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Preface

Who is this book is for?

This book is meant as a textbook for an honours course in Calculus, and is aimed at first year
students beginning studies at the university. The preparation assumed is high school level
Mathematics. Any arguments not met before in high school (for example, geometric argu-
ments à la Euclid) can be picked up along the way or simply skipped without any loss of con-
tinuity. This book may also be used as supplementary reading in a traditional methods-based
Calculus course or as a textbook for a course meant to bridge the gap between Calculus and
Real Analysis.

How should the student read the book?

Students reading the book should not feel obliged to study every proof at the first reading.
It is more important to understand the theorems well, to see how they are used, and why they
are interesting, than to spend all the time on proofs. So, while reading the book, one may
wish, after reading the theorem statement, to first study the examples and solve a few relevant
exercises, before returning to read the proof of that theorem.

The exercises are an integral part of studying this book. They are a combination of purely
drill ones (meant for practising Calculus methods), and those meant to clarify the mean-
ings of the definitions, theorems, and even to facilitate the goal of developing ‘mathematical
maturity’. The student should feel free to skip exercises that seem particularly challenging
at the first instance, and return back to them now and again. Although detailed solutions are
provided, the student should not be tempted to consult the given solution too soon. In the learn-
ing process leading to developing understanding, it is much better to think about the exercise
(even if one does not find the answer oneself!), rather than look at the provided solution in
order to understand how to solve it. In other words, it is the struggle to solve the exercise
that turns out to be more important than the mere knowledge of the solution. After all, given
a new problem, it will be the struggle that pays off, and not the knowledge of the solution
of the (now irrelevant) old exercise! So the student should absolutely not feel discouraged if
he or she doesn’t manage to solve an exercise problem. Some of the exercises that are more
abstract/technical/challenging as compared to the other exercises are indicated with an asterisk
symbol (∗).
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Introduction

What is Calculus?

Calculus is a branch of mathematics in which the focus is on two main things: given a
real-valued function of a real variable, what is the rate of change of the function at a point
(Differentiation), and what is the area under the graph of the function over an interval
(Integration).

f

f

Differentiation and

a bc

Integration

What is the steepness/slope of f
at the point c?

What is the area under the graph of f
over an interval from a to b?

Differentiation Integration

Differentiation is concerned with
velocities, accelerations, curvatures, etc.
These are rates of change
of function values
and are defined locally.

Integration is concerned with
areas, volumes, average values, etc.
These take into account
the totality of function values,
and are not defined locally.
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We will see later on that the rate of change of f at c is defined by

f ′(c) = lim
x→c

f (x) − f (c)
x− c

,

and what matters is not what the function is doing far away from the point c, but rather the
manner in which the function behaves in the vicinity of c. This is what we mean when we say
that ‘differentiation is a local concept’. On the other hand, we will learn that for nice functions,
the area will be given by an expression that looks like

∫ b

a
f (x)dx = lim

N→∞

N∑
n=0

f

(
a +

b− a
N

n

)
b− a
N

,

and we see that in the above process, the values of the function over the entire interval from a
to b do matter. In this sense integration is a ‘non-local’ or ‘global’ process.

Thus it seems that in Calculus, there are these two quite different topics of study. However
there is a remarkable fact, known as that Fundamental Theorem of Calculus, which creates a
bridge between these seemingly different worlds: it says, roughly speaking that the processes
of differentiation and integration are inverses of each other:

∫ b

a
f ′(x)dx = f (b) − f (a) and

d
dx

∫ x

a
f (ξ)dξ = f (x).

This interaction between differentiation and integration provides a powerful body of under-
standing and calculational technique, called ‘Calculus’. Problems that would be otherwise
computationally difficult can be solved mechanically using a few simple Calculus rules, and
without the exertion of a great deal of penetrating thought.

Why study Calculus?

The reason why Calculus is a standard component of all scientific undergraduate education is
because it is universally applicable in Physics, Engineering, Biology, Economics, and so on.
Here are a few very simple examples:

(1) What is the escape velocity of a rocket on the surface of the Earth?

(2) If a hole of radius 1 cm is drilled along a diametrical axis in a solid sphere of radius
2 cm, then what is the volume of the body left over?

(3) If a strain of bacteria grows at a rate proportional to the amount present, and if the
population doubles in an hour, then what is the population of bacteria at any time t?

(4) If the manufacturing cost of x lamps is given byC(x) = 2700− 100x, and the revenue
function is given by R(x) = x− 0.03x2, then what is the number of lamps maximising
the profit?

We will primarily be concerned with developing and understanding the tools of Calculus,
but now and then in the exercises and examples chosen, we will consider a few toy models
from various application areas to illustrate how the techniques of Calculus have universal
applications.
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What will we learn in this book?

This book is divided into six chapters, listed below.

(1) The real numbers.

(2) Sequences.

(3) Continuity.

(4) Differentiation.

(5) Integration.

(6) Series.

This covers the core component of a single/one variable Calculus course, where the basic
object of study is a real-valued function of one real variable, and one studies the themes of
differentiation and integration for such functions. On the other hand, in multi/several variable
Calculus, the basic object of study is anR

m-valued/vector valued function of several variables,
and the themes of differentiation and integration for such functions. This book does not cover
this latter subject.

We refrain from giving a brief gist of the contents of each of the chapters, since it won’t
make much sense to the novice at this stage, but instead we appeal to whatever previous expo-
sure the student might have had in high school regarding these concepts. We will of course
study each of these topics from scratch. We make one pertinent point though in the paragraph
below.

A discussion of Calculus needs an ample supply of examples, which are typically through
considering specific functions onemeets in applications. The simplest among these illustrative
functions are the algebraic functions, but it would be monotonous to just consider these. Much
more interesting things happen with the so-called elementary transcendental functions such as
the logarithm, exponential function, trigonometric functions, and so on. A rigorous definition
of these unfortunately needs the very tools of Calculus that are being developed in this course.
It would be a shame, however, if such rich examples centered around these functions have to
wait till a rigorous treatment has been done. So we adopt a dual approach: we will choose
to illustrate our definitions/theorems with these functions, and not exclude these functions
from our preliminary discussion, hoping that the student has some exposure to the definitions
(at whatever intuitive/rigour level) and properties of these transcendental functions. Later on,
when the time is right (Chapter 5), we will give the precise mathematical definitions of these
functions and prove the very properties that were accepted on faith in the initial parts of this
book. This dual approach adopted by us has the advantage of not depriving the student of
the nice illustrations of the results provided by these functions, and of preparing the student
for the actual treatment of these functions later on. In any case, if the student meets a very
unfamiliar property or manipulation involving these functions in the initial part of this book,
it is safe to simply skip the relevant part and revisit it after Chapter 5 has been read.

How did Calculus arise?

Some preliminary ideas of Calculus are said to date back to as much as 2000 years ago when
Archimedes determined areas using the Method of Exhaustion; see the following discussion
and Figure 1.
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The development of Differential and Integral Calculus is largely attributed to Newton
(1642–1727) and Leibniz (1646–1716), and the foundations of the subject continued to be
investigated into the 19th century, among others by Cauchy, Bolzano, Riemann, Weierstrass,
Lebesgue, and so on.

We end this introduction with making a few remarks about the ‘Method of Exhaustion’,
which besides treating this historical milestone in the development of Calculus, will also pro-
vide some motivation to begin our journey into Calculus with a study of the real numbers.

· · ·

Figure 1. Determination of the area of a circle using the Method of Exhaustion.

In Figure 1, it is clear that what we are doing is trying to obtain the area of a circle by inscribing
polygons inside it, each time doubling the number of sides, hence ‘exhausting’ more and more
of the circular area. The idea is then that if A is the area of the circle we seek, and an is the
area of the polygon at the nth step, then for large n, an approximates A. As we have that
a1 ≤ a2 ≤ a3 ≤ · · ·, and since an misses A by smaller and smaller amounts as n increases, we
expect that A should the ‘smallest’ number exceeding the numbers a1, a2, a3, · · ·. Does such a
number always exist?

Obviously, one can question the validity of this heuristic approach to solving the problem.
The objections are for example:

(1) We did not really define what we mean by the area enclosed.

(2) We are not sure about what properties of numbers we are allowed to use. For example,
we seem to be needing the fact that ‘if we have an increasing sequence of numbers,
all of which are less than a certain number1, then there is a smallest number which
is bigger than each of the numbers a1, a2, a3, · · ·’. Is this property true for rational
numbers?

Such questions might seem frivolous to a scientist who is just interested in ‘real world appli-
cations’. But such a sloppy attitude can lead to trouble. Indeed, some work done in the 16th to
the 18th century relying on a mixture of deductive reasoning and intuition, involving vaguely
defined terms, was later shown to be incorrect. To give the student a quick example of how
things might easily go wrong, one might naively, but incorrectly, guess that the answer to
question (2) above is yes. This prompts the question of whether there is a bigger set of num-
bers than the rational numbers for which the property happens to be true? The answer is yes,
and this is the real number system R.

Thus a thorough treatment of Calculusmust start with a careful study of the number system
in which the action of Calculus takes place, and this is the real number system R, where our
journey begins!

1 imagine a square circumscribing the circle: then each of the numbers a1, a2, a3, · · · are all less than the area of
the square



Preliminary notation

A := B or B =: A A is defined to be B; A is defined by B

∀ for all; for every

∃ there exists

¬ S negation of the statement S; it is not the case that S

a ∈ A the element a belongs to the set A

∅ the empty set containing no elements

A ⊂ B A is a subset of B

A�B A is a subset of B, but is not equal to B

A\B the set of elements of A that do not belong to B

A ∩ B intersection of the sets A and B

⋂
i∈I

Ai intersection of the sets Ai, i ∈ I

A ∪ B union of the sets A and B

⋃
i∈I

Ai union of the sets Ai, i ∈ I

A1 × · · · × An Cartesian product of the sets A1, · · · ,An;
{(a1, · · · , an) : a1 ∈ A1, · · · , an ∈ An}
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The real numbers

From the considerations in the Introduction, it is clear that in order to have a firm foundation
of Calculus, one needs to study the real numbers carefully. We will do this in this chapter. The
plan is as follows:

(1) An intuitive, visual picture of R: the number line. We will begin our understanding of
R intuitively as points on the ‘number line’. This way, we will have a mental picture of R,
in order to begin stating the precise properties of the real numbers that we will need in the
sequel. It is a legitimate issue to worry about the actual construction of the set of real numbers,
and we will say something about this in Section 1.8.

(2) Properties of R. Having a rough feeling for the real numbers as being points of the real
line, we will proceed to state the precise properties of the real numbers we will need. So we
will think of R as an undefined set for now, and just state rigorously what properties we need
this set R to have. These desirable properties fall under three categories:

(a) the field axioms, which tell us about what laws the arithmetic of the real numbers should
follow,

(b) the order axiom, telling us that comparison of real numbers is possible with an
order > and what properties this order relation has, and

(c) the Least Upper Bound Property of R, which tells us roughly that unlike the set of
rational numbers, the real number line has ‘no holes’. This last property is the most
important one from the viewpoint of Calculus: it is the one which makes Calculus
possible with real numbers. If rational numbers had this nice property, then we would
not have bothered studying real numbers, and instead we would have just used rational
numbers for doing Calculus.

The How and Why of One Variable Calculus, First Edition. Amol Sasane.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



2 THE HOW AND WHY OF ONE VARIABLE CALCULUS

(3) The construction of R. Although we will think of real numbers intuitively as ‘numbers
that can be depicted on the number line’, this is not acceptable as a rigorous mathematical
definition. So one can ask:

Is there really a set R that can be constructed which has the stipulated properties
(2)(a), (b), and (c) (and which will be detailed further in Sections 1.2, 1.3, 1.4)?

The answer is yes, and we will make some remarks about this in Section 1.8.

0 1

Intuitive visual picture of
as points on the number line

Properties of
(1) Field axioms (laws of arithmetic)
(2) Order axioms (>,<, = )
(3) The Least Upper Bound Property

Construction of

1.1 Intuitive picture of R as points on the number line

In elementary school, we learn about

the natural numbers N := {1, 2, 3, · · · }
the integers Z := {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }, and

the rational numbers Q :=
{[n

d

]
: n, d ∈ Z, d �= 0

}
.

Incidentally, the rationale behind denoting the rational numbers by Q is that it reminds us of
‘quotient’, and Z for integers comes from the German word ‘zählen’ (meaning ‘count’). In
the above, [n

d

]

represents a whole family of ‘equivalent fractions’; for example,
2
4

=
1
2

=
−3
−6

etc.

We are accustomed to visualising these numbers on the ‘number line’. What is the number
line? It is any line in the plane, on which we have chosen a point O as the ‘origin’, represent-
ing the number 0, and chosen a unit length by marking off a point on the right of O, where
the number 1 is placed. In this way, we get all the positive integers, 1, 2, 3, 4, · · · by repeat-
edly marking off successively the unit length towards the right, and all the negative integers
−1,−2,−3, · · · by repeatedly marking off successively the unit length towards the left.
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−2 −1 0 1 2

Chosen unit length

Just like the integers can be depicted on the number line, we can also depict all rational num-
bers on it as follows. First of all, here is a procedure for dividing a unit length on the number
line into d (∈ N) equal parts, allowing us to construct the rational number 1/d on the number
line. See Figure 1.1.

0

O A B

A ′

B ′

1

Figure 1.1 Construction of rational numbers: in the above picture, given the length 1 (that
is, knowing the position of B), we can construct the length 1/5, and so the point A corresponds
to the rational number 1/5.

The steps are as follows: Let the points O and B correspond to the numbers 0 and 1.

(1) Take any arbitrary length �(OA′) along a ray starting at O in any direction other than
that of the number line itself.

(2) Let B′ be a point on the ray such that �(OB′) = d · �(OA′).

(3) Draw AA′ parallel to BB′ to meet the number line at A.

Conclusion: From the similar triangles ΔOAA′ and ΔOBB′, we see that the length
�(OA) = 1/d.

Having obtained 1/d, we can now construct n/d on the number line for any n ∈ Z, by
repeating the length 1/d n times towards the right of 0 if n > 0, and towards the left −n times
from 0 if n is negative.

Hence, we can depict all the rational numbers on the number line. Does this exhaust the
number line? That is, suppose that we start with all the points on the number line being
coloured black, and suppose that at a later time, we colour all the rational ones by red: are
there any black points left over? The answer is yes, and we demonstrate this below. We will
show that there does ‘exist’, based on geometric reasoning, a point on the number line, whose
square is 2, but we will also argue that this number, denoted by

√
2, is not a rational number.
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First of all, the picture below shows that
√

2 exists as a point on the number line. Indeed,
by looking at the right angled triangle ΔOBA, Pythagoras’s Theorem tells us that the length
of the hypotenuse OA satisfies

(�(OA))2 = (�(OB))2 + (�(AB))2 = 12 + 12 = 2,

and so �(OA) is a number, denoted say by
√

2, whose square is 2. By taking O as the centre
and radius �(OA), we can draw a circle using a compass that intersects the number line at
a point C, corresponding to the number

√
2. Is

√
2 a rational number? We show below that

it isn’t!

O

A

B
√

2

1

Exercise 1.1. Depict −11/6 and
√

3 on the number line.

Theorem 1.1 (An ‘origami’ proof of the irrationality of
√

2). There is no rational number
q ∈ Q such that q2 = 2.

Proof. Suppose that
√

2 is a rational number. Then some scaling of the triangle

√
2

1

1

by an integer will produce a similar triangle, all of whose sides are integers. Choose the
smallest such triangle, say ΔABC, with integer lengths �(BC) = �(AB) = n, and �(AC) = N,
n,N ∈ N. Now do the following origami: fold along a line passing through A so that B lies on
AC, giving rise to the point B′ on AC. The ‘crease’ in the paper is actually the angle bisector
AD of the angle ∠BAC.

N

n

n

AA

BBC C D

B ′

Fold along a line
passing through A

so that  B
lies on AC.
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In ΔCB′D, ∠CB′D = 90◦, ∠B′CD = 45◦. So ΔCB′D is an isosceles right triangle. We have
�(CB′) = �(B′D) = �(AC) − �(AB′) = N − n ∈ N, while

�(CD) = �(CB) − �(DB) = n− �(B′C) = n− (N − n) = 2n− N ∈ N.

So ΔCB′D is similar to the triangle

√
2

1

1

has integer side lengths, and is smaller than ΔABC, contradicting the choice of ΔABC.
So there is no rational number q such that q2 = 2. �

A different proof is given in the exercise below.

Exercise 1.2. (∗) We offer a different proof of the irrationality of
√

2, and en route learn a
technique to prove the irrationality of ‘surds’.1

(1) Prove the Rational Zeros Theorem: Let c0, c1, · · · , cd be d ≥ 1 integers such that
c0 and cd are not zero. Let r = p/q where p, q are integers having no common factor
and such that q > 0. Suppose that r is a zero of the polynomial c0 + c1x + · · · + cdx

d.
Then q divides cd and p divides c0.

(2) Show that
√

2 is irrational.

(3) Show that 3
√

6 is irrational.

Thus, we have seen that the elements of Q can be depicted on the number line, and that not
all the points on the number line belong to Q. We think of R as all the points on the number
line. As mentioned earlier, if we take out everything on the number line (the black points)
except for the rational numbers Q (the red points), then there will be holes among the rational
numbers (for example, there will be a missing black point where

√
2 lies on the number line).

We can think of the real numbers as ‘filling in’ these holes between the rational numbers.
We will say more about this when we make remarks about the construction of R. Right now,
we just have an intuitive picture of the set of real numbers as a bigger set than the rational
numbers, and we think of the real numbers as points on the number line. Admittedly, this is
certainly not a mathematical definition, and is extremely vague. In order to be precise, and to
do Calculus rigorously, we just can’t rely on this vague intuitive picture of the real numbers.
So we now turn to the precise properties of the real numbers that we are allowed to use in

1 Surds refer to irrational numbers that arise as the nth root of a natural number. The mathematician al-Khwarizmi
(around 820 AD) called irrational numbers ‘inaudible’, which was later translated to the Latin surdus for ‘mute’.
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developing Calculus. While stating these properties, we will think of the set R as an (as yet)
undefined set containing Q which will satisfy the properties of

(1) the field axioms (laws of arithmetic in R),

(2) the order axioms (allowing us to compare real numbers with >, <, =), and

(3) the Least Upper Bound Property (making Calculus possible in R),

stipulated below.
It is a pertinent question if one can construct (if there really exists) such a set R satisfying

the above properties (1–3). The answer to this question is yes, but it is tedious. So in this
first introductory course, we will not worry ourselves too much with it. It is a bit like the
process of learning physics: typically one does not start with quantum mechanics and the
structure of an atom, but with the familiar realm of classical mechanics. To consider another
example, imagine how difficult it would be to learn a foreign language if one starts to painfully
memorise systematically all the rules of grammar first; instead a much more fruitful method
is to start practicing simple phrases, moving on to perhaps children’s comic books, listening
to pop music in that language, news, literature, and so on. Of course, along the way one picks
up grammar and a formal study can be done at leisure later resulting in better comprehension.
We will actually give some idea about the construction of the real numbers in Section 1.8.
Right now, we just accept on faith that the construction of R possessing the properties we are
about to learn can be done, and to have a concrete object in mind, we rely on our familiarity
with the number line to think of the real numbers when we study the properties (1), (2), (3)
listed above.

We also remark that property (3) (the Least Upper Bound Property) of R will turn out to be
crucial for doing Calculus. The properties (1), (2) are also possessed by the rational number
system Q, but we will see that (3) fails for Q.

1.2 The field axioms

The content of this section can be summarised in one sentence: (R, +, ·) forms a field. What
does this mean? It is a compact way of saying the following. R is a set, equipped with two
operations:

+ : R × R → R,

called addition, which sends a pair of real numbers (x, y) to their sum x + y, and the other
operation is

· : R × R → R,

called multiplication, which sends a pair of real numbers (x, y) to their product x · y, and these
two operations satisfy certain laws, called the ‘field axioms’.2 The field axioms for R are

2 There are other number systems, for example, the rational numbersQwhich also obey similar laws of arithmetic,
and so (Q, +, ·) is also deemed to be a field. So the word ‘field’ is invented to describe the situation that one has a
number system F with corresponding operations + and · which obey the usual laws of arithmetic, rather than listing
all of these laws.
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listed below:

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(F1) (Associativity) For all x, y, z ∈ R, x + (y + z) = (x + y) + z.

(F2) (Additive identity) For all x ∈ R, x + 0 = x = 0 + x.

(F3) (Inverses) For all x ∈ R, there exists − x ∈ R

such that x + (−x) = 0 = −x + x.

(F4) (Commutativity) For all x, y ∈ R, x + y = y + x.

·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(F5) (Associativity) For all x, y, z ∈ R, x · (y · z) = (x · y) · z.
(F6) (Multiplicative identity) 1 �= 0 and for all x ∈ R, x · 1 = x = 1 · x.

(F7) (Inverses) For all x ∈ R\{0}, there exists x−1 ∈ R

such that x · x−1 = 1 = x−1 · x.

(F8) (Commutativity) For all x, y ∈ R, x · y = y · x.

+, ·
{

(F9) (Distributivity) For all x, y, z ∈ R, x · (y + z) = x · y + x · z.

With these axioms, it is possible to prove the usual arithmetic manipulations we are accus-
tomed to. Here are a couple of examples.

Example 1.1. For every a ∈ R, a · 0 = 0.

Let a ∈ R. Then we have a · 0
F2= a · (0 + 0) F9= a · 0 + a · 0. So with x := a · 0, we have got

x + x = x. Adding −x on both sides (F3!), and using (F1) we obtain

0 = x + (−x) = (x + x) + (−x) F1= x + (x + (−x)) F3= x + 0
F2= x = a · 0,

completing the proof of the claim. ♦

Example 1.2. If a, b ∈ R, and a · b = 0, then a = 0 or b = 0.

If a = 0, then we are done. Suppose that a �= 0. By (F7), there exists a real number a−1 such
that a · a−1 = a−1 · a = 1. Hence

b = 1 · b = (a−1 · a) · b = a−1 · (a · b) = a−1 · 0 = 0.

So if a �= 0, then b = 0. Thus
(
a, b ∈ R such that a · b = 0

)
⇒

(
a = 0 or b = 0

)
. ♦

Of course in this book, we will not do such careful justifications every time we need to manip-
ulate real numbers. We have listed the above laws to once and for all stipulate the laws of
arithmetic for real numbers that justify the usual calculational rules we are familiar with, so
that we know the source of it all. For example, the student may wish to try his/her hand at
producing a rigorous justification based on (F1) to (F9) of the following well known facts.

Exercise 1.3. (∗) Using the field axioms of R, prove the following:

(1) Additive inverses are unique.

(2) For all a ∈ R, (−1) · a = −a.

(3) (−1) · (−1) = 1.



8 THE HOW AND WHY OF ONE VARIABLE CALCULUS

1.3 Order axioms

We now turn to order axioms for the real numbers. This is the source of the inequality ‘>’
that we are used to, enabling one to compare two real numbers. The relation > between real
numbers arises from a special subset P of the real numbers.

Order axiom. There exists a subset P of R such that

(O1) If x, y ∈ P, then x + y ∈ P and x · y ∈ P.

(O2) For every x ∈ R, one and only one of the following statements is true:

1◦ x = 0.
2◦ x ∈ P.
3◦ −x ∈ P.

Definition 1.1 (Positive numbers). The elements of P are called positive numbers. For real
numbers x, y, we say that

x > y if x− y ∈ P,

x < y if y− x ∈ P,

x ≥ y if x = y or x > y,

x ≤ y if x = y or x < y.

It is clear from (O2) that 0 is not a positive number. Also, from (O2) it follows that for real
numbers x, y, one and only one of the following statements is true:

1◦ x = y.

2◦ x > y.

3◦ x < y.

Why is this so? If x �= y, then x− y �= 0, and so by (O2), we have the mutually exclusive
possibilities x− y ∈ P or y− x = −(x− y) ∈ P happening, that is, either x > y or x < y.

Example 1.3. 1 > 0.

We have three possible, mutually exclusive cases:

1◦ 1 = 0.

2◦ 1 ∈ P.

3◦ −1 ∈ P.

As 1 �= 0, we know that 1◦ is not possible.
Suppose that 3◦ holds, that is, −1 ∈ P. From Exercise 1.3(3), (−1) · (−1) = 1. Using

(O1), and the fact that −1 ∈ P, it then follows that 1 = (−1) · (−1) ∈ P. So if we assume
that 3◦ holds, then we obtain that both 2◦ and 3◦ are true, which is impossible as it
violates (O2).

Thus by (O2), the only remaining case, namely 2◦ must hold, that is, 1 ∈ P. ♦
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Exercise 1.4. (∗) Using the order axioms for R, show the following:

(1) For all a ∈ R, a2 ≥ 0.

(2) There is no real number x such that x2 + 1 = 0.

Again, just like we can use the field axioms to justify arithmetic manipulations of real numbers,
it is enough to know that if challenged, one can derive all the usual laws of manipulating
inequalities among real numbers based on these order axioms, but we will not do this at every
instance we meet an inequality.

From our intuitive picture of R as points on the number line, what is the set P? P is simply
the set of all points/real numbers to the right of the origin O.

0 1

Also, geometrically on the number line, the inequality a < b between real numbers a, b means
that b lies to the right of a on the number line.

a b

1.4 The Least Upper Bound Property of R

This property is crucial for proving the results of Calculus, and when studying the proofs
of the key results (the Bolzano–Weierstrass Theorem, the Intermediate Value Theorem, the
Extreme Value Theorem, and so on), we will gradually learn to appreciate the key role played
by it.

Definition 1.2 (Upper bound of a set). Let S be a subset of R. A real number u is said to be
an upper bound of S if for all x ∈ S, x ≤ u.

If we think of the set S as some blob on the number line, then u should be any point on the
number line that lies to the right of the points of the blob.

S u

Example 1.4.

(1) If S = {0, 1, 9, 7, 6, 1976}, then 1976 is an upper bound of S. In fact, any real number
u ≥ 1976 is an upper bound of S. So S has lots of upper bounds.

(2) Let S := {x ∈ R : x < 1}. Then 1 is an upper bound of S. In fact, any real number u ≥ 1
is an upper bound of S.
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(3) If S = R, then S has no upper bound. Why? Suppose that u ∈ R is an upper bound of R.
Consider u + 1 ∈ S = R. Then

u + 1︸ ︷︷ ︸
∈S

≤ u︸︷︷︸
upper bound of S

,

and so 1 ≤ 0, a contradiction!

(4) Let S = ∅ (the empty set, containing no elements). Every u ∈ R is an upper bound. For
if u ∈ R is not an upper bound of S, then there must exist an element x ∈ S which prevents u
from being an upper bound of S, that is,

it is not the case that x ≤ u

But S has no elements at all, much less an element such that · · · holds.

(This is an example of a ‘vacuous truth’. Consider the statement

Every man with 60000 legs is intelligent.

This is considered a true statement in Mathematics. The argument is: Can you show me a man
with 60000 legs for which the claimed property (namely of being intelligent) is not true? No!
Because there are no men with 60000 legs! By the same logic, even the statement

Every man with 60000 legs is not intelligent.

is true in Mathematics.) ♦

Definition 1.3 (Set bounded above). If S ⊂ R and S has an upper bound (that is, the set of
upper bounds of S is not empty), then S is said to be bounded above.

Example 1.5. The set R is not bounded above.

Each of the sets {0, 1, 9, 7, 6, 1976}, ∅, {x ∈ R : x < 1} is bounded above. ♦

Similarly one can define the notions of a lower bound, and of a set being bounded below.

Definition 1.4 (Lower bound of a set; set bounded below). Let S be a subset of R. A real
number � is said to be a lower bound of S if for all x ∈ S, � ≤ x.

If S ⊂ R and S has a lower bound (that is, the set of lower bounds of S is not empty), then
S is said to be bounded below.

If we think of the set S as some blob on the number line, then � should be any point on the
number line that lies to the left of the points of the blob.

S�
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Example 1.6.

(1) If S = {0, 1, 9, 7, 6, 1976}, then 0 is a lower bound of S. In fact, any real number � ≤ 0
serves as a lower bound of S. So S is bounded below.

(2) Let S := {x ∈ R : x < 1}. Then S is not bounded below. Let us show this. Suppose that,
on the contrary, S does have a lower bound, say � ∈ R. Let x ∈ S. Then � ≤ x < 1. We have

� − 1 < � ≤ x < 1,

and so � − 1 < 1. Thus � − 1 ∈ S, and as � is a lower bound of S, we must have � ≤ � − 1,
that is, 1 < 0, a contradiction! So our original assumption that S is bounded below must be
false. Thus S is not bounded below. (This claim was intuitively obvious too, since the set of
points in S on the number line is the entire ray of points on the left of 1, leaving no room for
points on R to be on the ‘left of S’.)

(3) If S = R, then S has no lower bound. Indeed, if � ∈ R is a lower bound of R, then

�︸︷︷︸
lower bound of S

≤ � − 1︸ ︷︷ ︸
∈S

,

and so 1 ≤ 0, a contradiction. Thus R is not bounded below.

(4) Let S = ∅ (the empty set, containing no elements). Every � ∈ R is a lower bound. If � ∈ R

is not a lower bound of S, then there must exist an element x ∈ S which prevents � from being
a lower bound of S, that is, it is not the case that � ≤ x. But as S is empty, this is impossible.
So S is bounded below. ♦

Definition 1.5 (Bounded set). Let S ⊂ R. S is called bounded if S is bounded below and
bounded above.

Example 1.7.

S An upper Bounded A lower Bounded Bounded?

bound above? bound below?

{0, 1, 9, 7, 6, 1976} 1976 Yes 0 Yes Yes

Any u ≥ 1976 Any � ≤ 0

{x ∈ R : x < 1} 1 Yes Does not No No

Any u ≥ 1 exist

R Does not No Does not No No

exist exist

∅ Every Yes Every Yes Yes

u ∈ R � ∈ R

♦
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We now introduce the notions of a least upper bound (also called supremum) and a greatest
lower bound (also called infimum) of a subset S of R.

Definition 1.6 (Supremum and infimum). Let S be a subset of R.

(1) u∗ ∈ R is called a least upper bound of S (or a supremum of S) if

(a) u∗ is an upper bound of S, and

(b) if u is an upper bound of S, then u∗ ≤ u.

(2) �∗ ∈ R is called a greatest lower bound of S (or an infimum of S) if

(a) �∗ is a lower bound of S, and

(b) if � is a lower bound of S, then � ≤ �∗.

Pictorially, the supremum is the leftmost point among the upper bounds, and the infimum is
the rightmost point among the lower bounds of a set.

S

u∗

all these are
upper bounds

all these are
lower bounds

�∗

Example 1.8.

(1) If S = {0, 1, 9, 7, 6, 1976}, then u∗ = 1976 is a least upper bound of S because

(1) 1976 is an upper bound of S, and

(2) if u is an upper bound of S, then (S �) 1976 ≤ u, that is u∗ ≤ u.

Similarly, 0 is a greatest lower bound of S.

(2) Let S = {x ∈ R : x < 1}. Then we claim that u∗ = 1 is a least upper bound of S. Indeed
we have:

(a) 1 is an upper bound of S: If x ∈ S, then x < 1 = u∗.

(b) Let u be an upper bound of S. We want to show that u∗ = 1 ≤ u. Suppose the contrary,
that is, 1 > u. Then there is a gap between u and 1.

1u

(But then we see that this gap between u and 1 of course contains elements of S which
are to right of the supposed upper bound u, and this should give the contradiction we
seek.) To this end, let us consider the number (1 + u)/2. We have

1 + u
2

<
1 + 1

2
= 1
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and so (1 + u)/2 belongs to S. As u is an upper bound of S, we must have

1 + u
2

< u,

which upon rearranging gives 1 < u, a contradiction.

S does not have a lower bound, and so certainly no greatest lower bound either (a greatest
lower bound has to be first of all a lower bound!).

(3) R does not have a supremum, and no infimum either.

(4) ∅ has no supremum. (We intuitively expect this: every real number serves as an upper
bound, but there is no smallest one among these!) Indeed, suppose on the contrary that u∗ ∈ R

is a supremum. Then u∗ − 1 ∈ R is an upper bound of ∅ (since it is some real number, and we
had seen that all real numbers are upper bounds of ∅). As u∗ is a least upper bound, we must
have u∗ ≤ u∗ − 1, that is, 1 ≤ 0, a contradiction.

Similarly, ∅ has no infimum either. ♦

A set may have many upper bounds and many lower bounds, but it is intuitively clear, based
on our visual number line picture, that the supremum and infimum of a set, assuming they
exist, must be unique. Here is a formal proof.

Theorem 1.2. If a subset S of R has a supremum, then it is unique.

Proof. Let u∗, u′∗ be two supremums of S. Then as u′∗ is, in particular, an upper bound, and
since u∗ is a least upper bound, we must have

u∗ ≤ u′∗. (1.1)

Similarly, since u∗ is, in particular, an upper bound, and since u′∗ is a least upper bound, we
must also have

u′∗ ≤ u∗. (1.2)

From (1.1) and (1.2), it now follows that u∗ = u′∗. �

So when S has a supremum, then it is the supremum. Thus we can give it special notation
(since we know what it means unambiguously):

sup S.

Similarly, if a set S has an infimum, it is unique and is denoted by

inf S.

Example 1.9. We have
sup{0, 1, 9, 7, 6, 1976} = 1976,

sup{x ∈ R : x < 1} = 1,

inf{x ∈ R : x ≥ 1} = 1.
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To see the last equality, we note that 1 is certainly a lower bound of the set
S := {x ∈ R : x ≥ 1}, and if � is any lower bound, then as 1 is an element of the set S,
we have � ≤ 1. ♦

Note that comparing the first two examples above, when S := {0, 1, 9, 7, 6, 1976}, we have

sup S ∈ S,

while in the case of S := {x ∈ R : x < 1}, we have

sup S /∈ S.

It will be convenient to keep track of when the supremum (or for that matter infimum) of a set
belongs to the set. So we introduce the following definitions and corresponding notation.

Definition 1.7 (Maximum, minimum of a set).

(1) If sup S ∈ S, then sup S is called a maximum of S, denoted by max S.

(2) If inf S ∈ S, then inf S is called a minimum of S, denoted by min S.

Example 1.10.

S Supremum Maximum Infimum Minimum

{0, 1, 9, 7, 6, 1976} 1976 1976 0 0

{x ∈ R : x < 1} 1 Does not exist Does not exist Does not exist

R Does not exist Does not exist Does not exist Does not exist

∅ Does not exist Does not exist Does not exist Does not exist

{x ∈ R : x ≥ 1} Does not exist Does not exist 1 1

♦

Exercise 1.5. Provide the following information about the set S

An upper
bound

A lower
bound

Is S
bounded?

sup S inf S max S min S

where S is given by:

(1) (0, 1] := {x ∈ R : 0 < x ≤ 1}
(2) [0, 1] := {x ∈ R : 0 ≤ x ≤ 1}
(3) (0, 1) := {x ∈ R : 0 < x < 1}.
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In the above Example 1.10, we note that if S is nonempty and bounded above, then its supre-
mum exists. In fact, this is a fundamental property of the real numbers, called the Least Upper
Bound Property of the real numbers, which we state below:

If S ⊂ R is such that S �= ∅ and S has an upper bound, then sup S exists.

Example 1.11.

(1) S = {0, 1, 9, 7, 6, 1976} is a subset of R, it is nonempty, and it has an upper bound. So the
Least Upper Bound Property of R tells us that this set should have a least upper bound. This
is indeed true, as we had seen earlier that S has 1976 as the supremum.

(2) S = {x ∈ R : x < 1} is a subset of R, it is nonempty (0 ∈ S), and it has an upper bound
(for example, 2). So the Least Upper Bound Property of R tells us that this set should have a
least upper bound. This is indeed true, as we had seen earlier that 1 is the supremum of S.

(3) S = R is a subset of R, it is nonempty, and it has no supremum. So what went wrong?
Well, S is not bounded above.

(4) S = ∅ is a subset of R and it is bounded above. But it has no supremum. There is no
contradiction to the Least Upper Bound Property because S is empty! ♦

Example 1.12. Let S := {x ∈ R : x2 ≤ 2}. Clearly S is a subset of R and it is nonempty since
1 ∈ S: 12 = 1 ≤ 2. Let us show that S is bounded above. In fact, 2 serves as an upper bound
of S. Since if x > 2, then x2 > 4 > 2. Thus if x ∈ S, then x2 ≤ 2, and so x ≤ 2.

By the Least Upper Bound Property of R, u∗ := sup S exists in R. Moreover, one can
show that this u∗ satisfies u2

∗ = 2 by showing that the cases u2
∗ < 2 and u2

∗ > 2 are both
impossible.
First of all, u∗ ≥ 1 (as u∗ is in particular an upper bound of S and 1 ∈ S). Now define

r := u∗ −
u2
∗ − 2
u∗ + 2

=
2(u∗ + 1)
u∗ + 2

> 0. (1.3)

Then, we have

r2 − 2 =
2(u2

∗ − 2)
(u∗ + 2)2

. (1.4)

1◦ Suppose u2
∗ < 2. Then (1.4) implies that r2 − 2 < 0, and so r ∈ S. But from (1.3),

r > u∗, contradicting the fact that u∗ is an upper bound of S.

2◦ Suppose that u2
∗ > 2. If r′ > r (> 0), then r′2 = r′ · r′ > r · r′ > r · r = r2. From

(1.4), r2 > 2, and so from the above, we know that r′2 > 2 as well. Hence r′ /∈ S.
So we have shown that if r′ ∈ S, then r′ ≤ r. This means that r is an upper bound
of S. But this is impossible, since (1.3) shows that r < u∗, and u∗ is the least upper
bound of S.

So it must be the case that u2
∗ = 2. Note also that u∗ is nonnegative (as u∗ ≥ 1 ∈ S). (We will

denote this nonnegative u∗ ∈ R satisfying u2
∗ = 2 by

√
2.) ♦
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Example 1.13 (Q does not possess the Least Upper Bound Property). Consider the
set S := {x ∈ Q : x2 ≤ 2}. Clearly S is a subset of Q and it is nonempty since
1 ∈ S: 12 = 1 ≤ 2. Let us show that S is bounded above. In fact, 2 serves as an upper
bound of S. Since if x > 2, then x2 > 4 > 2. Thus, if x ∈ S, then x2 ≤ 2, and so x ≤ 2.

If Q has the Least Upper Bound Property, then the above nonempty subset of Q which
is bounded above must possess a least upper bound u∗ := sup S ∈ Q. Once again, just as in
the previous example, we can show that this u∗ ∈ Q must satisfy that u2

∗ = 2 (and we have
given the details below). But we know that this is impossible as we had shown that there is no
rational number whose square is 2.

First of all, u∗ ≥ 1 (as u∗ is in particular an upper bound of S and 1 ∈ S). Now define

r := u∗ −
u2
∗ − 2
u∗ + 2

=
2(u∗ + 1)
u∗ + 2

> 0. (1.5)

Note also that as u∗ ∈ Q, the rightmost expression for r shows that r ∈ Q as well. Then, we
have

r2 − 2 =
2(u2

∗ − 2)
(u∗ + 2)2

. (1.6)

1◦ Suppose u2
∗ < 2. Then (1.6) implies that r2 − 2 < 0, and so r ∈ S. But from (1.5),

r > u∗, contradicting the fact that u∗ is an upper bound of S.

2◦ Suppose that u2
∗ > 2. If r′ > r (> 0), then r′2 = r′ · r′ > r · r′ > r · r = r2. From

(1.6), r2 > 2, and so from the above, we know that r′2 > 2 as well. Hence r′ /∈ S.
So we have shown that if r′ ∈ S, then r′ ≤ r. This means that r is an upper bound
of S. But this is impossible, since (1.5) shows that r < u∗, and u∗ is the least upper
bound of S.

So it must be the case that u2
∗ = 2. But as we mentioned earlier, this is impossible by

Theorem 1.1. Hence Q does not possess the Least Upper Bound Property. ♦

In order to get the useful results in Calculus (for example, the fact that for an increasing
sequence of numbers bounded above, there must be a smallest number bigger than each of
the terms of the sequence—a fact needed to calculate the area of a circle via the polygons
inscribed within it as described in the Introduction), it turns out to be the case that the Least
Upper Bound Property is indispensable. So it makes sense that when we set up the definitions
and results in Calculus, we do not work with the rational number system Q (which regrettably
does not possess the Least Upper Bound Property), but rather with the larger real number
system R, which does possess the Least Upper Bound Property.

Exercise 1.6. Let a1, a2, a3, · · · be an infinite list (or sequence) of real numbers such that
an ≤ an+1 for all n ∈ N, that is, the sequence is increasing. Also suppose that

S := {an : n ∈ N}

is bounded above. Show that there is a smallest real number L that is bigger than each of the
an, n ∈ N.
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Exercise 1.7.

(1) Let S be a nonempty subset of real numbers, which is bounded below. Let −S denote
the set of all real numbers −x, where x belongs to S. Prove that inf S exists and
inf S = − sup(−S).

(2) Conclude from here that R also has the ‘Greatest Lower Bound Property’:

If S is a nonempty subset of R having a lower bound, then inf S exists.

Exercise 1.8. Let S be a nonempty subset of R, which is bounded above, and let α > 0.
Show that α · S := {αx : x ∈ X} is also bounded above and that sup(α · S) = α · sup S.
Similarly, if S is a nonempty subset of R, which is bounded below and α > 0, then show that
α · S is bounded below, and that inf(α · S) = α · inf S.

Exercise 1.9. Let A and B be nonempty subsets of R that are bounded above and such that
A ⊂ B. Prove that supA ≤ supB.

Exercise 1.10. For any nonempty bounded set S, prove that inf S ≤ sup S, and that the equal-
ity holds if and only if S is a singleton set (that is, a set with cardinality 1).

Exercise 1.11. Let A and B be nonempty subsets of R that are bounded above. Prove that
sup(A ∪ B) exists and that sup(A ∪ B) = max{supA, supB}.

Exercise 1.12. Determine whether the following statements are true or false.

(1) If u is an upper bound of S (⊂ R), and u′ < u, then u′ is not an upper bound of S.

(2) If u∗ is the supremum of S (⊂ R), and ε > 0, then u∗ − ε is not an upper bound of S.

(3) Every subset of R has a maximum.

(4) Every subset of R has a supremum.

(5) Every bounded subset of R has a maximum.

(6) Every bounded subset of R has a supremum.

(7) Every bounded nonempty subset of R has a supremum.

(8) Every set that has a supremum is bounded above.

(9) For every set that has a maximum, the maximum belongs to the set.

(10) For every set that has a supremum, the supremum belongs to the set.

(11) For every set S that is bounded above, |S| defined by {|x| : x ∈ S} is bounded.

(12) For every set S that is bounded, |S| defined by {|x| : x ∈ S} is bounded.

(13) For every bounded set S, if inf S < x < sup S, then x ∈ S.
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Exercise 1.13. Let A and B be nonempty subsets of R that are bounded above and define

A + B = {x + y : x ∈ A and y ∈ B}.

Prove that sup(A + B) exists and that sup(A + B) = sup A + sup B.

Exercise 1.14. Let S be a nonempty set of positive real numbers, and define

S−1 =
{

1
x

: x ∈ S

}
.

Show that S−1 is bounded above if and only if inf S > 0. Furthermore, in case inf S > 0, show
that

sup S−1 =
1

inf S
.

We now prove the following theorem, which is called the Archimedean property of the real
numbers.

Theorem 1.3 (Archimedean Property). If x, y ∈ R and x > 0, then there exists an n ∈ N such
that y < nx.

If y ≤ 0 to begin with, then the above is just the trivial statement that n · x > 0 ≥ y, which
works with every n ∈ N. So the interesting content of the theorem is when y > 0. Then the
above is telling us, that no matter how small x is, if we keep ‘tiling’ the real line with multiples
of the length x, then eventually we will surpass y. Here is a picture to bear in mind.

0

x

x y

nx

Proof. Suppose that it is not the case that

‘there exists an n ∈ N such that nx > y’.

Then for every n ∈ N, we must have nx ≤ y. Let S := {nx : n ∈ N}. Then S is a subset of
R, S �= ∅ (indeed, x = 1 · x ∈ S), and y is an upper bound of S. Thus, by the Least Upper
Bound Property of R, u∗ := sup S exists. As x > 0, the number u∗ − x is smaller than the
least upper bound u∗ of S. Hence u∗ − x cannot be an upper bound of S, which means that
there is an element mx ∈ S, for some m ∈ N, which prevents u∗ − x from being an upper
bound: mx > u∗ − x. Rearranging, we obtain u∗ < mx + x = (m + 1)x ∈ S, contradicting the
fact that u∗ is an upper bound of S. Thus, our original claim is false. In other words, there does
exist an n ∈ N such that nx > y. �

Example 1.14. Let S =
{

1
n

: n ∈ N

}
=

{
1,

1
2

,
1
3

, · · ·
}

. We claim that inf S = 0.

Clearly 0 is a lower bound of S since all the elements of S are positive.
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Suppose that � is a lower bound of S. We want to show that � ≤ 0. Suppose on the con-
trary that � > 0. Then by the Archimedean property (with the real numbers x and y taken as
x = 1 (> 0) and y = 1/�), there exists a n ∈ N such that

1
�

= y < nx = n · 1 = n,

and so
1
n

< �,

contradicting the fact that � is a lower bound of S. Thus, any lower bound of S must be less
than or equal to 0. Hence 0 is the infimum of S. ♦

Exercise 1.15. Provide the following information about the set S

An upper
bound

A lower

bound

Is S
bounded?

sup S inf S max S min S

where S is given by:

(1)

{
1
n

: n ∈ Z\{0}
}

(2)

{
n

n + 1
: n ∈ N

}

(3)

{
(−1)n

(
1 +

1
n

)
: n ∈ N

}

Exercise 1.16. Let S := {(xy− 1)2 + x2 : (x, y) ∈ R
2}.

(a) Show that S is bounded below.

(b) What is inf S? Hint: To justify your answer, consider (x, y) = (1/n, n), n ∈ N.

(c) Does min S exist?

Example 1.15 (The greatest integer part �·� of x ∈ R). If we think of the real numbers as
points of the line, then we see that along it, there are ‘milestones’ at each of the integers. So if
we take any real number, then it lies between two milestones. We take �x� to be the milestone
immediately to the left of x—in other words, it is the ‘greatest integer less than or equal to x’.
So for example �3.1� = 3, �0� = 0, �n� = n for all integers n, �−3.1� = −4, etc.

0 1 2 3−1

Using the Archimedean Property, one can give a rigorous justification of the fact that every
real number has to belong to an interval [n, n + 1) for some n ∈ Z (so that this n = �x�). By
the Archimedean Property, there exists an m1 ∈ N such that m1 · 1 > x. By the Archimedean
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Property, there exists an m2 ∈ N such that m2 · 1 > −x. So there are integers m1,m2 such
that −m2 < x < m1. Among the finitely many integers k ∈ Z such that −m2 ≤ k ≤ m1, we
take as �x� the largest one such that it is also ≤ x. ♦

Theorem 1.4 (Density of Q in R). If a, b ∈ R, and a < b, then there exists a r ∈ Q such that
a < r < b.

a br

This results says that ‘Q is dense in R’. In everyday language, we may say for example, that
‘These woods have a dense growth of birch trees’, and the picture we then have in mind is
that in any small area of the woods, we find a birch tree. A similar thing is conveyed by the
above: no matter what ‘patch’ (described by the two numbers a and b) we take on the real
line (thought of as the woods), we can find a rational number (analogous to birch trees) in that
patch.

Proof. As b− a > 0 and since 1 ∈ R, by the Archimedean Property, there exists an n ∈ N

such that n(b− a) > 1, that is, na+ 1 < nb. Letm := �na�+ 1. Then �na� ≤ na < �na� + 1,
that is, m− 1 ≤ na < m. So

a <
m
n

≤ na + 1
n

<
nb
n

= b.

With r :=
m
n

∈ Q, the proof of the theorem is complete. �

Exercise 1.17 (Density of irrationals in R). Show that if a, b ∈ R and a < b, then there exists
an irrational number between a and b.

1.5 Rational powers of real numbers

Definition 1.8 (Integral powers of nonzero real numbers).

(1) Given a ∈ R and n ∈ N, we define an ∈ R by an := a · a · · · a︸ ︷︷ ︸
n times

.

(2) If a ∈ R and a �= 0, then we define a0 := 1.

(3) If a ∈ R, a �= 0 and n ∈ N, then we define a−n :=
(

1
a

)n

.

In this manner, all integral powers of nonzero real numbers is defined, and it can be checked
that the following laws of exponents hold:

(E1) For all a, b ∈ R and all n ∈ Z, with a, b �= 0 if n ≤ 0, (ab)n = anbn.

(E2) For all a ∈ R, all m, n ∈ Z, with a �= 0 if m ≤ 0 or n ≤ 0, (am)n = amn and
am+n = aman.

(E3) For all a, b ∈ R with 0 ≤ a < b and n ∈ N, an < bn.
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For example, (E3) can be shown like this: If 0 ≤ a < b, then we have

a2 = a · a < a · b < b · b = b2,

a3 = a2 · a < b2 · a < b2 · b = b3,

a4 = a3 · a < b3 · a < b3 · b = b4, and so on.

One can also define fractional powers of positive real numbers. First we have the following:

Theorem 1.5 (Existence of nth roots). For every a ∈ R with a ≥ 0 and every n ∈ N, there
exists a unique b ∈ R such that b ≥ 0 and bn = a.

This unique b is called the nth root of a, and is denoted by a1/n or n
√
a.

Proof. We will skip the details of the proof, which is similar to what we did to show that
√

2
exists in Example 1.12: the number b we seek is the supremum u∗ of the set

Sa := {x ∈ R : xn ≤ a},

and u∗ can be shown to exist by using the Least Upper Bound Property of R. �

Definition 1.9 (Fractional powers of positive real numbers). If r ∈ Q and

r =
m
n

,

where m, n ∈ Z and n > 0, then for a ∈ R such that a > 0, we define

ar := (am)1/n.

It can be shown that if
r =

m
n

=
p
q

,

with p, q ∈ Z and q > 0, then (ap)1/q = (am)1/n, so that our notion of raising to rational
powers is ‘well-defined’, that is, it does not depend on which particular integers m, n we take
in the representation of the rational number r.

Later on, after having studied the logarithm function in Chapter 5, we will also extend the
above definitions consistently to the case of real powers of positive real numbers.

1.6 Intervals

In Calculus, we will consider real-valued functions of a real variable, and develop results
about these. It will turn out while doing so that we will keep meeting certain types of subsets
of the real numbers (for example, subsets of this type will often be the ‘domains’ of our
real-valued functions for which the results of Calculus hold). These special subsets of R are
called ‘intervals’, and we give the definition below. Roughly speaking, these are the ‘connected
subsets’ of the real line, namely subsets of R not having any ‘holes/gaps’.
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Definition 1.10 (Interval). An interval is a set consisting of all the real numbers between
two given real numbers, or of all the real numbers on one side or the other of a given number.
So an interval is a set of any of the following forms, where a, b ∈ R:

a

a

a

a

a

a

b

b

b

b

b

b
(a, b) = {x ∈      : a < x < b }

(a, b] = {x ∈     : a < x ≤ b}

[a, b) = {x ∈     : a ≤ x < b}

(a, ∞) = {x ∈     : a < x}

(− ∞, b] = {x ∈    : x ≤ b}

(− ∞, ∞) = 

[a, b] = {x ∈   : a ≤ x ≤ b}

[a, ∞) = {x ∈    : a ≤ x}

(− ∞, b) = {x ∈     : x < b}

In the above notation for intervals, a parenthesis ‘(’ or ‘)’ means that the respective endpoint
is not included, and a square bracket ‘[’ or ‘]’ means that the endpoint is included. Thus [0, 1)
means the set of all real numbers x such that 0 ≤ x < 1. (Note that the use of the symbol ∞ in
the notation for intervals is simply a matter of convenience and is not be taken as suggesting
that there is a number ∞.)

Also, it will be convenient to give certain types of interval a special name.

Definition 1.11 (Open interval). An interval of the form (a, b), (a,∞), (−∞, b), or R is
called an open interval.

We note that if I is an open interval, then for every member x ∈ I, there exists a δ > 0 such that
(x− δ, x + δ) ⊂ I, that is, there is always some ‘room’ around x consisting only of elements
of I.

Exercise 1.18. Show that if a, b ∈ R, then the interval (a, b) has the following property:

for every x ∈ (a, b), there exists a δ > 0 such that (x− δ, x + δ) ⊂ (a, b).

Show also that [a, b] does not possess the above property.

Definition 1.12 (Compact interval). If a, b ∈ R and a ≤ b, then we call [a, b] a compact
interval.

Note that R\[a, b] is the union of two open intervals, namely (−∞, a) and (b,∞) and that
[a, b] is a bounded set.
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Exercise 1.19. If An, n ∈ N, is a collection of sets, then
⋂
n∈N

An denotes their intersection:

⋂
n∈N

An = {x : ∀n ∈ N, x ∈ An},

and
⋃
n∈N

An denotes their union:
⋃
n∈N

An = {x : ∃n ∈ N such that x ∈ An}. Prove that

(1) ∅ =
⋂
n∈N

(
0,

1
n

)
.

(2) {0} =
⋂
n∈N

[
0,

1
n

]
.

(3) (0, 1) =
⋃
n∈N

[
1

n + 2
, 1 − 1

n + 2

]
.

(4) [0, 1] =
⋂
n∈N

(
−1
n

, 1 +
1
n

)
.

1.7 Absolute value | · | and distance in R

In Calculus, in order to talk about notions such as rate of change, continuity, convergence,
etc, we will need a notion of ‘closeness/distance’ between real numbers. This is provided by
the absolute value | · |, and the distance between real numbers x and y is |x− y|. We give the
definitions below.

Definition 1.13 (Absolute value and distance).

(1) The absolute value or modulus of a real number x is denoted by |x|, and it is defined
as follows:

|x| =

{
x if x ≥ 0,

−x if x < 0.

(2) The distance d(x, y) between two real numbers x and y is the absolute value |x− y| of
their difference.

Thus, |1| = 1, |0| = 0, | − 1| = 1, and the distance between the real numbers −1 and 1 is
equal to d(−1, 1) = | − 1 − 1| = | − 2| = 2. The distance gives a notion of closeness of two
points, which is crucial in the formalisation of the notions of analysis. We can now specify
regions comprising points close to a certain point c ∈ R in terms of inequalities in absolute
values, that is, by demanding that the distance of the points of the region, to the point c, is less
than a certain positive number δ, say δ = 0.01 or δ = 0.0000001, and so on.

Theorem 1.6. Let c ∈ R and δ > 0. Then:

d(x, c) := |x− c| < δ ⇔ c− δ < x < c + δ.
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Although the proof is trivial, it is worthwhile remembering Theorem 1.6, as such a manip-
ulation will keep arising over and over again in our subsequent development of Calculus.
See Figure 1.2.

c − δ c + δc x

Figure 1.2 The interval I = (c− δ, c + δ) = {x ∈ R : |x− c| < δ} is the set of all points
in R whose distance to the point c is strictly less than δ (> 0).

Proof.
(⇒) Suppose that |x− c| < δ. Then x− c ≤ |x− c| < δ, and −(x− c) ≤ |x− c| < δ.
So −δ < x− c < δ, that is, c− δ < x < c + δ.

(⇐) If c− δ < x < c + δ, then x− c < δ and −(x− c) = c− x < δ. Thus |x− c| < δ,
because |x− c| is either x− c or −(x− c), and in both cases the numbers are less than δ. �

If we think of the real numbers as points on the number line, and we think about the integers as
milestones, then it is clear that the distance between, say −1 and 3 should be 4 miles, and we
observe that 4 = | − 1 − 3|. So taking |x− y| as the distance between x, y ∈ R is a sensible
thing to do, based on our visual picture of R as points on the number line (Figure 1.3).

x y

| x − y |

Figure 1.3 Distance between real numbers.

Exercise 1.20. Show that a subset S of R is bounded if and only if there exists an M ∈ R such
that for all x ∈ S, |x| ≤ M.

The following properties of the absolute value will be useful in the sequel.

Theorem 1.7. If x, y are real numbers, then

|x · y| = |x| · |y|, (1.7)

|x + y| ≤ |x| + |y|. (1.8)

(1.8) is called the triangle inequality.

Proof. We prove (1.7) by exhausting all possible cases:

1◦ x = 0 or y = 0. Then |x| = 0 or |y| = 0, and so |x| |y| = 0. On the other hand, as
x = 0 or y = 0, it follows that xy = 0 and so |xy| = 0.

2◦ x > 0 and y > 0. Then |x| = x and |y| = y, and so |x| |y| = xy. On the other hand,
as x > 0 and y > 0, it follows that xy > 0 and so |xy| = xy.

3◦ x > 0 and y < 0. Then |x| = x and |y| = −y, and so |x| |y| = x(−y) = −xy. On the
other hand, as x > 0 and y < 0, it follows that xy < 0 and so |xy| = −xy.
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4◦ x < 0 and y > 0. This follows from 3◦ above by interchanging x and y.

5◦ x < 0 and y < 0. Then |x| = −x and |y| = −y, and so |x| |y| = (−x)(−y) = xy. On
the other hand, as x < 0 and y < 0, it follows that xy > 0 and so |xy| = xy.

This proves (1.7).

Next we prove (1.8). First observe that from the definition of | · |, it follows that for any
real x ∈ R, |x| ≥ x: indeed if x ≥ 0, then |x| = x, while if x < 0, then −x > 0, and so we have
that |x| = −x > 0 > x.

From (1.7), we also have | − x| = | − 1 · x| = | − 1||x| = 1|x| = |x|, for all x ∈ R, and so
it follows that |x| = | − x| ≥ −x for all x ∈ R.

We have the following cases:

1◦ x + y ≥ 0. Then we have that |x + y| = x + y. Since |x| ≥ x and |y| ≥ y, we obtain
|x| + |y| ≥ x + y = |x + y|.

2◦ x + y < 0. Then |x + y| = −(x + y). Since |x| ≥ −x and |y| ≥ −y, it follows that
|x| + |y| ≥ −x + (−y) = −(x + y) = |x + y|.

This proves (1.8). �

Using these, it is easy to check that the ‘metric/distance function’ defined by

d(x, y) = |x− y|, x, y ∈ R,

satisfies the following properties:

(D1) (Positive definiteness) For all x, y ∈ R, d(x, y) ≥ 0. If d(x, y) = 0 then x = y.

(D2) (Symmetry) For all x, y ∈ R, d(x, y) = d(y, x).

(D3) (Triangle inequality) For all x, y, z ∈ R, d(x, z) ≤ d(x, y) + d(y, z).

The reason (D3) is called the triangle inequality is that, for triangles in Euclidean geometry
of the plane, we know that the sum of the lengths of two sides of a triangle is at least as much
as the length of the third side: so for the points X,Y ,Z in a plane forming the three vertices
of a triangle: we know that �(XZ) ≤ �(XY) + �(YZ); see Figure 1.4. (D3) reminds us of this
triangle inequality, and hence the name.

X

Y

Z

Figure 1.4 How the triangle inequality gets its name.

Exercise 1.21. Prove that if x, y are real numbers, then ||x| − |y|| ≤ |x− y|.
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Exercise 1.22 (When does equality hold in the triangle inequality?).

(1) Show the generalised triangle inequality: if n ∈ N and a1, · · · , an are real numbers, then
|a1 + · · · + an| ≤ |a1| + · · · + |an|.
(2) (∗) We say that the numbers a1, · · · , an have the same sign if either of the following two
cases is true:

1◦ a1 ≥ 0, · · · , an ≥ 0.
2◦ a1 ≤ 0, · · · , an ≤ 0.

In other words, the numbers have the same sign if on the number line either they all lie on the
right of 0 including 0, or they all lie on the left of 0 including 0. Show that equality holds in
the generalised triangle inequality if and only if the numbers have the same sign.
Hint: Consider the n = 2 case first.

Exercise 1.23. For a, b ∈ R, show that max{a, b} = a+b+|a−b|
2 and min{a, b} = a+b−|a−b|

2 .

1.8 (∗) Remark on the construction of R

Natural numbers

Although we get familiar with the numbers 0, 1, 2, 3, · · · from an early age, we don’t learn its
abstract construction in elementary school. Such an abstract construction can be given using
set theory. One associates

0 with the empty set ∅,

1 with {∅},

2 with {∅, {∅}},

3 with {∅, {∅, {∅}}},

and so on.

In this manner, we obtain 0, 1, 2, 3, · · ·, in other words, the set N
⋃
{0}, and one can also

define addition via a successor function and establish the usual arithmetic laws of addition
(commutativity, associativity etc.).

Integers

We can introduce the integers as pairs (m, n), where m, n ∈ N
⋃
{0}, where (m, n) and (a, b)

are considered to be defining the same integer if

m + b = n + a.

Then n ∈ N
⋃
{0} can be identified with (n, 0) ∈ Z and (0, n) ∈ Z is thought of as the non-

positive integer −n, n ∈ N
⋃
{0}. So −1 is (0, 1) = (2, 3) = (1975, 1976), and so on.
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Rational numbers

The rational numbers Q can be defined using pairs of integers, where the second integer is not
zero, and (m, n), (a, b) are considered identical if mb = na.

Real numbers

What about the construction of the real number system R?
In this book, we treat the real number system R as a given. But one might wonder if we

can take the existence of real numbers on faith alone. It turns out that a mathematical proof
of its existence can be given.

There are several ways of doing this. One is by a method called ‘completion of Q’, where
one considers ‘Cauchy sequences’ in Q, and defines R to be ‘equivalence classes of Cauchy
sequences under a certain equivalence relation’. We refer the interested student to [S2, Prob-
lem 1, p. 588] or [R, Exercises 24, 25, p. 82] for details about this.

Another way, which is more intuitive, is via ‘(Dedekind) Cuts’, where we identify each
real number by means of two sets A and B associated with it: A is the set of rationals less than
the real number we are defining, and B is set of rational numbers at least as big as the real
number we are trying to identify. In other words, if we view the rational numbers lying on the
number line, and think of the sets A and B (described above) corresponding to a real number,
then this real number is the place along this rational number line where it can be cut, with A
lying on the left side of this cut, and B lying on the right side of this cut. See Figure 1.5. More
precisely, a cut (A,B) in Q is a pair of subsets A,B of Q such that A

⋃
B = Q, A �= ∅, B �= ∅,

A
⋂

B = ∅, if a ∈ A and b ∈ B then a < b, and A contains no largest element. R is then taken
as the set of all cuts (A,B). Here are two examples of cuts:

(A,B) =
(
{r ∈ Q : r < 0}, {r ∈ Q : r ≥ 0}

)
(giving the real number ‘0’)

(A,B) =
(
{r ∈ Q : r ≤ 0 or r2 < 2}, {r ∈ Q : r > 0 and r2 ≥ 2}

)
(‘
√

2’).

A

B

Figure 1.5 Dedekind cut.
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It turns out that R is a field containing Q, and it can be shown to possess the Least Upper
Bound Property. The interested reader is referred to the Appendix to Chapter 1 in the classic
textbook by Walter Rudin [R].

1.9 Functions

The concept of a ‘function’ is fundamental in Mathematics and in particular in Calculus.
So in this section, we will quickly review:

(1) the definition of a function, and standard terminology associated with functions,
such as the domain/codomain/range of a function, injective/one-to-one functions,
surjective/onto functions, bijective functions/one-to-one correspondences, graph of a
function;

(2) Cartesian geometry (which will allow us to visualise functions f : D (⊂ R) → R, by
looking at their graphs);

(3) some examples.

Informal view of functions

Let X,Y be sets. A function f : X → Y is a rule that sends each x ∈ X to one and only one
corresponding point f (x) ∈ Y .

X Yf

Some terminology:

(1) The set X is called the domain of f .

(2) The set Y is called the codomain of f .

(3) The set {y ∈ Y : there exists an x ∈ X such that y = f (x)} is called the range of f .
Note that the range of f is a subset of the codomain.

X Yf

codomaindomain

range

We disqualify rules that assign multiple points of Y to a point of X, and also those that miss
out assigning points of Y to some points of X, from being legitimate functions.
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X

X Y

Y

?

Example 1.16. Let
X := {all students in the classroom},

Y := R,

and f : X → Y be given by f (x) = height in centimeters of student x, x ∈ X. Then f is a func-
tion. Indeed, each person has a unique height: one person can’t have two heights. Note that
there can exist of course two persons having the same height. The domain of this function
is the set X of all students in the classroom, and the codomain is the set of all real numbers.
On the other hand, it is clear that the range of f is a much smaller subset of R: it is the finite
set consisting of the heights of the students in the classroom. ♦

Formal definition of a function

Let X,Y be sets. A function f : X → Y is a subset R of

X × Y := {(x, y) : x ∈ X, y ∈ Y}

with the following two properties:

(1) For every x ∈ X, there exists a y ∈ Y such that (x, y) ∈ R.

(2) If (x1, y1) and (x2, y2) belong to R, and if x1 = x2, then y1 = y2.

In plain English, the first requirement above, says that each x in X is sent by f to some element
of Y (so that no elements of X are ‘left out’ by the function f ), and the second requirement
says each element of X is sent to only one corresponding element of Y (that is, it is not the
case that some element of X is sent to more than one element of Y).

Functions are sometimes also called maps or mappings. We say for a function f : X → Y
that ‘f maps X to Y’, and if x ∈ X, then we also say ‘f maps x to f (x)’, written

x �→ f (x) or x
f�→ f (x).

In (one variable) Calculus, usually X,Y ⊂ R.
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Exercise 1.24. Let f , g : R → R be given by

f (x) = 1 + x2,

g(x) = 1 − x2,

x ∈ R. Compute the following:

(1) f (3) + g(3).

(2) f (3) − 3 · g(3).

(3) f (3) · g(3).

(4) ( f (3))/(g(3)).

(5) f (g(3)).

(6) For a ∈ R, f (a) + g(−a).

(7) For t ∈ R, f (t) · g(−t).

Classification of functions

We will now learn about three important classes of functions:

(1) injective or one-to-one functions,

(2) surjective or onto functions, and

(3) bijective functions or one-to-one correspondences.

Let f : X → Y . Then f is called

Injective/ Surjective/Onto Bijective/

One-to-one One-to-one correspondence

if for every x1 and x2 in X if for each y ∈ Y if it is both

such that x1 �= x2, there exists an x ∈ X injective and

f (x1) �= f (x2). such that f (x) = y. surjective.

‘Distinct points ‘Codomain=Range’

have distinct images’.

See Figure 1.6.

Example 1.17. The height function f : X → R we considered earlier in Example 1.16 will
not be one-to-one whenever the set X contains two students having the same height. On the
other hand, the height function will be injective if all the students have distinct heights.

Also, the height function is clearly not onto. For example, there is no student whose height
is −399 ∈ Y = R!

As the height function is not onto, it cannot be bijective either. ♦
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injective
but not onto

not one-to-one
but surjective

bijective

Figure 1.6 Injective/one-to-one functions, surjective/onto functions, bijective functions/
one-to-one correspondences.

Example 1.18.

(1) Consider function f1 : R → [0,∞) given by f1(x) = x2, x ∈ R.

Then f1 is not one-to-one (for example, because f1(−1) = 1 = f1(1)).
But f1 is onto, since for every y ∈ [0,∞), x :=

√
y ∈ R and f1(x) = f1(

√
y) = (

√
y)2 = y.

(2) Consider the function f2 : [0,∞) → R given by f2(x) =
√
x, x ∈ [0,∞).

Then f2 is injective, because if f2(x1) = f2(x2) for some x1, x2 ≥ 0, then
√
x1 = √

x2, and so
x1 = (√x1)

2 = (√x2)
2 = x2.

But f2 is not surjective, since f2 never assumes negative values.

(3) The function f3 : R → R given by f3(x) = 2x, x ∈ R is a bijection.

Indeed, f3 is injective (since if f3(x1) = f3(x2) for some x1, x2 ∈ R, then 2x1 = 2x2, and so
x1 = x2), and f3 is surjective (if y ∈ R, then f3(y/2) = 2 · (y/2) = y). ♦

Exercise 1.25. Show that the map f : R → R given by f (x) = x|x|, x ∈ R, is a one-to-one
correspondence.

Graph of a function. Review of Cartesian geometry

Definition 1.14 (Graph of a function). Let f : X → Y be a function. Then the graph of f is
the set {(x, f (x)) : x ∈ X}.



32 THE HOW AND WHY OF ONE VARIABLE CALCULUS

The graph of f is a subset of X × Y . When X and Y are both subsets of R, then we can visualise
the function f by ‘plotting’ its graph in the Cartesian plane R

2. Let us recall how this is done.
First of all the word ‘Cartesian’ comes from the name of the mathematician Decartes

(16th century AD), who described points in the plane with two real numbers, we recall this
below.

We first draw two mutually perpendicular lines in the plane, intersecting at a pointO called
the origin. The horizontal line is called the x-axis, and the vertical line is called the y-axis.

x-axis

y-axis

x

y

O 1

1

We choose unit lengths along the x-axis and y-axis, we label the number 1 on the x-axis to the
right of the origin, and we label the number 1 on the y-axis above the origin. Thus, any x ∈ R

is determined on the x-axis, and any y ∈ R is determined on the y-axis.
Any point P = (x, y) ∈ R × R =: R

2 can be depicted in the Cartesian plane by taking it
to be the intersection point of the vertical line �x passing through the point x on the x-axis, and
of the horizontal line �y passing through the point y on the y-axis.

x-axis

y-axis

x

y

O

P

(x, y)

�x

�y
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The number x is called the x-coordinate of P = (x, y), and the number y is called the
y-coordinate of P = (x, y).

Exercise 1.26. Suppose that f : R → R has a graph as shown in Figure 1.7.
Sketch the graphs of the functions g1, g2, g3, g4, g5, g6 : R → R, defined for x ∈ R by

g1(x) := f (x + 1),

g2(x) := f (x− 1),

g3(x) := f (2x),

g4(x) := f (x/2),

g5(x) := f (−x),

g6(x) := −f (x).

0

Figure 1.7 The graph of f .

Here are a few examples of functions and their graphs.

Example 1.19.

(1) (Sequence) Let f1 : N → R be given by f1(n) =
1
n

, n ∈ N.

0 1

1

2 3 4 5 6

(2) (Constant function) Let f2 : R → R be given by f2(x) = c, x ∈ R. (Here c ∈ R is fixed,
say c = 1.)
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0

1

(3) (Identity function) Let f3 : R → R be given by f3(x) = x, x ∈ R. See the picture on the
left in the following figure. More generally, a linear function L : R → R is a function of the
form

L(x) = mx + c, x ∈ R,

for some constants m and c. The number m is called the slope of L, and c is referred to as the
y-axis intercept. Note that L(0) = c, so that the graph of L does intersect the y-axis at the point
(0, c) in the Cartesian plane. Also, we note that for all distinct real numbers x2, x1,

L(x2) − L(x1)
x2 − x1

=
mx2 + c− (mx1 + c)

x2 − x1
= m.

See the picture on the right below.

x

x

c

m

1
45°

45°

(4) (Absolute value/modulus function) Consider the absolute value/modulus function | · |
from R to R, x �→ |x|, x ∈ R. The graph has a ‘corner’ at x = 0:

0
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(5) (Integer and fractional part) Consider the greatest integer part function �·� : R → R, given
by x �→ �x�, x ∈ R. There are ‘jumps’ or ‘discontinuities’ at the integer points. Similarly, one
can define the fractional part {·} : R → R by

{x} := x− �x�, x ∈ R.

For example, we have {−3.05} = −3.05 − (−4) = 0.95, {−3} = −3 − (−3) = 0, and
{3.05} = 3.05 − 3 = 0.05.

1

1

1

♦

Plotting with Maple

Using a computer package like Maple (or Mathematica), it is possible to plot the graphs of
functions for specified intervals. The basic syntax of the plot command is

> plot(f,range);

There are many options to the plot command, and the best way to get familiar with this is to
experiment with it, and to use the ‘help’ option. For example,

> plot(xˆ2, x = -9..9);

displays the graph of x �→ x2 for x ∈ [−9, 9]; see the picture below. In the above command,
we indicated the range of x by writing ‘x=-9..9’. Maple automatically chooses a scale on
the vertical axis.

80

70

60

50

40

30

20

−8 −6 −4 −2 0 2 4
x

6 8

10
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Polynomial functions

The simplest functions in Calculus are the constant function x �→ 1, the identity function
given by x �→ x, and pointwise products of this, namely the power functions x �→ xn, where
n ∈ N is fixed. Linear combinations of these are called the polynomials, that is, a polynomial
p : R → R is a function

p(x) = c0 · 1 + c1 · x + c 2 · x2 + c3 · x 3 + · · · + cd · xd, x ∈ R,

where the coefficients are the (fixed) numbers c0, c1, c2, c3, · · · , cd ∈ R, and cd �= 0.
d ∈ {0, 1, 2, 3, · · · } is then called the degree of p. For example,

x6 − 3 · x4 + 2 · x2 − 1
3

,

is a polynomial of degree 6. If all the coefficients are zeros, then we say that p is the zero
polynomial, and its degree is taken to be 0.

Exercise 1.27. Use Maple (or an equivalent computer program) to plot the graph of the poly-
nomial p, where

p(x) = x6 − 3 · x4 + 2 · x2 − 1
3

,

for x ∈
(
−3

2
,

3
2

)
. Can you explain the symmetry in the resulting picture?

Rational functions

A function r : D (⊂ R) → R of the form

r(x) =
n(x)
d(x)

, x ∈ D,

where n, d are fixed polynomials and D := R\{ζ ∈ R : d(ζ) = 0}, is called a rational
function. The polynomial n is called the numerator polynomial of r, and d is called the
denominator polynomial of r. For example,

x �→ 1
1 + x2

: R → R and x �→ 2 − x
1 − x2

: R\{−1, 1} → R

are rational functions. The graphs are displayed below.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

−8 −6 −4 −2

−2
−2

−4

−6

−8

−1 0 1 2

0
x

x

2 4 6 8

8

6

4

2



THE REAL NUMBERS 37

Example 1.20 (The circle). Consider all (x, y) ∈ R
2 such that x2 + y2 = r2 for some fixed

r > 0. Then for x ∈ [−r, r], y =
√
r2 − x2 or y = −

√
r2 − x2. (Recall that if a ≥ 0, then

√
a

denotes the unique positive square root of a. For example,
√

9 = 3.) So we can view the circle
as made up of the graphs of two functions:

f+ : [−r, r] → R given by f+(x) =
√
r2 − x2, x ∈ [−r, r], and

f− : [−r, r] → R given by f−(x) = −
√
r2 − x2, x ∈ [−r, r]. ♦

√
r2 − x2

−
√

r2 − x2

−r r

{(x, y) ∈ 2 : x2 + y2  = r2 }

Polynomials and rational functions, and related functions such as the square root function,
and their combinations, are loosely called algebraic functions. Later on in Chapter 5, we will
learn about some other functions that often arise in applications, such as the logarithm, the
exponential, and trigonometric functions, and these are examples of ‘non-algebraic’ functions,
or ‘transcendental functions’.

Inverse functions

If one has a bijective function f from X to Y , then we can imagine a picture where points from
X are taken to points in Y by f . But now if we start from any point y in Y , since the function
is surjective, there has to be a point x in X which is sent to y ∈ Y , and moreover, since f
is injective, we know that this x is unique. So we can ‘reverse the arrow’ that takes x to y
under f . In this way, we get a new rule/function that takes elements from Y to elements in X,
by just reversing all the old arrows of the bijective f (taking elements of X to those in Y). This
map is called the ‘inverse function of f ’, denoted by f−1. We summarise this below.

If f : X → Y is a bijection, then the inverse function

f−1 : Y → X

is defined as follows. Given y ∈ Y , there is an x ∈ X such that f (x) = y (since f is surjective),
and moreover, this x is unique (since f is injective). So for y ∈ Y , we define f−1(y) := x,
where x is the unique element in X such that f (x) = y. It is easy to see that

f (f−1(y)) = y for all y ∈ Y , and

f−1( f (x)) = x for all x ∈ X.
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Example 1.21. Let f : [0, 1] → [1, 3] be given by f (x) = 2x + 1, 0 ≤ x ≤ 1. It can be checked
that f is bijective. Then the inverse of f is f−1 : [1, 3] → [0, 1], given by

f−1(y) =
y− 1

2
, 1 ≤ y ≤ 3.

The graphs of f and f−1 are displayed below.
♦

f

f−1

1

1

2

2

3

3

In the picture above, we notice that the graph of f−1 is just the reflection of the graph of f in
about the line y = x in the plane. This is no coincidence. The sequence of pictures in Figure 1.8
gives a key step towards explaining this: we look at the two points (a, a), (b, b), and note that

a

a

b

b

(a, b)

(a, b)

(b, a)

(b, a)
45°

square

Figure 1.8 The point (b, a) is the reflection of the point (a, b) in the y = x line.
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that the line joining (a, b) to (b, a) is the diagonal of a square, the other diagonal of the square
being the line y = x, and so the point (a, b) is obtained by reflecting the point (b, a) about the
line y = x. Bearing this fact in mind, we finally note that

(y, x) ∈ graph of f−1

�
x = f−1(y)

�
f (x) = y

�
(x, y) ∈ graph of f .

And this completes the explanation of the fact that the graph of f−1 is just the reflection of the
graph of f about the line y = x in the plane.

Example 1.22 (The nth root function n
√·) Let n ∈ N be fixed. Let the function

f : [0,∞) → [0,∞) be given by f (x) = xn, x ≥ 0. Then f is one-to-one because if 0 ≤ a < b,
then the law of exponents (E3) on page 20 gives an < bn. It is also onto by Theorem 1.5.
Thus f is bijective, and its inverse is the nth root function f−1 = n

√· : [0,∞) → [0,∞) given
by f−1(x) = n

√
x, x ≥ 0. Taking n = 2, the graphs of f := x2 and its inverse f−1 =

√· are
shown in Figure 1.9. ♦

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6

x
0.8 1 1.2

Figure 1.9 The graph of f := x2 and its inverse f−1 =
√·.

Inverse of an injective map. Even if a function f fails to be bijective, but is only injective
(and not necessarily surjective), we can define an inverse function from its range (and not its
codomain) to the domain of f . We explain this now.

Let I be an interval, and f : I → R be injective/one-to-one. Let us denote by f (I) the range
of f , that is,

f (I) := {f (x) : x ∈ I}.
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We define the inverse function f−1 : f (I) → I as follows.

f−1(y) := x, where x is the unique element in I such that f (x) = y.

Again, since (y, x) belongs to graph of f−1 if and only if f (x) = y, that is, if and only if (x, y)
belongs to graph of f , the graph of f−1 is obtained from the graph of f by reflection in the
y = x line.

1.10 (∗) Cardinality
This section is independent of the rest of the subject matter of Calculus, and if the reader so
desires, it may be skipped.

For finite sets, we can compare sizes by just counting the number of elements, and this is
referred to as the cardinality of the set: for example, the set {A,B,C, · · · ,Z} of alphabet letters
in the English language has cardinality 26, while the cardinality of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
is 10. Note that finite sets of the same cardinality can be put in a one-to-one correspondence,
that is, we can define a bijection between the two sets. Sets that do not have finite cardinality
are called infinite sets. One can then ask the natural question: can any two infinite sets always
also be put in a one-to-one correspondence? For example, we know that the set N is infinite,
and now suppose that we have another infinite set S. Then can we always establish a bijection
between the elements of N and those of S? In other words can we ‘list’ the elements of S, as
the first element of S, the second element of S, and so on? The answer, perhaps surprisingly,
is no! For example, such a bijection fails to exist if we take S = R, and this is the content of
Theorem 1.11 below. But first, the above discussion motivates the following definition.

Definition 1.15 (Countable set). An infinite set S is said to be countable if there is a bijective
map from N onto S.

Example 1.23. Clearly if we consider the identity map n �→ n : N → N, then we see that N

is countable.
A non-trivial example is that also the set Z of integers is countable. This is best seen by

means of a picture, as shown in Figure 1.10.

0 1 2 3 4− 1− 2− 3− 4

Figure 1.10 Countability of Z.

Clearly the resulting map from N to Z is injective (since each integer is crossed by the spi-
ral path only once ever—having crossed an integer, the subsequent distance of the path to
the origin increases), and surjective (since every integer will be crossed by the spiral path
sometime). ♦
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Let us show that the set Q of rational numbers is countable. To this end, we will need the
following two auxiliary results, which are interesting in their own right.

Lemma 1.8. Every infinite subset of a countable set is countable.

Proof. First let us show that any infinite subset S of N is countable.

Let a1 := min S. If a1, · · · , ak have been constructed, then define

ak+1 := min(S\{a1, · · · , ak}).

Then a1 < a2 < a3 < · · ·. Define ϕ : N → S by ϕ(n) = an, n ∈ N. Then ϕ is injective
(because if n < m, then ϕ(n) < ϕ(m)). Also, ϕ is surjective. Indeed, for each element m ∈ S,
there are only finitely many natural numbers, and much less elements of S, which are smaller
than m. If the number of such elements of S that are smaller than m is nm, then it is clear that
ϕ(nm + 1) = m.

Now let S be countable and let T be an infinite subset of S. Let ϕ : S → N be a bijection.
There is a bijection from T to the range of3 ϕ|T . But the range of ϕ|T is a subset of N, and so
it is countable. Hence T is countable too. �

Lemma 1.9. If A,B are countable, then A× B is also countable.

Proof. Since A and B are countable, we can list their elements:

A = {a1, a2, a3, · · · },

B = {b1, b2, b3, · · · }.

Arrange the elements of A× B in an array and list them by following the path as shown below.

(a1, b1) (a1, b2) (a1, b3) · · ·

(a2, b1) (a2, b2) (a2, b3) · · ·

(a3, b1) (a3, b2) (a3, b3) · · ·
...

...
...

. . .

The resulting map from N to A× B is clearly surjective (since every element (an, bm) is hit
by the zigzag path sometime), and it is also injective (since the zigzag path never hits a point
after having crossed it because it moves on to a parallel antidiagonal below). �

3 Here ϕ|T denotes the restriction of ϕ to T . In general, if f : X → Y is a function and S is a subset of X, then the
restriction of f to S is the function f |S : S → Y given by f |S(x) = f (x) for all x ∈ S.
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We are now ready to show the countability of the rationals.

Theorem 1.10. Q is countable.

Proof. Each q ∈ Q can be written uniquely as q = n
d , where n, d ∈ Z, d > 0 and the greatest

common divisor gcd(n, d) of n, d is equal that is 1 (that is, n and d have no common fac-
tor besides 1, or n, d are coprime/relatively prime). Hence we can consider Q as a subset of
Z × Z. But Z is countable, and so by the previous part, Z × Z is countable. Consequently,
Q is countable. �

Theorem 1.11. R is uncountable.

Proof. Using Lemma 1.8, we see that it is enough to show that [0, 1] (⊂ R) is uncountable.
Suppose, on the contrary, that [0, 1] is countable. Let x1, x2, x3, · · · be an enumeration of [0, 1].
For each n ∈ N, construct a subinterval [an, bn] of [0, 1], that does not contain xn, inductively
as follows:
Initially, a0 := 0, b0 := 1.
Suppose that for k ≥ 0, ak, bk have been chosen. Choose ak+1, bk+1 like this:

If xk+1 ≤ ak or xk+1 ≥ bk, then

ak+1 := ak +
bk − ak

3
,

bk+1 := ak + 2 · bk − ak
3

.

If ak < xk+1 < bk, then

ak+1 := xk+1 +
bk − xk+1

3
,

bk+1 := xk+1 + 2 · bk − xk+1

3
.

0 1

a0 b0

xk+1 ak ak+1 bk+1 bk xk+1

ak xk+1 ak+1 bk+1 bk
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Then for all n ∈ N, [an, bn] �= ∅ and xn /∈ [an, bn].

Moreover, 0 < a1 < a2 < a3 < · · · < an < · · · < bn < bn−1 < · · · < b2 < b1 < 1.

Let a := sup
n∈N

an and b := inf
n∈N

bn.

Then a ≤ b, and so [a, b] �= ∅. Also, for all n ∈ N, [a, b] ⊂ [an, bn] and xn /∈ [an, bn]. So for
all n ∈ N, xn /∈ [a, b]. Thus the points in [a, b] (⊂ [0, 1]) are missing from the enumeration, a
contradiction! �

Notes

The discussion in Example 1.4.(4) is based on [J, Page 10]. The picture in Figure 1.5 is inspired
by [P, Figure 1.3, page 12]. Exercise 1.24 is based on [A, Exercise 1.5.2].
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Sequences

The notion of a sequence occurs in ordinary conversation. For example, when one says ‘an
unfortunate sequence of events’, we imagine a first event, followed by a second event, followed
by a third one, and so on.

Similarly, a sequence of real numbers is an infinite list

a1, a2, a3, · · ·

of real numbers, where

a1 is the first number/member/term of the sequence,

a2 is the second term of the sequence,

a3 is the third term of the sequence, and so on.

For example,

1,
1
2

,
1
3

, · · ·

is a sequence of real numbers, where 1 is the first term, 1/2 is the second term, and in general,
the nth term is 1/n, n ∈ N.

If in the sequence
a1, a2, a3, · · · ,

we think of a1 as f (1), a2 as f (2), a3 as f (3), and so on, then it becomes clear that a sequence
is a special type of function, namely one with domain N and codomain R.

Definition 2.1 (Sequence). A sequence is a function f : N → R.

Only the notation is somewhat unusual. Instead of writing f (n) for the value of f at a natural
number n, we write an. The entire sequence is then referred to with the notation

(an)n∈N
.

The How and Why of One Variable Calculus, First Edition. Amol Sasane.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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The nth term an of a sequence may be defined explicitly by a formula involving n, as in the
example given above:

an =
1
n

, n ∈ N.

It might also sometimes be defined recursively. For example,

a1 = 1, an+1 =
n

n + 1
an for n ∈ N.

(Write down the first few terms of this sequence.)

Example 2.1. Here are a couple of examples of sequences, and we have also displayed the
first few terms.

1

1

1

1

1

−1

2

2

2 3

4

4 5 6

6

7

(1)n∈ 1,1,1,· · ·

1
n n∈

1,
1
2

,
1
3

, · · ·

((−1)n)n∈

−1,1,−1,−1,1,−1,· · ·

(n)n∈ 1, 2, 3, · · ·

1 +
1
2

+
1
3

+ · · · +
1
n n∈

1, 1 +
1
2

, 1 +
1
2

+
1
3

, · · ·

♦



46 THE HOW AND WHY OF ONE VARIABLE CALCULUS

What do we want to know about sequences? In Calculus, we want to know ‘the limiting
behavior’ of the sequence, that is, what an behaves like for large n, and in particular, whether
an gets closer and closer to some number L (called the limit of the sequence at hand).

What is the motivation for studying the limiting behavior of sequences? For example, the
terms of the sequence might be the sum of the areas of the rectangles in the picture on the left
below, or they might be the slopes of the chords in the picture on the right, and we might be
interested in the limiting behavior because we want to calculate the area under the graph (left
picture) or the instantaneous rate of change of function at the point c (right picture). Thus we
want to know what happens when n increases to the sequence (an)n∈N

where

(Left picture) an =
n−1∑
k=1

mk ·
k
n

, here mk := height of kth shaded rectangle,

(Right picture) an =
f (c + 1

n ) − f (c)
1
n

.

0 1
n

2
n

· · · n−1
n

1 c c + 1c + 1
2

2.1 Limit of a convergent sequence

We want to give a precise definition for

‘the sequence (an)n∈N
is convergent with limit L’ or ‘ lim

n→∞
an = L’.

Intuitively, by the above, we mean that there is a number L such that the terms of the sequence
are getting ‘closer and closer’ or are ‘settling down’ to L for larger and larger values of n. If
there is no such finite number L to which the terms of the sequence get arbitrarily close, then
the sequence is said to diverge.

For example, the sequence

(
1
n

)
n∈N

seems to be convergent with limit 0, that is,

lim
n→∞

1
n

= 0.
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This is consistent with the idea of convergence that we have in mind: a sequence (an)n∈N

converges to some real number L, if the terms an get ‘closer and closer’ to L as n ‘increases
without bound’.

1

The problem with such a characterisation is its imprecision. Exactly what does it mean when
we say that the terms of a sequence get ‘closer and closer’ or ‘as close as we like’ or ‘arbitrarily
close’ to some number L? Even if we accept this ambiguity, how would we use the definition
to prove theorems that involve sequences?

The terms of the sequence

(
1 +

1
n

)
n∈N

are

2,
3
2

,
4
3

,
5
4
· · · ,

and the first few are plotted below.

1

2

2 3 4

1

The terms of this sequence get ‘closer and closer’ to 0 (indeed the distance to 0 keeps decreas-
ing), but

lim
n→∞

(
1 +

1
n

)
�= 0,

rather

lim
n→∞

(
1 +

1
n

)
= 1.

One might say ‘but clearly the terms do not get arbitrarily close to 0, but they do get arbitrarily
close to 1!’

Moreover, we would also like to say that a sequence is convergent with limit L even if the
adjacent terms of the sequence do not always reduce their distance to L, but it is nevertheless
true that the distance to the limit can be made arbitrarily small provided we go far enough in
the sequence: an example is the sequence(

n mod 5
n

)
n∈N

.
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Here, n mod 5 denotes the remainder obtained when n is divided by 5. The graph of the
sequence is shown below.

1

0.8

0.6

0.4

0.2

0
10 20 30 40 50 60 70 80 90

We notice that the limit of this sequence turns out to be 0, despite the fact that any two succes-
sive terms may not always reduce the distance to 0. However, given any small distance ε > 0,
there is some index N beyond which all the terms of the sequence do lie within a distance of
ε from 0. In other words, the sequence is settling down to the value 0.

Based on the above examples, we would like to say that a sequence is deemed to be con-
vergent with limit L if

‘No matter what distance ε is specified, there is an index N beyond which all the
terms aN+1, aN+2, aN+3, · · · all have a distance smaller than ε to L’.

In other words,

∀ε > 0 ∃N ∈ N such that ∀n > N, |an − L| < ε

for every there is such that all terms have distance to L

specified distance ε an index beyond that index less than ε

(In the above, we have used the symbol ‘∀’, which is read ‘for every’. Also the symbol ‘∃’
means ‘there exists a/an’.)

With these introductory remarks, we now have the following concrete, precise mathemat-
ical definition for the convergence/divergence of a sequence.

Definition 2.2 (Convergent/Divergent sequence; limit). A sequence (an)n∈N
is said to be con-

vergent with limit L (∈ R) if for every ε > 0, there exists1 an N ∈ N such that for all n ∈ N

with n > N, |an − L| < ε. Then we write

lim
n→∞

an = L.

If there is no L ∈ R such that lim
n→∞

an = L, then (an)n∈N
is called divergent.

1 depending on ε
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The picture below gives the geometric meaning of the definition of a sequence being conver-
gent with limit L.

There exists an L

such that no matter
what ε > 0 we pick
and consider a shaded strip
of width 𝝐 around
the horizontal line passing
through L,

there exists an index N
such that all terms with indices
n > N lie in that strip.

Had we chosen a smaller ε,

then perhaps a larger N ′
would work.

N N+1 N+2 N+3

L + ε

L + ε

L − ε

L − ε

L

L

L

L

L + ε′

L − ε′

N ′ N ′+1 N ′+2

Let us consider some simple examples in order to illustrate the definition.

Example 2.2. (1)n∈N
is convergent with limit 1. We want to check if the following holds:

∀ε > 0, ∃N ∈ N such that ∀n > N, |an − L| < ε. (2.1)

Well, given ε > 0, we have that |an − L| = |1 − 1| = |0| = 0 < ε always, that is for all
n ∈ N! So any N ∈ N works. Pictorially, no matter what the width of the shaded region is,
all the terms of the sequence lie in that shaded strip. So for example, N = 1 works.
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1

N=1

Here is a rigorous proof of ‘ lim
n→∞

an = 1’:

Let ε > 0.
Let N be any natural number, say N = 1.
Then for all n > N = 1, we have |an − L| = |1 − 1| = |0| = 0 < ε.

So we have checked that the statement in (2.1) holds. ♦

Example 2.3.
(

1
n

)
n∈N

is a convergent sequence with limit 0.

Before one proceeds to give rigorous proof, we often need to do some rough work. Recall that
in order to check the claim, we need to verify

∀ε > 0, ∃N ∈ N such that ∀n > N, |an − L| < ε. (2.2)

Thus given ε > 0, the task is to find a special index N such that the inequality |an − L| < ε
is satisfied for all n > N. So in order to find this N, we will work backwards, by first starting
with the inequality |an − L| < ε, and making an educated guess about whatN is likely to work.
Then we will proceed to give a formal proof.

(Rough work: Let ε > 0. We want an N such that for all n > N, |an − L| < ε, that is,∣∣∣∣1
n
− 0

∣∣∣∣ =
1
n

< ε,

that is, n > 1/ε. So we guess that we can take any N ∈ N such that N > 1/ε, because then for
n > N, n > N > 1/ε, and we may retrace the steps above.)

Rigorous argument:

Let ε > 0.
Let N ∈ N be such that N > 1/ε.
(We use the Archimedean Property here with y := 1/ε, x := 1: by Theorem 1.3, there
exists an N ∈ N such that Nx > y, that is, N > 1/ε.)
Then for all n ∈ N with n > N, we have

|an − L| =
∣∣∣∣1
n
− 0

∣∣∣∣ =
1
n

<
1
N

< ε.

So lim
n→∞

1
n

= 0. ♦
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Example 2.4.
(

1 +
1
n

)
n∈N

is a convergent sequence with limit 1.

(Rough work: |an − L| =
∣∣∣∣1 +

1
n
− 1

∣∣∣∣ =
∣∣∣∣1
n

∣∣∣∣ =
1
n

< ε for n > N >
1
ε

.)

Rigorous argument:

Let ε > 0.
Let N ∈ N be such that N > 1/ε.
Then for all n ∈ N with n > N, we have

|an − L| =
∣∣∣∣1 +

1
n
− 1

∣∣∣∣ =
∣∣∣∣1
n

∣∣∣∣ =
1
n

<
1
N

< ε.

So lim
n→∞

(
1 +

1
n

)
= 1.

We note that it is not the case that lim
n→∞

(
1 +

1
n

)
= 0. For, if on the contrary,

lim
n→∞

(
1 +

1
n

)
= 0,

then the following statement holds:

∀ε > 0, ∃N ∈ N such that ∀n > N, |an − 0| =
∣∣∣∣1 +

1
n
− 0

∣∣∣∣ = 1 +
1
n

< ε.

But if we take ε = 1 > 0, then the above gives the existence of an N ∈ N such that

∀n > N, 1 +
1
n

< ε = 1.

If we take n = N + 1, then this last inequality gives the contradiction that

1
N + 1

< 0.

(We will soon learn in Theorem 2.1 that in fact if a sequence is convergent with a certain limit
L, then it cannot converge to any other limit L′. So in light of this result, the last paragraph
above is superfluous: indeed, since we proved that

lim
n→∞

(
1 +

1
n

)
= 1,

we immediately know that for any L′ �= 1, it cannot be the case that

lim
n→∞

(
1 +

1
n

)
= L′,

and in particular, with L′ := 0 �= 1, we surely know that lim
n→∞

(
1 +

1
n

)
�= 0.) ♦

Here is an example of a divergent sequence.

Example 2.5. ((−1)n)n∈N
is divergent.

We will prove this by contradiction. Let ((−1)n)n∈N
be convergent with limit L. Then,

∀ε > 0, ∃N ∈ N such that ∀n > N, |an − L| = |(−1)n − L| < ε.
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Take ε = 1/2. (This choice is motivated by hindsight—we want to arrive at a contradic-
tion, and it will turn out that this choice of ε delivers the contradiction. In order to make this
transparent, let us keep working with a general ε in our argument below, and at a crucial last
step, we will see the rationale behind our choice of ε = 1/2!)

Then there exists an N ∈ N such that for all n > N, |(−1)n − L| < ε. But if we take any
even n > N (for example, 2N, 4N, 6N, 8N, · · ·), then we obtain

|(−1)n − L| = |1 − L| < ε. (2.3)

(This inequality says that the distance of L to 1 is less than ε.) On the other hand, if we take
any odd n > N (for example, 2N + 1, 4N + 1, 6N + 1, 8N + 1, · · ·), then

|(−1)n − L| = | − 1 − L| < ε. (2.4)

(This inequality says that the distance of L to −1 is less than ε.)
So pictorially, our L is supposed to lie in an interval about 1 with width 2ε, and in an

interval about −1 with width 2ε. But such intervals will not overlap if ε = 1/2 (in fact any
positive ε ≤ 1 will do the job!), and this will give us the contradiction.

0 1−1

2ε2ε

L lies here L lies here

Indeed, we have, using (2.3) and (2.4) that

2 = | − 1 − L + L− 1| ≤ | − 1 − L| + |L− 1| < ε + ε = 2ε = 2 · 1
2

= 1,

a contradiction. Consequently, the sequence ((−1)n)n∈N
is divergent. ♦

The notation
lim
n→∞

an

suggests that the limit of a convergent sequence is unique. Indeed this is the case, and we
prove this below.

Theorem 2.1. A convergent sequence has a unique limit.

Proof. Let (an)n∈N
be a convergent sequence with limits L1 and L2, with L1 �= L2.

L1

L2

all terms beyond N1
should lie in
this strip

all terms beyond N2
should lie in
this strip
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Let

ε :=
|L1 − L2|

3
> 0,

where the positivity of the ε defined above follows from the fact that L1 �= L2. Since L1 is a
limit of the sequence (an)n∈N

, ∃N1 ∈ N such that

for all n > N1, |an − L1| < ε.

Since L2 is a limit of the sequence (an)n∈N
, ∃N2 ∈ N such that

for all n > N2, |an − L2| < ε.

Consequently for n > N1 + N2, we have n > N1 and n > N2, and so

|L1 − L2| = |L1 − an + an − L2| ≤ |L1 − an| + |an − L2| < ε + ε = 2ε =
2
3
|L1 − L2|.

So we arrive at the contradiction that 1 < 2
3 . Hence our original assumption was incorrect,

and so a convergent sequence must have a unique limit. �

Checking whether a sequence is convergent or not by using the definition is cumbersome.
In the rest of the chapter, we will learn ways of deducing the convergence without having to
do this hard work. Instead, we will establish results that allow us to deduce the convergence
based on certain properties possessed by the sequence. One example of such a result is:

Bounded and monotone sequences are convergent.

So in the next section, among other things, we will study what is meant by a bounded sequence,
a monotone sequence, and also see a proof of the result stated above.

Exercise 2.1. (∗)

(1) Can the limit of a convergent sequence be one of the terms of the sequence?

(2) If none of the terms of a convergent sequence equal its limit, then prove that the terms
of the sequence cannot consist of a finite number of distinct values.

(3) Prove that the sequence ((−1)n)n∈N
is divergent using the above.

Exercise 2.2. In each of the cases listed below, give an example of a divergent sequence
(an)n∈N

that satisfies the given conditions. Suppose that L = 1.

(1) For all ε > 0, there exists an N such that for infinitely many n > N, |an − L| < ε.

(2) There exists an ε > 0 and an N ∈ N such that for all n > N, |an − L| < ε.

Exercise 2.3. Let S be a nonempty subset of R such that S is bounded above. Show that there
exists a sequence (an)n∈N

contained in S (that is, an ∈ S for all n ∈ N) and which is convergent
with limit equal to sup S.
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Exercise 2.4. Let (an)n∈N
be a sequence such that for all n ∈ N, an ≥ 0. Prove that if (an)n∈N

is convergent with limit L, then L ≥ 0.

Exercise 2.5. Which of the following statements mean the same as ‘it is not the case that the
sequence (an)n∈N

is convergent to L’?

� (A) ∀ε > 0, ∃N ∈ N such that ∀n ∈ N such that n > N, |an − L| ≥ ε.

� (B) ∀ε > 0, ∃N ∈ N such that ∀n ∈ N such that n ≤ N, |an − L| ≥ ε.

� (C) ∃ε > 0, such that ∀N ∈ N, ∃n ∈ N such that n > N but |an − L| ≥ ε.

� (D) ∃ε > 0, ∃N ∈ N, such that ∀n ∈ N such that n > N, |an − L| ≥ ε.

2.2 Bounded and monotone sequences

Bounded sequences

Definition 2.3 (Bounded sequence). A sequence (an)n∈N
is said to be bounded if there

exists an M > 0 such that
for all n ∈ N, |an| ≤ M. (2.5)

M

−M

all terms
lie here

Note that a sequence is bounded if and only if the set S = {an : n ∈ N} is bounded. (See
Exercise 1.20 on page 24.)

Example 2.6.

(1) (1)n∈N
is bounded, since |1| = 1 ≤ 1 for all n ∈ N.

(2)

(
1
n

)
n∈N

is bounded, since

∣∣∣∣1
n

∣∣∣∣ =
1
n
≤ 1 for all n ∈ N.

(3) ((−1)n)n∈N
is bounded, since |(−1)n| = 1 ≤ 1 for all n ∈ N.

(4) (n)n∈N
is not bounded.

(If there exists an M > 0 such that for all n ∈ N, |an| = |n| = n ≤ M, then this con-
tradicts the Archimedean Property: we know there exists an N ∈ N such that with
x := 1, N = N · x > M =: y.)
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(5) The sequence (an)n∈N
is bounded, where

an =
1
11

+
1
22

+
1
33

+ · · · + 1
nn

, n ∈ N.

Indeed this can be seen as follows:

|an| =
∣∣∣∣ 1
11

+
1
22

+
1
33

+ · · · + 1
nn

∣∣∣∣ =
1
11

+
1
22

+
1
33

+ · · · + 1
nn

≤ 1
11

+
1
22

+
1
23

+ · · · + 1
2n

=
1
11

+
1
2

(
1 − 1

2

)
+

1
22

(
1 − 1

2

)
+ · · · + 1

2n−1

(
1 − 1

2

)

= 1 +
1
2
− 1

22
+

1
22

− 1
23

+ − · · · + 1
2n−1

− 1
2n

= 1 +
1
2
− 1

2n
<

3
2

.

Thus all the (positive) terms are bounded above by 3
2 , and so the sequence is

bounded. ♦
The sequences (1)n∈N

, (1/n)n∈N
are convergent, and we have shown above that they are also

bounded. This is not a coincidence, and in the next theorem we show that the set of all con-
vergent sequences is contained in the set of all bounded sequences.

Theorem 2.2. If a sequence is convergent, then it is bounded.

Proof. Let (an)n∈N
be a convergent sequence with limit L. Let ε := 1 > 0. Then there exists

an N ∈ N such that for all n > N, |an − L| < ε = 1. Consequently, for all n > N, we have that
|an| = |an − L + L| ≤ |an − L| + |L| < 1 + |L|. So all the terms with index beyond N lie in
the shaded strip below.

L

Nonly finitely
many left out!

all terms beyond N
lie in the shaded strip

But only finitely many are left out, and surely for n = 1, · · · ,N,

|an| ≤ max{|a1|, · · · , |aN |}.

So if we set M := max{|a1|, . . . , |aN |, 1 + |L|}, then for all n ∈ N

|an| ≤ M,

and so (an)n∈N
is bounded. �
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Thus:
convergent ⇒ bounded.

But the reverse implication is not true, since for example, ((−1)n)n∈N
is bounded, but not

convergent. So:
convergent��⇐ bounded.

But we will see soon enough that if we add the property of being ‘monotone’ to boundedness,
then we do get convergence:

bounded and ‘monotone’ ⇒ convergent.

We will now study what we mean by a monotone sequence before proving this last implication.

Exercise 2.6.

(1) Let (bn)n∈N
be a bounded sequence. Prove that (bn/n)n∈N

is convergent with limit 0.

(2) Is the sequence ((sin n)/n)n∈N
convergent?

Exercise 2.7. (∗) If (an)n∈N
is a convergent sequence with limit L, then prove that the sequence

(sn)n∈N
, where

sn =
a1 + · · · + an

n
, n ∈ N,

is also convergent with limit L. Give an example of a sequence (an)n∈N
such that (sn)n∈N

is
convergent but (an)n∈N

is divergent.

Monotone sequences

Definition 2.4 (Increasing, decreasing, and monotone sequences).
(1) A sequence (an)n∈N

is said to be increasing if for all n ∈ N, an ≤ an+1, that is, if
a1 ≤ a2 ≤ a3 ≤ . . . .

(2) A sequence (an)n∈N
is said to be decreasing if for all n ∈ N, an ≥ an+1, that is, if

a1 ≥ a2 ≥ a3 ≥ . . . .

(3) A sequence is said to be monotone if it is increasing or decreasing.

Here are some examples.

Example 2.7.

Sequence Is it Is it Is it
increasing? decreasing? monotone?

(n)n∈N
Yes No Yes

( 1
11

+
1
22

+
1
33

+ · · · + 1
nn

)
n∈N

Yes No Yes

(1)n∈N
Yes Yes Yes

((−1)n)n∈N
No No No

(1
n

)
n∈N

No Yes Yes
♦
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The following theorem can be useful in showing that sequences converge when one does not
know the limit beforehand. This is the central result of this section on bounded and monotone
sequences.

Theorem 2.3. If a sequence is monotone and bounded, then it is convergent.

Proof.
1◦ We will first consider the case of increasing sequences that are bounded. Let (an)n∈N

be
an increasing and bounded sequence. We want to show that (an)n∈N

is convergent. But with
what limit?

?

The picture above suggests that the limit should be the smallest number bigger than each of
the terms of this sequence, and if we recall Exercise 1.6, we know that this is the supremum
of the set {an : n ∈ N}. Since (an)n∈N

is bounded, it follows that the set S := {an : n ∈ N}
has an upper bound and so sup S exists. We show that in fact (an)n∈N

converges to sup S.
Let ε > 0. Since sup S− ε < sup S, it follows that sup S− ε is not an upper bound for S, and
so ∃aN ∈ S such that sup S− ε < aN , that is sup S− aN < ε. Since (an)n∈N

is an increasing
sequence, for n > N, we have aN ≤ an. Since sup S is an upper bound for S, an ≤ sup S and
so |an − sup S| = sup S− an, Thus for n > N, |an − sup S| = sup S− an ≤ sup S− aN < ε.

2◦ If (an)n∈N
is a decreasing and bounded sequence, then clearly (−an)n∈N

is an increas-
ing sequence. Furthermore if (an)n∈N

is bounded, then (−an)n∈N
is bounded as well

(| − an| = |an| ≤ M). Hence by the case considered above, it follows that (−an)n∈N
is a

convergent sequence with limit

sup{−an : n ∈ N} = − inf{an : n ∈ N} = − inf S,

where S = {an : n ∈ N} (see Exercise 1.7 on page 17). So given ε > 0, there exists an
N ∈ N such that for all n > N, | − an − (− inf S)| < ε, that is, |an − inf S| < ε. Thus (an)n∈N

is convergent with limit inf S. �

Exercise 2.8. Fill in the blanks in the following proof of the fact that every bounded decreas-
ing sequence of real numbers converges.

Let (an)n∈N
be a bounded decreasing sequence of real numbers. Let �∗ be the

lower bound of {an : n ∈ N}. The existence of �∗ is guaranteed by the of the set of
real numbers. We show that �∗ is the of (an)n∈N

. Taking ε > 0, we must show that
there exists a positive integer N such that for all n > N. Since �∗ + ε > �∗, �∗ + ε
is not of {an : n ∈ N}. Therefore there exists N with ≤ aN < . Since
(an)n∈N

is , we have for all n ≥ N that �∗ − ε < �∗ ≤ ≤ aN < �∗ + ε, and
so |an − �∗| < ε. �

Note that the result in Theorem 2.3 gives a sufficient condition for convergence: namely by
knowing the properties of monotonicity and boundedness (which can be checked by just
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looking at the terms an of the sequence), we can deduce convergence. We do not need to make
a guess about what the limit of the sequence is, and we do not need to check the cumbersome
Definition 2.2. Here is an example of the use of this result.

Example 2.8. We had seen earlier that the sequence (an)n∈N
given by

an =
1
11

+
1
22

+
1
33

+ · · · + 1
nn

, n ∈ N

is monotone (indeed, it is increasing since

an+1 − an =
1

(n + 1)n+1
> 0

for all n ∈ N) and bounded (see Example 2.6.(5) on page 55). Thus it follows from
Theorem 2.3 that this sequence is convergent. (Although it is known that this sequence is
convergent to some limit L ∈ R, which is the supremum of the terms of the sequence,

L = sup
n∈N

(
1
11

+
1
22

+
1
33

+ · · · + 1
nn

)
,

it is so far not even known if the limit2 L is rational or irrational, and this is still an open
problem in mathematics!) ♦

We remark that although [boundedness and monotonicity] is a sufficient condition for con-
vergence, it is not necessary, as illustrated in the following example.

Example 2.9 (Convergence ��⇒ (Monotone and bounded)). Consider the sequence (an)n∈N

given by an := (−1)n

n , n ∈ N. Then this sequence is convergent with limit 0: given any ε > 0,
with N ∈ N such that N > 1/ε, we have for all n>N that |an − 0|= | (−1)n

n − 0| = 1
n < 1

N < ε.
Although the sequence is bounded (all convergent sequences are!), it is not monotone:
a1 = −1 < a2 = 1

2 > a3 = − 1
3 . So the sequence is neither increasing (see the second

inequality above), nor decreasing (see the first inequality above). ♦

The following table gives a summary of the valid implications, and gives counterexamples for
implications that are not true. See also the Venn diagram after the table.

Question Answer Reason/Counterexample

Is every convergent Yes Theorem 2.2
sequence bounded?

Is every bounded No ((−1)n)n∈N
is bounded,

sequence convergent? but not convergent.

Is every convergent No ( (−1)n

n )n∈N
is convergent,

sequence monotone? but not monotone.

Is every monotone No (n)n∈N
is not convergent.

sequence convergent?

Is every bounded and monotone Yes Theorem 2.3
sequence convergent?

2 Also associated with this sequence is the interesting identity
∞∑
n=1

1
nn

=
∫ 1

0

1
xx
dx; see Exercise 5.61.
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(n)n∈

((−1)n)n∈

Monotone sequences

Convergent
sequences

Bounded
sequences

((−1)n
n  )n∈

Exercise 2.9. Let (an)n∈N
be defined by a1 = 1 and an =

2n + 1
3n

an−1, n ≥ 2.

(1) Show that (an)n∈N
is bounded.

(2) Show that (an)n∈N
is decreasing.

(3) Conclude that (an)n∈N
is convergent.

Exercise 2.10. Given a bounded sequence (an)n∈N
, define

�k = inf{an : n ≥ k} and uk = sup{an : n ≥ k}, k ∈ N.

Show that the sequences (�n)n∈N
, (un)n∈N

are bounded and monotone, and conclude that they
are convergent. Their respective limits are called the limit superior and limit inferior, respec-
tively, and are denoted by lim inf

n→∞
an and lim sup

n→∞
an.

2.3 Algebra of limits

In this section, we will learn that if we ‘algebraically’ combine the terms of convergent
sequences, then the new sequence that is obtained, is again convergent, and the limit of this
sequence is the same algebraic combination of the limits. In this manner, we can sometimes
prove the convergence of complicated sequences by breaking them down and writing them as
an algebraic combination of simple sequences. Thus, we conveniently apply arithmetic rules
to compute the limits of sequences if the terms are the sum, product, quotient of terms of
simpler sequences with a known limit. For instance, using the formal definition of a limit, one
can show that the sequence (an)n∈N

defined by

an =
4n2 + 9

3n2 + 7n + 11
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converges to
4
3

. However, it is simpler to observe that

an =
n2

(
4 +

9
n2

)

n2

(
3 +

7
n

+
11
n2

) =
4 +

9
n2

3 +
7
n

+
11
n2

,

and by a repeated application of Theorem 2.4 given below, we obtain

lim
n→∞

an =
lim
n→∞

(
4 +

9
n2

)

lim
n→∞

(
3 +

7
n

+
11
n2

) =
lim
n→∞

4 + lim
n→∞

9
n2

lim
n→∞

3 + lim
n→∞

7
n

+ lim
n→∞

11
n2

=
4 + 0

3 + 0 + 0
=

4
3

.

Theorem 2.4. If (an)n∈N
and (bn)n∈N

are convergent sequences, then the following hold:

(1) For all α ∈ R, (αan)n∈N
is a convergent sequence and lim

n→∞
αan = α lim

n→∞
an.

(2) (|an|)n∈N
is a convergent sequence and lim

n→∞
|an| =

∣∣∣ lim
n→∞

an

∣∣∣.
(3) (an + bn)n∈N

is convergent and lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

(4) (anbn)n∈N
is a convergent sequence and lim

n→∞
anbn = ( lim

n→∞
an)( lim

n→∞
bn).

(5) For all k ∈ N, (akn)n∈N
is a convergent sequence and lim

n→∞
akn = ( lim

n→∞
an)

k.

(6) If for all n ∈ N, bn �= 0 and lim
n→∞

bn �= 0, then

(
1
bn

)
n∈N

is convergent, and

lim
n→∞

1
bn

=
1

lim
n→∞

bn
.

Proof. Let (an)n∈N
and (bn)n∈N

converge to La and Lb, respectively.

(1) If α = 0, then αan = 0 for all n ∈ N and clearly (0)n∈N
is a convergent sequence with

limit 0. Thus
lim
n→∞

αan = 0 = 0La = α lim
n→∞

an.

If α �= 0, then given ε > 0, let N ∈ N be such that for all n > N,

|an − La| <
ε

|α| ,

that is
|αan − αLa| = |α| |an − La| < |α| ε

|α| = ε.

Hence (αan)n∈N
is convergent with limit αLa, that is,

lim
n→∞

αan = αLa = α lim
n→∞

an.
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(2) Given ε > 0, let N ∈ N be such that for all n > N, |an − La| < ε. Then we have for all
n > N: ||an| − |La|| ≤ |an − La| < ε. Hence (|an|)n∈N

is convergent with limit |La|, that is,

lim
n→∞

|an| = |La| = | lim
n→∞

an|.

(3) Given ε > 0, let Na ∈ N be such that for all n > Na,

|an − La| <
ε

2
.

Let Nb ∈ N be such that for all n > Nb,

|bn − Lb| <
ε

2
.

Then for all n > N := max{Na,Nb}, we have

|an + bn − (La + Lb)| = |an − La + bn − Lb| ≤ |an − La| + |bn − Lb| <
ε

2
+

ε

2
= ε.

Hence (an + bn)n∈N
is convergent with limit La + Lb, that is,

lim
n→∞

(an + bn) = La + Lb = lim
n→∞

an + lim
n→∞

bn.

(4) Note that

|anbn − LaLb| = |anbn − Labn + Labn − LaLb| ≤ |anbn − Labn| + |Labn − LaLb|
= |an − La| |bn| + |La| |bn − Lb|. (2.6)

Given ε > 0, we need to find a N such that for all n > N,

|anbn − LaLb| < ε.

This can be achieved by finding an N such that each of the summands in (2.6) is less than ε/2
for n > N. This can be done as follows.

Step 1. Since (bn)n∈N
is convergent, by Theorem 2.2 it follows that it is bounded: ∃M > 0

such that for all n ∈ N, |bn| ≤ M. Let Na ∈ N be such that for all n > Na,

|an − La| <
ε

2M
.

Step 2. Let Nb ∈ N be such that for all n > Nb,

|bn − Lb| <
ε

2(|La| + 1)
.

(We add +1 in the denominator to take care of the case when La = 0.) Thus we have that for
n > N := max{Na,Nb},

|anbn − LaLb| ≤ |an − La| |bn| + |La| |bn − Lb| <
ε

2M
M + |La|

ε

2(|La| + 1)

<
ε

2
+

ε

2
= ε.
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So (anbn)n∈N
is a convergent sequence with limit LaLb, that is,

lim
n→∞

anbn = LaLb =
(

lim
n→∞

an
) (

lim
n→∞

bn
)

.

(5) This can be shown by using induction on k and part 4 above. It is trivially true with k = 1.
Suppose that it holds for some k: then (akn)n∈N

is convergent and

lim
n→∞

akn =
(

lim
n→∞

an
)k

.

Hence by part 4 above applied to the sequences (an)n∈N
and (akn)n∈N

, we obtain that the
sequence (an · akn)n∈N

is convergent and

lim
n→∞

ana
k
n =

(
lim
n→∞

an
) (

lim
n→∞

akn
)

=
(

lim
n→∞

an
)(

lim
n→∞

an
)k

=
(

lim
n→∞

an
)k+1

.

Thus (ak+1
n )n∈N

is convergent and lim
n→∞

ak+1
n =

(
lim
n→∞

an
)k+1

.

(6) Let N1 ∈ N be such that for all n > N1, |bn − Lb| <
|Lb|

2
. Thus for all n > N1,

|Lb| − |bn| ≤ ||Lb| − |bn|| ≤ |bn − Lb| <
|Lb|

2
,

and so |bn| ≥
|Lb|

2
. Let ε > 0, and let N2 ∈ N be such that for all n > N2,

|bn − Lb| <
ε|Lb|2

2
.

Hence for n > N := max{N1,N2}, we have∣∣∣∣ 1
bn

− 1
Lb

∣∣∣∣ =
|bn − Lb|
|bn| |Lb|

<
ε|Lb|2

2
2

|Lb|
1

|Lb|
= ε.

