing equations without x and y 443
Parametric Equations Like revolutionaries in Boston Harbor, just add t. 444
Polar Coordinates Convert from (x, y) to (r, θ) and vice versa 448
Graphing Polar Curves Graphing with r and θ instead of x and y 451
Applications of Parametric and Polar Differentiation Teach a new dog some old 456
Applications of Parametric and Polar Integration Feed the dog some integrals too? 462
Chapter 25: Differential Equations Equations that contain a derivative 467
Separation of Variables Separate the y 's and dy's from the x 's and $d x$'s 468
Exponential Growth and Decay....When a population's change is proportional to its size 473
Linear Approximations A graph and its tangent line sometimes look a lot alike 480
Slope Fields They look like wind patterns on a weather map 482
Euler's Method Take baby steps to find the differential equation's solution 488
Chapter 26: Basic Sequences and Series 495
Sequences and Convergence 496
Series and Basic Convergence Tests. Sigma notation and the nth term divergence test 498
Telescoping Series and p-SeriesHow to handle these easy-to-spot series 502
Geometric Series.....Do they converge, and if so, what's the sum? 505
The Integral Test Infinite series and improper integrals are related 507
Chapter 27: Additional Infinite Series Convergence Tests 511
Comparison Test........roving series are bigger than big and smaller than small 512
Limit Comparison Test series that converge or diverge by association 514
Ratio Test......... Compare neighboring terms of a series 517
Root Test.................... for terms inside radical signs 520
Alternating Series Test and Absolute Convergence What if series have negative terms? 524
Chapter 28: Advanced Infinite Series Sevies that contain x's 529
Power Seriesinding intervals of convergence. 530
Taylor and Maclaurin Series......series that approximate function values 538
Appendix A: Important Graphs to memorize and Graph Transformations 545
Appendix B: The Unit Circle 551
Appendix C: Trigonometric Identities 553
Appendix D: Derivative Formulas 555
Appendix E: Anti-Derivative Formulas 557
Index 559

Introduction

Are you in a calculus class? Yes? Then you NEED this book. Here's why:
Fact \#1: The best way to learn calculus is by working out calculus problems.
There's no denying it. If you could figure this class out just by reading the textbook or taking good notes in class, everybody would pass with flying colors. Unfortunately, the harsh truth is that you have to buckle down and work problems out until your fingers are numb.
Fact \#2: Most textbooks only tell you WHAT the answers to their practice problems are but not How to do them!

Sure your textbook may have 175 problems for every topic, but most of them only give you the answers. That means if you don't get the answer right you're totally screwed! knowing you're wrong is no help at all if you don't know WHY you're wrong. Math textbooks sit on a huge throne like the Great and Terrible Oz and say, "Nope, try again", and we do. Over and over. And we keep getting the problem wrong. What a delightful way to learn! (Let's not even get into why they only tell you the answers to the odd problems. Does that mean the book's actual AUTHOR didn't even feel like working out the even ones?)
Fact \#3: Even when math books try to show you the steps for a problem, they do a lousyjob.
Math people love to skip steps. You'll be following along fine with an explanation and then all of a sudden BAM, you're lost. You'll think to yourself, "How did they do that?" or "Where the heck did that 42 come from? It wasn't there in the last step!" Why do almost all of these books assume that in order to work out a problem on page 200, you'd better know pages I through 199 like the back of your hand? You don't want to spend the rest of your life on homework! You just want to know why you keep getting a negative number when you've calculating the minimum cost of building a pool whose length is four times the sum of its depth plus the rate at which the water is leaking out of a train that left Chicago at 4:00 a.m. traveling due west at the same speed carbon is decaying.

Fact \#4: Reading lists of facts is fun for a while, but then it gets old. Let's cut to the chase.
Just about every single kind of calculus problem you could possibly run into is in here-after all, this book is HUMONGOUS! If a thousand problems aren't enough,
then you've got some kind of crazy math hunger, my friend, and I'd seek professional help. This practice book was good at first, but to make it GREAT, I went through and worked out all the problems and took notes in the margins when I thought something was confusing or needed a little more explanation. I also drew little skulls next to the hardest problems, so you'd know not to freak out if they were too challenging. After all, if you're working on a problem and you're totally stumped, isn't it better to know that the problem is SUPPOSED to be hard? It's reassuring, at least for me.

I think you'll be pleasantly surprised by how detailed the answer explanations are, and I hope you'll find my little notes helpful along the way. Call me crazy, but I think that people who WANT to learn calculus and are willing to spend the time drilling their way through practice problems should actually be able to figure the problems out and learn as they go, but that's just my 2ϕ.

Good luck and make sure to come visit my website at www.calculus-help.com. If you feel so inclined, drop me an email and give me your 2ϕ. (Not literally, though-real pennies clog up the Internet pipes.)

Dedication

This book is for my family, who'd love and support me whether I wrote ridiculously long math books or not. For my wife, Lisa, whose grip on sanity is firm when mine starts to buckle, I couldn't possibly love you more than I do. For my swashbuckling pirate son, Nick, who I hope will continue to end the majority of his sentences with "me hardies" even when he's not 3 anymore. And for my beautiful twin girls Erin and Sara, who just said their first word: "shoes." I have a sinking feeling I'll be hearing that word a lot in the not-too-distant future.

Special thanks to mike Sanders, who helped turn my idea about a marked-up book of calculus problems into a reality, and to my editors sue Strickland and Ginny munroe, who work hard to keep me from looking silly.

This book is in memory of Joe, who passed from us in 2006. Back when I wrote The Complete Idiot's Guide to Calculus, Joe told me (in a thick Long Island former trucker accent) that it'd be a "home run." With sincerity unmatched by anyone I have ever met, his simple words of encouragement meant so much to me as a struggling new author. Thanks, Joe. You were right.

Chapter I
 LINEAR EQUATIONS AND INEQUALITIES
 Problems containing x to the first power

Abstract

A proper and rigorous understanding of linear equations and their standard forms, linear segments and the associated algorithms, systems of multiple linear equations, and linear inequalities is an essential prerequisite for the study of calculus. Though the majority of calculus students are familiar with the topics in this chapter, mere familiarity is insufficient. In order to succeed in the more advanced topics of the chapters that follow, student mastery of these foundational skills and concepts must be ensured.

Points and lines are the most basic geometric concepts, so you'll need to understand how they are related before you can move on to more complex functions and their graphs. You'll need to know how to create equations of lines, graph lines in the coordinate plane, and even find the lengths and midpoints of line segments. You'll also need to know what to do with expressions containing $\langle\rangle,, \leq$, and \geq signs. Once you've got that down pat, you'll review how to find solutions to systems of equations and inequalities (where you're working with more than one equation or in equality at a time).

Linear Geometry

Creating, graphing, and measuring lines and line segments

I.I Solve the equation: $3 x-(x-7)=4 x-5$.

Distribute -1 through the parentheses and combine like terms.

$$
\begin{array}{r}
3 x-x+7=4 x-5 \\
2 x+7=4 x-5
\end{array}
$$

Subtract $4 x$ and 7 from both sides of the equation to separate the variable and constant terms.

$$
\begin{aligned}
2 x+7 & =4 x-5 \\
-4 x-7 & -4 x-7 \\
\hline-2 x & =
\end{aligned}
$$

Divide both sides by -2 to get the solution.

$$
\begin{gathered}
\frac{-2 x}{-2}=\frac{-12}{-2} \\
x=6
\end{gathered}
$$

I. 2 Calculate the slope, m, of the line $4 x-3 y=9$.
slope-
intercept form of a line is $y=m x+b$, where m is the slope of the line and b is the y-intercept.

Solve the equation for y in order to rewrite it in slope-intercept form.

$$
\begin{aligned}
-3 y & =-4 x+9 \\
y & =\frac{4}{3} x-3
\end{aligned}
$$

The slope of the line is the coefficient of x : $m=\frac{4}{3}$.
I. 3 Prove that the slope of a line in standard form, $A x+B y=C$, is $-\frac{A}{B}$.

The equation's in

 standard form if it has: (1) No fractions, (2) Only x - and y-terms on the left side, (3) Just the constant on the right side, and (4) A positive x-coefficient.Write the equation in slope-intercept form by solving it for y.

$$
\begin{aligned}
A x+B y & =C \\
B y & =-A x+C \\
y & =-\frac{A}{B} x+\frac{C}{B}
\end{aligned}
$$

The coefficient of x is the slope of the line: $m=-\frac{A}{B}$.
I. 4 Rewrite the linear equation $3 x-4\left(x-\frac{2}{3} y\right)=\frac{4}{5} x-(7 y+3)$ in standard form.

Distribute the constants and combine like terms.

$$
\begin{aligned}
3 x-4 x+\frac{8}{3} y & =\frac{4}{5} x-7 y-3 \\
-x+\frac{8}{3} y & =\frac{4}{5} x-7 y-3
\end{aligned}
$$

Multiply by 15 , the least common denominator, to eliminate fractions.

$$
-15 x+40 y=12 x-105 y-45
$$

Separate the variable and constant terms.

$$
\begin{aligned}
-27 x+145 y & =-45 \\
27 x-145 y & =45
\end{aligned}
$$

I.5 Write the equation of the line passing through the points $(-3,-8)$ and $(-6,2)$ in

Multiply the entive equation by -1 so that the x-coefficient is positive. (It's a requirement of
standard form.) slope-intercept form.

Calculate the slope of the line.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-(-8)}{-6-(-3)}=\frac{10}{-3}=-\frac{10}{3}
$$

Substitute the slope into the slope-intercept formula $(y=m x+b)$ for m, replace x and y using one of the coordinate pairs, and solve for b.

$$
\begin{aligned}
y & =m x+b \\
-8 & =-\frac{10}{3}(-3)+b \\
-8 & =10+b \\
b & =-18
\end{aligned}
$$

Substitute m and b into the slope-intercept formula.

$$
\begin{aligned}
& y=m x+b \\
& y=-\frac{10}{3} x-18
\end{aligned}
$$

I. 6 Calculate the x - and y-intercepts of $3 x-4 y=-6$ and use them to graph the line.

To calculate the x-intercept, substitute 0 for y and solve for x. Similarly, substitute 0 for x to calculate the y-intercept.

$$
\begin{array}{rlrl}
3(0)-4 y & =-6 & 3 x-4(0) & =-6 \\
-4 y & =-6 & 3 x & =-6 \\
y & =\frac{3}{2} & x & =-2
\end{array}
$$

Therefore, the graph of $3 x-4 y=-6$ intersects the x-axis at $(-2,0)$ and the y-axis at $\left(0, \frac{3}{2}\right)$, as illustrated by Figure 1-1.

Figure 1-1
The graph of $3 x-4 y=-6$ with its x - and y-intercepts identified.

Solve for y to express the equation in slope-intercept form.

$$
y=\frac{1}{4} x+\frac{7}{4}
$$

Note: Problems 1.8-1.10 refer to parallelogram $A B C D$ in Figure 1-2.

I.8. According to a basic Euclidean geometry theorem, the diagonals of a parallelogram bisect each other. Demonstrate this theorem for parallelogram $A B C D$.

Figure 1-2 Parallelogram ABCD.

Calculate the midpoints of $\overline{A C}$ and $\overline{B D}$; the diagonals bisect one another if and only if those midpoints are equal.

Midpoint of $\overline{A C}$: Midpoint of $\overline{B D}$:

$$
\left(\frac{2+11,1+4}{2}, \frac{2}{2}\right)=\left(\frac{13}{2}, \frac{5}{2}\right) \quad\left(\frac{7+6}{2}, \frac{1+4}{2}\right)=\left(\frac{13}{2}, \frac{5}{2}\right)
$$

Note: Problems 1.8-1.10 refer to parallelogram $A B C D$ in Figure 1-2.
I.9 Prove that $A B C D$ is a rhombus by verifying that its sides are congruent.

Apply the distance formula four times, once for each side.

$$
\begin{aligned}
A B & =\sqrt{(7-2)^{2}+(1-1)^{2}} & B C & =\sqrt{(} \\
& =\sqrt{25+0} & & =\sqrt{1} \\
& =5 & & =5 \\
C D & =\sqrt{(6-11)^{2}+(4-4)^{2}} & A D & =\sqrt{(} \\
& =\sqrt{25+0} & & =\sqrt{1} \\
& =5 & & =5
\end{aligned}
$$

$$
B C=\sqrt{(11-7)^{2}+(4-1)^{2}}
$$

$$
A D=\sqrt{(6-2)^{2}+(4-1)^{2}}
$$

$$
=\sqrt{25+0} \quad=\sqrt{16+9}
$$

Note: Problems 1.8-1.10 refer to parallelogram ABCD in Figure 1-2.
I.IO Prove that $A B C D$ is a rhombus by verifying that its diagonals are perpendicular to one another.

Calculate the slopes of the diagonals using the slope formula from Problem 1.5.

$$
\begin{aligned}
\text { Slope of } \overline{A C}: m_{1} & =\frac{4-1}{11-2} & \text { Slope of } \overline{B D}: & m_{2}
\end{aligned}=\frac{4-1}{6-7}, ~ m_{2}=\frac{3}{-1}
$$

The diagonals are negative reciprocals, so the line segments are perpendicular.

Linear Inequalities and Interval Notation

Goodbye equal sign, hello parentheses and brackets

I.II Write the expression $x \geq-4$ using interval notation.

An interval is defined by the two values that bound an inequality statement, the lower followed by the upper bound. You must indicate whether or not each endpoint is included in the interval. (A bracket next to an endpoint signifies inclusion, and a parenthesis indicates exclusion.)
Any number greater than or equal to -4 makes this statement true; -4 is the lower bound and must be included. The upper bound is infinity. Therefore, $x \geq-4$ is written $[-4, \infty)$.

Always use parentheses next to ∞ when writing intervals. You can't "include" something that's not a finite, real
number.
I. 12 Write the expression $x<10$ using interval notation.

The upper bound is 10 and should be excluded (since 10 is not less than 10). Any number less than 10 makes this statement true; there are infinitely many such values in the negative direction, so the lower bound is $-\infty$. Therefore, the inequality statement is written $(-\infty, 10)$.
I.I3 Write the expression $6 \geq x>-1$ using interval notation.

The lower bound must always precede the upper bound, regardless of how the expression is written: $(-1,6]$.
I. 14 Write the solution to the inequality using interval notation: $4 x-2>x+13$.

Separate variables and constants, then divide by the coefficient of x.

$$
\begin{aligned}
4 x-x & >13+2 \\
3 x & >15 \\
x & >5
\end{aligned}
$$

Write the solution in interval notation: $(5, \infty)$.
I.I5 Write the solution to the inequality using interval notation:
$3(2 x-1)-5 \leq 10 x+19$.

Distribute the constant, combine like terms, and isolate x on the left side of the equation.

$$
\begin{aligned}
6 x-3-5 & \leq 10 x+19 \\
6 x-8 & \leq 10 x+19 \\
-4 x & \leq 27
\end{aligned}
$$

Dividing by a negative constant fundamentally changes the inequality: $x \geq-\frac{27}{4}$. Write the solution in interval notation: $\left[-\frac{27}{4}, \infty\right)$.
I.16 Graph the inequality: $-2 \leq x<3$.

I.I7 Graph the inequality: $x>-1$.

There is no upper bound for the interval $(-1, \infty)$, but all values greater than -1 satisfy the inequality. Therefore, shade all numbers greater than -1 on the number line, as illustrated in Figure 1-4.

Figure 1-4 The graph of $x>-1$ excludes the lower boundary, $x=-1$.
I. 18 Solve and graph the inequality: $-7 \leq 1-2 x<11$.

Isolate $-2 x$ in the middle of the compound inequality by subtracting 1 from each expression. Next, divide each expression by -2 to isolate x, reversing the inequality signs as you do.

$$
\begin{gathered}
-7-1 \leq-2 x<11-1 \\
\frac{-8}{-2} \geq \frac{-2 x}{-2}>\frac{10}{-2} \\
4 \geq x>-5
\end{gathered}
$$

The graph of the solution, $(-5,4]$, is illustrated in Figure 1-5.

Figure 1-5 The graph of $-7 \leq 1-2 x<11$ includes $x=4$ and excludes $x=-5$.
I. 19 Graph the inequality: $y<-\frac{1}{3} x+2$.

This inequality contains two variables, x and y, so it must be graphed on the coordinate plane. Note that the inequality is solved for y and (apart from the inequality sign) looks like a linear equation in slope-intercept form. The linear inequality has y-intercept $(0,2)$ and slope $-\frac{1}{3}$.

Figure 1-6
stick
the negative sign
on top: $\frac{-1}{3}$. Starting at the y-intercept, go down 1 unit, right 3 units, and mark the point. Connect the dots
to graph the line. The graph of $y<-\frac{1}{3} x+2$ is dotted rather than solid, because it is excluded from the solution (like an open dot indicates exclusion from an inequality graph on a number line).

Solve the inequality for y.

$$
\begin{gathered}
-y \leq-2 x+4 \\
y \geq 2 x-4
\end{gathered}
$$

Figure 1-7

All of the orderied pairs above the line are valid solutions to the inequality $2 x-y \leq 4$.

Absolute Value Equations and Inequalities
 Solve two things for the price of one

I. 21 Solve the equation: $|3 x-7|=8$.

In order for this statement to be valid, the absolute value expression must either

I. 22 Solve the equation: $1-2|x+6|=-4$.

Isolate the absolute value expression on the left side of the equation.

$$
\begin{aligned}
-2|x+6| & =-5 \\
|x+6| & =\frac{5}{2}
\end{aligned}
$$

Apply the technique described in Problem 1.21.

I. 23 Solve the equation: $9-3|x+2|=15$.

Isolate the absolute value expression on the left side of the equation.

$$
\begin{aligned}
-3|x+2| & =6 \\
|x+2| & =-2
\end{aligned}
$$

This equation has no solution.

$$
\begin{aligned}
x+6 & =\frac{5}{2} & x+6 & =-\frac{5}{2} \\
x & =\frac{5}{2}-\frac{12}{2} & x & =-\frac{5}{2}-\frac{12}{2} \\
x & =-\frac{7}{2} & x & =-\frac{17}{2}
\end{aligned}
$$

Absolute values always produce a positive number, so there's no way something

$$
\leftarrow
$$ in absolute values can equal-2.

I. 24 Solve the inequality: $|x-5|<1$.

The solution to the absolute value inequality $|x+a|<b$, where a and b are real numbers (and $b>0$), is equivalent to the solution of the compound inequality $-b<x+a<b$.

$$
-1<x-5<1
$$

Solve the inequality using the method described in Problem 1.18.

$$
\begin{aligned}
-1+5 & <x<1+5 \\
4 & <x<6
\end{aligned}
$$

The solution, in interval notation, is $(4,6)$.

I. 25 Graph the solution to the inequality: $2|x-7|-5 \leq-1$.

Isolate the absolute value expression on the left side of the inequality.

$$
\begin{aligned}
2|x-7| & \leq-1+5 \\
\frac{2|x-7|}{2} & \leq \frac{4}{2} \\
|x-7| & \leq 2
\end{aligned}
$$

Create a compound inequality (as explained in Problem 1.24) and solve.

$$
\begin{array}{lll}
-2 & \leq x-7 & \leq 2 \\
-2+7 & \leq x & \leq 2+7 \\
5 & \leq x & \leq 9
\end{array}
$$

The solution, $[5,9]$, is graphed in Figure 1-8.

I. 26 Solve the inequality: $|2 x+5| \geq 3$.

Rewrite an inequality of form $|a x+b| \geq c$ as two new inequalities, $a x+b \geq c$ and $a x+b \leq-c$, and solve. The union of the solutions is equivalent to the solution of the original inequality.

$$
\begin{aligned}
& 2 x+5 \geq 3 \quad 2 x+5 \leq-3 \\
& 2 x \geq-2 \text { or } 2 x \leq-8 \\
& x \geq-1 \quad x \leq-4
\end{aligned}
$$

The solution, in interval notation, is $(\infty,-4]$ or $[-1, \infty)$. The word "or" does not imply that either interval by itself is an acceptable answer, but rather that both intervals together (and therefore all values from both intervals) constitute the solution.
I.27 Solve the inequality and graph the solution: $2-3|x+1|<-5$.

To solve a
$>$ or \geq absolute value inequality, set up two inequalities without absolute value bars. One will match the original inequality. The other looks the same on the left side, but the number on the right is negative and the inequality sign is reversed.

Isolate the absolute value expression on the left side of the inequality.

$$
\begin{gathered}
-3|x+1|<-7 \\
|x+1|>\frac{7}{3}
\end{gathered}
$$

Dividing by -3 reverses the inequality sign; apply the solution method outlined in Problem 1.26.

The solution is $\left(-\infty,-\frac{10}{3}\right)$ or $\left(\frac{4}{3}, \infty\right)$. Graph both intervals on the same number line to generate the graph of $2-3|x+1|<-5$, as illustrated by Figure 1-9.

Figure 1-9
All real numbers satisfy the inequality $2-3|x+1|<-5$, except those on the interval $\left[-\frac{10}{3}, \frac{4}{3}\right]$.

Systems of Equations and Inequalities

Find a common solution shared by multiple equations or inequalities
1.28 Solve the following system of equations using the substitution method.

$$
\left\{\begin{aligned}
-8 x+2 y & =-5 \\
2 x-y & =1
\end{aligned}\right.
$$

Solve the second equation for y and substitute its value into the first equation.

$$
\begin{aligned}
-8 x+2(2 x-1) & =-5 \\
-8 x+4 x-2 & =-5 \\
-4 x & =-3 \\
x & =\frac{3}{4}
\end{aligned}
$$

Substitute this x-value into the equation solved for y at the start of the problem.

$$
\begin{aligned}
& y=2 x-1=2\left(\frac{3}{4}\right)-1=\frac{6}{4}-1=\frac{1}{2} \\
& y \text {) is the solution: }\left(\frac{3}{4}, \frac{1}{2}\right) .
\end{aligned}
$$

The coordinate pair (x, y) is the solution: $\left(\frac{3}{4}, \frac{1}{2}\right)$.
I. 29 Solve the following system of equations using the elimination method.

$$
\left\{\begin{aligned}
2 x-5 y & =-11 \\
3 x+13 y & =4
\end{aligned}\right.
$$

To eliminate x from the system, multiply the first equation by -3 , multiply the second equation by 2 , and then add the equations together.

$$
\begin{aligned}
-6 x+15 y & =33 \\
6 x+26 y & =8 \\
\hline 41 y & =41 \\
y & =1
\end{aligned}
$$

$$
\begin{aligned}
2 x-5 y & =-11 \\
2 x-5(1) & =-11 \\
2 x & =-11+5 \\
x & =-\frac{6}{2}=-3
\end{aligned}
$$

The point $(-3,1)$ is the solution to the system of equations.
1.30 Solve the system of equations: $\left\{\begin{aligned} x-6 y & =24 \\ \frac{1}{3} x-2 y & =8\end{aligned}\right.$

An indeterminate system of equations has no solution. Consider this geometric explanation: If the solution to a system of equations is the point(s) at which the graphs of its equations intersect, then an indeterminate system has no solution because the graphs of the linear equations do not intersect. The slope of the first $\xrightarrow{\text { line is }}-\frac{1}{-6}=\frac{1}{6}$, and the slope of the second line is $-\frac{4}{-k}=\frac{4}{k}$. Set the slopes equal to create parallel lines, and solve for k.

$$
\frac{4}{k}=\frac{1}{6}
$$

Cross multiply to solve the proportion.

$$
\begin{aligned}
4 \cdot 6 & =k \cdot 1 \\
24 & =k
\end{aligned}
$$

I.32 Graph the solution to the below system of inequalities.

$$
\left\{\begin{array}{l}
y<3 \\
x \geq-4 \\
y>\frac{2}{3} x-1
\end{array}\right.
$$

Graph the inequalities on the same coordinate plane, as illustrated by Figure 1-10. The region of the plane upon which the shaded solutions of all three inequality graphs overlap is the solution to the system.

Figure 1-10

The solution to a system of inequalities is a two-dimensional shaded region. Note that $y=3$ is a horizontal line 3 units above the x-axis and $x=-4$ is a vertical line four units left of the y-axis.
I.33 Solve the following system of equations.

$$
\left\{\begin{array}{l}
3 x+2 y-z=0 \\
5 x-y-8 z=9 \\
x+4 y-3 z=-22
\end{array}\right.
$$

Solve the first equation for $z: z=3 x+2 y$. Use this expression to replace z in the other two equations of the system.

$$
\begin{aligned}
& \text { Solve this system using substitution. (Solve the second equation for } y \text { to get } \\
& y=-4 x+11 \text { and substitute that expression into the other equation.) } \\
& \text { You're left with a system of two equations in two variables: } \\
& \text { - }
\end{aligned}
$$

Plug $x=4$ into the equation you previously solved for y.

$$
\begin{aligned}
& y=-4 x+11 \\
& y=-4(4)+11 \\
& y=-5
\end{aligned}
$$

Plug $x=4$ and $y=-5$ into the equation previously solved for z.

$$
\begin{aligned}
& z=3 x+2 y \\
& z=3(4)+2(-5) \\
& z=2
\end{aligned}
$$

The solution to the system of equations is $(x, y, z)=(4,-5,2)$.

Chapter 2
 POLYNOMIALS
 Because you can't have exponents of 1 forever

The usefulness of the exponential properties and algorithms taught in an elementary algebra course does not expire at the final exam. In fact, they are essential to the study of polynomials, one of the building blocks of calculus. Polynomials, though simple in structure, can possess quite complex graphs, and are so versatile that even the most fundamental differentiation and integration techniques (the power rules for differentiation and integration) are defined in terms of polynomials. This chapter affords you the opportunity to review polynomials and properties of the exponents they contain.

Exponents will play a key role later in calculus. If you're skeptical, consider this: The two most important calculus topics (derivatives and integrals) are actually tied to exponents. The derivative of a polynomial is always one degree (exponent) lower than the polynomial you started with. It works the other way as well-the exponents of an integral are always one greater than the original polynomial. Since exponents and polynomials play such an important role in the upcoming chapters, make sure you know how to manipulate them by working through all the problems here.

Exponential and Radical Expressions

2.1 Simplify the expression: $x^{2} y^{3} x^{4} y^{6} x^{9} y^{8}$.

Apply the commutative property of multiplication to rewrite the expression by
grouping like variables together.

$$
x^{2} x^{4} x^{9} y^{3} y^{6} y^{8}
$$

Recall the algebraic axiom concerning the product of exponential expressions with equivalent bases: $x^{n} x^{k}=x^{n+h}$.
2.2 Simplify the expression: $\frac{w^{10} x^{6} y^{3} z^{8}}{w^{2} x^{4} y^{7} z^{10}}$.

If the product of two exponential expressions with the same base requires you to add the exponents (as demonstrated in Problem 2.1), then the quotient is equal to the difference of the exponents

$$
w^{10-2} x^{6-4} y^{3-7} z^{8-10}=w^{8} x^{2} y^{-4} z^{-2}
$$

Rewrite the expression to eliminate the negative exponents.

$$
\frac{w^{8} x^{2}}{y^{4} z^{2}}
$$

2.3 Simplify the expression: $\left(\frac{4 x}{7 y^{3}}\right)^{-2}$.

The entire rational expression is raised to a negative exponent, so take the reciprocal of the fraction.

$$
\left(\frac{7 y^{3}}{4 x}\right)^{2}
$$

Square each factor. If a factor is already raised to a power, such as y^{3}, multiply that power by 2.

$$
\frac{7^{2} y^{3(2)}}{4^{2} x^{2}}=\frac{49 y^{6}}{16 x^{2}}
$$

2.4 Simplify the expression: $\frac{\left(x^{-2} y^{6}\right)^{3}}{\left(3 x y^{-5}\right)^{-2}}$.

Raise the numerator to the third power and the denominator to the -2 power.

$$
\frac{x^{(-2)(3)} y^{6(3)}}{3^{-2} x^{-2} y^{(-5)(-2)}}=\frac{x^{-6} y^{18}}{3^{-2} x^{-2} y^{10}}
$$

Eliminate the negative exponents.

$$
\frac{3^{2} x^{2} y^{18}}{x^{6} y^{10}}=\frac{9 x^{2} y^{18}}{x^{6} y^{10}}
$$

Simplify using the method outlined in Problem 2.2.

$$
9 x^{2-6} y^{18-10}=9 x^{-4} y^{8}=\frac{9 y^{8}}{x^{4}}
$$

2.5 Prove that $x^{0}=1$.

The multiplicative inverse property of algebra states that any nonzero real number times its reciprocal equals 1 . Therefore, if x^{n} is a real number and is multiplied by its reciprocal, the result must be 1 .

$$
x^{a} \cdot \frac{1}{x^{a}}=1
$$

Rewrite the fraction using a negative exponent.

$$
\left(x^{*}\right)\left(x^{-\infty}\right)=1
$$

The expressions have the same base, so calculate the product by adding the exponents.

$$
\begin{aligned}
x^{a-a} & =1 \\
x^{0} & =1
\end{aligned}
$$

2.6 Simplify the expression: $\sqrt{72 x^{5} y^{8}}$.

Because the expression is a square root (with an unwritten, implied index of 2), rewrite the factors in terms of perfect squares. \qquad

Each perfect square can be removed from the radical: $6 x^{2} y^{4} \sqrt{2 x}$.
2.7 Explain why the expression $\sqrt{x^{2} y}$ should be simplified as $|x| \sqrt{y}$, rather than $x \sqrt{y}$. Consider the effect of these values in the original expression: $x=-2, y=5$.

$$
\sqrt{x^{2} y}=\sqrt{(-2)^{2}(5)}=\sqrt{20}
$$

Simplify the result.

$$
\sqrt{20}=\sqrt{4 \cdot 5}=\sqrt{2^{2} \cdot 5}=2 \sqrt{5}
$$

Now test the expressions $|x| \sqrt{y}$ and $x \sqrt{y}$ by substituting $x=-2$ and $y=5$.

$$
x \sqrt{y}=-2 \sqrt{5} \quad|x| \sqrt{y}=|-2| \sqrt{5}=2 \sqrt{5}
$$

Notice that only $|x| \sqrt{y}$ gives the correct result.
2.8 Simplify the expression: $\sqrt[3]{-8 x^{7} y^{5} z^{2}}$.

The index of the radical is 3 , so rewrite the factors of the radicand as perfect cubes and remove those perfect cubes from beneath the radical sign.

$$
\sqrt[3]{(-2)^{3} \cdot\left(x^{2}\right)^{3} \cdot x \cdot(y)^{3} \cdot y^{2} \cdot z^{2}}=\left(-2 x^{2} y\right) \sqrt[3]{x y^{2} z^{2}}
$$

There's no need to include absolute value bars (as discussed in Problem 2.7) because the index of the expression is odd.
2.9 Simplify the expression: $\sqrt{112 x y}-\sqrt{28 x y}$.

Although $112 x y-28 x y=84 x y$, the answer is not $\sqrt{84 x y}$; such an answer violates numerous arithmetic rules. Terms containing radicals may be combined only via addition or subtraction if the corresponding radicands match exactly. Notice that simplifying the individual radicals in the expression produces such radicands.

$$
\begin{aligned}
\sqrt{112 x y}-\sqrt{28 x y} & =\sqrt{16 \cdot 7 \cdot x y}-\sqrt{4 \cdot 7 \cdot x y} \\
& =\sqrt{4^{2} \cdot 7 \cdot x y}-\sqrt{2^{2} \cdot 7 \cdot x y} \\
& =4 \sqrt{7 x y}-2 \sqrt{7 x y} \\
& =2 \sqrt{7 x y}
\end{aligned}
$$

2.10 Rewrite $250^{2 / 3}$ as a radical expression and simplify.

How to,$+-x$, and \div polynomials

2.II Simplify the expression: $3\left(x^{2}-5 x y+6 y^{2}\right)-5\left(x^{2}+4 x y-1\right)$.

Distribute 3 through the first set of parentheses and -5 through the second set.

$$
3 x^{2}-15 x y+18 y^{2}-5 x^{2}-20 x y+5
$$

Combine like terms to simplify.

$$
\left(3 x^{2}-5 x^{2}\right)+18 y^{2}+(-15 x y-20 x y)+5=-2 x^{2}-35 x y+18 y^{2}+5
$$

Convention dictates that variables should be written in decreasing order of exponential power. If two terms have the same power (in the above expression, x^{2}, y^{2}, and $x y$ are raised to the second power), write the variables in alphabetical order.
2.12 Simplify the following expression.

$$
-2 x^{2}(y-4)+x(x+6)-4(3 x-y)+7 y^{2}(x+1)+6 y(y-9)-3(y+5 x)
$$

Distribute the constants.

$$
-2 x^{2} y+8 x^{2}+x^{2}+6 x-12 x+4 y+7 x y^{2}+7 y^{2}+6 y^{2}-54 y-3 y-15 x
$$

Combine like terms.

$$
-2 x^{2} y+7 x y^{2}+9 x^{2}+13 y^{2}-21 x-53 y
$$

2.13 Find the product and simplify: $(y-1)(2 y+3)$.

Use the FOIL method to multiply pairs of binomials. "FOIL" is a technique requiring you to multiply pairs of terms and add all of the results; its name is an
acronym describing those pairs: first (the first terms in each binomial, in this example, y and $2 y$), outside (the terms at the outer edges of the product, y and 3), inside (the terms in the middle of the product, -1 and $2 y$), and last (the last term in each binomial, -1 and 3).

$$
\begin{aligned}
& y(2 y)+y(3)+(-1)(2 y)+(-1)(3) \\
& =2 y^{2}+3 y-2 y-3 \\
& =2 y^{2}+y-3
\end{aligned}
$$

2.14 Find the product and simplify: $(a-3 b)^{2}$.

Rewrite the squared binomial as a product and multiply using the FOIL method.

$$
\begin{aligned}
& (a-3 b)(a-3 b) \\
= & a \cdot a+a(-3 b)+(-3 b)(a)+(-3 b)(-3 b) \\
= & a^{2}-3 a b-3 a b+9 b^{2} \\
= & a^{2}-6 a b+9 b^{2}
\end{aligned}
$$

2.15 Find the product and simplify: $(2 x-y)(x+5 y-1)$.

The FOIL method is useful only when multiplying exactly two binomials. In order to multiply two polynomials containing any number of terms, multiply each term in the left polynomial by each term in the right polynomial, one at a time, and add the results.

$$
\begin{aligned}
& 2 x(x)+2 x(5 y)+2 x(-1)+(-y)(x)+(-y)(5 y)+(-y)(-1) \\
= & 2 x^{2}+10 x y-2 x-x y-5 y^{2}+y \\
= & 2 x^{2}+9 x y-5 y^{2}-2 x+y
\end{aligned}
$$

In other words, start with $2 x$ and multiply it by every term in the right polynomial: $2 x(x)=2 x^{2}, 2 x(5 y)=10 x y$, and $2 x(-1)=-2 x$. Now repeat the process, this
time with -y.
2.16 Evaluate the quotient using polynomial long division: $\frac{2 x^{3}-5 x^{2}+9 x-8}{x+3}$.

Prepare the polynomials for long division: $x+3$ is the divisor and $2 x^{3}-5 x^{2}+9 x-8$ the numerator is the dividend.

What value, when multiplied by x (the first term of the divisor) results in $2 x^{3}$, the first term of the dividend? The only such value is $2 x^{2}:(x)\left(2 x^{2}\right)=2 x^{3}$. Write that value above its like term in the dividend.

$$
x + 3 \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } + 9 x - 8 }
$$

The dividend is inside the division symbol, and the divisor is outside.

Multiply each term in the divisor by $2 x^{2}$, and write the opposite of each result beneath its like term in the dividend.

$$
\begin{gathered}
x + 3 \longdiv { 2 x ^ { 2 } } \begin{array} { c }
{ 2 x ^ { 3 } - 5 x ^ { 2 } + 9 x - 8 } \\
{ - 2 x ^ { 3 } - 6 x ^ { 2 } } \\
{ \hline }
\end{array}
\end{gathered}
$$

Combine like terms. Then copy the third term of the divisor next to the results.

$$
\begin{gathered}
x + 3 \longdiv { 2 x ^ { 2 } } \begin{array} { c }
{ 2 x ^ { 3 } - 5 x ^ { 2 } + 9 x - 8 } \\
{ \frac { - 2 x ^ { 3 } - 6 x ^ { 2 } } { - 1 1 x ^ { 2 } } + 9 x }
\end{array}
\end{gathered}
$$

Repeat the process, this time identifying the value that (when multiplied by x) will result in the first term of the new expression: $-11 x^{2}$. Place that value, $-11 x$, above the dividend, multiply it by the terms of the divisor, record the opposites of those results, combine like terms, and copy the final term of the divisor (-8).

$$
\begin{aligned}
& x + 3 \longdiv { 2 x ^ { 2 } - 1 1 x } \\
& \frac{2 x^{3}-5 x^{2}+9 x-8}{-2 x^{3}-6 x^{2}} \\
& \frac{-11 x^{2}+9 x}{42 x}-8
\end{aligned}
$$

The process repeats once more, this time with the value 42 above the divisor, since $x \cdot 42=42 x$.

$$
\begin{array}{r}
2 x^{2}-11 x+42 \\
\frac{2 x^{3}-5 x^{2}+9 x-8}{-2 x^{3}-6 x^{2}} \\
\frac{-11 x^{2}}{}+9 x \\
\frac{11 x^{2}+33 x}{42 x}-8 \\
\frac{-42 x-126}{-134}
\end{array}
$$

The remainder is -134 , and should be added to the quotient, $2 x^{2}-11 x+42$, as the numerator of a fraction whose denominator is the divisor: $2 x^{2}-11 x+42-\frac{134}{x+3}$.

The solution is $x^{2}-3+\frac{6 x+7}{x^{2}+3}$.
2.18 Calculate $\left(3 x^{2}+10 x-8\right) \div(x+4)$ using synthetic division.

List the coefficients of the dividend, and place the opposite of the divisor's constant in a box to the left. Leave some space below that and draw a horizontal line.

$$
\begin{array}{|llll}
-4 & 3 & 10 & -8 \\
\hline
\end{array}
$$

Copy the first constant (3) below the horizontal line, multiply it by the boxed constant (-4), and record the result (-12) in the next column, below the number 10. Add the numbers in that column $(10-12=-2)$ and record the result beneath the line.

-4 3	10	-8	
		-12	
	3	-2	

Repeat the process; multiply the new constant (-2) by the boxed constant (-4). Record the result (8) in the next column and, once again, add the numbers in that column.

-4 3	10	-8	
		-12	8
	3	-2	0

The numbers below the horizontal line are the coefficients of the quotient. Note that the degree of the quotient is always one less than the degree of the dividend (so this quotient is linear), and the rightmost number below the horizontal line (in this case 0) is the remainder. The solution is $3 x-2$.
2.19 Calculate $\left(4 x^{3}-11 x^{2}-1\right) \div(x-3)$ using synthetic division.

List the coefficients and the opposite of the divisor's constant as demonstrated in Problem 2.18, but notice that the dividend contains no x-term. Just like long division, synthetic division requires you to insert a 0 coefficient for missing terms.

$$
\begin{array}{rrrrr}
3 & 4 & -11 & 0 & -1 \\
& & 12 & 3 & 9 \\
\hline & 4 & 1 & 3 & 8
\end{array}
$$

The quotient is $4 x^{2}+x+3+\frac{8}{x-3}$.

Factoring Polynomials

Reverse the multiplication process

2.20 Factor the expression: $18 x^{2} y^{5}-9 x y^{3}$.

Both terms can be divided evenly by $9, x$, and y^{3} (i.e. there will be no remainder). Therefore, the greatest common factor is $9 x y^{3}$. Factor the expression by writing

the greatest common factor followed by the quotients of each term divided by that factor.

$$
\begin{aligned}
& 9 x y^{3}\left(\frac{18 x^{2} y^{5}}{9 x y^{3}}-\frac{9 x y^{3}}{9 x y^{3}}\right) \\
& =9 x y^{3}\left(2 x y^{2}-1\right)
\end{aligned}
$$

2.21 Factor the expression: $21 x^{5} y^{9} z^{6}-15 x^{4} y^{2} z^{11}+36 x^{8} y^{3} z$.

The greatest common factor is $3 x^{4} y^{2} z$. Use that value to factor the expression, applying the method outlined in Problem 2.20.

$$
\begin{aligned}
& 3 x^{4} y^{2} z\left(\frac{21 x^{5} y^{9} z^{6}}{3 x^{4} y^{2} z}-\frac{15 x^{4} y^{2} z^{11}}{3 x^{4} y^{2} z}+\frac{36 x^{8} y^{3} z}{3 x^{4} y^{2} z}\right) \\
& =3 x^{4} y^{2} z\left(7 x y^{7} z^{5}-5 z^{10}+12 x^{4} y\right)
\end{aligned}
$$

2.22 Factor the expression: $x^{2}+13 x+40$.

To factor a trinomial of the form $x^{2}+a x+b$, find two numbers k_{1} and k_{2} such that $k_{1}+k_{2}=a$ and $k_{1} \cdot k_{2}=b$. The factors of the polynomial will be $\left(x+k_{1}\right)$ and $\left(x+k_{2}\right)$. In this case, $k_{1}=5$ and $k_{2}=8$, since $5+8=13$ and $5(8)=40$, so the factored form of the polynomial is $(x+5)(x+8)$.
2.23 Factor the expression $x^{2}-7 x-18$.

Determine k_{1} and k_{2} as directed in Problem 2.22. Note that the constant (-18) is negative so k_{1} and k_{2} have opposite signs. (The product of two numbers with the same sign is always positive.) Additionally, the x-coefficient is -7 , which means the larger of the two numbers must be negative: $k_{1}=-9$ and $k_{2}=2$, as $-9+2=-7$ and $(-9)(2)=-18$. The factored form of the polynomial is $(x-9)(x+2)$.
2.24 Factor the expression: $x^{2}-49$.

This expression is the difference of perfect squares ($x^{2}=x \cdot x$ and $49=7 \cdot 7$). Note that $a^{2}-b^{2}$ is factored $(a+b)(a-b)$, so the factored form of the polynomial is $(x+7)(x-7)$.
2.25 Factor the expression: $8 a^{3}+125 b^{3}$.

This expression is the sum of perfect cubes: $8 a^{3}=(2 a)^{3}$ and $125 b^{3}=(5 b)^{3}$. Much like a diffierence of perfect squares follows a distinct factoring pattern, so does the sum of perfect cubes: $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$. To apply the formula, set $x=2 a$ and $y=5 b$.

$$
\begin{aligned}
x^{3}+y^{3} & =(x+y)\left(x^{2}-x y+y^{2}\right) \\
(2 a)^{3}+(5 b)^{3} & =(2 a+5 b)\left((2 a)^{2}-(2 a)(5 b)+(5 b)^{2}\right) \\
8 a^{3}+125 b^{3} & =(2 a+5 b)\left(4 a^{2}-10 a b+25 b^{2}\right)
\end{aligned}
$$

2.26 Factor the expression: $4 x^{3}-20 x^{2}-3 x+15$.

A polynomial containing four terms from which no common denominator can be extracted is often factored by grouping. Use parentheses to split the polynomial into the sum of two binomials, one containing the first two terms and one containing the remaining two terms.

$$
\left(4 x^{3}-20 x^{2}\right)+(-3 x+15)
$$

Factor the greatest common factor out of each quantity.

$$
=4 x^{2}(x-5)-3(x-5)
$$

Both terms now have a common factor: $(x-5)$. Factor out that binomial; the first term is left with $4 x^{2}$ and the second term is left with -3 . The two
groups are always
added. Even though
the coefficient of x is
-3, keep that negative
sign inside the second
set of parentheses. The two
groups are always
added. Even though
the coefficient of x is
-3, keep that negative
sign inside the second
set of parentheses. The two
groups are always
added. Even though
the coefficient of x is
-3, keep that negative
sign inside the second
set of parentheses. The two
groups are always
added. Even though
the coefficient of x is
-3, keep that negative
sign inside the second
set of parentheses. The two
groups are always
added. Even though
the coefficient of x is
-3, keep that negative
sign inside the second
set of parentheses. The two
groups are always
added. Even though
the coefficient of x is
-3, keep that negative
sign inside the second
set of parentheses. The two
groups are always
added. Even though
the coefficient of x is
-3, keep that negative
sign inside the second
set of parentheses.
2.27 Factor the expression by decomposition: $6 x^{2}+7 x-24$.

The coefficient of the x^{2}-term in this trinomial does not equal 1 , so the

$$
=(x-5)\left(4 x^{2}-3\right)
$$ method described in Problems 2.22 and 2.23 is invalid and you should factor by decomposition. To factor the expression $a x^{2}+b x+c$ (when $a \neq 1$), you once again seek two constants (k_{1} and k_{2}), but in this case those numbers meet slightly different criteria.

$$
k_{1}+k_{2}=b \text { and }\left(k_{1}\right)\left(k_{2}\right)=a c
$$

With some experimentation you'll determine that $k_{1}=16$ and $k_{2}=-9$. Replace the x-coefficient with $k_{1}+k_{2}$.

$$
\begin{aligned}
& 6 x^{2}+7 x-24 \\
= & 6 x^{2}+(16-9) x-24 \\
= & 6 x^{2}+16 x-9 x-24
\end{aligned}
$$

Factor by grouping, as explained in Problem 2.26.

$$
\begin{aligned}
& =\left(6 x^{2}+16 x\right)+(-9 x-24) \\
& =2 x(3 x+8)-3(3 x+8) \\
& =(3 x+8)(2 x-3)
\end{aligned}
$$

Solving Quadratic Equations

Equations with a highest exponent of 2

2.28 Solve the equation by factoring: $4 x^{2}+4 x=15$.

Subtract 15 from both sides of the equation, so that the polynomial equals 0 .

$$
4 x^{2}+4 x-15=0
$$

Factor by decomposition, as explained in Problem 2.27.

$$
\begin{aligned}
4 x^{2}+(10-6) x-15 & =0 \\
4 x^{2}+10 x-6 x-15 & =0 \\
2 x(2 x+5)-3(2 x+5) & =0 \\
(2 x-3)(2 x+5) & =0
\end{aligned}
$$

Set each factor equal to 0 , creating two separate equations to be solved.

$$
2 x-3=0
$$

$$
\begin{array}{r}
2 x-3 \\
2 x \\
x=\frac{3}{2} .
\end{array}
$$

$$
2 x+5=0
$$

$$
2 x=3 \quad \text { or } \quad 2 x=-5
$$

$$
x=\frac{3}{2} \quad x=-\frac{5}{2}
$$

or $x=\frac{3}{2}$, will solve the equation.

The solution is $x=-\frac{5}{2}$ or $x=\frac{3}{2}$.
2.29 Solve the equation using the quadratic formula: $5 x^{2}=3 x-6$.

Begin by setting the equation equal to 0 .

Therefore, there are two imaginary solutions to the quadratic equation: $\frac{3+i \sqrt{111}}{10}$ or $\frac{3-i \sqrt{111}}{10}$.
2.30 Find the value of k such that the quadratic equation $6\left(x^{2}+2 x\right)=k(2 x-1)+5 x^{2}$ has the double root $x=3$.

Simplify and set the equation equal to 0 .

$$
\begin{array}{r}
6 x^{2}+12 x=2 k x-k+5 x^{2} \\
\left(6 x^{2}-5 x^{2}\right)+(12 x-2 k x)+k=0
\end{array}
$$

Factor x^{2} out of the first quantity and factor x out of the second.

$$
\begin{array}{r}
x^{2}(6-5)+x(12-2 k)+k=0 \\
x^{2}+x(12-2 k)+k=0
\end{array}
$$

Notice that $(x-3)(x-3)=0$ is another quadratic equation whose solution is the double root $x=3$. Set the equivalent expressions equal to one another.

$$
\begin{aligned}
& x^{2}+x(12-2 k)+k=(x-3)(x-3) \\
& x^{2}+x(12-2 k)+k=x^{2}-6 x+9
\end{aligned}
$$

Quadratics are equal only if the coefficients of their corresponding terms are equal. The constant of the left quadratic is k, whereas the constant of the right quadratic is 9 . Therefore, $k=9$. (Substituting $k=9$ into ($12-2 k$) results in -6 , so the coefficients of the x-terms in both polynomials will be equal as well.)
2.31 Solve the equation by completing the square: $x^{2}-14 x+3=0$.

Unlike the methods of factoring and the quadratic formula, you should not set the equation equal to 0 , but instead, isolate the constant on the right side of the equation.

$$
x^{2}-14 x=-3
$$

Calculate one half of the x-coefficient and square it: $(-14) \div 2=-7$, and $(-7)^{2}=49$. Add the result to both sides of the equation.

$$
x^{2}-14 x+49=-3+49
$$

This creates a perfect square on the left side of the equation.

$$
\begin{aligned}
(x-7)(x-7) & =46 \\
(x-7)^{2} & =46
\end{aligned}
$$

Take the square root of both sides of the equation and solve for x.

$$
\begin{aligned}
\sqrt{(x-7)^{2}} & = \pm \sqrt{46} \\
x-7 & = \pm \sqrt{46} \\
x & =7 \pm \sqrt{46}
\end{aligned}
$$

2.32 Solve the equation by completing the square: $4 x^{2}-20 x+7=0$.

Note that you cannot complete the square unless the coefficient of the x^{2}-term is 1 . Although that was true in Problem 2.31, it is not true here. Divide everything by the coefficient of x^{2}, and then use the method described in Problem 2.31.

Rationalize the expression to get the equivalent solution $x=\frac{5}{2} \pm \frac{3 \sqrt{2}}{2}$.

Chapter 3
 RATIONAL EXPRESSIONS

Fractions, fractions, and more fractions

Abstract

During a course of review, rational expressions are the natural successors of polynomial expressions for myriad reasons. For one, the most common rational expressions are merely polynomial quotients. Additionally, rational expressions (like polynomial expressions) are restricted under the binary operations of addition and subtraction, but face far fewer restrictions if products or quotients are calculated. It is, therefore, logical to investigate how the skills already applied to linear and polynomial expressions (in Chapter 2) extend to rational expressions.

A rational expression, like a rational number, is just a fraction. Of course, you probably don't have a whole lot of love in your heart for fractions-they can be pretty hard to work with, especially when it comes to adding and subtracting. Most of the time, finding the common denominator is the most difficult thing about fractions, and unfortunately, it's usually the first thing you have to do. (After all, if you can't add two things together, why even bother learning how to multiply or divide them?) This chapter will get you back up to speed with fractions, help you solve complicated fractional equations, and end with fractional inequalities (which don't work anything like the inequalities from (hapter I).

Adding and Subtracting Rational Expressions

Remember the least common denominator?

3.1 Simplify the expression: $\frac{5}{y}-\frac{3}{x^{2}}$.

Begin by calculating the least common denominator (abbreviated LCD), the term that includes all unique factors of each denominator raised to the highest power reached by each individually. In this problem, the LCD is $x^{2} y$.
Multiply the numerator and denominator of $\frac{5}{y}$ by x^{2}, so that the resulting denominator is the LCD ($\left.x^{2} y\right)$. Similarly, multiply the numerator and denominator of $\frac{3}{x^{2}}$ by y.

$$
\frac{5}{y}\left(\frac{x^{2}}{x^{2}}\right)+\frac{3}{x^{2}}\left(\frac{y}{y}\right)=\frac{5 x^{2}}{x^{2} y}+\frac{3 y}{x^{2} y}
$$

Now that the denominators are equal, add the numerators.

$$
=\frac{5 x^{2}+3 y}{x^{2} y}
$$

3.4 Simplify the expression: $\frac{w+1}{14 w^{4}}-\frac{5}{w^{3}-3 w^{2}}$.

Factor the denominators.

$$
\frac{w+1}{2 \cdot 7 \cdot w^{4}} \frac{5}{w^{2}(w-3)}
$$

The LCD is $2 \cdot 7 \cdot w^{4} \cdot(w-3)=14\left(w^{4}\right)(w-3)$. Manipulate the factored versions of the fractions so that they share the LCD.

$$
\begin{aligned}
& =\frac{w+1}{14 \cdot w^{4}}\left(\frac{w-3}{w-3}\right)-\frac{5}{w^{2}(w-3)}\left(\frac{14 w^{2}}{14 w^{2}}\right) \\
& =\frac{(w+1)(w-3)}{14 w^{4}(w-3)}-\frac{70 w^{2}}{14 w^{4}(w-3)} \\
& =\frac{\left(w^{2}-2 w-3\right)-70 w^{2}}{14 w^{4}(w-3)} \\
& =\frac{-69 w^{2}-2 w-3}{14 w^{4}(w-3)}
\end{aligned}
$$

3.5 Simplify the expression: | $\frac{x-2}{5 x^{2}-45}$ | $x^{2}-x-12$ |
| :---: | :---: | .

Factor the denominators.

$$
\frac{x-2}{5(x+3)(x-3)}-\frac{2 x-3}{(x-4)(x+3)}
$$

The LCD is $5(x+3)(x-3)(x-4)$.

$$
\begin{aligned}
& =\frac{x-2}{5(x+3)(x-3)}\left(\frac{x-4}{x-4}\right)-\frac{2 x-3}{(x-4)(x+3)[5(x-3)}[5(x-3)] \\
& =\frac{(x-2)(x-4)}{5(x+3)(x-3)(x-4)}-\frac{(2 x-3)(5 x-15)}{5(x+3)(x-3)(x-4)} \\
& =\frac{\left(x^{2}-6 x+8\right)-\left(10 x^{2}-45 x+45\right)}{5(x+3)(x-3)(x-4)} \\
& =\frac{-9 x^{2}+39 x-37}{5(x+3)(x-3)(x-4)}
\end{aligned}
$$

3.6 Explain why the process used to simplify the following expression is incorrect.

$$
\frac{x^{2}-4}{4}=\frac{x^{2}-4}{4}=\frac{x^{2}-1}{1}=x^{2}-1
$$

The fraction $\frac{x^{2}-4}{4}$ can be rewritten as two fractions with a common denominator.

$$
\frac{x^{2}-4}{4}=\frac{x^{2}}{4}-\frac{4}{4}=\frac{x^{2}}{4}-1
$$

Therefore, properly reducing the fraction $\frac{x^{2}-4}{4}$ to simplest terms results in $\frac{x^{2}}{4}-1$, not $x^{2}-1$.
3.7 Simplify the expression: $\frac{6 x^{2} y^{5}+2 x y^{8}}{10 x^{3} y^{3}}$.

$$
\begin{aligned}
\frac{2 x y^{5}\left(3 x+y^{3}\right)}{10 x^{3} y^{3}} & =\frac{2}{10} \cdot \frac{x}{x^{3}} \cdot \frac{y^{5}}{y^{3}} \cdot \frac{\left(3 x+y^{3}\right)}{1} \\
& =\frac{1}{5} \cdot \frac{1}{x^{2}} \cdot \frac{y^{2}}{1} \cdot \frac{\left(3 x+y^{3}\right)}{1} \\
& =\frac{y^{2}\left(3 x+y^{3}\right)}{5 x^{2}}
\end{aligned}
$$

For the moment, ignore the quantity $\left(3 x+y^{3}\right)$ and reduce the rational expression $\frac{2 x y^{5}}{10 x^{3} y^{3}}$.

$$
\frac{2 x y^{5}\left(3 x+y^{3}\right)}{10 x^{3} y^{3}}
$$

from Chapter 2, you can subtract exponents when equal bases are divided:
Factor the numerator.

To factor the difference of perfect cubes, remember the formula $a^{3}-b^{3}=a^{2}+a b+b^{2}$. In this problem, $a=4 x$ and $b=y$. To factor $4 x^{2}-33 x y+8 y^{2}$, use factoring by decomposition like in Problem 2.27).
3.8 Simplify the expression: $\frac{64 x^{3}-y^{3}}{4 x^{2}-33 x y+8 y^{2}}$.

Factor the numerator and denominator. Note that the numerator is the difference of perfect cubes.
3.10 Calculate the product: $\left(\frac{33 x^{2} y^{5}}{10 w^{3}}\right)\left(\frac{5 w^{7}}{11 x^{9} y^{2}}\right)$.

Before you multiply the numerators together, it's helpful to reduce the coefficients. Any factor in either numerator can be reduced using any factor in either denominator: $\frac{33}{11}=\frac{3}{1}$ and $\frac{5}{10}=\frac{1}{2}$.

$$
\frac{3}{1} \cdot \frac{1}{2} \cdot \frac{w^{7} x^{2} y^{5}}{w^{3} x^{9} y^{2}}=\frac{3}{2} w^{7-3} x^{2-9} y^{5-2}=\frac{3}{2} w^{4} x^{-7} y^{3}=\frac{3 w^{4} y^{3}}{2 x^{7}}
$$

3.II Calculate the product: $\left(\frac{3 x^{2}}{z}\right)^{3} \cdot\left(\frac{6 y^{3}}{z^{2}}\right)^{-2}$
Before multiplying, raise each fraction to the power indicated.

$$
\begin{aligned}
& \left(\frac{3^{3} x^{2 \cdot 3}}{z^{1 \cdot 3}}\right)\left(\frac{6^{1(-2)} y^{3(-2)}}{z^{2(-2)}}\right) \\
& =\left(\frac{27 x^{6}}{z^{3}}\right)\left(\frac{z^{4}}{6^{2} y^{6}}\right) \\
& =\frac{27 x^{6} z^{4}}{36 y^{6} z^{3}} \\
& =\frac{3 x^{6} z}{4 y^{6}}
\end{aligned}
$$

You could also interpret the negative exponent as a reciprocal. In other words, rewrite $\left(\frac{6 y^{3}}{z^{2}}\right)^{-2}$ as $\left(\frac{z^{2}}{6 y^{3}}\right)^{2}$ so you
don't have to mess with lots of negative
exponents later.
3.12 Calculate the product: $\left(\frac{x-1}{4 x y^{2}}\right)\left(\frac{2 x-5}{x+6}\right)$.

Apply the FOIL method when multiplying the numerators.

$$
\frac{(x-1)(2 x-5)}{4 x y^{2}(x+6)}=\frac{2 x^{2}-7 x+5}{4 x^{2} y^{2}+24 x y^{2}}
$$

In other words, "dividing by x " means the same as "multiplying by the reciprocal of x.' So $\frac{a}{b} \div \frac{c}{d}$
3.13 Calculate the quotient: $\frac{3 x}{4} \div \frac{6 x-9}{10}$.

The quotient $\frac{a}{b} \div \frac{c}{d}$ (where b and d are nonzero real numbers) is equivalent to $\frac{a}{b} \cdot\left(\frac{c}{d}\right)^{-1}$.

$$
\left(\frac{3 x}{4}\right)\left(\frac{10}{6 x-9}\right)=\frac{30 x}{24 x-36}
$$

To reduce the fraction, factor the denominator.

$$
\begin{aligned}
\frac{30 x}{12(2 x-3)} & =\frac{\not 6 \cdot 5 \cdot x}{\not 6 \cdot 2 \cdot(2 x-3)} \\
& =\frac{5 x}{2(2 x-3)}
\end{aligned}
$$

3.14 Calculate the following quotient and write the answer in simplest form.

$$
\frac{3 x^{2}-11 x+10}{x^{2}-49} \div \frac{3 x^{2}-2 x-5}{x^{2}-6 x-7}
$$

Factor the polynomials and rewrite the quotient as a product (as explained in Problem 3.13).

$$
\begin{aligned}
\frac{(3 x-5)(x-2)}{(x+7)(x-7)} \div \frac{(3 x-5)(x+1)}{(x-7)(x+1)} & =\frac{(3 x-5)(x-2)}{(x+7)(x-7)} \cdot \frac{(x-7)(x+1)}{(3 x-5)(x+1)} \\
& =\frac{(3 x-5)(x-2)(x-7)(x+1)}{(x+7)(x-7)(3 x-5)(x+1)}
\end{aligned}
$$

Eliminate any binomial factors that appear in both the numerator and denominator.

$$
\frac{(3 x-5)(x-2)(x-7)(x+1)}{(x+7)(x-7)(3 x-5)(x+1)}=\frac{x-2}{x+7}
$$

3.15 Calculate the following quotient and write the answer in simplest form.

$$
\frac{x^{3}+8}{(x+8)^{3}} \div \frac{8 x+16}{x^{2}+16 x+64}
$$

Notice that $x^{3}+8$ is a perfect cube (which should be factored according to the formula in Problem 2.25) and $x^{2}+16 x+64$ is a perfect square (because it has two equivalent factors).

$$
\frac{(x+2)\left(x^{2}-2 x+4\right)}{(x+8)^{3}} \div \frac{8(x+2)}{(x+8)^{2}}
$$

Convert this quotient into a product and simplify.

$$
\begin{aligned}
& =\frac{(x+2)\left(x^{2}-2 x+4\right) \cdot(x+8)^{2}}{(x+8)^{3}} \\
& 8(x+2) \\
& =\frac{(x+2)\left(x^{2}-2 x+4\right)(x+8)(x+8)}{(x+8)(x+8)(x+8)(8)(x+2)} \\
& =\frac{x^{2}-2 x+4}{8 x+64}
\end{aligned}
$$

3.16 Write the following expression in simplest form.

$$
-\frac{x}{x-2}+\frac{16 x^{2}}{x+4} \div \frac{4 x^{2}+10 x}{4 x^{2}+13 x-12}
$$

Begin by calculating the quotient. Rewrite the quotient as a multiplication problem and factor.

$$
\begin{aligned}
& =-\frac{x}{x-2}+\frac{16 x^{2}}{x+4} \cdot \frac{4 x^{2}+13 x-12}{4 x^{2}+10 x} \\
& =-\frac{x}{x-2}+\frac{16 x^{2}}{x+4} \cdot \frac{(4 x-3)(x+4)}{2 x(2 x+5)} \\
& =-\frac{x}{x-2}+\frac{8 \cdot 2 \cdot x \cdot x \cdot(4 x-3)(x+4)}{2 x(x+4)(2 x+5)} \\
& =-\frac{x}{x-2}+\frac{8 x(4 x-3)}{2 x+5}
\end{aligned}
$$

Calculate the sum.

$$
\begin{aligned}
& \left(-\frac{x}{x-2}\right)\left(\frac{2 x+5}{2 x+5}\right)+\left[\frac{8 x(4 x-3)}{2 x+5}\right]\left(\frac{x-2}{x-2}\right) \\
& =\frac{-x(2 x+5)+\left(32 x^{2}-24 x\right)(x-2)}{(x-2)(2 x+5)} \\
& =\frac{\left(-2 x^{2}-5 x\right)+\left(32 x^{3}-64 x^{2}-24 x^{2}+48 x\right)}{2 x^{2}+x-10} \\
& =\frac{32 x^{3}-90 x^{2}+43 x}{2 x^{2}+x-10}
\end{aligned}
$$

Solving Rational Equations

Here comes cross multiplication

3.17 Find all solutions to the proportion: $\frac{4}{3 x}=\frac{x}{12}$.

Cross multiply and solve for x.

$$
\begin{aligned}
4(12) & =3 x(x) \\
48 & =3 x^{2} \\
16 & =x^{2} \\
\pm 4 & =x
\end{aligned}
$$

Multiply the left numerator

Therefore, $x=-4$ or 4 .
3.18 Find all solutions to the proportion: $\frac{2 x-7}{x+6}=\frac{2 x-1}{x-2}$.

Cross multiply and solve for x.

$$
\begin{aligned}
(2 x-7)(x-2) & =(x+6)(2 x-1) \\
2 x^{2}-11 x+14 & =2 x^{2}+11 x-6 \\
2 x^{2}-2 x^{2}-11 x-11 x & =-14-6 \\
-22 x & =-20 \\
x & =\frac{20}{22}=\frac{10}{11}
\end{aligned}
$$

3.19 Find all solutions to the equation: $\frac{2}{x+3}-\frac{x-4}{4}=0$.

Transform the equation into a proportion by adding $\frac{x-4}{4}$ to both sides of the equation.

$$
\frac{2}{x+3}=\frac{x-4}{4}
$$

Cross multiply to eliminate the fractions.

$$
\begin{aligned}
2(4) & =(x+3)(x-4) \\
8 & =x^{2}-x-12
\end{aligned}
$$

Apply the factoring method to solve the quadratic equation.

$$
\begin{aligned}
x^{2}-x-20 & =0 \\
(x-5)(x+4) & =0 \\
x & =-4 \text { or } 5
\end{aligned}
$$

3.20 Find all solutions to the equation: $\frac{x^{2}+2 x+3}{x}+5=0$.

Create a proportion and cross multiply.
C)

$$
\begin{aligned}
& \frac{x^{2}+2 x+3}{x}=\frac{-5}{1} \\
& x^{2}+2 x+3=-5 x \\
& x^{2}+7 x+3=0
\end{aligned}
$$

According to the quadratic formula, the solutions are $x=\frac{-7-\sqrt{37}}{2}$ and $\frac{-7+\sqrt{37}}{2}$. Simplify the left side of the equation.
3.21 Find all solutions to the equation: $\frac{4}{2 x+1}-3=\frac{x+5}{x}$.

Cross multiply and solve using the quadratic formula.

$$
\begin{aligned}
(-6 x+1)(x) & =(2 x+1)(x+5) \\
-6 x^{2}+x & =2 x^{2}+11 x+5 \\
0 & =8 x^{2}+10 x+5
\end{aligned}
$$

The solution is $x=\frac{-5 \pm i \sqrt{15}}{8}$.
3.22 Solve the equation in Problem 3.21 again $\left(\frac{4}{2 x+1}-3=\frac{x+5}{x}\right)$, but this time eliminate the fractions by multiplying the entire equation by its least common denominator. Verify that you get the same solutions.

The denominators of the terms, from left to right, are $(2 x+1), 1$, and x; the least common denominator is $x(2 x+1)$. Multiply each term of the equation by that value.

$$
\begin{aligned}
\frac{x(2 x+1)}{1}\left[\frac{4}{2 x+1}-3\right] & =\frac{x(2 x+1)(x+5)}{1}\left(\frac{x}{x}\right) \\
\frac{4 x(2 x+1)}{2 x+1}-\frac{3 x(2 x+1)}{1} & =\frac{\not x(2 x+1)(x+5)}{\not x} \\
4 x-6 x^{2}-3 x & =2 x^{2}+11 x+5 \\
0 & =8 x^{2}+10 x+5
\end{aligned}
$$

This matches the quadratic equation from Problem 3.21, so it will have identical solutions.
3.23 Find all solutions to the equation: $-\frac{5}{x^{2}-4 x+4}+\frac{3}{x^{2}}=\frac{1}{x^{2}-2 x}$.

Factor the denominators.

$$
-\frac{5}{(x-2)^{2}}+\frac{3}{x^{2}}=\frac{1}{x(x-2)}
$$

The least common denominator of all three terms is $x^{2}(x-2)^{2}$. Multiply each term by the LCD to eliminate the fractions.

$$
\begin{aligned}
\frac{-5 x^{2}(x-2)^{2}}{(x-2)^{2}}+\frac{3 x^{2}(x-2)^{2}}{x^{2}} & =\frac{x \cdot x \cdot(x-2)(x-2)}{x(x-2)} \\
-5 x^{2}+3(x-2)^{2} & =x(x-2) \\
-5 x^{2}+3\left(x^{2}-4 x+4\right) & =x^{2}-2 x \\
-5 x^{2}+3 x^{2}-12 x+12 & =x^{2}-2 x \\
-3 x^{2}-10 x+12 & =0
\end{aligned}
$$

According to the quadratic formula, the solutions are $x=-\frac{5-\sqrt{61}}{3}$ and $-\frac{5+\sqrt{61}}{3}$.

Polynomial and Rational Inequalities

Critical numbers break up your number line

3.24 Write the solution to the inequality using interval notation: $(x-3)(2 x+1)<0$.

Calculate the inequality's critical numbers.

$$
\begin{aligned}
& x-3=0 \\
& x=3 \\
& 2 x+1=0 \\
& \text { or } \\
& x=-\frac{1}{2}
\end{aligned}
$$

Draw a number line with these points marked; they split the number line into three intervals: $\left(-\infty,-\frac{1}{2}\right),\left(-\frac{1}{2}, 3\right)$, and $(3, \infty)$, as illustrated by Figure 3-1.

Figure 3-1 The critical numbers of $(x-3)(2 x+1)<0$ are $x=-\frac{1}{2}$ and $x=3$.

The solution to the inequality may be any combination of those three intervals. To determine which belong to the solution, pick a value from each (called the "test value" of the interval) and plug them into the original inequality.

$$
\begin{array}{r|r|r}
\left(-\infty,-\frac{1}{2}\right) & \left(-\frac{1}{2}, 3\right) & (3, \infty) \\
\text { Test Value: } x=-1 & \text { Test Value: } x=0 & \text { Test Value: } x=5 \\
\hline(-1-3)(2(-1)+1)<0 & (0-3)(2(0)+1)<0 & (5-3)(2(5)+1)<0 \\
(-4)(-1)<0 & (-3)(1)<0 & (2)(11)<0 \\
5<0 & -3<0 & 22<0 \\
\text { False } & \text { True } & \text { False }
\end{array}
$$

Only values from the interval $\left(-\frac{1}{2}, 3\right)$ make the inequality true, so that is the final solution to the inequality. Note that $x=-\frac{1}{2}$ and $x=3$ are excluded from the solution because the critical numbers are excluded from the graph in Figure 3-1.
3.25 Graph the solution to the inequality: $x^{2}+x \geq 2$.

Move all the terms to the left side of the inequality and factor.

$$
\begin{aligned}
x^{2}+x-2 & \geq 0 \\
(x+2)(x-1) & \geq 0
\end{aligned}
$$

The critical numbers for this inequality are $x=-2$ and $x=1$. Graph both on a number line using solid dots, as illustrated by Figure 3-2.

Figure 3-2 The critical numbers of $x^{2}+x \geq 2$ are $x=-2$ and $x=1$.

The number line is split into three intervals: $(-\infty,-2],[-2,1]$, and $[1, \infty)$. Choose one test value from each interval (such as $x=-5, x=0$, and $x=2$, respectively) and plug each into the inequality to determine the solution.

It is more expedient to substitute into the factored version of the polynomial, as the arithmetic is simpler.

\[

\]

The solution is $(-\infty,-2]$ or $[1, \infty)$; graph both intervals on the same number line, as illustrated in Figure 3-3.

Figure 3-3 The solution graph of $x^{2}+x \geq 2$.
3.26 Graph the solution to the inequality: $2 x^{2}-3 x-8<0$.

Calculate the critical numbers via the quadratic formula: $x=\frac{3 \pm \sqrt{73}}{4}$. Use a calculator to determine approximate decimal values for the critical numbers:
$\frac{3-\sqrt{73}}{4} \approx-1.386$ and $\frac{3+\sqrt{73}}{4} \approx 2.886$. Choose test values (such as $x=-2, x=0$, and $x=4$) to verify that the solution is $\left(\frac{3-\sqrt{73}}{4}, \frac{3+\sqrt{73}}{4}\right)$, as graphed in Figure 3-4.

Figure 3-4 The solution graph of $2 x^{2}-3 x-8<0$.
3.27 Graph the solution to the inequality: $16 x^{2}-24 x+9 \geq 0$.

Factor the quadratic and note that this polynomial has a double root (because the
polynomial is a perfect square).

$$
(4 x-3)(4 x-3) \geq 0
$$

The only critical number is $x=\frac{3}{4}$; graphing that value results in two possible interval solutions (as illustrated by Figure 3-5): $\left(-\infty, \frac{3}{4}\right]$ and $\left[\frac{3}{4}, \infty\right)$.

Figure 3-5 The only critical number of $16 x^{2}-24 x+9 \geq 0$ is $x=\frac{3}{4}$.

3.28 Write the solution to the inequality using interval notation: $\frac{x+1}{3 x-1} \geq 0$.

Neither interval is a solution to the inequality; verify using the test values $x=0$ and $x=1$-both make the inequality false.

$$
\begin{array}{r|r}
\text { Test value } x=0 & \text { Test value } x=1 \\
\hline(4(0)-3)(4(0)-3) \leq 0 & (4(1)-3)(4(1)-3) \leq 0 \\
(-3)(-3) \leq 0 & (1)(1) \leq 0 \\
9 \leq 0 & 1 \leq 0 \\
\text { False } & \text { False }
\end{array}
$$

Therefore, the only solution to the inequality is the solid $\operatorname{dot} x=\frac{3}{4}$ in Figure 3-5.

Critical numbers are x-values that cause an expression to equal 0 or x-values that cause an expression to be undefined. Whereas polynomial inequalities do not address the latter case, rational inequalities do.

Ensure that the rational expression alone appears on the left side of the inequality and that 0 appears on the right side. Set the numerator and denominator equal to 0 and solve the resulting equations.

Plot those critical numbers on the number line, as illustrated in Figure 3-6. Notice that ${ }^{x=\frac{1}{3}}$ is plotted with an open dot, even though the sign of the inequality is

Figure 3-6 The critical numbers of $\frac{x+1}{3 x-1} \geq 0$ are $x=-1$ and $x=\frac{1}{3}$. Of those, only $x=-1$ can be part of the solution.

Choose test values from those intervals (such as $-3,0$, and 1 , respectively) to verify that the solution is $(-\infty,-1]$ or $\left(\frac{1}{3}, \infty\right)$.

The solution graph is the union of the graphs of the solution intervals, pictured in Figure 3-7.

Figure 3-7 The solution graph of $\frac{x+1}{3 x-1} \geq 0$.
3.29 Graph the solution to the inequality: $\frac{3 x^{2}+17 x+24}{3 x^{2}+2 x} \leq 0$.

Factor the numerator and denominator.

$$
\frac{(3 x+8)(x+3)}{x(3 x+2)} \leq 0
$$

Set both the numerator and denominator equal to 0 in order to calculate the critical numbers: $x=-3,-\frac{8}{3},-\frac{2}{3}$, and 0 . Plot those values, keeping in mind that $x=0$ and $x=-\frac{2}{3}$ must be graphed with an open dot (because they make the expression undefined). Choose test values from each of the five resulting intervals and darken the intervals that satisfy the inequality, as illustrated by Figure 3-8.

Figure 3-8 $\operatorname{or}\left(-\frac{2}{3}, 0\right)$.

The critical numbers of the inequality are $x=4$ and $x=7$, so the possible solution intervals are $(-\infty, 4),(4,7)$, and $(7, \infty)$. Use test values from each interval to determine that the solution is $(4,7)$.

Chapter 4
 FUNCTIONS Now you'll start seeing $f(x)$ all over the place

Abstract

Whereas linear, polynomial, and rational equations are both useful and ubiquitous in advanced mathematics, concise definitions of mathematical relationships are essential once theory and proof are involved. That the function automatically assures us of predictable behavior is a given, but that you know how to manipulate such expressions is not, hence this chapter.

A function is an equation with certain benefits. They look a little different than the linear equations and polynomials from the preceding chapters, so they're easy to spot. Rather than equations that look like $y=3 x-9$ and $y=2 x^{2}+7 x-10$, they look like $f(x)=3 x-9$ and $g(x)=2 x^{2}+7 x-10$. (Technically, they don't have to start with $f(x)$ or $g(x)$ to qualify as a function, but most functions are written like that.) They carry this guarantee: for every input, you'll get one and only one output. If you plug $x=1$ into $f(x)=3 x-9$, you'll always get the same thing: $f(1)=3(1)-9=-6$. Most of calculus deals with functions exclusively, so they've well worth reviewing.

4.2 Find real number values for m and n such that the following relation is not a function.

$$
p:\{(-4,-1),(-2,7),(0,3),(m, n),(10,8)\}
$$

As discussed in Problems 4.1-4.2, no function may have an input element that corresponds to two diffierent output elements. If a function is one-to-one, the reverse is also true-each element of the range corresponds to exactly one domain element, so c may be any real number except $-13,-6,-4$, or 9 . No matter what real number is substituted for c, j will be a function, but it will only be one-toone if those four values are avoided.
4.4 Given the functions $f:\{(-1,10),(3,5),(10,-6)\}$ and $g:\{(-1,-4),(3,0),(10,-5)\}$, calculate $(f+g)(10)$.

Note that $(f+g)(10)=f(10)+g(10)$.

$$
\begin{aligned}
(f+g)(10) & =f(10)+g(10) \\
& =(-6)+(-5) \\
& =-11
\end{aligned}
$$

4.5 Given the functions $f(x)=x^{2}+4$ and $g(x)=(x+4)^{2}$, calculate $(f g)(-2)$.

Note that $(f g)(-2)=f(-2) \cdot g(-2)$.

$$
\begin{aligned}
(f g)(-2) & =f(-2) \cdot g(-2) \\
& =\left((-2)^{2}+4\right) \cdot(-2+4)^{2} \\
& =(4+4)(2)^{2} \\
& =8(4) \\
& =32
\end{aligned}
$$

4.6 Given the functions $f(x)=x+1$ and $g(x)=6 x^{2}+19 x-36$, determine the domain of $\left(\frac{f}{g}\right)(x)$.

The function $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{x+1}{6 x^{2}+19 x-36}$ is undefined whenever its denominator equals 0 . Set $g(x)=0$ and solve to identify those values, which must be excluded from the domain.

Factor the polynomial.

$$
\begin{array}{rlrl}
2 x+9 & =0 & 3 x-4 & =0 \\
x & =-\frac{9}{2} & x & =\frac{4}{3}
\end{array}
$$

The domain of $\left(\frac{f}{g}\right)(x)$ is all real numbers except $x=-\frac{9}{2}$ and $x=\frac{4}{3}$.
4.7 Given functions $f(x)=x^{2}$ and $g(x)=2 x+5$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.

The notation $(f \circ g)(x)$ is read " f composed with g of x," and is equivalent to $f(g(x))$. In other words, the function $g(x)$ should be substituted into $f(x)$. Similarly, $(g \circ f)(x)=g(f(x))$.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) & (g \circ f)(x) & =g(f(x)) \\
& =f(2 x+5) & & =g\left(x^{2}\right) \\
& =(2 x+5)^{2} & & =2\left(x^{2}\right)+5 \\
& =4 x^{2}+20 x+25 & & =2 x^{2}+5
\end{aligned}
$$

Substitute $h(70)=4$ into the function: $f(g(h(70)))=f(g(4))$. Once again evaluate the innermost function, which is now $g(x)$.

$$
g(4)=4-2(4)^{2}=4-2(16)=-28
$$

By substitution, $f(g(4))=f(-28)$. Evaluate $f(-28)$ to complete the problem.

$$
f(-28)=\frac{1}{-28+3}=\frac{1}{-25}=-\frac{1}{25}
$$

Therefore, $f(g(h(70)))=-\frac{1}{\underline{25}}$.

4.10 Given the functions $f(x)=x^{2}, g(x)=\frac{1}{2 x+1}$, and $h(x)=\frac{1-x}{2 x}$, find $f(g(h(x)))$.

Substitute $h(x)$ into $g(x)$.

Fractions
containing
fractions are called I using the 1 add $\frac{1-x}{x}$ and denominator, x.

Graphing Function Transformations

Stretches, squishes, flips, and slides

Note: Problems 4.11-4.18 address transformations of the graph $f(x)$ in Figure 4-1, so that you can more effectively juxtapose the effects of the transformations. It is not beneficial to determine the equations that generate the graph.
4.II Graph $f(x)-2$.

Figure 4-1
The graph of $f(x)$, to be transformed in Problems 4.11-4.18.

When a constant is added to, or subtracted from, a function, it shifts the graph vertically. Adding a constant c moves each point on the graph up c units, and subtracting c moves the graph down c units. Therefore, each point on the graph of $f(x)-2$ should be plotted two units below its corresponding point on the graph of $f(x)$, as illustrated by Figure 4-2.

Figure 4-2
The graph of $f(x)-2$ is the graph of $f(x)$ moved down two units.

Note: Problems 4.11-4.18 address transformations of the graph $f(x)$ in Figure 4-1.
4.12 Graph $f(x-3)$.

Notice that 3 is subtracted from x, whereas the constant was subtracted from $f(x)$ in Problem 4.11. This operation causes a horizontal shift on its graph. Note that subtracting a constant moves the graph to the right, and adding moves the graph left. Therefore, the graph of $f(x-3)$ is simply the graph of $f(x)$ moved three units to the right, as illustrated in Figure 4-3.

Figure 4-3
The graph of $f(x-3)$ is the graph of $f(x)$ moved three units to the right.
the points $(-2,-2)$ and $(3,1)$. Take the opposites of the y's to get the corresponding points on $-f(x):(-2,2)$
and $(3,-1)$.

Note: Problems 4.11-4.18 address transformations of the graph $f(x)$ in Figure 4-1.
4.13 Graph $-f(x)$.

Multiplying a function by -1 reflects its graph across the x-axis. If $f(x)$ contains the point (x, y), then $-f(x)$, graphed in Figure 4-4, contains the point $(x,-y)$.

Figure 4-4
The graph of $-f(x)$ is the reflection of $f(x)$ across the x-axis.

Note: Problems 4.11-4.18 address transformations of the graph $f(x)$ in Figure 4-1.
4.14 Graph $f(-x)$.

Multiplying x by -1 reflects the graph of $f(x)$ across the y-axis; if $f(x)$ contains the point (x, y), then $f(-x)$ contains the point $(-x, y)$, as illustrated in Figure 4-5.

Figure 4-5
The graph of $f(-x)$ is the reflection of $f(x)$ across the y-axis.

Note: Problems 4.11-4.18 address transformations of the graph $f(x)$ in Figure 4-1.
4.15 Graph $\frac{1}{2} f(x)$.

Multiplying a function by a constant affects the y-values of its coordinates. If the graph of $f(x)$ contains the point (x, y), then the graph of $c \cdot f(x)$ contains the point $(x, c \cdot y)$. In this case, each point on $\frac{1}{2} f(x)$ is half the distance from the x-axis as the corresponding point on graph of $f(x)$, as illustrated by Figure 4-6.

Figure 4-6
Points on the graph of $\frac{1}{2} f(x)$ are half as far from the x-axis as the corresponding points of $f(x)$.

Note: Problems 4.11-4.18 address transformations of the graph $f(x)$ in Figure 4-1.
4.16 Graph $f(2 x)$.

Whereas multiplying $f(x)$ by a constant affects the distance of its points from the x-axis, stretching it away from (or compacting it toward) the x-axis (as explained in Problem 4.15), multiplying x by a constant inversely affects the distance of a function's coordinates from the y-axis. Although you might expect the coordinates of $f(c x)$ to be c times further from the y-axis than the corresponding points on $f(x)$, the points are actually $\frac{1}{c}$ times as far away, as illustrated by Figure 4-7.

Figure 4-7
Points on the graph of $f(2 x)$ are half as far from the y-axis as the corresponding points of $f(x)$.

Note: Problems 4.11-4.18 address transformations of the graph $f(x)$ in Figure 4-1.
4.17 Graph $|f(x)|$.

By taking the absolute value of $f(x)$, you change all negative outputs into their opposites while leaving positive outputs unchanged. In other words, if $f(x)$ contains the point (x, y), then $|f(x)|$ contains the point $(x,|y|)$. Graphically, this
 means any portion of $f(x)$ below the x-axis is reflected above the x-axis, but the rest of the graph does not change.

Figure 4-8
The graph of $|f(x)|$.
To $f(x \mid)$,
graph
completely erase
the part of the
graph that's left of
the y-axis (but keep
the y-intercept if there
is one). Replace the en-
tire lett half of the
coordinate axes with
a reflection of its right
side (sort of like you
did in Problem 4.14-
just leave the points
in the first and
fourth quadrants
alone).

Note: Problems 4.11-4.18 address transformations of the graph $f(x)$ in Figure 4-1.
4.18 Graph $f(|x|)$.

The $f(|x|)$ transformation affects coordinates with negative x-values. Consider this: $x=1$ and $x=-1$ must have the same output for $f(|x|)$, since $f(|-1|)=f(1)$. In fact, every x in the domain of the function must output a value that matches its opposite; therefore, $f(x)=f(-x)$ even if $-x$ does not belong to the domain of $f(x)$.
Graphically speaking, if $f(x)$ contains point (x, y), and $x>0$, then $f(|x|)$ contains the point $(-x, y)$. The net result: $f(|x|)$ is symmetric about the y-axis based on its positive domain, as illustrated by Figure 4-9. See Problem 4.21 for another example of this transformation for additional clarification.

Figure 4-9
The graph of $f(|x|)$ is symmetric about the y-axis
4.19 Sketch the graph of $f(x)=(x+2)^{2}-1$ without a calculator by applying graphical transformations.

To transform the function $y=x^{2}$ (the dotted curve in Figure 4-10) into $f(x)=(x+2)^{2}-1$ (the solid curve in Figure 4-10), you must to add 2 to x (which shifts its graph left two units) and subtract 1 from $f(x)$ (which shifts the graph down one unit).

Figure 4-10
The graphs of $y=x^{2}$ (dotted) and $f(x)=(x+2)^{2}-1$ (solid) .
4.20 Sketch the graph of $g(x)=-\left|\frac{1}{3} x\right|+4$.

There are three transformations that change $y=|x|$ (the dotted curve in Figure 4-11) into $g(x)=-\left|\frac{1}{3} x\right|+4$ (the solid curve in Figure 4-11):

1. Multiplying x by $\frac{1}{3}$ stretches its graph horizontally along the x-axis by a factor of 3.
2. Multiplying by -1 reflects its graph across the x-axis
3. Adding 4 moves the graph up four units.

Figure 4-11
The graphs of $y=|x|$ (dotted) and $g(x)=\left|-\frac{1}{3} x\right|+4$ (solid).
4.21 Sketch the graph of $h(x)=3 \sqrt{|x|}-4$ without a graphing calculator.

Three transformations are required to change $y=\sqrt{x}$ (the dotted curve in Figure 4-12) into $h(x)=3 \sqrt{|x|}-4$ (the solid curve in Figure 4-12): the absolute value within the square root function replaces all points for which $x<0$ (via the technique of Problem 4.18), multiplying the function by 3 stretches its graph vertically by a factor of 3 , and subtracting 2 moves the graph down 2 units).

Figure 4-12
The graphs of $y=\sqrt{x}$ (dotted) and $h(x)=3 \sqrt{|x|}-4$ (solid).

Inverse Functions

Functions that cancel other functions out

4.22 Given the function $s:\left\{(-2,-1),\left(-1, \frac{3}{2}\right),(0,1),(1,4),(3,-9)\right\}$, define the inverse
function, s^{-1}.
To generate the inverse of a function, reverse the coordinate pairs-if $s(x)=y$, then $s^{-1}(y)=x$.

$$
s^{-1}:\left\{(-1,-2),\left(\frac{3}{2},-1\right),(1,0),(4,1),(-9,3)\right\}
$$

Rewrite s^{-1}, listing the domain elements from least to greatest.

$$
s^{-1}:\left\{(-9,3),(-1,-2),(1,0),\left(\frac{3}{2},-1\right),(4,1)\right\}
$$

4.23 Given $f(x)$ graphed in Figure 4-13, sketch the graph of $f^{-1}(x)$.

Figure 4-13
The graph of a one-to-one function $f(x)$.

The graph of a function and its inverse are reflections of one another across the line $y=x$, as illustrated by Figure 4-14.

Figure 4-14
The dotted graph of a function $f(x)$ and the solid graph of its inverse $f^{-1}(x)$ are reflections of one another across the line $y=x$.
4.24 Given the function $g(x)$ graphed in Figure 4-15, explain why $g^{-1}(x)$ does not exist.

Figure 4-15
The graph of function $g(x)$.

In order for a $g^{-1}(x)$ to exist, $g(x)$ must be one-to-one (as defined by Problem 4.3). However, $g(x)$ fails the horizontal line test, indicating that it is not one-to-one, and therefore does not have an inverse. According to the horizontal line test, any horizontal line drawn across a one-to-one function won't intersect that graph more than once. However, the horizontal lines $y=-2$ and $y=-3$ both intersect $g(x)$ twice.
4.25 Given $g(x)=\frac{x+4}{7}$, find $g^{-1}(x)$.

Rewrite $g(x)$ as y.

$$
y=\frac{x+4}{7}
$$

Reverse the x and y variables, substituting x for y and vice versa.

$$
x=\frac{y+4}{7}
$$

Solve for y.

$$
7 x=y+4
$$

Rewrite y as $g^{-1}(x)$.

$$
y=7 x-4
$$

$$
g^{-1}(x)=7 x-4
$$

4.26 Given $f(x)=x^{2}+1(x \geq 0)$, find $f^{-1}(x)$.

Rewrite $f(x)$ as y.

$$
y=x^{2}+1
$$

Reverse x and y.

$$
x=y^{2}+1
$$

Solve for y.

$$
\begin{aligned}
x-1 & =y^{2} \\
\pm \sqrt{x-1} & =y \\
\pm \sqrt{x-1} & =f^{-1}(x)
\end{aligned}
$$

Note that $f^{-1}(x)$ doesn't equal both $\sqrt{x-1}$ and $-\sqrt{x-1}$; only one of those equations is a reflection of $f(x)=x^{2}+1(x \neq 0)$ across the line $y=x$ (as illustrated by Figure 4-16): $f^{-1}(x)=\sqrt{x-1}$. Discard the negative radical.

Figure 4-16
Notice that $f(x)=x^{2}+1$ and $f^{-1}(x)=\sqrt{x-1}$ are reflections of one another across the y-axis. The equation $y=-\sqrt{x-1}$, a byproduct of the inverse function creation process, is superfluous.
4.27 Verify that $g(x)=\frac{x+4}{7}$ and $g^{-1}(x)=7 x-4$ (from Problem 4.25) are inverses by demonstrating that $g\left(g^{-1}(x)\right)=g^{-1}(g(x))=x$.

Perform composition of functions using the method of Problems 4.7 and 4.8.

$$
\begin{aligned}
g\left(g^{-1}(x)\right) & =g(7 x-4) & g^{-1}(g(x)) & =g^{-1}\left(\frac{x+4}{7}\right) \\
& =\frac{(7 x-4)+4}{7} & & =7\left(\frac{x+4}{7}\right)-4 \\
& =\frac{7 x}{7} & & =x+4-4 \\
& =x & & =x
\end{aligned}
$$

4.28 Verify that $f(x)=x^{2}+1(x \neq 0)$ and $f^{-1}(x)=\sqrt{x-1}$ (from Problem 4.26) are inverses by demonstrating that $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$.

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =f(\sqrt{x-1}) & f^{-1}(f(x)) & =f^{-1}\left(x^{2}+1\right) \\
& =(\sqrt{x-1})^{2}+1 & & =\sqrt{\left(x^{2}+1\right)-1} \\
& =x-1+1 & & =\sqrt{x^{2}} \\
& =x & & =x
\end{aligned}
$$

Technically, $\sqrt{x^{2}}=|x|$, but thanks to the $x \geq 0$ restriction on $f(x), x$ can't be negative and the absolute values aren't necessary.

Asymptotes of Rational Functions

Equations of the untouchable dotted line

4.29 Identify the vertical asymptote to the graph of $y=\frac{7}{x-3}$.

If substituting c into the rational expression causes the denominator to equal 0 , then $x=c$ is a vertical asymptote of $f(x)$, as long as the numerator does not equal 0 as well. Set the denominator equal to 0 and solve.

$$
\begin{aligned}
x-3 & =0 \\
x & =3
\end{aligned}
$$

Because $x=3$ causes the denominator to equal 0 (and the numerator does not equal 0), $x=3$ is a vertical asymptote of the function's graph.
usually means there's
a hole in the graph. In Chapter 10 , you'll use limits to figure out where that hole is.
4.30 Identify the vertical asymptotes to the graph of $y=\frac{-3}{3 x^{2}-23 x-36}$.

Set the denominator equal to 0 and solve the quadratic by factoring.

$$
\begin{array}{rlrl}
3 x^{2}-23 x-36 & =0 \\
(3 x+4)(x-9) & =0 & \\
3 x+4 & =0 & & \\
3 x & =-4 & \text { or } & x-9 \\
3 & =0 \\
x & =-\frac{4}{3} & &
\end{array}
$$

Both x-values cause the denominator (but not the numerator) to equal 0 , so they are asymptotes to the graph: $x=-\frac{4}{3}$ and $x=9$.
4.31 Identify the horizontal asymptote to the graph of $g(x)=\frac{x^{2}-2 x+4}{-2 x^{3}-16}$.

Compare the degrees of the polynomials in the numerator and denominator to determine the equation of the horizontal asymptote (if it exists). In this case, the degree of the numerator is 2 , and the degree of the denominator is 3 . When the denominator's degree is greater than the numerator's degree, the function has horizontal asymptote $y=0$.

4.32 Identify the horizontal asymptote to the graph of $h(x)=\frac{(2 x-3)(x+6)}{(4 x-5)(-3 x+1)}$.

Calculate the products in the numerator and denominator.

$$
h(x)=\frac{2 x^{2}+9 x-18}{-12 x^{2}+19 x-5}
$$

When the degrees of the numerator and denominator are equal, the graph of the function will have horizontal asymptote $y=\frac{a}{b}$, where a and b are the leading coefficients of the numerator and denominator, respectively.

$$
y=\frac{2}{-12}=-\frac{1}{6}
$$

4.33 Determine the equations of all asymptotes to the graph of $f(x)=\frac{3 x^{2}-13 x+4}{x^{2}-9}$.

The numerator and denominator have equal degrees, so the horizontal asymptote is equal to the quotient of their leading coefficients, as explained in Problem 4.32.

$$
y=\frac{3}{1}=3
$$

To determine the vertical asymptotes, factor the polynomials.

$$
f(x)=\frac{(3 x-1)(x-4)}{(x+3)(x-3)}
$$

Set the factors of the denominator equal to 0 and solve to get $x=-3$ and $x=3$. Neither of those values causes the numerator to equal 0 as well, so both represent vertical asymptotes. Therefore, the equations of the asymptotes to $f(x)$ are $x=-3$, $x=3$, and $y=3$.
4.34 Find the equation of the slant asymptote to the graph of $g(x)=\frac{2 x^{2}-3 x+6}{x+1}$.

The slant asymptote is the quotient of the rational function (omitting the remainder). The divisor is a linear binomial, so synthetic division (the method described in Problems 2.18 and 2.19) is the most efficient way to calculate the quotient.

-1	2	-3	6
		-2	5
	2	-5	11

The equation of the slant asymptote is the quotient: $y=2 x-5$.
4.35 Identify asymptotes to the graph of $j(x)=\frac{5 x^{3}-30 x^{2}-4 x+24}{x^{2}+2 x-4}$.

Because the degree of the numerator is exactly one greater than the degree of the denominator, $j(x)$ has one slant asymptote and no horizontal asymptotes. (Note that a rational function may have only one slant asymptote or one horizontal asymptote, but may have multiple vertical asymptotes.

To determine the slant asymptote, use polynomial long division, as outlined in Problems 2.16 and 2.17.

$$
\begin{array}{r}
5 x-40 \\
x ^ { 2 } + 2 x - 4 \longdiv { 5 x ^ { 3 } - 3 0 x ^ { 2 } - 4 x + 2 4 } \\
\frac{-5 x^{3}-10 x^{2}+20 x}{-40 x^{2}+16 x}+24 \\
\frac{40 x^{2}+80 x-160}{96 x-136}
\end{array}
$$

The slant asymptote to $j(x)$ is $y=5 x-40$. To determine the vertical asymptotes of $j(x)$, set the denominator equal to 0 and solve using the quadratic formula.

$$
\begin{aligned}
x^{2}+2 x-4 & =0 \\
x & =\frac{-2 \pm \sqrt{2^{2}-4(1)(-4)}}{2 \cdot 1} \\
& =\frac{-2 \pm \sqrt{20}}{2} \\
& =\frac{-2 \pm 2 \sqrt{5}}{2} \\
& =\frac{\not(-1 \pm \sqrt{5})}{2} \\
& =-1 \pm \sqrt{5}
\end{aligned}
$$

The function $j(x)$ has three asymptotes: the slant asymptote $y=5 x-40$ and the vertical asymptotes $x=-1-\sqrt{5}$ and $x=-1+\sqrt{5}$.

Chapter 5
 LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Functions like $\log _{3} x, \ln x, a^{x}$, and e^{x}

Chapters 1-4 provide the opportunity to sharpen your skills in all matters concerning variable expressions raised to real number powers. This chapter begins by investigating the reverse, expressions containing real numbers raised to variable powers. Whereas exponential rules hold true despite this reversal, new techniques must be mastered in order to properly manipulate such expressions. Of course, one cannot discuss such an important function without exploring its inverse, the logarithmic function.

This chapter deals with exponential functions, which look more like 3^{x} than x^{3}. The problems feel very different when x is the exponent instead of the base. For one thing, you'll need some way of "canceling out" x exponents if you're ever going to solve for x, and that requires logarithmic functions. Good news and bad news: logarithmic functions (the inverses of exponential functions) really help you solve equations that have x in the exponent, but logarithms bring with them their own set of properties and rules.

Exploring Exponential and Logarithmic Functions

Harness all those powers

5.1 Graph the function $f(x)=3^{x}$ without a graphing calculator.

Because $f(-1)=\frac{1}{3}$, the point $\left(-1, \frac{1}{3}\right)$ belongs on the graph. Similarly, the graph of $f(x)$ includes the points $(0,1),(1,3)$, and $(2,9)$, as illustrated by Figure 5-1.

Note that the x-axis is a horizontal asymptote of $f(x)$. Although negative values of x result in small $f(x)$ values, 3^{x} doesn't equal 0 for any x-value.

5.2 Identify the domain and range of the generic exponential function $g(x)=a^{x}$ (assuming a is a real number and $a>1$).

Any real number can be substituted for x, but the positive real number a raised to any power (whether positive or negative) always results in a positive number. Therefore, the domain is $(-\infty, \infty)$ and the range is $(0, \infty)$.
5.3 Sketch the graph of $y=2^{-x}-1$ without a graphing calculator.

The graph of any exponential function $y=a^{x}$ will pass through the points $(0,1)$ and $(1, a)$ and have a horizontal asymptote of $y=0$. Begin by graphing $y=2^{x}$ as illustrated by the dotted curve in Figure 5-2.

Figure 5-2
The graphs of $y=2^{x}$ (dotted) and $y=2^{-x}-1$ (solid).

To graph $y=2^{-x}-1$, perform two translations on the graph of $y=2^{x}$ (as explained in detail by Problems 4.11-4.21): Substituting $-x$ for x reflects the graph about the y-axis, and subtracting 1 moves the entire graph down one unit.
5.4 Determine the domain and range of the logarithmic function $h(x)=\log _{3} x$.

Note that $h(x)$ is the inverse function of $f(x)=3^{x}$, as defined in Problem 5.1.
Therefore, the domain of $f(x)$ equals the range of $h(x)$ and vice versa. You can then conclude that the domain of $h(x)$ is $(0, \infty)$ and its range is $(-\infty, \infty)$.
5.5 Solve the equation: $\log _{10} x=2$.

Rewrite the logarithmic equation as an exponential equation and solve for x.

5.6 Solve the equation: $\log _{4} x=-3$.

Rewrite in exponential form and solve for x.

$$
\begin{aligned}
4^{-3} & =x \\
\frac{1}{4^{3}} & =x \\
\frac{1}{64} & =x
\end{aligned}
$$

5.7 Solve the equation: $\log _{5} 625=x$.

Rewrite the equation in exponential form: $5^{x}=625$. Note that $5^{4}=625$, so $x=4$.
5.8 Solve the equation: $\log _{4} \frac{1}{8}=x$.

Rewrite as an exponential equation.

$$
4^{x}=\frac{1}{8}
$$

Express the fraction as a negative exponent.

$$
4^{x}=8^{-1}
$$

Rewrite the equation using exponential expressions with equivalent bases ($4=2^{2}$

5.9 Solve the equation: $\log _{x} 16=2$.

Rewrite as an exponential equation and solve for x.

$$
\begin{aligned}
x^{2} & =16 \\
x & = \pm 4
\end{aligned}
$$

Only the solution $x=4$ is valid; discard $x=-4$.
5.10 Solve the equation: $\log _{x} 81=\frac{4}{3}$.

Rewrite in exponential form.

$$
x^{4 / 3}=81
$$

To solve for x, raise both sides to the $\frac{3}{4}$ power.

$$
\begin{aligned}
\left(x^{4 / 3}\right)^{3 / 4} & =81^{3 / 4} \\
x^{\frac{4}{3} \cdot \frac{3}{4}} & =(\sqrt[4]{81})^{3} \\
x^{\frac{12}{12}} & =\left(\sqrt[4]{3^{4}}\right)^{3} \\
x^{1} & =3^{3} \\
x & =27
\end{aligned}
$$

5.II Graph the function $f(x)=\log _{2} x$ without a graphing calculator.

The domain of $f(x)$, like the domain of $y=\log _{3} x$ in Problem 5.4 or any other logarithm, consists only of positive numbers; do not substitute negative x-values into $f(x)$ as you plot points. The first column in the table of values below consists of the x-inputs, the second column substitutes x into $f(x)$, the third column is the equation expressed in exponential form, and the final column is the y-value that corresponds with x.

Because the x-axis is an asymptote to the graph of an exponential function, the y axis is an asymptote to logarithmic graphs, as illustrated in Figure 5-3.

Figure 5-3
The graph of $f(x)=\log _{2} x$.
5.12 Sketch the graph of $g(x)=-\log _{3}(x+4)$ without a graphing calculator.

The graph of $g(x)$ is simply the graph of $y=\log _{3} x$ with two transformations applied to it. Adding 4 to x shifts the graph left four units, and multiplying $\log _{3} x$ by -1 reflects the graph about the x-axis, as illustrated in Figure 5-4.

Figure 5-4
The graphs of $y=\log _{3} x$ (dotted curve) and $g(x)=-\log _{3}(x+4)$ (solid curve).

Natural Exponential and Logarithmic Functions

Note that $\ln 19=\log _{e} 19$, as any logarithmic expression written "In" instead of "log" is a natural logarithm and has an implied base of e. Calculating $\ln 19$ is the equivalent of solving the equation $\log _{e} 19=x$, which can be rewritten in

Therefore, $\log _{3} 25 \approx 2.9299$. Note that there is no need to calculate the value twice, as both calculation methods return the same value.
5.17 Evaluate $\log _{6} 10$, accurate to four decimal places, using the change of base formula and a calculator.

Apply the change of base formula.

$$
\frac{\ln 10}{\ln 6} \approx \frac{2.302585093}{1.791759469} \approx 1.2851
$$

5.18 Verify the solution to the equation in Problem $5.7\left(\log _{5} 625=x\right)$ using the change of base formula and a calculator.

Apply the change of base formula.
5.19 Verify the solution to the equation in Problem $5.8\left(\log _{4} \frac{1}{8}=x\right)$ using the change
of base formula and a calculator. of base formula and a calculator.

$$
\begin{aligned}
& \frac{\log 625}{\log 5}=x \\
& \frac{\log 625}{\log 5}=4
\end{aligned}
$$

Apply the change of base formula.

$$
\frac{\ln \frac{1}{8}}{\ln 4}=-1.5=-\frac{3}{2}
$$

Properties of Logarithms

Expanding and squishing log expressions

5.20 Rewrite as a single logarithm: $\log _{2} x+\log _{2} 5+\log _{2} y$.

The sum of logarithms with equal bases is equal to the logarithm of the product: $\log _{a} b+\log _{\boldsymbol{a}} c=\log _{\boldsymbol{a}}(b c)$.

$$
\log _{2} x+\log _{2} 5+\log _{2} y=\log _{2}(5 x y)
$$

5.21 Rewrite as a single \log arithm: $\log 3-(\log 9+\log x)$.

Rewrite the parenthetical expression, $\log 9+\log x$, as $\log 9 x$ (as explained in Problem 5.20). Combine those first, according to the order of operations.

$$
\log 3-(\log 9+\log x)=\log 3-(\log 9 x)
$$

According to the order of operations, addition and subtraction should be performed from left to right. Begin by rewriting $\log 7+\log x$ as a single logarithm.

5.23 Verify that $3 \ln x=\ln x^{3}$ and, based upon your proof, extrapolate and prove an equivalent conclusion for $\log _{\star} x^{\prime \prime}$ (if a and n are real numbers and $a>1$).

Rewrite $3 \ln x$ as a sum.

$$
\begin{aligned}
& \begin{array}{l}
\text { Just like } \\
\begin{array}{l}
x+x+x=3 x \text { or } \\
w^{2}+w^{2}+w^{2}=3 w^{2} .
\end{array} \\
\text { Therefore, } 3 \ln x=x^{3} \text {. Expressed more generally, } n \log , x=\log _{a} x^{n} \text {. As justification, } \\
\text { recall that } n \log \text { a } x \text { can be rewritten as the sum of } n \text { terms (where each term is } \\
\text { logarithms with the same base is equal to the logarithm of their product. } \\
\left.\log _{a} x\right) .
\end{array} \\
& \qquad \begin{array}{l}
n \ln x=\ln x+\ln x+\ln x=\ln (x \cdot x \cdot x)=\ln x^{3}
\end{array} \\
&
\end{aligned}
$$

Rewrite the sum of the logarithms as a single logarithm of their products.

$$
\underbrace{\log _{a} x+\log _{a} x+\log _{a} x+\cdots+\log _{a} x}_{\text {total of } n \text { terms }}=\log _{a}\left(\frac{(x)(x)(x) \cdots(x))}{\substack{\text { there are } n \\ \text { factors of } x}}\right)=\log _{a} x^{n}
$$

Therefore, $n \log _{\propto} x=\log _{\propto} x^{n}$.
5.24 Rewrite as a single logarithm: $5 \log x-2 \log y+4 \log (x-y)$.

Rewrite the coefficients of the logarithms as the exponents of their arguments, according to the logarithmic property $n \log _{a} x=\log _{a} x^{n}$, as explained in Problem 5.23.

$$
5 \log x-2 \log y+4 \log (x-y)=\log x^{5}-\log y^{2}+\log (x-y)^{4}
$$

The two leftmost logarithms are equivalent to a logarithmic quotient.

$$
=\log \frac{x^{5}}{y^{2}}+\log (x-y)^{4}
$$

The sum of logarithmic expressions with equal bases is equal to the logarithm of their product.

$$
=\log \frac{x^{5}(x-y)^{4}}{y^{2}}
$$

5.25 Expand the logarithmic expression: $\ln x y^{2}$.

Expanding a logarithmic expression requires you to apply logarithmic properties in order to rewrite a single logarithmic expression as multiple logarithmic expressions. Because $x y^{2}$ is a product, rewrite the argument as the sum of two logarithms with equal bases.

$$
\ln x y^{2}=\ln x+\ln y^{2}
$$

Recall that $\log x^{u}=a \log x$, so $\ln y^{2}=2 \ln y$.

$$
=\ln x+2 \ln y
$$

5.26 Expand the logarithmic expression: $\log \frac{y^{3}}{5}$.

Recall that $\log \frac{a}{b}=\log a-\log b$.

$$
\log \frac{y^{3}}{5}=\log y^{3}-\log 5
$$

Substitute $\log y^{3}=3 \log y$ into the expression.

$$
=3 \log y-\log 5
$$

5.27 Expand the logarithmic expression: $\log _{8}\left[\frac{2 x^{2}}{(x-y)^{3}}\right]$.

The logarithm of a quotient can be rewritten as the difference of two logarithms.

$$
\log _{8} 2 x^{2}-\log _{8}(x-y)^{3}
$$

The leftmost logarithm contains a product, which can be rewritten as the sum of two logarithms.

$$
=\log _{8} 2+\log _{8} x^{2}-\log _{8}(x-y)^{3}
$$

Rewrite the exponents of the logarithmic arguments as the coefficients of their respective logarithms.

$$
=\log _{8} 2+2 \log _{8} x-3 \log _{8}(x-y)
$$

Solving Exponential and Logarithmic Equations

Exponents and logs cancel each other out

5.28 Simplify the expression: $\log _{4} 4^{3}$.

Apply the logarithmic property $\log x^{a}=a \log x$, as described in Problem 5.23.

$$
\log _{4} 4^{3}=3 \log _{4} 4
$$

Apply the change of base formula to the logarithm.

$$
3 \log _{4} 4=3\left(\frac{\ln 4}{\ln 4}\right)=3(1)=3
$$

This result demonstrates a fundamental logarithmic fact: $\log _{\varepsilon} a^{n}=n$.
5.29 Simplify the expression: $3^{\log _{3} x}$.

This expression is the result of the composition of functions $f(g(x))$, where $f(x)=3^{x}$ and $g(x)=\log _{3} x$. Because $f(x)$ and $g(x)$ are inverse functions, they cancel one another out, leaving behind only the argument of the inner function: $3^{\log _{3} x}=x$. Exponential and logarithmic functions with the same base ($y=a^{x}$ and $y=\log _{a} x$) are inverses of one another.
5.30 Simplify the expression: $\ln \left(e^{4} \cdot e^{5 x}\right)$.

Multiply the natural logarithmic expressions within the parentheses.

$$
\ln \left(e^{4} \cdot e^{5 x}\right)=\ln e^{5 x+4}
$$

Notice that the expression $\ln e^{5 x+4}$ is a composition of inverse functions, because $\ln x$ and e^{x} have the same base. Therefore, the functions cancel one another out, leaving behind only the argument of the inner function.

5.31 Simplify the expression: $e^{\ln x-\ln y}$.

Rewrite the exponent using logarithmic properties. (The difference of two logarithms with the same base is equal to a logarithmic quotient, as explained in Problem 5.21.)

$$
e^{\ln x-\ln y}=e^{\ln (x / y)}
$$

The natural logarithmic and exponential functions are inverses of one another, so only the argument of the inner functions remains when the functions are composed.

$$
e^{\ln (x / y)}=\frac{x}{y}
$$

5.32 Determine the exact solution to the equation: $2^{x}=9$.

To eliminate the exponential function 2^{x} on the left side of the equation, apply its inverse function $\log _{2} x$ to both sides of the equation.

$$
\begin{aligned}
\log _{2} 2^{x} & =\log _{2} 9 \\
x & =\log _{2} 9
\end{aligned}
$$

Although you could use the change of base formula to approximate $\log _{2} 9$, the problem specifically requests the exact answer. Therefore, you should not estimate the solution: $x=\log _{2} 9$.

5.33 Determine the exact solution to the equation: $2-e^{5_{x}}=-13$.

Subtract 2 from both sides of the equation to isolate the exponential function, then multiply the entire equation by -1 .

$$
\begin{aligned}
-e^{5 x} & =-15 \\
e^{5 x} & =15
\end{aligned}
$$

To eliminate the natural exponential function, take the natural logarithm of both sides of the equation.

$$
\begin{aligned}
\ln e^{5 x} & =\ln 15 \\
5 x & =\ln 15 \\
x & =\frac{\ln 15}{5}-
\end{aligned}
$$

5.34 Determine the exact solution to the equation: $5+\ln (x+3)=7$.

Isolate the logarithmic expression on the left side of the equation.

$$
\ln (x+3)=2
$$

Exponentiate the equation to eliminate the natural logarithm.

$$
\begin{aligned}
e^{\ln (x+3)} & =e^{2} \\
x+3 & =e^{2} \\
x & =e^{2}-3
\end{aligned}
$$

5.35 Determine the exact solution to the equation: $\log _{5} 2 x-\log _{5} 3=\log _{5}(4 x-19)$.

Apply logarithmic properties to rewrite $\log _{5} 2 x-\log _{55} 3$ as a logarithmic quotient.

$$
\log _{5} \frac{2 x}{3}=\log _{5}(4 x-19)
$$

Exponentiate the equation to eliminate the logarithms.

$$
5^{\log _{5}(2 x / 3)}=5^{\log _{5}(4 x-19)}
$$

Because 5^{x} and $\log _{5} x$ are inverse functions, they cancel one another out, leaving behind only the arguments of the logarithms.

$$
\frac{2 x}{3}=4 x-19
$$

Solve for x.

$$
\begin{aligned}
2 x & =3(4 x-19) \\
2 x & =12 x-57 \\
-10 x & =-57 \\
x & =\frac{57}{10}
\end{aligned}
$$

5.36 Determine the exact solution to the equation: $\log x+\log (x-2)-1=0$.

Move the constant term to the right side of the equation.

$$
\log x+\log (x-2)=1
$$

The sum of two logarithms with equal bases equals the logarithm of their product.

$$
\begin{array}{r}
\log [x(x-2)]=1 \\
\log \left(x^{2}-2 x\right)=1
\end{array}
$$

Exponentiate the equation to eliminate the logarithmic function.

Discard the invalid solution $x=1-\sqrt{11}$ (logarithmic functions have a domain of $x>0$); the only valid solution to the equation is $x=1+\sqrt{11}$.

Chapter 6
 CONIC SECTIONS

Parabolas, circles, ellipses, and hyperbolas

When a double-napped right circular cone is sliced by a plane, the perimeter of the resulting cross section will be a circle, an ellipse, a parabola, or a hyperbola. Hence, this family of four curves is known as the conic sections. Like their graphs share a similar origin, the equations of their standard forms share similar characteristics as well, though each has unique distinguishing features.

This chapter explores the nuances of the equations that generate the conic sections and investigates how the constants and variables in those equations affect their graphs.

Quadratic equations have graphs that are roughly u-shaped, that are called "parabolas." The most obvious feature of a quadratic equation is its degree-one of the variables is raised to the second power, and it's the highest exponent in the equation (like $y=x^{2}-7 x+2$). That's all well and good, but what happens when there's an x^{2} AND a y^{2} in the equation? Those graphs will be (a) circles, (b) ellipses, or (c) hyperbolas. In this chapter, you'll learn how to graph all four kinds of conic sections and how to manipulate an equation so it's easy to graph.

Parabolas

Graphs of quadratic equations

6.I Write the equation of the parabola in standard form and identify its vertex: $y=x^{2}+6 x-4$.

Add 4 to both sides of the equation so that the right side contains only x-terms.

$$
y+4=x^{2}+6 x
$$

Complete the square on the right side of the equation: take half of the x coefficient $\left(\frac{1}{2} \cdot 6=3\right)$, square the result $\left(3^{2}=9\right)$, and add that number (9) to both sides of the equation.

$$
\begin{aligned}
y+4+9 & =x^{2}+6 x+9 \\
y+13 & =x^{2}+6 x+9
\end{aligned}
$$

The standard form of a parabola is $y=a(x-h)^{2}+k$, so in this problem $a=1$,
rice that the standard form includes " $-h$ "
6.2 Write the equation of the parabola in standard form and identify its vertex and axis of symmetry: $y=2 x^{2}-16 x-1$.

Move the constant to the left side of the equation.

$$
y+1=2 x^{2}-16 x
$$

Complete the square on the right side of the equation. To do so, the coefficient of the x^{2}-term must be 1 . Divide the entire equation by 2 (the x^{2}-coefficient) to accomplish this.

$$
\frac{y}{2}+\frac{1}{2}=x^{2}-8 x
$$

The square of half the x-coefficient is $16: \frac{1}{2}(-8)=-4$, and $(-4)^{2}=16$; add 16 to
both sides of the equation.

$$
\frac{y}{2}+\frac{1}{2}+16=x^{2}-8 x+16
$$

Add the constants on the left side of the equation and factor the right side.

$$
\begin{aligned}
\frac{y}{2}+\frac{1}{2}+\frac{32}{2} & =(x-4)(x-4) \\
\frac{y+33}{2} & =(x-4)^{2}
\end{aligned}
$$

Multiply the entire equation by 2 to eliminate the fraction; solve for y.

$$
\begin{aligned}
\left(\frac{2}{1}\right)\left(\frac{y+33}{2}\right) & =\left(\frac{2}{1}\right)\left[\frac{(x-4)^{2}}{1}\right] \\
y+33 & =2(x-4)^{2} \\
y & =2(x-4)^{2}-33
\end{aligned}
$$

The equation is now in standard form, $y=a(x-h)^{2}+k$; therefore, $a=2, h=4$, and $k=-33$. The vertex of the parabola is $(h, k)=(4,-33)$, and the axis of symmetry is $x=4$.
6.3 Write the equation of the parabola in standard form and identify its vertex:

$$
-y^{2}+3 x+5 y-7=0
$$

Notice that this equation (unlike Problems 6.1 and 6.2) contains a y^{2}-term rather than an x^{2}-term. Though the process is similar to those problems, the end result is an equation solved for x (not y) with standard form $x=a(y-k)^{2}+h$. Isolate the y-terms on the right side of the equation.

$$
3 x-7=y^{2}-5 y
$$

Complete the square.

$$
\begin{aligned}
3 x-7+\frac{25}{4} & =y^{2}-5 y+\frac{25}{4} \\
\frac{12 x-28}{4}+\frac{25}{4} & =\left(y-\frac{5}{2}\right)\left(y-\frac{5}{2}\right) \\
\frac{12 x-3}{4} & =\left(y-\frac{5}{2}\right)^{2}
\end{aligned}
$$

Multiply both sides of the equation by 4 in order to eliminate the fraction; solve for x.

$$
\begin{aligned}
\frac{4}{1}\left(\frac{12 x-3}{4}\right) & =4\left(y-\frac{5}{2}\right)^{2} \\
12 x-3 & =4\left(y-\frac{5}{2}\right)^{2} \\
12 x & =4\left(y-\frac{5}{2}\right)^{2}+3
\end{aligned}
$$

Multiply each term by $\frac{1}{12}$ to isolate x.

$$
\begin{aligned}
\left(\frac{1}{12}\right) 12 x & =\left(\frac{1}{12}\right)(4)\left(y-\frac{5}{2}\right)^{2}+\left(\frac{1}{12}\right) 3 \\
x & =\frac{4}{12}\left(y-\frac{5}{2}\right)^{2}+\frac{3}{12} \\
x & =\frac{1}{3}\left(y-\frac{5}{2}\right)^{2}+\frac{1}{4}
\end{aligned}
$$

The parabola is now in standard form, $x=a(y-k)^{2}+h$, with $a=\frac{1}{3}, h=\frac{1}{4}$, and $k=\frac{5}{2}$. The vertex of the parabola is $(h, k)=\left(\frac{1}{4}, \frac{5}{2}\right)$.
6.4 Write the equation of the parabola in standard form and identify its vertex and axis of symmetry: $x-9 y^{2}+18 y+6=0$.

\[

\]

Figure 6-1

The dotted graph of $y=x^{2}$ and the solid graph of $y=(x+3)^{2}-13$. All parabolas containing an x^{2}-term either open upraard or downward, whereas parabolas written in terms of y either open left or right.
6.6 Graph the parabola defined in Problem 6.3: $-y^{2}+3 x+5 y-7=0$.

According to Problem 6.3, the parabola has standard form $x=\frac{1}{3}\left(y-\frac{5}{2}\right)^{2}+\frac{1}{4}$. The graphs of parabolas containing y^{2}-terms are not functions, because they fail the vertical line test. Thus, function transformations (such as those demonstrated in

A vertical line cannot intersect the graph of a function more than Problem 6.5) are not a reliable method to graph this equation. Instead, you should plot points; substitute a variety of values for y to get the corresponding x values and graph the coordinates that result. Since the vertex is located at $\left(\frac{1}{4}, \frac{5}{2}\right)$, use y-values close to $\frac{5}{2}$.

$y=0$	$y=1$	$y=\frac{5}{2}$	$y=3$	$y=4$
$x=\frac{1}{3}\left(-\frac{5}{2}\right)^{2}+\frac{1}{4}$	$x=\frac{1}{3}\left(-\frac{3}{2}\right)^{2}+\frac{1}{4}$	$x=\frac{1}{3}(0)^{2}+\frac{1}{4}=\frac{1}{4}$	$x=\frac{1}{3}\left(\frac{1}{2}\right)^{2}+\frac{1}{4}$	$x=\frac{1}{3}\left(\frac{3}{2}\right)^{2}+\frac{1}{4}$
$=\frac{1}{3}\left(\frac{25}{4}\right)+\frac{1}{4}=\frac{7}{3}$	$=\frac{1}{3}\left(\frac{1}{4}\right)+\frac{1}{4}=1$		$=\frac{1}{4}=\frac{1}{3}$	$=\frac{1}{3}\left(\frac{9}{4}\right)+\frac{1}{4}=1$

According to this table of values, the points $\left(\frac{7}{3}, 0\right),(1,1),\left(\frac{1}{4}, \frac{5}{2}\right),\left(\frac{1}{3}, 3\right)$, and $(1,4)$ belong on the graph, as illustrated by Figure 6-2.

Figure 6-2
The graph of the parabola $-y^{2}+3 x+5 y-7=0$ opens to the right.

6.7 Identify the focus and directrix of the parabola: $2 x^{2}+20 x-3 y+9=0$.

Rewrite the parabola in standard form. Divide the equation by 2 , so that the coefficient of x^{2} is 1 , and complete the square.

$$
\begin{aligned}
\frac{2 x^{2}}{2}+\frac{20 x}{2}-\frac{3 y}{2}+\frac{9}{2} & =\frac{0}{2} \\
\frac{3 y}{2}-\frac{9}{2} & =x^{2}+10 x \\
\frac{3 y}{2}-\frac{9}{2}+25 & =x^{2}+10 x+25 \\
\frac{3 y}{2}-\frac{9}{2}+\frac{50}{2} & =(x+5)(x+5) \\
\frac{3 y+41}{2} & =(x+5)^{2} \\
3 y+41 & =2(x+5)^{2} \\
3 y & =2(x+5)^{2}-41 \\
y & =\frac{2}{3}(x+5)^{2}-\frac{41}{3}
\end{aligned}
$$

Standard form of the parabola is $y=a(x-h)^{2}+k$, so $a=\frac{2}{3}, h=-5$, and $k=-\frac{41}{3}$. In order to determine the focus of the parabola, first define the constant $c=\left|\frac{1}{4 a}\right|$.
then the focus is $(h, k-c)$ and the directrix is $y=k+c$.

If a is negative,

It is important to note that $a=\frac{2}{3}$ is positive, because that means the parabola's focus is above its vertex and its directrix is below the vertex. Any such parabola has focus $(h, k+c)$ and directrix $y=k-c$. Substitute the values of h, k, and c into those formulas.

$$
\begin{array}{rlrl}
\text { Focus } & =(h, k+c) & \text { Directrix: } y=k-c \\
& =\left(-5,-\frac{41}{3}+\frac{3}{8}\right) & y=-\frac{41}{3}-\frac{3}{8} \\
& =\left(-5, \frac{-328+9}{24}\right) & y=-\frac{328}{24}-\frac{9}{24} \\
& =\left(-5,-\frac{319}{24}\right) & & y=-\frac{337}{24}
\end{array}
$$

6.8 Identify the focus and directrix of the parabola: $y^{2}+3 y+5 x+2=0$.

Rewrite the parabola in standard form $x=a(y-k)^{2}+h$ by completing the square.

$$
\begin{aligned}
-5 x-2 & =y^{2}+3 y \\
x-2+\frac{9}{4} & =y^{2}+3 y+\frac{9}{4} \\
x-\frac{8}{4}+\frac{9}{4} & =\left(y+\frac{3}{2}\right)\left(y+\frac{3}{2}\right) \\
-5 x & =\left(y+\frac{3}{2}\right)^{2}-\frac{1}{4} \\
x & =-\frac{1}{5}\left(y+\frac{3}{2}\right)^{2}+\frac{1}{20}
\end{aligned}
$$

$$
\begin{aligned}
& -5 x-2+\frac{9}{4}=y^{2}+3 y+\frac{9}{4} \\
& -5 x-\frac{8}{4}+\frac{9}{4}=\left(y+\frac{3}{2}\right)\left(y+\frac{3}{2}\right)
\end{aligned} \longleftrightarrow \begin{gathered}
\text { Half of the } y \\
\text { coefficient is } \frac{1}{2} \cdot \frac{3}{1}=\frac{3}{2} \\
\text { and }\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \text {, so add } \frac{9}{4} \text { to }
\end{gathered}
$$

Therefore, $a=-\frac{1}{5}, h=\frac{1}{20}$, and $k=-\frac{3}{2}$; calculate c.

$$
c=\left|\frac{1}{4 a}\right|=\left|\frac{1}{\left(\frac{4}{1}\right)\left(-\frac{1}{5}\right)}\right|=\left|\frac{1}{\left(-\frac{4}{5}\right)}\right|=\left|-\frac{5}{4}\right|=\frac{5}{4}
$$

and the directrix is right of the vertex. Specifically, the focus is $(h-c, k)$ and the directrix is $x=h+c$.

$$
\begin{array}{rl:r}
\text { Focus } & =(h-c, k) & \text { Directrix: } x=h+c \\
& =\left(\frac{1}{20}-\frac{5}{4},-\frac{3}{2}\right) & x=\frac{1}{20}+\frac{5}{4} \\
& =\left(\frac{1-25}{20},-\frac{3}{2}\right) & x=\frac{1}{20}+\frac{25}{20} \\
& =\left(-\frac{24}{20},-\frac{3}{2}\right) & x=\frac{26}{20} \\
& =\left(-\frac{6}{5},-\frac{3}{2}\right) & x=\frac{13}{10}
\end{array}
$$

6.9 Write the equation of the parabola with focus $(-1,3)$ and directrix $y=1$ in standard form.

As noted in Problem 6.7, a parabola that contains an x^{2}-term has a horizontal directrix. (A parabola with a y^{2}-term has a vertical directrix, as demonstrated by Problem 6.8.) Therefore, you should use standard form $y=a(x-h)^{2}+k$.

