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Introduction 

vii 

Wherever we turn we hear about the "Computer Revolution" 
and our "Information Age." This is testimony to the public 

awareness of the invention and rapid development of the computer 
since the Second World War and the fundamental changes it has 
driven in the way we conduct business, perform scientific research, 
and spend our leisure time. With all of this attention to the computer 
we tend to forget that computing has a rich history that extends back 
beyond 1945. Since antiquity societies have had a need to process 
information and make computations, and they have met this need 
through technology. 

We offer here a concise survey of computing technology prior to 
the development of the modern computer. We show the continuity of 
the history of computing by tracing several distinct older traditions 
that over the last forty years have converged in today's technology. 
Our study ends essentially in 1945, at the time when the plans for the 
first electronic, stored-program computer were being made. 
However, we do follow the exit of these earlier technologies, none of 
which survived long after the commercialization of computers in the 
1950s. 

All of the contributors to this volume are historians or computer 
scientists who have specialized in the study of computer history for 
at least a decade. We have tried here to wear our scholarship lightly. 
All efforts have been directed toward providing a balanced and 
accurate account of our subject, while writing at a level accessible to 
the general reader. We have attempted to relate technical innovations 
to their intellectual, social, and institutional contexts: to consider not 
only the machines and devices that were built and the innovations 
they incorporate but also the purposes for which they were to be used, 
the financial and organizational constraints and opportunities that 
shaped their developments, and the impact they had on individuals 
and institutions. We recognize, however, that computing has only 
recently come under historical scrutiny and that our remarks, 
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especially on the context of technological development, are of only a 
preliminary nature. 

This book includes seven chapters, an introduction, and an epilog. 
The first chapter covers two millennia of effort to develop arithmetic 
and the means to facilitate its computation. The story takes a modem 
tum in the late- nineteenth century when the desk calculator, invented 
200 years earlier, became economically viable for American and 
European businesses. The essay traces the steady improvement in 
desk calculators in the twentieth century, their incorporation into the 
business world, and their diminished role after the invention of the 
computer. 

The second chapter, on difference and analytical engines, 
examines nineteenth-century attempts to build machines to compute 
mathematical tables. The prominent figure here is the British 
mathematician Charles Babbage, who in the plans for his analytical 
engine originated the fundamental idea of program-controlled 
computing. The need for machines to calculate mathematical tables 
continued in the twentieth century, and this line is traced through the 
work in the 1940s of Howard Aiken and George Stibitz. 

Computers are able to process symbols and control logical 
operations as well as calculate numerical problems. The first serious 
efforts to mechanize logical processes, in nineteenth-century Britain, 
are the starting point of the next essay. It continues with the 
development of logic machines in the twentieth century and, more 
significantly, the increasing knowledge of the relationship between 
logic and computing that forms a basis for computer science theory 
today. 

Punched-card sorting and tabulating equipment was first built to 
process information from the 1890 United States Census. By the 
1930s punched-card machinery became commonplace in 
medium-sized and large businesses in Europe and the United States. 
At the same time astronomers and other scientists began to adapt it 
to their own uses. These business and scientific users provided the 
original customer base for the electronic stored-program computer, 
while their punched-card equipment was adopted as peripheral 
equipment for the first electronic computing systems. 

By the 1930s a rich array of calculating technology existed in the 
form of desk calculators, punched-card equipment, and analog 
computers (in which numerical values are measured rather than 
counted). The next chapter examines a range of analog devices used 
especially during the 1930s and the Second World War for scientific 
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and engineering calculation. These include differential analyzers, 
wind tunnels, network analyzers, and gunnery computers. Analog 
and hybrid digital-analog computers were built until the 1960s, but 
they were eventually overtaken for almost every scientific and 
engineering application by the speed, precision, and programming 
flexibility of digital computers. 

A major reason for the success of the modem computer is its 
processing speed. Until the 1930s most calculating equipment was 
slow by comparison, due to the slow rate of operation of mechanical 
switches. In the 1930s, in independent projects in the United States 
and Germany, computing devices were developed that used 
electromechanical relays for switching. These provided marked 
increase in speed over mechanical calculators. The next chapter 
examines the electromechanical calculators built at Harvard 
University and Bell Laboratories in the United States and by Konrad 
Zuse in Germany. 

Even electromechanical relays were too slow to solve 
cryptanalytic and ballistic table-making problems confronting the 
Allied countries during the Second World War. These problems were 
met by the first serious attempts to develop electronic calculating 
equipment, notably the American calculator ENIAC and the British 
Colossus. The seventh chapter traces the move to computing with 
electricity, a critical step in the advance to the modem computer. 

The convergence of these prewar calculating technologies in the 
modem computer is the topic of the epilog. It shows how calculator 
users and applications were already well established by the 1930s; 
how various pieces of the new technology (e.g., the program-control 
concept, electronic switching, and punched-card peripherals) were 
already in place; and how many of the precomputer projects grew 
into projects to build the first generation of computers. 

Note 

We appreciate the assistance given by the Charles Babbage 
Institute of the University of Minnesota in the editing of this volume. 
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Chapterl 

Early Calculation 

This chapter covers many different aspects of the history of 
calculation, describing the first steps in numeration and 

continuing through some of the nineteenth- and twentieth-century 
developments of mechanical calculating machinery. It is quite 
impossible to make this story completely chronological because of 
many different overlapping developments; however, an effort has 
been made to show the broad flow of historical events in the 
approximate order in which they occurred. Some topics, for example 
the contributions of the nineteenth-century British mathematician 
Charles Babbage, are left to be described in other chapters because 
they logically belong to a different line of development than that 
described here. 

The main emphasis in this chapter is on the historical 
development of mechanical aids to calculation. By the early 1600s 
the progress of calculation takes two different routes: the first is based 
on the mathematical development of logarithms and leads into a 
discussion of John Napier, Napier's bones, logarithms, and slide 
rules; the second is more of a mechanical than an intellectual 
achievement and leads into the early development of calculating 
machinery, finally culminating with the very sophisticated desk-top 
machines of the early twentieth century. 
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Numeration 

Counting 

We will never know when or how humans first developed the 
ability to count. The process does not leave any physical 

evidence behind for archaeologists to find. What we do know is that 
the process is extremely ancient. Any of the so-called primitive 
peoples that have been studied have all had a highly developed sense 
of number and, to at least some degree, an ability to represent numbers 
in both words and symbols. 

Of course the very earliest civilizations would not have had the 
same need for a sophisticated number system, or the arithmetic that 
goes with it, as we do today. In fact, the general level of numerical 
knowledge that we now take for granted is a fairly recent 
development for the common individual. Some evidence of this can 
be found in that, prior to the eleventh century, British law stated in 
order for a man to be considered as a creditable witness in court, he 
had to be able to count up to nine. To apply such a criterion today 
would be ridiculous. 

Once humans had developed the ability to count, it must have 
become necessary to have a method of recording numbers. 
Elementary situations do not require any sophisticated numeral 
system, just an ability to reconstruct the final figure at some later date. 
A typical instance would be the shepherd who puts one pebble in a 
bag for every sheep he lets out of the pen in the morning and removes 
one for every sheep herded back at night. If pebbles are left over after 
all the sheep are back in the pen, he knows that he has to go back and 
look for the strays. 

Written Number Systems and Arithmetic 

Humanity's first attempt at numerical notation was likely a 
simple pictorial system in which five cows would be drawn to 

represent five cattle or, with a slight generalization, seven tents might 
represent seven family groups. This pictorial stage is of very little 
interest from the point of view of the development of any arithmetic 
abilities, which did not usually arise until various civilizations had 
developed reasonably sophisticated systems of numerical notation. 
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The physical evidence we have, at the moment, seems to indicate that 
several different groups in different parts of the world had reached 
this stage by about 3000 B.C. 

Once a culture had reached the point at which semipermanent 
recording of numerical information was necessary, the actual system 
that they developed appears to have been dependent on such factors 
as the type of writing materials available, the base of the number 
system being used, and cultural factors within the group. These 
cultural factors eventually dictated which of the two major notational 
systems, the additive or the positional, was adopted. 

The additive notational system uses one distinct symbol to 
represent each different unit in the number base, this symbol being 
repeated as often as necessary to indicate the magnitude of the 
number being written . The classic example of an additive system is 
the one developed by the ancient Egyptians; however, for purposes 
of illustration, the Old Roman Numeral system will be much more 
familiar. 

The Modern Roman Numeral system, which uses the subtractive 
forms of IV for 4 and IX for 9, is a development out of the Old Roman 
Numeral system, which, although it was seen as early as A.O. 130, 
did not become popular until about A.O. 1600. In the Old Roman 
system it was possible to express any number less than 5,000 by a 
sequence of symbols in which no individual sign needed to be 
repeated more than four times. For example, the number 3,745 would 
be represented as MMMD C CXXXXV. It was the custom to write 
down the symbols in decreasing order of their magnitude (M = 1000, 
D = 500, C = 100, X = 10, V = 5, I= 1), but this was not necessary. 
The s ame number could have been repres en ted as  
CXX CXXMMVMD , but it never was because of the obvious ease of 
reading the number when the symbols are written in the order of 
descending value. 

The pure additive system of notation is quite easy to use for 
simple calculations, even though it does not appear so at first glance. 
Addition involves the two step process of simply writing down the 
individual symbols from each number, then collecting together the 
sequences of smaller valued symbols to make larger valued ones so 
that the number regains its canonical form. For example: 

2319 = 

+ 821 = 

3140 = 

MMCCC X V IIII 
D CCCXX I 

MMDCCC C CCXXXVIlill 
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The second step now takes over and, because IIIII = V, VV = X, 
CCCCC = D, and DD = M, the final result is written as 
MMMCXXXX. 

Multiplication, although slow, is not really difficult and only 
involves remembering multiples of 5 and 10. For example: 

28 = XXVIII 
x 12 = XII 

336 

XXVIlI X I = XXVIlI 
XXVIII X I = XXVIII 

XXVIII x X = CCLXXX 

CCLXXXXXXXVVIIII 

which would be written as CCCXXVI. 
The operations of division and subtraction are a little more 

cumbersome; however, they were aided by standard doubling and 
halving operations (as was multiplication) which are no longer in use 
today. These techniques of "duplation" and '.'mediation" were actually 
developed from similar methods used by the Egyptians. 

Although more cumbersome than systems of positional notation, 
the additive systems are not without their merits, and computation is 
not difficult once the rules are mastered. The modification of such a 
number system to include subtractive elements, such as the IV= 4 or 
IX = 9 of the Modem Roman system, tend to make matters very much 
more difficult as far as arithmetic is concerned, but this device is not 
to be found at all in most examples of additive notation. 

In positional number systems, like the one most of us use today, 
the values being represented are denoted entirely by the position of 
the symbol in the string of characters representing the number. Each 
position corresponds to a certain power of the 'base' being used. The 
base in most common use today is, of course, ten; the positions 
representing units, tens, hundreds, thousands, etc. This means that it 
is necessary to have a zero symbol to indicate an empty position. The 
Chinese actually had a mechanism of using a positional number 
system without a zero symbol, but this is very much the exception in 
this type of notation. 

The rules of calculation in a positional system are more complex 
than those used with additive systems, and they usually require that 
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the user memorize some form of multiplication table. Because of the 
fact that everyone is familiar with the working of our own positional 
number system, no attempt will be made to describe it in detail. 

Introduction 

The abacus is usually considered as being an object in the same 
class as a child's toy. This is quite the wrong impression, for in 

the hands of a trained operator it is a powerful and sophisticated aid 
to computation. Some appreciation of the power of the abacus can be 
gained by noting the fact that in 1947 Kiyoshi Matsuzake of the 
Japanese Ministry of Communications used a soroban (the Japanese 
version of the abacus) to best Private Tom Wood of the United States 
Army of Occupation, who used the most modern electrically driven 
mechanical calculating machine, in a contest of speed and accuracy 
in calculation. The contest consisted of simple addition and 
subtraction problems, adding up long columns of many-digit 
numbers, and multiplication of integers. Matsuzake clearly won in 
four out of the five contests held, being only just beaten out by the 
electrically driven calculator when doing the multiplication 
problems. Although both men were highly skilled at their jobs, it 
should be pointed out that it took Matsuzake several years of special 
training in order to develop such a high order of skill at using the 
soroban and it is unlikely that the average abacus user would ever 
develop such speed and accuracy of operation. However, it does 
illustrate that, at least in the hands of even a moderately skilled 
operator, the abacus is far from being only an interesting toy. 

The origin of the abacus is, literally, lost in the dusts of time. It 
likely started out as pebbles being moved over lines drawn in the dirt. 
Many cultures have used an abacus or counting board at some stage 
in their development, but as in most European countries, once paper 
and pencil methods were available the use of an abacus died out so 
completely that it is hard to find any cultural memory of the abacus 
being an important part of the arithmetic process. Today we tend to 
think of the abacus as a Far Eastern device, only because that is one 
of the few places where its use is still noticeable. In fact the abacus, 
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in its present form, was only introduced into China in historical times 
(about A.D. 1 200) and was taken from there to Korea (about A.D. 
1400) and then to Japan (about A.D. 1600). 

Although we know that the abacus was in general use in Europe 
until only about 250 years ago, we have remarkably little physical 
evidence of its presence, particularly from the earliest Greek and 
Roman times. What evidence we do have is usually in the form of 
quotations from the ancient writers. For example, Demosthenes (circa 
384 B.C.- circa 322 B.C.) wrote of the need to use pebbles for 
calculations that were too difficult to do in your head. The use of the 
abacus was not confined to the Old World. We know very little about 
the various forms of abacus used by the Indians of North and South 
America, but we do know that some of these groups used the device. 
In 1590 a Jesuit, Joseph de Acosta, recorded some facts about the Inca 
culture that would indicate the common use of an abacus: 

In order to effect a very difficult computation for which an able 
calculator would require pen and ink . . .  these Indians make use of 
their kernels of grain. They place one here, three somewhere else and 
eight I know not where. They move one kernel here and three there 
and the fact is that they are able to complete their computation without 
making the smallest mistake. As a matter of fact, they are better at 
calculating what each one is due to pay or give than we should be with 
pen and ink. 1 

It would seem likely that a number of North American Indian 
cultures were advanced enough to require some form of calculating 
device to be in use but almost no records remain of anything even as 
primitive as de Acosta's description. It is possible thaMhe abacus was 
being used by some groups but that very few Europeans were 
concerned with recording anything except their own conquest of 
these Indian cultures. 

The European Abacus 

One of the few interesting bits of physical evidence for the early 
use of the table abacus comes from Greece. It is an actual abacus 

table, found on the island of Salamis (see Figure 1. 1) just a few miles 
off the Greek coast near Piraeus. The Salamis abacus is now broken 
into two pieces, but was once a large marble slab about 5 feet long 
and 2 feet 6 inches wide. There is no indication of when it might have 
been made. From its size, it must have been used in some large public 
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institution, perhaps as a bank or money changer 's  table. We know 
very little about how it may have been used except that it seems to 
be designed for counters to be placed on or between the various lines 
and the inscriptions appear to refer to numerical values and to certain 
types of coins, such as drachmae, talents, and obols . It has been 
speculated by many different people that the spaces between the five 
separate lines at one end of the abacus are intended for calculations 
involving fractions of the drachma. 
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Figure 1 . 1 .  A drawing of the Salamas Abacus .  
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The word abacus itself can be of some help in determining the 
origins of the European version. The manipulation of pebbles in the 
dust, or the use of a finger or stylus in fine dust or sand spread upon 
a table, is known to have been used as an aid to calculation from very 
early times. The Semitic word abaq ( dust) is thought by many to be 
the root of our modem word abacus. From the Semitic, the word 
seems to have been adopted by the Greeks who used abax to denote 
a flat surface or table upon which to draw their calculating lines. The 
term then appears to have spread to the Romans who called their table 
an abacus. 

The term abacus has meant many different things during its 
history. It has been applied to the simple dust table, or wax tablet, 
which was generally used only as a substitute for pen and ink, as well 
as to the various forms of table abacus and different wire and bead 
arrangements used in the Far East. Because most early arithmetic was 
done on the abacus, the term became synonymous with 'arithmetic ' 
and we find such oddities as Leonardo of Pisa ( Fibonacci) publishing 
a book in 1202 called Liber Abaci (The Book of the Abacus), which 
did not deal with the abacus at all but was designed to show how the 
new Hindu-Arabic numerals could be used for calculation. In 
Northern Europe, the phrase Rechnung auf der linien ( calculating on 
the lines) was in common use as a term meaning "to do arithmetic" 
even long after the use of the abacus had been abandoned. 

Several of our modern mathematical and commercial terms can 
be traced to the early use of the table abacus. For example, the 
Romans used small limestone pebbles, called calculi, for their abacus 
counters ; from this we take our modem words calculate and calculus. 
A more modern example comes from the fact that in England the table 
abacus was generally referred to as a counting board or simply as a 
counter; of course every merchant would have a counter in his shop 
upon which to place the goods being purchased and upon which the 
account could be calculated. 

By the thirteenth century the European table abacus had been 
standardized into some variant of the form shown in the diagram 
below. It consisted of a simple table, sometimes covered by a cloth, 
upon which a number of lines were drawn in chalk or ink. The lines 
indicated the place value of the counters : the bottom line representing 
units and each line upwards representing ten times the value of the 
line below. Each space between the lines counted for five times that 
of the line below it. No more than four counters could be placed on a 
line and no more than one in any space. As soon as five counters 
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appeared on a line, they were removed and one p laced in the next 
higher space; if two appeared in a space, they were removed and one 
placed on the next higher line. When performing a computation on 
the table abacus, any counters in a space were considered to be 
grouped together with those on the line below: the use of the space 
simply being a device to keep the eye from being confused by having 
a large number of counters on one line. A cross or star was usually 
placed next to the fourth (thousands) line to guide the eye, much as 
we use a comma today to mark off groups of three digits . An example 
of such an abacus is shown in Figure 1 .2. 

100,000 ---• 
50,000 • 
10,000 ------ . 
5 ,000 • 
1 ,000 �---

500 

100 -------· . 
50 • 
10  

5 

1 ---• 

Figure 1 .2. Table abacus set out to represent 287,452. 



Computing Before Computers 1 2  

Very few of these reckoning tables still exist. We know that they 
once existed in great numbers for they are often mentioned in wills 
and in household inventories ,  but, being a common object, nobody 
thought to preserve them and only a handful are known still to exist 
in various museums. 

By the thirteeth century the counters had changed from the simple 
pebbles used in earlier days into specially minted coinlike objects . 
They first appeared about 1 200 in Italy, but because it was there that 
the use of Hindu-Arabic numerals first replaced the abacus, the 
majority of the counters now known come from north of the Alps. 
These coinlike counters were cast, thrown, or pushed on the abacus 
table, thus they were generally known by some name associated with 
this action. In France they were called jetons from the French verb 
jeter (to throw) , while in the Netherlands they were known as 
werpgeld (thrown money). The older English usage of to cast up an 
account or to cast a horoscope also illustrates the mode of operation 
of a good abacist. 

The counters , now commonly called jetons, are still to be found 
in quite large numbers . This is not surprising when you realize that 
the average numerate man would possess at least one set of copper 
jetons while a merchant would likely have several. Individuals 
possessing larger wealth or authority in the community would often 
have their jetons struck in silver with their coat of arms or portraits 
as the decoration. 

The table abacus was used extensively in Britain even after 
it h ad been abandoned by the majority of people on the 
Continent. Illustrated in Figure 1 . 3 is one page from the first widely 
used printed book on arithmetic in the English language. This book, 
by Robert Recorde, was in print from 1 542 right up to the start of the 
1700s .  It clearly shows (besides two errors in the illustration which 
are left as a puzzle for the reader) that abacus arithmetic was being 
taught to school children throughout this period. 

The illustration for Recorde 's book clearly shows the usual 
method of working a table abacus. For addition the two numbers were 
simply set down side by side and the two groups ofjetons were simply 
moved together to accomplish the addition. Subtraction was slightly 
more difficult but was easily accomplished especially when one was 
able to literally "borrow" a jeton from a higher valued row in order 
to accomplish the process . The methods for multiplication and 
division were slightly different in various parts of Europe, but they 
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Figure 1 .3. A page from Robert Recorde's book on arithmetic. 
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largely retained the doubling and halving processes that were started 
by the Egyptians. 

When the Hindu-Arabic numerals became firmly established in 
Europe, the use of the table abacus died out completely. Its use was 
forgotten to the extent that, when Napoleon invaded Russia in 1 8 1 2, 
his soldiers brought back examples of the Russian abacus as being a 
curiosity of the area; this was at a time when their own great
grandfathers had been daily users of the device in France. 
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The Abacus in the Orient 

T
he oriental wire and bead abacus appears to have its origin in 
the Middle East some time during the early Middle Ages. A type 

of abacus was developed that had several wires, each of which was 
strung with ten beads. The Turks called this a coulba, the Armenians 
a choreb, and the Russians, where it can still be seen in use today, 
referred to it as a stchoty. This device almost certainly entered the Far 
East through the standard trade routes of the day, the merchant class 
being the first to adopt its use and then it slowly spread to the upper 
levels of society. Its introduction may well have been helped by 
international traders ,  such as Marco Polo, who had to travel through 
several different countries on their way to China and thus had ample 
opportunity to pick up different techniques along the way. 

By the time it was firmly entrenched in Chinese society, about 
the year A.D. 1 300, the abacus consisted of an oblong fran1e of wood 
with a bar running down its length, dividing the frame into two 
compartments. Through this bar, at right angles to it, are usually 
placed seventeen (but sometimes more) small dowels with seven 
beads strung on each one, two on the upper side (heaven) of the bar 
and five on the lower side (earth) . Each bead in the lower section is 
worth one unit, while those in the upper section are worth five. Thus ,  
i t  is possible to represent any number from 1 to 15  on the individual 
dowels, although anything greater than 9 would naturally occur only 
as an intermediate result in the process of a calculation. The Chinese 
called this device a swan pan (counting board) . The term swan was 
derived from an older term meaning to "reckon with the rods"-a 
reference to an earlier oriental technique of using short bamboo rods 
to represent numbers on a flat calculating board (Figure 1 .4) . 
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From China the concept of a wire and bead abacus  spread to 
Japan. Again it was likely the merchant c lass who actually spread the 
idea, for there was a great deal of trade going on between the two 
countries during the period A.D. 1400- 1600. It is entirely possible that 
the soroban was being used in Japan for at least one hundred years 
before it was officially noticed by the ruling classes some time about 
1 600. At that time, the rulers of Japan were known to despise the 
lower classes; any knowledge of business affairs,  or even of the value 
of the different coins, on the part of the nobility was considered a sign 
of inferior breeding. The soroban generally resembles the swan pan, 
except that there is only one bead in heaven and four in earth, and the 
beads themselves have been changed in shape to provide a sharper 
edge so that the operators fingers made better contact for flipping 
them up and down the dowels (Figure 1 .5 ) .  These changes meant that 
the Japanese operator had to be a little more aware of how to work 
quickly with additions or subtractions, which may require a carry, or 
borrow, to or from the next column. It is, perhaps,  with the soroban 
that the abacus reached its u ltimate development. As was pointed out 
earlier, a well-trained soroban operator can compete with an 
electrically driven, four-function, mechanical calculator as far as 
speed and accuracy are concerned. 

Figure 1 .5 .  A Japanese soroban. 

Figure 1 .4. A Chinese swan pan. 
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Calculating Aids 

Napier and His Bones 

T
he Scottish Reformation was just starting as John Napier 
(Figure 1 .6) was born in 1 550 and the upheavals that it caused 

added to the misery of both the nobles and the common folk alike . In 
the middle of the sixteenth century, Scotland was torn apart by both 
political and religious strife, with war between the different groups 
being a constant occurrence. The cultural level of the time is said to 
have seldom risen above that of barbarous hospitality. Before 
Napier' s time, Scotland had produced several men of note in the field 
of literature but only one in science, the thirteenth-century 
mathematician Michael Scott. With the study of academic subjects 
being held in low regard, it is very surprising that some of the most 
fundamental advances in mathematics and computation should have 
come out of this environment. 

' ' 
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Figure 1 .6. John Napier ( 1 550-1617) .  
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Napier was born near Edinburgh, but that is almost all we know 
of his early life. His father was one of the first people to take up the 
cause of the Protestant movement in Scotland and, presumably, he 
influenced John from his earliest days to believe that the pope was 
the sole bar to the salvation of all humanity. C ertainly John held this 
belief right up to the time he died in 1617. 

Napier is best known for his invention of logarithms, but he spent 
a large part of his life devising various other schemes for easing the 
labor involved in doing arithmetic. One of the best known of these 
devices is his Rabdologia, or as they are more commonly known 
Napier's Bones. The name bones arose from the fact that the better 
quality sets were constructed from horn, bone, or ivory. Various 
authors have preferred to call them "numbering rods," "multiplying 
rulers," or even "speaking rods," but the name bones just refused to 
to die out. Today they are usually considered a mere curiosity. 

Napier did not at first consider this invention worthy of 
publication; however, several friends pressed him to write it up, if 
only to avoid others claiming it as their own. His descriptions 
appeared in 1617, the year of his death and three years after the 
publication of his description of logarithms, in a small book entitled 
Rabdologia. 

The idea for the bones undoubtedly came from the Gelosia 
method of doing multiplication. This method is known to be very old; 
it likely developed in India and there are records of its use in Arabic, 
Persian, and C hinese societies from the late.Middle Ages. The method 
was introduced into Italy sometime in the fourteenth century, where 
it obtained its name from its similarity to a common form of Italian 
window grating. The method consists of writing down a matrixlike 
grid, placing one digit of the multiplicand at the head of each column 
and one digit of the multiplier beside each row, the product of each 
row and column digit is then entered in the appropriate box of the 
matrix-the tens digit above the diagonal and the units digit below. 
The final product is obtained by starting in the lower right-hand 
corner and adding up the digits in each diagonal with any carry digits 
being considered as part of the next diagonal. Figure 1.7 illustrates 
the Gelosia method, showing 456 multiplied by 128 with the product 
( 058368) being read off starting from the upper left-hand comer. 

Napier 's bones are simply a collection of strips of all possible 
columns of this Gelosia table as is shown in Figure 1.8. To perform 
the multiplication of 456 by 128 one would select the strips headed 
4, 5, and 6, place them side by side, read off the partial products of 
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Figure 1 .  7. The Gelosia method of multiplication. 

0 1 2 3 

456 times 1, 456 times 2 and 456 times 8 ( by adding up the digits in 
each parallelogram to obtain each digit of the partial product), and 
then add together the partial products. D ivision was aided by the 
bones in that multiples of the divisor could be easily determined, 
saving time that would normally be spent in trial multiplication. 

4 5 6 7 8 9 
1 1 1 

8 4 2 

7 9 3 

4 1 6 4 

5 2 5  5 

6 3 6  6 

3 4 9  7 

2 6 4  8 

9 8 1  9 

Figure 1 . 8. A modern set of Napier 's bones. 
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The use of Napier 's bones spread rapidly, and, within a few years, 
examples could be found in use from Europe to C hina. It is likely that 
the two Jesuits, Gaspard Schott and Athanasius Kircher, were 
partially responsible for their spread, particularly to C hina, where two 
other Jesuits held office in the Peking Astronomical Board. Both 
Schott and Kircher were German mathematicians during the time 
when the Jesuit order was sending its technically trained members 
around the world as missionaries for both the C hristian faith and the 
wonders of European technology. 

Schott was aware of the physical problems involved in using a 
standard set of arithmetic bones: such things as locating the correct 
bones, having some convenient device to ensure they line up 
correctly, etc. Several others had suggested incorporating Napier 's 
bones into some form of mechanical assembly but none of them had 
published any of their ideas, so Schott was left on his own to invent 
a similar device. The result was a series of cylinders with a complete 
set of Napier 's bones inscribed on each, the individual bones running 
the length of the cylinder. Several of these cylinders were then 
mounted in a box so they could be turned and any individual bone 
could be examined through slits cut in the top of the box. Figure 1.9 
shows a photograph of Schott 's device, the top of the box containing 
an addition table to aid the operator. 

Figure 1 .9. Gaspard Schott 's version of Napier 's bones. 
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Although it was an interesting attempt at making the bones easier 
to use, the system proved to be a failure. The parallelograms 
containing the digits to be added together span two adjacent bones 
and the space required to mount the cy linders meant that these digits 
were widely separated. This led to a greater tendency to make 
mistakes and the device was soon abandoned. Schemes, similar to 
Schott's, were tried by different people in different countries (most 
notably by Pierre Petit, the French mathematician and friend of 
Pascal) but they all failed for the same reason. 

The final chapter in the development of Napier 's bones as a 
computational instrument took p lace in 1 885 when, at the French 
Association for the Advancement of Science meetings, Edouard 
Lucas presented a problem on arithmetic that caught the attention of 
Henri Genaille, a French civil engineer working for the railway. 
Genaille, who was already quite well-known for his invention of 
several different arithmetic aids, solved Lucas 's problem and, in the 
process, devised a different form of Napier 's bones. These "rulers" 
eliminated the need to carry digits from one column to the next when 
reading off partial products (Figure 1 .  1 0) .  He demonstrated these 
rulers to the association in 1 89 1 .  Lucas gave these rulers enough 
publicity that they became quite popular for a number of years . 
Unfortunately he never lived to see their popularity grow, for he died, 
aged 49, shortly after Genaille's demonstration. 

The rulers, a set of which are shown in Figure 1 . 10, are similar 
in their use to a standard set of Napier 's bones. There is one ruler for 
each digit from O to 9 .  Each ruler is divided into nine sections with 
several digits inscribed in each section, and one or two arrows point 
to the left towards a particular digit in the next ruler. In order to find 
the product of 327 1 by 4, the rulers for 0327 1 (note the need for 
always having a leading zero ruler) are p laced side by side. Starting 
with the fourth section of the right-most ruler, you select the digit at 
the top of this section (4 in this case) and then simply follow the 
arrows towards the left, reading off the digits as you come to them 
(the product being 1 3084 in the case shown in Figure 1 . 1 1 ) . 

Figure 1 . 1 1 .  The rulers being used to find 327 1 times 4. 
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1 2 

Once the problem of eliminating the carry digits had been solved 
by Genaille, the creation of a specific set of rulers for division was 
quickly accomplished. The division rulers are similar to the 
multiplication ones except that the large arrows are replaced by a 
multitude of smaller ones. Figures 1.12 and 1.13 show a complete set 
of division rulers together with an example of how they could be used 
to divide the number 6957 by 6. 
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Figure 1 . 1 2. A set of the Genaille-Lucas division rulers . 
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6 9 5 7 R 

6 9 5 7  + 6 ;  1 1 5 9  • 3  
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Figure 1 . 1 3. Genaille-Lucas division rulers used to divide 6957 by 6. 

Note that a special ruler (marked R ) must be placed on the right
hand side of the set in order to determine the remainder, if any, of the 
division operation. The division rulers are used in the opposite 
direction from the multip lication ones. In order to divide the number 
by 6, you start at the left hand side of the sixth section with the topmost 
digit (1 in the case shown here) and proceed to the right, following 
the arrows and reading off the digits as they are encountered ( 1 1 59 
with a remainder of 3). 

In the era before the mechanical desk-top calculating machine 
industry had been developed, these simple instruments were one of 
the two main forms of computational assistance for anyone engaged 
in scientific or business calculations more complex than elementary 
addition and subtraction. The other main computational aid, like these 
various forms of Napier 's bones, also began with some pioneering 
work of John Napier and is discussed below. 

Logarithms 

Many writers have suggested that the invention of logarithms 
came like a bolt from the blue, with nothing leading up to 

them. This is not exactly the case because, like almost every other 
invention, examples can be found of parallel development by other 
peop le. John Napier is always given the credit for logarithms because 
these other developments were either left unpublished or, in some 
cases, not recognized for what they were at the time. 

The major computational problems of Napier 's time tended to 
involve astronomy, navigation, and the casting of horoscopes, all of 
which are interre lated. These prob lems led to a number of 
sixteenth-century scientists devoting their time to the development 
of trigonometry. About twenty-five years before Napier published his 
description of logarithms, the problem of easing the workload when 
multip lying two sines together was solved by the method of 
prosthaphaeresis, which corresponds to the formula: 

sin a x  sin b = [cos(a - b) - cos(a + b)]/2 
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Once it had been shown that a rather nasty multiplication could 
be replaced by a few simple additions, subtractions, and an 
elementary division by 2, it is entirely likely that this formula spurred 
scientifically oriented individuals, including Napier, to search for 
other methods to simplify the harder arithmetical operations. In fact 
several other such formulae were developed during Napier 's time, 
but only the method of prosthaphaeresis was of any real use, except 
in special circumstances. We know that Napier knew of, and used, 
the method of prosthaphaeresis, and it may well have influenced his 
thinking because the first logarithms were not of numbers but were 
logarithms of sines . 

Another factor in the development of logarithms at this time was 
that the properties of arithmetic and geometric series had been studied 
extensively in the previous century. We now know that any numbers 
in an arithmetic series are the logarithms of other numbers in a 
geometric series, in some suitable base. For example, the following 
series of numbers is geometric, with each number being two times · 
the previous one: 

natural numbers 1 2 4 8 1 6  32 64 128  256 5 12 1024. 

And the series below is an arithmetic one whose values are the 
corresponding base 2 logarithms : 

logarithms o l 2 3 4 5 6 7 8 9 10. 

It had long been known that if you take any two numbers in the 
arithmetic progression, say 3 and 4, their sum, 7, would indicate the 
position of the term in the geometric series that is the product of the 
terms in the corresponding positions of the geometric series, e.g . ,  
3 + 4 = 7 and 8 x 16 = 128 (the third times the fourth = the seventh) .  
This is starting to look very much like our own conception of 
logarithms as being the powers to which some base number is raised, 
a concept that was not understood in Napier 's time. Often the use of 
a good form of notation will suggest some basic mathematical 
principle. Our use of indices to indicate the power to which a number 
is being raised seems to have an obvious connection with logarithms, 
but without this form of notation, the connection is vague at best. 

John Napier came at the idea of logarithms not by algebra and 
indices but by way of geometry. When first thinking about this 
subject, he used the term artificial number but later created the term 
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logarithm from a Greek phrase meaning "ratio number. " He decided 
on this term because his logarithms were based on the concept of 
points moving down lines in which the velocity of one point was 
based on the ratio of the lengths of the line on either side of it. 

We know almost nothing about how long Napier worked before 
he felt that the idea of logarithms was sufficiently refined to be worthy 
of publication, but in July of 16 14  he published a small volume of 
fifty-six pages of text and ninety pages of tables entitled Mirifici 
Logarithmorum Canonis Descriptio . At best, it is translated as 
Description of the Admirable Cannon (Table) of Logarithms. It was 
common in those days to dedicate a book to a nobleman, often in the 
hope that some patronage would result . Unfortunately Napier had the 
bad luck to dedicate the Descriptio to the then Prince of Wales, who, 
when he later became King C harles I, was beheaded by C romwell. 

The Descriptio was just that, a description of the cannon or table 
of logarithms of sines, with the rules to be followed when using them 
to perform multiplication, division, or the computation of roots and 
powers . It contained a statement that, if these tables were accorded 
the reception that Napier hoped, he would describe in some future 
publication exactly how they were discovered and the methods used 
to calculate them. 

Our story now shifts to London, where one of the most famous 
English mathematicians of the day, Henry Briggs ( 156 1 - 1 631 ), was 
Professor of Geometry at Gresham C ollege. By the early years of the 
1600s his reputation had spread far enough that people like Johann 
Kepler were consulting him on the properties of the ellipse. In the 
later months of 1614 he obtained a copy of Napier 's Descriptio and, 
by March of the following year wrote that 

Napier, lord of Markinston, hath set my head and hands at work with 
his new and admirable logarithms. I hope to see him this summer, if it 
please God; for I never saw a book which pleased me better, and made 
me more wonder.2 

Briggs immediately began to popularize the concept of 
logarithms in his lectures and even began to work on a modified 
version of the tables. Several years later, in 1628, Briggs 's newly 
calculated logarithms were published and he stated in the Latin 
preface 

That these logarithms differ from those which that illustrious man, the 
Baron of Merchiston published in his Cannon Mirificus must not 
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surprise you. For I myself, when expounding their doctrine publicly in 
London to my auditors in Gresham College, remarked that it would be 
much more convenient that O should be kept for the logarithm of the 
whole sine . . . .  And concerning that matter I wrote immediately to the 
author himself; and as soon as the season of the year and the vacation 
of my public duties of instruction permitted I journeyed to Edinburgh, 
where, being most hospitably received by him, I lingered for a whole 
month.3 

26 

What Briggs was suggesting was that the base of the logarithms 
should be changed in order to make them easier to use. Na pier had 
evidently already seen the same thing, for as Briggs states: 

But as we held discourse concerning this change in the system of 
Logarithms, he said, that for a long time he had been sensible of the 
same thing, and had been anxious to accomplish it, but that he had 
published those he had already prepared, until he could construct tables 
more convenient, if other weighty matters and his frail health would 
suffer him so to do. But he conceived that the change ought to be 
effected in this manner, that O should become the logarithm of unity, 
and 1 0,000,000,000 that of the whole sine; which I could but admit 
was by far the most convenient of all . So, rejecting those which I had 
already prepared, I commenced, under his encouraging counsel, to 
ponder seriously about the calculation of these tables; and in the 
following summer I again took journey to Edinburgh, where I 
submitted to him the principal part of those tables which are here 
published, and I was about to do the same even the third summer, had 
it pleased God to spare him so long.4 

The result of these changes was to create the common (base 10) 
logarithms that we know today. 

Henry Briggs never did finish his complete recalculation of 
Napier 's logarithms. His tables, first published in 1 624, contained the 
logs of the numbers from 1 to 20,000 and from 90,000 to 100,000 all 
calculated to 14  decimal places. There are 1 1 6 1  errors in these 
original tables, or just under 0.04 percent of the entries. Almost all of 
them are simple errors of plus or minus 1 in the last decimal place; 
however, several more are printing or copying errors such as the 
printing of 3730 instead of 4730, but these are easily seen by users 
of the tables because they stand out as being quite different from the 
surrounding entries. 

The concept of logarithms spread rapidly. In the same year as 
Briggs's tables appeared, Kepler published his first set of logarithms 
and, a year later, Edmund Wingate published a set in Paris called 
Arithmetique Logarithmique, which not only contained logarithms 
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for the numbers from 1 to 1000, but also contained Edmund Gunter 's 
newly calculated log sines and log tangents . The first complete set of 
logarithms for the numbers from 1 to 10 1 ,000 was published by a 
Dutch printer , Adrian Vlacq (circa 1 600- 1667) , who was noted for 
his ability at printing scientific works . He filled in the sections 
missing from Briggs 's work, and published the whole table in 1 628 . 
Vlacq's tables were copied by many others in later years .  Although 
the publishers seldom acknowledged the source of the logarithms, it 
was obvious where they came from because Vlacq 's original errors 
were copied along with the correct logarithms .  It was not until the 
first quarter of the nineteenth century, when Charles Babbage 
published his famous log tables , that correct sets of tables were 
readily available. 

Within twenty years of the time that Briggs 's tables first appeared, 
the use of logarithms had spread worldwide. From being a limited 
tool of great scientists like Kep ler, they had become commonplace 
in the schoolrooms of the civilized nations. Logarithms were used 
extensively in all trades and professions that required calculations to 
be done. It is hard to imagine an invention that has helped the process 
of computation more dramatically than has logarithms , the one 
exception being the modern digital computer. During a conference 
held in 1 9 1 4  to celebrate the three hundredth anniversary of the 
publication of the Descriptio, it was estimated that ,  of all the 
calculation done in the previous three hundred years, the vast 
majority had been done with the aid of logarithms. 

The Slide Rule 

Although logarithms were usable in the form in which Napier 
invented them, it was the work of Henry Briggs that actually 

made them easier to use. Briggs ' s  work naturally came to the notice 
of Edmund Gunter, another professor at Gresham College, who was 
a very practically minded teacher of astronomy and mathematics .  
Gunter was primarily interested in the problems of astronomy, 
navigation, and the construction of sun dials (the only reasonable 
method of telling time in his day), all of which required large amounts 
of calculation involving trigonometric elements . Because of the 
trigonometric content of these problems ,  the logarithm tables being 
produced by Briggs were only of marginal help ,  so Gunter sat down 
and completed the calculations for tables of the logarithms of sines 
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and the logarithms of tangents for each minute of the quadrant. These 
eight figure tables were published in 1 620 and did much to relieve 
the burden of calculation for finding one 's position at sea. 

Gunter had some earlier experience in the development of 
calculating instruments, having been one of the major figures in the 
perfection of an instrument known as a sector. This device used a pair 
of dividers to measure off different values inscribed along several 
different linear scales. This experience soon led him to realize that 
the process of adding together a pair of logarithms could be partially 
automated by engraving a scale of logarithms on a piece of wood and 
then using a pair of dividers to add together two values in much the 
same way as he would have done when using a sector. Not only did 
this method eliminate the mental work of addition, but it also removed 
the necessity for the time-consuming process of looking up the 
logarithms in a table. Gunter 's piece of wood soon became known as 
Gunter 's Line of Numbers. Its use spread rapidly through England 
and was quickly popularized on the Continent. 

Gunter 's Line of Numbers consisted of a simple piece of wood, 
about two feet long, ( often the shaft of a cross-staff, a simple 
navigational sighting instrument of the time) marked off with a 
logarithmic scale, much the same way as one axis of a piece of 
logarithmic graph paper is marked today. If he wished to multiply A 
times B, he would open up a pair of dividers to the distance from 1 
to A on his line of numbers, putting one point of the compass on the 
point B, he would read off the number at which the other point sat. 
The accuracy was limited to two or three digits, depending on the 
care with which the instrument was used, but he had produced the 
first logarithmic analog device able to multiply two numbers together. 
Gunter would likely have added further refinements to his Line of 
Numbers, for he was a master at the design and use of instruments , 
but he died, aged 45, in 1 626, before he was able to get enough time 
from his other duties to return to the subject of logarithmic calculating 
instruments. The next developments were left to a highly 
individualistic clergyman named William Oughtred. 

William Oughtred ( circa 1 574- 1 660) was one of the leading 
mathematicians of his day. In 1604, after having taken a degree at 
C ambridge, he was appointed as the rector of a small parish in Surrey 
and, a few years later, was moved to the parish of Albury where he 
lived for the rest of his life. He was the bane of his bishop, being the 
subject of several complaints that he was a pitiful preacher because 
he never studied anything other than mathematics (which tends to 
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make for dull sermons). In the days before regular scientific journals , 
information was published by sending it to several people who were 
known to be in regular contact with other scientific men-Athanasius 
Kircher, mentioned in connection with Napier 's bones, and Fr. Martin 
Mersenne of Paris being the noted "postboxes" on the Continent, 
while William Oughtred was one of the main distribution points for 
England. 

Oughtred was what we would now classify as a "pure" 
mathematician. Although he had a contempt for the computational 
side of mathematics and considered the people who used 
calculational instruments simply as "the doers of tricks," he was quite 
familiar with the mathematical instruments then available. There are 
records of his visiting Henry Briggs in 1610  and, while there, meeting 
Edmund Gunter, and discussing mathematical instruments with him 
at great length. 

Oughtred noted that Gunter 's Line of Numbers required a pair of 
dividers in order to measure off the lengths of logarithmic values 
along the scale and quickly came up with the idea that, if he had two 
such scales marked along the edges of the pieces of wood, he could 
slide them relative to each other and thus do away with the need for 
a pair of dividers. He also saw that if there were two disks, one slightly 
smaller than the other, with a Line of Numbers engraved around the 
edge of each, that they could be pinioned together at their centers and 
rotated relative to one another to give the same effect as having 
Gunter 's scale engraved on two bits of wood. 

Because of his general disdain for mathematical instruments he 
did not consider it worth his trouble, time, or effort to publish a 
description of how he had improved Gunter 's Line of Numbers into 
a practical slide rule. He did, however, describe the system to one of 
his pupils, Richard D elamain, who was a teacher of mathematics 
living and working in London. D elamain used Oughtred's ideas quite 
openly and based his teaching on various methods of instrumental 
calculation. 

In 1 630 another of Oughtred 's pupils, William Forster, happened 
to mention that in order to gain more accuracy when using Gunter 's 
Line of Numbers he had resorted to using a scale six feet long and a 
beam compass to measure off the lengths. Oughtred then showed him 
how he could dispense with the beam compass by simply having two 
of Gunter 's scales sliding over one another and also showed him a 
circular disk with Gunter 's Line of Numbers marked off along the 
edge with two indices, like a pair of dividers, extending from the 
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center. The latter device, which Oughtred called his "Circ les of 
Proportion" (shown in Figure 1 . 1 4) ,  he claimed to have invented 
sometime in 1 622. Forster was so impressed that he demanded 
Oughtred publish a description of these inventions . Oughtred, still 
under the impression that these "p laythings" were not suitable objects 
for the true mathematician, initially decided against it but, when 
Delamain 's book appeared claiming them as his own invention, 
Oughtred agreed to publish and even let Forster translate his Latin 
into English so that the subject matter would be more widely 
distributed than if it had remained in academic Latin. 

Figure 1 . 1 4. Oughtred's circles of proportion . 
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The slide rule may have been developed and publicized in the 
1 630s and obtained its current form as a movable slide between two 
other fixed blocks of wood about the middle 1 650s , but very little use 
was actually made of the device for almost two hundred years . 
However several special slide rules were developed and became quite 
popular; for example ,  a special slide rule was created for the use of 
timber merchants , but the average educated man still c lung to the 
older sector as his main calculating instrument. 

James Watt , better known for his work on the steam engine, was 
responsible , at least in part ,  for one of the first really well-made slide 
rules in the very late 1700s. He had spent the early part of his life as 
an instrument maker at Glasgow University and so was familiar with 
the techniques of engraving accurate scales upon instruments.  After 
he had set up a workshop for his steam engine business in Soho, 
Birmingham, he discovered that he needed a device to let him perform 
quick calculations concerning the volumes and power levels of 
various engines . He devised a simple slide rule consisting of one 
sliding piece between two fixed stocks (a design that had been in use 
for a considerable period of time), carefully engraved the face with 
four basic scales, and put tables of various constants on the back. His 
rule was accurate enough that others soon requested copies for 
themselves and Watt manufactured this so-called Soho Slide Rule for 
several years. Even with the example of the Soho Slide Rule ,  the 
general public seemed to ignore the power of the instrument. The 
great English mathematician Augustus De Morgan, when writing an 
article about the s lide rule for the popular press in 1 850, had to explain 
that 

for a few shillings most persons might put into their pockets some 
hundred times as much power of calculation as they have in their 
heads.5 

The big breakthrough for the s lide rule came in 1 850,  when a 
nineteen-year-old French artillery officer, Amedee Mannheim 
( 1 83 1 - 1 906) , designed a very simple slide rule much like that 
manufactured by Watt, but added the movable double-sided cursor, 
which we think of as such an integral part of the slide rule today. This 
was not the first time that a movable cursor had been combined with 
the simple sliding logarithmic scales , indeed the first time had been 
almost two hundred years earlier on a slide rule designed for British 
naval use , but it had been largely ignored until Mannheim reinvented 
it. The cursor enabled fairly complex operations to be easily carried 
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out on a simple, yet well-made, slide rule (Figure 1 . 15) .  Mannheim's 
design was adopted as the standard for the French artillery and, after 
a few years, examples of it began to appear in other countries. 
Mannheim survived his army service and was eventually appointed 
Professor of Mathematics at the celebrated Ecole Polytechnique in 
Paris, a post that did nothing to harm the evergrowing reputation of 
his slide rule. 

