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I ntroduction 

t-�e\\ yov!.ve Bot- so1Me \::.i.\\J. o.P cv-()'\z..y IM()'\t-� �lA\\Bev-, IMY .Pv-i.e\\J., ()\\\J. I� 
see\::. pv-o.Pessi.o\\()'\l �elp. ,�i.s pv-()'\ct-i.ce boo\::. \N()\S Boo.J- ()\t- ..fiv-st-, blAt- t-o 
1Me,1.\::.e i.t- GREA1, I we\\t- t-�v-O lAB� ()'\\\.:;\ wov-\::.e.J- olAt- ()'\11 t-�e pv-oble1MS ()\\\J. 
t-oo\::. \\ot-es i.\\ t-�e IM()'\v-Bi.\\s w�e\\ I t-�olAB�t- so1Met-�i.\\8 we,i.s co\\.PlAsi.\\8 

ov- \\eeJ.eJ. ()\ li.t-t-le 1Mov-e e>eple,,.\\e,i.t-i.o\\. I ()\\so J.v-ew li.t-t-le s\::.lAlls \\e>et- t-o __ _ 
t-�e �e,i.v-J.est- pv-oble1MS, so yov!.J. \::.\\ow \\Ot- t-o .Pv-e()'\\::. otAt- i..P H"ey wev-e t-oo 

c�()'\lle\\81.\\8, A-Pt-ev- e,,.l\, i..P yo1he wov-\::.i.\\8 O\\ ()\ pv-oble1M e,i.\\J. yo,he t-ot-()'\lly 
st-lA1Mpe.J-, i.s\\'t- i.t- bet-t-ev- t-o \::.\\ow t-�e,i.t- t-�e pv-oble1M i.s SVPPosED t-o be 
�()\v-J.? lt-1s v-e()'\sstAv-i.\\8, ()'\t- lee,i.st- .Pov- 1Me. 

I t-�i.\\\::. yolA'll be plee,i.s()'\\\t-ly SlAv-pv-i.se.J- by �ow J.et-e,i.i.le.J- t-�e ()'\\\swev
e>epl()'\\\()'\t-i.o\\S e,i.v-e, ()\\\J. I �ope yolA'll -tt\\J. IMY li.t-t-le \\Ot-es �elp.PlAl ()'\lo\\8 t-�e 
w()'\y. Ce,i.ll 1Me cv-e,i.z..y, blAt- I t-�i.\\\::. t-�e,i.t- people w�o WAN1 t-o le()'\v-\\ ce,i.lclAl lAs 
()\\\J. ()\v-e wi.lli.\\8 t-o spe\\J. t-�e t-i.1Me J.v-i.lli.\\8 t-�ei.v- we,i.y t-�v-olAB� pv-e,,.ct-i.ce 
pv-oble1MS s�otAl.J- ()'\Ct-l.\()'\lly be e,i.ble t-o -ttB lAv-e t-�e pv-oble1MS olAt- ()\\\J. lee,i.v-\\ 
"'-S t-�ey B", blAt- t-�()'\t-'s jlAst- IMY 24:-. 

Goo.J- ltAc\::. ()\\\J. 1Me,1.\::.e SlAv-e t-o co1Me vi.si.t- IMY websi.t-e ()'\t- www.c()'\lclAl lAs-�elp.co1M. 
1-P yolA .Peel so i.\\cli.\\e.J-, J.v-op 1Me ()'\\\ e1Me,1.i.l e,i.\\J. Bi.Ve 1Me yolAv- 24:-. (Not- li.t-ev-()'\lly, 
t-�olAB�-v-ee,i.l pe\\\\i.es cloB lAp t-�e l\\t-ev-\\et- pi.pes.) 

-t--\i.�e kelley 

,�i.s boo\::. i.s .Pov- IMY .P()'\1Mi.ly, w�o� love ()\\\J. SlAppov-t- 1Me w�et-�ev- I wv-ot-e v-i.J.i.ctAlotAsly 
lo\\8 IM()'\t-� books ov- \\Ot-. Fov- IMY wi..Pe, Li.s()'\, w�ose Bv-i.p O\\ se,i.\\i.t-y i.s ..fiv-lM w�e\\ 1M'i\\e 
st-e,i.v-t-s t-o blAc\::.le, I cotAl.J-\\'t- poss'ibly love yolA 1Mov-e t-�()'\\\ I J.o. Fov- IMY sw()'\s�blAc\::.l'i\\8 
p'iv-()'\t-e so\\, Ni.ck, w�o I �ope w'ill co\\t-'i\\lAe t-o e\\J. t-�e IM"\)Ov-'it-y o.P �'is se\\t-e\\ces w'it-� 
''1Me �e,i.v-J.'ies" eve\\ w�e\\ �e's \\Ot- ,  ()'\\\y1Mov-e. A\\J. .Pov- IMY be()'\l.\t-i..PlAl t-w'i\\ B'iv-ls Ev-'i\\ "'-\\J. 
S()\Y()\, w�o jlAst- s()'\'i.J- t-�e'iv- ..fiv-st- wov-J.: ''s�oes:1 I �()'\ve ()\ s'i\\\::.'i\\8 .Peeli.\\8 I 'l l  be �ee,i.v-'i\\8 
t-�()'\t- wov-J. ()\ lot- 'i\\ t-�e \\Ot--t-oo-J.'ist-()'\\\t- .PlAt-lAv-e. 

Speci.()'\l t-�()'\\\\::.s t-o lv\i.\::.e S()\\\J.ev-s, w�o �elpe.J- t-lAv-\\ IMY 'i.J-e()'\ ()'\bolAt- "" IM()'\v-\::.e.J--lAp boo\::. 
o.P ce,i.lclAl lAs pv-oblelMS 'i\\t-o "" v-ee,i.li.t-y, ()\\\J. t-o IMY e.J-'it-ov-s 'SlAe Sh'ic\::.l ()'\\\J. e,i.\\J. G'i\\\\Y 
lv\lA\\v-oe, w�o wov-\::. �()\v-J. t-o keep 1Me .Pv-olM loo\::.'i\\B s'illy. 

,�'is boo\::. 'is 'i\\ 1Me1Mov-y o.P Joe, w�o pe,i.sse.J- .Pv-01M lAS 'i\\ 200,.  B()'\c\::. w�e\\ I wv-ot-e 
,�e Co1Mplet-e IJ.'iot-'s GtA'i.J-e t-o Ce,i.lclAl lAs, Joe t-o\J. 1Me Ci.\\ ()\ t-�i.c\::. Lo\\8 lsl ()'\\\J. .Pov-1Mev
hlAc\::.ev- ()\cce\\t-) t-�()'\t- 'it-� be ()'\ ''�01Me v-l,\\\:1 W'it-� s'i\\cev-'it-y lA\\1M01.t-c�e.J- by ()'\\\YO\\e 
I �e,i.ve evev- 1Met-, �'is si.1Mple wov-J.s o.P e\\CO lAY"'-BeiMe\\t- IMe()'\\\t- so IMlAC� t-o 1Me ()'\s ()\ 
shlABBl'i\\B \\ew e,i.l.\t-�ov-. 1�()'\\\\::.s, Joe. YolA wev-e v-'iB�t-. 
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Chapter I 
LI N EAR EQUATIONS AN D I N EQUALITI ES 

Pv-oblel,\-\S C0\\½--0\l\\l\\B )< +-o +-l-\e ..\,vs+- rowev 

� prop�r and rigorous understanding of linear . 
rms , linear segments and th . equations and their standard 

1 · e associated I · h mear equations , and linear ineq 1 · . . a gont ms , systems of multiple 
study of calculus . Though the �a �ties is an essential prerequisite for the 
the topics in this chapter meremfaJo�il�y �f calculus students are familiar wi"th 
· h , ami ianty i · ffi . m t e more advanced topics of the cha s msu oent . In order to succeed 
these foundational skills and c pters that follow, student mastery of oncepts must be ensured. 

Pol\\\-S "'""' \i.,es .,..,e \-\,.e 1MOs\- t>...slc BeoiMe\-Ylc co\\cer\-s, so yolAi1 

\\eeJ. h> "'"J.evs\-"'""' !,.ow \-\,.ey .,..,e ,e1.,..\-eJ. t>e-l'ove yol.\ C"'" IMOVe O\\ 

\-o \MOYe C01Mr1e>< -l'lA\\Cl-iO\\S "'""' \-\,.elv B'"'ri,.s . 'fol.\,, \\eeJ. \-<) \c.\\OW !,.ow \-<) 

c-re"'\-e eq"'"'\-io\\S o-l' \i.,es, B'"'ri,. \i.,es '" \-\,.e coo,J.l""'\-e r'"'"e, "'""' e>ie" 

-1,.,J. \-\,.e 1 e"B\-\.s "'""' 1MiJ.rol\\\-s o-l' \i.,e seB"'e"\-s. '(oJ11 .,..1so .,eeJ. \-o 

\,.\\OW wl,.0\\- h> J.o w\\-\,. e><rvesslo\\S CO\\l-0\l\\l\\B .!:, ?, ;:,, "'""' :,_ slB\\S . 0\\Ce 

yoJve Bo\- \-\,."'\- J.ow\\ r"'I-, yoJ11 ,evlew !,.ow \-o -1,.,J. so1 1Al-io\\S \-o sys\-elMS 

o-l' eqlA"'\-io\\S "'""' l\\e"l'-""\i\-ies (w\,.eve yoJve wov\c.l"B w\\-\,. 1Mo,e \-\,."'" o\\e 

eqlAO\.t-i.O\\ ov i.\\eqlAO\.li.\-y O\.T' 0\. t-i.lMe). 



Chapter One - Linear Equations and I nequal ities 

'Slope-
i\\tev-cept .Pov-1M 0.p ,,,. 

li\\e is y � IMX + b, wheve 
1M is the slope o.P the li\\e 
0\\\.::1. b is the y-i\\tev-cept. 

2 

The eql.\O\tio\\'s i\\ 
stO\\\.AO\vd. .PovlM i.P it 
hO\s: (I) No .PvO\ctio\\s, (2.) 
O\\ly x- O\\\d. y+ev1Ms O\\ 
the le.Pt sid.e, (3) )!.\st 
the CO\\StO\\\t O\\ the 
vij ht sid.e, O\\\d. (4) A 
positive x-coe.P..ficie\\t. 

Linear Geometry 
Cv-e01.+:i.\\B, Bv-"'pL-\i\\B, O\\\� 1Me01.Sl.\V'l\\B li\\es "'-\\� li\\e seBIMe\\i--S 

I .  I Solve the equation: 3x - (x - 7) = 4x - 5. 

1 .2 

1 . 3 

1 .4 

Distribute -1 through the parentheses and combine like terms. 
3x - x + 7 = 4x - 5 

2x + 7 = 4x - 5  

Subtract 4x and 7 from both sides of the equation to separate the variable and 
constant terms. 

2x + 7 4x 
-4x 7 - 4x 
- 2x 

Divide both sides by -2 to get the solution. 

- 2x - 12 
= 

- 2  - 2  
x = 6 

Calculate the slope, m, of the line 4x - 3y = 9. 

5 
7 

12 

olve the equation for y in order to rewrite it in slope-intercept form. 
-3y = -4x + 9  

4 
y = - x - 3 

3 
4 

The slope of the line is the coefficient of x: m = 3° 

A 
Prove that the slope of a line in standard form, Ax + By = C, is - -. B 
Write the equation in slope-intercept form by solving it for y. 

Ax + By = C 
By = -Ax + C  

A C 
y = - - x + 

B B 
A 

The coefficient of x is the slope of the line : m = - -. B 
Rewrite the linear equation 3x - 4 ( x - � y) = � x - ( 7 y + 3) in standard form. 

Distribute the constants and combine like terms.  

8 4 
3x - 4x + - y = - x - 7 y - 3 

3 5 
8 4 

-x + 3 y = 5 x - 7y - 3  
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Chapter One - Linear Equations and I nequal ities 

Multiply by 15, the least common denominator, to eliminate fractions. 
-l5x + 40y = l2x - 105y - 45 Separate the variable and constant terms. - 27x + l45y = -45 27x - 145y = 45 

1-\L\IFiply H" e 
e�+:ive eqL\t'\½-'io �  

\..,y - I so H,"'+
+-� e ,c-co e.P..fic'i e�+

___________________ -t 'i s  ros'ihve. Cl+- 's "' Write the equation of the line passing through the points (-3,-8) and (-6,2) in slope-intercept form. 
Calculate the slope of the line. Y2 - yl 2 - (- 8) 10 10 

m = --- = = - = - -x2 - x1 - 6 - (- 3) - 3  3 Substitute the slope into the slope-intercept formula (y = mx + b) for m, replace x and y using one of the coordinate pairs, and solve for b. 

y = mx + b 10 -8 = - - (- 3) + b  
3 

- 8 = 10 + b 
b = - 18 Substitute m and b into the slope-intercept formula. 
y = mx + b 10 
y = - - x - 18 

3 

veqL\'iveM e�+- o.P 
St"t'\�J..t'\vJ.. .Pov\."'\.) 

,�'i �k o.P +-� e  po'i �+
(-, ,-8') t'\S (,c1 ,y1) t'\�J.. 

c-, ,2.) "'s C,c2 ,YJ , so ,c, ::=- -,, 

Y ::=- -8' )< ::=- -,, t'\�J.. 
\ I 2 

Y2 ::=- 2.. 

1 .6 Calculate the x- and y-intercepts of 3x - 4y = -6 and use them to graph the line. 
To calculate the x-intercept, substitute O for y and solve for x. Similarly, substitute 0 for x to calculate the y-intercept. 3 (0) - 4y = -6 - 4y = -6 3 

y = -2 
3x - 4 (0) = - 6  3x = - 6  x = - 2  

Therefore, the graph o f  3 x  - 4y = - 6  intersects the x-axis at (-2,0) and the y-axis at ( O, ¾), as illustrated by Figure 1-1 . 

3 
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-3 

1 .7 

3 

Figure 1-1 
The graph of'3x - 4y = -6 with its x- and 
y-intercepts identified. 

Assume that line p contains the point (-3,1) and is parallel to x - 4y = I .  Write the equation of p in slope-intercept form. Calculate the slope of x - 4y = I using the method of Problem 1 .3 .  
A I I m = - - = - - = -
B -4 4 Plug this slope and the coordinates (x1 ,y1 ) = (-3,1) into the point-s ope formula. 

y - y1 = m (x - x1 ) 

y - l = ¾(x - (-3)) I 3 
y - l = - x + -

4 4 Solve for y to express the equation in slope-intercept form. 
I 7 

y = -x + -
4 4 

Note: Problems 1.8 - 1.10 refer to parallelogram ABCD in Figure 1-2. 

5 

4 
3 

2 

-1 
-1 

According to a basic Euclidean geometry theorem, the diagonals of a parallelogram bisect each other. Demonstrate this theorem for parallelogram 
ABCD. 

D =  (6,4) C= ( 1 1 ,4) 
Figure 1-2 
Parallelogram ABCD. A =  (2, 1 )  B=  (7, 1 )  

2 3 4 5 6 7 8 9 10 11  

Calculate the midpoin s of AC and BD; the diagonals bisect one another if and only if those midpoints are equal. 



Chapter One - Linear Equations and I nequal ities 

Midpoint of AC :  

(2 +  1 1  1 + 4) = (13  �) 2 ' 2 2 ' 2  

Midpoint of ED 

(7 + 6 1 + 4) = (13  �) 2 ' 2 2 ' 2  

Note: Problems 1.8 - I.JO refer to parallelogram ABCD in Figure 1-2. I .  9 Prove that ABCD is a rhombus by verifying that its sides are congruent. 
Apply the distance formula four times, once for each side. 

AB = ✓(7 - 2)2 + (1 - 1)2 

= ✓25 + 0  
= 5 

CD =  ✓(6 - 1 1)2 + (4 - 4)2 

= ✓25 + 0  
= 5 

BC = .j(l l - 7)2 + (4 - 1)2 

= ✓16 + 9  
= 5 

AD = ✓(6 - 2)2 + (4 - 1)2 

= ✓16 + 9  
= 5 

Note: Problems 1.8 - I.JO refer to parallelogram ABCD in Figure 1-2. 1 . 1 0  Prove that ABCD is a rhombus by verifying that its diagonals are perpendicular to one another. 
Calculate the slopes of the diagonals using the slope formula from Problem 1 .5 .  

4 - 1  Slope of AC: ™I = l l  - 2 Slope of ED: 

1 
™i = -3 The diagonals are negative reciprocals, so the line segments are perpendicular. 

Linear I nequal ities and I nterval Notation 
Goo�"bye eqL-.o,.l si8\\, lt\ello powe\\½-lt\eses OI.\\� \;,vo,.c\:.e½-s 

1 . 1 1 Write the expression x � -4 using interval notation. 

d.istO\�ce 
b etwee� th e 

poi �+-s (xr,YJ O\ �d. 
(xuyJ is 

PO\v-0\ll el 
li �es h"lve ec:iL\0\1 

slop es. Th e slop es 
o.P p ev-p e�d..icL\10\v

li �es O\v-e v-ecipv-ocO\ls 
o.P 0 �e O\ �oth ev- O\ �d. 
hO\ve opposite si8 �s. 

An interval is defined by the two values that bound an inequality statement, the lower followed by the upper bound. You must indicate whether or not each endpoint is included in the interval. (A bracket next to an endpoint signifies inclusion, and a parenthesis indicates exclusion.) �---------

Ah.vo,.ys L\S e 
po,.v-e�+-h eses �e;,<:+
to oo wl,,,e� wv-iti �B 
i �tev-vO\IS. YoL\ 
CO\�t 1'i �clL\ .Ae'1 
so1Mei--l,,,i � 8  tt,-,0\+- 'S 
�o+- o,. -1, �i +-e ,  v-eo,.I 

Any number greater than or equal to -4 makes this statement true ; -4 is the lower bound and must be included. The upper bound is infinity. Therefore, x � -4 is written [-4,oo ) .  

5 
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RULE of "11-\UMfu 
us e 0\ 'bvO\c�e'r i..P 

\-v- e  i.v.eqv.O\'i.\-y 
SylM.t>O' v_e,c\- \-O 

. .( ov \-v- e  v_v.lM.'b ev lS .-
"">-o'r\-\evwi.s e v.s e 0\ 

;:v ev.'r\-\esi.s. A'wO\yS 

v.s e fO\v ev.\-v- es es 
v_ e,c\- \-O oo O\\\J. -oo. 

I.P yov. 1Mv.l+-ifly o v  
J.iviJ. e bo+-1" siJ. es o.P 0\\\ 

i\\eqL\O\li+-y by 0\ \\e80\+-ive 
\\lAIMb ev, vevev-s e +-l'l e 
i\\eqL\t'\li+-y si 8\\· I\\ +-l'lis 
Ct'\S e, � b eco1Mes )::.. 

'SolA-\e +-exH,oo \c.s 
lAse b vt'\c\c.e+-s 
i\\s+-et'\J. o.P 
closeJ. J.o+-s t'\\\J. 

ft'\ve\\+-1'°\ eses 
i\\s+-et'\J. o.P op e\\ 
J.o+-s O\\ +-l'l e 

\\lAIA-\\;, ev li\\ e. 

6 

1 . 1 2  Write the expression x < IO using interval notation. The upper bound is 10 and should be excluded (since 10 is not less than 10) . Any number less than 10 makes this statement true ; there are infinitely many such values in the negative direction, so the lower bound is -oo . Therefore, the inequality statement is written (-oo,10) . 
1 . 1 3  Write the expression 6 � x > -l using interval notation. 

The lower bound must always precede the upper bound, regardless of how the expression is written: (-1 ,6] . 
1 . 1 4  Write the solution to the inequality using interval notation: 4x - 2 > x + 13.  

Separate variables and constants , then divide by the coefficient of x. 4x - x > l3 + 2  3x > l5 
x > 5 Write the solution in interval notation: ( 5,oo ) .  1 . 1 5  Write the solution to the inequality using interval notation: 3 (2x - l )  - 5 :5 IOx + 19. Distribute the constant, combine like terms, and isolate x on the left side of the equation. 6x - 3 - 5 :5 10x + l9 6x - 8 :5 IOx + 19 -4x :5 27 Dividing by a negative constant fundamentally changes the inequality: x � - 27 . 4 Write the solution in interval notation: [-� '00 ). 

1 . 1 6  Graph the inequality: -2 :5 x < 3. 
Rewrite the inequality as an interval : [-2,3) . To graph the interval on a number line, place a dot at each boundary ( closed dots for included boundaries and open dots for excluded boundaries) . All values between those boundaries belong to the interval, so darken the number line between the dots , as illustrated by Figure 1-3. 

◄oi:.+l ---+l ---+l --+l --+l --4•--+-I -.. 1 -.. 1 --lt----:Ol--+1---+l ---+l ---+I .,.., 
� � � � � � � 0 1 2 3 4 5 6 7 

Figure 1-3 The graph of -2 :5 x < 3 includes the interval boundary x = -2, 
but excludes x = 3. 
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1 . 1 7  Graph the inequality: x > -1 . There is no upper bound for the interval (-1 ,oo ) ,  but all values greater than -1 satisfy the inequality. Therefore, shade all numbers greater than -1 on the number line, as illustrated in Figure 1-4. 
-2 -1 0 1 2 

Figure 1-4 The graph ofx > -1 excludes the lower boundary, x = -1. 
1 . 1 8  Solve and graph the inequality: -7 :5 1 - 2x < 11 .  Isolate -2x in the middle of  the compound inequality by subtracting 1 from each expression. Next, divide each expression by -2 to isolate x, reversing the inequality signs as you do. - 7  - 1  :5 - 2x < 1 1 - 1  - 8  - 2x 10 - 2:: -- > -

-2 -2  -2  4 2:: x > -5 The graph of  the solution, (-5,4] , i s  illustrated in  Figure 1-5 . 
◄11!-+l--1-I --<0 I I -7 -6 -5 -4 -3 I -2 I -1 I 0 I 1 I 2 I 3 • 4 I 5 I 6 Figure 1-5 The graph of-7 :5 1 - 2x < 11 includes x = 4 and excludes x = -5. 

1 1 . 1 9  Graph the inequality: Y < -3 x + 2. 
This inequality contains two variables, x and y, so it must be graphed on the coordinate plane. Note that the inequality is solved for y and (apart from the inequality sign) looks like a linear equation in slope-intercept form. The linear inequality has y-intercept (0,2) and slope -¼ . t-�e \\eje>1.t-tve Stj\\ c:>\\ t-op: -� • 'St-o,.v-rt\\j o,.tt-�e y-t\\t-ev-cep+; jc:> .Aow\\ I l,\\\t+; v-t8�t- '3 l,\\\tt-s, OI.\\.A 1Me>1.v-k 

.... .....  r--, .... ,� - -
Figure 1-6 t-�e pc:>t\\r. Co\\\\ect- t-�e .Aot-s t-o 8vo,.p� t-�e H\\e. The graph of Y < - 3 x + 2 is dotted rather than ' , , , solid, because it is excluded from the solution ,· - - ' ' - --. , _ (like an open dot indicates exclusion from an 

-�-..,;t--� -�--,--..,;i---,;t--;i----i,----:t,,--;i,,--t---t,,.......a-- inequality graph on a number line). 

7 
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By sv-t'\J..i.\\B 
• I 

t-v. e  v eBtO\\ , yov. v e  
St'\yi.\\B , ''All o.P t-v. es e 

roi.\\t-S , \\O t-jv.s t- t-v. e o\\e 
I t-es t-eJ.. , 1Mt'\k e  t-l-\ e 
i.\\eqv.t'\li.t-y t-v v.e:' 

1-P yov. J..o�t- .P eel 
li.ke t-est-i.\\B roi.\\t-S 
t-o -fiBv.v e  ov.+- w\i\ev e 
t-o s\i\"'-J..e, solve t-\-\ e  
eq v.01.t-i.o\\ .Po v  y 01.\\J.. 

v.se t-\-\i.s v v.l e o.P 
t-\-\v.lM°b: Sv-t'\J..e 01.°bove 
t-v-e li.\\e .Po v ''8 v e01.t-ev 
t-v-t'\\{' OI.\\J.. 'b elow  t-v-e  

''l t-v- II 
li.\\e  .Po v ess t'\\\. 

-

'-' -

The dotted graph separates the coordinate plane into two regions ( one above and one below the line) . To determine which region represents the solution, choose a point (x,y) from one of the regions and substitute the values into the inequality. If the resulting statement is true, shade the region that contains that oint. If not, shade the other region. 
Solve the equation: 2x - y :5 4. 
Solve the inequality for y. 

-y ::5 -2x + 4 y ;?: 2x - 4  This graph is solid (not dotted) becau se the line itself belongs to the solution. ustrated in Figure 1-7. Shade the region above the line, as ill 
,, I 

I 
/ 

I 
1 / 

I 
-i - - -'1 / 3 5 6 

-

-
: / 
- I 

!/ -
--{ 

Figure 1-7 All of' the ordered pairs above the line are valid solutions to the inequality 2x - y ::5 4. 

Absol ute Value Eq uations and I neq ual ities 'Solve two tL-\i\\BS .Pov- tL-\e pv-ice o.P o\\e 1 .2 1  Solve the equation: l 3x - 71 = 8. 
In order for this statement to be valid, the absolute value expression must either equal 8 (since I S i = 8) or -8 (since l-81 = 8) . 

1 
3x - 7 = 8 3x = l5 

x = 5 

The solution is x = -3 or x = 5.  
1 .22 Solve the equation: 1 - 2 Ix + 61 = -4. 

3x - 7 = -8 3x = - l 1 x = - -



Chapter One - Linear Equations and I nequal ities 

Isolate the absolute value expression on the left side of the equation. - 2 1x + 6l = -5 5 lx + 61 = 2 Apply the technique described in Problem 1 .21 . 
5 5 x + 6 = - x + 6 = - -
2 2 5 12  5 12 

x = - - - x = - - - -
2 2 2 2 

7 17  
x = - - x = - -

2 

1 .23 Solve the equation: 9 - 3 Ix + 21 = 15. 
2 

Isolate the absolute value expression on the left side of the equation. - 3 lx + 21 = 6  lx + 2l = - 2  This equation has no solution. �---------------1 .24 Solve the inequality: Ix - 51 < 1. 
The solution to the absolute value inequality Ix + al < b, where a and b are real numbers (and b > 0 ) ,  is equivalent to the solution of the compound inequality -b < x +  a <  b. 

- l < x - 5 <  Solve the inequality using the method described in Problem 1 .18 .  - 1 + 5 < x < l + 5 4 < x < 6  The solution, in interval notation, is (4,6) . 
1 .25 Graph the solution to the inequality: 2 lx - 71 - 5 ::5 - 1. 

Isolate the absolute value expression on the left side of the inequality. 2 1x - 71 ::5 - 1 + 5 2 1x - 71 4 �-� < -
2 - 2 lx - 71 ::5 2  Create a compound inequality (as explained in Problem 1 .24) and solve. - 2  :5 x - 7  ::5 2 - 2 + 7  :5 x  ::5 2 + 7  5 :5 X ::5 9  The solution, [5,9] , is graphed in Figure 1-8. 

Re1Mc:>Ve t-1-\ e 
t'\t>Sc:>h>.t-e Vt'\11>.e 
t>t'\VS "'�.A cvet'\t-e 
t-wc, eql>.t'\rio �s-o �e  

wit-I-\ "' ros it-ive v i81-"1t
s i.A e "'�.A o �e  wit-I-\ "' 
�e8"'t-ive vi81-\t- s i.::l e. 

Ab sol1>.t-e v"'l1>.es 
"'l w"'ys pv-0.::l.1>.ce 

t'\ rosit-ive �l>.IMb ev, so 
t-\.-\ eve's �o w"'y Sc:>1Met-l-\i� 8 
i� t'\t>Sc:>l1>.t-e Vt'\l1>.es CO\� 

eq1>."'I -2.  

l)vop t-l-\ e 
i� eq1>."'l it-y \,"'vs, 
st-ick "' ""'"'t-cl-\i�B 

i�eq1>.t'\l it-y si8 � o �  t-1-\ e 
l e-Pt-, "'� .A t-1-\ e� p1>.t- t-1-\ e 

oppo sit-e o.P t-1-\ e vi81-\t-
si.Ae o �  t-1-\ e l e.P t-

9 
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-ro so\ve "'-"1 ov ::?;. 01.°bsol1At-e V"'-l 1Ae i.\\eqlA"'-\i.t-y, set- IA\> t-wo i.\\eqlA"'-\i.t-i.es wi.t-\1\olAt- 01.°bsol1At-e V01.l1Ae t,O\VS. O\\e wi.\\ 1M01.rCV-. t-v-e ovi.Bi.\\OI.\ i.\\eq1A01.li.t-y. -r\,\e ot-\i\ev \oo\:.s t-v-.e S"'-IMe o\\ t-v-.e \e�t- si.J.e, °blAt- t-\1\e \\lAIM°bev O\\ t-\i\e vi.B\i\t- i.s \\eB"'-t-i.ve_ OI.\\� t-\1\e i.\\eqlA"'-\i.t-y StB\\ tS vevevseJ.. 

3 4 
Figure 1-8 

5 6 7 8 9 10 1 1  The solution graph of2 1x  - 71 - 5 :5 - 1 is a closed interval because both endpoints ( x = 5 and x = 9) are included. 
1 .26 Solve the inequality: l2x + SI e::: 3. 

1 .27 

Rewrite an inequality of form lax + bl e::: c as two new inequalities, ax + b e=:: c and ax + b :5 -c, and solve. The union of the solutions is equivalent to the solution of the original inequality. 
2x + 5 e::: 3 2x + 5 :5 - 3 2x e::: -2 or 2x :5 -8 x e::: - l x :5 -4 The solution, in  interval notation, i s  ( oo,-4] or  [-1 ,oo ) .  The word "or" does not imply that either interval by itself is an acceptable answer, but rather that both intervals together (and therefore all values from both intervals) constitute the solution. Solve the inequality and graph the solution:  2 - 3 Ix + 11 < - 5. 

Isolate the absolute value expression on the left side of the inequality. - 3 lx + ll < - 7 7 lx + ll > -3 Dividing by -3 reverses the inequality sign; apply the solution method outlined in Problem 1 .26. 7 x + l > -3 4 x > -3 or 7 x + l < - -3 10 x < - -3 The solution is (-00, - 1�) or ( � , 00 ). Graph both intervals on the same number line to generate the graph of 2 - 3 Ix + 11 < -5, as illustrated by Figure 1-9. 

Figure 1-9 

10 4 

-4 -3 -2 -1 0 1 2 3 4 All real numbers satisfy the inequality 2 - 3 Ix + 11 < - 5, except those on the interval l- 1; , 1 J 
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Systems of Equations and I nequal ities 
Fi\\� "' co""'""'o\\ sol lA+-io\\ sl-\oi.v-e� 'by ""'1Al+-iple eqlA01.+-io\\s ov- i\\eqlA"'li+-ies 1 .28 Solve the following system of equations using the substitution method. 

{-8x + 2y = -5 
2x - y = l Solve the second equation for y and substitute its value into the first equation. 

-8x + 2 (2x - 1) = - 5 
-8x + 4x - 2 = -5 

- 4x = - 3 

x = -

'5o1Vt\\B 2.>< - Y == \ .Pov Y Btves yov. Y == 2.>< - 1 • -r�ts O\llows yov. t-o verl"'-ce y l\\ t-li\e ot-li\ev eqv.01.rtO\\ wtt-li\ 2.>< - \ . 
Substitute this x-value into the equation solved for y at the start of the problem. 

y = 2x -1 = 2 (¾) - 1  = � - 1  =
�

%
=-------The coordinate pair (x,y) is the solution: (¾ ,H 1 .29 Solve the following system of equations using the elimination method. 

{ 2x - 5y = - l l  
3x + l3y = 4 To eliminate x from the system, multiply the first equation by -3, multiply the second equation by 2 ,  and then add the equations together. 

-6x + l5y 
6x + 26y 

4ly 
y 

= 

= 

33 
8 

41 
1 Substitute y = I into either of the original equations and solve for x. 

2x - 5y = - 1 1  
2x - 5(1) = - l l 

2x = - 1 1 + 5  
6 x = -- = -3  
2 The point (-3,1) is the solution to the system of equations. 

{ 
x - 6y = 24 1 . 30  Solve the system of  equations : 1 

3 x - 2y = 8 

A\\ot-l-\ev Of>rlO\\ tS t-o eHMt\\01.t-e y by Mv.lt-trli"'B t-l-\e +-or eqv.ott-to\\ by I> ot\\.A t-l-\e bot-t-oM eqv.01.t-to\\ by s-. 

1 1  
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Eve\\ +-\.\01AB\.\ 
+-\.\e eqlAt'\l"'lO\\S i\\ 
\'J-epe\\J.e\\+-11 sys+-el,l,\s 
look J.i.P.P eve\\+- , +-\.\ eiv 
Bvt'\p\.\s t'\Ye e><:t'\c+-ly 
+-\.\e $0\1,1,\e. No 1,1,\t'\+-+-ev 
w\.\t'\+- >< yolA pllAB i\\+-o 
+-\.\e eqlAt'\t"'lO\\S , yolA'll 
Be+- +-\.\e $0\1,1,\e y, so 
+-\.\ ey i\\+-evs ec+- t'\+

l\\-h\\i+-ely 1,1,\t'\\\Y 
poi\\+-S t'\\\J. V\t'\Ve 
t\\-h\\i+-ely 1,1,\t'\\\Y 
cOl,l,\1,1,\0\\ sol1AH0\\S. 

This is +-h e slope shov+-cl.\+.Povl,\\l.\lt'\ .PYO!,\\ rvoblel,\\ 1 3. 

1 2  

Use the substitution technique, as the first equation is easily solved for x: x = 6y + 24. 1 - (6y + 24) - 2y = 8  3 2y + 8 - 2y = 8 8 = 8  The end result is a true statement (8 = 8 ) ,  but no variables remain. This indicates that the equations of the system are multiples of each other ( dividing the first equation by 2 results in the second equation) ; the system is therefore dependent and possesses infinitely many solutions. 1 . 3 1  Determine the real number value of k in the system of equations below that makes the system indeterminate. 

1 . 32 

{ x - 6y = - 1 3  
4x - ky = l 

An indeterminate system of equations has no solution. Consider this geometric explanation:  If the solution to a system of equations is the point (s) at which the graphs of its equations intersect, then an indeterminate system has no solution because the graphs of the linear equations do not intersect. The slope of the first line is _ _!_ = !, and the slope of the second line is _ _±_ = !_ Set the slopes equal to 
-6 6 -k k create parallel lines, and solve for k. 4 1 = k 6 Cross multiply to solve the proportion. 4 · 6 = k · l 24 = k  Graph the solution to the below system of inequalities .  

{y < 3  x 2::: -4 
y > ¾ x - l  

Graph the inequalities on the same coordinate plane, as illustrated by Figure 1-10. The region of the plane upon which the shaded solutions of all three inequality graphs overlap is the solution to the system. 
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� - - - ----,-------

=§ =2 =11 

Figure 1-10 The solution to a system of inequalities is a two-dimensional shaded region. Note that y = 3 is a horizontal line 3 units above the x-axis and x = -4 is a vertical line.four units left of the y-axis. 

1 . 33  Solve the following system of  equations. 
{

3x + 2y - z  = O 5x - y - 8z = 9 x + 4y - 3z = -22 Solve the first equation for z: z = 3x + 2y. Use this expression to replace z in the other two equations of the system. 5x - y - 8z = 9 5x - y - 8 (3x + 2y) = 9 5x - y - 24x - l6y = 9 - l9x - l7y = 9 

x + 4y - 3z = -22 x + 4y - 3 (3x + 2y) = -22 x + 4y - 9x - 6y = -22 
-8x - 2y = -22 - 4x - y = - l l  You're left with a system of two equations in two variables : 

{
- l 9x - 17  y = 9 -4x - y = - l l  Solve this system using substitution. (Solve the second equation for y to get y = -4x + 11 and substitute that expression into the other equation. ) 

- l9x - 17 (-4x + 1 1) = 9 
- 19x + 68x - 187 = 9 49x = 196 x = 4 Plug x = 4 into the equation you previously solved for y. y = -4x + l l  

y = -4(4) + 1 1  y = -5 Plug x = 4 and y = -5 into the equation previously solved for z. z = 3x + 2y 
z = 3(4) + 2 (-5) 
z = 2 The solution to the system of equations is (x,y,z) = (4,-5,2) .  

1 3  





Chapter 2 
POLYNOM IALS Bec"'-L\Se yotA CC\�+- li\"'-ve e><po\\e\\i--S o.P I .Povevev 

The usefulness of the exponential prop�rties ahndfialgol rithms It:�!�: i::yn are d t expire at t e na exam. , elementary algebra course 1 oes �o 1 of the building blocks of calculus . essential to the study of po ynomia s , one . h Polynomials , though simple in structure , can possess �mte co��lex gr:p s , t"l that even the most fundamental d1fferent1at1on an and are _so versa I _e ower rules for differentiation and integration) integration �echmquesf ( th; �omials This chapter affords you the opportunity are defined m terms o po Y · to review polynomials and properties of the exponents they contam. 

E><po\\e\\ts will plo,.y o,. key v-ole lo,.tev- i\\ co,.lc1>.l1>.s. I.P yov!v-e s\:.eptico,.l, co\\si.:;lev- tl-\is: Tl-\e two lA-tost ilA-tpov-to,.\\t co,.lc1>.l1>.s topics (.:;lev-ivo,.tives Ol.\\d\ i\\teBv-o,.ls) o,.v-e o,.ct1>.o,.lly tie.:;l to e>epo\\e\\ts. Tl-\e .:;lev-ivo,.tive o.P o,. poly\\olA-\io,.l is o,.lwo,.ys O\\e .:;leBv-ee (e><po\\e\\t) lowev- tl-\o,.\\ tl-\e poly\\olA-tio,.l yo1>. sto,.v-te.:;l witl-\. It wov-\:.s tl-\e otl-\ev- wo,.y o,.s well-tl-\e e><po\\e\\ts o.P OI.\\ i\\teBv-o,.l o,.v-e o,.lwo,.ys O\\e Bv-eo,.tev- tl-\o,.\\ tl-\e ov-iBi\\o,.l poly\\olA-tio,.l .  'Si\\ce e>epo\\e\\ts Ol.\\d\ poly\\olA-tio,.ls plo,.y s1>.cl-\ OI.\\ ilA-tpov-to,.\\t v-ole i\\ tl-\e 1>.pcolA-ti\\8 cl-\o,.ptev-s, lA-to,.\:.e S1>.v-e yo1>. \:.\\ow l-\ow to lA-\01.\\ip1>.lo,.te tl-\elA-\ by wov-\:.i\\8 tl-\v-01>.Bl-\ o,.ll tl-\e pv-oblelA-\s l-\ev-e. 
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pv-opev+y is jlAs+- ,,,. .p,,,_\\cy wO\y +-o SO\y H'\O\t' yoL\ CO\\\ ,,,_J_J_ ov\."\L\l½-iply H'\i\\8S i\\ OI.\\Y ov-J.ev-, O\\\J. i+- wo\\"'+d'\01.\\8e +-l"le v-esL\l+-, so 4 +- S- :=- S- +- 4 :=- "f 0\\\ C2)("f) :=- C"f)C2) :=- I &'. 

c:>\."\e+-l'\i\\8 +-o ,,,. \\eB01.Hve powevsl"lov.\J. \..,e \."\oveJ. +-o +-l"le opposi+-e p01.v-+- o.P +-l"le .Pv-0\Ct'lO\\. 0\\Ce i+-'s \."\c:>veJ., cl"I01.\\Be +-l"le powev- )::),,,.c\:. +-0 posiHve. 
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Exponential and Radical Expressions 
Powev-s OI.\\� SG\l>."'-v-e v-oo+:s 

2. 1 

2 .2 

2 .3  

2 .4  

Simplify the expression: x2y3x4y6x9y8 . Apply the commutative property of multiplication to rewrite the expression by grouping like variables together. x2 x1 x"y3y0y8 Recall the algebraic axiom concerning the product of exponential expressions with equivalent bases : x'x' = x, + ". 
,x2 + 4 + 9  y3 + 6 + 8  = Xlriy17 

. . . w10x6y3z8 S1mphfy the expression: 2 4 7 10 •  w x y z If the product of two exponential expressions with the same base requires you to add the exponents (as demonstrated in Problem 2. 1 ) ,  then the quotient is equal to the difference of the exponents w10 - 2 x5 - 1 y3 - 1 zs - w = ufx2y-1z-2 Rewrite the expression to eliminate the negative exponents. ws x2 
4 2 y z 

Simplify the expression: (;; )-2

• 

The entire rational expression is raised to a negative exponent, so take the reciprocal of the fraction. 
Square each factor. If a factor is already raised to a power, such as y3 , multiply that power by 2 .  

( - 2  6 )3 Simplify the expression: x y (3xy-5 f2 
72 y3(2) 49 y6 42 x2 16x2 

Raise the numerator to the third power and the denominator to the -2 power. 
X(-2)(3) y6(3) X 

-6 yl8 3-2 x -2 y<-5)(-2) 3-2 x-2 y10 Eliminate the negative exponents. 32 x2 y1s gx2y1s x6 y10 x6 y10 Simplify using the method outlined in Problem 2.2 . 9 8 9 2-6 18-10 9 -4 8 y 
X y = X y = 

X
4 
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2 .5  Prove that x0 = l .  

2 .6  

The multiplicative inverse property of  algebra states that any nonzero real number times its reciprocal equals 1. Therefore, if X' is a real number and is multiplied by its reciprocal, the result must be 1 .  
Xa 

• _!__ = 1 
xa Rewrite the fraction using a negative exponent. (x") (x-") = 1 The expressions have the same base, so calculate the product by adding the exponents. x0 = I Simplify the expression: .J72x5 y8 

Because the expression is a square root (with an unwritten, implied index of 2) ,  rewrite the factors in terms of perfect squares. �------------J 

✓ 2 2 4 4 .J 2 
( 

2 )2 ( 4 )2 36 • 2 • X • X • X • J • J = 6 • 2 • X • X • J Each perfect square can be removed from the radical : 6x2 y4 .J2;. 
2.7 Explain why the expression J;1"; should be simplified as lx l ,J;;, rather than x.Jy. 

Consider the effect of these values in the original expression: x = -2 , y = 5 .  
PY = .Jc- 2)2 cs) = � Simplify the result. � = #5 = � = 2✓5 Now test the expressions lx l ✓Y and x.Jy by substituting x = -2 and y = 5. 

x.Jy = -2✓5 lx l ✓Y = 1-2 1  ✓5 = 2✓5 Notice that only lxl ✓Y gives the correct result. 
2 .8 Simplify the expression: �-8x7 y5 z2 • 

The index of the radical is 3, so rewrite the factors of the radicand as perfect cubes and remove those perfect cubes from beneath the radical sign. 
There's no need to include absolute value bars (as discussed in Problem 2.7) because the index of the expression is odd. 

"'-\\ llMpovrO\\\r v1Ale: 1-P yoil.ve Bor W "'-\\J. \\ tS eve\\, st1Mplt.Py tr .,,.s l)CI , \\Or jlASr )<. f C,v l\\SrO\\\Ce, 
� � lw l O\\\J. 

,,;c)<+s->2 �l >< + s- 1  

VO\J.lCO\\\J. lS WVIO\r yolA c.,,.11 wl'\.,,.r's 

1 7  
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'5o yov. CO\\\°'+- SllM('lt.Py ># -\-- g,.fy I ',;,v.+- yc,l,\ 
. 1· r, 2.../y - <;-.jy 

CO\\\ SllM(' l"t''y +-o Be+- -,-fi 

1 8  

2.9 Simplify the expression: ✓1 12xy - ✓28xy .  
Although 112xy - 28xy = 84xy, the answer i s  not ✓84xy; such an answer violates numerous arithmetic rules. Terms containing radicals may be combined only via addition or subtraction if the corresponding radicands mate exactly. Notice that simplifying the in e expression pro uces such radicands. 

✓1 12xy - ✓28xy = ✓16 · 7 · xy - ✓4 · 7 · xy 
= ,J42 

• 7 · xy - ,J22 
• 7 · xy = 4� - 2� = 2� 

2. I O  Rewrite 250213 as a radical expression and simplify. A quantity raised to a rational exponent can be rewritten as a radical expression: 
X

a / b = (¼t 2502 1 3 = (�)2 = (t/125 - 2 )2 = (Vs3 - 2 )2 = (s�)2 = 2sef4 
Operations on Polynomial Expressions 

\-\ow +-o +, -, x, "'-\\c::A .+- poly\\01Mi."'-ls 

2 . 1 1 Simplify the expression : 3 (x2 - 5xy + 6y2 ) - 5 (x2 + 4xy - 1 ) .  Distribute 3 through the first set of parentheses and -5 through the second set. 3x2 
- 15xy + 18y2 - 5x2 - 20xy + 5 Combine like terms to simplify. (3x2 - 5x2) + 18y2 + (-15xy - 20xy) + 5 = -2x2 - 35xy + 18y2 + 5 Convention dictates that variables should be written in decreasing order of exponential power. If two terms have the same power (in the above expression, 

2 , and xy are raised to the second power) , write the variables in alphabetical order. 2 . 1 2  Simplify the following expression. -2x2 (y - 4) + x(x + 6) - 4 (3x - y) + 7y2 (x + 1) + 6y (y - 9) - 3 (y + 5x) 
Distribute the constants . -2x2y + 8x2 + x2 + 6x - 12x + 4y + 7xy2 + 7y2 + 6y2 - 54y - 3y - 15x Combine like terms. -2x2

y + 7xy2 + 9x2 + 13y2 - 21x - 53y 2 . 1 3  Find the product and simplify: (y - 1) ( 2y + 3 ) .  Use the FOIL method to multiply pairs of  binomials. "FOIL" i s  a technique requiring you to multiply pairs of terms and add all of the results ; its name is an 
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acronym describing those pairs : first (the first terms in each binomial, in this example, y and 2y) , outside ( the terms at the outer edges of the product, y and 3 ) ,  inside (the terms in  the middle of  the product, -1 and 2y) , and last (the last term in each binomial, -1 and 3) . y(2y) + y(3) + (- 1) (2y) + (- 1) (3) 2y2 + 3y - 2y - 3  

= 2y2 + y - 3  
2 . 1 4  Find the product and simplify: (a - 3b) 2 • 

2. 1 5  

2 . 1 6  

Rewrite the squared binomial as a product and multiply using the FOIL method. 
(a - 3b) (a - 3b) 

= a · a + a(-3b) + (-3b) (a) + (-3b) (-3b) 
= a2 

- 3ab - 3ab + 9b2 

= a2 
- 6ab + 9b2 

Find the product and simplify: (2x - y) (x +  5y - l ) .  The FOIL method i s  useful only when multiplying exactly two binomials. I n  order to multiply two polynomials containing any number of terms, multiply each term in the left polynomial by each term in the right polynomial, one at a time, and I\\ o+-�ev- wov-J..s, add the results. 2x(x) + 2x(5y) + 2x(- l) + (-y) (x) + (-y) (5y) + (-y) (- 1) 
= 2x2 + IOxy - 2x - xy - 5 y2 + y 
= 2x2 + 9xy - 5y2 - 2x + y 

1 h . . 1 . 1 1  d. . . 2x3 
- 5x2 + 9x - 8 Eva uate t e quotient using po ynomia ong ivis10n: x + 3 

sh:w+- wt+-� 2,c O\\\J.. 1Mv.l+-tply t+- 'by evev-y +-ev-lM t\\ +-�e v-t8�+- poly\\OIMtO\I: 2,c(,c) == 2'!(!, 2,c(<:;y) == I Q,cy, O\\\J.. 2,c(- 1) == -2,c. Now v-epe01.+- +-�e pv-ocess, +-�ts ½-tlMe wt+-� -y. 
Prepare the polynomials for long division: x + 3 is the divisor and 2x3 - 5x" + 9x - 8 the numerator is the dividend. -:===-=--=--=--=--=--=--=--=--=--=---__:_�:::,,,.. x + 3) 2x3 

- 5x2 + 9x - 8 What value, when multiplied by x ( the first term of the divisor) results in 2x', the first term of the dividend? The only such value is 2x":  (x) (2x2) = 2x3 . Write that value above its like term in the dividend. 2x2 x + 3) 2x3 
- 5x2 + 9x - 8 Multiply each term in the divisor by 2x", and write the opposite of each result beneath its like term in the dividend. 2x2 x + 3) 2x3 

- 5x2 + 9x - 8 -2x3 
- 6x2 

-r�e J..tVtJ..e\\J.. lS l\\StJ..e +-�e J..tVtStO\\ sy1M°bol, O\\\J.. +-�e J..tVtSOv- tS ov.+-stJ..e. -

1 9  



Chapter Two - Polynomials 

A+- H'\iS roi\\t-, 2.,,_" J.iSO\f'f'eows. 1l"le e\\t-iv-e f'l.\Y-f'OSe o.P t-l'\e s+-ers leO\J.i\\B l.\f' t-o t-l'\is IMOIMe\\t- WO\S t-o -fi\\J. 0\ wO\y t-o O\J.J. 2-,c" t-o it-s orrosit-e so t-l"IO\t- it- Boes 

Yol-\ CO\\\ ched:. +-he O\\\Swev- by IA-\1-\lt-iplyi"'B +-he ql-\ot-ie\\t-0\\\J. +-he J.ivisov- O\\\J. +-he"' O\J.J.i"'B +-he v-elA-\0\i\\J.ev-: (2_.,,_z - I l -,c + 42.)(x + >) - 1"34. Yol-\ shol-\lJ. 8et+-he J.iviJ.e\\A 

Combine like terms. Then copy the third term of the divisor next to the results . 2x2 x + 3) 2x3 
- 5x2 + 9x - 8 -2x3 
- 6x2 - l lx2 + 9x Repeat the process, this time identifying the value that (when multiplied by x) will result in the first term of the new expression: -llx2 • Place that value, -llx, above the dividend, multiply it by the terms of the divisor, record the opposites of those results, combine like terms, and copy the final term of the divisor (-8) . 2x2 

- l lx x + 3) 2x3 
- 5x2 + 9x - 8 - 2x3 
- 6x2 -l lx2 + 9x l lx2 + 33x 42x - 8  The process repeats once more, this time with the value 42 above the divisor, since 

X • 42 = 42x. 2x2 
- l lx + 42 x + 3) 2x3- 5x2 + 9x - 8  -2x3

- 6x2 -l lx2 + 9x l lx2 + 33x 42x 8 -42x - 126 - 134 The remainder is -134, and should be added to the quotient, 2x2 - llx  + 42, as the 134 numerator of a fraction whose denominator is the divisor: 2x2 
- l lx + 42 - --. x + 3 

\\l.\lMev-0\rOv- 2. 1 7  Evaluate the quotient using polynomial long division: (x4 + 6x - 2 )  -c- ( x2  + 3) . V\O\S \\0 -,c t-ev-lM-it- s\:.ips v-iBl'\t-.Pv-olM .,,_z t-o '3. Tue J.e\\o1Mi\\01.t-ov- s\:.irs t-wo t-ev-lMS, 'l:,ec01.l.\Se it- V\OI.S \\0 -,c" ov-

20 

-,,:.2 . Wv-it-e t-l'\ose \'1Missi\\B1 t-ev-lMS OI.S 0-,c, 0-,c\ O\\\J. 0-,cz . 

Use the method described in Problem 2 .16, but when setting up the division problem, ensure that every power of x is included from the highest power to a constant. Use a coefficient of O for missing terms. � x2 + Ox - 3  x2 + Ox + 3) x4 + Ox3 + Ox2 + 6x - 2  

2 6x + 7 The solution is x - 3 + -2--. 
X + 3 

-x4 - Ox3 - 3x2 Ox3 - 3x2 + 6x Ox3 + Ox2 + Ox - 3x2 + 6x - 2  3x2 + Ox + 9 6x + 7 
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2 . 1 8  Calculate (3x2 + lOx - 8 )  + (x + 4) using synthetic division. List the coefficients of the dividend, and place the opposite of the divisor's constant in a box to the left. Leave some space below that and draw a horizontal line. 

1-41 3 10 -8 
Copy the first constant (3 )  below the horizontal line, multiply i t  by the boxed constant (-4) , and record the result (-12)  in the next column, below the number 10. Add the numbers in that column (10 - 12 = -2) and record the result beneath the line. 

1-4 1 3 10 -8 - 12 
3 -2 Repeat the process; multiply the new constant (-2) by the boxed constant (-4) . Record the result (8)  in the next column and, once again, add the numbers in that column. 

1-4 1 3 10 -8 - 12 8 3 - 2 0 The numbers below the horizontal line are the coefficients of the quotient. Note that the degree of the quotient is always one less than the degree of the dividend (so this quotient is linear) , and the rightmost number below the horizontal line 

<;i.\\Ce (>< + 4) J..i.vi.J..eJ.. eVe\\ly i.\\t-o '3-,c2 + I 0>< - 8' (t-1-\e velMt'\L\\J..ev Wt'\S 0) ,  (>< + 4) i.s t'\ .Pt'\ct-ov o.P 
>><2 + 1 0>< - 8'. 

(in this case O is the remainder. T.:h�e:,..:s�o�lu!.!.tui.!.!oun..!i.2.s -'"3�x..:-:..:2:::-:__ __________ _ 
2 . 1 9  Calculate ( 4x3 - 1 1  x2 - l )  + ( x - 3 )  using synthetic division. 

List the coefficients and the opposite of the divisor's constant as demonstrated in Problem 2.18, but notice that the dividend contains no x-term. Just like long division, synthetic division requires you to insert a O coefficient for missing terms. � 4 - 1 1  0 - 1  
8 The quotient is 4x2 + x + 3 + --. x - 3  

Factoring Polynomials 

12 3 9 4 1 3 8 

Revev-se t-l"e 1M1>.lt-ip\ico,.t-io� pv-ocess 

2.20 Factor the expression: 18x2y5 - 9xy3. Both terms can be divided evenly by 9, x, and y3 (i.e. there will be no remainder) . Therefore, the greatest common factor is 9xy3. Factor the expression by writing 
2 1  



Chapter Two - Polynomials 

wov.As, -1,�,A t-1.vo 
�L\IMbevs t-l'\O\r e9L\O\I 

t-he x-coe.P-ficie�t- whe� t-hey've 0\-A.Ae.A, O\�.A 
e9L\O\I t-he co�st-O\�t-
1.vhe� t-hey've 
IML\lt-iplie.A. 

the greatest common factor followed by the quotients of each term divided by that factor. 
3 ( 18x2y5 9xy3 ) 9.xy -- - -9xy3 9xy3 = 9xy3 (2xy2 - 1) 

2.2 1 Factor the expression: 2lx5y''z6 
- 15x1y2z11 + 36x8y3z. 

2.22 

The greatest common factor is 3x4y2z. Use that value to factor the expression, applying the method outlined in Problem 2 .20. 
4 2 (2lx5y9z6 15x4y2z11 36x8y3z ) 3x Y z 4 2 - 4 2 + 4 2 3x y z 3x y z 3x y z = 3x4y2z (7xy7z5 - 5z10 + 12x4y) Factor the expression: x2 + 13x + 40. 

To factor a trinomial of the form x2 + ax + b, find two numbers k1 and k2 such that ---�k1 + k2 = a and k1 • k2 = b. The factors of the polynomial will be (x + k1 ) and (x + k2) .  

Yov.. CO\� O\lso .PO\ct-ov 
t-l'\e .At.P.Peve�ce o.P 
pev.Pect- cv..bes: x,,, - y,,, == 

(x - y)("K +- xy +- y). 

22 

In this case, k1 = 5 and k2 = 8,  since 5 + 8 = 13 and 5 (8)  = 40 ,  so the factored form of the polynomial is (x + S) (x +  8) . 
2 .23 Factor the expression x2 - 7x - 18.  

2 .24 

2.25 

Determine k, and k2 as directed in Problem 2.22 .  Note that the constant (-18) is negative so k1 and k2 have opposite signs. (The product of two numbers with the same sign is always positive. )  Additionally, the x-coefficient is -7, which means the larger of the two numbers must be negative : k1 = -9 and k2 = 2, as -9 + 2 = -7 and (-9) (2) = -18.  The factored form of the polynomial is (x - 9) (x + 2) . 
Factor the expression: x2 

- 49. 
This expression is the difference of perfect squares (x2 = x · x and 49 = 7 · 7) . Note that a2 

- b2 is factored ( a + b) ( a - b) , so the factored form of the polynomial is (x + 7) (x - 7) . 
Factor the expression: 8a3 + 125b3 • 

This expression is the sum of perfect cubes : 8a3 = (2a) 3 and 125b3 = (5b) 3 • Much like a difference of perfect squares follows a distinct factoring pattern, so does the sum of perfect cubes : x' + y3 = (x + y) (x2 - xy + y2) .  To apply the formula, set x = 2a and y = 5b. x3 + y3 = ( x + y ) (  x2 
- xy + y2 ) (2a)3 + (5b )3 = (2a + 5b ) {  (2a)2 

- (2a) (5b) + (5b )2 ) 8a3 + 125b3 = (2a + 5b ) (  4a2 - lOab + 25b2 ) 
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2 .26 Factor the expression: 4x' - 20x2 - 3x + 15. A polynomial containing four terms from which no common denominator can be extracted is often factored by grouping. Use parentheses to split the polynomial into the sum of two binomials, one containing the first two terms and one containing the remaining two terms. (4x3 - 20x2) + (-3x + 15) Factor the greatest common factor out of each quantity. = 4x2 (x - 5) - 3 (x - 5)  Both terms now have a common factor: (x - 5) . Factor out that binomial ; the first term is left with 4x2 and the second term is left with -3. = (x - 5) (4x2 - 3) 
2.27 Factor the expression by decomposition : 6x2 + 7x - 24. 

The coefficient of the x2-term in this trinomial does not equal 1, so the method described in Problems 2 .22 and 2.23 is invalid and you should factor by decomposition. To factor the expression ax2 + bx + c (when a "#- l ) ,  you once again seek two constants (k, and k2) ,  but in this case those numbers meet slightly different criteria. 
k, + k2 = b and (k, )  (k2) = ac With some experimentation you'll determine that k, = 16 and k2 = -9. Replace the x-coefficient with k1 + k2 • 6x2 + 7x - 24 = 6x2 + (16 - 9)x - 24 = 6x2 + 16x - 9x - 24 Factor by grouping, as explained in Problem 2 .26. = (6x2 + 16x) + (-9x - 24) = 2x(3x + 8) - 3(3x + 8) = (3x + 8) (2x - 3) 

Solving Quadratic Equations 
EqL\01.tic�s witl-\ "' l-\i.�l-\est e><pc�e�t c.P 2. 

2.28 Solve the equation by factoring: 4x2 + 4x = 15. 
Subtract 15 from both sides of the equation, so that the polynomial equals 0. 4x2 + 4x - 15 = 0 Factor by decomposition, as explained in Problem 2.27. 4x2 + (10 - 6)x - 15 = 0 4x2 + l0x - 6x - 15 = O  2x(2x + 5) - 3(2x + 5) = O (2x - 3) (2x + 5) = 0 

-rl-\e +-wo Bv-ov.rs (Jl.v-e (Jl.\w(J\ys (J\J.J.eJ.. Evev. +-l-\ov.Bl-\ +-l-\e coe-P-fi6ev.+- o.P ,c i.s -'3, �eer +-l-\()1.+- v.eB(J\+-i.ve si.Bv. i.v.si.J.e +-l-\e secov.J. se+- 0.p r(Jl.v-ev.+-l-\eses. 

23 
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wovJ.. ''ov11 t-o sepo,.vo,.t-e t-\A.e t'\\\Swevs, \..,eco,.v.Se ., ei.t-\A.ev ,c-vo,.lv.e, ,c :::c - 2 ov ,c :::c t, wi.l� solve t-\A.e eqv.o,.ho\\. 

-r\A.e soh ... t-i.o\\S o.P t-\A.e eqv.o,.t-i.o\\ A,c2 + ]3,c + C :::c O o,.ve 
-13 ±.../ 132 - 4AC 

)C :::c 2A Jv.st- plv.8 i\\ t-\A.e. coe.P..fici.e\\t-s: A :::c � 13 :::c -'3, o,.\\J.. C :::c ' ·  

eqv.o,.t-i.o\\ \A.o,.s o,. J..ov.\..,le voot- w\A.e\\ t-\A.e Se>1.1Me voot- o,.ppeo,. vs t-wice. Fov e,co,.1Mple, (,c - '3)(,c - '3) :::c O V\o,.S 1Me>1.t-c\A.i\\8 solv.t-io\\S: 
)< :::c '3  ov )< :::c '3. 

24 

Set each factor equal to 0, creating two separate equations to be solved. 2x - 3 = 0 2x = 3 or 
x = -2 

2x + 5 = 0 2x = -5 5 x = - -2 h 1 . . 5 3 T e so ut1on 1s x = - - or x = -. 
2 2 

2.29 Solve the equation using the quadratic formula: 5x2 = 3x - 6. 
Begin by setting the equation equal to 0. 5x2 - 3x + 6 = 0 Apply the quadratic formula to solve the equation. 

x = 
- (- 3) ± ../(- 3)2 - 4 (5) (6) 2 (5) 3 ±  ✓9 - 120 10  3 ± .J=w 10 In order to simplify a square root with a negative radicand, recall that i = H. 3 ± ✓--iii 3 ± ✓(- 1) (1 1 1) 3 ± i.Jui 10 10  10 Th r h . . 1 . h d · · 3 + i✓1U ere1ore, t ere are two 1mag1nary so utlons to t e qua rauc equat10n: - --3 - iM 10 or ---10 

2 .30  Find the value of  k such that the quadratic equation 6 (x2 + 2x) = k (2x - 1)  + 5x2 has the double root x = 3. 
Simplify and set the equation equal to 0. 6x2 + 12x = 2kx - k + 5x2 (6x2 - 5x2 ) + (12x - 2kx) + k = 0 Factor x2 out of the first quantity and factor x out of the second. 

x2 (6 - 5) + x(l2 - 2k) + k = 0 
x2 + x(l2 - 2k) + k = O Notice that (x - 3) (x - 3) = 0 is another quadratic equation whose solution is the double root x = 3. Set the equivalent expressions equal to one another. 

x2 + x(l2 - 2k) + k = (x - 3) (x - 3) x2 + x(l 2 - 2k) + k = x2 
- 6x + 9 
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Quadratics are equal only if the coefficients of their corresponding terms are equal. The constant of the left quadratic is k, whereas the constant of the right quadratic is 9. Therefore, k = 9. (Substituting k = 9 into (12 - 2k) results in -6, so the coefficients of the x-terms in both polynomials will be equal as well.) 
2 .3 1 Solve the equation by completing the square : x2 

- l4x + 3 = 0. 
Unlike the methods of factoring and the quadratic formula, you should not set the equation equal to 0, but instead, isolate the constant on the right side of the equation. x2 - l4x = -3 Calculate one half of the x-coefficient and square it: (-14) + 2 = -7, and (-7) 2 = 49. Add the result to both sides of the equation. x2 - l 4x + 49 = -3 + 49 This creates a perfect square on the left side of the equation. (x - 7) (x - 7) = 46 (x - 7)2 = 46 Take the square root of both sides of the equation and solve for x . 

.j(x - 7)2 = ±✓46 x - 7 = ±✓46 x = 7 ± ✓46 
2.32 Solve the equation by completing the square : 4x2 - 20x + 7 = 0 .  

Note that you cannot complete the square unless the coefficient of the x2-term is 1 .  Although that was true in  Problem 2.31 ,  i t  i s  not true here. Divide everything by the coefficient of x2, and then use the method described in Problem 2 .31 .  4x2 20x 7 0 - - - + - = -4 4 4 4 
2 7 

X - 5x + - = 0 
4 

2 7 
X - 5x = - -

4 x2 
_ 5x + 25 = _ 2_ + 25 4 4 4 

t'\ .Pvt'\Ct-io\\ e\i1Mi\\t'\t-es t-v-e vt'\J.ict'\\S .PvolM it-s J.e\\OIMi\\t'\rOv. Mv.lt-ip\y t-l-\e t-or t'\\\J. 'ooHolM o.P t-l-\e .Pvt'\ct-io\\ 'by t-v-e vt'\J.ict'\\ (x - �r 1: yo1he t-vyi\\8 t-o Bet- viJ. o.P: 
H = ±� 

5 3 x = - + -
2 - ✓

2 

R . 1 · h . h · 1 1 · 5 3✓2 at10na 1ze t e expression to get t e equ1va ent so ut1on x = 2 ± -2-. 
'3 -12 '3-/2 '3-/2 

.ff .  -.ff := -14 := -2.-

25 





Chapter 3 
RATIO NAL EXPRESS I O N S  

Fvet.Ct-lC\\S, .Pvet.Ct-lC\\S, et.\\ol IMCve .Pvet.ct-i.C\\S 

During a course of review, rational expressions are the natural s of 1 · 1 • uccessors �o ynomia expressions for myriad reasons . For one the mo t rational · ' s common 
. expr(l�sksions are merely polynomial quotients .  Additionally rational expressions i e pol · 1 . ' 

. ynomia expressions) are restricted under the b" 
ope

�
at1ons of addition and subtraction, but face far fewer restricti01, :•:;

ry 

pro ucts or quotients are calculated It . h £ the skills alread a li d l" . is ,  t ere _ore , logical to investigate how 
t d . y pp e t? mear and polynomial expressions (in Chapter 2 )  ex en to rational expressions . 

A vOI.Fi.O\\Ol.l e,cpvessi.o\\, n�e OI. vo,.Fi.O\\Ol.l \\l,\IMt,ev, i.s jv.s+- OI. �vo,.CFi.O\\. 0� 

cov.vse, yov. pvo);,o,.);,ly �o�+- li\o,.ve o,. wli\ole  lo+- o� love i.\\ yo v.v li\eo,.vi-- �ov 

�vo,.cHo\\s-i--li\ey COi.\\ );,e pvei--i--y li\o,.v� i--o wov� wi.i--li\, especi.o,.lly wli\e\\ 

i.i-- colMeS i--o o,.��i.\\B OI.\\� sv.);,i--vo,.cH\\B- tv\os+- o� i--li\e HIMe, ..fi\\�l\\B i--li\e 

COIMIMO\\ �e\\01Ml\\01.i--ov i.s i--li\e IMOSi-- �i.�..ficv.li-- i--li\i.\\B o,.);,ov.+- �vo,.cFi.o\\S, OI.\\� 

l,\\\�Ovi--lA\\Ol.i--ely, i.i--'s lASlA01.lly i--li\e ..fivsi-- i--li\i.\\B yov. li\o,.ve i--o �o. CA�i--ev 

o,.l\, i.� yov. co,.�i-- o,.�� i--wo i--li\i.\\BS i--oBei--li\ev, wli\y eve\\ );,oi--li\ev leo,.v\\l\\B 

Y\O\N i--o IMv.lHply ov �i.vi.�e i--li\e1M?) -rli\i.s cli\o,.pi--ev wm Be+- yov. t>OI.C� 

v.p i--o spee� wi.i--li\ �vo,.cFi.o\\S, li\elp yov. solve co1Mpli.co,.i--e� �vo,.cHo\\01.l 

eqv.o,.Ho\\S, OI.\\� e\\� wi.i--li\ �vo,.cHo\\01.l i.\\eqv.o,.li.Hes (wli\i.cli\ �o�+- wov� 

Ol.\\yi--li\i.\\B n�e i--li\e l\\eqv.o,.li.Hes �vOIM Cli\o,.pi--ev \). 
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Adding and Subtracting Rational Expressions 
Re1Me1M\.:>ev- tL-\e leo,.st co1M1Mo� ;::;l..e�o1Mi�o,.tov-? 

,� t-his pvoble1M, t-he 1-\�iql-\e .Pt'\ct-ovs "'ve x "'�.A y. The hi8hest- powev o.P x is 2. "'�.A t-he hi8hestpowev o.P y is I , so t-he LCD is x2y. 

To .fi8l-\ve ol,\tt-he LCD, .Pt'\ct-ov +-he .Ae�o1Mi�t'\rovs: I 8'y ::::- '32 . 2. • y, 1 2.x ::::- z.2 . > . x, "'�.A >: ::::-> · z.. Ml-\lt-iply t-he 1-\�lql-\e .Pt'\ct-ovs Yt'\ise.A t-o t-heiv hi8hest- powevs: z.2 · '32 . x r . yr . z. r . 
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3 . 1  

3.2 

S. 1 ·r h . S 3 imp i y t e expression: - - 2. y X 
Begin by calculating the least common denominator (abbreviated LCD ) ,  the term that includes all unique factors of each denominator raised to the highest power reached by each individually. In this problem, the LCD is x2y. Multiply the numerator and denominator of ; by x2, so that the resulting denominator is the LCD (x2y) .  Similarly, multiply the numerator and denominator of 2 by y. 

X 

Now that the denominators are equal, add the numerators . 5x2 + 3y 
. . . x2 7y 5z3 Simplify the expression: - - - + -. 18y 3z 12x 

x2y 

Notice that the least common denominator is 36xyz. Rewrite each fraction in an equivalent form that contains the LCD. 
l�� (!:) - :: G::) + :;: ( :�: ) 2x3z 84xy2 l5yz4 = -- - -- + --36xyz 36xyz 36xyz 2x3z - 84xy2 + l5yz4 36.xyz 

7 Simplify the expression: --3 - 3. 
lOxy Every integer has an implied denominator of 1 ,  but that denominator can be ignored when determining the LCD. By default, then, the LCD of this expression is 10xy3-the left term already has this denominator, so it does not need to be modified. _7_ - � - _7_ - � (10xy3 ) 10xy3 1 - 10xy3 1 10xy3 

= -7 _ _ 30xy3 l0xy3 l0xy3 7 - 30xy3 10xy3 
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3.4 

3 .5  

w + l  5 Simplify the expression: --4 - 3 2 • 14w w - 3w Factor the denominators . w + l  5 2 · 7 · w4 w2 (w - 3) The LCD is 2 · 7 · w1 • ( w - 3) = 14 ( w1 ) (  w - 3) . Manipulate the factored versions of the fractions so that they share the LCD. w + l  ( w - 3) 5 ( 14w2 ) = 14 · w4 w - 3  - w2 (w - 3) 14w2 (w + l) (w - 3) 70w2 14w4 (w - 3) 14w4 (w - 3) ( w2 
- 2w - 3) - 70w2 14w4 (w - 3) -69w2 - 2w - 3  14w4 (w - 3) 

s· rf h . x - 2 2x - 3  imp 1 y t e expression: 
5x2 _ 45 x2 _ x _ l2 ° 

Factor the denominators . 
x - 2 2x - 3  5 (x + 3)(x - 3) (x - 4) (x + 3) The LCD is S (x +  3) (x - 3) (x - 4) . x - 2  ( x - 4 ) 2x - 3  [5 (x - 3) ] = 5 (x + 3) (x - 3) x - 4  - (x - 4) (x + 3) 5 (x - 3) (x - 2) (x - 4) (2x - 3) (5x - 15) 5 (x + 3) (x - 3)(x - 4) 5 (x + 3) (x - 3)(x - 4) ( x2 

- 6x + 8 ) - ( 10x2 
- 45x + 45) 

= �---��----� 5 (x + 3) (x - 3) (x - 4) 
-9x2 + 39x - 37 5 (x + 3) (x - 3)(x - 4) 

3.6 Explain why the process used to simplify the following expression is  incorrect. x2 
- 4 x2 

- J x2 
- 1 

-- - -- - -- - x2 - 1  4 - J - 1 -
The fraction x' - 4 can be rewritten as two fractions with a common denominator. 4 x2 - 4  x2 4 x2 -- = - - - = - - 1 4 4 4 4 Th £ 1 d . h f . x' - 4 . 1 1 · x' ere ore, proper y re ucmg t e ract1on -- to s1mp est terms resu ts 1n - -1, not i' - I .  4 4 

f 01.c+-ovi.\\B �.,,?-- - 4� +-""\:.es +-wo s+-eps. fi.vs+-, .P01.c+-ov ol.\+- +-t-\e Bve01.+-es+- cc:>1M1MO\\ .P01.c+-ov: �(�2 - "t). 1'I c,w .f 01.c+-ov �2 - "t, +-t-\e J.i..P-Peve\\ce o.P pev.Pec+- S'\l-'."'-ves: 
�c� +- ,)c� -'>). 
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e�po°'\e°'\Fi"'l v-1Ales .Pv-o\,\,\ Cl'\"'rt-ev- 2., yolA CO\°'\ SlAbhO\ct-e�ro°"e°"t-s wl'\e"' eq1AO\l \:>O\ses O\v-e .,\ivi.,\e.,\: 
y • 

o.P pev-.Pec+- c1Abes, v-e\N\e\N\\;,ev- t-l'\e .Pov-\N\IAIO\ 
0\-, _ \;,-, � O\z +- O\!) +- \;,z. I°'\ t-l'\is pv-o\;,le\N\, "' � 4� "'"'.,\ \;, � y. 10 .PO\ct-ov-4� - -n�y +- 'ty2, l-\Se .PO\ct-ov-i°'\8 by .,\eco\N\posit-io°'\ Oi�e i"' Pv-o\;,le\N\ 2. .2.7). 

3 .7 

3 .8 

6x2 y5 + 2xy8 Simplify the expression: 3 3 lOx y Factor the numerator. 2xy5 (3x + y3 ) 10x3y3 
For the mome1;t, ignore the quantity (3x + y3) and reduce the rational expression �-

IOx'y' 2xy5 ( 3x + y3 ) 2 x y5 ( 3x + y3 ) = 10 · -;s · y3 · 1 1 1 y2 (3x + y3 ) = ·t x2 • T . 1 y2 (3x + y3 ) 5x2 

64x3 - y3 Simplify the expression: 2 2 •  4x - 33xy + 8y 
Factor the numerator and denominator. Note that the numerator is the difference of perfect cubes. ,-----------'➔ ( 4x - y ) (I6x2 + 4xy + y2 ) (4x - y) (x - 8y) Eliminate the common factor of (4x - y) . ,0x-/4 (16x2 + 4xy + y2 ) ,0x-/4 (x - 8y) 16x2 + 4xy + y2 x - 8y Neither the numerator nor the denominator can be factored further. 

Multiplying and Divid ing Rational Expressions 
t--\lAl½-iplyi�8 = eo,.sy, d\tVid\i�8 = o,.\"""cs+- o,.s eo,.sy 

3.9 

30 

( 3xz3 ) ( 7x4y3 ) Calculate the product: / � . 
The numerator of the product is the product of the numerators, and the denominator of the product is the product of the denominators . (3xz3 ) (7x4y3

) 21x5y3z3 (y2 ) (9z8 ) 9y2z8 

Notice that � = 7___-_l_ = 7__ To reduce the variable portion of the expression, recall 
a 9 3 · ,3 3 that � = X'- ". 

X
b 7 5 3-2 3-8 7 5 -5 - x y z = - x yz 3 3 
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( 33x2y5 ) ( 5w7 ) 3. 1 0  Calculate the product: --

3
- --

9 
-

2 
• 

lOw l lx y Before you multiply the numerators together, it's helpful to reduce the coefficients . Any factor in either numerator can be reduced using any factor in either denominator: 33 = I!. and _!>_ = _!_ 11 I 10 2 3 1 w1x2y5 3 7-3 2-9 5-2 3 4 -7 3 3w4y3 
- · - · --- = - w x y = - w x y = --l 2 w3x9

y
2 2 2 2x7 

3 . 1 1 Calculate the product: ( 3:2 r . ( 6J3 r2

• 

Before multiplying, raise each fraction to the power indicated. 
( 33 x2 ·3 ) ( 51(-2) y3<-2J ) zI·3 z2(-2) 
= ( 2::6 ) ( 

6
: > ) 

27x6z4 36y6z3 3x6z 4y6 
3. 1 2  Calculate the product: (x -;) (2x - 5 )· 4xy x + 6 

3. 1 3  

Apply the FOIL method when multiplying the numerators . 
(x - 1) (2x - 5) 2x2 - 7x + 5  4xy2 (x + 6) 4x2y2 + 24xy2 

. 3x 6x - 9  Calculate the quotient: - + --. 4 10 
The quotient � + !'.. (where b and d are nonzero real numbers) i s  equivalent to 

_1 b d 

f(1) ( 3x ) ( 10 ) 30x 
4 6x - 9  

= 24x - 36 To reduce the fraction, factor the denominator. 30x % · 5 · x 
---- = -----12 (2x - 3) % · 2 · (2x - 3) 

5x 2 (2x - 3) 

Yc:>L\ Cc:>L\l.A t'\lso i\\t-evpvet- t-1-\e \\e8t'\t-ive expc:>\\e\\t- t'\S t'\ vecipvoct'\1. I\\ ot-1-\ev wov.As vewvit-e 
('::r 2 t'\S (,�/ So yc:>L\ .Ac,\\'t- Vlt'\Ve t-o 1Mess wit-I-\ lot-s o.P \\e8t'\t-ive expc:>\\e\\t-s 10\t-ev. 

3 1  
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3. 1 4  Calculate the following quotient and write the answer in simplest form. 3x2 
- l lx + 10 3x2 

- 2x - 5 x2 - 49 • 2 X - 6x - 7  Factor the polynomials and rewrite the quotient as a product (as explained in Problem 3.13) . (3x - 5)(x - 2) (3x - 5)(x +  1) (3x - 5) (x - 2) (x - 7) (x + 1) (x + 7) (x - 7) + (x - 7) (x + l) = (x + 7)(x - 7) · (3x - 5)(x + l) (3x - 5) (x - 2) (x - 7) (x + 1) (x + 7)(x - 7) (3x - 5)(x + 1) Eliminate any binomial factors that appear in both the numerator and denominator. � (x - 2) �y:--rl) x - 2  (x + 7) ��y:--rl) x + 7  
3. 1 5  Calculate the following quotient and write the answer in simplest form. x3 + 8  8x + l6 (x + 8)3 • x2 + 16x + 64 

Notice that x' + 8 is a perfect cube (which should be factored according to the formula in Problem 2.25) and i2 + l6x + 64 is a perfect square (because it has two equivalent factors) .  (x + 2) (x2 - 2x + 4) . 8 (x + 2) (x + 8)3 • (x + 8)2 Convert this quotient into a product and simplify. (x + 2) (x2 - 2x + 4) . (x + 8)2 (x + 8)3 8 (x + 2) � (x2 - 2x + 4) �  � ��(x + 8) (8) � x2 - 2x + 4  8x + 64 3 . 1 6  Write the following expression in simplest form. 
x 16x2 4x2 + lOx - -- + -- + -----x - 2  x + 4  4x2 + 13x - 12 

Begin by calculating the quotient. Rewrite the quotient as a multiplication Divisio\\ problem and factor. COIMes be.Pove °'""'""'it-io\\, O\CCOv.A.i\\8 t-o t-l-.e ov.,l.ev o.P opev°'t-iO\\S. 
32 



Calculate the sum. 

x 16x2 4x2 + 13x - 12 - - -- + -- · ------ x - 2  x + 4  4x2 + lOx 
x 16x2 (4x - 3) (x + 4) = - -- + -- . -'---

--'-'---

x - 2 x + 4  2x (2x + 5) 

x 8 · ,2' · x · ,x · (4x - 3) � 
- - -- + -------:;;---��--- x - 2 ,2',x� (2x + 5) 

x 8x (4x - 3) 
= - - - + ----

x - 2  2x + 5  

(-
X : 2) ( :: : : ) + [ 8x !:: � 3) ]  (: = ! ) 

-x (2x + 5) + (32x2 - 24x) (x - 2) 
(x - 2) (2x + 5) 

(- 2x2 - 5x) + (32x3 - 64x2 - 24x2 + 48x) 
2x2 + x - 10 

32x3 
- 90x2 + 43x 

2x2 + x - 10 

Solving Rational Equations 
Hev-e co1Mes cv-oss 1M1>.lt-iplic"'t-io\\ 

4 X 
3 . 1 7  Find all solutions to the proportion: 3x 

= 
12 . 

Cross multiply and solve for x. 

Therefore, x = -4 or 4. 

48 = 3x2 

16 = x2 

±4 = x 

2x - 7  2x - l 
3 . 1 8  Find all solutions to the proportion: x + 6 

= 
x _ 2 · 

Cross multiply and solve for x. 
(2x - 7) (x - 2) = (x + 6) (2x - 1) 
2x2 

- l lx + 14 = 2x2 + l lx - 6 
2x2 

- 2x2 
- l lx - l lx = - 14 - 6 

-22x = - 20 
20 10 

x = - = -
22 1 1  
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t)o\\+-
.Pov-Be+
H"""+- Y"'-' 
v.eeJ. +-o 
v.se +-v-e 

leOI.S+- COIMIMO\\ 

J.ev.01Miv.01.+-ov-: 
(,c - 2.)(2,c +- s). 

ML\IHply 
Hie le.P+

\\L\l"'\ev-oi.+-ov-
Hl"'\es Hie v-i8h+

.Ae\\ol"'\i\\oi.f-ov- 0\\\.::1. 
se+- if- e9L\oi.l +-o +-he le.P+- .Ae\\ol"'\i\\oi.+-ov-

1"'\L\IHplie.A by +-he v-i8h+
\\L\l"'\ev-oi.f-or �=- .E. . \, .... becol"'\es 

oi..A = be. 
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\-\eve's t,,.ow yol.\ Be\\-t-\ose °'v.swevs: -7 1:' ...p;, - ,t.(\ ) ('32__ 2 
-7 ±' �  2 -1 1:' ,ff, 2 

4 AtAtA 2x + I to -'3 to8etV1ev l-\Si\\8 tV\e COIMIMO\\ tAe\\OIMi\\O\tov 2.x + I to 8et O\\e .Pvt'\ctio\\ O\\ tV\e le.Pt sitAe o.P tV\e eql-\t'\tiO\\ so yol-\11 be t'\t>le to cv-oss IML-\ltiply. 
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3 1 9  F. d 1 1  I . h . 2 x - 4 . m a so utions to t e equat10n: -- - -- = O. x + 3  4 Transform the equation into a proportion by adding x - 4 to both sides of the . 4 equat10n. 2 x - 4  x + 3  4 Cross multiply to eliminate the fractions. 2 (4) = (x + 3) (x - 4) 8 = x2 - x - 12 Apply the factoring method to solve the quadratic equation. x2 - x - 20 = 0 
(x - 5) (x + 4) = 0 x = - 4  or 5 

3 20 F. d 11 I . h . x2 + 2x + 3 • in a so utions to t e equation: ---- + 5 = Q. 

3.2 1 

X Create a proportion and cross multiply. x2 + 2x + 3  -5 
X l x2 + 2x + 3 = -5x x2 + 7x + 3  = O 

-7 - ✓37  -7 + ✓37  According to the quadratic formula, the solutions are x = --- and ---. Simplify �he left side of the equation. 2 2 
. . . 4 x + 5 Fmd all solutions to the equat10n: -- - 3 = --. 2x + l  x _4 _ _ �( 2x + l ) - x + 5 2x + l  1 2x + l  x 4 - 3 (2x + l) x + 5 2x + l  X 4 - 6x - 3  x + 5 2x + l  X - 6x + l  x + 5 2x + l  X Cross multiply and solve using the quadratic formula. (- 6x + l)(x) = (2x + l) (x + 5) -6x2 + x = 2x2 + l lx + 5 0 = 8x2 + lOx + 5 

-5 ± iM The solution is x = 8 . 
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3 .22 Solve the equation in Problem 3.21 again ( 

x: 1 - 3 = x : 
5 ), but this time eliminate the fractions by multiplying the e2ritire equation by its least common denominator. Verify that you get the same solutions. 

The denominators of the terms, from left to right, are (2x + 1 ) ,  1 ,  and x; the least common denominator is x(2x + 1 ) .  Multiply each term of the equation by that value. x (2x + l) [_4 _ _ 3] = x (2x + l)
(

x + 5
) 

1 2x + l  1 x 4x� 3x (2x + l) / (2x + l) (x + 5) 
� 1 / 4x - 6x2 

- 3x = 2x2 + l lx + 5 0 = 8x2 + IOx + 5 This matches the quadratic equation from Problem 3.21,  so it will have identical solutions. 
3 .23 Find all solutions to the equation: - 2 

5 + � = -2-
1-. 

x - 4x + 4 x x - 2x Factor the denominators . 5 3 1 - --- + - = ---(x - 2)2 x2 x (x - 2) The least common denominator of all three terms is x2 (x - 2) 2 • Multiply each term by the LCD to eliminate the fractions. -5x2
� 3/ (x - 2)2 

� 
+ 

/ -5x2 + 3 (x - 2)2 = x (x - 2) -5x2 + 3 ( x2 
- 4x + 4) = x2 

- 2x -5x2 + 3x2 
- 12x + 12 = x2 

- 2x - 3x2 - lOx + 12 = 0 5 - ✓61 5 + ✓61 According to the quadratic formula, the solutions are x = ---3- and ---3-. 
Polynomial and Rational I nequal ities 
CvH-i.co,.l \\lAlM'bevs 'bveo,.'k lAp yolAv \\lAlM'bev li.\\e 3.24 Write the solution to the inequality using interval notation: (x - 3) (2x + 1) < 0. Calculate the inequality's critical numbers . x - 3 = 0 2x + l = 0 1 

x = - -x = 3 or 
35 
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U se or e\\ .:;l.o\-s 

Draw a number line with these points marked; they split the number line into three intervals: (-co,-½), (-½ , 3 ), and (3, oo), as illustrated by Figure 3-1 . 
(-oo, -½) (- ½ , 3) (3, oo) __...._ 

C,\\ \-t-\ e  \\\,\IM\;:> ev \i.\\e .fc, v 
< O\\\.:;l. "1 O\\\.:;l. close.:;l. .:;l.o\-s "' I I 

-4 -3 
I 0 I 

-2 
\ 10 

I I 0 I )o 

1 2 3 4 
.Po v � O\\\,;l. ):.. 

close.:;l. O\\ t-v. e Bv°'rv., 
t-v. e solL\t-io\\ woL\l.:;l. 
V-0\Ve \;:> ee\\ [-½,1 ]-
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2 Figure 3-1 1 The critical numbers of (x - 3)(2x + 1) < O are x = -2 and x = 3. 
The solution to the inequality may be any combination of those three intervals. To determine which belong to the solution, pick a value from each ( called the "test value" of the interval) and plug them into the original inequality. 

(3, 00) (- oo, - ½) (- ½ , 3) Test Value: x = - 1  Test Value: x = 0 Test Value: x = 5 (- 1 - 3)(2(- 1) + 1) < 0  (0 - 3) (2 (0) + 1) < 0 (5 - 3) (2 (5) + 1) < 0 (-4) (- 1) < 0  (- 3) (1) < 0 (2) (1 1) < 0 5 < 0  - 3 < 0  22 < 0  False True False Only values from the interval (-t3) make the inequality true, so that is the final solution to the inequality. Note that x = -½ and x = 3 are excluded from the solution because the critical numbers are excluded from the graph in Figure 3-1 . 
3.25 Graph the solution to the inequality: x2 + x � 2 . 

Move all the terms to the left side of the inequality and factor. x2 + x - 2 � 0  (x + 2) (x - 1) � 0 The critical numbers for this inequality are x = -2 and x = l .  Graph both on a number line using solid dots, as illustrated by Figure 3-2 . 
" I 

-4 -3 
• 
-2 -1 0 

• 1 2 3 4 Figure 3-2 The critical numbers of'x2 
+ x � 2 are x = -2 and x = 1. 

)o 

The number line is split into three intervals : (- oo, - 2], [-2, 1], and [1, oo ). Choose one test value from each interval (such as x = -5, x = 0, and x = 2 , respectively) and plug each into the inequality to determine the solution. 
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It is more expedient to substitute into the factored version of the polynomial, as the arithmetic is simpler. (- oo, - 2] [-2, 1] [1, 00) Test Value: x = - 5  Test Value: x = 0 Test Value: x = 2 (-5 + 2) (-5 - 1) � 0  (0 + 2)(0 - 1) � 0  (2 + 2)(2 - 1) � 0 (- 3)(-6) � 0  (2) (- 1) � 0 (4) (1) � 0 18 � 0  - 2 � 0  4 � 0  True False True The solution is ( - oo, - 2] or [ 1, oo ); graph both intervals on the same number line, as illustrated in Figure 3-3. 

II( I 
-4 -3 

• 
-2 -1 0 • 

1 2 3 Figure 3-3 The solution graph of'i2 + x � 2. 
3.26 Graph the solution to the inequality: 2x2 

- 3x - 8 < 0. 
4 

Calculate the critical numbers via the quadratic formula: x = 3 ±'!73. Use a calculator to determine approximate decimal values for the critical numbers : 3 - ffi -= -1.386 and 3 + ,/73 -=  2.886. Choose test values (such as x = -2, x = 0, and x = 4) 4 4 " f  h h 1 . . ( 3 - ,/73 3 +ffi) h d . F" 3 4 to ven y t at t e so ut10n IS -4-,-4- , as grap e In Igure - . 
3 - ../73 3 + ../73  

( 
-4 -3 -2 -1 0 1 2 3 Figure 3-4 The solution graph of'2x2 

- 3x - 8 < 0. 
3.27 Graph the solution to the inequality: 16x2 

- 24x + 9 � 0. 

4 
4 

Factor the quadratic and note that this polynomial has a double root (because the polynomial is a perfect square) . 
( 4x - 3 ) (  4x - 3) � 0 The only critical number is x = ¾; graphing that value results in two possible interval solutions (as illustrated by Figure 3-5) : (-00, ¾] and [¾,00 ). 

\\e,c\- \-O 
-2 O\\\J. \ si.\\ce \-li-.ey've Bv°"rli-.eJ. OI.S so,i.J. J.o'rs, \::>lA'r °"'w°"ys lASe f'°"ve\\'rli\eses �ov oo \\O 1M01.'r'rev wli\01.'r J.o\-s °"ve 

O\\ OI.\\Y o\-li\ev 
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t-P +-li-.e 
i.\\eqlAO\\'i.+-y l,,-.0\.:;l. 

bee\\ \ G,c:2 - 24>< + "I 7 0, 

+-li-.eve wolA\tA li-.0\Ve bee\\ 

\\O so\ 1A+-i.c:>\\ O\t" 0\\\, beCO\lASe 

ore\\ tAo+-s O\ve e,cc\ lAtAetA 
-fvc,IM sc,\\At'lO\\ l\\t"evVO\\S. 

B0t.sic0t.lly, ""-\\Y x-v.,._ll.\e +-h0t.+- ""'""-kes +-he \\l.\""tev0t.f-ov c:>v .:Ae\\c:>""ti\\0t.tc:>v o.P +-he .Pv0t.ctic,\\ e9l.\0t.l O is .,._ cvif-ic.,._) \\l.\""tbev. 

I+- CO\�+- be 0\ 

so\1A+-i.o\\, beCO\lASe 

r'lABBi.\\B i.+- i.\\+-o +-li-.e 
i.\\eqlAO\\i.+-y 1Me0\\\S 
.:Ai.vi..:Ai.\\B by 0, O\\\tA 
+-li-.0\+-'s \\Ot' O\\\owetA. 
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-4 -3 

Figure 3-5 

-2 -1 0 ) 1 3 4 
2 3 4 

3 The only critical number ofl 6x2 
- 24x + 9 � 0 is x = 4. 

Neither interval is a solution to the inequality; verify using the test values x = 0 and x = I-both make the inequality false. Test value x = 0 ( 4 (0) - 3) { 4 (0) - 3) :5 0 (-3) (-3) :5 0 9 :5 0 False 
Test value x = I ( 4 (1) - 3) (  4 (1) - 3) :5 0 (1) (1) :5 0 1 :5 0  False 

3 Therefore, the only solution to the inequality is the solid dot x = 4 in Figure 3-5. 
3 28 W . h 1 . h . 1 · . · I · x + I . nte t e so utlon to t e 1nequa 1ty usmg mterva notat10n: -- � 0 . -�--- 3x - 1  Critical numbers are x-values that cause an expression to equal O or x-values that cause an expression to be undefined. Whereas polynomial inequalities do not address the latter case, rational inequalities do. Ensure that the rational expression alone appears on the left side of the inequality and that O appears on the right side. Set the numerator and denominator equal to 0 and solve the resulting equations. x + I = 0 x = - I or 3x - l = 0  1 x = -Plot those critical numbers on the number line, as illustrated in Figure 3-6. Notice that x = 3 is plotted with an open dot, even though the sign of the inequality is "�"- Any critical number generated by setting the denominator equal to 0 must be plotted as an o en dot, regardless of the inequality sign. Therefore, the possible solution intervals are (- oo, - 1], [- 1,½), and (½,oo )-

I( I I I • I 0 I I I ) 

-4 -3 -2 -1 0 

l!l 
2 3 4 

3 
Figure 3-6 The critical numbers of� � 0 are x = -1 and x = !..._ Of 

Jx - 1  3 those, only x = -1 can be part of' the solution. 
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Chapter Three - Rational Expressions 
Choose test values from those intervals (such as -3, 0, and 1 ,  respectively) to verify that the solution is (- oo, - 1] or (½ ,co). 

(- oo, - 1] [- 1, ½) (½ , oo) Test Value: x = - 3  Test Value: x = 0 Test Value: x = l A L\�ic,� Mt'\\:.es o�e - 3 + 1  � o  0 + l  l + l  bi8 t-l-\i�8 by coi,v.bi�i�B 3 (- 3) - 1  � o  � o  3(0) - 1 3 (1) - 1  t-wo SMO\llev t-l-\i�8s. fov - 2  1 2 e1<t'\i,v.ple, t-1-\e solL\t-io� -- � o  - 10 - � o  - � o 8vt'\pl-\ i� Fi8L\ve >-7 is 1 - 1  2 cvet'\t-e.A by coi,v.bi�i�B - � o - 1 � 0  l � 0  False t-wo i�eqL\t'\lit-y True True 8Vt'\pl-\s. 

The solution graph is the union of the graphs of the solution intervals, pictured in Figure 3-7. 
-4 -3 -2 -1 0 l!._l 

3 
2 3 

Figure 3-7 
x + l  The solution graph of'-- � 0. Jx - 1  

G h h 1 . h . 1 . 3x2 + 17x + 24 rap t e so ut10n to t e 1nequa 1ty: ------ :s; 0-3x2 + 2x Factor the numerator and denominator. (3x + 8)(x + 3) ------ < 0 x (3x + 2) -

4 

Set both the numerator and denominator equal to 0 in order to calculate the critical numbers : x = -3,-� ,- � , and 0. Plot those values, keeping in mind that x = 0 
2 3 3 and x = -3 must be graphed with an open dot (because they make the expression undefined) . Choose test values from each of the five resulting intervals and darken the intervals that satisfy the inequality, as illustrated by Figure 3-8. 

I( • • 
-3 8 -2 

I 0 
-1 2 

0 
0 1 

3 3 Th l · h . z ·  3x2 + 1 7x + 24 . [ s ] e so utzon to t e znequa zty 
2 

:s; O zs -3, -3 ( 2 ) 3x + 2x Figure 3-8 or -3 ,o . 
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Jv\O\�e sv.ve 
yoi.1.ve Boi- 0 ov. 

\-v-e vi.B\i\\- si.J.e o� 
\-v-e i.v.e'\'-'°''i.\-y °'v.J. 

0\ si.v.B'e �vO\C\-i.0\\ 0\\ 

\-v-e ,e�\- ':,e�ove yov. 

s\-°'v\- ,oo�i.v.B �ov 
cvi.\-i.c°'' v_v.lM\:,evs. 
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3 .30  
x + 2  Write the solution to the inequality using interval notation: -- > 3. 
x - 4  Subtract 3 from both sides of the inequality and then identify critical numbers. x + 2  -- - 3 > 0 

x - 4  Simplify the left side of the inequality using the least common denominator x - 4. x + 2  - � ( x - 4 ) > o  
x - 4 1 x - 4 x + 2  3x - 12 -- - -- > 0 

x - 4  x - 4  (x + 2) - (3x - 12) > 0 
x - 4  x - 3x + 2 + 12 ------ > 0 

x - 4  -2x + 14 ---- > 0  
x - 4  The critical numbers of the inequality are x = 4 and x = 7, so the possible solution intervals are (- oo, 4), ( 4, 7), and (7, oo ). Use test values from each interval to determine that the solution is (4,7) . 



Chapter 4 
FU NCTIONS 

New ycl.\'1J s+-0t.v+· seei\\B .P(><) Ot.11  cvev +-� 1 e P 0t.ce 

Whereas linear polyn · 1 d . 
ubiquitous in advance�::;han r�t1onal e_quations are both useful and 
relationships are essential on

;:
t
�ics , condose definiti?ns of mathematical 

f . eory an proof are mvolved That th 
unction automatically assures us of predictable beh . . . . e 

you know how to manipulate such . . av1or is a given , but that 

expressions is not , hence this chapter. 

A -PlA\.\Ct-i.o\.\ is 01.\.\ eqlA01.½-io\.\ wi+-l-\ cev-½-01.i\.\ 'be\.\e..fi+-s. -rl-\ey loo\: °' 
li+-+-le J-i.P.Pev-e\.\+- ½-l-\01.\.\ +-l-\e li\.\e01.v- eqlA01.t-i.O\.\S 01.\.\J- poly\.\o""'i°'ls .Pv-o""' +-l-\e 

pv-eceJ-i\.\B cl-\01.p½-ev-s, so +-l-\ey'v-e e01.sy +-o spo+-. R01.½-l-\ev- ½-l-\01.\.\ eqlA01.½-io\.\S ½-l-\01.½

loo\: li\:e y -::: '3,c - t:t 01.\.\J- y -::: 2.,c2 +- 7>< - \ 0, +-l-\ey loo\: li\:e W><) -::: '3,c - 1 01.\.\J

Bi>') "' 2-? -+- 7>' - \ 0 . i-rech.,ic"'lly, t-hey ,Ao,,'\- h"'ve \-o st-"',\- wit-IA -l'i>') o, Bi") 

+-o qlAOl.li.Py OI.S 0\ -PlA\.\Ct-i.O\.\, 'blA+- \,A-\OSt"' -PlA\.\Ct"'lO\.\S O\V"e wv-i+-+-e\.\ li\:e +-l-\OI.+-.) -rl-\ey 

c01.v-v-y +-l-\is BlA01.v-01.\.\½-ee: .Pov- evev-y i\.\plA+-, yolA'll Be+- o\.\e 01.\.\J- o\.\ly o\.\e olA½-plA+-. 

1-P yolA pl lAB ,c -::: \ i\.\+-o W><) -::: '3,c - 1, yolA'll 01.lw01.ys Be+- +-l-\e S01.""'e +-l-\i\.\B: 

.PC \) -::: '3( \) - t:t -::: -, .  Mos+- o.P c01.lclAllAs J-e01.ls wi+-l-\ -PlA\.\Ct-i.o\.\S e,cdlAsively, so 

+-l-\ey'v-e well wov-+-l-\ v-eviewi\.\B -
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Combining Functions 

Do t-l'\e l,\Sl,\o,.l (+,-, x, o,.�c::A .+-) ov- pl "'8 'elM i�to eo,.cl'\ otl'\ev-

4. 1 Is the relation s: { (-3,2 ) ,  (4,1 ) ,  (8 ,2) ) , a function? Justify your answer. 
Yes, s is a function because each member of th domain (-3, 4, and 8)  corresponds to exactly one member of the ranL e (2 ,  1 ,  and 2) . In other words, s (-3) = 2 ,  s (4) = 1 ,  and s (8)  = 2 .  While it's true that s (-3) and s (8)  both have the same output, that does not invalidate the function. Two inputs may have identical outputs, as long as each input corresponds only to that output and no other. 4.2 Find real number values for m and n such that the following relation is not a function. p: { (-4,-1 ) ,  (-2 ,7) , (0,3 ) ,  (m,n) , (10,8) ) The relation p is not a function if any element of the domain has more than one corresponding range element. Therefore, if m is equal to any other member of the domain and n does not match that element's range element, p is not a function. � Any of the four following possibilities are viable solutions to this problem: m = -4 and n #- -l ; m = -2 and n #- 7; m = 0 and n #- 3; and m = IO and n #- 8. 4 .3  Find a real number value for c that ensures the following relation is one-to-one. j: { (-2 ,9 ) ,  (-1 , c) ,  (0, -4) , (1, -13 ) ,  (2 ,-6) ) 
As discussed in Problems 4.1-4.2 ,  no function may have an input element that corresponds to two different output elements . If a function is one-to-one, the reverse is also true-each element of the range corresponds to exactly one domain element, so c may be any real number except -13, -6, -4, or 9. No matter what real number is substituted for c, j will be a function, but it will only be one-toone if those four values are avoided. 

4.4 Given the functions /: { (-1,10 ) ,  (3,5 ) ,  (10,-6) ) and g: { (-1 , -4) , (3,0 ) ,  (10, -5) ) , calculate (f+ g) (IO) . 
Note that (f+ g) (IO) = .f(IO) + g(IO) . (J + g) (IO) = f (IO) + g (IO) = (-6) + (-5) = - 1 1  

4.5  Given the functions .f(x) = i2 + 4 and g(x) = (x + 4) 2 , calculate (fg) (-2) .  
Note that (fg) (-2) = ./(-2) · g(-2) . (Jg) (- 2) = J (-2) · g (-2) = ((-2)2 + 4) · (- 2 + 4)2 = (4 + 4) (2)2 = 8 (4) = 32 
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4.6 Given the functions /(x) = x + I and g(x) = 6x" + 19x - 36, determine the domain 

of (f ) (x). 

The function (1-) (x) = f((x)) = , \� 1 3 is undefined whenever its denominator g g X 6x + x - 6 equals 0. Set g(x) = 0 and solve to identify those values, which must be excluded from the domain. 
Factor the polynomial. 6x2 + l9x - 36 = 0 

(2x + 9) (3x - 4) = 0 2x + 9 = 0 
x = - -

3x - 4 = 0  4 x = -

The domain of ( 1 ) (x) is all real numbers except x = -� and x = ± . g 2 3 4.7 Given functions .f(x) = x" and g(x) = 2x + 5, find (J O g) (x) and (g O J) (x). 

4.8 

4.9 

The notation (J o g) (x) is read 'Jcomposed with g of x," and is equivalent to .f(g(x) ) .  In other words, the function g(x) should be substituted into .f(x) . Similarly, (g o J) (x) = g (J(x) ). 
(J o g) (x) = J (g (x)) 

= f(2x + 5) 
(g o J) (x) = g(J(x)) 

= g(x2 ) = (2x + 5)2 = 4x2 + 20x + 25 = 2 (x2 ) + 5  = 2x2 + 5  yive1,\functions f (x) = ✓x and g(x) = x2 - 12x + 36 , find (J O g) (x) and 
lg o fJ (x) . 

(J o g) (x) = J (g (x)) = J (x2 - 12x + 36) = ✓x2 - 12x + 36 = .J(x - 6)2 = lx - 61 
(g o J) (x) = g(J(x)) 

= g(✓x) 

= ( ✓x)2 - 12✓x + 36 = x - 12✓x + 36 
1 Given the functions J(x) = --, g(x) = x - 2x", and h(x) = .tfx - 6 , calculate J(g(h(70) ) ) .  x + 3  

Evaluate the innermost function. 

1-\ ev-e's t-\ow 
t-o �01.ct-ov- \:,y 

,:l.. eCOIMfOSi.t-i.O\\ (t-t-\ e  
t-ect-\\\i.qv.e e,cfl01.i.\\e,:l.. 

i.\\ Pv-o':,l elM 2. .2.7): 
(;,.:

2. + (2.7 - 8') )< - '% 
� (;,.:

2. + 2.7,.: - 8'i< - '% � '3,.: (2.i< + 'l) - 4(2.,.: + 'l) � (2.,.: + 'l) ('3,.: - 4) 

l.f! Y0'-' h.,we 
so""'et-h i\\8 t-h.,._t

looks l ike ,V,?" "'-\\.::l 
\\ is eve\\, +-he\\ 

W = /x/ . 
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Substitute h (70) = 4 into the function: f(g(h(70 ) ) )  = f(g(4) ) .  Once again evaluate the innermost function, which is now g(x). g(4) = 4 - 2 (4) 2 = 4 - 2 (16) = -28 By substitution, f(g( 4)) = f(-28) . Evaluate f(-28)  to complete the problem. 1 1 1 J (- 28) = -28 + 3  = -- 2-5 = - 25 1 Therefore,J (g(h (70))) = - 25 . 
4. 1 0  Given the functions f(x) = x2, g (x) = 2x � I ' and h (x) = 1 ;x

x
, find f(g(h(x) ) ). 

Substitute h(x) into g(x). 1 
g (x) = 2x + l  

g (h (x) ) - ( l -1.) 2 - - + l  2x 

Simplify the complex fraction. 

1 
1, (1 - x

) + l  
I 1,x 1 
1 - x  - - + l  

X 

g (h (x)) =
l - x  

(
x

) - - + l  -
x X 

1 
1 

(1 - x) + x  

1 1 
X 

X 

Multiply the numerator and denominator of the complex fraction by the reciprocal of its denominator to simplify. 
g(

h (x)
)
-

d� l 

g (h (x)) = i = x Substitute g(h (x) ) = x into the expression: f(g(h(x) ) )  = f(x) = x2.  
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G raphing Function Transformations 
'St-v-et-cl'\es, sqlAisl'\es, +lips, 01.\\ol slioles 

Note: Problems 4.11-4.18 address transformations of the graph f(x) in Figure 4-1, so that you 
can more effectively juxtapose the effects of the transformations. It is not beneficial to determine 
the equations that generate the graph. 4. 1 1  Graph f(x) - 2. 

5 

Figure 4-1 The graph off(x), to be transformed in Problems 4. 11-4. 18. 

When a constant is added to, or subtracted from, a function, it shifts the graph vertically. Adding a constant c moves each point on the graph up c units, and subtracting c moves the graph down c units . Therefore, each point on the graph of 
f(x) - 2 should be plotted two units below its corresponding point on the graph of 

poi\\t-S o.P "' 
jYO\PVI J..ow\\ 2 

IA\\it-s MeO\\\S yo1A 
SVI01AlJ.. SlAt>hO\Ct-
2 .PvoM t-l-\e y-.f(x) ,  as illustrated by Figure 4-2 . ..._._ ___________________ � coovJ..i \\O\ t-es o.P 

-5 

-6 

Figure 4-2 The graph off(x) - 2 is the graph off(x) moved down two units. 

it-s poi\\t-s. 

Note: Problems 4.11-4.18 address transformations of the graphf(x) in Figure 4-1. 4. 1 2  Graph .f(x - 3) . 
_) 

Notice that 3 is subtracted from x, whereas the constant was subtracted from J(x) in Problem 4.11 .  This operation causes a horizontal shift on its graph. Note that subtracting a constant moves the graph to the right, and adding moves the graph left. Therefore, the graph off(x - 3) is simply the graph off(x) moved three units to the right, as illustrated in Figure 4-3. 
45 
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The 
ovi8 i"1.o,.I -Pcx) 8v"lph co..,_f-0\i\.\s +-he poi..,_f-s (-2,-2) 0\"1..A (3, I). TO\ke +-he opposi+-es o.P +-he y 's f-o 8ef- +-he covvespo\.\.Ai... ••8 fOl\,\f-s O\.\ --P{x): (-2,2) 0\\.\,:,\ (3,- 1). 
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-3 

Figure 4-3 The graph off( x - 3) is the graph off( x) moved three units to the right. 

Note: Problems 4.11-4.18 address transformations of the graphf(x) in Figure 4-1. 
4. 1 3  Graph -.f(x) .  Multiplying a function by -1 reflects its graph across the x-axis .  Iff(x) contains the point (x,y) , then -f(x) , graphed in Figure 4-4, contains the point (x,-y) . 

Figure 4-4 The graph of--f(x) is the reflection off(x) across the x-axis. 

Note: Problems 4.11-4.18 address transformations of the graphf(x) in Figure 4-1. 

4. 1 4  Graph f(-x) . 

-6 -5 

Multiplying x by -1 reflects the graph off(x) across the y-axis ; iff(x) contains the point (x,y) , then .f(-x) contains the point (-x,y) , as illustrated in Figure 4-5. 

-3 

Figure 4-5 The graph of f(-x) is the reflection of f(x) across the y-axis. 



Chapter Four - Functions 

Note: Problems 4.11-4.18 address transformations of the graphf(x) in Figure 4-1. 
1 

4. 1 5  Graph - f (x). 
2 

Multiplying a function by a constant affects the y-values of its coordinates. If the 
M I . 

graph off(x) contains the point (x,y) , then the graph of c • J(x) contains the point l-\ hply the y-

(x, c • y). In this case, each point on ½ J(x) is half the distance from the x-axis as Voi.ll-\es by z. Becoi.l-\se 
the corresponding point on graph off(x) , as illustrated by Figure 4-6. .P(x) CO\\r0t.i\\s t-he poi\\t-s 

Figure 4-6 
1 Points on the graph of2 f( x) are half as Jar from the x-axis as the corresponding 

-+-+--+---+--->t-----+-+--+---+--+---+--+----+----ar->-

-1 
- 2  

points off(x). 
Note: Problems 4.11-4.18 address transformations of the graphf(x) in Figure 4-1. 
4. 1 6  Graph f(2x) . 

Whereas multiplying J(x) by a constant affects the distance of its points from the 
x-axis, stretching it away from (or compacting it toward) the x-axis (as explained 
in Problem 4.15) , multiplying x by a constant inversely affects the distance of a 
function's coordinates from the y-axis. Although you might expect the coordinates 
of J( ex) to be c times further from the y-axis than the corresponding points on 
f(x) , the points are actually � times as far away, as illustrated by Figure 4-7. 

5 

- 3  

-3 

Figure 4-7 Points on the graph of J( 2x) are half as Jar from the y-axis as the corresponding points off(x). 

Note: Problems 4.11-4.18 address transformations of the graphf(x) in Figure 4-1. 

4. 1 7  Graph IJ (x)I . 

By taking the absolute value off(x) ,  you change all negative outputs into their 
opposites while leaving positive outputs unchanged. In other words, iff(x) 
contains the point (x,y) , then IJ (x)I contains the point (x, l yl )- raphically, this 
means any portion off(x) below the x-axis is reflected above the x-axis ,  but the 
rest of the graph does not change. 

(-�4) oi.\\.A (3, I), -1.p (1<) 
will CO\\t-oi.iu t-' · 2 . t., Vie poi\\ s 

(-�2.) 0\\\.::1. (3,t) . 

poi\\t-s O\\ t-he 
8v-oi.ph o.P -P(2.x) hoi.ve 

x-voi.11.-\es t-hoi.t- oi.v-e ..!__ 
oi.s loi.v-8e oi.s t-he ov-i8i\\oi.l 
poi\\t-s O\\ -Pex). Becoi.l-\se 
-P<x) co\\t-oi.i\\e.::l poi\\t-s 
(-�4) 0t.\\.A (2., I), -PC2.x) 
co\\t-oi.i\\s {- �, 4} 
0t.\\.A (I , I). 

A\\y 
coov-.::1.i\\O\re 

t-h"'t- h"'.A "' \\e8"'t-ive 
y-v"'ll-\e \\Ow h"'s "' 
posit-ive y-v"'ll-\e: 
(- 2, /- 2/) = (- 2, 2) 0\\\.::1. 

( s-, 1- 2./) == cs; 2.). 
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---6 -5 -4 -3 -2 -1 -1 
-2 

-3 

2 3 4 5 
Figure 4-8 The graph of[r (x JI. 

Note: Problems 4.11-4.18 address transformations of the graphf(x) in Figure 4-1. 
4. 1 8  Graph J (lxl) . The J (lxl)  transformation affects coordinates with negative x-values .  Consider this : x = l and x = -l must have the same output for J (lxl ), since J (I- II) = J (l). In fact, every x in the domain of the function must output a value that matches its opposite ; therefore, f(x) = f(-x) even if-x does not belong to the domain off(x).  Graphically speaking, iff(x) contains point (x,y) , and x > 0, then J (lxl)  contains the point (-x,y) . The net result: J (lx l)  is symmetric about the y-axis based on its positive domain, as illustrated by Figure 4-9. See Problem 4.21 for another example of this trans ormation for additional clarification. 

-1 
-2 

- 3  

Figure 4-9 The graph off (lxl )  is symmetric about the y-axis 

4. 1 9  Sketch the graph off(x) = (x + 2) 2 - 1 without a calculator by applying graphical transformations. To transform the function y = x2 (the dotted curve in Figure 4-10) into J(x) = (x + 2) 2 - 1 (the solid curve in Figure 4-10) ,  you must to add 2 to x (which shifts its graph left two units) and subtract 1 from J(x) (which shifts the graph down one unit) . 
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Figure 4-10 , , , , , , 
The graphs ofy = x2 (dotted) and 

f(x) = (x + 2)2 
- 1 (solid). 

-6 -5 -1 
-2 

, , , , 
4 5 

4.20 Sketch the graph of g(x) = - l½ xl + 4. 
There are three transformations that change y = lxl (the dotted curve in Figure 4-1 1)  into g(x) = - I½+ 4 (the solid curve in Figure 4-11 ) : 1 1 .  Multiplying x by 3 stretches its graph horizontally along the x-axis by a factor of 3. 2 .  Multiplying by -I reflects its graph across the x-axis 3. Adding 4 moves the graph up four units . 

' ' ' 

6 

', 2 ' ' 
' 1 ' / ', / 

-6 -5 -4 -3 -2 -1 

-1 

4 5 

Figure 4-11 
The graphs ofy = lxl ( dotted) and 

g(x) = 1- ¾ xl + 4  (solid) . 

4.2 1 Sketch the graph of h ( x) = 3-Ji;j - 4 without a graphing calculator. 
Three transformations are required to change y = ✓x (the dotted curve in Figure 4-12)  into h (x) = 3-Ji;j - 4  (the solid curve in Figure 4-12) : the absolute value within the square root function replaces all points for which x < 0 (via the technique of Problem 4.18 ) ,  multiplying the function by 3 stretches its graph vertically by a factor of 3, and subtracting 2 moves the graph down 2 units) . 
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- - - ►  

Figure 4-12 
The graphs of'y = ✓x ( dotted) 

and h (x) = 3#i - 4 (solid). 

-4 

I nverse Functions 

fv.\\c+-io\\s ½-l-1\o,.½- COl.\\ce\ o+-l-1\ev- .Pv.\\c+:io\\s ov.+-

4.22 Given_ the function s : {(-2, - l) , (- 1,�) , (o, l) , (l, 4) , (3, -9)}, define the inverse function, s -1 • 
2 

To generate the inverse of a function, reverse the coordinate pairs-if s(x) = y, then s-1 (y) = x. 

s- 1 : { (- 1, -2) , (¾ ,  - 1 ) , (1, 0) , (4, 1) , (-9, 3)} 

Rewrite s-1
, listing the domain elements from least to greatest. 

s- 1 : { (-9, 3) , (- 1, -2) , (1, 0) , (¾ , - 1 ) , c 4, 1)} 

4.23 Given f(x) graphed in Figure 4-13, sketch the graph of_t-1 (x) . 
5 

(-5,-3) 

(3,4) 
------ fix) 

4 

Figure 4-13 
The graph of a one-to-one function f ( x) . 

The graph of a function and its inverse are reflections of one another across the line y = x, as illustrated by Figure 4-14. 
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Chapter Four - Functions 

Figure 4-14 The dotted graph of a function J( x) and the solid graph of its inverse J-1 ( x) are reflections of one another across the line y = x. 

4.24 Given the function g(x) graphed in Figure 4-15, explain why g-1 (x) does not exist. 

-5 -4 -3 -2 -1 

5 

4 
3 

2 

-1 
-2 

-3 

Figure 4-15 The graph of function g(x). 

In order for a g-1 (x) to exist, g(x) must be one-to-one (as defined by Problem 4.3) . However, g(x) fails the horizontal line test, indicating that it is not one-to-one, and therefore does not have an inverse. According to the horizontal line test, any horizontal line drawn across a one-to-one function won't intersect that graph more than once. However, the horizontal lines y = -2 and y = -3 both intersect g(x) twice. 
x + 4 4.25 Given g (x) = -7-, find g-1 (x) . 

Rewrite g(x) as y. 
x + 4 

y = -7 Reverse the x and y variables, substituting x for y and vice versa. 
y + 4 

x = --
7 

5 1  
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--r\,\e BY"'-fli\ c,.P -P(?<) � .,,!- +- \ .P""'i\s \-li\e l-\c,v'iz.o\\\-"'-\ \'i\\e \-es\-. -rl-\01.\-'s wl-\y \-l-\e fvc,':,\e1M. 'i\\ch"J-es '"'> 0 wl-\'icl-\ SOl.yS \-O 
;;B�" "")::)c,l,\\- \-l-\e l-\OI.\.P c,.P \-l-\e fOI.YOl.):,c,\OI. \-O \-li\e \e.P\- o.P \-l-\e y-01.?<tS, ' \:,eC01.lhSe \-l-\01.\- w"'-Y yol.\ \\ fOI.SS \-l-\e l,\c,v'iz.o\\ """' \'i\\e \-es\-. (\.oo\:. """ \-li\e Bv"'-fli\ 'i\\ 4- \' .) 

-rhe le.Pt-ovev piece o.P jvotph .Pvc,I,\\ Fijt-we 4- l i;;, y = -� . 1 IS "l ve+lect-io\\ o.P t-he potvotbdot hotl-P +-hottB"+- Cl-\t- Ol-\t- by +-he veshict-io\\ x )! 0. 

Solve for y. Rewrite y as g-1 (x) . 7x = y + 4 y = 7x - 4  
g-1 (x) = 7x - 4 

Given .f(x) = :i'- + 1 (x 2': 0) , find .f-1 (x) . 
Rewrite f(x) as y. y = :i'- + l  Reverse x and y. x = y2 + l Solve for y. x - l = y2 ±✓x - l = y ±✓x - l  = r 1 (x) Note thatf-1 (x) doesn't equal both ✓x - l and -✓x - 1; only one of those equations is a reflection off(x) = x2 + 1 (x "#- 0) across the line y = x (as illustrated by Figure 4-16) : r 1 (x) = ✓x - l . Discard the negative radical. 

6 

5 

4 

2 

-6 - -4 - 3  -2 -1 , 
, , 

y = x 

/ / -1 JI 

J(x) = x'- + I ( x 2: 0) 

4 5 

Figure 4-16 Notice thatf(x) = :i'- + 1 and 
r 1 ( X) = ✓ X - J are reflections of one another across the y-axis. The equation y = -✓ x - 1, a byproduct of the inverse function creation process, is superfluous. 

x + 4  4.27 Verify that g(x) = -7- and g-1 (x) = 7x - 4 (from Problem 4.25) are inverses by demonstrating that g(g -1 (x) )  = g-1 (g(x) )  = x. Perform composition of functions using the method of Problems 4.7 and 4.8.  g (g- 1 (x)) = g (7x - 4) _ 1 ( ( )) -i ( x + 4) (7x - 4) + 4  g g X = g -7-7 
1x = x + 4 - 4  = x = x 
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4.28 Verify thatf(x) = i2 + I (x =J':. 0) and F 1 (x) = .Jx - I (from Problem 4.26) are inverses by demonstrating that J(J-' (x) )  = r (J(x) ) = X. 

1 (r 1 (x)) = 1(.Jx - I) : r l (J(x)) = r l (x2 + 1) 
I = (.Jx - 1 )2 + I : = -J(x2 + 1) - 1  = x - 1 + 1  

= x 

I 
I 
I 
I 
I 
I 

= x 

Asymptotes of Rational Functions 
fqlAOl.tiO�S o.P tL-\e l,\�tol,\cL-\c,1.ble c::A.ottec::A. n�e 

4.29 

4.30 

7 Identify the vertical asymptote to the graph of y = --. x - 3  If substituting c into the rational expression causes the denominator to equal 0, then x = c is a vertical asymptote off(x) , as long as the numerator does not equal 0 as well. Set the denominator equal to 0 and solve. x - 3 = 0 x = 3 Because x = 3 causes the denominator to equal O (and the numerator does not equal 0 ) ,  x = 3 is a vertical asymptote of the function's graph. 
- 3  Identify the vertical asymptotes to the graph of y = 

2 3x - 23x - 36 Set the denominator equal to O and solve the quadratic by factoring. 3x2 
- 23x - 36 = 0 (3x + 4) (x - 9) = 0 

I.P 
c ""'"'\:.es 

H"e +-op "'�.A 
+-1-.e boH01M o.P +-1-.e 

.PvO\c+-io� eql-\0\I 0, if
l-\Sl-\0\lly ""'e"'�s +-1-.eve's 
"' 1-.ole i� +-1-.e 8v"'pl,,., 
,� Cl-."'p+-ev I 0, yol-\11 
1.-\Se li1Mif-s +-o -fi8l-\ve 
Ol-\f- wl-.eve +-1-."'+-
l-.ole is. 

I.P +-1-.e �v.1Mev0\f-ov's 3x + 4 = 0  3x = -4 or 4 x - 9 = 0 
x = 9 

.Ae8vee is l-.i81-.ev +-1-."'� +-1-.e 
.Ae�o1Mi�O\f-ov's, +-1-.e .Pv.�cf-io� 
wo�'+- l...O\Ve "'�Y 1-.oviz.o�+-"'1 

4.3 1 

x = --Both x-values cause the denominator (but not the numerator) to equal 0, so they 4 are asymptotes to the graph: x = -3 and x = 9. x2 - 2x + 4  Identify the horizontal asymptote to the graph of g (x) = 
3 -2x - 16 

O\S)'IMpf-o+-es. 

Compare the degrees of the polynomials in the numerator and denominator to determine the equation of the horizontal asymptote (if it exists) . In this case, the degree of the numerator is 2, and the degree of the denominator is 3. When the denominator's degree is greater than the numerator's degree, the function has horizontal asymptote y = 0. 
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O\S)-'l,\\ptc,+-es OCCl.\v 011.ly wl-\e11. +-l-\e <AeBvee o.P +-l-\e '1.1.\1,\\evO\f-ov is 0'1.e '1.1.\1,\\bev BveO\f-ev +-l-\0\11. +-l-\e <AeBvee o.P +-l-\e .Ae'1.0l,\\i'1.0\f-Ov. 

--ro Be'r't-li\e eqv.e1.'r-io\\ o.P 't-li\e s\e1.\\'r- ,, _,, e1.Sy""'f'r-o'r-e, se'r- Y -'t-li\e .:Aivisio\\ vesv.\'r- e1.\\.:A co""'f\e'r-e\y l8\\ove 'r-li\e ve""'e1.i\\tAev. 
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4.32 

4 .33  

Identify the horizontal asymptote to the graph of h ( x) = ( 2x - 3)  ( x + 6) . 
< (4x - 5) (- 3x + l) Calculate the products in the numerator and denominator. 

( ) 2x2 + 9x - 18 h X = ------- 12x2 + 19x - 5 When the degrees of the numerator and denominator are equal, the graph of the function will have horizontal asymptote y = �, where a and b are the leading coefficients of the numerator and denominator, respectively. 2 1 
y = - = --- 12 6 3x2 - 13x + 4  Determine the equations of all asymptotes to the graph of f (x) = --2--

x - 9  The numerator and denominator have equal degrees, so the horizontal asymptote is equal to the quotient of their leading coefficients, as explained in Problem 4.32. 
3 y = - = 3 1 To determine the vertical asymptotes, factor the polynomials. ( ) (3x - l) (x - 4) 

f X = ------(x + 3) (x - 3) Set the factors of the denominator equal to O and solve to get x = -3 and x = 3 . Neither of those values causes the numerator to equal O as well, so both represent vertical asymptotes .  Therefore, the equations of the asymptotes to J(x) are x = -3, 
x = 3, and y = 3. 2x2 - 3x + 6  4.34 Find the equation of the slant asymptote to the graph of g (x) = -----. x + I  The slant asymptote is the quotient of the rational function ( omitting the remainder) . The divisor is a linear binomial, so synthetic division ( the method described in Problems 2 .18 and 2 .19) is the most efficient way to calculate the quotient. 

E!l 2 - 3  6 - 2  5 2 -5 1 1  The equation of the slant asymptote is the quotient: y = 2x - 5.  
. 5x3 - 30x2 - 4x + 24 Identify asymptotes to the graph of j (x) = 2 X + 2x - 4  

Because the degree of the numerator is exactly one greater than the degree of the denominator, j(x) has one slant asymptote and no horizontal asymptotes .  (Note that a rational function may have only one slant asymptote or one horizontal asymptote, but may have multiple vertical asymptotes. 
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To determine the slant asymptote, use polynomial long division, as outlined in 
Problems 2.16 and 2. 17. 

5x - 40 
x2 + 2x - 4) 5x3 

- 30x2 
- 4x + 24 

-5x3 
- 10x2 + 20x 

- 40x2 + 16x + 24 
40x2 + 80x - 160 

96x - 136 

The slant asymptote to j(x) is y = 5x - 40. To determine the vertical asymptotes of 
j(x) ,  set the denominator equal to 0 and solve using the quadratic formula. 

x2 + 2x - 4 = 0 

-2 ± ✓22 
- 4 (1) (-4) 

x = --------
2 · 1 

-2 ± J2o  
2 

-2 ± 2✓
5 

,2 (- 1 ± ✓
5

) 
= -----

= - 1 ± ✓
5 

The function j(x) has three a�mptotes:  the slant asymptote y = 5x - 40 and the 
vertical asymptotes x = - 1 - ✓5 and x = - 1  + ✓

5
. 
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Chapter 5 
LOGARITH M IC AN D EXPON ENTIAL 

FU NCTIONS 
Fl.\\\cf-ic\\s li�e lcB, "I<, l\\ "I<, ()\\ ()\\\cA e'/< 

Chapters 1-4 provide the opportunity to sharpen your skills in all _matters 
concerning variable expressions raised to real numbe_r �owers . This chapter 
be ins by investigating the reverse, expressions contammg real num�ers 

. 
rai�ed to variable powers . Whereas exponential rules hold true desp�te this 

1 new techniques must be mastered in order to properly mampul�te 
:::�::�ressions. Of course, one cann�t dis_cuss su�h an important function 
without exploring its inverse, the loganthmic function. 

-rl'\i.s cl'\o,.p½-ev .J.eo,.ls wi.½-l'\ expo\\e\\+-i.o,.l .PlA\\c+-i.o\\s, wl'\i.cl'\ look 1,1,\0ve li.\c.e >" ½-l'\o,.\\ x'. -rl'\e pvoble""'s .Peel vevy .J.i..P.Peve\\½- wl'\e\\ x i.s ½-l'\e expo\\e\\½i.\\s½-eo,..J. o.P ½-l'\e bo,.se. Fov O\\e ½-l'\i.\\8, yolA'll \\ee.J. so""'e wo,.y o.P \COl.\\celi.\\8 OlA½-11 >< expo\\e\\½-S i..P yov!ve evev 80l\\8 +-o solve .Pov x, 01.\\.J. ½-l'\o,.½- veql-\i.ves 1 080,.vi.½-l'\""'i.c .PlA\\c+-i.o\\s. Goo.J. \\ews 01.\\.J. bo,..J. \\ews: 1080,.vi.½-l'\""'i.c .PlA\\c+-i.o\\s (+-l'\e l\\Vevses o.P expo\\e\\½-i.o,.l .Pl-\\\c+-i.o\\s) veo,.l ly l'\elp yolA solve eql-\o,.+-i.o\\s ½-l'\o,.½l'\o,.ve >< l\\ ½-l'\e expo\\e\\i-; blA½- 1080,.vi.½-l'\""'s bvi.\\8 wi.½-l'\ ½-l'\e""' ½-l'\ei.v Ow\\ se+- o.P pvopev½-i.es OI.\\.J. vlAles. 
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Exploring Exponential and Logarithmic Functions 

How\\eSS "'n tl'\OSe powev-s 

A\\ expo\\e\\+-i<'\I .PL\\\ctio\\ C\h.v<'\ys 
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5. 1 Graph the function f(x) = 3x without a graphing calculator. 
Employ the most basic of graphic techniques :  substitute consecutive values of x into f(x) and plot the resulting coordinate pair. 

X j(x) - 1  J (- 1) = 3-] = .!. 3 
------� o J (0) = 3° = 1  1 f (1) = 31 = 3  2 J (2) = 32 = 9 

Because J (- 1) = ½, the point (- 1, ½) belongs on the graph. Similarly, the graph of 
f(x) includes the points (0,1 ) ,  (1 ,3) , and (2 ,9) ,  as illustrated by Figure 5-1 . 

- 10 - 8  

IO 

(- 1, ½) 2 

4 -2 

(2,9) 

Figure 5-1 
The graph of J(x) = 3 x. 

Note that the x-axis is a horizontal asymptote off(x) . Although negative values of 
x result in small f(x) values, 3' doesn't equal 0 for any x-value. 

5.2 Identify the domain and range of the generic exponential function g(x) = ax ( assuming a is a real number and a > l ) .  
Any real number can b e  substituted for x, but the positive real number a raised to any power (whether positive or negative) always results in a positive number. Therefore, the domain is (- 00,00 ) and the range is ,oo ) .  

5 .3  Sketch the graph of  y = 2-x - 1 without a graphing calculator. 
The graph of any exponential function y = a' will pass through the points ( 0,1) and ( 1 ,a) and have a horizontal asymptote of y = 0. Begin by graphing 
y = 2' as illustrated by the dotted curve in Figure 5-2. 
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-10 - 8  ---6 -4 

-2 

I 

t 

4 6 8 10 

Figure 5-2 The graphs of y = 2' (dotted) and y = 2-, - 1 (solid). 

To graph y = 2-x - l ,  perform two translations on the graph of y = 2x (as explained in detail by Problems 4.11-4.21 ) :  Substituting -x for x reflects the graph about the y-axis ,  and subtracting 1 moves the entire graph down one unit. 
5.4 Determine the domain and range of the logarithmic function h(x) = log3 x. 

Note that h (x) is the inverse function off(x) = 3', as defined in Problem 5 .1 .  Therefore, the domain off(x) equals the range of h (x) and vice versa. You can then conclude that the domain of h (x) is (0,oo ) and its range is (- 00,00 ) .  
5 .5  Solve the equation: log10 x = 2 .  

Rewrite the logarithmic equation as  an exponential equation and solve for x. 

5.6 Solve the equation: log4 x = -3. 
102 = x 
lOO = x 

Rewrite in exponential form and solve for x. 

5.7 Solve the equation: log5 625 = x. 

4-3 = x 1 - = x 43 1 - = x 64 

Rewrite the equation in exponential form: 5' = 625. Note that 54 = 625, so x = 4. 
1 5 .8  Solve the equation: log4 8 = x. 

Rewrite as an exponential equation. 

YOL\ 
CO\\\ h"'-\\SI01.t-e "'-\\Y !0� expv-essio\\ lo�,. x = b l\\rO O\b = X. 
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5.9 

Express the fraction as a negative exponent. 4, = 8-1 Rewrite the equation using exponential expressions with equivalent bases ( 4 = 22 and 8 = 23) .  

Two equivalent exponential expressions with equal bases must have equal exponents as well. 

Solve the equation: logx 16 = 2 .  
2x = -3  

3 
x = - -

Rewrite as an exponential equation and solve for x. x2 = 16 
x = ± 4 Only the solution x = 4 is valid; discard x = -4. 

5 . 1 0  Solve the equation: logx 8 1  = i-
Rewrite in exponential form. x413 = 81 To solve for x, raise both sides to the ¾ power. (x4/3 )3/4 = 813/4 

4 3 
X s °4 = (-t/81)3 

x = 27 

5. 1 1  Graph the function J(x) = log2 x without a graphing calculator. 
The domain of j(x) , like the domain of y = log3 x in Problem 5.4 or any other logarithm, consists only of positive numbers ; do not substitute negative x-values into J(x) as you plot points . The first column in the table of values below consists of the x-inputs, the second column substitutes x into J(x) , the third column is the equation expressed in exponential form, and the final column is the y-value that corresponds with x. 
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1\- \,,\e\ps t-o t,\.\'i\\� X f (x) = log2 x 2Y = x  y = f (x) 
\\\ t,ev�S 1 1 t".'oO'-'\- \0�2 )C \-. ) � t,\.\e e,cpo\\e\\ lt"- f a) = log2 a) -

2 
2y = - y = - l 

2 

2 YC\ise.A to tl-\e - I powev e9t\C\ls J__ 
2 ·  0 

\-\0\\ 'l,Y � ,c: 
�\,\\\C 1 f (1) = log2 l 2y = 1 y = O 

2 f (2) = log2 2 2y = 2 y = l 
8 J (8) = log2 8 2y = 8 y = 3 Because the x-axis is an asymptote to the graph of an exponential function, the yaxis is an asymptote to logarithmic graphs, as illustrated in Figure 5-3. 

6 

4 (8,3) 2 
Figure 5-3 -4 -2 2 4 6 8 10 The graph off( x) = lo& x. 

-4 (½ , - 1) 

-6 

-8 

-1 

5. 1 2  Sketch the graph of g (x) = - log3 (x + 4) without a graphing calculator. 
The graph of g(x) is simply the graph of y = log3 x with two transformations applied to it. Adding 4 to x shifts the graph left four units , and multiplying log3 x by -1 reflects the graph about the x-axis, as illustrated in Figure 5-4. 

10 
8 
6 
4 
2 

--4 I 

---8 
-1 

4 

- - - - - ... 
6 8 10 

Figure 5-4 
The graphs of y = log, x ( dotted curve) 
and g(x) = -log, (x + 4) (solid curve). 

6 1  
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Reoi.A 111\\ 1 1 '' 
II ois \\othwoil 108 0.p 

l "f'' cv jL\sf- veoi.A +-l,,.e le+-+-evs: i,L "I o.P 1 1." 
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t-\.\e loB of t-\.\e \:>Cl.Se Boes l� t-\.\e �e�OIMl�C\\-Ov. 

Natural Exponential and Logarithmic Functions 

V\\wvitte\\ boi.ses, boi.ses witl-\ e, oi.\\t:A cli\oi.\\Be a.P boi.se .Pav1Ml.\loi. 

5 . 1 5  

Define the terms "common logarithm," "natural logarithm," and "natural exponential function"; indicate the notation used for each. 
• 

• 
• 

The common logarithm has base 10 and is implied if no base is indicated: log x = log10 x. The natural logarithm has base e and is written In x: In x = log, x . The natural exponent1a unction has base e and is written e' . Use a calculator to determine the value of log 19, accurate to five decimal places, and interpret the answer. 
Note that log 19 = log10 19, because unwritten logarithmic bases are understood to be 10. Calculating log 19 is the equivalent of solving the equation log10 19 = x, which can be rewritten in exponential form: 10, = 19. According to the calculator, log 19 ;:::; 1 .27875, which means 10127875 ;:::; 19. Use a calculator to determine the value of ln 19, accurate to five decimal places, and interpret the result. 
Note that In 19 = log, 19, as any logarithmic expression written "In" instead of "log" is a natural logarithm and has an implied base of e. Calculating In 19 is the equivalent of solving the equation log, 19 = x, which can be rewritten in exponential form: e' = 19. According to the calculator, In 19 ;:::; 2 .94444, so & "1111 

;:::; 19. Because Euler's number, e, is approximately equal to 2 .7182818, you can also write 2.71828182 "1111 
;:::; 19. 5 . 1 6  Evaluate log3 25, accurate to four decimal places, using the change of base formula and a calculator. 

The change of base formula allows you to rewrite the expression log0 b as logb or 
lnb < < log a 

Ina ·  log 25 ln25 log 3 ln 3 1 .3979400087 3.2188758249 0.4771212547 1 .0986122887 2.92994704 . . .  = 2.92994704 . . .  Therefore, log3 25 ;:::; 2.9299. Note that there is no need to calculate the value twice, as both calculation methods return the same value. 
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5 . 1 7  Evaluate log6 10, accurate to four decimal places, using the change of base formula and a calculator. Apply the change of base formula. lnlO ""' 2.302585093 ""' 1 .2851 ln 6 I .791759469 
5 . 1 8  Verify the solution to the equation in Problem 5 .  7 (log5 625 = x) using the change of base formula and a calculator. 