So

(
1
bn

)
n∈N

is convergent and lim
n→∞

1
bn

=
1
Lb

=
1

lim
n→∞

bn
.

�

Example 2.10. Consider the sequence (an)n∈N
, where

an :=
1
n3

+
22

n3
+

32

n3
+ · · · + n2

n3
, n ∈ N.

A student observes that

lim
n→∞

1
n3

= 0, lim
n→∞

22

n3
= 0, lim

n→∞

32

n3
= 0, · · · , lim

n→∞

n2

n3
= 0,

and hastily concludes that

‘by the Algebra of Limits, lim
n→∞

an = 0 + 0 + 0 + · · · + 0 = 0’.

Where does the error in this argument lie?
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Note that by Theorem 2.4.(3), we do have that the termwise sum of a finite fixed number
of sequences is convergent with the limit of the sum being the sum of the limits. In other
words, if

an,1
n→∞−−−−→L1,

an,2
n→∞−−−−→L2,

an,3
n→∞−−−−→L3,

· · ·

an,k
n→∞−−−−→Lk,

then we do have that an,1 + an,2 + an,3 + · · · + an,k
n→∞−−−−→L1 + L2 + L3 + · · · + Lk.

However, in the application above, the number of sequences was not fixed. In fact, knowing
the following formula for the sum of squares (which can easily be shown by induction)

12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
, n ∈ N,

we have

an =
1
n3

+
22

n3
+

32

n3
+ · · · + n2

n3
=

12 + 22 + 32 + · · · + n2

n3

=
n(n + 1)(2n + 1)/6

n3
=

1
6

(
1 +

1
n

)(
2 +

1
n

)
,

and so by the Algebra of Limits,

lim
n→∞

an = lim
n→∞

1
6

(
1 +

1
n

) (
2 +

1
n

)
=

1
6
· (1 + 0) · (2 + 0) =

1
3

. ♦

Exercise 2.11. Is the following manipulation justified based on Theorem 2.4?

lim
n→∞

(
1 +

1
n

)n

=
(

lim
n→∞

(
1 +

1
n

))n

=
(

1 + lim
n→∞

1
n

)n

= (1 + 0)n = 1n = 1.

Exercise 2.12. Suppose that the sequence (an)n∈N
is convergent, and assume that the sequence

(bn)n∈N
is bounded. Prove that the sequence (cn)n∈N

defined by

cn =
anbn + 5n
a2
n + n

, n ∈ N,

is convergent, and find its limit.
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Exercise 2.13. Let (an)n∈N
be a convergent sequence with limit L and suppose that an ≥ 0

for all n ∈ N. Prove that the sequence (√an)n∈N
is also convergent, with limit

√
L.

Hint: First show that L ≥ 0. Let ε > 0. If L = 0, then choose N ∈ N large enough so that
for n > N, |an − L| = an < ε2. If L > 0, then choose N ∈ N large enough so that for n > N,
|√an −

√
L||√an +

√
L| = |an − L| < ε

√
L.

Exercise 2.14. Show that (
√
n2 + n− n)n∈N

is a convergent sequence and find its limit.

Hint: ‘Rationalise the numerator’ by using
√
n2 + n + n.

Exercise 2.15.

(1) Prove that if (an)n∈N
and (bn)n∈N

are convergent sequences such that for all n ∈ N,
an ≤ bn, then

lim
n→∞

an ≤ lim
n→∞

bn.

Hint: Use Exercise 2.4 on page 54.

(2) With the same notation as in Exercise 2.10, show that for a bounded sequence (an)n∈N
,

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Give an example of a bounded sequence to show that there can be a strict inequality here.

2.4 Sandwich theorem

Another useful theorem for proving that sequences are convergent and in determining their
limits is the so-called Sandwich Theorem. Roughly speaking, it says that if a sequence is
‘sandwiched’ between two convergent sequences with the same limit, then the sandwiched
sequence is also convergent with the same limit.

L

an ≤ cn ≤ bn ∀n

and

L L
↓ ↓

↓

then

L

Theorem 2.5 (Sandwich theorem). Let (an)n∈N
, (bn)n∈N

be convergent sequences with the
same limit, that is,

lim
n→∞

an = lim
n→∞

bn.



SEQUENCES 65

If (cn)n∈N
is a third sequence such that

for all n ∈ N, an ≤ cn ≤ bn,

then (cn)n∈N
is also convergent with the same limit, that is,

lim
n→∞

an = lim
n→∞

cn = lim
n→∞

bn.

Proof. Let L denote the common limit of (an)n∈N
and (bn)n∈N

:

lim
n→∞

an = L = lim
n→∞

bn.

Given ε > 0, let Na ∈ N be such that for all n > Na, |an − L| < ε. Hence for n > Na,

L− an ≤ |L− an| = |an − L| < ε,

and so L− an < ε, that is,
L− ε < an.

Let Nb ∈ N be such that for all n > Nb, |bn − L| < ε. So for n > Nb, bn − L < ε, that is,

bn < L + ε.

Thus for n > N := max{Na,Nb}, we have

L− ε < an ≤ cn ≤ bn < L + ε,

and so L− ε < cn < L + ε. Consequently, cn − L < ε and −(cn − L) < ε, and so

|cn − L| < ε.

This proves that (cn)n∈N
is convergent with limit L. �

Example 2.11 (The geometric progression).

The aim of this example is to show that if |r| < 1, then lim
n→∞

rn = 0.

First let us consider the case when r ∈ (0, 1). Then h :=
1
r
− 1 > 0. For n ∈ N,

1
rn

= (1 + h)n ≥ 1 + nh︸ ︷︷ ︸
(∗)

≥ nh. (2.7)

One can show the inequality (∗) using induction as follows. Clearly when n = 1,

(1 + h)1 = 1 + h = 1 + 1 · h.

If (1 + h)n ≥ 1 + nh for some n, then

(1 + h)n+1 = (1 + h)n(1 + h) ≥ (1 + nh)(1 + h) = 1 + (n + 1)h + nh2 ≥ 1 +(n + 1)h,

and so the inequality is true for all n.
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Hence we obtain 0 ≤ rn ≤ 1
nh

for all n ∈ N. Since

lim
n→∞

0 = 0 = lim
n→∞

1
nh

,

it follows by the Sandwich Theorem that lim
n→∞

rn = 0 too.

When r = 0, rn = 0 for all n ∈ N, and so clearly lim
n→∞

rn = 0.

Now suppose that |r| < 1. Then |r| ∈ [0, 1), and so by the above,

lim
n→∞

|r|n = 0.

By the Algebra of Limits, lim
n→∞

−|r|n = 0 as well. Since

−|r|n ≤ rn ≤ |r|n for all n ∈ N,

it follows again by the Sandwich Theorem that lim
n→∞

rn = 0.

As a consequence of the above, we can show that if r ∈ (−1, 1), then the ‘sequence of
partial sums’ (1 + r + r2 + · · · + rn)n∈N

converges because

1 + r + r2 + · · · + rn =
(1 − r)(1 + r + r2 + · · · + rn)

1 − r

=
1 + r + · · · + rn − (r + r2 + · · · + rn+1)

1 − r

=
1 − rn+1

1 − r
=

1 − r · rn
1 − r

,

and so lim
n→∞

(1 + r + r2 + · · · + rn) = lim
n→∞

1 − r · rn
1 − r

=
1 − r · 0

1 − r
=

1
1 − r

. ♦

Example 2.12. lim
n→∞

a1/n = 1 for a > 1.

For concreteness, let us take a = 2, but the proof is the same, mutatis mutandis3, for any
a > 1. As 2 > 1, we have 21/n > 1 for all n ∈ N. So we can write 21/n = 1 + h, where
h := 21/n − 1 > 0. Thus

2 = (1 + h)n = 1 + nh +
(n

2

)
h2 + · · · + hn︸ ︷︷ ︸

>0

> 1 + nh,

(where the inequality above can also be shown as the justification of (∗) in (2.7)), and so
1 > nh. This gives

1
n

> h = 21/n − 1 > 0 for all n ∈ N,

and by the Sandwich Theorem, lim
n→∞

(21/n − 1) = 0, that is, lim
n→∞

21/n = 1. ♦

3 Latin phrase meaning ‘changing only those things that need to be changed’
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Example 2.13. For any a, b ∈ R, lim
n→∞

(|a|n + |b|n) 1
n = max{|a|, |b|}.

Let M := max{|a|, |b|}. Then |a| ≤ M gives |a|n ≤ Mn, and similarly |b|n ≤ Mn. Thus
|a|n + |b|n ≤ 2Mn, and so

(|a|n + |b|n)1/n ≤ 21/nM.

Also, |a|n + |b|n ≥ Mn gives (|a|n + |b|n)1/n ≥ M. So we have

M ≤ (|a|n + |b|n)1/n ≤ 21/nM for all n ∈ N.

Since lim
n→∞

21/n = 1, we have

lim
n→∞

M = M = lim
n→∞

(21/nM),

and so it follows from the Sandwich Theorem that

lim
n→∞

(|a|n + |b|n)1/n = M = max{|a|, |b|}.

In particular, with a = 27 and b = 2014, we have that

lim
n→∞

(27n + 2014n)
1
n = 2014,

that is, the sequence 2041, 2014.180975, 2014.001618, 2014.000016, · · · is convergent with
limit 2014. ♦

Exercise 2.16. Prove that the sequence

(
n!
nn

)
n∈N

is convergent and that lim
n→∞

n!
nn

= 0.

Hint: Observe that 0 ≤ n!
nn

=
1
n
· 2
n
· · · · · n

n
≤ 1

n
· 1 · · · · · 1 ≤ 1

n
.

Exercise 2.17. Prove that for all k ∈ N, lim
n→∞

1k + 2k + 3k + · · · + nk

nk+2
= 0.

Exercise 2.18 ( lim
n→∞

n
1
n = 1).

(1) Using induction, prove that if x ≥ −1 and n ∈ N, then (1 + x)n ≥ 1 + nx.

(2) Show that for all n ∈ N, 1 ≤ n
1
n < (1 +

√
n)

2
n ≤ (1 + 1√

n )
2.

Hint: Take x = 1√
n in the inequality above.

(3) Prove that (n
1
n )n∈N

is convergent and find its limit.

Exercise 2.19. Let (an)n∈N
be a sequence contained in the interval (a, b) (that is, for all n ∈ N,

a < an < b). If (an)n∈N
is convergent with limit L, then prove that L ∈ [a, b].

Hint: Use Exercise 2.4 on page 54.

Give an example to show that L need not belong to (a, b).
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Exercise 2.20. Let (an)n∈N
be a convergent sequence, and let (bn)n∈N

satisfy |bn − an| < 1
n

for all n ∈ N. Show that (bn)n∈N
is also convergent. What is its limit?

Hint: Observe that − 1
n + an < bn < an + 1

n for all n ∈ N.

Exercise 2.21. (∗) See Exercises 2.10 and 2.15. Prove that a bounded sequence (an)n∈N
is

convergent if and only if
lim inf
n→∞

an = lim sup
n→∞

an.

Moreover, then lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an.

2.5 Subsequences

In this section, we prove an important result in Calculus, called the Bolzano–Weierstrass
Theorem, which says that

Every bounded sequence has a convergent ‘subsequence’.

We begin this section by defining what we mean by a subsequence of a sequence.

Definition 2.5 (Subsequence of a sequence). Let (an)n∈N
be a sequence, and suppose that

n1 < n2 < n3 < · · · is a strictly increasing sequence of natural numbers. Then (ank)k∈N
is

called a subsequence of (an)n∈N
. Thus the terms of the subsequence are an1

, an2
, an3

, · · ·.

Example 2.14. For example, the sequence (an2)n∈N
= ( 1

n2 )n∈N

1,
1
4

,
1
9

,
1
16

,
1

25
, · · ·

is a subsequence of the sequence (an)n∈N
= ( 1

n )n∈N
. However, the sequence

1
9

,
1
4

,
1

16
,

1
25

, · · ·

is not a subsequence of ( 1
n2 )n∈N

, since terms of subsequence are not in the same order as the
original sequence:

a3 =
1
9

, a2 =
1
4

,

and 3 > 2! But
1
9

,
1
4

,
1

25
, · · ·

is a subsequence of

1,
1
4

,
1
9

,
1
4

,
1

25
, · · · .

The sequences

((−1)2n)n∈N
(that is, the constant sequence 1, 1, 1, · · · ) and

((−1)2n−1)n∈N
(that is, the constant sequence − 1,−1,−1, · · · )



SEQUENCES 69

are both subsequences of ((−1)n)n∈N
. Here are some more examples:

n1 < n2 < n3 < · · · Subsequence of (an)n∈N
Subsequence of ( 1

n )n∈N

1 < 2 < 3 < · · · (an)n∈N
a1, a2, a3, · · · 1, 1

2 , 1
3 , · · ·

2 < 3 < 4 < · · · (an+1)n∈N
a2, a3, a4, · · · 1

2 , 1
3 , 1

4 , · · ·
2 < 4 < 6 < 8 < · · · (a2n)n∈N

a2, a4, a6, a8, · · · 1
2 , 1

4 , 1
6 , 1

8 , · · ·
2 < 4 < 8 < 16 < · · · (a2n)n∈N

a2, a4, a8, a16, · · · 1
2 , 1

4 , 1
8 , 1

16 , · · ·
1 < 4 < 27 < 64 < · · · (ann)n∈N

a1, a4, a27, a64, · · · 1, 1
4 , 1

27 , 1
64 , · · ·

2 < 3 < 5 < 7 < · · · (apn)n∈N
a2, a3, a5, a7, · · · 1

2 , 1
3 , 1

5 , 1
7 , · · ·

(pn denotes the nth prime)

1 < 2 < 6 < 24 < · · · (an!)n∈N
a1, a2, a6, a24, · · · 1, 1

2 , 1
6 , 1

24 , · · ·
♦

Exercise 2.22. Is

(
1
n4

)
a subsequence of

(
1
n2

)
n∈N

? Is

(
1
n3

)
a subsequence of

(
1
n2

)
n∈N

?

Exercise 2.23. (∗) Beginning with 2 and 7, the sequence 2, 7, 1, 4, 7, 4, 2, 8, 2, 8, . . . is
constructed by multiplying successive pairs of its terms and adjoining the result as the next
one or two members of the sequence depending on whether the product is a one- or two-digit
number. Thus we start with 2 and 7, giving the product 14, and so the next two terms are 1, 4.
Proceeding in this manner, we get subsequent terms as follows:

2, 7

2, 7, 1, 4

2, 7, 1, 4

2, 7, 1, 4, 7

2, 7, 1, 4, 7

2, 7, 1, 4, 7, 4

2, 7, 1, 4, 7, 4

2, 7, 1, 4, 7, 4, 2, 8

2, 7, 1, 4, 7, 4, 2, 8

2, 7, 1, 4, 7, 4, 2, 8, 2, 8

· · ·

Prove that this sequence has the constant subsequence 6, 6, 6, . . . .

Hint: Show that 6 appears an infinite number of times as follows. Since the terms 2, 8, 2, 8 are
adjacent, they give rise to the adjacent terms 1, 6, 1, 6 at some point, which in turn give rise to
the adjacent terms 6, 6, 6 eventually, and so on. Proceeding in this way, find out if you get a
loop containing the term 6.
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Theorem 2.6. A subsequence of a convergent sequence is convergent with the same limit.

Thus if (an)n∈N
is a convergent sequence with limit L, then any subsequence of (an)n∈N

is also
convergent with the limit L.

Proof. Let (ank)k∈N
be a subsequence of a convergent sequence (an)n∈N

with limit L.
Given ε > 0, let N ∈ N be such that for all n > N, |an − L| < ε. Since the sequence
n1 < n2 < n3 < · · · of natural numbers is increasing, it follows that there exists a K ∈ N

such that nK > N. Then for all k > K, nk > nK > N. Hence for k > K, |ank − L| < ε, and so
(ank)k∈N

is convergent with limit L. �

Example 2.15. From Example 2.14 and the fact that lim
n→∞

1
n

= 0, it follows that

lim
n→∞

1
n + 1

= lim
n→∞

1
2n

= lim
n→∞

1
n2

= lim
n→∞

1
2n

= lim
n→∞

1
nn

= lim
n→∞

1
pn

= lim
n→∞

1
n!

= 0.

In the above pn denotes the nth prime number.
Let us give a proof of the fact that ((−1)n)n∈N

is divergent based on Theorem 2.6.
Suppose on the contrary, that ((−1)n)n∈N

is convergent with limit L. Then the terms with
odd indices give the subsequence −1,−1,−1, · · ·, which is convergent with limit −1, and so
(by uniqueness of limits!) L = −1. On the other hand, the terms with even indices give the
subsequence 1, 1, 1, · · ·, which is convergent with limit 1, and so L = 1. So we have arrived
at the contradiction that −1 = L = 1. Hence ((−1)n)n∈N

is divergent. ♦

Example 2.16 (‘The harmonic series diverges’.). Consider (sn)n∈N
, where

sn := 1 +
1
2

+
1
3

+ · · · + 1
n

, n ∈ N.

Suppose that (sn)n∈N
is convergent with limit L. Then its subsequence (s2n)n∈N

would also
be convergent with limit L, and so by the Algebra of Limits, the sequence (s2n − sn)n∈N

must
converge to L− L = 0. But

s2n − sn =
���������
1 +

1
2

+
1
3

+ · · · + 1
n

+
1

n + 1
+ · · · + 1

2n
−
�����������(

1 +
1
2

+
1
3

+ · · · + 1
n

)

=
1

n + 1
+ · · · + 1

2n
>

1
2n

+ · · · + 1
2n︸ ︷︷ ︸

n times

= n · 1
2n

=
1
2

.

Hence |(s2n − sn) − 0| = s2n − sn >
1
2

, showing that it is not the case that

lim
n→∞

(s2n − sn) = 0,

a contradiction. So

(
1 +

1
2

+
1
3

+ · · · + 1
n

)
n∈N

diverges. ♦
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Exercise 2.24. Recall the convergent sequence (an)n∈N
from Exercise 2.9 on page 59:

a1 = 1 and an =
2n + 1

3n
an−1 for n ≥ 2.

What is its limit?

Exercise 2.25. Determine if the following statements are true or false.

(1) Every subsequence of a convergent real sequence is convergent.

(2) Every subsequence of a divergent real sequence is divergent.

(3) Every subsequence of a bounded real sequence is bounded.

(4) Every subsequence of an unbounded real sequence is unbounded.

(5) Every subsequence of a monotone real sequence is monotone.

(6) Every subsequence of a nonmonotone real sequence is nonmonotone.

(7) If every subsequence of a real sequence converges, the sequence itself converges.

(8) If (a2n)n∈N
and (a2n+1)n∈N

both converge, then (an)n∈N
converges.

(9) If (a2n)n∈N
and (a2n+1)n∈N

both converge to the same limit, then (an)n∈N
converges.

Exercise 2.26. (∗) Show that if (an)n∈N
is a sequence that does not converge to L, then there

exists an ε > 0 and there exists a subsequence (ank)k∈N
of (an)n∈N

such that for all k ∈ N,
|ank − L| ≥ ε.

Exercise 2.27. Consider the sequence (an)n∈N
given by

a1 =
√

2 and

an+1 =
√

2 + an for all n ∈ N.

Thus the first few terms of the sequence are
√

2,
√

2 +
√

2,
√

2 +
√

2 +
√

2, · · ·.

(a) Show that for all n ∈ N, an ≤ 2. Hint: Use induction on n.

(b) Show that (an)n∈N
is increasing. Hint: Consider a2

n+1 − a2
n.

(c) Is (an)n∈N
convergent? If so, find its limit.

Theorem 2.7. Every sequence has a monotone subsequence.

Before giving the formal proof, we give an illustration of the idea behind this proof4. If (an)n∈N

is the given sequence, then imagine that there is an infinite chain of hotels along a line, where
the nth hotel has height an, and at the horizon, there is a sea. A hotel is said to have the

4 This illustrative analogy stems from [B]. The proof seems to go back to [N3]. See also [N4].
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seaview property if it is higher than all hotels following it (so that from the roof of the hotel,
one can view the sea). Now there are only two possibilities, as illustrated below.

1° Infinitely many hotels
    have the seaview property

2° Finitely many hotels
have the seaview property

Last hotel
with the
seaview
property
is here · · ·· · ·

1◦ There are infinitely many hotels
with the seaview property.

2◦ There are finitely many hotels
with the seaview property.

Then by taking successively
the heights of the hotels

with the seaview property
we get a decreasing subsequence.

Then after the last hotel
with the seaview property,

one can start with any hotel
and then always find one

that is at least as high,
which is taken as the next hotel,

and then finding yet another
that is at least as high as

that one, and so on.

The heights of these hotels
form an increasing subsequence.

Proof. Let (an)n∈N
be a sequence, and let

S = {m ∈ N: for all n > m, an < am}.

(This is the collection of indices of hotels with the seaview property.)
Then we have the following two cases.

1◦ S is infinite.
Arrange the elements of S in increasing order: n1 < n2 < n3 < · · ·. Then (ank)k∈N

is a
decreasing subsequence of (an)n∈N

.

2◦ S is finite.
If S empty, then define n1 = 1, and otherwise let n1 = max S + 1. Define induc-
tively nk+1 = min{m ∈ N : m > nk and am ≥ ank}. (nk+1 is the index of the first
hotel blocking the view from the top of the nkth hotel.) The minimum exists as
{m ∈ N : m > nk and am ≥ ank} is a nonempty subset of N. Indeed otherwise if it
were empty, then nk ∈ S, and this is not possible if S was empty, and also impossible
if S was not empty, since nk > max S.) Then (ank)k∈N

is an increasing subsequence
of (an)n∈N

.

Thus every sequence (an)n∈N
has a monotone subsequence. �
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An important consequence of the above theorem is the following result.

Theorem 2.8 (Bolzano–Weierstrass Theorem). Every bounded sequence has a convergent
subsequence.

Proof. Let (an)n∈N
be a bounded sequence. Then there exists anM > 0 such that for all n ∈ N,

|an| ≤ M. From Theorem 2.7 above, it follows that the sequence (an)n∈N
has a monotone

subsequence, say (ank)k∈N
. Then clearly for all k ∈ N, |ank | ≤ M, and so the sequence (ank)k∈N

is also bounded. Since (ank)k∈N
is monotone and bounded, it follows from Theorem 2.3 that

it is convergent. �

Example 2.17. (‘Compactness’ of [a, b].) Consider any sequence (an)n∈N
in [a, b], that is,

for all n ∈ N, an ∈ [a, b], or equivalently, a ≤ an ≤ b.

Then (an)n∈N
is bounded, and so it has a convergent subsequence, say (ank)k∈N

. Then for all
k ∈ N, a ≤ ank ≤ b. Consequently,

a ≤ lim
k→∞

ank ≤ b

as well (using Exercise 2.15). Thus we obtain the following conclusion:

Every sequence in [a, b] has a convergent subsequence,
and the limit of this subsequence belongs to [a, b]. ♦

Example 2.18. Consider the sequence (an)n∈N
of fractional parts of integral multiples of

√
2,

defined by an := {n
√

2} := n
√

2 − �n
√

2�, for n ∈ N. The terms of the sequence (an)n∈N
are

as follows:
√

2 = 1.414213 . . . a1 = 0.414213 . . .

2
√

2 = 2.828427 . . . a2 = 0.828427 . . .

3
√

2 = 4.242640 . . . a3 = 0.242640 . . .

4
√

2 = 5.656854 . . . a4 = 0.656854 . . .

5
√

2 = 7.071067 . . . a5 = 0.071067 . . .

· · ·

The sequence (an)n∈N
is bounded: indeed, 0 ≤ an < 1. So by the Bolzano–Weierstrass

Theorem it has a convergent subsequence5. ♦

Exercise 2.28. Does the sequence (sin n)n∈N
have a convergent subsequence? What about the

sequence (n)n∈N
?

5 In fact, it can be shown that these fractional parts an are ‘dense’ in (0, 1). Thus given any number L ∈ (0, 1),
there exists a subsequence of the sequence (an)n∈N above that converges to L.
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Exercise 2.29. (∗) Consider the bounded divergent sequence ((−1)n)n∈N
. Note that there exist

two subsequences (−1,−1,−1, . . . and 1, 1, 1, . . . ) that have distinct limits (−1 �= 1). In this
exercise, we show that this is a general phenomenon. Show that if (an)n∈N

is bounded and
divergent, then it has two subsequences that converge to distinct limits.
Hint: Use the Bolzano–Weierstrass theorem twice, and also Exercise 2.26.

2.6 Cauchy sequences and completeness of R

Another manifestation of the Least Upper bound Property of R is the ‘completeness of R’,
which says that Cauchy sequences in R are convergent. Let us begin with the notion of a
Cauchy sequence.

Definition 2.6 (Cauchy sequence). A sequence (an)n∈N
of real numbers is said to be a

Cauchy sequence if for every ε > 0, there exists a N ∈ N such that whenever m, n > N,
|an − am| < ε.

Roughly speaking, we can make the terms of the sequence arbitrarily close to each other
provided we go far enough in the sequence.

Example 2.19. The sequence

(
1
n

)
n∈N

is Cauchy. Indeed, we have

∣∣∣∣1
n
− 1

m

∣∣∣∣ ≤ 1
n

+
1
m

<
1
N

+
1
N

=
2
N

whenever n,m > N.

Thus given ε > 0, we can choose N ∈ N larger than
2
ε

, so that we then have

∣∣∣∣1
n
− 1

m

∣∣∣∣ <
2
N

< ε

for all n,m > N. Consequently,

(
1
n

)
n∈N

is Cauchy. ♦

Example 2.20. (n)n∈N
is not Cauchy.

Indeed, if n �= m, then |n− m| ≥ 1. So for a positive ε < 1, for example ε = 1/2, there does
not exist an N ∈ N such that for all n,m > N, we have that

|an − am| = |n− m| < ε = 1/2. ♦

Exercise 2.30. Show that if (an)n∈N
is a Cauchy sequence, then (an+1 − an)n∈N

converges
to 0.
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Example 2.21 (Cauchyness is not the same as consecutive terms getting closer). This
example shows that for a sequence (an)n∈N

to be Cauchy, it is not enough that (an+1 − an)n∈N

converges to 0.

We will show that (
√
n)n∈N

is not Cauchy. Suppose on the contrary that it is. Let us take
ε := 1/2 > 0, and let N ∈ N be such that for all n,m > N, |√n−√

m| < ε = 1/2. Take
n = 4N2 and m = N2. Then

|an − am| = |
√

4N2 −
√
N2| = |2N − N| = N ≥ 1,

a contradiction. On the other hand, the consecutive terms of (
√
n)n∈N

do get arbitrarily close:

an+1 − an =
√
n + 1 −

√
n =

1√
n + 1 +

√
n

n→∞−−−−→ 0. ♦

The next result says that the property of being a Cauchy sequence (henceforth referred to as
‘Cauchyness’) is a necessary condition for convergence.

Lemma 2.9. Every convergent sequence is Cauchy.

Proof. Let (an)n∈N
be a sequence of real numbers that converges to L. Let ε > 0. (We want

to find N, which guarantees for n,m > N that |an − am| < ε. But we do know that the terms
an, am can both be made close to L if n,m are large enough. So we introduce L artificially:
|an − am| = |an − L + L− am| and use the triangle inequality to complete the argument. The
details are given below.)

Then there exists an N ∈ N such that for n > N, we have |an − L| <
ε

2
.

Thus for n,m > N, we have

|an − am| = |an − L + L− am| ≤ |an − L| + |am − L| <
ε

2
+

ε

2
= ε.

So the sequence (an)n∈N
is a Cauchy sequence. �

We have so far seen that in R,

{ convergent sequences } ⊂ { Cauchy sequences }.

This raises the tempting question of whether the reverse inclusion is true too:

{ convergent sequences }
?
⊃{ Cauchy sequences }.
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Now we will prove the remarkable fact that in R, Cauchyness turns out to be also a sufficient
condition for the sequence to be convergent. In other words, in R, every Cauchy sequence is
convergent. This is a very useful fact since, in order to prove that a sequence is convergent
using the definition, we would need to guess what the limit is. In contrast, checking whether
or not a sequence is Cauchy needs only knowledge of the terms of the sequence, and no
guesswork regarding the limit is needed. So this is a powerful technique for proving existence
results (for example, in the Theory of Differential Equations).

Showing membership here
needs knowledge of limit

(Harder!)

Showing membership here
needs no knowledge of limit,

but only an investigation
of the mutual behaviour of the

terms of the sequence
(Easier!)

Convergent
sequences

Cauchy
sequences

Theorem 2.10. Every Cauchy sequence in R is convergent.

Proof. There are three main steps. First, we show that every Cauchy sequence is bounded.
Then we use the Bolzano–Weierstrass theorem to conclude that it must have a convergent
subsequence. Finally we show that a Cauchy sequence having a convergent subsequence must
itself be convergent. Suppose that (an)n∈N

is a Cauchy sequence.

Step 1. Choose a positive ε, say ε = 1. Then there exists an N ∈ N such that for all n,
m > N, |an − am| < ε = 1. In particular, with m = N + 1 > N, and n > N, |an − aN+1| < 1.
Hence by the triangle inequality, for all n > N,

|an| = |an − aN+1 + aN+1| ≤ |an − aN+1| + |aN+1| < 1 + |aN+1|.

On the other hand, for n ≤ N, |an| ≤ max{|a1|, . . . , |aN |, |aN+1| + 1} =: M. Consequently,
|an| ≤ M (n ∈ N), that is, the sequence (an)n∈N

is bounded.

Step 2. By the Bolzano–Weierstrass Theorem, (an)n∈N
has a convergent subsequence (ank)k∈N

that is convergent, to L, say.

Step 3. Finally, we show that (an)n∈N
is also convergent with limit L. Let ε > 0. Then there

exists an N ∈ N such that for all n,m > N,

|an − am| <
ε

2
. (2.8)
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Also, since (ank)k∈N
converges to L, we can find an nK > N such that |anK − L| <

ε

2
.

Taking m = nK in (2.8), we have for all n > N that

|an − L| = |an − anK + anK − L| ≤ |an − anK | + |anK − L| <
ε

2
+

ε

2
= ε.

Thus (an)n∈N
is also convergent with limit L, and this completes the proof. �

Owing to the property that

{ Cauchy sequences in R } = { Convergent sequences in R },

we say that R is complete. However, Q is not complete, since

{ Cauchy sequences in Q }⊃�⊂ { Convergent sequences in Q },

and we show this in the following example.

Example 2.22 (Q is not complete). Consider the sequence (an)n∈N
in Q defined by

a1 = 3/2, and for n > 1, recursively by

an+1 =
4 + 3an
3 + 2an

.

Then it can be shown that (an)n∈N
is bounded below by

√
2 by induction, and that (an)n∈N

is
monotone decreasing.

(A) an ≥
√

2 for all n.
If n = 1, then a1 = 3

2 ≥
√

2 (as 9
4 ≥ 2). If an ≥

√
2 for some n, then

a2
n+1 − 2 =

(4 + 3an)
2

(3 + 2an)2
− 2

=
16 + 24an + 9a2

n − 18 − 24an − 8a2
n

(3 + 2an)2
=

a2
n − 2

(3 + 2an)2
≥ 0.

So this gives, since an+1 ≥ 0, that an+1 ≥
√

2, and the claim follows by induction.

(B) an ≥ an+1 for all n. We have

an − an+1 = an −
4 + 3an
3 + 2an

=
3an + 2a2

n − 4 − 3an
3 + 2an

=
2(a2

n − 2)
3 + 2an

≥ 0,

where the last inequality follows from part (A).

So this sequence is convergent in R. Hence it is also Cauchy in R. But as each term an is a
rational number for all n ∈ N, it follows that (an)n∈N

is also Cauchy in Q. However, we now
show that (an)n∈N

is not convergent in Q. Suppose, on the contrary, that (an)n∈N
converges to

L ∈ Q. Then from the recurrence relation, we obtain using the Algebra of Limits that

L =
4 + 3L
3 + 2L

,
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and so L2 = 2. As L must be positive (the sequence is bounded below by
√

2), it follows that
L =

√
2. But this is a contradiction, since we know that there is no rational number whose

square is 2.
(Alternately, consider the real number c with the decimal expansion

c = 0.101001000100001 · · · .

This number c is irrational because it has a nonterminating and nonrepeating decimal expan-
sion. We will prove this later when we treat decimal expansions in the chapter on series; see
Exercise 6.8 on page 304 and the Appendix on page 335. If we consider the sequence of
rational numbers obtained by truncation, namely

0.1

0.101

0.101001

0.1010010001

0.101001000100001

· · ·

then this sequence converges with limit c.) ♦

Exercise 2.31. Which of the following statements is/are true?

� (A) A Cauchy sequence in R is always convergent in R.

� (B) A convergent sequence in R is always Cauchy in R.

� (C) A Cauchy sequence in R is always bounded.

� (D) A monotone and bounded sequence in R is always Cauchy in R.

Exercise 2.32. Which of the following is always true for a real sequence (an)n∈N
?

(1) If the sequence (a2
n)n∈N

is Cauchy, then (an)n∈N
is Cauchy.

(2) If the sequence (an)n∈N
is Cauchy, then (a2

n)n∈N
is Cauchy.

2.7 (∗) Pointwise versus uniform convergence

Let I ⊂ R be an interval, and let

fn : I → R (n ∈ N),

f : I → R

be functions. Thus we have a sequence n �→ fn of functions, the first term is the function f1,
the second term is the function f2, the third term is the function f3, and so on. Then there
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are two natural notions of convergence of the sequence (fn)n∈N
of functions to the

function f :

(1) Pointwise convergence and

(2) uniform convergence.

If we fix an x ∈ I, then fn(x) is a number for each n ∈ N, and so (fn(x))n∈N
is a sequence of

real numbers. If this sequence (fn(x))n∈N
of numbers converges to f (x), for each x ∈ I, then

we say that the convergence is ‘pointwise’.

x I

f1

f2

f3

f

Definition 2.7 (Pointwise convergence). Let I be any set and f , fn : I → R (n ∈ N) be func-
tions. The sequence (fn)n∈N

is said to converge pointwise to f if

∀x ∈ I, ∀ε > 0, ∃N ∈ N such that ∀n > N, |fn(x) − f (x)| < ε.

Example 2.23. Let I := R, and for x ∈ I = R, let

fn(x) :=
x
n

(n ∈ N),

f (x) := 0.

Figure 2.1 shows the graphs of the functions.

x

f1

f2

f3

f
···

Figure 2.1 The sequence of functions (fn)n∈N
converges pointwise to f .
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It is clear that if we fix any x ∈ R, then

lim
n→∞

fn(x) = lim
n→∞

x
n

= x lim
n→∞

1
n

= x · 0 = 0 = f (x).

So (fn)n∈N
converges pointwise to 0. Let us have a closer look at this. Fix an x ∈ R. Let ε > 0

be given. Take N ∈ N such that N > |x|+1
ε (again this is obtained by working backwards!).

Then for n > N,

|fn(x) − f (x)| =
∣∣∣ x
n
− 0

∣∣∣ =
|x|
n

≤ |x|
N

<
|x|ε

|x| + 1
< ε.

Note that the N we required to guarantee that

n > N ⇒ |fn(x) − f (x)| < ε

depends on the x fixed at the outset. (An N < |x|
ε won’t do here!) In Calculus, it is convenient

to distinguish the case when this

‘dependence of N on which x we take’

is absent. We call this ‘uniform’ convergence. ♦

Definition 2.8 (Uniform convergence). Let I be any set and f , fn : I → R (n ∈ N) be func-
tions. The sequence (fn)n∈N

is said to converge uniformly to f if

∀ε > 0, ∃N ∈ N such that ∀n > N, ∀x ∈ I, |fn(x) − f (x)| < ε.

So the same N works for all x! Pictorially, this means the following. Consider the graph of the
limit function f . Given any ε > 0, we can translate the graph of f upwards by ε, and downwards
by ε, in order to obtain the strip between the dotted lines shown in below. This strip precisely
represents the region where the graph of a function fn lies if it is to satisfy

∀x ∈ I, |fn(x) − f (x)| < ε.

(Why?) If the convergence is uniform, then given any ε > 0, there should exist an N such that
the graphs of fN+1, fN+2, fN+3, · · · all lie in this strip.

I

f

fn

ε
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Example 2.24. Consider again the sequence of functions from Example 2.23. From the
picture below, it is visibly clear that (fn)n∈N

does not converge uniformly to f . Indeed,
whatever width of strip we look at around the graph of f , and no matter which n we take, it is
not the case that the graph of fn lies entirely inside the strip—some portion of the graph of fn
always ‘sticks out’.

fn

f

portion that
sticks out

portion that
sticks out

Here is a rigorous proof. Suppose that (fn)n∈N
converges uniformly to f . Let ε = 1 > 0.

Then there exists an N ∈ N such that for all x ∈ R, and all n > N, |fn(x) − f (x)| < 1. Take
x = 2N + 2. Then the above gives us that for all n > N,

∣∣∣∣2N + 2
n

− 0

∣∣∣∣ < 1.

In particular, for n = N + 1,

2N + 2
N + 1

=
2(N + 1)
N + 1

= 2 < 1,

a contradiction! ♦

Clearly, if (fn)n∈N
converges to f uniformly, then it converges pointwise to f too. (Indeed, if for

every ε > 0 there exists an N ∈ N such that for all n > N and for all x ∈ I, |fn(x) − f (x)| < ε,
and we take any particular fixed x∗ ∈ I, then also, we have that for every ε > 0 there exists
an N ∈ N such that for all n > N, |fn(x∗) − f (x∗)| < ε: in other words, for this x∗ ∈ I,

lim
n→∞

fn(x∗) = f (x∗).

But the choice of x∗ ∈ I was arbitrary. So

∀x ∈ I, lim
n→∞

fn(x) = f (x).

Hence (fn)n∈N
converges pointwise to f . So here is an ‘algorithm’ to check uniform

convergence:

(1) First find for each x ∈ I, lim
n→∞

fn(x) and call the limit f (x).
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(2) Find a ‘uniform bound’ on |fn(x) − f (x)|, namely

sup
x∈I

|fn(x) − f (x)| =: Mn.

This delivers to us the sequence (Mn)n∈N
of numbers, and to check uniform conver-

gence, it suffices to check that
lim
n→∞

Mn = 0.

We will justify this last claim in Exercise 2.33.

Example 2.25. Let I := R, and for x ∈ I = R, let

fn(x) =
sin(nx)

n
, n ∈ N,

f (x) = 0.

Clearly for each x ∈ R we have

−1
n
≤ sin(nx)

n
≤ 1

n
, n ∈ N,

and so by the Sandwich Theorem, lim
n→∞

fn(x) = 0.

Thus if f : R → R is the constant function equal to 0 everywhere, then (fn)n∈N
converges

pointwise to f .

Is the convergence uniform? We suspect that the answer is ‘Yes’, based on the Figure 2.2:
if we look at a strip of an arbitrarily small width around the graph of the zero function f , it is
clear that eventually the graphs of fn do lie in this strip.

1

0.5

−0.5

−2π 2π−π π3π
2

3π
2

−1

− π
2

π
2

−
x

Figure 2.2 The sequence of functions (fn)n∈N
converges uniformly to f : with ε = 1/2, we

see that the graphs of f3, f4, · · · all lie in the strip of width ε about the graph of the zero
function f .
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In fact, Mn = sup
x∈R

|fn(x) − f (x)| = sup
x∈R

| sin(nx)|
n

=
1
n

, and as

lim
n→∞

Mn = lim
n→∞

1
n

= 0,

it follows that (fn)n∈N
converges uniformly to f . ♦

Exercise 2.33. (∗)

(1) Suppose that I is an interval and fn : I → R (n ∈ N) is a sequence that is pointwise conver-
gent to f : I → R. Let the numbers an := sup{|fn(x) − f (x)| : x ∈ I} (n ∈ N) all exist. Prove
that (fn)n∈N

converges uniformly to f if and only if lim
n→∞

an = 0.

(2) Let fn : (0,∞) → R be given by fn(x) = xe−nx for x ∈ (0,∞) and n ∈ N. Show that the
sequence (fn)n∈N

converges uniformly on (0,∞).

Exercise 2.34. Let fn : [0, 1] → R be defined by fn(x) =
x

1 + nx
for x ∈ [0, 1].

Does (fn)n∈N
converge uniformly on [0, 1]?

Exercise 2.35. For n ∈ N, let fn : (0, 1) → R be defined by fn(x) = xn, x ∈ (0, 1).

(1) Does the sequence (fn)n∈N
converge pointwise to some function?

(2) Is the convergence uniform?

(3) Sketch the graphs of the first few terms of the sequence, and explain visually your
answer to part (2) above.

Pointwise versus uniform convergence. In order to better highlight the difference between
pointwise and uniform convergence, let us consider the following two statements, where
I ⊂ R is an interval, fn : I → R (n ∈ N) and f : I → R are functions.

Pointwise:

Uniform:

samesame interchanged!

∀ε > 0 

∀ε > 0 

∀x ε I

∀x ε I

∃N such that ∀n > N

∃N such that ∀n > N

|fn(x) − f(x)| < ε

|fn(x) − f(x)| < ε

Can you spot the difference? What has changed is the order of

∀x ∈ X and ∃N ∈ N such that ∀n > N.

Order of the phrases ‘for every’ and ‘there exists’ (called quantifiers) matters in mathematical
statements. This seemingly small alteration of interchanging the order of quantifiers makes a
world of difference. Indeed, even in everyday language, the two statements:
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∀ human being A

∀ human being A∃ human being B such that

∃ human being B such that B is the mother of A

B is the mother of A

interchanged! same

mean totally different things! In the latter, there is a person who is the mother to all human
beings, a statement that is obviously false. The former statement is true, since it asserts for
every person A we take, there exists (depending on which person A we have chosen) another
person B who is the mother of A.

This is the same sort of a difference between the uniform convergence requirement,
namely:

∀ε > 0, ∃N ∈ N such that ∀n > N, ∀x ∈ I, |fn(x) − f (x)| < ε.

and the pointwise convergence requirement, namely

∀ε > 0, ∀x ∈ I, ∃N ∈ N such that ∀n > N, |fn(x) − f (x)| < ε.

In the former, the same N works for all x ∈ I, while in the latter, the N might depend on the x
in question.

Why bother with uniform convergence?

Uniform convergence often implies that the limit function inherits the ‘nice’ properties
possessed by the terms of the sequence. This is not guaranteed to happen if one has mere
pointwise convergence. For instance, we will see later on that if a sequence (fn)n∈N

of con-
tinuous functions fn (n ∈ N) converges uniformly to a function f , then f is also continuous;
see Proposition 3.9. Morally, the reason nice things can happen with uniform convergence
is that we can exchange two ‘limiting processes’, which is not always allowed when one
just has pointwise convergence. The following exercises demonstrate the precariousness of
exchanging limiting processes arbitrarily.

Exercise 2.36. (∗) Let fn : R → R be given by fn(x) = 1 − 1
(1 + x2)n

for x ∈ R, n ∈ N.

Show that the sequence (fn)n∈N
of continuous functions converges pointwise to the function

f (x) =

{
1 if x �= 0,

0 if x = 0,

which is discontinuous at 0.

Exercise 2.37 (∗)

(1) For n ∈ N and m ∈ N, set am,n =
m

m + n
.

Show that for each fixed n, lim
m→∞

am,n = 1, while for each fixed m, lim
n→∞

am,n = 0.

Is lim
m→∞

lim
n→∞

am,n = lim
n→∞

lim
m→∞

am,n?
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(2) Let fn : R → R be defined by fn(x) =
sin(nx)√

n
, x ∈ R, n ∈ N.

Show that (fn)n∈N
converges pointwise to the zero function f . However, show that (f ′n)n∈N

does
not converge pointwise to (the zero function) f ′.

(3) Let fn : [0, 1] → R (n ∈ N) be defined by fn(x) = nx(1 − x2)n (x ∈ [0, 1]). Show that
(fn)n∈N

converges pointwise to the zero function f . However, show that

lim
n→∞

∫ 1

0
fn(x)dx =

1
2
�= 0 =

∫ 1

0
lim
n→∞

fn(x)dx.

Remark 2.1. Besides the preservation of continuity under uniform convergence, one also has
the following results associated with uniform convergence, which we will not establish in this
book (but instead we refer the interested student to Rudin’s book [R] for details).

Proposition 2.11. If fn : [a, b] → R (n ∈ N) is a sequence of Riemann-integrable functions
on [a, b] which converges uniformly to f : [a, b] → R, then f is also Riemann-integrable on
[a, b], and moreover ∫ b

a
f (x)dx = lim

n→∞

∫ b

a
fn(x)dx.

Proposition 2.12. Let fn : (a, b) → R (n ∈ N) be a sequence of differentiable functions on
(a, b), such that there exists a point c ∈ (a, b) for which (fn(c))n∈N

converges. If the sequence
(f ′n)n∈N

converges uniformly to g on (a, b), then (fn)n∈N
converges uniformly to a differentiable

function f on (a, b), and moreover,

f ′(x) = g(x) for all x ∈ (a, b).

Notes

Exercise 2.23 is from [L, 1.1.6]. The illustration of the proof of Theorem 2.7 is based
on [B].



3

Continuity

Let I be an interval in R. So I is a set of the form (a, b) or [a, b] or (−∞, b), etc. Among
all possible functions f : I → R, there is a ‘nice’ class of functions, namely ones that are
continuous on I.

What’s so nice about continuous functions? Continuous functions have properties that
make them easy to work with in Calculus. For example, we will see that continuous functions
possess two important properties, given by the Intermediate Value Theorem, and the Extreme
Value Theorem. We will learn the statements and proofs of these in the course of this chapter.
Functions that aren’t continuous may fail to possess these properties.

Many bizarre functions make appearances in Calculus, and in order to avoid falling into
pitfalls with simplistic thinking, we need definitions and assumptions of theorems to be stated
carefully and clearly.

3.1 Definition of continuity

In everyday speech, a ‘continuous’ process is one that proceeds without gaps of interruptions
or sudden changes.

What does it mean for a function f : R → R to be continuous? Roughly, f is said to be
continuous on I if f has ‘no breaks’ at any point of I. If a break does occur in f , then this break
will occur at some point of I. So we realise that in order to define continuity, we need to define
what is meant by the notion of ‘f being continuous at a point c ∈ I’.

Thus (based on this visual view of continuity), we first try to give the formal definition of
the continuity of a function at a point below. Next, if a function is continuous at each point,
then it will be called continuous. If a function has a break at a point c, then even if points x
are close to c, the points f (x) do not get close to f (c). See Figure 3.1.

So ‘no break in f at c’ should mean that f (x) stays close to f (c) whenever x is close to c.
This motivates the following definition of continuity, which guarantees that if a function is
continuous at a point c, then we can make f (x) as close as we like to f (c), by choosing x
sufficiently close to c. See Figure 3.2.

The How and Why of One Variable Calculus, First Edition. Amol Sasane.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



CONTINUITY 87

c

f(c)

Figure 3.1 A function with a break at c. If x lies to the left of c, then f (x) is not close to
f (c), no matter how close x comes to c.

f(c) + ε

f(c)

f(c) + ε

f(x)

c − δ c c + δx

Figure 3.2 The definition of continuity of a function at point c. If the function is continuous
at c, then given any ε > 0 (which determines a strip around the line y = f (c) of width 2ε), there
exists a δ > 0 (which determines an interval (c− δ, c + δ) of width 2δ around the point c) such
that whenever x lies in this interval (so that x satisfies c− δ < x < c + δ, that is, |x− c| < δ),
then f (x) satisfies f (c) − ε < f (x) < f (c) + ε, that is, | f (x) − f (c)| < ε.

Definition 3.1 (Continuity at a point; Continuous function).
Let I be an interval in R, c ∈ I and f : I → R.

The function f is continuous at c if for every ε > 0, there exists a δ > 0 such that for all x ∈ I
satisfying |x− c| < δ, | f (x) − f (c)| < ε.

The function f is continuous (on I) if for every x ∈ I, f is continuous at x.

Remark 3.1.
(1) Continuity is a ‘local’ concept. That is, we can decide the continuity of f on an interval
by looking at each point of the domain f and checking if f is continuous at that point, and
moreover, what matters for continuity of f at a point, roughly speaking, is what the function is
doing ‘locally’ in arbitrarily small neighbourhoods of the point, that is, ‘near the point’, and
what happens away from the point is irrelevant.

(2) History of the notion of continuity. In the early development of Calculus, there was no
rigorous definition of continuity offered. Only in the 18th century mathematicians started
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examining this notion, in connection with Fourier’s work on the theory of heat, where
discontinuous functions arose naturally in various kinds of physical problems. A satisfactory
mathematical definition of continuity was first formulated by Cauchy in 1821.

Example 3.1 (The constant function).
f : R → R given by f (x) = 1 for all x ∈ R is continuous.

Let c ∈ R = (−∞,∞). Let ε > 0. For x ∈ R, we have | f (x) − f (c)| = |1 − 1| = 0 < ε. So
any δ > 0 will do! For example, take δ = 1. Then if x ∈ R and |x− c| < δ = 1, we have:

| f (x) − f (c)| = |1 − 1| = |0| = 0 < ε.

So f is continuous at c. Since the choice of c ∈ R was arbitrary, it follows that f is continuous
on R. See the picture below. ♦

1

0

Example 3.2 (The identity function).
f : R → R given by f (x) = x for all x ∈ R is continuous.

Let c ∈ R. Let ε > 0.

(Rough work: | f (x) − f (c)| = |x− c| < δ ≤ ε, if for example, δ := ε.)

Let δ = ε. Then if x ∈ R and |x− c| < δ, we have:

| f (x) − f (c)| = |x− c| < δ = ε.

So f is continuous at c. Since the choice of c ∈ R was arbitrary, it follows that f is continuous
on R. See the following picture. ♦

0

f = x
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Example 3.3 (The Heaviside1 function).

Let Y : R → R be given by

Y(x) =

{
1 if x > 0,

0 if x ≤ 0.

From the graph of Y displayed below, we see clearly that there is a ‘break’ or ‘jump’ at x = 0,
and so we guess that Y is not continuous at 0. Let us show this using the definition of continuity
at a point.

1

0

Y

Suppose that Y is continuous at 0. Let ε = 1
2 > 0. Suppose that there exists a δ > 0 such

that whenever |x− 0| < δ, we have |Y(x) − Y(0)| = |Y(x) − 0| < ε = 1
2 . Take x = δ

2 . Then
|x− 0| = | δ2 − 0| = δ

2 < δ, and so we must have

|Y(x) − Y(0)| = |Y(
δ

2
) − 0| = |1 − 0| = 1 < ε =

1
2

,

a contradiction. So Y is not continuous at 0. ♦

Example 3.4 (The reciprocal function).
h : (0,∞) → R given by h(x) = 1

x for all x ∈ (0,∞) is continuous (on (0,∞)). See
Figure 3.3.

10

8

6

4

2

0
0 0.2 0.4 0.6

x
0.8 1

Figure 3.3 x �→ 1
x : (0,∞) → R is continuous on (0,∞).

1 Named after the mathematical physicist Oliver Heaviside (1850–1925)
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Let c ∈ (0,∞). Let ε > 0. (Rough work: We want a δ > 0 such that whenever |x− c| < δ,
|h(x) − h(c)| < ε. We have

|h(x) − h(c)| =
∣∣∣∣1
x
− 1

c

∣∣∣∣ =
|x− c|
|x||c| .

We know that if x is close to c, then the numerator |x− c| can be made small. But what about
the denominator |x||c|. Well, |c| > 0 is just a constant, and so it is harmless really. What about
|x|? If it gets small, then it has the effect of making |h(x) − h(c)| big, something that we want
to avoid. But we note that when x is close to c, |x| will be close to |c|, and so |x| can be bounded
below by some positive constant. Indeed, by the triangle inequality,

|c| − |x| ≤ ||c| − |x|| ≤ |c− x| = |x− c|,

and so if we choose the δ ≤ |c|/2, then for x satisfying |x− c| < δ we will obtain from the
above that |x| ≥ |c| − |c− x| ≥ |c| − δ ≥ |c| − |c|/2 = |c|/2. So for such x,

|h(x) − h(c)| =
|x− c|
|x||c| <

δ

(|c|/2) · |c| ,

and the last quantity can be made smaller than ε by further ensuring that the δ also satisfies
that δ < ε |c|2

2 . Hence δ := min{ |c|
2 , ε |c|2

2 } should do the job! We remark that this is just one
choice among many other equally good δs which will also work. End of Rough Work.)

Set δ = min
{
c
2

,
εc2

2

}
(> 0). Then if x ∈ (0,∞) and |x− c| < δ, we have

|c| − |x| ≤ |x− c| < δ ≤ |c|
2

and so
|c|
2

< |x| , that is,
1
|x| <

2
|c| . Thus if x ∈ (0,∞) and |x− c| < δ, then

∣∣∣∣1
x
− 1

c

∣∣∣∣ =
|c− x|
|x| |c| =

|x− c|
|x| |c| < δ · 2

|c| ·
1
|c| =

2δ

c2
≤ ε.

So f is continuous at c. Since the choice of c ∈ (0,∞) was arbitrary, it follows that f is
continuous on (0,∞). ♦

Exercise 3.1. Let the function f : R → R be given by f (x) = x2.

(1) Prove that f is continuous at 0.

(2) (∗) Suppose that c is a nonzero real number. Prove that f is continuous at c.

In Exercise 3.7, we will give a slick proof of the fact that f is continuous on R.

Exercise 3.2. Let f : R → R be such that f (x + y) = f (x) + f (y) for all x, y ∈ R.

(1) Let f be continuous at some real number c. Prove that f is continuous on R.
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Hint: Since f is continuous at c, given ε > 0, ∃δ > 0 such that for all x ∈ R satisfying
|x− c| < δ, | f (x) − f (c)| < ε. Show that given any other point c′ ∈ R, the function f
is continuous at c′ by showing that the same δ works (for this ε).

(2) Give an example of such a continuous, additive function.

Exercise 3.3. Suppose that f : R → R and there exists an M > 0 such that for all x ∈ R,
| f (x)| ≤ M|x|. Prove that f is continuous at 0. Hint: Find f (0).

Exercise 3.4. Let f : R → R be defined by

f (x) =

{
0 if x is rational,
1 if x is irrational.

Prove that for every c ∈ R, f is not continuous at c.

Hint: Use the fact that there are irrational numbers arbitrarily close to any rational number
and rational numbers arbitrarily close to any irrational number.

Exercise 3.5. Let f : (a, b) → R be a continuous function. Prove that if for some c ∈ (a, b),
f (c) > 0, then there exists a δ > 0 such that for all x ∈ (c− δ, c + δ), f (x) > 0.

Exercise 3.6. Show that in the definition of continuity of a function at a point, we may replace
the symbol < with ≤, that is, the following statements are equivalent for f : I → R, and
c belonging to the interval I:

(1) ∀ε > 0, ∃δ > 0 such that whenever x ∈ I satisfies |x− c| < δ, | f (x) − f (c)| < ε.

(2) ∀ε > 0, ∃δ > 0 such that whenever x ∈ I satisfies |x− c| < δ, | f (x) − f (c)| ≤ ε.

(3) ∀ε > 0, ∃δ > 0 such that whenever x ∈ I satisfies |x− c| ≤ δ, | f (x) − f (c)| ≤ ε.

(4) ∀ε > 0, ∃δ > 0 such that whenever x ∈ I satisfies |x− c| ≤ δ, | f (x) − f (c)| < ε.

3.2 Continuous functions preserve convergence

In Example 3.4, we had to work hard in order to prove the continuity of the reciprocal function.
We will now learn about a result that will make life considerably simpler. Roughly speaking,
this results says that a function is continuous at a point if and only if it preserves convergence
of sequences with limit c.

Theorem 3.1. Let I be an interval in R, c ∈ I and f : I → R. Then

f is continuous at c

if and only if

for every convergent sequence (xn)n∈N
contained in I with limit c,

( f (xn))n∈N
is convergent with limit f(c).

(3.1)
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Proof.

Only if: Suppose that f is continuous at c ∈ I.

Let (xn)n∈N
be a convergent sequence contained in I with limit c.

Since f is continuous at c ∈ I, given ε > 0, there exists a δ > 0 such that for all x ∈ I satisfying
|x− c| < δ, | f (x) − f (c)| < ε.

As (xn)n∈N
is convergent with limit c, there exists an N ∈ N such that for all n > N,

|xn − c| < δ.

Consequently for n > N, | f (xn) − f (c)| < ε. So ( f (xn))n∈N
is convergent with limit f (c). This

completes the proof of the ‘Only if’ part.

If: Now suppose that (3.1) holds. Then we need to show that f is continuous at c and we prove
this by contradiction. Assume that f is not continuous at c, that is,

¬[∀ε > 0 ∃δ > 0 such that ∀x ∈ I such that |x− c| < δ, | f (x) − f (c)| < ε]

that is, ∃ε > 0 such that ∀δ > 0 ∃x ∈ I such that |x− c| < δ but | f (x) − f (c)| ≥ ε. Hence if
δ = 1

n , then we can find an xn ∈ I such that we have |xn − c| < δ = 1
n , but | f (xn) − f (c)| ≥ ε.

Claim 1: The sequence (xn)n∈N
is contained in I and is convergent with limit c.

We have for all n ∈ N that |xn − c| < 1/n, that is, c− 1
n

< xn < c +
1
n

.

As lim
n→∞

c− 1
n

= c = lim
n→∞

c +
1
n

, the Sandwich Theorem gives lim
n→∞

xn = c too.

Claim 2: The sequence ( f (xn))n∈N
does not converge to f (c).

Indeed, for all n ∈ N, we have | f (xn) − f (c)| ≥ ε. Thus for instance, ε
2 > 0, but it is not

possible to find a large enough N ∈ N such that for all n > N, we have | f (xn) − f (c)| < ε
2

(for if this were possible, then we would arrive at the contradiction ε ≤ | f (xn) − f (c)| < ε
2 ).

Claims 1 and 2 show that (3.1) does not hold, a contradiction. Hence f is continuous
at c. �

Let us revisit some of our examples from the previous section in light of this result.

Example 3.5 (The reciprocal function). Recall h from Example 3.4. Let c ∈ (0,∞)
and (xn)n∈N

be any convergent sequence in (0,∞) with limit c. Then by the Algebra of
Limits, (h(xn)) = (1/xn) is convergent with limit 1/c = h(c). By Theorem 3.1, it follows
that h is continuous at c. As the choice of c ∈ (0,∞) was arbitrary, h is continuous
on (0,∞). Done! ♦

Example 3.6 (The Heaviside function). Recall Y from Example 3.3. Consider the conver-
gent sequence (1/n)n∈N

with limit 0. Then (Y(1/n))n∈N
= (1)n∈N

is convergent with limit
1 = 0 = Y(0).

But if Y was continuous at 0, then by Theorem 3.1, (Y(1/n))n∈N
should have been con-

vergent with limit Y(0) = 0. Thus we conclude that Y is not continuous at 0. ♦

Exercise 3.7. Recall Exercise 3.1: f : R → R is given by f (x) = x2 for x ∈ R. Using the char-
acterisation of continuity provided in Theorem 3.1, prove that f is continuous on R.
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Exercise 3.8. Let c ∈ R, δ > 0 and f : (c− δ, c] → R be continuous and strictly increasing
on (c− δ, c). Show that f is strictly increasing on (c− δ, c].

Exercise 3.9. Prove that if f : R → R is continuous and f (x) = 0 if x is rational, then f (x) = 0
for all x ∈ R. Revisit Exercise 3.4.

Hint: Given any real number c, there exists a sequence of rational numbers (rn)n∈N
that

converges to c.

Exercise 3.10. Let f : R → R be a function that preserves divergent sequences, that is, for
every divergent sequence (xn)n∈N

, ( f (xn))n∈N
is divergent as well. Prove that f is one-to-one.

Hint: Let x1, x2 be distinct real numbers, and consider the sequence x1, x2, x1, x2, . . . .

Exercise 3.11. Let I be an interval, c ∈ I, and f : I → R. Show that the following are
equivalent:

(1) f is continuous at c.

(2) For every sequence (xn)n∈N
contained in I such that (xn)n∈N

converges to c, the
sequence ( f (xn))n∈N

converges.

Exercise 3.12. Consider the function f : R → R defined by

f (x) =

{
x if x is rational,

−x if x is irrational.

Prove that f is continuous only at 0.
Hint: For every rational number, there is a sequence of irrational numbers that converges to it,
and for every irrational number, there is a sequence of rational numbers that converges to it.

Exercise 3.13. (∗) Every nonzero rational number x can be uniquely written as x = n/d,
where n, d denote integers without any common divisors and d > 0. When x = 0, we take
d = 1 and n = 0. Consider the function f : R → R defined by

f (x) =

⎧⎨
⎩

0 if x is irrational,
1
d

if x
(
=

n
d

)
is rational.

Prove that f is discontinuous at every rational number, and continuous at every irrational
number.

Hint: For an irrational number x, given any ε > 0, and any interval (N,N + 1) containing x,
show that there are just finitely many rational numbers r in (N,N + 1) for which f (r) ≥ ε.
Use this to show the continuity at irrationals.

Exercise 3.14. (∗) Let f : R → R be a continuous function such that for all x, y ∈ R,
f (x + y) = f (x) + f (y).

Show that there exists a real number a such that for all x ∈ R, f (x) = ax.

Hint: Show first that for natural numbers n, f (n) = nf (1). Extend this to integers n, and then
to rational numbers n/d. Finally use the density of Q in R to prove the claim.
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Exercise 3.15. Determine all continuous functions f : R → R such that for all x ∈ R,

f (x) + f (2x) = 0.

Hint: Show that f (x) = −f
( x

2

)
= f

( x
4

)
= −f

( x
8

)
= · · ·.

Exercise 3.16. Give an example of

(1) an interval I,

(2) a continuous function f : I → R, and

(3) a Cauchy sequence (xn)n∈N

for which ( f (xn))n∈N
is not a Cauchy sequence in R. (Later on, in Exercise 3.43, we will

show that ‘uniformly continuous’ functions do preserve Cauchyness, even if continuous
functions may not.)

Exercise 3.17. Determine if the following statements are always true for two continuous
functions f , g : R → R.

(1) If f

(
1

2n + 7

)
= g

(
n

n2 + 1

)
for all n ∈ N, then f (0) = g(0).

(2) If f (n) = g(n2) for all n, and lim
n→∞

g(n) = L, then lim
n→∞

f (n) also exists, and is equal
to L.

Using Theorem 3.1, we obtain the following useful result that says that the pointwise sum,
product, etc. of continuous functions is continuous. But before we state this result, we intro-
duce some convenient notation.

Let I be an interval in R. Given functions f : I → R and g : I → R, we define:

(1) If α ∈ R, then we define the function αf : I → R by

(αf )(x) = αf (x), x ∈ I.

(2) We define the absolute value of f , | f | : I → R by

| f |(x) = | f (x)|, x ∈ I.

(3) The sum of f and g, f + g : I → R is defined by

( f + g)(x) = f (x) + g(x), x ∈ I.

(4) The product of f and g, fg : I → R is defined by

(fg)(x) = f (x)g(x), x ∈ I.

(5) If k ∈ N, then we define the kth power of f , f k : I → R by

f k(x) = ( f (x))k, x ∈ I.
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(6) If for all x ∈ I, g(x) = 0, then we define
1
g

: I → R by

(
1
g

)
(x) =

1
g(x)

, x ∈ I.

Theorem 3.2. Let I be an interval in R and let c ∈ I. Suppose that f : I → R and g : I → R

are continuous at c. Then:

(1) For all α ∈ R, αf is continuous at c.

(2) | f | is continuous at c.

(3) f + g is continuous at c.

(4) fg is continuous at c.

(5) For all k ∈ N, f k is continuous at c.

(6) If for all x ∈ I, g(x) = 0, then 1
g is continuous at c.

Proof. Suppose that (xn)n∈N
is a convergent sequence contained in I, with limit c. Since

f and g are continuous at c, from Theorem 3.1, it follows that ( f (xn))n∈N
and (g(xn))n∈N

are convergent with limits f (c) and g(c), respectively. Hence from Theorem 2.4, it follows
that:

(1) (α · f (xn))n∈N
is convergent with limit α · f (c), that is, ((αf )(xn))n∈N

is convergent
with limit (αf )(c). So from Theorem 3.1, it follows that αf is continuous at c.

(2) (| f (xn)|)n∈N
is convergent with limit | f (c)|, that is, (| f |(xn))n∈N

is convergent with
limit | f |(c). So from Theorem 3.1, it follows that | f | is continuous at c.

(3) ( f (xn) + g(xn))n∈N
is convergent to f (c) + g(c), that is, (( f + g)(xn))n∈N

is
convergent with limit ( f + g)(c). So from Theorem 3.1, it follows that f + g is
continuous at c.

(4) ( f (xn)g(xn))n∈N
is convergent with limit f (c)g(c), that is, ((fg)(xn))n∈N

is convergent
with limit (fg)(c). So from Theorem 3.1, it follows that fg is continuous at c.

(5) (( f (xn))
k)n∈N

is convergent with limit ( f (c))k, that is, (f k(xn))n∈N
is convergent with

limit f k(c). So from Theorem 3.1, it follows that f k is continuous at c.

(6) ( 1
g(xn)

)n∈N
is convergent with limit 1

g(c) (since for all x ∈ I, g(x) = 0, in particular
g(xn) = 0 and g(c) = 0), that is, (( 1

g )(xn))n∈N
is convergent with limit ( 1

g )(c). So from
Theorem 3.1, it follows that 1

g is continuous at c. �

Example 3.7 (Polynomials are continuous). As f : R → R given by f (x) = x for x ∈ R

is continuous (see Example 3.2 on page 88), it follows that for all k ∈ N, xk is con-
tinuous. Thus given arbitrary scalars c0, c1, · · · , cd in R, it follows that the functions
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c0 · 1, c1 · x, · · · , cd · xd are continuous. Hence the polynomial function p : R → R defined
by p(x) = c0 + c1x + · · · + cdx

d, x ∈ R, is continuous. ♦

Example 3.8 (The reciprocal function). Let us revisit the function h we had considered ear-
lier in Example 3.4. As x

g�→ x : (0,∞) → R is continuous, and since g(x) = x = 0 for all
x ∈ (0,∞), it follows that h = 1

g : (0,∞) → R, given by

h(x) =
1
x

, x > 0,

is continuous too. ♦

Exercise 3.18. Show that the rational function f : R → R defined by

f (x) =
x2

1 + x2
, x ∈ R,

is continuous on R.

The composition of continuous functions is continuous. Let Df ,Dg be intervals in R,
and f : Df → R, g : Dg → R be two functions such that

f (Df ) := {f (x) : x ∈ Df } ⊂ Dg,

that is, the range of f is contained in the domain of g. Then the composition of g with f ,
denoted by g ◦ f , is the function g ◦ f : Df → R defined by

(g ◦ f )(x) = g( f (x)), x ∈ Df .

x

Df

f

g

g ◦ f

Dg

f(x)

g(f(x))
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Theorem 3.3. Let Df ,Dg be intervals in R, and f : Df → R, g : Dg → R be two functions
such that

(1) f (Df ) := {f (x) : x ∈ Df } ⊂ Dg,

(2) f is continuous at c, and

(3) g is continuous at f (c) (∈ Dg).

Then their composition g ◦ f : Df → R is continuous at c.

Proof. Let (xn)n∈N
be any sequence in Df with limit c. As f is continuous at c, ( f (xn))n∈N

converges to f (c). But for all n ∈ N, f (xn) ∈ f (Df ) ⊂ Dg, and f (c) ∈ f (Df ) ⊂ Dg. As g is
continuous at f (c), (g( f (xn))n∈N

converges to g( f (c)), that is, ((g ◦ f )(xn))n∈N
converges to

(g ◦ f )(c). Hence g ◦ f is continuous at c. �

Example 3.9. We know that the polynomial function x
p�→ 1 + x2 : R → R is continuous,

and that the reciprocal function x
h�→ 1/x : (0,∞) → R is continuous. Also, the range of p,

p(R) = {1 + x2 : x ∈ R} ⊂ (0,∞) = domain of h. So their composition, namely the rational
function

x
h◦p�→ 1

1 + x2
: R → R

is continuous too.

More generally, any rational function r : Dr (⊂ R) → R,

r(x) =
n(x)
d(x)

, x ∈ Dr,

where n, d are fixed polynomials and Dr := R\{ζ ∈ R : d(ζ) = 0}, is continuous on its
domain Dr. ♦

Exercise 3.19. Let f : R → R be defined by f (x) = |x + 1| − |x| for x ∈ R.
Find lim

x→−2
( f ◦ f )(x).

Exercise 3.20. Determine if the following statements are always true for f , g : R → R and
a ∈ R.

(1) If g ◦ f is continuous at a, then f is continuous at a and g is continuous at f (a).

(2) If g ◦ f is continuous at a, then f is continuous at a or g is continuous at f (a).

(3) If g ◦ f isn’t continuous at a, then f isn’t continuous at a and g isn’t continuous at
f (a).

(4) If g ◦ f isn’t continuous at a, then f isn’t continuous at a or g isn’t continuous at f (a).
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Exercise 3.21. Show that the function f : R → R given by

f (x) =

{
x sin 1

x if x = 0,

0 if x = 0,

is continuous. Use Maple/Mathematica or some other equivalent program to plot the graph
of f .

Exercise 3.22. Let I be an interval, and let the functions f , g : I → R be continuous on I.
Define max{f , g} : I → R by (max{f , g})(x) = max{f (x), g(x)}, x ∈ I. Is max{f , g} con-
tinuous on I? Hint: Exercise 1.23.

In the next two sections, we will learn two fundamental results concerning continuous
functions f : [a, b] → R on a compact interval [a, b], namely:

(1) The Intermediate Value Theorem, saying that f assumes all the values between
f (a) and f (b) (the ‘intermediate values’). Geometrically, this means the following.
Consider the graph of f in the Cartesian plane. If we choose any number y lying
between f (a) and f (b) and draw a horizontal line through the point y on the y-axis,
then this horizontal line must meet the graph of f at some point. This is ‘clear’
since f , being continuous, should have a graph having ‘no breaks’.

f(a)

f(b)

a b a b

y

f(a)

f(b)

y

Figure 3.4 The Intermediate Value Theorem: the picture on the right shows that the condi-
tion of continuity can’t be dropped.

(2) The Extreme Value Theorem, saying that f has a maximiser and a minimiser on [a, b]
(that is, f assumes the extreme values of the range f ([a, b])). Geometrically, this means
that if we consider the graph of f , then there must be a point in c ∈ [a, b], where the
graph y coordinate is highest, and a point d ∈ [a, b] where the graph y coordinate is
lowest.

c da b
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Although these two properties might seem ‘obvious’ when interpreted geometrically, they
require proofs. We will see that the Least Upper Bound Property of R will be used crucially
in the proofs. We will begin with the Intermediate Value Property.

3.3 Intermediate Value Theorem

Roughly speaking, the Intermediate Value Theorem says that a continuous function on a com-
pact interval cannot ‘hop over’ intermediate values. For instance, if the height of a mountain is
1976 meters above sea level, then given any number between 0 and 1976, say 399, there must
exist a point on the mountain that is exactly 399 meters above sea level. The picture shown in
Figure 3.4 shows that the continuity of the function is an essential requirement.

Theorem 3.4 (Intermediate Value Theorem). If f : [a, b] → R is continuous and y ∈ R

lies between f (a) and f (b), (that is, f (a) ≤ y ≤ f (b) or f (b) ≤ y ≤ f (a)), then there exists
a c ∈ [a, b] such that f (c) = y.

Proof. Consider first the case that f (a) ≤ y ≤ f (b), and define

Sy = {x ∈ [a, b] : f (x) ≤ y}.

(Pictorially, this set can be visualised like this: imagine again the horizontal line through y,
and look at the portion of the graph of f that lies below y. Sy is the shadow on the x axis of
this portion with a light source very high up above.)

a bSy

y

Clearly Sy is a subset of R, it is nonempty (since a ∈ Sy) and Sy is bounded above (by b).
So by the Least Upper Bound Property of R, c := sup Sy exists. As b is an upper bound of
Sy, and c is the least upper bound of Sy, clearly c ≤ b. As a ∈ Sy, we also know that a ≤ c.
Summarising, we have c ∈ [a, b]. We now claim that this c does the job.

Claim: f (c) = y.

We will show that f (c) ≤ y and f (c) ≥ y, and this will prove the claim.

That f (c) ≤ y : Note that for every n ∈ N, c− 1
n is not an upper bound of Sy. So there

must be an xn ∈ Sy such that xn > c− 1
n . Hence we have for all n that

c− 1
n

< xn ≤ c.
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By the Sandwich Theorem, lim
n→∞

xn = c, and since f is continuous, also

lim
n→∞

f (xn) = f (c).

As f (xn) ≤ y, n ∈ N (since xn ∈ Sy), we have f (c) = lim
n→∞

f (xn) ≤ y.

That f (c) ≥ y : If c = b, then we are done, since y ≤ f (b) = f (c). So we suppose that
c < b. Define for n ∈ N

xn := c +
b− c
n

(
≤ c +

b− c
1

= b

)
.

Then xn ∈ [a, b], and (xn)n∈N
is convergent with limit c. As f is continuous, ( f (xn))n∈N

converges to f (c). But xn > c for each n ∈ N, and so xn /∈ Sy for each n. Hence for
all n, f (xn) > y. Thus f (c) ≥ y.

Consequently f (c) = y, proving the claim. Thus the proof of the theorem is complete when
f (a) ≤ y ≤ f (b).

Now suppose that f (b) ≤ y ≤ f (a). Then (−f )(a) ≤ −y ≤ (−f )(b). By the continuity of
f , −f is continuous too. So applying the previous result (with −f instead of f , and −y instead
of y), it follows that there is a c ∈ [a, b] such that (−f )(c) = −y, that is, −f (c) = −y, and so
f (c) = y. This completes the proof. �

Example 3.10. Consider the polynomial p : R → R given by

p(x) = x2014 + x1976 − 1
399

, x ∈ R.

Then p is continuous, and

p(0) = 0 + 0 − 1
399

= − 1
399

< 0,

p(1) = 1 + 1 − 1
399

> 0.

As p(0) ≤ y := 0 ≤ p(1), and since p : [0, 1] → R is continuous, it follows by the Interme-
diate Value Theorem, that there exists a c ∈ [0, 1] such that p(c) = 0. In other words, p has a
real root in [0, 1].

More generally, one can show that any odd degree polynomial p with real coefficients
must have at least one real root. The reason is that for large positive values of x, p(x) will
have the same sign as the leading coefficient cd, while for large2 negative values of x, p(x)

a 0

b

+

−

2 That is, x < 0 and |x| large
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will have the opposite sign as that of cd (since d is odd). Consequently, p must vanish
somewhere in between these two extremes of large positive and negative xs. ♦

Example 3.11. At any given instant of time, there exists a pair of diametrically opposite
points on the equator of the earth, which have the same temperature.

θθ + π
T(θ)

equator

Let T(θ) denote the surface temperature at the point on the equator with longitude θ. Then
θ �→ T(θ) is continuous on the interval [0, 2π] (with longitude measured in radians3). Note
that T(0) = T(2π). Let S : [0, π] → R be given by

S(θ) = T(θ) − T(θ + π), θ ∈ [0, π].

Then S is continuous, and

S(π) = T(π) − T(2π) = T(π) − T(0) = −(T(0) − T(π)) = −S(0).

So 0 lies between S(π) and S(0) = −S(π). By the Intermediate Value Theorem, there exists
a θ∗ ∈ [0, π] such that S(θ∗) = 0, that is, T(θ∗) = T(θ∗ + π). ♦

Exercise 3.23. Suppose that f : [0, 1] → R is a continuous function such that for all x ∈ [0, 1],
0 ≤ f (x) ≤ 1. Prove that there exists at least one c ∈ [0, 1] such that f (c) = c.

Hint: Consider g(x) = f (x) − x, and use the Intermediate Value Theorem.

Exercise 3.24. Let f : [0, 1] → R be continuous. Show that there exists a c ∈ [0, 1] such that
f (c) − f (1) = ( f (0) − f (1))c. Hint: Consider f (x) − f (1) − ( f (0) − f (1))x.

Exercise 3.25. Consider a flat pancake of arbitrary shape. Show that there is a straight line
cut that divides the pancake into two parts having equal areas. Can the direction of the straight
line cut be chosen arbitrarily?

3 We will define the radian angle measure later on in Chapter 5; if this is unfamiliar, one may just think of T as a
function on the interval [0, 360], with the angle θ measured in degrees.
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Exercise 3.26. True or false? There is real number x such that x399 +
1976

1 + x2(cos x)2
= 28.

Exercise 3.27. At 8:00 a.m. on Saturday, a hiker begins walking up the side of a mountain to
his weekend campsite. On Sunday morning at 8:00 a.m., he walks back down the mountain
along the same trail. It takes him one hour to walk up, but only half an hour to walk down. At
some point on his way down, he realises that he was at the same spot at exactly the same time
on Saturday. Prove that he is right.

Hint: Let u(t) and d(t) be the position functions for the walks up and down, and apply the
Intermediate Value Theorem to f (t) = u(t) − d(t).

Exercise 3.28. Show that the polynomial function p(x) = 2x3 − 5x2 − 10x + 5 has a real root
in the interval [−1, 2].

Exercise 3.29. Let f : [a, b] → R be continuous and such that for all x ∈ [a, b], f (x) = 0.
Show that f assumes only positive values or f assumes only negative values.

Exercise 3.30. Let f : R → R be continuous. If S := {f (x) : x ∈ R} is neither bounded above
nor bounded below, prove that S = R.

Hint: If y ∈ R, then since S is neither bounded above nor bounded below, there exist x0,
x1 ∈ R such that f (x0) < y < f (x1).

Exercise 3.31. (∗) Show that given any continuous function f : R → R, there exists an
x0 ∈ [0, 1] and an m ∈ Z\{0} such that f (x0) = mx0. In other words, the graph of f intersects
some nonhorizontal line y = mx at some point x0 in [0, 1].
Hint: If f (0) = 0, take x0 = 0 and any m ∈ Z\{0}. If f (0) > 0, then choose N ∈ N

satisfying N > f (1), and apply the Intermediate Value Theorem to the continuous function
g(x) = f (x) − Nx on the interval [0, 1]. If f (0) < 0, then first choose a N ∈ N such that
N > −f (1), and consider the function g(x) = f (x) + Nx, and proceed in a similar manner.

Exercise 3.32. (∗) Prove that there does not exist a continuous function f : R → R which
assumes rational values at irrational numbers, and irrational values at rational numbers, that
is, f (Q) ⊂ R\Q and f (R\Q) ⊂ Q.

Hint: Note that for each m ∈ Z\{0}, there is no x0 ∈ R such that f (x0) = mx0.

Inverse functions and continuity

Theorem 3.5. Suppose that f : [a, b] → R is strictly increasing and continuous. Then
f ([a, b]) = [ f (a), f (b)], and f−1 : [ f (a), f (b)] → R is strictly increasing and continuous.



CONTINUITY 103

Remark 3.2.

(1) As f is strictly increasing, it is injective, and so the inverse function f−1 is defined on
the range f ([a, b]). The above result says in particular that this range f ([a, b]) is the interval
[ f (a), f (b)], and so f−1 has domain [ f (a), f (b)].

(2) Analogous to the above result for strictly increasing functions, the following version of
the result for strictly decreasing functions is also true.

If f : [a, b] → R is strictly decreasing and continuous, then f ([a, b]) = [ f (b), f (a)], and
f−1 : [ f (b), f (a)] → R is strictly decreasing and continuous.

Proof. f ([a, b]) = [ f (a), f (b)]: Since a < b, we have f (a) < f (b) as f is strictly increasing.
Let y ∈ [ f (a), f (b)]. By the Intermediate Value Theorem, there exists a c ∈ [a, b] such that
f (c) = y. Hence [ f (a), f (b)] ⊂ f ([a, b]). Also, if x ∈ [a, b], then f (x) ∈ [ f (a), f (b)] as f is
increasing. So f ([a, b]) ⊂ [ f (a), f (b)].

f−1 is strictly increasing: If f (a) ≤ y1 < y2 ≤ f (b), and y1 = f (x1), y2 = f (x2) for some
x1, x2 ∈ [a, b], then x1 < x2. (Otherwise, x1 ≥ x2 implies f (x1) ≥ f (x2), a contradiction.) But
x1 = f−1(y1) and x2 = f−1(y2). So f−1 is strictly increasing.

f−1 is continuous: Let y∗ = f (x∗) ∈ [ f (a), f (b)], and let ε > 0.

Q. What δ > 0 guarantees that whenever |y− y∗| < δ, we have | f−1(y) − x∗| < ε?
A. We read this off from the picture shown below:

δ = min{f (x∗ + ε) − f (x∗), f (x∗) − f (x∗ − ε)} > 0.

f(x∗)

y∗

f−1(y∗) = x∗

Take δ to be the smaller among these two!

f−1f−1

With this δ,

y∗ + δ = f (x∗) + δ ≤ f (x∗ + ε) and

y∗ − δ = f (x∗) − δ ≥ f (x∗ − ε).

So if y∗ − δ < y < y∗ + δ, then since f−1 is strictly increasing,

x∗ − ε = f−1( f (x∗ − ε)) ≤ f−1(y∗ − δ)

< f−1(y)

< f−1(y∗ + δ) ≤ f−1( f (x∗ + ε)) = x∗ + ε,

that is, | f−1(y) − x∗| < ε. �
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Example 3.12. The nth root function n
√· : [0,∞) → [0,∞), which is the inverse of the

strictly increasing, continuous function ·n : [0,∞) → [0,∞), is strictly increasing and
continuous too.

1.5

0.5

0
0 0.2 0.4 0.6

x
0.8 1 1.2

1

Thus it also follows for example that the composition of the two continuous functions,
given by x �→ 1 + x2 : R → R and x �→ √

x : [0,∞) → R, namely x �→
√

1 + x2 : R → R,
is continuous. ♦

Exercise 3.33. Let f : [0,∞) → R be the function defined by

f (x) =
1

1 + x2
, x ∈ [0,∞).

Show that f is strictly decreasing and that f ([0,∞)) = (0, 1]. Find an expression for the inverse
function f−1 : (0, 1] → [0,∞) and explain why f−1 is continuous on (0, 1]. Sketch the graphs
of f and f−1.

Continuous functions preserve connectedness

Intervals are ‘special’ subsets of R in the sense that they are ‘connected’ or that ‘they have no
holes in them’. We make this precise below.

Definition 3.2 (Interval property). A subset I ⊂ R is said to have the interval property if for
all x, y ∈ I with x < y, [x, y] ⊂ I.

The following picture shows that ‘I having no holes’ means exactly that ‘I has the interval
property’.

x y

Not in I!

I

It is clear that intervals possess the interval property. We now show that there are no others!
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Theorem 3.6. If I ⊂ R has the interval property, then I is an interval.

Proof. If I = ∅, then I = (a, a) for any a ∈ R. Suppose that I = ∅. Then we have the follow-
ing cases:

I is bounded I is bounded
below but not
above

I is bounded above
but not below

I is neither
bounded above
nor below

a := inf I
b := sup I

a ∈ I a ∈ I a /∈ ∈ I
b ∈ I b /∈ I b ∈

I a /
I b /∈ I

I = I = I = I =
[a, b] [a, b) (a, b] (a, b)

a := inf I

a ∈ I a /∈ I

I = I =
[a,∞) (a,∞)

b := sup I

b ∈ I b /∈ I

I = I =
(−∞, b] (−∞, b)

I =
(−∞,∞)

Each of the above claims can be checked. For example, let us consider the case when I is
bounded and a, b /∈ I. Then we need to show that I ⊂ (a, b) and that (a, b) ⊂ I.

1◦ Let x ∈ I. Then a = inf I ≤ x ≤ sup I = b. But a /∈ I and b /∈ I, while x ∈ I. So we
can’t have equalities in a ≤ x ≤ b. Hence a < x < b, that is, x ∈ (a, b).

2◦ Let x ∈ (a, b). Then a < x < b. Since a := inf I and b := sup I, it follows that there
exist x∗, y∗ ∈ I such that a ≤ x∗ < x < y∗ ≤ b. As I has the interval property,
[x∗, y∗] ⊂ I, and in particular x (which belongs to [x∗, y∗]) belongs to I. �

In light of this characterisation of intervals, we have the following consequence of the Inter-
mediate Value Theorem.

Corollary 3.7. Let I ⊂ R be an interval and f : I → R be continuous. Then f (I) is an
interval.

shadow of
graph is an
interval

shadow
is not an
interval

II
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Proof. Let y1, y2 ∈ f (I) be such that y1 < y2. Then there exist a, b ∈ I such that y1 = f (a),
y2 = f (b). Let y ∈ [y1, y2]. By the Intermediate Value Theorem, there exists a point c, belong-
ing to the compact interval with endpoints a and b, such that f (c) = y. So y ∈ f (I). As the
choice of y ∈ [y1, y2] was arbitrary, it follows that [y1, y2] ⊂ f (I). Hence f (I) has the interval
property, and consequently, f (I) is an interval. �

The above corollary can be summarised by saying that ‘continuous functions preserve
connectedness’.

Exercise 3.34. In each of the following cases, give an example of a continuous function
f : S → R such that f (S) = T , or explain why such an f can’t exist.

(1) S = (0, 1), T = (0, 1].

(2) S = (0, 1), T = {0, 1}.

3.4 Extreme Value Theorem

Theorem 3.8 (Extreme Value Theorem). If f : [a, b] → R is continuous, then

(1) S := {f (x) : x ∈ [a, b]} =: f ([a, b]) = range of f is bounded.

(2) sup S and inf S exist.

(3) sup S and inf S are attained, that is, there exist c, d ∈ [a, b] such that
f (c) = sup S = max S and f (d) = inf S = min S.

Thus, in the above conclusion, we have f (c) ≥ f (x) for all x ∈ [a, b] (so that c is a maximiser
of f ), and we have f (d) ≤ f (x) for all x ∈ [a, b] (so that d is a minimiser of f ).

Note that continuity of f says something locally about f at each point of its domain. How-
ever, the conclusion says something globally about f . This miracle happens because [a, b] is
‘compact’. We will later see examples that show that maximisers/minimisers may fail to exist
if either [a, b] is not compact or if f is not continuous. First, let us prove the Extreme Value
Theorem.

Proof.

(1) We first show that f is bounded, that is, S := {f (x) : x ∈ [a, b]} is bounded. Suppose that
S is not bounded. Let n ∈ N. Then this n is not an upper bound of S. So there exists some
xn ∈ [a, b] such that | f (xn)| > n. In this way, we get a sequence (xn)n∈N

. Since a ≤ xn ≤ b
for all n ∈ N, (xn)n∈N

is bounded. By the Bolzano–Weierstrass Theorem (Theorem 2.8),
it follows that it has a convergent subsequence, say (xnk)k∈N

, that converges to some
limit L. Since for all k, we have a ≤ xnk ≤ b, it follows that a ≤ L ≤ b, that is, L ∈ [a, b]. As
f is continuous in particular at L, ( f (xnk))k∈N

is convergent and in particular bounded. So
there must exist an M > 0 such that for all k ∈ N, (nk <) | f (xnk)| ≤ M, a contradiction. Thus
S is bounded.

(2) S is not empty (since f (a) ∈ S!). S is bounded. So by the Least Upper Bound Property
of R, sup S exists, and by the Greatest Lower Bound Property of R, inf S exists too.
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(3) We claim that there exists a c ∈ [a, b] such that f (x) = M := sup S. Let n ∈ N. Then
M − 1

n is not an upper bound of S. So there exists a yn ∈ S such that M − 1
n < yn ≤ M. As

this yn belongs to the range S of f , yn = f (xn) for some xn ∈ [a, b]. By Bolzano–Weierstrass
Theorem, there is a subsequence, say (xnk)k∈N

, of (xn)n∈N
which converges with limit,

say c. As a ≤ xnk ≤ b for all k, it follows that c ∈ [a, b]. We have M − 1
nk

< f (xnk) ≤ M
for all k. So by the Sandwich Theorem, we conclude that ( f (xnk))k∈N

is convergent with
limit M. But since f is continuous at c, and since (xnk)k∈N

converges to c, we must have
( f (xnk))k∈N

is convergent with limit f (c). By the uniqueness of limits, f (c) = M = sup S.
But f (c) ∈ S. So max S exists.

Finally, consider −f : [a, b] → R. As f is continuous, −f is continuous too. By the above,
there exists a d ∈ [a, b] such that

(−f )(d) = sup{(−f )(x) : x ∈ [a, b]}
= sup{−f (x) : x ∈ [a, b]} = sup(−S) = − inf S,

and so f (d) = inf S. Since f (d) ∈ S, it follows that min S exists. �

Example 3.13. There is no continuous function f : [0, 1] → R ontoR. Indeed, by the Extreme
Value Theorem, there exist m,M such that for all x ∈ [0, 1], m ≤ f (x) ≤ M, that is the range
f ([0, 1]) of f is a bounded set, and so it can’t equal the unbounded set R. ♦

Example 3.14.

(1) Let f1 : (0, 1) → R be defined by f1(x) :=
1
x

for x ∈ (0, 1).
Then f1 is continuous, but (0, 1) is not a compact interval. We have

f1((0, 1)) = {1/x : x ∈ (0, 1)} = {y : y > 1} = (1,∞),

and so sup f1((0, 1)) = sup(1,∞) does not exist. Also,

inf f1((0, 1)) = inf(1,∞) = 1,

but it is not attained, that is, there does not exist a d ∈ (0, 1) such that f (d) = 1. (Indeed, for
all d ∈ (0, 1), f (d) = 1/d > 1.)
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(2) Let f2 : (0, 1) → R given by f2(x) =
1

x− 1
, x ∈ (0, 1).

Then it can be shown that f2((0, 1)) = (−∞,−1), and so sup f2((0, 1)) = −1, but it is not
attained, and inf f2((0, 1)) does not exist.

(3) Similarly, if we consider f3 : (0, 1) → R given by

f3(x) =
x− 1

2

x(x− 1)
, x ∈ (0, 1),

then it can be shown that f3((0, 1)) = R, and so neither sup f3((0, 1)) nor inf f3((0, 1)) exist.

(4) Let f4 : (0, 1) → R be given by f4(x) = x, x ∈ (0, 1). Then f4 is continuous, but (0, 1) is
not compact, and

f4((0, 1)) = {f (x) : 0 < x < 1} = {x : 0 < x < 1} = (0, 1).

f4((0, 1)) is bounded, sup(0, 1) = 1, but there is no c ∈ (0, 1) such that f4(c) = 1, and
inf(0, 1) = 0, but there is no d ∈ (0, 1) such that f4(d) = 0.

(5) Let f5 : [0, 1] → R be given by

f5(x) =

⎧⎪⎨
⎪⎩

2x if 0 ≤ x < 1
2 ,

0 if x = 1
2 ,

2 − 2x if 1
2 < x ≤ 1.

Then [0, 1] is compact, but f5 is not continuous. We have f5([0, 1]) = [0, 1), and there is no
c ∈ [0, 1] such that f5(c) = sup f5([0, 1]) = 1.

f4
f5

f6

0 0 01

1

1

1

1

1

(6) (Continuity or compactness is not necessary for existence of maximisers and minimisers.)
Let f6 : (0, 1) → R be given by

f6(x) =

⎧⎪⎨
⎪⎩

1 if 0 < x < 1
2 ,

0 if x = 1
2 ,

1 if 1
2 < x < 1.

Then (0, 1) is not compact, and f is not continuous. But f6([0, 1]) = {0, 1}, and there do exist
maximisers and a minimiser:

f (1/2) = 0 = inf f ((0, 1)), and f (3/4) = 1 = sup f ((0, 1)).

We summarise the above examples in the following table. ♦
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Function I compact? f continuous? sup f (I) inf f (I) sup f (I) inf f (I)
f : I → R exists? exists? attained? attained?

f1 No Yes No Yes - No

f2 No Yes Yes No No -

f3 No Yes No No - -

f4 No Yes Yes Yes No No

f5 Yes No Yes Yes No Yes

f6 No No Yes Yes Yes Yes

The utility of the Extreme Value Theorem in Optimisation

The Extreme Value Theorem (and its multivariable generalisation saying that a real-valued
continuous function on a ‘compact set’ K ⊂ R

n has a maximiser and a minimiser) is useful
in Optimisation Theory. In Optimisation Theory, one often meets necessary conditions for
maximisers, that is, results of the following form:

If x∗ is a maximiser of f : S → R,
then x∗ satisfies ∗ ∗ ∗ .

(Where ∗ ∗ ∗ are certain mathematical conditions, such as the Lagrange multiplier
equations.) Now such a result has limited use, since even if we find all x∗ which satisfy
∗ ∗ ∗ , we can’t conclude that there is one among these is actually a maximiser. But if we
had an existence result (for example, the Extreme Value Theorem: suppose we know that S
is compact and that f is continuous), then we know that a maximiser exists, and so we know
that it must be among the (few) x∗ in S that satisfy ∗ ∗ ∗ . For example, we will later on
learn that:

If x∗ is a maximiser of f : (a, b) → R, then f ′(x∗) = 0.

As an example, consider f : [0, π/2] → R, given by f (x) = cos x + x
2 , x ∈ [0, π/2]. Then

f (0) = 1, f (π/2) = π
4 < 1, and f (π/3) = 1

2 + π
6 > 1

2 + 3
6 = 1 = f (0). By the Extreme

Value Theorem, f has a maximiser x∗ ∈ [0, π/2]. But the above calculation shows that
x∗ = 0 and x∗ = π/2. Thus x∗ ∈ (0, π/2). Hence f ′(x∗) = 0, that is, − sin x∗ + 1

2 = 0, and
so x∗ = π/6.
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Exercise 3.35. A function f : R → R is called periodic if there exists a T > 0 such that for all
x ∈ R, f (x + T) = f (x). If f : R → R is continuous and periodic, then prove that f is bounded,
that is, the set S = {f (x) : x ∈ R} is bounded.

Exercise 3.36. Let f : [a, b] → R be continuous on [a, b], and define f∗ as follows:

f∗(x) =

{
f (a) if x = a,

max{f (y) : y ∈ [a, x]} if x ∈ (a, b].

(1) Show that f∗ is a well-defined function.

(2) If f : [0, 1] → R is given by f (x) = x− x2, then find f∗.

Exercise 3.37. True or false? If f : [a, b] → R is continuous and f (x) > 0 for all x ∈ [a, b],
then f is in fact ‘bounded away from 0’, that is, there exists a δ > 0 such that f (x) ≥ δ for all
x ∈ [a, b].

Exercise 3.38. Let f : [0, 3] → [3, 9] be a continuous function such that f (0) = 3 and
f (3) = 6. Which of the following statements is/are always true?

� (A) There exists a unique c ∈ [0, 3] such that f (c) = 4.

� (B) The range of f contains the interval [3, 6].

� (C) f ([0, 3]) = [3, 6].

� (D) There cannot exist a c ∈ [0, 3] such that f (c) = 9.

Exercise 3.39. Let f : [a, b] → R be continuous. Show that for any c1, · · · , cn ∈ [a, b], there
is a c ∈ [a, b] such that

f (c) =
f (c1) + · · · + f (cn)

n
.
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3.5 Uniform convergence and continuity

Recall that when we learnt about uniform convergence of a sequence ( fn)n∈N
of functions

fn : I → R, n ∈ N, to f : I → R, we said that the limit f inherits some properties possessed
by the terms of the sequence. Here is an instance of this, concerning the property of
continuity.

Proposition 3.9. Let I be an interval, and fn : I → R, n ∈ N, be continuous functions such
that the sequence ( fn)n∈N

converges uniformly to f : I → R. Then f is continuous.

Proof. Let c ∈ I and ε > 0. Let N ∈ N be such that that for all n > N, and all x ∈ I,
we have | fn(x) − f (x)| < ε/3. In particular, for all x ∈ I, | fN+1(x) − f (x)| < ε/3. As
fN+1 is continuous, we can find a δ > 0 such that for all x ∈ I satisfying |x− c| < δ,
| fN+1(x) − fN+1(c)| < ε/3. So for all x ∈ X satisfying |x− c| < δ, we have using the triangle
inequality that

| f (x) − f (c)| = | f (x) − fN+1(x) + fN+1(x) − fN+1(c) + fN+1(c) − f (c)|
≤ | f (x) − fN+1(x)| + | fN+1(x) − fN+1(c)| + | fN+1(c) − f (c)|
< ε/3 + ε/3 + ε/3 = ε.

Hence f is continuous at c. Since the choice of c ∈ I was arbitrary, it follows that f is
continuous on I. �

3.6 Uniform continuity

Roughly speaking, we use the adjective ‘uniform’ in Calculus whenever ‘the same thing works
everywhere’. We have already seen one instance of this when we discussed uniform conver-
gence of a sequence of functions. Now we will learn about uniform continuity.

Recall that a function f : I → R is said to be continuous at a point c of an interval I if
for every ε > 0, there exists a δ > 0 such that whenever x ∈ I satisfied |x− c| < δ, we have
that | f (x) − f (c)| < ε. And f is called continuous on I if for every c ∈ I, f is continuous
at c, that is:

∀ε > 0, ∀c ∈ I, ∃δ > 0 such that if x ∈ I satisfies |x− c| < δ, then | f (x) − f (c)| < ε.

In the above long statement, we note that the choice of δ might depend on which c ∈ I we
consider. For a ‘uniformly’ continuous function on I, it doesn’t! That is, given an ε > 0, the
same δ (depending only on ε) works everywhere in I, irrespective of which c ∈ I we have
considered. The precise definition is given below.

Definition 3.3 (Uniformly continuous function). Let I ⊂ R be an interval. f : I → R is said
to be uniformly continuous if for every ε > 0, there exists a δ > 0 such that for all x, y ∈ I
satisfying |x− y| < δ, there holds that | f (x) − f (y)| < ε.

Note that in the definition we are introducing the notion of uniform continuity of a function
on a set (I), and not at a point.
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Example 3.15. x �→ x : R → R is uniformly continuous. Let ε > 0. Set δ = ε > 0. Then for
all x, y ∈ R such that |x− y| < δ, we have | f (x) − f (y)| = |x− y| < δ = ε. ♦

The name makes sense because:

uniformly
continuous

continuous

Theorem 3.10. If f : I → R is uniformly continuous on I, then f is continuous on I.

Proof. Let c ∈ I. Let ε > 0. Let δ > 0 be such that whenever x, y ∈ I and |x− y| < δ,
| f (x) − f (y)| < ε. In particular, whenever x ∈ I and |x− c| < δ, | f (x) − f (c)| < ε. This
shows that f is continuous at c. But c ∈ I was arbitrary. Hence f is continuous on I. �

Here is an example of a function that is not uniformly continuous, but is continuous.

Example 3.16 (Uniform Continuity and Continuity are distinct notions). Let f : R → R be
given by f (x) = x2, x ∈ R. Then f is continuous on R. But let us show that it is not uniformly
continuous on R.

Suppose, on the contrary, that f is uniformly continuous on R. Let ε := 1 > 0.
Then there exists a δ > 0 such that whenever x, y ∈ R satisfy |x− y| < δ, we have
| f (x) − f (y)| = |x2 − y2| < ε = 1. Let N ∈ N be such that N > 1/δ. Then with x := n + 1

n
and y := n, for n > N, we have |x− y| = 1

n < 1
N < δ, and so

1 >

∣∣∣∣∣
(
n +

1
n

)2

− n2

∣∣∣∣∣ =
1
n
·
(

2n +
1
n

)
= 2 +

1
n2

> 2,

a contradiction. This is also clear in an intuitive manner pictorially:

♦

Exercise 3.40. Let f : (0, 1) → R be defined by f (x) = 1
x , 0 < x < 1. Then f is continuous

on (0, 1). Show that f is not uniformly continuous on (0, 1).

Hint: Consider x = 1
n and y = 1

2n for large natural numbers n.
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In the above example, we have seen that there are continuous functions that are not
uniformly continuous. But the following result tells us that if we are working with a compact
interval, then mere continuity is enough to conclude (the stronger property) of uniform
continuity.

Proposition 3.11. If f : [a, b] → R is continuous, then f is uniformly continuous.

Proof. We argue by contradiction. So let us suppose that f is not uniformly continuous. Then

¬
(
∀ε > 0 ∃δ > 0 such that if x, y ∈ [a, b] and |x− y| < δ, then | f (x) − f (y)| < ε

)

that is,

∃ε > 0 such that ∀δ > 0,∃x, y ∈ [a, b] such that |x− y| < δ, but | f (x) − f (y)| ≥ ε.

In particular, if we take δ = 1/n, then there exist xn, yn ∈ [a, b] such that

|xn − yn| < 1/n but | f (xn) − f (yn)| ≥ ε,

for all n ∈ N. By using the compactness of [a, b], the sequence (xn)n∈N
has a conver-

gent subsequence, say (xnk)k∈N
, converging to, say x ∈ [a, b]. Also from the inequality

|xn − yn| < 1
n , we obtain xnk −

1
nk

< ynk < xnk + 1
nk

for all k, and so by the Sandwich
Theorem, (ynk)k∈N

is also convergent to x. Also, by the continuity of f , we have
( f (xnk))k∈N

and ( f (ynk))k∈N
both converge to f (x). Hence | f (xnk) − f (ynk)| converges to

| f (x) − f (x)| = 0. But on the other hand, from | f (xn) − f (yn)| ≥ ε for all n, we obtain
0 = | f (x) − f (x)| ≥ ε > 0, a contradiction. �

Example 3.17. f : [0,∞) → R, given by f (x) =
√
x for x ≥ 0, is uniformly continuous. Note

that for x, y > 0,

| f (x) − f (y)| = |
√
x−√

y| =
|x− y|√
x +

√
y

.

For |x− y| small, the numerator can be made small too, but for x, y close to zero, the right
hand side can perhaps be large. So a direct approach with the definition will be messy. But let
us now see how by splitting the domain [0,∞) into two parts, namely the compact interval
[0, 1], and [1,∞), and using the previous result over the compact interval, we can complete
the proof. (Note that for x, y > 1, the right hand side can be estimated above easily by
|x− y|/2, and in that region [1,∞) we can easily use the definition to show uniform
continuity.) Let ε > 0.

(a) f is uniformly continuous on [0, 1], since it is continuous on the compact interval [0, 1].
Thus given ε > 0, there exists a δ1 > 0 such that if x, y ∈ [0, 1] satisfy |x− y| < δ1,
| f (x) − f (y)| = |√x−√

y| < ε
2 .

(b) Let us show that f is uniformly continuous on [1,∞). Given ε > 0, set δ2 := ε. Then
if x, y ≥ 1, and |x− y| < δ2, we have

| f (x) − f (y)| = |
√
x−√

y| =
|x− y|√
x +

√
y

<
δ2

1 + 1
=

δ2

2
=

ε

2
.
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Let δ := min{δ1, δ2} (> 0).

If 0 ≤ x, y ≤ 1 and |x− y| < δ, then by (a), | f (x) − f (y)| = |√x−√
y| <

ε

2
< ε.

If x, y ≥ 1 and |x− y| < δ, then by (b), | f (x) − f (y)| = |√x−√
y| <

ε

2
< ε.

Now let x ≤ 1 ≤ y and |x− y| < δ. Then by (a) and (b),

| f (x) − f (y)| = |
√
x−√

y| = |
√
x−

√
1 +

√
1 −√

y|

≤ |
√
x−

√
1| + |

√
1 −√

y| <
ε

2
+

ε

2
= ε,

where the rightmost inequality follows since |x− 1| < δ and since |y− 1| < δ.

< δ

< δ< δ

x y1

♦

Exercise 3.41. Prove that the function f : R → R defined by f (x) = |x| (x ∈ R) is uniformly
continuous.

Exercise 3.42. A function f : R → R is said to be (globally) Lipschitz continuous if there
exists a number L > 0 such that for all x, y ∈ R, | f (x) − f (y)| ≤ L|x− y|. Prove that every
Lipschitz continuous function is uniformly continuous. Is the converse true?

Exercise 3.43. Let I be an interval and let f : I → R be uniformly continuous. Show that
if (xn)n∈N

is a Cauchy sequence, then ( f (xn))n∈N
is a Cauchy sequence. Compare this with

Exercise 3.16.

Exercise 3.44. Let f , g : I → R be uniformly continuous functions on the interval I.

(1) Show that f + g is also uniformly continuous on I.

(2) Is fg also always uniformly continuous on I?

(3) In addition to the assumed uniform continuity of f , g, if f , g are also bounded, then
show that fg is uniformly continuous on I.

Exercise 3.45. Let I ⊂ R be an interval and f : I → R be continuous on I. Which of the
following statements is/are true?

� (A) f is uniformly continuous on I.

� (B) ∀x ∈ I ∀ε > 0, ∃δ > 0 such that ∀y ∈ I satisfying |y− x| < δ, | f (y) − f (x)| < ε.

� (C) For every x ∈ I, f is continuous at x.

� (D) If (xn)n∈N
is a sequence in I converging to x ∈ I, ( f (xn))n∈N

converges to f (x).
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3.7 Limits

We now develop some convenient terminology to describe the behaviour of functions near a
finite value of the real variable or as the real variable ‘tends to +∞ or −∞’. The meaning of
these hitherto undefined notions will become clearer as we plough through this section and
the numerous examples.

Definition 3.4 (Limit of a function). Let c ∈ (a, b) and f : (a, b)\{c} → R. We say that f
has a limit L (∈ R) at c, written

lim
x→c

f (x) = L

if for every ε > 0, there exists a δ > 0 such that whenever x ∈ (a, b) satisfies 0 < |x− c| < δ,
we have | f (x) − L| < ε.

This will be a handy concept when we study differentiation. But first let us see a simple
example.

Example 3.18. Let f : R\{1} → R be given by

f (x) =
x2 − 1
x− 1

, x = 1.

We claim that lim
x→0

f (x) = 2.

Indeed, if ε > 0, then taking δ := ε > 0, we have for x ∈ R satisfying 0 < |x− 1| < δ that

| f (x) − 2| =
∣∣∣∣x

2 − 1
x− 1

− 2

∣∣∣∣ (x =1)
=

∣∣∣∣����(x− 1)(x + 1)
����(x− 1)

− 2

∣∣∣∣ = |(x + 1) − 2| = |x− 1| < δ = ε.
♦

The following result links continuity of a function at a point with the limiting behaviour of
the function at that point.

Theorem 3.12. Let f : (a, b) → R and c ∈ (a, b). Then f is continuous at c if and only if
lim
x→c

f (x) = f (c).

This is expected, since for a continuous function, f (x) stays close to f (c) when x is close to c.

Proof.
The proof is entirely elementary; it is just a translation of the relevant definitions.

(‘Only if’ part:) Suppose that f is continuous at c. Let ε > 0. Then there exists a δ > 0 such that
whenever x ∈ (a, b) satisfies |x− c| < δ, we have | f (x) − f (c)| < ε. In particular, if x ∈ (a, b)
is such that 0 < |x− c| < δ, then too we have | f (x) − f (c)| < ε. So, lim

x→c
f (x) = f (c).

(‘If’ part:) Now suppose that
lim
x→c

f (x) = f (c).

Let ε > 0. Then there exists a δ > 0 such that for all x ∈ (a, b) such that 0 < |x− c| < δ,
we have | f (x) − f (c)| < ε. But if |x− c| = 0, that is, if x = c, then we have that
| f (x) − f (c)| = | f (c) − f (c)| = |0| = 0 < ε. So for x ∈ (a, b) with |x− c| < δ, we have
| f (x) − f (c)| < ε. Consequently f is continuous at c. �
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Exercise 3.46.

(1) Prove or disprove: There exists a continuous function f : R → R such that

f (x) =
x3 − 3x− 2

x− 2
, x = 2.

(2) Prove or disprove: There exists a continuous function f : R → R such that

f (x) =

{
x if x < 2,

2x if x > 2.

We can also recast the definition of the limit of a function in terms of sequences.

Theorem 3.13. Let c ∈ (a, b), f : (a, b)\{c} → R, and L ∈ R. Then the following are
equivalent:

(1) lim
x→c

f (x) = L.

(2) For every (xn)n∈N
in (a, b)\{c} with lim

n→∞
xn = c, we have lim

n→∞
f (xn) = L.

Proof. (2) ⇒(1): Suppose that
¬

(
lim
x→c

f (x) = L
)

,
that is,

¬
(
∀ε > 0 ∃δ > 0 such that if x ∈ (a, b) and 0 < |x− c| < δ, then | f (x) − L| < ε

)
.

Thus there exists an ε > 0 such that for every δ > 0, there exists an x ∈ (a, b) (depending
on δ) such that 0 < |x− c| < δ, but | f (x) − L| ≥ ε. Taking δ = 1

n , n ∈ N, we thus find a
sequence (xn)n∈N

such that
lim
n→∞

xn = c,

such that for all n ∈ N, xn = c, and | f (xn) − L| ≥ ε. But this last condition implies that

¬
(

lim
n→∞

f (xn) = L
)

.

(1)⇒(2): Now suppose that
lim
x→c

f (x) = L.

Let (xn)n∈N
be a sequence contained in (a, b)\{c} such that

lim
n→∞

xn = c.

We want to show that
lim
n→∞

f (xn) = L.

Let ε > 0. Then there exists a δ > 0 such that whenever x ∈ (a, b) satisfies 0 < |x− c| < δ,
we have | f (x) − L| < ε. Also, there exists an N ∈ N such that whenever n > N,
0 < |xn − c| < δ. Consequently, for n > N, | f (xn) − L| < ε. Hence lim

n→∞
f (xn) = L. �
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Since convergent sequences have a unique limit, we obtain the following.

Corollary 3.14. Let c ∈ (a, b) and f : (a, b)\{c} → R. If f has a limit at c, then the limit is
unique.

Moreover, using the algebra of limits for real sequences, it follows that the same sort of results
carry over to limits of functions.

Theorem 3.15 (Algebra of Limits). Let c ∈ (a, b), and f , g : (a, b)\{c} → R be such that
lim
x→c

f (x) and lim
x→c

g(x) exist. Then:

(1) lim
x→c

( f + g)(x) exists and lim
x→c

( f + g)(x) = lim
x→c

f (x) + lim
x→c

g(x).

(2) lim
x→c

(fg)(x) exists and lim
x→c

(fg)(x) =
(
lim
x→c

f (x)
) (

lim
x→c

g(x)
)
.

(3) If lim
x→c

g(x) = 0, then lim
x→c

(
1
g

)
(x) exists, and lim

x→c

(
1
g

)
(x) =

1
lim
x→c

g(x)
.

Proof. As an example, let us prove (2). Let (xn)n∈N
be any sequence in (a, b)\{c} such that

lim
n→∞

xn = c.

Then
lim
n→∞

f (xn) = lim
x→c

f (x) and lim
n→∞

g(xn) = lim
x→c

g(x).

Thus ( f (xn) + g(xn))n∈N
is convergent, with limit

lim
x→c

f (x) + lim
x→c

g(x),

that is, (( f + g)(xn))n∈N
is convergent with limit

lim
x→c

f (x) + lim
x→c

g(x).

So lim
x→c

( f + g)(x) exists, and is equal to lim
x→c

f (x) + lim
x→c

g(x). �

In the rest of this section, we study some more notions of limits of functions, which will be
convenient to use in the rest of this book.

Definition 3.5 (Limit of a function). Let c ∈ (a, b) and f : (a, b)\{c} → R. Then we have
the following definitions:

(1) lim
x→c

f (x) = ∞ if

∀M > 0, ∃δ > 0 such that if x ∈ (a, b) and 0 < |x− c| < δ, then f (x) > M.

(2) lim
x→c

f (x) = −∞ if

∀M > 0, ∃δ > 0 such that if x ∈ (a, b) and 0 < |x− c| < δ, then f (x) < −M.
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Example 3.19.

(1) lim
x→0

1
|x| = ∞.

Let M > 0. Let δ =
1
M

> 0. If 0 < |x− 0| < δ, then f (x) =
1
|x| >

1
δ

=
1

1/M
= M.

The graphs of 1
|x| and  − 1

x2 .

10

8

6

4

2

−1 −0.5 0 0.5
x

x

1

−1 −0.5 0

−20

−40

−60

−80

−100

0.5 1

(2) lim
x→1

− 1
x2

= −∞.

Indeed, if M > 0, then with δ := 1/
√
M > 0, we have that whenever 0 < |x− 0| < δ,

0 < x2 < δ2 = 1/M, and so f (x) = −1/x2 < −M. ♦

Now we will define one-sided, but finite limits.

Definition 3.6 (Limit of a function). Let c ∈ (a, b) and f : (a, b) → R. Then we have the
following definitions:

(1) lim
x↘a

f (x) = L or lim
x→a+

f (x) = L if

∀ε > 0, ∃δ > 0 such that if x ∈ (a, b) and 0 < x− a < δ, then | f (x) − L| < ε.

(2) lim
x↗b

f (x) = L or lim
x→b−

f (x) = L if

∀ε > 0, ∃δ > 0 such that if x ∈ (a, b) and 0 < b− x < δ, then | f (x) − L| < ε.

Example 3.20.

(1) lim
x→0+

�x� = 0.

Let ε > 0. Set δ = 1. If 0 < x− 0 < 1, then

| f (x) − 0| = |�x� − 0| = |0 − 0| = 0 < ε.

−1

−1 0 1
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(2) lim
x→0−

�x� = −1.

Let ε > 0. Set δ = 1. If 0 < 0 − x < 1, that is, if −1 < x < 0, then

| f (x) − (−1)| = |�x� + 1| = | − 1 + 1| = 0 < ε. ♦

Similarly, we can define one-sided, and infinite limits.

Definition 3.7 (Limit of a function). Let c ∈ (a, b) and f : (a, b) → R. Then we have the
following definitions:

(1) lim
x↘a

f (x) = ∞ or lim
x→a+

f (x) = ∞ if

∀M > 0, ∃δ > 0 such that if x ∈ (a, b) and 0 < x− a < δ, then f (x) > M

(2) lim
x↘a

f (x) = −∞ or lim
x→a+

f (x) = −∞ if

∀M > 0, ∃δ > 0 such that if x ∈ (a, b) and 0 < x− a < δ, then f (x) < −M.

(3) lim
x↗b

f (x) = ∞ or lim
x→b−

f (x) = ∞ if

∀M > 0, ∃δ > 0 such that if x ∈ (a, b) and 0 < b− x < δ, then f (x) > M.

(4) lim
x↗b

f (x) = −∞ or lim
x→b−

f (x) = −∞ if

∀M > 0, ∃δ > 0 such that if x ∈ (a, b) and 0 < b− x < δ, then f (x) < −M.

Example 3.21.

(1) lim
x→0+

1
x

= ∞.

Let M > 0. Set δ = 1/M. If 0 < x− 0 < δ, then
1
x

>
1
δ

=
1

1/M
= M.

30

20

10

−10

−20

−30

−1 −0.5 0.5
x

10
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(2) lim
x→0−

1
x

= −∞.

Let M > 0. Set δ = 1/M. If 0 < 0 − x < δ, that is, −1/x > 1/δ, then

f (x) =
1
x

< −1
δ

= − 1
1/M

= −M. ♦
Finally, let us define the notions of limiting behaviours of functions as ‘the real variable x
tends to ∞’.

Definition 3.8 (Limit of a function). Let f : (a,∞) → R. Then we have the following
definitions.

(1) lim
x→∞

f (x) = L if ∀ε > 0, ∃R > a such that if x > R, then | f (x) − L| < ε.

(2) lim
x→∞

f (x) = ∞ if ∀M > 0, ∃R > a such that if x > R, then f (x) > M.

(3) lim
x→∞

f (x) = −∞ if ∀M > 0, ∃R > a such that if x > R, then f (x) < −M.

Example 3.22.

(1) lim
x→∞

1
1 + x2

= 0.

Let ε > 0. (Let us do some ‘rough work’. We have

| f (x) − 0| =
1

1 + x2
<

1
1 + R2

if x > R, and the leftmost quantity can be made smaller than ε if

R >

√
1
ε
− 1.

This works if ε ≤ 1. But we also need to cover the case that ε > 1. Well, in that case, we would
like an R so that for all x > R, f (x) < ε. But f (x) is always≤ 1, and so any choice of R would
do when ε > 1.) So we set

R =

⎧⎨
⎩

1 if ε > 1,√
1
ε
− 1 if (0 <)ε ≤ 1.

If ε ≥ 1, we have for all x > R that

| f (x) − 0| =
1

1 + x2
< 1 ≤ ε;

and on the other hand, if ε < 1, then we have for x > R that

| f (x) − 0| =
1

1 + x2
<

1
1 + R2

=
1

1 +
1
ε
− 1

= ε.

(2) lim
x→∞

x = +∞.

Let M > 0. Set R = M. Then for all x > R, we have f (x) = x > R = M. ♦

Similarly, we can also define the notions of limiting behaviours of functions as ‘the real
variable x tends to −∞’.
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Definition 3.9 (Limit of a function). Let f : (−∞, b) → R. Then we have the following
definitions.

(1) lim
x→−∞

f (x) = L if ∀ε > 0, ∃R < b such that if x < R, then | f (x) − L| < ε.

(2) lim
x→−∞

f (x) = ∞ if ∀M > 0, ∃R < b such that if x < R, then f (x) > M.

