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To new beginnings 





"Never let schooling inte,fere with your education." 

- Mark Twain 

"Be the master of your fate, not its slave." 

- Zoher Z. Kam 

Success 

To laugh often and much; 

to win the respect of intelligent people and affection of children; 

to earn the appreciation of honest critics and endure the betrayal of 
false friends; 

to appreciate beauty, to find the best in others; 

to leave the world a bit better, whether by a healthy child, a garden 
patch or a redeemed social condition; 

to know even one life has breathed easier because you have lived. 

This is to have succeeded. 

- Ralph Waldo Emerson 





Preface 

The origins of this book date back to the Fall of 1992 when I was appointed to be the head teaching 
assistant for 6.003, a semester-long core electrical engineering class at M.I.T. called "Signals and 
Systems." During the term, I put together a small handwritten review packet to help my students 
prepare for the midterm exam. I decided to call it "6.003 Made Ridiculously Simple." The notes 
were an instant success, and many people commented on their usefulness to me. Although I was no 
longer teaching, the same packet became a regular handout for the next several semesters. The 
apparent popularity and need for such a set of notes prompted me to write this book. 

Traditional textbooks in this field often leave the reader to guess what's important and what's not, 
often losing track of "the big picture." This book contains, in my opinion, the fundamental concepts 
behind signal processing and linear system theory. It tells you what you need to know and tells it to 
you fast. This book is not meant to replace a textbook, but rather supplement one. It is designed to be 
used in two ways: as a study guide while taking a signal processing or linear systems course and as a 
reference book for rapidly reviewing the material for an exam, the Ph.D. qualifiers, or before taking 
a more advanced course in this area. 

The book is written from a student's perspective, providing practical advice on problem-solving 
skills while detailing areas that, in my experience, have been known to give people difficulty. Each 
chapter can be considered to be a set of lecture or tutorial notes on that topic. The appendix of this 
book is a compilation of a variety of mathematical concepts that professors often view as assumed 
knowledge, but students can't seem to find written down anywhere. 

I have intentionally not included several pages of exercises at the end of each chapter - there are 
plenty of textbooks for that purpose. Rather, each chapter contains carefully selected examples and 
sample problems that reinforce the fundamental issues on that topic. My philosophy is that overly 
complicated problems fail to verify the core concepts in the student's mind; in that case, students 
tend to learn by "pattern-matching" rather than truly trying to understand the material. 

The book is based on a one-semester M.I.T. Electrical Engineering course, which runs at the typical 
"like trying to take a drink from a fire hose" pace. There is enough material to accompany a more in­
depth two semester course if deemed necessary. Also, although many of the examples are circuit­
based, the material in this book should appeal to several different engineering disciplines. 

A great deal of effort was put into organizing the material in this book. The best part about signals 
and systems is that everything fits together so nicely. Although this may be intellectually satisfying 
when you're done, it makes this subject very difficult to teach since everything is so interconnected. 
The reader will get the most out of this book and subject matter by taking the time to identify and 
appreciate the unifying concepts present. 

As part of my first venture as an author, I decided to start my own publishing company to produce 
this book. This of course means that the entire burden of writing, proofreading, editing, designing, 
and printing rests solely on my shoulders. Believe me, it takes more time than you might expect. If 
there is one thing I've learned, it's that I have great respect for people who can find the time to write 
a 700 page textbook. 

As with any work of this magnitude, there are several people that have made this book possible. I 
would first like to thank Professor William Siebert for giving me the opportunity to be Head TA for 
6.003; it was truly an enjoyable experience. I would also like to thank Deron Jackson, who is by now 
a 6.003 teaching machine. The time Deron spent proofreading and providing suggestions for my 
chapters has been invaluable. He also provided me with several FrameMaker and MATLAB tips, 



including a very useful utility he wrote for importing MATLAB graphs into FrameMaker. Elmer 
Hung, Rajeev Surati, Ed Chalom, and Angela Hsieh also provided many much-needed proofreading 
comments and managed to catch a few last-minute errors. I would also like to thank all of the 6.003 
students who have both learned from and have given me feedback on these notes as they evolved into 
a book. Finally, I have to thank my parents, without whom this book wouldn't have been possible, in 
more ways than one. 

I sincerely hope that you find this book useful. Please forward any comments or suggestions for 
improvement you may have to me. They will be greatly appreciated. 

Zoher Z. Karu 
zzkaru@alum.mit.edu 
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CHAPTER 1 

Overview 

1.1 Philosophy 

Introduction to Signals and 
Systems 

This book is about the analysis of signals and how they interact with 
systems. We will focus on a special subclass of systems known as linear 
time-invariant systems. Signals and systems theory is the foundation of 
any engineer's knowledge. Just remember, everything is a signal, and all 
the world's a system. 

Practically everything around us can be thought of as either a signal or a system. This book is about the study of 
signals and their interaction with systems. Although traditionally found in Electrical Engineering curricula, the 
subject of signals and systems is the foundation of all advanced engineering analysis. The concepts presented 
here are regularly used in a wide variety of fields ranging from fluid mechanics to economics. 

This material presents an entirely new way of looking at the world around you - the frequency domain. This 
new concept provides a powerful alternative approach to traditional analytical methods. While learning about 
signals and systems, you will be presented with a variety of tools and techniques. Two concepts that may 
initially seem unrelated are likely to be deeply intertwined. Looking for these interconnections will help 
solidify the subject matter in your mind and illustrate the far-reaching significance of this important field. 

1.2 What is a Signal? 

A signal is an abstraction of any measurable quantity that is a function of one or more independent variables 
such as time or space. If that sounds vague, it's because signals are everywhere! Voltages and currents are 
examples of electrical signals; the sound coming into your ears is a mechanical signal; the page of this book is 
a two-dimensional light signal on your retina; the population of Nigeria is yet another type of signal. 

There are two broad classes of signals: continuous time (CT) and discrete time (DT). A continuous-time signal 
is one that is present for all instants in time or space, such as an oscillating voltage signal or a photograph from 
a camera. A discrete-time signal is only present at discrete points in time or space. For example. the daily 
closing stock market average is a signal that changes only at discrete points in time (at the close of each day). A 
computer image composed of pixels is also a discrete time signal. Often, discrete-time signals are sampled 
versions of continuous-time signals, as is the case for the music recorded on compact discs or a photograph 
scanned into a computer. 

Signals and Systems Made Ridiculously Simple - by Z. Karu 1 



CHAPTER 1 Introduction to Signals and Systems 

1.3 What is a System? 

In general, a system is an abstraction of anything that takes an input signal, operates on it, and produces an 
output signal. In other words, a system establishes a relationship between its input and its output. An example 
of a system is an automobile, where the input might be the position of the accelerator and the output the speed 
of the car. Another example is a camera, where the input is the light entering the lens and the output is a photo­
graph. Systems that operate on continuous-time signals are known as CT systems, and systems that operate on 
discrete-time signals are known as DT systems. 

X ► 1 system 1-----1►► y 

A special subclass of systems is both linear and time-invariant, known as LTI systems for short. In this book 
we will focus entirely on LTI systems. A system is considered to be linear if the following condition is met: 

and x2(t) ~ y2(t) 

Linearity ⇒ Ax1(t) + Bx2(t) ---.1 Linear system! 1----►► Ay1(t) + Byi(t) 

A, B = any complex constants 

Also, for a linear system any linear operation on its input signal produces an output signal modified by the 
same linear operation. For example, a system that takes the absolute value of its input is not linear. An input of 
"2" produces an output of "2". However, an input of "-2" (multiply the original input by -1) does not produce 
an output of "-2". Examples of linear operations include scaling, integration, and differentiation. 

A time-invariant system is one that responds the same no matter at what time the input is presented. If input "x" 

produces output "y", then the input "x" presented 5 days later will produce the same output "y" exactly 5 days 
later. In other words, delaying the input produces the corresponding delay in the output signal. Mathematically, 
this can be characterized as: 

Given x(t) ~ y(t) Tl ⇒ x(t- 't) _.. time-invariant _.. y(t- 't) 
system 

't = time delay 

Only a small percentage of the systems in the world are truly LTI. For example, a 5° deflection in the aileron of 
an airplane wing might produce a lift force of 1 0OON; will a 10° deflection produce a lift force of 2000N? 
Highly unlikely. So, then why are there literally hundreds of books on LTI system theory? Because nonlinear 
systems can be approximated as being linear within a small enough input range. The tools associated with LTI 
system analysis offer great insight into system behavior. They can fully characterize linear circuit elements 
such as ideal resistors, capacitors, and inductors or even ideal mechanical system elements like dashpots and 
springs. More complex nonlinear systems like the airplane aileron can still be analyzed using LTI techniques 
by first linearizing the system characteristics around an operating point; when the model breaks down, just 
move the operating point and linearize again. Other practical applications include the compact disc player, 
which is a prime example of signal processing and LTI system theory; by the end of this book you will have the 
tools to analyze how it works. 

Now would be a good time to read through the Appendix of this book if you need a review of introductory 
circuit theory as well as some basic mathematical concepts. 
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CHAPTER 2 

Overview 

Continuous-Time Systems 

Continuous-time systems are described by differential equations. 
Although traditionally decomposed into the particular and homogenous 
parts, for LTI system analysis it is more intuitive to break up the solu­
tion into what are known as the Zero State Response and Zero Input 
Response. The chapter also describes integrator-adder-gain block 
diagrams and state-space representations, two other methods for repre­
senting continuous-time systems. 

.ii!! %!I 

2.1 A Differential Equation is a System 

A system is anything that establishes a relationship between its input and its output. One way to describe a 
continuous-time system is through a differential equation. In this book, we will restrict ourselves to LTI 
systems, which correspond to linear, constant-coefficient differential equations such as: 

y+3y+2y = 2.x-x 

In most cases, the input and output are both functions of time. 

2.2 Finding the Solution 

The complete solution to a differential equation consists of the sum of two parts: (1) the particular solution, 
which is any function that satisfies the differential equation, and (2) the homogenous solution, which is the 
solution of the differential equation with all input terms set to zero. Any unknown constants in the complete 
solution are usuaJly found by substituting in initial conditions that specify the output and its derivatives at t=O. 

The problem with the above solution process is that if the initial conditions are not zero (y(O) -:/= 0 ), then the 
solution to the system is not linear. Recall that a linear system should produce zero output if the input is zero, 
which will not be the case if there is a nonzero initial condition. The tools that we will develop in this book are 
primarily for the analysis of linear systems. So, to get around this problem, we will separate the solution of any 
system into two parts: the Zero State Response (ZSR) and the Zero Input Response (ZIR). The system with all 
initial conditions (states) set to zero is said to be "at rest." It is a linear system, and its solution given an input 
signal is the ZSR. Meanwhile, the ZIR is the output of the system with the input set to zero; it is the response to 
the initial conditions only. The complete solution is then found by adding together the ZSR and ZIR. More of a 
discussion on solving differential equations for systems can be found in Section 3.5.1 of Signals and Systems 
by Oppenheim et al (1983). 

Total Solution = ZSR + ZIR 

Signals and Systems Made Ridiculously Simple - by Z. Karu 3 



CHAPTER2 Continuous-Time Systems 

Although they are closely related to the ZSR and ZIR, it is probably best to forget about particular and homog­
enous solutions and start thinking in terms of these new concepts. Finding the ZSR and ZIR is the preferred 
method of system analysis since they provide a more intuitive understanding of system behavior. There will be 
a more complete discussion of the ZSR and ZIR in Chapter 5. 

2.3 Integrator-Adder-Gain Block Diagrams 

Continuous-time systems are sometimes described graphically in what are known as integrator-adder-gain 
block diagrams. After manipulating the original differential equation into the correct form by repeatedly inte­
grating both sides of the equation to remove all derivative terms, it is easy to draw the correct block diagram by 
simply plugging in the appropriate coefficients into the canonical form shown below. For its derivation, see 
Problem 1.6 on page 34 of Circuits, Signals, and Systems by Siebert (1986). 

(form obtained after 
repeatedly integrating 
differential equation) 

coeff. for highest 
order derivative 

coeff. for lowest 
order derivative 

Example 

N N 

L ak f y(t)dt = L bk f x(t)dt 
k = 0 (k) k = 0 (k) 

where f x(t)dt = k th order integral 
(k) 

• • 
• 

"'-y,-1 

coefficients of y 

• • 
• 
f 

• • 
• 

"'-y,-1 

coefficients of x 

Find the integrator-adder-gain block diagram for the LTI 
system described by the following differential equation: 

4y-y+2y = -3.x+x 

y(t) 

y(t) 
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CHAPTER 2 Continuous-Time Systems 

2.4 State Equations 

A state-space representation is yet another method of describing a continuous-time system. A "state" is any 
internal system variable whose next value depends on its current value; in other words, it contains information 
about how the system evolves in time. For example, in an RLC circuit, capacitor voltages and inductor currents 
are state variables. The higher order differential equation that describes the overall system can be written as a 
series of first order differential equations relating the inputs, outputs, and these internal states. As an example, 
let's analyze the following circuit: 

x(t) 

Identify the three state variables i 1 (t), ii(t), and v 1 (t). 

+ 
y(t) 

They are related through the following three first order differential equations: 

(KVL) 

(KVL) 

(KCL) 

The series of state equations can be compactly written in matrix form, known as the state-space representation. 

In general, the form is: 

.t 

y 

Ax+Bu 

Cx+D 

(3 states, I input, I output) 

State-Space Representation 

x = N states (N x 1) 

u = M inputs (M x 1) 

y = K outputs (K x 1) 

A = system matrix (N x N) 

B, C = coefficients (N x Mand K x N) 

D = constants (K x 1) 

Writing systems in state-space representation has many advantages. The matrix form makes it very easy to 
represent and solve the system on a computer. Also, there are many system properties such as stability that can 
be determined by examining "A", the system matrix. The true power of a state-space representation is best real­
ized when analyzing multiple-input, multiple-output systems, where writing down every equation would other­
.vise become unmanageable. 

Signals and Systems Made Ridiculously Simple 5 





CHAPTER 3 

Overview 

The Frequency Domain 

)fill J b:; 

The frequency domain is probably the most important concept in signal 
and system theory. Systems often become much easier to analyze by 
expressing the input as a function of frequency rather than time. The 
relationship between the time and frequency domains is the great 
unifying concept of this subject. This chapter introduces complex 
frequency and the s-plane and then explains their role in continuous­
time system analysis through the notions of eigenfunctions and imped­
ance. The chapter concludes with some examples of how quickly tradi­
tional steady-state problems can be solved. 

3.1 Why a New Domain? 

We have been talking about systems strictly in the time domain, where the inputs and outputs were represented 
as functions of time. However, as we shall soon see, it is often much easier to analyze signals and systems 
when they are represented in the frequency domain. The entire subject of signals and systems consists primarily 
of the following concepts: (I) writing signals as functions of frequency; (2) looking at how systems respond to 
inputs of different frequencies; (3) developing tools for switching between time-domain and frequency-domain 
representations; and (4) learning how to determine which domain is best suited for a particular problem. 

3.2 Complex Frequency 

You have most likely only heard of the word "frequency" applied to the number of cycles per second of a peri­
odic signal. Well, it's time to broaden your horizons. For complete generality, we will allow this "frequency" to 
be a complex number. Huh? Complex frequency? What are you talking about? Just loosen your definition of 
the word "frequency" and keep reading. We will hereby declare that any function written in the form Ke" 
(where Kand s are in general complex constants) is characterized by the complex frequency "s", which can be 
expanded as s = cr + jro . The following table provides examples of describing signals using this new 
frequency "s". 

Type of Signal Example Frequency 

DC x(t) = 5 s = 0 

Exponential x(t) = e-31 s = -3 

Signals and Systems Made Ridiculously Simple - by Z. Karu 7 



CHAPTER3 The Frequency Domain 

Type of Signal 

Sinusoidal 

Exponential Sinusoid 

Example 

x(t) = sin 50t = h ( e50jt - e-50jt) 

x(t) = e21 cosl00t = !(e< 2 +IOOjJt+e< 2 - IOOj)t) 
2 

Frequency 

s = ±50} 

s = 2 ± 100} 

To obtain the last two entries, recall that ej6 = cos 0 + j sin 0 . The table shows how either a single real value or 
pair of complex conjugate values of "s" is able to completely characterize a wide variety of types of functions. 
It is now possible to visualize what is commonly called "the s-plane." In the plot below, the shape of the time­
domain function is sketched in the region of the complex frequency plane to which it corresponds: 

The S-Plane 

lm{s }=)co 

Re{s }=cr 

A sinusoidal or exponential-sinusoidal function can also be expressed as the real part of a single complex expo­
nential as shown below: 

(B is complex) 

So, using the principles of linearity and superposition, we can find a system's response to a sinusoidal input by 
first finding its response to the corresponding complex exponential input, and then just taking the real part of 
the answer. This may initially seem like a lot more work, but this procedure will be much easier in the long run 
since functions of the form est play a special role in CT systems analysis . 
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CHAPTER3 The Frequency Domain 

3.3 Eigenfunctions 

Functions of the form est are known as eigenfunctions of continuous-time LTI systems. This means that when 
such a function is an input to a CT LTI system, the output is a function of the exact same complex frequency as 
the input, except it is multiplied by a scaling factor. 

Output has same frequency as input! 

---► .. 1 CT LTI 1----11.,► H(s)est 

The coefficient H(s) is in general a complex number, and its value depends on the frequency "s" of the input 
signal. Multiplying a function by a complex number alters its magnitude and its phase. For example, if sin ( cot) 

goes in, then A sin( cot+ 0) comes out. 

It is actually quite easy to prove that forms of est are indeed eigenfunctions, but only after developing the 
concepts in the next several chapters; the proof will have to wait until Section 10.4. Please note that functions 
of the form estu(t) (where u(t) is the unit step function as defined in Section 9.4) are not eigenfunctions of CT 
LTI systems. This is a common error so watch out for it! 

Remember, for eigenfunction inputs to CT LTI systems, the same complex frequency must appear at the 
output. Use that fact to determine whether or not the following systems could be LTI: 

Could these systems 
be LTI? 

sin ( cot) 

i sin ( lOt) 

3.4 An Example Problem 

----►-1 .... __ ?_?_? _ __.1----11►► 5 cos ( cot + 20°) Yes! 

----► .. 1~--?-?-?-~1-----►► cos ( 5 t) 
No! 

Let's use the concepts of complex frequency and eigenfunctions to help us solve the following problem: 

Solve for i(t) 
i(t) 

v(t) = 40e-51 cos (8t + 80°) 
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CHAPTER3 The Frequency Domain 

Solution 

First, express the input in the form 
of a complex exponential (variables 
with a A mean they are complex). 
For the mathematically strict, use 
radians, not degrees in the phase. 

Write the KVL equation. 

By eigenfunction theory, we know 
that the output must be a signal of 
the same s-plane frequency with a 
new complex scaling factor. 

Substitute in the complex exponen­
tial forms of the input and output. 

Substitute values for R, L, C and 
divide through by the common 
factor e501 • 

Substitute in the value for s0 and 
solve for l. 

Complex number manipulation ... 

Finally the answer! 

v(t) = Re { 4Oej800 e <- 5 + Sj) 1} 

v(t) = 4Oej80D e (-5 + 8j) / 

= Ve 501 (V=4Oej800,s0 =-5+8j) 

I 

v(t) = Ri(t) + L d!~) + b J i('t)d-t 

i(t) = I e501 

Vesot = Rlesot + Ls Iesot + _I_/esot 
o Cso 

A V 4Oej80D 
I=------

2 + 3s0 + IO/s0 
=------------2 + 3 (- 5 + 8j) + 10/ (- 5 + 8j) 

A 4Oej80D 
I = -----------

- 13 + 24j + (- 50 - 8Oj) /89 

4Oej80D 
= - 13.56 + 23.IOj 

l = 40ejsoo = (4O/26.79)ej(800-120410J = 1.49e-j404JD 
26.79ejl2041 D 

i(t) = Re{/e"01 } = l.49e-51cos(8t-4O.41°) 

Note that we were able to find the solution without the traditional method of solving the differential equation 
(assuming a form of the solution, etc.). Although this new procedure may still seem a bit complicated, it will 
become much easier after introducing the concepts in the next few sections. We will return to this type of 
problem in Section 3.6 to illustrate just how quickly they can be solved. If you are not comfortable with 
complex number manipulation, please read the Appendix of this book now. 
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3.5 Impedance 

In the previous section we found the current flowing through a circuit given the applied voltage. Using Ohm's 
Law of V = IR, we could have found the equivalent "resistance" of the circuit by dividing V by I. Since the 
term resistance officially applies only to resistors, for general circuits containing R's, L's, and C's we will call 
this quantity impedance designated by the symbol Z. 

Impedance Form of Ohm's Law 

V = IZ 

The impedance is in general a complex number and its value will depend on the complex frequency of the input 
signal. For example, let's study a single capacitor and identify its impedance: 

i(t) letv(t) = Vea1cosUrot+0) = Re{Vest } 

,(1)0 we know i(t) = Re {/e st } 
By eigenfunctions, the output must 
be the same frequency as the input, 
except scaled by a complex number. 

dv(t) A A 

i(t) = C-- ⇒ Re {le st } = Re { Cs Ve st } 
dt 

dropping the Re {} and the est factors, we get: 

v 
Z(s) = = 

l sC 

The impedance of a capacitor is 1/ (sC) . Recall from basic circuit theory that a capacitor tends to block low 
frequency signals (like DC) and easily pass high frequency signals. Plug in s=small and s=big into the imped­
ance expression and you should now understand why. Impedances for other circuit elements can be derived in 
a similar fashion; the results are summarized in the table below: 

Element Impedance 

Resistor (R) R 

Inductor (L) sL 

Capacitor (C) 1 
-
sC 

Remember, the impedance of a circuit is not a constant; it depends on the frequency of the input signal. 
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3.6 Steady-State Analysis 

Inputs of the form est are steady-state inputs, i.e. they exist for all time -oo < t < oo . Using the concept of eigen­
functions, we know that the steady-state output must be of the same frequency as the input, but with a possible 
change in magnitude and phase. That insight allows us to solve steady-state problems quite easily. 