The vertex (h, k) of the parabola has the same x-value as the focus, so $h=-1$. Furthermore, it is equidistant from the directrix and the focus; therefore, k is the average of the y-coordinate of the focus and the constant in the directrix equation.

$$
k=\frac{3+1}{2}=2
$$

Note that c is the vertical distance between the vertex and the focus; calculate the absolute value of the difference of their y-values: $c=|3-2|=1$. Calculate a using the formula from Problems 6.7 and 6.8 , but omit the absolute value signs.

$$
\begin{aligned}
c & =\frac{1}{4 a} \\
1 & =\frac{1}{4 a} \\
4 a & =1 \\
a & =\frac{1}{4}
\end{aligned}
$$

You must now determine whether a is positive or negative. According to Problem 6.7, when a parabola's focus is above its vertex, $a>0$. Therefore, $a=\frac{1}{4}, h=-1$, and $k=2$.

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=\frac{1}{4}(x-(-1))^{2}+2 \\
& y=\frac{1}{4}(x+1)^{2}+2
\end{aligned}
$$

Circles

Center + radius = round shapes and easy problems

Figure 6-3
The graph of a circle with center ($-3,0$) and radius 2.
6.II If points $A=(-4,1)$ and $B=(6,-5)$ are the endpoints of line segment $\overline{A B}$, such that $\overline{A B}$ is a diameter of circle C, find the center and radius of C.

The center of the circle is located at the midpoint of the diameter, so apply the midpoint formula (as described in Problem 1.8).

$$
\text { center }=\left(\frac{-4+6}{2}, \frac{1+(-5)}{2}\right)=\left(\frac{2}{2}, \frac{-4}{2}\right)=(1,-2)
$$

The radius is half the length of the diameter. Calculate the diameter's length using the distance formula (as described in Problem 1.9) and divide the result by 2 .

$$
\text { radius }=\frac{A B}{2}=\frac{\sqrt{(6-(-4))^{2}+(-5-1)^{2}}}{2}=\frac{\sqrt{10^{2}+(-6)^{2}}}{2}=\frac{\sqrt{136}}{2}=\frac{\not 2 \sqrt{34}}{2}=\sqrt{34}
$$

6.12 Identify the center and radius of the circle: $(x+9)^{2}+(y-1)^{2}=16$.

The standard form of a circle is $(x-h)^{2}+(y-k)^{2}=r^{2}$, where (h, k) is the center of the circle and r is the radius. In this example, $(h, k)=(-9,1)$. The radius is equal to the square root of the constant on the right side of the equation.

$$
\begin{aligned}
r^{2} & =16 \\
r & =4
\end{aligned}
$$

Though $r=-4$ is a valid solution to the equation $r^{2}=16$, it is not a valid radius; the radius of a circle must be positive.

6.13 Rewrite the equation of the circle in standard form: $x^{2}+y^{2}-4 x+12 y-10=0$.

Write the x-terms in descending order of degree, leaving empty space before listing the y-terms. (You will use this space to complete the square in the next step.) Then write the y-terms in descending order of degree (leaving space before the equal sign). Move the constant by adding 10 to both sides of the equation.

$$
x^{2}-4 x+y^{2}+12 y=10
$$

Complete the square twice (once for the x-terms and once for the y-terms), adding both constants to the right side of the equation to maintain equality.

$$
\begin{aligned}
x^{2}-4 x+4+y^{2}+12 y+36 & =10+4+36 \\
(x-2)(x-2)+(y+6)(y+6) & =50 \\
(x-2)^{2}+(y+6)^{2} & =50
\end{aligned}
$$

6.14 Rewrite the equation of the circle in standard form: $x^{2}+y^{2}+7 x-2 y+6=0$.

Use the method of Problem 6.13 (completing the square twice simultaneously) to reach standard form.

$$
\begin{gathered}
x^{2}+7 x+\frac{49}{4}+y^{2}-2 y+1=-6+\frac{49}{4}+1 \\
\left(x+\frac{7}{2}\right)^{2}+(y-1)^{2}=\frac{29}{4}
\end{gathered}
$$

Recall that the standard form of a circle is $(x-h)^{2}+(y-k)^{2}=r^{2}$; therefore, $h=-\frac{7}{2}$, $k=1$, and $r=\sqrt{\frac{29}{4}}=\frac{\sqrt{29}}{2}$. The center of the circle is $\left(-\frac{7}{2}, 1\right)$, and the radius is $\frac{\sqrt{29}}{2}$.
6.15 Identify the center and radius of the circle: $2 x^{2}+10 x+2 y^{2}-7 y+12=0$.

In order to complete the square, the coefficients of the x^{2} - and y^{2}-terms must be 1. Note that they are equal, so divide all terms in the equation by the shared coefficient.

The center of the circle is $\left(3,-\frac{1}{2}\right)$ and the radius is $\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}$. Use a calculator to find a decimal approximation of the radius $\left(\frac{\sqrt{5}}{2} \approx 1.118\right)$ and graph using the method outlined in Problem 6.10. The solution is illustrated in Figure 6-4.

Figure 6-4
The graph of the circle $5 x^{2}-30 x+5 y^{2}+5 y+40=0$ is centeried at $\left(3,-\frac{1}{2}\right)$.

Ellipses

Fancy word for "ovals"

Note: Problems 6.17-6.18 refer to the ellipse graphed in Figure 6-5.

6.17 Calculate the lengths of the major and minor axes of the ellipse and identify the vertices.

Figure 6-5
The graph of an ellipse and the endpoints of its major and minor axes.

The major axis of the ellipse has endpoints $(-2,6)$ and $(-2,-4)$. Its length, therefore, is the distance between those points. Note that endpoints are on the same vertical line $(x=-2)$, so the distance between the points is the absolute value of the diffierence of the y-coordinates: $|-4-6|=10$.
 difference of the x-coordinates. Note that the major axis is always larger then the minor axis of an ellipse, and only the endpoints of the major axis are considered the vertices of the ellipse: $(-2,6)$ and $(-2,-4)$.

Note: Problems 6.17-6.18 refer to the ellipse graphed in Figure 6-5.

6.18 Write the equation of the ellipse in standard form.

The standard form of an ellipse with a vertical major axis is $\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$, where (h, k) is the center of the ellipse, a is half the length of the major axis, and b is half the length of the minor axis. Apply the midpoint formula to the endpoints of the major axis to determine the center of the ellipse.

$$
\left(\frac{-2+(-2)}{2}, \frac{6+(-4)}{2}\right)=\left(\frac{-4}{2}, \frac{2}{2}\right)=(-2,1)
$$

Therefore, $h=-2$ and $k=1$. (Note that the midpoint of the minor axis also marks the center of the ellipse-both midpoints are equal, because the center marks the point at which the axes bisect one another.) According to Problem 6.17, the length of the major axis is 10 and the length of the minor axis is 6 , so $a=10 \div 2=5$ and $b=6 \div 2=3$. Plug h, k, a, and b into the standard form equation to generate the equation of the ellipse.

$$
\begin{aligned}
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}} & =1 \\
\frac{(x-(-2))^{2}}{3^{2}}+\frac{(y-1)^{2}}{5^{2}} & =1 \\
\frac{(x+2)^{2}}{9}+\frac{(y-1)^{2}}{25} & =1
\end{aligned}
$$

Note: Problems 6.19-6.20 refer to the ellipse graphed in Figure 6-6.
6.19 Determine the values of a and b required to write the equation of the ellipse in standard form.

Figure 6-6
The endpoints of the major and minor axes of an ellipse.

The horizontal axis, connecting points $\left(-3, \frac{1}{2}\right)$ and $\left(5, \frac{1}{2}\right)$, is 8 units long; the vertical axis, connecting points $(1,-2)$ and $(1,3)$, is 5 units long. Since $8>5$, the horizontal
axis is the major axis, and a is equal to half its length: $a=8 \div 2=4$. Similarly, b is half the length of the remaining axis: $b=\frac{5}{2}$.

Note: Problems 6.19-6.20 refer to the ellipse graphed in Figure 6-6.
6.20 Write the equation of the ellipse in standard form.

Identify the center of the ellipse by calculating the midpoint of the major (or minor) axis.

$$
\left(\frac{-3+5}{2}, \frac{1 / 2+1 / 2}{2}\right)=\left(\frac{2}{2}, \frac{1}{2}\right)=\left(1, \frac{1}{2}\right)
$$

Therefore, $h=1$ and $k=\frac{1}{2}$. According to Problem 6.19, $a=4$ and $b=\frac{5}{2}$. Substitute these values into the standard form of an ellipse with a horizontal major axis.

$$
\begin{aligned}
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}} & =1 \\
\frac{(x-1)^{2}}{4^{2}}+\frac{(y-1 / 2)^{2}}{(5 / 2)^{2}} & =1 \\
\frac{(x-1)^{2}}{16}+\frac{(y-1 / 2)^{2}}{25 / 4} & =1
\end{aligned}
$$

6.21 Write the equation of the ellipse in standard form: $x^{2}+4 y^{2}-8 x+24 y+36=0$.

Group the x-and y-terms together and move the constant to the right side of the equation.

$$
x^{2}-8 x+4 y^{2}+24 y=-36
$$

Reaching standard form requires you to complete the square twice, in a process similar to writing equations of circles in standard form (see Problems 6.13-6.16). However, the x^{2} - and y^{2}-coefficients of an elliptical equation are usually unequal, so rather than dividing by a shared coefficient (like in Problems 6.14 and 6.15), you factor out the leading coefficients. In this problem the coefficient of y^{2} does not equal 1 , so factor 4 out of the y-terms.

$$
x^{2}-8 x+4\left(y^{2}+6 y\right)=-36
$$

Complete the square for the x-terms, and work within the parentheses to complete the square for the y-terms.

$$
\begin{equation*}
x^{2}-8 x+\mathbf{1 6}+4\left(y^{2}+6 y+\mathbf{9}\right)=-36+\mathbf{1 6}+4 \tag{9}
\end{equation*}
$$

Although you add 9 to create the trinomial $y^{2}+6 y+9$, that expression is multiplied by 4 , so you must add $4(9)=36$ to the right side of the equation in order to maintain equality.

$$
\begin{aligned}
& (x-4)^{2}+4(y+3)^{2}=-36+52 \\
& (x-4)^{2}+4(y+3)^{2}=16
\end{aligned}
$$

The right side of an elliptical equation in standard form equals 1 , so divide the entire equation by 16 and reduce the resulting fractions.

$$
\begin{aligned}
\frac{(x-4)^{2}}{16}+\frac{4(y+3)^{2}}{16} & =\frac{16}{16} \\
\frac{(x-4)^{2}}{16}+\frac{(y+3)^{2}}{4} & =1
\end{aligned}
$$

6.22 Rewrite the ellipse in standard form and graph it: $9 x^{2}+y^{2}-90 x-4 y+220=0$.

Apply the method outlined in Problem 6.21: Regroup the variables, move the constant, factor the x^{2}-coefficient out of the x-terms, complete the square twice, and divide by the constant on the right side of the equation.
It looks like you're adding 25 to the left side of the equation, but you're actually adding $9(25)=225$.
6.23 Write the equation of the ellipse in standard form and identify the lengths of its major and minor axes: $x^{2}+16 y^{2}+32 y+12=0$.

Apply the technique described in Problem 6.21, but note that you do not have to complete the square for the x^{2}-term.

$$
\begin{aligned}
x^{2}+16 y^{2}+32 y & =-12 \\
x^{2}+16\left(y^{2}+2 y+1\right) & =-12+16(1) \\
x^{2}+16(y+1)^{2} & =4 \\
\frac{x^{2}}{4}+\frac{16(y+1)^{2}}{4} & =\frac{4}{4} \\
\frac{x^{2}}{4}+\frac{4(y+1)^{2}}{1} & =1
\end{aligned}
$$

In this equation, $h=0, k=-1, a=\sqrt{4}=2$, and $b=\sqrt{\frac{1}{4}}=\frac{1}{2}$. The major axis has length $2 a=2(2)=4$, and the minor axis has length $2 b=2\left(\frac{1}{2}\right)=1$.
6.24 Find the coordinates of the foci of the ellipse $\frac{(x-6)^{2}}{25}+\frac{(y+11)^{2}}{16}=1$.

Note that $a^{2}=25$ and $b^{2}=16$; substitute these values into the formula $c=\sqrt{a^{2}-b^{2}}$ to determine the distance between the center of the ellipse and either of its foci.

$$
\begin{aligned}
& c=\sqrt{25-16} \\
& c=\sqrt{9} \\
& c=3
\end{aligned}
$$

The center of the ellipse is $(h, k)=(6,-11)$ and its major axis is horizontal, so the foci are 3 units left and right of the center.

A parabola has one focus, but an ellipse has two foci on its major axis. The distance from the center to either focus is $c=\sqrt{a^{2}-b^{2}}$.

$$
\begin{gathered}
(h-c, k) \text { and }(h+c, k) \\
(6-3,-11) \text { and }(6+3,-11) \\
(3,-11) \text { and }(9,-11)
\end{gathered}
$$

6.25 Calculate the eccentricity of the ellipse from Problem 6.24:

$$
\frac{(x-6)^{2}}{25}+\frac{(y+11)^{2}}{16}=1
$$

The eccentricity of an ellipse is calculated according to the formula $e=\frac{c}{a}$, where $c=\sqrt{a^{2}-b^{2}}$. According to Problem 6.24, $c=3$ and $a=5$.

$$
e=\frac{c}{a}=\frac{3}{5}
$$

6.26 Calculate the eccentricity of the ellipse accurate to three decimal places: $\frac{(x+7)^{2}}{6}+\frac{(y-5)^{2}}{18}=1$.

Substitute, $a^{2}=18$ and $b^{2}=6$ into $c=\sqrt{a^{2}-b^{2}}$.

$$
\begin{aligned}
& c=\sqrt{18-6} \\
& c=\sqrt{12} \\
& c=2 \sqrt{3}
\end{aligned}
$$

Apply the eccentricity formula defined in Problem 6.25.

$$
e=\frac{c}{a}=\frac{2 \sqrt{3}}{\sqrt{18}}=\frac{2 \sqrt{3}\left(\frac{\sqrt{2}}{3 \sqrt{2}}\left(\frac{\sqrt{2}}{}\right)=\frac{2 \sqrt{6}}{6}=\frac{\sqrt{6}}{3}, \frac{1}{6}\right.}{3}
$$

Use a calculator or other computer computational tool to calculate the decimal equivalent: $e \approx 0.816$.

6.27 Prove that an ellipse with eccentricity 0 is a circle.

If the eccentricity of an ellipse equals 0 , then $e=\frac{c}{a}=0$. In order for this fraction to equal 0 , its numerator must equal 0 , so assume that $c=\sqrt{a^{2}-b^{2}}=0$. Solve the equation for a and disregard negative values for a and b. (Because they represent distance in the coordinate plane, a and b must be positive real numbers.)

$$
\begin{aligned}
\left(\sqrt{a^{2}-b^{2}}\right)^{2} & =(0)^{2} \\
a^{2}-b^{2} & =0 \\
a^{2} & =b^{2} \\
\sqrt{a^{2}} & =\sqrt{b^{2}} \\
a & =b
\end{aligned}
$$

If a and b are equal, then the major and minor axes have equal lengths and the endpoints of the axes (as well as all other points on the ellipse) are equidistant from the center; that distance is the radius of the circle.

Hyperbolas

-Two-armed parabola-looking things

Note: Problems 6.28-6.29 refer to the hyperbola graphed in Figure 6-8.

6.28 Calculate the lengths of the transverse and conjugate axes.

Figure 6-8: \quad The graph of a hyperbola with vertices $(-4,-3)$ and $(2,-3)$.

Extend vertical lines from the vertices to the asymptotes of the graph. Make note of the four resulting intersection points and use two horizontal lines to connect them. The end result is the rectangle pictured in Figure 6-9.

Figure 6-9:
The transverse and conjugate axes of a hyperbola are perpendicular to, and bisect one another, at the center of the hyperbola, much like the major and minor axes of an ellipse. Their endpoints lie at the midpoints of the dotted rectangle.

The transverse axis of a hyperbola is the segment connecting the vertices and has the same length as the horizontal sides of the dotted rectangle; the transverse axis in this problem is 6 units long. The conjugate axis is the vertical segment passing through the center of the hyperbola, which is 2 units in length.

Note: Problems 6.28-6.29 refer to the hyperbola graphed in Figure 6-8.
6.29 Write the equation of the hyperbola in standard form.

A hyperbola with a horizontal transverse axis has standard form $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$, where a is half the length of the transverse axis, b is half the length of the conjugate axis, and (h, k) is the center of the hyperbola.

The center is the midpoint of the transverse axis, the midpoint of the conjugate axis, and the intersection point of the asymptotes, so $(h, k)=(-1,-3)$. According to Problem 6.28, the transverse axis has length 6 and the conjugate axis has length 2 , so $a=6 \div 2=3$ and $b=2 \div 2=1$. Substitute the values into the standard form equation.

$$
\begin{aligned}
\frac{(x-(-1))^{2}}{3^{2}}-\frac{(y-(-3))^{2}}{1^{2}} & =1 \\
\frac{(x+1)^{2}}{9}-\frac{(y+3)^{2}}{1} & =1
\end{aligned}
$$

Note: Problems 6.30-6.31 refer to the hyperbola graphed in Figure 6-10.
6.30 Determine the values of a and b required to write the equation of the hyperbola in standard form.

Figure 6-10
A hyperbola with vertices $(0,0)$ and $(0,8)$.

Draw a rectangle whose sides are congruent and parallel to the transverse and conjugate axes, as illustrated by Figure 6-11.

Figure 6-11
The endpoints of the transverse and conjugate axes are the midpoints of the rectangle's sides.

Note: Problems 6.30-6.31 refer to the hyperbola graphed in Figure 6-10.
6.31 Write the equation of the hyperbola in standard form.

Because the transverse axis is vertical, the standard form of the hyperbola is $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$. The midpoint of the transverse axis is the center of the hyperbola (as is the midpoint of the conjugate axis), so apply the midpoint formula to calculate h and k.

$$
\left(\frac{0+0}{2}, \frac{0+8}{2}\right)=(0,4)=(h, k)
$$

According to Problem 6.30, $a=4$ and $b=3$, so substitute those values into the standard form equation.

$$
\begin{aligned}
\frac{(y-4)^{2}}{4^{2}}-\frac{(x-0)^{2}}{3^{2}} & =1 \\
\frac{(y-4)^{2}}{16}-\frac{x^{2}}{9} & =1
\end{aligned}
$$

Note: Problems 6.32-6.33 refer to the equation $36 x^{2}-25 y^{2}+72 x+100 y-964=0$.
6.32 Rewrite the equation of the hyperbola in standard form and graph it.

Complete the square twice, using a technique similar to Problems 6.21-6.23. The only difference arises when dealing with the negative y^{2}-make sure to factor a negative constant out of the y-terms instead of a positive constant. \qquad

$$
\begin{aligned}
36 x^{2}+72 x-25 y^{2}+100 y & =964 \\
36\left(x^{2}+2 x+1\right)-25\left(y^{2}-4 y+4\right) & =964+36(1)-25(4) \\
36(x+1)^{2}-25(y-2)^{2} & =900 \\
\frac{36(x+1)^{2}}{900}-\frac{25(y-2)^{2}}{900} & =\frac{900}{900}
\end{aligned}
$$

Reduce the fractions: $\frac{36}{900}=\frac{1}{25}$ and $\frac{25}{900}=\frac{1}{36}$.

$$
\frac{(x+1)^{2}}{25}-\frac{(y-2)^{2}}{36}=1
$$

The hyperbola is now in standard form.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Look back at my rule of thumb for Problem 6.29 if you don't know why this is true.

Therefore, $h=-1, k=2, a=\sqrt{25}=5$, and $b=\sqrt{36}=6$. Plot the center point and then mark points 5 units left and right of it to plot the vertices. (The vertices are located left and right of the center-instead of above and below it-because the positive fraction contains x, so the hyperbola has a horizontal transverse axis.) Finally, plot the points 6 units above and below each vertex and draw a rectangle that passes through all of the points (except the center), as illustrated by Figure 6-12.

Figure 6-12
The hyperbola centered at $(-1,2)$ has vertices $(-6,2)$ and $(4,2)$.

Extend the diagonals of the rectangle through its corners to draw the asymptotes of the hyperbola. Graph the branches of the hyperbola so that they pass through the vertices and quickly approach, but do not intersect, the asymptote lines.
Because the transverse axis is horizontal, this hyperbola will open left and right (instead of up and down) as illustrated in Figure 6-13.

Figure 6-13
The graph of the hyperbola $36 x^{2}-25 y^{2}+72 x+100 y-964=0$.

Note: Problems 6.32-6.33 refer to the equation $36 x^{2}-25 y^{2}+72 x+100 y-964=0$.
6.33 Find the equations of the asymptotes to the hyperbola.

A hyperbola has two asymptotes, one with a positive slope and one with a negative slope. Notice that one asymptote passes through the center $(-1,2)$ and through the upper right-hand corner of the rectangle $(4,8)$; calculate its slope (using the method explained in Problem 1.5).

$$
m=\frac{8-2}{4-(-1)}=\frac{6}{5}
$$

Apply the point-slope formula using the slope and the coordinates of the center to write the equation of the line. (Substituting the coordinate pair $\left(x_{1}, y_{1}\right)=(4,8)$ into point-slope form results in the same linear equation.)

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{6}{5}(x-(-1)) \\
y & =\frac{6}{5} x+\frac{6}{5}+2 \\
y & =\frac{6}{5} x+\frac{16}{5}
\end{aligned}
$$

The asymptotes of hyperbolas have opposite slopes, so substitute $m=-\frac{6}{5}$ and $\left(x_{1}, y_{1}\right)=(-1,2)$ into the point-slope formula to generate the equation of the other asymptote.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =-\frac{6}{5}(x-(-1)) \\
y & =-\frac{6}{5} x-\frac{6}{5}+2 \\
y & =-\frac{6}{5} x+\frac{4}{5}
\end{aligned}
$$

6.34 Find the coordinates of the foci for the hyperbola: $\frac{(y-7)^{2}}{16}-\frac{(x+3)^{2}}{28}=1$.

A hyperbola has two foci, which are located on the transverse axis c units further away from the center than the closest vertex (such that $c=\sqrt{a^{2}+b^{2}}$). Note that the foci of an ellipse are closer to the center than the vertices, and thus "inside" the ellipse; however, the foci of a hyperbola are farther away from the center than the vertices, and are therefore "inside" the branches of the hyperbola.
The positive fraction of the standard form equation contains y, so the transverse axis is vertical (parallel to the y-axis); and each focus is a distance of c units away from the center of the ellipse along the transverse axis.

Both asymptotes pass through the center, so you can use it as $\left(x_{1}, y_{1}\right)$ in both pointslope equations.

Note that $a^{2}=16$ and $b^{2}=28$; calculate c.

$$
\begin{aligned}
c & =\sqrt{a^{2}+b^{2}} \\
c & =\sqrt{16+28} \\
c & =\sqrt{44} \\
c & =2 \sqrt{11}
\end{aligned}
$$

The center of the ellipse is $(h, k)=(-3,7)$. The major axis is vertical, so the foci are located at the points $(h, k-c)=(-3,7-2 \sqrt{11})$ and $(h, k+c)=(-3,7+2 \sqrt{11})$.

Chapter 7 FUNDAMENTALS OF TRIGONOMETRY Inject sine, cosine, and tangent into the mix

Abstract

The study of calculus combines the arithmetic rigor of algebraic concepts with geometric and trigonometric postulates, theorems, and measurement techniques to expand, more accurately define, and generalize skills that are historically restrictive and unadaptable. Reacquainting yourself with trigonometric concepts must precede such a laudable endeavor.

Lots of calculus problems require prior knowledge of trigonometry. Not only do you have to know what sine, cosine, and tangent are, but you need to memorize some of their values (using the unit circle), understand their domains and ranges, and manipulate trig expressions using identities and theorems.
Trig helps you move beyond very strict rules in geometry-without trig, it's hard to find the area of a triangle unless you know its base and height. Besides, trig expressions are a lot more interesting (read: complicated) than linear and polynomial expressions, so they are often better tools to model real-life situations.

Basically, calculus is vife with trig, so make sure you understand the material in this and the next two chapters, because without this background, you'll struggle mightily in later chapters once calculus hits in full force.

Measuring Angles

Radians, degrees, and revolutions

7.I Which is larger, $\mathrm{m} \angle A=15^{\circ}$ or $\mathrm{m} \angle B=15$ radians? Justify your answer.

7.2 Convert 270° into radians.

Multiply the degree measurement by $\frac{\pi}{1810}$.

$$
\begin{aligned}
144 \cdot \frac{\pi}{180} & =\frac{144 \pi}{180} \\
& =\frac{36 \cdot 4 \cdot \pi}{36 \cdot 5} \\
& =\frac{4 \pi}{5} \text { radians }
\end{aligned}
$$

7.4 Convert $\frac{\pi}{3}$ radians into degrees.

To convert a radian angle measurement into degrees, multiply it by $\frac{180}{\pi}$.

$$
\begin{aligned}
\frac{\pi}{3} \cdot \frac{180}{\pi} & =\frac{180 \pi}{3 \pi} \\
& =\frac{60 \cdot \not \supset \cdot \not \lambda}{\not p \cdot \not \lambda} \\
& =60^{\circ}
\end{aligned}
$$

7.5 Convert 4 radians into degrees, and express the answer accurate to three decimal places.

Although this radian angle measurement does not contain " π," you should still apply the method from Problem 7.4-multiply by $\frac{180}{\pi}$.

$$
4 \cdot \frac{180}{\pi}=\left(\frac{720}{\pi}\right)
$$

Use a calculator to determine the quotient: 4 radians $\approx 229.183^{\circ}$.

To convert an angle measured in degrees into revolutions, divide by 360°.

$$
\frac{900}{360}=\frac{180 \cdot 5}{180 \cdot 2}=\frac{5}{2} \text { revolutions }
$$

7.7 Convert $\frac{27 \pi}{4}$ into revolutions.

To convert a radian angle into revolutions, divide it by 2π, or (to facilitate simplification) multiply it by $\frac{1}{2 \pi}$.

$$
\frac{27 \pi}{4} \div 2 \pi=\frac{27 \pi}{4} \cdot \frac{1}{2 \pi}=\frac{27 \cdot \not \hbar}{8 \cdot \not \lambda}=\frac{27}{8} \text { revolutions }
$$

Angle Relationships

Coterminal, complementary, and supplementary angles

7.8 Calculate the complement of $\theta=34^{\circ}$.

Complementary angles expressed in degrees have a sum of 90°, so if α is the complement of θ, then $\alpha+\theta=90^{\circ}$. Substitute $\theta=34^{\circ}$ into the equation and solve for α.

$$
\begin{aligned}
\alpha+34^{\circ} & =90^{\circ} \\
\alpha & =90^{\circ}-34^{\circ} \\
\alpha & =56^{\circ}
\end{aligned}
$$

The complement of $\theta=34^{\circ}$ is 56°.
7.9 Calculate the compliment of $\theta=\frac{4 \pi}{9}$.

Complementary angles expressed in radians have a sum of $\frac{\pi}{2}$. Express this as an equation such that α is the complement of θ.
the same thing, so same as from Problem one you're just you re just using
radians inst es. of degrees.

Therefore, $\frac{\pi}{18}$ and $\frac{4 \pi}{9}$ are complementary angles.
7.10 Calculate the supplement of $\theta=125^{\circ}$.

When expressed in degrees, an angle θ and its supplement α have a sum of 180°.

$$
\begin{aligned}
125^{\circ}+\alpha & =180^{\circ} \\
\alpha & =180^{\circ}-125^{\circ} \\
\alpha & =55^{\circ}
\end{aligned}
$$

The supplement of 125° is 55°.
7.II Calculate the supplement of $\theta=\frac{11 \pi}{17}$.

An angle θ and its supplement α, when expressed in radians, have a sum of π.

$$
\begin{aligned}
\frac{11 \pi}{17}+\alpha & =\pi \\
\alpha & =\pi-\frac{11 \pi}{17} \\
\alpha & =\frac{17 \pi}{17}-\frac{11 \pi}{17} \\
\alpha & =\frac{6 \pi}{17}
\end{aligned}
$$

Therefore, $\frac{6 \pi}{17}$ and $\frac{11 \pi}{17}$ are supplementary angles.
7.12 Identify the three smallest positive angles coterminal with $\theta=-70^{\circ}$.

Coterminal angles share the same terminal ray, so consecutive coterminal angles differ in magnitude by a single revolution, 360°. Add 360° to (or subtract 360° from) an angle to generate a coterminal angle.

$$
-70^{\circ}+360^{\circ}=290^{\circ} \quad 290^{\circ}+360^{\circ}=650^{\circ} \quad 650^{\circ}+360^{\circ}=1,010^{\circ}
$$

7.13 Identify the angle coterminal to $\theta=1,265^{\circ}$ that belongs to the interval [$0^{\circ}, 360^{\circ}$).

Subtract 360° from the angle to identify a coterminal angle: $1,265^{\circ}-360^{\circ}=905^{\circ}$. That coterminal angle is still too large for the interval $\left[0^{\circ}, 360^{\circ}\right.$), so continue subtracting 360° until the result is between the endpoints of the interval.

$$
905^{\circ}-360^{\circ}=545^{\circ} \quad 545^{\circ}-360^{\circ}=185^{\circ}
$$

The angle measuring 185° is coterminal with $1,265^{\circ}$ and belongs to the interval $\left[0^{\circ}, 360^{\circ}\right)$.
7.14 Identify the three greatest negative angles coterminal with $\theta=\frac{7 \pi}{2}$.

Subtract one revolution (2π) from the angle at a time until you get a negative coterminal angle.

$$
\frac{7 \pi}{2}-2 \pi=\frac{7 \pi}{2}-\frac{4 \pi}{2}=\frac{3 \pi}{2} \quad \frac{3 \pi}{2}-2 \pi=\frac{3 \pi}{2}-\frac{4 \pi}{2}=-\frac{\pi}{2}
$$

Subtract 2π twice more to generate the second and third greatest negative coterminal angles.

$$
-\frac{\pi}{2}-2 \pi=-\frac{\pi}{2}-\frac{4 \pi}{2}=-\frac{5 \pi}{2} \quad-\frac{5 \pi}{2}-2 \pi=-\frac{5 \pi}{2}-\frac{4 \pi}{2}=-\frac{9 \pi}{2}
$$

The three greatest negative coterminal angles to $\theta=\frac{7 \pi}{2}$ are $-\frac{\pi}{2},-\frac{5 \pi}{2}$, and $-\frac{9 \pi}{2}$.

Evaluating Trigonometric Functions

Right triangle trig and reference angles
7.15 Evaluate $\sin \frac{\pi}{2}$ based on the unit circle.

Graph $\theta=\frac{\pi}{2}$ in standard position on the same axes as a unit circle with center $(0,0)$; its terminal ray intersects the circle at $(0,1)$. The y-coordinate of the point of intersection represents the sine value of $\theta=\frac{\pi}{2}$, so $\sin \frac{\pi}{2}=1$.

7.16 Evaluate $\cos \frac{7 \pi}{6}$ based on the unit circle.

The terminal ray of $\theta=\frac{7 \pi}{6}$ intersects the unit circle centered at the origin at the point $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$. The x-coordinate of the intersection point represents $\cos \frac{7 \pi}{6}$, so $\cos \frac{7 \pi}{6}=-\frac{\sqrt{3}}{2}$.
7.17 Evaluate $\cos \left(-\frac{\pi}{3}\right)$ based on the unit circle.

The unit circle provides only cosine and sine values for angles on the interval $[0,2 \pi]$. Add 2π to the angle in order to calculate a positive coterminal angle for $\theta=-\frac{\pi}{3}$ that belongs to the interval.

$$
-\frac{\pi}{3}+2 \pi=-\frac{\pi}{3}+\frac{6 \pi}{3}=\frac{5 \pi}{3}
$$

Because $-\frac{\pi}{3}$ and $\frac{5 \pi}{3}$ are coterminal angles, they have the same trigonometric values: $\cos \left(-\frac{\pi}{3}\right)=\cos \frac{5 \pi}{3}$. According to the unit circle, $\cos \frac{5 \pi}{3}=\frac{1}{2}$.
7.18 Verify the cosine and sine values of $\theta=\frac{\pi}{4}$ reported by the unit circle.

Draw the angle $\theta=\frac{\pi}{4}$ in standard position and a unit circle centered at $(0,0)$ on the same coordinate plane. Construct a right triangle, as illustrated by Figure 7-1. Because two angles of the triangle are known (45° and 90°), subtract their sum from 180° to calculate the remaining angle: $180^{\circ}-\left(45^{\circ}+90^{\circ}\right)=45^{\circ}$.

Figure 7-1

The radian measurement $\theta=\frac{\pi}{4}$ is equivalent to 45°, so this right triangle must be a 45-45-90 right triangle, whose side lengths are governed by specific geometric principles.

The hypotenuse of the right triangle is also a radius of the unit circle, so its length is 1 . According to the 45-45-90 right triangle theorem, the legs of the triangle are $\frac{1}{\sqrt{2}}$ times as long as the hypotenuse, so multiply the hypotenuse length (1) by that fraction to calculate the lengths of the legs of the right triangle in Figure 7-1.

$$
1 \cdot \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}
$$

Multiply the numerator and denominator of the fraction by $\sqrt{2}$ to rationalize it.

$$
\frac{1}{\sqrt{2}}\left(\frac{\sqrt{2}}{\sqrt{2}}\right)=\frac{\sqrt{2}}{\sqrt{4}}=\frac{\sqrt{2}}{2}
$$

This means you must travel $\frac{\sqrt{2}}{2}$ units right and $\frac{\sqrt{2}}{2}$ units up from the origin to reach the point of intersection between the angle and the unit circle, and the coordinates of the intersection point are $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$-the same values reported by the unit circle for $\cos \frac{\pi}{4}$ and $\sin \frac{\pi}{4}$.
7.19 If an airborne kite 80 feet high is staked to the ground so that the fixed length of string forms a 50° angle of elevation, how long is the string that tethers the kite? Provide an answer accurate to three decimal places.

Consider Figure 7-2, which illustrates the situation described.

Figure 7-2
The kite is 80 feet high with a 50° angle of elevation; x represents the length of the string.

Note that the known side length, 80 , is opposite the known angle and the side to be calculated is the hypotenuse of the right triangle. Of cosine, sine, and tangent, the only trigonometric ratio that describes the relationship between a right triangle's opposite side and hypotenuse is the sine. Substitute the known values and solve for x.

$$
\begin{aligned}
\sin 50^{\circ} & =\frac{80}{x} \\
x\left(\sin 50^{\circ}\right) & =80 \\
x & =\frac{80}{\sin 50^{\circ}}
\end{aligned}
$$

Use a calculator to determine the quotient accurate to three decimal places: $x \approx 104.433$ feet.
7.20 A stationary submarine (located at point S in Figure 7-3) has received intelligence indicating that a hostile submerged mine (point M) is located directly below a buoy (point B), which is exactly 2,500 feet from their current position. If the crew is instructed to fire a torpedo at a 9° angle of declension to detonate it from a safe distance, how far will the torpedo travel before it impacts the mine? Provide an answer accurate to three decimal places.

Figure 7-3

The distance d from the submarine S to the mine M can be calculated using a trigonometric ratio.

You're given a side length that is adjacent to the given angle and asked to calculate the length of the hypotenuse of the right triangle. You should apply the cosine ratio, since cosine $=\frac{\text { adjacent }}{\text { hypotenuse }}$, and then solve for d.

$$
\begin{aligned}
\cos 9^{\circ} & =\frac{2,500}{d} \\
d\left(\cos 9^{\circ}\right) & =2,500 \\
d & =\frac{2,500}{\cos 9^{\circ}} \\
d & \approx 2,531.163 \text { feet }
\end{aligned}
$$

7.21 Evaluate $\cot \frac{11 \pi}{6}$ based on the unit circle.

The tangent of an angle is equal to the quotient of its sine and cosine.

$$
\tan \frac{11 \pi}{6}=\frac{\sin (11 \pi / 6)}{\cos (11 \pi / 6)}
$$

Substitute the sine and cosine values from the unit circle.

$$
\tan \frac{11 \pi}{6}=\frac{-1 / 2}{\sqrt{3} / 2}
$$

Simplify the complex fraction by multiplying its numerator and denominator by the reciprocal of the denominator.

$$
\tan \frac{11 \pi}{6}=\frac{-\frac{1}{2}\binom{2}{\sqrt{3}}}{\frac{2}{2}\left(\frac{2}{\sqrt{3}}\right)}=\frac{\left(-\frac{1}{\sqrt{3}}\right)}{\left(\frac{1}{1}\right)}=-\frac{1}{\sqrt{3}}
$$

The cotangent of an angle is equal to the reciprocal of its tangent. Bvecause
$\tan \frac{11 \pi}{6}=-\frac{1}{\sqrt{3}}, \cot \frac{11 \pi}{6}=-\frac{\sqrt{3}}{1}=-\sqrt{3}$.
7.22 Evaluate $\csc \frac{2 \pi}{3}$ based on the unit circle.

The cosecant function is the reciprocal of the sine function.

$$
\csc \frac{2 \pi}{3}=\frac{1}{\sin (2 \pi / 3)}
$$

According to the unit circle, $\sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2}$.

$$
\csc \frac{2 \pi}{3}=\frac{1}{\sin (2 \pi / 3)}=\frac{1}{\sqrt{3} / 2}
$$

Multiply the numerator and denominator by the reciprocal of the denominator.

$$
\left(\frac{\frac{1}{1}}{\frac{\sqrt{3}}{2}}\right)\left(\frac{\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}}\right)=\frac{\frac{2}{\sqrt{3}}}{\frac{1}{1}}=\frac{2}{\sqrt{3}}
$$

Therefore, $\csc \frac{2 \pi}{3}=\frac{2}{\sqrt{3}}$. Multiply the numerator and denominator by $\sqrt{3}$ to rationalize the expression: $\csc \frac{2 \pi}{3}=\frac{2}{\sqrt{3}}\left(\frac{\sqrt{3}}{\sqrt{3}}\right)=\frac{2 \sqrt{3}}{3}$.
7.23 Identify the reference angle for $\theta=140^{\circ}$.

Every angle whose measure is greater than 90° has a corresponding reference angle-an acute angle used to calculate its trigonometric values. Each reference angle is formed by the terminal side of the angle and the x-axis, so the reference angle of $\theta=140^{\circ}$ is 40°, as illustrated by Figure 7-4.

Figure 7-4
The reference angle for $\theta=140^{\circ}$ measures 40°.

As Figure 7-4 demonstrates, an obtuse angle θ whose terminal side lies in the second quadrant will have a supplementary reference angle α : $\alpha=180^{\circ}-\theta$. In this problem, $\alpha=180^{\circ}-140^{\circ}=40^{\circ}$.
7.24 Identify the reference angle for $\theta=\frac{5 \pi}{4}$.

The terminal side of angle $\theta=\frac{5 \pi}{4}$ lies in the third quadrant, so the reference angle is the acute angle formed by its terminal side and the negative x-axis, as illustrated by Figure 7-5.

Figure 7-5
The reference angle for $\theta=\frac{5 \pi}{4}$ measures $\frac{\pi}{4}$ radians.
As Figure 7-5 demonstrates, an angle θ whose terminal side lies in the third quadrant will have a reference angle α defined by the formula: $\alpha=\theta-\pi$.

$$
\alpha=\frac{5 \pi}{4}-\pi=\frac{5 \pi}{4}-\frac{4 \pi}{4}=\frac{\pi}{4}
$$

7.25 Identify the reference angle for $\frac{11 \pi}{6}$.

The terminal side of angle $\theta=\frac{11 \pi}{6}$ lies in the fourth quadrant, so the reference angle is the acute angle formed by its terminal side and the positive x-axis, as illustrated by Figure 7-6.

Figure 7-6
The reference angle for $\theta=\frac{11 \pi}{6}$ measures $\frac{\pi}{6}$ radians.

As Figure 7-6 demonstrates, an angle θ whose terminal side lies in the fourth quadrant has the reference angle $\alpha=2 \pi-\theta$.
In the
first quadrant
cosine, sine, and
tangent are all
positive. However,
sine's also positive in
the second quad-
rant, tangent's also
positive in the
third, and cosine
is positive in the
fourth.
7.26 If $\tan \theta=-\frac{5}{12}$ and $\frac{3 \pi}{2}<\theta<2 \pi$, evaluate $\sin \theta$.

Angles whose tangents are negative have terminal sides that fall either in the second or fourth quadrant, but this problem specifically identifies the fourth quadrant's boundaries: $\frac{3 \pi}{2}<\theta<2 \pi$.
Draw a right triangle based on the fourth quadrant reference angle (like the reference angle in Problem 7.25). Although angle θ in Figure 7-7 is a reference angle (and not the original θ from the problem), it has the same trigonometric values.

Figure 7-7
Apply the Pythagorean theorem to determine the length of the hypotenuse.

Because $\tan \theta=-\frac{5}{12}$, and tangent $=\frac{\text { opposite }}{\text { adjacent }}$, the side opposite θ has length 5 and the side adjacent has length 12. It is important to label the vertical side -5 , because you must travel down from the y-axis to reach the end of the segment.
Once you've identified the lengths of all three sides of the right triangle, you can evaluate $\sin \theta$. According to Figure 7-7, the side opposite θ equals -5 , the side adjacent to θ equals 12, and the hypotenuse equals 13 .

$$
\sin \theta=\frac{\text { side opposite } \theta}{\text { hypotenuse }}=\frac{-5}{13}
$$

7.27 If $\sin \theta=-\frac{2}{9}$ and $\tan \theta>0$, evaluate $\sec \theta$.

Note that $\sin \theta$ is negative in the third and fourth quadrants, and the tangent function is positive $(\tan \theta>0)$ in the first and third quadrants. Therefore, the terminal side of θ must fall in the third quadrant in order to meet both conditions. Draw a right triangle using a third-quadrant reference angle for θ (like the reference angle in Problem 7.24). Calculate the remaining side of the right
 triangle using the Pythagorean theorem, as illustrated in Figure 7-8.
$\sqrt{9^{2}-(-2)^{2}}=\sqrt{81-4}=\sqrt{77}$

Figure 7-8
Both legs in the right triangle are labeled with negative values because all points in the third quadrant have negative x - and y-values.

The side opposite θ equals -2 , the hypotenuse equals 9 , and the side adjacent to θ equals $-\sqrt{77}$. In order to calculate $\sec \theta$, you should first calculate its reciprocal: $\cos \theta$.

$$
\cos \theta=\frac{\text { side adjacent to } \theta}{\text { hypotenuse }}=\frac{-\sqrt{77}}{9}
$$

Take the reciprocal of $\cos \theta$ to calculate $\sec \theta$.

$$
\sec \theta=-\frac{9}{\sqrt{77}}
$$

Rationalize the denominator.

$$
\sec \theta=-\frac{9}{\sqrt{77}}\left(\frac{\sqrt{77}}{\sqrt{77}}\right)=-\frac{9 \sqrt{77}}{77}
$$

Inverse Trigonometric Functions

Input a number and output an angle for a change

7.28 The function $f(\theta)=\sin \theta$ is not one-to-one. As evidence, consider $\theta_{1}=\frac{\pi}{4}$ and $\theta_{2}=\frac{3 \pi}{4}$; because $f\left(\theta_{1}\right)=f\left(\theta_{2}\right)=\frac{\sqrt{2}}{2}$, each input does not correspond to a unique output. How, then, can an inverse function exist?

Only one-to-one functions may possess inverses but functions can be defined creatively to ensure they pass the horizontal line test and thus have an inverse. In the case of $y=\sin x$, restricting the domain to $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ produces a graph upon which any horizontal line drawn across the graph intersects it only once (see Figure 7-9).

Figure 7-9
Restricting the domain of $y=\sin x$ to $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ ensures that it passes the horizontal line test and is thus a one-toone function with an inverse.

Therefore, the inverse function of $f(x)$, usually labeled $f^{-1}(x)=\arcsin x$ or $f^{-1}(x)=\sin ^{-1} x$, has a restricted range of $-\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2}$.
7.29 A vacation resort in a mountain town has installed a zip line (a sturdy wire, down which customers in harnesses can quickly descend from high altitudes) to attract patrons. One zip line is 1,750 feet long and allows its rider to descend from a ski slope to the ground, a vertical drop of 450 feet. Calculate the angle of declension of the wire in radians, accurate to three decimal places.

Consider Figure 7-10, which illustrates the given information.

Figure 7-10
The zip line begins on the ski slope at point S and ends at point G on the ground. $S G=1,750$ feet (the length of the zip line) and $X G=450$ feet, the vertical distance from the ground to the top of the ski slope. The angle of declension of the zip line is θ°.

You're given information about the side opposite θ and the hypotenuse of the right triangle, so apply the sine ratio to calculate θ.

$$
\begin{aligned}
\sin \theta & =\frac{\text { side opposite } \theta}{\text { hypotenuse }} \\
& =\frac{450}{1,750} \\
& =\frac{9}{35}
\end{aligned}
$$

To solve for θ, apply the inverse sine function to both sides of the equation.

$$
\begin{aligned}
\arcsin (\sin \theta) & =\arcsin \frac{9}{35} \\
\theta & =\arcsin \frac{9}{35}
\end{aligned}
$$

of the equation.

Use a calculator (in radians mode) to calculate $\theta: \theta \approx 0.260$ radians.
7.30 Evaluate $\arccos \left(-\frac{1}{2}\right)$.
K
Two angles on the unit circle have a cosine value of $-\frac{1}{2}$: $\theta=\frac{2 \pi}{3}$ and $\theta=\frac{4 \pi}{3}$. However only $\theta=\frac{2 \pi}{3}$ belongs to the restricted range of arccosine $(0 \leq \theta \leq \pi)$, so discard the
 solution $\frac{4 \pi}{3}$.
7.31 Evaluate $\operatorname{arccsc}(-\sqrt{2})$.

If, $\operatorname{arccsc}(-\sqrt{2})=\theta$, then $\csc \theta=-\sqrt{2}$. Recall that $\sin \theta$ is the reciprocal of $\csc \theta: \sin \theta=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}$. Therefore, $\operatorname{arccsc}(-\sqrt{2})=\arcsin \left(-\frac{\sqrt{2}}{2}\right)$. Two angles on the

unit circle have a sine value of $-\frac{\sqrt{2}}{2}: \theta=\frac{5 \pi}{4}$ and $\theta=\frac{7 \pi}{4}$. Neither of those angles falls in the restricted range of arcsine $\left(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right)$, but a coterminal angle of $\theta=\frac{7 \pi}{4}$ will. Subtract 2π from $\frac{7 \pi}{4}$ to identify it.

$$
\frac{7 \pi}{4}-2 \pi=\frac{7 \pi}{4}-\frac{8 \pi}{4}=-\frac{\pi}{4}
$$

Therefore, $\operatorname{arccsc}(-\sqrt{2})=-\frac{\pi}{4}$.
7.32 Evaluate arctan 1 .

Because tangent is defined as the quotient of sine and cosine, the only way angle θ can have a tangent of 1 is if $\sin \theta=\cos \theta$. Consider an angle θ such that $\cos \theta=\sin \theta=c$, where c is a real number. Evaluate $\tan \theta$.

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{c}{c}=1
$$

There are only two angles on the unit circle whose cosine and sine values are equal: $\theta=\frac{\pi}{4}$ (where $\cos \theta=\sin \theta=\frac{\sqrt{2}}{2}$) and $\theta=\frac{5 \pi}{4}$ (where $\cos \theta=\sin \theta=-\frac{\sqrt{2}}{2}$). Of those two solution candidates, only the first falls within the restricted range of arctangent $\left(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right)$, so $\arctan 1=\frac{\pi}{4}$.

7.33 Evaluate $\arcsin \left(\sin \frac{11 \pi}{6}\right)$.

Because $y=\arcsin \theta$ and $y=\sin \theta$ are inverse functions, you may be tempted to report that they cancel one another out, leaving $\frac{11 \pi}{6}$ as the answer. Though they are inverse functions, the restrictions placed upon them to ensure they are one-toone invalidate that approach.
Begin by evaluating the expression inside parentheses: $\sin \frac{11 \pi}{6}=-\frac{1}{2}$.

$$
\arcsin \left(\sin \frac{11 \pi}{6}\right)=\arcsin \left(-\frac{1}{2}\right)
$$

Two angles on the unit circle have a sine value of $-\frac{1}{2}: \theta=\frac{7 \pi}{6}$ and $\theta=\frac{11 \pi}{6}$, but neither of those angles fall within the restricted range of arsine $\left(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right)$. Calculate a coterminal angle for $\theta=\frac{11 \pi}{6}$ to find a suitable angle, as demonstrated in Problem 7.31.

$$
\frac{11 \pi}{6}-2 \pi=\frac{11 \pi}{6}-\frac{12 \pi}{6}=-\frac{\pi}{6}
$$

Therefore, $\arcsin \left(\sin \frac{11 \pi}{6}\right)=-\frac{\pi}{6}$.

Chapter 8
 TRIGONOMETRIC GRAPHS, IDENTITIES, AND EQUATIONS

 Tricky graphs, trig equations, and identity proofs

 Tricky graphs, trig equations, and identity proofs}

After you have mastered the rudimentary trigonometric concepts of Chapter 7, you are sufficiently prepared to consider more rigorous, and significantly more useful, trigonometric principles. This chapter begins by extending the process of graphing by transformations (discussed in Chapter 4) to the realm of periodic functions. Deeper in the chapter, you'll manipulate trigonometric identities, in order to simplify trigonometric expressions and to verify identities.

Though many students report that proving trigonometric identities is one of the most memorable topics of a calculus preparation course (due to its foundation in logical proof as opposed to arithmetic fluency), far more useful is the ability to solve trigonometric equations, so the chapter will culminate accordingly.

Even though trig functions are slightly more complicated than the functions from Chapter 4, they'll still follow the same basic transformation rules for shifting up and down, left and right, reflecting about axes, blah blah blah, the whole bit. Next you'll look at trig identities (really short equations that are always true, no matter what you plug into the variable). You'll have to memorize a bunch of them before you get started, sol listed the major ones in Appendix C at the end of the book. Finally, you'll use the inverse trig function skills from Chapter 7 to solve some trig equations.

Graphing Trigonometric Transformations Stretch and shift wavy graphs

Figure 8-1
The dotted graph of $y=\sin \theta$, and the solid graph of $f(\theta)=3 \sin \theta-1$.
8.2 The graph of the function $g(\theta)=a \sin (b \cdot \theta+c)+d$ has an amplitude of $|a|$. Verify this is true for the graph of $f(\theta)=3 \sin \theta-1$ in Figure 8-1.

8.3 Calculate the period of $f(\theta)=-5 \sin (2 \theta+1)-6$.

To calculate the period of a periodic function, divide the period of the untransformed function by the coefficient of the variable in the transformed version. In this example, the untransformed function $y=\sin \theta$ has a period of 2π. To calculate the period of $f(\theta)=-5 \sin (2 \theta+1)-6$, divide 2π by the coefficient of θ.

$$
\begin{aligned}
\text { new period } & =\frac{\text { untransformed period }}{\text { coefficient of } \theta} \\
& =\frac{\not 2 \pi}{2} \\
& =\pi
\end{aligned}
$$

8.4 Sketch the graph of $f(\theta)=\left|\tan \left(\theta-\frac{\pi}{2}\right)\right|$.

In order to transform the graph of $y=\tan \theta$ into $f(\theta)$, you must subtract $\frac{\pi}{2}$ from the argument of the function (which results in a phase shift of $\frac{\pi}{2}$ units to the right). Then, take the absolute value of the result (which reflects any portion of the graph for which $y<0$ across the x-axis). Figure 8-2 contains both the untransformed graph of $y=\tan \theta$ and the graph of $f(\theta)=\left|\tan \left(\theta-\frac{\pi}{2}\right)\right|$.

"Argument" is a fancy way of saying "whatever's plugged into the plugged into
function." function."

Figure 8-2
The dotted curve represents the graph of $y=\tan \theta$; the solid curve is the graph of $f(\theta)=\left|\tan \left(\theta-\frac{\pi}{2}\right)\right|$.
8.5 Sketch the graph of $g(\theta)=-\sec (-\theta)$.

In order to transform the graph of $y=\sec \theta$ into $g(\theta)$, you first multiply the argument of the function by -1 , which reflects the graph across the y-axis. Notice that this has no effect on the graph, because it is symmetric about the y-axis. However, the second transformation will affect the graph—multiplying a function by -1 reflects its graph across the x-axis. Figure $8-3$ contains the untransformed graph of $y=\sec \theta$ and the graph of $g(\theta)=-\sec (-\theta)$.

Figure 8-4
The dotted curve represents the graph of $y=\cos \theta$; the solid curve is the graph of $h(\theta)=-4 \cos (3 \theta)$.
8.7 The function $f(\theta)=a \sin (b \cdot \theta)+c$ is graphed in Figure 8-5. Determine the values of a, b, and c.

Figure 8-5 The graph of $f(\theta)=a \sin (b \cdot \theta)+c$.

Use the formula from Problem 8.2 to calculate the amplitude.

$$
\text { amplitude }=\left|\frac{\max \text { height }-\min \text { height }}{2}\right|=\left|\frac{7 / 2-1 / 2}{2}\right|=\frac{3}{2}
$$

This formula has one limitation-it cannot determine whether or not a should be positive or negative. Note that $y=\sin \theta$ increases at $\theta=0$ but $f(\theta)$ decreases there, indicating that the graph has been reflected across the x-axis. Therefore, $a<0: a=-\frac{3}{2}$.
The period of $f(\theta)$ is larger than 2π (the period of $y=\sin \theta$). Specifically, one period of the graph stretches from -2π to 2π; calculate the difference of those θ-values and take the absolute value to determine the period of $f(\theta)$.

$$
\text { period }=|2 \pi-(-2 \pi)|=|4 \pi|=4 \pi
$$

Use this result and the formula from Problem 8.3 to determine the value of b.

$$
\begin{aligned}
\text { new period } & =\frac{\text { untransformed period }}{\text { coefficient of } \theta} \\
4 \pi & =\frac{2 \pi}{b} \\
4 \pi b & =2 \pi \\
b & =\frac{2, \pi}{4 \not \lambda} \\
b & =\frac{1}{2}
\end{aligned}
$$

To determine the value of c, take the average of the maximum and minimum values of the graph.

$$
c=\frac{7 / 2+1 / 2}{2}=\frac{8 / 2}{2}=\frac{4}{2}=2
$$

Therefore, $a=-\frac{3}{2}, b=\frac{1}{2}$, and $c=2$.

Applying Trigonometric Identities

simplify expressions and prove identities

8.8 Simplify the expression: $\cos (-\theta) \cdot \csc (-\theta)$.

Cosine is an even function, so $\cos (-\theta)=\cos \theta$, but cosecant is odd, so $\csc (-\theta)=-\csc \theta$.

$$
\cos (-\theta) \cdot \csc (-\theta)=\cos \theta \cdot(-\csc \theta)
$$

The cosecant function is defined as the reciprocal of the sine function.

$$
\begin{aligned}
& =\frac{\cos \theta}{1} \cdot\left(-\frac{1}{\sin \theta}\right) \\
& =-\frac{\cos \theta}{\sin \theta} \\
& =-\cot \theta
\end{aligned}
$$

Therefore, $\cos (-\theta) \cdot \csc (-\theta)=-\cot \theta$.
8.9 Simplify the expression: $\frac{\sin ^{2}(\pi / 2-\theta)}{\sec (-\theta)}$.

Apply the cofunction identity $\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$ to the numerator; the denominator is equal to $\sec \theta$, as secant is an even function.

$$
\begin{aligned}
\frac{\sin ^{2}\left(\frac{\pi}{2}-\theta\right)}{\sec (-\theta)} & =\frac{\cos ^{2} \theta}{\sec \theta} \\
& =\frac{\cos ^{2} \theta}{1 / \cos \theta}
\end{aligned}
$$

Reduce the complex fraction by multiplying its numerator and denominator by $\cos \theta$, the reciprocal of the denominator.

$$
\begin{aligned}
& =\frac{\frac{\cos ^{2} \theta}{1}}{\frac{1}{\cos \theta}} \cdot\left(\frac{\frac{\cos \theta}{\frac{1}{\cos \theta}}}{1}\right) \\
& =\cos ^{3} \theta
\end{aligned}
$$

Therefore, $\frac{\sin ^{2}(\pi / 2-\theta)}{\sec (-\theta)}=\cos ^{3} \theta$.
8.10 Simplify the expression: $\cot \left(\theta-\frac{\pi}{2}\right) \cdot \tan \left(\frac{\pi}{2}-\theta\right)$.

The argument of the cotangent function is the opposite of the argument in the cofunction identities. To remedy this, factor -1 out of the argument.

$$
\begin{aligned}
\cot \left(\theta-\frac{\pi}{2}\right) \cdot \tan \left(\frac{\pi}{2}-\theta\right) & =\cot \left[-\left(-\theta+\frac{\pi}{2}\right)\right] \cdot \tan \left(\frac{\pi}{2}-\theta\right) \\
& =\cot \left[-\left(\frac{\pi}{2}-\theta\right)\right] \cdot \tan \left(\frac{\pi}{2}-\theta\right)
\end{aligned}
$$

Since cotangent is an odd function $\cot (-\alpha)=-\cot \alpha$. In this case, $\alpha=\frac{\pi}{2}-\theta$.

$$
=-\cot \left(\frac{\pi}{2}-\theta\right) \cdot \tan \left(\frac{\pi}{2}-\theta\right)
$$

The tangent and cotangent functions (of the same angle) are reciprocals.

$$
\cot \left(\theta-\frac{\pi}{2}\right) \cdot \tan \left(\frac{\pi}{2}-\theta\right)=-1
$$

Rewrite $\cot \theta$ as the reciprocal of $\tan \theta$.

$$
\cot \theta+\tan \theta=\frac{1}{\tan \theta}+\tan \theta
$$

8.II Simplify the expression: $\cot \theta+\tan \theta$.

Add the terms together using common denominators.

$$
\begin{aligned}
& =\frac{1}{\tan \theta}+\frac{\tan \theta}{1} \cdot \frac{\tan \theta}{\tan \theta} \\
& =\frac{1}{\tan \theta}+\frac{\tan ^{2} \theta}{\tan \theta} \\
& =\frac{1+\tan ^{2} \theta}{\tan \theta}
\end{aligned}
$$

According to a Pythagorean identity, $1+\tan ^{2} \theta=\sec ^{2} \theta$.

$$
=\frac{\sec ^{2} \theta}{\tan \theta}
$$

Dividing by a quantity is the equivalent of multiplying by its reciprocal; the reciprocal of $\tan \theta$ is $\cot \theta$.

$$
=\sec ^{2} \theta \cdot \cot \theta
$$

Rewrite the expression in terms of sine and cosine and simplify.

$$
\begin{aligned}
& =\frac{1}{\cos ^{2} \theta} \cdot \frac{\cos \theta}{\sin \theta} \\
& =\frac{\cos \theta}{\cos \theta \cos \theta \sin \theta} \\
& =\frac{1}{\cos \theta \sin \theta}
\end{aligned}
$$

Therefore, $\cot \theta+\tan \theta=\frac{1}{\cos \theta \sin \theta}$.
8.12 Simplify the expression: $1-3 \sin ^{2} \theta+2 \sin ^{4} \theta$.

Factor the expression, just as you would factor $1-3 x+2 x^{2}$ (in this case, $x=\sin ^{2} \theta$).

$$
1-3 \sin ^{2} \theta+2 \sin ^{4} \theta=\left(1-\sin ^{2} \theta\right)\left(1-2 \sin ^{2} \theta\right)
$$

\leftarrow

According to a Pythagorean identity, $\cos ^{2} \theta+\sin ^{2} \theta=1$. If you subtract $\sin ^{2} \theta$ from both sides of that identity, you get $\cos ^{2} \theta=1-\sin ^{2} \theta$; use that identify to replace the left factor. According to a double angle identity, $\cos 2 \theta=1-2 \sin ^{2} \theta$; use this to replace the right factor with $\cos 2 \theta$.

$$
=\left(\cos ^{2} \theta\right)(\cos 2 \theta)
$$

Therefore, $1-3 \sin ^{2} \theta+2 \sin ^{4} \theta=\left(\cos ^{2} \theta\right)(\cos 2 \theta)$.
8.13 Simplify the expression: $\cot \theta \div \frac{1}{2} \csc ^{2} \theta$.

Rewrite the quotient as a complex fraction in terms of $\sin \theta$ and $\cos \theta$.

$$
\frac{\frac{\cot \theta}{1}}{\frac{\csc ^{2} \theta}{2}}=\frac{\frac{\cos \theta}{\sin \theta}}{\frac{1}{2 \sin ^{2} \theta}}
$$

Reduce the complex fraction using the method described in Problem 8.9.

$$
\frac{\frac{\cos \theta}{\sin \theta}}{\frac{1}{2 \sin ^{2} \theta}}\left(\frac{\frac{2 \sin ^{2} \theta}{1}}{\frac{1 \sin ^{2} \theta}{1}}\right)=\frac{\frac{2 \cos \theta \sin ^{2} \theta}{\sin \theta}}{\frac{2 \sin ^{2} \theta}{2 \sin ^{2} \theta}}=\frac{2 \cdot \cos \theta \cdot \sin \theta \cdot \sin \theta}{\sin \theta}=2 \cos \theta \sin \theta
$$

According to a double-angle identity, $2 \sin \theta \cos \theta=\sin 2 \theta$. Therefore, $\cot \theta \div \frac{1}{2} \csc ^{2} \theta=\sin 2 \theta$.
8.14 Factor and simplify the expression: $\cos ^{4} \theta-\sin ^{4} \theta$.

Factor the difference of perfect squares.

$$
\cos ^{4} \theta-\sin ^{4} \theta=\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

According to a Pythagorean identity, $\cos ^{2} \theta+\sin ^{2} \theta=1$, and a double angle identity states that $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$. Substitute those values into the expression.

$$
=(1)(\cos 2 \theta)
$$

Therefore, $\cos ^{4} \theta-\sin ^{4} \theta=\cos 2 \theta$.
8.15 Generate the identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ by examining an acute, positive angle θ graphed in standard position and its terminal side's intersection point with the unit circle.

Draw θ and the unit circle described by the Problem, as illustrated by Figure 8-6. An angle in standard position intersects the unit circle at the point $(\cos \theta, \sin \theta)$. Thus, the horizontal leg of the right triangle in Figure 8-6 has length $\cos \theta$ and $\xrightarrow{\text { the vertical leg has length }} \sin \theta$.
According to the Pythagorean theorem, the sum of the squares of a right triangle's legs is equal to the square of its hypotenuse, so $\cos ^{2} \theta+\sin ^{2} \theta=1$. It is no coincidence that the identity is classified as a Pythagorean identity, as its proof depends on the Pythagorean theorem.

Figure 8-6

A right triangle created by the intersection point of θ 's terminal side and the unit circle.
8.16 Verify the sine double angle identity $\sin 2 \theta=2 \sin \theta \cos \theta$ using a sum or difference identity.

The sum-to-product formula for sine is $\sin (a \pm b)=\sin a \cos b \pm \cos a \sin b$. Rewrite $\sin 2 \theta$ as $\sin (\theta+\theta)$ and apply the sum formula for sine. (Note that $a=b=\theta$ in this example, but a and b need not be equal for the formula to apply.)

$$
\begin{aligned}
\sin (\theta+\theta) & =\sin \theta \cos \theta+\cos \theta \sin \theta \\
& =\sin \theta \cos \theta+\sin \theta \cos \theta \\
& =2 \sin \theta \cos \theta
\end{aligned}
$$

8.17 Evaluate $\cos \frac{5 \pi}{12}$ without a calculator, given $\frac{5 \pi}{12}=\frac{2 \pi}{3}-\frac{\pi}{4}$.

The only trigonometric values you are normally expected to memorize are those on the unit circle, so $\frac{5 \pi}{12}$ is a troublesome angle until you note that it is equal to the difference of two unit circle angles: $\frac{5 \pi}{12}=\frac{2 \pi}{3}-\frac{\pi}{4}$. Apply the cosine diffierence formula for cosine: $\cos (a \pm b)=\cos a \cos b \mp \sin a \sin b$.

The upsidedown "Ғ" sign means you should write the opposite of the " \pm " sign earlier in the formula.

$$
\begin{aligned}
\cos \frac{5 \pi}{12} & =\cos \left(\frac{2 \pi}{3}-\frac{\pi}{4}\right) \\
& =\cos \frac{2 \pi}{3} \cos \frac{\pi}{4}+\sin \frac{2 \pi}{3} \sin \frac{\pi}{4} \\
& =\left(-\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) \\
& =\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

8.18 Verify the identity: $2-\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)=1$.

Expand and simplify the expression.

$$
\begin{aligned}
2-\cos ^{2} \theta-1 \operatorname{tas}^{2} \theta & =1 \\
2-1 & =1 \\
1 & =1
\end{aligned}
$$

By applying valid operations to the equation, you have demonstrated that the equation $2-\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)=1$ is equivalent to the equation $1=1$. Because the latter equation is always true, so is the former, regardless of the θ-value substituted into the equation.
8.19 Verify the identity: $\tan \theta+\tan ^{3} \theta=\frac{\sec ^{2} \theta}{\cot \theta}$.

Factor $\tan \theta$ out of the left side of the equation.

$$
\tan \theta\left(1+\tan ^{2} \theta\right)=\frac{\sec ^{2} \theta}{\cot \theta}
$$

According to a Pythagorean identity, $1+\tan ^{2} \theta=\sec ^{2} \theta$.

$$
\tan \theta\left(\sec ^{2} \theta\right)=\frac{\sec ^{2} \theta}{\cot \theta}
$$

Cross multiply to eliminate fractions.

$$
(\tan \theta)\left(\sec ^{2} \theta\right)(\cot \theta)=\sec ^{2} \theta
$$

Note that $\cot \theta$ is the reciprocal of $\tan \theta$.

$$
\begin{aligned}
\tan \theta \cdot \sec ^{2} \theta \cdot \frac{1}{\frac{\tan \theta}{2}} & =\sec ^{2} \theta \\
1 \cdot \sec ^{2} \theta & =\sec ^{2} \theta
\end{aligned}
$$

8.20 Verify the identity: $\sin ^{2} \theta \cos \theta=\cos \theta-\cos ^{3} \theta$.

The greatest common factor on the right side of the equation is $\cos \theta$.

$$
\sin ^{2} \theta \cos \theta=\cos \theta\left(1-\cos ^{2} \theta\right)
$$

Subtract $\cos ^{2} \theta$ from both sides of the Pythagorean identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ to generate an equally valid identity: $\sin ^{2} \theta=1-\cos ^{2} \theta$. Use this identity to replace the parenthetical quantity on the right side of the equation.

$$
\sin ^{2} \theta \cos \theta=\cos \theta\left(\sin ^{2} \theta\right)
$$

Multiplication is commutative, so the identity is verified.
8.21 Verify the identify: $\frac{\sin 2 \theta-\cos \theta(\sin \theta-1)}{\cos \theta}=\sin \theta+\sec ^{2} \theta-\tan ^{2} \theta$.

According to a Pythagorean identity, $1+\tan ^{2} \theta=\sec ^{2} \theta$. Subtract $\tan ^{2} \theta$ from both sides of that identity to generate an equally valid identity: $1=\sec ^{2} \theta-\tan ^{2} \theta$; use it to rewrite the right side of the identity.

$$
\frac{\sin 2 \theta-\cos \theta(\sin \theta-1)}{\cos \theta}=\sin \theta+1
$$

Cross multiply to eliminate the fraction.

$$
\begin{aligned}
\sin 2 \theta-\cos \theta(\sin \theta-1) & =\cos \theta(\sin \theta+1) \\
\sin 2 \theta-\cos \theta \sin \theta+\cos \theta & =\cos \theta \sin \theta+\cos \theta
\end{aligned}
$$

Isolate $\sin 2 \theta$ by adding $\cos \theta \sin \theta$ to, and subtracting $\cos \theta$ from, both sides of the equation.

$$
\begin{aligned}
& \sin 2 \theta=\cos \theta \sin \theta+\cos \theta \sin \theta+\cos \theta-\cos \theta \\
& \sin 2 \theta=2 \cos \theta \sin \theta
\end{aligned}
$$

Solving Trigonometric Equations

Solve for THETA instead of x

8.22 Find all solutions to the equation $3(\sin \theta+1)=\sin \theta+4$ on the interval $[0,2 \pi)$.

Distribute the constant and isolate $\sin \theta$ on the left side of the equation.

$$
\begin{aligned}
3 \sin \theta+3 & =\sin \theta+4 \\
3 \sin \theta-\sin \theta & =4-3 \\
2 \sin \theta & =1 \\
\sin \theta & =\frac{1}{2}
\end{aligned}
$$

You are instructed to identify all solutions on the interval $[0,2 \pi)$; there are two such angles whose sine value equals $\frac{1}{2}: \theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.
8.23 Calculate the exact solution to the equation: $\sqrt{3} \cot \theta-1=0$.

Isolate $\cot \theta$ on the left side of the equation.

$$
\begin{aligned}
\sqrt{3} \cot \theta & =1 \\
\cot \theta & =\frac{1}{\sqrt{3}}
\end{aligned}
$$

Solve for θ by applying the inverse cotangent function.

$$
\begin{aligned}
\operatorname{arccot}(\cot \theta) & =\operatorname{arccot} \frac{1}{\sqrt{3}} \\
\theta & =\operatorname{arccot} \frac{1}{\sqrt{3}}
\end{aligned}
$$

In order to better understand the solution, multiply the numerator and denominator by $\frac{1}{2}$. Recall that the cotangent is defined as the quotient of the cosine and sine functions.

$$
\frac{\cos \theta}{\sin \theta}=\frac{1 / 2}{\sqrt{3} / 2}
$$

The only angle θ with a cosine value of $\frac{1}{2}$ and a sine value of $\frac{\sqrt{3}}{2}$ on the restricted cotangent range of $[0, \pi]$ is $\theta=\frac{\pi}{3}$.
8.24 Find the general solution to the equation: $4 \cos ^{2} \theta-2=0$.

Rationalize the fraction and the constant will mirror unit circle values.

$$
\cos \theta= \pm \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2}
$$

List all the angles on one period of cosine, $[0,2 \pi)$, whose cosine is either $\frac{\sqrt{2}}{2}$ or $-\frac{\sqrt{2}}{2}$

$$
\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
$$

Indicate that these angles and all of their coterminal angles are valid solutions.

$$
\theta=\frac{\pi}{4}+2 k \pi, \frac{3 \pi}{4}+2 k \pi, \frac{5 \pi}{4}+2 k \pi, \frac{7 \pi}{4}+2 k \pi, \text { where } k \text { is an integer }
$$

8.25 Identify all the points at which the graphs of $f(\theta)=\sin \theta$ and $g(\theta)=\csc \theta$ intersect.

Set the functions equal and use a reciprocal identity to rewrite $\csc \theta$.

$$
\begin{aligned}
& \sin \theta=\csc \theta \\
& \sin \theta=\frac{1}{\sin \theta}
\end{aligned}
$$

since you've supposed to find ALL intersection points, you should include ALL the coterminal angles of the solutions, like in problem 8.24.

$$
\begin{aligned}
& \sin ^{2} \theta=1 \\
& \sqrt{\sin ^{2} \theta}= \pm \sqrt{1} \\
& \sin \theta= \pm 1 \\
& \theta= \frac{\pi}{2}+2 k \pi, \frac{3 \pi}{2}+2 k \pi
\end{aligned}
$$

The functions intersect at $\theta=\frac{\pi}{2}$ (where $f(\theta)=g(\theta)=1$), $\theta=\frac{3 \pi}{2}$ (where $f(\theta)=g(\theta)=-1$), and the infinitely many coterminal angles:

$$
\left\{\cdots,\left(-\frac{7 \pi}{2}, 1\right),\left(-\frac{5 \pi}{2},-1\right),\left(-\frac{3 \pi}{2}, 1\right),\left(-\frac{\pi}{2},-1\right),\left(\frac{\pi}{2}, 1\right),\left(\frac{3 \pi}{2},-1\right),\left(\frac{5 \pi}{2}, 1\right),\left(\frac{7 \pi}{2},-1\right), \cdots\right\}
$$

8.26 Calculate the exact solution(s) to the equation: $\tan ^{2} \theta=\tan \theta$.

Set the equation equal to 0 and factor.

$$
\begin{aligned}
\tan ^{2} \theta-\tan \theta & =0 \\
\tan \theta(\tan \theta-1) & =0
\end{aligned}
$$

Set each factor equal to 0 and solve the individual equations; ensure that you only include solutions from the restricted range of arctangent, as the problem specifies exact solutions.

$$
\begin{aligned}
\tan \theta & =0 \\
\theta & =\arctan 0 \\
\theta & =0
\end{aligned}
$$

or

$$
\begin{aligned}
\tan \theta-1 & =0 \\
\tan \theta & =1 \\
\theta & =\arctan 1 \\
\theta & =\frac{\pi}{4}
\end{aligned}
$$

The solutions to the equation are $\theta=0$ or $\theta=\frac{\pi}{4}$.
8.27 Calculate the exact solution(s) to the equation: $3 \cos ^{2} \theta-10 \cos \theta+3=0$.

Factor the expression and set each factor equal to 0 .

The domain of arccosine (which is also the range of cosine, its inverse function) is $[-1,1]$; note that 3 does not belong to that interval, so $\theta=\arccos 3$ is an invalid solution. However, $-1 \leq \frac{1}{3} \leq 1$, so $\theta=\arccos \frac{1}{3} \approx 1.231$ is a valid solution.
8.28 Calculate the exact solution(s) to the equation $2 \tan ^{2} \theta-\tan \theta-5=0$, accurate to three decimal places.

This equation cannot be factored, so apply the quadratic formula instead.

$$
\begin{aligned}
\tan \theta & =\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)(-5)}}{2(2)} \\
\tan \theta & =\frac{1 \pm \sqrt{41}}{4} \\
\theta & =\arctan \left(\frac{1-\sqrt{41}}{4}\right), \arctan \left(\frac{1+\sqrt{41}}{4}\right)
\end{aligned}
$$

Use a calculator to evaluate the inverse tangent functions.

$$
\begin{array}{lll}
\theta \approx \arctan (-1.35078105935821) \\
\theta \approx-0.933
\end{array} \text { or } \quad \begin{aligned}
& \theta \approx \arctan (1.85078105935821) \\
& \\
& \theta \approx 1.075
\end{aligned}
$$

8.29 Calculate the exact solution(s) to the equation $3 \sin ^{2} \theta=-3 \sin \theta+1$, accurate to three decimal places.

Set the equation equal to $0: 3 \sin ^{2} \theta+3 \sin \theta-1=0$. Because the expression is not factorable, solve using the quadratic formula.

$$
\begin{aligned}
& \qquad \sin \theta=\frac{-3 \pm \sqrt{9-4(3)(-1)}}{2(3)} \\
& \qquad \sin \theta=\frac{-3 \pm \sqrt{21}}{6} \\
& \theta=\arcsin \left(\frac{-3-\sqrt{21}}{6}\right) \quad \\
& \left.\begin{array}{ll}
\theta \approx \arcsin (-1.26376261583) & \text { or } \quad \\
\begin{array}{ll}
\text { no solution } & \theta \approx \arcsin \left(\frac{-3+\sqrt{21}}{6}\right) \\
& \theta \approx 0.267
\end{array}
\end{array}\right\} \begin{array}{l}
\text { narcsin } 0.263762615826)
\end{array} \\
& \hline
\end{aligned}
$$

Note that $\arcsin (-1.26376261583)$ does not exist because the domain of $y=\arcsin \theta$ is $[-1,1]$ and $-1.26376261583<-1$.
8.30 Identify all solution(s) to the equation $\tan 2 \theta+\sqrt{3}=0$ on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Notice that this equation contains the double angle 2θ within the trigonometric function. Begin by isolating the trigonometric expression.

$$
\tan 2 \theta=-\sqrt{3}
$$

It is sometimes helpful to divide the numerator and denominator of the constant by $\frac{1}{2}$ when solving equations involving tangent and cotangent.

$$
\tan 2 \theta=-\frac{\sqrt{3}}{1}=-\frac{\sqrt{3} / 2}{1 / 2}
$$

As $\tan \theta=\frac{\sin \theta}{\cos \theta}$, identify the angle θ such that $\cos \theta=\frac{1}{2}$ and $\sin \theta=-\frac{\sqrt{3}}{2}$.

$$
2 \theta=-\frac{\pi}{3}
$$

Because the coefficient of θ is 2 , you should list twice as many solutions. Whereas this equation normally has only one solution on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, you should include one more-the smallest coterminal angle that's greater than the solution $-\frac{\pi}{3}$.

$$
-\frac{\pi}{3}+\pi=\frac{2 \pi}{3}
$$

List the original solution and its coterminal angle.

$$
2 \theta=-\frac{\pi}{3}, \frac{2 \pi}{3}
$$

Multiply the entire equation by $\frac{1}{2}$ to isolate θ and thereby solve the equation.

$$
\begin{aligned}
\frac{1}{2}(2 \theta) & =\left(-\frac{\pi}{3}\right)\left(\frac{1}{2}\right),\left(\frac{2 \pi}{3}\right)\left(\frac{1}{2}\right) \\
\theta & =-\frac{\pi}{6}, \frac{\pi}{3}
\end{aligned}
$$

8.31 Identify all solution(s) to the equation $3(\sin 3 \theta+1)-5=-2$ on the interval $[0,2 \pi)$.

Isolate the trigonometric function on the left side of the equation.

$$
\begin{aligned}
3 \sin 3 \theta+3-5 & =-2 \\
3 \sin 3 \theta-2 & =-2 \\
3 \sin 3 \theta & =0 \\
\sin 3 \theta & =0
\end{aligned}
$$

Identify all of the angles on the unit circle that have a sine value of 0 .

$$
3 \theta=0, \pi
$$

Rather than two answers, list three times as many (because the coefficient of
 θ is 3). Calculate two coterminal angles for $\theta=0$ and two coterminal angles for $\theta=\pi$.

$$
3 \theta=0, \pi, 2 \pi, 3 \pi, 4 \pi, 5 \pi
$$

Do not be concerned that these answers are out of the interval dictated by the problem; when you divide each by 3 to solve for θ, they are bounded correctly.

$$
\theta=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}
$$

8.32 Determine the general solution to the equation: $\tan ^{2} \theta-4 \sec \theta=-5$.

Rewrite the equation in terms of a single trigonometric function. To accomplish this, apply a Pythagorean identity: if $1+\tan ^{2} \theta=\sec ^{2} \theta$, then $\tan ^{2} \theta=\sec ^{2} \theta-1$.

$$
\begin{aligned}
\left(\sec ^{2} \theta-1\right)-4 \sec \theta & =-5 \\
\sec ^{2} \theta-4 \sec \theta+4 & =0
\end{aligned}
$$

Factor and solve for θ.

$$
\begin{aligned}
(\sec \theta-2)(\sec \theta-2) & =0 \\
\sec \theta & =2
\end{aligned}
$$

Recall that secant and cosine are reciprocal functions.

$$
\cos \theta=\frac{1}{2}
$$

Find all angles on $[0,2 \pi)$, one period of cosine, and express the solution in general form, as directed by the problem.

$$
\theta=\frac{\pi}{3}+2 k \pi, \frac{5 \pi}{3}+2 k \pi
$$

8.33 Determine the general solution to the equation: $1-\sin \theta=\cos \theta$.

It is easier to rewrite an entire equation in terms of a single trigonometric function when at least one of the functions is squared, because it allows you to apply Pythagorean identities. To introduce squared functions, square both sides of the equation.

$$
\begin{aligned}
(1-\sin \theta)^{2} & =(\cos \theta)^{2} \\
1-2 \sin \theta+\sin ^{2} \theta & =\cos ^{2} \theta
\end{aligned}
$$

According to a Pythagorean identity, $\cos ^{2} \theta+\sin ^{2} \theta=1$; therefore, $\cos ^{2} \theta=1-\sin ^{2} \theta$. Use this identity to rewrite the entire equation in terms of sine.

$$
1-2 \sin \theta+\sin ^{2} \theta=1-\sin ^{2} \theta
$$

Set the equation equal to 0 , and solve by factoring.

$$
\begin{aligned}
& 2 \sin ^{2} \theta-2 \sin \theta=0 \\
& 2 \sin \theta(\sin \theta-1)=0 \\
& 2 \sin \theta=0 \quad \sin \theta-1=0 \\
& \sin \theta=0 \quad \text { or } \quad \sin \theta=1 \\
& \theta=0 \quad \theta=\frac{\pi}{2}
\end{aligned}
$$

The general solution is $\theta=0+2 k \pi, \theta=\pi+2 k \pi$, or $\theta=\frac{\pi}{2}+2 k \pi$. Condense the notation by combining the first two solutions: $\theta=0+k \pi$ or $\theta=\frac{\pi}{2}+2 k \pi$.
8.34 Identify all solution(s) to the equation $\sin \left(\theta-\frac{\pi}{3}\right)=\frac{1}{2}$ on the interval $[0,2 \pi)$.

Apply the difference formula for sine described in Problem 8.16.

$$
\begin{array}{r}
\sin \left(\theta-\frac{\pi}{3}\right)=\frac{1}{2} \\
\sin \theta \cos \frac{\pi}{3}-\cos \theta \sin \frac{\pi}{3}=\frac{1}{2} \\
\sin \theta\left(\frac{1}{2}\right)-\cos \theta\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{2}
\end{array}
$$

Multiply the entire equation by 2 to eliminate fractions.

$$
\sin \theta-\sqrt{3} \cos \theta=1
$$

Separate the trigonometric expressions and square both sides of the equation.

$$
\begin{aligned}
(\sin \theta)^{2} & =(\sqrt{3} \cos \theta+1)^{2} \\
\sin ^{2} \theta & =3 \cos ^{2} \theta+2 \sqrt{3} \cos \theta+1
\end{aligned}
$$

Because a Pythagorean identity states that $\cos ^{2} \theta+\sin ^{2} \theta=1$, you can conclude that $\sin ^{2} \theta=1-\cos ^{2} \theta$. Use this identity to rewrite the equation in terms of cosine.

$$
\left(1-\cos ^{2} \theta\right)=3 \cos ^{2} \theta+2 \sqrt{3} \cos \theta+1
$$

Set the equation equal to 0 and solve by factoring.

$$
\begin{array}{rlrl}
4 \cos ^{2} \theta+2 \sqrt{3} \cos \theta & =0 \\
2 \cos \theta(2 \cos \theta+\sqrt{3}) & =0 \\
2 \cos \theta & =0 & 2 \cos \theta+\sqrt{3} & =0 \\
\cos \theta & =0 & 2 \cos \theta & =-\sqrt{3} \\
\theta= & \text { or } & \cos \theta & =-\frac{\sqrt{3}}{2} \\
\theta & =\frac{7 \pi}{6}
\end{array}
$$

The solutions to the equation are $\theta=\frac{\pi}{2}$ or $\frac{7 \pi}{6}$.

Chapter 9
 INVESTIGATING LIMITS

What height does a function INTEND to reach?

The concept of limits, though typically presented to students prior to the study of differentiation and integration, was the final component of calculus theory to fall into place. Though the theory allowing the calculation of instantaneous rates of change and the determination of area based upon infinite series existed, they could gain no credibility without a rigorous and systematic set of theorems concerning the existence and behavior of infinitely small or infinitely large quantities. The modern (epsilondelta) definition of limits bears an undeniable, though less obfuscated, resemblance to the breakthrough characterization of limits whose discovery led to the establishment of calculus, and is a foundational concept for much of theoretical mathematics-even courses of study to which calculus is merely peripherally related.

Limits are important-really important. They're the spine that holds the rest of the calculus skeleton upright. Basically, a limit is just a statement that tells you what height a function is headed for, as you get close to a specific x-value. It doesn't matter if the function actually gets there (maybe there's a hole there instead of a function value, like in Problem 9.4). All that matters is that you can tell where the function INTENDS to go. This chapter starts really easy (you're just looking at graphs of curves and dots) and then gets tricky when it comes time for epsilondelta problems. Push through those, because it gets easier again when
Chapter 10 starts.

Evaluating One-Sided and General Limits Graphically

Find limits on a function graph

Note: Problems 9.1-9.9 refer to the graph of $f(x)$ in Figure 9-1.

Figure 9-1
The graph of a function $f(x)$.

Note: Problems 9.1-9.9 refer to the graph of $f(x)$ in Figure 9-1.

If the leftand right-hand limits at an x-value are equal, then a "general limit" (with no teeny "+" or "I" in it)
exists: $\lim _{x \rightarrow 1} f(x)=4$.
9.2 Does $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)$? Justify your answer.

Problem 9.1 states that $\lim _{x \rightarrow 1^{+}} f(x)=4$. The left hand limit, $\lim _{x \rightarrow 1^{-}} f(x)$, also equals 4 ; the direction from which you approach $x=1$ along the graph of $f(x)$ is irrelevant as either leads to the point $(1,4)$ on the graph of $f(x)$.

Note: Problems 9.1-9.9 refer to the graph of $f(x)$ in Figure 9-1.
9.3 Evaluate $f(-2)$.

The graph of $f(x)$ contains the point $(-2,2)$, so $f(-2)=2$.

Note: Problems 9.1-9.9 refer to the graph off(x) in Figure 9-1.

9.4 Evaluate $\lim _{x \rightarrow-\Sigma} f(x)$.

As x approaches -2 from the left and from the right, $f(x)$ approaches 3 . Therefore, $\lim _{x \rightarrow-2} f(x)=3$.

Note: Problems 9.1-9.9 refer to the graph off(x) in Figure 9-1.
9.5 Determine the value of c that makes the statement true: $\lim _{x \rightarrow c^{-}} f(x)=0$.

The statement requires you to identify the x-value at which the graph of $f(x)$ approaches 0 (i.e. the x-intercept) as you approach c from the left. The correct answer is $c=3$; the function approaches the point $(3,0)$ as you approach $x=3$ from the left.

Note: Problems 9.1-9.9 refer to the graph of $f(x)$ in Figure 9-1.
9.6 Evaluate $f(3)$.

Two coordinates of interest fall on the vertical line $x=3:(3,0)$ and $(3,-4)$. Clearly, $f(3)$ cannot equal both 0 and -4 , as that violates the fundamental definition of a function (each input must correspond to exactly one output). Note that (3,-4) is actually on the graph of $f(x)$, whereas $(3,0)$ is essentially a "hole" in the curve. Therefore, $f(3)=-4$.

Note: Problems 9.1-9.9 refer to the graph of $f(x)$ in Figure 9-1.
9.7 Evaluate $\lim _{x \rightarrow 4^{-}} f(x)$.

As you approach $x=4$ from the left, the graph of $f(x)$ approaches the point $(4,-4)$, so $\lim _{x \rightarrow 4^{-}} f(x)=-4$.

Note: Problems 9.1-9.9 refer to the graph of $f(x)$ in Figure 9-1.

9.8 Evaluate $\lim _{x \rightarrow 4^{+}} f(x)$.

As you approach $x=4$ from the right, the graph of the function approaches the point $(4,-5)$, so $\lim _{x \rightarrow 4^{+}} f(x)=-5$.

Note: Problems 9.1-9.9 refer to the graph of $f(x)$ in Figure 9-1.
9.9 Find two values of k such that the following statement is true:
$\lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)$.

As demonstrated by Problems 9.7 and 9.8, the left- and right-hand limits of $f(x)$ as x approaches 4 are unequal; thus, $k=4$. As for the other correct value of k, notice that one-sided limits are unequal at $x=3$: $\lim _{x \rightarrow 3^{-}} f(x)=0$ but $\lim _{x \rightarrow 3^{+}} f(x)=-4$. Therefore, $k=3$ or $k=4$.

Note: Problems 9.10-9.11 reference the function $g(x)$ defined below.

$$
g(x)=\frac{2 x^{2}-x-6}{x-2}
$$

9.10 Graph $g(x)$ without using a graphing calculator.

Factor the numerator of the function.

$$
g(x)=\xrightarrow{(2 x+3)(x-2)}
$$

Note that the numerator and denominator contain the same factor, but before you eliminate it to reduce the fraction, take note of the domain restriction dictated by the denominator: $x \neq 2$.

$$
\begin{aligned}
& g(x)=\frac{(2 x+3)(x-2)}{x-2} \\
& g(x)=2 x+3, \text { if } x \neq 2
\end{aligned}
$$

The graph of $y=\frac{2 x^{2}-x-6}{x-2}$ (pictured in Figure 9-2) is simply the graph of $y=2 x+3$ with one difference-there is a hole in the graph when $x=2$, due to the restriction $x \neq 2$.

Figure 9-2
The graph of $g(x)=\frac{2 x^{2}-x-6}{x-2}$;
notice the hole at $(2,7)$.

Note: Problems 9.10-9.11 reference the function g(x) defined in Problem 9.10.
If you plug $x=2$
into $2 x+3$, the simplified version of $g(x)$, you get $g(2)=2(2)+3=7$, which is the correct limit. You'll use this technique in
9.II Evaluate $\lim _{x \rightarrow 2} g(x)$.

Substituting $x=2$ into the function produced an indeterminite result: $g(2)=\frac{0}{0}$. (Note that zero divided by itself does not equal one.) However, you can determine $\lim _{x \rightarrow 2} g(x)$ based upon its graph in Figure 9-2. Although the function is not defined when $x=2$ (due to a hole in the graph), $g(x)$ clearly approaches the same y-value from the left and from the right: $y=7$.
9.12 Given the piecewise-defined function $h(x)$ defined below, evaluate $\lim _{x \rightarrow 0^{-}} h(x)$ and $\lim _{x \rightarrow 0^{+}} h(x)$.

$$
h(x)= \begin{cases}x^{3}, & x<0 \\ \sqrt{x}, & x \geq 0\end{cases}
$$

Consider the graph of $h(x)$ in Figure 9-3. To generate this graph, first plot $y=x^{3}$, but only draw the portion of the graph for which $x<0$-the portion of the graph that is left of the y-axis. Technically, this graph segment should end with an open dot on the y-axis, because x is less than but not equal to 0 . Next, graph the function $y=\sqrt{x}$ on the same coordinate plane. Because its domain exactly matches the restricted domain assigned to it by $h(x)(x \geq 0)$, the graph appears in its entirety, including a solid dot on the y-axis because the restriction $x \geq 0$ includes 0 .

Figure 9-3
The graph of $h(x)=\left\{\begin{array}{ll}x^{3}, & x<0 \\ \sqrt{x}, & x \geq 0\end{array}\right.$.

As x approaches 0 from the left and the right, $h(x)$ approaches $y=0$. Therefore, $\lim _{x \rightarrow 0^{-}} h(x)=\lim _{x \rightarrow 0^{+}} h(x)=0$.
9.13 Given the piecewise-defined function $j(x)$ defined below, evaluate $\lim _{x \rightarrow-2^{-}} j(x)$ and $\lim _{x \rightarrow-2^{+}} j(x)$.

9.14 Evaluate $\lim _{x \rightarrow 0} \frac{|x|}{x}$.

If $x>0$, the graph of $f(x)=\frac{|x|}{x}$ will look like Figure 9-4.

Figure 9-4 The graph of $f(x)=\frac{|x|}{x}$ matches the graph of $y=1$ when x is a positive number.

Any positive number divided by itself is 1 , so when $x>0, f(x)=1$, and it is clear from the graph that $\lim _{x \rightarrow 0^{+}} f(x)=1$. However, if $x<0$, the graph of $f(x)$ looks like Figure 9-5.

Figure 9-5 The graph of $f(x)=\frac{|x|}{x}$ matches the graph of $y=-1$ when x is a negative number.

A number divided by its opposite equals -1 , so when $x<0, f(x)=-1$ and
$\lim _{x \rightarrow 0^{-}} f(x)=1$. Because $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x), \lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist.

Limits and Infinity

What happens when x or $f(x)$ gets huge?

9.15 Evaluate $\lim _{\theta \rightarrow(3 \pi / 2)^{-}} \tan \theta$ and $\lim _{\theta \rightarrow(3 \pi / 2)^{+}} \tan \theta$.

Consider the graph of $y=\tan \theta$ in Figure 9-6.

As θ approaches $\frac{3 \pi}{2}$ from the left, the tangent graph increases without bound, so $\lim _{\theta \rightarrow 3 \pi / 2^{-}} \tan \theta=\infty$. However, as θ approaches $\frac{3 \pi}{2}$ from the right, the function values decrease without bound, so $\lim _{\theta \rightarrow 3 \pi / 2^{+}} \tan \theta=-\infty$. Note that a "limit" of ∞ or $-\infty$ is actually an indication that a real number limit does not exist and a justification for the nonexistence of a limit.
9.16 Based on Problem 9.15, describe the relationship between infinite limits and vertical asymptotes.

If $\lim _{x \rightarrow c} f(x)=\infty$ or $\lim _{x \rightarrow c} f(x)=-\infty$ (and c is a real number), then $x=c$ is a vertical asymptote of $f(x)$.
9.17 Evaluate $\lim _{x \rightarrow-\infty} e^{x-2}+3$.

Graph $y=e^{x-2}+3$ by applying two transformations to the graph of $y=e^{x}$: a horizontal shift of 2 units to the right and a vertical shift of 3 units up, as illustrated in Figure 9-7.

Figure 9-7
The graph of $y=e^{x-2}+3$.

The untransformed graph of $y=e^{x}$ has a horizontal asymptote of $y=0$ (the x-axis), so shifting the graph up 3 units results in a new horizontal asymptote of $y=3$. As θ approaches $-\infty$, the graph gets infinitely close to, but never intersects,

You've evaluating "limits at infinity" when x gets really positive or really negative $(x \rightarrow \infty$ or $x \rightarrow-\infty$). that asymptote. Therefore, $\lim _{x \rightarrow-\infty} e^{x-2}+3=3$. Note that $\lim _{x \rightarrow \infty} e^{x-2}+3=\infty$, because the function increases without bound as x gets infinitely large.
9.18 Based on Problem 9.17, describe the relationship between limits at infinity and horizontal asymptotes.

If $\lim _{x \rightarrow \infty} f(x)=c$ or $\lim _{x \rightarrow-\infty} f(x)=c$ (and c is a real number), then $y=c$ is a horizontal asymptote of $f(x)$.

Note: Problems 9.19-9.21 refer to the graph of $g(x)$ in Figure 9-8.
9.19 Evaluate $\lim _{x \rightarrow \infty} g(x)$.

Figure 9-8
The graph of a function $g(x)$ and its three asymptotes.

As x increases infinitely, the function approaches the horizontal asymptote $y=-3$. Therefore, $\lim _{x \rightarrow \infty} g(x)=-3$.

Note: Problems 9.19-9.21 refer to the graph of $g(x)$ in Figure 9-8.
9.20 Evaluate $\lim _{x \rightarrow-\infty} g(x)$.

As x becomes more and more negative, the function approaches the horizontal

Look at the right edge of the graph-you can tell that $g(x)$ is getting closer and closer to
$y=-3$ asymptote $y=5$. Therefore, $\lim _{x \rightarrow \infty} g(x)=5$.

Note: Problems 9.19-9.21 refer to the graph of $g(x)$ in Figure 9-8.
9.21 Does $\lim _{x \rightarrow-1} g(x)$ exist? Justify your answer.

In order for a limit to exist, the corresponding one-sided limits must exist and be equal. According to the graph of $g(x)$, as x approaches -1 from both the left and the right, the function values decrease without bound; therefore $\lim _{x \rightarrow-1^{-}} g(x)=\lim _{x \rightarrow-1^{+}} g(x)=-\infty$. Although the limits are the same, they do not represent a finite limit (see Problem 9.15 for further explanation). Because $g(x)$ does not possess a finite limit at $x=-1, \lim _{x \rightarrow-1} g(x)$ does not exist.
9.22 Given a function $f(x)$ such that $\lim _{x \rightarrow k} f(x)=\infty$ or $\lim _{x \rightarrow k} f(x)=-\infty$, how many unique values of k are possible? If $\lim _{x \rightarrow \infty} f(x)=c$ or $\lim _{x \rightarrow-\infty} f(x)=c$, how many unique values of c are possible?

According to Problem 9.16, if $\lim _{x \rightarrow k} f(x)=\infty$ or $\lim _{x \rightarrow k} f(x)=-\infty$, then a vertical asymptote of $f(x)$ exists at $x=k$. The first part of the question, then, asks you to determine how many unique vertical asymptotes a function can possess. There are no limitations on this number-a graph could have an infinite number of vertical asymptotes. In fact, four of the trigonometric graphs have infinitely many vertical asymptotes; the graphs of $y=\tan \theta$ and $y=\sec \theta$ have vertical asymptotes at $x=\frac{n \cdot \pi}{2}$ (where n is an odd integer), and the graphs of $y=\cot \theta$ and $y=\csc \theta$ have vertical asymptotes at $y=n \pi$, where n is an integer. Therefore, k may have an
 infinite number of unique values.
As for the second part of the question, if $\lim _{x \rightarrow \infty} f(x)=c$ or $\lim _{x \rightarrow-\infty} f(x)=c$, then $y=c$ is a horizontal asymptote of the function (according to Problem 9.18). A function a horizontal asymptote of the function (according to Problem 9.18). A function
may have, at most, two horizontal asymptotes, one which the function approaches as x gets infinitely positive, and one which it approaches in the negative direction.ז Therefore, c has a maximum of two unique values.

As x approaches -3 from the right, the function values are becoming infinitely negative. Therefore, $\lim _{x \rightarrow-3^{+}} \frac{(x+8)(x-2)}{x+3}=-\infty$.
9.24 Evaluate $\lim _{x \rightarrow \infty} \frac{2 x^{2}-5 x+6}{-x^{3}-6 x^{2}-x+2}$.

According to Problem 4.31, if the degree of a rational function's denominator is greater than the degree of its numerator, the function has a horizontal asymptote of $y=0$. Therefore, $\lim _{x \rightarrow \infty} \frac{2 x^{2}-5 x+6}{-x^{3}-6 x^{2}-x+2}=0$.

Note: Problems 9.26-9.27 reference the function $f(x)$ defined below. Note that a, b, c, d, and k are real numbers.

$$
f(x)=\frac{(2 x+a)(x-b)}{(c x+d)(3 x-k)}
$$

9.26 Evaluate $\lim _{x \rightarrow \infty} f(x)$.

Expand the products in the numerator and the denominator.

$$
f(x)=\frac{2 x^{2}-2 b x+a x-a b}{3 c x^{2}-c k x+3 d x-d k}
$$

The degrees of the numerator and denominator are equal, so the limit at infinity equals the quotient of the leading coefficients, as explained in Problem 9.25.
(Only compare the powers of x when determining the degree, because a, b, c, d, and k are constants.)

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}-2 b x+a x-a b}{3 c x^{2}-c k x+3 d x-d k}=\frac{2}{3 c}
$$

Note: Problems 9.26-9.27 reference the function $f(x)$ defined in Problem 9.26.
9.27 Identify all values of n such that $\lim _{x \rightarrow n} f(x)=\infty$ or $\lim _{x \rightarrow n} f(x)=-\infty$.

An infinite limit indicates the presence of a vertical asymptote (see Problem 9.16). To find values of x that make the denominator equal 0 , set both factors of the denominator equal to 0 and solve.

$$
\begin{array}{rlrl}
c x+d & =0 & 3 x-k & =0 \\
c x & =-d & \text { or } & 3 x
\end{array}=k \begin{aligned}
& =-\frac{d}{c} & & x
\end{aligned}=\frac{k}{3}
$$

It is not sufficient merely to identify these x-values-you must also ensure they do not, in turn, make the numerator 0 as well. Set the factors of the numerator equal to 0 and solve.

$$
\begin{aligned}
2 x+a & =0 & & x-b & =0 \\
2 x & =-a & \text { or } & x & =b \\
x & =-\frac{a}{2} & & &
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow-d / c} f(x)=-\infty$ or ∞ (it's not possible to determine which because you don't know the signs of a, b, c, d, and k) and $\lim _{x \rightarrow k / 3} f(x)=-\infty$ or ∞, as long as neither $-\frac{d}{c}$ nor $\frac{k}{3}$ equals $-\frac{a}{2}$ or b.

Formal Definition of the Limit

Epsilon-delta problems are no fun at all

9.28. The formal definition of limit contains the expression $|f(x)-L|<\varepsilon$. Interpret this statement geometrically.

The absolute value of a diffierence is often used to describe the distance of the quantities that are subtracted. Accordingly, the expression $|f(x)-L|<\varepsilon$ states that the distance between a function $f(x)$ and a constant L is less than the constant ε. You can also conclude that $\varepsilon>0$, because ε is greater that a quantity $\overrightarrow{\text { within absolute values (which must be nonnegative). }}$
9.29. The formal definition of a limit contains the expression " $0<|x-a|<\delta$." Interpret this expression geometrically.

According to the definition of limits (stated in Problem 9.30), you must find δ that corresponds to ε given $|f(x)-L|<\varepsilon$. Substitute $f(x)$ and L into the expression.

$$
\begin{aligned}
|f(x)-L| & <\varepsilon \\
|(2 x+1)-13| & <\varepsilon \\
|2 x-12| & <\varepsilon
\end{aligned}
$$

Your goal is to generate an expression for δ that mimics the expression $|x-6|<\delta$ (since $a=6$). Factor 2 out of the left side of the inequality and isolate the absolute value expression.

$$
\begin{array}{r}
2|x-6|<\varepsilon \\
|x-6|<\frac{\varepsilon}{2}
\end{array}
$$

Therefore, $|x-6|<\frac{\varepsilon}{2}$. Compare that result to the expression $|x-6|<\delta$ to conclude that $\delta=\frac{\varepsilon}{2}$.
9.32 Calculate the value of δ that corresponds to ε given $\lim _{x \rightarrow 2} \frac{x^{2}-7 x+10}{x-2}=-3$,
according to the definition of limits.

Substitute $f(x)$ and L into the ε expression in the limit definition.

$$
\begin{aligned}
|f(x)-L| & <\varepsilon \\
\left|\frac{x^{2}-7 x+10}{x-2}-(-3)\right| & <\varepsilon \\
\left|\frac{x^{2}-7 x+10}{x-2}+3\right| & <\varepsilon
\end{aligned}
$$

Simplify the expression on the left side of the inequality using the common denominator $x-2$.

$$
\begin{aligned}
\left|\frac{x^{2}-7 x+10}{x-2}+\frac{3}{1}\left(\frac{x-2}{x-2}\right)\right| & <\varepsilon \\
\left|\frac{x^{2}-7 x+10+3 x-6}{x-2}\right| & <\varepsilon \\
\left|\frac{x^{2}-4 x+4}{x-2}\right| & <\varepsilon
\end{aligned}
$$

Factor and simplify.

By comparing the statements $|x-2|<\varepsilon$ and $|x-a|<\delta$, you can conclude that $\delta=\varepsilon$.
9.33 Identify a value of δ that corresponds to $\varepsilon=0.0001$, such that $\lim _{x \rightarrow 6}(15-4 x)=-9$ according to the definition of limits.

Although the value of ε is specifically stated, begin this problem using the same method described in Problems 9.31 and 9.32 -substitute into the ε statement of the limit definition.

Remember, a is the number x approaches in the limit, so in this problem $a=2$.

$$
\begin{aligned}
|f(x)-L| & <\varepsilon \\
|(15-4 x)-(-9)| & <0.0001 \\
|24-4 x| & <0.0001
\end{aligned}
$$

Factor -4 out of the expression within the absolute value symbols; note that factoring a negative number out of a difference reverses the order in which the terms are subtracted.

$$
\begin{aligned}
|-4(-6+x)| & <0.0001 \\
|-4(x-6)| & <0.0001 \\
|-4| \cdot|x-6| & <0.0001 \\
4|x-6| & <0.0001 \\
|x-6| & <\frac{0.0001}{4} \\
|x-6| & <0.000025
\end{aligned}
$$

By comparing the statements $|x-6|<0.000025$ and $|x-a|<\delta$, you can conclude that $\delta=0.000025$.

9.34 Identify a value of δ (accurate to two decimal places) that corresponds to $\varepsilon=0.01$ given $\lim _{x \rightarrow-1}\left(x^{2}+3\right)=4$, according to the definition of limits.

Substitute known values into the ε expression of the limit definition.

$$
\begin{aligned}
|f(x)-L| & <\varepsilon \\
\left|\left(x^{2}+3\right)-4\right| & <0.01 \\
\left|x^{2}-1\right| & <0.01 \\
|x+1||x-1| & <0.01
\end{aligned}
$$

Unlike Problems 9.31-9.33, the expression on the left side of the inequality is not

Chapter 10
 EVALUATING LIMITS

Calculating limits without a graph of the function

Though the formal definition of a limit provides the fundamental foundation, it is highly impractical to apply epsilon-delta proofs in order to verify that limits exist. In fact, one of the assumptions of such proofs is that the limit is already known. In order to calculate the vast majority of basic limits, you need only apply a few basic techniques or identify an elementary limit theorem.

If you had to draw a graph for every single limit you were asked to calculate, it would get old pretty fast. Graphing calculators make things a lot easier, not only because they can graph faster, but because they can do ridiculously complicated calculations instantly. However, you won't always be allowed to use them on quizzes and tests for this very reason. Besides, unless the limit is a really obvious number (like 2 or 4.5), calculator answers can be lousy. Sure you could find out that a function's limit is approximately 13.228757, but isn't it better to know that the limit is EXACTLY $5 \sqrt{7}$ instead of that meaningless string of decimals? Decimals are good for checking an answer, but not so good for the answer itself. This chapter shows you ways to find limits that are technology-free.

Substitution Method

As easy as plugging in for x

10.1 Evaluate $\lim _{x \rightarrow 4}\left(x^{2}-3 x+2\right)$.

10.2 Evaluate $\lim _{x \rightarrow-1} 3^{x}$.

Substituting $x=-1$ into the expression results in a real, finite value.

$$
\lim _{x \rightarrow-1} 3^{x}=3^{-1}=\frac{1}{3}
$$

10.3 Evaluate $\lim _{x \rightarrow e} \arctan (\ln x)$.

Substitute $x=e$ into the expression $\ln x$. Note that $\ln e=1$.

$$
\begin{aligned}
\lim _{x \rightarrow e} \arctan (\ln x) & =\arctan (\ln e) \\
& =\arctan (1)
\end{aligned}
$$

According to Problem 7.32, $\arctan 1=\frac{\pi}{4}$, so $\lim _{x \rightarrow e} \arctan (\ln x)=\frac{\pi}{4}$.

Note: Problems 10.4-10.6 refer to the functions $f(x)$ and $g(x)$ as defined by the table:

x	-1	0	1	2	3
$f(x)$	5	-3	-1	0	6
$g(x)$	-7	1	3	-4	2

Table 10-1: Although only selected values of functions $f(x)$ and $g(x)$ are given, $f(x)$ and $g(x)$ are continuous for all real numbers.
10.4 Evaluate $\lim _{x \rightarrow-1}(f(x)-3 g(x))$.

The limit of a sum (or difference) is equal to the sum of the individual limits.

$$
\lim _{x \rightarrow-1}(f(x)-3 g(x))=\lim _{x \rightarrow-1} f(x)-\lim _{x \rightarrow-1} 3 g(x)
$$

The limit of a product is equal to the product of the limits.

$$
\begin{aligned}
& =\lim _{x \rightarrow-1} f(x)-\left(\lim _{x \rightarrow-1} 3\right)\left(\lim _{x \rightarrow-1} g(x)\right) \\
& =\lim _{x \rightarrow-1} f(x)-3 \lim _{x \rightarrow-1} g(x)
\end{aligned}
$$

Substituting -1 into the expression results in a real, finite value.

$$
\begin{aligned}
& =f(-1)-3 g(-1) \\
& =5-3(-7) \leftarrow \\
& =26
\end{aligned}
$$

Note: Problems 10.4-10.6 refer to the functions $f(x)$ and $g(x)$ defined in Problem 10.4.
10.5 Find the value of k for which $\lim _{x \rightarrow k} \frac{g(x)}{f(x)}$ does not exist.

If $k=2$, calculating the limit requires you to divide by 0 , which is not a valid operation.

$$
\lim _{x \rightarrow 2} \frac{g(x)}{f(x)}=\frac{g(2)}{f(2)}=\frac{-4}{0}
$$

The value $\frac{-4}{0}$ is not a real, finite value, so $\lim _{x \rightarrow k} \frac{g(x)}{f(x)}$ does not exist when $x=k$.

Note: Problems 10.4-10.6 refer to the functions $f(x)$ and $g(x)$ defined in Problem 10.4.

10.6 Evaluate $\lim _{x \rightarrow 3} f(g(x))$.

Note that $g(3)=2$; substitute this value into the expression.

$$
\lim _{x \rightarrow 3} f(g(x))=f(g(3))=f(2)
$$

Therefore, $\lim _{x \rightarrow 3} f(g(x))=f(2)=0$.

Note: Problems 10.7-10.10 refer to the piecewise-defined function $h(x)$ defined below:

$$
h(x)= \begin{cases}4-x^{3}, & x<-1 \\ -10, & x=-1 \\ 4-x^{3}, & -1<x<2 \\ 6-5 x, & x \geq 2\end{cases}
$$

10.7 Evaluate $\lim _{x \rightarrow-3} h(x)$.

According to the piecewise-defined function, the expression $4-x^{3}$ generates the values of $h(x)$ when $x<-1$.

$$
\lim _{x \rightarrow-3} h(x)=4-(-3)^{3}=4-(-27)=31
$$

Think of $h(x)$ as four rules that tell you what $h(x)$ is, based on what you PLUG IN for x. The input $x=-3$ falls in the top category ($x<-1$).

Note: Problems 10.7-10.10 refer to the piecewise-defined function $h(x)$ defined in Problem 10.7.
10.8 Evaluate $\lim _{x \rightarrow 11} h(x)$.

According to the piecewise-defined function, the expression $6-5 x$ generates the values of $h(x)$ when $x \geq 2$.

$$
\lim _{x \rightarrow 11} h(x)=6-5(11)=6-55=-49
$$

Note: Problems 10.7-10.10 refer to the piecewise-defined function $h(x)$ defined in Problem 10.7.
10.9 Evaluate $\lim _{x \rightarrow-1} h(x)$.

Even though $h(-1)=10$, that is not the limit as x approaches -1 . If a limit exists at $x=-1$, the left- and right-hand limits as x approaches -1 must be equal. Note that $h(x)$ is defined by the expression $4-x^{3}$ as x approaches -1 from the left and the right, so substitute $x=-1$ into that expression to evaluate the limit.

$$
\lim _{x \rightarrow-1^{-}} h(x)=\lim _{x \rightarrow-1^{+}} h(x)=4-(-1)^{3}=4+1=5
$$

Note: Problems 10.7-10.10 refer to the piecewise-defined function $h(x)$ defined in Problem 10.7.
10.10 Evaluate $\lim _{x \rightarrow 2} h(x)$.

The rule defining $h(x)$ changes when $x=2$. For inputs slightly less that $x=2, h(x)$ is defined as $4-x^{3}$. Substitute $x=2$ into that expression; the result is the left-hand limit as x approaches 2.

$$
\lim _{x \rightarrow 2^{-}} h(x)=4-(2)^{3}=4-8=-4
$$

For inputs slightly greater than $x=2, h(x)=6-5 x$. Substitute $x=2$ into that expression to determine the limit as x approaches 2 from the right.

$$
\lim _{x \rightarrow 2^{+}} h(x)=6-5(2)=6-10=-4
$$

Because the left-and right-hand limits are equal as x approaches 2, the general limit exists: $\lim _{x \rightarrow 2} h(x)=-4$.

Factoring Method

The first thing to try if substitution doesn't work

Note: Problems 10.11-10.12 refer to the function $f(x)$ defined below:

$$
f(x)=\frac{(x-4)(x+6)}{x-4}
$$

10.II Evaluate $\lim _{x \rightarrow 4} f(x)$.

10.12 Graph $f(x)$.

$$
\lim _{x \rightarrow 4} \frac{(x-4)(x+6)}{x-4}=\lim _{x \rightarrow 4} \frac{x+6}{1}
$$

Now substituting $x=4$ into the expression will not return an indeterminate result: $\lim _{x \rightarrow 4}(x+6)=10$. Therefore, $\lim _{x \rightarrow 4} \frac{(x-4)(x+6)}{x-4}=10$.

The functions $f(x)=\frac{(x-4)(x+6)}{x-4}$ and $\hat{f}(x)=x+6$ are equivalent except at $x=4$, as $f(x)$ is undefined at that value, but $\hat{f}(x)$ is not. (Recall from Problem 10.11 that $\hat{f}(x)$ is the reduced version of the rational function $f(x)$.) Therefore, their graphs have equal values except at $x=4$; both are a line with slope 1 and y intercept 6.
Although $f(x)$ is undefined at $x=4$ (which means $f(4)$ doesn't exist), $\lim _{x \rightarrow 4} f(x)=10$ according to Problem 10.11, so the function approaches a height of 10 as $x \rightarrow 4$ from the left and the right. Therefore, the graph of $f(x)$ contains a "hole," as illustrated by Figure 10-1.

Figure 10-1
The graph of $f(x)=\frac{(x-4)(x+6)}{x-4}$ contains a hole at $(4,10)$.
10.13 Evaluate $\lim _{x \rightarrow 0} \frac{4 x^{5}-x^{2}}{x^{2}}$.

Substituting $x=0$ into the expression returns an indeterminate result. Factor the numerator and reduce the fraction, thereby creating a new rational function for which the substitution method is a valid approach.

$$
\lim _{x \rightarrow 0} \frac{4 x^{5}-x^{2}}{x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}\left(4 x^{3}-1\right)}{x^{2}}=\lim _{x \rightarrow 0}\left(4 x^{3}-1\right)=4(0)^{3}-1=-1
$$

Therefore, $\lim _{x \rightarrow 0} \frac{4 x^{5}-x^{2}}{x^{2}}=-1$.
10.14 Evaluate $\lim _{x \rightarrow-9} \frac{x^{2}+5 x-36}{x+9}$.

If you can't factor $8 x^{2}-26 x+15$ by experimenting, you can factor it by decompositionflip back to Problem 2.27 for more details.

Factor the numerator, reduce the fraction, and evaluate the resulting limit using substitution.
10.15 Evaluate $\lim _{x \rightarrow 3 / 4} \frac{8 x^{2}-26 x+15}{4 x-3}$.

Factor the numerator, simplify, and apply the substitution method.

$$
\lim _{x \rightarrow 3 / 4} \frac{(4 x-3)(2 x-5)}{4 x-3}=\lim _{x \rightarrow 3 / 4} \frac{(4 x-3)(2 x-5)}{4 x-3}=\lim _{x \rightarrow 3 / 4}(2 x-5)=\left(2\left(\frac{3}{4}\right)-5\right)=\frac{6}{4}-5=-\frac{7}{2}
$$

Therefore, $\lim _{x \rightarrow 3 / 4} \frac{8 x^{2}-26 x+15}{4 x-3}=-\frac{7}{2}$.
10.16 Evaluate $\lim _{x \rightarrow 1}\left(\frac{7 x^{2}-10 x+3}{x-1}+\frac{2-7 x}{x+1}\right)$.

Notice that the substitution method fails only for the left expression. Recall that the limit of a sum is equal to the sum of the individual limits.

$$
\lim _{x \rightarrow 1}\left(\frac{7 x^{2}-10 x+3}{x-1}+\frac{2-7 x}{x+1}\right)=\lim _{x \rightarrow 1} \frac{7 x^{2}-10 x+3}{x-1}+\lim _{x \rightarrow 1} \frac{2-7 x}{x+1}
$$

Factor the left expression and substitute $x=1$ into the right expression.

$$
\begin{align*}
& =\lim _{x \rightarrow 1} \frac{(7 x-3)(x-1)}{x-1}+\frac{2-7(1)}{(1)+1} \tag{1}\\
& =\lim _{x \rightarrow 1}(7 x-3)+\left(-\frac{5}{2}\right) \\
& =7(1)-3-\frac{5}{2} \\
& =4-\frac{5}{2} \\
& =\frac{3}{2}
\end{align*}
$$

Therefore, $\lim _{x \rightarrow 1}\left(\frac{7 x^{2}-10 x+3}{x-1}+\frac{2-7 x}{x+1}\right)=\frac{3}{2}$.
10.17 Evaluate $\lim _{x \rightarrow-3 / a} \frac{a^{2} x^{2}+3 a x-4 a^{2} b x-12 a b}{a x+3}$ given $a \neq 0$.

Factor the numerator by grouping.

$$
\begin{aligned}
\lim _{x \rightarrow-3 / a} \frac{a^{2} x^{2}+3 a x-4 a^{2} b x-12 a b}{a x+3} & =\lim _{x \rightarrow-3 / a} \frac{a x(a x+3)-4 a b(a x+3)}{a x+3} \\
& =\lim _{x \rightarrow-3 / a} \frac{(a x-4 a b)(a x+3)}{a x+3} \\
& =\lim _{x \rightarrow-3 / a}(a x-4 a b)
\end{aligned}
$$

Substituting $x=-\frac{3}{a}$ for x now results in a real, finite value.

$$
\begin{aligned}
& =\frac{a}{1}\left(-\frac{3}{a}\right)-4 a b \\
& =-\frac{3 \not a}{\not a}-4 a b \\
& =-3-4 a b
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow-3 / a} \frac{a^{2} x^{2}+3 a x-4 a^{2} b x-12 a b}{a x+3}=-3-4 a b$.
10.18 Evaluate $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}$.

Factor the sum of perfect cubes in the numerator.

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2} & =\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{x+2} \\
& =\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{x+2} \\
& =\lim _{x \rightarrow-2}\left(x^{2}-2 x+4\right) \\
& =(-2)^{2}-2(-2)+4 \\
& =12
\end{aligned}
$$

This is a formula you should memorize: $x^{3}+y^{3}=(x+y)$ $\left(x^{2}-x y+y^{2}\right)$. Look at Problem 2.25 for more info.

Therefore, $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}=12$.
10.19 Evaluate $\lim _{x \rightarrow-3} \frac{2 x^{3}-7 x^{2}-33 x+18}{x^{2}-9}$.
see
Problems 2.18 and 2.19 if you need a refresher on synthetic
division.

Substituting $x=-3$ into the numerator and denominator results in $\frac{0}{0}$. Therefore, -3 is a root of both functions $\left(y=2 x^{3}-7 x^{2}-33 x+18\right.$ and $\left.y=x^{2}-9\right)$. All functions with a root of $x=a$ must contain the factor $(x-a)$. Therefore, $(x-(-3))=(x+3)$ is a factor of $2 x^{3}-7 x^{2}-33 x+18$. Use synthetic division to identify the remaining two factors; factor the difference of perfect squares within the denominator.

$$
\begin{array}{rrrrr}
-3 & 2 & -7 & -33 & 18 \\
& & -6 & 39 & -18 \\
\hline & 2 & -13 & 6 & 0
\end{array}
$$

Factor the quotient: $2 x^{2}-13 x+6=(2 x-1)(x-6)$.

$$
\lim _{x \rightarrow-3} \frac{2 x^{3}-7 x^{2}-33 x+18}{x^{2}-9}=\lim _{x \rightarrow-3} \frac{(x+3)(2 x-1)(x-6)}{(x+3)(x-3)}
$$

Note that $x+3$ is a factor of the numerator and the denominator, so it can be eliminated.

$$
\begin{aligned}
& =\lim _{x \rightarrow-3} \frac{(x+3)(2 x-1)(x-6)}{(x+3)(x-3)} \\
& =\lim _{x \rightarrow-3} \frac{(2 x-1)(x-6)}{x-3}
\end{aligned}
$$

Substituting $x=-3$ into the expression results in a real, finite value.

$$
=\frac{(2(-3)-1)(-3-6)}{-3-3}=\frac{(-7)(-9)}{-6}=-\frac{63}{6}=-\frac{21}{2}
$$

Therefore, $\lim _{x \rightarrow-3} \frac{2 x^{3}-7 x^{2}-33 x+18}{x^{2}-9}=-\frac{21}{2}$.
10.20 Calculate the exact value of $\lim _{x \rightarrow 3 / 8} \frac{64 x^{3}-8 x^{2}-366 x+135}{48 x^{3}+86 x^{2}-23 x-6}$.