(3) lim
x→−∞

f (x) = −∞ if ∀M > 0, ∃R < b such that if x < R, then f (x) < −M.

Example 3.23. lim
x→−∞

x = −∞.

Let M > 0. Set R = −M. Then for all x < R, we have f (x) = x < R = −M. ♦

Summarising, we have displayed our list of definitions in the table on page 122.

Exercise 3.47. Let f (a, c) ∪ (c, b) → R be such that

lim
x→c+

f (x) and lim
x→c−

f (x)

exist. Show that lim
x→c

f (x) exists if and only if lim
x→c+

f (x) = lim
x→c−

f (x).

Exercise 3.48. In each of the following cases, calculate the limit if it exists.

(1) lim
x→0

|x|
x + 1

.

(2) lim
x→1

(�x� − x).

(3) lim
x→0

x�x�.

(4) lim
x→0

sin
1
x

.

Exercise 3.49. Let the polynomials A,B of degrees α, β ∈ N be given by

A(x) = a0 + a1x + · · · + aαx
α,

B(x) = b0 + b1x + · · · + bβx
β ,

where aα and bβ are nonzero. Show that

lim
x→∞

A(x)
B(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if α < β,

aα

bβ

if α = β,

+∞ if α > β and
aα

bβ

> 0,

−∞ if α > β and
aα

bβ

< 0.
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c ∈ (a, b), f : (a, b)\{c} → R, L ∈ R

lim
x→c

f (x) = L ∀ε > 0 ∃δ > 0 such that if x ∈ (a, b)
and 0 < |x− c| < δ then | f (x) − L| < ε

lim
x→c

f (x) = ∞ ∀M > 0 ∃δ > 0 such that if x ∈ (a, b)
and 0 < |x− c| < δ then f (x) > M

lim
x→c

f (x) = −∞ ∀M > 0 ∃δ > 0 such that if x ∈ (a, b)
and 0 < |x− c| < δ then f (x) < −M

lim
x→a+

f (x) = L ∀ε > 0 ∃δ > 0 such that if x ∈ (a, b)

and 0 < x− a < δ then | f (x) − L| < ε

lim
x→a+

f (x) = ∞ ∀M > 0 ∃δ > 0 such that if x ∈ (a, b)

and 0 < x− a < δ then f (x) > M

lim
x→a+

f (x) = −∞ ∀M > 0 ∃δ > 0 such that if x ∈ (a, b)

and 0 < x− a < δ then f (x) < −M

lim
x→b−

f (x) = L ∀ε > 0 ∃δ > 0 such that if x ∈ (a, b)

and 0 < b− x < δ then | f (x) − L| < ε

lim
x→b−

f (x) = ∞ ∀M > 0 ∃δ > 0 such that if x ∈ (a, b)

and 0 < b− x < δ then f (x) > M

lim
x→b−

f (x) = −∞ ∀M > 0 ∃δ > 0 such that if x ∈ (a, b)

and 0 < b− x < δ then f (x) < −M

f : (a,∞) → R, L ∈ R

lim
x→∞

f (x) = L ∀ε > 0 ∃R > a such that if x > R then | f (x) − L| < ε

lim
x→∞

f (x) = ∞ ∀M > 0 ∃R > a such that if x > R then f (x) > M

lim
x→∞

f (x) = −∞ ∀M > 0 ∃R > a such that if x > R then f (x) < −M

f : (−∞, b) → R, L ∈ R

lim
x→−∞

f (x) = L ∀ε > 0 ∃R < b such that if x < R then | f (x) − L| < ε

lim
x→−∞

f (x) = ∞ ∀M > 0 ∃R < b such that if x < R then f (x) > M

lim
x→−∞

f (x) = −∞ ∀M > 0 ∃R < b such that if x < R then f (x) < −M



CONTINUITY 123

Exercise 3.50. Let a ∈ R. Which of the following statements is/are true?

� (A) lim
x→a

x
x + a

=
1
2

if a = 0.

� (B) lim
x→a

x
x + a

= 1 if a = 0.

� (C) lim
x→∞

x
x + a

= 1.

� (D) lim
x→−∞

x
x + a

= −1.

Exercise 3.51 (Partial Fraction Expansion). Sometimes one would like to decompose a
rational function into simpler rational functions; the need arises, for example when one wants
to take ‘inverse Laplace transforms’ or in order to find the integral of a rational function. For
example, the rational function

1
(x + 1)(x + 2)(x + 3)

can be decomposed into the sum of elementary rational functions having the form
A

(s− α)k
:

1
(x + 1)(x + 2)(x + 3)

=
1/2
x + 1

+
−1
x + 2

+
1/2
x + 3

.

In general, if the rational function r = N/D is strictly proper, (that is, the degree of the
denominator D is strictly bigger than that of the numerator), then such a decomposition is
always possible:

R(x) =
N(x)
D(x)

=
N(x)

C(x− α1)m1 · · · (x− αK)mK

=
K∑

k=1

(
Ak,1

x− αk
+

Ak,2

(x− αk)2
+ · · · +

Ak,mk

(x− αk)mk

)
. (3.2)

The decomposition in (3.2) is called a partial fraction expansion of R. (If the rational function
is not strictly proper, we can first divide the numerator N by the denominator D in order to get
a remainder N ′: N = Q · D + N ′, and then write

R =
N
D

=
Q · D + N ′

D
= Q +

N ′

D
,

and carry out the partial fraction expansion on the (now strictly proper) rational function
R′ := N ′

D .) How do we find the coefficients Ak,�? One way is to get a whole bunch of linear
equations in the unknowns Ak,� by ‘taking a common denominator’ on the right hand
side, and ‘comparing coefficients’ on both sides of various powers of x. But this can be
cumbersome. The aim of this exercise is to show a somewhat slicker method, based on
taking limits.
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(1) Consider first the case when the denominator polynomial has distinct real roots,
so that

R(x) =
N(x)
D(x)

=
N(x)

C(x− α1) · · · (x− αd)
=

A1

x− α1
+ · · · + Ad

x− αd
.

If we multiply throughout by x− α1, where x = α1, then

(x− α1)R(x) = A1 +
A2(x− α1)
x− α2

+ · · · + Ad(x− α1)
x− αd

,

and passing the limit on both sides as x → α1 gives immediately that

A1 = lim
x→α1

(x− α1)R(x).

Similarly all the other coefficients can also be found out. Use this method to find the
partial fraction expansion of

2x + 1
x2 − 2x− 3

.

(2) If there are repeated roots, then the procedure is similar. It is enough to consider each
summand in the partial fraction expansion. If Sk is given by

Sk(x) =
Ak,1

x− αk
+

Ak,2

(x− αk)2
+ · · · +

Ak,mk

(x− αk)mk
,

then we start from the highest power term coefficient first. Thus

Ak,mk
= lim

x→αk

(x− αk)
mkSk(x).

Then we simply take this last term from the right hand side over to the left hand side,
and repeat the procedure:

S̃k(x) := Sk(x) −
Ak,mk

(x− αk)mk
=

Ak,1

x− αk
+

Ak,2

(x− αk)2
+ · · · +

Ak,mk−1

(x− αk)mk−1
,

so that
Ak,mk−1 = lim

x→αk

(x− αk)
mk−1S̃k(x).

Use this method to find the partial fraction expansion of

x2 + 3x + 9
(x + 1)(x− 2)2

.

Notes

Exercise 3.27 is based on [L, 6.2.5]. Exercise 3.34 is based on [A2, Exercise 4.28].
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Differentiation

Given a function f : (a, b) → R, and a point c ∈ (a, b), consider the difference quotient for
x ∈ (a, b), x �= c:

f (x) − f (c)
x− c

.

Geometrically, this number represents the slope of the chord passing through the points
(c, f (c)) and (x, f (x)) on the graph of f .

xc

f

x − c

f (x)−f (c)
C

X

The number
f (x) − f (c)

x− c

is a quotient of differences (hence the name difference quotient), which is the slope of the
chord XC, where X ≡ (x, f (x)) and C ≡ (c, f (c)).

What happens when x approaches c? We expect that if the above difference quotient has
a limit L, this L is the instantaneous rate of change of f at c, and geometrically is the slope of
the ‘tangent line’ to the graph of f at the point (c, f (c)).

The How and Why of One Variable Calculus, First Edition. Amol Sasane.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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c

f

Notice also that if we ‘zoom into’ the graph of f around (c, f (c)), then the graph of f seems
to coincide with the tangent line, and intuitively, the tangent line seems to provide a ‘straight
line or linear approximation’ to f for x near c.

Definition 4.1 (Derivative of a function that is differentiable at a point). Let f : (a, b) → R

and c ∈ (a, b). If there exists an L ∈ R such that

lim
x→c

f (x) − f (c)
x− c

= L,

that is, for all ε > 0, there exists a δ > 0 such that whenever x ∈ (a, b) satisfies 0 < |x− c| < δ,
we have ∣∣∣∣ f (x) − f (c)

x− c
− L

∣∣∣∣ < ε,

then we say that f is differentiable at the point c, with derivative f ′(c) := L at c. Sometimes
one writes

df
dx

(c)

instead of f ′(c). (Note that the limit L, if it exists, is unique.)
If f is differentiable at each point in (a, b), then we say that f is differentiable (on(a, b)).

We then denote the map
x �→ f ′(x) : (a, b) → R

by f ′ or by
df
dx

, and call this function f ′ the derivative of f (on(a, b)).

Exercise 4.1. Use the definition to find f ′(x), where f (x) :=
√
x2 + 1, x ∈ R.

Exercise 4.2. (∗) Let f : (0,∞) → R be a function and let c > 0. Show that the following are
equivalent:

(1) f is differentiable at c.

(2) lim
k→1

f (kc) − f (c)
k − 1

exists.

Moreover, show that if (1) or (2) holds, then f ′(c) =
1
c

lim
k→1

f (kc) − f (c)
k − 1

.
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Exercise 4.3. Let f : (−a, a) → R be differentiable, and let f be an even function, that is, for
all x ∈ (−a, a), f (−x) = f (x). Show that f ′ is an odd function, that is, f ′(−x) = −f ′(x) for all
x ∈ (−a, a). What is f ′(0)?

Interpretation as the instantaneous speed. Suppose that f : R → R is the function describ-
ing the position f (t) at time t of a particle moving along the real line.

position

position

time

time
ττ t f(τ)

f(τ)

f(t)

f

slope = f ′(τ) =
instantaneous speed at τ

Then the difference quotient
f (t) − f (τ)

t − τ

is the average speed of the particle over the time interval [τ , t]. If we take ts closer and closer
to τ , so that we are looking at shorter and shorter time intervals [τ , t], then the average speeds
approach the instantaneous speed at τ , and so the instantaneous speed at τ is

lim
t→τ

f (t) − f (τ)
t − τ

= f ′(τ).

Example 4.1 (Uniform motion with constant speed v). Let f : R → R be given by
f (t) = vt + x0, t ∈ R. Here v (which we will see is the constant instantaneous speed) is a
fixed real number, and so is x0 (which is the ‘initial’ position at time t = 0). Let τ ∈ R.

Questions: Is f differentiable at τ? If so, what is f ′(τ)?

For t �= τ , we have

f (t) − f (τ)
t − τ

=
vt +��x0 − vτ −��x0

t − τ
=

v(t − τ)
t − τ

= v.

Let ε > 0. Take any δ > 0. Then whenever 0 < |t − τ | < δ, we have∣∣∣∣ f (t) − f (τ)
t − τ

− v

∣∣∣∣ = |v − v| = 0 < ε.

So f is differentiable at τ , and the derivative of f at τ is the (number)

f ′(τ) = v =
df
dt

(τ).

As τ ∈ R was arbitrary, the derivative (function) f ′ of f

df
dt

or f ′ : R → R
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is given by f ′(t) = v for all t ∈ R. In other words, f ′ is the constant function, taking value v
everywhere on R. ♦

position
instantaneous
speed

time time

x0

vt + x0

v
f ′ or

df
dt

Example 4.2 (Instantaneous speed of a body falling freely under gravity). Let f : R → R be
given by

f (t) =
1
2
gt2, t ∈ R.

g > 0 is a fixed real number, and we will see that this is the constant ‘acceleration’ due to
gravity. Let τ ∈ R.

Questions: Is f differentiable at τ? If so, what is f ′(τ)?

For t �= τ , we have

f (t) − f (τ)
t − τ

=
gt2 − gτ 2

2 · (t − τ)
=

g ·����(t − τ) · (t + τ)
2 ·����(t − τ)

=
g
2
· (t + τ).

When t is close to τ , then t + τ ≈ 2τ . So we guess that f ′(τ) = gτ . (We have not proved this
last equality yet; we are still at the ‘rough work’ stage and we will make this rigorous below.)

For t �= τ , we have∣∣∣∣ f (t) − f (τ)
t − τ

− gτ

∣∣∣∣ =
∣∣∣g
2
· (t + τ) − gτ

∣∣∣ =
g
2
· |t − τ |.

Let ε > 0. Set δ := 2ε
g > 0. Then whenever 0 < |t − τ | < δ, we have

∣∣∣∣ f (t) − f (τ)
t − τ

− gτ

∣∣∣∣ =
g
2
· |t − τ | <

g
2
· δ =

g
2
· 2ε

g
= ε.

So f is differentiable at τ , and the derivative of f at τ is the (number)

f ′(τ) = gτ =
df
dt

(τ).

As τ ∈ R was arbitrary, the derivative (function) f ′ of f

df
dt

or f ′ : R → R
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is given by f ′(t) = gt for all t ∈ R. Thus, the instantaneous speed changes linearly with time.
The rate of change of instantaneous speed is called the acceleration. Hence the acceleration is

(f ′)′(τ) = g, τ ∈ R.

(If you like, this follows from the previous example, with v := g and x0 := 0.) So the accel-
eration (due to gravity) is constant, and is equal to g. ♦

position
instantaneous
speed acceleration

timetimetime

f := 1
2gt2

g
f ′ = gt

(f ′) ′ =: f ′ ′ = g

Tangent line as a linear approximation. If f : (a, b) → R is differentiable at c ∈ (a, b), then
given an ε > 0, we have for all x sufficiently close to c, but different from c,∣∣∣∣ f (x) − f (c)

x− c
− f ′(c)

∣∣∣∣ < ε,

and so | f (x) − f (c) − f ′(c) · (x− c)| < ε|x− c|. So if ε were a number that one considers
tiny, we have for x ≈ c that | f (x) − f (c) − f ′(c)(x− c)| ≈ 0, and so

f (x) ≈ f (c) + f ′(c)(x− c)︸ ︷︷ ︸
linear in the
increment x−c

This explains the picture below, where the graph of f near the point c looks like a straight line,
with slope f ′(c), passing through the point (c, f (c)).
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Exercise 4.4. Using a linear approximation, determine approximately the relative speed to
which a particle at rest must be accelerated in order to increase its mass by 1%. You may use
the fact that the mass mv at relative speed v is related to the mass m0 at rest by

mv =
m0√

1 − v2/c2
,

where c is the speed of light.

Exercise 4.5 (Differentiation is a local process). Let f , g : (a, b) → R be two functions that
are differentiable at c ∈ (a, b), and such that they coincide in a small neighbourhood of c, that
is, there is a δ > 0 (no matter how minuscule) so that for all x ∈ (c− δ, c + δ), f (x) = g(x).
Then show that f ′(c) = g′(c).

a bc

f

g

(This should be intuitively clear: the derivative at c is geometrically the slope of the tangent
line to the graph of the function, and if f , g coincide in a neighborhood of c, they have the
same graph around the point c, and hence the same tangent line—so same slope too!)

Continuity versus differentiability.

Theorem 4.1. If f : (a, b) → R is differentiable at c ∈ (a, b), then f is continuous at c.

So
differentiability of f at c ⇒ continuity of f at c.

Hence if a function is not continuous at a point, then it can’t be differentiable there.

Proof. Let ε > 0. Then there exists a δ1 > 0 such that for all x ∈ (a, b) such that
0 < |x− c| < δ1, we have ∣∣∣∣ f (x) − f (c)

x− c
− f ′(c)

∣∣∣∣ < ε,

that is, | f (x) − f (c) − f ′(c) · (x− c)| < ε|x− c|, and so, using the triangle inequality, we
obtain

| f (x) − f (c)| < ε|x− c| + | f ′(c)||x− c| = (ε + | f ′(c)|)|x− c|.
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Of course if x is close to c, we can make the right hand side as small as we like, and in
particular, less than ε. But how close precisely is enough? Clearly, |x− c| ought to be less
than ε/(ε + | f ′(c)|). This was all rough work, explaining that the following δ, was not pulled
out of a hat, but is actually quite sensible.

Define

δ := min
{

δ1,
ε

ε + | f ′(c)|

}
.

Then for all x ∈ (a, b) such that 0 < |x− c| < δ, we have

| f (x) − f (c)| < (ε + | f ′(c)|)|x− c| ≤ (ε + | f ′(c)|) ε

ε + | f ′(c)| = ε.

The first inequality holds since δ < δ1, while the latter as |x− c| < δ ≤ ε/(ε + | f ′(c)|).
(If x = c, then | f (x) − f (c)| = | f (c) − f (c)| = |0| = 0 < ε is trivially true.) Hence we have
shown that for every ε > 0, there exists a δ > 0 such that whenever x ∈ (a, b) satisfies
|x− c| < δ, there holds | f (x) − f (c)| < ε, that is, f is continuous at c. �

However:
continuity of f at c ��⇒ differentiability of f at c.

that is, the converse of the theorem is not true, and the following example demonstrates this.

Example 4.3. The function f : R → R defined by f (x) = |x| (x ∈ R) is (uniformly) continu-
ous since ∣∣∣ f (x) − f (y)

∣∣∣ =
∣∣∣|x| − |y|

∣∣∣ ≤ |x− y|.

But let us now show that f is not differentiable at 0. If it were, then with ε := 1
2 > 0, there

exists a δ > 0 such that whenever 0 < |x| < δ, we have
∣∣∣∣ |x|x − f ′(0)

∣∣∣∣ < ε =
1
2

.

In particular, if we take x = δ/2, then we obtain

|1 − f ′(0)| <
1
2

. (4.1)

On the other hand, if we take x = −δ/2, we also get

| − 1 − f ′(0)| <
1
2

. (4.2)

But from (4.1), (4.2), and the triangle inequality, we now obtain

2 = | − 1 − 1| = | − 1 − f ′(0) + f ′(0) − 1| ≤ | − 1 − f ′(0)| + | f ′(0) − 1| <
1
2

+
1
2

= 1,

a contradiction. (The lack of differentiability of | · | at 0 is visually obvious, since one can’t
draw a tangent to the graph at the ‘corner’ at (0, 0).) ♦
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Remark 4.1. (∗) In connection with Theorem 4.1, we might wonder how badly behaved
continuous functions might be with respect to the notion of differentiability. It turns out
that there are functions that are continuous everywhere, but differentiable nowhere! One con-
struction is that of the so-called blancmange function obtained by taking the basic sawtooth
function f1,

1
2 f1

and constructing f2, f3, . . . by setting fn(x) =
(

1
2

)n−1

f1(2
n−1x), and adding these:

b(x) =
∞∑
n=1

fn(x), x ∈ R.

Then it can be shown that b is continuous on R, but not differentiable at any x ∈ R. (Intuitively,
the graph of the function has no breaks, but no matter which point one takes, the function is
so jagged that it fails to be differentiable at that point, and one can’t draw a tangent line to the
graph of the function at any point.)

Exercise 4.6. Let f : R → R be defined by

f (x) =

{
x2 if x ∈ Q,

0 if x ∈ R\Q.

Show that f is differentiable at 0. What can you say about the differentiability of f at nonzero
real numbers?

Exercise 4.7. If f : (a, b) → R is differentiable at c ∈ (a, b), then show that

lim
h↘0

f (c + h) − f (c− h)
2h

exists and equals f ′(c). Is the converse true?
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Exercise 4.8 (Differentiable but not continuously differentiable example). Consider the
function f : R → R defined by f (0) = 0 and for x �= 0,

f (x) = x2 sin
1
x

.

Prove that f is differentiable, but f ′ is not continuous at 0.

Exercise 4.9. Let f : (a, b) → R and let c ∈ (a, b). Which of the following statements is/are
true?

� (A) If f is continuous at c, then f is differentiable at c.

� (B) If f is differentiable at c, then f is continuous at c.

� (C) If f is continuous at c, then f 2 is continuous at c.

� (D) If f 2 is differentiable at c, then f is differentiable at c. (Hint: Consider |x|.)

The algebra of derivatives. We have already seen the ‘Algebra of Limits’ and the ‘Algebra
of Continuous Functions’, and by now we know that when we say ‘Algebra of · · ·’, we mean
that the relevant concept is well-behaved/respects the algebraic combinations such as taking
pointwise sums, products, and so on.

One can show the following result about rules for differentiating the sum and product of
differentiable functions.

Proposition 4.2 (Algebra of Derivatives). Let f , g : (a, b) → R be functions that are differ-
entiable at c ∈ (a, b). Then:

(1) The sum f + g : (a, b) → R is differentiable at c, and

( f + g)′(c) = f ′(c) + g′(c).

(2) (Product Rule or the Leibniz Rule) The product fg : (a, b) → R is differentiable at c,
and

(fg)′(c) = f ′(c)g(c) + f (c)g′(c).

(3) If f (x) �= 0 for x ∈ (a, b), then 1
f : (a, b) → R is differentiable at c, and

(
1
f

)′
(c) = − f ′(c)

( f (c))2
.

Proof. These claims follow from the Algebra of Limits, namely Theorem 3.15. Indeed,

lim
x→c

( f + g)(x) − ( f + g)(c)
x− c

= lim
x→c

f (x) + g(x) − f (c) − g(c)
x− c

= lim
x→c

f (x) − f (c) + g(x) − g(c)
x− c

= lim
x→c

f (x) − f (c)
x− c

+ lim
x→c

g(x) − g(c)
x− c

= f ′(c) + g′(c),
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which proves (1). Also, (2) follows from the following:

lim
x→c

(fg)(x) − (fg)(c)
x− c

= lim
x→c

f (x)g(x) − f (c)g(c)
x− c

= lim
x→c

f (x)g(x) − f (c)g(x) + f (c)g(x) − f (c)g(c)
x− c

= lim
x→c

f (x) − f (c)
x− c

· g(x) + lim
x→c

f (c) · g(x) − g(c)
x− c

= lim
x→c

f (x) − f (c)
x− c

· lim
x→c

g(x) + f (c) lim
x→c

g(x) − g(c)
x− c

= f ′(c)g(c) + f (c)g′(c),

where we have used the continuity of g at c (thanks to the fact that g is differentiable at c):

lim
x→c

g(x) = g(c).

This completes the proof of (2).

Finally, let us show (3). We have

lim
x→c

(
1
f

)
(x) −

(
1
f

)
(c)

x− c
= lim

x→c

1
f (x)

− 1
f (c)

x− c

= lim
x→c

− f (x) − f (c)
x− c

· 1
f (x)

· 1
f (c)

= −f ′(c) · 1
f (c)

· 1
f (c)

= − f ′(c)
( f (c))2

.

This completes the proof. �

Example 4.4.

(1) A repeated application of the Product Rule shows that the power function x �→ xn : R → R

(n ∈ N) is differentiable and has the derivative x �→ nxn−1:

n = 1 : (x1)′ = 1.

n = 2 : (x2)′ = (x · x)′ = x′ · x + x · x′ = 1 · x + x · 1 = 2x.

n = 3 : (x3)′ = (x2 · x)′ = (x2)′ · x + x2 · x′ = 2x · x + x2 · 1 = 3x2.

· · ·

(xn+1)′ = (xn · x)′ = (xn)′ · x + xn · x′ = nxn−1 · x + xn · 1 = (n + 1)xn.

(2) A special case of the Product Rule is when g ≡ c (constant). Then

(cf )′ = c′ · f + c · f ′ = 0 · f + c · f ′ = c · f ′.
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(3) All polynomial functions are differentiable: if p is given by

p(x) = c0 + c1x + c2x
2 + c3x

3 + · · · + cdx
d, x ∈ R,

then p′(x) = c1 + 2c2x + 3c3x
2 + · · · + dcdx

d−1, x ∈ R. So the derivative of a polynomial of
degree d ∈ N is a polynomial of degree d − 1.

(4) The function x �→ 1/x : R\{0} → R is differentiable for all x �= 0:

d
dx

(
1
x

)
= − x′

x2
= − 1

x2
, x �= 0.

More generally, if n ∈ N, then
d
dx

(
1
xn

)
= −nxn−1

x2n
= − n

xn+1
, for x �= 0. Thus

d
dx

xn = nxn−1 (4.3)

also for n < 0. And clearly this also holds for n = 0. Hence (4.3) holds for all n ∈ Z and for
all x ∈ R\{0}. ♦

Exercise 4.10. If f , g, h : (a, b) → R are all differentiable at c ∈ (a, b), then show that

(fgh)′(c) = f ′(c)g(c)h(c) + f (c)g′(c)h(c) + f (c)g(c)h′(c).

Exercise 4.11. Let a, b, c, d : R → R be differentiable. Let W : R → R be defined by

W(x) = det
[
a(x) b(x)
c(x) d(x)

]
, x ∈ R.

Show that

W ′(x) = det
[
a′(x) b(x)
c′(x) d(x)

]
+ det

[
a(x) b′(x)
c(x) d′(x)

]
, x ∈ R.

Exercise 4.12. If f (x) = x3/3 − x2/2 − 2x, find

(1) {x ∈ R : f ′(x) = 0}.

(2) {x ∈ R : f (x) > 0}.

Plot the graphs of f , f ′ in the interval [−3, 3] using the computer. What do you observe?

Exercise 4.13. Let p be the polynomial given by

p(x) = 1 +
x
1!

+
x2

2!
+ · · · + xn

n!
, x ∈ R.

Show that p can’t have a repeated real root. (A polynomial p is said to have a repeated root α
if p(x) = (x− α)2q(x) for some polynomial q.)
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Corollary 4.1 (Quotient Rule). Let

(1) f , g : (a, b) → R be differentiable at c ∈ (a, b),

(2) g(x) �= 0 for all x ∈ (a, b), and

(3)
f
g

: (a, b) → R be defined by f · 1
g
, that is,

(
f
g

)
(x) =

f (x)
g(x)

, x ∈ (a, b).

Then
f
g
is differentiable at c, and

(
f
g

)′
(c) =

f ′(c)g(c) − f (c)g′(c)
(g(c))2

.

Proof. Using the Product Rule, we obtain(
f
g

)′
(c) = f ′(c) · 1

g(c)
+ f (c) ·

(
1
g

)′
(c) =

f ′(c)g(c)
(g(c))2

+ f (c) ·
(
− g′(c)

(g(c))2

)

=
f ′(c)g(c) − f (c)g′(c)

(g(c))2
. �

Example 4.5.

(1)

(
x3

1 + x2

)′
=

3x2 · (1 + x2) − x3 · (2x)
(1 + x2)2

=
3x2 + 3x4 − 2x4

(1 + x2)2
=

3x2 + x4

(1 + x2)2
.

(2) We will prove later on that sin′ = cos and cos′ = − sin. We will accept these facts for now.
For real x such that cos x �= 0, we have

tan′x =
(

sin
cos

)′
(x) =

(sin′x)(cos x) − (sin x)(cos′x)
(cos x)2

=
(cos x)(cos x) − (sin x)(− sin x)

(cos x)2
=

(cos x)2 + (sin x)2

(cos x)2

=
1

(cos x)2
= (sec x)2. ♦

Exercise 4.14. Show that
cot′x = −( cosec x)2,

sec′x = (tan x)(sec x),

cosec′x = −(cot x)( cosec x).

Exercise 4.15. Differentiate
4 sin x

2x + cos x
.

4.1 Differentiable Inverse Theorem

Let f : (a, b) → R be one-to-one on (a, b). Then we know that we can define its inverse
f−1 : f ((a, b)) → (a, b).



DIFFERENTIATION 137

f((a, b))

f((a, b))

f

a

a

b

b

f−1
reflect
about
y = x

By looking at the fate of the little triangle when we reflect in the 45◦ line, we can guess what
happens to the derivatives:

(f−1)′( f (c)) =
1

f ′(c)
.

This is the content of the1 Differentiable Inverse Theorem.

Theorem 4.2 (Differentiable Inverse Theorem). If f (a, b) → R is such that

(1) f is strictly increasing (or strictly decreasing),

(2) f is continuous,

(3) f is differentiable at c ∈ (a, b), and

(4) f ′(c) �= 0,

then f−1 : f ((a, b)) → (a, b) is differentiable at f (c) and (f−1)′( f (c)) =
1

f ′(c)
.

Proof. We want to show that

lim
y→f (c)

f−1(y) − f−1( f (c))
y− f (c)

=
1

f ′(c)
.

We will use Theorem 3.13 to show this. Let (yn)n∈N
be any sequence with terms belonging

to f ((a, b))\{f (c)}, that converges to f (c). Then we have that yn = f (xn) for some sequence
(xn)n∈N

∈ (a, b)\{c}. We want to show that

lim
n→∞

f−1(yn) − f−1( f (c))
yn − f (c)

= lim
n→∞

xn − c
f (xn) − f (c)

=
1

f ′(c)
.

But by the continuity of f−1, we know that since yn → f (c), it follows that

f−1(yn) → f−1( f (c)),

that is, xn → c.

Since

lim
x→c

f (x) − f (c)
x− c

= f ′(c),

1 very important!
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and as (xn)n∈N
∈ (a, b)\{c} converges to c, we obtain (by Theorem 3.13 again) that

lim
n→∞

f (xn) − f (c)
xn − c

= f ′(c),

that is, lim
n→∞

yn − f (c)
xn − c︸ ︷︷ ︸

�=0

= f ′(c) �= 0, and so lim
n→∞

xn − c
f (xn) − f (c)

=
1

f ′(c)
. Done! �

Example 4.6 (Derivative of the nth root function).

Let n ∈ N. Then the function x
f�→ xn : (0,∞) → (0,∞) is

(1) strictly increasing,

(2) continuous,

(3) differentiable on (0,∞), and

(4) f ′(x) = nxn−1 �= 0 for all x ∈ (0,∞).

Thus by the Differentiable Inverse Theorem, we conclude that the inverse of f ,

y
f−1

�→ n
√
y : (0,∞) → (0,∞),

is differentiable on (0,∞), and if y = xn, where x = n
√
y ∈ (0,∞), then

( n
√
y)′ =

1
f ′(x)

=
1

nxn−1
=

1
n( n
√
y)n−1

=
1

ny1− 1
n

=
1
n
y

1
n−1,

for all y > 0. So (y
1
n )′ =

1
n
y

1
n−1 for all y > 0. ♦

2
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Example 4.7 (Derivative of the arcsin function).

The function sin :
(
−π

2
,
π

2

)
→ (−1, 1) is

(1) strictly increasing,

(2) continuous,
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(3) differentiable on (−π/2, π/2), and

(4) sin′x = cos x �= 0 for all x ∈ (−π/2, π/2).

By the Differentiable Inverse Theorem, the inverse function

sin−1 : (−1, 1) →
(
−π

2
,
π

2

)

is differentiable and for y = sin x ∈ (−1, 1), where x ∈
(
−π

2
,
π

2

)
we have

(sin−1)′(y) =
1

sin′x
=

1
cos x

=
1√

1 − (sin x)2
=

1√
1 − y2

.

♦

1.5
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Example 4.8 (In the Differentiable Inverse Theorem, the condition f ′(c) �= 0 is not superflu-

ous). The function x
f�→ x3 : R → R is

(1) strictly increasing,

(2) continuous,

(3) differentiable on R.

Note that
f ′(0) = 3 · 02 = 0.

Now let us show that f−1 is not differentiable at f (0) = 0.

Indeed, for x > 0,
f−1(x) − f−1(0)

x− 0
=

3
√
x− 0
x− 0

=
1

x
2
3

,

and if
xn :=

1
n

, n ∈ N,
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then
f−1(xn) − f−1(0)

xn − 0
= n

2
3 ,

and (n
2
3 )n∈N

does not converge. This shows that there is no real number L such that

lim
x→0

f−1(x) − f−1(0)
x− 0

= L.

Hence f−1 is not differentiable at f (0) = 0. ♦

00

f :=x3 f−1

Exercise 4.16. Let f : (0,∞) → R be the strictly decreasing function given by

f (x) =
1

1 + x2
, x ∈ (0,∞).

From Exercise 3.33, it follows that f ((0,∞)) = (0, 1).

Show that f−1 : (0, 1) → (0,∞) is differentiable, and find the derivative (f−1)′.

Exercise 4.17. Let f :
(
−π

2
,
π

2

)
→ R be the strictly increasing function given by

f (x) = x + sin x, x ∈
(
−π

2
,
π

2

)
.

Find the derivative (f−1)′(0).

4.2 The Chain Rule

We will now learn how to differentiate the composition of functions, and the pertinent rule is
called the ‘Chain Rule’. This is one of the powerful tools that lends Calculus its name, that is,
it is a rule, which is conveniently applied, and results in great calculational ease. It will make
differentiation of complicated functions rather simple, by using this mechanical procedure.
We will see this soon enough in the examples, but first let us state the Chain Rule.
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Theorem 4.5 (Chain Rule). Suppose that

(1) f : (a, b) → R,

(2) g : (A,B) → R,

(3) f ((a, b)) ⊂ (A,B),

(4) f is differentiable at c ∈ (a, b), and

(5) g is differentiable at f (c) ∈ (A,B).

Then g ◦ f : (a, b) → R is differentiable at c, and (g ◦ f )′(c) = g′( f (c)) · f ′(c).

a bc

f

A Bf(c)

g

g ◦f

g(f(c))

Example 4.9. We will see later on that sin′x = cos x, x ∈ R. Using the Chain Rule, we obtain

d
dx

(
sin(x2)

)
=

(
cos(x2)

)
· 2x, x ∈ R, and

d
dx

(
sin

1
x

)
=

(
cos

1
x

)
·
(
− 1
x2

)
, x �= 0.

The Chain Rule can be applied repeatedly (forming a ‘chain’ of derivatives—hence the name
of the rule!): for example,

d
dx

sin
(
sin(x2)

)
=

(
cos

(
sin(x2)

))
·
(
cos(x2)

)
· 2x, x ∈ R.

The above examples show the great power associated with this rule. ♦
Proof of the Chain Rule. For x �= c, we have

(g ◦ f )(x) − (g ◦ f )(c)
x− c

=
g( f (x)) − g( f (c))

x− c
,

and we would like to show that as x → c, the above converges to g′( f (c)) · f ′(c). It is tempting
to multiply and divide by f (x) − f (c) and write

g( f (x)) − g( f (c))
x− c

=
g( f (x)) − g( f (c))

f (x) − f (c)
· f (x) − f (c)

x− c

and say

‘as x → c,
f (x) − f (c)

x− c
→ f ′(c),

f (x) → f (c), and

g( f (x)) − g( f (c))
f (x) − f (c)

→ g′( f (c)), completing the proof’ .
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However, even for x �= c, and near c, it may happen that f (x) − f (c) = 0 (for example when
f ≡ f (c)), and so division by f (x) − f (c) is not possible then, rendering the above invalid. So
instead, we proceed as follows.

Since g is differentiable at f (c),

lim
y→f (c)

(
g(y) − g( f (c))

y− f (c)
− g′( f (c))

)
= 0.

So if we define ϕ : (A,B) → R by

ϕ(y) =

⎧⎪⎨
⎪⎩

g(y) − g( f (c))
y− f (c)

− g′( f (c)) if y �= f (c),

0 if y = f (c),

then ϕ is continuous at f (c) (in fact on (A,B)). Note that for y �= f (c),

g(y) − g( f (c)) = g′( f (c)) · (y− f (c)) + ϕ(y)(y− f (c)). (4.4)

Also if y = f (c), then the left hand side of (4.4) is 0, and so is the right hand side. So
(4.4) holds for all y ∈ (A,B). In particular, for x ∈ (a, b)\{c}, and with y := f (x) ∈ (A,B),
we have

g( f (x)) − g( f (c)) = g′( f (c)) · ( f (x) − f (c)) + ϕ( f (x))( f (x) − f (c)). (4.5)

Dividing throughout by x− c, we obtain

g( f (x)) − g( f (c))
x− c

= g′( f (c)) · f (x) − f (c)
x− c

+ ϕ( f (x)) · f (x) − f (c)
x− c

.

But as x → c, we have that f (x) → f (c), and so ϕ( f (x)) → ϕ( f (c)) = 0. Hence

lim
x→c

g( f (x)) − g( f (c))
x− c

= g′( f (c)) · f ′(c) + 0 · f ′(c) = g′( f (c)) · f ′(c).

This completes the proof. �

Example 4.10. The function x �→
√

1 − x2 : (−1, 1) → R is the composition g ◦ f , where

x
f�→ 1 − x2 : (−1, 1) → (0,∞),

x
g�→
√
x : (0,∞) → R.

Thus, by the Chain Rule,

d
dx

√
1 − x2 = (g ◦ f )′(x) = g′( f (x)) · f ′(x) =

1

2
√

1 − x2
· (−2x) =

−x√
1 − x2

,

for x ∈ (−1, 1). ♦
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Example 4.11 (Derivative of rational powers).

Suppose that r ∈ Q. We write
r =

m
n

,

where m ∈ Z and n ∈ N. We claim that x �→ xr : (0,∞) → (0,∞) is differentiable, and that

d
dx

xr = rxr−1, x > 0.

Indeed, xr = x
m
n = (x

1
n )m is the composition g ◦ f , where

x
f�→ n
√
x : (0,∞) → (0,∞),

x
g�→ xm : R → R.

Thus by the Chain Rule,

d
dx

xr = m
(
x

1
n

)m−1
· 1
n
x

1
n−1 =

m
n
x

m
n −1 = rxr−1, x > 0.

For example,
d
dx

x
3
2 =

3
2

√
x, and

d
dx

x−
3
2 = −3

2
x−

5
2 for x > 0. ♦

Exercise 4.18. Find f ′(x) if f (x) := sin(cos(1 + x2)), x ∈ R. (You may use the fact that
sin′ = cos and cos′ = − sin.)

Exercise 4.19. (∗) Evaluate
n∑

k=1

k2

2k
using the function S given by S(x) =

n∑
k=1

xk.

Exercise 4.20. Using the binomial expansion (1 + x)n =
n∑

k=0

(n
k

)
xk, find expressions for

(1)
n∑

k=1

3k
(n
k

)
.
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(2)
n∑

k=1

k2
(n
k

)
.

(3)
n∑

k=1

(2k + 1)
(n
k

)
.

Exercise 4.21. Let f : (−a, a) → R be differentiable, and let f be an odd function, that is, for
all x ∈ (−a, a), f (−x) = −f (x). Show that f ′ is an even function, that is, f ′(−x) = f ′(x) for
all x ∈ (−a, a), by calculating the derivative of x �→ f (x) + f (−x) = 0.

Exercise 4.22. Complete the following table:

x f (x) f ′(x) g(x) g′(x) ( f ◦ g)(x) ( f ◦ g)′(x) (g ◦ f )(x) (g ◦ f )′(x)

0 1 1 3 3

1 2 −9 2 9

2 0 7 1 9

3 3 6 0 −3

Exercise 4.23. Complete the following table:

f f ′ f ′ ◦ f f ◦ f ′ ( f ◦ f )′

1/x3

cos x

x3

3

3x

Exercise 4.24. Let f , g : (0,∞) → R be differentiable. Find g′ in terms of f , f ′ in each of the
cases below, assuming that the given relation holds for all x > 0.

(1) g(x) = f (x2).

(2) g(x) = ( f (x))2.

(3) g(x) = f ( f (x)).

(4) g(x2) = f (x).

4.3 Higher order derivatives and derivatives at boundary
points

Successive or higher order derivatives

Differentiation applied successively leads to the notion of higher order derivatives.
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Definition 4.2 (Higher order derivatives). Suppose that f : (a, b) → R is differentiable. So
we have its derivative function f ′ : (a, b) → R. If f ′ is itself differentiable at c ∈ (a, b), we say
that f is twice differentiable at c, and denote the derivative of f ′ at c by f ′′(c). f ′′(c) is called
the second order derivative of f at c.

If f ′ is differentiable at every point of (a, b), then use the notation f ′′ for the mapping
x �→ f ′′(x) : (a, b) → R.

If f ′′ is also differentiable at c, then we say that f is thrice differentiable at c, and denote
the derivative of f ′′ at c by f ′′′(c). Similarly, one defines n times differentiable at c, and the nth
order derivative f (n) for any n ∈ N.

Instead of the notation
f ′′(c), f ′′′(c), f (n)(c),

sometimes we use
d2f
dx2

(c),
d3f
dx3

(c),
dnf
dxn

(c).

If for all n ∈ N, f is n times differentiable at c, then we say that f is infinitely (many times)
differentiable at c.

If f is infinitely differentiable at each point of an open interval (a, b), then we write

f ∈ C∞(a, b).

Elements of C∞(a, b) are ‘very smooth’. For example, all polynomials belong to C∞(R).
Differentiating a polynomial gives again a polynomial (of degree one less than the original
one), which is in turn differentiable. Differentiating a polynomial of degree d d + 1 times gives
the zero function. Later on, we will see other important examples: sin, cos, exp ∈ C∞(R), and
log ∈ C∞(0,∞).

Example 4.12. Let k ∈ N, ck, a ∈ R be fixed. Consider the polynomial pk given by

pk(x) = ck(x− a)k, x ∈ R.

Then we have

pk(x) = ck · (x− a)k pk(a) = 0

p′k(x) = ck · k · (x− a)k−1 p′k(a) = 0

p′′k (x) = ck · k · (k − 1) · (x− a)k−2 p′′k (a) = 0

p′′′k (x) = ck · k · (k − 1) · (k − 2) · (x− a)k−3 p′′′k (a) = 0

· · · · · ·
p(k−1)
k (x) = ckk(k − 1)(k − 2) · · · (k − (k − 2))(x− a)k−(k−1)

= ckk(k − 1)(k − 2) · · · 2(x− a) p(k−1)
k (a) = 0

p(k)
k (x) = ckk(k − 1)(k − 2) · · · 2 · 1 = ckk! p(k)

k (a) = ckk!

p(�)
k (x) = 0 for all � > k p(�)

k (a) = 0, � > k.
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Conclusion: p(�)
k (a) = ck · k! · δk�, where δk� is the Kronecker delta, given by

δk� =

{
1 if k = �

0 if k �= �.

We will use this later on when we discuss Taylor’s Formula. ♦

Exercise 4.25. Let f : (0,∞) → R be such that for all x, y ∈ (0,∞), f (xy) = f (x) + f (y).
If f is differentiable at 1, then show that f is differentiable at every c ∈ (0,∞) and that
f ′(c) = f ′(1)/c. Conclude that f is infinitely differentiable. If f ′(1) = 2, then find f (n)(3),
n ∈ N.

Exercise 4.26.

(1) Show that if f , g are twice differentiable on an open interval I, then

(fg)′′(x) = f ′′(x) · g(x) + 2 · f ′(x) · g′(x) + f (x) · g′′(x), x ∈ I.

(2) (∗) Prove that if f , g are infinitely differentiable on an open interval I, then

(fg)(n)(x) =
n∑

k=0

(n
k

)
f (k)(x)g(n−k)(x), x ∈ I.

(3) (∗) For a rational x and n a nonnegative integer, define x[n] := x(x− 1) · · · (x− n + 1).

Show that if x, y ∈ Q, then (x + y)[n] =
n∑

k=0

(n
k

)
x[k]y[n−k].

Hint: Differentiate tx+y n times with respect to t ∈ I := (0,∞).
(In fact, after we have defined logarithms, and how to take real exponents, that is, the
map t �→ tx : (0,∞) → R, where x ∈ R, one can see that the same result holds even when
x, y ∈ R.)

Exercise 4.27. Let f , g : R → R be twice differentiable. The second order derivative of the
map x �→ ( f ◦ g)(x) = f (g(x)) : R → R at the point c is

� (A) f ′′(g(c)) · g′′(c).
� (B) f ′′(g(c)) · f ′(g′(c)) · g′′(c).
� (C) f ′′(g(c)) · f ′(g′(c)) · f (g′′(c)).
� (D) f ′′(g(c)) · (g′(c))2 + f ′(g(c)) · g′′(c).

Exercise 4.28. Let k ∈ N. What is f (k)(x) if f is given by

(1)
1

(x− a)n
, x ∈ R\{a}. (Here n ∈ N and a ∈ R are fixed.)

(2)
1

x2 − 1
, x ∈ R\{−1, 1}.

Exercise 4.29 (Differentiable, but not twice). Let f : R → R be given by f (x) = x|x|,
x ∈ R. Show that f is differentiable on R, and find the derivative function f ′. Is f ′ differentiable
at 0? Write down a formula for a function that is n times differentiable everywhere, but such
that f (n) is not differentiable at 0.
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Derivatives at boundary points

Let f : [a, b] → R. We know what it means for f to be differentiable at an interior point of
[a, b], that is, at any point in the open interval (a, b).

a bc

But what about differentiability at the endpoints a and b? To take care of these hitherto omitted
definitions, we now introduce the notions of the left derivative and the right derivative.

Definition 4.3 (Differentiability at a point; derivative). Let f : [a, b] → R.

(1) We say f is differentiable at a if its right derivative f ′+(a) at a exists, that is, there
exists a number f ′+(a) ∈ R such that

lim
x→a+

f (x) − f (a)
x− a

= f ′+(a).

In other words, for every ε > 0, there exists a δ > 0 such that whenever 0 < x− a < δ,
we have ∣∣∣∣ f (x) − f (a)

x− a
− f ′+(a)

∣∣∣∣ < ε.

(2) We say f is differentiable at b if its left derivative f ′−(b) at b exists, that is, there exists
a number f ′−(b) ∈ R such that

lim
x↗b

f (x) − f (a)
x− a

= f ′−(a).

In other words, for every ε > 0, there exists a δ > 0 such that whenever 0 < b− x < δ,
we have ∣∣∣∣ f (x) − f (b)

x− b
− f ′−(b)

∣∣∣∣ < ε.

(3) We say f is differentiable (on [a, b]) if f is differentiable at each x ∈ [a, b], and we call
the map f ′ : [a, b] → R given by

f ′(x) =

⎧⎪⎨
⎪⎩

f ′+(a) if x = a,

f ′(x) if x ∈ (a, b),
f ′−(b) if x = b,

the derivative of f .

(4) If f ′ is differentiable on [a, b], then f is called twice differentiable and we let f ′′ denote
the derivative of f ′, and so on.

Just like C[a, b] := {f : [a, b] → R : f is continuous on [a, b]}, one defines

C1[a, b] := {f : [a, b] → R : f is differentiable on [a, b] and f ′ ∈ C[a, b]},
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and more generally, for n ≥ 2,

Cn[a, b] := {f : [a, b] → R : f is n times differentiable on [a, b] and f (n) ∈ C[a, b]}.

Note that C1[a, b]�C[a, b]. (Why is there strict inclusion?)

4.4 Equations of tangent and normal lines to a curve

We can consider the graph of a function f : (a, b) → R as a ‘curve’ in R
2:

x0

f

Then since f ′(x0) is the slope of the tangent line to the graph of f at (x0, f (x0)), the equation
of the tangent line to the graph of f at (x0, f (x0)) is given by

y− f (x0)
x− x0

= f ′(x0).

By the congruence of the two triangles shown in the picture above we see that the slope of the
normal line at (x0, f (x0)) is, assuming f ′(x0) �= 0,

− 1
f ′(x0)

,

and so the equation of the normal line to the graph of f at (x0, f (x0)) is given by

y− f (x0)
x− x0

= − 1
f ′(x0)

.

Example 4.13. Consider the function f given by f (x) = x3 − 6x2 + 8x, x ∈ R. What is the
tangent line to the graph of f at the point (3, f (3))?

We have f (3) = −3, and f ′(x) = 3x2 − 12x + 8, so that f ′(3) = −1. Hence the tangent
line is given by

y− (−3)
x− 3

= −1,

that is, y = −x. Similarly the normal line to the graph of f at (3,−3) is

y− (−3)
x− 3

= − 1
−1

= 1,

that is, y = x− 6. ♦
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A curve γ is a function t �→ γ(t) = (x(t), y(t)) : (a, b)→R
2, where the maps x, y : (a, b)→R

are continuous.

(x(t), y(t))

γ

a bt

2

If the curve is ‘smooth’ (that is, if x, y are smooth, say continuously differentiable), then let
us determine the equations of the tangent line and the normal line to the curve at a point
(x(t0), y(t0)) on the curve, assuming that x′(t0) and y′(t0) are nonzero.

(x(t0), y(t0)) ≡ A

(x(t), y(t)) ≡ B

x(t) − x(t0)

y(t) − y(t0)

If we look at the picture above, we see that the slope of the chord AB is (assuming that
x(t) �= x(t0) for 0 < |t − t0| small enough and x′(t0) �= 0)

y(t) − y(t0)
x(t) − x(t0)

=

y(t) − y(t0)
t − t0

x(t) − x(t0)
t − t0

t→t0−−−→ y′(t0)
x′(t0)

,
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and so the equation of the tangent line to the curve at the point (x(t0), y(t0)) is given by

y− y(t0)
x− x(t0)

=
y′(t0)
x′(t0)

.

Similarly, the equation of the normal line to the curve at the point (x(t0), y(t0)) is (assuming
that y′(t0) �= 0)

y− y(t0)
x− x(t0)

= −x′(t0)
y′(t0)

.

Example 4.14. Let γ : R → R
2 be the curve given by γ(t) = (cos t, sin t), t ∈ R. Let

t0 := π/4 ∈ R. What are the equations of the tangent line and the normal line to the curve at
the point (cos t0, sin t0) = (1/

√
2, 1/

√
2) on the curve?

The tangent line is given by

y− sin t0
x− cos t0

=
cos t0
− sin t0

,

that is, x cos t0 + y sin t0 = 1, that is, (with t0 = π/4) x + y =
√

2.

1

0.5

−0.5

−1 −0.5 0.5
x
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−1

0

The normal line is given by
y− sin t0
x− cos t0

= −− sin t0
cos t0

,

that is, y = x tan t0, that is, (with t0 = π/4) y = x. Note that the normal line passes through
the origin (0, 0), and this is expected since we know from elementary Euclidean geome-
try that for a circle, a line joining the center to a point on the circle is perpendicular to the
tangent line at that point. ♦

Remark 4.2. The graph of a function f is a curve where

x(t) := t,

y(t) := f (t).

Then the equation of the tangent line at (x0, f (x0)) is

y− f (x0)
x− x0

=
f ′(x0)

1
,

which matches what we had obtained earlier.
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Exercise 4.30. Find the values of the constants a, b, c for which the graphs of f , g given by

f (x) := x2 + ax + b,

g(x) := x3 − c,

x ∈ R, intersect at the point (1, 2) and have the same tangent there.

Exercise 4.31. Find the equation of the tangent at ( 1
9 , 5) to the curve t �→ (x(t), y(t)), where

x(t) :=
1
t2

,

y(t) :=
√

t2 + 16,

for t ∈ (0,∞).

Exercise 4.32. Which of the following statements is always true about the tangent line to the
graph of a differentiable function f : R → R at the point (c, f (c))?

� (A) The tangent line intersects the curve at precisely one point, namely at (c, f (c)).

� (B) The tangent line intersects the x-axis.

� (C) The tangent line intersects the y-axis.

� (D) Any line through (c, f (c)) other than the tangent line intersects the graph of f at at
least one other point.

Implicitly defined curves

There are plane curves given by an equation of the form

F(x, y) = 0,

where F : R
2 → R is a nice function. Here we imagine solving for y, given a value of the

variable x, to obtain x
y�→ y(x) for some suitable function y. The curve is then x �→ (x, y(x)).

For example, if F(x, y) := y− x2 − 1, then y(x) = x2 + 1, and the curve is a
parabola:

2

1.5

0.5

−1 −0.5 0.5
x

10

1
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Remark 4.3. An explicit formula for an implicitly defined curve may not be available; for
example

F(x, y) := y5 + 2y4 − 7y3 + 3y2 − 6y− x.

Given x, finding y(x) here entails solving a quintic equation:

y5 + 2y4 − 7y3 + 3y2 − 6y− x = 0.

And even if a formula is available, it might only be ‘locally valid’. For example, if F is given
by F(x, y) := x2 + y2 − 1 (so that F(x, y) = 0 describes a circle), then

y(x) =

{ √
1 − x2 if y ≥ 0,

−
√

1 − x2 if y < 0.

To find the equation for the tangent and normal line to an implicitly defined curve, we need
to find y′(x), but this can be done without first explicitly finding y. The process, based on the
Chain Rule, is called Implicit Differentiation, and the best way to see this is by looking at an
example.

Example 4.15 (Tangents and normals to the circle using implicit differentiation). Let
F(x, y) := x2 + y2 − 1. Then the point (x, y) on the curve described implicitly by F satisfies

x2 + y2 − 1 = 0.

Bearing in mind that y is a function of x, and viewing both sides of the above equation as
functions of x, we obtain by differentiating with respect to x that (suppressing the argument
of y— that is, writing y instead of y(x) everywhere below)

2x + 2y · dy
dx

− 0 = 0,

so that if y(x) �= 0, then
dy
dx

= −x
y

.

So at a point (x0, y0) on the circle, the equation of the tangent line is

y− y0

x− x0
= −x0

y0
,

and using x2
0 + y2

0 = 1, this can be simplified to yy0 + xx0 = 1.

Similarly, the equation of the normal line is (assuming x0 �= 0)

y− y0

x− x0
=

y0

x0
,

that is, y =
y0

x0
x. ♦
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x0y = y0x

(x0, y0)

slope = − x0/y0

F (x,y) := x2 + y2 − 1 = 0

Example 4.16. Let F(x, y) := y5 + x5 − y− 3x + 2. Then F(1, 1) = 0. What is the equation
of the tangent line to the curve implicitly defined by F at the point (1, 1)? We have

5y4 dy
dx

+ 5x4 − dy
dx

− 3 = 0

and so
dy
dx

=
3 − 5x4

5y4 − 1
. So the slope of the tangent line at (1, 1) is

dy
dx

∣∣∣
(x,y)=(1,1)

=
3 − 5x4

5y4 − 1

∣∣∣
(x,y)=(1,1)

=
3 − 5
5 − 1

= −1
2

.

Hence the equation of the tangent line is
y− 1
x− 1

= −1
2

, that is, x + 2y = 3. ♦

2

1

0

−1

−2 −1 1 2
x

y

Exercise 4.33. Find the points on the curve given implicitly by x2 + xy + y2 = 9 at which

(1) the tangent is parallel to the x-axis

(2) the tangent is parallel to the y-axis.
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Exercise 4.34. Find the tangents to the implicitly defined curve x sin(xy− y2) = x2 − 1 at
the point (1, 1).

Exercise 4.35. Consider the implicitly defined x2/3 + y2/3 = 2, where y = y(x) is a function
of x locally around (x, y) = (1, 1).

(1) Compute
dy
dx

and
d2y
dx2

when x = 1.

(2) Use a computer package such as Maple to plot the implicitly defined curve for positive

values of x and y. Also in the same picture draw the line at (1, 1) with slope
dy
dx

∣∣∣
x=1

found

above. Do you observe tangency at (1, 1)?

(3) From the plots obtained in the previous part, can you explain the sign of
d2y
dx2

∣∣∣
x=1

?

Exercise 4.36. Show that the curve defined implicitly by the equation xy3 + x3y = 4 has no
horizontal tangent.

The Newton–Raphson Method for solving f (x) = 0
numerically

Given a nice function f : (a, b) → R, consider the problem of finding x such that f (x) = 0.
Even for a relatively simple f , this may not be solvable ‘analytically’; for example, if
f (x) := x− cos x.

When finding an exact solution is hopeless, one might settle for an approximate one.
We discuss one such method given by Newton, which has a simple geometric idea behind it:
for ξ near the desired point x∗ we seek such that f (x∗) = 0, we may approximate the function f
by its linear approximation at ξ (given by f (x) ≈ f (ξ) + f ′(ξ)(x− ξ)), and get an approximate
value for x∗ as

x∗ ≈ ξ − f (ξ)
f ′(ξ)

.

Thus we replace the graph of f by its tangent line, and find out where it intersects the x-axis,
as shown below.

ξ

f

x∗

This process may be repeated (by replacing the old value of ξ by new approximate value of
x∗ just discovered), and one obtains the following algorithm:
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Start with a
guess x∗ = x0

Is the
error |f(x∗)|

small enough?

Yes

xk+1 := xk −
f(xk)
f ′(xk)

x∗ := xk+1

No

Stop

Want x∗ : f(x∗) = 0.

Step 1. Pick any point (x0, f (x0)) on the graph of f . This x0 is an ‘initial guess’. Draw the
tangent line to the graph of f at (x0, f (x0)). Let x1 be the x-coordinate of the point
where the tangent line meets the x-axis.

Step 2. Take (x1, f (x1)) and repeat Step 1, giving a new point x2, and so on.

Update equation: The equation of the tangent line at (xn, f (xn)) is

y− f (xn)
x− xn

= f ′(xn),

and so when y = 0, we have
0 − f (xn)
xn+1 − xn

= f ′(xn), that is,

xn+1 = xn −
f (xn)
f ′(xn)

.

The hope is that the sequence x1, x2, x3, · · · converges to the desired solution x∗ that satisfies
f (x∗) = 0, but it might not.
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Example 4.17. Let us carry out the Newton–Raphson Method for the function f defined by
f (x) := x− cos x, x ∈ R. Then f ′(x) = 1 + sin x, and so the update equation is

xn+1 = xn −
f (xn)
f ′(xn)

= xn −
xn − cos xn
1 + sin xn

, n ≥ 0.

Let us start with an initial guess of x0 := 2. The table below shows successive iterations in the
Newton–Raphson Method.

n xn (to 4 decimal places) f (xn) = xn − cos xn (to 4 decimal places)

0 2 2.4161

1 0.7345 −0.0077

2 0.7391 0

3 0.7391 0

Thus we see that the approximate value of x∗ such that f (x∗) = 0 to 4 decimal places is given
by x∗ ≈ 0.7391. ♦

3

2

1

−1

−3 −2 −1 0 1
x

2 3

−2

Exercise 4.37. Let f be given by f (x) = x2 − 2. Suppose that the Newton–Raphson Method
converges with the initial guess x0 := 1. Generate a few rational approximations to

√
2.

Exercise 4.38. Show that x4 − x3 − 75 = 0 for some x lying between 3 and 4. Use the
Newton–Raphson Method to find an approximate value of this x, starting with an initial guess
of x0 := (3 + 4)/2 = 3.5.

Exercise 4.39. Let f : R → R be defined by

f (x) =

{ √
x if x ≥ 0,

−
√
−x if x < 0.

Show that if the ‘initial guess’ x0 �= 0, then the corresponding sequence of iterates, generated
by the Newton–Raphson Method for the equation f (x) = 0, does not converge.
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4.5 Local minimisers and derivatives

Intuitively, we expect that when a function f : (a, b) → R has a local bump or a local trough,
then at the highest or lowest point x∗ of the bump/trough, the tangent line should be horizontal,
that is, the slope f ′(x∗) = 0. The aim of this section is to prove this result.

Definition 4.4 (Local minimum). We say that f : (a, b) → R has a local minimum at
c ∈ (a, b) if there exists a δ > 0 such that whenever x ∈ (a, b) satisfies |x− c| < δ, we have
f (x) ≥ f (c).

In other words, ‘locally’ around c, the value assumed by f at c is the smallest. See Figure 4.1.

P QA B

Figure 4.1 The points P, Q and all points in the interior of the line segment AB are all local
minimisers.

Local maximisers are defined likewise.

Theorem 4.6. If

(1) f : (a, b) → R has a local minimum at x∗ ∈ (a, b), and

(2) f is differentiable at x∗,

then f ′(x∗) = 0.

Roughly,
x∗ is an interior local minimiser of f ⇒ f ′(x∗) = 0 .

An analogous result holds for a local maximiser. (Just consider −f , and note that x∗ is a local
maximiser of f if and only if x∗ is a local minimiser of −f .)
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Proof. Let ε > 0. Then we know that there exists a δ > 0 such that whenever x ∈ (a, b)
satisfies 0 < |x− x∗| < δ, we have∣∣∣∣ f (x) − f (x∗)

x− x∗
− f ′(x∗)

∣∣∣∣ < ε.

But for all x near x∗, we also have f (x) ≥ f (x∗). So for such x satisfying also 0 < |x− x∗| < δ,
we have

f (x) − f (x∗)
x− x∗

− f ′(x∗) < ε, (4.6)

− f (x) − f (x∗)
x− x∗

+ f ′(x∗) < ε, (4.7)

f (x) ≥ f (x∗). (4.8)

Next, among these x, look at the ones > x∗. Then (4.6) gives:

ε >
f (x) − f (x∗)

x− x∗
− f ′(x∗) ≥ 0 − f ′(x∗), that is, − f ′(x∗) < ε. (4.9)

Also, by considering x for which (4.7) holds and x < x∗, we obtain:

ε > − f (x) − f (x∗)
x− x∗

+ f ′(x∗) ≥ 0 + f ′(x∗), that is, f ′(x∗) < ε. (4.10)

(4.9) and (4.10) imply | f ′(x∗)| < ε. But the choice of ε > 0 was arbitrary, and hence we
conclude that f ′(x∗) = 0. �

Example 4.18 (Tin manufacturing company). What is the smallest area of a tin can of cylin-
drical shape whose volume is specified to be 2π · 1000 ≈ 1845 cm3?

πr2

πr2

2πrhh
r

Let the radius of the tin can be r and the height be h. Its volume is V := πr2h = 2π · 1000,
so that

h = 2 · 1000
r2

.

Its surface area is

2 · πr2 + 2πr · h = 2πr2 + 2πr · 2 · 1000
r2

= 2πr2 + 2π · 2 · 1000
r

=: S(r).

Thus the function to be minimised is r
S�→ S(r) : (0,∞) → R. If r∗ is a minimiser, then we

must have S′(r∗) = 0, that is,

S′(r∗) = 2π · 2r∗ − 2π · 2 · 1000
r2
∗

= 0,
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and so r3
∗ = 1000. Hence r∗ = 10 cm. The corresponding height is

h∗ := 2 · 1000
102

= 2 · 10 = 20 cm. ♦

Exercise 4.40. Find the shortest distance from a given point (0, b) on the y-axis with b > 0,
to the parabola y = x2.

Exercise 4.41. Does f given by f (x) = (sin x− cos x)2, x ∈ R, have a maximum value? If so,
find it.

Exercise 4.42 (Snell’s Law of Refraction via Fermat’s Principle of Least Time). Consider
the following example from the study of optics, where a light ray passes from air into glass, as
shown in the picture below. The light ray bends or ‘refracts’ in a manner governed by Snell’s
Law (1621):

sin θa
sin θb

= μ,

where μ is the ‘refractive index of glass with respect to air’. In 1662, Fermat derived Snell’s
Law on the basis of his Principle of Least Time, which says that light takes the path for which
travel time is the smallest. Supposing that the speed of light in air is 1, and in glass, it is 1/μ,
derive Snell’s Law. See Figure 4.2.

P

(x, y)

(X, Y )

(0,0)

θa

θg

Figure 4.2 The y coordinate of the point P is considered to be a variable; x, X, Y are fixed
and x < X. Fermat’s Principle of Least Time says that, light is in a hurry, and the actual path
taken by the light ray is the one corresponding to that special y for which the travel time from
(0, 0) to (X,Y) is the smallest.

4.6 Mean Value, Rolle’s, Cauchy’s Theorem

Now we will learn about three equivalent results, which will be used extensively in Calculus.
For example, we will soon use them to prove Taylor’s Formula, and later on to prove the most
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important result in Calculus, the Fundamental Theorem of Calculus, which will link the two
disparate worlds of integration and differentiation.

Theorem 4.7 (Mean-Value Theorem).

If f : [a, b] → R is

(1) continuous on [a, b], and

(2) differentiable on (a, b),

then there exists a c ∈ (a, b) such that
f (b) − f (a)

b− a
= f ′(c).

Theorem 4.8 (Rolle’s Theorem).

If f : [a, b] → R

(1) is continuous on [a, b],

(2) is differentiable on (a, b), and

(3) f (a) = f (b),

then there exists a c ∈ (a, b) such that f ′(c) = 0.

Theorem 4.9 (Cauchy’s (Generalised Mean Value) Theorem).

If f , g : [a, b] → R are

(1) continuous on [a, b], and

(2) differentiable on (a, b),

then there exists a c ∈ (a, b) such that ( f (b) − f (a))g′(c) = (g(b) − g(a))f ′(c).

Let us first note that if in Cauchy’s Theorem, we take g = x, then we obtain the existence of
a c such that ( f (b) − f (a)) · 1 = (b− a)f ′(c), and upon rearranging, we get

f (b) − f (a)
b− a

= f ′(c),

which is the conclusion in the Mean Value Theorem. So the Cauchy Theorem implies the
Mean Value Theorem.

On the other hand, if in the Mean Value Theorem, we have that f also satisfies f (a) = f (b),
then the result tells us that there is a c ∈ (a, b) such that

f ′(c) =
f (b) − f (a)

b− a
=

0
b− a

= 0,

which is the conclusion in Rolle’s Theorem. So the Mean Value Theorem implies Rolle’s
Theorem.

Thus:

Cauchy’s Theorem ⇒ Mean Value Theorem ⇒ Rolle’s Theorem .

But now we will prove Rolle’s Theorem, and prove that each of the reverse implications hold
too. Before doing so, let us explain where the Mean Value Theorem gets its name from.
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Why ‘Mean Value’?

If we think of [a, b] as a time interval and f (t) as being the position at time t of a particle
moving along the real line, then

f (b) − f (a)
b− a

=
total displacement

time taken
= average or mean speed over [a, b].

At some time instances, the instantaneous speed could have been more than this mean speed,
while at other times less than the mean speed. The Mean Value Theorem says that some time
instance c, the instantaneous speed f ′(c) was exactly equal to the mean speed!2

Geometrically the Mean Value Theorem is intuitively expected, since if we look at the
chord AB in the plane that joins the end points A ≡ (a, f (a)) and B ≡ (b, f (b)) of the graph of
f , then the Mean Value Theorem is telling us that there is a point c ∈ (a, b), where the tangent
to f at the point C ≡ (c, f (c)) is parallel to the chord AB.

A

B
C

a bc

Exercise 4.43. Show that on the graph of any quadratic polynomial x
p�→ p(x) (that is, poly-

nomial of degree 2), the chord joining the points for which x = a and x = b is parallel to the
tangent line at the midpoint x = (a + b)/2.

Proofs of the three theorems

Before we show Rolle’s Theorem, let us remark that Rolle’s Theorem is also visually obvious:
if we think of f (a) = f (b) = 0 as specifying the horizontal seal level and f as describing the
landscape profile, there must be a highest/lowest point where f ′ must vanish!

2 After learning about the Fundamental Theorem of Calculus, we will also see that

f (b) − f (a)
b− a

=
1

b− a

∫ b

a
f ′(t)dt,

and we may view the right hand side as an average/mean of all instantaneous speeds f ′(t) for t in [a, b].
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Proof of Rolle’s Theorem (Theorem 4.8). If f is constant, then f (x) = f (a) for all x ∈ [a, b],
and so f ′ ≡ 0. So any c ∈ (a, b) does the job!

Now suppose that f is not constant. We have two cases:

1◦ There exists an x ∈ [a, b] such that f (x) > f (a) = f (b). Then clearly this x can’t be a
or b, and so x ∈ (a, b). By the Extreme Value Theorem, there exists a c ∈ [a, b] such
that f (c) ≥ f (ξ) for all ξ ∈ [a, b]. Again, this c can’t be a or b (since we already know
that there are values (x!) where f takes bigger values than f (a) = f (b)). So c ∈ (a, b)
is such that for all ξ ∈ (a, b), f (c) ≥ f (ξ), that is, c is a maximiser of f : (a, b) → R.
Consequently, f ′(c) = 0.

2◦ There exists an x ∈ [a, b] such that f (x) < f (a) = f (b). This is analogous to 1◦.
(Or follows from 1◦ by looking at −f .)

This completes the proof of Rolle’s Theorem. �

Example 4.19. The polynomial p := 6x5 + 13x + 1 has exactly one real root.

By the Intermediate Value Theorem, it has at least one real root, because

p(0) = 6 · 05 + 13 · 0 + 1 = 1 > 0, and

p(−1) = 6 · (−1)5 + 13 · (−1) + 1 = −18 < 0.

But now by Rolle’s Theorem, we also know there can’t be more than one zero: For if
p(a) = p(b) = 0 for a < b, then there would exist a c ∈ (a, b) such that p′(c) = 0, but
p′(c) = 30c4 + 13 ≥ 13 > 0, a contradiction! ♦

Proof of the Mean Value Theorem (Theorem 4.7). Define ϕ : [a, b] → R by

ϕ(x) = ( f (b) − f (a))x− (b− a)f (x), x ∈ (a, b).

Then ϕ is continuous on [a, b], differentiable on (a, b) and

ϕ(a) = ( f (b) − f (a))a− (b− a)f (a)

= f (b)a− bf (a)

= ( f (b) − f (a))b− (b− a)f (b)

= ϕ(b).

Moreover, for x ∈ (a, b), we have ϕ′(x) = f (b) − f (a) − (b− a)f ′(x). By Rolle’s Theorem,
ϕ′(c) = 0 for some c ∈ (a, b). Rearranging, we obtain

f (b) − f (a)
b− a

= f ′(c),

and this completes the proof of the Mean Value Theorem. �
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Example 4.20. For all x > 0,
√

1 + x < 1 +
1
2
x.

3

2

1

−1 0 1 2
x

3 4 5

Consider f : [0,∞) → R defined by f (x) =
√

1 + x for x ≥ 0. Then f is continuous on [0,∞),
differentiable on [0,∞) and

f ′(x) =
1

2
√

1 + x
, x ≥ 0.

Fix x > 0. Applying the Mean Value Theorem to f on [0, x], it follows that for some c satisfying
0 < c < x, we have

√
1 + x− 1

x
=

f (x) − f (0)
x− 0

= f ′(c) =
1

2
√

1 + c
<

1

2
√

1 + 0
=

1
2

,

and so
√

1 + x < 1 +
1
2
x. ♦

Proof of Cauchy’s Theorem (Theorem 4.9). Let ϕ : [a, b] → R be defined by

ϕ(x) = det

⎡
⎣f (x) g(x) 1
f (a) g(a) 1
f (b) g(b) 1

⎤
⎦ , x ∈ [a, b].

We have

ϕ(a) = det

⎡
⎣f (a) g(a) 1
f (a) g(a) 1
f (b) g(b) 1

⎤
⎦ = 0

since the first and second rows of the matrix are linearly dependent. Similarly,

ϕ(b) = det

⎡
⎣f (b) g(b) 1
f (a) g(a) 1
f (b) g(b) 1

⎤
⎦ = 0.

Also, for x ∈ [a, b],

ϕ(x) = det

⎡
⎣f (x) g(x) 1
f (a) g(a) 1
f (b) g(b) 1

⎤
⎦

= f (x)(g(a) − g(b)) − g(x)( f (a) − f (b)) + f (a)g(b) − f (b)g(a),

and so we see that ϕ is continuous on [a, b], differentiable on (a, b) and

ϕ′(x) = f ′(x)(g(a) − g(b)) − g′(x)( f (a) − f (b)) (x ∈ (a, b)).
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As ϕ(a) = ϕ(b), it follows from Rolle’s Theorem that there is a c ∈ (a, b) for which
ϕ′(c) = 0, that is, f ′(c)(g(a) − g(b)) − g′(c)( f (a) − f (b)) = 0. Rearranging, we obtain the
desired equality, completing the proof Cauchy’s Theorem. �

Exercise 4.44. Which of the following is equivalent to the statement of the Mean Value
Theorem?

� (A) If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), then there exists
a c ∈ (a, b) such that f ′(c) = 0.

� (B) If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), then there exists
a c ∈ (a, b) such that (b− a)f ′(c) = f (b) − f (a).

� (C) If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), then there exists
a unique c ∈ (a, b) such that f ′(c) = f (b)−f (a)

b−a .

� (D) If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), then there exists
a c ∈ {a, b} such that f ′(c) = f (b)−f (a)

b−a .

Exercise 4.45. Show that for every real a, b ∈ R, | cos a− cos b| ≤ |a− b|.

Exercise 4.46. (∗) Suppose that f : R → R is differentiable, | f ′(x)| ≤ 1 for all x ∈ R, and
that there exists an a > 0 such that f (−a) = −a, f (a) = a. Show that f (0) = 0.

Exercise 4.47. If f : R → R is differentiable and there exist L,L′ ∈ R such that

lim
x→∞

f (x) = L, and lim
x→∞

f ′(x) = L′,

then prove that L′ = 0.

Exercise 4.48. Let c ∈ (a, b), and let f : (a, b) → R be such that f is

(1) differentiable on (a, b)\{c},

(2) continuous on (a, b), and

(3) lim
x→c

f ′(x) exists.

Then f is differentiable at c, and f ′(c) = lim
x→c

f ′(x).

Contrast this situation with the case of the function x �→ |x| with c = 0.

Exercise 4.49. Let f : (a, b) → R be differentiable on (a, b) and suppose that there is a num-
ber M such that for all x ∈ (a, b), | f ′(x)| ≤ M. Show that f is uniformly continuous on (a, b).

Exercise 4.50. Prove that if c0, · · · , cd are any real numbers satisfying

c0

1
+

c1

2
+ · · · + cd

d + 1
= 0,

then the polynomial c0 + c1x + · · · + cdx
d has a zero in (0, 1).
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Exercise 4.51. Suppose that f is n times differentiable and that f (x) = 0 for n + 1 distinct x.
Prove that f (n)(x) = 0 for some x.

Exercise 4.52. Show that there are exactly two real values of x such that

x2 = x sin x + cos x

and that they lie in
(
−π

2
,
π

2

)
.

Exercise 4.53. Find a function f : R → R such that f ′(−1) = 1/2, f ′(0) = 0 and f ′′(x) > 0
for all x ∈ R, or prove that such a function cannot exist.

Corollary 4.10. Suppose that f : (a, b) → R is differentiable on (a, b). Then:

(1) If f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing.

(2) If f is strictly increasing, then f ′(x) ≥ 0 for all x ∈ (a, b).

(3) f ′(x) ≥ 0 for all x ∈ (a, b) if and only if f is increasing.

(4) f ′(x) = 0 for all x ∈ (a, b) if and only if f is constant.

Proof. (1) For each pair of numbers x1, x2 ∈ (a, b), with x1 < x2, it follows by the Mean Value
Theorem, that

f (x2) − f (x1) = f ′(x)︸︷︷︸
>0

(x2 − x1︸ ︷︷ ︸
>0

)

for some x between x1 and x2, and so f (x2) > f (x1). Hence f is strictly increasing.

(2) Let c ∈ (a, b). Then

f ′(c) = lim
x→c

f (x) − f (c)
x− c

= lim
x↘c

f (x) − f (c)
x− c

≥ 0,

where the last equality follows from the fact that for all x > c, f (x) − f (c) > 0 and
x− c > 0. As the choice of c ∈ (a, b) was arbitrary, the claim follows.

(3) The proof is analogous to (1) and (2).

(4) If f is constant, then clearly f ′ ≡ 0. Vice versa, if f ′ ≡ 0, then for any pair of numbers
x1, x2 ∈ (a, b), it follows by the Mean Value Theorem, that

f (x2) − f (x1) = f ′(x)︸︷︷︸
=0

(x2 − x1) = 0,

so that f (x2) = f (x1). Hence f is constant on (a, b). �
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Note that in (2), it may happen that f ′ is zero at some points, and it may fail to be positive.
For example, consider the function x3 on R. It is strictly increasing, but

d
dx

x3
∣∣∣
x=0

= 3 · 02 = 0.

A similar version holds with ‘decreasing’ instead of ‘increasing’:

Corollary 4.11. Suppose that f : (a, b) → R is differentiable on (a, b). Then:

(1) If f ′(x) < 0 for all x ∈ (a, b), then f is strictly decreasing.

(2) If f is strictly decreasing, then f ′(x) ≤ 0 for all x ∈ (a, b).

(3) f ′(x) ≤ 0 for all x ∈ (a, b) if and only if f is decreasing.

Exercise 4.54. Let f : R → R be such that for all x, y ∈ R, | f (x) − f (y)| ≤ (x− y)2. Prove
that f is constant.

Exercise 4.55. (∗) Find all functions f : R → R such that f is differentiable on R and for all
x ∈ R and all n ∈ N,

f ′(x) =
f (x + n) − f (x)

n
.

Hint: Conclude that f must be twice differentiable and calculate f ′′(x).

Exercise 4.56 (Simple Harmonic Oscillator y′′ + y = 0).

(1) If y = y(x) is a solution of the differential equation

y′′ + y = 0, (4.11)

then show that y2 + (y′)2 is constant.

(2) Use part (1) to show that every solution to (4.11) has the form

y(x) = A cos x + B sin x

for suitable constants A,B. Proceed as follows: It is easy to show that all functions
of the above form satisfy (4.11). Let y be a solution. For it to have the form
A cos x + B sin x, it is necessary that A = y(0) and B = y′(0). Now consider

f (x) := y(x) − y(0) cos x− y′(0) sin x,

and apply (1) to f , making use of the fact that f (0) = f ′(0) = 0.

(3) Use part (2) to prove the trigonometric addition formulae for α, β ∈ R:

sin(α + β) = (sinα)(cos β) + (cos α)(sin β),

cos(α + β) = (cos α)(cos β) − (sin α)(sin β).
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Exercise 4.57. Let f : R → R. We call x ∈ R a fixed point of f if f (x) = x.

(1) If f is differentiable, and for all x ∈ R, f ′(x) �= 1, then prove that f has at most one
fixed point.

(2) (∗) Let the sequence (xn)n∈N
be generated by taking an arbitrary real x1, and setting

xn+1 = f (xn) for n ∈ N. Show that if there is an M < 1 such that for all x ∈ R,
| f ′(x)| ≤ M, then there is a fixed point x∗ of f , and that x∗ = lim

n→∞
xn.

(3) Visualise the process described in the part (2) above via the zigzag/cobweb path

(x1, x2) → (x2, x2) → (x2, x3) → (x3, x3) → (x3, x4) → . . . .

(4) Prove that the function f : R → R defined by

f (x) = x +
1

1 + ex
(x ∈ R)

has no fixed point, although 0 < f ′(x) < 1 for all x ∈ R. Is this a contradiction to the
result in part (2) above? Explain.

4.7 Taylor’s Formula

We had seen earlier that for a polynomial pk given by

pk(x) = ck(x− a)k,

we have

pk(a) = 0, p′k(a) = 0, · · · , p(k−1)
k (a) = 0, p(k)

k (a) = ckk!, p(k+1)
k (a) = 0, · · · .

Thus if we have a polynomial p that is a linear combination of such terms,

p(x) = c0 + c1(x− a) + c2(x− a)2 + · · · + cd(x− a)d,

then we have

p(a) = c0,

p′(a) = c1 · 1!,

p′′(a) = c2 · 2!,

...

p(d)(a) = cd · d!,

p(d+1)(a) = 0,

...
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So there is a special relationship between the coefficients ck and the successive derivatives of
p at a:

ck =
p(k)(a)
k!

, 0 ≤ k ≤ d.

Now, suppose that we start with a smooth enough function f : R → R and form a related d
degree polynomial p given by

p(x) := f (a) +
f ′(a)

1!
(x− 1) + · · · + f (d)(a)

d!
(x− a)d, x ∈ R.

Then:

(1) p is a polynomial,

(2) p is related to f ,

(3) in fact, from what we have just learnt, the coefficients of p are related to the derivatives
of p at a, and so

p(k)(a)
k!

=
f (k)(a)
k!

, 0 ≤ k ≤ d,

that is,
p(a) = f (a),

p′(a) = f ′(a),

p′′(a) = f ′′(a),

...

p(d)(a) = f (d)(a).

So at a, p matches very well with f .

?

ax

f

p

It is thus natural to ask:

How big is the error f (x) − p(x) when x �= a?

Taylor’s Formula answers this question.
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Theorem 4.12 (Taylor’s Formula). Let f , f ′, · · · , f (d+1) all exist on an open interval I. If a
and x are any two points of I, then there is a point ξ between them (and distinct from them)
such that

f (x) = f (a) +
f ′(a)

1!
(x− a) + · · · + f (d)(a)

d!
(x− a)d︸ ︷︷ ︸

p(x)

+
f (d+1)(ξ)
(d + 1)!

(x− a)d+1

︸ ︷︷ ︸
error

.

Remark 4.4.

(1) If we have an estimate on how big | f (d+1)| is on I, then we have a handle on the error
term, and how big that is. This allows one to get polynomial approximations to f .

(2) The name of the result is after the English mathematician Brook Taylor, who stated a
version of it in 1712, but there were also other mathematicians involved in its genesis
such as Lagrange and Gregory.

Proof. We use induction on d. When d = 0, the result follows from the Mean Value Theorem:
there exists a ξ between a and x, and not equal to a and to ξ, such that

f (x) − f (a)
x− a

= f ′(ξ),

which upon rearrangement gives f (x) = f (a) + f ′(ξ)(x− a), and so the claim is true.
Suppose that the result is true for some d. Now we show it for d + 1. Consider an f such

that f ′, · · · , f d+2 exist. Let

p(x) := f (a) +
f ′(a)

1!
(x− a) + · · · + f (d+1)(a)

(d + 1)!
(x− a)d+1. (4.12)

Let b ∈ I. We want to show that

f (b) − p(b) =
f (d+2)(ξ)
(d + 2)!

(b− a)d+2

for some ξ between a and b. To achieve this, we will essentially use Taylor’s Formula for f ′

(induction hypothesis!) and use the Cauchy version of the Mean Value Theorem to get Taylor’s
Formula for f . To this end, let us define F and G by

F := f − p,

G := (x− a)d+2.

Then F(a) = f (a) − p(a) = 0 and G(a) = 0. By Cauchy’s Theorem, there exists a c between
a and b, which is different from either of them, such that

(F(b) − F(a)︸︷︷︸
=0

)G′(c) = (G(b) − G(a)︸︷︷︸
=0

)F′(c).
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Thus ( f (b) − p(b))(d + 2)(c− a)d+1 = (b− a)d+2 · (f ′(c) − p′(c)), and upon rearranging,

f (b) − p(b) =
(b− a)d+2

(c− a)d+1(d + 2)
· (f ′(c) − p′(c)). (4.13)

But we will now see that p′ serves as a Taylor approximating polynomial for f ′! Indeed, it
follows from (4.12) that

p′(x) = 0 +
f ′(a)

1!
· 1 +

f ′′(a)
2!

· 2(x− a) · · · + f (d+1)(a)
(d + 1)!

· (d + 1)(x− a)d

= f ′(a) +
(f ′)′(a)

1!
(x− a) +

(f ′)′′(a)
2!

(x− a)2 + · · · + (f ′)(d)(a)
d!

· (x− a)d.

Hence by the induction hypothesis (applied to f ′, whose derivatives up to order d + 1 exist
on I), we have that there exists a ξ between a and c (and this ξ is then also between a and b)
such that

f ′(c) = f ′(a) +
(f ′)′(a)

1!
(c− a) + · · · + (f ′)(d)(a)

d!
· (c− a)d︸ ︷︷ ︸

p′(c)

+
(f ′)(d+1)(ξ)
(d + 1)!

(c− a)d+1.

Thus

f ′(c) − p′(c) =
f (d+2)(ξ)
(d + 1)!

(c− a)d+1.

Substituting this in (4.13), we obtain

f (b) − p(b) =
(b− a)d+2

�����(c− a)d+1(d + 2)
· f

(d+2)(ξ)
(d + 1)!�

����(c− a)d+1 =
f (d+2)(ξ)
(d + 2)!

(b− a)d+2.

This completes the proof. �

Example 4.21. What is sin 1 to three decimal places?

We will learn later on that sin′ = cos, cos′ = − sin, | cos x| ≤ 1 for all x ∈ R, sin 0 = 0 and
cos 0 = 1. Let us take these facts for granted right now. Thus with f := sin, we have

f ′ = cos, f ′′ = − sin, f ′′′ = − cos, f (4) = sin, · · · .

So we observe that for any n ∈ N,

f (2n+1) = (−1)n cos,

f (2n) = (−1)n sin .

By Taylor’s Formula,

sin 1 = sin 0 +
cos 0

1!
· 1 − sin 0

2!
· 1 − cos 0

3!
· 1 + · · · + (−1)n sin 0

(2n)!
+

(−1)n cos c
(2n + 1)!
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for some c ∈ (0, 1). Hence

sin 1 =
1
1!

− 1
3!

+
1
5!

− + · · · + (−1)n

(2n)!
+

(−1)n cos c
(2n + 1)!

.

In order to find sin 1 to three decimal places, we take n large enough so that
∣∣∣∣ (−1)n cos c

(2n + 1)!

∣∣∣∣ < 10−4.

As |cos c| ≤ 1, this is guaranteed if (2n + 1)! > 104. We have 4! = 24, 5! = 120, 6! = 720,
7! = 5040, 8! > 104. So we take n = 4. Then up to 3 decimal places,

sin 1 ≈ 1
1!

− 1
3!

+
1
5!

− 1
7!

= 1 − 1
6

+
1

120
− 1

5040
=

5040 − 840 + 42 − 1
5040

=
4241
5040

= 0.8415 (to three decimal places).

(A scientific calculator gives 0.8414709848.) ♦

Exercise 4.58. Use Taylor’s Formula to show that lim
x→0

sin x− x
x3

= −1
6

.

Exercise 4.59 (o-notation). A special notation introduced by Landau in 1909 is particularly
suited to Taylor’s formula. Given functions f , g in an open interval I containing a such that g
is nonzero in I, we write

‘ f (x) = o(g(x)) as x → a ’

if

lim
x→a

f (x)
g(x)

= 0.

The symbol f (x) = o(g(x)) is read ‘f (x) is little-oh of g(x)’ or ‘f (x) is of smaller order than
g(x)’, and is intended to convey the idea that for x near a, f (x) is small compared to g(x). For
example,

f (x) = o(1) as x → a means that lim
x→a

f (x) = 0,

and

f (x) = o(x) as x → a means that lim
x→a

f (x)
x

= 0.

Also, if h is a function on I, then we write ‘f (x) = g(x) + o(h(x)) as x → a’ to mean that
‘f (x) − g(x) = o(h(x)) as x → a’.

(1) If f has a continuous (n + 1)st derivative in some open interval containing the compact
interval [a− ε, a + ε], and ifM := max{| f n+1(x)| : |x− a| ≤ ε}, then it follows from
Taylor’s Formula that

f (x) =
n∑

k=0

f (k)(a)
k!

(x− a)k + o((x− a)n) as x → a.
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(2) Show that tan x = x +
x3

3
+ o(x3) as x → 0.

(3) Show that lim
x→0

tan x− x
sin x− x cos x

= 1.

4.8 Convexity

‘Convex’ functions play an important role in optimisation. We will learn in this section:

(1) What a convex function is (that is a function whose graph lies below all possible
chords).

(2) For a twice differentiable function f , convexity is equivalent to the condition that
f ′′ ≥ 0 pointwise.

(3) What the role of convex functions is in optimisation (the necessity condition we learnt
about earlier, of vanishing derivative for minimisers, becomes sufficient if the function
at hand happens to be convex).

What is a convex function?

Definition 4.5 (Convex function). Let I be an interval. A function f : I → R is said to be
convex if for all x, y ∈ I and all t ∈ (0, 1),

f ((1 − t)x + ty) ≤ (1 − t)f (x) + tf (y).

Geometric meaning of convexity. ‘The graph of f lies below all possible chords’.

The point (1 − t)x + ty on the x-axis divides the segment joining the points x to y in the ratio
t : 1 − t. The convexity inequality says that the corresponding value of f , namely
f ((1 − t)x + ty) is at most (1 − t)f (x) + tf (y), and so the point

((1 − t)x + ty, f ((1 − t)x + ty))

on the graph of f lies below the point

((1 − t)x + ty, (1 − t)f (x) + tf (y))

on the ‘chord’ joining the points (x, f (x)) and (y, f (y)).

x y(1−t)x+ty

f(x)

f(y)

(1−t)f(x)+tf(y)

f((1−t)x+ty)
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Exercise 4.60. Show that x �→ |x| : R → R is convex.

Exercise 4.61. Let f : I → R be a function on an interval I ⊂ R. We define the epigraph
of f by

U( f ) :=
⋃
x∈I

{(x, y) : y ≥ f (x)} ⊂ I × R.

In other words, U( f ) is the ‘region above and on the graph of f ’. A subset C ⊂ R
2 is called a

convex set if for all v1, v2 ∈ C and for all t ∈ (0, 1), (1 − t) · v1 + t · v2 ∈ C. Show that f is a
convex function if and only if U( f ) is a convex set.

Example 4.22. Consider the function f : R → R given by f (x) = x2, x ∈ R. We claim that
this function is convex.

1

0.8

0.6

0.4

0.2

−1 −0.5 0 0.5
x

1

Indeed, we note that for x1, x2 ∈ R and t ∈ (0, 1),

f ((1 − t)x1 + tx2)

= ((1 − t)x1 + tx2)
2 = (1 − t)2x2

1 + 2t(1 − t)x1x2 + t2x2
2

= (1 − t)x2
1 + tx2

2 + ((1 − t)2 − (1 − t))x2
1 + (t2 − t)x2

2 + 2t(1 − t)x1x2

= (1 − t)x2
1 + tx2

2 − t(1 − t)(x2
1 + x2

2 − 2x1x2)

= (1 − t)x2
1 + tx2

2 − t(1 − t)(x1 − x2)
2︸ ︷︷ ︸

≥0

≤ (1 − t)x2
1 + tx2

2 = (1 − t)f (x1) + tf (x2).

Consequently, f is convex. ♦

So checking convexity using the definition can be cumbersome. However, the following result
makes it very easy.

Theorem 4.13. Let f : I → R be twice differentiable on an interval I. Then f is convex on I
if and only if for all x ∈ I, f ′′(x) ≥ 0.

The convexity of x �→ x2 is now immediate, as
d2

dx2
x2 = 2 > 0, x ∈ R.

Example 4.23. We have
d2

dx2
ex = ex > 0, x ∈ R,

and so x �→ ex is convex. So, for all x1, x2 ∈ R, t ∈ (0, 1), e(1−t)x1+tx2 ≤ (1 − t)ex1 + tex2 .
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Here is one more example. The function x
g�→
√

1 + x2 is convex on R. Indeed,

g′(x) =
x√

1 + x2
,

and so

g′′(x) =
1√

1 + x2
+ x ·

(
−1

2

)
· 1
(1 + x2)3/2

· 2x

=
1√

1 + x2
− x2

(1 + x2)
√

1 + x2
=

1
(1 + x2)3/2

> 0

for all x ∈ R. ♦

Proof of Theorem 4.13.

(1) Suppose that f ′′(x) ≥ 0 for all x ∈ I. Let x, y ∈ I be such that x < y, and let t ∈ (0, 1).
Applying the Mean Value Theorem to f on the interval [x, (1 − t)x + ty] gives

f ((1 − t)x + ty) − f (x)
t(y− x)

= f ′(c1)

for some c1 such that x < c1 < (1 − t)x + ty. Also, by the Mean Value Theorem for f on
[(1 − t)x + ty, y], we have

f (y) − f ((1 − t)x + ty)
(1 − t)(y− x)

= f ′(c2)

for some c2 such that (1 − t)x + ty < c2 < y.

x y
(1 − t)x + ty

c1 c2

As f ′′(ξ) ≥ 0 for all ξ ∈ I, we know that f ′ is increasing on I, and since c1 < c2, it follows that
f ′(c1) ≤ f ′(c2), that is,

f ((1 − t)x + ty) − f (x)
t(y− x)

≤ f (y) − f ((1 − t)x + ty)
(1 − t)(y− x)

.

Upon rearranging, we obtain f ((1 − t)x + ty) ≤ tf (y) + (1 − t)f (x). So f is convex. This
proves the ‘if’ part.
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(2) Now suppose that f is convex. Let x, u, y ∈ I be such that x < u < y. If

t :=
u− x
y− x

,

then t ∈ (0, 1), and

1 − t =
y− u
y− x

.

x yu

u − x

y − x

From the convexity of f , we obtain

y− u
y− x

f (x) +
u− x
y− x

f (y) ≥ f

(
y− u
y− x

x +
u− x
y− x

y

)
= f (u),

that is,
(y− x)f (u) ≤ (u− x)f (y) + (y− u)f (x). (4.14)

From (4.14), we obtain (y− x)f (u) ≤ (u− x)f (y) + (y− x + x− u)f (x), that is,

(y− x)f (u) − (y− x)f (x) ≤ (u− x)f (y) − (u− x)f (x),

and so
f (u) − f (x)

u− x
≤ f (y) − f (x)

y− x
.

Passing the limit as u ↘ x, we obtain

f ′(x) ≤ f (y) − f (x)
y− x

. (4.15)

From (4.14), we also have that (y− x)f (u) ≤ (u− y + y− x)f (y) + (y− u)f (x), that is,
(y− x)f (u) − (y− x)f (y) ≤ (u− y)f (y) − (u− y)f (x), and so

f (y) − f (x)
y− x

≤ f (y) − f (u)
y− u

.

Passing the limit as u ↗ y, we obtain

f (y) − f (x)
y− x

≤ f ′(y). (4.16)
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From (4.15) and (4.16), we obtain f ′(x) ≤ f ′(y). So f ′ is increasing on I. Hence f ′′(ξ) ≥ 0 for
all ξ ∈ I since

f ′′(ξ) = lim
x↘ξ

f ′(x) − f ′(ξ)
x− ξ

≥ 0,

where the last inequality follows since both the numerator is always nonnegative and denom-
inator is always positive. This completes the proof of the ‘only if’ part. �

Remark 4.5. Actually in part (2) above, we have shown the following (without the assump-
tion of twice differentiability):

Proposition 4.14. If f : I → R is convex and differentiable on I, then f ′ is increasing on I.

Here is an example of a function that is not convex. Consider x
f�→√

x : (0,∞) → R.

Then f ′ =
1

2
√
x

and so f ′′ = − 1
4x3/2

< 0.

So f is not convex on (0,∞). On the other hand, −f is convex. Functions f : I → R on an
interval I for which −f is convex, are called concave.3 For example, we will see later on that
also the logarithm function log : (0,∞) → R is concave.

Exercise 4.62. Which of the following statements is/are always true?

� (A) x �→ 1/x : (0,∞) → R is convex.

� (B) x �→ − sin x : (0, π/2) → R is convex.

� (C) If f : R → [0,∞) is convex, then x �→
√

f (x) is convex.

� (D) If f : R → [0,∞) is convex, then x �→ ( f (x))2 is convex.

What does convexity have to do with optimisation?

We had seen the following necessary condition for minimisers in Theorem 4.6:

If f : (a, b) → R has a local minimiser x∗ ∈ (a, b) and f is differentiable at x∗,
then f ′(x∗) = 0.

However, the vanishing of the derivative at a point is not sufficient in general for that point to
be a local minimiser.

Example 4.24. If we look at f : R → R given by f (x) = x3, x ∈ R, then with x∗ := 0, we
have that f ′(x∗) = 3x2

∗ = 3 · 02 = 0, but clearly x∗ = 0 is not a local minimiser of f , since
f (−ε) = −ε3 < 0 = f (0) for all ε > 0, no matter how small.

3 Some books refer to our convex functions as ‘concave up’, and our concave functions as ‘concave down’. One
can justify this alternative terminology as follows. Imagine a convex function, and think of a thin glass placed along
its graph. Then the upper portion of this glass looks like the cross section of a concave lens, and so it makes sense
to call a convex function concave up. On the other hand, if we place a thin glass along the graph of a (in our sense)
concave function, then the lower surface of this glass looks like a concave lens, and so it makes sense to call this
function concave down.
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x3

0

f ′(0) = 0, but 0 is not a minimiser for the map f . ♦

But for convex functions, the vanishing derivative condition is sufficient!

Theorem 4.15. Let f : (a, b) → R and x∗ ∈ (a, b). If

(1) f is convex on (a, b),

(2) f is differentiable on (a, b), and

(3) f ′(x∗) = 0,

then x∗ is a minimiser of f .

Proof. Suppose that x0 ∈ (a, b) is such that f (x0) < f (x∗). We have only two possible cases:

1◦ x0 > x∗. By the Mean Value Theorem for f on [x∗, x0], there exists a c ∈ (x∗, x0) such
that

f ′(x∗) = 0 >
f (x0) − f (x∗)

−

x0 − x∗ +

= f ′(c),

contradicting the convexity of f .

2◦ x∗ > x0. By the Mean Value Theorem for f on [x0, x∗], there exists a c ∈ (x0, x∗) such
that

f ′(x∗) = 0 <
f (x∗) − f (x0)

+

x∗ − x0 +

= f ′(c),

again contradicting the convexity of f .

So f (x) ≥ f (x∗) for all x ∈ I. Hence x∗ is a minimiser. �

Example 4.25. Let us revisit Example 4.18, where we considered the minimisation of the
function S : (0,∞) → R given by

S(r) = 2πr2 + 2π · 2 · 1000
r

, r > 0.
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We have S′(r) = 4πr − 4π · 1000
r2

, and

S′′(r) = 4π + 8π · 1000
r3

> 0

for all r ∈ (0,∞). Thus S is convex. We had found out earlier that S(r) = 0 if and only if
r = 10 cm. Hence S has a unique minimiser, given by r∗ = 10 cm. ♦

Exercise 4.63. Let a, b > 0. In the Cartesian plane, a straight line path is drawn from the
point (0, a) to the horizontal x-axis, and then to (1, b) as shown:

(0, a)

(1, b)

(x, 0)

α β

Show, using Calculus, that the total length is shortest when α = β. Can you find a geometric
proof of this? Hint: Think of the x-axis as a reflecting surface and the path as a ray of light.

Exercise 4.64. If a1, · · · , an ∈ R, then find the minimum value of
n∑

k=1

(x− ak)
2, x ∈ R.

Exercise 4.65 (The Cauchy–Schwarz Inequality).

(1) Let a > 0, b, c ∈ R and consider the function f : R → R given by

f (t) = at2 + bt + c, t ∈ R.

Show that f has a minimiser and that the minimum value of f is −b2 − 4ac
4a

.

(2) Show that for all n ∈ N and all a1, · · · , an, b1, · · · , bn ∈ R, there holds that

(a2
1 + · · · + a2

n)(b
2
1 + · · · + b2

n) ≥ (a1b1 + · · · + anbn)
2.

Hint: Consider
n∑

k=1

(tak − bk)
2.

Exercise 4.66 (The Arithmetic Mean-Geometric Mean Inequality).

(1) Suppose that f : I → R is a convex function on an interval I ⊂ R. If n ∈ N, and
x1, · · · , xn ∈ I, then show that

f

(
x1 + · · · + xn

n

)
≤ f (x1) + · · · + f (xn)

n
.
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(2) Show that − log : (0,∞) → R is convex.

(3) Prove the Arithmetic Mean-Geometric Mean Inequality: for nonnegative real numbers
a1, · · · , an, there holds that

a1 + · · · + an
n

≥ n
√
a1 · · · an.

(The left hand side above is called the arithmetic mean of a1, · · · , an, while the right
hand side is called their geometric mean.)

Exercise 4.67. Consider all the rectangles with perimeter equal to a fixed length p > 0.
Which of the following is true for the unique rectangle that is a square, compared to the other
rectangles?

� (A) It has the largest area and the largest length of diagonal.

� (B) It has the largest area and the smallest length of diagonal.

� (C) It has the smallest area and the largest length of diagonal.

� (D) It has the smallest area and the smallest length of diagonal.

Exercise 4.68. Sketch the curve given by y = 2x3 + 2x2 − 2x− 1 after locating intervals
of increase/decrease, intervals of convexity/concavity,4 points of local maxima/minima, and
points of inflection (places where f ′′ = 0). How many times, and approximately where does
the curve cross the x-axis?

Exercise 4.69. A wire of length � is cut into two pieces, one being bent to form a square, and
the other to form an equilateral triangle. How should the wire be cut if the sum of the two
areas is to be minimised?

Exercise 4.70. Consider the graph of the derivative f ′ of a smooth (C∞) f : (−9, 9) → R on
the interval I := (−9, 9) shown in the following picture.

2

1.5

1

0.5

−8 −6 −4 −2 0 2 4
x

6 8

4 A function is concave if −f is convex.
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Determine if each of the following statements is true, false or if there isn’t enough information
to determine whether the statement is true or false.

(1) f is increasing on I.

(2) f is convex on I.

(3) f is zero at most once on I.

(4) f ′′′(0) ≤ 0.

(5) f ′′′(0) < 0.

(6) f ′′ is convex on I.

(7) f has a local maximum at 0.

4.9 0
0 form of l’Hôpital’s Rule

l’Hôpital’s Rule is a useful result for finding limits involving a ratio of two functions by
knowing what the limit is for the ratio of the derivatives of the two functions. It is named after
the French mathematician l’Hôpital (pronounced ‘low-pee-taal’) who wrote the first textbook
on Calculus around 1700!

Roughly, the rule says that if f (a) = g(a) = 0 (the reason behind calling it the ‘ 0
0 form’5)

and

lim
x→a

f ′(x)
g′(x)

= �,

then

lim
x→a

f (x)
g(x)

= �

as well.
It is enough to consider the ‘right-sided’ version, where x ↘ a. Then we have a corre-

sponding ‘left-sided’ version, and the two can be put together.

Theorem 4.16 ( 0
0 form of l’Hôpital’s Rule). If f , g : [a, b] → R are such that

(1) f (a) = g(a) = 0

(2) g(x) �= 0 for x ∈ (a, b],

(3) f , g are continuous on [a, b],

(4) f , g are differentiable on (a, b),

(5) g′(x) �= 0 for all x ∈ (a, b), and

(6) lim
x↘a

f ′(x)
g′(x)

= �,

then lim
x→∞

f (x)
g(x)

= �.

5 Later on in Theorem 5.11, we will learn about a ∞
∞ version of the l’Hôpital’s Rule, where the numerator and

denominator functions tend to ∞ as x approaches a.
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Proof. Let ε > 0. Then there exists a δ > 0 such that for all x ∈ [a, b] satisfying 0 < x− a < δ,
we have ∣∣∣∣ f

′(x)
g′(x)

− �

∣∣∣∣ < ε.

By the Cauchy Mean Value Theorem, it follows that for such x, there exists a cx ∈ (a, x)
such that

f (x)
g(x)

=
f (x) − f (a)
g(x) − g(a)

=
f ′(cx)
g′(cx)

.

But this cx satisfies 0 < cx − a < δ, and so∣∣∣∣ f (x)g(x)
− �

∣∣∣∣ =
∣∣∣∣ f

′(cx)
g′(cx)

− �

∣∣∣∣ < ε.

Hence lim
x→∞

f (x)
g(x)

= �. �

Here are some examples.

Example 4.26.

(1) lim
x→1

1 − 5
√
x

1 − 3
√
x

=
3
5

.

With f (x) := 1 − 5
√
x and g(x) := 1 − 3

√
x, we have f (1) = g(1) = 0. Also,

f ′(x) = −1
5
x−4/5,

g′(x) = −1
3
x−2/3 �= 0 for x near 1, and

lim
x→1

f ′(x)
g′(x)

= lim
x→1

− 1
5x

−4/5

− 1
3x

−2/3
=

− 1
5 · 1

− 1
3 · 1

=
3
5

.

Hence by l’Hôpital’s Rule, lim
x→1

f (x)
g(x)

= lim
x→1

1 − 5
√
x

1 − 3
√
x

=
3
5

too.

(2) lim
x→0

sin x
x

= 1.

With f (x) := sin x and g(x) := x, we have that f (0) = g(0) = 0. Also, f ′(x) = cos x, and
g′(x) = 1 > 0 for all x. Thus

lim
x→0

f ′(x)
g′(x)

= lim
x→0

cos x
1

= cos 0 = 1.

Hence by l’Hôpital’s Rule, lim
x→0

f (x)
g(x)

= lim
x→0

sin x
x

= 1 as well.

(3) lim
x→0

1 − cos x
x2

=
1
2

.

With f (x) := 1 − cos x and g(x) := x2, we have f (0) = g(0) = 0. Also, f ′(x) = sin x, and
g′(x) = 2x �= 0 for x �= 0. Thus

lim
x→1

f ′(x)
g′(x)

= lim
x→1

sin x
2x

=
1
2
· lim
x→1

sin x
x

=
1
2
· 1 =

1
2

,

by (2) above. Hence by l’Hôpital’s Rule, lim
x→0

f (x)
g(x)

= lim
x→0

1 − cos x
x2

=
1
2

too. ♦
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Example 4.27. One should be careful6 when applying l’Hôpital’s Rule and check that the
hypotheses for its application are all actually satisfied. For example, consider the reckless
application giving

lim
x→0+

x + 1
x

= lim
x→0

1
1

= 1,

while in fact this is wrong, and the limit does not exist since

lim
x→0+

x + 1
x

= lim
x→0+

(
1 +

1
x

)
= ∞.

What went wrong? (x + 1)
∣∣∣
x=0

= 1 �= 0! ♦

Exercise 4.71. What is wrong with the following application of l’Hôpital’s Rule?

lim
x→1

x3 + x− 2
x2 − 3x + 2

= lim
x→1

3x2 + 1
2x− 3

= lim
x→1

6x
2

= 3.

Show that the limit above is actually equal to −4.

Exercise 4.72. Revisit Exercise 4.58, but now use l’Hôpital’s Rule to show that

lim
x→0

sin x− x
x3

= −1
6

.

Exercise 4.73. Compute

lim
x→

√
3

tan−1x− π/3

x−
√

3
,

where tan−1 : R → (−π/2, π/2) denotes the inverse of tan : (−π/2, π/2) → R.

Exercise 4.74. Find lim
x→0+

tan
√
x√

x
.

Exercise 4.75. Find lim
x→1

(2x− x4)1/2 − x1/3

1 − x3/4
.

Notes

Exercises 4.22, 4.23, are based on [A]. Exercises 4.31, 4.33, 4.35 stem from [G]. Exercise 4.57
is based on [R].

6 As in one of the Spiderman comics, a narrative panel reads ‘with great power there must also come—great
responsibility!’



5

Integration

In this chapter, we study

(1) the definition of the integral

(2) some of its basic properties

(3) its applications.

The integral
∫ b

a
f (x)dx will be the area under the graph of a function f : [a, b] → R.

f

a b

5.1 Towards a definition of the integral

Let f : [a, b] → R be a ‘nice’ function and consider its graph:

f

a b

The How and Why of One Variable Calculus, First Edition. Amol Sasane.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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It is a basic problem in geometry to calculate the area under the graph of such a function f .
Let us (for now) denote this area by A( f ). For example, when f : [−r, r] → R is given by

f (x) =
√

r2 − x2, −r ≤ x ≤ r,

then we would like to calculate the area A( f ) under the graph of f , which is the area of the
semicircular region:

√
r2 −x2

−r r0

But what do we mean by ‘area’ and for which f : [a, b] → R does A( f ) exist?

Consider first a very simple case, namely when f : [a, b] → R is a constant function

f (x) = c, x ∈ [a, b].

Then clearly the area A( f ) under the graph of f should be the area of the shaded rectangle,
given by

A( f ) = c · (b− a) (the product of the length with the breadth of the rectangle).

c

a b

But what if f is not constant, and instead looks like this?

f

a b
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Well, if there are numbers M, m such that

m ≤ f (x) ≤ M for all x ∈ [a, b],

then clearly we should have

m · (b− a) ≤ A( f ) ≤ M · (b− a)

as illustrated by the pictures in Figure 5.1.

f

a b

m

M

Figure 5.1 The area A( f ) under the graph of f is flanked by the areas of the two shaded
rectangles, that is, it satisfies m(b− a) ≤ A( f ) ≤ M(b− a).

This gives us the idea that we can estimate the area A( f ) by considering little rectangles, as
shown in Figure 5.2, and we anticipate that if we make the rectangles finer and finer, then we
should be able to approximate A( f ) better and better.

a b

Figure 5.2 The area A( f ) under the graph of f satisfies S ≤ A( f ) ≤ S, where S is the sum of
all the areas of the rectangles shown above which lie below the graph of f and S is the sum of
all the areas of the rectangles shown in the picture which lie above the graph of f .

In order to make this precise, we introduce the notions of

(1) a partition P of an interval [a, b], and

(2) an upper/lower sum associated with a partition P of [a, b] and a bounded function
f : [a, b] → R.
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Partition of an interval [a, b].

Definition 5.1 (Partition of an interval). A partition (of an interval [a, b] ⊂ R) is a finite set
P = {x0, x1, · · · , xn−1, xn} such that

x0 := a < x1 < x2 < x3 < · · · < xn−1 < b =: xn.

See Figure 5.3. The collection of all partitions of [a, b] is denoted by P[a,b].

a

:=

x0

b

:=

xn

x1 x2 x3 xn−1· · ·

Figure 5.3 A partition P of [a, b].

Example 5.1. The sets

{a, b},{
a,

a + b
2

, b

}
,

{
a, a +

b− a
3

, b

}
,

Pn :=
{
a, a +

b− a
n

, a + 2
b− a
n

, · · · , a + (n− 1)
b− a
n

, b

}
(n ∈ N),

are examples of partitions of [a, b], and all of these belong to P[a,b]. ♦

Exercise 5.1. Which of the following statements is true?

(1) {0, 1, 1/2, 1/3, · · ·} is a partition of [0, 1].

(2) Every interval [a, b] has an infinite number of partitions.

(3) {0, 1, 2, 3} is a partition of [0,∞).

(4) {1/3, 1/2, 3/4} is a partition of [0, 1].

Bounded functions.

Definition 5.2 (Bounded function). A function f : [a, b] → R is said to be bounded if there
exist M,m such that for all x ∈ [a, b], m ≤ f (x) ≤ M. See Figure 5.4.

This is equivalent to each of the following:

(1) The range of f , namely the set {f (x) : x ∈ [a, b]}, is a bounded set.

(2) There exists an M ≥ 0 such that for all x ∈ [a, b], | f (x)| ≤ M.
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a b

m

M

f

Figure 5.4 A bounded function f : [a, b] → R.

The equivalence of the boundedness of f with (1) is obvious from the definitions, while the
equivalence of (1) and (2) follows immediately from Exercise 1.20.

Pictorially, if we imagine a light source at ‘x = +∞’, sending parallel light rays to the
left, then the ‘shadow of the graph of f on the y-axis’ is a bounded set.

Example 5.2. The function f : [0, 1] → R given by f (x) = x2, x ∈ R, is bounded. Indeed, for
all x ∈ [0, 1], we have m := 0 ≤ f (x) = x2 ≤ 1 =: M.

On the other hand, the function g : [0, 1] → R given by

g(x) =

{
1/x if x ∈ (0, 1],
0 if x = 0,

is not bounded, since if there exists an M ∈ R such that g(x) ≤ M for all x ∈ [0, 1], then in
particular, for all n ∈ N, with x := 1/n ∈ [0, 1], we would have

g(x) =
1

1/n
= n ≤ M, n ∈ N,

which is impossible by the Archimedean Property of R. ♦

Upper sum S( f ,P) of f associated with a partition P.

Definition 5.3 (Upper sum). Let f : [a, b] → R be a bounded function and P be a partition of
[a, b]. The upper sum S( f ,P) of f associated with a partition P is

S( f ,P) :=
n−1∑
k=0

Mk · (xk+1 − xk),

where Mk := sup
x∈[xk ,xk+1]

f (x), k = 0, 1, · · · , n− 1.

The set {f (x) : x ∈ [xk, xk+1]}, namely, the range of f restricted to the subinterval [xk, xk+1] of
[a, b], is nonempty and bounded above (by any upper bound for the range of f on [a, b]). So,
Mk above makes sense for all ks.
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The upper sum is formed by the addition of the various terms Mk · (xk+1 − xk) for the
different ks. Each one of such terms is just the area of the rectangle with base as the interval
[xk, xk+1] and height Mk for the various ks. See Figure 5.5.

xk xk+1

f
Mk

Figure 5.5 The area of the shortest rectangle that lies above the graph of f in the interval
[xk, xk+1].

Thus the term Mk · (xk+1 − xk) is just the area of the shortest rectangle lying above the graph
of f in the interval [xk, xk+1].

The rationale behind the notation S( f ,P) is that S is for ‘sum’ (of areas of rectangles),
the · reminds us that the rectangles have their upper edges lying above the graph of f , and the
( f ,P) tells us which function f and partition P of [a, b] we are forming the upper sum for. The
picture in Figure 5.6 shows how a particular upper sum is formed:

a b

Figure 5.6 The upper sum S( f ,P) associated with f and the partition P is the sum of the
areas of the shortest rectangles that lie above the graph of f in each of the intervals [xk, xk+1],
k = 0, 1, · · · , n− 1, of the partition.

Example 5.3. For n ∈ N, let Pn be the partition

Pn :=
{

0,
1
n

,
2
n

,
3
n

, · · · ,
n− 1
n

, 1

}
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of the interval [0, 1], and let f : [0, 1] → R be the squaring function

f (x) = x2, x ∈ [0, 1].

As f is increasing, it is clear that

Mk := sup
x∈[ kn , k+1

n ]
f (x) =

(k + 1)2

n2
.

Thus the upper sum S( f ,Pn) associated with f and Pn is given by

S( f ,Pn) =
n−1∑
k=0

Mk ·
(
k + 1
n

− k
n

)
=

n−1∑
k=0

Mk ·
1
n

=
n−1∑
k=0

(k + 1)2

n2
· 1
n

=
1
n3

n−1∑
k=0

(k + 1)2

=
1
n3

(12 + 22 + 32 + · · · + n2)
(∗)
=

1
n3

· n(n + 1)(2n + 1)
6

=
1
6

(
1 +

1
n

)(
2 +

1
n

)
.

Here in the step (∗), we have used the fact that for all n ∈ N, the sum of the first n squares is

12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
,

which the interested student may justify using induction on n. ♦

Lower sum S( f ,P) of f associated with a partition P.

Definition 5.4 (Lower sum). Let f : [a, b] → R be a bounded function and P be a partition
of [a, b]. The lower sum S( f ,P) of f associated with a partition P is

S( f ,P) :=
n−1∑
k=0

mk · (xk+1 − xk),

where mk := inf
x∈[xk ,xk+1]

f (x), k = 0, 1, · · · , n− 1.

The set {f (x) : x ∈ [xk, xk+1]}, namely, the range of f restricted to the subinterval [xk, xk+1] of
[a, b], is nonempty and bounded below (by any lower bound for the range of f on [a, b]). So,
mk above makes sense for all ks.

The lower sum is obtained by adding the various termsmk · (xk+1 − xk) for the different ks.
Each such term is just the area of the rectangle with base as the interval [xk, xk+1] and height
mk. See Figure 5.7.

Thus the term mk · (xk+1 − xk) is just the area of the tallest rectangle lying below the graph
of f in the interval [xk, xk+1].



190 THE HOW AND WHY OF ONE VARIABLE CALCULUS

xk xk+1

f

mk

Figure 5.7 The area of the tallest rectangle that lies below the graph of f in the interval
[xk, xk+1].

The rationale behind the notation S( f ,P) is that S is for ‘sum’ (of areas of rectangles), the ·
reminds us that the rectangles have their upper edges lying below the graph of f , and the ( f ,P)
tells us which function f and partition P of [a, b] we are forming the lower sum for. The picture
in Figure 5.8 shows how a particular lower sum is formed:

a b

Figure 5.8 The lower sum S( f ,P) associated with f and the partition P is the sum of the
areas of the tallest rectangles that lie below the graph of f in each of the intervals [xk, xk+1],
k = 0, 1, · · · , n− 1, of the partition.

Example 5.4. For n ∈ N, let Pn be the partition

Pn :=
{

0,
1
n

,
2
n

,
3
n

, · · · ,
n− 1
n

, 1

}

of the interval [0, 1] and let f : [0, 1] → R be the squaring function

f (x) = x2, x ∈ [0, 1].
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As f is increasing, it is clear that

mk := sup
x∈[ kn , k+1

n ]
f (x) =

k2

n2
.

Thus the lower sum S( f ,Pn) associated with f and Pn is given by

S( f ,Pn) =
n−1∑
k=0

mk ·
(
k + 1
n

− k
n

)
=

n−1∑
k=0

mk ·
1
n

=
n−1∑
k=0

k2

n2
· 1
n

=
1
n3

n−1∑
k=0

k2

=
1
n3

(02 + 12 + 22 + · · · + (n− 1)2) =
1
n3

· (n− 1)n(2n− 1)
6

=
1
6

(
1 − 1

n

)(
2 − 1

n

)
.