Given input= Re { V;nest }, we know that output= Re { V0 u 1est } where V0 u1 = H(s) · V;n 

/ ' complex # complex # 

Example: 

Input= A cos (rot+ 0) ⇒ Output= A IH(iro)I cos (rot+ 0 + L.H(jro)) 
to find the product, multiply the 
magnitudes and add the phases 

Now, solving a steady-state problem is merely reduced to finding the magnitude and phase of H(s) evaluated at 
the proper complex frequency. The concept of impedance will make finding H(s) much easier. Observe: 

Example 

R = 2.Q + 

v/t) Solve for v /t) 
V;n(t) = 12cos(5t+20°) 

= Re { l2e5jtej200 } C = O.lF 

V = I I ( s C) y. (voltage divider expression) 
0 R+l/(sC) ,n 

Vo 1 
A = H(s) = sRC + 1 = 
V;n (5j)(2)(0.l) + 1 

(substitute in s=5j) 

Example 

v;/t) = 12cos(5t+20°) 

= Re { l2e5jtej200 } 

V = R+- I A ( 1 )A 
,n sC (Ohm's Law) 

/ 1 1 

1 + j 

= H(s) = -- = ---- = 
V;n R + _!_ 2 + . 1 2 - 2j 

sC (51)(0.1) 

(substitute in s=5j) 

vo(t) = 

1 
IHI=­

,/2 

12. IHI . cos (St+ 20° + L.H) 

L.H = L.1-L.(l +j) = -45° 

v/t) = 6,/2cos (St-25°) 

! i(t) Solve for i(t) 

i(t) = 12. IHI . cos (St+ 20° + L.H) 

IHI = 1/ (2,/2) L.H = 45° 

I i(t) = 3,/2cos (St+ 65°) 

dvo(t) 
Note: this is the same answer as C---;fr 

Go back and try the example in Section 3.4 again. This time you should be able to skip several of the steps and 
arrive at the answer much more quickly. 
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CHAPTER 4 The Laplace Transform 

!£ . 111/M lliL tilllil ill iii 1/J/ill! i H 111 lllilll /ML" • It ]!£lti'Mill!W£1/ 

Overview The Laplace transform is the most important tool in the analysis of 
continuous-time systems. It is used to decompose a signal into the sum of 
complex exponentials, each of which is an eigenfunction of an LTI 
system. Since the output of a system for an eigenfunction input is easily 
determined, the Laplace transform can be used to determine the output 
for virtually any input, thus greatly simplifying the analysis of CT 
systems. This chapter introduces the forward and inverse transform and 
talks about many of its mathematical properties. 

4.1 What is the Laplace Transform? 

We have seen how to analyze systems that have complex exponential inputs, but obviously there are other 
types of signals. What should we do then? The Laplace transform is a mathematical operation that can express 
practically any continuous-time signal as the sum of complex exponentials of the form K est . Since we know 
the response to each est eigenfunction using the principles in Chapter 3, we can reconstruct the output for 
virtually any input by using the principles of linearity and superposition inherent in the Laplace transform. As 
we shall soon see, the Laplace transform greatly simplifies the analysis of continuous-time systems. 

The formulas for the forward and inverse transform are shown below. Looking carefully at the formula for the 
inverse transform, we see that it basically says that a signal x(t) can be expressed as the sum (integral) of an 
infinite number of appropriately scaled complex exponentials of the form X(s)e st . 

Bilateral Laplace Transform 

X(s) = f x(t)e-stdt 

Inverse Laplace Transform 

a+joo 

x(t) = l~j f X(s)e stds 

cr-j= 

For the inverse transform, the contour of integration is a straight line parallel to the jffi-axis for any value of cr 
in the transform's region of convergence (defined in Section 4.3). But don't panic; there's an easier way to take 
the inverse transform, as shown in Section 4.6. We will spend the rest of this chapter describing the mathemat­
ical properties of the Laplace transform and some example forward and inverse pairs. In Chapter 5, we will 
begin to illustrate the role of the Laplace transform in the analysis of CT systems. 
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CHAPTER 4 The Laplace Transform 

4.2 Unilateral vs. Bilateral 

In this book we will use what is known as the bilateral Laplace transform. This is the formula given in 
Section 4.1. Another form of the Laplace transform is known as the unilateral form, where the limits of inte­
gration are only from zero to infinity. Most people concerned with the "real world" (e.g. control system 
designers) almost always use the unilateral formula since to them there is no such thing as negative time. But 
the theorists and the non-real time signal processors usually use the bilateral form primarily because of its 
appealing mathematical properties. In the bilateral world, signals that start at time=0 are generally written in 
combination with the unit step function, such as x(t)u(t). Forgetting to add the u(t) is a common error, so 
watch out for it. Also, remember that an input of the form est is composed of a single complex frequency, 
whereas something like estu(t) is composed of many different complex frequencies. The only significant 
difference between the unilateral and bilateral transforms is the way they deal with initial conditions, which is 
evident in the integration and differentiation properties in Section 4.4. 

4.3 Region of Convergence 

The region of convergence (ROC) of a Laplace transform is defined as the set of values of s for which the 
Laplace transform integral can be evaluated (i.e. it doesn't blow up). 

Example If x(t) = e 21u(t), find X(s) and its ROC. 

X(s) = f e2re-stu(t)dt = fe<2-s)tdt = _1_e(2-s)rl= = 
2-s 0 

1 
s-2 

s-plane 

ROC = shaded region 

0 

only possible if (2-Re{s}) in exponent< 0 

⇒ ROC is Re{s}>2 

There are several rules that can be used to quickly determine the ROC without performing any integration; all 
that is needed is the type of signal (see chart below) and the location of the poles of the transform. A pole is 
defined as a value of s that causes the denominator of the transform to become zero. The concept of a pole will 
be more clearly defined and explained in Chapter 5. 

Types of Signals 

left-sided signal 
(starts somewhere, ends at -00) 

right-sided signal 
(starts somewhere, ends at +00 ) 

Note: a causal signal is one that is right-sided, but starts after 0 

two-sided signal 
(starts at-=, ends at +00) 

finite-duration signal 
(starts somewhere, ends somewhere) 

14 Signals and Systems Made Ridiculously Simple 
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CHAPTER4 The Laplace Transform 

Rules for the AOC 

• The ROC is always a region of the s-plane to the left or right of a vertical line, or a strip between two 
vertical lines. 

• The ROC never contains any poles. 

• If x(t) is right-sided, then the ROC is right-sided, i.e. Re{s} > a, where a is the Re{rightmost pole}. 

• If x(t) is left-sided, then the ROC is left-sided, i.e. Re{s} < a, where a is the Re{leftmost pole}. 

• If x(t) is two-sided or the sum of a left and right sided signal, the ROC is either a strip (a <Re{s )< b), 
or else the individual ROC's will not overlap, producing the null set. 

• If x(t) is of finite duration, then the ROC is the entire s-plane. 

4.4 Bilateral Laplace Transform Properties 

Property x(t) X(s) NewROC 

Linearity ax1(t) + bxz(t) aX1(s) + bXz(s) ROC ;;;i ROC(x) n ROC(x2) 

Time Shift x(t-t) 
-st0 

e X(s) ROC(x) 

Exponential Multiply e -atx(t) X(s + a) shift ROC to left by a 

Times t tx(t) 
_ dX(s) 

ROC(x) 
ds 

Time Scaling x(at) 
I Scaled ROC (sin new ROC 

MX(s/a) ifs/a in old ROC) 

Integration J~00 x('t)d't 
1 
-X(s) ROC ;;;i ROC(x) n Re{s}>O 
s 

Differentiation 
dx(t) 

sX(s) ROC;;;i ROC(x) 
dt 

Differences for the Unilateral Transform 

Integration J~x('t)d't 
I 
-X(s) 
s 

Differentiation 
dx(t) 

sX(s)-x(O) 
dt 
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4.5 Table of Transform Pairs 

The following table lists some common Laplace transform pairs; transforms for other common signals can be 
derived using the properties in Section 4.4 

x(t) X(s) ROC 

o(t) 1 All values of s 

u(t) 
1 

Re{s} >0 -
s 

e-atu(t) 1 
Re{s} >-ex --

s + (X 

-e-a1u(-t) 
1 

Re{s} <-ex --
s + (X 

rn u(t) 
n! 

Re{s} >0 --
sn + l 

( sinov) u(t) 
coo 

Re{s} >0 ---
s2 + coi5 

s 
( cos co0t) u(t) s2 + co2 

0 
Re{s}>0 

4.6 Inverse Laplace Transform 

The general formula for recovering x(t) from X(s) is the complex line integral: 

(J + joo 

x(t) = l~j f X(s)e stds 

cr-joo 

DO NOT USE THIS FORMULA!!! 

Rather, to perform the inverse Laplace transform, we will merely manipulate the given expression until we see 
patterns we recognize from the Laplace transform table. This is basically a heuristic scheme and is one that will 
become more obvious with practice. 

Note that knowing the ROC is critical to performing an inverse Laplace transform. For example: 

X(s) = s + 3 

~ x(t) = e-31u(t) 

? 
-:.._. x(t) = -e- 31u(-t) 
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CHAPTER4 The Laplace Transform 

More complex transforms can be evaluated by first splitting the transform into simpler expressions using the 
process of partial fraction expansion (PFE). See the Appendix for a short review of this important mathematical 
technique. The following example illustrates a simple PFE and the importance of utilizing information about 
the region of convergence. 

Example 

3s + 5 
X(s) = s2 + 3s 

Splitting X(s) using PFE ... 

ROC: -2<Re{s}<-l Findx(t). 

this term must have ROC of Re{s} < -I 

1 2 
X(s) = s + 2 + s + 1 x(t) = e-21u(t)- 2e-1u(-t) 

this term must have ROC of Re{s} > -2 

Sometimes however, factoring the denominator is not always the best thing to do. In the case of a second order 
polynomial with complex roots, completing the square is generally the best procedure. Observe: 

Example 

X(s) = 
s2 + 4s + 40 

X(s) = ---,----­
s2 + 4s + 4 + 36 

ROC: Re{s} > -2 Find x(t) . 

(D6 
= ----,---,, 

(s+2) 2 +62 
⇒ x(t) = ~e-21 sin (6t) u(t) 

4.7 Initial and Final Value Theorems 

Given only a rational transform X(s), the initial and final value theorems allow us to determine the values of 
x(t=0+) and x(t=oo) without having to go back to the time domain through an inverse transform. Be sure to 
keep in mind the conditions under which these theorems are valid . 

Initial Value Theorem 

Final Value Theorem 

x(t=0+) = Jim sX(s) 
s ➔ = 

x(t=oo) = lim sX(s) 
s ➔ O 

x(t) = 0, t < 0 and no impulses or 
higher order singularities at origin 

X(s) has no poles in Re{s}~ 0 (one 
pole at s=0 ok); ROC is right-sided 
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CHAPTER 5 

Overview 

CT Systems Analysis 

This chapter presents the underlying concepts and methods in the anal­
ysis of continuous-time LTI systems. A system's entire characteristics 
can be captured in a single function H(s), appropriately known as the 
system function. This chapter defines the notions of poles and zeros and 
illustrates how they govern system behavior. Example problems illus­
trate the use of the Laplace transform in determining the ZIR and ZSR, 
the two components of the solution to any CT LTI system. Finally, the 
impulse response is briefly introduced in an effort to begin an apprecia­
tion for how nicely everything really does fit together. 

5.1 The System Function 

Recall from the inverse Laplace transform formula that a signal x(t) can be represented as the infinite sum 
(integral) of appropriately scaled complex exponentials. We will now illustrate why this makes the Laplace 
transform a powerful tool for the analysis of CT systems. Not being mathematically strict, let's rewrite the 
inverse Laplace transform integral as a Riemann sum: 

cr+ j= 

x(t) = -1-. f X(s)e stds z -2
1 . { ... + X(s0)es0t + X(s 1)es1t + ... + X(s )e"-1} ~s 

21tJ 1tj = 
a-joo 

Now recall that complex exponentials of the form est are eigenfunctions of a continuous-time LTI system: 

X(s)e st ---t1►~1 CT LTI 1-----►► X(s)H(s)e st 

Utilizing this property along with linearity allows us to relate y(t), the output of an LTI system, to the input x(t) 
as follows: 

cr+joo a+joo 

y(t) = 2~j f H(s)X(s)estds = 2~j f Y(s)e stds 

a-Joo a-JOQ 
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You may not have realized it, but we have just revealed two of the most fundamental concepts in linear system 
theory. The first is that H(s) is a complete characterization of the system. That's why H(s) is commonly 
referred to as the system function (sometimes called a transfer function). If we know H(s) for all values of 
possible complex frequencies "s", then we can find the response to all possible complex exponential inputs. 
Since practically any CT signal can be broken down into the sum of complex exponentials by utilizing the 
Laplace transform, given H(s) we should be able to find the output response for any possible input signal. The 
second fundamental concept we have discovered is that this output signal can be obtained through the simple 
relationship Y(s) = H(s)X(s). 

H(s) is the System Function 

x(t) ► 1 H(s) ► y(t) 

t t 
X(s) Y(s) H(s)X(s) Y(s) 

H(s) 
Y(s) 

X(s) 

5.2 Poles and Zeros 

The concept of poles and zeros is best introduced through an example. Consider the following system: 

: 0.0lF '. v;(t)~T-7· v/t) 
· 10n· 
' ' 
' ' . - . 

H(s) = 

R 
= R + 11 (sC) V;(s) 

R 
= ----- = 

R + 11 (sC) 

(voltage divider) 

s s = 
s+l/(RC) s+10 

________ , 

Remember, s=o+jco. Let's see what happens when we plot IH(s)I versus <J while letting ro=0. 

-10 0 
(J 

The frequency s= -10 is a pole of H(s) since H(s) evaluated at that point is infinitely high. In the plot shown 
above, it looks like there is a stick (pole) placed at s= - IO holding up the graph. Similarly, the frequency s=O is 
known as a zero of H(s) since H(s) evaluates to zero at that point. Poles and zeros specify the set of complex 
frequencies for which the eigenfunction response is infinite or zero, respectively. For example, the above 
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system's response to e-101 (which is the same as the steady-state response to e-101u(t)) is infinite. Putting Ke 0 

(a DC input) into the system will result in an output of zero, but that should have been obvious from looking at 
the circuit anyhow. Note that putting Ku(t) into the system will initially produce a transient output, but the 
steady state (t=oo) output is still zero since u(t) looks like a DC input after a long period of time. 

A pole-zero plot shows the locations of the poles (drawn using X's) and zeros (drawn using O's) on the s-plane. 
The pole-zero plot for the previously described circuit is shown below: 

Pole-Zero Plot 

Im{s} 

, ... ,., 
-10 0 

Re{s} 

Note that poles and zeros can occur anywhere in the s-plane. Whenever the poles and zeros are the roots of 
polynomials with real coefficients, the poles and zeros off the real axis will always occur in complex conjugate 
pairs. Also note that there can be more than one pole or zero at the same location, but obviously a pole and a 
zero at the same place merely cancel each other out (numerator/denominator cancellation). Given only the 
pole-zero plot, it is possible to reconstruct H(s), but only to within a constant scaling factor. For example: 

X 

-1 

X 

Im{s} 

1 

~9 
0 

-1 

Re{s} 

Ks 2 
H(s) = ---

s2 + 2s + 2 

zeros= 0 (double) 

poles= -1 ±j 

The number of poles in a system will always correspond to the number of independent state variables in the 
system, i.e. how many initial conditions must be specified. The number of poles is known as the order of the 
system. Note that the number of zeros does not affect system order. 

Order of system = number of poles 

5.3 Converting Differential Equations to System Functions 

Earlier we said that a differential equation is one way of describing a system. We have seen that H(s) is also a 
complete characterization of a system, so there must be an easy way of converting between these two forms. 
All it involves is taking the Laplace transform of both sides of the equation (using the derivative property of the 
transform where appropriate) and manipulating the result to find an expression for Y(s)/X(s). Given an H(s), 
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the differential equation can be recovered by cross-multiplying and doing an inverse transform. For practice, 
try doing the following example in both directions. 

Example 
2y-3y+5y = l0.x-7x original differential equation 

2s2 Y(s) - 3s Y(s) + 5 Y(s) = lOsX(s) - 7 X(s) take the Laplace transform of both sides 

H(s) = Y(s) = 
X(s) 

I Os- 7 
2s2 -3s+5 

simplify and solve for Y(s)/X(s) 

5.4 Zero Input Response 

The Zero Input Response (ZIR) is the term given to the output of a system when there is no input signal 
present. This means that the ZIR corresponds to the manner in which any initial conditions present decay away. 

,-------.-----0+ 

10n 0.0IF v/t) if v0(0) = 5 V, ZIR = 5e-101u(t) 

How were we able to find the form of the ZIR for the above circuit? Recall that it is always the case that 
Y(s) = H(s)X(s). If there is no input, this means that X(s)=0. Does that automatically mean that Y(s) must be 
zero? No! A finite value of Y(s) when X(s)=0 is possible only if H(s) is infinitely large, meaning that the 
signal y(t) contains a complex frequency that is a pole of H(s). Thus, the ZIR can only contain frequencies that 
are poles of H(s). These frequencies are referred to as the natural frequencies of the system since the system is 
naturally tuned to oscillate or decay at those frequencies in the absence of an input signal. The equation 
obtained by setting the denominator of the system function equal to zero is known as the characteristic equa­
tion since its roots (the poles of the system) characterize system behavior. 

To find the ZIR for any proper rational system, follow the following steps: 

1. find the denominator of H(s) 

2. split I/denominator into inverse-Laplace-transformable factors 

3. inverse transform each part; this will only give you the form of the ZIR 

4. actual ZIR is found by plugging in given initial conditions to get values for unknown constants 

Example 

What is the form of the ZIR for a system 
with the following pole-zero diagram? 

Im{s} 

( double pole) 
... ., ---- JI' 

, ' ,.,..., ' 
-20 -10 0 Re{s} 
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Poles are at -20, -10, -10 

Denominator of H(s) looks like (s + 10) 2 (s + 20) 

A B C 
(s+ 10) 2 (s+20) 

= ----+--+--
(s+ 10) 2 s+ 10 s+20 

I ZIR = Ate-101 u(t) + Be-101u(t) + ce-201 u(t) I 
must be given three initial conditions to find values for A, B, and C 
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5.5 Zero State Response 

The Zero State Response (ZSR) is the output of a system when presented with an input, assuming that all 
internal state variables are set to zero (i.e. the system is "at rest"). The most straightforward method of 
obtaining the ZSR (and thus solving the system's differential equation) is to use the forward and inverse 
Laplace transform in conjunction with the system function as follows: 

Example 

Finding the ZSR 

Y(s) = H(s)X(s) 

y(t) = L-1 {H(s)X(s)} = ZSR 

Given the system y + 3y = 5x, find the output y(t) when x(t)=sin (6t) u(t). 

H(s) = 
5 

s+3 
X(s) = 

30 
Y(s) = -----­

(s + 3) (s 2 + 36) 

6 

s2 + 36 

A Bs+C 
= --+---

s + 3 s2 + 36 

(A+ B) s2 + (3B + C) s + (36A + 3C) = 30 

A= 30 I 
s2 + 36 s = -3 

2 
3 

A+B = 0 

3B+ C = 0 

36A + 3C = 30 

2 2 
A= - B = -- C = 2 3' 3' 

Y(s) = 2/3 _ (2/3) s + _2_ 
s + 3 s 2 + 36 s 2 + 36 

Note that it is possible to write the sum of several sinusoids of the 
same frequency as a single sinusoid with a new magnitude and 
phase. This can be accomplished by writing the sines and cosines 
in Euler form (see the Appendix) and recombining the complex 
exponentials. Therefore, an equivalent answer to this problem is: 

y(t) = Oe-31 + f cos (6t-153.43°) )u(t) 

Note that the e-31 term in the ZSR looks like something that would also be part of the ZIR. This is not a coinci­
dence! The input to the above system is a sine wave suddenly turned on at time=0. Such a sudden jolt to a 
system tends to set up some initial conditions that begin to decay away in the same manner that a ZIR would. 
After a long time, the input looks like a steady-state sine wave which then produces a steady-state output, just 
like an eigenfunction. The lesson to be learned here is that the ZSR will be the sum of a transient solution 
(which will have the same form as the ZIR) and a steady-state solution. 

If there are any initial conditions present, the total solution can be found by adding together the ZIR and ZSR. 

Total system response = ZIR + ZSR 
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5.6 The Impulse Response 

The output of a system when the input is an impulse function o(t) (defined in Chapter 9) has a special signifi­
cance in linear system theory. We know that Y(s)=H(s)X(s); if x(t)=o(t) then X(s)= 1 (take the Laplace trans­
form) and thus we have Y(s)=H(s). Recall from Section 5.1 that the function H(s) completely characterizes a 
system. This must mean that the output y(t) is now also a complete characterization of the system when the 
input is an impulse. We will designate this special output as h(t), known as the impulse response of the system. 
H(s), the system function, is the Laplace transform of h(t). Slowly, everything is beginning to fit together. 
Chapter 10 contains a more detailed description of the impulse response and its uses. 

It should also be apparent that the impulse response has the same form as the ZIR since it is simply the inverse 
transform of H(s). A more intuitive explanation is that since the impulse exists only at t=O, its response can be 
thought of as instantaneously setting up some initial conditions and then letting them decay away at the natural 
frequencies of the system, just like a ZIR. 

5.7 Combining Systems 

The nice thing about systems is that they can be combined together to form bigger systems. The following 
diagrams illustrate the equivalent system function for two types of connections. 

x(t)~~ 

Series Combination same output! 

x(t) __.~ 

Parallel Combination x(t) 

H2(s) 
same output! 

x(t) __.~ 
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CHAPTER 6 

Overview 

Bode Plots 

wm! 

Bode plots are graphs of the steady-state response of stable, continuous­
time LTI systems for sinusoidal inputs, plotted as change in magnitude 
and phase versus frequency. Bode plots are a visual description of a 
system; they are one of the most commonly used concepts from linear 
system theory. This chapter explains what a Bode plot is, steps through 
the mechanics of its computation, and then provides a set of rules for 
quickly graphing them. There is also a section on how to handle complex 
poles and zeros that discusses concepts like "Q" and resonance. Finally, 
there are examples of types of Bode plot problems and a discussion on 
how to determine a frequency response experimentally. 

trnr I I 

6.1 What is a Bode Plot? 

A Bode plot, named after Dr. Bode, is the name given to a log-log plot of the frequency response of a contin­
uous time system. So then what's a frequency response? It describes the steady-state response of a system to a 
sinusoid of a particular frequency. Recall that a sinusoidal function (complex exponential) is an eigenfunction 
of a CT system, meaning if ejrot goes in, Kejrot comes out, where K is a complex number. A Bode plot is simply 
a graph of K vs. ro. Since K is complex, we will have to represent the frequency response as two sub-graphs. We 
could plot the real part and imaginary part separately, but it is much more intuitive to plot things as magnitude 
and phase versus ro. You can see this by rewriting K as Aejcj> . The output then becomes Aei (ror+ cj>), which has 
the same frequency as the input, but with a possible change in magnitude and phase of the sinusoid. In other 
words, sin ( rot) ➔ A sin (rot+ <I>). Therefore, a Bode plot is simply a graph of A vs. ro and <I> vs. ro. Simple, eh? 
Please note that things are plotted versus ro (radians/sec) not/ (Hertz or cycles/sec). If needed, the conversion 
is ro = 21tf. 