Figure 1. 1 5. A modern version of the Mannheim slide rule. 
Courtesy Smithsonian Institution. 

Despite the fact that the Europeans began to adopt the "slip stick" 
for many forms of quick calculation, it remained unpopular in North 
America until 1 888, when several examples of the Mannheim design 
were imported. The North American market grew until, in 1 895, there 
was enough of a demand that the Mannheim rules were manufactured 
in the United States . Even with a local source of manufacture, the 
slide rule was still not totally accepted in North America until the 
twentieth century. A survey in the journal Engineering News reported 
that, as late as 190 1 ,  only one-half of the engineering schools in the 
United States gave any attention at all to the use of the slide rule. 

Once established, the progress of the slide rule was extremely 
rapid. Many different forms were produced by several different major 
manufacturers. The number of scales to be found on each instrument 
increased to the point that eighteen or twenty different scales were 
regularly engraved on the better quality instruments . Both sides of 
the rule were used and the center, sliding portion could often be turned 
over or completely replaced to provide even more combinations of 
scales. Special slide rules incorporating such things as a scale of 
atomic and molecular weights were created for chemists, and almost 
any branch of science or engineering could boast that at least one 
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manufacturer produced a slide rule designed for their particular use. 
The accuracy of the slide rule was improved by several people who 
modified the basic form so that the logarithmic scales were wrapped 
around cylinders or into spirals. One device, known as Fuller 's Slide 
Rule (Figure 1 . 1 6), was equivalent to a standard slide rule over 
eighty-four feet long, yet could be easily held in the hand. It was 
possible to work correctly to four figures, and sometimes even five, 
with this particular unit. 

Figure 1 . 1 6. Fuller's slide rule. 

The slide rule became a symbol that was often used to represent 
the advancing technology of the twentieth century. It was a status 
symbol for engineering students in the 1950s and 1 960s and could 
almost always be found clipped to their belt as a statement of their 
chosen profession. It was, however, to be a transient symbol. The 
development of the hand-held electronic calculator offered many 
times the accuracy and convenience and the slide rule quickly sank 
into obscurity. The demise was so rapid that it is possible to find many 
examples of people who differ in age by only four or five years, one 
of whom relied entirely on the slide rule for all calculations required 
during university education, and the other, who took the same course 
of studies, would not know how to use it to multiply two numbers 
together. In a matter of a few years the major manufacturers of slide 
rules had to either transfer their expertise to other products or face 
bankruptcy. 
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Mechanical Calculating Machines 

Introduction 

Though the various analog instruments were capable of 
performing a great deal of useful arithmetic, the story of devices 

that ultimately led to fully automatic computation really starts with 
the invention and development of mechanical devices to perform the 
four standard arithmetic functions. By devising a system in which 
mechanical levers, gears, and wheels could replace the facilities of 
human intellect, the early pioneers in these devices showed the way 
towards the complete automation of the process of calculation. 
Needless to say the early efforts were very crude not because the 
inventors lacked the intelligence to construct better devices but 
because the technical abilities of the workmen and the materials with 
which they had to work were often not up to the demands put upon 
them by these new machines . There was also the problem that whole 
new techniques had to be invented in order to get mechanical devices 
to produce some of the motions required of them when doing simple 
arithmetic. 

Some of the mechanical techniques became available about the 
start of the seventeenth century, when, in response to a demand for 
mechanical automata to amuse the rich, methods of producing 
various motions in mechanical systems were developed. The 
construction techniques were further advanced by the developing 
trade of the clock maker-several early computing machines were 
built by people trained in horological arts . 

Most of the very early attempts at constructing a simple adding 
machine relied on the human operator to adjust the mechanism 
whenever a carry occurred from one digit to the next, much the same 
way as was done when using a table abacus. There is no point in 
detailing the development of this type of mechanism as they were all 
of the most elementary kind and, in general, only constructed from 
crude materials. The real development of mechanical computing 
machinery only began when people attempted to incorporate 
mechanisms to automatically deal with the problem of adding a carry 
from one digit to the next. 

It used to be thought that Blaise Pascal invented the first adding 
machine to contain a carry mechanism; however, investigative work 
in the 1 950s and 1 960s showed that that honor belongs to Wilhelm 
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Schickard, who produced a machine about the year 1 620, some 
twenty years before Pascal's attempt. It is quite possible that further 
investigation will reveal yet an earlier device, but nothing now 
suggests that any work of importance was done before Schickard. 
There are many stories of people creating adding machines before 
Schickard, some even as early as the year 1000. For example, the 
monk Gerbert ( later Pope Sylvester II) is reputed to have developed 
some form of early calculating device, but it is almost certain that 
these legends refer to things like Gerbert's abacus rather than an 
actual mechanical device. Even if people like Gerbert did produce 
some form of mechanical mechanism, it is most unlikely that the 
technology have allowed anything to be produced matching the 
sophistication of the Schickard or Pascal machines. 

The Machines of Wilhelm Schickard (1 592-1 635) 

Wilhelm Schickard was Professor of Hebrew, Oriental 
languages, mathematics, astronomy, geography, and, in his 

spare time, a protestant minister in the German town of Tilbingen 
during the early 1600s. He has been compared to Leonardo da Vinci 
in that they both had far-ranging interests and enquiring minds. 
Besides being an excellent mathematician, with some of his 
mathematical methods being in use until the later part of the 
nineteenth century, he was a good painter, a good enough mechanic 
to construct his own astronomical instruments, and a skilled enough 
engraver to provide some of the copper plates used to illustrate 
Kepler 's great work Harmonices Mundi. 

Figure 1 . 17 .  Wilhelm Schickard ( 1 592- 1635) . 
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It is known that Schickard and Kepler not only knew each other 
but that they also worked together several times during their lives. It 
was one of these joint efforts that resulted in Schickard producing the 
first workable mechanical adding machine. Kepler and Schickard are 
known to have discussed John Napier 's invention of logarithms and 
Napier 's bones as early as 1 6 17 .  During one of Kepler 's visits to 
Ttibingen he showed Schickard some of his new results and examples 
of Napier 's bones and logarithms , which he had used in their 
calculation. This seems to have inspired Schickard to consider the 
design of a machine that would incorporate both a set of Napier 's 
bones and a mechanism to add up the partial products they produced 
in order to completely automate the process of finding the product of 
two numbers .  

On September 20 , 1 623, Schickard wrote to Kepler saying that 

what you have done in a logistical way (i.e. , by calculation), I have just 
tried to do by mechanics. I have constructed a machine consisting of 
eleven complete and six incomplete (actually "mutilated") sprocket 
wheels which can calculate. You would burst out laughing if you were 
present to see how it carries by itself from one column of tens to the 
next or borrows from them during subtraction.6 

Kepler must have written back asking for a copy of the machine for 
himself because, on February 25 , 1 624, Schickard again wrote to 
Kepler giving a careful description of the use of the machine together 
with several drawings showing its construction. He also told Kepler 
that a second machine ,  which was being made for his use, had been 
accidentally destroyed when a fire leveled the house of a workman 
Schickard had hired to do the final construction. 

Their two letters, both of which were found in Kepler 's papers , 
give evidence that Schickard actually constructed such a machine. 
Unfortunately , the drawings of the machine had been lost and no one 
had the slightest idea of what the machine looked like or how it 
performed its arithmetic . Fortunately, some scholars , attempting to 
pu t  together a c omplete c ollection of Kepler ' s  works, were 
investigating the library of the Pulkovo Observatory near Leningrad. 
While searching through a copy of Kepler 's Rudolphine Tables they 
found a slip of paper that had seemingly been used as a book mark. 
It was this slip of paper that contained Schickard's original drawings 
of the machine. One of these sketches is shown in Figure 1 . 1 8 . Little 
detail can be seen, but with the hints given in the letters it became 
possible to reconstruct the machine. 



Figure 1 . 1 8 . Schickard's drawing of his machine. 

In the stamp illustration, the upper part of the machine is set to 
show the number 1 00722 being multiplied by 4. The result of this 
multiplication is added to the accumulator using the lower portion of 
the machine. The upper part is simply a set of Napier 's bones 
(multiplication tables) drawn on cylinders in such a way that any 
particular "bone" may be selected by turning the small dials (marked 
a in Schickard's drawing) . Moving the horizontal slides exposes 
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Figure 1 . 1 9. A stamp produced to honor the 350th anniversary of the 
invention of Schickard's machine. 
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different sections of the "bones" to show any single digit multiple of 
the selected number, the fourth multiple is shown exposed in Figure 
1 . 1 9. This result can then be added to the accumulator by turning the 
large knobs (marked d )  and the results appear in the small windows 
just above (marked c). The very bottom of the machine contains a 
simple aide-memoire. By turning the small knobs (e) it was possible 
to make any number appear through the little windows (J);  this 
avoided the necessity of having pen, ink, and paper handy to note 
down any intermediate results for use at some later time in the 
computation. 

The mechanism used to effect a carry from one digit to the next 
was very simple and reliable in operation. As shown in the drawing 
(Figure 1 .20) , every time an accumulator wheel rotated through a 
complete turn, a single tooth would catch in an intermediate wheel 
and cause the next highest digit in the accumulator to be increased 
by one. This simple-looking device presents problems to anyone 
attempting to construct an adding machine based on this principle. 
The major problem is created by the fact that the single tooth must 
enter into the teeth of the intermediate wheel , rotate it 36 degrees 

Figure 1 .20. The Schickard carry mechanism. 
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(one-tenth of a revolution), and exit from the teeth, all while only 
rotating 36 degrees itself. The most elementary solution to this 
problem consists of the intermediate wheel being, in effect, two 
different gears, one with long and one with short teeth, together with 
a spring loaded detente (much like the pointer used on the big wheel 
of the gambling game generally known as the "crown and anchor"), 
which would allow the gears to stop only in specific locations. It is 
not known if Schickard used this exact mechanism, but it certainly 
works well in the modern reproduction of his machine. 

The major drawback of this type of carry mechanism is the fact 
that the force used to effect the carry must come from the single tooth 
meshing with the teeth of the intermediate wheel. If the user ever 
wished to do the addition 999,999 + 1 ,  it would result in a carry being 
propagated right through each digit of the accumulator. This would 
require enough force that it might well do damage to the gears on the 
units digit. It appears that Schickard was aware of the limitations of 
the strengths of his materials because he constructed machines with 
only six digit accumulators even though he knew that Kepler would 
likely need more figures in his astronomical work. If the numbers 
became larger than six digits, he provided a set of brass rings that 
could be slipped over the fingers of the operators hand in order to 
remember how many times a carry had been propagated off the end 
of the accumulator. A small bell was rung each time such an 
"overflow" occurred, just to remind the operator to slip another ring 
on his finger. 

Although we know that the machine being made for Kepler was 
destroyed in a fire, there is some mystery as to what happened to 
Schickard's own copy of the device. No trace of it can be found and 
it is unlikely to ever be found now that complete studies of 
Schickard's papers and artifacts have been done. 

The Machines of Blaise Pascal (1 623-1 662) 

The great French mathematician and philosopher Blaise Pascal 
made the next major attempt to design and construct a 

calculating machine. The fact that he was not the first to construct 
such a device in no way reduces the magnitude of his achievement 
because his machine was entirely different from Schickard's and it is 
almost certain that Pascal would not have known of Schickard's 
machine, much less have seen i t  in operation. 
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Figure 1 .2 1 .  Blaise Pascal ( 1 623 - 1662). 

Pascal came from the area of C lermont in southern France west 
of Lyon. The Pascal family was one of the noble houses of the area. 
When he was only nineteen years old he managed to design the first 
of his many calculating machines. He hired a group of local workmen 
and, showing them his carefully done drawings, asked them if they 
could make the instrument. What they produced was quite 
unworkable because they were more used to constructing houses and 
farm machinery than they were delicate instruments. This led Blaise 
to train himself as a mechanic, even spending time at a blacksmith 
shop to learn the basics of constructing metal parts . He experimented 
with gears made out of ivory, wood, copper, and other materials in 
an attempt to find something that could stand the strain of being used 
in a machine of his design. 

Although he produced about fifty different machines during his 
lifetime, they were all based on the idea incorporated in his first 
machine of 1642. The device was contained in a box that was small 
enough to fit easily on top of a desk or small table. The upper surface 
of the box, as can be seen in Figure 1 .22, consisted of a number of 
toothed wheels above, which were a series of small windows to show 
the results. In order to add a number, say 3, to the result register, it 
was only necessary to insert a small stylus into the toothed wheel at 
the position marked 3 and rotate the wheel clockwise until the stylus 
encountered the fixed stop, much the same way that you would dial 
a telephone today. The windows through which the results were read 
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actually consisted of two separate sections, with a brass slide to cover 
the section not in use at the moment. The upper window was used for 
normal addition and the lower window, which displayed the nines 
complement (5 is the nines complement of 4 because 9 - 4 = 5) of the 
number held in the result register, was used for subtraction. This 
arrangement was necessary in that, due to the internal construction 
of the machine, it was not possible to turn the dials backwards in order 
to do a subtraction; instead one added the nines complement of the 
number one wished to subtract. 

Figure 1 .22. The top of Pascal's machine. 

Pascal seems to have realized early on that the single tooth gear, 
like that used by Schickard, would not do for a general carry 
mechanism. The single tooth gear works fine if the carry is only going 
to be propagated a few places but, if the carry has to be propagated 
several places along the accumulator, the force needed to operate the 
machine would often be of such a magnitude that it would do damage 
to the delicate gear works. Pascal managed to devise a completely 
new mechanism that took its motive force from falling weights rather 
than from a long chain of gears. 
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The entire mechanism is quite complex, but the essentials can be 
seen in Figure 1 .23 .  If the wheel marked A was connected to the units 
digit of the accumulator and the one marked B was connected to the 
tens digit, then any carry would be propagated from one to the other 
by the device marked W between the two shafts. Device W is a 
weight that is lifted up by the two pins attached to the wheel A as it 
rotates . When the wheel rotates from 9 to 0, the pins slip out of the 
weight allowing it to fall and, in the process, the little spring-loaded 
foot, shown in black, will kick at the pins sticking out of wheel B, 
driving it around one place. This gravity assisted carry mechanism 
was placed between each pair of digits in the accumulator and, when 
a carry was generated through several digits, could be heard to go 
"clunk, " "clunk, " "clunk" for each successive carry. 

This carry mechanism, which would have been the pride of many 
mechanical engineers one hundred years after Pascal, eliminated any 
strain on the gears. However it did have the drawback that the wheels 
could only turn in the one direction and this meant that it was only 
possible to add and not to subtract with the machine. As mentioned 
earlier, the subtraction problem was solved by simply adding the 
nines complement of the required number, a process that limited the 
use of the machine to those with a better than average education. 

Pascal attempted to put the machine into production for his own 
profit. This was not a successful venture, but it did result in a large 
number of units surviving to the present day. They are all slightly 
different in that they have different numbers of digits in the 
accumulator or have slight differences in the internal mechanisms . 
None of the surviving models functions very well, and it is doubtful 
if they functioned perfectly even in Pascal's day. The mechanism, 
although ingenious, is rather delicate and prone to giving erroneous 
results when not treated with the utmost care. Some of them will, for 
example, generate extra carrys in certain digits of the accumulator 
when they are bumped or knocked even slightly. 

The Machines of Gottfried Wilhelm Leibniz (1 646-1 71 6) 

Gottfried Wilhelm Leibniz was born in Leipzig on July 1 ,  1 646. 
His father, a professor of moral philosophy ,  only lived until 

Leibniz was six years old, but he and his library were a great influence 
on the young Leibniz's  early education. After he obtained a doctor 
of laws degree, the University of Altdorf offered him a professorship. 
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Figure 1 .23. The internal workings of Pascal 's machine , including 
the carry mechanism. 
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Figure 1 .24. Gottfried Wilhelm Leibniz (1646-1716). 

Wanting a more active job ,  he refused the offer and accepted a job as 
an advisor to the Elector of Mainz , one of the most famous statesmen 
of his day. 

While he was in service to the Elector of Mainz he traveled a great 
deal to other European countries, acting as the elector 's personal 
representative. During these travels he managed to meet most of the 
famous men of his day. This resulted in his being made a member of 
the British Royal Society and, later, a member of the French 
Academy. 

Exactly when Leibniz became interested in the problem of 
mechanical calculation is not certain. It is known that when he heard 
that Pascal had invented a mechanical adding machine he wrote to a 
friend in Paris asking for details of its construction. We do not know 
if Leibniz ever actually saw one of Pascal 's machines, but we do know 
that , at least in his early years , he did not completely understand its 
workings.  In Leibniz's notes is a series of suggestions and drawings 
for an attachment to be placed on top of Pascal 's device in order to 
enable it to perform multiplication. Although it was an interesting 
idea, the device could not have worked because no more than one 
wheel of Pascal 's machine could rotate at any given instant. 
Presumably Leibniz either found this out or the pressure of other work 
caused him to put the idea aside until it no longer had any relevance,  
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for he never seems to have continued along this line of thought. 
The machine for which Leibniz is most famous , his mechanical 

multiplier, was actually los t  to us for about two hundred years .  Many 
records exist to prove that he had actually constructed a machine , but 
the actual device was not known. It appears that sometime in the 
late 1670s the machine was given to A G. Kastner at Gottingen for 
overhauling and that somehow it was stored in the attic of one of 
the buildings of Gottingen University, where it remained for the 
next two hundred years . In 1 879 a work crew attempting to repair a 
leaking roof discovered it lying in a comer. The workings of the 
machine are based upon one of Leibniz's inventions , the stepped 
drum, as illustrated in Figure 1 .25 . 

Figure 1 .25. The Leibniz stepped drum mechanism. 

A result wheel , shown at the end of the square shaft, could be 
rotated to any of ten different positions to register the digits O to 9 .  
In order to add a quantity, say 8 ,  to the result indicated on the wheel , 
it was only necessary to cause the square shaft to rotate 8 steps. This 
was done by having the small gear on the shaft mesh with 8 teeth on 
the large drum below the shaft. The smal l gear could slide up and 
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down the square shaft so that, depending on its position, it would 
interact with a different number of teeth on the major drum. Leibniz's 
machine had eight of these mechanisms so that, when a number was 
registered on the machine by setting the small pointers ( which 
controlled the position of the gears on the square shafts), a turn of a 
crank would cause all eight stepped drums to rotate and add the digits 
to the appropriate counters. To multiply a number by 5, one simply 
turned the crank five times. The actual machine was constructed in 
two layers so that, when one needed to multiply a number by 35 the 
following steps were performed: 

1 .  the number to be multiplied was set up by moving the gears 
along the square shafts so that the pointers indicated the 
desired number; 

2. the crank was turned five times; 

3. the top layer of the machine was shifted one decimal place to 
the left; and 

4. the crank turned another three times . 

One of the biggest problems when attempting to design this type 
of machine is how to deal with the possibility of a "carry" being 
generated from one digit to the next when the first digit rotates from 
the 9 position through to the O position. Leibniz only partially solved 
this problem. Although it appears complex, the diagram of the full 
mechanism is really quite simple when explained. Figure 1 .26 shows 
two digit positions of the machine, the stepped drums being denoted 
by the digit 6.  The gears in front ( labeled 1 ,  2 ,  and 3) are really just 
part of the drive mechanism and can be ignored. The more 
complicated mechanics, consisting of the levers, star wheels, cogs, 
and pentagonal disks (12 , 11 ,  10 and 14) are all part of the carry 
mechanism. 

When a carry was needed, the small lever 7 would interact with 
the star wheel 8 and partially turn the shaft so that one of the points 
of the star 11 would assume a horizontal position ( compare the two 
star wheels marked 11 to note the two different positions they could 
assume). This would put it into a position in which the lever 12 ( which 
turns once for each turn of the addition crank) could give it a little 
extra push to cause the result wheel to flip over to the next digit (i.e., 
add the carry to the next digit). 

Note that this does not complete all the requirements of the carry 
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Figure 1.26. The full mechanism of the Leibniz machine. 

mechanism, for this carry could, in turn, cause another carry in the 
next higher digit. There is no way that this simple mechanism can be 
used to ripple a carry across several digits. Note the two different 
positions of the pentagonal disk 14 :  it can have a flat surface 
uppermost (which would be flush with the top cover of the machine 
and, thus, not noticeable to the operator) or it could have one of its 
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points projecting above the top surf ace. This disk is so arranged that 
whenever a carry is pending, the point is up and when the carry has 
actually been added into the next digit, the point is down. After 
turning the crank to add a number into the register, if a ripple carry 
was generated, one or more of these points would project from the 
top of the machine, indicating that the need for a carry was detected 
but that it had not yet been added to the appropriate digit. The operator 
could reach over and give the pentagonal disk a push to cause the 
carry to be registered on the next digit and the point to slide back 
down into the mechanism. If that carry, in tum, caused another carry, 
further pentagonal disks would push their points through the slots in 
the top of the machine to warn the operator that he had to give the 
machine a further assist. 

We know that Leibniz started to think about the problems 
involved in designing such a machine sometime about 1 67 1 .  In 
January of 1672 he happened to be in London and was able to 
demonstrate a wooden model ( which did not work properly) to the 
members of the Royal Society. Leibniz promised to make some 
technical changes and bring his machine back when it was properly 
functional. The secretary of the Royal Society did not invite Leibniz 
to the next meeting but suggested that when a proper working model 
was available they would like to have it demonstrated. Several letters 
remain in existence between the secretary and Leibniz concerning the 
progress of the machine over the next two years. 

But Leibniz was plagued by the same types of problems that were 
faced by Pascal and others-poor workmen and poor materials with 
which to work. The final machine was only put together because 
Leibniz had found, during his stay in Paris, a French clockmaker 
named Olivier, who was both honest and a fine craftsman. No one 
knows for sure, but it is assumed that Leibniz simply explained the 
problems to M. Olivier and then let the clockmaker get on with the 
real construction work. The final version of the machine, which is 
now housed in the Landesbibliothek in Hannover, was put together 
in the summer of 1 674. 

As previously mentioned, the machine consists of two basic 
sections, the upper one contains the setup mechanism and the result 
register; the lower part, the basic Leibniz stepped gear mechanism. 
When the multiplicand digits have been entered into the setup slides, 
the handle on the front is turned once for every time that the 
multiplicand should be added to the answer dials. The large dial on 
the top right of the machine has a pin to set into it at the position 
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Figure 1 .27 . The Leibniz calculator. 

indicated by the multiplier digit ( e.g. ,  5) and, after five turns of the 
front handle, it brings this pin up against the stop to be seen at the top 
of the dial, preventing the operator from adding the multiplicand to 
the result too many times . After a single digit of the multiplier is 
processed, the crank at the far left of the machine is turned once to 
shift the top section of the machine over by one digit place so that the 
next digit of the multiplier can be considered. Thus, this machine was 
simply the mechanical version of the common shift-and-add 
procedure used for multiplication on many digital computers. 

Leibniz is more widely known for his work in mathematics and 
philosophy than for his invention of a calculating machine. It is 
interesting to note, however, that the principle of the stepped drum 
gear was the only practical solution to the problems involved in 
constructing calculating machines until late in the nineteenth century. 

Leibniz died on November 14, 1 7 1 6, enfeebled by disease, 
harassed by controversy ( not the least with Newton over the invention 
of calculus), and embittered by neglect. Men like him are often very 
difficult to get along with and there was an almost audible sigh of 
relief from his contemporaries when he finally died. An eyewitness 
tells us that 

he was buried more like a robber than what he really was, the ornament 
of his country .7 
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Nineteenth- and Twentieth-Century Developments 

Mechanical calculating machines were essentially useless toys 
during the first two centuries of their development. The level 

of technology of the day guaranteed that any attempt to produce a 
reliable, easy to use instrument was doomed to failure. The real spur 
to the production of sound machines came with the increase in 
commercial transactions in the early nineteenth century. It became 
quite obvious that many hours were being spent in adding up long 
columns of figures, and many different people attempted to modify 
the older designs and create new ones in order to bring some relief to 
the drudgery of the accounting house practices . 

The first machine that can be said to have been a commercial 
success was a modification of the Leibniz calculator created by 
C harles X avier Thomas de C olmar, a French insurance executive, in 
1 820. Although Thomas was not aware of the early work of Leibniz, 
the internal workings of the machine rely on the same stepped drum 
principle. Thomas was able to produce an efficient carry mechanism 
and, in general, the machine was very well-engineered for its day 
(Figure 1 .28). The Thomas firm developed many different models of 
the basic system and it remained in production until the start of the 
twentieth century. Although it had been available to the general public 

Figure 1 .2 8 .  An early example of the Thomas de C olmar 
Arithmometer. Rick Vargas photograph; courtesy Smithsonian 
Institution. 
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from the early 1 820s , the  early versions were not all that popular. The 
expense of the machine, combined with a lack of advertising , resulted 
in few sales until the machine was exhibited in the Paris Exposition 
of 1 867 . It was so far superior to the one other calculator exhibited 
that it won praise from the judges and finally became quite popular 
for both business and scientific calculations. 

Like any good idea, the Thomas Arithmometer resulted in the 
production of many rival machines. Several different arrangements 
of the Leibniz stepped drums were tried, both to avoid simply having 
a carbon copy of the Arithmometer and in an attempt to reduce the 
size and weight of the resulting device. One of the most successful 
of these was the Edmonds Circular Scientific Calculator, which 
arranged the drums and associated gearing in a circle, the drive 
mechanism being a crank protruding from the top of the box. 

Any real attempt at creating a smaller mechanical calculating 
machine had to wait until some mechanism was developed that could 
replace the Leibniz drum with a smaller and lighter device. The 
purpose of the drum was to provide a mechanism for engaging a gear 
with a variable number of teeth and, until late in the 1 800s , no one 
had managed to find a workable system to produce gears that could 
quickly change the number of teeth projecting from their surface. 

The true variable-toothed gear appeared in both Europe and 
America at about the same time. In America Frank S .  Baldwin 
managed in 1 873 to construct a model of a calculating machine ,  based 
on his invention of a variable-toothed gear. He immediately applied 
for a patent on the idea that, when granted in 1 875 , resulted in the 
device becoming known as "Baldwin's 1 875 machine" (Figure 1 .29) . 

Figure 1.29. The Baldwin 1875 machine. Courtesy Smithsonian 
Institution. 
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It was only three years later when Willgodt T. Odhner, a Swede 
working in Russia, produced almost the exact system in Europe. This 
coincidence resulted in this type of machine being referred to as a 
Baldwin machine in America and an Odhner machine in Europe. 
Odhner never claimed to have invented this style of machine and, in 
his first American patent , he makes it quite clear that he limits his 
claims to simply making several improvements in the design. 

The concept of the variable-toothed gear is quite simple , as can 
be seen in Figure 1 .30. A cam mechanism can be rotated by means 
of a lever so that as the cam contacts the different spring loaded rods 
they are forced to protrude from the surface of the disk in which they 
are mounted. Thus , it is possible to set the lever to the fifth position, 
resulting in a gear having five teeth. When this gear is rotated, the 
five teeth cause a result wheel to be turned to indicate that the number 
5 has been added to whatever digit had been stored on the wheel. 

Figure 1.30. The variable-toothed gear mechanism. 

The disk form of the variable-toothed gear allows a number of 
them to be mounted side by side on one axle to provide the arithmetic 
facilities of a multidigit register in a very compact package. Many 
different firms immediately started to produce machines based on this 
design, one of the most famous being the German firm of Brunsviga 
(Figure 1 .3 1 ) .  The popularity of the calculator can be judged from 
the records of the Brunsviga firm, which indicate that they started 
production in 1 892 and were able to ship their twenty thousandth 
machine in 1 9 12 .  
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Figure 1 .31 . A Brunsviga calculating machine (Dupla model) . The 
levers for setting the variable-toothed gears are in the central 
portion of the device. 

All of these machines were better suited to scientific calculations 
requiring many operations on a few numbers than they were to the 
problem of adding up long lists of numbers often found in business 
applications. The labor of setting up a number on the machine, by 
moving a slide on the Arithmometer type of machine or setting a lever 
on the Brunsviga type, was slow enough that it made the devices 
impractical for many commercial firms. Although various models 
existed that used some form of depressible keys  as the input 
mechanism, these were generally not reliable enough for high-speed 
operation. 

It had long been realized that the action of pushing a key 
contained enough energy not only to set the number on some form 
of input device but also to cause the gears to rotate and effect the 
addition to the result wheels. Unfortunately, no one had been able to 
invent a mechanism that incorporated both actions in one device. Any 
of the early attempts usually had the result wheels being turned either 
too far or not far enough, depending on the force used by the operator 
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in hitting the key. A young American machinist ,  Dorr E.  Felt , found 
a workable solution in the middle 1 880s. 

All the early attempts at producing key-driven adding machines 
relied on the action of depressing a key being communicated to the 
result wheel by means of a ratchet mechanism that rotated the result 
wheel by an amount dependent on which key had been pushed. Not 
only was it found impossible to stop the fast moving result wheel in 
the proper location but any mechanism designed to carry a digit to 
the next higher result wheel was always so slow in its action as to 
limit drastically the speed of operation. A highly trained operator 
could push keys at a rate that would only allow 1/165 of a second for 
any carry to be transmitted to the next digit. This meant that any 
attempt at producing a mechanism based on something as simple as 
the odometer system found in modem automobiles was doomed to 
failure. 

Dorr E. Felt managed to invent several different mechanical 
arrangements that he thought might solve most of the problems 
inherent in a key-driven adding machine. Unable to afford to have 
his ideas properly constructed from metal, he built his first prototype 
from rubber bands , meat skewers, staples, bits of wire, and an old 
macaroni box for the casing (Figure 1 . 32). 

Felt set up a partnership with a man named Robert Tarrant in 1 887 
and the pair of them started producing commercial quantities of 
"Comptometers. "  The success of their key-driven model (Figure 
1 . 33)  was so spectacular that no other key-driven adding machine 
was able to compete with it until after 1 9 12. 

One of the next major advances in the production of calculating 
machines was the incorporation of special devices to automate 
the operations of multiplication and division. These developments 
actually took place simultaneously with the Baldwin and Odhner 
inventions , but they were generally incorporated into machines based 
on the older Thomas de Colmar design. In all earlier machines it was 
necessary to perform multiplication by a series of repeated addition 
operations. This usually required the operator to tum the machine's 
crank as many times as was represented by the sum of the digits of 
the multiplier. Single-digit, or even two-digit ,  multipliers presented 
little problem when working with the Thomas type of machine, 
but multipliers of many digits resulted in both the expenditure of 
considerable physical effort and the passing of long periods of time 
before the answer could be obtained. 

The usual mode of operation in a machine with automatic 



Figure 1 .32. Felt's macaroni box model. 

Figure 1 .33. A production model of the comptometer. 
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multiplication features required that the handle be turned only once 
for each digit in the multiplier. Typical, and perhaps most popular, of 
these automatically multiplying machines was the "Millionaire" 
( Figure 1.34) invented by Otto Steiger of Munich in the early 1 890s . 
Steiger started manufacturing the Millionaire in Zurich and, because 
of its speed and reliability, it was soon being sold to scientific 
establishments throughout Europe and America. Its popularity lasted 
until 1914, when the First World War interrupted the organization 
of sales and support. 

Figure 1.34. A Millionaire. Courtesy Science Museum. 
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The late nineteenth and early twentieth centuries saw many other 
firms start to produce calculating machines of different types . By the 
start of the First World War it was possible to obtain easily machines 
that incorporated automatic mechanical multiplication devices (much 
like a mechanical version of Napier 's Bones), machines that could 
print their results on paper or ledger cards , machines that were driven 
by both electric or spring-driven motors ,  and even machines having 
a combination of these features . Several specialty firms even 
produced machines that consisted of many calculators ganged 
together in different ways in order to simplify certain special types 
of calculations . Once the basic technology had been developed, only 
the limit of human imagination (and the laws of physics) constrained 
the different forms taken by mechanical calculators . They ranged 
from desk-sized objects full of features to small examples that were 
based on Swiss watch technology and capable of being held in one 
hand yet able to perform all the basic arithmetical functions . 
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Chapter 2 

Difference and Analytical Engines 

Introduction 

The development of a succes sful computing machine requires the 
provision of mechanism for at least two basic functions-the 

storage and arithmetic manipulation of numbers, and some control 
mechanism whereby a series of arithmetic operations may be 
combined to produce the result of a desired calculation. The 
previous chapter described the development of such mechanisms -
the commercially successful machines of Thomas de Colmar in the 
1820s being the first to combine a practical design with an effective 
method of manufacture. In these machies the control function was 
provided by the human operator. 

Developments were slow, however, and it was not until the 1 880s 
and 1 890s that "scientific " machines (capable of multiplication and 
division) following the designs of de Colmar or Odhner and 
"commercial "  machine s (capable of addition, or addition and 
subtraction only) by Felt and Tarrant, Burroughs , and others began 
to appear in quantity. The need for these was spurred by the demands 
of the larger businesses bred by the Industrial Revolution. In turn the 
Industrial Revolution made possible the economic mass production 
of the calculators themselves . 

Devices for the automatic control of mechanisms have a much 
longer history, leading back to the ancient Greek civilizations.  
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Automatic mechanisms were extensively developed in the great 
astronomical clocks of the Renaissance and the automata of the 
eighteenth century. Two devices of particular importance to our story, 
the pin barrel music box and the punched card Jacquard loom, were 
well established by the early nineteenth century. Of considerable 
importance ,  but in a more abstract intellectual sense, was the 
development by Stephenson of the ball governor for the steam engine 
and the idea of feedback that it embodies . 

By the early nineteenth century, therefore, the basic mechanisms 
and ideas existed from which an automatic calculating machine could 
be developed. This was done by the English mathematician Charles 
Babbage, who developed, single-handedly, most of the basic ideas 
inherent in the logical design of modem digital computers-an 
intellectual tour de force seldom equalled in the history of science 
and technology. Babbage's ideas were embodied in the design of two 
calculating machines, the Difference Engine and the Analytical 
Engine ,  which form the main topics of this chapter. 

Charles Babbage 

C harles Babbage was born in south London on December 26, 
179 1 ,  the son of Benjamin Babbage, a London banker .  Charles 

was a somewhat sickly youth whose education was irregular and 
mainly conducted at the hands of private tutors . As a youth he was 
his own instructor in algebra, of which he was passionately fond, and 
was well-read in the continental mathematics of his day, particularly 
the calculus of Leibniz. 

Upon entering Trinity College , Cambridge, in 1 8 1 1 ,  Babbage 
found himself in mathematics far in advance of his tutors who, along 
with most English mathematicians , were stultified by an overstrict 
adherence to the unfortunate notations of the calculus of Newton and 
to geometrical forms of argument in general . As an undergraduate, 
with John Herschel, Peacock, and others, Babbage founded the 
Analytical Society for promoting continental mathematics-the 
"D'ism of Leibniz in opposition to the Dot'age of the University. " In 
time this campaign was successful and played an important role in 
the revitalization of English  mathematics in the mid-nineteenth 
century. 

In his twenties Babbage worked as a mathematician. He was 
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elected a Fellow of the Royal Society in 1 8 1 6  and played a prominent 
part in the formation of the Astronomical Society of London (later 
the Royal Astronomical Society) in 1 820. It was about this time that 
Babbage first acquired the interest in calculating machinery that 
became his consuming passion for the remainder of his life. From 
this time he did no more serious mathematical work. 

Throughout his life Babbage worked in many intellectual fields 
and made contributions that would have assured his fame irrespective 
of the Difference and Analy tical Engines . His inter ests are 
well-represented by his published works . He wrote A Comparative 
View of the Various Institutions for the Assurance of Lives ( 1 826) 
concerning the actuarial principles underlying life insurance. His 
Table of Logarithms of the Natural Numbers from 1 to 108,000 ( 1 827) 
was a paradigm of accuracy and was extensively used into the 
twentieth century. Reflections on the Decline of Science in England 
( 1 830) is the best known of Babbage's many polemics against the 
scientific institutions of his day and fueled much debate at the time 
and after. Babbage's interest in this area is also seen in his important 
role in the establishment of the Association for the Advancement of 
Science (a direct outgrowth of the publication of Decline of Science) 
and the Statistical Society (later the Royal Statistical Society) ,  and in 
his extensive contacts with continental scientific institutions. On the 
Economy of Machinery and Manufactures ( 1 832) ,  the best known of 
Babbage's books , is a masterly study of the manufacturing techniques 
of his day and their economic base. It is seen by some as laying the 
foundations of the study of operations research .  The Ninth 
Bridgewater Treatise ( 1 837) is the most curious of Babbage's works. 
It was written as Babbage's unsolicited addendum to the Bridgewater 
Treatises , which aimed to prove the existence of God through the 
richness of natural phenomena. By analogy with his machine, 
Babbage postulated the existence of a hierarchy of natural laws (an 
idea that rose to prominence in the twentieth century with the 
development of relativistic and quantum mechanics) and used this 
idea to provide a rational explanation of natural miracles. The 
autobiographical Passages from the Life of a Philosopher ( 1 864) is 
a charming though idiosyncratic view of nineteenth-century life. It 
contains the most extensive accounts in Babbage's hand of the 
principles and capabilities of his machines though, unfortunately , 
written at a very elementary level. 

Despite his many achievements , the failure to construct his 
calculating machines and, in particular, the failure of the government 
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to support his work (as we shall describe later), left Babbage in his 
declining years a disappointed and embittered man. His bitter, but 
well-warranted, campaign against street musicians became an easy 
cliche of the last years of his life and the basis of the "irascible genius" 
myth that so poorly represents the strengths of his personality and his 
stupendous achievements. Babbage died at his home on D orset 
Street, London, on October 1 8, 1 87 1 .  

The Genesis of the Difference Engine 

The idea of an automatic calculating machine first came to 
Babbage about 1820. In one account, written many years later, 

he describes how he was engaged with his friend, the astronomer John 
Herschel, in proofreading a set of tables prepared for astronomical 
calculations. In a moment of exasperation with the errors they found, 
Babbage remarked, "I wish to God these calculations had been 
executed by steam. " Herschel ' s  reply, "It is quite possible," set 
Babbage thinking and in a short time, a few days, he had formulated 
the general idea of the machine that later became known as the 
D ifference Engine. 

The idea of the method of differences, which underlies Babbage's 
first automatic calculating machine, was much in vogue at that time. 
C onsider the formula 

T = x2 + x + 4l 

of the variable x . It generates a sequence of values for T-many of 
which happen to be prime numbers, as seen in the table in Figure 2. 1 .  
If we take the differences between successive values of T, the column 
labeled � in the table, these so-called first differences follow quite a 
simple rule. If we take the differences between the differences , known 
as the second differences, the result is even more striking-the second 
difference, �2, is a constant. With this knowledge, the table can be 
built up in a very simple way, as shown by the box in the table. Take 
the second difference, 2, and add it to the first difference to form a 
new first difference 

4 + 2 = 6. 
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Take this new first difference and add it to the tabular value to form 
a new tabular value 

47 + 6 = 53 .  

By simply repeating this process the table of the function T may be 
extended indefinitely using no other mathematical operation than 
simple addition (Figure 2. 1 ) .  

2 
2 

1 0  

T 
( X2+X+ 4 1 ) 

41 

43 

6 1  

7 1  

Figure 2. 1 .  Tabulation of a quadratic using the method of differences . 
The box shows the successive updating of the differences 
required to form one new tabular value. 

X 

0 

I 

2 

3 

4 

5 

The process can be generalized. In our example the second 
difference is constant because the function T is a quadratic , i .e. , a 
polynomial of degree 2. If the function T were a cubic , such as 

T = x
3 , 

the second difference would vary, but the third difference ,  the 
difference between successive second differences , would be 
constant. In general a polynomial of degree n will have a constant nth 
difference and each successive new value of the function can be 
obtained by n simple additions .  
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The usefulness of difference techniques is greatly increased by 
the fact that any section of a well-behaved continuous function can 
be approximated by a polynomial . The shorter the section and the 
higher the degree of the polynomial the closer the approximation. So 
if we wished to tabulate a function, such as a sine or the time of sunset, 
it is only necessary to divide the function into short enough intervals 
and find a suitable approximating polynomial for each interval . 
(Mathematical techniques for doing this were much improved later 
in the nineteenth century.) The method of differences can then be used 
to tabulate the function throughout the interval . This process is known 
as sub-tabulation. 

Babbag e r eal ized that a mac hine c ou ld  car ry out this 
sub-tabulation process. First , he needed a mechanism for storing, 
separately , the numbers corresponding to the values of the tabular 
value, T, the first difference , �. the second difference, �2, etc . and a 
mechanism to add each difference to the value of the preceding 
difference. A quadratic , for example, could be tabulated by the 
machine shown schematically in Figure 2.2 .  

Figure 2.2. Schematic arrangement of the operations required to 
tabulate a quadratic using the method of differences .  The 
mechanism of Babbage's Difference Engine corresponds exactly 
to this schematic . 

By early 1 822 Babbage had constructed just such a machine as 
this and applied it to the tabulation of 

T = x
2

+ x + 41 

among other functions-the first thirty values being tabulated in two 
and a half minutes . Unfortunately, Babbage's first Difference Engine 
has not survived and his notes and drawings are lost. The only details 
we have of it are contained in several short letters he wrote in 1 822. 
It was probably similar in general arrangement and design to the later 
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design of 1 830. It is important to note that this model was a working 
machine, though undoubtedly very limited in its numerical capacity. 
Ideas for a more general range of calculating machines , for extracting 
roots of equations , multiplying, and computing primes,  had occurred 
to Babbage at this time and had been partially worked out, but no 
details remain. 

A complete Difference Engine requires , in addition to the 
mechanisms shown in Figure 2. 1 ,  a means for controlling the actions 
of the various parts so that they are performed in the correct sequence. 
It seems that Babbage's original model acted automatically in this 
way, but we have no idea of the mechanisms employed. 

From the beginning, Babbage was concerned with producing 
accurate mathematical , astronomical, and other tables . Performing 
the necessary calculations is only half of the problem. The other half 
is to transfer the calculated results to the printed page, which ,  if done 
manually and with the movable type of the day, is another great source 
of error. Babbage, therefore, proposed that the Difference Engine 
should be made to prepare mechanically the type or plates needed for 
printing. No mechanism for this was included in the first model but 
Babbage was carrying out independent experiments with such 
mechanisms at the same time. 

The Project to Bui ld the Difference Engine 

B abbage recognized his model of 1 822 to be j ust that, a model 
from which a final production machine could be developed, 

given the substantial resources in time, effort, and money that would 
be required. In that the manner of government support for research 
and development with which we are now familiar did not exist in 
Babbage's  day , he commenced by communicating news of his model 
and the possibilities it opened to him to the scientific community , 
most notably in an open letter to Sir Humphrey Davy , president of 
the Royal Society. 

Babbage's achievements brought him immediate acclaim. He was 
a warded the first Gold Medal of the Astronomical Society of London. 
Some of this acclaim must have been due to his ingenuity in reducing 
the mental task not j ust of arithmetic but of an extended sequence of 
arithmetic operations to a mechanical mechanism. Mostly, however, 
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it was due to the perceived importance of the Difference Engine in 
the preparation of mathematical tables .  

In the early nineteenth century tables were the only common aid 
to calculation-the Thomas de Colmar calculating machine was just 
starting production in 1 822, and slide rules , with their limited 
accuracy, were rarely found outside such specialist applications as 
the calculation of excise duty on spirits. Any means to economize the 
production and, especially, ensure the accuracy of tables was of major 
importance. Nowhere was this so evident as in the preparation of the 
astronomical tables to aid navigation at sea. These tables had to be 
recomputed annually, and the consequences of errors in tables , 
trans lated into errors in navigation at sea, could be most serious . 
Therefore, Babbage's project was of major importance to a nation , 
such as Britain , that relied for much of its wealth on overseas trade. 

Babbage 's letter to Sir Humphrey Davy, and the evident 
importance of the Difference Engine as assessed by the scientific men 
of his day, led to support from the British government towards the 
development of the Difference Engine for the preparation of practical 
tab les. The grant ,  initial ly fifteen hundred pounds but rising 
eventually to around seventeen thousand pounds , was never clearly 
formulated to embody the commitments and expectations of either 
Babbage or the government. It was probably seen by the government 
as an ex gratia grant-in-aid to Babbage, a grant without commitment 
or expectation , but was certainly seen by Babbage as a commitment 
to the construction project  by the government. 

This lack of a formal arrangement led to difficulties; Babbage 
considered that the government reneged on its agreement. The 
government gave no further support to the construction after 1 833 
when Babbage's relationship with the engineer Joseph Clement , who 
was building the Engine ,  reached an impasse. It is probably not 
coincidental that 1 832 marked the passage of the Great Reform Bill 
and the first extension of the voting franchise in Britain . From that 
time, government patronage, of the sort that had supported Babbage, 
was no longer politically viable, though it was not until 1 842 that the 
termination of government support was made explicit to Babbage. 

Of Babbage's relationship with Clement we have less direct 
evidence. The construction of the Difference Engine was a very 
demanding piece of precision engineering for its day, though the 
existing portions of the calculating mechanism are proof that the 
necessary precision could be obtained by the development of 
appropriate and specialized tools and skill in their application. It 
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seems , however, that precision was carried to extremes and applied 
in areas, such as the decorative finish of support columns , to which 
it was irrelevant. It seems also that Clement had grasped the potential 
for profit of an open-ended government job and Babbage felt 
exploited by this . 

Babbage, on the other hand, treated Clement as his servant and 
seems not to have grasped that in the decade that the Difference 
Engine was being built it had declined from being the major part of 
Clement's work to one job among many of a successful engineering 
workshop. It is not surprising then that Babbage's demands that 
Clement relocate his workshop to better suit the Difference Engine 
project were countered by huge financial demands. This impasse 
stopped construction work on the Difference Engine in March 1 833, 
and it was never resumed. 

The demands for precision in the manufacture of the Difference 
Engine had a major influence in the development of the British 
machine tool industry. Joseph Whitworth , the leading machine-tool 
maker in the mid-nineteenth century , had been employed by Clement 
on the Difference Engine work. Whitworth's developments of 
standardized screw threads , for example ,  are traceable to Clement's 
work in the same direction for the Difference Engine. There seems 
much truth in the observation that "Babbage made Clement, and 
Clement made Whitworth ."  Late in Babbage's life the government 
received evidence from prominent engineers that the investment in 
the Difference Engine had been amply repaid by its spin-off into 
British industry. 

It is a great pity that when work on the Difference Engine ceased 
it was close to completion. Henry Babbage later estimated that only 
a further five hundred pounds would have sufficed. Babbage could 
readily have found the funds; however his feelings and attitudes to 
both the government and Clement could not at the time have 
countenanced his doing so. Indeed, these feelings did much to form 
his embittered attitudes as an older man. 