Substituting $x=\frac{3}{8}$ into the numerator and denominator produces the indeterminate result $\frac{0}{0}$. Apply synthetic division.

$$
\begin{array}{r|rrrr:rrrr}
\frac{3}{8} & 64 & -8 & -366 & 135 & \frac{3}{8} & 48 & 86 & -23 \\
\hline & -6 \\
& 24 & 6 & -135 & & 18 & 39 & 6 \\
\hline 64 & 16 & -360 & 0 & & 48 & 104 & 16 & 0
\end{array}
$$

Rewrite the original limit statement in factored form.

$$
\lim _{x \rightarrow 3 / 8} \frac{64 x^{3}-8 x^{2}+366 x+135}{48 x^{3}+86 x^{2}-23 x-6}=\lim _{x \rightarrow 3 / 8} \frac{(x-3 / 8)\left(64 x^{2}+16 x-360\right)}{(x-3 / 8)\left(48 x^{2}+104 x+16\right)}
$$

The greatest common factor of both quadratics is 8 .

$$
=\lim _{x \rightarrow 3 / 8} \frac{(8 x-3)\left(8 x^{2}+2 x-45\right)}{(8 x-3)\left(6 x^{2}+13 x+2\right)}
$$

Multiply the linear factor $(x-3 / 8)$ by 8 .

$$
=\lim _{x \rightarrow 3 / 8} \frac{(x-3 / 8)(8)\left(8 x^{2}+2 x-45\right)}{(x-3 / 8)(8)\left(6 x^{2}+13 x+2\right)}
$$

Reduce the rational expression and substitute $x=\frac{3}{8}$ into the result.

$$
\begin{aligned}
& =\lim _{x \rightarrow 3 / 8} \frac{(8 x-3)\left(8 x^{2}+2 x-45\right)}{(8 x-3)\left(6 x^{2}+13 x+2\right)} \\
& =\lim _{x \rightarrow 3 / 8} \frac{8 x^{2}+2 x-45}{6 x^{2}+13 x+2} \\
& =\frac{8(3 / 8)^{2}+2(3 / 8)-45}{6(3 / 8)^{2}+13(3 / 8)+2} \\
& =\frac{\frac{9}{8}+\frac{6}{8}-\frac{45}{1}\left(\frac{8}{8}\right)}{\frac{54}{64}+\frac{39}{8}\left(\frac{8}{8}\right)+\frac{2}{1}\left(\frac{64}{64}\right)} \longleftarrow \\
& =\frac{\frac{9}{8}+\frac{6}{8}-\frac{360}{8}}{\frac{54}{64}+\frac{312}{64}+\frac{128}{64}} \\
& =\frac{\left(-\frac{345}{8}\right)}{\left(\frac{494}{64}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8(3 / 8)^{2}+2(3 / 8)-45}{6(3 / 8)^{2}+13(3 / 8)+2} \\
& =\frac{\frac{9}{8}+\frac{6}{8}-\frac{45}{1}\left(\frac{8}{8}\right)}{\frac{54}{64}+\frac{39}{8}\left(\frac{8}{8}\right)+\frac{2}{1}\left(\frac{64}{64}\right)} \longleftarrow
\end{aligned}
$$

Dividing by a fraction is equivalent to multiplying by its reciprocal.

$$
\begin{aligned}
& =-\frac{345}{8} \cdot \frac{64}{494} \\
& =-\frac{22,080}{3,952} \\
& =-\frac{1,380}{247}
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 3 / 8} \frac{64 x^{3}-8 x^{2}-366 x+135}{48 x^{3}+86 x^{2}-23 x-6}=-\frac{1,380}{247}$.
10.21 Under what conditions does $\lim _{x \rightarrow c} \frac{(x+a)(x+b)}{x-c}=L$, if a, b, c, and L are real numbers and $c<0<a<b$?

From the statement $c<0<a<b$, you can conclude that a, b, and c are distinct

Conjugate Method

Break this out to deal with troublesome radicals

10.22 Simplify the expression: $(\sqrt{x}+3)(\sqrt{x}-3)$.

Apply the FOIL method to multiply the factors. (See Problem 2.13 for an explanation of the FOIL method.)

$$
\begin{aligned}
(\sqrt{x}+3)(\sqrt{x}-3) & =\sqrt{x} \cdot \sqrt{x}-3 \sqrt{x}+3 \sqrt{x}+3(-3) \\
& =\sqrt{x^{2}}-3 \sqrt{x}+3 \sqrt{x}-9 \\
& =x-9
\end{aligned}
$$

It is not necessary to write $|x|-9$ even though $\sqrt{x^{2}}$ is typically simplified as $|x|$. Notice that the original expression is invalid when $\frac{1}{x}<0$, so it is appropriate to assume that $x>0$ and omit the explicit absolute value indicators in the final solution.

10.23 Evaluate $\lim _{x \rightarrow 16} \frac{x-16}{\sqrt{x}-4}$.

$$
\lim _{x \rightarrow 16} \frac{x-16}{\sqrt{x}-4}=\lim _{x \rightarrow 16} \frac{x-16}{\sqrt{x}-4} \cdot \frac{\sqrt{x}+4}{\sqrt{x}+4}
$$

Multiply the denominators using the method of Problem 10.22. To speed up the simplification process, do not expand the product in the numerator.

$$
=\lim _{x \rightarrow 16} \frac{(x-16)(\sqrt{x}+4)}{x-16}
$$

Notice that the term $x-16$ appears in both the numerator and denominator; reduce the fraction by eliminating it.

$$
\begin{aligned}
& =\lim _{x \rightarrow 16} \frac{(x-16)(\sqrt{x}+4)}{\sqrt[16]{16}} \\
& =\lim _{x \rightarrow 16}(\sqrt{x}+4) \\
& =\sqrt{16}+4 \\
& =8
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 16} \frac{x-16}{\sqrt{x}-4}=8$.
10.24 Evaluate $\lim _{x \rightarrow-4} \frac{-2+\sqrt{-x}}{8+2 x}$.

Substitution produces an indeterminate result, so apply the conjugate method as described in Problem 10.23. Multiply the numerator and denominator by the conjugate of the numerator and simplify.

$$
\begin{aligned}
\lim _{x \rightarrow-4} \frac{-2+\sqrt{-x}}{8+2 x} & =\lim _{x \rightarrow-4} \frac{-2+\sqrt{-x}}{8+2 x} \cdot \frac{(-2-\sqrt{-x})}{(-2-\sqrt{-x})} \\
& =\lim _{x \rightarrow-4} \frac{(-2)(-2)+2 \sqrt{-x}-2 \sqrt{-x}-\sqrt{(-x)^{2}}}{(8+2 x)(-2-\sqrt{-x})}
\end{aligned}
$$

To facilitate simplification, do not expand the product in the denominator. Multiply only the part of the fraction that contains the conjugate pair.

$$
\begin{aligned}
& =\lim _{x \rightarrow-4} \frac{4+2 \sqrt{-2 \sqrt{-x}}-(-x)}{(8+2 x)(-2-\sqrt{-x})} \\
& =\lim _{x \rightarrow-4} \frac{4+x}{(8+2 x)(-2-\sqrt{-x})}
\end{aligned}
$$

Factor 2 out of the expression $8+2 x$ in the denominator.

$$
\begin{aligned}
& =\lim _{x \rightarrow-4} \frac{4+x}{2(4+x)(-2-\sqrt{-x})} \\
& =\lim _{x \rightarrow-4} \frac{1}{2(-2-\sqrt{-x})}
\end{aligned}
$$

Substitute $x=-4$ into the expression.

$$
\begin{aligned}
& =\frac{1}{2(-2-\sqrt{-(-4)})} \\
& =\frac{1}{2(-2-\sqrt{4})} \\
& =-\frac{1}{8}
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow-4} \frac{-2+\sqrt{-x}}{8+2 x}=-\frac{1}{8}$.
10.25 Evaluate $\lim _{x \rightarrow 5} \frac{x-5}{\sqrt{x-5}}$.

To calculate the quotient of exponential expressions with the same base, subtract the powers.

$$
=\lim _{x \rightarrow 5}(x-5)^{1-1 / 2}=\lim _{x \rightarrow 5}(x-5)^{1 / 2}=\lim _{x \rightarrow 5} \sqrt{x-5}
$$

Substitute $x=5$ into the expression to calculate the limit.

$$
\lim _{x \rightarrow 5} \sqrt{x-5}=\sqrt{5-5}=\sqrt{0}=0
$$

10.26 Evaluate the limit: $\lim _{x \rightarrow 7} \frac{\sqrt{x-6}-1}{7-x}$.

Multiply the numerator and denominator by $\sqrt{x-6}+1$, the conjugate of $\sqrt{x-6}-1$.

$$
\begin{aligned}
\lim _{x \rightarrow 7} \frac{\sqrt{x-6}-1}{7-x} & =\lim _{x \rightarrow 7} \frac{\sqrt{x-6}-1}{7-x} \cdot \frac{\sqrt{x-6}+1}{\sqrt{x-6}+1} \\
& =\lim _{x \rightarrow 7} \frac{(x-6)-1}{(7-x)(\sqrt{x-6}+1)} \\
& =\lim _{x \rightarrow 7} \frac{x-7}{(7-x)(\sqrt{x-6}+1)}
\end{aligned}
$$

Factor -1 out of the terms in the numerator to reverse their order. This allows you to reduce the fraction.

$$
\begin{aligned}
& =\lim _{x \rightarrow 7} \frac{-(7-\sqrt{x})}{(\sqrt{x})(\sqrt{x-6}+1)} \\
& =\lim _{x \rightarrow 7} \frac{-1}{\sqrt{x-6}+1}
\end{aligned}
$$

Apply the substitution method.

$$
=\frac{-1}{\sqrt{7-6}+1}=\frac{-1}{\sqrt{1}+1}=-\frac{1}{2}
$$

10.27 Evaluate the limit: $\lim _{x \rightarrow 19} \frac{x-19}{5-\sqrt{x+6}}$.

Apply the conjugate method using the expression $5+\sqrt{x+6}$.

$$
\begin{aligned}
\lim _{x \rightarrow 19} \frac{x-19}{5-\sqrt{x+6}} & =\lim _{x \rightarrow 19} \frac{x-19}{5-\sqrt{x+6}} \cdot \frac{5+\sqrt{x+6}}{5+\sqrt{x+6}} \\
& =\lim _{x \rightarrow 19} \frac{(x-19)(5+\sqrt{x+6})}{25-(x+6)} \\
& =\lim _{x \rightarrow 19} \frac{(x-19)(5+\sqrt{x+6})}{19-x}
\end{aligned}
$$

Factor -1 out of the denominator in order to reduce the fraction, as previously demonstrated by Problem 10.26.

$$
=\lim _{x \rightarrow 19} \frac{(x-19)(5+\sqrt{x+6})}{-(x-19)}=\lim _{x \rightarrow 19}-(5+\sqrt{x+6})=-(5+\sqrt{25})=-10
$$

Special Limit Theorems

Limit formulas you should memorize

10.28 Evaluate $\lim _{x \rightarrow \infty} \frac{c}{x^{2}}$, if c is a positive real number.

The degree of the denominator is 2 , and the degree of the numerator is $0-$ technically, $c=c \cdot x^{0}=c \cdot 1$. According to Problem 4.31, when the degree of the numerator is greater than the degree of the numerator, the limit at infinity equals $0: \lim _{x \rightarrow \infty} \frac{c}{x^{2}}=0$.
10.29 Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{\theta}$.

A common limit formula states that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. Multiply the numerator and denominator by 7 in order to force the denominator to match the argument of $\sin 7 \theta$.

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{\theta} & =\lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{\theta} \frac{7}{7} \\
& =\lim _{\theta \rightarrow 0} \frac{7 \sin 7 \theta}{7 \theta}
\end{aligned}
$$

That
formula works only if x approaches 0 and the value inside the sine function matches the
denominator.

The limit of a product is equal to the product of its limits.

$$
\begin{aligned}
& =\left(\lim _{\theta \rightarrow 0} 7\right)\left(\lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{7 \theta}\right) \\
& =7 \cdot 1=7
\end{aligned}
$$

Therefore, $\lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{\theta}=7$.
10.30 Evaluate $\lim _{\theta \rightarrow 0} \frac{\cos 8 \theta-1}{2 \theta}$.

Like Problem 10.29, this problem requires the knowledge of a common limit formula: $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$. Again, your goal is to match the argument of the trigonometric formula and the denominator of the expression. As the denominator of the expression is far easier to manipulate than the argument of cosine, force 2θ to become 8θ by multiplying the numerator and denominator by 4 .

$$
\lim _{\theta \rightarrow 0} \frac{\cos 8 \theta-1}{2 \theta} \cdot \frac{4}{4}=\lim _{\theta \rightarrow 0} \frac{4(\cos 8 \theta-1)}{8 \theta}=\left(\lim _{\theta \rightarrow 0} 4\right)\left(\lim _{\theta \rightarrow 0} \frac{\cos 8 \theta-1}{8 \theta}\right)=4 \cdot 0=0
$$

10.31 Evaluate $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x(\ln 8)}$.

Rewrite the function so that it more closely resembles a common limit:
$\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$. According to exponential properties, an exponential expression raised to a power is equal to the original base raised to the product of the powers: $[f(x)]^{a \cdot b}=\left[(f(x))^{a}\right]^{b}$. In this problem, $f(x)=\left(1+\frac{1}{x}\right), a=x$, and $b=\ln 8$, so $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x(\ln 8)}=\lim _{x \rightarrow \infty}\left[\left(1+\frac{1}{x}\right)^{x}\right]^{\ln 8}$.

The power rule for limits states that $\lim _{x \rightarrow c} f(x)^{a}=\left(\lim _{x \rightarrow c} f(x)\right)^{a}$.

Because $y=\ln x$ and $y=e^{x}$ are inverse functions, $\ln \left(e^{x}\right)=e^{\ln x}=x$. Therefore, $e^{\ln 8}=8$.

Chapter II
 CONTINUITY AND THE DIFFERENCE QUOTIENT

unbreakable graphs and a preview of derivatives

Though limits are exceedingly useful, there are few calculus applications that make explicit use of them. That does not imply that limits are unimportant, but that they are typically one feature of a far more substantial concept-continuity. The graph of an everywhere continuous function is best characterized by this property: it can be drawn without lifting your pencil from the graph. The predictable behavior of continuous graphs guarantees the functionality of key calculus theorems, such as the intermediate value theorem, and substantiates meaningful conclusions, such as the difference quotient.

Continuous functions don't have any undefined points, asymptotes, or breaks in the graph-they're just run-of-the-mill curves that, like roads, should be unbroken, un-potholed, and certainly un-suddenly-ending-in-acliff. If a function is continuous at every x in its domain, then you call the function "everywhere continuous." That doesn't mean the function's domain has to be all real numbers, only that the function is continuous everywhere it is defined. Once you understand continuity, it's time to start finding derivatives using the difference quotient, even if it is extraordinarily painful to do so. (Not because it's hard, but because you'll find out there are much shorter and easier ways to take derivatives discussed in Chapter 12.)

II.2 A function $r(x)$ is defined by the set of ordered pair listed below. At which value(s) in the domain of $r(x)$ is the function continuous?

$$
r(x):\{(-2,6),(1,7),(4,6)\}
$$

II. 3 Which of the following trigonometric functions are continuous?

$$
y=\cos \theta, y=\sin \theta, y=\tan \theta, y=\cot \theta, y=\sec \theta, y=\csc \theta
$$

This question is posed in a purposefully vague fashion. You may be tempted to
 classify $y=\tan \theta, y=\cot \theta, y=\sec \theta$, and $y=\csc \theta$ as discontinuous because their graphs contain vertical asymptotes. Not only do graphs lack function values at vertical asymptotes, they also have infinite limits, so all the conditions of continuity are violated.

However, it is only appropriate to judge a function's continuity over the interval for which it is defined. The functions $y=\tan \theta$ and $y=\sec \theta$ are undefined at $x=\frac{k \pi}{2}$ (when k is an odd integer), and $y=\cot \theta$ and $y=\csc \theta$ are undefined at $x=k \pi$ (for any integer k). These, not coincidentally, are the x-values for which the functions don't meet the requirements of continuity.

Therefore, the most appropriate answer is that each trigonometric function is continuous over its entire domain.
II.4 At what value (s) of x is the greatest integer function, $y=\llbracket x \rrbracket$, discontinuous?

The greatest integer function, whose graph appears in Figure 11-1, outputs the greatest integer that is less than or equal to the input.

Figure 11-1 The graph of $y=\llbracket x \rrbracket$, the greatest integer function.
Though $y=\llbracket x \rrbracket$ is defined for all real numbers, at each integer $j, \lim _{x \rightarrow j^{-}} \llbracket x \rrbracket \neq \lim _{x \rightarrow j^{+}} \llbracket x \rrbracket$. Specifically, $\left(\lim _{x \rightarrow j^{-}} \llbracket x \rrbracket\right)+1=\lim _{x \rightarrow j^{+}} \llbracket x \rrbracket$. Because a general limit does not exist at each integer in its domain, $y=\llbracket x \rrbracket$ is discontinuous at those values.

Types of Discontinuity

Holes vs. breaks, removable vs. nouremovable

Note: Problems 11.5-11.13 refer to the graph of $f(x)$ in Figure 11-2.
II.5 Is $f(x)$ continuous at $x=-3$? Explain your answer using the definition of continuity.

Figure 11-2
The graph of a function $f(x)$.

Because $\lim _{x \rightarrow-3^{-}} f(x) \neq \lim _{x \rightarrow-3^{+}} f(x)$, the general limit $\lim _{x \rightarrow-3} f(x)$ does not exist. Even though the function is defined at $x=-3$, the absence of a limit means that $f(x)$ is discontinuous there.

Note: Problems 11.5-11.13 refer to the graph of $f(x)$ in Figure 11-2.

II. 6 Is $f(x)$ continuous at $x=-1$? Explain your answer using the definition of continuity.

Yes, $f(x)$ is continuous at $x=-1$, as $\lim _{x \rightarrow-1} f(x)=f(-1)=1$.

Note: Problems 11.5-11.13 refer to the graph of $f(x)$ in Figure 11-2.
II. 7 Is $f(x)$ continuous at $x=1$? Explain your answer using the definition of continuity.

No, $f(x)$ is discontinuous at $x=1$, because $\lim _{x \rightarrow 1} f(x)$ is not a finite number:
 function value must be equal in order to classify $f(x)$ continuous at $x=4$.

Note: Problems 11.5-11.13 refer to the graph of $f(x)$ in Figure 11-2.
II.9 At what value of x does the graph of $f(x)$ exhibit one-sided continuity (i.e., the graph is continuous only as you approach x from the left or from the right)?

The graph of $f(x)$ is continuous from the right at $x=-3$, because $\lim _{x \rightarrow-3^{+}} f(x)=f(-3)=-1$. One-sided continuity differs from standard continuity in that the general limit need not exist; it is sufficient that a one-sided limit at that x-value exists and is equal to the function value.

Note: Problems 11.5-11.13 refer to the graph of $f(x)$ in Figure 11-2.
II.IO At what value of x does the graph of $f(x)$ exhibit point discontinuity?

If $\lim _{x \rightarrow c} f(x)$ exists but does not equal $f(c), f(x)$ is said to demonstrate point discontinuity at $x=c$. Whether or not $f(c)$ actually exists is irrelevant. In Figure 11-2, $\lim _{x \rightarrow 4} f(x)=5$ but $f(4)=0$, so $f(x)$ exhibits point discontinuity at $x=4$ (and still would even if $f(4)$ were undefined).

Note: Problems 11.5-11.13 refer to the graph of $f(x)$ in Figure 11-2.
II.II At what value of x does the graph of $f(x)$ exhibit jump discontinuity?

If $\lim _{x \rightarrow c^{-}} f(x)=L_{1}$ and $\lim _{x \rightarrow c^{+}} f(x)=L_{2}$ (where L_{1} and L_{2} are real numbers) but $L_{1} \neq L_{2}$, then $f(x)$ exhibits jump discontinuity at $x=c$. In Figure 11-2, $\lim _{x \rightarrow-3^{-}} f(x)=2$ but $\lim _{x \rightarrow-3^{+}} f(x)=-1$, so $f(x)$ exhibits jump discontinuity at $x=-3$.
II.I2 At what value of x does the graph of $f(x)$ exhibit infinite discontinuity?

If $\lim _{x \rightarrow c} f(x)=\infty$ or $\lim _{x \rightarrow c} f(x)=-\infty$ (i.e., when a function increases or decreases without bound near a vertical asymptote), $f(x)$ is said to demonstrate infinite discontinuity at $x=c$. In Figure 11-2, $f(x)$ exhibits infinite discontinuity at $x=1$.

Note: Problems 11.5-11.13 refer to the graph off(x) in Figure 11-2.
II.I3 Classify each instance of discontinuity in the graph of $f(x)$ as either removable or nonremovable.

Functions that are discontinuous despite the existence of a limit (i.e., functions with point discontinuity) are said to be "removably discontinuous," because redefining the function to correspond with the existing limit would, effectively, "remove" the discontinuity from the function. The graph of $f(x)$ possesses

Some books call it "essential discontinuity" instead of "infinite discontinuity," but they've the same thing.

tion as a sidewalk. It's called "jump" discontinuity because you'd have to jump at $x=-3$ if you wanted to stay on the sidewalk.

removable discontinuity at $x=4$, because replacing $f(4)=0$ with $f(4)=5$ would make $f(x)$ continuous at $x=4$.

On the other hand, discontinuity caused by the nonexistence of a limit (i.e. jump and infinite discontinuity) is classified as "nonremovable," as redefining a finite number of points will not "remove" the discontinuity. Because no general limits exist on the graph of $f(x)$ at $x=-3$ and $x=1, f(x)$ is nonremovably discontinuous at those values.

Note: Problems 11.14-11.16 refer to the graph of $g(x)$ in Figure 11-3.
II. 14 Identify the x-values at which $g(x)$ is discontinuous, and classify each instance of discontinuity as point, jump, or infinite.

Figure 11-3
The graph of $g(x)$ has horizontal asymptote $y=2$ and vertical asymptotes $x=-2$ and $x=2$.

The graph of $g(x)$ exhibits infinite discontinuities at $x=-2$ and $x=2$, point discontinuity at $x=0$, and jump discontinuity at $x=3$.

Note: Problems 11.14-11.16 refer to the graph of $g(x)$ in Figure 11-3.
II.I5 At what value(s) of x is $g(x)$ nonremovably discontinuous?

Because $g(x)$ has no general limit as x approaches $-2,2$, and $3, g(x)$ is nonremovably discontinuous at those x-values.

Note: Problems 11.14-11.16 refer to the graph of $g(x)$ in Figure 11-3.
II.I6 At what value(s) of x does $g(x)$ exhibit one-sided continuity?

The function $g(x)$ is continuous from the left at $x=3$, because $\lim _{x \rightarrow 3^{-}} g(x)=g(3)=-2$.
II.I7 Given the piecewise-defined function $h(x)$ defined below, identify any value (s) of x at which $h(x)$ is discontinuous and describe the discontinuity exhibited.

$$
h(x)= \begin{cases}3 x-x^{2}, & x<-1 \\ 6 x+2, & x>-1\end{cases}
$$

The function $h(x)$ is comprised of two polynomial functions, $y=3 x-x^{2}$ and $y=6 x+2$, both of which are continuous over their entire domains. Therefore, the only x-value at which $h(x)$ could be discontinuous is $x=-1$, where the rule defining $h(x)$ changes from the quadratic to the linear equation.

In order for $h(x)$ to be continuous at $x=-1$, the limit as x approaches -1 must exist
 and it must be equal to $h(-1)$. To determine if the limit exists, substitute -1 into both formulas; if the results are equal, $\lim _{x \rightarrow-1} h(x)$ exists.

$$
\begin{array}{l:l}
\text { Substitute } x=-1 \text { into } 3 x-x^{2}: & \text { Substitute } x=-1 \text { into } 6 x+2 \\
3(-1)-(-1)^{2}=-3-(1)=-4 & 6(-1)+2=-6+2=-4
\end{array}
$$

Therefore, $\lim _{x \rightarrow-1^{-}} h(x)=\lim _{x \rightarrow-1^{+}} h(x)=-4$, so $\lim _{x \rightarrow-1} h(x)=-4$. Notice, however, that $h(-1)$ is undefined. According to the definition of $h(x)$, the quadratic rule $y=3 x-x^{2}$ applies when $x<-1$ and the linear rule $y=6 x+2$ applies when $x>-1$. No rule addresses the case of $x=-1$, so $h(-1)$ does not exist, and $h(x)$ is disconsinuous at $x=-1$.

Because a limit exists for $h(x)$ as x approaches -1 , this is an example of point discontinuity, which is removable.
II.I8 Given the piecewise-defined function $f(x)$ defined below, identify any value (s) of x at which $f(x)$ is discontinuous and describe the discontinuity exhibited.

$$
f(x)= \begin{cases}x^{2}-5 x+3, & x \leq 2 \\ x^{3}-12, & x>2\end{cases}
$$

Notice that $f(x)$ is comprised of two polynomial functions, both of which are continuous over their entire domains; therefore, the only location at which $f(x)$ could be discontinuous is $x=2$. Begin by evaluating $f(2)$.

$$
f(2)=(2)^{2}-5(2)+3=4-10+3=-3
$$

In order for $f(x)$ to be continuous at $x=2, \lim _{x \rightarrow 2} f(x)$ must also equal -3 . Use the method described in Problem 11.17 (substituting $x=2$ into both rules of the function) to determine whether or not the limit exists as x approaches 2. Notice that, by calculating $f(2)$, you've already substituted x into one of the functions. Simply evaluate the remaining function at $x=2$.

$$
y=x^{3}-12=(2)^{3}-12=8-12=-4
$$

Therefore, $\lim _{x \rightarrow 2^{-}} f(x)=-3$ but $\lim _{x \rightarrow 2^{+}} f(x)=-4$. Because the left- and right-hand limits are unequal, the general limit $\lim _{x \rightarrow 2} f(x)$ does not exist and $h(x)$ has a nonremovable jump discontinuity at $x=2$.
II. 19 Determine the value of c that makes the piecewise-defined function $g(x)$ everywhere continuous.

$$
g(x)= \begin{cases}\sqrt{2 x-c}, & x<0 \\ 3 x^{2}+1, & x \geq 0\end{cases}
$$

The function $g(x)$ is comprised of a radical expression and a quadratic expression, both of which are continuous over their entire domains. Therefore, the only location at which $g(x)$ may be discontinuous is at $x=0$. Begin by evaluating $g(0)$.

Continuous

 over its entire domain.$$
g(0)=3(0)^{2}+1=0+1=1
$$

This result represents both $g(0)$ and $\lim _{x \rightarrow 0^{+}} g(x)$, since $y=3 x^{2}+1$ generates the function values for all x 's to the right of $x=0$). If $g(x)$ is to be made continuous
 at $x=0$, the left-hand limit as x approaches 0 must equal the right-hand limit. Calculate the left-hand limit by substituting $x=0$ into $\sqrt{2 x-c}$.

Solve the equation for c.

$$
\begin{aligned}
(\sqrt{-c})^{2} & =(1)^{2} \\
-c & =1 \\
c & =-1
\end{aligned}
$$

When $c=-1, g(x)$ is continuous at every real number.
II.20 Calculate the value of k that makes $h(\theta)$ continuous over the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$
h(\theta)= \begin{cases}2(\tan \theta+1), & \theta \leq-\frac{\pi}{4} \\ \tan (k \theta-1), & \theta>-\frac{\pi}{4}\end{cases}
$$

would mean the left-and right-hand limits are the same and they both equal the function value because the top rule includes $\theta=\frac{\pi}{4}$.

Solve for k.

$$
\begin{aligned}
2 \tan \left(-\frac{\pi}{4}\right)+2 & =\tan \left(\frac{-k \pi}{4}-1\right) \\
2(-1)+2 & =\tan \left(\frac{-k \pi}{4}-1\right) \\
0 & =\tan \left(\frac{-k \pi}{4}-1\right) \\
\arctan 0 & =\arctan \left[\tan \left(\frac{-k \pi}{4}-1\right)\right] \\
0 & =\frac{-k \pi}{4}-1 \\
4 & =-k \pi \\
-\frac{4}{\pi} & =k
\end{aligned}
$$

When $k=-\frac{4}{\pi}, h(\theta)$ is continuous over $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
II.2I Calculate the value of c that makes $f(x)$ everywhere continuous.

$$
f(x)= \begin{cases}\ln \left(3 c-2 x^{2}\right), & x<7 \\ \ln (x+2 c), & x \geq 7\end{cases}
$$

Substitute $x=7$ into the expressions and set them equal. This effectively forces the left- and right-hand limits to be equal at $x=7$, which in turn forces $f(x)$ to be continuous there.

$$
\begin{aligned}
\ln \left(3 c-2 \cdot 7^{2}\right) & =\ln (7+2 c) \\
\ln (3 c-98) & =\ln (7+2 c)
\end{aligned}
$$

Solve the equation for c. In order to eliminate the natural logarithmic functions, exponentiate the equation using e.

$$
\begin{aligned}
e^{\ln (3 c-98)} & =e^{\ln (7+2 c)} \\
3 c-98 & =7+2 c \\
c & =105
\end{aligned}
$$

When $c=105, f(x)$ is continuous for all real numbers.
II.22 Calculate the values of a and b that make $g(x)$, as defined below, everywhere continuous.

$$
g(x)= \begin{cases}x^{2}, & x<-4 \\ a x+b, & -4 \leq x<5 \\ \sqrt{x+31}, & x \geq 5\end{cases}
$$

Substitute a into either equation in the system to determine the corresponding value of b.

$$
\begin{aligned}
5 a+b & =6 \\
5\left(-\frac{10}{9}\right)+b & =6 \\
-\frac{50}{9}+b & =6 \\
b & =\frac{54}{9}+\frac{50}{9} \\
b & =\frac{104}{9}
\end{aligned}
$$

When $a=-\frac{10}{9}$ and $b=\frac{104}{9}, g(x)$ is continuous over its entire domain.

You can only apply the intermediate value theorem to functions if they are continuous over a specifically identified closed interval. In this case, $f(x)=x^{2}$ is a polynomial function whose domain is all real numbers, so $f(x)$ is continuous on any closed interval, including the interval specified: $[-1,3]$. Once continuity is assured, evaluate $f(x)$ at the endpoints of the closed interval.

$$
f(-1)=(-1)^{2}=1 \quad f(3)=(3)^{2}=9
$$

For any real number d in the interval $[1,9]$, the intermediate value theorem guarantees that there exists a value c on $[-1,3]$ for which $f(c)=d$. Notice that the
 relatively absurd number $5.924318 \overline{6704}$ falls on the interval $[1,9]$, so some value c on the interval $[-1,3]$ exists such that $f(c)=5.924318 \overline{6704}$.
II.25 A calculus student is adamant that the intermediate value theorem is fundamentally flawed. Locate and explain the logical flaw in his "counterexample" below.
The function $g(x)=\sec x$ is a trigonometric function, and like all trigonometric functions, is continuous over its entire domain or any piece of that domain, including $[0, \pi]$. If you evaluate the endpoints of the interval, you see that sec $0=1$ and sec $\pi=-1$. Therefore, according to the intermediate value theorem, I can choose any number d from the interval $[-1,1]$, such as the number 0 , and some other number c must exist in the interval $[0, \pi]$ such that sec $c=0$. However, $g(x)=\sec x$ never equals 0 ! Therefore, the intermediate value theorem is not necessarily true, especially in the case of trig functions.

Although each trigonometric function is, indeed, continuous over its entire domain, $g(x)=\sec x$ is not continuous over the entire interval $[0, \pi]$-it is undefined at $x=\frac{\pi}{2}$. Therefore, the intermediate value theorem cannot be applied.
II.26 Use the intermediate value theorem to prove that the number $\sqrt[3]{20}$ exists and has a value greater than 2 but less than 3 .

Given a function $f(x)$ that's continuous on the closed interval [a, b, any number d between $f(a)$ and $f(b)$ has a corresponding value c between a and b such that $f(c)=d$ (according to the intermediate value theorem). In this problem, $f(x)=x^{3}$, $a=2, b=3, f(a)=f(2)=8$, and $f(b)=f(3)=27$. Thus, for any value d you choose in the interval $[8,27]$ (such as $d=20$), there exists a corresponding c in the interval $[2,3]$ such that $f(c)=20(c=\sqrt[3]{20})$. Because $f(2)=8$ and $f(3)=27$ (and neither of them equal 20), $\sqrt[3]{20}$ actually belongs to the interval $(2,3)$.

II. 27 Use the intermediate value theorem to verify that $h(x)=(x-3)^{2}-7$ has a root between $x=5$ and $x=6$.

Because $h(5)=-3$ and $h(6)=2$, the intermediate value theorem guarantees that $d=0$ (which belongs to the interval $[-3,2]$) will correspond to some c in the interval $[5,6]$ such that $h(c)=0$. In other words, there's some value c between $x=5$ and $x=6$ that makes the function equal 0 , and is therefore a root of the function. Note that this problem does not ask you to find c-the intermediate value theorem is an existence theorem that merely guarantees the existence of c but falls short of actually identifying it.
II.28 If $f(x)$ is continuous over the interval [0,1] such that $f(0)$ and $f(1)$ also belong to the interval $[0,1]$, prove that there exists some value c in $[0,1]$ such that $f(c)=c$.

This warrants closer inspection. Remember that both $f(0)$ and $f(1)$ are between 0 and 1 , so they're positive numbers. If $f(0)$ is a positive number, then so is $g(0)$, because $g(0)$ instructs you to subtract 0 from a positive number, which won't change its value. On the other hand, $g(1)$ must be a negative number. Remember, $f(1)$, like $f(0)$, is a positive number less than 1 , so $f(1)-1$ must be a negative number.

If $g(0)>0$ and $g(1)<0$, then you can choose $d=0$, and according to the intermediate value theorem, some c must exist in $[0,1]$ such that $g(c)=0$. Essentially, once you find function values that have different signs, you can conclude that a continuous function must cross the x-axis somewhere between those function values, thereby possessing a root between them as well. Therefore, $g(x)=f(x)-x$ has a root in $[0,1]$, and thus $c=f(c)$.

The Difference Quotient

The "long way" to find the derivative

II.29 Explain the relationship between differentiation and calculating limits.

Derivatives are indelibly tied to limits at the most foundational level—derivatives are defined as limits of specific fractions called "difference quotients." The most common difference quotient is a formula containing " Δx " (read "delta x ") used to calculate the general derivative $f^{\prime}(x)$ of a function $f(x)$.

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

In order to quickly evaluate a derivative for a specific x-value, a second version of the diffierence quotient is sometimes employed, one which contains a constant (like c in the formula below) representing the value at which you are evaluating the derivative.

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

Note: Problems 11.30-11.33 refer to the function $f(x)=7 x^{2}$.
II.30 Use the definition of the derivative to find $f^{\prime}(x)$.

The
three most common ways to indicate a derivative are $f^{\prime}(x), y^{\prime}$, and $d y / d x$.

Apply the general diffierence quotient, as described in Problem 11.29. To do so, first substitute $x+\Delta x$ into $f(x)=7 x^{2}$, then subtract $f(x)=7 x^{2}$ from the result, and finally divide by Δx.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x>0} \frac{7(x+\Delta x)^{2}-7 x^{2}}{\Delta x}
\end{aligned}
$$

Expand the expression $(x+\Delta x)^{2}$. Note that Δx should be considered a single value, not the product $\Delta \cdot x$. Therefore, $(\Delta x)(\Delta x)=(\Delta x)^{2}$, not $\Delta^{2} x^{2}$.

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{7\left(x^{2}+2 x \Delta x+(\Delta x)^{2}\right)-7 x^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{7 x^{2}+14 x \Delta x+7(\Delta x)^{2}-7 x^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{14 x \Delta x+7(\Delta x)^{2}}{\Delta x}
\end{aligned}
$$

Evaluate the limit by factoring.

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x(14 x+7 \Delta x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(14 x+7 \Delta x)
\end{aligned}
$$

Substitute $\Delta x=0$ into the expression to evaluate the limit.

$$
\begin{aligned}
& =14 x+7(0) \\
& =14 x
\end{aligned}
$$

Therefore, if $f(x)=7 x^{2}$, then $f^{\prime}(x)=14 x$.

Note: Problems 11.30-11.33 refer to the function $f(x)=7 x^{2}$.
of the book
Hitchhiker's Guide
to the Galaxy you to the Galaxy you to the Gat the answer
know that "life, the universe,
to
and everything" is 42 . Now you know the 42 . Hon: "If $f(x)=7 x^{2}$, what is $f^{\prime}(3)$?" not to look so disappointed.
you're a fan
of the book know that the answer Now you know the ques
II.3I Calculate $f^{\prime}(3)$.

According to Problem 11.30, $f^{\prime}(x)=14 x$. To evaluate $f^{\prime}(3)$, substitute 3 into the derivative function.

Note: Problems 11.30-11.33 refer to the function $f(x)=7 x^{2}$.
II. 32 Given a is a real number, calculate $f^{\prime}(a-4)$.

Replace the x in the derivative formula with the quantity $(a-4)$.

$$
\begin{aligned}
f^{\prime}(x) & =14 x \\
f^{\prime}(a-4) & =14(a-4) \\
f^{\prime}(a-4) & =14 a-64
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 3} \frac{7\left(x^{2}-9\right)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{7(x+3)(x-3)}{x 3} \\
& =\lim _{x \rightarrow 3} 7(x+3) \\
& =7(3+3) \\
& =42
\end{aligned}
$$

Therefore, $f^{\prime}(3)=42$, a result that matches Problem 11.31.

Note: Problems 11.34-11.36 refer to the function $g(x)=x^{2}-5 x+9$.
II. 34 Use the definition of the derivative to find $g^{\prime}(x)$.

Apply the general difference quotient formula, as demonstrated by Problem 11.30.

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left[(x+\Delta x)^{2}-5(x+\Delta x)+9\right]-\left(x^{2}-5 x+9\right)}{\Delta x}
\end{aligned}
$$

Make sure

 you plug $x+\Delta x$ into both of the x 's in $g(x)$.Simplify the expression, expanding $(x+\Delta x)^{2}$ and distributing -5 and -1 .

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{\left[x^{2}+2 x \Delta x+(\Delta x)^{2}-5 x-5 \Delta x+9\right]-x^{2}+5 x-9}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{x^{2}-x^{2}+2 x \Delta x+(\Delta x)^{2}-5 x+5 x-5 \Delta x+9-9}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{2 x \Delta x+(\Delta x)^{2}-5 \Delta x}{\Delta x}
\end{aligned}
$$

Apply the factoring method to evaluate the limit.

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x(2 x+\Delta x-5)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(2 x+\Delta x-5) \\
& =2 x+0-5 \\
& =2 x-5
\end{aligned}
$$

At
this point in a difference quotient problem, everything inside these parentheses needs to have Δ_{x} in it. If one of your terms is missing a $\Delta x, g o$ back and fix the mistake before you go

If $g(x)=x^{2}-5 x+9$, then $g^{\prime}(x)=2 x-5$.

Note: Problems 11.34-11.36 refer to the function $g(x)=x^{2}-5 x+9$.
II. 35 Evaluate $g^{\prime}(-2)$.

Substitute $x=-2$ into the derivative function from Problem 11.34.

$$
\begin{aligned}
g^{\prime}(x) & =2 x-5 \\
g^{\prime}(-2) & =2(-2)-5 \\
g^{\prime}(-2) & =-9
\end{aligned}
$$

Note: Problems 11.34-11.36 refer to the function $g(x)=x^{2}-5 x+9$.
II.36 Use the specific difference quotient to calculate $g^{\prime}(-2)$ and thereby verify the solution to Problem 11.35.

Use the method described in Problem 11.33, this time using the function $g(x)=x^{2}-5 x+9$ and the constant $c=-2$.

$$
\begin{aligned}
g^{\prime}(c) & =\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c} \\
& =\lim _{x \rightarrow-2} \frac{\left(x^{2}-5 x+9\right)-g(-2)}{x-(-2)} \\
& =\lim _{x \rightarrow-2} \frac{\left(x^{2}-5 x+9\right)-\left[(-2)^{2}-5(-2)+9\right]}{x+2} \\
& =\lim _{x \rightarrow-2} \frac{\left(x^{2}-5 x+9\right)-[4+10+9]}{x+2} \\
& =\lim _{x \rightarrow-2} \frac{x^{2}-5 x-14}{x+2}
\end{aligned}
$$

Use the factoring method to evaluate the limit.

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{(x-7)(x+2)}{x+2} \\
& =\lim _{x \rightarrow-2} \frac{(x-7)(x+2)}{x+2} \\
& =\lim _{x \rightarrow-2}(x-7) \\
& =-2-7 \\
& =-9
\end{aligned}
$$

Therefore, if $g(x)=x^{2}-5 x+9$, then $g^{\prime}(-2)=-9$, which matches the solution to Problem 11.35.

Differentiability

When does a derivative exist?

II.37 The derivative describes what geometric characteristic of a function's graph?

The derivative of $f(x)$ at $x=c$, written $f^{\prime}(c)$, is equal to the slope of the tangent line to $f(x)$ at the point $(c, f(c))$.

II.38 Describe the relationship between the continuity of a function and its diffierentiability.

If a function is diffierentiable at $x=c$, it must also be continuous at $x=c$. The converse is not true: a function continuous at $x=c$ is not necessarily differentiable at $x=c$. See Problem 11.41 for an example of a continuous but nondifferentiable function.

Note: Problems 11.39-11.42 refer to the graph of $f(x)$ in Figure 11-4.
II.39 Given $\lim _{x \rightarrow 6^{+}} \frac{f(x)-f(6)}{x-6}=\lim _{x \rightarrow 6^{-}} \frac{f(x)-f(6)}{x-6}=\frac{1}{2}$, does $f^{\prime}(6)=\frac{1}{2}$? Why or why not?

Figure 11-4
The graph of the piecewise-defined function $f(x)$.
$f(x)= \begin{cases}4, & x \leq 0 \\ x^{2}+1, & 0<x \leq 2 \\ (1 / 2) x+4, & 2<x<4 \\ (1 / 2) x+4, & 4<x<6 \\ x^{2}-(23 / 2) x+40, & x \geq 6\end{cases}$

The given left- and right-hand limits represent the left- and right-hand derivatives of $f(x)$ as x approaches 6 . According to the information given, $\lim _{x \rightarrow 6^{+}} \frac{f(x)-f(6)}{x-6}=\frac{1}{2}$, so the derivative of $y=x^{2}-\frac{23}{2} x+40$ equals $\frac{1}{2}$ when $x=6$. Additionally, $\lim _{x \rightarrow 6^{-}} \frac{f(x)-f(6)}{x-6}=\frac{1}{2}$, so the derivative of $y=\frac{1}{2} x+4$ equals $\frac{1}{2}$ at $x=6$.

Because $f(x)$ is continuous at $x=6$ (which is another matter entirely, but the function is continuous because $\lim _{x \rightarrow 6^{-}} f(x)=\lim _{x \rightarrow 6^{+}} f(x)=\widehat{f(6)=7)}$ and the left- and right-hand derivatives are equal at $x=6, f(x)$ is differentiable at $x=6$; specifically, $f^{\prime}(6)=\frac{1}{2}$.

Do
you recognize the difference quotient from
Problems 11.33 and 11.36? These are the derivatives of the last two pieces of the function, the ones that have 6 in their boundaries.

For a piecewisedefined function to be differentiable at an x-value "break point" (like $x=0,2$, 4, or 6 in Figure (1-4), the left-and right-hand limits as x approaches c must equal $f(c)$, and the left-and righthand derivatives as \times approaches cmust be equal.

Note: Problems 11.39-11.42 refer to the graph off(x) in Figure 11-4.
II.40 Given $\lim _{x \rightarrow 4^{+}} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4^{-}} \frac{f(x)-f(4)}{x-4}=\frac{1}{2}$, does $f^{\prime}(4)=\frac{1}{2}$? Why or why not?

The
derivative of a linear function is the slope of the line.

While the left- and right-hand derivatives of $f(x)$ are equal as x approaches $4, f(x)$ is discontinuous at $x=4$. Though a limit exists $\left(\lim _{x \rightarrow 4} f(x)=6\right), f(4)$ is undefined, which results in point discontinuity. Therefore, $f^{\prime}(4)$ does not exist—in order for a function to be diffierentiable at $x=c$, it must also be continuous at $x=c$ (as stated in Problem 11.38).

Note: Problems 11.39-11.42 refer to the graph of $f(x)$ in Figure 11-4.
II.4I Given $\lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\frac{1}{2}$ and $\lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=4$, evaluate $f^{\prime}(2)$.

Although $f(x)$ is continuous at $x=2$, the left- and right-hand derivatives are not equal as x approaches 2 . Therefore, $f(x)$ is not differentiable at $x=2$ and $f^{\prime}(2)$ does not exist.

Note: Problems 11.39-11.42 refer to the graph of $f(x)$ in Figure 11-4.
II. 42 Given $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=0$ and $\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=0$, evaluate $f^{\prime}(0)$.

Notice that $f(x)$ is discontinuous as x approaches 0 because the right hand limit $\lim _{x \rightarrow 0^{+}} f(x)=1$ does not equal the left-hand limit $\lim _{x \rightarrow 0^{-}} f(x)=f(0)=4$. Although the right- and left-hand derivatives of $f(x)$ are equal as x approaches 0 , the right- and left-hand limits of $f(x)$ are unequal as x approaches 0 , so $f^{\prime}(0)$ does not exist.

Chapter 12 BASIC DIFFERENTIATION METHODS

The four heavy hitters for finding derivatives

Though conceptually gratifying and a fitting culmination of prior limit evaluation techniques (most specifically the factoring method), calculating derivatives by means of the difference quotient is, at best, prohibitively timeconsuming and, at worst, nontrivial. It behooves a student of calculus to embrace procedural algorithms once an underlying concept is understood, as the determination of derivatives is but one of the foundational skills to be learned in this course. Undoubtedly, the investment of time required to truly master archaic limit expressions is not proportional to the worth of such an undertaking.

The difference quotient is only good for calculating easy derivatives. And I mean really, really easy derivatives. If you're trying to find the derivative of x^{2}, the difference quotient is no big deal, but what about x ? Do you really feel like expanding $(x+\Delta x)^{5}$? It doesn't sound like a good time to me. In this chapter, you'll learn to find derivatives without having to resort to the difference quotient.

Different techniques apply in different circumstances, so you'll learn how to differentiate functions that are raised to powers, multiplied by other functions, divided by other functions, and composed with (plugged into) other functions. But before all that, you need to learn how to take derivatives of functions that aren't polynomials. If you have trouble with the problems in the first section of the chapter, flip back to Appendix D-it contains all the important derivative formulas.

Trigonometric, Logarithmic, and Exponential Derivatives

Memorize specific formulas for these functions

12.1 Differentiate with respect to $x: f(x)=\sin x$.

The derivative of the sine function, as well as the derivatives of the other five basic trigonometric functions, are used throughout calculus and should be memorized: $f^{\prime}(x)=\cos x$.
12.2 Differentiate with respect to $x: y=5 \tan \theta$.

The derivative of a function multiplied by a constant is equal to the constant multiplied by the derivative of the function.

$$
\frac{d}{d x}[k \cdot f(x)]=k \cdot \frac{d}{d x}[f(x)]
$$

Multiply the derivative of $\tan \theta$ by 5 .

$$
\begin{aligned}
\frac{d y}{d \theta} & =5 \cdot \frac{d}{d \theta}(\tan \theta) \\
& =5\left(\sec ^{2} \theta\right) \\
& =5 \sec ^{2} \theta
\end{aligned}
$$

12.3 Find the second derivative of $y=\cos x$, with respect to x.

Differentiate both sides of the equation with respect to x. (Note that the derivative of y with respect to y is written $\frac{d y}{d x}$.)

$$
\frac{d y}{d x}=-\sin x
$$

The derivative of $\frac{d y}{d x}$ is written $\frac{d^{2} y}{d x^{2}}$. As explained in Problem 12.2, the derivative of $(-1) \cdot \sin x$ is equal to $(-1) \cdot \frac{d}{d x}(\sin x)$.

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =(-1)\left[\frac{d y}{d x}(\sin x)\right] \\
& =(-1)[\cos x]
\end{aligned}
$$

If $y=\cos x$, then $\frac{d^{2} y}{d x^{2}}=-\cos x$.
12.4 Differentiate with respect to $\theta: y=\sec \theta-\csc \theta$.

The derivative of a diffierence is equal to the diffierence of the derivatives. (The same is true for the sum of derivatives, but is not true for the product or the quotient of derivatives.)

$$
\begin{aligned}
\frac{d y}{d \theta} & =\frac{d}{d \theta}(\sec \theta)-\frac{d}{d \theta}(\csc \theta) \\
& =(\sec \theta \tan \theta)-(-\csc \theta \cot \theta) \\
& =\sec \theta \tan \theta+\csc \theta \cot \theta
\end{aligned}
$$

12.5 Given $g(x)=4^{x}$, find $g^{\prime \prime}(x)$.

The derivative of the exponential function a^{x} is $a^{x}(\ln a)$, the function itself times the natural logarithm of its base.

$$
\begin{aligned}
g^{\prime}(x) & =\left(4^{x}\right) \ln 4 \\
g^{\prime \prime}(x) & =(\ln 4) \cdot \frac{d}{d x}\left(4^{x}\right) \leftarrow \\
& =(\ln 4) \cdot\left(4^{x} \cdot \ln 4\right) \\
& =(\ln 4)^{2} \cdot 4^{x}
\end{aligned}
$$

Take the
derivative of 4^{\times} again while ignoring In 4 (because it's a constant). You'll get the same thing you got the first time: $4^{\times}(\ln 4)$.
12.6 Differentiate with respect to $x: y=4 e^{x}$.

Recall that the derivative of an exponential function is the function itself times the natural logarithm of its base.

$$
\begin{aligned}
\frac{d y}{d x} & =4 \cdot \frac{d}{d x}\left(e^{x}\right) \\
& =4\left(e^{x} \cdot \ln e\right) \\
& =4\left(e^{x} \cdot 1\right) \\
& =4 e^{x}
\end{aligned}
$$

This problem demonstrates an important differentiation formula: $\frac{d}{d x}\left(e^{x}\right)=e^{x} ; e^{x}$ is its own derivative.
12.7 Differentiate with respect to $x: y=\log _{7} x$.

Note that $\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \cdot \ln a}$; the derivative of a logarithmic function is the reciprocal of the logarithmic argument $\left(\frac{1}{x}\right)$ divided by the natural logarithm of the base $(\ln a)$. Therefore, $\frac{d}{d x}\left(\log _{7} x\right)=\frac{1}{x(\ln 7)}$.
12.8 Differentiate with respect to $x: h(x)=\ln x$.

The Power Rule

A shortcut for differentiating x^{n}

12.9 Differentiate with respect to $x: y=5 x^{3}$.

12.10 Differentiate with respect to $x: f(x)=x^{0}$.

The expression x^{0} has an implied coefficient of 1 , so the coefficient of $f^{\prime}(x)$ is $9 \cdot 1=9$.

$$
\begin{aligned}
f^{\prime}(x) & =(9 \cdot 1) x^{9-1} \\
& =9 x^{8}
\end{aligned}
$$

12.II Differentiate with respect to x : $g(x)=-6 x^{-4}$.

Remember to subtract one from the exponent when applying the power rule, even when the exponent is negative. In this problem, x will be raised to the $-4-1=-5$ power.

$$
\begin{aligned}
g^{\prime}(x) & =(-4)(-6) x^{-4-1} \\
& =24 x^{-5} \\
& =\frac{24}{x^{5}}
\end{aligned}
$$

12.12 Differentiate with respect to $w: y=\frac{6}{w}$.

Rewrite the function using a negative exponent.

$$
y=6 \cdot w^{-1}
$$

Apply the power rule. Note that this function is written in terms of w, not x, so the derivative of y is $\frac{d y}{d w}$ instead of $\frac{d y}{d x}$.

$$
\begin{aligned}
\frac{d y}{d w} & =(-1 \cdot 6) w^{-1-1} \\
& =-6 w^{-2} \\
& =-\frac{6}{w^{2}}
\end{aligned}
$$

12.13 Differentiate $f(x)=2$ with respect to x.

Even though $f(x)$ contains only a constant, it can be written with an x-term.
Because $x^{0}=1$, multiplying 2 by x^{0} does not change its value: $f(x)=2 x^{0}$. Apply the power rule.

The domain of $f(x)$ is all real numbers, but the power rule cannot determine the derivative when $x=0$. Consider the graph of $f(x)$, the horizontal line $y=2$. Horizontal lines have a slope of 0 for all real numbers, so $f^{\prime}(x)$-the slope of the tangent line to $f(x)$-equals 0 for all real numbers, including $x=0$.
12.14 Use the power rule to differentiate $f(x)=-6 x$ with respect to x. Generalize the solution to construct a corollary of the power rule concerning the derivatives of linear terms.

Include the implied exponent of 1 when writing the function: $f(x)=-6 x^{1}$. Apply the power rule.

$$
\begin{aligned}
f^{\prime}(x) & =1 \cdot(-6) x^{1-1} \\
& =-6 x^{0} \\
& =-6 \quad \text { if } x \neq 0
\end{aligned}
$$

the derivative, but it stops just short of giving you the whole answer. In both cases, the power rule can't calculate the derivative when $x=0$, so you have to resort to looking at the actual graphs of the functions and figuring out what the slope of the tangent line is when $x=0$.

Therefore, the derivative of a linear function is the slope of the line. Although the power rule leaves $f^{\prime}(x)$ undefined at $x=0$ (because $0^{\circ} \neq 1$), the slope of the line $f(x)=-6 x$ is -6 for all x s, including $x=0$.
12.15 Differentiate $h(x)=a x^{n+1}$ with respect to x, assuming a is a real number.

Apply the power rule.

$$
h^{\prime}(x)=(a+1)(a) x^{(a+1)-1}=\left(a^{2}+a\right) x^{a}
$$

12.16 Differentiate with respect to $x: y=\sqrt[3]{x^{2}}$.

Rewrite the function using a rational exponent.

Apply the power rule.

$$
\frac{d y}{d x}=\left(\frac{2}{3} \cdot 1\right) x^{(2 / 3)-1}
$$

Subtract 1 from the rational exponent: $\frac{2}{3}-1=\frac{2}{3}-\frac{3}{3}=-\frac{1}{3}$.

$$
\begin{aligned}
\frac{d y}{d x} & =\left(\frac{2}{3}\right) x^{-1 / 3} \\
& =\frac{2}{3 x^{1 / 3}}
\end{aligned}
$$

That
means you should get rid of the radical in the denominator.

It is equally correct to write your solution as a radical: $\frac{d y}{d x}=\frac{2}{3 \sqrt[3]{x}}$. However, rational solutions are usually presented in rationalized form.

$$
\frac{2}{3 \sqrt[3]{x}}=\frac{2}{3 \sqrt[3]{x}} \cdot \frac{\sqrt[3]{x^{2}}}{\sqrt[3]{x^{2}}}=\frac{2 \sqrt[3]{x^{2}}}{3 \sqrt[3]{x^{3}}}=\frac{2 \sqrt[3]{x^{2}}}{3 x}
$$

12.17 Differentiate with respect to $t: y=\frac{1}{\sqrt{t}}$.

Recall that 2 is the implied radical index when no other index is specified.

$$
\begin{aligned}
y & =\frac{1}{\sqrt[2]{t^{1}}} \\
& =t^{-1 / 2}
\end{aligned}
$$

Apply the power rule.

$$
\begin{aligned}
\frac{d y}{d t} & =-\frac{1}{2} t^{(-1 / 2)-1} \\
& =-\frac{1}{2} t^{-3 / 2} \\
& =-\frac{1}{2 t^{3 / 2}}
\end{aligned}
$$

12.18 Differentiate with respect to $x: f(x)=\sqrt{x}\left(\sqrt[5]{x^{4}}-\sqrt[7]{x^{3}}\right)$.

Rewrite the radical expressions using rational exponents.

$$
f(x)=x^{1 / 2}\left(x^{4 / 5}-x^{3 / 7}\right)
$$

Distribute $x^{1 / 2}$ through the parentheses.

$$
\begin{aligned}
& =\left(x^{1 / 2}\right)\left(x^{4 / 5}\right)-\left(x^{1 / 2}\right)\left(x^{3 / 7}\right) \\
& =x^{13 / 10}-x^{13 / 14}
\end{aligned}
$$

The derivative of a difference is equal to the difference of the individual derivatives. Calculate those derivatives using the power rule.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{13 / 10}\right)-\frac{d}{d x}\left(x^{13 / 14}\right) \\
& =\frac{13}{10} x^{(13 / 10)-1}-\frac{13}{14} x^{(13 / 14)-1} \\
& =\frac{13}{10} x^{(13 / 10)-(10 / 10)}-\frac{13}{14} x^{(13 / 14)-(14 / 14)} \\
& =\frac{13}{10} x^{3 / 10}-\frac{13}{14} x^{-1 / 14} \\
& =\frac{13}{10} x^{3 / 10}-\frac{13}{14 x^{1 / 14}}
\end{aligned}
$$

The Product and Quotient Rules

Differentiate functions that are multiplied or divided
12.19 Differentiate with respect to $\theta: y=\sin \theta \cos \theta$.

The derivative of a product must be calculated using the product rule, stated below.

$$
\begin{aligned}
& \text { product must be calculated using the product rule, stated } \\
& \frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) \longleftarrow
\end{aligned}
$$

To apply the product rule formula, set $f(\theta)=\sin \theta, g(\theta)=\cos \theta, f^{\prime}(\theta)=\cos \theta$, and $g^{\prime}(\theta)=-\sin \theta$.

$$
\begin{aligned}
\frac{d y}{d \theta} & =f(\theta) \cdot g^{\prime}(\theta)+g(\theta) \cdot f^{\prime}(\theta) \\
& =\sin \theta(-\sin \theta)+(\cos \theta)(\cos \theta) \\
& =\cos ^{2} \theta-\sin ^{2} \theta \\
& =\cos 2 \theta
\end{aligned}
$$

This
comes from the double angle identity $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$.
Look it up in Appendix C or flip back to Problems
8.12 and 8.14 for
examples that use this identity.
12.20 Differentiate with respect to $x: y=2^{x} \cot x$.

Apply the product rule, as described in Problem 12.19. To apply the product rule formula, set $f(x)=2^{x}$ and $g(x)=\cot x$.

$$
\begin{aligned}
\frac{d y}{d x} & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& =2^{x}\left(-\csc ^{2} x\right)+\cot x\left(2^{x} \cdot \ln 2\right) \\
& =-2^{x} \csc ^{2} x+(\ln 2) 2^{x} \cot x
\end{aligned}
$$

12.21 Differentiate with respect to $x: f(x)=2 x^{3} e^{x}-7 x^{2} e^{x}+10 x e^{x}-e^{x}$.

12.22 Problem 12.9 used the power rule to determine that $\frac{d}{d x}\left(5 x^{3}\right)=15 x^{2}$. Use the product rule to verify this result.

Interpret $5 x^{3}$ as the product $f(x) g(x)$, where $f(x)=5$ and $g(x)=x^{3}$.

$$
\begin{aligned}
\frac{d}{d x}(f(x) g(x)) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
\frac{d}{d x}\left(5 x^{3}\right) & =(5) \cdot \frac{d}{d x}\left(x^{3}\right)+\left(x^{3}\right) \cdot \frac{d}{d x}(5) \\
& =5\left(3 x^{2}\right)+x^{3}(0) \\
& =15 x^{2}+0 \\
& =15 x^{2}
\end{aligned}
$$

12.23 Differentiate with respect to $x: y=\frac{\cos x}{3 x}$.

The derivative of the quotient $h(x)=\frac{f(x)}{g(x)}$ is calculated according to the quotient
rule, defined below.

$$
h^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \leftarrow
$$

To apply the quotient rule, set $f(x)=\cos x, g(x)=3 x, f^{\prime}(x)=-\sin x$, and $g^{\prime}(x)=3$.
$\frac{d}{d x}(\cos x)=\frac{3 x \cdot \frac{d}{d x}(\cos x)-(\cos x) \frac{d}{d x}(3 x)}{(3 x)^{2}}=\frac{3 x(-\sin x)-\cos x(3)}{9 x^{2}}=\frac{-3 x \sin x-3 \cos x}{9 x^{2}}$

Reduce the fraction by factoring -3 out of the numerator.

$$
=\frac{-\not \partial(x \sin x+\cos x)}{\not \partial \cdot 3 x^{2}}=-\frac{x \sin x+\cos x}{3 x^{2}}
$$

12.24 Differentiate with respect to $x: y=\frac{\ln x}{x}$.

Use the
formula from Problem 12.23, setting $f(x)=\ln x$ and $g(x)=x$.

$$
\frac{d y}{d x}=\frac{x \cdot \frac{d}{d x}(\ln x)-(\ln x) \frac{d}{d x}(x)}{(x)^{2}}
$$

$$
\begin{aligned}
& =\frac{x\left(\frac{1}{x}\right)<(\ln x)(1)}{x^{2}} \\
& =\frac{\frac{x}{x}-\ln x}{x^{2}}
\end{aligned} \begin{aligned}
& \text { According } \\
& \text { to Problem 12.8, } \\
& \text { the derivative of } \ln \\
& x \text { is } \frac{1}{x} .
\end{aligned}
$$

$$
=\frac{1-\ln x}{x^{2}}
$$

12.25 Differentiate with respect to $x: f(x)=\frac{x^{3}-2 x^{2}-5 x-12}{4 x^{2}-9}$.

Apply the quotient rule to set up the derivative and use the power rule to diffierentiate the individual polynomials.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(4 x^{2}-9\right)\left(3 x^{2}-4 x-5\right)-\left(x^{3}-2 x^{2}-5 x-12\right)(8 x)}{\left(4 x^{2}-9\right)^{2}} \\
& =\frac{12 x^{4}-16 x^{3}-47 x^{2}+36 x+45-\left(8 x^{4}-16 x^{3}-40 x^{2}-96 x\right)}{16 x^{4}-72 x^{2}+81} \\
& =\frac{4 x^{4}-7 x^{2}+132 x+45}{16 x^{4}-72 x^{2}+81}
\end{aligned}
$$

12.26 Verify the trigonometric derivative using the quotient rule: $\frac{d}{d \theta}(\tan \theta)=\sec ^{2} \theta$.

As the problem implies, you must first rewrite $\tan \theta$ as a quotient.

$$
\frac{d}{d \theta}(\tan \theta)=\frac{d}{d \theta}\left(\frac{\sin \theta}{\cos \theta}\right)
$$

Apply the quotient rule.

Note: Problems 12.27-12.29 refer to the functions $f(x)$ and $g(x)$ and their derivatives, $f^{\prime}(x)$ and $g^{\prime}(x)$. All four functions are differentiable on $(-\infty, \infty)$ and selected values are listed in the table below.

x	-2	-1	0	1	2	3
$f(x)$	5	9	6	2	-1	-4
$f^{\prime}(x)$	8	$\frac{1}{2}$	-2	-1	-3	-9
$g(x)$	1	3	-2	5	6	-1
$g^{\prime}(x)$	2	0	-3	12	1	-6

12.27 Evaluate $\frac{d}{d x}(f(x)-5 g(x))$ at $x=1$.

The derivative of $f(x)$ is $f^{\prime}(x)$ and the derivative of $-5 g(x)$ is $-5 g^{\prime}(x)$.

$$
\frac{d}{d x}(f(x)-5 g(x))=f^{\prime}(x)-5 g^{\prime}(x)
$$

Substitute $x=1$ into the expression and use the above table to determine that $f^{\prime}(1)=-1$ and $g^{\prime}(1)=12$.

$$
\begin{aligned}
f^{\prime}(1)-5 g^{\prime}(1) & =(-1)-5(12) \\
& =-1-60 \\
& =-61
\end{aligned}
$$

Note: Problems 12.27-12.29 reference the table of values provided in Problem 12.27.
12.28 Evaluate $(f g)^{\prime}(2)$.

This problem asks you to differentiate $f(x) \cdot g(x)$ and then substitute $x=2$ into your answer. You cannot simply multiply $f^{\prime}(2)$ by $g^{\prime}(2)$-you must apply the product rule.

$$
\begin{aligned}
(f g)^{\prime}(2) & =f(2) \cdot g^{\prime}(2)+g(2) \cdot f^{\prime}(2) \\
& =(-1)(1)+(6)(-3) \\
& =-19
\end{aligned}
$$

Note: Problems 12.27-12.29 reference the table of values provided in Problem 12.27.
I2.29 Evaluate $\left(\frac{g}{f}\right)^{\prime}(-1)$.

As this derivative is the quotient of two functions, it requires the quotient rule.

$$
\begin{aligned}
\left(\frac{g}{f}\right)^{\prime}(-1) & =\frac{f(-1) \cdot g^{\prime}(-1)-g(-1) \cdot f^{\prime}(-1)}{[f(-1)]^{2}} \\
& =\frac{(9)(0)-3(1 / 2)}{(9)^{2}} \\
& =\frac{-3 / 2}{81} \longleftarrow \\
& =-\frac{3}{162} \\
& =-\frac{1}{54}
\end{aligned}
$$

The Chain Rule

Differentiate functions that are plugged into functions

12.30 Assuming $f(x)$ and $g(x)$ are differentiable functions, differentiate $f(g(x))$ with respect to x.

According to the chain rule, the derivative of the composition of functions $f(g(x))$ equals $f^{\prime}(g(x)) \cdot g^{\prime}(x)$. In other words, the derivative of the "outer function" $f(x)$ evaluated at the "inner" function $g(x)$, which is then multiplied by the derivative
 of the inner function $g^{\prime}(x)$.
12.31 Differentiate $y=(2 x-3)^{2}$ using the power rule and then verify the result using the chain rule.

Expand the polynomial using the FOIL method and differentiate.

$$
\begin{aligned}
y & =4 x^{2}-12 x+9 \\
\frac{d y}{d x} & =8 x-12
\end{aligned}
$$

It is helpful to rewrite $y=(2 x-3)^{2}$ as a composition of functions before differentiating it. The linear expression $2 x-3$ is squared, so in essence, you're substituting $2 x-3$ into the function x^{2}. The function being substituted is the "inner" function, $g(x)=2 x-3$, and the function it's substituted into is the "outer" function, $f(x)=x^{2}$. Note that $f(g(x))=f(2 x-3)=(2 x-3)^{2}$. Use the chain rule to calculate the derivative of $f(g(x))$.

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

The derivative of $f(x)=(x)^{2}$ is $f^{\prime}(x)=2(x)$; therefore, the derivative of $f(g(x))=(g(x))^{2}$ equals $2(g(x))$.

$$
\frac{d}{d x}\left[(2 x-3)^{2}\right]=2(g(x)) \cdot g^{\prime}(x)
$$

Substitute $g(x)=2 x-3$ and $g^{\prime}(x)=2$ into the expression.

$$
\frac{d}{d x}\left[(2 x-3)^{2}\right]=2(2 x-3) \cdot 2=(4 x-6) \cdot 2=8 x-12
$$

The power and chain rules produce identical derivatives: $\frac{d}{d x}[f(g(x))]=8 x-12$.
12.32 Diffierentiate with respect to θ and simplify the result: $y=\sqrt{\sec \theta}$.

Rewrite the function using a rational exponent.

$$
y=(\sec \theta)^{1 / 2}
$$

Because the function $\sec \theta$, not just the single variable θ, is raised to a power, you must apply the chain rule. Rewrite the function, indicating the composition within explicitly. Note that the inner function is $g(\theta)=\sec \theta$ and the outer function is $f(\theta)=\theta^{1 / 2}$.

$$
\begin{aligned}
y & =f(g(\theta)) \\
\frac{d y}{d \theta} & =f^{\prime}(g(\theta)) \cdot g^{\prime}(\theta)
\end{aligned}
$$

Differentiate $f(\theta)$ using the power rule: $f^{\prime}(\theta)=\frac{1}{2} \theta^{-1 / 2}$.

$$
\frac{d y}{d \theta}=\frac{1}{2}(g(\theta))^{-1 / 2} \cdot g^{\prime}(\theta)
$$

Substitute $g(\theta)=\sec \theta$ and $g^{\prime}(\theta)=\sec \theta \tan \theta$ into the chain rule formula.

$$
\begin{aligned}
\frac{d y}{d \theta} & =\frac{1}{2}(\sec \theta)^{-1 / 2} \cdot(\sec \theta \tan \theta) \\
& =\frac{\sec \theta \tan \theta}{2(\sec \theta)^{1 / 2}}
\end{aligned}
$$

You can reduce the $\sec \theta$ factors by applying exponential properties:
$\frac{(\sec \theta)^{1}}{(\sec \theta)^{1 / 2}}=(\sec \theta)^{1-(1 / 2)}=(\sec \theta)^{1 / 2}=\sqrt{\sec \theta}$.

$$
\frac{d y}{d \theta}-\frac{\sqrt{\sec \theta} \cdot \tan \theta}{2}
$$

12.33 Differentiate with respect to $x: f(x)=\ln (\sin x)$.

Because a function is substituted into the natural logarithm function instead of a single variable, you must apply the chain rule. Differentiate the outer function $\ln x$, leaving the inner function $\sin x$ inside that derivative. Then multiply by the derivative of the inner function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x) \\
& =\frac{1}{\sin x}(\cos x) \\
& =\frac{\cos x}{\sin x} \\
& =\cot x
\end{aligned}
$$

12.34 Differentiate with respect to $x: g(x)=e^{4 x+1}$.

Because the exponent of e is a function $(4 x+1)$, not a single variable like x, you must apply the chain rule.

$$
\begin{aligned}
g^{\prime}(x) & =e^{4 x+1} \cdot \frac{d}{d x}(4 x+1) \\
& =e^{4 x+1} \cdot 4 \\
& =4 e^{4 x+1}
\end{aligned}
$$

Remember e^{x} is its own derivative, so the derivative of e to some power (in this case $4 x+1$) equals e to that power times the derivative of that power.
12.35 Diffierentiate with respect to $x: y=\csc \left(e^{4 x+1}\right)$.

Apply the chain rule formula such that $f(x)=\csc x$ and $g(x)=e^{4 x+1}$.

$$
\begin{aligned}
\frac{d}{d x}[f(g(x))] & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
\frac{d}{d x}\left[\csc \left(e^{4 x+1}\right)\right] & =-\csc \left(e^{4 x+1}\right) \cot \left(e^{4 x+1}\right) \cdot \frac{d}{d x}\left(e^{4 x+1}\right)
\end{aligned}
$$

According to Problem 12.34, $\frac{d}{d x}\left(e^{4 x+1}\right)=4 e^{4 x+1}$.

$$
\begin{aligned}
& =-\csc \left(e^{4 x+1}\right) \cot \left(e^{4 x+1}\right) \cdot 4 e^{4 x+1} \\
& =-4 e^{4 x+1} \csc \left(e^{4 x+1}\right) \cot \left(e^{4 x+1}\right)
\end{aligned}
$$

12.36 Differentiate with respect to x : $f(g(h(x)))$.

Begin by differentiating the outermost function, leaving everything "inside it" alone, and then multiply by the derivative of the quantity "inside."

$$
\frac{d}{d x}[f(g(h(x)))]=f^{\prime}[g(h(x))] \cdot \frac{d}{d x}[g(h(x))]
$$

Notice that $\frac{d}{d x}[g(h(x))]$ also requires the chain rule.

$$
\frac{d}{d x}[g(h(x))]=g^{\prime}(h(x)) \cdot h^{\prime}(x)
$$

Therefore, $\frac{d}{d x}[f(g(h(x)))]=f^{\prime}[g(h(x))] \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)$.
12.37 Differentiate with respect to $\theta: j(\theta)=-3 \sin \left(\cos \frac{\theta}{2}\right)$.

Apply the method outlined in Problem 12.36; begin by differentiating the outermost function.

$$
j^{\prime}(\theta)=-3 \cos \left(\cos \frac{\theta}{2}\right) \cdot \frac{d}{d \theta}\left[\cos \frac{\theta}{2}\right]
$$

12.38 According to the quotient rule, $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$. Because dividing and multiplying by a reciprocal are equivalent operations, generate the quotient rule formula by differentiating $f(x) \cdot \frac{1}{g(x)}$ with respect to x.

Rewrite $g(x)$ using a negative exponent.

$$
f(x) \cdot \frac{1}{g(x)}=f(x) \cdot[g(x)]^{-1}
$$

Apply the product rule.

$$
\frac{d}{d x}\left(f(x) \cdot \frac{1}{g(x)}\right)=f(x) \cdot \frac{d}{d x}\left[(g(x))^{-1}\right]+[g(x)]^{-1} \cdot \frac{d}{d x}(f(x))
$$

In order to differentiate $[g(x)]^{-1}$, you must apply the chain rule.

$$
=f(x)\left[-\frac{g^{\prime}(x)}{(g(x))^{2}}\right]+[g(x)]^{-1} \cdot f^{\prime}(x)
$$

Rewrite the derivative, eliminating the negative exponent.

$$
\begin{aligned}
& =f(x)\left[-\frac{g^{\prime}(x)}{(g(x))^{2}}\right]+\frac{1}{g(x)} \cdot f^{\prime}(x) \\
& =-\frac{f(x) g^{\prime}(x)}{(g(x))^{2}}+\frac{f^{\prime}(x)}{g(x)}
\end{aligned}
$$

The least common denominator is $(g(x))^{2}$.

$$
\begin{aligned}
& =-\frac{f(x) g^{\prime}(x)}{(g(x))^{2}}+\frac{f^{\prime}(x)}{g(x)} \cdot \frac{g(x)}{g(x)} \\
& =-\frac{f(x) g^{\prime}(x)}{(g(x))^{2}}+\frac{f^{\prime}(x) g(x)}{(g(x))^{2}}
\end{aligned}
$$

According to the commutative property, you can reorder the terms.

$$
\begin{aligned}
& =\frac{f^{\prime}(x) g(x)}{(g(x))^{2}}-\frac{f(x) g^{\prime}(x)}{(g(x))^{2}} \\
& =\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
\end{aligned}
$$

12.39 Differentiate with respect to $x: f(x)=x^{3} \cos 2 x$.

Because $f(x)$ is the product of two functions, you must apply the product rule.

$$
f^{\prime}(x)=x^{3} \cdot \frac{d}{d x}[\cos 2 x]+\cos 2 x \cdot \frac{d}{d x}\left(x^{3}\right)
$$

Use the power rule to differentiate x^{3} and the chain rule to differentiate $\cos 2 x$.

$$
\begin{aligned}
f^{\prime}(x) & =x^{3} \cdot-\sin 2 x \cdot 2+(\cos 2 x)\left(3 x^{2}\right) \\
& =-2 x^{3} \sin 2 x+3 x^{2} \cos 2 x
\end{aligned}
$$

12.40 Verify the solution to Problem 12.39 by differentiating $f(x)=x^{3} \cos 2 x$ using the quotient rule.

You must first rewrite $f(x)$ as a quotient-otherwise, the quotient rule won't apply. To do so, utilize a reciprocal identity, rewriting $\cos 2 x$ as $\frac{1}{\sec 2 x}$.

$$
\begin{aligned}
f(x) & =x^{3} \cdot \frac{1}{\sec 2 x} \\
& =\frac{x^{3}}{\sec 2 x}
\end{aligned}
$$

Apply the quotient rule.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\sec 2 x \cdot \frac{d}{d x}\left(x^{3}\right)-x^{3} \cdot \frac{d}{d x}(\sec 2 x)}{(\sec 2 x)^{2}} \\
& =\frac{\sec 2 x \cdot 3 x^{2}-x^{3} \cdot \sec 2 x \tan 2 x \cdot 2}{\sec ^{2} 2 x} \\
& =\frac{3 x^{2} \sec 2 x-2 x^{3} \sec 2 x \tan 2 x}{\sec ^{2} 2 x}
\end{aligned}
$$

Factor sec $2 x$ out of the numerator and reduce the fraction.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\sec 2 x\left[3 x^{2}-2 x^{3} \tan 2 x\right]}{\sec 2 x \cdot \sec 2 x} \\
& =\frac{3 x^{2}-2 x^{3} \tan 2 x}{\sec 2 x}
\end{aligned}
$$

Write the derivative as two separate fractions, each with denominator $\sec x$.

$$
f^{\prime}(x)=\frac{3 x^{2}}{\sec 2 x}-\frac{2 x^{3} \tan 2 x}{\sec 2 x}
$$

Rewrite the function in terms of sine and $\operatorname{cosine}: \frac{1}{\sec 2 x}=\cos 2 x$ and $\tan 2 x=\frac{\sin 2 x}{\cos 2 x}$.

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}\left(\frac{1}{\sec 2 x}\right)-2 x^{3} \tan 2 x\left(\frac{1}{\sec 2 x}\right) \\
& =\left(3 x^{2} \cos 2 x\right)-\left[2 x^{3} \cdot \frac{\sin 2 x}{\cos 2 x} \cdot(\cos 2 x)\right] \\
& =\left[3 x^{2} \cos 2 x\right]-\left[\frac{2 x^{3} \cdot \sin 2 x \cos 2 x}{\cos 2 x}\right] \\
& =3 x^{2} \cos 2 x-2 x^{3} \sin 2 x
\end{aligned}
$$

12.41 Diffierentiate with respect to $x: j(x)=\left(\frac{x}{e^{x}}\right) \ln x$.

Because $j(x)$ is a product of functions, you must apply the product rule to diffierentiate it.

$$
j^{\prime}(x)=\left(\frac{x}{e^{x}}\right) \cdot \frac{d}{d x}(\ln x)+(\ln x) \cdot \frac{d}{d x}\left(\frac{x}{e^{x}}\right)
$$

The derivative of $\frac{x}{e^{x}}$ requires the quotient rule: $\frac{d}{d x}\left(\frac{x}{e^{x}}\right)=\frac{1-x}{e^{x}}$.

$$
\begin{aligned}
j^{\prime}(x) & =\left[\left(\frac{\not x}{e^{x}}\right)\left(\frac{1}{\not x}\right)\right]+\left[(\ln x)\left(\frac{1-x}{e^{x}}\right)\right] \\
& =\frac{1}{e^{x}}+\frac{(\ln x)(1-x)}{e^{x}} \\
& =\frac{1+\ln x-x \ln x}{e^{x}}
\end{aligned}
$$

12.42 Differentiate with respect to $\theta: y=(\sin 3 \theta \tan 3 \theta)^{12}$.

Here's

how you get that derivative:

$$
\frac{d}{d x}\left(\frac{x}{e^{x}}\right)=\frac{e^{x} \cdot 1-x \cdot e^{x}}{\left(e^{x}\right)^{2}}
$$

$$
=\frac{e^{x}-x e^{x}}{\left(e^{x}\right)\left(e^{x}\right)}
$$

$$
=\frac{e^{y}(1-x)}{\left(e^{x}\right)\left(e^{x}\right)}
$$

$$
=\frac{1-x}{e^{x}}
$$

Apply the chain rule such that θ^{12} is the "outer" function and $\sin 3 \theta \tan 3 \theta$ is the "inner" function.

$$
\frac{d y}{d \theta}=12(\sin 3 \theta \tan 3 \theta)^{11} \cdot \frac{d}{d \theta}(\sin 3 \theta \tan 3 \theta)
$$

Apply the product rule to calculate $\frac{d}{d \theta}(\sin 3 \theta \tan 3 \theta)$.

$$
=12(\sin 3 \theta \tan 3 \theta)^{11} \cdot\left[\sin 3 \theta \cdot \frac{d}{d \theta}(\tan 3 \theta)+\tan 3 \theta \cdot \frac{d}{d \theta}(\sin 3 \theta)\right]
$$

Differentiating $\tan 3 \theta$ and $\sin 3 \theta$ requires the chain rule.

$$
\begin{aligned}
& =12(\sin 3 \theta \tan 3 \theta)^{11} \cdot\left[\sin 3 \theta \cdot \sec ^{2} 3 \theta \cdot \frac{d}{d \theta}(3 \theta)+\tan 3 \theta \cdot \cos 3 \theta \cdot \frac{d}{d \theta}(3 \theta)\right] \\
& =12(\sin 3 \theta \tan 3 \theta)^{11} \cdot\left[\sin 3 \theta \cdot\left(\sec ^{2} 3 \theta\right) \cdot 3+\tan 3 \theta \cdot(\cos 3 \theta) \cdot 3\right] \\
& =12(\sin 3 \theta \tan 3 \theta)^{11} \cdot\left(3 \sin 3 \theta \sec ^{2} 3 \theta+3 \tan 3 \theta \cos 3 \theta\right)
\end{aligned}
$$

Note: Problems 12.43-12.44 reference the functions $f(x)$ and $g(x)$ and their derivatives, $f^{\prime}(x)$ and $g^{\prime}(x)$. All four of the functions are continuous and differentiable on $(-\infty, \infty)$, and a few of their values are listed in the table below.

x	-2	-1	0	1	2	3
$f(x)$	5	9	6	2	-1	-4
$f^{\prime}(x)$	8	$\frac{1}{2}$	-2	-1	-3	-9
$g(x)$	1	3	-2	5	6	-1
$g^{\prime}(x)$	2	0	-3	12	1	-6

12.43 Evaluate $(f \circ g)^{\prime}(-2)$.

Note: Problems 12.43-12.44 reference the table of values provided in Problem 12.43.
12.44 If $h(x)=\frac{e^{f(x)}}{\ln (g(x))}$, evaluate $h^{\prime}(2)$ accurate to five decimal places.

Because $h(x)$ is a quotient, you must apply the quotient rule.

$$
h^{\prime}(x)=\frac{\ln (g(x)) \cdot \frac{d}{d x}\left(e^{f(x)}\right)-e^{f(x)} \cdot \frac{d}{d x}[\ln (g(x))]}{[\ln (g(x))]^{2}}
$$

Differentiating $e^{f(x)}$ and $\ln (g(x))$ requires the chain rule.

$$
h^{\prime}(x)=\frac{\ln (g(x)) \cdot e^{f(x)} \cdot f^{\prime}(x)-e^{f(x)} \cdot \frac{1}{g(x)} \cdot g^{\prime}(x)}{[\ln (g(x))]^{2}}
$$

Evaluate the derivative at $x=2$.

$$
h^{\prime}(2)=\frac{\ln (g(2)) \cdot e^{f(2)} \cdot f^{\prime}(2)-e^{f(2)} \cdot \frac{g^{\prime}(2)}{g(2)}}{[\ln (g(2))]^{2}}
$$

Evaluate the functions using the table of values from Problem 12.43.

$$
\begin{aligned}
& =\frac{(\ln 6)\left(e^{-1}\right)(-3)-\left(e^{-1}\right)\left(\frac{1}{6}\right)}{(\ln 6)^{2}} \\
& =\frac{\frac{-3 \ln 6}{e}-\frac{1}{6 e}}{(\ln 6)^{2}}
\end{aligned}
$$

Use a calculator to determine that $h^{\prime}(2) \approx-0.63505$.

Chapter 13 DERIVATIVES AND FUNCTION GRAPHS

What signs of derivatives tell you about graphs

Once you've mastered the procedural skills required to differentiate, your next objective is to explore uses and applications of derivatives. The most rudimentary and immediately gratifying application is the correspondence between a function's behavior and the signs of its first and second derivatives. Specifically, this chapter investigates how the signs of $f^{\prime}(x)$ describe the direction of $f(x)$ and how the signs of $f^{\prime \prime}(x)$ describe the concavity of $f(x)$.

In a nutshell, you'll be finding first and second derivatives of a function, figuring out whether those derivatives are positive or negative for various values of x, and then learning why the heck that even matters. However, before you can delve into any of that, you need to remember how to find critical numbers-a skill that (believe it or not) first popped up in the review section of the book, in Chapter 3 .

Critical Numbers

Numbers that break up wiggle graphs

13.1 If a is a critical number of $f(x)$, evaluate $f(a)$.

If a is a critical number of $f(x)$, then either a is a zero of the function (meaning $f(a)=0$) or the function is discontinuous at a (meaning $f(a)$ does not exist).
13.2 Identify the critical numbers of $y=2 x^{2}-21 x+27$.

All polynomial functions, including this quadratic, are continuous over their entire domains; the domain of this function is $(-\infty, \infty)$. Therefore, the only critical numbers will be its roots. Identify those roots by setting $y=0$ and solving the equation.

$$
\begin{aligned}
& 2 x^{2}-21 x+27=0 \\
& (2 x-3)(x-9)=0 \\
& 2 x-3=0 \\
& x=\frac{3}{2} \quad \text { or } \quad \begin{array}{l}
x-9=0 \\
x=9
\end{array}
\end{aligned}
$$

The critical numbers of $y=2 x^{2}-21 x+27$ are $x=\frac{3}{2}$ and $x=9$.
13.3 Identify the critical numbers of $f(x)=x^{2} \cos x$.

Note that $f(x)$ is the product of two functions (one polynomial and one trigonometric), both of which are continuous over their entire domains. Furthermore, x^{2} and $\cos x$ are both defined on $(-\infty, \infty)$, so $f(x)$ is everywhere continuous. Therefore, the only critical numbers of $f(x)$ are its roots.

$$
\begin{array}{rlrl}
& x^{2} \cos x=0 \\
x^{2} & =0 & & \\
\sqrt{x^{2}} & = \pm \sqrt{0} & \text { or } & \cos x
\end{array}=0
$$

Therefore, $f(x)$ has infinitely many critical numbers: $x=0$ and $x=\cdots-\frac{5 \pi}{2},-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2},-\frac{3 \pi}{2}, \frac{5 \pi}{2}, \cdots$.
13.4 Identify the critical numbers of $h(x)=\frac{x^{2}-9}{9 x^{2}+30 x+25}$.

Zeroes of the numerator are roots of the function, and zeroes of the denominator represent undefined values of $h(x)$. In both cases, those x-values are critical numbers, so set the numerator and denominator equal to 0 and solve.

$$
\frac{x^{2}-9}{9 x^{2}+30 x+25}=0
$$

The numerator is a difference of perfect squares, and the denominator is, itself, a perfect square. Factor both and set all three unique factors equal to 0 . (No need to set the repeated factor in the denominator equal to zero twice-you'll get the same double root both times.)

$$
\begin{aligned}
& \frac{(x+3)(x-3)}{(3 x+5)(3 x+5)}=0 \\
& \begin{aligned}
x+3 & =0 \\
x & =-3
\end{aligned} \text { or } \begin{aligned}
x-3 & =0 \\
x & =3
\end{aligned} \text { or } \begin{array}{rlrl}
3 x+5 & =0 \\
3 x & =-5 \\
& & & x
\end{array}
\end{aligned}
$$

The critical numbers of $h(x)$ are $x=-3, x=-\frac{5}{3}$, and $x=3$.
13.5 Identify the critical numbers of $g(x)=\frac{x-1}{\ln x}$.

Use the method described in Problem 13.4: Set the numerator and denominator of a rational function equal to 0 and solve both equations to determine the critical numbers.

$$
\begin{array}{rlrlrl}
x-1 & =0 & & \ln x & =0 \\
x & =1
\end{array} \text { or } \quad e^{\ln x}=e^{0} \begin{aligned}
x & =e^{0}=1
\end{aligned}
$$

The only critical number of $g(x)$ is $x=1$. Certainly, $x=1$ cannot be both a root and an undefined value. (If $x=1$ is a root then $g(1)=0$, and 0 is a real number, not an undefined value.) This problem represents an indeterminate case: $g(1)=\frac{0}{0}$.

Previous examples suggest that indeterminate values represent "holes" in the function-point discontinuity at which a limit exists. Regardless, the function is undefined (and therefore discontinuous) at this x-value, so $x=1$ is a critical number of $g(x)$.

13.6 Given the function $f(x)=(x+4)(2 x-9)$, create a new function $\hat{f}(x)$ such that $\hat{f}(x)$ has three critical numbers: $x=-4, x=\frac{9}{2}$, and $x=8$, and is equivalent to $f(x)$ at all $x \neq 8$.

Consider the function $\hat{f}(x)=\frac{(x+4)(2 x-9)(x-8)}{x-8}$, the rational function defined such that $\hat{f}(x)=f(x)\left(\frac{x-8}{x-8}\right)$. Multiplying $f(x)$ by $\frac{x-8}{x-8}$ will not change its function values, since $x-8$ divided by itself, like any nonzero quantity divided by itself, equals 1 , and $f(x) \cdot 1=f(x)$. However, the expression $\frac{x-8}{x-8}$ does carry with it one restriction: x can no longer equal 8 . Therefore, $\hat{f}(x)$ is equivalent to $f(x)$ for every real number $x \neq 8$, including matching critical numbers $x=-4$ and $x=\frac{9}{2}$. However, since $\hat{f}(x)$ is undefined at $x=8$, that x-value is a critical number unique to $\hat{f}(x)$.
13.7 Identify the critical numbers of the function $j(x)$, graphed in Figure 13-1.

Figure 13-1
The graph of a function $j(x)$.

The critical numbers of a function are the values at which the function equals 0 or is discontinuous. A function equals 0 at its roots, which are also the x-intercepts of its graph. Because $j(x)$ intersects the x-axis at $x=-5,-3$, and 4 , those are critical numbers of $j(x)$. A function is discontinuous at any holes, breaks, or vertical asymptotes on the graph, so $j(x)$ also has critical numbers $x=-4,1$, and $x=2$. Therefore, $j(x)$ has a total of six critical numbers: $x=-5,-4,-3,1,2$, and 4 .

Signs of the First Derivative

Use wiggle graphs to determine function direction

Note: Problems 13.8-13.11 refer to the graph of $f(x)$ in Figure 13-2.
13.8 Sketch the tangent lines to $f(x)$ at every integer value of x on the interval [$-8,8$].

Figure 13-2
The graph of a function $f(x)$ that's continuous and differentiable over its

This is not "busywork"there's a point to this, so do it carefully. Pay close attention to the signs of the tangent slopes. Do the lines slope up to the right or down to the
left?

This problem requires you to draw 17 tangent lines, all of which are illustrated in Figure 13-3.

Figure 13-3 The tangent lines to $f(x)$ at $x=-8,-7,-6, \cdots, 6,7,8$.

Note: Problems 13.8-13.11 refer to the graph of $f(x)$ in Figure 13-2.
13.9 On what intervals do the tangent lines drawn in Problem 13.8 have positive slopes? What tangent lines have negative slopes? 0 slopes?

A line with a positive slope increases in height as x increases. In other words, as you travel from left to right, a line with a positive slope heads in the positive y direction. Notice that the tangent lines at $x=-5,-4,-3,-2,4$, and 5 have positive slopes.

Lines with negative slopes slant downward as you travel along the line from left to right. In Problem 13.8, the tangent lines at $x=-9,-8,-7,0,1,2,7$, and 8 have negative slopes. Horizontal lines have a slope of 0 . Therefore, the tangent lines at $x=-6,-1,3$, and 6 have slopes equal to 0 .

Note: Problems 13.8-13.11 refer to the graph of $f(x)$ in Figure 13-2.

13.10 Based on your answers to Problems 13.8 and 13.9, describe the relationship between the direction of $f(x)$ and the sign of its derivative as you travel along the x-axis from $x=-9$ to $x=9$.

Recall that the derivative is defined as the slope of the tangent line to a curve.

Travel along the graph of $f(x)$ from left to right. Whenever $f(x)$ is increasing at an x-value, the tangent line at that x-value has a positive slope. On the other hand, whenever $f(x)$ is decreasing at an x-value, the slope of the tangent line (i.e., derivative) is negative there. The slope of the tangent line to $f(x)$ equals 0 at a relative maximum or a relative minimum, when the graph changes from increasing to decreasing or from decreasing to increasing.

Note: Problems 13.8-13.11 refer to the graph of $f(x)$ in Figure 13-2.
13.II. Draw a sign graph for $f^{\prime}(x)$.

Figure 13-4 The four critical numbers off $f^{\prime}(x)$ split the number line into five distinct intervals.

The critical numbers act as boundaries that define these intervals: $(-9,-6)$, $(-6,-1),(-1,3),(3,6)$, and $(6,9)$. The sign of a function can only change at one of its critical numbers (though, at some critical numbers, the sign will not change).

According to Problem 13.9, the slopes of the tangent lines to $f(x)$ (i.e., the values of $f^{\prime}(x)$) are positive on $(-6,-1)$ and $(3,6)$. Similarly, $f^{\prime}(x)$ is negative on the intervals $(-9,-6),(-1,3)$, and $(6,9)$. Write the sign that describes $f^{\prime}(x)$, either " + " or "-," above each interval to complete the sign graph, as illustrated by Figure 13-5.

Figure 13-5 The sign graph of $f^{\prime}(x)$.

Note: Problems 13.12-13.13 refer to the function $f(x)=3 x^{2}-4 x+2$.
13.12 Construct the sign graph of $f^{\prime}(x)$.

To create the sign graph for $f^{\prime}(x)$, you must first find the derivative: $f^{\prime}(x)=6 x-4$. Now set the derivative equal to 0 and solve to determine its critical number.

$$
\begin{aligned}
6 x-4 & =0 \\
6 x & =4 \\
x & =\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

As Figure 13-6 illustrates, this critical number splits the number line into two intervals: $\left(-\infty, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \infty\right)$. To determine the sign of each interval, choose one "test value" from each interval and substitute them into $f^{\prime}(x)$. Note that $x=0$ belongs to the left interval and $x=1$ belongs to the right interval.

$$
f^{\prime}(0)=6(0)-4=-4 \quad f^{\prime}(1)=6(1)-4=2
$$

Because $f^{\prime}(x)<0$ for $x=0$, the left interval should be negative; similarly, the right interval $\left(\frac{2}{3}, \infty\right)$ is positive because $f^{\prime}(x)>0$ for $x=1$. The completed sign graph appears in Figure 13-6.

Even though you plug only one test value from each interval into $f^{\prime}(x)$, all the other values in each interval will give you the same sign, + or -, that the test value did.

Figure 13-6 The sign graph of $f^{\prime}(x)=6 x-4$.

Note: Problems 13.12-13.13 refer to the function $f(x)=3 x^{2}-4 x+2$.
13.13 On what interval(s) is $f(x)$ increasing?

According to Problem 13.11, $f(x)$ is increasing whenever its derivative is positive. Problem 13.12 indicates that $f^{\prime}(x)>0$ on the interval $\left(\frac{2}{3}, \infty\right)$. Therefore, $f(x)$ is increasing on the interval $\left(\frac{2}{3}, \infty\right)$.

Note: Problems 13.14-13.15 reference the graph of $g^{\prime}(x)$ in Figure 13-7.
13.14 On what interval(s) is $g(x)$ increasing?

Figure 13-7
The graph of $g^{\prime}(x)$, the derivative of some function $g(x)$.

In other words, the intervals where $g^{\prime}(x)$ is above the x-axis.

This question does not ask where the graph is increasing, as the graph represents the derivative of $g(x)$, not $g(x)$ itself. Instead, note where the graph of $g^{\prime}(x)$ is positive, as those intervals correspond to the intervals upon which $g(x)$ increases.

Since $g^{\prime}(x)$ is positive on $(-\infty,-4) \cup(0,5), g(x)$ is increasing on those intervals.

Note: Problems 13.14-13.15 reference the graph of $g^{\prime}(x)$ in Figure 13-7.
13.15 Identify the relative extrema of $g(x)$.
humps in a function graph. Relative max points are the highest peaks of mountains, and minimums are the lowest points of valleys.

Relative extrema are

A function has a relative extreme point (i.e., a relative maximum or a relative \rightarrow minimum) when a function changes direction. Consider this: if a function changes from increasing to decreasing at $x=a$, then its graph will reach a peak at $x=a$. While this may not represent the absolute maximum value of the function, it is the highest function value reached by any x close to a.

Relative extrema can only occur at a function's critical numbers, and are indicated by a sign change in the derivative of the function.

Notice that at $x=-4$ and again at $x=5$, the graph of $g(x)$ changes from positive to negative-it crosses from above to below the x-axis. Therefore, $g(x)$ has relative maximums at $x=-4$ and $x=5$, as $g(x)$ changes from increasing to decreasing at those x-values. At $x=0, g(x)$ has a relative minimum, because its derivative changes from negative to positive at $x=0$ (indicating that the direction of $g(x)$ changes from decreasing to increasing there).
13.16 If Figure $13-8$ is the graph of $f^{\prime}(x)$, the derivative of some continuous and diffierentiable function $f(x)$, at what x-value(s) will $f(x)$ reach a relative minimum? A relative maximum?

Figure 13-8
The graph of $f^{\prime}(x)$, the derivative of some function $f(x)$.

The graph of $f^{\prime}(x)$ intersects the x-axis at $x=-1$ and $x=4$, so those are the critical numbers of $f^{\prime}(x)$. Note that $f^{\prime}(x)$ changes from negative to positive as its graph crosses the x-axis at $x=-1$. Therefore, $f(x)$ has a relative minimum at $x=-1$, as it will change from decreasing to increasing there. That is the only relative extreme point for $f(x)$. At $x=4$, the only other critical number of $f^{\prime}(x)$, the derivative does not change sign-it is positive both before and after $x=4$. Therefore, $f(x)$ has no relative maximum points.
13.17 Find and classify the relative extrema of $g(x)=4 x^{3}-15 x^{2}+12 x-8$.

Diffierentiate $g(x)$.

$$
g^{\prime}(x)=12 x^{2}-30 x+12
$$

This derivative is defined for all real numbers, so its only critical numbers are its roots. Set $g^{\prime}(x)=0$ and solve.

$$
\begin{aligned}
\frac{12 x^{2}-30 x+12}{6} & =\frac{0}{6} \\
2 x^{2}-5 x+2 & =0 \\
(2 x-1)(x-2) & =0 \\
x & =\frac{1}{2}, 2
\end{aligned}
$$

Construct a sign graph for $g^{\prime}(x)$, as illustrated by Figure 13-9.

Figure 13-9 The sign graph of $g^{\prime}(x)=12 x^{2}-30 x+12$.
According to the sign graph, $g(x)$ changes from increasing to decreasing at $x=\frac{1}{2}$, resulting in a relative maximum, and $g(x)$ changes from decreasing to increasing at $x=2$, resulting in a relative minimum.
13.18 Find and classify the relative extrema of $h(x)=-8 x^{3}+11 x^{2}+35 x-19$.

Differentiate $h(x)$.

$$
h^{\prime}(x)=-24 x^{2}+22 x+35
$$

This quadratic is defined for all real numbers, so its only critical points are its roots. Set $h^{\prime}(x)=0$ and solve using the quadratic formula.

$$
\begin{aligned}
& -24 x^{2}+22 x+35=0 \\
& x=\frac{-22 \pm \sqrt{22^{2}-4(-24)(35)}}{2(-24)} \\
& x=\frac{-22 \pm \sqrt{3,844}}{-48} \\
& x=\frac{-22 \pm 62}{-48} \\
& x=\frac{-84}{-48} \text { or } \frac{40}{-48} \\
& x=\frac{7}{4} \text { or }-\frac{5}{6}
\end{aligned}
$$

Construct a sign graph for $h^{\prime}(x)$, as illustrated by Figure 13-10.

Figure 13-10 The sign graph of $h^{\prime}(x)=-24 x^{2}+22 x-35$.

According to Figure 13-10, $h(x)$ changes from decreasing to increasing at $x=-\frac{5}{6}$, resulting in a relative minimum, and changes from increasing to decreasing at $x=\frac{7}{4}$, resulting in a relative maximum.

Signs of the Second Derivative

points of inflection and concavity

Note: Problems 13.19-13.20 refer to the function $g(x)=18 x^{3}-39 x^{2}+8 x+16$.
13.19 Generate the sign graph of $g^{\prime \prime}(x)$.

Use the method described in Problem 13.12, although you should use the second derivative, $g^{\prime \prime}(x)$, instead of $g^{\prime}(x)$.

$$
\begin{aligned}
& g^{\prime}(x)=54 x^{2}-78 x+8 \\
& g^{\prime \prime}(x)=108 x-78
\end{aligned}
$$

Set $g^{\prime \prime}(x)$ equal to 0 and solve for x.

$$
\begin{aligned}
108 x-78 & =0 \\
108 x & =78 \\
x & =\frac{78}{108} \\
x & =\frac{13}{18}
\end{aligned}
$$

Divide the top and bottom by 6 .

The critical number divides the number line into two intervals: $\left(-\infty, \frac{13}{18}\right)$ and $\left(\frac{13}{18}, \infty\right)$. Choose one test value from each interval (such as $x=0$ and $x=1$, respectively) to determine the sign of $g^{\prime \prime}(x)$ for each interval.

$$
g^{\prime \prime}(0)=108(0)-78=-78 \quad g^{\prime \prime}(1)=108(1)-78=30
$$

Therefore, $g^{\prime \prime}(x)<0$ on $\left(-\infty, \frac{13}{18}\right)$ and $g^{\prime \prime}(x)>0$ on $\left(\frac{13}{18}, \infty\right)$, as illustrated by the sign graph in Figure 13-11.

Figure 13-11 The sign graph of $g^{\prime \prime}(x)=108 x-78$.
13.20 At what x-value(s) does $g(x)$ have an inflection point(s)?

If the sign of $g^{\prime \prime}(x)$ —and therefore the concavity of $g^{\prime \prime}(x)$ —changes at one of its critical numbers, that number represents an inflection point on the graph of $g(x)$. In Figure 13-11, the sign of $g^{\prime \prime}(x)$ changes from negative to positive at $x=\frac{13}{18}$, indicating an inflection point of $g(x)$ occurs at $x=\frac{13}{18}$.

Note: Problems 13.21-13.23 refer to the function $f(x)=\sin 3 x$.
13.21 Identify the x-values of the inflection points of $f(x)$ on the interval $\left[\frac{\pi}{6}, \frac{5 \pi}{4}\right]$.

Find $f^{\prime \prime}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=3 \cos 3 x \\
& f^{\prime \prime}(x)=-9 \sin 3 x
\end{aligned}
$$

Identify the critical numbers of $f^{\prime \prime}(x)$ by setting it equal to 0 and solving for x.
Problem 8.31 if you've not sure how to solve trig equations containing $3 x$ instead of just x. That equation looks a lot like this one.

$$
\xrightarrow{ }-9
$$

$$
\begin{aligned}
-9 \sin 3 x & =0 \\
\sin 3 x & =0 \\
3 x & =0, \pi, 2 \pi, 3 \pi, 4 \pi, 5 \pi \\
x & =0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

Eliminate x-values outside of $\left[\frac{\pi}{6},-\frac{5 \pi}{4}\right]$.

$$
x=\frac{\pi}{3}, \frac{2 \pi}{3}, \pi
$$

Choose test values from the intervals $\left(\frac{\pi}{6}, \frac{\pi}{3}\right),\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right),\left(\frac{2 \pi}{3}, \pi\right)$, and $\left(\pi, \frac{5 \pi}{4}\right)$ to generate the sign graph in Figure 13-12.

Figure 13-12 The sign graph of $f^{\prime \prime}(x)=-9 \sin 3 x$ over the interval $\left[\frac{\pi}{6}, \frac{5 \pi}{4}\right]$.

Because the sign of $f^{\prime \prime}(x)$ changes at all three critical numbers, each represents the location of an inflection point of $f(x): x=\frac{\pi}{3}, \frac{2 \pi}{3}, \pi$.

Note: Problems 13.21-13.23 refer to the function $f(x)=\sin 3 x$.
13.22 Based on the sign graph generated by Problem 13.21, indicate the intervals on which $f(x)$ is concave down.

A function is concave down on the same intervals its second derivative is negative. According to Figure $13-12, f^{\prime \prime}(x)$ is negative on $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ and $\left(\frac{2 \pi}{3}, \pi\right)$, so $f(x)$ is concave down on those intervals.

Note: Problems 13.21-13.23 refer to the function $f(x)=\sin 3 x$.
13.23 Based on the sign graph generated by Problem 13.21, indicate the intervals on which $f^{\prime}(x)$ is increasing.

Although $f^{\prime \prime}(x)$ is the second derivative of $f(x)$, note that it is also the first derivative of $f^{\prime}(x)$. Therefore, the sign of $f^{\prime \prime}(x)$ also describes the direction of $f^{\prime}(x)$. According to its sign graph, $f^{\prime \prime}(x)$ is positive on the intervals $\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$ and $\left(\pi, \frac{5 \pi}{4}\right)$, so $f^{\prime}(x)$ must be increasing there.

Note: Problems 13.24-13.25 reference the graph of $\boldsymbol{h}^{\prime}(x)$ in Figure 13-13.
13.24 Identify the x-values at which the relative maximum(s) of $h(x)$ occur.

Figure 13-13
The graph of $h^{\prime}(x)$, the first derivative of some function $h(x)$ defined on the interval $[-9, \infty)$.

Just like the signs of $f^{\prime}(x)$ describe the direction of $f(x)$, the signs of $f^{\prime \prime}(x)$ describe the
direction of $f^{\prime}(x)$.

$$
0
$$

Relative extrema of $h(x)$ occur when $h^{\prime}(x)$ changes sign at one or more critical numbers. The function $h^{\prime}(x)$ has critical numbers at its x-intercepts ($x=-7$ and $>_{x}=2$) and wherever it is undefined; however, $h^{\prime}(x)$ is continuous and therefore defined over its entire domain $[-9, \infty)$.

Note that $h^{\prime}(x)$ is positive (above the x-axis) on the interval $(-9,-7)$ only; it then crosses the x-axis and is nonpositive for $x>-7$. Therefore, $h(x)$ changes from increasing to decreasing at $x=-7$, indicating a relative maximum. (Although the graph of $h^{\prime}(x)$ intersects the x-axis at $x=2$ it does not cross the axis, so there is no sign change at $x=2$ and no relative maximum or minimum point occurs there.)

Note: Problems 13.24-13.25 reference the graph of $\boldsymbol{h}^{\prime}(x)$ in Figure 13-13.
13.25 On what interval(s) is $h(x)$ concave up?

If you've confused, Problem 13.21 explains why that's true.

The function $h(x)$ is concave up wherever its second derivative, $h^{\prime \prime}(x)$, is positive. The sign of $h^{\prime \prime}(x)$ also describes the direction of $h^{\prime}(x)$. Because $h^{\prime}(x)$ is increasing on the intervals $(-9,-8)$ and $(-4,2), h^{\prime \prime}(x)$ is positive on those intervals, and therefore $h(x)$ is concave up on those intervals as well.

Note: Problems 13.26-13.28 refer to the graph of $f^{\prime \prime}(x)$ in Figure 13-14.
13.26 On what interval(s) is the graph of $f(x)$ concave down?

Figure 13-14
The graph of $f^{\prime \prime}(x)$, the second derivative of some function $f(x)$.

The graph of $f(x)$ is concave down on the same intervals that $f^{\prime \prime}(x)$ is negative (i.e., below the x-axis). Therefore, $f(x)$ is concave down on $(-\infty,-3) \cup(1, \infty)$.

Note: Problems 13.26-13.28 refer to the graph of $f^{\prime \prime}(x)$ in Figure 13-14.
13.27 Which is greater: $f^{\prime}(-2)$ or $f^{\prime}(0)$?

13.28 Identify and classify the relative extrema of $f^{\prime}(x)$.

The relative extrema of a function can only occur at the critical numbers of its derivative. The only critical numbers of $f^{\prime \prime}(x)$ are its x-intercepts: $x=-3$ and $x=1$. $\stackrel{\rightharpoonup}{\leftarrow}$
Because $f^{\prime \prime}(x)$ changes from negative to positive at $x=-3, f^{\prime}(x)$ changes from decreasing to increasing, indicating a relative minimum. Additionally, $f^{\prime \prime}(x)$ changes from positive to negative at $x=1$, so $f^{\prime}(x)$ changes from increasing to decreasing there, indicating a relative maximum.
13.29 Describe how the second derivative test classifies the relative extrema of a function $g(x)$.

Plug a critical number of $g^{\prime}(x)$ into $g^{\prime \prime}(x)$. If the result is positive, then the critical number represents a relative minimum of $g(x)$. If the result is negative, it represents a relative maximum of $g(x)$. If, however, the result is 0 , no conclusion can be drawn, and a sign graph must be used to determine the direction of $g(x)$ to the left and to the right of the critical number.
13.30 Identify the relative extrema of $f(x)=x^{3}+x^{2}-x+9$ and classify each using the second derivative test.

Find the critical numbers of $f^{\prime}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+2 x-1 \\
& 0=3 x^{2}+2 x-1 \\
& 0=(3 x-1)(x+1) \\
& 3 x-1=0 \quad x+1=0 \\
& x=\frac{1}{3} \begin{array}{llrlrl}
& \text { or } & x+1 & =0 \\
x & & x & =-1
\end{array}
\end{aligned}
$$

Substitute those critical numbers into $f^{\prime \prime}(x)=6 x+2$.

$$
f^{\prime \prime}\left(\frac{1}{3}\right)=6\left(\frac{1}{3}\right)+2=4 f^{\prime \prime}(-1)=6(-1)+2=-4
$$

Because $f^{\prime \prime}\left(\frac{1}{3}\right)>0, f(x)$ has a relative minimum at $x=\frac{1}{3}$, according to the second derivative test. Similarly, $f(x)$ has a relative maximum at $x=-1$ because $f^{\prime \prime}(-1)<0$.

Notice that the solid graph decreases along its entire domain and the dotted graph is negative along its entire domain. Because $f^{\prime}(x)$ is negative when $f(x)$ is decreasing, $f^{\prime}(x)$ is the dotted graph and $f(x)$ is the solid graph in Figure 13-15.
13.33 A function and its derivative are graphed in Figure 13-16. Determine which graph represents $g(x)$ and which represents $g^{\prime}(x)$.

Figure 13-16
One of the functions graphed here is the derivative of the other.

The solid graph is $g(x)$ and the dotted graph is $g^{\prime}(x)$. The solid graph reaches a relative maximum at $x=-7$. Meanwhile, the dotted graph intersects the x-axis as it changes from positive to negative at $x=-7$. Therefore, the relative maximum of the solid graph is reflected by a critical number sign change in the dotted graph. Similarly, the solid graph changes from decreasing to increasing at $x=2$, and the dotted graph again intersects the x-axis at $x=2$, this time changing from negative to positive to reflect the direction change of the solid graph.
13.34 A function and its second derivative are graphed in Figure 13-17. Determine which graph represents $h(x)$ and which represents $h^{\prime \prime}(x)$.

Figure 13-17
One of the functions graphed here is the second derivative of the other.

This time you have the graph of a function and its SECOND derivative.

The solid graph appears to be concave up on the interval ($-3,3$), but the dotted graph is negative for those x-values. Therefore, the dotted graph cannot be the second derivative of the solid graph, as intervals on which $h(x)$ is concave up must correspond to intervals on which $h^{\prime \prime}(x)$ is positive. On the other hand, the dotted graph appears to be concave down from roughly $x=-2$ to $x=2$, and the solid graph is negative for those x-values. Therefore, $h(x)$ is the dotted graph and $h^{\prime \prime}(x)$ is the solid graph.
13.35 Match the functions $j(x), j^{\prime}(x)$, and $j^{\prime \prime}(x)$ with their graphs in Figure 13-18.

Figure 13-18
The graph of a function $j(x)$ and its first and second derivatives.

Each time the thick graph reaches a relative maximum or minimum, the dotted
 graph intersects the x-axis. Furthermore, each time the dotted graph reaches a relative maximum or minimum value, the thin graph intersects the x-axis. Therefore, the thick graph is $j(x)$, the dotted graph is $j^{\prime}(x)$, and the thin graph is $j^{\prime \prime}(x)$.

Chapter 14 BASIC APPLICATIONS OF DIFFERENTIATION
 Put your derivatives skills to use

Though a conceptual understanding of how a function and the signs of its derivatives are illuminating and worthwhile, the concepts are very rudimentary. In this chapter, you will progress beyond direction and concavity, using derivatives to identify equations of tangent lines, approximate roots, and evaluate difficult limits. The skills of Chapter 13 are not to be shelved, however, as you will apply them to the extreme value theorem, and then again in Chapter 15 as you optimize functions.

Even though understanding what the derivatives of a function tell you about that function's direction and concavity is handy, it's honestly not all that interesting. However, derivatives can be used for more practical purposes, and in this chapter, you'll find out that derivatives make some tasks that used to be hard actually quite simple. For example, you can use them to estimate the roots of a function like $f(x)=x^{7}-4 x^{3}+2 x+11$, which refuses to be factored and can't be solved by completing the square or the quadratic formula (because it's obviously not a quadratic expression). You'll even use derivatives to find limits that required specific tricks back in Chapter 10 , but will now be significantly easier thanks to something called L'Hôpital's rule.

Equations of Tangent Lines

Point of tangency + derivative $=$ equation of tangent

Problems 14.1-14.2 refer to the function $f(x)=-2 x^{2}+5 x-9$.
14.I If line l is tangent to $f(x)$ at $x=-1$, identify the point of tangency.

The point of tangency lies on the graph of $f(x)$ when $x=-1$, so evaluate $f(-1)$ to find the corresponding y-coordinate.

$$
\begin{aligned}
f(-1) & =-2(-1)^{2}+5(-1)-9 \\
& =-2(1)-5-9 \\
& =-16
\end{aligned}
$$

The point of tangency is $(-1, f(-1))=(-1,-16)$.
Problems 14.1-14.2 refer to the function $f(x)=-2 x^{2}+5 x-9$.
14.2 If line l is tangent to $f(x)$ at $x=-1$, identify the slope of l.

Calculate the derivative of $f(x)$ using the power rule and evaluate $f^{\prime}(x)$ at $x=-1$
 $(-1,-16)$.

$$
\begin{aligned}
f^{\prime}(x) & =-4 x+5 \\
f^{\prime}(-1) & =-4(-1)+5 \\
f^{\prime}(-1) & =9
\end{aligned}
$$

The slope of tangent line l is 9 .
14.3 Write the equation of the tangent line to some diffierentiable function $g(x)$ at $x=a$.

The point-slope formula is the most expedient way to determine the equation of the tangent line. It requires two components: a slope m and a point $\left(x_{1}, y_{1}\right)$ on the line.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Begin by substituting the x-value a into $g(x)$ to get the corresponding y-value: $g(a)$. The point of tangency, $(a, g(a))$, is located on both the curve and the tangent line. Substitute that point and $g^{\prime}(a)$, the derivative of $g(x)$ when $x=a$, into the point-slope formula. The result will be the equation of the tangent line to $g(x)$ at the point $g(a)$.

$$
y-g(a)=g^{\prime}(a)(x-a)
$$

It is customary to solve for y when writing the equation of a tangent line, although it is not required.

$$
y=g^{\prime}(a)(x-a)+g(a)
$$

14.4 Using the method outlined in Problem 14.3 (and the values generated by Problems 14.1 and 14.2), write the equation of the line tangent to $f(x)=-2 x^{2}+5 x-9$ at $x=-1$.

Substitute the point of tangency $\left(x_{1}, y_{1}\right)=(-1,-16)$ and the slope of the tangent line $m=9$ into the point-slope formula.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-(-16) & =9(x-(-1)) \\
y+16 & =9(x+1)
\end{aligned}
$$

Solve the equation for y.

$$
\begin{aligned}
y+16 & =9 x+9 \\
y & =9 x-7
\end{aligned}
$$

14.5 Determine the equation of the tangent line to $f(x)=3 \cos 2 x$ at $x=\frac{5 \pi}{6}$.

Evaluate $f\left(\frac{5 \pi}{6}\right)$.

$$
\begin{aligned}
f\left(\frac{5 \pi}{6}\right) & =3 \cos \left(2 \cdot \frac{5 \pi}{6}\right) \\
& =3 \cos \left(\frac{5 \pi}{3}\right) \\
& =\frac{3}{2} \leftarrow
\end{aligned}
$$

Diffierentiate $f(x)$ using the chain rule.

$$
\begin{aligned}
& f^{\prime}(x)=3 \cdot(-\sin 2 x) \cdot 2 \\
& f^{\prime}(x)=-6 \sin 2 x
\end{aligned}
$$

Evaluate $f^{\prime}\left(\frac{5 \pi}{6}\right)$.

$$
\begin{aligned}
f^{\prime}\left(\frac{5 \pi}{6}\right) & =-6 \sin \left(2 \cdot \frac{5 \pi}{6}\right) \\
& =-6 \sin \left(\frac{5 \pi}{3}\right) \\
& =-6\left(-\frac{\sqrt{3}}{2}\right) \\
& =3 \sqrt{3}
\end{aligned}
$$

Note: Problems 14.8 and 14.9 refer to the graph of $f(x)$ in Figure 14-1.

14.8 Estimate $f^{\prime}(-6)$ and write the equation of the tangent line to $f(x)$ at $x=-6$.

Figure 14-1
The graph of an everywhere differentiable function $f(x)$.

There is no single correct answer to this problem, as very little information is known about $f(x)$. You could use the method of Problems 14.6 and 14.7—estimate $f(-5) \approx 4.8$ and then calculate a slope based on the points $(-6,-5)$ and (-5,-4.8).

Students savvy with graphing calculators could use even more complex means to approximate the derivative. However, any method is entirely based on estimation and the accuracy of one valid technique is difficult to prove better than another. The most straightforward way to approximate the derivative is to sketch the tangent line at $x=-6$ (as demonstrated in Figure 14-2) and calculate its slope.

 statistical plot, generate a regression curve, and then differentiate that curve at $x=-6$. That's a lot of work to do for an answer that's still just an estimate, though.

Figure 14-2

The graph of $f(x)$ and a best guess at its tangent line at the point (-6,-5).

Note: Problems 14.8 and 14.9 refer to the graph of $f(x)$ in Figure 14-1.
14.9 Estimate $f^{\prime}(5)$ and write the equation of the tangent line to $f(x)$ at $x=5$.

Draw a tangent line to $f(x)$ at $x=5$, as illustrated by Figure 14-3.

Figure 14-3
The graph of $f(x)$ and a best guess at its tangent line at the point $(5,-1)$.

The tangent line drawn appears to pass through $(3,2)$; use that point and the point of tangency $(5,-1)$ to calculate the approximate derivative.

$$
\begin{aligned}
m & \approx \frac{-1-2}{5-3} \\
& \approx-\frac{3}{2}
\end{aligned}
$$

14.10 The equation of the tangent line to $f(x)=a x^{2}+b x-3$ at $(-4,-31)$ is $y=9 x-5$. Determine the values of a and b.

You are given $f(-4)=-31$, so substitute those values into the function.

$$
\begin{aligned}
f(-4) & =a(-4)^{2}+b(-4)-3 \\
-31 & =16 a-4 b-3 \\
-28 & =16 a-4 b
\end{aligned}
$$

Differentiate $f(x)$. Because a is a real number, you should treat it like any other coefficient -take the derivative of x^{2} and multiply it by a.

$$
f^{\prime}(x)=2 a x+b
$$

Note that the tangent line $y=9 x-5$ has slope 9 , so $f^{\prime}(-4)=9$.

$$
\begin{aligned}
f^{\prime}(-4) & =2 a(-4)+b \\
9 & =-8 a+b
\end{aligned}
$$

You now have two equations, $-28=16 a-4 b$ and $9=-8 a+b$, each containing two unknowns (a and b). Solve the system of equations to determine the solution. \leftarrow One approach is to solve the second equation for $b(b=9+8 a)$ and substitute it into the other equation.

$$
\begin{aligned}
-28 & =16 a-4 b \\
-28 & =16 a-4(9+8 a) \\
-28 & =16 a-36-32 a \\
8 & =-16 a \\
-\frac{1}{2} & =a
\end{aligned}
$$

Substitute a into either equation of the system to determine the corresponding value of b.

$$
\begin{aligned}
& 9=-8 a+b \\
& 9=-8\left(-\frac{1}{2}\right)+b \\
& 9=4+b \\
& 5=b
\end{aligned}
$$

Therefore, the equation of $f(x)$ with the correct values of a and b is
$f(x)=-\frac{1}{2} x^{2}+5 x-3$.

The Extreme Value Theorem

Every function has its highs and lows

14.II If $f(x)$ is a continuous on the interval $[a, b]$, what is guaranteed by the extreme value theorem?

The extreme value theorem guarantees that $f(x)$ possesses both an absolute maximum and an absolute minimum on $[a, b]$. The absolute extrema are not guaranteed to be unique, however. In other words, $f(x)$ may reach its absolute maximum or minimum value more than once on the interval, but it will not surpass either.

14.13 Identify the absolute maximum and the absolute minimum of $f(x)$, the function graphed in Figure 14-4.

Figure 14-4
The graph of $f(x)$, which is continuous on the interval $[-4,6]$.

The highest y-value reached by $f(x), y=5$, occurs at $x=6$, the right endpoint of the interval; the lowest y-value reached by $f(x), y=-3$, occurs at the critical number $x=-2$.
14.14 Identify the absolute maximum and the absolute minimum of $f(x)=3 x^{2}-12 x+5$ on the interval $[1,4]$.

According to Problem 14.12, the absolute extrema occur at endpoints of the interval or relative extreme points of $f(x)$ (which must be located at critical numbers of $\left.f^{\prime}(x)\right)$. Set $f^{\prime}(x)=0$ and solve for x to identify critical numbers of $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =6 x-12 \\
0 & =6 x-12 \\
12 & =6 x \\
2 & =x
\end{aligned}
$$

The absolute extrema of $f(x)$ could occur at $x=1$ (an endpoint), $x=2$ (a critical number of $f^{\prime}(x)$) or $x=4$ (an endpoint). Substitute each of those x-values into $f(x)$ and determine which generates the maximum and which generates the minimum function value.

| $f(1)=3(1)^{2}-12(1)+5$ |
| :---: | :---: | ---: |
| $=3-12+5$ |
| $=-4$ |\quad| $f(2)$ | $=3(2)^{2}-12(2)+5$ | | |
| ---: | :--- | ---: | :--- |
| | $=12-24+5$ | | |
| | $=-7$ | | $=3(4)=3(4)^{2}-12(4)+5$ |
| | | $=5$ | |

The absolute maximum of $f(x)$ on the interval $[1,4]$ is 5 ; it occurs at the right endpoint, $x=4$. The absolute minimum value of $f(x)$ on the interval $[1,4]$ is -7 ; it occurs at $x=2$.
14.15 Identify the absolute maximum and the absolute minimum of $g(x)=-3 x^{3}+4 x^{2}-1$ on the interval $[0,1]$.

Calculate the critical numbers of $g^{\prime}(x)$.

$$
\begin{aligned}
&-9 x^{2}+8 x=g^{\prime}(x) \\
& x(-9 x+8)=0 \\
&-9 x+8=0 \\
& x=0 \quad \text { or } \quad x=\frac{8}{9}
\end{aligned}
$$

Evaluate $g(x)$ at those critical numbers and at the endpoints of the interval. Notice that $x=0$ is both an endpoint and a critical point, so you need to calculate a total of three function values.

The absolute maximum of $f(x)$ on $[0,1]$ is $\frac{13}{243}$; it occurs at $x=\frac{8}{9}$. The absolute minimum of $f(x)$ is -1 , occurring at $x=0$, the left-hand endpoint of the interval.

Newton's Method

Approximate the zeroes of a function

14.16 Identify the formula used in Newton's method and explain what is meant by an "iterative" calculation.

An iterative calculation is used to produce a sequence of values, one at a time, so that each successive value is based on one or more of the values that precede it. It requires an initial value (often called a "seed value"), which is substituted into a formula to generate a new value, which is then substituted back into the formula, and the process repeats. Newton's method approximates the roots of functions. Based on some initial seed value x_{1}, it generates x_{2} (a better approximation of the root) based on the formula below.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

You then substitute x_{2} into the formula to generate x_{3}, substitute x_{3} to generate x_{4}, and repeat the process until the desired degree of accuracy is achieved,

Note: Problems 14.17-14.19 refer to the function $f(x)=x^{2}-3$.
14.17 Perform one iteration of Newton's method to estimate a root of $f(x)$ using a seed value of $x_{1}=4$.

Substitute $x_{n}=x_{1}=4$ into the formula for Newton's method to determine $x_{n+1}=x_{2}$. Note that $f(4)=4^{2}-3=13$ and $f^{\prime}(4)=2(4)=8$.

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
x_{2} & =4-\frac{13}{8} \\
& =\frac{32-13}{8} \\
& =\frac{19}{8}
\end{aligned}
$$

Therefore, $x_{2}=\frac{19}{8}$ is closer to the positive root of $f(x)=x^{2}-3$ than the original seed value $x_{1}=4$.

Note: Problems 14.17-14.19 refer to the function $f(x)=x^{2}-3$.
14.18 Apply Newton's method using x_{2} from Problem 14.17 to generate x_{3}. How accurately does x_{3} estimate the root of $f(x)=x^{2}-3$? Use a calculator to represent the function and derivative values as decimals.

Substitute $n=2, n+1=3$, and $x_{2}=\frac{19}{8}=2.375$ into the Newton's method formula.

$$
\begin{aligned}
x_{3} & =2.375-\frac{f(2.375)}{f^{\prime}(2.375)} \\
& =2.375-\frac{(2.375)^{2}-3}{2(2.375)} \\
& =2.375-\frac{2.640625}{4.75} \\
& =1.81907894737
\end{aligned}
$$

In order to determine the accuracy of x_{3}, subtract it the actual root, $\sqrt{3}$.

$$
|\sqrt{3}-1.81907894737| \approx 0.08703
$$

Therefore, x_{3} has an accuracy of 0.08703 .