The Big Picture 

In general, est is an eigenfunction (s = <J + jro) of a CT systems as follows: 

est _____..I LTI System ,_____.. H(s)est 

Here H(s) is the familiar transfer function that we all know and love. So, from the previous discussion, you 
should realize that the Bode plot is nothing more than a graph of the transfer or system function H(s) evaluated 
along the jco-axis (s=jro). In other words, the Bode plot is a representation of the transfer function of a contin­
uous-time LTI system for steady-state sinusoidal inputs. 

Bode plot= H(s) evaluated alongjco-axis (s=jro) 
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6.2 Calculating the Frequency Response 

Let's illustrate the mechanics behind graphing a frequency response with a simple example. Given the H(s) 
shown below, plug in different values of co and compute the magnitude and phase of HUco). 

1 
HUco) = - 1- IH(iro)I 20log 10iH(iro)i H(s) = -- (J) LH(iro) 

s + IO }co+ 10 
0 0.1000 0.0deg -20.00 dB 

magnitude of H(iro) = magnitude of numerator 
I 0.0995 -5.71 deg -20.04 dB 
2 0.0981 -11.31 deg -20.17dB 

magmtude of denommator 5 0.0894 -26.57 deg -20.97 dB 
10 0.0707 -45.00 deg -23.01 dB 

phase of H(iro) = phase of numerator - phase of denominator 20 0.0447 -63.43 deg -26.99 dB 
50 0.0196 -78.69 deg -34.15 dB 

magnitude of a+ bj = Ja 2 + b2 
100 0.0100 -84.29 deg -40.04 dB 

You are probably used to plotting things on a linear scale, but something very interesting happens if you plot 
the magnitude of the frequency response on a logarithmic scale. Using a log scale for co allows you to cover a 
wide range of possible input frequencies, and a log scale for the magnitude compresses big changes and 
emphasizes small changes to provide a better "big picture" of the overall response. The unit of choice for plot­
ting log magnitude is the decibel, abbreviated dB. It is defined as dB = 20Iog 10amplitude. Furthermore, the 
advantage of drawing things on a log-log scale is that the Bode plot becomes much easier to sketch by hand, as 
described in Section 6.3. The following two graphs show the above IHUco)I vs. co on both linear and loga­
rithmic axes. 

0 1 Linear Scale -10 Logarithmic Scale 
0 09 

-15 

008 

-20 

0 07 

0 06 
~-25 

§ ] 
~ 0 05 §,-30 
ii' 
:,; :,; 

0 04 !-35 
0 03 

-40 

0 02 

-45 
0 01 

00 50 100 150 200 250 300 350 400 450 500 
-50 

,o-' 10' 10' 10' 
Frequency (rad/sec) 

6.3 The Asymptotic Approximations 

From examining the table and log-log plot in Section 6.2, it seems that there should be some straight line 
approximations to facilitate quick, but relatively accurate hand-drawn sketches of the Bode plot. Well, there 
are! The asymptotic magnitude plot only changes slope at a breakpoint (the location of a pole or zero). The 
phase plot changes slope at O. lxbreakpoint and at lOxbreakpoint. At the breakpoint itself, the actual magnitude 
plot differs from the approximation by a factor of 20log ( 1/ Ji) or -3dB and the actual phase plot has 
changed by 45° and crosses the asymptotic approximation line. Note that these numbers scale for multiple 
order poles and zeros. For a single pole system, the breakpoint (3dB point) is also known as the half-power 
point since IHUco)l 2 (power) is half as large. The asymptotic approximation technique is illustrated with the 
following example using the same H(s) as above. 
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Asymptotic Approximations 

H(s) - _l_ 
- s + 10 Magnitude 

ro < pole ➔ H(jro) = J_ ⇒ -20dB 
10 

ro > pole ➔ H(jro) = ~ ⇒ -20dB/decade 
]ffi 

ro = pole ➔ H(jro) = 0 .1 0 ⇒ -23dB 
1 './ + 1 

- 1or Magnitude 
_,. 

- 20 

'.i -25 
,, 

1 
f'° 
! -35 

- 40 

_., 

- SO ,o-• ,o' ,o' ,o' ,o' 
Frequency (raci'ue) 

6.4 Relationship to the Pole/Zero plot 

ro < O. lxpole ➔ H(jro)"' J_ ⇒ 0° 
10 

ro > 1 Oxpole ➔ 

ro = pole ➔ 

-20 

1-•o 
I 
l 

-60 

- 80 

-100 ,o-• ,o' 

H(jro) = ~ ⇒ -90° 
]ffi 

H(jro) = l ⇒ -45° 
lOj + 10 

Phase 

,o' ,o' 10' 
Frequency (ra~MC) 

Since the Bode plot is essentially a graph of H(s), we can easily relate it to the system pole/zero diagram. 
Imagine starting at ro=O and slowly sliding up the jco-axis. The changes in the length and angle of the vector 
from the pole/zero to the current location on the jro-axis are related to the changes in the magnitude and phase 
of the Bode plot. A common mistake is to say "Well, if the pole is at -10, then I should plug in -10 in for ro." 
No, no, no! You should plug in only positive values of ro when graphing the Bode plot. If the pole is at s= -1 O, 
then the breakpoint in the curve will occur at ffi=lO rad/sec. Between ro=O and ro=lO, the log-magnitude of the 
vector length stays roughly constant, which accounts for the flat portion of the Bode plot shown above. Hope­
fully the following diagram will make things clear. 

/m{s}=jro 

! slide between ro=O and +oo 
H(s) = 

s + 10 
H(jro) = 

jro + IO 

As ro increases, [ico + IOI increases ⇒ IH(ico)I decreases. 

-10 0 Re{s} 
=<J 

As co increases,L'. Uco + JO) goes to 90° ⇒ L'.H(ico) goes to -90°. 
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6.5 Dealing with Multiple Poles and Zeros 

So far we have only sketched Bode plots with a single pole, but the methodology developed easily extends to 
systems with multiple poles and zeros. Since we are plotting log-magnitude, we can use the fact that the log of 
a product is the sum of the logs. And for phase, the phase of a product (division) is the sum (difference) of the 
phases. We illustrate this concept with the asymptotic approximations in the following example. Note that the 
sum of the asymptotic approximations starts to break down when the poles/zeros are too close together (within 
a factor of 10 or so). 

s+ 1000 
H(s) = 

(s+I0) 2 

20log IH(ico)I = 

s+ 1000 
s+l0 

IIXXl (0 -20dB : Ill (0 +-20dB (0 

60dB~: +20dB/dec+ R:s + lQ 

-20dB/dec -2lldB/dec 

LHUro)= "'f · .. ···z- + 
IIXX! (0 

20log JH(jco)I LH(jco) 

20dB~--~ 

Answer: l~Xl (0 

-40dB/dec 

-60dB - - - - - - - - - - - - - - - - - - - ~dee 

ll° ~-+-+IJl-+IIX-l -,-+1h-l -141XX-Xl-(0 

_::::: ---------~ 

6.6 Summary of Bode Plotting Rules 

The following set of rules applies to drawing Bode plots for systems with all poles and zeros on the real axis, 
spread sufficiently far apart (about a factor of 10 or more). Furthermore, we will assume that H(s) is a causal, 
stable, minimum-phase system, meaning that all poles and zeros are in the left half plane. Causality and 
stability will be discussed in more detail in Chapter 14. 

Plotting Magnitude JH(jco)I 

1. Identify locations and order (how many) of all poles and zeros - these are the breakpoints. 

2. Draw axes. Note that it is impossible to include co=0 on a log scale. Start with a small co, like 1, 
0.00001, or whatever is appropriate. It is also useful to draw vertical dashed lines at breakpoints. 

3. Starting at the left, the magnitude plot starts flat unless there is a pole at s=0 (start plot with slope of 
-20dB/dec for each pole at origin) or there is a zero at s=0 (start plot with slope of +20dB/dec for 
each zero at origin). 

4. Continue drawing asymptote in a straight line until you reach a breakpoint (pole/zero). 
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5. For each pole encountered, decrease slope of asymptote by 20dB/dec. For each zero, increase slope 
by 20dB/dec. Go to step 4 unless there are no more breakpoints left. 

6. Label one point on the y-axis by plugging in a value of w into H(jw) from any flat region of the 
plot. If there are no poles or zeros at the origin, using W=0 is the simplest choice. Continue labelling 
y-axis using slopes of asymptotes as guides. 

7. Round corners inward by +/- 3dB for a more accurate magnitude plot. 

Plotting Phase L.H(jw) 

1. Identify locations and order (how many) of all poles and zeros - these are the breakpoints. 

2. Draw axes and vertical dashed lines at breakpoints. 

3. Starting at the left, the phase plot starts at L.H(jw=0) (usually 0°). Plot starts at +90° for each zero 
at origin and -90° for each pole at the origin. A leading minus sign will add 180° to the phase. Plug 
in jw=very_small_imaginary_number and evaluate the phase manually if you're confused. Also 
remember, shifting the phase curve up or down by 360° doesn't change anything. 

4. The phase plot continues as a flat line until reaching 0.1 xbreakpoint. 

5. Each pole subtracts 90 degrees from the phase, spread over a distance of 0.1 xpole location to 
lOxpole location. At the pole location, the phase has dropped by 45 degrees (halfway there). The 
situation is the same for zeros, but this time phase is added. Watch out for multiple poles/zeros. Go 
back to step 4 unless there are no more breakpoints left. 

6. Round all corners to resemble an arctan curve (that's how phase is calculated) for more accurate 
plotting; the phase rounds by about 6° at 0.1 xbreakpoint and at I Ox breakpoint. 

Example 

H(s) = 100 (s + 10) 
s2 + IOOOs 

plug in ro=IOO to label 
y-axis on magnitude plot 

A Note about Slopes 

20log IH(iw)I 
-20dB/dec 

- 20dB 

round corners by 3dB 

/ "" -20dB/dec 

-40dB ----------------~--------------1-------, ' 
(0 

0.1 10 I 00 1000 I 0000 

LH(iw) (0 

- 45° ---------------- ---------------,, --------------
' ' ' ' 

' ' - 90° ~--~--- ---~----------- - - -~------ "'----
' ' 

A decade is defined to be a factor of 10 in frequency_ An octave is defined as a factor of 2 in frequency (not a 
factor of 8). A sometimes useful conversion is 20 dB/decade "" 6 dB/octave. It can be derived as follows: 

dB difference in one octave = 20log (2x) - 201og (x) = 201og2 + 20logx- 201ogx = 20log2 = 6.02 
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6.7 Dealing with Complex Poles and Zeros 

The name "Bode plot" is historically for plots of the frequency response of systems that have poles and zeros 
only on the real axis. But that doesn't mean you can't plot a frequency response for a system with complex 
poles/zeros. However, it is difficult to come up with a set of rules for drawing an accurate plot. If accuracy is 
needed, plug numbers into H(s) or use MATLAB. Nevertheless, you should still be able to provide a very rough 
sketch of the frequency response, or at least be able to pick out the correct plot in a multiple choice question. 
Just to give you an idea of what these type of plots look like, here is an example of a Bode-like plot for a 
system with a pair of complex poles: 

H(s) = 
s2 + 0.4s + 1.04 

poles are at - 0.2 ± lj 

20 
the closer the poles are to the 
jw-axis, the larger the bump height 

Cll 
'O 
C: 
"iii 

o~----------
I 

c, -20 
bump peaks where the product of distances to poles is 
minimized; this is approximately equal to the imaginary 
part of the pole location if they are close to the jw-axis 

Cl 
<D 
'O 
<D 
IJ) 

"' .s::; 
a.. 

-40 
10-1 

0 

-90 

-180 

10-1 

100 

Frequency (rad/sec) 

10° 
Frequency (rad/sec) 

Sketching the Complex Pole/Zero Bode plot: 

- 40 dB/dee 

There are two ways of doing a "back-of-the-envelope" sketch of a complex pole/zero Bode plot. For both 
methods, first draw the pole/zero diagram. The first method is to observe the following exact relationship that is 
true when graphing any frequency response: 

numzeros numpoles 

IH(Jro)I = II ( distance from zero; to jro) + II ( distance from pole; to jro) 

i= I i= I 

numzeros numpoles 

LH(jw) = L (anglefromzero;tojffi) - L (anglefrompole;tojro) 

i= I i = I 

Trace your finger along the positive }co-axis and mentally approximate the above relations. "I'm getting closer 
to the pole, so the magnitude must be going up, etc." Note that all angles are measured relative to the positive 
real axis. 
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The second method is intimately related, but involves a more graphical approach. Look at the pole/zero 
diagram. Now, imagine placing a huge rubber sheet over the entire s-plane. Each pole represents a tent pole of 
infinite height, holding up the sheet. Each zero represents a nail, holding the rubber sheet to the ground. After 
you've supported/nailed down each pole/zero, you should be left with a circus tent-like structure. Now, 
remember that the Bode plot is H(s) evaluated at s=Jro? Well, the Bode magnitude plot is then the shape of 
your tent along the j(l)-axis ! If there is a pole near the axis, the tent gets really high; likewise, if there is a zero 
near the axis, the tent is really low (if you take the logarithm, then it's really close to -00 ). 

Another method of drawing the frequency response for complex poles and zeros is to draw what is known as a 
resonance curve. This is essentially the same as a Bode plot, but drawn using a linear scale on both axes. The 
resonant frequency is the input frequency that produces the maximum output. Sometimes resonance is good 
(like when trying to tune in to a particular radio station) or sometimes resonance is bad (like a car engine that 
starts vibrating only when it gets near a particular RPM). There are a few relationships that aid in a more accu­
rate sketch of a resonance curve, especially when the poles are close to the j(l)-axis. For poles located at 
- a± Pi with a « P , the plot peaks at ffipeak=P and the half power bandwidth is 2a. Another way of describing 
a resonance curve is to define the sharpness of its peak, known as the "Q" of the system. A typical resonance 
curve is shown below: 

Resonance Curve 

H(s) = 
s 

s2 + 0.2s + 1.01 
5 

4.5 

denominator= s2 + 2as + roJ 4 

half power point 

roots = -0.1 ±j 

= -a±Pi 

as---------------- --------------------
= 5/ Ji 

ffipeak "' p "' ro0 if a « p 
(in general, Oli,eak will be slightly 

less than both ~ and OJo) 

if a« 13 

6.8 Sample Bode Plot Questions 

2 

1.5 

0.5 

0 
0 0.2 

There are generally four types of Bode plot problems: 

0.4 0.6 

I -b.ro:::::Za 
half pqwer bapdwidth) 

I I 

:(Opeak: 

0.8 1 1.2 
Frequency (rad/sec) 

1.4 1.6 1.8 2 

1. Given an H(s) with poles and zeros only on the real axis, accurately sketch its Bode plot. Note if 
you are just given the pole/zero diagram, you can still sketch the shape of a Bode plot, but the exact 
magnitude (y-axis values) will be impossible to determine (i.e. you can still say this point is 20dB 
lower than this other point, but the precise numerical values are unknown). 

2. Given a Bode plot, recover the system function H(s). This is a bit trickier; look for breakpoint loca­
tions and slopes of lines. Do not forget to look for a possible constant in front of H(s); in other 
words, verify the y-axis values on the magnitude plot. Practice this with your friends! One person 
gets to practice drawing Bode plots, the other person practices reconstructing H(s). 
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3. Multiple choice: given an H(s), match it with the appropriate Bode plot (or vice versa). This type 
of question is especially common for systems with complex poles and zeros. Watch for subtleties 
like slopes of lines, y-axis values, locations of resonant peaks, etc. 

4. You should not only know how to draw a Bode plot, but also be able to read one and understand 
what information it provides. An example problem is shown below: 

What is the steady-state output of the following system? H(s) and its Bode plot are given. 

2sin ( IOOt + 65°) u(t) ------:1 _H_(_s_) __,,___...,.,. ??? 

So, how would you do it? 

Method I: Take the Laplace transform of the input, multiply it by H(s), take the inverse 
transform, and let t ➔ 00 • This method does work but is not suggested since it is unneces­
sarily too complicated. Note, if the input was 2sin ( IOOt + 65°) (without the u(t) ), then 
the bilateral Laplace transform would not exist. 

Method 2: Use steady-state analysis techniques, like shown in Section 3.6. Find the 
complex frequency of the input signal and plug it into H(s), evaluating its magnitude and 
phase. Find the output signal by scaling the input by JH(s)J and adding LH(s) to the phase. 

Method 3: Since we are dealing with a sinusoidal input and are looking for the steady-state 
output, we would do best by reading the answer directly off the Bode plot. Find the magni­
tude and phase response at ro= I 00 on the Bode plot. The output signal is then 
2JH(l00j)I sin ( 100t + 65° + LH(IO0j)) . 

6.9 Calculating the Frequency Response Experimentally 

Suppose you've just designed the world's greatest stereo amplifier. You show it to your boss and she asks, 
"What's its frequency response?" Well, you could show her the Bode plot for the theoretical H(s) using 
MATLAB, but that's not the real world. What can you do? Get yourself a function generator and an oscillo­
scope. Input a sinusoid of a particular frequency and display both the input and output sinusoids simulta­
neously on your scope. JH(jro)I is the ratio of the output to input amplitudes and L.H(jro) is the phase 
difference between the output and the input. Note that the phase is negative when the output lags (is a delayed 
version of) the input. Continue recording these magnitudes and phase responses of your system for a suitable 
range of input frequencies. Remember, if you're trying to input a ro=IO00 sine wave, that means you'll have to 
dial your function generator to 159.15 Hz ( ro = 21tf). A useful tip is that spacing input frequencies using the 
1,2,5 method (1,2,5,I0,20,50,100,200,500,1000, etc.) produces roughly equally spaced points on a logarithmic 
scale. Now plot your experimental results and show it to your boss! 
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ff' !iii IL U!IJ mmHJBN#lt11ffl"!t!iii[f~Ai!IJllirn11 ·. , ,Mliiil. ffJ ;;:l!Jj!iJj11fflfp,a;mmUU2JIIDW!IJtil 

Overview This chapter introduces the concept of a discrete-time signal. These 
signals consist of values that occur at discrete points in space or time, 
and are often samples of a continuous-time process. The Z-transform, a 
tool for discrete-time LTI system analysis is introduced. Several exam­
ples illustrating forward and inverse Z-transforms are provided, while 
paying particular attention to the notion of region of convergence. 

7.1 A New Type of Signal 

We now describe a new class of signals, known as discrete time (DT). These types of signals consist of values 
that occur at discrete points in space or time. The closing Dow Jones Industrial Average at the end of every day, 
the pixel values in an image of the moon. and the number of busses per hour going down Main Street are all 
examples of discrete signals. Discrete-time signals are not plotted versus time, but rather versus an index n, and 
are normally drawn as a series of "lollipops" with the height labeled. 

Some Basic DT Signals 

How to denote 
a DT signal: 

91 8[nl l 
000 0 000 n 

1 

u[n] llll ... 
888 0123 n 

I 

u [ - n - 1] """l l l 0 0 0 e 
.3 .2 .1 n 

~n 
.J 

(~Yu [n] 

(-1Yu [n] 

II 1/2 9 1/4 1/8 
88 99 

0 I 2 3 n 

1 1 1/4 
8 8 9 () 6 2 o.J/8n 

-1/2 

Signals and Systems Made Ridiculously Simple - by Z. Karu 33 



CHAPTER7 Discrete Signals and Z-Transforms 

7 .2 The Z-Transform 

The discrete-time counterpart of the Laplace transform is the Z-transform. You can think of the Z-transform as 
simply an alternative way of expressing DT signals. Although initially it seems more complicated, writing 
discrete signals in the Z-domain greatly simplifies the relationship between inputs and outputs for signals 
passing through LTI systems. 

00 

-
Definition: X(z) L x [n] z-n 

n = -oo 

Examples 

(1) The Z-transfonn of f o' r 
~n 

-l 

is 2z + 1 + 3z-2 - z-3 

(O<lzl< 00) 

(2) The Z-transform of x [n] = OYu [n] is 

lzl >0.5 
n = -oo 

(sum of infinite geometric series) 

7.3 Region of Convergence 

Just like with Laplace Transforms, Z-transforms also have a region of convergence (ROC). The ROC defines 
the values of z for which the Z-transform sum will converge. 

Note that the j(J)-axis in the s-plane maps to the unit circle in the z-plane using the transformation z = eJw . 

s-plane Im 

high positive freq 

Re 

DC (zero frequency) 

high negative freq 

Re 

Just fold the j(J)-axis 
into a circle! 

DC ( zero frequency) 

Since the ROC's for continuous-time signals look like half-planes or strips, the ROC's in the z-plane generally 
look like circles, holes, or donuts. 

z-plane z-plane 
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Types of Signals 

The following definitions apply to both continuous and discrete time signals: 

left-sided signal 
( starts somewhere, ends at -00) 

right-sided signal 
(starts somewhere, ends at +=) 

... ~ 
0 

Note: a causal signal is one that is right-sided, but starts after 0 
~ ... 

() 

two-sided signal 
(starts at-=, ends at+=) 

finite-duration signal 
(starts somewhere, ends somewhere) 

Rules for the ROC 

... . .. 
0 

0 

• The ROC never contains any poles (the values of z that make H(z)=00 ) . 

• If x[n] is right-sided, the ROC is the area outside a circle, i.e. lzl >a, where a is the !outermost polel . 

• If x[n] is left-sided, the ROC is the area inside of a circle, i.e. lzl <a, where a is the I innermost polel . 

• If x[n] is two-sided or the sum of a left and right sided signal, the ROC is either a donut (a< lzl < b ), 
or else the individual ROC's will not overlap, producing the null set. 