Apply the change of base formula. log625 --- = x log 5 _lo�g�6_2_5 = 4 log 5 
5 . 1 9  Verify the solution to the equation in Problem 5.8 (1og4 ½ = x) using the change of base formula and a calculator. 

Apply the change of base formula. 

Properties of Logarithms 

1 ln-8 3 - = - l .5 = - -ln4 2 
f,cpC1.\\ol..i.\\B C1.\\ol.. sqv.i.sl-\i.\\B loB e,cpvessi.o\\s 

5.20 Rewrite as a single logarithm: log2 x + log2 5 + log2 y. 

The sum of logarithms with equal bases is equal to the logarithm of the product: log0 b + log0 c = log0 (be). log2 x + log2 5 + log2 y = log2 (5xy) 

5.2 1 Rewrite as a single logarithm: log 3 - (log 9 + log x). 

Rewrite the parenthetical expression, log 9 + log x, as log 9x (as explained in Problem 5.20) . Combine those first, according to the order of operations. log 3 - (log 9 + log x) = log 3 - (log 9x) 

lf yov. wvi.\--e J.eci.lMC\\ 
L" Of C\ffVO)<l\MC\,lO\\S \oB c:zs C\\\J. '0B 5 C\\\J. H,e\\ J.i.vi.J.e, yoJ\\ Be\-so1MeH,i.\\B \i.�e \--v.i.s: '2..7'!51'1?00 1"73 .,,, 4.000000000 \4'3. 0.,'!1?'170004'3 --rv.e veC\\ C\\\swev i.s L\ 4-\--v.e fvC\c\--i.O\\ e?<C\C-• 'I '-eCC\lASe V.C\S so1Me evvov .., 

1• 1 ,L v.se C\\\ of \--v.e '/OlA o-lo-\\' . ' i.\\�\\i.\--e\y 1MC\\\'f J.eCllMC\ o\C\ces. --rl-\C\\--'s wl-\y 
I \o� t:;'2.S" yov. sl-\ov.\J. \--yfe � J.i.vec\--\y i.\\\--O yov.v CC\\clA\C\\--ov, 'r;,eCC\lASe yoJ\\ C\voi.J. vOlA\\J.i.\\B 
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Chapter Five - Logarithmic and Exponential Fu nctions 

I.P +-wo l03s O\J..J..eJ.. 'oeco""'e o\\e l03 +-l'\O\+-'s ""'lAl+-ipli.eJ.., +-1,,,e\\ i.+""'O\kes se\\se +-1,,,0\+-+-wo l03s SlA'ohO\c+-eJ.. 'oeco""'e O\\e l03 +-1,,,0\+-'s J..i.vi.J..eJ..-+-1,,,ey've 

The difference of two logs with equal bases is equal to the logarithm of the . b quotient: loga b - loga C = loga -. 
C 

Reduce the fraction. 
3 = log-

9x 

1 = log-3x e,cO\c+- opposi.+-es o.P O\\e O\\\o+-1,,,ev. 5.22 Rewrite as a single logarithm: log 7 + log x - log 3 + log y - log z. 

-rv.e O\\\Swev i.s jlAfr O\ll o.P \-v.e ,08 VO\lL\eS wvi.\-\-e\\ t\\ o\\e .PvO\c\-i.o\\-0\ll \-v.e rosi.\-i.ve \o8s (like '"8 7 O\\\J.. '"B y) e\\J.. L\f i.\\ \-v.e \\L\IMeVO\t'OV, O\\\J.. O\" \-v.e \\e80\\-i.ve o\\eS (-\08 > O\\\J.. -\08 z.) e\\J.. L\f i.\\ \-v.e J..e\\OIMt\\0\\-ov. 

According to the order of operations, addition and subtraction should be performed from left to right. Begin by rewriting log 7 + log x as a single logarithm. �g 7 + �g x - �g 3 + �g y - �g z = �g h - �g 3 + �g y - �g z Again manipulate the two leftmost terms of the expression; rewrite log 7x - log 3 as a quotient using the logarithmic property discussed in Problem 5.21 .  7x = log - + log y - log z 3 Adding log 7; to log y results in a single log containing the product. 7xy = log - - log z 3 Finally, divide 7; by z, which is the equivalent of multiplying the fraction by the reciprocal of z. = log( 7xy + z) = log (7XJ · !) = log 7xy 3 3 z 3z 
5.23 Verify that 3 ln x = ln x' and, based upon your proof, extrapolate and prove an equivalent conclusion for log,, x' (if a and n are real numbers and a >  I ) .  

Rewrite 3 l n  x a s  a sum. 
J 1As+- li.ke -------------::➔ 3 ln x = ln x + ln x + ln x 

)< +- )< +- )< � >)< ov wz +- wz +- wz � >wz 
According to a logarithmic property (described in Problem 5.20 ) ,  the sum of logarithms with the same base is equal to the logarithm of their product. 3 lnx  = ln x  + lnx  + ln x  = In (x · x · x) = lnx3 

64 

Therefore, 3 ln x = X'. Expressed more generally, n log,, x = log,, x' . As justification, recall that n log,, x can be rewritten as the sum of n terms (where each term is log,, x) . n log a X = log a X + log a X + log a X + . . .  + log a X 

total of n terms 
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Rewrite the sum of the logarithms as a single logarithm of their products. log a X + Ioga X + log a X + · · · + log a X = log a (( X) ( X) ( X) • • • ( X )] = log a Xn 

total of n terms there are n 
factors of x Therefore, n loga X = loga X' . 

5.24 Rewrite as a single logarithm: S log x- 2 log y +  4 log (x - y). 

5.25 

Rewrite the coefficients of the logarithms as the exponents of their arguments, according to the logarithmic property n loga x = log,, x' , as explained in Problem S.23. S log x- 2 log y + 4 log (x - y) = log :>!' - log y2 + log (x - y) 1 The two leftmost logarithms are equivalent to a logarithmic quotient. 
5 = log \ + log (x - y)4 

y The sum of logarithmic expressions with equal bases is equal to the logarithm of their product. 
Expand the logarithmic expression: ln xy2 . Expanding a logarithmic expression requires you to apply logarithmic properties in order to rewrite a single logarithmic expression as multiple logarithmic expressions. Because xy2 is a product, rewrite the argument as the sum of two logarithms with equal bases .  ln xy2 = ln x + ln y2 Recall that log x' = a log x, so ln y2 = 2 ln y. = ln x +  2 ln y 

3 

5.26 Expand the logarithmic expression: log : . 
a Recall that log - = log a - log b. 
b log L = log y3 - logS 5 Substitute log y3 = 3 log y into the expression. = 3 log y - log S 

-rv.e 
\\ LIi owBlAIMe\\, 

o� °' loB tS 
wl-\0\\--evev's h\StJ-e 
t\---\--v.e °'vBlAIMe\\\-
o� 7 loB2 y, tS y,. 
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--r\.\e e?<rvessi.o\\ 

' 4., C\S�S \'4 v01.i.se� 
OB4 ' 

\-O w\.\Ol.t' rowev eqlAOI. S 
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5.27 Expand the logarithmic expression: log8 I 2x2 

3 ]. (x - y) The logarithm of a quotient can be rewritten as the difference of two logarithms. log8 2x2 - log8 (x - y) 3 The leftmost logarithm contains a product, which can be rewritten as the sum of two logarithms. = logs 2 + logs x2 - log8 (x - y) 3 Rewrite the exponents of the logarithmic arguments as the coefficients of their respective logarithms. = log8 2 + 2 log8 x - 3 log8 (x - y) 
Solving Exponential and Logarithmic Equations 

fa<fC\\e\\tS oi.\\t:A laBS coi.\\cel eoi.cli\ atli\ev av.t 

5.28 Simplify the expression: log4 43 • 

Apply the logarithmic property log x' = a log x, as described in Problem 5.23. log4 43 = 3 log4 4 Apply the change of base formula to the logarithm. 3 log4 4 = 3 ( 1n4 ) = 3 (1) = 3 ln4 This result demonstrates a fundamental logarithmic fact: log0 a" = n. 5.29 Simplify the expression: 310g' x. 
This expression is the result of the composition of functions f(g(x) ) ,  where 
J(x) = 3' and g(x) = log3 x. Because J(x) and g(x) are inverse functions, they cancel one another out, leaving behind only the argument of the inner function: 310g' x = x. Exponential and logarithmic functions with the same base (y = ax and 
y = log,, x) are inverses of one another. 

5 .30  Simplify the expression: ln  (e' · e"x) . 
Multiply the natural logarithmic expressions within the parentheses. ln (i' · ex) = ln l•x+ 4 Notice that the expression ln tf'x+ 4 is a composition of inverse functions, because In x and e' have the same base. Therefore, the functions cancel one another out, leaving behind only the argument of the inner function. ln e"x + 1 = 5x + 4 
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5 .3 1 Simplify the expression: e'n x- h, ,_ Rewrite the exponent using logarithmic properties .  (The difference of two logarithms with the same base is equal to a logarithmic quotient, as explained in Problem 5.21 . )  
eln x - l n  _1' = eln (x/_"I') The natural logarithmic and exponential functions are inverses of one another, so only the argument of the inner functions remains when the functions are composed. 

eln(x!y) = � 
y 

5.32 Determine the exact solution to the equation: 2x = 9. 
To eliminate the exponential function 2" on the left side of the equation, apply its inverse function log2 x to both sides of the equation. log2 2x = log2 9 

x = log2 9 Although you could use the change of base formula to approximate log2 9, the problem specifically requests the exact answer. Therefore, you should not estimate the solution: x = log2 9. 
5 .33  Determine the exact solution to the equation: 2 - e'' = -13. 

Subtract 2 from both sides of the equation to isolate the exponential function, then multiply the entire equation by -1 . -e5x = - 15 e5x = 15 

\o�h "I i.s "'-\\ i.vvO\\-lO\\"'-\ \\L\IM'oev, i.\-s J..eci.lM"'' r'"'ces \\evev \-evlMl\\"'-\-e ov vere"'t-, so "'-\\YH"i.\\B s_\l\ov\of "'-\\ i.\\..l,\\i.t-e\y \o\\B hs\of J..eci.lM"'-\s i.s�\- "'-\\ ExAc-r O\\\Swev. 

To eliminate the natural exponential function, take the natural logarithm of both sides of the equation. In e5• = ln l5 
5x = ln l5 lnl5  x = --

5.34 Determine the exact solution to the equation: 5 + In (x + 3) = 7. 
Isolate the logarithmic expression on the left side of the equation. In (x + 3) = 2 Exponentiate the equation to eliminate the natural logarithm. eln(x+3) = e2 

x + 3 = e2 

x = e2 - 3  
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5 .35  Determine the exact solution to the equation: log" 2x - log" 3 = log,, (4x - 19) . 
Apply logarithmic properties to rewrite log,, 2x - log,, 3 as a logarithmic quotient. 

2x log5 - = log5 ( 4x - 19) 3 Exponentiate the equation to eliminate the logarithms. 5log5 (2x/3) = 5log5 (4x-19) Because 5x and log,, x are inverse functions, they cancel one another out, leaving behind only the arguments of the logarithms. 
Solve for x. 

2x - = 4x - l9 3 
2x = 3 (4x - 19) 2x = l2x - 57 - lOx = -57 57 x = -10  

Determine the exact solution to the equation: log x + log (x - 2) - 1 = 0. Move the constant term to the right side of the equation. log x + log (x - 2) = 1 The sum of two logarithms with equal bases equals the logarithm of their product. log [x (x - 2)] = 1 log (x2 - 2x) = l ---� Exponentiate the equation to eliminate the logarithmic function. 
l0log(x2 -2x) = l0l x2 - 2x = 10  x2 - 2x - 10 = 0  Solve using the quadratic formula. - (- 2) ± ,J(- 2)2 - 4 (1) (- 10) x = 2 (1) 2 ± ✓44 

2 2 ± 2✓11 
2 = 1 ± ✓11 Discard the invalid solution x = l - ✓11 (logarithmic functions have a domain of 

x > 0) ; the only valid solution to the equation is x = l + ✓11. 



Chapter 6 
CON IC SECTIONS  

P"'-v-"').,ol"'-s, ci.v-cles, elli.pses, "'-\\J. l-\ypev-\..,c,l"'-s 

When a double-napped right circular cone is slice� by a plan�, the 
perimeter of the resulting cross section will be a orcle, an �lhpse, a 

h b 1 or a hyperbola . Hence, this family of four curves is kno:'1n as t e par� o a ,
t
_ 

L1" ke their graphs share a similar origin, the equations of come sec ions . 
h h h h their standard forms share similar characteristics as well ,  t oug eac as 

unique distinguishing features. 

This chapter explores the nuances of the equations that generate the co_nic 
sections and investigates how the constants and variables in those equations 
affect their graphs . 

Ql.\01..:Av-01.tic eql.\01.tia\\s l-\"'-ve Bv-01.pl-\s tl-\"'-t 01.v-e v-al.\B l-\ly l.\-sl-\01.pe.:A, tl-\"'-t 01.v-e C01.l le.:A \1p01.v-01.bal01.s.1' -rl-\e lA\ast abvial.\s .Pe01.tl.\v-e a.P "'- ql.\01..:Av-01.tic eql.\01.tia\\ is its .:AeBv-ee-a\\e a.P tl-\e V01.v-i01.bles is v-01.ise.:A ta tl-\e seca\\.:A pawev-, Ol.\\.:A it's tl-\e l-\iB l-\est e><pa\\e\\t i\\ tl-\e eql.\01.+-ia\\ (like y == ><2 
- 7>< + 2). -rl-\"'-t's 01.l l well Ol.\\.:A Baa.:A, bl.\t wl-\01.t l-\01.ppe\\s wl-\e\\ tl-\ev-e

1
s 0\\\ ><2 A ND "'- y2 i\\ tl-\e eql.\01.tia\\? -rl-\ase Bv-"'-pl-\s will be (OI.) civ-cles, (b) el l ipses, av- (c) l-\ypev-bal01.s. I\\ tl-\is cl-\01.ptev-, yal.\"'ll le01.v-\\ �aw ta Bv-"'-pl-\ 01.l l .Pal.\v- \::i\\.:As a.P ca\\ic sec+-ia\\s Ol.\\.:A l-\aw ta lA\01.\\ipl.\l01.te 0\\\ eql.\01.tia\\ sa it's e01.sy ta Bv-01.pl-\ . 
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Chapter Six - Conic Sections 

Parabolas 
GvC\pll\s o.P ql.\C\ol..vC\+:i.C eql.\C\+:i.O\\S 

6. 1 Write the equation of the parabola in standard form and identify its vertex: 
y = i2 + 6x - 4. 
Add 4 to both sides of the equation so that the right side contains only x-terms. 

y + 4 = x2 + 6x Complete the square on the right side of the equation: take half of the xcoefficient (½ - 6 = 3), square the result (32 = 9 ) ,  and add that number (9) to both sides of the equation. 
y + 4 + 9 =  x2 + 6x + 9  y + l3 = x2 + 6x + 9  Factor the trinomial. 

Solve for y. 

y + l3 = (x + 3) (x + 3) y + l3 = (x + 3)2 

The standard form of a parabola is y = a(x - h) 2 + k, , so in this problem a = 1 ,  
�h =  -3,  and k = -13. The vertex of a parabola in standard form is (h,k) = (-3,-13) . 

6.2 Write the equation of the parabola in standard form and identify its vertex and axis of symmetry: y = 2x2 
- l 6x - 1 .  

Move the constant to the left side of  the equation. 
y + l = 2x2 - 16x Complete the square on the right side of the equation. To do so, the coefficient of the i2-term must be 1. Divide the entire equation by 2 ( the x2-coefficient) to accomplish this. 
y l 2 - + - = x - 8x 
2 2 

1 The square of half the x-coefficient is 16 :  - (-8) = -4, and (-4) 2 = 16;  add 16 to both sides of the equation. 2 
y l 2 - + - + 16  = X - 8x + 16  
2 2 Add the constants on the left side of the equation and factor the right side. 



Multiply the entire equation by 2 to eliminate the fraction;  solve for y. 

Chapter Six - Conic Sections 

-r\i\e C\J<lS 

of SY""""e\-vy 

tS "' fo\e \--\i\C\t' 

y + 33 = 2 (x - 4)2 

y = 2 (x - 4)2 
- 33 

ClAt'S vtB\i\\-- J-ow\\ \--\i\e 

1MtJ-J-,e of "' f"'v"'"0'"' 

\--\i\vOlAB\,\ lt'S vev\--eJ<. 
w\i\e\\ St'C\\\d-C\Vd- fo�IM 

The equation is now in standard form, y = a (x - h) 2 + k; therefore, a = 2 , h = 4, and 
k = -33. The vertex of the parabola is (h,k) = (4,-33) ,  and the axis of symmetry 
is X = 4. 

6 .3  Write the equation of the parabola in standard form and identify its vertex: 
-y2 + 3x + 5y - 7 = 0. 

Notice that this equation (unlike Problems 6.1 and 6. 2 ) contains a y2-term rather 
than an x"-term. Though the process is similar to those problems, the end result is 
an equation solved for x ( not y) with standard form x = a (y - k) 2 + h. 
Isolate the y-terms on the right side of the equation. 

• i \--\i\e C\J<lS 
CO\\t'C\l\\S J< , 

of SY""""e\-vy ts \--\i\e 

vev\--lC"'' 't\\e J< -:=- \i\. 

Tl-.e 
<>l.i.P.Peve\\ce 

bei-wee\\ i-l-.e 
Si-0t.\\<>l.ow<:>1. .Pov'-'\ o.P 2 Cl 

Y P°'-Y0t.bol0t. Ot.\\<>I. °'-\\ .,_2 3x - 7 = y2 - 5y 

Complete the square. 
p
�

v0t.bol0t. is i-l-.e posii-io\\ o i-l-.e V0t.vi0t.bles: x °'-\\<>I. 

Multiply both sides of the equation by 4 in order to eliminate the fraction; solve 
for X. 

� e

2

�

- 3

) 
= 4 (y -

zr 

1 2x - 3 = 4 (y -
zr 

12x = 4 (y -
zr + 3  

1 1 
The parabola is now in standard form, x = a (y - k) 2 + h, with a = - , h = - , and 5 ( 1 5 ) 3 4 
k = - . The vertex of the parabola is (h,k) = - , -

2 4 2 

Y 0t.ve swii-cl-.e<:>1. 
Ol.\\<>I_ SO Cl.Ye [,.. 

Ol.\\<>I. k. 

"' fC\YC\t>°'"' l\\ 

St'C\\\d-C\Yd- fovlM lS 

wvt\--\--e\\ l\\ \--evlMS of y 

(n\:.e \--V\lS O\\e), \:. lS \--l-\e 

OffOSt\--e of \--l-\e \\lAIM't>ev 

l\\ f"'ve\\\--l-\eses C\\\d- l-\ 

lS \--l-\e CO\\St'C\\\t'. -r\i\e 

vev\--eJ< tS St'n, (l-\,\:.)-
\--l-\ose coovJ-t\\C\t'eS "'ve 

eJ<C\Ct'')' \--l-\e SC\IMe C\S 

fC\YC\t>O,C\S Wlt'V\ -,,?- l\\ 

\--l-\elM. 

7 1  
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6.4 Write the equation of the parabola in standard form and identify its vertex and axis of symmetry: x - 9y2 + l8y + 6 = 0. This equation contains y2 , so you should rewrite it in standard form x = a (y - k) 2 + h. Move all y-terms to the right side of the equation. 
X + 6 = 9y2 - I8y Divide all of the terms by 9 to ensure the coefficient of y2 is 1, so that you can complete the square. Solve for x. 

X 6 9y2 18y - + - = - - -9 9 9 9 x + 6  -- = y2 - 2y 
9 x + 6  2 -9- + l = y - 2y + l  

x + l5 = (y - l)2 9 x + l5 = 9 (y - 1)2 x = 9 (y - 1)2 - 15 This is the standard form of the parabola x = a (y - k) 2 + h ,  where a = 9, h = -15, and k = l ,  so the vertex is (h,k) = (-15,1 ) .  A parabola written in terms of y has axis of symmetry y = k, so the axis of symmetry of this parabola is y = l .  
6 .5  Graph the parabola defined in  Problem 6 .1 :  y = x2 + 6x - 4 . 

According to Problem 6.1 ,  the standard form of the parabola is y = (x + 3) 2 - 13. Graph the parabola by applying two basic transformations to the graph of 
y = :i2. Adding 3 to x shifts the graph left 3 units , and subtracting 13 shifts the graph down 13 units . 

-10 ---1l 

vertex = (-3,-13) _/ 

2 4 10 Figure 6-1 The dotted graph of y = :i2 and the solid graph ofy = ( x + 3 )2 
- 13. All parabolas containing an :i2-term either open upward or downward, whereas parabolas written in terms of'y either open left or right. 
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6.6 Graph the parabola defined in Problem 6 .3 :  -y2 + 3x + 5y - 7 = 0. 
I 

( 
5

)
2 I According to Problem 6.3, the parabola has standard form x = - y - - + -. The 3 2 4 graphs of parabolas containing y2-terms are not functions, because they fail the vertical lin�t. Thus, function transformations (such as those demonstrated in Problem 6.5) are not a reliable method to graph this equation. Instead, you should plot points ; substitute a variety of values for y to get the corresponding xvalues and graph the coordinates that result. Since the vertex is located at (¾ ,¾), 5 use y-values close to -. 2 

y = O y = I 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

x
=

H-%r + ¾  x
=

H-¾r + ¾  
= ½ (�) + ¾

= � = ½ (�) + ¾
= I 

5 
y = -

- - - - - - - - - - - - - - -

X = _!_ ( 0 )2 

+ _!_ = _!_ 3 4 4 

y = 3 y = 4 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

x
=

H½r +¾  x
= ½Gr +¾  

= ½ (¾) + ¾
= ½ = ½ (�) + ¾ = I 

According to this table of values, the points (f ,o) , (1 ,1 ) ,  (¾ ,¾) , (½ ,3) , and (1 ,4) belong on the graph, as illustrated by Figure 6-2 . 
6 

5 

4 
3 

2 

-1 
-2 

Figure 6-2 The graph of the parabola -i + 3x + 5y - 7 = 0 opens to the right. 

6. 7 Identify the focus and directrix of the parabola: 2x2 + 20x - 3y + 9 = 0. Rewrite the parabola in standard form. Divide the equation by 2, so that the coefficient of x2 is 1, and complete the square. 

A vev\-lCC\' fo\e 
CC\\\\\O\- i.\\\-evsec\
t-\.\e BvC\r\.\ of C\ 

f lA\\C\-lO\\ \MOVe t,\.\C\\\ 
O\\Ce. 
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O\\e 
J,ivtJ..eJ.. 

'oy C\ .PvC\ci-tel\\ 

eqlAC\'S t-\.\e 

vec'tfvelCC\' Cl-P 
,
t-\.\e 

.PvC\ci-tel\\ 'fellli.Ye 

J,.tVtJ..t\\B 'oy. 

1-P C\ tS \\eBC\t-tve, 
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2x2 20x 3y 9 0 
- + - - - + - = -

2 2 2 2 2 
3y 9 2 - - - = x + IOx 
2 2 

3Y - � + 25 = x2 + IOx + 25 
2 2 

3Y - � + 
50 = (x + 5) (x + 5) 

2 2 2 
3y + 41 

( )2 --- = x + 5 
2 

3y + 41 = 2 (x + 5)2 

3y = 2 (x + 5)2 - 41 
2 2 41 

y = 3 (x + 5) -3 

Standard form of the parabola is y = a(x  - h ) 2 + k, so a = ¾, h = -5, and k = -¥- In 

order to determine the focus of the parabola, first define the constant c = ILi· 
1 

C = t (¾) 
c = (¾) 

3 
c = -

It is important to note that a = ¾ is positive, because that means the parabola's 
focus is above its vertex and its directrix is below the vertex. Any such parabola 
has focus ( h,k + c) and directrix y = k - c. Substitute the values of h, k, and c into 
those formulas . 

Focus = (h, k + c) 

= (- 5 _ 41 + �) 
' 3 8 

= (- 5 
- 328 + 9 ) 

' 24 

= (- 5 _ 319
) ' 24 

Directrix: y = k - c 
41 3 

y = - - - -
3 8 
328 9 

y = - - - -
24 24 

337 
y = - -24 
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6.8 Identify the focus and directrix of the parabola: y2 + 3y + 5x + 2 = 0. Rewrite the parabola in standard form x = a (y - k) 2 + h by completing the square. - 5x - 2 = y2 + 3y 
9 2 9 - 5x - 2 + 4 = y + 3y + 4 

-5x - ¾
+

� 
= (y +

i) (y +
i) 

coe.P-ficie\\f- is J__ 2_ "3 
2 2 I -z, Ol.\\d. /1 l - ., ., C2' - -;;;:-, so 0t.d..A :,;: +-o 

( 3 )2 1 -5x = 
y

+ 2 4 boH\ si.Aes. 
x = -

¼(y +
if + 210 1 1 3 Therefore, a = - -, h = -, and k = - -; calculate c. 5 20 2 

, - 1�1 - m(-¾l - (-
1
¾) - l-¾H 

When the parabola contains a y2-term and a <  0, the focus is left of its vertex and the directrix is right of the vertex. Specifically, the focus is (h - c, k) and the directrix is x = h + c. Focus = (h - c, k) 

= ( 210 - ¾ ,-%) = ( 1 - 25 - �) 20 ' 2 
= (- !� ,-!) 
= (-� ,-u 

Directrix: x = h + c 1 5 x = - + -20 4 1 25 x = - + -20 20 26 x = -20 13  x = -10  
6.9 Write the equation of the parabola with focus (-1 ,3) and directrix y = l in standard form. As noted in Problem 6.7, a parabola that contains an x2-term has a horizontal directrix. (A parabola with a y2-term has a vertical directrix, as demonstrated by Problem 6.8. )  Therefore, you should use standard form y = a (x - h) 2 + k. The vertex (h,k) of the parabola has the same x-value as the focus, so h = -1 . Furthermore, it is equidistant from the directrix and the focus; therefore, k is the average of the y-coordinate of the focus and the constant in the directrix equation. 3 + 1  k = - = 2 

2 
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-rl-.e 

-f!ocL\s is (- 1 ,'3) 
ct\\.A +-l-.e vev+-ex is 

(l-.,\c.) ==- (- 1 ,2.). 'SL\bhcicf
+-l-.e y-vcil L\es +-o 8e+-

c, ct\\.A IMci\c.e SL\ve c is 
�osif-ive! By +-l-.e wciy, c 
1s cilso +-l-.e .Ais+-ci\\ce 

bef-wee\\ +-l-.e 

Note that c is the vertical distance between the vertex and the focus ; calculate the absolute value of the difference of their y-values :  c = 1 3 - 21 = 1. Calculate a using the formula from Problems 6.7 and 6.8, but omit the absolute value signs. 1 
c = -

4a 1 l = -
4a 

4a = l 1 
a = -

You must now determine whether a is positive or negative. According to Problem 6.7, when a parabola's focus is above its vertex, a >  0. Therefore, a = ¾, h = -1 , and k =  2. 
y = a(x - h)2 + k  y = _!_ (x - (- 1))2 + 2  4 

1 2 y = 4 (x + l) + 2  
Circles 
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Ce\.\tev + vC1.�i.lhs ==- vol.\\.\� sl'\C1.pes Cl.\.\� eC1.sy pvo'bletMS 

6. 1 0  

-6 

Graph the circle with center (-3,0) and radius 2 . 
Plot the center point on the coordinate plane, and then mark the points 2 units above, below, right of, and left of the center, as illustrated by Figure 6-3. Draw the graph of the circle through those four points . 

3 

2 

-4 -3 -2 

-1 
-2 

-3 

2 
Figure 6-3 The graph ofa circle with center (-3, 0) and radius 2. 
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6. 1 1  If points A = (-4,l) and B = ( 6,-5) are the endpoints of line segment AB, such that AB is a diameter of circle C, find the center and radius of C. The center of the circle is located at the midpoint of the diameter, so apply the midpoint formula (as described in Problem 1 .8 ) . 

( -4 + 6  l + (- 5) ) ( 2 -4 ) center = -2- , 2 = 2 ,2 = (1, - 2) 

The radius is half the length of the diameter. Calculate the diameter's length using the distance formula (as described in Problem 1 .9) and divide the result by 2 .  
. AB ✓(6 - (-4))2 + (-5 - 1)2 

radius = - = -
--------

2 2 

6. 1 2  Identify the center and radius of the circle : ( x  + 9) 2 + (y - 1 ) 2 = 16. PL\11 +-he co"-s+-oi"+-s OL\f- o.P +-he S9L\oive.A bi-The standard form of a circle is (x - h) 2 + (y - k) 2 = r, where (h,k) is the center of "-0"'1ioils"-jL\Sf- "'1oike the circle and r is the radius. In this example, (h,k) = (-9,1 ) .  he radius is equal to SL\ve YOL\ PL\11 OL\f- +-h the square root of the constant on the right side of the equation. �-------/ opposi+-es o.P f-1. e 
V\e '1.L\1a1-r2 = 16  bevs Si'1.ce +-he s1-. .A rot\\-

r = 4 �v.A .Pov1a1 C0'1.f-oti'1.s -V\ oi".A -k. Though r =  -4 is a valid solution to the equation r = 16, it is not a valid radius ; the radius of a circle must be positive. 
6. 1 3  Rewrite the equation of the circle in standard form: :i2 + y2 -4x + l2y - 10 = 0. 

Write the x-terms in descending order of degree, leaving empty space before listing the y-terms. (You will use this space to complete the square in the next step.)  Then write the y-terms in descending order of degree (leaving space before the equal sign) . Move the constant by adding 10 to both sides of the equation. 
x2 

- 4x + y2 + 12y = 10  Complete the square twice ( once for the x-terms and once for the y-terms) ,  adding both constants to the right side of the equation to maintain equality. 
x2 - 4x + 4 + y2 + 12y + 36 = 10 + 4 + 36 (x - 2) (x - 2) + (y + 6) (y + 6) = 50 (x - 2)2 + (y + 6)2 = 50 coe�ci.e'1.+- i.s -2 "'"J- C-2)2 ==- 4. 1-\e,W +-l-\e y-coe-P-fici.e'1.+- i.s , "'"J- e,2 ==- '3C.. AJ-J- 4 "'"J- '3C. +-o +-l-\e le-P+- si.J-e o.P +-l-\e eqw,,+-i.o\\ i.\\ +-l-\e \;:,l"'"� sro+-s "'"J- e,J-J-'oo+-l-\ o.P +-l-\e1M +-o +-l-\e vi.Bl-\+- si.J-e e,lso. 
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Chapter Six - Conic Sections 
6 . 1 4  Rewrite the equation of the circle in standard form: i2 + y2 + 7x - 2y + 6 = 0. Use the method of Problem 6.13 (completing the square twice simultaneously) to reach standard form. 

2 49 2 49 x + 7x + - + y - 2y + l = - 6 + - + l  
4 4 

( 7
)

2 
2 29 x + 2 + (y - 1) = 4 Recall that the standard form of a circle is (x - h) 2 + (y - k) 2 = r; therefore, h = -�, 

k = l ,  and r =  t = �- The center of the circle is (-� ,1), and the radius is �-6. 1 5  Identify the center and radius of the circle : 2i2 + IOx + 2y2 - 7y + 12  = 0. 
In order to complete the square, the coefficients of the x2

- and y2-terms must be 1 .  Note that they are equal, so divide all terms in the equation by the shared coefficient. 2x2 IOx 2y2 7y 12  0 - + - + - - - + - = -2 2 2 2 2 2 7 x2 + 5x + y2 - - y + 6 = 0 2 Rewrite the equation in standard form by completing the square once for the xterms and again for the y-terms. 
2 25 2 7 49 25 49 

X + 5x + - + J - - y + - = - 6 + - + -4 2 16 4 16 
(x + �) (x + �) + (y - 7..) (y - 7..) = - 96 + 100 + 49 2 2 4 4 16 16 16 (x + ir + (y - ir = �! The center of the circle is (-¾ , i) and the radius is Jff = �. 

6. 1 6  Graph the circle : 5 i2  - 30x + 5y2 + 5y + 40 = 0. 
Rewrite the equation in standard form using the method outlined by Problem 6.15.  Divide all terms of the equation by 5, the coefficient shared by the i2- and y2-terms. x2 

- 6x + y2 + y = -8 
2 2 1 1 

X - 6x + 9 + J + J + - = - 8  + 9 + -
4 4 

(x - 3) (x - 3) + (y + ½) (y + ½) = 1 + ¾ 
(x - 3)2 + (y + ½r = ! 
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The center of the circle is (3,-½) and the radius is J! = �- Use a calculator to find a decimal approximation of the radius ( � """ 1 .l l8) and graph using the method outlined in Problem 6.10. The solution is illustrated in Figure 6-4. 
2 

-1 
-2 

-3 

5 Figure 6-4 The graph of the circle 5x2 - 30x + 5y2 + 5y + 40 = 0 is centered at (3,-¾) 

El l ipses 

f C\\.\cy wov� .Pov ''ovC\ls" 

Note: Problems 6.17-6.18 refer to the ellipse graphed in Figure 6-5. 6. 1 7  Calculate the lengths of the major and minor axes of the ellipse and identify the vertices. 

(-5,1) 

-6 -

(-2,-4) 
-5 

( 1 ,1 ) Figure 6-5 The graph of an ellipse and the endpoints of its major and minor axes. 

The major axis of the ellipse has endpoints (-2,6) and (-2 ,-4) . Its length, therefore, is the distance between those points . Note that endpoints are on the same vertical line (x = -2) ,  so the distance between the points is the absolute value of the difference of the y-coordinates :  l-4 - 6 1  = 10. 
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0.p \-\.\e 1Mi.\\ov C\?<i.S C\ve i.lMfov\-C\\\\-, \;>IA\- \-\.\ey've \\O\vev\-i.ces-C\\\ e\\i.fse V-C\S \-wO vevHces, \\0\- fOl,\V. 

IM�OY Ot.XiS is koviz.o\\i-0t.l, °'Ot.\\.A b Sw0t.p pl0t.ces: (x - k/ (y - k/ -i-- + - = 1  
"" \, 2 

• 'Si-id:. °'- L\\\.Aev\\e0t.i-k i-ke V0t.vi0t.ble (x ov y) whose Ot.xis [Joes i\\ i-ke S0t.1Me .Aiveci-io\\ Ot.S i-ke IM�ov Ot.xis. I\\ PvoblelM '·  ' &', +-he IM�ov 0t.xis is vevi-ic0t.l, so si-id:. °'- L\\\.Aev i-ke yV0t.vi0t.ble Si\\ce i-ke 
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y-0t.xis is 0t.lso vevi-ic0t.l. 

The endpoints of the minor axis are (1 , 1 )  and (-5,1 ) ;  its length is l-5 - 1 1 = 6, the difference of the x-coordinates .  Note that the major axis is always larger then the minor axis of an ellipse, and only the endpoints of the major axis are considered the vertices of the ellipse : (-2,6) and (-2 ,-4) . 
Note: Problems 6.17-6.18 refer to the ellipse graphed in Figure 6-5. 6. 1 8  Write the equation of the ellipse in standard form. The standard form of an ellipse with a vertical major axis is (x -,h)' + (y -,k)' = 1 ,  

b a where (h,k) is the center of the ellipse, a is half the length of the major axis, and b is half the length of the minor axis. Apply the midpoint formula to the endpoints of the major axis to determine the center of the ellipse. 
( - 2 + (- 2) 6 + (- 4) ) = ( - 4  �) = (- 2 1) 2 ' 2 2 ' 2  ' Therefore, h = -2 and k = l .  (Note that the midpoint of the minor axis also marks the center of the ellipse-both midpoints are equal, because the center marks the point at which the axes bisect one another. ) According to Problem 6.17, the length of the major axis is 10 and the length of the minor axis is 6, so a = 10 + 2 = 5 and b = 6 + 2 = 3. Plug h, k, a, and b into the standard form equation to generate the equation of the ellipse. (x - h)2 (y - k)2 

--
2 - + 2 = l 

b a (x - (- 2))2 {y - 1)2 32 + 52 = l (x + 2)2 {y - 1)2 --- + --- = l 9 25 
Note: Problems 6.19-6.20 refer to the ellipse graphed in Figure 6-6. 6. 1 9  Determine the values of a and b required to write the equation of the ellipse in standard form. 

(- 3, ½) -4 

4 ( 1 ,3) 

(s, f) Figure 6-6 
2 6 The endpoints of the major and minor 

axes of an ellipse. 

-3 
( 1 ,-2) 

--4 

The horizontal axis, connecting points (-3,½) and (5,½) , is 8 units long; the vertical axis, connecting points (1 ,-2) and (1 ,3 ) ,  is 5 units long. Since 8 > 5, the horizontal 
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axis is the major axis, and a is equal to half its length: a = 8 + 2 = 4. Similarly, b is half the length of the remaining axis : b = t 

Note: Problems 6.19-6.20 refer to the ellipse graphed in Figure 6-6. 6.20 Write the equation of the ellipse in standard form. 
Identify the center of the ellipse by calculating the midpoint of the major ( or minor) axis. ( - 3  + 5 1 / 2  + 1 / 2 ) = (� .!.) = (1 .!.) 2 ' 2 2 ' 2  ' 2 
Therefore, h = l and k = ½- According to Problem 6.19, a = 4 and b = i- Substitute these values into the standard form of an ellipse with a horizontal major axis. ( x - h )2 {y - k )2 

--2 - + 2 = l 
a b (x - 1)2 {y - 1 / 2)2 --- + ---- = l 42 (5 / 2)2 (x - 1)2 {y - 1 / 2)2 --- + ---- = l 16  25 / 4 

6.2 1 Write the equation of the ellipse in standard form: x2 + 4y2 
- 8x + 24y + 36 = 0. 

Group the x- and y-terms together and move the constant to the right side of the equation. 
x2 - 8x + 4y2 + 24y = -36 Reaching standard form requires you to complete the square twice, in a process similar to writing equations of circles in standard form (see Problems 6.13-6.16) . However, the x2- and y2-coefficients of an elliptical equation are usually unequal, -=--so rather than dividing by a shared coefficient (like in Problems 6.14 and 6.15) , you factor out the leading coefficients . In this problem the coefficient of y2 does not equal 1, so factor 4 out of the y-terms. x2 - 8x + 4 {y2 + 6y) = - 36 Complete the square for the x-terms, and work within the parentheses to complete the square for the y-terms. x2 - 8x + l6 + 4 {y2 + 6y + 9) = - 36 + 16 + 4 (9) Although you add 9 to create the trinomial y2 + 6y + 9, that expression is multiplied by 4, so you must add 4 (9) = 36 to the right side of the equation in order to maintain equality. (x - 4)2 + 4 {y + 3}2 = - 36 + 52 (x - 4)2 + 4 {y + 3}2 = 16 

8 1  
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6.22 

6 
5 

4 
3 

2 

1 

1 

The right side of an elliptical equation in standard form equals 1 ,  so divide the entire equation by 16 and reduce the resulting fractions. (x - 4)2 4 (y + 3)2 16  --- + ----16 16  16  (x - 4)2 (y + 3)2 --- + �-� = l 16  4 
Rewrite the ellipse in standard form and graph it: 9x2 + y2 - 90x - 4y + 220 = 0. 
Apply the method outlined in Problem 6.21 :  Regroup the variables, move the constant, factor the x2-coefficient out of the x-terms, complete the square twice, and divide by the constant on the right side of the equation. 

9x2 - 90x + y2 - 4y = - 220 9 (x2 - lOx + 25) +  y2 - 4y +  4 = -220 + 225 + 4 9(x - 5)2 + (y - 2)2 = 9 9 (x - 5)2 (y - 2)2 9 ---- + ---9 9 9 (x - 5)2 (y - 2)2 --- + --- = l 1 9 Compare the denominators . Because 9 > 1, a2 = 9 and b2 = 1 (a2 is always the larger denominator) . The ellipse has a vertical major axis because a2 appears below the y binomial, so apply the standard form equation (x -,h)' + (y -,k)' = 1, where h = 5, k =  2 , a = ✓9 = 3, and b = ✓I = l. b a To graph the ellipse, first plot the center: (h,k) = (5,2) .  Plot the vertices by marking points three units above and below the center (since a =  3 and the major axis is vertical) . Finally, plot the endpoints of the minor axes, which are one unit left and right of the center. As illustrated by Figure 6-7, the graph of the ellipse passes through all four endpoints . 

• 

1 2 3 

Figure 6-7 
The graph of the ellipse 
9x2 + y2 - 90x - 4y + 220 = 0, has center 
(5,2), a vertical major axis 6 units in 
length, a horizontal minor axis 2 units 
in length. 
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6.23 Write the equation of the ellipse in standard form and identify the lengths of its major and minor axes: :i2 + 16y2 + 32y + 12 = 0. 
Apply the technique described in Problem 6.21 ,  but note that you do not have to complete the square for the x2-term. 

x2 + 16y2 + 32y = - 12 
x2 + 16 (y2 + 2y + l) = - 1 2 + 16 (1) 

x2 + 16 (y + 1 )2 = 4 
x2 16 (y + 1)2 4 - + -��-4 4 4 
x2 4 (y + 1)2 - + --- = l 4 1 This equation is not yet in standard form because (y + 1 )  2 has a coefficient of 4 and neither squared term has a coefficient in standard form. To remedy this, write the reciprocal of the coefficient (¼) in the denominator of the fraction that contains it. 

x2 (y + 1)2 - + �� = l  
4 1/ 4 In this equation, h = 0, k = -l , a = ✓4 = 2, and b = Jf = i- The major axis has length 2a = 2 (2)  = 4, and the minor axis has length 2b = 2 (i) = 1 .  

6.24 Find the coordinates of the foci of the ellipse (x - 5)2 

+ 
(y + n)2 = 1. 25 16 

Note that a2 = 25 and b2 = 16;  substitute these values into the formula c = .Ja2 
- b2 to determine the distance between the center of the ellipse and either of its foci. c = .J25 - 16 

c = ✓9 

i.s \-l-\e SO\""'e O\S ""'1,,JHr'yi.\\B by 
0\ veci.rvoCO\' (see f>vob'e""' '3. \'3), so i.\\,\,\0\\:.es se\\se \-l-\t"\""'1A'Hr'yi.\\B by 4 i.s \-l-\e SO\""'e O\S J..i.vi.J..i.\\B by l .  4 

A l'O\YO\bO'O\ 
V\O\S O\\e .PoclAS, °blAt' 0\\\ emrse V\OI.S \-wO -Poci. O\\ i.\-s ""'ajov "'-><i.S. c = 3 -rl-\e J..i.sh,,\\ce .Pvo""' \-l-\e The center of the ellipse is (h,k) = (6 ,-1 1 )  and its major axis is horizontal, so the foci are 3 units left and right of the center. 

(h - c, k) and (h + c, k) (6 - 3, - l l) and (6 + 3, - l l) (3, - l l) and (9, - l l) 
ce\\\-ev \-o ei.\-l-\ev .PoclAS lS C ,:J(}l.1-

- 'o2 
• 
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6.26 

Calculate the eccentricity of the ellipse from Problem 6.24:  ( X - 6 )2 (y + 11 )2 �-� + �-�- = I. 25 16 
C The eccentricity of an ellipse is calculated according to the formula e = -, where � . a c = '\la- - o- . Accordmg to Problem 6.24, c = 3 and a =  5. 

C 3 e = - = -
a 5 Calculate the eccentricity of the ellipse accurate to three decimal places :  (x + 7)2 + (y - 5)2 = I. 6 18 

Substitute, a2 = 18 and b2 = 6 into c = .J a2 - b2
• 

C = ✓18 - 6 
c = J0. c = 2✓3 

Apply the eccentricity formula defined in Problem 6.25.  
e = !:_ = 2✓3 = 2✓3 (✓2 ) = 2✓6 = ✓6 

a 08 3✓2 ✓2 6 3 Use a calculator or other computer computational tool to calculate the decimal equivalent: e ::::: 0.816. 
6.27 Prove that an ellipse with eccentricity 0 is a circle. 

C If the eccentricity of an ellipse equals 0, then e = - = 0. In order for this fraction 
a to equal 0, its numerator must equal 0, so assume that c = ✓a2 

- b2 = 0. Solve the equation for a and disregard negative values for a and b. (Because they represent distance in the coordinate plane, a and b must be positive real numbers . )  
( .J a2 - b2 r = ( 0 )2 a2 - b2 = 0 a2 = b2 

✓rf = Jii 
a = b If a and b are equal, then the major and minor axes have equal lengths and the endpoints of the axes (as well as all other points on the ellipse) are equidistant from the center; that distance is the radius of the circle. 
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Hyperbolas 
-nNc-owlMe.:A po,.vo,.'t,c,lo,.-lcc\c.i\\B tl....i\\BS 

Note: Problems 6.28-6.29 refer to the hyperbola graphed in Figure 6-8. 6.28 Calculate the lengths of the transverse and conjugate axes. 
-10  

� -

-2 8 

-2 

,,,,. .... -.... 

--4 

-6 

Figure 6-8: The graph ofa hyperbola with vertices (-4,-3) and (2,-3). 

Extend vertical lines from the vertices to the asymptotes of the graph. Make note of the four resulting intersection points and use two horizontal lines to connect them. The end result is the rectangle pictured in Figure 6-9. 
-10  

Figure 6-9: The transverse and conjugate axes of a hyperbola are 
perpendicular to, and bisect one another, at the center of the 
hyperbola, much like the major and minor axes of an ellipse. 
Their endpoints lie at the midpoints of the dotted rectangle. 

The transverse axis of a hyperbola is the segment connecting the vertices and has the same length as the horizontal sides of the dotted rectangle ; the transverse axis in this problem is 6 units long. The conjugate axis is the vertical segment passing through the center of the hyperbola, which is 2 units in length. 
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Rv.l e o.P f-l".v.1Mb: 
"11...e hC\�SVevse  <'\xis 

Note: Problems 6.28-6.29 refer to the hyperbola graphed in Figure 6-8. 6.29 Write the equation of the hyperbola in standard form. A hyperbola with a horizontal transverse axis has standard form (x -,h)' - (y -,k)' = 1, where a is half the length of the transverse axis, b is half the 
a b length of the conjugate axis, and (h,k) is the center of the hyperbola. 

is C\hNC\YS f<'\v,:>\ll el f-o f-1...e 
<'\xis o.P f-1... e VC\vi<'\bl e  i �  
f-1...e positive .Pv<'\cf-io �. , � 
pvobl e1M G.2."/, x is i � f-1...e 
posif-ive .Pv<'\cf-io � so f-1... e 
hC\ �SVevse  <'\xis is f<'\v<'\ll el 
f-o f-1... e x-C\xis. 

The center is the midpoint of the transverse axis, the midpoint of the conjugate axis, and the intersection point of the asymptotes, so (h,k) = (-1 ,-3) . According to Problem 6.28, the transverse axis has length 6 and the conjugate axis has length 2, so a = 6 + 2 = 3 and b = 2 + 2 = 1. Substitute the values into the standard form equation. 
(x - (- 1))2 

(y - (-3))2 
----- = l  

12 32 

(x + 1)2 

9 
(y +  3)2 
�-� = l  

86 
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Note: Problems 6.30-6.31 refer to the hyperbola graphed in Figure 6-10. 6.30 Determine the values of a and b required to write the equation of the hyperbola in standard form. 

-8 ---{j 

� ' ' ' ' ' ' ' 6 / ' 
/ ' 

/ 
4 ' 
/ ' 

/ ' 
/ 2 ' 

/ ' 
/ ' 

/ ' 

-4 

-6 

Figure 6-10 
A hyperbola with vertices (0,0) and (0, 8). 

Draw a rectangle whose sides are congruent and parallel to the transverse and conjugate axes, as illustrated by Figure 6-11 .  
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(-----------------------------------------------------J 

\,, '_1 ,,, 
f � 1 �/� conjugate axis 

] / / ! ·* ·- - -1 
transverse axis : / 1'· ', : Be Figure 6-11 C0t.ve.PL\I: °'- is I / • ' I 

I / - } \ I -c-+--+--+--+---1 I 
..... ..... �,.-+-t-+--+--+-� The endpoints of the transverse and NOT 0t.hN0t.ys 8ve0t.+-ev conjugate axes are the midpoints of the H,0t.\\ b i\\ e9L\0t.f-io\\s -8 -6 . · , ,4 6 rectangle's sides. o.P l--.ypevbol0t.s {like i\\ 1 e9L\0t.f-io\\s o.P el lipses). \\Sf-e0t.""-, °'- is 0t.hN0t.ys l--.0t.l.P 

-6 +-1--.e h0t.\\SVevse 0t.xis (+-1--.e O\\e +-l--.0t.+- co\\f-0t.i\\s +-1--.e According to Figure 6-11 ,  the transverse axis is 8 units long, so a = 8 + 2 = 4; the conjugate axis is 6 units long, so b = 6 + 2 = 3. 
Note: Problems 6.30-6.31 refer to the hyperbola graphed in Figure 6-10. 6.3 1 Write the equation of the hyperbola in standard form. 

Because the transverse axis is vertical, the standard form of the hyperbola is (y -,k )' - (x -,h)' = I .  The midpoint of the transverse axis is the center of the 
a b hyperbola ( as is the midpoint of the conjugate axis) , so apply the midpoint formula to calculate h and k. 

( o;o , o;s ) = (o, 4) = (h, k) 

According to Problem 6.30, a =  4 and b = 3, so substitute those values into the standard form equation. (x - 0)2 = l 32 

(y - 4)2 x2 --- - - = l 16 9 
Note: Problems 6.32-6.33 refer to the equation 36x2 - 25y2 + 72x + JOOy - 964 = 0. 6.32 Rewrite the equation of the hyperbola in standard form and graph it. 

Complete the square twice, using a technique similar to Problems 6.21-6.23. The only difference arises when dealing with the negative y2-make sure to factor a negative constant out of the y-terms instead of a positive constant. 36x2 + 72x - 25y2 + lOOy = 964 36 (x2 + 2x + l) - 25 (y2 - 4y + 4) = 964 + 36 (1) - 25 (4) 36 (x + 1)2 
- 25 (y - 2)2 = 900 36 (x + 1)2 25 (y - 2)2 900 900 900 900 

vev+-ices). 

Ei+-1--.ev x2 ov . yz will be \\e80t.f-ive I\\ +-1--.e e9L\0t.f-io\\ o.P °'-_ l--.ypevbol0t., bec0t.L\se w1+-l--.oL\f- +-l--.0t.+- \\e80t.f-ive +-ev""\ 'YOL\ wol,\J,A\\'fbe 0t.ble +-o 8e+- +-1--.e :ec�ss0t.vy \\e80t.f-ive Sl8\\ I\\ Sf-0t.\\,:::l0t.v,A 
.PovlM. 
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36 1 25 1 
Reduce the fractions : -- = - and -- = -. 

900 25 900 36 

(x + 1)2 

25 

The hyperbola is now in standard form. 

(x - h)2 

a2 

_(y_-_2_)
2 

= 1 
36 

Therefore, h = -l , k = 2 , a = .,/25 = 5, and b = .J36 = 6. Plot the center point and 
then mark points 5 units left and right of it to plot the vertices. (The vertices are 
located left and right of the center-instead of above and below it-because the 
positive fraction contains x, so the hyperbola has a horizontal transverse axis . )  
Finally, plot the points 6 units above and below each vertex and draw a rectangle 
that passes through all of the points ( except the center) , as illustrated by Figure 
6-12 . 
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Figure 6-12 The hyperbola centered at (-1, 2) has vertices (-6,2) and (4, 2) . 

Extend the diagonals of the rectangle through its corners to draw the asymptotes 
of the hyperbola. Graph the branches of the hyperbola so that they pass through 
the vertices and quickly approach, but do not intersect, the asymptote lines. 
Because the transverse axis is horizontal, this hyperbola will open left and right 
(instead of up and down) as illustrated in Figure 6-13 .  
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Figure 6-13 The graph of the hyperbola 36x2 - 25y2 + 72x + IOOy - 964 = 0. 
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Note: Problems 6.32-6.33 refer to the equation 36x2 - 25y2 + 72x + JOOy - 964 = 0. 6.33 Find the equations of the asymptotes to the hyperbola. 

6 .34 

A hyperbola has two asymptotes, one with a positive slope and one with a negative slope. Notice that one asymptote passes through the center (-1 ,2) and through the upper right-hand corner of the rectangle (4,8) ;  calculate its slope (using the method explained in Problem 1 .5 ) . 8 - 2  6 m = = -4 - (- 1) 5 Apply the point-slope formula using the slope and the coordinates of the center to write the equation of the line. (Substituting the coordinate pair (x1 ,y1 ) = ( 4,8) into point-slope form results in the same linear equation.) 
y - y1 = m (x - x1 ) y - 2 = � (x - (- 1)) 6 6 

y = 5 x + 5 + 2 6 16  
y = - x + -5 5 The asymptotes of hyperbolas have opposite slopes, so substitute m = -� and 5 (x1 ,y1 ) = (-1 ,2)  into the point-slope formula to generate the equation of the other asymptote. 

y - )1 = m (x - x1 ) y - 2 = - � (x - (- 1)) 6 6 
y = - - x - - + 2 5 5 6 4 
y = - - x + -5 5 

Find the coordinates of the foci for the hyperbola: (y - 7)2 16  (x + 3)2 --- = l. 28 A hyperbola has two foci, which are located on the transverse axis c units further away from the center than the closest vertex (such that c = .J a2 + b2 ) .  ote that the foci of an ellipse are closer to the center than the vertices, and thus "inside" the ellipse ; however, the foci of a hyperbola are farther away from the center than the vertices, and are therefore "inside" the branches of the hyperbola. The positive fraction of the standard form equation contains y, so the transverse axis is vertical (parallel to the y-axis) ;  and each focus is a distance of c units away from the center of the ellipse along the transverse axis. 

BoH" 01.Sy1Mptotes f'OI.SS Hwol.\BI--. tl--.e ce\\tev, so yo\.\ CO\\\ \.\Se it O\S (,,vy1) i\\ 'ootl--. poi\\t-slope eql.\01.tio\\s. 

111 ellipses, c =vo,.2 
- 't/ , OL\t i,,.. kypev'ool"'-s, c = ./;z 
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Note that a2 = 16 and b2 = 28 ;  calculate c. 

c = ✓a2 + if 

C = ✓16 + 28 

C = ✓44 

C = 2✓ll 

The center of the ellipse is (h,k) = (-3,7) . The major axis is vertical , so the foci are 
located at the points (h, k - c) = (-3, 7 - 2-Ju) and (h, k + c) = (-3, 7 + 2-Ju). 



Chapter 7 
FU N DAM ENTALS OF TRIGONOM ETRY 

laject si\\e, ccsi\\e, "'-\\d\ t"'-\\8e\\t t\\i-c H"e IMl>e 

The study of calculus combines the arithmetic rigor of algebraic concepts 
with geometric and trigonometric postulates, theorems, and measurement 
techniques to expand, more accurately define, and generalize skills that 
are historically restrictive and unadaptable. Reacquainting yourself with 
trigonometric concepts must precede such a laudable endeavor. 
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l.\Si.\.\B i...Ae\.\ti.ti.es OI.\.\..A tl--\eoYelMS . 

-rYi.8 l--\el ps yol.\ IMOVe 'beyo\.\..A veYy stYi.ct Yl.\les i.\.\ Beo1MetYy-wi.tl--\ol.\t tYi.B, i.t's 

l--\01.Y..A to -fi\.\..A tl--\e 01.Ye01. o.P 01. tYi.01.\.\8le l.\\.\less yol.\ \::.\.\ow i.ts 'b01.se OI.\.\..A l--\ei.Bl--\t. 

Besi...Aes, tYi.8 e,cpYessi.o\.\S Cl.Ye Cl. l ot IMOYe i.\.\teYeSti.\.\B (Ye01...A: co1Mpli.c01.te..A) 

tl--\01.\.\ li.\.\eOI.Y OI.\.\..A poly\.\01Mi.01.l e,cpYessi.o\.\S, so tl--\ey Cl.Ye o.Pte\.\ 'betteY tools to 

1Mo..Ael Ye01.l -li..Pe si.tl.\01.ti.O\.\S . 

B01.si.c01.l ly, COl.lcl.\l l.\s i.s Yi..Pe wi.tl--\ tYi.8, so 1M01.\::.e Sl.\Ye yol.\ l.\\.\..AeYSt01.\.\..A tl--\e 
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Measuring Angles 
Roi.J.ioi.\\S, J.e8vees, oi.\\t:A veval l.\tiC\\S 

7. 1 

7.2 

Which is larger, mLA = 15° or mLB = 15 radians?  Justify your answer. Radians and degrees represent two different ways to measure angles .  Consider an angle whose initial and terminal side overlap after one full rotation, creating (for all intents and purposes) a circle. It is fairly commonly known that a circle measures 360°, but less commonly that the circle measures 2.n radians.  Therefore, one radian equals 360 (approximately 57.296) degrees. Therefore, 15 radians 
2.n equals slightly more than 859°, and mLB is greater than mLA. 

Convert 270° into radians. 
To convert a degree measurement into radians, multiply it by 1;0. 

270 . _!!_ = 270.n 180 180 ,90 · 3 · .n = -�--,90 · 2 3.n = - radians 
7.3 Convert 144° into radians. 

Multiply the degree measurement by 1;0 . .n 144.n 144 · - = --

7.4 Convert !!_ radians into degrees. 3 

180 180 )6 · 4 · .n = ----)6 · 5  4.n = - radians 5 
To convert a radian angle measurement into degrees, multiply it by 180 . :rr .n 180 180.n - · - = --3 .n 3.n 

60 · t · ;{ = ----t · ;{  = 60° 
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7.5 Convert 4 radians into degrees, and express the answer accurate to three decimal places. Although this radian angle measurement does not contain "n," you should still apply the method from Problem 7.4-multiply by 180 . :n: 

Use a calculator to determine the quotient: 4 radians = 229.183° . 
7.6 Convert 900° into revolutions. 

To convert an angle measured in degrees into revolutions, divide by 360° . 900 J,-80 · 5 5 . -- = --- = - revolutions 360 J,-80 · 2 2 
7 7 C 27n .  l . . onvert -- into revo ut10ns. 4 

To convert a radian angle into revolutions, divide it by 2n, or (to facilitate simplification) multiply it by 2�. 27 n 27 n l 27 · ,i 27 . -- + 2n = -- · - = -- = - revolutions 4 4 2n 8 · ,i 8 
Angle Relationships 

Catev1Ml\\01.l, ca1Mple1Me\\t01.vy, 01.\\t:l. sv.pple1Me\\t01.vy Ol.\\8\es 

7.8 Calculate the complement of 0 = 34°. 
Complementary angles expressed in degrees have a sum of 90°, so if a is the complement of 0, then a + 0 = 90°. Substitute 0 = 34° into the equation and solve for a. a + 34° = 90° 
The complement of 0 = 34° is 56° . 

7.9 Calculate the compliment of 0 = 4n _ 
9 

a = 90° - 34° a = 56° 

Complementary angles expressed in radians have a sum of f Express this as an equation such that a is the complement of 0. 
93 
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7. 1 0  

7. 1 1  

7. 1 2  

.7t 4.n 

4.n - + a = -
9 2 

.7t 4.n a = - - -
2 9 
9.n 8.n a = - - -18 18 
.n a = -18  Therefore, - and - are complementary angles . 18 9 Calculate the supplement of 0 = 125°. 

When expressed in degrees, an angle 0 and its supplement a have a sum of 180°. 125° + a = 180° 

The supplement of 125° is 55° . 1 1.n Calculate the supplement of 0 = --. 1 7  

a = 180° - 125° 
a = 55° 

An angle 0 and its supplement a, when expressed in radians, have a sum of .n. 1 1.n 

6.n 1 1.n 

-- + a = .n 1 7  1 1.n a = .n - --17  17.n 1 1.n a = -- - --1 7  17  6.n a = -17  Therefore, l7 and I7 are supplementary angles .  
Identify the three smallest positive angles coterminal with 0 = -70°. 
Coterminal angles share the same terminal ray, so consecutive coterminal angles differ in magnitude by a single revolution, 360°. Add 360° to ( or subtract 360° from) an angle to generate a coterminal angle. - 70° + 360° = 290° 290° + 360° = 650° 650° + 360° = 1, 010° 

7. 1 3  Identify the angle coterminal to 0 = 1 ,265° that belongs to the interval [0°, 360° ) .  
Subtract 360° from the angle to identify a coterminal angle : 1 ,265° - 360° = 905° . That coterminal angle is still too large for the interval [0°, 360° ) ,  so continue subtracting 360° until the result is between the endpoints of the interval. 
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905° - 360° = 545° 545° - 360° = 185° The angle measuring 185° is coterminal with 1 ,265° and belongs to the interval [0°, 360° ) .  

7. 1 4  Identify the three greatest negative angles co terminal with 0 = 7;.  
Subtract one revolution (2.n) from the angle at  a time until you get a negative coterminal angle. 7.n _ 2.n = 7.n _ 4.n = 3.n 2 2 2 2 3.n 3.n 4.n .n - - 2.n = - - - = - -2 2 2 2 Subtract 2.n twice more to generate the second and third greatest negative coterminal angles . 

.n .n 4.n 5.n - - - 2.n = - - - - = - -2 2 2 2 5.n 5.n 4.n 9.n - - - 2.n = - - - - = - -2 2 2 2 7 .n .n 5.n 9.n The three greatest negative coterminal angles to 0 = - are --, - -, and - -. 2 2 2 2 
l.P 0\\\ 0\\\81e is Evaluating Trigonometric Functions 

Ri.Bl--\+- +-vi.01.\\8le tvi.8 Cl.\\� ve.Peve\\ce 01.\\8les 
i\\ Sf-0\\\�0\Y� posi+-io\\, O\\e o.P i+-s voiys ovevloips +-he posi+-ive (vi8h+--hoi\\�) poiv+- o.P +-he x-oixis ---=====-----------J O\\\� i+-s Vev+-ex is 

:re 7. 1 5  Evaluate sin 2 based on the unit circle. 

7. 1 6  

:rr Graph 0 = 2 in standard position on the same axes as a unit circle with center (0,0) ; its terminal ray intersects the circle at (0,1 ) . The y-coordinate of the point f . . h . 1 f :rr · :rr o 1ntersect1on represents t e sine va ue o 0 = - , so sm - = 1 . 7:rc Evaluate cos 6 based on the unit circle. 
2 2 

locoi+-e� oi+- +-he ovi8i\\, (0,0). 
YOL\ hoive't'-/"'1e"'1o . 7:rr • Y(Z.e.,,{ l_ f. The terminal ray of 0 = - intersects the unit circle centered at the origin at the cosi'l.e •Vie 6 � 1 ""'1� si'te ( '3 1 ) 7.n "" L\es o "  J_h . v:J Th d. f h · · · t- r pomt -2,-2 . e x-coor mate o t e mtersectlon pomt represents cos 6, so civcle ,. e L\'1.i-/-A , cV\eck 7:rc ✓3 -------------.J PPe't�ix B . 01-\-1-cos - = --. b"'lck " l't -I-he 6 2 Ot- -I-he 7. 1 7  Evaluate cos (- ;) based on the unit circle. book, 

The unit circle provides only cosine and sine values for angles on the interval [0,2.n] . Add 2.n to the angle in order to calculate a positive coterminal angle for 0 = - !!_ that belongs to the interval. 
3 
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.:n: .:n: 6.:n: 5.:n: -- + 2.:n: = -- + - = -
3 3 3 3 Because -� and 5; are coterminal angles, they have the same trigonometric 

1 ( ;n;) S:n: A d" h . . 1 S:n: 1 va ues : cos -3 = cos 3. ccor 1ng to t e unit ore e, cos3 = 2° 
.:n: 7. 1 8  Verify the cosine and sine values of 0 = 4 reported by the unit circle. 

.:n: Draw the angle 0 = 4 in standard position and a unit circle centered at (0,0) on the same coordinate plane. Construct a right triangle, as illustrated by Figure 7-1 . Because two angles of the triangle are known (45° and 90° ) ,  subtract their sum from 180° to calculate the remaining angle : 180° - (45° + 90° ) = 45° . 

Figure 7-1 The radian measurement 0 = 1r_ is equivalent to 45°, so this righ1 triangle must be a 45-45-90 right triangle, whose side lengths are governed by specific geometric principles. 

The hypotenuse of the right triangle is also a radius of the unit circle, so its length is 1. According to the 45-45-90 right triangle theorem, the legs of the triangle are � times as long as the hypotenuse, so multiply the hypotenuse length (1 )  by that fraction to calculate the lengths of the legs of the right triangle in Figure 7-1 . 1 1 1 · ✓2 = ✓2 Multiply the numerator and denominator of the fraction by ✓2 to rationalize it. 
�(1)

=
1

=
� Th. 1 ✓2 . . h d ✓2 . f h . . 1s means you must trave 2 umts ng t an 2 umts up rom t e ongm to reach the point of intersection between the angle and the unit circle, and the coordinates of the intersection point are (✓2 , ✓2 }-the same values reported by the 

.:n; .:n; 2 2 unit circle for cos 4 and sin 4. 
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7. 1 9  If an airborne kite 80 feet high is staked to the ground so that the fixed length of string forms a 50° angle of elevation, how long is the string that tethers the kite? Provide an answer accurate to three decimal places .  
Consider Figure 7-2 , which illustrates the situation described. 

Figure 7-2 The kite is 80 feet high with a 50 ° angle of elevation; x represents the length of the string. 
Tl-.e +-l-.v-ee 

IMOSf- COIMIMO\\ 
hi8 v-0\f-ios C\v-e 
cosil\e = Dld.j.,.ce11t 

hypo+-e11c.ise, 
Sil\e = opposite 

hypote11c.ise, C\\\d. Note that the known side length, 80, is opposite the known angle and the side to be calculated is the hypotenuse of the right triangle. Of cosine, sine, and tangent, the only trigonometric ratio that describes the relationship between a right triangle's opposite side and hypotenuse is the sine. Substitute the known values and solve for x. 
. 8o �---------sm500 = 

X 

t.,.�e11t = opposite 
<'I.J.j.,.ce11t· 

MC\ke x (sin50°) = 80 80 x = ---sin500 SLwe yol-\v
CC\lcl-\lC\f-ov- ov

CO!Mpl-\f-ev- is se+
.Pov- d.e3v-ees IMOd.e, 

--------1 'beCC\l-\Se +-1,,,e C\\\jle 

Use a calculator to determine the quotient accurate to three decimal places:  
x ""' 104.433 feet. 

i\\ +-!,,is pv-o'ble1M is 
IMe<'\Sl-\v-ed. i\\ 

d.e3v-ees. 
7.20 A stationary submarine (located at point S in Figure 7-3) has received intelligence indicating that a hostile submerged mine (point M) is located directly below a buoy (point B) , which is exactly 2,500 feet from their current position. If the crew is instructed to fire a torpedo at a 9° angle of declension to detonate it from a safe distance, how far will the torpedo travel before it impacts the mine? Provide an answer accurate to three decimal places. 

M 

Figure 7-3 The distance d from the submarine S to the mine M can be calculated using a trigonometric ratio. 
You're given a side length that is adjacent to the given angle and asked to calculate the length of the hyp�tenuse of the right triangle. You should apply the cosine 

. . adJacent d h l £ d ratio, since cosine = 
h , an t en so ve or . ypotenuse 
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7.2 1  

0 2, 500 cos 9 = --d d (cos 9°) = 2, 500 d = 2, 500 cos 9° 
d ""  2,531 . 163 feet 

1 1:n: Evaluate cot 6 based on the unit circle. 
The tangent of an angle is equal to the quotient of its sine and cosine. 1 1:n: sin (ll:n: / 6) tan- = -�---6 cos (1 1.:n: / 6) Substitute the sine and cosine values from the unit circle. 1 1:n: - 1 / 2 tan-- = --6 ✓3 / 2 Simplify the complex fraction by multiplying its numerator and denominator by the reciprocal of the denominator. 

l ln -½ (Js) (-Js) 1 tan - = - -- = --- = - -6 � (1) G) ✓3 
The cotangent of an angle is equal to the reciprocal of its tangent. Bvecause tan l l.n = - �, cot l l.n = -

✓3 
= -✓3 -6 v3 6 1 2n Evaluate csc 3 based on the unit circle. 

The cosecant function is the reciprocal of the sine function. 2n 1 csc - = ----3 sin (2n / 3) 2n ✓3 According to the unit circle, sin 3 = 2. 2n 1 1 csc - = ---- = --3 sin (2n / 3) ✓3 / 2  Multiply the numerator and denominator by the reciprocal of the denominator. 
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Therefore, csc 2.n = }s- Multiply the numerator and denominator by ✓3 to . . 3 3 . 2.n 2 (✓3 ) 2✓3 rat1onahze the expression: csc 3 = ✓3 ✓3 = 3. 
7.23 Identify the reference angle for 0 = 140°. 

7.24 

Every angle whose measure is greater than 90° has a corresponding reference angle-an acute angle used to calculate its trigonometric values .  Each reference angle is formed by the terminal side of the angle and the x-axis, so the reference angle of 0 = 140° is 40°, as illustrated by Figure 7-4. 
terminal side of 0 = 140° 

0 = 140° Figure 7-4 
The reference anglefor 0  = 140 ° 

measures 40 °. 

As Figure 7-4 demonstrates, an obtuse angle 0 whose terminal side lies in the second quadrant will have a supplementary reference angle a :  a =  180° - 0. In this problem, a =180° - 140° = 40° . 5.n Identify the reference angle for 0 = 4. 

The terminal side of angle 0 = 
5: lies in the third quadrant, so the reference angle is the acute angle formed by its terminal side and the negative x-axis, as illustrated by Figure 7-5.  

0 = 5,r 4 

Figure 7-5 
5.n 

�he reference anglefor 0 = 4 measures 

4 radians. 

� 
· a1 ·  f 5,r termm side o () = 4 
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I\\ \-\.\e ..fiv-s\- q1A01.J-v-01.\\t' cosi.\\e, si.\\e, 01.\\J-\-01.\\Be\\\- "'ve "'" rosi.\-i.ve. 1-\owevev-, si.\\e's "'\so rosi.Hve t\\ \-\.\e seco\\J- q1A01.J-v-01.\\t', \-01.\\Be\\\-'s "'\so rosi.\-i.ve i.\\ \-\.\e _ \-\.\i.vJ-, O\\\J- COSl\\e i.s rosi.\-i.ve i.\\ \-\.\e .Po1Av-\-\.\. 

1 00 

As Figure 7-5 demonstrates, an angle 0 whose terminal side lies in the third quadrant will have a reference angle a defined by the formula: a = 0 - :rr. 

5:rr 5:rr 4:rr :rr 
a = - - :rr = - - - = -4 4 4 4 

7.25 Identify the reference angle for l l:rr . 6 

7.26 

The terminal side of angle 0 = I�n lies in the fourth quadrant, so the reference angle is the acute angle formed by its terminal side and the positive x-axis, as illustrated by Figure 7-6. 
O =  lln 6 

Figure 7-6 
1 1:rr 

The reference angle for 0 = -- measures 
Ji 6 
6 radians. 

( terminal side of e = I In 6 
As Figure 7-6 demonstrates, an angle 0 whose terminal side lies in the fourth quadrant has the reference angle a = 2:rr - 0. l l:rr 12:rr l l:rr :rr 

a = 2:rr - 0 = 2:rr - - = - - - = -
6 6 6 6 

5 3:rr If tan0 = -- and -2 < 0 < 2:rr , evaluate sin 0 . 12  
Angles whose tangents are negative have terminal sides that fall either in  the second or fourth quadrant, but this problem specifically identifies the fourth quadrant's boundaries :  3; < e < 2.n. Draw a right triangle based on the fourth quadrant reference angle (like the reference angle in Problem 7.25) . Although angle 0 in Figure 7-7 is a reference angle (and not the original 0 from the problem) , it has the same trigonometric values. 



12  
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Figure 7-7 Apply the Pythagorean theorem to determine the length of' the hypotenuse. 
(� ✓(-5)2 + (12)2 = ✓25 +  144 = .Ji69" = 13 

Because tan e = - 152, and tangent = odp�0site , the side opposite e has length 5 
L a �acent L and the side adjacent has length 12. It is important to label the vertical side -5, because you must travel down from the y-axis to reach the end of the segment. Once you've identified the lengths of all three sides of the right triangle, you can evaluate sin e. According to Figure 7-7, the side opposite e equals -5, the side adjacent to e equals 12 , and the hypotenuse equals 13 .  . side opposite e -5 sin e = --��--hypotenuse 13  

7.27 If sin e = - ¾ and tan e > 0, evaluate sec e. 
Note that sin e is negative in the third and fourth quadrants , and the tangent function is positive (tan e > 0) in the first and third quadrants . Therefore, the terminal side of e must fall in the third quadrant in order to meet both conditions. Draw a right triangle using a third-quadrant reference angle for e (like the reference angle in Problem 7.24) . Calculate the remaining side of the right triangle using the Pythagorean theorem, as illustrated in Figure 7-8 .  

✓92 - (- 2)2 = ✓81 - 4 = ffi  

-2 

� 
-ffi 

Figure 7-8 Both legs in the right triangle are labeled with negative values because all points in the third quadrant have negative x- and y-values. 
The side opposite e equals -2 , the hypotenuse equals 9, and the side adjacent to 
e equals -ffi. In order to calculate sec e, you should first calculate its reciprocal : cos e. side adjacent to e -ffi Cos e = -------hypotenuse 9 

I O  I 



1 02 

Chapter Seven - Fundamentals of Trigonometry 

Take the reciprocal of cos 0 to calculate sec 0. 

Rationalize the denominator. 

9 
sec 0 = - --Jn 

sec 0 = - -9- ( ffi ) = - gffi Jin Jin 77 

I nverse Trigonometric Functions 
l\\pv.t "' \\v.lM\::>ev oi.\\.:A cv.tpv.t oi.\\ "'-\\81e .Pav "' d'\oi.\\8e 

7.28 The function f(0) = sin 0 is not one-to-one. As evidence, consider 01 = !!_ and 02 = 3:; because .f(0, ) = f(02 ) = �, each input does not correspond to a �nique 

output. How, then, can an inverse function exist? 

Only one-to-one functions may possess inverses but functions can be defined 
creatively to ensure they pass the horizontal line test and thus have an inverse. In 
the case of y = sin x, restricting the domain to -f � 0 � i produces a graph upon 
which any horizontal line drawn across the graph intersects it only once (see 
Figure 7-9) . 

Figure 7-9 Restricting the domain ofy = sin x to 
:rr :rr -2 ::5 0 ::5 2 ensures that it passes the horizontal line test and is thus a one-toone function with an inverse. 

Therefore, the inverse function of J(x) , usually labeled J-1 (x) = arcsin x or 

!._, (x) = sin-' x, has a restricted ran{J'e of _!!_ ::5 arcsinx ::5 !!.-_ · � 2 2 
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7.29 A vacation resort in a mountain town has installed a zip line (a sturdy wire, down which customers in harnesses can quickly descend from high altitudes) to attract patrons. One zip line is 1 ,750 feet long and allows its rider to descend from a ski slope to the ground, a vertical drop of 450 feet. Calculate the angle of declension of the wire in radians, accurate to three decimal places .  Consider Figure 7-10, which illustrates the given information. 
Figure 7-10 The zip line begins on the ski slope at point S and ends at point G on the ground. SG = 1, 75Ofeet (the length of the zip line) and XG = 45Ofeet, the vertical distance from the ground to the top of the ski slope. The angle of declension of the zip line is 0°. 

You're given information about the side opposite 0 and the hypotenuse of the right triangle, so apply the sine ratio to calculate 0. . side opposite 0 s1n 0  = ------hypotenuse 450 1, 750 9 = 35 To solve for 0, apply the inverse sine function to both sides of the equation. 9 arcsin (sin0) = arcsin-35 0 . 9 = arcs1n -35 v e"'J. ''ewe:' i-l'\i.\\\:. 
''Wl'\"'i- "'-\\Bi es l'\"'ve 

7.30 

Use a calculator (in radians mode) to calculate 0 :  0 = 0.260 radians. 
i-l'\i.s V01.l1Ae?11 I\\ oi-l'\ev 

-----------------------l wo vJ.s, ""vccos (- �) i.s  "'s\:.i.\\B Evaluate arccos (- t)-

7. 3 1  

''Wl'\"'i- "'-\\Bi es l'\"'ve "' 
\ .p I 7 ,, 

1 2 4;,r cosi.\\ e ""' 1Ae o -2 -Two angles on the unit circle have a cosine value of - i 0 = : and 0 = 3. However, only 0 = 2; belongs to the restricted range of arccosine (0 :5 0 :5 :n) , so discard the solution 4n. 
Evaluate arccsc (-✓2

) 

If, arccsc (-✓2 ) = 0, then csc 0 = -✓2 . Recall that sin 0 is the reciprocal of csc 0: sin 0 = -1 = -f. Therefore, arccsc (-✓2) = arcsin (-f ). Two angles on the 
1 03 
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0 =- $"7r 
f �oes\\ +- kewe °'-\\Y cof-ev-lA-\i\\oi.l °'-\\81es +-koi.+- -B+�\\ +-he i\\f-evvoi.1: _:'!! - 2- - '3-rr 

4 .. - - 4-Becoi.v.se 0 = -2E is I ess +-koi. \\ _ -n4 
•LI 2 / 
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unit circle have a sine value of -{: 0 = 5: and 0 = 7:. Neither of those angles falls in the restricted range of arcsine (-% :5 e :5 % ) , but a co terminal angle of 0 = 7: will. Subtract 2.n from 7: to identify it. 7.n 7.n 8.n .n - - 2.n = - - - = - -4 4 4 4 Therefore, arccsc (-✓2
) = - �-7. 32 Evaluate arctan 1 .  

7.33  

Because tangent i s  defined as  the quotient of  sine and cosine, the only way angle 0 can have a tangent of 1 is if sin 0 = cos 0. Consider an angle 0 such that cos 0 = sin 0 = c, where c is a real number. Evaluate tan 0. tan 0 = sin0 = £ = I  cos 0 c There are only two angles on the unit circle whose cosine and sine values are equal : 0 = :!.. (where cos 0 = sin 0 = ✓2 ) and 0 = 5n (where cos 0 = sin 0 = - ✓2 ) _ Of 4 2 4 2 those two solution candidates, only the first falls within the restricted range of arctangent -- :5 e :5 - , so arctan 1 = -. ( n n) n 
L 2 2 4 

( l l.n ) Evaluate arcsin sin 6 . 

Because y = arcsin 0 and y = sin 0 are inverse functions, you may be tempted to report that they cancel one another out, leaving l �n as the answer. Though they are inverse functions, the restrictions placed upon them to ensure they are one-toone invalidate that approach. l l.n 1 Begin by evaluating the expression inside parentheses : sin -- = - -. 
6 2 . ( . l l.n ) . ( 1 ) arcs1n sin 6 = arcs1n -2 

Two angles on the unit circle have a sine value of -½: 0 = 7: and 0 = l�n , but neither of those angles fall within the restricted range of arcsine (-% :5 0 :5 %)Calculate a coterminal angle for 0 = l�n to find a suitable angle, as demonstrated in Problem 7.31.  l l.n l l.n 12.n .n - - 2.n = - - - = - -
6 6 6 6 . ( . l l.n ) .n Therefore, arcsm sm6 = -6. 
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TRIGONOMETRIC G RAPHS, I DENTITI ES, 

AN D EQUATIONS 
Tv-icky [1v-0t.pl'\s, +-v-iB eql-\0t.i-io\\s, 0t.\\Gil iGile\\f-if-y pv-oo.Ps 

After you have mastered the rudimentary trigonometric concepts of Chapter 7, you are sufficiently prepared to consider more rigorous ,  and significantly more useful, trigonometric principles .  This chapter begins by extending the process of graphing by transformations ( discussed in Chapter 4) to the realm of periodic functions.  Deeper in the chapter, you'll manipulate trigonometric identities , in order to simplify trigonometric expressions and to verify identities. 
Though many students report that proving trigonometric identities is one of the most memorable topics of a calculus preparation course ( due to its foundation in logical proof as opposed to arithmetic fluency) , far more useful is the ability to solve trigonometric equations, so the chapter will culminate accordingly. 
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G raphing Trigonometric Transformations 
'Stvetcl-\ oi.\\J- sl-\i-Pt woi.vy Bvoi.pl-\s 

8. 1 

8.2 

Sketch the graph of J( 0) = 3 sin 0 - l .  
Transforming the standard sine graph (y  = sin 0) into f( 0) = 3 sin 0 - l requires two steps: (1 )  multiply sin 0 by 3 (which stretches the graph to heights three times as high and as low as the original graph) ;  and (2) subtract 1 from 3 sin 0 (which shifts the entire graph down one unit) . Both y = sin 0 and .I( 0) are graphed in Figure 8-1. 

4 

Figure 8-1 The dotted graph ofy = sin 0, and the solid graph of .1(0) = 3 sin 0 - 1. 
The graph of the function g(0) = a sin (b · 0 + c) + d has an amplitude of l al . Verify this is true for the graph off(0) = 3 sin 0 - 1  in Figure 8-1. 
To determine the amplitude of a periodic graph, calculate the difference between its highest and lowest y-values, divide the result by 2, and then take the absolute value. The graph of/(0) in Figure 8-1 reaches a maximum height of 2 and a minimum height of -4. . I max height - min height I amplitude = ----------

2 

= 1 2 - ;-4) 1 

= 1%1 
= 3  Therefore, the amplitude of the graph is, indeed, equal to the coefficient of the trigonometric function: 1 3 1 = 3. 
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8.3  Calculate the period ofj(0) = -5 sin (20 + 1)  - 6.  To calculate the period of a periodic function, divide the period of the untransformed function by the coefficient of the variable in the transformed version. In this example, the untransformed function y = sin 0 has a period of 2n. To calculate the period off(0) = -5 sin (20 + 1) - 6, divide 2n by the coefficient 
of 0. untransformed period new period = ------�-coefficient of 0 

1,n 
1. 

= JT  

8.4 Sketch the graph of J( 0) = I tan ( 0 - ; )I -
In order to transform the graph of y = tan 0 into .f( 0) , you must subtract � from the argument of the function (which results in a phase shift of � units to the right) . Then, take the absolute value of the result (which reflects any portion of the graph for which y < 0 across the x-axis) . Figure 8-2 contains both the untransformed graph of y = tan 0 and the graph off( 0) = I tan( 0 - %  )I -

-1 

I I -2 I 
I I I 

I I -3 I 
I I I 
t t -4 t 

. The dotted curve represents the graph of'y = tan 0; the solid curve is 
Figure 8-2 I ( n )I the graph off (0) = tan 0 - 2 

8.5 Sketch the graph of g(0) = -sec (-0) . 
In order to transform the graph of y = sec 0 into g(0) , you first multiply the argument of the function by -1 , which reflects the graph across the y-axis. Notice that this has no effect on the graph, because it is symmetric about the y-axis. However, the second transformation will affect the graph-multiplying a function by -1 reflects its graph across the x-axis .  Figure 8-3 contains the untransformed graph of y = sec 0 and the graph of g(0) = -sec (-0) . 

''A vBIAl,l,\e\\t-'1 

is 0\ -PO\\\CY wO\y 
o-P SO\yi\\B 1'1.v!,,O\t-evev 's 
pl1ABB e,::l. i\\t-o t-1,, e 

flA\\C t-io\\:1 
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Figure 8-3 
The dotted curve represents the graph of y = sec 0; the solid curve is the graph of g( 0) = -sec (-0) . 

8.6 Calculate the period and amplitude of h(0) = -4 cos (30) and sketch the graph over the interval [-2n, 2n] . 
The amplitude equals the absolute value of the function's coefficient: l-4 1 = 4;  this changes the range of the graph from [-1 ,1] to [-4,4] , and the negative sign eflects the graph about the x-axis .  The period of h (0) equals the original period of cosine (2n) divided by the coefficient of 0: 2;; because of this transformation, three full periods of h ( 0) fit into the same interval as a single period of y = cos 0. The graph of h(0)  appears in Figure 8-4. 

◄ - .... ' ' ' - ;n; - 2, -:n: ,, 

,, 
/ 

A 2 

4 
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2 

1 -

3 

-4 

' ' ;n; .... ,, - - -
,, 

/ 

� 2 

Figure 8-4 
The dotted curve represents the graph of'y = cos 0; the solid curve is the graph of h(0) = -4 cos (30) . 
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8.7 The function f(0) = a sin (b · 0) + c is graphed in Figure 8-5. Determine the values of a, b, and c. 

- " 

(-n,%) 4 

-3.n/2 -n -n/2 n/2 3n/2 
-1 

-2 

-3 

-4 

Figure 8-5 The graph off(0) = a sin (b · 0) + c .  

Use the formula from Problem 8.2 to calculate the amplitude. . I max height - min height I 1 7 / 2 - 1 / 2 1 3 amphtude = ---�----�- = ---- = -2 2 2 This formula has one limitation-it cannot determine whether or not a should be positive or negative. Note that y = sin 0 increases at 0 = 0 but J( 0) decreases there, indicating that the graph has been reflected across the x-axis . Therefore, 
3 a <  0 :  a = -2. The period off( 0) is larger than 2.n ( the period of y = sin 0) . Specifically, one period of the graph stretches from -2.n to 2.n; calculate the difference of those 0-values and take the absolute value to determine the period of/(0) . period = 1 2.n - (-2.n) I = 14.nl = 4.n Use this result and the formula from Problem 8 .3 to determine the value of b. untransformed period new period = ---------4.n = 2.n 

b 
4.nb = 2.n 

b = 2ft 
4_,{ 
1 

b = -

coefficient of 0 

To determine the value of c, take the average of the maximum and minimum values of the graph. 7 /2 +  1/ 2 8 / 2 4 c = ---- = -- = - = 2 2 2 2 
3 1 Therefore, a = - -, b = -, and c = 2. 
2 2 

1 09 



Chapter E ight - Trigonometric G raphs, Identities, and Equations 

If yoL\ 
""'1Al+-trly ( f- e) \;:,y 

- \ , yoL\ B et- ( e - f  )· 

1 1 0 

Applyi ng Trigonometric Identities 

'Si1Mpli.Py e;,cpvessio\\S oi.\\t:l. pvove it:l.e\\tities 

8.8 Simplify the expression: cos (-0) · csc (-0). 

8.9 

8 . 1 0  

Cosine is an even function, so cos (-0) = cos 0, but cosecant is odd, so 
csc (-0) = -csc 0. 

cos (-0) · csc (-0) = cos 0 · (- csc 0) 

The cosecant function is defined as the reciprocal of the sine function. 

= 
co;

0 · (- si!0
) 

cos 0 

sin 0 
= - cot 0 

Therefore, cos (-0) · csc (-0) = - cot 0. 

sin2 (.:n: / 2 - 0) 
Simplify the expression: 

( ) 
. 

sec -0 

Apply the cofunction identity sin ( � - 0) = cos 0 to the numerator; the denominator 
is equal to sec 0, as secant is an even function. 

sin2 
( % - 0) cos2 0 -�--� = 

sec (-0) sec 0 

cos2 0 

l / cos 0 

Reduce the complex fraction by multiplying its numerator and denominator by 
cos 0, the reciprocal of the denominator. 

= 

co
;

2 0 

. [ 

co
; 

0 

l 1 cos 0 
- - - -

cos 0 1 
= cos3 0 

sin2 (.:n: / 2 - 0) 
Therefore, ------ = cos3 0. 

sec (-0) 

Simplify the expression: cot ( 0 - %) · tan (% - 0). 

The argument of the cotangent function is the opposite of the argument in the 
cofunction identities. To remedy this , factor -1 out of the argument. 

cot ( 0 - %) · tan ( % - 0) = cot [- (-0 + %)] · tan ( % - 0) 

= cot r- ( % - 0) l tan ( % - 0) 
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Since cotangent is an odd function cot (-a) = -cot a. In this case, a = i - 0. = - cot (% - 0) • tan (; - 0) The tangent and cotangent functions ( of the same angle) are reciprocals. cot ( 0 - % ) · tan ( % - 0) = - 1  . Rewrite cot 0 as the reciprocal of tan 0. 1 cot 0 + tan 0 = -- + tan0 
tan 0 

8. 1 1  Simplify the expression: cot 0 + tan 0. 
Add the terms together using common denominators . 1 tan0 tan 0 = -- + -- · --tan0 1 tan 0 1 tan2 0 = -- + -tan0 tan 0 l + tan2 0 tan0 According to a Pythagorean identity, 1 + tan2 0 = sec2 0. sec2 0 tan 0 Dividing by a quantity is the equivalent of multiplying by its reciprocal ; the reciprocal of tan 0 is cot 0. = sec2 0 · cot 0 Rewrite the expression in terms of sine and cosine and simplify. 1 cos 0 = -- · --cos2 0 sin 0 

� cos 0 sin 0 1 = ----1 Therefore, cot 0 + tan 0 = ---cos 0 sin 0 cos 0 sin 0 ..... -------

8. 1 2  Simplify the expression: 1 - 3 sin2 0 + 2 sin4 0. 

Factor the expression, just as you would factor 1 - 3x + 2x2 (in this case, x = sin2 0) . 1 - 3 sin2 0 + 2 sin4 0 = (l - sin2 0) (1 - 2sin2 0) 

veJ..lACl\\B "'
fvC\Ct"lO\\ \eC\VeS 
\\o\-l-'\t\\B 't,el-'\t\\J.. t\\ . 
t-l-'\e \\lAIMevC\\-Ov (ov l\\ 

t-l-'\e J..e\\OIMl\\"'-\-ov, fov 

\-l-'\"'-\- ""'""\-\-ev), ""'""�e 
SlAve yolA wvt\-e I 

(\\o\- 0) t\\ t-l-'\e 
elMr\-'f srot-. 

1 1 1  
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'oeCO\IASe yolA l-\o,.ve \-o Bo vi.Bl-\\-cos 6 IA\\t\-S O\\\J- IAf Sl\\ e l,\\\l\-S �VOIM \-v.e ovi.Bi.\\ \-o veo,.cl-\ \-v.e fOt\\\- (cos 6, St\\ 6). 

1 1 2 

8. 1 3  

According to a Pythagorean identity, cos2 0 + sin2 0 = l .  If you subtract sin2 0 from both sides of that identity, you get cos2 0 = l - sin2 0; use that identify to replace the left factor. According to a double angle identity, cos 20 = 1 - 2 sin2 0; use this to replace the right factor with cos 20. = ( cos2 0) ( cos 20) Therefore, 1 - 3 sin2 0 + 2 sin1 0 = (cos2 0) (cos 20) . 1 Simplify the expression: cot 0 + - csc2 0. 2 Rewrite the quotient as a complex fraction in terms of sin 0 and cos 0. cot e cos 0 1 sin 0 = ---csc2 0 l 2 2 sin2 e Reduce the complex fraction using the method described in Problem 8.9. Cos e [ 2 sin2 e l 2 cos 0 sin2 e . . sin0 1 sin 0 2 · cos 0 · sm 0� e . e = -�-�- = -------- = 2 cos sin _l_ 2 sin2 0 � _sin0 2 sin2 0 -1- � 
According to a double-angle identity, 2 sin 0 cos 0 = sin 20. Therefore, cot e + ! csc2 e = sin 20. 

2 

8. 1 4  Factor and simplify the expression : cos4 0 - sin4 0. 

8. 1 5  

Factor the difference of perfect squares. COS1 e - sin1 e = ( cos2 e + sin2 0) ( cos2 e - sin2 0) According to a Pythagorean identity, cos2 0 + sin2 0 =l ,  and a double angle identity states that cos 20 = cos2 0 - sin2 0. Substitute those values into the expression. = (l ) (cos 20) Therefore, cos1 0 - sin1 0 = cos 20. Generate the identity cos2 0 + sin2 0 = l by examining an acute, positive angle 0 graphed in standard position and its terminal side's intersection point with the unit circle. Draw 0 and the unit circle described by the Problem, as illustrated by Figure 8-6. An angle in standard position intersects the unit circle at the point ( cos 0, sin 0) . Thus, the horizontal leg of the right triangle in Figure 8-6 has length cos 0 and the vertical leg has length sin 0. According to the Pythagorean theorem, the sum of the squares of a right triangle's legs is equal to the square of its hypotenuse, so cos2 0 + sin2 0 = l. It is no coincidence that the identity is classified as a Pythagorean identity, as its proof depends on the Pythagorean theorem. 
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cos 0 

Figure 8-6 A right triangle created by the intersection point of0's terminal side and the unit circle. 

8. 1 6  Verify the sine double angle identity sin 20 = 2 sin 0 cos 0 using a sum or difference identity. 
The sum-to-product formula for sine is sin (a ± b) = sin a cos b ± cos a sin b. Rewrite sin 20 as sin (0 + 0) and apply the sum formula for sine. (Note that a = b = 0 in this example, but a and b need not be equal for the formula to apply.) sin (0 + 0) = sin 0 cos 0 + cos 0 sin 0 = sin 0 cos 0 + sin 0 cos 0 = 2 sin 0 cos 0 

8 1 7  E 1 5.n . h 1 1 . 5.n 2.n .:rt . va uate cos - wit out a ca cu ator, given - = - - -. 
12 12 3 4 

The only trigonometric values you are normally expected to memorize are those on the unit circle, so �; is a troublesome angle until you note that it is equal to the difference of two unit circle angles:  5.n = 2.n _ !!.._ Apply the cosine difference 
L 12 3 4 formula for cosine : cos (a ± b) = cos a cos b + sin a sin b. 
--------1 cos �; = cos (� - :) 2.n .:rt • 2.n . .:rt = cos -cos - + sm - sin -3 4 3 4 

= (-½)( {)+ (  �)( {) ✓6 - ✓2 4 

Tl,,,e v.psi""-e-""-ow\\ ''+'' Sij\\ IMe<'\\\S yov. sl,,,ov.l,A wvif-e f-l,,,e opposif-e o.P f-l,,,e ''±'' Sij\\ e<'\vliev i\\ f-l,,,e -POYIML\IC\. 

1 1 3 
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8. 1 8  

8 . 1 9  

Verify the identity: 2 - cos2 0 - ( 1  - cos2 0 )  = I .  Expand and simplify the expression. 2� - 1� = 1  2 - 1 = 1  l = l By applying valid operations to the equation, you have demonstrated that the equation 2 - cos2 0 - (1 - cos2 0) = 1 is equivalent to the equation 1 = 1 .  Because the latter equation is always true, so is the former, regardless of the 0-value substituted into the equation. 
" r  .f h .d . 0 3 0 sec2 0 ven y t e 1 entity: tan + tan = --. cot 0 
Factor tan 0 out of the left side of the equation. ( ) sec2 0 tan 0 l + tan2 0 = -cot 0 According to a Pythagorean identity, 1 + tan 2 0 = sec2 0. ( ) sec2 0 tan 0 sec2 0 = -cot 0 Cross multiply to eliminate fractions. (tan 0) (sec2 0) (cot 0) = sec2 0 Note that cot 0 is the reciprocal of tan 0. 1 ,tan0 · sec2 0 · _tan0 = sec2 0 1 · sec2 0 = sec2 0 

8.20 Verify the identity: sin2 0 cos 0 = cos 0 - cos3 0. 

8.2 1 

The greatest common factor on the right side of the equation is cos 0. sin2 0 cos 0 = cos 0 ( 1  - cos2 0) Subtract cos2 0 from both sides of the Pythagorean identity cos2 0 + sin2 0 = l to generate an equally valid identity: sin2 0 = l - cos2 0. Use this identity to replace the parenthetical quantity on the right side of the equation. sin2 0 cos 0 = cos 0 (sin2 0) Multiplication is commutative, so the identity is verified. . . . sin20 - cos 0 (sin0 - l) . Venfy the 1dent1fy: --------- = sm0 + sec2 0 - tan2 0. cos 0 According to a Pythagorean identity, 1 + tan2 0 = sec2 0. Subtract tan2 0 from both sides of that identity to generate an equally valid identity: 1 = sec2 0 - tan2 0; use it to rewrite the right side of the identity. 
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sin 20 - cos 0 (sin 0 - 1) . 0 -----�--� = Sln + 1 
cos 0 

Cross multiply to eliminate the fraction. 

sin 20 - cos 0 (sin 0 - 1) = cos 0 (sin 0 + 1) 
sin20 - cos 0 sin 0 + cos 0 = cos 0 sin 0 + cos 0 

Isolate sin 20 by adding cos 0 sin 0 to, and subtracting cos 0 from, both sides of 
the equation. 

sin20 = cos 0 sin 0 + cos 0 sin 0 + cos 0 - cos 0 
sin20 = 2 cos 0 sin 0 

Solving Trigonometric Equations 
'Solve .Pov -n-\E-rA l\.\SteC\� o.P )< 

8.22 Find all solutions to the equation 3 (sin 0 + 1 )  = sin 0 + 4 on the interval [O,2n) . 

Distribute the constant and isolate sin 0 on the left side of the equation. 

3 sin 0 +  3 = sin 0 + 4  
3 sin 0 - sin 0 = 4 - 3  

2 sin 0 = 1 

. 1 
s1n 0 = -

You are instructed to identify all solutions on the interval [O,2n) ; there are two . 1 :n: 5:n: such angles whose sme value equals 2: 0 = 6 and 0 = 6. 

8.23 Calculate the exact solution to the equation: ✓
3 

cot 0 - 1  = 0. 

Isolate cot 0 on the left side of the equation. 

✓
3

cot 0 = 1 

Solve for 0 by applying the inverse cotangent function. 

1 
arccot (cot 0) = arccot 

✓
3 

1 
0 = arccot 

✓
3 

In order to better understand the solution, multiply the numerator and 
denominator by t Recall that the cotangent is defined as the quotient of the 
cosine and sine functions. 

cos 0 1 / 2  
sin 0 ✓

3
/ 2  
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yov.. \-t"�e C\\\ eve\\ 
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8.24 

8.25 

The only angle 0 with a cosine value of ½ and a sine value of ./3 on the restricted 
:n: 2 cotangent range of [O,.n] is 0 = - . < < 3 Find the general solution to the equation: 4 cos2 0 - 2 = 0. 

Isolate cos2 0 on the left side of the equation. 4cos2 0 = 2 1 cos2 0 = -2 Take the square root of both sides of the equation . 
.Jcos2 0 = ±� �-------- 1 cos 0 = ± J2 Rationalize the fraction and the constant will mirror unit circle values .  1 J2 J2 cos 0 = ± - · - = ± -J2 J2 2 List all the angles on one period of cosine, [O,2.n) , whose cosine is either ✓2 ITT - ✓2. 2 

0 _ .n 3.n 5.n 7.n 
- 4 ' 4' 4' 4  Indicate that these angles and all of their coterminal angles are valid solutions . .n 3.n 5.n 7.n h k . . 0 = - + 2k.n, - + 2k.n, - + 2k.n, - + 2k.n, w ere 1s an mteger 4 4 4 4 Identify all the points at which the graphs ofj(0) = sin 0 and g(0) = csc 0 intersect. Set the functions equal and use a reciprocal identity to rewrite csc 0. sin0 = csc 0 

Cross multiply and solve for 0. 
. 1 s1n 0 = -sin 0 

sin2 0 = l 

✓sin2 0 = ±✓I sin 0 = ± 1 .7T 3.n 0 = - + 2k.n, - + 2k.n 2 2 The functions intersect at 0 = % (where /(0) = g(0) = 1 ) ,  0 = 3; (where f( 0) = g( 0) = -1 ) ,  and the infinitely many co terminal angles :  
{ . . .  (- 7:n: 1 ) (- 5

:n: - 1) (- 3:n: 1) (-� - 1) (� 1) ( 3J! - 1) (5J! 1 ) (7J! - 1) . . .  } ' 2 ' '  2 ' ' 2 ' '  2 ' ' 2 ' '  2 ' ' 2 ' '  2 ' ' 
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8.26 Calculate the exact solution (s) to the equation: tan2 0 = tan 0. Set the equation equal to 0 and factor. tan2 0 - tan 0 = 0  tan 0 (tan0 - l) = 0 Set each factor equal to 0 and solve the individual equations ; ensure that you only include solutions from the restricted range of arctangent, as the problem specifies 

exact solutions . 
tan 0 = 0  0 = arctan0 

0 = 0 or 
tan 0 - l = 0  tan 0 = 1  

:n: 

0 = arctanl 
0 = !!.. 4 The solutions to the equation are 0 = 0 or 0 = 4. 

8.27 Calculate the exact solution(s) to the equation: 3 cos2 0 - 10 cos 0 + 3 = 0. Factor the expression and set each factor equal to 0. (cos 0 - 3) (3cos 0 - l) = 0 cos 0 - 3  = 0 cos 0 = 3 or 3cos 0 - l  = 0 1 cos 0 = -3 0 = arccos 3 1 0 = arccos -3 The domain of arccosine (which is also the range of cosine, its inverse function) is [-1 ,1 ] ; note that 3 does not belong to that interval, so 0 = arcccos 3 is an invalid solution. However, -1 :5 ½ :5 1, so 0 = arccos ½ = 1 .231 is a valid solution. 
8.28 Calculate the exact solution(s) to the equation 2 tan2 0 - tan 0 - 5 = 0, accurate to three decimal places .  

This equation cannot be factored, so apply the quadratic formula instead. - (- 1) ± .j(- 1)2 - 4 (2) (-5) 
tan0 = 

2 (2) tan 0 = l ± v'4l 
0 = arctan(1 -:1) , arctan( 1 + ;41) Use a calculator to evaluate the inverse tangent functions. 0 = arctan(- 1 .35078105935821) 0 = -0.933 or 0 = arctan (l .85078105935821) 0 = 1 .075 

YOL\\\d. heve-v.se 0t.l l  o.P +-he d.eci'-'\0t.ls yov.v c0t.lcv.l0t.f-ov spif-s ov.i-: 
Th . e '-'\ove yov. vov.\\d. :\\ +-his sf-ep, +-he '-'\ove l\\0t.ccv.v0t.f-e yov.v -h\\0t.l °'-\\Swev will be. 

1 1 7 
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8.29 Calculate the exact solution (s) to the equation 3 sin2 0 = -3 sin 0 + I ,  accurate to three decimal places .  Set the equation equal to 0 :  3 sin2 0 + 3 sin 0 - I = 0. Because the expression is not factorable, solve using the quadratic formula. . -3 ± .j9 - 4 (3) (- l) sm e = 2 (3) . - 3 ± ✓21 s1n 0 = ----
( - 3 - ✓21 ) 0 = arcsin 6 e = arcsin (- 3:✓21 ) 0 = arcsin (- 1 .26376261583) or 0 = arcsin (0.263762615826) no solution 0 = 0.267 Note that arcsin (-1 .26376261583) does not exist because the domain of 

y = arcsin 0 is [-1 ,1] and -1 .26376261583 < -1 .  
8 .30  Identify all solution(s) to the equation tan 20  + ✓3 = 0 on  the interval (-% ,%)· 

Notice that this equation contains the double angle 20 within the trigonometric function. Begin by isolating the trigonometric expression. tan20 = -✓3 It is sometimes helpful to divide the numerator and denominator of the constant 1 by 2 when solving equations involving tangent and cotangent. 
tan20 = - ✓3 = - ✓3 / 2  I 1 / 2 � 0  I ✓3 As tan 0 = --, identify the angle 0 such that cos 0 = - and sin 0 = - -. cos 0 < 2 2 20 = - !!_  3 Because the coefficient of 0 is 2, you should list twice as many solutions. Whereas this equation normally has only one solution on (-% ,%) ,  you should include one :rr more-the smallest coterminal angle that's greater than the solution -3. :rr 2:rr - - + :rr = -

3 3 List the original solution and its coterminal angle. 20 = - !!_ 2:rr 3 '  3 Multiply the entire equation by ½ to isolate 0 and thereby solve the equation. 
:rr :rr 0 = -- -6 ' 3  
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8 .3 1 Identify all solution (s) to the equation 3 (sin 30 + 1 )  - 5 = - 2 on the interval [O,2.n) . Isolate the trigonometric function on the left side of the equation. 3 sin30 + 3 - 5  = - 2  3 sin30 - 2 = - 2  3 sin 30 = 0 sin 30 = 0 Identify all of the angles on the unit circle that have a sine value of 0. 30 = O, .n Rather than two answers, list three times as many (because the coefficient of 0 is 3) . Calculate two coterminal angles for 0 = 0 and two coterminal angles for 0 = .n. 30 = O, .n, 2.n, 3.n, 4.n, 5.n Do not be concerned that these answers are out of the interval dictated by the problem; when you divide each by 3 to solve for 0, they are bounded correctly. 

0 = O ?!_ 2.n .n 4.n 5.n ' 3 '  3 '  ' 3 ' 3 
8.32 Determine the general solution to the equation: tan2 0 - 4 sec 0 = -5. 

Rewrite the equation in terms of a single trigonometric function. To accomplish this, apply a Pythagorean identity: if l + tan2 0 = sec2 0, then tan2 0 = sec2 0 - l .  

Factor and solve for 0. 
(sec2 0 - 1) - 4sec 0 = - 5 sec2 0 - 4 sec 0 + 4  = 0 
(sec 0 - 2) (sec 0 - 2) = 0 sec 0 = 2 Recall that secant and cosine are reciprocal functions. 1 cos 0 = -

Find all angles on [O,2.n) , one period of cosine, and express the solution in general form, as directed by the problem . 
.7T 5.n 0 = - + 2k.n, - + 2k.n 
3 3 

8.33 Determine the general solution to the equation: 1 - sin 0 = cos 0. 
It is easier to rewrite an entire equation in terms of a single trigonometric function when at least one of the functions is squared, because it allows you to apply Pythagorean identities .  To introduce squared functions, square both sides of the equation. 

--rhis \-i.1Me "'J.J. 2-1f 
\-o e"'c\.\ "'-\\Ble si.\\ce 
\-l,\0\\-'s t-\.\e revi.oJ. 0� 

si.\\e. 
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0 -t, 2.\:.1!" (71.Ve 
(71." \-l'\e (71.\\B\es 
H..,(71.\- ev.J.. ov. \-l'\e 
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\-l'\e v.eB(7\.Hve J<-(71.)'ClS. 

o+\:.-rr \i.s\-s (71." of 

\-l'\ose (71.\\B\es (71.\-

1 20 

(l - sin 0)2 = (cos 0)2 1 - 2 sin 0 +  sin2 0 = cos2 0 According to a Pythagorean identity, cos2 0 + sin2 0 =l ;  therefore, cos2 0 = l - sin2 0. Use this identity to rewrite the entire equation in terms of sine. 1 - 2 sin 0 + sin2 0 = l - sin2 0 Set the equation equal to 0, and solve by factoring. 2 sin2 0 - 2 sin 0 = 0 2 sin 0 (sin 0 - 1) = 0 2 sin 0 = 0 sin 0 = 0  or 0 = 0  
sin0 - l  = 0 sin0 = 1 0 = ?!.. 2 The general solution is 0 = 0 + 2kn, 0 = n + 2kn, or 0 = ?!_ + 2kn. Condense the 

< 2 notation by combining the first two solutions : 0 = 0 + kn or 0 = i + 2kn. 
8 .34 Identify all solution(s) to the equation sin ( 0 - �) = ½ on the interval [0,2n) . 

Apply the difference formula for sine described in Problem 8.16. sin (0 - �) = ½ 
· 0 n 0 · n 1 

Sln COS - - COS Sln - = -
3 3 2 sin 0 (½) - cos 0 ( �) = ½ 

Multiply the entire equation by 2 to eliminate fractions. sin 0 - ✓3 cos 0 = l Separate the trigonometric expressions and square both sides of the equation. (sin0)2 = ( ✓3 cos 0 + 1 r sin2 0 = 3cos2 0 + 2✓3 cos 0 + 1 
Because a Pythagorean identity states that cos2 0 + sin2 0 = l, you can conclude that sin2 0 = l - cos2 0. Use this identity to rewrite the equation in terms of cosine. (1 - cos2 0) = 3cos2 0 + 2✓3 cos 0 + 1 
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Set the equation equal to O and solve by factoring. 

4cos2 e + 2✓
3 

cos e = 0 

2 cos 0 (2cos 0 + ✓
3
) = 0 

2 cos 0 + ✓
3 

= O 
2 cos 0 = O 

cos 0 = O 2 cos 0 = -✓
3 

e = !!_ 
2 

or 

n 7n 
The solutions to the equation are 0 = - or -. 

2 6 

✓
3 

cos 0 = - -

e = 7n 
6 

1 2 1  





Chapter 9 
I NVESTIGATI NG LI M ITS 

Wl-\""+- l-\e'i.Bl-\+- �oes "" .PlA\\c+-'i.o\\ lt-trEND +-o v-e0t.cl-\1 

The concept of limits , though typically presented to students prior to the study of differentiation and integration, was the final component of calculus theory to fall into place. Though the theory allowing the calculation of instantaneous rates of change and the determination of area based upon infinite series existed, they could gain no credibility without a rigorous and systematic set of theorems concerning the existence and behavior of infinitely small or infinitely large quantities .  The modern ( epsilon-delta) definition of limits bears an undeniable, though less obfuscated, resemblance to the breakthrough characterization of limits whose discovery led to the establishment of calculus , and is a foundational concept for much of theoretical mathematics-even courses of study to which calculus is merely peripherally related. 
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Evaluating One-Sided and General Limits G raphically 
fi\\J. li1Mits C\\ 0\ .Pl.\\\CtiC\\ 8voi.pl-\ 

Note: Problems 9.1-9.9 refer to the graph off(x) in Figure 9-1. 9. 1 Evaluate lim f (x ). 
x➔l

+ The positive sign in the limit notation indicates a right-hand limit. As you � approach x = l from the right, the function approaches (and in fact reaches) 
y = 4. Therefore, lim/ (x) = 4 . 

x➔l+ 

E 

6 

5 

� -- 'i\ I. 

V 3 

V 2 ' 1 
Figure 9-1 

-5 -4 -3 -2 -1 1 2 13 4 5 6 The graph ofafunctionf(x). 

-1 
-2 

-3 I� 
-4 t 
-5 

-6 
Note: Problems 9.1-9.9 refer to the graph off(x) in Figure 9-1. 9.2 Does lim/ (x) = li111 / (x)? Justify your answer. 

x➔l+ x➔l 

Problem 9.1 states that lim f (x) = 4. The left hand limit, lim f (x ), also equals 4;  
-� -r the direction from which you approach x = l along the graph off(x) is irrelevant as either leads to the point (1 ,4) on the graph off(x) . 

Note: Problems 9.1-9.9 refer to the graph off(x) in Figure 9-1. 9.3 Evaluate /(-2) .  
The graph off(x) contains the point (-2,2) ,  so f(-2) = 2 . 
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Note: Problems 9.1-9.9 refer to the graph of f(x) in Figure 9-1. 9.4 Evaluate li� /(x). 
x➔-f! As x approaches -2 from the left and from the right, J(x) approaches 3� .PL\\\cl-io\\ OI.S 0t. lim / (x) = 3. 

x➔-2 

Note: Problems 9.1-9.9 refer to the graph of f(x) in Figure 9-1. 9.5 Determine the value of c that makes the statement true : lim /(x) = 0. 
x➔c The statement requires you to identify the x-value at which the graph of/(x) approaches 0 (i.e. the x-intercept) as you approach c from the left. The correct answer is c = 3 ;  the function approaches the point (3,0) as you approach x = 3 from the left. 

Note: Problems 9.1-9.9 refer to the graph of f(x) in Figure 9-1. 9.6 Evaluate /(3) . 
Two coordinates of interest fall on the vertical line x = 3 :  (3,0) and (3,-4) . Clearly, /(3) cannot equal both 0 and -4, as that violates the fundamental definition of a function (each input must correspond to exactly one output) . Note that (3,-4) is actually on the graph of/(x) , whereas (3,0) is essentially a "hole" in the curve. Therefore, /(3) = -4. 

Note: Problems 9.1-9.9 refer to the graph of f(x) in Figure 9-1. 9.7 Evaluate lim / (x). 
x➔4-As you approach x = 4 from the left, the graph off(x) approaches the point (4,-4) , so lim / (x) = -4. 

x➔4-

Note: Problems 9.1-9.9 refer to the graph off(x) in Figure 9-1. 9.8 Evaluate lim / (x). 
x➔4+ As you approach x = 4 from the right, the graph of the function approaches the point (4,-5) ,  so lim / (x) = -5. 

x➔4
+ 

Note: Problems 9.1-9.9 refer to the graph of f(x) in Figure 9-1. 9.9 Find two values of k such that the following statement is true : 
lim f(x) -:/:- lim f (x). 
x➔k- x➔k+ 

As demonstrated by Problems 9.7 and 9.8, the left- and right-hand limits off(x) as x approaches 4 are unequal ; thus, k = 4. As for the other correct value of k, notice that one-sided limits are unequal at x = 3 :  lim f (x) = 0 but lim / (x) = -4. 
x➔3- x➔3

+ Therefore, k = 3 or k = 4. 

vo0t..,I.. Eve\\ +-l,,,oL\81,,, +-!,,,eve's °'- IM<ajov pof-1,,,ole i\\ +-1,,,e 8v0t.pl,,, 0t.f- (-2,'3), +-l,,,0t.f-'s sf-ill wl,,,eve +-1,,,e vo0t..,I. is le0t..,l.i\\8, so +-1,,,e li1Mif- exis+-s 0t.fx � -2 . 

'So, li1M .P ( x) .,l.oes >< -+4  \\of- exisf; bec0t.L\se f-l-.e Yi8 [,. f-.- OI. \\.,I. le.P+--l-.0t.\\.,I. li1Mif-s Ot.ve .,i.i.P.Peve\\f- °'-S x 0t.ppvo0t.cl-.es 4. 
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Note: Problems 9.10-9.11 reference the function g(x) defined below. 

2x2 - x - 6  
g (x) = ---

x - 2  

9. 1 0  Graph g(x) without using a graphing calculator. 

-I 

Factor the numerator of the function. 

g (x) = 
(2x + 3) (x - 2) 

____________ _.., x - 2  

Note that the numerator and denominator contain the same factor, but before 
you eliminate it to reduce the fraction, take note of the domain restriction 
dictated by the denominator: x "#- 2. 

(2x + 3) y:-/4 
g (x) = 

0 
g (x) = 2x + 3, if x 7':- 2  

2x2 - x - 6  
The graph of y = 

2 
(pictured in Figure 9-2) is simply the graph of 

x -
y = 2x + 3 with one difference-there is a hole in the graph when x = 2 , due to 

the restriction x "#- 2. 

8 

7 

6 

5 4 / 
3 /  

/ 1  
J 

-5 ---4 -3 -� ;-1 -1 

I 
J 

I 

1 2 s 4 0 ) 

Figure 9-2 
2x2 - x - 6  

The graph of g (x) = ---; x - 2  
notice the hole at (2, 7). 

Note: Problems 9.10-9.11 reference the function g(x) defined in Problem 9.10. 

Evaluate lim g (x). 
x➔2 

0 
Substituting x = 2 into the function produced an indeterminite result: g (2) = o· 
(Note that zero divided by itself does not equal one.)  However, you can determine 
lim g (x) based upon its graph in Figure 9-2 . Although the function is not defined 
x➔2 
when x = 2 (due to a hole in the graph) , g(x) clearly approaches the same y-value 
from the left and from the right: y = 7. 
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9. 1 2  Given the piecewise-defined function h(x) defined below, evaluate lim h (x) and Iim h (x). x➔o-

9. 1 3  

x➔o+ 

h (x) = {X3 , X < 0 
✓x, x ;?: 0  Consider the graph of h(x) in Figure 9-3. To generate this graph, first plot y = x3

, but only draw the portion of the graph for which x < 0-the portion of the graph that is left of the y-axis .  Technically, this graph segment should end with an open dot on the y-axis, because x is less than but not equal to 0. Next, graph the function 
y = ✓x on the same coordinate plane. Because its domain exactly matches the restricted domain assigned to it by h(x) (x ;?:0) ,  the graph appears in its entirety, including a solid dot on the y-axis because the restriction x ;?:0 includes 0. 

-3 -2 6 Figure 9-3 

{ 

X '  The graph of h (x) = ✓x, 
x < O  

-3 

-4 
-5 
-6 

As x approaches 0 from the left and the right, h(x) approaches y = 0. Therefore, lim h (x) = lim h (x) = 0. 
x➔O- x➔O

+ 

Given the piecewise-defined function j ( x) defined below, evaluate lim_ j (x) and lim j (x). x➔-2 

x➔-2
+ 

j (x) = {(x + 3)2 - 4, x ::5 -2 
-x + 5, x > - 2  Calculate the one-sided limits as x approaches -2 by substituting x = -2 into both 

>< == -2. is ,::A. e-fi\\e,::l. 
by H\ e t-op v-1Al e, so 

lAS e i t- t-o -1,\\,::l. t-1,, e l e.Pt--
1,,t'l.\\,::l. li1Mit-. A \\y t-1,,i\\B 

v-iB!,, t- o.P >< == -2. is ,::A. e-fi\\e,::l. 
by t-1,, e bot-t-01M v-1Al e, 
so t-!,,t>1.t-'s 1.vl,, ev-e t-1,, e 
v-iB!,,t--t,,t'l.\\,::A. li1Mi t-of the rules that define j(x) . 

------------------� COIMeS fv-OIM. lim j (x) = (- 2 +  3)2 - 4  : lim j (x) = - (- 2) + 5 
x➔-2- : x➔-2

+ = 1 - 4  = 2 + 5 
= -3 = 7  
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9. 1 4  Evaluate lim!:l. 
x➔O X 

If x > 0, the graph of f (x) = l:I will look like Figure 9-4. 
3 

2 

-----------ft r---------- y = l  

-5 -4 -3 -2 -1 1 2 3 4 5 
-1 

Figure 9-4 The graph off (x) = l:I matches the graph ofy = 1 when x is a positive number. 

Any positive number divided by itself is 1 ,  so when x > 0, f(x) = l ,  and it is clear from the graph that li�f (x) = 1. However, if x < 0, the graph off(x) looks like Figure 9-5. x➔ 

2 
1 

-5 --4 -3 -2 -1 1 2 3 4 5 
y = -1 

-2 

-3 

Figure 9-5 The graph of f (x) = � matches the graph ofy = -1 when x is a negative number. 

A number divided by its opposite equals -1 , so when x < 0, f(x) = -l and lill! f (x) = 1. Because lim f (x) "#- limf (x), lim!:l does not exist. 
x➔O x➔O- x➔O+ x➔O X 
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Limits and I nfinity 

Wl-'\""+- l-'\""ppe\\S wl-'\e\\ >< ov .P(,c) Be+-s l-'\v.Be? 

9. 1 5  Evaluate lim tan 0 and lim tan 0. 
0➔(3,r/2)-

0➔(3n /2i+ 

Consider the graph of y = tan 0 in Figure 9-6. 
+ + + + 

Figure 9-6 

The graph ofy = tan 0, 
k:n: 

with asymptotes at 0 = 2, 
if k is an odd integer. 

As 0 approaches 3; from the left, the tangent graph increases without bound, so lim tan 0 = oo. However, as 0 approaches 3.1t from the right, the function values 
0➔3n/r 2 decrease without bound, so lim tan0 = - oo. Note that a "limit" of oo or -oo is 

0➔3,r/2+ actually an indication that a real number limit does not exist and a justification for the nonexistence of a limit. ..... ------------------
9. 1 6  Based on Problem 9.15, describe the relationship between infinite limits and vertical asymptotes .  

If lim f (x) = oo or lim f (x) = - oo  (and c is a real number) , then x = c is a vertical 
x➔c x➔c asymptote off(x) . 

9. 1 7  Evaluate lim ex-2 + 3. 
x➔-oo Graph y = ex-2 + 3 by applying two transformations to the graph of y = e' : a horizontal shift of 2 units to the right and a vertical shift of 3 units up, as illustrated in Figure 9-7. 

li.""'i.t-s 
<7we v e"'l 

\\l,\\,\,\t) ev s, O\\\J. 
00 i.s \\O t- "' v eOl.l 

\\IA""''b ev. I t- J.o es�t
""'"'\:.e S e\\se t-o S"'-Y 
''t-l-\ e li.""'i.t- i.s t-l-\"'t
i.t-'s i.\\-fi\\i.t-ely 

1A\\li.""'i.t-eJ.:1 
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-8 

8 

6 
4 

.--,,_,:-=-_�-�-�-�-=-=--�-�-=--=--r�- - - - - - - - -
2 

-6 --4 -2 2 4 6 

Figure 9-7 

The graph of) =  ex-2 + 3. 

The untransformed graph of y = e' has a horizontal asymptote of y = 0 (the x-axis) ,  so shifting the graph up 3 units results i n  a new horizontal asymptote of 
y = 3. As 0 approaches -oo, the graph gets infinitely close to, but never intersects, that asymptote. Therefore, lim ex-2 + 3 = 3. Note that lim ex-2 + 3 = oo, because the 

x➔- 00 x➔oo function increases without bound as x gets infinitely large. 
9. 1 8  Based on Problem 9.17, describe the relationship between limits at infinity and horizontal asymptotes. � If lim / (x) = c or lim f (x) = c (and c is a real number) , then y = c is a horizontal 

x➔oo x➔- oo asymptote of/(x) . 
Note: Problems 9.19-9.21 refer to the graph of g(x) in Figure 9-8. 9. 1 9  Evaluate lim g(x) .  

x➔OO 

t 6 

_ _ _ _ _ _ _  ..1. ---!\ 

--6 - --4 -3 -2 

I 

I 4 

I 

I 3 

I 2 

I 1 

I 

-1 
- 2  

--6 

Figure 9-8 
The graph of' a function g( x) and its three 
asymptotes. 
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As x increases infinitely, the function approaches the horizontal asymptote y = -3. 
Therefore, lim g (x) = - 3. 

x➔oo 

Note: Problems 9.19-9.21 refer to the graph of g(x) in Figure 9-8. 

9.20 Evaluate lim g (x). 
x➔-oo 

As x becomes more and more negative, the function approaches the horizontal 
asymptote y = 5. Therefore, lim g (x) = 5. 

x➔oo 

Note: Problems 9.19-9.21 refer to the graph of g(x) in Figure 9-8. 

9.2 1 Does lim g (x) exist? Justify your answer. 
x➔- 1 

In order for a limit to exist, the corresponding one-sided limits must exist 
and be equal. According to the graph of g(x) , as x approaches -1 from both 
the left and the right, the function values decrease without bound; therefore 
lim_ g (x) = lill\ g (x) = - oo. Although the limits are the same, they do not represent 

x➔- 1  x➔-l 

a finite limit ( see Problem 9.15 for further explanation) . Because g(x) does not 
possess a finite limit at x = -1 , lim g ( x) does not exist. 

x ➔ - 1  

9.22 Given a function .f(x) such that lim f (x) = oo or lim / (x) = - oo, how many unique 
x➔k x➔k 

values of k are possible? If lim / (x) = c or lim f (x) = c, how many unique values 

of c are possible? 
x➔oo x➔-oo 

According to Problem 9.16, if lim f (x) = oo or lim f (x) = - oo, then a vertical 
x➔k x➔k 

asymptote of J(x) exists at x = k. The first part of the question, then, asks you to 
determine how many unique vertical asymptotes a function can possess. There 
are no limitations on this number-a graph could have an infinite number of 
vertical asymptotes. In fact, four of the trigonometric graphs have infinitely many 
vertical asymptotes;  the graphs of y = tan 0 and y = sec 0 have vertical asymptotes 
at x = n; :n: (where n is an odd integer) , and the graphs of y = cot 0 and y = csc 0 
have vertical asymptotes at y = n:n:, where n is an integer. Therefore, k may have an 
infinite number of unique values. 

As for the second part of the question, if lim f (x) = c or lim f (x) = c, then y = c is 
x➔oo x➔-oo 

a horizontal asymptote of the function (according to Problem 9.18 ) .  A function 
may have, at most, two horizontal asymptotes, one which the function approaches 
as x gets infinitely positive, and one which it approaches in the negative direction. 
Therefore, c has a maximum of two unique values .  

Look 0t.f- f-l,,.e 
vi8 l,,.f- e�8e o.P f-l,,.e 

8Y0t.pl,,.-yoL\ COi.\\ +-ell 
f-l,,.0t.f- 8(x) is 8eHi\\8 closev °'-\\� closev f-o 

y ==- -'3. 

I\\ 

flA\\Ct-iO\\S 
o\\ly l,-,0t.ve 

O\\e l,-,oviZ.o\\t-0t.l 
"'-SYIMf'f-of-e, if "'-\\Y, 

foy l\\SrO\\\Ce, YOl.f-iO\\O\\ 
flA\\Ct-iO\\S 1,-,"'ve f-l,-,e 

1 3 1  
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9.23 

9.24 

9.25 

x2 + 6x - l6 Evaluate lim -----
x➔-3+ x +  3 

Factor the numerator of the fraction. 1. (x + 8) (x - 2) 
1m ------

x➔-3+ x + 3 Any value that causes the denominator to equal 0 but not the numerator represents a vertical asymptote of the function (see problem 4.29 ) ;  in this problem such a value exists : x = - 3 . According to Problem 9.16, the limit of a function, as x approaches a vertical asymptote, either equals oo or -oo. The answer depends upon the function and the direction from which x approaches the asymptote. To determine whether the values of a rational function increases or decreases without bound, substitute a value slightly larger than -3, such as x = - 2.999 , into the function. lim (x + 8) (x - 2) """ (-2.999 + 8) (- 2.999 - 2) 
x➔-3+ x + 3  - 2.999 + 3  (5.001) (- 4.999) 
<=:::; -------0.001 """ - 24, 999.998 

As x approaches -3 from the right, the function values are becoming infinitely . . (x + 8) (x - 2) negative. Therefore, hm ------ = - co. 
L 

x➔-3+ x + 3 

2x2 - 5x + 6 Evaluate lim 3 2 x➔OO -x - 6x - x + 2 
According to Problem 4.31, if the degree of a rational function's denominator is greater than the degree of its numerator, the function has a horizontal asymptote 2x2 - 5x + 6  of y = 0. Therefore, lim 3 2 = 0. 

x➔OO -x - 6x - x + 2 
. 5x2 - 9x + l Evaluate hm 2 • 

x➔- 00 5 - 3x - 6x 

According to Problem 4.32, if a rational function contains a numerator and denominator of equal degree, the function has a horizontal asymptote equal to the quotient of their leading coefficients. The leading coefficient of the numerator is 5 and the leading coefficient of the denominator is -6, so 5x2 
- 9x + 1 5x2 

- 9x + 1 5 (R . 1 f • h h 1 · · lim 2 = lim 2 = - -. at10na unctions ave t e same 1m1t 
x➔OO 5 - 3x - 6x x➔ - OO 5 - 3x - 6x 6 as x ➔ oo and x ➔ - oo . )  
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Note: Problems 9.26-9.27 reference the functionf(x) de.fined below. Note that a, b, c, d, and k 
are real numbers. 

9.26 Evaluate lim/ (x). 
x➔0> 

( ) (2x + a) (x - b) 
f x = -----(cx + d)(3x - k) 

Expand the products in the numerator and the denominator. 
( ) 

2x2 
- 2bx + ax - ab 

f X = --------
3cx2 - ckx + 3dx - dk The degrees of the numerator and denominator are equal, so the limit at infinity equals the quotient of the leading coefficients , as explained in Problem 9.25 .  ( Only compare the powers of x when determining the degree, because a,  b ,  c ,  d, and k are constants . )  

2x2 
- 2bx + ax - ab 2 lim --------

x➔°' 3cx2 - ckx + 3dx - dk 3c 

Note: Problems 9.26-9.27 reference the function f(x) de.fined in Problem 9.26. 9.27 Identify all values of n such that lim/ (x) = oo or lim / (x) = - oo. 
x➔n x➔n 

An infinite limit indicates the presence of a vertical asymptote (see Problem 9.16) . To find values of x that make the denominator equal 0, set both factors of the denominator equal to O and solve. 
cx + d = O 3x - k = O 

ex = -d or 
d 

x = - 
c 

3x = k 
k 

x = -
3 It is not sufficient merely to identify these x-values-you must also ensure they do not, in turn, make the numerator O as well. Set the factors of the numerator equal to O and solve. 

2x + a = O 
2x = -a or 

a 
x = - -

x - b = O 
x = b 

Therefore, lim J(x) = - oo or oo (it's not possible to determine which because 
x➔-d/c  You don't know the signs of a, b, c, d, and k) and lim f ( x) = - oo or oo , as long as 

l_ x➔k / 3  l_ 

d k a neither - - nor - equals - -2 or b. 
C 3 

><-vo,.ll.\e IMO\�es 
+-1...e �l.\1Mevo,.i--ov 

AND +-1...e .Ae�o1M i�o,.i--ov 
eql.\o,.l 0, ii-- l.\Sl.\o,.lly 

1Meo,.�s +-1...eve's "'- 1".ole 
i� +-1...e 3vo,.pl"., �o+- o,. 
vevi-- ico,.l o,.sy1Mpi--oi--e, 

so "" l i 1M ii-- s+-ill 
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Formal Defin ition of the Limit 
Epsilo\.\-ol..eltC1. pvo\..,le�s C1.ve \.\O .Pv.\.\ C1.t C1.ll 

9.28. The formal definition of limit contains the expression If (x ) - LI < e. Interpret this statement geometrically. 
The absolute value of a difference is often used to describe the distance of the quantities that are subtracted. Accordingly, the expression IJ (x) - LI < e states that the distance between a function J(x) and a constant L is less than the constan e. You can also conclude that e > 0, because e is greater that a quantity within aosolute values (which must be nonnegative) . 

9.29. The formal definition of a limit contains the expression " 0 < Ix - al < o ." 

9.30.  

Interpret this expression geometrically. Like the expression in Problem 9.28, this expression also describes a distance. It states that the distance between x and the constant a is less than a constant called o, which must be a positive number. Unlike Problem 9.25,  the expression explicitly states that the distance between x and a cannot equal 0, so x "#- a. 

The formal definition of a limit (also called the epsilon-delta definition due to the variables customarily assigned to it) states that limf (x) = L if and only if for each real number e > 0 there exists a correspondingx;eal number o > 0 such that 0 < Ix - al < a implies that If (x) - LI < e . Interpret this theorem geometrically. 
The limit off(x) , as x approaches a, is equal to L if the following requirement is met: assuming the function J(x) and the limit L it approaches are within a fixed distance e of one another, x and the value a it approaches must be within a corresponding fixed distance o. 

9.3 1 .  Calculate the value of o that corresponds to e given lim (2x + 1) = 13 , according to the definition of limits. x➔G 

According to the definition of limits (stated in Problem 9.30) ,  you must find o that corresponds to e given If (x ) - LI < e. Substitute f(x) and L into the expression. IJ (x) - LI < e l(2x +  1) - 131 < e l2x - 12I < e Your goal is to generate an expression for o that mimics the expression Ix - 61 < o ( since a = 6) . Factor 2 out of the left side of the inequality and isolate the absolute value expression. 
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9. 32 

2 lx - 6l < e  e lx - 61 < -2 Therefore, Ix - 61 < �- Compare that result to the expression Ix - 6 1 < o to conclude 2 e that o = -. 2 
. . x2 - 7x + IO Calculate the value of o that corresponds to e given hm----- = -3, according to the definition of limits. x➔2 x - 2 

Substitute J(x) and L into the e expression in the limit definition. IJ (x) - Ll < e l x2 - 7x + l0 ( )I ----- - -3 < e x - 2  
I x2 - 7 x + IO + 31 < e x - 2  Simplify the expression on the left side of the inequality using the common denominator x - 2. 

Factor and simplify. 

lx2 - 7x + IO + � (x - 2 )1 < e x - 2  1 x - 2  
I x2 - 7 x + IO + 3x - 6 1 < e x - 2  l x2 - 4x + 4 l < e  x - 2  

(x - 2) � 
M < e  lx - 21 < e By comparing the statements I x - 2 1 < e and I x - al < o, you can conclude that o = e. 

9. 33  Identify a value of  o that corresponds to e = 0.0001, such that lim (l5 - 4x) = -9 according to the definition of limits. x➔6 

Although the value of e is specifically stated, begin this problem using the same method described in Problems 9.31 and 9.32-substitute into the e statement of the limit definition. 

l+-'s 
O�O\Y +-o CO\\\cel +-l-\e +-ev-tMS O\S IO\\j O\S yo!A J..o\\"+le+- ')< :=  2.. 

RetMetM\:>ev-, 
0\ is +-l-\e \\IAtM\:>ev- 'JC O\f'f'YOO\cl-\es i\\ +-l-\e litMit; so t\\ +-l-\i.s pv-obletM 0\ := 2.. 
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I.P '>I><+ I I  i s  l ess 
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IJ (x) - Ll < e  1(15 - 4x ) - (-9 )I < 0.0001 124 - 4xl < 0.0001 
Factor -4 out of the expression within the absolute value symbols ; note that factoring a negative number out of a difference reverses the order in which the terms are subtracted. l-4 (- 6 + x)I < 0.0001 l-4 (x - 6)1 < 0.0001 1-41 · Ix - 61 < 0.0001 4 lx - 61 < 0.0001 Ix _ 61 < 0.0001 4 Ix - 61 < 0.000025 By comparing the statements I x - 6 1 < 0.000025 and Ix - al < o, you can conclude that o = 0.000025. 

9.34 Identify a value of o (accurate to two decimal places) that corresponds to e =  0.01 given lim ( x2 + 3) = 4, according to the definition of limits. 
x➔- l 

Substitute known values into the e expression of the limit definition. IJ (x) - Ll < e  l (x2 + 3) - 41 < 0.01 lx2 
- 11 < 0.01 Ix + II Ix - II < 0.01 Unlike Problems 9.31-9.33, the expression on the left side of the inequality is not immediately in the form I x - al < o. In order to reach this form, begin by assuming that o < 1, which is reasonable because o should represent an extremely small distance. If o < 1, then Ix + I I  < 1, which means that -I < x + I < 1. Subtract 2 from each of those expressions to get -3 < x - I < -1 . Therefore, Ix - I I < 3. Your goal is to produce the expression Ix  - al (which equals Ix + I I  because a = -I)  in the middle of the compound expression. Recall that Ix- I I < 3 and substitute 3 into the inequality. 

0.01 Therefore, o = -- -== 0.003. 3 

Ix - Il lx + II <  0.01 3 lx + II <  0 .01 I 11 0.01 x +  < --3 



Chapter 1 0  
EVALUATI NG LI M ITS 

- - -+-l-\olA+- 0\ BvO'-pl-\ o.P +-l-\e .PlA\\c½--'io\\ (O'-lclAlO'-+-'i\\B h\.A-\lt"S W l  

Thou h the formal definition of a limit provides the fundament�l 
fom,l1tion, it is highly impractical to apply epsilo�-delta proofs m 

�
rde

;h'.:; 
verif that limits exist. In fact, one of the assumptions of su�h �roo s is 

. the lmit is already known. In order to calculate the �ast m_aJonty of basic 
limits , you need only apply a few basic techniques or identify an elementary 
limit theorem. 
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Re1Me1Mbev-, 
1\\ " 0\\\.::\ e" ,:,we 

L\\Vev-se .Pl.\\\ct-io\\s, so 
1\\ e' � ><: (see Pv-oble1M 
S".'30). I\\ t-1-\is pv-oble""', 

" � I (I\\ e � I\\ e 1), 
so I\\ e � I .  
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Substitution Method 
As e"'-SY "'-S pl lA88l\\8 t\\ .Pav- ;,c 

1 0. 1  Evaluate lim (x2 - 3x + 2) . 
x➔4 Notice that substituting x = 4 into the expression results in a real, finite value, which indicates that the substitution method is applicable. lim (x2 - 3x + 2) = 42 - 3 (4) + 2 = 16 - 12 + 2 = 6  

x➔4 

I 0.2 Evaluate lim 3•_ 

1 0.3  

x➔- 1 

Substituting x = -1 into the expression results in a real, finite value. 