Note: Problems 14.17-14.19 refer to the function $f(x)=x^{2}-3$.

You've
less than onetenth away from the actual root after only two iterations.
14.19 Calculate two iterations of Newton's method to estimate the root of $f(x)$, this time using a seed value of $x_{1}=2$. Determine the accuracy of x_{3}.

Substitute $x_{1}=2$ into Newton's method.

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& =2-\frac{f(2)}{f^{\prime}(2)} \\
& =2-\frac{1}{4} \\
& =1.75
\end{aligned}
$$

Now calculate x_{3} given $x_{2}=1.75$.

$$
\begin{aligned}
x_{3} & =x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \\
& =1.75-\frac{f(1.75)}{f^{\prime}(1.75)} \\
& =2-\frac{0.0625}{3.5} \\
& =1.98214285714
\end{aligned}
$$

Determine the accuracy of x_{3} by subtracting it from the actual root, $\sqrt{3}$.

$$
|\sqrt{3}-1.98214285714| \approx 0.25009
$$

Typically, seed values closer to the actual roots produce more accurate approximations more quickly, but that is not always true. According to Problem 14.18, the seed value $x_{1}=4$ more accurately predicts the root than the seed value $x_{1}=3$ from this problem, if two iterations of Newton's method are performed for both.
14.20 How do you apply Newton's method to a function with multiple roots?

If a function contains more than one root, approximate each separately, being careful to choose a seed value that is as close as possible to the root you are tracking each time. Note that $f(x)=x^{2}-3$, the function in Problems 14.17-14.19, has two roots: $-\sqrt{3}$ and $\sqrt{3}$. The seed values of $x=2$ and $x=4$ will, after multiple iterations, tend toward the root $x=\sqrt{3}$. In order to approximate the negative
 root, you will need to choose a negative seed value, such as $x_{1}=-2$.
14.2 What are the two most common reasons Newton's method fails to calculate a root?

If the seed value x_{1} is too far away from the root, Newton's method may fail to locate it; each iteration will produce values that are farther and farther apart (rather than closer and closer together, like in Problems 14.17-14.19).

Newton's method cannot estimate non-real roots. If a function (such as $h(x)=x^{2}+3$) does not intersect the x-axis, it has no real roots; Newton's method cannot calculate imaginary roots.
14.22 Calculate $x=\sqrt[3]{21}$ accurate to five decimal places.

If you cube both sides of the equation and set it equal to 0 , you create a function $g(x)$ whose root is $\sqrt[3]{21}$.

$$
\begin{aligned}
x^{3} & =(\sqrt[3]{21})^{3} \\
x^{3} & =21 \\
x^{3}-21 & =0
\end{aligned}
$$

Because the root of $g(x)=x^{3}-21$ is the value you are seeking, apply Newton's method to determine a decimal approximation. You're not given a seed value, so you must choose an appropriate value for x_{1}. Because $\sqrt[3]{8}=2$ and $\sqrt[3]{27}=3, \sqrt[3]{21}$ must be between 2 and 3. Furthermore, $\sqrt[3]{21}$ will be closer to 3 than 2 (because 21 is closer to 27 than 8). As such, $x_{1}=3$ is an appropriate seed value.

$$
\begin{aligned}
x_{2} & =3-\frac{g(3)}{g^{\prime}(3)} \\
& =3-\frac{6}{27} \\
& =3-0 . \overline{2} \\
& =2 . \overline{7}
\end{aligned}
$$

Repeat the process until two consecutive iterations produce equal values for the first 5 decimal places.

$$
\begin{aligned}
& x_{3}=2.75905185 \ldots \\
& x_{4}=\underline{2.75892418} \ldots \\
& x_{5}=\underline{2.75892417} \ldots
\end{aligned}
$$

Because x_{4} and x_{5} have the required number of matching decimal places (in fact, their first seven decimal places match), $\sqrt[3]{21} \approx 2.75892$ according to Newton's method.
14.23 The function $g(\theta)=\sin 3 \theta-2 \cos 2 \theta$ has two roots on the interval [0,3], one approximately $\theta=0.5$ radians and the other approximately $\theta=2.5$ radians. Calculate both roots accurate to five decimal places.

You must apply Newton's method twice, once with a seed value of $\theta_{1}=0.5$, and once with a seed value of $\theta_{1}=2.5$. Differentiate $g(\theta)$ using the chain rule.

$$
\begin{aligned}
g^{\prime}(\theta) & =\cos (3 \theta) \cdot 3-2(-\sin 2 \theta) \cdot 2 \\
& =3 \cos 3 \theta+4 \sin 2 \theta
\end{aligned}
$$

Calculate a sufficient number of iterations of Newton's method for each seed value (i.e., until the first five decimal places of consecutive iterations match).

$$
\begin{aligned}
& \theta_{1}=0.5 \\
& \theta_{2}=0.523227335 \\
& \theta_{3}=0.523598676 \\
& \theta_{4}=0.523598775
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{1}=2.5 \\
& \theta_{2}=2.63258343 \\
& \theta_{3}=2.61814022 \\
& \theta_{4}=\underline{2.61799389} \\
& \theta_{5}=\underline{\mathbf{2 . 6 1 7 9 9 3 8 7}}
\end{aligned}
$$

The roots of $g(\theta)=\sin 3 \theta-2 \cos 2 \theta$ are approximately $\theta=0.52359$ and $\theta=2.61799$.

Note: Problems 14.24-14.25 refer to the function $f(x)=-e^{\sqrt{x}}+4$.
14.24 The graph of $f(x)$ intersects the x-axis only once, near $x=2$. Calculate the root of $f(x)$ accurate to seven decimal places.

Differentiate $f(x)$.

$$
f^{\prime}(x)=-e^{\sqrt{x}} \cdot \frac{d}{d x}\left(x^{1 / 2}\right)=-e^{\sqrt{x}} \cdot \frac{1}{2} x^{(1 / 2)-1}=-e^{\sqrt{x}} \cdot \frac{1}{2 x^{1 / 2}}=-\frac{e^{\sqrt{x}}}{2 \sqrt{x}}
$$

Apply Newton's method, given $f(x)=-e^{\sqrt{x}}+4, f^{\prime}(x)=\frac{-e^{\sqrt{x}}}{2 \sqrt{x}}$, and $x_{1}=2$.

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=1.92212473 \\
& x_{3}=\underline{1.92181206} \\
& x_{4}=\underline{1.92181205}
\end{aligned}
$$

Therefore, the root of $f(x)=-e^{\sqrt{x}}+4$ is approximately $x=1.9218120$.

Note: Problems 14.24-14.25 refer to the function $f(x)=-e^{\sqrt{x}}+4$.
14.25 Repeat Problem 14.24 using a seed value of $x_{1}=1$ to demonstrate that a seed value further away from the root requires additional iterations of Newton's method to reach the same degree of accuracy.

Use $f(x)$ and $f^{\prime}(x)$ from Problem 14.24 , but set $x_{1}=1$.

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=1.94303552 \\
& x_{3}=1.92183480 \\
& x_{4}=\underline{1.92181205} \\
& x_{5}=\underline{1.92181205}
\end{aligned}
$$

An additional iteration, x_{5}, is required to reach the same degree of accuracy as Problem 14.24.
14.26 Demonstrate that Newton's method fails to calculate the complex roots of $y=x^{4}-2 x^{2}+2$ by calculating the first six iterations of the seed value $x_{1}=-2$.

Plug $f(x)=x^{4}-2 x^{2}+2, f^{\prime}(x)=4 x^{3}-4 x$, and $x_{1}=-2$ into the Newton's method formula. Calculate x_{2} through x_{F}, as they represent the first six iterations.

$$
\begin{aligned}
& x_{1}=-2 \\
& x_{2}=-1.58 \overline{3} \\
& x_{3}=-1.2406166 \\
& x_{4}=-0.75820114 \\
& x_{5}=-1.6739696 \\
& x_{6}=-1.3219531 \\
& x_{7}=-0.92760393
\end{aligned}
$$

The terms of the sequence $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}$ increase and decrease but never approach any real number limit. Furthermore, the iterations do not estimate any of the function's roots more and more accurately, because the difference of consecutive iterations is not decreasing.
$0^{0}, 0,0,1$, or ∞.
In L'Hôpital's rule problems,
you'll usually see either
$\frac{0}{0}$ or $\frac{\infty}{\infty}$.

L'Hôpital's Rule

Find limits that used to be impossible
14.27 If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}, \lim _{x \rightarrow-\infty} \frac{f(x)}{g(x)}$, or $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ (where c is a real number) is indeterminate, how do you apply L'Hôpital's rule to calculate the limit?

According to L'Hôpital's rule, if a rational function has an indeterminate limit, you can differentiate the numerator and denominator of the function without altering the value of the limit. For example, if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ is indeterminate, then $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
14.28 According to Problem $10.18, \lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}=12$. Use L'Hôpital's rule to verify the solution.

Substituting $x=-2$ into the rational function produces the indeterminate result $\frac{0}{0}$.

$$
\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}=\frac{(-2)^{3}+8}{(-2)+2}=\frac{-8+8}{-2+2}=\frac{0}{0}
$$

Apply L'Hôpital's rule by differentiating the numerator and the denominator: $\frac{d}{d x}\left(x^{3}+8\right)=3 x^{2}$ and $\frac{d}{d x}(x+2)=1$. Replace each expression with its derivative.

$$
\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}=\lim _{x \rightarrow-2} \frac{3 x^{2}}{1}=\lim _{x \rightarrow-2} 3 x^{2}
$$

Substituting $x=-2$ no longer results in an indeterminate value.

$$
\lim _{x \rightarrow-2} 3 x^{2}=3(-2)^{2}=3(4)=12
$$

L'Hôpital's rule generates the same limit as Problem 10.18.
14.29 According to Problem $10.13, \lim _{x \rightarrow 0} \frac{4 x^{5}-x^{2}}{x^{2}}=-1$. Use L'Hôpital's rule to verify the solution.

Substituting $x=0$ into the rational expression produces an indeterminate result.

$$
\lim _{x \rightarrow 0} \frac{4 x^{5}-x^{2}}{x^{2}}=\frac{4(0)^{5}-(0)^{2}}{(0)^{2}}=\frac{0}{0}
$$

Apply L'Hôpital's rule.

$$
\lim _{x \rightarrow 0} \frac{4 x^{5}-x^{2}}{x^{2}}=\lim _{x \rightarrow 0} \frac{20 x^{4}-2 x}{2 x}
$$

Unfortunately, substituting $x=0$ into the new limit expression also produces an indeterminate answer.

$$
=\frac{20(0)^{4}-2(0)}{2(0)}=\frac{0}{0}
$$

There is no restriction on the number of times you may apply L'Hôpital's rule, as long as the limit produces an indeterminate value each time.

$$
\lim _{x \rightarrow 0} \frac{20 x^{4}-2 x}{2 x}=\lim _{x \rightarrow 0} \frac{80 x^{3}-2}{2}=\frac{80(0)^{3}-2}{2}=\frac{-2}{2}=-1
$$

This solution matches Problem 10.13.

14.30 According to Problem $10.27, \lim _{x \rightarrow 19} \frac{x-19}{5-\sqrt{x+6}}=-10$. Use L'Hôpital's rule to verify the solution.

Substituting $x=19$ into the rational expression produces an indeterminate result.

$$
\lim _{x \rightarrow 19} \frac{x-19}{5-\sqrt{x+6}}=\frac{19-19}{5-\sqrt{19+6}}=\frac{0}{5-\sqrt{25}}=\frac{0}{0}
$$

Apply L'Hôpital's rule by differentiating the numerator and denominator separately.

$$
\lim _{x \rightarrow 19} \frac{x-19}{5-\sqrt{x+6}}=\lim _{x \rightarrow 19} \frac{1}{-\frac{1}{2}(x+6)^{-1 / 2} \cdot 1}=\lim _{x \rightarrow 19} \frac{1}{-\frac{1}{2 \sqrt{x+6}}}=\lim _{x \rightarrow 19}(-2 \sqrt{x+6})
$$

Substitute $x=19$ into the new limit expression.

$$
=-2 \sqrt{19+6}=-2 \sqrt{25}=-2(5)=-10
$$

The solution matches Problem 10.27.
14.31 According to Problem $10.29, \lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{\theta}=7$. Use L'Hôpital's rule to verify the solution.

Substituting $\theta=0$ into the rational expression produces an indeterminate result.

$$
\lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{\theta}=\frac{\sin (7 \cdot 0)}{0}=\frac{\sin 0}{0}=\frac{0}{0}
$$

Apply L'Hôpital's Rule; use the chain rule to differentiate $\sin 7 \theta$.

Substituting $x=\infty$ produces an indeterminate result.

$$
\lim _{x \rightarrow \infty} \frac{5(\infty)^{2}-9 \cdot \infty+1}{5-3 \infty-6(\infty)^{2}}=\frac{\infty}{-\infty}
$$

Apply L'Hôpital's rule.

$$
\lim _{x \rightarrow \infty} \frac{5 x^{2}-9 x+1}{5-3 x-6 x^{2}}=\lim _{x \rightarrow \infty} \frac{10 x-9}{-3-12 x}
$$

Substituting $x=\infty$ still produces the indeterminate result $-\frac{\infty}{\infty}$, so apply L'Hôpital's rule again.

$$
\lim _{x \rightarrow \infty} \frac{10 x-9}{-3-12 x}=\lim _{x \rightarrow \infty} \frac{10}{-12}=-\frac{5}{6}
$$

This method is a much more mathematically satisfying technique than the process used to reach the same result in Problem 9.25, which simply presented the limit as a quotient of the leading coefficients of the numerator and denominator of the rational function.
14.33 Evaluate $\lim _{x \rightarrow-2} \frac{3 x^{2}+8 x+4}{-2+x}$.

Substituting $x=-2$ does not produce an indeterminate result, so you cannot apply L'Hôpital's rule.

Trick
question! You can only use L'Hôpital's rule if the limit is indeterminate, so if you got -4 , you fell for the trick.
14.34 Evaluate $\lim _{x \rightarrow \infty}\left[\left(x^{3}+5 x^{2}-3 x-9\right)\left(e^{-a x}\right)\right]$.

Substituting $x=\infty$ into the expression produces an indeterminate result.

$$
\left(\infty^{3}+5 \infty^{2}-3 \infty-9\right)\left(e^{-a \cdot \infty}\right)=(\infty)\left(\frac{1}{e^{\infty}}\right)=\infty \cdot 0
$$

Rewrite the expression as a quotient so you can apply L'Hôpital's rule.

$$
\lim _{x \rightarrow \infty}\left[\left(x^{3}+5 x^{2}-3 x-9\right)\left(e^{-a \cdot x}\right)\right]=\lim _{x \rightarrow \infty} \frac{x^{3}+5 x^{2}-3 x-9}{e^{a \cdot x}}
$$

You'll have to apply L'Hôpital's rule three times before the limit finally ceases to be indeterminate.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{3}+5 x^{2}-3 x-9}{e^{a x x}} & =\lim _{x \rightarrow \infty} \frac{3 x^{2}+10 x-3}{a \cdot e^{c \cdot x}} \\
& =\lim _{x \rightarrow \infty} \frac{6 x+10}{a \cdot\left(a \cdot e^{a \cdot x}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{6}{a \cdot a \cdot\left(a \cdot e^{a \cdot x}\right)}=\lim _{x \rightarrow \infty} \frac{6}{a^{3} \cdot e^{a \cdot x}}
\end{aligned}
$$

Substitute $x=\infty$ into the expression.

$$
\lim _{x \rightarrow \infty} \frac{6}{a^{3} \cdot e^{a \cdot x}}=\frac{6}{a^{3} \cdot e^{a \cdot \infty}}=0
$$

Any fixed value divided by a number that increases without bound has a limit of 0 .

14.35 Evaluate $\lim _{x \rightarrow \infty} x^{1 / x}$.

Substituting $x=\infty$ produces an indeterminate result.

$$
\lim _{x \rightarrow \infty} x^{1 / x}=\infty^{1 / \infty}=\infty^{0}
$$

If expressions in terms of x are raised to a powers in terms of x, it is often useful to employ natural logarithms to rewrite the exponential expression. Begin by setting the expression whose limit you are evaluating equal to y.

$$
\lim _{x \rightarrow \infty} x^{1 / x}=\lim _{x \rightarrow \infty} y \text { when } y=x^{1 / x}
$$

For the moment, manipulate only the y equation. Begin by taking the natural logarithm of both sides.

$$
\ln y=\ln x^{1 / x}
$$

According to a property of logarithms that states $\log a^{x}=x \log a$, you can extricate the exponent from the logarithm and write it as the coefficient of the logarithmic expression.

$$
\ln y=\frac{1}{x} \cdot \ln x=\frac{\ln x}{x}
$$

Notice that $\lim _{x \rightarrow \infty} \ln y=\frac{\ln \infty}{\infty}=\frac{\infty}{\infty}$, so you should apply L'Hôpital's rule.

$$
\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

Therefore, $\lim _{x \rightarrow \infty} \ln y=0$. Exponentiate both sides of this equation using the natural exponential function.

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \ln y=0 \\
\lim _{x \rightarrow \infty} e^{\ln y}=e^{0} \\
\lim _{x \rightarrow \infty} y=1
\end{gathered}
$$

Recall that $y=x^{1 / x}$.

$$
\lim _{x \rightarrow \infty} x^{1 / x}=1
$$

Chapter 15

 ADVANCED APPLICATIONS OF DIFFERENTIATION

 ADVANCED APPLICATIONS OF DIFFERENTIATION}

Tricky but interesting uses for derivatives

Abstract

In Chapter 14, you were presented with a variety of basic differentiation applications, each of which represented either an extension of a previously known concept (such as locating absolute versus relative maxima and minima) or a streamlined approach to solving problems (such as Newton's method to find real roots and L'Hôpital's rule to calculate indeterminate limits). In this chapter, you will explore uses of the derivative that extend beyond prior knowledge. Interpreting the derivative not only as the slope of a tangent line, but as an instantaneous rate of change, presents unique uses and applications concerning not only functions and graphs, but the actual mathematical modeling of physical phenomena.

In this chapter, you'll look at the derivative as a rate of change. The most basic rate of change is the slope of a line, which is constant over the entire line-it's always sloping at the same angle. However, curves have different rates of change, because their tangent lines are different for different values of x. You'll start with the mean value theorem, which has limited "real world" uses but is an important mathematical principle. After that, however, you'll use functions and derivatives to describe rectilinear motion (like the paths of projectiles that are thrown or fired), related rates (such as how quickly the water level of a pool is decreasing if you know how fast the water is leaking out), and optimization (calculating the biggest or smallest value of a function, like the lowest possible cost of manufacturing a product given specific restrictions). Basically, this chapter argues that derivatives are useful not only in the abstract world of math, but can shed light on the real world, too.

The Mean Value and Rolle's Theorems
 Average slopes = instant slopes

15.I If $f(x)$ is continuous and differentiable on the interval [a, b] and $a<c<b$, calculate the average rate of change of $f(x)$ over $[a, b]$ and the instantaneous rate of change of $f(x)$ at $x=c$.

The instantaneous rate of change at $x=c$ is the slope of the tangent line to $f(x)$ at $x=c: f^{\prime}(c)$.
15.2 Explain the geometric implications of the mean value theorem.

So the average (mean) rate of change equals the instantaneous rate of change there.

Given a function $f(x)$ that is continuous on $[a, b]$ and differentiable on (a, b), the mean value theorem states that there is at least one value $x=c$ between a and b such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. According to Problem 15.1, that means there is at least one x-value on the interval at which the tangent line is parallel to the secant line that connects the endpoints of the interval.
15.3 How many times does the function $g(x)$ graphed in Figure 15-1 satisfy the mean value theorem?

Figure 15-1
A function $g(x)$ that is continuous and differentiable on [-5,5].
looks like a tangent
line. Slide
along the graph ing it as you go, so that to the function and count the number of times it is parallel to the secant.

Figure 15-2 The tangent lines to $g(x)$ at points A and B are parallel to the secant line joining ($-5, g(-5)$) and (5,g(5)).
15.4 How many times does the function $h(x)$ graphed in Figure 15-3 satisfy the mean value theorem on the interval $[-6,6]$?

Figure 15-3
A function $h(x)$ that is continuous and differentiable on $[-6,6]$.

As illustrated by Figure 15-4, there are 4 values of x on the interval $[-6,6]$ at which the tangent line to the function is parallel to the secant line connecting the function values $h(-6)$ and $h(6)$.

Figure 15-4 At approximately $x=-4.6,-2.75,1.5$, and 4.5, the tangent lines to $h(x)$ are parallel to the dotted secant line connecting $(-6, h(6))$ and $(6, h(6))$.
15.5 At what value(s) of x does $f(x)=x^{3}-2 x^{2}-4 x+1$ satisfy the mean value theorem on the interval $[0,1]$?

According to the mean value theorem, there exists some value c between $x=0$ and $x=1$ such that $f^{\prime}(c)$ equals the average rate of change of $f(x)$ over the interval $[0,1]$.

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{f(1)-f(0)}{1-0}
$$

Evaluate $f(1)$ and $f(0)$.

$$
f^{\prime}(c)=\frac{-4-1}{1-0}=\frac{-5}{1}=-5
$$

Note that $f^{\prime}(x)=3 x^{2}-4 x-4$.

$$
\begin{array}{r}
f^{\prime}(c)=-5 \\
3 c^{2}-4 c-4=-5
\end{array}
$$

Solve for c by setting the equation equal to 0 and factoring.

$$
\begin{aligned}
3 c^{2}-4 c+1 & =0 \\
(3 c-1)(c-1) & =0 \\
c & =\frac{1}{3}, 1
\end{aligned}
$$

Therefore, the mean value theorem is satisfied at $x=\frac{1}{3}$ but not at $x=1$, because the c-value must belong to the open interval $(0,1)$.
15.6 At what value (s) of x does the continuous and differentiable function $g(x)=a x^{2}+b x+c$ satisfy the mean value theorem on the interval $[0, b]$? Assume that a, b, and c are nonzero real numbers.

Use the method outlined in Problem 15.5-differentiate $g(x)$ and set $g^{\prime}(x)$ equal to the slope of the secant line connecting $(0, g(0))$ to $(b, g(b))$.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{g(b)-g(0)}{b-0} \\
2 a x+b & =\frac{\left(a b^{2}+b^{2}+c\right)-\left(a \cdot 0^{2}+b \cdot 0+c\right)}{b} \\
2 a x+b & =\frac{a b^{2}+b^{2}+c-c}{b} \\
2 a x+b & =\frac{\not b(a b+b)}{\not b} \\
2 a x+b & =a b+b
\end{aligned}
$$

Solve for x.

$$
\begin{aligned}
2 a x & =a b+b-b \\
2 a x & =a b \\
x & =\frac{a h \cdot b}{2 \cdot a h} \\
x & =\frac{b}{2}
\end{aligned}
$$

15.7 A policeman clocks a commuter's speed at 50 mph as he enters a tunnel whose length is exactly 0.75 miles. A second officer measures the commuter's speed at 45 mph as he exits the tunnel 43 seconds later and tickets the driver for exceeding the posted speed limit of 50 mph . Use the mean value theorem to justify the speeding charge levied by the officer, even though the driver was neither exceeding the posted speed limit while entering nor while exiting the tunnel.

Determine the average speed of the driver.

$$
d=r \cdot t
$$

The distance traveled is the length of the tunnel ($d=0.75$ miles), and it took the driver 43 seconds to travel that distance. Convert $t=43$ seconds into a consistent unit of measurement and substitute d and t into the distance formula.

$$
0.75=r\left(\frac{43}{3600}\right)
$$

Solve the equation for r, the driver's average rate of speed, in miles per hour.

$$
\begin{aligned}
\left(\frac{3600}{43}\right)(0.75) & =r \\
62.791 & \approx r
\end{aligned}
$$

If the driver's average rate of change is 62.791 mph , then (according to the mean value theorem) the driver's actual (instantaneous) speed was 62.791 mph at least once inside the tunnel, which violates the posted speed limit.
15.8 Describe the difference between the mean value theorem and Rolle's theorem.

Both theorems guarantee the existence of a value c on a function $f(x)$ that's continuous on $[a, b]$ and differentiable on (a, b) such that $a<c<b$. Furthermore, both guarantee that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. However, Rolle's theorem has one additional requirement: $f(a)=f(b)$. When $x=a$ and $x=b$ have equivalent function values, the slope of the secant line connecting $(a, f(a))$ and $(b, f(b))$ is $\frac{0}{b-a}=0$, so $f^{\prime}(c)$ must equal 0 somewhere on (a, b).
15.9 Find the smallest positive value of b such that you can apply Rolle's theorem to $g(x)=x \sin x$ on the interval $[0, b]$?

In order to apply Rolle's theorem to $g(x)$, you must determine the value of $x=b$ such that $g(0)=g(b)$. Because $g(0)=(0)(\sin 0)=0$, set $g(b)=0$ and solve.

$$
\begin{aligned}
g(b) & =0 \\
b \sin b & =0
\end{aligned}
$$

The expression on the left side of the equation is a product, so set each factor equal to 0 and solve.

$$
\begin{aligned}
b=0 \quad \text { or } \quad \sin b & =0 \\
b & =k \pi, k \text { is an integer }
\end{aligned}
$$

You are asked to identify the smallest positive value of b, which corresponds to the smallest positive value of $k, k=1$. Therefore, $b=1 \cdot \pi=\pi$.
15.10 Verify that $f(x)=40 x^{4}+22 x^{3}-91 x^{2}-58 x+15$ has at least one horizontal tangent $\xrightarrow[\text { line on the interval }]{ }\left[-\frac{5}{4}, \frac{1}{5}\right]$.

The endpoints of the given interval are also roots of $f(x)$, as $f\left(-\frac{5}{4}\right)=f\left(\frac{1}{5}\right)=0$.

$$
\begin{array}{rlrl}
f\left(-\frac{5}{4}\right) & =\frac{3125}{32}-\frac{1375}{32}-\frac{2275}{16}+\frac{145}{2}+15 & f\left(\frac{1}{5}\right) & =\frac{8}{125}+\frac{22}{125}-\frac{91}{25}-\frac{58}{5}+15 \\
& =\frac{3125-1375-2275(2)+145(16)+15(32)}{32} & & =\frac{8+22-91(5)-58(25)+15(125)}{125} \\
& =\frac{0}{32}=0 & & =\frac{0}{125}=0
\end{array}
$$

Because $f\left(-\frac{5}{4}\right)=f\left(\frac{1}{5}\right)=0$, then $f^{\prime}(c)=0$ for some value c between $-\frac{5}{4}$ and $\frac{1}{5}$ according to Rolle's theorem.

Rectilinear Motion

Position, velocity, and acceleration functions

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 feet above the ground with an initial velocity of $100 \mathrm{ft} / \mathrm{sec}$. For the sake of simplicity, discount the effect of wind resistance on the baseball.

I5.II Construct a function that models the height of the baseball, in feet, at t seconds.

The path of a projectile t seconds after its launch is modeled by the position equation $s(t)=-\frac{a}{2} t^{2}+v_{0} \cdot t+h_{0}$, where a is acceleration due to gravity, v_{0} is the initial velocity, and h_{0} is the initial height. Note that a is a constant value, $32 \mathrm{ft} /$
 $\sec ^{2}, \overleftarrow{\text { and }}$ the rest of the values are explicitly defined by the problem: $v_{0}=100$ and

$$
\begin{aligned}
& s(t)=-\frac{a}{2} t^{2}+v_{0} \cdot t+h_{0} \\
& s(t)=\frac{-32}{2} t^{2}+100 \cdot t+5 \\
& s(t)=-16 t^{2}+100 t+5
\end{aligned}
$$

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 feet above the ground with an initial velocity of $100 \mathrm{ft} / \mathrm{sec}$.
15.12 How high is the baseball exactly one second after it is thrown?

The moment the baseball is thrown is considered $t=0$ seconds. Given $s(t)$ as defined in Problem 15.11, $s(1)$ is the height of the baseball one second after it is thrown.

$$
\begin{aligned}
s(1) & =-16(1)^{2}+100(1)+5 \\
& =-16+105 \\
& =89 \text { feet above the ground }
\end{aligned}
$$

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 feet above the ground with an initial velocity of $100 \mathrm{ft} / \mathrm{sec}$.
15.13 What is the velocity of the baseball at $t=1$?

The velocity is the rate at which the position of the projectile changes. Thus, the derivative of $s(t), s^{\prime}(t)=-32 t+100$ represents the baseball's velocity t seconds after it is thrown. Evaluate $s^{\prime}(1)$ to determine the velocity of the baseball at $t=1$.

$$
s^{\prime}(t)=-32(1)+100=68 \mathrm{ft} / \mathrm{sec}
$$

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 feet above the ground with an initial velocity of $100 \mathrm{ft} / \mathrm{sec}$.
15.14 What is the acceleration of the baseball at $t=1$?

The acceleration of an object is the rate at which its velocity changes. Therefore, the derivative of the velocity function is the acceleration function: $a(t)=v^{\prime}(t)$ (and the second derivative of the position function: $a(t)=s^{\prime \prime}(t)$). Notice that $a(t)=-32 \mathrm{ft} / \mathrm{sec}^{2}$; the only acceleration of the baseball is the acceleration due to gravity.

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 feet above the ground with an initial velocity of $100 \mathrm{ft} / \mathrm{sec}$.
15.15 When will the baseball hit the ground? (Provide an answer in seconds that is accurate to four decimal places.)

The baseball hits the ground when its height, $s(t)$, equals 0 . Set $s(t)=0$ and solve using the quadratic formula.

$$
t=\frac{-100 \pm \sqrt{-16 t^{2}+100 t+5=0}}{2(-16)}
$$

Use a calculator to evaluate the expression: $t \approx-0.049606$ or 6.299606 . Discard the negative answer and round to the correct number of decimal places. The baseball hits the ground approximately 6.2996 seconds after it is thrown.

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 feet above the ground with an initial velocity of $100 \mathrm{ft} / \mathrm{sec}$.
15.16 When does the baseball reach its maximum height?

The maximum height of the baseball is also the relative maximum of the function $s(t)$. To determine the location of the relative maximum, find the critical number of $s^{\prime}(t)$.

$$
\begin{aligned}
s^{\prime}(t) & =-32 t+100 \\
0 & =-32 t+100 \\
-100 & =-32 t \\
t & =\frac{100}{32}=\frac{25}{8}
\end{aligned}
$$

Note that the critical number $t=\frac{25}{8}$ produces a relative maximum according to the second derivative test. Therefore, the baseball reaches its maximum height $t=\frac{25}{8}=3.125$ seconds after it is thrown.

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 feet above the ground with an initial velocity of $100 \mathrm{ft} / \mathrm{sec}$.
15.17 Assuming the baseball is thrown straight up, what is the maximum height it will reach?

According to Problem 15.16, the baseball reaches its maximum height at $t=3.125$ seconds. To determine the height of the ball at that moment, evaluate $s(3.125)$.

$$
s(3.125)=-16(3.125)^{2}+100(3.125)+5=161.25 \text { feet above ground }
$$

Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along the x-axis. The position of the particle (in inches) after t seconds is given by the equation $s(t)=\cos (\ln (t+0.5))$. Use a graphing calculator to solve equations and evaluate derivatives as necessary in these problems. Assume that all angles are measured in radians.
15.18 Construct the velocity function, $v(t)$, of the particle and use it to determine the particle's speed at $t=3$ seconds. Provide an answer accurate to three decimal places.

The velocity function, $v(t)$, of the particle is the derivative of its position function, $s(t)$.

$$
s^{\prime}(t)=v(t)=-\sin (\ln (t+0.5)) \cdot \frac{1}{t+0.5}=-\frac{\sin (\ln (t+0.5))}{t+0.5}
$$

Evaluate $v(3)$ to determine the velocity at $t=3$.
Use the chain rule to find the derivative. Differentiate cosine to get-sine, leaving the inner function $\ln (t+0.5)$ alone, multiply by the derivative of $\ln (t+.5)$, which is $1 /(t+.5)$, and then multiply by the derivative of
$(t+.5)$, which is just 1.

$$
v^{\prime}(3)=-\frac{\sin (\ln 3.5)}{3.5} \approx-0.271386
$$

Therefore, the particle is traveling at a speed of approximately 0.271 inches/ second. The negative sign is omitted when measuring speed; it merely indicates that the particle is traveling in a negative direction (in this case to the left).

Speed is the absolute value of velocity-it's always positive.

Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along the x-axis whose position, in inches, at t seconds is given by the equation $s(t)=\cos (\ln (t+0.5))$.
15.19 Calculate the particle's acceleration at $t=6$. Provide an answer accurate to four decimal places.

The acceleration function of the particle is the derivative of the velocity function generated in Problem 15.18. Use the quotient rule to differentiate $v(t)$, and notice that the chain rule is required to differentiate the numerator.

Therefore, the particle is accelerating at a rate of $0.0296 \mathrm{in} / \mathrm{sec}^{2}$ when $t=6$.

Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along the x-axis whose position, in inches, at t seconds is given by the equation $s(t)=\cos (\ln (t+0.5))$.
15.20 How many times does the particle change direction (assuming $t>0$)?

The particle changes direction whenever its velocity changes from positive to negative or vice versa. Notice that $\frac{1}{2}$ is a critical number of $v(\mathrm{t})$ because $-\frac{\sin (\ln (t+0.5))}{t+0.5}$ equals 0 at that t-value.

The graph of $v(t)$ is above the x-axis, and therefore positive, when $t<\frac{1}{2}$; $v(t)$ then crosses the x-axis only once, at $t=\frac{1}{2}$, so $v^{\prime}(t)<0$ when $t>\frac{1}{2}$. Therefore, the particle changes direction once, at $t=\frac{1}{2}$.

Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along the x-axis whose position, in inches, at seconds is given by the equation $s(t)=\cos (\ln t+0.5))$.
15.2 When is the particle moving left?

The particle is moving left when $v(t)<0$. According to Problem 15.20,v(t)<0 on the interval $\left(\frac{1}{2}, \infty\right)$. Therefore, the particle travels left when $t>\frac{1}{2}$.

Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along the x-axis whose position, in inches, at t seconds is given by the equation $s(t)=\cos (\ln (t+0.5))$.
15.22 What is the total distance traveled by the particle from $t=0$ seconds to $t=5$ seconds? Provide an answer accurate to three decimal places.

Determine the position of the particle when $t=0$ and when $t=5$.

$$
s(0)=\cos (\ln 0.5) \approx 0.7692389 \quad s(5)=\cos (\ln 5.5) \approx-0.1335515
$$

You must also find the position of the particle wherever its direction changes. According to Problem 15.20, the particle changes direction at $t=0.5$.

$$
s(0.5)=\cos (\ln 1)=\cos 0=1 \leftarrow
$$

From $t=0$ to $t=0.5$ the particle travels right, from 0.7692389 units right of the origin to 1 unit right of the origin. Calculate the absolute value of the difference between those positions to find the distance the particle travels during that half second.

$$
|1-0.7692389|=|-0.2307611|=0.2307611
$$

From $t=0.5$ to $t=5$ the particle travels left, from 1 one unit right of the origin to a position of -0.1335515 , which is 0.1335515 units left of the origin. Find the absolute value of the difference between those positions to find the total distance the particle travels from $t=0.5$ to $t=5$ seconds.

$$
|-0.1335515-1|=|-1.1335515|=1.1335515
$$

Sum the individual distances to calculate the total distance traveled.

$$
0.2307611+1.1335515=1.3643126
$$

The particle travels approximately 1.364 inches during the first 5 seconds.

Related Rates

Figure out how quickly the variables change in a function

15.23 A particle travels from left to right along the graph of $y=x^{3} e^{x}$. Assuming its vertical rate of change is $\frac{d y}{d t}=7 \mathrm{ft} / \mathrm{sec}$ when $x=1$, what is its horizontal rate of change at that moment?

Take the derivative of the equation with respect to t using the product rule.

$$
\begin{aligned}
& \frac{d y}{d t}=\left(3 x^{2} \cdot \frac{d x}{d t}\right) e^{x}+x^{3}\left(e^{x} \cdot \frac{d x}{d t}\right) \\
& \frac{d y}{d t}=\frac{d x}{d t}\left(3 x^{2} e^{x}+x^{3} e^{x}\right)
\end{aligned}
$$

According to the problem, $\frac{d y}{d t}=7$ when $x=1$. Substitute those values into the equation and solve for $\frac{d x}{d t}$, the horizontal rate of change.

$$
\begin{aligned}
7 & =\frac{d x}{d t}\left(3(1)^{2} e^{1}+(1)^{3} e^{1}\right) \\
7 & =\frac{d x}{d t}(3 e+e) \\
\frac{7}{4 e} \mathrm{ft} / \sec & =\frac{d x}{d t}
\end{aligned}
$$

15.24 A bouillon cube with side length 0.8 cm is placed into boiling water. Assuming it roughly resembles a cube as it dissolves, at approximately what rate is its volume changing when its side length is 0.25 cm and is decreasing at a rate of 0.12 cm / sec?
The volume of a cube with side s is $V=s^{3}$. Differentiate this equation with respect to t.

$$
\begin{aligned}
V & =s^{3} \\
\frac{d V}{d t} & =3 s^{2} \cdot \frac{d s}{d t}
\end{aligned}
$$

You are given $s=0.25$ and $\frac{d s}{d t}=-0.12$. Substitute these values into the equation and solve for $\frac{d V}{d t}$.

a value is

$$
\frac{d V}{d t}=3(0.25)^{2} \cdot(-0.12)=-0.0225 \mathrm{~cm}^{3} / \mathrm{sec}
$$

Thus, the volume is decreasing at a rate of $0.0225 \mathrm{~cm}^{3} / \mathrm{sec}$.
15.25 Two hikers begin at the same location and travel in perpendicular directions. Hiker A travels due north at a rate of 5 miles per hour; Hiker B travels due west at a rate of 8 miles per hour. At what rate is the distance between the hikers changing 3 hours into the hike?

Figure 15-5 After three hours, the distance d between the hikers is $3 \sqrt{89}$, according to the Pythagorean theorem.

Because the hikers and the point from which they began walking create a right triangle, use the Pythagorean theorem to describe the relationship between the distances a, b, and d in Figure 15-5, and differentiate the equation with respect to t.

$$
\begin{aligned}
a^{2}+b^{2} & =d^{2} \\
2 a \cdot \frac{d a}{d t}+2 b \cdot \frac{d b}{d t} & =2 d \cdot \frac{d d}{d t}
\end{aligned}
$$

You are given $\frac{d a}{d t}=5$ and $\frac{d b}{d t}=8$. Substitute those values, and the values of a, b, and d from Figure 15-5, into the equation and solve for $\frac{d d}{d t}$.

Notice
that you don't plug any given information into the formula until AFTER you take the

$$
\begin{aligned}
2(15) \cdot 5+2(24) \cdot 8 & =2(3 \sqrt{89}) \cdot \frac{d d}{d t} \\
534 & =6 \sqrt{89} \cdot \frac{d d}{d t} \\
\frac{d d}{d t} & =\frac{534}{6 \sqrt{89}} \\
\frac{d d}{d t} & =\frac{89}{\sqrt{89}}=\sqrt{89} \approx 9.434 \text { miles } / \text { hour }
\end{aligned}
$$

Nothing to get this number534 divided by 6
is 89 . is 89.
15.26 A 20-foot extension ladder propped up against the side of a house is not properly secured, causing the bottom of the ladder to slide away from the house at a constant rate of $2 \mathrm{ft} / \mathrm{sec}$. How quickly is the top of the ladder falling at the exact moment the base of the ladder is 12 feet away from the house?

As illustrated in Figure 15-6, the ladder, ground, and house form a right triangle. While the length of the ladder remains fixed, you can calculate h when $g=12$ using the Pythagorean theorem.

Figure 15-6 The ladder is side l, h is the distance from the top of the ladder to the ground, and g is the distance from the house to the bottom of the ladder.

Use the Pythagorean Theorem to express the relationship between h, g, and l, and differentiate the equation with respect to t.

$$
\begin{aligned}
h^{2}+g^{2} & =l^{2} \\
2 h \cdot \frac{d h}{d t}+2 g \cdot \frac{d g}{d t} & =2 l \cdot \frac{d l}{d t}
\end{aligned}
$$

Substitute the known rates of change. Note that $\frac{d g}{d t}$ is positive; as the ladder slides away from the house, the length g in Figure $15-6$ is increasing, and increasing quantities have positive rates of change.

$$
\begin{aligned}
2(16) \cdot \frac{d h}{d t}+2(12)(2) & =2(20)(0) \\
32 \frac{d h}{d t}+48 & =0 \\
32 \frac{d h}{d t} & =-48 \\
\frac{d h}{d t} & =-\frac{48}{32}=-\frac{3}{2} \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

The ladder slides down the house at a rate of $-1.5 \mathrm{ft} / \mathrm{sec}$.

15.27 Water stored in an inverted right circular cone, as illustrated in Figure 15-7, leaks out at a constant rate of 2 gallons per day. Assuming the tank is 100 feet high and the radius of its base is 25 feet, at what rate $\frac{d d}{d t}$ is the depth of the water inside the tank decreasing at the moment it is 40 feet deep?

Figure 15-7 The dimensions of a leaky water tank.
The volume of a right circular cone is described by the formula $V=\frac{1}{3} \pi r^{2} h$. Let h represent the height of the tank, d represent the depth of the water, R represent the radius of the tank's base, and r represent the radius of the water's surface (as
 illustrated by Figure 15-8). You are given $h=100, d=40, R=25, \frac{d V}{d t}=-2, \overleftrightarrow{\text { and are }}$ asked to find $\frac{d d}{d t}$.

Figure 15-8 A cross-section of the conical tank from Figure 15-7.
No information is given about $\frac{d r}{d t}$, so it (and therefore r) must be eliminated from the problem-only one unknown can be left in the final equation or else you will be unable to solve it. Because the isosceles triangles in Figure 15-8 are similar,

you can set up a proportion relating the heights and the radii of the tank and the water it holds. Solve this proportion for r.

$$
\begin{aligned}
\frac{100}{25} & =\frac{d}{r} \\
100 r & =25 d \\
r & =\frac{d}{4}
\end{aligned}
$$

Substitute this value of r into the volume formula to eliminate it from the equation. Note that the formula describes the volume of the water, not the tank; Figure 15-8 uses d to describe the depth of the water (not h).

Differentiate
solve for $\frac{d d}{d t}$.

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} d \\
V & =\frac{1}{3} \pi\left(\frac{d}{4}\right)^{2} d \\
V & =\frac{\pi}{48} d^{3}
\end{aligned}
$$

Differentiate with respect to t, substitute the known values into the formula, and

15.28 A camera exactly one mile away from the Space Shuttle's launch site tracks the ascent of the spacecraft for a network news program. At what rate is the camera's angle of elevation increasing in order to maintain its focus on the shuttle 30 seconds into the launch, once the shuttle has reached a height of 9,720 feet and is traveling $700 \mathrm{ft} / \mathrm{sec}$? Report your answer in radians per second accurate to four decimal places.

Figure 15-9 summarizes the important information from the problem and verifies that a right triangle aptly illustrates the geometric relationship between the variables.

Figure 15-9 The Space Shuttle S, the camera C, and the launch pad serve as the vertices of a right triangle. The height hof the shuttle varies over time, but the camera remains a fixed distance d from the launch pad. The angle of elevation of the camera is θ.

Unlike Problems 15.25 and 15.26, the Pythagorean Theorem is not a good choice of equation, because it does not include θ, the variable whose rate of change you are directed to calculate. Therefore, you should apply the tangent trigonometric ratio, as you are given the lengths of the sides opposite and adjacent to θ.

$$
\tan \theta=\frac{h}{5,280}
$$

Because d is constant throughout the launch, its value is used in the equation, but h and θ vary at diffierent times t throughout the launch, so they are expressed as variables. Differentiate this equation with respect to t.

$$
\sec ^{2} \theta \cdot \frac{d \theta}{d t}=\frac{1}{5,280} \cdot \frac{d h}{d t}
$$

You are given $\frac{d h}{d t}=700$. Calculate $\tan \theta$ exactly 30 seconds into the flight.

$$
\begin{aligned}
\tan \theta & =\frac{9,720}{5,280} \\
\theta & =\arctan \left(\frac{9,720}{5,280}\right) \\
\theta & \approx 1.0731812
\end{aligned}
$$

Substitute all known values into the equation you differentiated with respect to t and solve for $\frac{d \theta}{d t}$.

$$
\begin{aligned}
\sec ^{2}(1.0731812) \cdot \frac{d \theta}{d t} & =\frac{1}{5,280}(700) \\
4.38894628 \cdot \frac{d \theta}{d t} & =\frac{700}{5,280} \\
\frac{d \theta}{d t} & =\frac{700}{5,280} \cdot \frac{1}{4.38894628} \\
\frac{d \theta}{d t} & =0.0302 \text { radians } / \mathrm{sec}
\end{aligned}
$$

Optimization

Find the biggest or smallest values of a function

15.29 Calculate the smallest possible product of two numbers, if one is exactly 9 greater than the other.

Let x equal one of the numbers and $x+9$ equal the other. You are asked to optimize the product, so you should optimize the function $p(x)=x(x+9)=x^{2}+9 x$. To optimize $p(x)$, find its critical number(s) and determine whether each represents a relative extrema point.

$$
\begin{aligned}
p(x) & =x^{2}+9 x \\
p^{\prime}(x) & =2 x+9 \\
0 & =2 x+9 \\
-\frac{9}{2} & =x
\end{aligned}
$$

Note that $p^{\prime \prime}(x)>0$ for all x, so (according to the second derivative test) this critical number gives the relative minimum requested by the problem. One of the numbers in the minimum product is $-\frac{9}{2}$, and the other is exactly 9 greater.

$$
-\frac{9}{2}+9=-\frac{9}{2}+\frac{18}{2}=\frac{9}{2}
$$

The two numbers with the minimum product are $-\frac{9}{2}$ and $\frac{9}{2}$; the minimum product is $\left(-\frac{9}{2}\right)\left(\frac{9}{2}\right)=-\frac{81}{4}$.
15.30 The ACME company has begun selling an MP3 player called the FooPod at a price of $\$ 200-0.05 x$, where x is the number of FooPods ACME produces each day. The parts and labor cost for each FooPod is $\$ 140$, and marketing and operational costs amount to an additional $\$ 9,500$ per day. Approximately how many FooPods should ACME produce and sell each day to maximize profit?

The total profit generated by an item is defined as the revenue minus the manufacturing cost: $p(x)=r(x)-c(x)$. The revenue function is equal to the number of units sold each day multiplied by the price: $r(x)=x(200-0.05 x)$. Create the function $c(x)$ representing total cost per day: $c(x)=140 x+9,500$.

Substitute $r(x)$ and $c(x)$ into the profit function.

$$
\begin{aligned}
p(x) & =r(x)-c(x) \\
& =x(200-0.05 x)-(140 x+9,500) \\
& =-0.05 x^{2}+200 x-140 x-9,500 \\
& =-0.05 x^{2}+60 x-9,500
\end{aligned}
$$

Differentiate $p(x)$ and identify critical numbers.

$$
\begin{aligned}
p^{\prime}(x) & =-0.1 x+60 \\
0 & =-0.1 x+60 \\
x & =\frac{60}{0.1}
\end{aligned}
$$

Apply the second derivative test. Because $p^{\prime \prime}(x)<0$ for all real numbers, $p(x)$ has a relative maximum at $x=600$. Therefore, ACME should attempt to manufacture and sell approximately 600 FooPods a day in order to maximize profit.
15.3I What are the dimensions of the largest rectangle that can be inscribed in the ellipse $x^{2}+4 y^{2}=16$? Report each dimension accurate to three decimal places.

Solve the equation of the ellipse for y to express the conic section as a pair of functions.

$$
\begin{aligned}
x^{2}+4 y^{2} & =16 \\
4 y^{2} & =16-x^{2} \\
y^{2} & =\frac{16-x^{2}}{4} \\
y & = \pm \sqrt{\frac{16-x^{2}}{4}} \\
y & = \pm \frac{\sqrt{16-x^{2}}}{2}
\end{aligned}
$$

For any $x, f(x)=\frac{\sqrt{16-x^{2}}}{2}$ is the corresponding y-value on the of ellipse in either the first or second quadrant. \longleftarrow

The area of a rectangle is the product of its length and width, so optimize the area function $A(x)=l \times w$. To determine the values of l and w, consider Figure 15-10, where the ellipse $x^{2}+4 y^{2}=16$ is graphed, and a sample rectangle is inscribed within. If you must travel x units right and $f(x)$ units up to reach the corner indicated, then $2 x$ and $2 f(x)$ represent the length and width of the rectangle.

Figure 15-10 A rectangle inscribed in the ellipse $x^{2}+4 y^{2}=16$.

Substitute l and w into $A(x)$.

$$
\begin{aligned}
A(x) & =l \cdot w \\
& =2 x \cdot 2 f(x) \\
& =2 x \cdot 2\left(\frac{\sqrt{16-x^{2}}}{2}\right) \\
& =2 x \sqrt{16-x^{2}}
\end{aligned}
$$

Differentiate $A(x)$.

$$
\begin{aligned}
A^{\prime}(x) & =2 x \cdot \frac{1}{2}\left(16-x^{2}\right)^{-1 / 2} \cdot(-2 x)+\sqrt{16-x^{2}} \cdot 2 \\
& =\frac{-2 x^{2}}{\sqrt{16-x^{2}}}+2 \sqrt{16-x^{2}} \\
& =\frac{-2 x^{2}+2\left(16-x^{2}\right)}{\sqrt{16-x^{2}}} \\
& =\frac{-4 x^{2}+32}{\sqrt{16-x^{2}}}
\end{aligned}
$$

The critical numbers of $A^{\prime}(x)$ are the x-values that cause either the numerator or the denominator to equal 0 .

$$
\begin{array}{rlrl}
-4 x^{2}+32 & =0 & \sqrt{16-x^{2}} & =0 \\
-4 x^{2} & =-32 & 16-x^{2} & =0 \\
x^{2} & =8 & x & = \pm 4 \\
x & = \pm 2 \sqrt{2} &
\end{array}
$$

Because $A^{\prime}(x)$ changes from positive to negative at $x=2 \sqrt{2}$, the value represents a relative maximum. Calculate the dimensions of the rectangle when $x=2 \sqrt{2}$.

$$
\begin{aligned}
& l=2 x=2(2 \sqrt{2})=4 \sqrt{2} \\
& w=2 f(x)=2\left(\frac{\sqrt{16-(2 \sqrt{2})^{2}}}{2}\right)=\sqrt{16-8}=2 \sqrt{2}
\end{aligned}
$$

The dimensions of the largest inscribed rectangle are $2 \sqrt{2}$ and $4 \sqrt{2}$.
15.32 A farmer wishes to fence in a rectangular pasture on a $3,750 \mathrm{ft}^{2}$ piece of riverfront property. He also plans to separate the pasture into four regions, as illustrated by Figure 15-11. What is the least amount of fence (in feet) he will need to purchase, assuming that he will not erect a fence along the river?

Figure 15-11
The pasture has width x and length y. The total amount of fence required is $3 x+2 y$.

Three sections of fence measuring x feet long are needed-one for the northern border, one for the southern, and one between those boundaries. Two lengths of fence measuring y feet are also required-one for the western border and one between that border and the river. In all, the farmer will need $f(x)=3 x+2 y$ feet of fencing material. However, you cannot optimize $f(x)$ without first replacing one of its variables. Because you know the area of the field, set up an equation representing that value and solve it for y.

$$
\begin{aligned}
\text { Area } & =(\text { length })(\text { width }) \\
A & =y x \\
3,750 & =y x \\
\frac{3,750}{x} & =y
\end{aligned}
$$

Substitute this value into $f(x)$ to eliminate y from the function.

$$
\begin{aligned}
& f(x)=3 x+2 y \\
& f(x)=3 x+2\left(\frac{3,750}{x}\right) \\
& f(x)=3 x+7,500 x^{-1}
\end{aligned}
$$

Differentiate $f(x)$ and identify its critical number(s).

$$
\begin{aligned}
f^{\prime}(x) & =3-7,500 x^{-2} \\
0 & =3-\frac{7,500}{x^{2}} \\
\frac{7,500}{x^{2}} & =3 \\
3 x^{2} & =7,500 \\
x^{2} & =2,500
\end{aligned}
$$

length of the field is x feet, and you can't have a field with a negative length.

Because x must be a positive number, you don't have to indicate " \pm " when you take the square root of both sides of the equation.

$$
x=\sqrt{2,500}=50 \text { feet }
$$

Because $f^{\prime \prime}(x)=\frac{2(7,500)}{x^{3}}=\frac{15,000}{x^{3}}$, the second derivative is positive for all $x>0$, which verifies that $x=50$ corresponds to a relative minimum of $f(x)$ (according to the second derivative test). Evaluate $f(x)$ to determine the total amount of fence needed.

$$
\begin{aligned}
f(x) & =3 x+7,500 x^{-1} \\
f(50) & =3(50)+\frac{7,500}{50} \\
f(50) & =150+150 \\
f(50) & =300
\end{aligned}
$$

The farmer needs a minimum of 300 feet of fence- 50 feet for each horizontal section and 75 feet for each vertical section.

15.33 An open box with depth x can be created from a rectangular sheet of cardboard by cutting squares of side x from its corners, as illustrated by Figure 15-12. What is the largest volume of such a box given cardboard that measures 20×30 inches? Report your solution accurate to three decimal places.

Figure 15-12
When the squares of side x are cut from the corners of the sheet of cardboard, they leave behind rectangles along the sides. Fold those rectangles up to construct an open box.

The volume function for a right rectangular prism is $v(x)=l \times w \times h$. Note that the length of the box is $30-2 x$, because the cardboard originally measured 30 inches but you remove x inches from each end when the squares cut out. Similarly,
the width of the box is $20-2 x$ inches. Substitute the dimensions of the box into the volume function.

$$
\begin{aligned}
v(x) & =l \cdot w \cdot h \\
& =(30-2 x)(20-2 x)(x) \\
& =600 x-100 x^{2}+4 x^{3}
\end{aligned}
$$

Find $v^{\prime}(x)$ and its critical numbers.

$$
\begin{aligned}
v^{\prime}(x) & =600-200 x+12 x^{2} \\
0 & =600-200 x+12 x^{2}
\end{aligned}
$$

Solve the equation using a graphing calculator; the solutions are $x=3.923747815$ or $x=12.74291885$ Note that the latter is not a valid solution, but $v^{\prime \prime}(3.923747815)<0$, so $x=3.923747815$ corresponds to a relative maximum of $v(x)$. Evaluate $v(3.923747815)$.

$$
\begin{aligned}
& v(3.923747815) \approx 600(3.923747815)-100(3.923747815)^{2}+4(3.923747815)^{3} \\
& v(3.923747815) \approx 1056.306 \mathrm{in}^{3}
\end{aligned}
$$

Really, really fancy way to say "box that's not necessavily a cube."

The
height of the box is x. The bigger the squares you cut out, the deeper the box will be.

Chapter 16 ADDITIONAL DIFFERENTIATION TECHNIQUES

 yet more ways to differentiate

 yet more ways to differentiate}

Before concluding the comprehensive investigation of differentiation that began in Chapter 11, a few advanced differentiation techniques still merit mention. Although these methods will be required far less frequently than the differentiation methods outlined in Chapter 12, in specific situations, they represent the most fastidious and logical method for calculating derivatives. As such, knowing when to apply these techniques is as essential as knowing how to perform them.

When faced with a tricky derivative, sometimes the power, product, quotient, and chain rules are not enough. This chapter covers four specific techniques for calculating derivatives that address four specific situations. These methods don't replace the rules covered back in Chapter 12, which still work for about 90\% of the derivative problems you'll deal with-they just give you options for the other 10%, problems that are nearly impossible without the methods covered in this chapter.

Implicit Differentiation

Essential when you can't solve a function for y

16.1 Differentiate the expression with respect to $x: x^{2}-3 y^{2}+2 x+y$.

Technically, when you differentiate x^{2} with respect to x, you are applying the chain rule. You first take the derivative of the "outer function" x^{2} to get $2 x$, leaving the "inner function" x alone. Then you take the derivative of the inner function with respect to x : $\frac{d x}{d x}$. For all practical purposes, $\frac{d x}{d x}$ (like any nonzero number divided by itself) equals 1 .

$$
\frac{d}{d x}\left(x^{2}\right)=2 x^{2-1} \cdot \frac{d x}{d x}=2 x^{1} \cdot 1=2 x
$$

In other words, when an expression containing x is differentiated with respect to x, the answer is no diffierent than the derivatives calculated in Chapter 12. Differentiate the other term in the expression containing x in a similar fashion.

The
derivative of y^{2} is $2 y$, but you should treat the y as an "inner function" and take the derivative of it (with respect to x) at the end.

When you differentiate an expression containing a variable other than x with respect to x, the derivative will contain differentials. For instance, the derivative of y with respect to x is simply $\frac{d y}{d x}$. This term cannot be simplified or omitted, because unlike $\frac{d x}{d x}$, this quotient does not necessarily equal 1 .

To diffierentiate $-3 y^{2}$, apply the chain rule.

$$
\frac{d}{d x}\left(-3 y^{2}\right)=-3 \cdot 2 y^{2-1} \cdot \frac{d y}{d x}=-6 y \frac{d y}{d x}
$$

Combine the derivatives for each of the four terms in the expression, all of which are calculated above.

$$
\frac{d}{d x}\left(x^{2}-3 y^{2}+2 x+y\right)=2 x-6 y \frac{d y}{d x}+2+\frac{d y}{d x}
$$

16.2 Describe the difference between equations that are written explicitly in terms of x and those that are written implicitly in terms of x.

Equations explicitly written in terms of x can be expressed in a single variable, x. For instance, $3 x^{2} y-7 x y=14$ can be explicitly written as a function of x by solving for y.

$$
\begin{aligned}
3 x^{2} y-7 x y & =14 \\
y\left(3 x^{2}-7 x\right) & =14 \\
y & =\frac{14}{3 x^{2}-7 x}
\end{aligned}
$$

If an equation isn't written as a single equation in terms of x (i.e., the equation is not solved for the other variable, usually y, as illustrated in the above example), it
is implicitly expressed in terms of x. For instance, circles, hyperbolas, and ellipses must be implicitly expressed in terms of x. Note that these conic sections are not functions, and neither are the vast majority of implicitly defined functions.
16.3 Differentiate the product $x y$ with respect to x.

Neither x nor y is a constant, so the product must be diffierentiated using the product rule.

$$
\begin{aligned}
\frac{d}{d x}(x y) & =x \cdot \frac{d}{d x}(y)+y \cdot \frac{d}{d x}(x) \\
& =x \cdot \frac{d y}{d x}+y \cdot \frac{d x}{d x} \\
& =x \frac{d y}{d x}+y
\end{aligned}
$$

16.4 Given $25 x^{2}+8 x-16 y^{2}-4 y-9=0$, find $\frac{d y}{d x}$.

Differentiate each term with respect to x.

$$
50 x+8-32 y \cdot \frac{d y}{d x}-4 \frac{d y}{d x}=0
$$

Move all terms not containing $\frac{d y}{d x}$ to the right side of the equation.

$$
-32 y \cdot \frac{d y}{d x}-4 \frac{d y}{d x}=-50 x-8
$$

Factor out $\frac{d y}{d x}$ and solve for it.

$$
\begin{aligned}
\frac{d y}{d x}(-32 y-4) & =-50 x-8 \\
\frac{d y}{d x} & =\frac{-50 x-8}{-32 y-4} \\
\frac{d y}{d x} & =\frac{-2(25 x+4)}{-2(16 y+2)} \\
\frac{d y}{d x} & =\frac{25 x+4}{16 y+2}
\end{aligned}
$$

All the terms are negative, which is kind of ugly. If you factor - 1 out of the top and bottom, -1 divided by -1 equals 1, so they cancel out.
16.5 Given $y=9 \sqrt{x}-2 \sqrt[5]{y^{3}}$, find $\frac{d y}{d x}$.

Rewrite the radical expressions using rational exponents.

$$
y=9 x^{1 / 2}-2 y^{3 / 5}
$$

16.6 Given $\sin y-\cos x y=x-y$, find $\frac{d y}{d x}$.

Distribute $\sin x y$.

$$
\cos y \frac{d y}{d x}+x \sin x y \frac{d y}{d x}+y \sin x y=1-\frac{d y}{d x}
$$

Move terms containing $\frac{d y}{d x}$ to the left side of the equation and all others to the right side.

$$
\cos y \frac{d y}{d x}+x \sin x y \frac{d y}{d x}+\frac{d y}{d x}=1-y \sin x y
$$

Factor out $\frac{d y}{d x}$ and then solve for it.

$$
\begin{aligned}
& \frac{d y}{d x}[\cos y+x \sin x y+1]=1-y \sin x y \\
& \frac{d y}{d x}=\frac{1-y \sin x y}{\cos y+x \sin x y+1}
\end{aligned}
$$

16.7 Given $e^{x}+\cos y=\ln y^{6}$, find $\frac{d^{2} y}{d x^{2}}$

Differentiate the equation with respect to x.

Solve for $\frac{d y}{d x}$.

$$
\begin{aligned}
& \text { in } y \cdot \frac{d y}{d x}=\frac{0 y}{y^{5} \cdot y} \cdot \frac{d y}{d x} \\
& e^{x}=\sin y \frac{d y}{d x}=\frac{6}{y} \cdot \frac{d y}{d x}+\frac{6}{y} \frac{d y}{d x} \\
& e^{x}=\left(\sin y+\frac{6}{y}\right) \frac{d y}{d x} \\
& e^{x}=\left(\frac{y \cdot \sin y}{y}+\frac{6}{y}\right) \frac{d y}{d x}
\end{aligned}\left\{\begin{array}{l}
\text { The } \\
\text { derivative of } \\
\text { ln } y^{6} \text { is I divided } \\
\text { by what's inside } \\
\text { the log }\left(y^{6}\right) \text { times the } \\
\text { derivative of what's } \\
\text { inside }\left(6 y^{5}\right) \text { times the } \\
\text { derivative of what's } \\
\text { inside THAT function- } \\
\text { 6ys contains y so the } \\
\text { derivative is } d y / d x .
\end{array}\right.
$$

$$
e^{x}=\left(\frac{y \sin y+6}{y}\right) \frac{d y}{\widehat{ }}
$$

$$
\frac{e^{x} y}{y \sin y+6}-d y
$$

To find the second derivative, apply the quotient rule. Note that the derivatives of the numerator and denominator each require the product rule-the numerator contains the product of e^{x} and y, and the denominator contains the product of y

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{(y \sin y+6) \cdot \frac{d}{d x}\left(e^{x} y\right)-e^{x} y \cdot \frac{d}{d x}(y \sin y+6)}{(y \sin y+6)^{2}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{(y \sin y+6)\left(e^{x} \frac{d y}{d x}+e^{x} y\right)-e^{x} y\left(y \cos y \frac{d y}{d x}+\sin y \frac{d y}{d x}\right)}{(y \sin y+6)^{2}}
\end{aligned}
$$

like in Problem 16.5, it's a good idea to make this term one fraction by using common denominators.
To isolate $d y / d x$, multiply both sides by the reciprocal of this big
fraction. and $\sin y$.

Recall that $\frac{d y}{d x}=\frac{e^{x} y}{y \sin y+6}$.

$$
\frac{d^{2} y}{d x^{2}}=\frac{(y \sin y+6)\left[\frac{e^{2 x} y}{y \sin y+6}+e^{x} y\right]-e^{x} y\left(\frac{e^{x} y^{2} \cos y}{y \sin y+6}+\frac{e^{x} y \sin y}{y \sin y+6}\right)}{(y \sin y+6)^{2}}
$$

Note: Problems 16.8-16.10 refer to an ellipse centered at the origin with a horizontal major axis of length 16 and a major axis of length 12.
16.8 Write the equation of the ellipse, expressing each coefficient therein as an
16.8 Write the
integer.

If the major axis of the ellipse is 16 units long, then $a=\frac{16}{2}=8$; similarly, $b=6$. Plug these values into the standard form equation of an ellipse with a horizontal major axis. (Note that $h=k=0$ since the ellipse is centered at the origin.)

$$
\begin{aligned}
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}} & =1 \\
\frac{x^{2}}{64}+\frac{y^{2}}{36} & =1
\end{aligned}
$$

Multiply each term in the equation by the least common multiple: 576 .

$$
9 x^{2}+16 y^{2}=576
$$

Note: Problems 16.8-16.10 refer to an ellipse centered at the origin with a horizontal major axis of length 16 and a major axis of length 12.
16.9 Diffierentiate the equation of the ellipse generated in Problem 16.8 with respect to x.

Note: Problems 16.8-16.10 refer to an ellipse centered at the origin with a horizontal major axis of length 16 and a major axis of length 12.
16.10 Calculate the slopes of the tangent lines to the ellipse when $x=1$.

You first need to determine the points on the ellipse when $x=1$. To do so, substitute $x=1$ into its equation and solve for y.

$$
\begin{aligned}
9(1)^{2}+16 y^{2} & =576 \\
16 y^{2} & =567 \\
\sqrt{y^{2}} & = \pm \sqrt{\frac{567}{16}} \\
y & = \pm \frac{9 \sqrt{7}}{4}
\end{aligned}
$$

Therefore, the ellipse contains the points $\left(1, \frac{9 \sqrt{7}}{4}\right)$ and $\left(1,-\frac{9 \sqrt{7}}{4}\right)$. Evaluate $\frac{d y}{d x}$ at each point to determine the slope of the tangent line there.

$$
\begin{aligned}
& \frac{d y}{d x} a t\left(1,-\frac{9 \sqrt{7}}{4}\right)
\end{aligned}
$$

$$
\frac{d y}{d x} a t\left(1, \frac{9 \sqrt{7}}{4}\right)
$$

$$
\frac{d y}{d x}=-\frac{9(1)}{16\left(-\frac{9 \sqrt{7}}{4}\right)}
$$

$$
\frac{d y}{d x}=-\frac{9(1)}{16\left(\frac{9 \sqrt{7}}{4}\right)}
$$

$$
\frac{d y}{d x}=-\frac{9}{4(-9) \sqrt{7}}
$$

$$
\frac{d y}{d x}=-\frac{9}{4(9) \sqrt{7}}
$$

$$
\frac{d y}{d x}=\frac{1}{4 \sqrt{7}} \text { or } \frac{\sqrt{7}}{28}
$$

$$
\frac{d y}{d x}=-\frac{1}{4 \sqrt{7}} \text { or }-\frac{\sqrt{7}}{28}
$$

Note: Problems 16.11-16.13 refer to a circle centered at the origin with radius r.
16.II Identify the equation of the circle and differentiate it with respect to x.

The equation of a circle centered at $(0,0)$ with radius r is $x^{2}+y^{2}=r^{2}$. Differentiate implicitly with respect to x.

$$
\begin{aligned}
2 x+2 y \frac{d y}{d x} & =0 \\
2 y \frac{d y}{d x} & =-2 x \\
\frac{d y}{d x} & =\frac{-2 x}{2 y} \\
\frac{d y}{d x} & =-\frac{x}{y}
\end{aligned}
$$

Note: Problems 16.11-16.13 refer to a circle centered at the origin with radius r.
16.12 Calculate the slopes of the tangent lines to the circle when $x=c$.

Use the method outlined in Problem 16.10—begin by substituting $x=c$ into the equation to determine the points of tangency.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
c^{2}+y^{2} & =r^{2} \\
y^{2} & =r^{2}-c^{2} \\
y & = \pm \sqrt{r^{2}-c^{2}}
\end{aligned}
$$

Therefore, the circle passes through the points $\left(c,-\sqrt{r^{2}-c^{2}}\right)$ and $\left(c, \sqrt{r^{2}-c^{2}}\right)$. Substitute these points into the derivative calculated in Problem 16.11.

$$
\begin{array}{|ll|}
\hline \frac{d y}{d x} a t\left(c,-\sqrt{r^{2}-c^{2}}\right) & \frac{\frac{d y}{d x} a t\left(c, \sqrt{r^{2}-c^{2}}\right)}{} \begin{array}{ll}
\frac{d y}{d x}=-\frac{x}{y} & \frac{d y}{d x}=-\frac{x}{y} \\
\frac{d y}{d x}=-\frac{c}{-\sqrt{r^{2}-c^{2}}} & \frac{d y}{d x}=-\frac{c}{\sqrt{r^{2}-c^{2}}} \\
\frac{d y}{d x}=\frac{c}{\sqrt{r^{2}-c^{2}}} &
\end{array} \$.
\end{array}
$$

Note: Problems 16.11-16.13 refer to a circle centered at the origin with radius r.
16.13 Write the equation of the tangent line to the circle in the first quadrant given $x=c$.

According to Problem 16.12, the slope of the tangent line at point $\left(c, \sqrt{r^{2}-c^{2}}\right)$ is
$d y$ $\frac{d y}{d x}=-\frac{c}{\sqrt{\tau^{2}-c^{2}}}$. Use the point-slope formula to write the equation of the line.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\sqrt{r^{2}-c^{2}} & =-\frac{c}{\sqrt{r^{2}-c^{2}}}(x-c)
\end{aligned}
$$

Rationalize the expression on the right side of the equation and solve for y.

$$
\begin{aligned}
y-\sqrt{r^{2}-c^{2}} & =-\frac{c \sqrt{r^{2}-c^{2}}}{r^{2}-c^{2}}(x-c) \\
y & =-\frac{c \sqrt{r^{2}-c^{2}}}{r^{2}-c^{2}}(x-c)+\sqrt{r^{2}-c^{2}}
\end{aligned}
$$

Logarithmic Differentiation

Use log properties to make complex derivatives easier

16.14 Given $y=x^{x}$, find $\frac{d y}{d x}$.

Take the natural logarithm of both sides of the equation.

$$
\ln y=\ln x^{x}
$$

Using a property of logarithms (explained in Problem 5.23), $\ln a^{b}=b \ln a$.

$$
\ln y=x \ln x
$$

Differentiate both sides of the equation with respect to x, applying the product rule to differentiate $x \ln x$.

$$
\begin{aligned}
& \frac{1}{y} \cdot \frac{d y}{d x}=x \cdot \frac{1}{x}+\ln x \cdot 1 \\
& \frac{1}{y} \cdot \frac{d y}{d x}=1+\ln x
\end{aligned}
$$

Solve for $\frac{d y}{d x}$.

$$
\frac{d y}{d x}=y(1+\ln x)
$$

Any time
you need to find the derivative of an x raised to an x power, that's a dead giveaway you should use logarithmic differentiation.

The original problem states that $y=x^{x}$, so substitute that value into the equation.

$$
\begin{aligned}
& \frac{d y}{d x}=x^{x}(1+\ln x) \\
& \frac{d y}{d x}=x^{x}+x^{x} \ln x
\end{aligned}
$$

16.15 Given $y=2 x^{2 x}$, find $\frac{d y}{d x}$.

Use the method described in Problem 16.14-take the natural logarithm of both sides of the equation and use a logarithmic property to change the exponent $2 x$ into a coefficient.

$$
\begin{aligned}
& \ln y=\ln 2 x^{2 x} \\
& \ln y=2 x \ln 2 x
\end{aligned}
$$

Differentiate with respect to x, applying the product rule to differentiate the right side of the equation.

$$
\begin{aligned}
& \frac{1}{y} \cdot \frac{d y}{d x}=2 x\left(\frac{1}{2 x} \cdot 2\right)+\ln 2 x(2) \\
& \frac{1}{y} \cdot \frac{d y}{d x}=2+2 \ln 2 x
\end{aligned}
$$

Take the natural logarithm of both sides of the equation, apply a logarithmic property to relocate the exponent, differentiate with respect to x, solve for $\frac{d y}{d x}$,

16.17 Given $y=5^{x} x^{5 x}$, find $\frac{d y}{d x}$.

Take the natural logarithm of both sides of the equation.

$$
\ln y=\ln \left(5^{x} x^{5 x}\right)
$$

Expand the logarithm on the right side of the equation using the logarithmic property $\log a b=\log a+\log b$.

$$
\ln y=\ln 5^{x}+\ln x^{5 x}
$$

Move the exponents using logarithmic properties.

$$
\ln y=x \ln 5+(5 x) \ln x
$$

Differentiate with respect to x. Note that $\ln 5$ is a constant, so the product rule is not needed to diffierentiate $x \ln 5$; however, it is needed to diffierentiate $(5 x) \ln x$.

$$
\begin{aligned}
\frac{1}{y} \cdot \frac{d y}{d x} & =\ln 5+5 x \cdot \frac{1}{x}+5 \ln x \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\ln 5+5+5 \ln x \\
\frac{d y}{d x} & =y(\ln 5+5+5 \ln x) \\
\frac{d y}{d x} & =5^{x} x^{5 x}(\ln 5+5+5 \ln x)
\end{aligned}
$$

16.18 Given $y=\ln x^{e^{x}}$, find $\frac{d y}{d x}$.

The right side of the equation already contains a logarithmic function, so apply a logarithmic property to move its exponent. There is no need to take the logarithm of both sides of the equation, and as such, this is not a true logarithmic differentiation problem (although you do apply logarithmic properties).

$$
y=e^{x} \cdot \ln x
$$

Apply the product rule to differentiate with respect to x

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x} \cdot \frac{1}{x}+e^{x} \ln x \\
& \frac{d y}{d x}=\frac{e^{x}}{x}+e^{x} \ln x
\end{aligned}
$$

16.19 Given $y=\sqrt[3]{x^{9} \ln (x+2)}$, find $\frac{d y}{d x}$.

Take the natural logarithm of both sides of the equation and rewrite the radical expression using a rational exponent.

$$
\ln y=\ln \left[\left(x^{9} \ln (x+2)\right)^{1 / 3}\right]
$$

Apply a logarithmic property to move the exponent.

$$
\ln y=\frac{1}{3} \ln \left[x^{9} \ln (x+2)\right]
$$

Expand the natural logarithm of the product by expressing it as a sum of logarithms.

$$
\begin{aligned}
& \ln y=\frac{1}{3}\left[\ln x^{9}+\ln (\ln (x+2))\right] \\
& \ln y=\frac{1}{3} \ln x^{9}+\frac{1}{3} \ln (\ln (x+2))
\end{aligned}
$$

Use a logarithmic property to move the remaining exponent.

$$
\begin{aligned}
& \ln y=\frac{1}{3} \cdot 9 \cdot \ln x+\frac{1}{3} \ln (\ln (x+2)) \\
& \ln y=3 \ln x+\frac{1}{3} \ln (\ln (x+2))
\end{aligned}
$$

16.20 Given $y=4^{x} \cdot e^{2 x} \cdot \tan (5 x-1)$, find $\frac{d y}{d x}$.

$$
\begin{aligned}
\frac{1}{y} \cdot \frac{d y}{d x} & =\ln 4+2+\frac{1}{\tan (5 x-1)} \cdot \sec ^{2}(5 x-1) \cdot 5 \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\ln 4+2+\frac{5 \sec ^{2}(5 x-1)}{\tan (5 x-1)} \\
\frac{d y}{d x} & =y\left[\ln 4+2+\frac{5 \sec ^{2}(5 x-1)}{\tan (5 x-1)}\right] \\
\frac{d y}{d x} & =4^{x} e^{2 x} \tan (5 x-1)\left[\ln 4+2+\frac{5 \sec ^{2}(5 x-1)}{\tan (5 x-1)}\right]
\end{aligned}
$$

16.21 Given $y=\frac{\left(\sec ^{2} x\right)\left(\log _{4} x^{6}\right)}{(12 x-7)^{19}}$, find $\frac{d y}{d x}$.

Take the natural logarithm of both sides of the equation.

$$
\ln y=\ln \frac{\left(\sec ^{2} x\right)\left(\log _{4} x^{6}\right)}{(12 x-7)^{19}}
$$

Expand the logarithm on the right side of the equation.

$$
\begin{aligned}
& \ln y=\ln \left[\left(\sec ^{2} x\right)\left(\log _{4} x^{6}\right)\right]-\ln (12 x-7)^{19} \\
& \ln y=\ln \left(\sec ^{2} x\right)+\ln \left(\log _{4} x^{6}\right)-\ln (12 x-7)^{19} \\
& \ln y=2 \ln (\sec x)+\ln \left(6 \log _{4} x\right)-19 \ln (12 x-7) \\
& \ln y=2 \ln (\sec x)+\ln 6+\ln \left(\log _{4} x\right)-19 \ln (12 x-7)
\end{aligned}
$$

This
is a lot like Problem 5.27, which asks you to fully expand a logarithm. Review that problem if you're confused.

The 6 goes in frout of $\log _{4} x$ because x is raised to the $6^{\text {th }}$ power. If the whole expression $\log _{4} x$ was raised to the $6^{\text {th }}$ power, only then would you pull the 6 out in frout of $\ln \left(\log _{4} x\right)$.

The
derivative of $\ln 6$ is 0 .
16.22 Given $y=x^{x^{2} /(x-4)}$, find $\frac{d y}{d x}$.

Apply logarithmic differentiation.

$$
\begin{aligned}
& \ln y=\ln x^{x^{2} /(x-4)} \\
& \ln y=\frac{x^{2}}{x-4} \ln x
\end{aligned}
$$

Diffierentiate with respect to x; apply the product rule on the right side of the equation.

$$
\frac{1}{y} \cdot \frac{d y}{d x}=\frac{x^{2}}{x-4} \cdot \frac{d}{d x}(\ln x)+\ln x \cdot \frac{d}{d x}\left(\frac{x^{2}}{x-4}\right)
$$

Note that differentiating $\frac{x^{2}}{x-4}$ requires the quotient rule.

$$
\begin{aligned}
\frac{1}{y} \cdot \frac{d y}{d x} & =\frac{x^{2}}{x-4} \cdot \frac{1}{x}+\ln x \cdot \frac{(x-4)(2 x)-x^{2}(1)}{(x-4)^{2}} \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\frac{\not x \cdot x}{\not x(x-4)}+\ln x\left(\frac{2 x^{2}-8 x-x^{2}}{(x-4)^{2}}\right) \\
\frac{d y}{d x} & =y\left[\frac{x}{x-4}+\frac{(\ln x)\left(x^{2}-8 x\right)}{(x-4)^{2}}\right] \\
\frac{d y}{d x} & =x^{x^{2} /(x-4)}\left[\frac{x}{x-4}+\frac{(\ln x)\left(x^{2}-8 x\right)}{(x-4)^{2}}\right]
\end{aligned}
$$

16.23 Given $y=x^{x^{3}}$, find $\frac{d y}{d x}$.

Apply logarithmic differentiation.

Differentiating Inverse Trigonometric Functions

'Cause the derivative of $\tan ^{-1} x \operatorname{ain}^{\prime}+\sec ^{-2} x$

Basically,
the derivative is $\frac{1}{\sqrt{1-u^{2}}}$, where u is whatever's plugged into inverse sine. Then multiply that entive fraction by the derivative of u. In this problem, $u=x$, and the derivative of x is 1 .
16.24 Differentiate $\arcsin x$ with respect to x.

The derivative of arcsin u, if u is a function of x, is $\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$; in this instance,
$u=x$.

$$
\begin{aligned}
\frac{d}{d x}(\arcsin x) & =\frac{1}{\sqrt{1-x^{2}}} \cdot \frac{d}{d x}(x) \\
& =\frac{1}{\sqrt{1-x^{2}}} \cdot 1 \\
& =\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

16.25 Differentiate arccos $4 x^{3}$ with respect to x.

All
of the inverse trig function derivatives formulas are listed in
Appendix D.
Apply the arccosine differentiation formula.

$$
\begin{aligned}
& \frac{d}{d x}(\arccos u)=-\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x} \\
& \frac{d}{d x}\left(\arccos 4 x^{3}\right)=-\frac{1}{\sqrt{1-\left(4 x^{3}\right)^{2}}} \cdot \frac{d}{d x}\left(4 x^{3}\right) \\
& \frac{d}{d x}\left(\arccos 4 x^{3}\right)=-\frac{12 x^{2}}{\sqrt{1-16 x^{6}}}
\end{aligned}
$$

16.26 Differentiate $\tan ^{-1}\left(e^{\cos x}\right)$ with respect to x.

Apply the inverse tangent derivative formula.

$$
\begin{aligned}
\frac{d}{d x}(\arctan u) & =\frac{1}{1+u^{2}} \cdot \frac{d u}{d x} \\
\frac{d}{d x}\left(\tan ^{-1} e^{\cos x}\right) & =\frac{1}{1+\left(e^{\cos x}\right)^{2}} \cdot \frac{d}{d x}\left(e^{\cos x}\right)
\end{aligned}
$$

Use the chain rule to differentiate $e^{\cos x}$.

$$
\begin{aligned}
\frac{d}{d x}\left(\tan ^{-1} e^{\cos x}\right) & =\frac{1}{1+e^{2 \cos x}} \cdot\left(e^{\cos x}\right)(-\sin x) \\
\frac{d}{d x}\left(\tan ^{-1} e^{\cos x}\right) & =-\frac{\sin x \cdot e^{\cos x}}{1+e^{2 \cos x}}
\end{aligned}
$$

16.27 Differentiate $\ln (\operatorname{arccot} 2 x)$ with respect to x.

arccotangent derivative formula is the same as arctangent, only negative. All of the functions that start with "co" (cosine, cotangent,

16.28 Differentiate $\operatorname{arcsec} \frac{\ln x}{x^{2}}$ with respect to x.

Apply the arcsecant differentiation formula.

$$
\begin{aligned}
\frac{d}{d x}(\operatorname{arcsec} u) & =\frac{1}{|u| \sqrt{u^{2}-1}} \cdot \frac{d u}{d x} \\
\frac{d}{d x}\left(\operatorname{arcsec}\left(\frac{\ln x}{x^{2}}\right)\right) & =\frac{1}{\left|\frac{\ln x}{x^{2}}\right| \sqrt{\left(\frac{\ln x}{x^{2}}\right)^{2}-1}} \cdot \frac{d}{d x}\left(\frac{\ln x}{x^{2}}\right)
\end{aligned}
$$

Because this is a composite function, apply the chain rule.

$$
\frac{d}{d x}[\ln (\operatorname{arccot} 2 x)]=\frac{1}{\operatorname{arccot} 2 x} \cdot \frac{d}{d x}(\operatorname{arccot} 2 x)
$$

Apply the differentiation formula for the arccotangent function.

$$
\begin{aligned}
\frac{d}{d x}[\ln (\operatorname{arccot} 2 x)] & =\left(\frac{1}{\operatorname{arccot} 2 x}\right)\left(-\frac{1}{1+(2 x)^{2}} \cdot 2\right) \\
& =-\frac{2}{\left(1+4 x^{2}\right)(\operatorname{arccot} 2 x)}
\end{aligned}
$$

Simplify the complex fraction by combining the quantities within the square root into a single fraction.

$$
\begin{aligned}
& =\frac{1}{\left|\frac{\ln x}{x^{2}}\right| \sqrt{\frac{(\ln x)^{2}}{x^{4}}-\frac{x^{4}}{x^{4}}}} \cdot \frac{d}{d x}\left(\frac{\ln x}{x^{2}}\right) \\
& =\frac{1}{\left|\frac{\ln x}{}\right| \sqrt{(\ln x)^{2}-x^{4}}} \cdot \frac{d}{d x}\left(\frac{\ln x}{x^{2} \mid} \sqrt{x^{2}}\right)
\end{aligned}
$$

Eliminate the complex fraction.

$$
\longrightarrow=\frac{x^{4}}{|\ln x| \sqrt{(\ln x)^{2}-x^{4}}} \cdot \frac{d}{d x}\left(\frac{\ln x}{x^{2}}\right)
$$

Note that the derivative has not yet fully been determined. Now that the rational expression is in an acceptable format (i.e., it doesn't contain a complex fraction), use the quotient rule to diffierentiate $\frac{\ln x}{x^{2}}$.

$$
\begin{aligned}
& =\frac{x^{4}}{|\ln x| \sqrt{(\ln x)^{2}-x^{4}}} \cdot\left(\frac{x^{2} \cdot \frac{1}{x}-\ln x(2 x)}{\left(x^{2}\right)^{2}}\right) \\
& =\frac{x^{4}}{|\ln x| \sqrt{(} \ln x)^{2}-x^{4}}\left(\frac{x-2 x \ln x}{x^{4}}\right) \\
& =\frac{x^{4}(x-2 x \ln x)}{x^{4} \cdot|\ln x| \sqrt{(\ln x)^{2}-x^{4}}} \\
& =\frac{x-2 x \ln x}{|\ln x| \sqrt{(\ln x)^{2}-x^{4}}}
\end{aligned}
$$

you get an answer of 143, it's because you plugged
$x=5$ into $f(x)$. You've
supposed to plug it into the inverse function: $f^{-1}(x)$.

Differentiating Inverse Functions

without even knowing what they are!
16.29 Given $f(x)=x^{3}+4 x-2$, use a graphing calculator to evaluate $f^{-1}(5)$ accurate to three decimal places.

Set the equation equal to 0 .

$$
c^{3}+4 c-7=0
$$

Graph the equation $y=x^{3}+4 x-7$ on a graphing calculator and calculate the x-intercept (i.e., the root or the zero); you should get $x \approx 1.255$. Therefore, $f(1.255) \approx 5$, so $f^{-1}(5) \approx 1.255$.

Note: Problems 16.30-16.31 refer to the function $g(x)=x^{5}+9 x^{3}-x^{2}+6 x-2$.
16.30 Prove that $g^{-1}(x)$ exists.

Only one-to-one functions have inverses. Graphically, this means any horizontal line drawn on the function may intersect it once, at most. Therefore, any function that changes direction will fail the horizontal line test, as demonstrated in Figure 16-1.

Figure 16-1 The graph of a continuous function $f(x)$ that fails the horizontal line test because of its relative extrema. The dotted horizontal lines represent only two of an infinite number of horizontal lines that intersect the graph of $f(x)$ more than once.

Because the graph of $g^{\prime}(x)=5 x^{4}+27 x^{2}-2 x+6$ falls entirely above the x-axis, $g^{\prime}(x)$ is positive for all x and $g(x)$ is strictly increasing. All monotone increasing or decreasing functions possess inverses.

If
a graph
never stops
increasing,
the function is
"strictly increasing"
or "monotone
increasing." If the
function always
decreases, it's
classified "strictly
decreasing" or
"monotone
decreasing."

Note: Problems 16.30-16.31 refer to the function $g(x)=x^{5}+9 x^{3}-x^{2}+6 x-2$.
16.31 Use a graphing calculator to evaluate $g^{-1}\left(\frac{7}{6}\right)$ accurate to three decimal places.

Use the method described in Problem 16.29, which states that given $g(c)=\frac{7}{6}$, it follows that $g^{-1}\left(\frac{7}{6}\right)=c$. Substitute c into $g(x)$, set the equation equal to $\frac{7}{6}$, subtract
$\frac{7}{6}$ from both sides of the equation, and use technology to identify the x-intercept of the resulting function.

$$
\begin{aligned}
c^{5}+9 c^{3}-c^{2}+6 c-2 & =\frac{7}{6} \\
c^{5}+9 c^{3}-c^{2}+6 c-\frac{19}{6} & =0 \\
c & \approx 0.434
\end{aligned}
$$

Because $g(0.434) \approx \frac{7}{6}$, it follows that $g^{-1}\left(\frac{7}{6}\right) \approx 0.434$.
16.32 If $h(x)=7 x^{3}+9 x+18$, evaluate $\left(h^{-1}\right)^{\prime}(2)$, the derivative of $h^{-1}(x)$ with respect to x when $x=2$.

This
formula
Given a function $f(x)$, the derivative of its inverse, $\left(f^{-1}\right)^{\prime}(x)$, is defined according to the formula below.
doesn't appear out of thin air-Problem 16.37 explains where it comes from.

$$
\rightarrow\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Substitute $h(x)$ for $f(x)$ and plug $x=2$ into the formula.

$$
\left(h^{-1}\right)^{\prime}(2)=\frac{1}{h^{\prime}\left(h^{-1}(2)\right)}
$$

Calculate $h^{-1}(2)$ using the technique described in Problems 16.29 and 16.31: if $h^{-1}(2)=c$, it follows that $h(c)=2$.

$$
\begin{aligned}
7 c^{3}+9 c+18 & =2 \\
7 c^{3}+9 c+16 & =0 \\
c & =-1
\end{aligned}
$$

Substitute $h^{-1}(2)=-1$ into the inverse derivative formula.

$$
\left(h^{-1}\right)^{\prime}(2)=\frac{1}{h^{\prime}\left(h^{-1}(2)\right)}=\frac{1}{h^{\prime}(-1)}
$$

Differentiate $h(x)$ and evaluate $h^{\prime}(-1)$.

$$
\begin{aligned}
h^{\prime}(x) & =21 x^{2}+9 \\
h^{\prime}(-1) & =21(-1)^{2}+9 \\
h^{\prime}(-1) & =30
\end{aligned}
$$

Substitute $h^{\prime}(-1)=30$ into the inverse derivative formula.

$$
\left(h^{-1}\right)^{\prime}(2)=\frac{1}{h^{\prime}(-1)}=\frac{1}{30}
$$

16.33 If $f(x)=5 x^{9}-x^{2}+x-4$, evaluate $\left(f^{-1}\right)^{\prime}(6)$ accurate to three decimal places.

Apply the method described in Problem 16.32.

$$
\left(f^{-1}\right)^{\prime}(6)=\frac{1}{f^{\prime}\left(f^{-1}(6)\right)}
$$

If $f^{-1}(6)=c$, then $f(c)=6$.

$$
\begin{aligned}
5 c^{9}-c^{2}+c-4 & =6 \\
5 c^{9}-c^{2}+c-10 & =0 \\
c & \approx 1.081107956
\end{aligned}
$$

Substitute $f^{-1}(6) \approx 1.081107956$ into the inverse derivative formula.

$$
\left(f^{-1}\right)^{\prime}(6)=\frac{1}{f^{\prime}(1.081107956)}
$$

Differentiate $f(x)$ and evaluate $f^{\prime}(1.081107956)$.

Even

though the final answer should contain three decimal places, you shouldn't round any decimals until then-use as many decimal places as your calculator can spit at you, or you risk a less accurate answer.

$$
\begin{aligned}
f^{\prime}(x) & =45 x^{8}-2 x+1 \\
f^{\prime}(1.081107956) & \approx 82.8156861426
\end{aligned}
$$

Substitute $f^{\prime}(1.081107956)$ into the inverse derivative formula.

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(6) \approx \frac{1}{82.8156861426} \\
& \left(f^{-1}\right)^{\prime}(6) \approx 0.012
\end{aligned}
$$

Note: Problems 16.34-16.35 reference a one-to-one function $f(x)$ that is continuous and differentiable for all real numbers. Selected values of the function and its derivative are listed in the table below.
16.34 Evaluate $\left(f^{-1}\right)^{\prime}(-2)$.

x	-2	-1	0	1	2	3
$f(x)$	6	2	1	-1	$-\frac{3}{2}$	-2
$f^{\prime}(x)$	$-\frac{1}{2}$	-6	-1	$-\frac{5}{3}$	$-\frac{1}{8}$	$-\frac{3}{4}$

Apply the formula for the derivative of an inverse function.

$$
\left(f^{-1}\right)^{\prime}(-2)=\frac{1}{f^{\prime}\left(f^{-1}(-2)\right)}
$$

Note: Problems 16.34-16.35 reference a one-to-one function $f(x)$ that is continuous and differentiable for all real numbers. Selected values of the function and its derivative are listed in Problem 16.34.
16.35 Evaluate $\left(f^{-1}\right)^{\prime}(-1)$.

Apply the formula for the derivative of an inverse function.

$$
\left(f^{-1}\right)^{\prime}(-1)=\frac{1}{f^{\prime}\left(f^{-1}(-1)\right)}
$$

According to the table, $f(1)=-1$; therefore, $f^{-1}(-1)=1$.

$$
\left(f^{-1}\right)^{\prime}(-1)=\frac{1}{f^{\prime}(1)}
$$

According to the table, $f^{\prime}(1)=-\frac{5}{3}$.

$$
\left(f^{-1}\right)^{\prime}(-1)=\frac{1}{-5 / 3}=-\frac{3}{5}
$$

16.36 Given the function $k(x)$ graphed in Figure $16-2$, estimate $\left(k^{-1}\right)^{\prime}(0)$.

Figure 16-2
The graph of a continuous, one-to-one function $k(x)$.

Apply the formula for the derivative of an inverse function.

$$
\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}
$$

The function appears to have a root of $x=-6$; therefore, $k^{-1}(0) \approx-6$.

$$
\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}(-6)}
$$

To approximate $k^{\prime}(-6)$, estimate the slope of the tangent line to $k(x)$ at $x=-6$. One acceptable way to do so is to calculate the slope of the secant line connecting the points on $k(x)$ that are one unit left and one unit right of $x=-6:(-7,-1)$ and $\left(-5, \frac{1}{2}\right)$.

$$
\begin{aligned}
k^{\prime}(-6) & \approx \frac{k(-5)-k(-7)}{-5-7)} \\
& \approx \frac{(1 / 2)-(-1)}{-5+7} \\
& \approx \frac{3 / 2}{2} \\
& \approx \frac{3}{4}
\end{aligned}
$$

Substitute this value into the inverse derivative formula.

$$
\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}(-6)} \approx \frac{1}{3 / 4} \approx \frac{4}{3}
$$

16.37 Generate the formula for the derivative of an inverse function:

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

If $f^{-1}(x)$ is the inverse function of $f(x)$, then $f\left(f^{-1}(x)\right)=x$. Differentiate both sides of this equation with respect to x.

$$
\begin{aligned}
\frac{f^{\prime}\left(f^{-1}(x)\right) \cdot\left(f^{-1}\right)^{\prime}(x)}{f^{\prime}\left(f^{-1}(x)\right)} & =\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \\
\left(f^{-1}\right)^{\prime}(x) & =\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
\end{aligned}
$$

Use rule here. Take the derivative of the outer function $f(x)$ and leave the inner function $f^{-1}(x)$ alone: $f^{\prime}\left(f^{-1}(x)\right)$. Now multiply by the derivative of the inner function:
$\left(f^{-1}\right)^{\prime}(x)$.

Solve the equation for $\left(f^{-1}\right)^{\prime}(x)$.

Chapter 17
 APPROXIMATING AREA

Estimate the area between a curve and the x-axis
The opposite of differentiation, a process appropriately titled "antidifferentiation" or (more commonly) "integration," is accompanied by its own robust set of theorems, rules, algorithms, and applications, all of which are discussed in Chapters 18 through 23. This chapter describes different ways to estimate the area between a function and the x-axis, beginning with very informal rectangular approximation methods and culminating with significantly more formal techniques. The actual connection bridging area approximation to the process of antidifferentiation will be investigated in Chapter 18.

This chapter is really low-tech compared to the chapters before and after it. After all, you spend almost the entire chapter either adding up the areas of little rectangles or plugging things mindlessly into formulas like the trapezoidal rule. Formal Riemann sums, the last topic in this chapter, are a little tricky, but they're not so bad once you get used to them. You may start wondering "Why the heck do I even want to approximate area? What does this have to do with anything?" It's just calculus's way of saying "In geometry, you could only find areas of a few different things-circles, rectangles, regular polygons, those sorts of things-but in calculus, you'll find the areas of things with irregular shapes."

Informal Riemann Sums

Left, Right, Midpoint, Upper, and Lower Sums

Note: Problems 17.2-17.6 refer to the graph in Figure 17-1.
17.2 Approximate the shaded area using five rectangles of equal width and left Riemann sums.

Figure 17-1

The goal of Problems 17.2-17.6 is to approximate the shaded area between $f(x)$ and the x-axis on the x-interval [0,10].

Figure 17-2 The rectangles used to determine the left Riemann sum with $n=5$ rectangles. The height of each rectangle is shown above it.

The area of each rectangle is its width, 2, times its height. Calculate the sum of the areas of the rectangles.

$$
2 f(0)+2 f(2)+2 f(4)+2 f(6)+2 f(8)=2[f(0)+f(2)+f(4)+f(6)+f(8)]
$$

Estimate the function values based on the graph in Figure 17-2.

$$
2(5+8+9.5+7+1)=2(30.5)=61
$$

The area beneath the curve is approximately 61 square units according to the left Riemann sum.

Note: Problems 17.2-17.6 refer to the graph in Figure 17-1.
17.3 Approximate the shaded area using five rectangles of equal width and right Riemann sums.

Because the interval and number of rectangles are the same as Problem 17.2, there is no need to recalculate the width of the rectangles: $\Delta x=2$. The height of each rectangle in a right Riemann sum is dictated by the height of the function at the right boundary of each interval, as illustrated by Figure 17-3.

Figure 17-3 The rectangles used to determine the right Riemann sum with $n=5$ rectangles.The height of each rectangle is shown above it.

Calculate the sum of the areas of the rectangles.

$$
\begin{aligned}
2 f(2)+2 f(4)+2 f(6)+2 f(8)+2 f(10) & =2[f(2)+f(4)+f(6)+f(8)+f(10)] \\
& =2[8+9.5+7+1+2] \\
& =55
\end{aligned}
$$

The area beneath the curve is approximately 55 square units, according to the right Riemann sum.

Note: Problems 17.2-17.6 refer to the graph in Figure 17-1.
17.4 Approximate the shaded area using five rectangles of equal width and midpoint Riemann sums.

Figure 17-4 The rectangles used to determine the midpoint Riemann sum with $n=5$ rectangles. Note that the rectangle on $[8,10]$ has a height of $f(9)=0$, so its area is 0 as well.

Calculate the sum of the areas of the rectangles.

$$
\begin{aligned}
2 f(1)+2 f(3)+2 f(5)+2 f(7)+2 f(9) & =2[f(1)+f(3)+f(5)+f(7)+f(9)] \\
& =2[6+9+9+4+0] \\
& =56
\end{aligned}
$$

The area beneath the curve is approximately 56 square units, according to the midpoint Riemann sum.

Because the number of rectangles is $n=10, \Delta x=1$. The height of each rectangle in an upper Riemann sum is the greatest function value in an interval. Therefore, the rectangle on the interval $[0,1]$ has a height of $f(1)=6$ (the right endpoint of the interval), whereas the rectangle on $[7,8]$ will have a height of $f(7)=4$ (the left endpoint of the interval). Note that the heights defining the rectangles in an upper Rieman sum need not occur at the endpoints of the interval, but in this problem they do.

Figure 17-5 The greatest function values for each interval occur at either the left or right endpoint, but that is not necessarily true for all functions. In fact, it only occurs when a function, like f(x), does not change direction between intervals.

Calculate the sum of the areas of the rectangles.

$$
\begin{aligned}
& 1 \cdot f(1)+1 \cdot f(2)+1 \cdot f(3)+1 \cdot f(4)+1 \cdot f(4)+1 \cdot f(5)+1 \cdot f(6)+1 \cdot f(7)+1 \cdot f(8)+1 \cdot f(10) \\
& =6+8+9+9.5+9.5+9+7+4+1+2 \\
& =65
\end{aligned}
$$

The shaded area measures approximately 65 square units, according to the upper Riemann sum.

Lower
Riemann sum rectangles are sometimes called "inscribed rectangles."

Note: Problems 17.2-17.6 refer to the graph in Figure 17-1.
I7.6 Approximate the shaded area using 10 rectangles of equal width and lower \rightarrow Riemann sums.

The height of each rectangle in a lower Riemann sum is the smallest function value on the x-interval, as illustrated by Figure 17-6.

Figure 17-6 The smallest function value over each interval defines the heights of the rectangles in a lower Riemann sum. Though these values occur at interval endpoints for this function, it is not necessarily true for all functions for the reasons given in Figure 17-5.

Calculate the sum of the areas of the rectangles.

```
\(1 \cdot f(0)+1 \cdot f(1)+1 \cdot f(2)+1 \cdot f(3)+1 \cdot f(5)+1 \cdot f(6)+1 \cdot f(7)+1 \cdot f(8)+1 \cdot f(9)+1 \cdot f(9)\)
\(=5+6+8+9+9+7+4+1+0+0\)
\(=49\)
```

The area beneath the curve is approximately 49 square units, according to the lower Riemann sum.

Note: Problems 17.7-17.11 refer to the area of the region bounded by the x-axis and the function $g(x)=x^{2}$ on the x-interval $[0,5]$.
17.7 Estimate the area using a right Riemann sum with $n=5$ rectangles of equal width.

Calculate the width of the rectangles using the formula from Problem 17.1.

$$
\Delta x=\frac{b-a}{n}=\frac{5-0}{5}=\frac{5}{5}=1
$$

The rectangles will occupy these intervals on the x-axis: $[0,1],[1,2],[2,3],[3,4]$, and $[4,5]$. The height of each rectangle will be determined by the function values of the right boundaries of each interval: $g(1), g(2), g(3), g(4)$, and $g(5)$, respectively. Calculate the sum of the areas of the rectangles.

$$
\begin{aligned}
\Delta x(g(1)+g(2)+g(3)+g(4)+g(5)) & =1\left[\left(1^{2}\right)+\left(2^{2}\right)+\left(3^{2}\right)+\left(4^{2}\right)+\left(5^{2}\right)\right] \\
& =1(1+4+9+16+25) \\
& =55
\end{aligned}
$$

According to the right Riemann sum, the area is approximately 55 square units.

Note: Problems 17.7-17.11 refer to the area of the region bounded by the x-axis and the function $g(x)=x$ on the x-interval [0,5].
17.8 Estimate the area using a left Riemann sum with $n=5$ rectangles of equal width.

Use the same width from Problem 17.7: $\Delta x=1$. When calculating left Riemann sums, the height of each rectangle is dictated by the height of the function at the left boundary of each rectangle. Calculate the sum of the areas of the rectangles.

$$
\begin{aligned}
\Delta x(g(0)+g(1)+g(2)+g(3)+g(4)) & =1\left[0^{2}+1^{2}+2^{2}+3^{2}+4^{2}\right] \\
& =1+4+9+16 \\
& =30
\end{aligned}
$$

According to the left Riemann sum, the area is approximately 30 square units.

Calculate the sum of the areas of the rectangles.

$$
\begin{aligned}
\Delta x\left[g\left(\frac{5}{8}\right)+g\left(\frac{15}{8}\right)+g\left(\frac{25}{8}\right)+g\left(\frac{35}{8}\right)\right] & =\frac{5}{4}\left(\frac{25}{64}+\frac{225}{64}+\frac{625}{64}+\frac{1,225}{64}\right) \\
& =\frac{5}{4}\left(\frac{2,100}{64}\right) \\
& =\frac{2,625}{64} \approx 41.016 \text { square units }
\end{aligned}
$$

Note: Problems 17.7-17.11 refer to the area of the region bounded by the x-axis and the function $g(x)=x^{2}$ on the x-interval [0,5].
17.10 Estimate the area using a lower Riemann sum with $n=6$ rectangles of equal width.

Calculate the width of the rectangles.

$$
\Delta x=\frac{b-a}{n}=\frac{5-0}{6}=\frac{5}{6}
$$

The six rectangles will occupy these intervals: $\left[0, \frac{5}{6}\right],\left[\frac{5}{6}, \frac{5}{3}\right],\left[\frac{5}{3}, \frac{5}{2}\right],\left[\frac{5}{2}, \frac{10}{3}\right]$, $\left[\frac{10}{3}, \frac{25}{6}\right]$, and $\left[\frac{25}{6}, 5\right]$. Because $g(x)$ is strictly increasing on $[0,5]$, the lowest function value in each interval occurs at the right boundary. Therefore, the lower Riemann sum is equivalent to the left Riemann sum for $f(x)=x^{2}$.

$$
\begin{aligned}
& \frac{5}{6}\left(g(0)+g\left(\frac{5}{6}\right)+g\left(\frac{5}{3}\right)+g\left(\frac{5}{2}\right)+g\left(\frac{10}{3}\right)+g\left(\frac{25}{6}\right)\right) \\
= & \frac{5}{6}\left(0+\frac{25}{36}+\frac{25}{9}+\frac{25}{4}+\frac{100}{9}+\frac{625}{36}\right) \\
= & \frac{5}{6}\left(\frac{25+100+225+400+625}{36}\right) \\
= & \frac{6,875}{216} \approx 31.829 \text { square units }
\end{aligned}
$$

Because $g^{\prime}(x)=2 x$ is positive for all x 's between 0 and 5 , $g(x)$ is increasing on the interval.

Note: Problems 17.7-17.11 refer to the area of the region bounded by the x-axis and the function $g(x)=x^{2}$ on the x-interval $[0,5]$.
17.II Estimate the area using an upper Riemann sum with $n=6$ rectangles of equal width.

Follow the same method as Problem 17.10, but instead of the lesser of the function values, define the rectangle heights as the greater of the endpoints' function values.

$$
\begin{aligned}
& \frac{5}{6}\left(g\left(\frac{5}{6}\right)+g\left(\frac{5}{3}\right)+g\left(\frac{5}{2}\right)+g\left(\frac{10}{3}\right)+g\left(\frac{25}{6}\right)+g(5)\right) \\
= & \frac{5}{6}\left(\frac{25}{36}+\frac{25}{9}+\frac{25}{4}+\frac{100}{9}+\frac{625}{36}+25\right) \\
= & \frac{5}{6}\left(\frac{25+100+225+400+625+900}{36}\right) \\
= & \frac{11, \frac{375}{216}}{} \approx 52.662 \text { square units }
\end{aligned}
$$

Note: Problems 17.12-17.16 refer to the area of the region bounded by $f(x)=3 x^{2}+1$ and the x-axis on the x-interval $[0,6]$.
17.12 Estimate the area using a left Riemann sum with:
(a) $n=3$ rectangles
(b) $n=6$ rectangles

Which estimate more accurately approximates the correct area of 222 square units?

When $n=3$ rectangles are used, $\Delta x=\frac{6-0}{3}=2$; when $n=6$ rectangles are used, $\Delta x=\frac{6-0}{6}=1$.
(a) Left Riemann sum with $n=3$ rectangles:
$\Delta x[f(0)+f(2)+f(4)]$
$=2(1+13+49)$
more rectangles you use to calculate a Riemann sum, the more accurate your area estimate will be.

Using $n=6$ rectangles produces a more accurate result.
(b) Left Riemann sum with $n=6$ rectangles:
$\Delta x[f(0)+f(1)+f(2)+f(3)+f(4)+f(5)]$
$=1(1+4+13+28+49+76)$
$=171$ square units

Note: Problems 17.12-17.16 refer to the area of the region bounded by $f(x)=3 x^{2}+1$ and the x-axis on the x-interval [0,6].
17.13 Why is the area estimate in Problem 17.12 significantly less than the actual area?

The graph of $f(x)=3 x^{2}+1$ is increasing on the interval $[0, \infty)$, so the function value at the right boundary of each interval is greater than that of the left boundary. Furthermore, the magnitude by the right endpoint is greater increases as x increases. Consider Figure 17-7, the graph of $f(x)$ and the $n=6$ rectangles used to estimate the left Riemann sum.

Figure 17-7 The estimation error, represented by the shaded region of the graph, increases as x increases.

Above each inscribed rectangle, a large region beneath the curve is omitted, causing the rectangles to underestimate the actual area beneath the curve.

Note: Problems 17.12-17.16 refer to the area of the region bounded by $f(x)=3 x^{2}+1$ and the x-axis on the x-interval [0,6].
17.14 Describe the accuracy of a right Riemann sum using $n=6$ subintervals of equal width.

The greater the difference between a function's height at the left and right boundaries of each interval, the greater the estimation error when only the left
or right Riemann sum is considered. Therefore, for exactly the opposite reasons presented in Problem 17.13, the right Riemann sum significantly overestimates the area. As Figure 17-8 demonstrates, the rectangles of the right Riemann sum now enclose far more than the area to be estimated.

Figure 17-8 The circumscribed rectangles representing the right (or upper) Riemann sum using $n=6$ rectangles overestimate the area beneath $f(x)$. The estimation error, represented by the shaded region on the graph, increases as $f(x)$ increases.

Note: Problems 17.12-17.16 refer to the area of the region bounded by $f(x)=3 x^{2}+1$ and the x-axis on the x-interval [0,6].
17.15 Why will the midpoint sum provide the most accurate estimate of the area when compared to the left and right Riemann sums using the same subintervals? Supplement your argument with a graph.

As explained in Problem 17.13, a left Riemann sum will underestimate the area beneath an increasing function. Similarly, using the highest function values on an interval (when calculating a right Riemann sum) overestimates the area. However, a midpoint sum produces a far more accurate approximation, because each rectangle both excludes area within the region and includes area outside of the region, as illustrated by Figure 17-9.

Figure 17-9 Each rectangle excludes area beneath the curve (represented by the dark shaded regions) and includes area above the curve (represented by the light shaded regions).

Although the dark and light areas on each interval in Figure 17-9 are not equal (and therefore won't cancel one another out to perfectly calculate the area beneath the curve), they serve to negate one another to some extent and provide a more accurate result than right, left, upper, or lower Riemann sums for $f(x)=$ $3 x^{2}+1$. In fact, midpoint sums are the most accurate Riemann approximation for the vast majority of functions.

Note: Problems 17.12-17.16 refer to the area of the region bounded by $f(x)=3 x^{2}+1$ and the x-axis on the x-interval [0,6].

I7.16 Verify the hypothesis presented in Problem 17.15 by estimating the area using a midpoint Riemann sum with $n=6$ rectangles.

The width of the rectangles is $\Delta x=\frac{6-0}{6}=1$, and the midpoints of the intervals are $x=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}$, and $\frac{11}{2}$. Calculate the sum of the areas of the rectangles.

$$
\begin{aligned}
& \Delta x\left[f\left(\frac{1}{2}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{5}{2}\right)+f\left(\frac{7}{2}\right)+f\left(\frac{9}{2}\right)+f\left(\frac{11}{2}\right)\right] \\
= & 1\left[\frac{7}{4}+\frac{31}{4}+\frac{79}{4}+\frac{151}{4}+\frac{247}{4}+\frac{367}{4}\right] \\
= & \frac{441}{2} \approx 220.5 \text { square units }
\end{aligned}
$$

The area estimate of 220.5 square units closely approximates the actual area of 222, especially considering that the left Riemann sum using the same number of rectangles is inaccurate by more than 50 square units (according to Problem 17.12).

Trapezoidal Rule

similar to Riemann sums but much more accurate

17.17 Approximate the area defined in Problem 17.12 (the area of the region bounded by $f(x)=3 x^{2}+1$ and the x-axis on the x-interval $\left.[0,6]\right)$ using three trapezoids of equal width.

It is best to construct the trapezoids such that one of their nonparallel sides is horizontal and lies on the x-axis. The opposite side should connect the function values at the endpoints of the interval, as illustrated by Figure 17-10.

$$
f(x)=3 x^{2}+1
$$

Figure 17-10 Three trapezoids of height 2 are used to estimate the area between $f(x)$ and the x-axis. In the left illustration, note that the shaded region represents the overestimation error. In the right portion of the illustration, the trapezoids are rendered separately to facilitate the calculation of their areas.

The area of a trapezoid is $\frac{1}{2} h\left(b_{1}+b_{2}\right)$, where b_{1} and b_{2} are the lengths of the bases and h represents the distance between them. Each of the trapezoids has the same height: $h=\Delta x=\frac{b-a}{n}=\frac{6-0}{3}=2$.

Area of Trapezoid 1 :

$\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$=\frac{1}{2}(2)(f(0)+f(2))$
$=\frac{2}{2}\left[\left(3 \cdot 0^{2}+1\right)+\left(3 \cdot 2^{2}+1\right)\right]=\frac{2}{2}\left[\left(3 \cdot 2^{2}+1\right)+\left(3 \cdot 4^{2}+1\right)\right]=\frac{2}{2}\left[\left(3 \cdot 4^{2}+1\right)+\left(3 \cdot 6^{2}+1\right)\right]$
$=1[1+13] \quad=1[13+49] \quad=1[49+109]$
$=14$

Area of Trapezoid 2 :
$\frac{1}{2} h\left(b_{2}+b_{3}\right)$
$=\frac{1}{2}(2)(f(2)+f(4))$
$=1[13+49]$
$=62$

Area of Trapezoid 3 :
$\frac{1}{2} h\left(b_{3}+b_{4}\right)$
$=\frac{1}{2}(2)(f(4)+f(6))$
$=158$

The sum of the trapezoidal areas is $14+62+158=234$ square units. Note that this estimate is almost as accurate as the midpoint Riemann sum from Problem

17.16 despite using half as many geometric shapes ($n=3$ trapezoids instead of $n=6$ rectangles).
17.18 Construct the trapezoidal rule, which uses n trapezoids of equal width to approximate the area of the region bounded by a function $f(x)$ and the x-axis on the x-interval $[a, b]$.

Label the endpoints of the intervals as follows: $a=x_{0}, a+\Delta x=x_{1}, a+2 \Delta x=x_{2}, \cdots$, $b=x_{n}$.

Each of the trapezoids has area $\frac{1}{2} \cdot \Delta x \cdot\left(b_{1}+b_{2}\right)$, where $\Delta x=\frac{b-a}{n}$. Factor $\frac{1}{2} \cdot \Delta x=\frac{1}{2}\left(\frac{b-a}{n}\right)=\frac{b-a}{2 n}$ out of each term, leaving behind the sums of the bases of the trapezoids:
All
of the $\frac{b-a}{2 n}\left[\left(f(a)+f\left(x_{1}\right)\right)+\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)+\cdots+\left(f\left(x_{n-2}\right)+f\left(x_{n-1}\right)\right)+\left(f\left(x_{n-1}\right)+f(b)\right)\right]$ function values have a coefficient of 2 except $x=a$ and $x=b$, because all of the bases represent the end of one trapezoid and the beginning of another except at the endpoints.
17.19 Apply the trapezoidal rule with $n=5$ trapezoids to estimate the area of the shaded region in Figure 17-11. (Note that this is the same function $f(x)$ and region investigated in Problems 17.2-17.6.)

Figure 17-11
The graph of a continuous function $f(x)$.

Apply the trapezoidal rule formula from Problem 17.18.

$$
\frac{b-a}{2 n}\left[f(a)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+f(b)\right]
$$

Here, $a=0, b=10$, and $n=5$; the bases are located at the same x-values as the interval endpoints: $a=0, x_{1}=2, x_{2}=4, x_{3}=6, x_{4}=8$, and $b=10$. Substitute these values into the formula.

$$
\begin{aligned}
& \frac{10-0}{2(5)}[f(0)+2 f(2)+2 f(4)+2 f(6)+2 f(8)+f(10 \\
& =\frac{10}{10}(5+2 \cdot 8+2 \cdot 9.5+2 \cdot 7+2 \cdot 1+2) \\
& =1(5+16+19+14+2+2) \\
& =58 \text { square units }
\end{aligned}
$$

17.20 Problems 17.7-17.11 estimate the area of the region bounded by $g(x)=x^{2}$ and the x-axis on the x-interval $[0,5]$. Apply the trapezoidal rule using $n=6$ trapezoids.

Apply the trapezoidal rule formula from Problem 17.18. Note that Problem 17.10 used the same number of intervals over the same interval, so use those boundaries and function values.
There's
always one more
function value
in here than the
number n. (Since
$n=5$, there are
six terms in the
brackets.) All of them
are multiplied by 2
except the first
and last ones,
$f(0)$ and $f(10)$.

$$
\begin{aligned}
& \frac{b-a}{2 n}\left[g(a)+2 g\left(x_{1}\right)+2 g\left(x_{2}\right)+2 g\left(x_{3}\right)+2 g\left(x_{4}\right)+2 g\left(x_{5}\right)+g(b)\right] \\
& =\frac{5-0}{2(6)}\left[g(0)+2 g\left(\frac{5}{6}\right)+2 g\left(\frac{5}{3}\right)+2 g\left(\frac{5}{2}\right)+2 g\left(\frac{10}{3}\right)+2 g\left(\frac{25}{6}\right)+g(5)\right] \\
& =\frac{5}{12}\left[0+2\left(\frac{25}{36}\right)+2\left(\frac{25}{9}\right)+2\left(\frac{25}{4}\right)+2\left(\frac{100}{9}\right)+2\left(\frac{625}{36}\right)+25\right] \\
& =\frac{5}{12}\left(\frac{1,825}{18}\right) \\
& =\frac{9,125}{216} \approx 42.245
\end{aligned}
$$

17.21 Estimate the area of the region bounded by $h(x)=\sin x$ and $y=0$ on the x-interval $[0, \pi]$ using the trapezoidal rule with $n=4$ trapezoids.

This
is the equation of the x-axis.

Begin by calculating Δx.

$$
\Delta x=\frac{b-a}{n}=\frac{\pi-0}{4}=\frac{\pi}{4}
$$

Apply the trapezoidal rule formula.

$$
\begin{aligned}
& \frac{b-a}{2 n}\left[f(a)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+f(b)\right] \\
= & \frac{\pi-0}{2(4)}\left[f(0)+2 f\left(\frac{\pi}{4}\right)+2 f\left(\frac{\pi}{2}\right)+2 f\left(\frac{3 \pi}{4}\right)+f(\pi)\right] \\
= & \frac{\pi}{8}\left[\sin 0+2 \sin \frac{\pi}{4}+2 \sin \frac{\pi}{2}+2 \sin \frac{3 \pi}{4}+\sin \pi\right]
\end{aligned}
$$

Evaluate the sine function using the unit circle.

$$
\begin{aligned}
& =\frac{\pi}{8}\left[0+\left(2 \cdot \frac{\sqrt{2}}{2}\right)+(2 \cdot 1)+\left(2 \cdot \frac{\sqrt{2}}{2}\right)+0\right] \\
& =\frac{\pi}{8}[\sqrt{2}+2+\sqrt{2}] \\
& =\frac{\pi(2+2 \sqrt{2})}{8}
\end{aligned}
$$

Reduce the fraction by factoring 2 out of the numerator.

$$
\begin{aligned}
& \frac{\pi \cdot \not p(1+\sqrt{2})}{\not q \cdot 4} \\
& =\frac{\pi(1+\sqrt{2})}{4}
\end{aligned}
$$

17.22 Estimate the area of the region bounded by $f(x)=\frac{1}{x}, y=0, x=1$ and $x=11$ using six trapezoids of equal height. Report your answer accurate to three decimal places.

Apply the trapezoidal rule; begin by calculating Δx.

$$
\Delta x=\frac{11-1}{6}=\frac{10}{6}=\frac{5}{3}
$$ A Add $\frac{5}{3}$ to the lower boundary five times to generate the boundaries of the trapezoids.

$1=\frac{3 \quad 3+5}{3^{\prime} 3}=\frac{88+5}{3^{\prime} 3}=\frac{1313+5}{3^{\prime} 3}=\frac{18}{3}=6, \frac{18+5}{3}=\frac{2323+5}{3^{\prime} 3}=\frac{2828+5}{3^{\prime} 3}=\frac{33}{3}=11$ Apply the trapezoidal rule.

$$
\begin{aligned}
& \frac{11-1}{2(6)}\left[f(1)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+2 f\left(x_{5}\right)+f\right. \\
& =\frac{10}{12}\left[f(1)+2 f\left(\frac{8}{3}\right)+2 f\left(\frac{13}{3}\right)+2 f(6)+2 f\left(\frac{23}{3}\right)+2 f\left(\frac{28}{3}\right)+f\right. \\
& =\frac{5}{6}\left[1+2 \cdot \frac{3}{8}+2 \cdot \frac{3}{13}+2 \cdot \frac{1}{6}+2 \cdot \frac{3}{23}+2 \cdot \frac{3}{28}+\frac{1}{11}\right] \\
& =\frac{5}{6}\left[1+\frac{3}{4}+\frac{6}{13}+\frac{1}{3}+\frac{6}{23}+\frac{3}{14}+\frac{1}{11}\right]
\end{aligned}
$$

The
common denominator of $3,4,11$, 13,23 , and 28 is 276,276! sure you don't want to add those fractions by hand?!
17.23 Prove that the trapezoidal rule approximation for the area beneath a continuous function $f(x)$ on the x-interval $[a, b]$ using n trapezoids is equal to the average of the right and left Riemann sums for the same area using n rectangles.

Figure 17-12 illustrates a function $f(x)$ split into n subintervals over $[a, b]$. Note that each interval has width $\Delta x=\frac{b-a}{n}$, creating the subintervals $\left[a, x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right]$, $\cdots,\left[x_{n-2}, x_{n-1}\right]$, and $\left[x_{n-1}, b\right]$.

Figure 17-12 Although [a,b] is split into $n=8$ subintervals, this diagram is labeled generically-any n subintervals would be labeled the same way along the x-axis.

Calculate the left Riemann sum, S_{L}.

$$
S_{L}=\frac{b-a}{n} \overleftarrow{\left(f(a)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+\cdots+f\left(x_{n-2}\right)+f\left(x_{n-1}\right)\right)}
$$

Note that each boundary is used except for $f(b)$, as that x-value does not represent the left boundary of any subinterval. Now calculate the right Riemann sum, S_{R}; this time only $f(a)$ will not appear in the formula, as it is not the right boundary of any subinterval.

Factor
out the width of each rectangle like in Problem 17.7. since you have no idea what the actual width is, leave the variables a, b, and n in there.

$$
S_{R}=\frac{b-a}{n}\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+\cdots+f\left(x_{n-2}\right)+f\left(x_{n-1}\right)+f(b)\right)
$$

The average of S_{L} and S_{R}, is the sum multiplied by $\frac{1}{2}$.
$\frac{1}{2}\left(S_{L}+S_{R}\right)=\frac{1}{2}\left[\frac{b-a}{n}\left(f(a)+f\left(x_{1}\right)+\cdots+f\left(x_{n-2}\right)+f\left(x_{n-1}\right)\right)\right]+\frac{1}{2}\left[\frac{b-a}{n}\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n-1}\right)+f(b)\right)\right]$
Every term in the sum contains $\frac{1}{2} \cdot \frac{b-a}{n}=\frac{b-a}{2 n}$; factor out that expression.
$=\frac{b-a}{2 n}\left[\left(f(a)+f\left(x_{1}\right)+\cdots+f\left(x_{n-2}\right)+f\left(x_{n-1}\right)\right)+\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n-1}\right)+f(b)\right)\right]$

The lake's measurements are a function of the distance from its western shore, $d(x): d(0)=0, d(100)=180, d(200)=289, d(300)=283, d(400)=280$,
$d(500)=264$, and $d(600)=172$.
Apply the trapezoidal rule to approximate the area beneath $d(x)$ on $[0,600]$ with $n=6$ trapezoids.

$$
\begin{aligned}
& \frac{b-a}{2 n}\left[d(a)+2 d\left(x_{1}\right)+2 d\left(x_{2}\right)+2 d\left(x_{3}\right)+2 d\left(x_{4}\right)+2 d\left(x_{5}\right)+d(b)\right] \\
& =\frac{600-0}{2(6)}[0+2(180)+2(289)+2(283)+2(280)+2(264)+172] \\
& =50[2,764] \\
& =138,200 \mathrm{ft}^{2}
\end{aligned}
$$

17.25 The surveying company from Problem 17.24 is not entirely comfortable with its estimate, because that approximation neglects the portion of the lake less than 25 feet from its eastern boundary. To verify its previous estimate, seven trapezoids are used to approximate the surface area, but this time, the measurements are taken at unequal intervals, as illustrated by Figure 17-14. What is the approximate surface area of the lake according to this technique?