• If x[n] is of finite duration, then the ROC is the entire z-plane, except possibly z=O and z=00 • 

7.4 Z-Transform Pairs 

Here are just a few sample Z-transform pairs: Note that the last two entries have different x [ n] 's but appear to 
have the same X(z) 's. Looking closely however, the Z-transforms do differ in their region of convergence. Just 
as with Laplace transforms, the ROC will play a key role in performing the inverse transform (see Section 7 .6) . 

-
X [n] X(z) ROC 

o [n] all z 

u [n] 
1 

l -z-1 
lzl > 1 

1 - az-1 lzl > lal 

-anu[-n-1] 
1 -az-1 

lzl < lal 
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7 .5 Z-Transform Properties 

Property Time Domain Z-Domain NewROC 

- -
Linearity ax [n] + by [n] aX(z) + b Y(z) ROC ;;;;/ ROC(x) n ROC(y) 

Time Shift x [n - k] z-kX(z) ROC(x) (but watch z=O, =) 

Exponential Scaling anx [n] X(z/a) { lal · z} s.t. z E ROC(x) 

Linear Scaling nx [n] 
d -

ROC(x) (but watch z=O) -z-X(z) 
dz 

Time Reversal X [-n] xcz-1) {1 /z} s.t. z E ROC(x) 

7.6 Inverse Z-Transform 

The general formula for recovering x [n] from X(z) is the complex contour integral: 

1 i-
x [n] = 21tffX(z)zn- 1dz 

DO NOT USE THIS FORMULA!!! 

Rather, to perform the inverse Z-transform, we will merely manipulate the given expression until we see 
patterns we recognize from the Z-transform table. This heuristic scheme is just like the one used when doing 
inverse Laplace transforms. 

Note, knowing the ROC is critical to performing an inverse Z-transform. For example: 

X(z) = --
1-az-1 

----- X [n] 
? 

= anu [n] ROC: lzl > Jal 

--:.......x[n] = -anu [- n - 1] ROC: lzl < Jal 

Is x [n] anu [n] or -anu [-n-1]? Ifwe are told that the ROC is Jzl > Jal, then we know that x [n] =anu [n]. 

Or equivalently, we could have been told that x [n] was right-sided (or causal). Now for several examples: 

Example 

X(z) = z-1 + 3 - 2z x[n] =? 

By inspection, x[n] = o[n-1] +3o[n] -2o[n+l] ~n 
-2 
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Example 

Method 1 

CHAPTER7 Discrete Signals and Z-Transforms 

1 - 2z-1 + 3z-2 
X(z) = -----

1-z-1 

1 2z-1 3z-2 
X(z) = -----+--

1 - z-1 1 - z-1 1 - z-1 

Find x[n], given that it is right-sided. 

⇒ x[n] = u[n]-2u[n-I] +3u[n-2] 

Method2 I -z-1 n 

Example 

1 - z-1 I 1 - 2z-1 + 3z-2 

1-z-1 

-z-1 + 3z-2 

-z-1 +z-2 

1 
X(z) = ----

5 I 2 2 I - -z- - -z-
3 3 

X(z) 
2z-2 = 1-z-l +--

1-z-l 

SAME ANSWER! 

⇒ x[n] = o[n] -<>[n-1] +2u[n-2] 

1 
ROC: 3 < lzl < 2 Find x[n] . 

I A B 
X(z) - = --- + ---

- ( 1 + ~z-1) (1- 2z-1) 1 + ~z-1 1 - 2z-1 

If you have a hard time factoring X(z), just 
look at the ROC. The boundaries of the 
ROC are the magnitude of the poles. 

⇒ 

X(z) = 1/7 + 6/7 
1 + !z-1 l -2z- 1 

3 

~ ~ 
right-sided left-sided 

How did we know which was left/right sided? 
Because the intersection of the two 

ROC's must be I /3 < lzl < 2 

1 ( 1 )n 6 x [ n] = - -- u [ n] - - ( 2) nu [ - n - l] 
7 3 7 
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7.7 Initial and Final Value Theorems 

Just as with continuous time signals, one can also determine the initial and final value of a discrete time signal 
by examining only its Z-transform. Note that the use of the initial value theorem assumes that x[n]=O for n<O. 

Initial Value Theorem 

X [O] = Jim X(z) 
z--> = 
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Final Value Theorem 

limx[n] = Jim (I-z-1).X(z) 
n ➔ oo z-1 ➔ 1 



CHAPTER 8 

Overview 

Discrete-Time Systems 

The analysis techniques for discrete-time systems are very similar to 
those used for CT systems. Some ways of describing a discrete-time 
system include difference equations, system functions H(z), and delay­
adder-gain block diagrams. The concept of a frequency response for a DT 
system is also discussed. Finally, methods for converting between contin­
uous-time systems and discrete-time systems are provided. 

8.1 Difference Equations and the System Function 

Continuous-time systems are described by differential equations. Discrete-time LTI systems are described by 
linear constant-coefficient difference equations such as: 

1 1 
y[n] + 6y[n-1] - 6y[n-2] = x[n] +2x[n-1] 

It is possible to convert this difference equation to a system function representation by taking the Z-transform 
of both sides and utilizing the time-delay property. 

- 1- 1- - -
Y(z) + 6z-1 Y(z)- 6z-2 Y(z) = X(z) + 2z- 1 X(z) 

H(z) = ~(z) = 
X(z) 

1 + 2z-l 
1 -I 1 -2 

1 + -z - -z 
6 6 

Y(z) = H(z)X(z) I 

ROC is lzl > 1 
(assuming causal) 

H(z), together with its ROC, is a complete characterization of this discrete-time LTI system. Just like in contin­
uous-time, the poles and zeros of the systel_!l are those values of z that make the denominator and numerator go 
to zero. h[n] is the inverse Z-transform of H(z) and is known as the impulse response of a DT system. 

Complex exponentials of the form zn are eigenfunctions of discrete-time LTI systems. That is, if zn goes in, 
H(z)zn comes out. For example: 

DT LTI System .. 
H(z) 
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8.2 Discrete-Time Frequency Response 

In Chapter 6 we plotted the Bode plot or frequency response of a continuous-time system by evaluating the 
magnitude and phase of H(s) along thej(!.)-axis. Recall from Section 7.3 that thejco-axis maps to the unit circle 
in the z-plane. Therefore, it is possible to plot the frequency response of a DT system by evaluating the magni­
tude and phase of H(z) along the unit circle, which means z = ejw for O::; co< 21t. Just like with Bode plots, 
the following rules hold: 

num zeros numpoles 

life ejw)J = IT ( distance from zero; to ejw) + IT ( distance from pole; to ejw) 

i = I i= I 

numzero s numpo/es 

LH(ej 00) = I ( angle from zero; to ej00 ) - I (angle from pole; to ej00 ) 

i = I i = I 

Note that all angles are measured relative to a horizontal vector pointing to the right. For a far more detailed 
description of discrete-time frequency response as well as several examples, see Section 5.3 of Discrete-Time 
Signal Processing by Oppenheim and Schafer (1989). 

8.3 Delay-Adder-Gain Block Diagrams 

Discrete-time systems are sometimes described graphically by delay-adder-gain block diagrams. After manipu­
lating the difference equation into a standard form, the block diagram can be easily drawn by simply filling in 
the appropriate coefficients in the template shown below. This canonical form of the delay-adder-gain block 
diagram is derived on pages 216-218 of Circuits, Signals, and Systems by Siebert (1986). 

coefficient for 
no delay 

coefficient for 
largest delay 

N N 

L a ky [ n - k] = L b kx [ n - k] 

k=O k=O 

D 

• • • • • • 
• • • 

D 

aN 

~ ~ 
coefficients of y coefficients of x 
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8.4 Describing a System 

Each of the following is an equivalent way to describe a continuous-time or discrete-time system. Given any 
one of them, it is possible to reproduce the other four. Some of these concepts have not been fully introduced 
yet, but are shown here just so that you can begin thinking about how they are interrelated. 

• the differential or difference equation (and whether the output is left, right, or two-sided) 

• the system function H(s) or H(z) and its ROC 

• the impulse response h(t) or h[n] 

• the step response 

• the integrator or delay-adder-gain block diagram 

Also, given just the pole-zero diagram and the ROC you should be able to recreate any of the previous five 
items, but only within a constant factor. 

8.5 Converting CT Systems to DT Systems 

There are a variety of ways to convert a continuous-time system to a discrete-time system. The impulse invari­
ance method is based on sampling the CT impulse response. Other methods are based upon discrete approxi­
mations of the derivative. Some of these transformations are summarized below and fully described in Section 
10.8 of Signals and Systems by Oppenheim et al (1983). Just replace s or z in the system function with the 
appropriate expression to convert from CT to DT or vice versa. The variable Tis the length of time between 
sample points. Please note that these are all approximations, each having its own limitations. 

Impulse Invariance 

Backward-Difference 

Bilinear Transformation 

8.6 Combining DT Systems 

Z = esT 

s = 
1-z-l 

T 

s = (~)~ 
T 1 +z-1 

z = 
1-sT 

l+(T/2)s 
z = ----

l-(T/2)s 

Discrete-time systems combine together in the same manner as continuous-time systems. The following 
diagram illustrates the equivalent system functions for serial and parallel connections. 

x(t) ~~ ¢:::> x(t) -..~ 

~ 
x(t) ¢:::> x(t) -..~ 
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CHAPTER 9 Generalized Functions 

Overview This chapter defines and describes the behavior of some basic, but critical 
continuous-time and discrete-time functions used in LTI system analysis. 

I ! B 1\111HilruR !WI i ;; Hil 00 [ I I 111tHIBl mum t ff I l !1 111 

9.1 The Impulse 

The unit impulse, denoted by o(t), is nothing more than a mathematical entity that, like so many other academic 
things, does not exist in the real world. However, it will prove immensely useful for the analysis of continuous 
and discrete-time systems. The graphical definitions for both continuous-time and discrete-time unit impulses 
are shown below. Note that in the CT case, the impulse has infinite amplitude but finite area, since it has infin­
itesimal width. It is convention to write the area of the impulse next to the arrowhead, with the length of the 
arrow proportional to the impulse area. As far as the real world is concerned, you can consider the impulse to 
be a very, very short pulse; for example, a pulse of laser light or the force when hitting a baseball with a bat can 
be modeled with impulses. Since the relationship between an impulse and a short pulse is known in both the 
time and frequency domains (see Chapter 16), it is easy to later correct/modify your original analysis to 
account for these real world issues. 

0 (t) 

1 

= i CT impulse 

O t 

o [n] = 
DT impulse 

0 n 

9.2 Derivatives of Discontinuities 

The impulse can be used to represent the derivative of a function at a discontinuity. The area of the impulse is 
equal to the height of the discontinuity. Be sure to watch for the correct sign. An example: 

3 

fr Jhr, = 
-2 

~t " -sl , j 
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9.3 The Doublet 

The doublet is an extension of the definition of the impulse function. It has uses as a differentiation operator, as 
will become clear later. Note that the continuous time doublet is the derivative of the unit impulse. 

= lim ( 1~zt n \ +1/A CT doublet 
ii ( t) ,i --+ 0 T ) 0 I 

l_ OT doublet 

/i [ n] ~ n 

-1 

9.4 Step Functions 

The continuous and discrete-time unit step functions u(t) and u[n] are defined as shown below: 

9.5 Properties 

u(t) 

0 

d 
dtu(t) = 8(t) 

u[n] 

0 I 2 3 4 n 

u[n] -u[n-1] = O[n] 

Generalized functions like the impulse and doublet are best described not by what they "are", but what they "do": 

I 
8(at) = ~8(t) 

d 
8(t) = d,U(t) 

Multiplying a time function by a unit impulse produces an impulse with 
area given by the height of the time function at the location of the impulse. 

Multiplying by a unit impulse and integrating picks out the value of the 
original function at the location of the impulse. 

Multiplying by a doublet and integrating picks out the negative of the 
derivative of the original function at the location of the doublet because the 
doublet acts like taking (x(t0) - x(t0 +A))/ A. 

Time scaling a CT impulse is the same as changing its area. 

The unit step function is the integral of the delta function. 

The delta function is the derivative of the unit step function. 
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CHAPTER 10 

Overview 

The Impulse Response and 
Convolution 

The impulse response h(t) is one of the fundamental concepts of LTI 
system theory. It is a complete characterization of a system and is inti­
mately related to H(s), the system function. This chapter defines the 
impulse response and derives the convolution operation, a tool for the 
time-domain analysis of systems. Finally, the link between time domain 
and frequency domain analysis is complete. The chapter concludes with 
several properties of the convolution operator, which provide further 
insight and tools for block diagram analysis and simplification. 

10.1 CT and DT Signals are Made of Impulses 

All continuous-time and discrete-time signals can be represented as the sum of scaled and shifted unit 
impulses. This is fairly obvious for discrete signals by rewriting x[n] as: 

In continuous-time, it's a little harder to see, but the concept is the same: x(t) = f x('t)O(t- 't)d't 

See Section 3.1 of Signals and Systems by Oppenheim et al (1983) for its derivation. -= 

10.2 Definition of Impulse Response 

We will now define h(t) and h[n] to be the output of an LTI system when the input is a unit impulse, hence the 
name impulse response. Since the system is linear and time-invariant, the response to any size impulse located 
anywhere in time is obtained by merely scaling and shifting h(t) or h[n]. Now, since we have shown that a 
signal can be broken down into a set of impulses, the response of an LTI system to an arbitrary input signal is 
simply the sum of its scaled and shifted impulse responses. This concept leads to the time-domain technique 
known as convolution. Note that it is improper to discuss an impulse response for non-LTI systems. 
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h(t) and h[n] are known as the impulse response 

continuous-time systems discrete-time systems 

o(t)~ h(t) O[n]~h[n] 

10.3 The Convolution Integral and Sum 

The impulse response h(t) or h[n] is sufficient to completely characterize an LTI system. Once it is known, the 
system's response to any input can be found through the convolution formulas given below. 