Evaluate lim arctan (lnx) .  
x➔e 

1. 3x 3-l 1 Im = = -
x➔-1 3 

Substitute x = e into the expression In x. Note that In e = 1 .  lim arctan (In x) = arctan (In e) 
x➔e = arctan(l) 

n n According to Problem 7.32, arctanl  = -4 , so lim arctan(lnx) = - . 
X➔e 4 

Note: Problems 10.4-10.6 refer to the functions f(x) and g(x) as defined by the table: 

X - 1  0 1 2 3 
f (x) 5 -3 - 1  0 6 g (x) -7  1 3 -4 2 

Table 10-1: Although only selected values offunctionsf(x) and g(x) are given, f(x) and g(x) are 
continuous for all real numbers. 

1 0 .4 Evaluate 1im (J (x) - 3g (x)) . 
x➔- l The limit of a sum ( or difference) is equal to the sum of the individual limits. lim (J (x) - 3g (x)) = lim f (x) - lim 3g (x) 

x➔- l x➔-l x➔-1 
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Substituting -1 into the expression results in a real, finite value. 
= J (- l) - 3g (- l) 
= 5 - 3 (-7) �--
= 26 

Note: Problems 10.4-10.6 refer to the functions f(x) and g(x) de.fined in Problem 10.4. 

1 0.5  Find the value of  k for which lim 
g (

(
x)

) 
does not exist. 

x➔k j X 

If k = 2 , calculating the limit requires you to divide by 0, which is not a valid 
operation. 

lim 
g (x) 

= 
g (2) 

= 
-4  

x➔2 J (x) J (2) 0 

The value 
-4 

is not a real, finite value, so lim 
g (

(
x)

) 
does not exist when x = k. 0 x➔k j X 

Note: Problems 10.4-10.6 refer to the functions f(x) and g(x) de.fined in Problem 10.4. 

1 0.6 Evaluate lim f (g (x)). 
x➔3 

Note that g(3) = 2 ; substitute this value into the expression. 

lim f (g (x)) = J (g(3)) = f (2) 
x➔3 

Therefore, lim f (g (x)) = f (2) = 0. 
x➔3 

Note: Problems 10.7-10.10 refer to the piecewise-de.fined function h(x) de.fined below: 

14 - x3 
X < - 1  - 10 ' x = - 1  

h (x) = 
4 - x3 , - l < x < 2 
6 - 5x, X � 2 

Yov. 
'k\\ow t-1-\oi.t-

-P{- I) ::=- s- Ol.\\cA 
fJ(- 1) ::=- -7 becoi.v.se 
t-1-\ose oi.v-e t-1-\e 
\\l.\1Mbev-s i\\ t-1-\e 
x ::=- - I  colv.lM\\ .Pov 

-PCx) oi.\\cA [J(x). 

1 0.7 Evaluate lim h (x) . 
x➔- 3 

o.P 1-\(x) oi.s .PoL\v
v-L\les t-1-\oi.t- +-ell yoL\ 

wl-\oi.t- l-\(x) is, boi.secA O\\ 
According to the piecewise-defined function, the expression 4 - X3 generates the wl-\oi.t- yoL\ PLUG IN .Pov- x. 
values of h (x) when x < -1 . �---------------------! · 

Tl-\e i\\pL\t- x ::=- -> .Poi.lls 

lim h (x) = 4 - (-3)3 = 4 - (-27) = 31 
x➔- 3  

i\\ t-l-\e t-op coi.t-efjov-y 
(x < - 1). 
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Note: Problems 10. 7-10.10 refer to the piecewise-defined function h(x) defined in Problem 10. 7. 

1 0.8 Evaluate lim h (x) . 
x➔ 11 

According to the piecewise-defined function, the expression 6 - 5x generates the values of h (x) when x � 2. lim h (x) = 6 - 5 (1 1) = 6 - 55 = -49 
x➔ll 

Note: Problems 10. 7-10.10 refer to the piecewise-defined function h(x) defined in Problem 10. 7. 

1 0.9 Evaluate lim h (x). 
x➔ -1 

Even though h (-1) = 10, that is not the limit as x approaches -1 . If a limit exists at 
x = -l , the left- and right-hand limits as x approaches -1 must be equal. Note that 
h(x) is defined by the expression 4 - :i" as x approaches -1 from the left and the right, so substitute x = -l into that expression to evaluate the limit. lim h (x) = lim h (x) = 4 - (- 1)3 = 4 + 1 = 5 

x➔-r x➔ - 1+ 

Note: Problems 10. 7-10.10 refer to the piecewise-defined function h ( x) defined in Problem 10. 7. 

1 0 . 1 0  Evaluate lim h (x) . 
x➔2 

The rule defining h(x) changes when x = 2. For inputs slightly less that x = 2, h(x) is defined as 4 - x'. Substitute x = 2 into that expression; the result is the left-hand limit as x approaches 2. lim h (x) = 4 - (2)3 = 4 - 8 = -4 
x➔2-For inputs slightly greater than x = 2, h(x) = 6 - 5x. Substitute x = 2 into that expression to determine the limit as x approaches 2 from the right. lim h (x) = 6 - 5 (2) = 6 - 10 = -4 

x➔2+ Because the left- and right-hand limits are equal as x approaches 2, the general limit exists : lim h (x) = -4 . 
x➔2 
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Factoring Method 

-rl-\e -fiv-st tl-\i"-8 ta tv-y i.P Sl-\bstitl-\tia\\ J.aes\\'t wav-\:. 

Note: Problems 10.11-10.12 refer to the functionf(x) de.fined below: 

1 0 . 1 1 Evaluate lim f (x) .  
x➔4 

( )  (x - 4) (x + 6) 
f X = ----x - 4  

Simplify the expression by canceling out the matching factors in the numerator and the denominator .. �----------------------_J 
. y;-/4 (x + 6) . x + 6 hm ---�- = hm --

x➔4 
� 

x➔4 1 Now substituting x = 4 into the expression will not return an indeterminate result: 
. � - -0� + 0  hm (x + 6) = 10 . Therefore, lim ----- = 10 . 

x➔4 x➔4 x - 4 

1 0. 1 2  Graph f(x) . 
. (x - 4) (x + 6) A ( )  The functions f (x) = ----- and f x = x + 6 are eqmvalent except at 

x - 4 A 

x = 4, as J(x) is undefined at that value, but f (x) is not. (Recall from Problem 10.11 that J (x) is the reduced version of the rational function J(x) . )  Therefore, their graphs have equal values except at x = 4; both are a line with slope 1 and yintercept 6. Although f(x) is undefined at x = 4 (which means f(4) doesn't exist) , lim f (x) = 10 
x➔4 according to Problem 10.11 ,  so the function approaches a height of 10 as x ➔ 4 from the left and the right. Therefore, the graph ofj(x) contains a "hole," as illustrated by Figure 10-1 . 

-10 6 

Figure 10-1 
(X - 4) (x + 6) The graph of f (x) = ���� 

x - 4 
contains a hole at (4, 10) .  

Yo11.. c,,,.\\'t- r111..8 
'J< � 4 i\\rO t-l--\e .Pv,,,.ct-iO\\ beC0\11..Se yoll..'11 je+-

0/ 0, 1 ... Mcl--\ is c,,,.lleJ.. 0\\\ 1'i\\J..et-evi,v.i\\O\re'1 v,,,.111..e. B,,,.sic,,,.lly, t,l--\,,,.t-'s i,v.,,,.t,l--\'s we>\y o.P SO\yi\\j ''Rijl--\+- \\Ow, I l--\,,,.ve \\O iJ..e,,,. wl--\,,,.t, 0/0 is 

1 4 1  



Chapter Ten - Evaluating Lim its 

I.P yoL\ ce>1.�t .Pe>1.ctov- 8'"><2 
- 2.G">< + IS- by 

4x5 - x2 

I 0. 1 3  Evaluate lim 2 x-o X 

Substituting x = 0 into the expression returns an indeterminate result. Factor the numerator and reduce the fraction, thereby creating a new rational function for which the substitution method is a valid approach. 4x5 - x2 x2 ( 4x3 
- 1) 3 lim 2 = lim 2 = lim ( 4x3 

- 1) = 4 ( 0) - 1 = - 1  
x➔O X x-+O X x-+O 4x5 - x2 Therefore, lim 2 = - 1 . 
x➔O X 

I. x2 + 5x - 36 1 0. 1 4  Evaluate im -----
x➔-9 x + 9  

Factor the numerator, reduce the fraction, and evaluate the resulting limit using e"><pev-i1Me�ti�B, yoL\ CO\� substitution . .Pe>1.ctov- it by &leco1Mpositio�- ( ) 1 .. _i..,(f\ .flip be>1.c\c. to Pv-oble1M 2..2.7 � � 4) (x + 9) = lim x - 4  _yvr "'1 = Iim (x - 4) = -9 - 4  = - 13 .Pov- IMOv-e .::l.ete>1.ils. X➔� X + 9 x➔-9 � x➔-9 

1 42 

1. 8x2 - 26x + l5 1 0. 1 5  Evaluate 1m ------
x➔3/ 4 4x - 3 

Factor the numerator, simplify, and apply the substitution method. lim ( 4x - 3) (2x - 5) = lim _0.x-/4 (2x - 5) = lim (2x - 5) = (2(�) - 5) = � -5 = _2_ 
x➔3/ 4  4x - 3 x➔3 /4 � x➔3/ 4  4 4 2 

I. 8x2 - 26x + l5 7 Therefore, 1m ------ = 
x➔3 / 4 4x - 3  2 

. ( 7x2 - 10x + 3  2 - 7x ) 1 0. 1 6  Evaluate hm ----- + -- . 
x➔l x - 1  x +  1 

Notice that the substitution method fails only for the left expression. Recall that the limit of a sum is equal to the sum of the individual limits. 
1. ( 7x2 - 10x + 3  2 - 7x ) 1. 7x2 - 10x + 3  1. 2 - 7x 1m ----- + -- = 1m ----- + 1m --
x➔1 X - 1  X + 1 x➔l X - 1  x➔l X + 1 Factor the left expression and substitute x = 1 into the right expression. 



Chapter Ten - Evaluating Lim its 

1. (7x - 3) (x - l) 2 - 7 (1) = 1m ----- + ---
x➔I x - 1  (1) + 1  = lim (7x - 3) + (- �) 
x➔l 2 = 7 (1) - 3 - � 2 5 = 4 - -

2 
3 = 2 . ( 7x2 - 10x + 3  2 - 7x ) 3 Therefore, hm ----- + -- = - . 

x➔l x - I  x + I  2 
1. a2x2 + 3ax - 4a2bx - 12ab I 0. 1 7  Evaluate 1m --------- given a # 0. x➔-3/a ax + 3 

Factor the numerator by grouping. lim a2x2 + 3ax - 4a2bx - I2ab = lim ax (ax + 3) - 4ab (ax + 3) 
x➔-3/a ax + 3 x➔-3/a ax + 3 . (ax - 4ab) �  

= hm 
x➔- 3  I a 

� = lim (ax - 4ab) 
x➔- 3 /a Substituting x = - � for x now results in a real, finite value. a = f (- �) - 4ab 

3,i = -7 - 4ab 

I.P 
.... wev-e eqL\e>1.l 

t-o 0, ,c woL\l.A be 
e>1.ppv-Oe>1.Cl-\l\\8 

'3 '3 
- .... := - 0 

= -3 - 4ab Therefore, lim a2x2 + 3ax - 4a2bx - I2ab = -3 - 4ab. 
x➔-3/a ax + 3 

Cl-\e>1.pt-ev- I 4, 
yoL\'11 L\Se L'l-\8pit-e>1.l's 

v-L\le t-o -MBL\v-e oL\t
------------, li1Mit-s li\:.e t-l-\ese 

I 0. 1 8  Evaluate lim x3 + 8 
x➔-2 x + 2  

Factor the sum of perfect cubes in the numerator. . x3 + 8 . (x + 2) (x2 - 2x + 4) hm -- = hm --�---� 
x➔- 2  X + 2 x➔- 2  X + 2 . � (x2 - 2x + 4) 

= hm --------
x➔-2 

� = lim ( x2 - 2x + 4) 
x➔- 2  = (-2)2 - 2 (-2) + 4  = 12 

.... .Pov-1ML\le>1. yoL\ 
sl-\oL\l.A 1Me1Mov-iz.e: 
"/<'3 + y'3 := (,c + y) 
(,c2 -,cy + y2). Loo\:. e>1.t
Pv-oble1M 2. .25 .Pov-

1 43 
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'See 
Pv-obl elA-\s 2. 1 8' 

OI.\\.A 2. 1 '1 i.P yol-\ 
\t ee.A "'- v-e.Pv-es"' ev

O\\ sy\\ t-"' et-ic 
.A ivisio\\. 

Th is is "'- \\ ice w"'-Y 
o.P S01.yi\\ 8 1'Do\\'t- eve\\ 

t-"' i\\k 01.bol-\t- L\S i\\B yol-\v
C01.l cl-\l01.t-ov- t-o -h8L\Y-e 01,\r 
t-"' is pv-obl elA-\, b ec"'-1-\S e 
yol-\'11 B et- "'- .A ecilA-\01.I 
i\\ st-e"'-.A o.P "'- .Pv-"'-ct-io\\ 
"'-\\.A I 'II ho w yol-\ 
COL\I.A\\'t- .Ao it- by "'"'-\\""'-" 
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x3 + 8 Therefore, lim -- = 12 . x➔-2 x +  2 
l. 2x3 - 7x2 - 33x + l8 1 0. 1 9  Evaluate 1m ----2 ----x➔-3 X - 9 

0 Substituting x = -3 into the numerator and denominator results in - . Therefore, 
L 0 -3 is a root of both functions (y = 2x' - 7 :i2 - 33x + 18 and y = x2 - 9) . All functions with a root of x = a must contain the factor (x - a) . Therefore, (x - (-3)) = (x + 3) is a factor of 2.:0' - 7x2 - 33x + 18. Use synthe 1c division to identify the remaining two factors ; factor the difference of perfect squares within the denominator . =ill 2 -7 -33 18 -6 39 - 18 2 - 13 6 0 Factor the quotient: 2x2 - 13x + 6 = (2x - 1)  (x - 6) . 

. 2x3 - 7x2 - 33x + l8 . (x + 3) (2x - l) (x - 6) hm -------- = hm �-�--�-� 
x➔-3 x2 - 9 x➔-3 (x + 3) (x - 3) Note that x + 3 is a factor of the numerator and the denominator, so it can be eliminated. � (2x - l)(x - 6) 

= lim ----�----
x➔-3 � (x - 3) 

= lim (2x - l) (x - 6) x➔-3 X - 3 Substituting x = -3 into the expression results in a real, finite value. (2 (-3) - 1) (-3 - 6) (- 7) (-9) -3 - 3  -6  
l. 2x3 - 7x2 - 33x + l8 Therefore, 1m ----2 ----x➔-3 X - 9 21 2 

63 21 
6 2 

. 64x3 
- 8x2 

- 366x + 135 Calculate the exact value of hm 3 2 x➔3/8 48x + 86x - 23x - 6 
Substituting x = 8 into the numerator and denominator produces the 0 indeterminate result O . Apply synthetic division. 

ru 64 -8 -366 135 ru 48 86 -23 -6 24 6 - 135 18 39 6 64 16 -360 0 48 104 16 0 



Chapter Ten - Evaluating Limits 

Rewrite the original limit statement in factored form. 

. 64x3 
- 8x2 + 366x + 135 . ( x - 3 / 8) ( 64x2 + l 6x - 360) 

hm --------- = hm ---�------
x➔3/s 48x3 + 86x2 - 23x - 6 x➔3/B (x - 3 /  8)(  48x2 + 104x + 16) 

The greatest common factor of both quadratics is 8 .  

. (8x - 3) (8x2 + 2x - 45) 
= hm -------

x➔3 ; s (8x - 3) ( 6x2 + 13x + 2) 

Multiply the linear factor (x - 3/8)  by 8. 

. ( x - 3 / 8) ( 8) ( 8x2 + 2x - 45) 
= hm ----��---� 

x➔3/ B (x - 3 /  8)(8) ( 6x2 + 13x + 2) 

Reduce the rational expression and substitute x = - into the result. 
8 

. _{.8x-/4 ( 8x2 + 2x - 45) = hm �--�-----
x➔31s _{.8x-/4 ( 6x2 + 13x + 2) 

8x2 + 2x - 45 = lim -----
x➔3; s 6x2 + 13x + 2 

= 8 (3 / 8)2 + 2 (3 /  8) - 45 

6(3 / 8)2 + 13 (3 /  8) + 2 

� + _()_ - 45
(�) 8 8 1 8 

54 
+ 39

(�) +
�

(
64

) 64 8 8  1 64 
9 6 360 - + - - -
8 8 8 

54 312 128 - + - + -
64 64 64 

(- 3
:

5
) 

= -�-
( �4

4
) 

Dividing by a fraction is equivalent to multiplying by its reciprocal .  

345 64 = - - · -
8 494 

22, 080 = - --
3, 952 

1, 380 = - --
247 

64x3 
- 8x2 

- 366x + 135 1, 380 
Therefore, lim 3 2 

== - --
x➔3/B 48x + 86x - 23x - 6 247 
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l o  2 1  U d h d. · d 1 (x + a) (x + b) " f b d L  1 . n er w at con 1t1ons oes im �-�-� = L , I a, , c, an are rea numbers and c < 0 < a < b ? 
x➔c x - c 

From the statement c < 0 < a < b , you can conclude that a, b, and c are distinct (unequal) numbers, a and b are positive numbers, and c is a negative number. Substituting x = c into the expression causes the denominator to equal O (since 
c - c = 0 ) .  If the numerator does not also equal O when x = c, then x = c is a vertical 1---------:-------,--� (x + a) (x + b) . . asymptote to the graph of y = ----- , and enher L = oo or L = -oo, neither 

x - c of which is a real, finite number. Therefore, one of the two factors in the numerator must equal O when x = c in order for a limit to exist. Set both factors equal to 0, substitute x = c in both equations, and solve. 
x + a = O x + b = O 
c + a = O or c + b = O 

c = -a c = -b Th 1 (x + a) (x + b) " f · " h h . f h . f b us, im----- = L I c 1s e1t er t e opposite o a or t e opposite o . 
x➔c x - c 

Conjugate Method 
BveC\.\:. +-ll\i.s 01A+- +-a �eC\.l wi.+-ll\ +-vo1A'bleso""'e YC\.�i.cC\.lS 

I 0.22 Simplify the expression : ( ✓x + 3 ) (  ✓x - 3) . 

Apply the FOIL method to multiply the factors . (See Problem 2.13 for an explanation of the FOIL method.) 
(✓x + 3) (✓x - 3) = ✓x · ✓x - 3✓x + 3✓x + 3 (-3) 

= ✓x2� - 9  
= x - 9 It is not necessary to write x - 9 even thou h ✓x2 is typically simplified as lx l . Notice that the original expression is invalid when x < 0, so it is appropriate to assume that x > 0 and omit the explicit absolute value indicators in the final solution. 

x - 16 I 0.23 Evaluate lim � . x➔l6 vx - 4  16 - 16 0 Substituting x = 16 results in --- = - , an indeterminate value. To apply the 4 - 4  0 conjugate method, multiply the numerator and denominator by the conjugate of the denominator. This method enables you to apply the substitution method without altering the value of the function or its limit. 



Chapter Ten - Evaluating Lim its 
. x - 16 . x - 16 ✓x + 4  hm--- = hm --- · --

x➔I6 -.Jx - 4 x➔l6 -.Jx - 4 -.Jx + 4 Multiply the denominators using the method of Problem 10.22 . To speed up the simplification process, do not expand the product in the numerator . 
. (x - 16) (✓x + 4) 

= hm ------
x➔16 x - 16 Notice that the term x - 16 appears in both the numerator and denominator; reduce the fraction by eliminating it . 

x - 16 Therefore, lim -y-- = 8. 
x➔16 "\J X - 4  

-2 + M I 0.24 Evaluate lim ---- . 
x➔-4 8 + 2x 

. �(✓x + 4) = hm �--��-� 
x➔J6 � = lim (✓x + 4) 
x➔l6 

= ✓16 + 4 
= 8  

Substitution produces an indeterminate result, so apply the conjugate method as described in Problem 10.23. Multiply the numerator and denominator by the conjugate of the numerator and simplify . 
. -2 + M . -2 + M (-2 - H) 
hm ---- = hm ---- • �---� 
x➔-4 8 + 2x x➔-4 8 + 2x (-2 - H) 

. (-2)(-2) + 2M - 2M - ✓(-x)2 
= hm --------------

x➔-4 (8 + 2x) (-2 - H) To facilitate simplification, do not expand the product in the denominator. Multiply only the part of the fraction that contains the conjugate pair . 
. 4 + � - (-x) = hm ----------

x➔-4 (8 + 2x) (-2 - H) l. 4 + x = 1m ---�---� 
x➔-4 ( 8 + 2x) ( -2 - H) Factor 2 out of the expression 8 + 2x in the denominator . 

. � = hm ---�---� 
x➔-4 2�(-2 - H) l. 1 = 1m -----
x➔-4 2 (-2 - H) 

-rl-\is t-i1Me t-L\e CO\\,)L\8Clt-e is 
-2. - ,F;:. 
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Chapter Ten - Evaluating Lim its 
Substitute x = -4 into the expression. 

-2 + ..✓-; 1 Therefore, lim ---- = - - . 
x➔-4 8 + 2x 8 

x - 5 I 0.25 Evaluate lim ,----- . 
x➔5 ✓x - 5 

1 2 (-2 - ,J- (-4) ) 1 2 (-2 - ✓4
) 1 8 

The conjugate method is not necessary to evaluate this limit. Instead, rewrite the radical expression using a rational exponent. 
�------------:-. -;x - 5 . (x - 5)1 hm � = hm 112 

'(ov.. cov..lJ.. "'lso .P"'ct-ov- - I ov..t- o.P 7 - ,c i\\ t-l-\e J..e\\otMi\\t:'lrov- t-o 8et- -(,c - 7). '(ov..'11 e\\J.. v..p wit-l-\ t-l-\e St:'ltMe .fi\\t:'ll t:'l\\Swev-. 
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x➔5 -vx - 5 x➔5 (x - 5) To calculate the quotient of exponential expressions with the same base, subtract the powers. = lim (x - 5)1-112 = lim (x - 5)112 = lim ,Jx - 5  
x➔5 x➔5 x➔5 Substitute x = 5 into the expression to calculate the limit. 

Iim ,Jx - 5 = ✓5 - 5  = ✓O = O 
x➔5 

✓x - 6 - 1  I 0.26 Evaluate the limit: lim ---- . 
x➔7 7 - x  

Multiply the numerator and denominator by ✓x - 6 + 1 ,  the conjugate of 
,Jx - 6 - 1 .  

. ✓x - 6 - 1  . ✓x - 6 - 1  ✓x - 6 + 1 hm---- = hm ---- · ---
x➔7 7 - X x➔7 7 - X ✓ X - 6 + 1 = lim (x - 6) - 1  

x➔7 (7 - x) (.Jx - 6 + 1) x - 7  = lim -------
x➔7 (7 - x) (,Jx - 6 + 1) Factor -1 out of the terms in the numerator to reverse their order. This allows you to reduce the fraction. 

= lim -� 
x➔7 � (.Jx - 6 + 1) - 1  = lim ----
x➔7 .Jx - 6  + 1 
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Apply the substitution method. 

- 1  
✓7 - 6  + l 

- 1 1 
✓

l
+ l 2 

x - 19 I 0.27 Evaluate the limit: lim 
✓x+6 

. 
x➔I9 5 - x + 6  

Apply the conjugate method using the expression 5 + .J x + 6 . 

I. X - 19 1. X - 19 5 + ✓x +fJ Im = Im • 
x➔I9 5 - .Jx + 6 x➔I9 5 - .Jx + 6 5 + .Jx + 6 

. (x - 19) (s + .Jx + 6 ) = hm---�---� 
x➔l9 25 - (x + 6) 

. (x - 19) (s + .Jx + 6 ) = hm--------
x➔19 19 - x  

Factor -1 out of the denominator in order to reduce the fraction, as previously 
demonstrated by Problem 10.26. 

� (s + .Jx + 6) 
= lim 

� 
= lim - (s + .Jx + 6 ) = -(5 + ✓25) = - 10 

x➔l9 - x➔19 

Special Limit Theorems 
Li."""i.+- .Pavl,A,\l.\lc,.s yal.\ sl'\alhlol.. """e"""avi.z.e 

• C 
I 0.28 Evaluate hm 2 , if c is a positive real number. 

x➔oo X 

The degree of the denominator is 2, and the degree of the numerator is 0-
technically, c = c · x0 = c · l . According to Problem 4.31,  when the degree of the 
numerator is greater than the degree of the numerator, the limit at infinity equals 

• C 
O : hm 2 = O. 

x➔oo X 

1. 
sin 70 

1 0 .29 Evaluate im -
0
- . 

0➔0 

sin x 
A common limit formula states that lim -- = 1. ultiply the numerator and 

x➔O X 

denominator by 7 in order to force the denominator to match the argument of 
sin 70. 

lim 
sin70 = lim 

sin70 . Z 
0➔0 0 0➔0 0 7 

1. 
7 sin70 = 1m ---

0➔0 70 

B01.sic01.lly, 
"'"'Y -fi\\if-e \\v.\N\
bev .::l.ivi.::l.e.::l. by °'
l-\v.\N\0\\801>.S i\\-fi\\if-e 
\\v.\N\bev eqv.01.ls O. 

il-\Ol.+
.Pov\,\,\1,\)0\. wovks 

0"'1Y i.P '>< °'-fpvo"'cl-\es O 
°'-\\.::1. +-1-\e V01.lv.e i\\si.::l.e 
+-1-\e Si\\e .Pv.\\c+-io\\ 
""'"'+-cl-\es +-1-\e 
.::l.e\\Ol,\o\i\\01.t"Ov. 
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The limit of a product is equal to the product of its limits . 
Therefore, lim sin 70 = 7 0➔0 0 

cos 80 - l I 0 .30 Evaluate lim ---- . 
0➔0 20 

= (1im 7) (1im sin70 ) 0➔0 0➔0 70 = 7 · 1 = 7  

Like Problem 10.29, this problem requires the knowledge of a common limit . cos x - 1  formula: hm
0 

--- = 0 .  Again, your goal is to match the argument of the x➔ X trigonometric formula and the denominator of the expression. As the denomi-nator of the expression is far easier to manipulate than the argument of cosine, force 20 to become 80 by multiplying the numerator and denominator by 4 . Im ---- • - = Im ----- = Im 4 1m ---- = 4 • 0 = 0 1. 
cos 80 - 1  4 

1. 
4 (cos 80 - l) (i· ) (i· cos 80 - 1) 

0➔0 20 4 0➔0 80 0➔0 0➔0 80 

( 1 )x(In 8) 
1 0 .3 1 Evaluate lim 1 + -

X➔OO X 

Rewrite the function so that it more closely resembles a common limit: lim (1 + .!.)• = e. According to exponential properties, an exponential expression x➔oo X raised to a power is equal to the original base raised to the product of the powers : 
[J (x) rb = [ (J (x) r J. In this problem, J(x) = ( 1 + ;), a =  X, and b = In 8, so 

( )x(ln 8) [( )x ]ln 8  lim l + .!. = lim l + .!. . x➔oo X x➔oo X 

The power rule for limits states that lf� f (xr = (tf� f (x) r 
As stated earlier, lim (1 + .!.)• = e . x➔oo X 

[ �i� ( 1 + ; r rs = ( e )1°8 

Because y = In x and y = e' are inverse functions, In ( e• ) = einx = x .  Therefore, eln 8 = 8 .  



Chapter 1 1  
CONTI NU ITY AN D TH E D I FFERENCE QUOTI ENT 

� � "'- pveview a.P �eviVt".i-ives V\\bve"'-�"'-ble Bv"'-P s t".\\ 

Though limits are exceedingly useful, there are few calc�lu� applications that make explicit use of them. That does not imply that limits are unimportant but that they are typically one feature of a far more . ' . . h h f everywhere continuous substantial concept-contmmty. T e grap o an . h t . h .  t . · t can be drawn wit ou function is best characterized by t is proper Y· 1 . f . lifting your pencil from the graph. The predictable behavior o co:tm:us ra hs uarantees the functionality of key calculus t�eorems, sue . as e f nt!me�iate value theorem, and substantiates meamngful conclus1ons,  such as the difference quotient. 
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Chapter Eleven - Continu ity and the Difference Quotient 
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Continuity 
Li1Mit e;,cists + .Pl,\\\CtiC\\ J.e-fi\\et:l. � CC\\ti\\l,\Cl,\S 

I I .  I Iff(-2) = 7, what other conditions must be met to ensure f(x) is continuous at x = -2? 
Iff(x) is continuous at x = c, three conditions must be met: (1 )  lim / (x) = Li_ ,  such that L,  is a real number (2) T(c) = ½ , such that L2 is a real number (3) ½ = 4 Because f(-2) = 7, condition (2) is met. In order for f(x) to be continuous at 
x = -2, the function must approach 7 as x approaches -2 : Iim f (x) = 7. 

x➔-2 

1 1 .2 A function r(x) is defined by the set of ordered pair listed below. At which value (s) in the domain of r(x) is the function continuous? 
r (x) : {(-2, 6) , (1, 7) , (4, 6)} 

A function defined as a finite set of discrete points is not continuous at any of those points. In order to possess a limit at x = c ( one of the qualifying conditions for continuity at x = c) , a function must approach the same value as x approaches 
c from the left and from the right. It is impossible to approach c from either direction, as the function is undefined immediately to the left and right of x = c, and no finite number of points could remedy that. 

1 1 . 3  Which of  the following trigonometric functions are continuous? 
y = cos 0, y = sin 0, y = tan 0, y = cot 0, y = sec 0, y = csc 0 
This question is posed in a purposefully vague fashion. You may be tempted to classify y = tan 0, y = cot 0, y = sec 0, and y = csc 0 as discontinuous because their graphs contain vertical asymptotes .  Not only do graphs lack function values at vertical asymptotes, they also have infinite limits, so all the conditions of continuity are violated. 
However, it is only appropriate to judge a function's continuity over the interval for which it is defined. The functions y = tan 0 and y = sec 0 are undefined at 

kn . . x = 2 (when k 1s an odd mteger) , and y = cot 0 and y = csc 0 are undefined at 
x = kn (for any integer k) . These, not coincidentally, are the x-values for which the functions don't meet the requirements of continuity. Therefore, the most appropriate answer is that each trigonometric function is continuous over its entire domain. 
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1 1 .4 At what value (s) of x is the greatest integer function, y = [ x] , discontinuous? 

The greatest integer function, whose graph appears in Figure 11-1 , outputs the <So I[,.8'] == ' greatest integer that is less than or equal to the input.�----------J f \ ] .,._ ... .a l 2. '3 == i,Pl.\+-
• l[- 1 .'3] == - 2.,  \\o+- - I • 11,,,e ov.½-pv.½- is +-1,,,e biBBes+i\\½-eBev \.E'5'5 ½-l,,,e>1.\\ +-1,,,e t\\pv.½-, e>1.\\&l. - I ?' - \ .'3. 

2 

--6 -5 -4 -3 -2 -1 2 3 4 5 6 

Figure 11-1 The graph of y = [ x] , the greatest integer function. Though y = [ x] is defined for all real numbers, at each integer j, lim [ x] =F- lim [ x] . Specifically, ( 1i� [ x ]) + I = liIIJ [ x] . Because a general limit does n�:�xist a::;ch 
x➔1 x➔1 integer in its domain, y = [ x] is discontinuous at those values .  

Types of Discontinu ity 

\-\ales vs. bveo,.�s, vetMavo,.b\e vs. \\C\\vetMavo,.b\e 

Note: Problems 11.5-11.13 refer to the graph of f(x) in Figure 11-2. 1 1 . 5  I s  f(x) continuous at x = -3? Explain your answer using the definition of continuity. 
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Figure 11-2 
The graph of a function f( x ). 
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Because lim_ J (x) :;t: lim+ J (x) , the general limit lim f (x) does not exist. Even 
x➔- 3 x➔- 3 x➔-3 though the function is defined at x = -3, the absence of a limit means that f(x) is discontinuous there. 

Note: Problems 11.5-11.13 refer to the graph of f(x) in Figure 11-2. 1 1 .6 Is .f(x) continuous at x = -1 ? Explain your answer using the definition of continuity. 
Yes, .f(x) is continuous at x = -1, as lim f (x) = f (- 1) = l . 

x➔- 1 

Note: Problems 11.5-11.13 refer to the graph off(x) in Figure 11-2. 1 1 .7 Is .f(x) continuous at x = l?  Explain your answer using the definition of continuity. 
No, f(x) is discontinuous at x = l, because lim f (x) is not a finite number: 

x➔l liIIl f (x) = 00 and lill} f (x) = - 00. Furthermore, f(l )  is not in the domain of f(x) . 
Tl-.e '�:---:...:_x_:!➔!:l .:__:_:__-=�=x➔�l���--�-=-===� 

.PL\\\ci-io\\ \\evev 
t\\f-evsec+-s +-l-.e 

Vevf-icotl li\\e " = I 
SO O\S .Potv O\S -P{,c) {s 

CO\\cev\\e.A, ><: = I 
<Aoes\\'f- e><:is+-. 
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Note: Problems 11.5-11.13 refer to the graph of f(x) in Figure 11-2. 1 1 .8 Is .f(x) continuous at x = 4? Explain your answer using the definition of continuity. 
No, f(x) is not continuous at x = 4 because lim f (x) = 5 but f( 4) = 0. The limit and 

x➔4 function value must be equal in order to classify .f(x) continuous at x = 4. 
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Note: Problems 11.5-11.13 refer to the graph off(x) in Figure 11-2. 1 1 .9 At what value of x does the graph of J(x) exhibit one-sided continuity (i.e., the graph is continuous only as you approach x from the left orfrom the right) ? 

The graph of J(x) is continuous from the right at x = -3, because Iim f (x) = J (-3) = - 1 . One-sided continuity differs from standard continuity in 
x➔-3+ that the general limit need not exist; it is sufficient that a one-sided limit at that x-value exists and is equal to the function value. 

Note: Problems 11.5-11.13 refer to the graph off(x) in Figure 11-2. 1 1 . 1 0  At what value of x does the graph off(x) exhibit point discontinuity? 
If lim f (x) exists but does not equal f(c) , f(x) is said to demonstrate point discontini"iity at x = c. Whether or notf(c) actually exists is irrelevant. In Figure 11-2, lim f (x) = 5 but f(4) = 0, so J(x) exhibits point discontinuity at x = 4 (and still 
x➔4 would even if/(4) were undefined) . 

Note: Problems 11.5-11.13 refer to the graph off(x) in Figure 11-2. 1 1 . 1 1 At what value of x does the graph of J(x) exhibit jump discontinuity? 
If lilll f (x) = ½ and li11?- f (x) = 4, (where L1 and L2 are real numbers) 

x➔c x➔c but ½ "# 4, ,  then f(x) exhibits jump discontinuity at x = c. In Figure 11-2, Iim_ f ( x) = 2 but lim f ( x) = - 1 ,  so J( x) exhibits jump discontinuity at x = -3. 
x➔-3 x➔ - 3+ 

1 1 . 1 2  At what value of x does the graph ofj(x) exhibit infinite discontinuity? 
If lim f (x) = oo or lim f (x) = - oo (i.e., when a function increases or decreases with�ut bound ne;;ca vertical asymptote) , J(x) is said to demonstrate infinite discontinuity at x = c. In Figure 11-2, J(x) exhibits infinite discontinuity at x = 1 .  

Note: Problems 11.5-11.13 refer to the graph off(x) in Figure 11-2. 1 1 . 1 3  Classify each instance of discontinuity in the graph of J(x) as either removable or nonremovable. 
Functions that are discontinuous despite the existence of a limit (i.e., functions with point discontinuity) are said to be "removably discontinuous," because redefining the function to correspond with the existing limit would, effectively, "remove" the discontinuity from the function. The graph off(x) possesses 

J..isco\\t-i\\1Ait-y V.e>1.ppe\\S wV.e\\ °'-c1Av-ve l"le>1.s °'- l'\ole i\\ it- blAt- J..oesl.t't°'-ct-1Ae>1.lly bv-ee>1.\c. i\\t-o hvo J..i.P.Pev-e\\t-
Tl,,.i\\\c. o.P t-l'\e -P!A\\c-t-io\\ °'-S °'- siJ..ewe>1.l\c.. lt-'s ce>1.lleJ.. 1JIAIA-\p" J..isco\\f-i\\1-\it-y bece>1.L\Se yol-\a l,,.e>1.Ve t-o jl-\lA-\p e>1.t- >< ==- -'> i.P yol-\ we>1.\\t-eJ.. t-o sf-e>1.y O\\ t-l'\e siJ..ewe>1.l\c.. 

'So!A-\e books COi.ii if- 1esse\\f-ioil �iSCO\\f-i\\L\iry" l\\Sf-eoiJ.. o.P i,i\\-fi\\if-e J..isco\\f-i\\1-\if-y," ol-\f+-l-.ey'v-e +-l-.e Soi!A-\e +-l-.i\\8· 
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8(><) is v-e\N\0Ve>1.'t>ly .::l.isco\\i--i\\v.ov.s e>1.i-- >< ==- 0 't>ece>1.1>.Se li\N\ 8( ><) ==- I 
><---->0 (eve\\ H'\ov.81-\ 8(0) is v.\\.::l.e-fi\\e.::1.). 
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removable discontinuity at x = 4, because replacing f( 4) = 0 with f( 4) = 5 would make f(x) continuous at x = 4. On the other hand, discontinuity caused by the nonexistence of a limit (i.e. jump and infinite discontinuity) is classified as "nonremovable," as redefining a finite number of points will not "remove" the discontinuity. Because no general limits exist on the graph of f(x) at x = -3 and x = I, f(x) is nonremovably discontinuous at those values .  
Note: Problems 11.14-11.16 refer to the graph of g(x) in Figure 11-3. 1 1 . 1 4  Identify the x-values at which g(x) is discontinuous, and classify each instance of discontinuity as point, jump, or infinite. 

6 

/ :  4 : 
/ :  3 : 

/ I I 
..,..._ ::" _ I 2 _ _  .L_ _ _ _  � - i -/� JI-----+------<J�:----t-l-/---+.....-----+----+ 

: / \.../ : ' 
-( -5 -4 -3 -21 -1 1 12 

I I ,.  : -1 : ' 
I -2 I 
I I 
I -! I 
I I 
I -i I 
I I 

-5 

-( 

I 
t 

':I 4 5 6 

Figure 11-3 The graph of g( x) has horizontal asymptote y = 2 and vertical asymptotes x = -2 and x = 2. 

The graph of g(x) exhibits infinite discontinuities at x = -2 and x = 2, point discontinuity at x = 0, and jump discontinuity at x = 3. 
Note: Problems 11.14-11.16 refer to the graph of g(x) in Figure 11-3. I I . I  5 At what value (s) of x is g(x) nonremovably discontinuous? 

Because g(x) has no general limit as x approaches -2, 2, and 3, g(x) is nonremovably discontinuous at those x-values. __________ ___-,;::, 
Note: Problems 11.14-11.16 refer to the graph of g(x) in Figure 11-3. 1 1 . 1 6  At what value (s) of x does g(x) exhibit one-sided continuity? The function g(x) is continuous from the left at x = 3, because 

lim g(x) = g (3) = -2. 
x➔3 
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1 1 . 1 7  Given the piecewise-defined function h(x) defined below, identify any value (s) of x at which h(x) is discontinuous and describe the discontinuity exhibited. h (x) = {3x - x2 , 6x + 2, x < - 1 

x > - 1 

The function h(x) is comprised of two polynomial functions, y = 3x - x2 and 
y = 6x + 2, both of which are continuous over their entire domains. Therefore, the only x-value at which h(x) could be discontinuous is x = -1 , where the rule defining h(x) changes from the quadratic to the linear equation. In order for h(x) to be continuous at x = -1 , the limit as x approaches -1 must exist and it must be equal to h (-1 ) .  To determine if the limit exists, substitute -1 into both formulas ; if the results are equal, lim h (x) exists. 

x➔ - 1  Substitute x = - 1  into 3x - x2 : : Substitute x = - 1  into 6x + 2: 3 (- 1) - (- 1)2 = -3 - (1) = -4 ; 6 (- 1) + 2 = - 6 + 2 = -4 Therefore, lim h (x) = lim h (x) = -4 , so  lim h (x) = -4 . Notice, however, that 
x➔-r x➔- 1

+ x➔ - l  h(-1) is undefined. According to the definition of h(x) ,  the quadratic rule 
y = 3x - x2 applies when x < -1 and the linear rule y = 6x + 2 applies when x > -1 . No rule addresses the case of x = -1 , so h(-1 ) does not exist, and h(x) is discontinuous at x = -1 . 

P oly\\01Miotl 
Yot+-iO\\otl, h-i

.'.:) 0\\0-IMeh-ic, e;,cpo\\e\\f-iotl ot\\.A 10.'.:Jotv-if-klMic ' .Pv.\\cf-io\\s otve otlwotys CO\\f-i\\v.ov.s ovev- +-keiv-e\\f-iv-e .Ao1Moti\\s. 

i\\eqv.,:,1.lH-y Si.'.:)\\S i\\ Because a limit exists for h(x) as x approaches -1 , this is an example of point 1-\(;,c) wov.l.A 1M,:,1.\:.e H-discontinuity, which is removable. �-------------------/ CO\\t-i\\v.Ov.S. Repl,:,1.ci\\.'.:) 
I I .  1 8  Given the piecewise-defined function f(x) defined below, identify any value (s) of x at which f(x) is discontinuous and describe the discontinuity exhibited. 

(x) = 
{x2 - 5x + 3, f x3 - 12, X :5 2 x > 2 

Notice thatf(x) is comprised of two polynomial functions, both of which are continuous over their entire domains; therefore, the only location at which f(x) could be discontinuous is x = 2. Begin by evaluating J(2) .  f (2) = (2)2 - 5 (2) + 3 = 4 - 10 + 3 = -3 In  order for J(x) to be  continuous at x = 2, Iim f (x) must also equal -3. Use the 
x➔2 method described in Problem 11 .17 (substituting x = 2 into both rules of the function) to determine whether or not the limit exists as x approaches 2. Notice that, by calculating J(2) , you've already substituted x into one of the functions. Simply evaluate the remaining function at x = 2 . 

y = x3 - 12 = (2)3 - 12 = 8 - 12 = -4 

< wi+-1-\ � ov  "? wii--1-\ ): wov.l.A ""'e"'-\\ 
\,\(- \) == -4, wkicl-\ wov.l.A ""'"'-\:.e 1-\(;,c) 
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Therefore, lim / (x) = -3  but lim / (x) = -4 . Because the left- and right-hand 
x➔2 x➔2+ limits are unequal, the general limit lim / (x) does not exist and h(x) has a 

x➔2 nonremovable jump discontinuity at x = 2 . 
1 1 . 1 9  Determine the value of c that makes the piecewise-defined function g(x) everywhere continuous. (x) = {✓2x - c , g 3x2 + 1, x < 0  

x � 0 

The function g(x) is comprised of a radical expression and a quadratic expression, both of which are continuous over their entire domains. Therefore, the only location at which g(x) may be discontinuous is at x = 0. Begin by evaluating g(0) . g ( 0) = 3 ( 0 )2 + 1 = 0 + 1 = 1 This result represents both g(0) and ��IJl g (x) , since y = 3x2 + 1 generates the function values for all x's to the right of x = 0) . If g(x) is to be made continuous at x = 0, the left-hand limit as x approaches O must equal the right-hand limit. Calculate the left-hand limit by substituting x = 0 into ✓2x - c .  

Solve the equation for c. 

lim g (x) = 1 
x➔O--J2 (0) - c = l h = l 
(Fc)2 = (1)2 -c = l  

c = - 1 When c = -1 , g(x) is continuous at every real number. 
1 1 .20 Calculate the value of k that makes h(0) continuous over the interval (-f ,f) . 12 (tan 0 + 1) , 0 $. - !!_ h �) = 4 n tan (k0 - 1) ,  0 > - -4 n n In order for h(0) to be continuous at x = -4 , substituting x = -4 into both pieces of the piecewise-defined function should produce the same result. 
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Solve for k. 

O = tan ( -:n - 1) 
arctanO = arctan[ tan ( -:n - 1)] 

-kn 0 = - - 1  
4 = -kn 

-- = k 

4 ( n n
) When k = -; , h(0) is continuous over -2,2 . 

1 1 .2 1  Calculate the value of c that makes J(x) everywhere continuous .  
f (x) = {ln (3c - 2x2 ) ,  ln (x + 2c) , x < 7  

X ?:. 7 
Substitute x = 7 into the expressions and set them equal. This effectively forces the left- and right-hand limits to be equal at x = 7, which in turn forces J(x) to be continuous there. ln (3c - 2  · 72 ) = ln (7 + 2c) ln (3c - 98) = ln (7 + 2c) Solve the equation for c. In order to eliminate the natural logarithmic functions, exponentiate the equation using e. �--:::---------------1 

e'n(3c-98) = e'n(7+2c) 3c - 98 = 7 + 2c c = l05 When c =  105, f(x) is continuous for all real numbers . 
1 1 .22 Calculate the values of a and b that make g(x) , as defined below, everywhere continuous .  

I
x2 x < -4 

g (x) = ax
'
+ b, -4 :;; x < 5 

✓x + 31,  x ?:. 5 

� r�� (- : +ir) '3,r � r�� -4 
-./2/2. � ---
--./2/ 2. 
- I  

Pv-obletM S-.'34 i.P yo1.he �or SlAv-e wVl�r e,cpo�e�H�re tMe��s, ov- wl-\y Y""' lASe e. 
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In order to ensure that the functions y = :i2 and y = ax + b have the same limit as x approaches -4, substitute x = -4 into both and set them equal. x2 = ax + b  
(-4)2 = a (-4) + b  16 = -4a + b  "'--.. The functions y = ax + b and y = .J x + 31 must also have matching limits, as x I � approaches 5. ax + b = .Jx + 31 a (5) + b = ✓5 + 31 5a + b = 6  You now know that -4a + b = 16 and 5a + b = 6. Solve the system of two equations in two variables to calculate a and b. To solve the system using elimination, subtract the equation -4a + b = 16 from 5a + b = 6. 5a + b 6 4a b - 16 9a = - 10 10 a = 9 Substitute a into either equation in the system to determine the corresponding value of b. 

10 104 

5a + b = 6  5 (- 1; ) + b = 6 50 - - + b = 6 9 b = 54 + 50 
9 9 104 b = -9 When a = -9 and b = 9 , g(x) is continuous over its entire domain. 

1 1 .23 Given a function J(x) that is continuous over the closed interval [a, b] , what conclusions can be drawn about d, if d is a real number in the closed interval [J(a) ,f(b) ] ? 
According to the intermediate value theorem, there must exist a value c in the closed interval [a, b] such thatf(c) = d. 
Apply the intermediate value theorem to verify the following statement: Given the function f (x) = x2

, there exists some number c on the interval [-1,3}, such that 
f (c) = 5. 9243186704. 
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You can only apply the intermediate value theorem to functions if they are 
continuous over a specifically identified closed interval. In this case, (x) = x2 is a 
polynomial function whose domain is all real numbers, so f(x) is continuous on 
any closed interval, including the interval specified: [-1 ,3 ] . Once continuity is 
assured, evaluate .f(x) at the endpoints of the closed interval. 

f (- l) = (- 1)2 = l  f (3) = (3)2 = 9 

For any real number d in the interval [1 ,9] , the intermediate value theorem guar
antees that there exists a value c on [-1 ,3]  for which f(c) = d. Notice that the 
relatively absurd number 5.9243186704 falls on the interval [1 ,9] , so some value c 
on the interval [-1 ,3]  exists such that f (c) = 5.9243186704. 

1 1 .25 A calculus student is adamant that the intermediate value theorem 
is fundamentally flawed. Locate and explain the logical flaw in his 
"counterexample" below. The function g( x) = sec x is a trigonometric function, and like all trigonometric functions, is continuous over its entire domain or any piece of that domain, including [0,:rc}. If you evaluate the endpoints of the interval, you see that sec O = 1 and sec :re = -1. Therefore, according to the intermediate value theorem, I can choose any number d from the interval [-1, 1}, such as the number 0, and some other number c must exist in the interval [0,:rc} such that sec c = 0. However, g(x) = sec x never equals 0! Therefore, the intermediate value theorem is not necessarily true, especially in the case of trigfunctions. �-----------------� 

Although each trigonometric function is, indeed, continuous over its entire domain, g(x) = sec x is not continuous over the entire interval [0,:rc] -it is un:rc 
defined at x = 2 . Therefore, the intermediate value theorem cannot be applied. 

1 1 .26 Use the intermediate value theorem to prove that the number :ef2Q exists and 
has a value greater than 2 but less than 3. 

Given a function f(x) that's continuous on the closed interval [a, b] , any number 
d between f(a) and .f(b) has a corresponding value c between a and b such that f(c) = d (according to the intermediate value theorem) . In this problem, f(x) = x', 
a = 2, b = 3 , f(a) = f(2) = 8, and f(b) = f(3) = 27. Thus, for any value d you choose in 
the interval [8,27] (such as d = 20) ,  there exists a corresponding c in the interval 
[2 ,3]  such that f( c) = 20 ( c = :efw ) .  Because f(2) = 8 and f(3) = 27 (and neither of 
them equal 20 ) ,  :ef20 actually belongs to the interval (2, 3) . 

I\\ oH'\evwov-.::1.s, yolA 
CO\\\ pl "'8 O\\\Y v-e,;>\l \\l,\\,\,\t)ev- l\\rO '!<

2 0\\\.::1. yov!v-e SlAv-e t-o Be+-
0\ v-e,;>\l \\lA\,\,\bevbO\c\c. Ol,\r. 

H· wo1Al&1. t-0\ke 
0\ lot- o.P B lAf-s +-o SIA&I..Ae\\ly O\\\\\OIA\\ce t-l,,..,,_f- Y01A� .::1.ispv-ove.::I. "'- c"'-lc1Al1As +-l,,.eov-e\,\,\ t-l,,..,,_f-'s bee\\ O\YOIA\\.A -Pov- eo\\s, .Ao\\'f- Ol,\ +-t,..i"'k? y 
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1 1 .27 Use the intermediate value theorem to verify that h (x) = (x - 3) 2 - 7 has a root between x = 5 and x = 6. 
� Because h(5)  = -3 and h (6) = 2, the intermediate value theorem guarantees that d = 0 (which belongs to the interval [-3,2] ) will correspond to some c in the interval [5,6] such that h(c) = 0. In other words, there's some value c between x = 5 and x = 6 that makes the function equal 0, and is therefore a root of the function. Note that this problem does not ask you to find c-the intermediate value theorem is an existence theorem that merely guarantees the existence of c but falls short of actually identifying it. 

1 1 .28 Iff(x) is continuous over the interval [0,1] such that f(0)  and f(l)  also belong to the interval [0,1 ] , prove that there exists some value c in [0,1] such thatf( c) = c. 

Your goal is to demonstrate thatj(x) = x for some x in the interval [0,1 ] , which is the equivalent of demonstrating that J(x) - x = 0 for some x in [0,1 ] . To simplify later calculations, write the difference as a new function, g ( x) = f ( x) - x , and attempt to verify that g(x) has a root in [0,1 ] . If J(x) is a continuous function over [0,1] , then g(x) is continuous as well-the difference of continuous functions is, itself, continuous-so you can apply the intermediate value theorem. Begin by evaluating g(x) at the specified endpoints, much like you evaluated h(5)  and h (6) in Problem 11 .27. g (0) = f (0) - 0  g (l) = f (1) - 1  This warrants closer inspection. Remember that both f(0) and f(l)  are between 0 and 1, so they're positive numbers. Ifj(0) is a positive number, then so is g(0) , because g(0) instructs you to subtract 0 from a positive number, which won't change its value. On the other hand, g(l)  must be a negative number. Remember, J(l ) ,  like J(0 ) ,  is a positive number less than 1, so J(l )  - 1 must be a negative number. If g(0) > 0 and g(l)  < 0, then you can choose d = 0, and according to the intermediate value theorem, some c must exist in [0,1] such that g(c) = 0. Essentially, once you find function values that have different signs, you can conclude that a continuous function must cross the x-axis somewhere between those function values, thereby possessing a root between them as well. Therefore, g(x) = J(x) - x has a root in [0,1 ] , and thus c = J(c) .  
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The Difference Quotient 
-rl-\e ''la\\8 Wt7\Y11 ta ..fi\\ol.. tl-\e ol..evi.vt7\Fi.Ve 

1 1 .29 Explain the relationship between differentiation and calculating limits. 
Derivatives are indelibly tied to limits at the most foundational level-derivatives are defined as limits of specific fractions called "difference quotients." The most common difference quotient is a formula containing "Ax" (read "delta x") used to calculate the general derivative f' (x) of a function J(x). 

' ( ) . J (x + Ax) - J (x) 
f x = hm �---�--

ll.x-o Ax In order to quickly evaluate a derivative for a specific x-value, a second version of the difference quotient is sometimes employed, one which contains a constant (like c in the formula below) representing the value at which you are evaluating the derivative. 
f' (c) = lim f (x) - J (c) 

x ➔ c  x - c  

Note: Problems 11.30-11.33 refer to the functionf(x) =  7x2. 

-rt,.,e 

1 1 . 30  Use the definition of the derivative to findf ' (x) . ?-------------, 

t-l,,,v-ee IMOSt
COIMIMO\\ w<'\yS t-o 
i\\J..ic"'-t-e "'- J..ev-iv"'-

t-ive "'-v-e  .P'(;,<:), y� 
<'\\\di. J..y/,:;\;,<:, Apply the general difference quotient, as described in Problem 11 .29. To do so, first substitute x + Ax into J(x) = 7x2, then subtract J(x) = 7x2 from the result, and finally divide by Ax. 

' ( ) . f (x + Ax) - f (x) 
f x = hm �---�--

ll.x➔o Ax = lim 7 (x + Ax)2 - 7x2 

ll.x➔o Ax Expand the expression (x + Ax) 2 • Note that Ax should be considered a single value, not the product A · x .  Therefore, (Ax) (Ax) = (Ax)2 , not A2:i2. 
. 7 ( x2 + 2xAx + ( Ax )2 

) - 7 x2 = hm �-------�--
ll.x➔o Ax = lim � + 14xAx + 7 (Ax)2 

� 

ll.x➔O Ax . 14xAx + 7 (Ax)2 = hm -----� 
l,.x➔O Ax 

Wv-i t-e 
(x + b.x) 2 "'-S 

(x + b.x) (x + t:,."') 
"'-\\.A l.\S e  t-l,,, e Fo I L  
tMet-l,,,oJ... 

Pl.\11 
t-l,,, e 8v-e"'-t-est

co1M1MO\\ .P"'-ct-ov- Ol.\t
o.P t-l,,, e \\l.\tMev-"'-t-ov-Evaluate the limit by factoring. • I L-----------------1 Jl.\st- lik e we .Ai.A b"'-ck 
t\\ Pv-obl el,\\ I 0. 1'3 1.vl,,, e\\ 
t-l,,, ev-e  wev-e\\'t- "'-\\Y 
hi"'-\\8l es i\\ t-l,,, e 
pv-obl el,\\s yet-. 

= lim Ax (l4x + 7Ax) 
ll.x➔O Ax 

= lim (l4x + 7Ax) 
Ax➔O 
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Substitute L1x = 0 into the expression to evaluate the limit. = 14x + 7 (0) = 14x Therefore, iff(x) = 7x2 , then f '  (x) = I4x. 

Note: Problems 11.30-11.33 refer to thefunctionf(x) = 7:x?. 1 1 . 3 1 Calculate f '  (3) . 
According to Problem 11 .30, f '  (x) = I4x. To evaluate f '  (3 ) ,  substitute 3 into the derivative function. f ' (3) = 14 (3) = 42 

Note: Problems 11.30-11.33 refer to thefunctionf(x) = 7:x?. 1 1 . 32 Given a is a real number, calculate f '  ( a - 4) . 
Replace the x in the derivative formula with the quantity ( a - 4) . 

f' (x) = 14x f' (a - 4) = 14 (a - 4) 
f' (a - 4) = 14a - 64 

Note: Problems 11.30-11.33 refer to the function f(x) = 7:x?. 1 1 . 33  Use the specific value difference quotient to calculate f '  (3) and verify that the solution matches the solution to Problem 11 .31 .  
Substitute J(x) = 7:r and c = 3 into the difference quotient. 

J' (c) = lim f (x) - J (c) 
x➔c X - C 7x2 J (3) J' (3) = lim ---
x➔3 x - 3  . 7x2 

- 7 (3)2 = hm ---
x➔3 x - 3 1. 7x2 - 63 = 1m 
x➔3 x - 3  Factor the numerator completely, including the difference of perfect squares that arises once 7 is factored out of the quadratic expression. 



C hapter Eleven - Continu ity and the Difference Quotient 

. 7 (x2 - 9) = hm�--� 
x➔3 x - 3  

. 7 (x + 3) y:-/4 
= hm---�--

x➔3 
� 

= lim7 (x + 3) 
x➔3 

= 7 (3 + 3) 
= 42 

Therefore, f ' (3) = 42, a result that matches Problem 11.31. 

Note: Problems 11.34-11.36 refer to the function g(x) = x2 - 5x + 9. 

1 1 . 34 Use the definition of the derivative to find g' (x) . 

Apply the general difference quotient formula, as demonstrated by Problem 11.30. 

' ( ) . g (x + Ax) - g (x) g x = hm -------
t.x➔o Ax 

. [(x + Ax)2 - 5 (x + Ax) + 9 ] - (x2 - 5x + 9) 
= hm �--------��-----

t.x➔o Ax 
Simplify the expression, expanding (x + Ax) 2 and distributing -5 and -I. 

. [x2 + 2xAx + (Ax)2 - 5x - 5Ax + 9  ] - x2 + 5x - 9  
= hm �-----------��----

t.x➔o Ax 
. _i3.-4' + 2xAx + (Ax)2

� - 5Ax_::b.9-4 = hm ------�-�---------
t.x➔o Ax 

= lim 
2xAx + (Ax)2 - 5Ax 

t.x➔O Ax 

Apply the factoring method to evaluate the limit. 

. fa{ (2x + Ax - 5) = hm -�-�--
t.x➔o ¥ 

= lim (2x + Ax - 5) 
.6.x➔O 

= 2x + 0 - 5 
= 2x - 5 

If g(x) = x2 - 5x +  9, then g' (x) = 2x - 5. 

Note: Problems 11.34-11.36 refer to the function g(x) = x2 - 5x + 9. 

1 1 . 35  Evaluate g' (-2). 

Substitute x = -2 into the derivative function from Problem 11.34. 

g' (x) = 2x - 5 
g' (-2) = 2 (-2) - 5 
g' (-2) = -9 

lv\01.\c.e sv.ve 
yov. plv.8 ,c + A,c 
i\\+-o 't>oH'\ o.P +-l"le 

,e's t\\ 8(,c). 

A+-
+-his poi"'+- t\\ 

"'- .Ai.P.Peve\\ce 
9L\O+-ie\\f- pvo't>le""' evevy+-hi\\8 i\\si.Ae ' +-hese f'"'-ve\\f-heses \\ee.As +-o h"'-ve A . • X 

I\\ if-. I.P O\\e o.P YOL\v 
+-ev""'s is 1Missi"'8 "" 
Ax ' 80 't>oid:. 0\\\.::\ 

-fix +-he IMis+-oi\c.e 
be.Pove yoL\ 80 

0\\. 
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Di.P.Peve\\H"'-bili+-y 
i1Mplies co\\fo1.L\if-y. 
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Note: Problems 11.34-11.36 refer to the function g(x) = i2 - 5x + 9. 1 1 . 36 Use the specific difference quotient to calculate g' (-2) and thereby verify the solution to Problem 11 .35.  
Use the method described in Problem 11 .33, this time using the function 
g(x) = x2 - 5x + 9 and the constant c = -2 . ' (  ) 1. g (x) - g (c) g C = Im 

x➔c X - C  . (x2 - 5x + 9) - g (-2) = hm --------
x➔-2 x - (-2) . (x2 - 5x + 9) - (- 2)2 - 5 (-2) + 9] = hm -----c::;:7'f----...,,,...--= 
x➔-2 x + 2  . ( x2 

- 5x + 9 - [ 4 + 1 0  + 9] = hm ----------
x➔-2 x +  2 x2 - 5x - I4 = lim -----
x➔-2 x + 2  Use the factoring method to evaluate the limit. = lim (x - 7) (x + 2) 

x➔-2 X + 2  (x - 7) � = lim ---�--
x➔-2 � 

= lim (x - 7) 
x➔-2 = -2 - 7  = -9 Therefore, if g(x) = x2 

- 5x + 9, then g' (-2) = -9, which matches the solution to Problem 11 .35. 
Differentiabi l ity 

Wl-\e\\ .::Aces 01. .::Aevi.v01.ti.ve e,ci.st? 

1 1 . 37 The derivative describes what geometric characteristic of a function's graph? The derivative off(x) at x = c, written f '  ( c) ,  is equal to the slope of the tangent line to .f(x) at the point ( cd(c) ) .  1 1 . 3 8 Describe the relationship between the continuity of a function and its differentiability. 
If a function is differentiable at x = c, it must also be continuous at x = c. The converse is not true : a function continuous at x = c is not necessarily differentiable at 
x = c. See Problem ll .41 for an example of a continuous but nondifferentiable function. 
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Note: Problems 11.39-11.42 refer to the graph off(x) in Figure 11-4. 1 1 . 39 Given lim f (x) - f (5) = lim f (x) - f (5) = _!_ , does f' (6) = _!_ ? Why or why not? 

x➔ 6
+ X - 6 x➔6- X - 6 2 2 

-! -, 

10 

9 I 
8 j 

7 I Figure 11-4 
6 

./ 

_/ The graph of the piecewise-defined 
function f(x). 

' 
3 I 4, x :5 0  x2 + l, 0 < x :5 2  
2 I J(x) = (l /2)x + 4, 2 < x < 4 
, /  (l /2)x + 4, 4 < x < 6  x2 - (23 /2)x + 40, x � 6  

- -1 1 2 � 4 5 6 7 8 -1 
-2 

The given left- and right-hand limits represent the left- and right-hand derivatives off(x) as x approaches 6. According to the information given, 
f (x) - f (6) 1 23 1 lim �-�-- = - , so the derivative of y = x2 

- - x + 40 equals - when x = 6. -� x - 6  2 2 2 
. .  . f (x) - f (6) 1 . . 1 1 Add1t1onally, hm �-�-- = - , so the denvat1ve of y = - x + 4 equals - at 

x➔6- x - 6  2 2 2 
X =  6. 
Because .f(x) is continuous at x = 6 (which is another matter entirel , but the function is continuous because lim f (x) = lim f (x) = f (6) = 7 )  and the left- and 

x➔6- x➔6+ right-hand derivatives are equal at x = 6, .f(x) is differentiable at x = 6 ;  specifically, f' (6) = ½ -

Note: Problems 11.39-11.42 refer to the graph of f(x) in Figure 11-4. 

1 1 .40 Given lim f (x) - f (4) = lim f (x) - f (4) = _!_ , does f' (4) = .!_ ? Why or why not? 
x➔4+ X - 4 x➔4- X - 4 2 2 

yov. v-eco8\\ize +-he cAi.P.Pev-e\\ce 91.\of-ie\\f- .Pv-o""' Pv-oble1Ms 1 1 .'3'3 oi\\cA I I .'3G:? These oiv-e +-he cAev-ivoi+-ives o.P +-he lois+- h.vo pieces o.P +-he .Pv.\\cf-io\\, +-he O\\es +-hoi+- hoive <:; i\\ +-heiv- bov.\\cAoiv-ies. 

piecewisecAe-fi\\ecA .Pv.\\ct-lo\\ t-o be cAi.P.Pev-e\\Hoible oitt:'l\\ ,c-Vt:'llv.e ''bv-e"'k poi\\t-11 (llke ,c ===- 0, 2, 4, ov- , i\\ FlBv.v-e \ \ -4), t-l,,,e le-Pt-- Cl\\cA v-i8l,,,t--l,,,"'\\cA li1Mit-s "'s 
)< Clppv-Oe>lCl,,,es C 1ML\Ste91>.Cll We), Cl\\cA t-l,,,e le.Pt-- Cl\\cA v-iBl,,,t-t,.,"'\\cA cAev-iVt:'lt-lVeS ClS )< Clppv-Oe>lCl,,,es c 1Mv.St- be e91>.Cl\. 

The cAev-iv"'t-ive o.P "' li\\et:'lv- .Pv.\\ct-io\\ is +-he slope o.P +-he li\\e. 
1 67 



Chapter Eleven - Continu ity and the Difference Quotient 

E\\.::l.i"'B 
"' cl'le>lpf-ev

wi+-1'1 +-wo hie\:. 
q1>.es+-io\\S i\\ Cl YOW 

While the left- and right-hand derivatives of J(x) are equal as x approaches 4, J(x) is discontinuous at x = 4. Though a limit exists ( �� f (x) = 6) , /(4) is undefined, which results in point discontinuity. Therefore, f' ( 4) does not exist-in order for a function to be differentiable at x = c, it must also be continuous at x = c (as stated in Problem 11 .38) . 
Note: Problems 11.39-11.42 refer to the graph of f(x) in Figure 11-4. 1 1 .4 1  Given lim J (x) - J (2) = ! and lim f (x) - J (2) = 4 , evaluate f' (2) .  

x➔2+ X - 2 2 x➔r X - 2 

Although f(x) is continuous at x = 2, the left- and right-hand derivatives are not equal as x approaches 2. Therefore, f(x) is not differentiable at x = 2 and f' (2) does not exist. 
Note: Problems 11.39-11.42 refer to the graph of f(x) in Figure 11-4. 

1 1 .42 Given lim J (x) - J (O) = 0 and lim J (x) - f (O) = 0 ,  evaluate f' (O) . 
x➔o+ X - 0 x➔o- X - 0 

Notice that J(x) is discontinuous as x approaches 0 because the right hand limit IiIIJ f ( x) = I does not equal the left-hand limit Ii� J ( x) = f ( 0) = 4 . Although the 
x➔O x➔O right- and left-hand derivatives of f(x) are equal as x approaches 0, the right- and left-hand limits off(x) are unequal as x approaches 0, so f' (0) does not exist. 

is j1>.s+- v-1>..::l.e. ,,,L�----------------------
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BAS IC D I FFERENTIATION M ETHODS 

, . ·t-+- vs .Pcv -fi\\cJj\\B cJ.evivt".Fives -r�e .Pcv.v �et".VY V\l e 

h conce tuall gratifying and a fitting culmination of prior limit . Thoug p . y . fi 11 the factoring method) ' calculatmg 
"4\0\rl-. +-.,,.lk, 

1'\\0\\i--vivi.,,.1'1 
"4\eO\\\S 1'pvei--i--y 
l--.0\v.A.'' 

evaluation techmques (most �peCI ca y . t . t best prohibitively time-derivatives b means of the difference quotlen is , a , y t . . 1 It behooves a student of calculus to . and at worst non nvia . consummg '
ural al �rithms once an underlying concept is unde_rstood, :�t��a��:�7,:��ation of derivatives is but one of the foundational sk1_1ls � be learned in this course . Undoubtedly, the investm:nt of time requ;�e f o truly master archaic limit expressions is not proportional to the wor o 

such an undertaking. 
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1Me,:,1.\\S yo!A 
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Trigonometric, Logarithmic, and Exponential Derivatives 

t,,\e1Maviz.e speci-fic .Pav-1Ml.\le1.s .Pav tl-\ese .Pl.\\\ctia\\S 

1 2 . 1  Differentiate with respect to x: .f(x) = sin x. 

The derivative of the sine function, as well as the derivatives of the other five basic trigonometric functions, are used throughout calculus and should be memorized: f' (x) = COS X • 

1 2 .2 Differentiate with respect to x: y = 5 tan 0. 
The derivative of a function multiplied by a constant is equal to the constant multiplied by the derivative of the function. 

d d -[k · J(x)] = k • -[J (x)] 
dx dx Multiply the derivative of tan 0 by 5.  

dy d d0 = 5 · d0 (tan0) 
= 5 (sec2 0) 
= 5 sec2 0 

1 2 .3  Find the second derivative of  y = cos x ,  with respect to x. 

Differentiate both sides of the equation with respect to x. (Note that the derivative f . h . .  dy ) o y wit respect to y 1s wntten - . 
dx 

dy . - = - s1nx  
dx d d2 The derivative of _1_ is written ----¾ . As explained in Problem 12 .2, the derivative 

dx dx of (- l) · sin x is equal to (- 1) - � (sinx) . 
dx 

d2y If y = cos x, then -2 = - cos x. 
dx 

d2y 
[

dy . ] - = (- 1) - (smx) 
dx2 dx = (- l) [cosx] 



1 2 .4 Differentiate with respect to 0 :  y = sec 0 - csc 0. 
Chapter Twelve - Basic Differentiation M ethods 

The derivative of a difference is equal to the difference of the derivatives .  (The same is true for the sum of derivatives, but is not true for the product or the quotient of derivatives.) dy = _!!:_ (sec 0) - _!!:_ (csc 0) d0 d0 d0 
1 2 . 5  Given g(x) = 4X, find g' (x) . 

= (sec 0 tan 0) - (- csc 0 cot0)  = sec 0 tan 0 + csc 0 cot 0 

The derivative of the exponential function a' is a• (ln a) , the function itself times the natural logarithm of its base. �ev-ive>1.+-ive o.P 4' e>1.je>1.l\\ wl-\ile lj\\Ov-i\\j l\\ 4 ('oece>1.1>.se i+-'s °'
---------7 co\\St""e>1.\\i-). Yov.'ll je+-g' (x) = ( 4• ) ln4 g" ( X) = (ln 4) • � ( 4 x ) 

dx = (ln4) · (4x · ln4) = (ln4)2 . 4x 
1 2 .6 Differentiate with respect to x: y = 4e'. 

Recall that the derivative of an exponential function is the function itself times the natural logarithm of its base. dy = 4 - � (ex ) 
dx dx 

+-l-\e Se>1.1Me +-v.i\\j yov. 
jO+- +-v.e -fiv-s+- +-i.1Me: 

4'(\\\ 4). 

= 4 (ex · ln e) �------------. 
= 4 (ex · 1) = 4ex 

d This problem demonstrates an important differentiation formula: - (ex ) = e"; e' is · d · · dx its own envat1ve. 
1 2 .7 Differentiate with respect to x: y = log7 x. 

d I Note that - ( loga x) = -- ; the derivative of a logarithmic function is the 
dx x · ln a  reciprocal of the logarithmic argument (;) divided by the natural logarithm of 

d I the base (ln a) . Therefore, - (log7 x) = -( 7) . 
dx x ln 

1 7 1  
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is e>1.�o+-l'lev i1Mpov+-e>1.�+- J..evive>1.+-i.ve .Pov1Ml,\le>1. +-o 1Me1Movi.z.e: i..P -P{;,<:) ==- l� ;,<:1 +-l'le� .P'(;,<:) == -1. 
)< 

Pv.11 +-l,,.e e;,cpo�e�+-J..01.v� i� .Pvo�+- o.P _+-l,,.e ;,c, O\�J.. l,\\l.\lf-iply if- by +-l,,.e coe-P-ficie�+(i.P +-l,,.eve is o�e). Tl,,.e �ew powev wil l be o�e less +-t,..O\� +-l,,.e olJ.. o�e. 

1 2 .8 Differentiate with respect to x: h(x) = In x. 

Apply the formula discussed in Problem 12 .7. 
h' (x) = -

1
-

x · lne  1 
x · l 1 
X 

The Power Rule 
A sl-\cv-i--clA+- .Pcv- ol..i.P.Pev-e\\i--i"'-+-i\\8 ><" 

1 2 .9 Differentiate with respect to x: y = 5x'. 

The power rule for differentiation provides a simple method of differentiating a single variable (with or without a coefficient) that is raised to a power: 
.!!'._ (axn ) = (n · a) xn-I_ 
dx d 

__11_ = (3 · 5) x3-l 

dx = 15x2 

1 2 . 1 0  Differentiate with respect to x: f(x) = x9 • 

The expression x9 has an implied coefficient of 1 ,  so the coefficient off ' (x) is 9 · 1 = 9. 
f' (x) = (9 · l) x9-1 

= 9x8 

1 2 . 1 1 Differentiate with respect to x: g(x) = -6x-4 • 

Remember to subtract one from the exponent when applying the power rule, even when the exponent is negative. In this problem, x will be raised to the -4 - 1 = -5 power. 
g' (x) = (-4) (- 6) x_4_1 = 24x-5 24 
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6 1 2 . 1 2  Differentiate with respect to w: y = - . w 
Rewrite the function using a negative exponent. 
Apply the power rule. Note that this function is written in terms of w, not x, so the d . . f . dy . d f dy envat1ve o y 1s - 1nstea o - . dw dx dy = (- l · 6) w-1-1 dw 6 -2 = - w 6 

1 2 . 1 3  Differentiate J(x) = 2 with respect to x. 
Even though f(x) contains only a constant, it can be written with an x-term. Because :>:!' =  I ,  multiplying 2 by x0 does not change its value : J(x) = 2x0 • Apply the power rule. J' (x) = (0 · 2) x0-1 = 0x- 1 0 

X = 0, if x :;t: 0  The domain off(x) is all real numbers, but the power rule cannot determine the derivative when x = 0. Consider the graph off(x) , the horizontal line y = 2. Horizontal lines have a slope of O for all real numbers, so f' (x) -the slope of the tangent line to J(x) -equals O for all real numbers, including x = 0. 
1 2 . 1 4  Use the power rule to differentiate J(x) = -6x with respect to x. Generalize the solution to construct a corollary of the power rule concerning the derivatives of linear terms. 

Include the implied exponent of I when writing the function: J(x) = -6x' .  Apply the power rule. J' (x) = l · (- 6)x1-1 

= -6x0 = -6 if X :;t: 0  Therefore, the derivative of a linear function is the slope of the line. Although the power rule leaves f' (x) undefined at x = 0 (because 0° :;t: 1 ) ,  the slope of the line J(x) = -6x is -6 for all xs, including x = 0. 

t-1-\ ese t-wo 
p v obl etMS, t-1-\ e 

powev v 1Al e  1-\ elps  
yol,\ -fi 81Av e Ol,\r 
t-1-\e .Aev'ivoi.t-'ive, blAt

'i t- st-op s j1Ast- sl-\o v t-
o.P B'iV'i �B yolA t-1-\ e 
wl-\d e oi.�swev. I �  bo t-I-\ 
coi.ses, t-1-\ e po wev v 1Al e  
coi.1.t't- coi.l c1Aloi.t-e t-1-\ e 
.Aev'ivoi.t-'ive wl-\ e� 
>< :=- 0, so yolA 1-\oi.ve t-o 
v eso v t- t-o loo\c.'i �B oi.t
t-1-\ e oi.ct-1Aoi.l B voi.pl-\ s 
o.P t-1-\ e .P1A�ct-'io �s  
oi.� .A ..1, 81,\v'i �B 01At
wl-\oi.t- t-1-\ e slop e o-P 
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I\\ co,.se yo!A .Povjo+; 
-,c"

1
" � w � ('Ft 'See Pvoble\,\,\ 2.. 1 0  .Pov 

-r�,,,_t-1,\,\eo,.\\s yo!A s�o!Al.::\ jet- vi&\ o.P +-�e vo,..::\ico,.J i\\ t-�e &\e\\O\,\,\t\\o,.f-ov. 

1 2 . 1 5  Differentiate h(x) = ax" ' with respect to x, assuming a is a real number. Apply the power rule. h' (x) = (a + l) (a) x(a+l)-l = (a2 + a) xa 
1 2 . 1 6  Differentiate with respect to x: y = W. 

Rewrite the function using a rational exponent. y = x2/3 Apply the power rule. 
dy = (� - 1) x<213J-1 
dx 3 2 2 3 1 Subtract 1 from the rational exponent: 3 - 1 = 3 - 3 = -3 

dy = (�) x-1;3 
dx 3 2 = 3xl/3 

dy 2 It is equally correct to write your solution as a radical : - = 
3 , • However, 

dx 3-vx rational solutions are usually presented in rationalized form. 2 2 w 2w 2w 
3

¼ = 
3
¼ 0 if;! = 

3
¼3 = � 

1 1 2 . 1 7  Differentiate with respect to t: y = Ji . 
Recall that 2 is the implied radical index when no other index is specified. 1 
Apply the power rule. 

y =
w = C l/2 

dy _ 1 c- 112)-1 - - - - t  
dt 2 1 -3/2 = -- t 

= 

2 1 2t3/2 
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1 2 . 1 8  Differentiate with respect to x: J (x) = ✓x (ef;! -W) .  

Rewrite the radical expressions using rational exponents. J (x) = x112 (x4 /5 _ x3/7 ) Distribute x112 through the parentheses. 
13 /10 13/14 = x - x  The derivative of a difference is equal to the difference of the individual derivatives .  Calculate those derivatives using the power rule. 

f' (x) = .!!:___ (x13;10 ) - .!!:___ (x13;14 ) 
dx dx - 13 (13/10)-1 13 (13/14)-1 - - x - -x 10 1 4 - 13 (13/10)-(10 /10) 1 3  (13 /14)-(14 /14) - - x - -x 10 1 4 13 3 /10 13 - 1/14 = - x - -x 10 14 1 3  1 3  3 /10 = - x - ---10 14x1114 

The Product and Quotient Rules Di.P.Pev-e\\ti01.te .Pl.\\\ctia\\s H""'-t 01.v-e 1Ml.\ltip\iet:l. av- J.ivit:l.et:l. 
1 2 . 1 9  Differentiate with respect to 0 : y = sin 0 cos 0. 

The derivative of a product must be calculated using the product rule, stated below. 
.!!:__ (J(x) · g(x)) = f (x) · g' (x) + g(x) · f' (x) 
dx 

,� ot-v.ev 
\NOY�S, 1Mv.lt-iply t-v.e ..fivst.Pv.�ct-io� 't>y t-v.e �evivo,.t-i.ve o.P t-v.e seco�� o�e, t-v.e� ,,,.�� t-v.e seco�� .Pv.�ct-i.o� 1Mv.lt-i.pli.e� 't>y t-v.e �evivo,.t-ive o.P t-v.e ..fivst-

To apply the product rule formula, set J( 0) = sin 0, g( 0) = cos 0, f' ( 0) = cos 0, and g' (0) = -sin 0. COIMeS .PvolM t-v.e �ov.'t>le ,,,.�8le i�e�t-it-y cos2 (J - si� 2. (J ==- cos 20. dy = J (0) · g' (0) + g (0) · J' (0) 
d0 

= sin 0 (- sin 0) + (cos 0) (cos 0) = cos2 0 - cS:in�2�0�-----------� = cos 20 � 
Look it- v.p i� Appe��i>< C ov +'lip 't,o,.ck t-o Pvo't>le1MS 8'. 12  O\�� 8'. 14 .Pov e><o,.1Mples t-v.o,.t- v.se t-v-is i�e�t-i.t-y. 
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1 2 .20 Differentiate with respect to x: y = 2x cot x. 
Apply the product rule, as described in Problem 12.19. To apply the product rule formula, setf(x) = 2x and g(x) = cot x. dy = f (x) g' (x) + g (x) f' (x) dx 

= 2x (- csc2 x) + cot x (2x · ln 2) 
= -2x csc2 x + (ln 2) 2x cot x 

1 2 .2 1 Differentiate with respect to x: J(x) = 2x'e' - 7x2e' + lOxe' - e'. 
Rather than differentiating each term separately, first factor e' out of the expression. f ( x) = ex ( 2x3 

- 7 x2 + lOx - I) Now J(x) is written explicitly as the product of two functions :  e' and 2x' - 7x2 + lOx - l .  Apply the product rule. 
d d J' (x) = ex · - (2x3 - 7x2 + 10x - 1) + (2x3 - 7x2 + lOx - 1) · - (ex ) � � 

= ex ( 6x2 
- l 4x + 10) + ( 2x3 

- 7 x2 + I Ox - I) (ex ) Distribute e" through both quantities and simplify the expression by combining like terms. = 6x2ex - l4xex + lOex + 2x3ex - 7x2ex + lOxex - ex 
= 2x3 ex + ( 6x2e" - 7 x2e" ) + ( - l 4xex + lOxex ) + ( lOex - ex ) 
= 2x3 ex - x2ex - 4xex + 9ex 

d ( 3 ) 2 1 2 .22 Problem 12.9 used the power rule to determine that - 5x = l5x . Use the product rule to verify this result. dx 
Interpret 5x' as the productf(x)g(x) , where f(x) = 5 and g(x) = :i". !!:_ (J (x) g (x)) = J (x) g' (x) + g (x) J' (x) dx 

!!:___ ( 5x3 ) = (5) • !!:___ (x3 ) + (x3 ) • !!:___ (5) dx dx dx 
= 5 ( 3x2 

) + x3 
( 0) = l5x2 + O  = l5x2 
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cos x 1 2 .23 Differentiate with respect to x: y = -- . 3x 
The derivative of the quotient h(x) = ft; is calculated according to the quotient rule, defined below. g x 

h' (x) = g (x) f' (x) - J (x) g' (x) (g (x))2 To apply the quotient rule, setj(x) = cos x, g(x) = 3x, f' (x) = - sinx , and g' (x) = 3. 
d d 3x · - (cos x) - (cos x) - (3x) .!!:._ ( cosx ) = dx dx = 3x (- sinx) - cosx (3) = -3x sin x - 3 cos x dx 3x (3x)2 9x2 9x2 Reduce the fraction by factoring -3 out of the numerator. _ -)( (x sin x + cosx) _ x sin x + cos x - )( - 3x2 

- 3x2 

lnx 1 2.24 Differentiate with respect to x: y = - . 
X 

Apply the quotient rule. 
d d dy _ x · dx (lnx) - (In x) dx (x) dx - (x)2 

= 

x (;) -�(-ln-x-) (-1) _____ _ 
� - lnx 
X x2 1 - lnx  

x3 - 2x2 - 5x - 12 1 2 .25 Differentiate with respect to x: J (x) = 4x2 _ 9 Apply the quotient rule to set up the derivative and use the power rule to differentiate the individual polynomials. , _ (4x2 - 9) (3x2 - 4x - 5) - (x3 - 2x2 - 5x - 12) (8x) 
J (x) - ( 2 )2 4x - 9 12x4 - 16x3 - 47x2 + 36x + 45 - (8x4 - 16x3 - 40x2 - 96x) 

= ------------�-------� 16x4 - 72x2 + 81  4x4 - 7x2 + 132x + 45 16x4 - 72x2 + 81 

A ccov.:A.i\\ 8 +-o Pvoble1M 1 2 . 8', +-1-.e c:A.evivoi.+-ive o.P I\\ - I 
><: IS -. 
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wl-\e\\ >< ==- I . 

d 1 2 .26 Verify the trigonometric derivative using the quotient rule : dO (tan0) = sec2 0. 
As the problem implies, you must first rewrite tan 0 as a quotient. 
Apply the quotient rule . 

!£ (tanO) = !£ ( sin0 ) d0 d0 cos 0 
cos 0 · !£ (sin0) - sin 0 · !£ (cos0) 

= -�d=0---��d=0 __ (cos 0)2 cos 0 (cos 0) - sin 0 (- sin 0) cos2 0 cos2 0 + sin2 0 cos2 0 According to a trigonometric identity, cos2 0 + sin2 0 = l .  1 = cos2 0 
= sec2 0 

Note: Problems 12.27-12.29 refer to the functions f( x) and g( x) and their derivatives, f '  ( x) 
and g ' (x) .  All four functions are differentiable on (-00,00) and selected values are listed in the 
table below. 

X -2 -1  0 1 2 3 
f (x) 5 9 6 2 - 1 -4 

f' (x) 
1 

8 -2 -2 - 1 -3 -9 

g (x) 1 3 -2 5 6 - 1  
g' (x) 2 0 -3 12 1 - 6  

d 1 2 .27 Evaluate - (f (x) - 5g (x)) at x =  l .  
dx 

The derivative off(x) is .f' (x) and the derivative of -5g(x) is -5g' (x) . 
!£ (t (x) - 5g(x)) = f' (x) - 5g' (x) Substitute x = l into the expression and use the abov able to determine that .f ' (l )  = -1 and g' (l )  = 12. J' (l) - 5g' (l) = (- 1) - 5 (12) = - 1 - 60 = - 61 
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Note: Problems 12.27-12.29 reference the table of values provided in Problem 12.27. 1 2 .28 Evaluate (/g) ' (2) .  
This problem asks you to differentiate f (x) · g(x) and then substitute x = 2 into your answer. You cannot simply multiply f ' (2) by g' (2) -you must apply the product rule. 

(Jg)' (2) = f (2) · g' (2) + g (2) · J' (2) 
= (- 1) (1) + (6) (-3) = - 19 

Note: Problems 12.27-12.29 reference the table of values provided in Problem 12.27. 

1 2 .29 Evaluate (�)' (- 1). 

As this derivative is the quotient of two functions, it requires the quotient rule. 
(JJ__)

' 
- 1 = f (- 1) · g' (- 1) - g (- 1) · f' (- 1) 

f 
( ) 

[J (- 1)]
2 

Wl-.e\\ 
Cl \\l-\1,<\evotf-ov l-.ots i+-s ow\\ .Ae\\Oi,.\i\\otf-ov (-'3/2 

(9) (0) - 3 (1 / 2) 
(9)2 

-3 /2  8 1  
l-.ots ct .Ae\\oi,.\i\\otf-ov o.P 2), l,<\OVe +-l-.ot+.Ae\\ol,<\i\\otf-ov &low\\ 

ct\\&\ i,.\1-\l+-iply if- by +-l-.e .Ae\\oi,.\i\\otf-ov o.P +-l-.e wl-.ole .Pvotcf-io\\: 2(8' 1) = 1 ,2. 3 
162 1 54 

The Chain Rule 

Di.P.Pev-e\\ti01.te .Pv.\\ctia\\s H""'-t 01.v-e pl v.88et:l. i\\ta .Pv.\\ctia\\s Cot\\ OlSSl,\l,<\e 1 2 .30 Assumingf(x) and g(x) are differentiable functions, differentiate f(g(x) ) with +-l-.ott- 1�i.P.Peve\\-respect to x. f-iotble" l,<\eot\\S 1�i.P.Peve\\t-iotble ovev t-l-.eiv e\\t-ive .Ao-According to the chain rule, the derivative of the composition of functions J(g( x) ) l,<\oti\\s.'' equals J' (g(x)) · g' (x) . In other words, the derivative of the "outer function" J(x) evaluated at the "inner" function g(x) , which is then multiplied by the derivative of the inner function g (x) . 
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R1Ale o.P +-\.-\1A1Mb: l.P +-\.-\e .PL\\\c+-io\\ yo1he J..i.P.Peve\\f--'it:'l+-i\\B \.-\t:'lS soiMe+-\.-\i\\B bes'iJ..es " pl1ABBeJ.. i\\+-o i+-, L\Se +-\.-\e c\.-\t:'l'i\\ v1Ale. Fov e,ct:'llMfle, .,,!- J..oes�+veq1A'ive +-\.-\e c\.-\t:'l'i\\ v1Ale, blA+- t:'l\\y+-\.-\i\\B else SG\IAt:'lveJ.. will, l'i�e (3,c)2, (,c + 7)2, Cl\\J.. (t"Cl\\ ,c)2 . 

This jlAs+- IMet:'l\\S vewv'if--e if-- t:'lS -PC8(0)). 'f oL\ J..o�+l,,,"'ve +-o J..o +-l,,,is i.P yoL\ L\\\J..evSf--t:'l\\J.. wl,,,"'+-'s 80'i\\8 o\\, blA+- i+-l,,,elps i.P +-l,,,e cl,,,t:'li\\ v1Ale co\\.PL\ses yoL\. 

1 2 .3 1 Differentiate y = (2x - 3) 2 using the power rule and then verify the result using the chain rule. 
Expand the polynomial using the FOIL method and differentiate. 

y = 4x2 - 12x + 9  dy = 8x - 12 
dx It is helpful to rewrite y = (2x - 3)2 as a composition of functions before differentiating it. The linear expression 2x - 3 is squared, so in essence, you're substituting 2x - 3 into the function x2 • The function being substituted is the "inner" function, g(x) = 2x - 3, and the function it's substituted into is the "outer" function, J(x) = :i2. Note that J (g(x)) = f (2x - 3) = (2x - 3)2. Use the chain rule to calculate the derivative off(g(x) ) .  

l£ [J (g(x))] = J' (g (x)) · g' (x) 
dx The derivative off(x) = (x) 2 is f' (x) = 2 (x) ;  therefore, the derivative of J (g(x)) = (g(x))2 equals 2 (g (x)) . 
_!£[ (2x - 3)2 ] = 2 (g (x)) · g' (x) 
dx Substitute g(x) = 2x - 3 and g' (x) = 2 into the expression. ! [(2x - 3)2 ] = 2 (2x - 3) · 2 = (4x - 6) · 2 = 8x - 12 The power and chain rules produce identical derivatives : ! [J (g(x))] = 8x - 12. 

1 2 .32 Differentiate with respect to 0 and simplify the result: y = ✓sec 0 . 
Rewrite the function using a rational exponent. 

y = (sec 0)112 Because the function sec 0, not just the single variable 0, is raised to a power, you must apply the chain rule. Rewrite the function, indicating the composition � within explicitly. Note that the inner function is g(0) = sec 0 and the outer function is f(0) = 0 112 • 

y = J (g(0)) dy = J' (g (0)) · g' (0) d0 1 Differentiate J(0) using the power rule : j' (0) = - 0- 112• 2 dy = _!_ (g(0)f112 · g' (0) d0 2 
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Substitute g(0) = sec 0 and g'(0) = sec 0 tan 0 into the chain rule formula. dy = .!. (sec0r 112 · (sec 0 tan 0) d0 2 
sec 0 tan 0  2 (sec 0)112 

You can reduce the sec 0 factors by applying exponential properties :  (sec 0)1 - (  0)1-c112J - (  0)1;2 _ �0 ( )112 - sec - sec - '\/Sec u .  
sec 0 dy � - tan 0 d0 2 

1 2 .33  Differentiate with respect to x: .f(x) = ln (sin x) . 
Because a function is substituted into the natural logarithm function instead of a single variable, you must apply the chain rule. Differentiate the outer function In x, leaving the inner function sin x inside that derivative. Then multiply by the Tue derivative of the inner function. � ' , , .Aev-iVO\t-iVe o.P f' (x) = � · !£ (sin x) ._____ t-"'e \\O\rL\v-0\l loB 

sm x dx o.P SOIMet-"'i\\8 eqL\O\IS I I .Aivi.Ae.A by t-"'O\+-= -si_n_x (cos x) SOIMef-"'i\\8, 0\\ +-"'is cos x CO\Se, +-"'e 1'so1Met-"'i\\8" is Si\\ x.) Sln X 
= cot x 

1 2 .34 Differentiate with respect to x: g (x) = e4x+l_ 

Because the exponent of e is a function ( 4x + I ) ,  not a single variable like x, you must apply the chain rule. 
g' (x) = e4x+i . !£ (4x + I) dx 

= e4x+l • 4 = 4e4x+l 
1 2 . 35  Differentiate with respect to x: y = csc (e4x+l ) . 

.Aev-ive>\t-ive, so +-"'e .Aev-iVO\t-iVe o.P e t-o so1Me powev- Ci\\ +-"'is CO\Se 4x + I) eqL\O\lS e to +-"'O\+- powev- t-ilMeS +-"'e .Aev-ive>\t-ive o.P 
Tue Apply the chain rule formula such that .f(x) = csc x and g (x) = e4x+1_ .Aev-ive>\f-ive o.P csc x is _________ -csc x cot- x. MO\ke SL\v-e t-o ! [J (g (x))] = J' (g (x)) · g' (x) !£ [csc (e4x+l )] = - csc (e4x+l ) cot (e4x+l ) · !£ (e4•+1 ) dx dx 

SL\bs+-if-L\f-e e4' ,_ ' .Pov- x i\\ bot-"' csc x O\\\.A co+- x. 
1 8 1  
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owe h.vo \\e80lt""lVe Sl8\\S i\\ l,,,ev-e +-l,,,"'+- Olv-e sov-+- o.P l,,,Olv-.::1. +-o see. 1-'11Al+-i.plie&l +-oBe+-l,,,ev-, +-l,,,ey ""'"'�e +-l,,,e -M\\Oll Ol\\Swev-

According to Problem 12 .34, � (e4x+I
) = 4e4•+I. 

< dx 

= -csc ( e4x+l ) cot ( e4x+l )
. 4e4x+l 

= -4e4x+l CSC ( e4x+l ) cot ( e4x+l ) 

1 2 .36 Differentiate with respect to x: J(g(h (x))) . 

Begin by differentiating the outermost function, leaving everything "inside it" alone, and then multiply by the derivative of the quantity "inside." � [J (g (h (x)))] = f' [g (h (x))} � [g(h (x))] 
dx dx 

d Notice that - [g(h (x))] also requires the chain rule. 
dx 

� [g(h (x))] = g' (h (x)) · h' (x) 
dx Therefore, � [J (g (h (x)))] = J' [g (h (x))} g' (h (x)) · h' (x) . dx 

1 2 .37 Differentiate with respect to 0: j (0) = -3 sin( cos f) . 
Apply the method outlined in Problem 12 .36;  begin by differentiating the outermost function. j' (  e) = -3cos ( cos f) · :e [ cos f] Differentiating cos f also requires the chain rule. 

j' ( e) = - 3 cos ( cos f) · [- sin f · :e ( f)] 
Note that t!._ = .!e , so �(.!e) = _! . 2 2 d0 2 �2c.--__ _ 

j' ( e) = - 3 cos ( cos f) · [ (-sin f) · ½] 
= (¾ · sin f) cos ( cos f) 

d [ J (x) ] g(x)J' (x) - J (x) g' (x) 1 2 .38  According to the quotient rule, - -( ) = 2 • Because 
dx g x (g (x)) dividing and multiplying by a reciprocal are equivalent operations, generate the 1 quotient rule formula by differentiating f ( x) · 

g ( x) 
with respect to x. 
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Rewrite g(x) using a negative exponent. 
Apply the product rule. 

1 
[ 

]- 1 
f (x) · 

g(x) 
= J(x) · g (x) 

!!:___ (f(x) · -(
1 

) ) = f (x) · !!:___ [(g (x)r1 ] + [g (x)r . !!:__ (J(x)) 
dx g x  dx dx In order to differentiate [g(x) ] -1, you must apply the chain rule. 

[ g' (x) l [ ]-1 , = f(x) - (g (x))2 + g(x) · f (x) 

Rewrite the derivative, eliminating the negative exponent. 
[ g' (x) l 1 = J (x) - (g (x))2 + g(x) · f (x) 

J (x) g' (x) J' (x) = ---- + --
(g (x))2 g(x) The least common denominator is (g(x) ) 2 . 
f (x) g' (x) f' (x) g (x) = ----- + -- • --

(g (x) )2 g(x) g (x) 

J (x) g' (x) f' (x) g(x) = - 2 + 2 (g (x)) (g (x)) According to the commutative property, you can reorder the terms. 
f' (x)g(x) = ----

(g (x))2 
f (x) g' (x) 

(g (x))2 

g(x) f' (x) - f(x) g' (x) 
= ��--�-�-

(g (x))2 

1 2 .39 Differentiate with respect to x: f(x) = x' cos 2x. 
Because f(x) is the product of two functions, you must apply the product rule. 

f' (x) = x3 • !!:__ [ cos 2x] + cos 2x · !!:___ (x3 ) 
dx dx Use the power rule to differentiate x' and the chain rule to differentiate cos 2x. 

J' (x) = x3 • - sin2x · 2 + (cos 2x) (3x2 ) 
= -2x3 sin 2x + 3x2 cos 2x 

\.\ ev e  
ewe i--l,,,e si--eps 

.Po v -fi\\e:l.t\\ 8 i--l,,,t:'li-
e:l. evivt:'li--ive: 

e:l. -, -[(B(,c)) ] e:l.,c 
== C - l)[B(,c)T2 

• B '(,c) 
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1 2 .40 Verify the solution to Problem 12 .39 by differentiating .f(x) = :i3 cos 2x using the 
quotient rule. 

You must first rewrite .f(x) as a quotient-otherwise, the quotient rule won't apply. 
1 

To do so, utilize a reciprocal identity, rewriting cos 2x as -- . 
sec 2x 

f (x) = x3 _ _  
I _ 

sec 2x 
x3 

sec 2x 
Apply the quotient rule. 

sec 2x - � (x3 ) - x3 
• � (sec 2x) 

f' (x) = dx 
2 

dx 
(sec 2x) 

sec 2x · 3x2 
- x3 

• sec 2x tan 2x · 2 
sec2 2x 

3x2 sec 2x - 2x3 sec 2x tan 2x 
sec2 2x 

Factor sec 2x out of the numerator and reduce the fraction. 

' ( )  
� [3x2 - 2x3 tan 2x] 

f x = ----�----
� · sec 2x 

3x2 
- 2x3 tan 2x 
sec 2x 

Write the derivative as two separate fractions, each with denominator sec x. 

' ( ) 
3x2 2x3 tan 2x j X = -- - ----

sec 2x sec 2x 

1 
Rewrite the function in terms of sine and cosine : -- = cos 2x and 

sin 2x sec 2x 
tan 2x = -- . 

cos 2x 

f' (x) = 3x2 (-1 
) - 2x3 tan 2x (-1 

) 
sec 2x sec 2x 

= (3x2 cos 2x ) - [2x3 
• 

sin 2x 
· (cos 2x)] 

cos 2x 

= [3x2 cos 2x J - [ 2x3 · s� ] 

= 3x2 cos 2x - 2x3 sin 2x 

1 2 .4 1 Differentiate with respect to x: j (x) = (; ) inx. 

Because j(x) is a product of functions, you must apply the product rule to 
differentiate it. 
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, (
x

) 
d d

(
x

) j (x) = - · - (In x) + (Inx) · - -
ex dx dx ex 

Th d . . f 
x . h . 1 d 

(
x

) l - x e envatlve o --; requires t e quotient ru e :  - - = -- . e � ? ? 

j' (x) = [( ;) ())] + [ (ln x) (
l 

� 
x 

)] 

1 (lnx) (l - x) = - + ----
ex ex 

1 + ln x - x lnx  = -----

1 2 .42 Differentiate with respect to 0 : y = (sin 30 tan 30)12
• 

Apply the chain rule such that 012 is the "outer" function and sin 30 tan 30 is the 
"inner" function. 

dy = 12  ( sin 30 tan 30 )1 1  · � ( sin 30 tan 30) 
d0 d0 

d 
Apply the product rule to calculate 

d0 
(sm 30 tan 30) . 

= 12(sin 30 tan30)1 1  · [sin 30 · � (tan 30) + tan 30 · � (sin 30)] d0 d0 

Differentiating tan 30 and sin 30 requires the chain rule. 

= 12 (sin30 tan 30)11  · [sin 30 · sec2 30 · � (30) + tan 30 · cos 30 · � (30)] d0 d0 
= 12 (sin30 tan 30)1 1  · [ sin 30 · (sec2 30) · 3 + tan 30 · (cos 30) · 3] 

= 12 (sin30 tan 30)11 · (3 sin 30 sec2 30 + 3 tan 30 cos 30) 

Note: Problems 12.43-12.44 reference thefunctionsf(x) and g(x) and their derivatives, f ' (x) 
and g' (x) . All four of the functions are continuous and differentiable on (-00,00), and a few of 
their values are listed in the table below. 

X -2 -1  0 1 2 3 
f (x) 5 g 6 2 - 1  - 4  

f' (x) 
1 

- 1 8 - -2 - 3  -9 
2 

g (x) 1 3 -2  5 6 - 1 
g' (x) 2 0 -3 12  1 -6 

1 2 .43 Evaluate (J O g )' (-2) . 

Heve's 
l--.o1..v Y0L\ Bet tl--."'t 

�eviv"'tive: 

� t1 /·(�; • e• 

{ ex) { e x) 

=LCl - x) 
M {ex) 
1 - x = -
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This i s  
jlASr t-l-\ e 

cl-\e>1.i\\ v-1Al e. '(oi/.v e  
J . .i.P.Pev-e\\t-ie>1.H\\8 
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l ee>1.Vi\\ 8 8 e>1.lo\\e, e>1.\\� 
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Note that (J o g) (x) = J (g (x)) . ------.::.... (J o g)' (-2) = J' (g (- 2)) · g' (-2) According to the table, g(-2) = 1 ,  so J'  (g(-2) )  = J '  (1 ) . 
= J' (l) · g' (-2) 
= (- 1) (2) 
= -2 

Note: Problems 12.43-12.44 reference the table of values provided in Problem 12.43. ef(x) 1 2 .44 If h (x) = ln (g(x)) , evaluate h' (2) accurate to five decimal places .  
Because h (x) is a quotient, you must apply the quotient rule. ln (g (x)) · __(£ (  ef(x) ) - ef(x) • __(£ [ ln (g(x))] 

h' (x) = dx dx [1n (g (x))J2 
Differentiating ef(x) and ln (g(x) ) requires the chain rule. ln (g(x)) · ef(x) • J' (x ) - ef(x) • -1- · g' (x) 

h' (x) = g (x) 

po wev- is ew,J t-itMeS t-l-\e 
� ev-ive>1.Hve o.P t-l-\ e po wev-, 

.P'(,c). Tl-\e � ev-ive>1.Hve 

[1n (g(x))J Evaluate the derivative at x = 2 . ln (g(2)) · e1<2> • J' (2) - e1<2> • g' (2) o.P 1\\(8(,c)) i s  I ovev- B(,c) 
t-itMes t-l-\ e � ev-ive>1.t-ive 

o.P t-l-\ e -P1A\\ct-io\\ 
h' (2) = g (2) [1n (g (2))J2 

Evaluate the functions using the table of values from Problem 12 .43. 
_ (ln6) (e- 1 ) (-3) - (e- 1 ) (  ¼) - (ln6)2 - 3 ln 6  1 

e 6e (ln 6)2 

Use a calculator to determine that h' (2) "" - 0.63505. 
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DERIVATIVES AN D FU NCTIO N  G RAPHS 
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Once you've mastered the procedural skills required to differentiate, your 
next objective is to explore uses and applications of derivatives. The 
most rudimentary and immediately gratifying application is the corre
spondence between a function's behavior and the signs of its first and 
second derivatives. Specifically, this chapter investigates how the signs 
off ' (x) describe the direction of J(x) and how the signs off" (x) describe 
the concavity of J(x) . 



Chapter Thirteen - Derivatives and Function Graphs 
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Critical Numbers 
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1 3 . 1  If a is a critical number off(x) ,  evaluate f(a) . 

1 3 .2 
If a is a critical number of J(x) , then either a is a zero of the function (meaning 
J(a) = 0) or the function is discontinuous at a (meaning f(a) does not exist) . 
Identify the critical numbers of y = 2x2 

- 2lx + 27. 
All polynomial functions, including this quadratic, are continuous over their entire domains ; the domain of this function is (-00,00 ) .  Therefore, the only critical numbers will be its roots. Identify those roots by setting y = 0 and solving the equation. 2x2 

- 2 lx + 27 = 0 (2x - 3) (x - 9) = 0  2x - 3 = 0  3 or 
x = -2 x - 9 = 0 

x = 9 

3 The critical numbers of y = 2x2 - 2lx + 27 are x = - and x = 9. 2 1 3 .3  Identify the critical numbers off(x) = x2 cos x. 

Note thatf(x) is the product of two functions (one polynomial and one trigonometric) , both of which are continuous over their entire domains. Furthermore, x2 and cos x are both defined on (-00,00 ) ,  so f(x) is everywhere continuous. Therefore, the only critical numbers off(x) are its roots. 
x2 cosx = 0 

x2 = O  cosx = O  

N = ±✓O or 
x = O 

x = � ,  k an odd integer 
Therefore, f(x) has infinitely many critical numbers : x = 0 and 5:n: 3:n: :n: :n: 3:n: 5:n: 
x = · · • - - -- -- - - - - . . .  2 '  2 '  2 ' 2 '  2 ' 2 '  . 



1 3 .4 

1 3 .5  
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x2 - 9  Identify the critical numbers of h (x) = 2 9x + 30x + 25 
Zeroes of the numerator are roots of the function, and zeroes of the denominator represent undefined values of h (x). In both cases, those x-values are critical numbers, so set the numerator and denominator equal to 0 and solve. x2 - 9  ------ = 0  9x2 + 30x + 25 The numerator is a difference of perfect squares, and the denominator is, itself, a perfect square. Factor both and set all three unique factors equal to 0. (No need to set the repeated factor in the denominator equal to zero twice-you'll get the same double root both times.) 

x + 3 = 0 x = - 3  
_(_x_+_3_) (_x_-_3)_ = 0 (3x + 5) (3x + 5) 
or x - 3 = 0 x = 3 or 

5 
3x + 5 = 0 3x = -5 5 

x = --

The critical numbers of  h(x) are x =  -3, x = - - and x =  3 3 , . 
x - 1 Identify the critical numbers of g(x) = --. lnx 

Use the method described in Problem 13.4: Set the numerator and denominator of a rational function equal to 0 and solve both equations to determine the critical numbers. 
x - 1 = 0 

x = I 

lnx = 0 or elnx = e0 

x = e0 = I 
The only critical number of g(x) is x = I . Certainly, x = I cannot be both a root and an undefined value. (If x = I is a root then g(l)  = 0, and 0 is a real number, not an 0 undefined value.)  This problem represents an indeterminate case : g (l) = 0 . Previous examples suggest that indeterminate values represent "holes" in the function-point discontinuity at which a limit exists. Regardless, the function is undefined (and therefore discontinuous) at this x-value, so x = I is a critical number of g(x) . 

A v oo t- o.P 
t-l,,,e \\lA\-"\evO\t-o v  i. s  

O\l so 0\ v oo t- o.P t-l,,,e 
wl,,,ol e .P ve>\c+i.o\\. 

b ecO\lAS e yoil.v e 
J..i.vi.J..i.\\ 8 by 0. 

Li.\c.e 
P v oble""'s I 0. 1 1 

O\\\J.. 1 0. 1 2. 
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" 'Si�ceo " .P( 8') 
:=- 0 I -P (,c) l-\0\S 0\ l-\ole O\+- ,c =- 8'. o+-l-\ev+-l-\0\� +-l-\0\+-, i+- loo�s e>CO\c+-ly li�e +-l-\e 8YO\f'l-\ O.P .P(,c). 

1 3 .6 Given the function f(x) = (x + 4) (2x - 9) ,  create a new function j (x) such that 

1 3 .7 

A 9 J (x) has three critical numbers : x = -4, x = - , and x =  8, and is equivalent to 2 .f(x) at all x ;t: 8. 
, • • • A (x + 4) (2x - 9) (x - 8) . . Consider the function f (x) = --------- , the rational function 

x - 8 defined such that j (x) = J (x) (x - 8 ) . Multiplying f(x) by x - 8 will not change 
x - 8  x - 8 its function values, since x - 8 divided by itself, like any nonzero quantity divided 

x - 8  by itself, equals 1 ,  and f (x) · l = f (x) . However, the expression -- does carry 
x - 8 with it one restriction: x can no longer equal 8. Therefore, j (x) is equivalent to J(x) for every real number x ;t: 8 , including matching critical numbers x = -4 and 

9 x = - . However, smce j (x) is undefined at x = 8, that x-value is a critical number 2 unique to j (x) . 
Identify the critical numbers of the function j(x) , graphed in Figure 13-1 .  

6 

5 

4 

I I\ 3 

\ 
J J 1 ,  I/ 

I/ I 
Figure 13-1 The graph ofafunctionj(x) . 

-6
., 

-4 - -2 -1 1 12 V' fO 

-1 

-2 I 
l 

-3 I 
- I 
-5 

-t 

The critical numbers of a function are the values at which the function equals O or is discontinuous. A function equals O at its roots, which are also the x-intercepts of its graph. Because j(x) intersects the x-axis at x = -5, -3, and 4, those are critical numbers of j(x) . A function is discontinuous at any holes, breaks, or vertical asymptotes on the graph, so j(x) also has critical numbers x = -4, 1, and x = 2. Therefore, j(x) has a total of six critical numbers : x = -5, -4, -3, 1 ,  2, and 4. 
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Signs of the First Derivative 
Vse w·(�8le 8vC\pl-\s +-a ol..e+-ev�i.\\e .P1>.\\c+-i.o\\ ol..i.vec+-i.o\\ 

Note: Problems 13.8-13.11 refer to the graph off(x) in Figure 13-2. 1 3 .8 Sketch the tangent lines to J(x) at every integer value of x on the interval 

-10 

[-8 ,8 ] .  �----------------------_J 

8 

-8 

-1 

10 

Figure 13-2 
The graph of a function J(x) that's 
continuous and differentiable over its 
entire domain, ( - oo, oo ). 

This problem requires you to draw 17 tangent lines, all of which are illustrated in Figure 13-3. 
8 

10 

-1 

Figure 13-3 The tangent lines tof(x) at x = -8, -7, -6, - - ·, 6, 7, 8. 
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Note: Problems 13.8-13.11 refer to the graph of f(x) in Figure 13-2. 1 3 .9 On what intervals do the tangent lines drawn in Problem 13.8 have positive slopes? What tangent lines have negative slopes ? 0 slopes? 
A line with a positive slope increases in height as x increases. In other words, as you travel from left to right, a line with a positive slope heads in the positive y direction. Notice that the tangent lines at x = -5, -4, -3, -2, 4, and 5 have positive slopes. Lines with negative slopes slant downward as you travel along the line from left to right. In Problem 13.8,  the tangent lines at x = -9, -8, -7, 0, 1, 2 , 7, and 8 have negative slopes. Horizontal lines have a slope of 0. Therefore, the tangent lines at x = -6, -1 , 3, and 6 have slopes equal to 0. 

Note: Problems 13.8-13.11 refer to the graph off(x) in Figure 13-2. 1 3 . 1 0  Based on your answers to Problems 13.8 and 13.9, describe the relationship between the direction of f(x) and the sign of its derivative as you travel along the x-axis from x = -9 to x = 9. 
Recall that the derivative is defined as the slope of the tangent line to a curve. Travel along the graph off(x) from left to right. Whenever f(x) is increasing � at an x-value, the tangent line at that x-value has a positive slope. On the other hand, whenever f(x) is decreasing at an x-value, the slope of the tangent line (i.e. , derivative) is negative there. The slope of the tangent line to f(x) equals 0 at a relative maximum or a relative minimum, when the graph changes from increasing to decreasing or from decreasing to increasing. 

Note: Problems 13.8-13.11 refer to the graph of f(x) in Figure 13-2. 1 3 . 1 1 .  Draw a sign graph for f' (x ). 
�raph is a number line that identifies the intervals upon which a function 

\• . l r . ,, o,. wl 8 8  e 8 vo,.pV\, 
b ece>1.l.\S e +-"' e si 8\\ o.P 

.P'(,c) "' el ps  yol.\ -fi81..\v e  
Ol.\t- w"'i c"' wo,.y .P(,c) 
i s  \'wi 8 8li\\ 8:' l.\p o v  

.AO w\\. 

is positive or negative. To construct one, begin by identifying the critical numbers for the function. Remember, you are constructing the sign graph of f' (x) ,  so the critical numbers are the x-values at which the slope of the tangent line to the graph, f' (x) ,  equals 0: x = -6, -1 , 3, and 6. (There are no values for which f' (x) is undefined, as Figure 13-2 describes f(x) as everywhere differentiable. )  Plot the critical numbers as points on the sign graph, as illustrated by Figure 13-4. 
-7 

• 
-6 -5 -4 -3 -2 

• -1 0 I 2 
• 
3 4 5 

• 
6 

Figure 13-4 The four critical numbers off' (x) split the number line into five 
distinct intervals. 

I • 
7 

The critical numbers act as boundaries that define these intervals : (-9,-6) , (-6,-1 ) ,  (-1,3) , (3,6 ) ,  and (6,9) . The sign of a function can only change at one of its critical numbers (though, at some critical numbers, the sign will not change) . 
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According to Problem 13.9, the slopes of the tangent lines to J(x) (i.e., the values ofj ' (x) ) are positive on (-6,-1 ) and (3,6) . Similarly, f ' (x) is negative on the intervals (-9,-6) , (-1 ,3) , and (6,9) . Write the sign that describes f' (x) , either "+" or "-," above each interval to complete the sign graph, as illustrated by Figure 13-5. 

+ 
EI • I I I I • I I I • 
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 

Figure 13-5 The sign graph off ' ( x) . 

Note: Problems 13.12-13.13 refer to the function f(x) = 3i2 - 4x + 2. 1 3 . 1 2  Construct the sign graph off ' (x) . 

+ 
I I • I • 4 5 6 7 

/' (x) 

To create the sign graph for f '  (x) , you must first find the derivative : f '  (x) = 6x - 4. Now set the derivative equal to O and solve to determine its critical number. 6x - 4 = 0 6x = 4 4 2 x = - = -
6 3 As Figure 13-6 illustrates, this critical number splits the number line into two intervals : (-oo, ¾) and ( ¾ , oo) . To determine the sign of each interval, choose one "test value" from each interval and substitute them into f' (x) . Note that x = 0 belongs to the left interval and x = l belongs to the right interval. f' (0) = 6 (0) - 4 = -4 f' (l) = 6 (1) - 4  = 2 

Eve\\ +-v.ol.\BV. Because f '  (x) < 0 for x = 0, the left interval should be negative ; similarly, the right interval ( ¾ , oo) is positive because f' (x) > 0 for x = l. The completed sign graph appears in Figure 13-6. yo!.\ pll.\8 O\\ly O\\e +-es+- v,:,1,ll.\e -Pv-o\,\,\ e,:,1,cv. 
+ 

-2 -1 0 
Figure 13-6 The sign graph ojf '(x) = 6x - 4. 

2 

/' (x) 
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Note: Problems 13.12-13.13 refer to the function f(x) = 3i2 - 4x + 2. 1 3 . 1 3  On what interval (s) is f(x) increasing? 
According to Problem 13.1 1 ,J(x) is increasing whenever its derivative is positive. Problem 13.12 indicates that.f ' (x) > 0 on the interval (¾ ,co). Therefore, .f(x) is increasing on the interval (¾ ,co). 

Note: Problems 13.14-13.15 reference the graph of g' (x) in Figure 13-7. 1 3 . 1 4  On what interval (s) is g(x) increasing? 

6 

Figure 13-7 
The graph of'g'(x), the derivative of'some 

function g(x). 

This question does not ask where the graph is increasing, as the graph represents the derivative of g(x) , not g(x) itself. Instead, note where the graph of g' (x) is positive, as those intervals correspond to the intervals upon which g(x) increases. Since g' (x) is positive on (- co, -4) U ( 0, 5), g(x) is increasing on those intervals. 
Note: Problems 13.14-13.15 reference the graph of g' (x) in Figure 13-7. 1 3 . 1 5  Identify the relative extrema of g(x) . 

A function has a relative extreme point (i.e. , a relative maximum or a relative 
1---� minimum) when a function changes direction. Consider this : if a function changes from increasing to decreasing at x = a, then its graph will reach a peak at 

x = a. While this may not represent the absolute maximum value of the function, it is the highest function value reached by any x close to a. 
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Relative extrema can only occur at a function's critical numbers, and are indicated by a sign change in the derivative of the function. Notice that at x = -4 and again at x = 5, the graph of g(x) changes from positive to negative-it crosses from above to below the x-axis . Therefore, g(x) has relative maximums at x = -4 and x = 5, as g(x) changes from increasing to decreasing at those x-values. At x = 0, g(x) has a relative minimum, because its derivative changes from negative to positive at x = 0 (indicating that the direction of g(x) changes from decreasing to increasing there) . 

1 3 . 1 6  If Figure 13-8 is the graph off ' (x) , the derivative of some continuous and differentiable function f(x) , at what x-value (s) will .f(x) reach a relative minimum? A relative maximum? 

-4 -2 

6 

4 

2 

2 4 6 8 

Figure 13-8 The graph off'  ( x ), the derivative of some function f(x). 

The graph of J' (x) intersects the x-axis at x = -l and x = 4, so those are the critical numbers ofj ' (x) . Note thatf ' (x) changes from negative to positive as its graph crosses the x-axis at x = -I . Therefore, f(x) has a relative minimum at x = -l , as it will change from decreasing to increasing there. That is the only relative extreme point for f(x) . At x = 4, the only other critical number off ' (x) ,  the derivative does not change sign-it is positive both before and after x = 4. Therefore, f(x) has no relative maximum points. 
1 3 . 1 7  Find and classify the relative extrema of g(x) = 4x' - 15x2 + 12x - 8. 

Differentiate g( x). g' (x) = 12x2 
- 30x + 12 

oL\f- +-l,,,e siB� 
Bve>1.pk I.P +-l,,,e 
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poi�+-. I.P f-l,,,e cl,,,°'-�Be 
is .PvotM + +-o -, i+-'s °'-
1Me>1.,c, °'-�J.. i.P +-l,,,e 
cl,,,°'-�Be is .PvotM 
- +-o +, i+-'s °'

tMi�. 

Bece>1.L\Se 
i+- l,,,if-s, bl-\f

J..oes\\1+- cvoss, 
+-l,,,e ,c-e>1.,cis. 
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B ecO\IAS e 
t-l,,,e si. 8"' o.P 

8'(�) cl,,,0\\\8 es 
.P v o1M posi. t-i.ve t-o 

\\e80\t-i.ve. Tl,,,e 
opposi. t-e l,-,0\pf' e\\S 

O\t- � -:= 2.. 

This derivative is defined for all real numbers, so its only critical numbers are its roots . Set g (x) = 0 and solve. 12x2 - 30x + l2 0 
6 6 2x2 - 5x + 2 = 0 

(2x - l) (x - 2) = 0 1 x = - 2 2 '  Construct a sign graph for g (x) , as illustrated by Figure 13-9. 
+ 1 2 2 

+ 
g' (x) 

Figure 13-9 The sign graph of'g'(x) = 12x2 - 30x + 12. 1 According to the sign graph, g(x) changes from increasing to decreasing at x = - , 2 resulting in a relative maximum, and g(x) changes from decreasing to increasing at x = 2 , resulting in a relative minimum. 
1 3 . 1 8  Find and classify the relative extrema of h (x) = -8x3 + l l x2 + 35x - 19. 

Differentiate h(x) .  

h' (x) = -24x2 + 22x + 35 This quadratic is defined for all real numbers, so its only critical points are its roots . Set h' (x) = 0 and solve using the quadratic formula. -24x2 + 22x + 35 = 0 -22 ± -J222 - 4 (- 24) (35) 
x = ----------2 (-24) -22 ± ,J3, 844 x = -------48 -22 ± 62 x = -----48 -84 40 x = -- or ---48 -48 7 5 
x = - or - -4 6 Construct a sign graph for h' (x) , as illustrated by Figure 13-10. 
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5 6 
+ 

7 4 h' (x) 
Figure 13-10 The sign graph of h'(x) = -24:x:2 + 22x - 35. 

5 According to Figure 13-10, h (x) changes from decreasing to increasing at x = -6 , resulting in a relative minimum, and changes from increasing to decreasing at 
x = - , resulting in a relative maximum. 4 

Signs of the Second Derivative 
Poh,+-s o.P i\.\-tlecHo\.\ C1.\.\ol.. co\.\cC1.Vi+-y 

Note: Problems 13.19-13.20 refer to the function g(x) = 18x' - 39x2 + Bx +  16. 1 3 . 1 9  Generate the sign graph of g'' (x) . 
Use the method described in Problem 13.12, although you should use the second derivative, g'' (x) ,  instead of g' (x) . 

g' ( x) = 54x2 
- 78x + 8 g" (x) = l08x - 78 Set g'' (x) equal to 0 and solve for x. 108x - 78 = 0 108x = 78 78 

Divi<A e  
---------...J H-. e +-op Cl\\ .A 

bo+-f--01M by G. 
x = -108 13 
x = -18 

The critical number divides the number line into two intervals : (- oo, 13 ) and 
sv.v e  yov. plv. 8 ( 13 ) 18 18 , oo . Choose one test value from each interval (such as x = 0 and x = l ,  respectively) to determine the sign of g'' (x) for each interval. "---.__ +-1-. e +-es+- v"'lv.es i\\+-o 

f (�), \\Of-- 8'(�). Lt:'lb el 

g" ( 0) = 108 ( 0) - 78 = - 78 g" (l) = 108 (1) - 78 = 30 
Therefore, g'' (x) < 0 on (- oo, �:) and g'' (x) > 0 on G! , oo) , as illustrated by the sign graph in Figure 13-11 .  

+-1-. e si 8"' 8 v"'pl-. 8"(�) 
so i+-'s cl et:'lv  wl-.t:'l+

.Aevivt:'l+-iVe yoil.v e 
t"Cll\:.i\\ 8 Clt)Ol.\t". 
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CO\\Ce>I.Vtf-y o.P "'- .PL\\\cf-io\\ d'\"'-\\8es "'-+- "'-\\ i\\-Aec+-io\\ poi\\½-. 
'So, +-l,,,e .PL\\\Ct'lO\\ 8(,c) t,.,,,._s e>1.\\ i\\-Aec+-io\\ poi\\+- i.P +-l,,,e cvi+-ice>1.l \\L\\N\pev o.P i+-s '5ECoND DERIVATIVE 

Look ,,._+Pvo't>le\N\ 8'.'3 I i.P yol.\'ve \\Of- SLwe l,,,ow +-o solve +-vi8 eq�e>1.·Ho\\s co\\-l-e>1.i\\i\\8 >;,c l\\Sf-ee>1.cA o.P jl.\Sf-
;>c. The>1.f- eql.\e>1.t'lO\\ looks ,,._ lo+- like +-l,,,is O\\e. 

13 18 
+ 

g " (x) 

Figure 13-11 The sign graph of'g'(x) = 108x - 78. 

1 3 .20 At what x-value (s) does g(x) have an inflection point (s) ? 
If the sign of g' (x) -and therefore the concavity of g' (x) -changes at one of its critical numbers, that number represents an inflection point on the graph of g(x) . In Figure 13-11 ,  the sign of g' (x) changes from negative to positive at x = �: , . d. . . fl . . f < ) 13  m 1catmg an m ect1on pomt o g x occurs a t  x = - . 18  

Note: Problems 13.21-13.23 refer to the function f(x) = sin 3x. 1 3 .2 1 Identify the x-values of the inflection points off(x) on the interval [ % , 5:] . 
Find f" (x) . 

f' (x) = 3 cos 3x 
f" (x) = -9sin 3x Identify the critical numbers ofj" (x) by setting it equal to O and solving for x. -9sin3x = O  sin3x = 0 3x = 0, .n, 2.n, 3.n, 4.n, 5.n 

.n 2.n 4.n 5.n 
x = O - - .n - ' 3 '  3 ' ' 3 ' 3 Eliminate x-values outside of [ % , 5:] . 

.n 2.n x = - - .n 3 '  3 ' ( .n .n ) (;re 2n )  ( 2.n ) ( 5.n
) Choose test values from the intervals 6, 3 , 3 , 3 , 3, .n , and .n, 4 to generate the sign graph in Figure 13-12. 

,-,; 
6 

;n; 
3 

+ 
J"( x) 

+ 
-4 

Figure 13-12 The sign graph otf"(x) = -9 sin 3x over the interval [ � , 
5:] . 
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Because the sign of f" (x) changes at all three critical numbers, each represents 

:re 2:rc the location of an inflection point of ji(x) : x = - ,-,:re . · 3 3 

Note: Problems 13.21-13.23 refer to the function f(x) = sin 3x. 1 3 .22 Based on the sign graph generated by Problem 13.21 ,  indicate the intervals on which f(x) is concave down. 
A function is concave down on the same intervals its second derivative is negative. According to Figure 13-12, J" (x) is negative on ( � .�) and (� ,.n) , so f(x) is concave down on those intervals . 

Note: Problems 13.21-13.23 refer to thefunctionf(x) = sin 3x. 1 3 .23 Based on the sign graph generated by Problem 13.21 ,  indicate the intervals on which f' (x) is increasing. 
Although f" (x) is the second derivative off(x) , note that it is also the .first derivative off' ( x). Therefore, the sign off" ( x) also describes the direction of 
J' (x). According to its sign graph, f" (x) is positive on the intervals (� , �) and 
( .n, 5:) ,  so f' (x) must be increasing there. 

Note: Problems 13.24-13.25 reference the graph of h' (x) in Figure 13-13. 1 3 .24 Identify the x-values at which the relative maximum (s) of h(x) occur. 
8 
6 

-10 

-8 

-10 

10 

Figure 13-13 
The graph of h' (x) , the.first derivative 
ofsomefunction h(x) defined on the 
interval [-9, oo). 

J v. s+- l ik e  +-h e 
si8\\S o.P .P'{,c) cA escv ib e  

+-h e cA iv ec+-io\\ 0.p -P{,c), 
+-h e si8\\S o.P .P"(,c) 
cA escv ib e +-h e  
cAiv ec+-io\\ 0.p .P'(,c). 
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Relative extrema of h(x) occur when h' (x) changes sign at one or more critical numbers . The function h' (x) has critical numbers at its x-intercepts (x = -7 and .__ ___ -,,x = 2) and wherever it is undefined; however, h' (x) is continuous and therefore 

\\L\l"'\pev-s wl,,,ev-evev
i+- eqL\oi.ls O (ov- is 

J..iSCO\\+-i\\L\OL\S). 

I.P yoL\'v-e co\\.PL\seJ.. 
Pv-oblel"'\ l'>. 2 1 ex- ' 
ploi.i\\s wl,,,y +-l,,,oi.+-'s 
hl-\e. 

defined over its entire domain [-9,oo ) .  Note that h' (x) is positive (above the x-axis) on the interval (-9,-7) only; it then crosses the x-axis and is nonpositive for x > -7. Therefore, h(x) changes from increasing to decreasing at x = -7, indicating a relative maximum. (Although the graph of h' (x) intersects the x-axis at x = 2 it does not cross the axis, so there is no sign change at x = 2 and no relative maximum or minimum point occurs there.) 
Note: Problems 13.24-13.25 reference the graph of h' (x) in Figure 13-13. 1 3 .25 On what interval (s) is h (x) concave up? 

The function h (x) is concave up wherever its second derivative, h" (x) , is positive. The sign of h" (x) also describes the direction of h' (x) . Because h' (x) is increasing on the intervals (-9,-8) and (-4,2) ,  h" (x) is positive on those intervals, and therefore h (x) is concave up on those intervals as well. 
Note: Problems 13.26-13.28 refer to the graph of f"(x) in Figure 13-14. 1 3 .26 On what interval (s) is the graph off(x) concave down? 

-6 -5 -4 4 5 6 

Figure 13-14 The graph otf"(x), the second derivative of some function .I( x) . 

The graph off(x) is concave down on the same intervals thatf" (x) is negative (i.e., below the x-axis) . Therefore, f(x) is concave down on (- oo, - 3) U (l, oo) .  
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Note: Problems 13.26-13.28 refer to the graph of f"(x) in Figure 13-14. 1 3 .27 Which is greater: f ' (-2) or f' (0) ? 

Note thatj" (x) is positive on the interval (-3,1 ) ,  so f' (x) must be increasing over the entire interval. Ifj ' (x) increases between x = -2 and x = 0, then 
Tl-\e Si8\\ o.P .P"(><) .::l.escvibes +-l-\e &livec+-io\\ o.P .P'C><). l.P .P'(,c) 8oes IAf' O\S yo!A he>\vel .Pvo1M ,c == -2. f ' (-2) < f ' (0) .�----------------__j +-o ,c == 0, +-l-\e\\ .P1(0) 

Note: Problems 13.26-13.28 refer to the graph of f"(x) in Figure 13-14. 1 3 .28 Identify and classify the relative extrema off ' (x) . The relative extrema of a function can only occur at the critical numbers of its derivative. The only critical numbers off" (x) are its x-intercepts : x = -3 and x = I .  Because f" (x) changes from negative to positive a t  x = -3, f '  (x) changes from decreasing to increasing, indicating a relative minimum. Additionally, f" (x) changes from positive to negative at x = l ,  so f '  (x) changes from increasing to decreasing there, indicating a relative maximum. 
1 3 .29 Describe how the second derivative test classifies the relative extrema of a function g(x) . 

Plug a critical number of g' (x) into g " (x) .  If the result is positive, then the critical number represents a relative minimum of g(x) . If the result is negative, it represents a relative maximum of g(x) . If, however, the result is 0, no conclusion can be drawn, and a sign graph must be used to determine the direction of g(x) to the left and to the right of the critical number. 
1 3 .30  Identify the relative extrema of J(x) = x' + x1- - x + 9 and classify each using the second derivative test. 

Find the critical numbers off ' (x) . 
f' ( x) = 3x2 + 2x - l 0 = 3x2 + 2x - l 

0 = (3x - l) (x + 1) 3x - 1 = 0  I 
x = -

x + I = 0 or 
x = - 1  

Substitute those critical numbers into f" (x) = 6x +�2�- -------�,--r (½) = 6 (½) + 2 = 4 f" (- 1) = 6 (- 1) + 2 = -4 Because f" (½) > 0, f(x) has a relative minimum at x = ½ , according to the second derivative test. Similarly, .f(x) has a relative maximum at x =  -1 because f"(-1 )  < 0. 

is l-\i8l-\ev i---l-\0\\\ .P'(-2.). 
YoV:ve looki\\8 .Pov +-l-\e l,\\,;>\,c's 0\\\.::1. l,\\t\\'s o.P .P'(x), wl-\icl-\ l-\0\s 0\ &leviVO\+-i.Ve o.P .P"(x). 

Tl-\e O\CTIAO\l \\1A1Mbevs yo!A'll 8e+&lo\\'+- IMO\+-½--ev, O\\ly wl-\e+-l-\ev +-l-\ey O\ve posi+-ive ov \\e80\+-i.ve. 
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2Cl is 
jL\st- Cl CO\\Sre>l\\i-: 
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sol i.A CL\ vve o,\\\ 'tbe t-he .Ae v ivO\t-ive becO\L\Se +-he 
.::lot-t-e.A CL\ vve is \\ot-0\l wO\ys i\\c v eO\S i\\8 whe\\ +-he sol i.A CL\ vve is ros it-ive. 

A parabola with a vertical axis of symmetry has standard form f(x) = a(x - h) 2 + k. Assuming a <  0, where does the relative maximum off(x) occur? Use the second derivative test to verify your answer. 
Differentiate f(x) and identify the critical numbers off ' (x) . f' (x) = 2a (x - h) 0 = 2a (x - h) 0 �------? - + h = x  2a 
Substitute x = h into f" (x) . 

h = x  
f" (x) = 2a · .!!,__ (x - h) 

dx 
J" (x) = 2a · l 
J" (h) = 2a No matter what x-value is plugged into the second derivative, f" (x) < 0-the problem states that a <  0, so 2a is negative as well. Therefore, according to the second derivative test, .f(x) has a relative maximum when x = h. 

Function and Derivative G raphs 

\-\ow ewe +-l--'\e 8vc,.pl--'\s o.P .P, .P� c,.\,\t,\ .P" velc,.f-et,\? 

1 3 .32 A function and its derivative are graphed in Figure 13-15.  Determine which graph represents .f( x) and which represents f' ( x) . 

2 

-lo"" --S - ----6""" ---4 - -2 6 -2 
-4 
-6 

-8 
-1 

8 10 

Figure 13-15 One of the functions graphed here is the derivative of the other. 

Notice that the solid graph decreases along its entire domain and the dotted graph is negative along its entire domain. Because f' (x) is negative when f(x) is decreasing, f '  (x) is the dotted graph and .f(x) is the solid graph in Figure 13-15.  
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1 3 .33  A function and its derivative are graphed in Figure 13-16. Determine which graph represents g(x) and which represents g' (x) . 

/ 

10 

--6 

-1 

Figure 13-16 One of the functions graphed here is the derivative of the other. 

The solid graph is g(x) and the dotted graph is g' (x) . The solid graph reaches a relative maximum at x = -7. Meanwhile, the dotted graph intersects the x-axis as it changes from positive to negative at x = -7. Therefore, the relative maximum of the solid graph is reflected by a critical number sign change in the dotted graph. Similarly, the solid graph changes from decreasing to increasing at x = 2, and the dotted graph again intersects the x-axis at x = 2, this time changing from negative to positive to reflect the direction change of the solid graph. 
1 3 .34 A function and its second derivative are graphed in Figure 13-17. Determine which graph represents h(x) and which represents li' (x) .  

-1 

Figure 13-17 One al the functions graphed here is the second derivative al the other. 
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So, t-1-. e  
(.Ao t-t-e.A) .A ev ive>1. t-ive 

eqL\e>1.l s  O wl-. e\\ evev t-1-. e  
(t-1-. ick) .PL\\\ ct-io\\ l-.e>1. s "'
l-.o v iz.o\\t-e>1.l t-"'-\\ 8 e\\ t- l i\\ e. 

The solid graph appears to be concave up on the interval (-3,3 ) ,  but the dotted graph is negative for those x-values .  Therefore, the dotted graph cannot be the second derivative of the solid graph, as intervals on which h(x) is concave up must correspond to intervals on which h" (x) is positive. On the other hand, the dotted graph appears to be concave down from roughly x = -2 to x = 2, and the solid graph is negative for those x-values .  Therefore, h(x) is the dotted graph and h" (x) is the solid graph. 
1 3 . 35  Match the functions j(x) , j  ' (x) , and j " (x) with their graphs in Figure 13-18. 

-6 

Figure 13-18 The graph of a function j( x) and its first and second derivatives. 

Each time the thick graph reaches a relative maximum or minimum, the dotted graph intersects the x-axis .  Furthermore, each time the dotted graph reaches a relative maximum or minimum value, the thin graph intersects the x-axis .  Therefore, the thick graph is j(x) ,  the dotted graph is j 1 (x) , and the thin graph is j " (x) . 



Chapter 1 4  
BAS IC  APPLICATIONS OF D I FFERENTIATION 

1 evi.v"'Fives ski.ll s +-0 v.se Pv.+- yov.v Q\. 

Though a conceptual understanding of how a function and the signs of its derivatives are illuminating and worthwhile, the concex_ts ar� ver rudimentary. In this chapter, you will progr�ss beyond irec�1on anJ concavity, using derivatives to identify equat10ns of_ tan gent 1 mes , 13 roximate roots , and evaluate difficult limits . The skills of Chapter :�: not to be shelved, however, as you will apply th:m_ to the e�treme value theorem, and then again in Chapter 15 as you optimize functions.  
Eve� tl-'\av.8l-'\ v.�.:Aevsh,1.�.:Ai�8 wl-'\"'-t tl-'\e .:Aeviv01.tives a.P "'- .Pv.�ctia� tell yav. 01.bav.t tl-'\"'-t .Pv.�ctia�'s .:Aivectia� "'-�.:A ca�c01.vity is l-'\"'-�.:Ay, it's l-'\a�estly �at 01.ll tl-'\01.t i�tevesti�8- 1-lawevev, .:Aeviv"'-tiVes CO\� be v.se.:A .Pav 1Mave pv01.ctic01.l pv.vpases, O\�.:A i� tl-'\is cl-'\01.ptev, yav.'ll -fi�.:A av.t tl-'\"'-t .:Aeviv01.tives 1M01.\:.e S<'IMe t01.s\:.s tl-'\"'-t v.se.:A ta be l--\0\v.:A 01.ctv.01.lly qv.ite sitMple. Fav e>e01.1Mple, yav. CO\� v.se tl-'\etM ta esti1M01.te tl-'\e vaats a.P "'- .Pv.�ctia� like .P(,c) == >e7 

- 4,c' + 2,c + 1 1 , wl-'\icl-'\ ve.Pv.ses ta be -P01.ctave.:A "'-�.:A C01.�1t be salve.:A by ca1Mpleti�8 tl-'\e sqv.01.ve av tl-'\e qv.01..:Av01.tic .PavtMv.10\ Cbec01.v.se it's abviav.sly �at "'- qv.01..:Av01.tic e>epvessia\\). Yav.'ll eve� v.se .:Aeviv"'-tives ta -fi�.:A litMits tl-'\"'-t veqv.ive.:A speci-fic tvic\:.s b01.c\:. i� Cl-'\01.ptev I 0, bv.t will �aw be si8�i-fic01.�tly e01.siev tl--\0\�\:.s ta S<'1Metl-'\i�8 CO\lle.:A L'l-lopit01.l 1s vv.le. 
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'SL\'t>s+-i+-L\+-e 
+-hese voi.lL\es i\\+-o +-he .Pov-1ML\loi.: ><1 -:= °'-, Y1 -:= B(cv, oi.\\J.. ""' -:= B'Coi.). 
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Equations of Tangent Lines 
Pai\\t a.P toi.\\8e\\cy + t:l.evivoi.tive � eqv.oi.tia\\ a.P toi.\\8e\\t 

Problems 14.1-14.2 refer to the function f(x) = -2x2 + 5x - 9. 1 4 . 1  If line l is tangent to f(x) at x = -l , identify the point of tangency. 
The point of tangency lies on the graph of.l(x) when x = -l , so evaluate f(-1) to find the corresponding y-coordinate. J (- 1) = -2(- 1)2 + 5 (- 1) - 9  = -2(1) - 5 - 9  = - 16 The point of tangency is (-l , f(-1 ) )  = (-1 ,-16) . 