Figure 17-14 The lake firom Figure 17-13, this time including distances measured at unequal intervals.

Though you are instructed to use trapezoids to approximate the area, you cannot actually apply the trapezoidal rule-it requires equal subintervals. Therefore, you simply find the area of each trapezoid individually. The leftmost two measurements, 0 and 134, are the bases of T_{1} (the first trapezoid), 134 and 187 are the bases of T_{2} (the second trapezoid), 187 and 255 are the bases of T_{3}, and so forth until T_{7}, the trapezoid with bases 145 and 0 .

Area of $T_{1}+$ Area of $T_{2}+$ Area of $T_{3}+$ Area of $T_{4}+$ Area of $T_{5}+$ Area of $T_{6}+$ Area of T_{7}
$=\frac{1}{2} h_{1}(0+134)+\frac{1}{2} h_{2}(134+187)+\frac{1}{2} h_{3}(187+255)+\frac{1}{2} h_{4}(255+292)+\frac{1}{2} h_{5}(292+261)+\frac{1}{2} h_{6}(261+145)+\frac{1}{2} h_{7}(145+0)$
$=\frac{1}{2}\left[h_{1}(134)+h_{2}(321)+h_{3}(442)+h_{4}(547)+h_{5}(553)+h_{6}(406)+h_{7}(145)\right]$
Calculate the widths ($h_{1}, h_{2}, \cdots, h_{7}$) of the trapezoids and substitute them into the expression.

$$
\begin{aligned}
& =\frac{1}{2}[48(134)+100(321)+6(442)+86(547)+267(553)+86(406)+32(145)] \\
& =\frac{1}{2}[6,432+32,100+2,652+47,042+147,651+34,916+4,640] \\
& =\frac{1}{2}[275,433] \\
& =137,716.5 \mathrm{ft}^{2}
\end{aligned}
$$

Note that this estimate of the lake's surface area is very close to the estimate from Problem 17.24.
17.26 Demonstrate that the exact area beneath a linear function can be calculated using a trapezoidal approximation.

Consider the linear function $f(x)=m x+b$ in Figure 17-15. The shaded area of the region bounded by $f(x)$ and the x-axis on the x-interval $[c, d]$ is, in fact, a trapezoid. Use the formula for the area of a trapezoid to calculate the shaded area.

Figure 17-15 The area beneath the linear function $f(x)$ on the x-interval [$c, d]$ is a trapezoid with bases $f(c)$ and $f(d)$ and height $\Delta x=d-c$.

$$
\begin{aligned}
\text { area } & =\frac{1}{2} \Delta x\left(b_{1}+b_{2}\right) \\
& =\frac{1}{2}(d-c)(f(c)+f(d))
\end{aligned}
$$

Note that $f(c)=m(c)+b$ and $f(d)=m(d)+b$. Substitute these values into the area expression.

$$
=\frac{1}{2}(d-c)[(m c+b)+(m d+b)]
$$

Not all areas between a linear function and the x-axis can be calculated using a single trapezoid. However, as Figure 17-16 demonstrates, those areas can be calculated using two triangles.

Figure 17-16 If the exact area beneath a linear function cannot be calculated using a single trapezoid, it can be determined using two triangles.

Simpson's Rule

Approximates area beneath curvy functions really well

17.27 Compare and contrast Simpson's rule and the trapezoidal rule.

Simpson's rule is an area approximation technique that uses equal subintervals, like the trapezoidal rule. However, rather than using straight lines to connect the interval endpoints, thereby constructing trapezoids to estimate the area, Simpson's rule uses parabolas. Therefore, Simpson's rule is able to exactly calculate the area beneath quadratic functions, whereas the trapezoidal rule is able only to exactly calculate the area beneath linear functions (as explained in Problem 17.26). Simpson's rule is also governed by one additional restriction: n, the number of subintervals used in the approximation, must be even.

According to Simpson's rule, the area between the continuous function $f(x)$ and the x-axis on the x-interval $[a, b]$ is approximately equal to the following:

$$
\frac{b-a}{3 n}(\underbrace{\left.f(a)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f(b)\right)}
$$

In
the Riemann
sum formulas, you
divide $b-a$ by n. In
the trapezoidal rule
formula, you divide
b - a by $2 n ;$ and in
the simpson's rule
formula, you divide
$b-a b y 3 n$.

Like the trapezoidal rule, Simpson's rule attaches no coefficients to $f(a)$ and $f(b)$. However, Simpson's rule requires a coefficient of 4 before all odd subscripts of x and a coefficient of 2 before all even subscripts.
17.28 Problems 17.12-17.17 estimate the area of the region bounded by $f(x)=3 x^{2}+1$ and the x-axis on the x-interval $[0,6]$. Apply Simpson's rule with $n=2$ subintervals to verify that the exact area of the region is 222 square units.

Begin by calculating the widths of the subintervals.

$$
\Delta x=\frac{b-a}{n}=\frac{6-0}{2}=3
$$

Apply Simpson's rule with $a=0, b=6, n=2$, and $f(x)=3 x^{2}+1$.

$$
\begin{aligned}
& \frac{b-a}{3 n}\left[\left(f(a)+4 \overleftarrow{\left.\left.f\left(x_{1}\right)+f(b)\right)\right]}\right.\right. \\
& =\frac{6-0}{3(2)}[f(0)+4 f(3)+f(6)] \\
& =\frac{6}{6}\left[\left(3 \cdot 0^{2}+1\right)+4\left(3 \cdot 3^{2}+1\right)+\left(3 \cdot 6^{2}+1\right)\right] \\
& =1[(0+1)+4(27+1)+(108+1)] \\
& =1+112+109 \\
& =222
\end{aligned}
$$

17.29 Problem 17.20 estimates the area of the region bounded by $g(x)=x^{2}$ and the x-axis on the x-interval $[0,5]$ using $n=6$ subintervals. Apply Simpson's rule to determine the exact area.

$$
\begin{aligned}
& \frac{b-a}{3 n}\left[g(a)+4 g\left(x_{1}\right)+2 g\left(x_{2}\right)+4 g\left(x_{3}\right)+2 g\left(x_{4}\right)+4 g\left(x_{5}\right)+g(b)\right] \\
= & \frac{5-0}{3(6)}\left[g(0)+4 g\left(\frac{5}{6}\right)+2 g\left(\frac{5}{3}\right)+4 g\left(\frac{5}{2}\right)+2 g\left(\frac{10}{3}\right)+4 g\left(\frac{25}{6}\right)+g(5)\right] \\
= & \frac{5}{18}\left[0+4\left(\frac{25}{36}\right)+2\left(\frac{25}{9}\right)+4\left(\frac{25}{4}\right)+2\left(\frac{100}{9}\right)+4\left(\frac{625}{36}\right)+25\right] \\
= & \frac{5}{18}[150] \\
= & \frac{750}{18} \\
= & \frac{125}{3}
\end{aligned}
$$

The exact area beneath the curve is 2-it's worked out in Problem 18.20. Simpson's rule doesn't give you the exact area because $\sin x$ is a trigonometric, not a quadratic, function.
17.30 Use Simpson's rule with $n=4$ subintervals to estimate the area between the x axis and the function $h(x)=\sin x$ (as defined in Problem 17.21) on the x-interval $[0, \pi]$.

Use the subinterval width and function values from Problem 17.21 as you apply Simpson's rule.

$$
\begin{aligned}
& \frac{b-a}{3 n}\left[h(a)+4 h\left(x_{1}\right)+2 h\left(x_{2}\right)+4 h\left(x_{3}\right)+h(b)\right] \\
& =\frac{\pi-0}{3(4)}\left[h(0)+4 h\left(\frac{\pi}{4}\right)+2 h\left(\frac{\pi}{2}\right)+4 h\left(\frac{3 \pi}{4}\right)+h(\pi)\right] \\
& =\frac{\pi}{12}\left(0+4\left(\frac{\sqrt{2}}{2}\right)+2(1)+4\left(\frac{\sqrt{2}}{2}\right)+0\right) \\
& =\frac{\pi}{12}(2 \sqrt{2}+2+2 \sqrt{2}) \\
& =\frac{\pi(2+4 \sqrt{2})}{12}
\end{aligned}
$$

Factor 2 out of the numerator to reduce the fraction.

$$
\begin{aligned}
& =\frac{2 \pi(1+2 \sqrt{2})}{2 \cdot 6} \\
& =\frac{\pi(1+2 \sqrt{2})}{6}
\end{aligned}
$$

This equals approximately 2.00456 , which is very close to the exact answer of 2 . By comparison, the trapezoidal rule estimate from Problem 17.21 was approximately 1.89612.
17.3I Use Simpson's rule with $n=6$ subintervals to estimate the area between the x-axis and $f(x)=\frac{1}{x}$ (as defined in Problem 17.22) on the x-interval [1,11]. Provide an answer accurate to three decimal places.

The intervals and function values match those listed in Problem 17.22; apply them to Simpson's rule.

$$
\begin{aligned}
& \frac{b-a}{3 n}\left[f(a)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+4 f\left(x_{5}\right)+f(b)\right] \\
& =\frac{11-1}{3(6)}\left[f(1)+4 f\left(\frac{8}{3}\right)+2 f\left(\frac{13}{3}\right)+4 f(6)+2 f\left(\frac{23}{3}\right)+4 f\left(\frac{28}{3}\right)+f(11)\right] \\
& =\frac{10}{18}\left[1+4 \cdot \frac{3}{8}+2 \cdot \frac{3}{13}+4 \cdot \frac{1}{6}+2 \cdot \frac{3}{23}+4 \cdot \frac{3}{28}+\frac{1}{11}\right] \\
& =\frac{5}{9}\left(1+\frac{3}{2}+\frac{6}{13}+\frac{2}{3}+\frac{6}{23}+\frac{3}{7}+\frac{1}{11}\right) \\
& \approx 2.449
\end{aligned}
$$

Formal Riemann Sums

You'll want to poke your "iss out

17.32 Describe how the Riemann sum $\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}$ is used to calculate area in the coordinate plane when $f(x) \geq 0$.

This expression states that the approximate area beneath the continuous function $f(x)$ is equal to the sum of a series of rectangle areas. Each rectangle's area is equal to the product of its length, $f\left(c_{i}\right)$, and its width, Δx_{i}. For instance, the area of the third $(i=3)$ rectangle is $f\left(c_{3}\right) \cdot \Delta x_{3}$, where Δx_{3} is the distance between the endpoints of the interval on which the rectangle is constructed, and $f\left(c_{3}\right)$ is the height of the function $f(x)$ at some point $x=c_{3}$ on that interval.

17.33 Use a formal right Riemann sum with $n=4$ subintervals of equal width to estimate the area of the region bounded by the x-axis and the positive, continuous function $f(x)$ on the x-interval $[a, b]$.

Calculate the width of the rectangles using the formula from Problem 17.1.

$$
\Delta x=\frac{b-a}{n}
$$

Next, identify the boundaries of the four intervals. The leftmost interval has a left bound of $x=a$ and a right bound of $a+\Delta x:[a, a+\Delta x]$. The left boundary of the second interval matches the right boundary of the first interval $(a+\Delta x)$ and its
 right boundary is Δx to the right:

$$
(a+\Delta x)+\Delta x=a+2 \Delta x
$$

17.34 Use a formal right Riemann sum with n subintervals of equal width to estimate the area of the region bounded by the x-axis and the positive, continuous function $f(x)$ on the x-interval $[a, b]$.

Note that Problem 17.33 asks you to perform the same task, but with a specific number of subintervals $(n=4)$. This problem will therefore have a similar answer, but instead of 4 function values added parenthetically, there should be n : $\Delta x[f(a+\Delta x)+f(a+2 \Delta x)+f(a+3 \Delta x)+\cdots+f(a+n \Delta x)]$.
First
plug in $i=1$
to get the area $\Delta x \cdot f(\mid \Delta x)$, then plug in $i=2$ to get the area $\Delta x \cdot f(a+2 \Delta x)$, and so on, all the way up to $i=n$, the area $\Delta x \cdot f(a+n \Delta x)$. once you've found all those rectangular areas, add them all up.
17.35 Write the solution to Problem 17.34 in sigma notation.

To indicate a sum of n terms, the limits of the summation are 1 and n. Use the variable i to indicate the individual rectangles: $\sum_{i=1}^{n}[\Delta x \cdot f(a+i \Delta x)]$.
17.36 In order to exactly calculate the area between a function $f(x)$ and the x-axis, an infinite number of rectangles must be used. Explain how to indicate this for Riemann sums written in sigma notation.

Apply the formula from Problem 17.35 and indicate an infinite number of rectangles by allowing n to approach infinity: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}[\Delta x \cdot f(a+i \Delta x)]$.

17.37 Justify the sufficiency of a right Riemann sum (or in fact any other Riemann sum) to exactly calculate a finite area using an infinite number of rectangles.

In order for an infinite number of rectangles to fit in a finite space, the width of the rectangles, $\Delta x=\frac{b-a}{n}$, must approach 0 . If the rectangles have an infinitely small width, the heights of the function beneath which you are approximating the area will not change significantly on the subintervals.

Therefore, all of the function values on each subinterval are essentially the same, and the right, left, midpoint, or any other Riemann sum will produce the exact same value, the precise area between the function and the x-axis.
17.38 Identify the values of the following expressions: $\sum_{i=1}^{n} k, \sum_{i=1}^{n} i, \sum_{i=1}^{n} i^{2}$, and $\sum_{i=1}^{n} i^{3}$.

Calculating area with formal Riemann sums of ten requires you to know the values of these sums. It is helpful to memorize their values rather than to generate them when they are needed. In fact, generating them is both trivial and irrelevant for the scope of this exercise, and is therefore omitted.

$$
\ll-1+2
$$

\longleftarrow

$$
\sum_{i=1}^{n} k=k n, \sum_{i=1}^{n} i=\frac{n^{2}+n}{2}, \sum_{i=1}^{n} i^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}, \text { and } \sum_{i=1}^{n} i^{3}=\frac{n^{4}+2 n^{3}+n^{2}}{4}
$$

17.39 According to Problem 17.29, the exact area of the region bounded by $g(x)=x^{2}$ and the x-axis on the x-interval $[0,5]$ is equal to $\frac{125}{3}$ square units. Verify this value using a formal right Riemann sum (i.e., using infinite number of rectangles).

Problem 17.36 states that the right Riemann sum using an infinite number of rectangles is equal to $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}[\Delta x \cdot g(a+i \Delta x)]$. To apply the formula, begin by calculating Δx.

$$
\Delta x=\frac{b-a}{n}=\frac{5-0}{n}=\frac{5}{n}
$$

Substitute $\Delta x=\frac{5}{n}$ into the formal Riemann sum formula. Note that $g(a+i \Delta x)=g(i \Delta x)$ because $a=0$.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}[\Delta x \cdot g(i \Delta x)]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\frac{5}{n} \cdot g\left(\frac{5 i}{n}\right)\right]
$$

According to a summation property, $\sum a \cdot g(x)=a \sum g(x)$. \qquad In this problem,
$5 / n$ is a constant
(i changes during the
problem but n doesn't).
Pull it outside the
summation symbol.
Substitute $\frac{5 i}{n}$ into $g(x)=x^{2}$.

$$
=\lim _{n \rightarrow \infty}\left[\frac{5}{n} \cdot \sum_{i=1}^{n} g\left(\frac{5 i}{n}\right)\right]
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left[\frac{5}{n} \cdot \sum_{i=1}^{n}\left(\frac{5 i}{n}\right)^{2}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{5}{n} \cdot \sum_{i=1}^{n}\left(\frac{25 i^{2}}{n^{2}}\right)\right]
\end{aligned}
$$

Again apply the summation property $\sum a \cdot g(x)=a \sum g(x)$ to remove the constant $\frac{25}{n^{2}}$ from within the summation.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left[\frac{5}{n} \cdot \frac{25}{n^{2}} \cdot \sum_{i=1}^{n} i^{2}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{125}{n^{3}} \cdot \sum_{i=1}^{n} i^{2}\right]
\end{aligned}
$$

Apply the $\sum_{i=1}^{n} i^{2}$ formula from Problem 17.38.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left[\frac{125}{n^{3}} \cdot \frac{2 n^{3}+3 n^{2}+n}{6}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{250 n^{3}}{6 n^{3}}+\frac{375 n^{2}}{6 n^{3}}+\frac{125 n}{6 n^{3}}\right] \\
& =\lim _{n \rightarrow \infty} \frac{250 n^{3}}{6 n^{3}}+\lim _{n \rightarrow \infty} \frac{375 n^{2}}{6 n^{3}}+\lim _{n \rightarrow \infty} \frac{125 n}{6 n^{3}}
\end{aligned}
$$

L'Hôpital's
Rule is covered in Problems 14.27-14.34.

17.40 According to Problem 17.28, the exact area of the region bounded by $f(x)=3 x^{2}+1$ and the x-axis on the x-interval $[0,6]$ is equal to 222 square units. Verify this value by calculating the same area using a right Riemann sum and an infinite number of rectangles.

Apply the techniques described in Problem 17.39. Begin by calculating Δx.

$$
\Delta x=\frac{b-a}{n}=\frac{6-0}{n}=\frac{6}{n} \quad \text { and } \quad f(a+i \Delta x)=f(i \Delta x), \text { because } a=0
$$

Substitute Δx into the formal right Riemann sum formula.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}[\Delta x \cdot f(i \Delta x)]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\frac{6}{n} \cdot f\left(\frac{6 i}{n}\right)\right]
$$

Apply the summation property that states $\sum a \cdot g(x)=a \sum g(x)$ and evaluate $f\left(\frac{6 i}{n}\right)$.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{6}{n} \cdot \sum_{i=1}^{n}\left[3\left(\frac{6 i}{n}\right)^{2}+1\right]\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{6}{n} \cdot \sum_{i=1}^{n}\left[3 \cdot \frac{36 i^{2}}{n^{2}}+1\right]\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{6}{n} \cdot \sum_{i=1}^{n}\left[\frac{108 i^{2}}{n^{2}}+1\right]\right)
\end{aligned}
$$

According to a summation property, $\sum(a+b)=\sum a+\sum b$.

$$
=\lim _{n \rightarrow \infty}\left[\frac{6}{n}\left(\sum_{i=1}^{n} \frac{108 i^{2}}{n^{2}}+\sum_{i=1}^{n} 1\right)\right]
$$

Distribute $\frac{6}{n}$ through the parentheses.

You're | allowed to |
| :--- |
| split the sum inside |
| sigmo into the sum of |
| expressions. |

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{6}{n} \sum_{i=1}^{n} \frac{108 i^{2}}{n^{2}}+\frac{6}{n} \sum_{i=1}^{n} 1\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{6}{n} \cdot \frac{108}{n^{2}} \sum_{i=1}^{n} i^{2}+\frac{6}{n} \sum_{i=1}^{n} 1\right)
\end{aligned}
$$

You
According to Problem 17.38, $\sum_{i=1}^{n} i^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}$ and $\sum_{i=1}^{n} 1=(1) n=n$.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left[\frac{648}{n^{3}}\left(\frac{2 n^{3}+3 n^{2}+n}{6}\right)+\frac{6}{n}(n)\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{648}{6 n^{3}}\left(2 n^{3}+3 n^{2}+n\right)+\frac{6 \not n}{\not n}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{108}{n^{3}}\left(2 n^{3}+3 n^{2}+n\right)+6\right]
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty}\left[\frac{216 n^{3}}{n^{3}}+\frac{324 n^{2}}{n^{3}}+\frac{108 n}{n^{3}}+6\right]
$$

$$
=\lim _{n \rightarrow \infty} \frac{216 n^{3}}{n^{3}}+\lim _{n \rightarrow \infty} \frac{324 n^{2}}{n^{3}}+\lim _{n \rightarrow \infty} \frac{108 n}{n^{3}}+\lim _{n \rightarrow \infty} 6
$$

Evaluate the first three limits by comparing the degrees of the numerator and denominator or using L'Hôpital's Rule. Note that $\lim _{n \rightarrow \infty} 6=6$.

$$
\begin{aligned}
& =216+0+0+6 \\
& =222
\end{aligned}
$$

17.4I Calculate the exact area of the region bounded by $j(x)=x^{3}+x$ and the x-axis on the x-interval $[-1,0]$ using a formal right Riemann sum.

Determine the value of Δx.

$$
\Delta x=\frac{0-(-1)}{n}=\frac{0+1}{n}=\frac{1}{n}
$$

Substitute $\Delta x=\frac{1}{n}$ into the formal right Riemann sum formula.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}[\Delta x \cdot j(a+i \Delta x)] & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\frac{1}{n} \cdot j\left(-1+\frac{i}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} j\left(-1+\frac{i}{n}\right)
\end{aligned}
$$

Replace $\sum_{i=1}^{n} i^{3}, \sum_{i=1}^{n} i^{2}$, and $\sum_{i=1}^{n} i$ with the formulas from Problem 17.38.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{n^{3}} \cdot \frac{n^{4}+2 n^{3}+n^{2}}{4}-\frac{3}{n^{2}} \cdot \frac{2 n^{3}+3 n^{2}+n}{6}+\frac{4}{n} \cdot \frac{n^{2}+n}{2}-2 n\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{n^{4}+2 n^{3}+n^{2}-6 n^{3}+9 n^{2}+3 n}{4 n^{4}}+\frac{4 n^{2}+4 n}{2 n^{2}}-\frac{2 n}{n}\right) \\
& =\frac{1}{4}-1+2-2 \\
& =-\frac{3}{4}
\end{aligned}
$$

$j(x)$ is the only function in this chapter that's below the x-axis.

Because the graph of $j(x)$ is negative on the x-interval $(-1,0)$, the region bounded by $j(x)$ and the x-axis has a signed area of $-\frac{3}{4}$. Signed area reports both the area of the region and whether that area appears above or below the x-axis (much like velocity reports an object's speed as well as its direction via its sign). However, area should be reported using positive units, so the area of the region is $\frac{3}{4}$.

Chapter 18
 INTEGRATION

Now the derivative's not the answer, it's the question

In this chapter, you will apply the fundamental theorem of calculus, which uses the antiderivative of a function in order to exactly calculate the area bounded by that function and the x-axis. Antidifferentiation requires a wider variety of techniques and algorithms than differentiation, so Chapters 18-24 are dedicated to thoroughly exploring antidifferentiation techniques and their applications. At this, the onset of said exploration, the power rule for integration, trigonometric, logarithmic, and exponential function antiderivatives, and variable substitution are discussed.

This chapter is almost a clone of Chapter 12, except instead of learning basic differentiation techniques, you'll learn basic integration (or antidifferentiation) techniques. Chapter II ended with the "hard way" to compute derivatives (the difference quotient)-sort of like Chapter 17, which ended with the "hard way" to calculate exact area (formal Riemann sums). Right smack at the beginning of Chapter 12, the "easy way" to take derivatives showed up, the power rule for differentiation. This chapter starts with the "easy way" to find ANTIderivatives, the power rule for integration. It then moves on to basic integration concepts like the fundamental theorem of calculus and integration methods like usubstitution.

Power Rule for Integration

ADD I to the exponent and DIVIDE by the new power
18.1 Given a and n are real numbers, determine the antiderivative: $\int a x^{n} d x$.

According to a property of integrals, $\int a f(x) d x=a \int f(x) d x$.

$$
\int a x^{n} d x=a \int x^{n} d x
$$

The power rule for integration states that $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$. In other words, increase the exponent by 1 and divide the term by the new exponent; the result is the antiderivative. Additionally, you must add a constant of integration " $+C$ " to the expression to indicate the possible presence of a constant. Notice that differentiating this expression with respect to x will return the original integrand.

$$
\frac{d}{d x}\left(\frac{x^{n+1}}{n+1}+C\right)=\frac{d}{d x}\left(\frac{1}{n+1} x^{n+1}+C\right)=\frac{1}{n+1}(n+1) x^{(n+1)-1}=\frac{n+1}{n+1} x^{n+1-1}=x^{n}
$$

Because the derivative of any constant is 0 , there is no way to determine what constant, if any, was eliminated by differentiating, so " $+C$ " is used as a generic placeholder. Therefore, $a \int x^{n} d x=\frac{a x^{n+1}}{n+1}+C$.
18.2 Integrate the expression: $\int x^{8} d x$.

Add 1 to the exponent $(8+1=9)$ and divide the expression by the new exponent: $\int x^{8} d x=\frac{x^{8+1}}{8+1}+C=\frac{x^{9}}{9}+C$.

18.4 Integrate the expression: $\int \frac{d x}{x}$.

Note that the integrand can be rewritten as $\int \frac{1}{x} d x$ —moving $d x$ out of the expression to be integrated does not affect the result, as it is still multiplied by $\frac{1}{x}$ in both cases. However, the power rule for integration doesn't apply because it gives an undefined result.

$$
\int \frac{1}{x} d x=\int x^{-1} d x=\frac{x^{-1+1}}{-1+1}+C=\frac{x^{0}}{0}+C
$$

Division by 0 is mathematically invalid, so an alternative to the power rule for integration is needed in order to integrate. Recall that $\frac{d}{d x}(\ln x)=\frac{1}{x}$. Therefore, $\int \frac{1}{x} d x=\ln |x|+C$. The absolute value signs are required because the domain of $y=\ln x$ is $(0, \infty)$, the positive real numbers.
18.5 Integrate the expression: $\int \sqrt{x^{3}} d x$.

Rewrite the radical expression using rational exponents (as discussed in Problem 2.10).

$$
\int \sqrt{x^{3}} d x=\int x^{3 / 2} d x
$$

Apply the power rule for integration.

$$
\begin{aligned}
& =\frac{x^{(3 / 2)+1}}{3 / 2+1}+C \\
& =\frac{x^{3 / 2+2 / 2}}{3 / 2+2 / 2}+C \\
& =\frac{x^{5 / 2}}{5 / 2}+C
\end{aligned}
$$

Dividing
$x^{5 / 2}$ by $5 / 2$ is the
same as multiplying $x^{5 / 2}$ by $2 / 5$.

Eliminate the complex fraction.

$$
=\frac{2}{5} x^{5 / 2}+C
$$

18.6 Integrate the expression: $\int\left(9 x^{4}+7 \sqrt{x}-5 \sqrt[8]{x^{3}}\right) d x$

By applying an integral property, you can split the integrand into three separate integrals, move the coefficient of each outside its integral, and rewrite the radical expressions using rational exponents.

$$
\begin{aligned}
\int\left(9 x^{4}+7 \sqrt{x}-5 \sqrt[8]{x^{3}}\right) d x & =\int 9 x^{4} d x+\int 7 \sqrt{x} d x+\int\left(-5 \sqrt[8]{x^{3}} d x\right) \\
& =9 \int x^{4} d x+7 \int \sqrt{x} d x-5 \int \sqrt[8]{x^{3}} d x \\
& =9 \int x^{4} d x+7 \int x^{1 / 2} d x-5 \int x^{3 / 8} d x
\end{aligned}
$$

Apply the power rule for integration.

$$
\begin{aligned}
\begin{array}{c}
\text { Use } \\
\text { common denomi- } \\
\text { nators: }(3 / 8)+1= \\
3 / 8+8 / 8=11 / 8 .
\end{array}
\end{aligned} \quad \begin{aligned}
& =9 \cdot \frac{x^{4+1}}{4+1}+7 \cdot \frac{x^{(1 / 2)+1}}{(1 / 2)+1}-5 \cdot \frac{x^{(3 / 8)+1}}{(3 / 8)+1}+C \\
& =9 \cdot \frac{x^{5}}{5}+7 \cdot \frac{x^{3 / 2}}{3 / 2}-5 \cdot \frac{x^{11 / 8}}{11 / 8}+C \\
& =\frac{9}{5} x^{5}+7\left(\frac{2}{3}\right) x^{3 / 2}-5\left(\frac{8}{11}\right) x^{11 / 8}+C \\
& =\frac{9}{5} x^{5}+\frac{14}{3} x^{3 / 2}-\frac{40}{11} x^{11 / 8}+C
\end{aligned}
$$

18.7 Integrate the expression: $\int \frac{5 x-6 x^{7}}{x^{4}} d x$.

Note that $\frac{f(x)+g(x)}{h(x)}=\frac{f(x)}{h(x)}+\frac{g(x)}{h(x)}$, so rewrite the integrand as two separate
integrals.

$$
\begin{aligned}
\int \frac{5 x-6 x^{7}}{x^{4}} d x & =\int \frac{5 x}{x^{4}} d x-\int \frac{6 x^{7}}{x^{4}} d x \\
& =\int 5 x^{1-4} d x-\int 6 x^{7-4} d x \\
& =5 \int x^{-3} d x-6 \int x^{3} d x
\end{aligned}
$$

Apply the power rule for integration.

18.8 Integrate the expression: $\int\left(\frac{x^{3}-x^{4}}{x^{4}}\right) d x$.

Rewrite the rational integrand as two separate integrals, as explained in Problem 18.7.

$$
\begin{aligned}
\int\left(\frac{x^{3}-x^{4}}{x^{4}}\right) d x & =\int \frac{x^{3}}{x^{4}} d x-\int \frac{x^{4}}{x^{4}} d x \\
& =\int x^{3-4} d x-\int 1 d x \\
& =\int x^{-1} d x-\int d x
\end{aligned}
$$

According to Problem 18.4, the antiderivative of $\frac{1}{x}$ is $\ln |x|+C$; the antiderivative of 1 (which can be written $1 d x$ or simply $d x$) is x, because the derivative of x is 1 .

$$
=\ln |x|-x+C
$$

18.9 Integrate the expression: $\int x^{2}(5-\sqrt{x}) d x$.

Distribute x^{2} before applying the power rule for integration.

$$
\begin{aligned}
\int x^{2}(5-\sqrt{x}) d x & =\int\left(5 x^{2}-x^{2} \cdot x^{1 / 2}\right) d x \\
& =\int\left(5 x^{2}-x^{5 / 2}\right) d x \\
& =5 \int x^{2} d x-\int x^{5 / 2} d x \\
& =5 \cdot \frac{x^{3}}{3}-\frac{x^{7 / 2}}{7 / 2}+C \\
& =\frac{5}{3} x^{3}-\frac{2}{7} x^{7 / 2}+C
\end{aligned}
$$

You

 get lots of fractions in denominatorsas a result of the power rule for integration. Just take the reciprocal and multiply it by the coefficient, if there's one already there.

Integrating Trigonometric and Exponential Functions

Trig integrals look nothing like trig derivatives

18.10 Integrate the expression: $\int \cos x d x$.

Recall that the derivative of $\sin x$ (with respect to x) is $\cos x$, so it follows that the antiderivative of $\cos x$ (with respect to x) is $\sin x$.

$$
\int \cos x d x=\sin x+C
$$

18.II Integrate the expression: $\int(7-\sin x) d x$.

All of the important integration formulas that you should memorize, including the trig antiderivatives, are listed in Appendix E.

Rewrite the integral as the difference of two distinct integrals.

$$
\int 7 d x-\int \sin x d x
$$

The antiderivative of 7 is $7 x$ (because $\frac{d}{d x}(7 x)=7$); the antiderivative of $\sin x$ is
$-\cos x . \longleftarrow$

$$
\begin{aligned}
& =7 x-(-\cos x)+C \\
& =7 x+\cos x+C
\end{aligned}
$$

All of
the trig functions that start with "co" have negative derivatives, so all of the trig functions that DON'T start with "co" have negative integrals.
18.12 Integrate the expression: $\int \frac{\sin x+\cos x}{\sin x \cos x} d x$.

Rewrite the integrand as the sum of two rational expressions, as explained in Problem 18.7.

$$
\begin{aligned}
& \text { Using } \\
& \text { the formulas } \\
& \text { in Appendix E. } \int \frac{\sin x}{\sin x \cos x} d x+\int \frac{\cos x}{\sin x \cos x} d x \\
&=\int \frac{1}{\cos x} d x+\int \frac{1}{\sin x} d x \\
&=\int \sec x d x+\int \csc x d x
\end{aligned}
$$

Antidifferentiate the trigonometric functions.

$$
\begin{aligned}
& =\ln |\sec x+\tan x|+(-\ln |\csc x+\cot x|)+C \\
& =\ln |\sec x+\tan x|-\ln |\csc x+\cot x|+C
\end{aligned}
$$

18.13 Integrate the expression: $\int \frac{6+\sin x}{\cos x} d x$.

Rewrite the integrand as a sum of two fractions.

$$
\begin{aligned}
\int \frac{6+\sin x}{\cos x} d x & =\int \frac{6}{\cos x} d x+\int \frac{\sin x}{\cos x} d x \\
& =6 \int \frac{1}{\cos x} d x+\int \frac{\sin x}{\cos x} d x
\end{aligned}
$$

Note that $\frac{\sin x}{\cos x}=\tan x$.

Absolute values are not required in the numerator, as any quantity raised to an even power will be nonnegative.
18.14 Integrate the expression: $\int 4(\tan x)^{-1} \underset{d x}{ }$

That's not the inverse
function $\tan ^{-1} x$-it's
tan x raised to
the -l power.

$$
\begin{aligned}
\int 4(\tan x)^{-1} d x & =\int 4 \cdot \frac{1}{\tan x} d x \\
& =4 \int \frac{1}{\tan x} d x
\end{aligned}
$$

Note that $\frac{1}{\tan x}=\cot x$.
Rewrite the expression without negative exponents.

$$
\begin{aligned}
& =4 \int \cot x d x \\
& =4 \ln |\sin x|+C
\end{aligned}
$$

18.15 Integrate the expression: $\int \sqrt{\cos ^{2} x+\sin ^{2} x} d x$.

According to a Pythagorean identity, $\cos ^{2} x+\sin ^{2} x=1$.

$$
\begin{aligned}
\int \sqrt{\cos ^{2} x+\sin ^{2} x} d x & =\int \sqrt{1} d x \\
& =\int 1 d x \\
& =x+C
\end{aligned}
$$

The Fundamental Theorem of Calculus

Integration and area are closely related

18.16 According to the fundamental theorem of calculus, what is the area of the region bounded by the nonnegative continuous function $f(x)$ and the x-axis on the x-interval $[a, b]$ in terms of $F(x)$, the antiderivative of $f(x)$?

The area of the region is equal to the definite integral
$\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$. In other words, the area of the region is the difference of $F(b)$ and $F(a)$, the antiderivative of $f(x)$ evaluated at the x-boundaries of the region.
18.17 Evaluate the definite integral: $\int_{0}^{2} x^{3} d x$.

Find the antiderivative of the integrand x^{3} using the power rule for integration.

$$
\int x^{3} d x=\frac{x^{4}}{4}+C
$$

Write the antiderivative (excluding " $+C$ ") with a vertical bar to its right and
copy the limits of integration. This conventional notation indicates that you will evaluate the antiderivative at each boundary and then calculate the difference.

$$
\int_{0}^{2} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{0} ^{2}
$$

Before evaluating the antiderivative at $x=2$ and $x=0$, you may factor out any constants.

$$
=\left.\frac{1}{4}\left(x^{4}\right)\right|_{0} ^{2}
$$

Substitute $x=2$ and $x=0$ into the expression and then calculate the difference.

$$
\begin{aligned}
& =\frac{1}{4}\left[2^{4}-0^{4}\right] \\
& =\frac{1}{4}(16) \\
& =4
\end{aligned}
$$

18.18 According to Problem 17.29, the exact area of the region bounded by $g(x)=x^{2}$ and the x-axis on the x-interval $[0,5]$ is $\frac{125}{3}$. Verify the area using the fundamental theorem of calculus.

$$
\int_{0}^{5} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{5}=\frac{5^{3}}{3}-\frac{0^{3}}{3}=\frac{125}{3}-0=\frac{125}{3}
$$

18.19 According to Problem 17.12, the exact area of the region bounded by $f(x)=3 x^{2}+1$ and the x-axis on the x-interval $[0,6]$ is 222 . Verify the area using the fundamental theorem of calculus.

$$
\int_{0}^{6}\left(3 x^{2}+1\right) d x=\left.\left(\frac{3 x^{3}}{3}+x\right)\right|_{0} ^{6}=\left.\left(x^{3}+x\right)\right|_{0} ^{6}
$$

As you evaluate the antiderivative for $x=6$ and $x=0$, ensure that you substitute those values into both x^{3} and x.

$$
\left.\left(x^{3}+x\right)\right|_{0} ^{6}=\left(6^{3}+6\right)-\left(0^{3}+0\right)=216+6=222
$$

18.20 Evaluate the definite integral: $\int_{0}^{\pi} \sin x d x$.

The antiderivative of $\sin x$ is $-\cos x$.

$$
\int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi}=-(\cos \pi-\cos 0)=-(-1-1)=2
$$

18.2 Evaluate the definite integral: $\int_{1}^{11} \frac{d x}{x}$.

According to Problem 18.4, $\int \frac{d x}{x}=\ln |x|$.

$$
\int_{1}^{11} \frac{d x}{x}=\left.(\ln |x|)\right|_{1} ^{11}=\ln |11|-\ln |1|=\ln 11-0 \stackrel{l}{=} \ln 11
$$

18.22 Given a function $f(x)$ that is continuous over the x-interval [$a, b]$, prove that $\int_{a}^{b} f(x)=-\int_{b}^{a} f(x)$.

Apply the fundamental theorem of calculus, denoting an antiderivative of $f(x)$ as $F(x)$.

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =-\int_{b}^{a} f(x) d x \\
\left.F(x)\right|_{a} ^{b} & =-\left.F(x)\right|_{b} ^{a} \\
F(b)-F(a) & =-(F(a)-F(b)) \\
F(b)-F(a) & =-F(a)+F(b) \\
F(b)-F(a) & =F(b)-F(a)
\end{aligned}
$$

Because $F(b)-F(a)$ is always equal to itself, you can conclude that $\int_{a}^{b} f(x)=-\int_{b}^{a} f(x)$.
18.23 Given a function $f(x)$ that is continuous on the x-interval [a, b] and a real number c such that $a<c<b$, prove the following statement.

$$
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x
$$

Let $F(x)$ be an antiderivative of $f(x)$ and apply the fundamental theorem of calculus.

$$
\begin{aligned}
\int_{a}^{c} f(x) d x & =\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x \\
\left.F(x)\right|_{a} ^{c} & =\left.F(x)\right|_{a} ^{b}+\left.F(x)\right|_{b} ^{c} \\
F(c)-F(a) & =[F(b)-F(a)]+[F(c)-F(b)] \\
F(c)-F(a) & =F(b)-F(a)+F(c)-F(b) \\
F(c)-F(a) & =F(c)-F(a)
\end{aligned}
$$

This means you can break up one integral into the sum of two (or more) by splitting up the limits of integration into smaller chunks. Instead of integrating once from I to 9 you could integrate twice, once from I to 5 and then again from 5 to 9.
18.24 Given the even function $g(x)=3 x^{4}-8 x^{2}$, demonstrate that $\int_{-3}^{3} g(x) d x=2 \int_{0}^{3} g(x) d x$.

$$
\begin{aligned}
\int_{-3}^{3}\left(3 x^{4}-8 x^{2}\right) d x & =2 \int_{0}^{3}\left(3 x^{4}-8 x^{2}\right) d x \\
\left.\left(\frac{3 x^{5}}{5}-\frac{8 x^{3}}{3}\right)\right|_{-3} ^{3} & =\left.2\left(\frac{3 x^{5}}{5}-\frac{8 x^{3}}{3}\right)\right|_{0} ^{3} \\
\left(\frac{3(3)^{5}}{5}-\frac{8(3)^{3}}{3}\right)-\left(\frac{3(-3)^{5}}{5}-\frac{8(-3)^{3}}{3}\right) & =2\left[\left(\frac{3(3)^{5}}{5}-\frac{8(3)^{3}}{3}\right)-\left(\frac{3(0)^{5}}{5}-\frac{8(0)^{3}}{3}\right)\right] \\
\left(\frac{729}{5}-\frac{216}{3}\right)-\left(-\frac{729}{5}+\frac{216}{3}\right) & =2\left[\left(\frac{729}{5}-\frac{216}{3}\right)-(0-0)\right] \\
\frac{729}{5}-\frac{216}{3}+\frac{729}{5}-\frac{216}{3} & =2\left(\frac{729}{5}-\frac{216}{3}\right) \\
\frac{729}{5}+\frac{729}{5}-\frac{216}{3}-\frac{216}{3} & =\frac{1,458}{5}-\frac{432}{3} \\
\frac{1,458}{5}-\frac{432}{3} & =\frac{1,458}{5}-\frac{432}{3}
\end{aligned}
$$

18.25 Given $h(x)=|x-2|-5$, evaluate $\int_{-10}^{10} h(x) d x$.

Consider the graph of $h(x)$ in Figure 18-1.

Figure 18-1 The function $h(x)=|x-2|-5$ is comprised of two lines: $h_{l}(x)=-x-3$ and $h_{2}(x)=x-7$.

The function $h(x)$ consists of two rays with endpoint $(2,-5)$. Because $x-2$ may be either positive or negative, you can determine the equations of those rays by multiplying $(x-2)$ by -1 and 1 .

$$
\begin{array}{ll}
h_{1}(x)=-1(x-2)-5 & h_{2}(x)=1(x-2)-5 \\
h_{1}(x)=-x+2-5 & h_{2}(x)=x-2-5 \\
h_{1}(x)=-x-3 & h_{2}(x)=x-7
\end{array}
$$

Notice that $h(x)$ is defined by $h_{1}(x)=-x-3$ for all x on the interval $(-\infty, 2)$, and is defined by $h_{2}(x)=x-7$ for all x on the interval $(2, \infty)$. Because the rule by which the function is defined changes at $x=2$, you must split the integral $\int_{-10}^{10} h(x) d x$ at that value.

$$
\begin{aligned}
\int_{-10}^{10} h(x) d x & =\int_{-10}^{2} h_{1}(x) d x+\int_{2}^{10} h_{2}(x) d x \\
\int_{-10}^{10}(|x-2|-5) d x & =\int_{-10}^{2}(-x-3) d x+\int_{2}^{10}(x-7) d x
\end{aligned}
$$

 values inside integrals are headaches. To find this definite integral, you have to break the absolute value equation into the equations of its two lines and integrate separately.

Apply the fundamental theorem of calculus.

$$
\begin{aligned}
& =\left.\left(-\frac{x^{2}}{2}-3 x\right)\right|_{-10} ^{2}+\left.\left(\frac{x^{2}}{2}-7 x\right)\right|_{2} ^{10} \\
& =\left[\left(-\frac{4}{2}-6\right)-\left(-\frac{100}{2}+30\right)\right]+\left[\left(\frac{100}{2}-70\right)-\left(\frac{4}{2}-14\right)\right] \\
& =[-8-(-20)]+[-20-(-12)] \\
& =-8+20<20+12 \\
& =4
\end{aligned}
$$

18.26 Evaluate $\int_{-4}^{7}\left|x^{2}-3 x-5\right| d x$ accurate to three decimal places and show the work that leads to your answer.

Consider the graph of $y=\left|x^{2}-3 x-5\right|$ in Figure 18-2.

So, don't just type this integral into your graphing calculator and write down the answer it spits out.

Figure 18-2 The graph of $y=\left|x^{2}-3 x-5\right|$. Between its x-intercepts, wherie the graph of $y=x^{2}-3 x-5$ is normally negative, this graph is reflected above the x-axis and has equation $y=-\left(x^{2}-3 x-5\right)$, or $y=-x^{2}+3 x+5$.

Like Problem 18.25, the expression within the absolute value bars may either be positive or negative. The graph is defined by $y=x^{2}-3 x-5$ for all x less than the left x-intercept and all x greater than the right x-intercept. However, between those intercepts, the graph is defined by $y=-\left(x^{2}-3 x-5\right)$. Use the quadratic formula to identify the x-intercepts.

$$
\frac{3-\sqrt{29}}{2} \approx-1.1925824036 \text { and } \frac{3+\sqrt{29}}{2} \approx 4.1925824036
$$

Rewrite the definite integral as the sum of three distinct definite integrals, using the x-intercepts calculated above, that explicitly state when the function $y=\left|x^{2}-3 x-5\right|$ changes from $y=x^{2}-3 x-5$ to $y=-\left(x^{2}-3 x-5\right)$.
$\int_{-4}^{7}\left|x^{2}-3 x-5\right| d x$

$$
=\int_{-4}^{-1.1925824036}\left(x^{2}-3 x-5\right) d x+\int_{-1.1925824036}^{4.1925824036}-\left(x^{2}-3 x-5\right) d x+\int_{4.1925824036}^{7}\left(x^{2}-3 x-5\right) d x
$$

$$
=\left.\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}-5 x\right)\right|_{-4} ^{-1.1925824036}-\left.\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}-5 x\right)\right|_{-1.1925824036} ^{4.1925824036}+\left.\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}-5 x\right)\right|_{4.1925824036} ^{7}
$$

Evaluate the antiderivatives using a graphing calculator.

$$
\begin{aligned}
& \approx 28.597482-(-26.028297)+28.597482 \\
& \approx 83.223
\end{aligned}
$$

18.27 Let R represent the area bounded by the function $f(x)=\frac{1}{1+x^{2}}$ and the x-axis on the interval [0,1]. At what value k does the vertical line $x=k$ split R into two regions of equal area?

$$
k=\tan \left(\frac{\pi}{8}\right) \approx 0.414
$$

$$
\begin{aligned}
& \text { Begin by calculating } R \text { via the fundamental theorem of calculus. }
\end{aligned}
$$

Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3.
18.28 Evaluate $\int_{-6}^{-4} f(x) d x$.

Figure 18-3

The graph of a continuous function $f(x)$ consists of a quarter-circle of radius 2 , two linear segments, and an unknown strictly increasing function (when $x \geq 2$).

The area of a quarter-circle is one-fourth the area of a circle with the same radius: $\frac{\pi r^{2}}{4}$. There is no need to determine the equation of the circle to evaluate the definite integral $\sum_{i=1}^{n} i=\frac{n^{2}+n}{2}$-simply calculate the area beneath the arc by applying the quarter-circle area formula with $r=2$.

$$
\int_{-6}^{-4} f(x) d x=\frac{\pi(2)^{2}}{4}=\frac{A \pi}{4}=\pi
$$

Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3.
18.29 Evaluate $\int_{-4}^{0} f(x) d x$.

You could calculate this integral by first determining that the equation of the line connecting the points $(-4,0)$ and $(0,-3)$ is $y=-\frac{3}{4} x-3$ and then evaluating the definite integral $\int_{-4}^{0}\left(-\frac{3}{4} x-3\right) d x$. However, it is far simpler to analyze the area geometrically, like the solution technique modeled in Problem 18.28.

The region bounded by $f(x)$ and the x-axis between $x=-4$ and $x=0$ is a right triangle with vertices $(-4,0),(0,-3)$, and $(0,0)$-a triangle with a base 4 units long and a height of 3 units. To calculate the area of a triangle, apply the formula $\frac{1}{2} b h$. However, as the region appears entirely below the x-axis, the value of the integral is negative, so multiply the triangle's area by -1 .

$$
\int_{-4}^{0} f(x) d x=-\left(\frac{1}{2} b h\right)=-\frac{1}{2}(4)(3)=-6
$$

Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3.
18.30 Evaluate $\int_{2}^{0} f(x) d x$.

Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3.
18.31 Evaluate $\int_{-4}^{2} f(x) d x$.

Split the integral into two distinct definite integrals.

$$
\int_{-4}^{2} f(x) d x=\int_{-4}^{0} f(x) d x+\int_{0}^{2} f(x) d x
$$

According to Problem 18.29, $\int_{-4}^{0} f(x) d x=-6$; according to Problem 18.30, $\int_{0}^{2} f(x) d x=-3$.

$$
\int_{-4}^{2} f(x) d x=(-6)+(-3)=-9
$$

Alternatively, you could calculate $\int_{-4}^{2} f(x) d x$ by noting that the region bounded by $f(x)$ and the x-axis between $x=-4$ and $x=2$ is a triangle with base 6 and height 3 , so its area must be $\frac{1}{2} b h=\frac{1}{2}(6)(3)=9$. Because the triangle appears entirely beneath the x-axis, its signed area is -9 .

Note: Problems 18.28-18.33 are based on the graph off(x) in Figure 18-3.
18.32 Estimate $\int_{2}^{6} f(x) d x$.

No function is given that defines $f(x)$ on the x-interval [2,6]. Though $f(x)$ resembles $y=\sqrt{x-2}$, that function does not accurately describe the graph. (For example, $\sqrt{6-2}=2$, but the graph appears to pass through the point $(6,3)$, not $(6,2)$.$) Therefore, you should estimate the area of the region by counting the$ number of square units between $f(x)$ and the x-axis, as illustrated in Figure 18-4.

Figure 18-4 Each grid square on the interval [2,6] is labeled according to what percentage of it lies in the region bounded by $f(x)$ and the x-axis. The values within each square must be between 0 and 1, and a higher number indicates that a larger percentage of the square lies within the region.

The definite integral is approximately equal to the sum of the estimates in Figure 18-4.

$$
\int_{2}^{6} f(x) d x \approx 0.65+0.6+1+0.3+1+1+0.85+1+1 \approx 7.4
$$

Note: Problems 18.28-18.33 are based on the graph of $f(x)$ in Figure 18-3.
18.33 Estimate $\int_{-6}^{6} f(x) d x$.

Express the integral as the sum of the definite integrals calculated in Problems 18.28, 18.31, and 18.32.

$$
\begin{aligned}
\int_{-6}^{6} f(x) d x & =\int_{-6}^{-4} f(x) d x+\int_{-4}^{2} f(x) d x+\int_{2}^{6} f(x) d x \\
& \approx(\pi)+(-9)+(7.4) \\
& \approx \pi-1.6 \\
& \approx 1.542
\end{aligned}
$$

18.34 Complete the following statement based on the fundamental theorem of calculus.

$$
\frac{d}{d x}\left(\int_{a}^{f(x)} g(t) d t\right)=
$$

The derivative of a definite integral taken with respect to the variable in the upper limit of integration (here, you differentiate with respect to x and $f(x)$ is written in terms of x), is equal to the integrand evaluated at the upper limit of integration, $g(f(x))$, multiplied by the derivative of the upper limit of integration,

$f^{\prime}(x)$. Note that in order for this formula to apply, the lower limit of integration must be a constant.
18.35 Diffierentiate the definite integral: $\frac{d}{d x}\left(\int_{6}^{x^{4}} \frac{1}{t} d t\right)$.

Apply the formula from Problem 18.34; replace t in the integrand with the upper limit of integration x^{4} and multiply by the derivative of x^{4}.

$$
\frac{d}{d x}\left(\int_{6}^{x^{4}} \frac{1}{t} d t\right)=\frac{1}{x^{4}} \cdot \frac{d}{d x}\left(x^{4}\right)=\frac{1}{x^{4}} \cdot\left(4 x^{3}\right)=\frac{4 x^{3}}{x^{4}}=\frac{4}{x}
$$

means of integration
stick a negative sign outside the integral.

Substitute the upper limit of integration $e^{2 x}$ into $y^{2}-5 \ln y$ and multiply by its derivative.

$$
\begin{aligned}
& =\left[\left(e^{2 x}\right)^{2}-5 \ln e^{2 x}\right] \cdot \frac{d}{d x}\left(e^{2 x}\right) \\
& =\left[e^{4 x}-5(2 x)\right]\left[2 e^{2 x}\right] \\
& =2 e^{2 x}\left(e^{4 x}-10 x\right)
\end{aligned}
$$

18.39 Differentiate: $\frac{d}{d x}\left(\int_{x-2}^{5 x} 9 b^{2} d b\right)$.

Both boundaries are functions of x, so you cannot apply the formula from Problem 18.34, as it requires the lower boundary to be constant. Instead, use the method described in Problem 18.36. Begin by calculating the definite integral.

$$
\begin{aligned}
\int_{x-2}^{5 x} 9 b^{2} d b & =\left.\frac{9 b^{3}}{3}\right|_{x-2} ^{5 x} \\
& =\left.3 b^{3}\right|_{x-2} ^{5 x} \\
& =3(5 x)^{3}-3(x-2)^{3} \\
& =3\left(125 x^{3}\right)-3\left(x^{3}-6 x^{2}+12 x-8\right) \\
& =375 x^{3}-3 x^{3}+18 x^{2}-36 x+24 \\
& =372 x^{3}+18 x^{2}-36 x+24
\end{aligned}
$$

Diffierentiate with respect to x.

$$
\frac{d}{d x}\left(372 x^{3}+18 x^{2}-36 x+24\right)=1,116 x^{2}+36 x-36
$$

Therefore, $\frac{d}{d x}\left(\int_{x-2}^{5 x} 9 b^{2} d b\right)=1,116 x^{2}+36 x-36$.

Substitution of Variables

Usually called u-substitution

18.40 Find the antiderivative $\int \sin x \cos x d x$ by performing the variable substitution $u=\sin x$.

Take the derivative of $u=\sin x$ using the chain rule: Differentiate the sine function, leaving the inner function x alone, and then differentiate the inner function x to get $d x$.

$$
\begin{aligned}
u & =\sin x \\
d u & =\cos x \cdot d x
\end{aligned}
$$

Notice that $\cos x d x$ is in the original integral expression. Rewrite the original integral given $u=\sin x$ and $d u=\cos x d x$.

$$
\int \sin x \cos x d x=\int u \cdot d u
$$

18.41 Find the antiderivative $\int \sin x \cos x d x$ by performing the variable substitution $u=\cos x$.

Use the technique described in Problem 18.40, this time setting $u=\cos x$.

$$
\begin{aligned}
u & =\cos x \\
d u & =-\sin x d x
\end{aligned}
$$

Note that $-\sin x d x$ does not appear in the original integral, but $\sin x d x$ does, so solve the equation containing $d u$ for $\sin x d x$ by dividing both sides by -1 .

$$
\begin{aligned}
\frac{d u}{-1} & =\frac{-\sin x d x}{-1} \\
-d u & =\sin x d x
\end{aligned}
$$

Rewrite the original integral in terms of u given $u=\cos x$ and $-d u=\sin x d x$.

$$
\int \sin x \cos x d x=\int \cos x \sin x d x=\int u(-d u)=-\int u d u
$$

Now that the entire integrand is written in terms of u, apply the power rule for integration. Then write the antiderivative in terms of x, recalling that $u=\cos x$.

$$
-\int u d u=-\frac{u^{2}}{2}+C=-\frac{\cos ^{2} x}{2}+C
$$

18.42 Problems 18.40 and 18.41 integrate $\int \sin x \cos x d x$ but produce nonidentical solutions. Verify that those are equivalent.

Note that each antiderivative has a constant of integration, they are labeled C_{1} and C_{2} (rather than labeling them both C) to indicate that those constants are almost certainly not equal.

$$
\frac{\sin ^{2} x}{2}+C_{1}=-\frac{\cos ^{2} x}{2}+C_{2}
$$

According to a Pythagorean identity, $\cos ^{2} x+\sin ^{2} x=1$; therefore, $\cos ^{2} x=1-\sin ^{2} x$.

$$
\begin{aligned}
& \frac{\sin ^{2} x}{2}+C_{1}=-\frac{\left(1-\sin ^{2} x\right)}{2}+C_{2} \\
& \frac{\sin ^{2} x}{2}+C_{1}=\frac{-1+\sin ^{2} x}{2}+C_{2} \\
& \frac{\sin ^{2} x}{2}+C_{1}=-\frac{1}{2}+\frac{\sin ^{2} x}{2}+C_{2} \\
& \frac{\sin ^{2} x}{2}+C_{1}=\frac{\sin ^{2} x}{2}+\left(-\frac{1}{2}+C_{2}\right)
\end{aligned}
$$

The sum of the constants on the right side of the equation is another unknown constant: $-\frac{1}{2}+C_{2}=C_{3}$.

$$
\frac{\sin ^{2} x}{2}+C_{1}=\frac{\sin ^{2} x}{2}+C_{3}
$$

By generating the above statement, you have demonstrated that Problems 18.40 and 18.41 have identical solutions: the sum of $\frac{\sin ^{2} x}{2}$ and an unknown constant.
18.43 As indicated in Problem 18.14, $\int \cot x d x=\ln |\sin x|+C$. Verify the antiderivative using variable substitution.

Recall that $\cot x$ is defined as the quotient of $\cos x$ and $\sin x$.

$$
\int \cot x d x=\int \frac{\cos x}{\sin x} d x
$$

Let $u=\sin x$ and perform variable substitution.

$$
\begin{aligned}
u & =\sin x \\
d u & =\cos x d x
\end{aligned}
$$

If you've not sure what to set u equal to, and the integrand is a fraction, try the denominator.

Write the integral in terms of u.

$$
\int \frac{\cos x}{\sin x} d x=\int \frac{\cos x d x}{\sin x}=\int \frac{d u}{u}
$$

According to Problem 18.4, $\int \frac{d u}{u}=\ln |u|+C$.

$$
\int \frac{d u}{u}=\ln |u|+C=\ln |\sin x|+C
$$

18.44 According to Problem 18.13, $\int \tan x d x=-\ln |\cos x|+C$. Verify the antiderivative using variable substitution.

Use the method described in Problem 18.43.

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x
$$

Let $u=\cos x$; therefore, $d u=-\sin x d x$ and $-d u=\sin x d x$. Use these equality statements to rewrite the integral in terms of u.

$$
\int \frac{\sin x}{\cos x} d x=\int \frac{\sin x d x}{\cos x}=\int \frac{-d u}{u}=-\int \frac{d u}{u}=-\ln |u|+C
$$

The antiderivative in your solution should be written in terms of $x:-\ln |\cos x|+C$.

18.45 Integrate the expression: $\int \frac{\sin x d x}{\sqrt{1-\cos ^{2} x}}$.

Apply variable substitution; if $u=\cos x$, then $d u=-\sin x d x$ and $-d u=\sin x d x$.

$\int \frac{\sin x d x}{\sqrt{1-\cos ^{2} x}}=\int \frac{-d u}{\sqrt{1-u^{2}}}$
According to Problem 16.25, $\frac{d}{d x}(\arccos u)=\frac{-d u}{\sqrt{1-u^{2}}}$.

$$
\begin{aligned}
\int \frac{-d u}{\sqrt{1-u^{2}}} & =\arccos u+C \\
& =\arccos (\cos x)+C
\end{aligned}
$$

Note that removing -1 from the integral, once it's written in terms of u, results in an equivalent alternate solution.

$$
\int \frac{-d u}{\sqrt{1-u^{2}}}=-\int \frac{d u}{\sqrt{1-u^{2}}}=-\arcsin u+C=-\arcsin (\cos x)+C
$$

18.46 Evaluate the definite integral: $\int_{-\pi / 6}^{\pi / 12} \tan 2 x d x$.

Although $\int \tan x d x=-\ln |\cos x|+C, \int \tan 2 x d x \neq-\ln |\cos 2 x|+C$.

Apply variable substitution using $u=2 x$. Differentiating that equation results in $d u=2 d x$, but $2 d x$ does not appear in the original integral, so you must solve $d u=2 d x$ for $d x$, which does appear in the integral.

$$
\begin{aligned}
& d u=2 d x \\
& \frac{d u}{2}=d x
\end{aligned}
$$

Rewrite the entire definite integral in terms of u, including the limits of integration. To write $x=-\frac{\pi}{6}$ and $x=\frac{\pi}{12}$ in terms of u, substitute them into the equation describing the relationship between x and u for this problem: $u=2 x$.

Convert lower limit: $x=-\frac{\pi}{6}$

$$
\begin{aligned}
& u=2 x \\
& u=2\left(-\frac{\pi}{6}\right) \\
& u=-\frac{\pi}{3}
\end{aligned}
$$

Convert upper limit: $x=\frac{\pi}{12}$

$$
u=2 x
$$

$$
u=2\left(\frac{\pi}{12}\right)
$$

$$
u=\frac{\pi}{6}
$$

Rewrite $\int_{-\pi / 6}^{\pi / 12} \tan 2 x d x$ in terms of u by substituting in the new boundaries and recalling that $u=2 x$ and $\frac{d u}{2}=d x$.

$$
\int_{-\pi / 6}^{\pi / 12} \tan 2 x d x=\int_{-\pi / 3}^{\pi / 6} \tan u \cdot \frac{d u}{2}=\frac{1}{2} \cdot \int_{-\pi / 3}^{\pi / 6} \tan u d u
$$

According to Problem 18.44, an antiderivative of $\tan x$ is $-\ln |\cos x|$.

$\frac{1}{2} \int_{-\pi / 3}^{\pi / 6} \tan u d u=-\frac{1}{2}(\ln |\cos u|)| |_{-\pi / 3}^{\pi / 6}=-\frac{1}{2}\left[\ln \left|\cos \frac{\pi}{6}\right|-\ln \left|\cos \left(-\frac{\pi}{3}\right)\right|\right]=-\frac{1}{2}\left[\ln \left(\frac{\sqrt{3}}{2}\right)-\ln \left(\frac{1}{2}\right)\right]$
Apply the $\operatorname{logarithmic~property~} \log a-\log b=\log \frac{a}{b}$.

$$
-\frac{1}{2}\left[\ln \left(\frac{\sqrt{3}}{2}\right)-\ln \left(\frac{1}{2}\right)\right]=-\frac{1}{2}\left[\ln \left(\frac{\sqrt{3} / 2}{1 / 2}\right)\right]=-\frac{1}{2} \ln \left(\frac{\sqrt{3}}{1}\right)=-\frac{1}{2} \ln \sqrt{3}
$$

Therefore, $\int_{-\pi / 6}^{\pi / 12} \tan 2 x d x=-\frac{1}{2} \ln \sqrt{3}$.

18.47 Evaluate the definite integral: $\int_{1}^{5} 3^{2 x} d x$.

Let $u=3^{2 x}$. Recall that $\frac{d}{d x}\left(a^{x}\right)=a^{x} \cdot \ln a$. In order to differentiate $u=3^{2 \times}$, you must apply the chain rule; specifically, $\frac{d}{d x} a^{f(x)}=a^{f(x)} \cdot \ln a \cdot f^{\prime}(x)$.

$$
\begin{aligned}
u & =3^{2 x} \\
d u & =3^{2 x} \cdot \ln 3 \cdot 2 d x \\
d u & =3^{2 x} \cdot 2 \ln 3 \cdot d x \\
\frac{d u}{2 \ln 3} & =3^{2 x} d x
\end{aligned}
$$

because those are the only pieces that appear in
the original integrand. In fact, $3^{2 x} d x$ Is the original integrand.

Write the limits of integration in terms of u.

$$
\begin{array}{cc|}
\hline \text { Convert lower limit: } x=1 & \text { Convert upper limit: } x=5 \\
\hline u=3^{2 x} & u=3^{2 x} \\
u=3^{2(1)} & u=3^{2(5)} \\
u=3^{2} & u=3^{10} \\
u=9 & u=59,049
\end{array}
$$

Replace the entire integrand of $\int_{1}^{5} 3^{2 x} d x$ with $\frac{d u}{2 \ln 3}$ (because $\frac{d u}{2 \ln 3}=3^{2 x} d x$) and apply the limits of integration calculated above.

$$
\int_{1}^{5} 3^{2 x} d x=\int_{9}^{59,049} \frac{d u}{2 \ln 3}
$$

The integrand, apart from $d u$, is a constant and can be moved outside the integral.

$$
=\frac{1}{2 \ln 3} \int_{9}^{59,049} d u
$$

The antiderivative of $d u$ is u.

$$
=\left.\frac{1}{2 \ln 3}(u)\right|_{9} ^{59,049}=\frac{1}{2 \ln 3}(59,049-9)=\frac{59,040}{2 \ln 3}=\frac{\not q \cdot 29,520}{\not 2 \ln 3}=\frac{29,520}{\ln 3}
$$

Chapter 19
 APPLICATIONS OF THE FUNDAMENTAL THEOREM

 Things to do with definite integrals

 Things to do with definite integrals}

In Chapter 18 (and to some degree in Chapter 17), only one application of integration has been explored: calculating the area of a region that is bounded by a function and the x-axis. In this chapter, however, you will calculate areas bounded above and below by functions. You will also investigate the antidifferentiation version of the mean value theorem, motion problems, and accumulation functions (functions defined as definite integrals).

With the power rule for integration and u-substitution experience from Chapter 18 under your belt, you're ready to see what sorts of things definite integrals can do. If you've worked through Chapters 17 and 18, you already know that a definite integral can be used to represent the area beneath a curve, but in this chapter, you'll find the areas between two curves, work with functions made of definite integrals, and calculate the average value of a function. position function problems will make a repeat appearance, but now you won't be constrained to the motion of projectiles. They're a lot like the rectilinear motion problems from Chapter 15, but this time instead of finding derivatives, you'll work with integrals.

Calculating the Area Between Two Curves

 Instead of just a function and the x-axis19.1 Given the functions $f(x)$ and $g(x)$, which are continuous on the interval [a,b] such that $f(x)>g(x)$ for all $a \leq x \leq b$, what integral expression represents the area bounded by $f(x)$ and $g(x)$ on $[a, b]$?

As long as $f(x)>g(x)$, i.e., the graph of $f(x)$ lies above the graph of $g(x)$ on the entire interval $[a, b]$, the area of the region bounded by $f(x)$ and $g(x)$ is equal to $\int_{a}^{b}[f(x)-g(x)] d x$. If $g(x)>f(x)$ for all x on the interval $[a, b]$, the area is equal to $\int_{a}^{b}[g(x)-f(x)] d x$.
19.2 Explain why $\int_{a}^{b} f(x) d x$ represents the area between $f(x)$ and the x-axis (assuming $f(x)$ is positive for all x on $[a, b])$ using the formula in Problem 19.1.

Write the equation of the x-axis as a function $g(x)=0$. Because $f(x)$ is positive on the x-interval $[a, b], f(x)>g(x)$ for all x on that interval. To determine the area between $f(x)$ and $g(x)$, apply the formula from Problem 19.1:

$$
\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b}[f(x)-0] d x=\int_{a}^{b} f(x) d x
$$

19.3 Calculate the area bounded by the curves $y=3 x$ and $y=x^{2}$ when $x>0$.

Consider Figure 19-1, which illustrates the region described.

Figure 19-1 The curves $y=3 x$ and $y=x^{2}$ intersect at points $(0,0)$ and $(3,9)$.

Calculate the left and right boundaries of the shaded region-the x-values of the points at which the curves intersect. Both equations are solved for y, so set them equal to each another: $3 x=x^{2}$. Solve the equation for x by setting it equal to 0 and factoring.

$$
\begin{aligned}
x^{2}-3 x & =0 \\
x(x-3) & =0 \\
x & =0,3
\end{aligned}
$$

Therefore, the graphs of $y=3 x$ and $y=x^{2}$ intersect when $x=0$ or $x=3$.
According to Figure 19-1, the graph of $y=3 x$ is greater than (above) the graph of $y=x^{2}$ on the entire interval [0,3]. Apply the formula from Problem 19.1 to determine the area of the region.

$$
\begin{aligned}
\int_{a}^{b}[f(x)-g(x)] d x & =\int_{0}^{3}\left(3 x-x^{2}\right) d x \\
& =\left.\left(\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{3} \\
& =\left(\frac{27}{2}-\frac{27}{3}\right)-0 \\
& =\frac{81}{6}-\frac{54}{6} \\
& =\frac{27}{6} \\
& =\frac{9}{2}
\end{aligned}
$$

Therefore, the area of the region bounded by $y=3 x$ and $y=x^{2}$, when $x>0$, is $\frac{9}{2}$
square units.

19.4 Calculate the area bounded by $y=\sin x, y=2, x=-\frac{\pi}{2}$, and $x=\pi$.

Consider Figure 19-2, which illustrates the region described.

Figure 19-2 The upper boundary of this region is $y=2$; the lower bound is $y=\sin x$.

19.5 If $f(y)$ and $g(y)$ are continuous functions such that $f(y)>g(y)$ when $c \leq y \leq d$, what is the area of the region bounded by those functions on the y-interval $[c, d]$?

Figure 19-3 These curves are functions, but not functions of x. As functions of y, they pass the horizontal line test instead of the vertical line test.

Calculate the y-values at which the curves intersect by setting the functions equal and solving for y. As explained in Problem 19.5, when calculating the area between two functions written in terms of y, the limits of integration must be y-values.

$$
\begin{aligned}
-y^{2}+9 & =\frac{1}{2} y^{2}-6 y-9 \\
0 & =\frac{3}{2} y^{2}-6 y-18 \\
\frac{2}{3}(0) & =\frac{2}{3}\left[\frac{3}{2} y^{2}-6 y-18\right] \\
0 & =y^{2}-4 y-12 \\
0 & =(y-6)(y+2) \\
y & =-2 \text { or } 6
\end{aligned}
$$

$$
\begin{aligned}
\int_{c}^{d}[f(y)-g(y)] d y & =\int_{-2}^{6}\left[\left(-y^{2}+9\right)-\left(\frac{1}{2} y^{2}-6 y-9\right)\right] d y \\
& =\int_{-2}^{6}\left[-y^{2}+9-\frac{1}{2} y^{2}+6 y+9\right] d y \\
& =\int_{-2}^{6}\left[-\frac{3}{2} y^{2}+6 y+18\right] d y \\
& =\left.\left(-\frac{3}{2} \cdot \frac{y^{3}}{3}+6 \cdot \frac{y^{2}}{2}+18 y\right)\right|_{-2} ^{6} \\
& =\left.\left(-\frac{y^{3}}{2}+3 y^{2}+18 y\right)\right|_{-2} ^{6} \\
& =\left(-\frac{216}{2}+3(36)+108\right)-\left(-\frac{-8}{2}+12-36\right) \\
& =(-108+108+108)-(4+12-36) \\
& =108-(-20) \\
& =128
\end{aligned}
$$

19.7 Calculate the area of the region bounded by the curves $f(x)=\cos x$ and $g(x)=\sqrt{x}$ for $0 \leq x \leq 4$ and report your answer accurate to three decimal places.

As illustrated in Figure 19-4, the curves intersect on the interval [0,4]. Before they intersect, $f(x)>g(x)$, but once they intersect, $f(x)<g(x)$ for the remainder of the interval.

Figure 19-4 When $0 \leq x \leq 0.64171$, the graph of $\cos x$ is above the graph of \sqrt{x}. However, when $0.64171<x<4$, the graph of \sqrt{x} is above the graph of $\cos x$. Therefore, two integrals are required to calculate the area of the shaded region.

Use a graphing calculator to determine the x-value of the point at which $f(x)$ and $g(x)$ intersect.

$$
\begin{aligned}
\cos x & =\sqrt{x} \\
\cos x-\sqrt{x} & =0 \\
x & \approx 0.641714370873
\end{aligned}
$$

Use two integrals to calculate the area of the region, one that describes the interval on which $f(x)>g(x)$, and one that describes the interval on which $g(x)>f(x)$.

$$
\int_{0}^{0.641714370873}(\cos x-\sqrt{x}) d x+\int_{0.641714370873}^{4}(\sqrt{x}-\cos x) d x
$$

Evaluate the definite integrals using a graphing calculator.

$$
\approx 0.2558639+6.3459997 \approx 6.602
$$

19.8 Calculate the area bounded by the graphs of $x-y=3$ and $x=y^{2}-y$.

You must first decide whether to write the linear equation in terms of x (by solving it for y), or vice versa. Because the quadratic equation is already written explicitly
in terms of y (and cannot easily be solved for y to rewrite the equation in terms of x), solve the linear equation for x as well.

$$
\begin{aligned}
x-y & =3 \\
x & =y+3
\end{aligned}
$$

Determine the y-values at which $x=y+3$ and $x=y^{2}-y$ intersect.

$$
\begin{aligned}
y+3 & =y^{2}-y \\
0 & =y^{2}-2 y-3 \\
0 & =(y-3)(y+1) \\
y & =-1 \text { or } 3
\end{aligned}
$$

The region bounded by the curves is pictured in Figure 19-5. Notice that the graph of $x=y+3$ is always positioned to the right of the graph of $x=y^{2}-y$ when $-1 \leq y \leq 3$.

Figure 19-5 The region bounded by $x=y+3$ and $x=y^{2}-y$. Note that the graph of $x=y+3$ is the same as the graph of $y=x-3$, which is slightly easier to graph, because it is in slope-intercept form.

Calculate the area using the formula from Problem 19.5.

$$
\begin{aligned}
\int_{c}^{d}[f(y)-g(y)] d y & =\int_{-1}^{3}\left[(y+3)-\left(y^{2}-y\right)\right] d y \\
& =\int_{-1}^{3}\left(-y^{2}+2 y+3\right) d y \\
& =\left.\left(-\frac{y^{3}}{3}+2 \cdot \frac{y^{2}}{2}+3 y\right)\right|_{-1} ^{3} \\
& =\left.\left(-\frac{y^{3}}{3}+y^{2}+3 y\right)\right|_{-1} ^{3} \\
& =(-9+9+9)-\left(\frac{1}{3}+1-3\right) \\
& =\frac{32}{3}
\end{aligned}
$$

The Mean Value Theorem for Integration Make a rectangle that matches the area beneath a curve

19.9 State the mean value theorem for integration.

Given a function $f(x)$ that is continuous over the interval $[a, b]$, there exists a c such that $a \leq c \leq b$ for which $\int_{a}^{b} f(x) d x=f(c)(b-a)$.
19.10 Explain the geometric implications of the mean value theorem for integration.

Figure 19-6 The mean value theorem for integration guarantees that there exists some $x=c$ between a and b such that the rectangle on $[a, b]$ with height $f(c)$ has the same area as the region bounded by $f(x)$ and the x-axis on $[a, b]$.
19.1I What is the average value of a continuous function $f(x)$ over the closed interval $[a, b]$?

The average value is $f(c)$, as described by Problem 19.10. Solve the equation of the mean value theorem for integration for $f(c)$ to generate a formula that calculates the average value of $f(x)$.

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=(b-a) \cdot f(c) \\
& \frac{\int_{a}^{b} f(x) d x}{b-a}=\frac{(b-a) \cdot f(c)}{b-a} \\
& f(c)=\frac{\int_{a}^{b} f(x) d x}{b-a}
\end{aligned}
$$

The average value formula may also be written as a product rather than a fraction: $f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

Note: Problems 19.12-19.13 refer to the function $f(x)=x^{2}$.
19.12 Calculate the average value of $f(x)$ between $x=0$ and $x=4$.

Apply the average value formula generated in Problem 19.11.

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{4-0} \int_{0}^{4} x^{2} d x=\left.\frac{1}{4}\left(\frac{x^{3}}{3}\right)\right|_{0} ^{4}=\frac{1}{4}\left[\frac{64}{3}-0\right]=\frac{16}{3}
$$

Note: Problems 19.12-19.13 refer to the function $f(x)=x^{2}$.

19.13 At what value c on the x-interval [0,4] does $f(x)$ satisfy the mean value theorem for integration?

According to Problem 19.12, the average value of $f(x)=x^{2}$ on $[0,4]$ is $\frac{16}{3}$.
According to the mean value theorem for integration, there exists some c such that $0 \leq c \leq 4$ and $f(c)=\frac{16}{3}$. Substitute $x=c$ into $f(x)$.

$$
\begin{aligned}
f(c) & =c^{2} \\
\frac{16}{3} & =c^{2}
\end{aligned}
$$

In other words, what should you plug into $f(x)$ to get the average value from Problem 19.12?

Solve for c.

$$
\begin{aligned}
\pm \sqrt{\frac{16}{3}} & =\sqrt{c^{2}} \\
c & = \pm \frac{4}{\sqrt{3}}= \pm \frac{4 \sqrt{3}}{3}
\end{aligned}
$$

Recall that $0 \leq c \leq 4$, so $-\frac{4 \sqrt{3}}{3}$ is not a valid value for c; therefore, $c=\frac{4 \sqrt{3}}{3}$.

Note: Problems 19.14-19.15 refer to the function $g(x)=e^{2 x}$.
19.14 Calculate the average value of $g(x)$ on the x-interval $[-1,1]$.

Apply the average value formula from Problem 19.11.

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} g(x) d x & =\frac{1}{1-(-1)} \int_{-1}^{1} e^{2 x} d x \\
& =\frac{1}{2} \int_{-1}^{1} e^{2 x} d x
\end{aligned}
$$

substituting them into $u=e^{2 x}$.
Rewrite the definite integral in terms of u.

$$
\begin{aligned}
\frac{1}{2} \int_{-1}^{1} e^{2 x} d x & =\frac{1}{2} \int_{e^{-2}}^{e^{2}} \frac{d u}{2} \\
& =\frac{1}{4} \int_{e^{-2}}^{e^{2}} d u \\
& =\left.\frac{1}{4}(u)\right|_{e^{-2}} ^{e^{2}} \\
& =\frac{1}{4}\left(e^{2}-e^{-2}\right)
\end{aligned}
$$

Eliminate the negative exponent in the solution.
can write that last line in terms of the hyperbolic sine
function: $\frac{\sinh (2)}{2}$.
If you have no idea what the heck
that " h " is doing
attached to "sin,"
don't sweat it.
Integrate the expression using substitution of variables: $u=e^{2 x}$ and $d u=2 e^{2 x} d x$. $\xrightarrow{\text { Therefore },} \frac{d u}{2}=e^{2 x} d x$. Translate the limits of integration in terms of u by

$$
\begin{aligned}
& \text { Lower limit }(x=-1): u=e^{2 x}=e^{2(-1)}=e^{-2} \\
& \text { Upper limit }(x=1): \quad u=e^{2 x}=e^{2(1)}=e^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left(e^{2}-\frac{1}{e^{2}}\right) \\
& =\frac{1}{4}\left(\frac{e^{4}-1}{e^{2}}\right) \\
\rightarrow & =\frac{e^{4}-1}{4 e^{2}}
\end{aligned}
$$

Note: Problems 19.14-19.15 refer to the function $g(x)=e^{2 x}$.
19.15 At what value c on the x-interval $[-1,1]$ does $g(x)$ satisfy the mean value theorem for integration?

According to Problem 19.14, the average value of $g(x)$ on the interval $[-1,1]$ is $\frac{e^{4}-1}{4 e^{2}}$. Therefore, there exists a value c such that $-1 \leq c \leq 1$ and $g(c)=\frac{e^{4}-1}{4 e^{2}}$. Substitute c and $g(c)$ into $g(x)$.

$$
\begin{aligned}
g(x) & =e^{2 x} \\
g(c) & =e^{2 c} \\
\frac{e^{4}-1}{4 e^{2}} & =e^{2 c}
\end{aligned}
$$

Take the natural logarithm of both sides of the equation to solve for c.

$$
\begin{aligned}
\ln \left(\frac{e^{4}-1}{4 e^{2}}\right) & =\ln \left(e^{2 c}\right) \\
\ln \left(\frac{e^{4}-1}{4 e^{2}}\right) & =2 c \\
\frac{1}{2} \ln \left(\frac{e^{4}-1}{4 e^{2}}\right) & =c
\end{aligned}
$$

Expand and simplify the logarithmic expression.

$$
\begin{aligned}
\text { garithmic expression. } & \leftarrow \\
\ln \left(e^{4}-1\right)-\ln \left(4 e^{2}\right) & =2 c \\
\ln \left(e^{4}-1\right)-\left(\ln 4+\ln e^{2}\right) & =2 c \\
\ln \left(e^{4}-1\right)-\ln 4-\ln e^{2} & =2 c \\
\ln \left(e^{4}-1\right)-\ln 4-2 & =2 c \\
\frac{\ln \left(e^{4}-1\right)-\ln 4-2}{2} & =c
\end{aligned}
$$

19.16 Calculate the average value of $f(x)=\frac{1}{3 x}$ over the x-interval $\left[\frac{1}{2}, 2\right]$.

Apply the average value formula.

If
you need practice with this, check out Problems 5.25-5.27. Remember
that $\ln e^{a}=a$, only the power is left because in and e cancel each other out.

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x & =\frac{1}{2-(1 / 2)} \int_{1 / 2}^{2} \frac{1}{3 x} d x \\
& =\frac{1}{3 / 2} \cdot \frac{1}{3} \int_{1 / 2}^{2} \frac{d x}{x} \\
& =\frac{2}{9} \int_{1 / 2}^{2} \frac{d x}{x}
\end{aligned}
$$

According to Problem 18.4, $\int \frac{d x}{x}=\ln |x|+C$.

$$
\begin{aligned}
& =\left.\frac{2}{9}(\ln |x|)\right|_{1 / 2} ^{2} \\
& =\frac{2}{9}\left(\ln 2-\ln \frac{1}{2}\right)
\end{aligned}
$$

According to a logarithmic property, $a \log b=\log b^{2}$. Therefore,

First of all, I over a fraction equals the reciprocal, so $\frac{1}{3 / 2}=\frac{2}{3}$. You're allowed to pull constants outside of an integral, so that's where the $1 / 3$ comes
from: $\frac{2}{3} \cdot \frac{1}{3}=\frac{2}{9}$.
$-1 \cdot \ln \frac{1}{2}=\ln \left(\frac{1}{2}\right)^{-1}=\ln 2$.

$$
\begin{aligned}
& =\frac{2}{9}(\ln 2+\ln 2) \\
& =\frac{2}{9}(2 \ln 2) \\
& =\frac{4 \ln 2}{9}
\end{aligned}
$$

Apply the logarithmic property $a \log b=\log b^{a}$ again: $4 \ln 2=\ln 2^{4}=\ln 16$.
Therefore, the average value of $f(x)=\frac{1}{3 x}$ on the interval $\left[\frac{1}{2}, 2\right]$ is $\frac{\ln 16}{9}$.

Note: In Problems 19.17-19.19, assume that $h(x)$ is a continuous function over the interval $[-4,5]$. If a and b are fixed real numbers such that $-4<a<b<5$, the following definite integral statements are true.

$$
\int_{-4}^{b} h(x)=-22, \int_{a}^{5} h(x)=13, \text { and } \int_{5}^{-4} h(x)=10
$$

19.17 Calculate the average value of $h(x)$ over the x-interval $[-4,5]$.

Apply the average value formula from Problem 19.11.

$$
\frac{1}{5-(-4)} \int_{-4}^{5} h(x) d x=\frac{1}{9} \int_{-4}^{5} h(x) d x
$$

Although you are not given the value of $\int_{-4}^{5} h(x) d x$, you are given $\int_{5}^{-4} h(x)=10$.
suddenly turus into 10.

$$
\frac{1}{9} \int_{-4}^{5} h(x) d x=\frac{1}{9}(-10)=-\frac{10}{9}
$$

Note: Problems 19.17-19.19 refer to $h(x), a, b$, and the definite integrals described in Problem 19.17.
19.18 Calculate the average value of $h(x)$ over the interval $[-4, b]$.

Apply the average value formula.

$$
\frac{1}{b-(-4)} \int_{-4}^{b} h(x) d x=\frac{1}{b+4} \int_{-4}^{b} h(x) d x
$$

According to the information given, $\int_{-4}^{b} h(x)=-22$.

$$
\begin{aligned}
& =\frac{1}{b+4}(-22) \\
& =-\frac{22}{b+4}
\end{aligned}
$$

The average value of $h(x)$ over $[-4, b]$ is $-\frac{22}{b+4}$.

Note: Problems 19.17-19.19 refer to $h(x)$, a, b, and the definite integrals described in Problem 19.17.
19.19 Calculate the average value of $h(x)$ over the interval $[a, b]$.

As the value of $\int_{a}^{b} h(x) d x$ is not explicitly given, you must calculate it before applying the average value formula. Because $-4<a<b<5$, you can expand $\int_{-4}^{5} h(x)$ into three definite integrals.

$$
\int_{-4}^{5} h(x) d x=\int_{-4}^{a} h(x) d x+\int_{a}^{b} h(x) d x d x+\int_{b}^{5} h(x) d x
$$

Add $\int_{a}^{b} h(x) d x \overleftarrow{\text { to both sides of the equation (indicated below by the underlined }}$ expression).

$$
\int_{-4}^{5} h(x) d x+\underline{\int_{a}^{b} h(x) d x}=\int_{-4}^{a} h(x) d x+\int_{a}^{b} h(x) d x+\int_{a}^{b} h(x) d x+\int_{b}^{5} h(x) d x
$$

Notice that $\int_{-4}^{a} h(x) d x+\int_{a}^{b} h(x) d x=\int_{-4}^{b} h(x) d x$ and $\int_{a}^{b} h(x) d x+\int_{b}^{5} h(x) d x=\int_{a}^{5} h(x) d x$.

$$
\int_{-1}^{5} h(x) d x+\int_{a}^{b} h(x) d x=\int_{-4}^{b} h(x) d x+\int_{a}^{5} h(x) d x
$$

Substitute the known values of the definite integrals into the equation and solve for $\int_{a}^{b} h(x) d x$.

$$
\begin{aligned}
-10+\int_{a}^{b} h(x) d x & =-22+13 \\
-10+\int_{a}^{b} h(x) d x & =-9 \\
\int_{a}^{b} h(x) d x & =1
\end{aligned}
$$

This is the tricky port that you may not have thought of. Adding $\int_{a}^{b} h(x) d x$ creates two definite integrals with known values on the right side of the equation.

Now that you have determined the value of $\int_{a}^{b} h(x) d x$, calculate the average value of $h(x)$ on the interval $[a, b]$.

$$
\frac{1}{b-a} \int_{a}^{b} h(x) d x=\frac{1}{b-a}(1)=\frac{1}{b-a}
$$

Note: Problems 19.20-19.22 refer to the position equation $s(t)$, a sprinter's distance from the starting line during the first 4 seconds of a race (measured in meters after t seconds have elapsed), as defined below.

$$
s(t)=-\frac{8 t}{t-5}
$$

19.20 Use $s(t)$ to determine the average velocity of the runner during the first four seconds of the race.

The average velocity of the runner is the average rate of change of position on the interval, which equals the slope of the secant line connecting points $(0, s(0))$ and (4, $s(4)$).

$$
\begin{aligned}
v_{\mathrm{avg}} & =\frac{s(4)-s(0)}{4-0}< \\
& =\frac{-\frac{8(4)}{4-5}-\left(-\frac{8(0)}{0-5}\right)}{4} \\
& =\frac{-\frac{32}{-1}-0}{4} \\
& =8 \text { meters/second }
\end{aligned}
$$

Note: Problems 19.20-19.22 refer to the position equation $s(t)$, a sprinter's distance from the starting line during the first 4 seconds of a race (measured in meters after t seconds have elapsed), which is defined in Problem 19.20.
19.21 Identify the function $v(t)$ that models the velocity of the runner during the first four seconds of the race.

Given a position equation $s(t)$, the velocity equation is the derivative with respect to t. Apply the quotient rule to differentiate.

$$
\begin{aligned}
v(t) & =\frac{d}{d t}\left(-\frac{8 t}{t-5}\right) \\
& \left.=-\frac{(t-5)(8)-(8 t)(1)}{(t-5)^{2}}\right] \\
& =-\frac{8 t-40-8 t}{(t-5)^{2}} \\
& =\frac{40}{(t-5)^{2}}
\end{aligned}
$$

Note: Problems 19.20-19.22 refer to the position equation $s(t)$, a sprinter's distance from the starting line during the first 4 seconds of a race (measured in meters aftert seconds have elapsed), which is defined in Problem 19.20.
19.22 Calculate the average value of $v(t)$ from Problem 19.21 to demonstrate that the

According to Problem 19.20, the average rate of change of $s(t)$ on the t-interval $[0,4]$ is 8 meters/second, which is equal to the average vale of $v(t)$ on $[0,4]$.
19.23 Assume $f(x)$ is a continuous function and the chart below represents a selection of its function values. Estimate the average value of $f(x)$ on the interval [-3,7] using the trapezoidal rule.

-3	-1	1	3	5	7
6	8	9	4	-1	-5

Divide the interval $[-3,7]$ into five equal subintervals, each of width $\Delta x=2$: $[-3,-1],[-1,1],[1,3],[3,5]$, and $[5,7]$.

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \frac{b-a}{2 n}\left[f(a)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+f(b)\right] \\
& \int_{-3}^{7} f(x) d x \approx \frac{7-(-3)}{2(5)}[f(-3)+2 f(-1)+2 f(1)+2 f(3)+2 f(5)+f(7)] \\
& \int_{-3}^{7} f(x) d x \approx \frac{10}{10}[6+2(8)+2(9)+2(4)+2(-1)+(-5)] \\
& \int_{-3}^{7} f(x) d x \approx 41
\end{aligned}
$$

Substitute this approximation of $\int_{-3}^{7} f(x) d x$ into the average value formula.

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x & =\frac{1}{7-(-3)} \int_{-3}^{7} f(x) d x \\
& \approx \frac{41}{10}
\end{aligned}
$$

19.24 Approximate the average value of $g(x)$, as graphed in Figure 19-7, over the interval $[-2,3]$. Show the work that leads to your answer.

In order to approximate the average value of $g(x)$, you must first estimate $\int_{-2}^{3} g(x) d x$. Use the method of Problem 18.32, counting the number of squares
 (formed by grid lines) between $g(x)$ and the x-axis, as illustrated by Figure 19-8.

Figure 19-8 The number in each grid square represents the approximate percentage of the square that is occupied by the shaded region bounded by $f(x)$ and the x-axis (expressed as a decimal). Note that area below the x-axis is considered negative signed area.

$$
\begin{aligned}
\int_{-2}^{3} g(x) d x & \approx \frac{1}{4}(1.35+1.25+1.65+1.9+1.4+0.2-1.7-1.6-0.55+0.95) \\
& \approx 0.25(4.85) \\
& \approx 1.2125
\end{aligned}
$$

Apply the average value formula.

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} g(x) d x & =\frac{1}{3-(-2)} \int_{-2}^{3} g(x) d x \\
& \approx \frac{1}{5}(1.2125) \\
& \approx .2425
\end{aligned}
$$

Accumulation Functions and Accumulated Change Integrals with x limits and "real life" uses for integration

Note: Problems 19.25-19.30 refer to the function $f(x)=\int_{2}^{x} h(t) d t$, given the graph of $h(t)$ in Figure 19-9.
19.25 Evaluate $f(2)$.

Figure 19-9
The graph of $h(t)$ consists of a semicircle and four linear segments of differing slope.

Substitute $x=2$ into $f(x): f(2)=\int_{2}^{2} h(t) d t$. According to the property of definite integrals that states $\int_{a}^{a} f(x) d x=0, f(2)=0$.

Note: Problems 19.25-19.30 refer to the function $f(x)=\int_{2}^{x} h(t) d t$, given the graph of $h(t)$ in

19.26 Evaluate $f(8)$.

Substitute $x=8$ into $f(x): f(8)=\int_{2}^{8} h(t) d t$. The function value at $x=8$ is defined as the area of the region bounded by $h(t)$ and the x-axis between $x=2$ and $x=8$, as illustrated by Figure 19-10.

Figure 19-10 The area bounded by $h(t)$ and the x-axis consists of a right triangle with a positive signed area (dark shaded region) and a trapezoid with a negative signed area (light shaded region).

The line segment connecting (2,1) and (4,-2) has slope $\frac{-2-1}{4-2}=-\frac{3}{2}$. Use the $\quad\left\{\begin{array}{c}\text { Plug } \\ m=-3 / 2, x_{1}=2, \\ \text { and } y_{1}=1 \text { into } \\ y-y_{1}=m\left(x-x_{1}\right) \text { and }\end{array}\right.$ into the equation and solve for x to calculate the x-intercept.

$$
\begin{aligned}
0 & =-\frac{3}{2} x+4 \\
\left(\frac{2}{3}\right) \frac{3}{2} x & =4\left(\frac{2}{3}\right) \\
x & =\frac{8}{3}
\end{aligned}
$$

Calculate $\int_{2}^{8} h(t) d t$ by combining the areas of the shaded regions in Figure 19-10; subtract the area of the trapezoid from the area of the triangle to account for its position below the x-axis.

$$
\int_{2}^{8} h(t) d t=\text { area of right triangle }- \text { area of trapezoid }
$$

Note: Problems 19.25-19.30 refer to the function $f(x)=\int_{2}^{x} h(t) d t$, given the graph of $h(t)$ in Figure 19-9.

19.27 Evaluate $f(-8)$.

Substitute $x=-8$ into $f(x): f(-8)=\int_{2}^{-8} h(t) d t$. Reverse the limits of integration so that the lesser of the two is the lower limit; according to Problem 18.22, this requires you to multiply the integral by -1 .

$$
f(-8)=-\int_{-8}^{2} h(t) d t
$$

Note that $\int_{-8}^{2} h(t) d t$ is equivalent to the sum of two areas: a semicircle with radius 5 and a rectangle with length 10 and width 1, as illustrated by Figure 19-11. Add the areas of those regions to evaluate the definite integral.

Figure 19-11 The area bounded by $h(t)$ and the x-axis on the interval [-8,2] consists of a semicircle (dark shaded region) and a rectangle (light shaded region).

$$
\begin{aligned}
\int_{-8}^{2} h(t) d t & =\text { area of semicircle }+ \text { area of rectangle } \\
& =\left(\frac{1}{2} \pi r^{2}\right)+(l \cdot w) \\
& =\frac{1}{2} \pi(5)^{2}+(10 \cdot 1) \\
& =\frac{25 \pi}{2}+10 \\
& =\frac{25 \pi+20}{2}
\end{aligned}
$$

Be carefulthis is not the final answer. A few steps ago, you had to flip-flop the limits of integration, so you'll need to multiply by -1.

Recall that $f(-8)=-\int_{-8}^{2} h(t) d t$, so $f(-8)=-\frac{25 \pi+20}{2}$.

Note: Problems 19.25-19.30 refer to the function $f(x)=\int_{2}^{x} h(t) d t$, given the graph of $h(t)$ in Figure 19-9.
19.28 Evaluate $f(-10)$.

Substitute $x=-10$ into $f(x)$ and reverse the limits of integration.

$$
\begin{aligned}
& f(-10)=\int_{2}^{-10} h(t) d t \\
& f(-10)=-\int_{-10}^{2} h(t) d t
\end{aligned}
$$

Rewrite $\int_{-10}^{2} h(t) d t$ as a sum of two definite integrals.

$$
f(-10)=-\left[\int_{-10}^{-8} h(t) d t+\int_{-8}^{2} h(t) d t\right]
$$

This integral
is calculated in
Problem 19.27.

Note that $\int_{-10}^{-8} h(t) d t$ equals the area of a trapezoid with bases of length 1 and 3 and height 2.

$$
\int_{-10}^{-8} h(t) d t=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(2)(1+3)=4
$$

According to Problem 19.27, $\int_{-8}^{2} h(t) d t=-\frac{25 \pi+20}{2}$.

$$
\begin{aligned}
f(-10) & =-\left[\int_{-10}^{-8} h(t) d t+\int_{-8}^{2} h(t) d t\right] \\
& =-\left[4-\frac{25 \pi+20}{2}\right] \\
& =-\left[\frac{8}{2}+\frac{-25 \pi-20}{2}\right] \\
& =-\left[\frac{-25 \pi-12}{2}\right] \\
& =\frac{25 \pi+12}{2}
\end{aligned}
$$

Distribute
this - I through
the numerator,
then change this

- sign into
$a+$ sign.

Note: Problems 19.25-19.30 refer to the function $f(x)=\int_{2}^{x} h(t) d t$, given the graph of $h(t)$ in Figure 19-9.
19.29 Graph $f^{\prime}(x)$.

According to Problem 18.34, $\frac{d}{d x}\left(\int_{a}^{f(x)} g(t) d t\right)=g(f(x)) \cdot f^{\prime}(x)$.

$$
\begin{aligned}
\frac{d}{d x}\left(\int_{2}^{x} h(t) d t\right) & =h(x) \cdot \frac{d}{d x}(x) \\
& =h(x) \cdot 1 \\
& =h(x)
\end{aligned}
$$

Therefore, the graph of $f^{\prime}(x)$, pictured in Figure 19-12, is equivalent to the graph of $h(t)$.

Figure 19-12 The graph of $h(t)$ is also the graph of $f^{\prime}(x)$.

Note: Problems 19.25-19.30 refer to the function $f(x)=\int_{2}^{x} h(t) d t$, given the graph of $h(t)$ in Figure 19-9.

Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with velocity $v(t)=-t^{2}+9 t-20$ (measured in meters per second after t seconds have elapsed) and an initial position 3 feet left of the origin.

下
19.31 Identify the function $s(t)$ that models the position of the particle at time t with respect to the origin.

The derivative of a position function is its velocity function. Therefore, the antiderivative of the velocity function is the position function.

This means $s(0)=-3$. If the particle is left of the origin, its position is considered negative.

$$
\begin{aligned}
s(t) & =\int v(t) d t \\
& =\int\left(-t^{2}+9 t-20\right) d t \\
& =-\frac{t^{3}}{3}+\frac{9 t^{2}}{2}-20 t+C
\end{aligned}
$$

$$
\text { plug in } s(0)=-3
$$

Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with velocity $v(t)=-t^{2}+9 t-20$ (measured in meters per second after t seconds have elapsed) and an initial position 3 feet left of the origin.
19.32 Calculate the total displacement of the particle from $t=0$ to $t=4$.

Displacement of the particle on the time interval $[a, b]$ is defined as $s(b)-s(a)$; in this problem, $a=0$ and $b=4$.

$$
\begin{aligned}
s(b)-s(a) & =s(4)-s(0) \\
& =\left[-\frac{4^{3}}{3}+\frac{9(4)^{2}}{2}-20(4)-3\right]-(-3) \\
& =-\frac{64}{3}+\frac{144}{2}-80-3+3 \\
& =-\frac{64}{3}+72-80 \\
& =\frac{-64-24}{3} \\
& =-\frac{88}{3}
\end{aligned}
$$

The particle is $\frac{88}{3}$ meters left of where it began at $t=4$ seconds.

$$
\begin{aligned}
s(0) & =-\frac{(0)^{3}}{3}+\frac{9(0)^{2}}{2}-20(0)+C \\
-3 & =C
\end{aligned}
$$

Therefore, $s(t)=-\frac{t^{3}}{3}+\frac{9 t^{2}}{2}-20 t-3$.

DISPLACEMENT means "You're in DIS PLACE now, and you were in DAT PLACE before." It compares starting and ending positions of the object that's it.

That doesn't
necessarily mean it traveled a total of $88 / 3$ meters, though. If the particle changes direction at all, it'll travel farther than the displacement suggests.

Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with velocity $v(t)=-t^{2}+9 t-20$ (measured in meters per second after tseconds have elapsed) and an initial position 3 feet left of the origin.
19.33 Determine the total distance traveled by the particle on the time interval $[0,4]$.

You must first identify any t-values at which the particle changes direction, indicated by a sign change in the velocity function. Use the technique demonstrated in Problem 15.20, which begins by setting the velocity function equal to 0 and solving the equation to locate critical numbers.

$$
\begin{aligned}
-t^{2}+9 t-20 & =0 \\
-1\left(-t^{2}+9 t-20\right) & =-1(0) \\
t^{2}-9 t+20 & =0 \\
(t-4)(t-5) & =0 \\
t & =4,5
\end{aligned}
$$

The particle changes direction at $t=4$ seconds and again at $t=5$ seconds, because $v(t)$ changes sign at both of those critical numbers. Neither critical number affects the distance traveled by the particle from $t=0$ to $t=4$, because the particle travels in only one direction during that time. Therefore, its displacement and distance traveled are equivalent: $\frac{88}{3}$ meters (according to Problem 19.32).

Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with velocity $v(t)=-t^{2}+9 t-20$ (measured in meters per second after t seconds have elapsed) and an initial position 3 feet left of the origin.
19.34 Determine the displacement of the particle on the time interval [3,7].

As explained in Problem 19.32, the displacement of the particle is the difference of its positions at the endpoints of the specified t-interval: $s(7)-s(3)$.

$$
\begin{aligned}
s(7)-s(3) & =\left[-\frac{7^{3}}{3}+\frac{9(7)^{2}}{2}-20(7)-3\right]-\left[-\frac{3^{3}}{3}+\frac{9(3)^{2}}{2}-20(3)-3\right] \\
& =\left[-\frac{343}{3}+\frac{441}{2}-140-3\right]-\left[-9+\frac{81}{2}-60-3\right] \\
& =\left[\frac{-686+1,323-840-18}{6}\right]-[-18+81-120-6] \\
& =-\frac{221}{6}+\frac{63}{2} \\
& =-\frac{32}{6} \\
& =-\frac{16}{3}
\end{aligned}
$$

At $t=7$ seconds, the particle is $\frac{16}{3}$ meters left of its position when $t=3$.

Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with velocity $v(t)=-t^{2}+9 t-20$ (measured in meters per second after t seconds have elapsed) and an initial position 3 feet left of the origin.
19.35 What is the total distance traveled by the particle on the time interval [3,7]?

According to Problem 19.33, the particle changes direction at $t=4$ and $t=5$. Definite integrals of the velocity function calculate the total distance traveled, as long as the particle travels only one direction between the limits of integration. However, if the particle is moving left, the definite integral will be negative. Therefore, to calculate the total distance traveled by the particle, take the absolute value of each integral and add the results.

$$
\begin{aligned}
\text { distance traveled } & =\left|\int_{3}^{4} v(t) d t\right|+\left|\int_{4}^{5} v(t) d t\right|+\left|\int_{5}^{7} v(t) d t\right| \\
& =\left|\left(-\frac{t^{3}}{3}+\frac{9 t^{2}}{2}-20 t\right)\right|_{3}^{4}\left|+\left|\left(-\frac{t^{3}}{3}+\frac{9 t^{2}}{2}-20 t\right)\right|_{4}\right|^{5}\left|+\left|\left(-\frac{t^{3}}{3}+\frac{9 t^{2}}{2}-20 t\right)\right|_{5}\right| \\
& =|s(4)-s(3)|+|s(5)-s(4)|+|s(7)-s(5)| \\
& =\left|-\frac{5}{6}\right|+\left|\frac{1}{6}\right|+\left|-\frac{14}{3}\right| \\
& =\frac{17}{3}
\end{aligned}
$$

The particle travels a total distance of $\frac{17}{3}$ meters between $t=3$ and $t=7$. The particle travels left for most of that distance $\left(\frac{5}{6}+\frac{14}{3}=\frac{11}{2}\right.$ meters $)$, traveling right only $\frac{1}{6}$ of a meter, between $t=4$ and $t=5$ seconds.
19.36 Seven hours after a community water tank is filled, monitoring equipment reports that water is leaking from the tank at a rate of $l(t)=\sqrt{\frac{t+4}{3}}-\frac{1}{t+1}$ gallons per hour (where t is the number of hours elapsed since the tank was last filled). Calculate the total amount of water that leaked out of the tank during those seven hours.

The definite integral $\int_{a}^{b} l(t) d t$ calculates the total volume of water that leaked out of the tank between $t=a$ and $t=b$. Unlike Problems 19.33 and 19.35, there is no need to identify critical points or split the definite integral because $l(t)>0$ for all t. Evaluate $\int_{0}^{7} l(t) d t$.

$$
\begin{aligned}
\int_{0}^{7}\left(\sqrt{\frac{t+4}{3}}-\frac{1}{t+1}\right) d t & =\int_{0}^{7} \sqrt{t+4} \sqrt{3} \\
t & -\int_{0}^{7} \frac{d t}{t+1} \\
& =\frac{1}{\sqrt{3}} \int_{0}^{7}(t+4)^{1 / 2} d t-\int_{0}^{7} \frac{d t}{t+1}
\end{aligned}
$$

If $I(t)$ is the rate that the water's leaking out, a negative $l(t)$ means water is leaking back in, and that doesn't make any sense.

Apply variable substitution. In the first integral, $u=t+4$ and $d u=d t$. In the second integral, $v=t+1$ and $d v=d t$. As you write the integrands in terms of u and v, remember to write the limits of integration in terms of u and v as well.

$$
\begin{aligned}
& =\frac{1}{\sqrt{3}} \int_{4}^{11} u^{1 / 2} d u-\int_{1}^{8} \frac{d v}{v} \\
& \left.=\left.\frac{1}{\sqrt{3}} \cdot \frac{2}{3}\left(u^{3 / 2}\right)\right|_{4} ^{11}-\ln \right\rvert\, v \|_{1}^{8} \\
& =\frac{2}{3 \sqrt{3}}\left(11^{3 / 2}-4^{3 / 2}\right)-(\ln 8-\ln 1)
\end{aligned}
$$

Note that $4^{3 / 2}=(\sqrt{4})^{3}=8$ and $\ln 1=0$.

$$
\begin{aligned}
& =\frac{2}{3 \sqrt{3}}\left(11^{3 / 2}-8\right)-\ln 8 \\
& =\frac{2 \sqrt{3}}{9}\left(11^{3 / 2}-8\right)-\ln 8 \\
& \approx 8.884 \text { gallons }
\end{aligned}
$$

Chapter 20
 INTEGRATING RATIONAL EXPRESSIONS

What to do when there's a fraction inside the integral

Minor differences in a rational integrand require vastly different solution methods. For instance, integrating a prime quadratic denominator paired with a constant numerator typically requires you to complete the square. However, if the same denominator is paired with a linear numerator, variable substitution may be required. Furthermore, a numerator with degree two or higher will likely involve long division before you are able to integrate the expression. All of these methods are explored in detail. The chapter culminates with the integration by partial fraction decomposition technique, a powerful and rigorous tool used to express an integrand as the sum of fractions whose denominators are factors of the original rational expression.

Derivatives are much easier than integrals. Want to differentiate a product? Use the product rule. Need the derivative of a fraction? The quotient rule always works. Not so with integrals, though. Different fractions, even if they're only very slightly different, will have completely different looking solutions that require you to use completely different techniques. That's why this entire chapter is spent on the quagmire that is integrating fractions. Watch out for little tricks along the way such as adding and subtracting the same thing inside an integral (like $-x+x$), which is really the same thing as adding 0. Two of the methods you'll learn (separation and partial fractions) work by converting one big fraction into a bunch of small fractions added together, but using partial fractions is much more complicated than separation. It's not all THAT hard, but there are a lot of steps, which means there are a lot of places to make mistakes.

Separation

Make one big ugly fraction into smaller, less ugly ones
20.1 Demonstrate that $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$ but $\frac{a}{b+c} \neq \frac{a}{b}+\frac{a}{c}$.

Notice that $\frac{a}{c}+\frac{b}{c}$ have common denominator c. You may combine the numerators of such fractions: $\frac{a}{c}+\frac{a}{b}=\frac{a+b}{c}$. However, in order to combine the fractions in the expression $\frac{a}{b}+\frac{a}{c}$, you must first rewrite the sum using the common denominator $b c$.

$$
\frac{a}{b}\left(\frac{c}{c}\right)+\frac{a}{c}\left(\frac{b}{b}\right)=\frac{a c+a b}{b c}
$$

Therefore, $\frac{a}{b+c} \neq \frac{a}{b}+\frac{a}{c}$; instead, $\frac{a}{b}+\frac{a}{c}=\frac{a c+a b}{b c}$.
20.2 Integrate the expression: $\int \frac{x^{9}-3 x^{4}}{x^{6}} d x$.

Separate the rational expression into two rational expressions with a common denominator.

$$
\begin{aligned}
\int \frac{x^{9}-3 x^{4}}{x^{6}} d x & =\int\left(\frac{x^{9}}{x^{6}}-\frac{3 x^{4}}{x^{6}} d x\right) \\
& =\int \frac{x^{9}}{x^{6}} d x-3 \int \frac{x^{4}}{x^{6}} d x \\
& =\int x^{3} d x-3 \int x^{-2} d x
\end{aligned}
$$

Apply the power rule for integration.

$$
\begin{aligned}
& =\frac{x^{4}}{4}-3 \cdot \frac{x^{-1}}{-1}+C \\
& =\frac{x^{4}}{4}+\frac{3}{x}+C
\end{aligned}
$$

20.3 Integrate the expression: $\int \frac{\sqrt{x}+1}{x} d x$.

Separate the expression into two indefinite integrals containing integrands with common denominators.

$$
\begin{aligned}
\int \frac{\sqrt{x}+1}{x} d x & =\int \frac{\sqrt{x}}{x} d x+\int \frac{1}{x} d x \\
& =\int \frac{x^{1 / 2}}{x} d x+\int \frac{d x}{x} \\
& =\int x^{-1 / 2} d x+\int \frac{d x}{x} \\
& =\frac{x^{1 / 2}}{1 / 2}+\ln |x|+C \\
& =x^{2 x^{1 / 2}}+\ln |x|+C
\end{aligned}
$$

20.4 Integrate the expression: $\int \frac{\cos 2 x}{\cos ^{2} x} d x$.

Recall that $\cos 2 x=2 \cos ^{2} x-1$. Use this identity to rewrite the numerator and
 separate the integrand into the difference of two fractions.

$$
\begin{aligned}
\int \frac{\cos 2 x}{\cos ^{2} x} d x & =\int \frac{2 \cos ^{2} x-1}{\cos ^{2} x} d x \\
& =\int \frac{2 \cos ^{2} x}{\cos ^{2} x} d x-\int \frac{1}{\cos ^{2} x} d x \\
& =\int 2 d x-\int \sec ^{2} x d x \\
& =2 x-\tan x+C
\end{aligned}
$$

20.5 Integrate the expression: $\int \frac{e^{4 x}-2}{e^{4 x}} d x$.

Rewrite the integrand as the difference of two rational expressions.

$$
\begin{aligned}
\int \frac{e^{4 x}-2}{e^{4 x}} d x & =\int \frac{e^{4 x}}{e^{4 x}} d x-\int \frac{2}{e^{4 x} d x} \\
& =\int 1 \cdot d x-2 \int e^{-4 x} d x
\end{aligned}
$$

Integrate $\int e^{-4 x} d x$ using variable substitution: $u=e^{-4 x}$ and $d u=-4 e^{-4 x} d x$, so

$$
\begin{aligned}
-\frac{d u}{4}=e^{-4 x} d x . & =\int 1 \cdot d x-2 \int-\frac{d u}{4} \\
& =\int d x+\frac{1}{2} \int d u \\
& =x+\frac{1}{2} u+C \\
& =x+\frac{1}{2 e^{4 x}}+C
\end{aligned}
$$

20.6 Integrate the expression: $\int \frac{-2 d x}{e^{x}-2}$.

Add and subtract e^{x} in the numerator.

Separate the first two terms of the numerator from the third term, creating two indefinite integrals.

$$
\begin{aligned}
& =\int \frac{-2+e^{x}}{e^{x}-2} d x+\int \frac{-e^{x} d x}{e^{x}-2} \\
& =\int \frac{e^{x}-2}{e^{x}-2} d x-\int \frac{e^{x} d x}{e^{x}-2} \\
& =\int d x-\int \frac{e^{x} d x}{e^{x}-2}
\end{aligned}
$$

Apply variable substitution to the remaining rational integrand: $u=e^{x}-2$ and $d u=e^{x} d x$.

$$
\begin{aligned}
& =\int d x-\int \frac{d u}{u} \\
& =x-\ln |u|+C \\
& =x-\ln \left|e^{x}-2\right|+C
\end{aligned}
$$

20.7 Integrate the expression: $\int \frac{\sqrt{x-4}+x}{x-4} d x$.

Rewrite the integrand as the sum of two rational expressions.

$$
\begin{aligned}
\int \frac{\sqrt{x-4}+x}{x-4} d x & =\int \frac{\sqrt{x-4}}{x-4} d x+\int \frac{x}{x-4} d x \\
& =\int \frac{(x-4)^{1 / 2}}{(x-4)^{1}} d x+\int \frac{x}{x-4} d x \\
& =\int(x-4)^{-1 / 2} d x+\int \frac{x}{x-4} d x
\end{aligned}
$$

Apply the same variable substitution to both integrals: $u=x-4$ and $d u=d x$.

$$
\begin{array}{ll}
\text { If } u=x-4, \\
\text { you can add } 4 \text { to } \\
\text { both sides to get } \\
u+4=x .
\end{array} \quad=\int u^{-1 / 2} d u+\int \frac{u}{u}+4 d u
$$

Note that $C-4$ is another arbitrary constant. To indicate that the new arbitrary constant is different than C as it appeared in the preceding steps, you can use a new constant, such as K, but it is common to continue to refer to the arbitrary constant as C, even if the value of C may change throughout the problem. Also note that, according to the logarithmic property that states $a \log b=\log b^{*}$, $4 \ln |x-4|=\ln (x-4)^{4}$.

$$
=2 \sqrt{x-4}+x+\ln (x-4)^{4}+C
$$

Long Division

Divide before you integrate

20.8 Under what circumstances is it beneficial to perform long division on a rational integrand?

If the numerator and denominator of the rational expression are polynomials such that the degree of the numerator is greater than or equal to the degree of the denominator, it is often beneficial to perform long (or synthetic) division before integrating.
20.9 According to Problem 20.2, $\int \frac{x^{9}-3 x^{4}}{x^{6}} d x=\frac{x^{4}}{4}+\frac{3}{x}+C$. Verify the antiderivative by performing long division on the integrand before integrating.

As the degree of the numerator is greater than or equal to the degree of the denominator $(9 \geq 6)$, you can apply long division.

$$
\begin{aligned}
& -3 x^{4}+0 x^{3}+0 x^{2} \\
& +3 x^{4} \\
& \hline 0
\end{aligned}
$$

Rewrite the rational integrand as the quotient that results from long division.

$$
\begin{aligned}
\int \frac{x^{9}-3 x^{4}}{x^{6}} d x & =\int\left(x^{3}-3 x^{-2}\right) d x \\
& =\int x^{3} d x-3 \int x^{-2} d x \\
& =\frac{x^{4}}{4}-3 \cdot \frac{x^{-1}}{-1}+C \\
& =\frac{x^{4}}{4}+\frac{3}{x}+C
\end{aligned}
$$

20.10 Integrate the expression: $\int \frac{2 x^{3}-13 x^{2}-57 x+108}{2 x-3} d x$.

Rewrite the rational integrand as the quotient that results from long division.

$$
\begin{aligned}
\int \frac{2 x^{3}-13 x^{2}-57 x+108}{2 x-3} d x & =\int\left(x^{2}-5 x-36\right) d x \\
& =\frac{x^{3}}{3}-\frac{5 x^{2}}{2}-36 x+C
\end{aligned}
$$

20.11 Integrate the expression: $\int \frac{x^{3}-8 x^{2}+3 x+16}{x^{2}-2} d x$.
The
polynomials in
front and inside of
the division symbols
need to have all their
x's. Because $x^{2}-2$ is
missing an x term, fill
in the space with
Ox.

$$
\begin{aligned}
\int \frac{x^{3}-8 x^{2}+3 x-4}{x^{2}-2} d x & =\int\left(x-8+\frac{5 x}{x^{2}-2}\right) d x \\
& =\int x d x-\int 8 d x+\int \frac{5 x}{x^{2}-2} d x \\
& =\int x d x-8 \int d x+5 \int \frac{x}{x^{2}-2} d x
\end{aligned}
$$

The rightmost integral requires variable substitution: $u=x^{2}-2$ and $d u=2 x d x$, so $\frac{d u}{2}=x d x$.

$$
\begin{aligned}
& =\int x d x-8 \int d x+5 \cdot \frac{1}{2} \int \frac{d u}{u} \\
& =\frac{x^{2}}{2}-8 x+\frac{5}{2} \ln |u|+C \\
& =\frac{x^{2}}{2}-8 x+\frac{5}{2} \ln \left|x^{2}-2\right|+C
\end{aligned}
$$

20.12 Integrate the expression: $\int \frac{4 x+7}{3 x-1} d x$.

Perform long division.

Therefore, $\frac{4 x+7}{3 x-1}=\frac{4}{3}+\frac{25 / 3}{3 x-1}=\frac{4}{3}+\frac{25}{3(3 x-1)}$.

$$
\begin{aligned}
\int \frac{4 x+7}{3 x-1} d x & =\int\left[\frac{4}{3}+\frac{25}{3(3 x-1)}\right] d x \\
& =\int \frac{4}{3} d x+\frac{25}{3} \int \frac{d x}{3 x-1}
\end{aligned}
$$

Variable substitution is required to antidifferentiate $\int \frac{d x}{3 x-1}: u=3 x-1$ and $d u=3 d x$, so $\frac{d u}{3}=d x$.

$$
\begin{aligned}
& =\int \frac{4}{3} d x+\frac{25}{3} \cdot \frac{1}{3} \int \frac{d u}{u} \\
& =\frac{4}{3} x+\frac{25}{9} \ln |u|+C \\
& =\frac{4}{3} x+\frac{25}{9} \ln |3 x-1|+C
\end{aligned}
$$

20.13 Integrate the expression: $\int \frac{x^{5}-6 x^{4}+3 x^{3}-x-1}{x+2} d x$.

If you can't remember how syuthetic division works, look at Problems 2.18 and 2.19.

Because the denominator is a linear binomial with leading coefficient 1 , synthetic division is preferable to long division.

$$
\begin{array}{rrrrrrr}
-2 & 1 & -6 & 3 & 0 & -1 & -1 \\
& & -2 & 16 & -38 & 76 & -150 \\
\hline & 1 & -8 & 19 & -38 & 75 & -151
\end{array}
$$

Rewrite the integrand using the quotient resulting from synthetic division.

$$
\begin{aligned}
\int \frac{x^{5}-6 x^{4}+3 x^{3}-x-1}{x+2} d x & =\int\left(x^{4}-8 x^{3}+19 x^{2}-38 x+75-\frac{151}{x+2}\right) d x \\
& =\int x^{4} d x-8 \int x^{3} d x+19 \int x^{2} d x-38 \int x d x+75 \int d x-151 \int \frac{d x}{x+2} \\
& =\frac{x^{5}}{5}-\frac{8 x^{4}}{4}+\frac{19 x^{3}}{3}-\frac{38 x^{2}}{2}+75 x-151 \cdot \ln |x+2|+C \\
& \frac{x^{5}}{5}-2 x^{4}+\frac{19 x^{3}}{3}-19 x^{2}+75 x-151 \cdot \ln |x+2|+C
\end{aligned}
$$

Applying Inverse Trigonometric Functions

very useful, but only in certain circumstances

20.14 Explain why $\int \frac{x d x}{1+x^{2}}$ can be integrated using variable substitution but $\int \frac{d x}{1+x^{2}}$ cannot.

More generally, any integral of the form $\int \frac{d u}{a^{2}+u^{2}}$, where u is a function of x and a is a real number, has an antiderivative of $\frac{1}{a} \arctan \left(\frac{u}{a}\right)+C$.
20.16 Integrate the expression: $\int \frac{6 x d x}{x^{4}+16}$.

The u's inside the inverse trig integrals should remind you to use
This integral has form $\int \frac{d u}{a^{2}+u^{2}}$, if $a=4$ (because $4^{2}=16$) and $u=x^{2}$ (because $\left.\left(x^{2}\right)^{2}=x^{4}\right)$. To integrate, apply variable substitution: $u=x^{2}$ and $d u=2 x d x$, so u-substitution if u equals something other than just x. $\frac{d u}{2}=x d x$.

$$
\begin{aligned}
\int \frac{6 x d x}{x^{4}+16} & =6 \int \frac{x d x}{x^{4}+16} \\
& =6 \int \frac{d u / 2}{u^{2}+a^{2}} \\
& =6 \cdot \frac{1}{2} \int \frac{d u}{u^{2}+a^{2}}
\end{aligned}
$$

According to Problem 20.15, $\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \left(\frac{u}{a}\right)+C$.

$$
\begin{aligned}
& =3 \cdot \frac{1}{a} \arctan \left(\frac{u}{a}\right)+C \\
& =\frac{3}{4} \arctan \left(\frac{x^{2}}{4}\right)+C
\end{aligned}
$$

The
order in the denominator doesn't matter- $u^{2}+a^{2}$ and $a^{2}+u^{2}$ are equivalent, just like $5+3$ and $3+5$.
20.17 Integrate the expression: $\int \frac{e^{x} d x}{\sqrt{5-e^{2 x}}}$.

Note that $\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \left(\frac{u}{a}\right)+C$.
Let $a=\sqrt{5}$ (because $a^{2}=(\sqrt{5})^{2}=5$) and $u=e^{x}$ (because $u^{2}=\left(e^{x}\right)^{2}=e^{2 x}$). Perform variable substitution: if $u=e^{x}$, then $d u=e^{x} d x$.

$$
\begin{aligned}
\int \frac{e^{x} d x}{\sqrt{5-e^{2 x}}} & =\int \frac{d u}{\sqrt{a^{2}-u^{2}}} \\
& =\arcsin \left(\frac{u}{a}\right)+C \\
& =\arcsin \left(\frac{e^{x}}{\sqrt{5}}\right)+C
\end{aligned}
$$

Rationalize the denominator to get the equivalent solution $\arcsin \left(\frac{e^{x} \sqrt{5}}{5}\right)+C$.

20.18 Integrate the expression: $\int \frac{d x}{x \sqrt{1-(\ln x)^{2}}}$. Apply the inverse trigonometric antiderivative $\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \left(\frac{u}{a}\right)+C$ with $a=1, u=\ln x$, and $d u=\frac{d x}{x}$.

$$
\int \begin{aligned}
\int \frac{d x}{x \sqrt{1-(\ln x)^{2}}} & =\int \frac{1}{\sqrt{1-(\ln x)^{2}} \cdot d x} \\
& =\int \frac{1}{\sqrt{a^{2}-u^{2}}} \cdot d u \\
& =\arcsin \left(\frac{u}{a}\right)+C \\
& =\arcsin (\ln x)+C
\end{aligned}
$$

20.19 Integrate the expression: $\int \frac{\cos 3 x d x}{\sin 3 x \sqrt{\sin ^{2}(3 x)-2}}$.

Apply the arcsecant antiderivative formula: $\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec}\left(\frac{|u|}{a}\right)+C$. Let $a=\sqrt{2}$ and $u=\sin 3 x$. Therefore, $d u=3 \cos 3 x d x$ and $\frac{d u}{3}=\cos 3 x d x$.

$$
\begin{aligned}
\int \frac{\cos 3 x d x}{\sin 3 x \sqrt{\sin ^{2}(3 x)-2}} & =\int \frac{d u / 3}{u \sqrt{u^{2}-a^{2}}} \\
& =\frac{1}{3} \int \frac{d u}{u \sqrt{u^{2}-a^{2}}} \\
& =\frac{1}{3} \cdot \frac{1}{a} \operatorname{arcsec}\left(\frac{|u|}{a}\right)+C \\
& =\frac{1}{3 \sqrt{2}} \operatorname{arcsec}\left(\frac{|\sin (3 x)|}{\sqrt{2}}\right)+C
\end{aligned}
$$

Rationalize the expressions to get the equivalent solution
$\frac{\sqrt{2}}{6} \operatorname{arcsec}\left(\frac{\sqrt{2}|\sin (3 x)|}{2}\right)+C$.
20.20 Integrate the expression: $\int \frac{x d x}{\left(\arctan x^{2}+x^{4} \arctan x^{2}\right) \sqrt{\arctan ^{2}\left(x^{2}\right)-25}}$.

The word "parenthetical" just means "the stuff inside the parentheses."

Apply the arcsecant trigonometric antiderivative such that $a=5$, because $a^{2}=5^{2}=25$, and $u=\arctan x^{2}$, because $u^{2}=\left(\arctan x^{2}\right)^{2}=\arctan ^{2}\left(x^{2}\right)$. Differentiate $u=\arctan x^{2}$ to determine $d u$.

$$
\begin{aligned}
& u=\arctan x^{2} \\
& d u=\frac{1}{1+\left(x^{2}\right)^{2}} \cdot \frac{d}{d x}\left(x^{2}\right) \\
& d u=\frac{1}{1+x^{4}} \cdot 2 x d x \\
& \frac{d u}{2}=\frac{x d x}{1+x^{4}} \longleftarrow \\
& \int \frac{x d x}{\arctan x^{2}\left(1+x^{4}\right) \sqrt{\arctan ^{2}\left(x^{2}\right)-25}}=\int \frac{d u / 2}{u \sqrt{u^{2}-a^{2}}} \\
&=\frac{1}{2} \cdot \frac{1}{a} \operatorname{arcsec}\left(\frac{|u|}{a}\right)+C \\
&=\frac{1}{2} \cdot \frac{1}{5} \operatorname{arcsec}\left(\frac{\left|\arctan x^{2}\right|}{5}\right)+C
\end{aligned}
$$

Note that $\arctan x^{2}>0$ for all x, so the absolute values are unnecessary.

$$
=\frac{1}{10} \operatorname{arcsec}\left(\frac{\arctan x^{2}}{5}\right)+C
$$

The $x d x$ in the numerator and the $1+x^{4}$ in the denominator are replaced by $d u / 2$.