Continuous Time Convolution Integral 

y(t) = J x('t)h(t- 't)d't 

- ~-=/ ~ 
The output is the sum of scaled and shifted impulse responses. 
--~ ~ 7~ 
~~~.~ 

y [n] = L x [k] h [n - k] 

k = -oo 

Discrete Time Convolution Sum 

It is common to name systems (i.e. blocks) in block diagrams by their impulse response, as shown below. The 
asterisk ( *) is used to symbolize the convolution operation. 

continuous-time systems 

x(t) ~ y(t) 

y(t) = x(t) * h(t) 

10.4 Eigenfunctions Revisited 

discrete-time systems 

x[n]~y[n] 

y[n] = x[n] * h[n] 

We first introduced the concept of eigenfunctions in Section 3.3. Now we have the tools necessary to demon­
strate why complex exponentials of the form est are indeed eigenfunctions of continuous-time systems. 

continuous-time convolution formula 

substitute in x(t) = est input 

move est outside the integral 

use definition of Laplace transform 
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y(t) = t= h(-r)x(t - -r)d-r 

y(t) = t=h('t)es(1-1)d-r 
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y(t) = H(s)e st 
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10.5 The Link Between Time Domain and Frequency Domain 

The convolution operation is our tool for the time-domain analysis of systems. Like everything else in the 
world of signals and systems, it fits quite nicely into the big picture. Our_ old friend H(s) the system function is 
simply the Laplace transform of the impulse response h(t). Similarly, H(z) is the Z-transform of h[n]. Take a 
moment to allow that to sink in. 

This momentous conclusion allows us to derive the relationship between the time-domain and frequency­
domain analysis of systems. Consider an LTI system with input x(t), impulse response h(t), and output y(t). 

convolution operation y(t) = C=x(t)h(t-t)dt 

take Laplace transform Y(s) = L {y(t)} = J'.:'= J'.:'= [x(t)h(t - t)dt] e -Sr dt 

exchange orderof integration Y(s) = J'.:'= x(t) [J'.:'= h(t - t)e -SI dt] dt 

use time-shift property Y(s) = J'.:'= x(t)H(s)e -S
t dt = H(s) J'.:'= x(t)e -H dt 

def. of Laplace transform Y(s) = H(s)X(s) 

So from the above derivation, we can arrive at the following conclusion: 

y(t) = h(t) * x(t) <=> Y(s) = H(s)X(s) convolution in time = multiplication in frequency 

Now, finally things are beginning to come full circle. Convolution provides the link between the time-domain 
and frequency-domain analysis of LTI systems. By now, you should realize that there are two ways to answer 
the question: "What is the output of the system whose input is x(t) and whose impulse response is h(t) ?" 

1. Convolvet x(t) and h(t) directly to find y(t) using mathematical or graphical means. The mechanics 
of continuous time and discrete time convolution are described in the following two chapters. 
tThe verb form of the word is "convolve", not "convolute" as many students have mistakenly said. 

2. Find X(s) and H(s) by taking Laplace (or Fourier - see Chapter 16) transforms, multiply them 
together, and then take the inverse transform to get back to y(t) . Although seemingly longer, the 
frequency domain method is often easier to compute. However, always keep in mind the direct 
method of convolution in the time domain; it provides insight often lost with the frequency domain 
method and will come in quite handy sometimes. 

10.6 Relation to Step Response 

Some other fields - especially control theory - emphasize the step response of a system, which we will denote 
as s(t) or s[n ]. The step response is, as expected, the output of the system when the input is a unit step. Note that 
the unit step is the integral of the impulse, and convolution is a linear operation. This implies that the step 
response is the integral of the impulse response. In general, the relationship between the two is as follows: 

s(t) = u(t) * h(t) 

s(t) = J h('t)d't 

d 
h(t) = dl(t) 

s [n] = u [n] * h [n] 

n 

s [n] = L h [k] 
k = -oo 

h[n] = s[n] -s[n- I] 
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10. 7 Properties of Convolution 

Some mathematical properties of the convolution operation which are critical to LTI systems analysis and 
useful for simplifying block diagrams are shown below: 

Linearity 

Time-Invariance 

Commutative 

Associative 

Distributive 

Convolution is a linear operator. Any linear operation on either x(t) or h(t) will 
produce the same linear operation on the output. In other words, doubling the 
input will double the output; taking the derivative of h(t) will produce the deriv­
ative of the output, etc. 

Any shifts in time of either x(t) or h(t) will produce the corresponding shift in 
the output. In other words, delaying the input will delay the output the same 
amount. 

The order in which convolution is performed doesn't matter: x(t) * h(t) is the 
same as h(t) * x(t). This means you could pass x(t) through a system with 
impulse response h(t) or pass h(t) through a system with impulse response x(t) 
and still get the exact same answer. Another interpretation is: 

x(t) 

same output! 
x(t) 

The manner in which convolution operations are grouped doesn't matter. 
Systems (blocks) in series can be combined together through convolution. 
x(t) * [h 1(t) * hz(t)] = [x(t) * h 1(t)] * hz(t). A graphical interpretation: 

x(t)~ h2(t) 

same output! 

x(t) 

Systems along parallel paths can be combined through addition. 
x(t) * [h 1(t) + hz(t)] = [x(t) * h1(t)] + [x(t) * hz(t)]. A graphical interpretation: 

x(t) 

hz(t) 
same output! 

x(t) ----~ 
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CHAPTER 11 Discrete-Time Convolution 

! ,111111!! J MB I BIii ill !i ! ii B ELY J ···. lf1H !K.£<f#IIWMII! 

Overview This chapter describes the mechanics of discrete-time convolution. A 
step-by-step procedure derived directly from the convolution sum is 
explained and illustrated with examples. Other means of convolution 
explored include the signal decomposition method and directly summing 
the equation in the case of infinite length signals. 

•m iiiiiiiiii Fi!L!il!!l!!ffl! .. 

11.1 Graphical Flip/Shift Method 

4. \ 2. shift I. flip 

y[n] = i x[k~L] 

k = -oo \ 

3. multiply 

x[n] ~ y[n] 

y[n] = x[n] * h[n] 

Looking at the equation for convolution, we can arrive at the following step-by-step procedure: 

1. Choose one signal to be x[n], the other is then h[n]; draw them both on the k axis. 

2. FLIP h[k] about k=O. 

3. SHIFT flipped version of h to the right by n. 

4. MULTIPLY x[k] by the flipped/shifted version of h[k] and ADD across all values of k. 

5. The summation in step 4 gives you y[n] for only one value of n. 

6. Repeat steps 3-5 for all possible values of n. 
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Example 

r=~n 
Given x[n] and h[n], find y[n] = x[n] * h[n] 

h[n]=~ 

( 

01234 n = 
y[n] = L x[k]h[n-k] 

x[k] = 
19 

21 
-Hy-k 

-I 

k = -oo h[-k]L 
-4 -3 -2 -I O k 

Now, by shifting h[-k] through x[k], multiplying and adding, we obtain the following results: 

y[-1] = shift h[-k] left by 1 = 0 

y[O] = don't shift= 0 
ANSWER: 

y[n] for n<2 = no overlap= 0 

y[2] = shift right by 2 = (3)(1) = 3 

y[3] = (3)(2) + (2)(1) = 8 

y[n] = 

y[4] = (3)(-1) + (2)(2) + (1)(1) = 2 

y[5] = (2)(-1) + (1)(2) = 0 

y[6] = (1)(-1) = -1 

y[n] for n>6 = 0 

11.2 Convolving with Impulses 

3, f 

Convolving any signal with an impulse o[n] produces the same signal at the output, i.e. x[n] * o[n] = x[n] . 
Furthermore, if the impulse is not at n=O or of unit height, the result of x[n] * Ao[n-k] is simply Ax[n-k]. In 
other words, the output is simply a shifted and scaled version of x[n]. If you have any doubts, I suggest veri­
fying the following example using the complete flip/shift method. 

~n 
-I 

* -l-n = 
4 s 6 n 

-2 

11.3 Convolution Through Signal Decomposition 

If both x[n] and h[n] are relatively short in length, the signal decomposition method provides an extremely fast 
and easy way to calculate y[n], while completely avoiding the entire flip/shift process. The idea is to break up 
h[n] into individual impulses (pick the shorter signal to be h[n]). Each impulse then produces a copy of x[n], 
appropriately scaled and shifted as described in Section 11.2. Since h[n] is just a sum of impulses, y[n] will 
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simply be the sum of the scaled and shifted copies of x[ n]. For further clarity and comparison purposes, we will 
illustrate this process using the same x[n] and h[n] from the Example in Section 11.1. 

x[n] = 19 21 = 
n:O 

+ 
[I 2 -1 J h[n] = ~ 

--++-r,-n 
-1 

(alternate notation) 
01234 n 

n=2 

x[n] * h[n] x[n] * _r_ 
2 n 

,I, 
[ 3 6 -3 ] 

+ [ 2 4 -2] 

+ x[n] * '.C 
3 n 

+ [ I 2 -1] 

+ x[n] * £1 
4 n 

3 8 2 0 -1 
( n=2 n=3 n=4 n=5 n=6 

SAME ANSWER!!! 

11.4 Convolution of Infinite Length Signals 

When either x[n] or h[n] are infinite in length, it is often necessary to employ purely algebraic techniques to 
find the output signal y[n]. 

Example 

x [n] = UYu [n] 

h [n] = u [n] 

Some Useful Formulas: 

Infinite Geometric Series 

Finite Geometric Series 

N 

For n :2: 0, 

y [n] 

⇒ 

y[n] =(2-UY)u[n] 

I~< I 

a (1-rN+I) 
al~ rn = al +a1r+a1r2+ ... +a1rN =_I----

£... "'--.:......_--------~ 1-r n=O 
N+l terms 

See the Appendix for a more complete discussion of sequences and series. 
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11.5 Useful Checks 

For y[n] = x[n] * h[n], the length of the output signal y[n] is generally equal to length(x[n]) + length(h[n]) - 1. 
The output signal will begin at start(x[n])+start(h[n]) and finish at end(x[n])+end(h[n]). Note that with some 
lucky cancellations the output signal might actually be shorter than expected, but it will never be longer. Also 
note that a symmetric signal convolved with a symmetric signal will always yield a symmetric output signal. 

11.6 Convolution Intuition 

By now you should start to have a feel for what convolution does to a signal. Imagine you are given an x[n]. 
Look at the example h[n]'s shown below and try to determine what effect the convolution process will have on 
that signal. Just imagine flipping and sliding h[n] through the input - what's happening? If you can look at two 
signals and roughly sketch what the result of convolving them would be, then you're on your way to signal 
processing nirvana. 

h[n] 

aa
1IIIII ... 

-2 -I O I 2 3 4 n 

______1_ n 

~ 
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Effect on Input 

Summer ( DT Integrator) 

output value is sum of all 
previous input values 

DT Differentiator 

current output value is: 

y[n] = x[n] - x[n-1] 

Moving Average Filter 

output is average of past inputs: 

y[n] = (x[n] + x[n-1] + x[n-2]) I 3 



CHAPTER 12 Continuous-Time Convolution 

Overview This chapter describes the mechanics of continuous-time convolution. It 
offers a step-by-step procedure derived directly from the convolution 
integral. There are also hints and shortcuts provided for developing a 
more intuitive feel for the convolution process. The chapter concludes 
with a discussion of matched filters, one of the many practical uses of 
convolution. 

12.1 Graphical Flip/Shift Method 

4. inte~ = 2. sh\ I. flip 

y(t) = f x(t)h(t L)dt 
-00 \ 

3. multiply 

x(t) ~ y(t) 

y(t) = x(t) * h(t) 

Looking at the convolution equation above, we can arrive at the following step-by-step procedure: 

1. Choose one signal to be x(t), the other is then h(t); draw them both on the 't axis. 

2. FLIP h('t) about 't=O and SHIFT signal to the right by t. 

3. Identify the different regions of integration (look for breakpoints in the signals). 

4. MULTIPLY x(t) by flipped/shifted version of h(t) and INTEGRATE using correct limits on integral. 

5. Step 4 produces the equation of y(t) over the specified region. 

6. Repeat step 4 for all possible regions of interest. 
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Example y(t) = x(t) * h(t) = ? 

h(t) = 2 [u(t- 3)- u(t-5)] 

I 2□ 
3 5 

2D I h(t-'t) - . 

't --··-, 't 
t-5 I t-3 I 

use these values to identify / .,,,-'····'-..____ flipped (became -3), then shifted 
different regions of integration / to the right by t (became t-3) 

Use the "breakpoints" in x('t) and h(t-'t) to identify the different regions of 
integration. Complete the integrations shown below to find equations for y(t). 

Region 1: t-3 < 0 y(t) = J1 - 3 (ei:) (2) d't 

t-5 ----------
x(,:) h(t-,:) 

Region 2: t-5 > 0 y(t) = J1 - 3 (e-1 ) (2) d't 
t-5 

Region 3: 3::;; t::;; 5 y(t) = f0 (/) (2) d't + ft- 3 (e-1 ) (2) d't 
r-s Jo 

Here's another sample problem: 

Example 

{01 
x(t) = 

h(t-'t) 

t-1 t 

t ~ 1 

otherwise 

't 

h(t) = {~ 
0 :s; t :s; I 

otherwise 

Region 1: t < l 

Region 2: t-1 > 1 

Region 3: 1 ::;; t::;; 2 
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12.2 Convolution with Impulses 

Convolution with an impulse simply produces a copy of the signal scaled and shifted by the size and location of 
the impulse. That's all! No flipping, no shifting, no integration, just write the answer down! Similarly, when 
convolving with a doublet, just write down the derivative of the original signal (appropriately shifted). 

Example 

/ I 1 * 41 I 
-2 -I I 2 t 0 I 3 

I 1 / 
-2 -I I 

* 8(t- 5) 01 
(doublet) 3 4 

12.3 Convolution by Inspection 

Aside from convolving with impulses or doublets, there are other times when it is actually quite easy to just 
write down the result of a convolution. This method relies on a mental picture of flipping and shifting and 
works particularly well for signals with "box-like" shapes. Start by visualizing flipping and sliding one of the 
signals (choose the simpler looking one) through the other signal. Stop at appropriate breakpoints (e.g. step 
transitions in the signal), multiply the signals, and then compute the area of the product. Note, this is not, repeat 
NOT, the same thing as looking for the area of the overlap. Plot the result as a single point on the axes for the 
answer. Repeat this procedure for all appropriate transition points and simply connect the dots. 

Example 

* 
0 2 0 2 L 

0 2 4 t 

Example Id' n2 
* ? 

0 2 t 0 3 4 t 

(area of product) 

3 6 

2 slide it through 5 
4 
3 
2 

3 4 't 0 2 3 4 5 6 7 t 
(amount shifted after flipping) 
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12.4 Useful Checks 

The result of convolving continuous-time signal A(t) with signal B(t) generally produces a signal C(t) that is 
the length of A(t) plus the length of B(t) . Furthermore, signal C(t) will start at start(A(t)) + start(B(t)) and end 
at end(A(t)) + end(B(t)) . This is a simple way to partially check your work when doing convolutions. Another 
useful tip is that a symmetric signal convolved with a symmetric signal always produces a symmetric signal. 

12.5 Matched Filters 

There are often situations when you would like to "pick out" or identify the location or existence of a particular 
shape or object buried within another signal. Examples include trying to identify the transmission of messages 
over a noisy or secret communication channel , identifying an enemy tank from an image taken from the nose of 
a cruise missile, or in this case, pinpointing the location in time of each heartbeat during an electrocardiogram 
recording in order to help identify irregular beat patterns known as arrithymias. The general idea is to convolve 
your signal with a template of the signal you are searching for. This template is known as the matched filter. 
Strictly speaking, the matched filter should actually be the time-reversed version of the signal you are 
searching for, since during convolution you will flip it back again . During the convolution, if the matched filter 
overlaps with something of similar size and shape, the output of the convolution will be very large (remember, 
when convolving, multiply the signals and then integrate). 

The purpose of this example is to try and identify the location in time of the triangle-shaped QRS complex that 
is part of each heartbeat. The convolution produces a sharp peak at the time of the QRS even in the presence of 
an incredible amount of noise (baseline drifts, extraneous skeletal muscle contractions, etc.) . Now, a simple 
thresholding scheme can be used to pick off the exact location of each heartbeat. 

Clean ECG data 

ECG data with Added Sinusoidal and Random Noise 

Closeup of Matched Filter 

I\ 
Result of Convolution with Matched Filter 
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!W , " • lilM---!WX&lMWlffol!W:il? 

Overview Deconvolution is the process of recovering the input signal when given 
the output of a system. It is the inverse of convolution and has many 
practical applications, especially in image processing. Two potential 
pitfalls when doing deconvolution, excess noise and instability of the 
inverse filters, are briefly discussed. 

!L ! .... 

13.1 What is Deconvolution? 

Deconvolution is the process of "undoing" a convolution operation. That is, given the output of a system and 
its impulse response h(t) or transfer function H(s), try to determine what the input to the system must have 
been to produce that output. 

13.2 How to do Deconvolution 

Here is a graphical representation of how deconvolution would work in the time domain. Here, h(t) is known 
as the inverse or deconvolving filter. 

Convolution Deconvolution 

~ 
x(t) --► I h(t) 1--I ---► y(t) y(t) --► I h(t) -I ----► x(t) 

So how can we find this magical h(t)? Well, from the above block diagram, we see that it must be the case that 
h(t) * h(t) = O(t) (since x(t) * O(t) = x(t) ). So, in the frequency domain, this means that H(s)H(s) = 1. Thus, 
we can find h(t) by taking the inverse transform of 1/H(s). Repeating once more, the transform of h(t) is the 
reciprocal of the transform of h(t). 

In discrete time, we have the similar results of h[n] * h[n] = O[n] or H(z)H(z) = I . 

13.3 Why is it Useful? 

Deconvolution has many practical uses, especially in image processing. Note that working with images 
involves doing two-dimensional convolutions, but the concept is essentially the same. For example, astrono-
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mers who have a good model of atmospheric effects (i.e. know its 2-D impulse response or "point spread func­
tion") can perform a deconvolution back on Earth to sharpen up their images. 

image of Saturn 
from space .. atmospheric 

effects 

fuzzy Saturn 

/ - deconvolving 
~ 

filter 
--- clear image 

of Saturn 

Other uses of deconvolution include removing the linear blurring that occurs when taking a picture of a 
speeding race car and trying to recover a secret communication signal after it has been deliberately garbled by 
a convolution. Note that in all of these cases, complete reconstruction of the original signal requires an exact 
knowledge of the original system function H(s). However, in the real world, that situation is rarely the case. 
There is a heuristic technique known as "blind deconvolution" to help overcome this problem. This method, as 
its name implies, is a way of doing the deconvolution without knowing the exact equation of the original 
impulse response. To learn more about blind deconvolution and other image processing techniques, refer to 
Two-Dimensional Signal and Image Processing by Lim ( 1990). If you become a deconvolution expert, the CIA 
will beat down your door to hire you. 

13.4 Potential Pitfalls 

Noise 

Let's return to the Saturn example, but this time include the very real possibility of additive noise: 

noise during transmission 

• image of Saturn I atmospheric 1-1---►..iffi.,__ ____ 1 deconvolving ~-- clear image of Saturn 
from space _____...._ __ e_f£_e_c_t_s ---' / W \ ► filter with lots of noise 

,._________. 

fuzzy Saturn fuzzy Saturn with noise 

If your original system function H(s) performed some sort of smoothing or blurring on your data (as is the case 
with the majority of systems), then if deconvolution is to work, it must "unsmooth" or sharpen the data. If there 
is noise present, the sharp transitions associated with the additive noise will by amplified by deconvolution, 
making your image look a lot worse. The moral is to think carefully about noise when doing deconvolutions. 

Stability 

Since H(s) is the reciprocal of H(s), it should be obvious that the zeros of H(s) become the poles of H(s) (and 
vice versa). Thus if H(s) has a zero in the right-half plane, the inverse filter h(t) becomes unstable. Or if you 
want a stable version of h(t), then it cannot be causal - which doesn't make much sense in the real world. 
Handling deconvolutions on systems that have zeros in the right-half plane, or outside the unit circle in the case 
of discrete time, requires more sophisticated techniques. Also remember that in discrete time, as long as the 
data.can be processed off-line (i.e. not in real-time), causality is not much of a concern. 
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im --0 v er view This chapter covers two important LTI system properties: causality and 
stability. After defining these terms, the appropriate criteria for a system 
to be causal or stable are presented and explained. 

I ill Ji@! . J I llli!J Mffii HI rn I IT !U!1Jl 

14.1 What is Causality? 

Causality is a property of a system. An LTI system is causal if the output is dependent only on the current and/ 
or past values of the input signal; loosely speaking, the input causes the output. In other words, in a causal 
system the current output value is not dependent on future values of the input; the system cannot anticipate 
what is coming up next and alter its output accordingly. Intuitively, it should seem clear that any real-world 
electrical or mechanical system is inherently causal. For example, the output of a circuit will change as soon as 
or slightly after the input is applied, but never before; or a car will behave exactly the same at time t, regardless 
of whether you plan to slam the brakes or floor the accelerator at time t+ 1. 

It sounds like practically every system is causal, so what's the big fuss about? Causality is more of an issue in 
discrete-time systems. For example, in image processing, modification of the current pixel value may depend 
on both future and prior pixel values. This is not a problem since the data has already been collected and there 
is no real notion of "time." As for continuous time, you've probably noticed that some books define the 
Laplace transform from - 00 < t < 00 (bilateral) while others use O ~ t < 00 (unilateral). Those using the unilat­
eral transform are assuming that all systems are causal (no need for negative time). The bilateral transform on 
the other hand is more general and has some nice mathematical properties. 

14.2 Condition for Causality 

A system is causal if and only if its impulse response is zero for t or n less than zero. Similarly, anti-causal 
systems have an impulse response that is zero fort or n greater than zero. 

Causal System ¢::> 
h(t) = 0 t< 0 

h[n] = 0 n < 0 

This requirement for causality is better understood if viewed in the context of convolution. If h(t) -:/: 0 for all 
t < 0, then when flipping and shifting during convolution, the current output value would depend on future 
inputs, which goes against the notion of causality. This process is illustrated in the following example: 
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CHAPTER 14 Causality and Stability 

Convolution Illustrates the Causality Requirement 

x(t) h(t) y(t) = x(t) * h(t) 
non-zero for t<O 

IA "- ri1----- fli_Q/shift ~oblem area 

7 
0 o 't 

y(t) depends on future values of x(t) ⇒ not causal 

14.3 What is a Stable System? 

What does it mean for a system to be stable? First, let's present an intuitive description. Assume there is a 
system sitting in front of you with currently no input or output signal present. Suddenly you turn on a finite 
input signal. This input can be mechanical, electrical, acoustic, or even in the form of light energy. In any case, 
the system starts to produce an output. If the input stops or remains finite and the output signal continues to 
grow larger and larger until reaching infinite proportions, this system is said to be unstable. If the output 
remains at a constant size forever even though the input signal has long since stopped, the system is said to be 
marginally stable. And finally, if the input stops and the output slowly decays away, or else the input continues 
and the output signal behaves itself (doesn't blow up) then the system is said to be stable. Here is a visual 
description of the three types of stability: 

stable 

ball sitting in valley with rough 
sides; an impulse input will set 
the ball in motion, but the ball 
returns to the resting state 

marginally stable 

ball sitting in valley on fric­
tionless surface; an impulse 
input will cause the ball to be 
set in motion forever 

unstable 

ball sitting on top of a hill; 
one small push and the ball 
keeps on falling forever 

The term "stable" normally refers to stability in the BIBO sense, meaning bounded-input-bounded-output. In 
other words, an LTI system is stable if all bounded inputs (i.e. finite amplitude) produce a bounded output 
signal (again, finite amplitude). Don't confuse "very big" with infinite. For example, an amplifier with a very 
high gain is not an unstable system. A finite sized input will still produce a finite sized output, albeit very large. 

An LTI system is BIBO stable if all bounded inputs (no matter how large) 
produce bounded outputs (i.e. never go to infinity). 
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14.4 Conditions for Stability 

There are many ways to insure that a system is BIBO stable. Three of the most common methods are discussed 
below. 

(1) Impulse Response 

A system is BIBO stable if and only if its impulse response is absolutely summable/integrable. This is easy to 
understand if you visualize the convolution process using a typical bounded input, like a unit step function. 

BIBO Stability ~ J lh('t)ld't < oo or L lh [k] I< 00 

k = -= 

(2) AOC of System Function 

A system is BIBO stable if and only if the region of convergence (ROC) 
of its system function includes the jco-axis (continuous-time systems) or 
the unit circle (discrete-time systems). 

Recall that for causal systems, or those with right-sided impulse responses, the ROC is to the right of the right­
most pole (CT) or outside the outermost pole (DT). For causal systems, the stability requirement then translates 
into saying that all the system poles are in the left-half plane (Re { s} < 0) for CT systems or inside of the unit 
circle ( lzl < 1) for DT systems. A system that has poles directly on the jco-axis or the unit circle is said to be 
marginally stable. It is important to note that the locations of zeros have no effect on stability. 

Continuous-Time: S-Plane 

Re{s) 

Discrete-Time: Z-Plane 

Im{z) 

Re{z) 

For causal systems, stability means 
that all poles are in the shaded area. 

(locations of zeros do not affect system stability) 
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(3) Characteristic Equation 

As shown in the previous diagram, stability for continuous-time causal systems means that all poles are in the 