Problems 14.1-14.2 refer to the function J(x) = -2x2 + 5x - 9. 1 4 .2 

1 4 .3  

If  line l i s  tangent to f(x) a t  x = -l , identify the slope of  l. Calculate the derivative off(x) using the power rule and evaluate f '  (x) at x = -l to determine the slope of the tangent line at the point identified in Problem 14. 1 :  (-1,-16) . 

The slope of tangent line l is 9. 
f' (x) = -4x +  5 j' (- l) = -4 (- 1) + 5  /' (- 1) = 9 

Write the equation of the tangent line to some differentiable function g(x) at x = a. 

The point-slope formula is the most expedient way to determine the equation of the tangent line. It requires two components : a slope m and a point (xi , y1 ) on the line. 
Begin by substituting the x-value a into g(x) to get the corresponding y-value : g(a) . The point of tangency, (a, g(a) ) ,  is located on both the curve and the tangent line. Substitute that point and g' (a) , the derivative of g(x) when x = a, into the point-slope formula. The result will be the equation of the tangent line to g(x) at the point g(a) .  

y - g (a) = g' (a) (x - a) It is customary to solve for y when writing the equation of a tangent line, although it is not required. 
y = g' (a) (x - a) + g(a) 
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1 4.4 Using the method outlined in Problem 14.3 (and the values generated by Problems 14.1 and 14.2) ,  write the equation of the line tangent to 

J(x) = -2x2 + 5x - 9 at x = -I . 
Substitute the point of tangency (x"y1 ) = (-1 ,-16) and the slope of the tangent line 
m = 9 into the point-slope formula. 

Solve the equation for y. 

y - Yi = m (x - x1 ) y - (- 16) = 9 (x - (- 1)) 
y + 16 = 9 (x + l) 
y + l6 = 9x + 9 

y = 9x - 7  

1 4.5  Determine the equation of the tangent line to J(x) = 3 cos 2x at  x = 5.n . 6 
Evaluate J (5:) .  

f ( 5: ) = 3 cos ( 2 · 5:) 

= 3cos ( 5: ) 
= Differentiate J(x) using the chain rule. 

Evaluate r(5;) . 
f' (x) = 3 · (- sin2x) · 2 
f' (x) = - 6 sin 2x 
· (5.n ) . ( 5.n) f 6 = -6sm 2 · 6 

= - 6 sin ( 5: ) 
= -6(- �) = 3✓3 

Do\\'+-.Pov8e+- +-o l,\\L\l+-iply by +-"'e <Aevivo,.+-ive o.P 2,c, +-"'e l\\\\ev .PL\\\Ct"lO\\. -r"',,,.+-'s w"'eve +-"'is 2 COl,\\eS .Pvol,\\. 
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.Pvoi.d-io�s l-\oi.ve t-l-\e soi.\,\,\e .Ae�O\,\,\i�oi.t-ov, so yov. sl-\ov.l.A CO\,\,\pi�e t-l-\e\,\,\. 

The .Pv.\\ci-io\\ is .Ae-fi\\e.A .Pov A LL • REAL Ill VMBER-s, \\o+Jv.st- ,, '3.7, 4, � "'-\\.A S-: I S-: These oi.ve jv.s+--five x-voi.l v.es OI.\\.A whoi.+- Y0L\ 8et- whe\\ }'OL\ P1L\8 eet.ch O\\e i\\f-O 8(X). 
1-P yov. coi.1.t't- -fi�.A t-l-\e t-oi.�8e�t- slope, 1,\,\0\\c.e .Av.e wit-l-\ oi. 
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Substitute ( x1 , y1 ) = ( 5: ,  ! ) and m = 3✓3 into the point-slope formula. 
J - !  = 3✓3 ( X -

5: ) 3 15:n:✓3 
y - - = 3✓3

x - --
2 6 3 5:n:✓3 
y = 3✓3

x + - - --2 2 �-------/o _;.3 - 5:n:✓3 
y = 3v.'.>x +  

2 

Note: Problems 14.6 -14. 7 refer to a differentiable function g( x) defined for all real numbers, 
and include the selected function values in the table below . 

1 4 .6 Estimate g' ( 4) . 
X g (x) 3 3.7 9 1 1 .6 4 5 5. 15 12.3 3 -0.4 

Not much information is given about g(x) , so you must make the best use of the limited values given. Remember that the derivative represents the slope of the tan ent line at a specific x-value. The best geometric approximation of the tangent line at x = 4 is the secant line connecting the points (3.7, 1 1 .6) and (4,12 .3) , because x = 3.7 is closer to x = 4 than any other known x-value. Calculate the slope of that secant line by dividing the difference of the y-values by the difference of the x-values .  ' (4) a::: 12.3 - 1 1 .6 g 4 - 3.7 0.7 a::: -0.3 a:::: 2.3 
Note: Problems 14.6 -14. 7 refer to tables of values provided in Problem 14.6. 1 4 .7 Estimate g' (5) . 

Use the same technique demonstrated in Problem 14.6. The closest x-value to x = 5 is x = 5.15, so the best approximation of g' ( 5) is the slope of the secant line passing through (5,3) and (5.15, -0.4) . ' (5) "" -0.4 - 3  g 5. 15 - 5  - 3.4 a:::: --0. 15 a:::: -22.6 
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Note: Problems 14.8 and 14.9 refer to the graph off(x) in Figure 14-1. 1 4.8 Estimate f' (-6) and write the equation of the tangent line to .f(x) at x = -6. 

-10 -8 -6 

8 

6 

-6 
-8 

-1 

Figure 14-1 
The graph of an everywhere differentiable 10 function.l(x). 

There is no single correct answer to this problem, as very little information is known about .f(x) . You could use the method of Problems 14.6 and 14.7-estimate .f(-5) ""' 4.8 and then calculate a slope based on the points (-6,-5) and (-5,-4.8) . Students savvy with graphing calculators could use even more complex means to approximate the derivative. However, any method is entirely based on estimation and the accuracy of one valid technique is difficult to prove better than another. The most straightforward way to approximate the derivative is to sketch the tangent line at x = -6 (as demonstrated in Figure 14-2) and calculate its slope. 
8 

6 

-8 
-1 

Figure 14-2 

The graph off( x) and a best 
guess at its tangent line at the 
point (-6,-5). 

cv-eo,.te o,. 

sto,. ti stico,.l 
plot; B e\\ev-o,.te o,. 

v-eBv-essio\\ cv..v-ve, e>1.\\J.. 
H,e\\ J..i.P.Pev-e\\i-ie>1.te 
tl'\o,.t cv..v-ve o,.t ,c := -,. 
1l'\o,.t's o,. lot o.P wov-� 
to J..o .Pov- e>1.\\ e>1.\\Swev
tl'\o,.t's still j v..st 
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Pv-oble\,\,\s 14., e>\\\J.. 14.7: w. ==- Yi - Y1 • 
:Kz - )Cl 

2 1 0  

It appears that the tangent line drawn in Figure 14-2 passes through (2,-4) , so calculate the slope of the line using that coordinate and the point of tangency (-6,-5) . -5 - (-4) m ::::::: ----- 6 - 2  
::::::, -

Note: Problems 14.8 and 14.9 refer to the graph of f(x) in Figure 14-1. 

1 4 .9 Estimate .f' (5) and write the equation of the tangent line to f(x) at x = 5. 
Draw a tangent line to .f(x) at x = 5, as illustrated by Figure 14-3. 

-10 -8 -6 

-1 

Figure 14-3 
The graph off( x) and a best 
guess at its tangent line at the 
point (5,-1). 

The tangent line drawn appears to pass through (3,2) ; use that point and the point of tangency ( 5,-1 ) to calculate the approximate derivative. - 1 - 2  
m ::::::: ---5 - 3  

::::::: - -

1 4 . 1 0  The equation of the tangent line to .f(x) = ai2- + bx - 3 at (-4,-31) is y = 9x - 5. Determine the values of a and b. 

You are given .f(-4) = -31 , so substitute those values into the function . .f (- 4) = a (- 4)2 + b (- 4) - 3  -31  = 16a - 4b - 3  - 28 = 16a - 4b 
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Differentiate J(x) . Because a is a real number, you should treat it like any other coefficient-take the derivative of i' and multiply it by a. 

Note that the tangent line y = 9x - 5 has slope 9, so f' (-4) = 9. J' (- 4) = 2a (-4) + b  
9 = -8a + b  You now have two equations, -28 = 16a - 4b and 9 = -Sa + b, each containing two unknowns ( a and b) .  Solve the system of equations to determine the solution. One approach is to solve the second equation for b (b = 9 + 8a) and substitute it into the other equation. - 28 = I6a - 4b - 28 = 16a - 4 (9 + 8a) -28 = 16a - 36 - 32a 8 = - 16a I 

- - = a 2 Substitute a into either equation of the system to determine the corresponding value of b. 

9 = -8a + b  9 = -8 (- t) + b  
9 = 4 + b  
5 = b Therefore, the equation of J(x) with the correct values of a and b is I 

f (x) = - - x2 + 5x - 3. 2 
The Extreme Value Theorem 
Evevy .Pl.\\\ctia\\ V\O\S its l-\iBl-\s "'"'J. laws 1 4. 1 1 Ifj(x) is a continuous on the interval [a,b] , what is guaranteed by the extreme value theorem? 

The extreme value theorem guarantees thatf(x) possesses both an absolute maximum and an absolute minimum on [a,b] . The absolute extrema are not guaranteed to be unique, however. In other words, J(x) may reach its absolute maximum or minimum value more than once on the interval, but it will not surpass either. 

Tl,,.e li\\e y ==- "Ix - s-is i\\ slope-i\\f-ev-cep+.Pov-""' (y ==- IA-\x + b), wl,,.eve ""' ==- "I C\\\d. b ==- -s-. Tl,,.e slope is i+-s x-coe.P-ficie\\f-. 

I.P yoL\ \\eed. t-o v-eview solvi\\B syst-e""'s o.P ecqL\C\t-io\\s, look C\r Pv-oble""'s 1 .28'- l .'30. 

I\\ ot-l,,.ev wov d.s, t-l,,.eve's O\\e .PL\\\ct-io\\ VC\IL\e t-l,,.C\t-'s l,,.iel,,.ev- <'\\\.A O\\e .PL\\\ct-io\\ VC\IL\e t-l,,.C\t-'s lowev- t-l,,.C\\\ t-l,,.e ot-l,,.ev .PL\\\ct-io\\ VC\IL\es O\\ t-l,,.e i\\t-ev-v<'\I. 
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Re\,\,\e\,\,\b ev, 
i.P c i s  "' cv-it-ic"'l 
\\IA\,\,\b ev- o.P .P'(,c), H'\e\\ 
eii--L'\ ev .P'(c) ==- 0 o v  .P'(c) 

2 1 2  

1 4 . 1 2  At what x-values can the absolute extrema guaranteed by the extreme value theorem occur, given a function .f(x) continuous on [a, b] ? 

Absolute extrema occur either at an endpoint or a relative extreme point on the interval. 
1 4 . 1 3  Identify the absolute maximum and the absolute minimum off(x) , the function graphed in Figure 14-4. 

Figure 14-4 
--+--+---+-+-+-+--++---+--+----+--+---+--t--- The graph off(x), which is continuous 

on the interval [-4, 6}. 

The highest y-value reached by .f(x) , y = 5, occurs at x = 6, the right endpoint of the interval ; the lowest y-value reached by .f(x) ,  y = -3, occurs at the critical number x = -2. 
1 4. 1 4  Identify the absolute maximum and the absolute minimum off(x) = 3x2 - 12x +  5 on the interval [ 1 ,4] . 

According to Problem 14.12, the absolute extrema occur at endpoints of the interval or relative extreme points off(x) (which must be located at critical numbers off' (x) ) .  Set f' (x) = 0 and solve for x to identify critical numbers off ' (x) . 

J' (x) = 6x - 12 0 = 6x - 12 12 = 6x 2 = x The absolute extrema off(x) could occur at x = l (an endpoint) , x = 2 (a critical number off ' (x) ) or x = 4 (an endpoint) . Substitute each of those x-values into f(x) and determine which generates the maximum and which generates the minimum function value. 
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f (1) = 3 (1)2 - 12 (1) + 5 f (2) = 3 (2)2 - 12 (2) + 5 J (4) = 3 (4)2 - 12 (4) + 5  = 3 - 12 + 5  = 12 - 24 + 5  = 3 (16) - 48 + 5  = - 4  = -7  = 5 
The absolute maximum ofj(x) on the interval [1 ,4] is 5 ;  it occurs at the right endpoint, x = 4. The absolute minimum value off(x) on the interval [ 1 ,4] is -7; it occurs at x = 2. 

1 4. 1 5  Identify the absolute maximum and the absolute minimum of g(x) = -3x' + 4x2 - 1 on the interval [0,1] . 
Calculate the critical numbers of g' (x) . 

-9x2 + 8x = g' (x) 
x (-9x + 8) = 0 

-9x + 8 = 0 

x = 0 
8 or x = -Evaluate g(x) at those critical numbers and at the endpoints of the interval. Notice that x = 0 is both an endpoint and a critical point, so you need to calculate a total of three function values .  

g (0) = - 3(0)3 + 4 (0)2 - 1  = 0 + 0 - 1  = - 1  

g (i) = -3(ir + 4 rnr - l  
= - 3( 512 ) + 4( 64) - 1  729 81  = _ 512 + 256 - 1  243 81 512 768 243 = - - + - - -243 243 243 13  = -243 

g (l) = - 3(1)3 + 4 (1)2 - 1  = - 3 + 4 - 1  = 0  

1 3  8 The absolute maximum of /(x) on [0,1] is - ; it occurs at x = - . The absolute · 243 9 minimum of J(x) is -1, occurring at x = 0, the left-hand endpoint of the interval. 

Me>\\c.e S!Av-e yo!A pl!Aj t-l'\etM i\\t-O j6<) No-f j1("1<). 'f 01he loo\c.i\\j �ov- t-l'\e bijjeSt- e>\\\.A SIMC\llestFLINC-flo N Ve>\l!AeS (\\OtDERIVA-mrE Ve>\l1Aes), eve\\ t-l'\o!Ajl'\ t-l'\e cv-it-ice>\l \\1A1M\:>ev-co1Mes �v-otM �'(-,c). 
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'5otMe 
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Newton's Method 
Appvo,ci.l,A,\C1.te tl,,.e z.evoes o.P Cl. .Pl.\\.\cti.o\.\ 

1 4. 1 6  Identify the formula used in Newton's method and explain what is meant by an "iterative" calculation. 
An iterative calculation is used to produce a sequence of values, one at a time, so that each successive value is based on one or more of the values that precede it. It requires an initial value ( often called a "seed value" ) ,  which is substituted into a formula to generate a new value, which is then substituted back into the formula, and the process repeats . Newton's method approximates the roots of functions. Based on some initial seed value x1 , it generates x2 (a better approximation of the root) based on the formula below. 
You then substitute x2 into the formula to generate x3 , substitute x3 to generate x4 , and repeat the process until the desired degree of accuracy is achieved, 

Note: Problems 14.17-14.19 refer to thefunctionf(x) = x2 - 3. 

1 4 . 1 7  Perform one iteration of Newton's method to estimate a root ofj(x) using a seed value of x, = 4. 
Substitute x" = x, = 4 into the formula for Newton's method to determine xn + i  = x2 • Note that f(4) = 42 - 3 = 13 and f' (4) = 2 (4) = 8 .  

J(x1 ) 
X2 = Xi - f' (x1 )  13  
X = 4 - -

2 8 32 - 13 8 19 8 19 Therefore, x2 = 8 is closer to the positive root off(x) = x2 - 3 than the original seed value x, = 4. 
Note: Problems 14.17-14.19 refer to thefunctionf(x) = x2 - 3. 

1 4 . 1 8  Apply Newton's method using x2 from Problem 14.17 to generate Xy How accurately does X3 estimate the root off(x) = x2 - 3? Use a calculator to represent the function and derivative values as decimals. 
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19 Substitute n = 2,  n + 1 = 3, and x2 = 8 = 2.375 into the Newton's method formula. 
X = 2.375 - j (2.375) 

3 /' (2.375) = 2.375 - (2.375)2 - 3 2 (2.375) _ 75 _ 2.640625 - 2.3 7 4. 5 = 1 .81907894737 In order to determine the accuracy of x3 , subtract it the actual root, .J3. 1"'3 - 1 .819078947371 ;:::: 0.08703 Therefore, x3 has an accuracy of 0.08703. 
Note: Problems 14.17-14.19 refer to the function f(x) = x2 - 3. 

1 4. 1 9  Calculate two iterations of Newton's method to estimate the root of/(x) , this time using a seed value of x1 = 2. Determine the accuracy of x3 • 

Substitute x1 = 2 into Newton's method. 

Now calculate x3 given x2 = 1 .75. 

! (Xi ) 
X2 = X1 - J' (x1 ) / (2) = 2 - /' (2) 1 = 2 - -= 1 .75 

J(x2 ) 
X3 = X2 - f' (x2 ) = 1 .75 - / (1 .75) f' (l .75) = 2 - 0.0625 3.5 = 1 .98214285714 Determine the accuracy of x3 by subtracting it from the actual root, ✓3 . 1"'3 - 1 .982142857141 ;:::: 0.25009 �------\ Typically, seed values closer to the actual roots produce more accurate approximations more quickly, but that is not always true. According to Problem 14.18, the seed value x1 = 4 more accurately predicts the root than the seed value 

x, = 3 from this problem, if two iterations of Newton's method are performed for both. 

Yov.'v e 
l ess +-l-'loi" o'1. e

+-e'1.i--l-\ oiwoiy .P v o""' 
+-l-'l e  oic+-v.oil v oo+
oi.P+-ev 0'1.ly +-wo 
i+-evoi+-io'1. s. 
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1 4 .20 How do you apply Newton's method to a function with multiple roots? 
If a function contains more than one root, approximate each separately, being careful to choose a seed value that is as close as possible to the root you are tracking each time. Note that .f(x) = i2- - 3, the function in Problems 14.17-14.19, has two roots : -✓3 and ✓3 . The seed values of x = 2 and x = 4 will, after multiple iterations, tend toward the root x = ✓3 . In order to approximate the negative root, you will need to choose a negative seed value, such as x1 = -2. 

1 4.2 1 What are the two most common reasons Newton's method fails to calculate a root? 
If the seed value x, is too far away from the root, Newton's method may fail to locate it; each iteration will produce values that are farther and farther apart (rather than closer and closer together, like in Problems 14. 17-14.19) . Newton's method cannot estimate non-real roots . If a function (such as 
h (x) = i2- + 3) does not intersect the x-axis, it has no real roots ; Newton's method cannot calculate imaginary roots. 

1 4 .22 Calculate x = � accurate to five decimal places .  
If you cube both sides of the equation and set it  equal to 0, you create a function g(x) whose root is � .  

x3 = (�)
3 

x3 = 21 x3 - 21 = 0 Because the root of g(x) = X' - 21 is the value you are seeking, apply Newton's method to determine a decimal approximation. You're not given a seed value, so you must choose an appropriate value for x,. Because � = 2 and � = 3 ,  � must be between 2 and 3. Furthermore, � will be closer to 3 than 2 (because 21 is closer to 27 than 8) . As such, x, = 3 is an appropriate seed value. 
g(3) 

X2 = 3 -
g' (3) 6 = 3 - -27 = 3 - 0.2 = 2.7 
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Repeat the process until two consecutive iterations produce equal values for the first 5 decimal places .  X3 = 2.75905185 . .  . 

X4 = 2.75892418 . .  . 
X5 = 2.75892417  . .  . Tl-.e 0t.Ci--L\0t.l V0t.lL\e o.P ffi is Because x1 and x5 have the required number of matching decimal places (in fact, 2 .7'>8''124 17G'38', so i\\ their first seven decimal places match) , � :::::: 2. 75892 according to Newton's O\\ly .Pol,\v ii--ev0t.i--iO\\S, method. �---------------------------J Newi--c,\\'s l,\\ef-1-.o.A 

1 4.23 The function g(0) = sin 30 - 2 cos 20 has two roots on the interval [0,3] , one approximately 0 = 0.5 radians and the other approximately 0 = 2.5  radians. Calculate both roots accurate to five decimal places. 
0t.lve0t..A y l-.0t..A ifviBl-.f- i--c, 8' .Aecil,\\0t.l pl0t.ces! 

l-\0t.\:.e You must apply Newton's method twice, once with a seed value of 01 = 0.5, and once with a seed value of 0, = 2 .5 .  Differentiate g(0) using the chain rule. SL\ve yoL\v ------------------! c0t.lcL\l0t.f-ov is sef- i\\ g' (0) = cos (30) · 3 - 2 (- sin20) · 2 
= 3cos 30 + 4sin 20 Calculate a sufficient number of iterations of Newton's method for each seed value (i.e., until the first five decimal places of consecutive iterations match) . 01 = 0.5 01 = 2.5 02 = 0.523227335 02 = 2.63258343 03 = 2.61814022 0 4 = 2.61799389 05 = 2.61799387 

The roots of g(0) = sin 30 - 2 cos 20 are approximately 0 = 0.52359 and 0 = 2 .61799. 
Note: Problems 14.24-14.25 refer to thefunction f (x) = -e✓x + 4. 

1 4.24 The graph off(x) intersects the x-axis only once, near x = 2. Calculate the root of 
.f(x) accurate to seven decimal places. 
Differentiate J(x). �-----------------------, f' (x) = -e✓x . !£ (x1 12 ) = -e✓x . ! x<1 12)-1 = -e✓x _ _  

l_ = - e✓x 

dx 2 2x112 2✓x 
-e✓x Apply Newton's method, given J (x) = -e✓x + 4 ,  f' (x) = ,- , and x, = 2. 2-vx 

X1 = 2 
X2 = 1 .92212473 X3 = 1 .92181206 
X4 = 1 .92181205 Therefore, the root of f (x) = -e✓x + 4 is approximately x = 1 .9218120. 

v0t..Ai0t.\\S tMo.Ae. l.e0t.ve ii-- i\\ v0t..Ai0t.\\S L\\\less 0t. pvo't>letM speci-fic0t.lly l,\\e\\i--io\\S .Ae8vees. 
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Tl,.e .PL\'1.cf-io" ""'Y [,..O\S COIN\plex v-oo+-s 
• becO\L\Se if- ,:::l.oes"'+-1 '1.f-ev-sec+- f-l,.e x -0\XIS 0\'1.)'wl,.ev-e. 

\N\e0\'1.S yov. Bet- ""e o.P t-l-\ese: O oo  o oo  o -, - , O •oo, O , l  , ov- oo . 0 00 

Note: Problems 14.24-14.25 refer to the function / (x) = -e✓x + 4. 1 4 .25 Repeat Problem 14.24 using a seed value of x1 = 1 to demonstrate that a seed value further away from the root requires additional iterations of Newton's method to reach the same degree of accuracy. 
Use f(x) and f' (x) from Problem 14.24, but set x1 = 1 .  

X1 = 1 
X2 = 1 .94303552 
X3 = 1 .92183480 
X4 = 1 .92181205 
X5 = 1 .92181205 An additional iteration, x5, is required to reach the same degree of accuracy as Problem 14.24 . 

1 4.26 Demonstrate that Newton's method fails to calculate the complex roots of 
y = x' - 2x2 + 2 by calculating the first six iterations of the seed value x1 = -2. 
Plug J(x) = x1 

- 2x2 + 2, f '  (x) = 4x3 - 4x, and x1 = -2 into the Newton's method formula. Calculate x2 through x7, as they represent the first six iterations. 
X1 = -2 
X2 = - 1 .583 
X3 = - 1 .2406166 
X4 = -0.75820114  
X5 = - 1 .6739696 
X6 = - 1 .3219531 
X7 = -0.92760393 The terms of the sequence {xi , x2 , x3 , x4 , x5 , x6 , x7 } increase and decrease but never approach any real number limit. Furthermore, the iterations do not estimate any of the function's roots more and more accurately, because the difference of consecutive iterations is not decreasing. '" l.'1-\opit-Oll's v-v.le pv-oble\N\S, yov.'11 v.Sv.O\lly see eit-l-\ev-

0 00 
- OY -
0 oo ·  L' Hopital 's Rule 

fi\\t:l. li1Mits tl-\"'-t l.\Set:l. ta be i1Mpcssible 

14  27 If 1. f (x) 1· f (x) 1· f (x) ( h . I b ) . .  d . • 1m -( ) , 1m -( ) , or 1m -( ) w ere c 1s a rea num er 1s 1n eterm1-
x➔00 g X x➔- oo g X x➔c g X nate, how do you apply L'Hopital's rule to calculate the limit? 
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According to L'Hopital's rule, if a rational function has an indeterminate limit, you can differentiate the numerator and denominator of the function without 1)o\\'t-
f ( ) !Ase t-1-.e altering the value of the limit. For example, if lim _(x) is indeterminate, then "'' ·ot-ie\\t- v1Ale! . J (x) . J' (x) x➔oo g x -•"' hm -- = hm -- �----------------------/ j 1Ast- t-oi.\:.e t-1-.e 

x➔OO g(x) x➔OO g' (x)
. J..evivoi.Eve 0� t-1-.e \\l,\1Mevoi.t-ov t-1-.e\\ 

1 4.28 According to Problem 10.18, lim x3 + 8 = 12. Use L'Hopital's rule to verify the solution. x➔- 2 x + 2 t-1-.e J..evivoi.t-ive o� t-1-.e J..e\\01Ml\\oi.t-ov
0 Substituting x = -2 into the rational function produces the indeterminate result O . . x3 + 8  (-2)3 + 8  - 8 + 8  0 hm -- �--- = --- = 

x➔- 2 x + 2  (-2) + 2  - 2 + 2  0 Apply L'Hopital's rule by differentiating the numerator and the denominator: 
d d - (x3 + 8) = 3x2 and -(x + 2) = 1 . Replace each expression with its derivative. 
dx dx x3 + 8  3x2 lim -- = lim - = lim 3x2 

x➔-2 X + 2 x➔-2 1 x➔-2 Substituting x = -2 no longer results in an indeterminate value. lim 3x2 = 3(- 2)2 = 3 (4) = 12 
x➔-2 L'Hopital's rule generates the same limit as Problem 10.18. 

4x5 - x2 

1 4.29 According to Problem 10.13, lim 2 = - 1. Use L'Hopital's rule to verify the 
solution. 

x➔o x 

Substituting x = 0 into the rational expression produces an indeterminate result. 
Apply L'Hopital's rule. 

4x5 - x2 lim 2 x➔O X 

4 (0)5 - (0)2 0 (0)2 0 
4 5 2 20 4 2 1. 

X - x  1. 
X - :X 1m 2 = 1m 

x➔O X x➔O 2x Unfortunately, substituting x = 0 into the new limit expression also produces an indeterminate answer. 20(0)4 - 2 (0) 0 2 (0) 0 There is no restriction on the number of times you may apply L'Hopital's rule, as long as the limit produces an indeterminate value each time. 
lim 20x4 - 2x = lim 80x3 - 2  = 80 (0)3 - 2  = -2  = - l 
x➔O 2x x➔O 2 2 2 This solution matches Problem 10.13. 

Si1Mple oi.s t-1-.oi.t-. 

PIL\s )'Ol,\ J..iJ..'1.'t-1,,.ewe t-o 1-.oi.ve t-1-.e 
\\ " SL\!,\\ o-r pev�ect-CL\bes'1 �oi.ct-ovi"B �Ovl,\\l,\)oi. l,\\el,\\oviz.eJ.. \i\:.e )'Ol,\ J..iJ.. i\\ Pvoblel,\\ I 0. 1 8'. 

2 1 9  
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Accov&l.i\\8 +-o +-l-\e v.\\ifcivcle i\\ Appe\\&l.i)C B, cos O == cos 2 -rr == I e>\\\&l. 
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x - 19 
1 4 .30  According to Problem 10.27, lim r-;-;: = - 10. Use L'Hopital's rule to verify 

.L x➔l9 5 - vx + 6  the solution. 
Substituting x = 19 into the rational expression produces an indeterminate result. x - 19 lim--== 

x➔I9 5 - -Jx + 6  19 - 19 5 - ✓19 + 6  0 5 - ✓25  0 
0 Apply L'Hopital's rule by differentiating the numerator and denominator separately. . x - 19 . 1 . hm--== = hm ------ = hm 

x➔l9 5 - -Jx + 6 x➔l9 1 ( 6)-1 /2 l x➔l9 \ = lim(-2-Jx + 6 ) 
x➔19 - - x +  . 2✓x + 6  Substitute x = 19 into the new limit expression. = - 2✓19 + 6 = - 2✓25 = - 2 (5) = - 10 The solution matches Problem 10.27. 

sin70 
1 4 .3 1 According to Problem 10.29, lim-0- = 7. Use L'Hopital's rule to verify the 

0➔0 solution. 
Substituting 0 = 0 into the rational expression produces an indeterminate result. lim sin 70 = sin (7 · 0) = sinO = Q 

0➔0 0 0 0 0 Apply L'Hopital's Rule ; use the chain rule to differentiate sin 70. 1. sin 70 1. cos (70) · 7 1. 7 70 1m -- = 1m---- = 1m cos 
0➔0 0 0➔0 1 0➔0 Substitute 0 = 0 into the limit expression. = 7 cos (7 · O) = 7 cosO = 7 (1) = 7 This matches the solution to Problem 10.29. 

5x2 - 9x + l  5 1 4 .32 According to Problem 9.25, lim 2 = - - . Use L'Hopital's rule to verify the solution. x➔oo 5 - 3x - 5x 6 
Substituting x = oo produces an indeterminate result. 
Apply L'H6pital's rule. 

. 5 ( 00 )2 - 9 . 00 + 1 00 hm��---- = -
x➔00 5 - 300 - 6 ( 00 )2 - 00 

1. 5x2 
- 9x + 1 1. lOx - 9 1m 2 = 1m 

x➔oo 5 - 3x - 6x x➔oo - 3 - 12x 
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00 Substituting x = oo still produces the indeterminate result - - , so apply L'Hopital's rule again. 00 

IOx - 9  IO 5 lim ---- = lim -- = - -x➔oo - 3 - 12x x➔oo - 12 6 This method is a much more mathematically satisfying technique than the process used to reach the same result in Problem 9.25, which simply presented the limit as a quotient of the leading coefficients of the numerator and denominator of the rational function. 
1 4.33  Evaluate lim 3x2 + Sx + 4  x➔-2 - 2 + x  

Substituting x = -2 does not produce an indeterminate result, so you cannot apply L'Hopital's rule. lim 3x2 + 8x + 4  = 3 (- 2)2 + 8 (- 2) + 4  = 12 - 16 + 4  = _Q__ = O  x➔-2 - 2 + x  -2 + (-2) - 4  - 4  
Therefore, lim 3x2 + Sx + 4 = 0 . x➔-2 - 2 + x  

1 4.34 Evaluate �i� [(x3 + 5x2 - 3x - 9) (e-ax )] . 

Substituting x = oo into the expression produces an indeterminate result. 
( 00

3 + 5oo2 - 300 - 9) (e-a•oo ) = ( 00 ) ( e: )  = 00 • 0 ,;:;-----Rewrite the expression as a quotient so you can apply L'Hopital's rule. x3 + 5x2 3x 9 lim[(x3 + 5x2 - 3x - 9) (e-a·x )J = lim a� 
-

x➔OO X➔OO e You'll have to apply L'Hopital's rule three times before the limit finally ceases to be indeterminate. x3 + 5x2 
- 3x - 9 3x2 + IOx - 3 lim a·x = lim a·x x➔oo e x➔oo a . e = lim 6x + IO x➔oo a . ( a . ea·x ) 

. 6 . 6 = hm --�-- = hm ---x➔"" a . a . (a . ea-x ) x➔oo a3 . ea·x Substitute x = oo into the expression. lim � = � = 0 
x➔oo a . e a . e Any fixed value divided by a number that increases without bound has a limit of 0. 

1vtc\c. qL\eSi--to�! '(oL\ coi.� o�ly L\Se \.'1-\opti--oi.l's vL\le t.P i--l-\e lt\k\ti-- tS t�&lei--ev""'t�oi.+-e, so t.P yoL\ jOi-- -4, yoL\ .Pell .Pov +-l-\e i--v-tc\c.. 
Becoi.L\se e +-o oi. jijoi.�+-ic powev is, oi.s )'OL\ INOL\l&l expec-1-: ve I I • • I O\ )' 8 180t.�hc, I &livid.e.A b �l-.0t.+- ji0t.�+- �L\IA-\bev y 

1s b0t.sic0t.lly o. ('See Pvoble"'"' 1 0.28' .Pov 
IA-\Ove expl0t.�0t.f-io�.) 
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1 4. 35  Evaluate lim x11x
_ 

x➔OO 

Substituting x = oo produces an indeterminate result. 
lim xl /x = 00

1 /oo = 00
0 If expressions in terms of x are raised to a powers in terms of x, it is often useful to employ natural logarithms to rewrite the exponential expression. Begin by setting the expression whose limit you are evaluating equal to y. 

Iimx1 1x = limy when y = x11x 

x-+oo x➔oo For the moment, manipulate only the y equation. Begin by taking the natural logarithm of both sides. 
In y = Inx11x According to a property of logarithms that states log a' = x log a, you can extricate the exponent from the logarithm and write it as the coefficient of the logarithmic expression. 1 ln x 

In y = - · Inx = -x X . h ln oo oo h Id I , A • I' I Notice t at lim In y = -- = - , so you s ou app y L Hop1ta s ru e. 
x➔oo 00 00 

In x l / x  I lim ln y = lim- = lim -- = lim - = 0  
x➔oo x➔oo X x➔oo I x➔oo X \------------Therefore, �i� In y = 0. Exponentiate both sides of this equation using the natural exponential function. lim ln y = 0  

x➔OO 

Iime1ny = e0 
x➔OO limy = l 

x➔oo Recall that y = x'1x. lim x11 x = 1 
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ADVANCED APPLICATIONS OF D I FFERENTIATION 

_ s+-i.\\" lAses .Pav- olev-i.vt'\+-i.ves \V'lC�Y blA+- l\\reve ,J 

ted with a variety of basic differentiation In Chapter 14, you were presen . . 1 a lications ,  each of which represented either an ext�ns1on o! a previous y 
k;,;,wn concept ( such as locating absolute versus relative maxima �nd minima) or a streamlined approach to solving problems (s�ch as �wton s d 1 t d L'Hopital's rule to calculate mdetermmate method to fin rea roo s an . . d limits) . In this chapter, you will explore uses o! th_e denvat1�e th:�:��:;e of b d Prl. or knowledge. Interpreting the derivative not on y as . eyon h t mque uses tangent line but as an instantaneous rate of c ange, presen s u 1 a ' · d h but the actua and applications concerning not only functions an grap s ,  mathematical modeling of physical phenomena. 
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The Mean Value and Rol le's Theorems 
Avevt:7\Be slcpes -:=- i\\Stt:7\\\t slcpes 

I S . I  Iff(x) is continuous and differentiable on the interval [a,b] and a <  c <  b, calculate the average rate of change of J(x) over [ a,b] and the instantaneous rate of change off(x) at x = c. 

1 5 .2 

The average rate of change of a function is the slope of the secant line connecting the function values at the endpoints of the interval. In this problem, the endpoints of the function on [a,b] are (aj(a) )  and (b,J(b) ) .  Use the formula to calculate the slope of a line given two points . Y2 - Yi f (b) - f (a) m = --- = x2 - x1 b - a The instantaneous rate of change at x = c is the slope of the tangent line to .f(x) at x = c: f ' ( c) . 
Explain the geometric implications of the mean value theorem. 
Given a function f(x) that is continuous on [a,b] and differentiable on (a,b) , the mean value theorem states that there is at least one value x = c between a and b f (b) - f (a) such that f' (c) = ----- .  According to Problem 15.1 ,  that means there is at b - a  least one x-value on the interval at which the tangent line is parallel to the secant line that connects the endpoints of the interval. 

1 5 .3  How many times does the function g(x) graphed in  Figure 15-1 satisfy the mean value theorem? 

-6 -5 -4 -3 -2 -1 6 Figure 15-1 A function g( x) that is continuous and differentiable on [-5,5}. 
Draw the secant line connecting the function values g(-5) and g( 5) , as illustrated by the dotted line in Figure 15-2. There are two values of x on the interval at which the tangent line to g(x) is parallel to the secant line. 
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-6 -5 -4 -3 -2 6 

Figure 15-2 The tangent lines to g(x) at points A and B are parallel to the secant line joining (-5,g(-5)) and (5,g(5)). 
1 5 .4 How many times does the function h (x) graphed in Figure 15-3 satisfy the mean value theorem on the interval [-6,6] ? 

Figure 15-3 A function h(x) that is continuous and differentiable on [-6, 6}. 

As illustrated by Figure 15-4, there are 4 values of x on the interval [-6,6] at which the tangent line to the function is parallel to the secant line connecting the function values h (-6) and h(6) . 
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Figure 15-4 At approximately x = -4. 6, -2. 75, 1.5, and 4.5, the tangent lines to h(x) are parallel to the dotted secant line connecting (-6,h(6)) and (6,h(6)). 
I 5 .5  At  what value (s) of  x does f(x) = x' - 2x2 - 4x + 1 satisfy the mean value theorem on the interval [0,1] ? 

According to the mean value theorem, there exists some value c between x = 0 and 
x = l such thatf '  (c) equals the average rate of change of J(x) over the interval [0,1] . 
Evaluate .f(l )  and .f(0) . f' (c) = f(b) - f (a) = J (l) - f(0) 

b - a  1 - 0  
- 4 - 1  -5  

f' (c) = -- = - = -5 1 - 0  1 Note thatf ' (x) = 3x2 - 4x - 4. 
f' (c) = -5 3c2 - 4c - 4 = - 5  Solve for c by setting the equation equal to 0 and factoring. 3c2 - 4c + l = 0  (3c - l) (c - 1) = 0  1 

c = - 1 
3 '  1 Therefore, the mean value theorem is satisfied at x = 3 but not at x = 1 ,  because the c-value must belong to the open interval (0,1 ) . 
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1 5 .6 At what value (s) of x does the continuous and differentiable function g(x) = ax' +  bx + c satisfy the mean value theorem on the interval [0,b] ? Assume that a, b, and c are nonzero real numbers . 
Use the method outlined in Problem 15.5-differentiate g(x) and set g ' (x) equal to the slope of the secant line connecting (0,g(0) )  to (b,g(b) ) .  

Solve for x. 

g' (x) = g (b) - g (O) 
b - 0  (ab2 + b2 + c) - (a · 02 + b · O + c) 

2ax + b = �---�-�----� 
b ab2 + b2 + 0  

2ax + b = ------
b 

2ax + b _ j{ (ab + b) 
-

j{ 
2ax + b = ab + b  

2ax = ab + ,/J4  
2ax = ab ,d · b 

x = --
2;i, 
b 

x = -

1 5 .7 A policeman clocks a commuter's speed at 50 mph as he enters a tunnel whose length is exactly 0.75 miles. A second officer measures the commuter's speed at 45 mph as he exits the tunnel 43 seconds later and tickets the driver for exceeding the posted speed limit of 50 mph. Use the mean value theorem to justify the speeding charge levied by the officer, even though the driver was neither exceeding the posted speed limit while entering nor while exiting the tunnel. 
Determine the average speed of the driver. 

d = r · t  �----� The distance traveled is the length of the tunnel ( d = 0.75 miles) , and it took the driver 43 seconds to travel that distance. Convert t = 43 seconds into a consistent unit of measurement and substitute d and t into the distance formula. 0.75 = r (�) 3600 Solve the equation for r, the driver's average rate of speed, in miles per hour. 
(3:�o ) <o .75) = r 62.791 :::::: r 
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t-op speeJ.. i" t-l-\e rlA\\\\el \NO\S pv-obe>1.bly IM!Acl-\ .Pe>1.st-ev- t-l-\e>1.\\ C.2 .7 tMpk '(o!A \:.\\ow l-\e we>1.s J..v-ivi\\j slowev- t-l-\e>1.\\ t-l-\e>1.t- e>1.t- +-l-\e beji""i"B e>1.\\J.. e\\J.. o.P +-l-\e rlA\\\\el, so ke tMIASt- l-\e>1.ve e>1.lso J..v-ive\\ pv-et-t-y .Pe>1.sti'1.siJ..e t-l-\eve t-o je+- S!Acl-\ e>1. l-\ijl-\ 

A"J.. i.P .P'(c) = 0 H"e" c is 0\ �it-ice>1.I '1.IAtMbev- 0.p .P'(x), OI.\\J.. +-keve.Pove -P<x) 1Me>1.y ke>1.ve 0\ v-ele>1.t-ive 1Me>1.x ov- e>1. v-ele>1.t-ive tMi\\ Ol.f- X = C. 

If the driver's average rate of change is 62 .791 mph, then (according to the mean value theorem) the driver's actual (instantaneous) speed was 62 .791 mph at least once inside the tunnel, which violates the posted speed limit. 
I 5 .8 Describe the difference between the mean value theorem and Rolle 's theorem. 

Both theorems guarantee the existence of a value c on a function f(x) that's continuous on [a,b] and differentiable on (a,b) such that a <  c <  b. Furthermore , 
l (b) - l (a) both guarantee that f' ( c) = �-�--. However, Rolle s theorem has one b - a  additional requirement: .f( a) = .f( b). When x = a and x = b have equivalent function values, the slope of the secant line connecting (a, f(a) )  and (b, .f(b) ) is -b O = 0, 

- a  so j ' (c) must equal 0 somewhere on (a,b). 

I 5 .  9 Find the smallest positive value of b such that you can apply Rolle's theorem to 
g(x) = x sin x on the interval [0 ,b] ? 

In order to apply Rolle 's theorem to g(x) , you must determine the value of x = b such that g(0) = g(b) . Because g(0) = (0) (sin 0 )  = 0, set g(b) = 0 and solve . g (b) = 0  
b sinb = 0 The expression on the left side of the equation is a product, so set each factor equal to 0 and solve . b = 0 or sin b = 0 e>1. posit-ive ov- e>1. \\eje>1.t-ive \\IAIMbev-. lt-'s \\e1Ahe>1.l li\:.e '5wi+-z.ev-le>1.\\J..-

\---------------------=.b_=�k:�n:, k is an integer 

o\\ly v-01A\\J..ev-. 
Tkese coe-P..ficie'1.+-s e>1.ve v-iJ..ic1Alo1As blAt- +-ke>1.+-'s be;e>1.L\se +-key J..o"'+- INe>1.\\tyoL\ hyi"B t-c, jv-e>1.pl--\ +-kis by ke>1.\\J.. ov- +-o J..o +-' · •  e>1.\\y V\1"8 besiJ..es Rolle's +-keovetM. 
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You are asked to identify the smallest positive value of b, which corresponds to the smallest positive value of k, k = I .  Therefore , b = l · :n: = :n:. 
1 5 . 1 0  Verify that.f(x) = 40x1 + 22x3 - 91:x" - 58x + 15 has at least one horizontal tangent line on the interval [- � .!.] . 4 ' 5  

The endpoints of the given interval are also roots ofl(x) , as 1(-¾) = 1(¼) = 0. 
1(-�) = 3125 _ 1375 _ 2275 + 145 + 15 4 32 32 16  2 l (.!.) = � + � _ 91 _ 58 + 15 5 125 125 25 5 3125 - 1375 - 2275 (2) + 145 (16) + 15 (32) 8 + 22 - 91 (5) - 58 (25) + 15 (125) = = 32 125 0 = - = 0  0 = - = 0  32 125 
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Because 1(-¾) = 1(¼) = 0 , then f' (c) = 0 for some value c between -¾ and ¼ according to Rolle's theorem. 
Recti l inear Motion 
Pcsitic\\, ve\ccity, O\\\.:A 01.cce\ev01.tiC\\ .Pv.\\ctic\\S 

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 
feet above the ground with an initial velocity of 100 ft/sec. For the sake of simplicity, discount 
the effect of wind resistance on the baseball. I 5 . 1 1 Construct a function that models the height of the baseball, in feet, at t seconds. 

The path of a projectile t seconds after its launch is modeled by the position equation s (t) = - � t2 + v0 • t + ho, where a is acceleration due to gravity, v0 is the initial velocity, and h0 is the initial height. Note that a is a constant value, 32 ft/ sec2 , and the rest of the values are explicitly defined by the problem: v0 = 100 and h0 = 5.  
a 

s (t) = -2 t2 + v0 · t + ho  - 32 s (t) = - t2 + 100 · t + 5 2 
s (t) = - 16t2 + lO0t + 5 

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 
5 feet above the ground with an initial velocity of 100 ft/sec. I 5 . 1 2  How high is the baseball exactly one second after it is thrown? ------

The moment the baseball is thrown is considered t = 0 seconds. Given s ( t) as defined in Problem 15 .11 ,  s ( l )  is the height of the baseball one second after it is thrown. s (l) = - 16 (1)2 + 100 (1) + 5 = - 16 + 105 
= 89 feet above the ground 
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Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 
feet above the ground with an initial velocity of 100 ft/sec. I 5 . 1 3  What is the velocity of the baseball at t = l ?  

The velocity i s  the rate at which the position of  the projectile changes. Thus, the derivative of s ( t) ,  s' ( t) = -32t + 100 represents the baseball's velocity t seconds after it is thrown. Evaluate s' ( 1 )  to determine the velocity of the baseball at t = I .  
s' ( t) = -32 (1)  + 100  = 68  ft/sec 

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 
feet above the ground with an initial velocity of 100 ft/sec. 1 5  . 1 4  What is the acceleration of the baseball at t = 1?  

The acceleration of an object is the rate at which its velocity changes. Therefore, the derivative of the velocity function is the acceleration function: a (t) = v' ( t) (and the second derivative of the position function: a ( t) = s" ( t) ). Notice that 
a (t) = -32 ft/sec2 ; the only acceleration of the baseball is the acceleration due to ---� gravity. 

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 
feet above the ground with an initial velocity of 100 ft/sec. 1 5 . 1 5  When will the baseball hit the ground? (Provide an answer in seconds that is accurate to four decimal places.) 

The baseball hits the ground when its height, s ( t) ,  equals 0. Set s ( t) = 0 and solve using the quadratic formula. - 16t2 + 100t + 5 = 0  - 100 ± .j10000 - 4 (- 1 6) (5) t = ---�-------2 (- 1 6) Use a calculator to evaluate the expression: t = -0.049606 or 6.299606. Discard � the negative answer and round to the correct number of decimal places .  The baseball hits the ground approximately 6.2996 seconds after it is thrown. 
Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 
feet above the ground with an initial velocity of 100 ft/sec. 1 5 . 1 6  When does the baseball reach its maximum height? 

The maximum height of the baseball is also the relative maximum of the function 
s (  t) . To determine the location of the relative maximum, find the critical number 
of s' ( t). 
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s' (t) = - 32t + 100 0 = - 32t + l00 - 100 = - 32t 100 25 t = - = -32 8 
Note that the critical number t = � produces a relative maximum according to the second derivative test. Therefore, the baseball reaches its maximum height 25 
t = 8 = 3. 125 seconds after it is thrown. 

Note: Problems 15.11-15.17 refer to the path of a baseball thrown from an initial height of 5 
feet above the ground with an initial velocity of 100 ft/sec. I 5 . 1 7  Assuming the baseball is thrown straight up, what is the maximum height it will reach? 

According to Problem 15.16, the baseball reaches its maximum height at t = 3.125 seconds. To determine the height of the ball at that moment, evaluate s(3 .125) . s (3 .125) = -16 (3.125) 2 + 100 (3.125) + 5 = 161.25 feet above ground 
Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along 
the x-axis. The position of the particle ( in inches) after t seconds is given by the equation 
s(t) = cos (ln (t + 0.5)) . Use a graphing calculator to solve equations and evaluate 
derivatives as necessary in these problems. Assume that all angles are measured in radians. 1 5 . 1 8  Construct the velocity function, v ( t) ,  of the particle and use it to determine the particle's speed at t = 3 seconds. Provide an answer accurate to three decimal places .  

The velocity function, v ( t) , of the particle is the derivative of its position function, 
s ( t). 1 sin (ln (t + 0.5)) 

s' (t) = v (t) = - sin (ln (t + 0.5)) · -- = - -----
t + 0.5 t + 0.5 Evaluate v(3)  to determine the velocity at t = 3. v' (3) = sin (ln 3.5) ::::: -0.271386 3.5 Therefore, the particle is traveling at a speed of approximately 0.271 inches/ second. The negative sign is omitted when measuring speed; it merely indicates that the particle is traveling in a negative direction (in this case to the left) . 

Bece>1.1ASe s11(+-) ==- -'32, +-1-\e seco\\� �evive>1.+-ive is \\eBe>1.+-ive \\O \N\e>1.+-+-ev wl-\e>1.+- +- is. Accov�i\\8 +-o Pvo't,le\N\ 1'3.2'1, +-l-\e>1.+\N\e>1.\:.es +-1-\e cvi+-ice>1.l \\IA\N\'t>ev °'- vele>1.+-ive \N\e>1.,ci\N\1A\N\. 

Vse +-�e C�Ol.i\\ vl,\le +-o .fi\\� +-�e �evive>1.+-ive. Di.P.Peve\\+-ie>1.+-e cosi\\e +-o Be+- -si\\e, lee>1.Vi\\8 +-�e i\\\\ev .PL\\\Ct""iO\\ I\\ (+- + 0. s:) e>1.lo\\e, IA-\lAl+-iply by +-�e -Aevive>1.+-ive 0.p I\\ (+- + 5), w�ic� is 1/(+- + . S'), OI.\\.A +-�e\\ IA-\L\l+-iply by +-�e -Aevivoi+-ive o.P (+- + . $), w�ic� is jl-\s+- I . 

Spee.A is +-�e e>1.bsoll,\+-e Ve>1.l-1Ae o.P veloci+-y-i+-'s oilwoiys posi+-ive. 
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Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along the 
x-axis whose position, in inches, at t seconds is given by the equation s(t) = cos (ln (t + 0.5)) . I 5 . 1 9  Calculate the particle's acceleration at t = 6. Provide an answer accurate to four decimal places. 

The acceleration function of the particle is the derivative of the velocity function generated in Problem 15.18. Use the quotient rule to differentiate v ( t) ,  and notice that the chain rule is required to differentiate the numerator. 
a (t) = !!_ ( 

sin (ln (t + 0.5)) ) 
dt t + 0.5 

(t + 0.5) (cos (ln (t + 0.5)) • (-1 -)) - sin (ln (t + 0.5)) 
a (t) = - t + 0.5 

(t + 0.5)2 

Evaluate t = 6. (6.5) ( cos (ln 6.5) · ( �) ) - sin (ln 6.5) a (6) = -
( )

2 z 0.0296218  6.5 Therefore, the particle is accelerating at a rate of 0.0296 in/sec2 when t = 6. 
Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along the 
x-axis whose position, in inches, at t seconds is given by the equation s(t) = cos (ln (t + 0.5)) . 1 5 .20 How many times does the particle change direction (assuming t > 0 ) ?  

The particle changes direction whenever its velocity changes from positive to negative or vice versa. Notice that 2 is a critical number of v(t) because sin(ln (t + 0.5)) 
-�t-+

-
0-_5

-� equals 0 at that t-value. 
The graph of v ( t) is above the x-axis, and therefore positive, when t < 2 ; v ( t) 

I I then crosses the x-axis only once, at t = - , so v' ( t) < 0 when t > - . Therefore, the 12 2 particle changes direction once, at t = - . 
2 

Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along the 
x-axis whose position, in inches, at t seconds is given by the equation s(t) = cos (ln t + 0.5)) . I 5 .2 1 When is the particle moving left? 

The particle is moving left when v ( t) < 0. According to Problem 15.20, v ( t) < 0 on the interval (½ , oo) . Therefore, the particle travels left when t > ½ .  
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Note: Problems 15.18-15.22 refer to the path of a particle traveling right and left along the 
x-axis whose position, in inches, at t seconds is gfoen by the equation s(t) = cos (ln (t + 0.5)) . I 5.22 What is the total distance traveled by the particle from t = 0 seconds to t = 5 seconds? Provide an answer accurate to three decimal places . 

Determine the position of the particle when t = 0 and when t = 5.  s (0) = cos (ln0.5) "" 0.7692389 s (5) = cos (ln 5.5) "" -0. 1335515 You must also find the position of the particle wherever its direction changes. According to Problem 15.20, the particle changes direction at t = 0.5 .  

Yo11,. ce>1.\\"t-j11,.sts11,.btve>1.ct- t-l-\ese \\IAIMbev-s °'-\\� se>1.y t-l-\e pe>1.v-t-icle tve>1.vele� 1-0. l'>'>S-S-I s- -0.7,"12'38'"1 1  � 0."1021"104 i\\cl-\es. 1l-\e>1.t-'s t-l-\e t-ot-e>1.l 1) 1-SPLACEl'-\EN-r bet-wee\\ it-s st-e>1.v-t-i\\8 s(0 .5)  = cos (ln 1 )  = cos 0 = 1 �----------'I OI.\\� e\\�i\\B poi\\t-S blAt-From t = 0 to t = 0.5 the particle travels right, from 0.7692389 units right of the origin to I unit right of the origin. Calculate the absolute value of the difference between those positions to find the distance the particle travels during that half second. II - 0.76923891 = l- 0.23076111 = 0.2307611  From t = 0 .5  to t = 5 the particle travels left, from I one unit right of  the origin to a position of -0.1335515, which is 0.1335515 units left of the origin. Find the absolute value of the difference between those positions to find the total distance the particle travels from t = 0.5 to t = 5 seconds. l-0. 1335515 - II = l- 1 . 1 3355151 = 1 . 1 335515 Sum the individual distances to calculate the total distance traveled. 0.2307611  + 1 . 1 335515 = 1 .3643126 The particle travels approximately 1 .364 inches during the first 5 seconds. 
Related Rates 

fi8l.\ve cl.\t l-\cw ql.\ic\dy tl-\e V01.vi01.'t>les CV\"'-\\8e t\\ "' .Pl.\\\ctic\\ 

1 5  .23 A particle travels from left to right along the graph of y = :i3 e'. Assuming its vertical rate of change is dy = 7 ft/ sec when x = 1, what is its horizontal rate of 
dt change at that moment? 

Take the derivative of the equation with respect to t using the product rule. 
dy 

( 
2 dx

) 
x 3 ( x dx

) dt 
= 3x · dt e + x e · dt 

dy = dx 
( 3xV + x3 

e
x ) 

dt dt 

\\Ot- \\ecesse>1.v-ily l-\ow 
�O\Y it- e>1.ct-11,.e>1.lly tve>1.veleA 

Tl-\e -Aev-ive>1.t-ive o� x1- wit-l-\ v-espect- t-o x is 2x, b11,.t- t-l-\e -Aev-ive>1.i-ive o� x'- wit-l-\ v-espect- t-o t- is .Ax 2x • .At . Yol-\ l-\e>1.ve to L\Se t-l-\e cl-\e>1.i\\ v-l,\le, OI.\\.A wl-\e\\ )'OL\ t-e>1.ke t-l-\e -Aev-ive>1.t-ive o� x, t-l-\e �L\\\ct-io\\ 1'i\\si.Ae" x'-' it- is\\'t- I °'-\\)'IMov-e-'t-' .A,c l S ,At, • 
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Wl-.e\\ ci vcill-\e is DECREASING, ii-·s v-cit-e o.P cl--.ci\\Be is NEGATIVE, so ""-s/""-t- = -0. 1 2, \\Or 0. 1 2, ct\\""- ""-V/,:::1.t- will be \\eBcit-ive cis well. 

'5i,:::l.e le"'Bt-l-. e>1. Ci"' fiBL\v-e \ 5-s) is t-l-.e ,:::l.ist-e>1.\\ce he>1.vele,A by 1-\i\c.ev A, e>1.\\""- b is t-l-.e ,:::l.ist-e>1.\\ce he>1.vele,A by 1-\i\c.ev- B. 
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According to the problem, dy = 7 when x = l .  Substitute those values into the dx dt equation and solve for -, the horizontal rate of change. dt 7 = �; (3 (1)2 e1 + (1)3 e1
) dx 7 = - (3e + e) dt 7 dx - ft/sec = -4e dt 

1 5 .24 A bouillon cube with side length 0.8 cm is placed into boiling water. Assuming it roughly resembles a cube as it dissolves, at approximately what rate is its volume changing when its side length is 0.25 cm and is decreasing at a rate of 0.12 cm/ sec? 
The volume of a cube with side s is V = s'. Differentiate this equation with respect 

V = s3 dV = 3s2 • ds dt dt ds You are given s =  0.25 and - = -0 .12. Substitute these values into the equation 
L dV dt and solve for - . dt dV = 3(0.25)2 · (-0. 12) = -0.0225 cm3 / sec dt Thus, the volume is decreasing at a rate of 0.0225 cm3/sec. 

1 5 .25 Two hikers begin at the same location and travel in perpendicular directions. Hiker A travels due north at a rate of 5 miles per hour; Hiker B travels due west at a rate of 8 miles per hour. At what rate is the distance between the hikers changing 3 hours into the hike? 
Figure 15-5 shows the positions of the hikers after three hours of traveling. Hiker A has traveled 5 mph for three hours, totaling 15 miles; Hiker B has traveled 8 mph for three hours, for a total of 24 miles. Apply the Pythagorean theorem to determine the distance between the hikers three hours into the hike (represented by the hypotenuse of the right triangle in Figure 15-5 ) .  
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a2 + b2 = d2 
152 + 242 = d2 

✓801-
= d

fl r;:;;:; d = 3✓f39 3vc� 
= d  

A 

B �-------------� 

a =  15 

b =  24 \ 
'-./ starting point 

Figure 15-5 After three hours, the distance d between the hikers is JJ'ii9, according to the Pythagorean theorem. 
Because the hikers and the point from which they began walking create a right triangle, use the Pythagorean theorem to describe the relationship between the distances a, b, and d in Figure 15-5, and differentiate the equation with respect 
to t. da db dd 2a · - + 2b · - = 2d · -dt dt dt da db You are given - = 5 and - = 8. Substitute those values, and the values of a, b, 

� � dd and d from Figure 15-5, into the equation and solve for - . �-------
L dt 2 (15) · 5 + 2 (24) · 8 = 2 (  3✓89) · �� 

534 = 6✓89 · dd dt 

Not-lee t-l'\o,.t- yo!A .Ao\\'+- pl 1A8 e>1.\\Y BlVe\\ l\\.POv-1.M.Ol.rlO\\ i\\t-o t-l"le .Pov-1.M.1Ale>1. IA\\Hl AF--rER yo!A t-o,.\:.e t-l"le 

"lot-l"li\\8 dd dt = IA'\o,.Bico,.I l'\o,.ppe\\e.A --------------1 +-o Be+- +-l"lis \\IAIA'\bev-dd 89 - = ,,:;;:; = ✓89 :::::: 9.434 miles/hour dt "89 
1 5 .26 A 20-foot extension ladder propped up against the side of a house is not properly secured, causing the bottom of the ladder to slide away from the house at a constant rate of 2 ft/sec. How quickly is the top of the ladder falling at the exact moment the base of the ladder is 12 feet away from the house? 

As illustrated in Figure 15-6, the ladder, ground, and house form a right triangle. While the length of the ladder remains fixed, ou can calculate h when g = 12 using the Pythagorean theorem. 

s-34 .Aivi.Ae.A by G is '?'i. 

1V.e>1.t-
lA'\ee>1.\\S J-1/.At- -:= 0. "Tv.e le\\Bt-l"I o.P t-l"le lo,..A.Aev- J-oes \tot�-----------\. cv.e>1.\\Be, so it- ""'o,.\:.es se\\se t-l'\o,.t- it-s 
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h =  16  
h2 + g2 = z2 h2 + 122 = 202 

h2 = 256 
h = I6 

Figure 15-6 The ladder is side l, h is the distance from the top of the ladder 
to the ground, and g is the distancefrom the house to the 
bottom of the ladder. 

Use the Pythagorean Theorem to express the relationship between h, g, and l, and differentiate the equation with respect to t. h2 + g2 = l2 
dh dg dl 2h · - + 2g · - = 2l · -
dt dt dt Substitute the known rates of change. Note that dg is positive; as the ladder 

0 dt slides away from the house, the length g in Figure 15-6 is increasing, and increasing quantities have positive rates of change. 2 (16) · dh + 2 (12) (2) = 2 (20)(0) 
dt 

dh 32 - + 48 = 0 
dt 

dh 32 - = - 48 
dt 
dh 48 3 - = - - = - - ft/sec 
dt 32 2 The ladder slides down the house at a rate of -1 .5  ft/sec. 

I 5 .27 Water stored in an inverted right circular cone, as illustrated in Figure 15-7, leaks out at a constant rate of 2 gallons per day. Assumjdg the tank is 100 feet high and the radius of its base is 25 feet, at what rate - is the depth of the water 
dt inside the tank decreasing at the moment it is 40 feet deep? 
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25 ft 

100 ft 

40 ft 

Figure 15-7 The dimensions ofa leaky water tank. 
The volume of a right circular cone is described by the formula V = ½ nr2h. Let h represent the height of the tank, d represent the depth of the water, R represent the radius of the tank's base, and r represent the radius of the water's surface (as dV illustrated by Figure 15-8) . You are given h = 100, d = 40, R = 25, - = - 2, a dd L dt asked to find -. dt 

h =  100 

Figure 15-8 A cross-section of the conical tank from Figure 15-7. dr No information is given about - , so it (and therefore r) must be eliminated from 
L dt the problem-only one unknown can be left in the final equation or else you will be unable to solve it. Because the isosceles triangles in Figure 15-8 are similar, 
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you can set up a proportion relating the heights and the radii o f  the tank and the water it holds. Solve this proportion for r. 100 d = 25 r 
IO0r = 25d 

d r = -Substitute this value of r into the volume formula to eliminate it from the equation. Note that the formula describes the volume of the water, not the tank; Figure 15-8 uses d to describe the depth of the water ( not h) . 1 
V = - nr2d 3 

Differentiate with respect to t, substitute the known values into the formula, and 
dd solve for - . 
dt 

dV = .!!_(3d2 • dd
) 

dt 48 dt �----� 
n 

( 2 dd
) -2 = 48 3 · 40 . 

dt _2 = 4800n . dd 48 dt _2 (_1 
)

_ dd 
IO0n dt 

I dd 
50n dt So the depth of the water in the tank is decreasing at a rate of -1- ""' 0.0064 ft/ 

L 50n day. 
1 5 .28 A camera exactly one mile away from the Space Shuttle's launch site tracks the ascent of the spacecraft for a network news program. At what rate is the camera's angle of elevation increasing in order to maintain its focus on the shuttle 30 seconds into the launch, once the shuttle has reached a height of 9,720 feet and is traveling 700 ft/sec? Report your answer in radians per second accurate to four decimal places .  

Figure 15-9 summarizes the important information from the problem and verifies that a right triangle aptly illustrates the geometric relationship between the variables .  
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s 

h = 9,720 ft 

Figure 15-9 The Space Shuttle S, the camera C, and the launch pad serve as the vertices of a right triangle. The height h of the shuttle varies over time, but the camera remains a fixed distance d from the launch pad. The angle of elevation of the camera is 0. 
Unlike Problems 15. 25 and 15. 26, the Pythagorean Theorem is not a good choice 
of equation, because it does not include 0, the variable whose rate of change you 
are directed to calculate. Therefore, you should apply the tangent trigonometric 
ratio, as you are given the lengths of the sides opposite and adjacent to 0. 

h 
tan 0 = --

5, 280 

Because d is constant throughout the launch, its value is used in the equation, but 
h and 0 vary at different times t throughout the launch, so they are expressed as 
variables. Differentiate this equation with respect to t. 

2 d0 1 dh 
sec 0 • - = -- • -dt 5, 280 dt dh 

You are given dt = 700 . Calculate tan 0 exactly 30 seconds into the flight. 

tan 0 = 
9, 720 

5, 280 

0 = arctan --(
9, 720 ) 
5, 280 

0 "" 1 .073181 2 
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Substitute all known values into the equation you differentiated with respect to t d0 and solve for - . 
dt 

Optimization 

d0 1 sec2 (1 .0731812) · - = -- (700) 
dt 5,280 d0 700 4.38894628 · - = -
dt 5, 280 d0 700 1 - = -- • -----
dt 5, 280 4.38894628 d0 - = 0.0302 radians/sec 
dt 

Fi.\\ol.. +-l--'\e bi.BBes+- ov StMC\.lles+- VC\.lv.es o.P C\. .Pv.\\c+-i.o\\ 

1 5 .29 Calculate the smallest possible product of two numbers, if one is exactly 9 greater than the other. 
Let x equal one of the numbers and x + 9 equal the other. You are asked to optimize the product, so you should optimize the function p(x) = x(x + 9) = x2 + 9x. To optimize p(x) ,  find its critical number(s) and determine whether each represents a relative extrema point. 

p (x) = x2 + 9x 
p' (x) = 2x + 9  0 = 2x + 9  9 - - = x 

Note that p" (x) > 0 for all x, so (according to the second derivative test) this critical number gives the relative minim9um requested by the problem. One of the numbers in the minimum product is -2 , and the other is exactly 9 greater. 9 9 18 9 - - + 9 = - - + - = -2 2 2 2 
9 9 The two numbers with the minimum product are - - and - ; the minimum product is (-U(!) = - �1 . 2 2 

1 5 .30  The ACME company has begun selling an MP3 player called the FooPod at a price of $200 - 0.05x, where x is the number of FooPods ACME produces each day. The parts and labor cost for each FooPod is $140, and marketing and operational costs amount to an additional $9,500 per day. Approximately how many FooPods should ACME produce and sell each day to maximize profit? 
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The total profit generated by an item is defined as the revenue minus the manufacturing cost: p (x) = r(x) - c(x) . The revenue function is equal to the number of units sold each day multiplied by the price : r(x) = x(200 - 0.05x) . Create the function c(x) representing total cost per day: c (x) = 140x + 9,500. Substitute r(x) and c(x) into the profit function. 
p (x) = r (x) - c (x) = x (200 - 0.05x) - (140x + 9, 500) = -0.05x2 + 200x - 140x - 9, 500 = -0.05x2 + 60x - 9,500 Differentiate p(x) and identify critical numbers . 

p' (x) = -0 .lx + 60 0 = -0.lx + 60 60 
x = -0. 1 Apply the second derivative test. Because p" (x) < 0 for all real numbers, p (x) has a relative maximum at x = 600. Therefore, ACME should attempt to manufacture and sell approximately 600 FooPods a day in order to maximize profit. 

1 5 .3 1 What are the dimensions of the largest rectangle that can be inscribed in the ellipse i2 + 4y2 = 16? Report each dimension accurate to three decimal places .  
Solve the equation of the ellipse for y to express the conic section as a pair of functions. x2 + 4y2 = 16 4y2 = 16 - x2 16 - x2 

Ee>1.ct,., 
Fc,oPod. 

cost-s $ 140 t-o 
""'°'-\:. e, so \k\L\lt-'iply 
I 40 by t-l,,,e t-o t-e>1.l 

\\L\\k\b ev- x t-l,,,ey ""'°'-\:. e  
pev- d.e>1.y Ol.\\d. e>1.d.d. 
t-l,,,e -fixed. cost- pev-
d.e>1.y: $"1 ,S-00. 

°'-\\.A j L\S t- L\S e  t-l,,, e 
posit-ive v-e>1.d. ice>1.I. 
o t-l,,, ev-wise, Wx) is\\'t
°'- .PL\\\ct-io\\. Tl,,, is we>1.v 

I • /I y2 = ---
4 y = ±✓16 � x2 

yoL\v-e JL\S t- .A ee>1.l i\\B 
wit-l,,, t-l,,, e t-op l,,,e>1.l.P o.P 
t-l,,, e ell ip se, bL\t- yoL\ '1 1 
s+-il l B et- t-l,,, e v- iBl,,,t

✓16 - x2 

y = ± 2 For any x, f (x) = � is the corresponding y-value on the of ellipse in either the first or second quadrant. 
The area of a rectangle is the product of its length and width, so optimize the area function A(x) = l X w. To determine the values of l and w, consider Figure 15-10, where the ellipse i2 + 4y2 = 16 is graphed, and a sample rectangle is inscribed within. If you must travel x units right and /(x) units up to reach the corner indicated, then 2x and 2/(x) represent the length and width of the rectangle. � 

°'-\\S wev-. 
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5 

3 ( �) � (,, f (x)) - • •  2 
J( x) 

-5 

-3 

-5 

Figure 15-10 A rectangle inscribed in the ellipse x2 + 4y2 = 16. 
Substitute l and w into A(x) . 

Differentiate A(x) . 

A (x) = l · w  
= 2x · 2f (x) 

- 2x t(7] 
= 2x✓l6 - x2 

A' (x) = f.x ·  1 (16 - x2 (12 · (- 2x) + ✓l6 - x2 · 2 

� + 2✓1 6 - x2 

- 2x2 + 2 ( 16 - x2 ) = -------✓16 - x2 

- 4x2 + 32 

✓16 - x2 

The critical numbers of A'(x) are the x-values that cause either the numerator or 
the denominator to equal 0. 

- 4x2 + 32 = 0  

- 4x2 = - 32 

x2 = 8 
x = ± 2✓2 

✓16 - x2 = O 

16 - x2 = 0 
x = ± 4 

Because A'(x) changes from positive to negative at x = 2✓2
, the value represents a 

relative maximum. Calculate the dimensions of the rectangle when x = 2✓2 . 
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l = 2x = 2 (2✓2 ) = 4✓2 

The dimensions of the largest inscribed rectangle are 2✓2 and 4✓2 . 
I 5 .32 A farmer wishes to fence in a rectangular pasture on a 3,750 ft2 piece of riverfront property. He also plans to separate the pasture into four regions, as illustrated by Figure 15-11 . What is the least amount of fence (in feet) he will need to purchase, assuming that he will not erect a fence along the river? 

X 

y 

X 

Figure 15-11 The pasture has width x and length y. The total amount offence required is 3x + 2y. 

Three sections of fence measuring x feet long are needed-one for the northern border, one for the southern, and one between those boundaries .  Two lengths of fence measuring y feet are also required-one for the western border and one between that border and the river. In all, the farmer will need f(x) = 3x + 2y feet of fencing material. However, you cannot optimize f(x) without first replacing one of its variables .  Because you know the area of the field, set up an equation representing that value and solve it for y. Area = (length) (width) 
A = yx 3,750 = yx 3, 750 -- = y 

Be.Pov-e )'OL\ +-oike +-he -Aev-ivoi+-ive 0.p oi -PL\\\c+-io\\ +-o -fi\\.A i+-s cv-i+-icoil \\L\1Mbev-s, +-he .PL\\\c+-io\\ hois +-o be i \\ +-ev-lMs o.P O\\e Voiv-ioible I+- coL\l.A hoive oil l  x's . ov- oil l  y's bl.\+- \\o+bo+-k 
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Tu e 
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Substitute this value into J(x) to eliminate y from the function. 
f (x) = 3x + 2y ( 3, 750 ) f (x) = 3x + 2 -

x
-

J (x) = 3x + 7, 500x- 1 Differentiate J(x) and identify its critical number(s) . 
f' (x) = 3 - 7, 500x-2 

0 = 3 - 7, 500 
x2 7, 500 = 3 

x2 3x2 = 7, 500 x2 = 2, 500 Because x must be a positive number, you don't have to indicate " ± "  when you take the square root of both sides of the equation. x = .J2, 500 = 50 feet " ( ) 2 (7, 500) 15, 000 h d d . . . - - fi II 0 Because f x = 3 = --3- , t e secon envat1ve 1s pos1t1ve or a x > , 
X X which verifies that x = 50 corresponds to a relative minimum off(x) (according to the second derivative test) . Evaluate J(x) to determine the total amount of fence needed. 

f (x) = 3x + 7, 500x- 1 
f (50) = 3 (50) + 7• 500 50 
f (50) = 150 + 150 
f (50) = 300 The farmer needs a minimum of 300 feet of fence-50 feet for each horizontal section and 75 feet for each vertical section. 

1 5 .33  An open box with depth x can be created from a rectangular sheet of cardboard by cutting squares of side x from its corners, as illustrated by Figure 15-12 .  

30 
X 

What is the largest volume of such a box given cardboard that measures 20 x 30 inches? Report your solution accurate to three decimal places. 
· - - - -

• Figure 15-12 
>-----I 

X , - - - -x: 

When the squares of side x are cut.from 
the corners of the sheet of cardboard, they 
leave behind rectangles along the sides. 
Fold those rectangles up to construct an 
open box. 

20 
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The volume function for a right rectangular prism is v (x) = l X w X h. Note that 
the length of the box is 30 - 2x, because the cardboard originally measured 30 
inches but you remove x inches from each end when the squares cut out. Similarly, 
the width of the box is 20 - 2x inches .  Substitute the dimensions of the box into 
the volume function. 

v (x) = l · w · h  
= (30 - 2x) (20 - 2x) (x) 

= 600x - 100x2 + 4x3 

Find v' (x) and its critical numbers. v '  (x) = 600 - 200x + 1 2x2 

0 = 600 - 200x + 1 2x2 

Solve the equation using a graphing calculator; the solutions are x = 3.923747815 
or x = 1 2 .74291885 ote that the latter is not a valid solution but 
v" (3.923747815) < 0, so x =  3.923747815 corresponds to a relative maximum of 
v (x) .  Evaluate v (3.923747815) .  

v(3.923747815) "" 600(3.923747815) - 1 00(3.923747815)2 + 4(3.923747815)3 

v(3.923747815) "" 1 056.306 in3 

Reoi.lly, 
v-eoi.lly �oi.\\cy woi.y 
i--o soi.y 1'box i--�oi.i--'s 
\\Oi-- \\ecessoi.v-Uy oi. 

cl..\be!' 

-r�e 
�ei8�i-- o� +-�e 

box is x. -r�e bi88ev
i--�e Sql.\oi.v-es yol.\ Cl.\i--
01..\i; i--�e .Aeepev- +-�e 
box will be. 

Yol.\ 
coi.\\'i-- Cl.\i--

lMOv-e i--�OI.\\ 
\ 2. i\\c�es �v-olM 

i--�e v-i8�+- oi.\\.A 
le�½- cov-\\ev-s o� i--�e 
coi.v-.A\;,ooi.v-.A (�ov- oi. 

½-oi--oi.l o� 1Mov-e i--�oi.\\ 
2.4- i\\c�es) w�e\\ i--�e 
coi.v-.A\;:,ooi.v-.A is 
o\\ly 2.0 i\\c�es 

wi.Ae! 
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Chapter 1 6  
ADDIT IONAL D I FFERENTIATION TEC H N IQU ES 

Ys i-o �'i.P.Pev-e\\i-i01.i-e 'I ei- \,A,\ov-e w"' 

Before concluding the comprehensive investigation of diff�rentiat�on th�t 
b . Chapter 1 1  a few advanced differentiation techmques still ment ega

t 
m 

Although these methods will be required far less frequ_entl� than men ion. 
. d . Ch t 12 in specific s1tuat10ns, the differentiation methods outlme m ap er , 

. they represent the most fastidious and logical method f�r cal�ulatmg 
. 1 derivatives. As such, knowing when to apply these techmques is as essent1a 

as knowing how to perform them. 

Wl-\e\\ .PO\ce� witl-\ "" tv-ic\:.y �ev-iv01.tive, sa""'eti""'es tl-\e pawev-1 pv-a�l.\ct, ql.\atie\\t, O\\\� cl-\"'-i\\ v-l.\les O\v-e \\at e\\al.\Bk -rl-\is cl-\01.ptev- cavev-s .Pal.\vspeci-fic tecl-\\\iql.\es .Pav c01.lcl.\l01.ti\\8 �ev-iv01.tives tl-\""t ""��v-ess .Pal.\v- speci-fic sitl.\01.tia\\s. -rl-\ese ""'etl-\a�s �a\\'t v-epl01.ce tl-\e v-l.\les cavev-e� b01.c\:. i\\ Cl-\Ol.ptev-1 2, wl-\icl-\ stil l wav-\:. .Pav- "'-t><'l.\t Cf O:Y. a.P tl-\e �ev-iv01.tive pv-able""'s yal.\'ll �e""l witl-\-tl-\ey jl.\st Bive yal.\ aptia\\s .Pav- tl-\e atl-\ev- I O:Y., pv-able""'s tl-\""t 01.v-e \\e01.v-ly i""'passible witl-\al.\t tl-\e ""'etl-\a�s cavev-e� i\\ tl-\is cl-\01.ptev-. 



Chapter Sixteen - Additional Differentiation Techniques 

l)i.P.Peve\\t-ioi.ls owe i--lr.i\\8S like &l)< oi.\\&l &ly. A\\y ½-i\N\e +-lr.e voi.vioi.ble t\\ i--lr.e e)<pvessio\\ &loes\\'+\N\oi.i--clr. i--lr.e voi.vioi.ble yo1he 1'vespect-i\\8;1 i--lr.ese pop "'P t\\ oi. 

I mplicit Differentiation 
Esse\\tie1.\ wl-\e\\ yal.\ ce1.\\"'t salve "' .Pl.\\\ctia\\ .Pav y 

1 6 . 1  Differentiate the expression with respect to x: x2 - 3y2 + 2x + y. 

Technically, when you differentiate x2 with respect to x, you are applying the chain rule. You first take the derivative of the "outer function" x2 to get 2x, leaving the "inner function" x alone. Then you take the derivative of the inner function with 
dx dx respect to x: - . For all practical purposes, - (like any nonzero number divided 
dx dx by itself) equals 1 .  

d ( 2 ) 2 I dx I - x = 2x - · - = 2x · 1 = 2x 
dx dx In other words, when an expression containing x is differentiated with respect to x, the answer is no different than the derivatives calculated in Chapter 12. Differentiate the other term in the expression containing x in a similar fashion. 

When you differentiate an expression containing a variable other than x with respect to x, the derivative will contain differentials. For instance, the derivative of y with respect to x is simply dy . This term cannot be simplified or omitted, 
dx dx because unlike - , this quotient does not necessarily equal 1 .  
dx 

Tl'\e &levivoi.Hve /To differentiate -3y2 , apply the chain rule. 
d ( 2) 2-1 dy dy - - 3y = -3 • 2y · - = -6y -o.P y2 is 2y, bl-\f-Y"L\ slr.ol-\l&l heoi.fi--lr.e Y oi.s OI.\\ 1't\\\\ev .PL\\\c+-io't'' oi.\\&l i--oi.ke f-lr.e &levivoi.Hve 0.p if(wii--l'\ vespec+- f-c, x) oi.i-- f-lr.e e\\&l. 
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dx dx dx Combine the derivatives for each of the four terms in the expression, all of which are calculated above. 
d ( 2 2 ) 

dy dy - x - 3y + 2x + y = 2x - 6y - + 2 + -
dx dx dx 

1 6 .2 Describe the difference between equations that are written explicitly in terms of x and those that are written implicitly in terms of x. 

Equations explicitly written in terms of x can be expressed in a single variable, x. For instance, 3x2y - 7xy = 14 can be explicitly written as a function of x by solving for y. 
3x2y - 7xy = 14  y ( 3x2 

- 7 X) = 14  14 
y =  3x2 - 7x If an equation isn't written as a single equation in terms of x (i.e., the equation is not solved for the other variable, usually y, as illustrated in the above example) ,  it 



Chapter Sixteen - Additional Differentiation Techn iques 
is implicitly expressed in terms of x. For instance, circles, hyperbolas , and ellipses must be implicitly expressed in terms of x. Note that these conic sections are not functions, and neither are the vast majority of implicitly defined functions. 

1 6.3  Differentiate the product xy with respect to x. 

Neither x nor y is a constant, so the product must be differentiated using the product rule. 
!:_ (xy) = X " !:_(y) + y • !:_ (x) 
dx dx dx 

dy dx = x • - + y • -
dx dx 

dy = x - + y 
dx 

1 6 .4 Given 25x2 + 8x - 16y2 - 4y - 9 = 0, find dy . 
dx 

Differentiate each term with respect to x. 

dy dy 
50x + 8 - 32y · - - 4 - = 0 

dx dx 

Tl,,.e CO\\Sf-0t.\\f- d.is-0t.ppe0t.v-e,A bec0t.v.se �------------l..+-l,,.e d.ev-iv0t.+-ive o.P -"/ 
Move all terms not containing dy to the right side of the equation. 

dx 

(wi+-t,.. v-�spec+- +-o °'-\\Y V0t.n0t.ble) is O. 

dy dy - 32y · - - 4 - = -50x - 8  
dx dx 

dy Factor out - and solve for it. 
dx 

dy (-32y - 4) = -50x - 8  
dx 

1 6 .5  Given y = 9,✓x - 2ef1, find dy . 
dx 

dy -50x - 8  
dx - 3�2.r--......._ ___ _ 
dy - 2 (25x + 4) = -----
dx - (16y + 2) 
dy 25x + 4 
dx I6y +  2 

Rewrite the radical expressions using rational exponents. y = gx1 12 _ 2y31s 

All t-l-\e t-ev-1--'-\S 0t.v-e \\e80t.t-ive, wl-\icl-\ is \:.i\\d. o.P "'8ly. l.P Y""' .P0t.ct-ov- - I 01At- o.P t-l-\e t-op 0t.\\d. bot-t-ol--'-\, 
- I .Aivi&l.e&l. by - I eq1A0t.ls I ,  so t-l-\ey c0t.\\cel 01At-. 
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1 6 .6 

Differentiate each term with respect to x. 
dy = g · _!_ x-112 _ 2 . � y-21s . dy 
dx 2 5 dx 
dy = � ✓x 

_ _  6_ dy 
dx 2 5ef1 dx Move all terms containing dy to the left side of the equation and factor out dy . 
� � 

dy Solve for -
dx 

dy 6 dy 9✓x - + -- - = --
dx 5ef1 dx 2 

dy (l + 
_6_) _ g.j; 

dx 5ef1 - 2 

dy (
5ef1 + -6-l _ gJ; 

dx 5ef1 5ef1 - 2 

dy (
5ef1 + 6 ) = g.j; 

dx 5ef1 2 

dy = gfx ( 5ef1 l 
dx 2 5ef1 + 6 

dy 45✓xef1 
dx 1oef1 + 12 

G. . fi d dy IVen sm y - cos xy = x - y, n - . 
dx 

The chain rule is required to differentiate both terms on the left side of the equation. Once you differentiate each of the trigonometric functions (momentarily leaving the argument unchanged) , you must then multiply by the derivative of the argument. d ) [ . d )] dy 
cos y · - (y - -sm xy · - (xy = l - -

dx dx dx 
d Note that -(xy) is calculated in Problem 16.3.  
dx 

Distribute sin xy. 

dy ( dy ) dy cos y - + sin xy x - + y = l - -
dx dx dx 

dy . dy . dy cos y - + x smxy - + y sm xy = 1 - -
dx � dx Move terms containing dy to the left side of the equation and all others to the . h .d dx ng t s1 e. 
dy . dy dy . cos y - + x smxy - + - = 1 - y smxy 
dx dx � 
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dy Factor out - and then solve for it. 
dx 

dy [cos y +  x sinxy + 1] = 1 - y sin xy 
dx 
dy 1 - y sin xy 
dx cos y + x sin xy + 1 

d2y Given e' + cos y = In y6, find -2 • dx 

Differentiate the equation with respect to x. 

dy Solve for - .  
dx 

x . dy 1 5 dy 
e - sm y • - = - • 6y • -

dx y6 dx 

x . dy 6/ dy 
e - sin y · - = -- · -

dx / · y dx . dy 6 dy 
ex - Sln y • - = - • -

dx y dx 

x . dy 6 dy 
e = sin y - + - 

dx y dx 

x ( 6) dy 
e = sin y + y dx 

ex = ( y · sin y + �) dy 
y y dx 

ex = ( y sin y + 6) dy 
y dx 

exy dy y sin y + 6 dx To find the second derivative, apply the quotient rule. Note that the derivatives of the numerator and denominator each require the product rule-the numerator contains the product of e' and y, and the denominator contains the product of y and sin y. (y sin y + 6) · !!:_ ( e• y ) - e•y · !!:_ (y sin y + 6) 
dx dx (y sin y + 6)2 

( ) ( X 
dy 

X ) X ( dy dy ) y sin y + 6  e - + e y - e y y cos y - + sin y -dx dx dx 

dy e•y Recall that - = ----
dx y sin y + 6  

(y sin y + 6)2 

( . ) [ e2x y x 
] 

x ( ex y2 COS y ex y sin y ) y sm y + 6  - - -- + e y - e y - - -- + - - --
d2y y sin y + 6  y sin y + 6  y sin y + 6  
dx2 (y sin y + 6 )2 

H-'s oi. B""J.. 'iJ..eoi. 
t-o 1Moi.\::.e t-�'is t-ev-lM 

O\\e .Pv-oi.ct-'io\\ by I.\Sl\\8 
COIMIMO\\ J..e\\OIMl\\Ol.t-Ov-S. 
-ro 'isoloi.t-e J..y/J....,__ , 
1Mv.lt-'iply bo t-� s'iJ..es 
by t-�e v-ec'ipv-ocoi.l 
o.P t-�'is ½'iB 

.Pv-oi.ct-'io\\. 
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Note: Problems 16.8-16.10 refer to an ellipse centered at  the origin with a horizontal major 
axis of length 16 and a major axis of length 12. 1 6 .8 Write the equation of the ellipse, expressing each coefficient therein as an integer. 

16  If  the major axis of  the ellipse i s  16 units long, then a = - = 8 ;  similarly, b = 6 .  2 Plug these values into the standard form equation of an ellipse with a horizontal major axis. (Note that h = k = 0 since the ellipse is centered at the origin.)  
(x - h)2 (y - k)2 

--2 - + 2 = l 
a b x2 y2 - + - = 1 64 36 Multiply each term in the equation by the least common multiple : 576. 9.i' + l6y2 = 576 

Note: Problems 16.8-16.10 refer to an ellipse centered at the origin with a horizontal major 
axis of length 16 and a major axis of length 12. 1 6 .9 Differentiate the equation of the ellipse generated in Problem 16.8 with respect to X. 

Differentiate 36x2 + 64y2 = 2,304 with respect to x and solve for dy . 
dx 18x + 32y - = 0 

dx 
dy 32y - = - l8x 
dx 
dy l8x 
dx 32y 
dy 9x 
dx l 6y 

Note: Problems 16.8-16.10 refer to an ellipse centered at the origin with a horizontal major 
axis of length 16 and a major axis of length 12. 1 6 . 1 0  Calculate the slopes of the tangent lines to the ellipse when x = l .  You first need to determine the points on  the ellipse when x = I .  To do so, substitute x = l into its equation and solve for y. 
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9 (1)2 + 16y2 = 576 16y2 = 567 

.J1 = ±✓567 16  
g,J7 

y = ± --4 
Therefore, the ellipse contains the points (1, gt) and (1, - gt) . Evaluate ix at +-�e p��!\\.A y-Ve>1.IL\es o.P eo,.c� poi\\t-each point to_d_e_t_e_rm_i_n_e_th_e_sl_o_p_e_o_f_t_h_e_t_a_n_g_en_t_l_in_e_th_e_r_e_. ________ 7 i\\t-o t-�e -Aevivo,.t-ive .Pov1Ml,\)o,. .Pvo1M Pvoble1M I G.'7. dy 

at (1 - 9-fi) dx ' 4 

dy 9 (1) 
dx 

I6(- g:) 
dy g 
dx 4 (-9) -J7 

dy 1 J7 - = -- or -
dx 4,J7 28 

dy 
dx 

dy 
dx 

dy 
at (1 

9-fi) dx ' 4 9 (1) 
4 (9) -J7 

dy 1 J7 - = - -- or - -
dx 4.,/7 28 

Note: Problems 16.11-16.13 refer to a circle centered at the origin with radius r. 1 6 . 1 1 Identify the equation of the circle and differentiate it with respect to x. 

The equation of a circle centered at (0,0) with radius r is x2 + y2 = r. Differentiate implicitly with respect to x. 
dy 

2x + 2y - = 0  
dx 
dy 

2y - = - 2x 
dx 
dy - 2x 
dx 2y 

dy X 
dx y 

Note: Problems 16.11-16.13 refer to a circle centered at the origin with radius r. 1 6 . 1 2  Calculate the slopes of the tangent lines to the circle when x = c. 

Use the method outlined in Problem 16.10-begin by substituting x = c into the equation to determine the points of tangency. 

\\L\IMbev, si\\ce t-�e vo,..Aiv.s o.P Cl. civcle st-o,.ys co\\sre>1.\\t-. 1�0,.t- 1Mee>1.\\S t-�e 
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1Mee>1.�S -fi�&l 
t-l-\e t-e>1.�B e�t- li�e 

t-c t-l-\e civ-cl e o,.t- t-l-\ e 

pci�t- (c,-V v-2 - c2) • 
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x2 + y2 = r2 

c2 + y2 = r2 

y2 = r2 - c2 

y = ±.Jr2 - c2 

Therefore, the circle passes through the points (c, -✓r2 - c2 ) and (c,✓r2 
- c2 ) . Substitute these points into the derivative calculated in Problem 16 .11 .  

dy ( J;C1) 
dx 

at c, - r - c  

dy X 

dx y 
dy C 

dx -.Jr2 - c2 

dy C 

dx .Jr2 - c2 

ix at (c,✓r2 - c2 ) 

dy X 

dx y 
dy C 

dx .Jr2 - c2 

Note: Problems 16.11-16.13 refer to a circle centered at the origin with radius r. 1 6 . 1 3  Write the equation of the tangent line to the circle in the first quadrant given X =  C. 
According to Problem 16.12 ,  the slope of the tangent line at point ( c, ,J r2 - c2 ) is 
dy = - � . Use the point-slope formula to write the equation of the line. 
dx r2 - c2 

y - y1 = m (x - x1 ) 

C 

J;C1 (x - c) 
2 Rationalize the expression on the right side of the equation and solve for y. 

c✓r2 - c2 

y - ✓r2 - c2 = - --- (x - c) 
r2 - c2 

c✓r2 
- c2 

y = - --- (x - c) + ✓r2 - c2 

r2 - c2 
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Logarithmic Differentiation 
Vse \a8 pvapevties ta 1M01.\c.e ca1Mple;,c: .:Aeviv01.tives e01.siev 

1 6 . 1 4  dy Given y = x', find - . 
� ---------------, Take the natural logarithm of both sides of the equation. ln y = ln x' Using a property of logarithms (explained in Problem 5.23) , ln d = b ln a. ln y = x ln x Differentiate both sides of the equation with respect to x, applying the product rule to differentiate x ln x. 

dy Solve for -
dx 

.! . dy = x · .! + ln x · I 
y dx x .! . dy = l + lnx  
y dx 

dy - =  y (l + lnx) 
dx The original problem states that y = x', so substitute that value into the equation. 
dy = xx (I +  ln x) 
dx 
dy = xx + xx ln x 
dx 

. 2 2x dy 1 6 . 1 5  Given y = x , find - . 
dx 

Use the method described in Problem 16.14-take the natural logarithm of both sides of the equation and use a logarithmic property to change the exponent 2x into a coefficient. lny = ln2x2x lny = 2x ln2x Differentiate with respect to x, applying the product rule to differentiate the right side of the equation. .! . dy = 2x(2- · 2) + ln 2x (2) 
y dx 2x _! · dy = 2 + 2 ln 2x y dx 

yoL\ '1.eed. +-o -fi'1.d. +-1-\e .Aevivot+-ive 0.p Ol\\ X Yotised. +-o Ol\\ X powev, +-1-\ot+-'s ot d.eotd. 8iVeotwoty yoL\ sl-\oL\I.A L\Se lo8otvi+-l-\""'ic .Ai.P.Peve'1.+-iot+-io'1.. 
1.P yo1he +-ot\:.i"8 +-l-\e 108 o.P SOIA-\e-+-l-\i "8 ve>\ised. +-o "' powev, yoL\ CC\\\ pL\ll +-l-\e powev OL\t'" i'1. .Pvo'1.+-o.P +-1-\e 108 e>\S "' coe.P..ficie'1.+-. 
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dy Solve for - and recall that y = 2x2". 
dx 

dy 1 6 . 1 6  Given y = x'n ', find - . 
dx 

dy = y (2 + 2 ln2x) dx 
dy = 2x2x (2 + 2 ln 2x) 
dx 
dy = 4x2x + 4x2x In 2x 
dx 

Take the natural logarithm of both sides of the equation, apply a logarithmic property to relocate the exponent, differentiate with respect to x, solve for dy , 
dx and replace y in the final answer with x'" ', as defined by the problem. 

dy 1 6 . 1 7  Given y = 5" x-"x, find - . 
dx 

ln y = Inx1nx ln y = (lnx) (lnx) I dy I I 
- • - = lnx • - + lnx • 
y dx x x _!_ .  dy = 2 ( ln x ) y dx x 

dy = y ( 2 lnx ) dx x 
dy 2xlnx lnx 
dx x 

Take the natural logarithm of both sides of the equation. In y = In ( 5" x'") Expand the logarithm on the right side of the equation using the logarithmic property log ab = log a + log b. In y = In 5' + ln x'" Move the exponents using logarithmic properties .  ln y = x ln 5 + (5x) ln x 
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Differentiate with respect to x. Note that ln 5 is a constant, so the product rule is not needed to differentiate x In 5 ;  however, it is needed to differentiate (5x) ln x. 

ex dy 1 6 . 1 8  Given y = In x , find -
dx 

! . dy = ln 5 + 5x · ! + 5 ln x 
y dx x _!_ · dy = ln 5 + 5 + 5 ln x 
y dx dy = y (ln 5 + 5 + 5 ln x) 

dx dy = 5x x5x (In 5 + 5 + 5 ln X) 
dx 

The right side of the equation already contains a logarithmic function, so apply a logarithmic property to move its exponent. There is no need to take the logarithm of both sides of the equation, and as such, this is not a true logarithmic differentiation problem (although you do apply logarithmic properties) . y = e' · In x Apply the product rule to differentiate with respect to x dy = ex . _!_ + ex In X 
dx x dy ex 

X - = - + e lnx 
dx x 

1 6 . 1 9  Given y = �x9 ln (x + 2) , find dy . 
dx Take the natural logarithm of both sides of the equation and rewrite the radical expression using a rational exponent. ln y = 1n[(x9 ln (x + 2) f3

] Apply a logarithmic property to move the exponent. 
I In y = - ln[ x9 ln (x + 2)] 3 Expand the natural logarithm of the product by expressing it as a sum of logarithms. ln y = - [1nx9 + ln (ln (x + 2))] 3 ln y = _!_ ln x9 + ! ln (ln (x + 2)) 

3 3 Use a logarithmic property to move the remaining exponent. 
I I ln y = - · 9 · lnx + - ln(ln (x + 2)) 
3 3 

I ln y = 3 lnx  + - ln(ln (x + 2)) 3 

'S i\\ ce 
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d. ev iv0t.i--ive o.P (x)(l\\ s) 
ecqL\0t.l s 1" 5, jL\si-- l ik e 
i--l-. e d. ev iv0t.i--ive o.P 
(x)( l 2) :::::- 1 2. 

HIMe Y""' 
L\S e 1" 8"'-v'ii--l-.lM'iC 

.A'i.P.Pev e\\Hoi.Ho\\ 
"'"+- b ecoi.L\S e oi.\\ 
x 'is voi.'ise.A i--c, oi.\\ x 
po wev \;,L\i-- b ecoi.L\se l c,8  
p v o pev H es CO\\\ \;, v e0t.k 
H'\lS v'i.A'icL\lOL\Sly IA81Y 
exp v ess'io\\ 'i\\i--c, b'ii--e-
s'iz.e.A cl-.L\\\ks. 

257 



Chapter Sixteen - Additional Differentiation Techniques 

I ovev wl,,,oi.i--'s i\\si&l e 
i--l,,,e 't>iB 10 8 (I"' (')< + 2)) 

HIMeS i--l,,,e &l evivoi.Hve 
o.P i--l,,,oi.i-- l\\\\ev qL\oi.\\i--ii--y 
( \/(')< + 2)) i--i1Mes i--l,,,e 
&levivoi.i--ive o.P ')< + 2 ,  

i--l,,,e qL\oi.\\i--ii--y i\\si&l e 
i--l,,,e i\\si&le 

W l,,,e\\ yoL\ 
plL\8 e1 i\\i--o I\\ ')< , 

oi.11 i--l,,,oi.i--'s l e.Pi-- i s  i--l,,,e 
e')<pO\\e\\i-- o.P e1 't> ecoi.L\S e 
i--l,,,ey oi.v e  i\\Vev se 
.PL\\\ci--io\\s. Cl,,,ec� 0L\i--
P v o't>l e1M S-30 .Po v 

258 

Differentiate with res ect to x. 

_!_ _  dy = 3 · _!_ + _! _ __ 1 _ _ _  1 _ _ 1 
y dx x 3 ln (x + 2) x + 2  l dy 3 1 - • - = - + -------
y dx x 3 (x + 2) (1n (x + 2)) 

1 = 
Y (; + 

(3x + 6) (�n (x + 2)) ) 

Substitute y = �x9 ln (x + 2) into the derivative. 

- = 3 x ln x + 2  - + dy V 9 ( 3  1 ) 
dx 

( ) 
x (3x + 6) (1n (x + 2)) 

1 6.20 Given y = 4' · e2x 
• tan (5x - l ) , find dy . 

dx 

Take the natural logarithm of both sides of the equation and expand the 
logarithm of the product into a sum. 

ln y = ln[ 4x · e2x · tan (5x - 1)] 

ln y = ln4x + lne2x + ln( tan (5x - 1)) 
Apply a logarithmic property to move the exponents . 

ln y = x ln 4 + (2x) ln e + ln ( tan(5x - 1)) 
ln y = x ln 4 + 2 (l) + ln (tan(5x - 1)) 

Differentiate with respect to x . 

.! . dy = ln 4 + 2 + 
1 

· sec2 (5x - 1) · 5  
y dx tan(5x - 1) 
_! . dy = ln 4 + 2 + _5_se_c_

2 
_( 5_x_-_l_) 

y dx tan(5x - 1) 
dy [i 4 5 sec2 (5x - 1)

] - = y n + 2 + -----
dx tan(5x - 1) 
dy = 4x e2x

tan(5x - l) [ln4 + 2 + 5
sec2

(
(5x -

)
l)

] 
dx tan 5x - l  

. ( sec2 x) ( log4 x
6

) dy 
1 6 .2 1 Given y = 19 , find -

(12x - 7) dx 

Take the natural logarithm of both sides of the equation. 
(sec2 x ) (1og4 x

6 ) 
ln y = ln ---�--

(12x - 7)19 
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Expand the logarithm on the right side of the equation. ._---In y = 1n [(sec2 x ) (1og4 x6 )] - 1n(l2x - 7)19 
In y = 1n (sec2 x) + In (log4 x6 ) - ln (l2x - 7)19 In y = 2 ln (sec x) + In ( 6 log4 x ) - 19 ln (l2x - 7) In y = 2 ln (sec x) + ln 6 + ln (log4 x ) - 19 ln(l2x - 7) Differentiate each term with respect to x. 

_!_ _ dy = 2 · -1- - sec x tan x + 0 + -1- - -1- - 19 ·  I · 12  
y dx sec x Iog4 x x · ln4 12x - 7  l dy 2,se-cx' tan x 1 19 · 12  - • - = ---- + -----
y dx ,se-cx' x (ln4) (1og4 x) 12x - 7  

dy = y [2 tanx + ___ 1 __ - _22_8_] 
dx x (ln4) (1og4 x) 12x - 7  

(sec2 x) (Iog4 x6
) Recall that Y = (l2x _ 7)19 

dy (sec2 x ) (1og4 x6
) [ 1 - =  19 2 tanx + ---(�-�) dx (12x - 7) x (ln4) log4 x 

1 6  22 . x2 /(x-4) d dy . GIVen y = x , fin - . 
dx 

Apply logarithmic differentiation. In y = In x,;. i<x-4) x2 
In y = -- In x 

x - 4 

228 l 12x - 7  

Differentiate with respect to x; apply the product rule on the right side of the equation. - • - = -- • - (Inx) + In x • - --l dy x2 d d ( x2 
) 

y dx x - 4  dx dx x - 4  x2 Note that differentiating -- requires the quotient rule. 
x - 4 l dy x2 l (x - 4) (2x) - x2 (1) - · - = -- · - + In x · -------

y dx x - 4 x (x - 4)2 l dy J · x ( 2x2 - 8x - x2 ) y . dx 
= 

J (x - 4) 
+ In x (x - 4)2 

dy = y [-x- + 
(In x) (x2 - 8x)l 

dx x - 4  (x - 4)2 

dy 
= xx' l(x-4) [_x_ + 

(In x) (x2 - 8x)l 
dx x - 4 (x - 4)2 

Pvo't,le1M 5'.27, wl,,,icl,,, o,.s�s yov. i--o �v.lly e)<po,.�&l o,. 1080,.vii--l,,,IM. Review i--l,,,o,.i-- pvo't,le1M 
i� yov!ve co��v.seA 

Boes i� �vo�i--
0� 108., x 't>eco,.L\se x is v<'\ise&l i--o i--l,,,e Gl-" powev. I� i--l,,,e wl,,,ole expvessio� 108., x wo,.s YC\ise&l i--o i--l,,,e G\-1, powev, o�ly i--l,,,e� wol,\l&l yol-\ pl-\lJ i--l,,,e G OL\i-- i� �vo�i-- o� 1�(108., x). 

Tl,,,e d.eviv<'\i--ive o� I� G is 0. 
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3 dy 1 6 .23 Given y = xx , find - . 
dx 

Apply logarithmic differentiation. ln y = lnxx' ln y = x3 ln x 
I dy 3 1 

( 2 ) - • - = x • - + lnx 3x 
y dx x 
I dy x3 

2 - · - = - + 3x ln x 
y dx x 

dy = y (x2 + 3x2 lnx) 
dx 
dy = xx' (x2 + 3x2 lnx) 
dx 

Differentiating I nverse Trigonometric Functions 
1 CC1.l.\Se +-l,,.e J.evi.vC1.+-i.Ve o.P tC1.\\_, >< C1.i.\\"+- sec-2 >< 

1 6 .24 Differentiate arcsin x with respect to x. 

I du The derivative of arcsin u, if u is a function of x, is � - - ; in this instance, 
dx U =  X. 

d I d - ( arcsin x) = � · - ( x) 
dx vl - x2 dx 

1 = -- · 1 
.JI - x2 

1 = �== 
.JI - x2 

1 6 .25 Differentiate arccos 4x3 with respect to x. 

Apply the arccosine differentiation formula. 
d I du - ( arccos u) = - r;----; 
dx vl - u2 dx 

d ( 3 ) 1 d ( 3 ) - arccos 4x = - --==== · - 4x 
dx .Ji _ ( 4x

3 )2 dx 

d 12x2 - ( arccos 4x3 ) = - 1 dx "l  - 16x6 



Chapter Sixteen - Additional Differentiation Techn iques 
1 6 .26 Differentiate tan -I ( ecosx ) with respect to x. 

Apply the inverse tangent derivative formula. 
d I du - (arctan u) = -- · -
dx I + u2 dx !£ ( tan-I ecosx ) = 1 . !£ ( ecosx ) 

dx I +  ( ecosx )2 dx Use the chain rule to differentiate ff"". !£ (tan-l eco•x ) = 1 · (ecosx ) (- sinx) 
dx I +  e2cosx 
d ( -1 COSX ) sin x . ecosx 
- tan e = -----
dx 1 + e2cosx 

1 6 .27 Differentiate In (arccot 2x) with respect to x. 

Because this is a composite function, apply the chain rule. 
d I d - [ln (arccot 2x)] = --- · - (arccot 2x) 
dx arccot 2x dx Apply the differentiation formula for the arccotangent function. 

0\'1.""- 1�:>wct-oi" x'1 \ 
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dx arccot 2x 1 + 2x 2 (1 + 4x2 ) (arccot 2x) 

Inx 1 6 .28 Differentiate arcsec -2 with respect to x. 
X 

Apply the arcsecant differentiation formula. 
d I du - (arcsec u) = � dx lu l u2 - I dx 

Simplify the complex fraction by combining the quantities within the square root into a single fraction. 1 d 
(
Inx

) (lnx)2 - x4 dx x2 
= 1 d 

(
In x

) l ln x 1 ✓(lnx)2 - x4 dx x2 x2 J;1 
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Note that neither :i2 nor J;1 = lx2 I require absolute values, because :i2 must be a nonnegative number. 1 d ( In x ) l ln xl .Jon x)2 - x4 dx x2 x2 x2 = ------.==I = . .!!:_ ( Int )  l ln xl ✓(ln x)2 - x4 dx x x4 Eliminate the complex fraction. x4 d ( Inx ) = l ln xl .J(ln x)2 - x4 
• dx 7 Note that the derivative has not yet fully been determined. Now that the rational expression is in an acceptable format (i.e., it doesn't contain a complex fraction) , Inx use the quotient rule to differentiate -2 . 

X 

4 [ x2 · ! - lnx (2x) l = l lnxl .J(l:x)2 - x4 • x {x2 )2 
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1 6 .29 Given l(x) = :i" + 4x - 2, use a graphing calculator to evaluate l-1 (5) accurate to three decimal places .  
Identifying an equation for _t-1 (x) is not a trivial matter. If you attempt to reverse x and y and solve for y ( the technique used to determine inverse functions that is outlined in Problems 4.25 and 4.26) , you will find that the equation cannot be solved for y easily. Therefore, you must use an alternate approach, one that will allow you to evaluate the inverse function for real number values without actually identifying the function 1-1 (x) . Because l(x) and 1-1 (x) are inverse functions, given _f-1 ( 5) = c, it follows that .f( c) = 5. Set .f( c) = 5 and solve for c. c3 + 4c - 2 = 5 
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Set the equation equal to 0. 

c3 + 4c - 7 = 0 Graph the equation y = x2 + 4x - 7 on a graphing calculator and calculate the x-intercept (i.e., the root or the zero) ; you should get x = 1 .255. Therefore, J(l .255) = 5, so 1-' (5) = 1 .255. 
Note: Problems 16.30-16.31 refer to the function g(x) = x' + 9x' - x2 + 6x - 2. 1 6 .30  Prove that g -1 (x) exists. 

Only one-to-one functions have inverses. Graphically, this means any horizontal line drawn on the function may intersect it once, at most. Therefore, any function that changes direction will fail the horizontal line test, as demonstrated in Figure 16-1 . 
r relative maximum 

relative mimimu� 

Figure 16-1 The graph ofa continuousfunctionf(x) that.fails the horizontal line test because of its relative extrema. The dotted horizontal lines represent only two of an infinite number of horizontal lines that intersect the graph of j( x) more than once. 
Because the graph of g' (x) = 5x1 + 27x2 - 2x + 6 falls entirely above the x-axis, g' (x) is positive for all x and g(x) is strictly increasing. All monotone increasing or decreasing functions possess inverses. 
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Note: Problems 16.30-16.31 refer to thefunction g(x) = x5 + 9x5 - x?  + 6x - 2. 1 6 . 3 1  Use a graphing calculator to evaluate g - l ( 2) accurate to three decimal places .  ,, 6 Use the method described in Problem 16.29, which states that given g(c) = '!__, it follows that g -1 
( � )  = c. Substitute c into g(x) , set the equation equal to i s:btract � from both sides of the equation, and use technology to identify the x-intercept of the resulting function. 

5 3 2 7 c + 9c - c + 6c - 2 = -
6 

5 3 2 19 c + 9c - c + 6c - - = 0 
6 

C "" 0.434 Because g (0.434) "" * , it follows that g- 1 (*) "" 0.434 . 
1 6 .32 If h(x) = 7x' + 9x + 18, evaluate (h- 1 )' (2) , the derivative of h- 1 (x) with respect to x when x = 2. 

Given a function f(x) , the derivative of its inverse, (.f- 1 )' (x) , is defined according to the formula below . 
Substitute h(x) for f(x) and plug x = 2 into the formula. 

(h- 1 )' (2) - 1 - -
h, (

-
h _-1 (2-)) Calculate h-1 (2) using the technique described in Problems 16.29 and 16.31 : if h-1 (2) = c, it follows that h(c) = 2 . 7c3 + 9c + l8 = 2 7c3 + 9c + l6 = 0 c = - 1  Substitute h-1 (2) = - 1  into the inverse derivative formula. 

( 1 )' 1 1 h- (2) = h' (h- 1 (2)) = h' (- 1) Differentiate h(x) and evaluate h' (-1) . 
h' (x) = 2Ix2 + 9 h' (- 1) = 21 (- 1)2 + 9  h' (- 1) = 30 
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Substitute h' (-1) = 30 into the inverse derivative formula. 

1 6 .33  If J(x) = 5x" - x2 + x - 4, evaluate (J- 1 )' (6) accurate to three decimal places. 
Apply the method described in Problem 16.32. 
Iff-1 (6)  = c, then f(c) = 6. Eve\\ f-l-.ov.8[,. f-l-.e -h\\0t.l O\\\Swev- sl-.011.I.A CO\\f-0t.i\\ f-l-.v-ee -Aecil,\\0t.l 5c9 - c2 + c - 4 = 6 pl0t.ces, yov. sl-.ov.l.A\\'f-5c9 - c2 + c - 10 = 0 v-ov.\\.A O\\\}' -Aecil,\\0t.ls 

c = 1 .081107956 4:,---------l 
11.\\f-i! f-l-.e\\-v.se 0t.s l,\\0t.\\y Substitute J-' ( 6) = 1 .081107956 into the inverse derivative formula. 

( 1 )' 1 r <5) = r <1 .081 Differentiate J(x) and evaluate f' (1 .081107956) . 
f' ( x) = 45x8 

- 2x + 1 
f' (1 .081 107956) = 82.8156861426 Substitute f' (1 .081107956) into the inverse derivative formula. 

( 1 )' 1 r <5) = 82.8156 
u-l y (6) = 0.012 

Note: Problems 16.34-16.35 reference a one-to-one function f(x) that is continuous and 
differentiable for all real numbers. Selected values of the function and its derivative are listed 
in the table below. 1 6 .34 Evaluate (J- 1 )' (-2) . 

X - 2  - 1 0 1 2 3 
f (x) 6 2 1 - 1  3 

- -2 - 2  
f' (x) 

1 - 1  5 1 3 
- - -6 - - - - - -2 3 8 4 

Apply the formula for the derivative of an inverse function. 
( 1 )' 1 r <-2) = f' (rl <-2)) 

-Aectl,\\0t.l pl0t.ces O\S yo11.vc0t.lcv.l0t.f-ov- CO\\\ spif- 0t.fyo11., ov- yov. v-isk 0\ less O\CCL\Y0t.f-e O\\\Swev-. 
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'5i'1.ce -P(3) = -2, yov. 
_ COi.\\ vevevse +-he 1'1.pv.f- Ol.'1..A Ov.f-pv.f_f-o 8e+- V0t.lv.es o.P +-he 

1'1.Vevse .Pv.'1.cf-io'1.: .p- 1 (-2) = >. 
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According to the table, J-1 (-2) = 3. 
( _ 1 )' ) 1 
f (- 2  = f' (3) According to the table, f' (3) = -¾ .  

( -1 )' 1 4 
f (-2) = - = - -

- 3/4 3 

Note: Problems 16.34-16.35 reference a one-to-one function f(x) that is continuous and 
dijferentiable for all real numbers. Selected values of the function and its derivative are listed 
in Problem 16.34. 

1 6 . 35  Evaluate (r 1 )' (- 1) . 
Apply the formula for the derivative of an inverse function. 
According to the table, J(l ) = -1 ;  therefore, J-1 (-1 ) = 1 .  

( _ 1 )' 1 
f (- 1) = f' (l) According to the table, f' (1) = -i . 

( 1 )' 1 3 F (- l) = - = - -
-5 / 3 5 

1 6 .36  Given the function k (x) graphed in Figure 16-2 ,  estimate (k- 1 )' (0) . 

-10 

-6 

Figure 16-2 The graph of a continuous, one-to-one 10 function k(x). 

Apply the formula for the derivative of an inverse function. 
(k - 1 )' (0) - 1 - k' (k- 1 (0)) 
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The function appears to have a root of x = -6; therefore, k-1 (0) = -6. 
To approximate k' (-6) , estimate the slope of the tangent line to k (x) at x = -6. One acceptable way to do so is to calculate the slope of the secant line connecting the points on k(x) that are one unit left and one unit right of x = -6 :  (-7,-1 )  and 
(-5, t) - , ~ k (-5) - k (-7) k (-6) ~ 

-5 - (-7) 
(1 / 2) - (- 1) 

::::::: -----
-5 + 7 

3 /2 
:=:::: --

2 3 
::::::: -4 Substitute this value into the inverse derivative formula. 

1 6 .37 Generate the formula for the derivative of an inverse function: 
( - 1 )' 1 
f (x) = 

f' (r l (x)) " 

l.P 
\c.(x) c v osse s 

i--l... e x-"txis "ti-- x = -G 
+-t... e\\ \c.(-G) = 0. R eve:se 
i--l... e \\L\IMb ev s i--o 8 ei-
V"tl L\es .Po v i--l... e i\\Vev se 
.PL\\\Ci--iO\\: k 1(0) = -G. 

Tue 
y-v"tlv.es 

- \ C\\\&l ½_ <'\Ye 

jv.si-- 8"'e sse s. 
--rt...e v e's \\O w<'\y 
o.P i&l e\\i--i.Pyt\\ 8 i--l... e 
C\Ci--L\"tl poi\\i--S O\\ i--l... e 
8 v"tp1", \;,L\i-- 8L\essi\\8 is 
o \c."ty b ece>1.L\S e yo1he 
jL\Si-- &loi\\ 8 Cl.\\ 

o,.ppvo,ci1Me>1.i--io\\. 

Iff-1 (x) is the inverse function off(x) , then f(l-1 (x) )  = x. Differentiate both sides of this equation with respect to x. 

.!!:...[1 (r 1 (x))] = .!!:... (x) �---
dx dx 

f' (r l (x)) · (J-1 )' (x) = 1 

Solve the equation for u-l )' ( X) . 
jJP(x5)·(r 1

)
1 

(x) 1 

jJPfx5) J' (F 1 (x)) 

u-1 )' (x) = 
J' (J�I (x)) 

Use 
i--l...e cl..."t i\\ 

YL\l e he v e. T"t\c.e  +-he d. ev iVC\f-iVe o.P +-he OL\f-e v  .PL\\\cf-io\\ -P{x) C\\\d. l e<'\ve +-l...e i\\\\ ev .p, .... e .p- 1 .,..,C,lO\\ (x) "tlo\\ e: .P'(.P- 1(x)). No w IML\lf-iply by +-he &l� v iv"tf-ive o.P +-he 
l\\\\ ev .PL\\\cf-io\\: 

(.P·')'{x). 
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Chapter 1 7  
APPROXI MATI NG AREA 

Es+-'il,\,\t'\+-e +-l-\e t'\V'et'\ 'oe+-wee\\ t'\ cv..v-ve t'\\\t:A +-l-\e ,c-t'\,c'is 

The opposite of diffe t · t · 
. . . ,, 

ren ia ion , a process appropriately titled "anti-
d1fferen

b
t1at1on or (more commonly) "integration ," is accompanied by its 

own ro ust set of theore 1 1 · 
d. . 

ms, ru es, a gonthms, and applications ,  all of which 
are iscussed m Chapters 18 through 23 Th. h d . . 

. 
· is c apter escnbes different 

ways to estimate the area between a function and the x-ax1· s b . . . h 
ve · £ 1 

, egmnmg wit 

. 
ry_

;-
orma rectangular approximation methods and culminating with 

s1gm c�ntl� more formal techniques .  The actual connection brid in area 
a
C
p
h
prox1mat1on to the process of antidifferentiation will be investig

g 
at:d in 

apter 18. 

-rl-\i.s cl-\°"pt-ev i.s ve°"lly lcw+ecl-\ CCW\f°'-vet:A t-c t-l-\e cl-\0\.pt-evs );,e.Pcve O\.\.\t:A °".Pt-ev 

i.t-. A.Pt-ev °'-ll, yclA spe\.\t:l. O\.lW\cst- t-l-\e e\.\t-i.ve cl-\0\.pt-ev ei.t-l-\ev °"J.J.i.\.\B lAf t-l-\e °'-veO\.S c.P 

li.t-t-le vect-°'-\.\Bles cv pl lABBi.\.\B t-l-\i.\.\BS W\i.\.\J.lessly i.\.\t-c .PcvW\lAl°'-s li.\:.e t-l-\e t-v°"pez.ci.J-0\.l 

vlAle. fcvW\O\.l Ri.eW\O\.\.\\.\ SlAW\S, t-l-\e l°"st- t-cpi.c i.\.\ t-l-\i.s cl-\°"pt-ev, O\.Ye °" li.t-t-le t-vi.c\:.y, t>lAt-

t-l-\ey've \.\Ct- sc t>°'-t:l. C\.\Ce yclA Bet- lASet:l. t-c t-l-\eW\. 'f clA W\°'-Y st-°"vt- wc\.\t:l.evi.\.\B ''Wl-\y 

t-l-\e li\ec\:. J.c I eve\.\ W°'-\.\t- t-c °'-fpvc,ci.W\°'-t-e °"ve°"? Wl-\°"t- J.ces t-l-\i.s l-\°"ve t-c J.c wi.t-l-\ 

O\.\.\yt-l-\i.\.\B ?'' lt-'s jlAst- CO\.lclAl lAS's W°'-Y c.P S°'-Yi.\.\B '' I\.\ BecW\et-vy, yc lA cclAlt:l. c\.\ly .fi\.\t:l. 

°"veO\.S c.P °" .Pew J.i..P.Peve\.\t- t-l-\i.\.\Bs-ci.vcles, vect-°'-\.\Bles, veB lAl°'-v pclyBc\.\S, t-l-\cse scvt-s 

c.P t-l-\i.\.\BS-t>lAt- i.\.\ cO\.lclAllAS, yclA'll .fi\.\t:l. t-l-\e O\.YeO\.S c.P t-l-\i.\.\BS wi.t-l-\ i.vveB lAl°'-v sli\°"pes:1 
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v-ech:'\\\jle O\\ 

[0,2] �"'-S "'- �eij�+
o.P .P(O) ::= S- (\;,ece>1.1ASe 

,c ::= 0 is +-�e le.P+- \:>OIA\\J..
"'-v-Y o.P +-�e i\\+-ev-ve>1.l), 
+-�e vec+-e>1.\\jle O\\ [2,4] 

�"'-S "'- �eij�+- o.P 
.P(2.) ::= 8', e+-c. 
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I nformal Riemann Sums 
Le.Pt, RiBl-\t, t-'\it:l.pai\\t, Vppev, O\\\t:l. Lawev 'Sl.\lMS 

1 7. 1  If n subdivisions of equal width are used to approximate the area beneath a curve on the x-interval [a, b] , calculate the width L1x of the rectangles. 
b - a  The width of each rectangle is L1x = -- . n 

Note: Problems 17.2-17.6 refer to the graph in Figure 17-1. 1 7.2 Approximate the shaded area using five rectangles of equal width and left Riemann sums. 

J(x) 

Figure 17-1 The goal a/Problems 17.2-1 7. 6  is to approximate the shaded area between j( x) and the x-axis on the x-interval [0, 10]. 

Calculate the width of the triangles using the formula from Problem 17.1 .  
Llx = IO - 0 = 10 = 2 5 5 If each rectangle is 2 units wide, the rectangles will occupy the following intervals :  [0,2] ,  [2,4] , [ 4,6] , [6,8] , and [8,10] . The height of each rectangle in a left Riemann sum is determined by the height of J(x) at the left boundary of each interval, as illustrated by Figure 17-2. 
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10 9 8 7 6 5 4 3 2 1 0 

T( 4) 
/ 

2) \ 
J \ � 6) 

0) 
f(x) 

\ J( 8) / 
\_ J 1 2 3 4 5 6 7 8 9 10 

Figure 17-2 The rectangles used to determine the left Riemann sum with n = 5 
rectangles. The height of each rectangle is shown above it. 

The area of each rectangle is its width, 2, times its height. Calculate the sum of the areas of the rectangles .  2/(0) + 2/(2) + 2/(4) + 2/(6) + 2/(8)  = 2 [/(0) + .1(2) + f(4) + f(6) + f(8) ]  Estimate the function values based on the graph in Figure 17-2 . 2 (5 + 8 + 9.5 + 7 + 1 )  = 2 (30.5) = 61 The area beneath the curve is approximately 61 square units according to the left Riemann sum. 
Note: Problems 17.2-17.6 refer to the graph in Figure 17-1. 1 7.3  Approximate the shaded area using five rectangles of  equal width and right Riemann sums. 

Because the interval and number of rectangles are the same as Problem 17.2 ,  there is  no need to recalculate the width of the rectangles :  "1x = 2 . The height of each rectangle in a right Riemann sum is dictated by the height of the function at the right boundary of each interval, as illustrated by Figure 17-3. 

B e
CC\L\S e  <'\II t-1-. e  

v ec+-C\\\ 81 es 1-.C\ve 
t-1-. e  SC\l,\\e wi� t-1,,. I 
yol,\ CC\\\ �C\ct-o v it-
OL\t-. 

B eco,.v.se 
t-1-.e v i8l-.t

bov.\\�e>1.vy o� 
t-1-. e [0,2.] t\\t-evvo,.l 

is ,c ::= 2., t-l-.e>1.t
v ect-e>1.\\ 8l e  will l,,.o,.ve 
.,,_ l-. ei8l-\t- o� �(2.). Tu e 
v ect-e>1.\\ 8\ e O\\ [2.,4] 
will l-\o,.ve .,,_ l-\ ei8l-\t-o� W4), .,,_,...� 
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10 9 8 7 6 5 4 3 2 I 

� 

� 

J( 2) 
J 

7 

f<l 'l:.) " 
V 

J( 

-� 

\ 
5) \ 

\ 

\ 
-j f( 10) 

f 8)\ 

1 2 3 4 5 6 7 8 9 10 
Figure 17-3 The rectangles used to determine the right Riemann sum with 

n = 5 rectangles. The height of each rectangle is shown above it. 

Calculate the sum of the areas of the rectangles. 2f (2) + 2f (4) + 2f (6) + 2f (8) +  2f(l0) = 2 [f (2) + f (4) + f (6) + f (8) + f (IO)] 
= 2 [8 + 9.5 + 7 + 1 + 2] = 55 The area beneath the curve is approximately 55 square units, according to the right Riemann sum. 

Note: Problems 17.2-17.6  refer to the graph in Figure 17-1. 

Th e 1,4\i.Apoi\\+- o.P +-IAe i'1.+-ev-v<'\I [0,2] is x 
1 7.4 

==- I , so +-IAe v-ec+-C\'1.81e O\\ +-IA<'\+- i'1.+-ev-v<'\I IAC\s C\ IAeiBIA+- o.P .P( I) ::::- ,. T!Ae IAeiBIA+-s o.P +-IAe v-ec+-C\'1.81es 0\\ [2,4], [4,'], [',8'], <'\\\.A [8', I O] C\v-e .P(3) ==- "I, -P{S) =="I, .P(7) ::::- 4, <'\\\.A -P{"!) ::::-
0 ,  v-espec+-ively. 
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Approximate the shaded area using five rectangles of equal width and midpoint Riemann sums. 
Because the interval and number of rectangles are the same as Problems 17.2 and 17.3,  there is no need to recalculate the width of the rectangles :  L1x = 2 . The height of each rectangle in a midpoint Riemann sum is dictated by the height of the function at the midpoint of each interval, as illustrated by Figure 17-4. 
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10 9 8 7 6 5 4 3 2 1 0 

lfil 
V 

_f(3 .,...--4 .........,_ tr5' 

V \ J \ 

\ f(7 

I 
Y.( g/ 1 2 3 4 5 6 7 8 9 10 

Figure 17-4 The rectangles used to determine the midpoint Riemann sum with n = 5 
rectangles. Note that the rectangle on [8, 10] has a height off(9) = 0, so 
its area is 0 as well. 

�OY\N\L\loi., Calculate the sum of the areas of the rectangles .  b - oi. \ 0 - 0  t:,.-,c � --� -- � 1  
I,\ \ 0 I 

2f (l) + 2f (3) + 2f (5) + 2f (7) + 2f (9) = 2 [J (l) + f (3) + f (5) + f (7) + f (9)] 
= 2 [6 + 9 + 9 + 4 + 0] 
= 56 The area beneath the curve is approximately 56 square units, according to the midpoint Riemann sum. 

Note: Problems 17.2-17.6 refer to the graph in Figure 17-1. 1 7.5 Approximate the shaded area using 10 rectangles of equal width and upper Riemann sums. 
Because the number of rectangles is n = IO, L1x = I .  The height of each rectangle in an upper Riemann sum is the greatest function value in an interval. There-

bL\+- yoL\ &lo\\'+- veoi.lly \\ee&l oi. �ov\N\L\loi. +-o +-ell yoL\ H'\oi.+- spli.+-+-i"8 SO\N\eH,i\\8 I O  L\\\i+-s lo\\8 i\\+-o I O  sec+-io\\S \N\eoi.\\S 

ore, the rectangle on the interval [0,1] has a height off(l)  = 6 (the right endpoint of the interval) , whereas the rectangle on [7,8] will have a height off(7) = 4 ( the left endpoint of the interval) . Note that the heights defining the rectangles in an upper Rieman sum need not occur at the endpoints of the interval, but in this problem they do. '5o""'e +-ex+-books coi.11 L\ppev SL\\N\ vec+-.,,.\\81es Cl RClJMSCRI BED vec+-oi.\\81es. 
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/(3) � � /(5 
((2) / \ 
J \ {(6 

I 

' ((7 

\ - fi_lO) 

\ /(8) J 
\. J 

1 2 3 4 5 6 7 8 9 10 
Figure 17-5 The greatest function values for each interval occur at either the left or right endpoint, but that is not necessarily true for all functions. In fact, it only occurs when a function, like f( x ), does not change direction between intervals. Calculate the sum of the areas of the rectangles .  l · f (l) + l · f (2) + 1 · f(3) + 1 · f (4) + 1 · f (4) + 1 · f (5) + 1 · f (6) + 1 · f (7) + 1 · f (8) + 1 · f (10) = 6 + 8 + 9 + 9.5 + 9.5 + 9 + 7  + 4 + 1 + 2  = 65 The shaded area measures approximately 65 square units , according to the upper Riemann sum. 

Note: Problems 17.2-17.6 refer to the graph in Figure 17-1. 1 7.6 Approximate the shaded area using 10 rectangles of equal width and lower �Riemann sums. 
The height of each rectangle in a lower Riemann sum is the smallest function value on the x-interval, as illustrated by Figure 17-6. 

10 9 8 7 6 5 4 3 2 

j(O 

I �  

'J(3) /' r-----., /(5) /{2)1/ \ 
J \ 1/(6 

lf(I )I \ 

� \ ((7 

! 

- - - -· - - -· \ [(8) 

\. 
[(9) 1 2 3 4 5 6 7 8 9 10 

Figure 17-6 The smallest function value over each interval defines the heights of the rectangles in a lower Riemann sum. Though these values occur at interval endpoints for this function, it is not necessarily true for all functions for the reasons given in Figure 17-5. 
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Calculate the sum of the areas of the rectangles .  l · f (0) + l  · f (l) + l · f (2) + 1 · f (3) + 1 · f (5) + 1 · f (6) + l · f (7) + 1 · f (8) + 1  · f (9) + 1  · f (9) = 5 + 6 + 8 + 9 + 9 + 7 + 4 + 1 + 0 + 0  = 49 The area beneath the curve is approximately 49 square units, according to the lower Riemann sum. 
Note: Problems 17. 7-17.11 refer to the area of the region bounded by the x-axis and the function 
g(x) = x2 on the x-interval [0,5]. 

1 7. 7 Estimate the area using a right Riemann sum with n = 5 rectangles of equal width. 
Calculate the width of the rectangles using the formula from Problem 17.1 .  

b - a  5 - 0  5 lix = -- = -- = - = l n 5 5 The rectangles will occupy these intervals on the x-axis : [0,1] , [ l ,2] , [2,3] , [3,4] , and [ 4,5] . The height of each rectangle will be determined by the function values of the right boundaries of each interval : g( l ) ,  g(2) ,  g(3) ,  g(4) , and g(5) , respectively. Calculate the sum of the areas of the rectangles .  !ix (g (l) + g (2) + g (3) + g (4) + g (5)) = 1 [(12 ) + (22 ) + (32 ) + (42 ) + (52 )] = 1 (1 + 4 +  9 +  16 + 25) = 55 According to the right Riemann sum, the area is approximately 55 square units . 
Note: Problems 17. 7-17.11 refer to the area of the region bounded by the x-axis and the function 
g(x) = x on the x-interval [0,5]. 

1 7.8 Estimate the area using a left Riemann sum with n = 5 rectangles of equal width. 
Use the same width from Problem 17.7: !ix = I .  When calculating left Riemann sums, the height of each rectangle is dictated by the height of the function at the left boundary of each rectangle. Calculate the sum of the areas of the rectangles .  !ix (g(O) + g (l) + g (2) + g (3) + g( 4)) = 1 [ 02 + 12 + 22 + 32 + 42 ] = 1 + 4 + 9 + 16 = 30 According to the left Riemann sum, the area is approximately 30 square units . 
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Note: Problems 17. 7-17.11 refer to the area of the region bounded by the x-axis and the function 
g(x) = x; on the x-interval [0,5]. 1 7.9 Estimate the area using a midpoint Riemann sum with n = 4 rectangles of equal width. 

Determine the width of the rectangles. 
b - a  5 - 0  5 !:ix = -- = -- = -

n 4 4 . . [ 5 ] [ 5 5] [5 15 ] [ 15 ] The four rectangles will occupy these mtervals :  0, 4 , 4 , 2 , 2 , 4 , 4 , 5 · 
Determine the midpoint of each interval by adding its boundaries and multiplying 1 by - . 

2 Midpoint of [ o,¾] Midpoint of [ ¾ , %] 
Midpoint of a, l:] 

Midpoint of [ 1: , 5] 
Calculate the sum of the areas of the rectangles .  

!J.x [g (�) + g (15 ) + g ( 25 ) + g ( 35 )] = � ( 25 
+ 225 + 625 + 1, 225) 8 8 8 8 4 64 64 64 64 = � ( 2, 100 ) 4 64 2, 625 = -- :::::: 41 .016 square umts 64 

Note: Problems 17. 7-17.11 refer to the area of the region bounded by the x-axis and the function 
g(x) = x; on the x-interval [0,5]. 1 7. 1 0  Estimate the area using a lower Riemann sum with n = 6 rectangles of equal width. 

Calculate the width of the rectangles. 
b - a  5 - 0  5 !J.x = -- = -- = -

n 6 6 
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The six rectangles will occupy these intervals :  [o,¾J , [� ,U , [� ,¾] , [¾ , 1;] , 
[1; , �] , and [� , 5] . Because g(x) is strictly increasing on [0,5] , the lowest function value in each interval occurs at the right boundary. Therefore, the lower Riemann sum is equivalent to the left Riemann sum for J(x) = x2. 

¾ ( g (O) + g (¾) + g m) + g (!) + g (1: ) + g (!)) = -1?. (o + 25 + 25 + 25 + 100 + 625 ) 6 36 9 4 9 36 = .1?. ( 25 + 100 + 225 + 400 + 625 ) 6 36 6, 875 = -- :::::: 31 .829 square units 216 
Note: Problems 17. 7-17.11 refer to the area of the region bounded by the x-axis and the function 
g(x) = x2 on the x-interval [0,5]. 1 7. 1 1 Estimate the area using an upper Riemann sum with n = 6 rectangles of equal width. Follow the same method as Problem 17.10, but instead of the lesser of the function values, define the rectangle heights as the greater of the endpoints' function values .  ¾ ( g (¾) + g (%) + g (t) + g (1: ) + g (!) + g (5)) = -1?_ ( 25 + 25 + 25 + 100 + 625 + 25) 6 36 9 4 9 36 = -1?_ ( 25 + 100 + 225 + 400 + 625 + 900 ) 6 36 1 1, 375 = --- :::::: 52.662 square units 216 
Note: Problems 17.12-17.16 refer to the area of the region bounded byf(x) = 3x2 + 1 and the 
x-axis on the x-interval [0,6]. 1 7. 1 2  Estimate the area using a left Riemann sum with : (a) n = 3 rectangles (b) n = 6 rectangles Which estimate more accurately approximates the correct area of 222 square units? 6 - 0  When n = 3 rectangles are used, b.x = -- = 2; when n = 6 rectangles are used, 6 - 0  3 

b.x = -- = I . 

B ecou,.se 
f)1(x) = 2x is 

posii--ive .Po v 0t.ll x's 
b e+-wee\\ o °'-\\""- � 

I 
f)(x) is i\\ cv e0t.S i\\f) 0\\ 
+-l-. e i\\f-evv0t.l. 
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(a) Left Riemann sum with n = 3 rectangles: : (b) Left Riemann sum with n = 6 rectangles: 
I �x [f (O) + J (2) + J (4)] : �x [f (O) + J (l) + J (2) + J (3) + J (4) + J (5)] 
I = 2 (1 + 13 + 49) : = 1 (1 + 4 +  1 3 +  28 + 49 + 76) 

= 126 square units ; = 171 square units 
Using n = 6 rectangles produces a more accurate result. 

Note: Problems 17.12-17.16 refer to the area of the region bounded byf(x) = 3x2 + 1 and the 
x-axis on the x-interval [0,6]. 1 7. 1 3  Why is the area estimate in Problem 17.12 significantly less than the actual area? 

The graph off(x) = 3x2 + 1 is increasing on the interval [0,oo ) ,  so the function value at the right boundary of each interval is greater than that of the left boundary. Furthermore, the magnitude by the right endpoint is greater increases as x increases. Consider Figure 17-7, the graph of J(x) and the n = 6 rectangles used to estimate the left Riemann sum. 

2 3 4 5 6 

Figure 17-7 The estimation error, represented by the shaded region of the graph, increases as x increases. Above each inscribed rectangle, a large region beneath the curve is omitted, causing the rectangles to underestimate the actual area beneath the curve. 
Note: Problems 17.12-17.16 refer to the area of the region bounded byf(x) = 3x2 + 1 and the 
x-axis on the x-interval [0,6]. 1 7. 1 4  Describe the accuracy of a right Riemann sum using n = 6 subintervals of equal width. 

The greater the difference between a function's height at the left and right boundaries of each interval, the greater the estimation error when only the left 
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or right Riemann sum is considered. Therefore, for exactly the opposite reasons presented in Problem 17.13, the right Riemann sum significantly overestimates the area. As Figure 17-8 demonstrates, the rectangles of the right Riemann sum now enclose far more than the area to be estimated. 