Within a year or two ,  Babbage's mind had moved a long way 
towards the much more complex and intellectually rewarding 
Analytical Engine. There was then no way he would have returned 
to the original Difference Engine design and brought it to completion, 
even had events made that feasible. 
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Difference and Analytical Engines 

Figure 2.3 .  Elevation and plan drawings of Babbage 's Difference 
Engine as planned about 1 830. The calculating mechanism is on 
the left; the axes of figure wheels for the tabular value (far right) 
and six differences are clearly visible. The printing mechanism is 
on the right, and the moving table carrying the stereotype printing 

plate and the sector carrying the digit-type punches are visible in 
the center of both drawings. 

The Design of the Difference Engine 

69 

The Difference Engine consisted of two major parts-the 
calculating mechanism and the printing and control mechanism. 

These are c learly seen in Figure 2.3, which shows the general 
arrangement of the Difference Engine as planned about 1 8 30. A 
portion of the calculating mechanism was assembled in 1 832 to 
demonstrate to a committee of the Royal Society that the project was 
proceeding satisfactorily. That portion, shown in Figure 2.4, is about 
one-third of the height and one-half of the width, or about 
one-seventh of the entire calculating mechanism. Almost all of the 
parts of the entire calculating mechanism had been made, but not 
assembled, when work on the project stopped early in 1 833 .  

Figure 2.4. The portion of  the calculating mechanism of the 

Babbage's Difference Engine assembled in 1832. Records of 

nearly a hundred functions tabulated by Babbage with this 
portion have survived. 
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Digits are represented in the Difference Engine by the rotational 
position of horizontal gear wheels. A number is made up of a series 
of these figure wheels rotating about a common vertical axis .  The 
bottommost wheel represents units, the next tens, the next hundreds, 
and so on. (A user can imagine a decimal point located between any 
pair of figure wheels provided this is done consistently throughout 
the Difference Engine.) Babbage used the term Axis to mean a stack 
of figure wheels that together store a number as a collection of 
decimal digits .  The entire Difference Engine consists of an axis for 
the tabular value of the function, another axis for the difference, a 
third axis for the second difference,  and so on for as many orders of 
differences as are desired. These axes stand beside one another, as 
shown in Figure 2.3, with the axis of the tabular value nearest to the 
printing mechanism. 

The Difference Engine is built on quite a large scale, with figure 
wheels about 6 inches ( 1 5  centimeters) in diameter spaced vertically 
about 3 inches (7 .5 centimeters) apart on the axes . (These wheels are 
behind the numbered wheels visible in Figure 2.4. ) No calculating 
machine before or since Babbage has used such large components . 
The large scale in Babbage 's designs is possibly traceable to 
anticipated government expectations based on the proportions 
common in naval equipment. The large size probably did little to 
simplify the attainment of the desired accuracy of machined parts 
while adding considerably to the cost and manufacturing difficulties . 

Each axis served not just as a number store but also as an adding 
mechanism. Addition occurred in two steps that will be explained 
with reference to adding the first difference to the tabular value. 

Inside each first difference figure wheel there is a mechanism that 
is rotated through just as many steps as the value stored by the figure 
wheel. If the units figure wheel stands at 3 ,  the mechanism will move 
through three steps. This motion is conveyed by gearing to the 
corresponding figure wheel of the tabular value axis. If the latter stood 
at 5 initially , it will be moved three steps to stand at 8 .  This process 
occurs simultaneously in the tens , hundreds , thousands , and other 
digit positions . 

It may happen that addition to a figure wheel will generate a carry 
that must be propagated or added into the next higher digit position. 
If the units digit of the tabular value were initially 8 and 3 is added, 
it will move forward three places and come to stand at 1 ,  but a carry 
must also be propagated into the tens figure wheel of the tabular 
value. Carry propagation is complicated by the fact that if the tens 
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figure wheel already stands at 9 it will be moved forward by the carry 
to stand at O and a new carry will be propagated into the hundreds 
figure wheel . In the Difference Engine these consecutive carries may 
propagate, as on occasion they must , from the units up through the 
most significant figure wheel . 

Each addition, therefore ,  consists of two distinct steps-the 
simultaneous addition of all figures of the first difference to the 
corresponding figures of the tabular value, and the consecutive 
propagation of carries from the units up to the most significant digits 
as required. 

Tabulation of a function involves the repetition of this basic 
addition process for each of the orders of difference involved. As each 
axis is also an adding mechanism the tabulation of a cubic function 
from third differences, for example, requires six steps for each tabular 
value produced: 

1 .  Addition of third difference digits to second difference digits 

2. Carry propagation among second difference digits 

3. Addition of second difference digits to first difference digits 

4. Carry propagation among first difference digits 

5 .  Addition of first difference digits to tabular value digits 

6. Carry propagation among tabular value digits. 

This process is shown schematically in Figure 2 .5 .  Negative 
numbers may be handled with no additional mechanism by 
representing them as their ten's complements . 

Figure 2 .5 .  Tabulation of a cubic, showing sequential updating of 
the differences. 
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This scheme is readily extended to higher order differences. 
Tabulation from sixth differences , as planned for the Difference 
Engine, would require twelve steps for each tabular value produced. 
Babbage found a way to rearrange the calculation so that only four 
steps were required for each tabular value produced irrespective of 
the number of differences involved. This is characteristic of the 
sophisticated logical considerations underlying Babbage's designs . 

Babbage observed that when the first difference is added to the 
tabular value, in steps five and six , both the third difference and 
second difference axes are idle. He could thus add the third difference 
to the second difference ,  steps one and two, at the same time as the 
first difference is added to the tabular value. Steps one and two 
overlap steps five and six . Thus only four units of time, for steps three 
to six , are needed for each tabular value produced. This rearranged 
manner of doing the calculation is shown in Figure 2.6 .  In modern 
terminology we would call the arrangement of hardware to perform 
a calculation in this way a pipeline. 

Figure 2.6. Tabulation of a cubic , showing the overlapping of 
updating used in the Difference Engine so that the calculating 
time is independent of the number of differences used. 

4 2  
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The overlapping idea can be extended to higher differences and 
a new tabular value can always be produced in four steps. In general , 
all the even differences are added to the odd differences in two steps 
and all the odd differences are then added to the even differences (and 
the first difference is added to the tabular value) in two further steps . 
Not only does this rearranged form of the calculation save 
considerable time but it also makes the arrangements for driving the 
calculating mechanism much simpler. 
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The calculating mechanism of the Difference Engine is really 
quite straightforward as demonstrated by the early date at which 
Babbage produced his first demonstration model. Some complication 
is added by the (very necessary) apparatus that Babbage added to 
ensure that the machine would calculate accurately with great 
reliability. Although Babbage later found much simpler mechanisms 
for addition and carriage, the calculating part would have been 
perfectly successful if its construction had been completed as 
planned. The success of the portion shown in Figure 2 .4 proves that . 

There are among Babbage's papers a number of tabulations of 
short sections of the logarithm function with this small portion of the 
Difference Engine. These show that Babbage understood how to 
obtain rounded values for printing wi thout  any additional 
calculation. 1 Had the calculating part been completed, Babbage 
might well have discovered some new tabulation techniques because 
he always expected that there would be this kind of feedback on 
analysis once an automatic calculating machine was available. The 
twentieth century proved him right. 

If the calculating mechanism of the Difference Engine is 
straightforward, the printing and control mechanism is not. Its 
sophistication and the considerable intellectual effort expended by 
Babbage on its refinement did much to lay the foundations for the 
Analytical Engine and make its very rapid development possible. It 
may also have delayed the completion of the Difference Engine to a 
fatal extent. 

The Difference Engine was intended to print an entire page of 
tables automatically from the initial setting of the differences. Figure 
2. 7 shows a sample of seven-figure logarithm tables typical of those 
the Difference Engine was intended to prepare. 

No. 0 1 2 3 4 
1550 1 9 0 3 3 1 7  3 5 9 7  3 8 7 7  4 1 5 7  4 4 3 8  

5 1  6 1 1 8  6398  6 6 7 8  6 9 5 8  7 2 3 8  
52  s 9 1 1  9191  9 4 1 1  9 1 5 1  om 
53 1 9 1 1 7 1 5 1 9 9 4  2 2 74  2 5 53  2 8 33  
5 4  4 5 1 0  4 7 9 0  5 0 6 9  5 3 4 8  5 6 2 8  
55  7 3 0 4  7 5 8 3  7862  8 1 4 2  8 4 2 1  
56  1 9 2 0096  0375  0 6 5 4  0 9 3 3  1 2 1 2  
5 7  2 8 8 6  3 1 6 5  3 4 4 4  3 7 2 3  4 0 0 2  
58  5675  5 9 5 3  �232  6 5 1 1  6789  
59  8461  8 7 4 0  9 0 1 8  9297  9 5 7 5  
60  1 9 3  1 2 4 6  1 5 2 4  1 8 03  2 0 8 1  2 3 5 9  

1 5 61  4029  4 3 0 7  4 5 8 5  4 8 6 4  5 1 42  
6 2  6 8 10  7 0 8 8  7 3 6 6  7 6 4 4  7 9 2 2  
6 3  9 5 9 0  9 8 6 8  ffi5 0423  0 7 0 1  
64 1 9 4  2 3 6 7  2 6 4 5  2 9 2 3  3 2 0 0  3 4 7 8  
65  5 1 4 3  5 4 2 1  5 6 9 8  5 9 7 6  6 253  
6 6  7 9 1 8  8 195  8 4 72  8 7 4 0  - ·  
6 7  1 9 5  0 6 90  09r.t  • -
68 

1 5 50 

6 6 7 8 9 D� 
47 1 8  4 9 9 8  5 2 7 8  5 5 5 8  5 8 3 8  
7 5 1 8  7 7 9 8  8 0 7 8  8 3 5 7  8 6 3 7  
03TI 0596  0 8 76  IT55 1435 
31 1 3  3392  3 6 7 2  3U51  4 2 3 1  2 7 9  
5 907  6 18  7 6 4 6 6  6 7 4 5  70 2 5  I 2 8  
8 700 8 9 7 9  9 2 5 9  9 5 3 8  0 8 1 7  2 5 6  
1 4 9 1  1 7 7 0  2 0 4 9  2 3 2 8  2 6 0 7  ! I�; 
4 2 8 1  4 5 5 9  4 8 3 8  5 1 1 7  5 3 9 G  5 H O  
7 0 6 8  7347  7 6 2 5  7904  � 1 8 3  5 167 
9 8 5 4  0 1 3 2  U H l  O u H !I 0%8 7 m 
26 3 8  2 9 1 6  3 1 U 4  3 4 7 3  3 7 5 1  B :123 
5 420  5 6 9 8  5 9 7 6  f, 2 5 4  6 5 3 2  
8 2 0 0  8 4 7 8  8 7 5 6  n o 3 4  0 3 1 2  
007 0 1 2 57  1 5 H  1 K l 2  20Tio 
3756  4 0 3 3  4 3 1 1  . ,  . . . 
6 5 3 1  A O e •  

9 :1 5 \  

Figure 2.7. A sample of seven-figure mathematical tables laid out in 
a manner possible with the Difference Engine. 
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The full seven-figure logarithm is printed only for the first entry 
of the line. Other entries show only the four less significant digits . 
The three most significant digits are printed only if they changed 
during the preceding line ( hence they appear on line 1553) or in the 
calculation of the first entry for the present line ( line 1556). The 
columns and rows are not evenly spaced but rather an additional gap 
is left, after every fifth column and fifth row, to guide the reader 's 
eye. All of these features could be obtained with the D ifference 
Engine. 

Each digit was printed by punching a type into a soft metal 
stereotype printing plate. The particular digits of the tabular function 
printed, and their number, was determined by selecting and counting 
wheels in the printing mechanism. Another counting wheel 
determined the number of table columns and their separations. This 
was actually a wheel of sixty positions, so that ten columns could be 
obtained by repeating the control pattern six times . By suitably 
programming this wheel, six, twelve, or fifteen columns, for example, 
could be obtained for the printing of trigonometric tables. A similar 
wheel controlled the spacing of columns, and it was possible to print 
table entries by columns instead of rows if desired. The printing of 
the leading three digits was controlled by a trip mechanism activated 
by the appropriate carry propagation in the tabular value axis.2 

The printing and control mechanism underwent a major redesign 
about 1 832, so that in the final design it would have been very much 
longer than shown in Figure 2.3. This redesign marks a major advance 
in Babbage 's understanding of control ideas. In the earlier design the 
various counting wheels acted directly to carry out their program 
function themselves. In the later design they always put into gear a 
connection from the main drive to carry out the function. The control 
mechanism, therefore, transmits very little power and the weight of 
the mechanism to be driven does not limit the complexity of the 
control apparatus. This idea was extended to the control of the 
calculating mechanism ( which was overlapped so far as possible with 
the printing), resulting in a design very similar to the barrels later 
employed in the Analytical Engine. 
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The Origins of the Analytical Engine 

Despite the utility of the D ifference Engine as a practical aid to 
table making it is, in the mathematical sense, an extremely 

limited instrument for it is only directly capable of handling 
polynomials . The powers of the engine are increased greatly if it is 
arranged so that the high-order differences can be effected by the 
tabular function or low-order differences. For example, the s ine 
function satisfies the difference equation 

112 sin(x) = - k sin(x). 

If we could make the second difference relate to the tabular value 
in this way, the sine function could be tabulated exactly, without the 
use of polynomial approximations. 3 Alas, the D ifference Engine 
cannot carry out the multiplication required by the above formula. 

In late 1 822, after the completion of the first model of the 
D ifference Engine, Babbage commenced exploring the sorts of 
feedback functions that could be calculated by the D ifference Engine. 
These have definitions similar to 

A 2  . d . . ,F L.l u = units zglt o1 u. 

What motivated Babbage to explore these functions we do not 
know, but despite their analytic intractability they came to exercise a 
considerable fascination upon him. Two brief accounts of the 
functions were published by Babbage in 1 822; the D ifference Engine 
included additional transfer gearing to enable it to calculate such 
functions, and the model assembled in 1 832 had additional facilities 
for this purpose. About fifty of these feedback functions, calculated 
with the model, are tabulated in Babbage 's notebooks, and the 
concept provided the basis for his arguments about miracles in the 
Ninth Bridgewater Treatise. 

When construction of the D ifference Engine ceased in 1 833, 
Babbage returned in earnest to feedback functions, such as the sine, 
which he characterized strikingly as "the Engine eating its own tail. " 
Although Babbage's exact train of thought at this stage is unknown, 
it seems that he first realized that multiplication could be carried out 
by repeated addition if the ability to step numbers up or down on the 
axes ( multiply or divide by ten) was provided. D ivision can be 
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performed as repeated subtraction but it is a "tentative" process, for 
we need to be able to examine the result of one subtraction, whether 
positive or negative, before knowing what to do next. Babbage also 
found a substantially faster method of carry propagation, the 
Anticipating Carriage, that made carry propagation a parallel rather 
than a sequential process. The complexity of this new mechanism 
forced the abandonment of the arrangements of the Difference Engine 
where each storage axis is also an adder. In the Analytical Engine 
there is a separate "store" for numbers and a "mill," or arithmetic unit, 
where calculations are made. 

Babbage 's ideas developed very quickly, aided by the 
commanding knowledge of control mechanisms that he had gained 
from the printing part of the Difference Engine. By late- 1 834 the 
basic plans for the Analytical Engine had been formulated. The mill 
was separate from the store. Multiplication and division were carried 
out in the mill by combinations of simpler operations under the 
direction of one or more barrels. The sequence of operations ordered 
by the barrels included what today we call "loops" and by alternate 
sequences dependent on arithmetic results that arose during 
calculations ( today known as "branching" ). The calculation 
performed was directed by "super" barrels that initiated transfers of 
numbers between the store and mill and started the sequences of 
operations of the subsidiary barrels. The super barrels also included 
looping and branching capabilities. ( In mid- 1 836 the super barrels 
were replaced by strings of Jacquard punched cards. )  Within about a 
year of the cessation of construction of the Difference Engine, 
Babbage had formulated the basic design of a universal calculating 
machine. Most of the remainder of his life was spent in refining the 
details of this design. 

The Analytical Engine 

There was not one design of the Analytical Engine, but many. 
New insights of both a logical and mechanical nature 

continually opened up new possibilities to Babbage for his design, 
which was, therefore, in an almost continual state of flux. 

Between 1 834 and 1 837 Babbage developed in outline form 
several possible arrangements of the basic storage and calculating 
units. Some of these were of considerable interest, such as one with 
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two mills that could be used separately and in parallel for calculations 
on 30-digit numbers or linked together as a single mill for calculations 
on 60-digit numbers ,  but none were developed beyond a preliminary 
stage. However, by working with these early designs , Babbage gained 
the facility with logical design ideas that he was later to exploit so 
effectively. 

Many-digit numbers are characteristic of Babbage's designs. 
Their use gives considerable accuracy, and also a large dynamic range 
for number values. Babbage did not consider the use of a floating 
point number representation, whose complexity the designers of early 
electronic digital computers also avoided. 

By 1 837 Babbage had settled on a straightforward arrangement , 
with a single mill and store , that is very similar to early electronic 
digital computers . This arrangement was altered little in the following 
years , but the design was refined and elaborated to a considerable 
extent. By 1 847 , when this design work ended, there was little doubt 
that an Analytical Engine could have been built had the necessarily 
considerable resources been available. Here we describe the design 
as it stood in the middle years between 1 838 and 1 840. It may be 
considered representative of Babbage's plans. 

Figure 2 .8  shows the general arrangement of Babbage's Plan 1 6 ,  
dated August 1 840. The figure is actually a plan drawing of how the 
mechanism would have appeared from above. It also serves very 
effectively as a logical diagram of the functional parts of the 
mechanism and their interconnection. This has been emphasized in 
the figure. 

On the right of Figure 2 .8  is the store. This consists of figure 
wheels ,  similar to those in the Difference Engine, arranged on vertical 
axes on either side of a set of "racks" or toothed bars. The racks 
convey numbers between the store axes and the mil l  on the left of the 
figure. 

Numbers consisted of forty decimal digits. Negative numbers , in 
a sign-and-magnitude representation, were indicated with a separate 
sign wheel on each store axis . In a mechanical calculating machine 
the binary number system has no especial advantage, whereas a 
decimal notation uses less apparatus and is easier for a human to 
interpret. Babbage carefully examined number bases between 2 and 
100 at various stages in the design. The sign-and-magnitude 
representation is convenient for mul tiplication and division 
operations , but complicates addition and subtraction. 

The Analytical Engine uses a much simpler mechanism than the 
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Figure 2. 8 .  Babbage 's Plan 16  for the Analytical Engine in August 
1 840. The original plan drawing of the mechanism has been 
annotated to show the functional relationships of the principal 
parts . 
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Difference Engine to store and read out numbers .  To read a number 
each figure wheel is turned backwards to stand at its O position. In 
the process the wheel will rotate through just as many digit positions 
as the digit it originally stored, and this motion is conveyed via the 
racks to the mill. Number readout is therefore destructive, but the 
number read can be restored to the store axis , if desired, by leaving 
the store in gear with the racks as they are returned to their starting 
position at the end of the number transfer. In the mill the destructive 
readout has more complex effects and most number axes comprise a 
double set of figure wheels that are used alternately-one set 
receiving what the other set gives off. 

The capacity of the s tore is unclear from the figure ,  as the racks 
may easily be extended further to the right. Babbage spoke at various 
times of from one hundred to one thousand numbers in the store. 
Because the Analytical Engine would have been fairly slow, one 
hundred numbers would probably have sufficed for all practical 
purposes. In that case the racks would have been about 10  feet (3 
meters) long. 

Babbage also proposed to have apparatus to read numbers from 
and punch numbers to Jacquard cards . The requisite apparatus would 
have communicated with the store racks , but the details are not 
known. Printing apparatus for making stereotype plates was also 
intended, but Babbage suggested that this might be a separate 
machine driven by punched number cards . 

Quite long trains of gearing might be involved in the transfer of 
numbers from one place to another in the Analytical Engine. The 
necessary looseness and backlash in the gearing , required to ensure 
easy mechanical action , might have accumulated in these long 
transfers to such an extent as to make the operation of the machine 
uncertain . Babbag e overcame this diffic ulty by a s eries of 
"lockings"-wedges that come between gear teeth to bring them 
accurately to their correct position. This is exactly analogous to the 
provision of amplification in electronic logic gates to ensure that the 
output voltage levels conform to a standard set of values irrespective 
of the particular logic circuit involved. Although the lockings added 
much mechanical complexity to the Analytical Engine, Babbage well 
understood that they were essential if the machine was to work 
reliably. This feature is charac teristic of the sophistication of 
Babbage's designs and gives much confidence that the machine ,  if 
built, would have worked successfully. 

On the left of Figure 2 . 8  is the mill, or central processing unit. 
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This consists of a number of axes of figure wheels arranged around 
a set of "central wheels . "  The central wheels are used to transfer 
numbers within the mill and play a role analogous to that of the racks 
in the store. The mill would have been about 6 feet (2 meters) in 
diameter and 1 5  feet (5 meters) high. 

The ingress axis, I, and the egress axis, ':4, are used as buffers 
for number transfers between the store and the mill .  The head and tail 
axes , A and 'A , together constitute a double-length (80-digit) 
accumulator to hold the product in multiplication and the dividend 
and remainder in division. A is  also used as a single-length 
accumulator in addition and subtraction. The table axes , Tt to T9, are 
used in multiplication and division. 

The axes F, 'F and "F identify the three Anticipating Carry 
mechanisms incorporated in the Analytical Engine. As we saw, the 
Difference Engine used a sequential form of carry propagation. If the 
hundreds figure wheel, for example , stood at 9 and received a carry 
from the tens figure wheel, it would move forward one digit position 
to stand at O and propagate a carry to the thousands figure wheel. The 
thousands will not receive the carry until the hundreds figure wheel 
has actually moved forward. It is this delay that causes the carry 
propagation to be sequential and take considerable time. 

The Anticipating Carry is so called because it anticipates this 
sequential action. The thousands may receive a carry for one of two 
reasons : either the hundreds figure wheel moved past 9 to O during 
the addition step and so generated a carry; or the hundreds figure 
wheel stands at 9 and so will propagate a carry received, by whatever 
cause, from the tens figure wheel . The anticipating carry incorporates 
a mechanism, the "carry chain,"  that directly implements these two 
logical alternatives. The anticipating carry mechanism can therefore 
determine , before any figure wheel is moved, which ones should 
receive a carry and all of these can be moved forward through one 
digit position simultaneously. The sequential and anticipating carry 
mechanisms are contrasted in Figure 2.9. 

The anticipating carry was probably the idea of which Babbage 
was most proud. His autobiography contains a delightful story 
c onc erning i t s  invention and describes how h i s  pr incipal 
draughtsman had thought Babbage had taken leave of his senses for 
even contemplating its possibility. Perhaps it was the base of the 
enormous confidence Babbage exhibited in developing the logical 
design of the Analytical Engine. 

The carry chain of the anticipating carry would have demanded 
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Addition Carri age 

0 5 5 5 5 5 5 /6 
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♦-------+--•----✓ 
I 9 0 0 0 0 0 0  

+ =? / 
5 0 5 5 6* 6 6 6  

•------ --✓ 4 7 1
.__/

2 2 2 2 2 

9 6 5 5 5 5 5 5 

Figure 2.9 . Babbage's two methods of carriage propagation in 
addition. The upper example shows the sequential carry 
mechanism used in the D ifference Engine. Corresponding digits 
are first added simultaneously ( units to units, tens to tens, and so 
on) and carriages warned, as shown by a star. The carriage 
propagation then proceeds sequentially from the units digit 
upward. The lower example shows the anticipating carriage used 
in the Analytical Engine. The addition process is unchanged, but 
all of the carriages are propagated simultaneously. 

8 1  

a very high degree of precision in its manufacture. But measurements 
made of parts built for the D ifference Engine show that the requisite 
degree of accuracy had been obtained on a mass production basis by 
about 1 830. There seems no basis for the common belief that 
Babbage's machines could not have been made with the technology 
available in his day, though doubtless it would have been expensive. 
Rather, it seems that after his bitter experience in attempting to build 
the D ifference Engine, Babbage chose to concentrate on the 
intellectual issues raised in the design of the Analytical Engine and 
built only small trial models to verify his designs. Babbage's designs 
were very thoroughly developed and the mechanical issues carefully 
considered. They were much more than just pen and paper sketches 
of an idea. 
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The Methods Employed for Arithmetic Operations 

The methods used for multiplication and division in the 
Analytical Engine are quite straightforward, although the 

amount of apparatus required is substantial and there are many 
technical refinements . 

Multiplication commences by talcing one of the operands from 
the store and repeatedly adding it to itself to form the first nine 
multiples, which are stored on the table axes Ti to T9. The multiplier 
is then talcen one digit at a time, commencing with the units, and the 
corresponding multiple is selected from the table axes and added to 
the product, which is accumulated on the head and tail axes A and 'A . 
The multiples on the table axes are all stepped up one digit position 
and the process is repeated with the next digit of the multiplier. The 
various actions are overlapped in such a manner that each whole step 
requires only a single addition time. The result is a double-length 
product that is returned to the store. 

D ivision is similar. A table is first made of the nine multiples of 
the divisor. The two most significant digits of the remainder, on the 
head and tail axes, are compared simultaneously with the two leading 
digits of each of the multiples to estimate the next quotient digit. This 
guess will either be correct or one too large. The selected multiple is 
subtracted from the remainder and if this becomes negative the 
divisor is added back to give a new remainder. The new remainder is 
stepped one place and the process is repeated. In 1 840 Babbage found 
ways of overlapping the actions so that division also took only a 
single addition ( subtraction) time irrespective of whether the quotient 
digit had been correctly guessed initially. 

Addition and subtraction are much more complex processes 
because of the sign-and-magnitude representation used in the store. 
In multiplication and division the signs of the operands can be 
ignored, the operands treated as unsigned, and the correct sign simply 
inserted into the result. A negative operand, however, turns an 
addition into a subtraction, and vice versa, and so the function 
performed in the mill must be changed by the sign. 

Multiplication and division are slow, taking one to two minutes 
and one to four minutes respectively, so the overhead time in fetching 
operands and storing results is not important ( although these are 
overlapped with other actions as far as possible). In addition and 
subtraction the fetching and storing, including the conversions from 
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and to the sign-and-magnitude representation, take much longer than 
the two to three seconds required by the operation itself. 

Babbage avoided these difficulties to a large extent by taking as 
his basic operation the addition or subtraction ( in any mixture) of a 
whole set of operands. Any partial sums could be written to the store 
as required. In effect, Babbage provided residual storage in the mill 
( on the head axis A) of the partial sums in a complement number 
system. This is exactly the same as the practice in electronic digital 
computers, save that there the residual storage (in registers) is 
available for other types of operations as well. 

Babbage organized addition and subtraction so that operands 
could be in different stages of processing simultaneously. This is 
shown in Figure 2. 10. Each operand is first fetched from the store to 
the ingress axis. The value is then added or subtracted, as required, 
from the total on the head axis , A .  This total is in a ten 's complement 
representation . If the partial sum is to be written to the store, it is 
transferred to the egress axis and converted, in the process, to a 
sign-and-magnitude representation. Finally, the result is written to 
the store. The control is very ingeniously arranged so that the 
maximum possible throughput is achieved-the limitation being 
access to the store via the racks to fetch operands or store results. This 
was a stupendous achievement in logical design. 

The Analytical Engine provided other arithmetic operations, but 
the complete set is not clear because Babbage did not list what we 
would now call the user instruction set. There were variants of 
multiplication and division for use when only a limited number of 
digits of the result were required. These were used, for example, in 
the early steps of finding a square root by iterative formulas. In earlier 
designs the square root operation had been implemented as an 
elementary operation .  D uring the slow multiplication and division 
operations the ingress axis, /, and the anticipating carry, "F, could be 
used directly with the store as a difference engine. Possibly this was 
intended for calculating simple polynomial functions required by the 
main calculation, or sub-tabulation of functions between pivotal 
values calculated in the mill. It is a nice example of the use of 
functional parallelism. 
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The Control Mechanism 

The algorithms used in the Analytical Engine, while simple 
enough in outline , are complex when examined in detail-for 

there are a large number of hardware components that must work 
together . Babbage achieved control of this machinery with a 
hierarchical system of mechanisms . 

At the lowest level the control is exercised by "barrels"  (Figure 
2. 1 1 ) similar to those employed in music boxes , barrel organs , and 
many automata familiar in Babbage's day. Studs may be screwed to 
the surf ace of the barrel in any desired pattern. When the barrel 
advances , by moving its axis sideways ,  one vertical row of studs acts 
by pressing against control levers in a pattern determined by the 
arrangement of the studs .  The levers in turn engage and disengage 
the transmission of power from the main drive shaft to the various 
mechanisms of the Analytical Engine. One "vertical , "  or line of studs ,  
determines the actions during one adding cycle. In practice ,  a barrel 
had from 50 to 100 verticals, each with as many as 200 studs . 

.,,,.,,,. -- - - ......... 

Figure 2. 1 1 .  A barrel mechanism used in the Analytical Engine. The 
barrel may determine the sequencing between its own verticals 
by both the unconditional and conditional mechanisms shown 
here. 
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Some of the levers selected by the barrel control its rotation from 
one vertical to another. Some of these act unconditionally. Others 
establish a path by which a conditional event in the Analytical Engine, 
such as a carry propagation from the most significant digit position 
of a number (a running up), can move the barrel to another vertical. 
Thus, each vertical can determine which vertical will succeed it and 
which conditional events are to effect the choice. Interestingly, 
Babbage's arrangements provide only for what today we call "relative 
addressing"-i.e., a vertical can specify how far to go to the next 
vertical that is to act but cannot specify its absolute location. Babbage 
had no concept equivalent to the modern idea of the address of a word. 
A vertical may specify a return to a previous vertical and in this 
manner what we now call "loops" are provided. 

Babbage's use of barrels was much more elaborate than this. 
There were, in general, several barrels-Figure 2.8 shows three but 
some designs had as many as seven. If these all turn together, the 
effect is nothing more than dividing up an inconveniently large barrel 
into a group of smaller ones . But in the case of addition and 
subtraction the barrels controlling the registers /, A, and "A and 
associated mechanisms acted independently of one another, 
responding in part to local conditional events, yet cooperating 
together to implement the string of addition and subtraction 
operations. The whole arrangement is enormously sophisticated yet 
finely judged to best exploit the capabilities of the calculating 
mechanisms. 

The barrels specify in detail how multiplication, division, 
addition, subtraction, and other arithmetic operations, are to be 
carried out. The user of the Analytical Engine would regard these 
arithmetic operations as basic and specify a calculation in terms of 
them as elementary functions . We have, therefore, a hierarchical 
arrangement of the control. 

For the higher level of control, Babbage, in 1 836, adopted the 
punched cards developed by Jacquard for pattern-weaving looms and 
used extensively since 1 8 10 (Figure 2. 12). A card is pressed against 
the ends of control levers so that the pattern of holes in the card 
determines which levers act. The action is entirely analogous to the 
studs comprising a vertical on a barrel. The Jacquard cards are strung 
together by narrow ribbons so that they comprise, in essence, a paper 
tape. It is possible, by mechanisms similar to those used to rotate the 
barrels ,  to move forward or backwards through a string of the 
Jacquard cards. In effect the string of Jacquard cards is equivalent to 



Figure 2. 12. A Jacquard pattern-weaving loom controlled by 
punched cards. Babbage adopted and generalized this mechanism 
for the user-level specification of calculations for the Analytical 
Engine. Courtesy Science Museum, London. 

a barrel with an indefinitely large number of verticals. The adoption 
of the cards represents less a conceptual breakthrough than a 
pragmatic improvement on the earlier use of a super barrel to specify 
the steps of a calculation. Babbage made little of this development 
and its importance has been considerably over-romanticized by the 
analogy with modem uses of punched cards . 

Programming the Analytical Engine 

Although Babbage 's  mechanical technology is vastly different 
from modem electronics, it is relatively easy to find analogies 

that make his organization of the calculating units and storage and 
their control by the barrels and Jacquard cards familiar to modem 
computer users. It is only when we come to examine the facilities 
available for programming the Analytical Engine that Babbage's 
designs begin to look strange to modern eyes. 

Two strings of Jacquard cards were needed to specify a 
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calculation to be performed by the Analytical Engine. One string, the 
"operation cards , "  specified the arithmetic operations to be 
performed. The second string, the "variable cards, " specified the axes 
in the store that contained the operands and were to receive the results . 
These two strings cannot be regarded as separate parts of a single 
instruction, as are the operation and operand fields of an instruction 
in an electronic digital computer, because the operation and variable 
cards were intended to move and loop independently of one another 
under the direction of separate control mechanisms . 

Babbage seems to have been led to separate the operation and 
variable cards on largely philosophical grounds stemming from his 
belief in the need to distinguish symbols for operation from those for 
quantity in mathematical notations . These views were probably 
reinforced when he considered the cards necessary for calculations 
such as the solution of simultaneous equations. There the pattern of 
operations required for carrying out row reductions is very simple 
and a straightforward loop of operation cards is readily found. No 
such simple loop structure exists for the variable cards , which can 
only specify single axes in the store. The loop structures that we now 
recognize concern rows of the matrix of coefficients of the equations 
and similar concepts related to the structuring of the data. As Babbage 
did not have the concept of a variable address in the store, neither 
was the Analytical Engine able to calculate the location of an operand 
in the store; there was no way in which the user programs could 
exploit this higher level structure in the data. 

In reality , we know little of Babbage's programming ideas . There 
is nothing in the surviving papers in which this aspect of the machine 
i s  thoroughly di sc u s s ed, e . g . ,  nothing corr esponding  to a 
specification of a user instruction set. This is the more remarkable for 
it is the only aspect  of the design that is discussed at length in a 
contemporary paper. In 1 840, Babbage visited Turin in Italy and gave 
a series of seminars on the Analytical Engine. An account of these, 
by Menabrea, was translated into English by Ada Lovelace, who 
appended extensive notes prepared under Babbage's close guidance. 
These deal with the familiar modem ideas of flow of control in 
programs, particularly the formulation of simple loops and nested 
loops controlled by counters .  However, the paper and notes carefully 
and deliberately skirt around any discussion of details of the means 
by which these are to be implemented. 

Ada Lovelace has sometimes been acclaimed as the "world's first 
programmer" on the strength of her authorship of the notes to the 
Menabrea paper. This romantically appealing image is without 
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foundation. All but one of the programs cited in her notes had been 
prepared by Babbage from three to seven years earlier. The exception 
was prepared by Babbage for her, although she did detect a "bug" in 
it. Not only is there no evidence that Ada Lovelace ever prepared a 
program for the Analytical Engine but her correspondence with 
Babbage shows that she did not have the knowledge to do so. 
Babbage seems to have deliberately employed independent persons 
to convey knowledge of the Analytical Engine to the wider public in 
exactly the same manner as , a decade earlier, he had used the 
well-known popularizer of science Dionysius Lardner to convey into 
print a detailed account of the purpose of the Difference Engine. 

The conclusion seems inescapable that Babbage did not have a 
firm command of the issues raised by the user-level programming of 
the Analytical Engine. It would be quite wrong to infer that Babbage 
did not understand programming per se. The microprogramming of 
the barrels for multiplication and division show command of the basic 
branching and looping ideas and his skills in the microprogramming 
of addition and subtraction show complete virtuosity. It was from this 
base that Babbage explored the ideas of user-level programming. The 
i s s u e s  of data s t r uc t u rin g  sim p l y  did n ot ar i s e  at th e 
microprogramming level . There is some evidence to suggest that 
Babbage's ideas were moving in the directions now familiar in 
connection with the control mechanisms for loop counting in 
user-level programs. Had an Analytical Engine ever been brought to 
working order, there can be no doubt that Babbage's programming 
ideas would have been developed greatly. 

Babbage realized that the Analytical Engine was a universal 
calculating machine in the sense that, given sufficient time, it could 
carry out any possible arithmetic calculation . The argument, clearly 
presented in simple terms in his autobiography, is based on three 
observations .  First, arithmetic operations on numbers of more than 
forty digits can always be carried through by breaking them into 
40-digit segments, so the limited number of digits on any store axis 
is no fundamental limit. Second, calculations can be specified by 
strings of operation and variable cards of unlimited extent, so there 
is no limitation to the size or complexity of programs. Third, numbers 
from the store can be punched onto number cards and later read back, 
and this provides a backing store of unlimited extent to overcome the 
limited number of axes in the store. This sophisticated argument has 
a very twentieth-century flavor. Babbage was not aware that there 
might be uncomputable numbers, a concept that derives from the 
brilliant work of Alan Turing in the 1 930s. 
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Babbage's Later Calculating Engines 

Work on the design of the Analytical Engine ended in 1 847. At 
that time Babbage turned to the design of a Difference Engine 

No. 2 ,  exp loiting the improved and simplified arithmetic mechanisms 
developed for the Analytical Engine. The logical design was the same 
as for the earlier Difference Engine , but he employed simpler 
mechanisms for storing and adding numbers and carry propagation. 
The printing mechanism was simplified so that a whole number was 
impressed on a printing p late as a single action rather than in a 
digit-by-digit manner. A conventional print copy, using inked rollers , 
was made simultaneously . The control was arranged by a single 
barrel in a very straightforward manner . The design and a complete 
set of drawings was prepared by mid- 1 848 . These Babbage offered 
to the British government , apparently to satisfy a commitment he felt 
existed in consequence of the failure of the project to build the first 
Difference Engine. The government showed no interest in the new 
design. 

Babbage appears to have done no more work on calculating 
engines until the Scheutz Difference Engine (described in the next 
section) was brought to London in 1 855 .  To the surprise of some, 
Babbage became an active and vigorous promoter of the Scheutzes 
and their machine. 

Inspired, perhaps , by the Scheutzes ' success, Babbage returned 
to design work on the Analytical Engine in about 1 856 or 1 857 , when 
he was 65 years old. In this new phase of work Babbage was actively 
interested in bui lding an Analytical Engine with his own resources.  
The logical design was somewhat simplified but ,  most importantly, 
far simpler and cheaper methods were proposed to implement the 
basic mechanisms. Babbage first experimented with sheet metal 
stamping and pressing for making gear wheels and similar parts . 
Later, he adopted pressure die casting for making parts-a newly 
invented technique that did not see extensive commercial use until 
the end of the nineteenth century. Babbage built many experimental 
models of mechanisms using these new techniques , and, at the time 
of his death in 1 87 1 ,  a model of a simple mill and printing mechanism 
was near completion. (Figure 2. 1 3) 

This last work of Babbage is poorly understood because of the 
disorganized and chaotic nature of the materials that remain. The 
impression is unavoidable that in this later work Babbage had lost the 
fine touch of genius exhibited in his earlier work, although his various 
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Figure 2. 1 3. A model of the mill of the Analytical Engine that was 
under construction at the time of Babbage's death. The horizontal 
racks communicate numbers between the two number axes in the 
center and to the printing mechanism at the right. An anticipating 
carriage mechanism is located between the number axes. The 
calculating mechanism employ s pressure die-cast metal 
components. Courtesy Science Museum, London. 

9 1  

experimental models still show much evidence of an ingenious and 
enquiring mind. In fairness, we must note that most of this later work 
was carried on when Babbage was between seventy and eighty years 
old. 

Babbage's calculating machines and related materials were 
inherited by his youngest son, Major-General Henry P. Babbage, who 
had shown a strong interest in his father 's work. Henry Babbage 
decided not to continue with the design of an Analytic Engine but 
instead to develop a manually operated machine for addition, 
subtraction, multiplication, and division (a four-function calculator), 
incorporating the mechanisms planned for the mill of the Analytical 
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Engine. Although eventually completed, when Henry was himself an 
old man, this machine appears never to have worked reliably. In any 
case , by the start of the twentieth century it had been rendered archaic 
by other developments of mechanical calculating machines, so that 
now it stands only as a scientific curio. 

The Scheutz Difference Engine 

The first successful automatic calculating machine was developed 
in Sweden in the 1 840s by Georg Scheutz and his son Edvard. 

Their machine was a Difference Engine based directly on Babbage's 
design,  which they learned about when George Scheutz translated 
Lardner; s article into Swedish. In that Lardner 's  article contains only 
the most general descriptions of the mechanism of the Difference 
Engine (without drawings of the mechanisms) it is a small surprise 
that the Scheutz machine (Figure 2. 14) looks very different from 
Babbage's  (Figure 2 .4). 

Figure 2 . 1 4. The copy of the Scheutz Difference Engine built for the 
General Register Office, London. The pillar at the right moves 
across the front of the figure wheels to effect the carriage 
propagation. The printing mechanism is behind the calculating 
wheels at the left. Courtesy Science Museum, London. 
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In the Scheutz Difference Engine the figure wheels, as in 
Babbage's design, are horizontal wheels rotating about a vertical axis .  
However, the figure wheels for the tabular value are arranged in a 
row on a horizontal shelf, while the first- and higher-order differences 
are arranged on succes sive shelves below. There are five shelves, 
allowing up to fourth-order differences , and fifteen digits in all 
numbers . A sequential carry propagation is provided by "pillars " that 
travel the length of the mechanism in front of and behind the 
calculating wheels. As in Babbage's machine, the odd differences are 
updated simultaneously, then the even differences (and the tabular 
value) are updated together. 

The printing mechanism punches stereotype plates , all digits of 
a number being impressed simultaneously after the manner of 
Babbage's later designs . The Scheutz Difference Engine prepares 
only a single column of tabular values. The page layout is made up 
manually from these strips .  There is no attempt at an automatic 
mechanism for this purpose. 

Construction of the Scheutz Difference Engine was completed in 
October 1 853 with some assistance from the Swedish government. 
It was later taken to London where it, and Georg and Edvard Scheutz, 
were championed by Babbage. The machine was exhibited in the 
Paris Exhibition of 1 855 , awarded a gold medal , and widely 
acclaimed. The original machine was sold to the Dudley Observatory 
in Albany, New York ,  in 1 856 to be used in preparing astronomical 
tables. A copy of the machine was made by Bryan Donkin & Co. for 
the General Register Office in England about 1 858 .  

Three sets of tables were published that had been calculated, at 
least in part, by the Scheutz Difference Engine. A set of Specimen 
Tables, including a table of five-figure logarithms of the integers from 
1 to 1000, was prepared on the original machine in 1 856. That same 
year, a set of Mountain Barometer Tables, for assessing heights on 
mountains or depths in mines from simultaneous observations of 
barometric pressure and temperature, were prepared by the English 
copy of the Scheutz Difference Engine. The major production was 
the preparation of the English Life Tables, published in 1 864, at the 
General Register Office. 

Neither model of the Scheutz Difference Engine was found to be 
very satisfactory and the use of both was quickly abandoned. A 
number of factors contributed to this failure. The calculations were 
slow, largely because of the awkward carry propagation mechanism 
used. The machine depended on friction alone to keep the figure 
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wheels in their correct position when a number was stored-there 
were no spring detents or other mechanisms equivalent to Babbage's 
lockings to retain the figure wheels in place. Without such provision 
it seems the figure wheels easily became displaced from their correct 
position and the calculation spoiled. Although this could be detected 
by examining the last value printed it was no doubt a source of 
considerable annoyance. The printing mechanism seems also to have 
been unreliable and errors of that sort would have been difficult to 
detec t .  In general , both mac hines were found to be delicate 
instruments that required considerable skill to manipulate and hence 
were ill-suited to routine use. 

Later Difference and Analytical Engines 

T hat the Scheutz Difference Engine possessed faults is scarcely 
surprising in view of its being the first completed machine of its 

type. It is regrettable that more experience had not been gained with 
the original machine before the English copy was made, when the 
opportunity might have been taken to eliminate the difficulties. 
Production of a reliable difference engine required the investment of 
new,  inventive effort to build on the Babbage and Scheutz 
achievements. However , there were only two more developments in 
that direction in the nineteenth century . 

In Sweden, Martin Wiberg had built a difference engine by 1 860 
and used it to prepare a set of interest tables for publication. The 
Wiberg Difference Engine was both smaller and simpler than the 
Scheutz, though it possessed the same arithmetic capability. The 
machine appears to have worked reliably and was used in the 
preparation of logarithmic and trigonometric tables that appeared in 
1 875 . 

In America, George Grant developed a small model of a 
difference engine in 1 87 1  and exhibited a complete machine in 1 876. 
But this machine soon faded into obscurity and appears not to have 
been put to any practical use. 

In the twentieth century the use of difference engines in table 
making again received some prominence. In this case, however, the 
construction of special purpose machines was not attempted but ways 
were found to adapt the general purpose calculating machines then 
on the market to this special purpose. The best known work is that of 
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L. J. Comrie at the British Nautical Almanac Office in the 1 920s and 
1930s, using multiple register accounting machines manufactured by 
Burroughs and National Cash Register. 

If little effort was made to develop difference engines , it is 
scarcely surprising that nothing substantial followed in the tradition 
of Babbage's Analytical Engine. 

In Ireland an analytical engine was designed by Percy Ludgate 
about 1 905 . Initially this work was independent of Babbage's but 
later Ludgate came to know and be influenced by Babbage's ideas . 
The design, which was purely mechanical, contains some striking 
features. The mechanisms in which numbers were stored were 
physically transported from the memory when the number was read. 
A pseudologarithmic representation of digits was used to simplify 
both multiplication and division operations . A most interesting 
feature was the abandonment of Babbage's separate operation and 
variable cards and the adoption of control by a paper tape in which 
each instruction comprised an operation code and four address fields . 
Very little information on Ludgate's design has survived, and there 
is no evidence that he ever attempted to construct the machine. 

Very interesting designs of analytical engines were made in Spain 
in the 1 9 1 0s and 1 920s by Leonardo Torres y Quevedo. Torres was 
a wel l-known engineer who vigorous ly exp loited the new 
elec tromagnetic tec hnologies in the development of contro l 
mechanisms. He is particularly well-known for two fully automatic 
chess p laying automata for the ending of king and rook against a king. 
In 1 920 Torres constructed an electromagnetic calculating machine 
that was driven by operands typed on a typewriter and delivered its 
results using the same device. Torres 's ideas for an analytical engine 
were sufficiently well developed that there is no doubt that a 
successful machine could have been built in the 1 920s had the need 
for such a machine been pressing. 

The Importance of Babbage's Calculating Engines 

In the designs of the Difference Engine and the Analytical Engine 
Babbage made the first major intellectual contributions towards 

the development of automatic digital computing machines although 
his ideas were not realized until over a century later . Two major 
questions remain about Babbage ' s  work. Why were his machines not 
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successfully constructed? And what influence did his ideas have on 
the subsequent development of automatic computers? 

The present evidence suggests, quite strongly, that both the 
Difference Engine and the Analytical Engine could have been built 
successfully with the mechanical technology at Babbage's disposal . 
The calculating part of the Difference Engine came close to 
completion and the portion in the Science Museum, London, works 
superbly. The failure of that project seems traceable in part to 
Babbage's relationship with the British government over the funding 
of the project but especially to Babbage's relationship with the 
engineer Clement. The large physical scale of the machine and, 
partic ularly, the very high degree of precision attained in the 
manufacture of its parts and the concomitant expense seem to have 
been the root causes of the failure to bring it to completion. 