left-half plane. This implies that the roots of the characteristic equation (denominator of the system function 
H(s)) are all negative, or at least have negative real parts. The Routh-Hurwitz criterion is a mathematical 
procedure for determining whether or not this is true based only upon the coefficients of this polynomial. 

For all order systems a necessary but not sufficient condition for full stability (not marginal) is that all charac­
teristic polynomial coefficients are present and are of the same sign. The necessary and sufficient criteria for a 
first, second, or third order system to be stable are shown in the table below. 

System Order 

2 

3 

Characteristic Equation 

s+a = 0 

s2 +as+ b = 0 

s3 + as2 + bs + c = 0 

Stability Criteria 

a>O 

a>O, b>O 

a, b, c > 0 and ab > c 

For higher order systems, all coefficients positive is a necessary, but not sufficient condition. 

To insure stability for discrete-time causal systems, we must verify that the magnitudes of all pole locations are 
less than one (i.e. inside the unit circle). Jury's test (the DT equivalent of Routh-Hurwitz) may be applied, but 
it is not a simple procedure. Instead, solve for the roots by hand or use a computer package like MATLAB. 
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Overview Feedback is the process of using the output of a system to continually 
alter or update its input. This type of connection results in a modification 
of the original transfer function for the purpose of increasing stability, 
removing nonlinearities, or simply modifying the dynamic response. This 
chapter explains how to quickly analyze feedback block diagrams, warns 
against some common pitfalls regarding loading effects, and illustrates 
some uses and advantages of feedback with a few practical examples. 

15.1 What is Feedback? 

In previous chapters we have seen block diagrams where systems are connected together either in series or 
parallel. Feedback is a special type of system interconnection in which the output of the system is "fed back" to 
the input, possibly through the addition of other systems. Feedback is the process of using the output of a 
system to continually alter or update its input. For example, let's say you're trying to balance a broomstick on 
the palm of your hand. You take the output of the system (the angle of the stick and its velocity) and accord­
ingly alter the input (your hand position) to keep the broomstick balanced. Feedback systems are also often 
called "closed-loop" systems. An example of an "open-loop" approach would be charting an airplane course 
across the country, predicting all wind speeds and directions in advance based upon your system model of the 
atmosphere, flying with your eyes closed, and hoping you land in the right place. As you can imagine, this is 
rather foolish. Rather, if you continually checked your position against your predicted flight path, you could 
make small adjustments, thus creating a closed-loop situation. Another example is illustrated below: 

Open-Loop Configuration 

Feedback Configuration desired 
temp 

thermostat A/C or 
setting ___. heater 

indoor temperature 

~-~ change to 
amplifier thermostat A/C or indoor 

K heater i--,-► temp 

By incorporating feedback, the overall transfer function of the original system is altered. This process can be 
used to stabilize unstable systems, improve disturbance rejection, alter the dynamic or transient response char­
acteristics, and even remove system nonlinearities. Feedback is the basis of most practical systems. 
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15.2 Positive versus Negative Feedback 

Notice the minus sign in the feedback loop in the block diagram from Section 15.l. This minus sign imple­
ments what is known as negative feedback. The input to the system is adjusted opposite to the direction the 
output is moving. For example, if the room is too hot, the feedback loop tries to make it colder; if the room is 
too cold, the system tries to make it warmer. Think about what would happen if the minus sign was changed to 
a plus, which is known as positive feedback. Things would blow up! Very shortly you would begin to either 
freeze or sweat. Another example of positive feedback is the following innocuous looking system: 

Example of a Positive Feedback System 
speaker 

microphone ((c ((er~ ~ 
amplifier 

Have you ever heard that annoyingly loud whine that occasionally comes out of a microphone/amplifier/ 
speaker system? Why does it do that? Well, little noises near the microphone get picked up by the mike, ampli­
fied, and then played through the speaker, which creates a louder sound - which is picked up by the mike, 
amplified, and played through the speaker, and so on. In a few tenths of a second a mere breath blown on the 
mike gets turned into an annoyingly loud screech by the speaker (the amplifier or speaker is saturated). 
Keeping the microphone sufficiently far enough away from the speaker generally solves the problem. As you 
can see, things hooked up in positive feedback configurations are generally thought to be unstable. The stability 
of feedback systems will be discussed in further detail in Section 15.8. 

15.3 Black's Formula 

Black's formula is a method for deriving the equivalent transfer functions of systems that contain feedback 
loops. But first, let's start off with a simple example and show how to derive H(s) the long way: 

A(s) 

C(s) 

e(s) = X(s)- C(s)Y(s) 

Y(s) = e(s)A(s)B(s) 

B(s) 

Y(s) = [X(s)- C(s)Y(s)] A(s)B(s) 
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H(s) 

⇒ H() = Y(s) = 
s X(s) 

Y(s) 
X(s) 

A(s)B(s) 

? 

I + A(s)B(s)C(s) 
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This means that the original feedback loop can be replaced with a single box: 

x(t) A(s)B(s) 
1 + A(s)B(s)C(s) 

y(t) 

Black's formula is a way of achieving this same result directly, without any equation writing. It can be directly 
applied to general feedback configurations as follows : 

Black's Formula 

Overall Transfer Function 

forward path 
► 

forward path 
1 - loop 

i---.----y(t) forward path = A(s)B(s) 

C(s) 

loop = -A(s)B(s)C(s) 

note the negative sign in the 
"loop" due to negative feedback 

More complicated systems may have multiple feedback loops in them. Break down such beasts by replacing 
embedded single feedback loops with a single box using Black's formula. Repeat this process as many times as 
necessary and soon seemingly immense systems become quite manageable. 

A More Complex System 

x(t) A(s) B(s) A(s) 
Y(s) = __ l_+_A_(~s)_B_(s_)_ 

X(s) 1 - 1 ~~~s/Cs)C(s) 

C(s) 

Should you ever forget Black's formula or just plain become confused, you can always resort to the long, but 
straightforward method of first writing down all possible equations relating x(t), y(t), and as many interme­
diate variables like e(t) that are needed. Then, repeatedly reduce/substitute equations together until a relation­
ship between x and y is found (just like the method at the start of this section). 
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15.4 Loading Effects 

Although it seems straightforward to reduce large systems (several blocks) into a single block, we cannot 
afford to be so carefree without considering loading effects. In other words, the characteristics of a particular 
system may be affected by what precedes or follows it. This is generally not a good feature and is the sign of a 
poor design. Ideally, box #1 should behave the same regardless of whether box #2 is there or not. Adding the 
second box should not "load down" or suck current out of the first box. This can be achieved one of two ways: 
(1) the second box has a very high input impedance - meaning it lets no current in, or (2) the first box has zero 
output impedance - meaning it can supply an infinite amount of current if necessary. If either of these two 
conditions is satisfied, then we are free to combine boxes together in the traditional series fashion. 

? . 
A(s) B(s) 

true only if loading effects is not an issue 

A concrete example of the dangers of carelessly combining boxes together: 

15.5 Using Feedback to Invert a System 

Feedback can also be used to produce the inverse of a system. Watch what happens when a system B(s) is put 
in the middle of a feedback loop, with the loop gain K turned up quite high: 

H(s) = Y(s) = 
X(s) 

if KB(s) » 1 

K 
1 + KB(s) 

1 
H(s)"' B(s) 

Using Black's formula, and letting K ➔ oo, we see that the resulting overall transfer function is now 1 / B(s), or 
the inverse of the original system. So remember, one way to invert a system is to put the system in a feedback 
loop - simple, yet powerful. Note that to insure 1 / B(s) is stable, all the zeros of B(s) must be in the left-half 
plane (assuming it is a causal system). 
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15.6 Accounting for System Fluctuations 

Feedback can also be used to remove the effects of system uncertainties. For example, let's say you've built a 
great stereo power amplifier that's supposed to have a gain of one. However, for some reason the gain varies 
between 0.5 and 10 depending on the outside temperature. This problem can be fixed by using feedback 
combined with a high gain preamplifier as follows: 

gain= K gain"' P 

( ) + fixed high 
X f ---i-++--gain preamp 

power () 
amplifier i------.---- Y f 

H(s) = Y(s) = ___!S_!_"' 1 
X(s) I+ KP 

if KP» I 

15.7 Removing System Nonlinearities 

Let's continue with the previous example and assume that not only is the gain of the power amplifier a bit 
unpredictable, but also that its transfer function is nonlinear. This is typical of many power amplifier stages due 
to the turn-on voltages necessary for diodes and transistors. Not to fear however, a very quick analysis of the 
following block diagram using Black's formula should convince you that feedback can be used to eliminate or 
at least clean up this problem. See Example 5.3-3 of Circuits, Signals, and Systems by Siebert (1986) for a 
more detailed explanation. 

nonlinear power amp 

+ 1--r----y( t) 

volume 
control gain 

15.8 Using Feedback to Stabilize Systems 

The following causal system is clearly unstable: 

x(t) _____.~ y(t) i 
IRe{s} 

Nevertheless, it is possible to stabilize it by putting it in a feedback loop as follows: 

X(f)--+l-+-1----- s-2 1---T-- y(t) 

H(s) = Y(s) = 
X(s) s-2 + K 

K 

/m{s} 

K>O 

Re{s} 
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For what values of K is this system stable? Recall that we want all system poles in the left half plane. As we 
increase the feedback gain K from zero, the pole begins to move to the left. The manner in which the system 
poles change location as a function of the feedback gain is known as the root-locus. These pole movements are 
easily predicted according to a set of well-defined rules. Knowing the pole locations can supply information 
not only about stability, but also about factors such as step response overshoot, resonant frequencies, etc. 

The Nyquist stability criterion is another way to assess stability of closed loop systems. Its advantage is that it 
does not require explicit knowledge of the system function; in fact, the system function doesn't even have to be 
rational. Yet another method of verifying closed-loop stability is to determine what is known as the gain and 
phase margins of the Bode plot of the closed-loop transfer function. For a more thorough discussion of root­
locus, Nyquist stability criterion, gain/phase margins, or feedback in general, see Chapter 11 of Signals and 
Systems by Oppenheim et al (1983). 

15.9 A Sample Problem 

For what values of K is the following causal closed-loop discrete-time system stable? 

Solution: 

X [n] 
z-1 

1 - 0.25z-2 1---"T"-11► Y [ n] 

K 

z-I z H(z) = Y(z) = 
X(z) 

-------= 
1 - 0.25z-2 + Kz-1 z2 + Kz-0.25 

poles using quadratic formula = 
-b± Jb 2 -4ac 

2a 
-K±Jiz+i 

2 

want 1- K ± ~I < I for DT stability 

solving inequalities involving radicals is a tricky 
process; let's assume an equality in order to first 
obtain the boundaries of the solution: 

-K±Ji?i+I 
2 

K 2 + 1 = K 2 + 4K + 4 

3 
K = --

4 

or -K± Jiz+i = -1 
2 

3 K=-
4 

Is the solution IKI < 3/ 4 or is it K > 3/ 4, K < -3/ 4? 

K = 0 solves the inequality, so the solution must be: 
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CHAPTER 16 The Fourier Transform 
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0 Ve f Vie W The Fourier transform is one of the most commonly used techniques in 
signal processing. It is simply a mathematical transformation that 
changes a signal from a time-domain representation to a frequency­
domain representation, allowing one to analyze the "frequency content" 
of a signal. This chapter first provides an intuitive overview of the trans­
form and then proceeds to illustrate many of its mathematical properties 
that aid in its computation and understanding. Try not to get lost in the 
math; processing a signal in the frequency domain has numerous prac­
tical advantages, as will become clear in later chapters. 

16.1 What is the Fourier Transform? 

The Fourier Transform is one of the most commonly used techniques in signal processing. This formula is a 
mathematical transformation that changes a time function x(t) into a frequency domain representation X(f). 

Once in the frequency domain, it is easy to analyze the "frequency content" of a signal. Plotting the Fourier 
transform allows us to visually determine the relative proportion of different frequencies present in the input 
signal (the x-axis is now frequency, not time). For example, the transform of a sine wave would look like a 
single spike, indicating that only one frequency was present. The transform of a circuit's output that's plagued 
with noise from fluorescent lights would probably have a noticeable peak at 60Hz. Similarly, the transform of 
the voice of a high-pitched opera singer would likely be concentrated around 8-1 0KHz. 

The continuous-time Fourier transform and the inverse transform formulas are given below: 

Fourier Transform Inverse Fourier Transform 

X(f) = f x(t)e-jl1ef1dt x(t) = f X(f)ej2rrftdJ 

Some textbooks define the Fourier transform in terms of ffi (rad/sec), instead of f (Hz). We used m when 
describing Bode plots because it made things easier to draw; however, it is more intuitive and simpler to use f 
with Fourier transforms. In any case, you can convert between the two by using the formula ffi = 2rcf. 

Look at the Fourier transform formula. Although it seems complex (no pun intended), the transform of many 
common time functions are easily found by looking them up in a table. However, to better understand what 
these formulas actually mean, it is useful to look at the inverse transform formula expressed as a Riemann sum: 

( ) _ { X(f, ) _i2rrf0t Xlf ) _i2rr/1 t XII' ) _i2rrf_t} Af 
X t - ...... + 0 e- + I e- + ······ + V= e- Ll where ~f = f; +I - f; for all i 
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The inverse formula says that any time function x(t) can be represented as the weighted sum (integral) of many 
different complex exponentials (sinusoids). There is a different weight X(f) for each different frequency sinu­
soid. These coefficients X(f) are in general complex, giving the sinusoid a magnitude and a phase. Since X(f) is 
a complex quantity, the Fourier transform must be graphed or displayed as two separate parts - either real/ 
imaginary or magnitude/phase. For a quick sketch of the frequency content of a signal, often just the magnitude 
plot is shown. While this is often sufficient for practical purposes, keep in mind that this is only half the picture. 
Both the magnitude and phase information must be stored if the original signal is to be recovered through an 
inverse transform. When learning about the Fourier transform, it is important to maintain an intuitive under­
standing of its significance; otherwise, you will likely just get buried in mathematical details and will fail to 
understand its practical applications. 

16.2 Relationship to Bilateral Laplace Transform 

A similarity between the Fourier transform and the bilateral Laplace transform can be noticed immediately 
when the two formulas are placed side by side. 

Fourier Transform 

X(f) = f x(t)e-jl1tf1dt 

Bilateral Laplace Transform 

X(s) = f x(t)e-S 1dt 

X(f) = X(s) Is =jl1tf = X(j21tf) 

The Fourier transform is equivalent to the bilateral Laplace transform evaluated along the jco-axis (s=j2rcf). 
However, this is only valid if the jco-axis is in the region of convergence (ROC) of the signal's Laplace trans­
form. For example, e21u(t) has a Laplace transform, but does not have a Fourier transform. Also notice that 
when referring to Fourier transforms, we drop the "j2rc" and denote X(j2rcj) as X(f). 

One might ask, "Why do we use the Fourier transform when it seems to be just a subset of the bilateral Laplace 
transform?" It can be shown that any bounded function that has a Laplace transform will have a region of 
convergence that includes the jco-axis. In that case, it is often easier to speak about the Fourier transform (no 
need to deal with ROC). Also, it can be shown that bounded functions that exist for all time, like sinusoids, 
have a Fourier transform, but do not have a Laplace transform. The Fourier transform extends the class of 
signals that we can analyze in the frequency domain. 

Previously, we said that the Bode plot is a graph of the Laplace transform evaluated along the jco-axis. Now, 
we're saying that the Fourier transform is the Laplace transform evaluated along the jco-axis. What's the differ­
ence? Bode plots are generally used to describe systems. Fourier transforms are generally used to describe 
signals. But yes, they are virtually the same. Bode plots are magnitude and phase plots on a log scale. Fourier 
transforms are generally described as Re{X(f)} and /m{X(f)} plotted on a linear scale. The logarithmic magni­
tude/phase plot of the Fourier transform of a system's impulse response h(t) is exactly the same as drawing a 
Bode plot of the system function H(s). Read that last sentence again slowly. 

16.3 Fourier Transform Symmetry 

Based upon various properties of the signal x(t), there are a few predictable symmetries and characteristics of 
its associated Fourier transform X(f). For our discussions, we will assume x(t) is real. If you find yourself 
needing the properties of the Fourier transform of an imaginary signal, just pretend it's real and multiply the 
transform by j at the end. 
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First, let's define a few properties of functions: 

even 

odd 

conjugate 
symmetric 

x(t) = x(-t) 

x(t) = -x(-t) 

X(f) = X*(-/) 

0 
looks the same on either side of the y-axis 

Flip the right-hand side across the y-axis, 
then flip upper left quadrant down across 
the x-axis. If things line up, the signal is odd. 

For example, if X(IO) = 2+3), then X(-10) = 2-3). 

Also, note that any function can be broken up into its even and odd parts using the following formulas: 

A pictorial example: 

x(t) 

x,(t) = x(t)~x(-t) 

p 

() _ x(t)-x(-t) 
XO t - 2 

+ 

The table of basic Fourier transform values/symmetries and their proofs are shown below: 

x(t) (real) X(f) values X(f) symmetry 

anything complex conjugate symmetric 

even purely real even 

odd purely imaginary odd 

PROOFS: (assume x(t) is real) 

conjugate symmetry 

even/odd X(f) = t= x(t)e-j21tf1dt = t= x(t) [ cos (-21tft) + jsin (-21tft)] dt 

X(f) = t= x(t)cos (21tft) dt-j t= x(t)sin (21tft) dt 

If x(t) is even, then the sine term integrates to zero (sine is odd, x(t) is even, even times odd 
is odd, odd functions integrate to zero on a symmetric interval). This leaves the cosine term 
which is purely real and depends onfthrough a cosine, making X(f) purely real and even. 

Similarly, if x(t) is odd, the cosine term integrates to zero, leaving an X(f) that is purely 
imaginary and odd. 
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In summary, learn the following items about Fourier transforms. The first few are simply restatements of conju­
gate symmetry, so there really isn't that much to remember. 

If x(t) is real... 

• X(j) is always conjugate symmetric 

• IX(f)I is always even 

• LX(j) is always odd 

• Re { X(j)} is always even 

• Im { X(j)} is always odd 

• the even part of x(t) transforms to the real part of X(j) 

• the odd part of x(t) transforms to the imaginary part of X(j) 

Also, keep in mind ... 

• magnitude(a+b)-::/- magnitude(a) + magnitude(b) [magnitude is not a linear operation] 

• phase(a+b)-::/- phase(a) + phase(b) [phase is not a linear operation] 

16.4 Fourier Transform Properties 

In addition to symmetry there are various other properties associated with the Fourier transform. These proper­
ties are easily derived from manipulations of the forward and inverse Fourier transform formulas. See Section 
4.6 of Signal and Systems by Oppenheim et al (1983) if you want to see the derivations or just need more of an 
explanation. The following table lists the most common properties of the relationship between the time and 
frequency domains. 

Property x(t) X(f) 

Linearity ax1(t) + bxi(t) aX1(j)+bX2(j) 

Duality X(t) x(-f) 

Convolution x(t) * w(t) X(j) W(j) 

Product x(t)w(t) X(j) * W(j) 

Time Shift x(t-t) 
-j2rcft0 

e X(f) 

Frequency Shift 
j2rcf0 t 

e x(t) X(f-fo) 

Differentiation 
dx(t) 

j21tfX(f) 
dt 
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Property x(t) X(f) 

Times t tx(t) 
__ l dX(f) 
j2rc df 

Time Scaling x(at) 
1 

lalX(fla) 

The duality property is a bit subtle and deserves further discussion. Start with a signal x(t) and take its trans­
form to produce X(f). Then, pretend that signal is a time signal X(t) and take its transform again. You will 
produce something that is identical to the signal you started with, except it is time-reversed. This means that if 
you build a circuit to take Fourier transforms, you can use the same circuit for taking inverse transforms, as 
long as you are careful about time-reversal. 

Although it is probably pretty clear from the table, let's also reiterate the convolution and product properties. 
The transform of the convolution of two signals is the product of the individual transforms. Similarly, the trans­
form of the product of two signals is the convolution of the individual transforms. Just to be sure you got it: 

y(t) = h(t) * x(t) 

convolution in the time domain 

y(t) = h(t)x(t) 

multiplication in the time domain 

16.5 Parseval's Theorem and More 

Y(f) = H(f)X(f) 

multiplication in the frequency domain 

Y(f) = H(f) * X(f) 

convolution in the frequency domain 

Here are a few more properties of Fourier transforms that you will find useful: 

Area in Time 
(DC offset) 

Area in Frequency 

Parseval's Theorem 

X(O) = f x(t)dt 

x(O) = f X(f)df 

This is nothing more than the Fourier trans­
form formula evaluated when f=O. Think of 
X(O) as the area under the time function x(t). 

As expected, the same sort of relation holds for 
the inverse Fourier transform formula. Think 
of x(O) as the area under the function X(f) . 

Parseval's theorem equates the area under the 
magnitude squared of x(t) and X(f) . In other 
words, the "energy" in the time domain equals 
the "energy" in the frequency domain. 
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CHAPTER 1s The Fourier Transform 

16.6 Basic Fourier Transform Pairs 

Here is a table illustrating some of the more common Fourier transform pairs: 

x(t) <=> X(j) 

8(t) 11 <=> ... I' . .. 
0 t 0 J 

... 
11 

. .. <=> 
o(f) 11 

J 0 t 0 

I 

··· 1 1 11 1 1 ··· <=> ··· 1 1 1T 1 1 ••• 
-2T -T 0 T 2T t -2/T -1/T 0 1/T 2/T J 

sin (21tf0 t) 

rt f\ V\ f\ <=> -Jo 

V \Ao V t\ 

1-_!_ 
0 Jo J 

2} 

cos (21tf0 t) 

1 I 1 l (\ ~ (\ <=> ; v()v "Z_ -Jo 0 Jo J 

11 
si, (2Txf) 7 \j~ I I <=> 1tf 

- ~ 

-T 0 T t - V V - J 

sin(2W1tt) 27 Iv~ <=> 11 7tt 

I I 
~ - V V - t -W 0 w J 
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In this book, we will refer to a sine function as anything of the form sin(x)/x. The boxHsinc Fourier transform 
pairs always seem to give people the most difficulty. They are easy to remember if you notice the following 
facts. Practice a few boxHsinc transforms with your friends until you feel comfortable with them. 

When finding the sine: 

• The height of the sine is always equal to the area of the box (see Section 16.5). 

• The first zero crossing of the sine wave is at 1/(total width of box). 

• Thesincfunctionisalwaysoftheform (height of box) sin (widthofbox · 1tX) where 
X~~hcrtmf 1tX 

When finding the box: 

• If given the equation of the sine function, just read off the height and width of the box 
using the template equation given above. 

• If given the graph of a sine function, the width of the box is equal to 1/(first zero 
crossing point of the sine) and the box height is equal to the area of the sine function 
(see Section 16.5). The total area underneath a sine function is equal to the area of the 
triangle formed by taking the following three points: the peak of the sine, the first 
negative zero crossing, and the first positive zero crossing. 

16.7 Duration-Bandwidth and the Uncertainty Principle 

All Fourier transform pairs are constrained by the uncertainty principle. This concept states that it is impos­
sible to define a signal that is arbitrarily small in both the time and frequency domains. In other words, a signal 
of short duration in the time domain must have a wide Fourier transform. In fact, after appropriately defining 
the duration (time domain) and the bandwidth (frequency domain) of a signal in terms of its statistical 
moments, it is possible to prove that all real waveforms must satisfy the following compact relationship. 

( duration) (bandwidth)~! 
1t 

This statement of the uncertainty principle is largely of theoretical significance; see Chapter 16 of Circuits, 
Signals, and Systems by Siebert (1986) for its derivation. What is really important however is to remember the 
following implications of this concept. 

• Signals "narrow" in the time domain (e.g. impulse) are "wide" in the frequency domain (flat line). 

• Signals "wide" in the time domain (e.g. flat line) are "narrow" in the frequency domain (impulse). 

• Signals finite in the time domain (e.g. a box) are infinitely long in the frequency domain (sine). 

• Signals infinitely long in the time domain (e.g. sine) are finite/bandlimited in the freq. domain (box). 

It is interesting to note that Gaussian functions of the form e-12 have the smallest duration-bandwidth product. 
The uncertainty principle allows us to answer basic questions like, "Which signal has a higher bandwidth: 
sin(t)/t or sin(2t)/ (2t)?" Answer: the second one. 
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16.8 Fourier Transforms of Discrete Signals 

It is also possible to take the Fourier transform of a discrete signal. The result is known as the discrete-time 
Fourier transform (DTFT). The DTFT, like its continuous-time counterpart, is a continuous function of 
frequency. However it is more common to discuss the DFT, which is just equally spaced samples of the DTFT 
and can be implemented on a computer. A computationally efficient algorithm has been designed to speed the 