Check out the graph of $y=\tan ^{-1} x$ on your calculatorit's above the x-axis when $x>0$.

Completing the Square

For quadratics down below and no variables up top

20.21 Integrate the expression: $\int \frac{d x}{(4 x-1)^{2}+9}$.

Apply the inverse tangent antiderivative from Problem 20.15, such that $a=3$ and $u=4 x-1$. Therefore, $d u=4 d x$ and $\frac{d u}{4}=d x$.

$$
\begin{aligned}
\int \frac{d x}{(4 x-1)^{2}+9} & =\int \frac{d u / 4}{u^{2}+a^{2}} \\
& =\frac{1}{4} \cdot \frac{1}{a} \cdot \arctan \left(\frac{u}{a}\right)+C \\
& =\frac{1}{4}\left(\frac{1}{3}\right) \arctan \left(\frac{4 x-1}{3}\right)+C \\
& =\frac{1}{12} \arctan \left(\frac{4 x-1}{3}\right)+C
\end{aligned}
$$

Factor the trinomial, which (as a result of the above arithmetic manipulation) will be a perfect square. Combine the constants as well.

$$
=\int \frac{d x}{(x-4)^{2}+4}
$$

20.23 Integrate the expression $\int \frac{d x}{(x-4)^{2}+4}$, generated by Problem 20.22.

Integrate using the method described by Problem 20.21, setting $a=2, u=x-4$, and $d u=d x$.

$$
\begin{aligned}
\int \frac{d x}{(x-4)^{2}+4} & =\int \frac{d u}{u^{2}+a^{2}} \\
& =\frac{1}{a} \arctan \left(\frac{u}{a}\right)+C \\
& =\frac{1}{2} \arctan \left(\frac{x-4}{2}\right)+C
\end{aligned}
$$

20.24 Integrate $\int \frac{x d x}{x^{2}-8 x+20}$

Attempt to integrate using variable substitution: set $u=x^{2}-8 x+20$ and differentiate.

$$
\begin{aligned}
d u & =(2 x-8) d x \\
d u & =2(x-4) d x \\
\frac{d u}{2} & =(x-4) d x
\end{aligned}
$$

In order to apply the variable substitution technique, the numerator must be $(x-4) d x$ instead of $x d x$. Add and subtract 4 in the numerator. $-4+4=0$, and adding o won't change
anything.)

Split the expression into the sum of two integrals, such that $x-4$ (the expression required for variable substitution) is one of the numerators.

$$
\begin{aligned}
& =\int \frac{x-4}{x^{2}-8 x+20} d x+\int \frac{4 d x}{x^{2}-8 x+20} \\
& =\int \frac{x-4}{x^{2}-8 x+20} d x+4 \int \frac{d x}{x^{2}-8 x+20}
\end{aligned}
$$

Apply variable substitution to the first integral: $u=x^{2}-8 x+20$ and $\frac{d u}{2}=(x-4) d x$, as calculated above. The second integral is calculated in Problem 20.23.

$$
\begin{aligned}
& =\left[\int \frac{d u / 2}{u}\right]+\left[4 \int \frac{d x}{x^{2}-8 x+20}\right] \\
& =\left[\frac{1}{2} \ln |u|\right]+\left[4 \cdot \frac{1}{2} \arctan \left(\frac{x-4}{2}\right)\right]+C \\
& =\frac{1}{2} \ln \left(x^{2}-8 x+20\right)+2 \arctan \left(\frac{x-4}{2}\right)+C
\end{aligned}
$$

20.25 Integrate the expression: $\int \frac{d x}{2 x^{2}-4 x+14}$.

In order to complete the square, the x^{2}-term must have a coefficient of 1 .

$$
\begin{aligned}
\int \frac{d x}{2 x^{2}-4 x+14} & =\int \frac{d x}{2\left(x^{2}-2 x+7\right)} \\
& =\frac{1}{2} \int \frac{d x}{x^{2}-2 x+7}
\end{aligned}
$$

Complete the square in the denominator and apply the inverse tangent antiderivative.

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{d x}{x^{2}-2 x+1+7-1} \\
& =\frac{1}{2} \int \frac{d x}{\left(x^{2}-2 x+1\right)+(7-1)} \\
& =\frac{1}{2} \int \frac{d x}{(x-1)^{2}+6}
\end{aligned}
$$

Let $a=\sqrt{6}, u=x-1$, and $d u=d x$.

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{d u}{u^{2}+a^{2}} \\
& =\frac{1}{2} \cdot \frac{1}{\sqrt{6}} \arctan \left(\frac{x-1}{\sqrt{6}}\right)+C
\end{aligned}
$$

Rationalize the expression.

$$
\frac{\sqrt{6}}{12} \arctan \left(\frac{\sqrt{6}(x-1)}{6}\right)+C
$$

Eliminate the complex fractions by multiplying their numerators and denominators by $\frac{3}{\sqrt{38}}$.

$$
\begin{aligned}
& =\frac{5}{3} \cdot \frac{3}{\sqrt{38}} \arctan \left[\frac{3}{\sqrt{38}}\left(x-\frac{1}{3}\right)\right]+C \\
& =\frac{5}{\sqrt{38}} \arctan \left(\frac{3 x-1}{\sqrt{38}}\right)+C
\end{aligned}
$$

Rationalize the expression to get the equivalent solution

$$
\frac{5 \sqrt{38}}{38} \arctan \left[\frac{\sqrt{38}(3 x-1)}{38}\right]+C
$$

Partial Fractions

A fancy way to break down big fractions

20.27 What is the final goal of partial fraction decomposition?

The ultimate goal of partial fraction decomposition is to rewrite a single fraction as a sum of fractions whose denominators are factors (or powers of factors) of the original fraction.

Problem
20.32 explains what this weird little qualifying statement means. until then, don't worry about it.
20.28 Perform partial fraction decomposition on the rational expression: $\frac{2 x-3}{x^{2}-25}$.

Factor the denominator.

$$
\frac{2 x-3}{x^{2}-25}=\frac{2 x-3}{(x+5)(x-5)}
$$

The goal of partial fraction decomposition is to rewrite the expression as a sum of fractions whose denominators are the factors of $x^{2}-25$.

$$
\frac{2 x-3}{(x+5)(x-5)}=\frac{A}{x+5}+\frac{B}{x-5} \leftarrow
$$

Eliminate all of the fractions in the equation by multiplying every term by the least common denominator $(x+5)(x-5)$.

$$
\begin{aligned}
{\left[\begin{array}{c}
(x+5)(x-5)]\left[\frac{2 x-3}{1}\right][(x+5)(x-5)
\end{array}\right] } & =\left[\frac{(x+5)(x-5)]\left[\frac{A}{1}+\frac{B}{x+5}\right]}{\frac{(x+5)(x-5)(2 x-3)}{(x+5)(x-5)}}=\frac{(x+5)(x-5) A}{x+5}+\frac{(x+5)(x-5) B}{x-5}\right. \\
2 x-3 & =(x-5) A+(x+5) B
\end{aligned}
$$

Distribute A and B.

$$
2 x-3=A x-5 A+B x+5 B
$$

Group like terms and factor x out of the variable terms.

$$
\begin{aligned}
& 2 x-3=A x+B x-5 A+5 B \\
& 2 x-3=x(A+B)+(-5 A+5 B)
\end{aligned}
$$

If the expressions on the right and left sides of the equation are equal, their coefficients must be equal. The x-coefficient on the left side of the equation is 2 , so the x-coefficient on the right side $(A+B)$ must equal 2 as well: $A+B=2$. Similarly, the constant on the left (-3) must equal the constant on the right $(-5 A+5 B):-5 A+5 B=-3$. In order to identify A and B, you must solve the system of equations.

$$
\left\{\begin{aligned}
A+B & =2 \\
-5 A+5 B & =-3
\end{aligned}\right.
$$

The
denominators $x+5$ and $x-5$ have degree 1 . The numerators have a degree that's exactly one smaller (O). In other words, the A and B values are real numbers.

Substitute B into either equation of the system to calculate A.

$$
\begin{aligned}
A+B & =2 \\
A+\frac{7}{10} & =2 \\
A & =\frac{20}{10}-\frac{7}{10} \\
A & =\frac{13}{10}
\end{aligned}
$$

Substitute the values of A and B into the original decomposition equation.

$$
\frac{2 x-3}{(x+5)(x-5)}=\frac{A}{x+5}+\frac{B}{x-5}=\frac{13 / 10}{x+5}+\frac{7 / 10}{x-5}=\frac{13}{10(x+5)}+\frac{7}{10(x-5)}
$$

This is a true statement, so the original statement-equating the fraction to its partial fraction decomposition-is true as well.
20.30 Integrate the expression: $\int \frac{2 x-3}{x^{2}-25} d x$, from Problem 20.28.

According to Problem 20.28, $\frac{2 x-3}{x^{2}-25}=\frac{13}{10(x+5)}+\frac{7}{10(x-5)}$.

$$
\begin{aligned}
\int \frac{2 x-3}{x^{2}-25} d x & =\int \frac{13 d x}{10(x+4)}+\int \frac{7 d x}{10(x-5)} \\
& =\frac{13}{10} \int \frac{d x}{x+4}+\frac{7}{10} \int \frac{d x}{x-5}
\end{aligned}
$$

Integrate each expression using variable substitution: $u=x+4, v=x-5, d u=d x$, and $d v=d x$.

$$
\begin{aligned}
& =\frac{13}{10} \int \frac{d u}{u}+\frac{7}{10} \int \frac{d v}{v} \\
& =\frac{13}{10} \ln |u|+\frac{7}{10} \ln |v|+C \\
& =\frac{13}{10} \ln |x+4|+\frac{7}{10} \ln |x-5|+C
\end{aligned}
$$

Even though it's not a huge deal, don't use u for two different denominators in the same problem. Use v for the second one to avoid confusion.

There are alternate ways to write the solution if logarithmic properties are applied, but the above solution is preferable, as it clearly identifies the partial fractions from which it is derived and is unencumbered by unwieldy rational exponents.
20.31 Integrate the expression: $\int \frac{11 x-15}{4 x^{2}-3 x} d x$.

Factor the denominator to get $\int \frac{11 x-15}{x(4 x-3)} d x$. Perform partial fraction decomposition on the integrand, as described by Problem 20.28.

$$
\begin{aligned}
\frac{11 x-15}{x(4 x-3)} & =\frac{A}{x}+\frac{B}{4 x-3} \\
\frac{x(4 x-3)[11 x-15}{1}[x(4 x-3)] & \left.=\frac{x(4 x-3)[A}{1}+\frac{B}{4 x-3}\right] \\
11 x-15 & =A(4 x-3)+B x \\
11 x-15 & =4 A x-3 A+B x \\
11 x-15 & =x(4 A+B)-3 A
\end{aligned}
$$

Set the x-coefficients on both sides of the equation equal, and do the same for the constants on both sides of the equation. This generates a system of equations.

$$
\left\{\begin{aligned}
4 A+B & =11 \\
-3 A & =-15
\end{aligned}\right.
$$

Solve the second equation to get $A=5$. Substitute $A=5$ into the first equation to calculate B.

$$
\begin{aligned}
4 A+B & =11 \\
4(5)+B & =11 \\
B & =-9
\end{aligned}
$$

Factor the denominator to get $(2 x+1)(2 x+1)=(2 x+1)^{2} ; 2 x+1$ is a repeated factor of the quadratic. Therefore, the partial fraction decomposition must include all natural number exponents of the repeated factor, up to and including its original exponent (i.e., powers from 1 to n if the factor is raised to the n power).

$$
\begin{aligned}
\frac{x}{(2 x+1)^{2}} & =\frac{A}{2 x+1}+\frac{B}{(2 x+1)^{2}} \\
\frac{(2 x+1)^{2}}{1}\left[\frac{x}{(2 x+1)^{2}}\right] & =\frac{(2 x+1)^{2}}{1}\left[\frac{A}{2 x+1}+\frac{B}{(2 x+1)^{2}}\right] \\
x & =A(2 x+1)+B \\
x & =2 A x+A+B
\end{aligned}
$$

As both x-coefficients must be equal, $2 A=1$, so $A=\frac{1}{2}$. The constants on both sides of the equation must be equal as well, so $A+B=0$. Therefore, $B=-\frac{1}{2}$. Substitute these values into the partial fraction decomposition equation.

$$
\begin{aligned}
\frac{x}{4 x^{2}+4 x+1} & =\frac{1 / 2}{2 x+1}+\frac{-1 / 2}{(2 x+1)^{2}} \\
& =\frac{1}{2(2 x+1)}-\frac{1}{2(2 x+1)^{2}}
\end{aligned}
$$

20.33 Integrate the expression $\int \frac{x}{4 x^{2}+4 x+1} d x$, from Problem 20.32.

According to Problem 20.32, $\frac{x}{4 x^{2}+4 x+1}=\frac{1}{2(2 x+1) \quad 2(2 x+1)^{2}}$.

$$
\begin{aligned}
\int \frac{x}{4 x^{2}+4 x+1} d x & =\int \frac{d x}{2(2 x+1)}-\int \frac{d x}{2(2 x+1)^{2}} \\
& =\frac{1}{2} \int \frac{d x}{2 x+1}-\frac{1}{2} \int \frac{d x}{(2 x+1)^{2}}
\end{aligned}
$$

Integrate both expressions using variable substitution: $u=2 x+1$ and $d u=2 d x$, so $\frac{d u}{2}=d x$.

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{d u / 2}{u}-\frac{1}{2} \int \frac{d u / 2}{u^{2}} \\
& =\frac{1}{2} \cdot \frac{1}{2} \int \frac{d u}{u}-\frac{1}{2} \cdot \frac{1}{2} \int u^{-2} d u \\
& =\frac{1}{4} \ln |u|-\frac{1}{4} \cdot \frac{u^{-1}}{-1}+C \\
& =\frac{1}{4} \ln |2 x+1|+\frac{1}{4} \cdot \frac{1}{2 x+1}+C \\
& =\frac{\ln |2 x+1|}{4}+\frac{1}{8 x+4}+C
\end{aligned}
$$

20.34 Perform partial fraction decomposition: $\frac{2 x^{3}-5 x^{2}+6 x-3}{x^{4}+3 x^{2}}$.

Factor the denominator.

$$
\frac{2 x^{3}-5 x^{2}+6 x-3}{x^{2}\left(x^{2}+3\right)}
$$

Unlike the preceding partial fractions exercises, the factor $x^{2}+3$ requires the linear numerator $A x+B$ rather than a constant numerator. Note that x^{2} is considered a repeated factor, so you must include a denominator of x^{1} as well as a denominator of x^{2}.

$$
\begin{aligned}
\frac{2 x^{3}-5 x^{2}+6 x-3}{x^{2}\left(x^{2}+3\right)} & =\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+3} \\
\frac{x^{2}\left(x^{2}+3\right)\left[2 x^{3}-5 x^{2}+6 x-3\right.}{1}\left[\frac{x^{2}\left(x^{2}+3\right)}{1}\right] & \left.=\frac{x^{2}\left(x^{2}+3\right)[A}{1}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+3}\right] \\
2 x^{3}-5 x^{2}+6 x-3 & =A x\left(x^{2}+3\right)+B\left(x^{2}+3\right)+x^{2}(C x+D) \\
2 x^{3}-5 x^{2}+6 x-3 & =A x^{3}+3 A x+B x^{2}+3 B+C x^{3}+D x^{2} \\
2 x^{3}-5 x^{2}+6 x-3 & =(A+C) x^{3}+(B+D) x^{2}+3 A x+3 B
\end{aligned}
$$

RULE
OF THUMB:
The numerator of the mini-

Match the coefficients of the terms on both sides of the equations; you can immediately calculate A and B.

$$
\begin{array}{c:c:c:c}
x^{3} \text { coefficients } & x^{2} \text { coefficients } & x \text { coefficients } & \text { constants } \\
\hdashline A+C=2 & B+D=-5 & 3 A=6 & 3 B=-3 \\
& & A=2 & B=-1
\end{array}
$$

Substitute $A=2$ into the equation $A+C=2$ to determine that $C=0$. Substitute $B=-1$ into the equation $B+D=-5$ to determine that $D=-4$. Substitute A, B, C, and D into the partial fraction decomposition equation.

$$
\begin{aligned}
\frac{2 x^{3}-5 x^{2}+6 x-3}{x^{4}+3 x^{2}} & =\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+3} \\
& =\frac{2}{x}+\frac{-1}{x^{2}}+\frac{(0) x+(-4)}{x^{2}+3} \\
& =\frac{2}{x}-\frac{1}{x^{2}}-\frac{4}{x^{2}+3}
\end{aligned}
$$

20.35 Integrate the expression: $\int \frac{2 x^{3}-5 x^{2}+6 x-3}{x^{4}+3 x^{2}} d x$, from Problem 20.34 .

$$
\begin{aligned}
& \text { Use the } \\
& \text { arctangent } \\
& \text { antiderivative } \\
& \text { here. set } u=x, \\
& \text { du }=d x, \text { and } a=\sqrt{3} . \\
& \begin{array}{l}
\text { That way, } \int \frac{d u}{u^{2}+a^{2}}= \\
\frac{1}{\sqrt{3}} \arctan \left(\frac{x}{\sqrt{3}}\right)+C .
\end{array} \begin{aligned}
x^{4}+3 x^{2} & =2 \int \frac{2 x^{3}-5 x^{2}+6 x-3}{x}-\int x^{-2} d x-4 \int \frac{d x}{x^{2}+3} \\
& =\frac{2}{x}-\frac{1}{x^{2}}-\frac{4}{x^{2}+3}
\end{aligned} \\
&
\end{aligned}
$$

Rationalize the expression to get an equivalent solution:
$2 \ln |x|+\frac{1}{x}-\frac{4 x \sqrt{3}}{3} \arctan \left(\frac{x \sqrt{3}}{3}\right)+C$.

Chapter 21 ADVANCED INTEGRATION TECHNIQUES

Even more ways to find integrals-must be your birthday

Integration by parts, the first topic investigated in this chapter, is an extremely useful tool, the importance of which cannot be overestimated. By comparison, the remainder of the techniques discussed in this chapter (trigonometric substitution and improper integration), are less universally useful. Like most integration techniques, they are exceedingly useful in very specific situations, but integration by parts is an excellent "tool of last resort" when other integration techniques fail.

It's just what you always wanted-another grab bag of integration methods. Of the three topics in the chapter, you will use the first one a heck of a lot more than the others. You can even use it to integrate $f(x)=\ln x$, an antiderivative that has been conspicuously absent until now. (In fact, you'll integrate $\ln x$ in Problem 3.) Trig powers and trig substitution are only handy if you've got an integral with (surprise, surprise) trig functions in it that is defying all of your integration efforts. The last topic, improper integration, explains how to handle definite integrals that either (A) have infinity (instead of a real number) as a limit of integration, or (B) have a vertical asymptote cutting through the interval you're integrating over.
21.1 The method of integration by parts states that $\int u d v=u v-\int v d u$, given differentiable functions u and v. Generate this formula by differentiating the product $u v$.
Because u and v are functions, you must apply the product rule.
You don't even have to include "+C" because the original function, uv,
Note that $\int d(u v)=u v$, because the antiderivative of a function's derivative equals the function itself.
$\longrightarrow u v=\int u d v+\int v d u$
Solve the equation for $\int u d v$.

$$
u v-\int v d u=\int u d v
$$

21.2 Integrate using the parts method: $\int x e^{x} d x$.
Rewrite the integral as $\int u d v$. This requires you to define u and $d v$ using parts of the integrand (hence the name "integration by parts"). It is most helpful to set u equal to an easily differentiable quantity and $d v$ equal to an easily integrable quantity: $u=x$ and $d v=e^{x} d x$. Therefore, $d u=d x$ and $v=\int d v=\int e^{x} d x=e^{x}$. Substitute these values into the formula from Problem 21.1.

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int x e^{x} d x & =x e^{x}-\int e^{x} d x \\
& =x e^{x}-e^{x}+C
\end{aligned}
$$

21.3 Integrate the expression: $\int \ln x d x$.

Integrate by parts, setting $u=\ln x$ and $d v=d x$. Differentiate u and integrate $d v$ to determine $d u$ and $v: d u=d(\ln x)=\frac{d x}{x}$ and $v=\int d v=\int d x=x$.

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int \ln x d x & =(\ln x)(x)-\int(x)\left(\frac{d x}{x}\right) \\
& =x \ln x-\int d x \\
& =x \ln x-x+C
\end{aligned}
$$

21.4 Integrate: $\int x^{2} \sin x d x$.

Neither x^{2} nor $\sin x$ is difficult to differentiate-this allows you additional freedom to choose u and $d v$. Given this choice, however, you should set u equal to the function that will eventually equal zero if it is differentiated repeatedly. Therefore, $u=x^{2}$, $d v=\sin x d x, d u=d\left(x^{2}\right)=2 x d x$, and $v=\int d v=\int \sin x d x=$ $-\cos x$. Substitute these values into the integration by parts formula.

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int x^{2} \sin x d x & =\left(x^{2}\right)(-\cos x)-\int(-\cos x)(2 x d x) \\
& =-x^{2} \cos x+2 \int x \cos x d x
\end{aligned}
$$

Integrating $\int x \cos x d x$ again requires integration by parts. Set $u=x$ and $d v=\cos x d x$; it follows that $d u=d x$ and $v=\sin x$.

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int x \cos x d x & =x \sin x-\int \sin x d x \\
& =x \sin x-(-\cos x)+C \\
& =x \sin x+\cos x+C
\end{aligned}
$$

This is not the final answer. Rather, this is the value of $\int x \cos x d x$, part of the original attempt to integrate by parts. Substitute this antiderivative into the original integration by parts formula.

$$
\begin{aligned}
\int x^{2} \sin x d x & =-x^{2} \cos x+2 \int x \cos x d x \\
& =-x^{2} \cos x+2(x \sin x+\cos x+C) \\
& =-x^{2} \cos x+2 x \sin x+2 \cos x+C
\end{aligned}
$$

21.5 According to Problem 21.2, $\int x e^{x} d x=x e^{x}-e^{x}+C$. Verify this antiderivative using the integration by parts tabular method.

The tabular method consists of a table with three columns. The first column contains u and its subsequent derivatives, the second column contains $d v$ and its

Multiply each term in the left column with the other values along a downward diagonal, as illustrated by Figure 21-1.

Figure 21-1 Starting with the first term in the u column, move down and to the right, following the paths indicated by the arrows. Find the product of the terms along the path. Then, move to the next term in the u column (1) and multiply along a similar path. (There is no need to begin a path at 0 , as the product will be 0.) Finally, add the products together.
the end because it's an indefinite integral. To practice using integration by parts with DEFINITE integrals, check out Problems 22.11,
22.12 , and 22.31 through 22.33.

Multiply along the paths in Figure 21-1 and add the results.

$$
(x)\left(e^{x}\right)(1)+(1)\left(e^{x}\right)(-1)=x e^{x}-e^{x}
$$

Therefore, $\int x e^{x} d x=x e^{x}-e^{x}+C$, which verifies the solution to Problem 21.2.
21.6 According to Problem 21.4, $\int x^{2} \sin x d x=-x^{2} \cos x+2 x \sin x+2 \cos x+C$. Verify this antiderivative using the integration by parts tabular method.

Construct a table (as explained in Problem 21.5) using the values of u and $d v$ defined by Problem 21.4: $u=x^{2}$ and $d v=\sin x d x$.

u	$d v$	± 1
x^{2}	$\sin x$	+1
$2 x$	$-\cos x$	-1
2	$-\sin x$	+1
0	$\cos x$	-1
		+1

Draw diagonal paths (as illustrated in Figure 21-2), calculate the product of the terms on each, and compute the sum of those products.

u	$d v$	± 1
x^{2}	$\sin x$	+1
$2 x$	$-\cos x$	-1
2	$-\sin x$	+1
0	$\cos x$	-1
		+1

Figure 21-2 There are three nonzero terms in the u-column, so products must be calculated along three paths (as indicated by the arrows in the diagram).

$$
\begin{aligned}
\int x^{2} \sin x d x & =\left(x^{2}\right)(-\cos x)(+1)+(2 x)(-\sin x)(-1)+(2)(\cos x)(1)+C \\
& =-x^{2} \cos x+2 x \sin x+2 \cos x+C
\end{aligned}
$$

21.7 Integrate the expression: $\int e^{x} \sin x d x$.

Integrate by parts, setting $u=\sin x$ and $d v=e^{x} d x$. Accordingly, $d u=\cos x d x$ and $v=e^{x}$.

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int e^{x} \sin x d x & =e^{x} \sin x-\int e^{x} \cos x d x
\end{aligned}
$$

Integrating $\int e^{x} \cos x d x$ also requires integration by parts.

$$
\begin{aligned}
& \int e^{x} \sin x d x=e^{x} \sin x-\int e^{x} \cos x d x \\
& \int e^{x} \sin x d x=e^{x} \sin x-\left(e^{x} \cos x+\int e^{x} \sin x d x\right) \\
& \int e^{x} \sin x d x=e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin x d x
\end{aligned}
$$

Add $\int e^{x} \sin x d x$ to both sides of the equation.

$$
\begin{aligned}
\int e^{x} \sin x d x+\int e^{x} \sin x d x & =e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin \sin x d x \\
2 \int e^{x} \sin x d x & =e^{x}(\sin x-\cos x) \\
\int e^{x} \sin x d x & =\frac{e^{x}(\sin x-\cos x)}{2}+C
\end{aligned}
$$

Trigonometric Substitution

Using identities and little right triangle diagrams

21.8 Compute the definite integral: $\int_{\pi / 4}^{\pi / 3} \tan ^{2} x d x$.

According to a Pythagorean trigonometric identity, $1+\tan ^{2} x=\sec ^{2} x$. Therefore, $\tan ^{2} x=\sec ^{2} x-1$.

$$
\begin{aligned}
\int_{\pi / 4}^{\pi / 3} \tan ^{2} x d x & =\int_{\pi / 4}^{\pi / 3}\left(\sec ^{2} x-1\right) d x \\
& =\int_{\pi / 4}^{\pi / 3} \sec ^{2} x d x-\int_{\pi / 4}^{\pi / 3} 1 d x \\
& =\left(\left.\tan x\right|_{\pi / 4} ^{\pi / 3}\right)-\left(\left.x\right|_{\pi / 4} ^{\pi / 3}\right) \\
& =\left(\tan \frac{\pi}{3}-\tan \frac{\pi}{4}\right)-\left(\frac{\pi}{3}-\frac{\pi}{4}\right)
\end{aligned}
$$

Evaluate the tangent by rewriting it in terms of sine and cosine.

$$
\begin{aligned}
& =\left(\frac{\sin \pi / 3}{\cos \pi / 3}-\frac{\sin \pi / 4}{\cos \pi / 4}\right)-\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
& =\left(\frac{\sqrt{3} / 2}{1 / 2}-\frac{\sqrt{2} / 2}{\sqrt{2} / 2}\right)-\left(\frac{4 \pi}{12}-\frac{3 \pi}{12}\right) \\
& =\sqrt{3}-1-\frac{\pi}{12}
\end{aligned}
$$

21.9 Integrate the expression: $\int \cos ^{3} x \sin ^{2} x d x$.

Given an integral containing $\cos ^{*} x$ and $\sin ^{b} x$, where a and b are natural numbers, a is odd, and b is even, rewrite $\cos ^{*} x$ as $(\cos x)\left(\cos ^{*-1} x\right)$.

$$
\int \cos ^{3} x \sin ^{2} x d x=\int \cos x \cdot \cos ^{2} x \cdot \sin ^{2} x d x
$$

Apply the Pythagorean identity $\cos ^{2} x=1-\sin ^{2} x$ to rewrite the now even-powered trigonometric expression.

$$
\begin{aligned}
& =\int \cos x\left(1-\sin ^{2} x\right) \sin ^{2} x d x \\
& =\int \cos x \sin ^{2} x\left(1-\sin ^{2} x\right) d x
\end{aligned}
$$

Distribute $\cos x \sin ^{2} x$.

$$
\begin{aligned}
& =\int\left(\cos x \sin ^{2} x-\cos x \sin ^{4} x\right) d x \\
& =\int \cos x \sin ^{2} x d x-\int \cos x \sin ^{4} x d x
\end{aligned}
$$

Integrating using variable substitution: $u=\sin x$ and $d u=\cos x d x$.

$$
\begin{aligned}
& =\int u^{2} d u-\int u^{4} d u \\
& =\frac{u^{3}}{3}-\frac{u^{5}}{5}+C \\
& =\frac{1}{3} \sin ^{3} x-\frac{1}{5} \sin ^{5} x+C
\end{aligned}
$$

21.10 Integrate: $\int \cos ^{8} x \sin ^{3} x d x$.

Rewrite $\sin ^{3} x$ as $(\sin x)\left(\sin ^{2} x\right)$.
This problem is very similar to Problem 21.9, except this time $\sin x$ is raised to an odd power and $\cos x$ is raised to an even power. Do the same things to $\sin ^{3} x$ that Problem 21.9 did to $\cos ^{3} x$.

$$
\begin{aligned}
\int \cos ^{8} x \sin ^{3} x d x & =\int \cos ^{8} x \cdot \sin ^{2} x \cdot \sin x d x \\
& =\int \cos ^{8} x\left(1-\cos ^{2} x\right) \sin x d x \\
& =\int \cos ^{8} x \sin x\left(1-\cos ^{2} x\right) d x \\
& =\int \cos ^{8} x \sin x d x-\int \cos ^{10} x \sin x d x
\end{aligned}
$$

Use variable substitution to integrate both expressions: $u=\cos x$ and $d u=-\sin x d x$.

$$
\begin{aligned}
& =-\int u^{8} d u-\left(-\int u^{10} d u\right) \\
& =-\frac{u^{9}}{9}+\frac{u^{11}}{11}+C \\
& =-\frac{1}{9} \cos ^{9} x+\frac{1}{11} \cos ^{11} x+C
\end{aligned}
$$

21.1I Integrate the expression: $\int \sin ^{2} x d x$.

Power-reducing identities like
this one are useful when you've got cosine or sine raised to even powers, either all by themselves (like in $\int \cos ^{4} x d x$) or multiplied together like in $\int \sin ^{2} x \cos ^{4} x d x$.).

Use variable substitution to integrate $\int \cos 2 x d x: u=2 x$ and $d u=2 d x$, so $\frac{d u}{2}=d x$.

$$
\begin{aligned}
& =\frac{1}{2} \int d x-\frac{1}{2} \cdot \frac{1}{2} \int \cos u d u \\
& =\frac{1}{2} x-\frac{1}{4} \sin u+C \\
& =\frac{1}{2} x-\frac{1}{4} \sin 2 x+C
\end{aligned}
$$

Use variable substitution to integrate $\int \sin x \cos ^{2} x d x: u=\cos x$ and $d u=-\sin x d x$.

$$
\begin{aligned}
& =\int \sin x d x-\left(-\int u^{2} d u\right) \\
& =-\cos x+\frac{u^{3}}{3}+C \\
& =-\cos x+\frac{1}{3} \cos ^{3} x+C
\end{aligned}
$$

21.13 Integrate: $\int \sin ^{4} x d x$.

Apply the $\sin ^{2} x$ power-reducing formula from Problem 21.11: $\sin ^{2} x=\frac{1-\cos 2 x}{2}$.

$$
\begin{aligned}
\int \sin ^{4} x d x & =\int\left(\sin ^{2} x\right)^{2} d x \\
& =\int\left(\frac{1-\cos 2 x}{2}\right)^{2} d x \\
& =\int\left(\frac{1-2 \cos 2 x+\cos ^{2} 2 x}{4}\right) d x \\
& =\frac{1}{4}\left(\int 1 d x-2 \int \cos 2 x d x+\int \cos ^{2} 2 x d x\right)
\end{aligned}
$$

Apply the power-reducing formula $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$ to integrate $\int \cos ^{2} 2 x d x$.

$$
\begin{aligned}
& =\frac{1}{4}\left[\int 1 d x-2 \int \cos 2 x d x+\frac{1+\cos 2(2 x)}{2} d x\right] \\
& =\frac{1}{4}\left[\int 1 d x-2 \int \cos 2 x d x+\frac{1}{2} \int(1+\cos 4 x) d x\right] \\
& =\frac{1}{4}\left[\int 1 d x-2 \int \cos 2 x d x+\frac{1}{2}\left(\int d x+\int \cos 4 x d x\right)\right]
\end{aligned}
$$

Use variable substitution to integrate the trigonometric integrals: $u=2 x$ and $\frac{d u}{2}=d x$.

$$
\begin{aligned}
& =\frac{1}{4}\left[x-2 \cdot \frac{1}{2} \sin 2 x+\frac{1}{2}\left(x+\frac{1}{4} \sin 4 x\right)\right]+C \\
& =\frac{1}{4}\left[x-\sin 2 x+\frac{1}{2} x+\frac{1}{8} \sin 4 x\right]+C \\
& =\frac{1}{4}\left[\frac{3}{2} x-\sin 2 x+\frac{1}{8} \sin 4 x\right]+C \\
& =\frac{3}{8} x-\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+C
\end{aligned}
$$

21.14 Integrate using a product-to-sum identity: $\int \cos x \cos 2 x d x$.

Apply the identity $\cos A \cdot \cos B=\frac{\cos (A-B)+\cos (A+B)}{2}$ such that $A=x$ and
$B=2 x$.

$$
\begin{aligned}
& \cos x \cos 2 x=\frac{\cos (x-2 x)+\cos (x+2 x)}{2} \\
&=\frac{\frac{\cos (-x)+\cos (3 x)}{2}}{} \\
&=\frac{\cos x+\cos 3 x}{2}
\end{aligned}
$$

Substitute $\cos x \cos 2 x=\frac{\cos x+\cos 3 x}{2}$ into the integrand.

$$
\begin{aligned}
\int \cos x \cos 2 x d x & =\int \frac{\cos x+\cos 3 x}{2} d x \\
& =\frac{1}{2} \int \cos x d x+\frac{1}{2} \int \cos 3 x d x
\end{aligned}
$$

Cosine is an even function, and all even functions have the property $f(-x)=f(x)$. That's why you drop the negative sign in the next step.

Use variable substitution to integrate $\int \cos 3 x d x$.

$$
\begin{aligned}
& =\frac{1}{2} \sin x+\frac{1}{2} \cdot \frac{1}{3} \sin 3 x+C \\
& =\frac{1}{2} \sin x+\frac{1}{6} \sin 3 x+C
\end{aligned}
$$

21.15 Identify an alternate solution to Problem 21.14 by applying a trigonometric identity to integrate $\int \cos x \cos 2 x d x$.

Apply the double angle identity $\cos 2 x=1-2 \sin ^{2} x$.

$$
\begin{aligned}
\int \cos x \cos 2 x d x & =\int \cos x\left(1-2 \sin ^{2} x\right) d x \\
& =\int \cos x d x-2 \int \cos x \sin ^{2} x d x
\end{aligned}
$$

Apply variable substitution to the second integral ($u=\sin x$ and $d u=\cos x d x$).

$$
\begin{aligned}
& =\int \cos x d x-2 \int u^{2} d u \\
& =\sin x-2 \cdot \frac{u^{3}}{3}+C \\
& =\sin x-\frac{2}{3} \sin ^{3} x+C
\end{aligned}
$$

21.16 Integrate the expression: $\int 7 x \sin x^{2} \sin 4 x^{2} d x$.

Apply the product-to-sum formula $\sin A \sin B=\frac{\cos (A-B)-\cos (A+B)}{2}$ to rewrite
$\sin x^{2} \sin \left(4 x^{2}\right)$.

$$
\begin{aligned}
& =\frac{7}{2} \cdot \frac{1}{6} \int \cos u d u-\frac{7}{2} \cdot \frac{1}{10} \int \cos v d v \\
& =\frac{7}{12} \sin 3 x^{2}-\frac{7}{20} \sin 5 x^{2}+C
\end{aligned}
$$

21.17 Integrate the expression $\int \sec ^{2} x \tan x d x$ using the variable substitution $u=\sec x$.

Expand the $\sec ^{2} x$ factor in the integrand.

$$
\int \sec ^{2} x \tan x d x=\int \sec x \cdot \sec x \cdot \tan x d x
$$

Differentiate $u=\sec x$ to get $d u=\sec x \tan x d x$.

$$
\begin{aligned}
& =\int u d u \\
& =\frac{u^{2}}{2}+C \\
& =\frac{1}{2} \sec ^{2} x+C
\end{aligned}
$$

21.18 Use the variable substitution $u=\tan x$ to integrate $\int \sec ^{2} x \tan x d x$ and verify the solution to Problem 21.17.

If $u=\tan x$, then $d u=\sec ^{2} x d x$.

$$
\begin{aligned}
\int \sec ^{2} x \tan x d x & =\int u d u \\
& =\frac{u^{2}}{2}+C \\
& =\frac{1}{2} \tan ^{2} x+C
\end{aligned}
$$

Set $\frac{1}{2} \tan ^{2} x+C$ equal to $\frac{1}{2} \sec ^{2} x+C$ and prove that the expressions are equivalent. Multiply by 2 to eliminate the fractions. (Note that C is an arbitrary constant, so $2 C=C$ for the purposes of the proof.)

$$
\begin{gathered}
2\left[\frac{1}{2} \tan ^{2} x+C\right]=2\left[\frac{1}{2} \sec ^{2} x+C\right] \\
\tan ^{2} x+C=\sec ^{2} x+C
\end{gathered}
$$

Apply the trigonometric identity $\tan ^{2} x+1=\sec ^{2} x$.

$$
\tan ^{2} x+C=\left(1+\tan ^{2} x\right)+C
$$

Note that $1+C=C$ for the reasons described above.

$$
\tan ^{2} x+C=\tan ^{2} x+C
$$

Because this statement is true, the statement $\frac{1}{2} \tan ^{2} x+C=\frac{1}{2} \sec ^{2} x+C$ is true as well, which verifies that the solutions to Problems 21.17 and 21.18 are equivalent.
21.19 Integrate the expression: $\int \sec ^{6} x \tan ^{4} x d x$.

If an integrand consists of the product sec $x \tan ^{b} x$, such that where a and b are natural numbers and a is even, rewrite the integrand as $\left(\sec ^{2} x\right)\left(\sec ^{2} x\right)^{(a-2) / 2}$. Keep a single $\sec ^{2} x$ factor separate and rewrite the rest of it as $\left(\sec ^{2} x\right)^{n}$, where n is an even number. For example, you'd change $\sec ^{12} x$ into $\left(\sec ^{2} x\right)\left(\sec ^{10} x\right)$ and then change $\sec ^{10} x$ into $\left(\sec ^{2} x\right)^{5}$.

$$
\begin{aligned}
\int \sec ^{6} x \tan ^{4} x d x & =\int \sec ^{2} x \cdot \sec ^{4} x \cdot \tan ^{4} x d x \\
& =\int \sec ^{2} x\left(\sec ^{2} x\right)^{2} \tan ^{4} x d x
\end{aligned}
$$

Apply the Pythagorean identity $1+\tan ^{2} x=\sec ^{2} x$ to the $\sec ^{2} x$ factor that is raised to the second power.

$$
\begin{aligned}
& =\int \sec ^{2} x\left(1+\tan ^{2} x\right)^{2} \tan ^{4} x d x \\
& =\int \sec ^{2} x \tan ^{4} x\left(1+2 \tan ^{2} x+\tan ^{4} x\right) d x \\
& =\int \sec ^{2} x \tan ^{4} x d x+2 \int \sec ^{2} x \tan ^{6} x d x+\int \sec ^{2} x \tan ^{8} x d x
\end{aligned}
$$

Perform variable substitution using $u=\tan x$ and $d u=\sec ^{2} x d x$.

$$
\begin{aligned}
& =\int u^{4} d u+2 \int u^{6} d u+\int u^{8} d u \\
& =\frac{u^{5}}{5}+2 \cdot \frac{u^{7}}{7}+\frac{u^{9}}{9}+C \\
& =\frac{1}{5} \tan ^{5} x+\frac{2}{7} \tan ^{7} x+\frac{1}{9} \tan ^{9} x+C
\end{aligned}
$$

21.20 Integrate the expression: $\int \sec ^{7} x \tan ^{5} x d x$.

If an integrand consists of the product $\sec ^{*} x \tan ^{b} x$, such that a and b are natural numbers and b is odd, rewrite the integrand as $(\sec x \tan x)\left(\sec ^{a-1} x \tan ^{b-1} x\right)$. Note that $b-1$ will be even (because b is odd). Then rewrite $\tan ^{b-1} x$ as $\left(\sec ^{2} x-1\right)^{(b-1) / 2}$.

$$
\begin{aligned}
\int \sec ^{7} x \tan ^{5} x d x & =\int(\sec x \tan x) \sec ^{6} x \tan ^{4} x d x \\
& =\int(\sec x \tan x) \sec ^{6} x\left(\sec ^{2} x-1\right)^{2} d x \\
& =\int(\sec x \tan x) \sec ^{6} x\left(\sec ^{4} x-2 \sec ^{2} x+1\right) d x \\
& =\int(\sec x \tan x)\left(\sec ^{10} x-2 \sec ^{8} x+\sec ^{6} x\right) d x
\end{aligned}
$$

Distribute $\sec x \tan x$ through the quantity, and separate each term of the integrand into individual integrals.

$$
=\int \sec ^{10} x(\sec x \tan x) d x-2 \int \sec ^{8} x(\sec x \tan x) d x+\int \sec ^{6} x(\sec x \tan x) d x
$$

Perform variable substitution: $u=\sec x$ and $d u=\sec x \tan x d x$.

$$
\begin{aligned}
& =\int u^{10} d u-2 \int u^{8} d u+\int u^{6} d u \\
& =\frac{u^{11}}{11}-2 \cdot \frac{u^{9}}{9}+\frac{u^{7}}{7}+C \\
& =\frac{1}{11} \sec ^{11} x-\frac{2}{9} \sec ^{9} x+\frac{1}{7} \sec ^{7} x+C
\end{aligned}
$$

Figure 21-3 Construct this right triangle to illustrate an acute angle θ with opposite side x and hypotenuse 4; you can then use it to evaluate other trigonometric functions of θ.

Recall that the cosine of an angle is the quotient of its adjacent side and the hypotenuse of the triangle. Therefore, $\cos \theta=\frac{\sqrt{16-x^{2}}}{4}$.
21.22 Integrate the expression: $\int \sqrt{16-x^{2}} d x$.

This integral requires the technique of trigonometric substitution. The integrand is of the form $\sqrt{a^{2}-u^{2}}$, where $a=4$ and $u=x$. Given radicals of this form, make the trigonometric substitution $u=a \sin \theta$. Substitute u and a into the equation.

$$
\begin{aligned}
& x=4 \sin \theta \\
& 4 \text { to get } \frac{x}{4}=\sin \theta, \text { which is the equation from }
\end{aligned}
$$

Divide both sides of the equation by 4 to get $\frac{x}{4}=\sin \theta$, which is the equation from Problem 21.21. Differentiate $x=4 \sin \theta$.

$$
d x=4 \cos \theta d \theta
$$

Now to address the integral $\int \sqrt{16-x^{2}} d x$. Rewrite the integrand as a trigonometric function based on the triangle in Figure 21-3. According to Problem 21.21, $\cos \theta=\frac{\sqrt{16-x^{2}}}{4}$, so $4 \cos \theta=\sqrt{16-x^{2}}$. (Note that the cosine ratio is chosen
 so that the constant leg of the triangle, 4 , is used rather than side x, to reduce the number of variables involved.)

$$
\int \sqrt{16-x^{2}} d x=\int 4 \cos \theta d x
$$

Replace $d x$ using the derivative identified above: $d x=4 \cos \theta d \theta$.

$$
\begin{aligned}
& =\int(4 \cos \theta)(4 \cos \theta d \theta) \\
& =16 \int \cos ^{2} \theta d \theta
\end{aligned}
$$

You must now replace $\theta, \sin \theta$, and $\cos \theta$ with expressions written in terms of x. Recall that $x=4 \sin \theta$. Solve for θ using the inverse sine function.

$$
\begin{aligned}
x & =4 \sin \theta \\
\frac{x}{4} & =\sin \theta \\
\arcsin \left(\frac{x}{4}\right) & =\theta
\end{aligned}
$$

Substitute the values of $\sin \theta$ and $\cos \theta$ identified above: $\frac{x}{4}=\sin \theta$ and $\cos \theta=\frac{\sqrt{16-x^{2}}}{4}$. Substitute all of these values into the antiderivative.

$$
\begin{aligned}
8 \theta+8 \sin \theta \cos \theta+C & =8 \arcsin \left(\frac{x}{4}\right)+8\left(\frac{x}{4}\right)\left(\frac{\sqrt{16-x^{2}}}{4}\right)+C \\
& =8 \arcsin \left(\frac{x}{4}\right)+\frac{1}{2} x \sqrt{16-x^{2}}+C
\end{aligned}
$$

21.23 Given $\sec \theta=\frac{x}{\sqrt{3}}$, draw a right triangle to determine the value of $\sin \theta$, assuming $0<\theta \leq \frac{\pi}{2}$.

If $\sec \theta=\frac{x}{\sqrt{3}}$ then $\cos \theta=\frac{\sqrt{3}}{x}$, so the side adjacent to θ has length $\sqrt{3}$, and the hypotenuse has length x, as illustrated by Figure 21-4.

Figure 21-4
The cosine of an angle is the quotient of its adjacent side and the hypotenuse, so $\cos \theta=\frac{\sqrt{3}}{x}$. According to the Pythagorean theorem, the opposite side has length
$\sqrt{x^{2}-3}$.

According to Figure $21-4, \sin \theta=\frac{\sqrt{x^{2}-3}}{x}$, the quotient of the side opposite θ and
the hypotenuse of the triangle.
21.24 Integrate: $\int \frac{\sqrt{x^{2}-3}}{x} d x$.

This integral contains $\sqrt{u^{2}-a^{2}}$ (where $u=x$ and $a=\sqrt{3}$), and requires the
 trigonometric substitution $u=a \sec \theta$.

$$
\begin{aligned}
& x=\sqrt{3} \sec \theta \\
& \frac{x}{\sqrt{3}}=\sec \theta
\end{aligned}
$$

Note that (not coincidentally), the triangle in Figure 21-4 is based upon the equation $\sec \theta=\frac{x}{\sqrt{3}}$. Diffierentiate $x=\sqrt{3} \sec \theta$.

$$
d x=\sqrt{3} \sec \theta \tan \theta d \theta
$$

Rewrite the integrand using this derivative and the conclusion drawn by Problem
21.23: $\sin \theta=\frac{\sqrt{x^{2}-3}}{x}$.

$$
\begin{aligned}
\int \frac{\sqrt{x^{2}-3}}{x} d x & =\int \sin \theta(\sqrt{3} \sec \theta \tan \theta d \theta) \\
& =\sqrt{3} \int \sin \theta \cdot \frac{1}{\cos \theta} \cdot \tan \theta d \theta \\
& =\sqrt{3} \int \frac{\sin \theta}{\cos \theta} \tan \theta d \theta \\
& =\sqrt{3} \int \tan ^{2} \theta d \theta
\end{aligned}
$$

Apply the Pythagorean trigonometric identity $\tan ^{2} \theta=\sec ^{2} \theta-1$.

$$
\begin{aligned}
& =\sqrt{3} \int\left(\sec ^{2} \theta-1\right) d \theta \\
& =\sqrt{3}\left[\int \sec ^{2} \theta d \theta-\int 1 d \theta\right] \\
& =\sqrt{3}[\tan \theta-\theta]+C
\end{aligned}
$$

According to Figure 21-4, $\tan \theta=\frac{\sqrt{x^{2}-3}}{\sqrt{3}}$. Solve the equation $x=\sqrt{3} \sec \theta$ for θ to

Because that's the side opposite θ divided by the side adjacent to θ. find an expression equivalent to θ.

$$
\begin{aligned}
x & =\sqrt{3} \sec \theta \\
\frac{x}{\sqrt{3}} & =\sec \theta \\
\operatorname{arcsec}\left(\frac{x}{\sqrt{3}}\right) & =\theta
\end{aligned}
$$

Write the antiderivative $\sqrt{3}[\tan \theta-\theta]+C$ in terms of x.

Rationalize the expression.

$$
\begin{aligned}
\sqrt{3}[\tan \theta-\theta]+C & =\sqrt{3}\left[\frac{\sqrt{x^{2}-3}}{\sqrt{3}}-\operatorname{arcsec}\left(\frac{x}{\sqrt{3}}\right)\right]+C \\
& =\sqrt{x^{2}-3}-\sqrt{3} \operatorname{arcsec}\left(\frac{x}{\sqrt{3}}\right)+C
\end{aligned}
$$

$$
\sqrt{x^{2}-3}-\sqrt{3} \operatorname{arcsec}\left(\frac{x \sqrt{3}}{3}\right)+C
$$

21.25 Construct an equivalent solution for Problem 21.24 by replacing the inverse trigonometric function.

This value of θ is as valid as $\theta=\operatorname{arcsec}\left(\frac{x}{\sqrt{3}}\right)$ from Problem 21.24, so substituting it for θ in the antiderivative $\sqrt{3}[\tan \theta-\theta]+C$ results in an equivalent solution.

$$
\begin{aligned}
\sqrt{3}[\tan \theta-\theta]+C & =\sqrt{3}\left[\frac{\sqrt{x^{2}-3}}{\sqrt{3}}-\arctan \left(\frac{\sqrt{x^{2}-3}}{\sqrt{3}}\right)\right]+C \\
& =\sqrt{x^{2}-3}-\sqrt{3} \arctan \left(\frac{\sqrt{x^{2}-3}}{\sqrt{3}}\right)+C
\end{aligned}
$$

21.26 Given $\tan \theta=\frac{x \sqrt{5}}{\sqrt{6}}$, draw a right triangle to determine the value of $\sec \theta$, assuming $0<\theta \leq \frac{\pi}{2}$.

Recall that the tangent of an angle is the quotient of its opposite and adjacent sides. Therefore, the side opposite θ has length $x \sqrt{5}$ and the side adjacent to θ has length $\sqrt{6}$, as illustrated in Figure 21-5.

Figure 21-5 Apply the Pythagorean theorem to calculate the length of the missing side-in this case the hypotenuse.

According to Figure 21-5, $\cos \theta=\frac{\sqrt{6}}{\sqrt{5 x^{2}+6}}, \operatorname{so} \sec \theta=\frac{\sqrt{5 x^{2}+6}}{\sqrt{6}}$.
21.27 Integrate: $\int \frac{x^{3} d x}{\sqrt{5 x^{2}+6}}$.

This integral contains $\sqrt{u^{2}+a^{2}}$ and requires the trigonometric substitution $u=a \tan \theta$, where $u=\sqrt{5 x^{2}}=x \sqrt{5}$ and $a=\sqrt{6}$.

$$
\begin{aligned}
u & =a \tan \theta \\
x \sqrt{5} & =\sqrt{6} \tan \theta \\
\frac{x \sqrt{5}}{\sqrt{6}} & =\tan \theta
\end{aligned}
$$

This trigonometric expression is illustrated by Figure 21-5. Solve for x and differentiate the equation.

$$
\begin{aligned}
x & =\frac{\sqrt{6}}{\sqrt{5}} \tan \theta \\
d x & =\frac{\sqrt{6}}{\sqrt{5}} \sec ^{2} \theta d \theta
\end{aligned}
$$

According to Problem 21.26, $\sec \theta=\frac{\sqrt{5 x^{2}+6}}{\sqrt{6}}$, so $\sqrt{6} \sec \theta=\sqrt{5 x^{2}+6}$. Substitute this into the original integrand.

$$
\int \frac{x^{3} d x}{\sqrt{5 x^{2}+6}}=\int \frac{x^{3} d x}{\sqrt{6} \sec \theta}
$$

Also substitute the values of x and $d x$ generated above: $x=\frac{\sqrt{6}}{\sqrt{5}} \tan \theta$ and $d x=\frac{\sqrt{6}}{\sqrt{5}} \sec ^{2} \theta d \theta$.

The integrand is a product of $\tan \theta$ and $\sec \theta$ with the tangent function raised to an odd power; use the method described in Problem 21.20 to integrate.

$$
\begin{aligned}
& =\frac{6 \sqrt{6}}{25} \int \sec \theta \tan \theta\left(\tan ^{2} \theta\right) d \theta \\
& =\frac{6 \sqrt{6}}{25} \int \sec \theta \tan \theta\left(\sec ^{2} \theta-1\right) d \theta \\
& =\frac{6 \sqrt{6}}{25}\left[\int \sec ^{2} \theta \sec \theta \tan \theta d \theta-\int \sec \theta \tan \theta d \theta\right]
\end{aligned}
$$

The antiderivative of $\sec \theta \tan \theta$ is $\sec \theta$. Use variable substitution on the left integral: $u=\sec \theta$ and $d u=\sec \theta \tan \theta d \theta$.

$$
\begin{aligned}
& =\frac{6 \sqrt{6}}{25}\left[\int u^{2} d u-\int \sec \theta \tan \theta d \theta\right] \\
& =\frac{6 \sqrt{6}}{25}\left[\frac{1}{3} \sec ^{3} \theta-\sec \theta\right]+C
\end{aligned}
$$

Recall that $\sec \theta=\frac{\sqrt{5 x^{2}+6}}{\sqrt{6}}$.

$$
\begin{aligned}
& =\frac{6 \sqrt{6}}{25}\left[\frac{1}{3}\left(\frac{\sqrt{5 x^{2}+6}}{\sqrt{6}}\right)^{3}-\frac{\sqrt{5 x^{2}+6}}{\sqrt{6}}\right]+C \\
& \left.=\frac{6 \sqrt{6}\left[\frac{1}{25} \cdot\left(5 x^{2}+6\right) \sqrt{5 x^{2}+6}\right.}{6 \sqrt{6}}-\frac{\sqrt{5 x^{2}+6}}{\sqrt{6}}\right]+G \\
& \left.=\frac{6 \sqrt{6}\left[\left(5 x^{2}+6\right) \sqrt{5 x^{2}+6}\right.}{25}-\frac{\left.\sqrt{5 x^{2}+6}\right]+G}{\sqrt{6}}\right]
\end{aligned}
$$

Multiply the right fraction inside the brackets by $\frac{18}{18}$ in order to establish common denominators and combine the fractions.

$$
\begin{aligned}
& \left.=\frac{6 \sqrt{6}\left[\left(5 x^{2}+6\right) \sqrt{5 x^{2}+6}\right.}{25}-\frac{18 \sqrt{5 x^{2}+6}}{18 \sqrt{6}}\right]+G \\
& =\frac{6 \sqrt{6}\left[\left(5 x^{2}+6\right) \sqrt{5 x^{2}+6}-18 \sqrt{5 x^{2}+6}\right.}{25\left[\frac{18 \sqrt{6}}{}\right]+G}
\end{aligned}
$$

Because $\left(5 x^{2}+6\right) \sqrt{5 x^{2}+6}$ and $-18 \sqrt{5 x^{2}+6}$ contain common radicals (i.e., their radicands are equal), you can combine their coefficients: $5 x^{2}+6-18=5 x^{2}-12$.

$$
\begin{aligned}
& =\frac{6 \sqrt{6}\left[\left(5 x^{2}-12\right) \sqrt{5 x^{2}+6}\right.}{25\left[\frac{6 \cdot 3 \sqrt{6}}{}\right]+C} \\
& =\frac{\left(5 x^{2}-12\right) \sqrt{5 x^{2}+6}}{75}+C
\end{aligned}
$$

21.28 According to Problem 20.15, $\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C$. Verify the antiderivative using trigonometric substitution.

The denominator has form $\sqrt{a^{2}-u^{2}}$, where $a=1$ and $u=x$. Use the method outlined in Problem 21.22, applying the trigonometric substitution $x=1(\sin \theta)$. Differentiate the equation to get $d x=\cos \theta d \theta$.

Figure 21-6 If $x=\sin \theta$ then $\sin \theta=\frac{x}{1}$. Therefore, the side opposite θ is x and the hypotenuse of the right triangle is 1 .

Complete the square in the denominator.

$$
\begin{aligned}
\int \frac{d x}{\sqrt{x^{2}-8 x-9}} & =\int \frac{d x}{\sqrt{x^{2}-8 x+\mathbf{1 6 - 9 - 1 6}}} \\
& =\int \frac{d x}{\sqrt{(x-4)^{2}-25}}
\end{aligned}
$$

The denominator has form $\sqrt{u^{2}-a^{2}}$, where $u=x-4$ and $a=5$. Use the technique described in Problem 21.24, applying the trigonometric substitution $x=5 \sec \theta+4$. Differentiate the equation to get $d x=5 \sec \theta \tan \theta d \theta$.

Figure 21-7 Solving $x=5 \sec \theta+4$ for $\sec \theta$ yields the trigonometric ratio $\frac{x-4}{5}=\sec \theta$. Therefore, $\cos \theta=\frac{5}{x-4}$ - the side adjacent to θ has length 5 and the hypotenuse of the triangle has length $x-4$.

According to Figure 21-7, $\tan \theta=\frac{\sqrt{(x-4)^{2}-25}}{5}$; therefore, $5 \tan \theta=\sqrt{(x-4)^{2}-25}$.
Rewrite the original integral in terms of θ.

$$
\begin{aligned}
\int \frac{d x}{\sqrt{(x-4)^{2}-25}} & =\int \frac{5 \sec \theta \tan \theta d \theta}{5 \tan \theta} \\
& =\int \sec \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|+C
\end{aligned}
$$

Recall that $\sec \theta=\frac{x-4}{5}$ and $\tan \theta=\frac{\sqrt{(x-4)^{2}-25}}{5}$.

$$
=\ln \left|\frac{x-4}{5}+\frac{\sqrt{(x-4)^{2}-25}}{5}\right|+C
$$

It is customary to factor $\frac{1}{5}$ out of the expression and expand the perfect square into its original form.

$$
=\ln \frac{1}{5}\left|x-4+\sqrt{x^{2}-8 x-9}\right|+C
$$

Expand the expression.

$$
=\ln \frac{1}{5}+\ln \left|x-4+\sqrt{x^{2}-8 x-9}\right|+C
$$

Note that $\ln \frac{1}{5}$ is a constant, so $\ln \frac{1}{5}+C$ is merely another arbitrary constant C. More rigorous treatment of the arbitrary constant is neither required nor

The log of something multiplied equals two logs added together: $\log a b=$ $\log a+\log b$.

Improper Integrals

Integrating despite asymptotes and infinite boundaries

21.30 What characteristics classify an integral as "improper"?

Two conditions characterize the vast majority of improper integrals: discontinuity of the integrand on the closed interval defined by the limits of integration or the presence of an infinite limit of integration.
21.31 When is an improper integral considered "divergent"?

As discussed in Problem 21.32, improper integrals are evaluated by means of a limit. If that limit does not equal a real number, then the corresponding integral

Definite integrals need real number boundaries, so if one of the limits is ∞ or $-\infty$, the integral is automatically improper. is described as "divergent."
21.32 Determine whether or not $\int_{0}^{\infty} \sin \theta d \theta$ converges; if it does, evaluate the integral.

The definite integral $\int_{0}^{\infty} \sin \theta d \theta$ is an improper integral because its upper limit of integration is infinite. In order to evaluate the integral, replace the infinite limit with constant a and find the limit of the integral as a approaches infinity.

$$
\begin{aligned}
\int_{0}^{\infty} \sin \theta d \theta & =\lim _{a \rightarrow \infty}\left(\int_{0}^{a} \sin \theta d \theta\right) \\
& =\lim _{a \rightarrow \infty}\left(-\left.\cos \theta\right|_{0} ^{a}\right) \\
& =\lim _{a \rightarrow \infty}(-\cos a-(-\cos 0)) \\
& =\lim _{a \rightarrow \infty}(-\cos a+1) \\
& =-\lim _{a \rightarrow \infty} \cos a+\lim _{a \rightarrow \infty} 1 \\
& =-\lim _{a \rightarrow \infty} \cos a+1
\end{aligned}
$$

Unfortunately, $\lim _{a \rightarrow \infty}(-\cos a+1)$ does not exist, because $y=\cos \theta$ oscillates infinitely as a approaches infinity. The graph is periodic, and cycles through the interval $-1 \leq \cos a \leq 1$, never approaching a single finite value. Therefore, $\int_{0}^{\infty} \sin \theta d \theta$ diverges.
21.33 Determine whether or not $\int_{0}^{10} \ln x d x$ converges; if it does, evaluate the integral.

Although $y=\ln x$ is continuous on the x-interval $(0, \infty)$, it is not defined when $x=0$. Replace the invalid limit of integration with constant a and evaluate the limit as a approaches 0 from the right.

$$
\int_{0}^{10} \ln x d x=\lim _{a \rightarrow 0^{+}}\left(\int_{a}^{10} \ln x d x\right)
$$

According to Problem 21.3, the antiderivative of $\ln x$ is $x \ln x-x$.

$$
\begin{aligned}
& =\lim _{a \rightarrow 0^{+}}\left[\left.(x \ln x-x)\right|_{a} ^{10}\right] \\
& =\lim _{a \rightarrow 0^{+}}[(10 \ln 10-10)-(a \ln a-a)] \\
& =\lim _{a \rightarrow 0^{+}}(10 \ln 10-10)-\lim _{a \rightarrow 0^{+}}(a \ln a)+\lim _{a \rightarrow 0^{+}} a
\end{aligned}
$$

Whereas $\lim _{a \rightarrow 0^{+}}(10 \ln 10-10)=10 \ln 10-10$ (the limit of any constant as a approaches any value is equal to the constant) and $\lim _{a \rightarrow 0^{+}} a=0$ (by substitution) you must apply L'Hôpital's Rule to evaluate $\lim _{a \rightarrow 0^{+}}(a \ln a)$.

$$
\xrightarrow{\lim _{a \rightarrow 0^{+}}(a \ln a)}=\lim _{a \rightarrow 0^{+}} \frac{\ln a}{1 / a}
$$

Differentiate the numerator and denominator individually.

$$
=\lim _{a \rightarrow 0^{+}} \frac{1 / a}{-1 / a^{2}}
$$

Eliminate the complex fraction by multiplying the numerator and denominator by $-a^{2}$.

$$
\begin{aligned}
\lim _{a \rightarrow 0^{+}}(a \ln a) & =\lim _{a \rightarrow 0^{+}}\left[\frac{\frac{1}{a}\left(\frac{-a^{2}}{1}\right)}{-\frac{1}{a^{2}}\left(-\frac{a^{2}}{1}\right)}\right] \\
& =\lim _{a \rightarrow 0^{+}}(-a) \\
& =0
\end{aligned}
$$

Substitute the values $\lim _{a \rightarrow 0^{+}}(10 \ln 10-10)=10 \ln 10-10, \lim _{a \rightarrow 0^{+}} a=0$, and $\lim _{a \rightarrow 0^{+}}(a \ln a)=0$ into the antiderivative.

$$
\begin{aligned}
\int_{0}^{10} \ln x d x & =\lim _{a \rightarrow 0^{+}}(10 \ln 10-10)-\lim _{a \rightarrow 0^{+}}(a \ln a)+\lim _{a \rightarrow 0^{+}} a \\
& =10 \ln 10-10-0+0 \\
& =10(\ln 10-1)
\end{aligned}
$$

21.34 Determine whether or not $\int_{1}^{\infty} \frac{d x}{x}$ converges; if it does, evaluate the integral.

The integral is improper due to the infinite upper integration limit. Replace ∞ with a and evaluate the limit of the integral as $a \rightarrow \infty$.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x} & =\lim _{a \rightarrow \infty}\left(\int_{1}^{a} \frac{d x}{x}\right) \\
& =\lim _{a \rightarrow \infty}\left(\ln |x|_{1}^{a}\right) \\
& =\lim _{a \rightarrow \infty}(\ln |a|-\ln 1) \\
& =\lim _{a \rightarrow \infty} \ln |a|-\lim _{a \rightarrow \infty} 0 \\
& =\lim _{a \rightarrow \infty} \ln |a|
\end{aligned}
$$

Because $y=\ln a$ increases without bound as a approaches infinity, the integral diverges.
21.35 Determine whether or not $\int_{-\infty}^{-1} \frac{d x}{x^{2}}$ converges; if it does, evaluate the integral.

The integral is improper due to the infinite lower integration limit. Replace $-\infty$ with a and evaluate the limit as a approaches $-\infty$.

bigger the x, the bigger
the natural log. The graph of $y=\ln x$ doesn't have a vertical asymptote, so it increases without bound as x approaches infinity (even if it does so kind of slowly).

$$
\begin{aligned}
\int_{-\infty}^{-1} \frac{d x}{x^{2}} & =\lim _{a \rightarrow-\infty}\left(\int_{a}^{-1} x^{-2} d x\right) \\
& =\lim _{a \rightarrow-\infty}\left(-\left.\frac{1}{x}\right|_{a} ^{-1}\right) \\
& =\lim _{a \rightarrow-\infty}\left(1+\frac{1}{a}\right) \\
& =\lim _{a \rightarrow-\infty} 1+\lim _{a \rightarrow-\infty} \frac{1}{a} \\
& =1+0 \\
& =1
\end{aligned}
$$

21.36 Determine whether or not $\int_{0}^{2} \frac{x^{3}-1}{x-1} d x$ converges; if it does, evaluate the integral.

This integral is not improper because of its limits of integration, but because the integrand is discontinuous at $x=1$. Split the integral at the location of the discontinuity.

$$
\int_{0}^{2} \frac{x^{3}-1}{x-1} d x=\int_{0}^{1} \frac{x^{3}-1}{x-1} d x+\int_{1}^{2} \frac{x^{3}-1}{x-1} d x
$$

Replace the invalid limits in the integrals with constants, and evaluate the limits of each integral as the constant approaches 1 from the appropriate direction (i.e., from the left in the left interval and from the right in the right integral).

$$
=\lim _{a \rightarrow 1^{-}}\left(\int_{0}^{a} \frac{x^{3}-1}{x-1} d x\right)+\lim _{a \rightarrow 1^{+}}\left(\int_{a}^{2} \frac{x^{3}-1}{x-1} d x\right)
$$

Factor the rational expression: $\frac{x^{3}-1}{x-1}=\frac{(x-1)\left(x^{2}+x+1\right)}{x-1}$. As long as $x \neq 1$, you can eliminate the common factor $x-1$ in the numerator and denominator: $\frac{x^{3}-1}{x-1}=x^{2}+x+1$. Because you are calculating the limit as a approaches (but does not equal) 1 , it is safe to assume that $x \neq 1$.

$$
\begin{aligned}
& =\lim _{a \rightarrow 1^{-}}\left[\int_{0}^{a}\left(x^{2}+x+1\right) d x\right]+\lim _{a \rightarrow 1^{+}}\left[\int_{a}^{2}\left(x^{2}+x+1\right) d x\right] \\
& =\lim _{a \rightarrow 1^{-}}\left[\left.\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}+x\right)\right|_{0} ^{a}\right]+\lim _{a \rightarrow 1^{+}}\left[\left.\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}+x\right)\right|_{a} ^{2}\right] \\
& =\lim _{a \rightarrow 1^{-}}\left(\frac{a^{3}}{3}+\frac{a^{2}}{2}+a-0\right)+\lim _{a \rightarrow 1^{+}}\left[\left(\frac{8}{3}+2+2\right)-\left(\frac{a^{3}}{3}+\frac{a^{2}}{2}+a\right)\right] \\
& =\left(\frac{1}{3}+\frac{1}{2}+1\right)+\left[\left(\frac{20}{3}\right)-\left(\frac{1}{3}+\frac{1}{2}+1\right)\right] \\
& =\frac{20}{3}
\end{aligned}
$$

21.37 Determine whether or not $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ converges; if it does, evaluate the integral.

There are no x-values for which the integrand is discontinuous; however, neither the upper nor the lower limit of integration is finite. You must split the integral into the sum of two integrals and address each invalid boundary separately. Because the integrand is defined for all real x, you can choose to split the integrals at any real number. To simplify the ensuing calculations, it is advisable to use $x=0$.

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}} & =\int_{-\infty}^{0} \frac{d x}{1+x^{2}}+\int_{0}^{\infty} \frac{d x}{1+x^{2}} \\
& =\lim _{a \rightarrow-\infty}\left(\int_{a}^{0} \frac{d x}{1+x^{2}}\right)+\lim _{b \rightarrow \infty}\left(\int_{0}^{b} \frac{d x}{1+x^{2}}\right)
\end{aligned}
$$

According to Problem 20.15, $\int \frac{d x}{1+x^{2}}=\arctan x+C$.

If there are two bad boundaries, you'll have to take care of them one at a time, using one limit on each of the two integrals.

$$
\begin{aligned}
& =\lim _{a \rightarrow-\infty}\left(\left.\arctan x\right|_{a} ^{0}\right)+\lim _{b \rightarrow \infty}\left(\left.\arctan x\right|_{0} ^{b}\right) \\
& =\lim _{a \rightarrow-\infty}(\arctan 0-\arctan a)+\lim _{b \rightarrow \infty}(\arctan b-\arctan 0) \\
& =\lim _{a \rightarrow-\infty} \arctan 0-\lim _{a \rightarrow-\infty} \arctan a+\lim _{b \rightarrow \infty} \arctan b-\lim _{b \rightarrow \infty} \arctan 0
\end{aligned}
$$

Because $\lim _{x \rightarrow \pi / 2} \tan x=\infty, \lim _{x \rightarrow \infty} \arctan x=\frac{\pi}{2}$. Similarly, $\lim _{x \rightarrow-\infty} \arctan x=-\frac{\pi}{2}$ because $\lim _{x \rightarrow-\pi / 2} \tan x=-\infty$.

$$
\begin{aligned}
& =0-\left(-\frac{\pi}{2}\right)+\left(\frac{\pi}{2}\right)-0 \\
& =\pi
\end{aligned}
$$

Chapter 22
 CROSS-SECTIONAL AND ROTATIONAL VOLUME

Please put on your 3-D glasses at this time

This chapter modifies the technique of calculating the two-dimensional area of a region (originally introduced in Chapters 18 and 19) to calculate the volume of three-dimensional solids. As Riemann sums added infinitely many areas of rectangular regions to determine the area of a region, the methods herein calculate infinitely many cross-sectional areas of a solid to exactly calculate its volume.

Even though all of the problems in this chapter deal with three-dimensional figures, none of the formulas you'll use look much different than the ones from Chapter 18 and 19. That's because there are lots of sneaky ways to calculate the volume of a solid just by looking at its cross-sections-the layers you'd get if you shaved the solid down with that big silver meat slicer they have at the deli that turns giant boulders of roast beef into thin, sandwich-ready slices. The first set of problems deals with solids that "grow upward" from a region on the coordinate plane, and the rest of the problems deal with solids created by swinging some region of the coordinate plane around an axis of rotation.

Volume of a Solid with Known Cross-Sections

Cut the solid into pieces and measure those instead

22.1 If a three-dimensional solid has cross-sections perpendicular to the x-axis along the interval $[a, b]$ whose areas are modeled by the function $A(x)$, what is the volume of the solid?

The volume of the solid will be $\int_{a}^{b} A(x) d x$. This formula states that the threedimensional volume of a solid can be determined by slicing the solid into infinitely many, infinitely thin cross-sectional slices, determining the volumes of the cross-sections, and then calculating the sum.

Finding the formula for the cross-section's area is the trickiest part. Once you figure that out, you just integrate like you've been doing since Chapter 17.

Figure 22-1 The base of the solid (region B) determines the size of the solid's cross-sections. The darkened rectangle on the left graph corresponds to the darkened square crosssection on the right.

Consider the graph of Region B in Figure 22-1. The problem states that the solid has square cross-sections, so visualize a square lying along the darkened rectangle on the left, perpendicular to the x-axis and the printed page, growing upwards from this book rather than lying flat against it. The sides of a square all have the same length, so the square is as tall as the darkened rectangle is long. By calculating the length of the rectangle, you are also determining the length of the sides of the square cross-section.

The rectangle is bounded above by $y=\sqrt{x}$ and below by $y=0$. Therefore, the length of the darkened rectangle in Figure 22-1 is $\sqrt{x}-0=\sqrt{x}$, the
upper boundary of the region minus the lower boundary. The square crosssections have side length $s=f(x)=\sqrt{x}$, so the area $A(x)$ of those squares is s^{2} :
$A(x)=s^{2}=(\sqrt{x})^{2}=x$.
Apply the formula from Problem 22.1 to determine the volume of the solid.

$$
\begin{aligned}
\int_{a}^{b} A(x) d x & =\int_{0}^{4} x d x \\
& =\left.\frac{x^{2}}{2}\right|_{0} ^{4} \\
& =\frac{16}{2}-0 \\
& =8
\end{aligned}
$$

Note: Problems 22.2-22.4 refer to a region B in the coordinate plane that is bounded by $y=\sqrt{x}, y=0$, and $x=4$.
22.3 Calculate the volume of the solid with base B that has rectangular cross-sections of height 3 that are perpendicular to the y-axis.

The region is the same as Problem 22.2, as is the orientation of the crosssections (perpendicular to the x-axis), so you will use the representative length \leftarrow calculated in Problem 22.2: $\sqrt{x}-0=\sqrt{x}$. In this problem, that length represents one dimension of the rectangle; the other dimension of the rectangle is stated explicitly-the rectangles have a fixed height of 3 .

Construct a function that represents the area $A(x)$ of the cross-sections; the area of a rectangle is the product of its length and width.

$$
A(x)=\text { length } \cdot \text { width }=\sqrt{x} \cdot 3
$$

Apply the formula from Problem 22.1 to calculate the volume of the solid. Use the integration limits from Problem 22.2, as the region and orientation of the crosssections are the same.

$$
\begin{aligned}
\int_{a}^{b} A(x) d x & =\int_{0}^{4} 3 \sqrt{x} d x \\
& =3 \int_{0}^{4} x^{1 / 2} d x \\
& =\left.3 \cdot \frac{x^{3 / 2}}{3 / 2}\right|_{0} ^{4} \\
& =\left.3 \cdot \frac{2}{3} \cdot\left(x^{3 / 2}\right)\right|_{0} ^{4} \\
& =2\left[4^{3 / 2}-0\right] \\
& =2(8)^{2} \\
& =16
\end{aligned}
$$

Note: Problems 22.2-22.4 refer to a region B in the coordinate plane that is bounded by $y=\sqrt{x}, y=0$, and $x=4$.
22.4 Calculate the volume of the solid with base B that has square cross-sections perpendicular to the y-axis.

RULE

OF THUMB:
the cross-sections are perpendicular to the x-axis, solve the equations for y. If they've perpendicular to the y-axis, solve the equations for x.

If the cross-sections are perpendicular to the y-axis, you should draw the representative length horizontally instead of vertically, as illustrated by Figure 22-2. Furthermore, you must express the functions in terms of y instead of x. To do so, solve the equation $y=\sqrt{x}$ for x.

$$
\begin{aligned}
y^{2} & =(\sqrt{x})^{2} \\
x & =y^{2}
\end{aligned}
$$

Figure 22-2 The shaded region B is identical to the region defined in Problem 22.2, but this solid has square cross-sections perpendicular to the y-axis. The right boundary of the region is $x=4$ and the left boundary is $x=y^{2}$.

To calculate a horizontal representative length, find the difference between the right and left boundaries: $4-y^{2}$. The area of each square cross-section is $A(y)=s^{2}=\left(4-y^{2}\right)^{2}=16-8 y^{2}+y^{4}$. Calculate the volume of the solid.

$$
\begin{aligned}
\int_{a}^{b} A(y) d y & =\int_{0}^{2}\left(16-8 y^{2}+y^{4}\right) d y \\
& =\left.\left(16 y-\frac{8 y^{3}}{3}+\frac{y^{5}}{5}\right)\right|_{0} ^{2} \\
& =32-\frac{64}{3}+\frac{32}{5} \\
& =\frac{480-320+96}{15} \\
& =\frac{256}{15}
\end{aligned}
$$

Note that the solution differs from the solution to Problem 22.2. Using crosssections with different orientations usually changes the shape and volume of the ensuing solid, even when the solid has the same two-dimensional base.

Note: Problems 22.5-22.6 refer to region R, which is bounded by the circle $x^{2}+y^{2}=25$.
22.5 Calculate the volume of the solid with base R that has semicircular cross-sections perpendicular to the y-axis.

Because the cross-sections are perpendicular to the y-axis, the cross-sectional area, the function must be written in terms of y. Solve the equation of the circle for x.

$$
\begin{aligned}
x^{2}+y^{2} & =25 \\
x^{2} & =25-y^{2} \\
x & = \pm \sqrt{25-y^{2}}
\end{aligned}
$$

The circular equation can be expressed using two functions written in terms of y : $x=\sqrt{25-y^{2}}$ and $x=-\sqrt{25-y^{2}}$, as illustrated in Figure 22-3.

Region R

Solid with base R

Figure 22-3 The darkened representative length (in the left graph) is horizontal because the cross-sections are perpendicular to the y-axis. The darkened cross-section in the right graph may not look semicircular, but that is due only to the isometric angle at which the graph is renderied.

Calculate the representative length in Figure 22-3 by subtracting the left boundary of the region from the right boundary.

$$
\sqrt{25-y^{2}}-\left(-\sqrt{25-y^{2}}\right)=\sqrt{25-y^{2}}+\sqrt{25-y^{2}}=2 \sqrt{25-y^{2}}
$$

According to Figure 22-3, this length represents the diameter of the semicircular cross-section. Divide it by 2 to determine the radius of the semicircle.

$$
r=\frac{2 \sqrt{25-y^{2}}}{2}=\sqrt{25-y^{2}}
$$

Construct the cross-sectional area function, $A(y)$, by substituting the radius into the formula for the area of a semicircle.

$$
A(y)=\frac{\pi r^{2}}{2}=\frac{\pi\left(\sqrt{25-y^{2}}\right)^{2}}{2}=\frac{\pi}{2}\left(25-y^{2}\right)
$$

Calculate the volume of the solid.
sphere is

$$
\begin{aligned}
\int_{a}^{b} A(y) d y & =\frac{\pi}{2} \int_{-5}^{5}\left(25-y^{2}\right) d y \\
& =\left.\frac{\pi}{2}\left(25 y-\frac{y^{3}}{3}\right)\right|_{-5} ^{5} \\
& =\frac{\pi}{2}\left[\left(125-\frac{125}{3}\right)-\left(-125+\frac{125}{3}\right)\right] \\
& =\frac{\pi}{2}\left[\left(\frac{250}{3}\right)-\left(-\frac{250}{3}\right)\right] \\
& =\frac{\pi}{2}\left(\frac{500}{3}\right)
\end{aligned}
$$

$$
\frac{4}{3} \pi r^{3}=\frac{4(125) \pi}{3}=\frac{500}{3} \pi
$$

and the answer to

Note: Problems 22.5-22.6 refer to region R, which is bounded by the circle $x^{2}+y^{2}=25$.
22.6 Calculate the volume of the solid with base R that has semicircular cross-sections perpendicular to the x-axis. Are the volumes of this solids described Problems 22.5 and 22.6 equal? Why or why not?

In order to calculate the representative length for this solid, you need to solve the equation of the circle for $y: y= \pm \sqrt{25-x^{2}}$. Therefore, the upper boundary of the circle is $y=\sqrt{25-x^{2}}$, and the lower boundary is $y=-\sqrt{25-x^{2}}$. Compute the representative length by subtracting the lower from the upper boundary:

Like
Problem
22.6, this solid
is a hemisphere
(a sphere sliced
in half) of radius
5, just generated in a slightly different way. No matter how you make that half-sphere, it has the same volume.
$\sqrt{25-x^{2}}-\left(-\sqrt{25-x^{2}}\right)=\sqrt{25-x^{2}}+\sqrt{25-x^{2}}=2 \sqrt{25-x^{2}}$. This length represents the diameter of the semicircle (as it did in Problem 22.6), so $r=\frac{2 \sqrt{25-x^{2}}}{2}=\sqrt{25-x^{2}}$. Use the formula for the area of a semicircle to construct $A(x)$.

$$
A(x)=\frac{\pi r^{2}}{2}=\frac{\pi\left(\sqrt{25-x^{2}}\right)^{2}}{2}=\frac{\pi}{2}\left(25-x^{2}\right)
$$

The upper and lower x-boundaries of integration mirror the upper and lower y-boundaries from Problem 22.6 when you apply the volume formula.

$$
\int_{a}^{b} A(x) d x=\frac{\pi}{2} \int_{-5}^{5}\left(25-x^{2}\right) d x
$$

The only difference between this integral and the integral in Problem 22.6 is the variable used (x instead of y). The label used to represent a variable does not affect the value of an integral, so $\frac{\pi}{2} \int_{-5}^{5}\left(25-x^{2}\right) d x=\frac{\pi}{2} \int_{-5}^{5}\left(25-y^{2}\right) d y=\frac{250 \pi}{3}$.

Note: Problems 22.7-22.8 refer to region G, which is bounded by the graphs of $y=-\cos x$ and $y=\sin \frac{x}{2}$ on the interval $[0, \pi]$.
22.7 Calculate the volume of the solid with base G whose cross-sections are equilateral triangles perpendicular to the x-axis.

Consider the darkened representative length illustrated in the left graph of Figure 22-4. It is bounded above by $y=\sin \frac{x}{2}$ and below by $y=-\cos x$. Therefore, it has length $\sin \frac{x}{2}-(-\cos x)=\sin \frac{x}{2}+\cos x$.

Figure 22-4 The darkened rectangle in the left graph represents one side of the equilateral triangle cross-section.

In order to construct $A(x)$, the area of an equilateral triangle with side length s, apply the area formula of an equilateral triangle: $\frac{s^{2} \sqrt{3}}{4}$, as illustrated in Figure 22-5.

$$
\begin{aligned}
\text { area } & =\frac{1}{2} b \cdot h \\
& =\frac{1}{2}(s)\left(\frac{s \sqrt{3}}{2}\right) \\
& =\frac{s^{2} \sqrt{3}}{4}
\end{aligned}
$$

Figure 22-5
To find the height of an equilateral triangle, divide it into two congruent right triangles and use the $30^{\circ}-60^{\circ}$ 90° right triangle theorem from geometry, which states that the leg opposite the 30° angle is half the length of the hypotenuse, and the leg opposite the 60° angle is $\sqrt{3}$ times the length of the other leg.

Substitute $s=\sin \frac{x}{2}+\cos x$ into the area formula to generate $A(x)$.

$$
A(x)=\frac{s^{2} \sqrt{3}}{4}=\frac{\sqrt{3}}{4}\left(\sin \frac{x}{2}+\cos x\right)^{2}=\frac{\sqrt{3}}{4}\left(\sin ^{2} \frac{x}{2}+2 \cos x \sin \frac{x}{2}+\cos ^{2} x\right)
$$

Calculate the volume of the solid.

Note: Problems 22.7-22.8 refer to region G, which is bounded by the graphs of $y=-\cos x$ and $y=\sin \frac{x}{2}$ on the interval $[0, \pi]$.
22.8 Determine the volume of a solid with base G whose cross-sections are semiellipses perpendicular to the x-axis with a fixed height of 2 .

The area of an ellipse is $\pi a b$, where a is half the length of the major axis and b is half the length of the minor axis (for the purposes of this problem, it doesn't matter which is which). Therefore, a semiellipse has area $\frac{\pi a b}{2}=\frac{\pi}{2} a b$.
You are given one dimension of the ellipse-the fixed height of 2 is the distance from the center to the endpoint of one of the axes, so let $a=2$. The representative length $\sin \frac{x}{2}+\cos x$, as calculated in Problem 22.7, is the remaining axis of the ellipse. Divide it by 2 , because b is half the length of the axis: $b=\frac{1}{2}\left(\sin \frac{x}{2}+\cos x\right)$.

Generate the cross-sectional area function $A(x)$ by substituting a and b into the formula for the area of a semiellipse: $\frac{\pi}{2} a b$.

$$
\begin{aligned}
A(x) & =\frac{\pi}{2} a b \\
& =\frac{\pi}{2}(2)\left[\frac{1}{2}\left(\sin \frac{x}{2}+\cos x\right)\right] \\
& =\frac{\pi}{2}\left(\sin \frac{x}{2}+\cos x\right)
\end{aligned}
$$

Calculate the volume of the solid.

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\pi}{2}\left(\sin \frac{x}{2}+\cos x\right) & =\frac{\pi}{2}\left[\left.\left(-2 \cos \frac{x}{2}+\sin x\right)\right|_{0} ^{\pi}\right] \\
& =\frac{\pi}{2}[0-(-2)] \\
& =\pi
\end{aligned}
$$

Disc Method

Circles are the easiest possible cross-sections

22.9 Determine a general formula to calculate the volume of a solid whose circular cross-sections are perpendicular to the x-axis from $x=a$ to $x=b$.

According to Problem 22.1, the volume of the solid is $\int_{a}^{b} A(x) d x$, where $A(x)$ is the area of the a cross-section. Because the cross-sections are circular, $A(x)=\pi[r(x)]^{2}$ given radius $r(x)$. Substitute this into the volume formula from Problem 22.1.

$$
\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi[r(x)]^{2} d x=\pi \int_{a}^{b}[r(x)]^{2} d x \longleftarrow
$$

This formula is referred to as the disc method and is used to calculate the volume

If you're rotating around a horizontal line, this is the disc method formula. Make sure you draw a vertical representative radius and put everything (including boundaries) in terms of x. of rotational solids. If the cross-sections of the solid are perpendicular to the y-axis, use the formula $\pi \int_{a}^{b}[r(y)]^{2} d y \longleftarrow$
22.10 Rotate the region bounded by the graphs of $y=e^{x}, y=0, x=-1$, and $x=1$ about the x-axis and calculate the volume of the resulting solid.

Figure 22-6 illustrates the region described and the three-dimensional solid created by rotating that shaded region about the x-axis.

When you rotate around a vertical line, use this formula and draw a horizontal representative radius and put everything in terms of y.
 rotated about the x-axis, it creates a circular cross-section of the solid, the radius of which is the length is the segment itself.

The darkened length in Figure 22-6 is a representative radius of the solid.
Calculate its length by subtracting the lower boundary $(y=0)$ from the upper boundary ($y=e^{x}$): $r(x)=e^{x}-0=e^{x}$.

22.II Rotate the region in the first quadrant bounded by $y=e^{x}, x=0$, and $y=e$ about the y-axis and calculate the volume of the resulting solid.

When rotating about a vertical axis, use a horizontal representative radius that extends from the left to the right boundary of the region (as illustrated in

Figure 22-7). You must also ensure that the left and right boundary equations are expressed in terms of y, so solve $y=e^{x}$ for x.

$$
\begin{aligned}
y & =e^{x} \\
\ln y & =\ln e^{x} \\
\ln y & =x
\end{aligned}
$$

Just like in the last section, a horizontal representative length means you need to solve the boundary equations for x (to put them in terms of y) and use y boundaries on the integral.

Find the length of $r(y)$ in Figure 22-7 by subtracting the left boundary ($x=0$) from the right boundary $(x=\ln y)$ of the region: $r(y)=\ln y-0=\ln y$. Substitute this expression into the disc method formula, using $a=1$ and $b=e$ as the limits of integration (because they define, respectively, the lower and upper y-boundaries of the region).

$$
\pi \int_{a}^{b}[r(y)]^{2} d y=\pi \int_{1}^{e}(\ln y)^{2} d y
$$

Apply integration by parts: $u=(\ln y)^{2}$ and $d v=d y$, so $d u=\frac{2 \ln y}{y} d y$ and $v=y$.

$$
\begin{aligned}
\pi \int_{1}^{e}(\ln y)^{2} d y & =\left.\pi\left[y(\ln y)^{2}-\int \frac{\not p \cdot 2 \ln y}{\not p} d y\right]\right|_{1} ^{e} \\
& =\left.\pi\left[y(\ln y)^{2}-2 \int \ln y d y\right]\right|_{1} ^{e}
\end{aligned}
$$

According to Problem 21.3, $\int \ln y d y=y \ln y-y$.

$$
\begin{aligned}
& =\pi\left[y(\ln y)^{2}-2(y \ln y-y)\right]_{1}^{e} \\
& =\pi\left[e(\ln e)^{2}-2(e \ln e-e)\right]-\left[1(\ln 1)^{2}-2(1 \ln 1-1)\right] \\
& =\pi[e-2(e-e)]-[1 \cdot 0-2(0-1)] \\
& =\pi(e-2)
\end{aligned}
$$

22.12 Rotate the region bounded by $y=x \sin x$ and the x-axis between $x=0$ and $x=\pi$ about the x-axis and calculate the volume of the resulting solid.

Consider Figure 22-8, which illustrates the region, the representative radius, and the three-dimensional solid of rotation.

Figure 22-8 Using the disc method to calculate the volume generated by rotating a region about the x-axis requires boundary functions in terms of x, limits of integration in terms of x, and a vertical representative radius.

Find $r(x)$ by subtracting the lower boundary from the upper boundary: $r(x)=x \sin x-0=x \sin x$.

$$
\begin{aligned}
\pi \int_{a}^{b}[r(x)]^{2} d x & =\pi \int_{0}^{\pi}(x \sin x)^{2} d x \\
& =\pi \int_{0}^{\pi} x^{2} \sin ^{2} x d x
\end{aligned}
$$

$$
\begin{aligned}
\pi \int_{0}^{\pi} x^{2} \sin ^{2} x d x & \left.=\pi\left[x^{2}\left(\frac{1}{2} x-\frac{1}{4} \sin 2 x\right)-2 x\left(\frac{x^{2}}{4}+\frac{1}{8} \cos 2 x\right)+2\left(\frac{x^{3}}{12}+\frac{1}{16} \sin 2 x\right)\right]\right]_{0}^{\pi} \\
& =\pi\left[\left(\frac{x^{3}}{2}-\frac{x^{2} \sin 2 x}{4}\right)-\left(\frac{x^{3}}{2}+\frac{x \cos 2 x}{4}\right)+\left(\frac{x^{3}}{6}+\frac{\sin 2 x}{8}\right)\right]_{0}^{\pi} \\
& =\pi\left[\left(\frac{\pi^{3} / 2}{2}-0-\frac{\pi^{3}}{2} / 2-\frac{\pi}{4}+\frac{\pi^{3}}{6}+0\right)-(0-0+0)\right] \\
& =\pi\left(-\frac{\pi}{4}+\frac{\pi^{3}}{6}\right) \\
& =\frac{\pi\left(2 \pi^{3}-3 \pi\right)}{12} \\
& =\frac{\pi^{2}\left(2 \pi^{2}-3\right)}{12}
\end{aligned}
$$

22.13 Rotate the region bounded by the graphs of $y=x^{3}-x+1$ and $y=1$ about the line $y=1$ and calculate the volume of the resulting solid.

As illustrated by Figure 22-9, the upper and lower boundaries reverse at $x=0$. Therefore, you must calculate two separate volumes, one for the region on the x-interval $[-1,0]$, and one for the region on the x-interval $[0,1]$.

Figure 22-9 Because the boundaries for the two regions are reversed, you must use different representative radii for each region, denoted $r_{1}(x)$ and $r_{2}(x)$. Though the bounding functions are the same $\left(y=x^{3}-x+1\right.$ and $\left.y=1\right)$, each serves once as an upper boundary and once as a lower boundary.

Apply the disc method twice, using the representative radii identified in Figure 22-9; add the results.
22.14 Rotate the region bounded by the graphs of $x=y^{2}-6 y+4$ and $x=-4$ about the line $x=-4$ and calculate the volume of the resulting solid.

Consider Figure 22-10, which illustrates the region and its representative radius.

Figure 22-10 Rotating about a vertical axis requires a horizontal representative radius, whose length $r(y)$ is equal to the right boundary $(x=-4)$ minus the left boundary $\left(x=y^{2}-6 y+4\right)$.

Substitute $r(y)$ into the disc method formula, using $y=2$ and $y=4$ as the lower and upper limits of integration, respectively.

$$
\begin{aligned}
& \pi \int_{2}^{4}\left[-4-\left(y^{2}-6 y+4\right)\right]^{2} d y \\
= & \pi \int_{2}^{4}\left[-y^{2}+6 y-8\right]^{2} d y \\
= & \pi \int_{2}^{4}\left(y^{4}-12 y^{3}+52 y^{2}-96 y+64\right) d y \\
= & \left.\pi\left(\frac{y^{5}}{5}-3 y^{4}+\frac{52 y^{3}}{3}-48 y^{2}+64 y\right)\right|_{2} ^{4} \\
= & \pi\left(\frac{512}{15}-\frac{496}{15}\right) \\
= & \frac{16 \pi}{15}
\end{aligned}
$$

22.15 Use the disc method to prove that the volume of a right circular cylinder with radius R and height h is $\pi R^{2} h$. (Assume R and h are positive real numbers.)

Consider the rectangular region in the first quadrant of the coordinate plane bounded by $x=0, x=R, y=0$, and $y=h$, as illustrated by Figure 22.11. If this region is rotated about the y-axis, it produces a right circular cylinder with radius R and height h.

Figure 22-11 Because you are rotating the shaded rectangular region about a vertical axis, you must use a horizontal representative radius, $r(y)$; its length is the right boundary $(x=R)$ minus the left boundary $(x=0)$. The limits of integration must be in terms of y as well: $y=0$ and $y=h$.
Apply the disc method.

be pulled out of the integral because it's a constant.

$$
\begin{aligned}
\pi \int_{a}^{b}[r(y)]^{2} d y & =\pi \int_{0}^{h}(R)^{2} d y \\
& =\pi R^{2} \int_{0}^{h} d y \\
& =\left.\pi R^{2}(y)\right|_{0} ^{h} \\
& =\pi R^{2}[h-0] \\
& =\pi R^{2} h
\end{aligned}
$$

22.16 Use the disc method to prove that the volume of a sphere with radius R is $\frac{4}{3} \pi R^{3}$.
(Assume R is a positive real number.) (Assume R is a positive real number.)

A circle centered at the origin with radius R has equation $x^{2}+y^{2}=R^{2}$. Solve the equation for y to determine the equation of the semicircle pictured in Figure 22-12.

Apply the disc method, writing the representative radius and limits of integration in terms of x.

$$
\begin{aligned}
\begin{aligned}
& \text { Because } \\
& R \text { is a constant, } \\
& \int R_{a}^{b}[r(x)]^{2} d x=\pi \int_{-R}^{R}\left[\sqrt{R^{2}-x^{2}}\right]^{2} d x \\
&=\pi \int_{-R}^{R}\left(R^{2}-x^{2}\right) d x \\
&=\left.\pi\left(R^{2} x-\frac{x^{3}}{3}\right)\right|_{-R} ^{R} \\
& R^{2} d x \neq \frac{R^{3}}{3} \text { because } \\
& \text { youre integrating with } \\
& \text { respect to } x, \text { not } R .
\end{aligned} & =\pi\left[\left(R^{2}-\frac{R^{3}}{3}\right)-\left(-R^{3}-\frac{-R^{3}}{3}\right)\right] \\
& =\pi\left[\left(\frac{3 R^{3}-R^{3}}{3}\right)-\left(\frac{-3 R^{3}+R^{3}}{3}\right)\right] \\
& =\pi\left[\frac{2 R^{3}}{3}+\frac{2 R^{3}}{3}\right] \\
& =\frac{4 \pi R^{3}}{3}
\end{aligned}
$$

(

22.17 Use the disc method to prove that the volume of a right circular cone with radius R and height h is $\frac{1}{3} \pi R^{2} h$. (Assume R and h are nonzero real numbers.)

Consider the first quadrant region bounded by $x=0, y=0, y=h$, and the segment
 with endpoints $(0,0)$ and (R, h), as illustrated by Figure 22-13. Rotating this region about the y-axis generates a right circular cone with height h and radius R.

Figure 22-13 The linear equation serving as the region's right boundary must be solved for x, because the disc method integrand and limits of integration must be written in terms of y when revolving around a vertical axis.

The equation of the line connecting the origin and the point (R, h) is $y=\frac{h}{R} x$.
Solve the equation for y.
The slope of the line is

$$
\frac{h-0}{R-0}=\frac{h}{R}
$$

$$
\begin{aligned}
y & =\frac{h}{R} x \\
\frac{R}{h} y & =x
\end{aligned}
$$

Determine $r(y)$, the length of the representative radius: $\frac{R}{h} y-0=\frac{R}{h} y$, and apply the disc method.

$$
\begin{aligned}
\pi \int_{a}^{b}[r(y)]^{2} d y & =\pi \int_{0}^{h}\left(\frac{R}{h} y\right)^{2} d y \\
& =\pi \cdot \frac{R^{2}}{h^{2}} \int_{0}^{h} y^{2} d y \\
& =\left.\frac{\pi R^{2}}{h^{2}}\left(\frac{y^{3}}{3}\right)\right|_{0} ^{h} \\
& =\frac{\pi R^{2}}{h^{2}}\left(\frac{h^{3}}{3}\right) \\
& =\frac{\pi R^{2} h}{3}
\end{aligned}
$$

Washer Method

Find volumes even if the "solids" aren't solid

Note: Problems 22.18-22.19 refer to region K in Figure 22-14.
22.18 Explain why the disc method cannot be used to determine the volume of the solid generated when K is rotated about the line $y=c$ in Figure 22-14.

In other words, $f(x)$ is always above $g(x)$.

Figure 22-14 Region K is bounded by $f(x), g(x), x=a$, and $x=b$. Notice that $f(x) \geq g(x)$ for all x on the interval $[a, b]$.

In Problems
22.10-22.17 the axis you rotated around was also one of the boundaries of the region. When that's not true, you have to use either the washer method or the shell method.

Find the
lengths of $R(x)$ and $r(x)$ the same way you did with the disc method-the upper boundary of each radius minus its lower bound ary.

Notice that a gap separates the lower boundary, $g(x)$, from the axis of rotation, $x=c$. This gap is rotated about the line $y=c$ as well, resulting in a hollow cavity within the rotational solid, which is clearly visible in Figure 22-14. The disc method can be used only to calculate the volume of a solid with circular crosssections, which is not true of the rotational solid in Figure 22-14.

Note: Problems 22.18-22.19 refer to region K in Figure 22-14.
22.19 Use the washer method to construct a definite integral representing the volume of the rotational solid in Figure 22-14.

The washer method, like the disc method, uses representative radii that are perpendicular to the axis of rotation. However, it uses two radii: the outer radius (which extends from the axis of rotation to the outer boundary of the region) and the inner radius (which extends from the axis of rotation to the inner boundary of the region). In Figure 22-15, $R(x)$ represents the outer radius and $r(x)$ represents the inner radius.

Figure 22-15 Both the inner and outer radii extend from the axis of rotation to an edge of the region. The inner radius extends to the edge that is closer to the rotational axis and the outer radius extends to the edge that is farther away.

According to the washer method, the volume of the rotational solid is $\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x$. Substitute the values of the radii determined in Figure 22-15.

$$
\pi \int_{a}^{b}\left([f(x)-c]^{2}-[g(x)-c]^{2}\right) d x
$$

22.20 Use the washer method to construct a definite integral representing the volume of the rotational solid in Figure 22-16.

Figure 22-16
Subtract c from $f(y)$ and $g(y)$, respectively, to calculate the lengths of $R(y)$ and $r(y)$. In other words, subtract the left boundary from the right boundary when given horizontal radii.

This region is similar to the region pictured in Figure 22-14, but because the region is rotated about a vertical axis, the functions and limits of integration must be written in terms of y.

Figure 22-17 Note that the outer radius $R(x)$ extends from the axis of rotation $(y=0)$ to $y=\cos x$ (the region boundary that's farther away from the x-axis), and the inner radius $r(x)$ extends from the axis of rotation to $y=\sin x$ (the region boundary closer to the x-axis).

Figure 22-17.
Substitute $R(x)$ and $r(x)$ into the washer method formula.

$$
\begin{aligned}
\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x & =\pi \int_{a}^{b}\left[(\cos x)^{2}-(\sin x)^{2}\right] d x \\
& =\pi \int_{a}^{b}\left(\cos ^{2} x-\sin ^{2} x\right) d x
\end{aligned}
$$

The region's left limit of integration is $a=0$. To determine the right limit b, you must identify the x-value at which $\cos x$ and $\sin x$ intersect. Set the functions equal and solve for x.

$$
\begin{aligned}
\cos x & =\sin x \\
\frac{\cos x}{\cos x} & =\frac{\sin x}{\cos x} \\
1 & =\tan x \\
x & =\frac{\pi}{4}
\end{aligned}
$$

Substitute a and b into the integral.

$$
=\pi \int_{0}^{\pi / 4}\left(\cos ^{2} x-\sin ^{2} x\right) d x
$$

According to a double angle identity, $\cos 2 x=\cos ^{2} x-\sin ^{2} x$.

$$
=\pi \int_{0}^{\pi / 4} \cos 2 x d x
$$

Apply variable substitution: $u=2 x$ and $\frac{d u}{2}=d x$.

$$
\begin{aligned}
& =\pi \cdot \frac{1}{2} \int_{0}^{\pi / 2} \cos u d u \\
& =\left.\frac{\pi}{2}(\sin u)\right|_{0} ^{\pi / 2} \\
& =\frac{\pi}{2}\left(\sin \frac{\pi}{2}-\sin 0\right) \\
& =\frac{\pi}{2}
\end{aligned}
$$

Note: Problems 22.21-22.22 refer to the region M in the first quadrant that is bounded by the graphs of $y=\sin x, y=\cos x$, and $x=0$.
22.22 Calculate the volume of the solid generated by rotating M about the line $y=-1$.

Like Problem 22.21, region M is rotated about a horizontal axis. However, $R(x)$ and $r(x)$ are different due to the different axis of rotation, as illustrated by Figure 22-18.

Figure 22-18 The outer and inner radii are each exactly one unit longer than the radii in Problem 22.21, because the axis of rotation is exactly one unit further away from the region.

Apply the washer method using the limits of integration from Problem 22.21.

$$
\begin{aligned}
& =\pi \int_{0}^{\pi / 4}\left[(\cos x+1)^{2}-(\sin x+1)^{2}\right] d x \\
& =\pi \int_{0}^{\pi / 4}\left[\cos ^{2} x+2 \cos x+1-\left(\sin ^{2} x+2 \sin x+1\right)\right] d x \\
& =\pi \int_{0}^{\pi / 4}\left[\cos ^{2} x+2 \cos x \not 1-\sin ^{2} x-2 \sin x \not 1\right] d x
\end{aligned}
$$

Regroup the integrand into two integrals.

$$
=\pi \int_{0}^{\pi / 4}\left(\cos ^{2} x-\sin ^{2} x\right) d x+2 \pi \int_{0}^{\pi / 4}(\cos x-\sin x) d x
$$

According to Problem 22.21, $\pi \int_{0}^{\pi / 4}\left(\cos ^{2} x-\sin ^{2} x\right) d x=\frac{\pi}{2}$.
This isn't the only acceptable answer. It would have been perfectly fine to stop simplifying two steps ago, but 1 suppose this does look a little more compact since it's a single fraction.

Note: Problems 22.23-22.24 refer to region J, which is bounded by the graphs of $y=\frac{x}{2}$ and $y=\sqrt{x}$.
22.23 Calculate the volume of the solid generated by rotating J about the x-axis.

Consider Figure 22-19, which illustrates the region and the radii necessary to apply the washer method. To determine the points of intersection, set the functions equal and solve for x.

Figure 22-19 Determine $R(x)$ and $r(x)$ by subtracting the top boundary of each radius from its bottom boundary: $R(x)=\sqrt{x}-0=\sqrt{x}$ and $r(x)=\frac{x}{2}-0=\frac{x}{2}$.

These x-values represent the limits of integration for the washer method: $a=0$ and $b=4$.

$$
\begin{aligned}
& =\pi \int_{0}^{4}\left[(\sqrt{x})^{2}-\left(\frac{x}{2}\right)^{2}\right] d x \\
& =\pi \int_{0}^{4}\left(x-\frac{x^{2}}{4}\right) d x \\
& =\left.\pi\left[\frac{x^{2}}{2}-\frac{x^{3}}{12}\right]\right|_{0} ^{4} \\
& =\pi\left(8-\frac{16}{3}\right) \\
& =\frac{8 \pi}{3}
\end{aligned}
$$

Note: Problems 22.23-22.24 refer to region J, which is bounded by the graphs of $y=\frac{x}{2}$ and
$y=\sqrt{x}$ $y=\sqrt{x}$.
22.24 Calculate the volume of the solid generated by rotating J about the y-axis.

Because the rotational axis is vertical, the radii (and therefore the boundary functions) must be written in terms of y. Solve the equations for x to get $x=2 y$ and $x=y^{2}$. Figure 22-20 illustrates region J and the horizontal outer and inner radii, written in terms of y.

Figure 22-20 Find the lengths of $R(y)$ and $r(y)$ by subtracting the left boundaries from the right boundaries: $R(y)=2 y-0$ and $r(y)=y^{2}-0$.

Note: Problems 22.25-22.26 refer to region A, which is bounded by the graphs of $y=3-x^{2}$ and the x-axis.
22.25 Calculate the volume of the solid generated by rotating A about the line $y=-2$.

Graph the region, the axis of rotation, the outer radius, and the inner radius (as illustrated by Figure 22-21) and calculate the lengths of the radii.

Figure 22-21 The inner radius extends from the x-axis $(y=0)$ to the axis of rotation $(y=-2)$, so $r(x)=0-(-2)=2$. The outer radius extends from the curve $y=3-x^{2}$ to the axis of rotation, so $R(x)=\left(3-x^{2}\right)-(-2)=5-x^{2}$.

Determine the limits of integration by setting the boundaries of the region equal and solving for x.

$$
\begin{aligned}
3-x^{2} & =0 \\
x^{2} & =3 \\
x & = \pm \sqrt{3}
\end{aligned}
$$

Substitute $R(x), r(x), a=-\sqrt{3}$, and $b=\sqrt{3}$ into the washer method formula.

$$
\begin{aligned}
\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x & =\pi \int_{-\sqrt{3}}^{\sqrt{3}}\left[\left(5-x^{2}\right)^{2}-(2)^{2}\right] d x \\
& =\pi \int_{-\sqrt{3}}^{\sqrt{3}}\left(25-10 x^{2}+x^{4}-4\right) d x \\
& =\pi \int_{-\sqrt{3}}^{\sqrt{3}}\left(x^{4}-10 x^{2}+21\right) d x \\
& =\left.\pi\left(\frac{x^{5}}{5}-\frac{10 x^{3}}{3}+21 x\right)\right|_{-\sqrt{3}} ^{\sqrt{3}} \\
& =\pi\left[\left(\frac{9 \sqrt{3}}{5}-10 \sqrt{3}+21 \sqrt{3}\right)-\left(-\frac{9 \sqrt{3}}{5}+10 \sqrt{3}-21 \sqrt{3}\right)\right] \\
& =\pi\left(\frac{18 \sqrt{3}-100 \sqrt{3}+210 \sqrt{3}}{5}\right) \\
& =\frac{128 \pi \sqrt{3}}{5}
\end{aligned}
$$

Note: Problems 22.25-22.26 refer to region A, which is bounded by the graphs of $y=3-x^{2}$ and the x-axis.
22.26 Calculate the volume of the solid generated by rotating A about the line $y=3$.

Consider Figure 22-22, which identifies the region to be rotated and the radii necessary to apply the washer method.

Figure 22-22
The inner radius extends from the axis of rotation $(y=3)$ to the inner boundary of the region $\left(y=3-x^{2}\right)$. The outer radius extends from $y=3$ to $y=0$.

Note: Problems 22.27-22.28 refer to the region L, which is bounded by the graphs of $x=\frac{1}{y}$, $x=0, y=\frac{1}{2}$, and $y=4$.
22.27 Calculate the volume of the solid generated by rotating L about the line $x=-4$.

Consider Figure 22-23, which illustrates the region and the radii required to apply the washer method.

Figure 22-23 The graph of $x=\frac{1}{y}$ is identical to the graph of $y=\frac{1}{x}$. Solve the first equation for y or the second equation for x to generate the other equation.

Determine the lengths of the radii.

$$
\begin{aligned}
R(y) & =\frac{1}{y}-(-4)
\end{aligned}=\frac{1}{y}+4 .
$$

Apply the washer method.

$$
\begin{aligned}
\pi \int_{a}^{b}\left([R(y)]^{2}-[r(y)]^{2}\right) d y & =\pi \int_{1 / 2}^{4}\left[\left(\frac{1}{y}+4\right)^{2}-(4)^{2}\right] d y \\
& =\pi \int_{1 / 2}^{4}\left(\frac{1}{y^{2}}+\frac{8}{y}+16-16\right) d y \\
& =\pi \int_{1 / 2}^{4}\left(y^{-2}+8 y^{-1}\right) d y \\
& =\left.\pi\left(-\frac{1}{y}+8 \ln |y|\right)\right|_{1 / 2} ^{4} \\
& =\pi\left[\left(-\frac{1}{4}+8 \ln 4\right)-\left(-2+8 \ln \frac{1}{2}\right)\right] \\
& =\pi\left[\left(2-\frac{1}{4}\right)+8\left(\ln 4-\ln \frac{1}{2}\right)\right]
\end{aligned}
$$

The
boundaries of the integral are $a=1 / 2$ and $b=4$, because you need to use y limits of integration with horizontal radii.

Apply the $\operatorname{logarithmic~property~} \log a-\log b=\log \frac{a}{b}$.

$$
\begin{aligned}
& =\pi\left[\frac{7}{4}+8\left(\ln \frac{4}{1 / 2}\right)\right] \\
& =\pi\left[\frac{7}{4}+8 \ln 8\right]
\end{aligned}
$$

You're still rotating around a vertical axis (like Problem 22.26) so the limits of integration are the same and you'll still use horizontal radii, but those radii will be totally
The axis of rotation $x=6$ is to the right of the region-unlike the axis of rotation $x=-4$ in Problem 22.26, which was left of the region. Therefore, the region boundary that was once closer to the rotational axis is now farther away, and vice versa. The radii changes are reflected in Figure 2-24.
Note: Problems 22.27-22.28 refer to the region L, which is bounded by the graphs of $x=\frac{1}{y}$, $x=0, y=\frac{1}{2}$, and $y=4$.
22.28 Calculate the volume of the solid generated by rotating L about the line $x=6$.

Figure 22-24 The right boundary of each radius is now $x=6$, so the length of each radius is 6 minus its left boundary.

Apply the washer method.

$$
\begin{aligned}
\pi \int_{a}^{b}\left([R(y)]^{2}-[r(y)]^{2}\right) d y & =\pi \int_{1 / 2}^{4}\left[(6)^{2}-\left(6-\frac{1}{y}\right)^{2}\right] d y \\
& =\pi \int_{1 / 2}^{4}\left[36-\left(36-\frac{12}{y}+\frac{1}{y^{2}}\right)\right] d y \\
& =\pi \int_{1 / 2}^{4}\left(\frac{12}{y}-y^{-2}\right) d y \\
& =\left.\pi\left(12 \ln |y|+\frac{1}{y}\right)\right|_{1 / 2} ^{4} \\
& =\pi\left[\left(12 \ln 4+\frac{1}{4}\right)-\left(12 \ln \frac{1}{2}+2\right)\right] \\
& =\pi\left[-\frac{7}{4}+12\left(\ln 4-\ln \frac{1}{2}\right)\right]
\end{aligned}
$$

Apply the logarithmic property $\log a-\log b=\log \frac{a}{b}$.

$$
=\pi\left[12(\ln 8)-\frac{7}{4}\right]
$$

Shell Method

something to fall back on when the washer method fails

22.29 If the region pictured in Figure 22-25 is rotated about the line $x=c$, the shell method calculates the volume of the resulting solid according to the formula $2 \pi \int_{a}^{b} d(x) h(x) d x$. Explain how to determine the values of $a, b, d(x)$, and $h(x)$.

Figure 22-25
In order to calculate the volume of this rotational solid, the shell method requires only one representative radius.

Unlike the disc and washer methods, the shell method uses a representative radius parallel to the axis of rotation, rather than perpendicular to the axis. Because the region in Figure 22-25 is rotated about a vertical line, so you must therefore use a vertical representative radius. A vertical radius must be written in terms of x (as must the integrand and its boundaries). Notice that the boundaries of the region along the x-axis are $x=a$ and $x=b$.

Determine the length of the representative radius $h(x)$ in Figure 22-25 by subtracting its bottom boundary from its top boundary: $h(x)=f(x)-g(x)$. The remaining variable expression in the shell method formula, $d(x)$, describes the distance from the axis of rotation to $h(x)$. Calculate the length of $d(x)$ by subtracting the left boundary from the right boundary. While the rotational axis has an explicit location along the x-axis $(x=c), h(x)$ does not, so describe its position along the x-axis generically, as " x." In Figure 22-25, $d(x)$ is equal to the
 x-position of $h(x)$ minus the x-position of the axis of rotation: $d(x)=x-c$.

Note: Problems 22.30-22.32 refer to region H, which is bounded by the graphs of $y=x \sin x$, $y=0, x=0$, and $x=\pi$.
22.30 Problem 22.12 uses the disc method to determine the volume generated when H is rotated about the x-axis. Explain why the washer method cannot be applied to determine the volume if H is rotated about the y-axis.

Unless the radius is horizontal, in which case you refer to the radius as "y."

If the region were rotated about the y-axis, the washer method would require the use of horizontal radii. Therefore, the function $y=x \sin x$ would need to be rewritten in terms of y, but to do so would require solving the equation for x, and that is not possible.

Note: Problems 22.30-22.32 refer to region H, which is bounded by the graphs of $y=x \sin x$, $y=0, x=0$, and $x=\pi$.

The fancy name for the shell method is "the method of cylindrical shells."
22.3I Use the shell method to calculate the volume of the solid generated by rotating H about the y-axis.

Consider Figure 22-26, which contains the region to be rotated and a graphical representation of $d(x)$ and $h(x)$, the expressions needed to apply the shell method formula.

Figure 22-26 Using the shell method to calculate the volume of a region rotated about the y-axis (a vertical line) requires a vertical representative radius $h(x)$ and the boundaries of the region along the x-axis: $a=0$ and $b=\pi$.

The radius $h(x)$ appears to the right of the rotational axis $(y=0)$, at position x. Find $d(x)$, the difference of the x-positions of $h(x)$ and the rotational axis: $d(x)=x-0=x$. Next, define $h(x)$, the difference of the region's upper boundary $(y=x \sin x)$ and its lower boundary $(y=0): h(x)=x \sin x-0=x \sin x$. Substitute $d(x), h(x), a=0$, and $b=\pi$ into the shell method formula.

$$
\begin{aligned}
2 \pi \int_{a}^{b} d(x) h(x) d x & =2 \pi \int_{0}^{\pi} x \cdot x \sin x d x \\
\longrightarrow & =2 \pi \int_{0}^{\pi} x^{2} \sin x d x \\
& =\left.2 \pi\left(-x^{2} \cos x+2 x \sin x+2 \cos x\right)\right|_{0} ^{\pi} \\
& =2 \pi\left[\left(-\pi^{2} \cos \pi+2 \pi \sin \pi+2 \cos \pi\right)-(0+0+2)\right] \\
& =2 \pi\left(\pi^{2}+0-2-2\right) \\
& =2 \pi\left(\pi^{2}-4\right)
\end{aligned}
$$

Note: Problems 22.30-22.32 refer to region H, which is bounded by the graphs of $y=x \sin x$, $y=0, x=0$, and $x=\pi$.
22.32 Find the volume generated when H is rotated about the line $x=\frac{5 \pi}{4}$.

Except for $d(x)$, this problem is nearly identical to Problem 22.31, as illustrated by Figure 22-27.

Figure 22-27 Recall that $d(x)$ represents the horizontal distance between the axis of rotation $x=\frac{5 \pi}{4}$ and the radius $h(x)$.

To calculate $d(x)$, first note the relative positions of the radius and rotational axis- $d(x)$ equals the difference of their x-positions: $d(x)=\frac{5 \pi}{4}-x$. Apply the shell method.

$$
2 \pi \int_{a}^{b} d(x) h(x) d x=2 \pi \int_{0}^{\pi}\left(\frac{5 \pi}{4}-x\right)(x \sin x) d x
$$

Integrate by parts: $u=\frac{5 \pi}{4}-x, d v=x \sin x d x, d u=-d x$, and $v=-x \cos x+\sin x$.

$$
\begin{aligned}
& \left.=2 \pi\left[\left(\frac{5 \pi}{4}-x\right)(-x \cos x+\sin x)-\int(-x \cos x+\sin x)(-d x)\right]\right]_{0}^{\pi} \\
& =\left.2 \pi\left[\left(\frac{5 \pi}{4}-x\right)(-x \cos x+\sin x)-\int x \cos x d x+\int \sin x d x\right]\right|_{0} ^{\pi}
\end{aligned}
$$

Integrate $d v=x \sin x b y$ parts. Use u_{2} and v_{2} so that you don't get the u's and v's mixed up: $u_{2}=x, d\left(u_{2}\right)=d x$, $d\left(v_{2}\right)=\sin x d x$, and $v_{2}=-\cos x$.

Use integration by parts to determine that $\int x \cos x d x=x \sin x+\cos x$.

$$
\begin{aligned}
& =\left.2 \pi\left[\left(\frac{5 \pi}{4}-x\right)(-x \cos x+\sin x)-(x \sin x+\cos x)-\cos x\right]\right|_{0} ^{\pi} \\
& =\left.2 \pi\left[\left(\frac{5 \pi}{4}-x\right)(-x \cos x+\sin x)-x \sin x-2 \cos x\right]\right|_{0} ^{\pi} \\
& =2 \pi\left[\left(\frac{\pi}{4}(\pi)+2\right)-(-2)\right] \\
& =2 \pi\left[\frac{\pi}{4}(\pi)+4\right] \\
& =2 \pi\left(\frac{\pi^{2}+16}{4}\right) \\
& =\frac{\pi\left(\pi^{2}+16\right)}{2}
\end{aligned}
$$

22.33 According to Problem 22.23, the volume of the solid generated by rotating the region bounded by $y=\frac{x}{2}$ and $y=\sqrt{x}$ about the x-axis is equal to $\frac{8 \pi}{3}$. Verify the solution using the shell method.

Rotating the region about a horizontal axis requires a horizontal radius and an integral in terms of y. Solve $y=\frac{x}{2}$ and $y=\sqrt{x}$ for x and construct a graph of the region that identifies the segments $d(y)$ and $h(y)$, as demonstrated in Figure 22-28.

Figure 22-28 The length of the radius $h(y)$ is the difference of its right and left boundaries; $d(y)$ is the vertical distance between the radius (y) and the axis of rotation (0). Let $a=0$ and $b=2$, the upper and lower boundaries of the region along the y-axis.

Apply the shell method.

$$
\begin{aligned}
2 \pi \int_{a}^{b} d(y) h(y) d y & =2 \pi \int_{0}^{2} y\left(2 y-y^{2}\right) d y \\
& =2 \pi \int_{0}^{2}\left(2 y^{2}-y^{3}\right) d y \\
& =\left.2 \pi\left(\frac{2 y^{3}}{3}-\frac{y^{4}}{4}\right)\right|_{0} ^{2} \\
& =2 \pi\left[\left(\frac{16}{3}-4\right)\right] \\
& =2 \pi\left(\frac{16}{3}-12\right. \\
& =\frac{8 \pi}{3}
\end{aligned}
$$

22.34 According to Problem 22.25, the volume of the solid generated by rotating the region bounded by $y=3-x^{2}$ and the x-axis about the line $y=-2$ is $\frac{128 \pi \sqrt{3}}{5}$. Verify the solution using the shell method.

Draw a graph of the region indicating $d(y)$ and $h(y)$, as illustrated by Figure 22-29. Note that the axis of rotation is horizontal, so the radius used in the shell method must also be horizontal, and the integrand and the limits of integration must be written in terms of y. Solve $y=3-x^{2}$ for x.

$$
\begin{aligned}
& y=3-x^{2} \\
& x^{2}=3-y \\
& x= \pm \sqrt{3-y}
\end{aligned}
$$

The SHELL method uses PARALLEL radii. It rhymes (sort of).

The portion of the parabola that is right of the x-axis has equation $x=\sqrt{3-y}$, and the portion of the parabola left of the x-axis has equation $x=-\sqrt{3-y}$, as indicated in Figure 22-29.

Figure 22-29 The equation $y=3-x^{2}$ must be rewritten in terms of y in order to apply the shell method.

Generate $h(y)$ by calculating the difference of its right and left boundaries.

$$
h(y)=\sqrt{3-y}-(-\sqrt{3-y})=\sqrt{3-y}+\sqrt{3-y}=2 \sqrt{3-y}
$$

Define $d(y)$ as the vertical distance between the radius (at position " y " along the y-axis) and the axis of rotation (at $y=-2$).

$$
d(y)=y-(-2)=y+2
$$

Subtract them in the right order-whatever's above minus whatever's underneath. In this case, $h(y)$ is
above the x-axis above the x-axis and the rotational axis is below it.

The boundaries of the region along the y-axis are $a=0$ and $b=3$. Substitute a, b, $d(y)$, and $h(y)$ into the shell method formula.

$$
\begin{aligned}
2 \pi \int_{a}^{b} d(y) h(y) d y & =2 \pi \int_{0}^{3}(y+2)(2 \sqrt{3-y}) d y \\
& =4 \pi \int_{0}^{3}(y+2)(\sqrt{3-y}) d y
\end{aligned}
$$

Integrate by parts: $u=y+2, d v=\sqrt{3-y} d y, d u=d y$, and $v=-\frac{2}{3}(3-y)^{3 / 2}$.

$$
\begin{aligned}
& =4 \pi\left[(y+2)\left(-\frac{2}{3}\right)(3-y)^{3 / 2}-\frac{4}{15}(3-y)^{5 / 2}\right]_{0}^{3} \\
& =4 \pi\left[0-\left[2\left(-\frac{2}{3}\right) 3^{3 / 2}-\frac{4}{15}\left(3^{5 / 2}\right)\right]\right] \\
& =4 \pi\left(\frac{4}{3} 3^{2 / 2} \cdot 3^{1 / 2}+\frac{4}{15} \cdot 3^{4 / 2} \cdot 3^{1 / 2}\right) \\
& =4 \pi\left(\frac{4}{\not \partial} \not p \sqrt{3}+\frac{4}{15} \cdot 3^{2} \cdot \sqrt{3}\right) \\
& =4 \pi\left(\frac{20 \sqrt{3}+12 \sqrt{3}}{5}\right) \\
& =4 \pi\left(\frac{32 \sqrt{3}}{5}\right) \\
& =\frac{128 \pi \sqrt{3}}{5}
\end{aligned}
$$

Chapter 23

ADVANCED APPLICATIONS OF DEFINITE INTEGRALS

More problems involving bounded integrals

In the preceding chapters, definite integrals have been applied to the calculation of area and volume, the identification of a function's average value, and the measurement of accumulated change. Though the majority of definite integrals are used toward one of those ends in an elementary calculus class, additional applications of the definite integral abound. This chapter discusses a small and diverse remnant of those applications: arc length, surface area of rotation, and centroids.