The Difference Engine has a direct line of descendants through 
the Scheutz to the Wiberg and Grant difference engines. That these 
were not extensively used or developed, despite the apparent 
complete success of the Wiberg machine, indicates that the entire idea 
was not well judged. The sub-tabulation task, though laborious, was 
not the dominant mathematical task in the preparation of tables nor, 
with adequate organization and management, was it of overwhelming 
practical importance. Babbage 's argument for the accuracy in 
typesetting made possible by machines (later strong ly held by 
Howard Aiken) was not widely accepted, and Babbage's own 
logarithm tables are proof of the accuracy that could be obtained by 
manual techniques. When machine sub-tabulation was adopted by 
Comrie, it was in the context of a large-scale mechanization of table 
making in which the balance of effort in the whole project was not 
much changed. 

Although the Analytical Engine could have been built, Babbage 
chose, for most of his life, not to attempt to do so. This is a natural 
response to his experiences with the Difference Engine and the 
enormous intellectual appeal of the questions raised by the Analytical 
Engine. Of great regret is the fact that Babbage never published a 
detailed account of any of his many ideas and mechanisms. The 
Menabrea-Lovelac e paper del i berately conc entrates on the 
mathematical principles embodied in the machine and completely 
avoids describing their mechanization. 

Without a detailed description of the Analytical Engine its 
influence on later developments was quite limited. Certainly the idea 
of an automatic calculating machine was well-known in English and, 
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Notes 

to a lesser extent , American scientific circles and closely associated 
with Babbage's name. But only the most limited technical guidance 
was provided for later designers ,  who in effect worked independently 
of Babbage. The fruits of Babbage's considerable genius were 
therefore effectively wasted as far as practical influence is concerned. 
Only in the tapes of the Turing machine , and the idea of 
mechanization of computation used there, is there any strong echo of 
Babbage's ideas . Turing 's place in the English intellectual tradition 
makes such a line of influence plausible if unproven. 

In the practical field of making automatic calculating machinery 
it is even possible that Babbage's influence was counterproductive. 
What point was there in attempting to make an automatic machine 
when a man of Babbage's acknowledged genius had failed? Indeed, 
it is difficult to understand why machines were not built using 
electromagnetic technology early in the twentieth century. Torres 's 
designs showed that it was certainly feasible to do so by 1 9 14, and 
Stibitz 's designs could have been implemented decades before they 
were. 

1 .  The trick is to add 5 to the initial value of the tabular function in 
the most significant digit position beyond those to be printed (i .e. , 
1/2 in the least significant digit) and thereafter to simply truncate 
all values to be printed. 

2. The difference table shown at the right of Figure 7 was not 
produced by the Difference Engine , and the row and column 
headings would have required further runs through the machine 
to insert them. 

3. The use of feedback here is very similar to that employed in 
differential analyzers and analog computers (Chapter 5 ) .  What 
Babbage proposed is effectively a form of digital differential 
analyzer. 



Computing Before Computers 98 

Further Reading 

Babbage ,  H .  P. Babbage's Calculating Engines. Los Angeles and 
Cambridge, Mass . :  Tomash Publishers and MIT Press , 1 982. The 
best edition of the contemporary writings of Babbage and others 
concerning his machines , collected and published by his son after 
Babbage's death. 

Bromley, A. G .  "Charles Babbage's Analytical Engine, 1 838 . "  
Annals of the History of Computing 4(July 1 982) : 1 96-2 17 .  

--· "The Evolution of Babbage's Calculating Engines. " Annals 
of the History of Computing 9( 1 987) : 1 1 3- 1 36. These two works 
by Bromley describe the design of the Analytical Engine in more 
detail. 

Hyman , A. Charles Babbage:  Pioneer of the Computer. Oxford: 
Oxford University Press ,  1 982. Babbage has become, in the last 
two decades , something of a cult figure and has generated 
considerable literature , much of it unreliable and unsubstantiated 
by careful examination of the primary sources. So far, the only 
trustworthy biography of Babbage is that of Hyman. 

Lindgren , M. Glory and Failure. Vol. 9 ,  Linkoping Studies in Arts 
and Science. Linkoping University Press, 1987. Reprinted by MIT 
Press, 1989. 

Merzbach, U. C. Georg Scheutz and the First Printing Calculator. 
Washington , D.C . :  Smithsonian Institution Press, 1 977 . The 
Scheutz Difference Engine and its successors are described in the 
Lindgren and Merzbach publications .  

Randell ,  B .  The Origins of Digital Computers. 3d ed. New York: 
Springer-Verlag , 1982. This reprint of selected papers discusses 
the machines of Ludgate and Torres, as well as of Babbage. 

Stein, D. Ada: A Life and a Legacy. Cambridge, Mass . :  MIT Press, 
1 985 .  This work assesses the role of Ada Lovelace. 



Introduction 

99 

Chapter 3 

Logic Machines 

The popular conception of the computer is one of a giant 
calculator , a machine that can carry out millions of arithmetic 

operations at lightning-fast speeds .  But if this were all that computers 
are, they would be unable to do most of the tasks they are commonly 
assigned. They could not sort or organize data, as they do each time 
we do word processing or use a database; they could not even carry 
out complex computations , because these involve making 
nonarithmetic decisions,  e .g . ,  deciding when to stop one arithmetic 
process and begin another. Computers are powerful because they are 
able to carry out long and complex sequences of logical as well as 
arithmetical operations and modify these sequences according to 
information presented to them, without any direct human 
intervention. W ithout the ability to make logical decisions, 
computers would have nothing more than an uncontrolled, raw 
arithmetic power, which would make them only slightly more useful 
than simple adding machines . 

The computer was not the first calculating technology able to 
make logical dec is ions . Many punched-card sys tems ,  relay 
calculators ,  and electronic calculators of the 1930s and early 1 940s 
(all of which are described in later chapters) had rudimentary logical 
capabilities. But there is an even earlier stream of development , 

The author greatly appreciates the suggestions of Michael S .  
Mahoney and Linda M.  Strauss in the preparation of this essay. 
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beginning around 1 800 , having as its central purpose the construction 
of machines capable of making logical decisions. This chapter traces 
the history of these machines built to solve problems of Aristotelian 
and symbolic logic , and shows how their development fits into a 
much older tradition of automata-devices and machines built to 
mimic mental and physical aspects of human behavior. This chapter 
also traces the growing understanding prior to the Second World War 
of the relationship between logic and the theory of computing, which 
is the foundation for computer science today. 

The Automata Tradition 

The automata tradition extends back into antiquity. In 
the Hellenistic period complex mechanisms were constructed 

to give the appearance of human animation. For example, around 
200 B .C., Heron of Alexandria constructed a theater in which the god 
Dionysius would emerge and spray wine from his staff while the 
Bacchants danced in his honor. These Hellenistic mechanisms were 
powered in many different ways:  by falling water , sand, or mustard 
seeds; heat; atmospheric pressure; and in one case by a primitive 
steam engine. The great civic clocks constructed in major European 
cities , beginning in the thirteenth century, also are part of this 
tradition. Human and other figures ornamenting the c locks became 
animated at the tolling of certain hours .  For example, from the clock 
at Strasbourg the three Magi emerged and a cock crowed each day at 
dawn. Over time, in the late Middle Ages and the Renaissance, these 
c lockwork automata became more elaborate and were built separately 
from the civic clocks . 

Following the rediscovery and translation of Heron's writings, 
the great formal gardens of sixteenth- and seventeenth-century 
Europe were adorned with hydraulic automata. Elaborate nymphs, 
shepherds , and musicians were empowered by falling water. In 
eighteenth- and nineteenth-century France ,  miniaturized automata 
powered by spring mechanisms were produced in quantity and sold 
to the u p p er c las s es .  Some of thes e works involved great 
craftsmanship : a girl able to sign her name, a flying bird with three 
hundred moving parts in its wing , a figure able to play the du lcimer. 

Most of these automata modeled physical rather than mental 
processes. Of the latter variety were several attempts to construct 
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Figure 3. 1 .  A pneumatic mechanism to open and close a door, 
designed by Heron of Alexandria. 

Figure 3.2 .  The astronomical clock of S trasbourg, with its 
mechanical cock. 
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Figure 3.3. (a) Henry Maillardet's eighteenth-century autamaton that 
draws and writes in French and English. Courtesy Franklin 
Institute. (b) The Jaquet-Droz Writer of 1774. Courtesy 

Neuchatel Museum of Art and History. (c) The mechanism of 
the Jaquet-Droz Writer. Courtesy Neuchatel Museum of Art and 
History. 

talking automata and perhaps more importantly van Kempelen 's 
1769 chess player, which though fraudulent (hiding a man inside the 
player) engendered a seventy-year debate over the possibility of 
mechanizing human thought processes. But the number of automata 
of this type on the Continent were few, especially in comparison to 
the number developed in England, where craftsmanship was not 
nearly so advanced. There are probably many reasons to explain why 
this i s  so, but one may have been philosophical rather than 
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technological . C artesian philosophy colored every aspect of 
C ontinental thought throughout the eighteenth century. Perhaps 
influenced by the elabornte clockwork automata of his time, 
D escartes explained even the most complex physical processes of the 
universe in terms of clocklike mechanisms. But he maintained a strict 
mind-body dualism, denying that mental processes can be explained 
in mechanical terms. This rationalist dualism was questioned, e.g., 
by Julien de La Mettrie in Man the Machine ( 1 748) and by Baron 
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d 'Holbach in System of Nature ( 1770) as well as by the discussions 
surrounding van Kempelen 's automaton , but the influence of 
Descartes ' world view should not be underestimated. 

The Development of Logic and Its Mechanization 

Another line of development , sometimes closely intertwined with 
the automata tradition, was the effort to mechanize logic , 

historically regarded as the most c entral of the rational processes .  In 
his Ars Magna the Spanish theologian Raymond Lull ( 1 235-1 3 1 5) 
used geometrical diagrams and primitive logical devices to try to 
demonstrate the truths of Christianity (Figure 3 .4) . He believed that 
each domain of knowledge involves a finite number of basic 
principles ,  so that by enumerating the permutations of these basic 
principles in pairs ,  triples , and larger combinations a list of the basic 
building blocks for theological discourse could be assembled. 

Figure 3.4. The logical diagrams of Ramon Lull. Courtesy Martin 
Gardner. 
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Lull mechanized the process of forming these permutations by 
constructing devices with two or more concentric circles ,  each listing 
the basic principles around the circumference. The permutations 
could then be formed by spinning the dials so as to line up different 
permutations. One such device was used for studying the divine 
attributes . Each  of two circ les contained the fourteen accepted 
attributes (goodness, greatness, eternity . . .  ), and the device would 
give you the 1 96 (i .e. , 14  x 14  = 1 96) permutations , e.g. , "God is good 
and God is eternal , "  "God is eternal and God is great , "  etc . Similar 
devices were constructed for study of the soul and the seven deadly 
sins. Although these devices did not really offer labor savings or 
additional logical power, Lull 's "great art" was admired by many 
Renaissance clerics and commented on by such  noted scholars as 
Nicholas of Cusa, Athanasius Kircher (who is notable for his interest 
in automata, e.g . ,  his plans for building a talking head) , and Wilhelm 
Gottfried Leibniz. 

Leibniz ( 1 646- 17 16) was enamored with the power that algebraic 
symbolism and method had added to geometry during the previous 
century. In his De Arte Combinatoria ( 1 666) and in later fragmentary 
works he described an "algebraico-logical synthesis" by which one 
could reason mechanically in all fields as one could reason in algebra. 
The first step was to devise a universal language ,  his "universal 
characteristic , "  for expressing thoughts in an unambiguous , symbolic 
way. Leibniz experimented with various linguistic schemes , e.g . ,  
representing primitive ideas by prime numbers and complex ideas by 
the product of these numbers . He also moved towards an algebra of 
logic by implicitly giving logical interpretations to the algebraic 
operators and relations +, x ,  -, =. But he never achieved substantial 
results, and this work became widely known only in the twentieth 
century when his fragmentary writings were first published. 

The algebrization of logic, primarily the work of Augustus de 
Morgan ( 1 806- 1 87 1 )  and George Boole ( 1 8 1 5- 1 864 ), was important 
to the transformation of Aristotelian logic into modern logic and to 
the introduction of logic machines in the automation of logical 
reasoning . In his Formal Logic ( 1 847) the British mathematician de 
Morgan began the  alg ebr i zati on proc ess . H e  intr oduced  
quantification into logic . By  using algebraic variables t o  represent 
the numbers of members of classes mentioned in a syllogism, e.g . ,  
there are a A's and b B 's ,  he could strengthen a conclusion like " Some 
A's are B 's" to "At least k A's are B 's, " where k is an algebraic 
expression involving a, b ,  and other variables that appeared in the 
prermses. 
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In his Mathematical Analysis of Logic ( 1 8 4 7 )  and An 
Investigation of the Laws of Thought ( 1 854) the Irish professor of 
mathematics Boole rigor ized logic by introducing alg ebraic 
symbolism and method. He let x, y, z represent classes , X, Y, Z 
individual members, 1 the universal class, 0 the null (empty) class , 
xy the intersections of classes x and y, x + y the union of (disjoint) 
classes x and y, and 1 - x the complement of class x. He then presented 
in symbolic form, as the axioms of his logic , what he considered to 
be the basic " laws of thought. " His axioms include, for example: 

x( l - x) = 0 

(The intersection of a set and its complement is null.) 

x(y + z) = .xy + xz 
(De Morgan's law on the distribution of intersection over union) . 

Boole could then formally deduce more complex "laws of thought" 
through algebraic manipulation. 

These first efforts to reform Aristotelian logic were continued in 
the late nineteenth and early twentieth centuries by Charles Saunders 
Peirce ,  Gottlob Frege, Guiseppe Peano, Bertrand Russell, Alfred 
North Whitehead, and others. Their efforts further stimulated the 
mechanization of logic because machines could conduct or abet the 
algebraic manipulation that now represented logical reasoning. 

Logic Machines 

The first logic machine, the Stanhope Demonstrator , appeared 
prior to the algebrization of logic . Charles, third Earl of 

Stanhope ,  ( 1753- 1 8 1 6) was a politician and inventor of independent 
means. His scientific abilities were recognized early , leading to his 
induction into the Royal Society of London at the age of nineteen. 
Stanhope invented a microscopic lens , a hand printing press, a tuner 
for musical instruments , an improved system of canal locks , and an 
arithmetical calculating machine, as well as a theory of electricity . 
Stanhope's  Demonstrator (Figure 3.5) ,  refined over a thirty-year 
span, is a device able to solve mechanically traditional syllogisms, 
numerical syllogisms, and elementary probability problems. It 
consists of a 4" x 4.5 "  x 0. 75" mahogany block with a brass top, 
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having carved out of it a window 1 "  x 1 "  x 0.5' ' . Slots were grooved 
in three sides of the block to allow transparent red and gray slides to 
enter and cover a portion of the window. On the brass face, along 
three sides of the window, integer calibrations from zero to ten were 
marked. 

:Figure 3.5. The face of Lord Stanhope's Logical Demonstrator. 

D E M O N S T R A T O R,, 
INV.Ef<TED DY 

CHARLES EARL STANHOPE. 

The rlghl-hanif eifge of the gray points out, on thls upper scaJe. 
Ille eJ<tent of the gray, in the logic of certainty, 

The lower edge of 
the gr,t:f points out, 

on this 5Jde-scale, the 
extent of the gray, in the Ioo:ic of 

rrobahillty, 

,'.rbe l'il?ht�and side of the square opening pomts out, on thia 
'lower Ecale, the extent of the red, m all cases. 

The rigfit-hand edge of the gray points out, on the 1111111e 
lower ec:ale, the extent of the conseqllE'.llCe, 
, (or dark .red1) if any, in the ' 

logic �inly. 

1Me /M" the Logic of Certainty, 
'Ii> the gray, adt1 the red, and dedltct the holon: the remainder, (or dark red,) a any, -mil be the extent of the conseqnence. 

Bult fqr t"4 1Agiq 'II Prolxtbi/Hg. 
'l'he propO]li� between the ,mea, of the dark. red and Ull, aN!a of fhe tiob,, 

la the probability which results from the gray arul the red. .. -
PllllltlD jl'lf, JURL, SXANHO� eHEYENIIUJ, JIJ!BT, 

To solve a numerical syllogism, for example: 

Eight of ten A 's are B's; 
Four of ten A 's are C's; 
Therefore, at least two B's are C's. 

Stanhope would push the red slide ( representing B) eight units across 
the window (representing A) and the gray slide (representing C) four 
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units from the opposite direction. The two units that the slides 
overlapped represented the minimum number of B's that were also 
C's. To solve a probability problem like: 

Prob (A) = 1/2; 
Prob (B) = 1/5 ;  
Therefore, Prob (A and B ) = 1/10. 

Stanhope would push the red slide ( representing A) from the north 
side five units (representing five tenths) and the gray slide from the 
east two units ( representing two tenths). The portion of the window 
( 5/ 10 x 2/10  = 1/10) over which the two slides overlapped represents 
the probability of A and B. 

In a similar way the D emonstrator could be used to solve a 
traditional syllogism like: 

No M is A . 
All B is M. 
Therefore, No B is A .  

The D emonstrator had obvious limitations. It could not be 
extended to syllogisms involving more than two premises or to 
probability problems with more than two events ( always assumed to 
be independent of one another). Any of the problems it could handle 
were solved easily and quickly without the aid of the machine. 
Nonetheless, Stanhope believed he had made a fundamental 
invention. The few friends and relatives who received his privately 
distributed account of the D emonstrator, The Science of Reasoning 
Clearly Explained Upon New Principles ( 1 800), were advised to 
remain silent lest "some bastard imitation" precede his intended 
publication on the subject. This publication never appeared and the 
D emonstrator remained unknown until the Reverend Robert Harley 
described it in the Philosophical Transactions in 1 879 . The 
D emonstrator was important mainly because it demonstrated to 
others , most notably to William Stanley Jevons, that problems of 
logic could be solved by mechanical means .  

The second major figure was Alfred Smee ( 1 8 1 8- 1 877), senior 
surgeon to the Royal General D ispensary and to the C entral London 
Opthalmic Hospital. Also a Fellow of the Royal Society, he published 
a series of books on a field he called "electro-biology," the relation 
of electricity to the vital functions of the human body. Stimulated by 
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the lectures of Herbert Mayo on the physiology of the brain, his 
laboratory work under John Frederic D aniell ( inventor of the D aniell 
battery), and the prevailing theory of Luigi Galvani on the effect of 
electrical stimulation on nerves and muscles , Smee determined to 
study how the functions of the brain are related to the electrical 
stimulation of the nervous system. 

In 1 85 1 ,  Smee published his most important book, Process of 
Thought Adapted to Words and Language, which, he stated, "is a 
deduction from the general system of Electro-biology. " He planned 
to produce an artificial system of reasoning based upon natural 
principles, one that proces.5e5 ideas in the same way that the human 
nervous system processes them. Little was known about the brain in 
1 850, and there were no good tools for its study. Smee had to rely on 
speculation rather than experimentation to gain his understanding of 
h L1man thinking. The outcome of these speculations was to be 
demonstrated in his electro-biological machine. 

According to his theory, each idea is determined by the presence 
or absence of certain properties (redness, roundness, etc.), and each 
property is represented in the brain by the electrical stimulation of a 
nerve fiber. Thus, for Smee, an idea consists of a collection of 
electrically stimulated nerve fibers. One might envision Smee 
building an elaborate electromechanical machine with artificial nerve 
fibers and cortex. But consistent with the technology of 1 850, the 
machines Smee conceived were entirely mechanical. His Relational 
Machine, so called because it represented the relationship between 
the various properties that comprise an idea, was intended to represent 
one thought, idea, or mental image at a time. One version of it was 
constructed from a large piece of sheet metal, repeatedly divided into 
halves by metal hinges. Half of the metal would represent the 
presence, the other the absence, of a property. The metal flaps , 
representing absent properties , would be folded out of sight until all 
that remained was a piece of metal representing the collection of 
properties that formed the idea. 

Smee designed a second machine to compare ideas . This 
D ifferential Machine consisted of two Relational Machines linked 
together by an interface able to compare the properties represented 
by each Relational Machine and then to judge whether the ideas 
agree, probably agree, possibly agree, or disagree. Representation of 
ideas and judgments about them, the tasks his machines were 
designed to do, comprised the entire rational thinking faculty for 
Smee. 
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Smee was confident his machines could model human thought. 
He was concerned, however, about the feasibility of constructing his 
machines because of the elaborate mechanical engineering involved 
and the problem of scale. He wrote in Process of Thought that 

when the vast extent of a machine sufficiently large to include all words 
and sequences is considered, we at once observe the absolute 
impossibility of forming one for practical purposes, inasmuch as it 
would cover an area exceeding probably all London, and the very 
attempt to move its respective parts upon each other, would inevitably 
cause its own destruction. 

Although Smee may ha•re built small scale models of his machine 
(even this is doubtful) ,  he realized that his hope for a machine that 
could represent the natural processes of thought and judgment was 
beyond his reach .  Nevertheless, his books were popular in 
mid-nineteenth-century Britain and spread his conviction of the 
possibility of mechanized thought. 

Stanhope 's work insp ired William Stanley Jevons to construct his 
"logic piano, " the best known logic machine of the nineteenth 
century. Jevons ( 1 835- 1 882) was professor of logic and political 
economy at Owens College, Manchester, and later at University 
College , London. His scientific interests were broad, and while 
working as an assayer in Australia early in his career, he made 
imp or tant c ontributions to  anthrop ology ,  natural history, 
meteorology, and chemistry. His research in logic was encouraged by 
his teacher, Augustus de Morgan. Today, Jevons is perhaps best 
known for his unfortunate theory of the correlation between sunspots 
and economic cycles . 

In his 1 869 logic textbook, Substitution of Similars, Jevons 
announced the construction of the logic piano (Figure 3 .6) .  It was the 
culmination of a long series of inventions and aids to the calculation 
of syllogisms: logical alphabet , logical slate , logical stamp, and 
logical abacus-all tools to write quickly the lines of a truth table in a 
logical argument. 

The logic piano was a box approximately three feet high. A 
faceplate above the keyboard displayed the entries of the truth table. 
Like a piano, the keyboard had black-and-white keys , but here they 
were used for entering premises . As the keys were struck, rods would 
mechanically remove from the face of the piano the truth-table entries 
inconsistent with the premises entered on the keys. 

A truth-table for n proposition requires 2n entries. The table for 



Figure 3 .6. The logic piano designed 
by William Stanley Jevons. 

n = 4 is as follows , if we represent the truth of a proposition by an 
upper case letter, and its falsity by the same letter in lower case: 

Table 3 . 1 .  Truth-table for n = 4 

PQRS 
PqRS 
pQRS 
pqRS 

PQRs 
PqRs 
pQRs 
pqRs 

PQrs 
Pqrs 
pQrs 
pqrS 

PQrs 
Pqrs 
pQrs 
pqrs 

The proposition "if P, then Q," is true just in case P is false  or Q 
is true. If this proposition were entered on the keyboard of the logic 
piano, the face would show: 

Table 3 .2 .  Truth-table for the proposition "if P, then Q" is true in 
case P is false or Q is true, when n = 4 

PQRs 

pQRS 
pqRs 

PQRs 

pQRs 
pqRs 

PQrs PQrs 
(second line removed) 
pQrs pQrs 
pqrs pqrs 
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As propositions were entered on the keyboard, representing 
additional premises that must be satisfied simultaneously, other 
inconsistent entries would disappear from the face. 

The machine was limited to solving problems involving four or 
fewer propositions, although these could easily be handled manually. 
Jevons once planned a ten-term machine, but abandoned the project 
because the proposed machine would have occupied an entire side of 
his study. As the philosopher Francis Bradley pointed out, the action 
of the logic piano did not result in a conclusion stated in the form of 
a proposition, but only in the truth table entries consistent with the 
conclusion. Jevons worked unsuccessfully to resolve this problem, 
which he termed the "inverse problem" and which he somewhat 
misleadingly associated with the process of mathematical induction. 
And, as his adversary John Venn noted, the logic piano has no 
practical purpose, for there are no circumstances in which difficult 
syllogisms arise or in which syllogisms must be resolved repeatedly 
enough to justify mechanization of the process .  Jevons countered that 
it was a convenience to his personal work and useful in his logic 
classes . 

The Reverend John Venn ( 1 834- 1923) was lecturer in moral 
science and fellow of Gonville and C aius C ollege, C ambridge. He 
published on moral science, history, probability, and logic. His 
Symbolic Logic ( 1 894) was the most widely used logic textbook of 
its day. In it he presented his famous technique for diagramming 
logical arguments, described a logical diagramming machine, and 
discussed the general purposes and possibilities of logic machines. 

D iagramming of logical arguments has a long history. In the 
Middle Ages diagrams were devised for remembering various forms 
of the Aristotelian syllogism. In the seventeenth and eighteenth 
centuries, the mathematicians Gottfried W. Leibniz, Leonhard Euler, 
and J. H. Lambert all had developed systems for diagramming logic. 
The first practical system of diagramming was announced by Venn 
in an 1 880 article in Philosophical Magazine. It described his method 
of Venn diagrams, which is only a slight variation on the method of 
intersecting circles still taught in schools today. 

Venn also designed a diagramming machine for logical 
arguments involving four propositions. ( Venn diagrams treat at most 
three.) This is somewhat surprising because of Venn's belief that logic 
machines are both useless and unworthy of the name "logical. " Like 
Jevons, Venn first developed other laborsaving devices: a rubber 
stamp of his intersecting circles and a puzzle board in which each 
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piece of the intersecting circles could be removed separately. Then 
he developed the machine, with four intersecting ellipses hung on 
pegs by strings such that each section, attached by a separate peg, 
represented one of the sixteen possible logical combinations. To 
exclude a combination, the appropriate peg would be released, 
allowing the section it held to fall below its normal level . The 
keyboard consisted simply of the sixteen pegs to be individually 
manipulated. No device was added by which a number of pegs could 
be removed at once. Thus, it is more properly categorized as a 
diagram than a machine. 

The last major figure in the development of nineteenth-century 
logic machines was Allen Marquand ( 1 853- 1924). After studying at 
Johns Hopkins University with C. S .  Pierce, who probably taught him 
about logic machines, Marquand was appointed tutor of logic at the 
College of New Jersey, as Princeton University was then called. 
Marquand soon abandoned logic to become professor of art and 
archeology. Besides important work on clas sical Greek art and 
archeology, he contributed to the algebra of logic and built several 
logic machines. 

Marquand improved upon Jevon 's logic piano. He constructed a 
crude version in 1 88 1 ,  and a Princeton colleague, Charles Rockwood, 
followed the next year with a more elaborate version. It measured 
1 2" x 8 "  x 6" and used a mechanical action, with rods and levers 
connec ted by pins  and catgut strings (Figure 3.7). Marquand 

Figure 3 .7. Allen Marquand's logic machine . 



Computing Before Computers 1 1 4 

proposed a third version that would have changed the action of the 
machine from mechanical to electromechanical , but difficulties with 
the new electrical technology prevented him from advancing beyond 
building a prototype from a hotel annunciator. 

Marquand's machine was designed for syllogisms involving four 
propos itions .  The front of th e mac hin e dis played poin ters 
representing the sixteen possible logical combinations . The pointers 
would tum to indicate the consistency or inconsistency of the logical 
combinations with the premises. Marquand improved upon Jevons ' 
keyboard for enter ing premises , opening the pos sibility of 
constructing a machine capable of handling many more propositions .  
However, both machines were limited in the complexity of argument 
they could handle ,  and both produced only logical combinations 
consistent with the concluding proposition rather than the proposition 
itself. 

In 1 936 Benjamin Burack, a psychologist at Roosevelt College 
in Chicago, constructed the first electrical logic machine (Figure 3 .8) .  
It was packaged in a small suitcase and powered by batteries. The 
bottom of the cas e  contained wooden b lock s  repres en ting 
propositions. These blocks held metal contacts , and when the blocks 
were moved to cenain positions, circuits would be activated showing 
whether a syllogism was valid or which of seven categories of 
fallacies occurred. Burack's machine offered little advantage over 
manual checking and was generally unknown until it was described 
in the literature in 1 947. 

Figure 3.8. Benjamin Burack's portable 
electical logic machine. Courtesy 
Martin Gardner. 
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Better known was a logic machine built in 1 947 by Harvard 
University undergraduates William Burkhardt and Theodore Kalin. 
Their machine was essentially an electrical version of Jevon 's logic 
piano, capable of handling syllogisms with as many as twelve terms . 
Logical premises were entered by setting switches that established an 
electrical circuit logically i somorphic to the premises .  Lights 
indicated the lines of the truth-table consistent with the premises . Use 
of the Burkhardt-Kalin machine was much faster than checking the 
syl logisms manually. And, unexpectedly, their machine could 
establish the well-known indeterminacy of truth value of the logical 
paradoxes by lights that alternated true and false. (An example of a 
logical paradox is " this statement is false. " It is easy to establish that 
the statement in the quotation marks is true if and only if it is false.) 

After the S ec ond Wor ld War, it became ap par ent that 
general-purpose stored-program computers could achieve the same 
results as any of these special-purpose logic machines .  Subsequently, 
all major logic machines have been programmed on computers. The 
first such effort was made by Hao Wang in 1 960. He programmed an 
IBM 704 computer to test the first 220 theorems of the propositional 
calcu lus  as presented in Bertrand Russel l  and Alfred North 
Whitehead's Principia Mathematica. The process was completed in 
less than three minutes, at least a thousand times faster than could be 
done manually. Since 1 950 a number of computers have been 
programmed to act as logic machines .  They have been used either to 
try to discover new logical results or to investigate the general 
principles by which computers can be used to prove theorems. 

Logic and Computing 

The logic machines described here did not have any practical 
significance. They did not provide meaningful control of the 

daily information flow in the factory or business office, nor did they 
enable scientists to solve problems they could not otherwise easily 
solve by hand. Although logic machines were occasionally used as 
didactic aids , their chief importance was theoretical. They 
demonstrated that logical processes could be mechanized. Thus, it 
should come as no surprise that their principal role in modern 
computing is also  theoretical. The existence of logic machines 
reinforced the relationship between logic and computing , and helped 



Figure 3 .9 .  Claude Shannon, who discovered the isomorphism 
between switching circuits and the propositional calculus .  
Courtesy AT&T Archives. 
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to set the context in which two theoretical papers of the 1930s were 
written, papers that provided the underpinning for the modern theory 
of computing. 

In a 1938 paper based upon his master 's thesis at MIT, Claude 
Shannon demonstrated how relay and switching circuits could be 
expressed in the logical symbolism of the propositional calculus, and 
vice versa. Some examples of the correspondence he discovered are: 

logic circuit 
true closed 
false open 
and serial 
or (inclusive) parallel 

Similar circuit interpretations can be given for the logical 
connectives not, nand (not both), exclusive or, and equivalence. This 
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isomorphism between propositional calculus and relay and switching 
circuits became a powerful new design tool . Inspired by Shannon's 
paper, Burkhardt and Kalin employed it in the design of their 
s pecial-pur pose elec trical logic mac hine .  A more important 
application was to electrical circuit design for computers . Complex 
circuits could be more readily simplified by s implifying the 
corresponding Boolean expression; and in many cases it was easier 
for a circuit designer to express his design in a logical expression and 
only later translate that into a circuit design. Hundreds of papers 
fol lowed Shannon ' s ,  building this  fundamental isomorphism 
between logic and computing into a theory of switching circuits and 
a practical design methodology. 

Shannon was not the first to suggest this isomorphism. The idea 
had been suggested in the Russian literature in 1 9 1 0  by Paul Ehrenfest 
and followed up in 1 934 by V. I. S. Sestakov. It also appeared in a 
1936 Japanese publication by Akira Nakasima and Masao Hanzawa. 
However, none of these received the wide attention of Shannon's 
paper ,  mainly because his paper was published in English and 
presented a detailed account of the isomorphism in a way that 
highlighted its value to circuit design theory. 

The other important theoretical paper of the 1 930s was Alan 
Turing 's "On Computable Numbers" ( 1937) .  Turing characterized 
which functions (or, as he equivalently considered, which numbers) 
in mathematics are effectively computable. By this he understood 
functions that can be computed in a mechanical fashion by a 
well-defined algorithm that requires no human intervention during 
the course of the computation. Turing's paper was one of the original 
contributions to the area known as recursive function theory, a subject 
in vogue then because of the interest in the methods used in Kurt 
Godel 's famous  incompletenes s res ults , concerns about the 
constructivist foundations of mathematics ,  and other independent 
research in logic . 

Turing phrased his characterization in terms of theoretical 
machines ,  known today as Turing mac hines . He  defined a 
mathematical function to be effectively computable j ust in case it 
could be calculated by one of his machines and demonstrated that one 
of his machines , the Universal Turing Machine , was able to simulate 
any of his other machines . Thus , by Turing's criteria, a mathematical 
function is effectively computable if and only if it can be computed 
by the Universal Turing Machine. 



Figure 3 . 10. Alan Turing, whose characterization of effectively 
computable functions gave the first theoretical description of the 
stored-program computer. 
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A Turing machine consists of an infinite tape, broken into cells, 
and a mechanical device capable of scanning the tape and perfonning 
a few basic read and write operations.  At any moment, depending on 
the internal state of the machine and the symbol in the cell being 
scanned, the machine may move the tape one square left or right , or 
print or erase a symbol in the scanned cell. Function arguments are 
entered as a coded sequence of Os and l s  on consecutive cells . 
Function values are read off as another coded sequence of Os and 1 s 
when the machine completes its activity. If the activity never ceases , 
the function is not effectively computable for that argument. The 
universal machine represents essentially a function of two variables , 
one being the number of a particular Turing machine it is to simulate 
and the other being the function argument. 

The importance of the Universal Turing Machine to computer 
science becomes clear once it is recognized that it is a theoretical 
model of a digital , s tored-program comp uter. Instruc tions 
programming the operation of the machine , as well as data, are 
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entered on the tape. The tape serves the dual function of input-output 
medium and memory-similar to magnetic tape in computers (which 
is used, however, only as a secondary storage medium). Information 
is stored, processed, and transferred digitally. Central processing 
takes place at the read-write mechanism, which is able to carry out 
logical and arithmetic operations on the scanned cell and those 
adjacent to it-whether they represent instructions, input data, or 
intermediate results. Many programming features, like conditional 
and unconditional branching and recursive loops, have their Turing 
machine equivalents . 

Just as Shannon 's paper served as the starting point for the theory 
of switching and relay circuits, Turing 's paper opened the field of 
automata theory-the theoretical study of the computing capabilities 
of well-defined information processing automata-whether they be 
natural, physical artifact, or theoretical. This provided an abstract 
model and formal description for what was occurring in computer 
design. 

Turing's methods, and the methods of recursive function theory 
more generally, were also employed in another area of theoretical 
computer science, the theory of complexity. This field considers the 
complexity of information-processing problems in terms of the 
amount of time, cost, storage space, or other computational resources 
that are required to compute a solution to the problem. Turing had 
demonstrated the existence of a class of problems too complex for 
solution by his machines . The most important of these was the halting 
problem: given the number describing to the universal machine a 
particular Turing machine and a given input, decide whether the 
machine will ever halt its computation. Turing demonstrated that the 
halting problem is computationally undecidable, that no Turing 
machine can make this decision. This placed a theoretical limit on 
what is mechanically computable and on our practical abilities to 
predict computation leng ths and sys tematically diagnose 
programming errors. Working within the bounds set by Turing, many 
other researchers have developed finer meshes for ascertaining 
computational complexities of problems. 

It has been a long and sometimes tenuous line of development 
from the logic machines of Stanhope and Jevons to modem computer 
science theory. But today logic is the foundation for automata theory, 
switching theory, and other theoretical areas of computer study; and 
the computer is a tool much more capable of logical processing than 
any of the special-purpose machines of the past. 
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Chapter 4 

Punched-Card Machinery 

Introduction 

From quite early in  the twentieth century, until the advent of 
moderately priced electronic computers in the late- 1950s, the 

bulk of the automatic data processing needs of commerce was met 
by punched-card machines. There were two main strands in the 
development of these machines, which are described in this chapter. 

The first strand was the development of census machinery in the 
United States . Beginning in the early 1 880s, Herman Hollerith 
( 1 860-1929) developed a range of equipment for the mechanical 
tabulation of the 1 890 United States census; this machinery saw 
several improvements in the censuses of 1 900 and 19 10. From this 
point, however, the Bureau of the C ensus increasingly adopted the 
commercially manufactured punched-card machines it had helped to 
originate. 

The second s trand was the commercial development of 
punched-card machinery. Hollerith realized, from an early date, the 
statistical and accounting possibi lities of his machines in commerce 
and incorporated a company to develop and supply sui table 
equipment. From this beginning, between the two world wars a 
large-scale industry developed that came to be dominated by IBM. 
The machines themselves evolved in complexity out of all 
recognition from the original census machines , and applications 
blossomed in statistics , accounting, and science. 
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Finally, with the advent of the stored-program computer in 1 945 , 
punched-card mac hine technology underwent a twenty-year 
transformation , during which the products of the industry were turned 
into electronic data processing computers .  

The Development of Census Machinery 

The Census Problem 

The first United States decennial population census took place in 
1790, when the recorded population was a little under four 

million. The early censuses were comparatively simple affairs :  only 
a few inquiries were made of the head of each family ,  and the 
published census reports were modest in scope. By 1 850,  however, 
the population had increased by more than a factor of five and many 
more inquiries were made of every citizen; furthermore the number 
of tabulations, as measured by the size of published reports ( 1 ,605 
pages in 1 850) , had grown considerably. 

In the 1 850 census ,  for the first time, the tabulation was performed 
by the method of "tallying. " In essence , tallying involved examining 
each questionnaire (or schedule) returned for a census district and 
recording a mark on a tally sheet for each fact, or combination of 
facts, to be tabulated. Totals for larger sections of the population were 
then determined by adding the counts from individual tally sheets . At 
first this process was entirely unmechanized. In the latter part of the 
1 870 census, and in the 1 880 census, a very limited degree of 
mechanization was provided by the Seaton device. This simple 
contrivance enabled several tally sheets , combined on one length of 
paper, to be brought conveniently close together. Notwithstanding 
the help of the Seaton device, the 1 880 census took about seven years 
to proces s .  Given the infl ux  of immigrants  that was then 
occurring-it was expected that the population of America would 
perhaps double in the next decade-it was evident that in the next 
census either the scope of the inquiry would have to be curtailed or 
a method of mechanical tallying introduced. 

Herman Hollerith, then employed at the Census Bureau , thus 
became aware of the population census problem. Hollerith, a graduate 
of the Columbia School of Mines , New York, had been engaged in 



Computing Before Computers 1 24 

the collection of industrial statistics  since joining the bureau in the 
fall of 1 879. In 1 8 82, he resigned from the Census Bureau, spending 
a year as an instructor in mechanical engineering at MIT followed by 
a short period as an examiner in the United States Patent Office, after 
which he became an independent patent agent. During these years he 
worked on both a tabulating system and railway braking systems. A 
patent application was made in 1 884 for an early form of tabulating 
system based on a punched paper tape, and patents for a card-based 
system were filed in 1 887 . Conflicting accounts of the origination of 
the idea of using a punched-card medium appear in the literature. The 
idea may have been suggested by a senior member of the bureau staff, 
J. S .  Billings ;  alternatively , Hollerith may have derived the idea from 
the Jacquard loom, or the method of punching a physical description 
of a railroad passenger in his ticket (Hollerith in fact used a 
conductor 's punch to perforate cards in early trials of the system) . In 
any event , the development of the idea was entirely due to Hollerith. 

From 1 887 a number of trials of the system were made, compiling 
mortality statistic s for Baltimore and other c ities and medical 
statistic s for the Office of the Surgeon General of the Army. The major 
trial for the tabulating system came in 1 889 when the director of the 
census , Robert P. Porter , organized a competition to select a 
tabulation system for the 1 890 census. Three competitors submitted 
entries : in addition to Hollerith's system,  there was another system 
based on paper " slips "  and another based on cardboard "chips ." Both 
of the systems of Hollerith's competitors involved the transcription 
of schedule entries on to paper slips or cards , which were then 
repeatedly sorted and counted by hand, quick identification being 
facilitated by color coding . The contest involved the recording and 
tabulation of the schedules for the St . Louis district from the 1 880 
census , representing something in excess of ten thousand individuals. 
The Hollerith system was a convincing winner : the recording of data 
was significantly faster than either of his competitors ,  and tabulation 
was up to ten times as fast. The reason for the speed of the Hollerith 
system was that, unlike the other systems , once a card had been 
punched, all manual tallying and sorting was eliminated. 
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The Hollerith Electric Tabulating System 

The Hollerith Electric Tabulating System consisted of several 
pieces of apparatus in addition to the tabulating machine itself. 

The tabulation of the census involved three distinct processes :  the 
recording , tabulation, and sorting of data. 
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Figure 4. 1 .  Form of the 1 890 census card. 

Each schedule returned in the census contained the information 
for a complete family. From this schedule one card was punched for 
each person. 

Figure 4. 1 illustrates the form of the card: each 65/s" x 31/4" card 
had 288 punching positions and was comer-clipped to ensure the 
correct orientation. The leftmost 48 punching positions contained the 
four-digit code of the census "enumeration" district; because a 
complete batch of schedules for a district was punched together, the 
district number was "gang punched" identically on each card. The 
gang punch (Figure 4.2) was a lever-operated device in which the 
pattern of holes was set up by an arrangement of metal slugs , and up 
to six cards could be perforated in one stroke. 
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Figure 4.2. Gang Punch. Courtesy Smithsonian Institution. Photo No. 
64550. 
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The data for an individual was recorded in the right-hand 240 
punching positions of the card. Data items were recorded in a number 
of irregularly shaped regions , or fields , on the card, starting at the top 
left and moving approximately clockwise around the card. The third 
field , for example ,  recorded the racial type of the individual 
(Japanese,  Chinese, Octoroon, Indian, etc .) .  The fourth field recorded 
gender (male, female). The fifth field recorded the five-year period 
in which the age of the subject fell (0-4, 5-9 , 1 0- 1 5  . . .  100-plus) and 
the sixth field the unit within the five-year period. The seventh field 
recorded "conju gal condition" (unmarried, married, divorced, 
widowed). And so on round the card for a total of twenty-one fields . 

The data was recorded using the pantograph punch (Figure 4.3) .  
The punch had a drilled guide plate bearing an image of the card to 
the front and a carriage for a blank card to the rear; by depressing an 
index pin into a hole in the guide plate, a hole was punched with 
accurate registration in the corresponding position in the card. It is 
interesting to note that , unlike later card-punching practice, data was 
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Figure 4.3. Pantograph punch. Courtesy Smithsonian Institution. 
Photo No. 64551 

not transcribed literally onto the card but had to be interpreted by the 
operator. Thus ,  an age of 57 (say) would be recorded as a hole in the 
corresponding five-year period (i.e. , 55-59) and a second hole in the 
additional units (i .e . ,  2) . Similarly, the place of birth was recorded as 
a two-letter code in fields 10 and 1 1 ,  for which a code list was supplied 
(e.g . , "Ag "  for Connecticut, "Ka" for Germany-the codes had some , 
but not much,  mnemonic significance). Because the order of fields 
clockwise around the card was the same as the order of the schedule 
inquiries , the punching operation was quite smooth flowing and 
operators averaged seven hundred cards per day. In the 1 890 census , 
plain manilla cards were used , so that a "reading board, "  bearing a 
printed image of the card (as in Figure 4. 1 )  enabled cards to be read 
back for verification by another person. 

The tabulating machine (Figure 4.4, left) was used to count the 
number of holes, in selected positions and in selected combinations , 
of a batch of cards passed through it. The machine contained a 
maximum of forty clocklike counters , each capable of registering up 



Figure 4.4. Hollerith electric tabulating system Courtesy Smithsonian 
Institution. Photo No. 64563. 

to 9,999. Cards were sensed by a hand-operated press that bore 288 
spring-loaded pins :  when the "pin-box" was brought down onto a 
card a pin encountering a hole would pass through, dip into a mercury 
cup, and complete an electrical circuit; but if the pin met solid card, 
it would simply be pressed back and no circuit would be completed. 
A counter included in the circuit would thus be incremented by one, 
or not, depending on the presence or absence of a hole. 

The simplest operation the tabulating machine could perform was 
to count the number of holes in selected positions in a batch of cards . 
Thus, in principle, if one counter was wired to register males and 
another to register females, the effect of passing a batch of cards 
through the machine would be to obtain the total number of males 
and females represented. Invariably, actual counts were much more 
complex so that as much information as possible could be extracted 
in a single passage of the cards through the machine. For example, 
in the first count of the census, the male and female populations were 
classified by "color-nativity" and tenure for different age groups 
using the full forty counters. 1 Each combination was achieved by 
wiring relay circuits . For example, one counter was required to 
register the total number of native-white persons aged 45-plus; 
therefore, the counter was wired into a relay circuit that passed a 
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current if one of the holes 45 , 50, 55 . . .  1 00-plus was punched, the 
citizen was white , and both parents were born in the United States.2 

A counting operation would begin by resetting all the counters 
and then reading the cards for an enumeration district one-by-one 
with the press .  When all the cards had been passed through the 
machine a supervisor would record the totals and reset the counters , 
and the operator would begin the next batch of cards . Impressively 
fast speeds could be obtained by a skillful operator, and even an 
average operator managed eight to ten thousand cards a day. 

The tabulating machine had several measures to ensure accuracy. 
For example, when the cards of a given enumeration district were 
tabulated, sensing the correct district code caused a bell to ring; 
failure to ring indicated that a card from another enumeration district 
had been put into the pack. A contemporary reporter described the 
sound of the dozens of machines as "for all the world like that of 
sleighing . "  The tabulating machine would also record the grand total 
of cards read; this value would then be cross-checked with the 
subtotals of the different classifications , although discrepancies of 
one or two units were usually tolerated. 

After the first count , succeeding counts determined finer statistics 
for smaller divisions of the population. For example in the second 
count , for conjugal condition, it was required to determine, for each 
sex of the seven racial types , marital status classified by age. First the 
cards had to be sorted into the seven racial groups .  This sorting 
process was achieved using the sorting box , as a by-product of the 
first count. 

The sorting box (Figure 4.4) consisted of approximately two 
dozen compartments each  having an electrically operated lid, 
normally kept closed. By an appropriate relay circuit , of an identical 
type to that used for the counters, a combination of holes could be 
used to select a compartment whose lid would fly open when a card 
of the right type was sensed. The operator would drop the card into 
the offered compartment and close the lid. The fact that only one lid 
opened eliminated the possibility of the operator placing the card in 
the wrong compartment; closing the lid with a deft tap took almost 
no time. 