processing of DFT's; this algorithm is known as the much celebrated Fast Fourier Transform, or FFT for short. 
It is probably one of the most commonly used algorithms in the world today. See Chapter 5 of Discrete-Time 
Signal Processing by Oppenheim and Schafer (1989) for a complete discussion of Fourier transforms for 
discrete-time signals. 

16.9 A Sample Problem 

Given the following real signal, find: 

(a) lm(X(j)} 
(d) I X(j)df 

(b) X(O) 

(e) I IX(J)l 2df (c) X(I) 
hint: write x(t) as the -2 -1 0 2 
sum of two signals 

Answers: 

(a) 0 (b) 6 (c) 0 (d) 2 (e) 10 
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Overview Filtering is the process of altering the frequency content of a signal. It is 

probably the most widely used signal processing operation. Filters are 
ubiquitous in the world around you, with the most common examples 
being in your home stereo system. This chapter describes the various 
classes of filters and the processes involved in designing them. Practical 
considerations such as phase distortion, digital filters, and switched­
capacitor implementations are also discussed. After reading this chapter 
the phrase, "Crank the bass, man!" should take on a whole new meaning. 

17.1 What is Filtering? 

Recall that the Fourier transform shows the frequency content of a signal. Filtering is the process of selectively 
removing or altering parts of this frequency content to create a new signal. A common type of filter that you 
should all be familiar with are the bass and treble knobs on some basic stereo systems. When turning the knobs, 
you are altering the frequency content of the audio signal by boosting or reducing high or low frequencies. 

Filtering 

x(t) ~ y(t) = modified x(t) 

Y(j) = H(j)X(j) 

Choose shape of H(j) to appropriately alter X(j) in desired manner. 

The box containing H(j) is known as the filter. 

17 .2 Types of Filters 

Filters, both in continuous and discrete-time, can be grouped loosely into one of four categories: lowpass, high­
pass, bandpass, and notch, which are illustrated in the following table. Note that only the positive side of the 
frequency axis is drawn; the complete Fourier transform magnitude is symmetric since the filter is real. We will 
initially only discuss the magnitude of the filter; phase response will be addressed in Section 17 .9. The ratio­
nale behind the shapes of the filters is better understood if you keep in mind that the output of the filter is the 
input X(j) multiplied by H(j) . The idealized filters multiply the to-be-removed-sections by zero. The names of 
the different types of filters are also quite intuitive - a lowpass filter passes low frequencies, but stops high 
frequencies. A bandpass filter passes a band of frequencies, but stops other frequencies. 
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Filter Types 

Type Typical Ideal IH(f)I 

Lowpass 
I I 
0 fc 

Highpass JI 
0 fc 

Bandpass 

o Ii h 

Notch C 
o ti h 

17.3 Non-Ideal Filters (the real world) 

Description 

removes all frequency 
information above fc 

removes all frequency 
information below fc 

removes all frequency 
information outside of Ji ➔h 

removes all frequency 
information between / 1 ➔h 

Example Uses 

noise removal, interpolation, 
data smoothing 

removing DC or low freq drift, 
edge detection or enhancement 

tuning in to one radio station, 
audio graphic equalizers 

removing noise at a particular 
frequency, e.g. 60 Hz 

The idealized filters shown in Section 17 .2 are exactly that - ideal. However, they cannot exist in the real 
world. To help understand why, let's take the ideal lowpass filter as an example. The magnitude of its frequency 
response is shown below: 

Ideal Lowpass Filter 

I I I 
0 

Recall from Section 16.7 in the Fourier transform chapter that any function that is of finite length in the 
frequency domain must be of infinite length in the time domain. Because H(f) is finite, this means that the 
corresponding h(t) could not possibly be causal (h(t)=O for t<O) or even made to be causal by shifting it in 
time, since it is of infinite length. Non-causal systems cannot be realized by physical systems (e.g. a circuit). If 
we try to avoid the real world and implement this filter digitally, where causality is not much of a concern 
(since you can easily talk about negative time), completely ideal filters are still not possible because of their 
infinite length. The system would require an infinitely long discrete time convolution to perform the filtering. 
See Chapter 15 of Circuits, Signals, and Systems by Siebert (1986) for more information on the issues 
concerning non-ideal filters. 
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17.4 Filter Terminology 

Since we know that ideal filters cannot exist, then what do the frequency responses of real filters actually look 
like? Basically, unlike their idealized versions, they are not flat, nor are their transitions perfectly sharp. The 
general form of an non-ideal lowpass filter is shown below: 

IH(f)I 
gain ___ -_· t passband ripple 

I 
I 
I 

roll-off rate ,,{"" 
I 
I 
I 
I 
I 

stopband attenuation 

f (cutoff frequency) 
C 

stopband ripple 

f 

• Passband: the frequency range you are interested in preserving in the output signal 

• Stopband: the frequency range you are interesting in eliminating in the output signal 

• Transition-band: the band over which the frequency response transitions from the passband to the 
stopband; would like it to be as small as possible 

• Gain: refers to the amount of maximum amplification of the signal in the passband 

• Stopband attenuation: the difference in dB between the passband gain and stop band gain 

• Passband ripple: the maximum fluctuation in filter's frequency response in the passband; usually 
measure in dB 

• Stopband ripple: the maximum fluctuation in the frequency response in the stopband; essentially 
irrelevant as long as the stopband attenuation is met 

• Roll-off rate: the steepness of the slope in the transition band; usually multiples of 20dB/decade 
(note 20dB/decade = 6dB/octave, where an octave is a doubling in frequency) 

• Order: the number of poles in the system function H(s) ; the higher the order, the steeper the roll-off 
rate and the shorter the transition band; higher order filters are more complicated to build 

• Cutoff frequency: the edge of the passband; also known as the corner frequency or 3dB point since 
it is the "corner" in the asymptotic Bode plot and is generally 3dB lower than the peak passband 
gain 

• Q: the sharpness of the peak in a bandpass filter; defined as center frequency divided by the half­
power bandwidth (from 3dB point to 3dB point); a measure of how close the poles are to jm-axis 
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17.5 Designing a Continuous-Time Filter 

Designing a filter involves nothing more than finding a system function H(s) that has the desired frequency 
response (Bode plot). This translates to placing the poles and zeros of H(s) in the appropriate place in the 
s-plane in order to achieve the desired shape of H(f). How many poles? How many zeros? Where should they 
go? Don't panic! Someone has already come up with a set of polynomials (depending on what order filter you 
want) whose roots are the appropriate pole locations. For reasons that will become apparent shortly, we will 
initially focus only on lowpass filter design. The design procedure is to first pick your cutoff frequency, the 
desired filter order, and the "type" of lowpass filter (see below). A computer is usually used to determine the 
roots (pole/zero locations) of the appropriately chosen polynomials, which can be found in virtually all filter 
design or op-amp textbooks (e.g. Operational Amplifier Circuits: Theory and Applications by Kennedy 
(1988)). Depending on your computer program, you may have to manually pick out only the roots in the left 
half plane to insure stability. Voila, you have yourself a filter. There are many different "types" of lowpass 
filters depending on your requirements. Three of the most common are Butterworth, Chebyshev, and Elliptical 
and are described below. 

Type Typical pole/zero 

Butterworth 

Chebyshev 

Elliptical 

Designing Other Types of Filters 

Typical H(j) Comments 

poles lie along a circle; Butter­
worth filters are maximally flat 
(i.e. no ripples) 

poles lie along an ellipse; ripple 
exists in either passband (type I) 
or stopband (type II); shorter tran­
sition band than Butterworth for 
same order filter 

ripple exists in both passband and 
stopband; shorter transition band 
than Chebyshev for same order 
filter; very nonlinear phase 
response 

What about designing filters that are not lowpass? No problem. First, design a lowpass H(s) that has a cutoff 
frequency of coc = 1 and then apply the mathematical transformations shown in the following table, replacing 
"s" with the appropriate expression. This procedure can be used to generate highpass, bandpass, or notch filters 
with arbitrary cutoff or center frequencies. 
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If H(s) is a lowpass filter with cutoff frequency coc = 1, then ... 

Highpass = H(m/s) 

Bandpass H(s2 +coJ) 
s-BW 

Notch ( s · BW) 
H s2 + coJ 

17.6 Circuit Realizations of Filters 

We = desired cutoff of highpass filter 

co0 = desired center frequency of bandpass or notch filter 

BW = mh-ffi/ = desired width of bandpass or notch filter 

Now that we have the desired pole locations, how do we actually build a filter? Recall that impedances of basic 
circuit elements can be pieced together to create arbitrary transfer functions . The goal now is to come up with 
the correct placement and values of resistors, capacitors, inductors, and possibly op-amps to construct the 
desired filter's H(s). There are two broad classifications of filter types: active and passive. 

Passive filters consist of purely unpowered circuit elements, such as R's, L's, and C's. Some advantages of 
passive filters are that they don't need a power supply, and they can be quite cheap to build if the filter is only 
first or second order and high accuracy is not needed. Disadvantages include: the difficulty of finding the exact 
valued capacitor or inductor for accurate pole placement; being unpowered means the filter cannot provide any 
sort of signal gain; and their input/output impedances are not infinite/zero, thus sometimes causing loading 
problems when used as part of a larger circuit. For example, the circuits shown below illustrate the effect of 
cascading two first-order passive RC filters. The circuit on the left has a cutoff frequency of 10 rad/sec . By 
stringing two of them together, can we make a second-order lowpass filter with the same cutoff frequency? No! 
It's probably a good exercise to find the system function of the second circuit if you're not convinced. The 
problem is that the input impedance of the second RC stage is nonzero, thus stealing current from the first stage 
and causing it to behave differently than if it were unloaded. 

tokn 
~ V out( t) 

tlOµF 

A simple I st order passive lowpass filter 
Cutoff frequency me = IO rad/sec 

IOkQ IOkQ 
V;n(t) ~ Vou,(t) 

r IOµF J IOµF 

Is this a second order lowpass 
filter with cutoff ffic = IO rad/sec? NO! 

Poles are at s= -3.82 and -26.18, not - I 0. 

Active filters on the other hand require an external power supply in order to maintain or to boost signal 
strength. Advantages include: the ability to amplify signals; the absence of often expensive and bulky induc­
tors; and an essentially infinite input impedance (or near zero output impedance). Some disadvantages include 
the possible introduction of extra noise in the signal and the fact that the maximum operating frequency of the 
filter is constrained by the gain-bandwidth product of the amplifying element. 
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There are several common active filter circuits that have already been designed; one merely needs to plug in the 
appropriate valued components. One of the more common templates is known as the Sallen-Key lowpass filter, 
which can implement an arbitrary second-order transfer function. Higher order filters can then be obtained by 
cascading a series of Sallen-Key circuits; loading effects are eliminated since the ideal op-amp has zero output 
impedance. Exchanging the position of the R's and C's in the lowpass Sallen-Key shown below will produce a 
second-order system with two zeros at the origin, which is a highpass filter. There are also forms for a Sallen­
Key bandpass implementation. For more information, refer to Chapter 5 of The Art of Electronics by Horowitz 
and Hill (1989). 

Sallen-Key Lowpass Filter Circuit 

co5/~ 
=-----

s2 + 2o:s + co5 

I I I ( I) 
2a = RI cl+ R2C1 + R2C2 I - ~ 

17.7 Recognizing a Filter 

)I< 
I I 
I I 

I \ 

I....__, 
1a 
I 
I 

X 

pole locations 

~ = vector length 
-a = real part of pole 

::,----t--V ou/t) 

(1-~)R 

~R 

Tune Sallen-Key by using a sinusoidal input of frequency 
~ rad/sec (not Hertz). Plug s=J~ into system function to 
determine theoretical gain and phase change between input 
and output. Make RI or R2 a potentiometer for tuning phase 
response. Change ~ to control gain. 

Given a pole/zero diagram or the transfer function equation of a filter, it is relatively straightforward to guess 
its type (a common multiple choice test question). The way to solve these problems is to make a mental sketch 
of the Bode plot by tracing your finger up the jco-axis starting at the origin and thinking about a large rubber 
sheet lying over the pole/zero plot (see Section 6.7). Or, if you're given just the equation of the filter transfer 
function, one thing that will help is to try plugging in s=O and s=00 and evaluating IH(s)I . Just for practice, clas­
sify each of the following s-plane pole/zero plots as coming from lowpass, highpass, bandpass, or notch filters. 

(a) X 
X (two zeros) 

X 
X 

(b) 

+ 
(c) 

+ 
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17.8 A Visual Example 

The following plots are a good visual demonstration of the effects of various types of filters. The input signal is 
a sinusoid whose frequency is linearly increasing over time. This type of signal is often referred to as a "chirp" 
signal since if you listened to it repeatedly, it would sound vaguely like a bird's chirping sound. The four other 
plots show the output of four different types of filters when presented with this input chirp signal. The non-zero 
width of the transition band is clearly evident here. 

Input "Chirp" Signal x(t) 

Lowpass Filter Output y(t) Bandpass Filter Output y(t) 

Highpass Filter Output y(t) Notch Filter Output y(t) 

17.9 Phase Response 

Up until now, we have been emphasizing the magnitude response of filters. But this is only half the picture. 
Recall that a frequency response consists of two parts -magnitude and phase. We know what an ideal magni­
tude response looks like, but what is an ideal phase response? Ideally, a filter should have a linear phase 
response, meaning that the plot of LH(f) vs. f should be a straight line. Why? Imagine a sinusoidal input to 
this filter; the output sinusoid will be of the same frequency, but possibly with a different magnitude and phase. 
This phase difference can be translated into a time delay as shown below. Remember, delayed output signals 
appear as a negative phase difference. 

input= Asin (21tft+q> 1) 

output = B sin ( 21tft + <1> 2) 

time diff (sec) = phase difference (radians) = 
(negative= delay) sinusoid frequency (rad/sec) 

Now," if the phase difference is a linear function of the sinusoid frequency, then the frequency cancels in the 
numerator and denominator and the time difference is merely a constant. This means that the output is merely a 
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constant time delay difference from the input, for all possible input frequencies. If the phase response was not 
linear, then different frequencies would be delayed by different amounts. For example, after a filter the drums 
might be heard before the opera singer's voice, instead of at the same time. The signal would sound "sepa­
rated" or "distorted." Find the specs of your favorite hi-fi stereo system. You should see something called "total 
linear phase distortion: 0.1 %." This figure is a measure of the departure from linearity for the combined phase 
responses of all the internal filters. Also remember, the phase response need only be linear in the passband. 

input 

output 

phase difference = time delay -

Butterworth, Chebyshev, and Elliptic have good amplitude responses, but have relatively poor phase responses 
( elliptical is the worst of the three and Chebyshev type II is the best). For most applications where the signal of 
interest is mostly within a narrow frequency band, you probably won't notice the phase distortion. If the signal 
is audio, you will also find that the human ear is quite insensitive to phase distortion when it comes to intelligi­
bility. However, if the phase response is critical, like in high quality recordings, you would be better off using 
other types of filters such as the parabolic or the Thompson (bessel). These filters have a more linear phase 
response and a better time-domain step response (no ringing), but at the expense of a more gradually sloping 
transition band. 

Another class of filters we have neglected to discuss is known as the allpass filter. Ideal allpass filters have a 
magnitude response that is flat over all frequencies. So what good is it? It's used to modify the phase of an 
input signal. A typical use is correcting the linear phase distortion encountered with other types of filters. 

17.10 Digital Filters 

Digital filters operate on discrete-time signals. They have a transfer function H(z), cutoff frequencies, and all 
of the other characteristics that define a continuous-time filter. While analog filters operate by internally scaling 
and integrating their signals, digital filters work by scaling and summing (recall the difference between contin­
uous-time convolution and discrete-time convolution). Some advantages of digital filters are: their characteris­
tics are truly time-invariant (not susceptible to temperature changes, aging components, etc.); filter behavior 
can be easily changed just by reprogramming your computer instead of having to rewire a circuit; and the 
filtering process is essentially noise-free. 

There are basically two types of digital filters: IIR (infinite impulse response) and FIR (finite impulse 
response), referring to the length of the filter's h[n]. As seen in previous sections, continuous-time filter design 
is a well-established art, full of cookbook formulas and standard filter templates. Therefore, one way to design 
a digital IIR filter is to design the continuous-time equivalent and simply apply a continuous-time to discrete­
time conversion process, such as impulse invariance, forward/backward differences, or the bilinear transforma­
tion (see Section 8.5). IIR filters are often referred to as recursive filters since they are described by difference 
equations where the output y[n] depends not only on previous values of the input x[n], but also previous values 
of the output. 

FIR filters, as the name indicates, are finite in length. The output value y[n] depends only on a fixed number of 
previous values of the input x[n]. The advantage of using an FIR filter is that this type of filter always has a 
linear phase response. One way of designing an FIR filter is to design the desired digital IIR filter and simply 
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truncate the impulse response by multiplying it by a window. For arbitrary filter shapes, the Parks-McClellan 
algorithm is an iterative optimal equiripple FIR filter design method. Just input the desired shape of the transfer 
function and the filter order, and out pops the coefficients of the best possible FIR filter. So which should you 
use? IIR or FIR? The pros and cons of each as well as a thorough discussion on discrete-time filter design can 
be found in Chapter 7 of Discrete-Time Signal Processing by Oppenheim and Schafer (1989). 

Digital filters are becoming more and more common everywhere around us, but that doesn't mean analog filters 
are useless. Given an analog signal such as audio that needs filtering, think about all of the extra overhead 
required to perform that filtering in the digital domain: an AID converter, a fast computer or dedicated DSP 
chip, memory to hold the filter coefficients, source code to actually perform the convolution, and a D/A 
converter to output the modified signal. Contrast that several hundred dollar setup to a single op-amp filter that 
can function at several hundred megahertz at a mere fraction of the cost. Of course, if your signal is digital to 
begin with (the closing Dow Jones Industrial Average stock index, the output of a CCD digital camera, etc.), 
then it makes sense to use a digital filter. Engineering is all about tradeoffs, and filter design is no exception. 

17.11 Switched-Capacitor Filters 

A switched-capacitor filter is not the name of a new type of filter, but rather a new methodology of imple­
menting one. It combines the speed and convenience of an analog filter with the flexibility and accuracy of the 
digital world. The pole locations can be precisely controlled by merely altering the frequency of a digital 
square wave input signal. The filter works on the notion that a capacitor rapidly switched between two points 
and ground behaves like a resistor connected between those two same points. Huh? A capacitor can become a 
resistor? An explanation is in order. Consider the following diagram: 

1avg = 
Q transferred 

time 

Switched-Capacitor Theory 

1 
fc1k = -T 

Req 

= 
V = IR 

V1 - V2 = 1avgReq 

When the switch is in position A, the amount of charge on the capacitor is QA = C1 V1 . When the switch is 
thrown to position B, the amount of charge is supposed to be Q8 = C1 V2 . The difference between these two 
charge levels is the amount of charge that flows into ( or out of) source V 2 . In other words, every T seconds ( the 
period of the clock) a charge of C1 (V1 - V2) Coulombs is effectively transported from point A to point B. Net 
charge flowing per unit time is the definition of current. Since we know the voltage difference as well as the 
average current flowing, we can use Ohm's law to find the equivalent resistance between points A and B. Thus 
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the switching capacitor behaves like a resistor. Big deal! Why don't we just use a resistor and save ourselves 
the hassle? Things should become clear after the following example: 

v;(t) 

V/s) 

Standard Integrator Switched-Capacitor Implementation 

v/t) 

replacingR with J, 1C gives 
elk I 

Here we have taken a simple integrator op-amp circuit and shown it in its switched-capacitor implementation. 
The advantage of the latter is that the transfer function is now dependent only on the ratio of two capacitors and 
is completely independent of their absolute value. Small-valued capacitors are easily implemented directly in 
silicon, which means the entire filter can be captured directly inside a single chip. Furthermore, the pole place­
ment is guaranteed to be extremely accurate since (1) the input clock frequency can be governed by a readily 
available precise crystal oscillator, and (2) although a single capacitance value cannot be very well controlled, 
the ratio of two capacitors can be made very precise since capacitance is dependent on the size of the doped 
area in silicon (accurate to the sub-micron level during wafer fabrication). The switching mechanism itself is 
easily implemented by hooking the input clock signal to the gates of MOS transistors to appropriately connect/ 
disconnect the capacitor. 

The biggest problem when designing an analog filter is finding precise resistive and capacitive components that 
don't change in value with temperature, etc. in order to achieve accurate pole placement. The switched-capac­
itor filter eliminates that problem by making the cutoff frequency dependent solely on the input frequency of a 
digital square wave. Furthermore, the same chip can perform filtering at a variety of different center or cutoff 
frequencies by merely altering the frequency of the clock signal. 

Nevertheless, you never get something for nothing. Because the current (charge) is transported across the 
switch in discrete bursts, the output of a switched-capacitor filter tends to look jagged, like a staircase. This 
effect, however, is minimized when the frequency of the clock signal is much greater than the maximum 
frequency of the input signal. In any case, it is easy to remove the jagged appearance by following the 
switched-capacitor filter with a simple lowpass filter to smooth out any sharp edges. 
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Overview 

Modulation 

Modulation is a part of all modern day electronic communications such 
as radio, television, and telephony. Modulation is basically the process of 
moving or "frequency shifting" the spectrum of a signal to a new 
frequency range, thus allowing multiple signals to coexist on a single 
transmission medium. This chapter discusses several basic modulation 
and demodulation schemes. 

18.1 What is Modulation? 

The easiest way to think about modulation is to use radio stations as an example. The sound that radio stations 
want to transmit is in the frequency range from 20Hz to 20KHz, the range of human hearing. However, if there 
is more than one radio station in the area, the signals from the two stations will overlap and will be impossible 
to distinguish unless they are separated in the frequency domain in some manner. In that case, appropriately 
placed filters could pick out the desired radio station. Modulation is the process of moving a frequency spec­
trum to a new center frequency, like 88.1MHz in the case of MIT's college radio station. Demodulation is the 
process of moving that frequency spectrum back to its original location. Two broad classes of modulation 
schemes are known as amplitude modulation and frequency modulation. 

18.2 Amplitude Modulation 

Amplitude modulation, commonly known as AM, is the most basic form of modulation. Here, the input signal 
x(t), which could be music, video, or any other bandlimited waveform, is multiplied by a sinusoidal carrier 
signal to produce the modulated output signal xAM(t). 

AM Modulator 

cos(21tfct) 

A bandlimited signal is a function whose Fourier transform is zero outside a given range of frequency, i.e. 
X(f)=O for lfl > W. For simplicity, when drawing spectra we will draw only the real part of X(f); however, 
remember that in general it has both real and imaginary parts. The carrier signal is generally a sinusoid with 
frequency fc » W. The reason for such a high carrier frequency and the mechanics of how modulation achieves 
frequency shifting will soon be apparent. 
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CHAPTER 1a Modulation 

Below is a typical "bandlimited" signal x(t) and its accompanying Fourier transform X(f) . 