1 2 3 4 5 6 Figure 17-8 The circumscribed rectangles representing the right (or upper) Riemann sum using n = 6 rectangles overestimate the area beneath f(x). The estimation error, represented by the shaded region on the graph, increases as f ( x) increases. 
Note: Problems 17.12-17.16 refer to the area of the region bounded byf(x) = 3x2 + 1 and the 
x-axis on the x-interval [0,6]. 1 7. 1 5  Why will the midpoint sum provide the most accurate estimate of the area when compared to the left and right Riemann sums using the same subintervals?  Supplement your argument with a graph. 

As explained in Problem 17.13, a left Riemann sum will underestimate the area beneath an increasing function. Similarly, using the highest function values on an interval (when calculating a right Riemann sum) overestimates the area. However, a midpoint sum produces a far more accurate approximation, because each rectangle both excludes area within the region and includes area outside of the region, as illustrated by Figure 17-9. 
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Th e 
v-ec+-0\\\Bles O\v-e locO\+-e,:::1. O\\ +-'. . �e t\\f-ev-vO\ls [O , I ] , [ 1 , 2] , [2,>], [,,4], [4,5], 0\\\,:::1. [�G]. 
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1 2 3 4 5 6 

Figure 17-9 Each rectangle excludes area beneath the curve (represented by the dark shaded regions) and includes area above the curve (represented by the light shaded regions). 
Although the dark and light areas on each interval in Figure 17-9 are not equal (and therefore won't cancel one another out to perfectly calculate the area beneath the curve) , they serve to negate one another to some extent and provide a more accurate result than right, left, upper, or lower Riemann sums for l(x) = 3x2 + 1 .  In fact, midpoint sums are the most accurate Riemann approximation for the vast majority of functions. 

Note: Problems 17.12-17.16 refer to the area of the region bounded byf(x) = 3x2 + 1 and the 
x-axis on the x-interval [0,6]. 1 7. 1 6  Verify the hypothesis presented in Problem 17.15 by estimating the area using a midpoint Riemann sum with n = 6 rectangles. 6 - 0  The width of the rectangles is b.x = -- = l, and the midpoints of the intervals 1 3 5 7 9  1 1  6 are x = - , - , - , - , - , and - . Calculate the sum of the areas of the rectangles .  2 2 2 2 2 2 

b.x[1G) +  1(¾) +  1a) +  1G) +  1(i) +  1(\
1 )] = 1 [.Z. + 31 + 79 + 151  + 247 + 367] 4 4 4 4 4 4 

441 = - "" 220.5 square units 2 The area estimate of 220.5 square units closely approximates the actual area of 222 , especially considering that the left Riemann sum using the same number of rectangles is inaccurate by more than 50 square units (according to Problem 17.12) .  
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Trapezoidal Rule 
'Si1Milow ta Rie1M01.\\\\ Sv.lMS bv.t IMv.cl-\ 1Mcve 01.Ccv.v01.te 

1 7. 1 7  Approximate the area defined in Problem 17.12 (the area of the region bounded by J(x) = 3x2 + 1 and the x-axis on the x-interval [0,6] ) using three trapezoids of equal width. Yov!Ye fYO\:,O\\:,ly L\SeJ.. +-0 hO\pez.oiJ..s H-'10\f-1"0\ve l...oYiZ.o\\f-0\1 It is best to construct the trapezoids such that one of their nonparallel sides is fO\YO\llel siJ..es. JL\sf- f-ip horizontal and lies on the x-axis . The opposite side should connect the function 0\ hO\J..i+-io\\0\1-loo\c.i\\B values at the endpoints of the interval, as illustrated by Figure 17-10. �------l hO\pez.oiJ.. O\\f-o if-s le.Pt 

f(O) 

2 3 4 5 6 

fi x) =  3x2 + 1 

Trapezoid 2 J(2) 
2 

lrapezoid 3 
J(4) f (4) 

Figure 17-10 Three trapezoids of height 2 are used to estimate the area between f(x) and the x-axis. In the left illustration, note that the shaded region represents the overestimation error. In the right portion of the illustration, the trapezoids are rendered separately to facilitate the calculation of their areas. 
1 The area of a trapezoid is - h ( q + b2 ) , where b, and b2 are the lengths of the bases 2 and h represents the distance between them. Each of the trapezoids has the same b - a  6 - 0  height: h = J',,.x = -- = -- = 2. L n 3 

Area of Trapezoid l : Area of Trapezoid 2 : Area of Trapezoid 3 : 1 1 1 -
h

(bi_ + b2 ) 2h (b2 + b3 ) 2h (b3 + b4 ) 2 
= { c2) (J (o) + J (2)) = { c2) (J C2) + J (4)) = ! (2) (1 (4) + J (6)) 2 
= ¾ [ ( 3 · 02 + 1) + ( 3 · 22 + 1)] = ¾ [(3 · 22 + 1) + (3 · 42 + 1)] = ¾ [ ( 3 · 4 2 + 1) + ( 3 · 62 + 1)] 
= l [l + 13] = 1 [13 + 49] = 1 [49 + 109] = 14 = 62 = 158 

The sum of the trapezoidal areas is 14 + 62 + 158 = 234 square units . Note that this estimate is almost as accurate as the midpoint Riemann sum from Problem 

siJ..e O\\\J.. -AO\+-f-e\\ +-1"0\+- siJ..e OL\f- +-o Be+- +-t...e hO\pez.oiJ..s yov!II L\Se wi+-1" +-l...e hO\pez.oiJ..0\1 YL\le. 

"'- he>1.pez.oiJ.. e>1.Ye it-s pe>1.Ye>1.lle\ si.J..es. --rl...e>1.t- 1Mee>1.\\S +-l...e \:,e>1.ses o.P t-L\e le.Pt- he>1.pez.oiJ.. e>1.Ye .P(O) "'-\\J.. .P(2.), t-l...e \:,e>1.ses o.P t-L\e 1Mi.J..J..\e f-ve>1.pez.oi.J.. e>1.Ye .P(2.) "'-\\J.. .P( 4 ), "'-\\J.. t-L\e \:,e>1.ses o.P t-L\e Yi.BL\+-

28 1 
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V01.l1Aes l-\""ve "" 
co e.P..fici e\\t o.P 2 
e,ccept ,c := "" 01.\\J-
,c := "b, "b ec01.1AS e ""\\ o.P 
tl-\e °bt:".S es vepvese\\t 
tl-\e e\\J- o.P O\\e 
tv01.pez.oiJ- "'-\\J- tl-\e 
"b e,'.f \\\\i\\ 8 o.P t:".\\Otl--.ev 
e,ccept ""t tl-\e 
e\\J-poi\\ts. 
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17.16 despite using half as  many geometric shapes ( n = 3 trapezoids instead of 
n = 6 rectangles) . 

1 7. 1 8  Construct the trapezoidal rule, which uses n trapezoids of equal width to approximate the area of the region bounded by a function .f(x) and the x-axis on the x-interval [ a, b] . Label the endpoints of the intervals as follows : a = x0, a + �x = Xi , a + 2�x = x2 , • • · ,  

b = x" . l b - a Each of the trapezoids has area - · �x · ( b1 + b2 ) , where �x = -- . Factor 1 l ( b - a ) b - a 2 n - · �x = - -- = -- out of each term, leaving behind the sums of the bases 
2 2 n 2n of the trapezoids : b � a 
[ {J (a) + J (x1 )) + (J (x1 ) + J (x2 )) + · · · + {J (xn-2 ) + J (xn-1 )) + {J (xn-1 ) + f (b) )] 

= b�a [J(a) + 2J (x1 ) + 2J (x2 ) + · · · + 2J(xn-1 ) + f (b)] 
1 7. 1 9  Apply the trapezoidal rule with n = 5 trapezoids to estimate the area of the shaded region in Figure 17-1 1 .  (Note that this is the same function f(x) and region investigated in Problems 17.2-17.6 . )  

Figure 17-11 
The graph ofa continuousfunction .f(x) . 

fix) 

Apply the trapezoidal rule formula from Problem 17.18. 
Here, a = 0, b = 10, and n = 5 ;  the bases are located at the same x-values as the interval endpoints : a = 0, x, = 2, x2 = 4, x3 = 6, x1 = 8, and b = 10. Substitute these values into the formula. 
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l;(�)O [J (0) + 2f (2) + 2f (4) + 2f (6) + 2f (8) + f (lO)] �--10 = - (5 + 2 · 8 + 2 · 9.5 + 2 · 7 + 2 · 1 + 2) 10 = 1 (5 + 1 6 + 19 + 14 +  2 + 2) = 58 square units 
1 7.20 Problems 17.7-17.1 1  estimate the area of the region bounded by g(x) = x2 and the x-axis on the x-interval [0,5] . Apply the trapezoidal rule using n = 6 trapezoids. 

Apply the trapezoidal rule formula from Problem 17.18 . Note that Problem 17.10 used the same number of intervals over the same interval, so use those boundaries and function values .  b �a [g (a) +  2g (x1 ) +  2g (x2 ) +  2g (x3 ) + 2g (x4 ) +  2g (xs ) + g (b)] 
= �(6� [ g (O) + 2g (¾) + 2g (¾) + 2g ({) + 2g ( 1;) + 2g (�) + g (5)] 
= 1� [ 0 + 2 (!!) + 2 (�) + 2 (�) + 2 (1�0 ) + 2 ( 63�) + 25] = � (1, 825 ) 1 2  1 8 = 9' 1 25 ::::::: 42 .245 2 1 6 

1 7.2 1 Estimate the area of the region bounded by h(x) = sin x and y = 0 on the x-interval [0, .n] using the trapezoidal rule with n = 4 trapezoids. 
Begin by calculating L1x. b - a .n - 0  .n L1x = -- = -- = 

n 4 4 Apply the trapezoidal rule formula. 

o,.\ wo,.ys o'te 1Move 
.Pl.\'tctio't vo,.ll.\e  

i't l-\eve tl-\o,.'t tl-\e 
'tl.\lM'\o ev 't. ('5i'tce 
't := � tl--.eve o,.ve 
si,c tev1MS i't  tl-\e 
'\ovo,.c\:.ets.) All o.P tl--.e1M 
o,.ve 1Ml.\ltip\i eJ.. 'loy 2. 
e,ccept tl-\e -fivst 
"""J.. \o,.st o'tes, 
.P(O) """J.. -Pel O). 
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,� cv-.Aev- tc �otke six hotpez.c1.As, ye!.\ �ee.A seve� bcl.\�<Aotv-ies: twc e�.Apci�ts .Pcv- tl--.e wl--.cle i�tev-votl (x = I ot�.A x = 1 1) ot�.A -five eql.\otl steps (tl--.ott otv-e l::.x !.\�its lc�8) i� bet-wee�. 

-rl-\e 
CCIMIMC� .Ae�CIMi�OlrCv- c.P '3 4 1 1  I I t I>, 2'3, ot�,A 28' is 27,,27(.! '51.\v-e ye!.\ .Ac\\"t wot�t tc ot.A.A t-1-\cse .Pv-otctic�s by V\ot�.A?! 
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Evaluate the sine function using the unit circle. = % [0 + (2 - �) + (2 - 1) + (2 - �) + o] 
= % [ ✓2 + 2 + ✓2] .n (2 + 2✓2 ) 8 Reduce the fraction by factoring 2 out of the numerator . .n · f (1 + ✓2 ) j - 4 .n (1 + ✓2 ) = �--� 

1 7.22 Estimate the area of the region bounded by f(x) = - , y = 0, x = l and x = 11  using 
X six trapezoids of equal height. Report your answer accurate to three decimal places .  

Apply the trapezoidal rule; begin by calculating �x. �x = 1 1  - 1 = 10 = E_ 
6 6 3 Add i to the lower boundary five times to generate the boundaries of the trapezoids. l = 3 3 + 5 = 8 8 + 5 = 13  13  + 5 = 18 = 6 18 + 5 = 23 23 + 5 = 28 28 + 5 = 33 = l l  3 '  3 3 '  3 3 '  3 3 ' 3 3 '  3 3 '  3 3 Apply the trapezoidal rule. 

It is neither useful nor valuable to combine these fractions using a common ,---➔7 denominator-use a graphing calculator to identify the decimal equivalent. The area is approximately 2.592 square units . 
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1 7.23 Prove that the trapezoidal rule approximation for the area beneath a continuous function .l(x) on the x-interval [a, b] using n trapezoids is equal to the average of the right and left Riemann sums for the same area using n rectangles. 
Figure 17-12 illustrates a function f(x) split into n subintervals over [a, b] . Note that b - a  each interval has width J',,.x = -- , creating the subintervals [a,x, ] , [x, ,x2] , [x2 ,x3] , 

n · · · , [x" _ 2, x,, _ ,] ,  and [x" _ ,, b] . 

Figure 17-12 Although [a,b} is split into n = 8 subintervals, this diagram is labeled generically-any n subintervals would be labeled the same way along the x-axis. 

Note that each boundary is used except for f(b) , as that x-value does not represent the left boundary of any subinterval. Now calculate the right Riemann sum, SR ; this time onlyf(a) will not appear in the formula, as it is not the right boundary of any subinterval. SR = b - a (J (x1 ) + J (x2 ) + J (x3 ) + · · · +  J (xn_2 ) + J (xn-1 ) + f (b)) n The average of S, and Sm is the sum multiplied by _! . 2 
i(sL + SR ) = Hb:a (J(a) +  ! (Xi )+ · · · + J(x._2 ) +  J(x._1 ))] +Hb:a (J(x1 ) +  J (x2 } + · · · +  J(x._1 ) +  J (b))] 

l b - a b - a Every term in the sum contains - · -- = -- ; factor out that expression. 2 n 2n 
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A ctv..,..lly, 
tl-\e h01.pe

z.oi.As O't tl-\e 
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Notice that, apart from f(a) and f(b) , every function value f(x1 ) , f(x2) , f(x3) ,  · · · , f(x,, _ 2) , f(x,, _ , )  is repeated-appearing once in S, and once in Sw Add each pair: J(x, ) + J(x,) = 2f(x,) , f(x2) + f(x2) = 2f(x2) ,  etc. 

1 7.24 A surveying company measures the distance between the northern and southern shores of a lake at fixed intervals 100 feet apart. Apply the trapezoidal rule to the data in Figure 17-13 in order to determine the approximate surface area of the lake. 

1 100 ft 1 100 ft 1 100 ft 1 100 ft 1 100 ft 1 100 ft I I 

Figure 17-13 The distances between the shores of a 625-joot-long lake taken at regular 100-Joot intervals. Note that the distance 0 at the leftmost measurement mark indicates the western boundary of the lake . 
The lake's measurements are a function of the distance from its western shore, d(x) : d(0)  = 0, d(IO0) = 180, d(200) = 289, d(300) = 283, d(400) = 280, d(500) = 264, and d(600) = 172. Apply the trapezoidal rule to approximate the area beneath d(x) on [0,600] with 
n = 6 trapezoids. b � a [d (a) + 2d (x1 ) + 2d (x2 ) + 2d (x3 ) + 2d (x4 ) + 2d (x5 ) +  d (b)] = 6��;;° [o + 2 (180) + 2 (289) + 2 (283) + 2 (280) + 2 (264) + 112] = 50 [2, 764] = 138, 200 ft2 

1 7.25 The surveying company from Problem 17.24 is not entirely comfortable with its estimate, because that approximation neglects the portion of the lake less than 25 feet from its eastern boundary. To verify its previous estimate, seven trapezoids are used to approximate the surface area, but this time, the measurements are taken at unequal intervals, as illustrated by Figure 17-14. What is the approximate surface area of the lake according to this technique? 
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Distance (in feet) from 
north to south shore 187 261 

\__ 292 

) 
----------1 255 

0 625 

Distance (in feet) from I I I I lake's west shore ----+-I --7---ttr----+l--------+------+--11 

Figure 17-14 

48 14sJ\)54 240 507 593 

The lake.from Figure 1 7-13, this time including distances measured at 
unequal intervals. 

Though you are instructed to use trapezoids to approximate the area, you cannot 
actually apply the trapezoidal rule-it requires equal subintervals .  Therefore, 
you simply find the area of each trapezoid individually. The leftmost two measure
ments, 0 and 134, are the bases of 7; (the first trapezoid) , 134 and 187 are the 
bases of 7;_ (the second trapezoid) , 187 and 255 are the bases of 1's, and so forth 
until 7;, the trapezoid with bases 145 and 0. 

Area of Yi + Area of 7;, + Area of I's + Area of T4 + Area of T,, + Area of T6 + Area of T, 1 1 1 1 1 1 1 
= - hi (0 + 1 34) + - '½ (134 + 187) + - ks (187 + 255) + - h4 (255 + 292) + - k,; (292 + 261) + - � (261 + 1 45) + - '½ (1 45 + 0) 

2 2 2 2 2 2 2 

= _!_ [hi (1 34) + '½ (321) + ks ( 442) + h4 (547) + h5 (553) + � ( 406) + '½ (145)] 
2 

Calculate the widths (hi , h2, · · · , h7) of the trapezoids and substitute them into the 
expression. 

= ! [48 (1 34) + 1 00 (321) + 6( 442) + 86 (547) + 267 (553) + 86 ( 406) + 32 (1 45)] 
2 1 = - [6, 432 + 32, 1 00 + 2, 652 + 47, 042 + 1 47, 651  + 34,9 16 + 4, 640] 
2 

= _!_ [275, 433] 
2 

= 1 37, 716.5 ft2 

Note that this estimate of the lake's surface area is very close to the estimate from 
Problem 17.24. 

1 7.26 Demonstrate that the exact area beneath a linear function can be calculated 
using a trapezoidal approximation. 

Consider the linear function f(x) = mx + b in Figure 17-15.  The shaded area of 
the region bounded by f(x) and the x-axis on the x-interval [c,d] is, in fact, a 
trapezoid. Use the formula for the area of a trapezoid to calculate the shaded 
area. 

-rl-\e 
..fivst- t,v.,._pe-

z.oi.J- Bo es .PvolM 0 t-o 
48' .Peet- e.,._st- o.P t-l-\e 
west- eJ-B e o.P t-l-\ e \.,.,�e, 
so l-\1 := 48' - 0 := 48'. -rl-\e 
seco\\J- t,v.,._p ez.oi.J- Bo es 
.PvolM 48' t-o \48' .Peet
e.,.,st-, so l-\2 := \48' - 48' 
:= \ 00, e+-c. 
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f(x) = mx + b  

I 

I f(c) 
I 

C d Figure 17-15 The area beneath the linear function j(x) on the x-interval [ c, d J is a trapezoid with bases f ( c) and f ( d) and height l!.x = d - c .  1 area = -1!.x (q + b2 ) 2 1 = - (d - c) (J (c) + f (d)) 2 Note thatj(c) = m(c) + b and j(d) = m(d) + b. Substitute these values into the area expression. 1 = - (d - c) [(mc + b) + (md + b)] 
2 Not all areas between a linear function and the x-axis can be calculated using a single trapezoid. However, as Figure 17-16 demonstrates, those areas can be calculated using two triangles. 

f(x) = mx + b 

C 
I J(d) 
I 

d 

I 

J (c) 1 
I 

Figure 17-16 If the exact area beneath a linear function cannot be calculated using a single trapezoid, it can be determined using two triangles. 
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Simpson's Ru le 

AppvC)<llM01.tes oweO\ be\\e01.tl-\ cv.vvy .Pv.\\CtiC\\S ve01.lly wen 

1 7.27 Compare and contrast Simpson's rule and the trapezoidal rule. 
Simpson's rule is an area approximation technique that uses equal subintervals, like the trapezoidal rule. However, rather than using straight lines to connect the interval endpoints, thereby constructing trapezoids to estimate the area, Simpson's rule uses parabolas. Therefore, Simpson's rule is able to exactly calculate the area beneath quadratic functions, whereas the trapezoidal rule is able only to exactly calculate the area beneath linear functions (as explained in Problem 17.26) . Simpson's rule is also governed by one additional restriction: n, the number of subintervals used in the approximation, must be even. According to Simpson's rule, the area between the continuous function f(x) and the x-axis on the x-interval [a, b] is approximately equal to the following: 
Like the trapezoidal rule, Simpson's rule attaches no coefficients to .l(a) and .l(b) . However, Simpson's rule requires a coefficient of 4 before all odd subscripts of x and a coefficient of 2 before all even subscripts. 

'"" Hie Rie\A.\ol1111 ��""' .Pcv""'L\lots, ycl,\ .J.1v1.J.e b - "'- by ""· 111 the hotpez.ci.Aotl YL\le .Pcv""'L\lot, ycL\ .J.ivi.J.e b - "'- by 211i ot11.J. i11 the 'Si""'psc11's vL\le .Pcv""'L\lot, ycl,\ .J.ivi.J.e b - "'- by '311. 
'fcl-\'11 1 7.28 Problems 17.12-17.17 estimate the area of the region bounded by .f(x) = 3x2 + 1 and the x-axis on the x-interval [0,6] . Apply Simpson's rule with Bet- t-l-\e n = 2 subintervals to verify that the exact area of the region is 222 square units .�--1- e><otCt- otveot 'oecotL\Se -PC><) Begin by calculating the widths of the subintervals. 

b - a 6 - 0  l'ix = -- = -- = 3 
n 2 Apply Simpson's rule with a = 0, b = 6, n = 2, and f(x) = 3.i' + 1 .  

b
�

a
[{.r(a) + 4f(x1 ) + f (b))] 6 - 0  = 3 (2) [f (0) + 4.f (3) + .f (6)] 

= � [ ( 3 · 02 + 1) + 4 ( 3 · 32 + 1) + ( 3 · 62 + 1)] = 1 [(0 + 1) + 4 (27 + 1) + (108 + 1)] = 1 + 1 12 + 109 = 222 

i.s "'- qL\ot.Avott-i.c .PL\11ct-i.c11 0t.11.A Si.1Mpsc\\"s v1Ale cotlcL\lott-es otveot L\si.11B potvot'odots (i.11st-eot.A c.P hotpez.ci.J..s), wl-\i.cl-\ otve qL\otJ..vott-i.c .PL\11ct-i.c11s. 
ycL\ hotve c11ly "" ==- 2 SL\bi11tevv0t.ls 

I I .J.c11 t switch botd:. otl\.A .Pcvth betwee11 cce.P-ficie11ts c.P 4 otl\.A 2 i11 the 'Si""'pscl\"s vl,\le .Pcv""'L\lot. JL\st L\Se c11e cce-P-ficie11t: 4. 
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1 7.29 Problem 17. 20 estimates the area of the region bounded by g(x) = :i2 and the x-axis on the x-interval [0,5] using n = 6 subintervals. Apply Simpson's rule to determine the exact area. 
b - a [ ] - g(a) + 4g (x.i ) + 2g (x2 ) + 4g (x3 ) + 2g (x4 ) + 4g (x5 ) + g(b) 3n = !(6� [ g (O) + 4g ( ¾) + 2g G) + 4g G) + 2g(1:) + 4g (�) + g (5)] 

= 1� [ 0 + 4 (:!) + 2 (�) + 4 (�) + 2 (1�0 ) + 4 ( 63�) + 25] 
= � [150] 18 750 18 125 

3 

Use Simpson's rule with n = 4 subintervals to estimate the area between the xaxis and the function h(x) = sin x (as defined in Problem 17.21)  on the x-interval [0, .n] . 
Use the subinterval width and function values from Problem 17.21 as you apply Simpson's rule. 

b �
a

[ h (a) + 4h (x1 ) + 2h (x2 ) + 4h (x3 ) +  h (b)] 

= ��� [ h (O) + 4h ( �) + 2h ( f ) + 4h ( 3;) + h (.n)] 
= � ( o + 4 ( �) + 2 (1) + 4 ( �) + o) 
= � ( 2✓2 + 2 + 2✓2 ) .n (2 + 4✓2 ) 12 Factor 2 out of the numerator to reduce the fraction. ,2.n (l + 2✓2 ) 

= -----,2 · 6 .n (l + 2✓2 ) 6 This equals approximately 2.00456, which is very close to the exact answer of 2. By comparison, the trapezoidal rule estimate from Problem 17.21 was approximately 1 .89612. 
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1 7.3 1 Use Simpson's rule with n = 6 subintervals to estimate the area between the 1 x-axis and J (x) = - (as defined in Problem 17.22) on the x-interval [1 ,11 ] . Provide an answer accurate to three decimal places .  
The intervals and function values match those listed in Problem 17.22 ; apply them to Simpson's rule. b �a [J (a) + 4J (x1 ) + 2J (x2 ) + 4J (x3 ) + 2J (x4 ) + 4J (x5 ) + f (b)] 

= 13\�)1 [1 <1) + 4J G) + 21 (1:) + 4J (6) + 2J (�) + 4J (�) + J (l l)] 10 [ 3 3 1 3 3 l ] = 18  l + 4 · 8 + 2 · 13  + 4 · 6 + 2 · 23 + 4 · 28 + 1 1  = _!?_ (1 + � + � + � + � + � + _!_) 9 2 13  3 23 7 1 1  � 2.449 
Formal Riemann Sums Ycl-\'11 W01.\\t ta pc\c.e ycv.v ''i''s cv.t 

1 7.32 Describe how the Riemann sum L f(cJ�x; is used to calculate area in the 
i=l 

-r�is 
coordinate plane when .l(x) � 0. --------, 

is ju.st- 0\ VO\YtO\ble i, \\Ot- i =-A. 
This expression states that the approximate area beneath the continuous function f(x) is equal to the sum of a series of rectangle areas. Each rectangle's area is equal to the product of its length, f(c,) , and its width, �x,. For instance, the area of the third ( i = 3) rectangle is f( c3) • �x3, where �x3 is the distance between the endpoints of the interval on which the rectangle is constructed, and f( c3) is the height of the function f(x) at some point x = c3 on that interval. 

1 7.33  Use a formal right Riemann sum with n = 4 subintervals of equal width to estimate the area of the region bounded by the x-axis and the positive, continuous function .f(x) on the x-interval [a, b] . 
Calculate the width of the rectangles using the formula from Problem 17.1 .  b - a �x = --n Next, identify the boundaries of the four intervals. The leftmost interval has a left bound of x = a and a right bound of a + �x: [ a, a + �x] . The left boundary of the second interval matches the right boundary of the first interval (a + �x) and its right boundary is �x to the right: (a + �x) + �x = a + 2�x 

lt
J-oes\\"tve.,..\\y 1M01.t-t-ev WV\O\r f'Ol\\r yol,\ pie� O\\ t-l-'le i\\t-evy.,..l, "bec01.1ASe yolA'\\ be lASt\\B t\\-fi\\it-ely t-l-'li\\ vect-"'-\\Bles O\\\J.,..\\ o.P t-l-'le .Pl,\\\Ct-i.O\\S V01.l 1Aes will "be volABl-'lly t-l-\e S01.1Me. (See Pvo"blelM 17.'37.) 

29 1 
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Fiv-s+pll.\8 i\\ i = I +-o Be+- +-he ,:,weot l:.x • .P Ol:.x) , +-he\\ pll.\8 i\\ i = 2 +-o Be++-he otv-eot l:.x • .p (.,._ + il:.x ), ot\\.A so O\\, otll +-he woty l.\p +-o i = \\, +-he otv-eot l:.x • .P (.,._ + \\ l:.x). O\\ce yoiJve .Pol.\\\.A otll +-hose v-ecf-ot\\Bl.\lotv- otv-eots, ot<A.A +-he1M otll l.\p. 

No IMotf-f-ev- whot+. b - ot is, i.P Y<'l.\ .Aivi.Ae t� by ot\\ i\\..fi\\if-ely 8 l8ot\\f-ic \\l.\lMbev- \\, +-he v-esl.\lf- is botsicotlly o. (See +-he \\of-e O\\ Pv-oblelM I 0.28'.) 
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Therefore, the second interval is [a + .6.x, a + 2.6.x] . Similarly, the remaining intervals are [ a + 2.6.x, a + 3.6.x] and [ a + 3.6.x, b] . 
b - a Each rectangle of the right Riemann sum has a width of .6.x = -- and a height 

n equal to f( c,) , if c, is the right boundary of the ith interval. Calculate the sum of 
.6.x · f (a +  .6.x) + .6.x · f (a +  2.6.x) + .6.x · f (a +  3.6.x) + .6.x · f (a +  4.6.x) = .6.x [f (a + .6.x) + f (a + 2.6.x) + f (a + 3.6.x) + f (a + 4.6.x)] 

1 7.34 Use a formal right Riemann sum with n subintervals of equal width to estimate the area of the region bounded by the x-axis and the positive, continuous function f(x) on the x-interval [a,b] . 

Note that Problem 17.33 asks you to perform the same task, but with a specific number of subintervals (n = 4) . This problem will therefore have a similar answer, but instead of 4 function values added parenthetically, there should be n: 
.6.x [J (a + .6.x) + f (a +  2.6.x) + f (a +  3.6.x) + · · · + f (a +  n.6.x)] 

1 7.35  Write the solution to Problem 17.34 in sigma notation. 
To indicate a sum of n terms, the limits of the summation are 1 and n. Use the 

n variable i to indicate the individual rectangles :  L [ .6.x · f ( a + i.6.x)]. 
i=l 

1 7.36  In order to exactly calculate the area between a function f(x) and the x-axis, an infinite number of rectangles must be used. Explain how to indicate this for Riemann sums written in sigma notation. 
Apply the formula from Problem 17.35 and indicate an infinite number of 

n rectangles by allowing n to approach infinity: �i� L [ .6.x · f ( a + i.6.x)]. 
i=l 

1 7.37 Justify the sufficiency of a right Riemann sum ( or in fact any other Riemann sum) to exactly calculate a finite area using an infinite number of rectangles .  
In order for an infinite number of rectangles to fit in a finite space, the width of 

b - a the rectangles, .6.x = --, must approach 0. If the rectangles have an n infinitely small width, the heights of the function beneath which you are approximating the area will not change significantly on the subintervals. 
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Therefore, all of the function values on each subinterval are essentially the same, and the right, left, midpoint, or any other Riemann sum will produce the exact same value, the precise area between the function and the x-axis . 

n n n n 1 7.38  Identify the values of the following expressions: L k , Li , L i2 
, and L i3 

. 
i=I i=I i=I i=I 

Calculating area with formal Riemann sums often requires you to know the values of these sums. It is helpful to memorize their values rather than to generate them when they are needed. In fact, generating them is both trivial and irrelevant for the scope of this exercise, and is therefore omitted. 
n n 2 n 2 3 3 2 n 4 2 3 2 � k _ k � . _ n + n � .2 _ n + n + n � .3 _ n + n + n LJ - n L.J z - -- LJ Z - ----- and L.J Z - -----

i=I 
, 

i=l 2 , 
i=l 6 , 

i=l 4 
1 7.39 According to Problem 17.29, the exact area of the region bounded by g(x) = x2 125 and the x-axis on the x-interval [0,5] is equal to 3 square units . Verify this value using a formal right Riemann sum (i.e., using infinite number of rectangles) . 

Problem 17.36 states that the right Riemann sum using an infinite number of rectangles is equal to �� L [ l!.x · g (a + il!.x)]. To apply the formula, begin by 
i=l calculating l!.x. 

b - a 5 - 0  5 l!.x = -- = -- = -
n n n 

5 Substitute l!.x = - into the formal Riemann sum formula. Note that 
n 

g (a + il!.x) = g(il!.x) because a =  0. lim L[ l!.x · g(il!.x)] = lim L - · g _!_ n n [ 5 (5 " )] n➔OO i=l 
n➔OO i=I n n 

Ge\\ev-oi.ti\\8 
tl--.ese is MVC\-1 HARDER tl--.oi.\\ jl.\st 1Me1Mcv-iz.i\\8 tl--.e1M, sc J-c\\"t eve\\ 't>ctl-\ev- -fi81.\v-i\\8 it cl.\t l.\\\less ycl.\ l-\oi.ve oi. \ct c.P ti1Me C\\ ycl.\vl-\oi.\\J-s. --rl-\e -fiv-st 

c\\e's eoi.sy, 't>l.\t tl-\e v-est c.P le1M? Nct 

I\\ this pv-cble1M, S'/\\ is 0\ CC\\Stoi.\\t (i choi.\\8eS J-1.\v-i\\8 the According to a summation property, L a · g ( x) = a L g ( x) . �-------J pv-cble1M bl.\t \\ J-ces\\"t:). Pl.\11 it Cl.\tsiJ-e the Sl.\1M1Moi.tic\\ sy1Mbcl. 
5i Substitute - into g(x) = x2. 
n 

[ 5 n (5 · )2 ] = �i� � - � : 

= lim[� . � ( 25i2 )] 
n➔OO n � n2 

i=I 
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L'I-IBpih,1.l 's 
RL\le is coveve.A 

i't Pvoble1Ms 
14.27- 14.'34. 

Again apply the summation property La · g ( x) = a Lg ( x) to remove the 
25 

f . h. h . constant 2 rom wit 1n t e summat10n. 
n 

[
5 25 n ] 

= lim - · - ·  � i2 

n➔oo n n2 ? i=l 

= lim -3 · L i2 [
125 n ] 

n➔oo n i=I 
n 

Apply the }: i2 formula from Problem 17.38.  
i=l 

= lim [
1 �5 . 2n3 + 3n2 + n

] 
n➔O> n 6 

= lim [
250n3 

+ 
375n2 

+ 
1 25n

] 
n➔O> 6n3 6n3 6n3 

1. 
250n3 

1. 
375n2 

1. 
1 25n = 1m -- + 1m -- + 1m --

n➔"' 6n3 n➔O> 6n3 n➔O> 6n3 

Evaluate each limit either by comparing the degrees of the numerator and 
denominator or using L'Hopital's Rule. 

= 
250 

+ o + o = 
1 25 

6 3 

1 7.40 According to Problem 17.28,  the exact area of the region bounded by 
j(x) = 3x2 + 1 and the x-axis on the x-interval [0,6] is equal to 222 square units . 
Verify this value by calculating the same area using a right Riemann sum and 
an infinite number of rectangles. 

Apply the techniques described in Problem 17.39. Begin by calculating L1x. 

b - a 6 - 0  6 L1x = -- = -- = -
n n n 

and J (a + it1x) = f (it1x) , because a = 0 

Substitute L1x into the formal right Riemann sum formula. 

lim L [ L1x · f ( il1x)] = lim L - · f -
n n [ 6 (6i )] 

n➔oo i=I n➔oo i=I n n 

Apply the summation property that states }: a · g (x) = a }: g(x) and evaluate 

1(:) -

(
6 n [ 36 ·2 ]) 

= lim - · � 3 · -z- + 1  
n➔oo n ? n2 

z=l 

= lim (
� . � [

l08i2 

+ 1]) 
n ➔OO n ? n2 

z=l 
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According to a summation property, L (a + b) = L a +  L b _ .,,""---

6 Distribute - through the parentheses. 
n = lim (� � 108i2 + � � 1) 

n➔"' n L.J n2 n L.J 
i=I z=l ( 6 108 n 6 n 

) = lim - - - � i2 + - � 1 
n➔"' n n2 L.J n L.J 

z=l t =l 

. 
n 

·2 2n3 + 3n2 + n n Accordmg to Problem 17.38, L z = ----- and Ll = (l) n  = n . 
i=l 6 i=l 

= lim [ 64
3
8 (2n3 + 3n2 + n

) + � (n)] 
n➔O> n 6 n [ 648 3 6;{ ] = lim -3 (2n + 3n2 + n) + ./ 
n➔O> 6n 7i = lim [10

3
8 (2n3 + 3n2 + n) + 6] 

n➔oo n = lim [ 216n3 + 324n2 + 108n + 6] 
n➔O> n3 n3 n3 216n3 324n2 108n = lim --3 - + lim --3 - + lim -3- + lim 6 
n➔oo n n➔oo n n➔oo n n➔oo Evaluate the first three limits by comparing the degrees of the numerator and denominator or using L'Hopital's Rule. Note that lim 6 = 6 . 

n➔"' = 21 6 + 0 + 0 + 6  = 222 
1 7.4 1 Calculate the exact area of the region bounded by j(x) = x' + x and the x-axis on the x-interval [-1 ,0] using a formal right Riemann sum. 

Determine the value of �x. 

�x = 0 - (- 1) = 0 + 1 = .!_ 
n n n 1 Substitute �x = n into the formal right Riemann sum formula. 

lim L [ �x · j (a + i�x)] = lim L - · j - 1  + -n n 

[ 
1 ( i )] n➔OO i=I 

n➔OO i=l n n = lim .!_ �> (- 1 + ..£) 
n➔OO n i=I n 

split f-l-\e SL\IM i'tsiJ..e si81M"'- i'tf-o f-l-\e SL\IM o.P hvo sepo,.vo,.f-e si8IM"'-
Yo!.\ COl.'t pl.\11 Hie 

I Oi CO'tSf-Ol.'tf- -'t 2 OL\f-siJ..e +-he si81Mo,. si8" 'tow. 
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Wl-\e\\ 
yo1A spli.t- t-1-\e 

biB SiBIM"'- i\\t-O 
.Pol-\v SIMO\llev SiBIM"'-S, 

IMO\\:.e Sl-\ve yolA 
t::Aist-vib1At-e t-1-\.,..t, 

I/\\ t-o bot-I-\ o.P 
rVlelM. 

j(><) is t-1-\e o\\ly 
.P1A\\ct-io\\ i\\ t-1-\is 

cl-\.,..pt-ev t-l-\.,..t-1s below 
t-1-\e ><-.,..><is. 
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Evaluate j (-1 + �). 

l n [( i 
)

3 ( i 
)] = �i�

-;;:
� - 1 +

-;;: 
+ - 1 +

-;;: 

. 1 I
n 

( 
3i 3i2 i3 i 

) = hm - - l + - - - + 3 - l + -
n➔00 n . n n2 n n i =l 

n n n 

Replace L i3, Li2
, 

and L i with the formulas from Problem 17.38 .  
i=l i=l i=l 

= lim .!. (_!_ . n 4 + 2n3 + n2 
- � . 2n3 + 3n2 + n 

+ 
.± . n2 + n - 2n) 

n➔oo n n3 4 n2 6 n 2 
= lim ( n4 + 2n3 + n2 _ 6n3 + 9n2 + 3n

+ 
4n2 + 4n _ 2n ) 

n➔oo 4n4 6n3 2n2 n 
1 

= - - 1 + 2 - 2 4 3 4 
Because the graph ofj(x) is negative on the x-interval (-1 ,0) , the region bounded 3 
by j(x) and the x-axis has a signed area of -4 . Signed area reports both the area 

of the region and whether that area appears above or below the x-axis (much like 

velocity reports an object's speed as well as its direction via its sign) . However, area 

should be reported using positive units, so the area of the region is ¾· 



Chapter 1 8  
I NTEG RATION 

. . , +- +-l-\e e'\\\Swev, i.i-'s +-l-\e ql.\esr'io\\ 
Now +-l-\e �evlVe'\'t'lVe s \\O 

. h ill apply the fundamental theorem of calculus, which In this c 
:;::��:;:,i:e of a function in order to exactly calculate the area uses the a 

h t function and the x-axis. Antidifferentiation reqmres a bounded by t
f 
a 

h . and algorithms than differentiation, so Chapters wider variety o tee mques 
. h · 18-24 are dedicated to thoroughly exploring antidiffere�tiation te

�w:;
ques 

d th . applications. At this , the onset of said exploration, th_e p 
. 

an eir 
. • d tial function rule for integration, trigonometric , loganthmi_c ,  an exponen 

antiderivatives, and variable substitution are discussed. 

-rl-\is cl-\01.ptev is ""l""'ast "" cla\\e a.P Cl-\01.ptev 1 2, e><cept i\\ste01.ol a.P le01.v\\i\\8 b01.sic oli.P.Peve\\ti01.tia\\ tecl-\\\iqv.es, yav.'1 1 leO\v\\ t>O\Sic i\\te8v01.tia\\ (av 01.\\tioli.P.Peve\\ti01.tia\\) tecl-\\\iqv.es. Cl-\01.ptev 1 1  e\\oleol witl-\ tl-\e \'l-\0\vol wO\y" ta ca""'pv.te oleviv01.tives (tl-\e oli.P.Peve\\ce qv.atie\\t)-savt a.P like Cl-\01.ptev 1 7, wl-\icl-\ e\\oleol witl-\ tl-\e \'l-\0\vol w01.y'' ta C01.lcv.l01.te e><01.ct O\ve"" (.Pav""'"'-1 Rie""'"'-\\\\ sv.""'s). RiBl-\t s""'"'-Ck 01.t tl-\e be8i\\\\i\\8 a.P Cl-\01.ptev 1 2, tl-\e \'e"'-sy w01.y1
' ta t01.ke oleviv01.tives sl-\aweol v.p, tl-\e pawev vv.le .Pav oli.P.Peve\\ti01.tia\\ . -rl-\is cl-\01.ptev st01.vts witl-\ tl-\e \'e"'-SY w01.y1

' ta -h\\ol A N"Tloleviv01.tives, tl-\e pawev vv.le .Pav i\\te8v01.tia\\ . It tl-\e\\ ""'aves a\\ ta b01.sic i\\te8v01.tia\\ ca\\cepts like tl-\e .Pv.\\ol01.l,l,\e\\t01.l tl-\eave""' a.P CO\lcv.lv.s O\\\ol i\\te8v01.tia\\ ""'etl-\aots like v.-sv.bstitv.tia\\ . 
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is tl-\e e><pv-essic\\ i\\siJ..e tl-\e i\\te8v-o,.\ ('behvee\\ tl-\e i\\te8v-o,.\ Si8\\ o,.\\J.. tl-\e '�><''). 

Eve\\ thcL\Bh thev-e o,.v-e twc i\\te8v-o,.ls hev-e, ycL\ \\ee.A C\\ly tc L\Se 
C\\e C. Eo,.ch i\\te8v-o,.I ho,.s "'- CC\\Sto,.\\t c.P i\\te8v-o,.tic\\, bL\t these twc L\\\k\\cw\\ CC\\St01.\\ts o,.,A,A L\f' tc Sc1Me cthev- L\\\k\\cw\\ CC\\St01.\\t ycL\ lo,.bel C. 
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Power Rule for I ntegration 
ADD I ta tl,,,e e,cpc\\e\\t oi.\\.:A D IVIDE by tl,,,e \\ew pcwev 

1 8 . 1  Given a and n are real numbers, determine the antiderivative : J axn dx. According to a property of integrals, J af (x) dx = a J f (x) dx. L--------------�f axn dx = a I xndx 
n+l The power rule for integration states that J xn dx = _x_ + C. In other words, n + l  increase the exponent by 1 and divide the term by the new exponent; the result is the antiderivative. Additionally, you must add a constant of integration "+ C" to the expression to indicate the possible presence of a constant. Notice that differentiating this expression with respect to x will return the original integrand . .!!... ( xn+l 

+ c) = .!!... (_l_ xn+l + c) = _l_(n + l)x(n+l)-1 = n + l xn+l-I = xn dx n + l  dx n + l  n + l  n + l  
Because the derivative of any constant is 0, there is no way to determine what constant, if any, was eliminated by diffe1 rentiating, so "+ C" is used as a generic n+ placeholder. Therefore, af xndx = � + C. n + l  

1 8.2 Integrate the expression: J x8 dx. 

1 8 .3  
Add 1 to the exponent (8 + 1 = 9)  and divide the expression by the new exponent: 8+1 9 J s X X x dx = -- + C = - + C. 8 + 1 9 

Integrate the expression: J ( 6x2 + 9x) dx. 
According to a property of integrals, J[J (x) ± g (x)] dx = J f (x) dx ±  J g (x) dx: The integral of a sum or difference is equal to the sum or difference of the individual integrals. 

f (6x2 + 9x) dx = J 6x2dx +  f 9xdx 
= 6f x2dx + 9  J xdx Apply the power rule for integration. 

x2+1 � 

= 6 · -- + 9 · - + C 
2 + 1 1 + 1 

= 6x3 
+ 

9x2 

+ c 
3 2 

3 9 2 = 2x + - x + c 
2 



1 8 .4 Integrate the expression: J dx . 
X 
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1 Note that the integrand can be rewritten as J - dx -moving dx out of the 
X I expression to be integrated does not affect the result, as it is still multiplied by -

X in both cases .  However, the power rule for integration doesn't apply because it gives an undefined result. 1 - 1+1 0 J - dx = Jx- 1dx = -x-- + C = .:__ + c 
X - 1 + 1  0 Division by O is mathematically invalid, so an alternative to the power rule for 

d I integration is needed in order to integrate. Recall that - (lnx) = - . Therefore, 
} � X J - dx = ln lx l  + C. The absolute value signs are required because the domain of 
X 

y = In x is (0,oo ) ,  the positive real numbers . 
1 8 .5  Integrate the expression: J J;1 dx. 

Rewrite the radical expression using rational exponents (as discussed in Problem 2.10) . 
J J;1 dx = J x312dx Apply the power rule for integration. 

Eliminate the complex fraction. 

x<3;2)+1 

--- + c 
3 / 2 + 1 

x3;2+2;2 

----- + c 
3 / 2 + 2 / 2  
xs12 

= - + c 5 /2 

= � x5 /2 + c 
5 

1 8 .6 Integrate the expression: J(9x4 + 7✓x - sef;1) ax. 
By applying an integral property, you can split the integrand into three separate integrals, move the coefficient of each outside its integral, and rewrite the radical expressions using rational exponents. f(9x4 + 7✓x - sef;1)ax = J 9x4dx +  f7✓xdx + J(-5¼3dx) = 9f x4dx + 7  J ✓xdx - 5f ¼3dx = 9 J x4dx + 7 J x112dx - 5 J x318dx 
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'iov.. ce>1.\\ o\\ly split-"'- �YCI.Cf--iO\\ v..p i\\f--O hvo S1Me>1.llev �ve>1.ci--iO\\S i� i--li\eve's "'- SLA.IM i\\ i--li\e NVlv\ERA-roR. 'fov.. 

Eve\\ i--li\ov..8li\ i--li\e e)<pO\\e\\i-- is \\e8e>1.i--ive, yov.. si--ill e>1.J..J.. I i--o ii-- e>1.\\J.. J..iviJ..e by i--l-\e \\ew 
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Apply the power rule for integration. 
x4+1 x<112)+1 x(3;s)+1 = 9 · -- + 7 · --- - 5 · --- + c 4 + 1 (1 / 2) + 1 (3/ 8) + 1 xs x3;2 xn;s = 9 • - + 7 • - - 5 • -- + c 5 3/2 � 11 / 8  = � xs + 7 (¾) x3;2 - s(181 ) x1 11s 

+ c  

= � xs + 14 x3;2 - 40 xn;s + C 5 3 1 1  
. J 5x - 6x7 

1 8 . 7 Integrate the expression: 4 dx. 

1 8 .8 

X 

J (x) + g (x) f (x) g (x) . . Note that ( ) = -( ) + -( ) , so rewnte the mtegrand as two separate integrals . h x h x h x 
f 5x - 6x7 f 5x f 6x7 --- dx = - dx - - dx x4 x4 x4 

= f 5x1-4dx - J 6x7-4dx = 5f x-3dx - 6f x3dx Apply the power rule for integration. 
X -3+1 ) ( X3+1 ) = 5 -- - 6 - + c  - 3 + 1  3 + 1  

= 5 ( �-: ) - 6 (: ) + C 

5 3 4 = - - - - x + c  2x2 2 
Integrate the expression : J( x3

; 
x4 ) dx. 

Rewrite the rational integrand as two separate integrals, as explained in Problem 18.7. 
I � dx = J � dx - J � dx ( 3 

4 ) 3 
4 x4 x4 x4 

= J x3-4dx - f l dx 
= J x- 1dx - J dx 

1 According to Problem 18 .4, the antiderivative of - is ln lx l  + C; the antiderivative 
X of 1 (which can be written ldx or simply dx) is x, because the derivative of x is 1 .  = ln l xl - x+  C 
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1 8 .9 Integrate the expression: f x2 (s - ✓x)dx. 

Distribute i2 before applying the power rule for integration. 

f x2 (5 - ✓x) dx = f (5x2 - x2 · x112 )dx 

= f (5x2 - x51 2 ) dx 

= 5 f x2dx - f x51 2dx 
x3 

x
7 12 = 5 • - - - + c 3 7 / 2 

= � x3 
- � x

1 1 2 + C 
3 7 

I ntegrating Trigonometric and Exponential Functions 

-rvi8 i\.\te8ve\.ls loo\:. \.\otl...i\.\8 li\:.e tvi8 �evive\.tives 

1 8 . 1 0  Integrate the expression: f cosx dx. 

Recall that the derivative of sin x (with respect to x) is cos x, so it follows that the 
antiderivative of cos x (with respect to x) is sin x. 

f cos x dx = sin x + C  

1 8 . 1 1 Integrate the expression: f (7 - sinx) dx. 

Rewrite the integral as the difference of two distinct integrals. 

f 7dx - f sinx dx 

d 
The antiderivative of 7 is 7x (because - (7x) = 7) ; the antiderivative of sin x is 

dx 
-COS X. �---------------------------

= 7x - (- cos x) + C 
= 7x + cos x + C  

'(011.. 
B e+- lo+-s 

o.P .Pve>1.c+-i.o\\S 
l\\ J.. e\\OIMl\\Cl.½--OvS 

e>1.S "'- ves11..\+- o.P 
+-l--.e  po wev v11..\ e .Pov 
i.\\+-eBve>1.+-i.O\\. J 11..s+
+-e>1.�e +-l--.e veci.pvoce>1.\ 
C\\\J.. IMIA.l+-i.ply i.+- by 
+-l--. e co e.P..fici. e\\t, 

All o.P 
+-l--.e hi.8 

.P11..\\c+-i.o\\S +-l--.e>1.+
s+-e>1.v+- wi.+-l-\ 1'co" l-\e>1.ve 
\\ e8"'-+-i.ve J..evi.ve>1.+-i.ves, 
so "'-\\ o.P +-l--.e hi. 8 
.P11..\\c+-i.o\\s +-l--.e>1.+- DoN'-r 
st-e>1.vt- wit-l-\ 1'co" l-\e>1.ve 
\\e8"'-+-i.ve i\\+-e8v"'-\ s. 
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I sin x + cos x 
1 8 . 1 2  Integrate the expression: . dx. 

Sln X COS X 

Rewrite the integrand as the sum of two rational expressions, as explained in 
Problem 18 .7. 

I sin x + cos x J sin x J cos x ----- dx = ---- dx + ---- dx 
sin x cos x sinx cos x sinx cos x 

= J � dx + J p✓x dx 
� COS X sinxp✓x 

= J -I- dx +  J -I- dx 
COS X sin x 

Antidifferentiate the trigonometric functions. 

= ln l sec x + tan xi + (- ln icsc x + cot xi) + C 

= ln l sec x + tan xl - ln lcsc x + cot xi +  C 
a 

Apply the logarithmic property stating that log a - log b = log b . 

l
sec x + tanx l = ln ---- + C  
csc x + cotx 

J 6 + sin x 
1 8. 1 3  Integrate the expression: --- dx. 

COS X 

Rewrite the integrand as a sum of two fractions. 

I 6 + sin x J 6 J sin x --- dx = -- dx + -- dx 
cos x cos x cos x 

Sln X 
Note that -- = tanx .  

cos x 

I I J sinx 
= 6  -- dx + -- dx 

cos x cos x 

= 6J sec x dx +  J tan x dx 

= 6 ln l sec+ tanxl - ln lcos xl + C 

_,___➔ Apply logarithmic properties .  

= ln (sec x + tanx)6 
- ln lcos xl + C 

= ln 
(sec x + tan x)6 

+ C 
icos xl 

Absolute values are not required in the numerator, as any quantity raised to an 
even power will be nonnegative. 
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1 8 . 1 4  Integrate the expression: f 4 (tanxr 1 d1x: _________________ __,, Tholt-'s 
Rewrite the expression without negative exponents . 

1 Note that -- = cot x. tanx 
f 4 (tanxr1 dx = f 4 - -1- dx 

tanx 1 = 4f - dx tanx 
= 4 f cot x dx 

= 4 ln lsinxl + C 
1 8 . 1 5  Integrate the expression: f .J cos2 x + sin2 x dx. 

According to a Pythagorean identity, cos2 x + sin2 x = I .  
f .Jcos2 x + sin2 x dx = f ✓ldx 

= fl dx 
= x + C  

The Fundamental Theorem of Calculus l\\te8ve\.ti.O\\ C\.\\ol.. C\.vee\. C\.ve closely vele\.teol.. 
1 8 . 1 6  According to the fundamental theorem of calculus, what is the area of the region bounded by the nonnegative continuous function f(x) and the x-axis on the x-interval [a, b] in terms of F(x) , the antiderivative off(x) ? 

The area of the region is equal to the definite integral 
f h 

f (x) dx = F (xl = F (b) - F (a) . In other words, the area of the region is 
a a the difference of F(b) and F(a) ,  the antiderivative off(x) evaluated at the x-boundaries of the region. 

1 8. 1 7  Evaluate the definite integral : J: x3 dx. 

Find the antiderivative of the integrand x' using the power rule for integration. 4 I x3dx = : + c  

'tof- +-he i'tvev-se .PL\'tcf-io't +-ot't-'x-i+-'s f-ot't x v-otise.J. +-o +-he - I powev-. 

+-o i'tf-eBv-otf-e co+- x ot't.A f-ot't x wiH'\oL\fL'\otvi'tB +-o v-esov-+- +-o +-L'\e .Pov-1ML\lots i't Appe't.J.ix E. 

RV\..E of -rl-\Vt-'\B: DEflNl-rE ----1,,11.....::11,.. i'tf-eBvotls L'\otve SIMotll 'tlAIMbevs 'textt-o t-L'\eiv i'tt-eBvotl SlB'tS cotlle.J. 1'li1Mit-s o.P i'tf-eBvott-io't:' BecotlASe t-L'\ey vepvese'tt- t-L'\e otveot be'teott-L'\ ot .P1A'tct-io't, t-L'\eiv votl 1Aes otve veotl 'tlAIMbevs, 'tOt.PlA'tCt-iO'tS CO'tf-Oll'tl'tB ''+C'' li�e t-L'\e INDEfl-N l'"fE i'tt-eBvotls i't Pv-oblelMS \ 8'. \ - \ 8'. \S-. 
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'fol.\ J..o\\"+- HAVE +-o .Pe,1.cf-ov ol.\f- 1/3 
1 8 . 1 8  

Write the antiderivative (excluding "+ C" ) with a vertical bar to its right and copy the limits of integration. This conventional notation indicates that you will evaluate the antiderivative at each boundary and then calculate the difference. 
4 1

2 
2 3 X fo x dx = 4 o Before evaluating the antiderivative at x = 2 and x = 0, you may factor out any constants. 

Substitute x = 2 and x = 0 into the expression and then calculate the difference. = ! [24 - 04 ] 4 
= ! (16) 4 
= 4  

According to Problem 17.29, the exact area of the region bounded by g(x) = x2 125 and the x-axis on the x-interval [0,5] is 3 . Verify the area using the funda-mental theorem of calculus. 

1 8 . 1 9  According to Problem 17.12 , the exact area of the region bounded by 
.f(x) = 3x2 + 1 and the x-axis on the x-interval [0,6] is 222 . Verify the area using the fundamental theorem of calculus . 
As you evaluate the antiderivative for x = 6 and x = 0, ensure that you substitute those values into both X' and x. 

1 8 .20 Evaluate the definite integral : J: sinx dx. 
The antiderivative of sin x is -cos x. 

J: sinx dx = - cos xi� = - (cos .n - cos0) = - (- 1 - 1) = 2 
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. . 
I

ll dx 1 8 .2 1 Evaluate the defimte mtegral : - . 
I X 

f dx According to Problem 18.4, - = ln lxl . 
X 

I ll dx 
I
ll - = (ln lxl )  = ln ll ll - ln lll = lnl l - 0  = lnl l  

I X I 

1 8 .22 Given a function j(x) that is continuous over the x-interval [a,b] , prove that J: J (x) = -f J (x) .  �-=-=-=-=-=-=-=-=-=-=-=-=-=�---� 
Apply the fundamental theorem of calculus, denoting an antiderivative of J(x) as 
F(x). 

J: J (x) dx = -{a f(x) dx 

F (x)I: = - F (x)I: 

F (b) - F (a) = - (F (a) - F (b)) 
F (b ) - F(a) = -F (a) + F (b) 
F (b ) - F (a) = F (b ) - F (a) Because F(b) - F(a) is always equal to itself, you can conclude that J: f (x) = -f

b

a 
f (x) 

1 8 .23 Given a function f(x) that is continuous on the x-interval [a,b] and a real number 
c such that a < c < b, prove the following statement. 

J: J (x) dx = J: f (x)dx + J: J (x) dx . �----
Let F(x) be an antiderivative of J(x) and apply the fundamental theorem of calculus. 

J: J (x) dx = J: J (x) dx +  J: J (x) dx 

F (x)[ = F (x)I: + F (x)I: 

F (c) - F (a) = [F (b) - F (a)] + [F (c) - F (b)] 

F (c) - F (a) = y;ff5} - F (a) + F (c) ;:;Yf:6) 

F (c) - F (a) = F (c) - F (a) 

'fo v..  
CO\� vevevse 

+-l-\e li.1Mi.½-s o.P 
i.�+-eBv,,..+-i.o� "� ,,..�y 
i.�+-e8v-,,..\-j v..s+- IMO\�e 

sv..ve +-o +-,,..�e +-l--.e 
opposi.+-e o.P +-l--.e 

vesv..\+-. 

This 
\A.\e,,.. �s yo v.. 

_c,,.. � bv-e,,..k v..p o �e 
1 �+-e 8v-,,..J i �+-o +-he 
Sv..\A.\ o.P +-wo (ov \A.\Ove) by spliHi �B v..p +-he 
! i\A.\i½-s o.P i �+-e8v,,..+-io � i �+-o SIA-\0\ll ev chv.. �ks I • �s+-e,,..,A o.P i �+-e8v,,..+-i � o �ce .Pvo\A.\ I +-o Cf yoL\ B COL\I.A i �+-e8v,,..+-e +-wice o �ce .Pvo\A.\ I +-o � O\�.A , +-h e� 0\80\i � .Pvo\A.\ � 
+-o Cf. 
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1 8 .24 Given the even function g(x) = 3x4 - Sx",  demonstrate that 
f3 g (x) dx = 2J: g (x)dx. 

( 3;5 _ s;3 )C = 2 ( 3;5 _ s;3 
)[ 

( 3 (:)5 _ 8�)3 ) - (3 (�3)5 _ 8 (�3)3 ) = 2 [( 3 (:)5 _ 8 (:)3 ) - (3 (�)5 _ 8 (�)3 )] 
( 7!9 _ 2�6) - (- 7!9 + 2�6) = 2 [(7!9 _ 2�6) - co - o)] 729 _ 216 + 729 _ 216 = 2 (729 _ 216 ) 5 3 5 3 5 3 729 729 216 216 1, 458 432 - + - - - - - = -- - -5 5 3 3 5 3 1, 458 432 1, 458 432 -- - - = -- - -

5 3 5 3 

f!O 
1 8 .25 Given h(x) = I x - 2 1 - 5, evaluate h (x) dx. 

-10 

Consider the graph of h (x) in Figure 18-1 . 
8 

---6 
-8 

-1 Figure 18-1 The function h(x) = Ix - 2 1 - 5 is comprised of two lines: hi (x) = -x - 3 and h,(x) = x - 7. 
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The function h(x) consists of two rays with endpoint (2 , -5) . Because x - 2 may 
be either positive or negative, you can determine the equations of those rays by 
multiplying (x - 2) by -I and 1 .  

hi (x) = - l (x - 2) - 5 
hi (x) = -x + 2 - 5 
hi (x) = -x - 3  

'½ (x) = l (x - 2) - 5 
'½ (x) = x - 2 - 5 
'½ (x) = x - 7  

Notice that h(x) is defined by h1 (x) = -x - 3 for all x on the interval (-oo, 2) ,  and is 
defined by h2 (x) = x - 7 for all x on the interval (2 ,oo ) .  Because the rule by which 

J
lO 

the function is defined changes at x = 2 ,  you must split the integral _ 10 h (x) dx at 
that value. 

J
lO 

J
2 

J
lO 

_ 10 h (x) dx = 
_ 10 hi (x) dx + 

2 '½ (x) dx 

J
lO 

J
2 

J
lO 

(Ix - 21 - 5) dx = (-x - 3) dx + (x - 7) dx 
-10 -10 2 

Apply the fundamental theorem of calculus .  

= (-
x
; - 3x )[ 

10 

+ ( 
x
; - 7 X r 

= [(-� - 6 ) - (- l
�

O 
+ 30 )] + [(l

�
O - 70 ) - (� - 14 )] 

= [-8 - (-20)] + [-20 - (- 12)] 
= -8� + 12 
= 4 

1 8 .26 Evaluate J�
4 
lx2 

- 3x - 51 dx accurate to three decimal places and show the work 
that leads to your answer. �-----

-
-

-----------

Consider the graph of y = lx2 
- 3x - 51 in Figure 18-2. 

--4 6 

Figure 18-2 The graph of) = lx2 
- 3x - 51 .  Between its x-intercepts, where the 

graph of) = x2 - 3x - 5 is normally negative, this graph is reflected 
above the x-axis and has equation y = -(x2 - 3x - 5), or 
y = -x2 + 3x + 5. 

vo,.l1Aes i.\\si.J..e 
i.\\t-ef'.)vo,.\s o,.ve 

l-\eo,.J..o,.cl-\es. -r o 
-fi\\J.. t-l-\i.s J..e-fi\\i.t-e 

i.\\t-ef'.)vo,.\, yolA l-\o,.ve t-o 

bveo,.� t-l-\e o,.bsol 1At-e 

vo,.l1Ae eq1Ao,.t-i.o\\ i.\\t-o 
t-l-\e eq1A01.rlO\\S o.P 
i.t-s t-wo li.\\eS o,.\\J.. 

So, J..o\\'t-jlAst- t-ype 
t-hi.s i\\t-e8vo,.) i\\t-o yol,\v 

8vo,.phi\\8 co,.lcl,\lo,.t-ov 
ot\\J.. wvit-e J..ow\\ t-he 
ot\\Swev it- spit-s OlAt-. 
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Like Problem 18.25, the expression within the absolute value bars may either be positive or negative. The graph is defined by y = x2 
- 3x - 5 for all x less than the left x-intercept and all x greater than the right x-intercept. However, between those intercepts , the graph is defined by y = - (x2 

- 3x - 5) . Use the quadratic formula to identify the x-intercepts. 3 - ffi "" - 1 .1925824036 and 3 + .J2g "" 4. 1925824036 
2 2 Rewrite the definite integral as the sum of three distinct definite integrals, using the x-intercepts calculated above, that explicitly state when the function 

y = lx2 - 3x - 51 changes from y = i2 - 3x - 5 to y = - (  x2 - 3x - 5) . 
J-1.1925824036 ( 2 ) J4. 1925824036 ( 2 ) J7 ( 2 ) = x - 3x - 5 dx + - x - 3x - 5 dx + x - 3x - 5 dx -4 - 1.1925824036 4. 1925824036 - ( xs 3x2 ) l-1 . 1925824036 ( x3 3x2 )14· 1925824036 ( xs 3x2 )17 

- - - - - 5x - - - - - 5x + - - - - 5x 3 2 3 2 3 2 -4 - l.1925824036 4.1925824036 Evaluate the antiderivatives using a graphing calculator. "" 28.597482 - (-26.028297) + 28.597482 :=::: 83.223 
1 8.27 Let R represent the area bounded by the function f (x) = � and the x-axis l + x on the interval [0,1 ] . At what value k does the vertical line x = k split R into two regions of equal area? 

Begin by calculating R via the fundamental theorem of calculus. 
J 1 1 1 :n: :n: --2 dx = ( arctan x )10 = arctan 1 - arctan O = - - 0 = -

D l + x  4 4 If k splits R into two regions of the same area, the area of each of the smaller regions is half the area of R. Calculate the area of the left region, which has x = 0 as a left bound and x = k as a right bound, and set it equal to half of R's area. 
fk l 1 ( :n: ) 0 x2 + l  dx = 2 4 

lk J( (arctanx) 0 = -8 :n: arctan k - arctan O = -8 :n: arctan k = -8 k = tan(i) "" 0.414 
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Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3. 

1 8 .28 Evaluate J:
6

4 
f (x) dx . 

Figure 18-3 
The graph of' a continuousfunctionf(x) 
consists of' a quarter-circle of' radius 2, 
two linear segments, and an unknown 
strictly increasing.function (when x � 2). 

The area of a quarter-circle is one-fourth the area of a circle with the same radius : 
:n:r2 -- . There is no need to determine the equation of the circle to evaluate the 4 � n2 + n  definite integral LJ i = --- -simply calculate the area beneath the arc by 

i=I 2 applying the quarter-circle area formula with r =  2. 
I-4 :n: (2)2 J:n: 

J (x) dx = -- = - = :n: 
-6 4 ;( 

Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3. 

1 8 .29 Evaluate J�
4 J (x) dx. 

You could calculate this integral by first determining that the equation of the line 3 connecting the points (-4,0) and (0,-3) is y = -4x - 3 and then evaluating the definite integral f �4 (-¾ x - 3) dx. However, it is far simpler to analyze the area geometrically, like the solution technique modeled in Problem 18.28 .  
The region bounded by J(x) and the x-axis between x = -4 and x = 0 is a right triangle with vertices (-4,0) , (0, -3) ,  and (0,0) -a triangle with a base 4 units long and a height of 3 units . To calculate the area of a triangle, apply the formula 
I - bh. However, as the region appears entirely below the x-axis, the value of the 
2 integral is negative, so multiply the triangle's area by -I . 

Io 
J (x) dx = - (! bh) = _ ! (4) (3) = -6 -4 2 2 

1''Si.'.'.)\\e.A 
<71.veo/.' +-el ls yoL\ 

+-he <71.ve<71. o.P t-he 
ve.'.'.)iO\\ <71.\\.A whet-hev 
it- is <71.bove ov below 
+-1-\e ><-<71.><is. (A posit-ive 
\\L\1Mbev 1Me<71.\\S <71.bove 
<71.\\.A <71. \\e.'.'.)<71.t-iVe 
\\L\IMbev 1Me<71.\\S 
below.) 
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3 1 0  

Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3. 

1 8 .30  Evaluate J
2
° f (x) dx. 

The region bounded by J(x) and the x-axis between x = 0 and x = 2 , like Problem 
18.29, is a right triangle that lies below the x-axis . 

f0
2
J (x) dx = - G bh) = - 1 (2) (3) = - 3  However, this integral i s  not the definite integral identified by the problem. Notice that the limits of integration in J: J (x) dx are reversed-the upper limit appears at the bottom of the integral sign, and the lower limit appears at the top. According to Problem 18.22 , the final answer is not -3 but its opposite. 

�-------➔ J: J (x) dx = -f0

2
f (x) dx = - (- 3) = 3 

Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3. 

1 8 .3 1 Evaluate fJ (x) dx . 

Split the integral into two distinct definite integrals. 
f

4 J (x) dx = f�J (x) dx + J: J (x) dx A�cording to Problem 18.29, f�
4 f (x) dx = -6; according to Problem 18.30, 

f0 
J (x) dx = - 3. 

f
4 J (x) dx = (- 6) + (- 3) = -9  

Alternatively, you could calculate f�
4
f (x) dx by noting that the region bounded by./( x) and the x-axis between x = -4 and x = 2 is a triangle with base 6 and height I I 

3, so its area must be 2 bh = 2 (6) (3) = 9. Because the triangle appears entirely beneath the x-axis ,  its signed area is -9. 

Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3. 

1 8 .32 Estimate J26 
J (x) dx . 

No function is given that defines /(x) on the x-interval [2 ,6]. Though J(x) resembles y = .Jx - 2, that function does not accurately describe the graph. (For example, ✓6 - 2 = 2, but the graph appears to pass through the point (6 ,3) , not 
(6,2).) Therefore, you should estimate the area of the region by counting the number of square units between .f(x) and the x-axis, as illustrated in Figure 18-4. 
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/4 / 
0.85 

/ � 1 1 

£.65 1 1 1 
# 

# 
# 

# 
# 

Figure 18-4 Each grid square on the interval [2, 6] is labeled according to what 
percentage of it lies in the region bounded by f(x) and the x-axis. The 
values within each square must be between O and 1, and a higher 
number indicates that a larger percentage of the square lies within the 
region. The definite integral is approximately equal to the sum of the estimates in Figure 18-4. 

J2

6 
f (x) dx = 0.65 + 0.6 + 1 + 0.3 + 1 + 1 + 0.85 + 1 + 1 = 7.4 

Note: Problems 18.28-18.33 are based on the graph of f(x) in Figure 18-3. 

1 8 .33  Estimate f�J (x) dx. 

Express the integral as the sum of the definite integrals calculated in Problems 18.28, 18.31,  and 18.32. 
f�J (x) dx = J:6

4
f (x) dx +  fJ (x) dx +  J: J (x) dx = (.n) + (-9) + (7.4) = .n - 1 .6 

= 1 .542 
1 8 .34 Complete the following statement based on the fundamental theorem of calculus. 

; u:<x)
g (t) dt) = ______ _ 

The derivative of a definite integral taken with respect to the variable in the upper limit of integration (here, you differentiate with respect to x and f(x) is written in terms of x) , is equal to the integrand evaluated at the upper limit of integration, g(/( x) ) ,  multiplied by the derivative of the upper limit of integration, 
3 1 1 
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3 1 2  

f' (x) . Note that in order for this formula to apply, the lower limit of integration must be a constant. d (f f(x) ) ( ) 1 

dx a g (t) dt = g f (x) . f (x) 

1 8 . 35  Differentiate the definite integral : ! ( J:• � dt) . 

Apply the formula from Problem 18.34; replace t in the integrand with the upper limit of integration x' and multiply by the derivative of x4 • 

!:__(Ix• ! dt) = --¾- . .!!:___ (x4 ) = --¾- · ( 4x3 ) = 4�
3 

= ± 
dx 6 t x dx x x x 

I x• I 1 8 .36 Verify the solution to Problem 18.35 by evaluating -dt and differentiating 
6 t the result with respect to x. 

1 Recall that J - dt = ln l tl + C. t 
4 1 4 Ix 
-dt = (In l t l )lx = lnx4 - ln6 

6 t 6 Absolute value symbols are not required, as neither x4 nor 6 is negative. Differentiate with respect to x. d ( 4 ) 1 3 4x3 4 - lnx - ln 6  = 4 · 4x - 0 = -4 = -
------,r---'.:d:x

:_ 
__ � X x x The result, - , matches the solution presented in Problem 18 .35.  

X 

1 8 .37 Differentiate the definite integral : .!!:___ (Jsiny cos w dw) . 
dy -1  

Apply the formula from Problem 18.34 . .!!:___ (J'iny cos w dw) = cos (sin y) · !!:__ (sin y) = cos (sin y) · cos y 
dy - 1 dy 

1 8 .38  Differentiate : :JJ,!, (y2 - 5 ln y) dy] . 
Notice that the upper limit of integration is a constant and the lower limit is a function, but the opposite must be true in order to apply the formula in Problem 18.34. Reverse the limits and multiply the definite integral by -1 . 

; [J,!. (y2 - 5 ln y ) dy] = ! [-J;2x (y2 - 5 ln y) dy] 

= - ! [ J:'x (y2 - 5 lny) dy] 
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Substitute the upper limit of integration e2
' into y2 - 5 ln y and multiply by its derivative. = [{e2x )2 - 5 ln e2xl ! {e2x ) 

= [e4x - 5 (2x) ] [ 2e2x ] = 2e2x (e4x - lOx) 
1 8 .39 Differentiate : ..!!___ (Jsx 

9b2db). 
dx x-2 

Both boundaries are functions of x, so you cannot apply the formula from Problem 18.34, as it requires the lower boundary to be constant. Instead, use the method described in Problem 18.36. Begin by calculating the definite integral. 9b3 lsx fsx 
9b2db = -x-2 3 x-2 = 3b3 lsx x-2 = 3 (5x)3 - 3 (x - 2)3 

= 3 ( I 25x3 ) - 3 ( x3 - 6x2 + l 2x - 8) = 375x3 - 3x3 + 18x2 - 36x + 24 = 372x3 + 18x2 - 36x + 24 Differentiate with respect to x. d - (372x3 + 18x2 - 36x + 24) = l, 1 1 6x2 + 36x - 36 
dx 

Therefore, ..!!___ (fx 
9b2db) = l, 1 1 6x2 + 36x - 36 . 

dx x-2 

Substitution of Variables 
Vsv.C\.lly CC\.lle� v.-sv.'bs+:i.+-v.+:i.o\.\ 

1 8 .40 Find the antiderivative J sinx cos x dx by performing the variable substitution 
U = Sln X. Do\\'t tot'ke tl--.e .Aevivottive witl,,. Take the derivative of u = sin x using the chain rule : Differentiate the sine vespect to A NYTH I NG function, leaving the inner function x alone, and then differentiate the inner Tl--.ott IA-\eot\\S tl--.e · function x to get dx. �-----------------------....\ .Aevivottive 0.p x is u = sinx 

du = cos x · dx Notice that cos x dx is in the original integral expression. Rewrite the original integral given u = sin x and du = cos x dx. 

J sinx cos x dx  = Ju · du 

\\ot I ,  it's .Ax. Tl--.e .Aevivottiv� 0.p y is .Ay, tl--.e .Aevivottive o.P I.\ is .Al.\, etc. 

3 1 3  
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""fveott 

l.\jl.\st l ike yo� 
tv-eott ot\\ ,c-ot.A.J. I 
to t�e e,cpo\\e\\t ot\\.A 
.J.ivi.J.e by t�e \\ew 
e,cpo\\e\\t. 

\\e8ottive si8\\ 
is veotlly ot - I 

coe.P-ficie\\t. Pl.\11 

3 1 4 

Integrate Ju du using the power rule for integration. u2 J u · du = - + C  
2 

2 The antiderivative J sin x cos x dx cannot be ; + C,  because the original integrand contained only functions in terms of x. However, earlier in the problem, 
u was defined explicitly in terms of x: u = sin x. sin2 x C = -- + 

2 

1 8 .4 1 Find the antiderivative J sin x cos x dx by performing the variable substitution U =  COS X. 
Use the technique described in Problem 18.40, this time setting u = cos x. 

u = cos x 
du = - sin x dx Note that -sin x dx does not appear in the original integral, but sin x dx does, so solve the equation containing du for sin x dx by dividing both sides by -1 . 
du - sin x dx = ----
- 1  - 1  

-du = sin x dx Rewrite the original integral in terms of u given u = cos x and -du = sin x dx. 

J sin x cos x dx = J cos x sin x dx = J u  (-du) = -J u  du Now that the entire integrand is written in terms of u, apply the power rule for integration. Then write the antiderivative in terms of x, recalling that u = cos x. u2 cos2 x -I u du = - - + C = - -- + c  
2 2 

1 8 .42 Problems 18.40 and 18 .41 integrate J sin x cos x dx but produce nonidentical solutions. Verify that those are equivalent. 
Note that each antiderivative has a constant of integration, they are labeled C1 and C2 (rather than labeling them both C) to indicate that those constants are almost certainly not equal. sin2 x C cos2 x C -- + = - -- + 

2 1 2 2 
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According to a Pythagorean identity, cos2 x + sin2 x = I; therefore, cos2 x = I - sin2 x. 

sin2 x (1 - sin2 x) 
-- + c1 = ---- + c2 

2 2 
sin2 x 
-- + c 

2 I 
- l + sin2 x 

2 
+ C2 

sin2 x I sin2 x -- + c = - - + -- + c 
2 I 2 2 2 

-- + c = -- + - - + c sin2 x sin2 x 
( 

1 
) 

2 I 2 2 2 

The sum of {he constants on the right side of the equation is another unknown 

constant: -2 + C2 = C3• 

sin2 x sin2 x 
-- + c = -- + c 

2 I 2 3 

By generating the above statement, you have de��nstrated that Problems 18 .40 

and 18.41 have identical solutions : the sum of 
sm x 

and an unknown constant. 
2 

1 8 .43 As indicated in Problem 18.14, J cot x dx = ln lsin xl + C. Verify the antiderivative 
using variable substitution. 

Recall that cot x is defined as the quotient of cos x and sin x. 

I I COS X 
cot x dx = -.- dx 

Sin X 

Let u = sin x and perform variable substitution. 

u = sinx 
du = cos x dx 

Write the integral in terms of u. 

J c�s x 
dx = J co� x dx 

= J du 
Sin X Sin X U 

I du 
According to Problem 18.4, - = In lu l  + C. 

u 

I du 
- = ln lul + C = ln lsm xl + C 
u 

1 8 .44 According to Problem 18.13,  J tanx dx = - ln lcos xl + C. Verify the antiderivative 
using variable substitution. 

Use the method described in Problem 18 .43. 

I I sinx 
tanx dx = -- dx 

cos x 

I.P 
YCL\ SL\bhoi.ct 

• 2 St\\ x .Pvc""' bci-� 
siJ..es c.P f-�e iJ..e\\i-i+-y, 
YCL\ e\\J.. L\p wii-� 
ccs2 x = I _ si,. 2 ., x, 0\ si-oi.i-e1Me\\i- i-�oi.i- {like i-�e cvi8i\\oi.l iJ..e\\i-iry) 

tS hL\e .Pcv oi.11 x. 

I.P yc1..:V-e \\Ci
SL\v-e wl-\oi.i- i-c sei

L\ eq L\oi.l i-c, oi.\\J.. 
i-L\e i\\i-e8voi.\\J.. is oi. 

-Pv-oi.ci-ic\\, hy i-L\e 
J..e\\CIMi\\oi.i-cv. 

Becoi.L\se J..x is 
t-ecl-\\\i.coi.lly eqL\oi.l 

t-c J..,c:/ I ,  t-L\e -Pv-oi.ctic\\ 
ccs ,c:/si.\\ .,__ is 1ML\lt-i.pli.eJ.. 
'oy J..,c:/ 1 ,  ot\\J.. yet-\ CO\\\ 

st-i.d:. J..,c: i.\\ t-L\e 
\\L\1Mevoi.t-cv. 

3 1 5  
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I.P +-he .Aeviv"'-i-iVe 
o.P "'-vcos L\ is i-h.,,_f-

L\81Y .Pv.,,_cf-io\\, i-he\\ +-he 
i\\f-e8v"'-I o.P +-he L\8ly 
.Pv.,,_ci-io\\ is "'-VCCOS I,\. 

I.P "'- i-v'iB .P!A\\Ct-'iO\\ 
(ov "'-\\Y oi-li\ev 
.P!A\\CTlO\\ .Pov i-l-\e>1.t-
1Me>1.t-t-ev) CO\\r"'-l\\S 
so1Met-l-\'i\\B ot-li\ev t-l-\e>1.\\ 
j1Ast- ,c, yo1A \\eeJ.. t-o 
1ASe 1A-s1Abst-'it-1At-'io\\ 
t-o 'i\\t-eBv"'-t-e. �OIA\\J.. 
.Pe>1.1M'il'i"'-v? It- wov\:.s l'i\:.e 
t-l-\e cl-\e>1.'i\\ v1Ale, wl-\'icl-\ 
yo1A 1AseJ.. t-o t-e>1.\:.e 
t-li\e J..ev'ive>1.t-'ive o.P "'-

3 1 6 

.P1A\\ct-'io\\ CO\\re>l.l\\l\\B 
so1Met-li\'i\\B ot-li\ev 

t-l-\e>1.\\ j1Ast- ,c. 

Let u = cos x; therefore, du = -sin x dx and -du = sin x dx. Use these equality statements to rewrite the integral in terms of u. 

f sinx dx = f sin x dx = f -du = _ f du
= - ln lul + C 

COS X COS X U U The antiderivative in your solution should be written in terms of x: -ln icos xi + C. 
f 

sin x dx 
1 8 .45 Integrate the expression: .J 1 - cos2 x 

Apply variable substitution; if u = cos x, then du = -sin x dx and -du = sinx dx. 

f sinx dx = f -du 
✓1 - cos2 x ✓I - u2 

d -du According to Problem 16.25, - (arccos u) = � . 
dx '\ll - u2 

f -du � = arccos u + C  '\l l  - u2 = arccos (cos x) + C Note that removing -1 from the integral, once it's written in terms of u, results in an equivalent alternate solution. 
f 

-du f du � = - � = - arcsin u + C = - arcsin (cos x) + C '\I 1 - u- '\fl - u2 

1 8 .46 Evaluate the definite integral : J "112 tan2x dx. 
-n/6 

Although f tanx dx = - ln lcos xl + C, f tan2x dx :;i!: - ln lcos 2xl + C. 
Apply variable substitution using u = 2x. Differentiating that equation results in du = 2dx, but 2dx does not appear in the original integral, so you must solve 
du = 2 dx for dx, which does appear in the integral. 

du = 2dx 
du - = dx 

Rewrite the entire definite integral in terms of u, including the limits of 
:n: :n: integration. To write x = -6 and x = 12  in terms of u, substitute them into the equation describing the relationship between x and u for this problem: u = 2x. 
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Convert lower limit: x = _ !!_ 6 
u = 2x 

:n: 
u = - -

C 1. . :n: onvert upper 1m1t: x = -12 
u = 2x 

:n: 
u = -6 

Rewrite J"112 tan2x dx in terms of u by substituting in the new boundaries and 
-n / 6  . du recallmg that u = 2x and - = dx. 

2 

f n /12 f n /6 du 1 f n /6 tan 2x dx = tan u · - = - · tan u du 
-n/6 -n /3 2 2 -n /3 According to Problem 18.44, an antiderivative of tan x is - ln lcos xl . 

a Apply the logarithmic property log a - log b = log b . 

Ol\"'-\\8 e 
J..v../2 i\\tO 
(1/z..)J..L\ e>1.\\J.. pL\11 
tll\e co e.P-fi ci e\\t 
1/z.. oL\tsiJ..e tll\e 

ML\ltiply 
Hi e \\L\1M ev-e>1.tov- { [in ( �) - 1n (t)] = - { [in ( �/42 )] = - { in (�) = - { ln✓3 

J,.;12 I r;; Therefore, tan2x dx = - - ln..,3 .  
oo.\\J.. J.. e\\01Mi\\oo.tov- by 
2 to eli1Mi\\oo.te Hi e 
C01Mpl e,c .Pv-e>1.ctio\\. 

-,r/6 2 

1 8 .47 Evaluate the definite integral : J15 32
" dx. 

d Let u = 32,. Recall that - (a" ) = a" · Ina . In order to differentiate u = 32', you must 
dx d apply the chain rule ; specifically, - a/(x) = af(x) · Ina · f' (x) . 

dx 
Th e 

J..ev-ivoo.tive 
o,P 0\ CO\\Stoo.\\t U = 32x 

du = 32
" • ln3 · 2dx du = 32
" · 2 ln3 · dx __±!:__ = 32" dx 2 ln3 

v-oo.iseJ.. to "" po wev
eqL\e>1.l s th e ov-iBi\\oo.l 

_e,cpo\\ e\\tioo.l .PL\\\ ctio\\ h1M es th e \\e>1.tL\v-oo.l 108 o.P th e boo.se ti1M es 
th e J..ev-ivoo.tive 0.p 

th e e,cpo\\ e\\t. 
YoL\ solve .Pov- '32

• J..,c 
b ecoo.L\ se those oo.v-e th e 

O\\ly pi eces the>1.t "'-rr eoo.v- i\\ 
th e ov-i8i\\oo.l i\\te8v-oo.\\J... 
I\\ .Poo.d; >2

' J..,c 1$ th e 
ov-i8i\\oo.l i\\te8v-oo.\\J... 

3 1 7  
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Write the limits of integration in terms of u. 

I Convert lower limit: x = II 
U = 32x 

!Convert upper limit: x = 51 
U = 32x 

u = 32(1) u = 32(5) 

u = 32 u = 310 

u = 9 u = 59, 049 
I s du Replace the entire integrand of 32

" dx with --1 2 ln 3  du 2x (because -- = 3 dx)  and 2 ln3 apply the limits of integration calculated above. 
f s 2 J sg,049 du 3 " dx = --

1 9 2 ln 3  The integrand, apart from du, is a constant and can b e  moved outside the integral. 
The antiderivative of du is u. 

1 J59,049 = -- du 2 ln 3  9 

= -1- (u)l59,049 = _1_ (59, 049 _ 9) = 59, 040 = j. · 29, 520 = 29, 520 2 ln 3  9 2 ln 3  2 ln 3  j. ln3 ln3 
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APPLICATIONS OF TH E FU N DAM ENTAL TH EOREM 

• l H--V\ �e..fi\.\H--e t\\+-e[jv0t.ls -rl-\l\.\BS +-o O\o w 

. h 17) ly one application of 
'.�,:;:�i:� ::;�:1�

0

e:;;:�:
g
::1���a�'.n;i:�; are� �; a regi�

1
n t�at i',�ounded b a function and the x-axis . In this chapter, however, you �1 ca _cu a y d d b d below by functions. You will also mvest1gate the areas boun e a ove an · bl and antidifferentiation version of the mean value theor�m, _mot10� �ro ems, accumulation functions (functions defined as defimte mtegra s . 

Wit!-\ tl-\e powev vl-\le .Pov i\\te8v01.tio\\ Ol.\\ol L\-SL\bstitl-\tio\\ e><pevie\\ce .Pvo""' CI-\01.ptev 1 8'  L\\\olev yol,\v belt, yol-\1ve ve01.oly to see wl-\01.t sovts o.P tl-\i\\8S ole-fi\\ite i\\te8v"'-ls COi.\\ .:Ao. 1.P yov!ve wovkeot tl-\vol,\81-\ CI-\01.ptevs 1 7  Ol.\\ol 1 8', yol-\ 01.lve01.oly k\\ow tl-\"'-t "'- ole-fi\\ite i\\te8v"'-l COi.\\ be L\Seol to vepvese\\t tl-\e 01.ve"'- be\\e01.tl-\ "'- CL\vve, bl-\t i\\ tl-\is cl-\01.ptev, yov!ll -h\\ol tl-\e 01.ve01.s betwee\\ two CL\vves, wovk wit!-\ .PL\\\ctio\\s ""'""ole o.P ole-fi\\ite i\\te8v"'-ls, 01.\\ol c01.lcl-\l01.te tl-\e 01.Vev"'-8e V01.l l-\e o.P "'- .PL\\\ctio\\ . Positio\\ .PL\\\ctio\\ pvoble""'s will ""'"'-ke "'- vepe01.t "'-PPe01.Y01.\\ce, bl-\t \\Ow yol-\ w0\\
1t be CO\\Stv01.i\\eol to tl-\e ""'otio\\ o.P pvojectiles. Tl-\ey've "'- lot like tl-\e vectili\\e01.v ""'otio\\ pvoble""'s .Pvo""' Cl-\01.ptev I �  bl-\t tl-\is ti""'e i\\ste01.ol o.P -h\\oli\\8 oleviv01.tives, yov!ll wovk witl-\ i\\te8v"'-ls. 
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Calculating the Area Between Two Curves 

l\\steoi.J. c.P jl.\st "' .Pl.\\\ctic\\ oi.\\t:l. tl,,,e ,c-oi.,cis 

1 9. 1  Given the functions .f(x) and g(x) , which are continuous on the interval [a,b] such that .f(x) > g(x) for all a :5 x :5 b , what integral expression represents the area bounded by f(x) and g(x) on [a,b] ? 

As long as f(x) > g(x) , i .e. , the graph off(x) lies above the graph of g(x) on the entire interval [a, b] , the area of the region bounded by f(x) and g(x) is equal to 
1:[J (x) - g (x) ] dx .  If g(x) > f(x) for all x on the interval [a,b] , the area is equal to J: [g(x) - f(x)] dx. 

1 9.2 Explain why 1: f (x) dx represents the area between .f{x) and the x-axis (assuming f(x) is positive for all x on [a,b] ) using the formula in Problem 19.1 .  
Write the equation of the x-axis as  a function g(x) = 0. Because f(x) i s  positive on the x-interval [a,b] , f(x) > g(x) for all x on that interval. To determine the area between f(x) and g(x) , apply the formula from Problem 19. 1 :  
l: CJ (x) - g (x)] dx = l: CJ (x) - O] dx = 1: f(x) dx . 

1 9.3  Calculate the area bounded by the curves y = 3x  and y = x2 when x > 0 .  
Consider Figure 19-1 , which illustrates the region described. 

Figure 19-1 The curves y = 3x and y = :i2 intersect at points (0,0) and (3,9). 
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Calculate the left and right boundaries of the shaded region-the x-values of the points at which the curves intersect. Both equations are solved for y, so set them equal to each another: 3x = x2 • Solve the equation for x by setting it equal to 0 and factoring. x2 - 3x = 0 
x (x - 3) = 0 

x = 0, 3 Therefore, the graphs of y = 3x and y = :i2 intersect when x = 0 or x = 3. According to Figure 19-1, the graph of y = 3x is greater than (above) the graph of y = x2 on the entire interval [0,3] . Apply the formula from Problem 19.1 to determine the area of the region. 
J: [J(x) - g(x)] dx = J: (3x - x2 ) dx 

= ( 3;2 - x; )[ 

= (� -�) - o  81 54 
6 6 
27 = 
6 9 = -

2 9 Therefore, the area of the region bounded by y = 3x and y = :i2, when x > 0, is -square units . 2 
1 9.4 Calculate the area bounded by y = sin x, y = 2, x = -2 ,  and x = n. 

Consider Figure 19-2, which illustrates the region described. 
4 

-2 

-3 -4 Figure 19-2 The upper boundary of this region is y = 2; the lower bound is y = szn x. 

O\\e eqL\.,..t-io\\ 
SO\yS y := >:,<:, O\\\J

t-l-\e ot-l-\ev t-ells yoL\ 
t-l-\.,._t- y .,..\so eqL\.,..\s :,<2, 
so vep\.,..ce y i\\ t-l-\e 

..fivst- eqL\O\t-iO\\ wit-l-\ 
)<

2 t-o 8et-
)<

2 := >)<. 

i\\re8YO\\\J
C0\\rc:,\i\\S x's, SO 
yoL\ l--..,..ve t-o L\Se 
+-l--.e x-v.,._JL\es o.P t-l,,. . e f'Ol\\rS o.P i\\t-evsect-io\\ .Pov YOL\v li!A-\it-s 0.p 

!\\t-e8v.,..t-io\\. l.P t-l--.e l\\t-e8v.,._J CO\\t-0\i\\eJ-, . y s l\\St-e.,,_J-, yoL\!:A L\Se 
:l--.e y-v.,,_J L\es o.P t-l--.e l\\revsect-io\\ f'Oi\\rS (like i\\ Pvoble!A-\s 1 '1.G 

"'-\\J- I '1. 8'). 

32 1 
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Th e 
C\\ly ''pvcc.P'' 

ycl.\ \tee.A +-c 
.Ae+-ev""'i\\e which 

. Cl.\vve cc""'es ..fivs+
i\\ +-he .Pcv""'l.\loo. is 

"" 8voo.ph. Alwoo.ys 
Sl.\bf-voo.c+- +-he lcwev 
8voo.ph .Pvc""' +-he 

hi8 hev C\\e. 
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1 9.5  

Apply the formula from Problem 19.1 ,  noting that the line y = 2 i s  greater than 

y = sin x over the entire interval [-i , Jr] . 
J:,.

12 
(2 - sinx ) dx = (2x + cos x )[

12 

= (2n + cos n) - [  2 (- i) + cos (- i)] 
= (2n - l) - (-n + O) 
= 3n - l  

Iff(y) and g(y) are continuous functions such thatf(y) > g(y) when c ::5 y ::5 d ,  
what is the area of the region bounded by those functions on the y-interval [ c,d] ? 

Because the functions are in terms of y, they don't serve as the upper and lower 
bounds of the region like the functions did in Problems 19.1-19.4; instead, 
they serve as the left and right boundaries of the region. Use the formula 

fed [f (y) - g (y)] dy to calculate the area of the region, where f(y) is the function 
to the right of g(y) , and c and d are the real numbers that bound the region below 

Calculate the area bounded by x = -y2 + 9 and x = - y2 - 6y - 9. 
2 

Consider Figure 19-3, which illustrates the region described. 

-25 -20 

X = -y2 + 9  

10 

5 

-5 

Figure 19-3 These curves are functions, but not functions of x. As functions 
of y, they pass the horizontal line test instead of the vertical line 
test. 
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Calculate the y-values at which the curves intersect by setting the functions 
equal and solving for y. As explained in Problem 19.5,  when calculating the area 
between two functions written in terms of y, the limits of integration must be 
y-values. 

2 1 2 -y + 9 = - y - 6y - 9  
2 
3 2 0 = 2 y - 6y - 1 8 

� (O) = �[1 y2 - 6y - 18] 
3 3 2 

0 = y2 - 4y - 12 

O = (y - 6) (y + 2) 
y = -2 or 6 'Sv.bh-o,.c+

v-'iB\,,,+- IMl\\l.\S 
The functions intersect when y = -2 or y = 6 , as illustrated in Figure 19-4. le.P+, \\O+- +-op IMl\\l.\S 

Id [  ( ) ( )] bo+-+-01M, 1,,vl,,,e\\ +-l,,,e Therefore, in the formula , f y - g y dy , c = -2 and d = 6
1

. Note that the 
.Pv.\\c+-'io\\S o,.v-e t\\ 

graph of f(y) = -y2 + 9 is always right of the graph of g (y) = -- y2 - 6 y - 9. 
2 +-ev-1MS o.P y. ______ ___:_ ______ ____ 

Iclt (y ) - g (y)] dy = f�2
[ (-y2 + 9) - (i y2 - 6y - 9) ] dy 

= f�2 [-y2 + 9 - t y2 + 6y + 9  ] dy 

= f�
2
[- ¾ y2 + 6y + l8 ] dy 

= (-
2

�
6 

+ 3 (36) + 108) - (-
-
2
8 

+ 12 - 36) 

= ( - 108 + 108 + 108) - ( 4 + 1 2  - 36) 
= 108 - (-20) 
= 128 

1-P yov. 
Bo+- - 1 28', yov. 

pv.+- +-l,,,e .Pv.\\c+-'io\\S 
t\\ +-l,,,e wv-O\\B ov-,:,\.ev-
1,,vl,,,e\\ yov. se+- v.p +-l,,,e 
'i\\+-eBv-"'-1. -rt,.,e o,.v-eo,.s 
o.P v-eB'iO\\S bov.\\,:,\.e,:,\. 

------------, by +-wo cv.v-ves o,.v-e 
ALWAYS pos'i+-'ive. 
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'S et
t-his eq l.\"'-t-io\\ 

eql.\.,,_J t-o O t-o 
B et- t-h e .Pl.\\\ct-io\\ 
h(x) =- cos x - {x. 
Gv.,,_ph hC,c) 0\\ yol,\v 
c.,,_J cl.\l"'-t-Ov "'-\\.A -fi\\.J. 
t-h e voot- o.P t-h e 
.Pl.\\\ct-io\\ t-o B et-
0.,4 17 ... . 
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1 9.7 Calculate the area of the region bounded by the curves f(x) = cos x and 
g(x) = ✓x for 0 ::5 x :5 4 and report your answer accurate to three decimal places .  
As illustrated in Figure 19-4, the curves intersect on the interval [0,4] . Before they intersect, j(x) > g(x) , but once they intersect, j(x) < g(x) for the remainder of the interval. 

g (x) =✓x 

-1 f(x) = COS X 

Figure 19-4 When 0 :5 x :5 0. 641 71 , the graph of cos x is above the graph 
of ✓x . However, when 0. 641 71 < x < 4 , the graph of ✓x is 
above the graph of cos x. Therefore, two integrals are required to 
calculate the area of the shaded region. Use a graphing calculator to determine the x-value of the point at which j(x) and g(x) intersect. 

cosx = ✓x 
cos x - ✓x = O 

X = 0.641714370873 Use two integrals to calculate the area of the region, one that describes the interval on which f(x) > g(x) , and one that describes the interval on which g(x) > f(x). 

Jo.64171437os73 ( ') f 4 ( , ) cos x - vx dx + vx - cos x dx 0 0.641714370873 Evaluate the definite integrals using a graphing calculator. 
= 0.2558639 + 6.3459997 = 6.602 

1 9.8 Calculate the area bounded by the graphs of x - y = 3 and x = y2 - y. 

You must first decide whether to write the linear equation in terms of x (by solving it for y) , or vice versa. Because the quadratic equation is already written explicitly 
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in terms of y (and cannot easily be solved for y to rewrite the equation in terms of x) , solve the linear equation for x as well. x - y = 3 x = y + 3  Determine the y-values at which x = y + 3 and x = j - y intersect. y + 3 = y2 - y  0 = y2 - 2y - 3  O = (y - 3) (y + 1) y = - l or 3 The region bounded by the curves is pictured in Figure 19-5. Notice that the graph of x = y + 3 is always positioned to the right of the graph of x = j - y when -1 :5 y :5 3. 

x = y 2 - y 
Figure 19-5 The region bounded by x = y + 3 and x = j - y. Note that the graph of' x = y + 3 is the same as the graph of'y = x - 3, which is slightly easier to graph, because it is in slope-intercept.form. 

Calculate the area using the formula from Problem 19.5. fcd [J (y) - g (y)] dy = f J(y +  3) - (y2 - y)] dy 
= f1 (-y2 + 2y + 3) dy 
+

y
: 

+ 2 · { 
+

3yll'. 

+
y
: 

+
y'

+
3{ 

= (-9 + 9 + 9) - (½ + 1 - 3) 32 3 
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+-h e <AO\vkev 

. vecf-"'-'t81.\IO\v veBiO't 
1 s (wi.Af-h)(l e'tBi-h> = 

�(c)(p - "Y, +-h e vi 8hi
s1.Ae o.P f-h e ""'e""" 
VOl.11.\e i-heove""' .Pov 

i'tf-e8v01.f-io't. 

326 

The Mean Value Theorem for I ntegration 
lv\01.\:.e "'- ve ci-"""8\e H"""i- 1M01.i-cl'\es i-l'\e 01.Ye01. 't> e'te01.i-l'1 "'- CL\YVe 

1 9.9 State the mean value theorem for integration. 
Given a function f(x) that is continuous over the interval [a, b] , there exists a c such that a :5 c :5 b for which J: f (x) dx = f (c)(b - a). 

1 9. 1 0  Explain the geometric implications of the mean value theorem for integration. 
The mean value theorem for integration states that the area of the region bounded by J(x) and the x-axis on the x-interval [a, b] is exactly equal to the area of a rectangle with length b - a and width f(c) ,  if you find the correct value (s) of 
c between a and b. Consider Figure 19-6. According to the mean value theorem for integration, the lightly shaded region beneath f(x) has the same area as the darker region, a rectangle with length b - a and width .f( c) . 

b - a 

a b a C b 

J: f(x)dx (b - a)f (c) 
Area beneath f( x) Area of rectangle 

Figure 19-6 The mean value theorem for integration guarantees that there exists some 
x = c between a and b such that the rectangle on [a,b] with height.l(c) 
has the same area as the region bounded byf(x) and the x-axis on [a,b]. 

1 9. 1 1 What is the average value of a continuous function f(x) over the closed interval 
[a, b] ? 

The average value is .f( c) , as described by Problem 19.10. Solve the equation of the mean value theorem for integration for J(c) to generate a formula that calculates the average value off(x) . 

J: J (x) dx = (b - a) · J (c) 

J: J(x) dx � - J (c) 
b - a fr/a 

r f (x) dx 
J (c) = a

b - a 
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The average value formula may also be written as a product rather than a fraction: 1 fb 
J (c) = - J (x) dx. 

b - a a 
Note: Problems 19.12-19.13 refer to the functionf(x) = x2. 1 9. 1 2  Calculate the average value of.l(x) between x = 0 and x = 4. 

So""'e people hy +-o -fi\\.A +-he "'-Vev-"'-Be v"'-IL\e by "'-Vev-"'-BL\\B +-he .PL\\\cf-io\\ VOllL\es. Si\\ce .P(O) = o "'-\\.A .P(4) = 1 ,, +-hey� Ol-A.A O + 1 ,  = 1 ,  "'-\\.A .Aivi.Ae Apply the average value formula generated in Problem 19.1 1 .  ,_---l. by 2. ( I ' -+- 2. = 8') +-o 
( 3 )1

4 
] 

1 b 1 4 2 1 X 1 64 16  -f J (x) dx = - r X dx = - - = -[- - o  = 
b - a a 4 - o J o 4 3 4 3 3 

Note: Problems 19.12-19.13 refer to the function f(x) = x2. 1 9. 1 3  At what value c on the x-interval [0,4] does J(x) satisfy the mean value theorem for integration? 
According to Problem 19.12, the average value of /(x) = x2 on [0,4] is 16 . 

L L • 3 According to the mean value theorem for integration, there exists some c such that 0 :5 c :5 4 and /(c) = 1 6 . Substitute x = c into /(x) . . 3 . 

Solve for c. 

f(c) = c2 16  2 - = c 

±f! = ✓c2 4 4J3 
c = ± ia = ± ---v3 3 4J3 4J3 Recall that 0 :5 c :5 4, so - -- is not a valid value for c; therefore, c = --. 3 3 

Note: Problems 19.14-19.15 refer to the function g(x) = e'•. 1 9. 1 4  Calculate the average value of g(x) on the x-interval [-1 , 1 ] . 
Apply the average value formula from Problem 19.11 .  1 

I
b 1 JI -- g (x) dx = ( ) e2xdx 

b - a  a 1 - - 1  - 1 1 JI 
X = - e2 dx 2 -] 

Be+- "'-\\ "'-Vev-"'-Be v"'-IL\e o.P 8'. As yoL\ COl\\ see th.,,_+- .Aoes NOT .,,_Jw.,,_ys BiVe yoL\ +-he v-iBh+- "'-\\Swev-! 

I\\ o+-l--\evwov-.As, wl--\.,,_fsl--\oL\l.A yoL\ p\L\B i\\f-o -PC><) +-o Be+- +-l--\e "'-Vev-"'-Be v"'-lL\e .Pv-01M Pv-oble1M 1 '1. 1 2.? 
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Integrate the expression using substitution of variables:  u = e2x and du =  2e2xdx. 

f,cpo\\e\\tio,J Therefore, 
du 

= e2
" dx. Translate the limits of integration in terms of u by 

-----�➔➔ 2 .Pl.\\\ctio't s .Peel .--
substituting them into u = e2,. 

J..i.P.Pev-e\\t H""'-" "'-"Y 
otll\ev 1.\-Sl.\bsf-itl.\f-io\\. 

Wll\e\\ yol.\ Sl.\bsf-itl.\te, 
tll\ev-e's I.\Sl.\e>1.lly \\O I.\ i't tll\e 
i'tte8v-e>1.\\J.., b ece>1.I.\S e J..I.\ 

CO\\te>1.i\\S IMOSr, i.P \\Ot 
e>1.11, o.P tll\e ov-i 8i'te>1.l 

By 
th e w""y, yol.\ 

CO\\\ wv-ite th""t l""st li't e i't tev-""'s o.P the hypev-boli c si't e 
.pl.\\\ci-io\\: Si'tl/\(2) 

2 I.P Y01.\ h"'-ve \\a iJ.. e"" wh""t th e h eck 
th""t ''k'' i s J..oi"B 01.tt01.ch eJ.. to ''si't ,, 

J.. I I O\\ t S we"" t it. 
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Lower limit (x = - l) : u = e2
• = e2

(-I) = e-2 

Upper limit (x = 1) : u = e2
• = e2<1) = e2 

Rewrite the definite integral in terms of u. 

.!_
J

i 
e2"dx = .!.J•' du 

2 -l 2 ,-, 2 

= .!_
f

,' du 4 ,-2 

I e2 

= - (u)I -, 4 e 

I 
= - (e2 - e-2 ) 4 

Eliminate the negative exponent in the solution. 

= ! (e2 - __!__) 
4 e2 

= ¼ ( e4

e
� I )  

e4 - 1  
4e2 

Note: Problems 19.14-19.15 refer to the function g(x) = e'•. 

1 9. 1 5  At what value c on the x-interval [-1 ,1]  does g(x) satisfy the mean value theorem 
for integration? 

According to Problem 19.14, the average value of g(x) on the interval [-1 , 1 ]  is 
e4 - 1  e4 - 1  
--2-. Therefore, there exists a value c such that -I :5 c :5 I and g (c) = --2-. 
� � 

Substitute c and g(c) into g(x) . 
g (x) = e2x 

g (c) = e2c 

e4 - 1  2c -- = e 
4e2 

Take the natural logarithm of both sides of the equation to solve for c. 

( e4 - 1 ) In 4l = ln (e2' )  

( e4 - 1 ) In 4T = 2c 

I ( e4 - 1) 
2 In 4l = c 
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Expand and simplify the logarithmic expression. �---In ( e 4 - 1) - ln ( 4e2 ) = 2c In (e4 - 1) - (In 4 +  lne2 ) = 2c In (e4 - 1) - In4 - lne2 = 2c ln(e4 - 1) - ln 4 - 2  = 2c In (e4 - 1) - ln 4 - 2  
= c 2 

1 9. 1 6  Calculate the average value of f (x) = _!_ over the x-interval [! , 2] . 
< 3x 2 

Apply the average value formula. l fb l J2 1 b - a  a f (x) dx = 2 - (l / 2) ll2 3x dx _ _ l _ _  _!_ f2 dx 
3 / 2  3 112 X 2 J2 dx = 9 1 /2 --; 

I dx According to Problem 18.4, - = ln lxl + C. 
X = 3_ (In lx l )l2 9 1/2 = ¾ (In2 - In {) 

According to a logarithmic property, a log b = log lt. Therefore, 1 ( 1 )-l - l · ln2 = In 2 = ln 2. 2 = - (ln2 + In 2) 9 
2 = - (2 1n2) 9 4 ln 2  9 Apply the logarithmic property a log b = log l/' again: 4 ln 2 = ln 21 = ln 16. Therefore, the average value of f (x) = - on the interval - , 2  is -- . 1 [ 1 ] ln16  

< 3x 2 9 

I.P yol.\ \\eeJ.. pv-oo.d-ice wit-l,,. t-l--.is, cl--.eck Ol.\t- Pv-obletMS 5.25-5.27. Re1Me1Mbevt-l--.oo.t- I\\ e"' :::::- oo., O\\ly t-l--.e powev is le.Ptbecoo.l.\se I\\ oo.\\J.. e Coo.\\cel eoo.cl,,. ot-l--.ev Ol.\t-. 

oo.\\, I ovev oo. .Pv-e,1.ct-io\\ eql.\e>1.ls t-L\e vecipvoce,1.\1 so 
I 2 , '3 / 2. ==- ;- . '(ol.\ve e,1.\\01.veJ.. t-o pl.\\\ CO\\Sre>1.\\rS 01..\rSiJ..e o.P "'-\\ i\\t-e8v"'-\, so t-L\e,1.t-'s wl-\eve t-L\e 1/3 co1Mes .Pv-01M: � • .l ==- �-'3 '3 "f 
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i'ti-O I o. 

Note: In Problems 19.17-19.19, assume that h(x) is a continuous function over the interval 
[-4,5]. If a and b are fixed real numbers such that -4 < a <  b < 5, the following definite 
integral statements are true. 

Ib I5 I-4 _4
h (x) = - 22 , a h (x) = 13 , and 

5 
h (x) = 10 1 9. 1 7  Calculate the average value of h (x) over the x-interval [-4,5] . 

Apply the average value formula from Problem 19.1 1 .  
l J5 1 J5 
( ) 

h (x) dx = - h (x) dx 5 - - 4 -4 9 -4 
I5 I-4 Although you are not given the value of _4 h (x) dx, you are given 5 h (x) = 10. 

I I5 I 10  
- h (x)dx = - (- 10) = - -9 -4 9 9 

Note: Problems 19.17-19.19 refer to h(x), a, b, and the definite integrals described in Problem 
19.17. 1 9. 1 8  Calculate the average value of h(x) over the interval [-4,b] . 

Apply the average value formula. 
I Ib I Ib 
( ) 

h (x) dx = - h (x) dx 
b - -4 -4 b + 4  -4 According to the information given, J�

4 
h (x) = - 22. 1 = b + 4 (- 22) 22 

b + 4  22 The average value of h(x) over [-4,b] is - -- . 
b + 4  

Note: Problems 19.17-19.19 refer to h(x), a, b, and the definite integrals described in Problem 
19.17. 1 9. 1 9  Calculate the average value of h(x) over the interval [a, b] . 

As the value of J: h (x) dx is not explicitly given, you must calculate it before applying the average value formula. Because -4 < a <  b < 5, you can expand 
f �

4 
h (x) into three definite integrals. 
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Add J: h (x) dx to both sides of the equation (indicated below by the underlined expression) . 
Notice that f

4
h (x) dx +  J: h (x) dx = f

4
h (x) dx and 

J: h (x) dx + Jb\ (x) dx = J: h (x) dx. 

Substf tute the known values of the definite integrals into the equation and solve for f h (x) dx. 
a 

b - 10 +  { h (x) dx = - 22 + 13 

- 10 +  J: h (x) dx = -9 

I: h (x) dx = I Now that you have determined the value of J: h (x) dx , calculate the average value of h(x) on the interval [a,b] . 

_I_ r  h (x) dx = -
1
- (1) = -

l


b - a  a b - a  b - a  

Note: Problems 19.20-19.22 refer to the position equation s(t), a sprinter's distance from 
the starting line during the first 4 seconds of a race (measured in meters after t seconds have 
elapsed), as defined below. 

Bt 
s (t) = - 

t - 5 1 9.20 Use s ( t) to determine the average velocity of the runner during the first four seconds of the race. 
The average velocity of the runner is the average rate of change of position on the interval, which equals the slope of the secant line connecting points (0, s (0 ) )  and (4, s (4) ) .  

hk�y powt-
t,l-\c:,,.t- yol,\ IM"'-Y \\Or 

l-\c:,,.ve t-l-\olABl-\t- o-P. 

AJ..J..i.\\B f l-\  (,c) J..,c 

cvec:,,.t-es t-wo J..e-fi\\i.t-e 
l\\reBvc:,,.ls wi.t-l-\ �\\OW\\ 

vc:,,.l 1Aes O\\ t-l-\e vi.Bl-\t-
si.J..e o.P t-l-\e 

-rl-\e slope o.P 
t-l-\e t-"'-\\Be\\t- li.\\e 

t-o t-l-\e Bvc:,,.pl-\ o.P 
posi.t-i.o\\ vepvese\\t-S 

l\\Sr01.\\r01.\\eOIAS s (4) - s (0) 
vavg = 4 - 0 L--------------1 veloci.t-y, c:,,.\\J.. t-l-\e slope 

_ 8 (4) - (- 8 (0) ) 4 - 5 0 - 5 = -------4 
_ 

32 
- 0  - 1 4 = 8 meters/ second 

o.P t-l-\e secc:,,.\\r li.\\e 
t-o posi.t-i.o\\ vepvese\\t-S 

c:,,.vevc:,,.Be veloci.t-y. \..oo� 
c:,,.t, PvoblelM I S'S i.-P 
yolA .PovBet- l-\ow 
t-o cc:,,.\c1Alc:,,.t-e "'

secc:,,.\\r slope. 
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Set L\ = t - s
oo.\\.A yol.\"11 Bet 

,Al,\ - ,At, I .  - . T VIO\t choo.\\Bes the .Ae\\01Mi\\oo.tov to L\2 
O\\\.A the \\L\!Mevoo.tov to .AL\. PIL\B the li1Mits t = o oo.\\.A t = 4 t\\to L\ = t - s

to Bet \\ew t\\teBvoo.l 
li1Mits 0.p -s-

oo.\\.A - I . 
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Note: Problems 19.20-19.22 refer to th e  position equation s(t), a sprinter's distance from 
the starting line during the first 4 seconds of a race (measured in meters after t seconds have 
elapsed), which is defined in Problem 19.20. 

1 9.2 1 Identify the function v ( t) that models the velocity of the runner during the first 
four seconds of the race. 

Given a position equation s ( t) ,  the velocity equation is the derivative with respect 
to t. Apply the quotient rule to differentiate. 

v (t) = !!_(-�) 
dt t - 5  

= - [
(t - 5) (8) - (St) (l) ] 

(t - 5)2 

8t - 40 - 8t 
(t - 5)2 40 

(t - 5)2 

Note: Problems 19.20-19.22 refer to the position equation s(t), a sprinter's distance from 
the starting line during the first 4 seconds of a race ( measured in meters after t seconds have 
elapsed), which is defined in Problem 19.20. 

1 9.22 Calculate the average value of v ( t) from Problem 19.21 to demonstrate that the 
average rate of change of s ( t) is equal to the average value of v ( t) .  

Apply the average value formula to v ( t) , such that a = 0 and b = 4. 

-
1-f 4 

v (t) dt 4 - 0 ° 1 f4 40 
= 4 J o (t - 5)2 dt 

Remove the constant from the integrand and apply variable substitution. 40 f4 dt 

__________ 
=

_4.::__J O (t - 5)2 

= l0f-1
u-2du 

-5 

= 10 ( �- � 1: = - 10 (�)[ = - 10 (- 1 - (- ½)) 
= - 10 (- ¾) 
= 8 meters/ second 
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According to Problem 19.20, the average rate of change of s ( t) on the t-interval 
[0,4] is 8 meters/second, which is equal to the average vale of v ( t) on [0,4] . 

1 9.23 Assume f(x) is a continuous function and the chart below represents a selection 
of its function values .  Estimate the average value of f(x) on the interval [-3,7] 

Es
rllM"'-+-e 

using the trapezoida

�

l 

-

ru

_

l

_

e

_

. �����-=�������-=-=�_:�-=�---------__ _) 
I f �x) I �

3
1 �

l 

I � I : I :l I �5 1 

+-li\e e>1.vee>1. +-li\e 
Se>1.1Me W"'-Y Pvob

lelM 17.24 es+-i-
1Me>1.+-es +-li\e sv.v.Pe>1.ce 
e>1.vee>1. o.P "'- \e>1.\.:.e Bi.V
e\\ 1Mee>1.sv.ve1Me\\+-S 

Divide the interval [-3,7] into five equal subintervals, each of width L1x = 2 :  
[-3,-1] , [-1 ,1 ] , [ 1 ,3 ] , [3 ,5] , and [5,7] . 

J: f (x) dx """ 
b 

�
a 

[f (a) + 2f (x1 ) + 2f (x2 ) + 2f (x3 ) + 2J (x4 ) + f (b)] 

f�J (x) dx """  
7 

;�
3)

[f (-3) + 2f (- l) + 2f (l) + 2f (3) + 2f (5) + f (7)] 

J7 
f (x) dx :::::  

10
[6 + 2 (8) + 2 (9) + 2 (4) + 2 (- l) + (-5)] -3 10 

f�3f (x) dx """ 41 

Substitute this approximation of f�
3
f (x) dx into the average value formula . 

l Jb l J7 
b - a a f (x) dx =

7 _ (-3) _J (x) dx 

41 
::::: -

10  

1 9.24 Approximate the average value of g(x) , as graphed in Figure 19-7, over the 

interval [-2 ,3] . Show the work that leads to your answer. 

-2 

g(x) 
Figure 19-7 

-1 The graph of a continuous function g(x). 
-1 

In order to approximate the average value of g(x) , you must first estimate 

J�2 g (x) dx. Use the method of Problem 18.32 , counting the number of squares 
(formed by grid lines) between g(x) and the x-axis ,  as illustrated by Figure 19-8. 

"'-+- veBv.\e>1.v i\\
+-ev-Ve>1.ls. 

I\\ ot-hev wov.As 
v.se "" .Pov1Mv.l"" t-o 

Bet- yov.v O\\\Swev
.Ao\\"t-jv.st- look ""t- t-he 
Bv"'-rh O\\\.A SO\y ''Looks 
like +-he O\\\Swev is 
O\vov.\\.A I !' 
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So, .,._J_J_ 
l.\p .,..1\ \ '1 o.P tl-\e 

�l.\1Mb ev-s  i� Fi 81.\v-e 
\ '1-8' .,._�J_ IMl.\ltiply 

tl-\e SI.\IM by 1/4 (tl-\e 
01.Ctl.\.,._\ 01.v-e"" o.P 

o �e  Sql.\01.v-e). 
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Figure 19-8 Th e  number in each grid square represents the approximate 
percentage of the square that is occupied by the shaded region 
bounded byf(x) and the x-axis (expressed as a decimal). Note 
that area below the x-axis is considered negative signed area. 

I Unlike Problem 18.32, each grid mark has length - , so each square has area I 1 1 2 
- · - = - , rather than 1 · 1 = 1 .  Each term in the sum below represents the sum of 
2 2 4 the values in each "column" in Figure 19-8. 

J3 g (x) dx ""' .! (1 .35 + 1 .25 + 1 .65 + 1 .9 + 1 .4 + 0.2 - 1 .7 - 1 .6 - 0.55 + 0.95) -2 4 ""' 0.25 (4.85) ""' 1 .2125 Apply the average value formula. 
l Ib l J3 

b - a a
g (x) dx =

3 - (- 2) -2 g (x) dx 1 ""' 5 (1 .2125) ""' .2425 
Accumulation Functions and Accumulated Change 
l\\te8v"'\s witl-\ >< li1Mits Ol.\\.:A ''ve"'\ li.Pe'' l.\Ses .Pav i\\te8v01.tiC\\ 

Note: Problems 19.25-19.30 refer to the function f (x) = J: h (t) dt, given the graph ofh(t) in 
Figure 19-9. 1 9.25 Evaluate .f(2) . 

. h(t) Figure 19-9 
"l- ------t- - -t - --t- 4  

The graph of h(t) consists of a semicircle 
and four linear segments of differing 
slope. 
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Substitute x = 2 into .l(x) : f (2) = J
2

2
h (t) dt. According to the property of definite integrals that states J: f (x) dx = O, .f(2) = 0. 

N�te: Problems 19.25-19.30 refer to the function f (x) = J: h (t) dt, given the graph ofh(t) in 
Figure 19-9. 1 9.26 Evaluate .f(8) . 

Substitute x = 8 into /(x) : f (8) = J28 h (t) dt. The function value at x = 8 is defined as the area of the region bounded by h( t) and the x-axis between x = 2 and x = 8, as illustrated by Figure 19-10. 
6 

/ 
_. ---... 

I/ 4"' h(t) 
I\ 

� 
2 \ 

I ... I 
- 0 -8 6 -4 2 ) I\ 4 � ;s 0 

-2 \1 I 

(� ,o) 
Figure 19-10 The area bounded by h(t) and the x-axis consists of' a right triangle with a positive signed area ( dark shaded region) and a trapezoid with a negative signed area (light shaded region). 

-2 - 1  3 The line segment connecting (2 ,1 )  and (4,-2) has slope 4 _ 2 = -2 . Use the 3 point-slope formula to get the equation of the line : y = -- x + 4 . Substitute y = 0 2 into the equation and solve for x to calculate the x-intercept. 3 
0 = - - x + 4  2 

(¾)¾x = 4 (¾) 8 x = -

Calculate J28 h (t) dt by combining the areas of the shaded regions in Figure 19-10 ; subtract the area of the trapezoid from the area of the triangle to account for its position below the x-axis. 
J: h (t) dt = area of right triangle - area of trapezoid 

Th eve's 
\\o owe.,,_ 1.\\\-A ev 

+-h e CL\VVe i.P yo!.\ 
s+-"'-vf- "'-\\<A sf-op 
""'e"'-SL\vi\\B .,,_t, +-h e 

S"'-IA'\e x-v.,,_J L\e. 

PIL\8 
""' = -'3/2 x = 2 , I / 

"'-\\.A Yr = I i\\f-o 
Y - Yr = IA'\(x - x1) "'-\\.A 
solve .Pov y. 
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8 2 The right triangle has base b = - - 2 = - and height hA = I .  The trapezoid has 3 3 8 16  bases of  length b, = 7 - 4 = 3 and b2 = 8 - 3 = 3 ; its height i s  h" = 2. 
f2

8 h (t) dt = [i · b · hA ] - [l · hB · ("1 + b2 )] 
= [i • ¾ - 1] - [t - 2 · (3 +  1:)] 1 25 = 3 3 = -8 

N�te: Problems 19.25-19.30 refer to the function f (x) = J: h (t) dt, given the graph ofh(t) in 
Figure 19-9. 1 9.27 Evaluate .1(-8) . 

Substitute x = -8 into f(x) : f (-8) = J2-s h (t) dt. Reverse the limits of integration so that the lesser of the two is the lower limit; according to Problem 18.22 , this requires you to multiply the integral by -1 . J (- 8) = -f
8
h (t) dt Note that f�8 h (t) dt is equivalent to the sum of two areas : a semicircle with radius 5 and a rectangle with length 10 and width 1, as illustrated by Figure 19-1 1 .  Add the areas of those regions to evaluate the definite integral. 

Figure 19-11 The area bounded by h(t) and the x-axis on the interval [-8,2} consists of a semicircle ( dark shaded region) and a rectangle (light shaded region). 
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J�

8
h (t) dt = area of semicircle + area of rectangle 

= ({nr2 ) +  (l · w) 

= ! n (5)2 + (10 · 1) 2 = 25n + IO 2 25n + 20 = ---2 J2 25n + 20 Recall that f (-8) = - h (t) dt, so f (-8) = ----. � 2 
N�te: Problems 19.25-19.30 refer to the function f (x) = J; h (t) dt, given the graph of h(t) in 
Figure 19-9. 1 9.28 Evaluate f (- 10). 

Substitute x = -IO into .l(x) and reverse the limits of integration. f (- 10) = I2
-

I
O h (t) dt f (- 10) = -I�lO h (t) dt Rewrite J�

10 h(t) dt as a sum of two definite integrals. f (- 10) = -[J:180 h (t) dt +  fi (t) dt] Note that J :180 h ( t) dt equals the area of a trapezoid with bases of length 1 and 3 and height 2. 
J-8 1 ( ) 1 h (t) dt = - h bl + b2 = - (2) (1 + 3) = 4  

-10 2 2 . J2 25n + 20 Accordmg to Problem 19.27, _i (t)dt = - 2 . 

B e  o,we.Pl.\1-
t-�is is \\at- t-� e 

-M\\oo.l O\\\Swev. A .Pew 
st-eps ""80, yol.\ �oo..A 
t-o +lip-+lop t-� e li1Mit-s 
o.P i\\t-e8voo.t-io\\, so 
yol.\"11 \\ee.A t-o 

IMl.\lt-iply by - I . 

. T�is i\\t-e8voo.l 
is coo.lcl.\loo.t-e.A l\\ 

Pvobl elM 1 "1.27. 
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Note: Problems 19.25-19.30 refer to the function f (x) = J: h (t) dt, given the graph ofh(t) in 
Figure 19-9. 1 9.29 Graph f' (x) . 

d (f f(x) ) ( 
) 

1 According to Problem 18.34, 
dx a g(t) dt = g f (x) · f (x) . 

.!!:_(f h (t) dt) = h (x) · .!!:_ (x) 
dx 2 dx 

= h (x) · l 
= h (x) Therefore, the graph ofj ' (x) , pictured in Figure 19-12, is equivalent to the graph of h( t) .  

6 

/ 
....--- r--..... 

I/ 41'\ 
I\ 

I 9 \ 

- 0 8 -6 4 2 2 \ 4 
-2 \ 

Figure 19-12 The graph of h(t) is also the graph off '(x). 

f' (x) 

I 
6 ;s 0 

V 

Note: Problems 19.25-19.30 refer to thefunction f (x) = J: h (t) dt, given the graph ofh(t) in 
Figure 19-9. 1 9.30  Rank the following values from least to greatest: J ' (-3) , j ' (O) , f ' (2) ,  and j' (IO) . 

According to Problem 19.29, J ' (x) = h(x). Evaluate each derivative by determining the height of h( t) in Figure 9-12 at each x-value. 
f' (-3) = 6 f' (O) = 5 /' (2) = 1 /' (10) = 4 Therefore, j ' (2) < J' (IO) < J' (O) < J' (-3) . 
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Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with 
velocity v ( t) = -t2 + 9t - 20 ( measured in meters per second after t seconds have elapsed) and 
an initial position 3 feet left of the origin. 1 9.3 1 Identify the function s ( t) that models the position of the particle at time t with respect to the origin. 

The derivative of a position function is its velocity function. Therefore, the antiderivative of the velocity function is the position function. 
s (t) = f v (t) dt 

= f ( -t2 + 9t - 20) dt 

t3 9t2 

= - - + - - 20t + C  
3 2 According to the information given, s (0)  = -3. Use this initial condition to calculate C. 

(0)3 9 (0)2 s (0) = - - + -- - 20 (0) + C 
3 2 - 3 = C  

t3 9t2 Therefore s (t) = - - + - - 20t - 3 . ' 3 2 

Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with 
velocity v (t) = -t2 + 9t - 20 (measured in meters per second after t seconds have elapsed) and 
an initial position 3 feet left of the origin. 1 9.32 Calculate the total displacement of the particle from t =  0 to t =  4. 

Displacement of the particle on the time interval [a,b] is defined as s (b) - s (a) ;  in this problem, a = 0 and b = 4. 
s (b ) - s (a) = s ( 4) - s (0) [ 43 9 (4)2 

] = - 3 + -2- - 20 (4) - 3  - (- 3) 64 144 = - - + - - 80 - 3 + 3 
3 2 = - 64 + 72 - 80 3 - 64 - 24 3 88 = 3 88 The particle is 3 meters left of where it began at t = 4 seconds. 
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Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with 
velocity v (t) = -t2 + 9t - 20 (measured in meters per second after t seconds have elapsed) and 
an initial position 3 feet left of the origin. 

1 9.33  Determine the total distance traveled by the particle on the time interval [0,4] . 
You must first identify any t-values at which the particle changes direction, indicated by a sign change in the velocity function. Use the technique demonstrated in Problem 15.20, which begins by setting the velocity function equal to 0 and solving the equation to locate critical numbers . 

-t2 + 9t - 20 = 0 - 1 ( -t2 + 9t - 20) = - 1 ( 0) 
t2 - 9t + 20 = 0 

(t - 4) (t - 5) = 0 
t = 4, 5 

The particle changes direction at t = 4 seconds and again at t = 5 seconds, because 
v ( t) changes sign at both of those critical numbers . Neither critical number affects the distance traveled by the particle from t = 0 to t = 4, because the particle travels in only one direction during that time. Therefore, its displacement and 88 distance traveled are equivalent: 3 meters (according to Problem 19.32) .  

Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with 
velocity v (t) = -t2 + 9t - 20 (measured in meters per second after t seconds have elapsed) and 
an initial position 3 feet left of the origin. 

1 9.34 Determine the displacement of the particle on the time interval [3,7] . 
As explained in Problem 19.32, the displacement of the particle is the difference of its positions at the endpoints of the specified t-interval : s (7) - s(3) . 

[ 73 9 (7)2 ] [ 33 9 (3)2 

] 

s (7) - s(3) = -3 + -2- - 20 (7) - 3 - -3 + -2- - 20 (3) - 3 
= [- 3:3 + 4:1 - 140 - 3 ] - [-9 + �l - 60 - 3] 
= [ -686 + 1, 3�- 840 - 18 ] - [- 18 + 8\- 120 - 6] 221 63 = - - + -

6 2 32 
6 1 6 

1 6 At t = 7 seconds, the particle is 3 meters left of its position when t = 3. 
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Note: Problems 19.31-19.35 discuss a particle moving back and forth along the x-axis with 
velocity v (t) = -t2 + 9t - 20 (measured in meters per second after t seconds have elapsed) and 
an initial position 3 feet left of the origin. 1 9. 35  What is the total distance traveled by the particle on the time interval [3,7] ? 

According to Problem 19.33, the particle changes direction at t = 4 and t = 5.  Definite integrals of the velocity function calculate the total distance traveled, as long as the particle travels only one direction between the limits of integration. However, if the particle is moving left, the definite integral will be negative. Therefore, to calculate the total distance traveled by the particle, take the absolute value of each integral and add the results. 

1 7  3 17  The particle travels a total distance of  - meters between t = 3 and t = 7. The particle travels left for most of that dist:nce (� + 14 = 1 1  meters) , traveling right 1 6 3 2 only 6 of a meter, between t = 4 and t = 5 seconds. 
1 9.36  Seven hours after a community water tank is filled, monitoring equipment reports that water is leaking from the tank at a rate of l (t) = {t+4 - -1-'V3 t + l  gallons per hour (where t is the number of hours elapsed since the tank was last filled) . Calculate the total amount of water that leaked out of the tank during those seven hours . 

The definite integral J: l (t) dt calculates the total volume of water that leaked out of the tank between t = a and t = b. Unlike Problems 19.33 and 19.35, there is no need to identify critical points or split the definite integral because l ( t) > 0 for all t. Evaluate J: l (t) dt-r 1 (✓t + 4 _ _ l_) dt = r 1 -Jt + 4  dt - r1 _!!_ J o  3 t + l  J o  ✓3 J o  t + l  
= _!_ r1 (t + 4)112 dt - r1 _!!_ ✓3 J o  J o t + l  

yo1h·e wov\:.i't 8 wii-l-\ 
J-e..fi'tii-e i'ti-e8voi.l s
jl.\si- i'ti-e8voi.i-e eoi.cl-\ 
i-ev1M o.P v(i-) I.\Si't 8 
i-l-\e po wev vl.\\ e .Pov 

i'ti-e8voi.i-io't. 

l.P l (t:) is Hi e 
voi.i-e H1oi.i- Hi e 

woi.i-ev's l eoi.\:.i't 8 Ol.\f, 
oi. 't e8oi.i-ive l(i-) 1Meoi.'ts 
woi.i-ev is l eoi.\:.i't 8 
boi.c\:. i't, oi.'tJ- Hioi.i
J-oes't'i- 1Moi.\:. e oi.'ty 

Se'tse. 
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Apply variable substitution. In the first integral, u = t + 4 and du = dt. In the second 
integral , v = t + I and dv = dt. As you write the integrands in terms of u and v, 
remember to write the limits of integration in terms of u and v as well .  

= _!_ J l l  u112du - f s dv 
✓

3 4 I V 

= _!_ · 3, ( u312 ) I
l l  

- In lv l l
8 

✓
3 

3 4 I 
= __!_ (1 131 2 - 431 2 ) - (ln 8 - ln l) 

3✓
3 

Note that 4312 = ( J4)
3 

= 8 and In 1 = 0. 

= __!_ (1 131 2 - 8) - ln 8  
3✓

3 

= 2✓
3 

(1 1312 - 8) - ln 8 
9 

:::::: 8.884 gallons 



Chapter 20 
I NTEG RATI NG RATIONAL EXPRESS IONS  

, . 's � .Pv-�cFio\\ 'i\\sit-\e +-l-\e i\\+-eBv-�l Wl-\�+- +-o t-\o wl-\e\\ +-V\eve 

Minor differences in a rational integrand require v�stly diffe�ent solut�or� with methods . For instance , integrating a prime quadratIC denommator p�::ever if a constant numerator typically requires !ou to complette th
a

e

r

s1·qabul

a

e

r:�bstitutio� . . · d · th a linear numera or, v the same denommator IS paire WI 
. h · her will likely b . 

ed Furthermore a numerator with degree two or ig ;�::iv: ;�;;�ivi;ion before yo� are able to int"yate :he :�!r;����;c:�a��
0

1:��e methods are explored in detail . The chapter cu mma es . 1 d to . f 1 and ngorous too use partial fraction decomposition techmque , a power u . £ t f express an integrand as the �um of fractions whose denommators are ac ors o the original rational expression. 
Dev-iv""tives 01.v-e l,\,\L\cl-\ e01.siev- ti-\"'-\\ i\\te8v-"'-ls. W01.\\t +-o c:Ai.P.Pev-e\\ti01.te "" pv-oc:AL\c+-? Use +-1-\e pv-oc:AL\ct v-L\le. Neec:A +-1-\e c:Aev-iv01.tive o.P "" .Pv-0\ctio\\? Tl-\e ql-\otie\\t v-L\le 01.hN"'-YS wov-\:.s. No+- so wit!-\ i\\te8v-"'-ls, +-l-\ol-\81-\. Di.P.Pev-e\\t .Pv-0\ctio\\s, eve\\ i.P +-1-\ey'v-e O\\ly vev-y sli81-\Hy c:Ai.P.Pev-e\\+i will 1-\""ve co""'ple+-ely c:Ai.P.Pev-e\\t loo\:.i\\8 soll-\tio\\s ti-\""+- v-eql-\iv-e yol-\ +-o L\Se co""'ple+-ely c:Ai.P.Pev-e\\t +-ecl-\\\iql-\es. Tl-\""+-'s wl-\y +-!-\is e\\tiv-e cl-\01.ptev- is spe\\t O\\ +-1-\e ql-\""8""'iv-e ti-\""+- is i\\te8v-"'-ti\\8 .Pv-0\ctio\\s. W01.tcl-\ OL\t .Pov- li+-He tv-ic\:.s 01.lo\\8 +-1-\e wO\y SL\cl-\ O\S 01.c:Ac:Ai\\8 Ol.\\c:A SL\btv-01.cti\\8 +-1-\e SO\l,\,\e +-1-\i\\8 i\\sic:Ae 0\\\ i\\te8v-"'-l Cli\:.e ->< + ><), wl-\icl-\ is v-e"'-l ly +-1-\e SO\l,\,\e +-1-\i\\8 O\S O\.:Ac:Ai\\8 0. Two o.P +-1-\e ""'e+-1-\oc:As yol.\'ll leO\v-\\ (sep01.v-01.tio\\ O\\\c:A p01.v-ti01.l .Pv-01.ctio\\s) wov-\:. by CO\\Vev-ti\\8 O\\e bi8 .Pv-01.ctio\\ i\\to "" t>L\\\cl-\ o.P s""'""ll .Pv-0\ctio\\s O\.:Ac:Aec:A +-oBe+-1-\ev-, bl-\t L\Si\\8 p01.v-ti01.l .Pv-01.ctio\\s is l,\,\L\cl-\ ""'ov-e co""'plic01.tec:A ti-\"'-\\ sep01.v-01.tiO\\ . It's \\ot ""ll THAT 1-\0\v-c:A, bl-\t +-1-\ev-e O\v-e "" lot o.P steps, wl-\icl-\ ""'e"'-\\S +-1-\ev-e 01.v-e "" lo+- o.P pl01.ces +-o ""'""\:.e ""'is+-01.\:.es. 



Chapter Twenty - Integrating Rational Expressions 

ot.A.Ait-io\\ Ov
Sl.\bhotctiO\\ i\\ 

the \\l.\lMev-ottov-' 
YOL\ Cot\\ 1.wite eotch 

tev-1M ovev- ct copy 0.p 
the <Ae\\01Mi\\ottov- ot\\.A 
ct.A.A (av- Sl.\bhotct) 
those .Pv-otctio\\s. 
Yol.\ Cot\\'t split 
otpotv-t ot.A.AitiO\\ OY 
Sl.\bhotctio\\ i\\ the 
.Ae\\01Mi\\ottov- like 

thott; thol.\8h. 

344 

Separation 
t--\e1.\:.e C\\e biB l.\8ly .Pve1.ctia\\ i\\ta S1Me1.llev, less l.\8ly C\\eS 

a + b  a b a a a 20. 1 Demonstrate that -- = - + - but -- # - + -. 

20.2 

e e e b + e  b e 

a b Notice that - + - have common denominator e. You may combine the numerators 
e e a a a + b  of such fractions : - + - = -- . However, in order to combine the fractions in the 

a a e b e expression b + -;; , you must first rewrite the sum using the common denomina-tor be . 

� (�) + � ('!_) = ae + ab 
b e e b be 

a a a a a ae + ab Therefore, -- # - + - · instead - + - = ---
b + e b e '  ' b e be 

x9 - 3x4 Integrate the expression: J 6 dx. 
X 

Separate the rational expression into two rational expressions with a common denominator. 
--- dx = - - - dx I x9 

- 3x4 
J(x9 3x4 ) x6 x6 x6 

Apply the power rule for integration. 
x9 x4 

= f - dx - 3f - dx x6 x6 

= J x3dx - 3f x-2dx 

4 -1  
X X = - - 3 • - + C 
4 - 1 
x4 3 = - + - + c 4 X 

. I✓x + I 20.3 Integrate the expression: -- dx. 
X 

Separate the expression into two indefinite integrals containing integrands with common denominators. 
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f✓x + I dx = f.J; dx + f _!_ dx 
X X X 

x112 dx 
= f - dx + f-x X 

= f x-112dx + f dx 
X 

X
l/2  

= - + ln lxl + C  
1 / 2  

= 2x112 + ln lx l  + C 

. f cos 2x 
20.4 Integrate the expression: --2 - dx. 