If you can calculate the area between curves and the volume of solids (created either by rotating something or slicing something into known cross sections), you've mastered about 85% of the definite integral problems you'll see in a typical calculus class. However, there's a small contingent of weird applications for the definite integral that textbooks like to include. These topics aren't usually covered in much depth or for very long, so some people find them very confusing. Each of the sections in this chapter is very unique, and as a result, the problems may not feel as cohesive as they did in other chapters. Don't let that bother you. Treat each section as its own island, independent of the others; also, don't spend the time you usually would figuring out WHY these formulas work-for this chapter, just worry about HoW they work.

Differentiate $f(x)$ with respect to x.
$\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$.
23.2 Calculate the length of the function $f(x)=\ln (\sin x)$ between $x=\frac{\pi}{4}$ and $x=\frac{3 \pi}{4}$.

$$
f^{\prime}(x)=\frac{1}{\sin x} \cdot \cos x=\frac{\cos x}{\sin x}=\cot x
$$

Apply the arc length formula from Problem 23.1.

$$
\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{\pi / 4}^{3 \pi / 4} \sqrt{1+\cot ^{2} x} d x
$$

According to a Pythagorean trigonometric identity, $1+\cot ^{2} x=\csc ^{2} x$.

$$
\begin{aligned}
& =\int_{\pi / 4}^{3 \pi / 4} \sqrt{\csc ^{2} x} d x \\
& =\int_{\pi / 4}^{3 \pi / 4} \csc x d x
\end{aligned}
$$

The antiderivative of $\csc x d x$ is $-\ln |\csc x+\cot x|$.

$$
\begin{aligned}
& =-\ln |\csc x+\cot x|_{\pi / 4}^{3 \pi / 4} \\
& =-\left[\left(\ln \left|\csc \frac{3 \pi}{4}+\cot \frac{3 \pi}{4}\right|\right)-\left(\ln \left|\csc \frac{\pi}{4}+\cot \frac{\pi}{4}\right|\right)\right] \\
& =-\left[\left(\ln \left|\frac{2}{\sqrt{2}}-1\right|\right)-\left(\ln \left|\frac{2}{\sqrt{2}}+1\right|\right)\right] \\
& =-\left[\left(\ln \left|\frac{2-\sqrt{2}}{\sqrt{2}}\right|\right)-\left(\ln \left|\frac{2+\sqrt{2}}{\sqrt{2}}\right|\right)\right]
\end{aligned}
$$

Apply the logarithmic property that states $\log a-\log b=\log \frac{a}{b}$.

$$
\begin{aligned}
& =-\ln \left|\frac{(2-\sqrt{2}) / \sqrt{2}}{(2+\sqrt{2}) / \sqrt{2}}\right| \\
& =-\ln \left|\left(\frac{2-\sqrt{2}}{\sqrt{2}}\right)\left(\frac{\sqrt{2}}{2+\sqrt{2}}\right)\right| \\
& =-\ln \left|\frac{2-\sqrt{2}}{2+\sqrt{2}}\right|
\end{aligned}
$$

Rationalize the denominator by multiplying the numerator and denominator by $2-\sqrt{2}$.

$$
-\ln \left|\frac{(2-\sqrt{2})(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})}\right|=-\ln \left|\frac{4-4 \sqrt{2}+2}{4-2}\right|=-\ln \left|\frac{6-4 \sqrt{2}}{2}\right|=-\ln |3-2 \sqrt{2}| \leftarrow
$$

23.3 Determine the length of $g(x)=\frac{1}{3}(4-x)^{3 / 2}$ between $x=0$ and $x=4$.

Differentiate $g(x)$ with respect to x.

$$
g^{\prime}(x)=\frac{1}{3} \cdot \frac{3}{2}(4-x)^{1 / 2}(-1)=-\frac{1}{2} \sqrt{4-x}
$$

Apply the arc length formula.

$$
\begin{aligned}
\int_{a}^{b} \sqrt{1+\left[g^{\prime}(x)\right]^{2}} d x & =\int_{0}^{4} \sqrt{1+\left(-\frac{1}{2} \sqrt{4-x}\right)^{2}} d x \\
& =\int_{0}^{4} \sqrt{1+\frac{1}{4}(4-x)} d x \\
& =\int_{0}^{4} \sqrt{1+1-\frac{x}{4}} d x \\
& =\int_{0}^{4} \sqrt{2-\frac{x}{4}} d x \\
& =\int_{0}^{4} \sqrt{\frac{8-x}{4}} d x \\
& =\frac{1}{2} \int_{0}^{4} \sqrt{8-x} d x
\end{aligned}
$$

Integrate using variable substitution: $u=8-x$ and $-d u=d x$.

$$
\begin{aligned}
& =-\frac{1}{2} \int_{8}^{4} u^{1 / 2} d u \\
& =-\left.\frac{1}{2} \cdot \frac{2}{3}\left(u^{3 / 2}\right)\right|_{8} ^{4} \leftarrow \\
& =-\frac{1}{3}\left(4^{3 / 2}-8^{3 / 2}\right) \\
& =-\frac{1}{3}(8-16 \sqrt{2}) \\
& =\frac{8(2 \sqrt{2}-1)}{3}
\end{aligned}
$$

Don't forget to use the chain rule and take the derivative of what's inside the radical. That's where this -I comes from.

Factor $1 / 4$ out of the radical to get $1 / 2$, and then pull $1 / 2$ out of the integral.
\qquad

When you change the limits of integration from 0 and 4 into 8 and 4, they feel upside down-the bigger number is suddenly on the bottom. Don't change it-everything works itself
out.

23.4 Verify that the circumference of a circle is $2 \pi r$.

To simplify the calculations, assume that the circle is centered at the origin-its placement in the coordinate plane will not affect its circumference. Solve the standard form equation of a circle with radius r for y.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
y^{2} & =r^{2}-x^{2} \\
y & = \pm \sqrt{r^{2}-x^{2}}
\end{aligned}
$$

A circle is not a function, but it can be described by the pair of functions $y=\sqrt{r^{2}-x^{2}}$ and $y=-\sqrt{r^{2}-x^{2}}$, each of which is the equation for a semicircle of the same radius. Therefore, you can calculate the arc length of one semicircle,
 $\sin \frac{3 \pi}{2}=-1$.
 $f(x)$, and multiply the result by 2 in order to calculate the circumference of the full circle. Differentiate $f(x)=\sqrt{r^{2}-x^{2}}$ with respect to x.

$$
f^{\prime}(x)=\frac{1}{2}\left(r^{2}-x^{2}\right)^{-1 / 2}(-2 x)=\frac{-x}{\sqrt{r^{2}-x^{2}}}
$$

Apply the arc length formula.

According to Problem 20.17, $\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \left(\frac{u}{a}\right)$. Set $a=r, u=x$, and $d u=d x$ and apply this antidifferentiation formula.

$$
\begin{aligned}
& =r \int_{-r}^{r} \frac{d u}{\sqrt{a^{2}-u^{2}}} \\
& =\left.r\left(\arcsin \frac{u}{a}\right)\right|_{-r} ^{r} \\
& =\left.r\left(\arcsin \frac{x}{r}\right)\right|_{-r} ^{r} \\
& =r(\arcsin 1-\arcsin (-1)) \\
& =r\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right) \\
& =\frac{2 \pi r}{2} \\
& =\pi r
\end{aligned}
$$

If a semicircle with radius r has arc length πr, then a circle with radius r has circumference $2 \pi r$.
23.5 Approximate the length of $h(x)=\sqrt{x}$ between $x=1$ and $x=4$ using the trapezoidal rule with $n=6$ subdivisions and round the estimate to three decimal places.

Differentiate $h(x)$ with respect to x.

$$
h^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}
$$

Apply the arc length formula.

$$
\begin{aligned}
\int_{a}^{b} \sqrt{1+\left[h^{\prime}(x)\right]^{2}} d x & =\int_{1}^{4} \sqrt{1+\left(\frac{1}{2 \sqrt{x}}\right)^{2}} d x \\
& =\int_{1}^{4} \sqrt{1+\frac{1}{4 x}} d x \\
& =\int_{1}^{4} \sqrt{\frac{4 x+1}{4 x}} d x
\end{aligned}
$$

Use the trapezoidal rule to approximate the value of this integral. To clarify notation, set $k(x)=\sqrt{\frac{4 x+1}{4 x}}$.

$$
\begin{aligned}
\int_{1}^{4} \sqrt{\frac{4 x+1}{4 x}} d x & \approx \frac{4-1}{2(6)}\left[k(1)+2 k\left(\frac{3}{2}\right)+2 k(2)+2 k\left(\frac{5}{2}\right)+2 k(3)+2 k\left(\frac{7}{2}\right)+k(4)\right] \\
& \approx \frac{1}{4}\left[\frac{\sqrt{5}}{2}+2\left(\frac{\sqrt{42}}{6}\right)+2\left(\frac{3 \sqrt{2}}{4}\right)+2\left(\frac{\sqrt{110}}{10}\right)+2\left(\frac{\sqrt{39}}{6}\right)+2\left(\frac{\sqrt{210}}{14}\right)+\frac{\sqrt{17}}{4}\right] \\
& \approx 3.1699645
\end{aligned}
$$

Surface Area

Measure the "skin" of a rotational solid

23.6 Rotate the curve defined by $f(x)=\sqrt{x}$ between $x=0$ and $x=3$ about the x-axis and calculate the area of the surface generated.

Differentiate $f(x)$ with respect to x.

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}
$$

You're
not rotating a region like most of the problems in Chapter 22. When you rotate a piece of a graph, it creates an infinitely thin three-dimensional surface, not a solid.

Apply variable substitution: $u=4 x+1$ and $d u=4 d x$, so $\frac{d u}{4}=d x$. Rewrite the limits of integration in terms of u as well: $4(0)+1=1$ and $4(3)+1=13$.

$$
\begin{aligned}
& =\left(\frac{2 \pi}{2}\right)\left(\frac{1}{4}\right) \int_{1}^{13} u^{1 / 2} d u \\
& =\frac{\pi}{4} \int_{1}^{13} u^{1 / 2} d u \\
& =\left.\frac{\pi}{4} \cdot \frac{2}{3}\left(u^{3 / 2}\right)\right|_{1} ^{13} \\
& =\frac{2 \pi}{12}\left(13^{3 / 2}-1^{3 / 2}\right) \\
& =\frac{\pi}{6}(13 \sqrt{13}-1)
\end{aligned}
$$

23.7 Find the area of the surface generated by revolving the portion of $f(y)=\frac{y^{3}}{3}$ between $y=0$ and $y=2$ about the y-axis.

Differentiate $f(y): f^{\prime}(y)=\frac{1}{3}\left(3 y^{2}\right)=y^{2}$; apply the surface area formula.

$$
\begin{aligned}
2 \pi \int_{a}^{b} f(y) \sqrt{1+\left[f^{\prime}(y)\right]^{2}} d y & =2 \pi \int_{0}^{2}\left(\frac{1}{3} y^{3}\right) \sqrt{1+\left[y^{2}\right]^{2}} d y \\
& =2 \pi\left(\frac{1}{3}\right) \int_{0}^{2} y^{3} \sqrt{1+y^{4}} d y
\end{aligned}
$$

Apply variable substitution: $u=1+y^{4}, \frac{d u}{4}=y^{3} d y, a=1$, and $b=17$.

$$
\begin{aligned}
& =\frac{2 \pi}{3}\left(\frac{1}{4}\right) \int_{1}^{17} u^{1 / 2} d u \\
& =\left.\frac{2 \pi}{12}\left(\frac{2}{3}\right) u^{3 / 2}\right|_{1} ^{17} \\
& =\frac{\pi}{9}\left(17^{3 / 2}-1^{3 / 2}\right) \\
& =\frac{\pi}{9}(17 \sqrt{17}-1)
\end{aligned}
$$

23.8 Prove that the surface area of a solid right circular cylinder is $2 \pi r(r+h)$, if r is the radius and h is the height of the cylinder.

As illustrated in Figure 23-1, revolving the region bounded by $x=0, y=0, x=r$, and $y=h$ about the y-axis generates a solid right circular cylinder.

Figure 23-1 This is a solid of rotation, not a surface of rotation. Therefore, you
must account for the surface area of the cylinder's circular faces at $y=0$ and $y=h$. Both circles have radius r, so each circle has area πr^{2}.

The surface of the cylinder is (excluding the circular bases) generated by rotating the portion of $f(y)=r$ between $y=0$ and $y=h$ about the y-axis. Apply the surface area formula.

(Note that r is a constant, so $f^{\prime}(y)=0$.)

$$
\begin{aligned}
2 \pi \int_{a}^{b} f(y) \sqrt{1+\left[f^{\prime}(y)\right]^{2}} d y & =2 \pi \int_{0}^{h} r \sqrt{1+(0)^{2}} d y \\
& =2 \pi \int_{0}^{h} r d y \\
& =2 \pi r \int_{0}^{h} d y \\
& =\left.(2 \pi r) y\right|_{0} ^{h} \\
& =2 \pi r h
\end{aligned}
$$

As noted in Figure 23-1, the total surface area of the solid is the sum of the areas of the top and bottom faces of the cylinder and the surface area of rotation.

$$
\begin{array}{rlll}
\text { Total surface area } & =\text { area of top face } & + \text { area of bottom face } & + \text { rotational surface area } \\
& =\pi r^{2} & +\pi r^{2} & +2 \pi r h \\
& =2 \pi r^{2}+2 \pi r h & & \\
& =2 \pi r(r+h) & &
\end{array}
$$

23.9 Prove that the surface area of a sphere with radius r is equal to $4 \pi r^{2}$.

According to Problem 22.16, you can generate a solid sphere by rotating the region bounded by $f(x)=\sqrt{r^{2}-x^{2}}$ and the x-axis about the x-axis. Therefore, you

$$
\begin{aligned}
& \text { can determine its surface area by rotating } f(x)=\sqrt{r^{2}-x^{2}} \text { between } x=-r \text { and } x=r \\
& \text { about the } x \text {-axis. Differentiate } f(x) \text { with respect to } x \text {. } \\
& f^{\prime}(x)=\frac{1}{2}\left(r^{2}-x^{2}\right)^{-1 / 2}(-2 x)=-\frac{x}{\sqrt{r^{2}-x^{2}}} \\
& \text { Apply the surface area formula. } \\
& 2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=2 \pi \int_{-r}^{r} \sqrt{r^{2}-x^{2}} \sqrt{1+\left[-\frac{x}{\sqrt{r^{2}-x^{2}}}\right]^{2}} d x \\
& =2 \pi \int_{-r}^{r} \sqrt{r^{2}-x^{2}} \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x \\
& =2 \pi \int_{-r}^{r} \sqrt{r^{2}-x^{2}} \sqrt{\frac{r^{2}-x^{2}+x^{2}}{r^{2}-x^{2}}} d x \\
& =2 \pi r \int_{-r}^{r} \sqrt{r^{2}-x^{2}} \sqrt{\frac{>1}{r^{2}-x^{2}}} d x
\end{aligned}
$$

Recall that the product of two radical expressions with the same index is the root of the product: $\sqrt{a} \sqrt{b}=\sqrt{a b}$.

$$
\begin{aligned}
& =2 \pi r \int_{-r}^{r} \sqrt{\frac{r^{2}-x^{2}}{r^{2}-x^{2}}} d x \\
& =2 \pi r \int_{-r}^{r} 1 d x \\
& =\left.2 \pi r(x)\right|_{-r} ^{r} \\
& =2 \pi r[r-(-r)] \\
& =2 \pi r(2 r) \\
& =4 \pi r^{2}
\end{aligned}
$$

23.10 Prove that the surface area of a solid right circular cone with radius r and height h is equal to $\pi r \sqrt{h^{2}+r^{2}}$.

As illustrated in Figure 23-2, rotating the first quadrant region bounded by $x=0$, $y=h$, and $f(y)=\frac{r}{h} y$ about the y-axis results in a solid right circular cone with radius r and height h.

Figure 23-2 Aside from the rotational surface area, this cone has a circular base with radius r at $y=h$. The area of the circle, πr^{2}, must be added to

This line passes through the points $(0,0)$ and (v, h), so the equation of the line is
$y=\frac{h}{r} x$. Just like the disc and washer methods, everything needs to be in terms of y when you ro-
tate about a
vertical
axis. the rotational surface area in order to calculate the total surface area of the solid.

Notice that $f^{\prime}(y)=\frac{r}{h} ; \operatorname{plug} f(y), f^{\prime}(y), a=0$, and $b=h$ into the surface area formula.

$$
\begin{aligned}
2 \pi \int_{a}^{b} f(y) \sqrt{1+\left[f^{\prime}(y)\right]^{2}} d y & =2 \pi \int_{0}^{h}\left(\frac{r}{h} y\right) \sqrt{1+\left(\frac{r}{h}\right)^{2}} d y \\
& =2 \pi \int_{0}^{h}\left(\frac{r}{h} y\right) \sqrt{1+\frac{r^{2}}{h^{2}}} d y \\
& =2 \pi \int_{0}^{h}\left(\frac{r}{h} y\right) \frac{\sqrt{h^{2}+r^{2}}}{\sqrt{h^{2}}} d y \\
& =2 \pi \int_{0}^{h}\left(\frac{r}{h} y\right) \frac{\sqrt{h^{2}+r^{2}}}{h} d y
\end{aligned}
$$

Because $\frac{r}{h}$ and $\frac{\sqrt{h^{2}+r^{2}}}{h}$ are constants, they can be removed from the integrand, leaving behind only $y d y$.
$=2 \pi\left(\frac{r}{h}\right)\left(\frac{\sqrt{h^{2}+r^{2}}}{h}\right) \int_{0}^{h} y d y=\left.\frac{2 \pi r \sqrt{h^{2}+r^{2}}}{h^{2}}\left(\frac{y^{2}}{2}\right)\right|_{0} ^{h}=\frac{2 \pi r \sqrt{h^{2}+r^{2}}}{h^{2}}\left(\frac{h^{2}}{2}\right)=\pi r \sqrt{h^{2}+r^{2}}$
As explained in Figure 23-2, add the area of the circular face.

$$
\pi r \sqrt{h^{2}+r^{2}}+\pi r^{2}=\pi r\left(r+\sqrt{h^{2}+r^{2}}\right)
$$

Centroids

Figure 23-4 The lengths of the representative lengths are equal to the differences of their boundaries. The vertical length equals the upper minus the lower bound (in terms of x), and the horizontal length equals the right minus the left bound (in terms of y).

Calculate the area of the region: $A=\int_{x_{1}}^{x_{2}}[h(x)-k(x)] d x$. This value serves as the denominator in the centroid formula below.

$$
\begin{aligned}
(\bar{x}, \bar{y}) & =\left(\frac{\int_{a}^{b} x \cdot l(x) d x \int_{c}^{d} y \cdot l(y) d y}{A}\right) \\
& =\left(\frac{1}{A} \int_{a}^{b} x \cdot l(x) d x, \frac{1}{A} \int_{c}^{d} y \cdot l(y) d y\right)
\end{aligned}
$$

Note that $l(x)$ represents the length of the representative vertical length (in terms of x) in Figure 23-4—a length that stretches from the top of the region to the bottom; a and b are the boundaries of the region along the x-axis. Therefore, $l(x)=h(x)-k(x), a=x_{1}$, and $b=x_{2}$. Similarly, $l(y)$ is the length of the representative horizontal length (in terms of y), and the boundaries of the region along the y-axis are equal to c and d. Therefore, $l(y)=k(y)-h(y), c=y_{1}$, and $d=y_{2}$. Substitute these values into the centroid formula.

$$
(\bar{x}, \bar{y})=\left(\frac{1}{A} \int_{x_{1}}^{x_{2}} x[h(x)-k(x)] d x, \frac{1}{A} \int_{y_{1}}^{y_{2}} y[k(y)-h(y)] d y\right)
$$

23.12 Identify the centroid of a rectangle with width w and height h.

Construct a rectangle in the coordinate plane and draw representative horizontal and vertical lengths, as illustrated in Figure 23-5.

Figure 23-5 The rectangular region is bounded by $y=0$ (the x-axis), $x=0$ (the y-axis), $x=w$, and $y=h$.

According to Figure 23-5, the length of the representative vertical length is $l(x)=h-0$; and the x-axis boundaries of the region are $a=0$ and $b=w$. The representative horizontal length is $l(y)=w-0$, and it has y-axis boundaries $c=0$ and $d=h$. Apply the centroid formula from Problem 23.11, noting that $A=w h$.

Begin by calculating \bar{x}, the x-coordinate of the centroid.

$$
\begin{aligned}
\bar{x} & =\frac{1}{A} \int_{x_{1}}^{x_{2}} x \cdot l(x) d x \\
& =\frac{1}{w h} \int_{0}^{w} x \cdot h \cdot d x
\end{aligned}
$$

Remove the constant h from the integrand.

$$
\begin{aligned}
& =\frac{h}{w h} \int_{0}^{w} x d x \\
& =\left.\frac{1}{w}\left(\frac{x^{2}}{2}\right)\right|_{0} ^{w} \\
& =\frac{1}{w}\left(\frac{w^{2}}{2}\right) \\
& =\frac{w}{2}
\end{aligned}
$$

Now calculate \bar{y}, the y-coordinate of the centroid.

$$
\begin{aligned}
\bar{y} & =\frac{1}{A} \int_{y_{1}}^{y_{2}} y \cdot l(y) d y \\
& =\frac{1}{w h} \int_{0}^{h} y \cdot w \cdot d y \\
& =\frac{\not x u}{\not x / h} \int_{0}^{h} y d y \\
& =\left.\frac{1}{h}\left(\frac{y^{2}}{2}\right)\right|_{0} ^{h} \\
& =\frac{1}{h}\left(\frac{h^{2}}{2}\right) \\
& =\frac{h}{2}
\end{aligned}
$$

The centroid of the rectangle is $(\bar{x}, \bar{y})=\left(\frac{w}{2}, \frac{h}{2}\right)$.

Note: Problems 23.13-23.17 refer to the region bounded by $f(x)=\sqrt{r^{2}-x^{2}}$, a semicircle with radius r centered at the origin, and the x-axis.
23.13 Identify the x-coordinate \bar{x} of the centroid for the region.

The representative vertical length is bounded above by $f(x)$ and below by $y=0$ along the x-axis from $x=-r$ to $x=r$, as illustrated by Figure 23-6. The area of a semicircle with radius r is $A=\frac{\pi r^{2}}{2}$.

Figure 23-6 The length $l(x)$ equals the difference between its upper boundary (the semicircle) and its lower boundary (the x-axis).

Apply the centroid formula for \bar{x}.

$$
\begin{aligned}
\bar{x} & =\frac{1}{A} \int_{x_{1}}^{x_{2}} x \cdot l(x) d x \\
& =\left(\frac{2}{\pi r^{2}}\right) \int_{-r}^{r} x \sqrt{r^{2}-x^{2}} d x
\end{aligned}
$$

Apply variable substitution: $u=r^{2}-x^{2}$ and $-\frac{d u}{2}=x d x$. Substitute $x=-r$ and $x=r$ into $u=r^{2}-x^{2}$ to get the corresponding u-boundaries: $u=r^{2}-(-r)^{2}=0$ and $u=r^{2}-(r)^{2}=0$.

$$
\begin{aligned}
& =\left(\frac{2}{\pi r^{2}}\right)\left(-\frac{1}{2}\right) \int_{0}^{0} u^{1 / 2} d u \\
& =\left(\frac{2}{\pi r^{2}}\right)\left(-\frac{1}{2}\right)(0) \\
& =0
\end{aligned}
$$

If the limits of integration of a definite integral are equal, the definite integral equals 0 . You don't cover any area if you start and stop at the same integration limit.

Note: Problems 23.13-23.17 refer to the region bounded by $f(x)=\sqrt{r^{2}-x^{2}}$, a semicircle with radius r centered at the origin, and the x-axis.
23.14 The functions that bound the region are even. Draw a conclusion concerning the centroids of such regions and explain your answer.

If the boundary functions of a region are even, the graphs of those functions are symmetric about the y-axis. Therefore, the region is split by the y-axis into two regions of equal area. The balance point of the region, then, must lie along the line $x=0$ (the y-axis), and $\bar{x}=0$.

This conclusion can be further generalized: if a region is symmetric about any vertical line $x=c$, then $\bar{x}=c$ for that region. Similarly, if a region is symmetric about any horizontal line $y=k$, then $\bar{y}=k$.

If $f(x)$ is an even function, that means $f(-x)=f(x)$. In other words, if the point (a, b) is on the graph of $f(x)$, then so is $(-a, b)$.

Note: Problems 23.13-23.17 refer to the region bounded by $f(x)=\sqrt{r^{2}-x^{2}}$, a semicircle with radius r centered at the origin, and the x-axis.
23.15 Identify the y-coordinate \bar{y} of the centroid for the region. Horizontal
lengths (like
horizontal radii in
Chapter 22) require
everything in terms of
y, including functions
and limits of
integration.

Figure 23-7 Tivo functions ofy are required to describe the semicircle, a positive radical expression when $x>0$ and a negative radical expression when $x<0$ (shown as a dotted graph). Length $l(y)$ is defined as the difference of its right and left boundaries.

Substitute $l(y)$ (as calculated in Figure 23-7), $A=\frac{\pi r^{2}}{2}, y_{1}=0$, and $y_{2}=r$ into the formula for \bar{y}.

$$
\bar{y}=\frac{1}{A} \int_{y_{1}}^{y_{2}} y \cdot l(y) d y=\left(\frac{2}{\pi r^{2}}\right) \int_{0}^{r} y \cdot 2 \sqrt{r^{2}-y^{2}} d y=\frac{4}{\pi r^{2}} \int_{0}^{r} y \sqrt{r^{2}-y^{2}} d y
$$

Apply variable substitution: $u=r^{2}-y^{2}$ and $\frac{d u}{-2}=y d y$. Substitute $y=0$ and $y=r$ into $u=r^{2}-y^{2}$ to get the corresponding u-boundaries: $u=r^{2}-0^{2}=r^{2}$ and $u=r^{2}-r^{2}=0$.

$$
\begin{aligned}
& =\frac{4}{\pi r^{2}}\left(-\frac{1}{2}\right) \int_{r^{2}}^{0} u^{1 / 2} d u \\
& =-\left.\frac{2}{\pi r^{2}}\left(\frac{2}{3}\right)\left(u^{3 / 2}\right)\right|_{r^{2}} ^{0} \\
& =-\frac{4}{3 \pi r^{2}}\left(0-\left(r^{2}\right)^{3 / 2}\right) \\
& =-\frac{4}{3 \pi r^{2}}\left(-r^{3}\right) \\
& =\frac{4 r}{3 \pi}
\end{aligned}
$$

Note: Problems 23.13-23.17 refer to the region bounded by $f(x)=\sqrt{r^{2}-x^{2}}$, a semicircle with radius r centered at the origin, and the x-axis.
23.16 Verify that the alternative formula $\bar{y}=\frac{1}{2 A} \int_{x_{1}}^{x_{2}}\left([j(x)]^{2}-[k(x)]^{2}\right) d x$, where $j(x)$ is the upper bound of the region and $k(x)$ is the lower bound, returns the same value for \bar{y} as Problem 23.15.

The upper boundary of the region is $j(x)=f(x)$ and the lower bound is $k(x)=0$. Therefore, $[j(x)]^{2}-[k(x)]^{2}=[f(x)]^{2}-0^{2}=[f(x)]^{2}$.

$$
\begin{aligned}
\bar{y} & =\left(\frac{2}{2 \cdot \pi r^{2}}\right) \int_{-r}^{r}\left[\sqrt{r^{2}-x^{2}}\right]^{2} d x \\
& =\frac{1}{\pi r^{2}} \int_{-r}^{r}\left(r^{2}-x^{2}\right) d x \\
& =\left.\frac{1}{\pi r^{2}}\left(r^{2} x-\frac{x^{3}}{3}\right)\right|_{-r} ^{r} \\
& =\frac{1}{\pi r^{2}}\left[\left(r^{3}-\frac{r^{3}}{3}\right)-\left(-r^{3}+\frac{r^{3}}{3}\right)\right] \\
& =\frac{1}{\pi r^{2}}\left[\left(\frac{2 r^{3}}{3}\right)-\left(-\frac{2 r^{3}}{3}\right)\right] \\
& =\frac{1}{\pi r^{2}}\left(\frac{4 r^{3}}{3}\right) \\
& =\frac{4 r}{3 \pi}
\end{aligned}
$$

This shortcut calculates \bar{y} for an infinitely thin rectangle located along $x=\bar{x}$ (the vertical line that cuts the region into two balancing halves). The thin rectangle and the region share the same \bar{y}-value.

Even though you're calculating y, the shortcut is in terms of x, so use the same x integration limits as Problem 23.15: $a=-r$ and $b=r$.

Note: Problems 23.13-23.17 refer to the region bounded by $f(x)=\sqrt{r^{2}-x^{2}}$, a semicircle with radius r centered at the origin, and the x-axis.
23.17 Explain the practical value of the alternative formula, $\bar{y}=\frac{1}{2 A} \int_{x_{1}}^{x_{2}}\left([j(x)]^{2}-[k(x)]^{2}\right) d x$, as applied in Problem 23.16.

Calculating \bar{y} by means of the alternative formula is usually more efficient than the formula $\bar{y}=\frac{1}{A} \int_{c}^{d} y \cdot l(y) d y$, which requires c, d, and $l(y)$ to be in terms of y. As demonstrated in Problem 23.15, writing those values in terms of y requires you to transform one equation into a pair of equations, calculate a new representative length $l(y)$, and rewrite the limits of integration in terms of y. On the other hand, the alternative formula in Problem 23.16 used the same region boundary equations as the formula for \bar{x} in Problem 23.13, the same representative length function $l(x)$, and the same limits of integration, which is both expedient and convenient.

Note: Problems 23.18-23.20 refer to the region bounded by the graphs of $f(x)=\sqrt{x}, y=0$, and $x=4$.
23.18 Identify \bar{x}, the x-coordinate of the centroid for the region.

Graph the region and $l(x)$ in order to calculate the representative vertical length, as illustrated by Figure 23-8.

Figure 23-8 The length of $l(x)$ is defined as the difference of its upper and lower bounds.

Calculate the area of the region using the fundamental theorem of calculus.

$$
A=\int_{0}^{4} x^{1 / 2} d x=\left.\frac{2}{3}\left(x^{3 / 2}\right)\right|_{0} ^{4}=\frac{2}{3}(8)=\frac{16}{3}
$$

Evaluate the formula for \bar{x} given $A=\frac{16}{3}, l(x)=\sqrt{x}, x_{1}=0$, and $x_{2}=4$.

$$
\begin{aligned}
\bar{x} & =\frac{1}{A} \int_{x_{1}}^{x_{2}} x \cdot l(x) d x \\
& =\frac{3}{16} \int_{0}^{4} x \sqrt{x} d x \\
& =\frac{3}{16} \int_{0}^{4} x^{3 / 2} d x \\
& =-\left.\frac{3}{16} \cdot \frac{2}{5}\left(x^{5 / 2}\right)\right|_{0} ^{4} \\
& =\frac{3}{40}(32) \\
& =\frac{12}{5}
\end{aligned}
$$

Note: Problems 23.18-23.20 refer to the region bounded by the graphs of $f(x)=\sqrt{x}, y=0$, and

In other words, don't use the shortcut (until Problem 23.20, that is).
$x=4$.
23.19 Calculate \bar{y}, the y-coordinate of the centroid for the region, using the formula from Problem 23.11.

Graph the region and draw $l(y)$ in order to calculate the representative horizontal length, as illustrated by Figure 23-9.

Figure 23-9 When $l(y)$ has nonzero boundaries, it sometimes results in a more complicated integrand. However, that is not true in this case, as you'll see when you compute the definite integral.

According to Problem 23.18, $A=\frac{16}{3}$; calculate \bar{y} given $l(y)=4-y^{2}, y_{1}=0$, and $y_{2}=2$.

$$
\begin{aligned}
\bar{y} & =\frac{1}{A} \int_{y_{1}}^{y_{2}} y \cdot l(y) d y \\
& =\frac{3}{16} \int_{0}^{2} y\left(4-y^{2}\right) d y \\
& =-\frac{3}{16} \int_{0}^{2}\left(4 y-y^{3}\right) d y \\
& =\left.\frac{3}{16}\left(2 y^{2}-\frac{y^{4}}{4}\right)\right|_{0} ^{2} \\
& =\frac{3}{16}(8-4) \\
& =\frac{3}{4}
\end{aligned}
$$

The orientation of the representative length changed (from vertical to horizontal), but the region (and its areal stayed the

Note: Problems 23.18-23.20 refer to the region bounded by the graphs of $f(x)=\sqrt{x}, y=0$, and $x=4$.
23.20 Verify that the value of \bar{y} generated by Problem 23.19 using the alternative formula for \bar{y}.

The formula from Problem 23.16.

Evaluate the alternative formula using values written in terms of $x: j(x)=\sqrt{x}$, $k(x)=0, x_{1}=0, x_{2}=4$, and $A=\frac{16}{3}$. Note that $[j(x)]^{2}-[k(x)]^{2}=[f(x)]^{2}-0^{2}=[f(x)]^{2}$.

These are
the same x_{1}, x_{21} and A values that Problem 23.18.

$$
\begin{aligned}
\bar{y} & =\frac{1}{2 A} \int_{x_{1}}^{x_{2}}\left([j(x)]^{2}-[k(x)]^{2}\right) d x \\
& =\frac{3}{2(16)} \int_{0}^{4}[\sqrt{x}]^{2} d x \\
& =\frac{3}{32} \int_{0}^{4} x d x \\
& =\left.\frac{3}{32}\left(\frac{x^{2}}{2}\right)\right|_{0} ^{4} \\
& =\frac{3}{32}(8) \\
& =\frac{3}{4}
\end{aligned}
$$

Note: Problems 23.21-23.22 refer to the first quadrant region in Figure 23-10, bounded by the graphs of $f(x)=\cos x, y=\frac{1}{2}$, and $x=0$.
23.2 Calculate \bar{x}, the x-coordinate of the centroid for the region.

Figure 23-10

Note that the lower bound of the region, and therefore the lower
bound of $l(x)$, is the horizontal line $y=\frac{1}{2}$, not the x-axis.

You already
know that $x_{1}=0$ because the problem specifies a "first quadrant region," and you can tell from Figure 23-10 that the left edge of the region is the vertical line $x=0$.

Calculate the area of the region using the fundamental theorem of calculus.

To determine the value of x_{2}, find the intersection point of $f(x)=\cos x$ and $y=\frac{1}{2}$ by setting the functions equal and solving for y.

$$
\begin{aligned}
\cos x & =\frac{1}{2} \\
\arccos x & =\arccos \frac{1}{2} \\
x & =\frac{\pi}{3}
\end{aligned}
$$

Evaluate the formula for \bar{x}, given $A=\frac{3 \sqrt{3}-\pi}{6}, l(x)=\cos x-\frac{1}{2}, x_{1}=0$, and $x_{2}=\frac{\pi}{3}$.

$$
\begin{aligned}
\bar{x} & =\frac{1}{A} \int_{x_{1}}^{x_{2}} x \cdot l(x) d x \\
& =\frac{6}{3 \sqrt{3}-\pi} \int_{0}^{\pi / 3} x\left(\cos x-\frac{1}{2}\right) d x \\
& =\frac{6}{3 \sqrt{3}-\pi} \int_{0}^{\pi / 3}\left(x \cos x-\frac{1}{2} x\right) d x
\end{aligned}
$$

According to Problem 22.32, $\int x \cos x d x=x \sin x+\cos x$.

$$
\begin{aligned}
& =\left.\frac{6}{3 \sqrt{3}-\pi}\left(x \sin x+\cos x-\frac{x^{2}}{4}\right)\right|_{0} ^{\pi / 3} \\
& =\frac{6}{3 \sqrt{3}-\pi}\left[\left(\frac{\pi}{3} \cdot \frac{\sqrt{3}}{2}+\frac{1}{2}-\frac{\pi^{2}}{4 \cdot 9}\right)-(0+1-0)\right] \\
& =\frac{6}{3 \sqrt{3}-\pi}\left(\frac{\pi \sqrt{3}}{6}-\frac{\pi^{2}}{36}-\frac{1}{2}\right) \\
& =\frac{6}{3 \sqrt{3}-\pi}\left(\frac{6 \pi \sqrt{3}-\pi^{2}-18}{36}\right) \\
& =\frac{6 \pi \sqrt{3}-\pi^{2}-18}{6(3 \sqrt{3}-\pi)}
\end{aligned}
$$

Note: Problems 23.21-23.22 refer to the first quadrant region bounded by the graphs of $f(x)=\cos x, y=\frac{1}{2}$, and $x=0$.
23.22 Calculate \bar{y}, the y-coordinate of the centroid for the region.

Substitute $A=\frac{3 \sqrt{3}-\pi}{6}, j(x)=\cos x, k(x)=\frac{1}{2}, x_{1}=0$, and $x_{2}=\frac{\pi}{3}$ into the alternative formula for \bar{y}.

$$
\begin{aligned}
\bar{y} & =\frac{1}{2 A} \int_{x_{1}}^{x_{2}}\left[[j(x)]^{2}-[k(x)]^{2}\right) d x \\
& =\frac{6}{2(3 \sqrt{3}-\pi} \int_{0}^{\pi / 3}\left[(\cos x)^{2}-\left(\frac{1}{2}\right)^{2} d x\right] \\
& =\frac{3}{3 \sqrt{3}-\pi} \int_{0}^{\pi / 3}\left(\cos ^{2} x-\frac{1}{4}\right) d x
\end{aligned}
$$

You can

reference all of the important trig identities like this one) in Appendix C.

Apply the power-reducing formula $\cos ^{2} \theta=\frac{1+\frac{\cos 2 \theta}{2}}{2}=\frac{1}{2}+\frac{\cos 2 \theta}{2}$.

$$
=\frac{3}{3 \sqrt{3}-\pi} \int_{0}^{\pi / 3}\left[\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right)-\frac{1}{4}\right] d x
$$

$$
=\frac{3}{3 \sqrt{3}-\pi} \int_{0}^{\pi / 3}\left[\frac{1}{2} \cos 2 x+\frac{1}{4}\right] d x
$$

$$
=\frac{3}{3 \sqrt{3}-\pi}\left[\frac{1}{4} \sin 2 x+\frac{1}{4} x\right]_{0}^{\pi / 3}
$$

$$
=\frac{3}{3 \sqrt{3}-\pi}\left[\frac{1}{4} \cdot \frac{\sqrt{3}}{2}+\frac{1}{4} \cdot \frac{\pi}{3}\right]
$$

$$
=\frac{3}{3 \sqrt{3}-\pi}\left[\frac{\sqrt{3}}{8}+\frac{\pi}{12}\right]
$$

$$
=\frac{3}{3 \sqrt{3}-\pi}\left[\frac{3 \sqrt{3}+2 \pi}{24}\right]
$$

$$
=\frac{3 \sqrt{3}+2 \pi}{8(3 \sqrt{3}-\pi)}
$$

Chapter 24
 PARAMETRIC AND POLAR EQUATIONS

Writing equations using more variables than just x and y

Although the study of elementary calculus focuses primarily on equations and functions in rectangular form, a brief discussion of alternate graphical representations is in order. Though parametric and polar forms of equations are both worthy of in-depth study, this chapter will limit itself to differentiation and integration skills already discussed in terms of rectangular equations, such as calculating rates of change, measuring arc length, and calculating area.

Most of calculus (and every single chapter in this book until now) deals with "regular" functions that are defined in terms of x and y. Technically speaking, these are called "rectangular equations", because they are graphed on two axes perpendicular to one another like the sides of a rectangle. This chapter discusses parametric and polar equations, which describe equations in a fundamentally different way.

Parametric equations define the x - and y-coordinates of a graph in terms of a third variable, usuallyt or θ, called the "parameter." Polar equations don't use x and y coordinates at all, but describe the points on their graphs based on how far they are from the origin and what angle a line drawn through them makes with the positive x-axis.

Parametric Equations

Like revolutionaries in Boston Harbor, just add t

Figure 24-1 The graph of the curve defined by the parametric equations $x=t^{2}-1$ and $y=1-t^{2}$.

Note: Problems 24.1-24.2 refer to the parametric equations $x=t^{2}-1$ and $y=1-t^{2}$.
24.2 Write the equation of the parametric curve in rectangular form.

Solve the equation $x=t^{2}-1$ for t.

$$
\begin{aligned}
x & =t^{2}-1 \\
x+1 & =t^{2} \\
\pm \sqrt{x+1} & =t
\end{aligned}
$$

Eliminate the parameter t by substituting this radical expression into $y=1-t^{2}$.

$$
\begin{aligned}
& y=1-(\pm \sqrt{x+1})^{2} \\
& y=1-(x+1) \\
& y=-x
\end{aligned}
$$

The rectangular form of the curve is $y=-x$, a line with slope -1 and y-intercept 0 . Notice that this aptly describes the graph in Figure 24-1 with one exception: that graph is only defined for $x \geq-1$. Therefore, this restriction must be applied to the rectangular form of the curve as well.

Note: Problems 24.3-24.4 refer to the parametric equations $x=\frac{t+1}{2}$ and $y=t-t^{2}$.
24.3 Graph the parametric curve.

The t-values $-2,-1,0,1$, and 2 are nearly sufficient to construct the graph. In Figure 24-2, the x-and y-equations are evaluated for those values of t, and the resulting coordinate pairs are plotted to determine the curve.

Don't worry about restricting y-restricting x will take care of everything. You just want the line to abruptly cut off at the point $(-1,1)$ like it does in Figure 24-1.

t	$x=\frac{t+1}{2}$	$y=t-t^{2}$
-2	$x=\frac{-2+1}{2}$ $=-\frac{1}{2}$	$y=-2-(-2)^{2}$ $=-6$
-1	$x=\frac{-1+1}{2}$ $=0$	$y=-1-(-1)^{2}$ $=-2$
0	$x=\frac{0+1}{2}$ $=\frac{1}{2}$	$y=0-(0)^{2}$ $=0$
$\frac{1}{2}$	$x=\frac{(1 / 2)+1}{2}$ $=\frac{3}{4}$	$y=\frac{1}{2}-\left(\frac{1}{2}\right)^{2}$ $=\frac{1}{4}$
1	$x=\frac{1+1}{2}$	$y=1-(1)^{2}$ $=0$
2	$x=\frac{2+1}{2}$	$y=2-(2)^{2}$ $=-2$

Figure 24-2 This parametric curve is a parabola whose equation is identified in Problem 24.4. Notice that $t=\frac{1}{2}$ is evaluated in order to determine the vertex of the curve, thereby increasing the accuracy of the graph.

Note: Problems 24.3-24.4 refer to the parametric equations $x=\frac{t+1}{2}$ and $y=t-t^{2}$.
24.4 Write the equation of the parametric curve in rectangular form.

Solve the equation containing x for the parameter t.

$$
\begin{aligned}
x & =\frac{t+1}{2} \\
t+1 & =2 x \\
t & =2 x-1
\end{aligned}
$$

Substitute this t-value into the parametric equation containing y.

$$
\begin{aligned}
& y=t-t^{2} \\
& y=(2 x-1)-(2 x-1)^{2} \\
& y=2 x-1-\left(4 x^{2}-4 x+1\right) \\
& y=-4 x^{2}+6 x-2
\end{aligned}
$$

The rectangular equation requires no restrictions, as the parametric curve and the rectangular graph are exactly equal at all points in their domains.

Note: Problems 24.5-24.6 refer to the parametric equations $x=3 \cos \theta$ and $y=4 \sin \theta$.
24.5 Graph the parametric curve.

Because the parametric equations are defined trigonometrically, substitute a range of θ-values between 0 and 2π to construct the curve, as illustrated in Figure 24-3.

t	$x=3 \cos \theta$	$y=4 \sin \theta$	t	$x=3 \cos \theta$	$y=4 \sin \theta$
0	$\begin{gathered} x=3 \cos 0 \\ =3 \end{gathered}$	$\begin{aligned} y & =4 \sin 0 \\ & =0 \end{aligned}$	$\frac{5 \pi \tau}{6}$	$\begin{aligned} & x=3 \cos \frac{5 \pi}{6} \\ &=-\frac{3 \sqrt{3}}{2} \approx-2.6 \end{aligned}$	$\begin{aligned} y & =4 \sin \frac{5 \pi}{6} \\ & \end{aligned}$
	$x=3 \cos \frac{\pi}{6}$	$y=4 \sin \frac{\pi}{6}$			
$\overline{6}$	$=\frac{3 \sqrt{3}}{2} \approx 2.6$	$=2^{6}$	π	$\begin{aligned} x & =3 \cos \pi \\ & =-3 \end{aligned}$	$\begin{aligned} y & =4 \sin \pi \\ & =0 \end{aligned}$
$\frac{\pi}{4}$	$\begin{aligned} & x=3 \cos \frac{\pi}{4} \\ & =\frac{3 \sqrt{2}}{2} \approx 2.1 \end{aligned}$	$\begin{aligned} & y=4 \sin \frac{\pi}{4} \\ &=\frac{4 \sqrt{2}}{2} \approx 2.8 \end{aligned}$	$\frac{7 \pi}{6}$	$\begin{aligned} & x=3 \cos \frac{7 \pi}{6} \\ & =-\frac{3 \sqrt{3}}{2} \approx-2.6 \end{aligned}$	$\begin{aligned} y & =4 \sin \frac{7 \pi}{6} \\ & =-2 \end{aligned}$
$\frac{\pi}{3}$	$\begin{aligned} & x=3 \cos \frac{\pi}{3} \\ & =\frac{3}{2}=1.5 \end{aligned}$	$\begin{aligned} & y=4 \sin \frac{\pi}{3} \\ &=\frac{4 \sqrt{3}}{2} \approx 3.5 \end{aligned}$	$\frac{5 \pi}{4}$	$\begin{aligned} x & =3 \cos \frac{5 \pi}{4} \\ & =-\frac{3 \sqrt{2}}{2} \simeq-2.4 \end{aligned}$	$\begin{aligned} & y=4 \sin \frac{5 \pi}{4} \\ &=-\frac{4 \sqrt{2}}{2} \approx-2.8 \end{aligned}$
$\frac{\pi}{2}$	$\begin{aligned} & x=3 \cos \frac{\pi}{2} \\ &=0 \end{aligned}$	$\begin{gathered} y=4 \sin \frac{\pi}{2} \\ =4 \end{gathered}$	$\frac{3 \pi}{2}$	$\begin{aligned} & x=3 \cos \frac{3 \pi}{2} \\ &=0 \end{aligned}$	$\begin{aligned} y & =4 \sin \frac{3 \pi}{2} \\ = & =-4 \end{aligned}$
$\frac{2 \pi}{3}$	$\begin{aligned} & x=3 \cos \frac{2 \pi}{3} \\ &=-\frac{3}{2}=-1.5 \end{aligned}$	$\begin{aligned} y & =4 \sin \frac{2 \pi}{3} \\ = & \frac{4 \sqrt{3}}{2} \approx 3.5 \end{aligned}$	$\frac{7 \pi}{4}$	$\begin{aligned} & x=3 \cos \frac{7 \pi}{4} \\ & =\frac{3 \sqrt{2}}{2} \approx 2.1 \end{aligned}$	$\begin{aligned} & y=4 \sin \frac{7 \pi}{4} \\ &=-\frac{4 \sqrt{2}}{2} \approx-2.8 \end{aligned}$
$\frac{3 \pi}{4}$	$\begin{aligned} & x=3 \cos \frac{3 \pi}{4} \\ & =-\frac{3 \sqrt{2}}{2} \approx-2.1 \end{aligned}$	$\begin{aligned} & y=4 \sin \frac{3 \pi}{4} \\ &=\frac{4 \sqrt{2}}{2} \approx 2.8 \end{aligned}$		$\begin{aligned} x & =3 \cos \frac{11 \pi}{6} \\ = & \frac{3 \sqrt{3}}{2} \approx 2.6 \end{aligned}$	$\begin{aligned} y & =4 \sin \frac{11 \pi}{6} \\ & =-2 \end{aligned}$

Figure 24-3 After substituting values for θ between 0 and π, the elliptical nature of the graph is clear. However, you should substitute a few values between π and 2π to ensure that the remaining portion of the graph acts as expected (i.e., ensure that it falls below the x-axis).

Note: Problems 24.5-24.6 refer to the parametric equations $x=3 \cos \theta$ and $y=4 \sin \theta$.
24.6 Write the equation of the parametric curve in rectangular form.

Solve the first parametric equation for $\cos \theta$ and the second for $\sin \theta$.

$$
\begin{array}{ll}
x=3 \cos \theta & y=4 \sin \theta \\
\frac{x}{3}=\cos \theta & \frac{y}{4}=\sin \theta
\end{array}
$$

Substitute these expressions into the Pythagorean identity $\cos ^{2} \theta+\sin ^{2} \theta=1$.

$$
\begin{aligned}
(\cos \theta)^{2}+(\sin \theta)^{2} & =1 \\
\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{4}\right)^{2} & =1 \\
\frac{x^{2}}{9}+\frac{y^{2}}{16} & =1
\end{aligned}
$$

where a is half the length of the major $a x i s$ and b is half the length of the minor axis.

This is the equation of an ellipse (in standard form) that is centered at the origin, has vertical major axis length $2 \sqrt{16}=8$ and horizontal minor axis of length $2 \sqrt{9}=6$.
24.7 What parametric equations define an ellipse in standard form?

The standard form of an ellipse with a horizontal major axis is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, such that a is half the length of the major axis, b is half the length of the minor axis, and (h, k) is the center of ellipse. According to
a Pythagorean identity, $\cos ^{2} \theta+\sin ^{2} \theta=1$. Therefore, $\cos ^{2} \theta=\frac{(x-h)^{2}}{a^{2}}$ and $\sin ^{2} \theta=\frac{(y-k)^{2}}{b^{2}}$. Solve the equations for x and y, respectively.

$$
\begin{array}{rlrl}
\cos ^{2} \theta & =\frac{(x-h)^{2}}{a^{2}} & \sin ^{2} \theta & =\frac{(y-k)^{2}}{b^{2}} \\
(x-h)^{2} & =a^{2} \cos ^{2} \theta & (y-k)^{2} & =b^{2} \sin ^{2} \theta \\
\sqrt{(x-h)^{2}} & =\sqrt{a^{2} \cos ^{2} \theta} \\
x & =a \cos \theta+h
\end{array} \quad \begin{aligned}
\sqrt{(y-k)^{2}} & =\sqrt{b^{2} \sin ^{2} \theta} \\
y & =b \sin \theta+k
\end{aligned}
$$

The above parametric equations apply only if the major axis of the ellipse is horizontal. If the major axis is vertical, reverse a and b in the parametric equations: $x=b \cos \theta+h$ and $y=a \sin \theta+k$.

You don't have to write " \pm " in front of these radicals, because the cosine and sine functions handle the sign changes for you.
24.8 What parametric equations define a circle centered at the origin with radius r ?

A circle is actually an ellipse with major and minor axes that are the same length. Therefore, you can use the parametric equations from Problem 24.7 and set $a=b=r$ (the radius of the circle) and $(h, k)=(0,0)$. Either set of the parametric equations defined by Problem 24.7 result in the same parametric representation of the circle.

$$
\begin{array}{ll}
x=a \cos \theta+h & y=b \sin \theta+k \\
x=r \cos \theta & y=r \sin \theta
\end{array}
$$

Polar Coordinates

Convert from (x, y) to (r, θ) and vice versa

24.9 Describe how to plot the polar coordinate pair (r, θ) in the coordinate plane.

The abscissa of a polar coordinate pair represents its distance from the pole and the ordinate is the measure of the angle formed by the polar axis and a terminal ray passing through the coordinate whose endpoint is the pole (as illustrated in Figure 24-4). Note that positive angles are measured counterclockwise and negative angles are measured clockwise.

Figure 24-4 In this diagram, θ measures approximately $135^{\circ}=\frac{3 \pi}{4}$ radians and the point (r, θ) is 4 units away from the pole. Therefore, $(r, \theta)=\left(4,-\frac{3 \pi}{4}\right)$ is a fair representation of the polar coordinate.

Although any pole and polar axis can be used, it is customary to superimpose polar coordinates on the Cartesian plane, placing the pole at the origin and the polar axis on the positive x-axis.
24.10 Plot the polar coordinate pairs on the same plane: $A=\left(1, \frac{\pi}{4}\right), B=\left(5,-\frac{7 \pi}{6}\right)$, $C=\left(3,-\frac{\pi}{2}\right)$, and $D=\left(-4, \frac{2 \pi}{3}\right)$.

Refer to Figure 24-5 for the locations of A, B, C, and D in the coordinate planeas stated in Problem 24.9, the pole should be placed at the origin and the positive x-axis serves as the polar axis. Note that C contains a negative angle, and D contains a negative directed distance.

Figure 24-5 Positive angles are rotated counterclockwise from the positive x-axis and negative angles rotate counterclockwise.
24.II Unlike the Cartesian coordinate system, in which each point on the plane is expressed by a unique coordinate pair, each point in the coordinate plane can be represented by an infinite number of polar coordinate pairs. Find two polar coordinate pairs that represent the same point on the plane as $\left(2, \frac{\pi}{6}\right)$.

As illustrated by Figure 24-6, replacing $\frac{\pi}{6}$ with a coterminal angle, such as $\frac{13 \pi}{6}$ or $-\frac{11 \pi}{6}$, will not alter the location of the point; therefore, the polar coordinate pairs $\left(2, \frac{13 \pi}{6}\right)$ and $\left(2, \frac{-11 \pi}{6}\right)$ represent the same point on the plane as the polar coordinate $\left(2, \frac{\pi}{6}\right)$. You can identify yet another polar coordinate pair with the same graph by adding π to θ and multiplying r by -1 .

$$
(-r, \theta+\pi)=\left(-2, \frac{\pi}{6}+\pi\right)=\left(-2, \frac{7 \pi}{6}\right)
$$

Figure 24-6
The polar coordinate pairs $\left(2, \frac{\pi}{6}\right)$, $\left(2, \frac{13 \pi}{6}\right)$, and $\left(-2, \frac{7 \pi}{6}\right)$ all represent the same point on the coordinate plane.
24.12 Convert the point $(-3, \pi)$ from polar to rectangular coordinates.

Given $(r, \theta)=(-3, \pi)$, apply the formulas $x=r \cos \theta$ and $y=r \sin \theta$.

$$
\begin{array}{ll}
x=-3 \cos \pi & y=-3 \sin \pi \\
x=-3(-1) & y=-3(0) \\
x=3 & y=0
\end{array}
$$

Therefore, the polar coordinate $(-3, \pi)$ and the rectangular coordinate $(3,0)$ represent the same point in the Cartesian plane.
24.13 Convert the point $\left(7, \frac{4 \pi}{3}\right)$ from polar to rectangular coordinates.

Given $(r, \theta)=\left(7, \frac{4 \pi}{3}\right)$, apply the formulas $x=r \cos \theta$ and $y=r \sin \theta$.

$$
\begin{array}{ll}
x=7 \cos \frac{4 \pi}{3} & y=7 \sin \frac{4 \pi}{3} \\
x=7\left(-\frac{1}{2}\right) & y=7\left(-\frac{\sqrt{3}}{2}\right) \\
x=-\frac{7}{2} & y=-\frac{7 \sqrt{3}}{2}
\end{array}
$$

The rectangular coordinate pair $\left(-\frac{7}{2},-\frac{7 \sqrt{3}}{2}\right)$ and the polar coordinate pair $\left(7, \frac{4 \pi}{3}\right)$ represent the same point in the Cartesian plane.
24.14 Convert the point $(4,-4)$ from rectangular to polar coordinates.

$$
\begin{array}{rrr}
r=\sqrt{4^{2}+(-4)^{2}} & \tan \theta=\frac{-4}{4} \\
r=\sqrt{32} & \tan \theta=-1 \\
r=4 \sqrt{2} & \theta=-\frac{\pi}{4}
\end{array}
$$

Infinitely many angles have a tangent value of -1 and you can replace $\theta=-\frac{\pi}{4}$ with

Like Problem 24.11 explains, there's more than one correct answer to this problem. Lots of polar coordinates will over lap the rectangular
coordinate $(4,-4)$. any of them, including $\theta=-\frac{5 \pi}{4}, \frac{3 \pi}{4}$, and $\frac{7 \pi}{4}$. However, the polar coordinate must be located in the fourth quadrant to match the rectangular coordinate $(4,-4)$. Therefore, r is positive for all angles terminating in the fourth quadrant and negative for all angles terminating in the second quadrant. Correct polar coordinate representations of the rectangular coordinate pair (4,-4) include $\left(4 \sqrt{2},-\frac{\pi}{4}\right),\left(4 \sqrt{2}, \frac{7 \pi}{4}\right),\left(-4 \sqrt{2}, \frac{3 \pi}{4}\right)$, and $\left(-4 \sqrt{2},-\frac{5 \pi}{4}\right)$.
24.15 Convert the point $(-1, \sqrt{3})$ from rectangular to polar coordinates.

Given $(x, y)=(-1, \sqrt{3})$, apply the conversion formulas $r=\sqrt{x^{2}+y^{2}}$ and $\tan \theta=\frac{y}{x}$. Note that $(-1, \sqrt{3})$ is in the second quadrant, so the terminal side of θ is in the second quadrant (for $r>0$) and in the fourth quadrant (for $r<0$).

$$
\begin{aligned}
& r=\sqrt{(-1)^{2}+(\sqrt{3})^{2}} \\
& r=2
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =-\sqrt{3} \\
\theta & =\frac{2 \pi}{3}
\end{aligned}
$$

Correct polar coordinate representations of the rectangular coordinate $(-1, \sqrt{3})$ include $\left(2, \frac{2 \pi}{3}\right),\left(2, \frac{8 \pi}{3}\right),\left(-2,-\frac{\pi}{3}\right)$, and $\left(-2, \frac{5 \pi}{3}\right)$.

Graphing Polar Curves

Graphing with r and θ instead of x and y

24.16 Graph the polar curve $r=5$.

The curve consists of all the points 5 units away from the pole, regardless of the angle θ. As convention dictates that the pole be placed at the origin, then this curve is the collection of points exactly 5 units away from (0,0). In other words, its graph is a circle centered at the origin with radius 5, as illustrated in Figure 24-7.

Figure 24-7 The polar curve $r=5$ has the same graph as the (comparatively more complex) rectangular curve $x^{2}+y^{2}=25$.
24.17 Graph the polar curve: $\theta=-\frac{\pi}{6}$.

Consider the line that forms the angle $-\frac{\pi}{6}$ with the positive x-axis, as illustrated in Figure 24-8.

Figure 24-8 The graph of $\theta=-\frac{\pi}{6}$ is a straight line.

Any point along this line (regardless of its distance, r, from the origin) belongs to the curve $\theta=-\frac{\pi}{6}$, including the points in the second quadrant once the line is extended across the origin.
24.18 Graph the polar curve: $r=3 \cos \theta$.

The most effective way to graph a polar curve is to use a table of values. The range of θ-values you should use to construct the table depends on the polar equation, but the complete graph of most polar equations containing trigonometric functions can usually be generated using the θ-interval $[0,2 \pi]$. Even fewer θ-values are needed to graph $r=3 \cos \theta$, as the entire curve is drawn between $\theta=0$ and $\theta=\pi$ (and repeats between $\theta=\pi$ and $\theta=2 \pi$).

You have to extend the line because r could be negative. For example, $\left(-3,-\frac{\pi}{6}\right)$ is in the second quadrant, 3 units away from the origin along the line in Figure

24-8.

θ	$r=3 \cos \theta$
0	$r=3 \cos 0=3(1)=3$
$\frac{\pi}{6}$	$r=3 \cos \frac{\pi}{6}=3\left(\frac{\sqrt{3}}{2}\right) \approx 2.6$
$\frac{\pi}{4}$	$r=3 \cos \frac{\pi}{4}=3\left(\frac{\sqrt{2}}{2}\right) \approx 2.1$
$\frac{\pi}{3}$	$r=3 \cos \frac{\pi}{3}=3\left(\frac{1}{2}\right)=1.5$
$\frac{\pi}{2}$	$r=3 \cos \frac{\pi}{2}=3(0)=0$
$\frac{2 \pi}{3}$	$r=3 \cos \frac{2 \pi}{3}=3\left(-\frac{1}{2}\right)=-1.5$
$\frac{3 \pi}{4}$	$r=3 \cos \frac{3 \pi}{4}=3\left(-\frac{\sqrt{2}}{2}\right) \approx-2.1$
$\frac{5 \pi}{6}$	$r=3 \cos \frac{5 \pi}{6}=3\left(-\frac{\sqrt{3}}{2}\right) \approx-2.6$
π	$r=3 \cos \pi=3(-1)=-3$

Figure 24-9 The graph of $r=3 \cos \theta$ is a circle centered at $\left(\frac{3}{2}, 0\right)$ with a radius of $\frac{3}{2}$.
24.19 Graph the polar curve: $r=4 \cos 2 \theta$.

Like Problem 24.18, construct a table of values for the curve. Substituting values of θ in the interval $[0,2 \pi]$ is sufficient to construct the entire curve, as illustrated in Figure 24-10.

Figure 24-10 The graph of the polar curve $r=4 \cos 2 \theta$ is described as a "rose." The number of "petals" in a rose graph (in this curve there are four) varies based on the constants in the polar equation.
24.20 Graph the polar curve: $r=4 \sin 2 \theta$.

Use a table of values very similar to the table in Figure 24.19. All of the angles will remain the same, but rather than multiply 4 times the cosine of each angle to calculate the corresponding r, you will multiply 4 times its sine. The graph, illustrated in Figure 24-11, is very similar to the graph of $r=4 \cos 2 \theta$ as well.

Figure 24-11 The polar curve $4=4 \sin 2 \theta$ is equivalent to the graph of $r=4 \cos 2 \theta$ rotated $\frac{\pi}{4}$ radians either clockwise or counterclockwise.
24.21 Graph the polar curve: $r=\sin \theta-\frac{1}{2}$.

Use a table of values to plot the curve, as illustrated in Figure 24-12.

θ	$r=\sin \theta-\frac{1}{2}$	θ	$r=\sin \theta-\frac{1}{2}$
0	$r=\sin 0-\frac{1}{2}=0-\frac{1}{2}=-\frac{1}{2}$	π	$r=\sin \pi-\frac{1}{2}=0-\frac{1}{2}=-\frac{1}{2}$
$\frac{\pi}{6}$	$r=\sin \frac{\pi}{6}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0$	$\frac{7 \pi}{6}$	$r=\sin \frac{7 \pi}{6}-\frac{1}{2}=-\frac{1}{2}-\frac{1}{2}=-1$
$\frac{\pi}{4}$	$r=\sin \frac{\pi}{4}-\frac{1}{2}=\frac{\sqrt{2}-1}{2} \approx 0.2$	$\frac{5 \pi}{4}$	$r=\sin \frac{5 \pi}{4}-\frac{1}{2}=\frac{-\sqrt{2}-1}{2} \approx-1.2$
$\frac{\pi}{3}$	$r=\sin \frac{\pi}{3}-\frac{1}{2}=\frac{\sqrt{3}-1}{2} \approx 0.4$	$\frac{4 \pi}{3}$	$r=\sin \frac{4 \pi}{3}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2} \approx-1.4$
$\frac{\pi}{2}$	$r=\sin \frac{\pi}{2}-\frac{1}{2}=1-\frac{1}{2}=0.5$	$\frac{3 \pi}{2}$	$r=\sin \frac{3 \pi}{2}-\frac{1}{2}=-1-\frac{1}{2}=-1.5$
$\frac{2 \pi}{3}$	$r=\sin \frac{2 \pi}{3}-\frac{1}{2}=\frac{\sqrt{3}-1}{2} \approx 0.4$	$\frac{5 \pi}{3}$	$r=\sin \frac{5 \pi}{3}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2} \approx-1.4$
$\frac{3 \pi}{4}$	$r=\sin \frac{3 \pi}{4}-\frac{1}{2}=\frac{\sqrt{2}-1}{2} \approx 0.2$	$\frac{7 \pi}{4}$	$r=\sin \frac{7 \pi}{4}-\frac{1}{2}=\frac{-\sqrt{2}-1}{2} \approx-1.2$
$\frac{5 \pi}{6}$	$r=\sin \frac{5 \pi}{6}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0$	$\frac{11 \pi}{6}$	$r=\sin \frac{11 \pi}{6}-\frac{1}{2}=-\frac{1}{2}-\frac{1}{2}=-1$
$\frac{2 \pi}{2}$	$r=\sin (2 \pi)-\frac{1}{2}=0-\frac{1}{2}=-\frac{1}{2}$		

Rectangular graph transformatons do not apply to polar equations. For example, the graph of $r=\sin \theta+1$ is not the graph of $r=\sin \theta$ moved up one unit.

Figure 24-12 Polar curves are classified according to their shapes. The curve $r=\sin \theta-\frac{1}{2}$ is a limaçon.
24.22 Write the polar equation $r=3 \cos \theta$, from Problem 24.18, in parametric form.

According to Problem 24.12, individual polar coordinates can be converted to rectangular coordinates using the formulas $x=r \cos \theta$ and $y=r \sin \theta$. To construct parametric equations that correspond to the polar curve, substitute $r=3 \cos \theta$ into both equations.

$$
\begin{array}{ll}
x=r \cos \theta & y=r \sin \theta \\
x=(3 \cos \theta) \cos \theta & y=(3 \cos \theta) \sin \theta \\
x=3 \cos ^{2} \theta & y=3 \cos \theta \sin \theta
\end{array}
$$

24.23 Write the polar equation $r=\sin \theta-\frac{1}{2}$, from Problem 21.21, in parametric form.

Substitute the polar equation for r in the parametric equations $x=r \cos \theta$ and $y=r \sin \theta$.

$$
\begin{array}{ll}
x=r \cos \theta & y=r \sin \theta \\
x=\left(\sin \theta-\frac{1}{2}\right) \cos \theta & y=\left(\sin \theta-\frac{1}{2}\right) \sin \theta \\
x=\cos \theta \sin \theta-\frac{1}{2} \cos \theta & y=\sin ^{2} \theta-\frac{1}{2} \sin \theta
\end{array}
$$

Applications of Parametric and Polar Differentiation

Teach a new dog some old differentiation tricks

24.24 Given a curve defined by the parametric equations $x=f(t)$ and $y=g(t)$, determine $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$, the first and second derivatives.

Apply the derivative formula for parametrically-defined curves.

$$
\begin{aligned}
\rightarrow \frac{d y}{d x} & =\frac{d y / d t}{d x / d t} \\
& =\frac{g^{\prime}(t)}{f^{\prime}(t)}
\end{aligned}
$$

Note that the second derivative of a parametrically-defined curve is not simply the derivative of $\frac{d y}{d x}$ with respect to t-it is the quotient of that derivative and $\frac{d x}{d t}$.

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} \\
\text { Recall that } \frac{d y}{d x}=\frac{g^{\prime}(t)}{f^{\prime}(t)} . & =\frac{\frac{d}{d t}\left(\frac{g^{\prime}(t)}{f^{\prime}(t)}\right)}{f^{\prime}(t)}
\end{aligned}
$$

24.25 Given the curve defined by the parametric equations $x=\frac{t+1}{2}$ and $y=t-t^{2}$ (from Problem 24.3), calculate $\frac{d y}{d x}$.

Differentiate each of the parametric equations with respect to the parameter t.

$$
\begin{array}{lr}
x=\frac{1}{2}(t+1) & y=t-t^{2} \\
\frac{d x}{d t}=\frac{1}{2} & \frac{d y}{d t}=1-2 t
\end{array}
$$

According to Problem 24.24, the derivative of the curve is equal to the quotient of $d y / d t$ and $d x / d t$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d t}{d x / d t} \\
& =\frac{1-2 t}{1 / 2} \\
& =2(1-2 t) \\
& =2-4 t
\end{aligned}
$$

24.26 Verify the solution to Problem 24.25 using the rectangular form of the parametric curve and its derivative.

Problem 24.25 states that $\frac{d y}{d x}=2-4 t$. Rewrite the derivative in terms of x by solving the parametric equation $x=\frac{t+1}{2}$ for t.

Substitute t into $\frac{d y}{d x}=2-4 t$.

$$
\begin{aligned}
x & =\frac{t+1}{2} \\
2 x & =t+1 \\
t & =2 x-1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=2-4(2 x-1) \\
& \frac{d y}{d x}=2-8 x+4 \\
& \frac{d y}{d x}=-8 x+6
\end{aligned}
$$

According to Problem 24.4, the curve defined by the parametric equations $x=\frac{t+1}{2}$ and $y=t-t^{2}$ has rectangular form $y=-4 x^{2}+6 x-2$. Differentiate with respect to x.

$$
\frac{d y}{d x}=-8 x+6
$$

The derivatives are equal, verifying the parametric derivative calculated in Problem 24.25.

Note: Problems 24.27-24.29 refer to the curve defined by the parametric equations $x=e^{t}$ and $y=\cos 3 t$.
24.27 Calculate the slope of the curve when $t=2$.

Differentiate the parametric equations with respect to $t: \frac{d x}{d t}=e^{t}$ and $\frac{d y}{d t}=-3 \sin 3 t$; apply the parametric derivative formula.

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-3 \sin 3 t}{e^{t}}
$$

Evaluate $\frac{d y}{d x}$ when $t=2$.

$$
\frac{-3 \sin (3 \cdot 2)}{e^{2}}=-\frac{3 \sin 6}{e^{2}}
$$

Note: Problems 24.27-24.29 refer to the curve defined by the parametric equations $x=e^{t}$ and $y=\cos 3 t$.
24.28 Write the equation of the tangent line to the curve when $t=2$.

Substitute $t=2$ into the parametric equations to determine the point of tangency.

$$
x=e^{t}=e^{2} \quad y=\cos 3 t=\cos 6
$$

When $t=2$, the point of tangency on the curve is $\left(e^{2}, \cos 6\right)$. According to Problem 24.27, the slope of the tangent line at that point is $-\frac{3 \sin 6}{e^{2}}$. Apply the point-slope formula to generate the equation of the tangent line.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\cos 6 & =-\frac{3 \sin 6}{e^{2}}\left(x-e^{2}\right) \\
y-\cos 6 & =-\left(\frac{3 \sin 6}{e^{2}}\right) x+3 \sin 6 \\
y & =-\left(\frac{3 \sin 6}{e^{2}}\right) x+3 \sin 6+\cos 6
\end{aligned}
$$

Note: Problems 24.27-24.29 refer to the curve defined by the parametric equations $x=e^{t}$ and $y=\cos 3 t$.
24.29 Determine the second derivative of the curve.

Note: Problems 24.30-24.32 refer to the curve defined by the parametric equations $x=6 \cos \theta$ and $y=2 \sin \theta$.
24.30 Find $\frac{d y}{d x}$, the derivative of the curve, in terms of t.

Apply the parametric derivative formula.

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{2 \cos \theta}{-6 \sin \theta}=-\frac{1}{3} \cot \theta
$$

Note: Problems 24.30-24.32 refer to the curve defined by the parametric equations $x=6 \cos \theta$ and $y=2 \sin \theta$.
24.31 Rewrite the parametrically-defined curve in rectangular form and differentiate with respect to x in order to verify the derivative in Problem 24.30.

Solve each parametric equation for the trigonometric function within.

$$
\begin{array}{ll}
x=6 \cos \theta & y=2 \sin \theta \\
\frac{x}{6}=\cos \theta & \frac{y}{2}=\sin \theta
\end{array}
$$

Square both sides of each equation.

$$
\frac{x^{2}}{36}=\cos ^{2} \theta \quad \frac{y^{2}}{4}=\sin ^{2} \theta
$$

Substitute into a Pythagorean trigonometric identity.

$$
\begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 \\
\frac{x^{2}}{36}+\frac{y^{2}}{4} & =1
\end{aligned}
$$

Now that the equation of the ellipse is in rectangular form, differentiate with respect to x.

$$
\begin{aligned}
\frac{1}{36}(2 x)+\frac{1}{4}(2 y)\left(\frac{d y}{d x}\right) & =0 \\
\frac{y}{2}\left(\frac{d y}{d x}\right) & =-\frac{x}{18} \\
\frac{d y}{d x} & =-\frac{x}{18}\left(\frac{2}{y}\right) \\
\frac{d y}{d x} & =-\frac{x}{9 y}
\end{aligned}
$$

Write the derivative in terms of θ, recalling that $x=6 \cos \theta$ and $y=2 \sin \theta$.

$$
\frac{d y}{d x}=-\frac{6 \cos \theta}{9(2 \sin \theta)}=-\frac{6 \cos \theta}{18 \sin \theta}=-\frac{1}{3} \cot \theta
$$

Note: Problems 24.30-24.32 refer to the curve defined by the parametric equations $x=6 \cos \theta$ and $y=2 \sin \theta$.
24.32 Find $\frac{d^{2} y}{d x^{2}}$, the second derivative of the curve, in terms of θ.

The sine and cosecant functions
are reciprocals, so dividing by sine is the same thing as multiplying by cosecant.

Substitute the values of $\frac{d y}{d x}$ and $\frac{d x}{d \theta}$ from Problem 24.30 into the parametric second derivative formula.

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d \theta}\left(\frac{d y}{d x}\right)}{d x / d \theta}=\frac{\frac{d}{d \theta}\left(-\frac{1}{3} \cot \theta\right)}{-6 \sin \theta}=\frac{\frac{1}{3} \csc ^{2} \theta}{-6 \sin \theta}=-\frac{1}{18} \csc ^{3} \theta
$$

Note: Problems 24.33-24.34 refer to the polar equation $r=2 \sin \theta$.

Apply the parametric derivative formula. Note that $\frac{d y}{d \theta}$ requires the chain rule and $\frac{d x}{d \theta}$ requires the product rule.

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{4 \sin \theta \cdot \cos \theta}{2[\sin \theta(-\sin \theta)+\cos \theta(\cos \theta)]}=\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}
$$

Replace the expressions using double angle trigonometric identities.

$$
=\frac{\sin 2 \theta}{\cos 2 \theta}=\tan 2 \theta
$$

Note: Problems 24.33-24.34 refer to the polar equation $r=2 \sin \theta$.
24.34 Find the second derivative of the polar equation.

Substitute $\frac{d y}{d x}$ and $\frac{d y}{d \theta}$ from Problem 24.33 into the parametric second derivative
formula.

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d \theta}\left(\frac{d y}{d x}\right)}{d x / d \theta}=\frac{\frac{d}{d \theta}(\tan 2 \theta)}{\cos 2 \theta}=\frac{2 \sec ^{2} 2 \theta}{\cos 2 \theta}=2 \sec ^{3} 2 \theta
$$

24.35 Identify the equation of the tangent line to the polar curve $r=\sin \theta-\cos 2 \theta$ at $\theta=\frac{3 \pi}{4}$ and write the equation in rectangular form.

Express the polar equation parametrically.

$$
\begin{aligned}
x & =r \cos \theta & y & =r \sin \theta \\
& =(\sin \theta-\cos 2 \theta) \cos \theta & & =(\sin \theta-\cos 2 \theta) \sin \theta \\
& =\cos \theta \sin \theta-\cos \theta \cos 2 \theta & & =\sin ^{2} \theta-\cos 2 \theta \cdot \sin \theta
\end{aligned}
$$

Determine the rectangular coordinates of the point of tangency by substituting $\theta=\frac{3 \pi}{4}$ into the parametric equations.

$$
\begin{aligned}
x & =\cos \frac{3 \pi}{4} \sin \frac{3 \pi}{4}-\cos \frac{3 \pi}{4} \cos \frac{3 \pi}{2} & y & =\left(\sin \frac{3 \pi}{4}\right)^{2}-\cos \frac{3 \pi}{2} \sin \frac{3 \pi}{4} \\
& =\left(-\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)-\left(-\frac{\sqrt{2}}{2}\right)(0) & & =\left(\frac{\sqrt{2}}{2}\right)^{2}-(0)\left(\frac{\sqrt{2}}{2}\right) \\
& =-\frac{1}{2} & & =\frac{1}{2}
\end{aligned}
$$

The point of tangency, shared by the tangent line and the polar curve, is $\left(-\frac{1}{2}, \frac{1}{2}\right)$. Differentiate the parametric equations with respect to θ, using the product and chain rules.

$$
\begin{aligned}
\frac{d x}{d \theta} & =[\cos \theta(\cos \theta)+\sin \theta(-\sin \theta)]-[\cos \theta(-2 \sin 2 \theta)+(\cos 2 \theta)(-\sin \theta)] \\
& =\cos ^{2} \theta-\sin ^{2} \theta+2 \cos \theta \sin 2 \theta+\cos 2 \theta \sin \theta \\
& =\cos 2 \theta+2 \cos \theta \sin 2 \theta+\cos 2 \theta \sin \theta \\
\frac{d y}{d \theta} & =2 \sin \theta \cos \theta-[\cos 2 \theta \cos \theta+\sin \theta(-2 \sin 2 \theta)] \\
& =2 \sin \theta \cos \theta-\cos \theta \cos 2 \theta+2 \sin \theta \sin 2 \theta
\end{aligned}
$$

A double angle trig identity tells you that
$\cos ^{2} \theta-\sin ^{2} \theta=$ $\cos 2 \theta$.

Apply the parametric derivative formula.

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{2 \sin \theta \cos \theta-\cos \theta \cos 2 \theta+2 \sin \theta \sin 2 \theta}{\cos 2 \theta+2 \cos \theta \sin 2 \theta+\cos 2 \theta \sin \theta}
$$

Evaluate the derivative at $\theta=\frac{3 \pi}{4}$.

$$
\begin{aligned}
& \frac{2(\sqrt{2} / 2)(-\sqrt{2} / 2)-(-\sqrt{2} / 2)(0)+2(\sqrt{2} / 2)(-1)}{0+2(-\sqrt{2} / 2)(-1)+(0)(\sqrt{2} / 2)} \\
& =\frac{-1-\sqrt{2}}{\sqrt{2}} \\
& =-\frac{\sqrt{2}+2}{2}
\end{aligned}
$$

Apply the point-slope formula to write the equation of the tangent line, with $\left(x_{1}, y_{1}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right)$ and $m=-\frac{\sqrt{2}+2}{2}$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-\frac{1}{2}=-\frac{\sqrt{2}+2}{2}\left(x-\left(-\frac{1}{2}\right)\right) \\
& y-\frac{1}{2}=-\frac{\sqrt{2}+2}{2}\left(x+\frac{1}{2}\right)
\end{aligned}
$$

Applications of Parametric and Polar Integration

 Maybe some integrals might also interest the new dog24.36 Calculate the length of the curve defined by the parametric equations $x=\ln t$ and $y=\frac{1}{t^{2}}$ between $t=1$ and $t=3$. Use a graphing calculator to evaluate the definite integral and report the result accurate to three decimal places.

If a curve is defined by the parametric equations $x=f^{\prime}(t)$ and $y=g(t)$, the length of the curve between $x=a$ and $x=b$ is equal to $\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$. Differentiate the parametric equations with respect to t.

$$
\frac{d x}{d t}=\frac{d}{d t}(\ln t)=\frac{1}{t} \quad \frac{d y}{d t}=\frac{d}{d t}\left(t^{-2}\right)=-\frac{2}{t^{3}}
$$

Substitute the derivatives into the parametric arc length formula.
$\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{1}^{3} \sqrt{\left(\frac{1}{t}\right)^{2}+\left(-\frac{2}{t^{3}}\right)^{2}} d t=\int_{1}^{3} \sqrt{\frac{1}{t^{2}}+\frac{4}{t^{6}}} d t=\int_{1}^{3} \sqrt{\frac{t^{4}+4}{t^{6}}} d t$
Use a graphing calculator to determine that $\int_{1}^{3} \sqrt{\frac{t^{4}+\frac{4}{t^{6}}}{4}} d t \approx 1.470$.
boundaries
are important -
you want to draw
exactly one circle. If you use boundaries of 0 and 4π, the circle gets drawn twice (even though it's hard to tell that from the graph, because
the circles overlap).
24.37 Prove that the circumference of a circle with radius r is equal to $2 \pi r$ by calculating the arc length of a parametrically defined curve.

According to Problem 24.8, the parametric curve defined by $x=r \cos \theta$ and $y=r \sin \theta$ is a circle centered at the origin with radius r (for θ-values between 0 and $2 \pi)$. Differentiate the parametric equations.

$$
\frac{d x}{d \theta}=-r \sin \theta \quad \frac{d y}{d \theta}=r \cos \theta
$$

Apply the parametric arc length formula from Problem 24.36.

$$
\begin{aligned}
\int_{a}^{b} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d t & =\int_{0}^{2 \pi} \sqrt{(-r \sin \theta)^{2}+(r \cos \theta)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{r^{2} \sin ^{2} \theta+r^{2} \cos ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)} d \theta
\end{aligned}
$$

According to a Pythagorean trigonometric identity, $\sin ^{2} \theta+\cos ^{2} \theta=1$.

$$
=\int_{0}^{2 \pi} \sqrt{r^{2}(1)} d \theta=r \int_{0}^{2 \pi} d \theta=\left.r(\theta)\right|_{0} ^{2 \pi}=r(2 \pi-0)=2 \pi r
$$

24.38 Construct a definite integral representing the circumference of an ellipse with major axis length $2 a$ and minor axis length $2 b$.

The orientation of the ellipse (i.e., whether its major axis is horizontal or vertical) is irrelevant, as is the center of the ellipse. Assume the ellipse is centered at the origin and has a horizontal major axis. According to Problem 24.7, the ellipse is defined by the parametric equations $x=a \cos \theta$ and $y=b \sin \theta$ for $0 \leq \theta \leq 2 \pi$. Differentiate the parametric equations.

$$
\frac{d x}{d \theta}=-a \sin \theta \quad \frac{d y}{d \theta}=b \cos \theta
$$

Apply the parametric arc length formula.

$$
\begin{aligned}
\int_{a}^{b} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta & =\int_{0}^{2 \pi} \sqrt{(-a \sin \theta)^{2}+(b \cos \theta)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta} d \theta
\end{aligned}
$$

24.39 According to Problem 24.18, the graph of the polar equation $r=3 \cos \theta$ is a circle centered at $\left(\frac{3}{2}, 0\right)$ with radius $\frac{3}{2}$, which has area $\frac{9 \pi}{4}$. Verify the area of the circle by calculating the area bounded by the polar curve between $\theta=0$ and $\theta=\pi$.

Based

 on the formula$A=\pi r^{2}$ from $A=\pi r^{2}$ from geometry.

The area bounded by a polar curve is equal to $\frac{1}{2} \int_{a}^{b} r^{2} d \theta$. Note that a and b are the bounding values of θ stated by the problem: $a=0$ and $b=\pi$.

$$
\begin{aligned}
\frac{1}{2} \int_{a}^{b} r^{2} d \theta & =\frac{1}{2} \int_{0}^{\pi}(3 \cos \theta)^{2} d \theta \\
& =\frac{9}{2} \int_{0}^{\pi} \cos ^{2} \theta d \theta
\end{aligned}
$$

Polar equations
are written " $r=$ " so plug whatever r equals into the integrand r^{2}. Don't forget the $1 / 2$ in front of the definite integral.

Apply the power-reducing formula $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$.

$$
\begin{aligned}
& =\frac{9}{4} \int_{0}^{\pi}(1+\cos 2 \theta) d \theta \\
& =\left.\frac{9}{4}\left(\theta+\frac{1}{2} \sin 2 \theta\right)\right|_{0} ^{\pi} \\
& =\frac{9 \pi}{4}
\end{aligned}
$$

24.40 Calculate the area bounded by one petal of the rose curve $r=\sin 3 \theta$.

Each petal of the rose curve begins and ends at the origin, so set $r=0$ and solve for θ to determine the θ-values that bound the petals.

$$
\begin{aligned}
\sin 3 \theta & =0 \\
3 \theta & =0, \pi, 2 \pi, 3 \pi, \cdots \\
\theta & =0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \cdots
\end{aligned}
$$

Figure 24-13 illustrates the region of the polar graph bounded by $\theta=0$ and $\theta=\frac{\pi}{3}$, one petal of the graph.

Figure 24-13 The congruent petals of the rose curve $r=\sin 3 \theta$ occur on the θ-intervals $\left[0, \frac{\pi}{3}\right],\left[\frac{\pi}{3}, \frac{2 \pi}{3}\right]$, and $\left[\frac{2 \pi}{3}, \pi\right]$.

Apply the polar area formula.

$$
\frac{1}{2} \int_{a}^{b} r^{2} d \theta=\frac{1}{2} \int_{0}^{\pi / 3} \sin ^{2} 3 \theta d \theta
$$

According to a power-reducing formula, $\int \sin ^{2} 3 \theta d \theta=\int \frac{1-\cos (2 \cdot 3 \theta)}{2} d \theta$.

$$
\begin{aligned}
& =\frac{1}{2} f_{0}^{\pi / 31-\cos 6 \theta} 2 \\
& =\frac{1}{4} \int_{0}^{\pi / 3}(1-\cos 6 \theta) d \theta \\
& =\left.\frac{1}{4}\left(\theta-\frac{1}{6} \sin 6 \theta\right)\right|_{0} ^{\pi / 3} \\
& =\frac{1}{4}\left(\frac{\pi}{3}-\frac{1}{6} \sin 2 \pi\right) \\
& =\frac{1}{4}\left(\frac{\pi}{3}\right) \\
& =\frac{\pi}{12}
\end{aligned}
$$

24.4I Calculate the area of the shaded region in Figure 24-14 bounded by the polar curve $r=1-2 \sin \theta$ and the axes of the Cartesian plane.

Figure 24-14
A portion of the region bounded by the polar curve $r=1-2 \sin \theta$.

The polar graph in Figure 24 -14 is generated by plotting θ-values on the interval $[0,2 \pi]$; calculate the values of θ in that interval at which the polar curve intersects the origin (i.e., where $r=0$).

$$
\begin{aligned}
1-2 \sin \theta & =0 \\
2 \sin \theta & =1 \\
\sin \theta & =\frac{1}{2} \\
\theta & =\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

Consider Figure 24-15, which illustrates different regions of the graph and the angles, θ, that bound those regions. According to the diagram, the shaded region
in Figure 24-14 is equal to the area on the θ-interval $\left[\frac{3 \pi}{2}, 2 \pi\right]$ minus the area on the θ-interval $\left[\frac{\pi}{2}, \frac{5 \pi}{6}\right]$.

Figure 24-15 Regions bounded by $r=1-2 \sin \theta$ and varying θ-values on the interval $[0,2 \pi)$.

$$
\begin{aligned}
& \frac{1}{2} \int_{3 \pi / 2}^{2 \pi}(1-2 \sin \theta)^{2} d \theta-\frac{1}{2} \int_{\pi / 2}^{5 \pi / 6}(1-2 \sin \theta)^{2} d \theta \\
& =\frac{1}{2}\left[\int_{3 \pi / 2}^{2 \pi}\left(1-4 \sin \theta+4 \sin ^{2} \theta\right) d \theta-\int_{\pi / 2}^{5 \pi / 6}\left(1-4 \sin \theta+4 \sin ^{2} \theta\right) d \theta\right]
\end{aligned}
$$

Apply a power-reducing formula to determine the antiderivative of $4 \sin ^{2} \theta$.

$$
\begin{aligned}
& =\frac{1}{2}\left[\left.(\theta+4 \cos \theta+2 \theta-\sin 2 \theta)\right|_{3 \pi / 2} ^{2 \pi}-\left.(\theta+4 \cos \theta+2 \theta-\sin 2 \theta)\right|_{\pi / 2} ^{5 \pi / 6}\right] \\
& =\frac{1}{2}\left[\left.(3 \theta+4 \cos \theta-\sin 2 \theta)\right|_{3 \pi / 2} ^{2 \pi}-\left.(3 \theta+4 \cos \theta-\sin 2 \theta)\right|_{\pi / 2} ^{5 \pi / 6}\right] \\
& =\frac{1}{2}\left[(6 \pi+4-0)-\left(\frac{9 \pi}{2}+0-0\right)-\left[\left(\frac{5 \pi}{2}-\frac{4 \sqrt{3}}{2}+\frac{\sqrt{3}}{2}\right)-\left(\frac{3 \pi}{2}+0-0\right)\right]\right] \\
& =\frac{1}{2}\left[\frac{3 \pi}{2}+4-\pi+\frac{3 \sqrt{3}}{2}\right] \\
& =\frac{1}{2}\left(\frac{\pi}{2}+\frac{8+3 \sqrt{3}}{2}\right) \\
& =\frac{\pi+8+3 \sqrt{3}}{4}
\end{aligned}
$$

Chapter 25
 DIFFERENTIAL EQUATIONS

Equations that contain a derivative

Abstract

While the study of diffierential equations is sufficiently complex that it requires focused attention in a mathematician's coursework, it is both appropriate and useful to introduce them once the concepts of differentiation and integration are explored. This book limits its discussion to ordinary differential equations (equations presented in terms of a single independent variable). Equations whose solutions can be determined by means of the separation of variables are presented, as are visualization and solution approximation techniques for inseparable differential equations.

A differential equation is an equation that contains a derivative, and treats it like a variable. In the beginning of the chapter, you'll come up with equations whose derivatives are the differential equations in the problem. Through a process called "separation of variables," you'll start with $d y / d x=f(x)$ and end up with a solution $y=g(x)$, where $f(x)$ is the derivative of $g(x)$. Unfortunately, not all differential equations can be solved by separating variables, so the rest of the chapter deals with ways to visualize and estimate solutions to those kinds of equations.

Separation of Variables

separate the y's and dy's from the x 's and dx's

Note: Problems 25.1-25.2 refer to the differential equation $\frac{d y}{d x}=4 x$.
25.1 Find the general solution of the differential equation.

Multiply both sides of the equation by $d x$ in order to separate the variables.

$$
d y=4 x d x
$$

Integrate both sides of the equation.

$$
\begin{aligned}
\int d y & =4 \int x d x \\
y & =4 \cdot \frac{x^{2}}{2}+C \\
y & =2 x^{2}+C
\end{aligned}
$$

The family of curves represented by the equation $y=2 x^{2}+C$ are solutions to the differential equation $\frac{d y}{d x}=4 x$.

Note: Problems 25.1-25.2 refer to the differential equation $\frac{d y}{d x}=4 x$.
25.2 Find the specific solution of the differential equation that contains the point $(-3,7)$.

According to Problem 25.1, the general solution is $y=2 x^{2}+C$. Substitute the given x - and y-coordinates into the solution and solve for C.

$$
\begin{aligned}
y & =2 x^{2}+C \\
7 & =2(-3)^{2}+C \\
7 & =18+C \\
-11 & =C
\end{aligned}
$$

The specific solution of the differential equation is $y=2 x^{2}-11$.

So the genaral solution of $d y / d x=4 x$ contains every single equation that looks like $y=2 x^{2}$ plus some number. of all those possible solutions, Problem 25.2 wants only the one, specific solution that passes through the point
25.3 Describe the difference between a general solution of a differential equation (such as Problem 25.1) and a specific solution (such as Problem 25.2).

The general solution of a differential equation is an infinitely large collection of curves that are identical apart from the constant term in each function. Graphically, the solutions to differential equations are equivalent, except for their vertical positions in the coordinate plane. The specific solution of a differential equation is the unique member of the family of solutions that passes through a point identified by the problem, called the initial value.

Note: Problems 25.4-25.5 refer to the differential equation $\frac{d y}{d x}=\frac{3 x-1}{y}$.
25.4 Find the general solution of the differential equation.

Cross multiply the proportion to separate the variables.

$$
y d y=(3 x-1) d x
$$

Integrate both sides of the equation.

$$
\frac{y^{2}}{2}=\frac{3 x^{2}}{2}-x+C
$$

Multiply the equation by 2 in order to eliminate the fractions. Note that the product of 2 and an arbitrary constant is another arbitrary constant.

$$
y^{2}=3 x^{2}-2 x+C
$$

Solve for y.

$$
y= \pm \sqrt{3 x^{2}-2 x+C}
$$

Note: Problems 25.4-25.5 refer to the differential equation $\frac{d y}{d x}=\frac{3 x-1}{y}$.
25.5 Find the specific solution of the diffierential equation that has x-intercept $(-1,0)$.

According to Problem 25.4, the general solution of the differential equation is $y= \pm \sqrt{3 x^{2}-2 x+C}$. Substitute $x=-1$ and $y=0$ into that equation and solve for C.

$$
\begin{aligned}
& 0= \pm \sqrt{3(-1)^{2}-2(-1)+C} \\
& 0= \pm \sqrt{5+C} \\
& 0=5+C \\
& -5=C
\end{aligned}
$$

Substitute C into the general solution of get the specific solution $y= \pm \sqrt{3 x^{2}-2 x-5}$. Note that this solution may differ slightly from the solution reported in a differential equations course, in which the answers are typically restricted to single, continuous intervals, but it will suffice for the scope of this course.

Note: Problems 25.6-25.8 refer to the differential equation $\frac{d y}{d x}=\frac{x}{y}$.
25.6 Describe the family of solutions of the differential equation.

Cross multiply to separate the variables and antidifferentiate both sides of the resulting equation.

$$
\begin{aligned}
& y d y=x d x \\
& \int y d y=\int x d x \\
& \frac{y^{2}}{2}=\frac{x^{2}}{2}+C
\end{aligned}
$$

Multiply the equation by 2 to eliminate fractions.

$$
y^{2}=x^{2}+C
$$

Look at Problem 6.29 if you need help understanding the standard form of a hyperbola.

This solution represents a family of hyperbolas centered at the origin with transverse and conjugate axes of equal length. To verify this, isolate the constant and divide each term by C-the result is a hyperbola in standard form.

$$
\begin{aligned}
& \frac{y^{2}}{C}-\frac{x^{2}}{C}=\frac{C}{C} \\
& \frac{y^{2}}{C}-\frac{x^{2}}{C}=1
\end{aligned}
$$

Note: Problems 25.6-25.8 refer to the differential equation $\frac{d y}{d x}=\frac{x}{y}$.
25.7 Graph the specific solution of the differential equation that passes through the point ($-1,2$).

Substitute $x=-1$ and $y=2$ into the general solution identified by Problem 25.6.

$$
\begin{aligned}
\frac{y^{2}}{C}-\frac{x^{2}}{C} & =1 \\
\frac{2^{2}}{C}-\frac{(-1)^{2}}{C} & =1 \\
\frac{4-1}{C} & =1 \\
C & =3
\end{aligned}
$$

Substitute $C=3$ into the general solution of determine the specific solution (illustrated in Figure 25-1) that contains the point $(-1,2)$.

$$
\begin{aligned}
& \frac{y^{2}}{C}-\frac{x^{2}}{C}=1 \\
& \frac{y^{2}}{3}-\frac{x^{2}}{3}=1
\end{aligned}
$$

Figure 25-1 The hyperbola $\frac{y^{2}}{3}-\frac{x^{2}}{3}=1$ is centered at (0,0), has a vertical transverse axis of length $2 \sqrt{3}$, has a horizontal conjugate axis of length $2 \sqrt{3}$, and passes through the point $(-1,2)$.

Note: Problems 25.6-25.8 refer to the differential equation $\frac{d y}{d x}=\frac{x}{y}$.
25.8 Verify that $\frac{y^{2}}{3}-\frac{x^{2}}{3}=1$ is a solution of the differential equation by demonstrating that the derivative of the solution is the differential equation.

Need help? Look at Problem 16.9.

Differentiate implicitly.

$$
\begin{aligned}
\frac{2 y \cdot d y}{3 d x}-\frac{2 x}{3} & =0 \\
\frac{2 y}{3} \cdot \frac{d y}{d x} & =\frac{2 x}{3} \\
\left(\frac{\partial}{2 y}\right)\left(\frac{2 y}{\not x} \cdot \frac{d y}{d x}\right) & =\frac{2 x}{3}\left(\frac{3}{2 y}\right) \\
\frac{d y}{d x} & =\frac{6 x}{6 y} \\
\frac{d y}{d x} & =\frac{x}{y}
\end{aligned}
$$

25.9 Find the general solution of the differential equation: $\frac{d y}{d x}=x y(x+3)$.

Divide both sides of the equation by y and multiply both sides by $d x$.

$$
\begin{aligned}
& \frac{d y}{y}=x(x+3) d x \\
& \frac{d y}{y}=\left(x^{2}+3 x\right) d x
\end{aligned}
$$

Divide both sides of the equation by y and multiply both sides by $d x$ to separate the variables.

$$
\frac{d y}{y}=\frac{e^{x}}{e^{2 x}+5} d x
$$

Integrate both sides of the equation and isolate $\ln |y|$. Use an inverse trigonometric integration formula and variable substitution to antidifferentiate the right side of the equation.

$$
\begin{aligned}
& \int \frac{d y}{y}=\int \frac{e^{x}}{e^{2 x}+5} d x \\
& \ln |y|=\frac{1}{\sqrt{5}} \arctan \left(\frac{e^{x}}{\sqrt{5}}\right)+C
\end{aligned}
$$

Exponentiate both sides of the equation to solve for y.

$$
\begin{aligned}
e^{\ln |y|} & =e^{(1 / \sqrt{5}) \arctan \left(e^{x} / \sqrt{5}\right)+C} \\
|y| & =e^{(1 / \sqrt{5}) \arctan \left(e^{x} / \sqrt{5}\right)} \cdot e^{C} \\
y & =C e^{(1 / \sqrt{5}) \arctan \left(e^{x} / \sqrt{5}\right)}
\end{aligned}
$$

Rationalize the exponent: $y=C e^{(\sqrt{5} / 5) \arctan \left(e^{x} \sqrt{5} / 5\right)}$.
25.1I Identify $f(x)$, given $f^{\prime \prime}(x)=2 x-\cos x, f^{\prime}(\pi)=0$, and $f(0)=\frac{\pi}{2}$.

Integrate $f^{\prime \prime}(x)$ with respect to x to get $f^{\prime}(x)$.

$$
f^{\prime}(x)=\int(2 x-\cos x) d x=x^{2}-\sin x+C
$$

Substitute $x=\pi$ into $f^{\prime}(x)$ and recall that $f^{\prime}(\pi)=0$ to determine the value of C.

$$
\begin{aligned}
f^{\prime}(\pi) & =\pi^{2}-\sin \pi+C \\
0 & =\pi^{2}-0+C \\
-\pi^{2} & =C
\end{aligned}
$$

Therefore, $f^{\prime}(x)=x^{2}-\sin x-\pi^{2}$. Integrate $f^{\prime}(x)$ to find $f(x)$.

$$
f(x)=\int\left(x^{2}-\sin x-\pi^{2}\right) d x=\frac{x^{3}}{3}+\cos x-\pi^{2} x+C
$$

Recall that $f(0)=\frac{\pi}{2}$.

$$
\begin{aligned}
f(0) & =\frac{(0)^{3}}{3}+\cos 0-\pi^{2}(0)+C \\
\frac{\pi}{2} & =1+C \\
\frac{\pi}{2}-1 & =C
\end{aligned}
$$

Therefore, $f(x)=\frac{x^{3}}{3}+\cos x-\pi^{2} x+\frac{\pi}{2}-1$.

Exponential Growth and Decay

When a population's change is proportional to its size

25.12 Assume y is proportional to its rate of change $\frac{d y}{d t}: \frac{d y}{d t}=k \cdot y$ (where k is a nonzero real number). Find the general solution of the diffierential equation.

Divide both sides of the equation by y and multiply both sides by $d t$ to separate the variables.

The variables are y and t according to the derivative $d y / d t)$, even though there's no tin the equation. keep k on the t side of the equation, because you'll eventually solve for y and would have to move it anyway.

$$
\begin{gathered}
\frac{d y}{y}=k d t \\
\int \frac{d y}{y}=k \int d t \\
\ln |y|=k t+C
\end{gathered}
$$

Exponentiate both sides of the equation.

$$
e^{\ln |y|}=e^{k l+C}
$$

Apply an exponential property, as explained by Problem 25.9: $e^{\text {jat } C}=e^{k t} e^{C}$.

$$
\begin{aligned}
e^{\ln |y|} & =e^{k t} e^{C} \\
y & =C e^{k t}
\end{aligned}
$$

Note: Problems 25.13-25.15 refer to a scientific experiment, at the start of which a scientist observes 125 bacterial colonies growing in the agar of a Petri dish. Exactly six hours later, the number of colonies has grown to 190.
25.13 Construct a mathematical model that describes the number of bacterial colonies present t hours after the start of the experiment, assuming exponential growth.
Exponential growth means the bigger the population, the faster it grows. Exponential decay is the other side of the coin-sometimes the bigger something is, the faster it decays.

A population y experiences exponential growth if and only if y is proportional to $\frac{d y}{d t}$. According to Problem 25.12, populations experiencing exponential growth are modeled by the equation $y=C e^{k t}$, where C is the original population, t is elapsed time, and y is the population after time t has elapsed. Determine the value of k based upon the given information.

The original bacterial population is $C=125$; and after $t=6$ hours, the population has grown to $y=190$. Substitute these values into the exponential growth equation.

$$
\begin{aligned}
y & =C e^{k t} \\
190 & =125 e^{k(6)}
\end{aligned}
$$

Isolate $e^{6 k}$ on one side of the equation.

$$
\begin{aligned}
\frac{190}{125} & =e^{6 k} \\
\frac{38}{25} & =e^{6 k}
\end{aligned}
$$

Take the natural logarithm of both sides of the equation and solve for k.

$$
\begin{aligned}
& \ln \frac{38}{25}=\ln e^{6 k} \\
& \ln \frac{38}{25}=6 k \\
& \frac{\ln (38 / 25)}{6}=k
\end{aligned}
$$

It is often useful to express k as a decimal: $k \approx 0.06978505581$. Therefore, t hours after the experiment begins, there are approximately $y=125 e^{0.06978505581(t)}$ bacterial colonies in the Petri dish.

Note: Problems 25.13-25.15 refer to a scientific experiment, at the start of which a scientist observes 125 bacterial colonies growing in the agar of a Petri dish. Exactly six hours later, the number of colonies has grown to 190.
25.14 Approximately how many bacterial colonies will be present exactly one day after the experiment begins? Round the answer to the nearest integer.

According to Problem 25.13, there are approximately $y=125 e^{0.06978505581(t)}$ colonies

If you've going to write k as a decimal, DON'T ROUND IT-use as many decimals as your calculator can give you. Otherwise, your answers might be inaccurate. t hours after the experiment begins. Substitute $t=24$ into the equation to determine how many colonies are present after 24 hours (i.e., one day).

$$
y=125 e^{0.06978505581(24)}=125 e^{1.67884139943} \approx 667.244
$$

There are approximately 667 bacterial colonies exactly 24 hours after the experiment begins.

Note: Problems 25.13-25.15 refer to a scientific experiment, at the start of which a scientist observes 125 bacterial colonies growing in the agar of a Petri dish. Exactly six hours later, the number of colonies has grown to 190.
25.15 Assuming that resources are not a limiting issue to growth, how many hours will it take the total bacteria population to reach 20,000 ? Round the answer to the nearest integer.

Apply the exponential growth model from Problem 25.13. Set $y=20,000$ and isolate the natural exponential expression.

$$
\begin{aligned}
20,000 & =125 e^{0.06978505581(t)} \\
\frac{20,000}{125} & =e^{0.06978505581(t)} \\
160 & =e^{0.06978505581(t)}
\end{aligned}
$$

This

is an im-
plicit assumption in all exponential growth problems. If the bacteria eventually run out of food and space (because the population is too big for the Petri dish), the exponential growth model isn't accu-
rate.

Take the natural logarithm of both sides of the equation and solve for t.

$$
\begin{aligned}
\ln 160 & =\ln e^{0.06978505581(t)} \\
\ln 160 & =0.06978505581(t) \\
\frac{\ln 160}{0.06978505581} & =t \\
72.726 & \approx t
\end{aligned}
$$

The number of bacteria colonies will reach 20,000 approximately 73 hours after the experiment begins.

Note: Problems 25.16-25.18 refer to the radioactive isotope Carbon-14, which has a half-life of 5,730 years.
25.16 Given an initial mass M of Carbon-14, construct a function that models the remaining mass of the isotope after t years have elapsed.

If an isotope has a half-life of h years, then every h years its mass is halved as its isotopes gradually decay into stable "daughter" material. In this example, the initial mass M of C-14 will decay to a mass of $\frac{M}{2}$ after 5,730 years. Apply the exponential decay formula and determine the value of k.

$$
\begin{aligned}
y & =C e^{k t} \\
\frac{M}{2} & =M e^{k(5,730)} \\
\left(\frac{1}{M}\right) \frac{M}{2} & =\left(\frac{1}{M}\right) M e^{k(5,730)}
\end{aligned}
$$

$$
\frac{1}{2}=e^{5,730 k}
$$

 $\left(y=C e^{k+}\right)$, but k is positive in growth problems and negative in decay problems.

Note: Problems 25.16-25.18 refer to the radioactive isotope Carbon-14, which has a half-life of 5,730 years.
25.17 Given 300 grams of C - 14 , what is the remaining mass of the isotope after 250 years have elapsed? Report an answer accurate to three decimal places.

Substitute $M=300$ and $t=250$ into the function constructed in Problem 25.16 and calculate y.

$$
\begin{aligned}
& y=300 e^{-0.000120968094(250)} \\
& y=300 e^{-0.030242023585} \\
& y \approx 291.063 \text { grams }
\end{aligned}
$$

Note: Problems 25.16-25.18 refer to the radioactive isotope Carbon-14, which has a half-life of 5,730 years.
25.18 Given N grams of C-14, in approximately how many years will the mass decay to one third its original measure? Round the answer to the nearest integer.

Apply the exponential decay model from Problem 25.16, such that $M=N$ and $y=\frac{N}{3}$. Solve for t.

$$
\begin{aligned}
\frac{N}{3} & =N e^{-0.000120968094(t)} \\
\frac{\not X}{3 \not \mathcal{X}^{\prime}} & =e^{-0.000120968094(t)} \\
\ln \frac{1}{3} & =-0.000120968094(t) \\
t & =\frac{\ln (1 / 3)}{-0.000120968094} \\
t & \approx 9,081.835 \approx 9,028 \text { years }
\end{aligned}
$$

25.19 According to Newton's law of cooling, the rate at which an object cools is proportional to the diffierence between its temperature T and the temperature relationship.

The rate of change of the object's temperature is $\frac{d T}{d t}$, and the diffierence between its temperature and the ambient temperature is $T-T_{A}$. Two values are proportional if they are equal when one is multiplied by a constant of proportionality k.

$$
\frac{d T}{d t}=k\left(T-T_{A}\right)
$$

25.20 Solve the differential equation in Problem 25.19 to generate a model for the temperature of the object after time t has elapsed. Let T_{o} be the temperature of the object when $t=0$.

The variables in this equation are T and $t ; T_{A}$ is constant. Separate them by multiplying both sides of the equation by $d t$ and dividing both sides by $T-T_{A}$.

$$
\frac{d T}{T-T_{A}}=k d t
$$

The object has to cool down for this formula to work (it is Newton's law of COOLING, after all) so T has to be greater than T_{A}. bient temperature is room temperature.

Recall that $T=T_{o}$ when $t=0$. Substitute these values into the equation and solve for C.

$$
\begin{aligned}
T_{O} & =T_{A}+C e^{k(0)} \\
T_{O} & =T_{A}+C e^{0} \\
T_{O} & =T_{A}+C \cdot 1 \\
T_{O}-T_{A} & =C
\end{aligned}
$$

Substitute C into the solution of the differential equation to generate the formula for Newton's law of cooling: $T=T_{A}+\left(T_{O}-T_{A}\right) e^{k t}$.
25.2I An uninsulated cup of coffiee cools from $185^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$ exactly four minutes after it is served. Assuming the coffee shop maintains a constant room temperature of $75^{\circ} \mathrm{F}$, how much additional time will it take for the coffiee to cool to $95^{\circ} \mathrm{F}$? Report an answer accurate to three decimal places.

Apply Newton's law of cooling, substituting $T_{O}=185, T_{A}=75, t=4$, and $T=150$ into the formula from Problem 25.20. Solve for k.

$$
\begin{aligned}
T & =T_{A}+\left(T_{O}-T_{A}\right) e^{k t} \\
150 & =75+(185-75) e^{k(4)} \\
150-75 & =(110) e^{4 k} \\
\frac{75}{110} & =e^{4 k} \\
\ln \frac{15}{22} & =4 k \\
\frac{\ln (15 / 22)}{4} & =k \\
-0.095748063064 & \approx k
\end{aligned}
$$

Substitute k, T_{A}, and T_{O} into the formula for Newton's law of cooling to complete the model describing the temperature T of the coffiee t minutes after it is served.

$$
\begin{aligned}
& T=75+(185-75) e^{-0.095748063064(t)} \\
& T=75+110 e^{-0.09578063064(t)}
\end{aligned}
$$

Substitute $T=95$ into the model and solve for t to determine when the coffee's temperature will cool to 95°.

$$
\begin{aligned}
95 & =75+110 e^{-0.095748063064(t)} \\
\frac{20}{110} & =e^{-0.095748063064(t)} \\
\ln \frac{2}{11} & =-0.095748063064(t) \\
t & =\frac{\ln (2 / 11)}{-0.095748063064} \\
t & \approx 17.805
\end{aligned}
$$

25.22 The housekeeping staff in a hotel discovers a corpse, the apparent victim of a fatal overnight heart attack, and alerts the police. Investigators arrive at 11 a.m. and note that the body's temperature is $81^{\circ} \mathrm{F}$; by $12: 30 \mathrm{p} . \mathrm{m}$., the temperature has dropped to $77^{\circ} \mathrm{F}$. Noting that the thermostat in the room is set to maintain a constant temperature of $67^{\circ} \mathrm{F}$, and assuming that the victim's temperature was $98.6^{\circ} \mathrm{F}$ when he died, at what time (to the nearest minute) did the fatal heart attack occur?

Apply Newton's law of cooling, such that $T_{o}=81, T_{A}=67, T=77$, and $t=1.5$ hours.

$$
\begin{aligned}
T & =T_{A}+\left(T_{O}-T_{A}\right) e^{k t} \\
77 & =67+(81-67) e^{1.5(k)} \\
10 & =14 e^{1.5(k)} \\
\ln \frac{5}{7} & =1.5 k \\
\frac{\ln (5 / 7)}{1.5} & =k \\
-0.224314824414 & \approx k
\end{aligned}
$$

Substitute k into the original formula to construct a function that models the temperature T of the corpse exactly t hours after 11 a.m.

$$
\begin{aligned}
T & =67+(81-67) e^{-0.224314824414(t)} \\
& =67+14 e^{-0.224314824414(t)}
\end{aligned}
$$

To determine the time of death, substitute $T=98.6$ into the mathematical model and solve for t.

$$
\begin{aligned}
98.6 & =67+14 e^{-0.224314824114(t)} \\
31.6 & =14 e^{-0.224314824414(t)} \\
\frac{31.6}{14} & =e^{-0.224314824114(t)} \\
\ln \frac{31.6}{14} & =-0.224314824414(t) \\
t & =\frac{\ln (31.6 / 14)}{-0.224314824414} \\
t & \approx-3.62927324622 \leftarrow
\end{aligned}
$$

The person died before II a.m., which explains the negative answer for t. Instead of counting hours AFTER II a.m., count backwards from 11 a.m.

Therefore, the time of death was approximately 3.62927324622 hours before 11 a.m. Multiply the decimal portion of the number by 60 to convert to minutes.

$$
60(0.62927324622) \approx 37.756 \text { minutes }
$$

The victim died roughly 3 hours and 38 minutes before investigators arrived, at approximately 7:22 a.m.

Linear Approximations

A graph and its tangent line look alike near the tangent point

Figure 25-2 In the region immediately surrounding a point of tangency on $f(x)$ (indicated by the magnifying glass in the illustration), the tangent line and the graph of $f(x)$ look remarkably similar. The higher you increase the magnification (and thus the smaller the interval around the point of tangency), the more closely $f(x)$ will resemble the tangent line.
25.24 Estimate $\sqrt{16.1}$ using a linear approximation.

According to Problem 25.23, the graph of $f(x)=\sqrt{x}$ and its tangent line have very similar values near a point of tangency. Therefore, $f(x)$ and the tangent line to $f(x)$ at $x=16$ will have similar values at $x=16.1$. Because $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$, the slope of the tangent line to $f(x)$ at $x=16$ is $\frac{1}{2 \sqrt{16}}=\frac{1}{8}$. The point of tangency is $(x$, $f(x))=(16, \sqrt{16})=(16,4)$. Plug those values into point-slope form to generate the equation of the tangent line.

$$
y-4=\frac{1}{8}(x-16)
$$

Substitute $x=16.1$ into the equation of the tangent line to estimate $\sqrt{16.1}$.

$$
\begin{aligned}
y-4 & =\frac{1}{8}(16.1-16) \\
y-4 & =\frac{1}{8}(0.1) \\
y-4 & =\frac{1}{8}\left(\frac{1}{10}\right) \\
y & =4+\frac{1}{80} \\
y & =\frac{321}{80}
\end{aligned}
$$

Therefore, $\sqrt{16.1} \approx \frac{321}{80} \approx 4.0125$. Note that the actual value of $\sqrt{16.1}$ is 4.01248053 ..., so the approximation is quite accurate.
25.25 Estimate ln 1.05 using a linear approximation.

Use the equation of the tangent line to $f(x)=\ln x$ at $x=1$ to approximate $\ln 1.05$.
Note that $f^{\prime}(x)=\frac{1}{x}$, so the slope of the tangent line is 1 ; the point of tangency is $(1, \ln 1)=(1,0)$. Apply the point-slope formula.

$$
\begin{aligned}
y-0 & =1(x-1) \\
y & =x-1
\end{aligned}
$$

The actual value of $\ln 1.05$ is 0.0487901642

Substitute $x=1.05$ into the equation of the tangent line to approximate $\ln 1.05$.

$$
y=1.05-1=0.05
$$

Therefore, $\ln 1.05 \approx 0.05$.

25.26 Estimate arctan 0.85 using a linear approximation.

Because diffierentiable functions exhibit local linearity near a point of tangency, $f(x)=\arctan x$ and the tangent line to $f(x)$ at $x=1$ should have similar values. Differentiate $f(x)$ and evaluate $f^{\prime}(1)$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{1+x^{2}} \\
& f^{\prime}(1)=\frac{1}{1+1^{2}}=\frac{1}{2}
\end{aligned}
$$

The point of tangency is $(1, \arctan 1)=\left(1, \frac{\pi}{4}\right)$ and the slope of the tangent line is $f^{\prime}(1)=\frac{1}{2}$. Apply the point-slope formula to write the equation of the tangent line.

$$
y-\frac{\pi}{4}=\frac{1}{2}(x-1)
$$

Substitute $x=0.85$ into the equation to approximate $\arctan 0.85$.

Slope Fields

They look like wind patterns on a weather map
25.27 Explain how to create a slope field.

Make it big enough to see but small enough so that it doesn't intersect any of the other segments in the slope field.

Select a coordinate (a, b) on the coordinate plane. Substitute $x=a$ and $y=b$ into the differential equation to find the slope of the tangent line to the solution curve that passes through (a, b) and draw a small line segment centered at (a, b) with that slope. Continue this process at other points on the coordinate plane until you can visualize the family of solution curves to the diffierential equation.

Note: Problems 25.28-25.29 refer to the differential equation $\frac{d y}{d x}=2 x$.
25.28 Draw a slope field at the coordinates indicated in Figure 25-3.

All points on the y-axis will have horizontal segments associated with them—if $x=0$, then $\frac{d y}{d x}=2(0)=0$, regardless of the y-value at each coordinate. In fact, every segment in this slope field has a slope equal to twice the x-value of the coordinate at which it is centered.

Figure 25-4 The slope field for the differential equation $\frac{d y}{d x}=2 x$.

Note: Problems 25.28-25.29 refer to the differential equation $\frac{d y}{d x}=2 x$.
25.29 Determine the specific solution of the differential equation that passes through $(1,1)$ and graph it on the same coordinate axes as the slope field.

Separate the variables and integrate both sides of the equation.

$$
\begin{aligned}
\left(\frac{d y}{d x}\right) d x & =(2 x) d x \\
d y & =2 x d x \\
\int d y & =2 \int x d x \\
y & =2 \cdot \frac{x^{2}}{2}+C \\
y & =x^{2}+C
\end{aligned}
$$

Solve for C when $x=1$ and $y=1$.

$$
\begin{aligned}
1 & =1^{2}+C \\
C & =0
\end{aligned}
$$

The specific solution is $y=x^{2}$, illustrated in Figure 25-5.

Figure 25-5 The graph of $y=x^{2}$ is the specific solution of the differential equation $\frac{d y}{d x}=2 x$ that passes through the point $(-1,1)$.

Note: Problems 25.30-25.31 refer to the differential equation $\frac{d y}{d x}=\frac{x}{y}$.
25.30 Draw the slope field for the differential equation.

The solution in Figure 25-6 is generated by a computer; hand-drawn slope fields typically contain fewer segments at more predictable coordinates. While your slope field need not mirror the number of segments in Figure 25-6 or their
exact locations, it should contain a sufficient number of segments to accurately visualize the solution.

Figure 25-6 The slope field for the differential equation $\frac{d y}{d x}=\frac{x}{y}$.
Note: Problems 25.30-25.31 refer to the differential equation $\frac{d y}{d x}=\frac{x}{y}$.
25.31 Graph the specific solution $\frac{y^{2}}{3}-\frac{x^{2}}{3}=1$ of the differential equation $\frac{d y}{d x}=\frac{x}{y}$ on the same coordinate plane as the slope field generated by Problem 25.30.

The graph of $\frac{y^{2}}{3}-\frac{x^{2}}{3}=1$, illustrated in Figure 25-7, is a hyperbola with transverse and conjugate axes that are the same length: $2 \sqrt{3}$.

If you did Problem 25.7, you already graphed this hyperbola, but it's worth graphing again to see how it's shaped by the slope field of $\frac{d y}{d x}=\frac{x}{y}$.

Figure 25-7 The slope field for the differential equation $\frac{d y}{d x}=\frac{x}{y}$ and the specific solution that passes through the point ($-1,2$): $\frac{y^{2}}{3}-\frac{x^{2}}{3}=1$.
25.32 Draw the slope field for the diffierential equation: $\frac{d y}{d x}=y-x$.

You can't find the solution of this differential equation easily, because you can't separate the variables. At least the slope field can give you some sense of what the family of solutions looks like.

Notice that $\frac{d y}{d x}=0$ for all points on the line $y=x$; the slope field is illustrated in Figure 25-8.

Figure 25-8 The segments in the slope field for the differential equation
$\frac{d y}{d x}=y-x$ get steeper as the distance away from the line $y=x$ gets larger.

$\ldots \ldots, ~ 1,1,16$	1			
- - - - \ \ 1 1	$111 / 11 / 11$			
- - -				
\ 15	11111111			
$\cdots-\cdots \backslash 1{ }_{4}$	11111111			
- - - \ \ 1	$1 / 1 / 1 / 1 / 1$			
- - - - \ \|3	111111111			
	$1111 / 1111$			
- - \backslash^{2}	111111111			
< - - ${ }_{1}$	$1 / 11 / 1111$			
1	1 1 1 1 1			
1/ / / / / / / /	$\text { 'r }{ }^{\prime} 2^{\prime}, 3^{\prime}, 4^{\prime} 5^{\prime}, 6$			
1/1/ / / / / / ${ }^{-1}$	-			
'/1/ / / / / 1 2				
1/1/11/111				
' / / / / / / \|	-3			
1/1/ / / / 1 1	11			
1 / / / / \|		1	$1 \backslash \ \backslash$	
' / / / / \|			-5	$1 \backslash \ \backslash$
1 / / / / / \|				1111
	11111.			

Figure 25-9 The slope field for the differential equation $\frac{d y}{d x}=\frac{x+y}{x}$.
25.34 Draw the slope field for the differential equation $\frac{d y}{d x}=x^{2} y^{2}$.

The slope field illustrated in Figure 25-10 contains horizontal segments along the x-and y-axes.

Figure 25-10 The slope field for the differential equation $\frac{d y}{d x}=x^{2} y^{2}$.

Euler's Method

Take baby steps to find the differential equation's solution

$$
\begin{aligned}
& \text { The symbol } \\
& \text { " } \Delta \text { " is called } \\
& \text { "delta" and means } \\
& \text { "change in." This is a } \\
& \text { formula from way back } \\
& \text { in beginning algebra: } \\
& \text { the slope of a line } \\
& \text { is defined as the } \\
& \text { change in } y \text { divided } \\
& \text { The slope of a line is defined as the quotient of } \\
& \text { the change } \\
& \text { in } x .
\end{aligned}
$$

Multiply both sides by $\frac{1}{2}$ to solve for Δy.

$$
\begin{aligned}
\frac{1}{2} \cdot \frac{3}{4} & =\frac{1}{2}\left(\frac{\Delta y}{1 / 2}\right) \\
\frac{3}{8} & =\Delta y
\end{aligned}
$$

Note that $\Delta y=y_{2}-y_{1}$; substitute $\Delta y=\frac{3}{8}, y_{1}=3$, and $y_{2}=d$ into the equation and
solve for d. solve for d.

$$
\begin{aligned}
\Delta y & =y_{2}-y_{1} \\
\frac{3}{8} & =d-3
\end{aligned}
$$

what all
this means. To
travel from the
point $(-1,3)$ to the $\left(\begin{array}{l}\text { point }\left(-\frac{1}{2}, d\right) \text { you } \\ \text { have to go } \Delta x=\frac{1}{2}\end{array}\right.$ of a unit right and $\Delta y=\frac{27}{8}$ units up.
25.36 Given a line with slope $-\frac{1}{5}$ that contains points $(2,-9)$ and $(1, p)$, find p.

Note that $\Delta x=x_{2}-x_{1}=1-2=-1$. Use that value and the slope $m=-\frac{1}{5}$ to
determine Δy.

$$
\begin{aligned}
m & =\frac{\Delta y}{\Delta x} \\
-\frac{1}{5} & =\frac{\Delta y}{-1} \\
\frac{1}{5} & =\Delta y
\end{aligned}
$$

Calculate p.

$$
\begin{aligned}
\Delta y & =y_{2}-y_{1} \\
\frac{1}{5} & =p-(-9)
\end{aligned}
$$

$$
\frac{1}{5}-9=p
$$

$$
-\frac{44}{5}=p
$$

25.37 Describe the role of Euler's method in the investigation of elementary differential equations.

Euler's method is used to approximate y-values on the graphs of specific solutions of differential equations, particularly when those specific solutions cannot be determined easily. The technique is based upon the principle of local linearity, and uses the equations of tangent lines near points of tangency (calculated at fixed values of Δx) to approximate the values of the function to which the lines are tangent.
 equation but know that the solution contains, let's say, the point $(3,4)$, then you can take a fixed number of "baby steps" using $d y / d x$ to guess what other nearby points on the solution graph are.
Step one: From point $(3,0)$ to point $(3+\Delta x, 0+\Delta y)$.
Calculate $\frac{d y}{d x}$ at the point $(3,0)$ by substituting $x=3$ and $y=0$ into the differential
equation. equation.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x+y}{x} \\
& \frac{d y}{d x}=\frac{3+0}{3} \\
& \frac{d y}{d x}=1
\end{aligned}
$$

Therefore, the slope m of the tangent line to the solution graph is 1 when $x=3$, Use the method described in Problem 25.35 to determine Δy.

$$
\begin{aligned}
m & =\frac{\Delta y}{\Delta x} \\
1 & =\frac{\Delta y}{1 / 2} \\
\frac{1}{2} & =\Delta y
\end{aligned}
$$

Substitute $\Delta x=\Delta y=\frac{1}{2}$ into the destination point $(3+\Delta x, 0+\Delta y)$.
The whole point of step one is to figure out where you'll end up if you go Δx units right and Δy units up or down from the point $(3,0)$ that you were given. Turns out you'll end
up at $\left(\frac{7}{2}, \frac{1}{2}\right)$.