The Hollerith tabulating system achieved its superiority over a 
manual system in a number of ways .  First, it enabled as many as forty 
complex combinations to be counted in a single handling of the cards; 
this was far more than was possible in a manual system and was the 
most decisive advantage of the census machine. Second, the Hollerith 
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system eliminated a great deal of the physical sorting and counting 
of records of a manual system; thus the sorting box was always used 
alongside the tabulating machine , presorting cards for a subsequent 
count with the minimum cost in time and handling . Third, the 
Hollerith system was inherently more accurate than a manual system 
because the possibilities of incorrectly sorting and counting were 
greatly reduced. 

Further Census Developments 

T he tabulation of the 1 890 census was a technical and financial 
triumph for Hollerith. It was well reported in the press, 

appearing for example as the main article in the August 30, 1 890 issue 
of Scientific American (Figure 4.5) .  Within six weeks of the start of 
the census,  the rough count of the population was complete (total 
62,622,250citizens) .  This achievement was only a partial vindication 
of the Hollerith system because the rough count was produced not by 
using punched cards but by registering family counts directly into the 
tabulating machines using a simple keyboard. After the rough count, 
the detailed tabulations began for which nearly sixty-three million 
cards had to be prepared, one for each citizen. Altogether, seven 
counts were made involving several hundred million card passages 
through the census machines. The census was completed in a little 
over two years ,  a great improvement on the previous census, and 
much more complex and refined tabulations were produced (the 
published reports of 1 0,220 pages were nearly twice the length 
produced for the previous census) .  Approximately one hundred 

Figure 4.5 .  Cover of the Scientific American, August 30, 1 890. This 
evocative engraving shows scenes from the 1 890 U.S .  population 
census .  Bottom: The incoming completed schedules are received 
and assembled for onward processing . Top right: Schedules are 
punched onto cards using the pantograph punch. Top left: Using 
the census machine, the cards for an enumeration district are 
tabulated and deposited one by one into the sorting box. Center: 
Using a special keyboard, family head counts are entered for the 
rough count. Courtesy Smithsonian Institution. Photo No. 47941. 
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census machines were used and several hundred pantograph punches , 
all of which were maintained by Hollerith and his assistants. The 
machines evidently needed regular repair and maintenance, but it is 
possible that the faults were not entirely mechanical: 

Mechanics were there frequently . . .  to get the ailing machines back 
in operation. The trouble was usually that somebody had extracted the 
mercury (which made the necessary electrical contacts) from one of 
the little cups with an eye-dropper and squirted it into a spittoon, just 
to get some un-needed rest.3 

While the preparations for the 1 890 census were underway, 
Hollerith received several inquiries from European countries that led 
to the adoption of the system for the 1 890 censuses of Austria and 
Norway, and also for C anada nearer to home. Hollerith made several 
trips to Europe during the mid- 1 890s consolidating the use of his 
machines in European censuses. His reputation was quickly 
established both in the United States and in Europe, where he was 
awarded several honors and academic distinctions. In 1 896, Hollerith 
incorporated his business as the Tabulating Machine C ompany. But 
it was not until the twelfth United States census of 1 900, for which 
Hollerith was awarded the contract by D irector of the C ensus W. R. 
Merriam, that his machines saw large-scale use again. 

The 1 900 population census relied for the most part on the census 
machines used for the 1 890 census, although their number was 
increased considerably. An apparently simple improvement, the 
automatic feeding of cards, was made to some of the tabulators, which 
eliminated the hand feeding of cards and the manual closing of the 
press. Although automatic feed was used to only a limited extent in 
the 1 900 population census, when it was used it made a several-fold 
improvement in the speed with which cards could be processed. 
Automatic card feeding eventually was provided in all punched-card 
machines. 

The most significant change of punched-card machine use in the 
1900 census occurred with the tabulation of the census of agriculture, 
which required the accumulation of quantities ( such as the number 
of bushels of wheat produced on each farm). This necessitated a card 
capable of storing numerical quantities, and an "integrating" ( as 
Hollerith termed it) tabulator. In fact, Hollerith had already developed 
a suitable multicolumn card format and a small reliable integrating 
tabulator that was then in use with the New York C entral Rail road 
Company (see next section). A new punching machine, the key punch, 
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was introduced for the punching of the agricultural census cards . This 
device was a great improvement on the pantograph punch in that 
cards could be punched far more rapidly using the calculator-style 
key pad (Figure 4.6) . The keypunch was manufactured in essentially 
the same form for more than half a century. The cards were 
summarized by large, hand-fed integrating tabulators provided with 
ten adding units .  The 1 900 agricu ltural c ensus al so saw the 
introduction of another important advance ,  the electrical sorting 
machine. This machine enabled sorting to be carried out as an 
independent operation, and not merely as a by-product of regular 
tabulation with the census machine. Prior to the advent of the electric 
sorter, sorting could only be achieved by "needle sorting"-an 
awkward operation that entai led poking a blunt needle through the 
holes in a stack of cards , to isolate groups of cards with common hole 
punchings .  

Once again the census , completed in approximately two and a 
half years , was a technical and financial success for Hol lerith. The 
Tabulating Machine Company supp lied over three hundred 
tabulating machines and more than sixteen hundred pantograph and 
key punches. The company, however, was not awarded the contract 
for the 1 9 10 census , because Hol lerith was unable to agree on 
financial terms with the new director of the census , S .  N. D. North. 

Figure 4.6. Hollerith key punch used for the 1900 U.S. census. 
Courtesy Smithsonian Institution. Photo No. 64549 



Computing Before Computers 1 34 

In 1 905 Hollerith severed his connection with the Bureau of the 
Census and from that point put all his energies into developing the 
commercial application of punched-card machines .  

In the meantime,  Director North established a census machine 
shop to improve and develop new equipment for the forthcoming 
1 9 10  census .  The most notable improvement to the system was the 
incorporation of printing counters in the tabulators; these eliminated 
the copying down of the counter dials ,  which was both time 
consuming and a potential source of error. In 1 907 a mechanical 
expert , James Legrand Powers ,  was employed to improve the 
key punch. The result was an entirely new device (figure 4.7) that 

Figure 4.7. Powers key punch, 1910 U.S. census. Courtesy ICL 
Historical Collection. 
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was electrically powered and had an automatic feed which resulted 

in much faster operation; a complete card was set up prior to the 
punching operation so that corrections could be made without 
repunching an entire card. The new punch also had gang punching 
and simple sorting facilities .  Powers was also involved in making 
substantial improvements to the sorter that Hollerith had supplied for 
the 1900 census. Hollerith sued the Bureau of the Census for patent 
infringement, but the case was not clear-cut and after two years the 
action was dropped by mutual agreement. In 1 9 1 1 ,  Powers left the 
employ of the Bureau of the Census to establish the Powers 
Accounting Machine Company, an organization which proved to be 
a serious competitor for the Tabulating Machine Company. 

Commercial Development of Punched-Card 
Machinery 

Development of the Punched-Card Machine Industry 

During the early years of the Tabulating Machine Company, 
which Hollerith had incorporated in 1 896, the company 

operated in a comparatively small way on two fronts. First, it supplied 
census machinery to the United States Bureau of the Census and to 
the census organizations of other countries, particularly in Europe. 
Second, it attempted to supply tabulating machinery for commercial 
use .  The cyclical nature of the census business---censuses were taken 
in the first or second years of the decade almost everywhere-meant 
that Hollerith needed to look for other, noncyclical , uses for his 
tabulating machines in order to stabilize the revenues of his business .  

Initially, the commercial use of tabulating machines was on a very 
small scale-a few machines were supplied for the compilation of 
insurance and railroad statistics .  Hollerith was not able to interest a 
large-scale user, the influential Pennsylvania Steel Company, until 
1904. Following the loss of the Bureau of the Census contract in 1 905, 
commercial work became the mainstay of Hollerith 's company; the 
machines themselves evolved rapidly and their use increased greatly, 
particularly by railroad companies. By 1908, the Tabulating Machine 
Company had about thirty customers, including railroads, utilities ,  
manufacturers, and government agencies .  Thereafter the revenues 
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(and therefore the customer base) grew at the rate of about 20 percent 
every six months. 

By 1 9 1 1  the Tabulating Machine Company had expanded to a 
size that exceeded Hollerith's ambitions . Aged 5 1  and not in strong 
health , he stepped down as general manager and allowed the 
company to be acquired by a well-known business promoter, Charles 
Flint. American business was then caught up in one of its periodic 
merger waves , and Flint formed a new organi zation , the 
C omp u ting -Tab u lating- R ec or ding Company (C-T-R)  by 
consolidating three principal concerns. These were a manufacturer of 
computing scales (i .e . , machines that weighed an artic le and 
calculated the cost in one operation) , the Tabulating Machine 
Company, and a manufacturer of time recorders (i .e . ,  machines used 
for rec ording the "clocking on" and "clocking off" time of 
employees). Each of these companies was recognized by one word 
of the new title: Computing-Tabulating-Recording . C-T-R expanded 
rapidly, achieving some economies of scale both in selling costs and 
in manufacturing, and it also had the greater security resulting from 
diversification. Hollerith remained a director for a year or two, and a 
technical consultant until 1 92 1 ,  when he retired. 

In 1 9 1 1 ,  the year in which C-T-R was formed, James Powers 
inc orporated the Powers Accounting Machine Company. The 
company developed a range of commercial punched-card machinery 
considerably superior to that offered by C-T-R, in particular offering 
a printing tabulator that was far better suited to commercial 
applications . For the first time, machines competitive with the 
Hollerith system had appeared on the market. 

It is fair to say that there were three key figures in the development 
of the punched-card machine industry : Herman Hollerith, James 
Powers , and Thomas J .  Watson. Watson ( 1 874- 1 956), who became 
president of C-T-R in 1 9 1 4, was a man of a completely different mold 
from Hollerith and Powers ;  he considered himself foremost a 
salesman. He had already had a meteoric career with the National 
Cash Register Company, and brought much of its sales-oriented 
culture with him to C-T-R. Watson immediately realized that the 
tabulating machine division was the most promising part of the 
company, but that its products were inferior to those of the Powers 
c ompany. A researc h department was set u p  under E .  A .  
Ford-Hollerith's principal coinventor-whose staff would soon 
include such outstanding inventors as J. W. Bryce, C. D. Lake, B. M. 
Durfee and F. M. Carroll .  Products to match the competition soon 
followed. Under Watson's leadership the company had trebled in size 
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to well over three thousand employees by 1 924, when the name was 
changed to International Business Machines (IBM). 

As in the United States , the punched-card machine industry in the 
rest of the world was based on the exploitation of, and competition 
between, the Hollerith and Powers patents . In Europe for example, 
the British Tabulating Machine Company (BTM) was formed in 1 907 
in London with an exclusive right to manufacture and market 
Hollerith machines in Great Britain and its Empire.4 In 1 9 1 3, the 
Accounting and Tabulating Machine Corporation of Great Britain 
was formed to market the Powers machines; the British Powers 
company soon became independent of the American parent and 
developed many of its own machines .  Competition between the two 
British companies was intense. Continental Europe also had a 
thriving tabulating machine industry: in Germany the Deutsche 
Hollerith Maschinen Gesellschaft (usually known as Dehomag) was 
formed in 1 9 10; this company developed several important patents 
that C-T-R acquired when it took a 90 percent s take in the company 
in 1 923. C-T-R also established a French sales organization, Societe 
Internationale des Machines Commerciales (later IBM France) . In 
both of these countries, as in other European countries , the Hollerith 
and Powers lines competed. Europe also had its own indigenous 
manufacturers :  Machines Bull in France ,  and Soviet Russia also 
produced machines. By the mid- 1 920s , IBM, Powers, or BTM 
outposts were to be found beyond Europe and the United States in 
most developed comers of the globe. Even so, although punched-card 
machines were important and pervasive, the industry was quite a 
small one and quite minute by comparison with the present day 
computer industry. For example, by the end of the 1 920s IBM had 
only about three thousand customers in America-this has to be 
compared with the hundreds of thousands of computer installations 
it has today; again, IBM's annual revenues were then only about 
twenty million dollars compared with about fifty billion dollars in the 
mid- 1 980s; similarly, its head count has risen perhaps one hundred 
times from the three thousand it had in the late 1 920s . 

The Powers Accounting Machine Company of the United States 
was itself the subject of a merger in 1 927 , when it was acquired by 
the Remington Rand Corporation. A s  a resu l t  of the fierc e 
competition between IBM and Remington Rand the machines 
developed very rapidly: the tabulating machines produced in the 
1930s contained several thousand precision components , and were 
among the most complex of manufactured devices. 

In spite of the Great Depression of the 1 930s ,  the punched-card 
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Figure 4. 8 .  Evolution of the punched card: (a) 45 -column TMC card, 
(b) 80-column IBM card, (c) 90-column Remington Rand card. 
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machine industry largely held its ground, expanding again vigorously 
in the second half of the 1930s with the demand for government office 
mechanization created by the Social Security Acts of 1 935 , and the 
general increase in the size and operations of the federal government 
from the time of the New Deal. By the end of the decade, IBM had 
grown to about twelve thousand employees ;  i t  had several 
manufacturing plants , and large educational and research divisions at 
Endicott, New York. In addition, the company had marketing and 
manufacturing oferations in most major countries (excluding the 
British Empire) . 

Development of the Machinery 

The most important early development of the Hollerith tabulating 
system occurred in connection with the tabulation of statistic s 

for the New York Central Railroad in the mid- 1 890s. This 
commercial application had the important requirement of needing the 
accumulation of quantities , s uch as route-miles, the weight of 
shipments , and monetary amounts .  Hollerith created for this 
application the multicolumn card in which numerical data could be 
recorded in fields of several adjacent columns (Figure 4. 8) .6 To 
accumulate the numeric quantities Hollerith introduced a small 
integrating tabulator.7 This machine, similar to that shown in Figure 
4.9 , used the hand-feed pin-box reading mechanism of the original 
census machine; selected numeric fields were added into counters of 
which up to four were provided. 

Figure 4.9. Integrating tabulator. Courtesy 
ICL Historical Collection. 
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The early 1900s, during which the Tabulating Machine C ompany 
had some success in placing machines in commercial applications, 
saw Hollerith and his assistant E. A. Ford make several improvements 
in the range and versatility of the machines . Most notably, during 
1905- 1 907, they improved greatly the tabulator, which took on the 
familiar appearance of the floor-standing electrically driven machine. 
Figure 4. 10 shows punched-card machines in use in a typical small 
office of the early 1900s . The new model incorporated automatic 
feed, which enabled it to tabulate cards at the rate of 1 50 per minute; 
this was many times the speed achievable in the hand-fed machines, 
and much less fatiguing. Another important improvement was the 
incorporation of a plugboard so that the machine could be more 
rapid! y reconfigured to tabulate data from one card format to another; 
this was a great step forward on the physical rewiring that had 
formerly been necessary. The punched card itself went through some 
evolution in size and the number of columns, eventually standardized 
at a forty-five column, twelve-row card of dimensions 7 3/8 " x 3 1/4" 
and comer-clipped. The automatic sorter, first introduced in 1901 for 
the agricultural census, was reengineered as the vertical sorter, 
operating at a speed of 250 cards per minute. For any card column 
selected by the operator the sorter would distribute cards into thirteen 
receiving compartments, one compartment for each of the twelve 
possible punching positions and a thirteenth for unpunched cards . 8 
The vertical arrangement of the sorter was chosen to minimize the 
space occupied in a crowded office (Figure 4. 10). This turned out to 
be an unfortunate decision, for the sorter became known as the 
"back-breaker, " on account of the amount of stooping needed to 
collect the sorted cards, and it was not popular with operators. 

After incorporating the Powers Accounting Machine C ompany 
in 1 9 1 1 ,  Powers and his assistant W. W. Lasker began to develop their 
range of machine'i for commercial use. The Powers machines, 
although functionally similar to the Hollerith machines and using the 
same card format, operated on different mechanical principles: in 
place of the electrical sensing and relays of the Hollerith equipment, 
the Powers machines used mechanical pin sensing and were entirely 
mechanical in operation, electric motors supplying nothing more than 
motive force. (There was some advantage in the mechanical sensing 
at first, as the machines were not affected by any conducting metal 
impurities in the cards; in the long-term, however, mechanical 
operation was inherently less flexible than electrical.) The new 
equipment included a horizontal sorter that was less tiring for 
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Figure 4. 10.  Punched-card office of the Retail Hardware Mutual Fire 
Insurance Company, Minneapolis, circa 1 920. Note the key 
punch on the table at left, the vertical sorter at center rear, and the 
tabulator at the right of the room. Courtesy ICL Historical 
Collection. 
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machine operators than the C-T-R vertical sorter, because they no 
longer had to stoop to remove the cards. The Powers printing 
tabulator was a far superior device to that offered by C-T-R. First, the 
machine had a printing head that enabled it to list cards and print 
totals . And second, it was fitted with a "connection-box" that enabled 
it to be reconfigured for a new application in a matter of seconds , 
compared with the much longer time needed to replug the C-T-R 
machine. The first card punch (the so-called slide-punch) produced 
by Powers was less satisfactory, and it was quickly replaced in 1 9 1 6  
by an electrically driven key punch of a similar pattern to the 
hand-operated Hollerith punch. 

By 1 9 19 ,  C-T-R was able to announce that it too had developed 
a printing tabulator, which was marketed the following year. The new 
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design, due to C .  D .  Lake, in addition to pnntrng had an 
"automatic-control" device. On previous tabulators it had been 
necessary to manually insert "stop-cards" to cause the machine to halt 
so that totals could be copied down-now both copying and 
stop-cards were eliminated, because automatic control detected the 
change in a group number. C -T-R also developed, in the early 1920s, 
an electrically operated keypunch and a four-hundred-cards
per-minute horizontal sorter that rivaled those of Powers. 

In its turn, the Powers organization achieved what was probably 
the single most important development between the wars-the 
introduction of alphabetic equipment in 1924. Letters of the alphabet 
were encoded in a single column of the card by means of a special 
code, the 45-column cards being otherwise identical to those used OP 
the numerical equipment. Both an alphabetic tabulator and m 
alphabetic keypunch were provided. The introduction of alphabetic 
equipment opened up entirely new areas of commercial application 
that had not been possible with the numerical-only machines. IBM 
subsequently brought out its own, rather more flexible, alphabetic 
equipment. In 1928, IBM introduced the familiar 80-colurnn card 
with slotted holes ( Figure 4.8b), which gave a great increase in 
capacity over the 45-column card. Remington Rand followed suit in 
1 930 with a 90-column card, in which two characters were punched 
in each of 45 columns ( Figure 4.8c). 

This pattern of development--each of the two manufacturers 
bettering the offerings of the other-is one that, in broad terms at 
least, characterized the development of punched-card machinery 
between the two world wars . The development of punched-card 
machines illustrates, in microcosm, the accelerating trends in 
automatic control and operation that swept across the developed 
world during that period. Over the years hundreds of improvement: 
were made by each manufacturer to its products and equally large 
numbers of patents were taken out. Of the many improvements only 
a handful were really fundamental, but the cumulative effect of 
hundreds of minor improvements was to transform the machines . 
Increasingly, the machines required less and less operator 
intervention and became more sophisticated in their operation. For 
example, the introduction of "major-minor" automatic control 
enabled two levels of subtotalling to be performed automatically, and 
eventually three levels.9 

In the early 1930s, IBM introduced a range of 80-colurnn 
machines that were a high point in the interwar development of 



Punched-Card Machinery 1 43 

Figure 4. 1 1 . IBM punched-card machines of the 1 930s :  (a) 
alphabetic duplicating printing punch ,  (b) horizontal sorter, (c) 
alphabetical accounting machine (Tupe 405). Courtesy ICL 
Historical Collection. 
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punched-card machinery (Figure 4. 1 1 ) .  The leading machine of the 
series was the model 405 alphabetic electric accounting machine. 1 0  
The new accounting machine inherited all the improvements of the 
previous decade-three levels  of automatic control were provided, a 
replaceable plugboard enabled an application to be changed in 
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seconds, paper feed mechanisms enabled standard sized continuous 
stationery to be used for the print out, and full subtraction facilities 
were provided; cards could be totalled at the rate of 150 per minute, 
or listed at a speed of 75 cards per minute. The 405 was a very flexible 
machine that required a significant training period to learn to use 
successfully and represented a great increase in complexity and 
sophistication over the tabulators that preceded it. Series 400 
accounting machines, based closely on the original model 405, 
remained in production until punched-card machines ceased to be 
manufactured in the late- 1 960s. 

The 1 930s were the heyday of the punched-card machine industry 
and the number and power of the products of both manufacturers 
increased considerably. Punched-card machines may be classified by 
three broad functions : recording, sequencing, and processing. For 
recording data, the simple electrically powered key punch was 
supplemented by floor standing models with full alphabetic 
keyboard, gang punching, and program control ; verifiers with similar 
facilities were also provided. The reproducing punch enabled decks 
of cards to be duplicated and reformatted, and the interpreter printed 
the contents of a card along its top edge. The most important 
sequencing machine, the card sorter, achieved a typical speed of six 
hundred cards per minute. The sorter was supplemented by the 
collator, which could merge two ordered decks of cards to produce a 
single-sequenced card file. A valuable adjunct to the accounting 
machine was the summary punch by which an updated card file could 
be produced simultaneously with tabulation; this would then serve as 
the new master file the next time the application was run. Probably 
the most complex punched-card machine to be developed before 
World War II was the multiplying punch, the most important of which 
was the IBM model 60 1 ,  announced in 1931 .  

Applications : Commercial and Statistical Computations 

The earliest uses of punched-card machines were statistical; it 
was not until the Tabulating Machine Company's  second decade 

that accounting applications began to dominate. This trend 
accelerated markedly with the appearance of printing tabulators that 
had automatic control in the early 1 920s and the later appearance of 
alphabetic equipment. Accounting machines were not designed with 
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mathematical computation in mind, but their use in this context was 
an important link between the prewar world of mechanical 
computation and the postwar world of electronic computers. 

Although Hollerith made a little progress in the commercial field 
during the early years of the Tabulating Machine Company, it was 
not until he was able to offer an integrating tabulator with automatic 
feed and vertical sorter that major accounting operations could be 
undertaken. The first of these was for the Pennsylvania Steel 
Company in 1904 and the second was a sales analysis application for 
the Marshall Field retailing organization. Punched-card machinery 
was expensive to rent and consequently was only used, at first, by 
very large organizations that could make good use of its ability to 
make short work of a large volume of transactions; the needs of small 
businesses could be met adequately by less automatic but lower-cost 
bookkeeping machines, such as those made by Burroughs. The 
Hollerith machines, however, arrived at a critical period in the 
development of large-scale American enterprise; it was during this 
period in the late nineteenth and early twentieth centuries that much 
of modern business accounting practice came into existence, 
particularly cost accounting in manufacturing. The Hollerith business 
grew rapidly on the strength of this new wave of increasing business 
scale. As large-scale business became more and more the norm, the 
use of the machines became quite widespread, so that by 1 9 1 3  a 
journalist was able to report 

the system is used in factories of all sorts, in steel mills, by insurance 
companies, by electric light and traction and telephone companies, by 
wholesale merchandise establishments and department stores, by 
textile mills, automobile companies, numerous railroads, municipali
ties and state governments . It is used for compiling labor costs, 
efficiency records, distribution of sales, internal requisitions for 
supplies and materials, production statistics, day and piece work. It is 
used for analyzing risks in life, fire and casualty insurance, for plant 
expenditures and sales of service, by public service corporations, for 
distributing sales and cost figures as to salesmen, department, 
customer, location, commodity, method of sale, and in numerous other 
ways . The cards besides furnishing the basis for regular current reports, 
provide also for all special reports and make it possible to obtain them 
in a mere fraction of the time otherwise required. 1 1  

Sales analysis, first undertaken for Marshall Field in about 1 907, 
was a very common commercial application, and it illustrates well 
the use to which punched-card machines were put. Sales transactions 
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were recorded onto cards, different fields recording the salesman 
number, the value of the transaction, the value of the commission, the 
product code, and so on. ( Fig. 4.8a shows a typical early sales card.) 
To total up the commissions for each individual salesman during an 
accounting period, for example, the cards would be sorted by 
salesman number, which would put all the transactions for each 
salesman into juxtaposition. Blank stop-cards would then be inserted 
to separate the cards for each salesman from the next. Finally, the 
cards would be run through the tabulator; as each stop-card was 
encountered the tabulator would halt, so that the total commission for 
the salesperson could be copied into a ledger for subsequent 
payment. 1 2  The same sales cards could also be used to provide other 
analyses . For example, to examine stock movement during a period, 
the total sales of each product would be required. This could be 
quickly obtained by sorting the sales cards into product code order 
and performing another tabulation. A great point was made by 
tabulating machine salesman of the "unit record" principle: that a 
single record could serve a variety of purposes by the simple process 
of sorting and tabulation. 

The demands of commercial applications were a prime stimulus 
to the production of new tabulating equipment. For example, the 
introduction of alphabetic equipment was a direct response to the 
need for names and addresses and alphabetic descriptions on 
tabulator listings; and the provision of several levels of automatic 
control enabled very sophisticated customer statements and 
management reports to be produced. Accounting machines only 
added and subtracted, so that utility companies, for example, who 
charged customers on unit-cost-times-quantity basis had to perform 
the necessary multiplication prior to the punching operation. The 
multiplying punch introduced in the early 1 930s was designed to 

. f h' d 13 satis y t 1s nee . 
Just as the needs of commerce were a spur to the development of 

the punched-card machine industry, the technology also helped to 
shape the organization of business. Thus, the highly centralized 
accounting systems of industry were very much geared to what was 
technically achievable with the commercially available machines , 
and a generation of accountants between the two world wars grew up 
on a diet of the standard textbooks on mechanized accounting. When 
computers became available in the 1950s and 1960s, they tended to 
be used at first as glorified electric accounting machines and were 
simply absorbed into old-fashioned accounting systems . It took a new 
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generation of accountants ,  and much trauma, to exploit the potential 
of the computer, partic ularly its capability for dealing with 
transactions in real time. 

Applications : Scientific Computation 

In the 1 930s the two principal means of performing digital 
computation were using desk calculators or punched-card 

machines . Though the use of desk machines was very widespread 
(see Chapter 1 ) ,  there existed just a few centers using punched-card 
machines .  In volume terms , the number of punched-card machines 
used for digital computation before World War II was quite 
insignificant, but they were important in creating an awareness of 
their computational possibilities within the scientific establishment 
and within the punched-card industry itself. 

The first person to make use of punched-card machines in 
scientific computation was L. J. Comrie, superintendent of the 
Nautical Almanac Office,  Greenwich ,  England. Comrie was,  in 
principle, opposed to the construction of special-purpose computing 
equipment and had already established his reputation by adapting 
commercial accounting machines to scientific ends . Comrie first used 
punched-card machines in connection with Brown's Tables of the 
Motion of the Moon in 1 929 , which he described in a clas sic paper 
published in 1932. Comrie subsequently resigned from the Nautical 
Almanac Office to form his own company, Scientific Computing 
Services (SCS) , in 1937 . SCS became a leading center for digital 
computing and, before the war, it was the only British computing 
service to make use of punched-card machines . It is perhaps 
indicative of the scale of computational activity of the day that SCS 
could not justify the cost of acquiring machines but mainly used the 
bureau service of the British Tabulating Machine Company. 

In the United States , astronomical computation also provided a 
motive for using punched-card machines for digital computation. 
Wallace J .  Eckert ( 1 9 1 1 - 1 976) , an astronomer at Col umbia 
University, learned of Comrie's activities in England and began in 
1 933 to do similar work using the punched-card machines housed in 
the Columbia University Statistical Bureau in New York. 14  

In 1 934, Eckert became director of the Scientific Computing 
Bureau at Columbia, which was the first American center for 
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punched-card computation, using machines donated by IBM; in 
1 9 37 , the  laboratory was r enamed the Thomas J .  Watson 
Astronomical Computing Bureau. The computing bureau accepted a 
wide range of computational tasks, such as harmonic analysis , the 
integration of differential equations, and the construc tion of 
astronomical tables. 

Table 4. 1 .  Punched-card machine tabulation of y = x2 + 2x + 1 

Argument Function 
X y 

0.00 1 .00 

0.10 1 .2 1  

0.20 1 .44 

0.30 1 .69 

etc . 

First 
difference 

0.2 1 

0.23 

0.25 

0.27 

Second 
difference 

0.02 

0.02 

0.02 

One of the most elegant and simple of Eckert's  techniques , the 
tabulation of a function by the method of differences , illustrates 
punched-card computing nicely. Suppose it was required to tabulate 
the function y = x2+2t+ 1 for x = O to 1 in steps of 0.10 (fable 4.1). 
The process would begin by recording the constant second difference 
on a total of ten cards, using the gang punch and placing a card 
containing the top valu e of the first difference column at the 
front ;  i . e., the deck would contain the value 0.21, 0.02, 0.02, 0.02. 
. . . The cards would then be run through the tabulator and 
successive totals recorded on cards using the summary punch. The 
top value of the function column would then be placed at the front of 
the new card deck, which would now contain the values 1 .00, 0.2 1 ,  
0.23, 0.25 . . . .  Finally, a last run through the tabulator of this card 
deck would produce a listing ( and a card deck if required) containing 
the values 1.00, 1 .21, 1 .44, 1.69 . . .  , the required table. In practice, the 
process was a little more complicated than this. 

Some of Eckert 's more complex calculations-notably the 
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integration of differential equations-required the use of a multiplier, 
a tabulator, and a summary punch acting in concert . Eckert 
commissioned a "calculation control switch" that enabled a sequence 
of arithmetic operations to be performed during a single card passage; 
this was one of the earliest examples of automatic sequence control . 
Eckert later developed these ideas in the IBM Pluggable Sequence 
Relay C alculator (see C hapter 6) and the Selective Sequence 
Electronic C alculator (C hapter 7). 

Postwar Development 

After the many technical developments of the 1 930s, the war 
years saw relatively little advance in punched-card machine 

design due to the supervention of other wartime research priorities. 
The manufacture and use of the machines , however, increased 
considerably. IBM, for example, emerged from the war with nearly 
twice the employees it had when the war began. 

The two most important wartime developments were the 
applicat ion of electronics  and the deve lopment  of 
sequence-controlled calculators. A prototype electronic multiplier 
was available within IBM by the end of 1 942, although it was not 
until 1 946 that it became commercially available as the model 603; 
operating at one hundred cards per minute, it was about ten times 
faster than the electromechanical 60 1 .  D uring the last year of the war, 
IBM developed the Pluggable Sequence Relay C alculator. This 
machine, which was capable of performing a sequence of up to fifty 
arithmetic steps, was specified by W. J. Eckert and designed and built 
by a team led by C .  D .  Lake and B. M. D urfee. 

In 1 948 these two developments were brought together in the 
IBM 604 electronic calculating punch-a machine with 1 ,400 
electronic tubes and a capacity of sixty program steps . More than 
5 ,000 of these calculators were sold during the next ten years. The 
other punched-card machine manufacturers quickly followed IBM's 
lead by introducing electronic multipliers and calculating punches in 
the next few years. The IBM 604 was the main computing element 
in a very important development, the C ard-Programmed electronic 
C alculator (C PC ). The C PC was a popular transition machine that 
sold in hundreds until reliable, moderately priced, stored-program 
computers became available in the mid- 1950s . 
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The introduction of electronics into punched-card machines was, 
in a phrase of the period, "evolutionary not revolutionary"; that is to 
say, the functional characteristics remained unchanged and the new 
technology merely enhanced the speed and reliability of the 
machines . It is obvious in retrospect that by the early 1 950s 
punched-card machines were a declining technology, that they would 
eventually be superceded by electronic computers. The speed with 
which this happened, however, is often exaggerated. Electronic 
computers were for several years expensive and unrel iable 
alternatives to traditional tabulating equipment, and could only be 
justified by the largest and most prestigious data processing users; 
for prudent business people, tried and trusted electronic accounting 
machines were generally a more sensible choice. D uring the 1950s 
some very competitive new punched-card machines were introduced 
that occupied "that ill-defined boundary which divides computers 
from calculators. "  For example, in 1 958 IBM announced its model 
628 calculating punch, which used second generation transistor 
electronics, had a small magnetic core memory, and could be plugged 
with up to 1 60 program steps. Another second generation calculating 
tabulator, the Univac 1 004 (Figure 4. 1 2), was introduced by Sperry 
Rand in about 1962, and many hundred were sold in the United States 
and Europe. Even as late as 1 959 there were less than four thousand 

Figure 4. 12. The Univac 1 004 calculator, also sold in the United 
Kingdom and Europe as the JCT 1004, shown here, by 
International Computers and Tabulators ( JCT, the descendant of 
the British Tabulating Company). Courtesy ICL Historical 
Collection. 
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Notes 

computers in the United States, compared with several thousand 
punched-card machine installations. It was probably not until the 
launching of the IBM 1 40 1  in 1 959 ,  outstandingly the most 
successful early data processing computer, that this began to change. 

By the late 1 960s traditional punched-card machines had 
effec tively gone out of produc tion , although punched cards 
themselves continued to be the dominant input-output medium for 
electronic computers . IBM flirted briefly with a new 96-column card 
in 1 969 for its small Systern/3 range of computers ,  and included an 
off-line sorting machine, but it was not a commercial success .  During 
the 1970s even this vestigial use of punched cards declined with the 
increasing use of direct data entry on visual display units . By the 
late 1 980s punched cards had all but vanished. 

1 .  Color-nativity is the racial type and country of birth. Tenure equals 
farm or home ownership. The overt interest of the Bureau of the 
Census in statistics of race is sociologically interesting , but 
beyond the remit of this chapter. 

2. The relay circuits we now recognize as simple AND and OR logic 
functions , but such a formalism did not exist until the late 1 930s .  

3. G .  Austrian, Herman Hollerith: Forgotten Giant of Information 
Processing (New York: Columbia University Press ,  1 982), 72. 

4. Although BTM derived the full benefit of IBM's research and 
development, it was required to pay a 25 percent royalty for the 
privilege. This onerous royalty rate frustrated the growth of BTM; 
and because it also lacked Watson's charismatic leadership , it 
never prospered to anything like the extent of IBM in America. 
It never became more than about one-twentieth the size of IBM , 
in spite of having a sales area of one-third of the developed world. 

5. Comparative data for IBM and the Remington Rand Tabulating 
Machine Division are hard to come by. Although Remington 
Rand had overall revenues comparable with IBM,  the bulk of its 
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revenues were derived from typewriter sales and other office 
products . According to contemporary sources, IBM had about an 
80 percent share of the American tabulating machine market and 
Remington Rand about 20 percent. 

6. Apart from the population census , where the old form of card 
persisted, the multicolumn format of cards was universally 
adopted; Figure 4.8a shows an example dating from shortly 
before World War I. 

7 .  Hollerith had in fact experimented with an earlier integrating 
tabulator for the Office of the Surgeon General in 1 899 and for 
the Agricultural Census in 1 893 .  All types were based on a 
Leibniz stepped-wheel adding mechanism (see Chapter 1 ) .  

8 .  Because the card sorter only operated on a single column, to sort 
a field of n digits , cards had to be passed through the sorter n 
times , starting with the most significant digit. An analogous 
sorting technique in computer programming is known as the 
bucket or radix sort. See D. E. Knuth, The Art of Computer 
Programming, vol. 3 ( 1 973), 382-84. 

9. It is interesting that a vestige of this old accounting machine 
control mechanism remains in the RPRG programming language, 
which in fact evolved as a s imulator of punched-card accounting 
machinery. 

10 .  Gradually the term electric accounting machine or EAM had 
come to be preferred to tabulator, reflecting the shifting domain 
of application. 

1 1 .  S .  G.  Koon, "Hollerith Tabulating Machinery in the Business 
Office , "  Machinery 20( 1 9 1 3) :25 . 

1 2. The insertion of stop-cards and the copying down of totals were 
time-consuming operations that were entirely eliminated in the 
printing tabulators with automatic control of the 1 920s . 

1 3 . Before the arrival of the multiplying punch, an ingenious 
technique known as "progressive digiting " enabled cumulative 
products to be computed using only a tabulator and a sorter; this 



Punched-Card Machinery 1 53 

method was devised in the 1 920s to compute ton-mile statistics 
for railroad companies but largely fe l l  into disuse when 
multiplying punches became available. See J. C .  McPherson 's 
introduction to the C harles Babbage Institute Reprint Series 
edition of W. J. Eckert 's Punched Card Methods in Scientific 
Computation ( 1940). 

14. The C olumbia S tatistical Bureau was one of several statistical 
units, established in American universities and government 
departments in the 1 920s and 1 930s, that used punched-card 
machines for large-scale statistical research. Another well-known 
center was at Iowa State C ollege. D uring World War II many more 
statistical laboratories came into existence for operations research 
and statistical investigations. 
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Chapter s 

Analog Computing Devices 

Introduction 

Imagine that you are standing on the bank of a small river. On the 
opposite bank, on a small rise inaccessible to you, is a tall building 

whose height you would like to determine. Fortunately, you have 
with you a protractor , or similar angle measuring device, that enables 
you to sight the angle above the horizontal of the foot and top of the 
building . Then, turning , you carefully pace a convenient distance 
away from the building (the ground also being conveniently flat) and 
repeat the angle measurements. You now have sufficient information 
to determine the height of the building . 

But how do you do the actual calculation? One method is to use 
trigonometry-develop the formulas that apply in this situation and 
use a pocket calculator to evaluate them substituting your observed 
angles and distance paced for the unknowns. An alternative approach 
would be to do a careful scale drawing (Figure 5 . 1 )  from which the 
height of the building could simply be measured without any 
knowledge of trigonometry. 

The first method of calculation uses a digital technique. The 
quantities involved are represented by numbers (strings of decimal 
digits-hence the name), and the numbers are manipulated in an 
abstract manner independent of the original problem. 

The second method of calculation uses an analog technique. The 



Figure 5 . 1 .  A graphical solution to the surveying problem described 
in the text. 
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quantities in the problem are represented by a direct proportion (or 
analog) of the length of lines and the angles between them. Unlike 
the digital technique, the accuracy of the analog technique is limited 
by how carefully and accurately the drawing is made and the result 
measured. On the other hand, the analog technique is generally 
quicker to apply and less prone to error, as the whole problem is set 
before you as a picture. Its adaptability is clear if you were to 
subsequently ask how far away is the building, or how high is the rise 
on which it stands? 

Analog methods of calculation have a very old tradition and many 
are still in common use. For example, in artillery surveying, digital 
(computer) techniques are used for the basic calculation and a 
graphical analog device is still commonly used as a check against 
error. In World War II , graphical devices were the basic technique. 
Figure 5 .2 shows a plotter used in antiaircraft defense. From an 
observation post the direction (bearing) ,  angle above the horizon 
(altitude), and distance to the aircraft (range) can be measured. These 
are set up on the plotter instrument , and the aircraft 's height can then 
be read off and its position over the ground marked on the map. 

Simple direct analogs, such as those just discussed, are very 
common. There are more sophisticated approaches in which it is not 
the problem itself that is modeled. Rather, the equations describing 
the problem are derived and are then modeled in such a way that the 
original problem is much less evident. It is this approach that is 
discussed in this chapter. 



Figure 5 .2 .  An antiaircraft plotter. The vertical triangle , from which 
the height and horizontal range can be determined from the slant 
range and altitude angle , is solved by the gridded chart that has 
been laid flat onto the map. 

Simple Analog Devices 

We start with some simple examples of analog devices. Figure 
5 .3 shows a more refined example of a plotting instrument for 

antiaircraft defense. The altitude angle and range are entered by 
positioning the angular arm that represents the line of sight to the 
aircraft. By manually setting the vertical arm the height and 
horizontal range can be read off. 

Figure 5 .4 shows a more elaborate mechanism, called a resolver, 
for converting from polar to rectangular coordinates. This mechanism 
works automatically and is a component part of many of the devices 
described later. They are found in naval gunnery computers from 
World War I ,  and a simpler form occurs in Kelvin 's harmonic analyzer 
in the 1 870s and in numerous other harmonic analyzers from the tum 
of the century onwards. 



Figure 5 .3. A more sophisticated mechanism for solving the vertical 
triangle in antiaircraft gunnery. Here each of the elements of the 
triangle is represented by a metal bar that can be rotated or slid 
to place it in correct relative physical relationship to the elements 
of the original problem. Fi xed Gu ides 
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Figure 5 .4. A mechanical resolver for converting from polar to 
rectangular coordinates . An arm is rotated through an angle 0. 
Sliding radially on the arm is a block carrying a pin whose 
distance from the center is r. Together r and 0 represent the 
hypotenuse of a right-angle triangle. The pin moves in a 
horizontal slot in an arm constrained by guides to slide vertically. 
The vertical movement of the arm is therefore r sin 0. A similar 
arm, with a vertical slot, sliding horizontally will yield r cos 0 .  
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A multiplying mechanism can be constructed using similar 
triangles ,  as shown in Figure 5 .5 .  One slide input rotates an arm about 
a fixed pivot for the first operand. A second slide input positions a 
slider on the rotated arm for the second operand. The vertical position 
of the slider on the rotating arm yields the product on an output slide. 
This multiplier mechanism also appears in World War I gunnery 
computers , but antecedents are found in some of the more elaborate 
integraphs of the late nineteenth century. 

Figure 5 .5 .  Skeleton diagram of a multiplying linkage. Since the 
triangles ABC and ADE are similar, 

BC/AB = DE/AD , 
so II 

BC =  [DE x AB]/AD = a x  b 
if AD is taken as unit length. 

a 

A D 

II b I I  

The Powles Calliparea, patented about 1 870 ,  is a more 
mathematically sophisticated device. It was designed to measure 
directly, without calculation, the cross-sectional area of a wire for 
determining its resistance to electric current. The instrument, shown 
in Figure 5 .6 ,  may have been a prototype model. It was probably not 
extensively manufactured because the same accuracy in area could 
be obtained with ordinary callipers and a slide rule, the use of which 
could also allow the inclusion of the resistivity of the wire and its 
length in the calculation. The mathematical principle underlying its 
operation is shown in Figure 5 .7 .  

An important basic analog mechanism is the differential, which 
adds two independent motions . Several forms of this mechanism are 
shown in Figure 5 . 8 ,  which indicates how the common bevel gear 
differential might be understood from simpler forms. Here it is not 
the linear position of a slide, but the angle though which a shaft 
rotates , that provides the analog of a quantity in the original problem. 



Figure 5 . 6 .  Powles Patent Calliparea (ca. 1 870) for direc tly 
measuring the cross-sectional area of round wire. 
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Figure 5 .7 .  The mathematical functions performed by the Powles 
Calliparea. From the figure, 

c = 2r sin ( 0/2 ) ,  
ti = R( 1 - cos 0 ) = 2R sin2 ( 0/2 ) 

by the trigonometric identity, 
cos 0 = 1 - 2 sin2 ( 0/2 ) 

in the instrument r = 2 inches and R = n inches, where 
ti = 2R(c/2r)2 

= n/8 c2 
= 1/2(nc2/4) 

Thus the difference c represents the cross-sectional area of a circle 
with diameter c to a linear scale of 0.5 inch to each square inch 
of area. 
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C rown Wheels 

Figure 5 . 8 .  Three forms of differential mechanism for adding two 
independent quantities . If either suspension rope of the pulley at 
the left is raised, the pulley is raised by half that amount, and the 
two ropes may be manipulated independently. In the center the 
same effect is obtained by replacing the ropes by toothed racks 
and the pulley by a gear wheel . If the racks are bent to form 
circular crown wheels ,  as at the right, the same mathematical 
function is obtained with all linear motions replaced by circular 
motions of (possibly) unlimited extent. The latter is the common 
automobile form of differential that ensures that the number of 
revolutions made by the engine (connected to the spider shaft) is 
equal to the mean of the number of revolutions made by the 
driving wheels (connected via half-axles to the crown wheels). 
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Although a differential mechanism occurred in antiquity (the 
Antikythera Mechanism, described below) , it was not reinvented 
until the mid-seventeenth century. Its first use in calculating 
machinery was in the naval gunnery computers of World War I ,  but 
a simpler form was used in Kelvin's tide predictors ( 1 870s) and 
harmonic synthesizers. 

All of the devices thus far described are theoretically exact in their 
action. Aside from "noise" introduced by the limited accuracy in 
machining the parts , the mechanisms do not introduce any structural 
error due to the geometry of the mechanism being inexact .  
Frequently, however, the mathematical description of a problem is 
simplified so that it can be solved by a more straightforward analog 
device if the error thus introduced is of no importance to the user. 
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Astronomical Clocks, Orreries, and Planetariums 

The motions of the heavenly bodies, and particularly the planets 
or "wandering stars," have held a fascination for people since 

antiquity ; this fascination is enshrined in the scientific knowledge of 
astronomy and the speculative knowledge of astrology. Mechanical 
models representing the heavens, either to show the present positions 
of bodies or to "calculate" their positions at an earlier or future epoch, 
have been known for at least two thousand years. 

Figure 5.9. The first working modem reconstruction of the 
Antikythera Mechanism, made by the author. The case is 
approximately 1 2"x 6"x 3" (320 x 160 x 80mm). In the original, 
the case was of bronze and wood, with opening doors like a 
triptych. The whole was covered by inscriptions in Greek 
explaining the use of the mechanism. 
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The earliest extant example of an astronomical computer is the 
Antikythera Mechanism, from 80-50 B .C. , recovered from an ancient 
wreck in 1 90 1  and interpreted from X-ray images by the historian 
Derek de Solla Price. Figure 5 .9  is a photograph of a modem 
reconstruction made to a recent reinterpretation of its mechanism and 
function by the author. The input is turned once per day and drives a 
dial showing the age of the moon-the 29.53 day cycle from new 
moon through full moon and back to new moon. This in tum drives 
dials that show the positions of the sun and the moon among the stars 
and the eighteen-year cycle of lunar and solar eclipses . Figure 5 . 10  
shows schematically the arrangement of the mechanism which 
includes thirty-nine gears and is the only example of a differential 
gear mechanism known before the mid-seventeenth century. 

Figure 5 . 1 0. The logical organization of the Antikythera Mechanism. 
The heart of the mechanism is based on the Metonic Cyc le: 254 
Sidereal Months of 27 .32 days (for the moon to return to the same 
place relative to the fixed stars) takes approximately 235 
Synodical Months of 29 .53 days (from new moon back to new 
moon) or 1 9  Sidereal Years of 365 .26 days . The ec lipse indication 
is based on the Saros cyc le-the pattern of ec lipses repeats after 
233 Synodical Months , or nearly 1 8  years. The boxes show the 
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Planispheric astrolabes , which show star and planetary positions 
in altitude and azimuth coordinates , as seen from the earth's surface ,  
appear to have originated in Hellenic times and Islamic examples are 
known from the ninth century. Astrolabes were practical tools of 
navigation and also served as aids to astrological divination and 
prediction. 

With the development of mechanical clocks in the thirteenth 
century, wheelwork was adapted for directly indicating the motions 
of heavenly bodies. From the design of Giovanni de Dondi in 1 364 
the design of astronomical clocks was progressively refined and 
elaborated. The cathedral clock at Strasbourg ( 1 842) is probably the 
best known and that of Jens Olsen (Copenhagen , 1 955) is arguably 
the finest. The development of smaller clocks of this type was 
strongly supported in the eighteenth-century French courts. 