COS X 

20.5 

Recall that cos 2x = 2 cos2 x - I .  Use this identity to rewrite the numerator and 
separate the integrand into the difference of two fractions. 

f cos 2x f 2 cos2 x - 1 
-- dx = ---- dx 
cos2 x cos2 x 

J 2 cos2 x f I = --- dx - -- dx 
cos2 x cos2 x 

= f 2 dx - f sec2 x dx 
= 2x - tan x + C  

e4 x  - 2  
Integrate the expression: f--4.- dx. 

e 

Rewrite the integrand as the difference of two rational expressions. 

e4
" - 2  e4x 2 f � dx = f 

e 4x 
dx - f 

e 4x dx 
= fl · dx - 2f e-4•dx 

Integrate f e -4• dx using variable substitution: u = e-1x and du = -4e-1x dx, so 
du -4x - - = e  dx 
4 = f I · dx - 2f -

d
: 

I = f dx + -f du 
2 

I 
= x + - u + C  

2 
I 

= x + -4- + C  
2e X 
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1Mv.l+-i.plyi.\\B 'oy 2. 
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20.6 I - 2dx Integrate the expression: ----;-----2. 
e -

Add and subtract ex in the numerator. 
I - 2  

J
- 2 + ex - ex 

-- dx = ---- dx 
ex - 2  ex - 2  Separate the first two terms of the numerator from the third term, creating two indefinite integrals. 
I - 2 + ex 

J
-ex

dx = --- dx + --
ex - 2  ex - 2  

= J � dx - f  
ex

dx 

� ex - 2  

= J dx - J �
•dx 

e - 2  Apply variable substitution to the remaining rational integrand: u = e' - 2 and 
du = e' dx. 

= J dx - J
du 

u 
= x - ln l ul + C  

= x - ln l ex - 21 + c  

. 
J

.Jx - 4 + x 
20.7 Integrate the expression : ---- dx. 

x - 4  

Rewrite the integrand as the sum of two rational expressions. 
I .Jx - 4 + x 

J
.Jx - 4  J x 

---- dx =  --- dx + -- dx 
x - 4  x - 4  x - 4  (x - 4)112 

X = J ( )1 dx + f - dx x - 4  x - 4  

I( )- 1/2 I X = x - 4  dx +  -- dx 
x - 4  Apply the same variable substitution to both integrals :  u = x - 4 and du = dx. 

= J u-112du + J
u + 4 

du 
u 

= J u-112 du + f � du + f � du 

Ul/2 

= - + u + 4 ln lul + C  1 / 2  
= 2✓x - 4  + (x - 4) + 4 ln l x - 41 + C  

= 2✓ x - 4 + x + 4 ln lx  - 41 + C - 4 
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Note that C- 4 is another arbitrary constant. To indicate that the new arbitrary constant is different than C as it appeared in the preceding steps, you can use a new constant, such as K, but it is common to continue to refer to the arbitrary constant as C, even if the value of C may change throughout the problem. Also note that, according to the logarithmic property that states a log b = log b 0
, 

4 1n l x - 41 = ln (x - 4) 4 . 

= 2✓x - 4 + x + ln (x - 4)4 + C 

Long Division 

Divi.:Ae be.Pave ycl.\ i\\te8ve1.te 

20.8 Under what circumstances is it beneficial to perform long division on a rational integrand? 

20.9 

If the numerator and denominator of the rational expression are polynomials such that the degree of the numerator is greater than or equal to the degree of the denominator, it is often beneficial to perform long (or synthetic) division before integrating. 
9 3 4 4 3 According to Problem 20.2 , f x -

6 
x 

dx = � + - + C. Verify the antiderivative 
X 4 X by performing long division on the integrand before integrating. 

As the degree of the numerator is greater than or equal to the degree of the denominator (9�6) , you can apply long division. 
x3 - 3x-2 

x6 ) x9 + Ox8 + Ox7 + Ox6 + Ox5 - 3x4 + Ox3 + Ox2 + Ox + O  

- xg 

- 3x4 + Ox3 + Ox2 
+3x4 

0 Rewrite the rational integrand as the quotient that results from long division. 
x9 - 3x4 

J 6 dx = f ( x3 - 3x -2 ) dx 
X 

= f x3dx - 3f x-2dx 
4 - 1  

= � - 3 - � + c  
4 - 1  
x4 3 = - + - + c  
4 X 

J..ef'.)vee lS \o,.vf'.)ev, yeL\ CO\\\ hy +-e l\\ref'.)vO\+-e L\Sl\\fj po,.v½--to,.\ .Pvo,.dle\\S, wl-\tcl-\ lS ceveveJ.. o,.½-+-l-\e e\\J.. e.P +-\-\ts 
1-P yeL\ \\ee.J. +-e veview le\\8 .J.ivisie\\ e.P pely\\e""'i""ls, leek "'-+- Pvc'ble""'s 2. 1 , OI.\\.A 2. 17. 
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J 2x3 - 13x2 - 57x + l08 20. 1 0  Integrate the expression: -------- dx. 
2x - 3 

Perform polynomial long division. 

x2 - 5x - 36 

2x - 3) 2x3 - 13x2 - 57x + 108 

- 2x3 + 3x2 

- 10x2 - 57x 

+ 10x2 - 15x 

- 72x + l08 
+ 72x - 108 0 

Rewrite the rational integrand as the quotient that results from long division. 

J 2x3 - 13x2 - 57x + l08 - J( 2 5 36) -------- � - x - x - � 
2x - 3  

x3 5x2 

= - - - - 36x + C 
3 2 

I x3 
- 8x2 + 3x + 1 6  20. 1 1 Integrate the expression: 2 dx. 

X - 2 

Perform polynomial long division. 
x - 8 

x2 - Ox - 2) x3 - 8x2 + 3x + l6 

-x3 + Ox2 + 2x 
- 8x2 + 5x + 16 

+ 8x2 - Ox - 1 6  

5 x  + o  
x3 

- 8x2 + 3x - 4 5x 
Note that the remainder is 5x; therefore, ------ = x - 8 + -- . 

x2 - 2 x2 - 2 

------ dx = x - 8 + -- dx I x3 
- 8x2 + 3x - 4 J ( 5x 

) 
x2 - 2 x2 - 2 

= J x dx - f 8 dx +  J � dx 
X - 2 

= J x dx - 8f dx + 5J -/-- dx 
X - 2 



C hapter Twenty - I ntegrating Rational Expressions 

The rightmost integral requires variable substitution:  u = i2- - 2 and du = 2x dx, so 
du - = x dx . 2 

= f xdx - 8f dx + 5 · _!_ f du 2 u 
x2 5 = - - 8x + - ln lul + C  
2 2 

x2 5 = - - 8x + - In lx2 - 21 + c 
2 2 

f
4x + 7  20. 1 2  Integrate the expression: -- dx. 3x - 1  

Perform long division. 4 3 3x - 1) 4x + 7 

- 4x +  
4 3 25 3 

4x + 7 4 25 / 3 4 25 Therefore -- = - + -- = - + --, 3x - 1  3 3x - 1  3 3 (3x - 1) " 
-- dx = - + --- dx f 4x + 7 J[4 25 ] 3x - 1  3 3 (3x - 1) 

= J i dx + 
25 f � 3 3 3x - 1  

f dx Variable substitution is required to antidifferentiate -- : u = 3x - I and 
du 3x - I  

du = 3 dx, so - = dx. 3 = J ± dx + 
25 . ! f du 3 3 3 u 4 25 = - x + - ln lul + C 3 9 4 25 = - x + -ln l3x - ll + C 3 9 

t-l-\e J..i.vi.si.c\\ 
sy1Mbcl b ece>1.1AS e 

,� (;) � I� �4� . 
I t- e>1.\\Swevs t-l-\e 
q1Aest-i.c\\ \•,� t-i.1Mes 
wl-\e>1.t- eq1Ae>1.l s 

4�?,, 
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I x5 - 6x4 + 3x3 - x - l  
20. 1 3  Integrate the expression: -------- dx. 

< x + 2  

Because the denominator is a linear binomial with leading coefficient 1 ,  synthetic division is preferable to long division. 
� 1 -6 3 0 - 1 - 1 -2  16  - 38 76 - 150 1 -8 19  - 38 75 - 151 Rewrite the integrand using the quotient resulting from synthetic division. 

I x5 - 6x4 + 3x3 - x - l J( 151 ) -------- dx = x4 
- 8x3 + 19x2 

- 38x + 75 - -- dx x + 2  x + 2  
= J x4dx - 8f x3dx + I9J x2dx - 38f x dx + 75f dx - l5lf � x + 2  

x5 8x 4 l 9x3 38x2 = - - - + - - -- + 75x - 151 · ln lx + 21 + C 
5 4 3 2 

xs 4 19x3 2 I I - - 2x + -- - l9x + 75x - 151 · ln x + 2  + C 
5 3 

Applying I nverse Trigonometric Functions 
\Jevy l.\Se.Plhl, blht O\\ly l\\ cevt01.i\\ civcl.\1MSt01.\\ces 

I x dx J dx 
20. 1 4  Explain why --2 can be integrated using variable substitution but --

2 l + x  l + x  cannot. 
du If u = :i2 + l ,  the shared denominator, then du = 2x dx and - = x dx. Because 2 the derivative contains "x dx," the numerator of the fraction must contain this 

I x dx quantity as well, in order to perform variable substitution. Whereas --2 l + x  does contain the required x (as well as the dx, which appears in both integrals) ,  
I dx 

--2 does not. 
l + x  

20. 1 5  Integrate the expression: J 1 !:2 • 

d l du According to Problem 16.26, - (arctanu) = --2 · -. If u = x in that 
du l + u  dx 

l d l rational expression, it becomes 2 • - (x) = --2 
• 1. Therefore, l + (x) dx l + x  

I dx 
--2 = arctanx + C. 
l + x  
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I du More generally, any integral of the form -2--2 , where u is a function of x and 
L L a + u a is a real number, has an antiderivative of _!_ arctan(!!:. + C. a a . J 6xdx 20. 1 6  Integrate the express10n: -4--. 

X + 16 
I du This integral has form -2--2 , if a =  4 (because 42 = 16) and u = x2 (because 

a + u 
(x2) 2 = x1 ) .  To integrate, apply variable substitution: u = x2 and du =  2x dx, so 
du 
- = x dx .  2 I 6x dx J x dx x4 + 16 = 5 x4 + 16 

I du / 2  - 6 --- u2 + a2 
I f du - 6 • -- 2 u2 + a2 

According to Problem 20.15, --- = - arctan - + c . I du I 
(

u
) a2 + u2 a a 

20 1 7  I h . J e" dx . ntegrate t e express10n: r:::---;;· ...;5 - e2" 

Note that J .J 
du = arcsin (!!:.) + C. a2 - u2 a Let a = -Js (because a2 = (-Js)2 = 5 ) and u = e' (because u2 = ( e") 2 = e2') . Perform variable substitution: if u = e', then du =  e' dx. 

I e"dx 
✓5 - e2" 

J du 
.Ja2 - u2 = arcsin (�) + C 

= arcsin( � ) + c 
Rationalize the denominator to get the equivalent solution arcsin ( e• ;) + C. 

V:s i'tsiJ..e 
i-l-\e i'tvevse hiB 

i'ti-eBvc:,1.l s sl-\oL\lJ.. 
ve1Mi'tJ.. yoL\ i-o L\S e 

l,\-SL\PSf-if-L\f-io't i.P l,\ 
eqL\c:,1.l s so1Mei-l-\i't 8 

oi-l-\ev i-l-\c:,1.'t 
jL\si- ,c. 

Th e 
ov.J. ev i't f-h e 

.J. e'to1Mi'tc:,1.f-ov .J.o es't'i-
1Mc:,1.f-f-ev-L\ z + .,._z 
OI.\\.J. O\Z + l,\Z <'\Ye 
e9L\iVO\l e'tt, jL\si- lik e 
s- + '3 <'\\\.A '3 + s-. 

Tl-\is .Pov1ML\lc:,1. 
(wl-\icl-\ looks "" 

loi- like i-l-\e c:,1.vcsi't ,c 
J..eviv<'\f-ive .Pov1Ml,\lc:,1. 
.Pvo1M Pvo't>l e1M I G .24) 
J..o es't'i- VIO\Ve 1 /.,._ 
oL\i- .Pvo'ti- like i-l-\e 
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Pvo't>l e1M 20. IS-. 
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I dx 
20. 1 8  Integrate the expression : .J 

x 1 - (lnx)2 

Apply the inverse trigonometric antiderivative J du = arcsin(�) + C with 
dx ✓a

2 - u
2 a 

a = I ,  u = In x, and du = -. 

J dx = J l _ dx 

x✓l - (lnx)2 .J1 - (lnx)2 x 1 = f --== · du 
-Ja2 - u2 

= arcsin (�) + C 

= arcsin (lnx) + C 

. J cos 3x dx 20. 1 9  Integrate the expression: --------;c=====· 
sin3x,Jsin2 (3x) - 2 

I du 
Apply the arcsecant antiderivative formula: 

-J u u
2 - a2 

= � arcsec ( l:I ) + C. Let 

du 
a = ✓

2 
and u = sin 3x. Therefore, du = 3 cos 3x dx and 3 = cos 3x dx. 

J cos 3x dx = J du / 3 

sin 3x,Jsin2 (3x) - 2  u✓u2 - a2 

= _! J du 
3 u-Ju2 - a2 

= _! · _! arcsec (�) + C 
3 a a 

= 
31 arcsec ( l

si
;;

x)l ) + c  

Rationalize the expressions to get the equivalent solution 

- arcsec ----- + C. ✓
2 

(
✓

2

l sin (3x)1
) 6 2 

I x dx 
20.20 Integrate the expression : 

,J 
. L 

( arctan x2 + x 4 arc tan x2 ) arctan 2 
( x2 ) - 25 

Factor arctan x2 out of the parenthetical quantity in the denominator. 

J x dx 

arctanx2 (1 + x4 ) ,Jarctan2 (x2 ) - 25 
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Apply the arcsecant trigonometric antiderivative such that a = 5, because 
a2 = 52 = 25, and u =  arctan x2 , because u2 = (arctan x2) 2 = arctan2 (x2) .  Differentiate 
u = arctan x2 to determine du. 

u = arctanx2 1 d 
du = 

1 + (x2 )2 
. 
d)x2 ) 

1 
du = -- • 2x dx 

l + x4 

du x dx 
2 l + x4 

f x dx = f du / 2  
arctanx2 (1 + x4 ).Jarctan2 (x2 ) - 25 u✓u2 - a2 

= _! · ! arcsec (�) + c  
2 a a 1 1 ( larctanx2 1 )  

= - · -arcsec ---- + c  
2 5 5 

Note that arctan x2 > 0 for all x, so the absolute values are unnecessary. 

= -arcsec --- + C 
1 ( arctanx2

) 10 5 
Completing the Square 

fcv qv.oi.t:l.voi.tics J.cw\\ belcw oi.\\t:l. \\C voi.vioi.bles v.p tap 

20.2 1 Integrate the expression: f dx 
2 . 

(4x - l) + 9  

Apply the inverse tangent antiderivative from Problem 20.15, such that a = 3 and 
du 

u = 4x - 1 . Therefore, du = 4 dx and 4 = dx. 

f dx f du / 4  
(4x - 1)2 + 9  u2 + a2 1 1 ( u ) = - · - · arctan - + C 4 a a 1 ( 1 ) (

4x - l
) = 4 3 arctan -

3
- + c  

1 
(
4x - l

) = 
12

arctan -
3
- + c  

-rh e >< -A>< i\\ 
+-h e \\1.\1,\'\ev.,,_f-ov "'-\\.A 
+-h e I + ><4 i\\ +-h e 
.A e\\Ol,\'\i\\.,,_f-ov .,,_ve 
vepJ.,,_ ce.A by .Al.\/2. 

Ch eck ol,\f- +-h e 
8Y"'-rh o.P y = t,.,,_\\- 1 )< 

O\\ YOl.\v c.,,_J cl.\l.,,_t,ov
if-'s "'-bove +-h e ><-"'-><is 
wh e\\ >< > O. 
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Jv.s+- lik e 
i\\ Pv-cbl elM 

20.(,, <:>\.A.Ai\\8 
"'-\\.A Sv.bf-v-.,,.cf-i\\B S<'IM eH'\i\\8 .,,_+- +-h e S"'-1Me +-i1Me v-e.,,.lly 

IMe"'-\\S ycv.'v-e <:>\.A.Ai\\8 0, which wc\\'f-
ch.,,_\\8 e  +-h e v"'-lv. e 

c.P +-h e i\\f-e8v-.,,_J. 

20.22 Complete the square in the denominator of the integrand: f dx . x2 - 8x + 20 
Compute the square of one-half the x-coefficient: (-s · _! r = 16. Add and subtract this value from the denominator. 2 

f dx f dx x2 
- 8x + 20 - x2 

- 8x + 20 + 16 - 16 Reorder the terms in the denominator so that the 16 is grouped with the x-terms and -16 is grouped with the constant. 
f dx = {x2 - 8x +  16) + (20 - 16) Factor the trinomial, which (as a result of the above arithmetic manipulation) will be a perfect square. Combine the constants as well. 

f dx - (x - 4)2 + 4 
20.23 Integrate the expression f dx

2 , generated by Problem 20.22. (x - 4) + 4 
Integrate using the method described by Problem 20.21 ,  setting a = 2, u = x - 4, and du = dx. 

I dx f du (x - 4)2 + 4 = u2 + a2 = � arctan(�) + c 
= } arctan( x ; 4 ) + c 

I x dx  
20.24 Integrate -----. 

< x2 - 8x + 20 
-rl-\e \\ 1A1Mev-"" f-c,v

.,,_Jv-e"'-.A y l-\.,,_s "'-\\ 
,c-i+-jlAsf- \tee.As "'- -4. I.P 

yc!A p!Af- .,,_ -4 i\\ +-l-\ev-e, yc!A 
l-\.,,_ve f-c, p!Af- 4 i\\ +-l-\ev-e "'-+-

+-l-\ e S<:>\IMe f-i1Me ('o ec<:>\l.\S e 
-4 + 4 ==- 0, <:>\\\.A <:>\ .A.Ai.\\8  

0 we\\'+- CV\"'-\\8 e 
"'-\\yf-l-\i\\ 8.) 
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Attempt to integrate using variable substitution: set u = x2 
- 8x + 20  and differentiate. 

du = (2x - 8) dx 
du = 2 (x - 4) dx  
du 
- = (x - 4) dx 
2 In order to apply the variable substitution technique, the numerator must be ( x - 4) dx instead of x dx. Add and subtract 4 in the numerator. 

I x dx  f x - 4 + 4  ----- - ----- dx x2 
- 8x + 20 - x2 

- 8x + 20 
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Split the expression into the sum of two integrals , such that x - 4 ( the expression required for variable substitution) is one of the numerators . 
f x - 4  f 4 dx = ----- dx + x2 - 8x + 20 x2 - 8x + 20 
f x - 4  4f dx = -----dx + x2 - 8x + 20 x2 - 8x + 20 

Apply variable substitution to the first integral : u = :i2 - 8x + 20 and du = (x - 4) dx, 2 as calculated above. The second integral is calculated in Problem 20.23. 
= [ f du: 2] + [ 4 f x2 - :: + 20 ] 
= [½ ln lul] + [ 4 · }arctan( x ; 

4 )] + C 

= } 1n (x2 - 8x + 20) + 2 arctan( x ;
4 ) + c 

20.25 Integrate the expression: f dx . 
< 2x2 - 4x + I4 In order to complete the square , the x2-term must have a coefficient of 1 .  

f dx f dx 2x2 - 4x + 14 - 2 ( x2 
- 2x + 7) 

I f dx 
= 2 x2 - 2x + 7  Complete the square in the denominator and apply the inverse tangent antiderivative. 

Let a = ✓6 , u = x - I , and du =  dx. 

Rationalize the expression. 
I f du 

= 2 u2 + a2 I I ( x - 1 ) = 2 · ✓6 arctan ✓6 + C 

✓6 ( ✓6 
(x - 1) ) - arctan ---- + C 12 6 

Evev-y poi\\f-O\\ +-he 8v-"'-ph o.P 'Y ==- xz - 8'x + 2.0 is "'-Pave +-he x-.,,.xis, so \\o IM�Hev- wh.,,_+- x yoL\ plL\� �\\, yoL\11 8e+- OL\f- "'pos1hve \\L\1Mbev-. Th.,,.+-""'e"'-\\S 'YOL\ CO\\\ .Av-op +-he "'-PSdL\f-e v"'-IL\e L '00\YS. 

coe.P-ficie\\t- o.P 
"1<2 OL\r o.P EVERY t-ev-l,\,\ i \\ t-v.e .Ae\\Ol,\,\i\\O\rOv-. 
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20.26 Integrate the expression: J S dx  . 3x2 - 2x + l3 
The leading coefficient of the quadratic must be 1 ,  so factor 3 out of each term in 

�m;natoc. 

f 5 dx f 5 dx 3x2 - 2x + l3 - 3 [x2 - (2 / 3)x + l3 /3] 

\\IA\,\,\'b ev- i\\siJ.. e 
i--1'\e p ev�eci-

Sq!Aowe will otl wotys b e  
l'\o,.l� i--l'le ;,<-co e�-fi cie\\+; 

so i--1'\ e �otci--o v eJ.. �c,v-1,\,\ 
o� i--l'li s q1AotJ..v-otH c is  

()< - �r 
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5 f dx = 3 x2 - (2 / 3) x + l3 / 3 Compute the square of half of the x-coefficient. 
[(-¾) (t)J = (-½r 1 9 

5 f 
dx = 3 [x2 - (2 / 3) x + l / 9] + (13 / 3 - l / 9) 

5 f 
dx = 3 (x - 1 / 3)2 + 38 / 9 A 1 h . . . "d . . fi 1 h h {38 .J38 pp y t t inverse tngonometnc anti envative ormu a sue t at �g = -3- = a, 

u = x - 3 , and du = dx. 

= if 
u2�a2 5 1 ( u ) = - · - arctan - + c  3 a a 5 1 (x - 1 / 3 ) = 3 · ./38 / 3 arctan ./38 / 3 + C 

Eliminate the complex fractions by multiplying their numerators and . 3 denommators by f""o"o "  v38 
5 (3x - l ) = ./38 arctan ./38 + C 

Rationalize the expression to get the equivalent solution 5./38 [./38 (3x - 1) ] C --arctan ----- + 38 38 
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Partial Fractions 
A .Pot\\CY woty t-o 'o v eot� .Ao w\\ 'o i,� .Pv-otct-io\\S 

20.27 What is the final goal of partial fraction decomposition? 
The ultimate goal of partial fraction decomposition is to rewrite a single fraction as a sum of fractions whose denominators are factors ( or powers of factors) of the original fraction. 

20.28 Perform partial fraction decomposition on the rational expression : 2x - 3 x2 - 25 
Factor the denominator. 2x - 3  2x - 3  x2 - 25 (x + 5)(x - 5) The goal of partial fraction decomposition is to rewrite the expression as a sum of fractions whose denominators are the factors of x2 - 25. 2x - 3  A B -(x_+_5_)-(x---5-) = -x-+-5 + -x---5 �-------� Eliminate all of the fractions in the equation by multiplying every term by the least common denominator ( x + 5) ( x - 5) . [ (x + 5)(x - 5)] [  2x - 3 ] = [ (x + 5)(x - 5)] [� + _!!_] 1 (x + 5)(x - 5) 1 x + 5 x - 5 y:-/4y:-/4 (2x - 3) y:-/4 (x - 5) A  (x + 5) y:r5}B y:-/4 y:-/4 = � + M 2x - 3  = (x - 5)A + (x + 5) B Distribute A and B. 2x - 3 = Ax - 5A + Bx + 5B Group like terms and factor x out of the variable terms. 2x - 3 = Ax + Bx - 5A + 5B 2x - 3 =  x (A + B) + (-5A + 5B) If the expressions on the right and left sides of the equation are equal, their coefficients must be equal. The x-coefficient on the left side of the equation is 2 , so the x-coefficient on the right side (A + B) must equal 2 as well :  A +  B = 2. Similarly, the constant on the left (-3) must equal the constant on the right (-5A + 5B) : -5A + 5B = -3. In order to identify A and B, you must solve the system of equations. { A + B = 2 -5A + 5B = -3  

Pv-obl e1M 
20.'32 exploti\\ s 

whott- t-h is weiv-.A 
l it-t-l e qL\otl i.Pyi\\8 
St-ott-e1Me\\ t- IMeot\\S. 
ll\\t-il t-he\\, .Ao\\'t
wov-v-y otboL\t- it-. 

Th e 
""- e\\01Mi\\otf-ov-s X + 5" O\\\o\ X - 5" 

hotve ""-e8vee I . 
Th e \\L\IMev-otf-ov-s 
hotve 0\ ""-e8vee 
+-hott-'s exotct-ly O\\e SIMotllev (0). I\\ ot-hev wov.As, +-he A ot\\.A B 
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eqv..,,.+-io� .Pov- A +-o 
Be+- A -:= 2. - B ""�J.. 

sv.'bs+-i+-v.+-e H"""+
i�+-o +-!A.e seco�J.. 

eqv..,,.+-io�. 
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The system i s  quickly solved using substitution. -5A + 5B = - 3  - 5 (2 - B) + 5B = - 3  - 1 0  + 5B  + 5B  = - 3  10B = 7  7 B = -10  Substitute B into either equation of  the system to  calculate A. 
A + B = 2 7 A + - = 2 10 

A = 20 _ _2__ 10  10 13  A = -10 Substitute the values of A and B into the original decomposition equation. 2x - 3  A B 13 /10 7 / 10 13  7 ----- = -- + -- = -- + -- = --- + ---(x + 5) (x - 5) x + 5  x - 5  x + 5  x - 5  10 (x + 5) lO (x - 5) 
20.29 Verify the partial fraction decomposition from Problem 20.28 by demonstrating 2x - 3  13 7 that ----- = --- + ---. (x + 5) (x - 5) 10 (x + 5) lO (x - 5) 

Eliminate the fractions by multiplying by the least common denominator: IO (x + 5) (x - 5) . 
[10(x - 5) (x + 5)] [ 2x - 3  ] = [10(x - 5) (x + 5) ] [  13 ] + [10(x - 5) (x + 5)] [ 7 ] 1 (x + 5) (x - 5) 1 10(x + 5) 1 lO(x - 5) 10� y:r5J (2x - 3) )-0 · 13� (x - 5) )-0 · 7y:r5J (x + 5) 

� y:r5) = )-0 � + )-0 y:r5) 10 (2x - 3) = 13 (x - 5) + 7 (x+ 5) 20x - 30 = 13x - 65 + 7x + 35 20x - 30 = 20x - 30 
This is a true statement, so the original statement-equating the fraction to its partial fraction decomposition-is true as well . 
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I 2x - 3  20.30  Integrate the expression: -2
-- dx, from Problem 20.28. 

X - 25 2x - 3  13  7 According to Problem 20.28, -2-- = ( ) + ( ) . L x - 25 10  x + 5 10  x - 5 
I 2x - 3  f 13 dx f 7 dx  --- dx - ---- + x2 - 25 - 10 (x + 4) IO (x - 5) 13 J dx 7 J dx = 10 x + 4 + 10  x - 5 Integrate each expression using variable substitution:  u = x + 4, v = x - 5, du = dx, and dv = dx. = 13  f du + _2_ f dv IO u IO V 13  7 = - ln lul + - ln lvl + C 10  10 13  7 = - ln lx + 41 + - ln Ix - 51 + C 10  10  There are alternate ways to write the solution if  logarithmic properties are applied, but the above solution is preferable, as it clearly identifies the partial fractions from which it is derived and is unencumbered by unwieldy rational exponents. 

I l lx - 15 
20.3 1 Integrate the expression: 2 dx. 4x - 3x 

I l lx - 15 Factor the denominator to get ( ) dx. Perform partial fraction 
X 4x - 3  decomposition on the integrand, as described by Problem 20.28. l lx - 15 A B ---- = - + -x ( 4x - 3) x 4x - 3 x (4x - 3) [ l lx - 15 ] = x (4x - 3) [A + -B-] 1 x ( 4x - 3) 1 x 4x - 3 l lx - 15 = A (4x - 3) + Bx 1 lx - 15 = 4Ax - 3A + Bx l lx - 15 = x (4A + B) - 3A Set the x-coefficients on both sides of the equation equal, and do the same for the constants on both sides of the equation. This generates a system of equations. {4A + B = l l  -3A = - 15 

Eve\\ +-hoL\8 h  it's \\of- oi hL\8e .Aeoil, .Ao\\'+- L\Se L\ .Poy +-wo .Ai.P.PeYe\\f.Ae\\o'-'\i\\oif-oys i\\ +-he Soi'-'\e pYo\,le'-'\. Lise v .Poy +-he seco\\.A O\\e +-o oivoi.A Co\\.PL\sio\\. 
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l�i--eBv-od-e v.si�B voi.v-io,).:,le sv.bsi--ii--v.i--io�: 

Solve the second equation to get A =  5. Substitute A =  5 into the first equation to calculate B. 
4A + B = I l  4 (5) + B = l l  

B = -9 Rewrite the integrand according to its partial fraction decomposition. 
v. := 4,c - '3 O\�.A .Av. := 4 .A,c, so .Av./4 := .A,c. -rl-\oti--'s wl-\ev-e f_I I_x_-_I_5 � = J

A � + f -B- � 
4x2 

- 3x x 4x - 3 

= f � dx + f � dx CO\,\,\eS .Pv-O\,\,\ i� i--l-\e �e,ci-- si--ep. 

ct powev-, so yov. l-\otve i--o i�clv..Ae boi--l-\ (2.,c + 1)2 ot�.A 2.,c + I O\S .AeCO\,\,\f'OSii--io� .Ae�o\,\,\i�oti--ov-s. I.P ii-- l-\ot.A .Poi.ci--ov-e.A i�i--o (2.,c + 1)4, yov.'.A l-\otve l-\ot.A i--o i�clv..Ae (2.,c + 1)4, (2.,c + I)', (2.,c + 1)2, O\�.A 2.,c + I . keep sv.bhotci--i�B I .Pv-o\,\,\ i--l-\e powev- v.�i--il yov. Be+- i--o I . 
'Sv.bsi--ii--v.i--e A := ½. i�i--o A + B := O i--o Be+- ½. + B := O. solve .Pov- B : B := O - ½. := ½.. 
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,,c--------_____ _::..3-
x 4x - 3  

9 = 5 ln lxl - - ln l4x - 31 + C 4 
20.32 Perform partial fraction decomposition: 2 4x + 4x + I  

Factor the denominator to get (2x + 1)  (2x + 1 )  = (2x + 1 ) 2 ; 2x + I is a repeated factor of the quadratic. Therefore, the partial fraction decomposition must include all natural number exponents of the repeated factor, up to and including its original exponent (i.e., powers from 1 to n if the factor is raised to the n power) . X A B --- = -- + ---(2x + l)2 2x + I  (2x + l)2 (2x + l)2 
[ x ] (2x + l)2 [ A B ] 1 (2x +  1)2 = 1 2x + 1 + (2x +  1)2 

x = A (2x + l) + B  
x = 2Ax + A + B  1 As both x-coefficients must be equal, 2A = 1 ,  so A = -. The constants on both sides 2 1 of the equation must be equal as well, so A +  B = 0. Therefore, B = - -. Substitute 2 these values into the partial fraction decomposition equation. 

X = 1 / 2 + - 1 / 2 4x2 + 4x + l  2x + I  (2x + l)2 1 1 2 (2x + l) 2 (2x + 1)2 
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20.33 Integrate the expression f 2 
x dx, from Problem 20.32. 4x + 4x + l  

1 1 . X 
Accordmg to Problem 20.32, -2---4x + 4x + l  2 (2x + l) 2 (2x + l)2 . 

Integrate both expressions using variable substitution: u = 2x + 1 and du = 2 dx, so du - = dx. 
_ 1 J du / 2  1 J du / 2  - 2 -u- -2 ---;;-
= ! . !  J du _ ! . ! f u-2du 

2 2 u 2 2 1 1 u- 1 
= - ln lu l - - · - + C  4 4 - 1  1 1 1 
= - ln l2x + 11 + - · -- + C 

4 4 2x + l  
ln l2x + 11 1 

= �-� + -- + c  
4 8x + 4  

20 34 P £ . 1 f . d . . 2x3 
- 5x2 + 6x - 3 

. er orm parua ract10n ecompos1t1on: 4 2 

Factor the denominator. 

X + 3x 

2x3 
- 5x2 + 6x - 3 
x2 {x2 + 3) 

Unlike the preceding partial fractions exercises,  the factor x2 + 3 requires the 
linear numerator Ax + B rather than a constant numerator. Note that x2 is 

2x3 
- 5x2 + 6x - 3 A B Cx + D ------- = - + - + ---
x2 ( x2 + 3) x x2 x2 + 3 

x2 (x2 + 3)
[ 2x3 - 5x2 + 6x - 3 ] = 

x2 (x2 + 3)
[ A 

+
�

+ 
Cx + D] 1 x2 ( x2 + 3) 1 x x2 x2 + 3 

2x3 
- 5x2 + 6x - 3 = Ax ( x2 + 3) + B ( x2 + 3) + x2 ( Cx + D) 

2x3 - 5x2 + 6x - 3 = Ax3 + 3Ax + Bx2 + 3B + Cx3 + Dx2 
2x3 - 5x2 + 6x - 3 = (A + C) x3 + (B + D) x2 + 3Ax + 3B 

36 1 
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Olv-Ci--Ol�8e �i-
Ol�i--tJ..ev-tVOli--tVe 

1-\ev-e. 'Se½- v. == "I<, 

J..v. == J.."!<, .,,.�J.. .,,. == ../'3. 

11-\0li-- wOly, J 2 
J..v. 

2 : L\ + .,,. 

� OlV"Ci--Ol� ( �l + C. 
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Match the coefficients of the terms on both sides of the equations ; you can 
immediately calculate A and B. 

x3 coefficients : x2 coefficients : x coefficients : constants 
_ _ _ _ _ _ _ _ _ _ _ _  i _ _ _ _ _ _ _ _ _ _ _ _  � _ _ _ _ _ _ _ _ _ _ _ _  l _ _ _ _ _ _ _  _ 

: : 3A = 6 : 3B = -3  
A + C = 2 1 B + D = -5 , , 

: : A = 2 : B = - 1  
' ' ' 

Substitute A = 2 into the equation A + C = 2 to determine that C = 0. Substitute 
B = -1 into the equation B + D = -5 to determine that D = -4. Substitute A, B, C, 
and D into the partial fraction decomposition equation. 

2x3 - 5x2 + 6x - 3 A B Cx + D ------- = - + - + ---
x 4 + 3x2 x x2 x2 + 3 

2 - 1 (O) x + (-4) 
= - + - + -----

x x2 x2 + 3  2 1 4 = - - - - --

. f 2x3 
- 5x2 + 6x - 3 

20.35 Integrate the express10n: 4 2 dx, from Problem 20.34. 
X + 3x 

2x3 
- 5x2 + 6x - 3 

According to Problem 20.34, 4 2 
2 1 4 

X + 3x x x2 x2 + 3  · 

I 2x3 - 5x2 + 6x - 3 J 2 J 1 f 4 ------- dx = - dx - - dx - -- dx 
x4 + 3x2 x x2 x2 + 3 

f dx f _2 f dx 
= 2 - - x dx - 4  --x x2 + 3  

= 2 ln lx l -
x-i - 4 (�)arctan(�) + c 
- 1 ✓

3 
✓

3 

= 2 ln lx l  + - - - arctan - + C 
1 4x ( x ) 
X .J3 .J3 

Rationalize the expression to get an equivalent solution: 

2 ln lx l + - - -- arctan -- + C. 
1 4x✓

3 

(
x✓

3 ) X 3 3 
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I ntegration by Parts It's li\c.e tl-\e pv-c.:Al.\ct v-l.\le, bl.\t .Pav- i\\te8v-e1.ls 
2 1 . 1  The method of integration by parts states that J u  dv = uv - J v du, given differentiable functions u and v. Generate this formula by differentiating the product uv. 

Because u and v are functions, you must apply the product rule. 
d(uv) = u · dv + v · du 

� Integrate both sides of the equation. 
f d ( uv) = f ( u · dv + v · du) 

J d ( uv) = J u  dv + J v du Note that J d ( uv) = uv, because the antiderivative of a function's derivative equals the function itself. -----------� uv = f u dv + f v du Solve the equation for J udv . 

uv - f v du = f u dv 

2 1 .2 Integrate using the parts method: J xex dx. 

2 1 . 3 

Rewrite the integral as Ju dv. This requires you to define u and dv using parts of the integrand (hence the name "integration by parts" ) .  It is most helpful to set 
u equal to an easily differentiable quantity and dv equal to an easily integrable quantity: u = x and dv = e' dx. Therefore, du =  dx and v = J dv = J ex dx = ex. Substitute these values into the formula from Problem 21 .1 .  

f u dv = uv - f v du 

f xexdx = xex - f exdx 
= xex - ex + c  

Integrate the expression : f Inx dx. 

Integrate by parts, setting u = In x and dv = dx. Differentiate u and integrate dv to determine du and v: du = d (lnx) = dx and v = J dv = J dx = x. 
X 

J u  dv = uv - J v du 

f lnx dx = (lnx)(x) - f(x) (:) 

= x ln x - J dx 
= x ln x - x + C  
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2 1 .4 Integrate : f x2 sinx dx. 

Neither x2 nor sin x is difficult to differentiate-this allows you additional freedom to choose u and dv. Given this choice, however, you should set u equal to the function that will eventually equal zero if it is differentiated repeatedly. Therefore, u = :i2, dv = sin x dx, du = d(x2) = 2x dx, and v = f dv = f sinx dx = · - cos x. Substitute these values into the integration by parts formula. 
f u dv = uv - f v du 

f x2 sinx dx = (x2 ) (-cos x) - f (- cosx) {2x dx) = -x2 cos x + 2f x cos x dx Integrating f x cos x dx again requires integration by parts . Set u = x and dv = cos x dx; it follows that du = dx and v = sin x. 
f u dv = uv - f v du 

f x cos x dx = x sinx - f sinx dx 
= x sinx - (- cos x) + C 
= x sinx + cos x + C This is not the final answer. Rather, this is the value of J x cos x dx, part of the original attempt to integrate by parts . Substitute this antiderivative into the original integration by parts formula. 

f x2 sinx dx = -x2 cosx + 2f x cos x dx 
= -x2 cosx + 2 (x sinx + cosx + C) 
= -x2 cosx + 2x sinx + 2 cos x + C 

2 1 .5 According to Problem 21 .2 ,  f xex dx = xex - ex + C. Verify this antiderivative using the integration by parts tabular method. 
The tabular method consists of a table with three columns. The first column contains u and its subsequent derivatives, the second column contains dv and its subsequent integrals, and the final column alternates between + 1 and -1 (always beginning with + 1 ) .  Use the same values for u and dv from Problem 21 .2 .  Find consecutive derivatives of u until the derivative equals O and list them vertically in the left column. (The final number in the left column must be 0.) Fill the second column with a corresponding number of antiderivatives .  The right column should always have one more row in it than the other two columns. u dv ± 1  

X ex + l 1 ex - 1 0 ex + l 
- - r - - - - -- 1 

-rl-\ e 
&l. evivt:'lt-iVe 

o.P ;,<2 i s  2,;,<, t-l-\ e 
&l. eviVt:'l+-iVe o.P 

2.;,< i s  2., Cl\\&l. t-l-\ e 
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• 
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tv.vo1A8v. 
223'3. 

Multiply each term in the left column with the other values along a downward 
diagonal, as illustrated by Figure 21-1 . 

u dv +1 

Figure 21-1 Starting with the.first term in the u column, move down and to the right, following the paths indicated by the arrows. Find the product of the terms along the path. Then, move to the next term in the u column ( 1) and multiply along a similar path. (There is no need to begin a path at 0, as the product will be 0.) Finally, add the products together. 
Multiply along the paths in Figure 21-1 and add the results . (x ) {  ex ) (1) + (l) {ex ) (- 1) = xex - ex 
Therefore, f xexdx = xex - ex + C, which verifies the solution to Problem 21 .2 .  

2 1 .6 According to Problem 21 .4, J x2 sinx dx = -x2 cos x + 2x sinx + 2 cos x + C. Verify 
this antiderivative using the integration by parts tabular method. 

Construct a table (as explained in Problem 21 .5)  using the values of u and dv 
defined by Problem 21.4:  u = :i2 and dv = sin x dx. u dv ± 1  x2 SlnX + l 2x - cos x - 1  

2 - s1nx + l 0 cos x - 1  
- - - - - - - - - - -+ l 

Draw diagonal paths ( as illustrated in Figure 21-2 ) ,  calculate the product of the 
terms on each, and compute the sum of those products. 
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u dv + 1  

+ 1  
- 1  

Figure 21-2 There are three nonzero terms in the u-column, so products must be calculated along three paths ( as indicated by the arrows in the diagram). 
f x2 sinx dx = {x2 ) (-cosx) (  + 1) + (2x) (- sinx) (- l) + (2) (cos x) (l) + C 

= -x2 cos x + 2x sinx + 2 cos x + C 
2 1 .7 Integrate the expression: f ex sinx dx. 

Integrate by parts, setting u = sin x and dv = e' dx. Accordingly, du = cos x dx and v = e'. 
f u dv = uv - f v du 

f ex sinx dx = ex sinx - f ex cos x dx 
Integrating f ex cos x dx also requires integration by parts. 

f ex sinx dx = ex sinx - f ex cos x dx 
f ex sinx dx = ex sinx - (ex COS X + f ex sinx dx) 
f ex sinx dx = ex sinx - ex cosx - f ex sinx dx 

Add J ex sinx dx to both sides of the equation. 

f ex sinx dx + f ex sinx dx = e• sinx - e• cos x � 
2f ex sinx dx = ex (sinx - cos x) 

f x . ex (sinx - cos x) 
+ C e s1nx dx = ------

This f-i'-'\e, se+
L\ = COS X ot\\,::,I. 

""-v = ex ""-x. Thot+
'-'\eot\\S ,AL\ = -Si\\ X ""-x ot\\,::,I. V = ex. l\\f-e8v-otf-io\\ by Potv-f-s +-ells yoL\ +-hot+-

] ex cos x .::1.x =-ex cosx + Jex Si\\ x .::1.x. 

:1L\8 +-his +-hi\\8 
1:+-0 +-he ov-i8i\\otl 
t\\f-e8v-otf-io\\ by 

Potv-f-s .Pov-'-'\L\lot. 
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Trigonometric Substitution 
Vsi\\8 it:l.e\\tities O\\\t:l. little vi8l-\t tvi"'-\\8\e J.i"'-8.,.."'-IMS 

2 1 .8 Compute the definite integral : f "13 tan2 x dx. < 
,r/4 

2 1 .9 

According to a Pythagorean trigonometric identity, 1 + tan 2 x = sec2 x. Therefore, tan 2 x = sec2 x - I .  
J"13 tan2 x dx = f"13 (sec2 x - l) dx 

,r/4 ,r/4 

J,r/3 J"/3 = sec2 x dx  - l dx 
,r/4 ,r/4 

= ( tan xi:;: ) - (xi:;: ) = ( tani - tan �) - ( i -�) Evaluate the tangent by rewriting it in terms of sine and cosine. 
= ( sin;r,; / 3 _ sin;r,; / 4 ) - (!!_ _ !!_) cos ;r,; I 3 cos ;r,; I 4 3 4 
= (✓3 / 2  _ ✓2 / 2 ) - (4;r,; _ 3;r,; ) 1 / 2  ✓2 / 2  12 12 
= ✓3 - 1 - !!___  12 

Integrate the expression : f cos3 x sin2 x dx. 
Given an integral containing cos" x and sin,, x, where a and b are natural numbers, a is odd, and b is even, rewrite cos" x as (cos x) (cos"- 1 x) . 

f cos3 x sin2 x dx  = f cosx · cos2 x · sin2 x dx Apply the Pythagorean identity cos2 x = l- sin2 x to rewrite the now even-powered trigonometric expression. 
= f cos x (l - sin2 x ) sin2 x dx  = f cos x sin2 x {l - sin2 x ) dx  Distribute cos x sin2 x. = f ( cos x sin2 x - cos x sin4 x ) dx  = f cosx sin2 x dx - f cosx sin4 x dx Integrating using variable substitution: u = sin x and du =  cos x dx. 

= f u2du - f u4du 
u3 u5 = - - - + c 3 5 1 . 3 1 . 5 = - sm x - - sm x + C 3 5 
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2 1 . 1 0  Integrate : J coss x sin3 x dx. 
Rewrite sin3 x as (sin x) (sin2 x) . 

This problem is very similar to Problem 21 .9, except this time sin x is raised to an 
odd power and cos x is raised to an even power. Do the same things to sin3 x that 
Problem 21 .9  did to cos3 x. 

f coss x sin3 x dx = f coss x · sin2 x · sinx dx  
= f coss x {l - cos2 x ) sin x dx 

= f coss x sinx {l - cos2 x ) dx  
= f coss x sinx dx - f cos10 x sinx dx 

Use variable substitution to integrate both expressions:  u = cos x and du =  -sin x dx. 
= -f us du - ( -f u10 du) 

ug u1 1 

= - - + - + c 9 1 1  1 9 1 1 1 = - - cos x + - cos x + C 9 1 1  
2 1 . 1 1 Integrate the expression: f sin2 x dx. 

According to a double angle identity, cos 2x = 1 - 2 sin2 x. Therefore, 
+-l"lis c,�e  owe v.se.Pv.1 

wl'\ e� ycilve 8"+- cc,
• 2 1 - cos 2x 

Sln X = �-------------------------1" si�e  c,v- si�e  v-"'-ise� +-c 2 I J l - cos 2x 
sin2 x dx =  ---- dx 1 = - f (I - cos 2x) dx 

2 

= __!_ f Idx - __!_ f cos 2x dx 
2 2 

Use variable substitution to integrate f cos 2x dx :  u = 2x and du =  2dx, so d2u 
= dx. 

1 1 1 = -f dx - - · -f cos u du 
2 2 2 1 1 

= - x - - sin u + C  2 4 1 1 = - x - - sin 2x + C 2 4 

eve� pc wev-s, eii--l"l ev- .,,_11 
'by i--v. etMselves (H�e i� 
J ccs4 >< �><) cv- tMv.l+-i
pli e� i--c,B ei--l'\ev- (H�e 
i�J si�2 >< ccs4 >< �><). 
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This is i--l,,,e SO\\N\e 
W"'-Y Pv-oble\N\ 2. 1 . 1 0  

si--.,,.v-i--s. -recl,,,\\i.c"'-lly, 
cos ,c is v-"'-i.se.A i--o "'-\\ 
eve\\ powev- t\\ i--l,,,i.s 
i.\\i--ejv-"'-1: (cos  ,c)D := I , so 
(cos ,c)D (Si.\\' ,c) := si.\\' ,c. 

Re1Me1Mbev-
cosi\\e ov- Si\\e 

• by i+-sel.P t\\si.Ae "'-\\ 
t\\i--ejv-.,,_J "'-\\.A v-.,,_ise.A +-o "'-\\ eve\\ powev-

1.\Sl.\"'-lly v-e91.\iv-es +-he powev--v-e.Al.\ci\\8 
.Pov-lMI.\JO\S. 
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2 1 . 1 2  Integrate : f sin3 x dx. 

Rewrite sin3 x as (sin x) (sin2 x). 

J sin3 xdx = f sinx · sin2 x dx 

= f sinx (l - cos2 x ) dx 

= f sinx dx - f sin x cos2 x dx 

Use variable substitution to integrate f sinx cos2 xdx: u = cos x and du = -sin x dx. 

2 1 . 1 3  Integrate : f sin4 x dx. 

= f sinx dx - (-f u2du) 

u3 
= -cos x + - + c  

3 
1 3 = -cos X + - cos X + C 
3 

Apply the sin2 x power-reducing formula from Problem 21.11 :  sin2 x = l - c
;

s 2x _ 

f sin4 x dx = f {sin2 x )
2 

dx 

= f (1- c
;s

2x r dx 

= J(l - 2cos 2
:

+ cos2 2x 
) dx 

= ¼(J ldx - 2J cos 2x dx + f cos2 2x dx) 

. l + cos 20 . f Apply the power-reducmg formula cos2 0 = 
2 

to mtegrate cos2 2x dx. 

l
[J f J l + cos 2 (2x)

] = 4 ldx - 2 cos 2x dx + 
2 

dx 

= ¼ [J ldx - 2f cos 2x dx + ½ f (1 + cos4x) dx] 

= ¼[J ldx - 2f cos 2x dx + ½ (f dx + f cos 4x dx)] 
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Use variable substitution to integrate the trigonometric integrals : u = 2x and du - = dx. 
2 

= ¼ [  x - 2 · i sin2x + t ( x + ¼ sin4x )] + c 
= .!. [x - sin2x + _!_ x + _!_ sin4x] + C 4 2 8 
= .!. [� x - sin2x + _!_ sin4x] + C 4 2 8 3 1 1 = - x - - sin 2x + - sin 4x + C 8 4 32 

2 1 . 1 4  Integrate using a product-to-sum identity: f cos x cos 2x dx. 
. . cos (A - B) + cos (A + B) Apply the identity cos A ·  cos B = ---�----� such that A = x and B =  2x. 2 

2 cos (x - 2x) + cos(x + 2x) 
COS X COS X = 

2 

cos x + cos 3x = -----2 cos x + cos 3x Substitute cosx cos 2x = ----- into the integrand. 2 
f f cos x + cos 3x cos x cos 2x dx  = ----- dx 

2 
1 1 = -f cos x dx + -f cos 3x dx 
2 2 Use variable substitution to integrate f cos 3x dx. 1 1 1 = - sinx + - · - sin3x + C 

2 2 3 1 . 1 . = - s1n x + - sm 3x + C  2 6 
2 1 . 1 5  Identify an alternate solution to Problem 21 .14 by applying a trigonometric identity to integrate f cos x cos 2x dx. 

Apply the double angle identity cos 2x = I - 2 sin2 x. 
f cos x cos 2x dx  = f cos x (I - 2 sin2 x ) dx = f cos x dx  - 2f cos x sin2 x dx 

,:,we H,wee 
pv-o .A1Act-+o -S1A\,\,\ 

�o v \,\,\l,\\.,,_s i� Arr e�.Ai;,<: 
C. 1l,,,is  o�e i s  !Ase.A 
o�ly t-o v-ewv-i t-e t-l,,,e 

pv-o .A1Act- o� t-wo 

Cosi� e  is .,,_� 
eve� �IA� ct-i.o� 

"'-�.A """ eve� 
�IA� ct-i.o� s h.,,.ve +-h e 
pv-op ev- t-y W-x) == Wx). 
1h.,,.t-'s why yo!A .Av-op 
+-h e � e8"'-t-i.Ve si8� 
i� +-h e � ex t- st-ep. 
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I\\ t-l-\e ..fivst
t \\ t-ej voil, 1A := '3,c2 

oi\\J.. J..1A/ c, := ,c J..,c. I\\ 
t-l-\e seco\\J.. t\\t-ejvoil, 
V := S",c2 O\\\J.. 

J..v/ 1 0 := ,c J..,c. 
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Apply variable substitution to the second integral ( u = sin x and du = cos x dx) . 
= f cos x dx  - 2J u2du 

. u3 

= smx - 2 • - + C  
3 

. 2 . 3 C = s1nx - - sin X + 

2 1 . 1 6  Integrate the expression : f 7x sinx2 sin4x2 dx. 
cos (A - B) - cos (A + B) 

Apply the product-to-sum formula sinA sin B = ---------- to rewrite 
sin x2 sin ( 4x2 ) .  2 

[
cos (x2 - 4x2 ) - cos (x2 + 4x2 )

] f 7x sinx2 sin4x2 dx = f 7x 
2 

dx 
7 

= -f x [ cos (-3x2 ) - cos 5x2 ] dx 
2 
7 = -f x [ cos 3x2 - cos 5x2 ] dx 
2 
7 7 = -f x cos 3x2dx - -f x cos5x2dx 
2 2 

Apply variable substitution to integrate. 

= _Z_ · _! f cos u du - _Z_ · _!___ f cosv dv 2 6 2 10 
= _2__ sin 3x2 - _2__ sin5x2 + C 

12  20 

2 1 . 1 7  Integrate the expression f sec2 x tanx dx using the variable substitution u = sec x. 
Expand the sec2 x factor in the integrand. 

f sec2 x tan x dx  = f sec x · sec x · tanx dx 
Differentiate u = sec x to get du = sec x tan x dx. 

= f udu 
u2 

= - + c 
2 
1 

= - sec2 x + C 
2 
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2 1 . 1 8  Use the variable substitution u = tan x to integrate f sec2 x tan x dx and verify 
the solution to Problem 21 .17. 

If u = tan x, then du = sec2 x dx. 
f sec2 x tanx dx = f udu 

u2 = - + c  
I 

= - tan2 x + C  
2 

I I Set - tan2 x + C equal to - sec2 x + C and prove that the expressions are 
2 2 

equivalent. Multiply by 2 to eliminate the fractions. (Note that C is an arbitrary 

constant, so 2 C = C for the purposes of the proof.) 

2 [} tan2 x + C] = 2 [} sec2 x + C] 

tan2 x + C = sec2 x + C 

Apply the trigonometric identity tan2 x + I = sec2 x. 
tan2 x +  C =  (1 + tan2 x) + C 

Note that I +  C =  C for the reasons described above. �---------

tan2 x +  C =  tan2 x +  C 
I I Because this statement is true, the statement - tan2 x + C = -sec2 x + C is true as 
2 2 

well ,  which verifies that the solutions to Problems 21.17 and 21.18 are equivalent. 

2 1 . 1 9  Integrate the expression: f sec6 x tan4 x dx. 
If an integrand consists of the product sec" x tanb x, such that where a and b are 
natural numbers and a is even, rewrite the integrand as (sec2 x ) (sec2 x fa-2) 12

• 

Keep a single sec2 x factor separate and rewrite the rest of it as (sec2 x) " ,  where n is 
an even number. For example, you'd change sec12 x into (sec2 x) (sec10 x) and then 
change sec10 x into (sec2 x) 5 • 

f sec6 x tan4 x dx  = f sec2 x · sec4 x · tan4 x dx  
= f sec2 x (sec2 x )2 

tan4 x dx 
Apply the Pythagorean identity I + tan2 x = sec2 x to the sec2x factor that is raised 
to the second power. 

= f sec2 x (I + tan2 x )2 
tan4 x dx 

= f sec2 x tan4 x (I + 2 tan2 x + tan4 x ) dx  
= f sec2 x tan4 x dx + 2 f  sec2 x tan6 x dx  + f sec2 x tan8 x dx 

IA\\k\\<'W\\ \\IAIM\::> ev 
is  sc1Me c,i--l,,,ev 
IA\\k\\<'W\\ \\IAIM\::> ev. 

'5c1Me lA\\k\\c w\\ 
\\lAIMb ev pllAs I 
eql-\.,,.J s Sc1Me ci--hev 
lA\\k\\c w\\ \\lAIMb ev. I 
h.,,.ve "'" i.A e.,,_ why 
i--.,,_Jki"'B lik e +-his i s 
.PL\\\ blA+; c.A.Aly, 
ii-- i s. 
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I� 
Pvo'blel--'-\ 

2. 1 . 1 1, yov. 
l,,,el&l sec ,c, 

vewvo+-e i--l,,,e ves+
o.P i--l,,,e secot�+-s 

O\S (sec ,c) i--o SOl--'-\e 
eve� powev, ot�&l i--l,,,e� 

v.se&l ot Pyi--l,,,otjoveot� 
i&le�H+-y. I� i--l,,,is 
pvo'blel--'-\, yov. l,,,c,l&l ov.+
sec ,c i--ot� ,c, vewvi½-e 
i--l,,,e ves+- o.P i--l,,,e 
i--ot�je�+-s ots (+-ot�2 ,c) 
+-o Sol--'-\e eve� powev, 
ot�&l i--l,,,e� v.se i--l,,,e 

This l--'-\ee>1.�s 
yov. sl,,,ov.l&l &lvotw 

i--l,,,e vijl,,,+- hiot�jle 
i� i--l,,,e ..fivs+- qv.ot&lvot�t, 

wl,,,icl,,, 1--'-\eot�s yov. &lo�+
l,,,otve +-o wovvy ot'bov.+

i--l,,,e sij�S o.P i--l,,,e si&les 
li�e i� Pvo'blel--'-\S 7.2.C. 

O\�&l 7.2.7. 
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Perform variable substitution using u = tan x and du = sec2 x dx. 
= f u4du + 2f u6du + f u8du u5 u7 u9 

= - + 2 · - + - + c 
5 7 9 

= _! tan5 x + -
7
2 

tan7 x + _! tan9 x + C 5 9 

2 1 .20 Integrate the expression: f sec7 x tan5 xdx. 

2 1 .2 1  

If an integrand consists of the product sec° x tan" x, such that a and b are natural 

numbers and b is odd, rewrite the integrand as (sec x tanx) (seca-I x tanb-I x ). Note 

that b - I will be even (because b is odd) . Then rewrite tan"- 1 x as ( sec2 x - I) <'- 1 J12 • 

f sec7 x tan5 xdx = f (sec x tanx) sec6 x tan4 x dx 
= f (sec x tanx) sec6 x (sec2 x - 1)

2 dx 
= f (sec x tanx) sec6 x (sec4 x - 2 sec2 x + I) dx 
= f (sec x tanx ) (  sec10 x - 2 sec8 x + sec6 x ) dx 

Distribute sec x tan x through the quantity, and separate each term of the 
integrand into individual integrals .  

= f sec10 x (sec x tanx) dx - 2f sec8 x (sec x tanx)dx +  f sec6 x (sec x tan x) dx  
Perform variable substitution:  u = sec x and du = sec x tan x dx. 

X 

= f u10du - 2f u8du +  f u6du u1 1  u9 u7 

= - - 2 · - + - + c 1 1  9 7 1 11 2 9 1 7 = - sec x - - sec x + - sec x + C 1 1  9 7 
Given si: 0 = 4, draw a right triangle to determine the value of cos 0, assuming 0 < 0  < -- 2 · 

Recall that the sine ratio relates the side opposite an angle to the hypotenuse of 

the right triangle. If sin 0 = 4 , the side opposite 0 is x and the hypotenuse of the 

right triangle is 4. According to the Pythagorean theorem, the remaining side of 

the triangle has length ✓16  - x2 
• 
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X 

✓16 - x2  

Figure 21-3 Construct this right triangle to illustrate an acute angle 0 with opposite side x and hypotenuse 4; you can then use it to evaluate other trigonometric .functions of 0. 
Recall that the cosine of an angle is the quotient of its adjacent side and the 

. ✓16 - x2 hypotenuse of the tnangle. Therefore, cos 0 = 4 . 
2 1 .22 Integrate the expression: f ✓16  - x2 dx. 

This integral requires the technique of trigonometric substitution. The integrand is of the form .J a2 
- u2 , where a = 4 and u = x. Given radicals of this form, make the trigonometric substitution u = a sin 0. Substitute u and a into the equation. x = 4 sin 0 

X Divide both sides of the equation by 4 to get - = sin 0, which is the equation from Problem 21 .21 .  Differentiate x = 4 sin 0. 4 dx = 4 cos 0 d0 Now to address the integral f ✓16  - x2 dx. Rewrite the integrand as a trigonometric function based on the triangle in Figure 21-3. According to Problem 
✓16  - x2 

� 21 .21 ,  cos 0 = ----, so 4 cos0 = "\/l6 - x2
• (Note that the cosine ratio is chosen 4 so that the constant leg of the triangle, 4, is used rather than side x, to reduce the number of variables involved.) 

f ✓16 - x2 dx = f 4 cos 0 dx Replace dx using the derivative identified above : dx = 4 cos 0 d0. = f (4 cos0) (4 cos 0 d0) 
= 16  J cos2 0 d0 

'So, i.P ii--' s 0\ 

hi8 SL\bst-it-L\t-io\\ 
pv-oblel,\\ ot\\.A yoL\ see V ot 2 

- L\ 2 
, +-he -fiv-st

t-hi\\8 yoL\ wv-it-e is 
L\ � ot St\\ 0 .. 
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'becO\L\Se yo!A CO\\\ 
o\\ly L\Se t-l-\e htO\\\jle 

t\\ Fij!Av-e 2. \ -'3 t-o -fij!Av-e 
01At- St\\jle O\\\jle hij 
.f!!A\\CrlO\\S (li�e COS 0 

O\\\� rO\\\ 0), \\ot
�o!A'ble e>1.\\jles 

H�e St\\ 2.0. 
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Integrate using a power-reducing formula (as demonstrated by Problem 21 .11 ) .  

= 16J l + cos 20 d0 
2 

= 1: [f ld0 + f cos 20 d0] 

1 
= 80 + 8 • - sm 20 + C  

2 

Apply the double angle trigonometric identity sin 20 = 2 sin 0 cos 0. 

= 80 + 4 (2 sin 0 cos0) + C 
= 80 + 8 sin0 cos 0 + C 

You must now replace 0, sin 0, and cos 0 with expressions written in terms of x. 
Recall that x = 4 sin 0. Solve for 0 using the inverse sine function. 

x = 4 sin 0 
X 
- = s1n0 4 

arcsin ( �) = 0 

X 
Substitute the values of sin 0 and cos 0 identified above : 4 = sin 0 and 

0 ✓l5 - x2 

S b . 11 f h 1 . h "d . . cos = ---. u sutute a o t ese va ues into t e anti envauve. 4 
80 + s mn0cos0 + C - 8filcsin(¾) + s ( ¾) ( �)+ C 

= 8 arcsin(�) + � x✓l6 - x2 + C 

2 1 .23 Given sec 0 = .J3' draw a right triangle to determine the value of sin 0, assuming 
;rr 

0 < 0 :5 -. 
2 

If sec 0 = � then cos 0 = ✓
3

, so the side adjacent to 0 has length ✓
3

, and the 
v3 X 

hypotenuse has length x, as illustrated by Figure 21-4. 

✓3 

Figure 21-4 
The cosine of an angle 
is the quotient of its 
adjacent side and the 
hypotenuse, so 

cos 0 = -. According 
X 

to the Pythagorean 
theorem, the opposite 
side has length 

.Jx2 - 3 . 
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According to Figure 21-4, sin0 = �, the quotient of the side opposite 0 and the hypotenuse of the triangle. x 
✓x2 - 3  2 1 .24 Integrate : f--- dx. 

X 

This integral contains .Ju2 
- a2 (where u = x and a = ✓3 ) ,  and requires the trigonometric substitution u = a sec 0. x = ✓3 sec 0 

X ✓3 = sec 0 

Note that (not coincidentally) , the triangle in Figure 21-4 is based upon the equation sec 0 = .J?," Differentiate x = ✓3 sec 0. 
dx = ✓3 sec 0 tan0 d0 Rewrite the integrand using this derivative and the conclusion drawn by Problem 

. ✓x2 - 3  21 .23 :  sm0 = ---. 
X 

✓x2 - 3  
f -- dx = f sin 0 (  ✓3 sec 0 tan 0 d0) 

X 

I .  1 = ✓3 
sm0 • -- • tan0 d0 cos 0 

'°f sin0 = '\l:J -- tan0 d0 cos 0 
= ✓3 f tan2 0 d0 Apply the Pythagorean trigonometric identity tan2 0 = sec2 0 - I .  

= ✓3 f (sec2 0 - l) d0 

= ✓3 [J sec2 0 d0 - f ld0] 

= ✓3 [tan0 - 0] + c 
✓x2 - 3  According to Figure 21-4, tan0 = ✓3 . Solve the equation x = ✓3 sec 0 for 0 to find an expression equivalent to 0. 

x = ✓3 sec 0 
X ✓3 = sec 0 

arcsec ( .J?,) = 0 

O\\ce Y<'L\ 8ef- H1is e"lL\oif-ic\\, Y<'L\ �O\\\ �Y�w Hie Yi8h+h1oi\\8le I\\ Fi8L\Ye 2 1 -4-+-hoi+-'s +-h • n e l\\T"<'YIA'\oi+-ic,\\ PYcble""' 2 1 .2'3 80\Ve Y<'L\ oibc,L\f- +-he hioi\\8le. 

BecoiL\se H1oi+-1s Hie si�e cppcsi+-e e �ivi�e� by Hie si�e e>1.�je'lCe�+-f-c, e . 

377 



Chapter Twenty-One - Advanced I ntegration Techn iques 

o.P COl,wSe, yolA co1Al.A L\Se +-!'le si\\e .PL\\\c+-io\\ (ov "'-"'Y o.P +-!'le o+-l'lev hi8 .PL\\\Ct"iO\\S .Pov +-1'\c,.+-IMC\Hev). 
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Write the antiderivative ✓3 [tan 0 - 0] + C in terms of x. 

✓3 [rane - e] + c - ✓3 [ 7 - a,csec (Js)] + c 
= ✓ x2 

- 3 - ✓3 arcsec ( F3) + C Rationalize the expression. 
✓x2 - 3 - ✓3 arcsec ( x�) + c  

2 1 .25  Construct an equivalent solution for Problem 21 .24 by replacing the inverse trigonometric function. 
The expression arcsec ( F3) is generated by solving the equation sec 0 = F3 for 0. Based on Figure 21-4, you can define 0 in terms of any other trigonometric ratio ; 

✓x2 - 3  . � for instance, tan0 = 1o and sm0 = . Solve the tangent equation 
"13 X 

� for 0. -------
(�] 0 = arctan ✓3 

This value of 0 is as valid as 0 = arcsec ( F3) from Problem 21 .24, so substituting it for 0 in the antiderivative ✓3 [tan 0 - 0] + C results in an equivalent solution. 
[

� 
✓3 [tan 0 - 0] + C = ✓3 ✓3 (�]] arctan ✓3 + c 

(�] = ✓x2 - 3 - ✓3 arctan F3 + C  
2 1 .26 Given tan0 = x:, draw a right triangle to determine the value of sec 0, assuming O < 0 :5 !!.._ 

2 

Recall that the tangent of an angle is the quotient of its opposite and adjacent sides. Therefore, the side opposite 0 has length x..Js and the side adjacent to 0 has length ✓6 , as illustrated in Figure 21-5. 
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x✓5 

BecotL\se 
✓6 Figure 21-5 Apply the Pythagorean theorem to calculate the length of the missing side-in this case the hypotenuse. �-----7 

+-hott-'s t-he si-Ae ot.AjotCe\\t- t-o 0 -Aivi-Ae.A by t-he si.Ae opposit-e e. 
✓6 M+6 According to Figure 21-5, cos 0 = .J , so sec 0 = rr 5x2 + 6  v6 

I x3 dx 2 1 .27 Integrate : .J 5x2 + 6  
This integral contains .J u2 + a2 and requires the trigonometric substitution 
u = a tan 0, where u = .J5;1 = x.Js and a = ✓6 . u = a tan0 

x.Js = ✓6 tan 0  
x.Js = tan 0  ✓6 

This trigonometric expression is illustrated by Figure 21-5. Solve for x and differentiate the equation. 

.J 5x2 + 6 � According to Problem 21 .26, sec 0 = ✓6 , so ✓6 sec 0 = v 5x2 + 6 .  Substitute this into the original integrand. 6 
f x3 dx f x3 dx 

✓5x2 + 6  - ✓6 sec 0 
Also substitute the values of x and dx generated above : x = 1 tan0 and ✓6 v5 dx = J5 sec2 0 d0. 

Hev-e otv-e +-he t-hv-ee SL\bst-it-L\t-io\\s )'OL\ \\ee.A t-o k\\ow: -.;;;_i - L\ 2 L\ses 
I,\ = 0\ si \\ e, f,r-1,\-2 ___ 0\_2 L\Ses L\ = 0\ Sec 0 j � I O\\\<'\ 

f 1/-+ ot 2 L\ses "' = 0\ +-ot\\ e . 
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l)ivi.::A.i�8 

by ..fc;sec 0 

is +-he SottMe otS 

IML\lt-iplyi�8 by 

Rewv-it-e 

{ V'>x2 + c.)'3 otS 

(v'>x2 + c.)
2 

(v'>x2+ C. ) .  
The SqL\otv-e v-oot- ot�.::A. +-he 

SqL\otv-e i� +-he le.Pt- .Potct-ov
Cot�cel OL\i; ot�.::A. yoL\ .::A.o�'t
hotve +-o \NOv-v-y 0\001,\r 
O\t>SolL\t-e Votll,\e si8�S 
becotL\Se 5x2 + e, is 
otlwotys posit-ive. 
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( 7s ran 0 r ( 7s sec2 0 d0) 
= J ✓

6
sec 0 

= J (
6
1 ran3 0) (1 sec2 0 d0) · 

✓
6 

1 
5v5 v5 6 sec 0 

= J 6✓
6

/6 ran3 0� sec 0 d0 

5./5./5 j6 _s&,/4 
= J 6✓

6 
ran3 0 sec 0 d0 

5 (5) 

6✓
6

J 3 = -- ran 0 sec 0 d0 
25 

The integrand is a product of tan 0 and sec 0 with the tangent function raised to 
an odd power; use the method described in Problem 21 .20 to integrate. 

6✓
6 

= -J sec 0 ran 0 (ran2 0) d0 
25 

6✓6 = - J sec 0 tan 0 (sec2 0 - I) d0 
25 
6✓

6
[ 

] = 25 J sec2 0 sec 0 ran 0 d0 - J sec 0 ran0 d0 

The antiderivative of sec 0 tan 0 is sec 0. Use variable substitution on the left 
integral : u = sec 0 and du = sec 0 tan 0 d0. 

= 6:.: [J u2du - J sec 0 ran 0 d0] 

= 5✓6 [.! sec3 0 - sec e] + C 
25 3 

� Recall that sec 0 = 
✓

6 

= 
6✓

6

[
_!

r
✓5x2 + 6

]

3 

_ ✓5x2 + 6
] + c 

25 3 ✓6 ✓6 ,------_:_�:_� 
= 6✓6 [

_! · 
(5x2 +°t) � _ ✓5x2 + 6

] + c 
25 3 6✓

6 
✓

6 

= 6
✓

6

[
(5x2 + 6)✓5x2 + 6  _ � ] + c 

25 18✓
6 

✓
6 
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Chapter Twenty-One - Advanced I ntegration Techniques 
Multiply the right fraction inside the brackets by 18  in order to establish common denominators and combine the fractions. 18  

= 6✓6 [ (5x2 + 6)✓5x2 + 6  _ 18✓5x2 + 6 ] + c 25 18✓6 18✓6 
= 6✓6 [ (5x2 + 6)✓5x2 + 6 - 18✓5x2 + 6 ] + c 25 18✓6 

Because ( 5x2 + 6 ) .J5x2 + 6 and - 18✓5x2 + 6 contain common radicals (i.e., their radicands are equal) , you can combine their coefficients : 5x2 + 6 -18 = 5x2 - 12 .  
= j{ j6 [ (5x2 - 12)✓5x2 + 6 l + C 25 }3 · 3/6 (5x2 - 12)✓5x2 + 6 = �-�--- + c 

75 

f dx According to Problem 20.15, ✓l _ x2 
= arcsinx + C. Verify the antiderivative using trigonometric substitution. 

The denominator has form .Ja2 
- u2 , where a =  l and u = x. Use the method outlined in Problem 21 .22,  applying the trigonometric substitution x =  l (sin 0) . Differentiate the equation to get dx = cos 0 d0. 

X 

X Figure 21-6 If x = sin 0 then sin 0 = 1. Therefore, the side opposite 0 is x and the hypotenuse of the right triangle is 1. 

38 1 
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oi.Ajoice\\t- si.Ae 

{4 I _ -,c2 ) .Aivi.Ae.A 

by t-v.e l-\ypot-e\\L\Se ( I). 

Lise +-l--.e eq1Aoit-io\\ 
IA ::::- oi sec 0 .  '51AbsHl·1At-e 
IA oi\\.A oi t-o 8e+-

According to Figure 21-6, cos 0 = ✓I - x2 • Replace the radical expression and dx in the original integral with functions written in terms of 0. 
f dx = f cos 0 d0 .J1 - x2 cos0 

= f d0 
= 0 + C  Rewrite the antiderivative in terms of x. If sin 0 = x, then 0 = arcsin x. = arcsinx + C 

I dx 2 1 .29 Integrate : .J 2 X - 8x - 9 

Complete the square in the denominator. 
f dx = f dx .J x2 

- 8x - 9 .J x2 
- 8x + 16 - 9 - 16 

= f dx 

✓(x - 4)2 - 25 
x - 4 ::::- 5" sec 0 oi\\.A 
solve .Pov x. The denominator has form ✓u2 - a2 , where u = x - 4 and a = 5. Use the technique --------- described in Problem 21 .24, applying the trigonometric substitution � x = 5 sec 0 + 4. Differentiate the equation to get dx = 5 sec 0 tan 0 d0. 

5 
Figure 21-7 Solving x = 5sec 0 + 4 for sec 0 yields the trigonometric ratio 

x - 4  5 -- = sec 0. Therefore, cos 0 = --- the side adjacent to 0 has 
5 x - 4  length 5 and the hypotenuse of the triangle has length x - 4. 
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.j(x - 4)2 - 25 / According to Figure 21-7, tan0 = 5 ; therefore, 5 tan0 = -v (x - 4)2 

- 25 .  Rewrite the original integral in  terms of 0. 
f dx = f 5 sec 0 tan 0 d0 .j(x - 4)2 - 25 5 tan0 

= f sec 0 d0 

= ln lsec 0 + tan01 + C 

x - 4  .j(x - 4)2 - 25 Recall that sec0 = -5- and tan0 = 5 . 
x - 4  .J(x - 4)2 - 25 = ln -5- + 5 + C  

It is customary to factor - out of the expression and expand the perfect square . . . . 1 £ 5 Into Its ongina orm. = ln ½ lx - 4 + ✓x2 - 8x - 9 1 + c .,-t,., e lc, 8  

Expand the expression. �----------------------_J = ln ½ + 1n lx - 4 + ✓x2 - 8x - 9 1 + c 
c.P SCIMe+-l,,,i\\ 8  

1ML\l+-ipli e.A eqL\e>1.l s 
+-we lc 8S e>1. .A.Ae.A 
+-c 8 e+-l,,,ev: l c, 8  e>1.P ::= 

l c, 8  °'- + lc,8  \;:,. 

I I Note that ln 5 is a constant, so ln 5 + C is merely another arbitrary constant C. More rigorous treatment of the arbitrary constant is neither required nor necessary. = ln lx - 4 + ✓x2 - 8x - 9 1 + c 
I mproper I ntegrals 
l\\te8ve1.ti\\8 J.espite e1.sy1Mptctes e1.\\t:l. i\\-fi\\ite bcl.\\\t:l.e1.vies 

2 1 .30  What characteristics classify an integral as "improper"? 
Two conditions characterize the vast majority of improper integrals :  discontinuity of the integrand on the closed interval defined by the limits of integration or the presence of an infinite limit of integration. 

2 1 . 3 1  When is an improper integral considered "divergent"? 
As discussed in Problem 21 .32, improper integrals are evaluated by means of a limit. If that limit does not equal a real number, then the corresponding integral is described as "divergent." 

O\\ e 
c.P Hi e l i1Mi+-s c.P 

i\\+-e8ve>1.+-ic\\ (c,v S<'IMe 
\\L\1Mb ev b e+-wee\\ 
+-h e!M) Cot\\'+- b e 
plL\ 8 8 e.A i\\+-c +-h e 
.PL\\\ c+-ic\\ 

D e-fi\\ i+-e 
i\\+-e8votls \\ee.A 

veotl \\L\IMb ev 
P<'L\\\.Aotvies, sc i.P <'\\e c.P +-h e I i 1Mif-s is 00 cv 

-oo , +-h e i\\f-e8votl is 
otL\:"IMot+-icotlly 

l!Mpvcp ev. 
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Ycv. h.,,_ve +-c 
"'-Ppvc.,,.ch .Pvc,""' 

+-he vi8h+; bec.,,.v.se Y = I\\ x is\\'f- .Ae-fi\\e.A +-c +-he l e.Pt c.P x = 0 (ycv. C"'-\\'f- +-.,,.ke +-he \\<:>\f-v.v.,,_J 1"8 c.P \\e8"'-+-ive 
\\v.1Mbevs). Th e liHl e plv.s st8\\ t\\ +-he li1MiL · . r IS Jv.s+- .Pcv \\cf-.,,.+-ic\\-if-wc,\\'f- "'-.P.Pec+-

L'\-l8pi.i--.,,.1's 
Rv.l e  c\\ly 

wc v�s C\\ .P v.,,.c+-i.c\\S, 
sc v e wvi.i--e "'- 1\\ .,,__ 

tMv.1+-i.plyi.\\ 8 by "'- is  +-he 

S<:>\tMe +-hi.\\ 8 "'-S .Ai.vi..Ai.\\8 
by +-he v eci.p v c,c.,,_\ 

c.P "'-· 
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2 1 .32 Determine whether or not J000 sin0 d0 converges ;  if it does, evaluate the integral. 
The definite integral J

0

00 sin0 d0 is an improper integral because its upper limit of integration is infinite. In order to evaluate the integral, replace the infinite limit with constant a and find the limit of the integral as a approaches infinity. 
f00 sin0 d0 = Iim (fa sin0 d0) 

0 a➔oo 0 

= lim (-cos 0I� ) 
a➔oo 

= lim (-cos a - (- cos O)) 
a➔OO 

= lim (-cos a + 1) 
a➔oo 

= -lim cos a + lim l 
a➔oo a➔oo 

= -lim cos a + l  
a➔oo Unfortunately, lim (-cos a + 1) does not exist, because y = cos 0 oscillates infinitely 

a➔oo as a approaches infinity. The graph is periodic, and cycles through the interval -1 :5 cos a :5 1, never approaching a single finite value. Therefore, J
0

00 sin0 d0 diverges .  
JIO 2 1 .33  Determine whether or not 

O 
Inx dx converges ;  if it does, evaluate the integral. 

Although y = In x is continuous on the x-interval (0,oo ) ,  it is not defined when 
x = 0. Replace the invalid limit of integration with constant a and evaluate the limit as a approaches O from the right. f 10 Inx dx = Iim (f 10 Inx dx) 

0 a➔o+ a According to Problem 21 .3 ,  the antiderivative of ln x is x In x - x. 
= lim [(x ln x - x>I:° ] 

a➔o+ 

= lim [(IO lnl0 - 10) - (a lna - a)] 
a➔o+ 

= lim (lO lnl0 - 10) - lim (a lna) + lim a 
a➔o+ a-o+ a-+O+ 

Whereas lim (lO lnl0 - 10) = lO lnl0 - 10 (the limit of any constant as a 
a➔o+ approaches any value is equal to the constant) and lim a = 0 (by substitution) you 

a➔o+ must apply L'Hopital's Rule to evaluate lim (a lna). 
a➔o+ 

. . Ina hm (a lna) = hm --
a-+o+ a➔o+ 1 / a 

Differentiate the numerator and denominator individually. 
= lim � 

a➔o+ - 1 /  a2 
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Eliminate the complex fraction by multiplying the numerator and denominator by -a2 • 

r �
(
=f) l 

lim (a ln a) = lim ( 2 ) a➔o+ a➔o+ 
I a 

- - - -
a2 1 = lim (-a) 

a➔o+ = O Substitute the values lim (10  In 10  - 10) = 10  In 10 - 10  , lim a = 0 , and 
a➔o+ a➔o+ lim (a lna) = 0 into the antiderivative. 

a➔o+ r10 J , Inx dx  = lim (lO lnl0 - 10) - lim (a lna) +  lim a 
0 a➔o+ a➔o+ a➔o+ = lO lnl0 - 10 - 0 + 0  = lO (lnlO - 1) 

f"' dx 2 1 .34 Determine whether or not - converges ;  if it does, evaluate the integral. 
I X 

The integral is improper due to the infinite upper integration limit. Replace oo with a and evaluate the limit of the integral as a ➔ oo . 
f"' dx (fa dx ) - - lim -

l x a➔oo I X = �� (In lxl l� ) 
= lim (In la l - lnl) 

a➔°' = lim ln lal - limO 
a➔oo a➔oo = lim ln lal 
a➔°' Because y = In a increases without bound as a approaches infinity, the integral diverges .  

f-1 dx 2 1 . 35  Determine whether or not -0, 7 converges ;  if it does, evaluate the integral. 
The integral is improper due to the infinite lower integration limit. Replace -oo with a and evaluate the limit as  a approaches -oo. 

Tu e 8v-otpl,,, 
c� y == I� >< l,,,ots 

ct� ><-i�+-ev-cep+
c� ( 1 ,0), SC 

I� I == 0. 

Tu e 
'oi 8 8 ev- +-l,,,e 

><, +-l,,,e 'oi 8 8 ev
+-l,,,e �ot+-1Av-otl lc 8. 

1l,,,e 8v-Olpl,,,  C� 

y == I� >< .Ac es�+- l--.otve 
e>1. vev-+-i cotl otSylMp+-c+-e, 
sc i+- i�cv-eotses wi+-l-\
c1A+- 'oc!A� .A otS >< 
otppv-cotcl,,,es i�..fi�i+-y 
(eve� i� i+- .Ac es 

SC \:.i�J- C� 

slc wly). 
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Lise 
t-L,.. e J-i.P.Pev e\\ce 

o.P p ev.Pect- CL\b es 
.Po v i.-v.L\loi t-o .Poict-o v  

"I<' - \ :  (oi' - b') := 
(oi - b)(oi2 + oib + b2

). 

386 

f-1 dx (f-1 ) 2 = lim x-2dx 
- 00 X a➔- oo a = lim (-_!l- 1 ) 

a➔- 00 X a = lim (1 + _!) 
a➔- 00 a 1 = lim l +  lim -
a➔- oo a➔- 00 a = l + O  = 1  

J 2 x3 - 1  2 1 .36  Determine whether or not -- dx converges ;  if it does, evaluate the integral. 0 x - 1  
This integral is not improper because of its limits of integration, but because the integrand is discontinuous at x = I. Split the integral at the location of the discontinuity. 

J 2 x3 - 1  f 1 x3 - 1  f 2 x3 - 1  -- dx = -- dx + -- dx 0 x - 1  ° x - 1  1 x - 1  Replace the invalid limits in the integrals with constants, and evaluate the limits of each integral as the constant approaches 1 from the appropriate direction (i.e., from the left in the left interval and from the right in the right integral) . 
(fa x3 - 1  ) (J 2 x3 - 1 ) = lim -- dx + lim --dx 

a➔I- O X - 1 a➔!+ a X - 1 x3 - l  (x - l) {x2 + x + l) Factor the rational expression: -- = ------�. As long as x "#- l, you x - 1  x - 1  can eliminate the common factor x - 1 in the numerator and denominator: x3 - 1  -- = x2 + x + I. Because you are calculating the limit as a approaches (but does x - 1  not equal) 1 ,  it is safe to assume that x "#- l . = !��[J: {x2 + x + l) dx ] + !��[J: {x2 + x + l)dx] 
= lilll [(X3 + x2 + x)la ] + lim [( X3 + x2 + x)l2 ] 

a➔! 3 2 a➔!
+ 3 2 0 a = lim - + - + a - 0  + lim - + 2 + 2  - - + - + a  ( a3 a2 

) [( 8 ) ( a3 a2 
)] 

-r 3 2 � 3 3 2 

20 3 
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2 1 .37 Determine whether or not J00 
� converges ;  if it does, evaluate the integral. -00 1 + x2 

There are no x-values for which the integrand is discontinuous ; however, neither the upper nor the lower limit of integration is finite. You must split the integral into the sum of two integrals and address each invalid boundary separately. Because the integrand is defined for all real x, you can choose to split the integrals at any real number. To simplify the ensuing calculations, it is advisable to use x = 0. 
Joo dx Jo dx Joo dx -00 1 + x2 = -00 1 + x2 + o l + x2 = lim -- + lim --(Io dx ) (f b dx 

) a➔-oo a I +  x2 b➔oo O I +  x2 
J dx According to Problem 20.15, --2 = arctan x  + C. I + x  = }!� ( arctanxl� ) + tl!,1 ( arctanxl� ) = lim ( arctan O - arctan a) +  lim ( arctan b - arctan O) 

a➔- oo b➔oo = lim arctan O - lim arctana + lim arctan b - lim arctan 0 
a➔- 00  a➔- 00  Because lim tanx = oo, lim arctanx = !!___ Similarly, lim arctanx = _ !!__ because 

x➔:rr: / 2 x➔oo 2 x➔- oo 2 lim tan x = - oo. 
x➔-,r/2  

= o - (-f) + (f) - o 
= :re 

0lYe +-wo bot.A POL\\\.Aotv-ies, yol-\11 hotve +-o +-otke Cotv-e o.P +-he1M O\\e ct+- ct i--i1Me 
• I 1-\Sl\\8 O\\e Ji1Mii-- CJ\\ eotch o.P +-he +-wo i\\f-e8v-otls. 
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Chapter 22 
CROSS-SECT IONAL AN D ROTATIONAL VOLU M E  

v '3-t) �,�sses �+- +-l-\is +-il,,\,\e P\e�se plA+- O\\ yol.\ v 
. difies the technique of calculating the two-dimensional area of This chapte� �o . d d in Chapters 18 and 19) to calculate the volume a region 1 ?ngm�lly :tst:�d�c1s Riemann sums added infinitely many areas of of three- 1mens1on . . rea of a re ion the methods herein rectangular re?ions to determme :�e a

l areas of c�\olid to exactly calculate its calculate infimtely many cross-sec 10na volume . 
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I.P t-v.e cvoss-sect-io\\S ewe pev-pe\\.Atc!Alotvt-o t-v.e ,c-ot,cis, t-v.e\\ t-v.e .PcM"'\IAl 0\ 0\ \\di. t-v.e t\\t-e8v-otl yo!A'll IASe sv-01Al.A 'oot-v. 'oe i \\ t-ev-tMS o.P ,c. 
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Volume of a Solid with Known Cross-Sections 
Cl.\t tl-\e sali.:A i\\ta pieces Ol.\\.:A 1Me01.Sl.\v-e tl-\ase i\\ste01..:A 

22. 1 If a three-dimensional solid has cross-sections perpendicular to the x-axis along the interval [a,b] whose areas are modeled by the function A(x) , what is the volume of the solid? 
The volume of the solid will be J: A (x) dx. This formula states that the threedimensional volume of a solid can be determined by slicing the solid into infinitely many, infinitely thin cross-sectional slices ,  determining the volumes of the cross-sections, and then calculating the sum. Finding the formula for the cross-section's area is the trickiest part. Once you figure that out, you just integrate like you've been doing since Chapter 17. 

Note: Problems 22.2-22.4 refer to a region B in the coordinate plane that is bounded by 
y = ✓x, y = 0, and x = 4. 22.2 Calculate the volume of the solid with base B that has square cross-sections perpendicular to the x-axis, as illustrated in Figure 22-1 . 

Q 

� -\!1, \ ----
I 1

___-
' /I 

� .2 ;3 14 
Region B Solid with base B Figure 22-1 The base of' the solid (region B) determines the size of' the solid's cross-sections. The darkened rectangle on the left graph corresponds to the darkened square crosssection on the right. Consider the graph of Region B in Figure 22-1 . The problem states that the solid has square cross-sections, so visualize a square lying along the darkened rectangle on the left, perpendicular to the x-axis and the printed page, growing upwards from this book rather than lying flat against it. The sides of a square all have the same length, so the square is as tall as the darkened rectangle is long. By calculating the length of the rectangle, you are also determining the length of the sides of the square cross-section. The rectangle is bounded above by y = ✓x and below by y = 0. Therefore, the length of the darkened rectangle in Figure 22-1 is ✓x - 0 = ✓x, the 
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upper boundary of the region minus the lower boundary. The square crosssections have side length s = f (x) = J;, so the area A(x) of those squares is s2 : A ( x) = s2 = ( ✓xr = X. Apply the formula from Problem 22.1 to determine the volume of the solid. 

J: A (x) dx  = f04 x dx 
= 

� [  
16  = - - 0 
2 

= 8 

Note: Problems 22.2-22.4 refer to a region B in the coordinate plane that is bounded by 
y = ✓x, y = 0, and x = 4. 22.3 Calculate the volume of the solid with base B that has rectangular cross-sections of height 3 that are perpendicular to the y-axis. 

The region is the same as Problem 22.2 ,  as is the orientation of the crosssections (perpendicular to the x-axis) , so you will use the representative length calculated in Problem 22 .2 :  J; - 0 = ✓x. In this problem, that length represents one dimension of the rectangle ; the other dimension of the rectangle is stated explicitly-the rectangles have a fixed height of 3. Construct a function that represents the area A(x) of the cross-sections ;  the area of a rectangle is the product of its length and width. A (x) = length · width = ✓x • 3 Apply the formula from Problem 22.1 to calculate the volume of the solid. Use the integration limits from Problem 22.2 ,  as the region and orientation of the crosssections are the same. 
J: A (x) dx = f04 3--Jx dx 

= 3 J o4 x1 12dx 
=

3
· 
;�;[ 

= 3 . * . (x3;2 )I: 

= 2[4312 - 0] 
= 2 (8) 
= 1 6  
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+-� e cv o ss-seci--lo\\S 
O\Ye p ev p e\\J.lCIAlt>\Y 
+-o +-�e ,c-01.,ci.s, solve 
+-� e eq1A01.i--lo\\S 
.Po v y. I.P +-� ey'v e 
p ev f e\\J.i. c1Al01. v  +-o 

+-�e y-Ol.)<i.s, solve +-�e 
eq1A01.i--i.o\\S .Po v ,c. 

B ecO\v.Se 
01.1l o.P +-l--. e 

-Pv.\\ci--io\\s O\ve 
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Note: Problems 22.2-22.4 refer to a region B in the coordinate plane that is bounded by 
y = ✓x, y = 0, and x = 4. 

22.4 Calculate the volume of the solid with base B that has square cross-sections perpendicular to the y-axis. 
If the cross-sections are perpendicular to the y-axis, you should draw the representative length horizontally instead of vertically, as illustrated by Figure 22-2. Furthermore, you must express the functions in terms of y instead of x. To do so, solve the equation y = ✓x for x. 

y2 = (✓x)2 
x = l 

Q 

9 \ 

_.,. 

/I -
1 2 3 4 

Region B Figure 22-2 The shaded region B is identical to the region defined in Problem 22.2, but this solid has square cross-sections perpendicular to the y-axis. The right boundary of' the region is x = 4 and the left boundary is x = j. 
To calculate a horizontal representative length, find the difference between the right and left boundaries :  4 - y2 . The area of each square cross-section is A (y) = s2 = (4 - y2) 2 = 16 - 8y2 + y4 . Calculate the volume of the solid. 

I: A (y) dy = f0
2 (16 - 8y2 + y4 ) dy 

- (my - 8
{ + 

{ )I: 64 32 = 32 - - + -3 5 480 - 320 + 96 = ------
15 256 

15 



Chapter Twenty-Two - Cross-Sectional and Rotational Volume 
Note that the solution differs from the solution to Problem 22.2 .  Using crosssections with different orientations usually changes the shape and volume of the ensuing solid, even when the solid has the same two-dimensional base. 

Note: Problems 22.5-22.6 refer to region R, which is bounded by the circle x; + y2 = 25. 22.5 Calculate the volume of the solid with base R that has semicircular cross-sections perpendicular to the y-axis. 
Because the cross-sections are perpendicular to the y-axis, the cross-sectional area, the function must be written in terms of y. Solve the equation of the circle for X. x2 + y2 = 25 x2 = 25 - y2 x = ±.J2s - y2 The circular equation can be expressed using two functions written in terms of y: 

x = .J25 - y2 and x = -.J25 - y2 , as illustrated in Figure 22--3. x = -.J25 - y 2 x = .J2s - y 2 

\ 5 1/ 
I '!- ;- ·  · �1---,__1 /' -n�++- --�- l"\J/ �1__-nr: -[\ -5 I l I I I I I I s 

_\ ) \ V 

-!J 

Region R Solid with base R Figure 22-3 The darkened representative length (in the left graph) is horizontal because the cross-sections are perpendicular to the y-axis. The darkened cross-section in the right graph may not look semicircular, but that is due only to the isometric angle at which the graph is rendered. 
Calculate the representative length in Figure 22-3 by subtracting the left boundary of the region from the right boundary. 
According to Figure 22-3, this length represents the diameter of the semicircular cross-section. Divide it by 2 to determine the radius of the semicircle. 2.J2s - y2 r = �-- = .J2s - y2 2 
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'(c11.. �cl.\'+- \\ee� i--c 11..se otbsd11..i--e Ve>1.l11..es i--c si\,\,\pli.Py H'\iS, becot11..se i--l,,,e vot�i11..s c.P i--l,,,e se\,\,\icivcle will otlwotys be pcsii--ive. 
This sdi� is 0\ spheve c.P vot�iL\s S- CL\½- i\\ hotl.P. The vdL\\,\,\e c.P i--hoti-spheve is 

� 1(y 3 
= 4(1 � $" 
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Construct the cross-sectional area function, A(y) , by substituting the radius into the formula for the area of a semicircle. ;rcr2 ;r,: (  .J25 - y2 r ;re A (y) = - = --- = - (25 - y2 ) 2 2 2 Calculate the volume of the solid. 
I: A (y)dy = i fJ25 - y2 ) dy 

- t(25y - {L = % [(125 - 1!5 ) - (- 125 + 1:5 )] 
= i [ ( 2:0 ) - (- 2:0 )] 
= i ( 5�0 ) 250;,: = 3 

Note: Problems 22.5-22.6 refer to region R, which is bounded by the circle x2 + y2 = 25. 22.6 Calculate the volume of the solid with base R that has semicircular cross-sections perpendicular to the x-axis .  Are the volumes of this solids described Problems 22.5 and 22 .6 equal? Why or why not? 
In order to calculate the representative length for this solid, you need to solve the equation of the circle for y: y = ±✓25 - x2

• Therefore, the upper boundary of the circle is y = ✓25 - x2 
, and the lower boundary is y = -✓25 - x2 

• Compute the representative length by subtracting the lower from the upper boundary: 
✓25 - x2 - (-✓25 - x2 ) = ✓25 - x2 + ✓25 - x2 = 2✓25 - x2

• This length represents the diameter of the semicircle (as it did in Problem 22 .6) ,  so 2✓25 - x2 
r = ---- = ✓25 - x2 • Use the formula for the area of a semicircle to construct 2 A(x) .  ;rcr2 ;re( ✓25 - x2 r ;re A (x) = - = �--� = - (25 - x2 ) 2 2 2 The upper and lower x-boundaries of integration mirror the upper and lower y-boundaries from Problem 22 .6 when you apply the volume formula. 
The only difference between this integral and the integral in Problem 22 .6 is the variable used ( x instead of y). The label used to represent a variable does not affect the value of an integral, so ?!__ J5 (25 - x2 ) dx = ?!_ J5 (25 - y2 ) dy = 250;,:. 2 -5 2 -5 3 ----------



Chapter Twenty-Two - Cross-Sectional and Rotational Volume 
Note: Problems 22. 7-22.8 refer to region G, which is bounded by the graphs of y = -cos x and 

X 
y = sin 2 on the interval [ 0, :re] . 22. 7 Calculate the volume of the solid with base G whose cross-sections are equilateral triangles perpendicular to the x-axis. 

Consider the darkened representative length illustrated in the left graph of 
X Figure 22-4. It is bounded above by y = sin 2 and below by y = -cos x. Therefore, it 

. X . X has length sm- - (-cos x) = sm - + cos x. 2 2 
2 

-2 

Region G 

. X 
y = sm -

2 

X 

I I 

Solid with base G 

Figure 22-4 The darkened rectangle in the left graph represents one side of the equilateral triangle cross-section. In order to construct A(x) ,  the area of an equilateral triangle with side length s, apply the area formula of an equilateral triangle : s2 ✓3 , as illustrated in Figure 22-5. 4 

s 
2 

s 
2 

60° 

1 
area = - b • h  

= ½cs{ s:) 
s2 ✓3 

4 

Figure 22-5 To find the height of" an equilateral triangle, divide it into two congruent right triangles and use the 30 °-60 °-90 0 right triangle theorem from geometry, which states that the leg opposite the 30 ° angle is hall the length of" the hypotenuse, and the leg opposite the 60 ° angle is ✓3 times the length of" the other leg. 
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l�+-e{1vo\'l-e +-he -fivsf

X Substitute s = sin 2 + cos x into the area formula to generate A(x) .  
s2 ✓3 ,,J3 ( . X )2 ,,J3 ( . X • X ) A (x) = -- = - s1n - + cos x = - s1n2 - + 2 cos x s1n - + cos2 x 4 4 2 4 2 2 Calculate the volume of the solid. 

f b ,,J3 f"( X X ) A (x) dx = - sin2 - +  2cos x sin - + cos2 x dx 
a 4 O 2 2 ✓3

f" 2 X 2✓3 f" X ,,J3 f" 2 = - sin - dx + -- cos x sin - dx + - cos x dx 4 ° 2 4 ° 2 4 ° +-hi �8 v.si�8 +-he P<'wev-ve�v.ci�B .Pcv!Mv.lot .Pvc,IM Pvcble!M 2 1 . 1 1 otlc�8 wi+-h Integrate using the techniques from Chapter 21. 
= ✓3 f" (.!. - cos x ) dx +  2✓3 f" ( sin(3x / 2) _si_n_(x_/_2_) ) dx + _✓3_3 f" (.!. + _co_s_2_x ) dx Votviotble Sv.bs+-i+-v.+-ic�: l.\ ==- x/2 O\�� 2�v. ==- �x Use 0\ pvc�v.c+-+c-Sl.\!M .Pcv!Mv.lot {like i� Pvcble!Ms 2 1 . 1 s- O\�� � I . I <:;) "� +-he secc�� 

1�+-e8votl, O\�� +-h 
• I 

e� if- s botck f-c, P<'wev-ve�v.c+-ic,� .Pcv!Mv.lots .Pcv +-he +-hiv� i�+-e8votl. 

J v.s+- like i+�i��'+- IMot+-f-ev which hots +-he le�8+-h ot�� wi�+-h c.P +-he vec+-ot�[11e i� Pvcble""' 22.'3. Ycihe jv.s+- 8"i�8 +-c 1Mv.l+-iply +-he""' +-c[1e+-hev, O\�� i� IMv.1+-iplicotf-ic�, +-he cv�ev �ces\\'+-IMotf-+-ev. 
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4 J o  2 2 4 J o  2 2 4 ° 2 2 ✓3 . " /.✓3 ( 2 3x x )I" ✓3 ( 1 . ) I" = - (x - smx)I + -- -- cos - + 2 cos - + - x + -sm2x 8 ° 4 · /. 3 2 2 0 8 2 0 ✓3 ✓3 [ ( 2 )] ✓3 = s [n] + 4 0 - - 3 + 2  + 8 [n] n✓3 ;(,,/3 n✓3 = -- - -- + --8 ;( - 3  8 6n✓3 - 8✓3 = -----24 /. (3n - 4) ✓3 
= --�--/. · 12 (3n - 4) ✓3 12 

Note: Problems 22. 7-22.8 refer to region G, which is bounded by the graphs of y = -cos x and 
X 

y = sin 2 on the interval [ 0, n] . 22.8 Determine the volume of a solid with base G whose cross-sections are semiellipses perpendicular to the x-axis with a fixed height of 2. 
The area of an ellipse is nab, where a is half the length of the major axis and b is half the length of the minor axis (for the purposes of this problem, it doesn't matter which is which) . Therefore, a semiellipse has area Jr ab = ?!_ ab. 

� 2 2 You are given one dimension of the ellipse-the fixed height of 2 is the distance from the center to the endpoint of one of the axes, so let a =  2. The representative length sin � + cosx , as calculated in Problem 22 .7, is the remaining axis of the 
L 2 L ellipse. Divide it by 2, because b is half'the length of the axis :  b = } (sin i + cos x). 



Chapter Twenty-Two - Cross-Sectional and Rotational Volume 
Generate the cross-sectional area function A(x) by substituting a and b into the formula for the area of a semiellipse : i ab. ;rr A (x) = - ab 2 

= % (2) [{ (sin i + cosx )] 
= % (sin i + cosx) Calculate the volume of the solid. 

Disc Method 

J0n% (sini + cosx) = % [(- 2 cos i + sinx I] 
= � [0 - (- 2)] 2 = ;rr 

Ci.vcles ewe +-ll\e eC\.si.es+- passi.ble cvass-sec+-i.a\\s 

22.9 Determine a general formula to calculate the volume of a solid whose circular cross-sections are perpendicular to the x-axis from x = a to x = b. 
According to Problem 22.l , the volume of the solid is J: A (x) dx, where A(x) is the area of the a cross-section. Because the cross-sections are circular, A(x) = ;rr [r(x) ] 2 given radius r(x) . Substitute this into the volume formula from Problem 22 .1 .  

J: A (x) dx = J: n [r (x)]2 dx = n f )r (x)]2 dx This formula is referred to as the disc method and is used to calculate the volume of rotational solids. If the cross-sections of the solid are perpendicular to the y-axis, use the formula nf: (r (y)J2 dy f<.:. ----------

22. 1 0  Rotate the region bounded by the graphs of y = e', y = 0, x = -I, and x = I about the x-axis and calculate the volume of the resulting solid. 
Figure 22-6 illustrates the region described and the three-dimensional solid created by rotating that shaded region about the x-axis. 
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2 

r(x) = e• 

Figure 22-6 If the darkened representative radius in the left diagram is 
rotated about the x-axis, it creates a circular cross-section of the 
solid, the radius of which is the length is the segment itself 

X 

The darkened length in Figure 22-6 is a representative radius of the solid. Calculate its length by subtracting the lower boundary (y = 0) from the upper boundary (y = ex) :  r(x) = e' - 0 = e'. Plug r(x) into the disc method formula from Problem 22.9. 
Ji f)r (x) r dx = Ji f 

I 
(e

x )2 
dx 

= ;rcf 1 
e

2x dx 
- 1 

= !!__ e
u l

2 

2 -2 

= !!__ (e
2 - e-2 ) 

2 

= %(e2 - e� ) 
;rc (e4 - 1) = ----

2e2 

22. 1 1 Rotate the region in the first quadrant bounded by y = e', x = 0, and y = e about the y-axis and calculate the volume of the resulting solid. 
When rotating about a vertical axis, use a horizontal representative radius that extends from the left to the right boundary of the region (as illustrated in 



Chapter Twenty-Two - Cross-Sectional and Rotational Volume 
Figure 22-7) . You must also ensure that the left and right boundary equations are expressed in terms of y, so solve y = e' for x. y = ex lny = Inex lny = x  

Figure 22-7 Rotating the shaded region at left results in the solid on the right. Note that the representative radius is written r(y), as it must be expressed in terms of y. 
Find the length of r(y) in Figure 22-7 by subtracting the left boundary (x = 0)  from the right boundary (x = ln y) of the region: r(y) = ln y - 0 = ln y. Substitute this expression into the disc method formula, using a = l and b = e as the limits of integration (because they define, respectively, the lower and upper y-boundaries of the region) . ;,: J: [r (y )J2 dy = ;,:  J: (In y )2 dy Apply integration by parts : u = (ln y) 2 and dv = dy, so du = 2 1n Y dy and v = y. 

y 

f e 2 

[ 

2 J) · 2 ln Y ] e 
;,: 1 ( ln y) dy = ;,: y ( ln y) - / dy 1 = 1r: [y (ln y )2 - 2J ln y dy I 

According to Problem 21 .3, f In y dy = y ln y - y . = 1r: [y (lny)2 - 2 (y lny - y)JI: = 1r: [e (lne)2 
- 2 (e lne - e) ] - [ l (lnl)2 

- 2 (l lnl  - 1)] = ;,:  [ e - 2 ( e - e)] - [ l · 0 - 2 ( 0 - 1)] 
= ;r: (e - 2) 

JL\st- l ik e i� 
+-h e 10\st- sed-io� I 0\ hoY iz.o�t-0\1 

Y epY eS e�t-0\ t-ive l e�B+-h 
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PL\t- +-h e""' i� t-eY""'S 
o.P y) O\�.A 1-\S e y
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l�re8YO\I. 
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22  . 1 2  Rotate the region bounded by y = x sin x and the x-axis between x = 0 and x = n about the x-axis and calculate the volume of the resulting solid. 
Consider Figure 22-8, which illustrates the region, the representative radius, and the three-dimensional solid of rotation. 

2 1 

y r(x) = x sin x 

Figure 22-8 Using the disc method to calculate the volume generated by rotating a region about the x-axis requires boundary functions in terms of x, limits of integration in terms of x, and a vertical representative radius. 
Find r(x) by subtracting the lower boundary from the upper boundary: r(x) = x sin x - 0 = x sin x. n J )r (x)]2 dx = n J; (x sinx)2 dx 

= n J; x2 sin2 x dx 

X 

Use the integration by parts tabular method, as described in Problems 21 .5 and 21 .6, to find the antiderivative. 
u x2 2x 
2 
0 

- - -

dv sin2 x 1 1 - x - - sin 2x 2 4 x2 1 - + - cos 2x 4 8 x3 1 - + -sin2x 12 16  - - - - - - - - - - - -

± 1  + l  - 1  
+ l  
- 1  + l  
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_ [( x3 x2 sin 2x ) ( x3 x cos 2x ) ( x3 sin2x )]I" 
- n - - --- - - + --- + - + --2 4 2 4 6 8 
- " [(/ - o - / - ¾ + :' + o) - (o - o + o)] 

= n(-� + :) 
n (2n3 - 3n) 

12  
n2 (2n2 - 3) = -----

12  

22. 1 3  Rotate the region bounded by the graphs of y = :i3 - x + 1 and y = 1 about the line 
y = 1 and calculate the volume of the resulting solid. 
As illustrated by Figure 22-9, the upper and lower boundaries reverse at x = 0. Therefore, you must calculate two separate volumes, one for the region on the x-interval [-1 ,0] , and one for the region on the x-interval [0,1] . 

r1 ( x) = ( i3 - x + 1 )  - 1 

r/x) = l - (i3 - x + l ) 

Figure 22-9 Because the boundaries for the two regions are reversed, you must use different representative radii for each region, denoted Ji (x) and r,(x). Though the bounding functions are the same (y = x' - x + 1 and y = 1), each serves once as an upper boundary and once as a lower boundary. 

40 1 
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Apply the disc method twice, using the representative radii identified in Figure 22-9 ; add the results. 
;ref J x3 - x +  1 - 1]2 dx +  ;re J: [1 - {x3 - x +  1)J dx = Jr f1 {x3 - x}2 dx + ;re J: (-x3 + x}2 dx 
= 1tf1 {x6 - 2x4 + x2 )dx + ;rcf: (x6 - 2x4 + x2 ) dx 
= Jr ( � _ 2;5 + x: )[ + Jr ( � _ 2;5 + x: l 
= ;rc[(o - o + o) - (-½  + ¾ - ½)] + ;re [(½ - ¾ +  ½) - co - o + o)] 

= ;rc(i�s ) + ;rc (i�s ) 
16;rc = 105 

22. 1 4  Rotate the region bounded by the graphs of x = y2 - 6y + 4 and x = -4 about the line x = -4 and calculate the volume of the resulting solid. 
Consider Figure 22-10, which illustrates the region and its representative radius. 

5 

r(y) = -4 - (y2 - 6y + 4) 
c� 

� -- 4 

c:_ 
3 

� 2 
-------

r---,.... 1 
-5 -4 -3 -2 -

Figure 22-10 Rotating about a vertical axis requires a horizontal representative radius, whose length r(y) is equal to the right boundary (x = -4) minus the left boundary (x = y2 - 6y + 4). 
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Substitute r(y) into the disc method formula, using y = 2 and y = 4 as the lower and upper limits of integration, respectively. \. nf24 [-4 - (y2 - 6y + 4)J2 dy �_,__ ___ 

= nfJ-y2 + 6y - 8J2 dy = n f24 {y4 - 12y3 + 52y2 - 96y + 64) dy 
- ,, ( { - 3y• + 5�• - 48y' + 64y I 
= n (51 2  _ 496 ) 15 15 16n 15 

22. 1 5  Use the disc method to prove that the volume of a right circular cylinder with radius R and height h is nR2h. (Assume R and h are positive real numbers . )  
Consider the rectangular region in the first quadrant of the coordinate plane bounded by x = 0, x = R, y = 0, and y = h, as illustrated by Figure 22 .11 .  If this region is rotated about the y-axis, it produces a right circular cylinder with radius R and height h. 

c,__) _____ (R,h) 
r(y) = R - 0 

c.___ 

X 

Figure 22-11 Because you are rotating the shaded rectangular region about a vertical axis, you must use a horizontal representative radius, r(y); its length is the right boundary (x = R) minus the left boundary (x = 0). The limits of integration must be in terms of y as well: y = 0 and y = h. 

Those ewe the lowest ot\\.::A hiBhest VotlL\es v-eotche.::A by the shot.::Ae.::A v-e8io\\ t\\ Fi8L\v-e 2.2- 1 0. 
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Apply the disc method. 
;,: I: [r (y )J2 dy = ;,:  foh (R)2 dy 

= ;,:R2 fh dy � J o 
----------- = ;r:R2 (y)I: 

= ;r:R2 [h - 0] 
= ;r:R2h 

4 22. 1 6  Use the disc method to prove that the volume of a sphere with radius R is - ;r;R3
• (Assume R is a positive real number.)  3 

A circle centered at the origin with radius R has equation x2 + y2 = R2 • Solve the equation for y to determine the equation of the semicircle pictured in Figure 22-12 . 
y = ✓R2 - x2 

(-R,O) (R,O 

r (x) = ✓R2 - x2 - 0 

Figure 22-12 Rotating the region defined by the x-axis and the semicircle with radius R generates a sphere with radius R. 
Apply the disc method, writing the representative radius and limits of integration in terms of x. ;,: J: [r (x)]2 dx = ;,:  f �R [ ✓ R2 - x2 r dx = ;,:  f�R (R2 - x2 ) dx 

= ;,: [  2�3 + 2�3

] 4;r;R3 

= 3 
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22. 1 7  Use the disc method to prove that the volume of a right circular cone with radius 1 R and height h is 3 nR2h . (Assume R and h are nonzero real numbers . )  

Consider the first quadrant region bounded by x = 0, y = 0, y = h, and the segment with endpoints (0,0) and (R,h) , as illustrated by Figure 22-13. Rotating this region about the y-axis generates a right circular cone with height h and radius R. 

R 1-r---R---. (R,h) 
r{y) =

,;
y - O

c__ h 

Figure 22-13 The linear equation serving as the region's right boundary must be solved for x, because the disc method integrand and limits of integration must be written in terms of y when revolving around a vertical axis. 
h The equation of the line connecting the origin and the point (R,h) is y = - x . Solve the equation for y. R 

h y = - x R R - y = x 
h 

R R Determine r(y) , the length of the representative radius : -y - 0 = - y ,  and apply the disc method. h h 

nJ: [r (y)J dy = nf
0
h (: yr dy 
R2 

h = n · J[ fo y2dy 
- "h�t:)[ 
= ;rR2 

(h3
) 

h2 3 

nR2h 
3 

"T"he slope o.P t-he li\\e is 
h - 0  h --- � -
R - 0 R ot\\.A t-he y-i\\t-evceptis O. Plv.8 +-hose t\\t-o slope-i\\t-evcept- .Pov\N\ 

(y � \A-\><: + b) t-o 8ett-he eqv.ott-io\\: 
h y � R>< . 
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Washer Method 
Fi\\.:A vah"1Mes eve\\ i.P tl-\e \'sali.:As'' c,we\\"'t sali.:A 

Note: Problems 22.18-22.19 refer to region K in Figure 22-14. 22 . 1 8  Explain why the disc method cannot be used to determine the volume of the solid generated when K is rotated about the line y = c in Figure 22-14. 
y 

fix) 

- 0 - - - - - - - - - - - - - - - - - - y = c 

a b 

Figure 22-14 Region K is bounded by f(x), g(x), x = a, and x = b. Notice that 
f (x) � g(x) for all x on the interval [a,b]. 

Notice that a gap separates the lower boundary, g(x) , from the axis of rotation, 
x = c. This gap is rotated about the line y = c as well, resulting in a hollow cavity within the rotational solid, which is clearly visible in Figure 22-14. The disc method can be used only to calculate the volume of a solid with circular crosssections, which is not true of the rotational solid in Figure 22-14. 

Note: Problems 22.18-22.19 refer to region K in Figure 22-14. 22. 1 9  Use the washer method to construct a definite integral representing the volume of the rotational solid in Figure 22-14. 
The washer method, like the disc method, uses representative radii that are perpendicular to the axis of rotation. However, it uses two radii: the outer radius (which extends from the axis of rotation to the outer boundary of the region) and the inner radius (which extends from the axis of rotation to the inner boundary of the region) . In Figure 22-15, R(x) represents the outer radius and 
r(x) represents the inner radius. 
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R (x) = J (x) - c 

g(x) 

..-e)- - - - - - - - - - - - - - - - - -► y = C 

a b 
r (x) = g (x) - c  Figure 22-15 Both the inner and outer radii extend.from the axis of rotation to an edge of the region. The inner radius extends to the edge that is closer to the rotational axis and the outer radius extends to the edge that is farther away. 

According to the washer method, the volume of the rotational solid is .n J: ([R(x) ]2 - [r (x)J2 ) dx. Substitute the values of the radii determined in Figure 22-15.  .n J: ([J (x) - c  J2 - [g (x) - c  J ) dx 
22.20 Use the washer method to construct a definite integral representing the volume of the rotational solid in Figure 22-16. 

b 

a 

x = c 

g(y) 

Figure 22-16 Subtract cfrom.l(y) and g(y), respectively, to calculate the lengths ofR(y) and r(y). In other words, subtract the left boundary from the right boundary when given horizontal radii. 
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This region i s  similar to the region pictured in  Figure 22-14, but because the region is rotated about a vertical axis, the functions and limits of integration must be written in terms of y. 

Note: Problems 22.21-22.22 refer to the region M in the first quadrant that is bounded by the graphs ofy = sin x, y = cos x, and x = 0. 22.2 1 Determine the volume of the solid generated by rotating M about the x-axis. 
Consider Figure 22-17, which identifies the region and the outer and inner radii required to apply the washer method. Determine R(x) and r(x) by subtracting the lower boundary of each radius from its upper boundary. 

-:n:/2 -:n:/4 

r (x) = sin x - 0 
-1 y = sin x 

Figure 22-17 Note that the outer radius R(x) extendsfrom the axis of'rotation (y = 0) to y = cos x (the region boundary that's farther away from the x-axis), and the inner radius r( x) extends from the axis of' rotation to y = sin x (the region boundary closer to the x-axis). 
Substitute R(x) and r(x) into the washer method formula. ;r,; J: ([R (x)]2 - [r (x)r ) dx = ;r,; J:[ (cosx)2 - (sinx)2 ] dx 

= ;r,; J: ( cos2 x - sin2 x ) dx 

X 

The region's left limit of integration is a = 0. To determine the right limit b, you must identify the x-value at which cos x and sin x intersect. Set the functions equal and solve for x. 
COS X = Sln X 

COS X sinx = cosx cos x l = tanx ;r,; x = -
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Substitute a and b into the integral. = ;r J:14 ( cos2 x - sin2 x ) dx According to a double angle identity, cos 2x = cos2 x - sin2 x. f"/4 = ;r J O 

cos 2x dx 

du Apply variable substitution: u = 2x and - = dx. 2 1 f"/2 = ;r · - J I 
cos u du 2 0 

n c . )1
"12 = 2 Sln U 0 

n ( . n . o) = 2 sm2 - sm ;r = 

Note: Problems 22.21-22.22 refer to the region M in the first quadrant that is bounded by the 
graphs of y = sin x, y = cos x, and x = 0. 22.22 Calculate the volume of the solid generated by rotating M about the line y = -1 . 

Like Problem 22.21 ,  region M is rotated about a horizontal axis. However, R(x) and r(x) are different due to the different axis of rotation, as illustrated by Figure 22-18.  
y = sin x 

-- - - - - - - - - - - - - - - - - --QJ-► x = -1 
-1 R( x) r(x) 

Figure 22-18 The outer and inner radii are each exactly one unit longer 
than the radii in Problem 22. 21, because the axis of rotation is 
exactly one unit further away from the region. 

Do�'t
.PoYBe+- t-o 

d'\ot�8e t-l...e x
boL\��otYies i�t-o 
L\-boL\��otYies 
by plL\88i�8 
eotcl--. o.P t-l...el,\\ 
i�t-o L\ ::::- 2x. 

I� t-l...is pYoblel,\\, 
R(x) ::::- cos x - (- 1) ::::
cos X + I Cl�� 

Y(x) ::::- si� x + I . 
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Apply the washer method using the limits of integration from Problem 22.21 . 

= .n f0"'14
[ (cos x + 1)2 - (sinx + 1)2 ] dx 

= .n Jt4
[ cos2 x +  2 cos x + 1 - (sin2 x + 2 sinx + 1)] dx 

= .n f0"'14
[ cos2 x + 2 cos x;l-'1 - sin2 x - 2 sinx,71] dx 

Regroup the integrand into two integrals .  

Jn;/4 ( ) J"'/4 = .n 
O 

cos2 x - sin2 x dx + 2.n 
O 

(cos x - sinx) dx  

. f"'14
( 

2 • 2 ) 
.7l' 

Accordmg to Problem 22.21 ,  .n 
O 

cos x - sm x dx = 2 . 
.n f"'/4 

= - + 2.n (cos x - sinx) dx 
2 0 
.n 

[ . 
11

"'14 = - + 2.n SlnX + COS X 0 2 

= i + 2.n [(sini + cos i) - (sinO + cos O)] 

= ?!_ + 2.n✓
2 

- 2.n 
2 

= 4.n✓
2 

- 3.n 
2 

.n (4✓
2

- 3) 
2 

X 
Note: Problems 22.23-22.24 refer to region], which is bounded by the graphs of Y = 2 and 
y = ✓x. 

22.23 Calculate the volume of the solid generated by rotating J about the x-axis. 

Consider Figure 22-19, which illustrates the region and the radii necessary 
to apply the washer method. To determine the points of intersection, set the 
functions equal and solve for x. 

3 

2 

1 

-1 1 
-1 

2 3 4 5 

y = -2 

Figure 22-19 Determine R(x) and r(x) by subtracting the top boundary of each 
radius from its bottom boundary: R ( x) = ✓x - 0 = ✓x and 

X X 
r (x) = - - 0 = -. 

2 2 
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� = ✓x 
2 

(�r = (✓xr 
x2 
- = x 

x2 = 4x 

-rl-\ts i--t1Me, 
i--l-\ e pOl\\i--S o.P 

t\\i--ev-seci-to\\ 1Mow\:. 
i--l-\ e l e-Pi-- e>1.\\J.. v-tBl-\i-
eJ..B es o.P i--l-\ e v-eBto\\, 
so i--l-\ ey 'o eco1Me i--l-\ e 

x2 - 4x = O  
x (x - 4) = 0 

---:::=::::::==::i ltlMti--s O\\ i--l-\ e we>1.sl-\ ev-

x = O or x = 4 These x-values represent the limits of integration for the washer method: a = 0 and b =  4. 
= nf04 [(✓x)2 - (�r ]dx 

= nf0
4 (x - : ) dx 

= n[ x: - ::][ 

= n ( 8 -
1
:) 

8n 

X Note: Problems 22.23-22.24 refer to region], which is bounded by the graphs of Y = 2 and 
y = ✓x. 22 .24 Calculate the volume of the solid generated by rotating J about the y-axis. 

Because the rotational axis is vertical, the radii (and therefore the boundary functions) must be written in terms of y. Solve the equations for x to get x = 2y and x = y2 . Figure 22-20 illustrates region J and the horizontal outer and inner radii, written in terms of y. 

3 
2 

-1 2 

-1 
3 4 5 

X = 2y 

x = y2 

Figure 22-20 Find the lengths of R(y) and r(y) by subtracting the left boundaries from the right boundaries: R(y) = 2y - 0 and r(y) = j - 0. 

1Mei--l-\0J.. J.. e-fi\\ti--e 

4 1 1 
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P v o'ol e\,\,\ 

2.2..2> SO\yS 
t-l-\e 8YO\f'l-\S 

i.�t-ev sect- O\r 
>< == 0 O\�� >< == 4. 

PllAB t-l-\ose ><'s i.�t-o 
y == ><12 t-o B e+- y-v0\l1Aes: 
0/2 == 0 O\�� 4/2 == 2.  
ThO\t- \,\,\eO\�S 0\ == 0 
O\�� 'o == 2 i.� t-l-\e 
WO\Sl-\ ev \,\,\et-l-\o� 

4 1 2  

Apply the washer method. :n:J: ([R (y )]2 - [r (y)r ) dy = :n:f02 [(2y)2 - (y2 )2 J dy = :n:f: (4y2 - y4 ) dy 
- n(4{ - �)[ = :n: ( 332 _ 352 ) = :n: (1601; 96) 64:n: 15  

Note: Problems 22.25-22.26 refer to region A,  which is bounded by the graphs of y = 3 - x2 and 
the x-axis. 22.25 Calculate the volume of the solid generated by rotating A about the line y = -2 . 

Graph the region, the axis of rotation, the outer radius, and the inner radius (as illustrated by Figure 22-21 ) and calculate the lengths of the radii. 

-6 -5 --4 -3 -

6 

5 

4 

R(x) = 5 - x2 

3 4 5 6 

y = 3 - x2 

Figure 22-21 The inner radius extends from the x-axis (y = 0) to the axis 
of rotation (y = -2), so r(x) = 0 - (-2) = 2. The outer radius 
extends from the curve y = 3 - x2 to the axis of rotation, so 
R(x) = (3 - x:2) - (-2) = 5  - x2. 
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Determine the limits of integration by setting the boundaries of the region equal and solving for x. 3 - x2 = 0  x2 = 3 x = ±✓3 
Substitute R(x) ,  r(x) , a =  -✓3 , and b = ✓3 into the washer method formula. JrJ: ([R (x)]2 - [r (x)]2 ) dx = JrJ� [(5 - x2 )2 - (2)2 ] dx = Ji J� (25 - 10x2 + x4 - 4) dx  = Ji f�(x4 - 10x2 + 21) dx 

( x5 10x3 )1,/3 = Ji 5 --3- + 2lx 
-

-Js 

= Jr [( 91 - 10✓3 + 21✓3 ) - (- 91 + 10✓3 - 21✓3 )] 
= Jr ( 18✓3 - 100;3 + 210✓3 ) 128Jr✓3 

5 

Note: Problems 22.25-22.26 refer to region A, which is bounded by the graphs of y = 3 - x2 and 
the x-axis. 22.26 Calculate the volume of the solid generated by rotating A about the line y = 3. 

Consider Figure 22-22 , which identifies the region to be rotated and the radii necessary to apply the washer method. 
R(x) = 3 

-6 -5 -4 -3 -

6 

5 r(x) = :i1-
------� y = 3 

4 5 6 

y = 3 - x2 

Figure 22-22 The inner radius extends from the axis of rotation (y = 3) to the inner boundary of the region (y = 3 - x2). The outer radius extends from y = 3 to y = 0. 

4 1 3  
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Construct expressions for R(x) and r(x) . 
R (x) = 3 - 0 = 3 

r ( x) = 3 - ( 3 - x2 ) = x2 Apply the washer method using the same limits of integration as Problem 2.25. 
Ji J: ([R (x)]2 - [r (x)Y ) dx = Ji J� [(3)2 - (x2 )2 ] dx = Jif� (9 - x4 ) dx  

- +
x -

� r: 

= Jr [( 9✓3 - 91) - (-9✓3 + 91)] = Jr (l8✓3 - 1s;3) 
Jr (90✓3 - 18✓3 ) 

= ------
5 72Jr✓3 

5 

I 
Note: Problems 22.27-22.28 refer to the region L, which is bounded by the graphs of x = -, 

I y 
x = 0, y = 2, and y = 4. 22.27 Calculate the volume of the solid generated by rotating L about the line x = -4. 

Consider Figure 22-23, which illustrates the region and the radii required to apply the washer method. 

1 
I 
{ 

x = -
5 ___,,J y 

r(y) = 4 4 
3 

1 R(y) = - + 4 2 y 

-3 -2 -1 

-1 

2 

y = -2 

3 4 5 6 

Figure 22-23 The graph of' x = !_ is . y identical to the graph of y = !__ Solve the first equation for y or the second equation for x to generate the other equation. 
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Determine the lengths of the radii. 
Apply the washer method. 

1 1 R (y) = - - (-4) = - + 4  
y y r (y) = 0 - (-4) = 4 

"f: ([ R (y) J' - [r (y )]' }dy = "J,:, [ (; + 4 r - ( 4)' ldy 

= :rcf4 (� + � + 16 - 16) dy 1/2 J y 

= :re I1:/y-2 + 8y-1 ) dy 

= :re (-.!. + 8 In ly1) 14 J 1/2 = :re [(- ¼ + 8 ln4 ) - (-2 + 8 ln ½)] 
= :re [( 2 - ¼) + s (In4 - ln½)] 

a Apply the logarithmic property log a - log b = log 7;-
= :re [� + s ( In 1;2 )] 
= :re [� + 8 ln 8] 

I 
Note: Problems 22.27-22.28 refer to the region L, which is bounded by the graphs of x = -, I y 
x = 0, y = -, and y = 4. 

2 22.28 Calculate the volume of the solid generated by rotating L about the line x = 6. 
The axis of rotation x = 6 is to the right of the region-unlike the axis of rotation 
x = -4 in Problem 22 .26, which was left of the region. Therefore, the region boundary that was once closer to the rotational axis is now farther away, and vice versa. The radii changes are reflected in Figure 2-24. 

1l,,,e 
\:,ov.\\&lowi. es 
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owe o,. ==- ½. O\\\&l 

\:, ==- 4, b eco,.v.se yov. 
\\ee&l +-o v.se y li.1Mi.+-s 
o.P i.\\+-eB vo,.+-i.o\\ wi.+-l,,, 

l,,,o vi.z.o\\+-0\1 

'(01lve 
s+-i.11 vo+-o,.+-

t\\ 8 O\YOl>.\\&l 
o,. vev+-i.co,.l o,.;,<i.s 
(li.�e Pvo\:,l elM 

2.2..2.') so +-l,,,e li.1Mi.+-s 
o.P i.\\+-eBvo,.+-i.o\\ o,.ve 
+-l,,,e S"'-IMe o,.\\&l yov.'11 
s+-i.11 v.se l,,,ovi.z.o\\+-e>1.1 
vo,.&li.i., bv.+- +-l,,,ose vo,.
&li.i. wi.11 b e  +-o+-o,.lly 
&li.-P.Peve\\ +-. 
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1 • 
x = -

G) 5 y 

4 
R( ) = 6 

3 

I 2 r (y ) = 6 - -
y 

1 
--4 -3 -2 -1 1 2 3 4 5 4i 

-1 

Figure 22-24 The right boundary of'each radius is now x = 6, so the length of each radius is 6 minus its left boundary. 
Apply the washer method. 

nf:([R (y)J - [r (y)J } dy -
nf,:, [(6)' +-;)}, 

= nf4 [36 - (36 - 12 + _.!_)] dy 1/ 2 y y2 

J4 ( 12 -2 ) = n - - y dy 1/2 y 
= n (12 1n lyl + !)14 y 1/ 2 

= n [( 12 ln4 + ¾) - ( 12 ln½ + 2)] 
= n [-� + 12 (1n4 - ln½)] 

a 
Apply the logarithmic property log a - log b = log b . 

= n [ 12 (ln8) - �] 
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Shel l  Method 

'5o�e+-l-'\i.\.\8 +-a .P"'-11 bC1.c°k O\.\ wl-'\e\.\ +-l-'\e WC\Sl-'\ev �e+-l-'\aJ.. .PC1.i.ls 

22.29 If the region pictured in Figure 22-25 is rotated about the line x = c, the shell method calculates the volume of the resulting solid according to the formula 2;ri; J: d (x) h (x) dx . Explain how to determine the values of a, b, d(x) ,  and h(x) . 
: d(x) 

a 
X = C  

fix) 

h(x) 

b 

Figure 22-25 In order to calculate the volume of' this rotational solid, the shell method requires only one representative radius. 

Unlike the disc and washer methods, the shell method uses a representative radius parallel to the axis of rotation, rather than perpendicular to the axis. Because the region in Figure 22-25 is rotated about a vertical line, so you must therefore use a vertical representative radius. A vertical radius must be written in terms of x (as must the integrand and its boundaries) . Notice that the boundaries of the region along the x-axis are x = a and x = b. Determine the length of the representative radius h(x) in Figure 22-25 by subtracting its bottom boundary from its top boundary: h(x) = f(x) - g(x) . The remaining variable expression in the shell method formula, d(x) ,  describes the distance from the axis of rotation to h(x) . Calculate the length of d(x) by subtracting the left boundary from the right boundary. While the rotational axis has an explicit location along the x-axis (x = c) , h(x) does not, so describe its position along the x-axis generically, as "x." In Figure 22-25, d(x) is equal to the x-position of h (x) minus the x-position of t e axis of rotation: d(x) = x - c. 
Note: Problems 22.30-22.32 refer to region H, which is bounded by the graphs ofy = x sin x, y = 0, x = 0, and x = ;r,;. 22.30 Problem 22.12 uses the disc method to determine the volume generated when H is rotated about the x-axis .  Explain why the washer method cannot be applied to determine the volume if His rotated about the y-axis. 

If the region were rotated about the y-axis, the washer method would require the use of horizontal radii. Therefore, the function y = x sin x would need to be rewritten in terms of y, but to do so would require solving the equation for x, and that is not possible. 

"This is hL\e o.P A\..\.. t-l'le volL\IMe .Pov1ML\le>1.s .PvolM t-l'lis d'\e>1.pt-ev. PL\t- t-l'li�BS i� t-evlMS o.P >< wl'le� yoL\ L\Se vevt-ico,.l vo,..Aii, o,.�.A 
, I .  , L\Se y s  wV\e� yoL\ve wov�i�B wit-I'\ l'loviz.o�t-o,.l 

ll�less +-he vot.AiL\s is hoviz.o�t-otl, i� which cotse yoL\ ve.Pev t-o +-he vot.AiL\s ots 1'y.'' 
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2
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V ::= -cos �. 
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Note: Problems 22.30-22.32 refer to region H, which is bounded by the graphs of y = x sin x, y = 0, x = 0, and x = n. Use the shell method to calculate the volume of the solid generated by rotating 
H about the y-axis. 
Consider Figure 22-26, which contains the region to be rotated and a graphical representation of d(x) and h(x) ,  the expressions needed to apply the shell method formula. 

d(x) = x h(x) = x sin x 

J(x) = x sin x 

Figure 22-26 Using the shell method to calculate the volume of a region rotated about the y-axis ( a vertical line) requires a vertical representative radius h(x) and the boundaries of the region along the x-axis: a = 0 and b = n. 
The radius h (x) appears to the right of the rotational axis (y = 0 ) ,  at position x. Find d(x) , the difference of the x-positions of h (x) and the rotational axis : d(x) = x - 0 = x. Next, define h(x) ,  the difference of the region's upper boundary (y = x sin x) and its lower boundary (y = 0) : h(x) = x sin x - 0 = x sin x. Substitute d(x) ,  h (x) ,  a = 0, and b = n into the shell method formula. 

2n J: d (x) h (x) dx = 2n J; x · x sin x dx 
= 2n J; x2 sinx dx 
= 2n {-x2 cos x + 2x sinx + 2 cos x )I: 
= 2n [(-n2 cos n + 2n sinn + 2 cos n) - (O + 0 + 2)] = 2n (n2 + 0 - 2 - 2) = 2n (n2 - 4) Note: Problems 22.30-22.32 refer to region H, which is bounded by the graphs of y = x sin x, y = 0, x = 0, and x = n. 5n 22.32 Find the volume generated when His rotated about the line x = 4. Except for d(x) , this problem is nearly identical to Problem 22 .31 ,  as illustrated by Figure 22-27. 
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2 h(x) = x sin x 

:n; / 2 

/(x) = x sin x � 
5.n 

x = 4 Figure 22-27 Recall that d(x) represents the horizontal distance between the 5.n axis of rotation x = 4 and the radius h(x). 
To calculate d(x) , first note the relative positions of the radius and rotational 

axis-d(x) equals the difference of their x-positions : d (x) = 5.n - x. Apply the shell 
4 

l\\t-e8v-"'t-e 
J..v ::::- >< Sl\\ >< 'oy 

method. 

( ) 
r"'v-t-s. Vse 1Az "'"'J.. V2 

2.n J: d (x) h (x) dx = 2.n f0" 
5: - x �(x:s:in:x�)

_:
dx

:_ ____ 7 sc t-l".t:'lt- ycv. J..c,\\"t- 8et-
t-l'\e �s "'"'J.. v's IMt><:eJ.. 
v.r: v.2 ::::- ><, J..Cl.\J ::::- J..><, 
J..(vJ ::::- Sl\\ >< J..><, "'"'J.. 

Integrate by parts : u = 5.n - x, dv = x sin x dx, du = -dx, and v = -x cos x + sin x. 
4 

= 2.n [ (5: - x ) (-xcos x +  sinx) - f (-x cos x + sinx) (-dx) I 
= 2.n [(5: - x ) (-xcos x + sinx) - f x cos x dx + f sin x dx I 

Use integration by parts to determine that f x cos x dx = x sinx + cos x. 
= 2.n [ ( 5: - x ) (-x cos x + sinx) - (x sinx + cosx) - cos x I 
= 2.n [(

5
: - x ) (-x cos x + sinx) - x sinx - 2 cosx I 

= 2.n [( � (.n) + 2) - (-2)] 

= 2.n [ � (.n) + 4] 
= 2.n ( 

;r2 : 16 ) 
.n (.n2 + 16) 

= ----

4 1 9  



420 

Chapter Twenty-Two - Cross-Sectional and Rotational Volume 
22.33 According to Problem 22.23,  the volume of the solid generated by rotating the region bounded by Y = i" and y = ✓x about the x-axis is equal to 8;. Verify the solution using the shell method. 

Rotating the region about a horizontal axis requires a horizontal radius and an integral in terms of y. Solve y = i" and y = ✓x for x and construct a graph of the region that identifies the segments d(y) and h (y) , as demonstrated in Figure 22-28.  
3 

x = 2y 

x = j 
2 

1 
-1 1 2 3 4 5 

-1 

Figure 22-28 The length of' the radius h(y) is the difference of' its right and left boundaries; d(y) is the vertical distance between the radius (y) and the axis of rotation (0). Let a =  0 and b = 2, the upper and lower boundaries of the region along the y-axis. 
Apply the shell method. 2.n J: d (y ) h (y ) dy = 2.n J02 y ( 2y - y2 ) dy = 2.nfo2 (2y2 - y3 ) dy 

= 2.n ( 2{ - { )[ 
= 2.n [(1: - 4 )] = 2.n (l6 ; 12 ) 

8.n = 



Chapter Twenty-Two - Cross-Sectional and Rotational Volume 
22.34 According to Problem 22.25, the volume of the solid generated by rotating the region bounded by y = 3 - i2- and the x-axis about the line y = -2 is 128:rc✓3 Verify the solution using the shell method. 5 

Draw a graph of the region indicating d(y) and h (y) , as illustrated by Figure 22-29. Note that the axis of rotation is horizontal, so the radius used in the shell method must also be horizontal, and the integrand and the limits of integration must be written in terms of y. Solve y = 3 - x2 for x. 
y = 3 - x2 

x2 = 3 - y 
X = ±.J3 - y The portion of the parabola that is right of the x-axis has equation x = .J3 - y, and the portion of the parabola left of the x-axis has equation x = -.J3 - y, as indicated in Figure 22-29. 