Calculate the corresponding value of Δy.

$$
\begin{aligned}
m & =\frac{\Delta y}{\Delta x} \\
\frac{8}{7} & =\frac{\Delta y}{1 / 2} \\
\frac{8}{14} & =\Delta y \\
\frac{4}{7} & =\Delta y
\end{aligned}
$$

Substitute Δx and Δy into the coordinate $\left(\frac{7}{2}+\Delta x, \frac{1}{2}+\Delta y\right)$ to determine $y(4)$.

$$
\begin{aligned}
(4, y(4)) & \approx\left(\frac{7}{2}+\Delta x, \frac{1}{2}+\Delta y\right) \\
& \approx\left(\frac{7}{2}+\frac{1}{2}, \frac{1}{2}+\frac{4}{7}\right) \\
& \approx\left(4, \frac{15}{14}\right)
\end{aligned}
$$

Therefore, $y(4) \approx \frac{15}{14}$.
25.39 Use Euler's method with three steps of width $\Delta x=\frac{1}{3}$ to approximate $y(1)$ if
$\rightarrow \frac{d y}{d x}=x y$ and the y-intercept of the solution of the differential equation is $(0,-2)$.
Step one: From point $(0,-2)$ to $\left(\frac{1}{3},-2+\Delta y\right)$.

Calculate $\frac{d y}{d x}$ when $x=0$ and $y=-2$.

$$
\frac{d y}{d x}=x y=(0)(-2)=0
$$

Determine the value of Δy when $\Delta x=\frac{1}{3}$ and $m=0$.

$$
\begin{aligned}
m & =\frac{\Delta y}{\Delta x} \\
0 & =\frac{\Delta y}{1 / 3} \\
0 & =\Delta y
\end{aligned}
$$

Therefore, step one ends at the point $\left(\frac{1}{3},-2\right)$.
Step two: From point $\left(\frac{1}{3},-2\right)$ to $\left(\frac{2}{3},-2+\Delta y\right)$.
Calculate $\frac{d y}{d x}$ when $x=\frac{1}{3}$ and $y=-2$.

Plug $\Delta y=0$ into the point $\left(\frac{1}{3},-2+\Delta y\right)$ from the beginning of step one.

Determine the value of Δy when $\Delta x=\frac{1}{3}$ and $m=-\frac{2}{3}$.

$$
\begin{aligned}
m & =\frac{\Delta y}{\Delta x} \\
-\frac{2}{3} & =\frac{\Delta y}{1 / 3} \\
-\frac{2}{9} & =\Delta y
\end{aligned}
$$

Therefore, step two ends at the point $\left(\frac{2}{3},-2-\frac{2}{9}\right)=\left(\frac{2}{3},-\frac{20}{9}\right)$.
Step three: From point $\left(\frac{2}{3},-\frac{20}{9}\right)$ to $\left(1,-\frac{20}{9}+\Delta y\right)$.
Calculate $\frac{d y}{d x}$ when $x=\frac{2}{3}$ and $y=-\frac{20}{9}$.

$$
\frac{d y}{d x}=x y=\left(\frac{2}{3}\right)\left(-\frac{20}{9}\right)=-\frac{40}{27}
$$

Determine the value of Δy when $\Delta x=\frac{1}{3}$ and $m=-\frac{40}{27}$.

$$
\begin{aligned}
m & =\frac{\Delta y}{\Delta x} \\
-\frac{40}{27} & =\frac{\Delta y}{1 / 3} \\
-\frac{40}{\underline{81}} & =\Delta y
\end{aligned}
$$

Therefore, step three ends at the point $\left(1,-\frac{20}{9}-\frac{40}{81}\right)=\left(1,-\frac{220}{81}\right)$ and $y(1) \approx-\frac{220}{81}$.

25.4I Use Euler's method with three steps of width $\Delta x=\frac{1}{4}$ to approximate $y\left(\frac{7}{4}\right)$ if $\frac{d y}{d x}=x^{y}$ and the point $(1,0)$ belongs to the graph of the solution of the differential equation.

Step one: From point $(1,0)$ to $\left(\frac{5}{4}, 0+\Delta y\right)$.
When $x=1$ and $y=0, \frac{d y}{d x}=1^{0}=1$, so $\Delta y=\frac{d y}{d x}(\Delta x)=1\left(\frac{1}{4}\right)=\frac{1}{4}$. Therefore, step one ends at the point $\left(\frac{5}{4}, 0+\frac{1}{4}\right)=\left(\frac{5}{4}, \frac{1}{4}\right)$.

Step two: From point $\left(\frac{5}{4}, \frac{1}{4}\right)$ to $\left(\frac{3}{2}, \frac{1}{4}+\Delta y\right)$.
When $x=\frac{5}{4}$ and $y=\frac{1}{4}, \frac{d y}{d x}=\left(\frac{5}{4}\right)^{1 / 4}=\sqrt[4]{5 / 4}$, so $\Delta y=\sqrt[4]{5 / 4}\left(\frac{1}{4}\right)=\frac{\sqrt[4]{5 / 4}}{4}$.
Therefore, step two ends at the point $\left(\frac{3}{2}, \frac{1}{4}+\frac{\sqrt[4]{5 / 4}}{4}\right)=\left(\frac{3}{2}, \frac{1+\sqrt[4]{5 / 4}}{4}\right)$.
This ugly
fraction equals 0.5143428159

Step three: From point $\left(\frac{3}{2}, \frac{1+\sqrt[4]{5 / 4}}{4}\right)$ to $\left(\frac{7}{4}, \frac{1+\sqrt[4]{5 / 4}}{4}+\Delta y\right)$.
When $x=\frac{3}{2}$ and $y=\frac{1+\sqrt[4]{5 / 4}}{4}, \frac{d y}{d x}=\left(\frac{3}{2}\right)^{(1+\sqrt[4]{5 / 4}) / 4}$, so $\Delta y=\left(\frac{3}{2}\right)^{(1+\sqrt[4]{5 / 4}) / 4}\left(\frac{1}{4}\right)=\frac{(3 / 2)^{(1+\sqrt[4]{5 / 4}) / 4}}{4}$
and $y\left(\frac{7}{4}\right) \approx \frac{1+\sqrt[4]{5 / 4}}{4}+\Delta y=\frac{1+\sqrt[4]{5 / 4}+(3 / 2)^{(1+\sqrt[4]{5 / 4}) / 4}}{4}$.
Approximately 0.82231485 ...

Chapter 26
 BASIC SEQUENCES AND SERIES

What's uglier than one fraction? Infinitely many.

Two-semester calculus courses typically conclude with the investigation of infinite series, with a specific focus on series that approximate nontrivial function values. Since the advent of powerful, portable calculation technology, the use of interpolation via printed tables of values has waned. However, the technological tools are not merely storage vessels for said tables. Rather, they implement infinite series approximation techniques similar to those described in Chapter 28. However, before you can understand how such series are applied, you must first understand the basic concepts surrounding infinite series.

A "sequence" is a list of numbers (usually based on some defining rule), while a "series" is a list of numbers added together. You'll spend some time with sequences and finite series, but halfway through this chapter, you'll already be focusing primarily on infinite series. You'll find yourself answering one question over and over again: "Does the infinite series converge?" In other words, if you were to add up all of the numbers in the series (you have to speak hypotheticallyremember, there's an infinite number of them, so you won't actually be able to count them all by hand) would you get a real number? It's weird to think that you can add an infinite list of numbers together and get a total sum of 2, but it's possible.

Sequences and Convergence

Do lists of numbers know where they're going?

26.1 List the first five terms of the sequence $\left\{n^{2}+1\right\}$.

Substitute $n=1$ into the expression to generate the first term of the sequence, $n=2$ to generate the second term, and so forth, up to $n=5$ to generate the fifth term.

n	1	2	3	4	5
$n^{2}+1$	$1^{2}+1=2$	$2^{2}+1=5$	$3^{2}+1=10$	$4^{2}+1=17$	$5^{2}+1=26$

The first five terms of the sequence are: $2,5,10,17$, and 26.
26.2 List the first six terms of the sequence $\left\{\frac{(-1)^{n-1}}{2 n}\right\}$.

Substitute the integers between (and including) $n=1$ and $n=6$ into the expression to generate the first six terms of the sequence.

the negative signs for a second. Each term is one less than its n-value: $a_{1}=$ $0, a_{2}=1, a_{3}=2$, etc. Basically, $a_{n}=n-1$. Then multiply each term by -1 , because they've all negative.

n	1	2	3	4	5	6
$\frac{(-1)^{n-1}}{2 n}$	$\frac{(-1)^{0}}{2(1)}=\frac{1}{2}$	$\frac{(-1)^{1}}{2(2)}=-\frac{1}{4}$	$\frac{(-1)^{2}}{2(3)}=\frac{1}{6}$	$\frac{(-1)^{3}}{2(4)}=-\frac{1}{8}$	$\frac{(-1)^{4}}{2(5)}=\frac{1}{10}$	$\frac{(-1)^{5}}{2(6)}=-\frac{1}{12}$

The first six terms of the sequence are: $\frac{1}{2},-\frac{1}{4}, \frac{1}{6},-\frac{1}{8}, \frac{1}{10}$, and $-\frac{1}{12}$.
26.3 Identify a_{4}, the fourth term of the sequence $\left\{a_{n}\right\}=\left\{\frac{(3 n)!}{n^{3}}\right\}$.

Note that a_{4} is the fourth term in the sequence; generate it by substituting $n=4$ into the expression.

$$
a_{4}=\frac{[3(4)]!}{4^{3}}=\frac{12!}{64}=7,484,400
$$

26.4 Determine the general term of the sequence: $0,-1,-2,-3,-4, \ldots$.

Each term in the sequence is the opposite of exactly one less than its corresponding n value: $a_{n}=-(n-1)$. Therefore, the general term of the sequence is $\{1-n\}$.
26.5 Determine the general term of the sequence: $\left\{a_{n}\right\}=\left\{1, \frac{5}{4}, 1, \frac{11}{16}, \frac{7}{16}, \frac{17}{64}, \cdots\right\}$.

Some denominators in the sequence are explicit powers of 2: $2^{2}=4,2^{4}=16$, and
 $2^{6}=64$. In fact, all of the denominators are powers of 2 ; this is disguised by the fact that the terms a_{1}, a_{3}, and a_{5} have been reduced to lowest terms. Reinstate the original, unsimplified denominator of a_{1} by multiplying its numerator and denominator by 2: $a_{1}=1\left(\frac{2}{2}\right)=\frac{2}{2}$. Similarly, reinstate the original denominators of a_{3} and a_{5} so that each denominator is a consecutive power of 2: $a_{3}=1\left(\frac{2^{3}}{2^{3}}\right)=\frac{8}{8}$ and $a_{5}=\frac{7}{16}\left(\frac{2}{2}\right)=\frac{14}{32}$.

$$
\left\{a_{n}\right\}=\left\{\frac{2}{2}, \frac{5}{4}, \frac{8}{8}, \frac{11}{16}, \frac{14}{32}, \frac{17}{64}, \cdots\right\}
$$

The numerator of the nth term is exactly one less than three times n : 3(1) $-1=$ $2,3(2)-1=5,3(3)-1=8$, etc. Therefore, the general term of the sequence is $\left\{\frac{3 n-1}{2^{n}}\right\}$.
26.6 Does the sequence $\left\{\frac{n^{2}}{e^{n}}\right\}$ converge?

In other words, take the limit, as n approaches infinity, of the sequence expression. If a limit exists, the sequence converges to that limit.

A sequence $\left\{a_{n}\right\}$ converges to the real number L if and only if $\lim _{n \rightarrow \infty} a_{n}=L$. Apply L'Hôpital's rule to evaluate the limit.

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{n}}=\lim _{n \rightarrow \infty} \frac{2 n}{e^{n}}=\lim _{n \rightarrow \infty} \frac{2}{e^{n}}
$$

According to Problem 10.28, the limit at infinity of a constant divided by an infinitely large value (e^{n} increases without bound as n approaches infinity) is 0 : $\lim _{n \rightarrow \infty} \frac{2}{e^{n}}=0$. Therefore, the sequence $\left\{\frac{n^{2}}{e^{n}}\right\}$ converges to 0 .

When a
limit is indeterminate (in this case ∞ / ∞), take the derivative of the top and bottom of the fraction to get a simpler fraction with an equal limit value.
26.7 Does the sequence $\left\{\frac{\sqrt{n}}{\ln n}\right\}$ converge?

The sequence $\left\{\frac{\sqrt{n}}{\ln n}\right\}$ converges if and only if $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\ln n}$ exists. Apply L'Hôpital's rule to evaluate the indeterminate limit.

$$
\lim _{n \rightarrow \infty} \frac{n^{1 / 2}}{\ln n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{2 n^{1 / 2}}}{\frac{1}{n}}
$$

Multiply the numerator and denominator by n to eliminate the complex fraction.

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{2 n^{1 / 2}}}{\frac{1}{n}} \frac{\left(\frac{n}{1}\right)}{\left(\frac{n}{1}\right)}=\lim _{n \rightarrow \infty} \frac{n}{2 n^{1 / 2}}=\lim _{n \rightarrow \infty} \frac{1}{2} n^{1-(1 / 2)}=\frac{1}{2} \lim _{n \rightarrow \infty} \sqrt{n}
$$

As n approaches infinity, \sqrt{n} increases without bound: $\frac{1}{2} \lim _{n \rightarrow \infty} \sqrt{n}=\infty$. Therefore, the sequence $\left\{\frac{\sqrt{n}}{\ln n}\right\}$ is divergent.
26.8 Determine the convergence of the sequence: $\left\{\frac{4 n^{2}-3 n+7}{-2+n-5 n^{2}}\right\}$.

The sequence converges if and only if a limit exists as n approaches infinity. Compare the degrees of the numerator and denominator to evaluate the limit, as explained in Problem 9.25.

$$
\lim _{n \rightarrow \infty} \frac{4 n^{2}-3 n+7}{-2+n-5 n^{2}}=-\frac{4}{5}
$$

The sequence converges to $-\frac{4}{5}$.

Series and Basic Convergence Tests sigma notation and the uth term divergence test

26.9 Evaluate the finite series: $\sum_{n=1}^{4} \frac{1}{n}$.

The series $\sum_{n=1}^{4} \frac{1}{n}$ is the sum of the first four terms of the sequence $\left\{\frac{1}{n}\right\}$.

$$
\begin{aligned}
\sum_{n=1}^{4} \frac{1}{n} & =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \\
& =\frac{12}{12}+\frac{6}{12}+\frac{4}{12}+\frac{3}{12} \\
& =\frac{25}{12}
\end{aligned}
$$

26.10 Evaluate the finite series: $\sum_{n=0}^{7} \cos \frac{n \pi}{2}$.

The series $\sum_{n=0}^{7} \cos \frac{n \pi}{2}$ is the sum of the first eight terms of the sequence $\left\{\cos \frac{n \pi}{2}\right\}$.

$$
\begin{aligned}
\sum_{n=0}^{7} \cos \frac{n \pi}{2} & =\cos \frac{0 \pi}{2}+\cos \frac{1 \pi}{2}+\cos \frac{2 \pi}{2}+\cos \frac{3 \pi}{2}+\cos \frac{4 \pi}{2}+\cos \frac{5 \pi}{2}+\cos \frac{6 \pi}{2}+\cos \frac{7 \pi}{2} \\
& =1+0+(-1)+0+1+0+(-1)+0 \\
& =0
\end{aligned}
$$

The lower boundary is 0 , so even though the upper boundary is 7 , there are 8 terms in the series:

$$
\begin{aligned}
& a_{0}+a_{1}+a_{2}+a_{3}+ \\
& a_{4}+a_{5}+a_{6}+a_{3}
\end{aligned}
$$

26.II Evaluate the finite series: $\sum_{n=1}^{4} \frac{(n-1) \text { ! }}{n^{2}}$.

The series $\sum_{n=1}^{4} \frac{(n-1)!}{n^{2}}$ is the sum of the first four terms of the sequence $\left\{\frac{(n-1)!}{n^{2}}\right\}$.

$$
\begin{aligned}
\sum_{n=1}^{4} \frac{(n-1)!}{n^{2}} & =\frac{(1-1)!}{1^{2}}+\frac{(2-1)!}{2^{2}}+\frac{(3-1)!}{3^{2}}+\frac{(4-1)!}{4^{2}} \\
& =1+\frac{1}{4}+\frac{2}{9}+\frac{6}{16} \\
& =\frac{133}{72}
\end{aligned}
$$

Note: Problems 26.12-26.14 refer to the arithmetic series $3+6+9+12+15+\ldots+267+270$.
26.12 Express the series in sigma notation.

Factor the common difference out of each term.

$$
3(1+2+3+4+5+\ldots+89+90)
$$

The first term of the series is $3(1)$, the second term is $3(2)$, etc.; therefore, the nth term is $3 n$. There are 90 terms, so that is the upper bound for the summation: $\sum_{n=1}^{90} 3 n$.

In an arithmetic series, each term is a fixed amount d (called the "common difference") larger than the previous term. In this series, each term is 3 more than the term before it, so $d=3$.

Note: Problems 26.12-26.14 refer to the arithmetic series $3+6+9+12+15+\ldots+267+270$.
26.13 Calculate the sum of the series.

The sum of an arithmetic series consisting of n terms is equal to $\frac{n}{2}\left(a_{1}+a_{n}\right)$, where a_{1} is the first term of the series and a_{n} is the last term. In this series of $n=90$ terms, $a_{1}=3$ and $a_{n}=a_{90}=270$.

$$
\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{90}{2}(3+270)=45(273)=12,285
$$

Note: Problems 26.12-26.14 refer to the arithmetic series $3+6+9+12+15+\ldots+267+270$.
26.14 Justify the sum formula $\frac{n}{2}\left(a_{1}+a_{n}\right)$ from Problem 26.13 , using the arithmetic series $\sum_{n=1}^{90} 3 n$ as an example.

The sum of the first and last terms of the series is $273: 3+270=273$. Similarly, the sum of the second and second-to-last terms is $273(6+267=273)$ and the sum of the third and third-to-last terms is $273(9+266=273)$. In fact, the series consists of 45 pairs of numbers whose sum is 273 . Therefore, the sum of the series is $(45)(273)$, which is equivalent to the arithmetic series sum formula for this series: $\frac{90}{2}(3+270)$.
26.15 Calculate the sum of the series: $2+7+12+17+\ldots+87+92$.

The common difference of this arithmetic series is $d=5$. To determine the number of terms in the series, apply the formula $n=\frac{a_{n}-a_{1}}{d}+1$, where a_{n} is the last term of the series and a_{1} is the first.

$$
n=\frac{a_{n}-a_{1}}{d}+1=\frac{92-2}{5}+1=\frac{90}{5}+1=18+1=19
$$

Now apply the arithmetic series sum formula with $n=19, a_{1}=2$, and $a_{n}=92$.

$$
\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{19}{2}(2+92)=893
$$

26.16 Identify the first five terms of the sequence of partial sums for the infinite series $\sum_{n=1}^{\infty} n(n-2)$.

The partial sum S_{n} is the sum of the first n terms of the series. A sequence of partial sums, $\left\{S_{n}\right\}$, is the sequence $S_{1}, S_{2}, S_{3}, S_{4}, \cdots$.

So S_{3} is equal to S_{2} plus the third term in the series, and S_{4} is equal to s_{3} plus the fourth term in the series.

$$
\begin{aligned}
& S_{1}=\sum_{n=1}^{1} n(n-2)=1(1-2)=-1 \\
& S_{2}=\sum_{n=1}^{2} n(n-2)=1(1-2)+2(2-2)=-1+2(0)=-1
\end{aligned}
$$

Given the infinite series $\sum_{n=1}^{\infty} a_{n}$, notice that $S_{d}=S_{d-1}+a_{d}$.
$S_{4}=S_{3}+4(4-2)=2+4(2)=10$
$S_{5}=S_{4}+5(5-2)=10+5(3)=25$
The first five terms of the sequence of partial sums are: $-1,-1,2,10$, and 25 .
26.17 Identify the first five terms of the sequence of partial sums for the infinite series

$$
\sum_{n=0}^{\infty} 2\left(\frac{1}{3}\right)^{n}
$$

Note that the first term in this series corresponds to $n=0$, so the sequence of the first five partial sums is $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$.

$$
\begin{aligned}
& S_{0}=2\left(\frac{1}{3}\right)^{0}=2 \cdot 1=2 \\
& S_{1}=S_{0}+2\left(\frac{1}{3}\right)^{1}=2+2\left(\frac{1}{3}\right)=\frac{8}{3} \\
& S_{2}=S_{1}+2\left(\frac{1}{3}\right)^{2}=\frac{8}{3}+2\left(\frac{1}{3}\right)^{2}=\frac{26}{9} \\
& S_{3}=S_{2}+2\left(\frac{1}{3}\right)^{3}=\frac{26}{9}+2\left(\frac{1}{3}\right)^{3}=\frac{80}{27} \\
& S_{4}=S_{3}+2\left(\frac{1}{3}\right)^{4}=\frac{80}{27}+2\left(\frac{1}{3}\right)^{4}=\frac{242}{81}
\end{aligned}
$$

26.18 Describe the relationship between the sequence of partial sums and the convergence of an infinite series.

An infinite series converges if and only if the sequence of its partial sums converges to a finite, real number. Consider the geometric series $\sum_{n=0}^{\infty} 2\left(\frac{1}{3}\right)^{n}$ from

Problem 26.17, which has a sum of 3. Notice that $S_{4}=\frac{242}{81} \approx 2.987654$, so the fifth term of the sequence of partial sums already approximates the actual sum relatively well. Each consecutive term of the sequence of partial sums (of which there are infinitely many) will more and more closely approach 3. For example, $S_{10} \approx 2.99998306$ and $S_{15} \approx 2.999999930$.
26.19 Explain why the series $\sum_{n=1}^{\infty} \frac{3 n}{n-5}$ diverges, according to the nth term divergence
test.

According to the nth term divergence test, if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the infinite series $\sum a_{n}$ is divergent.

Apply L'Hôpital's rule to evaluate the limit as n approaches infinity.

$$
\lim _{n \rightarrow \infty} \frac{3 n}{n-5}=\lim _{n \rightarrow \infty} \frac{3}{1}=3
$$

The terms of the series approach 3; essentially, this series adds the number 3 infinitely many times, resulting in an infinitely large sum. Unless the nth term of a series approaches 0 , a series cannot converge, because only 0 has a finite sum when added to itself infinitely many times.

The nth term convergence test can NEVER be used to prove that a series converges, and in many cases, it won't be able to help at all. However, it is an efficient and simple test that picks out obviously divergent series.
26.20 Why does the series $\sum_{n=1}^{\infty} \frac{(n+2)!}{n!}$ diverge, according to the nth term divergence test?

This is
like writing 5! as (5)(4)(3!), which still equals 120.

Rewrite the numerator of the expression and reduce the fraction.

$$
\frac{(n+2)!}{n!}=\frac{(n+2)(n+1) \mathscr{n}!}{\mathscr{n}!}=(n+2)(n+1)=n^{2}+3 n+2
$$

Because $\lim _{n \rightarrow \infty}\left(n^{2}+3 n+2\right) \neq 0$, the series diverges according to the nth term divergence test.
26.21 Why does the series $2+\frac{\sqrt{5}}{2}+\frac{\sqrt{6}}{3}+\frac{\sqrt{7}}{4}+\frac{2 \sqrt{2}}{5}+\frac{1}{2}+\frac{\sqrt{10}}{7}+\cdots$ diverge, according to the nth term divergence test?

Identify the nth term of the series (as demonstrated in Problems 26.4 and 26.5): $\sum_{n=1}^{\infty} \frac{\sqrt{n+3}}{n}$. Apply the nth term divergence test and calculate the limit at infinity using L'Hopital's rule.

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n+3}}{n}=\lim _{n \rightarrow \infty} \frac{(1 / 2)(n+3)^{-1 / 2}}{1}=\lim _{n \rightarrow \infty} \frac{1}{2 \sqrt{n+3}}=0
$$

The nth term divergence test can conclude only that the series $\left\{a_{n}\right\}$ diverges if $\lim _{n \rightarrow \infty} a_{n} \neq 0$. However, that limit does equal 0 for this series, so the nth term divergence test does not allow you to draw any conclusion whatsoever. In order to determine the convergence of this series, you will have to apply one of the convergence tests presented in Chapter 27.

Telescoping Series and p-Series

How to handle these easy-to-spot series
26.22 Describe the behavior of a telescoping series and explain how to calculate its sum.

A telescoping series contains infinitely many pairs of opposite values, which have a sum of 0 . Although the series contains an infinite number of terms, all but a finite number of those terms are eliminated by their corresponding opposites. The sum of the series, therefore, is the sum of the remaining terms.
26.23 Calculate the sum of the telescoping series: $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$.

Expand the first five terms of the infinite series.

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\cdots
$$

Notice that the series contains pairs of opposite real numbers such as $-\frac{1}{2}$ and $\frac{1}{2}$, $-\frac{1}{3}$ and $\frac{1}{3}$, etc. More specifically, every rational number in the series (except for 1) has a corresponding opposite.

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right) & =1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\cdots \\
& =1+0+0+0+0+\cdots
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1$.
26.24 Calculate the sum of the telescoping series: $\sum_{n=3}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n+2}\right)$.

Expand the first seven terms of the series. Note that $n=3$ represents the first term in the series, not $n=1$.

$$
\sum_{n=3}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n+2}\right)=\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{3}-\frac{1}{6}\right)+\left(\frac{1}{4}-\frac{1}{7}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{6}-\frac{1}{9}\right)+\left(\frac{1}{7}-\frac{1}{10}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+\cdots
$$

Except for $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$, all of the rational numbers in the series have a corresponding opposite.

$$
\begin{aligned}
\sum_{n=3}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n+2}\right) & =\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+\cdots \\
& =\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+0+0+0+0+\cdots \\
& =\frac{13}{12}
\end{aligned}
$$

26.25 Define p-series and describe the conditions under which a p-series converges.

Positive infinite series of the form $\sum \frac{1}{n^{p}}$, where p is a positive real number, are called p-series; they converge when $p>1$ but diverge when $0<p \leq 1$.

Most of the convergence tests in Chapters 26-28 apply only to positive series-series that contain only positive terms.
26.26 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

Because $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ has form $\sum \frac{1}{n^{p}}$, it is a p-series with $p=2$. According to Problem 26.25, a p-series converges when $p>1$, so $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.

26.27 Determine the convergence of the series: $\sum_{n=1}^{\infty} 3 n^{-6 / 5}$.

Rewrite the series, eliminating the negative exponent.

Note that $\sum_{n=1}^{\infty} \frac{1}{n^{6 / 5}}$ is a p-series with $p=\frac{6}{5}$; the series is convergent because $\frac{6}{5}>1$ (as explained in Problem 26.25).
26.28 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^{2}}}{5 \cdot \sqrt[4]{n^{3}}}$.

Rewrite the series using rational exponents.

$$
\frac{1}{5} \sum_{n=1}^{\infty} \frac{n^{2 / 3}}{n^{3 / 4}}=\frac{1}{5} \sum_{n=1}^{\infty} n^{(2 / 3)-(3 / 4)}=\frac{1}{5} \sum_{n=1}^{\infty} n^{-1 / 12}=\frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{n^{1 / 12}}
$$

Note that $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 12}}$ is a p-series with $p=\frac{1}{12}$; the series is divergent because $0<\frac{1}{12} \leq 1$ (as explained in Problem 26.25).
26.29 For what values of a does the series $\sum_{n=1}^{\infty} \frac{1}{n^{3 a+2}}$ converge?

Because $\sum_{n=1}^{\infty} \frac{1}{n^{3 a+2}}$ is a p-series with $p=3 a+2$, it converges when $p>1$.

$$
\begin{aligned}
p & >1 \\
3 a+2 & >1 \\
3 a & >-1 \\
a & >-\frac{1}{3}
\end{aligned}
$$

The series $\sum_{n=1}^{\infty} \frac{1}{n^{3 a+2}}$ converges when $a>-\frac{1}{3}$.

Geometric Series

Do they converge, and if so, what's the sum?
26.30 Determine the common ratio of the geometric series: $3+\frac{3}{4}+\frac{3}{16}+\frac{3}{64}+\cdots$.

A geometric series has the form $\sum_{n=0}^{\infty} a r^{n}$, where a and r are real numbers; r is as the
ratio of the geometric series, and a is the scale factor of the series. The first term of ratio of the geometric series, and a is the scale factor of the series. The first term of the geometric series $\sum_{n=0}^{\infty} a r^{n}$ is $a \times r^{0}=a \times 1=a$, so in this series $a=3$. Factor 3 out of each term.

$$
3\left(1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\cdots\right)
$$

Each term in the resulting series is $\left(\frac{1}{4}\right)^{n}$, i.e. the $n=1$ term contains $\frac{1}{4}$, the $n=2$
term contains $\left(\frac{1}{4}\right)^{2}$, etc. Therefore, the common ratio is $r=\frac{1}{4}$.
26.31 Write the geometric series using summation notation: $\frac{1}{2}+\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\cdots$.

The first term of the geometric series $\sum_{n=0}^{\infty} a r^{n}$ is a; therefore, $a=\frac{1}{2}$. Factor $\frac{1}{2}$ out of
each term.

$$
\frac{1}{2}\left(1+\frac{2}{3}+\frac{4}{9}+\frac{8}{27}+\cdots\right)
$$

Notice that the nth term of the series within the parentheses is $\left(\frac{2}{3}\right)^{n}$, so $r=\frac{2}{3}$.

Factoring $1 / 2$ out of a number is like dividing it by $1 / 2$, which is the same as multiplying it by 2 .

Substitute a and r into the geometric series formula $\sum_{n=0}^{\infty} a r^{n}$ to get $\sum_{n=0}^{\infty} \frac{1}{2}\left(\frac{2}{3}\right)^{n}$.

Note: Problems 26.32-26.33 are based on the infinite geometric series $\sum_{n=0}^{\infty} 6\left(\frac{4}{7}\right)^{n}$.
26.32 Determine the convergence of the series.

Notice that $\sum_{n=0}^{\infty} 6\left(\frac{4}{7}\right)^{n}$ has the form $\sum_{n=0}^{\infty} a r^{n}$, so it is a geometric series with $a=6$ and $r=\frac{4}{7}$. Geometric series converge if $0<|r|<1$; because $0<\frac{4}{7}<1$, the geometric series $\sum_{n=0}^{\infty} 6\left(\frac{4}{7}\right)^{n}$ converges.
\qquad
26.33 Calculate the sum of the series.

A convergent geometric series $\sum_{n=0}^{\infty} a r^{n}$ has $\operatorname{sum} \frac{a}{1-r_{\infty}}$. Substitute $a=6$ and $r=\frac{4}{7}$ into the formula to calculate the sum of the series $\sum_{n=0}^{\infty} 6\left(\frac{4}{7}\right)^{n}$.

$$
\sum_{n=0}^{\infty} 6\left(\frac{4}{7}\right)^{n}=\frac{a}{1-r}=\frac{6}{1-(4 / 7)}=\frac{6}{(7 / 7)-(4 / 7)}=\frac{6}{3 / 7}=6 \cdot \frac{7}{3}=\frac{42}{3}=14
$$

26.34 Determine the convergence of the series $\sum_{n=0}^{\infty}\left(\frac{8}{5}\right)\left(\frac{3}{2}\right)^{n}$; if the series converges,
calculate its sum. The geometric series $\sum_{n=0}^{\infty}\left(\frac{8}{5}\right)\left(\frac{3}{2}\right)^{n}$ is divergent because $|r|>1:\left|\frac{3}{2}\right|>1$.
$\frac{3}{5}$ (the absolute value of r) is between 0 and 1.
26.35 Determine the convergence of the series $\sum_{n=0}^{\infty} 2\left(-\frac{3}{5}\right)^{n}$; if the series converges,
calculate its sum.

Notice that $\sum_{n=0}^{\infty} 2\left(-\frac{3}{5}\right)^{n}$ is a geometric series with $a=2$ and $r=-\frac{3}{5}$. Because $0<|r|<1$, the series converges to sum of $\frac{a}{1-r}$.

$$
\sum_{n=0}^{\infty} 2\left(-\frac{3}{5}\right)^{n}=\frac{a}{1-r}=\frac{2}{1-(-3 / 5)}=\frac{2}{(5 / 5)+(3 / 5)}=\frac{2}{8 / 5}=2 \cdot \frac{5}{8}=\frac{5}{4}
$$

26.36 Determine the convergence of the series $\sum_{n=6}^{\infty}\left(-\frac{5}{3}\right)\left(-\frac{2}{3}\right)^{n}$; if the series converges,
calculate its sum.

Although the lower bound of the sum is $n=6$ and not $n=0$, subtracting a finite number of terms will not affect the convergence of the series. Because $0<\left|-\frac{2}{3}\right|<1$, the geometric series converges. However, when the lower bound does not equal 0 , an alternative formula must be used to calculate the sum of the series: $\sum_{n=k}^{\infty} a r^{n}=\frac{a r^{k}}{1-r}$.

$$
\sum_{n=6}^{\infty}\left(-\frac{5}{3}\right)\left(-\frac{2}{3}\right)^{n}=\frac{\left(-\frac{5}{3}\right)\left(-\frac{2}{3}\right)^{6}}{1-\left(-\frac{2}{3}\right)}=\frac{-\left(\frac{5}{3}\right)\left(\frac{64}{729}\right)}{\frac{5}{3}}=-\frac{64}{729}
$$

The Integral Test

Infinite series and improper integrals are related

26.37 Assume that $\sum_{n=1}^{\infty} a_{n}$ is a positive, decreasing series. Describe how to determine the convergence of $\sum_{n=1}^{\infty} a_{n}$ using the integral test.

Consider the function $f(n)=a_{n}$. Assuming $f(n)$ is continuous, evaluate the improper integral $\int_{1}^{\infty} f(n) d n$. If the integral converges (i.e., equals a finite, real number), then the series converges. Similarly, a divergent integral indicates a divergent series.

If you don't know how to deal with improper integrals, look at Problems 21.3021.37.
26.38 According to Problem 26.26, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent p-series. Use the integral test to verify the convergence of the series.

According to the integral test, the series converges if and only if the improper integral $\int_{1}^{\infty} \frac{1}{n^{2}} d n$ converges.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{n^{2}} d n & =\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{d n}{n^{2}} \\
& =\lim _{a \rightarrow \infty} \int_{1}^{a} n^{-2} d n \\
& =\lim _{a \rightarrow \infty}\left(-\left.\frac{1}{n}\right|_{1} ^{a}\right) \\
& =\lim _{a \rightarrow \infty}\left(-\frac{1}{a}+\frac{1}{1}\right) \\
& =\lim _{a \rightarrow \infty}\left(-\frac{1}{a}\right)+\lim _{a \rightarrow \infty} 1 \\
& =0+1 \\
& =1 \leftarrow-
\end{aligned}
$$

Because the improper integral $\int_{1}^{\infty} \frac{1}{n^{2}} d n$ converges, the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ also converges.
26.39 Determine the convergence of the series $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n}$.

Use variable substitution to integrate: $u=\ln n$ and $d u=(I / u) d u$.

Apply the integral test by determining the convergence of the corresponding improper integral.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{(\ln n)^{2}}{n} d n & =\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{(\ln n)^{2}}{n} d n \\
& =\lim _{a \rightarrow \infty} \int_{0}^{\ln a} u^{2} d u \\
& =\lim _{a \rightarrow \infty}\left(\left.\frac{u^{3}}{3}\right|_{0} ^{\ln a}\right) \\
& =\lim _{a \rightarrow \infty}\left[\frac{(\ln a)^{3}}{3}\right] \\
& =\infty
\end{aligned}
$$

Because the improper integral $\int_{1}^{\infty} \frac{(\ln n)^{2}}{n} d n$ diverges, the infinite series $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n}$ diverges as well.
26.40 Determine the convergence of the series: $\sum_{n=0}^{\infty} \frac{1}{8+n^{2}}$.

Apply the integral test by evaluating $\int_{0}^{\infty} \frac{d n}{8+n^{2}}$.

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d n}{8+n^{2}} & =\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{d n}{8+n^{2}} \\
& =\lim _{a \rightarrow \infty}\left[\frac{1}{\sqrt{8}}\left(\left.\arctan \frac{n}{\sqrt{8}}\right|_{0} ^{a}\right)\right] \\
& =\lim _{a \rightarrow \infty}\left[\frac{1}{2 \sqrt{2}}\left(\arctan \frac{a}{2 \sqrt{2}}-\arctan 0\right)\right] \\
& =\lim _{a \rightarrow \infty}\left[\frac{1}{2 \sqrt{2}} \arctan \frac{a}{2 \sqrt{2}}\right]
\end{aligned}
$$

Note that $\lim _{n \rightarrow \infty}\left(\arctan \frac{a}{2 \sqrt{2}}\right)=\frac{\pi}{2}$.
$\left(\begin{array}{l}\text { tangent approaches } \\ \frac{\pi}{2} \text { when } \times \text { gets } \\ \text { infinitely big. }\end{array}\right.$
Because the improper integral $\int_{0}^{\infty} \frac{d n}{8+n^{2}}$ converges, the infinite series $\sum_{n=0}^{\infty} \frac{1}{8+n^{2}}$ converges as well.
26.41 According to the nth term divergence test, the series $\sum_{n=1}^{\infty} \frac{n^{3}+1}{n^{3}}$ diverges. Verify that conclusion using the integral test.

Apply the integral test by evaluating $\int_{1}^{\infty} \frac{n^{3}+1}{n^{3}} d n$.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{n^{3}+1}{n^{3}} d n & =\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{n^{3}+1}{n^{3}} d n \\
& =\lim _{a \rightarrow \infty}\left[\int_{1}^{a}\left(\frac{n^{3}}{n^{3}}+\frac{1}{n^{3}}\right) d n\right] \\
& =\lim _{a \rightarrow \infty}\left[\int_{1}^{a}\left(1+n^{-3}\right) d n\right] \\
& =\lim _{a \rightarrow \infty}\left[\left.\left(n-\frac{1}{2 n^{2}}\right)\right|_{1} ^{a}\right] \\
& =\lim _{a \rightarrow \infty}\left[\left(a-\frac{1}{2 a^{2}}\right)-\left(1-\frac{1}{2}\right)\right] \\
& =\lim _{a \rightarrow \infty}\left[\left(\frac{2 a^{3}-1}{2 a^{2}}\right)-\frac{1}{2}\right] \\
& =\infty \longleftarrow
\end{aligned}
$$

Because the improper definite integral $\int_{1}^{\infty} \frac{n^{3}+1}{n^{3}} d n$ diverges, the series $\sum_{n=1}^{\infty} \frac{n^{3}+1}{n^{3}}$
diverges as well. diverges as well.

Chapter 27

 ADDITIONAL INFINITE SERIES CONVERGENCE TESTS

 ADDITIONAL INFINITE SERIES CONVERGENCE TESTS}

For use with uglier infinite series

Chapter 26 presented examples of simple infinite series that exhibited definitive characteristics; however, the majority of series cannot be classified so easily. This chapter presents an assortment of tests to supplement and enhance those discussed in Chapter 26, significantly increasing the number and variety of series for which you can determine convergence. Note that the majority of the tests apply only to series consisting of positive terms, although the treatment of negative terms is discussed in the last section of the chapter.

In Chapter 26, you learned how to handle specific kinds of series: geometric series, which look like $\sum_{n=0}^{\infty} a r^{n}$; p-series, which look like $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$; telescoping series, where just about all of the terms cancel one another out; and the integral test, which is useful only if you can integrate the generic nth term of the series. This chapter will broaden your horizons and introduce new convergence tests to use on series you come across that don't fit cleanly into any of the categories covered so far.

Comparison Test

Proving series are bigger than big and smaller than small

Consider the comparison series $\sum_{n=1}^{\infty} \frac{1}{n+1}$. Because the denominators of the two series are equal, comparing their corresponding values is a simple matter. Because

Consider the comparison series $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{5}}}=\sum_{n=0}^{\infty} \frac{1}{n^{5 / 2}}$. The denominator of $\frac{1}{\sqrt{n^{5}+7}}$ is greater than the denominator of $\frac{1}{\sqrt{n^{5}}}$, so each term of the series $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{5}+7}}$ is less than the corresponding term of the series $\sum_{n=0}^{\infty} n^{-5 / 2}: \sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{5}+7}} \leq \sum_{n=0}^{\infty} \frac{1}{n^{5 / 2}}$. Notice that $\sum_{n=0}^{\infty} \frac{1}{n^{5 / 2}}$ is a convergent p-series (since $\frac{5}{2}>1$), so according to the comparison test, $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{5}+7}}$ also converges because its sum is less than or equal to the sum of a convergent series.
27.4 Determine the convergence of the series: $\sum_{n=2}^{\infty} \frac{\ln n}{\sqrt{n}}$.

Consider the comparison series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}=\sum_{n=2}^{\infty} \frac{1}{n^{1 / 2}}$. Because $\ln n \geq 1$ for all $n \geq 3$, $\sum_{n=2}^{\infty} \frac{\ln n}{\sqrt{n}} \geq \sum_{n=2}^{\infty} \frac{1}{n^{1 / 2}}$. Note that $\sum_{n=2}^{\infty} \frac{1}{n^{1 / 2}}$ is a divergent p-series, so $\sum_{n=2}^{\infty} \frac{\ln n}{\sqrt{n}}$ must also be divergent according to the comparison test.
27.5 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{n}}}$.

Consider the geometric comparison series $\sum a_{n}=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$. Although the first few terms of $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ are smaller than the corresponding terms of $\sum b_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{n}}}$, the opposite is true for all $n \geq 5$, as illustrated by the table of values below.

n	1	2	3	4	5	6
a_{n}	$\frac{1}{2}=0.5$	$\frac{1}{4}=0.25$	$\frac{1}{8}=0.125$	$\frac{1}{16}=0.0625$	$\frac{1}{32}=0.03125$	$\frac{1}{64}=0.01563$
b_{n}	1	$\frac{1}{2^{\sqrt{2}}} \approx 0.375$	$\frac{1}{3^{\sqrt{3}}} \approx 0.149$	$\frac{1}{4^{\sqrt{4}}}=0.0625$	$\frac{1}{5^{\sqrt{5}}} \approx 0.02736$	$\frac{1}{6^{\sqrt{6}}} \approx 0.01241$

Note that $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ is a convergent geometric series (because $0<\left|\frac{1}{2}\right|<1$). Because $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{n}}} \leq \sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}, \sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{n}}}$ also converges, according to the comparison test.

The numerator on the left is bigger than the numerator on the right (and the denominators are the same), so the left sum is bigger than the right sum.

eventually get bigger and STAY bigger. A few bad apples don't spoil the whole bushel.
27.6 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{3 n+1}{n^{2}+4}$.

Apply the integral test to determine the convergence of the comparison series

$$
\sum_{n=1}^{\infty} \frac{n}{n^{2}+4}
$$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{n d n}{n^{2}+4} & =\lim _{a \rightarrow \infty} \int_{1}^{a}-\frac{n d n}{n^{2}+4} \nless \\
& =\lim _{a \rightarrow \infty}\left[\frac{1}{2} \int_{5}^{a^{2}+4} \frac{d u}{u}\right] \\
& =\lim _{a \rightarrow \infty}\left[\left.\frac{1}{2}(\ln |u|)\right|_{5} ^{a^{2}+4}\right] \\
& =\lim _{a \rightarrow \infty}\left(\frac{1}{2}\left[\ln \left(a^{2}+4\right)-\ln 5\right]\right) \\
& =\infty
\end{aligned}
$$

Use variable substitution to integrate: $u=n^{2}+4$ and $d u / 2=n d u$.

Consider the geometric comparison series $\sum_{n=0}^{\infty} \frac{7^{n}}{6^{n}}=\sum_{n=0}^{\infty}\left(\frac{7}{6}\right)^{n}$, which diverges because
$\left|\frac{7}{6}\right|>1$. Because $7^{n}+2>7^{n}$, it follows that $\sum_{n=0}^{\infty} \frac{7^{n}+2}{6^{n}} \geq \sum_{n=0}^{\infty}\left(\frac{7}{6}\right)^{n}$, and $\sum_{n=0}^{\infty} \frac{7^{n}+2}{6^{n}}$
diverges according to the comparison test.

Limit Comparison Test

series that converge or diverge by association

 n approaches infinity, the highest exponents of n in the numerator and denominator (2 and 3 respectively) are more influential than the surrounding terms. The comparison series $\sum b_{n}$ need not include the leading coefficients of the numerator and denominator (5 and 7 respectively).

$$
\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}}=\sum_{n=1}^{\infty} n^{-1}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

Now apply the limit comparison test by evaluating the limit, as $n \rightarrow \infty$, of the series' quotient.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{5 n^{2}+9}{7 n^{3}-2 n+8}}{\frac{1}{n}}
$$

Multiply the numerator and denominator by the reciprocal of the denominator to eliminate the complex fraction.

$$
=\lim _{n \rightarrow \infty} \frac{5 n^{2}+9}{7 n^{3}-2 n+8} \cdot \frac{n}{1}=\lim _{n \rightarrow \infty} \frac{5 n^{3}+9 n}{7 n^{3}-2 n+8}=\frac{5}{7}
$$

When the

 highest powers of the numerator and denominator are equal, divide their coefficients to get the limit as n approaches ∞.27.10 Determine the convergence of $\sum_{n=1}^{\infty} \frac{n+2}{\sqrt[3]{n^{2}-3 n+5}}$.

Construct the comparison series $\sum b_{n}$ using the degrees of the numerator and the denominator.

$$
\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{n}{n^{2 / 3}}=\sum_{n=1}^{\infty} n^{1-(2 / 3)}=\sum_{n=1}^{\infty} n^{1 / 3}=\sum_{n=1}^{\infty} \sqrt[3]{n}
$$

Apply the limit comparison test.

$$
\lim _{n \rightarrow \infty} \frac{\frac{n+2}{\sqrt[3]{n^{2}-3 n+5}}}{\frac{\sqrt[3]{n}}{1}}=\lim _{n \rightarrow \infty} \frac{n+2}{\sqrt[3]{n^{2}-3 n+5}} \cdot \frac{1}{\sqrt[3]{n}}=\lim _{n \rightarrow \infty} \frac{n+2}{\sqrt[3]{n^{3}-3 n^{2}+5 n}}
$$

The degrees of the numerator and denominator are equal $\left(\sqrt[3]{n^{3}}=n^{3 / 3}=1\right)$, so the limit equals the quotient of the leading coefficients of the numerator and the denominator.

$$
\lim _{n \rightarrow \infty} \frac{n+2}{\sqrt[3]{n^{3}-3 n^{2}+5 n}}=\frac{1}{1}=1
$$

The limit exists, so both series either converge or diverge according to the limit comparison test; because $\sum_{n=1}^{\infty} \sqrt[3]{n}$ diverges according to the nth term divergence test, $\sum_{n=1}^{\infty} \frac{n+2}{\sqrt[3]{n^{2}-3 n+5}}$ must diverge as well.
27.II Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{3^{n}+6}{5^{n}+1}$.

Apply the limit comparison test using the geometric comparison series

$$
\begin{aligned}
\sum b_{n}= & \sum_{n=1}^{\infty}\left(\frac{3}{5}\right)^{n} \\
& \lim _{n \rightarrow \infty} \frac{\frac{3^{n}+6}{5^{n}+1}}{\frac{3^{n}}{5^{n}}}=\lim _{n \rightarrow \infty} \frac{3^{n}+6}{5^{n}+1} \cdot \frac{5^{n}}{3^{n}}=\lim _{n \rightarrow \infty} \frac{(3 \cdot 5)^{n}+6\left(5^{n}\right)}{(3 \cdot 5)^{n}+3^{n}}=\lim _{n \rightarrow \infty} \frac{15^{n}+6\left(5^{n}\right)}{15^{n}+3^{n}}
\end{aligned}
$$

27.13 Determine the convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+n^{5}}}{\sqrt[3]{n^{8}+n^{6}+1}}$.

Construct a comparison series using the highest powers of the numerator and denominator.

$$
\sum_{n=1}^{\infty} \frac{n^{5 / 2}}{n^{8 / 3}}=\sum_{n=1}^{\infty} n^{(5 / 2)-(8 / 3)}=\sum_{n=1}^{\infty} n^{-1 / 6}=\sum_{n=1}^{\infty} \frac{1}{n^{1 / 6}}
$$

Apply the limit comparison test.
You have to

$$
\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n+n^{5}}}{\sqrt[3]{n^{8}+n^{6}+1}}}{\frac{1}{n^{1 / 6}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n+n^{5}}}{\sqrt[3]{n^{8}+n^{6}+1}}=\frac{n^{1 / 6}}{1}
$$

$$
\text { Note that } n^{1 / 6}=\left(n^{1 / 3}\right)^{1 / 2}=\sqrt{n^{1 / 3}}
$$

$$
=\lim _{n \rightarrow \infty} \frac{\sqrt{n+n^{5}}}{\sqrt[3]{n^{8}+n^{6}+1}} \cdot \frac{\sqrt{n^{1 / 3}}}{1}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{4 / 3}+n^{16 / 3}}}{\sqrt[3]{n^{8}+n^{6}+1}}
$$

The degrees of the numerator and denominator are equal $\left(\sqrt{n^{16 / 3}}=\left(n^{16 / 3}\right)^{1 / 2}=n^{8 / 3}\right.$ and $\sqrt[3]{n^{8}}=n^{8 / 3}$, so the limit equals the quotient of the leading coefficients.

$$
=\lim _{n \rightarrow \infty} \frac{\sqrt[3]{n^{8}}}{\sqrt[3]{n^{8}}}=1
$$

Because the limit exists and the comparison series is a divergent p-series, $\sum_{n=1}^{\infty} \frac{\sqrt{n+n^{5}}}{\sqrt[3]{n^{8}+n^{6}+1}}$ diverges according to the limit comparison test.

Ratio Test

Compare neighboring terms of a series

27.14 Explain how to determine the convergence of the positive series $\sum_{n=1}^{\infty} a_{n}$ using the
ratio test.

If $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L$, and $L<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges. If $L>1$ or $L=\infty$, then the series diverges. The ratio test cannot determine the convergence of a series if $L=1$.
27.15 Demonstrate that the ratio test cannot be used to determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{3}{n^{4}}$.

The
denominator a_{n} is just the expression $3 / n^{4}$. To get the numerator a_{n+1}, replace the n inside $3 / n^{4}$ with

$$
n+1
$$

You have to do this almost every time, so save yourself a step by writing $a_{n+1} \cdot \frac{1}{a_{n}}$ instead of $\frac{a_{n+1}}{a_{n}}$.

The numerator and denominator have the same degree, so divide their coefficients to get the limit: $I / I=1$.

$$
1 / 1=1 .
$$

Evaluate $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} . \leftarrow \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{3}{(n+1)^{4}}}{\frac{3}{n^{4}}}$
Multiply the numerator and denominator by the reciprocal of the denominator to eliminate the complex fraction.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{\frac{3}{(n+1)^{4}} \cdot \frac{n^{4}}{\frac{3}{n^{4}}} \cdot \frac{n^{4}}{3}}{\not n^{\prime}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{\not p n^{4}}{\not \partial\left(n^{4}+4 n^{3}+6 n^{2}+4 n+1\right)}}{\frac{3 n^{4}}{\not n^{4}}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}+4 n^{3}+6 n^{2}+4 n+1} \\
& =1 \longleftarrow
\end{aligned}
$$

According to Problem 27.14, the ratio test cannot be used to determine the convergence of the series $\sum_{n=1}^{\infty} a_{n}$ when $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$.
27.16 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{n+3}{n!}$.

Apply the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{(n+1)+3}{(n+1)!}}{\frac{n+3}{n!}} \\
& =\lim _{n \rightarrow \infty} \frac{n+4}{(n+1)!} \cdot \frac{n!}{n+3} \\
& =\lim _{n \rightarrow \infty} \frac{(n+4) n!}{(n+1)(x!)(n+3)} \\
& =\lim _{n \rightarrow \infty} \frac{n+4}{n^{2}+4 n+3} \\
& =0
\end{aligned}
$$

Because $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0$ and $0<1$, the series $\sum_{n=1}^{\infty} \frac{n+3}{n!}$ converges according to the ratio test.
27.17 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$.

Apply the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{3^{n+1}}{(n+1)!}}{\frac{3^{n}}{n!}} \\
& =\lim _{n \rightarrow \infty} \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^{n}}
\end{aligned}
$$

Note that $3^{n+1}=3^{n} \cdot 3^{1}=3 \cdot 3^{n}$.

$$
=\lim _{n \rightarrow \infty} \frac{\left(3 \cdot 2^{l}\right)(x!)}{(n+1)(x!)\left(3^{n}\right)}=\lim _{n \rightarrow \infty} \frac{3}{n+1}=0
$$

Because $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0$ and $0<1, \sum_{n=1}^{\infty} \frac{3^{n}}{n!}$ converges according to the ratio test.
27.18 Determine the convergence of the series: $\sum_{n=1}^{\infty} n^{-2} e^{n}$.

Rewrite the series by eliminating the negative exponent: $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}}$. Apply the ratio
test.

Because $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=e$ and $e>1, \sum_{n=1}^{\infty} n^{-2} e^{n}$ diverges according to the ratio test.
27.19 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n \cdot 2^{n}}$.

Apply the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{[(n+1)+1]^{2}}{(n+1) \cdot 2^{n+1}}}{\frac{(n+1)^{2}}{n \cdot 2^{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{(n+2)^{2}}{(n+1) \cdot 2^{n+1}} \cdot \frac{n \cdot 2^{n}}{(n+1)^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{(n+2)^{2}(n)\left(2^{\prime}\right)}{(n+1)^{3}\left(2^{2}\right)(2)} \longleftarrow \\
& =\lim _{n \rightarrow \infty} \frac{n\left(n^{2}+4 n+4\right)}{2\left(n^{3}+3 n^{2}+3 n+1\right)} \\
& =\lim _{n \rightarrow \infty} \frac{n^{3}+4 n^{2}+4 n}{2 n^{3}+6 n^{2}+6 n+2} \\
& =\frac{1}{2}
\end{aligned}
$$

Because $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1}{2}$ and $\frac{1}{2}<1, \sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n \cdot 2^{n}}$ converges according to the ratio test.

27.20 Determine the convergence of the series: $\sum_{n=5}^{\infty} \frac{4^{n} \cdot n!}{n \cdot(n+4)!}$.

Apply the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{4^{n+1}(n+1)!}{(n+1)[(n+1)+4]!}}{\frac{4^{n} \cdot n!}{n \cdot(n+4)!}} \\
& =\lim _{n \rightarrow \infty} \frac{4^{n+1}(n+1)!}{(n+1)(n+5)!} \cdot \frac{n \cdot(n+4)!}{4^{n} \cdot n!}
\end{aligned}
$$

Notice that $4^{n+1}=4\left(4^{n}\right),(n+1)!=(n+1)(n!)$, and $(n+5)!=(n+5)(n+4)!$.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{4(4)(n+1)(x!)(n)(n+4)!}{(n+1)(n+5)(n+4)!\left(4^{n}\right)(n!)} \\
& =\lim _{n \rightarrow \infty} \frac{4 n}{n+5} \\
& =4
\end{aligned}
$$

Because $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=4$ and $4>1, \sum_{n=5}^{\infty} \frac{4^{n} \cdot n!}{n \cdot(n+4)!}$ diverges according to the ratio test.

Root Test

Helpful for terms inside radical signs

27.21 Explain how to determine the convergence of the positive infinite series $\sum_{n=1}^{\infty} a_{n}$ using the root test.

If $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=L$, and $L<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges. If $L>1$ or $L=\infty$, then the series diverges. The root test cannot be used to determine the convergence of a series if $L=1$.
27.22 Applying the root test occasionally results in the expression $\lim _{n \rightarrow \infty} \sqrt[n]{n}$. Evaluate the limit so that you may reference it in the problems that follow.

Begin by setting $y=\sqrt[n]{n}$ and rewriting the radical using a rational exponent: $y=n^{1 / n}$. Take the natural logarithm of both sides of the equation.
The log property you to pull exponents out of logs and write them out frout like coefficients.

$$
\begin{aligned}
\ln y & =\ln n^{1 / n} \\
& =\frac{1}{n} \ln n \\
& =\frac{\ln n}{n}
\end{aligned}
$$

Evaluate $\lim _{n \rightarrow \infty} \frac{\ln n}{n}$ using L'Hôpital's rule.

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\lim _{n \rightarrow \infty} \frac{1 / n}{1}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Recall that $\ln y=\frac{\ln n}{n}$. Therefore, $\lim _{n \rightarrow \infty} \ln y=\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$. Now that you have established that $\lim _{n \rightarrow \infty} \ln y=0$, evaluate the limit specified by the original problem.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=\lim _{n \rightarrow \infty} n^{1 / n}
$$

Substitute $y=n^{1 / n}$.

$$
=\lim _{n \rightarrow \infty} y
$$

Note that $y=e^{\ln .}$

$$
=\lim _{n \rightarrow \infty} e^{\ln y}
$$

Recall that $\lim _{n \rightarrow \infty} \ln y=0$.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} e^{0} \\
& =1
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
27.23 Determine the convergence of the series: $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{n}$.

Note that the general term of the series is raised to the n power, an indication that the root test is likely the best candidate to determine convergence.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}} & =\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{1}{n}\right)^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \longleftarrow- \\
& =0
\end{aligned}
$$

Because $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=0$ and $0<1, \sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{n}$ converges according to the root test.
27.24 Determine the convergence of the series: $\sum_{n=1}^{\infty}\left(\frac{6 n+5 n^{3}}{2 n^{3}+3 n^{2}-n+1}\right)^{n}$.

Apply the root test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}} & =\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{6 n+5 n^{3}}{2 n^{3}+3 n^{2}-n+1}\right)^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{6 n+5 n^{3}}{2 n^{3}+3 n^{2}-n+1} \leftharpoonup \\
& =\frac{5}{2}
\end{aligned}
$$

The numerator and denominator both have degree 3 so the limit is the n^{3} coefficient of the numerator over the n^{3} coefficient of the de-
nominator.

Because $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{5}{2}$ and $\frac{5}{2}>1, \sum_{n=1}^{\infty}\left(\frac{6 n+5 n^{3}}{2 n^{3}+3 n^{2}-n+1}\right)^{n}$ diverges according to the root test.
27.25 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{2}{(\ln n)^{n}}$.

No matter what n is, $1^{n}=1$, so you can also raise the numerator to the n.

Constants can be factored out of a series without affecting the series' convergence.

$$
2 \sum_{n=1}^{\infty} \frac{1}{(\ln n)^{n}}=2 \sum_{n=1}^{\infty}\left(\frac{1}{\ln n}\right)^{n}
$$

Apply the root test to determine the convergence of $\sum_{n=1}^{\infty}\left(\frac{1}{\ln n}\right)^{n}$.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{1}{\ln n}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0
$$

Because $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=0$ and $0<1, \sum_{n=1}^{\infty}\left(\frac{1}{\ln n}\right)^{n}$ converges according to the root test.
Therefore, $2 \sum_{n=1}^{\infty}\left(\frac{1}{\underline{\ln n}}\right)^{n}=\sum_{n=1}^{\infty} \frac{2}{(\ln n)^{n}}$ converges as well.
27.26 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$.

Although only the denominator is raised to the n power, the root test is still applicable.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}} & =\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n}{e^{n}}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{e^{n}}\right)^{1 / n} \\
& =\lim _{n \rightarrow \infty} \frac{n^{1 / n}}{e^{n / n}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{1 / n}}{e}
\end{aligned}
$$

According to Problem 27.22, $\lim _{n \rightarrow \infty} n^{1 / n}=1$, so $\lim _{n \rightarrow \infty} \frac{n^{1 / n}}{e}=\frac{1}{e}$. Because $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{1}{e}$ and $\frac{1}{e}<1, \sum_{n=1}^{\infty} \frac{n}{e^{n}}$ converges according to the root test.
27.27 Determine the convergence of the series: $\sum_{n=1}^{\infty}(2+3 \sqrt[n]{n})^{n}$.

Apply the root test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}} & =\lim _{n \rightarrow \infty} \sqrt[n]{(2+3 \sqrt[n]{n})^{n}} \\
& =\lim _{n \rightarrow \infty}(2+3 \sqrt[n]{n}) \\
& =\lim _{n \rightarrow \infty} 2+3 \lim _{n \rightarrow \infty} \sqrt[n]{n}
\end{aligned}
$$

According to Problem 27.22, $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.

$$
\begin{aligned}
& =2+3(1) \\
& =5
\end{aligned}
$$

Because $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=5$ and $5>1, \sum_{n=1}^{\infty}(2+3 \sqrt[n]{n})^{n}$ diverges according to the root test.
27.28 Determine the convergence of the series: $\sum_{n=1}^{\infty} \frac{(4 n)^{n}}{3^{2 n+1}}$.

Apply the root test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}} & =\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(4 n)^{n}}{3^{2 n+1}}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(4 n)^{n}}}{\sqrt[n]{3^{2 n+1}}} \\
& =\lim _{n \rightarrow \infty} \frac{\left[(4 n)^{n}\right]^{1 / n}}{\left(3^{2 n+1}\right)^{1 / n}<} \\
& =\lim _{n \rightarrow \infty} \frac{4 n}{3^{(2 n / n)+(1 / n)}} \\
& =\lim _{n \rightarrow \infty} \frac{4 n}{3^{2+(1 / n)}} \\
& =\infty
\end{aligned}
$$

Because $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\infty, \sum_{n=1}^{\infty} \frac{(4 n)^{n}}{9^{2 n+1}}$ diverges according to the root test.

Alternating Series Test and Absolute Convergence

What if series have negative terms?
27.29 What is the defining characteristic of an alternating series, and how is the alternating series test used to determine convergence?

The two conditions, ignoring the negative signs, are: (I) the general term of the series has to aproach 0 when n is really huge, and (2) each term in the sevies has to be smaller than the term before it.

27.30 Write the series using summation notation.

Let $a_{1}=1, a_{2}=-\frac{3}{4}, a_{3}=\frac{9}{9}$, etc. Notice that the numerator of each term is a power of 3 , and each denominator is a perfect square: $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{(n+1)^{2}}$.

Note: Problems 27.30-27.31 refer to the alternating series $1-\frac{3}{4}+\frac{9}{9}-\frac{27}{16}+\frac{81}{25}-\cdots$.
27.31 Determine the convergence of the series.

In order to satisfy the alternating series test, two conditions must be satisfied.
First, $\lim _{n \rightarrow \infty}\left|a_{n}\right| \sum_{\Gamma}$ must equal 0. Use L'Hôpital's rule to evaluate $\lim _{n \rightarrow \infty} \frac{3^{n}}{(n+1)^{2}}$, from Problem 27.30.

$$
\lim _{n \rightarrow \infty} \frac{3^{n}}{n^{2}+2 n+1}=\lim _{n \rightarrow \infty} \frac{(\ln 3) 3^{n}}{2 n+1}=\lim _{n \rightarrow \infty} \frac{(\ln 3)^{2} 3^{n}}{2}=\infty
$$

The nth term does not approach 0 as n approaches infinity, so this series fails the first condition of the alternating series test and diverges according to the nth term divergence test.
27.32 Determine the convergence of the series: $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln (n-2)}{n-2}$.

Apply the alternating series test. First, ensure that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ using L'Hôpital's rule.

$$
\lim _{n \rightarrow \infty} \frac{\ln (n-2)}{n-2}=\lim _{n \rightarrow \infty} \frac{1 /(n-2)}{1}=\lim _{n \rightarrow \infty} \frac{1}{n-2}=0
$$

Now expand the series to verify visually that $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ (i.e., each term is less than the term that precedes it).

$$
\left.\begin{array}{rl}
\sum_{n=3}^{\infty} \frac{\ln (n-2)}{n-2} & =\frac{\ln 1}{1}+\frac{\ln 2}{2}+\frac{\ln 3}{3}+\frac{\ln 4}{4}+\frac{\ln 5}{5}+\frac{\ln 6}{6}+\frac{\ln 7}{7}+\frac{\ln 8}{8}+\frac{\ln 9}{9} \cdots \\
& \approx 0+0.3466+0.3662+0.3466+0.3219+0.2986+0.2780+0.2599+0.2441
\end{array}\right\}
$$ is less than or equal to the term that precedes it. To more rigorously prove that the terms of the series decrease, diffierentiate $f(x)=\frac{\ln (x-2)}{x-2}$.

$$
f^{\prime}(x)=\frac{(x-2)\left(\frac{1}{x-2}\right)-\ln (x-2)}{(x-2)^{2}}=\frac{1-\ln (x-2)}{(x-2)^{2}}
$$

Note that $f^{\prime}(x)<0$ for all $x>3$, so the function (and the terms of the series it
 generates) is decreasing on that interval.
Because both conditions of the alternating series test are met, $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln (n-2)}{n-2}$
converges.
27.33 The remainder R_{n} of an alternating series describes how accurately the partial sum S_{n} reflects the actual sum of the series $S:\left|R_{n}\right|=\left|S-S_{n}\right| \leq\left|a_{n+1}\right|$. Use R_{6} to identify an interval of values within which the sum of the series $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln (n-2)}{n-2}$ is contained. Report the boundaries of the interval accurate to three decimal places.

According to the given information, $\left|R_{6}\right| \leq \mid a_{6+1}$, so the partial sum S_{6} approximates the actual sum of the series with an error of a_{7}. Begin by calculating S_{6}, the sum of the terms up to and including the $n=6$ term. (Note that the series begins with $n=3$.) Use a calculator to approximate the sum.

$$
\begin{aligned}
S_{6} & =\frac{(-1)^{3} \ln (3-2)}{3-2}+\frac{(-1)^{4} \ln (4-2)}{4-2}+\frac{(-1)^{5} \ln (5-2)}{5-2}+\frac{(-1)^{6} \ln (6-2)}{6-2} \\
& =-\frac{\ln 1}{1}+\frac{\ln 2}{2}-\frac{\ln 3}{3}+\frac{\ln 4}{4} \\
& \approx 0.32694308433724
\end{aligned}
$$

Now calculate a_{7}.

$$
a_{7}=\frac{(-1)^{7} \ln (7-2)}{7-2}=-\frac{\ln 5}{5} \approx-0.32188758248682
$$

Therefore, the actual sum of $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln (n-2)}{n-2}$ is no more than $a_{7} \approx 0.32188758248682$ units greater or less than $S_{6} \approx 0.32694308433724$. Add a_{7} to and subtract a_{7} from S_{6} to generate an interval that contains the actual sum
of $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln (n-2)}{n-2}$.
$\left(S_{6}-\left|a_{7}\right|, S_{6}+\left|a_{7}\right|\right) \approx(0.32694308433724-0.32188758248682,0.32694308433724+0.32188758248682)$ $\approx(0.005,0.649)$

Absolute convergence is used only if some of the terms in the series are negative, because it changes everything into positive terms. That means you can use the ratio, root, and integral tests (which apply only to positive series).
27.34 What conclusions can be drawn if $\sum_{n=1}^{\infty} a_{n}$ exhibits absolute convergence?

If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely; there is no need to actually test the convergence of $\sum_{n=1}^{\infty} a_{n}$ in such cases-it is guaranteed. However, if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges, $\sum_{n=1}^{\infty} a_{n}$ may still converge; if it does, $\sum_{n=1}^{\infty} a_{n}$ exhibits conditional convergence.
27.35 Determine whether $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln (n-2)}{n-2}$, the series defined in Problem 27.32, converges absolutely or conditionally.

Discard the factor $(-1)^{n}$ that causes the terms to alternate signs and apply the integral test by evaluating the improper integral $\int_{3}^{\infty} \frac{\ln (n-2)}{n-2} d n$.

Integrate using variable substitution: $u=\ln (n-2)$ and $d u=\frac{d n}{n-2}$.

$$
\begin{aligned}
& =\lim _{a \rightarrow \infty} \int_{0}^{\ln (a-2)} u d u \\
& =\lim _{a \rightarrow \infty}\left(\left.\frac{u^{2}}{2}\right|_{0} ^{\ln (a-2)}\right) \\
& =\lim _{a \rightarrow \infty} \frac{[\ln (a-2)]^{2}}{2} \\
& =\infty
\end{aligned}
$$

The series $\sum_{n=3}^{\infty} \frac{\ln (n-2)}{n-2}$ diverges according to the integral test because the corresponding improper integral, $\int_{3}^{\infty} \frac{\ln (n-2)}{n-2} d n$, diverges. Therefore, $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln (n-2)}{n-2}$ does not converge absolutely. However, it does converge conditionally, according to Problem 27.32.
27.36 Determine whether the series $\sum_{n=3}^{\infty} \frac{(-1)^{n-1} 4^{n}}{(n+4)!}$ converges absolutely or conditionally.

Discard the factor that causes the terms of the series to alternate sign, (-1$)^{n-1}$, and test the resulting series for convergence using the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{4^{n+1}}{[(n+1)+4]!}}{\frac{4^{n}}{(n+4)!}} \\
& =\lim _{n \rightarrow \infty} \frac{4^{n+1}}{(n+5)!} \cdot \frac{(n+4)!}{4^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\left(4^{n}\right)(4)(n+4)!}{\left(4^{\prime \prime}\right)(n+5)(n+4)!} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n+5} \\
& =0
\end{aligned}
$$

Because $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0$ and $0<1, \sum_{n=3}^{\infty} \frac{4^{n}}{(n+4)!}$ converges according to the ratio test.
Therefore, $\sum_{n=3}^{\infty} \frac{(-1)^{n-1} 4^{n}}{(n+4)!}$ converges absolutely.

Chapter 28
 ADVANCED INFINITE SERIES

series that contain X's

The final chapter of the book concerns infinite series that represent functions; hence, the series that follow will contain a variable (usually x) in addition to n. The exercises begin with power series; although a brief discussion about the representation of known functions via power series will ensue, the majority of the focus is paid to the determination of a radius and an interval of convergence. Following that, Taylor and Maclaurin series are used to estimate function values, methods more elaborate than linear approximations and capable of providing more accurate approximations further from the x-values about which they are centered.

This chapter deals with three specific types of series. Actually, it's two types of series, because Maclaurin series are a specific kind of Taylor series, but more on that later. You'll start with power series, and your job will be to figure out where the series converge. That means you'll have to figure out which x-values make the series converge when you plug them in and which make the series diverge. After a hefty dose of generic power series, you'll deal with two specific kinds of power series: Taylor and Maclaurin series (when there are an infinite number of terms) and polynomials (when there are a finite number of terms).

Power Series

Finding intervals of convergence

28.1 Write the power series using summation notation and identify the x-value about which it is centered: $0+\frac{1}{3}(x+3)+\frac{2}{4}(x+3)^{2}+\frac{3}{5}(x+3)^{3}+\cdots$

Let the first term be a_{0}, the second term be a_{1}, etc. Notice that the numerator of each coefficient is n, and each denominator is $n+2$. Furthermore, each term contains the quantity $(x+3)$ raised to the n power: $\sum_{n=0}^{\infty} \frac{n}{n+2}(x+3)^{n}$. When compared to the general form of a power series centered about $x=c, \sum_{n=0}^{\infty} a_{n}(x-c)^{n}$, $a_{n}=\frac{n}{n+2}$ and $c=-3$; therefore, the power series is centered about $x=-3$.
28.2 Write the power series in summation notation and identify the x-value about which it is centered: $x+\frac{x^{2}}{4}+\frac{x^{3}}{8}+\frac{x^{4}}{16}+\cdots$.

28.3 Prove that the power series $\sum_{n=1}^{\infty} a_{n}(x-c)^{n}$ converges at $x=c$.

Expand the power series.

$$
\sum_{n=1}^{\infty} a_{n}(x-c)^{n}=a_{1}(x-c)^{1}+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+a_{4}(x-c)^{4}+\cdots
$$

To determine the convergence of a power series at a specific x-value, substitute it into the series.

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n}(c-c)^{n} & =a_{1}(c-c)^{1}+a_{2}(c-c)^{2}+a_{3}(c-c)^{3}+a_{4}(c-c)^{3}+\cdots \\
& =a_{1}(0)^{1}+a_{2}(0)^{2}+a_{3}(0)^{3}+a_{4}(0)^{4}+\cdots \\
& =0+0+0+0+\cdots \\
& =0
\end{aligned}
$$

The series has finite sum 0 , so it converges when $x=c$.
28.4 According to Problem 28.3, the power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ converges at $x=c$. On what other intervals might the power series converge?

A power series converges on exactly one of the following sets of x-values: (1) $x=c$ only; (2) all real numbers: $(-\infty, \infty)$; or (3) on the interval $(c-r, c+r)$, where r is the radius of convergence (i.e., $|x-c|<r$).

If the power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ has radius of convergence r, then the series converges for x between $c-r$ and $c+r$. However, you must test the endpoints $x=c-r$ and $x=c+r$ individually to determine whether or not the series converges at each. \qquad

A series might converge at both of its endpoints, neither endpoint, or only one of them.
28.6 Determine the radius of convergence for the series.

Apply the ratio test to determine where the series converges absolutely.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\left(-\frac{x}{4}\right)^{n+1}}{\left(-\frac{x}{4}\right)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{\left(\frac{x}{4}\right)^{n+1} \cdot\left(\frac{4}{x}\right)^{n}}{}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{4^{n+1}} \cdot \frac{4^{n}}{x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{\left(x^{n}\right)(x)\left(4^{n}\right)}{\left(4^{n}\right)(4)\left(x^{n}\right)}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x}{4}\right|
\end{aligned}
$$

The value of the expression $\left|\frac{x}{4}\right|$ is unaffected as n approaches infinity, so
$\lim _{n \rightarrow \infty}\left|\frac{x}{4}\right|=\left|\frac{x}{4}\right|$. According to the ratio test, the series converges only if the limit is less than $1:\left|\frac{x}{4}\right|<1$. Multiply both sides of the inequality to solve for x : $|x|<4$. Note that this expression has form $|x-c|<r$ if $c=0$ and $r=4$. Therefore, the series $\sum_{n=0}^{\infty}\left(-\frac{x}{4}\right)^{n}$ has radius of convergence 4.

Note: Problems 28.6-28.9 refer to the power series $\sum_{n=0}^{\infty}\left(-\frac{x}{4}\right)^{n}$.
28.7 Does the series converge at the left endpoint of its interval of convergence?

According to Problem 28.6, the left endpoint of the interval of convergence is $x=-4$. Substitute that value into the power series.

$$
\sum_{n=0}^{\infty}\left(-\frac{(-4)}{4}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{4}{4}\right)^{n}=\sum_{n=0}^{\infty} 1^{n}
$$

The series diverges according to the nth term divergence test.

Note: Problems 28.6-28.9 refer to the power series $\sum_{n=0}^{\infty}\left(-\frac{x}{4}\right)^{n}$.
28.8 Does the series converge at the right endpoint of its interval of convergence?

Substitute the right endpoint, $x=4$, into the series.

$$
\sum_{n=0}^{\infty}\left(-\frac{4}{4}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n}
$$

The alternating series diverges according to the nth term divergence test.

Note: Problems 28.6-28.9 refer to the power series $\sum_{n=0}^{\infty}\left(-\frac{x}{4}\right)^{n}$.
28.9 Identify the interval of convergence of the series and verify the answer using the root test.

According to Problems 28.7 and 28.8, the series diverges at both of its endpoints,

Note: Problems 28.10-28.12 refer to the power series $\sum_{n=0}^{\infty} \frac{(2 n) x^{n}}{3^{n}}$.
28.10 Determine the radius of convergence of the series.

Apply the ratio test to determine where the series converges absolutely.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{2(n+1) x^{n+1}}{3^{n+1}}}{\frac{(2 n) x^{n}}{3^{n}}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{2(n+1) x^{n+1}}{3^{n+1}} \cdot \frac{3^{n}}{(2 n) x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{2(n+1)\left(x^{n}\right)(x)\left(3^{n}\right)}{\left(3^{n}\right)(3)(2 n)\left(x^{n}\right)}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n+1}{3 n} \cdot x\right|
\end{aligned}
$$

Note that $\lim _{n \rightarrow \infty} \frac{n+1}{3 n}=\frac{1}{3}$.

$$
\begin{aligned}
& =\left|\frac{1}{3} \cdot x\right| \\
& =\left|\frac{x}{3}\right|
\end{aligned}
$$

The numerator and denominator have the same degree (I) so divide the coefficients of the n terms to get $1 / 3$.

According to the ratio test, the series converges only if the limit is less than 1.

$$
\left|\frac{x}{3}\right|<1
$$

Multiply each side by 3 to solve for x.

$$
|x|<3
$$

A power series has radius of convergence r about $x=c$ given $|x-c|<r$. In this problem, $c=0$ and $r=3$, so the radius of convergence is 3 , and the series converges on the interval $(c-r, c+r)=(0-3,0+3)=(-3,3)$.

Note: Problems 28.10-28.12 refer to the power series $\sum_{n=0}^{\infty} \frac{(2 n) x^{n}}{3^{n}}$.
28.1I Does the series converge at the left endpoint of its interval of convergence?

According to Problem 28.10, the left endpoint of the interval of convergence is $x=-3$. Substitute $x=-3$ into the power series to determine whether or not the series converges.

$$
\sum_{n=0}^{\infty} \frac{(2 n)(-3)^{n}}{3^{n}}
$$

Note that $(-3)^{n}=(-1)^{n} \cdot 3^{n}$.

$$
\sum_{n=0}^{\infty} \frac{(2 n)(-1)^{n} \not \mathscr{Z}^{l}}{\mathscr{Z}^{l}}=\sum_{n=0}^{\infty}(-1)^{n}(2 n)
$$

This alternating series diverges according to the nth term divergence test:
$\lim _{n \rightarrow \infty} 2 n \neq 0$. Therefore, $\sum_{n=0}^{\infty} \frac{(2 n) x^{n}}{3^{n}}$ diverges at $x=-3$.

Note: Problems 28.10-28.12 refer to the power series $\sum_{n=0}^{\infty} \frac{(2 n) x^{n}}{3^{n}}$.
28.12 Does the series converge at the right endpoint of its interval of convergence? Indicate the interval of convergence for the series.

Substitute $x=3$ into the power series.

$$
\sum_{n=0}^{\infty} \frac{(2 n) \mathscr{Z}^{l}}{\mathscr{Z}^{l}}=\sum_{n=0}^{\infty} 2 n
$$

The series diverges by the nth term divergence test. Because the series $\sum_{n=0}^{\infty} \frac{(2 n) x^{n}}{3^{n}}$

Note: Problems 28.13-28.14 refer to the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n\left(2^{n}\right)}$.
28.13 Identify the radius of convergence for the series.

Use the ratio test to determine where the series converges absolutely.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(x+2)^{n+1}}{(n+1)\left(2^{n+1}\right)}}{\frac{(x+2)^{n}}{n\left(2^{n}\right)}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1} \cdot n\left(2^{n}\right)}{(n+1)\left(2^{n+1}\right)(x+2)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n}(x+2)(n)\left(2^{2}\right)}{(n+1)\left(2^{2}\right)(2)(x+2)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n(x+2)}{2(n+1)}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n}{2 n+2}(x+2)\right| \\
& =\left|\frac{1}{2}(x+2)\right|
\end{aligned}
$$

According to the ratio test, the series converges if $\left|\frac{1}{2}(x+2)\right|<1$. Multiply both sides of the inequality by 2 to reach the form $|x-c| \leq r$:

$$
|x+2|<2
$$

The power series is centered at $c=-2$ and has radius of convergence $r=2$.

Note: Problems 28.13-28.14 refer to the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n\left(2^{n}\right)}$.

Take the opposite of the number in parentheses to get $\left[\begin{array}{l}c, \text { since the formula } \\ |x-c| \leq r \text { contains }\end{array}\right.$
28.14 Identify the interval of convergence for the series.

The series converges on the open interval $(c-r, c+r)=(-4,0)$ and may converge at either (or both) of the endpoints as well. Substitute $x=-4$ and $x=0$ into the series.

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{(-1)^{n}(-4+2)^{n}}{n\left(2^{n}\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(-2)^{n}}{n\left(2^{n}\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n} 2^{n}}{n\left(2^{n}\right)}=\sum_{n=0}^{\infty} \frac{\mathscr{2}^{n}}{n\left(2^{n}\right)}=\sum_{n=0}^{\infty} \frac{1}{n} \\
\sum_{n=0}^{\infty} \frac{(-1)^{n}(0+2)^{n}}{n\left(2^{n}\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n} \not 2^{n}}{n\left(2^{n}\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}
\end{gathered}
$$

$(-1)^{n}(-1)^{n}=\left[(-1)^{n}\right]^{2}$. No matter what n is,
you'll end up squaring $\left(-1\right.$, so $(-1)^{n}(-1)^{n}=1$.

Substituting $x=-4$ into the power series results in $\sum_{n=0}^{\infty} \frac{1}{n}$, a divergent p-series; substituting $x=0$ results in a convergent alternating series (according to the alternating series test). Therefore, the interval of convergence for $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n\left(2^{n}\right)}$ is $(-4,0]$.
28.15 Identify the interval of convergence for the power series: $\sum_{n=0}^{\infty} \frac{(x+4)^{n}}{(n+1)(n+5)}$.

Apply the ratio test to determine the radius of convergence.
$\lim _{n \rightarrow \infty}\left|\frac{(x+4)^{n+1}}{\frac{[(n+1)+1][(n+1)+5]}{(x+4)^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x+4)^{n+1}}{(n+2)(n+6)} \cdot \frac{(n+1)(n+5)}{(x+4)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{2}+6 n+5}{n^{2}+8 n+12}(x+4)\right|=|x+4|$
According to the ratio test, $\sum_{n=0}^{\infty} \frac{(x+4)^{n}}{(n+1)(n+5)}$ converges when $|x+4|<1$. The series is centered at $c=-4$, has radius of convergence $r=1$, so it converges on the interval $(-5,-3)$. Substituting the endpoints of the interval into the series produces two convergent series, as demonstrated on the next page.

Apply the ratio test to determine the radius of convergence.

According to the ratio test, the series converges when this limit is less than 1.
Because the limit equals 0 for any real number $x, \sum_{n=0}^{\infty} \frac{(x+4)^{n}}{(n+1)(n+5)}$ converges for all real numbers: $(-\infty, \infty)$.

The degree of the numerator is 3 and the degree of the denominator is 2. Since $3>2$, the limit is ∞.
28.17 Identify the radius of convergence for the power series: $\sum_{n=2}^{\infty} n!(x-3)^{n}$.

Apply the ratio test to determine where the series converges absolutely.

$$
\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!(x-3)^{n+1}}{[(n+1)+5]^{2}}}{\frac{n!(x-3)^{n}}{(n+5)^{2}}}=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(x-3)^{n+1}}{(n+6)^{2}} \cdot \frac{(n+5)^{2}}{n!(x-3)^{n} \mid}\right|=\lim _{n \rightarrow \infty}\left|(n+1)(n+5)^{2}(x-3)\right|=\infty
$$

The ratio test stipulates that the limit must be less than 1 in order for the series to converge. Clearly, $\infty>1$, so $\sum_{n=2}^{\infty} \frac{n!(x-3)^{n}}{(n+5)^{2}}$ diverges for all values of x except for the center $x=3$. The radius of convergence is $r=0$.

28.18 The power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$ generates the exact values of the function $f(x)=e^{x}$. Verify that the power series, like e^{x}, is its own derivative.

Differentiate each term of the convergent power series with respect to x.

$$
\begin{aligned}
\frac{d}{d x}\left[1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right] & =0+1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\frac{4 x^{3}}{4!}+\cdots \\
& =1+x+\frac{\not 2 x^{2}}{\not 2 \cdot 2!}+\frac{\not 4 x^{3}}{\not 4 \cdot 3!}+\cdots \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\end{aligned}
$$

Notice that the derivative is equivalent to the original power series.
28.19 The power series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ generates the exact values of $g(x)=\sin x$. What power series generates the values for the function $h(x)=\cos x$?

Because $\frac{d}{d x}(\sin x)=\cos x$, you can differentiate the convergent power series representing $\sin x$ to create the convergent power series representing $\cos x$.

$$
\frac{d}{d x}\binom{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=\frac{(-1)^{n}(2 n+1) x^{2 n+1-1}}{(2 n+1)!}
$$

Write $(2 n+1)$! as $(2 n+1)[(2 n+1)-1]!=(2 n+1)(2 n)!$.
In other words, you'll get the same thing if you plug some number x into e^{x} and $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

Problem 28.23 proves that this power series is convergent for all real numbers. $\frac{(-1)^{n}}{(2 n+1)!}$ is a
constant, so ignore it
while you take the
derivative of
$x^{2 n+1}$ with the
power rule.

$$
\begin{aligned}
& =\frac{(-1)^{n}(2 n+1) x^{2 n}}{(2 n+1)(2 n)!} \\
& =\frac{(-1)^{n} x^{2 n}}{(2 n)!}
\end{aligned}
$$

Therefore, $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$.

Taylor and Maclaurin Series
series that approximate function values

28.20 Define the p th Maclaurin polynomial of a function $f(x)$, assuming $f(x)$ is differentiable at least p times.
$f^{(n)}$ means
The Maclaurin polynomial is defined as the first p terms of an infinite series.
the uth
derivative of $f(x)$.
You can use primes for the first through third derivatives (f ', $f^{\prime \prime}$, and $f^{\prime \prime \prime}$), but use parentheses for fourth derivatives and higher ($f^{(4)}$, $f^{(5)}$, and $\left.f^{(6)}\right)$.

This is
28.2I What is the difference between the p th Maclaurin polynomial of a function $f(x)$ and the p th Taylor polynomial?

A Taylor polynomial is also defined as the first p terms of an infinite series.

$$
\sum_{n=0}^{p} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\cdots+\frac{f^{(p)}(c)}{p!}(x-c)^{p}
$$

 where $a_{n}=\frac{f^{(n)}(c)}{n!}$. However, Maclaurin series are always centered about $c=0$, whereas Taylor series can be centered about any real number c.

Note: Problems $28.22-28.23$ refer to the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$,
originally introduced in Problem 28.18 .
28.22 Demonstrate that the power series is actually the Maclaurin series for $f(x)=e^{x}$.
not usually trueonly a few functions are equal to their derivatives, and e^{x} is one of them.

The terms of a Maclaurin series have the form $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$; the nth term contains the nth derivative of $f(x)$. Note that the nth derivative of e^{x} (with respect to x) is e^{x}.
$\longrightarrow e^{x}=f(x)=f^{\prime}(x)=f^{\prime \prime}(x)=f^{\prime \prime \prime}(x)=f^{(4)}(x)=\cdots$
Expand the first few terms of the Maclaurin series to verify that its terms correspond with the terms of the series $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$.
$f^{(0)}$ is the "zeroth" derivatives of $f(x)$, which is just $f(x)$.

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} & =\frac{f^{(0)}(0)}{0!} x^{0}+\frac{f^{\prime}(0)}{1!} x^{1}+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\cdots \\
& =\frac{e^{0}}{0!} x^{0}+\frac{e^{0}}{1!} x^{1}+\frac{e^{0}}{2!} x^{2}+\frac{e^{0}}{3!} x^{3}+\frac{e^{0}}{4!} x^{4}+\cdots \\
& =1+\frac{x}{1}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

Note: Problems $28.22-28.23$ refer to the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$,
originally introduced in Problem 28.18 .
28.23 Prove that the series converges for all real numbers.

Apply the ratio test to determine the absolute convergence of the power series.
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(x^{n}\right)(x)(x!)}{(n+1)(x!)\left(x^{n}\right)}\right|=\lim _{n \rightarrow \infty}\left|\frac{1}{n+1} \cdot x\right|=|0 \cdot x|=0$
According to the ratio test, the series converges when this limit is less than 1.
Because $0<1$ for all x, the series converges for all real numbers.

Note: Problems $28.24-28.25$ refer to the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, originally introduced in
Problem 28.19 .

No matter what x you plug in, $|0 x|=0$.
28.24 Demonstrate that the power series is actually the Maclaurin series for $g(x)=\sin x$.

Expand the first five terms of the series ($n=0$ through $n=4$) in order to discern a pattern.

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{2 n+1}(2 n+1)!\quad=\frac{x^{1}}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots
$$

Calculate derivatives of $g(x)=\sin x$ and evaluate each at $x=0$.

$$
\begin{aligned}
& g(x)=\sin x: g^{\prime}(x)=\cos x: g^{\prime \prime}(x)=-\sin x: g^{\prime \prime \prime}(x)=-\cos x: g^{(4)}(x)=\sin x \quad g^{(5)}(x)=\cos x \\
& \begin{array}{c:c:c:c:c:c}
g(0)=\sin 0 & g^{\prime}(0)=\cos 0 & g^{\prime \prime}(0)=-\sin 0 & g^{\prime \prime \prime}(0)=-\cos 0 & g^{(4)}(0)=\sin 0 & g^{(5)}(0)=\cos 0 \\
=0 & =1 & =0 & =-1 & =0 & =1
\end{array}
\end{aligned}
$$

Note that the derivative values repeat: $0,1,0,-1,0,1,0,-1, \ldots$. Substitute the values of $g(x)$ and its derivatives into the Maclaurin series formula.

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} x^{n} & =\frac{g(0)}{0!} x^{0}+\frac{g^{\prime}(0)}{1!} x^{1}+\frac{g^{\prime \prime}(0)}{2!} x^{2}+\frac{g^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{g^{(4)}(0)}{4!} x^{4}+\cdots \\
& =\frac{0}{1} \cdot 1+\frac{1}{1!} \cdot x+\frac{0}{2!} \cdot x^{2}+\frac{-1}{3!} \cdot x^{3}+\frac{0}{4!} x^{4}+\cdots \\
& =\frac{x}{1!}-\frac{x^{3}}{3!}+\cdots
\end{aligned}
$$

When n is even, the corresponding term of $\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} x^{n}$ equals 0 . Expand the series through the $n=9$ term to verify that the terms match the power series expanded at the outset of the problem.

$$
\sum_{n=0}^{\infty} g^{(n)}(0) x^{n}=\frac{x^{1}}{1}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9}-\cdots
$$

Differentiate $h(x)=\cos x$ six times and evaluate each derivative at $x=0$.

Substitute $h(0), h^{\prime}(0), h^{\prime \prime}(0), \cdots, h^{(6)}(0)$ into the Maclaurin polynomial formula.

$$
\begin{aligned}
\sum_{n=0}^{6} \frac{h^{(n)}(0)}{n!} x^{n} & =\frac{h(0)}{0!} x^{0}+\frac{h^{\prime}(0)}{1!} x^{1}+\frac{h^{\prime \prime}(0)}{2!} x^{2}+\frac{h^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{h^{(4)}(0)}{4!} x^{4}+\frac{h^{(5)}(0)}{5!} x^{5}+\frac{h^{(6)}(0)}{6!} x^{6} \\
& =\frac{1}{1} \cdot 1+\frac{0}{1!} \cdot x+\frac{-1}{2!} \cdot x^{2}+\frac{0}{3!} \cdot x^{3}+\frac{1}{4!} \cdot x^{4}+\frac{0}{5!} \cdot x^{5}+\frac{-1}{6!} \cdot x^{6} \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
\end{aligned}
$$

Expand the series $\sum_{n=0}^{3} \frac{(-1)^{n} x^{2 n}}{(2 n!)}$ to verify that its terms match those of the Maclaurin series.

$$
\begin{aligned}
\sum_{n=0}^{3} \frac{(-1)^{n} x^{2 n}}{(2 n)!} & =\frac{(-1)^{0} x^{0}}{0!}+\frac{(-1)^{1} x^{2(1)}}{(2 \cdot 1)!}+\frac{(-1)^{2} x^{2(2)}}{(2 \cdot 2)!}+\frac{(-1)^{3} x^{2(3)}}{(2 \cdot 3)!} \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
\end{aligned}
$$

28.27 Given $\cos 0.2 \approx 0.98006657784124$, estimate $\cos 0.2$ using the second, fourth, and sixth degree Maclaurin polynomials for $h(x)=\cos x$ to demonstrate that the larger the degree of the approximating polynomial, the more accurate the approximation.

Substitute $n=0.2$ into each polynomial to approximate $\cos (0.2)$.

$$
\begin{aligned}
1-\frac{(0.2)^{2}}{2!} & =0.98 \\
1-\frac{(0.2)^{2}}{2!}+\frac{(0.2)^{4}}{4!} & \approx 0.98006666666667 \\
1-\frac{(0.2)^{2}}{2!}+\frac{(0.2)^{4}}{4!}-\frac{(0.2)^{6}}{6!} & \approx 0.98006657777778
\end{aligned}
$$

Although the second degree Maclaurin polynomial produces a fairly accurate approximation of $\cos (0.2)$, the sixth degree polynomial generates an approximation accurate to nine decimal places.

$$
\begin{aligned}
& \sum_{n=0}^{1} \frac{(-1)^{n} x^{2 n}}{(2 n!)}=1-\frac{x^{2}}{2!} \\
& \sum_{n=0}^{2} \frac{(-1)^{n} x^{2 n}}{(2 n!)}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \\
& \sum_{n=0}^{3} \frac{(-1)^{n} x^{2 n}}{(2 n!)}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
\end{aligned}
$$

Apply the Maclaurin series formula.

$$
\begin{aligned}
f(x) & \approx \sum_{n=0}^{4} \frac{f^{(n)}(0)}{n!} x^{n} \\
& \approx \frac{f(0)}{0!} x^{0}+\frac{f^{\prime}(0)}{1!} x^{1}+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4} \\
& \approx\left(\frac{\ln 3}{1}\right) \cdot 1+\left(\frac{-1 / 3}{1}\right) \cdot x+\left(\frac{-1 / 9}{2!}\right) x^{2}+\left(\frac{-2 / 27}{3!}\right) x^{3}+\left(\frac{-2 / 27}{4!}\right) x^{4} \\
& \approx \ln 3-\frac{x}{3}-\frac{x^{2}}{18}-\frac{x^{3}}{81}-\frac{x^{4}}{324}
\end{aligned}
$$

$$
\begin{array}{r}
\begin{array}{r}
\text { The actual } \\
\text { value of } \ln 2.95 \text { is } \\
1.0818051703517 \ldots . .
\end{array} \\
\qquad \begin{array}{r}
\text { Approximate } \ln (2.95) \text { by substituting } x=0.05 \text { and the given estima } \\
\text { the Maclaurin polynomial. }
\end{array} \\
\qquad f(x) \approx \ln 3-\frac{x}{3}-\frac{x^{2}}{18}-\frac{x^{3}}{162}-\frac{x^{4}}{324}
\end{array}
$$

Note: Problems 28.29-28.30 refer to the function $f(x)=\sin x$.
28.29 Identify the fourth degree Taylor polynomial for $f(x)$ centered at $c=\frac{3 \pi}{2}$.

Differentiate $f(x)=\sin x$ four times and evaluate each derivative at $c=\frac{3 \pi}{2}$.

Apply the Taylor series formula.

$$
\begin{aligned}
\sin x & \approx \sum_{n=0}^{4} \frac{f^{(n)}(c)}{n!}(x-c)^{n} \\
& \approx\left(\frac{f(3 \pi / 2)}{0!}\right)\left(x-\frac{3 \pi}{2}\right)^{0}+\left(\frac{f^{\prime}(3 \pi / 2)}{1!}\right)\left(x-\frac{3 \pi}{2}\right)^{1}+\left(\frac{f^{\prime \prime}\left(\frac{3 \pi / 2)}{2!}\right)\left(x-\frac{3 \pi}{2}\right)^{2}+}{}\right. \\
& \left(\frac{f^{\prime \prime \prime}\left(\frac{3 \pi / 2)}{3!}\right.}{2!}\right)\left(x-\frac{3 \pi}{2}\right)^{3}+\left(\frac{f^{(4)}(3 \pi / 2)}{4!}\right)\left(x-\frac{3 \pi}{2}\right)^{4} \\
\approx & -1+\frac{0}{1!}\left(x-\frac{3 \pi}{2}\right)+\frac{1}{2!}\left(x-\frac{3 \pi}{2}\right)^{2}+\frac{0}{3!}\left(x-\frac{3 \pi}{2}\right)^{3}+\frac{-1}{4!}\left(x-\frac{3 \pi}{2}\right)^{4} \\
\approx & -1+\frac{1}{2}\left(x-\frac{3 \pi}{2}\right)^{2}-\frac{1}{24}\left(x-\frac{3 \pi}{2}\right)^{4}
\end{aligned}
$$

Note: Problems 28.29-28.30 refer to the function $f(x)=\sin x$.
28.30 Estimate $\sin \frac{5 \pi}{3}$ using the Taylor polynomial generated in Problem 28.29.

Compare the approximation to the actual value and identify two ways you could better approximate $\sin \frac{5 \pi}{3}$ using a Taylor polynomial.

Substitute $x=\frac{5 \pi}{3}$ into the polynomial generated in Problem 28.29.

$$
\begin{aligned}
\sin \frac{5 \pi}{3} & \approx-1+\frac{1}{2}\left(\frac{5 \pi}{3}-\frac{3 \pi}{2}\right)^{2}-\frac{1}{24}\left(\frac{5 \pi}{3}-\frac{3 \pi}{2}\right)^{4} \\
& \approx-1+\frac{1}{2}\left(\frac{10 \pi-9 \pi}{6}\right)^{2}-\frac{1}{24}\left(\frac{10 \pi-9 \pi}{6}\right)^{4} \\
& \approx-1+\frac{1}{2}\left(\frac{\pi}{6}\right)^{2}-\frac{1}{24}\left(\frac{\pi}{6}\right)^{4} \\
& \approx-0.86605388341574
\end{aligned}
$$

Recall, from the unit circle, that $\sin \frac{5 \pi}{3}=-\frac{\sqrt{3}}{2} \approx-0.86602540378443$, so the approximation is accurate to four decimal places. Increase the accuracy of the approximation by increasing the degree of the Taylor polynomial or centering the polynomial about a c-value closer to $\frac{5 \pi}{3}$ than $\frac{3 \pi}{2}$.
28.31 Approximate $\ln 2.95$ using the fourth degree Taylor polynomial for $f(x)=\ln x$ centered about $c=3$. Compare the results to the approximation generated by the Maclaurin polynomial of equal degree calculated by Problem 28.28.
If you don't
feel like rewriting a function to use a Maclaurin polynomial (like you had to do in Problem 28.28), use a Taylor polynomial instead, since you can center it at any x value, not just $x=0$.

Differentiate $f(x)=\ln x$ four times and evaluate each derivative at $c=3$.

$$
\begin{array}{c:l}
f(x)=\ln x & f(3)=\ln 3 \\
f^{\prime}(x)=x^{-1}=\frac{1}{x} & f^{\prime}(3)=\frac{1}{3} \\
f^{\prime \prime}(x)=-x^{-2}=-\frac{1}{x^{2}} & f^{\prime \prime}(3)=-\frac{1}{9} \\
f^{\prime \prime \prime}(x)=2 x^{-3}=\frac{2}{x^{3}} & f^{\prime \prime \prime}(3)=\frac{2}{27} \\
f^{(4)}(x)=-6 x^{-4}=-\frac{6}{x^{4}} & f^{(4)}(3)=-\frac{6}{81}=-\frac{2}{27}
\end{array}
$$

Apply the Taylor series formula.

$$
\begin{aligned}
\ln x & \approx \sum_{n=0}^{4} \frac{f^{(n)}(3)}{n!}(x-3)^{n} \\
& \approx \frac{f(3)}{0!} \cdot 1+\left(\frac{f^{\prime}(3)}{1!}\right)(x-3)+\left(\frac{f^{\prime \prime}(3)}{2!}\right)(x-3)^{2}+\left(\frac{f^{\prime \prime \prime}(3)}{3!}\right)(x-3)^{3}+\left(\frac{f^{(4)}(3)}{4!}\right)(x-3)^{4} \\
& \approx \ln 3+\frac{1}{3}(x-3)-\frac{1}{9 \cdot 2!}(x-3)^{2}+\frac{2}{27 \cdot 3!}(x-3)^{3}-\frac{2}{27 \cdot 4!}(x-3)^{4} \\
& \approx \ln 3+\frac{1}{3}(x-3)-\frac{1}{18}(x-3)^{2}+\frac{2}{162}(x-3)^{3}-\frac{2}{648}(x-3)^{4}
\end{aligned}
$$

Approximate $\ln (2.95)$ by substituting $x=2.95$ into the polynomial.

$$
\begin{aligned}
\ln 2.95 & \approx \ln 3+\frac{1}{3}(2.95-3)-\frac{1}{18}(2.95-3)^{2}+\frac{2}{162}(2.95-3)^{3}-\frac{2}{648}(2.95-3)^{4} \\
& \approx \ln 3-\frac{1}{3}(0.05)-\frac{1}{18}(0.05)^{2}-\frac{1}{81}(0.05)^{3}-\frac{1}{324}(0.05)^{4}
\end{aligned}
$$

This approximation is exactly equal to the approximation in Problem 28.28, so the Taylor and Maclaurin polynomial estimates of $\ln 2.95$ are identical.

Appendix A

Important graphs to memorize and graph transformations

Appendix A

$$
y=\cot x
$$

$$
y=\sec x
$$

$$
y=\csc x
$$

How constants transform a function graph
$b>1$: squishes $f(x)$ horizontally $0<b<1$: stretches $f(x)$ horizontally $-1<b<0$: $f l i p s f(x)$ over y-axis and stretches it horizontally $b<-1$: flips $f(x)$ over y-axis and squishes it horizontally
$c>0$: shifts graph of $f(x)$ to the left $c<0$: shifts graph of $f(x)$ to the right

$a>1$: stretches $f(x)$ vertically $0<a<1$: squishes $f(x)$ vertically $-1<a<0$: flips $f(x)$ over x-axis and squishes it vertically $a<-1$: flips $f(x)$ over x-axis and stretches it vertically

Absolute value of $(b x+c)$ erases graph left of y-axis and replaces it with reflection of $f(x)$ across the y-axis

Appendix B
The unit circle

Appendix $C_{\text {Trigonometric identities }}$

Reciprocal Identities

$$
\begin{array}{ll}
\cos x=\frac{1}{\sec x} & \cot x=\frac{\cos x}{\sin x}=\frac{1}{\tan x} \\
\sin x=\frac{1}{\csc x} & \sec x=\frac{1}{\cos x} \\
\tan x=\frac{\sin x}{\cos x}=\frac{1}{\cot x} & \csc x=\frac{1}{\sin x}
\end{array}
$$

Cofunction Identities

$$
\begin{array}{ll}
\cos \left(\frac{\pi}{2}-x\right)=\sin x & \sin \left(\frac{\pi}{2}-x\right)=\cos x \\
\tan \left(\frac{\pi}{2}-x\right)=\cot x & \cot \left(\frac{\pi}{2}-x\right)=\tan x \\
\sec \left(\frac{\pi}{2}-x\right)=\csc x & \csc \left(\frac{\pi}{2}-x\right)=\sec x
\end{array}
$$

Pythagorean Identities

$$
\begin{gathered}
\cos ^{2} x+\sin ^{2} x=1 \quad 1+\tan ^{2} x=\sec ^{2} x \\
1+\cot ^{2} x=\csc ^{2} x
\end{gathered}
$$

Double Angle Identities

$$
\begin{aligned}
& \sin 2 x=2 \sin x \cos x \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
& \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}
\end{aligned}
$$

Sum and Difference Identities

$$
\begin{aligned}
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\tan (A \pm B) & =\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

Product-to-Sum Identities

$$
\begin{aligned}
& \cos A \cos B=\frac{\cos (A-B)+\cos (A+B)}{2} \\
& \sin A \sin B=\frac{\cos (A-B)-\cos (A+B)}{2}
\end{aligned}
$$

$$
\sin A \cos B=\frac{\sin (A+B)+\sin (A-B)}{2}
$$

Power-Reduction Formulas

$$
\cos ^{2} x=\frac{1+\cos 2 x}{2} \quad \sin ^{2} x=\frac{1-\cos 2 x}{2}
$$

Appendix D
Derivative Formulas

Trig Derivatives

$$
\begin{aligned}
& \frac{d}{d x}(\cos x)=-\sin x \\
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\tan x)=\sec ^{2} x \\
& \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
& \frac{d}{d x}(\sec x)=\sec x \tan x \\
& \frac{d}{d x}(\csc x)=-\csc x \cot x
\end{aligned}
$$

Exponential/Log Derivatives

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \frac{d}{d x}(\ln x)=\frac{1}{x} \\
& \frac{d}{d x}\left(a^{x}\right)=(\ln a) a^{x} \\
& \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x(\ln a)}
\end{aligned}
$$

Inverse Trig Derivatives

$$
\begin{array}{ll}
\frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\operatorname{arccot} x)=-\frac{1}{1+x^{2}} \\
\frac{d}{d x}(\arccos x)=-\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{|x| \sqrt{x^{2}-1}} \\
\frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}} & \frac{d}{d x}(\operatorname{arccsc} x)=-\frac{1}{|x| \sqrt{x^{2}-1}}
\end{array}
$$

Appendix E
Antiderivative Formulas

Trig Antiderivatives

$$
\begin{aligned}
& \int \cos x d x=\sin x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \tan x d x=-\ln |\cos x|+C \\
& \int \cot x d x=\ln |\sin x|+C \\
& \int \sec x d x=\ln |\sec x+\tan x|+C \\
& \int \csc x d x=-\ln |\csc x+\cot x|+C
\end{aligned}
$$

Exponential/Log
Antiderivatives

$$
\begin{aligned}
& \int e^{x} d x=e^{x}+C \\
& \int \ln x d x=x \ln x-x+C
\end{aligned}
$$

Inverse Trig Antiderivatives

$$
\begin{aligned}
& \int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C \\
& \int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C \\
& \int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C
\end{aligned}
$$

Index

ALPHABETICAL LIST OF CONCEPTS WITH PROBLEM NUMBERS

This comprehensive index organizes the concepts and skills discussed within the book alphabetically. Each entry is accompanied by one or more problem numbers in which the topics are most prominently featured.

All of these numbers refer to problems, not pages, in the book. For example, 8.2 is the second problem in Chapter 8.

A-B

absolute convergence: 27.34-27.36
absolute extrema (maximum/minimum)
points: 14.11-14.15
acceleration function: see motion
accumulation functions: 19.25-19.30, 19.35-
19.36
alternating series test: 27.29-27.36, 28.14-28.15 amplitude of a trigonometric function: 8.2,
8.6-8.7
analytic geometry: 1.8-1.10
antidifferentiation: see integration
area between curves
defined in terms of x : 19.1-19.4, 19.7
defined in terms of y: 19.5-19.6, 19.8
arc length: 23.1-23.5, 24.36-24.38
asymptotes
horizontal: 4.31-4.33, 9.17-9.20, 9.22, 9.249.26
(of a) hyperbola: 6.33
slant: 4.34-4.35
vertical: 4.29-4.30, 4.33, 4.35, 9.15-9.16, 9.21-9.23, 9.27
average rate of change: 15.1, 15.7
average value (of a function): 19.11-19.12, 19.14,
19.16-19.19, 19.22-19.24
axis of symmetry: 6.2, 6.4

c

center
(of a) circle: $6.10-6.12,6.14-6.15$
(of an) ellipse: 6.18
centroids: 23.11-23.22
chain rule: 12.30-12.44
change of base formula: 5.16-5.19
circle
equations in parametric and polar form: 24.8, 24.16, 24.18
graph of: 6.10, 6.16
standard form of: 6.12-6.15, 16.11
comparison test: 27.1-27.7, 28.15
completing the square: 2.31-2.32, 20.22, 20.25-
20.26, 21.29
complimentary angles: 7.8-7.9
concavity: 13.20-13.22, 13.25-13.26
conditional convergence: 27.34-27.36
conic sections: see parabola, circle, ellipse, or hyperbola
conjugate axis of a hyperbola: 6.28
continuity
definition of: 11.1-11.3
graphical determination of: 11.4-11.16
one-sided: 11.9, 11.16
piecewise-defined functions: 11.17-11.22
convergence tests for infinite series
alternating series test: $27.36-27.39,28.14-$ 28.15
comparison test: 27.1-27.7, 28.15
geometric series: 26.32-26.36, 27.5, 27.7, 27.11
integral test: 26.37-26.41, 27.2, 27.6, 27.35
limit comparison test: 27.8-27.13
nth term divergence test: 26.19-26.21, 27.10, 27.31, 28.7-28.8, 28.11-28.12
p-series: 26.25-26.29, 26.38, 27.3-27.4, 27.9, 27.12-27.13, 28.14
ratio test: 27.14-27.20, 27.36, 28.6, 28.10, 28.13, 28.15-28.17, 28.23, 28.25
root test: 27.21-27.28, 28.9
critical numbers
(of a) function: 13.1-13.7
(of a) polynomial inequality: 3.24-3.27
(of a) rational inequality: 3.28-3.30
cross multiplication: 3.17-3.18
coterminal angles: 7.12-7.14, 7.17
cylindrical shells: see shell method

D

definite integrals
(involving) absolute value: 18.25-18.26
calculated formally: 17.32-17.41
derivatives of: 18.34-18.39
functions defined by: 19.25-19.30
properties of: 18.22-18.24
degrees
converting angle measurements into: 7.4-7.5
definition of: 7.1
derivatives
determining direction and concavity: see sign graph
estimating: 14.6-14.7
evaluating graphically: 11.39-11.42
(of) exponential functions: 12.5-12.6
(of) functions defined by tables: 12.27-12.29
geometric interpretation of: 11.37
graphs of: 13.32-13.35
(of) inverse functions: 16.32-16.37
(of) inverse trigonometric functions: 16.2416.28
logarithmic differentiation: 16.14-16.23
(of) logarithmic functions: 12.7-12.8
one-sided: 11.39-11.42
(of) parametrically-defined curves: 24.24-24.35
(of) polar curves: 24.33-24.35
related to continuity: 11.38-11.42
(of) trigonometric functions: 12.1-12.4, 12.26
difference quotient
definition of: 11.29
differentiation using: 11.30, 11.34
evaluating derivatives using: 11.31-11.33, 11.35-11.36
differential equations
Euler's method: 25.35-25.41
slope field representations of: 25.27-25.34
solving by separation of variables: 25.1-25.11, 25.29
differentiation: see derivatives
direction of a function: see sign graph
directrix of a parabola: 6.7-6.9
disc method: 22.9-22.18
discontinuity
infinite: 11.12
jump: 11.11
point: 11.10
removability: 11.13, 11.15, 11.17-11.18
displacement: 19.32-19.34
distance formula: 1.9
distance traveled: 19.33, 19.35
double root: 2.30

E

eccentricity of an ellipse: 6.25-6.27
ellipse:
equations in parametric and polar form: 24.624.7, 24.31, 24.38
graph of: 6.17, 6.19-6.20, 6.22
standard form of: 6.18-6.23, 16.8
epsilon-delta definition of limits: 9.28-9.34
Euler's method: 25.35-25.41
exponential expressions
properties of: 2.1-2.2, 2.5
simplifying: 2.1-2.4, 5.28-5.31
exponential functions
domain and range of: 5.2
graphing: 5.1, 5.3
natural exponential function: 5.13
solving equations containing: 5.32-5.33
exponential growth and decay: 25.12-25.22
exponentiation: 5.34-5.36
extreme value theorem: 14.11-14.15

F

factoring
decomposition: 2.27, 10.15
difference of perfect squares: 2.24
greatest common factor: 2.20-2.21
grouping: 2.26-2.27, 10.17
quadratic trinomials: 2.22-2.23
sum of perfect cubes: 2.25, 10.18
fixed point theorem: 11.28
focus
of an ellipse: 6.24
of a hyperbola: 6.34
of a parabola: 6.7-6.9
functions
arithmetic operations involving: 4.4-4.6
composition of: 4.6-4.10
defining: 4.1-4.3
determining direction of using first derivative: 13.8-13.10
graphing via transformations: 4.11-4.21
one-to-one: 4.3
fundamental theorem of calculus: 18.16-18.21, 18.27-18.39, 19.2

G

geometric series: 26.18, 26.30-26.36, 27.5, 27.7, 27.11
graphical transformations of functions:
(involving) absolute values: 4.17-4.18, 4.204.21
reflection, horizontal and vertical: 4.13-4.14, 4.20
shift, horizontal and vertical: 4.11-4.12, 4.194.20
stretch, horizontal and vertical: 4.15-4.16, 4.21 greatest integer function: 11.4

H

half-life: 25.16-25.18
hyperbola
graph of: 6.28-6.32
standard form of: 6.29-6.33

I-J-K

implicit differentiation: 16.1-16.7, 16.9-16.13 improper integrals: 21.30-21.37, 26.37-26.41 inequalities
linear: 1.14-1.20, 1.24-1.27
polynomial: 3.24-3.27
rational: 3.28-3.30
inflection points: 13.20-13.22
instantaneous rate of change: 15.1, 15.7
integral test: 26.37-26.41, 27.2, 27.6, 27.35 integration
(by) completing the square: 20.23, 20.25-20.26
(of) exponential functions: 18.47
(involving) inverse trigonometric functions:
20.14-20.21, 20.24, 20.35, 23.4, 25.10, 25.26, 26.40
improper integrals: 21.30-21.37, 26.37-26.41
(of) logarithmic functions: 21.3
(by) long division: 20.8-20.13
(by) partial fraction decomposition: 20.27-20.35
power rule for: 18.1-18.3, 18.5-18.9
(by) parts: 21.1-21.7, 22.32, 22.34, 23.21
(by) parts, tabular method: 21.5-21.6
(by) separation: 20.2-20.7
(of) trigonometric functions: 18.10-18.15, 18.20, 18.40-18.46
(using) trigonometric identities 21.8-21.20, 23.2
(by) trigonometric substitution: 21.21-21.29
(by) variable substitution: 18.40-18.47, 19.22, 20.14, 20.24, 21.12-21.13, 21.15-21.20, 23.13, 23.15, 26.39, 27.35-27.36
(using) zero sums: 20.6, 20.24
intermediate value theorem: 11.23-11.28
interval of convergence (of a power series): 28.5, 28.7-28.9, 28.11-28.12, 28.14-28.16, 28.23, 28.25
interval notation: 1.11-1.13
inverse functions
creating: 4.25-4.26
definition of: 4.22, 4.24
derivatives of: 16.32-16.37
evaluating: 16.29, 16.31
graphing: 4.23
restricted ranges of trigonometric inverse functions: 7.28
(of) trigonometric functions: 7.28-7.33
verifying: 4.27-4.28, 16.30

L

least common denominator: 3.1-3.6, 3.22-3.23
L'Hôpital's rule: 14.27-14.35, 21.33, 26.7, 26.2127.22, 27.31-27.32
limit comparison test: 27.8-27.13
limits
common known limit values: 10.28-10.31
evaluating using conjugates: 10.23-10.27
evaluating by factoring: 10.11, 10.13-10.21
evaluating graphically: 9.10-9.16, 9.18-9.19, 10.12
evaluating with L'Hôpital's rule: 14.27-14.35, 21.33, 26.7, 26.21-27.22, 27.31-27.32
evaluating by substitution: 10.1-10.10
formal definition of: 9.28-9.34
(of) functions defined by tables: 10.4-10.6
involving infinity: 9.15-9.27
general: 9.3-9.4, 9.6, 9.9
one-sided: 9.1-9.2, 9.5, 9.7-9.8, 10.9-10.10
(of) piecewise-defined functions: 10.7-10.10
linear approximation: 25.23-25.26
linear equations
(involving) absolute values: 1.21-1.23
constructing: 1.5, 1.7
graphing: 1.6
intercepts of: 1.6
solving: 1.1
standard form of: 1.3-1.4
local linearity: 25.23
logarithmic differentiation: 16.14-16.23
logarithmic functions:
change of base formula applied to: 5.16-5.19
common logarithms: 5.13-5.14
domain and range of: 5.4
equations involving: 5.5-5.10
graphing: 5.11-5.12
natural logarithms: 5.13, 5.15
properties of: 5.20-5.27, 22.27-22.28, 23.2
simplifying: 5.28-5.31
solving equations containing: 5.34-5.36
long division of polynomials: see polynomials, long division of

Maclaurin series and polynomials: 28.20-28.28, 28.31
major axis of an ellipse: 6.17, 6.23
maximizing functions: see optimization of functions
mean value theorem
of differentiation: 15.2-15.8
for integration: 19.9-19.19
midpoint formula: 1.8
minimizing functions: see optimization of functions
minor axis of an ellipse: 6.17, 6.23
motion
rectilinear: 15.11-15.22
position, velocity, and acceleration functions: 19.20-19.22, 19.31-19.35

Newton's law of cooling: 25.19-25.22
Newton's method: 14.16-14.26
nth term divergence test: 26.19-26.21, 27.10, 27.31, 28.7-28.8, 28.11-28.12

O-P

optimization of functions: 15.29-15.33
parabola
graphing: 6.5-6.6
standard form of: 6.1-6.4, 6.9
parametric equations
arc length of curves defined by: 24.36-24.38
converting to rectangular equations: 24.2, 24.4, 24.6
differentiating: 24.24-24.35
expressing in rectangular form: 24.7-24.8, 24.26, 24.31
graphs of: 24.1, 24.3, 24.5
period of a trigonometric function: 8.3, 8.6-8.7 phase shift of a trigonometric function: 8.4 polar coordinates: 24.9-24.15
polar curves
area of regions bounded by: 24.39, 24.41
differentiating equations of: 24.33-24.35
expressing in parametric form: 24.22-24.23, 24.33-24.35
graphs of: 24.16-24.21
polynomials
adding and subtracting: 2.11-2.12
factoring: see factoring
long division of: 2.16-2.17, 20.9-20.12
multiplying: 2.13-2.15, 10.22
position function: see motion
power rule for differentiation: 12.9-12.18
power rule for integration: 18.1-18.3, 18.5-18.9
power series
convergence of: 28.3-28.4, 28.23, 28.25
interval of convergence of: 28.5, 28.7-28.9, 28.11-28.12, 28.14-28.16, 28.23, 28.25
properties of: 28.1-28.2
radius of convergence of: 28.5-28.6, 28.10, 28.13, 28.15-28.17, 28.23, 28.25
representation of functions: 28.18-28.19, 28.22-28.31
product rule: 12.19-12.22, 12.28, 12.38-12.39, 12.41-12.42
proportions, solving: 3.17-3.18
p-series: 26.25-26.29, 26.38, 27.3-27.4, 27.9, 27.12-27.13, 28.14

quadratic equations, solving completing the square: 2.31-2.32 factoring method: 2.28 quadratic formula: 2.29
quotient rule: $12.23-12.26,12.29,12.38,12.40-$
12.41, 12.44, 27.32

R

radians
converting angle measurements into: 7.2-7.3
definition of: 7.1
radical expressions
combining: 2.9
expressing with rational exponents: 2.10
simplifying: 2.6-2.8
radius of a circle: 6.10-6.12, 6.14-6.15
radius of convergence (of a power series) 28.5-
28.6, 28.10, 28.13, 28.15-28.17, 28.23, 28.25
ratio test: 27.14-27.20, 27.36, 28.6, 28.10, 28.13,
28.15-28.17, 28.23, 28.25
rational equations, solving: 3.17-3.23
rational expressions
products of: 3.9-3.12
quotients of: 3.13-3.16
reducing: 3.7-3.8
sums and differences of: 3.1-3.6, 20.1
rectilinear motion: see motion
reference angles: 7.23-7.25
related rates: 15.23-15.28
relative extrema of a function: 13.15-13.18, 13.24, 13.28, 13.30-13.31
remainder of an alternating series: 27.33
revolutions, converting angle measurements into: 7.6-7.7
Riemann sums
formal Riemann sums: 17.32-17.41
geometric interpretation of: 17.1, 17.13-17.15
informal Riemann sums: 17.1-17.16
left sum: 17.2, 17.8, 17.12-17.13, 17.23
lower sum: 17.6, 17.10
midpoint sum: 17.4, 17.9, 17.15-17.16
right sum: 17.3, 17.7, 17.14, 17.23
upper sum: 17.5, 17.11
right triangle trigonometry: 7.19-7.20, 7.29
Rolle's theorem: 15.8-15.10
root test: 27.21-27.28, 28.9
rotational volume: see volume

S

second derivative test: 13.29-13.31
separation of variables: 25.1-25.2, 25.4, 25.6,
25.9-25.10, 25.29
sequences
convergence of: 26.6-26.8
(of) partial sums: 26.16-26.18
terms of: 26.1-26.5
series
evaluating finite: 26.9-26.15
geometric: 26.18, 26.30-26.36
p-series: 26.25-26.29
telescoping: 26.22-26.24
shell method: 22.29-22.34
sign graph
(of the) first derivative: 13.11-13.18, 13.2313.24, 13.27-13.28, 16.30
(of the) second derivative: 13.19-13.22, 13.2513.26

Simpson's rule: 17.27-17.31
slope: 1.2-1.3, 1.10, 25.35-25.36
slope fields: 25.27-25.34
slope-intercept form of a line: 1.5, 1.7
supplementary angles: 7.10-7.11
surface area (of rotation): 23.6-23.10
synthetic division: 2.18-2.19, 10.19-10.20, 20.13
systems of equations: 1.28-1.31
systems of inequalities: 1.32-1.33

T

tangent lines, equations of: 14.1-14.10, 16.10, 16.13, 24.28, 24.35

Taylor series and polynomials: 28.21, 28.2928.31
telescoping series: 26.22-26.24
transverse axis of a hyperbola: 6.28
trapezoidal rule: 17.17-17.27, 19.23, 23.5
trigonometric equations, solving: 8.22-8.34
trigonometric functions and expressions
evaluating: 7.15-7.18, 7.21-7.22, 7.26-7.27
graphing: 8.1, 8.4-8.7
simplifying: 8.8-8.14
trigonometric identities
cofunction identities: 8.9-8.10
double angle identities: 8.12-8.14, 8.16, 8.21, 20.4, 21.15, 22.21
even/odd identities: 8.8-8.10
power-reducing: 21.11, 21.13, 22.7, 23.22
product-to-sum: 21.14, 21.16, 22.7
Pythagorean identities: 8.11-8.12, 8.14-8.15, 8.19, 8.20-8.21, 21.8-21.10, 21.12, 21.15, 21.18-21.20, 23.2
reciprocal identities: 8.8, 8.10-8.11, 8.19
sum and difference identities: 8.16-8.17
verifying: 8.16, 8.18-8.21

U-V

u-substitution: see variable substitution unit circle: 7.15-7.18, 8.15
variable substitution: 18.40-18.47, 19.22, 20.14, 20.24, 21.12-21.13, 21.15-21.20, 23.13, 23.15, 26.39, 27.35-27.36
velocity function: see motion vertex
(of an) ellipse: 6.17
(of a) hyperbola: 6.28
(of a) parabola: 6.1-6.4
volume, calculating
(using) disc method: 22.9-22.18
(using) shell method: 22.29-22.34
(using) washer method: 22.19-22.28, 22.30
(of a) solid with known cross-sections: 22.1-22.9

W-X-Y-Z

washer method: 22.19-22.28, 22.30
wiggle graph: see sign graph