♦

In order to arrive at a sensible definition of the integral of f : [a, b] → R, that is, of the area
A( f ) under the graph of f : [a, b] → R, we first make the following observations, which will
help us to formulate this sought after definition:

(1) Clearly, we expect the area A( f ) under the graph of f : [a, b] → R to satisfy

A( f ) ≤ S( f ,P)

for any partition P, and so the number A( f ) should be a lower bound for the set of all
upper sums S( f ,P), where P belongs to the collection P[a,b] of all partitions of [a, b].
Thus

A( f ) ≤ S( f ) := inf
P∈P[a,b]

S( f ,P). (5.1)

(2) Similarly, we expect the area A( f ) under the graph of f : [a, b] → R to satisfy

S( f ,P) ≤ A( f )

for any partition P, and so the number A( f ) should be an upper bound for the set of all
lower sums S( f ,P), where P belongs to the collection P[a,b] of all partitions of [a, b].
Thus

sup
P∈P[a,b]

S( f ,P) =: S( f ) ≤ A( f ). (5.2)

(3) Putting (5.1) and (5.2) together, we see that our notion of the integral must satisfy

S( f ) ≤ A( f ) ≤ S( f ).

See Figure 5.9. Also, as our partitions P get finer, we expect that for nice functions f
(for which we can define the area under its graph), S( f ,P) ≈ S( f ,P), and so for such
nice functions, we would then expect that S( f ) = A( f ) = S( f ). And this motivates
the following definition.
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S(f, P) S(f)

S(f) S(f, P)

Figure 5.9 The integral A( f ) is flanked by S( f ) and S( f ). For fine partitions, we expect
S( f ,P) to be close to S( f ,P), and this makes S( f ) and S( f ) to be equal to each other. Thus
for nice functions f , A( f ) = S( f ) = S( f ).

Definition 5.5 (Riemann integral of a Riemann integrable function). Let P[a,b] be the collec-
tion of all partitions of [a, b] and let f : [a, b] → R be bounded. Then f is said to be Riemann
integrable (on [a, b]) if

S( f ) = S( f ),

and the Riemann integral, denoted by
∫ b

a
f (x)dx, is defined to be this common value:

∫ b

a
f (x)dx = S( f ) = S( f ).

The set of all Riemann integrable functions on [a, b] is denoted by RI[a, b].

In the notation
∫ b

a
f (x)dx, the ∫

symbol is really an elongated S from ‘sum’, and the ‘f (x)dx’ reminds us that in the upper and
lower sums, we have areas of little rectangles, whose base length is an elemental change dx
in x, and height is f (x). The a and b at the bottom and top simply indicate what interval [a, b]
we are working with. The function f is often referred to as the integrand.

We will soon show that in general for any bounded function f : [a, b] → R (Riemann inte-
grable or not), we have

S( f ) ≥ S( f ).

For non-Riemann integrable functions, one has a strict inequality above, and for Riemann
integrable functions, one has an equality.

In order to prove the inequality above, we will need to investigate what happens to upper
and lower sums when points are added to a partition. The new partition obtained by the process
of adding extra points is called a refinement.

Definition 5.6 (Refinement of a partition). If P,P∗ are partitions of [a, b] such that P ⊂ P∗,
then P∗ is called a refinement of P.

When a partition is refined, one can imagine that the approximations to the area under the
graph of f becomes better, and so lower sums ought to increase, and upper sums ought to
decrease. This is exactly what happens, and this is the content of the next result.

Lemma 5.1 (Refinement Lemma). If P,P∗ are partitions of [a, b] with P ⊂ P∗, and
f : [a, b] → R is bounded, then S( f ,P∗) ≤ S( f ,P), and S( f ,P∗) ≥ S( f ,P).
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Proof. Let P = {x0, x1, · · · , xn−1, xn}. First suppose that P∗ has just one extra point x∗,
occurring in some subinterval [xk, xk+1]. See Figure 5.10.

xk x∗ xk+1

f

Figure 5.10 S( f ,P) − S( f ,P∗) essentially is the nonnegative area of the shaded rectangle.

If we compare S( f ,P) with S( f ,P∗), we notice that most of the terms in the two sums are
identical, except for the terms involving the interval [xk, xk+1]. We have

S( f ,P) − S( f ,P∗)

=

(
sup

x∈[xk ,xk+1]
f (x)

)
· (xk+1 − xk)

−
(

sup
x∈[xk ,x∗]

f (x)

)
· (x∗ − xk) −

(
sup

x∈[x∗,xk+1]
f (x)

)
· (xk+1 − x∗)

=

(
sup

x∈[xk ,xk+1]
f (x)

)
· (xk+1 − x∗ + x∗ − xk)

−
(

sup
x∈[xk ,x∗]

f (x)

)
· (x∗ − xk) −

(
sup

x∈[x∗,xk+1]
f (x)

)
· (xk+1 − x∗)

=

(
sup

x∈[xk ,xk+1]
f (x) − sup

x∈[xk ,x∗]
f (x)

)
· (x∗ − xk)

+

(
sup

x∈[xk ,xk+1]
f (x) − sup

x∈[x∗,xk+1]
f (x)

)
· (xk+1 − x∗)

≥ 0 + 0 = 0.

If P∗ has several additional points (instead of just one additional point), then we repeat the
argument several times, considering one extra point in each step to obtain

S( f ,P∗) ≤ · · · ≤ S( f ,P2) ≤ S( f ,P1) ≤ S( f ,P)
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where

P1 is a refinement of P having one more point than P,

P2 is a refinement of P1 having one more point than P1,

and two extra points than P,

· · · and so on.

Thus S( f ,P∗) ≤ S( f ,P).
The proof of S( f ,P∗) ≥ S( f ,P) is analogous. �

Corollary 5.2. If f : [a, b] → R is bounded then S( f ) ≥ S( f ).

Proof. If P,P′ are any two refinements of [a, b], then P ∪ P′ is a refinement of P as well as
P′, and so by the Refinement Lemma, we have

S( f ,P) ≥ S( f ,P ∪ P′) ≥ S( f ,P ∪ P′) ≥ S( f ,P′).

Thus S( f ,P) ≥ S( f ,P′), for any two partitions P,P′. (So any upper sum is always bigger than
any lower sum!)

Let P be a fixed partition. For any partition P′ ∈ P[a,b], S( f ,P) ≥ S( f ,P′). Thus

S( f ,P) ≥ sup
P′∈P[a,b]

S( f ,P′) = S( f ).

As the choice of P ∈ P[a,b] was arbitrary, inf
P∈P[a,b]

S( f ,P) = S( f ) ≥ S( f ). �

Let us now show that the squaring function is Riemann integrable on [0, 1], and let us calculate
its value.

Example 5.5. Consider the bounded function f : [0, 1] → R given by

f (x) = x2, x ∈ [0, 1].

We will show that f ∈ RI[0, 1] and that
∫ 1

0
x2dx =

1
3

.

Rather than considering all partitions, it turns out that we can be efficient and consider the
special partitions

Pn =
{

0,
1
n

,
2
n

,
3
n

, · · · ,
n− 1
n

, 1

}
, n ∈ N.

We had found out earlier in Examples 5.3 and 5.4 that

S( f ,Pn) =
1
6

(
1 +

1
n

)(
1 +

2
n

)
and S( f ,Pn) =

1
6

(
1 − 1

n

)(
1 − 2

n

)
.
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Thus

S( f ) = inf
P∈P[0,1]

S( f ,P) ≤ inf
n∈N

S( f ,Pn) = inf
n∈N

1
6

(
1 +

1
n

)(
2 +

1
n

)
(∗)
=

1
3

, and

S( f ) = sup
P∈P[0,1]

S( f ,P) ≥ sup
n∈N

S( f ,Pn) = sup
n∈N

1
6

(
1 − 1

n

)(
2 − 1

n

)
(∗∗)
=

1
3

.

For the justification of (∗) and (∗∗), note that the sequence with n term

1
6

(
1 +

1
n

)(
2 +

1
n

)

is decreasing and bounded below by 0, and hence convergent to

inf
n∈N

1
6

(
1 +

1
n

)(
2 +

1
n

)
.

On the other hand, from the Algebra of Limits, it is easy to see that the limit must be

1
6

(
1 + lim

n→0

1
n

)(
2 + lim

n→0

1
n

)
=

1
6
(1 + 0)(2 + 0) =

1
3

.

The proof of (∗∗) is analogous.

Hence
1
3
≥ S( f ) ≥ S( f ) ≥ 1

3
, and so S( f ) = S( f ) =

1
3

.

Thus f ∈ RI[0, 1] and
∫ 1

0
x2dx =

1
3

. ♦

In the example above, we had to work rather hard to find the integral of a simple function.
But we will soon learn about the Fundamental Theorem of Calculus, which will enable us
to avoid such complicated calculations with partitions, lower and upper sums, infimums and
supremums etc. Indeed, the Fundamental Theorem of Calculus says that if the integrand f is
the derivative of a function F, then

∫ b

a
f (x)dx = F(b) − F(a) !

In light of this result, we can now easily evaluate our previous example for the squaring func-
tion. Indeed, we simply note that the integrand f := x2 is the derivative of F := x3/3, and so

∫ 1

0
x2dx =

13

3
− 03

3
=

1
3

.

But before we establish the Fundamental Theorem of Calculus, we will first learn about a few
basic, but important properties of the Riemann integral in the next section.

Are all bounded functions f : [a, b] → R Riemann integrable? The answer is no, and here
is an example.
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Example 5.6. (1
Q

/∈ RI[0, 1].) Consider the indicator function1 1
Q

of the rationals:

1
Q
(x) =

{
1 if x ∈ Q,

0 if x /∈ Q.

Clearly 1
Q

is bounded: for all x, 0 ≤ 1
Q
(x) ≤ 1.

We will show that (the restriction of) 1
Q

on [0, 1] is not Riemann integrable on [0, 1] by
showing that

S(1
Q
) ≥ 1 > 0 ≥ S(1

Q
).

Let P = {x0 = 0, x1, · · · , xn−1, xn = 1} be any partition of [0, 1]. Then each [xk, xk+1] contains
a rational number, say αk ∈ Q, and an irrational number, say βk /∈ Q. Thus

Mk := sup
x∈[xk ,xk+1]

f (x) ≥ f (αk) = 1, and

mk := inf
x∈[xk ,xk+1]

f (x) ≤ f (βk) = 0.

Hence

S(1
Q

,P) =
n−1∑
k=0

Mk · (xk+1 − xk) ≥
n−1∑
k=0

1 · (xk+1 − xk)

= (��x1 − x0) + (��x2 −��x1) + · · · + (xn −��xn−1) = xn − x0 = 1 − 0 = 1.

Similarly

S(1
Q

,P) =
n−1∑
k=0

mk · (xk+1 − xk) ≤
n−1∑
k=0

0 · (xk+1 − xk) = 0.

So S(1
Q
) = inf

P∈P[a,b]

S(1
Q

,P) = 1 > 0 = sup
P∈P[a,b]

S(1
Q

,P) = S(1
Q
), and 1

Q
/∈ RI[0, 1]. ♦

Hence we have RI[a, b] � B[a, b], where B[a, b] denotes the set of all bounded functions on
[a, b].

Exercise 5.2. (∗) Is the following function f Riemann integrable on [0, 1]?

f (x) =

{
0 if x ∈ [0, 1]\Q,

x if x ∈ [0, 1] ∩ Q.

Hint: For any partition P = {x0 = 0 < x1 < · · · < xn−1 < xn = 1},

xk+1 ≥ xk+1 + xk
2

, k = 0, · · · , n− 1.

Use this to find a positive lower bound on upper sums.

Let us now show that there is an ample supply of Riemann integrable functions: all con-
tinuous functions are Riemann integrable, that is, C[a, b] ⊂ RI[a, b].

1 If S is a subset of R, then the indicator function 1S is defined by 1S(x) = 1 if x ∈ S and 0 if x /∈ S.
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Theorem 5.3. Every continuous function on [a, b] is Riemann integrable on [a, b].

Proof. As f is continuous on [a, b] and since [a, b] is a compact interval, f is also uniformly
continuous on [a, b]. Let ε > 0. Then there exists a δ > 0 such that whenever x, y ∈ [a, b] sat-
isfy |x− y| < δ, we have | f (x) − f (y)| < ε. Consider any partitionP∗ = {x0, x1, · · · , xn−1, xn}
such that

max
k∈{0,1,···,n−1}

|xk+1 − xk| < δ.

Then with Mk := sup
x∈[xk ,xk+1]

f (x) and mk := inf
x∈[xk ,xk+1]

f (x), we have

S( f ,P∗) − S( f ,P∗) =
n−1∑
k=0

(Mk − mk)(xk+1 − xk)

≤
n−1∑
k=0

ε(xk+1 − xk) = ε(b− a).

Thus
0 ≤ S( f ) − S( f ) ≤ S( f ,P∗) − S( f ,P∗) ≤ ε(b− a).

Since ε > 0 was arbitrary, it follows that S( f ) = S( f ), that is, f ∈ RI[a, b]. �

Example 5.7. All polynomial functions, being continuous, are Riemann integrable on every
compact interval [a, b]. ♦

Example 5.8 (Definition of π). Consider the continuous function f : [−1, 1] → R defined by
f (x) =

√
1 − x2, x ∈ [−1, 1].

−1 10

√
1 − x2

Figure 5.11 The definition of the number π := 2
∫ 1

−1

√
1 − x2dx.

Then f is Riemann integrable. We define the number π ∈ R by

π := 2
∫ 1

−1

√
1 − x2dx = two times the area of the semicircular disk of radius 1.

See Figure 5.11. (Later on, we will prove that this is the same π one meets in high school,
namely, for a circle of radius r, its circumference will be 2πr, and the area enclosed by it will
be equal to πr2.) ♦

Exercise 5.3. (The aim of this exercise is twofold: first, to show that C[a, b] � RI[a, b], and
secondly, to point out that what we have been discussing is signed area under the graph of f ,
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so that if the graph of a function lies below the x-axis, then that portion of the area is attributed
a negative sign.) Let f : [0, 2] → R be given by

f (x) =

{
1 if x ∈ [0, 1],

−1 if x ∈ (1, 2].

Show that f ∈ RI[0, 2] and that
∫ 2

0
f (x)dx = 0.

Hint: Consider the partitions Pn :=
{

0, 1, 1 +
1
n

, 2

}
, n ∈ N.

Exercise 5.4. Which of the following statements is/are true?

� (A) Continuous functions f : [a, b] → R are Riemann integrable on [a, b].

� (B) Riemann integrable functions f : [a, b] → R are continuous on [a, b].

� (C) Differentiable functions f : [a, b] → R are Riemann integrable on [a, b].

� (D) Bounded functions f : [a, b] → R are Riemann integrable on [a, b].

Exercise 5.5. For a partition P = {x0 = a, x1, · · · , xn−1, xn = b} of [a, b], with

xk < xk+1, k = 0, · · · , n− 1,

define
Φ(P) := max{xk+1 − xk : k = 0, · · · , n− 1}.

Which of the following is always true for any bounded function f : [a, b] → R?

� (A) If P2 is a refinement of P1 (that is, P1 ⊂ P2), then Φ(P2) ≤ Φ(P1).

� (B) If Φ(P2) ≤ Φ(P1), then S( f ,P2) ≤ S( f ,P1).

� (C) If Φ(P2) ≤ Φ(P1), then S( f ,P2) ≤ S( f ,P1).

� (D) If Φ(P2) ≤ Φ(P1), then S( f ,P2) ≤ S( f ,P1).

5.2 Properties of the Riemann integral

Theorem 5.4.2 If f , g ∈ RI[a, b] and α ∈ R, then f + g ∈ RI[a, b], α · f ∈ RI[a, b],
∫ b

a
( f (x) + g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx, and

∫ b

a
α · f (x)dx = α ·

∫ b

a
f (x)dx.

Proof. Let ε > 0. Then there exist partitions Pf ,Pg of [a, b] such that

S( f ,Pf ) < S( f ) + ε/2,

S(g,Pg) < S(g) + ε/2.

2 The content of this result can be expressed in linear algebraic language by saying that RI[a, b] forms a vector
space with operations of vector addition and scalar multiplication defined in a pointwise manner, and that the map
f �→
∫ b
a f (x)dx : RI[a, b] → R is a linear transformation.
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Then P := Pf

⋃
Pg =: {x0, x1, · · · , xn−1, xn} is a refinement of Pf and Pg, and

S( f + g) ≤ S( f + g,P) =
n−1∑
k=0

(
sup

x∈[xk ,xk+1]
( f (x) + g(x))

)
(xk+1 − xk)

≤
n−1∑
k=0

(
sup

x∈[xk ,xk+1]
f (x) + sup

x∈[xk ,xk+1]
g(x)

)
(xk+1 − xk)

= S( f ,P) + S(g,P) ≤ S( f ,Pf ) + S(g,Pg)

< S( f ) + ε/2 + S(g) + ε/2 = S( f ) + S(g) + ε.

As ε > 0 was arbitrary, it follows that

S( f + g) ≤ S( f ) + S(g). (5.3)

In a similar manner, we can show that

S( f + g) ≥ S( f ) + S(g). (5.4)

Here are the details. Let ε > 0. Then there are partitions Pf ,Pg of [a, b] so that

S( f ,Pf ) > S( f ) − ε/2,

S(g,Pg) > S(g) − ε/2.

Then P := Pf

⋃
Pg =: {x0, x1, · · · , xn−1, xn} is a refinement of Pf ,Pg, and

S( f + g) ≥ S( f + g,P) =
n−1∑
k=0

(
inf

x∈[xk ,xk+1]
( f (x) + g(x))

)
(xk+1 − xk)

≥
n−1∑
k=0

(
inf

x∈[xk ,xk+1]
f (x) + inf

x∈[xk ,xk+1]
g(x)
)

(xk+1 − xk)

= S( f ,P) + S(g,P) ≥ S( f ,Pf ) + S(g,Pg)

> S( f ) − ε/2 + S(g) − ε/2 = S( f ) + S( f ) − ε.

As ε > 0 was arbitrary, we obtain (5.4).
From (5.3) and (5.4), we have

S( f ) + S(g) ≤ S( f + g) ≤ S( f + g) ≤ S( f ) + S(g). (5.5)
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Since f , g ∈ RI[a, b], we have S( f ) = S( f ) and S(g) = S(g). Thus the first and last terms in
(5.5) are equal. Consequently, S( f + g) = S( f + g), that is, f + g ∈ RI[a, b]. Moreover,

∫ b

a
( f (x) + g(x))dx = S( f + g) = S( f ) + S(g) =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx.

To show the second claim, we consider the three possible cases that α > 0, α = 0, and α < 0
separately.

1◦ α > 0. We will use the result from Exercise 1.8. For every partition P of [a, b], we have

S(α · f ,P) =
n−1∑
k=0

(
sup

x∈[xk ,xk+1]
(αf (x))

)
(xk+1 − xk)

=
n−1∑
k=0

α

(
sup

x∈[xk ,xk+1]
f (x)

)
(xk+1 − xk) = α · S( f ,P),

S(α · f ,P) =
n−1∑
k=0

(
inf

x∈[xk ,xk+1]
(αf (x))

)
(xk+1 − xk)

=
n−1∑
k=0

α

(
inf

x∈[xk ,xk+1]
f (x)
)

(xk+1 − xk) = α · S( f ,P).

Thus

S(α · f ) = inf
P∈P[a,b]

S(α · f ,P) = inf
P∈P[a,b]

α · S( f ,P) = α inf
P∈P[a,b]

S( f ,P)

= αS( f ) = αS( f )

= α sup
P∈P[a,b]

S( f ,P) = sup
P∈P[a,b]

αS( f ,P) = sup
P∈P[a,b]

S(α · f ,P) = S(α · f ).

Hence α · f ∈ RI[a, b] and
∫ b

a
α · f (x)dx = α ·

∫ b

a
f (x)dx.

2◦ α = 0. Then we have αf (x) = 0 for all x ∈ [a, b], and so for every partition P of [a, b],
S(α · f ,P) = 0 = S(α · f ,P), so that S(α · f ) = 0 = S(α · f ). Hence α · f ∈ RI[a, b] and

∫ b

a
α · f (x)dx = 0 = 0 ·

∫ b

a
f (x)dx = α ·

∫ b

a
f (x)dx.

3◦ α < 0. Let P = {x0, x1, · · · , xn−1, xn} be any partition of [a, b]. First let α = −1. Then

S(−f ,P) =
n−1∑
k=0

(
sup

x∈[xk ,xk+1]
−f (x)

)
(xk+1 − xk)

=
n−1∑
k=0

(
− inf

x∈[xk ,xk+1]
f (x)
)

(xk+1 − xk) = −S( f ,P).
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By replacing f by −f , we also obtain from the above that S(−f ,P) = −S( f ,P). Hence we
have

S(−f ) = inf
P∈P[a,b]

S(−f ,P) = inf
P∈P[a,b]

−S( f ,P) = − sup
P∈P[a,b]

S( f ,P) = −S( f )

S(−f ) = sup
P∈P[a,b]

S(−f ,P) = sup
P∈P[a,b]

−S( f ,P) = − inf
P∈P[a,b]

S( f ,P) = −S( f ).

Thus
S(−f ) = −S( f ) = −S( f ) = S(−f ),

and so −f ∈ RI[a, b], and
∫ b

a
−f (x)dx = S(−f ) = −S( f ) = −

∫ b

a
f (x)dx.

For general α < 0, we have α = −|α|, and as f ∈ RI[a, b], it follows from 1◦ that
|α| · f ∈ RI[a, b]. From the above, we now obtain that −|α| · f ∈ RI[a, b], that is,
α · f ∈ RI[a, b]. Also,
∫ b

a
αf (x)dx =

∫ b

a
−|α| f (x)dx = −

∫ b

a
|α| f (x)dx = −|α|

∫ b

a
f (x)dx = α

∫ b

a
f (x)dx.

This completes the proof. �

Example 5.9. For n ∈ N, x �→ xn : R → R is continuous and so xn ∈ RI[a, b] for all a, b. So
the polynomial p := c0 · 1 + c1 · x + · · · + cd · xd ∈ RI[a, b], and moreover,

∫ b

a
p(x)dx = c0

∫ b

a
1dx + c1

∫ b

a
x dx + · · · + cd

∫ b

a
xddx.

After learning the Fundamental Theorem of Calculus, we will know that
∫ b

a
xndx =

∫ b

a

d
dx

xn+1

n + 1
dx =

bn+1 − an+1

n + 1
, n = 0, 1, 2, 3, · · · .

So
∫ b

a
p(x)dx = c0(b− a) + c1

b2 − a2

2
+ · · · + cd

bd+1 − ad+1

d + 1
. ♦

The following result will play an important role in the sequel.

Theorem 5.5 (Riemann Condition). Let f : [a, b] → R be bounded. Then

f ∈ RI[a, b] ⇔ for all ε > 0, there exists a partition Pε ∈ P[a,b] such that
S( f ,Pε) − S( f ,Pε) < ε.

Proof.

(⇐:) For all ε > 0, 0 ≤ S( f ) − S( f ) ≤ S( f ,Pε) − S( f ,Pε) < ε and so S( f ) = S( f ).

(⇒:) Suppose f ∈ RI[a, b]. Let ε > 0. Then there exists a partition P1 such that

S( f ,P1) < S( f ) +
ε

2
.
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Similarly, there exists a partition P2 such that

S( f ,P2) > S( f ) − ε

2
.

Let Pε be the refinement of P1 and P2; Pε := P1 ∪ P2. Then

S( f ,Pε) ≤ S( f ,P1) < S( f ) +
ε

2
, and

S( f ,Pε) ≥ S( f ,P2) > S( f ) − ε

2
.

Consequently, 0 ≤ S( f ,Pε) − S( f ,Pε) < S( f ) − S( f )︸ ︷︷ ︸
=0

+ ε = ε.
�

S(f) − 2
S(f) + 2

εε
b
a f(x)dx = S(f) =S(f)

Both S(f, Pε), S(f, Pε)
lie on this line segment

of total length ε

2
ε

2
ε

2
ε

2
ε

Let us now show that restrictions of Riemann integrable functions are Riemann integrable.

Theorem 5.6. If [c, d] ⊂ [a, b] and f ∈ RI[a, b], then f ∈ RI[c, d].

a bc d

f

Proof. We will use the Riemann Condition to show this. Let ε > 0. Since f belongs
to RI[a, b], there exists a partition Pε of [a, b] such that S( f ,Pε) − S( f ,Pε) < ε. Let
P′

ε := Pε

⋃
{c, d} = P[a,c]

⋃
P[c,d]

⋃
P[d,b], where

P[a,c] is a partition of [a, c],

P[c,d] is a partition of [c, d],

P[d,b] is a partition of [d, b].



INTEGRATION 203

a bc d

P [a,c] P [c,d] P [d,b]

We know that

S( f ,Pε) ≥ S( f ,P′
ε) = S( f ,P[a,c]) + S( f ,P[c,d]) + S( f ,P[d,b]),

S( f ,Pε) ≤ S( f ,P′
ε) = S( f ,P[a,c]) + S( f ,P[c,d]) + S( f ,P[d,b]).

Thus

ε > S( f ,Pε) − S(P, ε)

≥ S( f ,P[a,c]) − S( f ,P[a,c]) + S( f ,P[c,d]) − S( f ,P[c,d]) + S( f ,P[d,b]) − S( f ,P[d,b])

≥ 0 + S( f ,P[c,d]) − S( f ,P[c,d]) + 0 = S( f ,P[c,d]) − S( f ,P[c,d]).

Hence by the Riemann Condition, f ∈ RI[c, d]. �

Exercise 5.6. Let f : [a, b] → R, a < c < b, f ∈ RI[a, c] and f ∈ RI[c, b]. Then f ∈ RI[a, b]
and moreover ∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx.

Exercise 5.7. Let f : [a, b] → R be a bounded function, such that f has only one discontinuity
at c ∈ (a, b). Show that f ∈ RI[a, b]. Extend the result to a finite number of discontinuities of
f in (a, b).

Theorem 5.7. If f , g ∈ RI[a, b], then f · g ∈ RI[a, b].

Proof. Let ε > 0. Let Mf ,Mg > 0 be such that | f (x)| < Mf and |g(x)| < Mg for all x ∈ [a, b].
Since f ∈ RI[a, b], there exists a partition Pf of [a, b] such that

S( f ,Pf ) − S( f ,Pf ) <
ε

2Mg
.

Also, since g ∈ RI[a, b], there exists a partition Pg of [a, b] such that

S( f ,Pg) − S( f ,Pg) <
ε

2Mf
.

Let P = Pf

⋃
Pg =: {x0, x1, · · · , xn−1, xn} be the refinement of Pf and Pg. For a bounded func-

tion ϕ on [a, b] and a k ∈ {0, 1, · · · , n− 1}, we use the notation

Mϕ,k := sup
x∈[xk ,xk+1]

ϕ(x), and

mϕ,k := inf
x∈[xk ,xk+1]

ϕ(x).
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Then for x, y ∈ [xk, xk+1],

( f · g)(x) − ( f · g)(y) = f (x)g(x) − f (x)g(y) + f (x)g(y) − f (y)g(y)

= f (x)(g(x) − g(y)) + ( f (x) − f (y))g(y)

≤ | f (x)||g(x) − g(y)| + |g(y)|| f (x) − f (y)|

≤ Mf (Mg,k − mg,k) + Mg(Mf ,k − mf ,k).

As x, y ∈ [xk, xk+1] were arbitrary, it follows from the above that

Mf ·g,k − mf ·g,k ≤ Mf (Mg,k − mg,k) + Mg(Mf ,k − mf ,k).

Thus

S( f · g) − S( f · g) ≤ S( f · g,P) − S( f · g,P)

≤ Mf (S(g,P) − S(g,P)) + Mg(S( f ,P) − S( f ,P))

≤ Mf (S(g,Pg) − S(g,Pg)) + Mg(S( f ,Pg) − S( f ,Pg))

≤ Mf
ε

2Mf
+ Mg

ε

2Mg
= ε.

By the Riemann Condition, we conclude that f · g ∈ RI[a, b]. �

Some conventions

When defining
∫ b

a
f (x)dx, we assumed that a < b.

To simplify matters in what is to follow, we will adopt the following new definitions:

(1) If a = b, then every f : [a, b] → R is Riemann integrable, and we define∫ a

a
f (x)dx := 0.

(2) If a > b and f : [b, a] → R is Riemann integrable, then we define
∫ b

a
f (x)dx := −

∫ a

b
f (x)dx.

Theorem 5.8 (Domain additivity). Suppose that f ∈ RI[a, b] and let c lie between a and b.
Then ∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx.
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a bc

f

Proof. Since restrictions of Riemann integrable functions are Riemann integrable, we know
that f ∈ RI[a, c] and f ∈ RI[c, b]. The claim now follows immediately from Exercise 5.6. �

Some useful inequalities associated with Riemann integration

Theorem 5.9. Let f , g ∈ RI[a, b]. Then

(1) If for all x ∈ [a, b], f (x) ≥ 0, then
∫ b

a
f (x)dx ≥ 0.

(2) If for all x ∈ [a, b], f (x) ≥ g(x), then
∫ b

a
f (x)dx ≥

∫ b

a
g(x)dx.

(3) | f | ∈ RI[a, b] and
∣∣∣
∫ b

a
f (x)dx

∣∣∣ ≤
∫ b

a
| f (x)|dx.

(4) Let f ∈ C[a, b] and for all x ∈ [a, b] f (x) ≥ 0. If
∫ b

a
f (x)dx = 0, then f ≡ 0 on [a, b],

that is, f is identically zero on [a, b].

Proof.

(1) We have
∫ b

a
f (x)dx = S( f ) = sup

P∈P[a,b]

S( f ,P) ≥ S( f , {a, b}) =
(

inf
x∈[a,b]

f (x)
︸ ︷︷ ︸

≥0

)
(b− a) ≥ 0.

(2) We just apply (1) to the function h := f − g. Then since h(x) ≥ 0 for all x ∈ [a, b] and
f − g ∈ RI[a, b], we obtain

∫ b

a
f (x)dx−

∫ b

a
g(x)dx =

∫ b

a
(f (x) − g(x))dx =

∫ b

a
h(x)dx ≥ 0.

Thus
∫ b

a
f (x)dx ≥

∫ b

a
g(x)dx.

(3) Let ε > 0. By the Riemann Condition, there exists a partition

Pε = {x0, x1, · · · , xn−1, xn}

of [a, b] such that S( f ,Pε) − S( f ,Pε) < ε.
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Claim: S(| f |,Pε) − S(| f |,Pε) < ε.

For any fixed k ∈ {0, 1, · · · , n− 1}, let x, y ∈ [xk, xk+1]. With

Mk := sup
x∈[xk ,xk+1]

f (x) and

mk := inf
x∈[xk ,xk+1]

f (x),

we have that f (x) − f (y) ≤ Mk − mk, and f (y) − f (x) ≤ Mk − mk. Consequently, we have that
| f (x) − f (y)| ≤ Mk − mk, and so

| f |(x) − | f |(y) = | f (x)| − | f (y)| ≤ | f (x) − f (y)| ≤ Mk − mk.

Thus
sup

x∈[xk ,xk+1]
| f |(x) − inf

y∈[xk ,xk+1]
| f |(y) ≤ Mk − mk = sup

x∈[xk ,xk+1]
f (x) − inf

y∈[xk ,xk+1]
f (y).

Consequently, S(| f |,Pε) − S(| f |,Pε) ≤ S( f ,Pε) − S( f ,Pε) < ε. This completes the proof of
the claim.

By the Riemann Condition, | f | ∈ RI[a, b].

Moreover, for all x ∈ [a, b], f (x) ≤ | f (x)| and −f (x) ≤ | f (x)|, and so it follows that∫ b

a
f (x)dx ≤

∫ b

a
| f (x)|dx and −

∫ b

a
f (x)dx ≤

∫ b

a
| f (x)|dx.

Thus

∣∣∣∣
∫ b

a
f (x)dx

∣∣∣∣ ≤
∫ b

a
| f (x)|dx.

(4) Suppose that ¬
(
f ≡ 0 on [a, b]

)
.

Then there exists a c ∈ [a, b] such that f (c) �= 0. As f ≥ 0, f (c) > 0.

Take ε := f (c)/2 > 0. Since f is continuous at c, there exists a δ > 0 such that whenever
x ∈ [a, b] satisfies |x− c| < δ,

| f (x) − f (c)| < ε =
f (c)

2
,

and so f (c) − f (x) ≤ | f (c) − f (x)| = | f (x) − f (c)| <
f (c)

2
. Hence

f (x) > f (c) − f (c)
2

=
f (c)

2
> 0 for x ∈ [a, b] ∪ (c− δ, c + δ).

(This also shows that if c = a or c = b, then there are other values of c where f is positive.
So there is no loss of generality in assuming that c ∈ (a, b). Also, by shrinking δ if necessary,
we may assume that a < c− δ < c + δ < b.)
With P∗ := {a, c− δ, c + δ, b}, we have∫ b

a
f (x)dx = S( f ) ≥ S( f ,P∗)

=
(

inf
x∈[a,c−δ]

f (x)
)

(c− δ − a) +
(

inf
x∈[c−δ,c+δ]

f (x)
)

2δ +
(

inf
x∈[c−δ,b]

f (x)
)

(b− c− δ)

≥ 0 +
f (c)

2
· (2δ) + 0 = δ · f (c) > 0,

a contradiction. �
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Exercise 5.8.

(1) Let f , g ∈ RI[a, b]. Show that max{f , g} and min{f , g} also belong to RI[a, b], where

max{f , g} := max{f (x), g(x)},

min{f , g} := min{f (x), g(x)},

for all x ∈ [a, b]. Hint: max{a, b} = a+b+|a−b|
2 for a, b ∈ R.

(2) The aim of this exercise is twofold: firstly, to show that the pointwise supremum of a
sequence of Riemann integrable functions need not be Riemann integrable, and secondly, to
demonstrate that the pointwise limit of Riemann integrable functions need not be Riemann
integrable.

Let r1, r2, r3, · · · be an enumeration of the rationals in [0, 1]. Define fn : [0, 1] → R by

fn(x) =

{
1 if x ∈ {r1, · · · , rn},

0 otherwise

Is each fn ∈ RI[0, 1]? Let sup
n∈N

fn : [0, 1] → R be the function defined by

(
sup
n∈N

fn
)
(x) = sup

n∈N

fn(x), x ∈ [0, 1].

Is sup
n∈N

fn Riemann integrable?

Exercise 5.9. We have seen in Theorems 5.4, 5.7, and 5.9(3) that if f , g ∈ RI[a, b], then so is
their pointwise sum, product and their respective modulus. Give examples of bounded func-
tions f , g : [0, 1] → R that are not Riemann integrable, but for which | f |, f + g, fg are all
Riemann integrable on [0, 1].

Exercise 5.10 (An integral mean value result). (∗) Let f ∈ C[a, b], ϕ ∈ RI[a, b], and let ρ be
pointwise nonnegative. (We may interpret ρ as the ‘mass density’ of a rod, along the interval
[a, b], made of a possibly inhomogeneous material. If ρ ≡ c, a constant, then the rod has uni-
form density along its length.) Use the Intermediate Value Theorem for f to show that there
is a c ∈ [a, b] such that ∫ b

a
f (x)ρ(x)dx = f (c)

∫ b

a
ρ(x)dx.

In particular, if ρ ≡ 1, then we obtain
1

b− a

∫ b

a
f (x)dx = f (c).

(If f (x) = x, then we can interpret the position c as the ‘center of mass/gravity’ of the horizon-
tal (inhomogeneous) rod, namely the place about which if the rod is pivoted, it will remain
balanced, since the moments about that point due to the weight of the constituent particles
of the rod add up to 0. If the rod is homogeneous, then we see that the center of mass c is
given by

b2 − a2

2
=
∫ b

a
x · 1 dx = c ·

∫ b

a
1 dx = c · (b− a),

that is, c =
a + b

2
, as expected based on our physical intuition.)
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Give an example to show that the assumption f ∈ C[a, b] cannot be dropped for the conclusion
to hold. Moreover, provide an example to show that the nonnegativity of ρ is also a necessary
condition.

Exercise 5.11 (Cantor set). (∗) The Cantor set is constructed as follows. Let F1 := [0, 1]
and delete from F1 the open interval ( 1

3 , 2
3 ) which is its middle third, and denote the

remaining set by F2. Thus we have that F2 = [0, 1
3 ]
⋃

[ 2
3 , 1]. Next, delete from F2 the middle

thirds of its two pieces, namely the open intervals ( 1
9 , 2

9 ) and ( 7
9 , 8

9 ), and denote the remaining
set by F3. It can be checked that F3 = [0, 1

9 ]
⋃

[ 2
9 , 1

3 ]
⋃

[ 2
3 , 7

9 ]
⋃

[ 8
9 , 1]. Continuing this process,

that is, at each step deleting the open middle third of each interval remaining from the
previous step, we obtain a sequence F1,F2,F3, · · · of sets, each member of which contains
all the subsequent members.

The Cantor set C is defined by C =
∞⋂
n=1

Fn.

C is contained in [0, 1] and consists of all those points in the interval [0, 1], which are ‘even-
tually left over’ after the removal of all the open intervals ( 1

3 , 2
3 ), ( 1

9 , 2
9 ), ( 7

9 , 8
9 ), · · ·. What

are these points? Clearly the end points of the intervals making up Fn do remain, and so C
contains these:

0, 1,
1
3

,
2
3

,
1
9

,
2
9

,
7
9

,
8
9

, · · · .

Are there any other points in C? In fact, C contains many more points than the above list of
end points. After all, the above list of endpoints is countable, but it can be shown that C is
uncountable, as follows.

We will prove that there is a one-to-one correspondence between points of C and the
points of [0, 1]. First note that any point x in C is associated with a sequence of letters ‘L’
or ‘R’ as follows. Indeed, let x ∈ C. Then for any n, x ∈ Fn, and when the middle thirds of
each subinterval in Fn is removed, x is present in either the left part or the right part of the
subinterval, and the nth term in the sequence is letters is L or R accordingly. For example,
the points

0 ≡ L,L,L,L,L,L, · · · ,

1 ≡ R,R,R,R,R,R, · · · ,

1
3
≡ L,R,R,R,R,R, · · · ,

2
9
≡ L,R,L,L,L,L, · · · ,

20
27

≡ R,L,R,L,L,L, · · · .
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But points in [0, 1] are also in one-to-one correspondence with such sequences. Indeed,

[0, 1] =
[
0,

1
2

]⋃(1
2

, 1
]

=
[
0,

1
4

]⋃(1
4

,
1
2

]⋃(1
2

,
3
4

]⋃(3
4

, 1
]

=
[
0,

1
8

]⋃(1
8

,
1
4

]⋃(1
4

,
3
8

]⋃(3
8

,
1
2

]⋃(1
2

,
5
8

]⋃(5
8

,
3
4

]⋃(3
4

,
7
8

]⋃(7
8

, 1
]

· · · .

If x ∈ [0, 1], then for each n, we can look at the nth equality, and see if x falls in the left or
the right part when each subinterval in the right hand side of the nth equality is divided into
two parts, and this gives the (n + 1)st term of the sequence of Ls and Rs associated with x:
for example,

0 ≡ L,L,L,L,L,L, · · · ,

1 ≡ R,R,R,R,R,R, · · · ,

1
2
≡ L,R,R,R,R,R, · · · .

As [0, 1] is uncountable, it follows that so is C.
It turns out that the Cantor set is an important set, as it is often a source of interesting

examples/counterexamples in Analysis. (For example, as the sum of the lengths of the intervals
removed is 1

3
+ 2

1
32

+ 4
1
33

+ · · · = 1,

(we can factor out 1/3 to obtain a geometric series, which can be summed), the ‘(Lebesgue
length) measure’ ofF is 1 − 1 = 0. So this is an example of an uncountable set with ‘Lebesgue
measure’ 0.)

The aim of this exercise is to show that there exist Riemann integrable functions that have
infinitely many points of discontinuity. Indeed, we will show that the indicator function 1C of
the Cantor set is Riemann integrable on [0, 1]. Proceed as follows.

(1) As C ⊂ Fn, clearly 1C ≤ 1Fn
. Since 1Fn

has only finitely many discontinuities, it
follows that ∫ 1

0
1Fn

(x)dx = length of the intervals in Fn =
(

2
3

)n

.

Show this. Conclude that if ε > 0, then there exists a partition P of [0, 1] such that

S(1Fn
,P) <

(
2
3

)n

+ ε.

Deduce that S(1C) ≤ 0.

(2) As 1C ≥ 0, it is clear that S(1C,P) ≥ 0 for all partitions P of [0, 1], and so
S(1C) ≥ 0.

(3) Conclude from Parts (1) and (2) that 1C ∈ RI[0, 1], and that
∫ 1

0
1C(x)dx = 0.
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Exercise 5.12. Can the assumption that f ∈ C[0, 1] in Theorem 5.9 (4) be replaced by the
condition that f ∈ RI[0, 1]?

Exercise 5.13 (The Dirac δ function). For doing quantum mechanical computations, the
physicist P.A.M. Dirac introduced the δ ‘function’ (as eigenstates of the position operator).
The aim of this exercise is to show that a classical such function does not exist3. Show that
there is no function δ : R → R, which has the property that for all a > 0,

(1) δ ∈ RI[−a, a],

(2) for every ϕ ∈ C[−a, a],
∫ a

−a
δ(x)ϕ(x)dx = ϕ(0).

5.3 Fundamental Theorem of Calculus

Calculus has two components:

Differentiation Integration

Local process:
derivative at a point

depends only on values of the
function near the point.

Global process:
takes into account

values of the function
in the entire interval.

But now we will learn about a bridge between these two seemingly different worlds of differ-
entiation and integration, namely the Fundamental Theorem of Calculus, which says, roughly
that the two processes of differentiation and integration are inverses of each other.

f

f

f

f

F

g ′

differentiate

differentiate

integrate

integrate

b

a

d
dx

f(x)dx = f(b) − f(a)

x

a
f(t)dt = f(x)

d
dx

3 However, the mathematician Laurent Schwartz later gave a mathematical foundation for the Dirac δ-function
by viewing it as a ‘generalised function’ or ‘distribution’, in which one thinks of δ as a (linear) map δ : C∞

0 (R) → R,
which sends ϕ ∈ C∞

0 (R) to the number ϕ(0). Here C∞
0 (R) denotes the set of all functions ϕ : R→ R, which are

infinitely many times differentiable (that is, in C∞(R)) and vanish outside some compact interval (which may depend
on ϕ). Laurent Schwartz was awarded the Fields Medal in 1950 for his work on the theory of distributions, which
also plays a fundamental role in the study of partial differential equations.
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Before stating the Fundamental Theorem of Calculus, we give the following definition.

Definition 5.7 (Primitive of a function). Let f : [a, b] → R. Then a function F : [a, b] → R

is called a primitive of f if

(1) F is differentiable on [a, b] and

(2) for every x ∈ [a, b], F′(x) = f (x).

Example 5.10 (Primitives are not unique). Both the functions

x2

2
and

x2

2
− 399

are primitives of x. In fact, any function x2 + C, where C is an arbitrary constant, is a primitive
of x. ♦
The above example shows that primitives are not unique. But we will show later on that they
are ‘unique up to additive constants’, that is, for any two primitivesF, F̃ of f , there is a constant
C (depending on the pair F, F̃) such that F̃ = F + C on [a, b].

Theorem 5.10 (Fundamental Theorem of Calculus). Let f ∈ RI[a, b]. Then:

(1) If f has a primitive F, then
∫ x

a
f (t)dt = F(x) − F(a) for all x ∈ [a, b].

(2) Let F : [a, b] → R be defined by

F(x) :=
∫ x

a
f (t)dt, x ∈ [a, b].

If f is continuous at c ∈ [a, b], then F is differentiable at c and

F′(c) = f (c),

In particular, if f ∈ C[a, b], then F is a primitive of f .

Proof. (of Part (1):)

(If x = a, then both the left hand side and right hand side are 0, and so the result holds.
So let us assume that x > a.) Let P = {x0, x1, · · · , xn−1, xn} be any partition of [a, x]. By the
Mean Value Theorem,

F(xk+1) − F(xk)
xk+1 − xk

= f (ck),

for some ck ∈ (xk, xk+1). Thus

S(f ,P) =
n−1∑
k=0

(
sup

x∈[xk ,xk+1]
f (x)

)
(xk+1 − xk)

≥
n−1∑
k=0

f (ck)(xk+1 − xk) =
n−1∑
k=0

(F(xk+1) − F(xk))

=���F(x1) − F(x0) +���F(x2) −���F(x1) + · · · + F(xn) −����F(xn−1)

= F(xn) − F(x0) = F(x) − F(a),
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that is, for any partition P of [a, x], S( f ,P) ≥ F(x) − F(a), and so

S( f ) ≥ F(x) − F(a). (5.6)

Similarly,

S( f ,P) =
n−1∑
k=0

(
inf

x∈[xk ,xk+1]
f (x)
)

(xk+1 − xk)

≤
n−1∑
k=0

f (ck)(xk+1 − xk) =
n−1∑
k=0

(F(xk+1) − F(xk)) = F(x) − F(a),

that is, for any partition P, S( f ,P) ≤ F(x) − F(a), and so

S( f ) ≤ F(x) − F(a). (5.7)

From (5.6) and (5.7), we obtain

∫ x

a
f (t)dt = S( f ) ≤ F(x) − F(a) ≤ S( f ) =

∫ x

a
f (t)dt.

Consequently, F(x) − F(a) =
∫ x

a
f (t)dt. This finishes the proof of Part (1). �

Before moving on to the proof of Part (2), here is an example illustrating Part (1).

Example 5.11. With F := x3/3 and f := x2, we have F′ = f on R. Since we have that
f ∈ C[0, 1] ⊂ RI[0, 1], it follows from the above and the Fundamental Theorem of Calculus
that ∫ 1

0
x2dx =

13

3
− 03

3
=

1
3

.

Note the remarkable simplicity now obtained (as opposed to the calculation done earlier in
Example 5.5), thanks to the Fundamental Theorem of Calculus. ♦

Now let us continue with the proof of Part (2) of the Fundamental Theorem of Calculus.

Proof. (of Part (2)): Let ε > 0. As f is continuous at c, there exists a δ > 0 such that whenever
t ∈ [a, b] satisfies |t − c| ≤ δ, | f (t) − f (c)| < ε. Let x ∈ [a, b]\{c}. Then by the definition of
F and the result on Domain Additivity, we obtain

F(x) − F(c)
x− c

=
1

x− c

(∫ x

a
f (t)dt −

∫ c

a
f (t)dt

)

=
1

x− c

∫ x

c
f (t)dt. (5.8)
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Also, by Part (1) of the Fundamental Theorem of Calculus,∫ x

c
f (c)dt =

∫ x

c
( f (c) · t)′dt

= f (c) · x− f (c) · c

= f (c) · (x− c),

and so for x ∈ [a, b]\{c},

f (c) =
1

x− c

∫ x

c
f (c)dt. (5.9)

From (5.8) and (5.9),∣∣∣∣F(x) − F(c)
x− c

− f (c)
∣∣∣∣ =
∣∣∣∣ 1
x− c

∫ x

c
f (t)dt − 1

x− c

∫ x

c
f (c)dt

∣∣∣∣
=

1
|x− c| ·

∣∣∣∣
∫ x

c
( f (t) − f (c))dt

∣∣∣∣
for all x ∈ [a, b]\{c}. So for x ∈ [a, b] satisfying 0 < |x− c| < δ, we have∣∣∣∣F(x) − F(c)

x− c
− f (c)

∣∣∣∣ = 1
|x− c| ·

∣∣∣∣
∫ x

c
( f (t) − f (c))dt

∣∣∣∣
≤ 1

|x− c|

∫ x

c
| f (t) − f (c)|dt

≤ S(| f (·) − f (c)|, {c, x})

≤ 1
|x− c| · ε · |x− c| = ε.

Consequently, F′(c) = f (c). �

Geometric interpretation of the Fundamental Theorem of Calculus

The plausibility of Part (2) of the Fundamental Theorem of Calculus can be illustrated geomet-
rically. See the following figure, in which we have depicted the graph of a Riemann integrable
function f .

f

a x x + dx
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Let F be defined by

F(x) =
∫ x

a
f (t)dt, x ≥ a.

Consider an x ≥ a, and imagine increasing x by a tiny amount dx. Then F(x) is the area under
the graph of f from a to x. Thus the area of the little strip is

F(x + dx) − F(x) ≈ f (x) · dx,

and dividing throughout by dx, we obtain

F′(x) ≈ F(x + dx) − F(x)
dx

≈ f (x).

Example 5.12. For n ∈ Z\{−1},

(
xn+1

n + 1

)′
= xn, x �= 0.

If b > a > 0, then by the Fundamental Theorem of Calculus,

∫ b

a
xndx =

xn+1

n + 1

∣∣∣b
a

:=
bn+1 − an+1

n + 1
.

(The notation F(x)
∣∣∣b
a

means F(b) − F(a).)

What if n = −1? We will soon define the ‘logarithm’ function log : (0,∞) → R by

log x :=
∫ x

1

1
t
dt, x > 0.

1
t

tx10

area =: log x

By the Fundamental Theorem of Calculus, (log x)′ =
(∫ x

1

1
t
dt

)′
=

1
x

, x > 0. ♦
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Example 5.13. Later on, we will learn about trigonometric functions

sin, cos : R → R,

and we will prove that sin′ = cos and cos′ = − sin.

So by the Fundamental Theorem of Calculus,

∫ b

a
sin x dx = − cos x

∣∣∣b
a

= − cos b− (− cos a) = cos a− cos b and

∫ b

a
cos x dx = sin x

∣∣∣b
a

= sin b− sin a. ♦

Example 5.14. Another important function we will meet soon is the exponential function
exp : R → R, which has the property that exp′ = exp, and so by the Fundamental Theorem
of Calculus, ∫ b

a
exp x dx = exp x

∣∣∣b
a

= exp b− exp a. ♦

Exercise 5.14 (Leibniz’s Rule for Integrals). If f ∈ C[a, b] and u, v are differentiable on [c, d]
and u([c, d]) ⊂ [a, b], v([c, d]) ⊂ [a, b], then

d
dx

∫ v(x)

u(x)
f (t)dt = f (v(x)) · v′(x) − f (u(x)) · u′(x), x ∈ [c, d].

Exercise 5.15. For x ∈ R, define

F(x) :=
∫ 2x

0
sin(t2)dt, and G(x) :=

∫ x2

0
sin(
√

|t|)dt.

Find F′ and G′.

Exercise 5.16. Let f : [0,∞) → R be continuous. Find f in each of the cases below if the
given equation is known to hold for all x ≥ 0, or if no such f exists, justify why not.

(1)
∫ x2

0
f (t)dt = exp(−x2).

(2)
∫ f (x)

0
t2dt = exp(−x2).

(3)
∫ exp(−x2)

0
f (t)dt = x2.
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Exercise 5.17. Let f be a continuous function on R and λ �= 0. Consider

y(x) =
1
λ

∫ x

0
f (t) sin(λ(x− t))dt for x ∈ R.

Show that y is a solution to the inhomogeneous differential equation y′′(x) + λ2y(x) = f (x)
for all x ∈ R and with the initial conditions y(0) = 0 and y′(0) = 0.

Exercise 5.18. Let V(q) denote the voltage required to place a charge q on the plates of a
capacitor. The elemental work done to place a small charge dq on a capacitor with charge q is
V(q) · dq. Thus the work required to charge a capacitor from q = a to q = b is the area under
the graph of q �→ V(q) on the interval [a, b], that is, the integral

∫ b

a
V(q)dq.

Show that if the voltage is proportional to the charge, then the work done to place a charge Q
on an uncharged capacitor is

1
2
QV(Q).

Exercise 5.19. Using (1 + x)n =
n∑

k=0

(n
k

)
xk, find

n∑
k=1

1
k + 1

(n
k

)
.

Exercise 5.20. Let f : (1, 2) → R be given by

f (x) =
∫ x2

1

(cos
√
t)(sin

√
t)√

t
dt

for x ∈ (1, 2). Does f have a local maximiser on (1, 2)? If so, where?

As an application of the Fundamental Theorem of Calculus, we will now show the
∞
∞ form

of the l’Hôpital Rule.

∞
∞ form of l’Hôpital’s Rule

Theorem 5.11 (∞∞ form of l’Hôpital’s Rule). If

(1) f , g : (a,∞) → R are differentiable,

(2) g, g′ > 0 on (a,∞),

(3) lim
x→∞

g(x) = ∞, and

(4) lim
x→∞

f ′(x)
g′(x)

= 
 ∈ R,

then lim
x→∞

f (x)
g(x)

= 
.
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Proof.

1◦ First suppose that 
 = 0. Let ε > 0. Let c > 0 be such that for x ≥ c,

− ε

2
<

f ′(x)
g′(x)

<
ε

2
,

and since g′ > 0,

− ε

2
g′(x) < f ′(x) <

ε

2
g′(x).

Integrating from c to x (> c), we obtain

− ε

2
(g(x) − g(c)) < f (x) − f (c) <

ε

2
(g(x) − g(c)).

Dividing by g(x) > 0, it follows that

− ε

2

(
1 − g(c)

g(x)

)
<

f (x)
g(x)

− f (c)
g(x)

<
ε

2

(
1 − g(c)

g(x)

)
.

Let d1 > c be such that for x > d1,

− ε

4
<

f (c)
g(x)

<
ε

4
.

Also, let d2 > d1 (> c) be such that for all x > d2,

−1
2

<
g(c)
g(x)

<
1
2

.

Hence for x > d2, it follows from the above that

−ε = − ε

2

(
1 +

1
2

)
− ε

4
= −ε <

f (x)
g(x)

< ε =
ε

4
+

ε

2

(
1 +

1
2

)
= ε.

Consequently, lim
x→∞

f (x)
g(x)

= 0 (= 
).

2◦ General 
. Consider

F := f − 
 · g,

G := g.

Then F,G are differentiable, G,G′ > 0, and

F′

G′ =
f ′ − 
 · g′

g′
=

f ′

g′
− 


x→∞−−→ 
 − 
 = 0.

By 1◦,
F
G

x→∞−−→ 0, that is,
f
g
− 


x→∞−−→ 0, and so lim
x→∞

f (x)
g(x)

= 
. �
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Example 5.15 ( lim
x→∞

log x
x

= 0). Indeed,

(1) f := log x and g := x are differentiable on (0,∞),

(2) g = x and g′ = 1 are > 0 on (0,∞),

(3) lim
x→∞

g(x) = lim
x→∞

x = ∞,

(4) lim
x→∞

f ′(x)
g′(x)

= lim
x→∞

1/x
1

= 0,

and so by l’Hôpital’s Rule, lim
x→∞

f (x)
g(x)

= lim
x→∞

log x
x

= 0. ♦
One can also show a similar result with lim

x→∞
being replaced by lim

x↘0
.

Corollary 5.3 (∞∞ form of l’Hôpital’s Rule). If

(1) f , g : (0, a) → R are differentiable,

(2) g > 0 and g′ < 0 on (0, a),

(3) lim
x↘0

g(x) = ∞, and

(4) lim
x↘0

f ′(x)
g′(x)

= 
 ∈ R,

then lim
x↘0

f (x)
g(x)

= 
.

Proof. Let F,G : ( 1
a ,∞) → R be defined by

F(x) := f

(
1
x

)
, and G(x) := g

(
1
x

)

for x > 1
a . Note that G > 0 and lim

x→∞
G(x) = lim

x↘0
g(x) = ∞. Moreover,

F′(x) := f ′
(

1
x

)
·
(
− 1
x2

)
,

G′(x) := g′
(

1
x

)
·
(
− 1
x2

)

for x > 1
a . Note that from the second expression for G′, using the hypothesis that g′ < 0, we

obtain G′ > 0. Finally,

F′(x)
G′(x)

=
f ′
(

1
x

)
·
(
�
��− 1
x2

)

g′
(

1
x

)
·
(
�
��− 1
x2

) =
f ′
(

1
x

)

g′
(

1
x

) x→∞−−→ 
.
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Hence by the previous version of the ∞
∞ version of l’Hôpital’s Rule, we have

F(x)
G(x)

=
f

(
1
x

)

g

(
1
x

) x→∞−−→ 
,

that is, lim
x↘0

f (x)
g(x)

= 
. �

Example 5.16 ( lim
x→0+

x log x = 0). We write

x log x =
log x
1/x

=
f (x)
g(x)

,

where f := log x and g :=
1
x

. Then

(1) f = log x, g =
1
x

are differentiable on (0,∞),

(2) g =
1
x

> 0 and g′ = − 1
x2

< 0 on (0,∞),

(3) lim
x→0+

g(x) = lim
x→0+

1
x

= ∞, and

(4) lim
x→0+

f ′(x)
g′(x)

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x = 0.

So by l’Hôpital’s Rule, lim
x→0+

f (x)
g(x)

= lim
x→0+

log x
1/x

= lim
x→0+

x log x = 0. ♦

Exercise 5.21. Evaluate lim
x→0+

1
x3

∫ x

0

t2

t6 + 1
dt.

We will now learn about two of the most important and powerful techniques of calculating
integrals, which are both based on the Fundamental Theorem of Calculus:

(1) Integration by Parts, and

(2) Integration by a Change of Variables or by Substitution.

Integration by parts

Recall the Leibniz Rule for differentiation:

(fg)′ = f ′g + f g′.

If this is integrated from a to b, then the result is
∫ b

a
f ′(x)g(x)dx +

∫ b

a
f (x)g′(x)dx = f (b)g(b) − f (a)g(a).
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This formula is useful when the integrand can be written as a product in such a way that one
factor (f ′(x)) can be integrated, while the other (g(x)) can be differentiated with the net effect
(new integrand= f (x)g′(x)) that is good (that is,

∫ b

a
f (x)g′(x)dx

is easy to find.) The best way to see this is by considering examples. But first we state the
result.

Theorem 5.13 (Integration by Parts).

Let

(1) f ∈ C1[a, b],

(2) g = G′ ∈ C[a, b].

Then
∫ b

a
f (x)g(x)dx = f (x)G(x)

∣∣∣b
a
−
∫ b

a
f ′(x)G(x)dx.

Proof. ( f G)′ = f · g + f ′ · G, and so

f (x)G(x)
∣∣∣b
a
−
∫ b

a
f ′(x)G(x)dx =

∫ b

a
f (x)g(x)dx

by the Fundamental Theorem of Calculus. �

Example 5.17. Consider the integral
∫ 1

0
x
√

1 − x dx.

Since
(
(1 − x)3/2

)′
=

3
2
(1 − x)1/2(−1), −2

3
(1 − x)3/2 is a primitive of

√
1 − x. Thus

∫ 1

0
x
√

1 − x dx = x ·
(
−2

3

)
(1 − x)

3
2

∣∣∣1
0
−
∫ 1

0
−2

3
(1 − x)

3
2 dx

= 0 +
2
3

∫ 1

0
(1 − x)

3
2 dx =

2
3

1
3
2 + 1

(1 − x)
3
2 +1(−1)

∣∣∣1
0

=
4

15
· (0 − 1) · (−1) =

4
15

.
♦

In the previous example, how did we decide upon integrating
√

1 − x and differentiating x
when using Integration by Parts? There is no fixed algorithm for this, but a general rule of
thumb is to follow the following scheme:

‘ L I A T E’
← →

differentiate integrate
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where the letters L, I, A, T, E stand for the following classes of functions (some of which we
will define later on in this chapter):

L: Logarithmic

I: Inverse trigonometric (sin−1, cos−1, tan−1, · · ·)

A: Algebraic (xn,
√

1 − xm, · · ·)
T: Trigonometric (sin, cos, · · ·)
E: Exponential (ex, e−x, · · ·).

Here are a few examples.

Example 5.18. Consider the integral

∫ 3

1
log x dx.

We view the integrand log x as the product of the two functions 1 (algebraic) and log x (log-
arithmic). The LIATE Rule of Thumb tells us that we ought to try differentiating log x and
integrating 1. Thus

∫ 3

1
log x dx =

∫ 3

1
log x · 1dx = (log x) · x

∣∣∣3
1
−
∫ 3

1

1
x
· x dx

= 3 log 3 − (log 1︸︷︷︸
=0

) · 1 −
∫ 3

1
1dx = 3 log 3 − (3 − 1) = 3 log 3 − 2.

♦

Example 5.19. We have

∫ b

a
x sin x dx = x(− cos x)

∣∣∣b
a
−
∫ b

a
1 · (− cos x)dx

= −b cos b + a cos a +
∫ b

a
cos x dx

= a cos a− b cos b + sin x
∣∣∣b
a

= a cos a− b cos b + sin b− sin a. ♦

Sometimes in order to evaluate an integral, one might have to use Integration by Parts a couple
of times, and the following example illustrates this.

Example 5.20. Consider the integral
∫ x

0
(exp t)(cos t)dt.

(We will define the exponential function exp : R → R later on, but right now, all we need to
know now is that exp′ = exp and exp 0 = 1.) The trick is to integrate by parts twice. Things
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don’t look good after the first use, but they get better after the second when the original integral
appears again:∫ x

0
exp t · cos t dt = exp t · sin t

∣∣∣x
0
−
∫ x

0
exp t · sin t dt

= exp x · sin x− exp 0 · sin 0 −
∫ x

0
exp t · sin t dt

= exp x · sin x− exp t · (− cos t)
∣∣∣x
0
+
∫ x

0
exp t · (− cos t)dt

= exp x · sin x + exp x · cos x− exp 0 · cos 0 −
∫ x

0
exp t · cos t dt,

and we’re back to square one. So∫ x

0
exp t · cos t dt =

(exp x)(cos x + sin x) − 1
2

.
♦

Exercise 5.22. Evaluate
∫ 2

1
x log x dx.

Exercise 5.23. Let m, n be nonnegative integers. Show that
∫ 1

0
xm(1 − x)ndx =

m!n!
(m + n + 1)!

.

Hint: If I(m, n) is the integral, then show the ‘recurrence relation’

I(m, n) =
n

m + 1
I(m + 1, n− 1),

for all nonnegative integers m and all n ∈ N.

Exercise 5.24. For f ∈ C[a, b], show that for all x ∈ [a, b],∫ x

a

(∫ u

a
f (t)dt

)
du =

∫ x

a
(x− u)f (u)du.

Hint: Start with the right hand side.

Remark 5.1. More generally, one can show, using induction, that∫ x

a

(∫ un

a

(
· · ·
(∫ u1

a
f (t)dt

)
du1

)
· · ·
)
dun =

∫ x

a

f (u) · (x− u)n

n!
du.

Exercise 5.25 (Taylor’s Formula with Integral Remainder). Let n be a nonnegative integer
and f ∈ Cn+1[a, b]. Show that

f (b) = f (a) + f ′(a)(b− a) + · · · + f (n)(a)
n!

(b− a)n +
1
n!

∫ b

a
(b− t)nf (n+1)(t)dt.
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(Note that as opposed to the Taylor’s Formula we have met before, where the error term con-
tained an undetermined c, now the ‘integral remainder’ does not involve such an undetermined
number c.)

Integration by Substitution/Change of Variables

Theorem 5.14 (Integration by Substitution/Change of Variables). If

(1) ϕ ∈ C1[α, β] and ϕ([α, β]) = [a, b], and

(2) f ∈ C[a, b],

then
∫ ϕ(β)

ϕ(α)
f (x)dx =

∫ β

α

f (ϕ(t)) · ϕ′(t)dt.

Proof. Define F : [a, b] → R by F(x) =
∫ x

a
f (t)dt, for x ∈ [a, b].

If H : [α, β] → R is defined by H = F ◦ ϕ, then by the Chain Rule, we have

H′(t) = F′(ϕ(t)) · ϕ′(t) = f (ϕ(t)) · ϕ′(t), t ∈ [α, β].

Thus
∫ β

α

f (ϕ(t)) · ϕ′(t) =
∫ β

α

H′(t)dt = H(β) − H(α) = F(ϕ(β)) − F(ϕ(α))

=
∫ ϕ(β)

a
f (x)dx−

∫ ϕ(α)

a
f (x)dx =

∫ ϕ(β)

ϕ(α)
f (x)dx,

where the last equality follows by Domain Additivity. �

a

b

x

dx

ϕ (t)

ϕ′ (t)dt

α : ϕ(α) = a

β : ϕ(β) = b

ϕ(β)

ϕ(α)
f (x)dx =

β

α
f ( ϕ(t))· ϕ′(t)dt

Figure 5.12 How to remember the Change of Variables/Substitution Method.
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Example 5.21. Consider the integral
∫ 1

0
t
√

1 − t2 dt.

We make the substitution x = ϕ(t) = 1 − t2, t ∈ [0, 1], and take f (x) :=
√
x, x ∈ [0, 1]:

dx = −2t dt, t dt = −1
2
dx;

t = 0 ⇒ x = 1,

t = 1 ⇒ x = 0.

0

1

0.8

0.6

0.4

0.2

0
0.2 0.4 0.6

t
0.8 1

Thus ∫ 1

0
t
√

1 − t2 dt =
∫ 0

1

√
x

(
−1

2

)
dx =

1
2

∫ 1

0

√
x dx

=
1
2
· 1

1 + 1
2

x1+ 1
2

∣∣∣1
0

=
1
2
· 2

3
· (13/2 − 03/2) =

1
3

. ♦

Example 5.22. Consider the integral
∫ π/2

0
(sin t)5 cos t dt.

We use the substitution x = ϕ(t) = sin t, t ∈ [0, π
2 ], and take f (x) := x5, x ∈ [0, 1]:

dx = cos t dt;

t = 0 ⇒ x = 0,

t =
π

2
⇒ x = 1.

1

0.8

0.6

0.4

0.2

0
16
π

4
t

π
2
π

16
3 π

8
3 π

16
5 π

16
7 π

8
π
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Thus
∫ π/2

0
(sin t)5 cos t dt =

∫ 1

0
x5dx =

1
6
x6
∣∣∣1
0

=
1
6

. ♦

Example 5.23. Consider the integral
∫ 5

2

1
t log t

dt.

We make the substitution x = ϕ(t) = log t, t ∈ [2, 5], and take f given by f (x) := 1/x for x
in the interval [log 2, log 5]:

dx =
1
t
dt; t = 2 ⇒ x = log 2, and t = 5 ⇒ x = log 5.

2

1.5

0.5

0
0 1 2 3

t
4 5 6

1

Thus
∫ 5

2

1
t log t

dt =
∫ log 5

log 2

1
x
dx = log x

∣∣∣log 5

log 2
= log(log 5) − log(log 2). ♦

Example 5.24. If f ∈ C[−a, a] is an odd function, then
∫ a

−a
f (x)dx = 0.

Using the substitution t = −x (so that dt = −dx, x = a when t = −a, and x = 0 when
t = 0), we obtain

∫ 0

−a
f (x)dx =

∫ 0

a
f (−t)(−1)dt =

∫ a

0
f (−t)dt =

∫ a

0
−f (t)dt = −

∫ a

0
f (t)dt.

So
∫ a

−a
f (x)dx =

∫ 0

−a
f (x)dx +

∫ a

0
f (x)dx = −

∫ a

0
f (t)dt +

∫ a

0
f (x)dx = 0.

For example,

∫ π/2

−π/2
(sin x)5(cos x) dx = 0, and

∫ 1/2

−1/2
log

1 + x
1 − x

dx = 0.

What happens if f ∈ C[−a, a] is an even function? Proceeding in the same manner as above,
we see that ∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx. ♦
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Exercise 5.26. Evaluate the following integrals without doing any computations!

(1)
∫ 1

−1
x3
√

1 − x2 dx.

(2)
∫ 1

−1
(x3 + 9)

√
1 − x2 dx.

Exercise 5.27. Evaluate
∫ 1

4

0

x√
1 − 4x2

dx.

Exercise 5.28. Evaluate
∫ 16

0

4
√
x ·
√

4
√
x5 + 1 dx.

Exercise 5.29. Let T > 0, and f : R → R be a continuous function, which is T-periodic, that
is, f (x + T) = f (x) for all x ∈ R. Show that the integral

∫ a+T

a
f (x) dx

has the same value for all a ∈ R.

Exercise 5.30. For 0 ≤ x <
π

2
, find

∫ x

0
tan t dt.

Exercise 5.31. Find
∫ π/2

0
(sin x) exp(cos x) dx.

Exercise 5.32. Find
∫ 1

0
2x exp(3x2) dx.

5.4 Riemann sums

It turns out that some integrals, such as
∫ x

0
exp(−t2)dt for x > 0 or

∫ π/2

0

√
1 − k2(sin θ)2 dθ for 0 < k < 1,

although they exist, can’t be expressed in terms of elementary functions. In such cases, from
the point of view of applications (engineering, physics, etc.), one might be willing to settle
for a value that is an approximation of the true value within a certain accuracy level. So the
need arises for having a numerical scheme for finding the Riemann integral. In this section,
we learn the heart of such a numerical recipe.

We have seen that

(1) If f ∈ RI[a, b], then for any partition P of [a, b],

S( f ,P) ≤
∫ b

a
f (x)dx ≤ S( f ,P).
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(2) Given ε > 0, for certain partitions Pε of [a, b], we can approximate

∫ b

a
f (x)dx

to within an accuracy of ε by S( f ,Pε) and S( f ,Pε) because

S( f ,Pε) − S( f ,Pε) < ε.

We will now learn that

(3) No matter what accuracy level is specified, by taking any ‘sufficiently fine’ partition
P, the lower/upper sums S( f ,P) and S( f ,P) approximate

∫ b

a
f (x)dx

to within the accuracy level.

Before stating this result precisely, we need to understand what we mean by the ‘fineness’ of
a partition.

Definition 5.8 (Fineness of a partition). Let P = {x0, x1, · · · , xn−1, xn} be a partition of [a, b].
The fineness Φ(P) of P is defined by

Φ(P) := max{xk+1 − xk : 0 ≤ k ≤ n− 1}.

aa bb

small Φ(P) large Φ(P)

Theorem 5.15. Let f ∈ RI[a, b]. Then:

For every ε > 0, there exists a δ > 0 such that for every P ∈ P[a,b] with Φ(P) < δ,
S( f ,P) − S( f ,P) < ε.

Proof. Let ε > 0. Since f ∈ RI[a, b], there exists a partition Pε of [a, b] such that

S( f ,Pε) − S( f ,Pε) <
ε

2
.

Let

nε be the number of points in Pε,

δε be the length of the shortest subinterval in Pε,

M := sup
x∈[a,b]

| f (x)|.



228 THE HOW AND WHY OF ONE VARIABLE CALCULUS

Let P = {x0, x1, · · · , xn−1, xn} be any partition of [a, b] such that

Φ(P) < δ := min
{

δε,
ε

8Mnε

}
.

We claim that S( f ,P) − S( f ,P) < ε.

Let P∗ := P
⋃

Pε. Then S( f ,P∗) ≤ S( f ,Pε) and S( f ,P∗) ≥ S( f ,Pε), and so we have that
S( f ,P∗) − S( f ,P∗) ≤ S( f ,Pε) − S( f ,Pε) < ε. Now let us compare the upper/lower sums
corresponding to the partitions P∗ and P.

The terms in S( f ,P∗) and S( f ,P) are mostly the same, except for the following situation. If
y ∈ [xk, xk+1] is a point of P∗ that is not in P, then [xk, xk+1] do not contain any point of P∗ other
than y. (This is because otherwise if y′ is another point in [xk, xk+1] that also belongs to P∗\P,
we would have y′ ∈ Pε and so δε ≤ |y− y′| ≤ xx+1 − xk ≤ Φ(P) < δ ≤ δε, a contradiction!)
So S( f ,P) contains the term (

sup
x∈[xk ,xk+1]

f (x)

)
· (xk+1 − xk),

while S( f ,P∗) contains the term(
sup

x∈[xk ,y]
f (x)

)
· (y− xk) +

(
sup

x∈[y,xk+1]
f (x)

)
· (xk+1 − y).

Thus the error committed in replacing the single term by the sum of the two terms is at most
2 ·M · δ. But there are at most nε points of Pε, and so

S( f ,P) < S( f ,P∗) + 2 ·M · δ · nε.

Similarly, S( f ,P) > S( f ,P∗) − 2 ·M · δ · nε. Hence

S( f ,P) − S( f ,P) < S( f ,P∗) − S( f ,P∗) + 4Mδnε <
ε

2
+ 4M

ε

8Mnε

nε = ε.

This completes the proof. �

Riemann sums

There are other sums associated with a partition P (besides the upper sum and lower sum)
that lie between S( f ,P) and S( f ,P), and so for sufficiently fine partitions, these other sums
will also approximate the integral ∫ b

a
f (x)dx.

These other sums are called Riemann sums and have the form

S( f ,P) :=
n−1∑
k=0

f (ξk)(xk+1 − xk),

where for each k = 0, 1, · · · , n− 1, ξk is any point in [xk, xk+1].
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Clearly S( f ,P) ≤ S( f ,P) ≤ S( f ,P). See Figure 5.13.

a

f

xk bxk+1ξk

Figure 5.13 inf
x∈[xk ,xk+1]

f (x) ≤ f (ξk) ≤ sup
x∈[xk ,xk+1]

f (x).

The advantage of using Riemann sums over using S( f ,P) and S( f ,P) is that these latter
numbers might be harder to determine, since we have to mess about with infs and sups,
while in order to find the Riemann sum S( f ,P), we just need to evaluate the function at the
points ξks.

Corollary 5.16. If f ∈ RI[a, b] and

Pn :=
{
a, a +

b− a
n

, a + 2 · b− a
n

, · · · , a + (n− 1) · b− a
n

, b

}
, n ∈ N,

then
∫ b

a
f (x)dx = lim

n→∞
S( f ,Pn).

Proof. Φ(Pn) =
b− a
n

n→∞−−→ 0. �

Example 5.25. We will show that

lim
n→∞

(
1
n

+
1

n + 1
+ · · · + 1

2n

)
= log 2,

by viewing the sum as a Riemann sum as follows. We have

1
n

+
1

n + 1
+ · · · + 1

2n− 1
=

1

n(1 + 0
n )

+
1

n(1 + 1
n )

+
1

n(1 + 2
n )

+ · · · + 1

n(1 + n−1
n )

=
n−1∑
k=0

f (ξk) · (xk+1 − xk) = S

(
1
x

,Pn

)
,
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where

Pn :=
{
a = 1, 1 +

1
n

, 1 + 2 · 1
n

, · · · , 1 + (n− 1) · 1
n

, b = 2

}
, n ∈ N,

f :=
1
x
∈ C[1, 2] ⊂ RI[1, 2],

ξk := xk := 1 + k
1
n

, k = 0, 1, · · · , n− 1.

1 2

By definition, ∫ 2

1

1
x
dx = log 2.

Hence

lim
n→∞

(
1
n

+
1

n + 1
+ · · · + 1

2n

)
= lim

n→∞

(
1
n

+
1

n + 1
+ · · · + 1

2n− 1

)
+ lim

n→∞

1
2n

= log 2 + 0 = log 2. ♦

Example 5.26. What is 11/3 + 21/3 + 31/3 + · · · + 10001/3 approximately?

Taking

Pn :=
{
a = 0,

1
n

, 2 · 1
n

, · · · , (n− 1) · 1
n

, b = 1

}
, n ∈ N,

f := x1/3 ∈ C[0, 1] ⊂ RI[0, 1],

ξk := xk+1 :=
k + 1
n

, k = 0, 1, · · · , n− 1,

we obtain

S( f ,Pn) =
n−1∑
k=0

f (xk+1) · (xk+1 − xk) =
n−1∑
k=0

(
k + 1
n

)1/3

· 1
n

=
11/3 + 21/3 + 31/3 + · · · + n1/3

n4/3
.
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As

lim
n→∞

S( f ,Pn) =
∫ 1

0
f (x)dx =

∫ 1

0
x1/3 dx =

3
4

,

we have

S( f , 1000) ≈ 3
4

,

that is,
11/3 + 21/3 + 31/3 + · · · + 10001/3

10004/3
≈ 3

4
.

Hence

11/3 + 21/3 + 31/3 + · · · + 10001/3 ≈ 3
4
· 10004/3 =

3
4
· 10000 = 7500.

(With the help of a calculator, 11/3 + 21/3 + 31/3 + · · · + 10001/3 = 7504.723 to three
decimal places.) ♦

Exercise 5.33. Show that

lim
n→∞

(
1√

12 + n2
+

1√
22 + n2

+
1√

32 + n2
+ · · · + 1√

n2 + n2

)
=
∫ 1

0

1√
x2 + 1

dx.

(We will show later on that this latter value is log(1 +
√

2).)

Exercise 5.34. Find lim
n→∞

n−1∑
k=0

n
n2 + k2

.

Exercise 5.35. Find lim
n→∞

n∑
k=1

1√
n2 + kn

.

Exercise 5.36. Using the computer, write a program to find

∫ 10

0
e−x2

dx

approximately using a Riemann sum. For example, take the partition

Pn :=
{
a = 0,

10
n

, 2 · 10
n

, · · · , (n− 1) · 10
n

, b = 10

}

with n, say, 10000. It can be shown that the ‘improper integral’ (something we will study in
the following section) ∫ ∞

0
e−x2

dx =
√

π

2
.
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As e−x2
decreases rapidly with increasing x, and since e−102

= e−100 has order of magnitude4

10−44, it follows that the tail is
∫ ∞

10
e−x2

dx =
∫ ∞

0
e−(u+10)2

du (with u = x− 10)

=
∫ ∞

0
e−100e−u2

e−20udu

≤ e−100
∫ ∞

0
e−u2 · 1du = e−100

√
π

2
∼ 10−44,

and so it can be neglected. Hence, our Riemann sum should give a reasonably good approx-
imation to

√
π

2 , and in turn, we can find an approximation for π. What approximate value for
π do you obtain based on your computer program?

5.5 Improper integrals

So far, we have defined ∫ b

a
f (x)dx

where −∞ < a < b < ∞ (that is, a and b are finite) and f is Riemann integrable (and in
particular f is bounded).

Now we give meaning to the integral when either the domain of integration is unbounded
or the function to be integrated (the integrand) becomes unbounded.

We will do this using the limits of integrals of the ‘nice’ type (with bounded integrand and
a compact interval [a, b]), provided the relevant limits exist.

Definition 5.9 (Convergence/Divergence of improper integrals). Suppose that a is a real
number, and let the function f : [a,∞) → R be such that for all y ∈ (a,∞), f ∈ RI[a, y]. If

lim
y→∞

∫ y

a
f (x) dx

exists (that is, there is a real number that is this limit), then we define

∫ ∞

a
f (x) dx := lim

y→∞

∫ y

a
f (x) dx,

and we say the improper integral
∫ ∞

a
f (x) dx exists or

∫ ∞

a
f (x) dx converges.

If
∫ ∞

a
f (x) dx doesn’t converge, then we say

∫ ∞

a
f (x) dx diverges/doesn’t exist.

4 This phrase is used to indicate the rough size of a number, just like in everyday conversation, for example when
one says ‘She has a six figure salary’.
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a y

f

Example 5.27 (For r < −1,
∫ ∞

1
xr dx exists).

We have ε := −(r + 1) > 0. Thus
(

xr+1

r + 1

)′
= (r + 1) · xr

r + 1
= xr,

and so ∫ y

1
xr dx =

yr+1 − 1
r + 1

.

Hence

lim
y→∞

∫ y

1
xr dx = lim

y→∞

yr+1 − 1
r + 1

= lim
y→∞

y−ε − 1
r + 1

=
0 − 1
r + 1

= − 1
r + 1

.

So, if r < −1, then the improper integral
∫ ∞

1
xr dx exists and

∫ ∞

1
xr dx = − 1

r + 1
. ♦

Example 5.28 (
∫ ∞

1

1
x
dx diverges ).

Let P be the partition {1, 2, · · · , n− 1, n} of the interval [1, n] for n ≥ 2. Then
∫ n

1

1
x
dx ≥ S

(
1
x

,P

)
=

1
2

+
1
3

+ · · · + 1
n

.

1

1
x

32 n· · · n−1
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But from Example 2.16, we know that the increasing sequence(
1
2

+
1
3

+ · · · + 1
n

)
n∈N

diverges, and so it can’t be bounded. As

y �→
∫ y

1

1
x
dx : (1,∞) → R

is increasing (indeed the integrand 1/x > 0 for all x ≥ 1), it follows from the above that

lim
y→∞

∫ y

1

1
x
dx = ∞.

Hence the improper integral
∫ ∞

1

1
x
dx diverges. ♦

Theorem 5.16. The improper integral
∫ ∞

1
xr dx converges ⇔ r < −1 .

Proof. We have already seen that

if r < −1, then
∫ ∞

1
xr dx converges, and

if r = −1, then
∫ ∞

1
xr dx diverges.

Now suppose that r > −1. Then r + 1 > 0, and if x ≥ 1, then xr+1 ≥ 1. (We will learn this
later when we define real exponents of nonnegative numbers: so far we at least know this for
rational rs.) Thus

xr ≥ 1
x

.

So for y > 1, ∫ y

1
xr dx ≥

∫ y

1

1
x
dx.

Since lim
y→∞

∫ y

1

1
x
dx = ∞, it follows from the above that also

lim
y→∞

∫ y

1
xr dx = ∞,

and so the improper integral
∫ ∞

1

1
x
dx diverges if r > −1. �

For example,
∫ ∞

1

1√
x
dx diverges, while

∫ ∞

1

1
x2

dx converges.

Example 5.29. The improper integral
∫ ∞

0

1
1 + x2

dx converges. For y > 1,

∫ y

0

1
1 + x2

dx =
∫ 1

0

1
1 + x2

dx +
∫ y

1

1
1 + x2

dx

≤
∫ 1

0

1
1 + x2

dx +
∫ y

1

1
x2

dx

≤
∫ 1

0

1
1 + x2

dx +
∫ y

1

1
x2

dx (since r = −2 < −1).
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Thus y �→
∫ y

0

1
1 + x2

dx is bounded above, and moreover, it is increasing. So

lim
y→∞

∫ ∞

0

1
1 + x2

dx

exists. ♦

Definition 5.10 (Convergence/Divergence of improper integrals). Similar to our earlier
definition, the improper integral ∫ a

−∞
f (x) dx

converges if lim
y→∞

∫ a

−y
f (x) dx exists, and

∫ a

−∞
f (x) dx := lim

y→∞

∫ a

−y
f (x) dx.

If
∫ a

−∞
f (x) dx does not converge, we say it diverges.

Definition 5.11 (Convergence of improper integrals). The improper integral∫ ∞

−∞
f (x) dx

converges if both
∫ 0

−∞
f (x) dx and

∫ ∞

0
f (x) dx exist, and we define

∫ ∞

−∞
f (x) dx :=

∫ 0

−∞
f (x) dx +

∫ ∞

0
f (x) dx.

Example 5.30.
∫ ∞

−∞

1
1 + x2

dx converges. We have seen that

∫ ∞

0

1
1 + x2

dx

converges. For y > 0 (using the substitution u = −x, so that du = −dx, u = 0 when x = 0,
and u = y when x = −y), we have∫ 0

−y

1
1 + x2

dx =
∫ 0

y

1
1 + (−u)2

(−1) du =
∫ y

0

1
1 + u2

du.

Since lim
y→∞

∫ y

0

1
1 + u2

du exists, it follows from the above that

lim
y→∞

∫ 0

−y

1
1 + x2

dx

exists, that is
∫ 0

−∞

1
1 + x2

dx converges. Since both

∫ 0

−∞

1
1 + x2

dx and
∫ ∞

0

1
1 + x2

dx

converge,
∫ ∞

−∞

1
1 + x2

dx converges. ♦
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Example 5.31 ( lim
y→∞

∫ y

−y
f (x) dx may exist, but not

∫ ∞

−∞
f (x) dx). We have

∫ y

−y
x dx =

x2

2

∣∣∣y
−y

=
y2

2
− y2

2
= 0,

and so lim
y→∞

∫ y

−y
f (x) dx = 0. But,

∫ y

0
x dx =

x2

2

∣∣∣y
0

=
y2

2
− 0 =

y2

2
,

and so lim
y→∞

∫ y

0
f (x) dx does not exist. Consequently

∫ ∞

−∞
f (x) dx diverges. ♦

Theorem 5.18. If
∫ ∞

−∞
f (x) dx converges, then lim

y→∞

∫ y

−y
f (x) dx exists, and

∫ ∞

−∞
f (x) dx = lim

y→∞

∫ y

−y
f (x) dx.

Proof. Indeed,
∫ ∞

−∞
f (x) dx =

∫ 0

−∞
f (x) dx +

∫ ∞

0
f (x) dx = lim

y→∞

∫ 0

−y
f (x) dx + lim

y→∞

∫ y

0
f (x) dx

= lim
y→∞

(∫ 0

−y
f (x) dx +

∫ y

0
f (x) dx

)
= lim

y→∞

∫ y

−y
f (x) dx. �

Definition 5.12 (Absolutely convergent improper integral).∫ ∞

a
f (x) dx is absolutely convergent if

∫ ∞

a
| f (x)| dx is convergent.

The terminology used earlier suggests that absolutely convergent improper integrals ought to
be first of all convergent: after all if we call a child a ‘good boy’, the child should be first of
all a boy! The following result gives the needed justification.

Theorem 5.19.

If
∫ ∞

a
f (x)dx is absolutely convergent, then

∫ ∞

a
f (x)dx converges.

Proof. Set f+(x) =
| f (x)| + f (x)

2
, f−(x) =

| f (x)| − f (x)
2

, for x ∈ [a,∞). Then

0 ≤ f+(x) =
| f (x)| + f (x)

2
≤ | f (x)| + | f (x)|

2
= | f (x)|,

0 ≤ f−(x) =
| f (x)| − f (x)

2
≤ | f (x)| + | f (x)|

2
= | f (x)|.
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Since
∫ ∞

a
| f (x)| dx = lim

y→∞

∫ y

a
| f (x)| dx exists, it follows from the above that

∫ ∞

a
f+(x) dx = lim

y→∞

∫ y

a
f+(x) dx and

∫ ∞

a
f−(x) dx = lim

y→∞

∫ y

a
f−(x) dx

exist. Since f = f+ − f−, we have

lim
y→∞

∫ y

a
f (x) dx = lim

y→∞

∫ y

a
(f+(x) − f−(x)) dx

= lim
y→∞

∫ y

a
f+(x) dx− lim

y→∞

∫ y

a
f−(x) dx

exists. Thus
∫ ∞

a
f (x) dx converges. �

Example 5.32. We will show
∫ ∞

1

sin x
x

dx converges. We have

∣∣∣∣ sin x
x

∣∣∣∣ ≤ 1
x

, but

∫ ∞

1

1
x
dx

diverges. So such a simplistic idea doesn’t work. We will ‘increase the power of x in the
denominator’ using Integration by Parts:∫ y

1

sin x
x

dx =
1
x
(− cos x)

∣∣∣y
1
−
∫ y

1
− 1
x2

(− cos x)dx = −cos y
y

+
cos 1

1
−
∫ y

1

cos x
x2

dx.

(5.10)

Since
∣∣∣cos x

x2

∣∣∣ ≤ 1
x2

, and since
∫ ∞

1

1
x2

dx converges, it follows that

∫ ∞

1

cos x
x2

dx

is absolutely convergent, and so, convergent. Also, lim
y→∞

− cos y
y

= 0. From (5.10),

lim
y→∞

∫ y

1

sin x
x

dx

exists, that is,
∫ ∞

1

sin x
x

dx converges. ♦

There is another kind of improper integral, in which the domain of the integrand is bounded,
but the integrand is unbounded.

Definition 5.13 (Convergence of an improper integral). Let a, b ∈ R with a < b.

(1) f : (a, b] → R be such that for every y > a, f ∈ RI[y, b]. If

lim
y↘a

∫ b

y
f (x) dx
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exists, then we say that the improper integral
∫ b

a+
f (x) dx converges, and

∫ b

a+
f (x) dx := lim

y↘a

∫ b

y
f (x) dx.

Sometimes, we denote
∫ b

a+
f (x) dx simply by

∫ b

a
f (x) dx.

(2) The improper integral ∫ b−

a
f (x) dx

is defined analogously for a function f : [a, b) → R be such that for every y < b,
f ∈ RI[a, y].

(3) Finally, consider an unbounded function f : (a, b) → R, which is Riemann integrable
on [x, y] for all x, y ∈ (a, b) with x < y. Set c := a+b

2 .

If
∫ c

a+
f (x) dx converges and

∫ b−

c
f (x) dx converges, then we say

∫ b−

a+
f (x) dx

converges, and define
∫ b−

a+
f (x) dx :=

∫ c

a+
f (x) dx +

∫ b−

c
f (x) dx.

Theorem 5.20.
∫ 1

0
xr dx converges ⇔ r > −1 .

Proof. For r �= −1, we have
∫ 1

y
xr dx =

xr+1

r + 1

∣∣∣1
y

=
1 − yr+1

r + 1
.

00 yy

yr+1  when

yr+1  when
r + 1 > 0

r + 1 > 0
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1◦ r > −1. Then r + 1 > 0, and lim
y→0
y>0

yr+1 = 0. Thus

lim
y→0
y>0

∫ 1

y
xr dx = lim

y→0
y>0

1 − yr+1

r + 1
=

1 − 0
r + 1

=
1

r + 1
.

Hence
∫ 1

0
xr dx converges.

2◦ r < −1. Then r + 1 < 0, and lim
y→0
y>0

yr+1 = ∞. Thus

lim
y→0
y>0

∫ 1

y
xr dx = lim

y→0
y>0

1 − yr+1

r + 1
= ∞.

Hence
∫ 1

0
xr dx diverges.

3◦ r = −1. Then for n ≥ 2, by considering the partition
{

1
n

,
2
n

,
3
n

, · · · ,
n− 1
n

,
n
n

}
∈ P[ 1

n ,1]

and the function 1/x ∈ C[ 1
n , 1] ⊂ RI[ 1

n , 1], we obtain the inequality

∫ 1

1/n

1
x
dx ≥ S(1/x,P) =

1
n
· 1

2/n
+

1
n
· 1

3/n
+ · · · + 1

n
· 1
n/n

=
1
2

+
1
3

+ · · · + 1
n

n→∞−−−−→∞.

Hence lim
y→0
y>0

∫ 1

y
xr dx does not exist, and so

∫ 1

0

1
x
dx diverges.

�

x10

� �

∞

1
xr  dx converges

r < −1.

1

0+
xr  dx converges

r > −1.

One can also consider ‘mixed’ combinations of improper integrals such as

∫ b

a+
f (x) dx +

∫ ∞

b
f (x) dx

written as
∫ ∞

a+
f (x) dx. Here is an example.
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Example 5.33 (The Gamma function Γ). The simplest functions one meets in applications
are the algebraic functions, which are the polynomials, rational functions, and the nth root
function. Loosely speaking if a function is not a combination of these, then one calls it tran-
scendental. Among the transcendental functions are the logarithm function log, the exponen-
tial function exp, the trigonometric functions sin, cos, and so on. We will soon define these
elementary transcendental functions and their properties in the subsequent section. Besides the
elementary transcendental functions, there are functions that also appear frequently enough
(typically in specific subdisciplines such as statistics, quantum mechanics, number theory,
etc.) that they warrant their own special symbols. Such functions are called special functions.
Arguably, the most common special function or the least special of the special functions is
the Gamma function Γ, which transcends multiple subdisciplines such as quantum mechan-
ics, analytic number theory, statistics, and so on. The Γ function is defined in terms of an
improper integral, and the aim of this exercise is to study the ‘well definedness’ of Gamma
function for positive values of the argument. In other words, we want to prove the following:

Claim: If s > 0, then the improper integral Γ(s) :=
∫ ∞

0+
e−t · ts−1 dt converges.

(Here we use e−t for exp(−t). We will use several properties of the exponential function in
the following, which can be accepted on faith now, but will be proved in the following section
when we study the exponential function.)

The improper integral is interpreted as a sum
∫ 1

0+
e−tts−1 dt

︸ ︷︷ ︸
I

+
∫ ∞

1
e−tts−1 dt

︸ ︷︷ ︸
II

.

(Note that for values of t near 1, the integrand is well behaved, but for t near 0, for s < 1, the
integrand is unbounded.)

Let us study the convergence of I and II.

I: We know that ∫ 1

0+
ts−1 dt

converges for s− 1 > −1, that is, for s > 0. As 0 ≤ e−tts−1 ≤ 1 · ts−1 for t ∈ (0, 1],
it follows that ∫ 1

0+
e−tts−1 dt

converges.

II: Let n ∈ N be such that n > s. Then for t ≥ 1,

et = 1 +
t
1!

+
t2

2!
+ · · · ≥ tn

n!
,

and so
e−tts−1tn−s+1

n!
≤ 1, that is,

e−tts−1 ≤ n!
t1+n−s

.
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As
∫ ∞

1
tr dt converges for r < −1, it follows that

∫ ∞

1
e−tts−1 dt

converges.

We remark that the Gamma function was introduced by Euler in 1729. It is a solution to the
following interpolation problem:

Find a smooth curve that connects the points on the graph of the factorial function
n �→ n! : N → N.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

Of course there are infinitely many such functions, but the Gamma function is somewhat
special. There is a result, called the Bohr5-Mollerup Theorem, stating that the Gamma function
is the unique function f , which is

(1) positive,

(2) logarithmically convex (that is, log ◦Γ is a convex function6)

(3) for all x > 0, f (x + 1) = x f (x). ♦

Exercise 5.37. Find
∫ ∞

9

1
(x− 3)2

dx.

Exercise 5.38. Determine whether or not the following improper integrals exist:

(1)
∫ ∞

0

1√
1 + x3

dx.

(2)
∫ ∞

0

x

1 +
√
x3

dx.

5 Incidentally, this is Harald Bohr, the mathematician brother of the physicist Niels Bohr. Harald Bohr made fun-
damental contributions to the theory of almost periodic functions, and also won a silver medal in the 1908 Olympics
in football.

6 For example, ex
2

is convex. Logarithmically convex functions are convex, but not vice versa. x2 is convex, but
log(x2) = 2 log |x| is not convex.
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Exercise 5.39 (Properties of the Gamma function Γ).

(1) Show that Γ(1) = 1.

(2) (∗) For s > 0, Γ(s + 1) = s · Γ(s).

(3) Show that for all n ∈ N, Γ(n + 1) = n!.

Exercise 5.40 (∗) Suppose that f : [0,∞) → [0,∞) is such that
∫ ∞

0
f (x)dx (5.11)

exists. Intuitively, we expect that the area under the graph of the nonnegative f in intervals
[x,∞) to become smaller and smaller as x becomes larger and larger, and so one is tempted
to conclude that f itself must have limit 0 as x → ∞. Show with an example that this needn’t
be the case.

Suppose now that we know that f : [0,∞) → [0,∞) is such that, besides having that the
improper integral (5.11) exists, also f is differentiable and

∫ ∞

0
f ′(x)dx

exists. Show that lim
x→∞

f (x) = 0.

Exercise 5.41 (Convolution). For f , g : R → R, which are both zero outside some compact
interval, we define the convolution f ∗ g : R → R by

( f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(t − τ)dτ , t ∈ R,

assuming that the integral exists for each t.

(1) Note that the graph of g(−·) is obtained by reflecting the graph of g about the y-axis, and
for a fixed t, the graph of g(t − ·) is a shifted version of the graph of g(−·). So in order to find
out the value ( f ∗ g)(t), one may proceed as follows.

(a) Draw the graph of f and g.

(b) Reflect the graph of g about the y-axis.

(c) Translate the graph of g(−·) by |t| units to the left if t < 0 and to the right if t ≥ 0.

(d) Multiply the functions f and g(t − ·) pointwise, and find the area under the graph of
this pointwise product.

Use this procedure to graphically determine the convolution 1[0,1] ∗ 1[0,1], where 1[0,1] is the
indicator function of the interval [0, 1]:

1[0,1](x) =

{
1 if x ∈ [0, 1],
0 if x ∈ R\[0, 1].

(2) Show that f ∗ g = g ∗ f . (That is the convolution operation ∗ is ‘commutative’.)
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Exercise 5.42 (Differentiation under the integral sign7). While we don’t learn the theory
behind this, let us try to use this tool formally, that is, without paying attention to rigour.
To find ∫ ∞

0

sin x
x

dx,

we consider the more general integral

I(α) =
∫ ∞

0
e−αx sin x

x
dx,

by introducing the ‘parameter’ α. (So our integral of interest corresponds to α = 0.) Then by
differentiating with respect to α, we obtain

I′(α) =
∫ ∞

0
(−x)e−αx sin x

x
dx

=
∫ ∞

0
−e−αx sin x dx = − 1

α2 + 1
e−αx((−α) sin x− cos x)

∣∣∣∞
0

= − 1
α2 + 1

,

where we have used Integration by Parts (twice), as in Example 5.20. Integrating (from
α to ∞), we have 0 − I(α) = I(∞) − I(α) = −π

2 + tan−1α, and so
∫ ∞

0

sin x
x

dx = I(0) =
π

2
.

Try your hand at formally finding the values of the following integrals.

(1)
∫ ∞

0

(sin x)2

x2
dx by considering I(α) =

∫ ∞

0

(sin(αx))2

x2
dx.

(2)
∫ ∞

0
e−x sin x

x
dx by considering I(α) =

∫ ∞

0
e−x sin(αx)

x
dx.

(3)
∫ 1

0

x− 1
log x

dx by considering I(α) =
∫ 1

0

xα − 1
log x

dx.

(4)
∫ ∞

0

tan−1(πx) − tan−1x
x

dx by considering I(α) =
∫ ∞

0

tan−1(αx) − tan−1x
x

dx.

Exercise 5.43 (Gravitational potential energy and escape velocity).

(1) The gravitational potential energy (due to the gravitational pull of the Earth) at
distance an R from the center of the earth can be thought to be the amount of work

7 Differentiation under the integral sign is mentioned in Feynman’s memoir Surely You’re Joking, Mr. Feynman!
in the chapter ‘A Different Box of Tools’, where it is narrated that he learnt it from a Calculus book by Woods while
in high school, and using this tool for doing integrals (where standard methods such as contour integration or a simple
series expansion had failed), he built a reputation for doing integrals.
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done to bring an object from separation R to far away (‘at infinity R = ∞’). By
Newton’s Law of Gravitation, the force experienced by a mass m at a separation r
from the center of the Earth is given by

F =
GMm
r2

,

where G is the universal gravitation constant and M is the mass of the Earth. The work
done to move a mass m at r through a small distance dr is given by

Work done = (Force) · (Displacement) =
GMm
r2

dr,

where we have assumed that the force is constant over [r, r + dr] for small dr. So, the
potential energy V(R) at R is given by the (improper) integral

V(R) :=
∫ ∞

R

GMm
r2

dr.

Find an explicit expression for V(R).

(2) The escape velocity ve(R) at a separation R from the center of the earth is defined as
to be the one that imparts enough kinetic energy to the object in order to overcome
the gravitation potential energy V(R). Show that

ve =

√
2GM
R

.

Using the following values, determine the escape velocity of a rocket on the surface
of the earth:

Radius of the Earth R⊕ = 6, 371 km,

Mass of the Earth M⊕ = 5.97219 × 1024 kg,

Universal gravitational constant G = 6.67384 × 10−11 m3 kg−1 s−2.

(3) Assuming that M is the mass of a star (say the Sun, whose mass is estimated to be
M� = 1.99 × 1030 kg), for what radius does the escape velocity equal the speed of
light, c = 3 × 108 ms−1? This radius, rs, is called the Schwarzchild radius (of the
black hole).

Exercise 5.44. If λ is a positive real number, then show that
∫ ∞

0
e−λxdx =

1
λ

.

Exercise 5.45. Does the improper integral
∫ ∞

0
e−x2

dx converge?

Exercise 5.46. Does
∫ ∞

2

1
x log x

dx converge? What about
∫ ∞

2

1
x(log x)2

dx?
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5.6 Elementary transcendental functions

We will use the theory of Riemann integration to introduce and define the elementary tran-
scendental functions:

(1) logarithm,

(2) exponential,

(3) trigonometric functions such as sin, cos, tan, etc.

We will give formal definitions of these and derive their several interesting properties based on
our definitions and the Calculus tools we have been developing. En route we will also formally
define e, π. (π we have met before in Example 5.8.) These things are of great practical value,
since they form the foundations of concepts such as angle polar coordinates, and so on.

The logarithm function
Q. What does a drowning Calculus teacher say?
A. log, loglog, logloglog, · · ·.

1
t

: (0,∞) → R is continuous, and so for any [a, b] ⊂ (0,∞),
1
t
∈ RI[a, b].

Definition 5.14 (Logarithm function). The logarithm log : (0,∞) → R is defined by

log x :=
∫ x

1

1
t
dt, x > 0.

As
1
t

> 0 for all t ∈ (0,∞), we have log x ≥ 0 if x ≥ 1.

1
t

tt x

11

11 00

area =: log x

area =: −log x

1
t

x
(a) (b)

Figure 5.14 Definition of log : (0,∞) → R.

We note that owing to our convention with the Riemann integral and the limits of integration
described on page 204, log x < 0 for 0 < x < 1. See Figure 5.14.
Moreover,

log 1 =
∫ 1

1

1
t
dt = 0.
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Theorem 5.21 (Properties of the logarithm). log : (0,∞) → R is

(1) differentiable, and log′x =
1
x
for all x ∈ (0,∞);

(2) strictly increasing, and concave;

(3) onto, lim
x→∞

log x = ∞, lim
x→0+

log x = −∞.

Proof.

(1) By the Fundamental Theorem of Calculus,
d
dx

∫ x

1

1
t
dt =

1
x

.

(2) Since log′x =
1
x

> 0 for all x ∈ (0,∞), it follows that log is strictly increasing.

Moreover, log′′x = − 1
x2

< 0 for all x ∈ (0,∞), and so log is concave.

(3) Let n ≥ 2. Then

log n =
∫ n

1

1
t
dt =

n∑
k=2

∫ k

k−1

1
t
dt ≥

n∑
k=2

∫ k

k−1

1
k
dt =

n∑
k=2

1
k

.

Since ‘the Harmonic Series diverges’,

(
n∑

k=2

1
k

)

n∈N

is not bounded above. So we obtain that

for all y > 0, there exists an n ≥ 2 such that

log n ≥
n∑

k=2

1
k
≥ y ≥ 0 = log 1.

Thus by the Intermediate Value Theorem applied to the continuous8 function log on [1, n],
there exists an x ∈ [1, n] such that log x = y.

tt 1
n

11 00 n

Also,

log
1
n

= −
∫ 1

1/n

1
t
dt = −

n∑
k=2

∫ 1
k−1

1
k

1
t
dt ≤ −

n∑
k=2

∫ 1
k−1

1
k

(k − 1) dt = −
n∑

k=2

1
k

.

8 we know that log is differentiable on (0,∞) and hence continuous there
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Since (
n∑

k=2

1
k

)

n∈N

is not bounded above, we obtain that for all y ≤ 0, there exists an n ≥ 2 such that

log
1
n
≤ −

n∑
k=2

1
k

< y ≤ 0 = log 1.

So by the Intermediate Value Theorem applied to the continuous function log on [ 1
n , 1], there

exists an x ∈ [ 1
n , 1] such that log x = y. Hence log is onto.

Finally, we will show that lim
x→∞

log x = ∞ and lim
x→0+

log x = −∞.

Let M ∈ R. Choose x0 ∈ (0,∞) such that log x0 = M. As log is increasing, we have that
for x > x0, log x ≥ log x0 = M. Hence

lim
x→∞

log x = ∞.

Also, log is increasing, and so for all x ∈ (0,∞) such that 0 < x < x0 (with the above choice
of x0), log x ≤ log x0 = M. Thus

lim
x→0+

log x = −∞.

This completes the proof. �

On the basis of the above properties, one can sketch the graph of log. See Figure 5.15.

0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5
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0.5

1

1.5

2

2.5

Figure 5.15 Graph of log.

Definition of the number e

The properties (2), (3) in Theorem 5.21 of the logarithm function say in particular that
log : (0,∞) → R is one-to-one (since it is strictly increasing) and onto, that is, it is bijective.
Thus there exists a unique number e ∈ (0,∞) such that log e = 1. This is called Euler’s
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number (explaining the choice of the letter) or sometimes also as Napier’s constant. See
Figure 5.16.

0 2 4 6 8 10
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0
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1

1.5

2

2.5

Figure 5.16 Definition of e: the horizontal line through 1 on the y-axis intersects the graph
of log at a point, whose x-coordinate is the number e.

Here are some crude estimates for e: 2 ≤ e ≤ 4. Indeed,

log 2 =
∫ 2

1

1
t
dt ≤

∫ 2

1
1 dt = 1,

log 4 =
∫ 4

1

1
t
dt =

∫ 2

1

1
t
dt +

∫ 4

2

1
t
dt ≥

∫ 2

1

1
2
dt +

∫ 4

2

1
4
dt =

1
2

+
1
2

= 1.

Since log is strictly increasing, 2 ≤ e ≤ 4. (If e < 2, then 1 < log 2 ≤ 1, a contradiction, and
if e > 4, then 1 > 4 ≥ 1, again a contradiction.)

We will soon show that

e =
∞∑
n=0

1
n!

:= lim
N→∞

N∑
n=0

1
n!

.

This allows us to show that up to three decimal places, e = 2.718 · · ·. We will also show that
e /∈ Q, that is, e is irrational.

Remark 5.2. One can in fact also show that e is not ‘algebraic’, that is, it is ‘transcenden-
tal’. What do we mean by this? Here are the relevant definitions. A real number α is called
algebraic if there is a nonzero polynomial p with rational coefficients such that p(α) = 0. Of
course all rational numbers are algebraic since if r = n

d , where n, d ∈ Z and d �= 0, then with
p := dx− n, we obtain

p(r) = d · n
d
− n = 0.

But the set A of algebraic numbers strictly contains Q: for example,
√

2 ∈ A\Q, since with
p := x2 − 2, we have p(

√
2) = 0. It can be shown that A is a field (with the same operations

of addition and multiplication inherited from R). A real number τ is called transcendental if
τ /∈ A. It can be proved that e, π ∈ R\A; see [S2]. Thus Q � A � R.

Let us now show another important property of the logarithm.
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Theorem 5.22. For a, b ∈ (0,∞), log(ab) = log a + log b.

Adders multiply on log tables.

Proof. Fix b ∈ (0,∞). Define f : (0,∞) → R by f (x) := log(x · b) − log x, x > 0. Then

f ′(x) =
1

x · b · b− 1
x

= 0, x > 0.

Hence f is constant. In particular, f (a) = f (1), for a > 0, that is,

log(ab) − log a = log(1 · b) − log 1 = log b− 0 = log b.

Rearranging, we obtain the desired equality. �

Exercise 5.47 (Euler’s constant γ). Another important number named after Euler is Euler’s
constant γ, which plays a role, among other things, in Number Theory.

(1) Prove that
1
n
≥ log(n + 1) − log n ≥ 1

n + 1
for all n ∈ N.

(2) If

an := 1 +
1
2

+
1
3

+ · · · + 1
n
− log n,

then show that (an)n∈N
is decreasing and that an ≥ 0 for all n ∈ N. Conclude that there

is a number

γ := lim
n→∞

(
1 +

1
2

+
1
3

+ · · · + 1
n
− log n

)
.

(Approximately, γ = 0.5772156649 · · ·, but it is not known whether γ is rational or
irrational. The reason behind the choice of the symbol is that γ is closely related to
the Γ function. For example, γ = −Γ′(1).)

Exercise 5.48. Show that for all x ≥ 0, x− x2

2
≤ log(1 + x) ≤ x− x2

2
+

x3

3
.

Exercise 5.49. In ‘hyperbolic geometry’ of the unit disk D := {(x, y) ∈ R
2 : x2 + y2 < 1} in

the plane, straight lines in D are circular arcs that are orthogonal to the bounding circle T.
See Figure 5.17.
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A

B
C

P

Q

Figure 5.17 A straight line passing through A,B,C.

The distance between two points A,B is then taken as

d(A,B) := log

⎛
⎝

�
AP
�
AQ

·
�
BQ
�
BP

⎞
⎠ ,

where
�
AP denotes the circular Euclidean arc length of the circular arc AP, etc.

Note that since
�
AP >

�
BP and

�
BQ>

�
AQ, d(A,B) are always nonnegative. Also, one can check

that d(A,B) = d(B,A). Show that for three points A,B,C lying on such a line, in that order,
d(A,B) + d(B,C) = d(A,C).

Exercise 5.50 (Stirling’s Formula).

(1) Compute the improper integral
∫ 1

0
log x dx.

(2) Based on the result in the previous part, try giving a formal nonrigorous explanation
of Stirling’s Formula: for large n, log n! ≈ n log n− n (implying the approximation
n! ≈ en log n−n = nne−n).

Exercise 5.51. Show that for all x ∈ R,∫ x

0

1√
1 + t2

dt = log(x +
√

1 + x2),

∫ x

0

√
1 + t2 dt =

x
√

1 + x2 + log(x +
√

1 + x2)
2

.

Exercise 5.52. Find lim
x→∞

log(log x)
log x

.
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The exponential function

Definition 5.15 (Exponential function exp). exp : R → (0,∞) is the inverse of (the bijective
function) log : (0,∞) → R. Thus for x ∈ R and y ∈ (0,∞),

exp x = y ⇔ log y = x.

See Figure 5.18.

x

log(exp x) = x

y

exp(log y) = y

exp

log

Figure 5.18 exp : R → (0,∞) and log : (0,∞) → R are inverses of each other.

By definition,

exp x > 0 for all x ∈ R,

exp 0 = 1 since log 1 = 0,

exp 1 = e since log e = 1.

Here are further properties of the exponential function.

Theorem 5.23 (Properties of exp). exp : R → (0,∞) is such that:

(1) exp is differentiable, and exp′x = exp x for all x ∈ R;

(2) exp is strictly increasing, and convex;

(3) for all α, β ∈ R, exp(α + β) = (expα) · (exp β);

(4) lim
x→∞

exp x = ∞, lim
x→−∞

exp x = 0.
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Proof.

(1) Let x ∈ R and c ∈ (0,∞) be such that log c = x. So by the Differentiable Inverse Theorem
(applied to log : (0,∞) → R, which is strictly increasing, continuous, differentiable at
x = log c and log′ c = 1/c �= 0), it follows that exp : R → (0,∞) is differentiable at
x = log c and that

exp′x = exp′(log c) =
1

log′ c
=

1
1/c

= c = exp x.

(2) Since exp′ x = exp x > 0 for all x ∈ R, it follows that exp is strictly increasing.

Also, exp is convex because exp′′ x = exp x > 0 for all x ∈ R.

(3) Let a := exp α and b := exp β. Then we have that log a = α and log b = β, and thus
log(ab) = log a + log b = α + β. So (exp α)(exp β) = ab = exp(log ab) = exp(α + β).

(4) Let M > 0. Set x0 := logM. Then exp x0 = M. As exp is increasing, we have for all
x ≥ x0 that exp x ≥ exp x0 = M. Hence

lim
x→∞

exp x = ∞.

Let ε > 0. Then for all x < log ε, we have exp x < exp(log ε) = ε, and since exp x > 0,
| exp x− 0| = exp x < ε. Hence lim

x→−∞
exp x = 0. �

Taylor’s formula for exp

For all k ≥ 0 and all x ∈ R, exp(k)x = exp x. So the Taylor polynomial at 0 of degree n for
f := exp is

pn(x) := f (0) +
f ′(0)

1!
x + · · · + f (n)(0)

n!
xn

= exp 0 +
exp 0

1!
x + · · · + exp 0

n!
xn

= 1 +
1
1!
x +

1
2!
x2 +

1
3!
x3 + · · · + 1

n!
xn.

Thus Taylor’s Formula gives the existence of a cx between 0 and x such that

exp x = 1 +
1
1!
x +

1
2!
x2 +

1
3!
x3 + · · · + 1

n!
xn +

exp cx
(n + 1)!

xn+1.

In particular,

e = exp 1 = 1 +
1
1!

+
1
2!

+
1
3!

+ · · · + 1
n!

+
exp c

(n + 1)!

for some c ∈ (0, 1). But 0 < exp c < exp 1 = e < 4, and so we obtain

0 < e−
(

1 +
1
1!

+
1
2!

+
1
3!

+ · · · + 1
n!

)
<

4
(n + 1)!

. (5.12)
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Thus the sequence (of rational numbers)(
1 +

1
1!

+
1
2!

+
1
3!

+ · · · + 1
n!

)
n∈N

converges to e, and we write e =
∞∑
n=0

1
n!

.

We can use (5.12) to find e to an arbitrary number of decimal places. The following table
shows the terms of the above sequence for n = 1 to 9.

n 1 +
1
1!

+
1
2!

+
1
3!

+ · · · + 1
n!

4
(n + 1)!

1 2 2

2 2.5 0.666 · · ·
3 2.666 · · · 0.1666 · · ·
4 2.708333 · · · 0.0333 · · ·
5 2.71666 · · · 0.00555 · · ·
6 2.7180555 · · · 0.0007936 · · ·
7 2.718253968 · · · 0.0000992 · · ·
8 2.71827877 · · · 0.000011 · · ·
9 2.718281525 · · · 0.0000011 · · ·

Theorem 5.24. e /∈ Q.

Proof. Suppose that e = p
q , where p, q ∈ N. We recall (5.12), which says that for all n ∈ N,

0 < e−
(

1 +
1
1!

+
1
2!

+
1
3!

+ · · · + 1
n!

)
≤ 4

(n + 1)!
.

Let us multiply throughout by n!, where n > max{4, q}. Then

0 < (an integer) <
4

n + 1
< 1,

which is impossible! �

We will now learn about some useful consequences of the properties of log and exp.

Corollary 5.25.

(1) lim
h→0

log(1 + h)
h

= 1.

(2) lim
h→0

(exp h) − 1)
h

= 1.
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(1) and (2) imply that for small h, log(1 + h) ≈ h, and exp h ≈ 1 + h.

Proof. We have

lim
h→0

log(1 + h)
h

= lim
h→0

log(1 + h) − log 1
(1 + h) − 1

= log′ 1 =
1
1

= 1,

lim
h→0

(exp h) − 1
h

= lim
h→0

(exp h) − exp 0
h− 0

= exp′ 0 = exp 0 = 1. �

Corollary 5.26. For all n ∈ N,

(1) lim
x→∞

log x
n
√
x

= 0;

(2) lim
x→∞

xn

exp x
= 0.

(1) says that any nth roots grows faster than log x. (2) says that exp x grows faster than any
polynomial!

Proof. Let f := log x and g := n
√
x. Then f , g are differentiable, and

f ′ =
1
x

,

g′ =
1
n
x

1
n−1.

So g, g′ > 0 on (0,∞). We also have lim
x→∞

g(x) = lim
x→∞

x
1
n = ∞, and

lim
x→∞

f ′(x)
g′(x)

= lim
x→∞

1/x
1
n x

1
n−1

= lim
x→∞

n

x
1
n

= 0.
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So by the ∞
∞ form of l’Hôpital’s Rule, 0 = lim

x→∞

f (x)
g(x)

= lim
x→∞

log x
n
√
x

.

With g := exp x, we have g′ = exp x, and so g, g′ > 0 on R. Also, lim
x→∞

g(x) = ∞.

So a repeated application of the ∞
∞ form of l’Hôpital’s Rule gives

lim
x→∞

xn

exp x
= lim

x→∞

nxn−1

exp x
= lim

x→∞

n · (n− 1)xn−2

exp x
= · · · = lim

x→∞

n!
exp x

= 0. �

Real powers of positive real numbers

The logarithm and exponential functions allow us to define ab, where a > 0 and b ∈ R, in a
manner which is consistent with whatever notions of powers we have developed so far (and
we will show this below).

Definition 5.16 (Real powers of positive reals). If a > 0 and b ∈ R, then we define ab by
ab := exp(b log a).

Recall that, earlier, we had defined ar for a > 0 and r ∈ Q. Let us first check that our new def-
inition matches with the old one in the special case when b happens to be a rational number r.
To this end, define f : (0,∞) → R by f (x) = (log xr) − r log x, x > 0. Then

f ′(x) =
1
xr

· rxr−1 − r · 1
x

= 0.

So f is constant on (0,∞). Hence

(log xr) − r log x = f (x) = f (1) = (log 1r) − r log 1 = 0.

Consequently, log xr = r log x, that is, xr = exp(r log x). In fact, this motivates the definition
above, since the right hand side, namely exp(r log x), makes sense for r /∈ Q too!

Let a > 0 and consider the function x �→ ax : R → (0,∞). Here are sketches of the graphs
of x �→ 2x and x �→ (1/2)x.
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Theorem 5.27. Let a > 0. Then
d
dx

ax = (log a) · ax for all x ∈ R.

Proof. We have ax = exp(x log a), and so

d
dx

ax =
d
dx

exp(x log a) = exp(x log a) · d
dx

(x log a) = ax · log a

for all x ∈ R. �

Theorem 5.28. ex = exp x for all x ∈ R.

Proof. If a = e > 0, b = x ∈ R, then ab = ex = exp(x log e) = exp(x · 1) = exp x. �

Based on the above result, from now on, we will write ex instead of exp x.

We had seen earlier that e = lim
n→∞

(
1 +

1
1!

+
1
2!

+
1
3!

+ · · · + 1
n!

)
. We now show:

Theorem 5.29. If x �= 0, then ex = lim
n→∞

(
1 +

x
n

)n
. In particular,

e = lim
n→∞

(
1 +

1
n

)n

.

Proof. We know that lim
h→0

log(1 + h)
h

= 1. Thus for x �= 0, we obtain

lim
n→∞

log
(
1 + x

n

)
x
n

= 1,

that is, lim
n→∞

n log
(

1 +
x
n

)
= x. As exp is continuous, it follows from here that

lim
n→∞

exp
(
n log

(
1 +

x
n

))
= exp x = ex,

that is, lim
n→∞

(
1 +

x
n

)n
= ex. Putting x = 1, we obtain e = lim

n→∞

(
1 +

1
n

)n

. �

Theorem 5.30. For all x ∈ R, ex = lim
n→∞

(
1 +

x
1!