6 

5 

4 

3 4 5 6 

-------{&.- y = -2 

Figure 22-29 The equation y = 3 - i2- must be rewritten in terms of'y in order to apply the shell method. Generate h (y) by calculating the difference of its right and left boundaries .  
Define d(y) as the vertical distance between the radius (at position "y" along the y-axis) and the axis of rotation (at y = -2) .  d (y) =  y - (- 2) = y + 2  

The <5\-IELL 1Mei--ho.A L\Ses PA RALLEL YO\.Aii. li-vhy1Mes (sovt- o.P). 

'SL\bh0\c½-i--he1M i\\ +-he vi8h+ov.Aev-1.vh0\+-evev's O\oove IMi\\L\S whO\f-evev's L\\\.Aev\\eO\+-k I\\ +-his CO\Se, h(y) is O\oove +-he X-0\xis O\\\.A +-he vof-0\+-io\\O\I O\xis is below if-. 

42 1 
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Chapter Twenty-Two - Cross-Sectional and Rotational Volume 

The boundaries of the region along the y-axis are a =  0 and b = 3.  Substitute a,  b, 
d(y) ,  and h (y) into the shell method formula. 

2nf: d (y) h (y) dy = 2nf: (y + 2) (2✓3 - y ) dy 

= 4n f: (y + 2) (✓3 - y ) dy 

� 2 ( )
3/2 

Integrate by parts : u = y + 2 , dv = '\/ " - y dy , du = dy, and v = -3 3 - y 

= 4n [ (y + 2) (- ¾) (3 - yf
2 

-
1: (3 - y r2 I 

= 4n [o - [2 (- ¾) 3312 _ 
1:

(3512 )]] 

= 4n (± 3212 . 3112 + _±_ . 34;2 . 3112 ) 
3 15  

= 4n (_±_ i ✓3 + _±_ · 32 
• 
✓

3) 
j 15 

= 4n( 20✓
3

; 
12✓

3

) 

= 4n (
3

�
✓3 ) 

128n✓
3 

= ---



Chapter 23 
ADVANCED APPLICATIONS OF  DEF I N ITE I NTEG RALS 

. valvi.\\� 'bal.\\\�e� i.\\i--eBv01.ls Mave rva'ble\,A,\S \� J 

din cha ters definite integrals have been applied to the calcula-1� the/rece l olu�e the identification of a function's average value , and the tion o area an fv , 1 ted change . Though the majority of definite integrals measurement o accumu a dd. . 1 toward one of those ends in an elementary calculu� class, a 1t1ona :;��;:�ons of the definite integral abound. This chapter d1srns;es a s'."all an: diverse remnant of those applications : arc length, surface area o rotation, an centroids. 

I.P yo l.\ CO\� c01.lcl.\l01.te tl,,,e 01.ve01. behvee� Cl.\vves O\�.:A tl,,,e vol l.\""'e o.P soli.:As (cve01.te.:A eitl,,,ev by vot01.ti�8 so""'etl,,,i�8 av slici�8 so""'etl,,,i�8 i�to k�ow� cvass sectia�s), yaV:ve ""'""steve.:A Ol.t>Ol.\t 8'S-Y. o.P tl,,,e .:Ae-fi�ite i�te8v01.l pvoble""'s yol.\'ll see i� 0\ typic01.l c01.lcl.\l l.\s cl01.ss. Hawevev, tl,,,eve's 0\ s""'""ll co�ti�8e�t o.P weiv.:A 01.pplic01.tio�s .Pav tl,,,e .:Ae-fi�ite i�te8v01.l tl,,,01.t te>etbooks like to i�cl l.\.:Ae. -rl,,,ese topics 01.ve�1t l.\Sl.\01.lly caveve.:A i� l,\,\l.\cl,,, .:Aeptl,,, av .Pav vevy lc,�8, so sa""'e people -fi�.:A tl,,,e""' vevy co�.Pl.\si�8- E01.cl,,, o.P tl,,,e sectia�s i� tl,,,is cl,,,01.ptev is vevy l.\�iql.\e, Ol.�.:A O\S "" vesl.\lt, tl,,,e pvoble""'s ""'""Y �at .Peel O\S cal,,,esive O\S tl,,,ey .:Ai.:A i� atl,,,ev cl,,,01.ptevs. Do�'t let tl,,,01.t botl,,,ev yo l.\. -rve01.t e01.cl,,, sectia� O\S its aw� isl01.�.:A, i�.:Aepe�.:Ae�t o.P tl,,,e atl,,,evsi 01.lsa, .:Aa�'t spe�.:A tl,,,e ti""'e yo l.\ l.\Sl.\01.lly wal.\l.:A -fi8 l.\vi�8 Cl.\t WHY tl,,,ese .Pavl,\,\l,\lO\S wavk-.Pav tl,,,is cl,,,01.ptev, jl.\st wavvy O\t)Cl.\t How tl,,,ey wovk. 
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'fo v.. �o\\'+
\:.�o w wl-\ot+-

� Arc Length 

W;,<:) loo\:.s li.\:.e b e
+-wee� +-v.ose poi�+-s. 

l s  i+- ct li.�e? ct pot v otbo
lot? ct S e\N\i ci vcl e? Wl-\o 
\:.�ows? Tl-\ot+-'s wl-\y 
+-v.e j e�ev ic  +-ev\N\  
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Haw .Pow is it .Pva1M pai\\t A ta pai\\t B o,.\a\\8 o,. cv.vvy vao,.J..? 

23. 1 Given a continuous and differentiable function f(x) , what is the length off(x) between points (a,J(a) )  and (b,f(b) ) ?  

23.2 
The length of the arc formed by f(x) between x = a and x = b is equal to 
J: ✓I + [J' (x)J dx. 

;rr 3;rr Calculate the length of the function /(x) = In (sinx) between x = - and x = -. 
L • 4 4 

Differentiate J(x) with respect to x. , I cos x �----::.,.. J (x) = -.- · cos x = -.- = cot x 
Sln X Sln X Apply the arc length formula from Problem 23.1 . 

J: ✓I +  [J' (x)J dx = J:�:4 .jI + cot2 x dx According to a Pythagorean trigonometric identity, I + cot2 x = csc2 x. = f 3"14 .Jcsc2 x dx 
,r/4 

J3,r/4 = csc x dx 
,r/4 The antiderivative of csc x dx is -In Iese x + cot x i .  

I 1 1
3,r/4 = - In csc x + cotx "'14 = - [(in lcsc 3: + cot 3: 1) - (in lcsc i + cot il)] 

= -[ (1n ll - 1i) - (1n ll + 11 ) l 
- -[H 2tll -H 2tlll a Apply the logarithmic property that states log a - log b = log b .  

(2 - ✓
2 ) /✓2 = - ln --�--(2 + ✓2 ) /✓2 

= - ln l(2t)(2:'�)I = - ln l::11 
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Rationalize the denominator by multiplying the numerator and denominator by 2 - ✓2. _ (2 - ✓2)(2 - ✓2) _ _ 1 4 - 4✓2 + 2 1 - - 1 6 - 4✓2 1 - - I _ fol ln ( tn)( tn) -
ln - ln - ln 3 2v2 2 + v2 2 - v2 4 - 2  2 

1 3/2 23.3  Determine the length of g (x) = 3 (4 - x) between x = 0 and x = 4. 
Differentiate g(x) with respect to x. I ) 1 3 )J/2 ) 1 � g (x = - • - (4 - x  (- 1 = -- v4 - x  

3 2 2 Apply the arc length formula. 
I: ✓l + [ g' (x)]2 dx =  fo

4✓1 + (- ½ �r dx 
= f0

4 ✓l + ¼ (4 - x) dx 
= f 

0

4 ✓l + 1 - � dx 
= J0

4✓2 - �dx 
= fo

4✓8 � x dx 
= ½f0

4 �dx Integrate using variable substitution:  u = 8 - x and -du = dx. 
= _ _! f 4 u112du 

2 8 
= -½ · ¾ (u3;2 )I: �----= - _!(4312 - 83/2 ) 3 1 = - 3 (8 - 16✓2 ) 8 (2✓2 - 1) 3 

-rl-\e O\\\SW eY 
'"' ('3 +- 212) is 

o,.\ sc, ccvvec+. l t-'s 
t-l-\ e Se>1.1Me vo,.lv.e 
jv.1M'ol eJ- v.p v.si\\ 8 
\c,8  pvcp evt-i es. 

Dc\\'t- .Pcv8 et-
t-c v.se +-h e cho,. i\\ 

vv.l e O\\\J- t-.,,_k e +-h e 
J- eviv.,,.t-ive c.P wh.,,.t-'s i\\ siJ- e +-h e Y<:>\J- ic.,,_1, 
Th.,,. t-'s wh eve +-h is 
- I C<'IMeS .Pvc1M. 

fo,.ct-c, v 
¼- cv.t- c.P t-l-\ e 
v<:>\J-ic.,,_\ t-c 8 et- ½., """'J
t-l-\e\\ pv.11 ½. cv.t- c.P 

t-l-\e i\\t-e8 v"'-l. 

ycv. cl-\"'-"' 8 e 
t-l-\ e li1Mi t-s c.P 

i\\t-e8Y"'-t-ic\\ .PvclM 
o O\\\J- 4 i"'t-" 8' O\\\J-

4, t-l-\ ey .Peel v.psiJ- e 
J-c w\\-t-l-\ e 'oi8 8 ev 
\\L\IM'o ev i s  sv.J-J- e\\ly 
""' t-l-\e 'oct-t-c1M. 
De\\"+- cl-\e>1.\\8 e 
i t--evevyt-l-\i\\ 8 

wcvks i t-sel-P 
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The .PL\\\d·io\\ -P<x) v-epv-ese\\f-s +-he +-op h.,,.J.p 0.p +-he civ-cle, which will i\\f-ev-sec+- +-he x-.,,.xis .,,_+- -v- "'-\\.A Y. A civ-cle wi+-h ce\\f-ev-(O,O) i\\f-ev-sec+-s bo+-h o.P +-he "'-Xes v- L\\\if-s "'-IN"'-)' .Pv-o""' +-he ce\\f-ev-. 
PL\11 +-he co\\sf-"'-\\fv- (-Pv-o""' +-he \\L\IMev-.,,.f-ov-) oL\t-si.Ae t-he i\\t-e8v-.,,_J. 

Accov-.Ai\\8 t-o Pv-oble1M 7.2.'l, 
-rr -<. • -<. -rr -Z _ <:>\YCSl\\ )< _ 2.' so O\YCSi\\ ( -I ) -:/- '3-rr 2. eve\\ H'\oL\8VI • '3-rr I Sl\\ - � - · 2. 
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23.4 Verify that the circumference of a circle is 2:rcr. 
To simplify the calculations, assume that the circle is centered at the origin-its placement in the coordinate plane will not affect its circumference. Solve the standard form equation of a circle with radius r for y. x2 + y2 = r2 y2 = r2 - x2 y = ±✓r2 - x2 A circle is not a function, but it can be described by the pair of functions 
y = ✓r2 - x2 and y = -✓r2 - x2 , each of which is the equation for a semicircle of the same radius. Therefore, you can calculate the arc length of one semicircle, 
f(x) , and multiply the result by 2 in order to calculate the circumference of the full circle. Differentiate / (x) = ✓r2 - x2 with respect to x . 

1 1 ( )
- 1/2 -x f (x) = - r2 - x2 (-2x) = ---2 ✓r2 - x2 Apply the arc length formula. 

I + (h)
2 dx r2 - x2 

r ✓ x2 

= I_ I + -2--2 dx 
r r - x r2 - x2 + x2 , ----- dx r2 - x2 

r .J1 = I -- dx -r � ...;r- - x-
Ir dx - r -

-r � ...;r- - x-
According to Problem 20.17, I du = arcsin ('!!_)· Set a = r ,  u = x, and du = dx 

< ✓a2 - u2 a and apply this antidifferentiation formula. 
Ir du - r -

-r -J 2 2 a - u 
= r ( arcsin � l, 
= r ( arcsin ; )[

r __ = __ r...i( arcsinl - arcsin ( - 1)) 
2:rcr 2 

= :rcr 
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If a semicircle with radius r has arc length :rrr, then a circle with radius r has circumference 2:rrr. 

23 .5  Approximate the length of h (x) = ✓x between x =  I and x = 4 using the trapezoidal rule with n = 6 subdivisions and round the estimate to three decimal places .  
Differentiate h(x) with respect to x. h' (x) = .! x-112 = _I_ 

2 2✓x Apply the arc length formula. 

J1
4 
✓

4
:: 

1 
dx � :�; [ k (l) + 2k (¾) + 2k (2) + 2k (¾) + 2k (3) + 2k G) + k (4)] 

� ¾[ J; + 2 ( �) + 2 (
3

1) + 2 ( �) + 2 ( �) + 2 ( �) + �] � 3. 1699645 
Surface Area 
t-\ee1.Sl,we tl-\e ''s\c.i\{1 c.P "' vcte1.tic\\e1.l sclit:l. 

23.6 Rotate the curve defined by f (x) = ✓x between x = 0 and x =  3 about the x-axis and calculate the area of the surface generated. 
Differentiate .f(x) with respect to x. f' (x) = .! x-112 = _I_ 

2 2✓x 

I.P yol-\ \\ee.A oi 91-\ick v-eview o.P +-he hoipez.oi.Aoil v-1,\le look oi+- Pv-oble'-'\s , 
1 7. 1 8'- 1 7.U. 

Yoihe \\Of- v-of-oif-i\\8 oi v-e8iO\\ like '-'\os+-o.P +-he pv-oble'-'\s i\\ Choipf-ev- 22. Whe\\ yol-\ v-o+-oi+-e oi piece o.P oi Bv-oiph, if- cv-eoi+-es oi\\ i\\-fi\\if-ely +-hi\\ +-h v-ee-.Ai'-'\e\\sio\\oil SL\v-.Poice, \\of- oi soli.A. 

427 
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The surface area generated by rotating the portion off(x) between x = a and x = b about the x-axis is equal to 2.n J: f (x) .Jl + [J (x)J dx. Substitute f(x) , f' (x) , a = 0, and b = 3 into the form� 2.nf f (x) .J1 + [f' (x)J dx = 2.nf ✓x 1 + (  \--- )2 dx a O 2vx 
f 3 , ✓4x + l  = 2.nJ , v x  --dx 0 4x = 2.n f 3 / (4x + 1) dx J o  4/ .r3 ✓4x + l  = 2.n --dx 0 4 = 2.n (½) J: ✓4x + 1 dx du Apply variable substitution:  u = 4x + I and du = 4dx, so 4 = dx. Rewrite the limits of integration in terms of u as well: 4 (0 )  + I =  I and 4 (3)  + I =  13.  

= ?!__ J 13 u112du 
4 1 = � · ¾(u3;2 )1'.3 = 2.n (133/2 - 13/2 ) 12 

= i (13✓13 - l) 

3 23.7 Find the area of the surface generated by revolving the portion of J (y) = Y3 between y = 0 and y = 2 about the y-axis. 
1 Differentiate f(y) :  J' (y) = 3 (3y2 ) = y2; apply the surface area formula. 

2.n I: J (y ) ,J1 + [J' (y )J dy = 2.n I: (½ y3 ) .J1 + [l J dy 
= 2.n (½) I: y3 ✓l + y 4 dy 
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du 
Apply variable substitution: u = I + y1, 4 = y3 dy, a = I ,  and b = I 7. 

= �(¾)Jt7u1 12du 
= 2.n (�) u312 j 17 

1 2 3 1 
= � (173/2 - 13/2) 

9 

= � (17✓17 - 1) 

23  .8  Prove that the surface area of  a solid right circular cylinder i s  2:nr( r + h) , i f  r is 
the radius and h is the height of the cylinder. 

As illustrated in Figure 23-1 , revolving the region bounded by x = 0, y = 0, x = r, and 
y = h about the y-axis generates a solid right circular cylinder. 

= h  

x = O 

y = O  

X =  r 

Area of = .n:r 2 
circular face 

Figure 23-1 This is a solid of rotation, not a surface of rotation. Therefore, you must account for the surface area of the cylinder's circular faces at y = 0 and y = h. Both circles have radius r, so each circle has area :nr. 
The surface of the cylinder is ( excluding the circular bases) generated by rotating 
the portion of f(y) = r between y = 0 and y = h about the y-axis. Apply the surface 
area formula. 

(Note that r is a constant, so f' (y) = 0.) 2.n: J: f (y )✓1 + [f' (y )J dy = 2.n: J: r.Jl + (0)2 dy 
= 2.n f>dy = 2:nr J: dy 
= (2.n:r) YI; 
= 2.n:rh 

Eve\\ t-hol.\8V-
t-hev-e ewe \\ O  y's O\\ 

t-he v-i 8h t- siJ..e o.P t-he 
eql.\ott-io\\, t-hi s .Pl.\\\ct-io\\ 
i s  i\\ t-ev-lMS o.P y 'oecotl.\Se 
it i s  solveJ.. .Pov- ><. l t-'s 
t-he eql.\ot t-io\\ o.P t-he 
vev- t-icotl li\\e >< ==- v

wit-h -P(y) i\\ pl01. ce 
o.P ><. 
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As noted in  Figure 23-1 , the total surface area of  the solid i s  the sum of  the areas of the top and bottom faces of the cylinder and the surface area of rotation. Total surface area = area of top face + area of bottom face + rotational surface area 

23.9 

= :n:r2 +:n:r2 +2:n:rh = 2:n:r2 + 2:n:rh 
= 2:n:r (r + h) 

Prove that the surface area of a sphere with radius r is equal to 4:n:r. 
According to Problem 22 .16, you can generate a solid sphere by rotating the region bounded by f (x) = ✓r2 - x2 and the x-axis about the x-axis. Therefore, you can determine its surface area by rotating f ( x) = -J r2 - x2 between x = -r and x = r about the x-axis . Differentiate f(x) with respect to x. 

1 1 ( )- 1/2  X 
f (x) = - r2 - x2 (-2x) = - �== 2 -Jr2 - x2 Apply the surface area formula. 2:n:f: J (x)✓l+ [J '(x)J dx = 2:n:fr✓r2 - x2 l + [-h J dx 

r r2 - x2 + x2 
= 2:n:f -J r2 - x2 

2 2 dx 
-r r - x  

= 2:n:rf r ✓r2 
- x2 

--
1- dx 

-r r2 - x2 Recall that the product of two radical expressions with the same index is the root of the product: ✓a✓b 
= .j;;i_ 

r ✓r2 - x2 

= 2:n:r f _ -2--2 dx 
r r - x  

= 2:n:r f, 1 dx 
= 2:n:r (x)[, 
= 2:n:r [ r - ( -r)] = 2:n:r (2r) 
= 4:n:r2 
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23. 1 0  Prove that the surface area of a solid right circular cone with radius r and height h is equal to nr.J h2 + r2 • 

As illustrated in Figure 23-2, rotating the first quadrant region bounded by x = 0, y = h, and f (y) = i Y about the y-axis results in a solid right circular cone with radius r and height h. 

.....,..__r __ .. ( r,h) 

h Area of circular face h 

Figure 23-2 Aside from the rotational surface area, this cone has a circular base 
with radius r at y = h. The area of the circle, nr, must be added to 
the rotational surface area in order to calculate the total surface area 
of the solid. 

r Notice that f ' (y) = h ; plug j(y) , f' (y) , a = 0, and b = h into the surface area formula. 2n I: f (y)✓I + [f' (y)J2 
dy = 2n I:(i y )✓1 + (ir dy 

= 2nf:(i y)✓1 + �: dy 

f h
(

r 
)

� = 2.n - y G dy o h -..; h2 

f h
(

r 
)

� = 2.n - y --- dy 
0 h h 

r � Because h and h are constants , they can be removed from the integrand, leaving behind only y dy. 

As explained in Figure 23-2, add the area of the circular face . 
.n:r✓h2 + r2 + .n:r2 = .n:r (r + ✓h2 + r2 ) 

li\\e potsses H-wol.\81,,, +-1,,,e poi\\T"S (0,0) ot\\&l (v-,1,,,), so +-1,,,e eql.\ot+-io\\ o.P +-1,,,e li\\e is y � � ><· JL\s+- like +-1,,,e &lisc ot\\&l wotsl,,,ev-1Me+-l,,,o&ls, evev-y+-1,,,i\\8 \\ee&ls +-o 'oe i\\ +-ev-1MS o.P y wl,,,e\\ yol.\ v-o+-ot+-e ot'ool.\+- ot 
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Centroids 
fi\\t:l. tl-\e ce\\tev a.P 8ve1.vity .Pav e1. h.va-J.i1Me\\sia\\e1.\ sl-\e1.pe 

23. 1 1 Region R is bounded by continuous functions h(x) and k(x) ,  which intersect at points (x, ,y, ) and (x2 ,y2) as illustrated by Figure 23-3. Identify the centroid (x, y) of the region. ___.;"I 

Figure 23-3 Region R is bounded above by h(x) and below by k(x). 

Draw a horizontal and a vertical representative length across region R, as demonstrated by Figure 23-4. 
l(y) = k(y) - h(y) ( ,,.._ __ _ 

y 

I 
I 
I 
I 
I 
I 
I 

X 

_ _  
} l( x) � h(x) - k(x) 

Figure 23-4 The lengths of the representative lengths are equal to the dif ferences of their boundaries. The vertical length equals the upper minus the lower bound (in terms of x), and the horizontal length equals the right minus the left bound (in terms of y). 
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Calculate the area of the region: A =  f"' [h (x) - k (x)] dx. This value serves as the 
x, denominator in the centroid formula below. 

(X _) = ( J: X · l (x) dx fed y · l (y) dy l , y  A ' A 
= (± I:  x · l (x) dx, ± fed y · l (y) dy) Note that l(x) represents the length of the representative vertical length (in terms of x) in Figure 23-4-a length that stretches from the top of the region to the bottom; a and b are the boundaries of the region along the x-axis .  Therefore, l(x) = h(x) - k(x) ,  a =  x, , and b = x2 • Similarly, l(y) is the length of the representative horizontal length (in terms of y) ,  and the boundaries of the region along the y-axis are equal to c and d. Therefore, l(y) = k (y) - h(y) , c = y,, and d = y2 • Substitute these values into the centroid formula. 

(x, y) = (.!_ Ix' x [h (x) - k (x)] dx, .!_ I" y [k (y ) - h (y )] dy) A � A h 

23. 1 2  Identify the centroid of a rectangle with width w and height h. 
Construct a rectangle in the coordinate plane and draw representative horizontal and vertical lengths, as illustrated in Figure 23-5. 

( O,h) y =  h ( w,h) 

l(y) 

X = w 
l(x) 

( 0,0) ( w,O) 

Figure 23-5 The rectangular region is bounded by y = 0 (the x-axis), x = 0 (the y-axis), x = w, and y = h. 
According to Figure 23-5, the length of the representative vertical length is l(x) = h - O; and the x-axis boundaries of the region are a =  0 and b = w. The representative horizontal length is l(y) = w - 0, and it has y-axis boundaries c = 0 and d = h. Apply the centroid formula from Problem 23.11 ,  noting that A =  wh. 
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Begin by calculating x, the x-coordinate of  the centroid. 
_ 1 

I
x, < ) 

x = - x · l x dx 
A X1 

I fw = - x · h · dx 
wh 0 Remove the constant h from the integrand. 

j{ fw = 
w;{ 0 

x dx  

= ±(� )[ 
=±(�

2
) 

w 
= 

2 Now calculate y, the y-coordinate of the centroid. 
y = _!_I" y · l (y ) dy A YI 

l fh = - y · w · dy wh 0 
;,£ fh = 
;,£h o y dy 

= ¼({ )[ 
= ¼ (h: ) 

The centroid of the rectangle is ( x, y) = ( i, % )-
Note: Problems 23.13-23.17 refer to the region bounded by f (x) = .Jr2 - x2

, a semicircle with 
radius r centered at the origin, and the x-axis. 23. 1 3  Identify the x-coordinate x of the centroid for the region. 

The representative vertical length is bounded above by .f(x) and below by y = 0 along the x-axis from x = -r to x = r; as illustrated by Figure 23-6. The area of a 
. . 1 . h d" . A 

:n:r2 sem1orc e wit ra 1us r 1s = --. 
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(O,r) 

(-r,O) (r,O) 

Figure 23-6 The length l( x) equals the difference between its upper boundary ( the semicircle) and its lower boundary ( the x-axis). 
Apply the centroid formula for x. _ 1 

I
x, < ) x = - x · l  x dx A X1 = (_!_) Ir x✓r2 - x2 dx 

:n
r2 -r 

Apply variable substitution:  u = r - x2 and - du = x dx. Substitute x = -r and x = r 2 into u = r - x2 to get the corresponding u-boundaries : u = r - (-r) 2 = 0 and 
u = r - (r) 2 = 0. 

= (
:n

�2 ) (- }) I: u112du 
= (

:n
�2 ) (-}) <o) 

= O  

Note: Problems 23.13-23.17 refer to the region bounded by f (x) = ✓r2 - x2
, a semicircle with 

radius r centered at the origin, and the x-axis. 23 . 1 4  The functions that bound the region are even. Draw a conclusion concerning the centroids of such regions and explain your answer. 
If the boundary functions of a region are even, the graphs of those functions are symmetric about the y-axis. Therefore, the region is split by the y-axis into two regions of equal area. The balance point of the region, then, must lie along the line x = 0 (the y-axis) ,  and x = 0. This conclusion can be further generalized: if a region is symmetric about any vertical line x = c, then x = c for that region. Similarly, if a region is symmetric about any horizontal line y = k, then y = k. 

l.P t-1,,,e li""'i+-s 
o.P i� t-e8vott-io� 

o.P 0\ .:Ae..fi�i t-e 
i� t-e8votl otve eql.\otl, 
t-1,,,e .:Ae..fi�it-e i� t-e8votl 
eql.\otl s 0. Yolo\ .:Ao�'t
covev ot�y otveot 
i.P yol.\ Srotvf- O\�.:A 
s+-op ott- t-1,,,e SotlA-\e 
i� t-e8vott-io� lilA-\it-. 

l.P -Pex) i s ot� eve� 
.Pl.\�ct-io�, t-1,,,ott

lA-\eot�S -P(-x) = -P(x). 
I� o t-1,,,ev wov.:As, i.P 
t-1,,,e poi� t- (ot,b) is 
0� +-1,,,e 8votpk o.P 
-Pex), +-ke� so is 

(-ot,b). 
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Note: Problems 23.13-23.17 refer to the  region bounded by f (x) = .Jr2 - x2
, a semicircle with 

radius r centered at the origin, and the x-axis. 23. 1 5  Identify the y-coordinate y of the centroid for the region. 
Construct a graph of the region, rewriting its boundaries in terms of y (as �illustrated in Figure 23-7) . To express the semicircle in terms of y, solve the standard equation of a circle ( centered at the origin with radius r) for x. 

x2 + y2 = r2 

x2 = r2 - y2 

x = ±.Jr2 - y2 

(O,r) 
X = --Jr2 _ y 2 X =  ,Jr2 - y 2 

\._ ,, ,, "  / 
,.1_

,, 
_________ 

____s- l (y ) =  � - (-�)= 2✓ r2 -y 2 

(-r,0) (r,0) 

Figure 23-7 Two functions ofy are required to describe the semicircle, a posi
tive radical expression when x > 0 and a negative radical expres
sion when x < 0 (shown as a dotted graph). Length l(y) is defined 
as the difference of its right and left boundaries. 

2 Substitute l(y) (as calculated in Figure 23-7) , A = .n; , y, = 0, and y2 = r into the formula for y. y = _!_f12 y · l (y ) dy = (_!_) f
r
y · 2.Jr2 

- y2 dy = _±_ f r 
y.Jr2 

- y2 dy A Yi .nr2 o .nr2 o 
Apply variable substitution:  u = r - y2 and du = y dy. Substitute y = 0 and y = r into -2  
u = r - y2 to get the corresponding u-boundaries :  u = r - 02 = r and u = r - r = 0 .  

- -- - - u du 
_ 4 ( l )Jo 112 .nr2 2 r' 
= _ _!_ (�) { u3 ; 2 )1°2 .nr2 3 r 

= -
3

:
r2 (o - (r2 (

2
) 

= -
3

:
r2 {-r3 ) 

4r 3.n 
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Note: Problems 23.13-23.17 refer to the region bounded by f (x) = .Jr2 - x2
, a semicircle with 

radius r centered at the origin, and the x-axis. 23. 1 6  Verify that the alternative formula y = 2� J:,' ( [J(x)]2 - [k(x)]2) dx, where j(x) is the upper bound of the region and k (x) is the lower bound, returns the same value for y as Problem 23.15. 
The upper boundary of the region is j(x) = J(x) and the lower bound is k (x) = 0. Therefore, [j(x) ] 2 - [k (x)F = [J(x)F - 02 = [J(x)F . 

y = (�) f [.Jr2 - x2 ]2 dx 2 · .n:r -r = _l_ f
r (r2 - x2 ) dx .n:r2 -r �-------= _l (r2x _ x3 )Ir .n:r2 3 

-r = .n: :2 [ ( r3 _ r; ) - (-r3 + r; ) ] 
= .77::2 [ ( 2;3 ) - (- 2;3 ) ] 

1 (4r3 ) = .n:r2 3 
4r 
3.n: 

Note: Problems 23.13-23.17 refer to the region bounded by f (x) = .Jr2 - x2
, a semicircle with 

radius r centered at the origin, and the x-axis. 23. 1 7  Explain the practical value of the alternative formula, y = J___ f' ([j(x) ]2 - [ k(x) J2) dx, as applied in Problem 23.16. 
2A X1 Calculating y by means of the alternative formula is usually more efficient than the formula y = _!_ f d y · l (y) dy, which requires c, d, and l (y) to be in terms of y. A C As demonstrated in Problem 23.15, writing those values in terms of y requires you to transform one equation into a pair of equations, calculate a new representative length l (y) , and rewrite the limits of integration in terms of y. On the other hand, the alternative formula in Problem 23.16 used the same region boundary equations as the formula for x in Problem 23.13, the same representative length function l(x) , and the same limits of integration, which is both expedient and convenient. 

Note: Problems 23.18-23.20 refer to the region bounded by the graphs of f (x) = ✓x, y = 0, and X = 4. 23 . 1 8  Identify x, the x-coordinate of the centroid for the region. Graph the region and l(x) in order to calculate the representative vertical length, as illustrated by Figure 23-8. 

sl,,ov+cv.tcotlcv.1ott-es 
y .Pov ct\\ i\\..fi\\it-ely t-1,-,i\\ vect-Ol\\81e locott-e.:A. otlo\\8 >< == >< (t-1,-,e vevt-icotl li\\e t-1,-,ott- cv.t-s t-1,-,e ve8iO\\ i\\t-O h.vo \;:,otlot\\Ci\\8 l,,otlves). -rt,,e t-1,-,i\\ vect-ot\\81e ot\\.:A. t-1,-,e ve8iO\\ sl,-,otve t-1,-,e SotlMe y-ve,,.lv.e . 

Eve\\ t-l,-,ov.81,-, .2:_01he cotlcv.lott-i\\8 Y , t-1,-,e sl,,ovt-cv.t- is i\\ tev1Ms o.P x, so v.se t-1,-,e SotlMe )< i\\t-e8YottiO\\ li1Mits otS Pvoble1M 2.'3. 1 5": Cl = -y ot\\.:A. b = v. 
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3 

J (x) =  ✓x 
2 

1 

1 2 l3 4 
l (x) = ✓x - o  

5 

Figure 23-8 The length of' l ( x) is defined as the difference of' its upper and lower bounds. 
Calculate the area of the region using the fundamental theorem of calculus. 

A =  r4 
xl/2dx = � (x3/2 )1

4 = �(8) = 16 J o  3 ° 3 3 - 16  ✓x Evaluate the formula for x given A =  3 , l (x) = x, x1 = 0, and x2 = 4. - 1 J..,, 
x = - x · l (x) dx 

A X1 

= � f\_J";dx 
16 J 0 

= � f
4
x3;2 dx 16 ° 

= 1� . ¾ (x
s ;2 )I: 

= � (32) 40 
12 
5 

Note: Problems 23.18-23.20 refer to the region bounded by the graphs off ( x) = ✓x, y = 0, and 
X = 4. 23. 1 9  Calculate y, the y-coordinate of the centroid for the region, using the formula from Problem 23.1 1 .  

Graph the region and draw l(y) in  order to calculate the representative horizontal length, as illustrated by Figure 23-9. 
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3 f (y ) = y2 

1 2 3 4 5 

Figure 23-9 When l(y) has nonzero boundaries, it sometimes results in a more complicated integrand. However, that is not true in this case, as you'll see when you compute the definite integral. 
16  According to Problem 23.18, A = 3; calculate y given l(y) = 4 - y2 , y1 = 0, and Y2 = 2. 

y = _!_ f)2 y · l (y) dy 
A YI 

= 1� fo2 Y ( 4 - y2 ) dy 
= l� fo2 {4y - y3 ) dy 
= 1� ( 2y2 - { )[ 
= 1� (8 - 4) 3 4 

Note: Problems 23.18-23.20 refer to the region bounded by the graphs of f (x) = ✓x, y = 0, and 
x = 4. 

23.20 Verify that the value of y generated by Problem 23.19 using the alternative formula for y. 
Evaluate the alternative formula using values written in terms of x: j (x) = ✓x, 16 

T\.\e OYie\\f-O\t-iO\\ 
o.P +-he YepYeSe\\f-"'- t-iVe 

le\\ 8½-h ch"'-\\ 8e-A (.PY01M 
VeY+-ic.,,_J +-o hoYiZ.o\\f-0\1), 
ol.\f- +-he Ye 8iO\\ (<:>\\\.A i+-s 
"'-Ye.,,_) s+-.,,.ye.A +-he 
S<:>\IMe. 

Tl--.e .PoYIMl.\l.,,_ 
-PYOIM PYoblelM 

2,. , , .  

k(x) = 0, x1 = 0, x2 = 4, and A = - . Note that [j(x) ] 2 - [k (x) ] 2 = [J(x) F - 02 = [J(x) ] 2 . 3 -rhe se "'-Ye 

+-t,..e S"'-IMe ><1, ><2, 
Clo\\� A VC1.l l.\e s  +-t,...,,_+
"'-Ye !.\Se� +-o ..fi\\� -; i\\ 
PYo\;:,leiM 2'3. I 8'. 
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y = J___ f' (U< x) ]2- [ k(x) J
2) dx 

2A X 1 

_ _  3_f4[✓x]2 dx - 2(16) 0 3 J4 = 
32 o 

x dx 

= � (8) 
32 3 = 

Note: Problems 23.21-23.22 refer to the first quadrant region in Figure 23-10, bounded by the 
1 graphs off(x) = cos x, y = -, and x = 0. 
2 23.2 1 Calculate x, the x-coordinate of the centroid for the region. 

- - (�•¼) I - - - - - - - - - - - - - - - y = 2 

" " - -
6 3 

y = cos x 

Figure 23-10 
Note that the lower bound of the 

region, and therefore the lower 

bound of l( x ), is the horizontal line 

y = 2 , not the x-axis. 

Calculate the area of the region using the fundamental theorem of calculus. 
1 To determine the value of x2 , find the intersection point of J(x) = cos x and y = -by setting the functions equal and solving for y. 2 

1 
cos x = -

2 1 arccos x = arccos -
:n 

x = -3 
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- 3✓3 - n 1 n Evaluate the formula for x, given A = ---, l(x) = cos x - - , x1 = 0, and x2 = -. 

< 6 2 3 - 1 
I

x, 
x = - x · l (x) dx A X1 6 f"/3 ( 1 ) = 1o J ,  x cos x - - dx 3-v3 - n ° 2 6 f"n ( 1 ) = 1o J ,  x cos x - - x dx 3-v3 - n ° 2 According to Problem 22 .32, J x cos x dx = x sin x + cos x. 

( 

2 

)l"/
3 

= J x sin x + cos x - �  3 3 - n 4 0 6 [(J'C ✓3 1 ;c2 ) l = �- - · - + - - - - (0 + 1 - 0) 3✓3 - n 3 2 2 4 · 9  
= 3l- n ( J'C:- :: - t) 
= 6 ( 6n✓3 - n2 - 18 ) 3✓3 - n 36 6n✓3 - n2 - 18 = ------6 (3✓3 - n) 

Note: Problems 23.21-23.22 refer to the first quadrant region bounded by the graphs of 
1 

f(x) = cos x, y = 2, and x = 0. 

23 .22 Calculate y, the y-coordinate of the centroid for the region. 
Substitute A =  3✓3 - n, j(x) = cos x, k (x) = .!, x1 = 0, and x2 = � into the alternative 

6 2 3 formula for y. 
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1 + cos 20 1 cos 20 
Apply the power-reducing formula cos2 0 = --- = - + --. 

2 2 2 

= 3 f"1 3
[(! + ! cos 2x) - !] dx 

3✓
3

- n: J o 2 2 4 

= J f"1 3
[! cos 2x +.!. ]dx 

3 3 - n  ° 2 4 



Chapter 24 
PARAM ETRIC AN D POLAR EQUATIONS 

. \Move V"'-v'i.e,t.\..,les i-l.'\"'-� jv.si- " "'-�cA y Wvii-i�B eqv."'.i-io�s v.St\\B 

Although the study of elementary calculus focuses primarily on equati��s 
1 and functio_ns i� r:ctangula;i:�mh a �;�::::�

c

u
:��

n

p:�a:
l
��::::f :::t�:ns are representa

h
tlon

f
s_ is

d 
in o

;::;�dy thfs c�apter will limit itself to differentiation and both wort y o m- ep ' 
· h as integration skills already discussed in terms of rectangular equ�t1ons , sue 

calculating rates of change , measuring arc length, and calculatmg area . 

t--\as+- a.P coi.lcl>.ll>.s (oi.�ol evevy si�Ble cl-\oi.ptev i� tl-\is back l>.�til �aw) oleoi.ls witl-\ \'ve8l>.loi.v11 .Pl>.�ctia�s tl-\oi.t oi.ve ole-fi�eol i� +-ev""'s a.P :>< oi.�ol y. Tecl-\�icoi.lly speoi.k-i�B, tl-\ese oi.ve coi.lleot \'vec+-oi.�Bl>.loi.v eql>.oi.tia�s:1 becoi.l>.se tl-\ey oi.ve Bvoi.pl-\eot a� +-wa oi.:><es pevpe�olicl>.loi.v +-a a�e oi.�a+-l-\ev like tl-\e sioles a.P oi. vec+-oi.�Ble. Tl-\is cl-\oi.ptev oliscl>.sses poi.voi.""'e+-vic oi.�ol paloi.v eql>.oi.tia�s, wl-\icl-\ olescvibe eql>.oi.tia�s i� oi. .Pl>.�oloi.""'e�toi.lly oli.P.Peve�t woi.y. 

Poi.voi.""'e+-vic eql>.oi.tia�s ole..fi�e tl-\e :><- oi.�ol y-caavoli�oi.+-es a.P oi. Bvoi.pl-\ i� +-ev""'s a.P oi. tl-\ivol voi.vioi.ble, l>.Sl>.oi.lly +- av 0, coi.lleot +-l-\e \'poi.voi.""'e+-ev.11 Paloi.v eql>.oi.tia�s ola�'+- l>.Se :>< oi.�ol y caavoli�oi.+-es oi.+- oi.11, bl>.t olescvibe tl-\e pai�ts a� tl-\eiv Bvoi.pl-\s boi.seol a� l-\aw .Poi.v tl-\ey oi.ve .Pva""' tl-\e aviBi� oi.�ol wl-\oi.t "'-�Ble oi. li�e olvoi.w� tl-\val>.Bl-\ tl-\e""' ""'oi.kes witl-\ tl-\e positive :><-oi.:><is. 
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Parametric Equations 

Li\c.e vevalv.tia\\owies i\\ Basta\\ How't>av,jv.st oi.J.J. t 

Note: Problems 24.1-24.2 refer to the parametric equations x = t2 - 1  and y = 1 - f. 

24. 1 Graph the parametric curve. 

To visualize the shape of a parametric curve, you must substitute a sufficient 
number of t-values into both parametric equations. There is no single number 
of t-values that is appropriate for every parametric problem, but in this case, 
substituting integer values on the interval [-2, 2] is sufficient to visualize the 
curve. To begin, substitute t = -2 into both equations. 

x = t2 - l  

x = (-2)2 - 1  
x = 3  

y = l - t2 

y = l - (- 2)2 

y = - 3  

Therefore, the point (x,y) = (3,-3) i s  o n  the parametric curve. The graph in 
Figure 24-1 is generated by substituting additional values of t into the parametric 
equations and plotting the resulting coordinates. Note that the graph has domain 
[-1 ,oo ) and range (- oo,l] . 

(-1 ,1 )  
-5 --4 -3 -2 

4 

3 

2 

t 

t = -2 

t = - l 

t =  0 

t = l 

t =  2 

x = f- - 1 

x =  (-2)2 - 1 
= 3  

x =  (- 1}2 - 1  
= 0  

x = (0}2 - 1 
= - 1  

x = (1)2 - 1  
= 0  

x = (2}2 - 1 
= 3  

y = 1 - t2 

y = l - (-2)2 
= -3  

y = l - ( -1)2 
= 0  

y = 1 - (0)2 
= 1 

y = 1 - (1)2 
0 

y = l - (2)2 
= - 3 

Figure 24-1 The graph of the curve defined by the parametric equations x = t2 -1 
and y = 1 - t2. 

Note: Problems 24.1-24.2 refer to the parametric equations x = f - 1  and y = 1 - f. 

24.2 Write the equation of the parametric curve in rectangular form. 

Solve the equation x = f! - l for t. 
x = t2 - l  

x + l  = t2 

±.Jx + l = t 
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Eliminate the parameter t by substituting this radical expression into y = l - t2. 

y = l - ( ±✓ x + l r 
y = 1 - (x + l) 
y = -x The rectangular form of the curve is y = -x, a line with slope -1 and y-intercept 0. Notice that this aptly describes the graph in Figure 24-1 with one exception: that graph is only defined for x � -1 . Therefore, this restriction must be applied to the rectangular form of the curve as well . 

t + l  
Note: Problems 24.3-24.4 refer to the parametric equations x = 2 and y = t - t2 • 24.3 Graph the parametric curve. 

The t-values -2, -1, 0, 1 ,  and 2 are nearly sufficient to construct the graph. In Figure 24-2, the x- and y-equations are evaluated for those values of t, and the resulting coordinate pairs are plotted to determine the curve. 
t+ l y = t - t2 t x = -2 -2+ 1 x = -- y = -2 - ( -2)' -2 2 1 = -6 = - -2 -1+ 1 y = -1 - (-1/ -1 x = -2 = 0  = -2 0 + l x = - y = O - (o)' 0 2 1 = 0  = --5 -4 -3 -2 -1 2 3 4 5 2 y = ½- (½J 

Figure 24-2 

1 X = (1/2) +1 2 -2 _!I_ 1 
= 4 4 l+ l y = 1- (1)2 1 x = -2 = l = 0  2 + 1  x = - y = 2 - (2)2 2 2 

3 = -2 = -2 
This parametric curve is a parabola whose equation is identified in 

1 
Problem 24. 4. Notice that t = 2 is evaluated in order to determine 

the vertex of the curve, thereby increasing the accuracy of the graph. 

l)c,�i-- wc,vvy 
o,.\;:,c!Ai-- veshic+-

i�j y-veshicH�j 
,c will i--o,.\:.e co,.ve 

c,.P evevyi--l-\i�j- 'f c!A 
jlASi-- WO\�i-- i--l-\e li�e i--c, 
o,.\;:,v1Api--ly c!Ai-- c.P.P o,.i-
i--l-\e pci�i-- (- 1 , I) li\:.e 
ii-- .Aces i� fij-

1Ave 24- 1 . 
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P"'-YO\l,\\ehic 
Cl.\vve is�'+- Cl.\f

o.P.P "'-�Yw�eve like 
,:iBl.\ve 24- 1  w"'-s, so 
1+- looks ex.,,.c+-l

y +-�e 
SO\l,\\e "'-S +-�e vec+-
"'-�8 l.\l.,,_v 8Y"'-P� o.P +-�e p.,,_v.,,.\:,c,J.,,_ 

y ==- -4x2 + Gx - 2. 
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t + I  
Note: Problems 24.3-24.4 refer to the parametric equations x = 2 and y = t - f.  

24.4 Write the equation of the parametric curve in rectangular form. 
Solve the equation containing x for the parameter t. 

t + l 
x = --

t + l = 2x 

t = 2x - l Substitute this t-value into the parametric equation containing y. 
y = t - t2 

y = (2x - l) - (2x - 1)2 

y = 2x - I - { 4x2 
- 4x + 1) 

y = -4x2 + 6x - 2  The rectangular equation requires no restnctions, as the parametric curve and the rectangular graph are exactly equal at all points in their domains. 
Note: Problems 24.5-24.6 refer to the parametric equations x = 3 cos 0 and y = 4 sin 0. 

24.5 Graph the parametric curve. 
Because the parametric equations are defined trigonometrically, substitute a range of 0-values between O and 2.n to construct the curve, as illustrated in Figure 24-3. 

2 I 
-1 

0 

x = 3cos0 
x = 3cosO 

= 3 

:re x = 3cosi 

4 = 3✓
2

= 2 1 
2 

:re x = 3cosi 

3 3 = - = 1.5 

:re x = 3cos� 
2 = O  

2n 
2.7! x = 3cos

3 
3 = -_3_ = -1.5 

2 

y = 4sin8 
y = 4sin0 

= O  

y = 4sini 

= 2 

y = 4sin� 

= 4✓
2 

= 2 8  
2 

y
= 4sini 

= 4../3 = 3 5  
2 

y = 4sini 
= 4 

. 2:n: y = 4sm
3 

= 4../3 = 3.5 
2 

x = 3cos0 y = 4sin0 
5,,: 

for x = 3cos6 4 . 5.n y= sm
6 

6 = - ?,,/3 = -2.6 = 2 
2 

x = 3cosn 
= -3 

5,,: 
5.n 

x = 3cos4 
4 = - 3✓2 = -2.1 

2 

7,, 
7n 

x = 3cos
4 

4 = 3✓2 = 2.1 
2 

y = 4sin.n 
= O  

7,, y = 4sin
6 

= -2 

5:n: y = 4sin
4 

= -
4✓2 = -2.8 

2 

= -4 

y = 4sin
1ln 
6 

= -2 

Figure 24-3 After substituting values for 0 between O and .n, the elliptical nature 
of the graph is clear. However, you should substitute a few values 
between .n and 2.n to ensure that the remaining portion of the graph 
acts as expected (i. e., ensure that itfalls below the x-axis). 
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Note: Problems 24.5-24.6 refer to the parametric equations x = 3 cos 0 and y = 4 sin 0. 

24.6 Write the equation of the parametric curve in rectangular form. 
Solve the first parametric equation for cos 0 and the second for sin 0. 

x = 3 cos 0 y = 4 sin0 
X - = cos 0 l_ = sin 0 4 Substitute these expressions into the Pythagorean identity cos2 0 + sin2 0 = l .  (cos 0)2 + (sin0)2 = l 

x2 y2 - + - = l 9 16  

This el l ipse hots s+-ot�.Aotv.A 
2 2 .Pov!,\,\ � + _2'._ = I bz 

e,1,2 , wheve ot is hotl.P +-he le�B+-h o.P +-he IA-\qjov otxis ot�.:A. b is hotl.P +-he le�B+-h o.P +-he 
IA-\i�ov otxis. This is the equation of an ellipse (in standard form) that is centered at the origin, has vertical major axis length 2M = 8 and horizontal minor axis of length 2✓9 = 6. 

24.7 What parametric equations define an ellipse in standard form? 
The standard form of an ellipse with a horizontal major axis is 
( x - h )2 {y - k )2 --2 - + 2 = 1, such that a is half the length of the major axis, b is half 

a b the length of the minor axis, and (h,k) is the center of ellipse. According to a Pythagorean identity, cos2 0 + sin2 0 = l .  Therefore, cos2 0 = (x -2h)2 and 
• 2 0 (y - k )2 

s 1 h . 
C d . 1 sm = b2 . o ve t e equat10ns �or x an y, respective y. 

cos2 0 = _( x_-_h )_2 a2 (x - h)2 = a2 cos2 0 sin2 0 = (y - k )2 b2 (y - k )2 = b2 sin2 0 

a 

,J(x - h)2 = .Ja2 cos2 0 
x = a cos 0 + h  

✓{y - k)2 = .Jb2 sin2 0 �-
y = b sin 0 + k  The above parametric equations apply only if the major axis of the ellipse is horizontal. If the major axis is vertical, reverse a and b in the parametric equations : x = b cos 0 + h and y = a sin 0 + k. Yol.\ .Ao\\'+- hotve +-o wvi+-e 1':t'1 i� .Pvo�+o.P +-hese vot.Aicotls, beCotl.\Se +-he cosi�e ot�.A si�e .Pl.\�c+-io�s hot�.Ale +-he si8� chot�Bes .Pov yol.\. 
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. The ABSCISSA ts +-he -fivs+- o.P +-he +-wo �L\IA-\bevs i� 0\ coov.Ai�oi+-e poiiv, so 
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(oi,b) is oi. 
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is +-he se co�.A �L\IA-\bev 
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24.8 What parametric equations define a circle centered at the origin with radius r? 
A circle is actually an ellipse with major and minor axes that are the same length. Therefore, you can use the parametric equations from Problem 24.7 and set 
a = b = r (the radius of the circle) and (h,k) = (0,0) . Either set of the parametric equations defined by Problem 24.7 result in the same parametric representation of the circle. 

Polar Coordinates 

x = a cos 0 + h x = r cos 0 y = b sin 0 + k 
y = r sin 0 

Co\\vevt .Pvo\M c�, y) to (VI e) Cl.\\ol.. vice vevsc,. 
Describe how to plot the polar coordinate pair (r, 0) in the coordinate plane. 
The abscissa of a polar coordinate pair represents its distance from the pole and the ordinate is the measure of the angle formed by the polar axis and a terminal ray passing through the coordinate whose endpoint is the pole (as illustrated in Figure 24-4) . Note that positive angles are measured counterclockwise and negative angles are measured clockwise. 

--- - - - - -....... ....... 

( r, 0) / - - - - - ...... 
/ /

.,... ', I / - - - '-
/ I _... ...... , '-

' ' ' 
\ 

/ I / ' \ 
I I I \ \ 
I I I \ \ \ 41 31 21 : 

\ 
\ 
\ 
I 

I \ , 
/ 

1 I \....i -\ \ \ ' .,. / / / ,.,......._____ polar axis \ \ ',  pol; // 1 1 \ '- ' ,;- / I ' -- - - - / '- ' / I 
' , ...... .,... ✓ / ' --- - - - / ' / ' / 

....... ....... ....... _ _ _ _  .-- ..,,,,,. ,,,,,.  

Figure 24-4 
3:n In this diagram, 0 measures approximately 135° = 4 radians and the point (r,0) is 4 units away from the pole. Therefore, ( r, 0) = ( 4, 3:) is a fair representation of the polar coordinate. 

Although any pole and polar axis can be used, it is customary to superimpose polar coordinates on the Cartesian plane, placing the pole at the origin and the polar axis on the positive x-axis . 
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24. 1 0  Plot the polar coordinate pairs on the same plane : A = ( 1, �) , B = ( 5, 7:) , C = ( 3, -!!__) , and D = (-4, 2.n). 

24. 1 1 

, 2 ,  3 

Refer to Figure 24-5 for the locations of A, B, C, and D in the coordinate planeas stated in Problem 24.9, the pole should be placed at the origin and the positive x-axis serves as the polar axis. Note that C contains a negative angle, and D contains a negative directed distance. 
0 = 2;r = 60° 3 --

/ 

6 

5 / / / --- -- 0 = 3!_ = 45° '- 4 
I 

I 
I 
I 
I 

/ I 
I 

/ / / 
I / 

I I 

---
--

/ 

I I / 
I I I 

/ I I 
/ I I 
I I I - I -5 \  -4 -3 -2 -I I I I I \ I I \ \ \ \ \ 

0 = 7;r = 210° 6 \ B \ \ " \ 
'-

" '-' '- '-
----

----

_4 \ \ \ \ \ 
I 
I 
I 

2 3 4 5 6 
I I I I I \ // / / / / 

_ .,,,.___ 11 I 
1
1 I \ / / / _,,,._ I I I - --- \ / / / - C ;.jJ / / _ _  ,,.,,.. \._ ,,.,,/ / 

--:::5 

/'. / __.,,,. \ / _.. .... / .,,,._ 
./ \ --- ' 

0 = _ 3!_ = -90° 2 

B = (s, 7;) 
C = (3, -�) 
D = (-4, �;r) 

Figure 24-5 Positive angles are rotated counterclockwise from the positive x-axis and negative angles rotate counterclockwise. 
Unlike the Cartesian coordinate system, in which each point on the plane is expressed by a unique coordinate pair, each point in the coordinate plane can be represented by an infinite number of polar coordinate pairs. Find two polar coordinate pairs that represent the same point on the plane as ( 2, � ). 
As illustrated by Figure 24-6, replacing � with a coterminal angle, such as l!n or - l�n , will not alter the location of the point; therefore, the polar coordinate pairs 
( 13n) ( -l ln) 2,6 and 2,-6- represent the same point on the plane as the polar 

'"T"c plci--D, i\\sf-ee,,.&l c� he,,.veH\\j L\f' i--l-\e v y t\\ i--l-\e secc\\&l qL\e,,.&lve,,.\\i--, e;,<:i--e\\&l i--l-\e ve,,.y C\CYCSS i--l-\e c,vij l\\ (e,,.lc,"'8 i--l-\e &lcHe&l H"'e t\\ Fi,�L\ve 25'-s), """'&l he,,.vel 4 l,\\\li--S l\\i--C i--l-\e �c,l,\vi--l-\ qL\e,,.&l-

T'1e v""Ys f-'1vc1,t3'1 0 ::::- :!!._ 
"""14 e - 7.,,. ' 

"" . - ? .Pc,y"'1 sf-v""'3'1f- Ii .:;t· "te/ Sc, <'I ivecf-e.::t j • 
"'-IS� -2 I "'!"tee c,.p "" ""13 0 - ?.,,. . s"""'1e - , is f-'1e <'IS <'I .::4.is� c,.p """tee coordinate ( 2,�) . You can identify yet another polar coordinate pair with the same 2 <'llcr.i3 0 ::::- !!... graph by adding .n to 0 and multiplying r by -1 . < ----- ' 

(-r, e + .n) = (-2, i + .n) = (-2, 7:) 
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I 

/ 
/ 

3 

_ - --2 - - _  

0 = 7:rr 
6 

..... ' ... •··········,r 
",. .... •· 

.... ····;·
··:·; \ 

.... •· 6 I 

- =2 -

-3 

Figure 24-6 The polar coordinate pairs ( 2, �) , 
( 13:n:1 ( 7:n:) 2, 6 )' and -2, 6 all represent the same point on the coordinate plane. 

24. 1 2  Convert the point (-3, n) from polar to rectangular coordinates. 
Given (r, 0) = (-3, n) , apply the formulas x = r cos 0 and y = r sin 0. 

x = - 3 cos n x = - 3(- 1) x = 3 
y = - 3 sinn y = - 3 (O) 
y = O  Therefore, the polar coordinate (-3, n) and the rectangular coordinate (3,0) represent the same point in the Cartesian plane. 

24. 1 3  Convert the point ( 7, 4;) from polar to rectangular coordinates. 
Given (r, 0) = (7, 4;), apply the formulas X =  r cos 0 and y =  r sin e. 4n x = 7 cos -3 

X = 7 (-t) 
x = - -

4n y = 7 sin -3 y = 7 (- �) 
7✓

3 

y = --
2 

The rectangular coordinate pair (-i ,- 71) and the polar coordinate pair ( 7, 4; ) represent the same point in the Cartesian plane. 
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24. 1 4  Convert the point (4, -4) from rectangular to polar coordinates. 

Given (x,y) = (4, -4) , apply the conversion formulas r = .Jx2 + y2 and tan0 = 1. . 
X r = .J42 + (-4)2 

r = ✓32 r = 4✓2 
- 4  tan0 = -4 tan0 = - 1  0 = - !!__ 4 

U\:.e Pvo\;:,lelM 2.4. I I e><rlO\l\\S, 
\-\.\ev e's IMOve HI\O\\\ ov.e covvec+ O\\\Swev t-o t-ll\i.s rvo\;:,lelM. Lo\-s o.P r0-l01.v coovc:ki.v.01.\-es will ovevl01.t' t-ll\e vec\-01.v.�1Al01.v coovc:ki.v.01.\-e (4,-4). 

Infinitely many angles have a tangent value of -1 and you can replace 0 = -� with any of them, including 0 = - 5.n , 3.n , and 7.n. However, the polar coordinate must be 4 4 4 located in the fourth quadrant to match the rectangular coordinate (4, -4) . Therefore, r is positive for all angles terminating in the fourth quadrant and negative for all angles terminating in the second quadrant. Correct polar coordinate representations of the rectangular coordinate pair (4,-4) include ( 4✓2 , -�), ( 4✓2 , 7:), (-4✓2 , 3:), and (-4✓2 ,-5:)-
24. 1 5  Convert the point (- 1, ../3) from rectangular to polar coordinates. 

Given (x, y) = (- 1,✓3 ), apply the conversion formulas r = .Jx2 + y2 and tan0 = 1._ 
X Note that (- 1, ✓3

) is in the second quadrant, so the terminal side of 0 is in the second quadrant (for r >  0) and in the fourth quadrant (for r <  0) . 
r = ,J(- 1)2 + (✓3 }2 r = 2 tan 0 = -✓3 

0 = 2n 
Correct polar coordinate representations of the rectangular coordinate (- 1,✓3 ) include ( 2, 2;), ( 2, 8:), (-2, -�), and (-2, 5:) . 

G raphing Polar Curves 

Gv01.pl-\t\.\B wH-l-\ V Ol.\.\ol.. e l\.\St"'eOl.ol.. o.P )< Ol.\.\ol.. y 

24. 1 6  Graph the polar curve r =  5. 
The curve consists of all the points 5 units away from the pole, regardless of the angle 0. As convention dictates that the pole be placed at the origin, then this curve is the collection of points exactly 5 units away from (0,0) . In other words, its graph is a circle centered at the origin with radius 5, as illustrated in Figure 24-7. 

/.P YOL\ Cot�'i-fi8L\ve OL\i- �ow i-o 8ei- i-�is 0\�81e look oti- PvoblelM ' 8'.'30. 

45 1 
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4 
3 
2 

-1 
-2 

-3 

--4 

2 3 4 

Figure 24-7 The polar curve r = 5 has the same graph as the ( comparatively more complex) rectangular curve :i2 + j = 25. 
1( 24. 1 7  Graph the polar curve : 0 = - 6. 

Consider the line that forms the angle _ !!_ with the positive x-axis, as illustrated in Figure 24-8. 6 

-5 -4 -3 -2 

5 
4 
3 
2 

-1 

-2 

-3 

-4 

-5 

4 5 

Figure 24-8 The graph of0 = -� is a straight line. 
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Any point along this line (regardless of its distance, r, from the origin) belongs to the curve 0 = -i, including the points in the second quadrant once the line is extended across the origin. �---------------

24. 1 8  Graph the polar curve : r =  3 cos 0. 
The most effective way to graph a polar curve is to use a table of values .  The range of 0-values you should use to construct the table depends on the polar equation, but the complete graph of most polar equations containing trigonometric functions can usually be generated using the 0-interval [O,2.n] . Even fewer 0-values are needed to graph r = 3 cos 0, as the entire curve is drawn between 0 = 0 and 0 = .n (and repeats between 0 = .n and 0 = 2.n) . 

-2 

0 r = 3 cos 0 0 r = 3 cos O = 3 (1) = 3 
2 1 

;r r = 3 cos i = 3 (�) � 2.6 -6 ;r r = 3 cos i = 3 (�) � 2.l -4 ;r r = 3 cos i = 3 (½) = 1 .5 -3 -1 1 2 4 ;r ;r 
- r = 3 cos - = 3 (0) = 0 2 2 

-1 2;r r = 3 cos 2; = 3 (-½) = - 1.5 -3 
-2 3;r r = 3 cos 3: = 3 (-�) � -2.1  -4 5;-,; r = 3 cos 5: = 3 (-�) � -2.6 -6 ;r r = 3cos ;r = 3 (- 1) = -3 

Figure 24-9 The grap
hjl

r = 3 cos 0 is a circle centered at (% , 0) with a 

radius of 2. 

24. 1 9  Graph the polar curve : r =  4 cos 20. 
Like Problem 24.18, construct a table of values for the curve. Substituting values of 0 in the interval [O, 2.n] is sufficient to construct the entire curve, as illustrated in Figure 24-10. 

Yov. h.,,_ve +-o ex+-e\\.:A +-he li\\e bec.,,.v.se v- cov.1.:A be \\e8"'-+-ive. Fov-ex"'-IMple, {-'3, _ 1r) 
. . ' ts l\\ +-he seco\\.:A 9v."'-.::Av-.,,.\\f; > v.\\if-s "'-w"'-y -Pv-olM +-he ov-i8i\\ .,,_Jo\\8 +-he li\\e t\\ FiBv.v-e 24-8'. 
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0 r = 4cos (20) 0 r = 4cos (2 · 0) = 4(1) = 4 
:rr, r = 4cos( 2 · �) = 4(½) = 2 -
6 
:rr, r = 4co+ · �) = 4(0) = 0 -4 
:rr, r = 4co+ · �) = 4(-½) = -2  -3 
:rr, 

r = 4cos( 2 · -%) = 4(- 1) = -4 -2 2:rr r = 4co+ · �) = 4(-½) = -2 3 3:rr r = 4cos (2 ·  3:) = 4(0) = 0 -4 5:rr r = 4cos(2 - 5;) = 4(½) = 2 -
6 

:rr, r = 4cos (2:rr) = 4(1) = 4 

7:rr -
6 5:rr -4 4:rr -3 3:rr -2 5:rr -3 7:rr -4 11:rr 

-
6 2:rr 

r = 4cos(2 - 7;) = 4(½) = 2 
r = 4cos ( 2 · 5:) = 4(0) = 0 
r = 4cos (2 · 4:) = 4(-½) = -2 
r = 4cos ( 2 · 3;) = 4(- 1) = -4 
r = 4cos ( 2 · 5:) = 4(-½) = -2 
r = 4cos (2 · 7:) = 4(0) = 0 
r = 4cos ( 2 - 1 �"' ) = 4(½) = 2 
r = 4cos (4:rr) = 4(1) = 4 

Figure 24-10 The graph of the polar curve r = 4 cos 20 is described as a "rose. " 
The number of "petals" in a rose graph (in this curve there are 

four) varies based on the constants in the polar equation. 

24.20 Graph the polar curve : r =  4 sin 20. 
Use a table of values very similar to the table in Figure 24.19. All of the angles will remain the same, but rather than multiply 4 times the cosine of each angle to calculate the corresponding r, you will multiply 4 times its sine. The graph, illustrated in Figure 24-11 ,  is very similar to the graph of r =  4 cos 20 as well . 

Figure 24-11 The polar curve 4 = 4 sin 20 is equivalent to the graph 

of r = 4 cos 20 rotated � radians either clockwise or 

counterclockwise. 
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. 1 
24.2 1 Graph the polar curve : r = sm0 - -. 

2 

-2 

Use a table of values to plot the curve, as illustrated in Figure 24-12 . 

2 

-1 

Figure 24-12 

2 

0 r = sin0 - .!_ 

:n: 
6 

2 
;,r; 1 1 1 r = sin- - - = - - - = 0  
6 2 2 2 

� r = sin 2;,r; _ _! = ✓3 - l  = 0.4 3 3 2 2 3:n: r = sin 3;,r; _ _! =  ../2 - l = 0.2 4 4 2 2 5:n: 
6 

5:n: 1 1 1 
r = sin - - - = - - - = 0  6 2 2 2 

0 r = sin0 - !_ 2 
:n: 7:n: 7:n: I 1 1 r = sin- - - = -- - - = - 1 6 6 2 2 2 
4:n: 
3 

. 4:n: 1 -✓3 - 1 r = s1n - - - = -- :=::: - l.4 3 2 2 

5:n: r = sin 5;,r; _ _! =  -✓3 - l = -1.4 3 3 2 2 7:n: r = sin 7;,r; _ _! =  -../2 - l = -l .2 4 4 2 2 1 1:n: 
6 

1 1:n: 1 1 1 
r = sin- - - = -- - - = - 1 6 2 2 2 

Polar curves are classified according to their shapes. The curve 
1 r = sin 0 - - is a limar;on. 
2 

24.22 Write the polar equation r =  3 cos 0, from Problem 24.18, in parametric form. 

According to Problem 24.12 , individual polar coordinates can be converted to 
rectangular coordinates using the formulas x = r cos 0 and y = r sin 0. To construct 
parametric equations that correspond to the polar curve, substitute r =  3 cos 0 into 
both equations. 

x = r cos 0 

x = (3 cos 0) cos 0 

x = 3 cos2 0 

y = r sin0 

y = (3 cos 0) sin 0 
y = 3 cos 0 sin 0 

1 
24.23 Write the polar equation r = sin 0 - -, from Problem 21 .21 ,  in parametric form. 2 

Substitute the polar equation for r in the parametric equations x = r cos 0 and 
y = r sin 0. 

x = r cos 0 

x = ( sin 0 - t) cos 0 1 
x = cos 0 sin 0 - - cos 0 

2 

y = r sin0 

y = (sin 0 - t) sin 0 1 
y = sin2 0 - - sin 0 

2 

Rec+-0\�B L\IO\v
Bv-0\ph hO\�S.Pov-lA-\0\F io�s .Ao �o+- O\P ply +-o polO\v- e9L\O\f-io�s. fovexO\IA-\ple, +-he Bv-0\ph o.P v = si� 0 + I is 
�of- +-he Bv-0\ph o.P 

v = si� 0 IA-\oVe.A 
L\p o�e L\�i+-. 
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Applications of Parametric and Polar Differentiation 

-r eC1.cll\ Cl. \.\ew �OB sotMe ol� �i.P.Pev-e\.\ti.C1.ti.o\.\ tv-ic\:.s 

24.24 Given a curve defined by the parametric equations x = J( t) and y = g( t) , determine dy and d
2y , the first and second derivatives. 

dx dx2 

24.25 

Apply the derivative formula for parametrically-defined curves. 
dy dy / dt 
dx dx / dt 

= g' (t) 
J' (t) Note that the second derivative of a parametrically-defined curve is not simply the d . .  f

dy " h . .  h . f h d . · d
dx envatlve o 

dx 
wit respect to t-1t 1s t e quotient o t at envat1ve an 

dt 
. 

dy g' (t) Recall that - = -( ) dx J' t 

d 
(

dy ) 
dt dx 

dx 

dt 

d ( g' (t) ) 
dt f' (t) 

J' (t) 

t + l Given the curve defined by the parametric equations x = -- and y = t - t2 

dy 2 (from Problem 24.3 ) ,  calculate -. 
dx 

Differentiate each of the parametric equations with respect to the parameter t. 
1 

X = -(t + l) 
2 

y = t - t2 

dy = l - 2t 
dt 

dx l 
dt 2 According to Problem 24.24, the derivative of the curve is equal to the quotient of 

dy/ dt and dx/ dt. 

dy 
dx 

= 

dy / dt 
dx / dt 
l - 2t 1 / 2  

= 2(1 - 2t) 
= 2 - 4t 
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24.26 Verify the solution to Problem 24.25 using the rectangular form of the parametric curve and its derivative. 
Problem 24.25 states that dy = 2 - 4t. Rewrite the derivative in terms of x by 

dx 
t + l  solving the parametric equation x = -- for t. 2 

Substitute t into dy = 2 - 4t. 
dx 

t + l  
x = --

2x = t + l  
t = 2x - l  

dy = 2 - 4(2x - 1) 
dx dy = 2 - 8x + 4  
dx dy = -8x + 6  
dx According to Problem 24.4, the curve defined by the parametric equations 

x = t ; I and y = t - f has rectangular form y = -4x2 + 6x - 2. Differentiate with respect to x. dy - = -8x + 6  
dx The derivatives are equal, verifying the parametric derivative calculated in Problem 24.25. 

Note: Problems 24.27-24.29 refer to the curve de.fined by the parametric equations x = e' and 
y = cos 3t. 

24.27 Calculate the slope of the curve when t = 2. 
Differentiate the parametric equations with respect to t: dy = - 3 sin 3t ; apply the parametric derivative formula. 
dt 

dy Evaluate - when t = 2. 
dx 

dy dy / dt - 3 sin 3t 
dx 

= = ---
dx / dt e' 

- 3 sin (3 · 2) 3 sin6 
e2 

dx , - = e and 
dt 

N<MMe>1Jly, 
yo!A'J.. sf-op 

l-\ev- e  "'-\\J.. l e""ve 
i--l-\e l'"'-v-"'-1Mehi c 

J..ev-tV"'-Five l\\ i--ev-lMS 
o.P +-. -rl-\e v- es+-j1Asi-
sl-\o ws i--l-\""i-- i--l-\e 
J..ev-tVC\i--tves ""v-e 
eqlA"'-l, wl-\ ei--l-\ ev- yolA 
J..t.P.Pev-e\\H"'-+-e l\\ 

f'C\YC\1Mef-v-lC OY 
v-ed-"'-\\�lAl"'-v

.Pov-lM. 
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Note: Problems 24.27-24.29 refer to the curve defined by the parametric equations x = e' and 
y = cos 3t. 

24.28 Write the equation of the tangent line to the curve when t = 2 .  

Substitute t = 2 into the parametric equations to determine the point of tangency. 

x = e' = e2 y = cos 3t = cos 6 

When t = 2 ,  the point of tangency on the curve is ( e2 , cos 6) . According to Problem 

24.27, the slope of the tangent line at that point is -
3 si� 6 . Apply the point-slope 

e 
formula to generate the equation of the tangent line. 

y - Yi  = m (x - x1 ) 

3 sin 6
( 2 ) J - COS 6 = - -------;;:- X - e 

y - cos 6 = - (
3 s

;� 6
) x +  3 sin 6 

(
3 sin 6

) y = - -
e
-2 - x + 3 sin 6 + cos 6 

Note: Problems 24.27-24.29 refer to the curve defined by the parametric equations x = e' and 
y = cos 3t. 

24.29 Determine the second derivative of the curve. 

Apply the second derivative formula from Problem 24.24, substituting the values 
dy dx of - and - from Problem 24.27. dx dt 

d ( dy )  
d2y dt dx 
dx2 = ---

dx / dt 

e' 

= 
_!_ .  �

(
- 3 sin 3t

) 
e' dt e' 

= 
_!_

[
e' (-9cos (3t) ) - (- 3 sin (3t) ) (  e' )

] 
e' ( e' )

2 

= 
_!_

[
3e' (- 3 cos (3t) + sin (3t) )

] e' e' · e' 
3 (sin (3t) - 3 cos (3t)) 

e2' 
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Note: Problems 24.30-24.32 refer to the curve defined by the parametric equations x = 6 cos 0 
and y = 2 sin 0. 

24.30  Find dy , the derivative of the curve, in terms of t. 
dx 

Apply the parametric derivative formula. 
dy = dy I d0 = 2 cos 0 = _ _!_ cot 0 
dx dx I d0 - 6 sin0 3 

Note: Problems 24.30-24.32 refer to the curve defined by the parametric equations x = 6 cos 0 
and y = 2 sin 0. 

24.3 1 Rewrite the parametrically-defined curve in rectangular form and differentiate with respect to x in order to verify the derivative in Problem 24.30. 
Solve each parametric equation for the trigonometric function within. x = 6 cos 0 

X - = cos 0 
6 Square both sides of each equation. x2 - = cos2 0 36 

y = 2 sin0 1. = sin0 2 
2 L = sin2 0 4 Substitute into a Pythagorean trigonometric identity. cos2 0 + sin2 0 = I x2 y2 - + - = l  36 4 Now that the equation of the ellipse is in rectangular form, differentiate with respect to x. __!_ (2x) + _!_ (2y ) (  dy

) = 0 36 4 dx 

H:� ) = - 1� 
ix

= - 1� (;) 
dy X 

dx 9y Write the derivative in terms of 0, recalling that x = 6 cos 0 and y = 2 sin 0. 

dy = _ 6 cos 0 = - 6 cos 0 = _ _!_ cot 0 
dx 9 (2 sin0) 1 8 sin 0 3 

-rl-\e .Pov1M1Ale,,.s t\\ Pvo°blelM 2.4.2.4 l-\e,,.ve t-'s i.\\ t-l-\e1M, °blAt- yolA cc,.\\ cl-\e,,.\\8e t- t-o wl-\e,,.t-evev pe,,.ve,,.1Met-ev i.s lASe� °by t-l-\e pvo"blelM, li.ke e. 

'fol,\ l,,"'ve t-o lASe i.1Mpli.ci.t�i..P.Peve\\t-i.Olt-i.o\\. fov IMOve l,,elp, look "lr Pvo"ble1M I '5-i.t- !,,"ls "' Vevy Si1Mil0lv eqlA"lt-iO\\ Cl\\� �eviVOlt-iVe. 
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Note: Problems 24.30-24.32 refer to the curve de.fined by the parametric equations x = 6 oos 0 
and y = 2 sin 0. 

24.32 Find 
d2

;, the second derivative of the curve, in terms of 0. 
dx 

dy dx 
Substitute the values of - and -

0 
from Problem 24.30 into the parametric 

dx d 
second derivative formula. 

1 2 d 
(

dy
) d0 dx 

_<l,___ (_ ! cot 0) 
d0 3 - csc 0 l 3 = - - csc3 0 

dx / d0 - 6 sin 0 - 6 sin 0 1 8  

Note: Problems 24.33-24.34 refer to the polar equation r = 2 sin 0. 

24.33  Differentiate the polar equation. 

Express the polar equation parametrically and differentiate the parametric 
equations with respect to 0. 

x = rcos 0 y = r sin 0 
x = (2 sin0) cos 0 
x = 2 sin 0 cos 0 

y = (2 sin0) sin 0 

y = 2 sin2 0 

Apply the parametric derivative formula. Note that 
dy 

requires the chain rule 
dx d0 

and 
d0 

requires the product rule. 

4 sin 0 · cos 0 dy dy / d0 
dx dx / d0 2 [ sin0 (- sin0) + cos 0 ( cos 0)] 

2 sin 0 cos 0 
cos2 0 - sin2 0 

Replace the expressions using double angle trigonometric identities .  

sin20 
0 = -- = tan 2 

cos 20 

Note: Problems 24.33-24.34 refer to the polar equation r = 2 sin 0. 

24.34 Find the second derivative of the polar equation. 

Substitute 
dy 

and 
dy 

from Problem 24.33 into the parametric second derivative 
formula. dx d0 

d 
(

dy
) d0 dx 

dx / d0 

d 
d0 (tan20) 

cos 20 
2 sec2 20 

2 3 20 = sec 
cos 20 



Chapter Twenty-Four - Parametric and Polar Equations 

24.35  Identify the equation of the tangent line to the polar curve r= sin 0 - cos 20 at 
3.n 

0 = 4 and write the equation in rectangular form. 

Express the polar equation parametrically. 

x = r cos 0 y = r sin0 
= (sin0 - cos 20) cos 0 
= cos 0 sin0 - cos 0 cos 20 

= (sin0 - cos20) sin0 
= sin2 e - cos 20 . sine 

Determine the rectangular coordinates of the point of tangency by substituting 
3.n . h . . 0 = - into t e parametnc equations. 
4 

3.n . 3.n 3.n 3.n 
x = cos - sin- - cos - cos -

4 4 4 2 

= (-�)(�) - (-�)(o) 
1 
2 

( . 3.n
)

2 3.n . 3.n 
y = sm4 - cos2 sm4 

= 
( �r -(o) ( �) 
1 
2 

The point of tangency, shared by the tangent line and the polar curve, is (- { , {) . 

Differentiate the parametric equations with respect to 0, using the product and 

chain rules. 

dx = [ cos 0 (cos 0) + sin0 (- sin0)] - [cos 0 (- 2 sin20) + (cos 20) (- sin0)] 
d0 

= cos2 0 - sin2 0 + 2 cos 0 sin20 + cos 20 sin0 
= cos 20 + 2 cos 0 sin20 + cos 20 sin0 

dy = 2 sin0 cos 0 - [ cos 20 cos 0 + sin 0 (-2 sin20)] 
d0 

= 2 sin 0 cos 0 - cos 0 cos 20 + 2 sin0 sin20 

Apply the parametric derivative formula. 

dy dy / d0 2 sin 0 cos 0 - cos 0 cos 20 + 2 sin0 sin 20 = = 
dx dx I d0 cos 20 + 2 cos 0 sin 20 + cos 20 sin 0 

3.n 
Evaluate the derivative at 0 = 4 . 

2 ( ✓
2

1 2) (-✓
2

1 2) - (-✓
2

1 2) (0) + 2 ( ✓
2 

/ 2) (- 1) 

o + 2 (-✓
2

1 2) (- 1) + (o) (  ✓
2

1 2) 

- 1 - ✓
2 

✓
2 

✓
2

+ 2  
2 

,l-"l""t
""' e"'-\\s t-l-\e 

n\\ e  wi.ll CO\\rO\l\\ 
'J<'s "'-\\ .A y's, \\o t- v's 
O\\\ .A e' s. 

A .Aol.\ble 
0\\\ 8le hi 8 i.Ae\\ t-i t-y 
+-ell s yol.\ t-\.\oit-
cos 2 0 - Si\\ 2 0 = 
cos 20. 
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+-he civcles ovevlO\p). 

Apply the point-slope formula to write the equation of the tangent line, with ( 1 1 ) ✓2 + 2  (x" y, )  = -2 ,2 and m = --2-. 
y - Y1 = m (x - .xi ) y - ½ = - ✓22+ 2 (x - (- ½)) 
y - _!. = - ✓2 + 2 (x + .!.) 2 2 2 

Applications of Parametric and Polar I ntegration 

t--\01.ybe sa1Me i\\teBv"'ls 1MiBl--\t "'lsa i\\tevest tl--\e \\ew tAaB 

24.36 Calculate the length of the curve defined by the parametric equations x = In t 1 and y = t2 between t = I and t = 3. Use a graphing calculator to evaluate the definite integral and report the result accurate to three decimal places. 
If a curve is defined by the parametric equations x = f( t) and y = g( t) , the length of the curve between x = a and x = b is equal to f b 

(
dx

)
2 + ( dy

)
2 
dt. Differentiate the a dt dt parametric equations with respect to t. 

dx d I - = - (In t) = dt dt t Substitute the derivatives into the parametric arc length formula. 
( )2 ( )2 ( )2 ( )2 R ff b dx dy 3 1 2 3 1 4 3 t + 4  I - + - dt = f - + - - dt = f - + - dt = f - dt a dt dt 1 t t3 1 t2 t6 1 t6 

Use a graphing calculator to determine that J13 ✓t4 

t
� 4 

dt ::::: 1 .470. 
24.37 Prove that the circumference of a circle with radius r is equal to 2nr by calculating the arc length of a parametrically defined curve. 

According to Problem 24.8,  the parametric curve defined by x = r cos 0 and 
y = r sin 0 is a circle centered at the origin with radius r (for 0-values between 0 and 2n) . Differentiate the parametric equations. 

dx . 0 - = -r s1n d0 dy = r cos 0 d0 
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Apply the parametric arc length formula from Problem 24.36. 

Jab (
dx

)
2 ( dy )

2 
f2" / 2 2 

dO 
+ 

dO 
dt = J O 

-v (-r sin 0) + (r cos 0) d0 

= f02
" .Jr2 sin2 0 + r2 cos2 0 d0 

= f02
" -Jr2 (sin2 0 + cos2 0) d0 

According to a Pythagorean trigonometric identity, sin2 0 + cos2 0 = I .  

f2" 
� 

f2" 
1
2" = J o 

-v r2 (l) d0 = rJ 0 
d0 = r (0) 0 = r (2.n - 0) = 2.nr 

24.38  Construct a definite integral representing the circumference of an ellipse with 
major axis length 2a and minor axis length 2b. 

The orientation of the ellipse (i.e. , whether its major axis is horizontal or vertical) 
is irrelevant, as is the center of the ellipse. Assume the ellipse is centered at the 
origin and has a horizontal major axis. According to Problem 24.7, the ellipse 
is defined by the parametric equations x = a cos 0 and y = b sin 0 for O :5 0 :5 2.n. 
Differentiate the parametric equations. 

dx . 0 - = -a s1n 
d0 

Apply the parametric arc length formula. 

dy 
- = b cos 0 
d0 

I: ( ��r + ( :� r d0= fo

2
" ✓(-a sin 0)2 + (b cos 0)2 d0 

= f 02" .J a2 sin2 0 + b2 cos2 0 d0 

24.39 According to Problem 24.18,  the graph of the polar equation r =  3 cos 0 is a 

circle centered at (% ,o) with radius �, which has area 
9
:. Verify the area of the 

circle by calculating the area bounded by the polar curve between 0 = 0 and 

0 = .n. 

The area bounded by a polar curve is equal to _!_ f b r2d0. Note that a and b are the 
2 a 

bounding values of 0 stated by the problem: a = 0 and b = .n. 

_!_ r r2d0 = _!_ f" (3 cos 0)2 d0 
2 a 2 0 

= � f" cos2 0 d0 
2 0 

B"'se� 
O\\ +-he �oviML\1"' 
A ==- '?rv2 

�VOIM 

8eoiMehy. 

Pol.,,.v eql.\O\+-iO\\S 
O\ve wvi+-f--e\\ 1'v =" so 

pll.\8 wh.,,.+-evev v eql.\.,,.Js 
i\\+-o +-he i\\+-e8v"'-\\� v2

• 
Do\\1+- �ov8e+- +-he ½. i\\ 
�vo"'+- o� +-he �e-fi\\i+-e 
i\\+-e8v"'-I. 
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1 + cos 20 Apply the power-reducing formula cos2 0 = ----2 = �  f" (l + cos 20) d0 4 J o  
= ¾( 0 + i sin20 )[ 9.n = 

24.40 Calculate the area bounded by one petal of the rose curve r =  sin 30. 
Each petal of the rose curve begins and ends at the origin, so set r = 0 and solve for 0 to determine the 0-values that bound the petals. sin 30 = 0 30 = 0, .n, 2.n, 3.n, · · · 

.n 2.n 0 = O - - .n · · ·  ' 3 '  3 ' ' Figure 24-13 illustrates the region of the polar graph bounded by 0 = 0 and 
.n 0 = -, one petal of the graph. 3 

1 .  

-1.0 1.0 

Figure 24-13 The congruent petals of the rose curve r = sin 30 occur on the 

0-intervals [ O, � l [ � , 2;] , and [ 
2; , .n J 

Apply the polar area formula. 
l fb l J"/3 - r2d0 = - sin2 30 d0 
2 a 2 0 
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. . f J l - cos (2 · 30) Accordmg to a power-reducmg formula, sin2 30 d0 = 2 d0. 

= _! J";3 1 - cos 60 d0 
2 ° 2 1 J"/3 = - (l - cos 60) d0 
4 0 1 ( 1 )l"13 = 4 0 - 6 sin60 0 = ¼ ( � - ¼ sin 2n) 

= ¼(�) n 12 
24 .4 1  Calculate the area of the shaded region in Figure 24-14 bounded by the polar curve r = l - 2 sin 0 and the axes of the Cartesian plane. 

-2 

1 

2 

-2 

Figure 24-14 A portion of' the region bounded by the polar curve r = 1 - 2 sin 0. 

The polar graph in Figure 24-14 is generated by plotting 0-values on the interval [O,2n] ; calculate the values of 0 in that interval at which the polar curve intersects the origin (i.e., where r =  0 ) .  l - 2sin 0 = O 2 sin 0 = 1 . 1 s1n 0  = -
0 = !!.. 5n 6 ' 6 Consider Figure 24-15, which illustrates different regions of the graph and the angles, 0, that bound those regions. According to the diagram, the shaded region 

Replot ce e 
i\\ H'\e \\OvlA-\otl powev
ve�l.\ci\\ 8 .Povl,\,\l.\lot 
wi t-!,, "30. 
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J 4 si\\2.C1 J.0 

==- 4 J I - c;s 2.
0 J.0 

==- 2. J ( \ - cos 2.0) J.0 

::::- 2.0 - Si\\ 2.0 

in Figure 24-14 is equal to the area on the 0-interval [ 
3
; , 2n] minus the area on 

[n 5n] the 0-interval 2 , 6 . 

0 = 0  to 0 = 1C_ 

6 

0 = :n: to 0 = 3:n; 
2 

0 = .!!_ to 0 = S:n: 
2 6 

0 = 3:n; to 0 = 2:n: 
2 

Figure 24-15 Regfons bounded by r = 1 - 2 sin 0 and varying 0-values on the interval [0,2n). 
I f 2n 2 I f 5rr/6 2 - (l - 2 sin 0) d0 - - (l - 2 sin0) d0 
2 3,r/2 2 ,r/2 

= }[J3:1
/1 - 4 sin 0 + 4 sin2 0) d0 - J:;:6 (l - 4 sin0 + 4 sin2 0) d0] 

Apply a power-reducing formula to determine the antiderivative of 4 sin2 0. 
I [( . 

)l
2" 

( 
. 

) l
5rr/6

] = 2 0 + 4 cos 0 + 20 - sm20 3"12 - 0 + 4cos 0 + 20 - sm20 "12 

1 [( . 
)l

2" 
( 

. 
) l

5rr/6
] = 2 30 + 4 cos 0 - sm20 3"12 - 30 + 4cos 0 - sm 20 "12 

- ½[(6" + 4 - o) - (9; + o - o) - [(5; - 41 + �) - ( 3; + o - o)]] 

= _!_ [
3n 

+ 4 - n +  
3✓

3 ] 
2 2 2 

= 
_!_

(
�

+ 
8 + 3✓

3 ) 2 2 2 

n + 8 + 3✓
3 

= -----
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DI FFERENTIAL EQUATIONS 

• 1 .  +- co\\+'°'-'-\\ °" �ev-iv°"+-ive cq lAO\\--lO\\S t"V\O\ 

Whl. le the study of differential equations is sufficiently complex that i� requirdes . . , k · t · s both appropriate an £ ed attention in a mathemat1e1an s coursewor , I I 
. . 

ocus 1 . d them once the concepts of differentiation and mtegrat1on usefu to mtro uce - · 1 f s 1 d This book limits its discussion to ordinary d1fferent1a eq�a ion �;�,::::07: p�esente:�n d:t����::,t�;�'.�::n�e�;�hd;�:;:;!:i��) �f ;;;:�:: ::o;;:s:�:���:�:�e visualization and solution approximation techniques for inseparable differential equations . 
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Separation of Variables 
'Sepowoi.te tl-\e y's oi.\\.:A .:Ay's .Pvc1M tl-\e ,e's oi.\\.:A .:A,c's 

Note: Problems 25.1-25.2 refer to the differential equation dy = 4x. 
dx 25. 1 Find the general solution of the differential equation. 

Multiply both sides of the equation by dx in order to separate the variables. 
dy = 4x dx Integrate both sides of the equation. 

f dy = 4f x dx 

x2 

y = 4 • - + C  
2 

y = 2x2 + c  The family of curves represented by the equation y = 2x2 + C are solutions to the differential equation dy = 4x. 
dx 

Note: Problems 25.1-25.2 refer to the differential equation 
dy 

= 4x. 
dx 25.2 Find the specific solution of the differential equation that contains the point 

(-3,7) . 

According to Problem 25.1 ,  the general solution is y = 2x2 + C. Substitute the given 
x- and y-coordinates into the solution and solve for C. 

y = 2x2 + c  
7 = 2 (-3)2 + c  
7 = 18 + C  

- l l = C The specific solution of the differential equation is y = 2x2 - I 1 .  

25.3  Describe the difference between a general solution of a differential equation (such as Problem 25.1)  and a specific solution (such as Problem 25.2) .  
The general solution of a differential equation is an infinitely large collection of curves that are identical apart from the constant term in each function. Graphically, the solutions to differential equations are equivalent, except for their vertical positions in the coordinate plane. The specific solution of a differential equation is the unique member of the family of solutions that passes through a point identified by the problem, called the initial value. 
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. . . dy Jx - 1  
Note: Problems 25.4-25.5 refer to the differential equation - = --. 

dx y 
25.4 Find the general solution of the differential equation. 

Cross multiply the proportion to separate the variables .  
y dy = (3x - l) dx Integrate both sides of the equation. y2 3x2 

- = - - x + C  2 2 Multiply the equation by 2 in order to eliminate the fractions. Note that the product of 2 and an arbitrary constant is another arbitrary constant. y2 = 3x2 - 2x +  C Solve for y. 
y = ±-J3x2 - 2x + C 

dy Jx - 1  
Note: Problems 25.4-25.5 refer to the differential equation - = --. 

dx y 
25.5  Find the specific solution of the differential equation that has x-intercept (-1 ,0) . 

According to Problem 25.4, the general solution of the differential equation is y = ±✓3x2 
- 2x + C. Substitute x = -1 and y = 0 into that equation and solve for C. 0 = ±✓3(- 1)2 - 2 (- l) + C  0 = ±.J5 + C  0 = 5 + C  - 5 = C  

\\.0 veO\SO\\ +-o wvi+-e 2.C, 'oec01.L\Se yoL\ l,,..,.,ve 
\\O i.Ae"" wl--."'-+- C is. l+woL\\.A 'oe weiv.A +-o S"'-Y ''2, f--ilMeS \"'-v8ev f--l-\0!.\\ "" \\L\IM'oev we'\\ \\evev \:.\\ow:' 

IMOlt"lClOl\\S OI.\\.A e\\8i\\eevs wl--.o .Aeotl wiH'\ .Ai.P.Peve\\Hotl eqL\ot+-io\\S .Pov ct livi\\8 1Mi8!,,.+cvi\\8e ct+- +-!,,.is solL\+-io\\, 'oeCOI.L\Se i+- l,,.ots Cl ± l\\ i+-0\\\..A +-1,,.e 8votpl,,. l,,.ots +-wo 'ovot\\cl,,.es. 1-\owevev, +-!,,.is is�+- ct .Ai-P.Peve\\Hotl eqL\ot+-iO\\S COL\YSe, so .Ao�+- sweet+- i+-. 
Substitute C into the general solution of get the specific solution y = ±✓3x2 

- 2x - 5 . Note that this solution may differ slightly from the solution reported in a differential equations course, in which the answers are typically restricted to single, continuous intervals, but it will suffice for the scope of this course. 
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Note: Problems 25.6-25.8 refer to the differential equation 
dy = �
dx y 

25.6 Describe the family of solutions of the differential equation. 

Cross multiply to separate the variables and antidifferentiate both sides of the 
resulting equation. 

y dy = x dx 
f ydy = f x dx  

y2 x2 
- = - + C 
2 2 

Multiply the equation by 2 to eliminate fractions. 

y2 = x2 
+ c  

This solution represents a family of hyperbolas centered at the origin with 
transverse and conjugate axes of equal length. To verify this, isolate the constant 
and divide each term by C-the result is a hyperbola in standard form. 
---------::--:-----. __ ___-?7 � y2 _ x2 C 

C C C 
y2 x2 
- - - = 1 
C C 

Note: Problems 25.6-25.8 refer to the differential equation 
dy = �
dx y 

25.7 Graph the specific solution of the differential equation that passes through the 
point (-1 ,2) .  

Substitute x = -l and y = 2 into the general solution identified by Problem 25.6.  

y2 x2 
- - - = 1  
C C 

22 (- 1) 2 - - -- = 1 
C C 4 - 1 - = 1 

C 
C = 3 

Substitute C = 3 into the general solution of determine the specific solution 
(illustrated in Figure 25-1 ) that contains the point (-1 ,2) .  

y2 x2 
- - - = 1  
C C 
y2 x2 

- - - = 1 
3 3 
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-6 -5 --4 -3 -2 -

Figure 25-1 
2 2 The hyperbola L _ � = 1 is centered at (0,0), has a vertical 3 3 transverse axis of length 2✓3 , has a horizontal conjugate axis of length 2✓3 , and passes through the point (-1,2). 

Note: Problems 25.6-25.8 refer to the differential equation 
dy 

= �
dx y y2 x2 

25.8 Verify that - - - = 1 is a solution of the differential equation by demon-3 3 strating that the derivative of the solution is the differential equation. 
Differentiate implicitly. �---------------------2y . dy _ 2x = O 3 dx 3 2y dy 2x - · - = -3 dx 3 

(� )(1 -Z ) - �(:y ) dy = 6x dx 6y dy X = dx y 

Nee.::A l,,,elp? 
\.ook ott- Pvoble1M 
I " ."1. 

47 1 



Chapter Twenty- Five - Differential Equations 

l)vop t-he 

otbsoh.-.t-e voth.-.e s-e 

I.P C i s ct\\ 
l.\\\k\\OIN\\ \\l,\IA-\oev I +-he\\ ec is ot\\of-hev 

l.\\\k\\OIN\\ \\l,\IA-\oev. Yol,\ 
""'iBht- otS wel l  keep 
wvif-i\\ 8 +-he l.\\\ho w\\ 
Votll.\e otS C. 

I "' 
:::::- - C\Yct-ot\\ - + C Cl Ol 

472 

wi+-h L\ :::::- e' ot\\.A 
Cl :::::- 'V'f". 

25.9 

-

Find the general solution of the differential equation: dy = xy (x + 3). 
dx 

Divide both sides of the equation by y and multiply both sides by dx. 

dy = x (x +  3) dx 
y 
dy = (x2 + 3x) dx 
y Integrate both sides of the equation. 

Solve the equation for y by exponentiating both sides of the equation. etnlyl = e(x' ;3)+(3x' 12)+c 

y = e(x' /3)+(3x' 12)+c 

Apply the exponential property that states x' + 
b = x'x'. Rather than writing each term in the exponential sum separately with base e, transform only the last exponential term, C, into its own factor. Y = e(x3 /3)+(3�c 

Y = Ce(x' /3)+(3x' 12) 

25. 1 0  Find the general solution of the differential equation: dy = ----;!--. 
L dx e x + 5  

Divide both sides of the equation by y and multiply both sides by dx to separate the variables. 
dy ex 
- = -- dx 
y e2x + 5 Integrate both sides of the equation and isolate In IY I - Use an inverse trigonometric integration formu a and variable substitution to antidifferentiate the right side of the equation. 

I dy f ex 
- - -- dx 
y 

- e2x + 5 

1 ( ex 
) In lyl = Js arctan Js + C 
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Exponentiate both sides of the equation to solve for y. 

etulyl = e(11,is)arc1au(,· 1,is)+c 
IY I = e(11 ,!s)arctan(,• I ,is) • ec 
Y = Ce(!/ ,!s)arctan(,' / ,is) 

R . 1 . h (,15 / 5)arctan(,• ,/5 / 5) at10na 1ze t e exponent: y = Ce 

:re 
25. 1 1 Identify J(x) , given f" (x) = 2x - cos x, J' (:rc) = 0, and f (O) = -. 

2 

Integrate f" (x) with respect to x to get f ' (x). 

J' (x) = f (2x - cos x) dx = x2 - sinx + C  

Substitute x = :re into f ' (x) and recall that f ' (:re) = 0 to determine the value of C. 

f' (:re) = :rc2 - sin :rc + C 
O = :rc2 - o + c 

-:rc2 = C 

Therefore, f ' (x) = x2 
- sin x - :rc2 • Integrate f ' (x) to find J(x). 

3 

J (x) = f (x2 - sin x - :rc2 ) dx = 
x
3 

+ cos x - :rc2x + C 

:re 
Recall that J(O) = -. 

2 
f ( 0) = ( O )3 

+ cos O - :rc2 ( 0) + C 3 
:re 
- = l + C  
2 

:re 
- - l = C  
2 

x3 :re 
Therefore, f (x) = - + cos x - :rc2x + - - 1. 

3 2 

Exponential G rowth and Decay 

Wl-\e\\ "' pcpl.\loi.tic\\'s cl-\oi.\\8e is pvcpcvtic\\oi.1 ta its siz.e 

25. 1 2  Assume y is proportional to its rate of change 
dy

: 
dy 

= k · y (where k is a nonzero 
dt dt 

real number) . Find the general solution of the differential equation. 

Divide both sides of the equation by y and multiply both sides by dt to separate the 
variables. 

A"'-Y 

C0"1.St'0\"1.t' \;:, 

\.\oi.s "'-"'- t"1.f-e8voi.l 

o.P \;:,,c. Becoi.1Ase 
- 11"2 lS oi. C0"1.St'0\"1.t', 

t+-s t"1.f-e8voi.l ts 

-1!" )C. 

The Vo\Yi-
0\bles O\ve y 0\"1..A 
+- (O\ccov.Ai"1.8 +-o 
+-he .AevivO\+-iVe 
.Ay/.A+;'), eve"1. +-hol.\8 h +-heve's "1.o +- i"1. +-he 
e91..\"lf-io"1.. keep k 
0"1. +-he +- si.Ae 0.p 
+-he e91..\0\f-io"1., be
CO\l.\Se yol.\11 eve"1.f-l.\
O\lly solve .Pov y 0\"1..A 
�ol.\l.A h"lve +-o 1,-\\CJVe 
t+- 0\"1.Yw"ly. 
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dy = k dt 
y 

f
dy = kf dt 
y 

ln ly l = kt + C  

Exponentiate both sides of the equation. 

Apply an exponential property, as explained by Problem 25.9 :  e"+ c = e"ff. 

elnlyl = e"t ec 

y = Ce"' 

Note: Problems 25.13-25.15 refer to a scientific experiment, at the start of which a scientist 
observes 125 bacterial colonies growing in the agar of a Petri dish. Exactly six hours later, the 
number of colonies has grown to 190. 

25. 1 3  Construct a mathematical model that describes the number of bacterial colonies 
present t hours after the start of the experiment, assuming exponential growth. 

A population y experiences exponential growth if and only if y is proportional to 

:. According to Problem 25 .12 , populations experiencing exponential growth are 

modeled by the equation y = Cek', where C is the original population, t is elapsed 

time, and y is the population after time t has elapsed. Determine the value of k 

based upon the given information. 

The original bacterial population is C = 125 ; and after t = 6 hours , the population 
has grown to y = 190. Substitute these values into the exponential growth 
equation. 

y = Cek' 

190 = 125e"(G) 

Isolate e6k on one side of the equation. 
190 Gk - = e 
125 
38 6k - = e 
25 

Take the natural logarithm of both sides of the equation and solve for k. 

38 6k In - = In e 
25 
38 

ln - = 6k 
25 

ln (38 / 25) = k 
6 
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It is often useful to express k as a decimal : k "" 0 .06978505581 . Therefore, t hours f h · b · h - l 125 0 06978505581(1) b . l a ter t e expenment egms, t ere are approximate y y = e · actena colonies in the Petri dish. 
Note: Problems 25.13-25.15 refer to a scientific experiment, at the start of which a scientist 
observes 125 bacterial colonies growing in the agar of a Petri dish. Exactly six hours later, the 
number of colonies has grown to 190. 25. 1 4  Approximately how many bacterial colonies will be present exactly one day after the experiment begins? Round the answer to the nearest integer. 

According to Problem 25.13, there are approximately y = 125e0·06978505581(,) colonies 
t hours after the experiment begins. Substitute t = 24 into the equation to determine how many colonies are present after 24 hours (i.e. , one day) .  y = 125eo.o6978505581(24) = 125e1.67484133943 "" 667_244 There are approximately 667 bacterial colonies exactly 24 hours after the experiment begins. 

l.P yol.\'ve 
80i\\8 i--o wvii--e 

k ots ct �eci1Motl 
Do11j'--r Rol.lND 
IT-l.\se ots  IMot\\y 
�eci1Motls ots yol.\v 
Cotlcl.\loti--ov Cot\\ 8ive 
}'Ol.\. OH\evwise, 
}'Ol.\Y O\\\Swevs 
1Mi8hi-- be 
i\\otCCl.\YO\f--e. 

Note: Problems 25.13-25.15 refer to a scientific experiment, at the start of which a scientist 
observes 125 bacterial colonies growing in the agar of a Petri dish. Exactly six hours later, the is "'-\\ ilM-

number of colonies has grown to 190. 
..--------...._ 

plicii-- C\SSl.\lMf'-

V � i--io\\ i\\ e,,.l\ e><-25. 1 5  Assuming that resources are not a limiting issue to growth, how many hours will it take the total bacteria population to reach 20,000? Round the answer to the nearest integer. 
Apply the exponential growth model from Problem 25.13. Set y = 20,000 and isolate the natural exponential expression. 20, 000 = 125e0.0697850558l(t) 20, 000 0.06978505581(1) --- = e 125 160 = eo.06978505581(,) Take the natural logarithm of both sides of the equation and solve for t. lnl6O = lneo.06978505581(1) ln16O = O.O69785O5581 (t) lnl6O ------ = t 0 .06978505581 72.726 ""  t The number of bacteria colonies will reach 20,000 approximately 73 hours after the experiment begins. 

po\\e\\i--ie,,.\ ;;1vowH'\ 
pvoblelMS. 1-P i--he 

\;,e,,.ci--evie,,. eve\\i--l.\e,,.\\y 

vi.\\\ ol.\i-- o.P .Pao� "'-\\� 
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is\\'i-- C\CCl.\-
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Note: Problems 25.16-25.18 refer to the radioactive isotope Carbon-14, which has a half-life of 
5, 730 years. 25. 1 6  Given an initial mass M of Carbon-I 4, construct a function that models the remaining mass of the isotope after t years have elapsed. 

If an isotope has a half-life of h years, then every h years its mass is halved as its isotopes gradually decay into stable "daughter" material. In this example, the initial mass M of C-14 will decay to a mass of M after 5,730 years . Apply the 
2 exponential decay formula and determine the value of k. 

y = Ci' 
M = Mek(5,73o) 2 (�) � = (� ) Mek(5,73o) 
.!. = e5,730k 2 
I In- = 5, 73Ok 2 ln (l / 2) = k 5, 730 Use a calculator to estimate k: k ;:::;  -0.000120968094. Substitute this value and C = M into the exponential decay formula. y = Me -o.000120968094(1) 

Note: Problems 25.16-25.18 refer to the radioactive isotope Carbon-14, which has a half-life of 
5, 730 years. 25. 1 7  Given 300 grams of C-14, what is the remaining mass of the isotope after 250 years have elapsed? Report an answer accurate to three decimal places .  

Substitute M = 300 and t = 250 into the function constructed in Problem 25.16 and calculate y. y = 3OOe -o.000120968094(250) y = 3OOe -0.030242023585 
y ;:::; 291 .063 grams 
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Note: Problems 25.16-25.18 refer to the radioactive isotope Carbon-14, which has a half-life of 
5, 730 years. 25. 1 8  Given N grams of C-14, in approximately how many years will the mass decay to one third its original measure? Round the answer to the nearest integer. 

25. 1 9  

Apply the exponential decay model from Problem 25.16, such that M = N and 
N y = 3. Solve for t. 

N 
= Ne -o.00012095so94(,) 3 

){ = e -o.000120968094(,) 
3){ ln .!_ = - 0.000120968094 (t) 3 ln (l / 3) t = --------0.000120968094 t :::::  9, 081 .835 ::::: 9, 028 years 

According to Newton's law of cooling, the rate at which an object cools is proportional to the difference between its temperature T and the temperature of the ambient environment T,. Write a differential equation that expresses this relationship. 
The rate of change of the object's temperature is :: , and the difference between its temperature and the ambient temperature is T - T,. Two values are proportional if they are equal when one is multiplied by a constant of proportionality k. 

dT - =k(T- T )  
dt A 

25.20 Solve the differential equation in Problem 25.19 to generate a model for the temperature of the object after time t has elapsed. Let T0 be the temperature of the object when t = 0. 
The variables in this equation are Tand t; T, is constant. Separate them by multiplying both sides of the equation by dt and dividing both sides by T - T,. 

dT 
-- = k dt T - TA 

'oi.e\\t- e\\vi.vo\\-
1Me\\t-" i.s t-l,..e s1Av

v o1A\\�i.\\� t-e1Mr ev01.
t-1Ave. fov e>'"'-""'r' e, W 

I • • l Ll,._e O\IM-
yOL\ ve l\\SlD'e, r 

\.,i. e\\1"' \--elM('evO\t"'L\Ve lS 

vOOIM \--elM('evO\t"'L\Ve. 

Tl,,,e object l,,,ots +-o cool .:Aow\\ .Pov t-1,,,is .Pov1ML\lot t-o wovk (it- is Newt-o\\'s lotw o.P COOLI NG, ot-Pt-ev otl l) so I l,,,ots +-o be Bveott-ev t-1,,,0l\\ TA . 
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Integrate both sides of the equation and solve for T. 

f _!!I__ = k f dt T - TA In lT - TA l = kt + C etnlT-TAI = ekt+C 
------------➔ T - TA = ek' ec T = TA + Ce"' Recall that T = T0 when t = 0. Substitute these values into the equation and solve for C. T = T  + ce1<<0) 0 A T0 = TA + Ce0 T0 = TA + C · l T0 - TA = C  Substitute C into the solution of the differential equation to generate the formula for Newton's law of cooling: T = TA + (T0 - TA )ek'. 

25.2 1 An uninsulated cup of coffee cools from 185°F to 15O°F exactly four minutes after it is served. Assuming the coffee shop maintains a constant room temperature of 75°F, how much additional time will it take for the coffee to cool to 95°F? Report an answer accurate to three decimal places .  
Apply Newton's law of cooling, substituting T0 = 185, TA = 75, t = 4, and T = 150 into the formula from Problem 25.20. Solve for k. T = TA + (T0 - TJ e"' 150 = 75 + (185 - 75) e"(4) 150 - 75 = (1 1O) e4k 75 - = e4k 1 10 15  ln - = 4k 22 ln(l5 /22) = k  4 -0.095748063064 >== k Substitute k, T,,, and T0 into the formula for Newton's law of cooling to complete the model describing the temperature T of the coffee t minutes after it is served. T = 75 + (l85 _ 75) e-o.095748063064(,) T = 75 + l lOe-o.09574so63o64(,J 
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Substitute T= 95 into the model and solve for t to determine when the coffee's temperature will cool to 95°. 95 = 75 + l l Oe -o.095748063064(,J 20 = e -o.095748063064(,) 1 10 ln � = -O.O95748O63O64 (t) 1 1  ln (2 /1 1) t = --------O.O95748O63O64 t :::::  17.805 Approximately 17.805 minutes after the coffee is served, its temperature is 95°F, so the solution is 17.805 - 4 = 13.805 minutes. 
25.22 The housekeeping staff in a hotel discovers a corpse, the apparent victim of a fatal overnight heart attack, and alerts the police. Investigators arrive at 11 a.m. and note that the body's temperature is 81 °F; by 12 :30 p.m., the temperature has dropped to 77°F. Noting that the thermostat in the room is set to maintain a constant temperature of 67°F, and assuming that the victim's temperature was 98.6°F when he died, at what time (to the nearest minute) did the fatal heart attack occur? Apply Newton's law of cooling, such that T0 = 81, T,, = 67, T =  77, and t = 1 .5  hours . T = TA + ( T0 - TA ) ekt 77 = 67 + ( 81 - 67) el .S(k) 10 = 14el .5(k) 

5 ln7 = l .5k ln (5 /7) = k  1 .5 - 0.224314824414 ::::: k Substitute k into the original formula to construct a function that models the temperature T of the corpse exactly t hours after 1 1  a.m. T = 67 + ( 81 _ 67) e -o.224314824414(1) = 67 + 14e -o.224314824414(1) To determine the time of death, substitute T =  98.6 into the mathematical model and solve for t. 98_6 = 67 + 14e-o.2243I4824414(,) 31 .6 = 14e -o.224314824414(1) 31 .6 = e-o.224314824414(,) 14 In 31 .5 = -O.224314824414 (t) 14 ln (31 .6 /14) t = --------O.224314824414 t :::::  -3.62927324622 
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Therefore, the time of  death was approximately 3.62927324622 hours before 1 1  a.m. Multiply the decimal portion of the number by 60  to convert to minutes. 60 (0.62927324622) "" 37.756 minutes The victim died roughly 3 hours and 38 minutes before investigators arrived, at approximately 7:22 a.m. 
Linear Approximations 

A Bv""pl-\ "'-\.\� its t"'-\.\Be\.\t li\.\e loo� ""li�e \.\eC\v tl-\e t"'-\.\Be\.\t poi\.\t 

25.23 Explain what is meant by "local linearity." 
A curve and its tangent line have very similar values near the point of tangency. In fact, if a small enough x-interval is chosen around a point of tangency, .f(x) resembles a straight line over that interval, as illustrated in Figure 25-2. The practical application of local linearity is the approximation of function values near a point of tangency using the equation of the tangent line rather than the function itself. 

- - -- - ----

J(x) - - -- - --- - - - - -Figure 25-2 In the regfon immediately surrounding a point of tangency on J(x) (indicated by the magnifying glass in the illustration), the tangent line and the graph off ( x) look remarkably similar. The higher you increase the magnification ( and thus the smaller the interval around the point of tangency), the more closelyf(x) will resemble the tangent line. 
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25.24 Estimate ✓16. 1 using a linear approximation. 
According to Problem 25.23, the graph of J (x) = ✓x and its tangent line have very similar values near a point of tangency. Therefore, f(x) and the tangent line to f(x) 1 1 at x = 16  will have similar values at x = 16.1 .  Because f' ( x) = - x - 112 = c ,  the 1 1 2 2-vx slope of the tangent line to f(x) at x = 16 is 2✓16 = 8" The point of tangency is (x, J(x) )  = (16, ✓16) = (16,4) . Plug those values into point-slope form to generate the equation of the tangent line. 1 y - 4 = 8 (x - 16) Substitute x = 16.1 into the equation of the tangent line to estimate ✓16. 1 .  1 y - 4 = 8 (16.1 - 16) 1 y - 4 = 8 (0.l) 

y - 4 = ¼ (1� ) 1 y = 4 + -80 
Therefore, ✓16. 1 ""  321 "" 4.0125. Note that the actual value of ✓16. 1 is 80 4.01248053 ... , so the approximation is quite accurate. 

25.25 Estimate In 1 .05 using a linear approximation. 
Use the equation of the tangent line to J(x) = In x at x = 1 to approximate In 1 .05. Note that f '  (x) = .!, so the slope of the tangent line is l; the point of tangency is (1, In 1)  = (1 ,0 ) .  Apply the point-slope formula. y - 0 = l (x - 1) 

y = x - 1  Substitute x = 1 .05 into the equation of the tangent line to approximate In 1 .05. 
y = 1 .05 - 1  = 0.05 Therefore, In 1 .05 "" 0.05. 

7°1\e otd-L\otl 
VotlL\e o.P I\\ I . OS" is 
0.0487"10 I �42 .... 
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This L\81y .Pvotd·io\\ eql.\otls 
0.7 \ 0'3'18' ... ot\\J.. t-1,-,e O\Crl.\otl Votl L\e o.P otvct-ot\\ 0.8'5" is 0.7044'14. Not- 0\ 'ootJ.. est-i1Mott-e, eve\\ t-1,-,ol.\81,-, it-'s \\otpvet-t-y. 

25.26 Estimate arctan 0.85 using a linear approximation. 
Because differentiable functions exhibit local linearity near a point of tangency, .f(x) = arctan x and the tangent line to .f(x) at x = l should have similar values. Differentiate .f(x) and evaluate f' (l ) . 

f' (x) =
l :x2 

' ( ) 1 1 
f l = l + I2 = 2 The point of tangency is (1 ,  arctan 1) = ( l, �) and the slope of the tangent line is f' (1 )  = ½· Apply the point-slope formula to write the equation of the tangent line. :n l 
y - - = - (x - 1) 4 2 Substitute x = 0.85 into the equation to approximate arctan 0.85. :n l y - 4 = 2 (0.85 - 1) :n l y = 4 + 2 (- 0. 15) 

y = 
� 

+ .!(-__!i_) 4 2 100 50:n - 15 
y = 200 

Slope Fields 

Motke itbi8 e\\.01.\81,-, t-o see bl.\t- SIMotll e\\Ol,\81,-, SO t-1,-,ott- itJ..oes\\'t- i\\t-evsectot\\y o.P t-1,-,e o+-1,-,ev se81Me\\t-s i\\ t-1,-,e slope ..fielJ... 
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-rl-\ey loo\:. li\:.e wi\\ol.. pC\.H-ev\\S O\\ C\. weC\.+-li\ev """C\.P 

25.27 Explain how to create a slope field. 
Select a coordinate (a,b) on the coordinate plane. Substitute x = a and y = b into the differential equation to find the slope of the tangent line to the solution curve that passes through (a,b) and draw a small line segment centered at (a, b) with that slope. Continue this process at other points on the coordinate plane until you can visualize the family of solution curves to the differential equation. 
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Note: Problems 25.28-25.29 refer to the differential equation dy = 2x. 
dx 

25.28 Draw a slope field at the coordinates indicated in Figure 25-3. 
• 

• 

• 

-3 
• 

• 

• 

• • 3 • • • 

• • 2 • • • 

• • 1 • • • Figure 25-3 -2 -1 1 When constructing the slope field for -1 dy = 2x, include segments passing through • • • • • dx each of these points. 
• • -2 • • • 

• • -3 • • • 

All points on the y-axis will have horizontal segments associated with them-if dy x = 0, then dx = 2 ( 0) = 0, regardless of the y-value at each coordinate. In fact, every segment in this slope field has a slope equal to twice the x-value of the coordinate at which it is centered. 
\ \ \ I I I 
\ \ \ I I I 
\ \ \ 1 I I I 

1 2 3 

\ \ \ I I I 
\ \ \ I I I 
\ \ \ I I I 

Figure 25-4 The slope field for the differential equation dy = 2x. dx 

"11\o,.t-'s 
e;,<o,.ct-\y wl-\o,.t

t-L\e  �t.P.Pev e� t-to,.\ 
eqv.o,.Hc, � t s  so,.yt � 8: 

''J..yM><'' (t-L\ e s\cp e c.P 
\• ) \\ II t-L\e t-o,.� 8 e�t- l �e  ==-

(ls) "2><'' (t-wc rllMeS 
t-L\e ><-vo,.\ v.e). 
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-rl,-,is is i--1,-,e Sotl,\\e 
"'-i-P.Peve'ii--iotl eql.\oti--io'i 
-Pvol,\\ Pvo\,lel,\\S 25.7 ot'i"'-
25.8'. 
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Note: Problems 25.28-25.29 refer to the differential equation dy = 2x. 
dx 25.29 Determine the specific solution of the differential equation that passes through (1 , 1 )  and graph it on the same coordinate axes as the slope field. 

Separate the variables and integrate both sides of the equation. 
(Z )4 = (2x) dx 

Solve for Cwhen x = l and y = l .  

dy = 2x dx 

f dy = 2f x dx  

x2 

y = 2 · - + C  
2 

y = x2 + c  

1 = 12 + c  
C = O  The specific solution is y = x2 , illustrated in Figure 25-5. 

\ 

\ 

\ 

\ 

\ 

\ 

\ -1 

\ 

\ 

I 
I 
I 

I I 

I I 

I I 

2 

I 

I 

I 

I 

I 

I 

Figure 25-5 The graph ofy = x2 is the specific solution of the differential 
dy 

equation - = 2x that passes through the point (-1, 1). 
dx 

Note: Problems 25.30-25.31 refer to the differential equation dy = �. 
dx y 25.30 Draw the slope field for the differential equation. 

The solution in Figure 25-6 is generated by a computer; hand-drawn slope fields typically contain fewer segments at more predictable coordinates. While your slope field need not mirror the number of segments in Figure 25-6 or their 
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exact locations, it should contain a sufficient number of segments to accurately visualize the solution. 
' " " " " ' ' ..._  _ _  
' " " " ' ' ' -....  ..... _5 
' ' " " ' " ' -.... -.... 
, \ \ \ " '- '- '  ..... _ 
, \ \ \ " " '- '- '- 
, \ \ \ \ \ " '- ' 
\ \ \ \ \ \ \ " , ..... 2 

' I \ \ \ \ \ \ " -.... 
I I I I I I I \ \ " 

' I 
I I I 
I I I I I I I / / ----
1 / / / / / / / / -

' / I l l / / / __.,. 
I / / / / / / / --- 
/ I / / / / / /  ___ _  _ 
/ / / / / / / _..,.... - -_ 
/ / / / / ✓ ✓ - - -

_____  ,,, ,,, ,,, ,,, / / ,  
- --- --- --- ✓ / / / / ,  
- --- / / ,/ / / / 1 1  
- --- / / / / l / / 1  
___ ___  ,,, ,, / I I I I I 

_ ,,, ,, / I  I I I I I 

--- / / / / / ! ! / ,  
/ / I I I I I I I I 
/ I I I I I I I I 1 

" \ \ I I I I I 
-.... " \ \ \ \ \ \ I ' 
..... , , , \ \ \ \ \ '  
- , , " \ \ \ \ \ '  
_ ____  , , , , \ \ \ '  
- ----- ----- '- " " \ \ \ '  - ----- ----- ---- , , " " \ _ _ ........._ ........_ , ......._ , , , ,  ____  ........_ , , , , , ,  - - - ' ' ' ' ' ' ' Figure 25-6 The slope field for the differential equation dy = 3:_ dx y 

Note: Problems 25.30-25.31 refer to the differential equation dy = =. dx y 

25.3 1 Graph the specific solution Y2 
-

x2 = 1 of the differential equation dy = = on the 
3 3 dx y same coordinate plane as the slope field generated by Problem 25 .30. 

2 2 The graph of !._ - 3:_ = 1, illustrated in Figure 25-7, is a hyperbola with transverse 
3 3 and conjugate axes that are the same length: 2✓3 . 

-6 -5 
I I I 
I I I 
' I J l l / l / /4.,,.._ 
1 / / / / I /  

- - -- / ✓ / / / 

- - - ✓ / / /  / / 

/ I ,  

" \  \ 
2 

I � I 
4
1 i

5 
I ? 

' " \ \ \ \ \ \ I ' 
- � " \ \ \ \ \ \ \ 

" \ \ \ \ \ '  

Figure 25-7 The slope field for the differential equation dy = = and 
dx y the specific solution that passes through the point (-1, 2): y2 x2 

- - - = 1. 
3 3 

keer J..voi.wt�8 se81Me�+-s (l� oi.\\ .PcLw q1Aoi.J..voi.�i--s) IA�-i--ll yclA CO\� rveJ..ki-wl-\oi.i-- i--l-\e �e;,<:i-- se8-1Me�+- wnl be wtH'\c1Ai--oi.d1Aoi.lly rl1A88l�8 t� i--l-\e �1A1Mbevs. o�ce 
\\I\ \" yclA Be+- i--l-\oi.i-- "t"ee .Pcv i--l-\e 8voi.rl-\, ycv!.ve rvcboi.bly J..voi.w� e�<'IA8l-\ se81Me�i--s. 

1-f! }'CL\ .:Ai,:,{ Pvcble1M 2S-.7, }'<'L\ oi.\veO\.:A y 8v0lphe.:A ½-his hypev\:,c,IO\, 't>L\i-- ii--'s \NC,vf-h 8VO\phi\\8 O\BO\l\\ i--c see hew ii--'s shOlpe.::A by +-he slcpe -fiel.::A c.P .::Ay )C 
- -::- -. .::A,c y 
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Yov. Cot\\'f

-ti\\.A +-he sol v.+-io\\ o.P +-his .Ai.P.Peve\\f-iotl eciv.otf-io\\ eotsily, becotv.se yov. Cot\\'fsepotvotf-e +-he v . \...I OlYIOli:, es A+- leots+- +-he slope -fiel.A
. 

Cot\\ Bive yov. S01Me 
Se\\se o.P whet+- +-he .Pot1Mily o.P solv.+-io\\s looks like. 
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25 .32  Draw the slope field for the differential equation: dy = y - x. 
dx Notice that dy = 0 for all points on the line y = x; the slope field is illustrated in 

dx Figure 25-8. 
I 

I I 
I I 
I I 
I I 
I I 
I I 
I I I I 
I I 

I I I 6 
I I I 5 I I I I I I 4 I I I I I I 3 I I I 

2 I I I I I I I 1 I I I / 
-6 -4 -3 - -I 1 I I I I I I / ,,, _ 
1 I I I I I / ,,- - ....._-1 I I I I / ,,,,- - '-- \_2 ' ! ! / / / - , '-.. \  I I I / / - ....._ '-.. \ \I / / / - , '-,. \ \ \ I / / - ---- '-,. \ \ \ \  I / - , '-,. \ \ \ \ \_5 
✓ - ---- '-.. \ \ \ \ \ \  
- ...... '\ \ \ \ \ \ \ \ 

/ J I i i / i / ✓ -/ / / / / / / / - 'I l l / I / ,,,- - --... , / / / / / / - ---- '-.. ' / ! / / / - ---- '-.. \ ' / / / / - '-- '-.. \ \ I / / / - '-- '-.. \ \ \ 1  / / - , '-,. \ \ \ \ \  / - '-.. '-.. \ \ \ \ \ \  - '-- '-.. \ \ \ \ \ \ 1 1 2 '-.. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ I 
\ \ \ I 
\ I \ I I 

\ \ t \ ? 
\ \ \ \ I 

\ \ \ \ I 
\ I \ \ I \ I \ I I \ I I I I \ I I I I \ I I I I I I I I I 
I I I I I 

Figure 25-8 The segments in the slope field.for the differential equation ix = y - x get steeper as the distance away from the line y = x gets larger. 
25.33  Draw the slope field for the differential equation dy = x + y . 

dx x 

The slope field is illustrated in Figure 25-9. Notice that dy is undefined along 
dx the y-axis (because x = 0 for all such points) and ! = 0 ( resulting in horizontal slopes) for all points on the line y = -x. 
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- - - -.... , , \ \ \ \ 6 I 
- - - -- , , '\ \ \ I 5 I 
- - - - -- , '- \ \ \  I 
_ _ _ _ _  , ....._  \ \ I 4 I 
- --- - - - - , , \ \ I 
✓ ---- --- - - - -- '-- \ \ 3 I 
,- ,,,- ,,,- ..- ..- - - -- , \ I 
-- ,,,- ,,,- ,,,- ..- ..- ..- - ,  \ 2 I 
-' / / ,,,- ,,,- ,,,- ,,,- -- - '\ 1 I 
" / / / / / / / / - I 

I I I I I I I I I 

/ ! l / l l l 1  
l ! ! ! l l l 1  
l / l l l l l 1  

I I I I I I I I 1 
I I I I I I I I I 

I I I I I I I I I 

I I I I I I I I I 

I I I I I / / / ,, 
/ / / / / / / / 1 

2 3 5 6 -6 - - -3 - -1 
1 

/ / / / / / I I I - / ,/ / / / / / / ,,  
1 / / / / I  I I I ;-l 
1 I I / I I I I I I -2 
1 I I I I I I I I I 
1 I I / / / I / / / -3 
1 / / / / I / J / I 
1 / / I I / / J / I  
1 I I I / / / / / / -5 
1 l l l ! J J I I I  
I I I I I I I I I I 

'\ - -- / ,/ / / / / 1  
\ ----- - -- --- / ,/ / / ,-
\ '\ -- - - -- ---- ---- ✓ ✓ 

\ \ -....... -- - - -- --- ---- ✓ 

\ \ " ,  _ _ _ _ ___  _ 
I \ \ ....._ ,  _ _ _ _  _ 
I \ \ " ......._  __ _ _ _  _ 
I \ \ '\ '- , -- - - -
1 \ , , , ,  ....... _ _  _ 

Figure 25-9 The slope_fieldfor the differential equation d
dy = x + Y _  

X X 

25.34 Draw the slope field for the differential equation dy = x2y2. dx 

The slope field illustrated in Figure 25-10 contains horizontal segments along the 
x- and y-axes. 

I I I I I I I ,, / I I I I I I I I I 
I I I I I I I I ,,,- ,,,- I I I I I I I I I 
I I I I I I I 1 ---- ---- 1  I I I I I I I I 
I I I I I I I I ..- ..- I I I I I I I I I 
I I I I I I I / -- -- / I I I I I I I I 
I I I I I I I / - - / I I I I I I I I 
I I I I I I I / / - _ ,,,, I I I I I I I I 
I I I I I I / / -- _ l  - -- ,,,- / I I I I I I 
I I I / / / / -- - - - - -- / / / / I I I 

/ / / ...- --- - - - - - - - - - - --- ...- / / /  

-3 -2 -1 1 2 3 
/ / ✓ --- --- - - - - - - - - - - --- ...- / / /  
I I I / / / / ..- -

-
- - -- / / / / I I I 

I I I I I I / / -- -_ - -- / / / I I I I I 

I I I I I I I / / - - ---- 1 1  I I I I I I 
I I I I I I I / / - - / I I I I I I I I 
I I I I I I I I / --- --- 1  I I I I I I I I 
I I I I I I I I I ..-- ..- I I I I I I I I I 
I I I I I I I I / / ---- 1  I I I I I I I I 
I I I I I I I I I ,,,- ,,,- I I I I I I I I I 
I I I I I I I I ,, I I I I I I I I 

Figure 25-10 The slope field for the differential equation :� = Jfj. 
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Euler's Method 
-r"'-\:.e t>"'-t>Y steps ta ..fi\\.:A tl-\e .:Ai.P.Peve\\ti"'-1 eql-\01.tia\\'s sallAtiC\\ 

1:J..elt-o{1 oi\\J.. 1Meoi\\S 
1'c!,,oi\\8e i\\:1 This is oi .Pov1Mv.loi .Pvo1M woiy 'ooick i\\ 'oe8i\\\\i\\8 oi18e'ovoi: t-1,,,e slope o.P oi li\\e is J..e..fi\\eJ.. ois t-1,,,e cl,,,oi\\8e i\\ y J..iviJ..eJ.. 'oy t-1,,e cl,,,oi\\8e 

Heve's whoit- oill t-his l,\\eoi\\s. To hoivel .Pvol,\\ +-he poi\\+- (- 1 ,'3) t-o +-he poi\\t- {-.J-. J..) 2 '  ' yov. hoive t-o 80 IJ.x = J_ 2 o.P 0\ L\\\it- vi8 ht- O\\\J.. IJ. _ 27 Y - g v.\\1f-s v.p. 
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25 . 35  Given a line with slope ¾ that contains points (-1 ,3)  and (-t , d), find d. 
The slope of a line is defined as the quotient of its vertical and horizontal change : 
m = t+..y = Y2 - Yi . Calculate f...x. 

!+..x x2 - x1 

Substitute f...x = _!_ and m = � (the slope of the line containing the points) into the 
2 4 slope formula. t+..y m = -

!+..x 3 t+..y 4 1 Multiply both sides by - to solve for !+..y. 2 
1 / 2 

t · ¾ = 1(�) 
3 - = t+..y 8 Note that !+..y = y2 - Yi ; substitute !+..y = �, Yi = 3, and y2 = d into the equation and solve for d. 8 

1 

t+..y = Y2 - Yi 3 - = d - 3  8 27 = d 8 
25 .36 Given a line with slope -5 that contains points (2,-9) and (l ,p) , find p. 

1 Note that !+..x = x, - x, = 1 - 2 = -1 . Use that value and the slope m = - - to determine t+..y. 5 

t+..y m = -
!+..x 

l t+..y - - = -
5 - 1 1 - = t+..y 5 
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Calculate p. 
1'!.y = Y2 - yl 1 - = p - (-9) 5 1 - - 9 = p 5 

25.37 Describe the role of Euler's method in the investigation of elementary differential equations. 
Euler's method is used to approximate y-values on the graphs of specific solutions of differential equations, particularly when those specific solutions cannot be determined easily. The technique is based upon the principle of local linearity, and uses the equations of tangent lines near points of tangency ( calculated at fixed values of l'!.x) to approximate the values of the function to which the lines are tangent. 

25.38 Use Euler's method with two steps of width l'!.x = .!. to approximate y (4) if 2 : = x : y and the point (3,0) belongs to the graph of the specific solution of the differential equation. 
Apply Euler's method twice because the problem calls for two steps of width 1 
l'!.x = -. In order to reach x = 4 from x = 3 ( the x-value of the known pomt on the 2 4 - 3  1 solution graph) in two steps, those steps must have width l'!.x = -- = -. 2 2 Step one: From point (3, 0) to point (3 + l'!.x, 0 + l'!.y). Calculate dy at the point (3,0) by substituting x = 3 and y = 0 into the differential . dx equation. 

dy x +  y = 
dx x 
dy = 3 + 0  
dx 3 
dy = l  
dx Therefore, the slope m of the tangent line to the solution graph is 1 when x = 3, Use the method described in Problem 25.35 to determine l'!.y. 

1'!.y m = -
1'!.x 
1'!.y 1 = -

1 / 2 1 - = i'!.y 2 

1'fa,.le✓1 vl,,ylMeS wit-!,, 
1'boi\ev;' \\Or 

1'-PL\el-ev :1 

I� yol.\ CO\\\r <:>\Crl.\<:>\lly sep<:>\YO\t-e V<:>\Yt<:>\\;:,les t-o solve "' &li��eve\\t-i.,,_\ eql.\<:>\t-lO\\ \;:,L\r \:.\\O\N t,t,,.,,_t, t-1,,e sol I.\ Ho\\ CO\\r<:>\l\\S, let-'s S"'-Y, t-1,,e poi\\t- ('3,4), t-1,,e\\ yol.\ CO\\\ t,.,,_\:.e "' -1,,ce&l \\L\IM't>ev o� 1'\;:,.,,.'t>y st-eps" L\Sl\\8 &ly/&l,c t-o 81.\ess wl,,.,,_t, ot-1,,,ev \\e<:>\v't>y pot\\rS 
o\\ t-1,,e soll.\t-io\\ 
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pci�i-- c.P si--ep c,�e is f-c, -fi8l.\ve Cl.\i-- wl,,,eve ycl.\'11 e�� l.\p i.P ycl.\ 8" t,,:,c l.\�ii--s vi8l,,,i-- oi�� by l.\�if-S l.\p C,Y �C,\,v� .PYC,IM i--1,,,e pci�i-- 0,0) i--l,,,oii-ycl.\ weve Bive�. Tl.\v�s cl.\½- ycl.\'11 e�� 
l.\p O\r ( � I � ) • 

1 Substitute Ax = Ay = - into the destination point (3 + Ax, 0 + Ay) .  
2 (3 + _!_ 0 + .!.) = (2. .!.) 

2 '  2 2 ' 2  1 Begin at this point instead of (3,0) for the second and final step of width Ax = 2. Step two: From point (% ,  ¾) to (% + Ax, ¾ + Ay )-
dy x + y 7 1 Evaluate - = -- when x = - and y = -. dx x 2 2 

dy (7 / 2) + (1 / 2) dx 7 / 2 
dy 8 / 2  dx 7 / 2 
dy = � dx 7 Calculate the corresponding value of �Y- Ay m = -Ax 8 Ay = 

7 1 / 2 8 - = Ay 14  4 - = Ay 7 Substitute Ax and Ay into the coordinate (i + Ax, t + Ay) to determine y (4) . 

15 Therefore, y (4) ""' 14. 
1 25.39 Use Euler's method with three steps of width Ax = - to approximate y (l )  if \___ d 3 � _2 = xy and the y-intercept of the solution of the differential equation is ( 0,-2) .  dx 

Step one: From point (0,-2) to (i ,-2 + Ay). 

490 



Chapter Twenty-Five - Differential Equations 

dy Calculate - when x = 0 and y = -2 . dx 
dy - = xy = (0)(-2) = 0  dx 1 Determine the value of L1y when L1x = 3 and m = 0. L1y m = -L1x 0 = L1y 1 / 3 0 = L1y Therefore, step one ends at the point ( -� , -2 )Step two: From point (1 ,- 2) to (1 , -2 + L1y )-

dy l Calculate - when x = - and y = -2 . dx 3 dy = xy = (.!.) (- 2) = -� dx 3 3 Determine the value of L1y when L1x = _!. and m = - �-3 3 L1y m = -L1x 2 L1y 3 1 / 3 2 -9 = L1y 
Therefore, step two ends at the point ( ¾ , -2 - �) = ( ¾ , - � )-
Step three: From point (1 ,- 2: ) to (i, - 2: + L1y)-

dy 2 20 Calculate - when x = - and y = - -. dx 3 9 
ix = xy = (¾) (- �) = - :� 1 40 Determine the value of L1y when L1x = - and m = - -. 3 27 L1y m = -L1x 40 L1y 27 1 / 3 40 - 81 = L1y . ( 20 40 ) ( 220 ) Therefore, step three ends at the pomt 1, - - - - = 1, - - and 220 9 81 81 y ( l )  ,::; - -81 . 

Pll.\8 !>. Y -:- 0 i�t-o t-�e poi�t- { � , - 2 +- A y) .Pvo1M t-�e beBi��i�B o.P st-ep o�e. 
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25.40 Use Euler's method with three steps of width l-,.x = _ _! to approximate y (-2) 3 if dy = _!_ - y and the point (-1 ,4) belongs to the graph of the solution of the dx x differential equation. 
Step one: From point (-1,4) to (-� , 4 + l-,.y). 
When x =  -I and y = 4, dy = -5 , so L1y = -5 (11x) = -s(-.!) = �- Therefore, step one 

� 3 3 . ( 4 5 ) ( 4 17 ) ends at the pmnt -- 4 + - = -- - . 3 ' 3 3 ' 3 
. ( 4 1 7 ) ( 5 1 7  ) Step two: From point -3 ,3 to -3 , 3 + t-,.y . 

When x = _± and y = 1 7  dy = - 77 so t-,.y = - 77 (-.!) = 77 . Therefore step two 3 3 ' dx 12 ' 12 3 36 ' ends at the point (- � 17  + 77 ) = (- � 281 ). 3 ' 3 36 3 ' 36 
( 5 281) ( 281 ) Step three: From point - 3 , 36 to - 2, 36 + t-,.y . 

_ - � . _ 281 dy _ _ 1, 5 1 3  t-,. _ _ 1, 513 (- .!) _ l, 5 1 3  When x - 3 and y - 36 , dx - 180 , so y - 180 3 - 540 . Therefore, . ( 281 1, 5 1 3 ) ( 1, 432 ) 1, 432 step three ends at the pomt - 2, - + -- = - 2, -- and y (-2) = -1 5 . 36 540 1 35 3 
25.4 1 �se Euler's method with three steps of width L1x = ¾ to approximate y (�) if 

d: = xY and the point (1 ,0) belongs to the graph of the solution of the differential equation. 
Step one: From point (1, 0) to ( % , 0 + t-,.y). 
When x = I and y = 0, dy = I0 = 1, so t-,.y = dy (t-,.x) = 1 (.!) = .!. _ Therefore, step 

dx dx 4 4 
. ( 5  1 )  ( 5  1 )  one ends at the pomt 4 , o + 4 = 4 ,4 . 
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Step two: From point (� , ¾) to (1 , ¾ + lly). 
When x = � and y = .!, dy = (!?_)114 = V5 /4 so Ay = V5 /4 (_!_) = V5 ! 4 4 4 dx 4 ' 4 4 . Therefore, step two ends at the point (� ,_!_ + V5 I 4 ) = (� 1 + {/574 )· 2 4 4 2 ' 4 
, . (3 l + t/574 ) ( 7 l + t/574 ) Step three: From poznt 2 , 4 to 4 , 4 + Ay . 