Orreries , models showing the heliocentric motions of the planets , 
are named for one produced for the Earl of Orrey in 1712. They 
became very well known in the nineteenth century as aids in popular 
lectures on astronomy. The main element in the design of these 
instruments was the calculation of geared wheel work to approximate 
the astronomical periods involved. 

The development of the planetarium in 1 9 1 9- 1 923, by Walter 
Bauersfeld of the Carl Zeis s optical works in Jena, is the most 
important modem contribution to analog astronomical devices .  In 
this instrument, the firmament and planets are represented by optical 
projections on the inside of a large hemispherical dome. This 
instrument has seen considerable elaboration through the twentieth 
century and features the geocentric representation of planetary 
motions .  

The principle embodied in  planetary projection i s  shown in 
Figure 5 . 1 1 .  The earth and another planet ,  say Mars , are represented 
by the motions of points on circles of a size and inclination to 
represent the planetary orbits to scale. A rod or similar mechanism 
joining these two points carries an optical projector for the planetary 
image on the dome. The planetary orbits , though nearly circular, are 
in reality ellipses , so the motions are not correctly represented by 
uniform circular motions .  The deviation of the fixed radius of a circle 
from the ellipse is not of great importance ,  but the nonuniform motion 
of the planet in the ellipse, because it accumulates from day to day, 
cannot be neglected. The linkwork shown in Figure 5 . 1 1  is used to 
approximate the nonuniform planetary motion. Note that this 
mechanism is not theoretically exact and possesses structural errors .  
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Figure 5 . 1 1 .  The principle employed in locating projected planetary 
images on the dome of the Zeiss Planetarium. The mechanism 
models the relative positions of the earth and a planet in space. 
At (c) is shown the simple link mechanism used to approximate 
the nonuniform motion of a planet in its elliptical path, �. from 
a uniform circular motion, e. 

Planimeters 

Its j ustification lies solely in the adequacy of its precision to the task 
at hand. 

The art of approximating c omplex func tions by simple 
mechanisms was elaborately developed during World War II by 
Antonin Svoboda (who later played a leading role in postwar 
developments of computers in Czechoslovakia) . The purpose was 
to find very simple mechanisms that would produce solutions to 
complex problems in ballistics and gunnery sufficient for use in 
military equipment. Commonly, these did not attempt to simplify the 
mathematical description of the problems but attempted to fit 
approximate formulas to their solutions. 

A ll the analog devices described thus far have been essentially 
geometric in nature. The output is dependent only on the present 

state of the inputs . Previous values of the inputs do not effect the 
output ,  and the devices therefore exhibit no memory of past events. 
We are well aware, however , that much of the power of digital 
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computers stems from their memory. The same is true of analog 
devices , much of whose power stems from the discovery in the first 
half of the nineteenth century of mechanical embodiments of the 
mathematical function of integration-effectively involving a form 
of memory of past inputs . 1 

Integrating devices arose first as planimeters-instruments for 
measuring directly, by tracing the perimeter, the area enclosed by an 
irregular closed curve such as the boundary of a parcel of land on a 
map . The idea seems to have been first discovered by the Bavarian 
engineer Hermann in 1 8 14 and was rediscovered by Tito Gonnella in 
Florence in 1 824, but neither succeeded in having a satisfactory 
working model made. A further rediscovery by the Swiss ,  Oppikofer, 
led to successful manufacture by Ernst in Paris about 1 836. In these 
instruments the integrating wheel moves on the surf ace of a cone, a 
principle rediscovered by Sang in 1 85 1  and widely reported in the 
English literature. 

Wetli in Zurich,  in 1 849 , substituted a disc for the cone of the 
earlier planimeters , making the integration of negative-valued 
functions possible. The disc-and-wheel integrating mechanism used 
by Wetli , shown in Figures 5 . 1 2  and 5 . 1 3 ,  was extensively used in 
Differential Analyzers in the 1 930s and 1 940s . In fac t ,  any 
continuously adjustable ,  variable-speed drive mechanism can act as 
an integrator, so a wide variety of different forms exist. Wetli 
planimeters were manufactured by Starke in Vienna and later 
improved by Hansen in Gotha. 

Figure 5 . 1 2. The principle of operation of the Wetli disk-and-wheel 
integrating mechanism. The dependent variable ,  y, determines the 
distance of the integrating wheel from the center of the disk. If 
the disk is rotated through an angle, Ax, then the integrating wheel 
is turned by 

�z = [yAx]/r. 
Hence, after a period of action, 

z = 1/r J y d.x. 

= y !:::. x 
r 

6 x  
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Figure 5 . 1 3. A Wetli planimeter ( 1 849) .  In this planimeter a 
movement of the tracing point in the x-direction causes the disk 
to be rotated by means of a flexible wire. Movement in the 
y-direction causes the disk to be moved on a carriage with the 
tracing arm so that the integrating wheel is , in effect ,  displaced 
from the center of the disk. Courtesy Science Museum, London. 
Negative No. 3293. 
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A major step forward was the invention of the polar planimeter 
in 1 856 by Jacob Amsler , then a student at Konigsberg . In the Amsler 
planimeter the integrating wheel moves , by a combination of rolling 
and sliding motions , over the paper on which the area to be measured 
is drawn. The principle is shown in Figures 5 . 14  and 5 . 1 5 .  The 
simplicity , ease of use, and low price of the Amsler planimeter soon 
drove all older forms from the field and led to the manufacture of 
many thousands of the instruments in the nineteenth century-over 
twelve thousand by Amsler alone by 1 884. Amsler-type planimeters 
are still being manufactured for their traditional uses in surveying, 
architecture , and engineering design. An important common usage 
was in the analysis of indicator diagrams to determine the efficiency 
of steam engines. 

Although theoretically exact  in its func tion , the Amsler 
planimeter is susceptible to faults that limit its precision in practice. 
From about 1 880, several forms of "precision planimeters" were 
manufactured ,  particularly by Coradi in Zurich,  to reduce these 
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Figure 5 . 14. The principle of Amsler-type Planimeters .  When the 
ordinate is y, the arm oflength l is inclined at an angle e = sin- I (y/l) 
to the x axis .  If the arm translates a distance � x in the direction 
of the x axis parallel to itself, the integrating wheel will turn about 
its axis and slide parallel to its axis. The turning will be through 
an angle 

� z = [� x sin 0]/r = [y� x]/[[r] . 
The total rotation of the integrating wheel in tracing around a 
closed curve will therefore be just 

z = l/[lr] J y dx. 
The integrating wheel will also be turned as the arm rotates about 
its pivot, but in tracing completely around a c losed curve the arm 
will return to its initial position so the net effect of this will be 
zero. The path that the pivot follows is unimportant and in the 
Amsler planimeter is just a circle. 

Figure 5 . 1 5 .  An Amsler planimeter. The arm length may be adjusted 
to alter the scale of units in which the record is made by the 
integrating wheel. Courtesy Science Museum, London. Negative 
No. 82. 
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errors, especially those arising from the motion of the integrating 
wheel over the unprepared paper surface. Most of these devices were 
superseded by the invention by Lang in 1 894 of the compensating 
planimeter. In this form, the arms of the Amsler planimeter can be 
disposed in two roughly mirror-image ways when tracing an area. 
Averaging measurements made in these two configurations mitigate 
many of the errors . 

A particularly simple and inexpensive form of planimeter, the 
Hatchet planimeter ( named from its resemblance in one form to a 
hatchet), was developed from 1 8 87. The principle is shown in Figure 
5 . 1 6. 

Figure 5. 1 6. A serviceable planimeter of the hatchet type can be 
made with an ordinary penknife. The long blade is pressed to 
make an indentation in the paper. The outline of the irregularly 
shaped area is traced while keeping the short blade vertical and 
allowing the long blade to slide in the direction of its edge. The 
long blade is then pressed to make a second indentation. The area 
traced is just the length between the blades times the arc length 
moved sideways by the long blade. A scale for area can be 
engraved on one blade for measuring between the two 
indentations made in the paper. While eminently serviceable, the 
Hatchet planimeter is not a precis ion instrument. The 
mathematical analysis is complex and the result is not 
theoretically exact. The errors are minimized if the area is small, 
tracing starts near its center of gravity, and the results of clockwise 
and anticlockwise tracings are averaged. 
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An important generalization of the Amsler planimeter is the 
moment p lanimeter. An ordinary p lanimeter measures the area within 
a c losed curve. By introducing additional integrator wheels that are 
geared so that their axes are rotated through two and three times the 
angle moved by the integrator arm, it is possible to measure the 
moment of inertia and other higher order moments of the area. 2 These 
moments are of considerable engineering importance, and the devices 
were widely used, particularly in ship design. Figure 5 . 17 shows a 
moment p lanimeter emp loying precision s p here and wheel 
integrators . 

Figure 5 . 1 7 .  Moment planimeter designed by Hele-Shaw and 
manufactured by Coradi in Zurich. Integrating wheels moving 
over the paper are replaced by wheels moving over glass spheres 
for greater precision. Courtesy Science Museum, London. 
Negative No. 786. 
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The Work of Lord Kelvin 

A lthough planimeters and their derivatives were of considerable 
practical importance ,  the importance of the mechanization of 

integration to other areas of mathematics was not immediately 
realized. It was William Thomson, later Lord Kelvin, who, in the 
1 870s, first grasped their wider significance. Most twentieth-century 
analog devices can be seen as realizations and direct developments 
of Kelvin' s  ideas . 

Kelvin was led to the study of analog computing machinery from 
the need to predict tide heights in ports-an essential requisite to 
navigation in an era when dredging of channels was uncommon and 
in countries , such as England, where the tidal variation in water height 
is considerable and maritime trade was of such economic importance. 

The tides are caused, primarily, by the periodic gravitational 
influences of the moon and the sun in their relative motions around 
the earth. The basic influences are diurnal , due to the earth's rotation, 
but additional influences of longer periods arise from such causes as 
the eccentricity of the earth 's orbit around the sun and the inclination 
of the earth's axis .  These basic influences are modified by the shape 
of the c ontinental shelves and c oas tal es tuaries . From the 
mathematical work of Fourier it was realized that the tide height could 
be represented by a series of sine functions of the appropriate periods 
for the lunar and solar influences, together with their harmonics .  The 
amplitude and phase of these sine functions can be determined from 
the analysis of the records of tide gauges at each port. Once these 
components are known , the height of the water at any future time can 
be predicted. 

The prediction process  i s  simple in principle .  A resolver 
mechanism (Figure 5 .4) is set for the required amplitude and phase 
and driven at the appropriate rate for each component. The outputs 
of these are then added together, by a form of differential mechanism, 
to give a continuous record on a paper chart of the water height as a 
function of time. From this chart the times and heights of high and 
low water can be tabulated. 

In Kelvin's harmonic synthesizer (Figure 5 . 1 8) the summation is 
performed by a wire and pulley system. Because the wire is not 
everywhere vertical the sine functions are slightly distorted, but the 
error introduced by this is small enough to be unimportant. Kelvin's 
tide predictor was completed by 1 87 6. A second one was constructed 



Figure 5 . 1 8 . Kelvin's tide-predicting machine. Gearing from the 
drive handle is used to drive resolver mechanisms , which are set 
to generate sine functions of the required amplitude , phase, and 
periods. The components are added by a wire-and-pulleys 
system, and the resultant water height is recorded as a continuous 
curve on the paper roll .  Tide tables are then prepared by reading 
the heights and times of maxima and minima of the curve. 
Courtesy Science Museum, London. Negative No. 86. 
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for the Indian government, and similar devices remained in use by 
all major maritime nations until recent times . 

The determination of the amplitudes and phas es of the 
components from the tide height records is more difficult and 
involves the evaluation, for each component, of integrals of the form 

J h(t) s(t) dt 

where h(t) is the record of tide height against time and s(t) is a sine 
or cosine function of the period of the component sought. The 
evaluation of these integrals is a lengthy and tedious process by hand. 

Kelvin used this principle as the basis of a harmonic analyzer in 
which he employed a form of integrator (the details of which are 
unimportant) devised by his brother James . The mechanism of this 
tide analyzer, completed in 1 879, is shown in Figures 5 . 1 9 and 5.20. 
The integrating wheels are displaced by following the recorded tide 
height on a chart the fmward motion of which is synchronized to the 
oscillation, backwards and forwards ,  of two discs representing sine 
and cosine functions for each required periodic component. The 
amplitude and phase of the component can be found from the final 
integrals shown by the integrating wheels .  Kelvin's instrument has 
eleven integrators for five basic periodic components and the constant 
term. The harmonics are found by repeating the analysis with the 
chart record moved at one-half, one-third, and one-fourth of its 
normal rate. 

In 1 876,  at the same time that he designed the harmonic analyzer, 
Kelvin discovered that integrator mechanisms could be used for the 
solution of differential equations . 

In Kelvin's analysis any linear second order differential equation 
may be reduced to the form 

d/dx ( 1/P(x) du/dx ) = u. 

If Ui is any function of x approximating the solution to the differential 
equation, then 

Ui+ 1 = J P(x) (C - J Ui dx) dx 

is a closer approximation to a solution of the differential equation. 
This iterative formula, Kelvin realized, had basically the same form 
as the products in the tidal analysis and could be carried out by two 



Figure 5.19. Kelvin's Harmonic Analyzer for Tides. Courtesy Science 
Museum, London. Negative No. 86. 

Figure 5.20. The principle of Kelvin 's Harmonic Analyzer for Tides. 
Kelvin converted the integral to the form 

J h(t) d (Js(t) dt), 
where the integral 

J s(t) dt 
is just another sine or cosine function . These functions are easily 
produced by resolver mechanisms, which rotate the disks of two 
integrators backward and forward with the period of each tidal 
component sought. The integrating wheels ( balls in Kelvin 's 
design) are displaced by the recorded tide height, which is 
obtained by tracing a chart record. The integrating wheels then 
indicate the sine and cosine amplitudes, from which the amplitude 
and phase of the component are easily found. 
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integrator mechanisms connected together , as shown in Figure 5 .2 1 .  
Thus , given any initial function and having i t  pass through a series 
of these mechanisms , a series of functions would be obtained that 
converge to a solution of the differential equation. The next step is 
best told in Kelvin 's own words : 

So far I had gone and was satisfied, feeling I had done what I wished 
to do for many years. But then came a pleasing surprise. Complete 
agreement between the function fed into the double machine and that 
given out by it . . . .  The motion of each will . . .  be necessarily a solution 
of [the differential equation] . Thus I was led to a conclusion which was 
quite unexpected; and it seems to me very remarkable that the general 
differential equation of the second order with variable coefficients may 
be rigorously, continuously, and in a single process solved by a 
machine.3 

r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --,· 
1 Fe e d back  Loop 1 
I I 
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X 

Figure 5 .2 1 .  Kelvin's method for solving a linear differential 
equation of the second order. Given some approximation to the 
solution, the mechanism produces a closer approximation and the 
process can be applied iteratively, commencing with the newly 
found approximation. However, if the output and the_ input are 
connected together to form a feedback loop , the mechanism 
produces an exact solution to the differential equation in a single 
pass .  

Kelvin here had discovered the basic feedback principle by which 
integrator mechanisms can be applied to the solution of differential 
equations . Although he generalized the principle to the case of any 
differential equation of any order, his mechanism could not be 
realized at the time. The basic difficulty is that the torque output from 
the wheel of an integrator is very slight and is inadequate to drive 
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further integrating mechanisms. Kelvin's ideas had to wait another 
fifty years before they were realized by Vannevar Bush in his 
Differential Analyzer , which we discuss below. 

In 1 878 , Kelvin also invented a machine for solving simultaneous 
equations , essentially similar to a machine developed by Wilbur in 
1 934, which we will also discuss shortly. 

Scientific Instruments in the Twentieth Century 

Kelvin' s  ideas on harmonic analysis and synthesis were widely 
copied, and many synthesizers were built following his general 

plan for both tidal and general harmonic work. Coradi of Zurich 
manufactured a harmonic analyzer similar in style to the moment 
planimeter in Figure 5 . 17 ,  and a number of adaptations of 
conventional planimeters for this purpose were also made , but no 
more specialized devices similar to Kelvin' s  analyzer appear to have 
been built. 

An important application of the harmonic synthesizer to finding 
the roots of polynomials was made and embodied in a special-purpose 
machine , the Isograph, at Bell Telephone Laboratories in 1 937-a 
method copied on other harmonic synthesizers ,  including those used 
in the design of electrical filters .4 

Kelvin had proposed in 1 878 a method for the solution of sets of 
simultaneous linear equations that was implemented by Wilbur at 
MIT in 1 934. Such equations arise in many areas of engineering 
design, and one application envisaged by Babbage for the Analytical 
Engine had been the determination, by their means , of the orbital 
parameters of comets .  The relative magnitudes of the variables are 
represented in the machine by the angles through which metal plates 
are turned about horizontal axes . A system of wires and pulleys is 
used to constrain the motions of the plates for each equation in the 
set, as shown in Figure 5 .22. This system is repeated for each equation 
in the set and the plates can then only take up relative positions that 
represent the solution. If an approximate set of solutions is found by 
the machine, they may be used to find a more accurate set by an 
iterative process using the same machine settings except for the 
constant terms . The machine i s ,  in practice ,  therefore capable of 
providing almost any desired degree of accuracy in the solutions . 

Electrical technology was also used in a limited way in analog 



Figure 5.22. The principle of the Kelvin/Wilbur machine for solving 
simultaneous linear equations. The two wires running over the 
system of pulleys constrain the movement of the tilting plates so 
that ai x + bi y + Ci z = 0. An exactly similar arrangement is used 
to constrain the plates for the other equations in the set. When all 
the constraints are present, the relative tilts possible for the plates 
give a solution to the set of equations .  
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computing devices from World War I, but before World War II little 
progress had been made in abstracting these devices to the 
representation of mathematical functions . Rather, electrical circuits 
were assembled in direct analogy to the system under study--each 
component of the system was modeled by an electrical component 
that had the same functional behavior in the electrical domain as the 
component in the original system domain. 

An important series of machines of this type were the Network 
Analyzers developed by General Electric and Westinghouse for the 
simulation of electrical power supply networks. The DC ( Direct 
C urrent) Network Analyzer of 1 925 used only resistive components 
and could, therefore, only model steady-state behavior. The AC 
( Alternating C urrent) Network Analyzer of 1929 used reactive 
impedances and could be used to study both phase and magnitude in 
alternating current power networks. Later machines could also 
exhibit the transient ( short-term) behavior of a network in response 
to a surge due to equipment switching or failure. Similar electrical 
components and circuit techniques were used by Mallock in an 
electrical instrument for the solution of simultaneous equations in 
1933. 

Another important technique in the 1930s and 1 940s was the use 
of electrolytic tanks, resistive papers, and elastic membranes to model 
continuous two-dimensional systems. In particular they were used to 
determine the electrical field potentials in the vicinity of the complex 
grids and electrodes in vacuum tubes as an aid in their design. These 
tubes, precursors of transistors and other modern electronic devices, 
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were widely used in radio and radar equipment. The height at any 
point of an elastic rubber membrane, for example, would represent 
the electrical potential at the corresponding point in the tube. Anodes, 
cathodes, and other electrodes would be represented by bars and rods 
that fixed the height of the membrane in the appropriate places . The 
path followed by a small steel ball rolling on the membrane would 
then represent the path followed by an electron in the tube. These 
techniques suffered the disadvantage, however, that they could not 
easily model the space charge effect on the potential distribution 
created by other electrons in motion in the space between the 
electrodes . 

Although there were many other developments in the first half of 
the twentieth century akin to those we have just described, they were 
all of an ad hoc nature and did not lead to any general synthesis or to 
the emergence of a general class of machines, except for the 
Differential Analyzer and the Gunnery Computers to which we now 
tum. 

The Differential Analyzer 

Vannevar Bush at MIT was concerned through the late-1920s 
and the 1930s with the development of machines to aid the 

calculations with continuous functions required by design engineers. 
(The Wilbur machine for solving simultaneous equations was part of 
this work.) 

Bush's first machine, an Integraph used for the integration of the 
product of two functions, was described in 1 927. The functions are 
entered by following curves with pointers attached to linear 
potentiometers-variable resistances whose voltage or current output 
is proportional to the movement of the potentiometer. The integral of 
the product of the outputs from the two potentiometers is formed by 
a commercial elect.deal watt-hour meter. The result of this integration 
is followed up by a relay and servomotor system and is used to plot 
the integral as a continuous curve. In this way the machine can 
evaluate integrals of the form 

F(x) = f .f(x)g(x) dx, 

a special case of which are those same integrals for Fourier analysis 
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as handled by Kelvin 's hannonic analyzer--ones of great practical 
importance in electrical engineering. 

Bush realized, as Kelvin had, that by making one of the inputs 
follow the output (i .e. , by adopting a feedback or "back coupling" 
principle) the machine could solve differential equations which are 
equivalent to 

f(x) = J f(x)g(x) dx. 

The capabilities of the machine were extended by adding a linkage 
multiplier (similar to Figure 5 .5) and a second integrator of the disc 
and wheel type (Figure 5 . 1 3) with a relay and servomotor follow-up. 
This machine was capable of solving most second-order differential 
equations of practical importance to an accuracy of 1 -2% . 

Bush's generalization of his integraph to the solution of a wide 
range of differential equations depended on the adoption of the 
capstan type of torque amplifier developed by Nieman for power 
steering in motor vehicles .  The principle of this device is shown in 
Figure 5 .23. The use of torque amplifiers meant that the small torque 
available from the friction wheel of a Wetli disc-and-wheel integrator 

OUTPUT I nput 

Figure 5 .23. The Nieman capstan type of torque amplifier. The two 
drums are rotated continuously in opposite directions by an 
electric motor. Whenever the input shaft moves , its ann tightens 
the band on one drum and loosens it on the other so that the 
friction on the drum causes the output to be turned with the input 
but with a much greater torque. In the Differential Analyzer the 
output drives the input of another torque amplifier to give a total 
torque amplification of about 10,000 times. 



Analog Computing Devices 1 8 1 

could be used to drive a substantial load of other calculating 
machinery. It was the absence of any form of torque amplifier that 
had prevented Kelvin from making further progress in this direction . 

Bush 's Differential Analyzer, as the new machine was called, 
consists of a set of integrators ,  input and output tables for tracing and 
plotting c ontinuous  c urve s ,  and a v ery flexible  sys tem of 
shafting-the bus shafts-arranged to enable the input of any 
mechanism to be connected to the output of any other, as required by 
the problem being solved. Gearing could be included to give any 
prescribed ratio between bus shafts, and differential gears (Figure 
5 . 8) enable shaft rotations to be added and subtracted. One bus shaft 
is driven by a motor to represent the independent variable. A typical 
Differential Analyzer is shown in Figure 5 .24. 

Figure 5 .24. A Differential Analyzer , similar to Bush's original 
design, developed in the Counaulds Laboratories .  The integrators 
are on the left with a two-stage torque amplifier and a handle 
for setting the initial conditions into the integrators. On the right 
are the input and output tables. The bus shafting is in the center. 
Courtesy Science Museum, London. Negative No. 272/74. 
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To understand how the machine was used let us consider the 
solution of the differential equation for an object projected into the 
air in a constant gravitational field and with an air resistance 
proportional to its velocity. The differential equation is 

d2y!dt2 
+ k dy/dt + g = 0. 

Suppose the rotation of one bus shaft represents 

and the independent variable shaft represents t. With one integrator 
we can produce an output on another bus shaft of 

and integrating this again we produce 

f dy/dt dt = y. 

The constant g can be represented by a shaft ,  appropriate! y preset , 
while the constant k is introduced by an appropriate gear ratio. 
Writing the differential equation in the form 

d2y!dt2 = - [ k dy/dt + g ] 

exhibits the feedback relationship necessary to complete the setup 
shown in Figure 5 .25 . 

d 2 y d y 
di' di k d y  g d t 

B u s S h a f t s  

y (t ) 

Pl o t t i ng  Tob i e .  

Figure 5 .25 . Sample setup of the Differential Analyzer for solving 
the differential equation 

d2y/dt2 + k dy/dt + g = 0. 
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The equation just described can be solved by analytical methods . 
If, however, the gravitational field is a function of height, g(y ), and the 
air resistance is a general function of velocity, f(dy/dt) known only 
empirically, then no analytical solution can be found. However, the 
differential equation is still readily solved on the Differential 
Analyzer as shown in Figure 5 .26. 

+ 

I ](�d )  I . 
d t I 

g{y) 

y (t) 

Figure 5 .26. Differential Analyzer setup for solving the equation 
ct2yJdt2 + f(dy/dt) + g(y) = 0 

in the form 
dy/dt = - f[f(dy/dt) + g(y)] dt, 

with the functions f and g provided from input tables .  

In that the Differential Analyzer can be set up to solve any 
arbitrary differential equation and this is the basic means of 
describing dynamic behavior in all fields of engineering and the 
physical sciences ,  it is applicable to a vast range of problems. In the 
1930s, problems as diverse as atomic structure, transients in electrical 
networks, timetables of railway trains , and the ballistics of shells , 
were successfully solved. The Differential Analyzer was , without 
doubt, the first general-purpose computing machine for engineering 
and scientific use. 

Bush's original Differential Analyzer provided six integrators , 
three input tables, an output table, and a manually operated multiplier. 
It could achieve an accuracy near 1 in 103 (0. 1 % ). Bush's ideas were 
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soon copied, first by Douglas Hartree in Manchester. Hartree made 
a demonstration model using mainly components from the Meccano 
construction toy system, which yielded an accuracy of about 1 in 102 

( 1  %)  and proved surprisingly useful in calculations of atomic 
structure, before embarking on the construction of a large-scale and 
more accurate machine. In total, about nine major Differential 
Analyzers were in operation before World War II ,  and at least as many 
again were constructed during the 1 940s. 

Much of the art in using the Differential Analyzer lay in molding 
the equations to suit the forms available on the machine. This led, in 
particular, to demands for additional integrators for a variety of 
auxiliary purposes . In the setup of Figure 5 .25 , for example, the 
constant k is introduced as a gear ratio. If it were desired to investigate 
the dependence of the solution on this constant, it would be necessary 
to change the gear ratio before each run of the machine. A much more 
convenient approach would be to set the constant k on a bus shaft and 
to use an integrator as a constant ratio drive that is simply varied 
between runs. 

A more profound application arises when multiplication occurs . 
Instead of using a special multiplying mechanism, two integrators, 
connected as suggested by the formula 

uv = J udv + J vdu, 

can often be employed. It was a great strength of the Differential 
Analyzer , not found in later electronic analog computers , that 
integration could be performed with respect to any variable 
represented by a shaft in the setup . 

In a similar manner, a sine or cosine function, perhaps for use as 
a forcing function when studying the behavior of a car suspension on 
a rough road, can be introduced by solving the auxiliary differential 
equation 

2 2 d z/dt = -kz 

as part of the setup. Much ingenuity was expended in finding simple 
and economical setups for a wide variety of functions occurring in 
differential equations. 

Hartree successfully extended the use of the Differential Analyzer 
to problems involving a time-delayed function (by having an input 
pointer trace an output curve somewhat behind the output pen) and, 



Analog Computing Devices 1 85 

with more limited success, to the solution of some partial differential 
equations arising in heat flow and similar problems. 

Bush had the last word in performance of Differential Analyzers 
when, in 1942, a new Differential Analyzer was produced at MIT. In 
this machine an accuracy of 1 in 105 in the components was sought 
to achieve better than 1 in 104 (0.0 1 %) accuracy in the solution of 
differential equations-about ten times greater accuracy than 
possible with any other machine. Variables were transmitted in this 
system not by shaft rotations but by electrical signals derived from 
capacitative encoders on the integrating wheels, which were 
reconstituted to mechanical motions by servomotors as required. The 
interconnection of the components was determined by a system of 
relays, themselves controlled by information read from punched 
tapes . The setting of initial conditions in the integrators, etc . ,  was also 
controlled by punched tape so that no manual actions were required 
to set a problem into the machine. It was even possible to run separate 
problems simultaneously in different parts of the machine. The setup 
task which had previously taken hours or days now required only 
minutes, for the preparation of the tapes could be carried out away 
from the machine. In this way, the throughput of the Differential 
Analyzer was greatly increased. 

Despite the sophistication of B ush's second Differential 
Analyzer, simpler, fully mechanical machines similar to his first 
design continued to be made into the 1 950s because of their much 
lower cost. Differential Analyzers were finally superseded by 
electrical analog computers of generally lower precision, and later by 
digital computers, because the precision mechanical work required 
in the construction of a Differential Analyzer made them 
prohibitively expensive. But the mathematical flexibility of the 
Differential Analyzer was never matched by electrical analog 
computers and originally only with difficulty by digital computers . 
Figure 5 .27 shows an ingenious postwar development in which 
mechanical components are interconnected by flexible steel tapes 
rather than bus shafts. 



Figure 5.27 . An experimental flight simulator for the Viscount 
aircraft (ca. 1950). Mechanical analog computing components 
are interconnected by flexible steel tapes running over pulleys to 
combine the accuracy of mechanical computation with the 
flexibility of interconnection of electrical analog systems. Courtesy 
Science Museum, London. Negative No. 306/73. 

Gunnery Computers 

D ifferential Analyzers have considerable historical importance as 
the first general-purpose automatic computing devices for 

scientific and engineering work. However, because of their cost, they 
were never very common nor their use widespread. 

In terms of practical use, mechanical analog computing devices 
played their most dominant role in military applications, particularly 
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for the aiming of guns and other weapons from moving platforms or 
at moving targets . Although inherently special-purpose in nature , 
gunnery computers reached a high degree of sophistication because 
of the mathematical complexity of gunnery problems and the urgent 
military need. Most importantly, the need to solve these problems 
continuously in real time, with a delay no greater than a small fraction 
of a second, made other forms of calculation of little use and provided 
a secure niche for analog computers until well into the 1 970s. 

Military analog computers had their origin before World War I in 
naval gunnery to control the aiming of guns against moving targets . 
Because the speed of ships is small compared with the velocity of 
shel l s ,  simple linear approximations generally suffice,  and the main 
task of the mechanism is to continuously keep track of the range and 
bearing of the target. Such computing mechanisms were developed 
in Eng land by Pollen and Dreyer. In America, Hannibal Ford 
introduced in his gunnery computers an integrator employing two 
balls squeezed between an integrator disc and an output cylinder. 
Because no sliding movement is required in its operation the 
components of this integrator can be squeezed together with 
substantial pressure , so the torque output is much greater than that of 
a Wetli disc-and-wheel integrator and is adequate for most purposes 
without torque amplification. Although the accuracy of the disc-and
ball integrator is not high ,  it formed the basis of most military 
applications because of its simplicity, robustness , and convenience. 

Rapid development of gunnery computers occurred in the 1 920s 
in response to the substantial military threat from aircraft , as 
demonstrated in the final years of World War I .  In essence, the 
antiaircraft gunnery problem is straightforward. The aircraft is 
tracked with instruments to determine its present position. From a 
continuous series of observations the course and speed of the aircraft 
can then be found. The course is extrapolated for the time of flight of 
the shell ,  assuming the course and speed to remain constant , to give 
the aircraft 's future position when the shell reaches it. A feedback 
loop is involved because the time of flight of the shell depends on the 
future position of the aircraft. 

The problem is made difficult by practical considerations .  The 
shell must be aimed, and timed by a fuse mechanism, to explode 
within about 30 feet ( 10  meters) of the aircraft , which ,  if flying at 
high altitude ,  might travel 1 mile ( 1 .6 kilometers) or more during the 
flight of the shell .  No very effective range-finding instruments were 
available until the introduction of radar at the start of World War II . 
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The time to locate the aircraft, set up the calculation, and start firing 
the guns was short-about thirty seconds-and thereafter the 
computer had to continuously provide updated firing data to the guns . 

Figure 5.28. (a) and (b) The Vickers antiaircraft gun Predictor (ca. 
1930). 

The first successful antiaircraft gun computer, the Vickers 
Predictor (Figure 5 .28), was developed by the English armament 
manufacturing firm of Vickers in 1 924 and entered service in 1928, 
well before the invention of the Differential Analyzer. The general 
arrangement of the mechanism, which uses polar coordinates to 
achieve the necessary accuracy, i s  shown in Figure 5 .29. Linkage 
mechanisms (like the resolver of Figure 5 .4) were extensively used 
in the design, and disc-and-ball integrators drove the balance dials. 
Operators were required to enter deflections to keep the dials, and 
hence the equations , balanced and to enter ballistic data by following 
c urves on drum c harts . These operators acted, in effect, as 
servomechanisms, and the action of the predictor was entirely 
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Figure 5.29. General arrangement of calculation in the Vickers 
antiaircraft gun, Predictor. The calculations were done in polar 
coordinates to achieve the required accuracy, but the basic 
equations the Predictor was required to solve were then quite 
complex: 

sin DUt = ffiL [tan SJ I tan Sp] 
and 

[sin Dv + \jf ]/t = wv [sin Sf I sin Sp] ,  
where 

'I' =  ( 1  - cos DL) sin Sp cos SJ. 
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mechanical, even to the extent of employing a clockwork 
gramophone motor to drive the integrator discs. An antiaircraft gun 
predictor employing C artesian coordinates was introduced by Sperry 
Gyroscope Co. in the early 1 930s, and similar devices were 
developed for naval purposes. Some five to ten thousand such 
instruments were used in World War II. 

The evolution of gunnery computers seems to have been 
completely independent of the evolution of civilian D ifferential 
Analyzers until near the outbreak of World War II. D uring the war 
the D ifferential Analyzers were taken over for military purposes, 
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principally for the solution of the differential equations of shell 
trajectories in the preparation of ballistic firing tables. Development 
of gunnery computers in World War II rapidly responded to the 
greatly improved capabilities of aircraft. This involved the use of 
much more sophisticated mathematical principles in the gunnery 
computers, such as the autobalance mechanism sketched in Figure 
5 .30 ,  and the extensive use of servomechanisms to reduce the 
requirements for manual operators and increase the accuracy of the 
results .  These developments were influenced by the mathematical 
techniques used in designing setups for Differential Analyzers and in 
turn influenced further such developments after the war. 

a )  x b )  

X 1/t 

c s o  

C S D  

Figure 5 .30. The principle of the auto-balance mechanism employed 
in the  S p erry Predic tor .  In diagram (a) is shown the 
interconnection of an integrator to act as a differentiator. The 
input is a shaft position representing a position coordinate ,  x, of 
the aircraft. This shaft turns at a rate x as shown by the curved 
arrow annotation. If the integrating wheel is displaced from the 
center of the disk driven from a constant speed drive (CSD) by 
an amount x, then the integrating wheel will rotate at a rate x. The 
input and the output from the integrating wheel are subtracted in 
a differential. If the two rates are not equal , the output of the 
differential will move the integrating wheel across the disk to 
restore the balanc e. This mechanism does not respond 
instantaneously to a change in the input rate but approaches it 
exponentially with a time lag dependent on the gear ratios and 
other constants of the mechanism. By driving the disk at a rate 
1/t, where t is the time of flight of the shell, the output is made 
xt as shown in the diagram (b) . 

xt 

X 
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Many other types of mechanical analog computing mechanisms 
were developed for military uses in World War II. Most common were 
the bomb sight computers used in aircraft for aiming at ground and 
ship targets , and the computers for directing defensive guns on 
bombers against attacking fighter aircraft. The linkage computing 
mechanisms , of very simple construction but very sophisticated 
design, developed by Svoboda at MIT (described above) deserve 
particular mention. 

After World War II ,  designs of mechanical gunnery computers 
were greatly elaborated and their use expanded to many military 
applications. They continued to be developed into the 1 960s and 
beyond, and remained in active military service well into the 1 970s .  
Some, such as the 1 943 mechanical analog computers directing the 
heavy guns of the USS Ohio-class battleships, are still in active 
service. Later devices were frequently a hybrid of mechanical and 
electrical analog devices , particularly in avionics applications . 

Analog computers yielded only slowly to electronic digital 
devices. The exact pattern is difficult to follow because of security 
restrictions , but until recent times the major applications of digital 
computers appear restricted to command post and other tactical 
control systems , rather than direct weapon control . The major reason 
for the demise of analog systems was the gradual replacement of guns 
by missiles and other self-guided weapons , for which no accurate 
aiming system was necessary, although the missiles themselves 
frequently contained analog guidance systems. 

Thus , although mechanical analog computing devices played 
only a small , but important , role in scientific developments in the 
twentieth century, they played a dominant role in military computing 
for fifty to sixty years and were very extensively applied. 

Electrical Analog Computers 

World War II produced remarkable technological advances in 
many areas of human endeavor but in no area were the 

consequences so profound as in electronics. In analog computation 
the war resulted in the emergence of an electrical computing 
technology to rival the earlier mechanical technology. 

This was stimulated in no small part by the scarcity of the skilled 
labor required to manufacture and maintain precision mechanical 
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systems. The military, for example, was largely satisfied with existing 
mechanical gunnery computers. It was not until near the end of the 
war that electronic or hybrid analog devices began to offer functional 
advantages over their mechanical predecessors ,  with the replacement 
of human operators by more reliable servomechanisms and the 
gradual direct coupling of inputs from radar systems . 

One single project ,  the development of the M-9 antiaircraft 
gunnery computer by the Bell Telephone Laboratories, shaped the 
future of electrical analog technology in a way even more significant 
than the ENIAC did for digital technology. 

The basic computing elements of the M-9 were nonlinear 
potentiometers made by winding fine resistance wire on nonlinear 
formers .  With these the output voltage is not directly proportional to 
the position of the input but can be made proportional to geometric 
or ballistic functions occurring in the gunnery problem. By making 
the height of the former proportional to the derivative of the desired 
function any reasonable monotonic function can be generated. This 
idea can be traced back to experimental antiaircraft gunnery 
computers in the last years of World War I. The principle was 
rediscovered in the Bell Labs about 1 940. 

The use of potentiometers as computing elements suffers one 
great fault that had made previous devices unsuccessful. If the output 
of the potentiometer drives other circuitry, the current drawn distorts 
the function generated by the potentiometer so that the accuracy of 
the computation is seriously compromised. 

This difficulty was overcome in the M-9 by having each 
potentiometer drive an amplifier with high-input impedance to isolate 
the output of the potentiometer from the input of succeeding circuits . 
These amplifiers were of high gain (about 1 0,000 power) but 
connected in a feedback arrangement so that the output of the 
amplifier was continuously compared with its input. In this way the 
output was made insensitive to any fluctuations in the gain of the 
amplifier. This arrangement is called an "operational amplifier" and 
was developed by Lovell at Bell for the M-9.  The same idea had been 
independently discovered by Philbrick in 1 938 .  A similar feedback 
loop was used to control the servomotors that drive the inputs of the 
potentiometers . 

An operational amplifier can be used to perform a wide range of 
computing functions by suitably arranging the feedback circuit. Some 
simple arrangements typical of those used in the M-9 are shown in 
Figure 5 .3 1 .  After the war operational amplifiers became the basis of 
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Figure 5.3 1 .  Simple feedback circuits employing an operational 
amplifier as (a) and isolating amplifier and scale changer; (b) an 
integrator; (c) a differentiator; and (d) an adder. Differentiation 
is normally avoided because of its sensitivity to noise in the input. 
More elaborate functions can be obtained with more complex 
feedback circuits . 
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electrical analog computers and were interconnected, as shown in 
Figure 5 .32, to solve differential equations in an analogous manner 
to the setup of D ifferential Analyzers. However, although D ifferential 
Analyzers required a high- prec is ion shafting system for 
interconnection and high-precision mechanical components, the 
operational amplifiers could be s imply and inexpensively 
interconnected by wiring. Because of their low cost, and despite their 
generally lower accuracy, electrical analog computers became 
enormously popular in the 1 950s for solving the wide range of 
engineering and scientific problems that were suitable for the 
D ifferential Analyzer. One logical deficiency of electrical analog 
computers that needs mention is the fact that integration and 
differentiation can only be performed with respect to time, so that 
many of the techniques for setting up equations on the D ifferential 
Analyzer are inapplicable. 
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Figure 5 .32. An electrical analog computer setup ,  analogous to the 
Differential Analyzer setups of Figs. 5 .25 and 5 .26 for solving 
the differential equation 

d2y/dt2 + k dy/dt + g = 0 
in the form 

dy/dt = - f[k dy/dt + g] dt. g � 
d t  
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As in the M-9 , electrical analog computers used potentiometers 
for generating complex functions. These potentiometers were moved 
by servomotors directed by electronic amplifiers . Multiplication of 
two variables is a typical function normally performed in this way. 
Much ingenuity was expended on ways to utilize electrical analog 
computers most effectively.5 

Although the direct current type of electrical analog computer just 
described became the standard type for laboratory use in the 1950s 
and 1960s , it had serious competition from alternating current devices 
in military and aviation applications . AC has some technical 
advantages. For example , trigonometric functions can be readily 
generated by the inductive coupling of one coil turned at an angle to 
another as shown in Figure 5 .33. 

output 

/'\., A .  Cose 

Figure 5 .33. The principle of the AC electrical resolver. 
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Conclusion 

Motorlike devices well suited to this purpose had been widely 
developed during World War II for the remote transmission of shaft 
angles under the name of Selsyns or Magslips .  Analog computer 
systems assembled from such components were relatively small and 
light and were extensively used in the 1 950s and 1960s in military 
and civilian aircraft systems . Frequently they were hybridized with 
some mechanical analog computing components .  As noted above, 
many such systems remained in use well into the 1 970s . 

T here are two fundamentally different ways in which a numerical 
value can be represented in a calculating device . In an analog 

device a direct proportion is established between the quantity 
represented and the position of a sliding or rotating part in 
a mechanical system or the voltage in an electrical circuit. 
Conceptually , the mechanism can take on any value in a given range. 
In a digital device each part can take on one of only a finite set of 
states, and a group of similar devices is necessary to represent a 
number as a string of digits in some number system. 

Any mechanical or electrical device is, in practice, subject to 
disturbing influences , conveniently called "noise. "  If a digital device 
is disturbed by a small amount, no error in its indication will arise. 
In a mechanical device a spring detent wil l  restore a wheel to its 
correct position. In an electronic circuit an amplifier, such as is 
present in the output of any logic gate, will restore any disturbed 
voltage to defined and well-separated discrete ranges .  Digital systems 
can , in practice, be made immune to the effects of noise and a number 
can be represented to any arbitrarily high precision by a large enough 
group of similar digital devices .  

An analog device, in contrast ,  has no noise immunity. If i ts state 
is disturbed, the new state represents a perfectly valid value of the 
variable, and the mechanism can in no way distinguish the new state 
from the original. The precision that can be achieved in an analog 
computer is, therefore, entirely limited by how small the noise can 
be kept. High precision, whether in the machining of mechanical 
parts, the manufacture of electronic components, or the isolation of 
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a circuit from external electromagnetic influences, is always difficult 
and expensive to obtain. Therefore, although a precision near 1 part in 
103 (0. 1 % ) is, with care, readily enough obtained in an analog device, 
1 in 104 (0.0 1 %)  is difficult and expensive, and 1 in 105 (0.001 %) is 
rarely obtained. As an example, a simple 25 centimeter, straight slide 
rule yields a precision of about 1 in 300, but to achieve 1 in 104 a 
scale length of about 10  meters and an elaborate construction, such 
as the Fullers helical slide rule or the Thatchers grid iron slide rule, 
is necessary. 

C ounterbalancing the limited precision of analog devices is their 
general simplicity of form and consequent economy of manufacture. 
In a digital device, a large group of parts is needed to represent a 
number. Only addition of numbers is commonly available as a digital 
function. To calculate a sine, for example, we must usually evaluate 
a power series-with the multiplications this implies-carried out, 
in effect, by a series of additions . Evaluation of a sine function in a 
digital system is, therefore, both complex and relatively very slow 
compared with an analog system (Figures 5 .4 and 5 .33) . 

In practice, two further characteristics distinguish analog and 
digital devices, although a few exceptions can be found. D igital 
devices, such as a mechanical calculator or an electronic digital 
computer, are usually general-purpose devices that can readily be 
adapted to carry out a wide range of tasks. If a digital device can 
calculate a sine function, for example, it is usually easy to adapt it to 
calculate a logarithm or Bessel function. An analog mechanism for 
the sine function, however, would be no use at all for a logarithm. 

For this reason, analog devices are normally composed of a 
number of independent parts each designed to perform a single, 
distinct part of a calculation. Because of their independence these 
parts can all act simultaneously in parallel with one another. Analog 
devices are, therefore, well suited to real-time applications in which 
the calculation must keep step with events in the external world. In 
contrast, digital systems typically reuse a single calculating unit 
sequentially for each step in a calculation, so that the speed is reduced 
as the complexity of the calculation increases . 

The earliest calculating aids, the counting table and abacus, were 
digital, as they demanded very little in manufacturing skill yet 
combined a generous degree of precision with simple and effective 
use. Napier 's invention of logarithms reduced multiplication to the 
simpler operation of addition and made possible the slide rule, a 
simple yet very effective analog device in which only a limited 
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Notes 

precision was required. Mechanical digital calculating devices first 
became widely available late in the nineteenth century when 
improved manufacturing techniques made the multitude of 
components required available at an economical price. Their limited 
speed of action effectively restricted these calculators to commercial 
calculations involving only simple addition operations. 

Through the first half of the twentieth century, mechanical analog 
devices were developed extensively, particularly to handle the 
real-time calculations required in military applications. World War II 
brought the electronic technology that first made it possible for digital 
devices to operate at sufficient speed to perform higher mathematical 
functions than addition, at a speed competitive with even slow 
mechanical analog devices . The same technology also made possible 
improved analog devices that competed effectively with digital 
devices in many areas until well through the 1 960s . It was the 
remarkable cost reductions of electronic digital devices in the 1 970s 
that finally enabled them to supplant analog devices as the dominant 
technology for calculation. 

1. In that integration is fundamentally a concept of the calculus, 
we must have some recourse to higher mathematics in the 
remainder of this chapter. Where possible, however, we have 
confined this to notes and figure captions. The other fundamental 
concept of the calculus is differentiation . This has very little 
application in mechanical devices-while an integrator tends to 
average out any small random errors in its input, a differentiator 
tends to accentuate them. 

2. By setting the additional integrating wheels at angles of 
n/2 - 2a and 3a, 

the moments 
i dx and y3 dx 

can be found by using the trigonometric identities 
sin2a = 1/2 - 1/2(cos 2a) 
sin3a = 3/4 sina - 1/4 sin 3a. 
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3. Thompson W. [Lord Kelvin] , Treatise on Natural Philosophy, 
Vol 1 (Cambridge: Cambridge University Press, 1890), 498. 

4. The method is based on De Moivre's theorem for complex 
numbers . If 

z = r(cos e + jsin n0) 
then 

zn = rn(cos ne + j sin n0). 
Given a polynomial 

f(z) = anzn + . . .  + a1z + ao 
we then have 

f(z) = (anrn cos ne + . . .  + a1r cos 0 + ao + 
j (anr" sin ne + . . .  + a1 r sin 8) .  