+
x2

2!
+

x3

3!
+ · · · + xn

n!

)
.

Proof. Fix x ∈ R. For n ∈ N, there exists a cx,n between 0 and x such that

ex = 1 +
x
1!

+
x2

2!
+

x3

3!
+ · · · + xn

n!
+

ecx,n

(n + 1)!
xn+1.

So ∣∣∣∣ex −
(

1 +
x
1!

+
x2

2!
+

x3

3!
+ · · · + xn

n!

)∣∣∣∣ = ecx,n

(n + 1)!
|x|n+1.
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But cx,n ≤ |x|, and so ecx,n ≤ e|x|. Hence

∣∣∣∣ex −
(

1 +
x
1!

+
x2

2!
+

x3

3!
+ · · · + xn

n!

)∣∣∣∣ ≤ e|x|

(n + 1)!
|x|n+1 =: an+1.

We have

an+1 =
e|x|

(n + 1)!
|x|n+1 =

|x|
n + 1

· e
|x|

n!
|x|n =

|x|
n + 1

· an < an,

where the last inequality holds for all n > |x|. So, the sequence (an)n∈N
is eventually decreas-

ing and bounded below by 0. So it is convergent, with limit, say, L. But from the above, we
see that

L = lim
n→∞

an+1 = lim
n→∞

|x|
n + 1

· an = 0 · L = 0.

Hence ex = lim
n→∞

(
1 +

x
1!

+
x2

2!
+

x3

3!
+ · · · + xn

n!

)
. �

Exercise 5.53. If a, b > 0, b �= 1, then we define ‘the logarithm of a to the base b’, by

logb a :=
log a
log b

.

(1) Show that blogba = a.

(2) Show that if a > 0 and b, c ∈ R, then (ab)c = a(b·c).

(3) Prove that log2 3 is irrational.

(4) Show that there are irrational numbers a, b such that ab is rational.

(5) Find the flaw in the following argument given for the claim that 1 > 2.
‘We know that 4 > 2. As the logarithm is a strictly increasing function, taking log1/2
of both sides, we obtain −2 = log1/24 > log1/22 = −1, and so 1 > 2’.

(6) Sketch the graphs of x �→ log x, log1/2 x, log10 x in the same picture.

Exercise 5.54. Find the derivative of f : (0,∞) → R, where f (x) =
log x
x

, x > 0.

Which is bigger: eπ or πe? (You may use the estimates e < 3 < π.)

Exercise 5.55 (A potpourri of first-order differential equations).

(1) (Homogeneous linear.) Let a be a continuous function on the open interval I. Let x0 ∈ I,
y0 ∈ R. Show that the equation

f ′(x) = a(x)f (x), x ∈ I,

satisfying the condition
f (x0) = y0,
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has the unique solution

f (x) = y0 exp
(∫ x

x0

a(ξ)dξ
)

, x ∈ I.

Hint: For uniqueness, differentiate exp
(
−
∫ x

x0

a(ξ)dξ
)
f (x), where f is any solution.

(In particular, when a(x) ≡ a is a constant, then the ‘initial value problem’
{

f ′(x) = a f (x),
f (0) = y0,

has the unique solution given by f (x) = eaxx0, x ≥ 0.)

(2) (Inhomogeneous linear.) Let a, b be continuous functions on the open interval I. Show
that the equation

f ′(x) = a(x)f (x) + b(x), x ∈ I,

satisfying the condition
f (x0) = y0,

has the unique solution

f (x) = y0e
A(x) + eA(x)

∫ x

x0

b(ξ)e−A(ξ)dξ, x ∈ I,

where A(x) :=
∫ x

x0

a(ξ)dξ, x ∈ I.

(3) (Separable.) If p, q are functions on R, then a differential equation of the form

y′(x) =
p(x)

q(y(x))

is called separable. One can then formally write

q(y)dy = p(x)dx

and ‘integrate both sides’ to solve the differential equation. This nonsense can be justified as
follows: Suppose that y is a solution and that Q is a primitive for the function

x �→ q(y(x)) · y′(x),

and P is a primitive for
x �→ p(x).

Then clearly (P− Q)′ = 0, and so P− Q is a constant, from which one can hope to find y.
Carry out this procedure in the special case of the differential equation

xy′ + y = y2,

assuming that x > 0, and that y(x) > 1 for all x > 0.
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Exercise 5.56 (Newton’s Law of Cooling). Newton’s law of cooling states that an object
cools at a rate proportional to the difference of its temperature and the temperature of the sur-
rounding medium. Find the temperature Θ(t) of an object at time t, in terms of its temperature
Θ0 at time 0, assuming that the temperature of the surrounding medium is kept at a constant,
M. What happens as t → ∞?

Exercise 5.57 (Radioactive decay). A radioactive substance diminishes at a rate proportional
to the amount present. If A(t) is the amount at time t, this means that A′(t) = −cA(t) for
some c > 0.

(1) Find A(t) in terms of the amount A(0) = A0 present at time 0.

(2) Show that there is a number τ (the half-life of the radioactive element) with the prop-
erty that A(t + τ) = A(t)/2 for all t.

Exercise 5.58 (Compound interest). An amount P is deposited in a bank that pays an interest
at a rate r per year, compounded m times a year. Thus the total amount (of principal plus
interest) at the end of n years is

A = P
(

1 +
r
m

)mn
.

If r, n are kept fixed, then show that this amount approaches the limit Pern as m → ∞. This
motivates the following definition. We say that the money grows at an annual rate r when
compounded continuously if the amount A(t) after t years is Pert for all t ≥ 0. Approximately
how long does it take for a bank account to double in value if it receives interest at an annual
rate of 6% if

(1) compounded continuously?

(2) it is just a simple interest?

Exercise 5.59 (The hyperbolic trigonometric functions). The hyperbolic sin and hyperbolic
cos functions sinh, cosh : R → R are defined as

cosh x :=
ex + e−x

2
, and sinh x :=

ex − e−x

2
,

for x ∈ R. (sinh, cosh are pronounced ‘shine’ and ‘cosh’, respectively.)

(1) Show that sinh 0 = 0, cosh 0 = 1, and

sinh′ x = cosh x, cosh′ x = sinh x, x ∈ R,

cosh(x + y) = (cosh x)(cosh y) + (sinh x)(sinh y), x, y ∈ R.

(2) Sketch the graphs of sinh and cosh.

(3) Show that for any t ∈ R, the point (cosh t, sinh t) is on the hyperbola x2 − y2 = 1.
Sketch the portion of the hyperbola obtained.
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(4) Using Maple/Mathematica/Matlab or some other suitable computer package, sketch
the graph of the hyperbolic tan function tanh defined by

tanh x =
sinh x
cosh x

, x ∈ R.

(tanh is pronounced ‘than’.)

Exercise 5.60. Show that lim
x→0+

xx = 1. Conclude that lim
n→∞

n1/n = 1.

Exercise 5.61. Show that the improper integral
∫ 1

0

1
xx

dx exists.

Note that for x > 0,
1
xx

= e−x log x =
∞∑
n=0

(−x log x)n

n!
.

Based on this, try giving a formal argument to justify the identity
∫ 1

0

1
xx

dx =
∞∑
n=1

1
nn

.

Exercise 5.62. Find lim
n→∞

((
1 +

1
n

)(
1 +

2
n

)
· · ·
(

1 +
n
n

)) 1
n

.

Exercise 5.63. Order the following functions from the fastest growing to the slowest:

2x, ex, xx, (log x)x, ex/2, x1/2, log2 x, log(log x), (log x)2, xe, x2, log x, (2x)x, x2x.

Exercise 5.64. Suppose that we know that the value of log102 = 0.3010 (to four decimal
places). Using this find the number of digits in 2399.

Exercise 5.65. Evaluate
∫ 4

3

x2 + 3x + 9
(x + 1)(x− 2)2

dx.

Hint: See Exercise 3.51.

Exercise 5.66. (∗) Solve for positive real x, y:

3x − 2y = 23,

log3x + logy2 = 2.

Hint: First try to guess a solution. Using the fact that x �→ 3x, log3 x are strictly increasing,
show that this solution is the only one.

Exercise 5.67. (∗) Consider the sequence (an)n∈N
whose terms are generated recursively as

follows:

a1 := 1,

an = n(1 + an−1), n ≥ 2.

Prove that lim
n→∞

(
1 +

1
a1

)(
1 +

1
a2

)(
1 +

1
a3

)
· · ·
(

1 +
1
an

)
= e.
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Trigonometric functions

We begin by introducing the notion of angle in radians.

Definition 5.17 (Angle made with the positive real axis of a point in the upper half plane on
the unit circle T). Consider the unit circle9

T with center (0, 1) and radius 1:

T = {(x, y) ∈ R
2 : x2 + y2 = 1}.

Let A ≡ (1, 0) and O ≡ (0, 0). If P is a point in T, and P is in the upper half plane, then we
define the angle AOP in radians, denoted by ∠AOP, to be twice the area of the shaded sector
shown in Figure 5.19.

O A

P
R

Q

Figure 5.19 Definition of angle in radians.

Thus if P is the point (−1, 0), then the angle AOP is

2
∫ 1

−1

√
1 − x2dx = π radians.

Let us find an expression for ∠AOP in terms of the x coordinate of the point P. If P is the point
(x, y), then let us find the area of the shaded sector. We have the two cases x ≥ 0 and x ≤ 0
depicted below.

xx

O

PP R

R

QQ AA

x≥0 x≤0

9 The peculiar notation T is used, since it is the ‘(one-dimensional) torus’. A two-dimensional torus T2 is the
surface of a doughnut.



262 THE HOW AND WHY OF ONE VARIABLE CALCULUS

In the case when we have x ≥ 0, the angle Θ(x) of the point P having the coordinates
(x, y) = (x,

√
1 − x2) is

Θ(x) = 2
(

area of the sector AOP
)

= 2

((
area of the triangle ΔPOQ

)
+
(

area under the circular arc
�
PRA
))

= 2

(
1
2
x
√

1 − x2 +
∫ 1

x

√
1 − ξ2dξ

)
.

On the other hand, when we have x ≤ 0, then the angle Θ(x) of the point P having coordinates
(x, y) = (x,

√
1 − x2) is

Θ(x) = 2
(

area of the sector OAP
)

= 2

((
area under the circular arc

�
PRA
)
−
(

area of the triangle ΔPOQ
))

= 2

(∫ 1

x

√
1 − ξ2dξ − 1

2
(−x)

√
1 − x2

)

= 2

(
1
2
x
√

1 − x2 +
∫ 1

x

√
1 − ξ2dξ

)
.

Thus for all x ∈ [−1, 1], the angle of P = (x,
√

1 − x2) in radians is given by

Θ(x) = 2

(
1
2
x
√

1 − x2 +
∫ 1

x

√
1 − ξ2dξ

)
.

Clearly, Θ : [−1, 1] → R is continuous, since x �→ x
√

1 − x2 is continuous and by the Funda-
mental Theorem of Calculus, since the integrand

√
1 − ξ2 is continuous, the map

x �→
∫ 1

x

√
1 − ξ2dξ

is differentiable on [−1, 1], and in particular, continuous there. The picture below shows a plot
of the graph of Θ.
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Also, for x ∈ (−1, 1),

Θ′(x) = 2

(
1
2

√
1 − x2 +

1
2
x · (−2x)

2
√

1 − x2
−
√

1 − x2

)

=

(
−
√

1 − x2

2
− x2

2
√

1 − x2

)
= − 1√

1 − x2
< 0.

Hence Θ is strictly decreasing in (−1, 1), and thus also on [−1, 1], thanks to its continuity
on [−1, 1]. (See Exercise 3.8.) So the map Θ : [−1, 1] → [0, π] is a strictly decreasing, contin-
uous function on [−1, 1]. Θ(x) decreases from π = Θ(−1) to 0 = Θ(1) as x increases from
−1 to 1. By the Intermediate Value Theorem Θ assumes all values between π and 0. Conse-
quently, Θ : [−1, 1] → [0, π] is one-to-one and onto. In other words, it is a bijection. Hence the
function Θ has an inverse Θ−1 : [0, π] → [−1, 1], and this is the cosine function! So given any
angle α ∈ [0, π], there is a unique x ∈ [−1, 1] such that Θ(x) = α. This unique x = Θ−1(α)
is called the cosine of the angle α.

Definition 5.18 (Cosine and sine of an angle). For α ∈ [0, π], we define

(1) the cosine of α, denoted by cos α, by cos α = Θ−1(α).
(2) the sine of α, denoted by sin α, by sin α =

√
1 − (Θ−1(α))2.

The reason we have given such precise definitions is because we want to derive all the familiar
properties of the trigonometric functions from scratch. So right now these definitions might
seem cumbersome, but once we have done what we want to do with them (that is prove
all their familiar properties), the primary purpose of the above unwieldy definitions would
have been served! In any case, things are not as complicated as they seem. The way to think
about the above definitions is like this: if we choose any angle α in [0, π], then that decides
a sector of the unit circle with the positive x-axis, as shown below, whose area is half that of
the angle, namely α/2. This sector then determines a point P on the unit circle, which has
an x coordinate, which is precisely Θ−1(α) = cos α, and the y-coordinate of P is given by√

1 − x2 =
√

1 − (Θ−1(α))2 = sin α.

x =: cos α := Θ−1(α)

O

P
area =α/2

α=Θ(x)

sin α :=
√

1−x2
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The graphs of sin, cos : [0, π] → [−1, 1] are shown below.

Note that since Θ is strictly decreasing and continuous, it follows that so is cos on [0, π].
Also, since

sinα =
√

1 − (cos α)2, α ∈ [0, π],

the function sin is also continuous on [0, π].

Next, we extend the definitions of sin and cos from [0, π] to [0, 2π] as follows.

Definition 5.19 (Cosine and sine of an angle (continued)). For α ∈ [π, 2π] (so that we have
α − π ∈ [0, π]), we define

(1) the cosine of α, denoted by cos α, by cos α = − cos(α − π).

(2) the sine of α, denoted by sin α, by sin α = − sin(α − π).

Since sin π = 0 = sin 0, from the above definition and the continuity of sin on [0, π], it follows
that sin is continuous on [0, 2π]. Similarly cos is continuous on [0, 2π].

The graphs of sin, cos : [0, 2π] → [−1, 1] are shown below.

And finally, we extend sin, cos from [0, 2π] to all of R by demanding 2π-periodicity.

Definition 5.20 (Cosine and sine of an angle (continued)). For α ∈ R\[0, 2π], we define

(1) the cosine of α, denoted by cos α, by cos α = cos
(
α − 2π

⌊ α

2π

⌋)
.

(2) the sine of α, denoted by sin α, by sin α = sin
(
α − 2π

⌊ α

2π

⌋)
.
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Since sin 2π = 0 = sin 0, from the above definition and the continuity of sin on [0, 2π], it
follows that sin is continuous on R. Similarly, cos is continuous on R.

The picture below shows the graphs of sin : R → [−1, 1] (top) and cos : R → [−1, 1]
(bottom).

Let us now turn to the properties of sin and cos. We already know from the definition
that sin x = sin(x + 2π), and cos x = cos(x + 2π) for all x ∈ R. Moreover, since we have
(sin x)2 + (cos x)2 = 1 for x ∈ [0, π], it follows that for x ∈ [π, 2π],

(sin x)2 + (cos x)2 = (− sin(x− π))2 + (− cos(x− π))2

= (sin(x− π))2 + (cos(x− π))2

= 1.

Finally, by the 2π-periodicity, we see that (sin x)2 + (cos x)2 = 1 for all x ∈ R.

Theorem 5.31. For all x ∈ R, cos′x = − sin x and sin′x = cos x.

Proof. We prove this result by considering the following cases:

1◦ α ∈ (0, π). Let xα be such that Θ(xα) = α. Then by the Differentiable Inverse
Theorem,

cos′α = (Θ−1)′(α) =
1

Θ′(xα)
=

1

− 1√
1−x2

α

= −
√

1 − x2
α = − sin α.

Also, sin′α =
(√

1 − (cos α)2
)′

=
2(cos α)(sin α)
2
√

1 − (cos α)2
= cos α.

2◦ α ∈ (π, 2π). Then by the chain rule,

cos′α = (− cos(α − π))′ =
(
sin(α − π)

)
· 1 = − sin α,

sin′α = (− sin(α − π))′ = −
(
cos(α − π)

)
· 1 = cos α.
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3◦ α ∈ R\πZ. Then there exists an n ∈ Z such that α − n · 2π ∈ (0, 2π). Thus by the
2π-periodicity of sin and cos,

cos′α = (cos(α − n · 2π))′ = −
(
sin(α − n · 2π)

)
· 1 = − sin α,

sin′α = (sin(α − n · 2π))′ =
(
cos(α − n · 2π)

)
· 1 = cos α.

4◦ Finally, suppose that α ∈ πZ. We will use Exercise 4.48. Recall that over there, we
showed that if c ∈ (a, b), and f : (a, b) → R is such that f is
(1) differentiable on (a, b)\{c},
(2) continuous on (a, b), and
(3) lim

x→c
f ′(x) exists,

then f is differentiable at c and f ′(c) = lim
x→c

f ′(x).
We apply this result with c = nπ with n ∈ Z. Since we know that sin is differen-

tiable on (nπ − π, nπ + π)\{nπ}, sin is continuous everywhere, and

lim
x→nπ

sin′x = lim
x→nπ

cos x = cos(nπ),

it follows from the above result that sin is differentiable at nπ, and moreover,

sin′(nπ) = lim
x→nπ

sin′x = cos(nπ).

Similarly, cos is differentiable at nπ and cos′(nπ) = − sin(nπ).
This completes the proof. �

Corollary 5.32. lim
x→0

sin x
x

= 1.

Proof. We have lim
x→0

sin x
x

= lim
x→0

sin x− sin 0
x− 0

= sin′ 0 = cos 0 = 1. �

Theorem 5.33. (∗) π /∈ Q.

Proof. 10 Suppose that π ∈ Q, and let π =
n
d

, where n, d ∈ N. Set

p(x) :=
xm(n− d · x)m

m!
,

P(x) := p(x) − p(2)(x) + p(4)(x) − + · · · + (−1)mp(2m)(x),

where we will specify the natural number m later on.

We will now show that p and all its derivatives evaluated at 0 are integers. To see this, we
proceed as follows. Note that p only has terms of degree at least m and at most 2m, and so

p(x) =
xm(n− d · x)m

m!
= cmx

m + cm+1x
m+1 + · · · + c2mx

2m,

10 based on [N5].
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for some cm, · · · , c2m. Since m!p = xm(n− d · x)m has integer coefficients, it follows that
m!cm, m!cm+1, · · · ,m!c2m ∈ Z. Now p(j)(0) = 0, for all j = 0, 1, · · · ,m− 1. Also, p(j)(0) = 0
if j > 2m. What if j = m, · · · , 2m? If j = m, then

p(j)(x) = m!cm + terms containing x,

and so p(j)(0) = m!cm ∈ Z if j = m. Similarly, it can be seen that

p(j)(0) = j!cj, j = m, · · · , 2m.

Hence for j = m, · · · , 2m, p(j)(0) = cjm!︸︷︷︸
∈Z

·
(
(m + 1) · . . . · j︸ ︷︷ ︸

an integer

)
∈ Z.

So we conclude that p(j)(0) is an integer for all j ≥ 0.

It also follows from the above that p and all its derivatives p(j), j ≥ 1, have integer values
for x = π = n/d, thanks to the (easily verified) relation

p(x) = p
(n
d
− x
)

.

We have

d
dx

(
P′(x) sin x− P(x) cos x

)

= P′′(x) sin x +�����P′(x) cos x−�����P′(x) cos x + P(x) sin x = (P′′(x) + P(x)) sin x

=
(

p(2)(x) − p(4)(x) + · · · + (−1)m−1p(2m)(x) + (−1)mp(2m+2)(x)

+ p(x) − p(2)(x) + p(4)(x) − · · · + (−1)m p(2m)(x)
)

sin x

= p(x) sin x (using p(2m+2)(x) ≡ 0),

and ∫ π

0
p(x) sin x dx =

(
P′(x) sin x− P(x) cos x

) ∣∣∣π
0

= P(π) + P(0). (5.13)

Now P(π) + P(0) is a positive integer: integer because p(j)(π) and p(j)(0) are integers, and
positive because the integrand is continuous on [0, π] and positive on (0, π). But we have for
0 < x < π = n/d, that 0 < n− d · x < n and

0 < p(x) sin x ≤ p(x) · 1 =
xm(n− d · x)m

m!
<

xmnm

m!
<

πmnm

m!
=

(πn)m

m!
.

But for m > πn, we have

(πn)m

m!
=

πn
1

· πn
2

· · · πn
�πn� · πn

�πn� + 1
· · · πn

m
≤ (πn)�πn�

(�πn�)! · 1 · · · 1 · πn
m

m→∞−−−→ 0.

So we arrive at the contradiction that on the one hand, the integral in (5.13) is a positive
integer, but the above inequality shows that this integral can be made arbitrarily small by
taking m sufficiently large. Consequently π is irrational! �
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In Exercise 4.56, we had shown the following ‘trigonometric addition formulae’: for all
α, β ∈ R,

sin(α + β) = (sin α)(cos β) + (cos α)(sin β), and

cos(α + β) = (cos α)(cos β) − (sin α)(sin β).

Theorem 5.34. For all α ∈ R, cos α = cos(−α), and sin(−α) = − sin α.

Proof. First, we note that for x ∈ [−1, 1],

Θ(x) = 2

(
1
2
x
√

1 − x2 +
∫ 1

x

√
1 − ξ2dξ

)
. (5.14)

Thus

Θ(−x) = 2

(
−1

2
x
√

1 − x2 +
∫ 1

−x

√
1 − ξ2dξ

)

= 2

(
−1

2
x
√

1 − x2 +
∫ −1

x

√
1 − u2(−1)du

)
(substituting u = −ξ)

= 2

(
−1

2
x
√

1 − x2 +
∫ x

−1

√
1 − ξ2dξ

)
. (5.15)

Adding (5.14) and (5.15), we obtain

Θ(x) + Θ(−x) = 2

(∫ x

−1

√
1 − ξ2du +

∫ 1

x

√
1 − ξ2dξ

)
= 2
∫ 1

−1

√
1 − ξ2dξ = π.

So if α ∈ [0, π] is such that cos α = x, then

−x = cos(Θ(−x)) = cos(π − Θ(x)) = cos(π − α).

Consequently, for α ∈ [0, π], we have that cos α = − cos(π − α). Hence for α ∈ [0, π],
cos(−α) = cos(2π − α) = cos((π − α)+π) = − cos(π − α) = −(− cos α) = cos α. Also,
for α ∈ [π, 2π],

cos(−α) = cos(2π − α) = cos(π − (α − π)) = − cos(α − π) = −(− cos α) = cos α.

Thus cos α = cos(−α) for all α ∈ [0, 2π]. For general α ∈ R, we first write α = θ + n · 2π
for some θ ∈ [0, 2π) and some integer n, so that

cos α = cos(θ + n · 2π) = cos θ = cos(−θ) = cos(−θ − n · 2π) = cos(−α).

Finally as the derivative of a differentiable even function is odd (see Exercise 4.3), and since
sin is the derivative of the even function − cos, it follows that sin is odd. This completes
the proof.

(An alternative, slicker proof can be given based along the same lines as in Exercise 4.56,
as follows. First we note that the function x

y�→ cos(−x) satisfies the differential equation
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y′′ + y = 0. Indeed, we have

y′(x) =
d
dx

cos(−x) = (− sin(−x)) · (−1) = sin(−x),

y′′(x) =
d
dx

sin(−x) = (cos(−x)) · (−1) = − cos(−x) = −y(x),

and so y′′ + y = 0. Also, we have

y(0) = cos(−0) = cos 0 = 1,

y′(0) = sin(−0) = sin 0 = 0.

Thus by part (2) of Exercise 4.56, it follows, using the facts above, that

cos(−x) = y(x) = y(0) cos x + y′(0) sin x = 1 · cos x + 0 · sin x = cos x

for all x ∈ R. Differentiating both sides with respect to x, we also get

(− sin(−x)) · (−1) = − sin x,

that is, sin(−x) = − sin x for all x ∈ R.) �

tan, cot, sec, cosec

The other four auxiliary trigonometric functions are defined in terms of sin and cos by the
usual formulae

tan x :=
sin x
cos x

,

cot x :=
cos x
sin x

,

sec x :=
1

cos x
,

cosec x :=
1

sin x
,

for those real x where the denominator in the respective expression is not zero, and the
functions are called the tangent, cotangent, secant, and the cosecant of x, respectively. Thus
these functions are defined for all real x except for certain isolated points. Since sin and
cos are 2π-periodic, each of the above also inherit the periodicity property f (x + 2π) = f (x)
for all x, x + 2π in the respective domains of definitions. tan and cot in fact have a smaller
period π.

All other standard results about the auxiliary trigonometric functions can now be derived
from the basic properties of sin and cos. For example, if x ∈ (−π/2, π/2), then we have by
the quotient rule that

tan′ x =
d
dx

(
sin x
cos x

)
=

(cos x)(cos x) − (sin x)(− sin x)
(cos x)2

=
1

(cos x)2
> 0.
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Hence tan : (−π/2, π/2) → R is strictly increasing, and continuous. Its graph is displayed
below.

Also,
lim
x↗π

2

tan x = ∞

(as sin(π/2) = 1 and cos x > 0 = cos(π/2) for 0 < x < π/2), and

lim
x↘−π

2

tan x = −∞

(as sin(−π/2) = −1 and cos x > cos(−π/2) = 0 for −π/2 < x < 0). So, besides being
injective, tan : (−π/2, π/2) → R is surjective as well.

Hence tan : (−π/2, π/2) → R is a bijection, and so it possesses an inverse function,
tan−1 : R → (−π/2, π/2), which is called the arctangent function, sometimes denoted by
arctan.

By the Differentiable Inverse Theorem, for y = tan x ∈ R, x ∈ (−π/2, π/2),

(tan−1)′(y) = (tan−1)′(tan x) =
1

tan′x
=

1
1

(cos x)2

=
1

(cos x)2 + (sin x)2

(cos x)2

=
1

1 + (tan x)2
=

1
1 + y2

.

Exercise 5.68. Evaluate the following limits:

(1) lim
x→0

3sin x − 1
x

.
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(2) lim
x→0

sin x− x + x3/6
x3

.

(3) lim
x→0

cos x− 1 + x2/2
x4

.

(4) lim
x→0

(
1
x
− 1

sin x

)
.

Exercise 5.69. Evaluate
∫ 1

2

− 1
2

(cos x) · log
(

1 − x
1 + x

)
dx.

Exercise 5.70. Prove that if m, n ∈ N, then

∫ π

−π

(sin(mx))(sin(nx))dx =

{
0 if m �= n,

π if m = n

}
=
∫ π

−π

(cos(mx))(cos(nx))dx,

∫ π

−π

(cos(mx))(sin(nx))dx = 0.

Exercise 5.71 (Fourier series). Let n ∈ N and a0, a1, · · · , an and b1, · · · , bn be real numbers.
Consider the function f : R → R defined by

f (x) := a0 +
n∑

k=1

(ak cos(kx) + bk sin(kx)), x ∈ R.

(1) Show that f is 2π-periodic, that is, f (x + 2π) = f (x) for all x ∈ R.

(2) Prove that a0 =
1

2π

∫ π

−π

f (x)dx, and for k = 1, · · · , n,

ak =
1
π

∫ π

−π

f (x) cos(kx)dx, and

bk =
1
π

∫ π

−π

f (x) sin(kx)dx.

(3) Let ak := 0 for 0 ≤ k ≤ n, and

bk :=

⎧⎨
⎩

4
kπ

if k is even,

0 otherwise.

Take n = 3, n = 33 and n = 333, successively, and in each case, plot the resulting f using a
package such as Maple, Mathematica or Matlab on the computer. What do you observe?
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Exercise 5.72 (Fixed points of sin and cos). (∗)

(1) Show that 0 is the only fixed point of sin : R → R.

(2) Prove that cos : R → R has a unique fixed point, which we denote by c∗.

(3) Determine experimentally the value of c∗ as follows. In your scientific calculator, enter
any number and press the cos key repeatedly. After a while, the display stabilises. Explain by
means of a picture, why this displayed value must be c∗ (approximately).

Exercise 5.73 (Addition formula for tan).

(1) Show that for real x, y such that x, y, x + y are not in πZ +
π

2
, there holds that

tan(x + y) =
tan x + tan y

1 − (tan x)(tan y)
.

(2) Prove that tan 1◦ /∈ Q. (Here one degree, 1◦, is the angle measuring
π

180
radians.)

Exercise 5.74. (∗)

(1) Show that lim
m→∞

lim
n→∞

(cos(2πm!x))n =
{

1 if x ∈ Q,
0 if x /∈ Q.

(2) Using the fact that e =
∞∑
n=0

1
n!

and the above result show that e /∈ Q.

Exercise 5.75 (Visual differentiation of tan). We have learnt that

tan′ x =
1

(cos x)2
= 1 + (tan x)2. (5.16)

Here we offer a formal11 geometric explanation. Consider the triangle shown below.

1

x

tanx
dx

d tanx

11 The word ‘formal’ is often used in Mathematics in order to describe a situation where attention is focussed on
the ‘form/structure’ as opposed to strict mathematical rigour. So the usage of ‘formal’ here is not intended to be the
opposite of ‘informal’, and hence rigorous!
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If we increase x by a small amount dx, then tan x increases by the amount d tan x shown in
the figure. Show that (5.16) holds by imagining that in the limiting case when dx diminishes
to 0, the little shaded triangle is ‘ultimately’ similar to the big one wih side lengths 1, 
, tan x.

Exercise 5.76. Find
∫ 1

0

1
1 + t2

dt.

Exercise 5.77. (∗) Show that
∫ π

2

0

1

1 + (tan x)
√

3
dx =

π

4
.

(The integrand is taken as 1 when x = 0, and 0 when x =
π

2
.)

Hint: Consider the symmetry in the graph of
1

1 + (tan x)
√

3
about

(
π

4
,

1
2

)
.

Exercise 5.78. For x ∈ (−1, 1), the inverse sin−1 : (−1, 1) → (−π/2, π/2) of the strictly

increasing continuous function sin : (−π/2, π/2) → (−1, 1) exists.

For y ∈ (−1, 1), prove that

(sin−1)′(y) =
1√

1 − y2
,

and that ∫ y

0

1√
1 − t2

dt = sin−1y,

∫ y

0

√
1 − t2dt =

y
√

1 − y2 + sin−1y
2

.

Exercise 5.79.

(1) Using the fact that cos t ≤ 1 for all real t, and ‘integrating both sides’ from 0 to x, show
that for all nonnegative real x, sin x ≤ x.

(2) (∗) If x is a real number, then show that cos(sin x) ≥ sin(cos x).
Hint: First, let x ∈ [0, π/2], and show that cos(sin x) ≥ | cos x| ≥ | sin(cos x)|. Next extend
this to [−π/2, π/2], and finally to R using π-periodicity of each of the functions in this chain
of inequalities.

Polar coordinates

For any point P with coordinates (x, y) on the unit circle T for which y ≥ 0 (that is P is in the
upper half of the Cartesian plane), we have a well-defined notion of the angle Θ(x) the point
P makes with the positive real axis.

Definition 5.21 (Angle made with the positive real axis of a point in the lower half plane on
the unit circle T). For a point P with coordinates (x, y) on the unit circle T in the lower half
of the Cartesian plane (that is, y < 0), we define the angle that P makes with the positive real
axis as −Θ(x).
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For example, the angle of P = (0,−1) made with the positive real axis is −π/2 radians. Note
that the angle that (−1, 0) made with the positive real axis is defined to be π radians (and not
−π radians). Thus (−1, 0) (by our convention) is taken to be a point in the upper (and not
lower) half plane.

P=(x,y)

(x,−y)

Θ(x)

−Θ(x)

So any point on the unit circle can be specified by the angle that it makes with the positive
real axis. What if the point does not lie on the unit circle T? Well, if the point P = (x, y) is not

the origin, then we can draw a ray
−→
OP emanating from the origin O = (0, 0), which passes

through (x, y). This ray
−→
OP intersects the circle at some point P′, with coordinates, say (x′, y′),

and we define the angle that P makes with the positive real axis as the angle that P′ makes
with the positive real axis (that is, it is Θ(x′) if y ≥ 0, −Θ(x′) if y < 0). Before we describe
this as a definition, let us look at the picture shown below.

P = (x
r , y

r )

x

P = (x, y)
y

r

O

−→
OP
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Let r :=
√

x2 + y2. We note that r ≥ 0 and in fact, r �= 0 since (x, y) is assumed to be not the
origin O = (0, 0). So we know that r > 0. Then since x2 + y2 = r2, we have

(x
r

)2
+
(y
r

)2
= 1,

and so
(x
r

,
y
r

)
lies on the unit circle T. Also,

O = (0, 0), P = (x, y) and
(x
r

,
y
r

)

lie on a straight line, and since r > 0, we see that the ray
−→
OP intersects T at

P′ := (x′, y′) :=
(x
r

,
y
r

)
.

Hence the angle θ of P made with the positive real axis is

θ =

⎧⎪⎨
⎪⎩

Θ
(x
r

)
if y ≥ 0,

−Θ
(x
r

)
if y < 0.

Recalling that cos : [0, π] → [−1, 1] is the inverse of Θ : [−1, 1] → [0, π], we have

θ =

⎧⎪⎨
⎪⎩

cos−1
(x
r

)
if y ≥ 0,

−cos−1
(x
r

)
if y < 0.

Note that vice versa, if we know the angle made by a point P �= (0, 0) with the positive real
axis, then we know where P′ is on the unit circle, and this enables us to determine where P is
by knowing also the distance r of P to the origin O: we simply look at the ray

−−→
OP′ (which has

P on it somewhere), and P is precisely that point on the ray
−−→
OP′ which is at a distance r > 0

from O. The pair (r, θ) of real numbers (where r > 0 and θ ∈ (−π, π]) are called the polar
coordinates of P (which has the Cartersian coordinates (x, y)).

Definition 5.22 (Polar coordinates of a point in R
2\{(0, 0)}). The polar coordinates of the

point P = (x, y) ∈ R
2\{(0, 0)} are (r, θ), where

r :=
√
x2 + y2 (> 0),

θ :=

⎧⎪⎨
⎪⎩

cos−1
(x
r

)
if y ≥ 0,

−cos−1
(x
r

)
if y < 0,

where cos−1 : [−1, 1] → [0, π] is the inverse of cos : [0, π] → [−1, 1].

So given the rectangular coordinates, we can calculate the corresponding polar coordinates.
How about going the other way around? It will be convenient to also have ready-made
expressions for this. Suppose that a point has polar coordinates (r, θ). Then what are its
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Cartesian coordinates in terms of (r, θ)? Since cos θ = cos(−θ), it follows that x = r cos θ. As
x2 + y2 = r2, we see that y = ±r sin θ. We have the two cases:

1◦ y ≥ 0. Then θ ∈ [0, π], and so sin θ ≥ 0. So y = r sin θ.

2◦ y < 0. Then θ ∈ (−π, 0], and so sin θ = − sin(−θ) ≤ 0. So y = r sin θ.

So in either case (y ≥ 0 or y < 0), y = r sin θ. Hence (x, y) = (r cos θ, y sin θ).

We summarise these observations in the following table.

P ∈ R
2\{(0, 0)} :

Cartesian coordinates Polar coordinates

(x, y), x, y ∈ R (r, θ), r > 0, θ ∈ (−π, π]

x = r cos θ

y = r sin θ

r =
√

x2 + y2

θ :=

⎧⎪⎨
⎪⎩

cos−1
(x
r

)
if y ≥ 0,

−cos−1
(x
r

)
if y < 0.

In the definition of the polar coordinates (or for that matter, the angle of a point on the unit
circle in the lower half plane), we arranged things so that θ lies in the interval (−π, π]. But
instead of this convention, one can give other possible definitions. For example, it is also usual
practice for θ to belong to interval [0, 2π). In this case the formula for the angle when y < 0
changes from

−cos−1
(x
r

)
to 2π − cos−1

(x
r

)
.

Exercise 5.80. Find the polar coordinates of the following points given in Cartesian/ rectan-
gular coordinates:

(1, 1) (1, 0) (0, 1) (−1, 0) (−1,−1) (0,−1).

Curves in polar coordinates

Just like an equation in the Cartesian coordinates (x, y), such as x2 + y2 = 1, can describe a
curve in R

2, an equation in the polar coordinates (r, θ) can be used to describe a curve in
R

2. Some curves have simpler equations in polar coordinates. For example, the unit circle T

is just described by r = 1! Indeed, these are all points with polar coordinates (r, θ), which
are at a distance of 1 from the origin, that is, r = 1; the angle θ does not matter, that is, any
θ ∈ (−π, π] is allowed. So

T = { points with Cartesian coordinates (x, y) ∈ R
2 : x2 + y2 = 1}

= { points with polar coordinates (r, θ) ∈ (0,∞) × (−π, π] : r = 1}.

Here are a few other examples.
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Example 5.34 (Circle again). Consider the equation r = 2 sin θ in polar coordinates (r, θ).
We claim that the set of points described by it is the circle with center having Cartesian coor-
dinates (0, 1) and radius 1.

r

θ

θ

2

O

Q

P

This is clear from the picture: the angle subtended by the diameter in a semicircle is 90◦, so
that if P makes an angle12 θ with the positive real axis, then ∠PQO = θ as well. So from the
right angled triangle PQO, we see that r = 
(OP) = 2 sin θ.

Another way to see this is by proceeding analytically as follows. If P is a point
whose polar coordinates satisfy r = 2 sin θ, then its Cartesian coordinates (x, y) satisfy
x2 + y2 = r2 = r · r = r · 2 sin θ = 2r sin θ = 2y, and so x2 + y2 − 2y + 1 = 1, that is,
(x− 0)2 + (y− 1)2 = 12. This means that the point (x, y) is at a distance 1 from (0, 1). So
the given equation describes a circle with center having the Cartesian coordinates (0, 1) and
radius 1. ♦

Example 5.35 (Archimedean spiral). The equation r = a + bθ describes an Archimedean
spiral. One can use Maple to plot curves given in polar coordinates. One should first invoke
the plot package, and then use the command polarplot. Using the commands

> with(plots):
> polarplot(t, t=0 .. Pi, axis[radial]=[color= ”Blue”])

gives the leftmost plot in the following picture. ♦

12 assumed to be less than π/2 radians at the moment
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Example 5.36 (Logarithmic spiral). The equation r = eθ describes a logarithmic spiral, as
shown in the rightmost plot of the previous figure. ♦

Example 5.37 (Cardioid). The equation r = 2(1 + cos θ) describes a curve called the car-
dioid, and is a ‘heart-shaped’ curve as shown in the leftmost plot below. ♦

Example 5.38 (Lemniscate). The equation r2 = 2 · cos(2θ) describes a curve called the lem-
niscate and is a ‘∞-shaped’ curve, as shown in the rightmost plot above. Can you explain the
shape of the curve based on the equation? (Hint: Look at the graph of cos(2θ) on (−π, π].
When are the values positive?) ♦

Exercise 5.81. Find the equation of the line y = 3x + 1 in polar coordinates. Use Maple to
plot the resulting curve described in polar coordinates, and verify that you get what you expect
to see.

Exercise 5.82. Describe the curve r = (tan θ)(sec θ) for polar coordinates (r, θ) in terms of
Cartesian coordinates.

Exercise 5.83. Find the equation in Cartesian coordinates for the curve described by the rela-
tion r = (2 + cos θ)−1 for polar coordinates (r, θ). Use Maple to plot the resulting curve.

5.7 Applications of Riemann Integration

We will now see a few selected applications of the Riemann integral to problems in planar
and solid geometry. We will learn to calculate

(1) the area of a region between two curves,

(2) volumes of bodies obtained by revolving planar regions,

(3) lengths of smooth curves, and

(4) the curved surface area of a surface obtained by revolving a curve.
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Area of a region between two curves

Suppose that f , f : [a, b] → R are two Riemann integrable functions on [a, b] such that for all
x ∈ [a, b], we have that f (x) ≤ f (x).

R
f

f

a
b

Then the area of the region R, given by

R := {(x, y) ∈ R
2 : for all x ∈ [a, b], f (x) ≤ y ≤ f (x)}

is defined to be

Area(R) :=
∫ b

a

(
f (x) − f (x)

)
dx.

Example 5.39. For x ∈ [0, 1], f := x2 ≥ x3 =: f . Thus the area of the region between these
two curves is ∫ 1

0
(x2 − x3)dx =

(
x3

3
− x4

4

) ∣∣∣1
0

=
1
3
− 1

4
=

1
12

. ♦

Example 5.40 (Area of a circle of radius r). Consider the circle given by

x2 + y2 = r2,
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where r > 0. The area of the circular disk enclosed by the circle is the area of the region
between the graphs of the functions f :=

√
r2 − x2 and f := −

√
r2 − x2.

R

f :=
√

r2−x2

f :=−
√

r2 −x2

−r r

Thus the area of the disk is

Area(R) =
∫ r

−r

(√
r2 − x2 − (−

√
r2 − x2)

)
dx = 2

∫ r

−r

√
r2 − x2dx

= 4
∫ r

0

√
r2 − x2dx,

where the last equality follows because x �→
√
r2 − x2 is an even function.

We now use the substitution x = r cos θ, so that dx = −r sin θdθ, and when x = 0, we have
θ = π/2, while if x = r then we have θ = 0. So we obtain

Area(R) = 4
∫ r

0

√
r2 − x2dx = 4

∫ 0

π/2

√
r2 − r2(cos θ)2 · (−r sin θ)dθ

= 4r2
∫ π/2

0
(sin θ)2dθ = 2r2

∫ π/2

0
(1 − cos(2θ))dθ

= 2r2

(
π

2
− sin(2θ)

2

∣∣∣π/2

0

)
= 2r2

(π

2
− 0
)

= πr2.

Thus with π := area of a circular disk with radius 1 (as we had done earlier), we obtain that

area of a circular disk with radius r
r2

= constant = π.

(This proves a result taken for granted in high school.) ♦

Example 5.41 (Area of a sector of radius r subtending an angle ϕ at the center). We will
just consider the case when ϕ ∈ [0, π/2), since the other cases can be done by successively
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adding areas of quarters of circular sectors (whose area we know is equal to πr2/4). See the
following picture.

O rr cosϕ

(r cosϕ, r sinϕ)

ϕ

The area is given by

Area =
1
2
· (r cos ϕ) · (r sin ϕ) +

∫ r

r cos ϕ

√
r2 − x2dx

=
1
4
r2 sin(2ϕ) +

∫ 0

ϕ

(r sin θ) · (−r sin θ)dθ
(using the substitution

x = r cos θ)

=
1
4
r2 sin(2ϕ) +

∫ ϕ

0
r2(sin θ)2dθ

=
1
4
r2 sin(2ϕ) +

r2

2

∫ ϕ

0
(1 − cos(2θ))dθ

=
1
4
r2 sin(2ϕ) +

ϕr2

2
− r2 · sin(2θ)

4

∣∣∣ϕ
0

=
������1
4
r2 sin(2ϕ) +

ϕr2

2
−
������
r2 · sin(2ϕ)

4
+ r2 · 0

=
ϕr2

2
.

So the area of a sector of radius r subtending an angle ϕ ∈ [0, π/2) is
ϕr2

2
. ♦

Exercise 5.84. Find the area of the ellipse described by

x2

a2
+

y2

b2
= 1,

where a, b > 0. What happens when a = b?

Exercise 5.85. (∗) The horizontal line y = c intersects the curve y = 2x− 3x3 in the first
quadrant as shown in the following picture.
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y = c

2x − 3x3

Determine c so that the areas of the two shaded regions are equal.

Exercise 5.86. The aim of this exercise is to complete the plausibility argument using the
Method of Exhaustion mentioned in the Introduction.

(1) (Definition of π as in high school.) In elementary school, one learns that the ratio of
the circumference Cd of a circle of diameter d to its diameter is constant, and this
constant is defined to be the number π. Give an argument for this fact (which we will
reprove in Example 5.49) based on the following diagram.

A

d

Cd B

A
B

O

d
2

Cd

(2) (Area of a circle of radius r.) We inscribe a regular polygon with n sides inside the
circle of radius r, and triangulate it by joining the center of the circle to the vertices of
the polygon. By looking at the picture below, justify the expression πr2 for the area
of the circle.

d
2

Cd

2
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Area of a region between curves described in polar coordinates

The area of the sector of a disk with radius r and subtending an angle ϕ at the center is
r2ϕ/2, and this enables us to calculate the area of regions between curves described in polar
coordinates.

r

r(θ)

θ

r

r

ϕ
ϕ

If r : [0, ϕ] → [0,∞), then the area of the region

R := { points with polar coordinates (ρ, θ) : ρ = r(θ), 0 ≤ θ ≤ ϕ}

is defined to be
∫ ϕ

0

(r(θ))2

2
dθ.

Similarly, if r, r : [0, ϕ] → [0,∞), then the area of the region

R := { points with polar coordinates (ρ, θ) : r(θ) ≤ ρ ≤ r(θ), 0 ≤ θ ≤ ϕ}

is defined to be
∫ ϕ

0

(r(θ))2 − (r(θ))2

2
dθ.

The rationale behind these definitions is as follows. Suppose that we partition the interval
[0, ϕ] into

θ0 := 0 < θ1 < θ2 < · · · < θn−1 < θn = ϕ.

Then the region

R := { points with polar coordinates (ρ, θ) : ρ = r(θ), 0 ≤ θ ≤ ϕ}

is subdivided into ‘wedges’, as shown in the picture below.

θi

θi+1
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The area of the ith wedge is

(∗)
= area of the sector of radius r(θi) subtending an angle θi+1 − θi + (an error)i.

So the area of the region is

=
n−1∑
i=0

area of wedge i

(∗∗)
=

n−1∑
i=0

(r(θi))
2

2
· (θi+1 − θi) + error.

As n grows, the error in the approximation (∗) diminishes, and the sum on the right hand
side of (∗∗) approaches ∫ ϕ

0

(r(θ))2

2
dθ.

Example 5.42 (Area enclosed by the cardioid). The cardioid is given in polar coordinates by
r = 2(1 + cos θ), and so the area enclosed by it is

Area = 2 ·
∫ π

0

(2(1 + cos θ))2

2
dθ

= 4
∫ π

0

(
1 + 2 cos θ + (cos θ)2

)
dθ

= 4

(
π + 2 sin θ

∣∣∣π
0

+
∫ π

0

1 + cos(2θ)
2

dθ

)

= 4
(
π + 0 +

π

2
+ 0
)

= 4 · 3π

2

= 6π. ♦

Exercise 5.87. Calculate the area enclosed by the two ‘petals’ of the lemniscate given in polar
coordinates by r2 = 2 cos(2θ).

Volumes of solids of revolution

Definition 5.23 (Solid of revolution). A subset of R
3, which is obtained by revolving a pla-

nar region about an axis is called a solid of revolution.

Here are a few examples.
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Planar region Solid of revolution

The volume of a right circular cylinder of radius r and height h is defined to be

(Area of the circular base) · (Height) = (πr2) · h = πr2h.

h
h

r

r

Cylinder volume := πr 2h

r

Washer volume = π(r 2 − r2)h

Now consider a ‘washer’, namely, a cylinder with a hole, where the outer radius of the cylinder
is r, and the radius of the concentric hole is r (≤ r). Suppose that the height is h. Then the
volume of the washer is

πr2h− πr2h = π(r2 − r2)h.

Using these formulae and Riemann integration, we can calculate the volumes of solids of
revolution of planar regions between the graphs of two functions using the ‘washer method’,
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where we imagine slicing the solid of revolution into infinitesimal slices, where each slice is
a washer, and adding these tiny contributions to obtain the whole volume.

Definition 5.24 (Volume of a solid of revolution). Let f , f : [a, b] → R be such that 0 ≤ f ≤ f
pointwise:

R

f

f

a b

Let R be the planar region R := {(x, y) ∈ R
2 : for all x ∈ [a, b], f (x) ≤ y ≤ f (x)}. The vol-

ume of the solid of revolution obtained by revolving R about the x-axis is defined to be∫ b

a
π((f (x))2 − (f (x))2)dx

(assuming that f 2 − f 2 ∈ RI[a, b]).

Here is the rationale behind the above definition. The volume of each elemental washer,
assuming that it has been sliced vertically into thin washers corresponding to a partition
{x0 = a, x1, · · · , xn = b} of [a, b], is approximated by

π
(
(f (xi))

2 − (f (xi))
2
)
· (xi − xi−1),

and the total volume is the sum of these. See the picture below. As n increases, this tends to
the expression above.

xi xi+1
a = x0 b = xn

Example 5.43 (Volume of a cone with radius r and height h). See the following picture. We
take f = 0 and f = rx/h on the interval [0, h]. Then the volume of the cone is

∫ h

0
π

(( r
h
x
)2

− 02

)
dx = π

r2

h2

∫ h

0
x2dx = π

r2

h2
· x

3

3

∣∣∣h
0

= π
r2

h2
· h

3

3
=

πr2h
3

. ♦
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0 h

r

f :=

f := 0

r
h

x

Example 5.44 (Volume of a sphere of radius r). On the interval [−r, r], we consider the
functions f = 0 and f =

√
r2 − x2. Then the volume of the sphere is

∫ r

−r
π
(
(
√
r2 − x2)2 − 02

)
dx = π

∫ r

−r
(r2 − x2)dx = π

(
r2 · 2r − r3 − (−r)3

3

)

= π ·
(

2r3 − 2r3

3

)
= π · 2r3 · 2

3
=

4πr3

3
. ♦

0−r r

f :=
√

r2 − x2

f := 0

Exercise 5.88. Calculate the volume of a doughnut, with the radius of the greater circle equal
to R (that is, of the central circle lying midway in the annular region obtained by taking a
horizontal cross section of the doughnut), and that of the two little circles, obtained by taking
a vertical cross section of the doughnut, equal to r.

Exercise 5.89. Calculate the volume of an ellipsoid, namely the solid of revolution obtained
by revolving the region enclosed by the ellipse

x2

a2
+

y2

b2
= 1,

where a, b > 0, in the upper half plane and the x-axis. What happens when a = b?

Exercise 5.90. A round hole of radius
√

3 is drilled through the center of a solid ball of radius
2 cm. Find the volume cut out.

Exercise 5.91 (Design of a clepsydra). A clepsydra (literally meaning ‘water thief’ in
Greek) or a water clock is designed by revolving the graph of x �→ Cxm : [0, r] → R, where C,
m > 0, as shown in the following figure.



288 THE HOW AND WHY OF ONE VARIABLE CALCULUS

r

Cxm

What should m be if the level of water is to decrease linearly as time passes? You may use
Toricelli’s Law stating that the speed of water flowing out when the height of water is h is
proportional to

√
h.

Exercise 5.92. Let f : [0,∞) → [0,∞) be a continuous function. If for each a > 0, the vol-
ume of the solid obtained by revolving the region under the graph of f over the interval [0, a],
about the x-axis is a2 + a, then find f .

Arc length of a smooth curve

Recall that a curve γ is a map

t �→ γ(t) = (x(t), y(t)) : [a, b] → R
2

such that t �→ x(t), t �→ y(t) : [a, b] → R are both continuous.

γ

a b γ(a)

γ(b)

Definition 5.25 (Smooth curve). If x, y : [a, b] → R are continuously differentiable (that is,
x, y ∈ C1[a, b]), then we will call the curve γ, given by

t �→ γ(t) = (x(t), y(t)) : [a, b] → R
2,

smooth.

Example 5.45. t �→ (t, t2) : [−1, 1] → R
2 is a smooth curve. The graph is a segment of a

parabola. See the leftmost graph in following picture. ♦
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Example 5.46. t �→ (t2, t3) : [−1, 1] → R
2 is a smooth curve. This is displayed in the middle

in the following picture. Note that this smooth curve has a ‘corner’13. ♦

γ

−r r0

Example 5.47. Let r > 0 be fixed. Then t �→ (r cos t, r sin t) : [0, 2π] → R
2 is a smooth

curve. See the rightmost picture in the above. ♦

Definition 5.26 (Length of a smooth curve).

Let t �→ γ(t) = (x(t), y(t)) : [a, b] → R
2 be a smooth curve. We define the arc length of

γ to be ∫ b

a

√
(x′(t))2 + (y′(t))2dt.

Rationale: Partition [a, b] into x0 = a < x1 < · · · < xn−1 < xn = b.

γ

a bti ti+1
(x(ti), y(ti))

(x(ti+1), y(ti+1))

A

B

C

dsi

The length of the curve dsi is approximated by the elemental chordal length of the line segment
AB. Thus (by the Pythagoras Theorem in ΔABC),

dsi
(∗)
≈ 
(AB) =

√
(x(ti+1) − x(ti))2 + (y(ti+1) − y(ti))2

(∗∗)
≈
√

(x′(ti)(ti+1 − ti))2 + (y′(ti)(ti+1 − ti))2

=
√

(x′(ti))2 + (y′(ti))2 · (ti+1 − ti).

13 This example justifies the somewhat different definition of a smooth curve used at times; for example in con-
siderations in the subject of differential geometry, where a curve is called smooth if at each point, one has a ‘tangent
vector’, and this tangent vector varies smoothly with the point.
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Thus the length of γ is
n∑

i=1

√
(x′(ti))2 + (y′(ti))2 + error.

As n increases, the partitions get finer, and the sum on the right hand side approaches
∫ b

a

√
(x′(t))2 + (y′(t))2dt,

while the error in (∗) and (∗∗) goes to 0.

Example 5.48. Let γ : [0, 1] → R
2 be given by γ(t) = (t, t2), t ∈ [0, 1]. Then the length of γ is

∫ 1

0

√
12 + (2t)2dt =

∫ 1

0

√
1 + 4t2dt (2t = u),

=
∫ 2

0

√
1 + u2 · 1

2
du

=
1
4

(
u
√

1 + u2 + log(u +
√

1 + u2)
) ∣∣∣2

0
(see Exercise 5.51)

=
1
4
(2
√

5 + log(2 +
√

5))

=
√

5
2

+
1
4

log(2 +
√

5). ♦

Example 5.49 (Circumference of a circle of radius r). Let γ(t) := (r cos t, r sin t),
t ∈ [0, 2π]. Then we have that the length of γ is

∫ 2π

0

√
(−r sin t)2 + (r cos t)2dt =

∫ 2π

0

√
r2((sin t)2 + (cos t)2)dt =

∫ 2π

0
rdt = 2πr.

Thus the ratio

circumference of a circle of radius r
radius r

=
2πr
r

= 2π = constant,

a fact that we had accepted on faith in high school geometry, but which we have now
proved. ♦

Exercise 5.93. The position of a particle in the plane R
2 at time t ≥ 0 is given by

x(t) =
1
3
(2t + 3)3/2,

y(t) =
t2

2
+ t,

for t ≥ 0.

(1) Find the distance it travels between t = 0 and t = 3.

(2) What is its average speed?
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Exercise 5.94. Calculate the arclength of the cardioid given in polar coordinates by the
equation r = 2(1 + cos θ).

Exercise 5.95 (The elliptic integral). Show that the perimeter of an ellipse given by

x2

a2
+

y2

b2
= 1,

where b ≥ a > 0, is given by

b
∫ 2π

0

√
1 − k2(sin θ)2dθ,

for a suitable constant k.

(This integral is called an elliptic integral, and cannot be expressed in terms of elementary
functions when b �= a.) What happens when b = a?

Exercise 5.96. Consider the following picture, where BC is a circular arc with radius 1 and
center O, subtending an angle of θ ∈ (0, π/2) at O. Drop a perpendicular from C on OB,
meeting OB in A. Note that 
(AC) = sin θ. What is the arc length of circular arc BC in terms
of θ? Observe that the hypotenuse BC in ΔABC is bigger than 
(AC) = sin θ on the one hand,
and being the straight line segment between the points B and C, it is visibly smaller than the
circular arc length BC. Deduce from these considerations the inequality sin θ ≤ θ, which was
also obtained analytically in Exercise 5.79(1).

O A B

C

θ

1

Area of a surface of revolution

Definition 5.27 (Surface of revolution). A surface of revolution is generated when a curve is
revolved about a line.

Example 5.50 (Spherical bubble). If we revolve a semicircle with center at the origin about
the x-axis, then the corresponding surface of revolution is the surface of a sphere. ♦
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We will define the area of a surface of revolution by cutting it into strips or ribbons, and add
up the results. It turns out that the area of each ribbon can be approximated by the area of
the surface obtained by a line segment revolved about an axis or a ‘frustum’. So a frustum is
really just a strip cut out from a right circular cone. Thus we first need to find the surface area
of a cone. But a cone can be cut out to form a sector, and its area we do know: it is R2θ/2,
where the radius of the sector is θ and the angle subtended at the center is θ. However, in what
is to follow, it will be convenient to express this area not using θ, but rather the arc length of
the curved circular portion of the sector. All this might be confusing right now, so we will go
step by step as follows.

θ

s?

Step 1. Suppose that we have a sector of radius 
 and angle θ subtended at the center. We ask:
what is the length s of the circular arc? Well, we have just learnt a formula for the arclength!
We have

s =
∫ θ

0

√
(−
 sin t)2 + (
 cos t)2dt =

∫ θ

0

dt = 
 · θ.

Step 2. Using the above formula for the arc length of a circular arc, and the area of a sector,
we can find and express the curved surface area of a cone in a form that will be useful for the
calculation of the surface area of revolution.

r

Flatten
out ? (θ) 2πr

Consider a cone of slant height 
 and radius r. What is its curved surface area? If we imagine
the cone to be made of paper, cut along a straight line that passes through the apex, and flatten
out the paper, then we obtain a sector whose area is the same as the curved surface area of
the cone.

From Step 1, we know that θ · 
 = 2πr, and so

θ =
2πr



.

Hence the curved surface area of the cone is equal to the area of the sector, which is given by

1
2

2θ =

1
2

2 · 2πr



= πr
.
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Step 3. Using Step 2, we can also calculate the area of a ‘frustum’.

r1

r2

x?

By considering the similar triangles shown in the picture, we obtain

r1

x
=

r2

x + 

,

and so
x =

r1


r2 − r1
.

Thus the area of the frustum equals the difference of the curved surface areas of the bigger
and the smaller cones, that is,

πr2(
 + x) − πr1x = πr2
 + π(r2 − r1)x = πr2
 + πr1
 = π(r1 + r2)
.

Step 4. Now we look at the general case of the surface area of a surface of revolution. Suppose
that t �→ γ(t) = (x(t), y(t)) : [a, b] → R

2 is a smooth curve.

x(a) x(b)

γ(·)

Partition [a, b] into a = t0 < t1 < · · · < tn−1 < tn = b. Then the area of the elemental
frustum is

π(y(ti) + y(ti+1))
√

(x(ti+1) − x(ti))2 + (y(ti+1) − y(ti))2

≈ 2πy(ti)
√

(x′(ti))2 + (y′(ti))2 · (ti+1 − ti).

We add such elemental contributions. This prompts the following definition.
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Definition 5.28 (Surface area of a surface of revolution). Suppose that the curve γ,
t �→ γ(t) = (x(t), y(t)) : [a, b] → R

2, is a smooth curve. Then the surface area of the surface
of revolution about the x-axis corresponding to γ is defined to be

∫ b

a
2πy(t)

√
(x′(t))2 + (y′(t))2dt.

Example 5.51 (Surface area of a sphere of radius r). Consider the semicircular curve γ given
by γ(t) = (r cos t, r sin t), t ∈ [0, π]. Then the surface area of the corresponding surface of
revolution is ∫ π

0
2π · r sin t ·

√
(−r sin t)2 + (r cos t)2dt

=
∫ π

0
2π · r sin t · rdt = 2πr2

∫ π

0
sin t dt = 2πr2(− cos t)

∣∣∣π
0

= 2πr2 · 2

= 4πr2.

We note that the ratio
surface area of a sphere of radius r

r2
= 4π = a constant. ♦

Remark 5.3 (Solid angle and the steradian measure). If S is a surface lying on a sphere of
radius r, then S is said to subtend a solid angle of measure

surface area of S
r2

steradian

at the center of the sphere. (The motivation is that except for a multiplicative factor of 4π, this
ratio measures the fraction of the sphere occupied by S.)

S

Thus the solid angle subtended at the center by the entire spherical surface is 4π steradian,
while that of the hemisphere is 2π steradian, and so on. The solid angle subtended by Antarc-
tica at the center of the Earth is

area of antarctica

(radius of Earth)2 =
14000000 km2

(6371 km)2
≈ 0.345 steradian.

The solid angle is a measure of how large an object appears to an observer at the center. A
small object nearby may subtend the same solid angle as a large object far away. For example,
although the Moon is much smaller than the Sun, it is also much closer to the Earth, and in
fact, the solid angles they subtend for an observer on the Earth are approximately the same.
This is visually clear during a solar eclipse!
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Remark 5.4 (A paradox? Toricelli’s Trumpet or Gabriel’s Horn). Consider the ‘infinite
trumpet’ obtained by revolving the graph of x �→ 1/x : [1,∞) → R about the x-axis.

We will see14 that the ‘volume’ of the solid of revolution is finite, but its ‘surface area’ is
infinite. Indeed, we have

volume: =
∫ ∞

1
π · 1

x2
dx = π

(
−1
x

) ∣∣∣∞
1

= π,

while

surface area: =
∫ ∞

1
2π · 1

x

√
1 +
(
− 1
x2

)2

dx ≥
∫ ∞

1
2π · 1

x
· 1dx = lim

x→∞
2π log x = ∞.

So this seems to be a paradox, since the above suggests that we can fill the trumpet with a
finite amount of paint, but we would need an infinite amount of paint to cover its surface! But
how can that be? After all, we can fill the trumpet with a finite amount of paint, and ‘pour it
out’ while having automatically painted its surface—but painting its surface was supposed to
be impossible, as it should have needed an infinite amount of paint.

The paradox arises from confusing our mental model of real paint with ‘mathematical’
paint. Real paint has a finite thickness, say the thickness of the paint molecule. At some point,
the trumpet becomes thinner than this, and so with real paint we could neither fill the trumpet
nor cover its surface. The only paint that could do this is ‘mathematical’ paint that has infinitely
small thickness. A finite amount of infinitely thin paint could cover an infinite surface area.

Exercise 5.97. The aim of this exercise is to show that the reverse situation in Toricelli’s
Trumpet Paradox can’t happen. That is, we want to establish the following result. If
f : [1,∞) → [0,∞) is a continuously differentiable function, and if the surface area S of the
surface of revolution obtained by revolving the graph of f about the x-axis, defined by

S :=
∫ ∞

1
2πf (x)

√
1 + (f ′(x))2dx < ∞

then so is the volume V of the solid of revolution, defined by

V :=
∫ ∞

1
π( f (x))2dx.

14 Strictly speaking, we have not defined the volume and surface area of solids of revolution when the interval
is not compact by means of improper integrals, but in this example, we just use what seem to be the intuitively
appropriate definitions.
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Proceed as follows.

(1) Show that f is bounded by applying the Fundamental Theorem of Calculus to the
integrand (f 2)′.

(2) Try getting an upper bound on V in terms of S.

Exercise 5.98. Calculate the surface area of a doughnut, with the radius of the greater circle
equal to R (that is, of the central circle lying midway in the annular region obtained by taking a
horizontal cross section of the doughnut), and that of the two little circles, obtained by taking
a vertical cross section of the doughnut, equal to r.

Exercise 5.99 (Catenary). Let a ∈ R with a > 0. An arc of the ‘catenary’ given by

y = a cosh
( x
a

)
,

whose end points have x-coordinates 0 and a, is revolved about the x-axis. Show that the
surface area A and the volume V of the solid thus generated are related by the formula

A =
2V
a

.

Notes

Exercises 5.8, 5.9, 5.10, 5.15, 5.16, 5.21, 5.63, and 5.72 are based on [G]. Example 5.26
is based on [G, Exercise 39, page 223]. The proof of Theorem 5.33 is based on [N5].
Exercise 5.77 is based on [L, 1.6.3]. Exercise 5.91 is based on [B2]. Exercise 5.85 is based
on [K2, Problem A-1]. Exercise 5.74 is based on [N3].
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Series

In this chapter, we study ‘series’ of real numbers.

6.1 Series

Given a sequence (an)n∈N
, one can form a new sequence (sn)n∈N

of its partial sums:

s1 := a1,

s2 := a1 + a2,

s3 := a1 + a2 + a3,

· · ·

The sequence (sn)n∈N
is called the sequence of partial sums associated with (an)n∈N

.

Example 6.1. Here are a couple of examples.

(1) The sequence of partial sums associated with the constant sequence (1)n∈N
is (sn)n∈N

,
where

s1 = 1,

s2 = 1 + 1 = 2,

s3 = 1 + 1 + 1 = 3,

· · ·

that is, (sn)n∈N
is the sequence (n)n∈N

of natural numbers.

The How and Why of One Variable Calculus, First Edition. Amol Sasane.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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(2) The sequence of partial sums associated with the alternating sequence ((−1)n)n∈N
is

(sn)n∈N
, where

s1 = −1,

s2 = −1 + 1 = 0,

s3 = −1 + 1 − 1 = −1,

· · ·

that is, (sn)n∈N
is the sequence −1, 0,−1, 0,−1, 0, · · · .

(3) The sequence of partial sums associated with the geometric sequence (1/2n)n∈N
is

(sn)n∈N
, where

sn =
1
2

+
1
22

+
1
23

+ · · · + 1
2n

=
1
2

(
1 − 1

2n
)

1 − 1
2

= 1 − 1
2n

.

Thus (sn)n∈N
is the sequence 1/2, 3/4, 7/8, 15/16, · · · .

(4) The sequence of partial sums associated with the sequence (1/n)n∈N
is the sequence

1, 1 + 1
2 , 1 + 1

2 + 1
3 , · · · . ♦

The sequence (sn)n∈N
of partial sums associated with a sequence (an)n∈N

may converge or it
may diverge. We then describe these two possible situations as follows.

Definition 6.1 (Convergence/Divergence of
∞∑
n=1

an).

Let (an)n∈N
be a sequence and let (sn)n∈N

be the sequence of its partial sums.

(1) If (sn)n∈N
converges, we say that ‘the series

∞∑
n=1

an converges’.

Then we write
∞∑
n=1

an = lim
n→∞

sn and call it ‘the sum of the series’.

(2) If (sn)n∈N
does not converge, we say that ‘the series

∞∑
n=1

an diverges’.

Example 6.2.

(1) The series
∞∑
n=1

(−1)n diverges.

Indeed, the sequence of partial sums is −1, 0,−1, 0, · · · which is divergent.

(2) The series
∞∑
n=1

1
n(n + 1)

converges. Its nth partial sum ‘telescopes’1:

sn =
n∑

k=1

1
k(k + 1)

=
n∑

k=1

(
1
k
− 1

k + 1

)

=
(

1 − 1
2

)
+

(
1
2
− 1

3

)
+ · · · +

(
1
n
− 1

n + 1

)
= 1 − 1

n + 1
.

1 Loosely, this term describes the situation when in a sum/product the intermediate terms don’t matter, and only
the initial and final ones are the ones which do matter; so the final term is brought in contact with the initial term just
like a telescope brings a far away object in close vision.
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Since lim
n→∞

sn = 1 − 0 = 1, we have
∞∑
n=1

1
n(n + 1)

= 1.

(3) Let (an)n∈N
be the geometric sequence

(
1
2n

)
n∈N

.

Then (sn)n∈N
=

(
1 − 1

2n

)
n∈N

is convergent with limit 1. Thus
∞∑
n=1

1
2n

= 1.

A pictorial proof is given below. ♦

1

1 1
2

1

1

23

22

24
1

1

25 1
26

Exercise 6.1 (Tantalising tan−1). Show that
∞∑
n=1

tan−1 1
2n2

=
π

4
.

Hint: Write
1

2n2
=

(2n + 1) − (2n− 1)
1 + (2n + 1)(2n− 1)

and use tan(a− b) =
tan a− tan b

1 + tan a tan b
.

Exercise 6.2. Show that for every real number x > 1, the series

1
1 + x

+
2

1 + x2
+

4
1 + x4

+ · · · + 2n

1 + x2n
+ . . .

converges. Hint: Add
1

1 − x
.

Exercise 6.3. The Fibonnaci sequence (Fn)n∈N
is defined recursively by F0 = F1 = 1 and

Fn+1 = Fn + Fn−1 for n ∈ N. Show that
∞∑
n=2

1
Fn−1Fn+1

= 1.

Exercise 6.4. Show that for 0 < x < π/2, tan
x
2

= cot
x
2
− 2 cot x.

Find the sum of the series
∞∑
n=1

1
2n

tan
π/4
2n

.

What will we learn in this chapter? Just like we learnt ways of deducing the convergence of
sequences and ways of finding their limits, we will learn about tests for checking convergence
of series.
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A natural next question is: Why bother learning about such things about series? It turns out
that series play an important role in solutions to various problems that arise in Mathematics
and applications of Mathematics in other disciplines. For example, in the theory of differential
equations, in functional analysis, Fourier/harmonic analysis, and so on.

A necessary condition for the convergence of
∞∑
n=1

an

Note that in the above example of the divergent series
∞∑
n=1

(−1)n,

the sequence (an)n∈N
= ((−1)n)n∈N

was not convergent. In fact, we have the following
necessary condition for convergence of a series.

Proposition 6.1. If the series
∞∑
n=1

an converges, then lim
n→∞

an = 0.

Proof. Let sn := a1 + · · · + an. Since the series converges, we have

lim
n→∞

sn = L

for some L ∈ R. But as (sn+1)n∈N
is a subsequence of (sn)n∈N

, it follows that

lim
n→∞

sn+1 = L.
By the Algebra of Limits,

lim
n→∞

an+1 = lim
n→∞

(sn+1 − sn) = lim
n→∞

sn+1 − lim
n→∞

sn = L− L = 0.

Let ε > 0. Then there exists an N ∈ N such that for all n > N, |an+1 − L| < ε. Then for all
n > N + 1, |an − L| < ε. Hence (an)n∈N

also converges with limit 0. �

Being a necessary condition for the convergence of a series, this result helps us to conclude
the divergence of a series.

Example 6.3.

(1)
∞∑
n=1

(−1)n diverges because ((−1)n)n∈N
does not converge, much less to 0.

(2)
∞∑
n=1

n
n + 1

diverges because

(
n

n + 1

)
n∈N

converges, but not to 0. ♦

Exercise 6.5. Does the series
∞∑
n=1

cos
1
n

converge?

This condition lim
n→∞

an = 0 is not sufficient for the convergence of the series

∞∑
n=1

an.
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So just because (an)n∈N
converges to 0, we cannot conclude from this fact that the series above

converges. Indeed, we had seen in Example 2.16 that the Harmonic Series2

∞∑
n=1

1
n

diverges3, but clearly lim
n→∞

1
n

= 0.

Theorem 6.2. Let s ∈ R. The series4
∞∑
n=1

1
ns

converges if and only if s > 1.

Proof. Let s > 1. Clearly the sequence of partial sums is increasing as 1
ns > 0 for each n.

We now show that it is bounded too. Then consider the interval [1, n] and let σn be the ‘step
function’ σn(x) = (k + 1)−s if x ∈ [k, k + 1), k = 1, · · · , n− 1.

1 2 3 n−1 n

σn

f

· · ·

2 The name arises from the concept of overtones/harmonics in music: if we imagine a string of unit length vibrating
between its two fixed enpoints, then the wavelengths of the harmonics are 1, 1

2 , 1
3 , · · · .

3 In connection with the divergence of the harmonic series, we also mention the Erdös conjecture on arithmetic
progressions (APs): If the sums of the reciprocals of the numbers of a set A of natural numbers diverges, then A
contains arbitrarily long APs. That is, if ∑

n∈A

1
n

diverges, then A contains APs of any given length. We know that

∞∑
n=1

1
n

diverges, and in this case, the claim is trivially true. It can be shown that

∑
p is prime

1
p

diverges. So one may ask: Does the claim hold in this special case? The answer is ‘Yes’, and this is the Green-Tao
Theorem from 2008. Terence Tao was awarded the Fields Medal in 2006, among other things, for this result of his.

4 The function

s �→
∞∑
n=1

1
ns

is called the Riemann-zeta function, which is an important function in number theory; the connection with number
theory is brought out by Euler’s identity, which says that

ζ(s) :=
∞∑
n=1

1
ns

=
∏

p prime

1
1 − p−s .
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Then we have

1 +
1
2s

+ · · · + 1
ns

= 1 +
∫ n

1
σn(x)dx ≤ 1 +

∫ n

1

1
xs
dx ≤ 1 +

∫ ∞

1

1
xs
dx,

where the rightmost improper integral is finite since s > 1. As the sequence of partial sums is
monotone (increasing) and bounded, it is convergent. Thus

∞∑
n=1

1
ns

converges for s > 1.
If on the other hand s ≤ 1, then the proof is similar to that of showing that the harmonic

series diverges. Indeed, if the series was convergent, then

lim
n→∞

(S2n − Sn) = 0,

while on the other hand,

S2n − Sn =
1

(n + 1)s
+

1
(n + 2)s

+ · · · + 1
(2n)s

≥ n
1

(2n)s
≥ n

1
2n

=
1
2

,

where we have used the fact that s ≤ 1 in order to obtain the last inequality. �

Now let us see an important example of a convergent series. In fact, it lies at the core of most
of the convergence results in Real Analysis.

Theorem 6.3. Let r ∈ R. The geometric series

∞∑
n=0

rn

converges if and only if |r| < 1. Moreover, if |r| < 1, then
∞∑
n=0

rn =
1

1 − r
.

Proof. Let |r| < 1. Recall that in Example 2.11, we had shown that

lim
n→∞

rn = 0.

Let sn := 1 + r + r2 + · · · + rn. Then rsn = r + r2 + · · · + rn + rn+1, and so

(1 − r)sn = sn − rsn = 1 − rn+1.

As lim
n→∞

rn+1 = 0, it follows that lim
n→∞

(1 − r)sn = 1. Hence

∞∑
n=1

rn = lim
n→∞

sn =
1

1 − r
.

Now suppose that |r| ≥ 1. If r = 1, then

lim
n→∞

rn = 1 	= 0,
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and so by Proposition 6.1, the series diverges. Similarly if r = −1, then we have that
(rn)n∈N

= ((−1)n)n∈N
diverges, and so the series is divergent. Also if |r| > 1, then the

sequence (rn)n∈N
has the subsequence (r2n)n∈N

which is not bounded, and hence not
convergent. Consequently, (rn)n∈N

diverges, and hence the series diverges. �

The name comes from the associated similarity in geometry.

11

1

r

rr
r2 r2 r3

r2 r3

1−r

A

B C

B

C

Since the triangles AB′C′ and ABC are similar,

BC
AB

=
1 + r + r2 + r3 + · · ·

1
=

B′C′

AB′ =
1

1 − r
.

For a sequence (an)n∈N
with nonnegative terms, we sometimes write

∞∑
n=1

an < +∞

to mean that the series converges. Similarly, we say that the series diverges to ∞ if the
sequence of partial sums (sn)n∈N

is such that for all M ∈ R, there exists an index N ∈ N

such that for every n > N, sn > M. Analogously, we say that the series diverges to −∞ if the
sequence of partial sums (sn)n∈N

is such that for all M ∈ R, there exists an index N ∈ N such
that for every n > N, sn < M.

Exercise 6.6.
(1) (∗) Prove that if a1 ≥ a2 ≥ a3 · · · is a sequence of nonnegative numbers, and if

∞∑
n=1

an < +∞,

then an approaches 0 faster than 1/n, that is, lim
n→∞

nan = 0.

Hint: Consider the inequalities an+1 + · · ·+ a2n ≥ n · a2n and an+1 + · · ·+ a2n+1 ≥ n · a2n+1.

(2) Show that the assumption a1 ≥ a2 ≥ a3 · · · above cannot be dropped by considering the
lacunary series whose n2th term is 1/n2 and all other terms are zero.

Exercise 6.7. Consider the Arithmetic-Geometric Progression 1, 2r, 3r2, 4r3, · · · where
r ∈ R. Note that 1, 2, 3, 4, · · · form an AP, while 1, r, r2, r3, · · · form a geometric progression.
Show that if |r| < 1, then

1 + 2r + 3r2 + 4r3 + · · · =
1

(1 − r)2
.
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Exercise 6.8 (Decimal representation of real numbers). Every nonnegative real number x can
be written as

x = N +
d1

10
+

d2

102
+

d3

103
+ · · · , (6.1)

where N is a nonnegative integer and 0 ≤ d1, d2, d3, · · · ≤ 9. One writes the left hand side
above in short as

N. d1d2 · · ·

and the ‘.’ above is called the decimal point. The above claim can easily be justified based on
our geometric picture of the real numbers as being points on the number line.

N
x=N.37· · · N+1

Indeed, if x is an integer N, then we simply take d1 = d2 = d3 = · · · = 0. If x is not an integer,
then we take N = �x. Then we divide the interval [N,N + 1) into 10 equal parts, and if x is
not one of the subdivision points, then we take d1 to be the number in D := {0, 1, 2, · · · , 9}
such that

N +
d1

10
< x < N +

d1 + 1
10

.

Otherwise we take d2 = d3 = · · · = 0 and d1 such that N + d1
10 = x. We can then divide

[N + d1
10 ,N + d1+1

10 ) into 10 equal parts (each of length 10−2) and continue the process. Note
that at the nth stage, x satisfies

N +
d1

10
+ · · · + dn

10n
≤ x < N +

d1

10
+ · · · + dn + 1

10n
,

and this shows that the nth partial sum sn of the series

N +
d1

10
+

d2

102
+

d3

103
+ · · ·

satisfies |sn − x| < 10−n, showing the validity of (6.1).

Vice versa, every decimal expansion N. d1d2d3 · · · converges to some nonnegative real
number. The reason is that the sequence of partial sums is clearly increasing, and moreover
bounded above by

N +
9

10
+

9
102

+
9

103
+ · · · = N +

9
10

1 − 1
10

= N + 1.

(1) Show that 0.999 · · · = 1.000 · · · .

(2) Show that every terminating decimal expansion (that is, one in which there is some K
such that dk = 0 for all k > K— the digits are all eventually zeros) is a nonnegative
rational number.
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(3) Show that every nonterminating but repeating decimal expansion, that is, a decimal
expansion of the form

N. d1 · · · dn dn+1 · · · dn+m dn+1 · · · dn+m dn+1 · · · dn+m · · ·

where a block of digits dn+1 · · · dn+m keeps repeating, is a positive rational number.

Conversely, it can be shown that every nonnegative rational number has either
a terminating or a repeating decimal expansion. See the appendix to this chapter on
page 335.

(4) Find the rational number corresponding to 0.123123123 · · · .

(5) Is 0.12345678910111213 · · · a rational number?

Exercise 6.9 (Integral Test). As in the proof of Theorem 6.2, it can sometimes be easy to
determine whether or not the improper integral∫ ∞

1
f (x)dx

converges or diverges, and this can be used to deduce the convergence status of the series

∞∑
n=1

f (n).

This result is known as the Integral Test, and the first aim of this exercise is to prove this.

(1) Let f : [1,∞) → [0,∞) be a decreasing function, such that f is Riemann integrable
on [1, n] for all n ∈ N. Show the inequalities

n∑
k=2

f (k) ≤
∫ n

1
f (x)dx ≤

n−1∑
k=1

f (k),

for all n ∈ N. Conclude the Integral Test, which says that

∞∑
n=1

f (n) converges if and only if
∫ ∞

1
f (x)dx does.

(2) Does
∞∑
n=2

1
n log n

converge? What about
∞∑
n=2

1
n(log n)2

? Hint: See Exercise 5.46.

6.2 Absolute convergence

Definition 6.2. The series
∞∑
n=1

an converges absolutely if
∞∑
n=1

|an| converges.

The name is justified, thanks to the following result.

Proposition 6.4. If
∞∑
n=1

|an| converges, then
∞∑
n=1

an converges.
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Proof. Let sn := a1 + · · · + an, σn := |a1| + · · · + |an|, for n ∈ N. Since

∞∑
n=1

|an| < +∞,

(σn)n∈N
is convergent, and in particular a Cauchy sequence. Let ε > 0. Then there exists an

N ∈ N such that for all n,m > N, |σn − σm| < ε. So for n > m > N,

ε > |σn − σm| = σn − σm

= (|a1| + · · · + |an|) − (|a1| + · · · + |am|) = |am+1| + · · · + |an|
≥ |am+1 + · · · + an| = |(a1 + · · · + an) − (a1 + · · · + am)| = |sn − sm|.

Thus (sn)n∈N
is Cauchy, and so it is convergent. Hence

∞∑
n=1

an converges.
�

Exercise 6.10. Does the series
∞∑
n=1

sin n
n2

converge?

Example 6.4.

(1) The series
∞∑
n=1

(−1)n

n2
converges absolutely, since

∞∑
n=1

∣∣∣∣ (−1)n

n2

∣∣∣∣ =
∞∑
n=1

1
n2

< ∞.

In particular,
∞∑
n=1

(−1)n

n2
converges.

(2) The series
∞∑
n=1

(−1)n

n
does not converge absolutely, since

∞∑
n=1

∣∣∣∣ (−1)n

n

∣∣∣∣ =
∞∑
n=1

1
n

,

and we have seen that the harmonic series diverges. Does
∞∑
n=1

(−1)n

n
converge?

(See the following discussion to find out the answer.)
♦

Definition 6.3 (Alternating Series). A series of the form

∞∑
n=1

(−1)nan

with an ≥ 0 for all n ∈ N is called an alternating series.

We note that
∞∑
n=1

(−1)n

n
is an alternating series

∞∑
n=1

(−1)nan with an :=
1
n

(n ∈ N).
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We will now learn a result below, called the Leibniz Alternating Series Theorem, which will
enable us to conclude that in fact this alternating series is convergent (since the sufficiency
conditions for convergence in the Leibniz Alternating Series Theorem are satisfied:

a1 = 1 ≥ a2 =
1
2
≥ a3 =

1
3
≥ . . .

and lim
n→∞

an = lim
n→∞

1
n

= 0). Thus
∞∑
n=1

(−1)n

n

converges, but does not converge absolutely, showing that:

Absolute convergence
⇒
�

Convergence.

Theorem 6.5 (Leibniz Alternating Series Theorem). Let (an)n∈N
be a sequence such that

(1) it has nonnegative terms (an ≥ 0 for all n),

(2) it is decreasing (a1 ≥ a2 ≥ a3 ≥ . . . ), and

(3) lim
n→∞

an = 0.

Then the series
∞∑
n=1

(−1)nan converges.

A pictorial ‘proof without words’ is shown below. The sum of the lengths of the disjoint dark
intervals is at most the length of (0, a1).

a4 a3 a2 a1
. . .0  . . .  a2n

a3−a4 a1−a2
a2n−1−a2n

a2n−1

Proof. We may just as well prove the convergence of

∞∑
n=1

(−1)n+1an

(
= −

∞∑
n=1

(−1)nan

)
.

Let sn = a1 − a2 + a3 − + · · · + (−1)n−1an. Clearly,

s2n+1 = s2n−1 − a2n + a2n+1 ≤ s2n−1,

s2n+2 = s2n + a2n+1 − a2n+2 ≥ s2n,

and so the sequence s2, s4, s6, · · · is increasing, while the sequence s3, s5, s7, · · · is decreas-
ing. Also,

s2n ≤ s2n + a2n+1 = s2n+1 ≤ s2n−1 ≤ · · · ≤ s3.
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So (s2n)n∈N
is a bounded (s2 ≤ s2n ≤ s3 for all n), increasing sequence, and hence it is

convergent. But as (a2n+1)n∈N
is also convergent with limit 0, it follows that

lim
n→∞

s2n+1 = lim
n→∞

(s2n + a2n+1) = lim
n→∞

s2n.

Hence (sn)n∈N
is convergent, and so the series converges. �

Exercise 6.11. Let s > 0. Show that
∞∑
n=1

(−1)n

ns
converges.

Exercise 6.12. Prove that
∞∑
n=1

(−1)n
√
n

n + 1
converges.

Exercise 6.13. Prove that
∞∑
n=1

(−1)n sin
1
n

converges.

6.2.1 Rearrangement of series

One might tend to think of a series as an ‘infinite sum’, and hence be tempted to attribute to it
the usual properties associated with finite sums. For example, while adding a finite bunch of
numbers, we know that we can do so in any order and grouping, as addition is associative and
commutative. But with series, it turns out that rearrangements can give different answers!

Definition 6.4 (Permutation; Rearrangement). A bijective mapping p : N → N is called a
permutation (of N). The series ∞∑

n=1

ap(n)

is called a rearrangement of the series
∞∑
n=1

an.

Example 6.5 (Rearrangements of series may have different sums). Let S be the sum of the
convergent series

1 − 1
2

+
1
3
− + · · · = S.

(We will see later that S = log 2 	= 0.) Consider its rearrangement,

1 +
1
3
− 1

2
+

1
5

+
1
7
− 1

4
+ · · · .

Indeed, this series has the same terms as in the original series, but the pattern of signs is

+ + − + + − + + − · · ·

instead of the original pattern
+ − + − + − · · · .

Note that since

S = 1 − 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+ · · · ,

1
2
S =

1
2

− 1
4

+
1
6
− · · · ,



SERIES 309

and so we obtain
3
2
S = 1 +

1
3
− 1

2
+

1
5

+
1
7
− 1

4
+ · · · .

This shows that the rearranged series has a sum which is one and a half times the sum of the
original series! ♦
Note that in the above example, the series was certainly convergent but it wasn’t absolutely
convergent. The next result shows that arbitrary rearrangements don’t change the sum of an
absolutely convergent series.

Theorem 6.6. Let p be any permutation of N. If the series
∞∑
n=1

an

is absolutely convergent, then so is
∞∑
n=1

ap(n), and moreover, their sums coincide.

Proof. Consider first the case when each an is nonnegative, and let sn, s
′
n denote their respec-

tive partial sums. Then (sn)n∈N
and (s′n)n∈N

are both increasing sequences and (sn)n∈N
con-

verges to � := sup{sn : n ∈ N}. But for each n, there is some m such that the terms in s′n all
appear in the sum sm, so that

s′n ≤ sm ≤ �.

Hence, for all n ∈ N, s′n ≤ �. So, the increasing sequence (s′n)n∈N
is bounded above and hence

convergent to �′ := sup{s′n : n ∈ N}. The above also shows that �′ ≤ �. By considering
∞∑
n=1

an

as a rearrangement of the absolutely convergent series (having nonnegative terms)
∞∑
n=1

ap(n),

we also get the reverse inequality � ≤ �′.

Now let us consider the general case. To this end, we first note that

S1 :=
∞∑
n=1

(|an| − an)

is a convergent series of nonnegative terms. By the previous part,
∞∑
n=1

(|ap(n)| − ap(n))

is convergent too, with the same sum S1. Also, from the convergence of the series (with
nonnegative terms)

S2 :=
∞∑
n=1

|an|,

it follows that
∞∑
n=1

|ap(n)| is convergent too, with the same sum S2.
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Putting all of this together, it follows that
∞∑
n=1

ap(n) is absolutely convergent, and

∞∑
n=1

ap(n) =
∞∑
n=1

|ap(n)| −
∞∑
n=1

(|ap(n)| − ap(n)) = S2 − S1

=
∞∑
n=1

|an| −
∞∑
n=1

(|an| − an) =
∞∑
n=1

an.

This completes the proof. �

In light of the above results and the previous example, one might wonder what happens with
series that are convergent, but not absolutely convergent. (Such series are sometimes called
conditionally convergent.) Well, the behaviour is radically different, as demonstrated by the
following result. It is surprising enough that the naive expectation of ‘commutativity’ fails,
but even more striking is the fact that the rearrangement can be done so as to get any limit
whatsoever!

Theorem 6.7 (Riemann Rerrangement Theorem).

Let
∞∑
n=1

an be a conditionally convergent series.

(1) If L ∈ R, then there exists a permutation pL : N → N such that

∞∑
n=1

apL (n) = L.

(2) Similarly, there exist permutations p∞ and p−∞ such that

∞∑
n=1

ap∞(n) and
∞∑
n=1

ap−∞(n)

diverge to∞ and −∞, respectively.

The proof of this interesting result is a bit long, although elementary, and so we will skip it5.

Incidentally, the Riemann Rearrangement Theorem appears in the paper where Riemann
also defines the Riemann integral: ‘Ueber die Darstellbarkeit einer Function durch eine
trigonometrische Reihe’ (On the representability of a function by a trigonometric series). This
paper was submitted to the University of Göttingen in 1854 as Riemann’s Habilitationsschrift
(an academic qualification earned after obtaining a research doctorate as a qualification

5 The gist is as follows: The series of nonnegative terms a+
n diverges to ∞, and the series of negative terms

a−n diverges to −∞ (Why? One can argue that otherwise the original series would be absolutely convergent.) Let
L ∈ R. As the series of positive terms diverges to ∞, there is a first index n so that P = a+

1 + a+
2 + · · · + a+

n > L.
As the series of negative terms diverges to −∞, there’s a first index m such that PM = P + a−1 + a−2 + · · · + a−m < L.
Similarly, let n′ and m′ be the smallest indices such that PMP = PM + a+

n+1 + a+
n+2 + · · · + a+

n′ > L and
PMPM = PMP + a−m+1 + a−m+2 + · · · + a−m′ < L. And so on. The sequence P,PM,PMP,PMPM,PMPMP, · · · so
obtained converges to L since a+

n and a−n tend to 0, implying that, with every step in the construction, the difference
between the resulting sum and L becomes smaller. An interested reader may wish to work out the details above or
look them up for example in [A] or [R].
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to become an instructor or supervise doctoral students). It was published in 1868 in the
Proceedings of the Royal Philosophical Society at Göttingen. Riemann’s definition of his
integral appears in Section 4, while the rearrangement theorem appears in Section 3.

Exercise 6.14 (Inserting or removing parenthesis).

(1) Show that if a series converges, then the new series one obtains by ‘inserting parentheses’
in the original one (that is, adding up finite blocks of consecutive terms) converges to the
same sum.

(2) Give a (simple) example to show that removing parentheses can change a convergent series
into a divergent one!

(3) It is easy to show the inequality that for all n ∈ N, 1
3n−1 + 1

3n + 1
3n+1 > 3 · 1

3n .

Give another proof of the divergence of the Harmonic Series based on grouping terms.

6.2.2 Comparison, ratio, root

We will now learn three important tests for the convergence of a series:

(1) the comparison test (where we compare with a series whose convergence status is
known)

(2) the ratio test (where we look at the behaviour of the ratio
an+1

an
of terms)

(3) the root test (where we look at the behaviour of n
√
|an|)

We summarise them in the table below.

Comparison Ratio Root

Absolute
convergence

⇐ |an| ≤ cn for all large n;
∣∣∣an+1

an

∣∣∣ ≤ r < 1 n
√

|an| ≤ r < 1
∞∑
n=1

cn converges. for all large n. for all large n.

Divergence ⇐ an ≥ dn ≥ 0 for all large n;
∣∣∣an+1

an

∣∣∣ ≥ 1 n
√

|an| ≥ 1
∞∑
n=1

dn diverges. for all large n. infinitely often.

We prove these results in the following.

Theorem 6.8 (Comparison test).

(C): If (an)n∈N
and (cn)n∈N

are such that

(1) there exists an N ∈ N such that |an| ≤ cn for all n ≥ N, and

(2)
∞∑
n=1

cn converges,

then
∞∑
n=1

an converges absolutely.
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(D): If (an)n∈N
and (dn)n∈N

are such that

(1) there exists an N ∈ N such that an ≥ dn ≥ 0 for all n ≥ N, and

(2)
∞∑
n=1

dn diverges,

then
∞∑
n=1

an diverges.

Proof.

(Convergence): Let sn := |a1| + · · · + |an| and σn := c1 + · · · + cn. For n > m,

|sn − sm| = |am+1| + · · · + |an| ≤ cm+1 + · · · + cn = |σn − σm|,

and since (σn)n∈N
is Cauchy, it follows that (sn)n∈N

is also Cauchy. Hence (sn)n∈N
is absolutely

convergent.

(Divergence): By the previous part, if
∞∑
n=1

an converges, then so must
∞∑
n=1

dn.
�

Example 6.6.

(1)
∞∑
n=1

cos n
n2

converges.

We have
∣∣∣cos n

n2

∣∣∣ ≤ 1
n2

=: cn for all n ∈ N.

Since ∞∑
n=1

cn =
∞∑
n=1

1
n2

< ∞,

it follows by the Comparison Test that
∞∑
n=1

cos n
n2

converges (absolutely).

(2)
∞∑
n=1

sin
1
n

diverges.

Indeed, by Taylor’s Formula, for each n ∈ N, there exists a cn ∈ (0, n) such that

sin
1
n

= sin 0 +
cos 0

1!
· 1
n
− sin cn

2!
· 1
n2

=
1
n
− sin cn

2n2
≥ 1

n
− 1

2n2

≥ 1
n
− 1

2n
=

1
2n

=: dn ≥ 0.
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Since ∞∑
n=1

dn =
1
2

∞∑
n=1

1
n

diverges, it follows by the Comparison Test that
∞∑
n=1

sin
1
n

diverges.

(3)
∞∑
n=1

(
sin

1
n
− 1

n

)
converges.

By Taylor’s Formula, for each n ∈ N, there exists a cn ∈ (0, n) such that

sin
1
n

= sin 0 +
cos 0

1!
· 1
n
− sin 0

2!
· 1
n2

− cos cn
3!

· 1
n3

,

and so ∣∣∣∣sin 1
n
− 1

n

∣∣∣∣ =
∣∣∣−cos cn

6n3

∣∣∣ ≤ 1
6n3

.

As
∞∑
n=1

1
n3

< ∞, by the Comparison Test,
∞∑
n=1

(
sin

1
n
− 1

n

)
converges absolutely.

(4)
∞∑
n=2

1
log n

diverges.

For all n ∈ N, log n ≤ n. (By the Mean Value Theorem, there exists a c ∈ (1, n) such that

log n− log 1
n− 1

=
log n
n− 1

=
1
c

< 1,

and by rearranging, log n < n− 1 < n for n > 1.) For all n ≥ 2,

1
log n

≥ 1
n

=: dn,

and so by the Comparison Test,
∞∑
n=2

1
log n

diverges. ♦

Theorem 6.9 (Ratio test). Let (an)n∈N
be a sequence of nonzero terms.

(C): If there exists an r ∈ (0, 1) and an N ∈ N such that for all n > N,

∣∣∣∣an+1

an

∣∣∣∣ ≤ r,

then
∞∑
n=1

an converges absolutely.

(D): If there exists an N ∈ N such that for all n > N,

∣∣∣∣an+1

an

∣∣∣∣ ≥ 1,

then
∞∑
n=1

an diverges.

Proof.
(Convergence): We have

|aN+1| ≤ r|aN |,
|aN+2| ≤ r|aN+1| ≤ r2|aN |,
|aN+3| ≤ r|aN+2| ≤ r3|aN |,

· · ·
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Since
∞∑
n=1

rn converges,
∞∑

n=N+1

|an| < +∞ by the Comparison Test.

Adding |a1| + · · · + |aN | to the partial sums of this last series, we see that

∞∑
n=1

|an|

converges too.

(Divergence): The given condition implies that

· · · ≥ |aN+3| ≥ |aN+2| ≥ |aN+1|. (6.2)

If the series
∞∑
n=1

an was convergent, then

0 = lim
n→∞

an = lim
k→∞

aN+k.

Hence
lim
k→∞

|aN+k| = 0

as well. But by (6.2), we see that lim
k→∞

|aN+k| ≥ |aN+1| > 0, a contradiction. �

6It does not suffice for convergence of the series that

for all sufficiently large n,

∣∣∣∣an+1

an

∣∣∣∣ < 1.

Indeed, for the harmonic series,

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣
1

n+1
1
n

∣∣∣∣∣ =
n

n + 1
< 1, but

∞∑
n=1

1
n

diverges.

So the ratios have to uniformly separated from 1 (by a positive distance 1 − r).

0 r 1

an+1

an

Note that in the case of the Harmonic Series, there is no r ∈ (0, 1) such that∣∣∣∣an+1

an

∣∣∣∣ =
n

n + 1
≤ r < 1 for all large n,

since if there were such an r, then

lim
n→∞

n
n + 1

= 1 ≤ r < 1,

a contradiction.
6 This ‘dangerous bend’ symbol was used by the ‘Bourbaki group’ of mathematicians, and appears in the margins

of mathematics books written by the group to mark cautionary notes.
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Corollary 6.10. If lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, then
∞∑
n=1

an converges absolutely.

Proof. Let L := lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1. Let r be such that L < r < 1. Set

bn := sup
{∣∣∣∣ak+1

ak

∣∣∣∣ : k ≥ n

}
.

Recalling the definition of lim sup from Exercise 2.10, we see that the sequence (bn)n∈N
is

decreasing and that

L = lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

bn = inf
n∈N

bn.

Thus there exists an N ∈ N such that L ≤ bN = sup
{∣∣∣∣ak+1

ak

∣∣∣∣ : k ≥ N

}
< r < 1.

So for all n > N,

∣∣∣∣an+1

an

∣∣∣∣ < r < 1.

Using Part (C) from Theorem 6.9, we conclude that
∞∑
n=1

an converges absolutely.
�

Remark 6.1. We know from Exercise 2.21 that if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists, then lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists as well, and lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣.

Example 6.7 (The exponential series). For all x ∈ R,
∞∑
n=0

xn

n!
converges.

If x = 0, then this is trivial. If x 	= 0, then convergence follows from the Ratio Test:
∣∣∣∣∣∣∣∣

xn+1

(n + 1)!
xn

n!

∣∣∣∣∣∣∣∣
=

|x|
n + 1

n→∞−−−−→ 0.

♦

Theorem 6.11 (Root test).

(C): If there exists an r ∈ (0, 1) and an N ∈ N such that for all n > N, n
√

|an| ≤ r,

then
∞∑
n=1

an converges absolutely.

(D): If for infinitely many n, n
√

|an| ≥ 1, then
∞∑
n=1

an diverges.
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Proof.
(Convergence): As |an| ≤ rn for all n > N, by the Comparison Test,

∞∑
n=N+1

|an|

converges.

(Divergence): Suppose that for the subsequence (ank)k∈N
, we have

nk

√
|ank | ≥ 1.

Then |ank | ≥ 1. If the series was convergent, then

lim
n→∞

an = 0,

and so also
lim
n→∞

|ank | = 0,

a contradiction. Thus the series
∞∑
n=1

an cannot converge.
�

It does not suffice for convergence of the series that

for sufficiently large n, n
√

|an| < 1.

For example, for the harmonic series n
√

|an| =
1
n
√
n

< 1, but
∞∑
n=1

1
n

diverges.

So again, one needs the uniform separation from 1 (by a positive distance 1 − r).

0 r 1

n |an|

Corollary 6.12. If lim sup
n→∞

n
√

|an| < 1, then
∞∑
n=1

an converges absolutely.

Proof. Let L := lim sup
n→∞

n
√

|an| < 1.

Let r be such that L < r < 1. Set bn := sup{ k
√

|ak| : k ≥ n}. The sequence (bn)n∈N
is

decreasing, and L = lim sup
n→∞

n
√
|an| = lim

n→∞
bn = inf

n∈N

bn.

Thus there exists an N ∈ N such that L ≤ bN = sup{ k
√

|ak| : k ≥ N} < r < 1. So for all
n > N, n

√
|an| < r < 1.

By Part (C) of Theorem 6.11,
∞∑
n=1

an converges absolutely.
�
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Example 6.8 (Ratio Test inconclusive; but Root Test decisive).
∞∑
n=1

1
2n+(−1)n converges. We have

n : 1
1−→ 2

1−→ 3
1−→ 4

1−→ 5
1−→ 6 · · ·

(−1)n : −1
2−→ 1

−2−−→ − 1
2−→ 1

−2−−→ − 1
2−→ 1 · · ·

n + (−1)n : · 3−→ · −1−−→ · 3−→ · −1−−→ · 3−→ · · · ·

So, ∣∣∣∣an+1

an

∣∣∣∣
alternates between 2−3 = 1/8 and 21 = 2, and the Ratio Test is inconclusive. But

n
√

|an| =
1

2
n+(−1)n

n

=
1

21+ (−1)n
n

n→∞−−−−→ 1
21+0

=
1
2

< 1,

and so, by the Root Test,
∞∑
n=1

1
2n+(−1)n converges.

♦

Exercise 6.15. Determine if the following series is convergent or not.

(1)
∞∑
n=1

n2

2n
.

(2)
∞∑
n=1

(n!)2

(2n)!
.

(3)
∞∑
n=1

(
4
5

)n

n5.

Exercise 6.16. (∗) Prove that
∞∑
n=1

n
n4 + n2 + 1

converges. Also, find its value.

Hint: Write the denominator as (n2 + 1)2 − n2.

Exercise 6.17. If
∞∑
n=1

a2014
n converges, then show that

∞∑
n=1

a2015
n converges too.

Hint: First conclude that for large n, |an| < 1.

Exercise 6.18. Determine if the following statements are true or false.

(1) If
∞∑
n=1

|an| is convergent, then so is
∞∑
n=1

a2
n.
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(2) If
∞∑
n=1

an is convergent, then so is
∞∑
n=1

a2
n.

(3) If lim
n→∞

an = 0, then
∞∑
n=1

an converges.

(4) If lim
n→∞

(a1 + · · · + an) = 0, then
∞∑
n=1

an converges.

(5)
∞∑
n=1

log
n + 1
n

converges.

(6) If all an > 0 and the partial sums of (an)n∈N
are bounded, then

∞∑
n=1

an converges.

(7) If an 	= 0 (n ∈ N) and
∞∑
n=1

an converges, then
∞∑
n=1

1
an

diverges.

Exercise 6.19 (Fourier Series). In order to understand a complicated situation, it is natural
to try to break it up into simpler things. For example, from Calculus we learn that an ana-
lytic function can be expanded into a Taylor series, where we break it down into the simplest
possible analytic functions, namely monomials 1, x, x2, · · · as follows:

f (x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 + · · ·.

The idea behind the Fourier series is similar. In order to understand a complicated periodic
function, we break it down into the simplest periodic functions, namely sines and cosines.
Thus if T ≥ 0 and f : R → R is T-periodic, that is, f (x) = f (x + T) (x ∈ R), then one tries to
find coefficients a0, a1, a2, · · · and b1, b2, b3, · · · such that

f (x) = a0 +
∞∑
n=1

(
an cos

(
2πn
T

x

)
+ bn sin

(
2πn
T

x

))
. (6.3)

Suppose that the Fourier series given in (6.3) converges pointwise to f on R. Show that if

∞∑
n=1

(|an| + |bn|) < ∞,

then in fact the series converges uniformly.

The aim of this part of the exercise is to give experimental evidence for two things. Firstly,
the plausibility of the Fourier expansion, and secondly, that the uniform convergence might
fail if the condition in the previous part of this exercise does not hold. To this end, let us
consider the square wave f : R → R given by

f (x) =

{
1 if x ∈ [n, n + 1) for n even,

−1 if x ∈ [n, n + 1) for n odd.
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Then f is a 2-periodic signal. From the theory of Fourier Series, which we will not discuss in
this course, the coefficients can be calculated, and they happen to be

0 = a0 = a1 = a2 = a3 = · · ·

and

bn =

⎧⎨
⎩

4
nπ

if n is odd,

0 if n is even.

Write a Maple program to plot the graphs of the partial sums of the series in (6.3) with, say,
3, 33, 333 terms. See Figure 6.1. Discuss your observations.

1

0.5

1

0.5

0

−0.5

0

−0.5

−1 −1

−1 −11 2
x

3 1 2
x

3

1

0.5

0

−0.5

−1

−1 1 2
x

3

Figure 6.1 Partial sums of the Fourier series for the square wave.

Exercise 6.20. Show that if all an ≥ 0 and
∞∑
n=1

an converges, then so does
∞∑
n=1

√
anan+1.

Exercise 6.21. If all an ≥ 0, then show that
∞∑
n=1

an < ∞ if and only if
∞∑
n=1

an
1 + an

< ∞.

Exercise 6.22. Let �1, �2 be the ‘sequence spaces’ defined by

�1 :=

{
(an)n∈N

:
∞∑
n=1

|an| < ∞
}

, �2 :=

{
(an)n∈N

:
∞∑
n=1

|an|2 < ∞
}

.

Show that �1 ⊂ �2. Is �1 = �2?

Exercise 6.23. As
∞∑
n=1

1
n

diverges, the reciprocal 1/sn of the nth partial sum

sn := 1 +
1
2

+
1
3

+ · · · + 1
n

approaches 0 as n → ∞. So the necessary condition for the convergence of the series
∞∑
n=1

1
sn

is satisfied. But we don’t know yet whether or not it actually converges. It is clear that the
harmonic series diverges very slowly, which means that 1/sn decreases very slowly, and this
prompts the guess that this series diverges. Show that in fact our guess is correct.

Hint: sn < n.
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Exercise 6.24. Show that the series
∞∑
n=1

1
nn

converges.

Exercise 6.25. The Fibonnaci sequence (Fn)n∈N
is defined recursively by F0 = F1 = 1 and

Fn+1 = Fn + Fn−1 for n ∈ N. Show that

∞∑
n=0

1
Fn

< +∞.

Hint: Fn+1 = Fn + Fn−1 > Fn−1 + Fn−1 = 2Fn−1.

Using this, show that both
1
F0

+
1
F2

+
1
F4

+ · · · and
1
F1

+
1
F3

+
1
F5

+ · · · converge.

Exercise 6.26. Determine if the series
∞∑
n=1

(
√

1 + n2 − n) is convergent or not.

Exercise 6.27. (∗) Show that
∞∑
k=1

sin
(
π
√

k4 + 1
)

converges absolutely.

6.3 Power series

Let (cn)n∈N
be a real sequence (thought of as a sequence of ‘coefficients’). An expression of

the type
∞∑
n=0

cnx
n

is called a power series in the ‘real variable’7 x ∈ R.

This is generalisation of the familiar polynomial function

c0 + c1x + c2x
2 + c3x

3 + · · · + cnx
n.

Indeed, all polynomial expressions are (finite) power series, with the coefficients being even-
tually all zeros. For example,

1 + 399x− x3 = 1
c0

+ 399
c1

x + 0
c2

x2 + (−1)
c3

x3 + 0
c4

x4 + 0
c5

x5 + 0
c6

x6 + · · · .

∞∑
n=0

xn,
∞∑
n=0

1
n!
xn are examples of power series which are not polynomials.

Power series arise naturally in applications. For example, it can be shown that the following
ordinary differential equation (ODE)

f ′′(x) + xf ′(x) + x2f (x) = 0 with f (0) = 1, f (1) = 0

7 That is, there is a possibility of putting in various different values of x.
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has the ‘power series solution’:

f (x) = 1 − 1
12

x4 +
1

90
x6 +

1
3360

x8 + · · · , x ∈ [0, 1].

So questions about the convergence of power series are also natural.
Note that as yet we have not said anything about the set of x ∈ R where the power series

converges. Of course, the power series always converges for x = 0. We ask:

For which x ∈ R does
∞∑
n=0

cnx
n converge?

We will discover that the answer is: for all x in an interval like this:

0 r−r

convergencedivergence divergence

And the ‘radius of convergence’ r can be found from the coefficients (cn)n≥0. If the power
series converges for all x ∈ R, that is, if the above maximal interval is (−∞,∞), we say that
the power series has ‘infinite radius of convergence’.

Example 6.9.

(1) The radius of convergence of
∞∑
n=0

xn is 1.

Indeed, the geometric series converges for x ∈ (−1, 1) and diverges if |x| ≥ 1.

0 1−1

(2) The radius of convergence of
∞∑
n=0

1
n!
xn is infinite, as we had seen in Example 6.7.

0

(3) The radius of convergence of
∞∑
n=0

nnxn is zero.

Indeed, if x 	= 0, then n
√

|nnxn| = n|x| > 1 for all n large enough8. By the Root test, it follows
that the power series diverges for all nonzero real numbers. ♦

0

8 > 1/|x|
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Theorem 6.13. Let (cn)n≥0 be a real sequence. Then

either
∞∑
n=0

cnx
n is absolutely convergent for all x ∈ R

or there exists a unique r ≥ 0 such that

(1)
∞∑
n=0

cnx
n is absolutely convergent for x ∈ (−r, r) and

(2)
∞∑
n=0

cnx
n diverges for x /∈ [−r, r].

That is:

0

0 r−r

Either

or

convergencedivergence divergence

Proof. Let

S :=

{
y ∈ [0,∞) : ∃ x ∈ R such that y = |x| and

∞∑
n=0

cnx
n converges

}
.

Clearly 0 ∈ S. Only two cases are possible:

1◦ S is not bounded above (in which case we’ll show ‘r = ∞’).

2◦ S is bounded above (in which case we’ll show r = sup S).

Here are the details.

1◦ Suppose that S is not bounded above. Let x ∈ R. Then |x| can’t be an upper bound for S.
So there must be an element y ∈ S that prevents |x| from being an upper bound, that is, we
can find a y = |x0| ∈ S such that |x| < |x0| and

∞∑
n=0

cnx
n
0

converges. It follows that its nth term goes to 0 as n → ∞, and in particular, the sequence
of terms is bounded: |cnxn0| ≤ M. Then noting that |x0| > 0 (because |x0| = y > |x| ≥ 0), we
have with ρ := |x|

|x0| (< 1), that

|cnxn| = |cnxn0|
(

|x|
|x0|

)n

≤ Mρn (n ∈ N).
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As the geometric series
∞∑
n=0

Mrn converges, by the Comparison Test,

∞∑
n=0

cnx
n

is absolutely convergent. As x ∈ R was arbitrary, the claim follows.

2◦ Now suppose that S is bounded above. We will show that

(1) If |x| < sup S, then
∞∑
n=0

cnx
n is absolutely convergent, and

(2) if |x| > sup S, then
∞∑
n=0

cnx
n diverges.

(1) If x ∈ R and |x| < sup S, then by the definition of supremum, there exists a y ∈ S such
that |x| < y. Then we repeat the proof in 1◦ above as follows.

Since y ∈ S, there exists an x0 ∈ R such that y = |x0| and
∞∑
n=0

cnx
n converges.

Hence |cnxn0|
n→∞−−→ 0, and in particular, there exists an M > 0 such that for all n, |cnxn0| ≤ M.

Then with ρ := |x|
|x0| (< 1), we have

|cnxn| = |cnxn0|
(

|x|
|x0|

)n

≤ Mρn (n ∈ N).

As ρ < 1,
∞∑
n=0

Mρn converges.

By the Comparison Test,
∞∑
n=0

cnx
n is absolutely convergent.

(2) If x ∈ R and |x| > sup S, then setting y := |x|, we see that y /∈ S.

So by the definition of S,
∞∑
n=0

cnx
n diverges (for otherwise y ∈ S).

0

0 r−r

r−r

convergence

divergence

The uniqueness of the radius of convergence is obvious, since if r, r′ are distinct numbers
having the property described in the theorem and r < r′, then

r < ρ :=
r + r′

2
< r′,
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and as 0 < ρ < r′,
∞∑
n=1

cnρ
n

ought to converge, while as 0 < ρ < r, it ought to diverge, a contradiction. �

If r is the radius of convergence of a power series, then (−r, r) is called the interval of conver-
gence of that power series. We note that the interval of convergence is the empty set if r = 0,
and we set the interval of convergence to be R when the radius of convergence is infinite.

Note that whether or not the power series converges at x = r and x = −r is not answered
by Theorem 6.13. In fact, this is a delicate issue, and either convergence or divergence can
take place at these points, as demonstrated by the examples below.

Example 6.10. We have the following:

Power series Radius of convergence Set of x’s for which

the power series converges

∞∑
n=1

xn 1 (−1, 1)

∞∑
n=1

xn

n2
1 [−1, 1]

∞∑
n=1

xn

n
1 [−1, 1)

∞∑
n=1

(−1)n
xn

n
1 (−1, 1]

We will check these claims in Exercise 6.28, after learning about a convenient way of calcu-
lating the radius of convergence below. ♦

How to calculate the radius of convergence

Theorem 6.14. Let the power series
∞∑
n=0

cnx
n have radius of convergence r.

(1) If ( n
√

|cn|)n∈N
is not bounded, then r = 0.

(2) If ( n
√

|cn|)n∈N
is bounded, and we define

Mn := sup{ m
√

|cm| : m ≥ n}, n ∈ N,

then (Mn)n∈N
is convergent. Set L := lim

n→∞
Mn = lim sup

n→∞
n
√

|cn|.
If L = 0, then r = ∞.

If L 	= 0, then r =
1
L
.
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Proof. We have
M1 = sup{|c1|,

√
|c2|, 3

√
|c3|, · · ·},

M2 = sup{
√
|c2|, 3

√
|c3|, · · ·},

M3 = sup{ 3
√

|c3|, · · ·},

· · · .

Clearly, (Mn)n∈N
is decreasing and bounded below (by 0), and so it is convergent to

L := inf
n∈N

Mn.

If x = 0, then convergence of the power series is obvious.

Suppose that x ∈ R is such that 1
|x| > L. As there is a gap between 1

|x| and L, we can find
an α such that

L = inf
n∈N

Mn < α <
1
|x| .

Then there exists an N ∈ N such that for all n > N, Mn ≤ MN < α. Thus for all n > N,
n
√

|cn| < α < 1
|x| , and upon rearranging, n

√
|cnxn| < α|x| =: r < 1. By the Root Test, it follows

that the series ∞∑
n=0

cnx
n

is absolutely convergent.

Hence we have shown that

(1) if L > 0, then
∞∑
n=0

cnx
n is absolutely convergent for all x ∈ (−L,L), and

(2) if L = 0, then
∞∑
n=0

cnx
n is absolutely convergent for all x ∈ R!

It remains to show that in the case when L > 0, we have divergence for x such that |x| > 1
L .

For such x,
1
|x| < L = inf

n∈N

Mn.

So for all n, 1
|x| < Mn = sup{ n

√
|cn|, n+1

√
|cn+1|, · · ·}, and in particular, there exists an mn > n

such that |cmn
xmn | > 1. So:

For all n ∈ N, there exists an mn > n such that |cmn
xmn | > 1.

So it is not the case that lim
n→∞

cnx
n = 0, and hence

∞∑
n=0

cnx
n diverges.

�

Remark 6.2. If L := lim
n→∞

n
√

|cn| exists, then the radius r of convergence of the power series

is given by r = 1/L if L 	= 0, and is infinite if L = 0.
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The calculation of the radius of convergence is facilitated in some cases by the following
result.

Theorem 6.15. Consider the power series
∞∑
n=0

cnx
n. If

L := lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣
exists, then the radius r of convergence of the power series is given by r = 1/L if L 	= 0, and
is infinite if L = 0.

Proof. We have that for all nonzero x such that L < 1
|x| that there exists a q < 1 and an N large

enough such that
|cn+1x

n+1|
|cnxn|

=
∣∣∣∣cn+1

cn

∣∣∣∣ |x| ≤ q < 1

for all n > N. (This is because
∣∣∣∣cn+1

cn
x

∣∣∣∣ n→∞−−→L|x| < 1.

So we may take for example q = (L|x| + 1)/2 < 1.) Thus by the Ratio Test, the power series
converges absolutely for such x.

Hence if L = 0, then the above gives that r = ∞, while if L 	= 0, then we see that r ≥ 1
L .

On the other hand, if L 	= 0 and |x| > 1/L, then
∣∣∣∣cn+1

cn
x

∣∣∣∣ n→∞−−→L|x| > 1.

So there exists an N such that for all n > N,

∣∣∣∣
∣∣∣cn+1

cn

∣∣∣ − L

∣∣∣∣ < ε = L− 1
|x| , and so

L|x| −
∣∣∣∣cn+1

cn

∣∣∣∣ |x| < L|x| − 1.

Thus for n > N, ∣∣∣∣cn+1x
n+1

cnxn

∣∣∣∣ =
∣∣∣∣cn+1

cn

∣∣∣∣ |x| > 1,

and by the Ratio Test, the power series diverges. �

Exercise 6.28. Check all the claims in Example 6.10.

Power series are infinitely differentiable

We will now show that just like polynomials, power series are infinitely many times differen-
tiable in their respective intervals of convergence, and moreover the derivative is again given
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by a power series, obtained by termwise differentiation of the original series, and this power
series for the derivative has the same radius of convergence as the original series. This makes
it possible to relate the coefficients of the power series with the successive derivatives at 0 of
the function defined by the power series.

Let
∞∑
n=0

cnx
n have radius of convergence r > 0 and let

f (x) :=
∞∑
n=0

cnx
n = c0 + c1x + c2x

2 + c3x
3 + · · · , x ∈ (−r, r).

If termwise differentiation were allowed, then

f ′(x) = 0 + c1 · 1 + c2 · 2x + c3 · 3x2 + · · · =
∞∑
n=1

ncnx
n−1, x ∈ (−r, r).

We justify this now.