- � _ 1 + {!5 / 4 dy ( 3 )(1+#574)!4 ( 3 )(1+Vs;4);4 ( 1 ) (3 / 2)(1+#574);4 When x - and y - -----'------ , - = - , so Ay = - - = -----2 4 dx 2 2 4 4 
( 7 ) I +  {/5 / 4 I +  {/5 / 4 + (3 ; 2)11+#574)14 and y - ,=::; -----'------ + lly = -�--.:........:_------'-------4 4 4 Appvo;,<ilA-\oi.f-ely 0.822'3 l48'S-... 
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Chapter 26 
BAS IC SEQUENCES AN D SER I ES 

1 .  L�°'-'-' o\\e .Pv°"c+-'io\\? l \\-fi\\i+-ely 1,\\0\\\'f • \,J�O\r'S lA[1 lev r 

Two-semester calculus courses typically conclude with th: investigati�� 7f . . . . h ecific focus on series that approximate nontnv1a 
�:��;:;::�:�;�in::�hc advent of powerful, portable calculation tcchno�ogy, the use of interpolation via printed tables of values has _waned. However, t e technological tools are not mere�y sto_rage vess�ls for �:�1::��:h�:�h;;�;��d implement infinite series approx1mat1on techmques s1 h . plied in Cha ter 28. However, before you can understand h�w s�c s:nes a_re ap , you m!t first understand the basic concepts surroundmg mfimte senes . 

A ''seql-\e\\ce'' is "'- list o.P \\l-\1,\,\bevs (L\Sl-\0\lly b01.se.:A O\\ so""'e .:Ae-.fi\\i\\B vl-\le} wl-\ile "'- ''sevies11 is "'- list o.P \\l-\1,\,\bevs O\.:A.:Ae.:A toBetl-\ev. Yol.\'11 spe\\.:A so""'e ti""'e witl-\ seql-\e\\ces O\\\.:A -h\\ite sevies, bl-\t l-\"'-1.PwO\y tl-\vol,\Bl-\ tl-\is cl-\01.ptev, yol.\'11 01.lve01..:Ay be .Pocl-\Si\\B pvil,\-\0\vily O\\ i\\-.fi\\ite sevies. Yol.\'11 -h\\.:A yol-\vsel.P O\\\Swevi\\B O\\e ql-\estio\\ ovev O\\\.:A ovev "'-B"'-i\\: ''Does tl-\e i\\-.fi\\ite sevies CO\\VevBe?'' I\\ otl-\ev wov.:As, i.P yol-\ weve to O\.:A.:A L\p "'-1 1 o.P tl-\e \\l-\1,\,\bevs i\\ tl-\e sevies (yol-\ l-\0\ve to spe"'-k l-\ypotl-\etic"'-l lyve""'e""'bev, tl-\eve's 0\\\ i\\-.fi\\ite \\l-\1,\,\bev o.P tl-\e""', so yol-\ wo\\'t 01.Ctl-\01.lly be 01.ble to COL\\\t tl-\e""' 0\11 by l-\0\\\.:A) wol-\1.:A yol-\ Bet 0\ ve"'-1 \\l-\1,\,\bev? It's weiv.:A to tl-\i\\k tl-\0\t yol-\ CO\\\ O\.:A.:A 0\\\ i\\-.fi\\ite list o.P \\l-\1,\,\bevs toBetl-\ev O\\\.:A Bet "'- tot"'-1 SL\""' o.P 2, bl-\t it's possible. 
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The exclot
lA-\otf-ic\\ pc,i\\f- i\\ 
heve is otcf-v.otl ly ot 
-Potcf-cviotl siB"'· The 
-Potcf-cviotl c,.P ot\\ i\\-
+-_eBev is +-he \\v.lA-\bev 
h""'es <'\\e less +-hot\\ +-he \\v.lA-\bev f-ilA-\es 
<'\\e less +-hot\\ +-h +-: 
otll +-he woty �cw: ' 
+-c I .  fov exotlA-\ple: 
41 = (4)(3)(2)(1) = 24 

18\\<'Ye 

t!,,e \\e8ott-ive 

si8\\S .Pcv ot secc\\&l.. 
Eotch +-eY\,"' is c\\e less 
t!,,ot\\ its \\-Votl v.e: ot1 = 
0, ot2 = I ,  e>1., = 2, etc. 
Botsicotl ly, ot., = "' - I . 
The\\ 1Mv.ltiply eotch 
tevlM by - I ' 'oe
CC\l.\Se tl-\ey've 

otl l  \\e8ott-ive. 
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Sequences and Convergence 
De lists a.P \\l.\lMbevs \c.\\aw wl-\eve tl-\ey've 8<'l\\8? 

26. 1 List the first five terms of the sequence {n2 + 1 ) .  

Substitute n = l into the expression to generate the first term of the sequence, 
n = 2 to generate the second term, and so forth, up to n = 5 to generate the fifth 
term. 

n 1 2 3 4 5 
n2 + 1 I2 + 1 = 2 22 + 1 = 5 32 + 1 = 10  42 + 1 = 17  52 + 1 = 26 

The first five terms of the sequence are : 2 , 5, 10, 17, and 26.  

26.2 List the first six terms of the sequence { 
( -;:n-I }· 

n 

Substitute the integers between (and including) n = l and n = 6 into the 
expression to generate the first six terms of the sequence. 

1 2 3 4 5 

c- 1r-1 (- 1)0 1 (- 1)1 1 (- 1)2 1 (- 1)3 1 (- 1)4 1 (- 1)5 

6 

1 
= - = - - = - = - - = - = - -

2n 2 (1) 2 2 (2) 4 2 (3) 6 2 (4) 8 2 (5) 10 

1 1 1 1 1 1 
The first six terms of the sequence are : - - - - - - - and - -. 

2 ' 4 ' 6 ' 8 ' 10 ' 12 

2 (6) 12 

---------� 
26.3 . 

{
(3n) !

} Identify a4 , the fourth term of the sequence { a" )  = 7 . 

Note that a1 is the fourth term in the sequence ; generate it by substituting n = 4 
into the expression. 

a = [
3 (4)] ! = 

12 1
= 7 484 400 4 43 64 ' ' 

26.4 Determine the general term of the sequence : 0, -1 , -2 , -3, -4, . . . . 

Each term in the sequence is the opposite of exactly one less than its correspond
ing n value : a,, = - (n - 1 ) . Therefore, the general term of the sequence is {l - n) . 
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26.5 Determine the general term of the sequence : {a } = 1, - , 1 ,  - , - , - , - · · { 5 1 1  7 1 7  } 

L n 4 16 16  64 
Some denominators in the sequence are explicit powers of 2 : 22 = 4, 24 = 16, and 26 = 64. In fact, all of the denominators are powers of 2 ; this is disguised by the fact that the terms ai , a3, and a,, have been reduced to lowest terms. Reinstate the original, unsimplified denominator of a, by multiplying its numerator and denominator by 2 :  lli = 1 (�) = �- Similarly, reinstate the original deno(;in) atirs of 
:3 :n� a(�)o ���� each denominator is a consecutive power of 2 : a3 = 1 23 = 8 and 

5 16  2 32 
The numerator of the nth term is exactly one less than three times n: 3 (1 )  - 1 = 2, 3 (2) - 1  = 5, 3 (3) - 1  = 8, etc. Therefore , the general term of the sequence is 
{3�� 1 }-

26.6 Does the sequence {:� } converge? 
A sequence {a, ) converges to the real number L if and only if lim an = L. Apply L'Hopital's rule to evaluate the limit. n➔OO 

1 . n2 1. 2n 1 . 2 1m - = 1m - = 1m -
n➔OO en n➔OO en n➔OO en According to Problem 10.28, the limit at infinity of a constant divided by an infinitely large value (e'' increases without bound as n approaches infinity) is 0 :  lim � = 0. Therefore , the sequence { n2

} converges to 0. 
n➔OO en en {_ 

26. 7 Does the sequence { ✓n } converge? In n 
The sequence { ✓n } converges if and only if lim ✓n exists . Apply L'Hopital's rule In n n➔00 In n to evaluate the indeterminate limit. 1 

• n1 1 2  
• 2n1;2 hm -- = hm -

n➔oo In n n➔oo 1 n 

I!.\  othev wov.:As, h,,.ke the lil,\\if; et.S l.\ et.ppvoet.ches i"t-fi"tity, o.P the seql.\el.\ce expvessiol.\. l.P °'- l il,\\it exis+-s, the seql.\el.\ce CO!.\Vev8es to thet.t lil,\\it. 

i"t.::Aetev1Mil.\0t.te tll.\ this cet.se 00/00 ), tet.ke the .::Aevivet.tive o.P the top et.l.\.::A \;:,otto1M o.P the .Pvet.ctiol.\ to Bet et. si1Mplev .Pvet.ctiol.\ witl-\ et.!.\ eql.\0t.l li1Mit Vet.11.\e. 
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Multiply the numerator and denominator by n to eliminate the complex fraction. 1 ( n ) 
n112 1 n l 1 

lim-2-- -- = lim -- = lim - n1-<112l = - lim✓n 
n➔00 � ( T) n➔oo 2n112 n➔oo 2 2 n➔oo 

1 
As n approaches infinity, ✓n increases without bound: - lim ✓n = oo. Therefore, the 

{✓n } 2 -
sequence -- is divergent. 

In n 

{
4n2 - 3n + 7

} 26.8 Determine the convergence of the sequence : 2 • -2 + n - 5n 

The sequence converges if and only if a limit exists as n approaches infinity. Com
pare the degrees of the numerator and denominator to evaluate the limit, as ex
plained in Problem 9.25. 

1. 
4n2 - 3n + 7 4 1m -----

n➔00 -2 + n - 5n2 5 
4 

The sequence converges to -5. 

Series and Basic Convergence Tests 

'5i.BtMC\ \.\OtC\ti.O\.\ C\\.\� tl,,.e \.\tl,,. +-ev\M �i.vevBe\.\ce +-es+-

26.9 
4 1 

Evaluate the finite series :  L - . 
n=l n 

4 1 {l } The series �
-;; 

is the sum of the first four terms of the sequence ;, . 

± .! = ! + .!. + .!. + .!. 
n=l n l 2 3 4 

12 6 4 3 
= - + - + - + -

12  12  12 12  
25 
12 
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7 

26. 1 0  Evaluate the finite series : I cos 
nn

_ 
n=O 2 

. � nn . . { 
nn

} The senes LJ cos - 1s the sum of the first eight terms of the sequence cos - . 
� 2 2 

� nn On In 2n 3n 4n 5n 6n 7n 
LJ � - = � - + � - + � - + � - + � - + � - + � - + � -
n=O 2 2 2 2 2 2 2 2 2 

= 1 + o + (- 1) + o + 1 + o + (- 1) +  o 

= O  

{-, (n - 1) !  
26. 1 1 Evaluate the finite series :  LJ 2 • 

n=l n 

{-, (n - 1) !  { (n - 1) '
} The series -=t. 

n2 is the sum of the first four terms of the sequence 
n2 • . 

1 2 6 
= l + - + - + -

4 9 16  
1 33 
72 

Note: Problems 26.12-26.14 refer to the arithmetic series 3 + 6 + 9 + 12 + 15 + . . .  + 267 + 270. 

26. 1 2  Express the series in sigma notation. 

Factor the common difference out of each term. 

3 (1 + 2 + 3 + 4 + 5 + . . .  + 89 + 90) 

The first term of the series is 3 (1 ) ,  the second term is 3 (2) ,  etc . ;  therefore, the nth 
term is 3n. There are 90 terms, so that is the upper bound for the summation: 
90 

I 3n. 
n=l 

Note: Problems 26.12-26.14 refer to the arithmetic series 3 + 6 + 9 + 12 + 15 + . . .  + 267 + 270. 

26. 1 3  Calculate the sum of the series. 

The sum of an arithmetic series consisting of n terms is equal to % ( <Li + an ), where 

a1 is the first term of the series and a,, is the last term. In this series of n = 90 terms, 

a1 = 3 and a,, = a90 = 270. 

n 90 
2 (<Li + an ) = 2 (3 + 270) = 45 (273) = 12, 285 

Tl--.e lcwev 
bcv.��"'-vy is 0, 

sc eve� +-l--.cv.8 l,,. +-l--.e v.ppev bcv.��"'-vy is 7 
+-l--.eve <:>\Ve g +-evlMS {� 
+-l--.e sevies: 
"'-o + "'-1 + "'-z + "'-, + 

.,,.., + OI.,- + .,,. + ' ""7· 

,� ""� 
<:>\vif-l--.1Me+-ic 

sevies, e<:>\cl,-, +-evl,\,\ 
is "'- -fixe� "'-IMCv.�t- � 
(c.,,.lle� t-1,-,e 1CC1M1Mc� 
�i.P.Peve�ce") J.,,_v8ev 
t-1,-,.,,_� +-1,-,e pvevicv.s 
+-ev1M. I� +-!,,is sevies, 
e.,,_ct,, +-ev1M is "3 IMcve 
t-1,-,.,,_� +-1,-,e +-ev1M 
be.Pcve it; sc 
� = ,. 
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'Sc '5, is e9 L\otl +-c 
'Sz pll-\s +-1-\e f-1-\iv.A +-ev1M 

i� +-1-\e sevies, ot�.A <54 is 
e9 L\otl +-c '5, pl L\S +-1-\e 
.Pcl-\vf-1-\ +-ev1M i� f-1-\e 
sevies. 
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Note: Problems 26.12-26.14 refer to the arithmetic series 3 + 6 + 9 + 12 + 15 + . . .  + 267 + 270. 

26. 1 4  Justify the sum formula % (lli. + an ) from Problem 26.13,  using the arithmetic 
90 

series L 3n as an example. 
n=l 

The sum of the first and last terms of the series is 273 :  3 + 270 = 273. Similarly, 
the sum of the second and second-to-last terms is 273 ( 6 + 267 = 273) and the 
sum of the third and third-to-last terms is 273 (9 + 266 = 273) . In fact, the series 
consists of 45 pairs of numbers whose sum is 273. Therefore, the sum of the series 
is ( 45) (273 ) ,  which is equivalent to the arithmetic series sum formula for this 

series :  
90 

(3 + 270) . 
2 

26. 1 5  Calculate the sum of the series :  2 + 7 + 12  + 17 + . . .  + 87 + 92. 

The common difference of this arithmetic series is d = 5. To determine the 

number of terms in the series, apply the formula n = an � lli + 1, where a" is the last 

term of the series and a1 is the first. 

a - £li 92 - 2 90 
n = -n-- + l = -- + l = - + 1 = 18 + 1 = 19 

d 5 5 

Now apply the arithmetic series sum formula with n = 19, a1 = 2 , and a" = 92 . 

n 
) 

1 9  - (lli. + an = - (2 + 92) = 893 
2 2 

26. 1 6  Identify the first five terms of the sequence of partial sums for the infinite series 
00 

L n(n - 2). 
n=l 

The partial sum S,, is the sum of the first n terms of the series. A sequence of 
partial sums, {SJ ,  is the sequence Si , S2 , S3, S1, • • • • 

S1 = L n (n - 2) = 1 (1 - 2) = - l  
n=l 

s2 = L n (n - 2) = 1 (1 - 2) + 2 (2 - 2) = - 1 + 2 (0) = - l  
n=l 

00 

Given the infinite series L an , notice that sd = sd- 1 + ad. 
n=l 

S3 = S2 + 3 (3 - 2) = - 1 + 3 (1) = 2  

S4 = S3 + 4 (4 - 2) = 2 + 4 (2) = 10 

S5 = S4 + 5 (5 - 2) = 10 + 5 (3) = 25 

The first five terms of the sequence of partial sums are : -1 , -1 , 2 ,  10,  and 25. 
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26. 1 7  Identify the first five terms of the sequence of partial sums for the infinite series 00 ( 1 )n I 2 3 

n=O 

Note that the first term in this series corresponds to n = 0, so the sequence of the first five partial sums is S0 , S" S2 , S3 , S1• 

� = S0 + 2 (½)1 = 2 + 2 (½) = � 
s = s + 2 (!)2 = � + 2 (!)2 = 26 2 1 3 3 3 9 ( 1  )3 26 ( 1  )3 S = S + 2  - = - + 2  -3 2 3 9 3 

( 1 )4 80 ( 1 )4 S = S + 2  - = - + 2  -4 3 3 27 3 
80 27 
242 81 

26. 1 8  Describe the relationship between the sequence of partial sums and the convergence of an infinite series. 
An infinite series converges if and only if the sequence of its partial sums converges to a finite, real number. Consider the geometric series t2(½)" from Problem 26.17, which has a sum of 3. Notice that S4 = �12 "" 2.987654, so the fifth term of the sequence of partial sums already approximates the actual sum relatively well . Each consecutive term of the sequence of partial sums ( of which there are infinitely many) will more and more closely approach 3. For example, slO :=:::: 2.99998306 and S15 :=:::: 2.999999930. 

26. 1 9  Explain why the series f � diverges, according to the nth term divergence test. n=l n - 5 
According to the nth term divergence test, if lim an "# 0 , then the infinite series 
� 

n➔oo L.J an is divergent. Apply L'Hopital's rule to evaluate the limit as n approaches infinity. 1. 3n 1. 3 3 1m -- = 1m - =  
n➔OO n - 5  n➔OO 1 The terms of the series approach 3; essentially, this series adds the number 3 infinitely many times, resulting in an infinitely large sum. Unless the nth term of a series approaches 0, a series cannot converge, because only O has a finite sum when added to itself infinitely many times.  

Pv-oble1A1 Z<:::so exploti\\s whot+- 8e01A1ef-v-ic I sev-ies otv-e ot\\.A Pv-obe1A1 ZG:.'3'3 exploti\\s how +-o cotlcv.lot+-e +-heiv- Sv.1A1s. 

The '1.f-h +-ev-1,<.\ CO\\Vev--8e\\ce +-es+- Cot\\ N EVER be v.se.A +-o pv-ove +-hot+- ot sev-ies CO\\Vev-8es, ot\\.A i" IA-\ot\\y CotSes, if- INO\\'fbe otble +-o help otfotl l. Howevev-, if- is ot\\ e.P-ficie"+- ot\\.A si1A1ple +-es+- +-hot+- picks 011.+obviov.sly .Aivev--8e'1.f- sev-ies. 
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eqL\otls 1 2.0. 
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� (n + 2) ! 
26.20 Why does the series � 1 

n=l n. 
diverge, according to the nth term divergence 

26.2 1 

test? 

Rewrite the numerator of the expression and reduce the fraction. 

(n + 2) ! (n + 2)(n + l) ,n1 ( ) (  l) 2 --- = ------- = n + 2  n +  = n + 3n + 2  
n ! ,n1 

Because lim { n2 + 3n + 2) -:/:. 0 , the series diverges according to the nth term 
divergenc�test. 

. ../5 ../6 .ff 2✓
2 

1 Jfo . Why does the senes 2 + - + - + - + -- + - + -- + · · · diverge, according 
2 3 4 5 2 7 L L 

to the nth term divergence test? 

Identify the nth term of the series (as demonstrated in Problems 26.4 and 26 .5) : 

� ✓n + 3 . Apply the nth term divergence test and calculate the limit at infinity 
n=I n 
using L'Hopital's rule. 

lim ✓n + 3  
= lim 

(l / 2)(n + 3r 112 

= lim 
1 

= 0 
n➔"' n n➔"' I n➔"' 2✓n + 3 

The nth term divergence test can conclude only that the series { a,, ) diverges 
if lim an -:/:. 0. However, that limit does equal 0 for this series, so the nth term 

n➔oo 
divergence test does not allow you to draw any conclusion whatsoever. In order 
to determine the convergence of this series, you will have to apply one of the 
convergence tests presented in Chapter 27. 

Telescoping Series and p-Series 

Hew ta V\01.\\J.\e tl-\ese e01.sy-tc-spct sevies 

26.22 Describe the behavior of a telescoping series and explain how to calculate its 
sum. 

A telescoping series contains infinitely many pairs of opposite values ,  which have a 
sum of 0. Although the series contains an infinite number of terms,  all but a finite 
number of those terms are eliminated by their corresponding opposites. The sum 
of the series, therefore, is the sum of the remaining terms. 
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26.23 Calculate the sum of the telescoping series : L - --- . 00 ( 1 1 ) 
n=l n n + l 

Expand the first five terms of the infinite series. 
f (! - _l ) = (1 - !) + (! - !) + (! - !) + (! - !) + (! - !) + · · · 
n=I n n + l 2 2 3 3 4 4 5 5 6 Notice that the series contains pairs of opposite real numbers such as _ _! and !, 1 1 2 2 

-3 and 3, etc. More specifically, every rational number in the series (except for 1) has a corresponding opposite. 
f (! - _l ) = 1 + (! - !) + (! - !) + (! - !) + (! - !) + · · ·  
n=I n n + l 2 2 3 3 4 4 5 5 = 1 + 0 + 0 + 0 + 0 +  . .  · Therefore, L - --- = l. 00 ( 1 1 ) 

n=l n n +  1 
26.24 Calculate the sum of the telescoping series : L ----- . 00 ( 1 1 ) 

n=3 n - l  n + 2  
Expand the first seven terms of the series. Note that n = 3 represents the first term in the series, not n = l .  

� ( n � l  
- n : 2 ) = G - ½) + (½ - ¼) + (¾ - ¼) + (½ - ¼) + (¼ - ¼) + (¼ - 1� ) + (¼ - 1\ ) + . . .  

1 1 1 . . . Except for - , - , and -, all of the rational numbers m the sen es have a 2 3 4 corresponding opposite. 
f (-1 _ _ l ) = _! + ! + ! + (! _ !) + (! _ !) + (! _ !) + (! _ !) + . . .  
n=3 n - l  n + 2  2 3 4 5 5 6 6 7 7 8 8 1 1 1 = - + - + - + 0 + 0 + 0 + 0 +  · · ·  2 3 4 13  12  

26.25 Define p-series and describe the conditions under which a p-series converges .  
Positive mfinite series of the form L �, where p is a positive real number, are 

n called p-series ;  they converge when p > l but diverge when 0 < p :5 1 .  

Mosf-
o.P f-!A e  CO\\

vev8 e\\ce f-esf-s t\\ 
CIA"tpf-evs U,-28' "tp
ply O\\ly f-o posif-ive 
sevi es-sevi es f-lA"tf
co\\f-"ti\\ O\\ly posi
f-ive f-evlA-\s. 
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00 1 26.26 Determine the convergence of the series :  L 2. 
n=l n 

00 1 1 Because L 2 has form LP' it is a p-series with p = 2 .  According to Problem 
n=l n n oo 1 26.25, a p-series converges when p > I, so L n2 is convergent. 

n=l 

00 26.27 Determine the convergence of the series :  L 3n-615• 

n=l 

Rewrite the series, eliminating the negative exponent. 
00 1 -------------, 3 � n6/5 

00 1 Note that L n615 is a p-series with p = �; the series is convergent because 
n=l 5 (as explained in Problem 26.25) . 

00 ef,;;2 26.28 Determine the convergence of the series :  L 413. 
n=l 5 • -vn-Rewrite the series using rational exponents. _! � n213 = ! � (2/3)-(3/4) = ! � -1112 = ! � _l_ � 3/4 � n � n � 1;12 5 � n 5 � 5 � 5 � n 

00 1 1 Note that L 1/12 is a p-series with p = -; the series is divergent because 
n=l n 1 2  O < _!_ ::;;  1 (as explained i n  Problem 26.25) . 1 2  

00 1 26.29 For what values of a does the series L 3a+2 converge? 
n=l n 

00 1 Because L n3a+2 is a p-series with p = 3a + 2, it converges when p > l . 
n=l 

p > l 
3a + 2  > l 

3a > - l 
1 

a > - -3 � 1 1 The series � 3a+2 converges when a > - -. 
n=l n 3 

6 - > l  5 
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Geometric Series 
De tl-\ey ca\\vevBe, Cl.\\t:A i.P sa, wl-\C1.t's tl-\e Sl.\lM? 

3 3 3 
26. 3 O Determine the common ratio of the geometric series :  3 + 4 + 

1 6  
+ 

64 
+ · · ·. 

00 

A geometric series has the form L arn, where a and r are real numbers ; r is as the 
n=O 

ratio of the geometric �eries, and a is the scale factor of the series. The first term of 

the geometric series L arn is a X r 11 = a X 1 = a, so in this series a = 3. Factor 3 
n=O 

out of each term. 

( 
1 1 1 

) 3 1 + - + - + - + · · ·  
4 16  64 

Ol Ol\\J.. evevy t-evlM 
is v t-iiMeS t-l-\e t-eviM \;,e

.Pove it-. fov e><:OliM('le, i.P 
C\ ::=- S' Ol\\J.. Y ::=- 2, t-l-\e 

8eo1Mehic sevies � S-(2)" 
.. �o 

E h . h 1 . . . 
( 

1 )n . h 1 . 1 
h 2 is S' + \ 0  + 20 + 40 + .... ac term 1n t e resu Ung senes 1s 4 , 1.e. t e n = term contains 4, t e n = 

( 1 )2 1 
term contains 4 , etc. Therefore, the common ratio is r = 4° 

26 3 1  W · h . . . . . 1 1 2 4 
. nte t e geometnc sen es usmg summation notation: 2 + 3 + 9 + 

27 
+ · ·  ·. 

00 1 1 
The first term of the geometric series L arn is a; therefore, a = -. Factor - out of 
each term. n=O 2 2 

! (1 + � +  ± + � + - · ·) 
2 3 9 27 

Notice that the nth term of the series within the parentheses is ( ¾) n, so r = ¾
Substitute a and r into the geometric series formula I arn to get I ! (�)n. 

n=O n=O 2 3 

00 (4 )n 
Note: Problems 26.32-26.33 are based on the in.finite geometric series � 6 7 
26.32 Determine the convergence of the series. 

00 (4 )• 00 

Notice that L 6 7 has the form L ar•, so it is a geometric series with a = 6 and 

4 n=O n=O 4 r = 7. Geometric series converge if 0 < I r  I <  l ;  because 0 < 7 < 1, the geometric 
00 (4 )• series � 6 7 converges .  

FOlcl-OYi\\8 ½. 
ov.+- o.P °'- \\v.iMbev 

is like J..iviJ..i\\8 i+- by 
½., wl-.icl-. is +-1-.e S0t.lA-\e 
OI.S 1,\,\1,\)+-iplyi\\8 i+
by 2 .  

GeolA-\ehic 
sevies J..ivev-Be 

i.P Iv/ �  1 .  
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26.33 Calculate the sum of the series. 
"' a 4 A convergent geometric series L arn has sum 1 _ r . Substitute a = 6 and r = 7 •� "' (4 )n into the formula to calculate the sum of the series � 6 7 

26.34 Determine the convergence of the series I ( � ) ( � r if the series converges, calculate its sum. ■=o 5 2 
The geometric series i(¾) (¾r is divergent because l r l > 1 :  Ii i > 1. 

26.35  Determine the convergence of the series f 2 (-�r if the series converges, calculate its sum. ■=o 5 
"' ( 3 )n Notice that L2 -5 is a geometric series with a =  2 and r = - �. Because 

- a 5 0 < I r  I <  1 ,  the series converges to sum of --. l - r  
a 2 1 - r 1 - (- 3 / 5) 2 2 5 5 (5 /5) + (3 / 5) = 8 / 5 = 2 · s = 4 

26.36 Determin_e the convergence of the series I(-¾) (-¾r if the series converges, calculate its sum. n=G 

Although the lower bound of the sum is n = 6 and not n = 0, subtracting a finite number of terms will not affect the convergence of the series. Because 0 < 1-¾I < 1, the geometric series converges .  However, when the lower bound does not equal 0, an alternative formula must be used to calculate the sum of the series :  
"' k L ar• = !!!!__ 

n=k 
1 - r 

64 
729 
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The I ntegral Test 
1\\-fi\\ite sevies Ol.\\.:A i1Mpvapev i\\te8v01.ls 01.ve vel01.te.:A 

00 26.37 Assume that L an is a positive, decreasing series. Describe how to determine the 
n=l 00 convergence of L an using the integral test. 

n=l 

Consider the function f(n) = a,,. Assumingf(n) is continuous, evaluate the improper integral J1

00 

f ( n ) dn. If the integral converges (i.e., equals a finite, real number) , then the series converges .  Similarly, a divergent integral indicates a divergent series. 
00 1 26.38  According to Problem 26.26, L 2 is a convergent p-series .  Use the integral test 

n=l n to verify the convergence of the series. 
According to the integral test, the series converges if and only if the improper 

Joo } integral 
1 2 dn converges .  

n 

Joo 1 
f

a dn -dn = lim -
1 n2 a➔oo 1 n2 = lim fa n -2dn 

a➔oo 1 = lim (-_!la ) 
a➔OO n } = lim (- ! + !) 
a➔oo a I = lim (- !) + lim 1 
a➔oo a a➔oo = 0 + 1  

= I -------

00 1 00 1 Because the improper integral J 2 dn converges, the series L 2 also converges .  
l n n=l n 

I.P }'CL\ ,:,lc,\\'f
k\\CIN Vie w +-c 
.::l eotl wif-1-\ il,\\pvcpev 
i\\f-e8votls, leek otf
Pvcbl el,\\s 2 1 30-
2 1 .'37. 

Tl-\e i\\f-e8votl CC\\Vev8eS +-c I ,  bL\ff-1-\ot+- .::lces\\'+-
oo I l,\\eot\\ � 2 ==- I. Tl-\e 
�=I \\ .::le.fi\\if-e i\\f-e8votl VotlL\e .::lees \\cfeqL\otl f-1-\e SL\!,\\ c.P +-1-\e sevies. 
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Lise Votv-iotble SL\bsf-if-L\f-ic\\ +-c i\\f-e8v-otf-e: L\ � I\\ \\ ot\\.A .Al,\ � ( 1/\\).A\\. 

t\\Vev-se hi8 ot\\f-iJ..ev-ive,,.+-ive .Pcv-1Ml,\le,,. 
J .AL-\ � e,,.2 +1.-\2 

I I,\ - e,,.v-cf-e,,.\\ - + C 

BecotL\se • +-ot\\8e\\f- Be+-s t\\-fi\\if-ely biB ots x otppv-ce,,.ches 'Ir 

2 ' O\
V-C-f-ot\\8e\\f- otppv-cotches 

'Ir 2 whe\\ x Be+-s t\\-fi\\if-ely bi8• 

508 

" (ln n)2 
26.39 Determine the convergence of the series I---. 

n=l n 

Apply the integral test by determining the convergence of the corresponding improper integral. �-------
Joo (l n n) 2 . Ja {lnn)2 

--- dn = hm --- dn 
} n a➔OO 1 n 

= lim f lna u2du 
a➔oo 0 
. ( U3 l lna l = hm -

a➔OO 3 
Q = lim[ (lna)3 ] 

a➔oo 3 
= oo  

B h . . 1 f 00 (In n )2 d d" h . fi . . ecause t e improper mtegra 1 --- n 1verges, t e 1n n1te senes 
,, (1 )2 n L � diverges as well. 

n=l n 

00 1 
26.40 Determine the convergence of the series :  L --2 . 

n=O 8 + n 

Joo dn Apply the integral test by evaluating - -2 . 0 8 + n 

Joo dn 
f

a dn -- = lim --o 8 + n2 
a➔oo O 8 + n2 

- �{Is( arcran Js[)] 
= lim 1.,;;- (arctan a

1o - arctano)] 
a➔oo 2-v2 2-v2 = lim[ l1o arctan a

1o ] 
a➔oo 2-v2 2-v2 Note that lim(arctan a

1o
) = !!___ 

n➔OO 2-v2 2 I :n :n :n ✓2 = 2✓2 . 2 = 4✓2 = -8-
Joo dn � l Because the improper integral --2 converges, the infinite series LJ -8 2 0 8 + n n=O + n converges as well. 
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Chapter Twenty-Six - Basic Sequences and Series 
00 3 1 According to the nth term divergence test, the series L n -:- diverges. Verify that 

n=l n conclusion using the integral test. 
Apply the integral test by evaluating f 00 n3 

-:- 1 dn. 
l n 

f 00 n3 + 1 fa n3 + l 
--

3 - dn = lim --3 - dn 1 n a➔oo 1 n 

= oo �---------------

" n3 + i I" n3 + i Because the improper definite integral f --3 
- dn diverges, the series --3 

-1 n n diverges as well. n=I 

l• 2.oi. "3 - I '""" --- = oo  
<'\➔ 00 2.oi. 2 

becoi.L\se H,\e d.e8vee 
o.P +-1-\e \\L\"""evoi.+-ov is 
8veoi.+-ev f-Vloi.\\ +-l-'le 
d.e8vee i\\ +-1-\e 
d.e\\Ol,\\i\\oi.f-ov. 
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Chapter 27 
ADDIT IONAL I N F I N ITE SERI ES CONVERGENCE TESTS 

Chapter 26 presented examples of simple infinite series that exhibited definitive 
characteristics ; however, the majority of series cannot be classified so easily. 
This chapter presents an assortment of tests to supplement and enhance those 
discussed in Chapter 26, significantly increasing the number and variety of 
series for which you can determine convergence. Note that the majority of the 
tests apply only to series consisting of positive terms, although the treatment of 
negative terms is discussed in the last section of the chapter. 



Chapter Twenty-Seven - Additional I nfin ite Series Convergence Tests 

1-P evevy .,,_ 
+-evl,\,\ is SIA-\otll ev 

+-1-\ot\\ (ov eql-\otl +-o) +-1-\e 
covvespo\\.Ai\\8 b +-evlA-\ 
( "'-, � 0, ,  "'-z � b2 , e+-c.) 
"'-"""- +-1-\e b' s "'-""-""- L\p +-o 

"'- -fi'1.i+-e \\L\IA-\bev, +-1-\e ot's 
will VlotVe "'- SIA-\otllev (ov 
eql-\otl) -fi'1.i+-e SL\IA-\. 

The ..fivs+- +-ev""'s 
o.P bo+-1-\ sevies otve 

+-1-\e SotlA-\e: ½__ A-P+-ev 
+-1-\ot+- (.Pov otll \\ > I), 

A °bi88ev 
.Ae\\01Mi\\ot+-ov iMeot\\S 

"'- SIMOlllev .Pv.,,.c+-io\\, 
'l::>l.\+- "'- °bi88ev \\l.\iMev"'-

+-ov iMeOl\\S "'- °bi88ev 
.Pv.,,.c+-io\\. 

5 1 2  

Comparison Test 
PvCVl\\8 sevies owe t>l88ev tl'\OI.\\ t>l8 Ol.\\d\ S1M01.llev H'\OI.\\ SIMO\n 

27. 1 Describe how the comparison test determines the convergence or divergence of 
an infinite series. 

Given the positive, infinite series Ia,, and Ib,, such that a,, :5 b,, , the convergence 
,___..._ of 2,b,, guarantees the convergence of Ia,, . Similarly, the divergence of Ia,, 

guarantees the divergence of Ib,, . 

00 

27.2 Determine the convergence of the series using the comparison test: L 
n: 1 . 

n=l 

27.3  

00 I 
Consider the comparison series I--. Because the denominators of the two 

n=l n + } 
series are equal, comparing their corresponding values is a simple matter. Because 

n 1 
the numerator of -

+ l  
is greater than (or equal to) the numerator of --, each 

n < n + l 
00 n 00 I 

term of I-- is greater than or equal to the corresponding term of I--: 
n=l n + } n=l n + } 

00 I 00 n a dn 00 1 I-- :5 I--. Because lim J -- = 00, I--1 is divergent according to 
n=l n + } n=l n + } a➔oo 1 n + } n=l n + 

00 

the integral test. By comparison, L ___!!:_
I 

must diverge as well, as it is greater than 
n=l n +  

a divergent series. Note that the nth term divergence test gives the same result. 

00 I 
Determine the convergence of the series :  L �

n=o n + 7  

00 I 00 I 1 
Consider the comparison series L 15 = L 

n512 • The denominator of 
� n=O "\I n- n=O n + 7  1 00 I 

is greater than the denominator of 15 , so each term of the series L � is 
"\I n- n=O n + 7  

oo oo I oo I 
less than the corresponding term of the series In-5 12 : L � :5 L 

n512 • 
n=O n=O n + 7 n=O 

00 I 5 
Notice that � n512 is a convergent p-series (since 2 > I ) , so according to the 

00 I 
comparison test, L � also converges because its sum is less than or equal 

n=O n + 7  

to the sum of a convergent series. 
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27.4 
� In n  

Determine the convergence of the series: � , · n=2 vn 

" 1 " 1 
Consider the comparison series L ,-- = L 112 . Because In n � 1 for all n � 3, 

n=2 vn n=2 n 
00 In n 00 1 00 1 00 In n 
� ✓n � � 

n112 . Note that � --;;!J2 is a divergent p-series ,  so � ✓n must also 

be divergent according to the comparison test. 

" 1 
27.5  Determine the convergence of  the series: L ✓n · 

n=l n 

n 

an 

bn 

27.6 

1 

Consider the geometric comparison series L an = L - . Although the first few 
00 ( 1  )n 

oo 

( 
l )n n=l 2 oo l 

terms of L - are smaller than the corresponding terms of L bn = L ✓n , the 
� 2 � n 

opposite is true for all n � 5, as illustrated by the table of values below. 

1 2 3 4 5 6 1 
- = 0.5 - = 0.25 _!_ = 0. 1 25 _!_ = 0.0625 _!__ = 0.03125 _!__ = 0.01563 
2 4 8 16 32 64 1 1 1 1 1 1 F2 ::::: 0.375 � ::::: 0. 149 ------:J,[ = 0.0625 7s ::::: 0.02736 ----;re; :::::  0.01241 

2 2 3 3 4 5 5 6 6 

Note that t(½r is a convergent geometric series (because 0 < l½I < 1 ) .  Because 

L ✓n 
� 
L - , L ✓n also converges,  according to the comparison test. ,, l ,, 

( l )n " l 

n=l n n=l 2 n=l n 

00 3n + l  
Determine the convergence of the series :  I-2--. 

n=l n + 4  

Apply the integral test to determine the convergence of the comparison series 
00 

I n2 : 4• 
n=l I" n dn = lim fa n dn 

1 n2 + 4 a➔oo 1 n2 + 4 

. [ I fa2 +4 du] 
= hm - -a➔OO 2 5 U 
= um[! (1n lu lt+4 ] a-+OO 2 5 
= lim(! [1n(a2 + 4) - ln5J) 

a-+oo 2 
= oo 

Tl-\e \\L\IMevod-cv 
"" +-1-\e le.P+- is 

bi88ev +-1-\ot\\ +-1-\e 
\\L\IMevot+-cv C\\ +-1-\e 
viBI-\+- (ot\\.A +-1-\e .Ae
\\CIMi\\otf-cvs otve 

+-1-\e SotlMe), SC +-1-\e 
le.P+- SL\IM is bi88ev 
+-1-\ot\\ +-1-\e viBl-\+-
SL\IM. 

Tev1Ms ot+
+-1-\e be8i""i"B c.P 

� b� otve otllcwe.A 
+-c be SIMotllev +-1-\ot\\ +-1-\e 

ccvvespc\\.Ai"B +-ev1Ms c.P 
� °"� , ots lc"B ots +-1-\e 

+-ev1Ms c.P � b � 
eve\\f-L\otlly 8e+- biB-
8ev ot\\.A 'STAY bi88ev. 
A -Pew bot.A otpples 
-Ac"'+- spoil +-1-\e 

wl-\cle bL\sl-\el. 

Lise Votviotble 
SL\bs+-i+-L\+-ic" +-c 
i'1.+-e8vot+-e: L\ ==- "z + 4 
Ol\\.A .AL\/2 ::=- \\ .A\\ • 

5 1 3  
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COIMfO\YiSO\\ 
sevi es i s  

IAS 1A01.lly 1M01.J-e 
IAP o.P H'\e 1\.,i88 es+-

P "'-v+-s" o.P "'"' +-\.\e 
+-l'\i\\8S +-\.\"'+- wo1AIJ

""'"'+-+-ev IMOSt"' i.P \\ 
wev e v e"'lly 'oi8. This 
i\\cl1AJ-es +-\.\e l'\i8\.\es+
powev s o.P \\ 01.\\J-
+-l'\i\\8S v"'i seJ- +-o 

+-\.\e \\ powev. 

B ecou"se  
H,\ ey 8 ef- IA-\L\cl-'I 

bi8 8 ev f-VI01.\\ f-1-\ e 
\\ f-eYIA-\S Ol\\J- f-1-\ e 
CO\\Sf-ot\\f-s WV\ e\\ \\ 
8 ef-s VIL\8 e. 

5 1 4  

27.7 

00 3x + l  00 x Therefore, L �4 is greater than or equal to the divergent series I-2--, so 
n=l X + n=l X + 4 00 3x + l L x2 + 4 diverges according to the comparison test. 

n=l oo 7n + 2  Determine the convergence of the series :  I --n -. 
.,=a, 6 
00 7n 00 ( 7 )n Consider the geometric comparison series � 6n = � 6 , which diverges because 

1 7 1 00 7n + 2 00 ( 7 )n 00 7n + 2 
6 > 1 . Because 7" + 2 > 7" , it follows that � �  2=: � 6 , and � � 

diverges according to the comparison test. 
Limit Comparison Test 
'5evi.es HI\C\.t"' CO\\VevBe ov �i.vevBe 'by C\.SSOClC\.t"'lO\\ 

27.8 

27.9 

Describe how to determine the convergence of a positive infinite series using the limit comparison test. 
Given the series "'i,a,, , create a comparison senes "'i,b,, for which you can determine a the convergence and compute �i� bn . If the limit is equal to a positive, real number, then both series either conterge or diverge. If the limit either equals O or does not exist, the limit comparison test is inconclusive. 

� 5n2 + 9  Determine the convergence of the series LJ 7 3 
n=l n - 2n + 8  

As n approaches infinity, the highest exponents of n in the numerator and denominator (2 and 3 respectively) are more influential than the surrounding terms. The comparison series "'i,b,, need not include the leading coefficients of the numerator and denominator (5 and 7 respectively) . 
Now apply the limit comparison test by evaluating the limit, as n - oo, of the series' quotient. 

5n2 + 9  1. an 1· 7n3 - 2n + 8  1m - = 1m -----
n➔oo b n➔oo } 

n n 
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Multiply the numerator and denominator by the reciprocal of the denominator to eliminate the complex fraction. 5n2 + 9  n 5n3 + 9n 5 = lim ----- · - = lim ----- = 
n➔oo 7n3 - 2n + 8  1 n➔oo 7n3 - 2n + 8  7 The limit exists, so both series either converge or diverge according to the limit "' "' 1 "' 5n2 + 9  comparison test. Because L bn = L - is a divergent p-series, L 7 3 n=l n=l n n=l n - 2n + 8 diverges as well. 

"' n + 2  27. 1 0  Determine the convergence of L � 2 n=l n - 3n + 5  
Construct the comparison series ;)" using the degrees of the numerator and the denominator. 

00 00 00 00 00 L bn = L �3 = L nl-(2/3) = L nl/3 = L ¼ 
- - n - - -Apply the limit comparison test. n + 2  1. �n2 - 3n + 5  1. n + 2  1 1 . n + 2  Im = Im---;===== · - = Im ---;====== 

n➔oo ¼ n➔oo �n2 - 3n + 5  ¼ n➔oo �n3 - 3n2 + 5n 1 The degrees of the numerator and denominator are equal ( ef;;! = n313 = 1 ), so the limit equals the quotient of the leading coefficients of the numerator and the denominator. n + 2  1 lim ----.====== = - = l 
n➔oo �n3 - 3n2 + 5n 1 

The limit exists, so both series either converge or diverge according to the limit 
"' comparison test; because L ¼ diverges according to the nth term divergence "' n + 2  n=l test, L � 2 

must diverge as well. n=l n - 3n + 5  
"' 3n + 6  27. 1 1 Determine the convergence of the series :  I--. < n=l 5n + 1 

Apply the limit comparison test using the geometric comparison series "' ( 3 )n L bn =� 5 3n + 6 . 5n + 1  . 3n + 6  5n 
• (3 · 5r + 6 (5n ) . 15n + 6(5n ) hm --- = hm -- · - = hm ----�� = hm ---�� 

n➔oo 3n 
n➔oo 5n + 1 3n 

n➔oo (3 . 5r + 3n n➔oo 15n + 3n 
5n 

l-\i8\.\est- powevs 
o.P t-l-\e \\l.\1Meve,,.t-ov 

e,,.\\J- J-e\\01Mi\\e,,.t-ov 
e,,.ve e9l.\e,,.l, J-iviJ-e 

t-\.\eiv coe.P..ficie\\t-S t-o 
Bet- t-l-\e li1Mit- e,,.S \\ 

e,,.ppvoe,,.cl-\es oo. 

This f-i1Me, 
yoL\'ve \\of- L\Si'1.B 

+-he hiBhesf- powevs 
o.P " +-o IMctke +-he 
C01Mpctviso'1. sevies 
Clike i'1. Pvoble1Ms 2.7.''f 
ct\\.A 2.7. I O), bL\f- +-he 
+-hi'1.8S vctised. +-o 
+-he \\ powev. 

5 1 5  
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As \\ e,,.ppvoe,,.c\.\es 
i\\-fi\\i+-y, 1/\\ C\\\J.. 2/\\ 
e,,.ppvoe,,.c\.\ 0, 'oece,,.l.\Se 

J..iviJ..i\\8 "'-\\Y vee,,.I 
\\l.4.IM'oev 'oy "'-\\ i\\-fi\\i+-ely 
'oi8 \\l.4.IM'oev Bives yol.4. "" 
1Micvoscopice,,.lly S1Me,,.II 
vesl.4.1+- +-l-\e,,.+-'s 

'oe,,.sice,,.lly 0. 

Yov. l,,.C\Ve +-o 
vewvi+-e \\ 11, C\S C\ 

S<qv.C\ve voo+- i.P yov. 
WC\\\-!- +-o 1,\\1.\lf-iply if- by C\\\o-1-l,,.ev S<qv.C\ve voo+-. 

5 1 6  

15n + 6 (5n ) 1 5n As n approaches infinity, lim ---�� = lim - = 1. Therefore, according n➔oo 15n + 3n n➔oo 1 5n oo 3n + 6 oo ( 3 )n to the limit comparison test, � 5n + 1 converges because � 5 is a convergent geometric series. 
00 1 27. 1 2  Determine the convergence of the series : L ✓n+l. ✓n+2 . n=l n +  1 + n +  2 

00 1 00 1 Apply the limit comparison test using the divergent p-series L , = L 112. 1 n=l -vn n=l n 
lim ✓n +l. + ✓n +2 = lim 1 · ✓n = lim ✓n 
n➔00 1 n➔00 .Jn + 1 + .Jn + 2 1 n➔00 .Jn + 1 + .Jn + 2 

✓n 1 Multiply the numerator and denominator by ✓n · 

✓n 
. ✓n • 1 1 1 = hm �==-�== = hm �=�-== = �=��== = -

n➔oo �l �2 n➔oo 8 R .Jl + O + .Jl + O  2 - + - + - + - l + - + 1 + -n n n n n n 
00 1 The limit exists , so L ✓n+l. ✓n+2 must diverge according to the limit n=l n + 1 + n + 2 L L 

00 1 comparison test because L , diverges. n=l -vn 
oo ✓n + n5 27. 1 3  Determine the convergence of the series L V n=l 3 n8 + n6 + 1  

Construct a comparison series using the highest powers of the numerator and denominator. oo 512 oo oo oo l � '!!__ = � n(5/2)-(s/3) = � n- 1/6 = � --� ns/3 � � � nl/G Apply the limit comparison test. 
� 3/ s  6 l � 1. '\In + n + 1. '\ln -t- n~ Im = Im ---.===== 

n➔OO _l_ n➔OO Vn8 + nG + 1  nl/6 Note that n116 = ( n113 )112 = ✓n113 . 
nl/6 1 

. -Jn + n5 -Jn1;3 . ✓n4/3 + n16/3 
= hm ---.===== · -- = hm ------;c====-

n➔oo Vn8 + nG + 1  1 n➔OO Vn8 + nG + 1 
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The degrees of the numerator and denominator are equal (.Jn1613 = (n1

613)
112 = n813 and ef;;! = n813

) ,  so the limit equals the quotient of the leading coefficients . ef;;! = lim � = 1 
n➔OO ef;;! Because the limit exists and the comparison series is a divergent p-series, 

00 '+5 � vn + n~ d" d" h 1 · . . LJ � 8 6 1verges accor mg to t e 1m1t companson test. 
n=l n + n + l 

Ratio Test Ca1Mpowe \\ei_�l-\\.,avi\\B tevlMS a.P 0\ sevies 
00 27. 1 4  Explain how to determine the convergence of the positive series L an using the 

27. 1 5  

ratio test. n=l 

00 lf lim an+1 = L, and L < l, then L an converges .  If L > l or L = oo, then the series 
n➔oo an n=l diverges. The ratio test cannot determine the convergence of a series if L = I .  

Demonstrate that the ratio test cannot be  used to determine the convergence of 
00 3 

J-e\\OIMi\\od-ov "\ is jl.\st- t-l-\e e,c:pvessio\\ '3/\\4
• --ro Bet- t-l-\e \\l.\1Mev01.t-ov "'- 1 , vepl01.ce t-l-\e \\ 

,.. +  i\\siJ-e '3/\\4 wit-\.\ \\ + I .  the series :  L -. 

~•a::, :......---------------------7 Evaluate lim --. < 3 I. an+l 1. (n + 1)4 Im -- = Im 
n➔oo an n➔oo 3 

n4 Multiply the numerator and denominator by the reciprocal of the denominator to eliminate the complex fraction. �--------------------, 3 = lim (n + l)4 3 n➔OO n4 
n4 

. i  n4 3 

. n4 = hm --------
n➔00 n4 + 4n3 + 6n2 + 4n + l  

= 1 

Yov. 1-."'-ve +-o .Ao +-1-.is 01.l1Mos+evevy +-i1Me, so S0t.Ve yov.vsel.P °'- s+-ep by .+-. I WYl l\\B OI. • -
"+I  OI. 

\\ 
• "'-.,+I  1'1.s+-e0t..A o.P -°'->i • 

Tue \\v.1Mev0t.+-ov 0t.\\.A .Ae\\olA-\i \\0t.+-ov l-.0t.ve +-1-.e S0t.lA-\e .AeBvee, so .Aivi.Ae +-l-\eiv coe-P--ficie'1.+-s +-o Be+- +-1-.e li""'i+-: 
1/ 1 == I . 

5 1 7  
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--rl-\e ve,,.+-io 

t-est- is BooJ- .Pov 
sevies co'1.t-e,,.h,i"8 
t-ev1MS t-L\e,,.t- will 8et
L\1A1M0'1.80IAS e,,.S '1. 
"'-l'l'voe,,.cl-\es i"-fi"H-y. 
'Sevies co'1.t-"'-i"i"8 
.Pe,,.ct-ovie,,.ls (like i'1. 
t-L\is pvoblelM), -..!s 
ve,,.iseJ- t-o powevs, """J
t-L\i'1.8S ve,,.iseJ- t-o " 
powevs e,,.ve BooJ
ce,,.'1.J-iJ-e,,.t-es .Pov 
t-L\e ve,,.t-io t-est-. 

--rl-\e J-e'1.01Mi'1."'--
t-ov's J-e8vee is \e,,.v8ev, 
so t-L\e li1Mit- e,,.s " ➔ oo is 
e,,.1At-01Me,,.t-ice,,.lly O. 

This is i-ke 
pvopevi-y 

(x"')(xb) ::::- )<"' + b 

i" otci-io'1.. 1'1.si-eot.A 
o.P ot.A.Ai"B i-ke expo'1.e'1.i-s o.P ot pvo.AL\ci- i-o IMotke O\\e expvessio" }'OL\'ve i-otki"-8 i-koti- o:e 

expvessio" ot'1..A wvii-i"B ii- ots ot pvo.AL\ci-: 
x"' + b ::::- (x"')(xb). 

5 1 8  

According to Problem 27.14, the ratio test cannot be used to determine the 
00 

convergence of the series L an when lim an+1 = l. 
n=l 

n➔oo an 

00 n + 3  
27. 1 6  Determine the convergence of the series : I-,-. 

n=l n . 

Apply the ratio test. 

1 . an+l 1· 1m -- = 1m 
n➔oo an n➔oo 

(n + l) + 3 
(n + l) !  
n + 3  

n !  n + 4 n !  
= lim --- · -

n➔00 (n + l) ! n + 3  

= lim (n + 4) ,n1' 
n➔00 (n + 1) ,0rlJ (n + 3) n + 4  = lim ----
n➔00 n2 + 4n + 3 

= 0  
. an+l � n + 3 

Because hm -- = 0 and O < 1 ,  the series LJ -,- converges according to the 
n➔oo an n=l n . 

ratio test. 

oo 3n 

27. 1 7  Determine the convergence of the series:  L 1. 
n=l n . 

Apply the ratio test. 

1 . an+l 1 . (n + l) !  Im -- = Im ---
n➔oo an n➔oo 3n 

n !  

3
n+l n !  = lim --- • -

n➔00 (n + l) ! 3n 

(3 • ;t"),0i1J 3 = lim -�-�-- = lim -- = 0 
n➔oo (n + 1) ,0rlJ � n➔oo n +  l 

. a 1 � 3
n 

Because hm ----1!±._ = 0 and O < 1 ,  LJ I converges according to the ratio test. 
n➔oo an n=l n . 
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27. 1 8  Determine the convergence of the series :  L n-2en. 
n=l 

Rewrite the series by eliminating the negative exponent: i e: . Apply the ratio 
�� = n en+l r an+1 r (n + l)2 i� -a = !� en 

n 

n . en+l = hm --n➔"' ( n + 1 )2 en 
e · / · n2 = lim -�--

n➔"' / (n + l)2 
e · n2 = lim ---

n➔"' n2 + 2n + l  
= e . an+l I"' -2 n . . . Because hm - = e and e > 1 ,  n e diverges accordmg to the ratio test. 

n➔CO a L L 

n n=l 

"' (n + 1)2 27. 1 9  Determine the convergence of the series :  L 
n 

. 
n=l n • 2 

Apply the ratio test. 
1. an+l 1· im - = im [(n + l) + l]2 (n + l) · 2n+l (n + 1)2 n · 2n n➔oo 

= lim (n + 2)2 n · 2n 
n➔oo (n + l) · 2n+l (n + 1)2 (n + 2)2 (n) ,(21' = lim ------
n➔"' (n + l)3 ,(21' (2) ----� 
. n (n2 + 4n + 4) = hm -------� 

n➔"' 2 (n3 + 3n2 + 3n + l) n3 + 4n2 + 4n = lim -------
n➔"' 2n3 + 6n2 + 6n + 2 1 = 2 

Tl-\e '1.1.\1,\\evot+-ov ot'1.-A -Ae\\Ol,\\i'1.otf-ov 1-\otve .Ae8vee 2, so +-otke +-1-\e coe-P-ficie'1.+-s 0.p +-1-\e '1.21s +-o -fi'1.-A +-1-\e lil,\\i+-: � = = 
I �-

I.P yov.'ve '1.o+-Sv.ve wl-\eve (2 ')(2) COl,\\es .Pvol,\\1 look ot+-1,\\y '1.o+-e O\\ Pvoblel,\\ 27. 17. 

. an+l 1 1 � ( n + 1 )2 Because hm - = - and - < 1, LJ --- converges according to the ratio test. 
n➔oo an 

2 2 
n=l n • 2n 

5 1 9  
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-rl-\ese 01.ve +-l-\e S01.1Me +-l-\vee possible CO\\cllASiO\\S Ol.t>OIAr L rl-\01.r +-l-\e v01.+-io 

Tl-\e 108 pvopevf-y 108 x"" == 0\ 108 x 0t.llows }'OL\ f-o pL\11 expo\\e\\f-s OL\f- o.P lo8s OI.\\� wvif-e f-1-\el,\\ OL\f- .Pvo\\f- like coe-P-Bcie\\f-s. 
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00 4n · n !  27.20 Determine the convergence of the series :  L ( ) . n=5 n · n + 4  ! 
Apply the ratio test. . an+l . (n + l) [(n + 1) + 4] ! hm -- = hm --�---�� 

n➔OO an n➔OO 4n 
• n !  n · (n + 4) ! . 4n+1 (n + l) !  n · (n + 4) ! = hm ------n➔00 (n + l) (n + 5) !  4n · n !  Notice that 4" + 1 = 4 (4") ,  (n + l ) ! = (n + l ) (n ! ) ,  and (n + 5) ! = (n + 5) (n + 4) ! .  

. 4,(n'�yrl)' (n) � 
= hm -�--------�--n➔oo � (n + 5) �,(n',vrlJ . 4n = hm -

n➔oo n + 5  = 4  a � 4n · n !  Because lim n+1 = 4 and 4 > 1, LJ ( ) diverges according to the ratio test. 
n➔oo an n=5 n . n + 4 ! 

Root Test 
1-\elp.Pl.\l .Pav tevlMS i\\si.:Ae voi.J-icoi.\ siB\\S 

00 27.2 1 Explain how to determine the convergence of the positive infinite series L an 
n=l using the root test. 

00 If lim � = L , and L < l ,  then L an converges .  If L > l or L = oo, then the series 
---� n➔OO n=l diverges .  The root test cannot be used to determine the convergence of a series if 

L = l . 

27.22 Applying the root test occasionally results in the expression lim ef;,_ Evaluate the 
n➔OO limit so that you may reference it in the problems that follow. 

Begin by setting y = 'ef;;, and rewriting the radical using a rational exponent: y = n11" .  Take the natural logarithm of both sides of the equation. Iny = Inn11n = - In n n In n n 
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1. In n Evaluate Im -- using L'Hopital's rule. 
n➔ OO n . Inn . 1 / n . 1 hm -- = hm -- = hm - = 0  

n➔OO n n➔ OO 1 n➔ OO n Inn . . In n Recall that ln y = -. Therefore, hm ln y = hm -- = 0. Now that you have n -00 -00 n established that lim ln y = 0, evaluate the limit specified by the original problem. 
n➔OO 

Substitute y = nv" . lim ef;;, = lim n11 n 

n➔oo n➔oo 

e' "'-\\J.. I\\ >< e,,.ve i\\Vevse .Pl.4.\\CriO\\S, yol.4. k\\ow H'\e,,.½-
1 )< 1., )< \\ e � e � ><. O\\ce = lim y 

---------�

n

:

➔:oo�---------------7 Note that y = e'n'. � yol.4. vewvi+-e y e,,.S e1" Y, yol.4. CC\\\ l.\Se e,,.II o.P +-l--.e wovk yol.4. J..iJ.. = lim e10Y 
n➔OO "" .Pew s+-ers 'oe,,.ck Recall that lim In y = 0. wi+-l-\ I\\ y. n➔oo = lim e0 = I  Therefore, lim ef;;, = 1. 

n➔OO 

00 ( 1 )n 27.23 Determine the convergence of the series :  � -;; . 
Note that the general term of the series is raised to the n power, an indication that the root test is likely the best candidate to determine convergence. Tl-\e \\f-VI voo+- ot\\d. H'\e \\f-VI powev Cot\\cel eotcl-\ o+-1-\ev OL\f-: lim rJ;;: = lim �(_!_)n 

n➔ oo n➔oo n . 1 = hm - �--------
n➔OO n = 0  00 ( I )n Because lim rJ;;: = 0 and 0 < 1 ,  L - converges according to the root test. 

n➔OO 
n=l 

n 
27.24 Determine the convergence of the series :  i( 3 

5n +
2
5n3 )n. 

n=l 2n + 3n - n + 1 
Apply the root test. 

.I� ( 6n + 5n3 )n lim "iJ Un = lim n 
n➔ OO n➔oo 2n3 + 3n2 - n + l  

1"x" � (X� ) 1 1 � � x�/� � 
X � x. 

The \\L\!Mevotf-ov ot\\d. d.e\\otMi\\otf-ov bof-1-\ VlotVe d.e8vee , so f-1-\e litMif- is +-1-\e \\, coe-P-ficie\\f- 0.p f-1-\e \\L\!Mevotf-ov ovev f-1-\e \\, I. 6n + 5n3 

= Im 
n➔00 2n3 + 3n2 - n + I �-------, coe-P-Bcie\\f- 0.p +-1-\e d.e-5 \\OIMi\\otf-ov. 

= 2 
52 1 
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Ne IMC\½+ev 
wl-\e,,.t- \\ i s, I " -:= I ,  
sc ycl.4. CC\\\ e,,.\ sc ve,,.ise 
t-l-\e \\l.\iMeve,,.t-c v  t-c 

t-l-\e \\. 
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Because lim ef-;;:, = � and � > 1 ,  f ( 3 
6n + tn3 

1 
)
n 

diverges according to the 
n➔oo n 2 2 n=l 2n + 3n - n + 

root test. 

27.25 Determine the convergence of the series :  f -
( 

2 
)
n . 

n=l In n 

Constants can be factored out of a series without affecting the series' convergence. 

2}: -n = 2}: -
00 1 00 ( l )n 

n=l (Inn) n=l In n 

Apply the root test to determine the convergence of }: -- . 
00 ( l )n 

n=l In n 

lim ef-;;: = lim �( 
l )n 

= lim _
l
_ = O 

n➔oo n➔oo In n n➔oo ln n 

00 ( l )n 
Because lim ef-;;:, = 0 and O < 1 ,  }: -- converges according to the root test. 

n➔oo n=l In n 00 ( 1 )n 00 2 
Therefore, 2}: 

In n 
= L -

( )
n converges as well. 

n=l n=l In n -----
00 

27.26 Determine the convergence of the series :  � ; . 

Although only the denominator is raised to the n power, the root test is still 
applicable. 

lim ef-;;:, = lim J--;
n➔oo n➔oo \/7 

= lim : ( )1/n 
n➔OO e 1/n 

= lim '!!__ 
n➔oo e

n / n 

. nl /n 

= hm --
n➔OO e 

nl /n 1 
According to Problem 27.22 , lim n11n = 1 ,  so lim -- = -. Because 

00 n➔oo n➔OO e e I � n 
and - < 1, LJ ---;;- converges according to the root test. 

e n=l e 

. -� 1 
hm !¢an = -
n➔oo e 
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00 

27.27 Determine the convergence of the series: I (2 + 3v'nr 

Apply the root test. 

n=l 

�i� � = �i� �(2 + 3v1nr 

= lim (2 + 3v'n) 
n➔OO 

= lim 2 + 3 lim v'n 
n➔oo n➔oo 

According to Problem 27.22 , lim v'n = 1. 
n➔OO 

= 2 + 3 (1) 
= 5 

00 

Because lim � = 5 and 5 > 1 ,  L ( 2 + 3v'nr diverges according to the root test. 
n➔OO 

n=l 

00 (4nr 
27.28 Determine the convergence of the series :  L 

32n+1 . 
n=l 

Apply the root test. 

(4nf lim � = lim n __ 
n➔oo 

n 
n➔oo 32n+l 

. �(4nf = hm �-
n➔OO �32n+l 

. [(4nr f
n 

= hm ----
n➔oo ( 32n+l )

1/ n 

1. 
4n = 1m �-�� 

n➔oo 3(2n/n)+(l/n) 
. 4n 

= hm --
n➔oo 32+(1/n) 

= oo  
00 (4nr 

Because lim � = oo, L 
32n+1 diverges according to the root test. 

n➔OO n=l 

To votise  ,2" +- 1 +-o 
+-1-\ e I/\\ po wev, IA-\L\l+-iply 
+-1-\ e po wevs +-oB e+-1-\ ev: 
,C2>t+- l)( l/\\). 

523 
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Alternating Series Test and Absolute Convergence 
Wl-\C\.t i..P sevi.es l-\C\.ve \\eBC\.ti.Ve +-evtMs? 

Th e +-wo 
co'1..Ai+-io'1.s, i8'1.0vi"B +-h e "- e8otf-ive siB"-S, 

otve: ( I) +-h e Be'1.evotl +-evl,\\ o.P +-h e sevies hots 
�o otpvootch O wh e" " ts veotl ly hv.Be, ot'1..::l (2) 

e:ch +-evl,\\ i" +-h e se-vt es hots +-o b e s�ll
ev +-hot\\ +-h e +-evl,\\ 

b e.Pove i+-. 

Th eve 
otve o+-hev wotys yov. Cot\\ wvi+-e +-his 
sevies, lik e i. (- 1)•+2 . '3" 

•=O ('1. + 1) 2 1 

� cos ('1.1r) • '3" 
•=o ('1.+1) 2 , ot'1..::l 

i. (- lt:'· '3"- 1 

•=I '1. 

Th ese 
otbsolv.+-e votl v.es 

+-ell yov. +-o l eotve 
o-P.P +-h e potvf- o.P +-h e 
otlf-ev'1.ot+-i'1.8 sevies +-hot+
chot'1.B es +-h e si8"-, i" 
+-his cotse (- l)•,- 11 w!A e" 
yov.'ve +-es+-i"-8 -Pov 
C0'1.Vev8 e'1.ce. 
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27.29 What is the defining characteristic of an alternating series, and how is the alternating series test used to determine convergence? 
An alternating series contains both positive and negative terms ; consecutive terms have opposite signs. An alternating series usually contains -1 raised to a rower of n to generate the positive and negative terms, for example : L (- 1r n2 = - 1 + 4 - 9 + 16 - 25 + . . . . However, other functions, 

n=l such as sine and cosine, can generate terms of alternating sign as well :  � cos ( nn) 1 1 1 1 1 L.J ----'---'- = -- + - - - + - - - + · · ·. According to the alternating series test the 
n=l n + l 2 3 4 5 6 L L ' 

00 alternating series L an converges if two conditions are satisfied: lim I an I = 0 
n➔oo n=l 

3 9 27 81 
Note: Problems 27.30-27.31 refer to the alternating series 1 - 4 + 9 - 16 

+ 
25 

- · · · • 27.30 Write the series using summation notation. 
3 9 Let a, = 1 ,  � = - - , a3 = - , etc. Notice that the numerator of each term is a 4 9 00 (- 1r 3n power of 3, and each denominator is a perfect square : L 2 • 

n=O (n +  1) 

Note: Problems 27.30-27.31 refer to the alternating series 1 - !_ + 2_ - 27 + 81 
- . . . . 

4 9 16 25 27.3 1 Determine the convergence of the series. 
In order to satisfy the alternating series test, two conditions must be satisfied. 3n First, lim I an I must equal 0. Use L'Hopital's rule to evaluate lim ( )2 , from 

n➔oo n➔oo n + I Problem 27.30. 
The nth term does not approach 0 as n approaches infinity, so this series fails the first condition of the alternating series test and diverges according to the nth term divergence test. 
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� (- lY ln(n - 2) 27.32 Determine the convergence of the series: � ------. 
n=3 n - 2  

Apply the alternating series test. First, ensure that lim Ian I = 0 using L'Hopital's rule. n➔oo 

lim ln (n - 2) = lim l / (n - 2) = lim -1- = 0 
n➔oo n - 2  n➔oo 1 n➔oo 

� Now expand the series to verify visually that l a,, + 1 1 :::; l a,, I (i .e., each term is less than the term that precedes it) . � ln (n - 2) = lnl + ln2  + ln3 + ln4 + ln5 + ln6  + ln7 + ln8  + ln9  . . .  � n - 2  I 2 3 4 5 6 7 8 9 :::::: 0 + 0.3466 + 0.3662 + 0.3466 + 0.3219 + 0.2986 + 0.2780 + 0.2599 + 0.2441 Although a1 > a3 (0 .3466 > 0) and a5 > a1 (0 .3662 > 0.3466 ) ,  once n � 5, each term is less than or equal to the term that precedes it. To more rigorously prove that the terms of the series decrease, differentiate J (x) = ln(x - 2) _ 
x - 2  

, (x - 2) (�) - ln(x - 2) l - ln(x - 2) 
f (x) = (x - 2)2 = (x - 2)2 Note that f' (x) < 0 for all x > 3, so the function (and the terms of the series it generates) is decreasing on that interval. Because both conditions of the alternating series test are met, L00 (- It ln (n - 2) n - 2  converges .  n=3 

27.33  The remainder R,, of an alternating series describes how accurately the partial sum S,, reflects the actual sum of the series S: I Rn I = Is - Sn I :::; lan+1 I- Use R0 to identify an interval of values within which the sum of the series � (- 1r 1n(n - 2) . . d R  h b d . f h . 1 L.J 1s conta1ne . eport t e oun anes o t e 1nterva accurate n=3 n - 2 to three decimal places .  
According to the given information, l� I :::; la6+1 I, so the partial sum S6 approximates the actual sum of the series with an error of a7• Begin by calculating S6, the sum of the terms up to and including the n = 6 term. (Note that the series begins with n = 3.) Use a calculator to approximate the sum. (- 1)3 ln (3 - 2) (- 1)4 ln(4 - 2) (- 1)5 ln(5 - 2) (- 1)6 ln(6 - 2) � = --3---2-- + --4---2-- + --5---2-- + --6---2--lnl ln2 ln3 ln 4 = - - + - - - + -1 2 3 4 :::::: 0.32694308433724 

Lee,,.ve o.P.P (- 1)" "'-8"'-i�, j1Ast- like yolA J-iJ- wl-\e� cl-\ecki�B t-l-\e ..fivstco�J-it-io� o.P t-l-\e e,,.lt-ev�e,,.t-i�B sevies t-est-. 
'So \\Of-EVERY +-ev1M VIOt.S +-o be less H"°'-\\ +-1-\e +-ev1M be.Pove ii-: bl-\f- +-1-\eve V\0t.S +-o be SOIMe CL\f--.o.P.P poi\\fC1ike \\ � S') wl-\eve +-l-\0t.f-'s f-vl-\e °'-\\""sf-0t.ys f-vl-\e .Pov +-1-\e ves+- o.P +-1-\e 
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Now calculate a7• a, = 
(- lf7ln (7 - 2) = - ln 5 :=:::: -0.32188758248682 - 2  5 � (- lY ln(n - 2) Therefore, the actual sum of LJ ------ is no more than 

n=3 n - 2  a7 :=:::: 0.32188758248682 units greater or less than S6 :=:::: 0.32694308433724 . Add a7 to and subtract a7 from S6 to generate an interval that contains the actual sum of f (- lf ln(n - 2) _ 
n=3 n - 2  ( S6 - I� I , S6 + 1� I) :=:::: (0.32694308433724 - o.32188758248682, 0.32694308433724 + o.32188758248682) "" ( 0.005, 0.649) 

00 

Abscll-\f-e co\\
vev-8 e\\ce is L\se.A 

27.34 What conclusions can be drawn if }: an exhibits absolute convergence? 
O\\ly i.P so""'e o.P +-he +-ev-lMS i\\ +-he sev-ies ewe \\e8otf-ive, b ecotl-\se i+

ch�:Bes evev-yf-hi\\8 i\\f-o pos1hve +-ev-""'s. Thot+-IA-\eot\\S yol,\ Cot\\ L\se +-'. L' �e Y-otrto, v-oof; ot\\.A 
i\\f-e8v-otl +-es+-s (which 

otpply O\\ly +-o posi+-ive 
sev-ies). 

00 00 

n=l 

If L I an I converges, then L an converges absolutely ;  there is no need to actually 
n=l n=l 

00 test the convergence of L an in such cases-it is guaranteed. However, if 
n=l 

00 00 00 }: lan l diverges, }: an may still converge ; if it does, }: an exhibits conditional 
n=l n=l n=l convergence. 

� (- lf ln(n - 2) 27.35  Determine whether LJ ------, the series defined in Problem 27.32 , 
n=3 n - 2  

Tue wl-\ol e 
poi\\+- o.P +-e sf-i\\8  .Pov

o,.bsoltAf-e co\\Vev-8e\\ce 

i s  +-o see i.P +-\-\e sev-ie s 
co\\Vev- 8 es wl-\e\\ yotA f-o,.\:. e 
+-\-\e ot'osoltAf-e vo,.ltAe o.P 

evev-y +-en"\. 1\-\0,.f-'s 
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wl-\y yotA J..v-op +-\-\e 

\\e8o,.+-ives. 

converges absolutely or conditionally. 
Discard the factor (-1 ) " that causes the terms to alternate signs and apply the 

Joo ln(n - 2) integral test by evaluating the improper integral ---- dn. 
3 n - 2  

Joo ln (n - 2) . fa ln(n - 2) ---- dn = hm ---- dn 
3 n - 2  a➔oo 3 n - 2  dn Integrate using variable substitution: u = ln (n - 2) and du = --. n - 2  

J ln(a-2) = lim u du 
a➔oo 0 

. ( 
U2 1 In(a-2) l = hm -

a➔oo 2 
0 . [ln(a - 2)]2 = hm-----

a➔oo 2 
= oo 
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� ln(n - 2) The series LJ ---- diverges according to the integral test because n=3 n - 2  
J"' ln (n - 2) the corresponding improper integral, ---- dn, diverges. Therefore, 

3 n - 2  � (- 1r 1n(n - 2) LJ does not converge absolutely. However, it does converge n=3 n - 2  
'So if- C0'1.Vev-8es 

wl-\e" yoL\ leotve f-1-\e 
'1.e8otf-ives i" (ot'1.d. L\se 
f-1-\e otlf-ev-'1.otf-i'1.8 sev-ies 
+-est), bL\f- wif-1-\oL\f- f-1-\e conditionally, according to Problem 27.32 . '1.e8otf-ive f-ev-1,\\s, f-1-\e ---------------1 sev-ies .Aivev-8es. 

"' (- 1r-l 4n 27.36 Determine whether the series L 
( ) 

converges absolutely or conditionally. n=3 n + 4  ! 
Discard the factor that causes the terms of the series to alternate sign, (-1 ) " - 1

, and test the resulting series for convergence using the ratio test. 
. an+l . [(n + l) + 4] ! hm -- = hm 4n n➔oo an n➔oo 

(n + 4) ! 
• 

4n+1 (n + 4) !  = hm --- · ---
n➔"' (n + 5) !  4n 

. 0(4)� = hm -�------
n➔"' 0(n + 5)� 

. 4 = hm -
n➔"' n + 5 

= O  

a 
"' 4n Because lim n+1 = 0 and O < 1 ,  L 

( ) 
converges according to the ratio test. 

n➔O> an n=3 n + 4 ! "' (- 1r-l 4n Therefore, L ( ) ' converges absolutely. n=3 n + 4 . 
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Chapter 28 
ADVANCED I N F I N ITE SERI ES 

- s LY\t'\t" CO\\t"t'\l\\ '!(.
1
S CSevle T 

The final chapter of the book concerns infinite series that rep�esent ��nctions ; hence the series that follow will contain a variable (usuall:7 x) �n ad�1t1on to n ,{,he exercises begin with power series ; although a bn�f d1�cllu ss1one the · f · · power senes w1 ensu , about the representation of known unctions via . d . t I of . . t of the focus is paid to the determination of a radms an an m �rva maJon y F 11 1· ng that Taylor and Maclaurin series are used to estimate convergence. o ow ' · · d function values methods more elaborate than linear approx1mat1o�s an I capable of providing more accurate approximations further from t e x-va ues about which they are centered. 
TL-\is elt\01.ptev .:Ae01.ls witlt\ tlt\vee sped-fie types o.P sevies. Aetl""'-lly, it's two types o.P sevies, beeO\l.\Se t--\01.d01.l.\vi\\ sevies 01.ve "" sped-fie ki\\.:A o.P T 01.ylov sevies, bl.\t �ove O\\ tlt\O\t 10\tev. Yol.\'11 St01.vt witlt\ powev sevies, O\\\.:A yol.\v job will be to -hB l.\ve Ol.\t wlt\eve tlt\e sevies eO\\VevBe. TL-\0\t �eO\\\S yol.\'11 L-\0\ve to -hB l.\ve Ol.\t wlt\ielt\ ><-VO\l l.\es �""\::e tlt\e sevies eo\\vevBe wlt\e\\ yol.\ pl l.\B tlt\e� l\\ O\\\.:A wlt\iclt\ �O\\::e tlt\e sevies .:AivevBe. A.Ptev 0\ L-\e.Pty .:Aose o.P Be\\evie powev sevies, yol.\'11 .:Ae"'-1 witlt\ two sped-fie \::i\\.:As o.P powev sevies: T 01.ylov O\\\.:A t--\0\dO\l.\vi\\ sevies (wlt\e\\ tlt\eve 01.ve 0\\\ l\\-h\\ite \\l.\�bev o.P tev�s) Ol.\\.:A poly\\o�i01.ls (wlt\e\\ tlt\eve 01.ve "'- -h\\ite \\l.\�bev o.P tev�s). 
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Power Series 
fi\\t:Al\\8 i\\tev-v01.ls a.P ca\\vev8e\\ce 

A powev sevies OllwOlyS CO\\VevBes wke� ii- is ce\\i-eve.A, 
so �  � (x +"3? ��o \\+2 
CO\\VevBes Oli- x ::::- -"3 li-'s pvove\\ i\\ Pvobl�IM 2f."3. 

So +-ke -fivsi- +-ev1M 
will be (x - c) 1 ::::- x - c 
i\\si-eOl.A o.P (x - c;)o ::::- I . 

--r\.\e sevies st-Olvt-s 
"'t- \\ == \ \;:,ec01.v.se it

wov.lJ- co\\t-01.i\\ 0° i.P it- be -

8"'-\\ "'t- \\ == 0, wl-\'icl-\ is 
i\\J-et-ev1Mi\\01.t-e. 
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28. 1 

28.2 

Write the power series using summation notation and identify the x-value about which it is centered: 0 + _!_ (x + 3) + ! (x + 3)2 + � (x + 3)3 + · • •. 3 4 5 
Let the first term be a0 , the second term be a, , etc. Notice that the numerator of each coefficient is n, and each denominator is n + 2. Furthermore, each term 

00 contains the quantity (x + 3) raised to the n power: L _n_ (x + 3f. When com
n=o n + 2  

00 pared to the general form of a power series centered about X = c, L an (x - Cr, 
n=O 

n an = --2 and c = -3; therefore, the power series is centered about x = -3. n + 
Write the power series in summation notation and identify the x-value about x2 x3 x4 which it is centered: x + - + - + - + · · ·. 4 8 16  Each term in  this series contains x, so  i t  i s  beneficial to begin the series with n = I instead of n = 0 :  i x: .  Note that the power series is centered at c = 0, as 

n=l n (x - c) " = (x - 0) " = x' .  
00 28. 3 Prove that the power series L an ( x - cf converges at x = C. 

n=l 

Expand the power series. 
00 I an <x - cr = a, <x - cY + � <x - c)2 + a3 <x - c)3 + a4 <x - c>4 + · · ·  

n=l To determine the convergence of a power series at a specific x-value, substitute it into the series. 
00 L an ( C - Cr = tli ( C - C )1 + � ( C - C )2 + lls ( C - C )3 + a4 ( C - C )3 + • • • 

n=l = a, ( 0 )1 + � ( 0 )2 + a3 ( 0 )3 + a4 ( 0 )4 + • • • = 0 + 0 + 0 + 0 + · · ·  
= 0  The series has finite sum 0, so it converges when x = c. 
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00 

28.4 According to Problem 28.3, the power series L an (x - c r converges at x = C.  On Fov- eXC\IA-\ple, 

28.5 

n=O what other intervals might the power series converge? C\ powev- sev-ies ce'1.f-ev-e,:::I. C\f- c � 2. wif-1-. C\ YC\""-iv.s o.P A power series converges on exactly one of the following sets of x-values : (1 )  x = c C0'1.Vev-8e'1.ce v- � S-only; (2) all real numbers : (-00,00 ) ;  or (3) on the interval ( c - r, c +  r) , where r is C0'1.Vev-8eS -Pov- <'\II the radius of convergence (i.e. , I x  - c I < r) . � x-v<'\lv.es v.p f-o S- v.'1.if-s ----- C\w<'\y -Pv-o""' x � 2.: What is the difference between the radius of convergence and the interval of convergence of a power series? 
00 If the power series L an (x - Cr has radius of convergence r, then the series 

n=O converges for x between c - r and c + r. However, you must test the endpoints 
x = c - r and x = c + r individually to determine whether or not the series converges at each. �-------------------------

(2. - s-, 2. + S") � (->,7). 

Note: Problems 28.6-28.9 refer to the power series t (-� r 
28.6 Determine the radius of convergence for the series. 

1MiBI-.+- co\\vev-Be e,,.½-- bo+-\.\ o.P i+-s e\\J-poi\\rS, \\ei½--l-\eve\\J-poi\\t; ov- o\\ly o\\e o.P +-l-\e1M. 
Apply the ratio test to determine where the series converges absolutely. 

. y1(x) v1 = hm �__,,--�-....,1 
n➔OO 0 (4)0 

= lim l_:_I n➔oo 4 The value of the expression l�I is unaffected as n approaches infinity, so lim l_:_ I = l_:_ 1· According to the ratio test, the series converges only if the limit is 
n➔OO 4 4 less than I :  l� I < 1. Multiply both sides of the inequality to solve for x: lx l < 4 . Note that this expression has form I x - c I < r if c = 0 and r = 4. Therefore, the series 
� (-� r has radius of convergence 4. 

Bec<'\v.Se /: [ ""-oes'1.1f- 1-.C\ve C\'1.}' '1.1s i'1. if-. 
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l�\\cv-i\\8 
(- 1) , (wl--.icl--. 

is \\CV-1,\\otl d.Lwi\\B 
+-l--.e otl+-ev-\\ot+-i\\8 

sev-ies +-es+-), otll 
+-l-.ot+-'s le.P+- i\\ +-l-.e 
sev-ies is I , becotL\se 
+-ecl-.\\icotlly H)" ==-
I H)". Tl-.ot+- l,\\eot\\S 
+-l--.e \\ +-t-. +-ev-1,\\ is 
I , \\c+- 0, sc +-l--.e 
sev-ies .Aivev-8es. 

YcL\ Cot\\ 
plL\8 pcsi+-ive ot\\.A 

\\e8ot+-ive x's i\\+-c 
+-l--.is pcwev- sev-ies, bL\+
+-l-.e v-ot+-ic ot\\d. v-cc+
+-es+-s wcv-\:. c\\ly wi+-l-. 
pcsi+-ive +-ev-1,\\s, sc 
ycL\ \\eed. otbSclL\+-e 
VotlL\es. 
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Note: Problems 28.6-28.9 refer to the power series i(-� )n. 
28.7 Does the series converge at the left endpoint of its interval of convergence? 

According to Problem 28.6, the left endpoint of the interval of convergence is 
x = -4. Substitute that value into the power series. 

oo 
( 

(- 4)
)

n 00 (4 )
n 00 

n I --4 = I 4 = I 1 
n=O n=O n=O 

The series diverges according to the nth term divergence test. 

Note: Problems 28.6-28.9 refer to the power series i(-� r 
28.8 Does the series converge at the right endpoint of its interval of convergence? 

Substitute the right endpoint, x = 4, into the series. 

The alternating series diverges according to the nth term divergence test. 

Note: Problems 28.6-28.9 refer to the power series i (-� r 
28.9 Identify the interval of convergence of the series and verify the answer using the 

root test. 

According to Problems 28.7 and 28.8, the series diverges at both of its endpoints, 
so the interval of convergence does not include either: (-4,4) . Apply the root test 
to determine whether the series converges absolutely. 

lim n�l(- � )
n

l = lim 1� 1 
n➔oo V I\ - 4} I n➔oo 4 

According to the root test, the series converges only if the limit is less than 1 .  

lx l < 4 

Therefore, the radius of convergence is r =  4, which matches the radius of 
convergence determined by Problem 28.6. You already know that the series 
diverges at x = -4 and x = 4 (according to Problems 28.7 and 28.8) , so the interval 
of convergence is (-4,4) . 
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� (2n) xn 

Note: Problems 28.10-28.12 refer to the power series LJ �-
n=O 

28. 1 0  Determine the radius of convergence of the series. 
Apply the ratio test to determine where the series converges absolutely. 2 (n + l) xn+I lim I an+I I = lim 3n+1 n➔O> an n➔O> (2n) xn 3n 

= lim 1 2 (n +  l) xn+I _ ___!'.__I n➔"' 3n+I (2n) xn 

n + l  I 
. ,2 (n + l) 0 (x) P1 = hm ,--�-----�, 

n➔"' P1 (3) (,2n) 0 
= lim I n + 1 . xi 

n➔oo 3n 
The '1.1.\1,\\evotf-ov ot'1.d. d.e\\Ol,\\i\\otf-OY VlotVe f-Vle Sotl,\\e d.e8vee ( I) so .Aivi.Ae �-------1 f-Vle coe.P-ficie'1.f-s 0.p f-Vle " +-evl,\\s +-o 8e+

l/3. Note that lim -- = -. -----n➔"' 3n 3 
= l½ · xl 
= Iii According to the ratio test, the series converges only if the limit is less than 1. 

Multiply each side by 3 to solve for x. 

lx l < 3 A power series has radius of convergence r about x = c given I x - c I < r. In this problem, c = 0 and r =  3, so the radius of convergence is 3, and the series converges on the interval (c - r, c +  r) = (0 - 3, 0 + 3) = (-3,3) . 
Note: Problems 28.10-28.12 refer to the power series � (2n) xn

. LJ 3n 
n=O 

28. 1 1 Does the series converge at the left endpoint of its interval of convergence? 
According to Problem 28.10, the left endpoint of the interval of convergence is 
x = -3. Substitute x = -3 into the power series to determine whether or not the series converges. � (2n) (- 3f 

LJ 3n 
n=O 
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Pvcble1M 
28'. 1 0  Sotys 

+-l-.ot+- +-l-.e t\\f-evvotl 
c.P CC\\Vev8e\\ce is 

AT LEA-ST (-'3,'3). Tl-.e 
otCf-L\otl t\\f-evvotl CCL\ld. 

l-.otve bee\\ [-,,,), (-,,,], 
cv [-'3,'3], i.P ei+-l-.ev cv 

be+-[,. e\\d.pci\\f-s 
l-.ot.A wcv\::.e.A. 
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i
(2n)(- 1r JI' = i (- 1r (2n) 

n=O JI' n=O 

This alternating series diverges according to the nth term divergence test: 

lim 2n =I:- 0. Therefore, i (2n) xn 

diverges at x = -3. 
n➔oo 

n=O 3
n {_ 

Note: Problems 28.10-28.12 refer to the power series i (2n) xn
. 

n=O 
3n 

28. 1 2  Does the series converge at the right endpoint of its interval of convergence? 
Indicate the interval of convergence for the series. 

Substitute x = 3 into the power series. 

i
(2n) J/ = i 2n 

n=O JI' n=O 
oo 

(2 ) n 

The series diverges by the nth term divergence test. Because the series L ___!!____f!-
diverges at x = -3 and x = 3, its interval of convergence is (-3,3) .  n-o 3 

00 (- 1r (x + 2r 
Note: Problems 28.13-28.14 refer to the power series L ( n )  n-0 n 2 

28. 1 3  Identify the radius of convergence for the series. 

Use the ratio test to determine where the series converges absolutely. 

1. I an+! I 1· Im - = Im 
n➔oo an n➔oo 

(x + 2r+l 

(n + 1) (2n+l ) 

(x + 2r 
n (2n ) 

. 
I 

(x + 2r+l n (2n ) 
I =

�� (n + 1) (2n+l )
. 

(x + 2r 

. � (x + 2)(n)VJ 
= hm 1 -------�-, 

n➔oo (n + l) VJ (2)� 

= lim l
n (x + 2)

1 
n➔oo 2 (n + 1) 

= lim 1-
n 

(x + 2)1 
n➔OO 2n + 2  

= l½ <x + 2)1 
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According to the ratio test, the series converges if It (x + 2)1 < 1. Multiply both sides 

of the inequality by 2 to reach the form I x - c I :5 r: 

The power series is centered at c = -2 and has radius of convergence r =  2.  

00 (-1r (x + 2r 
Note: Problems 28.13-28.14 refer to the power series L 

( n ) n=O n 2 

28. 1 4  Identify the interval of convergence for the series. 

The series converges on the open interval ( c - r, c + r) = (-4, 0) and may converge 
at either ( or both) of the endpoints as well. Substitute x = -4 and x = 0 into the 
series. 

00 1 
Substituting x = -4 into the power series results in L -, a divergent p-series;  

n=O n 
substituting x = 0 results in a convergent alternating series (according to the 

alternating series test) . Therefore, the interval of convergence for 

f <- 1r (x + 2r is (-4,0] . 
n=O n (2n ) 

00 (x + 4r 28. 1 5  Identify the interval of convergence for the power series :  L ( ) ( ) . n=O n + I n + 5  

Apply the ratio test to determine the radius of convergence. 

(x + 4r1 

hm �--��--� = hm ----- · ----- = hm ---- x + 4  = x + 4  . [(n + l) + l] [(n + l) + 5] . I (x + 4f
+1 (n + l) (n + 5)

1 
. I n2 + 6n + 5  

( 
) I I I 

n➔oo (x + 4f n➔oo (n + 2)(n + 6) (x + 4f n➔oo n2 + 8n + l2 
(n + l) (n + 5) 

00 (x + 4r 
According to the ratio test, I----- converges when Ix + 41 < 1 . The series 

n=O (n + I) (n + 5) 
is centered at c = -4, has radius of convergence r =  I, so it converges on the interval 
(-5,-3) . Substituting the endpoints of the interval into the series produces two 
convergent series, as demonstrated on the next page. 

i"o,.\:.e 
t-L\e opposit-e 

o.P t-L\e \\IAIM°bev- t\\ 
po,.ve\\t-L\eses t-o Bet
c, St\\ce t-L\e .Pov-1M1Alo,. 
I )(  - c l � v- co\\t-0'.i\\s 

(- l)"(- 1)" � [(- 1)"]2. 
No IMoti-+ev- wl-\o,.+- \\ is 
yoL\'11 e\\.A L\p SqL\o,.v-i\\; 
- I , so (- l)"(- 1)" � 1 .  
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Tl-\e d.e8v-ee o.P f-1-\e '1.v.lMev-otf-ov- is ' ot'1.d. f-1-\e d.e8v-ee o.P f-1-\e d.e'1.o1Mi'1.otf-ov- is 2. 'Si'1.ce '3 > 2, f-1-\e li1Mif- is oo . 
Powev- sev-ies Al.WAY'S co'1.vev-8e wl-\ev-e t-L\ey'v-e ce\\t-ev-eJ-, 

\\O IMott-t-ev- wl-\ott-. 
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00 (-5 + 4)" 00 (- 1)" � (n + 1) (n + 5) = � n2 + 6n + 5  
00 (-3 + 4)" 00 r 00 1 � (n + 1) (n + 5) = � n2 + 6n + 5  = � n2 + 6  

Substituting x = -5 results in a convergent alternating series, and substituting 
x = -3 produces another convergent series. Therefore, both endpoints should be included in the interval of convergence : [-5,-3] . 

00 3n (x - 1r Identify the interval of convergence for the power series :  I----
< 

n=O n !  
Apply the ratio test to determine the radius of convergence. 

3n+l (x - 1r+l 

(n + l) ! . 
1
3•+1 (x - 1r+l n !  I . ,,? · 3 - � (x - l) · ,,n1  . 

1
3 (x - l)

I �� 1 -
3"_(_x_-�l)-. -, = �� (n + l) ! . 3" (x - 1r = �� (n + l)yn)!rJ� = �� � = O 

n !  According to the ratio test, the series converges when this limit i s  less than 1 .  
00 (x + 4)" Because the limit equals O for any real number x, L 

( ) ( ) 
converges for 

n=O n + l  n + 5  all real numbers : (-co, co ) .  � n ! (x - 3r 28. 1 7  Identify the radius of convergence for the power series : LJ ( )2 
n=2 n + 5  

Apply the ratio test to determine where the series converges absolutely. 
(n + l) ! (x - 3)"+1 [(n + l) + 5]2 n! (x - 3)" (n + 5)2 = lim l (n + l) ! (x - 3)"+1 _ (n + 5)2 l = lim l (n + l) (n + 5)2 (x - 3)1 = oo 

n➔oo (n + 6)2 n ! (x - 3)" n➔oo (n + 6)2 

The ratio test stipulates that the limit must be less than 1 in order for the series to � n ! (x - 3)" converge. Clearly, co > 1 ,  so LJ ( )2 diverges for all values of x except for the 
n=2 n + 5  center x = 3. The radius of convergence is r =  0. 
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00 xn x2 x3 x4 

28. 1 8  The power series L - = 1 + x + - + - + - + · · · generates the exact values of 
n=O n !  2 !  3 !  4 !  the function .f(x) = e'. Verify that the power series, like e", i s  its own derivative. 

Differentiate each term of the convergent power series with respect to x. 

d [ x2 x3 x 4 ] 2x 3x2 4x3 
- l + x + - + - + - + · · ·  = 0 + 1 + - + - + - + · · ·  
dx 2 !  3 !  4 !  2 !  3 !  4 !  

jx2 ;(x3 = l + x + -- + -- + · · ·  t · 2 !  J · 3 !  
x2 x3 

= l + x + - + - + · · ·  2 ! 3 !  Notice that the derivative i s  equivalent to the original power series. 
00 (- 1r X

2n+l 

28. 1 9  The power series L ( ) generates the exact values of g(x) = sin x. What 
n=O 2n + l  ! power series generates the values for the function h (x) = cos x? 

d Because - (sinx) = cos x, you can differentiate the convergent power series 
dx representing sin x to create the convergent power series representing cos x. 

!!:___((- 1r x2n+l
) = 

(- 1r (2n + l) x2n+l-l 
dx (2n + l) ! (2n + l) !  

Write (2n +l) ! as  (2n +  1 ) [ (2n +  1 ) - 1] !  = (2n +  1 ) (2n) ! . 
(- 1r (2n + l) x2n 

00 (- 1r x2n Therefore, cos x = L ( ) ! 
n=O 2n . 

(2n + 1) (2n) ! (- 1r x2n 

= ----(2n) ! 

h, ct-1-\ev-wcv-,As, ycL\'11 8ett-l-\e SotlA-\e t-1-\i "8 i.P ycL\ plL\8 sc""'e '1.L\IA-\bev- >< i'1.t-c e' 
00 � 

Ot.'1_,:::I. r. ;. �=o " . 

Pv-c'ole1M 28'.2> pv-cves H'\ott- t-L'\is pcwevsev-ies is cc\\Vev-8e"t-.Pcv- otll v-ee,,.l 

(- If (2'1.+I) ! CC'1.Sf-ot'1.f; SC i8'1.Cv-e ifwl-\iJe ycL\ +-otke t-1-\e ""-ev-ivott-ive c.P 
2>t +- I >< wit-I-\ t-1-\e pcwev- v-L\le. 
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J.. evivotf-ive c.P -P{x). 
YcL\ Cot\\ L\Se  pvil,\\es 
-Pc� +-1-\ e -fivs+- f-1-\vcL\BV\ 
f-1-\tvJ.. J.. evivotf-ives (.P� 
.P'� ot\\J.. -P111

), bL\f- L\Se 
potve\\f-1-\eses .Pcv 
-PcL\vf-1-\ J.. evivotf-ives 
ot\\J.. 1-\iBl-\ev (.P(4) 
.pCs:l, ot\\J.. .pC'). 

I 

Tl-\is is 
'1.cf- L\SL\otlly hL\e

C'1.ly ot .Pew .PL\'1.cf-ic'1.s 
otve ec:iL\otl +-c +-1-\eiv 
J.. evivotf-ives, ot\\J.. e' is 
C\\e c.P +-1-\ el,\\. 

.peo> i s  +-\.\e 
1'1-e v c+-Vi'' J..ev ivot
+-ives c.P .P(;,c), wl-\i cl-\ 

i s  jl.\St"' .P(;,c). 

5 3 8  

Taylor and M aclau rin  Series 
'Se v ie s +-\.\e,,.+- e,,.pp v c;,ci1Me,,.f--e .Pl.\\\c+-ic\\ ye,,.ll.\es 

28.20 Define the pth Maclaurin polynomial of a function f(x) , assuming f(x) is differentiable at least p times. 
The Maclaurin polynomial is defined as the first p terms of an infinite series. � p ln) (0) n f' (O) J" (0) 2 f 1 1 1 (O) 3 /

4) (0) f P) (0) }: --- x = f (O) + -- x + -- x + -- x + -- + · · · + --- xP n=0 n !  l !  2 !  3 !  4 !  p !  
28.2 1 What i s  the difference between the pth Maclaurin polynomial of  a function .f(x) and the pth Taylor polynomial? 

A Taylor polynomial is also defined as the first p terms of an infinite series. p fnl (c) n f' (c) f" (c) 2 f"' (c) 3 fP) (c) p }: -- (x - c) = f (c) + -- (x - c) + -- (x - c) + -- (x - c) + · · · + -- (x - c) n=0 n !  l !  2 !  3 !  p !  
00 Both the Maclaurin and Taylor series are power series of form L an (x - Cr, fn) (c) n=0 where an = ---. However, Maclaurin series are always centered about c = 0, n ! whereas Taylor series can be centered about any real number c. 

oo X
n 

X
2 

X
J 

X
4 

Note: Problems 28.22-28.23 refer to the power series L - = 1 + x + - + - + - + · · · , . . l' . d d . P bl 28 18 o n! 2! 3! 4! origina ty intro uce in ro em . . n• 28.22 Demonstrate that the power series is actually the Maclaurin series for J(x) = e". 
00 ln) (o) The terms of a Maclaurin series have the form }: �-- xn; the nth term contains n=0 n !  the nth derivative off(x) . Note that the nth derivative of e' (with respect to x) i s  e'. -----➔ e• = f (x) = f' (x) = f" (x) = f"' (x) = /4l (x) = · · ·  Expand the first few terms of the Maclaurin series to verify that its terms 2 3 4 correspond with the terms of the series I +  x + :___ + :__ + :__ + · · · . 2 !  3 !  4 !  

00 
/

n
l (0) n /0) (0) o f' (O) 1 f" (O) 2 f"' (O) 3 /4) (0) 4 }: �-- x = --- x + -- x  + -- x  + -- x  + --- x + · · ·  n=0 n l  0 !  l !  2 ! 3 !  4 !  0 0 0 0 0 = '!__ xo + '!__ xi + '!__ x2 + '!__ x3 + '!__ x4 + · . .  0 !  I !  2 ! 3 !  4 !  

x x2 x3 x4 = ! + - + - + - + - + · · ·  I 2 ! 3 !  4 ! 
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oo x" x2 xJ x4 
Note: Problems 28.22-28.23 refer to the power series L - = 1 + x + - + - + - + · · · , 

. . l' . d d . P bl 28 18 o n! 2! 3! 4! origina ty intro uce in ro em . . n• 

28.23 Prove that the series converges for all real numbers . 
Apply the ratio test to determine the absolute convergence of the power series . 

. l an+l l . (::�) !  . I xn+l n ! I . y1 (x) ,0rl} . 1 1 I hm - = hm 1 ---1 = hm --- • - = hm -----� 1 = hm -- • x = I0 · xl = 0 n➔00 an n➔00 xn n➔00 (n + l) ! xn n➔00 (n + l) ,0rl)y1 n➔00 n + l n !  According to the ratio test, the series converges when this limit is less than 1 .  Because 0 < 1 for all x, the series converges for all real numbers . 
oo ( - l)" X

2n+l 

Note: Problems 28.24-28.25 refer to the power series L 
( ) 

, , originally introduced in 
Problem 28.19. n•O 2n + l · 
28.24 Demonstrate that the power series is actually the Maclaurin series for g(x) = sin x. 

Expand the first five terms of the series ( n = 0 through n = 4) in order to discern a pattern. � (- lf x2n+1 x x3 x5 x7 x9 � (2n + l) !  = l !  3 !  + 5 !  7 !  + 9 !  Calculate derivatives of  g(x) = sin x and evaluate each at x = 0. g (x) = sinx : g' (x) = cos x : g" (x) = - sinx : g'" (x) = - cos x : g<4l (x) = sinx : g<5l (x) = cos x 
I I I I I 

I I I I (4) I (5) g (0) = sin0 : g' (0) = cos 0 : g" (0) = - sin0 : g"' (0) = - cos 0 : g (0) = sin0 : g (0) = cos 0 = 0  : = l ' = 0  = - 1  ' = 0  ' = l Note that the derivative values repeat: 0, 1, 0, -1 , 0, 1 ,  0, -1 , . . . . Substitute the values of g(x) and its derivatives into the Maclaurin series formula. 
I g<n) (0) xn = g (0) xo + g' (0) XI + g" (0) x2 + g"' (0) x3 + g<4) (0) x4 + · . .  n=O n !  0 !  l !  2 !  3 !  4 !  0 1 0 2 - 1  3 0 4 = - · l + - · x + - · x + - · x + - x + · · ·  1 l !  2 !  3 !  4 !  

X x3 = - - - + · · ·  l !  3 !  � g<n) (o) When n is even, the corresponding term of LJ --,- xn equals 0. Expand the n=O n . series through the n = 9 term to verify that the terms match the power series expanded at the outset of the problem. i g<n) (O) Xn = XI 
_ X

3 + X5 _ X7 + Xg - • • •  n=O n !  1 3 !  5 !  7 !  9 

Ne IA-\C\+-+-ev wl...C\+- x ycL\ plL\8 i'1., 
I Ox l  ==- O. 
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2>t +  I 
X Ol\\.A 

x �otve +-�e Sot!Me 
botses, so 1Mv.l+-iplyi\\8 

+-�e!M +-08e+-�ev 1Meot\\S 
ot.A.Ai\\8 +-�e expo\\e\\+-s: 
2>t + I + 2  2>t + ,  x == x 

• l+-'s ot 
Boo.A i.Aeot +-o wvi+-e 2>t + ,  • 
x +-�is Woty becotv.se 
i+- le+-s yov. Cot\\cel 
+-�e .Potc+-ov ov.+- wi+-� 
+-1 . 2>t + I . Vie x 1 \\ +-�e 

Wvi+-i\\8 (2\\+"3) ! otS 
C2\\+"3)(2\\+2)C2\\+ I) ! is 
+-�e Sot!Me OlS 
wvi+-i\\8 1 2! OlS 
(1 2)( 1 1)( 1 O!). 'Sv.bhotc+-
1 .Pvo1M eotc� .Potc+-ov 
OlS yov. 80. 

Wl-\e� � is 
oJ..J.., l-\ (>t) == 0, so +-l-\e 
sevies will co�+-oti� o�ly 
>< votiseJ.. +-o eve� 
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Note: Problems 28.24-28.25 refer to the power series I ( - 1r x2n+I

, originally introduced in 
Problem 28.19. n•O (2n + I) ! 

28.25 Prove that the series converges for all real numbers. 

Apply the ratio test to determine the absolute convergence of the power series. 

X
2(n+l)+l 

. l
an+l 1 - . [2 (n + l) + 1] ! 

hm - hm 2n+l n➔OO an n➔OO _x _ _  
(2n +  l) ! 

= lim I x2n+3 

• (2n + 1) !  I n➔oo (2n + 3) ! x2n+l 

Note that x2" + 3 = (x2" + 1 ) (x2 ) because (2n + 1 )  + 2 = 2n + 3. 

� (x2
) � 

= lim ,------------� 
(2n + 3) (2n + 2) �� 

n➔OO 

= hm ----- • x2 · I 1 I n➔OO 4n2 + lOn + 6 

Note that lim I 2 

1 
I = 0, so lim I 

2 

1 
· x2 1 = 0 · x2 = 0. According to 

n➔OO 4n + l0n + 6  n➔OO 4n + l0n + 6  
the ratio test, the series converges when this limit is less than 1 .  Because 0 < 1 for 

00 (- 1r x2n+l 
all x, L 

( ) 
converges for all real numbers . 

n=O 2n + l ! 

28.26 Write the sixth-degree Maclaurin polynomial for h(x) = cos x and verify that its 
terms are generated by the series identified by Problem 28.19 : 

00 (- 1r x2n 

cos x = L ( ) ' 
n=O 2n . 

Differentiate h (x) = cos x six times and evaluate each derivative at x = 0. 

h (x) = cos x h (0) = cos 0 = 1 
h' (x) = - sinx h' (0) = - sin0 = 0 

I 

h" (x) = - cos x : h" (0) = - cos 0 = - 1  

j:__:_:_:_:_:.::_.::_-=�--:_------.!.h:_'_"�(x:;)�=�s�in�x�-4
1 

h"' (0) = sin0 = 0 

h<4) (x) = cos x : h<4l (0) = cos 0 = 1 
I 

<5) (x) = - sinx ' h(s) (0) = - sin0 = 0 

h(6) (x) = - cos x : h(6) (0) = - cos 0 = - 1  
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Substitute h (O) ,  h' (O) ,  h" (O) ,  · · ·  , h<6l (O) into the Maclaurin polynomial formula. 

6 h(n) (0) n h (O) 0 h' (O) 1 h" (O) 2 h"' (O) 3 h(4) (0) 4 h(S) (0) 5 h(G) (0) 6 I --- x = -- x + -- x + -- x + -- x + --- x + --- x + --- x 
n=0 n !  O !  1 ! 2 !  3 !  4 !  5 !  6 !  1 0 - 1  2 0 3 1 4 0 5 - 1  6 = - · l + - · x + - · x  + - · x  + - · x  + - · x  + - · x  1 1 !  2 !  3 !  4 !  5 !  6 !  x2 x4 x6 = 1 - - + - - -2 !  4 !  6 !  

3 (- 1r x2n Expand the series L ( ') to verify that its terms match those of the 
n=0 2n . Maclaurin series. 3 (- 1r X2n (- 1)0 XO (- 1)1 X2(1) (- 1)2 X2(2) (- 1)3 X2(3) I ---- = --- + ---- + ---- + ----

n=0 (2n) ! O !  (2 · 1) !  (2 · 2) ! (2 · 3) ! x2 x4 x6 = 1 - - + - - -2 !  4 !  6 !  
28.27 Given cos 0.2 = O.98OO6657784124, estimate cos 0.2 using the second, fourth, and sixth degree Maclaurin polynomials for h (x) = cos x to demonstrate that the larger the degree of the approximating polynomial, the more accurate the approximation. 

., (- 1r x 2 n  According to Problem 28.26, the Maclaurin series for y = cos x is � (2n !) The first two terms of the series constitute the second degree Maclaurin polynomial. Add an additional term to create the four h egree Maclaurin polynomial and then another to create the sixth degree polynomial. 

Substitute n = 0.2 into each polynomial to approximate cos (0.2 ) .  
1 - <0-2)2 = 0.98 2 ! 1 - <0-2)2 + <O-2t = O.98OO6666666667 2 ! 4 !  1 - <0-2)2 + (o.2)4 - <0-2)6 = O.98OO6657777778 2 !  4 !  6 !  Although the second degree Maclaurin polynomial produces a fairly accurate approximation of cos (0.2) ,  the sixth degree polynomial generates an approximation accurate to nine decimal places .  

De\\'+- 8 e+
l-\L4.\\8 l.\f C\\ +-l-\e 

J-e8 v ee c.P 
+-l-\e Me,,.cle,,.L4.v-i\\ 

pcly\\c1Mie,,.l vev-sl.\s +-l-\e 
\\l.\lM'o ev- c.P +-ev-1MS i+-
l-\e,,.s vev-sl.\s +-l-\e L4.pp ev
li1Mi+- c-P +-l-\e Sl.\1M1M01.+-ic\\ 
\\c+-e,,.+-ic\\. JL4.s+- v-e1Me1M
'o ev- +-l-\is: "" secc\\J
J-e8 v ee 1-'\e,,.cle,,.l.\v-i\\ 
pcly\\c1Mie,,.l e\\J-S 

wi+-l-\ -,r?. 
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o,.l1Most- ecqv.o,.ls 1\\ 2."15 wl-\e\\ ,c: -:= 0. --rl-\e si1Mplest- O\\e is 
.P(,c:) -:= 1\\ 0 - ,c:) beco,.v.se '3 is 0\\\ i\\t-e8ev O\\\J.. 

-P(O) -:= 1\\ '3, wl-\icl-\ is close t-o 1\\ 2."15. 

Tue o,.ci-L\o,.I VotlL\e o.P h, 2 ."15 is l . 08' 1 8'05170'3517 .... 
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28.28 Approximate ln (2 .95) using a fourth degree Maclaurin polynomial, given ln 3 = 1 .09861228867. 
Maclaurin polynomials only provide accurate function approximations for x-values very close to 0. Begin by constructing the function .f(x) = ln (3 - x). Calculate the first four derivatives of ln (3 - x) and evaluate each at x = 0. 

f (x) = ln(3 - x) j' (x) = - (3 - xr l = - -1-3 - x  
f (0) = ln (3 - 0) = ln3 J' (O) = - -1- = - _!_ 3 - 0  3 11 ( ) ( )-2 1 j X = - 3 - x  = - 2 (3 - x) f'" (x) = - 2 (3 - xr3 = - 2 

3 (3 - x) f4l (x) = - 6 (3 - xr4 = 6 4 (3 - x) Apply the Maclaurin series formula. 4 fn) (0) f (x) = I --xn 

n-0 n !  

f" (0) - - 1 - (3 - 0)2 

f"' (0) = - 2 (3 - 0)3 
1(4) (0) - - 6 = - (3 - 0)4 

f(0) o f' (0) 1 f" (0) 2 f"' (0) 3 f4l (0) 4 = -- x + -- x + -- x + -- x + --x 0 !  l !  2 !  3 !  4 !  

1 
9 
2 27 2 27 

( ln3 ) ( - 1 / 3) ( - 1 / 9) 2 ( - 2 / 27 ) 3 ( -2 / 27 ) 4 = - · l + -- · x + -- x + --- x + --- x 1 1 2 !  3 !  4 !  
x x2 x3 x4 = ln3 - - - - - - - -3 18 81 324 Approximate ln (2 .95) by substituting x = 0.05 and the given estimate of ln 3 into the Maclaurin polynomial. 

x x2 x3 x4 J (x) = ln 3 - - - - - - - -3 18 162 324 
f (0.05) = ln 3 - 0.05 _ (0.05)2 

_ (0.05)3 _ (0.05)4 3 18  81 324 -------� = 1 .08180517061 
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Note: Problems 28.29-28.30 refer to the function f(x) = sin x. 

28.29 Identify the fourth degree Taylor polynomial for J(x) centered at c = 3.n _ 2 3.n Differentiate J(x) = sin x four times and evaluate each derivative at c = - . 2 
f (x) = sinx 1 ( 3; ) = sin 3; = - 1 
f' (x) = cos x 

f" (x) = - sinx 
f"' (x) = - cos x 

f' ( 3; ) = cos 3; = 0 
f,, ( 3.n ) - . 3.n _ 1 - - - sin- -

2 2 "' ( 3.n ) 3.n f 2 = -cos2 = 0  
/4l (x) = sinx Apply the Taylor series formula. /4) ( 3; ) = sin 3; = - 1 

� /n) (c) sinx :::::: L.J --(x - cr 
n-0 n ! :::::: ( /(3;/ 2) ) (x - 3;)° + ( /' (3� / 2) ) (x - 3;} + ( f" (��/ 2) ) (x - 3;r + 
(f'" (!� /2) ) (x - 3;r + (/4l (:;1 2) ) (x - 3;r 

:::::: -1 + .2. (x - 3.n-) + 2- (x - 3.n-)2 
+ _Q_(x - 3.n-)3 + - l (x - 3.n-)4 1 !  2 2 !  2 3 ! 2 4 ! 2 :::::: -1 + ½(x - 3; r - 214 (x - 3;r 

Note: Problems 28.29-28.30 refer to the function f( x) = sin x. 5.n 28.30 Estimate sin 3 using the Taylor polynomial generated in Problem 28.29. Compare the approximation to the actual value and identify two ways you could 5.n better approximate sin- using a Taylor polynomial. 3 5.n Substitute x = 3 into the polynomial generated in Problem 28.29. 
sin 5: :::::: - 1  + H 5: - 3; r - 214 ( 5: - 3; r 

:::::: - 1  + ! (10.n - 9.n )2 - __!_ ( 10.n - 9.n)4 2 6 24 6 
:::::: - l + tU0

2 
- 2� (ir :::::: -0.86605388341574 

W�e" YCL\'ve PL\il.Ai"B MoicloiL\vi" pcly'1.c1Mioils, ycL\ pl"'B O i'1.f-c f-� .A . e ev1�oif-ives, PL\f- w�e" ycLwe wcv\::i"B wif-� T oiylcv pcly'1.c1Mioils pll,\8 i" X = c. I 
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l.P }'Ol,\ .Ao\\'f-
.Peel like vewvif-i"B 

°'- .PL\\\c+-io\\ +-o L\Se 0t. 
M0t.cl0t.L\Yi\\ poly\\ol,\\i0t.l 
(like yol-\ l-.0t..A +-o .Ao i'1. 
Pvoblel,\\ 28'.28'), L\Se °'
T 0t.ylov poly\\ol,\\i0t.l i'1.
s+-e0t..A1 Si\\ce yol-\ COi.\\ 
ce\\f-ev if- 0t.f- °'-"-Y x
V0t.l L\e, \\of-jl-\sf-

x == 0. 
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. . . 5.n ✓3 Recall, from the umt circle, that sm- = - - :=:::: - 0.86602540378443, so the 
3 2 approximation is accurate to four decimal places. Increase the accuracy of the approximation by increasing the degree of the Taylor polynomial or centering 5.n 3.n the polynomial about a c-value closer to - than -. 

3 2 

28.3 1 Approximate In 2.95 using the fourth degree Taylor polynomial for f(x) = In x centered about c = 3. Compare the results to the approximation generated by the Maclaurin polynomial of equal degree calculated by Problem 28.28. 
/4.ent; ate f( x) 0 In x fouo· t;  mes and evaluate each dedvat ;ve at , 0 3 . 

J(x) = Inx 

f' (x) = x- 1 = _! 

J (3) = ln3 J' (3) = ! 3 
J"(x) = -x-2 = _ _!__ x2 f" (3) = _ _! 9 
f"' (x) = 2x-3 = � x3 f"' (3) = � 27 
f4) (x) = -6x-4 = - � f4) (3) = - � = - � X 81 27 Apply the Taylor series formula. 

4 fn) (3) lnx :=:::: I -- (x - 3r 
n=O n !  :=:::: J (3) · l + ( f' (3) ) (x - 3) + ( f" (3) ) (x - 3)2 + ( f"' (3) ) (x - 3)3 + (f4l (3) ) (x - 3)4 0 !  1 !  2 ! 3 !  4 !  :=:::: ln3 + ! (x - 3) - -1- (x - 3)2 + -2- (x - 3)3 - -2-(x - 3)4 3 9 · 2 ! 27 · 3 !  27 · 4 !  1 1 2 2 3 2 4 :=:::: ln3 + - (x - 3) - - (x - 3) + - (x - 3) - - (x - 3) 3 18  162 648 Approximate In (2.95) by substituting x = 2 .95 into the polynomial. 1 1 2 2 3 2 4 ln2.95 :=:::: ln3 + - (2.95 - 3) - - (2.95 - 3) + - (2.95 - 3) - - (2.95 - 3) 3 18  162 648 

1 1 2 l 3 1 4 :=:::: ln3 - - (0.05) - - (0.05) - - (0.05) - - (0.05) 3 18  81  324 This approximation is exactly equal to the approximation in Problem 28.28, so the Taylor and Maclaurin polynomial estimates of ln 2 .95 are identical. 
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Recipvoco,.l lcAe\\tities 

ccs )C ;: sec ;,c  

. I Sl\\ )C :: --
CSC ;,c 

Sl\\ )C I 
rot\\ ;,c :: -- :: --

ccs ;,c ccr ;,c 

rot\\ (; - ;,c) :: ccr ;,c 

sec (; - ;,c) :: csc ;,c 

ccs2 ;,c + si.\\2 ;,c :: I 

ccs ;,c I 
ccr ;,c :: -- :: --

Si.\\ ;,c rot\\ ;,c 
I sec ;,c :: -

ccs )C 

I csc )C ;: --
Sl\\ ;,c 

St\\ (; - ;,c) :: ccs ;,c 

ccr (; - ;,c) :: rot\\ ;,c 

csc (; - ;,c) :: sec ;,c 

I + rot\\ 2 ;,c :: sec2 ;,c 

2 2 I + ccr ;,c :: csc ;,c 

2 . 2  2 2 I I 2 - 2 CCS 2.;,c :: CCS ;,c - Sl\\ ;,c :: CCS ;,c - :: - Sl\\ )C 

ccs CA ±- B) :: ccs A ces B + si.\\ A si.\\ B 

ccs CA - B) + ccs CA + B) 
ccs A ccs B :: 

2. 

ccs CA - B) - ccs CA + B) 
Sl\\ A Sl\\ B ;: 2. 

2 I + ccs 2.;,c 
ccs )C ;: 2. 

• 2 1 - ccs 2.;,c 
Sl\\ )C :: 

2. 
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� (cos )<) ==- - si.\\ )< 
.:;l.)< 

.::l. 
- (Si.\\ )<) ==- cos )< 
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J ccs >< �>< == St\\ ,c + C 
J Sl\\ >< �>< == -ccs >< + C 
J t0t.\\ >< �>< == -1\\ Ices ><I + C 
J cct >< �>< == 1\\ lsi.\\ ><I + C 
J sec >< �>< == 1\\ 1sec >< + t0t.\\ ><I + C 
J csc >< �>< == -1\\ Iese >< +  cct ><I + c 

t><p�\\e�+-i0t.l/Lo[j 
A \\f-lc::Aev-lV0t.f-ives 

J e"' �>< == e"' + C 
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I ndex 
ALPHABETICAL L IST OF CONCEPTS WITH 

PROBLEM N U M BERS 

This comprehensive index organizes the concepts and skills discussed within the book alphabetically. Each entry is accompanied by one or more problem numbers in which the topics are most prominently featured. 
All 0.p tl-\ese \.\lAIM'bevs ve.Pev to pvo'bletMS, \.\Ot f"'Bes, i.\.\ tl-\e 'book Fov e;,coi.tMple, 8'.2. i.s 

tl-\e seco\.\� pvo'bletM i.\.\ Cl-\oi.ptev 8'. 

A-B 
absolute convergence : 27.34-27.36 absolute extrema (maximum/minimum) points : 14.1 1-14.15 acceleration function: see motion accumulation functions : 19.25-19.30, 19.35-19.36 alternating series test: 27.29-27.36, 28.14-28.15 amplitude of a trigonometric function: 8 .2 ,  8 .6-8.7 analytic geometry: 1 .8-1 . 10 antidifferentiation: see integration area between curves defined in terms of x: 19. 1-19.4, 19. 7 defined in terms of y: 19.5-19. 6, 19. 8  arc length: 23.1-23.5 ,  24.36-24.38 asymptotes horizontal: 4.31-4.33, 9. 17-9.20, 9.22, 9.24-9.26 (of a) hyperbola: 6.33 slant: 4.34-4.35 vertical: 4.29-4.30, 4.33, 4.35, 9. 15-9. 16, 9.21-9.23, 9.27 

average rate of change : 15.1, 15 .7 average value (of a function) : 19. 1 1-19.12 ,  19.14, 19.16-19.19, 19.22-19.24 axis of symmetry: 6.2 ,  6.4 
C 

center (of a) circle: 6. 10-6. 12, 6. 14-6. 15 (of an) ellipse: 6. 18 centroids : 23. 1 1-23.22 chain rule : 12 . 30-12 .44 change of base formula: 5 .16-5.19 circle equations in parametric and polar form: 24. 8, 24. 16, 24. 18 graph of 6. 10, 6. 16 standard form of 6. 12-6. 15, 16. 11 comparison test: 27.1-27.7, 28.15 completing the square : 2 . 31-2 .32,  20.22,  20.25-20.26, 21 . 29 complimentary angles :  7.8-7.9 concavity: 13 .20-13.22 ,  13 .25-13.26 conditional convergence : 27.34-27.36 



Index - Alphabetical List of Concepts with Problem Numbers 

conic sections : see parabola, circle, ellipse, or hyperbola 
conjugate axis of a hyperbola: 6 .28 
continuity definition of 11.1-11.3 graphical determination of 11.4-11. 16 one-sided: 11.9, 11.16 piecewise-defined functions: 11. 17-11.22 
convergence tests for infinite series alternating series test: 27.36-27.39, 28. 14-28.15 comparison test: 27.1-27. 7, 28.15 geometric series: 26.32-26.36, 27.5, 27. 7, 27.11 integral test: 26.37-26.41, 27.2, 27.6, 27.35 limit comparison test: 27.8-27.13 nth term divergence test: 26. 19-26.21, 27.10, 27.31, 28. 7-28. 8, 28. 11-28.12 p-series: 26.25-26.29, 26.38, 27.3-27.4, 27.9, 27.12-27.13, 28. 14 ratio test: 27.14-27.20, 27.36, 28.6, 28. 10, 28. 13, 28. 15-28.17, 28.23, 28.25 ro ot test: 27.21-27.28, 28.9 
critical numbers (of a) function: 13. 1-13. 7 (of a) polynomial inequality: 3.24-3.27 (of a) rational inequality: 3.28-3.30 
cross multiplication : 3.17-3.18 
coterminal angles : 7.12-7.14, 7.17 
cylindrical shells : see shell method 

D 
definite integrals (involving) absolute value: 18.25-18.26 calculated formally: 17.32-17. 41 derivatives of 18.34-18.39 functions defined by: 19.25-19.30 properties of 18.22-18.24 
degrees converting angle measurements into: 7.4-7.5 definition of 7.1  
derivatives determining direction and concavity: see sign graph estimating: 14.6-14. 7 evaluating graphically: 11.39-11.42 

( of) exponential functions: 12.5-12. 6 (of) functions defined by tables: 12.27-12.29 geometric interpretation of 11.37 graphs of 13.32-13.35 (of) inverse functions: 16.32-16.37 ( of) inverse trigonometric functions: 16.24-16.28 logarithmic differentiation: 16. 14-16.23 ( of) logarithmic functions: 12. 7-12. 8 one-sided: 11.39-11.42 ( of) parametrically-defined curves: 24.24-24.35 ( of) polar curves: 24.33-24.35 related to continuity: 11.38-11.42 (of) trigonometric functions: 12. 1-12.4, 12.26 
difference quotient definition of 11.29 differentiation using: 11.30, 11.34 evaluating derivatives using: 11.31-11.33, 11.35-11.36 
differential equations Euler's method: 25.35-25.41 slope field representations of 25.27-25.34 solving by separation of variables: 25. 1-25.11, 25.29 
differentiation : see derivatives 
direction of a function: see sign graph 
directrix of a parabola: 6.7-6.9 
disc method :  22 .9-22.18 
discontinuity infinite: 11. 12 j ump: 11. 11 point: 11. 10 removability: 11. 13, 11. 15, 11. 17-11. 18 
displacement: 19. 32-19.34 
distance formula: 1 .9 
distance traveled: 19.33, 19.35 
double root: 2 .30 

E 
eccentricity of an ellipse : 6 .25-6.27 
ellipse : equations in parametric and polar form: 24.6-24. 7, 24.31, 24.38 graph of 6.17, 6. 19-6.20, 6.22 standard form of 6. 18-6.23, 16.8  



Index - Alphabetical List of Concepts with Problem Numbers 

epsilon-delta definition of limits : 9.28-9.34 
Euler's method:  25.35-25.41 
exponential expressions 

properties of 2.1-2.2, 2.5 
simplifying: 2. 1-2.4, 5.28-5.31 

exponential functions 
domain and range of 5.2 
graphing: 5. 1, 5.3 
natural exponential function: 5. 13 
solving equations containing: 5.32-5.33 

exponential growth and decay: 25. 12-25.22 
exponentiation : 5. 34-5.36 
extreme value theorem: 14.1 1-14.15 

F 
factoring 

decomposition: 2.27, 10. 15 
difference of perfect squares: 2.24 
greatest common factor: 2.20-2.21 
grouping: 2.26-2.27, 10. 17  
quadratic trinomials: 2.22-2.23 
sum of perfect cubes: 2.25, 10. 18 

fixed point theorem: 1 1 .28 
focus 

of an ellipse: 6.24 
of a hyperbola: 6.34 
of a parabola: 6. 7-6.9 

functions 
arithmetic operations involving: 4.4-4. 6 
composition of 4. 6-4. 10 
defining: 4. 1-4.3 
determining direction of using first derivative: 

13. 8-13. 10 
graphing via transformations: 4. 11-4.21 
one-to-one: 4.3 

fundamental theorem of calculus : 18.16-18.21 ,  
18 .27-18.39, 19.2 

G 
geometric series : 26.18, 26.30-26.36, 27.5 ,  27.7, 

27. 11  

graphical transformations of functions : 
(involving) absolute values: 4. 17-4. 18, 4.20-

4.21 
reflection, horizontal and vertical: 4. 13-4. 14, 

4.20 
shift, horizontal and vertical: 4. 11-4. 12, 4. 19-

4.20 
stretch, horizontal and vertical: 4. 15-4. 16, 4.21 

greatest integer function: 1 1 .4 

half-life :  25. 16-25.18 
hyperbola 

H 
graph of 6.28-6.32 
standard form of 6.29-6.33 

1 -J-K 
implicit differentiation:  16.1-16.7, 16.9-16.13 
improper integrals : 21 . 30-21 .37, 26.37-26.41 
inequalities 

linear: 1. 14-1.20, 1.24-1.27 
polynomial: 3.24-3.27 
rational: 3.28-3.30 

inflection points : 13 .20-13.22 
instantaneous rate of change : 15 .1 ,  15.7 
integral test: 26.37-26.41 , 27.2 ,  27.6, 27.35 
integration 

(by) completing the square: 20.23, 20.25-20.26 
( of) exponential functions: 18.47 
( involving) inverse trigonometric functions: 

20. 14-20.21, 20.24, 20.35, 23.4, 25. 10, 
25.26, 26.40 

improper integrals: 21.30-21.37, 26.37-26.41 
( of) logarithmic functions: 21.3 
(by) long division: 20. 8-20. 13 
(by) partial fraction decomposition: 20.27-20.35 
power rule for: 18. 1-18.3, 18.5-18.9 
(by) parts: 21. 1-21. 7, 22.32, 22.34, 23.21 
(by) parts, tabular method: 21.5-21. 6 
(by) separation: 20.2-20. 7 
( of) trigonometric functions: 18. 10-18. 15, 

18.20, 18.40-18.46 
(using) trigonometric identities 21. 8-21.20, 23.2 
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(by) trigonometric substitution: 21.21-21.29 (by) variable substitution: 18.40-18.47, 19.22, 20. 14, 20.24, 21. 12-21. 13, 21. 15-21.20, 23. 13, 23.15, 26.39, 27.35-27.36 (using) zero sums: 20.6, 20.24 intermediate value theorem: 1 1 . 23-1 1 .28 interval of convergence (of a power series) :  28.5 ,  28.7-28.9, 28.1 1-28 .12 ,  28.14-28.16, 28.23,  28 .25 interval notation: 1 . 1 1-1 . 13  inverse functions creating: 4.25-4.26 definition of 4.22, 4.24 derivatives of 16.32-16.37 evaluating: 16.29, 16.31 graphing: 4.23 restricted ranges of trigonometric inverse functions: 7.28 (of) trigonometric functions: 7.28-7.33 verifying: 4.27-4.28, 16.30 
L 

least common denominator: 3 .1-3.6, 3 .22-3.23 L'Hopital's rule : 14.27-14.35, 21 . 33, 26.7, 26.21-27.22 ,  27.31-27.32 limit comparison test: 27.8-27.13 limits common known limit values: 10.28-10.31 evaluating using conjugates: 10.23-10.27 evaluating by factoring: 10. 11, 10. 13-10.21 evaluating graphically: 9. 10-9.16, 9.18-9.19, 10. 12 evaluating with L'Hopital's rule: 14.27-14.35, 21.33, 26. 7, 26.21-27.22, 27.31-27.32 evaluating by substitution: 10. 1-10. 10 formal definition of 9.28-9.34 (of) functions defined by tables: 10.4-10.6 involving infinity: 9. 15-9.27 general: 9.3-9.4, 9.6, 9.9 one-sided: 9. 1-9.2, 9.5, 9. 7-9.8, 10.9-10. 10 (of) piecewise-defined functions: 10. 7-10. 10 linear approximation: 25.23-25.26 linear equations 
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(involving) absolute values: 1.21-1.23 constructing: 1.5, 1. 7 

graphing: 1. 6 intercepts of 1. 6 solving: 1. 1 standard form of 1.3-1.4 local linearity: 25.23 logarithmic differentiation: 16.14-16.23 logarithmic functions : change of base formula applied to: 5. 16-5.19 common logarithms: 5. 13-5.14 domain and range of 5. 4 equations involving: 5.5-5.10 graphing: 5. 11-5.12 natural logarithms: 5. 13, 5.15 properties of 5.20-5.27, 22.27-22.28, 23.2 simplifying: 5.28-5.31 solving equations containing: 5.34-5.36 long division of polynomials : see polynomials, long division of 
M 

Maclaurin series and polynomials : 28.20-28.28, 28.31 major axis of an ellipse : 6.17, 6.23 maximizing functions : see optimization of functions mean value theorem of differentiation: 15.2-15.8 for integration: 19.9-19.19 midpoint formula: 1 .8  minimizing functions : see optimization of functions minor axis of an ellipse : 6.17, 6.23 motion rectilinear: 15. 11-15.22 position, velocity, and acceleration functions: 19.20-19.22, 19.31-19.35 
N 

Newton's law of cooling: 25.19-25.22 Newton's method:  14. 16-14.26 
nth term divergence test: 26.19-26.21 ,  27.10, 27.31 ,  28.7-28.8, 28.1 1-28.12 
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0-P 
optimization of functions : 15 .29-15.33 

parabola graphing: 6.5-6. 6 standard form of 6. 1-6.4, 6.9 
parametric equations arc length of curves defined by: 24. 36-24. 38 converting to rectangular equations: 24.2, 24.4, 24.6 differentiating: 24.24-24.35 expressing in rectangular form: 24. 7-24. 8, 24.26, 24. 31 graphs of 24. 1, 24.3, 24.5 
period of a trigonometric function: 8 .3, 8 .6-8.7 
phase shift of a trigonometric function: 8.4 
polar coordinates : 24.9-24.15 
polar curves area of regions bounded by: 24. 39, 24. 41 differentiating equations of 24.33-24.35 expressing in parametric form: 24.22-24.23, 24.33-24.35 graphs of 24. 16-24.21 
polynomials adding and subtracting: 2. 11-2.12 factoring: see factoring long division of 2. 16-2.17, 20.9-20.12 multiplying: 2.13-2.15, 10.22 
position function : see motion 
power rule for differentiation: 12 .9-12 .18 
power rule for integration: 18.1-18.3 ,  18.5-18.9 
power series convergence of 28. 3-28.4, 28.23, 28.25 interval of convergence of 28.5, 28. 7-28.9, 28. 11-28.12, 28. 14-28. 16, 28.23, 28.25 properties of 28.1-28.2 radius of convergence of 28.5-28.6, 28. 10, 28. 13, 28. 15-28.17, 28.23, 28.25 representation of functions: 28. 18-28.19, 28.22-28. 31 
product rule : 12 . 19-12 .22 ,  12 .28, 12 .38-12 .39, 

12 .41-12 .42 

proportions, solving: 3.17-3.18 
p-series:  26.25-26.29, 26.38, 27.3-27.4, 27.9, 

27.12-27.13,  28.14 

Q 
quadratic equations, solving completing the square: 2.31-2.32 factoring method: 2.28 quadratic formula: 2.29 
quotient rule : 12 .23-12 .26, 12 .29, 12 .38,  12 .40-

12 .41, 12 .44, 27.32 

R 
radians converting angle measurements into: 7.2-7.3 definition of 7.1  
radical expressions combining: 2.9 expressing with rational exponents: 2. 10 simplifying: 2.6-2.8 
radius of a circle : 6.10-6.12 ,  6 .14-6.15 
radius of convergence (of a power series) 28.5 -

28.6, 28.10, 28.13,  28.15-28. 17, 28.23, 28.25 
ratio test: 27.14-27.20, 27.36, 28.6, 28.10, 28.13, 

28.15-28.17, 28.23, 28 .25 
rational equations, solving: 3.17-3.23 
rational expressions pro ducts of 3.9-3.12 quotients of 3. 13-3. 16 reducing: 3. 7-3.8 sums and differences of 3. 1-3.6, 20. 1 
rectilinear motion: see motion 
reference angles : 7.23-7.25 
related rates : 15 .23-15.28 
relative extrema of a function: 13 .15-13.18,  

13 .24, 13 .28,  13 .30-13 .31 
remainder of an alternating series : 27.33 
revolutions, converting angle measurements 

into : 7.6-7.7 
Riemann sums formal Riemann sums: 17.32-17.41 geometric interpretation of 17.1, 17.13-17.15 informal Riemann sums: 17.1-17.16 
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left sum: 17.2, 17.8, 17.12-17.13, 17.23 
lower sum: 17.6, 17.10 
midpoint sum: 17.4, 17.9, 17.15-17.16 
right sum: 17.3, 17. 7, 17.14, 17.23 
upper sum: 17.5, 17.11 

right triangle trigonometry: 7.19-7.20, 7.29 
Rolle's theorem: 15.8-15.10 
root test: 27.21-27.28, 28.9 
rotational volume: see volume 

s 
second derivative test: 13 .29-13 .31 
separation of variables :  25.1-25 .2 ,  25.4, 25.6, 

25.9-25.10, 25.29 
sequences 

convergence of 26. 6-26. 8 
(of) partial sums: 26. 16-26. 18 
terms of 26. 1-26.5 

series 
evaluatingfinite: 26.9-26. 15 
geometric: 26. 18, 26.30-26.36 
p-series: 26.25-26.29 
telescoping: 26.22-26.24 

shell method: 22 .29-22.34 
sign graph 

(of the) first derivative: 13. 11-13. 18, 13.23-
13.24, 13.27-13.28, 16.30 

(of the) second derivative: 13. 19-13.22, 13.25-
13.26 

Simpson's rule : 17.27-17.31 
slope:  1 . 2-1 . 3, 1 .10, 25.35 -25.36 
slope fields : 25.27-25.34 
slope-intercept form of a line : 1 .5, 1 .7 
supplementary angles :  7. 10-7.1 1  
surface area (of rotation) :  23.6-23.10 
synthetic division:  2 .18-2 .19, 10.19-10.20, 20.13 
systems of equations :  1 .28-1 .31 
systems of inequalities :  1 . 32-1 .33 

T 
tangent lines, equations of: 14. 1-14.10, 16.10, 

16.13,  24.28, 24.35 

Taylor series and polynomials : 28 .21 ,  28 .29-
28.31 

telescoping series : 26.22-26.24 
transverse axis of a hyperbola: 6 .28 
trapezoidal rule : 17.17-17.27, 19.23, 23.5 
trigonometric equations, solving: 8 .22-8.34 
trigonometric functions and expressions 

evaluating: 7. 15-7.18, 7.21-7.22, 7.26-7.27 
graphing: 8. 1, 8.4-8. 7 
simplifying: 8. 8-8. 14 

trigonometric identities 
cofunction identities: 8.9-8.10 
double angle identities: 8. 12-8.14, 8. 16, 8.21, 

20.4, 21. 15, 22.21 
even/odd identities: 8. 8-8. 10 
power-reducing: 21. 11, 21. 13, 22. 7, 23.22 
product-to-sum: 21. 14, 21. 16, 22. 7 
Pythagorean identities: 8. 11-8. 12, 8. 14-8. 15, 

8. 19, 8.20-8.21, 21. 8-21. 10, 21. 12, 21. 15, 
21. 18-21.20, 23.2 

reciprocal identities: 8. 8, 8. 10-8. 11, 8. 19 
sum and difference identities: 8. 16-8. 17  
verifying: 8. 16, 8. 18-8.21 

U-V 
u-substitution: see variable substitution 
unit circle : 7.15-7.18,  8 .15 

variable substitution: 18 .40-18 .47, 19.22,  20. 14, 
20.24, 21 . 12-21 .13 ,  21 .15-21 . 20, 23.13,  23.15, 
26.39, 27.35-27.36 

velocity function: see motion 
vertex 

(of an) ellipse: 6. 17  
(of a) hyperbola: 6.28 
(of a) parabola: 6. 1-6.4 

volume, calculating 
(using) disc method: 22.9-22. 18 
(using) shell method: 22.29-22.34 
(using) washer method: 22.19-22.28, 22.30 
(of a) solid with known cross-sections: 22.1-22.9 



W-X-Y-Z 
washer method:  22 .19-22 .28, 22 .30 wiggle graph: see sign graph 
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