Both the real and imaginary parts are easily formed by a 
harmonic synthesizer for any given value of r. If both parts are 
plotted simultaneously in the complex plane, the result is a closed 
curve that circles the origin exactly as many times as there are 
roots of the polynomial with their modulus less than r. The roots 
can ,  therefore ,  be found by systematically varying r and 
rep lotting. 

5 .  For example, if a circuit is available to form the square of a 
variable ,  then multiplication can be reduced to addition by taking 
advantage of the quarter-squares formula 

ab = 1/4 [(a + b)2 - (a - b)2] .  
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Chapter 6 

Relay Calculators 

C harles Babbage had planned to power his Analytical Engine 
with a steam engine-steam being the only feasible prime 

mover available in the 1830s. In that same decade, however, others 
were making discoveries that led to the electric motor: a source of 
motive power more compact, cleaner, quieter, and most of all , much 
more flexible than s team. By the early twentieth century, calculators 
were just one of many machines that were powered by electricity. 

But electricity could do more than replace the steam engine or 
human arm as a source of power; it could also represent the numbers 
themselves that a calculator handles . Electric circuits could replace 
the cams , pins , gears , and levers that actually do the computation. 
Hollerith's electric tabulators took advantage of this property, and we 
have already seen how the rival Powers system, developed after 1 9 1 1 
to compete with Hollerith, suffered in comparison because it used 
electricity only for motive power. 

By the 1930s, a number of inventors recognized that the ability 
(as well as the power) offered by electric circuits allowed one to build 
a machine that could not only do arithmetic, but also direct a complex 
sequence of calculations automatically. That, of course, had been 
Babbage's dream, and by 1945 that dream had come true. It came true 
by combining traditional mechanical calculator architecture with 
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Figure 6. 1 .  (a) Typical relay used in telephone switching. The 
cylinder in front is the magnet; behind are the contacts . (b) Simple 
relay action. D rawings: Edwin C ollen. 
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electric circuits and motors-a combination that allowed one to build 
a more complex and more powerful system that maintained the 
reliability and precision of simpler calculators . 

Electromagnetic Relays as Computing Devices 

B esides the electric motor which provided power, the key device 
of electromechanical calculators was the relay. A relay is a 

switch whose contacts are actuated by an electric current acting 
through an electromagnet. The device was originally developed to 
relay the dots and dashes of the Morse telegraph over long distances . 
( By having the original Morse signal activate a relay before it became 
too weak, one could transmit a message much farther-across the 
North American continent by the 1 860s .) 

Relays of this type usually have two switching states, with one 
activated by sending current through the magnet, the other activated 
by a return spring. It is basically a binary device ( on or off), although 
one magnet can switch several contacts simultaneously. Typical 
relays may have up to ten sets of contacts switched by a magnet 
( Figure 6. 1 ). 

The telephone industry was also an early user of relays, but for a 
different purpose, namely switching. Telephone signals are not 
composed of discrete dots and dashes, like the telegraph, so they 
cannot be repeated by relay circuits for long distance transmission. 
But the telephone system can use a cascade of relays to allow an 
individual to select any other telephone without the need for an 
operator. The familiar rotary dial, first developed in America by 
Almon Strowger in 1890, transmits a string of discrete pulses ( e.g. , 
five pulses if the number 5 is dialed) that activates a series of relays 
connecting one caller 's phone with another 's. Unlike the simple 
two-position switches described above, the Strowger system uses 
ten-position relays-each pulse sent out by the dial advances a rotary 
contact by one position. 

D evices of these types were in common use by the 1930s. Simple 
relays cost a few dollars each, and they were fairly rugged and 
reliable. But, for ordinary calculators , the relay offered few 
advantages over mechanical cams and gears . It was still cheaper and 
more reliable to store or add a decimal number on a train of ten-tooth 
gears than on a bank of multiple-contact relays . Mechanical 
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calculators had a long heritage going back to Leibniz, during the 
intervening time the technology had reached a mature state of 
sophistication and a good deal of inertia had set in among designers. 
As long as one wanted only to do simple arithmetic , there was little 
incentive to abandon mechanical technology. 

But, for something more than simple arithmetic , relays had a 
crucial advantage over mechanical systems, in that their circuits could 
be flexibly arranged (and rearranged) far more easily. One could 
arrange relays on a rack in rows and columns, and connect them with 
wires according to what one wanted the circuit to do. One cou ld 
further reconfigure a relay system using a switchboard, with cables 
plugged into various sockets by a human operator. Going a step 
further, one could use a strip of perforated paper tape (originally 
developed to store telegraph messages for later transmission) to 
energize a separate set of relays that in tum reconfigured the system 
just as the plugboards did. 

In this latter instance, the same devices-relays-perform the 
functions of both arithmetic and control. This seems to confer little 
advantage over mechanical calculators, as it appears that arithmetic 
and control are two different activities. But, in fact, the two are closely 
related, and for anything more than simple arithmetic both are 
requ ired. A calculator designer who uses relays may exploit their 
ability to do both tasks-enabling the design of a machine with the 
general capabilities of Babbage's Analytical Engine, but with a much 
simpler overall design. 

In the rnid-1930s at least three individuals : Konrad Zuse in Berlin, 
George Stibitz in New York, and Howard Aiken in Cambridge, 
Massachusetts, conceived and developed calculating systems that 
exploited the relay 's potential. In many ways their machines were 
different from one another, but each combined binary relays for 
control, other relays or electromechanical devices for number storage 
and arithmetic , and perforated tape for program input. And each was 
capable of carrying out an arbitrary sequence of elementary 
arithmetic operations, automatical ly storing and retrieving 
intermediate results as the need arose during a calcu lation. They were 
the fulfillment of Babbage's attempt to build an Analytical Engine, 
and it was relay technology that made it possible. 
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Konrad Zuse 

Konrad Zuse, a mechanical engineering student in Berlin in the 
mid-1930s, was perhaps the first to make use of these properties 

of relays to build a working, general-purpose, program-controlled 
calculator. As a student, he faced problems in the analysis of 
load-bearing structures, like bridges or trussed roofs, whose analysis 
required the solution of large systems of linear equations. His 
textbooks taught a method ( Gaussian elimination) for solving such 
systems, but in practice it required too much time and was too 
error-prone. Zuse knew little of the existing calculating machine 
industry, but in any case it was not a fancier calculator he wanted. 
Instead, he wanted a machine that could execute a sequence of simple 
calculations, and also store and retrieve intermediate results as needed 
during the solution of a problem. He recognized that, although the 
solution of typical problems might involve many arithmetic 
operations, a machine that would solve these problems would need 
only one calculating unit, provided it was linked to a storage unit that 
held and delivered initial, intermediate, and final values encountered 
in a solution. In addition to those two basic units , he also saw the need 
for a unit that stepped the other two through a sequence of operations 
depending on the overall plan of the problem's solution. 

By 1935, while still a student at Berlin 's Technical C ollege, Zuse 
had sketched out a design for an automatic calculator and begun 
building it in a corner of his parents ' apartment in Berlin . He had 
already decided to use the binary, not the decimal system of 
enumeration, with the machine itself performing the conversion 
between the two systems at the beginning and end of a calculating 
sequence, as needed. Binary arithmetic is so central to modem 
computer design that it is easy to overlook how radical a step this was 
in 1935. Nondecimal number systems were known and investigated 
by that time, but the established wisdom of the day among calculator 
manufacturers was that because human beings used decimal 
numbers, so should machines. Zuse, on the other hand, saw that a 
mechanical system could be much simpler and more reliable if its 
elements were designed to assume one of only two, instead of ten, 
values. It did not matter if the machine handled numbers in a form 
unfamiliar to humans; his machine would carry out a sequence of 
arithmetic operations, and during that sequence numbers stayed 
within the machine itself. 

Zuse began building a machine that used mechanical computing 
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and memory elements , with electric motors supplying power. He was 
familiar with electromagnetic relays ,  but he felt a mechanical 
calculator would be less expensive and more compact. Within about 
a year, he succeeded in building a compact and reliable storage unit , 
but attempts to build a mechanical calculating unit met with less 
success .  This unit was much more complex in that it had not only to 
store but also carry digits from one column to another during addition. 
He had further decided to represent numbers in floating-point form , 
a form most engineers took for granted, but  which further 
complicated his design and construction. 

So in 1938, after building a small prototype (later called the Zl ) ,  
Zuse abandoned the purely mechanical approach t o  calculation. He  
was satisfied with mechanical techniques for  memory, but for 
calculation and control he turned to telephone relays at the suggestion 
of Helmut Schreyer, a former schoolmate in electrical engineering. 
Schreyer had worked as a movie projectionist during his student days , 
and from that experience he further suggested punching holes in 
discarded movie film as an inexpensive way to enter the program into 
the machine. (The basic mechanism of a movie projector, which stops 
each frame of film briefly as it runs through , could be adapted to read 
the pattern of holes punched into the film.) Zuse adopted both these 
ideas, but he turned down Schreyer ' s  suggestion to build an 
arithmetic unit using , not relays, but much faster vacuum tubes . Zuse 
was working on this project  entirely in his spare time with his own 
personal funds, and felt that vacuum tube circuits would have been 
too expensive. Schreyer later pursued this approach on his own, as 
will be discussed in Chapter 7.  

With a memory fashioned out of metal plates cut with a jigsaw, 
a calculating unit made from secondhand telephone relays ,  and a 
programming unit that recorded on discarded movie film, Zuse and a 
few of his friends built a prototype of a general-purpose calculator of 
this radical new design. This machine, later known as the Z2, did not 
work well but nonetheless demonstrated the soundness  of the 
principles he had developed. It worked well enough to impress the 
German Aerodynamics Research Institute (DYL) to give him some 
money to build a more substantial machine, this time using telephone 
relays for all its units . In 1941 , he completed the ZJ-perhaps the 
world's first general-purpose, sequential calculator. 

The Z3 used about 1 ,800 relays to store sixty-four 22-digit binary 
numbers, as well as about 600 additional relays for the calculating 
and control units . The operation sequence ,  memory storage and 
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recall , binary-decimal conversion, and input and output all were 
directed by a control unit that took its instructions from perforated 
35-mm movie film. A person entered numbers and operations on a 
calculator-style keyboard, and answers were displayed on small 
incandescent lamps. A drum rotating at 300 RPM synchronized all 
the units of the Z3; it took between three and five seconds to multip1' 
two floating point numbers together. The total cost of the machin 
was around $6,500 (mostly materials , as many hours of labor we 
donated by Zuse and his co-workers). 

Using the Z3 to solve a problem involved first of all writing c 
the sequence of commands to perform arithmetic operations and set. 
to or retrieve data from storage. This sequence was then punched into 
a filmstrip ,  using an eight-hole pattern. Once this code was prepared, 
initial values were entered into the keyboard in floating-point, 
decimal form; the machine then converted the numbers into binary, 
carried out the sequence, and displayed the result on the lamps after 
reconverting it back to decimal notation. 

Zuse wrote out calculating plans to solve small systems of linear 
equations , to find the determinants of matrices , and to locate the roots 
of quadratic equations. Because of its modest memory the Z3 could 
not attack the problem that at the time most concerned the 
Aerodynamics Research Institute , namely designing enough stiffness 
into airplane wings so that they did not flutter like a flag at high 
speed-a problem in aerodynamics similar to the one that caused the 
Tacoma Narrows Bridge to collapse in 1940. But the Z3 was reliable 
and flexible enough to persuade them to grant Zuse money for a 
full-size machine, which eventually became the Z4 , completed by the 
end of the war in 1945 . 

For the Z4, Zuse retained the overall design of the Z3 but returnt 
to a mechanical memory instead of using relays . It was the only 01 

of Zuse's machines to survive the war. Although in the immediat. 
postwar years it was not functional , by 1950 it was running at th 
Swiss Federal Technical Institute (ETH) in Zurich with a mechanic 
memory of 5 1 2  binary numbers ,  giving it a power and versatility th, 
matched other, more advanced electronic computers of the immediat, 
postwar era (Figure 6.2). 

Americans and Britons knew little of Zuse during or immediate!� 
after the war. The result was that his work had little influence on the 
development of modern computing , and it remained for others to 
rediscover his fundamental concepts of binary, floating-point number 
representation and separation of memory, arithmetic , and control 
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units. His Z4 influenced continental European computing in the early 
1950s, but only modestly compared to several American projects, 
discussed below. 

George Stibitz and Bel l  Laboratories 

B y the mid-1930s, Bell Telephone Laboratories was already one 
of America's foremost scientific research institutions, albeit 

with a mission closely wedded to the immediate needs of the 
American Telephone and Tele graph Company. Those needs centered 
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around two technical problems concerned with establishing a 
nationwide telephone network. The first was the design and 
construction of long-distance circuits-Bell Labs was established in 
19 1 1  to investigate the use of the newly invented vacuum tube for this 
purpose. The second was in the design of automatic switching 
apparatus, which the Bell System introduced in the 1930s to replace 
human operators . Though long-distance circuits mainly used vacuum 
tubes to amplify the signal carrying the human voice, switching 
circuits used relays to route a call from one telephone to another. In 
modern terms, the first activity concerned analog circuits, the second 
digital. 

The relay circuits that switched and routed calls also performed a 
modest amount of numerical processing. For example, some circuits 
converted the number dialed by a customer into another number more 
suitable for automatic switching. Other circuits might temporarily 
store a dialed number while the system searched for an open line from 
one central office to another. Still other relay circuits operated display 
panels revealing information about the internal workings of the 
network. In short, the telephone company's relay circuits performed 
all the functions of an automatic calculator, although they did not 
"calculate" in the ordinary sense of the word . With a few 
modifications, one could easily make an ordinary calculator out of 
relays. 

In 1937, George R. Stibitz ( b. 1904), a research mathematician at 
the Bell Labs, brought some relays home one evening and built a 
battery-operated device that added two binary digits together. His 
co-workers, however, were not impressed with his Model K. ( Stibitz 
gave it this whimsical name because it was built on his kitchen table. ) 
They reasoned that any practical relay computer, using binary 
arithmetic, would need perhaps hundreds of relays, thus making it 
both bulkier and more expensive than the commercial mechanical 
calculators then in use at the Labs. 

But what Stibitz realized was that a relay calculator could perform 
not just one but a sequence of calculations, with relay circuits 
directing the order and storing interim results as needed. Specifically, 
it could perform the sequence of operations required to perform 
multiplication and division of complex numbers: two mathematical 
operations that researchers elsewhere at the Labs frequently 
performed in connection with filter and amplifier design for 
long-distance circuits. 

Complex arithmetic manipulates numbers in pairs, one number 
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each for the "real" and "imaginary" parts. Electrical engineers 
modeled the performance of alternating current, amplifier, and filter 
circuits with complex numbers. For them both parts were equally 
"real": the first number represented a signal's amplitude or strength, 
the second its phase or relation to time. At Bell Labs in the 1930s, a 
roomful of human "computers" figured complex number quotients 
and products using commercial mechanical calculators . The 
calculations themselves are straightforward enough: a complex 
multiplication requires about six simple arithmetic operations, while 
complex division requires about a dozen operations, and each 
requires temporary storage of a few intermediate results . 

Stibitz proposed building a machine out of relays that would 
perform these sequences automatically. Bell Labs approved. Work 
began in the early fall of 1939 and was completed that October. 
Initially the Complex Number Computer, as it was called, performed 
only complex multiplication and division, but later a simple 
modification enabled it to add and subtract as well. It used about 450 
binary relays and ten multiposition, multipole relays called 
"crossbars " for temporary storage of numbers. The machine used the 
decimal system with the decimal point fixed at the beginning of each 
number. Internally, four binary relays coded each digit, using a code 
that represented a decimal digit n by the binary code for n + 3; this 
simplified the problem of digit carry and subtraction ( excess-three 
binary coded decimal is still called "Stibitz-code" today). The 
machine handled ten-digit numbers in its registers, but displayed and 
printed eight-digit answers . It used "prefix" notation: that is, 
operators keyed in the arithmetic operations before they keyed in the 
operands . For example, to multiply ( 3+5i) by (4-2i), the operator 
would key in 

M +.3 +i .5 +.4 -i .2 = 

The "M" stands for multiply. Note the location of the decimal point 
before each of the four numbers . The machine would actually be 
calculating ( .3+.5i) x ( .4- .2i), and print the answer 0.22000000 
+i 0. 1 4000000. The operator would have to scale the results 
accordingly. Complex multiplication took about forty-five seconds. 

The Complex Number Computer was kept in an out-of-the-way 
room in the labs, where few ever saw it. Persons accessed it remotely 
using one of three modified teletype machines placed elsewhere. 
Only one keyboard could control the machine at any one time, but 
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assuming a person would use it only briefly to do a calculation, no 
one would have to wait too long. As with the mechanical and human 
system it replaced, the engineers themselves did not usually operate 
the machine, but instead gave their problems to human operators who 
keyed in the numbers and recorded the answers. 

Stibitz carried this idea of remote, multiple access one step 
further. In the fall of 1940 the American Mathematical Society met at 
D artmouth College in Hanover, New Hampshire, a few hundred 
miles north of New York City. Stibitz arranged to have the Complex 
Number Computer connected by telephone lines to a teletype unit 
installed there. The Complex Number Computer worked well, and 
there is no doubt it impressed those who used it. The meeting was 
attended by many of America's most prominent mathematicians, as 
well as individuals who later led important computing projects ( e.g., 
John von Neumann, John Mauchly, and Norbert Wiener). The 
D artmouth demonstration foreshadowed the modem era of remote 
computing, but remote access of this type was not repeated for 
another ten years ( until done by the National Bureau of Standards, in 
1950). 

The Complex Number Computer lacked an ability to carry out a 
sequence of operations other than those for complex arithmetic; 
however, Bell Labs used it for many years. Its success encouraged 
Stibitz to propose more ambitious designs that included an ability to 
modify the calculator 's operations by perforated tape. At first the 
Labs turned down his proposals, but with the entry of the United 
States into the Second World War in D ecember 1941 ,  Bell Labs shifted 
its priorities toward military projects that involved more computation 
than its peacetime research. Most of their wartime accomplishments 
were in the design of analog computers, as described in the previous 
chapter. But they also built five digital relay computers for military 
purposes, and one more after the war 's end for their own use, making 
a total of seven digital machines counting the Complex Number 
Computer. 

The first of these calculators for military use was the Relay 
lnterpolator, installed in Washington, D .C. in 1 943 and later known 
as the Model II. It mainly solved problems related to directing 
antiaircraft fire, which it did by executing a sequence of arithmetic 
operations that interpolated function values supplied to the machine 
by paper tapes . Like the Complex Number Computer, it was a 
special-purpose machine; however, its arithmetic sequence was not 
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permanently wired but rather supplied by a "formula tape" cemented 
into a loop. D ifferent tapes therefore allowed one to employ different 
methods of interpolation . The Model II could not do much besides 
interpolation, but as interpolation is a process that lends itself to the 
solution of many problems in science and engineering the machine 
was kept busy by other government agencies long after the war ended. 
The machine was dismantled in 1 96 1 .  

The next two machines, the Models III and IV, were identical 
machines, the first installed in 1944 at Fort Bliss, Texas, and the 
second in early 1945 in Washington. These machines also used paper 
tapes for data and formula input, with the arithmetic sequence 
supplied by a loop of paper tape. The Models III and IV, like the 
Model II, also solved problems relating to the aiming and tracking of 
antiaircraft guns . They were, however, more sophisticated machines, 
having the ability not only to perform interpolation but also to 
evaluate the ballistic equations describing the path of the target 
airplane and of the antiaircraft shell .  An additional paper tape directed 
which of those functions the machine was to evaluate. Thus, the 
Models III and IV were the first of the Bell Labs digital calculators 
to have some degree of general programmability, although neither 
was a fully general-purpose calculator. 

The largest computer in the series was the Model V, of which Bell 
Labs built two copies for the military in 1946 and 1947 . Each contained 
over nine thousand relays and, like Zuse's Z3 and Z4, handled 
numbers expressed in scientific notation. The store could hold up to 
thirty numbers, and paper tape readers fed in both program steps and 
numerical data. A flexible and elaborate control unit allowed more 
than one tape loop to direct the machine while it was running, based 
on the results of a calculation just completed. This gave the Model V 
the ability to "branch" on a condition, modifying its own program 
instead of plodding down the same path each time. 

This ability to branch to different sequences of instructions is a 
key to the power of the modem computer. Although branching had 
been recognized by Ada Augusta ( and perhaps by Babbage as well), 
the practical difficulties of implementing it on a machine 
programmed by essentially linear paper tapes had prevented its use 
by earlier calculator designers. Relay calculators installed branching 
by means of multiple tape readers and loops of tape, which made for 
a rather baroque overall design. 1 A desire to circumvent the 
difficulties of providing conditional branching on machines like the 
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Model V was a major reason why computer designers adopted the 
princip le of internal program storage that characterizes modem 
computer design. 

A relay has a tendency to fail intermittently because of dust or 
dirt on its contacts .  Therefore ,  all Bell Labs machines after the first 
employed a system whereby not four but seven relays encoded each 
decimal digit. The relays were grouped like the beads on a Chinese 
abacus, with one set of five relays having a unit's weight , the other 
two a weight of five-the so-called bi-quinary system, viz: 

Table 6. 1 .  The Bell Labs bi-quinary system of relays 

Decimal digit 

0 

1 

2 

3 
4 

5 

6 

7 

8 

9 

Bi-quinary code 

0 1  0000 1 
0 1  000 10  
0 1  00 100 
0 1  0 1000 
0 1  10000 
1 0  00001 
1 0  000 10  
10  00 100 
10  0 1 000 
10  10000 

As Table 6. 1 shows , for each digit one and only one relay in each 
group is "on"; a separate set of relay contacts checked this condition 
and stopped the machine if it found otherwise. This arrangement was 
a forerunner of error-correcting codes now common in digital 
computing and communications. 

The Model V was a powerful ,  general-purpose calculator that 
could and did solve problems in a variety of areas of physics, 
mathematics ,  and engineering-many of these problems related to 
c lassified wartime work. But at the same time it represented the end 
of the l ine for relay technology applied to computing , as its 
computing power was in many ways offset by increased complexity, 
cost , bulk, and power requirements. Bell's engineers frankly admitted 
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that their Models III and IV, which had less programming power, 
represented a better balance between the users ' needs and the relay 's 
inherent abilities. The last machine of the series, the Model VI built 
for Bell 's own use in 1949, abandoned the dual-processor and master 
control programming facilities of the Model V, its designers believing 
the increased complexity was not worth the trouble or expense. By 
1949, it was clear that computing 's future lay in the direction of 
vacuum tube circuits and program input from an internal store instead 
of a paper tape. Bel l  Labs did not design or produce electronic 
computers at that time, but its relay machines were nonetheless an 
important bridge from the mechanical calculator to the electronic 

2 computer. 

Howard Aiken and the Harvard Computation 
Laboratory 

The same year that Stibitz was experimenting with relay circuits 
on his kitchen table, a Harvard graduate student named Howard 

Aiken began looking for ways to adapt existing calculating machines 
to help him with calculations for his dissertation research in physics .  
Aiken began by taking a thorough look at existing calculator 
technology and its history; he also studied the capabilities of 
commercial punched-card and calculating machines .  He saw that 
they had sophisticated powers , but primarily for business and 
accounting applications . For the scientific applications he had in 
mind (specifically for his thesis on space charges, which required the 
numerical solution of differential equations) their capabilities were 
inappropriate. For example, busines s equipment handled positive 
values rarely greater than a million, and rarely with more than two 
places to the right of the decimal point. But scientific problems 
involved positive and negative numbers of a much wider range and 
decimal precision; they also used functions like sine, cosine, and 
logarithm, which business machines did not supply. 

Most important, scientific calculations often required iterative 
solutions, in which the results of a previous calculation are recycled 
as input data for a subsequent stage in the approximation of a solution. 
But typical punched-card installations did not permit this kind of 
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approach. With punched-card machines, if one were to evaluate, say, 
a payroll formula for employees, one would first multiply the number 
of hours worked by the hourly rate for each employee, producing a 
new deck of cards as output. This deck would then be submitted to 
another machine ( or to the first machine after making some wiring 
changes) to compute the deductions for each employee, and so on. 
Only at the very last step in this process would one have a complete 
evaluation of the entire formula-and at this step one would have it 
for every employee (cf. C hapter 4, section 2). Aiken wanted a 
machine that could compute the whole formula for each value of n, 
before going on to the next iteration. That implied that the machine 
would have to alter the arithmetic operations it performed on each 
input value automatically. And as he intended to use it for problems 
in which the value of the independent variable was incremented by a 
constant amount each time, he also wanted the machine to 
automatically increment the variable and step through the process 
without human intervention. Implicit in that requirement is the further 
ability to stop processing upon reaching the desired number of 
iterations .  

Aiken sketched out these ideas in a memorandum entitled 
"Proposed Automatic C alculating Machine," written in 1937. He 
discussed these issues, stating above all that the proposed machine 
had to automatically carry out sequences of different operations . The 
picture that emerged from this 1937 proposal is one of a set of 
commercial punched-card machines linked to one another by cables, 
with separate units for input of initial data, storage and retrieval of 
interim results, and control of the sequence of operations by the rest 
of the machine. His proposal also stressed the machine's ability to 
print the results of its work without the need for manual typesetting 
or proofreading-this of course would eliminate one of the main 
sources of errors in printed tables, as Babbage had astutely noted a 
century earlier. 

Aiken tried to interest calculating machine firms in his proposed 
calculator, but had little success at first. The Harvard astronomer 
Harlow Shapley then suggested that he approach IBM by way of 
T. H. Brown, a professor at the Harvard Business School who was 
on good terms with IBM's chairman, Thomas J. Watson. Watson had 
already initiated the use of IBM machines in scientific work at 
Wallace Eckert 's lab in New York (cf. C hapter 4) ; he believed that 
collaboration with Aiken would lead to a similar involvement at 
Harvard. Watson assigned the experienced and respected IBM 
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engineer James W. Bryce to implement Aiken's proposal; Bryce in 
tum assigned three engineers and the facilities of IBM's Endicott , 
New York plant. Aiken spent the summers of 1941 and 1942 in 
Endicott , where he sketched out what he wanted his machine to do, 
but it was the IBM personnel who actually designed and built the 
machine, using existing IBM punched-card technology. IBM also 
paid most of the estimated half a million dollars the machine cost. 

The Automatic Sequence Controlled Calculator (ASCC)-so 
named to call attention to its method of evaluating formulas-was 
completed in Endicott early in 1943 and moved to Harvard the next 
year. It was covered with an attractive stainless-steel and glass 
enclosure, and on August 7 ,  1944 was publicly unveiled at an 
elaborate ceremony attended by Watson, Aiken, President Conant of 
Harvard, and a number of other VIP's .  The ASCC thus became the 
first large-scale automatic digital calculator made known to the 
public . News of its dedication was overshadowed by the war, but 
nonetheless many newspapers and popular scientific journals  
reported the event. Some reports found their way to Germany, where 
Konrad Zuse heard them as he was building his own Z4. 

The ASCC was long and slender: 5 1  feet long , 8 feet tall ,  and only 
2 feet deep.  By 1944 standards it was awfully large for a "calculator, " 
but today it would be dwarfed by typical mainframe installations with 
their rows of tape and disk drives. It had that shape because all its 
individual calculating units were powered (and synchronized) by a 
constantly turning drive shaft that ran along its base-not unlike a 
nineteenth-century New Eng land textile mill .  Numbers were 
transferred by relay circuits , which activated clutches that coupled 
the drive shaft to one of seventy-two sets of wheel s cal led 
"accumulators . "  By activating the clutch connected to an accumulator 
for, say, five units of time, the number 5 was added to whatever 
contents were already in that unit. A typical addition took about 
one-third of a second. 

The seventy-two accumulators were adapted from similar devices 
found in IBM punched-card machines , and comprised both the 
ASCC's store and mill-that is , they both stored numbers and 
performed nearly all of the arithmetic operations needed to solve a 
typical problem. Like punched-card machines , the accumulators used 
fixed decimal arithmetic , although they could store and add numbers 
having many more digits-twenty-three digits plu s sign, with the 
decimal point fixed after the twelfth digit .  (Commercial 
punched-card machines handled numbers from eight to twelve digits 
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in length.) Numbers were inputed by paper tape or cards , or by setting 
a bank of manual switches (Figure 6.3) ;  the calculating sequence was 
entered by a 24-column, punched-paper tape (Figure 6.4 ). 

Additiona l  equipment  inc luded a s eparate device for 
multiplication ( and division) and a device for interpolating function 
values supplied on paper tapes. A device similar to the interpolator 
supp l ied  l ogarithmic and  trigonometr ic  funct ion s .  Two 
"electromatic" typewriters provided output. 

The key piece of the ASCC was its sequence control unit. This 
device read 24-column paper tapes containing the operation 
sequences needed to solve a problem. The columns were grouped into 
three fields : out- , in- ,  and miscellaneous-field. The first specified 
from which accumulator or other unit a number was to be taken. The 
second specified where it was to go (the terminology is the reverse 
of today's) . The third, or miscellaneous field could specify a number 

Figure 6.3. A bank of manual switches on the Automatic Sequence 
Controlled Calculator, used for input of constant numerical 
values. Courtesy Cruft Laboratory, Harvard University. 
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of operations, but it was not strictly speaking used as an operation 
field. A number routed to a given accumulator would automatically 
be added to whatever was already in it; hence, there was no need to 
give the command "add," but only a command (punched into the third 
field) to c ontinue with the next operation. Typical operation 
sequences for the ASCC consisted of a long series of transfers from 
one accumulator (or input device) to another, with the command to 
"continue" punched in the miscellaneous field. Even multiplication 
was handled in this way: the multiplier unit was given an address, 
which was punched into the in-field when one wanted to use it. 

Aiken assembled a small staff of mathematicians and technicians 
to service and program the ASCC.  Support for the machine's daily 
operations came from the Navy; hence most of this staff were either 
fresh recruits or recently commissioned Na val officers. One of the 
latter was Grace Hopper, who had taken leave as an instructor in 

• 
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Figure 6.4. Twenty-four-column punched-paper tape for input of 
calculating sequence on the Automatic Sequence Controlled 
Calculator. Courtesy Cruft Laboratory, Harvard Univeristy. 
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mathematics at Vassar College to attend the Navy's Midshipmen's 
School. In 1943, the Navy ordered her to go to Harvard and join 
Aiken's staff. Very quickly she assumed the task of preparing codes 
for the ASCC to solve a variety of problems ,  and so began a long and 
productive career as one of America's pioneers in what is now known 
as computer II software. 1 1  

Recall that from the telegraph and telephone industries came not 
just the electromagnetic relay but also the techniques of paper tape 
and plugboards, which calculator designers adopted for the control 
functions of their machines. Reflecting its hybrid ancestry, the ASCC 
used both: paper tape for input of its operation sequence ,  and 
plugboards for operations like the routing of results to the several 
output devices, or the formatting of typed output intended for 
publication. 

Even before its public unveiling , the calculator was kept busy 
doing classified work for the United States Navy. At least one of the 
problems it worked on involved a calculation of the blast effects of 
the first atomic bomb. After the war, the machine settled into a more 
prosaic role of calculating and printing tables of Bessel and other 
related functions, the tables reproduced by photolithography directly 
from the machine's typewriters . Thus,  Babbage 's dream of 
computing and printing mathematical tables finally came true, even 
as the ASCC ushered in an age of computers that would transform 
the whole process of compiling and using tables, in some cases 
making tables themselves obsolete. 

The ASCC was finally retired in 1959; a part of it may still be 
found in the foyer of the Harvard Computation Laboratory. Aiken 
went on to supervise the design of three more large-scale calculators; 
as these were completed they took on the names Mark II, III , and IV, 
and the ASCC became known as the Harvard Mark I. The Mark II 
(completed in 1947) was a calculator more in the spirit of the Bell 
Labs Model V, computing entirely with relays , not mechanical 
driveshafts or clutches. It was a big machine by any standards: it 
contained 1 3,000 relays and occupied a large room at the Navy's 
proving ground at Dahlgren, Virginia. Like the Mark I, it was 
controlled by a combination of sequence tapes and plugboards; like 
the Bell Labs Model V, it could be operated as two independent 
machines and work on two problems simultaneously. 

By the time the Mark II was installed at Dahlgren , many were 
beginning to feel that vacuum tubes offered a number of advantages 
over relays for automatic calculator circuits. Aiken was leery of the 
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what he perceived as the inherent unreliability of tubes, but for the 
Marks III and IV he did employ some tubes to gain higher speeds. In 
many respects these calculators were anachronisms, but the Mark III 
did pioneer the use of a high-speed magnetic drum for the storage of 
numbers and instructions. The drum became the most popular storage 
device for electronic computers of the "first generation,"  even though 
the architecture of those computers was far different from what Aiken 
developed. His influence on postwar computing was strong, not so 
much as a designer of machines, but as the director of the Harvard 
C omputation Laboratory, which was one of the few places where 
what we now know as "computer science" was taught. Aiken 's 
students were among the first to receive a thorough training in the 
fundamentals of computing, and after leaving Harvard many of them 
helped steer the direction of academic, commercial, and military 
computing for the next three decades. Aiken also frequently travelled 
to continental Europe, where he inspired and influenced many 
computer projects otherwise out of the Anglo-American mainstream. 

Relay technology seemed to hold the potential for building 
powerful computing machines that were cheap and reliable, yet 

it never really fulfilled that promise. Relays were indeed 
mechanically rugged and relatively cheap, but calculator circuit 
design imposed severe constraints not found in telephone circuits. 
Most critical was the fact that relays were prone to intermittent 
failures, usually caused by a piece of dirt or dust between the 
contacts.3 In a telephone circuit this was of little consequence, as the 
telephone system can still function acceptably with some degradation 
of service. Indeed, the highest priority in a telephone system is to 
maintain service-any service-despite the failure of many of the 
system's  components (this is especially important during a storm or 
flood) . But the philosophy of calculator design is diametrically 
opposite: if there is any chance that the machine might deliver a 
wrong answer, say a misplaced sign or decimal point, it is better to 
shut the whole system down and fix the problem before continuing. 

The result was that relay calculators needed elaborate checking 
circuits or redundancy, which made them costly and overly complex. 
Where there were no self-checking circuits, as on the Mark I, its 
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operators had to periodically run portions of a problem through the 
machine twice, using different registers to ensure that everything was 
all right. By contrast, when a vacuum tube fails, it usually does so 
catastrophically, i .e. , it burns out. That renders the whole circuit 
inoperative, so it is les s likely to spew out wrong answers before the 
problem is noticed. So although it was true that tubes were less 
reliable than relays, they actually allowed one to build a total system 
that in the long run was more reliable when measured in terms of the 
average number of arithmetic operations between failures. These 
characteristics of tubes, coupled with their higher speeds, spelled the 
end of relay calculator development. The invention of the transistor 
by Bell Labs scientists in 1947 eventually allowed the construction of 
computing machines that combined the ruggedness  of relays with the 
speed of tubes, and rendered the question moot. 

During the immediate postwar years, a few relay machines were 
built to take advantage of lower initial costs and development time. 
Relay technology was especially appealing in Europe, where capital 
was hard to raise in the late 1940s. In West Germany, Zuse founded 
a commercial company, Zuse K. G., of Neukirchen, that produced 
several compact and reliable relay calculators in the 1 950s. One of 
them, the Zl  1 ,  sold well and continued to be used into the 1 980s . But 
in 1955 he changed over to electronics-first with vacuum tube and 
later with transistorized computers . (In the mid- l 960s his company 
was absorbed by the German electronics firm Siemens .) Some 
European groups adopted the relay design philosophy advocated by 
Aiken, who made several trips across the Atlantic at that time. Two 
such machines were the BARK and the ARRA, which introduced 
automatic computing to Sweden and the Netherlands in 1950 and 
1952. At King 's College in London, A. D. Booth built the ARC-a 
machine whose architecture reflected the latest ideas on internally 
stored programming from John von Neumann and other Americans, 
but which used relays to save costs . 

In the United States, Engineering Research Associates designed 
a high-speed magnetic drum for the storage unit of an electronic 
computer, but before assembling the computer they built a relay 
processor to test the drum's powers .  This combination (called the 
Abel) turned out to be so useful that the United States Office of Naval 
Research installed it in Washington, D.C.  and continued to use it for 
many years for a wide range of problems, mainly logi stic s 
calculations. Modest relay devices were also built in Japan in the early 
1950s. 
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These examples illustrate the place of the relay calculator in the 
history of computing: almost from the start they were eclipsed by the 
faster vacuum tube computers, but at the same time they played a 
vital role as the machines that introduced to the world the concept of 
automatic, sequential calculation. It was with relay technology that 
the first functional automatic calculators finally came into existence, 
after years of hope and promise. 

1 .  Neither the Z4 nor the ASCC, described later in this chapter, had 
conditional branching at first, but the capability was retrofitted to 
both machines after the end of the war. 

2. One reason AT&T did not then produce computers was that it 
was a regulated monopoly, whose main line of business was 
domestic telephone service; and it was prohibited by law from 
entering into a business such as computing, which was outside 
their main line of business. 

3 .  In one famous instance, Grace Hopper found that a moth trapped 
between two relay contacts was causing the Mark I I  to 
malfunction; she removed the moth and taped it in the logbook, 
noting that she had found the "bug" that was causing the problem! 
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Chapter 7 

Electronic Calculators 

It was not until the mid- 1930s that anyone began to think seriously 
of using high-speed electronic circuits in digital calculating 

machinery. The vacuum tube itself, a device that could switch current 
many times faster than electromagnetic relays , was known and 
heavily used for other applications for at least the previous two 
decades. Suggestions for why it was not applied to computing earlier 
and what finally triggered the change are discussed as this chapter 
traces the introduction of vacuum tubes into calculating machinery. 

In 1 883, Thomas Edison, as part of his work in developing 
commercial electric lighting, first noted that an evacuated tube could 
pass an electric current. Edison did not follow up that discovery and 
failed to notice the tube's ability to regulate and control currents. Not 
long after that discovery, J. J. Thompson explained this "Edison 
effect" as a boiling off of negatively charged particles (named 
"electrons " in 1894; hence the term "electronic " )  from the tube 's 
filament , from which they would travel across the vacuum to a metal 
plate. In 1904, J. A. Fleming used such a "diode"-so-called because 
it had two working elements :  a filament and a plate-to detect weak 
radio signals . Two years later, Lee DeForest added a third element to 
the diode, thereby transforming it into a device that could not only 
detect, but also amplify signals . 
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D eForest's triode touched off the first of what has become a 
steady stream of applications of electronics technology, which have 
affected the character of twentieth-century life. It transformed the 
radio industry by making it possible to transmit more powerful 
signals at higher frequencies than before, and at the receiving end it 
allowed extremely faint signals to be amplified and thus made 
intelligible. It transformed the telephone industry by permitting voice 
s ign als to be amp l i fied and thus sen t across l ong  
distances-something that hitherto had been possible only with the 
dot-dash signals of the telegraph. Each of these advances led in tum 
to further developments in communication and control. 

But the calculator and accounting machines industries were not 
among those so rapidly transformed. One reason was that engineers 
who worked with the vacuum tube did not perceive it as a switch that 
could route electrical pulses through a circuit. Indeed, they designed 
circuits to minimize the tube's tendency to act as a digital switch, 
while maximizing its ability to produce an amplified, but smooth, 
continuous copy of its input. 1 The telephone engineer 's goal was to 
get the circuit to reproduce as accurately as possible the nuances of 
the original signal and to minimize any tendency the tube had to latch 
on to either extreme of letting all or none of the available current 
through. Applications requiring all-or-nothing switching, as in 
routing telephone calls, or transmitting the discrete dots and dashes 
of Morse telegraph signals, were well served by electromechanical 
relays. Given these two apparently separate arenas of tube and relay 
applications, there was a general perception that tubes were ill-suited 
for calculators, which handled discrete digits and not continuous 
signals. 

In the 1930s, relays and mechanical devices still served the 
calculating machines industry well. These devices permitted rapid 
calculation compared to manual methods, which satisfied most users 
( except for men like Wallace Eckert, L. J. C omrie, and Howard Aiken 
who wanted to use these machine to solve highly complex scientific 
problems) . Furthermore, electromechanical calculating speeds were 
in balance with the speeds of the other activities like recording and 
reading data, and directing the sequence of calculations: activities 
still done by hand. The limits of the relay's speed to a few arithmetic 
operations a second did not form a bottleneck that machine designers 
were concerned with breaking. 
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Fi rst Dig ital Appl ications of Tubes 

As early as 1919 , Eccles and Jordan published a description of a 
vacuum tube "trigger" circuit that could hold one of two states 

indefinitely , like an ordinary relay only capable of operating much 
faster . Their circuit got little attention at first , but eventually it found 
an application in solving a problem whose nature precluded the use 
of slower relays. Advances in atomic physics had led researchers to 
an interest in recording and counting cosmic rays and related 
phenomena. The Geiger-Mueller counter , itself an ingenious 
application of a vacuum tube, allowed one to record this radiation; 
but to count the actual flux of particles required speeds far in excess 
of what relay circuits could deliver. At the Cavendish Laboratory in 
Cambridge, England, in 1930,  C. E. Wynn-Williams built a device 
capable of resolving events occurring less than a millisecond apart. 
His circ uit did not use evacuated tubes , but rather gas-filled 
"thyratrons , "  which were able to hold a state of either conducting or 
not-conducting , like Eccles ' and Jordan 's  "flip-flop . "  The circuits 
were chained to one another in such  a way that for every two firings 
of the first one ,  its neighbor would fire once ,  and so on down the 
chain. Thus , if there were n such circuits , the firing of the nth would 
indicate that the first had receive 2n- l  events. By making the chain 
long enough , the speed at which the last tube fired could be scaled 
down to a point at which it could be recorded by a mechanical 
counter .2 Such a circuit was an electronic counterpart of a mechanical 
register consisting of toothed wheels with a carry occurring after one 
full revolution of a given wheel. 

By the late 1930s such "ring-counters" were well known in the 
physics community. Variations of Wynn-Williams 's design, many 
using the Eccles-Jordan vacuum tube design instead of thyratrons , 
appeared in the literature ,  especially in the journal Review of 
Scientific Instruments. 

With additional c ircuits , these ring counters could be made to 
calculate as well as count. As early as 1936 ,  William Phillips ,  an 
actuary for the British office of the Manufacturers Life Insurance 
Company, described a machin� that computed in the binary scale ,  
which in theory was capable of very high speeds. Although the public 
description of it did not explicitly mention vacuum tube circuits , 
Wynn-Williams was thinking of using ring counters to achieve 
multiplication speeds of between five and ten a second. 
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Atanasoff 

Whatever the merits of his design, there was one basic flaw in 
using such ring counters for numerical calculation. Arithmetic 
devices , especially those used for banking , insurance ,  or accounting, 
must be exact. Ring counters , as built and used by physicists , were 
not. Cosmic-ray counters were perfectly acceptable if they missed a 
few events over a long span of time.3 It would not do to simply build 
a calculator by substituting ring counter circuits for relays or gears. 
Nonetheless , it was from these basic concepts that some of the first 
electronic calculating circuits emerged. 

One other development in elec tronic s during the 1930s 
contributed to the perception of the vacuum tube as a digital as well 
as an analog device. This was the development of radar, which used 
pulses of radio-frequency energy to locate objects .  Radar devices are 
fundamentally analog-they typically display the location of the 
object by an analogous displacement of a spot on a cathode-ray-tube. 
But a successful radar device requires circuits that can generate very 
short pulses of current , on the order of a few microseconds in 
duration. Such pulses had to be of a high intensity and had to be 
switched on and off cleanly. The intense effort devoted to radar 
development as World War II approached helped dispel the notion of 
tubes as strictly analog amplifiers , while generating a wealth of 
experience in circuit design that calculator designers later drew 
heavily from. By the late 1930s , these advances in electronic 
engineering combined with the ever-increasing demands for routine 
calculation to make the idea of electronic digital calculation at least 
within the realm of the practical. 

Not surprisingly , a serious attempt to apply electronic devices to 
calculation occurred independently in America, England, and 

Germany between 1935 and 1943. But each of these applications was 
in a sense precocious ,  in that their arithmetic speeds outstripped their 
ability to handle input ,  output ,  and programming functions. The 
ENIAC, completed in 1945 , shared this problem; but it struck at least 
a workable balance ,  and so may be regarded as the first working 
system to solve practical numeric problems at electronic speeds. 
Before looking at the ENIAC, we shall examine its immediate 
predecessors .  
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In the mid-1930s , John V. Atanasoff, a professor of physics at Iowa 
State College in Ames , began exploring the feasibility of using 
electronic computing circuits to help  solve systems of linear 
equations. Such systems occur in nearly every branch of physics; 
furthermore , many problems described by differential or other 
equations can be recast and solved as linear systems. Basically, the 
technique for solving linear systems is straightforward and the same 
regardless of the number of equations or unknowns ,  and involves a 
sequence of ordinary arithmetic operations . But the number of 
operations grows so large that systems greater than about ten 
equations in ten unknowns are impractical to solve by hand. 
Atanasoff, like some other physicists , saw the need to mechanize this 
process. He first considered analog devices, then configurations of 
punched-card equipment, but eventually realized that the order-of
magnitude increase in speed that electronics offered was the only 
way to attack the explosive growth of calculations required to solve 
large systems of linear equations. 

Atanasoff has often recounted the story of how he invented his 
electronic calculator. One night in the winter of 1937 ,  he got in his car 
and went for a drive to clear his mind. As he later described the 
evening, he must have been quite agitated, for he did not stop until 
he arrived at a roadside tavern across the Mississippi River in Illinois , 
almost two hundred miles from Ames along two-lane roads. He went 
in, ordered a drink (something one could not legally do in Iowa in the 
1930s), and collected his thoughts. 

Atanasoff claims that that night he settled on the overall design 
of his calculator. It would be an electronic , digital machine; and it 
would use the binary system. Because the calculating speed had to 
be matched by equally high speeds for the storage and retrieval of 
temporary results of previous calculations , he decided on storing the 
numbers electronically as well .  To store the digits he decided to use 
banks of capacitors (called "condensers" at that time) , which in turn 
would be periodically refreshed to prevent their contents from leaking 
away. 

Finally, he made a preliminary decision as to the arithmetic 
circuits themselves , although he would not actually build such 
circuits until 1939.  His design differed from Wynn-Williams's ring 
counters mainly in that the holding of digits before and during an 
arithmetic operations would take place in banks of capacitors ,  not in 
rings of triodes. Vacuum tube circuits , consisting of only fourteen 
triodes enclosed in seven glass envelopes , would handle the addition 



Computing Before Computers 228 

of 30-bit binary numbers ,  while the other three arithmetic operations 
would be derived from addition. 

The machine he envisioned would be hard-wired to carry out the 
arithmetic sequences to solve linear systems .4 It did so by the method 
of successive elimination: first, the coefficients of one equation were 
multiplied by a constant, so that at least one coefficient was equal to 
a coefficient of the equivalent term of another equation; then the two 
equations were subtracted from each other. Because at least one term 
of each was equal to its counterpart in the other equation, the 
subtraction eliminated that term, and yielded a new equation having 
one fewer term. This process was repeated, until it yielded the value 
for one of the unknowns . That value could then be substituted in each 
of the equations , yielding a new system of equations with one fewer 
variables . The method could be repeated until the values of all the 
variables were determined. 