Theorem 6.16. Let r > 0, and let the power series

f (x) :=
∞∑
n=0

cnx
n

converge for x ∈ (−r, r). Then f is differentiable in (−r, r), and

f ′(x) =
∞∑
n=1

ncnx
n−1, x ∈ (−r, r).

Proof.
Step 1. First we show that the power series

g(x) :=
∞∑
n=1

ncnx
n−1 = c1 + 2c2x + · · · + ncnx

n−1 + . . .

is absolutely convergent in (−r, r).

Fix x ∈ (−r, r) and let ρ satisfy |x| < ρ < r. By hypothesis,

∞∑
n=0

cnρ
n

converges, and so
lim
n→∞

cnρ
n = 0.

In particular, (cnρ
n)n∈N

is bounded, and there is some positive number M such that |cnρn| < M
for all n. Now let α := |x|/ρ. Then 0 ≤ α < 1, and

|ncnxn−1| = |cnρn| ·
1
ρ
· n

∣∣∣∣ xρ
∣∣∣∣
n−1

≤ Mnαn−1

ρ
.
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But as α ∈ [0, 1), by Exercise 6.7,
∞∑
n=1

nαn−1 =
1

(1 − α)2
.

Hence from the Comparison Test, it follows that
∞∑
n=1

ncnx
n−1 converges absolutely.

Step 2. Now we show that f ′(x0) = g(x0) for |x0| < R, that is,

lim
x→x0

(
f (x) − f (x0)

x− x0
− g(x0)

)
= 0.

As before, let ρ be such that |x0| < ρ < r and since x → x0, we may also restrict x so that
|x| < ρ.

0 r−r

x

ρx0

Let ε > 0. As
∞∑
n=1

ncnρ
n−1 converges absolutely, there is an N such that

∞∑
n=N

|ncnρn−1| <
ε

4
. (6.4)

Keep N fixed. We have f (x) − f (x0) =
∞∑
n=1

cn(x
n − xn0), and so for x 	= x0,

f (x) − f (x0)
x− x0

=
∞∑
n=1

cn
xn − xn0
x− x0

=
∞∑
n=1

cn(x
n−1 + xn−2x0 + · · · + xxn−2

0 + xn−1
0 ).

Thus

f (x) − f (x0)
x− x0

− g(x0) =
∞∑
n=1

cn(x
n−1 + xn−2x0 + · · · + xxn−2

0 + xn−1
0 − nxn−1

0 ).

We let S1 be the sum of the first N − 1 terms of this series (that is, from n = 1 to n = N − 1)
and S2 be the sum of the remaining terms (from n = N to ∞). Then since |x|, |x0| < ρ, it
follows that

|S2| ≤
∞∑

n=N

|cn|
(
ρn−1 + ρn−1 + · · · + ρn−1︸ ︷︷ ︸

n terms

+ nρn−1
)

=
∞∑

n=N

2n|cn|ρn−1 <
ε

2
.
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The last inequality holds thanks to (6.4). Also,

S1 =
N∑

n=1

cn(x
n−1 + xn−2x0 + · · · + xxn−2

0 + xn−1
0 − nxn−1

0 )

is a polynomial in x and by the algebra of limits,

lim
x→x0

S1 =
N∑

n=1

cn(x
n−1
0 + xn−2

0 x0 + · · · + x0x
n−2
0 + xn−1

0 − nxn−1
0 )

=
N∑

n=1

cn(nx
n−1
0 − nxn−1

0 ) = 0.

So there is a δ > 0 such that whenever |x− x0| < δ, we have |S1| < ε/2. Thus for |x| < ρ and
0 < |x− x0| < δ, we have

∣∣∣∣ f (x) − f (x0)
x− x0

− g(x0)
∣∣∣∣ ≤ |S1| + |S2| <

ε

2
+

ε

2
= ε.

This means that f ′(x0) = g(x0), as wanted. �

By a repeated application of the previous result, we have the following.

Corollary 6.17. Let r > 0 and let f (x) :=
∞∑
n=0

cnx
n converge for |x| < r.

Then for k ≥ 1,

f (k)(x) =
∞∑
n=k

n(n− 1)(n− 2) · · · (n− k + 1)cnx
n−k for |x| < r. (6.5)

In particular, for n ≥ 0, cn =
1
n!

f (n)(0).

Proof. This is straightforward, and the last claim follows by setting x = 0 in (6.5):

f (k)(0) = k(k − 1) · · · 1ck + x
∞∑

n=k+1

n(n− 1) · · · (n− k + 1)cnx
n−k−1

∣∣∣∣∣
x=0

= k!ck.

Also, f (0) = c0. �
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There is nothing special about taking power series centered at 0. One can also consider

∞∑
n=0

cn(x− a)n,

where a is a fixed real number. Then we have the following result, analogous to the foregoing.

Corollary 6.18. For a power series
∞∑
n=0

cn(x− a)n:

either it is absolutely convergent for all x ∈ R.

or there is a unique nonnegative real number r such that

(1)
∞∑
n=0

cn(x− a)n is absolutely convergent for |x− a| < r, and

(2)
∞∑
n=0

cn(x− a)n is divergent for |x− a| > r.

If f (x) :=
∞∑
n=0

cn(x− a)n for |x− a| < r, then for all k ≥ 0,

f (k)(x) =
∞∑
n=k

n(n− 1) · · · (n− k + 1)cn(x− a)n−k for |x− a| < r.

In particular, for n ≥ 0, cn =
1
n!

f (n)(a).

Exercise 6.29. It can be shown that the real power series

f (x) :=
∞∑
n=0

x2n

(2n)!
and g(x) :=

∞∑
n=0

x2n+1

(2n + 1)!

have infinite radius of convergence.

Show that for all x ∈ R, f ′(x) = g(x) and g′(x) = f (x).
Using this, show that for all x ∈ R, ( f (x))2 − (g(x))2 = 1. Hint: Differentiate!

Exercise 6.30. Find 1 +
22

1!
+

32

2!
+

42

3!
+ · · · .

Exercise 6.31 (Power series method for solving differential equations). Assuming that the
solution to the differential equation f ′(x) = 2xf (x) has a power series expansion

f (x) =
∞∑
n=0

cnx
n, x ∈ R,

find f .
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Taylor series

We have seen that power series define infinitely differentiable functions in the respective
regions of convergence.

Now suppose that we start with an infinitely differentiable function f in an interval
{x ∈ R : |x− a| < r}. Then does it have a ‘power series expansion’? Well, we can certainly
form the power series

∞∑
n=0

f (n)(a)
n!

(x− a)n. (6.6)

Now we may ask:

(1) Does this power series converge for an x 	= a?

(2) If it does converge for an x 	= a, then is its sum equal to f (x)?

The answer to (1) is, rather surprisingly, ‘Not always’!

And the answer to (2), to even greater astonishment, is ‘Not always’!!

In other words,

(1) There exist infinitely differentiable functions f for which no matter which a ∈ R we
take, the corresponding power series (6.6) has radius of convergence 0. We won’t give
an explicit example here.9

(2) There exist infinitely differentiable functions f for which the power series (6.6) con-
verges for x 	= a, but the sum of the series is different from f (x). Consider, for example,
the function f : R → R given by

f (x) =

{
e−1/x2

if x 	= 0,

0 if x = 0.

Then in Exercise 6.32, we will show that f (n)(0) = 0 for all n ≥ 0. Hence, the power
series ∞∑

n=0

f (n)(0)
n!

xn ≡ 0,

which does not equal f (x) for any nonzero x.

After all this talk about doom and gloom, we will now see that Taylor’s Formula with remain-
der helps one to answer the above questions affirmatively for many nice functions. Recall that
Taylor’s Formula with Remainder gives a finite expansion

f (x) =
n∑

k=0

f (k)(a)
k!

(x− a)k +
f (n+1)(cx,n)
(n + 1)!

(x− a)n+1

for some cx,n between a and x.

9 The interested reader is referred to [K].
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Theorem 6.19. Let

(1) a ∈ R,

(2) r > 0,

(3) f ∈ C∞(a− r, a + r).

Suppose that

∃M > 0 such that ∀x ∈ (a− r, a + r), ∀n ≥ 0, | f (n)(x)| ≤ Mn.

Then

f (x) =
∞∑
n=0

f (n)(a)
n!

(x− a)n for all x ∈ (a− r, a + r).

The power series
∞∑
n=0

f (n)(a)
n!

(x− a)n is called the Taylor series of f centered at a.

Proof. Essentially, the boxed condition allows one to estimate the remainder in Taylor’s For-
mula with Remainder, in order to show that the Taylor series does converge. Here are the
details. From Taylor’s Formula with Remainder, we know that for each fixed x,

f (x) =
n∑

k=0

f (k)(a)
k!

(x− a)k +
f (n+1)(cx,n)
(n + 1)!

(x− a)n+1

for some cx,n between a and x. But
∣∣∣∣∣
f (n+1)(cx,n)
(n + 1)!

(x− a)n+1

∣∣∣∣∣ ≤
Mn+1|x− a|n+1

(n + 1)!
n→∞−−−−→ 0.

Indeed, the limit is zero since the left hand side of the first inequality is the (n + 1)st term of
the convergent series

∞∑
k=0

(M|x− a|)k
k!

= exp(M|x− a|).

Done! �

Example 6.11 (Taylor Series for sin, cos).

sin x = x− x3

3!
+

x5

5!
− x7

7!
+ − · · ·, x ∈ R.

With f := sin, we have

sin′x = cos x,

sin′′x = − sin x,

sin′′′x = − cos x,

sin′′′′x = sin x,
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and so for all n = 0, 1, 2, 3, · · ·,

f (2n)(0) = 0,

f (2n+1)(0) = (−1)n.

As | sin x|, | cos x| ≤ 1 for all x ∈ R, by the previous result, the claim follows.

Similarly, cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ − · · · for all x ∈ R. ♦

Example 6.12 (Taylor Series for exp). exp x =
∞∑
n=0

xn

n!
for all x ∈ R.

First consider a fixed R > 0. For all x ∈ (−R,R) and all n ≥ 0,

| f (n)(x)| = |exp(n)x| = | exp x| ≤ exp R ≤ (exp R)n.

So

exp x =
∞∑
n=0

xn

n!

for all x ∈ (−R,R). But the choice of R > 0 was arbitrary. Hence the claim follows for all
x ∈ R. ♦

Example 6.13 (Taylor Series for log). log(1 + x) =
∞∑
n=1

(−1)n−1

n
xn for all x ∈ (−1, 1).

Let a = 0, r = 1, and let f (x) = log(1 + x) for x ∈ (a− r, a + r) = (−1, 1). Then we have
that f (0) = log 1 = 0 and

f ′(x) =
1

1 + x
,

f ′′(x) = − 1
(1 + x)2

,

f ′′′(x) =
2

(1 + x)3
,

· · ·

f (n)(x) =
(−1)n−1(n− 1)!

(1 + x)n
.

In particular, f (n)(0) = (−1)n−1 · (n− 1)! for n ∈ N. Hence

∞∑
n=0

f (n)(0)
n!

xn =
∞∑
n=1

(−1)n−1

n
xn.
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But

| f (n)(x)| =
(n− 1)!
(1 + x)n

,

and if there existed an M > 0 such that for all n, |f (n)(x)| ≤ Mn, then we would obtain

1
M

≤ |1 + x|n
(n− 1)!

n→∞−−−−→ 0,

which is clearly impossible. So we can’t use the result in Theorem 6.19.
In order to show that

log(1 + x) =
∞∑
n=1

(−1)n−1

n
xn = x− x2

2
+

x3

3
− + · · · for x ∈ (−1, 1),

we will first show the equality of their derivatives.
Note that the power series

∞∑
n=1

(−1)n−1

n
xn = x− x2

2
+

x3

3
− + · · ·

has radius of convergence 1/1 = 1 since

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(−1)n

n+1
(−1)n−1

n

∣∣∣∣∣ = lim
n→∞

n
n + 1

= 1.

So g(x) :=
∞∑
n=1

(−1)n−1

n
xn converges for x ∈ (−1, 1). Thus

g′(x) =
∞∑
n=1

(−1)n−1

n
· nxn−1 =

∞∑
n=1

(−1)n−1xn−1

= 1 − x + x2 − x3 + x4 − + · · ·

=
1

1 + x
, x ∈ (−1, 1).

Hence
g′(x) =

1
1 + x

= log′(1 + x) = f ′(x), x ∈ (−1, 1).

By the Fundamental Theorem of Calculus,

g(x) = g(x) − 0 = g(x) − g(0) =
∫ x

0
g′(ξ)dξ

=
∫ x

0
f ′(ξ)dξ = f (x) − f (0) = f (x) − 0 = f (x).

Consequently, log(1 + x) = f (x) = g(x) =
∞∑
n=1

(−1)n−1

n
xn, x ∈ (−1, 1).

♦
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Remark 6.3. Functions f : (a, b) → R which have the property that

∀ξ ∈ (a, b), ∃rξ > 0 such that ∀x ∈ (ξ − rξ, ξ + rξ), f (x) =
∞∑
n=0

f (n)(ξ)
n!

(x− ξ)n,

are called real analytic. The set of all real analytic functions on (a, b) is denoted by Cω(a, b).
We have Cω(a, b) � C∞(a, b); see the following exercise.

There is a link between real analytic functions and complex Analysis. ‘Complex analysis’
is all about doing Calculus in C. It turns out that Complex Analysis is a very specialised
branch of analysis that acquires a somewhat peculiar character owing to the special geometric
meaning associated with the multiplication of complex numbers in the complex plane, and
is rather different as a subject than what we have been doing in Calculus with real numbers,
or ‘Real Analysis’. For example, a theorem in Complex Analysis asserts that complex (once)
differentiable functions are infinitely many times complex differentiable, which is certainly
not true for the analogous claim in Calculus/Real Analysis (recall Exercise 4.29). Neverthe-
less, the two worlds are linked. For instance, apropos the remark that was made earlier, real
analytic functions are precisely restrictions of complex differentiable functions defined on an
‘open’ set in C containing the real interval under consideration.

Exercise 6.32 (A C∞ function which is not analytic). (∗)

Let f : R → R be given by f (x) =

{
e−1/x2

if x 	= 0,

0 if x = 0.

(1) Sketch the graph of f .

(2) Prove that for every n ∈ N, lim
x→0

f (x)
xn

= 0.

(3) Show that for each n ∈ N, there is a polynomial pn such that for all x 	= 0,

f (n)(x) = e−1/x2
pn

(
1
x

)
.

(4) Prove that f (n)(0) = 0 for all n ≥ 1 (showing that the Taylor series for f at 0 is identically
zero, clearly not equal to f ).

Appendix

Let us show that every nonnegative rational number has either a terminating or a repeating
decimal expansion, which was mentioned in Exercise 6.8. Let

x =
p
q

,

where p is a nonnegative integer and q ∈ N. We can factorise q = 2i5jq′, where 2, 5 do not
divide q′ ∈ N. Choose a natural number n > i, j. Then 10n/(2i5j) is a natural number, and so

10nx = 10n
p
q

=
p′

q′
,
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where p′ is a nonnegative integer and q′ is such that q′ is coprime to 10. But if we look at
the remainders we get when we divide 10, 102, 103, · · · by q′, then it must be the case that for
some K > k, 10K , 10k leave the same remainder when divided by q′, so that

10K − 10k = 10k(10K−k − 1)

is divisible by q′. But q′ is coprime to 10, and hence also to 10k, and thus q′ must divide
10K−k − 1. So we have with m := K − k that

10n(10m − 1)x = (10K−k − 1)
p′

q′

is an integer. Now let x = N. d1d2d3 · · · . Then

10n+mx− 10nx

= Nd1 · · · dn+m − Nd1 · · · dn

+
(
dn+m+1

10
+

dn+m+2

102
+

dn+m+3

103
+ · · · − dn+1

10
− dn+2

102
− dn+3

103
− · · ·

)
,

is an integer, implying that the part in the brackets, say Δ, above is also an integer. But

Δ =
dn+m+1 − dn+1

10
+

dn+m+2 − dn+2

102
+

dn+m+3 − dn+3

103
+ · · · ∈ Z.

We claim that this must imply that dn+m+k = dn+k for all k ∈ N, giving the desired
conclusion.

1◦ It cannot be the case that the sequence (dn+m+k − dk)n∈N
is eventually the

constant sequence 9, 9, 9, · · · . Indeed then the dn+m+k − dn+k = 9 for all k > K
for some K, and this means that dn+m+k = 9 and dn+k = 0 for all k > K, which is
impossible.

2◦ Similar to 1◦, it can’t be the case that the sequence (dn+m+k − dk)n∈N
is eventually

the constant sequence −9,−9,−9, · · · either.

3◦ Suppose that k∗ ∈ N is the smallest number such that dn+m+k∗ 	= dn+k∗ .
If dn+m+k∗ > dn+k∗ , then by 2◦, there exists a number K ∈ N such that we have

dn+m+k∗+K − dn+k∗+K 	= −9, and so

Δ ≥ 1
10k∗

− 9
10k∗+1

− · · · − 9
10k∗+K−1

− 8
10k∗+K

− 9
10k∗+K+1

· · ·

=
1

10k∗+K
,

while
1

10k∗
=

9
10k∗+1

+
9

10k∗+2
+ · · · ≥ Δ,

a contradiction to the fact that Δ is an integer.
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On the other hand, if dn+m+k∗ < dn+k∗ , then by 1◦, there exists a K such that
dn+m+k∗+K − dn+k∗+K 	= 9, and so

Δ ≤ −1
10k∗

+
9

10k∗+1
+ · · · + 9

10k∗+K−1
+

8
10k∗+K

+
9

10k∗+K+1
· · ·

= − 1
10k∗+K

,

while
− 1

10k∗
= − 9

10k∗+1
− 9

10k∗+2
+ · · · ≤ Δ,

again a contradiction to the fact that Δ is an integer.

Hence dn+m+k = dn+k for all k ∈ N, which means that the block of digits dn+1 · · · dn+m keeps
repeating.

Notes

Exercises 6.16 and 6.17 are based on [R2]. Exercise 6.30 is based on [L, Example 5.4.4].



Solutions

Solutions to the exercises from Chapter 1

Solution to Exercise 1.1

See the following picture for the construction of −11/6 on the real number line.

P ≡ −11/6

O ≡  0 A ≡  1 P ′ ≡  11/6

B1

B2
B3

B4
B5

B6

B7
B8

B9

B10
B11

The How and Why of One Variable Calculus, First Edition. Amol Sasane.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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The steps of the construction are as follows:

(1) Draw a ray OA and take �(OA) = 1.

(2) Draw a ray OB1 not parallel to OA.

(3) Cut equal lengths �(OB1) = �(B1B2) = �(B2B3) = · · · = �(B10B11) along the ray
OB1.

(4) Join A to B6 and construct B11P
′ parallel to B6A, meeting OA (extended) at P′. Then

P′ ≡ 11/6.

(5) With O as center and radius �(OP′), draw a circle that meets the line passing through
O and A at the point P �≡ P′. Then P ≡ −11/6.

See the following picture for the construction of
√

3 on the real number line.

O ≡ 0 A ≡ 1

B B ′

A′ ≡
√

2 A ′ ′ ≡
√

3

The steps of the construction are as follows:

(1) Draw a ray OA and take �(OA) = 1.

(2) Construct AB perpendicular to OA such that �(AB) = 1. Then

�(OB) =
√

12 + 12 =
√

2.

(3) With center O and radius �(OB), draw a circular arc meeting OA extended at A′. Then
A′ ≡

√
2.

(4) Construct A′B′ perpendicular to OA′ such that �(A′B′) = 1. Then

�(OB′) =
√

(
√

2)2 + 12 =
√

2 + 1 =
√

3.

(5) With center O and radius �(OB′), draw a circular arc meeting OA′ extended at A′′.
Then A′′ ≡

√
3.

Remark 1. In fact, one can construct
√
n for all n ∈ N: indeed, given the length

√
n, the

hypotenuse of the right angled triangle with side lengths
√
n and 1 is equal to

√
n + 1, and so

knowing the unit length, we can construct
√

2,
√

3,
√

4 (= 2),
√

5, · · ·.
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Solution to Exercise 1.2

(1) We have c0 + c1
p
q

+ · · · + cd
pd

qd
= 0. Multiplying throughout by qd, we obtain

cdp
d = −(c0q

d + c1pq
d−1 + · · · + cd−1p

d−1q). (1)

As q divides the right hand side, q divides c0p
d. But q has no common factors with p, and

this implies that q divides cd. (This is because if we decompose p, q as products of powers
of primes, then there can be no common prime occurring in their respective decompositions.)
Also by rearranging (1), we obtain

c0q
d = −(c1pq

d−1 + · · · + cd−1p
d−1q + cdp

d),

and since p divides the right hand side, p must divide c0q
d. But p and q have no common

factor. So p must divide c0.

(2) Suppose that
√

2 is rational, and let
√

2 =
p
q

,

where p, q ∈ Z, q > 0, and p, q have no common factor. Then p/q is a rational zero of
the polynomial x2 − 2. By the Rational Zeros Theorem, p divides −2 and q divides 1. So
p ∈ {2,−2, 1,−1} and q = 1. But then

p
q
∈ {2,−2, 1,−1}.

But clearly
√

2 is not equal to any of the values 2,−2, 1,−1. This contradiction shows that√
2 /∈ Q.

(3) Suppose that 3
√

6 is rational, and let
3
√

6 =
p
q

,

where p, q ∈ Z, q > 0, and p, q have no common factor. Then p/q is a rational zero of
the polynomial x3 − 6. By the Rational Zeros Theorem, p divides −6 and q divides 1. So
p ∈ {6,−6, 3,−3, 2,−2, 1,−1} and q = 1. But then

p
q
∈ {6,−6, 3,−3, 2,−2, 1,−1}.

But none of these values satisfy x3 − 6 = 0. This contradiction shows that 3
√

6 /∈ Q.

Solution to Exercise 1.3

(1) Let a ∈ R and b1, b2 ∈ R are such that a + b1 = 0 = b1 + a and a + b2 = 0 = b2 + a.
Then b1 = b1 + 0 = b1 + (a + b2) = (b1 + a) + b2 = 0 + b2 = b2. So b1 = b2.

(2) Let a ∈ R. Then a + (−1) · a = 1 · a + (−1) · a = (1 + (−1)) · a = 0 · a = 0. By the
uniqueness of inverses, −a = (−1) · a.

(3) As 1 + (−1) = 0 = −1 + 1, by the uniqueness of additive inverses, it follows that
−(−1) = 1. From part (2) above, we also know that (−1) · (−1) = −(−1). Hence
(−1) · (−1) = 1.
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Solution to Exercise 1.4

(1) We have the following cases:

1◦ a = 0. Then a2 = 0 · 0 = 0. So a2 ≥ 0.
2◦ a ∈ P. Then a, a ∈ P gives a2 = a · a ∈ P. So a2 ≥ 0.
3◦ −a ∈ P.

Then −a,−a ∈ P gives a2 = 1 · a · a = (−1) · (−1) · a · a = (−a) · (−a) ∈ P.
So a2 ≥ 0.

(2) Suppose that there exists x such that x2 + 1 = 0.
Clearly with x = 0, x2 + 1 = 02 + 1 = 0 + 1 = 1 �= 0. So x �= 0.
But then x2 = x · x = (−x) · (−x) ∈ P. Also 1 ∈ P. Hence we obtain x2 + 1 ∈ P. On the other
hand, x2 + 1 = 0 /∈ P, a contradiction.

Solution to Exercise 1.5

(1) S = (0, 1].

An upper bound of S. 1 is an upper bound, since for all x ∈ S = (0, 1], we have x ≤ 1. In fact,
any real number u ≥ 1 is an upper bound.

A lower bound of S. 0 is a lower bound, since for all x ∈ S = (0, 1], we have 0 < x. In fact,
any real number � ≤ 0 is a lower bound.

Is S bounded? Yes. S is bounded above, since 1 is an upper bound of S. S is also bounded
below, since 0 is a lower bound. Since S is bounded above as well as bounded below, it is
bounded.

Supremum of S. sup S = 1. Indeed, 1 is an upper bound, and moreover, if u is also an upper
bound, then 1 ≤ u (since 1 ∈ S).

Infimum of S. inf S = 0. First of all, 0 is a lower bound. Let � be a lower bound of S. We
prove that � ≤ 0. (We do this by supposing that � > 0, and arriving at a contradiction. The
contradiction is obtained as follows: if � > 0, then we will see that the average of 0 and �,
namely �

2 , is an element in S that is less than the lower bound �, which is a contradiction to the
definition of a lower bound!) If � > 0, then 0 < �

2 . Moreover, since � ≤ 1 (� is a lower bound
of S and 1 ∈ S), it follows that �

2 ≤ 1
2 ≤ 1. Thus we have �

2 ∈ S. But since � > 0, it follows
that �

2 < �, a contradiction. Hence � ≤ 0.

Maximum of S. max S = 1, since sup S = 1 ∈ S.

Minimum of S. min S does not exist since inf S = 0 /∈ S.

(2) S = [0, 1].

An upper bound of S. 1 is an upper bound, since for all x ∈ S = [0, 1], we have x ≤ 1.

A lower bound of S. 0 is a lower bound, since for all x ∈ S = (0, 1], we have 0 ≤ x.

Is S bounded? Yes, since S is bounded above (1 is an upper bound) and it is bounded below
(0 is a lower bound).

Supremum of S. sup S = 1. Indeed, 1 is an upper bound, and moreover, if u is also an upper
bound, then 1 ≤ u (since 1 ∈ S).

Infimum of S. inf S = 0. Indeed, 0 is an lower bound, and moreover, if � is also an lower bound,
then � ≤ 0 (since 0 ∈ S).
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Maximum of S. max S = 1, since sup S = 1 ∈ S.

Minimum of S. min S = 0, since inf S = 0 ∈ S.

(3) S = (0, 1).

An upper bound of S. 1 is an upper bound, since for all x ∈ S = (0, 1), x < 1.

A lower bound of S. 0 is a lower bound, since for all x ∈ S = (0, 1), 0 < x.

Is S bounded? Yes, since S is bounded above (1 is an upper bound) and it is bounded below
(0 is a lower bound).

Supremum of S. sup S = 1. First of all, 1 is an upper bound. Let u be an upper bound of S.
We prove that 1 ≤ u. (We do this by supposing that u < 1 and arriving at a contradiction. The
contradiction is obtained as follows: if u < 1, then we will see that the average of u and 1,
namely u+1

2 , is an element in S that is larger than the upper bound u, which is a contradiction
to the definition of an upper bound!) Since u is an upper bound and since 1

2 ∈ S, it follows that
0 < u (since 0 < 1

2 ≤ u). So if u < 1, then 0 < u = u+u
2 < u+1

2 < 1+1
2 = 1. Hence u+1

2 ∈ S.
But u < u+1

2 contradicts the fact that u is an upper bound of S.

Infimum of S. inf S = 0. First of all, 0 is a lower bound. Let � be a lower bound of S. We
prove that � ≤ 0. If � > 0, then 0 < �

2 . Moreover, since 1
2 ∈ S and � is a lower bound of S, it

follows that � ≤ 1
2 . Thus we have 0 < �

2 < l ≤ 1
2 < 1, and so �

2 ∈ S. But �
2 < l contradicts the

fact that � is a lower bound of S.

Maximum of S. max S does not exist, since sup S = 1 /∈ S.

Minimum of S. min S does not exist, since inf S = 0 /∈ S.

Solution to Exercise 1.6

S is a subset of R, S �= ∅ (for example a1 ∈ S) and S is bounded above. Thus by the Least Upper
Bound Property of R, u∗ := sup S ∈ R exists. We claim that this is the smallest number bigger
than each of the terms of the sequence. Indeed, as u∗ is an upper bound of S, an ≤ u∗ for all
n ∈ N. So first of all, we see that u∗ is bigger than each of the terms of the sequence. Is it the
smallest such number? Let u be any number such that an ≤ u for all n ∈ N. Then u is an upper
bound of S, and as u∗ is the least upper bound, we have u∗ ≤ u. This proves the claim.

Solution to Exercise 1.7

(1) Let � be a lower bound of S: for all x ∈ S, � ≤ x. So for all x ∈ S, −x ≤ −�, that is, for
all y ∈ −S, y ≤ −�. Thus −S is bounded above because −� is an upper bound of −S. Since
S is nonempty, it follows that there exists an element x ∈ S, and so we obtain that −x ∈ −S.
Hence −S is nonempty.

As −S is nonempty and bounded above, it follows that sup(−S) exists, by the Least Upper
Bound Property of R.

Since sup(−S) is an upper bound of −S, we have that for all y ∈ −S, y ≤ sup(−S), that is,
for all x ∈ S, −x ≤ sup(−S). Hence for all x ∈ S, − sup(−S) ≤ x. So − sup(−S) is a lower
bound of S.

Next we prove that − sup(−S) is the greatest lower bound of S. Suppose that �′ is a lower
bound of S such that − sup(−S) < �′. Then for all x ∈ S, − sup(−S) < �′ ≤ x, that is, for all
x ∈ S, −x ≤ −�′ < sup(−S). Hence, for all y ∈ −S, y ≤ −�′ < sup(−S). So −�′ is an upper
bound of −S, and −�′ < sup(−S), which contradicts the fact that sup(−S) is the least upper
bound of −S. Hence �′ ≤ − sup(−S).
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Consequently, inf S exists and inf S = − sup(−S).

(2) Suppose that S is a nonempty subset of R, which is bounded below. Then by the above,
inf S exists.

Solution to Exercise 1.8

Suppose that S is a nonempty subset of R, which is bounded above and α > 0. By the
Least Upper Bound Property of R, sup S exists. Also, for every y ∈ α · S, we have y = αx
for some x ∈ X, and so y = αx ≤ α sup S. So α sup S is an upper bound for α · S. Since
S is nonempty, it follows that α · S is also nonempty. Hence, by the Least Upper Bound
Property of R, sup(α · S) exists. Also, since α sup S is an upper bound for α · S, we obtain
sup(α · S) ≤ α · sup S.

It would be great if we also obtained the reverse of this last inequality. We can do this by
just replacing α by its reciprocal and replacing S by α · S, and noticing that

1
α
· (α · S) =

{
1
α

(αx) = x : x ∈ S

}
= S.

Thus sup S = sup
(

1
α
· (α · S)

)
≤ 1

α
· sup(α · S), and upon rearranging,

α · sup S ≤ sup(α · S).
This completes the proof of sup(α · S) = α · sup S.

Next, suppose now that S is a nonempty subset of R, which is bounded below and α > 0.
Using Exercise 1.7 and the above, we have that

inf(α · S) = − sup(−(α · S)) = − sup(α · (−S)) = −α sup(−S)

= −α(− inf S) = α · inf S.

Solution to Exercise 1.9

Since supB is an upper bound of B, we have x ≤ supB for all x ∈ B. Since A ⊂ B, in par-
ticular, we obtain x ≤ supB for all x ∈ A. Thus supB is an upper bound of A, and so by the
definition of the least upper bound of A, we obtain supA ≤ supB.

Solution to Exercise 1.10

Since S is bounded, in particular, it is bounded above, and furthermore, since it is nonempty,
sup S exists, by the Least Upper Bound Property of R.

Since S is bounded, in particular, it is bounded below, and furthermore, since it is
nonempty, inf S exists, by the Greatest Lower Bound Property of R.

Let x ∈ S. Since inf S is a lower bound of S,

inf S ≤ x. (2)

Moreover, since sup S is an upper bound of S,

x ≤ sup S. (3)

From (2) and (3), we obtain inf S ≤ sup S.
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Let inf S = sup S. If x ∈ S, then we have

inf S ≤ x ≤ sup S, (4)

and so inf S = x(= sup S) (for if inf S < x, then from (4), inf S < sup S, a contradiction).
Thus S is a singleton set. Conversely, if S = {x}, then clearly x is an upper bound. If u < x is
an upper bound, then x ≤ u < x gives x < x, a contradiction. So sup S = x. Clearly x is also
a lower bound. If � > x is also a lower bound, then x > � ≥ x gives x > x, a contradiction. So
inf S = x = sup S.

Solution to Exercise 1.11

If a ∈ A, then a ≤ supA ≤ max{supA, supB}. Similarly we have that if b ∈ B, then
b ≤ supB ≤ max{supA, supB}. So if x ∈ A ∪ B, then either x ∈ A or x ∈ B, and from the
above, x ≤ max{supA, supB}. Hence A ∪ B is bounded above by max{supA, supB}.
Also, as A is nonempty, A ∪ B is nonempty. Hence, by the Least Upper Bound Property of
R, sup(A ∪ B) exists. Also, it follows from the above that

sup(A ∪ B) ≤ max{supA, supB}. (5)

Since A ⊂ A ∪ B, we also have that supA ≤ sup(A ∪ B). Similarly, as B ⊂ A ∪ B, we have
supB ≤ sup(A ∪ B). From here, we obtain

max{supA, supB} ≤ sup(A ∪ B). (6)

From (5) and (6), it follows that sup(A ∪ B) = max{supA, supB}.

Solution to Exercise 1.12

(1) False (if S = {1}, then we have that u = 3 is an upper bound of S, and although we
have u′ = 2 < 3 = u, u′(= 2) is an upper bound of {1} = S).

(2) True (if ε > 0, then u∗ − ε < u∗, and so u∗ − ε cannot be an upper bound of S).

(3) False (N has no maximum).

(4) False (N has no supremum).

(5) False ([0, 1) is bounded, but it does not have a maximum).

(6) False (∅ is bounded, but it does not have a supremum).

(7) True (Least Upper Bound Property of R).

(8) True (the supremum itself is an upper bound).

(9) True (definition of maximum).

(10) False (the set [0, 1) has supremum 1, but 1 /∈ [0, 1)).
(11) False (−N is bounded above since 0 is an upper bound, but | − N| = N is not

bounded).

(12) True (� ≤ x ≤ u implies x ≤ u and −x ≤ −�, and so we have

x ≤ u ≤ max{−�, u} and − x ≤ −� ≤ max{−�, u}.

Thus |x| ≤ max{−�, u} and so max{−�, u} is an upper bound of |S|. Moreover, for
every y ∈ |S|, we have y = |x| for some x ∈ S, and so y = |x| ≥ 0. Hence 0 is a lower
bound of |S|.)

(13) False (if S = {0, 1}, then inf S = 0 < 1
2 < 1 = sup S, but 1

2 /∈ S).
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Solution to Exercise 1.13

Clearly A + B is nonempty. Indeed, since A is nonempty, there exists some element a ∈ A,
and as B is nonempty, there exists an element b ∈ B, and so a + b ∈ A + B, that is, A + B is
not empty.

Since supA is an upper bound of A, we have that for all a ∈ A, a ≤ supA. Also, as supB
is an upper bound of B, we have that for all b ∈ B, b ≤ supB. So for all a ∈ A and b ∈ B,
a + b ≤ supA + supB. Thus A + B is bounded above.

Since A + B is bounded above and it is not empty, by the Least Upper Bound Property of
R, it follows that sup(A + B) exists. Moreover, since we have shown above that supA + supB
is an upper bound for A + B, we also obtain

sup(A + B) ≤ supA + supB. (7)

Now let a ∈ A and b ∈ B. Then we have a + b ∈ A + B, and so a + b ≤ sup(A + B), that is,
a ≤ sup(A + B) − b. This inequality holds for all a ∈ A, that is, sup(A + B) − b is an upper
bound for A, giving supA ≤ sup(A + B) − b. So b ≤ sup(A + B) − supA. But again, this
inequality holds for all b ∈ B. Hence supB ≤ sup(A + B) − supA, that is,

supA + supB ≤ sup(A + B). (8)

From (7) and (8), it follows that sup(A + B) = supA + supB.

Solution to Exercise 1.14

(S is nonempty and bounded below (0 is a lower bound), and so by the Greatest Lower Bound
Property of R, inf S exists.)

‘If’ part: Let inf S > 0. Since inf S is a lower bound, it follows that for all x ∈ S, inf S ≤ x,
that is, for all x ∈ S, 1

x ≤ 1
inf S . Hence for all y ∈ S−1, y ≤ 1

inf S . So 1
inf S is an upper bound of

S−1. Thus S−1 is bounded above.

‘Only if’ part: Suppose that S−1 is bounded above (with an upper bound u, say). Then for all
y ∈ S−1, y ≤ u, that is,

for all x ∈ S,
1
x
≤ u. (9)

Since S is not empty, ∃x∗ ∈ S and so 1
x∗

≤ u. But x∗ ∈ S implies that x∗ > 0, and so 1
x∗

> 0.
Consequently u > 0. Hence from (9), we have that for all x ∈ S, 1

u ≤ x. Thus 1
u is a lower

bound of S, and so 1
u ≤ inf S. But u > 0 implies 1

u > 0, and consequently inf S(≥ 1
u ) > 0.

If inf S > 0, then as in the ‘If’ part, 1
inf S is an upper bound of S−1, and so we obtain

sup S−1 ≤ 1
inf S

. (10)

Furthermore, since u := sup S−1 is an upper bound of S−1, as in the ‘Only if’ part, 1
u = 1

sup S−1

is a lower bound of S, and so 1
sup S−1 ≤ inf S, that is,

1
inf S

≤ sup S−1. (11)

From (10) and (11), it follows that sup S−1 =
1

inf S
.
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Solution to Exercise 1.15

(1) S =
{

1
n : n ∈ Z\{0}

}
=
{

1
n : n ∈ N

}⋃{
− 1

n : n ∈ N
}

.

An upper bound of S. 1 is an upper bound, since for all n ∈ N, 1
n ≤ 1 and − 1

n ≤ 0 ≤ 1.

A lower bound of S. −1 is a lower bound, since for all n ∈ N, −1 ≤ 0 ≤ 1
n and −1 ≤ − 1

n .

Is S bounded? Yes, since S is bounded above (1 is an upper bound) and it is bounded below
(−1 is a lower bound).

Supremum of S. sup S = 1. 1 is an upper bound. Moreover, if u is also an upper bound, then
since 1 = 1

1 ∈ S, 1 ≤ u.

Infimum of S. inf S = −1. −1 is a lower bound. Moreover, if � is also a lower bound, then as
−1 = 1

−1 ∈ S, it follows that � ≤ −1.

Maximum of S. max S = 1, since sup S = 1 ∈ S.

Minimum of S. min S = −1, since inf S = −1 ∈ S.

(2) S =
{

n
n+1 : n ∈ N

}
.

An upper bound of S. 1 is an upper bound, since for all n ∈ N, n
n+1 < 1.

A lower bound of S. 1
2 is a lower bound because for all n ∈ N, 1

2 ≤ n
n+1 (since n + 1 ≤ 2n,

that is, 1 ≤ n).

Is S bounded? Yes, since S is bounded above (1 is an upper bound) and it is bounded below
( 1

2 is a lower bound).

Supremum of S. sup S = 1. 1 is an upper bound of S. If u < 1 is an upper bound, then let
N ∈ N be such that u

u−1 < N. Then u < N
N+1 , contradicting the fact that u is an upper bound.

Infimum of S. inf S = 1
2 . 1

2 is a lower bound, and if � is a lower bound, then since 1
2 = 1

1+1 ∈ S,
it follows that � ≤ 1

2 .

Maximum of S. max S does not exist since sup S = 1 /∈ S.

Minimum of S. min S exists since inf S = 1
2 ∈ S.

(3) S =
{
(−1)n
(
1 + 1

n

)
: n ∈ N

}
.

(This set has the elements − 2
1 , 3

2 ,− 4
3 , 5

4 , · · ·.)
An upper bound of S. 3

2 is an upper bound.

If n ∈ N and n is even, then (−1)n
(
1 + 1

n

)
= 1 + 1

n ≤ 1 + 1
2 = 3

2 .

If n ∈ N and n is odd, then (−1)n
(
1 + 1

n

)
= −1 − 1

n < 0 < 3
2 .

A lower bound of S. −2 is a lower bound.
If n ∈ N and n is even, then (−1)n

(
1 + 1

n

)
= 1 + 1

n > 0 > −2.

If n ∈ N and n is odd, then (−1)n
(
1 + 1

n

)
= −1 − 1

n ≥ −1 − 1 = −2.

Is S bounded? Yes, since S is bounded above ( 3
2 is an upper bound) and it is bounded below

(−2 is a lower bound).

Supremum of S. sup S = 3
2 . 3

2 is an upper bound, and if u is also an upper bound, then since
3
2 = (−1)2

(
1 + 1

2

)
∈ S, it follows that 3

2 ≤ u.

Infimum of S. inf S = −2. −2 is a lower bound, and if � is also a lower bound, then since
−2 = (−1)1

(
1 + 1

1

)
∈ S, it follows that � ≤ −2.

Maximum/minimum of S. max S = sup S = 3
2 ∈ S and min S = inf S = −2 ∈ S.
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Solution to Exercise 1.16

(a) As x2 ≥ 0 for all x ∈ R, we have (xy− 1)2 + x2 ≥ 0 + 0 = 0 for all (x, y) ∈ R
2. Hence 0

is a lower bound for S, and so S is bounded below.

(b) We will show that inf S = 0. We already know that 0 is a lower bound. Suppose that �
is any lower bound. We claim that � ≤ 0. Suppose not, that is, � > 0. Then choose an n ∈ N

such that n > 1/
√

� (possible by the Archimedean Property). Then with (x, y) := (1/n, n), we
have

(xy− 1)2 + x2 =
(

1
n
· n− 1

)2

+
(

1
n

)2

= (1 − 1)2 +
1
n2

= 0 +
1
n2

=
1
n2

< �,

a contradiction to � being a lower bound of S. Hence � ≤ 0. Consequently, inf S = 0.

(c) No, since if inf S = 0 ∈ S, we would have 0 = (xy− 1)2 + x2 for some (x, y) ∈ R
2, and

so x = 0 as well as xy− 1 = 0, but this is impossible. (Indeed, x = 0 implies that we have
xy− 1 = 0 · y− 1 = 0 − 1 = −1 �= 0.)

Solution to Exercise 1.17

By the density of Q in R, there exists an r ∈ Q such that

a +
√

2 < r < b +
√

2,

that is, a < r −
√

2 < b, and clearly r −
√

2 ∈ R\Q.

Solution to Exercise 1.18

Given any x ∈ (a, b), we have a < x < b. Motivated by the following picture, let us take
δ = min{x− a, b− x}. Then δ > 0, and if |y− x|< δ, we have −δ < y− x < δ. So

a = x− (x− a) ≤ x− δ < y < x + δ ≤ x + (b− x) = b,

that is, y ∈ (a, b). Hence (x− δ, x + δ) ⊂ (a, b).

a

a

b

b

x

x

On the other hand, the interval [a, b] does not have the stipulated property. Indeed, if we take
x := a ∈ [a, b], then no matter how small a δ > 0 we take, the set (a− δ, a + δ) contains
points that do not belong to [a, b]: for example,

a− δ

2
∈ (a− δ, a + δ) but a− δ

2
/∈ [a, b].

The following picture illustrates this.

a b
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Solution to Exercise 1.19

(1) If x ∈
⋂
n∈N

(
0,

1
n

)
, then

for all n ∈ N, 0 < x <
1
n

. (12)

Let N ∈ N be such that 1
x < N (Archimedean Property). Thus 1

N < x, which contradicts (12).

So ¬
(
∃x ∈
⋂
n∈N

(
0,

1
n

))
that is,

⋂
n∈N

(
0,

1
n

)
= ∅.

(2) Clearly {0} ⊂
[

0,
1
n

]
for all n ∈ N and so

{0} ⊂
⋂
n∈N

[
0,

1
n

]
. (13)

Let x ∈
⋂
n∈N

[
0,

1
n

]
.

Then x ∈ [0, 1] and so x ≥ 0. If x > 0, then let N ∈ N be such that 1
x < N (Archimedean

Property), that is, 1
N < x. So x /∈ [0, 1

N ], and hence

x /∈
⋂
n∈N

[
0,

1
n

]
.

Consequently, if x ∈
⋂
n∈N

[
0,

1
n

]
, then x = 0, that is,

⋂
n∈N

[
0,

1
n

]
⊂ {0}. (14)

From (13) and (14),
⋂
n∈N

[
0,

1
n

]
= {0}.

(3) Let n ∈ N.

If x ∈
[

1
n + 2

, 1 − 1
n + 2

]
, then 0 <

1
n + 2

≤ x ≤ 1 − 1
n + 2

< 1, and so x ∈ (0, 1).

Hence ⋃
n∈N

[
1

n + 2
, 1 − 1

n + 2

]
⊂ (0, 1). (15)

If x ∈ (0, 1), then 0 < x < 1. Let N1 ∈ N be such that 1
x − 2 < N1 (Archimedean Property),

that is, 1
N1+2 < x. Let N2 ∈ N be such that 1

1−x − 2 < N2 (Archimedean Property), that is,
x < 1 − 1

N2+2 . Thus with N := max{N1,N2}, we have

1
N + 2

≤ 1
N1 + 2

< x < 1 − 1
N2 + 2

≤ 1 − 1
N + 2

,

that is, x ∈
[

1
N + 2

, 1 − 1
N + 2

]
⊂
⋃
n∈N

[
1

n + 2
, 1 − 1

n + 2

]
. So we have

(0, 1) ⊂
⋃
n∈N

[
1

n + 2
, 1 − 1

n + 2

]
. (16)
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From (15) and (16), we obtain (0, 1) =
⋃
n∈N

[
1

n + 2
, 1 − 1

n + 2

]
.

(4) If x ∈ [0, 1], then for any n ∈ N, −1
n

< 0 ≤ x ≤ 1 < 1 +
1
n

, and so x ∈
(
−1
n

, 1 +
1
n

)
.

Hence

[0, 1] ⊂
⋂
n∈N

(
−1
n

, 1 +
1
n

)
. (17)

Let x ∈
⋂
n∈N

(
−1
n

, 1 +
1
n

)
. Then

−1
n
≤ x ≤ 1 +

1
n

for all n ∈ N. (18)

We prove that this gives 0 ≤ x ≤ 1. For if x < 0, then letN1 ∈ N be such that− 1
x < N1, that is,

x < − 1
N1

, a contradiction to (18). Similarly, if x > 1, then let N2 ∈ N be such that 1
x−1 < N2,

that is, x > 1 + 1
N2

, a contradiction to (17). Hence we see that neither x < 0 nor x > 1 are
possible, and so x ∈ [0, 1]. Thus

⋂
n∈N

(
−1
n

, 1 +
1
n

)
⊂ [0, 1]. (19)

(17) and (19) imply
⋂
n∈N

(
−1
n

, 1 +
1
n

)
= [0, 1].

Solution to Exercise 1.20

If S is bounded, then it is bounded above and it is bounded below. Thus S has an upper bound,
say u, and a lower bound, say �. So for all x ∈ S, � ≤ x ≤ u, that is, x ≤ u and −x ≤ −�, and
so we have

x ≤ u ≤ max{−�, u} and − x ≤ −� ≤ max{−�, u}.

Thus |x| ≤ max{−�, u} =: M.

Conversely, if there exists an M such that for all x ∈ S, |x| ≤ M, we have −M ≤ x ≤ M. So
−M is a lower bound of S and M is an upper bound of S. Thus S is bounded.

Solution to Exercise 1.21

From the inequality |a + b| ≤ |a| + |b| for all a, b ∈ R, we have that if x, y ∈ R, then by taking
a := x− y and b := y in the previous inequality, we obtain |x| = |x− y + y| ≤ |x− y| + |y|,
that is,

|x| − |y| ≤ |x− y|. (20)

Interchanging x and y in (20), we obtain

|y| − |x| ≤ |y− x| = | − (x− y)| = | − 1| · |x− y| = 1 · |x− y| = |x− y|,
and so,

−(|x| − |y|) ≤ |x− y| (21)

for all x, y ∈ R. From (20) and (21), we obtain ||x| − |y|| ≤ |x− y| for all x, y ∈ R.
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Solution to Exercise 1.22

(1) This follows easily from induction on n.

If n = 1, then clearly equality holds (|a1| = |a1|).
If the claim is true for some n ∈ N, and if a1, · · · , an, an+1 ∈ R, then we have using the triangle
inequality and the induction hypothesis that

|a1 + · · · + an + an+1| ≤ |a1 + · · · + an| + |an+1| ≤ |a1| + · · · + |an| + |an+1|,

and so the result follows by induction.

(2) Suppose that a, b ∈ R are such that |a| + |b| = |a + b|. Suppose that a, b don’t have the
same sign. Then one must be positive and the other must be negative. Without loss of gener-
ality, we may assume that a < 0 < b. Then we have two cases:

1◦ a + b ≥ 0: Then −a + b = |a| + |b| = |a + b| = a + b gives a = 0, a contradiction.
2◦ a + b < 0: Then −a + b = |a| + |b| = |a + b| = −(a + b) gives b = 0, a contradiction.

So a, b must have the same sign. Conversely, if a, b have the same sign, then clearly we have
equality.

For the general equality case, we use induction on n again. Suppose that the result holds for
some n and that

|a1| + · · · + |an| + |an+1| = |a1 + · · · + an + an+1|.

By the triangle inequality, we have

|a1| + · · · + |an| + |an+1| = |a1 + · · · + an + an+1| ≤ |a1 + · · · + an| + |an+1|
≤ |a1| + · · · + |an| + |an+1|,

and so all the inequalities above must be equalities. In particular,

|a1 + · · · + an| + |an+1| = |a1| + · · · + |an| + |an+1|

gives |a1 + · · · + an| = |a1| + · · · + |an|. By the induction hypothesis, the numbers a1, · · · , an
must have the same sign. Also, |a1 + · · · + an + an+1| = |a1 + · · · + an| + |an+1| shows that
an+1 must have the same sign as a1 + · · · + an. But, as a1, · · · , an all have the same sign,
a1 + · · · + an has the same sign as a1, · · · , an. Consequently a1, · · · , an, an+1 have the
same sign.

Solution to Exercise 1.23

We have the following two cases:

1◦ If a ≥ b, then max{a, b} = a =
a + b + a− b

2
=

a + b + |a− b|
2

.

2◦ If a < b, then max{a, b} = b =
a + b + b− a

2
=

a + b + |a− b|
2

.

Also, min{a, b} = a + b− max{a, b}, and so from the above it follows that

min{a, b} =
a + b− |a− b|

2
.
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Solution to Exercise 1.24

We have f (3) = 1 + 32 = 10 and g(3) = 1 − 32 = −8, and so

(1) f (3) + g(3) = 10 + (−8) = 2,

(2) f (3) − 3 · g(3) = 10 − 3 · (−8) = 10 + 24 = 34,

(3) f (3) · g(3) = 10 · (−8) = −80,

(4) ( f (3))/(g(3)) = 10/(−8) = −5/4,

(5) f (g(3)) = f (−8) = 1 + (−8)2 = 65,

(6) for a ∈ R, f (a) + g(−a) = 1 + a2 + (1 − (−a)2) = 2,

(7) for t ∈ R, f (t) · g(−t) = (1 + t2)(1 − (−t)2) = 1 − t4.

Solution to Exercise 1.25

Let x1, x2 ∈ R be such that f (x1) = f (x2). Then we have

x1|x1| = x2|x2|. (22)

We have the following three possible cases:

1◦ x1 > 0. Then |x1| = x1, and so the above implies first of all that x2 can’t be zero, and
also that

x2 =
x2

1

|x2|
> 0.

So (22) gives x2
1 = x2

2, and by taking square roots, x1 = x2.

2◦ x2 < 0. By multiplying (22) by −1, we have

(−x1)|x1| = (−x1)| − x1| = (−x2)| − x2| = (−x2)|x2|.

By 1◦ and the innermost equality above, it follows that −x1 = −x2 and so x1 = x2.

3◦ x1 = 0. If x2 �= 0, then the right hand side of (22) is nonzero, while the left hand side
is 0, a contradiction. So x2 = 0 = x1.

Hence f is injective.

Let y ∈ R. Then we have the following two cases:

1◦ If y ≥ 0, then f (
√
y) =

√
y |√y | = (

√
y)2 = y.

2◦ If y < 0, then f (−√
y) = −√

y | − √
y | = −(

√
y)2 = −|y| = y.

So f is also surjective.

Solution to Exercise 1.26

See Figures 1 and 2.
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0

g1

f
g2

Figure 1. The graphs of f , g1, g2.

0

g6

g5

g3 f g4

Figure 2. The graphs of f , g3, g4, g5, and g6.

Solution to Exercise 1.27

The Maple plot is shown in the following picture. We note that the graph is symmetric about
the y-axis. This is because the polynomial is an even function, that is, it satisfies

p(x) = p(−x), x ∈ R.

As a consequence, a point (x, y) belongs to graph of p if and only if (−x, y) belongs to the
graph of p. See Figure 3.

−1.5 −0.5 0.5

0.2

−0.2

−0.4

−0.6

x
1 1.50−1

Figure 3. The graph of x �→ x6 − 3 · x4 + 2 · x2 − 1
3 , for x ∈ (− 3

2 , 3
2 ), plotted using Maple.
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Solutions to the exercises from Chapter 2

Solution to Exercise 2.1

(1) Yes. For instance, the constant sequence (1)n∈N
converges to 1.

(2) Suppose that the terms of the convergent sequence (an)n∈N
(with limit, say, L) lie in the

finite set {v1, · · · , vm}. If L /∈ {v1, · · · , vm}, then with

ε := min{|v1 − L|, · · · , |vm − L|} > 0,

let N ∈ N be such that for all n > N, |an − L|< ε. In particular, with n = N + 1 > N, we have
|aN+1 − L|< ε. But, aN+1 ∈ {v1, · · · , vm}. Let aN+1 = vk for some k ∈ {1, · · · ,m}. Then we
have

|vk − L| = |aN+1 − L|< ε = min{|v1 − L|, · · · , |vm − L|} ≤ |vk − L|,
a contradiction. So L ∈ {v1, · · · , vm}, that is, L must be one of the terms. Thus we have shown
that

terms of the sequence
take finitely many values ⇒ L must be one

of the terms ,

that is,
L is not equal to
any of the terms ⇒ terms of the sequence cannot

consist of finitely many values .

(3) Suppose that ((−1)n)n∈N
is a convergent sequence with limit L. Then from part (2) above,

it follows that L = 1 or L = −1: indeed, the terms of the sequence take finitely many val-
ues, namely 1 and −1, and so L must be one of these terms. So we have the following
two cases:

1◦ If the limit is 1, then given ε = 1 > 0, let N ∈ N be such that for all n > N, we have
|(−1)n − 1|< ε = 1. Let n be any odd number > N. Then we have that for such n,
2 = | − 2| = | − 1 − 1| = |(−1)n − 1|< ε = 1, a contradiction.

2◦ If the limit is −1, then given ε = 1 > 0, let N ∈ N be such that for all n > N, we have
|(−1)n − (−1)|< ε = 1. Let n be any even number > N. Then we have that for such
n, 2 = |2| = |1 + 1| = |(−1)n − (−1)|< ε = 1, a contradiction.

So ((−1)n)n∈N
is divergent.

Solution to Exercise 2.2

(1) We have seen that the sequence ((−1)n)n∈N
is divergent. Let ε > 0, and let N ∈ N.

Then for all even n > N (there are obviously infinitely many such n), we have
|an − L| = |(−1)n − 1| = |1 − 1| = 0 < ε.

(2) Again, for the divergent sequence ((−1)n)n∈N
, with ε = 3 > 0, for all N ∈ N and all

n > N, we have |an − L| ≤ |an| + |L| ≤ 1 + 1 = 2 < 3 = ε.

Solution to Exercise 2.3

S is nonempty and bounded above, and so by the Least Upper Bound Property of R, it follows
that sup S exists.
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Given n ∈ N, we have 1
n > 0, and so sup S− 1

n < sup S. Thus S− 1
n is not an upper bound

of S. Hence there must exist an element in S, which we denote by an, such that

¬
(
an ≤ sup S− 1

n

)
,

that is, an > sup S− 1
n . In this way we construct the sequence (an)n∈N

.
As sup S is an upper bound of S, we also have an ≤ sup S for all n ∈ N. Consequently,

for all n ∈ N, sup S− 1
n

< an ≤ sup S < sup S +
1
n

,

that is, for all n ∈ N, −1
n

< an − sup S <
1
n

, and so for all n ∈ N, |an − sup S|< 1
n

.

Given ε > 0, let the number N ∈ N be such that N >
1
ε

. Then for all n > N, we have

|an − sup S|< 1
n

<
1
N

< ε.

Hence (an)n∈N
is convergent with limit equal to sup S.

Solution to Exercise 2.4

Suppose L < 0. Then ε := −L/2 > 0, and so there exists an N ∈ N such that for all n > N,
|an − L|< ε = −L/2. Hence with n = N + 1 (> N),

aN+1 − L ≤ |aN+1 − L|< −L
2

,

that is, aN+1 <
L
2

< 0, a contradiction.

Solution to Exercise 2.5

(C).

Solution to Exercise 2.6

(1) Let M > 0 be such that

for all n ∈ N, |bn| ≤ M.

Given ε > 0, let N ∈ N be such that M/ε < N, that is, 1/N < ε/M. Then for all n > N,∣∣∣∣bnn − 0

∣∣∣∣ = |bn|
n

≤ M
n

<
M
N

< M · ε

M
= ε.

Hence,

(
bn
n

)
n∈N

is convergent with limit 0.

(2) For all real x ∈ R, sin x ∈ [−1, 1], and so by the above, lim
n→∞

sin n
n

= 0.

Solution to Exercise 2.7

Given ε > 0, there exists an N1 ∈ N such that

for all n > N1, |an − L|< ε/2.
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Since (an)n∈N
is convergent, it is bounded: there exists an M > 0 such that for all n ∈ N,

|an| ≤ M. Choose 1N ∈ N such that

max
{
N1,

N1(M + |L|)
ε/2

}
< N,

and so, N > N1 and
N1(M + |L|)

N
<

ε

2
. Then for n > N, we have

∣∣∣∣a1 + · · · + aN1
+ aN1+1 + · · · + an
n

− L

∣∣∣∣
=
∣∣∣∣a1 + · · · + aN1

+ aN1+1 + · · · + an − nL

n

∣∣∣∣
=

|a1 + · · · + aN1
+ aN1+1 + · · · + an − nL|

n

≤
|a1 − L| + · · · + |aN1

− L| + |aN1+1 − L| + · · · + |an − L|
n

≤
(|a1| + |L| + · · · + |aN1

| + |L|) + ε/2 + · · · + ε/2

n

≤ N1(M + |L|) + (n− N1)(ε/2)
n

≤ N1(M + |L|)
n

+
(

1 − N1

n

)
· ε

2
<

N1(M + |L|)
N

+ 1 · ε

2
<

ε

2
+

ε

2
= ε.

So

(
a1 + · · · + an

n

)
n∈N

is a convergent sequence with limit L.

If an = (−1)n, n ∈ N, then (an)n∈N
is divergent, but the sequence with nth term

a1 + · · · + an
n

=
(−1)1 + (−1)2 + · · · + (−1)n

n
=

⎧⎨
⎩

0 if n is even

−1
n

if n is odd

is convergent with limit equal to 0. Indeed, given ε > 0, let N ∈ N be such that 1
ε < N. Then

for n > N, we have

|an − 0| = |an| =

{
0 if n is even
1
n

if n is odd

}
≤ 1

n
<

1
N

< ε.

So

(
a1 + · · · + an

n

)
n∈N

is convergent with limit 0.

Solution to Exercise 2.8

Let (an)n∈N
be a bounded decreasing sequence of real numbers. Let �∗ be the greatest

lower bound of {an : n ∈ N}. The existence of �∗ is guaranteed by the Great-
est Lower Bound Property of the set of real numbers. We show that �∗ is the limit of

1 This is arrived at by working backwards; we wish to make | a1+···+an
n − L| less than ε for all n > N, so we

manipulate this (as shown in the chain of inequalities that follow) to see if we can indeed achieve this by choosing
the N large enough.
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(an)n∈N
. Taking ε > 0, we must show that there exists a positive integer N such that

|an − �∗|< ε for all n > N. Since �∗ + ε > �∗, �∗ + ε is not a lower bound of {an : n ∈ N}.
Therefore there exists N with �∗ ≤ aN < �∗ + ε. Since (an)n∈N

is decreasing, we have for all
n ≥ N that �∗ − ε < �∗ ≤ an ≤ aN < �∗ + ε, and so |an − �∗|< ε.

Solution to Exercise 2.9

(1) We prove that |an| ≤ 1 for all n ∈ N. We prove this using induction. We have
|a1| = |1| = 1. If k ∈ N is such that |ak| ≤ 1, then

|ak+1| =
∣∣∣∣2k + 3
3k + 3

ak

∣∣∣∣ =
∣∣∣∣2k + 3
3k + 3

∣∣∣∣ |ak| =
(

2k + 3
3k + 3

)
|ak| ≤ 1 · 1 = 1,

and so the claim follows from induction. So the sequence is bounded.

(2) Since n ≥ 1, it follows that 2n + 1 ≤ 3n, and so

2n + 1
3n

≤ 1

for all n ∈ N. Furthermore, note that for all n ∈ N, an ≥ 0 (induction!). So for all n ≥ 2,

an =
2n + 1

3n
an−1 ≤ 1 · an−1 = an−1.

So (an)n∈N
is decreasing.

(3) As the sequence is bounded and monotone, it is convergent.

Solution to Exercise 2.10

Since (an)n∈N
is bounded, it follows that there exists an M such that for all n ∈ N, |an| ≤ M,

that is, −M ≤ an ≤ M. If k ∈ N, then in particular, for all n ≥ k, −M ≤ an ≤ M, and so the
set {an : n ≥ k} is bounded. By the Least Upper Bound Property of R, it then follows that
inf{an : n ≥ k} and sup{an : n ≥ k} exist, that is, �k and uk are well-defined. Furthermore,
for each k,

−M ≤ inf{an : n ≥ k} ≤ sup{an : n ≥ k} ≤ M,

and so we see that the sequences (�k)k∈N
and (uk)k∈N

are bounded.

Clearly {an : n ≥ k + 1} ⊂ {an : n ≥ k}, and so

uk+1 = sup{an : n ≥ k + 1} ≤ sup{an : n ≥ k} = uk,

and so (uk)k∈N
is a decreasing sequence.

Similarly, again since {an : n ≥ k + 1} ⊂ {an : n ≥ k}, we have2

inf{an : n ≥ k + 1} ≥ inf{an : n ≥ k},

that is, �k+1 ≥ �k. Consequently, (�k)k∈N
is a increasing sequence.

As the sequences (uk)k∈N
, (�k)k∈N

are both bounded and monotone, it follows that they are
convergent.

2 If ∅ �= A ⊂ B ⊂ R, andA,B are bounded below, then we have inf A ≥ inf B. This fact follows from the Exercises
1.9 and 1.7. Indeed, we have the two sets −A, −B are nonempty, bounded above, and also −A ⊂ −B, giving
inf A = − sup(−A) ≥ − sup(−B) = inf B.
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Solution to Exercise 2.11

If lim
n→∞

an = L, then for a fixed k ∈ N, lim
n→∞

akn = Lk.

So the first equality is obtained by an incorrect application of the above.

(In fact, it will be shown later on that lim
n→∞

(
1 +

1
n

)n
= e > 1.)

Solution to Exercise 2.12

We have cn =
anbn + 5n
a2
n + n

=
an · bn

n + 5

an · an · 1
n + 1

for all n ∈ N.

(N) The sequence

(
an ·

bn
n

+ 5

)
n∈N

is convergent.

The sequence (an)n∈N
is convergent with limit, say L. Since (bn)n∈N

is bounded, the
sequence (bn/n)n∈N

is convergent with limit 0. Hence ((anbn)/n)n∈N
is convergent

with limit L · 0 = 0. The sequence (5)n∈N
is convergent with limit 5.

So the sequence

(
an ·

bn
n

+ 5

)
n∈N

is convergent with limit 0 + 5 = 5.

(D) The sequence (
a2
n

n
+ 1

)
n∈N

has nonzero terms for all n ∈ N and it is convergent with the nonzero limit 1.

We have
a2
n

n
+ 1 ≥ 1, and so

a2
n

n
+ 1 �= 0 for all n ∈ N.

Since the sequence (an)n∈N
is convergent with limit L, it follows that the sequence

(a2
n)n∈N

is convergent with limit L2. Since (1/n)n∈N
is convergent with limit 0, it

follows that (
a2
n ·

1
n

)
n∈N

is convergent with limit L2 · 0 = 0. Finally, as (1)n∈N
is convergent with limit 1, it

follows that the sequence (
a2
n

n
+ 1

)
n∈N

is convergent with limit 0 + 1 = 1(�= 0).

From (N) and (D) and the Algebra of Limits, (cn)n∈N
is convergent to

5
1

= 5.

Solution to Exercise 2.13

We begin by showing that L ≥ 0. Suppose on the contrary that L < 0. Set ε := −L/2 > 0. Let
N ∈ N be such that for all n > N, |an − L|< ε = −L/2. Then we have

an − L ≤ |an − L|< −L
2

,

and so an < L/2 < 0 for all n > N, a contradiction to the fact that

an ≥ 0 for all n ∈ N.

So L ≥ 0.
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Now we show that (√an)n∈N
is convergent with limit

√
L. Let ε > 0. We consider the only

two possible cases, namely L = 0 or L > 0:

1◦ If L = 0, then let N ∈ N be such that for all n > N,

|an − L| = |an − 0| = |an| = an < ε2.

Then for n > N, we have
√
an < ε, that is,

|√an −
√
L| = |√an −

√
0| = |√an| =

√
an < ε.

So (√an)n∈N
is convergent with limit

√
L.

2◦ If L > 0, then let N ∈ N be such that for n > N, |an − L|< ε
√
L. Then for all n > N,

we obtain

ε
√
L > |an − L| = |(√an −

√
L)(

√
an +

√
L)|

= |√an −
√
L||√an +

√
L)| = |√an −

√
L|(√an +

√
L)

and so |√an −
√
L|< ε

√
L

√
an +

√
L
≤ ε

√
L√
L

= ε.

Hence (√an)n∈N
is convergent with limit

√
L.

Solution to Exercise 2.14

For all n ∈ N, we have
√

n2 + n− n = (
√

n2 + n− n) ·
√
n2 + n + n√
n2 + n + n

=
n2 + n− n2

√
n2 + n + n

=
n√

n2 + n + n

=
n(1)

n

(
1
n

√
n2 + n + 1

) =
1√

n2 + n
n2

+ 1

=
1√

1 +
1
n

+ 1

.

By the Algebra of Limits, lim
n→∞

(
1 +

1
n

)
= 1 + 0 = 1, and as

1 +
1
n
≥ 0 for all n ∈ N,

by the previous part, it follows that lim
n→∞

√
1 +

1
n

=
√

1 = 1. Hence

lim
n→∞

(√
1 +

1
n

+ 1

)
= 1 + 1 = 2(�= 0).

Also

√
1 +

1
n

+ 1 > 1 > 0. Thus by the Algebra of Limits,

lim
n→∞

1√
1 +

1
n

+ 1

=
1
2

,

that is, (
√
n2 + n− n)n∈N

is convergent with limit
1
2

.
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Solution to Exercise 2.15

(1) Consider the sequence (bn − an)n∈N
. Since an ≤ bn, it follows that bn − an ≥ 0 for all

n ∈ N. From the Algebra of Limits, it follows that the sequence (bn − an)n∈N
is convergent

(being the sum of the convergent sequence (bn)n∈N
and the convergent sequence (−an)n∈N

).
Moreover, its limit is

lim
n→∞

bn − lim
n→∞

an.

From Exercise 2.4 on page (54), lim
n→∞

bn − lim
n→∞

an ≥ 0, that is, lim
n→∞

bn ≥ lim
n→∞

an.

(2) The inequality
lim inf
n→∞

an ≤ lim sup
n→∞

an

for a bounded sequence (an)n∈N
follows immediately by applying the first part of this exercise

to the two convergent sequences (�n)n∈N
and (un)n∈N

and observing that for all n ∈ N, we have
that �n := inf{ak : k ≥ n} ≤ un := sup{ak : k ≥ n}.

Consider the bounded sequence ((−1)n)n∈N
. For any n, we have

�n = inf{ak : k ≥ n} = inf{−1, 1} = −1,

un = sup{ak : k ≥ n} = sup{−1, 1} = 1,

and so lim inf
n→∞

an = −1 < lim sup
n→∞

an.

Solution to Exercise 2.16

For all n ∈ N, we have

0 ≤ n!
nn

=
1
n
· 2
n

· · · n− 1
n

· n
n
≤ 1

n
· 1 · · · 1 · 1 =

1
n

.

Since (0)n∈N
and ( 1

n )n∈N
are both convergent with the same limit 0, from the Sandwich

Theorem, it follows that ( n!
nn )n∈N

is convergent with the limit 0.

Solution to Exercise 2.17

Let k ∈ N. For all n ∈ N, we have

0 ≤ 1k + 2k + 3k + · · · + nk

nk+2
≤ nk + nk + nk + · · · + nk

nk+2
≤ n · nk

nk+2
=

1
n

.

Thus

0 ≤ 1k + 2k + 3k + · · · + nk

nk+2
≤ 1

n
for all n ∈ N. As (0)n∈N

and ( 1
n )n∈N

are convergent with limit 0, from the Sandwich Theorem,

lim
n→∞

1k + 2k + 3k + · · · + nk

nk+2
= 0.

Solution to Exercise 2.18

(1) We prove the claim using induction. Let x ≥ −1. Clearly

(1 + x)1 = 1 + x = 1 + 1 · x.
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If for some k ∈ N, (1 + x)k ≥ 1 + kx, then we have

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x) (induction hypothesis and as 1 + x ≥ 0)

= 1 + kx + x + x2 = 1 + (k + 1)x + x2

≥ 1 + (k + 1)x.

Hence by induction, the result follows.

(2) For all n ∈ N,
n

1
n ≥ 1 (23)

(for if n
1
n < 1, then n = (n

1
n )n < 1n = 1, a contradiction!). Clearly for all n ∈ N,

n
1
n = (

√
n

2)
1
n =

√
n

2
n < (1 +

√
n)

2
n . (24)

Finally,

(
1 +

1√
n

)n
≥ 1 + n · 1√

n
= 1 +

√
n, and so

(
1 +

1√
n

)2

=
((

1 +
1√
n

)n) 2
n

≥ (1 +
√
n)

2
n . (25)

Combining (23), (24), and (25), we obtain that for all n ∈ N

1 ≤ n
1
n < (1 +

√
n)

2
n ≤
(

1 +
1√
n

)2

. (26)

(3) As lim
n→∞

1
n

= 0, it follows that lim
n→∞

1√
n

= 0. Hence

lim
n→∞

(
1 +

1√
n

)2

= (1 + 0)2 = 1 = lim
n→∞

1.

Using (26), and the Sandwich Theorem, (n
1
n )n∈N

is convergent and lim
n→∞

n
1
n = 1.

Remark 2. Here are two alternative proofs.

(A) For n ≥ 2, we have n
1
n > 1

1
n = 1. Set bn := n

1
n − 1 > 0 for n > 2. Then n

1
n = 1 + bn,

and so

n = (1 + bn)
n = 1 + nbn +

n(n− 1)
2

b2
n + · · · + nbn−1

n + bnn >
n(n− 1)

2
b2
n.

Thus
2

n− 1
> b2

n > 0

for n > 2, and so by the Sandwich Theorem, lim
n→∞

b2
n = 0. Hence also

lim
n→∞

bn = 0,

and so lim
n→∞

n
1
n = lim

n→∞
(1 + bn) = 1 + 0 = 1.

(B) Yet another proof can be given using the Arithmetic Mean-Geometric Mean Inequality,
which says that for nonnegative real numbers a1, · · · , an, there holds that

their arithmetic mean: =
a1 + · · · + an

n
≥ n

√
a1 · · · an =: their geometric mean.
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Applying this to the n numbers 1, · · · , 1︸ ︷︷ ︸
(n−2) times

,
√
n,
√
n gives

(n− 2) · 1 +
√
n +

√
n

n
≥ n

√√
n ·

√
n = n

1
n ,

and so,

1 − 2
n

+
2√
n
≥ n

1
n (≥ 1).

By the Sandwich Theorem, it follows that lim
n→∞

n
1
n = 1.

Solution to Exercise 2.19

Consider the sequence (an − a)n∈N
. As an ∈ (a, b) for all n ∈ N, we have an − a ≥ 0. From

the Algebra of Limits, it follows that the sequence (an − a)n∈N
is convergent (being the sum of

the convergent sequence (an)n∈N
and the convergent sequence (−a)n∈N

). Moreover, its limit
is L− a. From Exercise 2.4 on page 54, we obtain L− a ≥ 0, that is a ≤ L.

Next consider the sequence (b− an)n∈N
. As an ∈ (a, b) for all n ∈ N, we have that

b− an ≥ 0. From the Algebra of Limits, it follows that the sequence (b− an)n∈N
is

convergent (being the sum of the convergent sequence (−an)n∈N
and the convergent sequence

(b)n∈N
). Moreover, its limit is −L + b. From Exercise 2.4 on page 54, we obtain −L + b ≥ 0,

that is L ≤ b.

Consequently a ≤ L ≤ b, that is, L ∈ [a, b].

Consider

(
1

n + 1

)
n∈N

contained in (0, 1). It is convergent with limit 0 /∈ (0, 1).

Solution to Exercise 2.20

For all n ∈ N, we have

−1
n

< bn − an <
1
n

,

and so by adding an, we have

−1
n

+ an < bn <
1
n

+ an.

By the Algebra of Limits, we know that

lim
n→∞

(
−1
n

+ an

)
= lim

n→∞
−1
n

+ lim
n→∞

an = 0 + lim
n→∞

an = lim
n→∞

an

lim
n→∞

(
1
n

+ an

)
= lim

n→∞

1
n

+ lim
n→∞

an = 0 + lim
n→∞

an = lim
n→∞

an.

So by the Sandwich Theorem, it follows that (bn)n∈N
is convergent with the limit lim

n→∞
an.

Solution to Exercise 2.21

(‘If’ part): Suppose that lim inf
n→∞

an = L = lim sup
n→∞

an. Then for all n,

�n = inf{an, an+1, · · ·} ≤ an ≤ sup{an, an+1, · · ·} = un,

and so by the Sandwich Theorem, it follows that (an)n∈N
converges to L too.
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(‘Only if’ part): Now suppose that (an)n∈N
is convergent with limit L. Let ε > 0. Then there

exists an N ∈ N such that for all n > N, |an − L|< ε, that is, L− ε < an < L + ε. Hence for
all n > N, we have un = sup{an, an+1, · · ·} ≤ L + ε, and so

lim sup
n→∞

an := lim
n→∞

un ≤ L + ε. (27)

Similarly, �n = inf{an, an+1, · · ·} ≥ L− ε, and so

lim inf
n→∞

an := lim
n→∞

�n ≥ L− ε. (28)

From Exercise 2.15 and the inequalities (27) and (28) above, we obtain

L− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ L + ε.

As the choice of ε > 0 was arbitrary, this implies that lim inf
n→∞

an = L = lim sup
n→∞

an.

Solution to Exercise 2.22

(an2)n∈N
= ( 1

n4 ) is a subsequence of (an)n∈N
:= ( 1

n2 )n∈N
. But the sequence ( 1

n3 ) has the terms

1,
1
8

,
1

27
, · · · ,

and so it is not a subsequence of ( 1
n2 )n∈N

: for example, the term 1
8 does not appear in

1,
1
4

,
1
9

,
1

16
, · · · .

Solution to Exercise 2.23

Observe that

the terms 2, 8, 2, 8 appear adjacently
and so the terms 1, 6, 1, 6 appear adjacently
and so the terms 6, 6, 6 appear adjacently
and so the terms 3, 6, 3, 6 appear adjacently
and so the terms 1, 8, 1, 8 appear adjacently

and so the terms 8, 8, 8 appear adjacently
and so the terms 6, 4, 6, 4 appear adjacently
and so the terms 2, 4, 2, 4 appear adjacently
and so the terms 8, 8, 8 appear adjacently

· · ·
Hence we get the loop

· · · , 8, 8, 8, · · · → · · · , 6, 4, 6, 4, · · · → · · · , 2, 4, 2, 4, · · · → · · · , 8, 8, 8, · · · → ,

which contains 6, and so 6 appears infinite number of times. Thus we can choose indices

n1 < n2 < n3 < · · ·
such that for all k ∈ N, ank = 6. So (6)k∈N

is a subsequence of the given sequence.
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Solution to Exercise 2.24

The sequence (an)n∈N
satisfies

an+1 =
2(n + 1) + 1

3(n + 1)
an =

2 + 3
n

3 + 3
n

an,

for all n ∈ N. Since ( 1
n )n∈N

is convergent with limit 0, by the Algebra of Limits,

lim
n→∞

2 + 3
n

3 + 3
n

=
2 + 3 · 0
3 + 3 · 0

=
2
3

.

Again applying the Algebra of Limits, we obtain

L = lim
n→∞

an+1 = lim
n→∞

(
2 + 3

n

3 + 3
n

an

)
= lim

n→∞

(
2 + 3

n

3 + 3
n

)
lim
n→∞

an =
2
3
L.

Hence
1
3
L = 0, that is, L = 0. So lim

n→∞
an = 0.

Solution to Exercise 2.25

(1) True.
Let (an)n∈N

be convergent with limit L, and let (ank)k∈N
be a subsequence. If ε > 0,

then there exists an N ∈ N such that for all n > N, |an − L|< ε. Choose K ∈ N such
that for all k > K, nk > N. Then for all k > K, nk > N and so |ank − L|< ε. Thus
(ank)k∈N

is convergent with limit L.

(2) False.
The sequence ((−1)n)n∈N

is divergent, but it possesses the convergent subsequence
((−1)2n)n∈N

= (1)n∈N
with limit 1.

(3) True.
Let (an)n∈N

be bounded, and let M > 0 be a number such that for all n ∈ N, |an| ≤ M.
If (ank)k∈N

is a subsequence, then also |ank | ≤ M for all k ∈ N, and so it is bounded
as well.

(4) False.
The sequence 1, 0, 2, 0, 3, 0, · · · is unbounded, but has as a subsequence 0, 0, 0, · · ·,
which is bounded.

(5) True.
Let (an)n∈N

be an increasing sequence. (The argument is similar for a decreasing
sequence.) Suppose that (ank)k∈N

is a subsequence. For each k ∈ N, nk+1 > nk and
so ank+1

≥ ank+1−1 ≥ ank+1−2 ≥ · · · ≥ ank . Thus (ank)k∈N
is increasing as well.

(6) False.
The sequence 1, 0, 2, 0, 3, 0, · · · is not monotone, but it has the monotone subsequence
1, 2, 3, · · ·.

(7) True.
The sequence itself is a subsequence of itself, and so it must be convergent too.

(8) False.
The sequence (an)n∈N

= ((−1)n)n∈N
is divergent, but we have that both the sequences

(a2n)n∈N
= (1)n∈N

and (a2n+1)n∈N
= (−1)n∈N

are convergent (with limits 1 and −1,
respectively).
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(9) True.
Let L be the common limit, and let ε > 0. There exists an N1 ∈ N such that for
all n > N1, |a2n − L|< ε. Also, there exists an N2 ∈ N such that for all n > N2,
|a2n+1 − L|< ε. Choose N ∈ N such that N > max{2N1, 2N2 + 1}. Let n > N.
If n is even, say n = 2k for some k ∈ N, then 2k > N ≥ 2N1 gives k > N1,
and so we have |a2k − L| = |an − L|< ε. If, on the other hand, n is odd, say
n = 2k + 1 for some k ∈ N, then 2k + 1 = n > N ≥ 2N2 + 1 gives k > N2, and so
|a2k+1 − L| = |an − L|< ε. Hence for all n > N, we have |an − L|< ε. Consequently,
(an)n∈N

is convergent with limit L.

Solution to Exercise 2.26

We know that
¬
(
∀ε > 0, ∃N ∈ N such that ∀n > N, |an − L|< ε

)
,

that is,
∃ε > 0 such that ∀N ∈ N, ∃n > N such that |an − L| ≥ ε. (29)

Take N = 1 in (29). Then there exists an n1 > N = 1 such that |an1
− L| ≥ ε. We construct

the subsequence terms inductively as follows.

N = n1 : ∃n2 > n1 such that |an2
− L| ≥ ε,

N = n2 : ∃n3 > n2 such that |an3
− L| ≥ ε,

N = n3 : ∃n4 > n3 such that |an4
− L| ≥ ε.

· · ·
Suppose that an1

, · · · , ank have been constructed. Take N = nk in (29). Then there exists an
nk+1 > N = nk such that |ank+1

− L| ≥ ε. Thus we obtain the subsequence (ank)k∈N
which sat-

isfies |ank − L| ≥ ε for all k ∈ N.

Solution to Exercise 2.27

(a) Clearly
√

2 < 2 because 2 < 4. Suppose that for some n ∈ N, an ≤ 2. Then

an+1 =
√

2 + an ≤
√

2 + 2 =
√

4 = 2.

It follows by induction that an ≤ 2 for all n ∈ N.

(b) We have

a2
n+1 − a2

n = (
√

2 + an)
2 − a2

n = 2 + an − a2
n = 2 + 2an − an − a2

n

= 2(1 + an) − an(1 + an) = (2 − an)(1 + an).

From part (a), we know that 2 − an ≥ 0, and clearly 1 + an ≥ 0. Thus a2
n+1 ≥ a2

n, and as an is
nonnegative for each n, we conclude that an+1 ≥ an for all n ∈ N. Consequently, the sequence
(an)n∈N

is increasing.

(c) Yes, since the sequence (an)n∈N
is monotone (increasing) and bounded (above).

Suppose that (an)n∈N
converges to L ∈ R. Then the subsequence (an+1)n∈N

converges to
L too. On the other hand, as (2 + an)n∈N

is nonnegative and convergent to 2 + L, it follows
that (an+1)n∈N

= (
√

2 + an)n∈N
converges to

√
2 + L. Thus

L =
√

2 + L,
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and so L2 = 2 + L, that is, 0 = L2 − L− 2 = (L− 2)(L + 1). Hence L = 2 or L = −1. As
an > 0 for all n ∈ N, L ≥ 0, and so L can’t be −1. Consequently L = 2.

Solution to Exercise 2.28

For all n ∈ N, −1 ≤ sin n ≤ 1, and so the sequence (sin n)n∈N
is bounded. So by the

Bolzano–Weierstrass Theorem, it has a convergent subsequence.
Suppose that (n)n∈N

has a convergent subsequence (nk)k∈N
with limit L. Then also the

sequence (nk+1)k∈N
is convergent with limit L. So (nk+1 − nk)k∈N

must be convergent with
limit L− L = 0. But for all k ∈ N, we have

|(nk+1 − nk) − 0| = nk+1 − nk ≥ 1,

a contradiction. So no subsequence of (n)n∈N
can be convergent.

Solution to Exercise 2.29

Since (an)n∈N
is bounded, it follows from the Bolzano–Weierstrass Theorem that (an)n∈N

has
a convergent subsequence (ank)k∈N

with some limit, say L1.

But since the given sequence (an)n∈N
is divergent, in particular, it can’t converge to L1.

So by Exercise 2.26, there exists an ε > 0 and a subsequence, say (amk
)k∈N

such that for all
k ∈ N, |amk

− L1| ≥ ε.

As (ank)k∈N
converges to L1, we know that there exists a K large enough so that for all

k ≥ K, |ank − L1|< ε.

Then clearly the subsequence am1
, am2

, am3
, · · · has terms which are all distinct from

the subsequence anK , anK+1
, anK+2

, · · · (since for k ≥ K, |ank − L1|< ε, while for all k,
|amk

− L1| ≥ ε).

Now by the Bolzano–Weierstrass Theorem, there exists a subsequence of the bounded
sequence am1

, am2
, am3

, · · · which converges, say, to L2.

But from the inequalities |amk
− L1| ≥ ε, k ≥ 1, we see that |L2 − L1| ≥ ε > 0, and so

L1 �= L2.

Solution to Exercise 2.30

Let ε > 0. Since (an)n∈N
is a Cauchy sequence, there exists an N ∈ N such that for all n,

m > N, |an − am|< ε. In particular for n > N, we have m := n + 1 > N and so it follows that
|an − an+1|< ε, that is, |(an+1 − an) − 0|< ε. So (an+1 − an)n∈N

is convergent with limit 0.

Solution to Exercise 2.31

(A), (B), (C), (D).

Solution to Exercise 2.32

(1) False. The sequence (an)n∈N
:= ((−1)n)n∈N

is not Cauchy as it is divergent, but
(a2

n)n∈N
= (1)n∈N

is convergent, and hence Cauchy.

(2) True. If (an)n∈N
is Cauchy, then it is convergent. By the Algebra of Limits, it follows

that (a2
n)n∈N

is convergent too, and in particular, it is Cauchy.
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Solution to Exercise 2.33

(‘If’ part) Suppose that (an)n∈N
converges to 0. Let ε > 0. Then there exists an N ∈ N such

that whenever n > N, |an − 0|< ε. As an ≥ 0, we have that an < ε for all n > N. But by the
definition of an, this means that for any x ∈ I,

| fn(x) − f (x)| ≤ an < ε.

Hence (fn)n∈N
is uniformly convergent to f .

(‘Only if’ part) Now suppose that (fn)n∈N
is uniformly convergent to f . Let ε > 0. Then there

exists an N ∈ N such that whenever n > N, we have for all x ∈ I, | fn(x) − f (x)|< ε. But
this says that ε is an upper bound for the set {| fn(x) − f (x)| : x ∈ I}. By the definition of
the least upper bound, it now follows that an ≤ ε. Since an is nonnegative, it follows that
|an − 0| = |an| = an ≤ ε for all n > N. In other words, the sequence (an)n∈N

converges to 0.

For a fixed x ∈ (0,∞), we have

lim
n→∞

fn(x) = lim
n→∞

xe−nx = x · lim
n→∞

e−nx = x · 0 = 0.

So the pointwise limit of (fn)n∈N
is the function f , which is identically zero on (0,∞). We

now show that the convergence is uniform using the result proved earlier. For x ∈ (0,∞) and
n ∈ N, we have nx > 0, and so

enx =
∞∑
k=0

1
k!

(nx)k ≥ 1
1!
nx.

Hence 0 < xe−nx ≤ 1
n . Consequently

0 ≤ an := sup{| fn(x) − f (x)| : x ∈ (0,∞)} = sup
x∈(0,∞)

xe−nx ≤ 1
n

,

and so by the Sandwich Theorem,
lim
n→∞

an = 0.

Hence (fn)n∈N
converges uniformly to the function which is identically zero on (0,∞).

Solution to Exercise 2.34

We will show that (fn)n∈N
converges uniformly to the function, which is identically 0 on [0, 1].

We have for all x ∈ [0, 1] that

| fn(x) − 0| =
x

1 + nx
=

1
n
· nx

1 + nx
≤ 1

n
· 1.

Let ε > 0. Choose an N ∈ N such that N > 1/ε. Then whenever n > N, we have for all
x ∈ [0, 1] that

| fn(x) − 0| ≤ 1
n

<
1
N

< ε.

Consequently, (fn)n∈N
converges uniformly to the function which is identically zero on [0, 1].

Solution to Exercise 2.35

(fn)n∈N
converges pointwise to the zero function f , defined by f (x) = 0 (x ∈ (0, 1)). Indeed,

for each x ∈ (0, 1),
lim
n→∞

xn = 0,
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and so the following statement is true:

∀ε > 0, ∀x ∈ (0, 1), ∃N ∈ N such that ∀n > N, | fn(x) − f (x)|< ε.

If fact, we can choose N >
log ε

log x
so that xN < ε, and if n > N, we are guaranteed that

| fn(x) − f (x)| = |xn − 0| = xn < xN < ε.

It is clear that our choice of N in the above depends not only on ε but also on the point
x ∈ (0, 1). The closer x is to 1, the larger N is. The question arises: Is there an N so that
for n > N, | fn(x) − f (x)|< ε for all x ∈ (0, 1)? We will show below that the answer is ‘no’.
In other words, (fn)n∈N

does not converge uniformly to the zero function f .
For example, let ε = 1/2 > 0. Let us suppose that there does exist an N ∈ N such that for

all n > N,

∀x ∈ (0, 1), | fn(x) − f (x)| = xn <
1
2

= ε.

In particular, we would have ∀x ∈ (0, 1), xN+1 <
1
2

. Take x = 1 − 1
m

, m ∈ N, m ≥ 2. Then

(
1 − 1

m

)N+1

<
1
2

.

Letting m → ∞, we obtain 1 ≤ 1
2

, a contradiction.

The following picture explains this visually. If (fn)n∈N
were to converge to the zero func-

tion uniformly, then in particular, for all n large enough, the graph of fn would lie in a strip of
width ε = 1/2 around the graph of the zero function. But no matter how large an n we take,
some part of the graph of fn always falls outside the strip.

0

1

1f

= 1
2

f1
f2

ε

Solution to Exercise 2.36

If x �= 0, then 0 <
1

1 + x2
< 1, and so

lim
n→∞

fn(x) = 1 − lim
n→∞

(
1

1 + x2

)n
= 1 − 0 = 1.
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On the other hand,

lim
n→∞

fn(0) = lim
n→∞

(
1 − 1

(1 + 02)n

)
= 1 − 1 = 0.

So the sequence (fn)n∈N
converges pointwise to f . Clearly f is discontinuous at 0: for example,

the sequence ( 1
n )n∈N

converges to 0, but the sequence ( f ( 1
n ))n∈N

= (1)n∈N
converges to

1 �= 0 = f (0).

Solution to Exercise 2.37

(1) We have lim
m→∞

am,n = lim
m→∞

m
m + n

= lim
m→∞

1
1 + n

m

=
1

1 + 0
= 1, and

lim
n→∞

am,n = lim
n→∞

m
m + n

= lim
n→∞

m
n

m
n + 1

=
0

0 + 1
= 0.

Hence lim
m→∞

lim
n→∞

am,n = lim
m→∞

0 = 0 �= 1 = lim
n→∞

1 = lim
n→∞

lim
m→∞

am,n.

(2) We have for x ∈ R that

| fn(x) − f (x)| = | fn(x)| =
| sin(nx)|√

n
≤ 1√

n
.

Let ε > 0. Choose an N ∈ N such that N > 1/ε2. Then whenever n > N, we have for
all x ∈ R that

| fn(x) − f (x)| ≤ 1√
n

<
1√
N

< ε.

Consequently, (fn)n∈N
converges pointwise (in fact even uniformly!) to the function

f , which is identically zero on R.
We have

f ′n(x) :=
d
dx

fn(x) =
n cos(nx)√

n
=

√
n cos(nx).

f ′ on the other hand is identically 0 on R. If x = 0, then (f ′n(x))n∈N
= (

√
n)n∈N

is
clearly unbounded, and thus not convergent. Hence (f ′n)n∈N

is not pointwise conver-
gent (to f ′).

(3) If x = 0 or x = 1, fn(x) = 0, and so (fn(x))n∈N
= (0)n∈N

is convergent with limit 0
(= f (x)). Now suppose that x ∈ (0, 1). Then 0 < 1 − x2 < 1. So we can find a positive
number h such that 1 − x2 = 1/(1 + h). By the binomial expansion for (1 + h)n, we
have the inequality (1 + h)n > n(n− 1)h2, which yields

0 < nx(1 − x2)n < �nx

�n(n− 1)h2
.

Thus by the Sandwich Theorem, we obtain that (fn(x))n∈N
converges to 0. Conse-

quently, (fn)n∈N
converges pointwise to the zero function f on [0, 1].

Using the variable substitution u = x2, we see that∫ 1

0
fn(x)dx =

∫ 1

0
nx(1 − x2)ndx =

1
2

∫ 1

0
nundu =

1
2

n
n + 1

.

Thus

lim
n→∞

∫ 1

0
fn(x)dx = lim

n→∞

1
2

n
n + 1

=
1
2
�= 0 =

∫ 1

0
f (x)dx =

∫ 1

0
lim
n→∞

fn(x)dx.
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Solutions to the exercises from Chapter 3

Solution to Exercise 3.1

(1) Let ε > 0. If δ :=
√

ε, then we note that δ > 0. Moreover, if x ∈ R and this x satisfies
|x− 0| = |x|< δ =

√
ε, then |x2 − 02| = |x2| = |x| · |x|< δ · δ =

√
ε · √ε = ε. So f is con-

tinuous at 0.

(2) Let c ∈ R and suppose that c �= 0. Let ε > 0. If x ∈ R, then

|x2 − c2| = |(x− c)(x + c)| = |x− c| · |x + c|.

If x ∈ R is such that |x− c|< δ, then

x < c + δ ≤ |c + δ| ≤ |c| + |δ| = |c| + δ, and

− x < δ − c ≤ |δ − c| ≤ |δ| + | − c| = δ + |c|.
Thus if x ∈ R satisfies |x− c|< δ, then |x|< δ + |c|, and so

|x + c| ≤ |x| + |c|< δ + |c| + |c| = δ + 2|c|.

So if |x− c|< δ, we have |x2 − c2| = |x− c| · |x + c|< δ · (δ + 2|c|). Thus in order to make
|x2 − c2| less than ε, we choose δ such that δ(δ + 2|c|) < ε: indeed, let

δ := min
{

ε

2|c| + 1
, 1

}
.

Since ε > 0, it follows that δ is positive. Furthermore, if x ∈ R satisfies |x− c|< δ, then we
obtain

|x2 − c2|< δ(δ + 2|c|) ≤ ε

2|c| + 1
(1 + 2|c|) = ε.

Solution to Exercise 3.2

(1) Let c′ ∈ R and ε > 0. Since f is continuous at c, there exists a δ > 0 such that for
all x ∈ R satisfying |x− c|< δ, | f (x) − f (c)|< ε. Then for all x ∈ R satisfying
|x− c′|< δ, we have3

| f (x) − f (c′)| = | f (x) − f (c′) + f (c) − f (c)|
= | f (x− c′ + c) − f (c)|< ε,

since |(x− c′ + c) − c| = |x− c′|< δ. So f is continuous at c′. Since the choice of
c′ ∈ R was arbitrary, it follows that f is continuous on R.

(2) Let α ∈ R, and let f : R → R be given by f (x) = αx, for all x ∈ R. Then

f (x + y) = α(x + y) = αx + αy = f (x) + f (y).

Remark 3. (∗) The ‘Axiom of Choice’ is an axiom of set theory equivalent to the statement
that the Cartesian product of any collection of nonempty sets is nonempty. Using this Axiom of
Choice, one can show that there are functions f : R → R that are additive, but not continuous.

3 Here we use the fact that f is ‘additive’. First of all, f (0) = f (0 + 0) = f (0) + f (0), and so f (0) = 0. Hence it
follows that −f (c′) = f (−c′), since 0 = f (0) = f (c′ − c′) = f (c′) + f (−c′). Finally, using this, and the additivity of
f , f (x) − f (c′) + f (c) = f (x) + f (−c′) + f (c) = f (x− c′) + f (c) = f (x− c′ + c).
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So in light of the above exercise, such a function must necessarily fail to be continuous at every
real number! Hence such a function obviously can’t be linear. In fact, although it can be shown
that such a function exists, it is not a constructive proof, in that an explicit example of such
an f is not given.

Solution to Exercise 3.3

We observe that as | f (0)| ≤ M|0| = M · 0 = 0, it follows that | f (0)| = 0, that is, f (0) = 0.
Given ε > 0, we define δ = ε/M. Then for all x ∈ R satisfying |x| = |x− 0|< δ, we have

| f (x) − f (0)| = | f (x) − 0| = | f (x)| ≤ M|x| = M|x− 0|< Mδ = M
ε

M
= ε.

Hence f is continuous at 0.

Solution to Exercise 3.4

Let c ∈ R. Suppose that f is continuous at c. Consider ε = 1
2 > 0. Then there exists a δ > 0

such that for all x ∈ R satisfying |x− c|< δ, | f (x) − f (c)|< ε = 1
2 . We have the following

two cases:

1◦ c ∈ Q. Then there exists x ∈ R\Q such that |x− c|< δ.
But | f (x) − f (c)| = |1 − 0| = |1| = 1 > 1

2 , a contradiction.

2◦ c ∈ R\Q. Then there exists x ∈ Q such that |x− c|< δ.
But | f (x) − f (c)| = |0 − 1| = | − 1| = 1 > 1

2 , a contradiction.

Hence f is not continuous at c.

Solution to Exercise 3.5

Since ε := f (c)
2 > 0, there exists a δ > 0 such that for all x ∈ (a, b) satisfying |x− c|< δ,

| f (x) − f (c)|< f (c)
2

.

Thus for all x ∈ (a, b) satisfying |x− c|< δ (that is, c− δ < x < c + δ), we have

f (c) − f (x) ≤ | f (c) − f (x)| = | f (x) − f (c)|< f (c)
2

,

and so f (x) > f (c)
2 > 0.

Remark 4. Thus if a continuous function f : (a, b) → R is positive (respectively, negative)
at a point c ∈ (a, b), then it stays positive (respectively, negative) in a small open interval
(c− δ, c + δ) containing the point c.

Solution to Exercise 3.6

We will show the four implications (1)⇒(2), (2)⇒(3), (3)⇒(4), and (4)⇒(1), which are
enough to get all the four equivalences (and eight implications) given in the statement. In
other words, we show the chain:

(1) ⇒ (2)
⇑ ⇓

(4) ⇐ (3)
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One may ask for instance: Have we really shown that (3)⇒(2)? Well, if (3) is true, then:

since we have shown (3)⇒(4), (4) is true,

since we have shown (4)⇒(1), (1) is true, and finally

since we have shown (1)⇒(2), (2) is true!

Thus (3)⇒(2) is true too.

(1)⇒(2): Let ε > 0. Then by (1), there exists a δ > 0 such that whenever x ∈ I satisfies
|x− c|< δ, we have | f (x) − f (c)|< ε, and so | f (x) − f (c)| ≤ ε. So (2) holds.

(2)⇒(3): Let ε > 0. Then by (2), there exists a δ′ > 0 such that whenever x ∈ I satisfies
|x− c|< δ′, we have | f (x) − f (c)| ≤ ε. Thus with δ := δ′

2 > 0, we have that whenever x ∈ I
satisfies |x− c| ≤ δ = δ′

2 < δ′, we have | f (x) − f (c)| ≤ ε. So (3) holds.

(3)⇒(4): Let ε > 0. Then ε/2 > 0, and so by (3), there exists a δ > 0 such that whenever
x ∈ I satisfies |x− c|< δ, we have | f (x) − f (c)| ≤ ε

2 < ε. So (4) holds.

(4)⇒(1): Let ε > 0. Then by (4), there exists a δ > 0 such that whenever x ∈ I satisfies
|x− c| ≤ δ, we have | f (x) − f (c)|< ε. In particular, whenever x ∈ I satisfies |x− c|< δ, we
have | f (x) − f (c)|< ε. So (1) holds.

Solution to Exercise 3.7

Let (xn)n∈N
be a convergent sequence with limit c. Then (x2

n)n∈N
is also convergent with

limit c2. Thus ( f (xn))n∈N
is convergent with limit f (c). So by Theorem 3.1, f is continuous.

Solution to Exercise 3.8

We only have to show that f (x) < f (c) for all x ∈ (c− δ, c). Let (xn)n∈N
be a sequence such

that x < x1 < x2 < · · · and lim
n→∞

xn = c.

Then f (x) < f (x1) ≤ f (xn) for all n ∈ N. So

f (x) < f (x1) ≤ lim
n→∞

f (xn) = f
(

lim
n→∞

xn
)

= f (c),

where we use the continuity of f in order to get the last but one equality. Thus f (x) < f (c).

Remark 5. From here it follows that a continuous function f : (c− δ, c + δ) → R, which is
strictly increasing on (c− δ, c) and (c, c + δ), is strictly increasing on (c− δ, c + δ).

Solution to Exercise 3.9

Let x ∈ R. For each n ∈ N, pick a qn ∈ Q such that

x < qn < x + 1/n.

Then the sequence (qn)n∈N
is convergent with limit x. (Let ε > 0. By the Archimedean Prop-

erty, there exists an N ∈ N such that 1/ε < N. Consequently, for all n > N, we have that
|qn − x| = qn − x < 1/n < 1/N < ε.)

Since f is continuous at c, we have f (c) = lim
n→∞

f (qn) = lim
n→∞

0 = 0.
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Solution to Exercise 3.10

If x1 �= x2, then the sequence x1, x2, x1, x2, · · · is divergent. (Indeed, the subsequence
x1, x1, x1, · · · converges to x1, while the subsequence x2, x2, x2, · · · converges to x2, and so it
follows that the sequence x1, x2, x1, x2, · · · is divergent.)

Thus f (x1), f (x2), f (x1), f (x2), · · · is divergent. Consequently f (x1) �= f (x2): for otherwise
if f (x1) = f (x2), then the sequence

f (x1), f (x2), f (x1), f (x2) · · ·
� � � �

f (x1), f (x1), f (x1), f (x1) · · ·

is a constant sequence, and so it is convergent with limit f (x1) (= f (x2)).
So we have shown that if x1 �= x2, then f (x1) �= f (x2), that is, the function f is one-to-one.

Solution to Exercise 3.11

That (1) implies (2) is immediate from Theorem 3.1.
Now, suppose that (2) holds. Let (xn)n∈N

be a sequence contained in I that con-
verges to c ∈ I. Then the new sequence x1, c, x2, c, x3, c, · · · also converges to c. By the
hypothesis (2), it follows that the image of this sequence under f , namely the sequence
f (x1), f (c), f (x2), f (c), f (x3), f (c), · · · must be convergent, say with limit L. But then each
of its subsequences must also be convergent with the same limit L. By looking at the even
indexed terms of this sequence, we obtain that the subsequence f (c), f (c), f (c), · · · converges
to L, and so L = f (c). On the other hand, by looking at the odd indexed terms, we conclude
that the sequence f (x1), f (x2), f (x3), · · · must also be convergent with limit L (=f (c)).
Consequently, f is continuous at c.

Solution to Exercise 3.12

Let x �= 0. We consider two possible cases.

1◦ Let x be rational. Then we can find a sequence (yn)n∈N
of irrational numbers that

converges to x. If f was continuous at x, then ( f (yn))n∈N
= (−yn)n∈N

would have
to be convergent with limit f (x) = x. But then we obtain x = −x and so x = 0, a
contradiction.

2◦ Let x be irrational. Then we can find a sequence (rn)n∈N
of rational numbers that

converges to x. If f was continuous at x, then ( f (rn))n∈N
= (rn)n∈N

would have to
be convergent with limit f (x) = −x. But then we obtain x = −x and so x = 0, a
contradiction.

So f is not continuous at x whenever x �= 0. We now show that f is continuous at 0. Let ε > 0.
Let δ := ε > 0. Since f (x) = x if x is rational, and −x if x is irrational, it follows that in either
case, | f (x)| = |x|. Thus whenever x ∈ R and it satisfies |x− 0| = |x|< δ = ε, we have that
| f (x) − f (0)| = | f (x) − 0| = | f (x)| = |x|< δ = ε. So f is continuous at 0.
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Solution to Exercise 3.13

Let x be a rational number. Then f (x) > 0. We can find a sequence (yn)n∈N
of irrational num-

bers that converges to x. If f was continuous at x, then ( f (yn))n∈N
= (0)n∈N

would have to be
convergent with limit f (x) > 0, which is clearly not true. Thus f is not continuous at x.

Now suppose that x is irrational. Then there exists an integer N such that x belongs to the
interval (N,N + 1). Let ε > 0. Suppose that r is a rational number in (N,N + 1) for which
f (r) ≥ ε. Let r = n/d, where n, d are integers without any common divisors and d > 0.
Then we have f (r) = 1/d ≥ ε and so d ≤ 1/ε. Thus there are just finitely many possibilities
for d. Moreover, from N < n/d < N + 1, it follows that n satisfies Nd < n < (N + 1)d,
and so there are only finitely many possibilities for n as well. Hence there are just finitely
many rational numbers r in (N,N + 1) for which f (r) ≥ ε. Now among these finitely many
rational numbers, let r∗ be one which is the closest to x, and set δ := min{|x− r∗|/2, |x− N|,
|x− (N + 1)|} > 0. Then whenever z ∈ R and |z− x|< δ, we are guaranteed that
z ∈ (N,N + 1), and moreover if z is rational, then it can’t be one of the rational r in
(N,N + 1) for which f (r) ≥ ε, and so it must be the case that f (z) < ε. If z is irrational, then
f (z) = 0 by definition of f , and so then too we have f (z) = 0 < ε. So we have that for all
z ∈ R such that |z− x|< δ, | f (z) − f (x)| = | f (z) − 0| = | f (z)| = f (z) < ε. This completes
the proof that f is continuous at every irrational number.

Solution to Exercise 3.14

We show by induction that f (n) = n f (1) for all natural numbers n. For n = 1, we have
f (n) = f (1) = 1 · f (1) = n f (1), and so the claim is true when n = 1. If for some n ∈ N there
holds f (n) = n f (1), then we have

f (n + 1) = f (n) + f (1) = n f (1) + f (1) = (n + 1)f (1).

This completes the induction step, and so the result holds for all natural numbers.
Also, f (0) = f (0 + 0) = f (0) + f (0) shows that f (0) = 0 = 0 · f (1). So f (n) = n f (1) for

all nonnegative integers. Let m be a negative integer. Then −m is a positive integer, and so

0 = f (0) = f (m + (−m)) = f (m) + f (−m) = f (m) + (−m)f (1),

that is, f (m) = −(−m)f (1) = mf (1). So we have that f (n) = n f (1) for all integers n.
Now every rational number r can be expressed as r = n/d for some integers n, d with

d > 0. Then

n f (1) = f (n) = f (d · (n/d)) = f (n/d) + · · · + f (n/d)︸ ︷︷ ︸
d times

= d · f (n/d).

Consequently, f (n/d) = (n f (1))/d, that is, f (r) = rf (1).
Let x ∈ R. Then we can find a sequence (rn)n∈N

of rational numbers which converges to x.
Using the continuity of f , we obtain

f (x) = f
(

lim
n→∞

rn
)

= lim
n→∞

f (rn) = lim
n→∞

rn f (1) = x f (1).

Consequently, f (x) = x f (1) for all x ∈ R.
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Solution to Exercise 3.15

Let x ∈ R. Clearly f (2x) = −f (x), and so

f (x) = −f (x/2) = (−1)2f (x/4) = · · · = (−1)nf (x/2n)

for all x ∈ R. Since the sequence (x/2n)n∈N
converges to 0, it follows that

f (0) = f
(

lim
n→∞

x/2n
)

= lim
n→∞

f (x/2n) = (−1)nf (x).

But f (0) = f (2 · 0) = −f (0), and so f (0) = 0. It follows from the above that

f (x) = (−1)nf (0) = (−1)n0 = 0.

So if f is continuous and it satisfies the given identity, then it must be the constant function 0.
Conversely, the constant function 0 is continuous and also f (2x) + f (x) = 0 + 0 = 0 for

all x ∈ R.

Solution to Exercise 3.16

Define f : (0,∞) → R by f (x) = 1/x, x > 0. Then f is continuous. Take (xn)n∈N
to be the

Cauchy sequence
(

1
n

)
n∈N

. Then f (xn) = n, and | f (xn) − f (xm)| = |n− m| ≥ 1 for all n �= m,
showing that the sequence ( f (xn))n∈N

is not Cauchy.

Solution to Exercise 3.17

(1) True. Indeed, the sequences(
1

2n + 7

)
n∈N

and

(
n

n2 + 1

)
n∈N

both converge with limit 0, and as f is continuous at 0, it follows that

f (0) = f

(
lim
n→∞

1
2n + 7

)
= lim

n→∞
f

(
1

2n + 7

)
= lim

n→∞
g

(
n

n2 + 1

)
= g

(
lim
n→∞

n
n2 + 1

)
= g(0).

(2) True. This has nothing to do with the continuity of f on R. We just note that since (g(n))n∈N

converges to L, its subsequence (g(n2))n∈N
also converges to L. But since f (n) = g(n2)

for all n, we obtain that ( f (n))n∈N
converges to L.

Solution to Exercise 3.18

We apply Theorem 3.2 several times in order to prove this.
Since the function x �→ x is continuous on R, it follows that the function x �→ x2 is con-

tinuous on R as well. Moreover, the function x �→ 1 is continuous on R, and so we obtain that
the function x �→ 1 + x2 is continuous on R. As 1 + x2 ≥ 1 > 0 for all real x, we conclude
that the function x �→ 1

1+x2 is continuous on R. Hence the function x �→ x2 · 1
1+x2 = x2

1+x2 is
continuous on R, that is, f is continuous on R.

Solution to Exercise 3.19

Since x �→ |x|, x + 1 are continuous, so is f . Also the composition f ◦ f is then continuous. So

lim
x→−2

( f ◦ f )(x) = ( f ◦ f )(−2).
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But f (−2) = | − 2 + 1| − | − 2| = | − 1| − 2 = 1 − 2 = −1, and so

lim
x→−2

( f ◦ f )(x) = ( f ◦ f )(−2) = f ( f (−2))

= f (−1) = | − 1 + 1| − | − 1| = |0| − 1 = 0 − 1 = −1.

Solution to Exercise 3.20

(1), (2): False. We will just show that (2) is false, from which it follows immediately
that (1) is false too. Let f = 1

Q
be the indicator function of the rational numbers, that

is, it is 1 if the argument is rational, and zero otherwise. Let g := 1 − 1
Q

. If x ∈ Q, then
(g ◦ f )(x) = g(1) = 0, and if x /∈ Q, then (g ◦ f )(x) = g(0) = 0. So g ◦ f ≡ 0 is clearly
continuous. But neither f nor g is continuous at any point of R.

(3) False. Let f ≡ x, and g be the same as above. Then g ◦ f = g isn’t continuous at any point
of R, but f is continuous on R.

(4) True. This is the contrapositive of the statement of Theorem 3.3.

Solution to Exercise 3.21

We have
x �→ 1

x
: R\{0} → R is continuous,

sin : R → R is continuous,

and so x �→ sin 1
x : R\{0} → R is continuous. Hence for every ε > 0, there exists a δ > 0

such that whenever |x− c|< δ,∣∣∣∣x sin
1
x
− c sin

1
c

∣∣∣∣ = | f (x) − f (c)|< ε.

So f is continuous on R\{0}. The continuity at 0 can be checked directly as follows. Let ε > 0.
Set δ = ε > 0. Then if 0 < |x− 0|< δ, we have

| f (x) − f (0)| =
∣∣∣∣x sin

1
x
− 0

∣∣∣∣ = |x| · | sin 1
x
| ≤ |x| · 1 = |x− 0|< δ = ε.

So f is also continuous at 0.

0.2

0.1

−0.1

−0.2

−0.2 −0.1 0.1
x

0.20
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Solution to Exercise 3.22

Yes. The maps x �→ f (x) + g(x), f (x) − g(x) are continuous, and thus also

x �→ f (x) + g(x) + | f (x) − g(x)|
2

= max{f (x), g(x)} : I → R.

Hence max{f , g} is continuous on I.

Solution to Exercise 3.23

Since the function f : [0, 1] → R and the function x �→ x from [0, 1] to R are both continuous
on the interval [0, 1], it follows that also the function g : [0, 1] → R defined by

g(x) = f (x) − x, for all x ∈ [0, 1]

is continuous on [0, 1]. Since 0 ≤ f (x) ≤ 1 for all x ∈ [0, 1], we have

g(0) = f (0) − 0 = f (0) ≥ 0, and

g(1) = f (1) − 1 ≤ 0.

So by the Intermediate Value Theorem, there exists a c ∈ [0, 1] such that g(c) = 0, that is,
f (c) = c.

Solution to Exercise 3.24

Consider the function g : [0, 1] → R given by

g(x) = f (x) − f (1) − ( f (0) − f (1))x, x ∈ R.

As f and the map x �→ x are continuous, it follows that g is continuous too. We have

g(0) = f (0) − f (1) − ( f (0) − f (1)) · 0 = f (0) − f (1),

g(1) = f (1) − f (1) − ( f (0) − f (1)) · 1 = −( f (0) − f (1)).

Thus y = 0 lies between g(0) and g(1), and so by the Intermediate Value Theorem, there exists
a c ∈ [0, 1] such that g(c) = 0, that is, f (c) − f (1) = ( f (0) − f (1))c.

Solution to Exercise 3.25

Imagine a directed line � such that the pancake lies entirely to one side of the line � (say if we
look along the direction of the line, the pancake appears to our right). Now translate the line
to the right parallel to itself till the whole pancake appears to the left of the line. Suppose that
the total distance by which the line is translated is d. At each intermediate distance x ∈ [0, d],
let A(x) denote the area of the part of the pancake that lies to the right of our line. Thus if S
is the total area of the pancake, then A(0) = A and A(d) = 0. As the map A : [0, d] → R is
continuous and f (0) = S ≥ S/2 ≥ 0 = f (d), it follows by the Intermediate Value Theorem,
that there is a y ∈ [0, d] such that A(y) = S/2, or in other words, at some position of our line,
the pancake is divided into two parts with equal areas.

As the direction of the line in the above process was inconsequential, given any direc-
tion, we can choose a straight line cut having that direction that divides the pancake into two
equal parts.
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Solution to Exercise 3.26

True. Consider f : R → R given by

f (x) = x399 +
1976

1 + x2(cos x)2
− 28, x ∈ R.

We have with a := 399
√

28 that

f (a) = 28 +
1976

1 + (something positive)
− 28 > 0,

and with b := − 399
√

1976 that

f (a) = −1976 +
1976

1 + (something positive)
− 28 < 0.

Thus f (a) > 0 =: y > f (b). As f is continuous4, it follows by the Intermediate Value Theorem
that there must be a c between a and b such that f (c) = 0, that is,

c399 +
1976

1 + c2(cos c)2
= 28.

Solution to Exercise 3.27

Let the weekend campsite be at altitude H. Let u : [0, 1] → R be the position function for the
walk up, and d :

[
0, 1

2

]
→ R be the position function for the walk down. (We assume that these

are continuous functions.) Consider the function f : [0, 1/2] → R given by f (t) = u(t) − d(t),
t ∈ [0, 1/2]. Then f is also continuous, and moreover

f (0) = u(0) − d(0) = 0 − H = −H < 0, while

f

(
1
2

)
= u

(
1
2

)
− d

(
1
2

)
= u

(
1
2

)
− 0 = u

(
1
2

)
≥ 0.

0

H

ud

1
2 1c

u(c) = d(c)

Hence by the Intermediate Value Theorem, it follows that there exists a c ∈
[
0, 1

2

]
such that

f (c) = 0, that is, u(c) = d(c). So at time c past 8:00, the hiker was exactly at the same spot
on Saturday and Sunday.

4 the continuity of cos will be proved in Chapter 5
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Solution to Exercise 3.28

The polynomial function p : [−1, 2] → R is continuous on the interval [−1, 2]. Moreover,

p(−1) = 2 · (−1)3 − 5 · (−1)2 − 10 · (−1) + 5 = −2 − 5 + 10 + 5 = 8 > 0, and

p(2) = 2 · (2)3 − 5 · (2)2 − 10 · (2) + 5 = 16 − 20 − 20 + 5 = −19 < 0.

Since p(−1) > 0 > p(2), from the Intermediate Value Theorem applied to the continuous
function p on the interval [−1, 2], we conclude that there must exist a c ∈ [−1, 2] such that
p(c) = 0. So p has a real root in the interval [−1, 2].

Solution to Exercise 3.29

Suppose that c, d ∈ [a, b] such that c, d are such that the nonzero numbers f (c) and f (d) have
opposite signs. Then by the Intermediate Value Theorem applied to the continuous function
f : [c, d] → R, with y := 0 (which lies between f (c) and f (d)), it follows that there must be
an x∗ ∈ [c, d] ⊂ [a, b] such that f (x∗) = y = 0, a contradiction to the fact that f is never zero
on [a, b].

Solution to Exercise 3.30

Obviously S ⊂ R. We now show the reverse inclusion. Let y ∈ R.
As S is not bounded above, y is not an upper bound of S, that is, there exists a x0 ∈ R such

that f (x0) < y.
Similarly, since S is not bounded below, y is not a lower bound of S, and so there exists a

x1 ∈ R such that f (x1) > y.
Now consider the restriction of f to the interval with endpoints x0 and x1 with the endpoints

included in the interval. Applying the Intermediate Value Theorem to this continuous function,
it follows that there exists a real number c such that f (c) = y.

Since y was arbitrary, this shows that S = R.

Solution to Exercise 3.31

The following three cases are possible:

1◦ f (0) = 0. Let x0 = 0 and let m ∈ Z\{0}. Clearly f (x0) = f (0) = 0 = m0 = mx0.

2◦ f (0) > 0. Choose N ∈ N satisfying N > f (1) (that such an N exists follows from
the Archimedean Property). Consider the function g : [0, 1] → R defined by
g(x) = f (x) − Nx, x ∈ [0, 1]. As f and x �→ Nx are continuous, so is g. Note that
g(0) = f (0) − N · 0 = f (0) > 0, while g(1) = f (1) − N < 0. Applying the Interme-
diate Value Theorem to g (with y = 0), it follows that there exists an x0 ∈ [0, 1] such
that g(x0) = 0, that is, f (x0) = Nx0.

3◦ f (0) < 0. Choose an N ∈ N such that N > −f (1) (again the Archimedean
Property guarantees the existence of such an N), and consider the continuous
function g : [0, 1] → R defined by g(x) = f (x) + Nx. We have g(0) = f (0) < 0, and
g(1) = f (1) + N > 0, and so by the Intermediate Value Theorem, it follows that there
exists an x0 ∈ [0, 1] such that g(x0) = 0, that is, f (x0) = −Nx0.

This completes the proof.
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Solution to Exercise 3.32

Suppose that such a continuous function exists. From Exercise 3.31, it follows that there exists
an x0 ∈ R and an m ∈ Z\{0} such that f (x0) = mx0. We have the following two possible
cases:

1◦ x0 ∈ Q. But then f (x0) is irrational, while mx0 is rational, a contradiction.

2◦ x0 /∈ Q. But then f (x0) is rational, whereas mx0 is irrational, a contradiction.

So f cannot be continuous.

(Alternately, one could observe that f (R\Q), being a subset of Q, is countable. Also
f (Q) is clearly countable. Hence f (R) = f (R\Q) ∪ f (Q) is countable. But then f (R) must
be a singleton, since if it contained two distinct points a < b, then it would also contain the
whole interval [a, b] by the Intermediate Value Theorem, and f (R) would then be uncount-
able. Suppose that f (R) = {x∗}. But f (0) = x∗ = f (

√
2), and so x∗ belongs to Q and to R\Q,

a contradiction.)

Solution to Exercise 3.33

That f is strictly decreasing: If x1 > x2 ≥ 0, then

x2
1 = x1 · x1 > x1 · x2 ≥ x2 · x2 = x2

2 ≥ 0,

and so 1 + x2
1 > 1 + x2

2, giving

f (x1) =
1

1 + x2
1

<
1

1 + x2
2

= f (x2).

So f is strictly decreasing.

That f ([0,∞)) = (0, 1]: Let ε > 0 and n ∈ N be such that n > 1/ε − 1. Then we have
n2 > n > 1/ε − 1, and so

f (n) =
1

1 + n2
<

1
1 + 1/ε − 1

= ε.

On the other hand, f (0) = 1. So by the Intermediate Value Theorem, (ε, 1] ⊂ f ([0,∞)). As
ε > 0 was arbitrary, it follows that (0, 1] ⊂ f ([0,∞)). The reverse inclusion follows by observ-
ing that

0 ≤ 1
1 + x2

≤ 1
1 + 0

= 1,

for x ∈ [0,∞) so that f ([0,∞)) ⊂ [0, 1], and clearly f (x) = 1/(1 + x2) is never zero for
x ∈ [0,∞).

Expression for f−1: Let y ∈ (0, 1] and x ∈ [0,∞). Then

1
1 + x2

= y ⇔ 1
y

= 1 + x2 ⇔ x2 =
1
y
− 1 ⇔ x =

√
1
y
− 1.

So f−1 : (0, 1] → [0,∞) is given by f−1(y) =
√

1
y
− 1, y ∈ (0, 1].

y �→ 1
y is a continuous function on (0, 1], and thus so is y �→ 1

y − 1. Also, the range of the map-
ping y �→ 1

y − 1 : (0, 1] → R is contained in [0,∞). Composing with the continuous square
root function

√· : [0,∞) → [0,∞), we obtain the desired continuity of f−1.
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(Alternately, we can also establish the continuity as follows. For any n > 0, the restriction
f |[0,n] : [0, n] → R is strictly decreasing and continuous. Clearly we have

f |[0,n]([0, n]) = f ([0, n]) = [f (n), f (0)] =
[

1
1 + n2

, 1

]
.

So its inverse ( f |[0,n])
−1 :

[
1

1 + n2
, 1

]
→ [0, n] is continuous. But if

y ∈
[

1
1 + n2

, 1

]
= f |[0,n]([0, n]),

then y = f (x) for some x ∈ [0, n], and so ( f |[0,n])
−1(y) = x = f−1(y). This shows that

( f |[0,n])
−1 = (f−1)|[ 1

1+n2 ,1].

But as n was arbitrary, it follows that f−1 is continuous on (0, 1].) See the picture below for
the graphs of f , f−1.

5

3

y

2

1

0
0 1 2 3

x
4 5

4

5

3

y

2

1

0
0 1 2 3

x
4 5

4

Solution to Exercise 3.34

(1) Let

f (x) =

{
2x if x ∈ (0, 1

2 ),
2 − 2x if x ∈ [ 1

2 , 1).

Then f is continuous on (0, 1) and f (0, 1) = (0, 1].
(2) If there existed such a continuous f , then since 0, 1 ∈ T and since f (S) = T , there

would exist a, b ∈ S = (0, 1) such that f (a) = 0 and f (b) = 1. But then since we have
that f (a) = 0 < 1/2 < 1 = f (b), it follows by the Intermediate Value Theorem that
there is a c between a and b such that f (c) = 1/2. Thus 1/2 ∈ f (S) = T = {0, 1}, a
contradiction.

(Or note that S = (0, 1) is an interval while T = {0, 1} is not, and the existence
of such an f would contradict Corollary 3.7.)
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Solution to Exercise 3.35

Consider the function g : [0,T] → R, given by g(x) = f (x) for all x ∈ [0,T]. Then g is con-
tinuous on [0,T]. Applying the Extreme Value Theorem to g, we conclude that there exist
c, d ∈ [0,T] such that g(c) = max{g(x) : x ∈ [0,T]} and g(d) = min{g(x) : x ∈ [0,T]}. So
for all x ∈ [0,T], g(d) ≤ g(x) ≤ g(c), that is, f (d) ≤ f (x) ≤ f (c).

0

g = f|[0,T]

T
c

d

−T 2T 3T 4T

. . .. . .

So far we have proved the fact that f is bounded on [0,T]. We now prove that f is bounded on
R using the periodicity of f .

Now if x is any real number, there exists a n ∈ Z such that x = nT + r, where r ∈ R is
such that r ∈ [0,T). (Indeed, we have

x
T

=
⌊ x
T

⌋
+ Θ

where Θ ∈ [0, 1). Consequently, x = nT + r, where n :=
⌊
x
T

⌋
∈ Z and r := T · Θ ∈ [0,T).)

Thus f (x) = f (nT + r) = f (r). As f (d) ≤ f (r) ≤ f (c), it follows that f (d) ≤ f (x) ≤ f (c).
Since the choice of x ∈ R was arbitrary, it follows that f (d) ≤ f (x) ≤ f (c) for all x ∈ R. So
f (c) and f (d) are upper and lower bounds, respectively, of the set {f (x) : x ∈ R}, and so it is
bounded.

Solution to Exercise 3.36

(1) If x ∈ (a, b], then let f |[a,x] denote the restriction of the function f to the interval [a, x],
defined by f |[a,x](y) = f (y) for all y ∈ [a, x]. We note that f |[a,x] is a continuous func-
tion. Applying the Extreme Value Theorem to f |[a,x], we see that

max{f |[a,x](y) : y ∈ [a, x]} = max{f (y) : y ∈ [a, x]}
exists, and so f∗ is well-defined.

(2) f∗ is given by f∗(x) =

{
x− x2 if 0 ≤ x ≤ 1

2 ,
1
4 if 1

2 < x ≤ 1.

0

0 1

1

1
4

1
4

1
2

1
2

f

f∗
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Solution to Exercise 3.37

True. By the Extreme Value Theorem, there is a c ∈ [a, b] such that f (c) = max f ([a, b]) =: δ.
As f (c) > 0, we have δ > 0, and moreover, for all x ∈ [a, b], f (x) ≥ max f ([a, b]) = δ.

Solution to Exercise 3.38

(B).

Solution to Exercise 3.39

By the Extreme Value Theorem, there exist c, d ∈ [a, b] such that f (c) ≤ f (x) and f (x) ≤ f (d)
for all x ∈ [a, b]. Hence

f (c) =
f (c) + · · · + f (c)

n
≤ f (c1) + · · · + f (cn)

n
≤ f (d) + · · · + f (d)

n
= f (d).

So applying the Intermediate Value Theorem to f on the interval with end points c and d, we
obtain the existence of a c∗ in this interval such that

f (c∗) =
f (c1) + · · · + f (cn)

n
.

But then clearly this c∗ belongs to [a, b] (since c, d do and because c∗ lies in the interval with
the end points c and d).
Alternative solution: The use of the Extreme Value Theorem can be avoided as follows. We
note that if k∗, k∗∗ are such that

f (ck∗) = min{f (c1), · · · , f (cn)}
f (ck∗∗) = max{f (c1), · · · , f (cn)},

then we have again

f (ck∗) =
f (ck∗) + · · · + f (ck∗)

n
≤ f (c1) + · · · + f (cn)

n
≤

f (ck∗∗) + · · · + f (ck∗∗)
n

= f (ck∗∗).

So applying the Intermediate Value Theorem to f on the interval with end points ck∗ and ck∗∗ ,
we obtain the existence of a c∗ in this interval such that

f (c∗) =
f (c1) + · · · + f (cn)

n
.

Solution to Exercise 3.40

Let f be uniformly continuous on (0, 1) and ε = 1
2 > 0. Then there exists a δ > 0 such that

whenever x, y ∈ (0, 1) satisfy |x− y|< δ, we have | 1
x −

1
y |< ε = 1

2 . Take any natural num-
ber n > 1 such that n > 1

2δ . Set x := 1
n and y := 1

2n . Then x, y ∈ (0, 1), and |x− y| = 1
2n < δ.

Thus
1
2

>

∣∣∣∣1x − 1
y

∣∣∣∣ = |n− 2n| = |n| = n,

a contradiction.
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Solution to Exercise 3.41

We have for x, y ∈ R that ||x| − |y|| ≤ |x− y|. If ε > 0, then with δ := ε > 0, we have for all
x, y ∈ R satisfying |x− y|< δ = ε that

||x| − |y|| ≤ |x− y|< δ = ε.

So the absolute value function is uniformly continuous.

Solution to Exercise 3.42

Let ε > 0. Set δ = ε/L > 0. If x, y ∈ R and |x− y|<δ, then | f (x) − f (y)| ≤ L|x− y|< Lδ = ε.
Thus f is uniformly continuous.

The converse is not true. In other words, there are uniformly continuous functions that
are not Lipschitz. For example, it follows from Example 3.17 that x �→

√
|x| : R → R is uni-

formly continuous. It is, however, not Lipchitz. Indeed, if it were Lipschitz, then there would
exist an L > 0 such that for all x, y ∈ R, |

√
|x| −
√

|y|| ≤ L|x− y|, and in particular with
x = 1/n2 (n ∈ N) and y = 0, we would obtain n ≤ L for all n ∈ N, a contradiction to the
Archimedean Property of R.

Solution to Exercise 3.43

Suppose that (xn)n∈N
is a Cauchy sequence in I. We want to show that ( f (xn))n∈N

is a Cauchy
sequence in R. Let ε > 0. Since f is uniformly continuous, there exists a δ > 0 such that
whenever |x− y|< δ, we have | f (x) − f (y)|< ε. As (xn)n∈N

is Cauchy, there exists an index
N ∈ N such that for all n,m > N, |xn − xm|< δ. For all n,m > N, | f (xn) − f (yn)|< ε. Hence
( f (xn))n∈N

is a Cauchy sequence in R.

Exercise 3.16 shows that continuous functions don’t necessarily preserve Cauchyness.

Solution to Exercise 3.44

(1) Let ε > 0. Since the function f is uniformly continuous, there exists a δf > 0 such that
whenever x, y ∈ I satisfy |x− y|< δf , we have | f (x) − f (y)|< ε/2. Similarly, since g is
uniformly continuous, there exists a δg > 0 such that whenever x, y ∈ I satisfy |x− y|< δg,
we have |g(x) − g(y)|< ε/2. So with δ := min{δf , δg} > 0, we have that whenever x, y ∈ I
satisfy |x− y|< δ,

|( f + g)(x) − ( f + g)(y)| = | f (x) + g(x) − f (y) − g(y)|

≤ | f (x) − f (y)| + |g(x) − g(y)|< ε

2
+

ε

2
= ε.

(2) With I := R and f (x) = g(x) = x (so that f , g are uniformly continuous), we have
(fg)(x) = x2, making fg not uniformly continuous.

(3) Let Mf ,Mg > 0 be such that for all x, y ∈ R, | f (x)|< Mf and |g(y)|< Mg. Given ε > 0,
there exists a δf > 0 such that whenever x, y ∈ I satisfy |x− y|< δf , we have

| f (x) − f (y)|< ε

2Mg
.
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Similarly, since g is uniformly continuous, there exists a δg > 0 such that whenever x, y ∈ I
satisfy |x− y|< δg, we have

|g(x) − g(y)|< ε

2Mf
.

So with δ := min{δf , δg} > 0, we have that whenever x, y ∈ I satisfy |x− y|< δ,

|(fg)(x) − (fg)(y)| = | f (x)g(x) − f (x)g(y) + f (x)g(y) − f (y)g(y)|
≤ | f (x)||g(x) − g(y)| + |g(y)|| f (x) − f (y)|

< Mf ·
ε

2Mf
+ Mg ·

ε

2Mg
= ε.

Solution to Exercise 3.45

(B), (C), (D).

Solution to Exercise 3.46

(1) The function is a ratio of two polynomials, and so it is continuous at all points where the
denominator polynomial is nonzero. So we know that f is continuous on R\{2}. Moreover,

lim
x→2

f (x) = lim
x→2

x3 − 3x− 2
x− 2

= lim
x→2

3x2 − 3
1

= 3 · 4 − 3 = 9.

(We used the 0
0 form of l’Hôpital’s Rule above.) Hence by defining f (2) = 9, f will be con-

tinuous on R. So there does exist such a continuous function.

(2) This statement is false. Indeed,

lim
x↗2

f (x) = lim
x↗2

x = 2,

while
lim
x↘2

f (x) = lim
x↘2

2x = 4,

and so lim
x→2

f (x) does not exist.

Solution to Exercise 3.47

(If part): Suppose that L := lim
x→c+

f (x) = lim
x→c−

f (x).

Let ε > 0. Then there exists a δ+ > 0 such that for all x satisfying c < x < c + δ+, we have
| f (x) − L|< ε. Also, there exists a δ− > 0 such that for all x satisfying c− δ− < x < c,
we have | f (x) − L|< ε. Let δ := min{δ+, δ−}. Then for all x such that 0 < |x− c|< δ, we
have either c < x < c + δ ≤ c + δ+ or c− δ− ≤ c− δ < x < c, and in either case there holds
| f (x) − L|< ε. Hence

lim
x→c

f (x) = L
(

= lim
x→c+

f (x) = lim
x→c−

f (x)
)

.
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(Only if part): Let L := lim
x→c

f (x).

Let ε > 0. Then there exists a δ > 0 such that for all x satisfying 0 < |x− c|< δ, we have
| f (x) − L|< ε. In particular, for all x satisfying c < x < c + δ, we have | f (x) − L|< ε, and
so lim

x→c+
f (x) = L.

Also, for all x satisfying c− δ < x < c, we have | f (x) − L|< ε, and so lim
x→c−

f (x) = L.

This implies that lim
x→c+

f (x) = L = lim
x→c−

f (x).

Solution to Exercise 3.48

(1) As x �→ |x|, x + 1 are continuous, we have

lim
x→0

|x| = |0| = 0, and lim
x→0

(x + 1) = 0 + 1 = 1 �= 0.

Thus by the Algebra of Limits, lim
x→0

|x|
x + 1

=
lim
x→0

|x|

lim
x→0

(x + 1)
=

0
1

= 0.

(2) We have lim
x→1+

(�x� − x) = 1 − 1 = 0, while lim
x→1−

(�x� − x) = 0 − 1 = −1.

So lim
x→1

(�x� − x) does not exist.

(3) We have lim
x→0+

�x� = 0, lim
x→0−

�x� = −1, and so

lim
x→0+

x�x� = 0 · 0 = 0,

lim
x→0−

x�x� = 0 · (−1) = 0.

Hence lim
x→0

x�x� = 0.

(4) Suppose that the limit exists and is some number L. Take any θ ∈ [−π/2, π/2] such that
sin θ �= L. Set

xn :=
1

θ + 2nπ
, n ∈ N.

Then (xn)n∈N
converges to 0. But

sin
1
xn

= sin(θ + 2nπ) = sin θ,

and so

(
sin

1
n

)
n∈N

converges to sin θ �= L, a contradiction. So lim
x→0

sin
1
x

does not exist.

Solution to Exercise 3.49

We have that B is zero for only finitely many real values, and so for all sufficiently large x,
B(x) �= 0. We have

A(x)
B(x)

=
a0 + · · · + aα−1x

α−1 + aαx
α

b0 + b1x + · · · + bβ−1xβ−1 + bβxβ

=
aα

bβ

· xα−β ·

a0

aαxα
+ · · · + aα−1

aαx
+ 1

b0

bβxβ
+ · · · +

bβ−1

bβx
+ 1

=
aα

bβ

· xα−β · ϕ(x),
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where ϕ(x) :=

a0

aαxα
+ · · · + aα−1

aαx
+ 1

b0

bβxβ
+ · · · +

bβ−1

bβx
+ 1

. Clearly

lim
x→∞

ϕ(x) = lim
x→∞

a0

aαxα
+ · · · + aα−1

aαx
+ 1

b0

bβxβ
+ · · · +

bβ−1

bβx
+ 1

=
0 + · · · + 0 + 1
0 + · · · + 0 + 1

= 1.

Suppose that β > α. Then lim
x→∞

xα−β = 0, and so

lim
x→∞

A(x)
B(x)

= lim
x→∞

aα

bβ

· xα−β · ϕ(x) =
aα

bβ

· 0 · 1 = 0.

Next suppose that α = β. Then

lim
x→∞

A(x)
B(x)

= lim
x→∞

aα

bβ

· ϕ(x) =
aα

bβ

· 1 =
aα

bβ

.

Finally suppose that α > β. Consider first the case when
aα

bβ

> 0.

Then there exists an R1 > 0 such that for all x > R1, 1 − ϕ(x) ≤ |ϕ(x) − 1|< 1/2, and so
ϕ(x) > 1/2. Let M > 0. Then taking any R2 such that

R2 >

(
2M ·

bβ

aα

)1/(α−β)

,

we have for x > R2 that
aα

bβ

· xα−β > 2M. Hence for all x > max{R1,R2}, we obtain

A(x)
B(x)

=
aα

bβ

· xα−β · ϕ(x) > 2M · 1
2

= M.

Thus lim
x→∞

A(x)
B(x)

= +∞.

Now consider the case when
aα

bβ

< 0.

Then there exists an R1 > 0 such that for all x > R1, ±(ϕ(x) − 1) ≤ |ϕ(x) − 1|< 1/2, and
so 0 < 1/2 < ϕ(x) < 3/2. Let M > 0. Then taking any R′

2 such that

R′
2 >

(
−2

3
M ·

bβ

aα

)1/(α−β)

,

we have for x > R′
2 that

aα

bβ

· xα−β < −2
3
M. Hence for all x > max{R1,R′

2}, we obtain

A(x)
B(x)

=
aα

bβ

· xα−β · ϕ(x) < −2
3
M · 3

2
= −M.

Thus lim
x→∞

A(x)
B(x)

= −∞.
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Solution to Exercise 3.50

(A), (B), (C).

Solution to Exercise 3.51

(1) Let R(x) :=
2x + 1

x2 − 2x− 3
=

2x + 1
(x + 1)(x− 3)

=
A1

x + 1
+

A2

x− 3
. We have

A1 = lim
x→−1

(x + 1)R(x) = lim
x→−1

2x + 1
x− 3

=
2 · (−1) + 1

−1 − 3
=

1
4

, and

A2 = lim
x→3

(x− 3)R(x) = lim
x→3

2x + 1
x + 1

=
2 · 3 + 1

3 + 1
=

7
4

.

(2) Let R(x) :=
x2 + 3x + 9

(x + 1)(x− 2)2
=

A
x + 1

+
B1

x− 2
+

B2

(x− 2)2
. We have

A = lim
x→−1

(x + 1)R(x) = lim
x→−1

x2 + 3x + 9
(x− 2)2

=
(−1)2 + 3 · (−1) + 9

(−1 − 2)2
=

7
9

.

Also, B2 = lim
x→2

(x− 2)2R(x) = lim
x→2

x2 + 3x + 9
x + 1

=
22 + 3 · 2 + 9

2 + 1
=

19
3

. Thus

R(x) − B2

(x− 2)2
=

A
x + 1

+
B1

x− 2
,

and so

B1 = lim
x→2

(x− 2)
(
R(x) − B2

(x− 2)2

)
= lim

x→2

(
x2 + 3x + 9

(x + 1)(x− 2)
− 19

3(x− 2)

)

= lim
x→2

3(x2 + 3x + 9) − 19(x + 1)
3(x + 1)(x− 2)

= lim
x→2

3x2 − 10x + 8
3(x + 1)(x− 2)

= lim
x→2

3x2 − 6x− 4x + 8
3(x + 1)(x− 2)

= lim
x→2

3x(x− 2) − 4(x− 2)
3(x + 1)(x− 2)

= lim
x→2

3x− 4
3(x + 1)

=
3 · 2 − 4
3(2 + 1)

=
2
9

.
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Solutions to the exercises from Chapter 4

Solution to Exercise 4.1

Let x0 ∈ R be arbitrary. For x �= x0, we have

f (x) − f (x0)
x− x0

=

√
1 + x2 −

√
1 + x2

0

x− x0
=

x2 + 1 − (x2
0 + 1)

(x− x0)(
√

1 + x2 +
√

1 + x2
0)

=
x2 − x2

0

(x− x0)(
√

1 + x2 +
√

1 + x2
0)

=
x + x0√

1 + x2 +
√

1 + x2
0

.

So lim
x→x0

f (x) − f (x0)
x− x0

= lim
x→x0

x + x0√
1 + x2 +

√
1 + x2

0

=
x0 + x0√

1 + x2
0 +
√

1 + x2
0

=
x0√

1 + x2
0

.

Hence f is differentiable everywhere, and f ′(x) =
x√

1 + x2
, x ∈ R.

Solution to Exercise 4.2

(1)⇒(2): Let ε > 0. Let δ > 0 be such that whenever 0 < |x− c|< δ, we have∣∣∣∣ f (x) − f (c)
x− c

− f ′(c)
∣∣∣∣ < ε.

Now take δ̃ := δ/c. Thus δ̃ > 0 and if 0 < |k − 1|< δ̃, then 0 < |kc− c|< δ, so that∣∣∣∣ f (kc) − f (c)
kc− c

− f ′(c)
∣∣∣∣ < ε,

that is,

∣∣∣∣ f (kc) − f (c)
k − 1

− cf ′(c)
∣∣∣∣ < εc. So lim

k→1

f (kc) − f (c)
k − 1

= cf ′(c).

(2)⇒(1): Suppose that lim
k→1

f (kc) − f (c)
k − 1

= L.

Let ε > 0. Let δ > 0 be such that whenever 0 < |k − 1|< δ, we have∣∣∣∣ f (kc) − f (c)
k − 1

− L

∣∣∣∣ < ε.

Now let δ̃ := δc. Then δ̃ > 0 and whenever 0 < |x− c|< δ̃, we have with k := x/c that

0 < c
∣∣∣x
c
− 1
∣∣∣ < δc,

that is, 0 < |k − 1|< δ, so that

∣∣∣∣ f (
x
c c) − f (c)
x
c − 1

− L

∣∣∣∣ < ε.
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So if 0 < |x− c|< δ̃, then we have

∣∣∣∣ f (x) − f (c)
x− c

− L
c

∣∣∣∣ < ε

c
. Hence

lim
x→c

f (x) − f (c)
x− c

exists and equals L/c. So f is differentiable at c and f ′(c) =
L
c

=
1
c
· lim
k→1

f (kc) − f (c)
k − 1

.

Solution to Exercise 4.3

Let c ∈ (−a, a). Let ε > 0. Then there exists a δ > 0 such that for all x ∈ (−a, a) satisfying
0 < |x− c|< δ, we have ∣∣∣∣ f (x) − f (c)

x− c
− f ′(c)
∣∣∣∣ < ε.

Now let x ∈ (−a, a) be such that 0 < |x− (−c)| = |x + c| = |(−x) − c|< δ. Then we have

ε >

∣∣∣∣ f (−x) − f (c)
−x− c

− f ′(c)
∣∣∣∣

=
∣∣∣∣ f (x) − f (−c)

−x− c
− f ′(c)
∣∣∣∣ =
∣∣∣∣− f (x) − f (−c)

x + c
− f ′(c)
∣∣∣∣

=
∣∣∣∣ f (x) − f (−c)

x + c
+ f ′(c)
∣∣∣∣ =
∣∣∣∣ f (x) − f (−c)

x− (−c)
− (−f ′(c))

∣∣∣∣ .
Thus f ′(−c) = −f ′(c). As c ∈ (−a, a) was arbitrary, it follows that f ′ is odd.

f ′(0) = −f ′(−0) = −f ′(0), and so 2f ′(0) = 0, which implies that f ′(0) = 0.

Solution to Exercise 4.4

We have
101
100

=
mv

m0
=

1
m0

· mv =
1
m0

· m0√
1 − v2/c2

=
1√

1 − v2/c2
.

As left hand side is close to 1, we expect that v should be small compared to c. We have for
x ≈ 0 that

f (x) :=
1√

1 − x
≈ f (0) + f ′(0)x =

1√
1 − 0

− 1
2(1 − x)3/2

· (−1)
∣∣∣
x=0

· x = 1 +
1
2
· x.

(The above calculation of the derivative may be accepted on faith now, but we will soon learn
how to calculate the derivatives of fractional powers.) Thus we have

101
100

≈ 1 +
1
2
· v2

c2
,

and so
v2

c2
=

2
100

. Consequently, v ≈
√

2
10

c ≈ 0.1414c.

Solution to Exercise 4.5

Let ε > 0. As f is differentiable at c, there is a δ1 > 0 such that whenever 0 < |x− c|< δ1,∣∣∣∣ f (x) − f (c)
x− c

− f ′(c)
∣∣∣∣ < ε.
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Also, since g is differentiable at c, there is a δ2 > 0 such that whenever 0 < |x− c|< δ2,∣∣∣∣g(x) − g(c)
x− c

− g′(c)
∣∣∣∣ < ε.

Let 0 < x− c < min{δ, δ1, δ2, b− c}. Then 0 < |x− c|< δ1, 0 < |x− c|< δ2, and for such
x, f (x) = g(x), giving

| f ′(c) − g′(c)| ≤
∣∣∣∣ f ′(c) − f (x) − f (c)

x− c
+

g(x) − g(c)
x− c

− g′(c)
∣∣∣∣

≤
∣∣∣∣ f ′(c) − f (x) − f (c)

x− c

∣∣∣∣+
∣∣∣∣g(x) − g(c)

x− c
− g′(c)

∣∣∣∣ < ε + ε = 2ε.

As the choice of ε > 0 was arbitrary, we obtain | f ′(c) − g′(c)| ≤ 0, that is, f ′(c) = g′(c).

Solution to Exercise 4.6

For x �= 0, we have

f (x) − f (0)
x− 0

=

⎧⎪⎪⎨
⎪⎪⎩

x2 − 02

x− 0
for x ∈ Q,

0 − 02

x− 0
for x /∈ Q

⎫⎪⎪⎬
⎪⎪⎭

=

{
x if x ∈ Q,

0 if x /∈ Q.

Let ε > 0. Set δ = ε > 0. Whenever x ∈ R satisfies 0 < |x− 0|< δ, we have∣∣∣∣ f (x) − f (0)
x− 0

− 0

∣∣∣∣ =
{
|x− 0| if x ∈ Q,

|0 − 0| = 0 if x /∈ Q.

}
< δ = ε.

So f is differentiable at 0. But f can’t be differentiable at any nonzero x, since f is not con-
tinuous at any nonzero x. The lack of continuity of f at each nonzero x can be seen easily as
follows using the sequential characterisation of continuity:

1◦ If x ∈ Q, then consider a sequence (rn)n∈N
of irrational numbers converging to x. If f

were continuous at x, then

0 = lim
n→∞

0 = lim
n→∞

f (rn) = f (x) = x2 �= 0,

a contradiction.

2◦ If x /∈ Q, then consider a sequence (qn)n∈N
of rational numbers converging to x. If f

were continuous at x, then

x2 = lim
n→∞

q2
n = lim

n→∞
f (qn) = f (x) = 0,

again a contradiction.

Solution to Exercise 4.7

For h > 0, small enough, we have

f (c + h) − f (c− h)
2h

=
f (c + h) − f (c) + f (c) − f (c− h)

2h

=
1
2
f (c + h) − f (c)

h
+

1
2
f (c) − f (c− h)

h
.
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Since f is differentiable at c, we have

lim
h→0
h>0

f (c + h) − f (c)
h

= f ′(c) and lim
h→0
h>0

f (c) − f (c− h)
h

= lim
h→0
h>0

f (c + (−h)) − f (c)
−h

= f ′(c).

Consequently, lim
h→0
h>0

f (c + h) − f (c− h)
2h

=
1
2
· f ′(c) +

1
2
· f ′(c) = f ′(c).

The converse is not true. For example, take f given by f (x) = |x|, x ∈ R, and c = 0. Then for
h > 0, we have

f (c + h) − f (c− h)
2h

=
|0 + h| − |0 − h|

2h
=

h− h
2h

= 0.

Hence lim
h→0
h>0

f (c + h) − f (c− h)
2h

exists (and is = 0). But f is not differentiable at c = 0.

Solution to Exercise 4.8

If x �= 0, then f is differentiable at x and we have

f ′(x) = 2x sin
1
x

+ x2

(
cos

1
x

)(
− 1
x2

)
= 2x sin

1
x
− cos

1
x

.

On the other hand, we have for x �= 0 that

f (x) − f (0)
x− 0

= x sin
1
x

,

and so, given ε > 0, if we set δ = ε > 0, then for all x ∈ R satisfying 0 < |x− 0|= |x|< δ = ε,∣∣∣∣ f (x) − f (0)
x− 0

− 0

∣∣∣∣ =
∣∣∣∣x sin

1
x

∣∣∣∣ = |x| ·
∣∣∣∣sin 1

x

∣∣∣∣ ≤ |x| · 1 < δ = ε.

Consequently, f is differentiable at 0, and its derivative is f ′(0) = 0.

If f ′ were continuous, then since the sequence ( 1
2πn )n∈N

converges to 0, it would follow that
also (f ′( 1

2πn ))n∈N
converges to f ′(0) = 0. However, for all n ∈ N,

f ′
(

1
2πn

)
=

2
2πn

sin(2πn) − cos(2πn) = 0 − 1 = −1.

Hence f ′ is not continuous at 0. (So f is differentiable, but not ‘continuously differentiable’.)

0.015

0.010

0.005

−0.10 −0.05 0.05 0.10
x

−0.005

−0.010

−0.015

0
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Solution to Exercise 4.9

(B), (C).

Solution to Exercise 4.10

We use the Product Rule repeatedly:

(fgh)′(c) = f ′(c)(gh)(c) + f (c)(gh)′(c) = f ′(c)g(c)h(c) + f (c)(g′(c)h(c) + g(c)h′(c))

= f ′(c)g(c)h(c) + f (c)g′(c)h(c) + f (c)g(c)h′(c).

(For example, (x3)′ = (x · x · x)′ = 3 · x′ · x · x = 3 · 1 · x2 = 3x2.)

Solution to Exercise 4.11

We have W(x) = a(x)d(x) − b(x)c(x) (x ∈ R), and so

W ′(x) = a′(x)d(x) + a(x)d′(x) − b′(x)c(x) − b(x)c′(x)

= det

[
a′(x) b(x)

c′(x) d(x)

]
+ det

[
a(x) b′(x)

c(x) d′(x)

]
.

Solution to Exercise 4.12

We have

f ′(x) =
3x2

3
− 2x

2
− 2 = x2 − x− 2 = (x + 1)(x− 2).

Hence {x ∈ R : f ′(x) = 0} = {−1, 2}, and

{x ∈ R : (x + 1)(x− 2) > 0} = (−∞,−1)
⋃

(2,∞).

The plots are shown below. We notice that f (solid line) has a maximum and a minimum in
[−3, 3] where f ′ (dashed line) is 0, and f is increasing where f ′ > 0.

10

8

6

4

2

−2

−4

−6

−3 −2 −1 0 1 2
x

3
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Solution to Exercise 4.13

Let α ∈ R be such that p(x) = (x− α)2q(x) for some polynomial q. Then p(α) = 0, that is,

1 +
α

1!
+

α2

2!
+ · · · + αn

n!
= 0. (30)

Also, p′(x) = 2(x− α)q(x) + (x− α)2q(x), and so p′(α) = 0. But

0 = p′(α) =
d
dx

(
1 +

x
1!

+
x2

2!
+ · · · + xn

n!

)∣∣∣
x=α

= 0 +
1
1!

+
2x
2!

+ · · · + nxn−1

n!

∣∣∣
x=α

= 1 +
x
1!

+
x2

2!
+ · · · + xn−1

(n− 1)!

∣∣∣
x=α

= 1 +
α

1!
+

α2

2!
+ · · · + αn−1

(n− 1)!
. (31)

Subtracting (30) and (31), we obtain
αn

n!
= 0,

and so α = 0. But then p(α) = 1 �= 0, a contradiction!

Solution to Exercise 4.14

By the Quotient Rule, we have

cot′ x =
d
dx

cos x
sin x

=
(− sin x)(sin x) − (cos x)(cos x)

(sin x)2
= − 1

(sin x)2
= −(cosec x)2,

sec′ x =
d
dx

1
cos x

=
−(− sin x)
(cos x)2

= (tan x)(sec x),

cosec′ x =
d
dx

1
sin x

=
− cos x
(sin x)2

= −(cot x)(cosec x).

Solution to Exercise 4.15

We have by the Quotient Rule that

d
dx

4 sin x
2x + cos x

=
(4 cos x)(2x + cos x) − 4(sin x)(2 − sin x)

(2x + cos x)2

=
8x cos x + 4(cos x)2 − 8 sin x + 4(sin x)2

(2x + cos x)2

=
8x cos x− 8 sin x + 4

(2x + cos x)2
.
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Solution to Exercise 4.16

For x ∈ (0,∞), we have

f ′(x) = − 1
(1 + x2)2

· 2x = − 2x
(1 + x2)2

�= 0.

Hence by the Differentiable Inverse Theorem, f−1 is differentiable and for

y = f (x) =
1

1 + x2
∈ (0, 1) (so that x =

√
1
y
− 1),

we have

(f−1)′(y) =
1

f ′(x)
=

1

− 2x
(1 + x2)2

= − (1 + x2)2

2x
= − (1 + 1/y− 1)2

2
√

1/y− 1

= − 1/y2

2
√

1/y− 1
= − 1

2y
√

y(1 − y)
.

Solution to Exercise 4.17

That f is strictly increasing follows from Corollary 4.10 that we will learn about later: indeed,
f ′(x) = 1 + cos x > 1 − 1 = 0, where the last inequality follows from the fact that cos x > −1
for all x ∈ (−π

2 , π
2 ).

For x ∈ (−π
2 , π

2 ), we have
f ′(x) = 1 + cos x �= 0.

Hence by the Differentiable Inverse Theorem, f−1 is differentiable and for

y = f (x) = x + sin x,

we have

(f−1)′(y) =
1

f ′(x)
=

1
1 + cos x

=
1

1 + cos(f−1(y))

As f (0) = 0 + sin 0 = 0, it follows that f−1(0) = 0, and so

(f−1)′(0) =
1

1 + cos(f−1(0))
=

1
1 + cos 0

=
1

1 + 1
=

1
2

.

Solution to Exercise 4.18

We have for x ∈ R that

f ′(x) =
(
cos(cos(1 + x2))

)
·
(
− sin(1 + x2)

)
· (2x) = −2x · sin(1 + x2) · cos(cos(1 + x2)).

Solution to Exercise 4.19

For x �= 1, we have

S(x) :=
n∑

k=1

xk =
(1 − x)(x + x2 + · · · + xn)

1 − x
=

x− xn+1

1 − x
.
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Differentiating with respect to x, we obtain
n∑

k=1

kxk−1 =
(1 − (n + 1)xn)(1 − x) − (x− xn+1)(−1)

(1 − x)2

=
1 − (n + 1)xn − x + (n + 1)xn+1 + x− xn+1

(1 − x)2

=
1 − (n + 1)xn + nxn+1

(1 − x)2
.

Multiplying by x, and differentiating again, we obtain
n∑

k=1

k2xk−1 =
2

(1 − x)3
(x− (n + 1)xn+1 + nxn+2)+

1
(1−x)2

(1− (n + 1)2xn + n(n + 2)xn+1)

=
1 + x− (n + 1)2xn + (2n2 + 2n− 1)xn+1 − n2xn+2

(1 − x)3
.

Multiplying by x again and then substituting x = 1/2 yields
n∑

k=1

k2

2k
= 6 − n2 + 4n + 6

2n
.

Solution to Exercise 4.20

(1) Putting x = 3, we get 4n = (1 + 3)n =
n∑

k=0

(n
k

)
3k, and so

n∑
k=1

(n
k

)
3k = 4n − 1.

(2) Differentiating (1 + x)n =
n∑

k=0

(n
k

)
xk, we get n(1 + x)n−1 =

n∑
k=1

(n
k

)
kxk−1.

Multiplying by x, we get nx(1 + x)n−1 =
n∑

k=1

(n
k

)
kxk, and differentiating we get,

n(1 + x)n−1 + n(n− 1)(1 + x)n−2 =
n∑

k=1

(n
k

)
k2xk−1.

Finally, by setting x = 1, we obtain
n∑

k=1

(n
k

)
k2 = n2n−1 + n(n− 1)2n−2 = n2n−2(2 + n− 1) = n(n + 1)2n−2.

(3) As (1 + x2)n =
n∑

k=0

(n
k

)
x2k, x(1 + x2)n =

n∑
k=0

(n
k

)
x2k+1, and differentiating,

1 · (1 + x2)n + x · n(1 + x2)n−1 · 2x =
n∑

k=0

(n
k

)
(2k + 1)x2k.

Setting x = 1, we get
n∑

k=0

(2k + 1)
(n
k

)
= 2n + n2n−1 · 2 = (n + 1)2n, and so

n∑
k=1

(2k + 1)
(n
k

)
= (n + 1)2n − 1.
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Solution to Exercise 4.21

We have f (·) + f (−·) ≡ 0 since f is odd. So its derivative is the zero function too. But on the
other hand, using the Chain Rule, we also have that

0 = f ′(x) · 1 + f ′(−x) · (−1) = f ′(x) − f ′(−x),

and so f ′(x) = f ′(−x) for all x ∈ (−a, a). Consequently, f ′ is even.

Solution to Exercise 4.22

Using the Chain Rule, we obtain the following values.

x ( f ◦ g)(x) ( f ◦ g)′(x) (g ◦ f )(x) (g ◦ f )′(x)

0 3 6 · 3 = 18 2 9 · 1 = 9

1 0 7 · 9 = 63 1 9 · (−9) = −81

2 2 (−9) · 9 = −81 3 3 · 7 = 21

3 1 1 · (−3) = −3 0 (−3) · 6 = −18

Solution to Exercise 4.23

f f ′ f ′ ◦ f f ◦ f ′ ( f ◦ f )′

1/x3 −3/x4 −3x12 −x12/27 3x12 · (−3/x4) = 9x8

cos x − sin x − sin(cos x) cos(− sin x) (− sin(cos x)) · (− sin x)

x3 3x2 3x6 27x6 3x6 · 3x2 = 9x8

3 0 0 3 0 · 0 = 0

3x 3 3 9 3 · 3 = 9

Solution to Exercise 4.24

(1) g′(x) = f ′(x2) · 2x = 2xf ′(x2).

(2) g′(x) = 2f (x) · f ′(x).
(3) g′(x) = f ′( f (x)) · f ′(x).

(4) g′(x2) · 2x = f ′(x), and so for all x > 0, we have g′(x2) =
f ′(x)
2x

.

With y := x2, we obtain g′(y) =
f ′(

√
y)

2
√
y

for all y > 0.

Solution to Exercise 4.25

First we note that f (1) = 0 because

f (1) = f (1 · 1) = f (1) + f (1).
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We have

f ′(c) = lim
k→1

f (kc) − f (c)
kc− c

= lim
k→1

1
c
· f (k) + f (c) − f (c)

k − 1

= lim
k→1

1
c
· f (k)
k − 1

= lim
k→1

1
c
· f (k) − 0

k − 1

=
1
c

lim
k→1

f (k) − f (1)
k − 1

=
f ′(1)
c

.

So f ′(x) = f ′(1)/x, x ∈ (0,∞). So f ′ is infinitely differentiable, and

f (n)(x) =
(−1)n−1(n− 1)!f ′(1)

xn
, x ∈ (0,∞).

In particular, if f ′(1) = 2, then f (n)(3) =
(−1)n−1(n− 1)!2

3n
.

Solution to Exercise 4.26

(1) We have

(fg)′′ = ((fg)′)′ = (f ′g + f g′)′ = (f ′g)′ + ( f g′)′

= (f ′)′g + f ′g′ + f ′g′ + f (g′)′

= f ′′g + 2f ′g′ + fg′′,

and so the claim follows.

(2) When n = 1, we have for x ∈ I that

(fg)′(x) = f ′(x)g(x) + f (x)g′(x) =
(

1
0

)
f (0)(x)g(1−0)(x) +

(
1
1

)
f (1)(x)g(1−1)(x),

and so the claim is true when n = 1.

Suppose that the claim is true for some n ∈ N. Then for x ∈ I,

(fg)(n+1)(x) =
(
(fg)(n)
)′

(x) =

(
n∑

k=0

(n
k

)
f (k)g(n−k)

)′
(x)

=
n∑

k=0

(n
k

)(
f (k)g(n−k)

)′
(x)

=
n∑

k=0

(n
k

)(
f (k+1)(x)g(n−k)(x) + f (k)(x)g(n−k+1)(x)

)
.

Using the facts that(n
0

)
= 1 =

(
n + 1

0

)
,

(n
n

)
= 1 =

(
n + 1
n + 1

)
,

(
n

k − 1

)
+
(n
k

)
=
(
n + 1
k

)
,
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n−1∑
k=0

(n
k

)
f (k+1)(x)g(n−k)(x) =

n∑
k=1

(
n

k − 1

)
f (k)(x)g(n−k+1)(x),

we obtain

(fg)(n+1)(x) =
n∑

k=0

(n
k

)
f (k+1)(x)g(n−k)(x) +

n∑
k=0

f (k)(x)g(n−k+1)(x)

=
n−1∑
k=0

(n
k

)
f (k+1)(x)g(n−k)(x) +

(n
n

)
f (n+1)(x)g(0)(x)

+
(n

0

)
f (0)(x)g(n+1)(x) +

n∑
k=1

(n
k

)
f (k)(x)g(n−k+1)(x)

=
(
n + 1

0

)
f (0)(x)g(n+1)(x)

+
n−1∑
k=1

((
n

k − 1

)
+
(n
k

))
f (k)(x)g(n−k+1)(x)

+
(
n + 1
n + 1

)
f (n+1)(x)g(0)(x)

=
n+1∑
k=0

(
n + 1
k

)
f (k+1)(x)g(n+1−k)(x).

Consequently, the claim follows by induction.

(3) Consider the map Θx : (0,∞) → R given by Θx(t) = tx, t > 0. Then

Θ(n)
x (t) = x(x− 1) · · · (x− n + 1)tx−n = x[n]tx−n,

and so by the first part of this exercise,

Θ(n)
x+y(t) = (tx+y)(n) = (txty)(n) = (ΘxΘy)

(n)(t) =
n∑

k=0

(n
k

)
Θ(k)

x (t)Θ(n−k)
y (t),

that is, (x + y)[n]tx+y−n =
n∑

k=0

(n
k

)
x[k]tx−ky[n−k]ty−(n−k). Setting t = 1 gives

(x + y)[n] =
n∑

k=0

(n
k

)
x[k]y[n−k].

Solution to Exercise 4.27

(D). Indeed,

( f ◦ g)′′ = (( f ◦ g)′)′ = ((f ′ ◦ g) · g′)′ = (f ′ ◦ g)′ · g′ + (f ′ ◦ g) · g′′

= ((f ′′ ◦ g) · g′) · g′ + (f ′ ◦ g) · g′′

= (f ′′ ◦ g) · (g′)2 + (f ′ ◦ g) · g′′.
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Solution to Exercise 4.28

(1) We have

f ′(x) =
−n

(x− a)n+1
and f ′′(x) =

(−n)(−(n + 1))
(x− a)n+2

.

If f (k)(x) =
(−1)kn(n + 1) · · · (n + (k − 1))

(x− a)n+k
, then

f (k+1)(x) =
(−1)kn(n + 1) · · · (n + (k − 1))(−(n + k))

(x− a)n+k+1

=
(−1)k+1n(n + 1) · · · (n + (k − 1))(n + (k + 1 − 1)

(x− a)n+k+1
.

Thus it follows by induction that for all k ∈ N, f (k)(x) =
(−1)kn(n + 1) · · · (n + (k − 1))

(x− a)n+k
.

(2) We have f (x) =
1
2

(
1

x− 1
− 1

x + 1

)
, and so by the previous part,

f (k)x =
1
2

(
(−1)k1 · 2 · · · k

(x− 1)k+1
− (−1)k1 · 2 · · · k

(x + 1)k+1

)
=

(−1)kk!
2

·

(
(x + 1)k+1 − (x− 1)k+1

)
(x2 − 1)k+1

.

Solution to Exercise 4.29

f (x) = x2 if x > 0, and so f ′(x) = 2x = 2|x| if x > 0. Similarly, f (x) = −x2 if x < 0, and so
f ′(x) = −2x = 2|x| if x < 0. Moreover, we have

lim
x→0

f (x) − f (0)
x− 0

= lim
x→0

x|x| − 0
x

= lim
x→0

|x| = |0| = 0.

Hence f is differentiable at 0 as well, and f ′(0) = 0 = 2 · 0 = 2|0|. Consequently, f is differ-
entiable on R, and f ′(x) = 2|x|, x ∈ R.

f ′ is not differentiable at 0.

fn(x) = xn|x| is n times continuously differentiable, but f (n)(x) = n!|x|, x ∈ R, and so f (n) is
not differentiable at 0.

Solution to Exercise 4.30

We must have f (1) = g(1) = 2, since the graphs meet at (1, 2). So we have 1 + a + b = 2
and 1 − c = 2, that is, c = −1 and a + b = 1.

The tangent line being the same at (1, 2) implies that f ′(1) = g′(1), and so

(2x + a)
∣∣∣
x=1

= (3x2)
∣∣∣
x=1

,

that is, 2 + a = 3, and so a = 1. Using a + b = 1 (derived earlier), we obtain b = 0. So we
have a = 1, b = 0, c = −1. Then

f (x) = x2 + x and

g(x) = x3 + 1.

So f (1) = 2 = g(1). Also, f ′(x) = 2x + 1 and g′(x) = 3x2, so that f ′(1) = 3 and g′(1) = 3.
Hence the tangent lines will be the same.
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8

6

4

2

0
−2

−2 −1 1
x

2

−4

−6

Solution to Exercise 4.31

The point (1/9, 5) corresponds to t = 3. (Indeed, 1/t2 = 1/9 gives t = ±3, and as t > 0,
t = 3. We check that then y(3) =

√
32 + 16 =

√
25 = 5.) We have

x′(t) = − 2
t3

, x′(3) = − 2
33

= − 2
27

, and

y′(t) =
t√

t2 + 16
, y′(3) =

3√
32 + 16

=
3
5

.

So the equation of the tangent at the point (1/9, 5) to the curve is given by

y− 5

x− 1
9

=
y′(3)
x′(3)

=
3/5

−2/27
= −81

10
,

that is, y− 5 = −81
10

(
x− 1

9

)
.

10

8

6

4

2

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Solution to Exercise 4.32

(C) is true, since the tangent line is given by

y = f (c) + f ′(c)(x− c),

and when x = 0, we obtain y = f (c) − f ′(c)c, and so the tangent line intersects the y-axis at
the point (0, f (c) − f ′(c)c). That (A),(B),(D) are false can be seen by considering the constant
function f ≡ 1.
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Solution to Exercise 4.33

(1) We want (x0, y0) satisfying x2
0 + x0y0 + y2

0 = 9 such that
dy
dx

∣∣∣
x0

= 0.

We have 2x + 1 · y + x
dy
dx

+ 2y
dy
dx

= 0, and so
dy
dx

=
−2x− y
x + 2y

.

So 2x0 + y0 = 0, that is, y0 = −2x0 and upon substituting this in x2
0 + x0y0 + y2

0 = 9 we obtain
x2

0 + x0(−2x0) + (−2x0)
2 = 9, that is, x0 ∈ {

√
3,−

√
3}. So the points where the tangent is

horizontal are (
√

3,−2
√

3) and (−
√

3, 2
√

3).

(2) A similar calculation5 gives (−2
√

3,
√

3) and (2
√

3,−
√

3).

4

3

2y

1

−1

−4 −3 −2 −1 1 2
x

3 4

−2

−3

−4

0

Solution to Exercise 4.34

Using implicit differentiation, we obtain

sin(xy− y2) + x cos(xy− y2) ·
(
y + x

dy
dx

− 2y · dy
dx

)
= 2x. (32)

When x = y = 1, this gives
dy
dx

= −1.

So the tangent to the curve at (1, 1) is given by
y− 1
x− 1

= −1, that is, x + y = 2.

1.5

1

0.5

y

0
0 0.5

x
1 1.5

5 or alternately, a symmetry argument
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Solution to Exercise 4.35

(1) By Implicit Differentiation,
2
3
x−1/3 +

2
3
y−1/3 dy

dx
= 0, (33)

and so
dy
dx

= −y1/3

x1/3
. Thus

dy
dx

∣∣∣
x=1

= −y1/3

x1/3

∣∣∣
x=1

= −1.

From
dy
dx

= −y1/3

x1/3
, it follows using the Quotient Rule that

d2y
dx2

= −
1
3
y−2/3 dy

dx
· x1/3 − y1/3 · 1

3
x−2/3

x2/3

= −

1
3
y−2/3

(
−y1/3

x1/3

)
· x1/3 − y1/3 · 1

3
x−2/3·

x2/3
=

y−1/3 + y1/3x−2/3

3x2/3
.

Consequently,
d2y
dx2

∣∣∣
x=1

=
y−1/3 + y1/3x−2/3

3x2/3

∣∣∣
x=1

=
2
3

.

Alternately, we could have used implicit differentiation one more time in (33) to obtain:

2
3
·
(
−1

3

)
· x−4/3 +

2
3
·
(
−1

3

)
· y−4/3 dy

dx
· dy
dx

+
2
3
y−1/3 · d

2y
dx2

= 0,

that is,

x−4/3 + y−4/3

(
dy
dx

)2

− 3y−1/3 d
2y

dx2
= 0.

Substituting x = 1 = y and
dy
dx

∣∣∣
x=1

= −1, we can solve for
d2y
dx2

∣∣∣
x=1

to obtain
d2y
dx2

∣∣∣
x=1

=
2
3

.

(2) The equation of the tangent line at the point (1, 1) is given by
y− 1
x− 1

= −1,

that is, x + y = 2. The plots are displayed in the following picture, showing the expected
tangency.

3

2

1

0
0 1 2

x
3
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(3) From the picture, we see that as x increases from 1, the slopes of the tangent lines become
more horizontal, that is, they increase from −1, while if x reduces from the value 1, then the
slopes of the tangent lines become steeper, that is they decrease from −1. This means that

d2y
dx2

=
d
dx

dy
dx

at x = 1 should be positive, and indeed we have found that
d2y
dx2

∣∣∣
x=1

=
2
3

> 0.

Solution to Exercise 4.36

By implicit differentiation, we obtain

1 · y3 + x · 3y2 dy
dx

+ 3x2y + x3 dy
dx

= 0.

If there was a horizontal tangent at a point, then

dy
dx

= 0

there, and so y3 + 3x2y = 0, that is y(y2 + 3x2) = 0. Consequently, we have either y = 0 or
y2 + 3x2 = 0. The latter equation implies that y = x = 0, which is impossible since xy3 +
x3y = 0 �= 4, showing that the point doesn’t lie on the curve, a contradiction. Hence y = 0,
but then again we get the contradiction that xy3 + x3y = 0 �= 4. So the tangent line to the curve
at any point can’t be horizontal.

Solution to Exercise 4.37

With f (x) = x2 − 2, we have f ′(x) = 2x, and so the update equation in the Newton–Raphson
method is

xn+1 = xn −
f (xn)
f ′(xn)

= xn −
x2
n − 2
2xn

= xn −
xn
2

+
1
xn

=
xn
2

+
1
xn

.

Taking x0 = 1, we get

x1 =
1
2

+ 1 =
3
2

= 1.5,

x2 =
3
4

+
2
3

=
17
12

= 1.41666 · · · ,

x3 =
17
24

+
12
17

=
577
408

≈ 1.4142157.

Solution to Exercise 4.38

We have with p(x) := x4 − x3 − 75 that

p(3) = 34 − 33 − 75 = 81 − 27 − 75 = 6 − 27 < 0,

p(4) = 44 − 43 − 75 = 256 − 64 − 75 = 256 − 139 > 0.

By the intermediate value property, there exists an x∗ ∈ [3, 4] such that p(x∗) = 0.
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The update equation in the Newton–Raphson method is

xn+1 = xn −
f (xn)
f ′(xn)

= xn −
x4
n − x3

n − 75
4x3

n − 3x2
n

=
4x4

n − 3x3
n − x4

n + x3
n + 75

4x3
n − 3x2

n
=

3x4
n − 2x3

n + 75
4x3

n − 3x2
n

.

The following table gives the values of xn obtained for successive values of n:

n Approximate value of xn

0 3.5

1 3.2611

2 3.2291

3 3.2286

4 3.2286

(Using MATLAB, one can check that x∗ = 3.228577 · · ·.)

Solution to Exercise 4.39

We have

f ′(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
√
x

if x ≥ 0,

1

2
√
−x

if x < 0.

Hence the update equation becomes (assuming xn �= 0)

xn+1 = xn −
f (xn)
f ′(xn)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn −
√
xn
1

2
√
xn

if xn > 0,

xn −
−√−xn

1
2
√−xn

if xn < 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= −xn.

This means that if we start with x0 �= 0, then the sequence of iterates generated by the
Newton–Raphson method is x0,−x0, x0,−x0, x0,−x0, · · ·, which diverges.

0
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Solution to Exercise 4.40

The distance between (0, b) and a point (x, x2) on the parabola is given, using, Pythagoras’s
Theorem, by d(x) =

√
(x− 0)2 + (x2 − b)2, x ∈ R. We have

lim
x→±∞

d(x) = +∞,

and so there exists an R > 0 such that whenever |x| > R, d(x) > d(0) = b. On [−R,R], it
follows from the Extreme Value Theorem that the continuous function d has a minimiser, say
at x∗ ∈ [−R,R], and in particular d(x∗) ≤ d(0) = b. But for x ∈ R\[−R,R], d(x) > b ≥ d(x∗).
So x∗ is a global minimiser. Hence d′(x∗) = 0. But

d′(x∗) =
1

2
√

(x∗ − 0)2 + (x2
∗ − b)2

(2x∗ + 2(x2
∗ − b)2x∗).

We have that if b ∈ (0, 1/2], then d′(x∗) = 0 if and only if x∗ = 0, while if b > 1/2, then

d′(x∗) = 0 if and only if x∗ ∈ {0,
√

b− 1
2 ,−
√
b− 1

2}. We have if b > 1/2 that

d
(
±
√
b− 1

2

)
=

√
b− 1

4
< b,

where the last inequality follows from that fact that (b− 1/2)2 > 0, that is, b2 > b− 1/4 and
so b >

√
b− 1/4. Thus the minimum value of the distance is⎧⎨

⎩
√

b− 1
4 if b ≥ 1

2 ,

b if 0 < b ≤ 1
2 .

Solution to Exercise 4.41

We have

f (x + π) = (sin(x + π) − cos(x + π))2

= (− sin x− (− cos x))2 = (sin x− cos x)2 = f (x), x ∈ R,

and so f is π-periodic. It is also continuous, and so by the Extreme Value Theorem, it possesses
a maximum value on [0, π], which serves as the maximum value on R. We have

f ′(x) = 2(sin x− cos x) · (cos x− (− sin x)) = 2((sin x)2 − (cos x)2) = −2 cos(2x), x ∈ R.

So f ′(x) = 0 if and only if

x ∈
{

(2n + 1)
π

4
: n ∈ Z

}
.

Hence these x are candidates for the maximisers. We look for maximisers in [0, π]. Then the
candidates for maximisers are π/4 and 3π/4. But f (π/4) = 0, while

f (3π/4) =
(

1√
2
−
(
− 1√

2

))2

= 2.

Thus the maximum value of f is 2.
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Solution to Exercise 4.42

Let O ≡ (0, 0), P ≡ (x, y) and Q ≡ (X,Y). By Pythagoras’s Theorem, the length of OP is√
x2 + y2, and the length of PQ is

√
(X − x)2 + (Y − y)2. Hence the total time of travel from

(0, 0) to (X,Y) is

T(y) =

√
x2 + y2

1
+

√
(X − x)2 + (Y − y)2

1
μ

.

Thus

T ′(y) =
y√

x2 + y2
− μ · Y − y√

(X − x)2 + (Y − y)2
= sin(θa(y)) − μ · sin(θg(y)).

Consequently, for the minimising y, we have T ′(y) = 0, that is,

sin θa
sin θg

= μ.

Solution to Exercise 4.43

Let p be given by p(x) = Ax2 + Bx + C, x ∈ R, where A,B,C are constants, with A �= 0.
Then the slope of the tangent at the midpoint is

p′
(
a + b

2

)
= 2Ax + B

∣∣∣
x= a+b

2

= A · (a + b) + B.

On the other hand, the slope of the chord is

p(b) − p(a)
b− a

=
Ab2 + Bb +�C − Aa2 − Ba−�C

b− a
=A · b

2 − a2

b− a
+B · b− a

b− a
=A · (a + b)+B.

So the claim follows.

Solution to Exercise 4.44

(B).

Solution to Exercise 4.45

If a, b ∈ R and a < b, then applying the Mean Value Theorem to the function cos ·, we obtain

cos a− cos b
a− b

= − sin c

for some c ∈ (a, b). But as | sin θ| ≤ 1 for all real θ, it follows that | cos a− cos b| ≤ |a− b|.

Solution to Exercise 4.46

Let us suppose f (0) �= 0. Consider first the case that f (0) > 0. Then by the Mean Value
Theorem applied to [−a, 0], we have

f (0) − f (−a)
0 − (−a)

= f ′(c)
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for some c between −a and 0. Hence

1 = 0 + 1 <
f (0)
a

+ 1 =
f (0) − (−a)

a
=

f (0) − f (−a)
0 − (−a)

= f ′(c) ≤ 1,

a contradiction.

Next suppose that f (0) < 0. Then by the Mean Value Theorem applied to [0, a], we have

f (a) − f (0)
a− 0

= f ′(d)

for some d between 0 and a. Hence

1 = 1 − 0 < 1 − f (0)
a

=
a− f (0)

a
=

f (a) − f (0)
a− 0

= f ′(d) ≤ 1,

a contradiction.

Solution to Exercise 4.47

Given ε > 0, let R′ > 0 be such that for all x > R′, | f ′(x) − L′|< ε. Take any R > R′ such that
for all x ∈ R with x > R, | f (x) − L|< ε/2. Then by the Mean Value Theorem applied to f in
[R + 1,R + 2],

f (R + 2) − f (R + 1)
1

= f ′(ξ)

for some ξ ∈ (R + 1,R + 2). So

| f ′(ξ)| = | f (R + 2) − f (R + 1)| = | f (R + 2) − L + L− f (R + 1)| ≤ ε

2
+

ε

2
= ε.

Hence |L′| = |L′ − f ′(ξ) + f ′(ξ)| ≤ |L′ − f ′(ξ)| + | f ′(ξ)| ≤ ε + ε = 2ε. As ε > 0 was arbi-
trary, it follows that L′ = 0.

Solution to Exercise 4.48

Let x ∈ (a, b)\{c}. By the Mean Value Theorem applied to the compact interval with end-
points x and c, we have

f (x) − f (c)
x− c

= f ′(cx),

for some point cx lying between x and c. Note that if the distance of x to c is less than a certain
amount δ, then the distance of cx to c will also be less than the amount δ.

Let L := lim
x→c

f ′(x).
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Let ε > 0. Then there exists a δ > 0 such that for all x ∈ (a, b) satisfying 0 < |x− c|< δ, we
have that | f ′(x) − L|< ε. Hence for x ∈ (a, b) satisfying 0 < |x− c|< δ, we have∣∣∣∣ f (x) − f (c)

x− c
− L

∣∣∣∣ = | f ′(cx) − L|< ε.

So f ′(c) exists and equals L.

Solution to Exercise 4.49

If x, y ∈ (a, b) and x < y, then we have by the Mean Value Theorem applied to the interval
[x, y] that

f (x) − f (y)
x− y

= f ′(c)

for some c ∈ (a, b). Since | f ′(c)| ≤ M, we obtain that | f (x) − f (y)| ≤ M|x− y|. Clearly, this
is also true if x = y, and (by interchanging the roles of x and y) if x > y. Hence for all x, y in
(a, b), there holds | f (x) − f (y)| ≤ M|x− y|. Let ε > 0. Set δ = ε/M. Then if x, y ∈ (a, b) and
|x− y|< δ, we have | f (x) − f (y)| ≤ M|x− y|< Mδ = ε. Hence f is uniformly continuous
on (a, b).

Solution to Exercise 4.50

Consider f given by

f (x) =
c0

1
x +

c1

2
x2 + · · · + cd

d + 1
xd+1, x ∈ R.

Then f (0) = 0 and

f (1) =
c0

1
+

c1

2
+ · · · + cd

d + 1
= 0.

By Rolle’s Theorem, f ′(c) = 0 for some c ∈ (0, 1). But

f ′(x) =
c0

1
· 1 +

c1

2
· 2x + · · · + cd

d + 1
· (d + 1)xd = c0 + c1x + · · · + cdx

d,

and so the claim follows.

Solution to Exercise 4.51

Let x(0)
1 < · · · < x(0)

n+1 be such that f (x(0)
k ) = 0 for all k = 1, · · · , n + 1. By Rolle’s Theorem

applied to each [x(0)
k , x(0)

k+1], k = 1, · · · , n, we get the existence of x(1)
k ∈ (x(0)

k , x(0)
k+1),

k = 1, · · · , n such that f ′(x(1)
k ) = 0, k = 1, · · · , n. Clearly, x(1)

1 < · · · < x(1)
n . By Rolle’s

Theorem applied to f ′ on each [x(1)
k , x(1)

k+1], k = 1, · · · , n− 1, we get the existence of
x(2)
k ∈ (x(1)

k , x(1)
k+1), k = 1, · · · , n− 1 such that f ′′(x(2)

k ) = 0, k = 1, · · · , n− 1. Proceeding
in this manner, we eventually get the existence of an x(n)

n such that f (n)(x(n)
n ) = 0. See the

following picture.
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x1

(0)
x2

(0)
x3

(0)
xn

(0)
xn+1

(0)

x1

(1)
x2

(1)
x3

(1)
xn

(1)

x1

(2)
x2

(2)
xn−1

(2)

...

xn

(n)

f

f ′

f ′′

f(n)

Solution to Exercise 4.52

Consider f : R → R given by f (x) = x2 − x sin x− cos x, x ∈ R. Then

f
(
−π

2

)
=

π2

4
+

π

2
· 1 − 0 =

π2

4
+

π

2
> 0,

f (0) = 0 − 0 − 1 = −1 < 0,

f
(π

2

)
=

π2

4
− π

2
· 1 − 0 =

π(π − 2)
4

> 0.

So by the Intermediate Value Theorem, there exists a c1 ∈ (−π/2, 0) and also there exists a
c2 ∈ (0, π/2) such that f (c1) = f (c2) = 0.

Suppose that f has more than two distinct roots. Then by Rolle’s Theorem, f ′ would be
zero for at least two distinct real numbers. But

f ′(x) = 2x− 1 · sin x− x · cos x− (− sin x) = x(2 − cos x)︸ ︷︷ ︸
�=0

as | cos x|≤1

,

and so f ′(x) = 0 if and only if x = 0. Consequently, f has exactly two zeros.

Solution to Exercise 4.53

Applying the Mean Value Theorem to f ′ : [−1, 0] → R, there exists a c ∈ (−1, 0) such that

f ′(0) − f ′(−1)
0 − (−1)

=
0 − 1/2

1
= −1

2
= f ′′(c) ≥ 0,

a contradiction. So a function with the stated properties does not exist.
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Solution to Exercise 4.54

We have | f (x) − f (y)| ≤ (x− y)2 = |x− y|2, and so for x �= y we obtain∣∣∣∣ f (x) − f (y)
x− y

− 0

∣∣∣∣ ≤ |x− y|.

Let ε > 0. Then with δ := ε > 0, we have that whenever y satisfies 0 < |x− y|< δ = ε, we
have ∣∣∣∣ f (x) − f (y)

x− y
− 0

∣∣∣∣ ≤ |x− y|< δ = ε.

Thus f ′(x) = 0 for all x ∈ R.
Now suppose that a, b ∈ R and that a < b. Then by the Mean Value Theorem applied to

f on the interval [a, b], we obtain

f (a) − f (b)
a− b

= f ′(c)

for some c ∈ (a, b). But f ′(c) = 0, and so f (a) = f (b). Thus f is constant.

Solution to Exercise 4.55

Since x �→ f (x + n) is differentiable too, it follows that

x �→ f (x + n) − f (x)
n

= f ′(x)

is differentiable. Also, for all m ∈ N, we have

f ′(x + m) =
f (x + m + n) − f (x + m)

n
=

f (x + m + n) − f (x) + f (x) − f (x + m)
n

=
n + m
n

· f (x + m + n) − f (x)
n + m

− m
n
f (x + m) − f (x)

m

=
n + m
n

f ′(x) − m
n
f ′(x) = f ′(x).

Thus f ′′(x) =
f ′(x + n) − f ′(x)

n
=

f ′(x) − f ′(x)
n

= 0.

By the Mean Value Theorem applied to f ′, this gives that f ′ is a constant, that is, there is a
c ∈ R such that for all x ∈ R, f ′(x) = c. Applying the Mean Value Theorem to f , we obtain
for every nonzero real x that

f (x) − f (0)
x− 0

= f ′(z)

for some z between 0 and x. But since f ′ is constant, it follows that f (x) = f (0) + cx for all
x ∈ R.

Solution to Exercise 4.56

(1) Let g := y2 + (y′)2. Then g′ = 2y · y′ + 2y′ · y′′ = 2y′(y + y′′︸ ︷︷ ︸
=0

) = 0.

(2) We have
(A cos x + B sin x)′ = −A sin x + B cos x, and

(A cos x + B sin x)′′ = −A cos x− B sin x.

Thus (A cos x + B sin x)′′ + (A cos x + B sin x) = 0.



SOLUTIONS 411

If y = A cos x + B sin x, then

y(0) = A · 1 + B · 0 = A, and

y′(0) = −A sin x + B cos x
∣∣∣
x=0

= −A · 0 + B · 1 = B.

So if y = A cos x + B sin x, then A = y(0) and B = y′(0).

Now let y be any solution to y′′ + y = 0. Set f (x) := y(x) − y(0) cos x− y′(0) sin x. Then

f (0) = y(0) − y(0) · 1 − 0 = 0 and

f ′(0) = y′(0) + y(0) · 0 − y′(0) · 1 = 0.

Also, f ′′ + f = y′′ + y + 0 = 0 + 0 = 0. So f is also a solution. Hence by the previous part,

f 2 + (f ′)2 = ( f (0))2 + (f ′(0))2 = 0.

Consequently, f = f ′ ≡ 0. So y(x) = y(0) cos x + y′(0) sin x. Done!

(3) Let y(x) = sin(α + x). Then y′(x) = (cos(α + x)) · 1 and y′′(x) = (− sin(α + x)) · 1. So
y′′(x) + y(x) = − sin(α + x) + sin(α + x) = 0. Hence by the previous part,

sin(α + x) = y(0) cos x + y′(0) sin x = (sinα)(cos x) + (cos α)(sin x).

Setting x = β, we get sin(α + β) = (sin α)(cos β) + (cos α)(sin β).

Next consider y(x) := cos(α + x). Then y′(x) = − sin(α + x) and y′′(x) = − cos(α + x).
So y′′(x) + y(x) = − cos(α + x) + cos(α + x) = 0. Hence by the previous part,

cos(α + x) = y(0) cos x + y′(0) sin x = (cos α)(cos x) + (− sin α)(sin x).

Setting x = β, we get cos(α + β) = (cos α)(cos β) − (sin α)(sin β).

Solution to Exercise 4.57

(1) Suppose that there exist a, b ∈ R such that a < b and f (a) = a, f (b) = b. Applying the
Mean Value Theorem to f on [a, b], we obtain

f (b) − f (a)
b− a

=
b− a
b− a

= 1 = f ′(c)

for some c ∈ (a, b) ⊂ (0, 1). But as f ′(c) �= 1, we have arrived at a contradiction. Hence if f
has a fixed point, then it is unique.

(2) Let x1 ∈ R, and set xn+1 := f (xn) for n ∈ N. We claim that

| f (xn+1) − f (xn)| ≤ M|xn+1 − xn| (n ∈ N). (34)

This is clearly true if xn+1 = xn. If they are not equal, then we apply the Mean Value Theorem
to the interval with endpoints xn+1 and xn to obtain

f (xn+1) − f (xn)
xn+1 − xn

= f ′(c),

for some c between xn+1 and xn. As | f ′(c)| ≤ M, this yields the inequality (34).
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Thus we have by a repeated application of (34) that

|xn+1 − xn| = | f (xn) − f (xn−1)| ≤ M|xn − xn−1|
≤ M ·M|xn−1 − xn−2|
· · ·

≤ Mn−1|x2 − x1|.

Now consider the series x1 +
∞∑
n=1

(xn+1 − xn).

The estimate |xn+1 − xn| ≤ Mn−1|x2 − x1|, with M < 1, shows that this series converges abso-
lutely, by using the Comparison Test. Since the partial sums of the above series telescope, that
is, x1 + (x2 − x1) + (x3 − x2) + · · · + (xn+1 − xn) = xn+1, it follows that

x∗ := lim
n→∞

xn

exists. Since f is continuous, we also have that

f (x∗) = f
(

lim
n→∞

xn
)

= lim
n→∞

f (xn) = lim
n→∞

xn+1 = x∗.

So x∗ is a fixed point.

(3) See Figure 4.

(x1,x2)

(x2,x3)

(x3,x4)

y=x
f

x∗

x∗

x1

Figure 4. The zig-zag path (x1, x2) → (x2, x2) → (x2, x3) → · · ·.

(4) As f ′(x) = 1 − e x

(1 + e x)2
=

1 + e2x + e x

1 + e2x + 2e x
, and so 0 < f ′(x) < 1 for all x ∈ R.

If f had a fixed point x∗, then f (x∗) = x∗ would imply that

f (x∗) = x∗ +
1

1 + ex∗
= x∗,

and so we would have
1

1 + ex∗
= 0,

which is clearly impossible, since ex∗ > 0.
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We observe that although | f ′(x)|< 1 for all x ∈ R, it is not uniformly bounded away
from 1, that is, there does not exist an M < 1 such that for all x ∈ R, | f (x)|< M. Suppose, on
the contrary, that such an M exists. Then we would have for all x ∈ R that

1 − e x

(1 + e x)2
< M.

In particular, setting x = −n (n ∈ N), we obtain for all n ∈ N that 1 − e−n

(1 + e−n)2
< M.

Passing the limit as n → ∞ yields

1 − 0
(1 + 0)2

= 1 ≤ M,

a contradiction to the fact that M < 1. Thus there is no contradiction to the result from part (2).

Solution to Exercise 4.58

Taylor’s Formula gives for x �= 0 that there exists a cx between 0 and x, such that

sin x = sin 0 +
cos 0

1!
x− sin 0

2!
x2 − cos 0

3!
x3 +

sin 0
4!

x4 +
cos cx

5!
x5 = x− x3

3!
+

cos cx
5!

x5.

So for x �= 0,

∣∣∣∣ sin x− x
x3

+
1
6

∣∣∣∣ =
∣∣∣cos cx

5!
x2
∣∣∣ ≤ 1

5!
|x|2.

Since lim
x→0

|x|2 = 0, it follows that lim
x→0

sin x− x
x3

= −1
6

.

Solution to Exercise 4.59

(1) From Taylor’s Formula, for each x such that |x− a| ≤ ε, there exists a cx ∈ (a− ε, a + ε)
such that

f (x) =
n∑

k=0

f (k)(a)
k!

(x− a)k +
f (n+1)(cx)
(n + 1)!

(x− a)n+1.

For |x− a| ≤ ε, set En(x) :=
f (n+1)(cx)
(n + 1)!

(x− a)n+1. Then for 0 < |x− a|< ε,

0 ≤
∣∣∣∣ En(x)
(x− a)n

∣∣∣∣ = | f (n+1)(cx)|
(n + 1)!

∣∣∣∣ (x− a)n+1

(x− a)n

∣∣∣∣ ≤ M
(n + 1)!

|x− a|,

and so by the Sandwich Theorem, lim
x→a

En(x)
(x− a)n

= 0. Hence the claim follows.

(2) tan is infinitely differentiable on (−π/2, π/2), and in particular, tan(4) is continuous. We
have for x ∈ (−π/2, π/2) that

tan′x = 1 + (tan x)2,

tan′′x = 2(tan x)(1 + (tan x)2),

tan′′′x = 2(1 + (tan x)2) + 6(tan x)2(1 + (tan x)2).
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Thus

tan x = tan 0 +
tan′ 0

1!
x +

tan′′ 0
2!

x2 +
tan′′′ 0

3!
x3 + o(x3)

= 0 + x + 0 +
x3

3
+ o(x3) = x +

x3

3
+ o(x3).

(3) We have

tan x− x =
x3

3
+ o(x3), sin x = x− x3

6
+ o(x3), cos x = 1 − x2

2
+ o(x2),

as x → 0. Thus

tan x− x =
x3

3
+ h1(x), sin x = x− x3

6
+ h2(x), cos x = 1 − x2

2
+ h3(x),

where lim
x→0

h1(x)
x3

= lim
x→0

h2(x)
x3

= lim
x→0

h3(x)
x2

= 0. So

lim
x→0

tan x− x
sin x− x cos x

= lim
x→0

x3

3 + h1(x)

x− x3

6 + h2(x) − x(1 − x2

2 + h3(x))

= lim
x→0

1
3 + h1(x)

x3

− 1
6 + h2(x)

x3 + 1
2 + h3(x)

x2

=
1
3 + 0

− 1
6 + 0 + 1

2 + 0
= 1.

Solution to Exercise 4.60

(It is clear visually that all chords lie above the graph of the function | · |.) For x1, x2 ∈ R and
α ∈ (0, 1), we have by the triangle inequality that

|(1 − α)x1 + αx2| ≤ |(1 − α)x1| + |αx2| = |1 − α||x1| + |α||x2| = (1 − α)|x1| + α|x2|.

Thus | · | is convex.

Solution to Exercise 4.61

(‘If’ part) Suppose that x1, x2 ∈ I and α ∈ (0, 1). Then we have (x1, f (x1)) ∈ U( f ) and
(x2, f (x2)) ∈ U( f ). Since U( f ) is convex, we have that

(1−α) · (x1, f (x1))+α · (x2, f (x2)) = ((1 − α) · x1 + α · x2︸ ︷︷ ︸
=:x∈I

, (1 − α)f (x1) + αf (x2)︸ ︷︷ ︸
=:y

) ∈ U( f ).

Consequently, (1 − α)f (x1) + αf (x2) = y ≥ f (x) = f ((1 − α) · x1 + α · x2). Hence f is
convex.

(‘Only if’ part) Let (x1, y1), (x2, y2) ∈ U( f ) and α ∈ (0, 1). Then we know that y1 ≥ f (x1)
and y2 ≥ f (x2) and so we also have that

(1 − α)y1 + αy2 ≥ (1 − α)f (x1) + αf (x2) ≥ f ((1 − α) · x1 + α · x2),

where the last inequality follows from the convexity of f . Consequently,

((1 − α) · x1 + α · x2, (1 − α)y1 + αy2) ∈ U( f ),

that is, (1 − α) · (x1, f (x1)) + α · (x2, f (x2)) ∈ U( f ). So U( f ) is convex.
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Solution to Exercise 4.62

(A), (B), (D). The reasons are as follows:

(A)
d2

dx2

1
x

=
d
dx

(
− 1
x2

)
= −−2

x3
=

2
x3

> 0 for x > 0.

(B)
d2

dx2
(− sin x) =

d
dx

(− cos x) = −(− sin x) = sin x > 0 for x ∈ (0, π/2).

(C) f := |x| is convex, but
√
f =
√

|x| isn’t: with x1 = 0, x2 = 1, α =
1
2

, we have
√

0 + 1
2

=
1√
2

>
1
2

=
√

0 +
√

1
2

.

(D) First, since f is convex, we have for x1, x2 ∈ R and α ∈ (0, 1) that

f ((1 − α)x1 + αx2) ≤ (1 − α)f (x1) + αf (x2).

Furthermore, since f is nonnegative, it follows from the above inequality that

( f ((1 − α)x1 + αx2))
2 ≤ ((1 − α)f (x1) + αf (x2))

2. (35)

Finally, using the convexity of t �→ t2, we have with t1 := f (x1) and t2 := f (x2) that

((1 − α)f (x1) + αf (x2))
2 = ((1 − α)t1 + αt2)

2

≤ (1 − α)t21 + αt22

= (1 − α)( f (x1))
2 + α( f (x2))

2. (36)

From (35) and (36), it follows that f 2 is convex.

Solution to Exercise 4.63

The total length of the path from A to B, L(x), is given (using Pythagoras’s Theorem) by
L(x) =

√
a2 + x2 +

√
(x− 1)2 + b2, x ∈ R. We have

L′(x) =
x√

a2 + x2
+

x− 1√
(x− 1)2 + b2

, and

L′′(x) =
a2

(a2 + x2)3/2
+

b2

((x− 1)2 + b2)3/2
> 0.

Since L′′(x) > 0 for all x, L is convex. Hence any x∗ such that L′(x∗) = 0 will be a minimiser
of L. L′(x∗) = 0 gives

x∗√
a2 + x2

∗
=

1 − x∗√
(x∗ − 1)2 + b2

.

But if x∗ ≤ 0, then the left hand side is ≤ 0, while the right hand side is > 0, and this is
impossible. Also, if x∗ ≥ 1, then the left hand side is > 0, while the right hand side is ≤ 0, and
this is also not possible. So we must have x∗ ∈ (0, 1). But then it is clear that α, β ∈ (0, π/2)
and

cos α =
x∗√

a2 + x2
∗

=
1 − x∗√

(x∗ − 1)2 + b2
= cos β.

As cos : (0, π/2) → R is strictly decreasing, it follows that it is injective, and so α = β for
the x∗ where L is minimised.
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A

B

X∗

α β

A′

X

A geometric proof is obtained by reflecting the point A = (0, a) in the x-axis to obtain the
point A′ = (0,−a), and noticing that if X = (x, 0) and B = (1, b), then

L(x) = �(AX) + �(XB) = �(A′X) + �(XB),

and clearly this is minimised when A,X,B are collinear. Let X∗ be the intersection of A′B with
the x-axis and O = (0, 0). We have α = ∠AX∗O = ∠OX∗A

′ = ∠BX∗X = β.

Solution to Exercise 4.64

We have

f ′(x) =
n∑

k=1

2(x− ak) = 2nx− 2
n∑

k=1

ak,

and so f ′(x) = 0 if and only if x =
1
n

n∑
k=1

ak. Also, f ′′(x) = 2n > 0, x ∈ R.

So f is convex. Hence x∗ :=
1
n

n∑
k=1

ak is a minimiser of f and it is the only one.

The minimum value of f is

f (x∗) =
n∑

k=1

(x∗ − ak)
2 = nx2

∗ − 2x∗

n∑
k=1

ak +
n∑

k=1

a2
k

= n · 1
n2

( n∑
k=1

ak
)2

− 2 · 1
n

( n∑
k=1

ak
)( n∑

k=1

ak
)

+
n∑

k=1

a2
k

=
n∑

k=1

a2
k −

1
n

( n∑
k=1

ak
)2

.

Remark 6. Since f (x) ≥ 0 for all x ∈ R, in particular, f (x∗) ≥ 0, that is,

Quadratic mean: =

√√√√1
n

n∑
k=1

a2
k ≥ Arithmetic mean: =

1
n

n∑
k=1

ak.
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Solution to Exercise 4.65

(1) We have f ′(t) = 2at + b and f ′′(t) = 2a > 0. So f is convex. We have f ′(t) = 0 if and
only if 2at + b = 0, that is, t = −b/(2a). So it follows that −b/(2a) is a minimiser of f , and
it is the only one. We have

f

(
− b

2a

)
= a

(
− b

2a

)2

+ b

(
− b

2a

)
+ c =

b2

4a
− b2

2a
+ c = − b2

4a
+ c = −b2 − 4ac

4a
.

(2) Let f (t) :=
n∑

k=1

(tak − bk)
2, t ∈ R. Then f (t) ≥ 0. Also,

f (t) =
n∑

k=1

(t2a2
k − 2akbkt + b2

k) =
( n∑

k=1

a2
k

)
t2 − 2
( n∑

k=1

akbk
)
t +

n∑
k=1

b2
k = at2 + bt + c,

where a :=
( n∑

k=1

a2
k

)
, b := −2

( n∑
k=1

akbk
)

and c :=
n∑

k=1

b2
k .

If a = 0, then each ak = 0 for k = 1, · · · , n, and so both sides of the inequality are 0, and so
the claim holds trivially.
So we may assume that a > 0. Then f has the minimum value −(b2 − 4ac)/(4a). As f (t) ≥ 0
for all t ∈ R, we must have that in particular −(b2 − 4ac)/(4a) ≥ 0, that is, b2 ≤ 4ac. Hence

(
− 2

n∑
k=1

akbk
)2

≤ 4
( n∑

k=1

a2
k

)( n∑
k=1

b2
k

)
,

and so
( n∑

k=1

akbk
)2

≤
( n∑

k=1

a2
k

)( n∑
k=1

b2
k

)
.

Solution to Exercise 4.66

(1) We prove this using induction on n. The result is trivially true when n = 1, and in fact, we
have equality in this case. Suppose that the inequality has been established for some n ∈ N.
Now if x1, · · · , xn, xn+1 ∈ I, then we have with t := 1/(n + 1) ∈ (0, 1) that

f

(
1

n + 1
(x1 + · · · + xn + xn+1)

)
= f

(
n

n + 1
· 1
n
(x1 + · · · + xn) +

1
n + 1

· xn+1

)

= f

((
1 − 1

n + 1

)
· 1
n
(x1 + · · · + xn) +

1
n + 1

xn+1

)

= f

(
(1 − t) · 1

n
(x1 + · · · + xn) + t · xn+1

)

≤ (1 − t) · f
(

1
n
(x1 + · · · + xn)

)
+ t · f (xn+1)

≤ (1 − t) · f (x1) + · · · + f (xn)
n

+ t · f (xn+1)

= �n
n + 1

· f (x1) + · · · + f (xn)

�n
+

1
n + 1

· f (xn+1)

=
f (x1) + · · · + f (xn) + f (xn+1)

n + 1
,

and so the claim follows for all n.
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(2) Let f : (0,∞) → R be defined by f (x) = − log x, x ∈ (0,∞). Then

f ′(x) = −1
x

and f ′′(x) =
1
x2

for x ∈ (0,∞).

As f ′′(x) = 1/x2 > 0 for all x ∈ (0,∞), it follows that f is convex.

(3) By the first two parts, it follows for a1, · · · , an ∈ (0,∞) that

− log
(
a1 + · · · + an

n

)
≤ − log a1 − · · · − log an

n
= −1

n
log(a1 · · · an),

that is, log
(
a1 + · · · + an

n

)
≥ 1

n
log(a1 · · · an) = log n

√
a1 · · · an. As exp is increasing,

a1 + · · · + an
n

= exp log
(
a1 + · · · + an

n

)
≥ exp log n

√
a1 · · · an = n

√
a1 · · · an.

Solution to Exercise 4.67

(B). If x is one of the sides, then the other side is p
2 − x. Thus the area is

A(x) = x
(p

2
− x
)

=
px
2

− x2,

which is a concave function (because A′′(x) = −2 < 0), and hence A maximised at the x∗
satisfying A′(x∗) = 0, that is, when the rectangle becomes a square with side length x∗ = p/4.

The diagonal d(x) satisfies D(x) := (d(x))2 = x2 +
(p

2
− x
)2

.

Clearly, D′(x) = 2x− 2(p/2 − x) = 4x− p = 0 if and only if x = p/4 and D′′(x) = 4 > 0.
Consequently, D is convex, and so D is minimised when the rectangle becomes a square,
that is, D(x) = (d(x))2 ≥ D(x∗) = (d(x∗))

2, and as d is always nonnegative, it follows that
d(x) ≥ d(x∗).

Solution to Exercise 4.68

We have y(x) = 2x3 + 2x2 − 2x− 1, and so

y′(x) = 6x2 + 4x− 2 = 6

(
x− 1

3

)
(x + 1).

Thus y′(x) > 0 if and only if [x > 1/3 or x < −1], and here y is increasing.

Also, y′(x) < 0 if and only if −1 < x < 1/3, and here y is decreasing. As

y′′(x) = 12x + 4 = 12

(
x +

1
3

)
,

we see that y′′(x) > 0 if and only if x > −1/3, where y is convex.

Similarly, y′′(x) < 0 if and only if x < −1/3, where y is concave.

y′′(x) = 0 if and only if x = −1/3, which is a point of inflection.

y′(x) = 0 if and only if [x = 1/3 or x = −1].

Around x = −1, y is concave, and so x = −1 is a local maximiser.

Around x = 1/3, y is convex, and so x = 1/3 is a local minimiser.
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y(0) = −1, y(1) = 2 + 2 − 2 − 1 = 1, y(−1) = −2 + 2 + 2 − 1 = 1,

y

(
−1

3

)
= − 2

27
+

2
9

+
2
3
− 1 =

−2 + 4 + 18 − 27
27

= − 7
27

,

and y(−2) = −16 + 8 + 4 − 1 < 0. By the Intermediate Value Theorem, the graph of y
crosses the x-axis between −2 and −1, between −1 and 0, and between 0 and 1. So there are
at least three distinct zeros.

There can’t be any more than 3 distinct zeros, because otherwise by Rolle’s Theorem y′ would
be 0 at least 3 times, but we have seen earlier that y′ has only two zeros.

6

4

2

−2

−2 −1 1
x

0

−4

Solution to Exercise 4.69

Let x be the length of the piece from which the square is constructed. Then the length of
the side of the square is x/4, and that of the equilateral triangle is (� − x)/3. Thus the total
area is

A(x) :=
( x

4

)2
+

√
3

4

(
� − x

3

)2

.

So A′(x) = 2 · x
4
· 1

4
+

√
3

4
· 2 · � − x

3
· (−1)

3
, and A′(x) = 0 if and only if x =

4�

4 + 3
√

3
=: x∗.

Also, A′′(x) =
1
8

+
1

6
√

3
> 0, and so A is convex. Thus x∗ is a global minimiser.

Solution to Exercise 4.70

(1) True, since f ′ > 0 on I.

(2) False, since f ′ is not increasing on I.

(3) True, since f ′ > 0 on I, which implies that f is strictly increasing on I.

(4) True, since f ′ is strictly concave in a neighbourhood of 0, which implies that f ′′′(0) ≤ 0.
(Or because f ′′ is strictly increasing in a neighbourhood of 0 and so f ′′′ ≤ 0 near 0, and in
particular, f ′′′(0) ≤ 0.)

(5) There is not enough data to conclude this.
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(6) False. It is clear that f ′ has local maximas, and f ′′ is zero at these points. If f ′′ were
convex, this would mean that f ′′ ≤ 0 between these points (Why? Since if ξ1, ξ2 are such
that f ′′(ξ1) = f ′′(ξ2) = 0, then f ′′((1 − t)ξ1 + tξ2) ≤ (1 − t)f ′′(ξ1) + t f ′′(ξ2) = 0), so
that f ′ would have to be decreasing, and this is visibly seen to be false from the given
graph of f ′.

(7) False. Indeed, f ′ > 0 on I implies that f is strictly increasing, and so f can’t have a local
maximum anywhere on I.

Solution to Exercise 4.71

We have

(x3 + x− 2)
∣∣∣
x=1

= 1 + 1 − 2 = 0 and (x2 − 3x + 2)
∣∣∣
x=1

= 1 − 3 + 2 = 0.

So, by l’Hôpital’s Rule, we do have

lim
x→1

x3 + x− 2
x2 − 3x + 2

= lim
x→1

3x2 + 1
2x− 3

,

provided that the latter exists. However,

(3x2 + 1)
∣∣∣
x=1

= 3 · 1 + 1 = 4 �= 0,

and so l’Hôpital’s Rule is not applicable a second time. This is the error. In fact,

lim
x→1

x3 + x− 2
x2 − 3x + 2

= lim
x→1

3x2 + 1
2x− 3

=
3 · 12 + 1
2 · 1 − 3

=
4
−1

= −4.

Solution to Exercise 4.72

Using l’Hôpital’s Rule, we have

lim
x→0

sin x− x
x3

= lim
x→0

cos x− 1
3x2

= lim
x→0

− sin x
6x

= lim
x→0

− cos x
6

=
−1
6

.

Solution to Exercise 4.73

If f (x) := tan−1x− π/3, g(x) := x−
√

3 then f (
√

3) = tan−1
√

3 − π/3 = π/3 − π/3 = 0
and g(

√
3) =

√
3 −

√
3 = 0. g is nonzero in R\

√
3 and g′(x) = 1 �= 0 for all x ∈ R. Finally,

lim
x→

√
3

f ′(x)
g′(x)

= lim
x→

√
3

1/(x2 + 1)
1

=
1

(
√

3)2 + 1
=

1
3 + 1

=
1
4

.

By l’Hôpital’s Rule, it follows that lim
x→

√
3

f (x)
g(x)

= lim
x→

√
3

tan−1x− π/3

x−
√

3
=

1
4

.

Alternately, one could just observe that

lim
x→

√
3

tan−1x− π/3

x−
√

3
= lim

x→
√

3

tan−1x− tan−1
√

3

x−
√

3
=

d
dx

tan−1x
∣∣∣
x=

√
3

=
1

1 + x2

∣∣∣
x=

√
3

=
1
4

.
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Solution to Exercise 4.74

For x ∈ [0, π2/4), let f (x) := tan
√
x, g(x) :=

√
x. Then f (0) = tan 0 = 0, g(0) = 0. Also,

f , g are differentiable in (0, π2/4). Moreover,

f ′(x) := (sec
√
x)2 · 1

2
√
x

,

g′(x) :=
1

2
√
x

.

Thus g′(x) �= 0 in (0, π2/4), and

lim
x→0+

f ′(x)
g′(x)

= lim
x→0+

(sec
√
x)2 · 1

2
√
x

1
2
√
x

= lim
x→0+

(sec
√
x)2 = (sec

√
0)2 = (sec 0)2 =

(
1

cos 0

)2

= 1.

Hence by l’Hôpital’s Rule, also lim
x→0+

tan
√
x√

x
= lim

x→0+

f (x)
g(x)

= lim
x→0+

f ′(x)
g′(x)

= 1.

Solution to Exercise 4.75

Let

g(x) := 1 − x3/4,

f (x) := (2x− x4)1/2 − x1/3,

f (1) = 0 and g(1) = 0. Also, f , g are differentiable in a neighbourhood of 1, and

g′(x) := −3
4
x−1/4,

f ′(x) :=
1
2
(2x− x4)−1/2 · (2 − 4x3) − 1

3
x−2/3.

Thus g′(1) = − 3
4 , and by continuity, g′(x) �= 0 in a neighbourhood of 1. We have

lim
x→1

f ′(x)
g′(x)

= lim
x→1

1
2 (2x− x4)−1/2 · (2 − 4x3) − 1

3x
−2/3

− 3
4x

−1/4
=

− 4
3

− 3
4

=
16
9

.

Hence by l’Hôpital’s Rule, also

lim
x→1

(2x− x4)1/2 − x1/3

1 − x3/4
= lim

x→1

f (x)
g(x)

= lim
x→1

f ′(x)
g′(x)

=
16
9

.
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Solutions to the exercises from Chapter 5

Solution to Exercise 5.1

(1) False. Partitions are always finite sets, while the given set is infinite.

(2) True. For example, for each n ∈ N,

Pn :=
{
a, a +

b− a
n

, a + 2
b− a
n

, · · · , a + (n− 1)
b− a
n

, b

}

is a partition of [a, b].
(3) False. We have learnt the definition of partition for a compact interval in R.

(4) False. Any partition of [0, 1] must contain the endpoints 0 and 1.

Solution to Exercise 5.2

Let P = {x0 = 0 < x1 < · · · < xn−1 < xn = 1} be any partition of [0, 1]. Since every interval
[xk, xk+1] contains an irrational number, it follows that the lower sum

S(f ,P) =
n−1∑
k=0

0 · (xk+1 − xk) = 0.

On the other hand, for every interval [xk, xk+1], we have an increasing sequence of rational
numbers (qn)n∈N

in [xk, xk+1] converging to xk+1, and so

xk+1 = sup
n∈N

qn = sup
n∈N

f (qn) ≤ sup
x∈[xk , xk+1]

f (x) ≤ xk+1.

Hence, the upper sum is

S( f ,P) =
n−1∑
k=0

xk+1 · (xk+1 − xk) ≥
n−1∑
k=0

xk+1 + xk
2

· (xk+1 − xk)

=
1
2

n−1∑
k=0

(x2
k+1 − x2

k) =
1
2
(12 − 02) =

1
2

.

So we have S( f ) = inf
P∈P

S( f ,P) ≥ 1
2

> 0 = sup
P∈P

S( f ,P) = S( f ). Thus f /∈ RI[0, 1].

Solution to Exercise 5.3

We have for n ≥ 2

S( f ,Pn) =
(

sup
x∈[0,1]

f (x)
)
· 1 +
(

sup
x∈[1,1+ 1

n ]
f (x)
)
· 1
n

+
(

sup
x∈[1+ 1

n ,2]
f (x)
)
·
(

1 − 1
n

)

= 1 · 1 + 1 · 1
n

+ (−1) ·
(

1 − 1
n

)
=

2
n

.
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Also,

S( f ,Pn) =
(

inf
x∈[0,1]

f (x)
)
· 1 +
(

inf
x∈[1,1+ 1

n ]
f (x)
)
· 1
n

+
(

inf
x∈[1+ 1

n ,2]
f (x)
)
·
(

1 − 1
n

)

= 1 · 1 + (−1) · 1
n

+ (−1) ·
(

1 − 1
n

)
= 0.

Thus
0 = S( f ,Pn) ≤ S( f ) ≤ S( f ) ≤ S( f ,Pn) =

2
n

for all n ≥ 2, and so, S( f ) = S( f ) = 0. Hence f ∈ RI[0, 2] and
∫ 2

0
f (x)dx = 0.

1

1

−1

0 2

Solution to Exercise 5.4

(A), (C).

Solution to Exercise 5.5

(A), (D). For the falsehood of (B), (C), we note that the inequality Φ(P2) ≤ Φ(P1) does not
imply in general that P2 is a refinement of P1. Here is an example. Let f : [0, 1] → R be
defined by

f (x) =

{
1 if x ∈ [0, 1/2),
0 if x ∈ [1/2, 1].

Let P1 := {0, 1/2, 1} and P2 := {0, 1/3, 2/3, 1}. Then Φ(P2) = 1/3 < 1/2 = Φ(P1). We
have

S( f ,P1) = 1 · 1
2

+ 0 · 1
2

=
1
2

, and

S( f ,P2) = 1 · 1
3

+ 1 · 1
3

+ 0 · 1
3

=
2
3

,

and so (B) is false. Also,

S( f ,P1) = 0 · 1
2

+ 0 · 1
2

= 0, and

S( f ,P2) = 1 · 1
3

+ 0 · 1
3

+ 0 · 1
3

=
1
3

,

and so (C) is false too.
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Solution to Exercise 5.6

Let ε > 0. Since f ∈ RI[a, c], there exists a partition P[a,c] of [a, c] such that

S( f ,P[a,c]) − S( f ,P[a,c]) <
ε

2
.

Similarly as f ∈ RI[c, b], there exists a partition P[c,b] of [c, b] such that

S( f ,P[c,b]) − S( f ,P[c,b]) <
ε

2
.

Let Pε := P[a,c]
⋃
P[c,b]. Then Pε is a partition of [a, b], and clearly

S( f ,Pε) = S( f ,P[a,c]) + S( f ,P[c,b]) and

S( f ,Pε) = S( f ,P[a,c]) + S( f ,P[c,b]).

Thus

S( f ,Pε) − S( f ,Pε) = S( f ,P[a,c]) − S( f ,P[a,c]) + S( f ,P[c,b]) − S( f ,P[c,b]) <
ε

2
+

ε

2
= ε.

By the Riemann Condition, it follows that f ∈ RI[a, b]. Also,

S( f ,Pε) ≤ sup
P∈P[a, b]

S( f ,P) =
∫ b

a
f (x)dx = inf

P∈P[a, b]

S( f ,P) ≤ S( f ,Pε). (37)

Furthermore,

S( f ,P[a,c]) ≤
∫ c

a
f (x)dx ≤ S( f ,P[a,c]) and

S( f ,P[c,b]) ≤
∫ b

c
f (x)dx ≤ S( f ,P[c,b]).

Thus

S( f ,Pε) ≤
∫ c

a
f (x)dx +

∫ b

c
f (x)dx ≤ S( f ,Pε). (38)

Equations (37) and (38) tell us that the numbers∫ b

a
f (x)dx and

∫ c

a
f (x)dx +

∫ b

c
f (x)dx

both lie between the numbers S( f ,Pε) and S( f ,Pε), and the distance between these latter
number is at most ε. It thus follows immediately that∣∣∣∣

∫ b

a
f (x)dx−

(∫ c

a
f (x)dx +

∫ b

c
f (x)dx
)∣∣∣∣ < ε.

As ε > 0 was arbitrary, we obtain
∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx.

Solution to Exercise 5.7

Let M > 0 be such that | f (x)| ≤ M for all x ∈ [a, b]. Let ε > 0. Set δ = ε
12M . (This is obtained

by working backward; see the estimates below.) Then as the restrictions of f to [a, c− δ] and to
[c + δ, b] are continuous, we have f ∈ RI[a, c− δ] and f ∈ RI[c + δ, b]. Thus by the Riemann
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Condition, there exist partitions P[a,c−δ] and P[c+δ,b] of [a, c− δ] and [c + δ, b], respectively,
such that

S( f ,P[a,c−δ]) − S( f ,P[a,c−δ]) <
ε

3
, and S( f ,P[c+δ,b]) − S( f ,P[c+δ,b]) <

ε

3
.

Let P := P[a,c−δ]
⋃
{c− δ, c + δ}

⋃
P[a,c−δ]. Then P is a partition of [a, b]. Also,

S( f ,P) − S( f ,P) = S( f ,P[a,c−δ]) − S( f ,P[a,c−δ])

+
(

sup
x∈[c−δ,c+δ]

f (x) − inf
x∈[c−δ,c+δ]

f (x)
)
· (2δ)

+ S( f ,P[c+δ,b]) − S( f ,P[c+δ,b])

<
ε

3
+ (2M) · (2δ) +

ε

3
<

ε

3
+ 4M · ε

12M
+

ε

3
= ε.

By the Riemann Condition, f ∈ RI[a, b].
Suppose that there are finitely many discontinuities of f , say at the points c1, · · · , cn in

(a, b), where a < c1 < c2 < · · · < cn < b. Since [a, c1+c2
2 ] has only one discontinuity (at c1),

it follows from the above that f ∈ RI[a, c1+c2
2 ]. Similarly,

f ∈ RI

[
c1 + c2

2
,
c2 + c3

2

]
, · · · , f ∈ RI

[
cn−1 + cn

2
, b

]
.

Consequently, f ∈ RI[a, b] (by Exercise 5.6).

Solution to Exercise 5.8

(1) As f , g ∈ RI[a, b], also f − g ∈ RI[a, b] and so the function | f − g| ∈ RI[a, b]. Hence

f + g + | f − g|
2

∈ RI[a, b],

that is,

x �→ f (x) + g(x) + | f (x) − g(x)|
2

= max{ f (x), g(x)}

is in RI[a, b]. Thus we conclude that max{f , g} ∈ RI[a, b].

Since
min{a, b} = a + b− max{a, b} for all a, b ∈ R, (39)

it follows that

x �→ min{f (x), g(x)} = f (x) + g(x) − max{f (x), g(x)} = ( f + g− max{f , g})(x)
is in RI[a, b]. Thus min{f , g} ∈ RI[a, b].

Finally, we justify the claims in the Hint and (39).
If a > b, then max{a, b} = a and min{a, b} = b = a + b− a = a + b− max{a, b}.
If a < b, then max{a, b} = b and min{a, b} = a = a + b− b = a + b− max{a, b}.
If a = b, then max{a, b} = a and min{a, b} = a = 2a− a = a + b− max{a, b}.

This proves (39).

If a > b, then max{a, b} = a and
a + b + |a− b|

2
=

a + b + a− b
2

= a = max{a, b}.
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If a < b, then max{a, b} = b and
a + b + |a− b|

2
=

a + b + b− a
2

= b = max{a, b}.

If a = b, then |a− b| = 0 and
a + b + |a− b|

2
=

a + b
2

= a = b = max{a, b}.

(2) Each fn has only finitely many ‘points of discontinuities’, at the points r1, · · · , rn. It follows
that each fn belongs to RI[0, 1]; see Exercise 5.7.

Clearly, if x = rm ∈ [0, 1]
⋂

Q, then
(

sup
n∈N

fn
)
(x) = sup

n∈N

fn(rm) = 1.

On the other hand, if x ∈ [0, 1]\Q, then
(

sup
n∈N

fn
)
(x) = sup

n∈N

fn(x) = sup
n∈N

0 = 0.

So sup
n∈N

fn is the function

1[0,1]∩Q
,

which is equal to 1 if its argument belongs to [0, 1] ∩ Q, and equal to 0 otherwise. We have
seen in Example 5.6 that 1[0,1]∩Q

is not Riemann integrable.

Solution to Exercise 5.9

Let

f (x) =

{
1 if x ∈ [0, 1] ∩ Q,

−1 if x ∈ [0, 1]\Q

}
and g(x) =

{
−1 if x ∈ [0, 1] ∩ Q,

1 if x ∈ [0, 1]\Q

}
.

Then f + g ≡ 0, fg ≡ −1, | f | ≡ 1, and so f + g, fg, | f | ∈ RI[0, 1].
Let 1[0,1]∩Q

be the function that is equal to 1 if its argument belongs to [0, 1] ∩ Q and equal to
0 otherwise. Then f = 2 · 1[0,1]∩Q

− 1 /∈ RI[0, 1], since otherwise

1[0,1]∩Q
=

f + 1
2

∈ RI[0, 1],

a contradiction. Similarly g = −f /∈ RI[0, 1].

Solution to Exercise 5.10

By the Extreme Value Theorem, for all x ∈ [a, b],

min
x∈[a,b]

f (x) =: m ≤ f (x) ≤ M := max
x∈[a,b]

f (x).

As ρ is nonnegative, mρ(x) ≤ ρ(x)f (x) ≤ Mρ(x) for all x ∈ [a, b]. Hence

m
∫ b

a
ρ(x)dx ≤

∫ b

a
ρ(x)f (x)dx ≤ M

∫ b

a
ρ(x)dx. (40)

If
∫ b

a
ρ(x)dx = 0, then (40) gives

∫ b

a
ρ(x)f (x)dx = 0, and so any c ∈ [a, b] will do.

If
∫ b

a
ρ(x)dx �= 0, then by dividing (40) throughout by

∫ b

a
ρ(x)dx > 0, we obtain

min
x∈[a,b]

f (x) = m ≤

∫ b

a
ρ(x)f (x)dx
∫ b

a
ρ(x)dx

≤ M = max
x∈[a,b]

f (x).
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By the Intermediate Value Theorem (applied to the continuous f on the interval with the end-
points taken as the maximiser and minimiser of f on [a, b]), it follows that there is a c ∈ [a, b]
such that

f (c) =

∫ b

a
ρ(x)f (x)dx
∫ b

a
ρ(x)dx

,

that is,
∫ b

a
f (x)ρ(x)dx = f (c)

∫ b

a
ρ(x)dx.

That the continuity of f cannot be omitted: Take [a, b] = [0, 1], ρ ≡ 1, and

f (x) =

⎧⎪⎨
⎪⎩

0 if 0 ≤ x ≤ 1
2

,

1 if
1
2

< x ≤ 1.

Then
∫ b

a
f (x)ρ(x)dx =

∫ 1

0
f (x)dx =

1
2

, and
∫ b

a
ρ(x)dx = 1.

But there is no c such that f (c) =
1
2

=

∫ b

a
ρ(x)f (x)dx
∫ b

a
ρ(x)dx

.

That the nonnegativity of ρ cannot be omitted: Take [a, b] = [0, 1], f (x) = x, and

ρ(x) = x− 1
2
− ε,

for x ∈ [0, 1], where we will specify ε later. Then∫ b

a
ρ(x)f (x)dx =

∫ 1

0
x

(
x− 1

2
− ε

)
dx =

1
3
− 1

2

(
1
2

+ ε

)
=

1
12

− ε

2
,

∫ b

a
ρ(x)dx =

∫ 1

0

(
x− 1

2
− ε

)
dx = −ε.

Take ε =
1

12
. Then ∫ b

a
ρ(x)f (x)dx
∫ b

a
ρ(x)dx

=

1
24

− 1
12

= −1
2

< 0,

while f (x) ≥ 0 for all x ∈ [0, 1].

Solution to Exercise 5.11

(1) We will show by induction on n that the sum of the lengths of the intervals in Fn is (2/3)n.

If n = 0, then F0 = [0, 1] has length 1 − 0 = 1 = (2/3)0.
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Suppose that Fn has length (2/3)n for some n. Then this Fn has 2n subintervals, each of length
(1/3)n. Since the middle third of each of these intervals is removed in order to get the intervals
of Fn+1, the sum of the lengths of the resulting intervals is

(sum of lengths of the intervals of Fn ) − 2n · 1
3
·
(

1
3

)n
=
(

2
3

)n
− 1

3
·
(

2
3

)n
=
(

2
3

)n+1

.

Hence the claim follows for all n by induction.

Since

inf
P∈P[0,1]

S(1Fn
,P) = S(1Fn

) =
∫ 1

0
1Fn

(x)dx =
(

2
3

)n
,

for ε > 0, there exists a partition P ∈ P[0,1] such that S(1Fn
,P) <

(
2
3

)n
+ ε. Hence

S(1C) = inf
P∈P[0,1]

S(1C,P) ≤ inf
P∈P[0,1]

S(1Fn
,P) = S(1Fn

,P) <

(
2
3

)n
+ ε.

Since ε > 0 and n ∈ N were arbitrary, we obtain S(1C) ≤ 0.

(2) As 1C ≥ 0, it is clear that S(1C,P) ≥ 0 for all partitions P of [0, 1], and so

S(1C) = sup
P∈P[0,1]

S(1C,P) ≥ 0.

(3) From the Parts (1) and (2) above, we have 0 ≤ S(1C) ≤ S(1C) ≤ 0, and so

S(1C) = 0 = S(1C).

Consequently, 1C ∈ RI[0, 1] and
∫ 1

0
1C(x)dx = 0.

Solution to Exercise 5.12

The indicator function 1C of the Cantor set C ⊂ [0, 1] is such that 1C ≥ 0, and moreover
1C ∈ RI[0, 1]\C[0, 1] (see Exercise 5.11) with∫ 1

0
1C(x)dx = 0.

However, it is not the case that 1C ≡ 0.

Solution to Exercise 5.13

Suppose that such a function δ exists. Take any natural number n > 1, and ϕ : [−1, 1] → R

by ϕ(x) = 1, x ∈ [−1, 1]. Then ϕ ∈ RI[−1/n, 1/n] for all n, and

1 = ϕ(0) =
∫ 1/n

−1/n
δ(x)ϕ(x)dx =

∫ 1/n

−1/n
δ(x) · 1dx

≤
(

sup
x∈[−1/n,1/n]

δ(x)
)2
n
≤
(

sup
x∈[−1,1]

δ(x)
)2
n

n→∞−−→ 0,

a contradiction.
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Solution to Exercise 5.14

Let F(y) :=
∫ y
a f (t)dt, y ∈ [a, b], and G := F ◦ v, that is,

G(x) = F(v(x)) =
∫ v(x)

a
f (t)dt, x ∈ [a, b].

By the Chain Rule and the Fundamental Theorem of Calculus,

d
dx

∫ v(x)

a
f (t)dt = G′(x) = F′(v(x)) · v′(x) = f (v(x)) · v′(x), x ∈ [c, d].

Similarly,
d
dx

∫ u(x)

a
f (t)dt = f (u(x)) · u′(x), x ∈ [c, d].

Thus

d
dx

∫ v(x)

u(x)
f (t)dt =

d
dx

(∫ v(x)

a
f (t)dt −

∫ u(x)

a
f (t)dt

)
= f (v(x)) · v′(x) − f (u(x)) · u′(x),

for x ∈ [c, d].

Solution to Exercise 5.15

We will use Leibniz’s Rule for Integrals. We note that the functions

t �→ sin(t2), sin(
√

|t|)
are continuous on R, and x �→ 2x, x2 are differentiable. Thus for x ∈ R,

F′(x) = sin((2x)2) · 2 = 2 sin(4x2), and

G′(x) = sin(
√
|x2|) · 2x = 2x sin |x|.

Solution to Exercise 5.16

(1) Putting x = 0, we obtain ∫ 02

0
f (t)dt = 0 �=1 = e−02

,

and so no such f exists.

(2) Since
d
dt

t3

3
= t2, we have by the Fundamental Theorem of Calculus that

( f (x))3

3
− 0 = e−x2

.

So ( f (x))3 = 3e−x2 ≥ 0 for all x ≥ 0, that is, f (x) = 3
√

3e−x2/3, x ≥ 0.

(3) By Leibniz’s Rule for Integrals, f (e−x2
) · e−x2 · (−2x) = 2x. So for x > 0,

f (e−x2
)e−x2

= −1.

As f is continuous, and since lim
x→∞

e−x2
= 0, it follows that

f (0) · 0 = −1,

a contradiction! So no such f exists.
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Solution to Exercise 5.17

Using sin(λ(x− t)) = (sin(λx))(cos(λt)) − (cos(λx))(sin(λt)), we obtain

y(x) =
sin(λx)

λ

∫ x

0
f (t) cos(λt)dt − cos(λx)

λ

∫ x

0
f (t) sin(λt)dt.

Using the Product Rule and the Fundamental Theorem of Calculus, we obtain

y′(x) = (cos(λx))
∫ x

0
f (t) cos(λt)dt +

���������sin(λx)
λ

f (x) cos(λx)

+ (sin(λx))
∫ x

0
f (t) sin(λt)dt −

���������cos(λx)
λ

f (x) sin(λx)

= (cos(λx))
∫ x

0
f (t) cos(λt)dt + (sin(λx))

∫ x

0
f (t) sin(λt)dt.

Thus

y′′(x) = −λ(sin(λx))
∫ x

0
f (t) cos(λt)dt + (cos(λx))f (x) cos(λx)

+ λ(cos(λx))
∫ x

0
f (t) sin(λt)dt + (sin(λx))f (x) sin(λx)

= −λ

∫ x

0
f (t) sin(λ(x− t))dt + f (x)((cos(λx))2 + (sin(λx))2)

= −λ2y(x) + f (x) · 1,

and so y′′(x) + λ2y(x) = f (x) for all x ∈ R. Also from the expressions for y(x) and y′(x) above,
we see that y(0) = 0 and y′(0) = (cos 0) · 0 + (sin 0) · 0 = 0.

Solution to Exercise 5.18

Suppose that C is a constant such that V(q) = Cq for all q. Then the work done to charge the
capacitor to place a charge Q is∫ Q

0
V(q)dq =

∫ Q

0
Cqdq = C

∫ Q

0
qdq

= C
∫ Q

0

d
dq

q2

2
dq = C

q2

2

∣∣∣Q
0

= C
Q2

2
= Q

CQ
2

= Q
V(Q)

2
.

Solution to Exercise 5.19

We have, using the Fundamental Theorem of Calculus, that

2n+1 − 1
n + 1

=
1

n + 1
(1 + x)n+1

∣∣∣1
0

=
∫ 1

0
(1 + x)ndx =

n∑
k=0

(n
k

)∫ 1

0
xkdx =

n∑
k=0

(n
k

) 1
k + 1

.

Thus
n∑

k=1

(n
k

) 1
k + 1

=
2n+1 − 2 − n

n + 1
.
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Solution to Exercise 5.20

We have, using the Fundamental Theorem of Calculus and the Chain Rule, that

f ′(x) =
(cos x)(sin x)

x
· 2x = sin(2x).

As 1 < π/2 < 2, f ′(x) = 0 in (1, 2) if and only if x = π/2. Also, f ′′(x) = 2 cos(2x) < 0 in
a neighbourhood of π/2. Hence f is concave in a neighbourhood of π/2. So f has a local
maximiser at π/2.

Solution to Exercise 5.21

We will use l’Hôpital’s Rule. We have for x > 0 that

0 ≤
∫ x

0

t2

t6 + 1
dt ≤
∫ x

0

t2

1
dt =

x3

3
,

and so lim
x→0+

∫ x

0

t2

t6 + 1
dt = 0. Also lim

x→0+
x3 = 0.

By the Fundamental Theorem of Calculus,
d
dx

∫ x

0

t2

t6 + 1
dt =

x2

x6 + 1
. We have

lim
x→0+

1
3x2

d
dx

∫ x

0

t2

t6 + 1
dt = lim

x→0+

1
3x2

x2

x6 + 1
= lim

x→0+

1
3

1
x6 + 1

=
1
3

.

Hence by l’Hôpital’s Rule, lim
x→0+

1
x3

∫ x

0

t2

t6 + 1
dt =

1
3

.

Solution to Exercise 5.22

We have ∫ 2

1
x log x dx = log x · x

2

2

∣∣∣2
1
−
∫ 2

1

1
x
· x

2

2
dx = (log 2) · 2 − 1

2

∫ 2

1
x dx

= 2 log 2 − 1
2
· x

2

2

∣∣∣2
1

= 2 log 2 − 1
4
(4 − 1) = 2 log 2 − 3

4
.

Solution to Exercise 5.23

Let n ∈ N. Then using Integration by Parts, we obtain

I(m, n) :=
∫ 1

0
xm(1 − x)ndx

= (1 − x)n
xm+1

m + 1

∣∣∣1
0
−
∫ 1

0
n(1 − x)n−1(−1)

xm+1

m + 1
dx

=
n

m + 1

∫ 1

0
xm+1(1 − x)n−1dx =

n
m + 1

I(m + 1, n− 1).
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Consequently, for n ∈ N,

I(m, n) =
n

m + 1
I(m + 1, n− 1) =

n
m + 1

· n− 1
m + 2

I(m + 2, n− 2) = · · ·

=
n(n− 1)(n− 1) · · · 1

(m + 1)(m + 2) · · · (m + n)
I(m + n, 0)

=
n!

(m + 1)(m + 2) · · · (m + n)

∫ 1

0
xm+ndx

=
n!

(m + 1)(m + 2) · · · (m + n)
· 1
m + n + 1

=
n!m!

(m + n + 1)!
.

Solution to Exercise 5.24

We use Integration by Parts and the Fundamental Theorem of Calculus:∫ x

a
(x− u)f (u)du = (x− u)

∫ u

a
f (t)dt
∣∣x
a −
∫ x

a
(−1)
∫ u

a
f (t)dtdu

= 0 − (x− a) · 0 +
∫ x

a

(∫ u

a
f (t)dt
)
du =
∫ x

a

(∫ u

a
f (t)dt
)
du.

Solution to Exercise 5.25

We use induction on n. If n = 0, then

1
0!

∫ b

a
(b− t)0f (0+1)(t)dt =

∫ b

a
f ′(t)dt = f (b) − f (a),

by the Fundamental Theorem of Calculus.

Suppose that the formula has been established for some n. Let f : [a, b] → R be such that
f ′, · · · , f (n+2) exist and f (n+2) ∈ C[a, b]. Then

f (b) −
(
f (a) + f ′(a)(b− a) + · · · + f (n)(a)

n!
(b− a)n

)

=
1
n!

∫ b

a
(b− t)nf (n+1)(t)dt

=
1
n!

(
f (n+1)(t)

(b− t)n+1(−1)
n + 1

∣∣∣b
a
−
∫ b

a
f (n+2)(t)

(b− t)n+1(−1)
n + 1

)

=
1
n!

(
0 + f (n+1)(a)

(b− a)n+1

n + 1
+

1
n + 1

∫ b

a
(b− t)n+1f (n+2)(t)dt

)

=
f (n+1)(a)
(n + 1)!

(b− a)n+1 +
1

(n + 1)!

∫ b

a
(b− t)n+1f (n+2)(t)dt.