By the end of 1939 , Atanasoff and a graduate assistant, Clifford 
Berry, completed a prototype that could add and subtract binary 
numbers equivalent to about eight decimal digits of precision. The 
next summer, Atanasoff submitted a proposal to Iowa State College 
to fund the construction of a ful l-scale machine that would solve 
linear systems automatically. With a modest contribution from the 
college and a grant of about five thousand dollars from a private 
foundation, Atanasoff and B erry built a machine that functioned in 
every respect except for its input-output device ,  a novel method of 
punching cards at high-speed that made just enough errors to prevent 
an accurate solution of large systems of equations. 

The most striking feature of their machine was its two drums 
mounted along a common shaft, each drum containing banks of 
capacitors that stored thirty numbers of up to fifty bits in length. 
(Figure 7 . 1 )  The capacitors were mounted radially, with a common 
contact at the center of the drum and wipers that made contact with 
a row of thirty on the drum's surface. One row of capacitors held the 
nth bit of each of thirty numbers; the machine therefore handled the 
digits of each number one at a time, or serially, but in parallel 
regarding all thirty coefficients of an equation. The drums rotated at 
about one revolution per second. The system was designed to read 
the charge of each capacitor (binary 1 was +40 volts , binary O -50 
volts) ,  and immediately refresh that charge with another set of 
brushes following those that read its value. Without such refreshing, 
the charges would leak away, but the circuits ensured that there was 
a more than adequate margin of safety given the speeds at which it 



Figure 7. 1. The Atanasoff calculator. Courtesy Iowa State University 
Archives. 

operated. Atanasoff called this process "jogging" ;  it was the 
forerunner of the concept of dynamic memory so common to modem 
computer design. 

Each drum held the coefficients of one equation of the linear 
system; and by a process of repeated subtraction the values on one 
drum were subtracted from those on the other, until one coefficient 
was reduced to zero. If one coefficient was not an exact multiple of 
the other, the machine would subtract one extra time ( giving a 
negative coefficient value), then shift the circuits one binary place 
and add this new value ( which would be one-half the old value of the 
subtrahend) to the remainder. This process would be repeated until it 
produced zero. In this manner, the machine was able to reduce the 
coefficients of the system of equations by successive elimination, 
using only the operations of subtraction, addition, and shifting. 
Although this method is  similar to many modern machine 
implementations of binary division, Atanasoff's machine did not 
actually produce the quotient of the two numbers , as it kept no record 
of the number of times it performed the repeated subtraction. 

As each pair of equations was reduced, its new coefficients were 
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punched onto cards by a novel method of depositing a conductive 
spot on a card by an intense electric spark. This interim storage on 
cards was an integral part of the process of solving a system of 
equations, and it had to proceed at high speeds to remain in balance 
with the electronic circuits that performed the arithmetic. Ordinary 
card readers and punches might suffice for the initial input of a 
problem or the output of the final answer, but they were too slow for 
this intermediate storage function. It was the occasional 
malfunctioning of this device which prevented the computing 
machine from ever being put into routine use solving large systems 
of equations. 

The machine remained at this stage of refinement until 1942, when 
both men left Iowa: Atanasoff for the Naval Ordnance Laboratory 
near Washington, D .C . , and Berry for C onsolidated Engineering in 
C alifornia. The machine was never made fully reliable and never put 
to use. For many years its existence was forgotten. D uring its 
construction it never even had a name, although in some later 
descriptions it was called the ABC for Atanasoff-Berry-C omputer. 
Thirty years after work on the machine was abandoned, when the 
invention of the electronic digital computer became the subject of a 
lawsuit, attorneys representing one of the parties rediscovered the 
work. By that time, the ABC itself, save for a memory drum, had long 
since vanished. 

Helmut Schreyer 

The idea of computing with vacuum tube circuits occurred to 
Helmut Schreyer in Germany at the same time. Schreyer was a 

schoolmate of Zuse at the Berlin Technical C ollege, where Schreyer 
was studying electrical engineering. He had helped Zuse with the 
construction of the Zl  and had suggested to Zuse the possibility 
of using modified film projection as a way of programming the 
machine. But whereas Zuse had early on favored mechanical or 
electromechanical computing elements, Schreyer saw that one could 
construct an electronic circuit that worked just like the binary relays 
Zuse was using, only at much higher speeds. He based his circuits on 
a combination of triodes coupled to gas-filled lamps ( somewhat like 
neon light bulbs), which had well-defined voltage levels that would 
hold a state of either conducting or not conducting. Such circuits were 
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slower than Eccles-Jordan flip-flops, but still much faster than 
ordinary relays . He designed a number of switching circuits using his 
so-called tube relay, and in 1941 he received a doctorate from the 
Berlin Technical College for a thesis on the subject. 

Schreyer 's thesis did not discuss the application of these relays 
to computing, but he did mention to Zuse the possibility of building 
a computer based on the Z3 's design, using tubes instead of relays 
( recall that the Z3 was completed and working by 1941). Schreyer 
proposed to the German Army Command that he build a full-scale 
programmable electronic computer having about fifteen hundred 
tubes and about as many lamps . But he was turned down. The German 
Army Command felt the two years time Schreyer needed to complete 
his machine was too long: given their perception of the course of the 
war at that time, they chose to concentrate on projects that could be 
completed sooner. 

Schreyer did not give up. The German army was not interested, 
but the Aviation Research Office ( D YL) was; and they supplied him 
with funds to begin a more modest project: an electronic device that 
converted three-digit decimal numbers to and from binary. In the 
meantime, the Telefunken Company had developed a special tube 
well suited for Schreyer 's designs.5 Schreyer combined this tube with 
three fast-acting lamps and nine resistors to give a reliable and fast 
( up to 10 kHz) circuit that accepted up to three inputs and produced 
their logical addition ( or), multiplication ( and), or negation ( not). The 
lamps were bathed in ultraviolet light to increase the reliability of 
their operation at high speed ( Figure 7 .2). 
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Figure 7.2. Schreyer's logic circuits ( ca. 1942). Courtesy GMD, 
Bertin. 
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Work on the binary-to-decimal converter began in 1941 but 
proceeded slowly as Schreyer was called to do other work , including 
work on radar and on an accelerometer for the V-2 ballistic missile. 
In November 1943 , the converter was damaged during a bombing raid 
on Berlin, and further work on electronic computing came to a halt. 
After the war, Schreyer left Germany and never again returned to 
computing . Thus, the priorities of the war diverted both Schreyer and 
Atanasoff from further progress in electronic computing, although 
government support for Atanasoff 's computer work was somewhat 
greater than for Schreyer 's . 

The Colossus 

If the war hindered progress for Atanasoff and Schreyer , it had the 
opposite effect on the first British steps toward electronic 

calculation. During the War ,  the British Foreign Office's Department 
of Communications designed a machine called the Colossus , which 
used high-speed electronic circuits to assist the British in decoding 
intercepted German radio messages that had been encrypted on a 
machine called the Geheimschreiber (Secret Writer) . The first 
Colossus was operational late in 1943, and by the end of the war at 
least ten were built along the same design. The first one contained 
fifteen hundred vacuum tubes and operated at a frequency of five 
thousand pulses per second. 

Unlike the two elec tronic calc ulators j ust described, the 
Colossus 's logic circuits performed not ordinary arithmetic, but 
rather Boolean comparisons of one string of pulses with another. 
These operations are logically equivalent to binary arithmetic , but 
strictly speaking the Colossus was not a calculator. The Colossus was 
capable of high-speed internal generation and storage of data; and its 
sequence of operations could be modified by setting switches , while 
certain characteristics of the message to be decoded were entered into 
the machine by plugging cables . These features gave the machine a 
sophistication lacking in c ontemporary electronic and relay 
calculators .  

The interception and decoding of German messages was a 
significant factor in the Allied victory, a fact kept secret until recently. 
The work was carried out in great secrecy at Bletchley Park, a 
Victorian estate about fifty miles north of London. No single person 
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was the Colossus 's inventor , but of the many who worked at 
Bletchley, Alan M. Turing , M. H.  A. Newman, and Thomas H.  
Flowers were the key individuals responsible for the machine's 
design, construction, and method of operation. Many others played 
important roles , including C. E. Wynn-Williams mentioned above. 

The immediate ancestor of the Colossus was a partially electronic 
machine called the "Heath Robinson, "  after a well-known British 
cartoon charac ter (Americans might have called it a "Rube 
Goldberg") .  This machine compared two streams of data entered on 
two paper tape readers and counted the Boolean sums or products of 
the holes punched on each tape with those on the other. One tape 
contained the encrypted German message ,  the other a coded 
representation of what the British believed the German's enciphering 
device did to a message (this information was itself arrived at by a 
combination of guesswork and mathematical theory, and by taking 
advantage of occasional German lapses in encrypting every message 
thoroughly) . By performing this comparison of the two tapes over 
and over, each time moving one letter sequence a single place relative 
to the other, a clue might emerge as to the exact  code the Germans 
had used on the particular message.6 This clue in tum would lead to 
another tape with which to repeat the process ,  and so on until the 
original scrambling of letters was exactly reversed. 

Because of the great number of runs needed, and because of the 
more general fact that the value of reading enemy messages rapidly 
diminishes with time, it was of utmost importance that the machine 
process messages quickly. The Heath Robinson's tapes fed data at the 
rate of up to two thousand characters per second-at this speed 
ordinary electromechanical tape readers were useless , and a special 
photoelectric reader was specially developed for this function. This 
reader, developed by the Post Office Research Establishment at 
Donis Hill , was vital to the success of both the Heath Robinson and 
later the Colossi , where an even higher speed of up to five thousand 
characters per second was obtained. 

The Heath Robinsons , however, suffered from difficulties in 
reading the two tapes in synchrony at high speeds. Even a slight 
misalignment would render the whole process worthless. Flowers , 
who had explored the substitution of electronics for relays in 
telephone circuits before he was transferred to Bletchley Park in 1942 , 
suggested that one of the tapes be completely replaced with an 
internally stored table for the trial "key" tape ,  which could be 
delivered in the proper phase and sequence to the rest of the machine 
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at high speeds . Stepping this pattern relative to the tape of the 
German 's code could likewise be done electronically. This at once 
solved the problem of synchronizing the tapes and greatly reduced 
the Heath Robinson 's "Rube Goldberg" complexity. 

But as Flowers said: "My suggestion, made in February 1943, was 
met with considerable skepticism. The first reaction was that a 
machine with the number of tubes that was obviously going to be 
needed would be too unreliable to be useful. Fortunately, this 
criticism was defeated by the experience of the Post Office using 
thousands of tubes in its communication network. These tubes were 
not subject to movement or handling, and the power was never 
switched off. Under these conditions tube failures were very rare. "7 

The main group at Bletchley continued work on the two-tape 
Heath Robinsons, while engineers at D ollis Hill began almost 
immediately building an electronic device. After eleven months of 
intense effort, they completed their first model. The machine 
contained about fifteen hundred vacuum tubes and generated the 
"key-tape" data from parameters stored internally in ring counters. In 
early D ecember 1943, it was put into service at Bletchley, where it 
acquired the name "C olossus" because of the number of tubes it 
contained. It soon proved to be a fast and reliable machine, producing 
far more useful output than the Heath Robinsons, while breaking 
down less often than many had feared. Its tape reader operated at a 
speed of five thousand characters per second, with the tape moving 
through it at over thirty miles an hour. The tape reader 's photoelectric 
scanner had an ingenious double-crescent mask that produced a 
square-shaped pulse of current from the photocell reading the passage 
of light through a round hole in the tape. Special timing holes on the 
tape triggered an internal electronic clock, whose pulses 
synchronized reading the tape with comparing the internal key data, 
thus avoiding problems of synchronizing the two streams of data at 
such high speeds. 

The success of the D ollis Hill engineers did not go unnoticed-in 
February 1944 they were told to produce twelve more machines by 
the summer ! Flower 's reaction was "flatly that it was impossible. " 
Increasingly, the Allied ability to keep up with the German encryption 
depended on the C olossus 's powers. Although the Germans had not 
caught on to the fact their messages were being read, they were slowly 
introducing new operating practices and a new, slightly more 
advanced coding machine. The code-breakers at Bletchley were 
always at least a half-step behind the Germans at any time, and they 
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were facing the prospect of falling so far behind they would never 
catch up--just as the Allies were preparing the cross-Channel 
invasion. 

Flowers promised to have at least one new Colossus working by 
the first of June, and once again the D ollis Hill group did the 
"impossible. "  They met the deadline ( the first of the new machines 
was not working the evening of May 31 ,  but was set right by an 
engineer overnight). What was more, the new Colossus incorporated 
a number of improvements over the first, not the least of which was 
its ability to process not one, but five streams of data from the tape 
in parallel, thus increasing its speed fivefold. And unlike the original 
Colossus, the new model contained circuits that could automatically 
alter its own program sequence. If it sensed a potentially meaningful 
pattern, a circuit permitted it to redirect its stepping through the 
internal table in such a way that would more quickly find a path to a 
solution . Within a decade, this ability became a defining feature of 
digital computers. 

By V-E Day in May 1945, a total of ten Colossi were in use at 
Bletchley. D esign changes continued to be made, but after the first 
one, each of the following contained about twenty-four hundred 
tubes, twelve rotary switches, and about eight hundred relays. Input 
of tabular data was made by plugging cables into pairs of sockets, 
which in tum directed the firing of ring counters . The pattern stored 
in these rings was compared with the pattern read from a tape, 
according to various Boolean operations. Usually the bit streams 
were added modulo-2, but a number of other functions were possible 
if so desired by the cryptanalysts. 

After each pass the comparison was repeated, only with one 
pattern off set by one position relative to the other, as set by a rotary 
switch. The results of the comparison, as well as the positions of the 
rotary switches, were printed out on a typewriter for further 
processing by the human cryptanalysts at Bletchley. The Colossus 
did not produce a decoded message, but rather an intermediate text 
that required further work, not always leading to success. 

The Colossus 's place in the history of the invention of the 
computer is hard to fix. Compared to other machines of the day, it 
was both more and less than what we now recognize as a digital 
computer. It performed all logical functions electronically at very 
high speeds, stored data internally in high-speed, fixed, and alterable 
stores, and stepped through a sequence of operations also at electronic 
speeds . In a rudimentary way, it could also alter that sequence. 
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The ENIAC 

But it was a machine capable of attacking one and only one 
problem: the analysis of German messages , which themselves were 
encrypted in a specific way. The Colossus did not perform ordinary 
arithmetic , nor could it solve other logical problems not cast in the 
same mold as those for which it was designed. Its g reatest 
legacy-besides the enormous contribution it made to the Allied war 
effort-was that those who worked on it gained an experience with 
computing circuits that allowed them after the war to design and build 
a number of general-purpose electronic computers. These computers , 
built at Manchester, Cambridge,  and London, were among the first 
to be placed in operation anywhere. In the context of the postwar 
evolution of digital computer architecture , the Colossus had less 
influence. The computers built after the war were general-purpose 
devices that could perform numerical or logical work, but they were 
immediate descendants of machines that had been built for numerical 
work, not from logic machines like the Colossus. The architecture of 
the modem stored-program computer hardly resembles that of the 
ENIAC, but it evolved from the ENIAC ---fl. special-purpose 
electronic computer optimized for certain numerical problems. 

Of the machines described above, only the Colossus was able to 
take advantage of high processing speed, by balancing it with 

a fast photoelectric tape reader and plugboard programming. The first 
machine that could solve complex numerical problems electronically, 
and whose programming was flexible enough to allow it to solve a 
variety of such problems, was the ENIAC, completed in late 1945 at 
the Moore School of Electrical Engineering at the University of 
Pennsylvania. The ENIAC is the most famous of the early computers, 
but not always for the right reasons. It deserves its fame not for its 
electronic circuits , which several other machines already had, nor for 
its architecture, which although ingenious and full of promise was 
rej ected by subsequent designers . One should rather remember the 
ENIAC as the first electronic machine to consistently and reliably 
solve numerical problems beyond the capability of human and in 
many cases relay computers as well. 

The ENIAC owed its existence ,  like the Colossus , to the pressures 
of the Second World War. It grew out of the need by the United States 
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Army to compute firing tables for ordnance then being employed in 
the field. The rapid deployment of various new types of artillery to 
widely dispersed battle fronts strained the capabilities of the Army 's 
Ballistic Research Laboratory (BRL) at Aberdeen , Maryland, to 
supply field officers with firing tables , without which the guns were 
useless .  After 1 935 ,  the BRL began to employ a variety of methods 
for preparing these tables ,  including one method that used differential 
analyzers of the type described in Chapter 5 .  At the Moore School in 
Philadelphia, there was one s uch  analyzer ; teams of human 
computers (many of them recent graduates of women 's colleges in 
and around Philadelphia) also prepared tables using mechanical 
calculators .  Although each of these methods worked, none was able 
to produce firing tables fast enough for the Army's needs after the 
United States 's entry into the war in 1 941 . 

Against that background at the Moore School , John Mauchly 
conceived of an electronic calculator that he felt would be able to 
compute tables much faster than any other method. Like the teams of 
human computers, his would be a digital machine , solving the 
differential equations of ballistics by numerical methods . B ut like the 
Differential Analyzer in which the integrators were connected via 
servomechanisms and cables , this machine would have a flexible 
arrangement for interconnecting its individual unit s ,  thereby 
allowing it to be used to solve a wide variety of problems . 

John W. Mauchly (1907-1980) received a Ph.D. in Physics from 
Johns Hopkins in 1932 and from 1933 to 1940 taught physics at Ursinus 
College outside Philadelphia. While at Ursinus , he pursued an interest 
in meteorology and began investigating mechanical aids to assist with 
a problem he had a long interest in , namely correlation between 
weather and sunspots or other periodic solar activity. He built a small 
electrical analog computer to assist with the analysis of weather data, 
and began searching the literature for information on other 
mechanical aids to calculation. 

Mauchly also explored the use of punched-card equipment , and 
for a while considered building a special-purpose harmonic analyzer 
like Kelvin 's tide predictor. Sometime around 1 940, he began 
considering the use of vacuum or gas-filled tubes for counters and 
storage of numbers .  He was familiar with cosmic-ray counters then 
in common use by physicists , and at that time he also built one or two 
vacuum tube circuits to explore these concepts . 

In December 1940,  Mauchly attended a meeting of the American 
Association for the Advancement of Science , where he presented a 
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paper on the weather analysis he did using his analog computer. 
Atanasoff was among those who heard the talk , and afterward he 
introduced himself and told Mauchly of the electronic machine then 
being built in Iowa. The two men corresponded frequently on the 
subject of computing, and in June 1941 , Mauchly drove out to Iowa 
to visit Atanasoff for five days .  While there as Atanasoff 's guest, 
Mauchly examined the partially completed machine , and the two had 
long discussions about its details ,  as well as about the general 
philosophy of calculator design. 

When he returned, Mauchly enrolled in a special summer course 
in electronics at the Moore School designed to acquaint professionals 
with the recent developments in electronics that were expected to play 
a role in the war. Mauchly completed the course and stayed on at the 
Moore School as an instructor. His correspondence with Atanasoff 
and others at that time reveals a growing conviction that a calculating 
machine using vacuum tubes and digital circuits was indeed both 
feasible and potentially useful-not only for meteorology but also 
for a range of problems the military might be interested in, including 
the preparation of firing tables . Correspondence continued through 
1941 and into the next year, but tapered off after that, and the two men 
went their separate ways. 

In December 1941, the United States entered the war, and the 
Ballistic Research Lab pressed on with even greater urgency in 
computing firing tables. At the Moore Schooi Mauchly met J. Presper 
Eckert, who at the tirnewas studying for a master's degree in 
electrical engineering and who had already done significant work on 
several advanced electronics projects, including the Moore School's 
Differential Analyzer. 

By the time he met Eckert, Mauchly had conceived of an 
electronic calculating machine that would eventually become the 
ENIAC. His visit with Atanasoff and their exchange of letters suggest 
that Atanasoff's work was a spark that ignited Mauchly 's growing 
interest in digital electronic devices . The fact that in Iowa Mauchly 
saw another physicist building such a complex machine might have 
helped convince him that his own, independent ideas were not all that 
farfetched (it might easily have seemed so at Ursinus, where Mauchly 
had few colleagues with whom he could discuss such grand schemes) . 

Many years later, the issue of who deserved credit for the 
invention of the computer became the subject of a court case ,  
Honeywell vs. Sperry Rand. Briefly, the court case arose because 
Sperry Rand held a basic patent on the computer (# 3, 1 20 ,606) . 
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Honeywell challenged its validity and thus Sperry 's right to collect 
royalty payments from other computer manufacturers. The patent 
itself was for the ENIAC, and was app lied for in 1 947 by Mauchly 
and several other members of the ENIA C team. Sperry Rand acquired 
the rights to this patent after its merger in 1955 with Remington Rand, 
which had in 1 950 acquired the Eckert-Mauchly Comp uter 
Corporation. The patent was finally granted in 1 964, although Sperry 
Rand had been collecting royalties prior to that time. In 1 973 Judge 
Earl Larson of the U .S .  District Court for Minnesota ruled the patent 
invalid, primarily due to Atanasoff's prior work and his influence on 
Mauchly. 

Mauchly strongly denied the influence of Atanasoff. The ENIAC 
had a very different structure from Atanasoff's machine. Most of all ,  
the ENIAC was designed to solve different problems, and it could 
be reconfigured to solve a range of such problems -something that 
Atanasoff's machine could not do. If Atanasoff is the inventor of the 
electronic digital computer, as the courts j udged in 1973, then it is in 
the restricted sense outlined here. At the same time , evidence 
uncovered at the trial reveals that prior to his visit to Iowa, Mauchly 
had only vague and ill-defined ideas about how to use vacuum tubes 
to build circuits that could perform digital calculation. Atanasoff, by 
contrast , was ski l led at c irc uit  design and had a thorough 
understanding of the difference between electronic circuits used for 
analog as opposed to digital applications.7 However, the ENIAC's 
circuits were not derived from Atanasoff 's . Atanasoff deserves credit 
as one of the persons who made the electronic digital computer a 
reality, but he is not the " inventor" of the digital computer. 

In August 1942 , Mauchly wrote a brief memorandum on "The Use 
of High Speed Vacuum Tube Devices for Calculating , "  in which he 
outlined his thoughts on the feasibi lity of such machines. That memo 
received little immediate response, but by the following spring, as 
the problem of computing firing tables mounted, the Army was more 
willing to entertain Mauchly 's notion. In Apri l 1943 he and Eckert 
submitted a formal proposal to the Army for the Construction of an 
"Electronic Diff. Analyzer , "  with "diff. " standing for "difference" but 
intentional ly abbreviated to suggest a kinship with the analog 
Differential Analyzer already familiar to the Army. The proposal was 
accepted, funds were made available ,  and design and construction 
begun. A year later, the basic design was complete-and the name 
was changed to ENIAC, for Electronic Numerical Integrator and 
Computer. 
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The heart of the ENIAC , and the first part its creators began 
designing , was a set of accumulators in which numbers were both 
stored and added.8 Eckert and Mauchly were familiar with thyratron 
scaling circuits used by physicists , but rejected that design because 
it could not guarantee enough accuracy. They settled instead on a ring 
counter having ten positions for each of the decimal digits , but which 
stored each digit in an Eccles-Jordan flip-flop. The result was an 
electronic counterpart to a mechanical calculator 's decimal wheel , 
with one flip-flop corresponding to each tooth of the wheel. In the 
ring counter , the state of one (and only one) flip-flop would be 
different from all the others .  When the ring received a pulse or train 
of pulses , the flip-flop having the different state would cycle around 
the ring accordingly, sending out a carry pulse to the next ring counter 
if it passed through the nines position (Figure 7 .3 ) .  
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Figure 7 3. ENIACs ring counter. Courtesy IEEE. 

A unit of ten ring counters stored a ten-digit decimal number. 
Because a carry mechanism was built in, the unit could also perform 
addition and subtraction. One set of counters , together with circuits 
that gated pulses into and out of it , made up one accumulator. Each 
accumulator required 550 tubes; it was the need for reliability that 
dictated this rather large number of tubes to handle a single ten-digit 
number .  The whol e ENIAC , with twenty acc umulators , a 
multiply-divide unit , and other units for control and input-output, 
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contained about 1 8,000 tubes and consumed 150 kilowatts of power. 
Besides the twenty accumulators, the ENIAC contained a 

separate unit that performed multiplication and division, a bank of 
ten-position switches that stored up to one hundred numbers for use 
during a calculation, and standard IBM punched-card readers and 
printers for input and output. A separate cycling unit delivered 
electronic pulses at 1 00 kHz to all other units to keep them 
synchronous . The basic machine cycle, or addition time, was 200 
microseconds ; a multiplication took 14  cycles or 2 .8  milliseconds. 

If the ENIAC 's number registers were akin to those found in 
mechanical calculators , its method of programming was a direct 
descendant of the D ifferential Analyzer 's. C ables, plugged into large 
plugboards distributed throughout the machine, directed the 
sequence of operations, while a cycling unit orchestrated the overall 
flow of instructions. This method, though cumbersome and 
time-consuming when it came to configure the ENIAC to solve a new 
problem, was nevertheless the only feasible way to exploit its high 
arithmetic speeds. The ENIAC 's accumulators were capable of 
adding five thousand numbers a second; no electromechanical input 
device (save possibly the C olossus 's paper tape reader) could have 
supplied instructions to it at that rate. It took up to two days to make 
all the necessary connections that set up the ENIAC to solve a new 
problem; once set up, it might solve that problem in minutes .9 

In programming the ENIAC by plugging cables, its users were 
literally rewiring the machine each time, transforming it into a 
special-purpose computer that solved a particular problem. In a sense 
this is what happens whenever one programs a modem computer; 
only with the ENIAC , as with the D ifferential Analyzer from which 
the concept was derived, the changes were made by a person rather 
than automatically by the computer itself. 

The important point is that however time-consuming the setup 
period was, it allowed the ENIAC to solve a wide range of 
mathematical problems , including many that its designers never 
anticipated. It was not fully a "general-purpose computer"-for 
example, it could not solve large systems of linear equations as 
Atanasoff's machine was designed to do. But its ability to be 
reconfigured to perform an almost limitless sequence of steps, 
including iterative loops of operations, sets the ENIAC apart from 
the other electronic calculators described thus far, and places it astride 
the categories of "calculator" and "computer. " 

The ENIAC was completed late in 1945 ( well after the end of the 
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war) and publicly dedicated in February 1946. The dire predictions 
that a machine with so many tubes could never be reliable did not 
come true: Eckert had carefully designed all the circuits so that the 
tubes drew far less current than they were rated for. And once 
completed, the ENIAC 's operators left the tube heaters on all the time, 
preventing the extreme temperature changes that cause filaments to 
bum out. After an initial run-in period, the ENIAC routinely ran up 
to twenty hours between tube failures-not as good as some relay 
calculators, but during those twenty hours the ENIAC could do more 
work than a relay machine could do in months. Like the C olossus, 
ENIAC 's speed allowed it to tackle problems that in practice were 
insoluble by any other method. From the very start, the ENIAC solved 
a steady stream of problems in a variety of fields; its first job was a 
still-classified problem relating to a design of the hydrogen bomb. In 
fact, the ENIAC was kept so busy at first that its installation at the 
BRL's Aberdeen Proving Ground was delayed a year. It was finally 
moved, in 1946-47, to Aberdeen, Maryland where it computed firing 
tables reliably until it was shut down in 1959. Also while at Aberdeen 
it solved a number of other problems, ranging from number theory 
to meteorology, that demonstrated its versatility and power. 

There is no question that the machine was successful in doing the 
kind of work it was designed to do, but the ENIAC 's shortcomings 
of limited memory size and tedious programming were apparent from 
the start. These two deficiencies were remedied to a limited extent by 
two modifications to the machine's original design. 

At Aberdeen, the ENIAC was modified in 1948 so that the pulses 
that directed its program sequence came not from cables laboriously 
plugged into plugboards, but rather from one of the banks of switches 
originally intended to be used as a function table. It was done by 
exploiting a symmetry of the ENIAC's design, namely that cables 
carrying numbers from one unit to another contained eleven channels 
(for the ten decimal digits plus the sign), the same as the number of 
program channels the cycling unit delivered to each unit. In that a 
program pulse in the ENIAC was electronically identical to a number 
pulse, it was easy enough to route the pulses delivered by a function 
table onto the 11-wire program trunk. Eckert has stated that he 
purposely designed this symmetry into the ENIAC from the start, but 
in any case it was not exploited until after 1948. Its effect was to 
shorten the setup time greatly, while slowing down the execution time 
somewhat ( because steps could no longer be executed simultaneously 
in different parts of the machine). 
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In 1953, a mass storage device was fitted, which increased the 
ENIAC's memory capacity from 20 to 1 20 numbers .  This device used 
small magnetic cores , whose direction of magnetization represented 
a binary value analogous to the flip-flops of a ring counter. This 
modification , together with the internal storage of the machines 's 
instructions in numerical (albeit nonalterable) form, foreshadowed 
two salient features of nearly every computing machine built 
thereafter. 

To summarize ,  the ENIAC was a transitional device that 
incorporated many of the features of what we now define as 
computers : high processing speed,  flexible (and from 1948 , internally 
stored) programming, and the ability to solve a wide range of 
problems in practice insoluble by any other means . B ut at the same 
time ,  it exhibited many of the features-and the inherent 
limitations-of calculators :  a tedious method of setup ,  internal use 
of decimal instead of binary numbers ,  and the use of accumulators 
that performed the dual functions of storage and arithmetic . 

But the most important thing was that it worked, and worked well. 
Its existence was well publicized from 1946 , and news of the ENIAC 
helped dispel the skepticism about the feasibility of electronic 
calculation. Its place as a milestone in computer history has become 
controversial , especially since the 1973 legal j udgement declaring 
Eckert and Mauchly 's patent on the ENIAC invalid. 

Other Electronic Calculators 

It was from the ENIAC team that the concept of the modem 
stored-program computer emerged. As its designers recognized 

the ENIAC' s  deficiencies , they wisely chose not to abandon the 
project ( cf. Babbage) but rather deferred their ideas for a new design 
to the future. That design produced the EDVAC, and later a host of 
other computers that embodied the stored-program principle. But for 
almost ten years , even well after the advantages of the EDY AC-type 
design were recognized, other electronic calculators continued to be 
built . A few of these deserve a brief mention here. 
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The IBM SSEC 

IBM equipment was used with little modification for the ENIAC's 
input-output devices. Although the head of IBM, Thomas Watson, 

Sr., hardly foresaw the future trend toward electronic computers, he 
did embark on an ambitious project to build an electronic computer 
for IBM. This machine was finished quickly, by 1948, and was called 
the SSEC, for Selective Sequence Electronic Calculator. Its design 
was a hybrid of traditional IBM punched-card technology, Howard 
Aiken 's  ideas, and some of what IBM gleaned from the ENIAC and 
the Moore School staff. Wallace Eckert directed the overall project, 
while Frank Hamilton, one of the builders of the Harvard Mark I, was 
the chief engineer at IBM's Endicott, New York plant. Hamilton was 
reluctant to build a fully electronic machine, and the result was an 
awkward architecture of a high-speed electronic store holding only 
eight, 20-digit decimal numbers, together with a much slower relay 
store that held 1 50 numbers . A third store, consisting of an array of 
paper-tape devices, held an additional twenty thousand numbers. 
Like the ENIAC, the SSEC was huge, occupying a prominent 
windowed showroom at IBM's New York offices on 57th St. The 
machine did incorporate a number of innovative features, including 
the ability to store and even modify instructions in the 8-number 
electronic store, but the awkward compromises of its design gave it 
few of the advantages, while retaining most of the disadvantages of 
both relay and vacuum tube technology. It did solve a number of 
problems at a time when few other machines of its size were operating 
reliably ( and of these few, most were under strict control of United 
States military organizations) .  

Wallace Eckert used the SSEC for astronomical work; his 
computation of tables of the Moon 's position helped to guide the 
Apollo astronauts twenty years later. The SSEC was dismantled in 
1952, after a modestly productive but short life. 

The Aviation Industry Calculators 

B y 1950, a general consensus was beginning to emerge as to the 
best way to build an automatic calculating machine. It was 

agreed that the machine should have a large-capacity read-write 
memory in which both program instructions and data are stored. It 
should use the binary system, and its circuits should be electronic. 
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But there were serious difficulties in getting such machines 
completed and working. In particular, the question of how to 
construct a memory of adequate capacity and sufficient speed was 
unresolved ( and remained so until the perfection of the magnetic core 
in the mid-1950s). Meanwhile, the need to solve large systems of 
linear equations, and linear and nonlinear differential equations was 
growing, especially within the booming aviation industry. In the 
United States this industry was centered in Southern California, 
where its engineers took the initiative in designing several electronic 
calculators that had unique and interesting designs and performed a 
lot of computation for them for many years. 

In 1951 , engineers at Northrop Aircraft developed a machine in 
many ways reminiscent of Atanasoff's machine, in that it used a 
rotating drum on which successive approximations of the solution to 
a problem were computed and stored. They called their machine 
"MAD D IDA" for Magnetic D rum D igital D ifferential Analyzer. 10  
The original model was built under an Air Force contract for the Snark 
guided missile project, but after the completion of a prototype in 1949, 
Northrop built a production model, of which at least ten were installed 
by the early 1950s . The production model contained about one 
hundred tubes ; its drum stored about ten thousand 29-bit binary 
numbers. The MAD D ID A's processor consisted of twenty-two 
circuits that performed numerical integration iteratively on pieces of 
data, at an addition speed of ten microseconds. 

D espite its limitations, the MADD IDA was a successful machine 
and was highly regarded by those who used it. For Northrop engineers 
the important point was that with it they were getting solutions to 
their problems (while the BINAC, a stored program computer they 
contracted from Eckert and Mauchly for the Snark project, never 
worked at all for them.) The MAD D ID A's ability to deliver solutions 
to problems was clearly more important to Northrop. Besides their 
MAD D ID A, three or four other companies made and sold similar 
devices through the early 1950s. After about 1955 ,  manufacturers of 
stored-program computers learned to produce simple, compact, and 
reliable machines, thereby taking away the MADDIDA's raison d' 
etre. Meanwhile, its designers went on to found a host of computer 
companies on the West Coast, including Computer Research 
C orporation, ElectroD ata, and Teleregister. These companies formed 
the basis for much of the dynamic computer industry in California 
during the next decade. 

Another machine developed at Northrop and used heavily by the 
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Conclusion 

aviation industry was an adaptation of IBM accounting equipment. 
Northrop engineers coupled an IBM Type 604 calculator to a Type 
402 accounting machine, which they controlled through a plugboard 
device of their own design. The combination worked well, and later 
IBM extended the concept by adding a type 521 summary punch and 
a type 941 memory unit, which gave the system an ability to store up 
to fifty 10-digit decimal numbers. IBM marketed this system as the 
C ard Programmed C alculator, or C PC ;  nearly seven hundred were 
installed and used until the late 1950s. Its type 604 calculating unit 
used vacuum tubes operating at 50 kHz, performing eighty 
multiplications a second. Programming was carried out by a 
combination of plugboards and punched cards, with conditional 
branching and loops of up to ten lines of instructions possible. For 
companies like Northrop, the C PC filled the need for computing 
power at a time when good commercial stored-program computers 
were unavailable. 

The high speeds of electronic circuits offered dramatic increases 
in the power of mechanized arithmetic, but also brought forth 

serious design challenges . The variety of calculator designs described 
in this chapter reveals that there was little agreement on how best to 
use vacuum tubes . One serious problem was the perceived 
unreliability of tubes compared to relays; as it turned out, engineers 
like Presper Eckert found ways to design tube circuits that were even 
more reliable than relay circuits . More serious was the integration of 
high arithmetic speeds with the speeds of input, output, and 
programming. Each of the machines just described addressed this 
issue in a different way, with varying degrees of success .  None of 
them achieved a good balance among the various functions. Only 
with the adoption of the stored-program concept was this problem 
adequately met, allowing the technology of electronic calculating 
circuits to realize its potential. 
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1 .  In British Commonwealth countries the vacuum tube is called a 
"valve , "  a name which might further suggest its function as a 
regulator of the flow of current , as well as an all-or-nothing 
switch. 

2. By connecting the chains of thyratrons in rings ,  one could count 
in any number base besides binary, with the base determined by 
the number of tubes in each ring . 

3. This is generally true of counters :  consider an automobile 
odometer, which counts the total miles a car has traveled. It is 
usually off by a few percent due to numerous factors ,  but for its 
use in an automobile the error is tolerable. 

4. The sequence was fixed for this process and did not need to be 
altered. 

5 .  This tube enclosed a tetrode, having two grids , and a triode in the 
same glass envelope. 

6. The exact nature of this clue and how it was observed is still kept 
secret ,  but it is derived from the statistical properties of a sequence 
of letters that in some way represents a meaningful message. 

7. Indeed, Atanasoff was the first to use the word "analogue" to 
describe that type of computer ; "digital " was first used by George 
Stibitz in 1 942. 

8 .  The 1943 proposal called for the ENIAC to have ten accumulators; 
later this was doubled to twenty. 

9 .  Because the input of data was through punched cards and not 
cables , it was easy to have the ENIAC solve a set of problems in 
which the basic operation sequence remained unchanged. This 
was the kind of operation the designers had intended, although 
with the end of the war the ENIAC assumed a much different role 
that required the frequent changing of its programs. 
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10. Unlike Atanasoff's computer, MADDIDA stored digits on the 
drum magnetically and was dedicated to solving differential 
equations. 
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Epilog 

Today we see computers almost everywhere we turn: in our 
banks, our schools , our factories ,  our offices , our homes. How this 
happened, and what it has to do with those technologies we have 
discussed in this book, are described in the following few pages. In 
doing so, we will argue that the computer has evolved from the long 
line of calculating technologies we have traced from antiquity, and 
that it may not be the revolutionary technology some people suppose 
it to be. 

All computers , from the giant brains of the 1 950s to the sleek 
microcomputers of the 1 980s ,  have the same fundamental design. The 
computer is not a single device ,  but rather an integrated system of 
hardware. A control unit directs the operations of the constituent 
units , coordinating them to carry out the thousands or millions of 
small steps in the information-processing task the computer has been 
programmed to do. Input-output units transfer data and instructions 
from the user to the computer system. Memory units store data and 
instruc tions until they are needed for processing . And an 
arithmetic-logic unit performs the basic arithmetic operations and 
logical comparisons that comprise an information-processing task. 

Computers are general purpose in the sense that they can carry 
out any information-processing task a programmer can break into 
suitable basic operations and feed to the computer in an appropriate 
code. Computers are automatic in the sense that once the instructions 
and data have been appropriately coded and sent to the computer 
through the input equipment, no human intervention is required 
throughout the course of the computation; the computer is able 
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automatically to transfer information and data between various units 
of the system as needed, carry out the sequence of arithmetical and 
logical operations in the appropriate order, and even modify data and 
instructions in the course of a computation as the circumstances 
warrant. Computers are digital devices in the sense we discussed in 
Chapter 5 .  

There are two general features of computers that set them apart 
from earlier calculating technologies and help to explain why the 
computer has become so prevalent in contemporary western society. 
The widespread use of electronics makes the computer thousands of 
times faster than any mechanical or electromechanical calculating 
device. This speed advantage opens up  many new computing 
opportunities, e.g. , real-time applications, like air traffic control, in 
which the calculator must provide an answer as rapidly as the activity 
progresses ,  and supercomputing problems in which billions of 
arithmetic and logical operations may be required to achieve a single 
result. The use of stored programming (i.e. , instructing the machine 
through the use of programs which the machine stores internally and 
modifies and executes automatically) makes practical the computer 's 
general-purpose capability. A stored-program computer can process 
in rapid succes sion, or even simultaneously, a wide range of 
problems. This is accomplished, without the lengthy and tedious 
rewiring or replugging of the machine between problems , by simply 
using the input equipment to enter a string of symbols representing 
a new program. 

For all of the design similarities among computers , the changes 
over the pas t  forty years are perhaps more significant to the 
technology 's incorporation in society. In comparison with those of 
even thirty years ago, today 's computers are smaller and more 
reliable , require less maintenance, consume less  power, cost 
considerably les s ,  and have much better absolute performance and 
price-performance characteristics .  The microcomputers used by 
today 's hobbyist outperform in almost every respect the computers 
of the 1 950s , which were affordable only to the largest organizations . 
These changes are explained by the rapid stream of inventions and 
innovations in the hardware that implement the various functions of 
the computer, and in the software that instructs this hardware how to 
operate. These innovations include the transistor, the microprocessor, 
vir tual memory, parallel process ing , operating systems,  and 
high-level programming languages. 
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The implementation of these innovations widened the market for 
the computer. In the 1950s, only large organizations (e.g . ,  the Census 
Bureau, military agencies, and aerospace and oil companies) with 
large computing or data processing needs could afford computers . In 
the 1 960s, computers came within reach of many medium-sized 
businesses, universities , and smaller scientific organizations .  In the 
1970s, price-performance continued to improve so that individual 
research laboratories and business offices could afford their own 
computers .  By the 1 980s , the cost had declined to the point where 
computers appeared in the home and on the desks of individuals in 
the office place. These changes, which could not have occurred 
without continuous dramatic decreases in price, were also dependent 
on many other technical innovations that made the machines smaller, 
more powerfu l ,  more reliable ,  and easier to use. This whole, 
interrelated set of changes have enabled the computer to attain its 
position in what some now call the "Information Age. " But it is 
beyond the scope of this work to trace these changes and their impacts 
in the detail they deserve. 

Contrary to the popular perception of the computer as an entirely 
novel invention, it adapted to its own needs features from many 
different earlier calcu lating technologies . Many of the early 
American and British computer designers built directly upon their 
experiences building large electronic calculators ,  like Colossus and 
ENIAC. The idea of a program-controlled calculating machine was 
developed by Charles Babbage in the mid-nineteenth century. 
Inspired by Babbage, Howard Aiken built his Harvard Mark I, which 
would execute an arbitrary sequence of operations specified by a 
program. The concept of program control was carried much further 
forward by the invention of stored programming . 

Many of the first digital computer projects had their origins in 
punched-card equipment or analog calc ulators .  International 
Business Machines , the world leader in computer manufacturing ,  
achieved the transition from punched-card equipment manufacture 
to computer manufacture partly through an intermediate technology, 
the Card Programmed Calculator (CPC) . Built in 1 948 , the CPC 
wired together into a system an IBM 603 electronic punched card 
multiplier and an IBM 405 accounting machine. The University of 
Pennsylvania's ENIAC project ,  out of which grew the first plans for 
the modern computer, had its own origins in MIT's Rockefeller 
Differential Analyzer; in fact ENIAC was known originally as an 
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electronic difference analyzer. MIT's Whirlwind computer evolved 
from an Air Force project to construct an analog calculating device 
to control an aircraft simulator. 

Peripheral equipment used in prewar calculating systems was 
adapted to the computer. The prime example is punched-card 
equipment. Contrary to the prediction of MIT mathematician Norbert 
Wiener that computers would make punched cards obsolete, their use 
expanded exponentially in the 1950s and remained popular until 
time-sharing became commonplace in the 1 970s. Paper tape, used 
earlier in the Harvard Mark I, Colossus , and several of the Bell Labs 
relay calculators, was a principal input medium of the early 
computers . The Flexowriter, a "smart" typewriter used in direct 
mailing and other applications before the Second World War, was 
employed as the principal output device on the Harvard Mark I and 
several computers of the 1950s . 

Early computer designers also appropriated electronic 
technology from other fields. The vacuum tube flip-flop, the 
fundamental switching component of computers in the 1950s, was 
first tested and refined in cosmic ray counters of the 1 930s . Mercury 
delay lines , used during the Second World War to store radar signals , 
were modified to store information in the ED VAC and several other 
early computers .  Cathode ray tubes, developed for television and 
radar, served as the basis for the popular Williams tube memory of 
the 1950s and also as an input-output device on the Whirlwind. 
Magnetic tape and wire, introduced by the German broadcast 
industry, was pioneered as a storage medium on the first National 
Bureau of Standards computer, the SEAC. 

This continuity in technology is mirrored in the organizations that 
manufactured it. The computer industry of the 1 950s emerged largely 
from the business equipment manufacturing industry that had 
supplied card punches, sorters , tabulators, and desk calculators 
between the two world wars . National Cash Register acquired 
Computer Research Corporation in 1953 to update their line of retail 
equipment. Burroughs acquired ElectroD ata in 1 956 in order to 
computerize their traditional line of banking equipment. IBM's 650 
and 1 40 1  computers of the 1 950s replaced the punched-card 
equipment IBM had supplied for decades to insurance companies and 
other large businesses . 

This same pattern of continuity is apparent among users. 
Industries that used calculating technology extensively in the 1930s 
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became a ready market for the computer in the 1 950s. For example, 
the aircraft manufacturers , which employed thousands of Friden and 
Marchant calculators and many punched-card systems in test data 
reduction in the 1 930s and 1 940s, replaced these with computers as 
soon as they became available. In some instances companies were 
not satisfied with the computing power available from commercial 
sources and participated in the development of the new products 
themselves . For example, IBM worked with Northrop Aviation to 
develop the Card Programmed Calculator and with United Aircraft 
on the first high-level programming language, Fortran. 

The story is similar for government users . In the 1 930s and 1 940s 
the heaviest government users of calculating equipment were the 
Census Bureau and the military organizations. The first commercial 
computer delivered in the United States went to the Census Bureau 
in 195 1 .  The Navy supported the start-up of a new firm, Engineering 
Research Associates , in 1 946 in order to ensure that state-of-the-art 
computing equipment would be available for cryptanalysis . Those 
who founded Engineering Research Associates were some of the 
same engineers who built or operated cryptanalytic calculating 
equipment as military personnel during the war. 

Scientists were among the most innovative and demanding users 
of calc ulating technology in the 1 930s and the war years . 
Astronomers ,  psychologists , and agricultural statisticians found new 
ways of using business calculating equipment in the 1 930s .  Physicists 
from Los Alamos used desk calculators, punched-card tabulators, 
relay calculators ,  and differential analyzers on the Manhattan Project 
during the war. But they switched to computers as soon as they 
became available in the 1 950s. The NORC, the MANIAC, the 
Institute for Advanced Study computer, and others were used heavily 
for research in nuclear physics ,  molecular biology, fluid dynamics ,  
and many other scientific areas in the first decade of modem 
computing. 

These remarks only suggest the rich connections between the 
technology we have set out in this book and the electronic, 
stored-program computer. Our incomplete understanding of these 
connections ,  of events that have occurred so recently that we may 
still speak to the participants ,  may seem odd to some readers .  But it 
requires time to gain perspective, especially in a field in which most 
participants are too busy looking to the future to devote time to the 
past. Many of the advances in computing have been made in the 
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context of government-classified or company-proprietary projects ,  in 
which information has not been shared yet with the historian. But as 
we learn more our appreciation for a single, continuous history of 
computing grows deeper. And within the next few years we should 
be able to present the events of the first half-century of the computer 
era as we have been able here to account for the development of those 
earlier calculating technologies . 
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