This completes the proof.

Remark 7. In the version of the Taylor’s Formula we had learnt earlier, the remainder
term was

f (n+1)(c)
(n + 1)!

(b− a)n+1,
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which is somewhat unsatisfactory, as the earlier result just said that such a c ∈ (a, b) exists,
without actually telling anything more about it. On the other hand, the present version of the
Taylor’s Formula has the remainder

1
n!

∫ b

a
(b− t)nf (n+1)(t)dt,

is explicit, and it can be determined, knowing f (n+1).

Solution to Exercise 5.26

In (1), the integrand is odd, and the interval of integration [−1, 1] is symmetric about the
origin, so that ∫ 1

−1
x3
√

1 − x2dx = 0.

For (2), we note that as x �→ x3
√

1 − x2 is odd and x �→
√

1 − x2 is even, we obtain∫ 1

−1
(x3 + 9)

√
1 − x2dx =

∫ 1

−1
x3
√

1 − x2dx + 9
∫ 1

−1

√
1 − x2dx = 0 + 9 · π

2
=

9π

2
.

Solution to Exercise 5.27

We use Integration by Substitution/Change of Variables:

u = 1 − 4x2,

du = −8xdx,

x = 0 ⇒ u = 1,

x = 1/4 ⇒ u = 3/4.

0.2

−0.4 −0.2 0 0.2
x

u

0.4

0.4

0.6

0.8

1

We have ∫ 1
4

0

x√
1 − 4x2

dx =
∫ 3

4

1

−1/8√
u

du =
1
4

∫ 1

3
4

1
2
√
u
du

=
1
4

√
u
∣∣∣1

3
4

=
1
4

(
√

1 −
√

3
4

)
=

1
4

(
1 −

√
3

2

)
.
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Solution to Exercise 5.28

We use Integration by Substitution/Change of Variables:

u = x5/4 + 1,

du = (5/4)x1/4dx,

x = 0 ⇒ u = 1,

x = 16 ⇒ u = 33.

30

25

20

15

10

5

0 2 4 6 8
x

10 12 14 16

We have∫ 16

0

4
√
x ·
√

4
√
x5 + 1dx =

∫ 33

1

4
5

√
udu

=
4
5

1
1
2 + 1

u
1
2 +1
∣∣∣33

1
=

4
5
· 2

3
(333/2 − 1) =

8(333/2 − 1)
15

.

Solution to Exercise 5.29

We have for x ∈ R that by Domain Additivity

F(x) :=
∫ x+T

x
f (t)dt =

∫ x+T

0
f (t)dt −

∫ x

0
f (t)dt.

But ∫ x+T

0
f (t)dt =

∫ x

−T
f (u + T)du (using the substitution u = t − T)

=
∫ x

−T
f (u)du.

So F(x) =
∫ x

−T
f (t)dt −

∫ x

0
f (t)dt =

∫ 0

−T
f (t)dt.

Thus F is constant, and in particular, F(a) = F(0) for all a ∈ R, that is,∫ a+T

a
f (t)dt =

∫ T

0
f (t)dt

for all a ∈ R.
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Solution to Exercise 5.30

We use Integration by Substitution/Change of Variables:

u = cos t,

du = − sin t dt,

t = 0 ⇒ u = 1,

t = x ⇒ u = cos x.

We have for 0 ≤ x <
π

2
that

∫ x

0
tan t dt =

∫ x

0

sin t
cos t

dt =
∫ cos x

1
−1
u
du

= − log u
∣∣∣cos x

1
= − log(cos x) − 0 = log(sec x).

Solution to Exercise 5.31

We use Integration by Substitution/Change of Variables:

u = cos x,

du = − sin x dx,

x = 0 ⇒ u = 1,

x = π/2 ⇒ u = 0.

We have∫ π/2

0
(sin x) exp(cos x) dx =

∫ 0

1
− exp u du =

∫ 1

0
exp u du = exp u

∣∣∣1
0

= e− 1,

where e := exp 1.

Solution to Exercise 5.32

We use Integration by Substitution/Change of Variables:

u = 3x2,

du = 6x dx,

x = 0 ⇒ u = 0,

x = 1 ⇒ u = 3.

We have
∫ 1

0
2x exp(3x2) dx =

∫ 3

0

1
3

exp u du =
1
3

exp u
∣∣∣3
0

=
(exp 3) − 1

3
.

Solution to Exercise 5.33

We have
n∑

k=1

1√
k2 + n2

=
n∑

k=1

1√
( k
n )

2 + 1

1
n

=
n∑

k=1

f

(
k
n

)(
k
n
− k − 1

n

)
,



436 SOLUTIONS

where f (x) :=
1√

x2 + 1
, x ∈ [0, 1]. So

n∑
k=1

1√
k2 + n2

= S( f ,Pn), where

Pn :=
{

0,
1
n

,
2
n

,
3
n

, · · · ,
n
n

}
,

ξk =
k + 1
n

, k = 0, 1, 2, 3, · · · , n− 1.

As lim
n→∞

S( f ,Pn) =
∫ 1

0
f (x)dx, we obtain lim

n→∞

n∑
k=1

1√
k2 + n2

=
∫ 1

0

1√
x2 + 1

dx.

Solution to Exercise 5.34

We have
n−1∑
k=0

n
n2 + k2

=
n−1∑
k=0

1
n
· 1

1 + ( k
n )

2
= S

(
1

1 + x2
,Pn

)
,

where

Pn :=
{

0,
1
n

,
2
n

,
3
n

, · · · ,
n
n

}
,

ξk =
k
n

, k = 0, 1, 2, 3, · · · , n− 1.

Hence

lim
n→∞

n−1∑
k=0

n
n2 + k2

= lim
n→∞

S

(
1

1 + x2
,Pn

)
=
∫ 1

0

1
1 + x2

dx

= tan−1x
∣∣∣1
0

=
π

4
− 0 =

π

4
.

Solution to Exercise 5.35

We have
n∑

k=1

1√
n2 + kn

=
n∑

k=1

1

n
√

1 + k
n

= S

(
1√

1 + x
,Pn

)
,

where

Pn :=
{

0,
1
n

,
2
n

,
3
n

, · · · ,
n
n

}
,

ξk =
k + 1
n

, k = 0, 1, 2, 3, · · · , n− 1.

So lim
n→∞

n∑
k=1

1√
n2 + kn

= lim
n→∞

S

(
1√

1 + x
,Pn

)
=
∫ 1

0

1√
1 + x

dx = 2
√

1 + x
∣∣∣1
0

= 2
√

2 − 2.
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Solution to Exercise 5.36

As an example, here we have given code written using MATLAB, but the student might prefer
using some other computer package.

a=0; % right interval endpoint
b=10; % left interval endpoint
n=10000; % number of points in partition
dx=(b-a)/n; % fineness of the partition
S=0; % "initial value" of Riemann sum
for k=0:n-1, % "for loop" to calculate Riemann sum

x=a+k*dx; % current value of x
y=exp(-x^2); % value of function at current x
S=S+y*dx; % incrementing the Riemann sum by f(x)dx

end % end of "for loop"
S % display the value of the Riemann sum

Running this program in MATLAB gives
∫ 10

0
e−x2

dx ≈ 0.8867.

Imagining this to be

√
π

2
, we obtain π ≈ (2 · 0.8867)2 = 3.1451.

Solution to Exercise 5.37

We have ∫ y

9

1
(x− 3)2

dx = − 1
x− 3

∣∣∣y
9

= − 1
y− 3

+
1
6

y→∞−−→ 0 +
1
6

=
1
6

.

Hence
∫ ∞

9

1
(x− 3)2

dx =
1
6

.

Solution to Exercise 5.38

(1) For n > 1,∫ n

0

1√
1 + x3

dx =
∫ 1

0

1√
1 + x3

dx +
∫ n

1

1√
1 + x3

dx

≤
∫ 1

0

1√
1 + x3

dx +
∫ n

1

1√
x3
dx ≤
∫ 1

0

1√
1 + x3

dx +
∫ ∞

1

1
x3/2

dx < ∞.

So

(∫ n

0

1√
1 + x3

dx

)
n∈N

is bounded, and it is clearly increasing. Thus

∫ ∞

0

1√
1 + x3

dx = lim
n→∞

∫ n

0

1√
1 + x3

dx

exists.
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(2) For n > 1, we have∫ n

0

x

1 + x3/2
dx =
∫ 1

0

x

1 + x3/2
dx +
∫ n

1

x

1 + x3/2
dx

≥
∫ 1

0

x

1 + x3/2
dx +
∫ n

1

x

x3/2 + x3/2
dx ≥
∫ 1

0

x

1 + x3/2
dx +

1
2

∫ n

1

1√
x
dx.

Since

(∫ n

1

1√
x
dx

)
n∈N

diverges,

(∫ n

0

x

1 + x3/2
dx

)
n∈N

is unbounded.

Hence
∫ ∞

0

x

1 + x3/2
dx does not exist.

Solution to Exercise 5.39

(1) We have

Γ(1) =
∫ ∞

0+
e−tt1−1dt =

∫ ∞

0+
e−tdt =

∫ 1

0+
e−tdt + lim

x→∞

∫ x

1
e−tdt

=
e−1 − e0

−1
+ lim

x→∞

e−x − e−1

−1
= −1

e
+ 1 − 0 +

1
e

= 1.

(2) We have

Γ(s + 1) = lim
ε↘0

∫ 1

ε

e−tt s+1−1dt + lim
x→∞

∫ x

1
e−tt s+1−1dt

= lim
ε↘0

∫ 1

ε

e−tt sdt + lim
x→∞

∫ x

1
e−tt sdt

Using Integration by Parts, we have∫ 1

ε

e−tt sdt = −t se−t
∣∣∣1
ε
−
∫ 1

ε

st s−1(−e−t)dt = εse−ε − 1
e

+ s
∫ 1

ε

e−tt s−1dt.

As 0 ≤ εse−ε ≤ εs · 1
ε↘0−−→ 0 (as s > 0), we obtain

lim
ε↘0

∫ 1

ε

e−tt sdt = −1
e

+ s · lim
ε↘0

∫ 1

ε

e−tt s−1dt. (41)

Similarly, using Integration by Parts, we have∫ x

1
e−tt sdt = −t se−t

∣∣∣x
1
−
∫ x

1
st s−1(−e−t)dt =

1
e
− x se−x + s

∫ x

1
e−tt s−1dt.

Choose n ∈ N such that n > s. Then for x > 0,

e x = 1 +
x
1!

+
x2

2!
+ · · · ≥ xn

n!
,

and so e−xx sxn−s ≤ n!, which gives

0 ≤ e−xx s ≤ n!
xn−s

x↗∞−−→ 0 (as n > s ),
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and so lim
x→∞

x se−x = 0. Thus

lim
x→∞

∫ x

1
e−tt sdt =

1
e
− 0 + s · lim

x→∞

∫ x

1
e−tt s−1dt. (42)

From (41) and (42), it follows that

Γ(s + 1) = −1
e

+ s · lim
ε↘0

∫ 1

ε

e−tt s−1dt +
1
e

+ s · lim
x→∞

∫ x

1
e−tt s−1dt

= s

(
lim
ε↘0

∫ 1

ε

e−tt s−1dt + lim
x→∞

∫ x

1
e−tt s−1dt

)
= s

(∫ ∞

0+
e−tt s−1dt

)
= sΓ(s).

(3) We have Γ(2) = Γ(1 + 1) = 1 · Γ(1) = 1 = 1!, and so the claim holds for n = 1. Sup-
pose that for some k ∈ N, Γ(k + 1) = k!. Then

Γ((k + 1) + 1) = (k + 1) · Γ(k + 1) = (k + 1) · k! = (k + 1)! .

So the result follows by induction.

Solution to Exercise 5.40

Consider the function f given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

n if x ∈
[
n, n +

1
n3

]
, n ≥ 2,

0 if x ∈ R\
⋃
n≥2

[
n, n +

1
n3

]
.

Then f : [0,∞) → [0,∞), and moreover∫ ∞

0
f (x)dx =

∑
n≥2

n · 1
n3

=
∑
n≥2

1
n2

< +∞.

But f (n) = n, n ≥ 2, and so clearly we do not have that lim
x→∞

f (x) = 0.

By the Fundamental Theorem of Calculus, f (x) − f (0) =
∫ x

0
f ′(x)dx, and so

lim
x→∞

f (x) = f (0) +
∫ ∞

0
f ′(x)dx =: L.

As f (x) ≥ 0 for all x, we must have that L ≥ 0. Suppose that L > 0. Then there exists an
R > 0 such that for all x > R, L− f (x) ≤ | f (x) − L|< L/2, and in particular, f (x) > L/2 for
all x > R. Hence for all x > R,∫ ∞

0
f (x)dx ≥

∫ x

0
f (x)dx ≥

∫ x

R
f (x)dx > (x− R)

L
2

x→∞−−→∞,

which is absurd. Consequently L = 0.
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Solution to Exercise 5.41

(1) (1[0,1] ∗ 1[0,1])(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t ≤ 0,
t if 0 ≤ t ≤ 1,
2 − t if 1 ≤ t ≤ 2,
0 if t ≥ 2.

fg(t− ·)

f ∗ g

0

0

1

1 2

(2) We have for all t ∈ R that

(g ∗ f )(t) = lim
T→∞

∫ T

−T
g(τ)f (t − τ)dτ

= lim
T→∞

∫ t−T

t+T
g(t − s)f (s)(−1)ds (using the substitution t − τ − s)

= lim
T→∞

∫ t+T

t−T
f (s)g(t − s)ds =

∫ ∞

−∞
f (τ)g(t − τ)dτ = ( f ∗ g)(t).
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Solution to Exercise 5.42

(1) We have

I′(α) =
∫ ∞

0

2(sin(αx)) · cos(αx) · x
x2

dx =
∫ ∞

0

sin(2αx)
x

dx

=
∫ ∞

0

sin u
u

du (using the substitution u = 2αx)

=
π

2
.

Thus I(α) = I(α) − 0 = I(α) − I(0) =
π

2
α, and so

∫ ∞

0

(sin x)2

x2
dx = I(1) =

π

2
· 1 =

π

2
.

(2) We have

I′(α) =
∫ ∞

0
e−x (cos(αx)) · x

x
dx =
∫ ∞

0
e−x cos(αx)dx

=
1

1 + α2
e−x(− cos(αx) + α sin(αx))

∣∣∣∞
0

=
1

1 + α2
.

Thus I(α) = I(α) − 0 = I(α) − I(0) = tan−1α, and so∫ ∞

0
e−x sin x

x
dx = I(1) = tan−11 =

π

4
.

(3) We have I′(α) =
∫ 1

0

(log x)eα log x − 0
log x

dx =
∫ 1

0
xαdx =

1
α + 1

.

Thus I(α) = I(α) − 0 = I(α) − I(0) = log(α + 1), and so
∫ 1

0

x− 1
log x

dx = I(1) = log 2.

(4) We have

I′(α) =
∫ ∞

0

1
1+α2x2 · x− 0

x
dx =
∫ ∞

0

1
1 + α2x2

dx =
1
α

tan−1(αx)
∣∣∣∞
0

=
1
α
· π

2
.

Thus I(α) = I(α) − 0 = I(α) − I(1) =
π

2
log α, and so

∫ ∞

0

tan−1(πx) − tan−1x
x

dx = I(π) =
π

2
log π.

Solution to Exercise 5.43

(1) We have
∫ x

R

GMm
r2

dr = −GMm
r

∣∣∣x
R

= −GMm
x

+
GMm
R

, and so

V(R) =
∫ ∞

R

GMm
r2

dr = lim
x→∞

∫ x

R

GMm
r2

dx

= lim
x→∞

(
−GMm

x
+

GMm
R

)
= 0 +

GMm
R

=
GMm
R

.

(2) We must have

Kinetic energy =
1
2
m(v e(R))2 =

GMm
R

= V(R) = Potential energy
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and so v e(R) =

√
2GM
R

.

With the given values, we have that the escape velocity on the surface of the Earth (so that the
separation R is just the radius of the Earth),

v e(R) =

√
2GM
R

=

√
2 × (6.67384 × 10−11) × (5.97219 × 1024)

6.371 × 106

=
√

1.2512145 × 108 = 1.1185769 × 104 m s−1,

that is, approximately 11.2 km/s.

(3) Clearly,

rs =
2GM
c2

,

and so with M = M� = 1.99 × 1030 kg, we obtain rs = 2.95 × 103 m, that is about 3 km.

Solution to Exercise 5.44

We have for y > 0 that∫ y

0
λe−λxdx =

∫ y

0
− d
dx

e−λxdx = −e−λx
∣∣∣y
0

= −e−λy + e0 = 1 − e−λy.

As eλy = 1 + λy + · · · ≥ λy, we have

0 ≤ λe−λy ≤ 1
λy

,

and so by the Sandwich Theorem, lim
y→∞

e−λy = 0. Consequently,

∫ ∞

0
e−λxdx = lim

y→∞

∫ y

0
e−λxdx = lim

y→∞

1
λ

∫ y

0
λe−λxdx =

1
λ

lim
y→∞

(1 − e−λy) =
1
λ

(1 − 0) =
1
λ

.

Solution to Exercise 5.45

We have that e−x2
is a continuous function. Also,

e x
2
= 1 +

x2

1!
+

x4

2!
+ · · · ≥ 1 + x2,

and so e−x2 ≤ 1
1+x2 . Hence for y > 1, we have

∫ y

0
e−x2

dx =
∫ 1

0
e−x2

dx +
∫ y

1
e−x2

dx

≤
∫ 1

0
e−x2

dx +
∫ y

1

1
1 + x2

dx

≤
∫ 1

0
e−x2

dx +
∫ y

1

1
x2
dx < ∞

since ∫ ∞

1

1
x2
dx < ∞.
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Thus y �→
∫ y

0
e−x2

dx is bounded above, and moreover, it is increasing. So

lim
y→∞

∫ y

0
e−x2

dx

exists. Hence the improper integral
∫ ∞

0
e−x2

dx converges.

Solution to Exercise 5.46

We use the substitution u = log x (so that du = 1
x dx, and when x = 2, u = log 2, while if x = y,

then u = log y):∫ y

2

1
x log x

dx =
∫ log y

log 2

1
u
du = log u

∣∣∣log y

log 2
= log(log y) − log(log 2).

As log y
y→∞−−→∞, it follows that log(log y)

y→∞−−→∞, and so∫ ∞

2

1
x log x

dx

does not converge. On the other hand,∫ y

2

1
x(log x)2

dx =
∫ log y

log 2

1
u2

du = −1
u

∣∣∣log y

log 2
= − 1

log y
+

1
log 2

.

Thus∫ ∞

2

1
x(log x)2

dx = lim
y→∞

∫ y

2

1
x(log x)2

dx = lim
y→∞

(
− 1

log y
+

1
log 2

)
= 0 +

1
log 2

=
1

log 2
.

Solution to Exercise 5.47

(1) We have

log(n + 1) − log n =
∫ n+1

1

1
t
dt −
∫ n

1

1
t
dt =
∫ n+1

n

1
t
dt.

Clearly ∫ n+1

n

1
t
dt ≤
∫ n+1

n

1
n
dt =

1
n

and

∫ n+1

n

1
t
dt ≥
∫ n+1

n

1
n + 1

dt =
1

n + 1
.

(2) We have

an = 1 +
1
2

+
1
3

+ · · · + 1
n
− log n

= 1 +
1
2

+
1
3

+ · · · + 1
n

+ (log 1 − log 2 + log 2 − log 3 + · · · + log(n− 1) − log n)

= (1 + log 1 − log 2)︸ ︷︷ ︸
≥0

+
(

1
2

+ log 2 − log 3

)
︸ ︷︷ ︸

≥0

+ · · · +
(

1
n− 1

+ log(n− 1) − log n
)

︸ ︷︷ ︸
≥0

+
1
n

≥ 1
n
≥ 0.



444 SOLUTIONS

Also,

an− an+1 =
(

1 +
1
2

+
1
3

+ · · ·+ 1
n
− log n
)
−
(

1 +
1
2

+
1
3

+ · · ·+ 1
n

+
1

n+ 1
− log(n+ 1)

)

= log(n + 1) − log n− 1
n + 1

≥ 0.

Since (an)n∈N
is monotone and bounded, it is convergent with a limit, which we call γ.

Solution to Exercise 5.48

Let f (x) = log(1 + x), x ≥ 0. Then f (0) = log 1 = 0, and

f ′(x) =
1

1 + x
, f ′(0) = 1,

f ′′(x) =
−1

(1 + x)2
, f ′′(0) = −1,

f ′′′(x) =
2

(1 + x)3
.

If x ∈ (0,∞), then Taylor’s Formula gives

f (x) = f (0) + f ′(0)x +
1
2!

f ′′(0)x2 +
1
3!

f ′′′(θ)x3,

for some θ ∈ (0, x). Thus log(1 + x) = 0 + x− x2

2
+

1
3!

2
(1 + θ)3

x3, x ≥ 0.

But clearly
1
3!

2
(1 + θ)3

x3 ≥ 0 for x ≥ 0 and
1
3!

2
(1 + θ)3

x3 =
x3/3

(1 + θ)3
≤ x3

3
for x ≥ 0.

Hence x− x2

2
≤ log(1 + x) ≤ x− x2

2
+

x3

3
for x ≥ 0.

Solution to Exercise 5.49

We have

d(A,B) + d(B,C) = log

(�
AP
�
AQ

·
�
BQ
�
BP

)
+ log

(�
BP
�
BQ

·
�
CQ
�
CP

)

= log

(�
AP
�
AQ

·
�
BQ
�
BP

·
�
BP
�
BQ

·
�
CQ
�
CP

)
= log

(�
AP
�
AQ

·
�
CQ
�
CP

)
= d(A,C).

Solution to Exercise 5.50

(1) For y > 0, using Integration by Parts, we have
∫ 1

y
1 · log xdx = −y log y + y− 1.



SOLUTIONS 445

By l’Hôpital’s Rule, we have lim
y→0

y log y = lim
y→0

log y
1/y

= lim
y→0

1/y
−1/y2

= lim
y→0

(−y) = 0.

Thus
∫ 1

0
log xdx = lim

y→0

∫ 1

y
log xdx = lim

y→0
(−y log y + y− 1) = 0 + 0 − 1 = −1.

(2) We associate with
∫ 1

0
log xdx, a ‘Riemann type of sum’.

log x

1
n

2
n

3
n

n−1
n0 1

We have

−1 =
∫ 1

0
log xdx ≈ 1

n
log

1
n

+
1
n

log
2
n

+ · · · + 1
n

log
n
n

=
1
n

log
1 · 2 · 3 · · · n

nn
=

1
n

log
n!
nn

.

So log
n!
nn

≈ −n, that is, log n! ≈ n log n− n.

Solution to Exercise 5.51

We have using the Fundamental Theorem of Calculus that

d
dx

(∫ x

0

1√
1 + t2

dt − log(x +
√

1 + x2)
)

=
1√

1 + x2
− 1

x +
√

1 + x2
·
(

1 +
1

2
√

1 + x2
· 2x

)

=
1√

1 + x2
− 1

x +
√

1 + x2
· x +

√
1 + x2

√
1 + x2

= 0.

So for all x ∈ R,
∫ x

0

1√
1 + t2

dt − log(x +
√

1 + x2) =
∫ 0

0

1√
1 + t2

dt − log(0 +
√

1 + 02) = 0.

Hence
∫ x

0

1√
1 + t2

dt = log(x +
√

1 + x2).
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Also,

d
dx

(∫ x

0

√
1 + t2dt − x

√
1 + x2

2
− 1

2
log(x +

√
1 + x2)

)

=
√

1 + x2 − 1 ·
√

1 + x2

2
− x · x

2
√

1 + x2
− 1

2
1

x +
√

1 + x2

(
1 +

x√
1 + x2

)

=
√

1 + x2 −
√

1 + x2

2
− x2

2
√

1 + x2
− 1

2
√

1 + x2

=
√

1 + x2 −
√

1 + x2

2
− 1 + x2

2
√

1 + x2

=
√

1 + x2 −
√

1 + x2

2
−

√
1 + x2

2
= 0.

Hence for all x ∈ R,∫ x

0

√
1 + t2dt − x

√
1 + x2

2
− 1

2
log(x +

√
1 + x2)

=
∫ 0

0

√
1 + t2dt − 0

√
1 + 02

2
− 1

2
log(0 +

√
1 + 02) = 0.

Consequently,
∫ x

0

√
1 + t2dt =

x
√

1 + x2

2
+

1
2

log(x +
√

1 + x2).

Solution to Exercise 5.52

We use the ∞
∞ form of l’Hôpital’s Rule. With

f := log(log x) and

g := log x,

we have

(1) g, g′ > 0 on (1,∞),

(2) lim
x→∞

g(x) = lim
x→∞

log x = ∞, and

(3) lim
x→∞

f ′(x)
g′(x)

= lim
x→∞

1
log x

1
x

1
x

= lim
x→∞

1
log x

= 0,

and so lim
x→∞

f (x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

= 0.

Solution to Exercise 5.53

(1) We have blogb a = elogba·log b = elog a = a.

(2) We have (ab)c = (eb log a)c = ec·log(eb log a) = ec·(b log a) = e(c·b)·log a = a(b·c).
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(3) Suppose that
log23 =

p
q

,

where p, q ∈ Z, and q ≥ 0. We may assume that p, q > 0 (because 3 > 1, 2 > 1 imply that
log 3, log 2 > 0, and so log23 > 0 too). Then 2p/q = 3, that is, 2p = 3q. But as p �= 0, 2p is
even. However, 3q is odd, a contradiction.

(4)
√

2 is irrational and 2log23 is irrational, but
√

2
2log23

= (
√

2
2
)log23 = 2log23 = 3 ∈ Q.

(5) The flaw is that log1/2 is not an increasing function. Indeed, for x > 0,

log1/2 x =
log x

log(1/2)
,

and as log is strictly increasing and log(1/2) < 0, it follows that log1/2 is strictly decreasing.

(6) See Figure 5.

8

6

4

2

0

−2

2 4 6
x

8 10

−4

−6

Figure 5. The graphs of log, log1/2, and log10. The decreasing one is the graph of log1/2.
Among the increasing ones, the graph of log10 is the one which takes value 1 at x = 10.

Solution to Exercise 5.54

For x > 0,

(
log x
x

)′
= − 1

x2
· log x +

1
x
· 1
x

=
1
x2

(1 − log x).
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We have (
log x
x

)′
=

1
x2

(1 − log x) ≤ 0

for x ∈ (e,∞) because log x > log e = 1 (as log is strictly increasing). As π > 3 > e, we have
that

log π

π
<

log e
e

,

that is, e log π < π log e. Hence πe < eπ , and so eπ is bigger. (A scientific calculator gives
eπ ≈ 23.1406926328, while πe ≈ 22.4591577184.)

Solution to Exercise 5.55

(1) We have

d
dx

(
y0 exp
(∫ x

x0

a(ξ)dξ
))

= y0 exp
(∫ x

x0

a(ξ)dξ
)

d
dx

∫ x

x0

a(ξ)dξ

= y0 exp
(∫ x

x0

a(ξ)dξ
)
a(x)

= a(x) · y0 exp
(∫ x

x0

a(ξ)dξ
)

,

and so x �→ y0 exp
(∫ x

x0

a(ξ)dξ
)

does satisfy f ′(x) = a(x)f (x) on the interval I. Moreover,

exp
(
y0

∫ x

x0

a(ξ)dξ
)∣∣∣

x=x0

= y0 exp
(∫ x0

x0

a(ξ)dξ
)

= y0 · exp 0 = y0 · 1 = y0.

Next we show uniqueness. To this end, let f be any function such that f ′(x) = a(x)f (x) on the
interval I and f (x0) = y0. Then

d
dx

(
exp
(
−
∫ x

x0

a(ξ)dξ
)
f (x)
)

=
(

d
dx

exp
(
−
∫ x

x0

a(ξ)dξ
))

· f (x) + exp
(
−
∫ x

x0

a(ξ)dξ
)
· f ′(x)

= exp
(
−
∫ x

x0

a(ξ)dξ
)
· d
dx

(
−
∫ x

x0

a(ξ)dξ
)
· f (x) + exp

(
−
∫ x

x0

a(ξ)dξ
)
· a(x)f (x)

= exp
(
−
∫ x

x0

a(ξ)dξ
)
· (−a(x)) · f (x) + exp

(
−
∫ x

x0

a(ξ)dξ
)
· a(x)f (x)

= 0.

Thus for all x ∈ I,

exp
(
−
∫ x

x0

a(ξ)dξ
)
f (x) = exp

(
−
∫ x0

x0

a(ξ)dξ
)
f (x0) = exp(0) · y0 = 1 · y0 = y0,

that is, f (x) = y0 exp
(∫ x

x0

a(ξ)dξ
)

.
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(2) We first check that the given expression for f is indeed a solution. Note that for all x ∈ I,
A′(x) = a(x). Thus we have

d
dx

(
y0e

A(x) + eA(x)
∫ x

x0

b(ξ)e−A(ξ)dξ

)

= y0e
A(x)a(x) + eA(x)a(x)

∫ x

x0

b(ξ)e−A(ξ)dξ + eA(x)b(x)e−A(x)

= a(x)
(
y0e

A(x) + eA(x)
∫ x

x0

b(ξ)e−A(ξ)dξ

)
+ b(x).

Moreover, using the fact that A(x0) = 0, we obtain

y0e
A(x0) + eA(x0)

∫ x0

x0

b(ξ)e−A(ξ)dξ = y0 · 1 + 1 · 0 = y0.

Next we will establish uniqueness. Suppose that f , g are two solutions. Then h := f − g
satisfies

h′(x) = f ′(x)− g′(x) = a(x)f (x)+ b(x)− (a(x)g(x) + b(x)) = a(x)( f (x)− g(x)) = a(x)h(x),

for all x ∈ I. Also, h(x0) = f (x0) − g(x0) = y0 − y0 = 0. So by Part (1), it follows that

f (x) − g(x) = h(x) = 0 · exp
(∫ x

x0

a(ξ)dξ
)

= 0, x ∈ I.

Hence f ≡ g on I.

(3) We write the given differential equation in the form

y′

y(y− 1)
=

1
x

.

Furthermore,
1

y(y− 1)
=

1
y− 1

− 1
y

.

With

P(x) = log(y(x) − 1) − log(y(x)),

Q(x) = log x,

we have that

(P− Q)′(x) =
y′(x)

y(x) − 1
− y′(x)

y(x)
− 1

x
= 0,

and so P− Q is constant on (0,∞). Hence

log(y(x) − 1) − log(y(x)) − log x = log
y(x) − 1
xy(x)

must be constant for x ∈ (0,∞), and so

x �→ y(x) − 1
xy(x)

itself must be a constant, say C. Thus we obtain

y(x) =
1

1 − Cx
, x > 0,

where C is a constant.
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Solution to Exercise 5.56

Newton’s Law of Cooling gives Θ′(t) = −k(Θ(t) −M), where k > 0 is the constant of pro-
portionality. Then

(ekt(Θ −M))′ = ekt(Θ −M)′ + kekt(Θ −M) = ekt(Θ′ + k(Θ −M))︸ ︷︷ ︸
=0

= 0.

Thus ekt(Θ −M) is constant, and so ekt(Θ(t) −M) = ek·0(Θ(0) −M) = 1 · (Θ0 −M).
Rearranging, we obtain Θ(t) = e−kt(Θ0 −M) + M = e−ktΘ0 + M(1 − e−kt). As t → ∞,
Θ(t) → M, the ambient temperature, as expected.

Solution to Exercise 5.57

(1) We have

(ectA(t))′ = ectA′(t) + cectA(t) = ect(A′(t) + cA(t))︸ ︷︷ ︸
=0

= 0.

So ectA(t) is constant, and so ectA(t) = ec·0A(0) = 1 · A0. Hence A(t) = e−ctA0 for all t.

(2) (We want in particular that A(0 + τ) = A(0)/2, that is, A(τ) = A0/2. So

e−cτA0 = A0/2,

that is, e−cτ = 1/2. Thus −cτ = log(1/2) = − log 2. Thus we must have τ = (log 2)/c.)
Indeed, with

τ :=
log 2
c

,

we have A(t + τ) = e−c(t+τ)A0 = e−cte−cτA0 = e−ct 1
2
A0 =

1
2
e−ctA0︸ ︷︷ ︸
=A(t)

=
A(t)

2
.

Solution to Exercise 5.58

We have

lim
m→∞

P
(

1 +
r
m

)mn
= P

((
1 +

r
m

) m
r

)r·n
= P

(
lim
m→∞

(
1 +

r
m

) m
r

)r·n
= Per·n,

where to get the last equality, we used the fact that

lim
h→0

(1 + h)1/h = e,

which follows from lim
h→0

log(1 + h)
h

= 1 and the continuity of exp.

(1) We seek n such that
Pe0.06n

P
= 2, that is, e0.06n = 2.

Hence 0.06n = log 2, that is, n =
log 2
0.06

≈ 0.6931
0.06

≈ 11.6 years.

(2) We seek n such that
P(1 + nr)

P
= 2, that is, 1 + 0.06n = 2, and so 0.06n = 1.

Thus n =
1

0.06
≈ 16.7 years.
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Solution to Exercise 5.59

(1) We have sinh 0 =
e0 − e−0

2
=

1 − 1
2

= 0, and cosh 0 =
e0 + e−0

2
=

1 + 1
2

= 1.
Also, for all x ∈ R we have

sinh′x =
d
dx

e x − e−x

2
=

e x + e−x

2
= cosh x and

cosh′x =
d
dx

e x + e−x

2
=

e x − e−x

2
= sinh x.

For x, y ∈ R, we have

(cosh x)(cosh y) + (sinh x)(sinh y)

=
e x + e−x

2
· e

y + e−y

2
+

e x − e−x

2
· e

y − e−y

2

=
e x+y + e x−y + e−x+y + e−(x+y)

4
+

e x+y − e x−y − e−x+y + e−(x+y)

4

=
2e x+y + 2e−(x+y)

4
=

e x+y + e−(x+y)

2
= cosh(x + y).

(2) We have cosh′′x = cosh ≥ 0 for all x and so cosh is convex.
Also, lim

x→±∞
cosh x = +∞. See Figure 6.

7

6

5

4

3

2

−2 −1 0
x

1 2

1

7

6

5

4

3

2

−2 −1 0
x

1 2

1

Figure 6. Graphs of e x, e−x on the left and the graph of cosh on the right.

We have sinh′′x = sinh x > 0 for x > 0, and sinh′′x < 0 for x < 0. Thus sinh is convex for
x > 0, and concave for x < 0. Also, lim

x→±∞
sinh x = ±∞. See Figure 7.

(3) With (x, y) = (cosh t, sinh t), t ∈ R, we have

x2 − y2 = (cosh t)2 − (sinh t)2 =
(
et + e−t

2

)2

−
(
et − e−t

2

)2

=
e2t + 2 + e−2t

4
− e2t − 2 + e−2t

4
=

4
4

= 1.
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Figure 7. Graphs of e x,−e−x on the left, and the graph of cosh on the right.

The curve t �→ (cosh t, sinh t) is displayed in the following picture. As t increases, the point
on the curve moves upward.

1
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0

(4) The following picture shows the graph of tanh.
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Solution to Exercise 5.60

Let f (x) = xx, x > 0. Then

h(x) := log f (x) = log(exp(x log x)) = x log x.
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Thus lim
x→0+

h(x) = lim
x→0+

x log x = lim
x→0+

log x
1/x

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x = 0.

By the continuity of exp, we obtain

lim
x→0+

f (x) = lim
x→0+

exp h(x) = exp
(

lim
x→0+

h(x)
)

= exp 0 = 1.

Hence also lim
x→0+

1
xx

= 1.

So for every ε > 0, there exists a δ > 0 such that for all x satisfying 0 < x < δ,
∣∣∣ 1
xx

− 1
∣∣∣ < ε.

In particular, for all n ∈ N such that n >
1
δ

, we have that x :=
1
n

satisfies 0 < x < δ and so

|n 1
n − 1| =

∣∣∣∣ 1xx − 1

∣∣∣∣ < ε.

Consequently, lim
n→∞

n1/n = 1.

Solution to Exercise 5.61

(1) Define g(x) :=

{
e−x log x for x > 0,

1 for x = 0.

Then g is continuous by Exercise 5.60.

As exp is continuous, it follows that lim
x→0+

g(x) = lim
x→0+

e−x log x = e−0 = 1 = g(0). Thus

lim
ε↘0

∫ 1

ε

1
xx
dx = lim

ε↘0

∫ 1

ε

g(x)dx = lim
ε↘0

(∫ 1

0
g(x)dx−

∫ ε

0
g(x)dx
)

=
∫ 1

0
g(x)dx− lim

ε↘0

∫ ε

0
g(x)dx =

∫ 1

0
g(x)dx,

where we have used

0 ≤
∣∣∣∣
∫ ε

0
g(x)dx
∣∣∣∣ ≤
∫ ε

0
|g(x)|dx ≤

(
max
x∈[0,1]

|g(x)|
)
ε

in order to get the last equality.

(2) We have ∫ 1

0

1
xx
dx =
∫ 1

0
e−x log xdx =

∫ 1

0

∞∑
n=0

(−x log x)n

n!
dx

=
∞∑
n=0

(−1)n

n!

∫ 1

0
xn(log x)ndx

=
∞∑
n=0

(−1)n

n!

∫ 0

∞
e−nt(−t)n(−e−t)dt,
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where we used the substitution x = e−t (and so dx = −e−tdt, when x = 0 we have t = ∞, and
when x = 1 we have t = 0) in order to get the last equality. Thus∫ 1

0

1
xx
dx =

∞∑
n=0

1
n!

∫ ∞

0
e−(n+1)ttndt =

∞∑
n=0

1
n!

∫ ∞

0
e−u un

(n + 1)n
1

n + 1
du,

where we used the substitution u = (n + 1)t (and so du = (n + 1)dt, when t = 0 we have
u = 0, and when t = ∞ we have u = ∞) in order to get the last equality. Hence∫ 1

0

1
xx
dx =

∞∑
n=0

1
n!

1
(n + 1)n+1

∫ ∞

0
e−uu(n+1)−1du

=
∞∑
n=0

1
n!

1
(n + 1)n+1

Γ(n + 1)

=
∞∑
n=0

1
n!

1
(n + 1)n+1

n!

=
∞∑
n=0

1
(n + 1)n+1

=
∞∑
n=1

1
nn

.

Solution to Exercise 5.62

With f defined by f (x) = log(1 + x), x ∈ [0, 1], we have that

S( f ,Pn) =
(

log
(

1 +
1
n

))
1
n

+
(

log
(

1 +
2
n

))
1
n

+ · · · +
(

log
(

1 +
n
n

))
1
n

= log
((

1 +
1
n

)(
1 +

2
n

)
· · ·
(

1 +
n
n

)) 1
n

.

Since lim
n→∞

S( f ,Pn) =
∫ 1

0
f (x)dx, we obtain

lim
n→∞

log
((

1 +
1
n

)(
1 +

2
n

)
· · ·
(

1 +
n
n

)) 1
n

=
∫ 1

0
log(1 + x)dx

= (log(1 + x))x
∣∣∣1
0
−
∫ 1

0

x
1 + x

xdx

= log 2 −
∫ 1

0

(
1 − 1

1 + x

)
dx

= log 2 − 1 + log(1 + x)
∣∣∣1
0

= 2 log 2 − 1

= log
4
e

.

Since exp is continuous, it follows that

lim
n→∞

log
((

1 +
1
n

)(
1 +

2
n

)
· · ·
(

1 +
n
n

)) 1
n

= elog 4
e =

4
e

.
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Solution to Exercise 5.63

In decreasing order of growth, we have

x2x, (2x)x, xx, (log x)x, e x, 2x, e x/2, xe, x2, x1/2, (log x)2, (log2x ≥ log x), log(log x).

Indeed,

(1) lim
x→∞

log(log x)
log x

= lim
x→∞

1
log x

1
x

1
x

= lim
x→∞

1
log x

= 0;

(2) lim
x→∞

log x
log2x

= log 2 < 1;

(3) lim
x→∞

log2x
(log x)2

= lim
x→∞

1
(log x) · (log 2)

= 0;

(4) lim
x→∞

(log x)2

x1/2
= lim

x→∞

log x
4
√
x

· log x
4
√
x

= 0 · 0 = 0;

(5) lim
x→∞

√
x

x2
= lim

x→∞

1
x3/2

= 0;

(6) lim
x→∞

x2

xe
= lim

x→∞

1
xe−2

= 0;

(7) lim
x→∞

xe

e x/2
= lim

x→∞

(
x2e

e x

)1/2

=
√

0 = 0;

(8) lim
x→∞

e x/2

2x
= lim

x→∞

e x/2

e x log 2
= lim

x→∞
e x(

1
2 −log 2) = 0 since e < 4;

(9) lim
x→∞

2x

e x
= lim

x→∞

e x log 2

e x
= lim

x→∞
e x log(2/e) = 0 since e > 2;

(10) lim
x→∞

e x

(log x)x
= lim

x→∞

e x

e x log(log x) = lim
x→∞

e x(1−log(log x)) = 0;

(11) lim
x→∞

(log x)x

xx
= lim

x→∞

e x log(log x)

e x log x = lim
x→∞

e x log( log x
x ) = 0;

(12) lim
x→∞

xx

(2x)x
= lim

x→∞

1
2x

= 0;

(13) lim
x→∞

(2x)x

x2x
= lim

x→∞

2xe x log x

e2x log x = lim
x→∞

e x(log 2−log x) = 0.

Solution to Exercise 5.64

Since log102 = 0.3010, it follows that

2399 = 10399·log102 = 10120.1109.

But 1 = 100 < 100.1109 < 101 = 10, and so 2399 is an integer with a decimal representation
having 121 digits.
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Solution to Exercise 5.65

Using the calculation from Exercise 3.51.(2), we have the partial fraction expansion

x2 + 3x + 9
(x + 1)(x− 2)2

=
7
9
· 1
x + 1

+
2
9
· 1
x− 2

+
19
3

· 1
(x− 2)2

,

and so∫ 4

3

x2 + 3x + 9
(x + 1)(x− 2)2

dx =
7
9

∫ 4

3

1
x + 1

dx +
2
9

∫ 4

3

1
x− 2

dx +
19
3

∫ 4

3

1
(x− 2)2

dx

=
7
9

log(x + 1)
∣∣∣4
3
+

2
9

log(x− 2)
∣∣∣4
3
+

19
3

(
− 1
x− 2

) ∣∣∣4
3

=
7
9

log
5
4

+
2
9

log 2 +
19
3

(
−1

2
+ 1

)

=
7
9

log
5
4

+
2
9

log 2 +
19
6

.

Solution to Exercise 5.66

(x, y) := (3, 2) is a solution because

3x − 2y = 33 − 22 = 27 − 4 = 23,

log3x + logy2 = log33 + log22 = 1 + 1 = 2.

Suppose that (x, y) is another solution where x �= 3. Then we have two cases.

1◦ x > 3. Then 3x > 33 = 27, and so 2y < 4. Thus y < 2. But then logy2 > 1. Also,
log3x > log33 = 1. Hence the second equation cannot be valid, since we have that
log3x + logy2 > 1 + 1 = 2.

2◦ x < 3. Then 3x < 33 = 27, and so 2y > 4. Thus y > 2. But then logy2 < 1. Also,
log3x < log33 = 1. Hence the second equation cannot be valid, since we have that
log3x + logy2 < 1 + 1 = 2.

Consequently, x = 3. But then logy2 = 1, and so y = 2. So (x, y) = (3, 2) is the only solution.

Solution to Exercise 5.67

From the recurrence relation and the fact that a1 = 1, we see that all the terms an are positive.
We have(

1 +
1
a1

)(
1 +

1
a2

)(
1 +

1
a3

)
· · ·
(

1 +
1
an

)
=
(
a1 + 1
a1

)(
a2 + 1
a2

)(
a3 + 1
a3

)
· · ·
(
an + 1
an

)

=
(
a2/2
a1

)(
a3/3
a2

)(
a4/4
a3

)
· · ·
(
an+1/(n + 1)

an

)

=
1
a1

· 1
2
· 1

3
· 1

4
· · · an+1

n + 1
=

an+1

(n + 1)!
,

where we have used the fact that a1 = 1 in order to obtain the last equality. So in order to find
the sought for limit, we need to investigate the behaviour of the sequence (bn)n∈N

, where

bn :=
an
n!

, n ∈ N.
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Let us try to find if the terms of the sequence (bn)n∈N
satisfy a recurrence relation. Dividing

an = n(1 + an−1) on both sides by n! gives

an
n!

=
n(1 + an−1)

n!
=

1 + an−1

(n− 1)!
=

1
(n− 1)!

+
an−1

(n− 1)!
,

that is, bn =
an
n!

=
1

(n− 1)!
+

an−1

(n− 1)!
=

1
(n− 1)!

+ bn−1. Also, b1 =
a1

1!
=

1
1!

= 1.

Hence it follows that

bn =
(
bn − b1

)
+ 1 =
(
(bn − bn−1) + (bn−1 − bn−2) + · · · + (b2 − b1)

)
+ 1

=
(

1
(n− 1)!

+
1

(n− 2)!
+ · · · + 1

1!

)
+ 1 =

n−1∑
k=0

1
k!

.

Consequently,

lim
n→∞

(
1 +

1
a1

)(
1 +

1
a2

)(
1 +

1
a3

)
· · ·
(

1 +
1
an

)
= lim

n→∞

an+1

(n + 1)!
= lim

n→∞
bn+1

= lim
n→∞

n∑
k=0

1
k!

= e.

Solution to Exercise 5.68

(1) We use the
0
0

form of l’Hôpital’s Rule. With

f (x) = 3sin x − 1,

g(x) = x,

we have

lim
x→0

f (x) = lim
x→0

(3sin x − 1) = 30 − 1 = 1 − 1 = 0,

lim
x→0

g(x) = lim
x→0

x = 0,

and

lim
x→0

f ′(x)
g′(x)

= lim
x→0

e(log 3)(sin x)(log 3)(cos x)
1

= e(log 3)·0(log 3)(cos 0) = log 3,

and so lim
x→0

f (x)
g(x)

= lim
x→0

f ′(x)
g′(x)

= log 3.

Alternately, one could use the Chain rule:

lim
x→0

3sin x − 1
x

=
d
dx

(3sin x)
∣∣∣
x=0

= 3sin x · (log 3) · cos x
∣∣∣
x=0

= 30 · (log 3) · cos 0 = 1 · (log 3) · 1 = log 3.
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(2) We use the
0
0

form of l’Hôpital’s Rule twice. We have

(
sin x− x +

x3

6

) ∣∣∣
x=0

= 0 and x3
∣∣∣
x=0

= 0,

and so

lim
x→0

sin x− x + x3/6
x3

= lim
x→0

cos x− 1 + x2/2
3x2

if the latter exists. But

(cos x− 1 + x2/2)
∣∣∣
x=0

= 0 and 3x2
∣∣∣
x=0

= 0,

and so

lim
x→0

sin x− x + x3/6
x3

= lim
x→0

cos x− 1 + x2/2
3x2

= lim
x→0

− sin x + x
6x

= −1
6

+
1
6

= 0.

(3) We have (cos x− 1 + x2/2)
∣∣
x=0 = 0 and x4

∣∣
x=0 = 0, and so

lim
x→0

cos x− 1 + x2/2
x4

= lim
x→0

− sin x + x
4x3

,

if the latter exists. We have (− sin x + x)
∣∣
x=0 = 0 and 4x3

∣∣
x=0 = 0, and so

lim
x→0

− sin x + x
4x3

= lim
x→0

− cos x + 1
12x2

,

if the latter exists. We have (− cos x + 1)
∣∣
x=0 = 0 and 12x2

∣∣
x=0 = 0, and so

lim
x→0

− cos x + 1
12x2

= lim
x→0

sin x
24x

=
1

24
.

Thus lim
x→0

cos x− 1 + x2/2
x4

= lim
x→0

− sin x + x
4x3

= lim
x→0

− cos x + 1
12x2

= lim
x→0

sin x
24x

=
1

24
.

(4) We have (sin x− x)
∣∣
x=0 = 0 and x2

∣∣
x=0 = 0, and so

lim
x→0

sin x− x
x2

= lim
x→0

cos x− 1
2x

,

if the latter exists. We have (cos x− 1)
∣∣
x=0 = 0 and 2x

∣∣
x=0 = 0, and so

lim
x→0

cos x− 1
2x

= lim
x→0

− sin x
2

= 0.

Thus

lim
x→0

(
1
x
− 1

sin x

)
= lim

x→0

sin x− x
x sin x

= lim
x→0

sin x− x
x2

· x
sin x

= lim
x→0

sin x− x
x2

lim
x→0

x
sin x

= 0 · 1 = 0.
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Solution to Exercise 5.69

We note that the integrand f is an odd function, that is,

f (x) = −f (−x) for all x ∈ [−1/2, 1/2].

Indeed,

f (−x) = (cos(−x)) log
(

1 − (−x)
1 + (−x)

)
= (cos x) log

1 + x
1 − x

= (cos x) log

((
1 − x
1 + x

)−1
)

= (cos x)
(
− log

1 − x
1 + x

)
= −f (x),

for all x ∈ [−1/2, 1/2]. Thus by Example 5.24,
∫ 1

2

− 1
2

(cos x) · log
(

1 − x
1 + x

)
dx =
∫ 1/2

−1/2
f (x)dx = 0.

Solution to Exercise 5.70

We have for m, n ∈ N, and x ∈ R that

cos((m + n)x) = (cos(mx))(cos(nx)) − (sin(mx))(sin(nx)),

cos((m− n)x) = (cos(mx))(cos(nx)) + (sin(mx))(sin(nx)),

and so 2(sin(mx))(sin(nx)) = cos((m− n)x) − cos((m + n)x).
If m �= n, then∫ π

−π

(sin(mx))(sin(nx))dx =
1
2

∫ π

−π

(cos((m− n)x) − cos((m + n)x))dx

=
1
2

(
sin((m− n)x)

m− n
− sin((m + n)x)

m + n

) ∣∣∣π
−π

= 0.

If m = n, then∫ π

−π

(sin(mx))(sin(nx))dx =
1
2

∫ π

−π

(
1 − cos((m + n)x)

)
dx

=
1
2

(
2π − sin((m + n)x)

m + n

∣∣∣π
−π

)
= π.

Similarly

∫ π

−π

(cos(mx))(cos(nx))dx =
1
2

∫ π

−π

(
cos((m− n)x) + cos((m + n)x)

)
dx =

{
0 if m �= n,

π if m = n.

Also,
∫ π

−π

(cos(mx))︸ ︷︷ ︸
even

(sin(nx))︸ ︷︷ ︸
odd

dx = 0.
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Solution to Exercise 5.71

(1) For any integer k and for x ∈ R, we have

cos(k(x + 2π)) = cos(kx + 2πk) = cos(kx) and

sin(k(x + 2π)) = sin(kx + 2πk) = sin(kx).

Thus

f (x + 2π) = a0 +
n∑

k=1

(ak cos(k(x + 2π)) + bk sin(k(x + 2π)))

= a0 +
n∑

k=1

(ak cos(kx) + bk sin(kx)) = f (x).

(2) We have

1
2π

∫ π

−π

f (x)dx =
1

2π

∫ π

−π

(
a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx))

)
dx

=
1

2π

∫ π

−π

a0dx +
1

2π

n∑
k=1

⎛
⎝ak
∫ π

−π

cos(kx)dx + bk

∫ π

−π

sin(kx)︸ ︷︷ ︸
odd

dx

⎞
⎠

=
1

2π
a0 · 2π +

1
2π

n∑
k=1

ak

(
− sin(kx)

k

) ∣∣∣π
−π

+ 0 = a0 + 0 = a0.

Using the result from Exercise 5.70, for � = 1, · · · , n, we have

1
π

∫ π

−π

f (x) cos(�x)dx =
1
π

∫ π

−π

a0 cos(�x)dx +
n∑

k=1

ak
1
π

∫ π

−π

(cos(kx))(cos(�x))dx

+
n∑

k=1

bk
1
π

∫ π

−π

(sin(kx))(cos(�x))dx

=
1
π
a0

(
− sin(�x)

�

) ∣∣∣π
−π

+ a�

1
π

π + 0 = a�,

and

1
π

∫ π

−π

f (x) sin(�x)dx =
1
π

∫ π

−π

a0 sin(�x)dx +
n∑

k=1

ak
1
π

∫ π

−π

(cos(kx))(sin(�x))dx

+
n∑

k=1

bk
1
π

∫ π

−π

(sin(kx))(sin(�x))dx

= 0 + 0 + b�

1
π

π = b�.

(3) One can use the Maple commands
with(plots):

f:=sum
(

2
(k· Pi) · (1 − (−1)k) · sin(k · x), k = 1..333

)
;

plot(f,x=-10..10)
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We observe that the graphs seem to look more and more like the graph of the ‘square wave’
function.

Solution to Exercise 5.72

(1) For x ∈ (0, π/2], we have by the Mean Value Theorem that

sin x− sin 0
x− 0

= cos c

for some c ∈ (0, π/2), and so
sin x
x

= cos c < 1.

Thus sin x < x for x ∈ (0, π/2]. For x > π/2, x > 1 ≥ sin x. So sin x �= x for all x ∈ (0,∞).
Hence also sin(−x) = − sin x �= −x for x ∈ (0,∞). Thus sin x �= x for all x ∈ R\{0}. On the
other hand, sin 0 = 0. So 0 is the only fixed point of sin.

(2) Consider f : R → R given by f (x) = cos x− x, x ∈ R. Then f (0) = cos 0 − 0 = 1 > 0,
while f (π/2) = cos(π/2) − π/2 = 0 − π/2 = −π/2 < 0. Hence by the Intermediate Value
Theorem, there exists a c∗ ∈ (0, π/2) such that f (c∗) = 0, that is, cos c∗ = c∗. So there exists
a fixed point.

We note that for x ≥ π/2, we have f (x) = cos x− x ≤ 1 − π/2 < 0. For x ∈ (−π/2, 0],
f (x) = cos x− x > 0 − x > 0. For x ∈ (−∞,−π/2], f (x) = cos x− x ≥ −1 + π/2 > 0. So
there are no fixed points in (−∞, 0] ∪ [π/2,∞). In (0, π/2), cos is strictly decreasing, and so
cos can have at most one fixed point there (for otherwise if 0 < c1 < c2 < π/2 are two fixed
points, then we get the contradiction that cos c1 = c1 < c2 = cos c2).

(3) Consider the sequence (xn)n≥0 defined by x0 = any real number, and xn+1 = cos xn
for n > 0. Then xn+1 − xn = cos xn − cos xn−1. We note that x1 = cos x0 ∈ [−1, 1], and so
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x2 = cos x1 ∈ [0, 1], and xn+1 = cos xn ∈ [0, 1] for all n ≥ 2. Thus there is a cn ∈ (0, 1)
such that

|xn+1 − xn| = | cos xn − cos xn−1| = (sin cn)|xn − xn−1| ≤ (sin 1)|xn − xn−1| = r|xn − xn−1|,
(43)

where r := sin 1 ∈ (0, 1). Using xn = x1 + (x2 − x1) + (x3 − x2) + · · · + (xn − xn−1) and
(43), we can show that (xn)n≥0 converges, to say x∗. (See below.) Then

f (x∗) = f
(

lim
n→∞

xn
)

= lim
n→∞

f (xn) = lim
n→∞

xn+1 = x∗.

Thus x∗ = c∗.

−3

1.5

0.5

−0.5

−1

−1.5

1

−2 −1 1 2
x

y

3 4 5 6

(Proof of the convergence of (xn)n≥0: We have

|xn+k − xn| =
∣∣∣x1 + (x2 − x1) + · · · + (xn − xn−1) + (xn+1 − xn) + · · · + (xn+k − xn+k−1)

−
(
x1 + (x2 − x1) + · · · + (xn − xn−1)

)∣∣∣
=
∣∣∣(xn+1 − xn) + · · · + (xn+k − xn+k−1)

∣∣∣
≤ |xn+1 − xn| + · · · + |xn+k − xn+k−1|

≤ rn−1|x2 − x1| + · · · + rn+k−1|x2 − x1|

≤ (rn−1 + rn−2 + · · ·)|x2 − x1|

=
rn−1

1 − r
|x2 − x1|

n→∞−−→ 0.

So the sequence (xn)n≥0 is Cauchy, and hence convergent.)

Solution to Exercise 5.73

(1) By Exercise 4.56, we have

cos(x + y) = (cos x)(cos y) − (sin x)(sin y) and

sin(x + y) = (sin x)(cos y) + (cos x)(sin y)

for x, y ∈ R. For x + y /∈ πZ + π/2, dividing the latter equation by cos(x + y) gives

tan(x + y) =
(sin x)(cos y) + (cos x)(sin y)
(cos x)(cos y) − (sin x)(sin y)

.



SOLUTIONS 463

For x, y /∈ πZ + π/2, we may divide the numerator and the denominator on the right-hand
side by (cos x)(cos y) to obtain

tan(x + y) =

(sin x)(cos y)
(cos x)(cos y)

+
(cos x)(sin y)
(cos x)(cos y)

(cos x)(cos y)
(cos x)(cos y)

− (sin x)(sin y)
(cos x)(cos y)

=
tan x + tan y

1 − (tan x)(tan y)
.

(2) Suppose that tan 1◦∈ Q. But whenever tan n◦∈ Q, for some natural number (<89), it
follows from the addition formula

tan (n + 1)◦ =
tan n◦ + tan 1◦

1 − (tan n◦)(tan 1◦)

that also tan (n + 1)◦∈ Q. Thus tan 2◦, tan 3◦, · · · , tan 60◦ all belong to Q. But from the
picture shown below, we have that tan 60◦ = tan π

3 =
√

3 /∈ Q. This contradiction shows
that tan 1◦ /∈ Q.

1/2

√
3

2

1

60°

Area = π
6

Remark 8.

(1) We remark that 1◦ is the angle π
180 radians, and so 60◦ is the angle π/3 radians.

(2) That
√

3 is irrational can be seen as follows. Let
√

3 be rational and suppose that for
integers p, q �= 0,

√
3 = p/q, where the greatest common divisor of p and q is 1. Then

3q2 = p2 and so p2 = 3q2. So 3 divides p2 and so 3 must also divide p. Let p = 3p′.
Then 9p′2 = 3q2 and so q2 = 3p′2. So 3 divides q2 and so 3 must also divide q. But
now 3 divides both p and q, contradicting the fact that p and q had no common factor.
(Also recall the method given in Exercise 1.2, which gives a different proof of the fact
that

√
3 is not rational.)

Solution to Exercise 5.74

Suppose that x ∈ Q, and let

x =
p
q

,
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where p, q are integers and q > 0. Then for m > q,

m!x = m!
p
q

= m · · · (q + 1) · q · p
q

= an integer.

Thus 2πm!x ∈ 2πZ, and so cos(2πm!x) = 1. Hence we have that for all n ∈ N, and all m > q,
(cos(2πm!x))n = 1, so that

lim
n→∞

(cos(2πm!x))n = lim
n→∞

1 = 1.

Hence lim
m→∞

lim
n→∞

(cos(2πm!x))n = lim
m→∞

1 = 1.

Now suppose that x /∈ Q. Then for all m ∈ N, m!2πx /∈ πZ. (Indeed if m!2πx = πk for some
k ∈ Z, then

x =
k

2m!
∈ Q,

a contradiction.) So cos(m!2πx) �= ±1. Hence −1 < cos(m!2πx) < 1 for all m, and so for
each m we have that

lim
n→∞

(cos(m!2πx))n = 0.

Consequently lim
m→∞

lim
n→∞

(
cos(2πm!x)

)n
= lim

m→∞
0 = 0.

Finally we show the irrationality of e. Fix m ∈ N. Then

m!e = m!
∑
k≥0

1
k!

= an integer + m!
∑
k>m

1
k!

.

So cos(2πm!e) = cos

(
2π · (an integer) + 2πm!

∑
k>m

1
k!

)
= cos

(
2πm!
∑
k>m

1
k!

)
.

But

m!
(

1
(m + 1)!

+
1

(m + 2)!
+ · · · + 1

(m + k)!

)

=
1

m + 1
+

1
(m + 1)(m + 2)

+ · · · + 1
(m + 1) · · · (m + k)

≤ 1
m + 1

+
1

(m + 1)2
+ · · · + 1

(m + 1)k

≤ 1
m + 1

+
1

(m + 1)2
+ · · · =

1/(m + 1)
1 − 1/(m + 1)

=
1
m

.

So it follows that m!
∑
k>m

1
k!

≤ 1
m

m→∞−−−→ 0.

We can choose a m0 large enough so that for all m > m0, m!
∑
k>m

1
k!

<
1
2

.

Then for m > m0, (0 <)2πm!
∑
k>m

1
k!

< 2π
1
2

= π.

Thus for all m ≥ m0, cos(2πm!e) = cos

(
2π
∑
k>m

1
k!

)
∈ (−1, 1), and so for each m ≥ m0,

lim
n→∞

(cos(m!2πe))n = 0.
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Hence lim
m→∞

lim
n→∞

(cos(2πm!e))n = 0.

From the first part of the exercise, we can conclude that e /∈ Q.

Solution to Exercise 5.75

By the similarity of the two triangles, we have that

d tan x
�dx

=
�

1
,

and so
d
dx

tan x = �2 = 1 + (tan x)2.

Solution to Exercise 5.76

We know that
d
dt

tan−1t =
1

1 + t2
for t ∈ R.

Thus
∫ 1

0

1
1 + t2

dt =
∫ 1

0

d
dt

tan−1tdt = tan−1t
∣∣∣1
0

=
π

4
− 0 =

π

4
.

Solution to Exercise 5.77

See the following picture.

1

0.8

0.6

0.4

0.2

0
π
16

π
8

π
4
x

π
2

3 π
16

5 π
16

3 π
8

7 π
16

Symmetry in the graph of
1

1 + (tan x)
√

3
.

There is visible symmetry about the point (π
4 , 1

2 ). If we cut out the
rectangle and cut along the graph of the function, then we get two
pieces of paper that overlap perfectly, that is they are congruent.
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Let f (x) :=
1

1 + (tan x)
√

3
, x ∈ [0, π/2). Let 0 < y < π

4 . Then using Exercise 5.73(1),

f
(π

4
+ y
)

=
1

1 +
(
tan
(
y + π

4

))√3
=

1

1 +
( tan y + 1

1 − tan y

)√3

=
(1 − tan y)

√
3

(1 − tan y)
√

3 + (1 + tan y)
√

3
= 1 − (1 + tan y)

√
3

(1 + tan y)
√

3 + (1 − tan y)
√

3

= 1 − 1

1 +
(1 − tan y

1 + tan y

)√3
= 1 − 1

1 +
(
tan
(

π
4 − y
))√3

= 1 − f
(π

4
− y
)

.

This symmetry property implies that

∫ π
2

0

1

1 + (tan x)
√

3
dx

=
1
2
·
(

Area of the rectangle formed by the four points (0, 0),
(π

2
, 0
)

,
(π

2
, 1
)

, (0, 1)
)

=
1
2
· π

2
· 1 =

π

4
.

Solution to Exercise 5.78

By the Differentiable Inverse Theorem, we have that at y = sin x ∈ (−1, 1),

(sin−1)′(y) =
1

sin′x
=

1
cos x

=
1√

1 − (sin x)2
=

1√
1 − y2

.

Thus by the Fundamental Theorem of Calculus,
∫ y

0

1√
1 − t2

dt = sin−1y− sin−10 = sin−1y− 0 = sin−1y.

In order to find the other integral, we use Integration by Substitution/Change of Variables:

t = sin u,

dt = cos udu,

t = 0 ⇒ u = 0,

t = y ⇒ u = sin−1y.
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1

0.5

−0.5

−1.5 −1 −0.5 0.5 1
u

t

1.50

1

Then ∫ y

0

√
1 − t2dt =

∫ sin−1y

0
(cos u) · cos udu =

∫ sin−1y

0

cos(2u) + 1
2

du

=
sin(2u)

4

∣∣∣sin
−1y

0
+

sin−1y
2

=
sin(2sin−1y)

4
+

sin−1y
2

=
2(sin(sin−1y))(cos(sin−1y))

4
+

sin−1y
2

=
y
√

1 − y2

2
+

sin−1y
2

.

Solution to Exercise 5.79

(1) We have for all real t that cos t ≤ 1, and so for x ≥ 0, we have∫ x

0
cos t dt ≤

∫ x

0
1dt,

that is, sin x− sin 0 = sin x− 0 = sin x ≤ x− 0 = x.

(2) For all x ≥ 0, we have sin x ≤ x. But cos is decreasing in [0, π/2] and so

cos(sin x) ≥ cos x.

Similarly, since α := cos x ≥ 0 for x ∈ [0, π/2], we have sin α ≤ α, that is,

sin(cos x) ≤ cos x.

For x ∈ [0, π/2], we have that cos x ≥ 0, and moreover cos x ≤ 1 ≤ π/2. Thus we also have
sin(cos x) ≥ 0 for x ∈ [0, π/2]. Hence for x ∈ [0, π/2], we have

cos(sin x) ≥ cos x = | cos x| ≥ sin(cos x) = | sin(cos x)|.
Now if x ∈ [−π/2, 0], then cos(sin(−x)) ≥ | cos(−x)| ≥ | sin(cos(−x))|, and so, using the
facts that cos is even and sin is odd, we obtain

cos(sin(−x)) = cos(− sin x) = cos(sin x) ≥ | cos(−x)| = | cos x|
≥ | sin(cos(−x))| = | sin(cos x)|.
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Thus cos(sin x) ≥ | cos x| ≥ | sin(cos x)| holds for all x ∈ [−π/2, π/2]. But we know
that each of these functions is periodic with period π, as shown below, and so the
inequalities extend to all real x:

cos(sin(x + π)) = cos((sin x)(cos π) + (cos x)(sin π)) = cos(− sin x) = cos(sin x),

| cos(x + π)| = |(cos x)(cos π) − (sin x)(sin π)| = | − cos x| = | cos x|,
| sin(cos(x + π))| = | sin(− cos x)| = | − sin(cos x)| = | sin(cos x)|.

0

1

1

−1

−1

Solution to Exercise 5.80

(1) The point with Cartesian coordinates (1, 1) has polar coordinates (
√

2, π
4 ).

(2) The point with Cartesian coordinates (1, 0) has polar coordinates (1, 0).
(3) The point with Cartesian coordinates (0, 1) has polar coordinates (1, π

2 ).
(4) The point with Cartesian coordinates (−1, 0) has polar coordinates (1, π).
(5) The point with Cartesian coordinates (−1,−1) has polar coordinates (

√
2,− 3π

4 ).
(6) The point with Cartesian coordinates (0,−1) has polar coordinates (1,−π

2 ).

Solution to Exercise 5.81

Using x = r cos θ and y = r sin θ, where (r, θ), denote the polar coordinates of the point with
Cartesian coordinates (x, y), y = 3x + 1 gives

r sin θ = 3 · r cos θ + 1.

Using Maple, one can obtain the following picture.

π
2

π
4

0π

3 π
4

5 π
4

3 π

0.50 1

2

7 π
4
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Solution to Exercise 5.82

Multiplying both sides of the equation r = (tan θ)(sec θ) by r and rearranging, we obtain
(r cos θ)2 = r sin θ, and so x2 = y, where (x, y) are the Cartesian coordinates of the point
having polar coordinates (r, θ).

Solution to Exercise 5.83

Since r = (2 + cos θ)−1, we obtain 2r + r cos θ = 1. Using x = r cos θ and r =
√

x2 + y2,
we have 2

√
x2 + y2 + x = 1 and so 2

√
x2 + y2 = 1 − x. Squaring both sides and rearranging

gives 3x2 + 2x + 4y2 = 1, and finally

(x + 1/3)2

(2/3)2
+

y2

(1/
√

3)2
= 1.

Using Maple, one can obtain the following picture.

0.4

0.2
y

x
−0.2

−0.4

−0.8 −0.6 −0.4 −0.2 0.20

Solution to Exercise 5.84

We have that the area enclosed is

4
∫ a

0
b

√
1 − x2

a2
dx = 4

∫ π
2

0
b
√

1 − (sin θ)2a cos θdθ (using the substitution x = a sin θ)

= 4ab
∫ π

2

0
(cos θ)2dθ = 4ab

∫ π
2

0

1 + cos(2θ)
2

dθ

= 4ab

(
sin(2θ)

4

∣∣∣
π
2

0
+

1
2

π

2

)
= 4ab
(

0 +
π

4

)
= πab.

When a = b, we recover the expression for the area of the disk (πa2).

Solution to Exercise 5.85

Let (b, c) be the rightmost intersection point, and (a, c) be the leftmost intersection point. We
wish to find c such that∫ a

0
(c− (2x− 3x3))dx =

∫ b

a
(2x− 3x3 − c)dx,

and so
∫ b

0
(2x− 3x3 − c)dx = 0, that is, b2 − 3

4
b4 = bc.
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But also as (b, c) is an intersection point, 2b− 3b3 = c. Multiplying this equation by b

and subtracting b2 − 3
4
b4 = bc gives b2 − 9

4
b4 = 0, and so b =

2
3

. Hence

c = 2b− 3b3 = 2 · 2
3
− 3 · 8

27
=

4
9

.

To validate the solution, we check that (2/3, 4/9) is indeed the rightmost intersection point of
y = 4/9 and y = 2x− 3x3: the zeros of 2x− 3x3 − 4/9 = (2/3 − x)(3x2 + 2x− 2/3) other
than 2/3 are (−1 ±

√
3)/2, which are less than 2/3.

Solution to Exercise 5.86

(1) By the side-angle-side rule, the two triangles OAB and OA′B′ are similar, and thus

�(AB)
�(A′B′)

=
�(OB)
�(OB′)

=
d/2
d′/2

=
d
d′

.

But
�(AB)
�(A′B′)

≈ Cd/n
Cd′/n

=
Cd

Cd′
,

and as n → ∞, we expect the error in the above approximation to tend to 0,
so that

Cd

Cd′
=

d
d′

,

that is,
Cd

d
=

Cd′

d′
. So the ratio of the circumference of a circle to its diameter is a constant.

(2) The area of the polygon is the area of the shaded parallelogram, and this is approximately
the height (which differs from radius d/2 by a small amount) times the length of the base
(which differs from half the circumference by a tiny amount). As n → ∞, we expect the
errors above to go to 0, and so the area of the circle should be

d
2
· Cd

2
=

d
2
· π · d

2
= π ·
(
d
2

)2

= π · r2.

Solution to Exercise 5.87

We have that the area enclosed is

4
∫ π

4

0

2 cos(2θ)
2

dθ = 4
∫ π

4

0
cos(2θ)dθ = 4

sin(2θ)
2

∣∣∣
π
4

0
= 4 · 1

2
= 2.

Solution to Exercise 5.88

The doughnut is the solid of revolution of the planar region bounded by the two curves
x �→ R +

√
r2 − x2 and x �→ R−

√
r2 − x2. Thus the volume is given by∫ r

−r
π
(
(R +
√

r2 − x2)2 − (R−
√

r2 − x2)2
)
dx

=
∫ r

−r
π
(
r2 − x2 + R2 + 2R

√
r2 − x2 − R2 − (r2 − x2) + 2R

√
r2 − x2
)
dx

= 4πR
∫ r

−r

√
r2 − x2dx.
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But
∫ r

−r

√
r2 − x2dx =

πr2

2
, as the integral is the area of a semicircular disk of radius r.

So the volume of the doughnut is∫ r

−r
π
(
(R +
√

r2 − x2)2 − (R−
√

r2 − x2)2
)
dx

= 4πR
∫ r

−r

√
r2 − x2dx = 4πR · πr2

2
= 2π2Rr2.

Solution to Exercise 5.89

The volume is given by

∫ a

−a
π

⎛
⎝
(
b

√
1 − x2

a2

)2

− 02

⎞
⎠ dx =

∫ a

−a
πb2

(
1 − x2

a2

)
dx = 2πb2

∫ a

0

(
1 − x2

a2

)
dx

= 2πb2

(
a− a3

3a2

)
= 2πb2a

2
3

=
4π

3
b2a.

If a = b, then we recover the expression for the volume of a sphere,
4
3
πa3.

Solution to Exercise 5.90

See the picture below, from which we see that the remaining portion of the ball is a solid
of revolution of the planar region bounded by the curves x �→

√
4 − x2 and x �→

√
3 for

x ∈ [−1, 1].

1

1

2

√
3

−1

Thus the volume of the remaining portion is∫ 1

−1
π
(
(
√

4 − x2)2 −
√

3
2
)
dx =
∫ 1

−1
π(4 − x2 − 3)dx = π

∫ 1

−1
(1 − x2)dx

= 2π

(
1 − 1

3

)
=

4π

3
.

Thus the volume cutout is the volume of the sphere minus the volume of the remaining
portion, that is,

4
3
π23 − 4π

3
=

28π

3
.
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Solution to Exercise 5.91

The volume when the height is h is given by

V =
∫ h

0
π(y1/m)2dy.

Thus by the Fundamental Theorem of Calculus and by the Chain Rule,

dV
dt

=
dV
dh

· dh
dt

= π(h1/m)2 · dh
dt

.

But since
dV
dt

is proportional to
√
h and as we require that

dh
dt

= constant,

(since we want the height to decrease linearly with time), we must have that

2
m

=
1
2

,

that is, m = 4.

Solution to Exercise 5.92

The volume is given by

V(a) := a2 + a =
∫ a

0
π( f (x))2dx.

Thus by the Fundamental Theorem of Calculus,

2a + 1 = π( f (a))2.

Since f only assumes nonnegative values, it follows from here that

f (x) =

√
2x + 1

π
, x ≥ 0.

Solution to Exercise 5.93

We have

x′(t) =
1
3

3
2
(2t + 3)1/22 =

√
2t + 3, and y′(t) =

2t
2

+ 1 = t + 1,

and so (x′(t))2 + (y′(t))2 = 2t + 3 + t2 + 2t + 1 = t2 + 4t + 4 = (t + 2)2. Hence it follows
that the distance travelled is∫ 3

0

√
(x′(t))2 + (y′(t))2dt =

∫ 3

0
(t + 2)dt =

(
t2

2
+ 2t

) ∣∣∣3
0

=
9
2

+ 6 =
21
2

.

Thus the average speed is
distance travelled

time taken
=

21/2
3

=
7
2

.
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Solution to Exercise 5.94

The curve t �→ γ(t) = (x(t), y(t)), t ∈ [−π, π] is given by

x(t) = r(t) cos t = 2(1 + cos t) cos t, and

y(t) = r(t) sin t = 2(1 + cos t) sin t.

Thus

x′(t) = 2(− sin t) cos t + 2(1 + cos t)(− sin t) = −2 sin t − 4 sin t cos t

= −2 sin t − 2 sin(2t),

y′(t) = 2(− sin t) sin t + 2(1 + cos t) cos t = 2 cos t + 2((cos t)2 − (sin t)2)

= 2 cos t + 2 cos(2t).

Hence

(x′(t))2 + (y′(t))2 = 8
(

1 + (cos(2t)) cos t + (sin t) sin(2t)
)

= 8(1 + cos t) = 8 · 2 ·
(
cos

t
2

)2
.

Thus the arc length is
∫ π

−π

√
(x′(t))2 + (y′(t))2dt =

∫ π

−π

4 cos
t
2
dt = 8 sin

t
2

∣∣∣π
−π

= 16.

Solution to Exercise 5.95

Consider the curve γ : [0, 2π] → R
2 given by

γ(t) = (a cos t, b sin t), t ∈ [0, 2π].

Then γ(t) goes round the perimeter of the ellipse once as t increases from 0 to 2π. We have
that the arclength of γ is∫ 2π

0

√
(−a sin t)2 + (b cos t)2dt =

∫ 2π

0

√
b2 + (a2 − b2)(sin t)2dt

= b
∫ 2π

0

√
1 −
(

1 − a2

b2

)
(sin t)2dt

= b
∫ 2π

0

√
1 − k2(sin t)2dt,

where k :=

√
1 − a2

b2
.

If b = a, then k = 0, and we get the circumference 2πa of a circle with radius a.

Solution to Exercise 5.96

The circular arc BC has the parametrisation (cos t, sin t), where t ∈ [0, θ]. Thus the arc length
of the circular arc BC is given by∫ θ

0

√
(− sin t)2 + (cos t)2dt =

∫ θ

0
1dt = θ.
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Using the fact that �(AC) ≤ �(BC) ≤ circular arc length BC, we obtain

�(AC) = sin θ ≤ �(BC) ≤ circular arc length BC = θ.

Solution to Exercise 5.97

By the Fundamental Theorem of Calculus,

( f (x))2 − ( f (1))2 =
∫ x

1

d
dx

( f (x))2dx =
∫ x

1
2f (x)f ′(x) ≤ 2

∫ x

1
f (x)
√

1 + (f ′(x))2dx

≤ 2
∫ ∞

1
f (x)
√

1 + (f ′(x))2dx =
S
π

< ∞.

So for all x ∈ [1,∞), we have

0 ≤ f (x) ≤
√

f (1)2 +
S
π

=: M.

Hence we have

V =
∫ ∞

1
π( f (x))2dx ≤

∫ ∞

1
πM · f (x) · 1dx ≤ Mπ

∫ ∞

1
f (x)
√

1 + (f ′(x))2dx =
M
2

· S < ∞.

So V is finite too.

Solution to Exercise 5.98

The surface area is given by∫ 2π

0
2π(R + r sin t)

√
(−r sin t)2 + (r cos t)2dt =

∫ 2π

0
2π(R + r sin t)rdt

= 2πr
(
R · 2π + r(− cos t)

∣∣∣2π

0

)

= 2πr(R · 2π + 0) = 4π2Rr.

Solution to Exercise 5.99

We have that the surface area is

A :=
∫ a

0
2πa
(
cosh

x
a

)√
1 +
(
sinh

x
a

)2
dx

=
∫ a

0
2πa
(
cosh

x
a

)(
cosh

x
a

)
dx =
∫ a

0
2πa
(
cosh

x
a

)2
dx,

while the volume is given by V :=
∫ a

0
πa2
(
cosh

x
a

)2
dx, and so

A
V

=

∫ a

0
2πa
(
cosh

x
a

)2
dx

∫ a

0
πa2
(
cosh

x
a

)2
dx

=
2
a

.
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Solutions to the exercises from Chapter 6

Solution to Exercise 6.1

We have

tan−1 1
2n2

= tan−1 (2n + 1) − (2n− 1)
1 + (2n + 1)(2n− 1)

= tan−1 1
2n− 1

− tan−1 1
2n + 1

,

and so the partial sums telescope to give
∞∑
n=1

tan−1 1
2n2

= tan−1 1
1
− lim

n→∞
tan−1 1

2n + 1

=
π

4
− 0 =

π

4
.

Solution to Exercise 6.2

We have
1

1 − x
+

1
1 + x

+
2

1 + x2
+

4
1 + x4

+ · · · + 2n

1 + x2n

=
2

1 − x2
+

2
1 + x2

+
4

1 + x4
+ · · · + 2n

1 + x2n

=
4

1 − x4
+

4
1 + x4

+ · · · + 2n

1 + x2n

...

=
2n

1 − x2n
+

2n

1 + x2n
=

2n+1

1 − x2n+1 .

Since x > 1, we can write x = 1 + h with h > 0, and so for integers k > 2, we have

xk = (1 + h)k >

(
k
2

)
h2 =

k · (k − 1)
2

h2.

Thus 0 <
k
xk

<
2

(k − 1) · h2
, and so by the Sandwich Theorem, lim

k→∞

k
xk

= 0.

Hence for x > 1, we obtain

1
1 − x

+
1

1 + x
+

2
1 + x2

+
4

1 + x4
+ · · · + 2n

1 + x2n
+ · · · = lim

n→∞

2n+1

1 − x2n+1

= lim
n→∞

2n+1

x2n+1

1
x2n+1 − 1

=
0

0 − 1
= 0,

and so
1

1 + x
+

2
1 + x2

+
4

1 + x4
+ · · · + 2n

1 + x2n
+ · · · =

1
x− 1

.
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Solution to Exercise 6.3

We have

1
Fn−1Fn+1

=
1

Fn−1(Fn + Fn−1)
=
(

1
Fn−1

− 1
Fn + Fn−1

)
1
Fn

=
1

Fn−1Fn
− 1

FnFn+1
.

It is easy to see by induction that Fn ≥ n for all n ∈ N. Indeed, F1 = 1 ≥ 1, and if Fn ≥ n for
some n, then Fn+1 = Fn−1 + Fn ≥ 1 + Fn ≥ 1 + n. (Here the first inequality follows from the
obvious fact that n �→ Fn is increasing, so that F1 = 1 ≤ F2 ≤ F3 ≤ · · · ≤ Fn−1.) Thus

n∑
k=2

1
Fk−1Fk+1

=
1

F1F2
− 1

F2F3
+

1
F2F3

− 1
F3F4

+ · · · + 1
Fn−1Fn

− 1
FnFn+1

=
1

F1F2
− 1

FnFn+1

n→∞−−→ 1
2

.

Solution to Exercise 6.4

We have

2 cot x = 2
cos x
sin x

= 2
(cos(x/2))2 − (sin(x/2))2

2(sin(x/2))(cos(x/2))
= cot

x
2
− tan

x
2

,

for 0 < x < π/2, and so tan
x
2

= cot
x
2
− 2 cot x.

We have

∞∑
n=1

1
2n

tan
π/4
2n

= lim
N→∞

N∑
n=1

1
2n

tan
π/4
2n

= lim
N→∞

N∑
n=1

1
2n

(
cot

π/4
2n

− 2 cot
2π/4

2n

)

= lim
N→∞

N∑
n=1

(
1
2n

cot
π/4
2n

− 1
2n−1

cot
π/4
2n−1

)

= lim
N→∞

1
2N

cot
π/4
2N

− cot(π/4) = −1 + lim
N→∞

1
2N

cot
π/4
2N

= −1 + lim
N→∞

1
2N

cos π/4
2N

sin π/4
2N

= −1 + lim
N→∞

cos
π/4
2N

· 4
π
· lim
N→∞

π/4
2N

sin π/4
2N

= −1 + 1 · 4
π
· 1 =

4
π
− 1.

Solution to Exercise 6.5

The sequence (1/n)n∈N
is convergent with limit 0. The function cos : R → R is continuous.

Since continuous functions preserve convergence of sequences, it follows that (cos(1/n))n∈N
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is convergent with limit cos 0 = 1. So we can conclude that since

lim
n→∞

cos
1
n

= 1 �= 0,

the series
∞∑
n=1

cos
1
n

does not converge.

Solution to Exercise 6.6

Let sn := a1 + · · · + an denote the nth partial sum of the series for n ∈ N. Since the series
converges, (sn)n∈N

converges to some limit L. So the sequence (s2n − sn)n∈N
converges to

L− L = 0. We have

s2n − sn = an+1 + · · · + a2n ≥ a2n + · · · + a2n︸ ︷︷ ︸
n times

= n · a2n ≥ 0.

Thus by the Sandwich Theorem, we obtain lim
n→∞

n · a2n = 0. Hence also

lim
n→∞

2na2n = 0. (44)

Also, the sequence (s2n+1 − sn+1)n∈N
converges to L− L = 0. We have

s2n+1 − sn = an+2 + · · · + a2n+1 ≥ a2n+1 + · · · + a2n+1︸ ︷︷ ︸
n times

= n · a2n+1 ≥ 0.

Thus by the Sandwich Theorem, we obtain lim
n→∞

n · a2n+1 = 0. As the sequence (an)n∈N

converges to 0, we also have that (a2n+1)n∈N
converges to 0. Hence we obtain

lim
n→∞

(2n + 1)a2n+1 = 2 lim
n→∞

na2n+1 + lim
n→∞

a2n+1 = 2 · 0 + 0 = 0. (45)

It follows now from (44) and (45) that lim
n→∞

nan = 0.

In order to show that the assumption a1 ≥ a2 ≥ a3 · · · cannot be dropped, we consider the
lacunary series whose n2th term is 1/n2 and all other terms are zero:

a1 =
1
12

, a2 = a3 = 0, a22 =
1
22

, a22+1 = · · · = a32−1 = 0, a32 =
1
32

, · · · .

The sequence (sn)n∈N
of partial sums is clearly increasing since an ≥ 0 for all n ∈ N. We have

sn2 =
1
12

+
1
22

+
1
32

+ · · · + 1
n2

,

which is the nth partial sum of the convergent series
∞∑
n=1

1
n2

.

It thus follows from the convergence of (sn2)n∈N
that (sn2)n∈N

is bounded, and so (sn)n∈N
is

bounded too (after all, given any m ∈ N, there is a perfect square N2 exceeding it, so that
sm ≤ sN2 ≤ M, where M is a bound for the sequence (sn2)n∈N

). As the sequence (sn)n∈N
is

monotone and bounded, it is convergent. Note however that the sequence (nan)n∈N
has as a

subsequence

(n2an2)n∈N
= (n2 1

n2
)n∈N

= (1)n∈N
,

and so it follows that (nan)n∈N
does not converge to 0.
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Solution to Exercise 6.7

For n ∈ N, define sn := 1 + 2r + 3r2 + · · · + nrn−1.

Then rsn = r + 2r2 + · · · + (n− 1)rn−1 + nrn, and so

(1 − r)sn = sn − rsn = 1 + r + r2 + · · · + rn−1 − nrn

=
(1 − r)(1 + r + r2 + · · · + rn−1)

1 − r
− nrn =

1 − rn

1 − r
− nrn.

Thus sn =
1 − rn

(1 − r)2
− nrn

1 − r
. Let h :=

1
|r| − 1 > 0. Then for n ≥ 2,

(1 + h)n = 1 +
(n

1

)
h +
(n

2

)
h2 + · · · +

(n
n

)
hn ≥
(n

2

)
h2 =

n(n− 1)
2

h2.

So for n ≥ 2, 0 ≤ n|r|n =
n

(1 + h)n
≤ n

2
n(n− 1)h2

=
2

(n− 1)h2
.

Hence by the Sandwich Theorem, lim
n→∞

|nrn| = 0. So lim
n→∞

nrn = 0 as well, and thus

lim
n→∞

sn = lim
n→∞

(
1 − rn

(1 − r)2
− nrn

1 − r

)
=

1 − 0
(1 − r)2

− 0
1 − r

=
1

(1 − r)2
.

Solution to Exercise 6.8

(1) We have 0.999 · · · =
9

10
+

9
102

+
9

103
+ · · · =

9
10

1 − 1
10

= 1 = 1.000 · · ·.

(2) If x = N +
d1

10
+ · · · + dK

10K
=

10K + d110K−1 + · · · + dK−110 + dK
10K

, then

x =
p
q

,

where p := 10K + d110K−1 + · · · + dK−110 + dK is a nonnegative integer and the denomina-
tor q := 10K ∈ N. So x is a nonnegative rational number.

(3) Let x = N.d1 · · · dndn+1 · · · dn+mdn+1 · · · dn+mdn+1 · · · dn+m · · ·. Then

10nx = Nd1 · · · dn. dn+1 · · · dn+mdn+1 · · · dn+mdn+1 · · · dn+m · · · , and

10n+mx = Nd1 · · · dndn+1 · · · dn+m. dn+1 · · · dn+mdn+1 · · · dn+mdn+1 · · · dn+m · · · .

Note that m > 0 since we are given that the decimal expansion is nonterminating. Upon sub-
tracting one from the other, we obtain

10n+mx− 10nx = Nd1 · · · dndn+1 · · · dn+m − Nd1 · · · dn =: p ∈ N.

Thus with q := 10n(10m − 1) ∈ N, we obtain x =
p
q

is a positive rational number.

(4) We have 0.123123123 · · · =
123
103

+
123
106

+
123
109

+ · · · =
123

1000

1 − 1
1000

=
123
999

=
41

333
.

(5) It is not rational, since the string of digits contains the digits of 10k, having a 1 followed
by a block of zeros of increasing size, making the decimal expansion nonterminating and
nonrepeating. As every rational number has either a terminating or nonterminating and repeat-
ing decimal expansion, it follows that 0.12345678910111213 · · · is irrational.
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Solution to Exercise 6.9

(1) Consider the interval [1, n], and let σn and σn be the step functions defined by

σn(x) = f (k + 1),

σn(x) = f (k),

for x ∈ [k, k + 1), k = 1, · · · , n. As f is decreasing, for all x ∈ [1, n] that σn(x) ≤ f (x) ≤ σn(x),
and so

n∑
k=2

f (k) =
∫ n

1
σn(x)dx ≤

∫ n

1
f (x)dx ≤

∫ n

1
σn(x)dx =

n∑
k=1

f (k).

1 12 2 nn· · · · · ·

f(2)

f(n)

f(1)

f(n−1)

n

k=2

f(k) ≤
n

1

f(x)dx
n

1

f(x)dx ≤
n−1

k=1

f(k)

Thus for all n ∈ N,
n∑

k=2

f (k) ≤
∫ n

1
f (x)dx ≤

n−1∑
k=1

f (k). We have the following cases:

1◦
∫ ∞

1
f (x)dx converges. The first inequality above shows that the partial sums

n∑
k=1

f (k)

are bounded above by f (1) +
∫ ∞

1
f (x)dx.

Also as f (k) ≥ 0 for all k, the partial sums are increasing. Hence
∞∑
n=1

f (n)

converges.

2◦ If
∫ ∞

1
f (x)dx diverges, then from the fact that for all n ∈ N

∫ n

1
f (x)dx ≤

n−1∑
k=1

f (k),
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it follows that the partial sums
n−1∑
k=1

f (k)

can’t form a bounded sequence, and so
∞∑
n=1

f (n) diverges.

(2) Let f (x) :=
1

x log x
, x ≥ 2.

We see that f : [2,∞) → (0,∞), f is decreasing, and from Exercise 5.46, we know that the
improper integral ∫ ∞

2

1
x log x

dx

diverges. Hence by the Integral Test,
∞∑
n=2

1
n log n

diverges too.

(Note that we start the sum with n = 2 to avoid n being 1 when log n = 0.)

On the other hand, with

g(x) :=
1

x(log x)2
, x ≥ 2,

we have that g : [2,∞) → (0,∞), g is decreasing, and from Exercise 5.46, we know that the
improper integral ∫ ∞

2

1
x(log x)2

dx

converges. Hence by the Integral Test
∞∑
n=2

1
n(log n)2

converges too.

Solution to Exercise 6.10

Since −1 ≤ sin n ≤ 1 for all n ∈ N, we have
∣∣∣ sin n
n2

∣∣∣ ≤ 1
n2

.

Thus the sequence (sn)n∈N
of the partial sums of the series

∞∑
n=1

∣∣∣∣ sin n
n2

∣∣∣∣ is bounded:

sn ≤
1
12

+
1
22

+ · · · + 1
n2

≤
∞∑
n=1

1
n2

< +∞.

Moreover, it is an increasing sequence, and so by the Bolzano–Weierstrass Theorem (sn)n∈N

is convergent, that is,
∞∑
n=1

∣∣∣∣ sin n
n2

∣∣∣∣ < +∞.

As the series converges absolutely, it is convergent, that is,
∞∑
n=1

sin n
n2

converges.

(When we learn the ‘Comparison Test’ later, we can give a one line justification.)
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Solution to Exercise 6.11

We have

(1) an :=
1
ns

≥ 0 for all n ∈ N.

(2) As s > 0, (n + 1)s > ns and so
1
ns

>
1

(n + 1)s
for all n ∈ N.

(3) lim
n→∞

1
ns

= 0.

Thus by the Leibniz Alternating Series Theorem,
∞∑
n=1

(−1)n

ns
converges.

Solution to Exercise 6.12

We have

(1) an :=
√
n

n + 1
≥ 0 for all n ∈ N.

(2) (We want to know if for all n ∈ N,
√
n

n+1 ≥
√
n+1
n+2 . In order to see this, we square both

sides, and rearrange terms to arrive at the equivalent inequality n2 + n ≥ 1, which is
clearly true.)
We note that for all n ∈ N, n2 + n ≥ 1, and so

n(n + 2)2 = n3 + 42 + 4n ≥ n3 + 3n2 + 3n + 1 = (n + 1)3.

Rearranging, we obtain
n

(n + 1)2
≥ n + 1

(n + 2)2
,

and finally, taking square roots, we obtain

√
n

n + 1
≥

√
n + 1
n + 2

for all n ∈ N.

(3) lim
n→∞

√
n

n + 1
= lim

n→∞

1√
n

1 + 1
n

=
0

1 + 0
= 0.

Thus by the Leibniz Alternating Series Theorem,
∞∑
n=1

(−1)n
√
n

n + 1
converges.

Solution to Exercise 6.13

We have

(1) We know that sin x ≥ 0 for all x ∈ [0, π]. Since 0 ≤ 1
n ≤ 1 < π for all n ∈ N, it follows

that an := sin 1
n ≥ 0 for all n ∈ N.

(2) The function x �→ sin x : [0, π
2 ] is increasing. Since 0 < 1

n < 1
n+1 < 1 < π

2 , it follows
that sin 1

n ≤ sin 1
n+1 for all n ∈ N.
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(3) Finally, the function x �→ sin x : R → R is continuous, and the sequence ( 1
n )n∈N

is
convergent with limit 0, and so it follows that

lim
n→∞

sin
1
n

= sin
(

lim
n→∞

1
n

)
= sin 0 = 0.

Thus by the Leibniz Alternating Series Theorem
∞∑
n=1

(−1)n sin
1
n

converges.

Solution to Exercise 6.14

(1) Let (sn)n∈N
be the partial sums of the original series, and (σn)n∈N

denote the partial sums
of the series obtained by inserting parentheses in the original series. Then (σn)n∈N

is a subse-
quence of (sn)n∈N

. As (sn)n∈N
converges to, L, say, so does (σn)n∈N

.

(2) Consider the convergent series 0 + 0 + 0 + · · ·, with sum 0, which we can think of a series
obtained by inserting parentheses in the divergent series −1 + 1 − 1 + 1 − 1 + 1 · · · giving
(−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = 0 + 0 + 0 + · · ·.
(3) If the Harmonic Series converges to H ∈ R, then

H = 1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+
1
9

+
1

10
+ · · · ,

= 1 +
(

1
2

+
1
3

+
1
4

)
+
(

1
5

+
1
6

+
1
7

)
+
(

1
8

+
1
9

+
1
10

)
+ · · ·

> 1 + 3 · 1
3

+ 3 · 1
6

+ 3 · 1
9

+ · · · = 1 + 1 +
1
2

+
1
3

+ · · · = 1 + H,

and so 0 > 1, a contradiction.

Solution to Exercise 6.15

We will use the Ratio Test in each part.

(1) We have that an :=
n2

2n
�= 0 for each n ∈ N, and

∣∣∣an+1

an

∣∣∣ = (n + 1)2

2n+1
· 2n

n2
=

1
2

(
1 +

1
n

)2

,

and so lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

1
2

(
1 +

1
n

)2

=
1
2
(1 + 0)2 =

1
2

< 1.

Thus the series
∞∑
n=1

n2

2n
converges (absolutely).

(2) We have that an :=
(n!)2

(2n)!
�= 0 for each n ∈ N, and

∣∣∣an+1

an

∣∣∣ = ((n + 1)!)2

(2n + 2)!
· (2n)!

(n!)2
=

(n + 1)2

(2n + 1)(2n + 2)
=

n + 1
2(2n + 1)

=
1 + 1

n

2(2 + 1
n )

,
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and so lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

1 +
1
n

2(2 +
1
n
)

=
1 + 0

2(2 + 0)
=

1
4

< 1.

Thus the series
∞∑
n=1

(n!)2

(2n)!
converges (absolutely).

(3) We have that an :=
(

4
5

)n
n5 �= 0 for each n ∈ N, and

∣∣∣an+1

an

∣∣∣ =
(

4
5

)n+1

(n + 1)5 ·
(

5
4

)n 1
n5

=
4
5

(
n + 1
n

)5

=
4
5

(
1 +

1
n

)5

,

and so lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

4
5

(
1 +

1
n

)5

=
4
5
(1 + 0)5 =

4
5

< 1.

Thus the series
∞∑
n=1

(
4
5

)n
n5 converges (absolutely).

Solution to Exercise 6.16

We have that
n

n4 + n2 + 1
≤ n

n4
=

1
n3

for all n ∈ N. Since
∞∑
n=1

1
n3

< +∞, by the Comparison Test,

∞∑
n=1

n
n4 + n2 + 1

converges too. We have
∞∑
n=1

n
n4 + n2 + 1

=
∞∑
n=1

n
(n2 + 1)2 − n2

=
∞∑
n=1

n
(n2 + 1 − n)(n2 + 1 + n)

=
1
2

∞∑
n=1

(
1

n2 + 1 − n
− 1

n2 + 1 + n

)

=
1
2

∞∑
n=1

(
1

(n− 1) · n + 1
− 1

n · (n + 1) + 1

)
.

But the partial sum of this last series is the ‘telescoping sum’

1
0 · 1 + 1

−
����1
1 · 2 + 1

+
����1
1 · 2 + 1

−
����1
2 · 3 + 1

+ · · · +
�������1
(n− 1) · n + 1

− 1
n · (n + 1) + 1

= 1 − 1
n · (n + 1) + 1

.
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Consequently,
∞∑
n=1

n
n4 + n2 + 1

=
1
2

lim
n→∞

(
1 − 1

n · (n + 1) + 1

)
=

1
2

.

Solution to Exercise 6.17

As
∞∑
n=1

a2014
n converges, lim

n→∞
a2014
n = 0.

But then lim
n→∞

|an|2014 = 0 as well.

Thus there is an N ∈ N such that for all n > N, |an|2014 < 1, and so |an|< 1 too. But now
for n > N,

|a2015
n | = a2014

n |an|< a2014
n ,

and so it follows from the Comparison Test that
∞∑
n=1

a2015
n converges as well.

Solution to Exercise 6.18

(1) True.

Since the series
∞∑
n=1

|an| converges, we have necessarily that lim
n→∞

|an| = 0.

Thus there is an N ∈ N such that for all n > N, |an|< 1. But now for n > N,

|a2
n| = |an||an|< |an|,

and so it follows from the Comparison Test that
∞∑
n=1

a2
n converges too.

(2) False.

By the Leibniz Alternating Series Theorem,
∞∑
n=1

(−1)n
1√
n

converges.

But
∞∑
n=1

(
(−1)n

1√
n

)2

is the harmonic series
∞∑
n=1

1
n

, which is divergent.

(3) False.

The harmonic series
∞∑
n=1

1
n

is divergent, but lim
n→∞

1
n

= 0.

(4) True.

The partial sums converge to 0, and so
∞∑
n=1

an converges to 0, by definition.

(5) False.

The partial sum

sn = log
2
1

+ log
3
2

+ · · · + log
n + 1
n

= log
2 · 3 · · · · · (n + 1)

1 · 2 · · · · · n = log(n + 1).



SOLUTIONS 485

Since (log(n + 1))n∈N
diverges, it follows that

∞∑
n=1

log
n + 1
n

diverges.

(6) True.

We know that increasing sequences that are bounded above are convergent. As the sequence
of partial sums of the given series is increasing and bounded above, the series is convergent.

(7) True.

Since
∞∑
n=1

an converges, lim
n→∞

an = 0.

So

(
1
an

)
n∈N

is unbounded, and hence can’t be convergent to 0. Thus
∞∑
n=1

1
an

diverges.

Solution to Exercise 6.19

Let ε > 0. Since the series

S :=
∞∑
n=1

|an| + |bn|

is convergent, there exists an N ∈ N such that for all n > N,∣∣∣∣∣
n∑

k=1

(|ak| + |bk|) − S

∣∣∣∣∣ =
∞∑

k=n+1

(|ak| + |bk|) < ε.

As ∣∣∣ak cos
(2πk

T
x
)

+ bk sin
(2πk

T
x
)∣∣∣

≤ |ak|
∣∣∣ cos
(2πk

T
x
)∣∣∣+ |bk|

∣∣∣ sin(2πk
T

x
)∣∣∣

≤ |ak| · 1 + |bk| · 1,

we have that
∞∑

k=n+1

∣∣∣ak cos
(

2πk
T

x

)
+ bk sin

(
2πk
T

x

) ∣∣∣ ≤
∞∑

k=n+1

(|ak| · 1 + |bk| · 1) < ε.

Thus if n > N, then for all x ∈ R, we have∣∣∣∣∣ f (x) −
(
a0 +

n∑
k=1

(
ak cos
(

2πk
T

x

)
+ bk sin

(
2πk
T

x

)))∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=n+1

ak cos
(

2πk
T

x

)
+ bk sin

(
2πk
T

x

)∣∣∣∣∣
≤

∞∑
k=n+1

∣∣∣∣ak cos
(

2πk
T

x

)
+ bk sin

(
2πk
T

x

)∣∣∣∣ < ε.

This shows that the Fourier series converges uniformly to f .

The plots are displayed on page 319. From the plots, we do see that the partial sum functions
look increasingly like the square wave, but we also notice the persistent overshoot at the points
−1, 0, 1, 2, 3, suggesting nonuniform convergence.
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Solution to Exercise 6.20

Clearly if
∞∑
n=1

an converges, then so does
∞∑
n=1

an+1.

Thus
∞∑
n=1

an + an+1

2
converges too. By the Arithmetic Mean-Geometric Mean inequality

a + b
2

≥
√
ab

for a, b ≥ 0 (this is just a rearrangement of the trivial observation that (
√
a−

√
b)2 ≥ 0), it

follows that for all n ∈ N,
√
anan+1 ≤ an + an+1

2
,

and so the result follows from the Comparison Test.

Solution to Exercise 6.21

(‘If’ part) Suppose that
∞∑
n=1

an
1 + an

converges. Then

lim
n→∞

an
1 + an

= 1 − lim
n→∞

1
1 + an

= 0,

and so lim
n→∞

1
1 + an

= 1. Thus there exists an N ∈ N such that for all n > N,
1

1 + an
>

1
2

.

But this implies that for n > N,
an

1 + an
>

an
2

.

By the Comparison Test, it follows that
∞∑
n=1

an
2

converges, and so
∞∑
n=1

an converges as well.

(‘Only if’ part) Suppose that
∞∑
n=1

an converges. Since the ans are all positive, we have

an
1 + an

≤ an (n ∈ N),

and so by the Comparison Test, it follows that
∞∑
n=1

an
1 + an

converges.

Solution to Exercise 6.22

If the series
∞∑
n=1

|an| converges, we have lim
n→∞

|an| = 0. Thus there is an N ∈ N such that for

all n > N, |an|< 1. But now for n > N, |a2
n| = |an||an|< |an|, and so by the Comparison Test

∞∑
n=1

a2
n

converges too. So every element of �1 belongs to �2.
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The sequence (1/n)n∈N
belongs to �2 since

∞∑
n=1

(
1
n

)2

=
∞∑
n=1

1
n2

< +∞,

but it does not belong to �1 (since the harmonic series diverges). So �1
� �2.

Solution to Exercise 6.23

We have
sn := 1 +

1
2

+
1
3

+ · · · + 1
n

< 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸
n times

= n,

and so
1
n

<
1
sn

for all n ∈ N. Hence by the Comparison Test, the series
∞∑
n=1

1
sn

diverges.

Solution to Exercise 6.24

We have that
n

√
1
nn

=
1
n
≤ 1

2
= r < 1

for all n ≥ 2. So it follows from the Root Test that the series
∞∑
n=1

1
nn

converges.

Solution to Exercise 6.25

We know that the Fibonacci sequence is strictly increasing, since each term is clearly seen to
be positive, and the recurrence gives

Fn+1 = Fn + Fn−1 > Fn + 0 = Fn.

From here, we obtain Fn+1 = Fn + Fn−1 > Fn−1 + Fn−1 = 2Fn−1.

Thus
1/Fn+1

1/Fn−1
=

Fn−1

Fn+1
<

1
2

=: r < 1.

So by the Ratio Test, both
1
F0

+
1
F2

+
1
F4

+ · · · and
1
F1

+
1
F3

+
1
F5

+ · · · converge. So if

sn :=
1
F0

+
1
F1

+
1
F2

+ · · · + 1
Fn

, n ∈ N,

then both (s2n)n∈N
and (s2n+1)n∈N

converge to the same limit, namely
∞∑
n=0

1
F2n

+
∞∑
n=0

1
F2n+1

,

and so (sn)n∈N
converges, that is,

∞∑
n=0

1
Fn

converges.
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Solution to Exercise 6.26

We have
√

1 + n2 − n =
1 + n2 − n2

√
1 + n2 + n

=
1√

1 + n2 + n
≥ 1√

n2 + n2 + n
=

1√
2 + 1

· 1
n
≥ 0.

As the Harmonic Series
∞∑
n=1

1
n

diverges, it follows by the Comparison Test that also

∞∑
n=1

(
√

1 + n2 − n)

diverges.

Solution to Exercise 6.27

As k2 is an integer, we have∣∣∣ sin(π√k4 + 1
)∣∣∣ =
∣∣∣ sin(πk2

√
1 + 1/k4

)∣∣∣ =
∣∣∣ sin(πk2

√
1 + 1/k4 − πk2

)∣∣∣
=
∣∣∣ sin(πk2

(√
1 + 1/k4 − 1

))∣∣∣ =
∣∣∣∣∣sin
(

π

k2

(√1 + 1/k4 − 1
1/k4

))∣∣∣∣∣ .
But by the Mean Value Theorem, we have for x > 0 that there exists a cx ∈ (0, 1) such that

√
1 + x− 1

x
=

1

2
√

1 + cx
<

1
2

.

Consequently,

√
1 + 1/k4 − 1

1/k4
<

1
2

.

Also, for each x �= 0, we have that there exists a c between 0 and x such that∣∣∣∣ sin x− sin 0
x− 0

∣∣∣∣ = | cos c| ≤ 1,

so that | sin x| ≤ |x| for all x ∈ R. Hence

∣∣∣ sin(π√k4 + 1
)∣∣∣ =
∣∣∣∣∣sin
(

π

k2

(√1 + 1/k4 − 1
1/k4

))∣∣∣∣∣ ≤
∣∣∣∣∣
π

k2

(√1 + 1/k4 − 1
1/k4

)∣∣∣∣∣ ≤
π

k2
· 1

2
.

As
∞∑
k=1

1
k2

converges, by the Comparison Test,
∞∑
k=1

|sin(π
√

k4 + 1)| converges as well.

Hence
∞∑
k=1

sin(π
√

k4 + 1) converges absolutely.
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Solution to Exercise 6.28

(1) We have L := lim
n→∞

∣∣∣cn+1

cn

∣∣∣ = lim
n→∞

∣∣∣1
1

∣∣∣ = 1.

So the radius of convergence is indeed 1, by Theorem 6.15.

When x = ±1, xn = ±1, thus the sequence (xn)n∈N
is not convergent with limit 0. Thus series

is not convergent at these points.

(2) We have L := lim
n→∞

∣∣∣cn+1

cn

∣∣∣ = lim
n→∞

∣∣∣ n2

(n + 1)2

∣∣∣ = 1.

So the radius of convergence is indeed 1, by Theorem 6.15.

When x = ±1, we have that ∣∣∣ xn
n2

∣∣∣ = 1
n2

,

and so it follows from the Comparison Test that the series is convergent at these points.

(3) We have L := lim
n→∞

∣∣∣cn+1

cn

∣∣∣ = lim
n→∞

∣∣∣ n
n + 1

∣∣∣ = 1.

So the radius of convergence is indeed 1, by Theorem 6.15.

When x = +1, we have that the series
∞∑
n=1

xn

n
=

∞∑
n=1

1
n

diverges.

When x = −1,
∞∑
n=1

xn

n
=

∞∑
n=1

(−1)n

n
converges by the Leibniz Alternating Series Test.

(4) We have L := lim
n→∞

∣∣∣cn+1

cn

∣∣∣ = lim
n→∞

∣∣∣ n
n + 1

∣∣∣ = 1.

So the radius of convergence is indeed 1, by Theorem 6.15.

When x = −1,
∞∑
n=1

(−1)n
xn

n
=

∞∑
n=1

1
n

diverges.

When x = 1,
∞∑
n=1

(−1)n
xn

n
=

∞∑
n=1

(−1)n

n
converges by the Leibniz Alternating Series Test.

Solution to Exercise 6.29

We have

f ′(x) =
∞∑
n=1

2n
x2n−1

(2n)!
=

∞∑
n=1

x2n−1

(2n− 1)!
=

∞∑
m=0

x2(m+1)−1

(2(m + 1) − 1)!
=

∞∑
m=0

x2m+1

(2m + 1)!
= g(x).

Also, g′(x) =
∞∑
n=0

(2n + 1)
x2n

(2n + 1)!
=

∞∑
n=0

x2n

(2n)!
= f (x).

Let h : R → R be defined by h(x) = ( f (x))2 − (g(x))2, x ∈ R. Then

h′(x) = 2f (x)f ′(x) − 2g(x)g′(x) = 2f (x)g(x) − 2g(x)f (x) = 0, x ∈ R,
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and so h is constant. Consequently for all x ∈ R,

h(x) = ( f (x))2 − (g(x))2 = h(0) = ( f (0))2 − (g(0))2 = 12 − 02 = 1.

Solution to Exercise 6.30

Consider the series e x =
∞∑
n=0

xn

n!
, x ∈ R.

Multiplying by x, we obtain xe x =
∞∑
n=0

xn+1

n!
, x ∈ R.

Differentiating with respect to x gives e x + xe x = (1 + x)e x =
∞∑
n=0

(n + 1)xn

n!
.

Multiplying again by x, we get (x + x2)e x =
∞∑
n=0

(n + 1)xn+1

n!
, and differentiating this gives

(1 + 3x + x2)e x =
∞∑
n=0

(n + 1)2xn

n!
.

Setting x = 1, we find
∞∑
n=0

(n + 1)2

n!
= 5e.

Solution to Exercise 6.31

We have

c1 + 2c2x + 3c3x
2 + · · · = 2x(c0 + c1x+ c2x

2 + · · ·) = 2c0x + 2c1x
2 + 2c2x

3 + 2c3x
4 + · · · .

But using the relation between the coefficients of a power series and the derivatives of the
function that the power series defines, we see that we can equate the coefficients of powers
of x. Hence

c1 = 0, 2c2 = 2c0, 3c3 = 2c1, 4c4 = 2c2, · · · .

From here it follows that

c1 = c3 = c5 = · · · = 0,

c2 = c0, c4 =
c2

2
=

c0

2!
, c6 =

c4

3
=

c0

3!
, · · · .

Hence f (x) = c0

(
1 +

x2

1!
+

x4

2!
+

x6

3!
+ · · ·
)

= c0e
x2

, where c0 ∈ R is arbitrary.

Solution to Exercise 6.32

(1) For x ≈ 0, −1/x2 is negative with a large absolute value, and so e−1/x2 ≈ 0.
For x → ±∞, −1/x2 → 0, and so e−1/x2 → 1.
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1.2

1.0

0.8

0.6

0.4

y

0.2

−0.2

−10 0 5
t

10−5

(2) Let m > 0. Choose n ∈ N such that n > m/2. For x �= 0,

e1/x2
=

∞∑
k=0

1
k!

1
x2k

≥ 1
n!

1
x2n

,

and so e−1/x2 ≤ n!x2n. So
∣∣∣e−1/x2

xm

∣∣∣ ≤ n!|x|2n
|x|m = n!|x|2n−m x→0−−→ 0.

(3) We prove this by induction on n. For x �= 0,

f ′(x) = e−1/x2 2
x3

= e−1/x2
P1

(
1
x

)
,

where P1(t) := 2t3. Suppose that the claim holds for all natural numbers ≤ k. We now show
this for k + 1. We know

f (k)(x) = e−1/x2
Pk

(
1
x

)
,

where Pk is a polynomial. Hence

f (k+1)(x) = e−1/x2 2
x3
Pk

(
1
x

)
+ e−1/x2

P′
k

(
1
x

)(
− 1
x2

)

= e−1/x2

(
2
x3
Pk

(
1
x

)
+ P′

k

(
1
x

)(
− 1
x2

))

= e−1/x2
Pk+1

(
1
x

)
,

where Pk+1(t) := 2t3Pk(t) + P′
k(t)(−t2), which is clearly a polynomial.
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(4) We have f ′(0) = lim
x→0

e−1/x2−0
x = 0. If f (n)(0) = 0 for some n, then

f (n+1)(0) = lim
x→0

f (n)(x) − f (n)(0)
x

= lim
x→0

e−1/x2
Pn

(
1
x

)
− 0

x

= lim
x→0

e−1/x2

x

(cd
xd

+ · · · + c1

x
+ c0

)

(where Pn is given by Pn(t) = cdt
d + · · · + c1t + c0)

= lim
x→0

(
e−1/x2

xd+1
cd + · · · + e−1/x2

x2
c1 +

e−1/x2

x
c0

)
= 0.
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RI[a, b], 192
Γ, function, 240
cosh, 259
sinh, 259
tanh, 260
e, 248
e·, 256
kth power of a function, 94
n times differentiable, 145
nth derivative, 145
nth root, 21
x-axis, 32
x-coordinate, 33
y-axis, 32
y-coordinate, 33

absolute convergence, 305
absolute value, 23
absolute value of a function, 94
absolutely convergent improper

integral, 236
al-Khwarizmi, 5
alternating series, 306
angle, of a point in the upper half plane on

the unit circle, 261
arc length of a smooth curve, 289
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Archimedean property, 18
arithmetic-geometric progression, 303

bijective function, 30
blancmange function, 132
Bolzano–Weierstrass theorem, 73
bounded above, set, 10
bounded below, set, 10
bounded function, 186
bounded sequence, 54
bounded set, 11

Cantor set, 208
Cartesian plane, 32
Cauchy sequence, 74
Cauchy’s Theorem, 160
center of gravity/mass, 207
change of variables, integration by, 223
clepsydra, 287
codomain of a function, 28
coefficients, polynomial, 36
compact interval, 22
comparison test, 311
compound interest, 259
concave down, 176
concave function, 176
concave up, 176



496 INDEX

constant function, 33
continuity of a function at a point, 87
continuous function, 87
convergence, improper integral, 232, 235
convergent sequence, 48
convergent series, 298
convex function, 172
coordinates of a point, 33

Decartes, 32
decreasing sequence, 56
degree, polynomial, 36
denominator, 36
differential equation, 257
distance, 23
divergence, improper integral, 232, 235
divergent sequence, 48
divergent series, 298
domain of a function, 28

Erdös conjecture on APs, 301
Euler’s constant, 248, 249
even function, 352
exponential series, 315
Extreme Value Theorem, 106

field axioms, 7
Fourier, 88
fractional part, 35
fractional part of a real number, 73
fractional powers, 21
function, 29

gamma function, 240
geometric series, 302
globally Lipschitz continuous

function, 114
graph of a function, 31
greatest integer part, 19
greatest upper bound, 12
Green-Tao Theorem, 301

Heaviside function, 89
hyperbolic functions, 259

identity function, 34, 35
implicit differentiation, 152

improper integral, 232, 235
increasing sequence, 56
indicator function, 196
infimum, 12
infinite radius of convergence, 321
infinitely many times

differentiable, 145
injective function, 30
Integral Test, 305
integrand, 192
Integration by Parts, 220
intermediate value theorem, 99
interval, 22
interval property, 104
inverse function, 37

Kronkecker delta, 146

lacunary series, 303
least upper bound, 12
least upper bound property, 15
LIATE Rule of Thumb for Integration by

Parts, 220
limit inferior, lim inf, 59
limit superior, lim sup, 59
linear function, 34
Lipschitz function, 114
logarithm function, log, 245
lower bound, 10
lower sum, 189

map, 29
Maple, 35
mapping, 29
maximum, 14
Mean Value Theorem, 160
minimum, 14
modulus, 23
monotone sequence, 56

Napier’s constant, 248
Newton’s Law of Cooling, 259
number line, 2
numerator, 36

one-to-one correspondence, 30
one-to-one function, 30
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onto function, 30
open interval, 22
order axiom, 8
order relation, 8
origin, 32

partial fraction expansion of a rational
function, 123

partial sums, 297
partition of an interval, 186
periodic function, 110
plot command in Maple, 35
pointwise convergence, 79
polynomial function, 36, 96
positive definiteness, 25
positive numbers, 8
power function, 36
power series, 320
product of functions, 94

radian, 261
radioactive decay, 259
radius of convergence, 321
range of a function, 28
ratio test, 313
rational function, 36, 96
Rational Zeros Theorem, 5
real analytic function, 335
real powers of positive reals, 255
restriction of a function, 41
Riemann integrable function, 192
Riemann integral, 192
Riemann sum, 228
Riemann-Zeta function, 301

Rolle’s Theorem, 160
root test, 315

Sandwich theorem, 64
sawtooth function, 132
Schwartz, Laurent, 210
seaview property, 72
second order derivative, 145
separable differential equation, 258
sequence, 44
solid of revolution, 284
Stirling’s Formula, 250
strictly proper rational function, 123
subsequence, 68
substitution, integration by, 223
sum of functions, 94
supremum, 12
surds, 5
surface of revolution, 291
surjective function, 30
symmetry, 25

Taylor series, 332
triangle inequality, 24, 25
twice differentiable, 145

uniform continuity, 111
uniform convergence, 80
upper bound, 9
upper sum, 187

vacuous logic, 10

zero polynomial, 36
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