x(t) X(f) 

c±J 
-W 0 w f 

In AM modulation, the signal x(t) is multiplied by a cosine in time (the carrier signal). In the frequency 
domain that translates to convolving X(f) with the Fourier transform of a cosine wave. Recall that the Fourier 
transform of cos(21tfct) looks like two impulses in frequency. 

t 
-fc 0 fc f 

Multiplication in time causes the amplitude of the cosine carrier signal to follow the amplitude of x(t) . This is 
illustrated in the plot of the signal x AM(t) shown below. The effect of the convolution in the frequency domain 
is to shift one copy of X(f) up to fc and one copy down to -fc The spectrum of the modulated signal X AM(f) is 
drawn below. Note the amplitude is scaled by 1/2 from the cosine spectrum. 

XA~t) XAMif> 
Bandwidth;2W 

tA/2 ~ 
~ ~ 

-fc 
0 

fc 
f 

Frequency Multiplexing 

It should now seem clear that modulation allows us to combine multiple signals onto a signal transmission 
channel by simply placing them in different frequency bands. This process is known as frequency multi­
plexing. For instance, we could combine two signals by AM modulating them with two different carrier 
frequenciesf1 andf2 and then summing the results. The Fourier transform of the transmission might look some­
thing like the following. 

0 f 

The carrier frequenciesf1 andf2 must be chosen so that the two pictures do not overlap. As long as this is true, 
either signal can easily be recovered as we shall soon see. 

Synchronous Detector for Demodulation 

A synchronous detector is a scheme for demodulating (recovering) an AM signal. The process involves multi­
plying xA~t) by the same carrier signal used in the modulator. Note that there must be no phase difference 
between the modulating and demodulating sinusoids - hence the name synchronous. This time-domain multi­
plication is a convolution in the frequency domain, which then shifts copies of the spectrum back to zero 
frequency, among other places. The lowpass filter then isolates and scales the desired copy so that the original 
spectrum X(f) is fully recovered. The following diagram outlines the overall process. 
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Synchronous AM Demodulation Scheme 

0 

Lowpass Filter 

I 2 - I 
-W O W f 

2W 
~ 

C':;::'.J 

XAM(t) 

X(f) 

('ff 
-WO W f 

The process seems quite simple, but there is a catch. The cos(2rr,fct) must match exactly both in frequency and 
in phase with the cosine used to modulate the signal. In practice, this can be accomplished in the receiver by 
using a device called a phase-locked loop (PLL) to "lock on" to the carrier signal present, thus internally gener­
ating a suitably matched demodulating carrier signal. See page 511 in Section 17 .1 of Circuits, Signals, and 
Systems by Siebert (1986) for a discussion of the effects of demodulating with a carrier of mismatched phase. 

AM with Carrier Modulation and Envelope Detection 

In the early days of radio, building a synchronous detector with a phase-locked loop was not a simple task. The 
parts were not available or they were simply too expensive. It was discovered that a slight change to the modu­
lation process would make a much simpler detector possible. 

That change is called AM with carrier (AM-WC) transmission. The only difference between AM-WC and stan­
dard AM is the addition of a constant (DC offset) to the original signal. The modulating signal then becomes 
x/t) = x(t) + C instead of just x(t), which adds an impulse at the origin in the spectrum of the input signal. 

X(f) m addi<iorntl impol~ 

-W O W f 

After multiplying by the cosine carrier signal, xw/t) in the time and frequency domains looks like: 

xw/t) xwcif> 
2W 

rD-ff 7rrr t-D-~-ff n--n--7\--Q- ~-1(~ m iA/2 m vvvvvvvvvvvv vl]1 -fc 0 f c f 

Given that the carrier frequency is high enough, notice that the upper envelope of an AM-WC modulated signal 
is equal to the original input signal x/t). Since we know that the signal x/t) is always greater than zero, we 
can use a "peak detector" circuit to track the envelope of xw/t) and produce an approximation of x/t) at its 
output. A simple peak detector is shown below. It consists of essentially just three parts and costs only pennies. 

Peak Detector Circuit 
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Naturally, there must be some tradeoffs associated with having such a simple detector. One is apparent from the 
above diagram of Xw/.J) . There are two additional impulses that do not appear in the standard AM spectrum. 
These additional impulses can often have significant area. More area implies that more power (see Parseval's 
Theorem) is necessary to transmit AM-WC. A second tradeoff is a constraint that the new modulating signal 
x/t) = x(t) + C must be greater than zero for all t. This means that a sufficiently large enough value of C must 
be chosen to handle all types of input signals x(t). However, the larger C is, the more power is wasted in trans­
mission. If x/t) goes negative (since the chosen value of C was too small), the envelope of Xwc(t) will not 
match the shape of x(t), resulting in severe distortion in the peak detector output. This condition is referred to 
as "overmodulation." 

Although modern AM radios have become a little more sophisticated, the standards for AM broadcasting 
remain essentially the same. Even today your favorite AM station still transmits an AM-WC signal. Now it 
should be apparent why AM radios are so cheap to buy. 

Single Sideband Amplitude Modulation 

Single sideband AM (AM-SSB) is a variation on standard AM designed to cut the bandwidth of the modulated 
signal in half. Some of the approaches for generating an AM-SSB signal are outlined in Section 17.3 of 
Circuits, Signals, and Systems by Siebert (1986) and Section 7.3 of Signals and Systems by Oppenheim et al 
(1983). In any case, if you just remember the basic properties of Fourier transforms and LTI systems, you 
should be able to break down and analyze any novel modulation scheme (a frequent type of exam question). 

18.3 Frequency Modulation and Phase Modulation 

Amplitude modulation systems use the modulating signal to vary the amplitude of a sinusoidal carrier signal. 
Another important class of transmission techniques is referred to as angle modulation, in which the modulating 
signal is used to control the frequency or phase of a sinusoidal carrier. These techniques are known as 
frequency modulation (FM) and phase modulation (PM) respectively. Two main advantages to these angle­
based schemes are: (1) the transmitted signal is always at a fixed amplitude, thus eliminating fluctuations in 
transmitter power, and (2) any noise picked up during transmission usually shows up as amplitude variations or 
"fuzz" on the received signal; if this was an AM transmission, the extra noise would appear to be part of the 
signal. This is why, in general, FM radio stations sound clearer than AM stations. 

Phase modulation is when the phase of the transmitted carrier signal varies in proportion to the input signal 
x(t). Frequency modulation is when the frequency of the transmitted signal transmitted varies in proportion to 
the input signal x(t). Note that the instantaneous frequency of a sinusoid whose frequency is changing in time 
is the derivative of the phase function. Thus, phase modulation and frequency modulation are closely related. 
Phase modulating with x(t) is identical to frequency modulating with the derivative of x(t). These results are 
summarized below: 

Phase Modulation 

Frequency Modulation 

XpM(t) = A cos (2rcfct + 0/t)) 

where 0 /t) = 00 + kPx(t) 

xFM(t) = Acos<j>(t) 

where d<j>(t) = 2rcJ, + k.x(t) 
dt C J 
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The phase 0 p) of the carrier sinusoid (frequency j~) 
varies around a central value 00 in proportion to the 
input signal x(t). 

The frequency of XfM(t) varies around a central 
carrier frequency .fc in proportion to the input signal 
x(t). For example, if x(t) is a constant, then xFM(t) is 
a constant frequency sinusoid. 

d<j>(t) is known as the instantaneous frequency 
dt 
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An example of frequency modulation is shown below. 

x(t) X(f) 

ciJ 
-W 0 w 

0 

f 

Bandwidth 
=M°+2W 

f 

Notice that the "instantaneous frequency" of xFM(t) is proportional to the amplitude of x(t). The exact spec­
trum of an FM modulated signal is very difficult to determine; in general, it looks nothing like the shape of the 
input signal's spectrum. XFM(f) shown in the above diagram is presented only to depict the location and 
approximate bandwidth of the FM signal. 

FM Bandwidth (Wideband & Narrowband FM) 

As mentioned above, the Fourier transform XFM(f) is not easily found. However, it is important to have some 
idea of its bandwidth so we know how close adjacent signals can be placed when frequency multiplexing. Let's 
define Af = fxmax - fxmin as the "frequency deviation." The values fxmax and fxmin correspond to the output 
frequency if a constant x(t) = xmax or x(t) = xmin is used as the input signal. We can then approximate the 
bandwidth of XFM(f) using the following expression: 

Bandwidth = l1j + 2 W 

Wideband ⇒ Af » 2 W ⇒ Bandwidth = Af 

Narrow band ⇒ 2 W » Af ⇒ Bandwidth = 2 W 

The value 2W is the bandwidth of the input signal X(f). There are two types of frequency modulation: wide­
band and narrowband. Each refers to the amount of frequency fluctuation in the modulated signal, which essen­
tially corresponds to the size of the constant k1 in the FM equations described earlier. The benefit of using a 
wide bandwidth with FM is improved noise rejection; however, the signal then occupies more space in the 
frequency world. Once again, we have a tradeoff. 

FM Demodulation 

An FM signal can be demodulated to recover the original signal x(t) through the use of a phase-locked loop. 
This device locks on to the phase of the input signal; differences between the expected phase and the actual 
phase (frequency) of the incoming sinusoid result in an output error signal from the device. This error signal 
varies in exactly the same manner as the changes in frequency during the modulation process; thus it is directly 
proportional to the original signal x(t). 
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18.4 Superheterodyne Receivers 

The function of a radio receiver can be broken down into two steps: (1) tune its filters to focus on the desired 
frequency band from a frequency multiplexed channel, and (2) recover (demodulate) the received signal. The 
superheterodyne receiver is a method of efficiently achieving the first stage in the above process. It is found in 
virtually all of today's radios. One way to build a receiver is to use a sharp cutoff bandpass filter that can be 
tuned over a range of several megahertz. However. such filters are expensive and difficult to build. The basic 
idea behind the superheterodyne scheme is to build a high quality stationary filter (much cheaper) and move the 
signal to the filter instead of having to move the filter to the signal. The basic steps are as follows: 

1. Use a poor quality tunable bandpass filter (BPF) to initially focus on the desired station. 

2. Frequency shift the spectrum to a fixed intermediate frequency (IF). 

3. Apply a sharp, carefully designed BPF centered at the IF to remove any remaining stray spectra. 

4. Proceed with standard demodulation scheme (i.e. synchronous detector). 

Again, instead of moving your sharp bandpass filter to the station, the superheterodyne scheme moves the 
station to your sharp BPF. For example, let's assume that three separate signals have been AM modulated using 
three distinct carrier frequencies. The spectrum of the transmitted signal might look something like this : 

2W (,(I) 2W - -r>.OtJ I I 
tJo.,~;-.. 

-!3 -fz -Ji -flF 0 f1F f1 f2 !3 f 

For this example, we would like to demodulate the signal located at frequency f 2 using a superheterodyne 
system. A block diagram of such a system is given below. 

Tunable BPF Fixed BPF 

xJ..t) _ ___. ;C\ 1 -;C\;;::::<4/i=,,2~w ►1-----1M 

-fc O fc l 
---Y,,,._ ___ c_os_(2_.rc(fd1F)t) 

Tuning Knob 
(controls both) 

□ I 
-fJF 0 

, ·. o (\ I 11 o ,· -
0 f f 

IF 

2W -
□ fJF 

t---- x/f) 
To detector 

0 
-flF 

JI X/f) 

00 f 

Notice that two bandpass filters are used. The first BPF has a wide bandwidth (but must be less than 4f!F- 2W 
where W=maximum frequency in signal) and has a tunable center frequency that changes in conjunction with 
the frequency of the cosine wave. This type of dual tuning allows the isolation of a single frequency range. In 
our case, tuningfc = f 2 selects the signal we want. 

The multiplication by a cos(2rc[fc1IF]t) shifts the desired spectrum to fIF where the second bandpass filter does 
the final clean up job. The result is the spectrum X/f), which is now ready for the synchronous detector to 
complete the final shifting to the audible frequency range (centered about zero). 
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18.5 A Sample Problem 

Question: 

An input signal x(t) has a Fourier transform X(f) whose real and imaginary parts are shown below. 

Re{X(f)} /m{X(f)} 

c-h 
-10 0 10 f f 

The signal x(t) is multiplied by sin(21t5Ot) and cos(21t50t) as shown here: 

Sketch Y(f). 

Answer: 

x(t) ---1►..-i1 

sin(21t5Ot) 

.. ~y(t) 

cos(21t50t) 

A shortcut is to use the identity, 2sin0cos0 = sin20, but the long way isn't hard either. Watch for sign errors! 

Re{ Y(f)} lm{Y(f)} 

1/4 

~ 
1/4 

-I~ 
I /1 
0 [/Joo f 

1/4 

C';1 
-100 

I 
0 
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CHAPTER 19 

Overview 

Sampling 

Sampling theory has become more and more critical in the "digital age." 
Most signals that we work with are continuous, but they are increasingly 
being processed using digital computers. Sampling theory gives us the 
tools to faithfully convert from the analog world to digital and back 
again. The fundamental result of this chapter is that any bandlimited 
signal can be completely characterized by discrete, equally spaced 
samples, provided that the samples are spaced close enough together in 
time. 

19.1 What is Sampling? 

Sampling is the process of taking a continuous-time signal and representing it by a series of discrete samples. 
Reconstruction is the process of taking these discrete samples and recreating the associated continuous-time 
signal. These processes are illustrated in the following block diagram. 

Overall process: 

~' 
r analog sampling ' 

,, ND conversion '\ 

;. 1Cub1r ;. I I I i y I I -
/ ' t / \. T 2T 3T4T 5T6T t / \. 123456 n / 

I 
Digital 
Signal I ,, 

~' 
/ analog , DIA conversion '\ Processing 

reconstruction filter 

1111111 
'-

-ul2n b "rn t .; 

~ 
_/ 

~ 

\. t / \.. T 2T 3T4T 5T6T t / 

We will leave the processes of AID, DIA, and digital signal processing for another book. Why do we need 
sampling theory at all? We could just work with analog signals only. Doing signal processing in the digital 
world, i.e. on computers, provides far more flexibility, but with the expense of added complexity. Filter charac­
teristics are easily changed by reprogramming a few numbers instead of having to change resistors and capaci­
tors. Also, the processing is essentially noise-free, unlike the "fuzz" that you sometimes see on your 
oscilloscopes when doing analog circuit design. 

This book: 
,, 

~,' 
,, 

analog sampling ' / analog '\ 

~' lifitrlT-' 
reconstruction filter 

-ulm b ,Jn f 

-
'- T 2T 3T4T 5T6T t \.. t 

Signals and Systems Made Ridiculously Simple - by Z. Karu 95 



CHAPTER 19 Sampling 

19.2 Mechanisms of Sampling 

Time Domain 

Let's examine the sampling process in closer detail, starting in the time domain. The standard paradigm is 
shown in the following picture. The value of the continuous-time signal is recorded every T seconds by multi­
plying by an impulse train. The area of the pulses formed in the sampled version is equal to the height of orig­
inal signal at the sample point. 

~I 

x(t) y(t) ... mror 
T 2T 3T 4T ST 6T t 

Frequency Domain 

Now, let's look at the same process in the frequency domain. First, we assume a bandlimited spectrum for X(j), 
the Fourier transform of x(t) . Remember, a bandlimited spectrum is one where X(j) =0 for lf1 > W . The reasons 
for needing a bandlimited spectrum will become clear shortly. The following three facts allows us to determine 
the spectrum for Y(j) , as graphed below. 

1. The transform of an impulse train is an impulse train . 

2. Multiplication in the time domain becomes convolution in the frequency domain. 

3. Convolving with an impulse merely shifts and scales the signal. 

Do not forget to take into account the scale in height of 1/T that accompanies the transform of the impulse train. 

/4 
-W O W f 

X(j) •~ Y(j) 

S(f) 

... 
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CHAPTER 19 Sampling 

19.3 The Reconstruction Process 

Frequency Domain 

The original continuous-time signal x(t) is completely recovered if the original spectrum X(j) can be extracted 
from Y(j), the spectrum of the sampled signal. By examining the picture of Y(j) shown below, it should be 
clear that the single spectrum X(j) can be recovered by using an ideal lowpass filter to remove the extra copies. 
The filter should have cutoffs at/= ±1/(27) and a gain of T 

Y(f) want to pick out this copy ______ / 6T1 6T1 ~T 
• • • I I • • • 

I '-w o w' I f 
-T T 

-
Jowpass filter 

IT 
0 f 

2T 2T 

X(f) 

& 
-W O W f 

Time Domain 

To see how the reconstruction process works in the time domain, recall that a lowpass filter in the frequency 
domain is a sine function in the time domain. So, multiplying by a "box" filter in frequency is like convolving 
with a sine function in time. Since y(t) is just a series of impulses (samples of x(t) ), it follows that the recon­
structed x(t) is merely the superposition of scaled and shifted sines! 

19.4 Aliasing 

reconstructed x(t) 

sines interpolate 
between samples 

We have seen that a continuous-time signal can be completely reconstructed from its samples. However, this 
process will not be possible if the samples are spaced too far apart in time. Why? As the impulses in the 
impulse train in time are spaced farther and farther apart, the impulses in its transform S(j) get closer and closer 
together. If the impulses in frequency move too close together, after convolution the copies of the spectra of 
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X(f) will overlap. Bad! Once the spectrum gets garbled like that, it will be impossible to recover the original 
continuous-time signal. The situation where spectral overlap occurs is known as aliasing. 

High frequency information from the adjoining spectrum moves into the low frequency range of the 
main spectrum, implying that high frequencies are being aliased into looking like lower frequencies. 

! 
T 

Overlap = Aliasing 

f 

In the case of overlap, the high frequency information aliases/resembles/looks-like low frequency information. 
This effect is demonstrated below with a high frequency sine wave that is sampled too slowly. Even though the 
sine wave is sampled at regular intervals, the reconstruction process fails to reproduce the original signal since 
the samples are spaced too far apart in time. It is possible to fit a lower frequency sine wave to those same data 
points, which is a time-domain illustration of how a high frequency signal can get aliased into looking like a 
lower frequency signal. 

19.5 The Nyquist Sampling Theorem 

In order to have distortion-free reconstruction of a continuous-time signal, two things have to happen: (1) the 
continuous-time signal to be sampled must be bandlimited, and (2) the samples must be close enough together 
in time. From examining the spectrum for Y(f) in Section 19.3, to prevent overlap we must have 
1 IT - W > W, or 1 /T > 2 W. Since Tis known as the sampling period (in seconds), 1/T is called the sampling 
rate (in Hertz). All of this implies the grand result that in order to achieve flawless theoretical reconstruction: 

The sampling rate must be greater than twice the maximum frequency present in the input signal. 

The critical sampling rate (2W) is known as the Nyquist rate. The above statement is known as the Nyquist 
Sampling Theorem and is definitely one of the most powerful concepts ever seen by an engineering student. 
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19.6 Practical Considerations 

Zero-Order Hold 

However nice theory may seem, impulses don't really exist in the real world. In practice, what is commonly 
done for sampling purposes is known as the zero-order hold. Here, the sampled signal resembles a staircase 
(i.e. remains flat between sample points). It is still possible to completely reconstruct the original signal; 
however, the lowpass filter must be slightly modified. See Section 8.1.2 of Signals and Systems by Oppenheim 
et al (1983) for more information. Note that using a standard flat lowpass filter for reconstruction would prob­
ably work reasonably well, but it wouldn't be optimal. 

Anti-Aliasing Filters 

To ensure that aliasing does not occur in the sampling process, people often first pass the signal to be sampled 
through a lowpass filter in order to insure that it is appropriately bandlimited. This filter is known as an anti­
aliasing filter. For example, if you want to sample audio at a relatively low rate of 5KHz, you would first need 
to pass the sound source through a lowpass filter that had a sharp cutoff at 2.5KHz or lower in order to avoid 
aliasing of any higher frequency content present in the original signal. 

Oversampling 

The Nyquist theorem states that it is possible to completely reconstruct a signal as long as you sample at a rate 
greater than twice the maximum frequency present in the signal. From Section 19.3, if 1/ T= 2 W then the 
copies of the spectra in Y{J) will be adjacent, i.e. touching. So, in order to reconstruct the original signal you 
are going to need a very, very sharp analog lowpass filter. Such beasts are not easy to design, so what is 
commonly done is to oversample - that is, to sample at a rate much greater than the Nyquist rate. Then, the 
copies of the spectra are spread sufficiently far apart so that a more realistic lowpass filter can be used in the 
reconstruction process. This is why some compact disc players are advertised as having 4x oversampling, 8x 
oversampling, etc. 

A Little Trivia 

• The human auditory system can only hear sounds between 20 Hz and 20 KHz. 

• Compact discs contain audio sampled at a rate of 44.1 KHz. 
• The bandwidth of an ordinary telephone line is about 3KHz (higher frequencies are lost during trans­

mission), which is still large enough to produce an acceptable quality of conversational speech. 

19.7 A Sample Problem (no pun intended) 

Questions: 

Using the block diagram shown below, answer the following questions: 

(a) Sketch X5{J) for T=20 msec. The real and imaginary parts of the spectrum X{J) are given. 

(b) What is the maximum value of T for which the system will produce y(t) = Kx(t) (i.e. perfect reconstruc­
tion within a constant factor)? 
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CHAPTER 19 Sampling 

Re{X(t)}=A 

I -5 0 5 H~ (t) 
x(t) __ s __ _ 

/m{X(t)} = 0 

I 
G 

/I 
"" 

~---y(t) 
-20 -10 0 10 20 Hz 

s(t) 

···1111111111 11 ••• 
-2T -T O T 2T 3T 

Answers: 

(a) Copies of the spectra of X(t) are replicated at -100, -50, 0, 50, 100, etc. Hertz. Height of each is 100. 

(b) Maximum value of Tis 40 msec. Cannot sample any slower because of the limitations of the lowpass filter. 
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!lil . . I I ii 0 Mi MiM!ii!ll&':VP'a!Mi'NAOO!W@i 

Overview The Fourier transform of an aperiodic signal produced a continuous 
transform X(() . When the input signal is periodic, the Fourier transform 
is known as the Fourier series. The reason for calling it a series is that 
instead of needing a continuous function to describe the spectrum, the 
frequency content of a periodic signal can be represented by a discrete 
set of numbers. These numbers are called the Fourier series coefficients. 
They provide the weights on the harmonically related sinusoids that can 
be used to reconstruct the original signal. The values of these coefficients 
can be found through direct computation or by sampling the Fourier 
transform of just one period of the input signal. -

20.1 Orthogonal Basis Functions 

It is well known that practically any function can be written as the weighted sum of a set of orthogonal func­
tions. This idea is similar to the idea of representing a vector as the weighted sum of unit vectors. There are 
several different possible orthogonal basis function sets, but Dr. Fourier decided to use sinusoids. The Fourier 
transform simply illustrates the weights on the various sinusoids needed to reproduce the input signal. 

20.2 What is the Fourier Series? 

Periodic functions are completely described by the weights on a discrete set of sinusoidal frequencies, as 
opposed to a continuous range of frequencies, as with the Fourier transform for aperiodic functions. This set of 
weights is known as the Fourier series coefficients. Furthermore, the sinusoids that go with these coefficients 
are harmonically related; each one's frequency is an integer multiple of the fundamental frequency of the input 
signal. The fundamental frequency is the reciprocal of the length of one period of the input signal. 

q q q This periodic signal can be completely 
described using sinusoids of frequencies 

~ 0, 0.5, I, 1.5, 2, 2.5, etc. Hertz. 

fundamental period = 2 seconds, which means fundamental frequency is 0.5 Hz 
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CHAPTER 20 Fourier Series 

20.3 Forms of the Fourier Series 

Sine-Cosine Form 

Any periodic function x(t) can be written as the sum of harmonically related sinusoids in the following manner. 
Note that T denotes the length in seconds of the fundamental period of the signal. There are additional formulas 
for determining the value of the coefficients an and bn, but there is a more intuitive way of obtaining these 
values, as we will see shortly. 

n = I n = I 

Magnitude Phase Form 

Using the fact that two sinusoids of the same frequency can be combined into a single sinusoid with a change 
of magnitude and phase, the cosine and sine terms in the above expression can be combined and written as: 

= 

x(t) = a0 + .I cncos( 21;11 +en) 
n = I 

Complex Exponential Form 

However, the simplest and most useful form is the exponential form given by: 

x(t) = L X [n] ejn21tft X [n] = i f x(t)e-jn21tft dt 

n == -oo period 

f = I/period 

In general, X [ n] is a complex number 

Relationship among Forms of the Fourier Series 

The coefficients in the various forms of the Fourier series are all interrelated as shown below: 

X [n] is a complex number a0 = X[O] c = Ja 2 + b 2 
n n n 

X [n] = ~(an-jbn) an = 2Re {X [n]} 

X [n] 
1 j0n bn = -2/m {X [n] } 

= 2cne 
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20.4 Relationship Between the Fourier Series and Transform 

Note that any non-periodic signal can be considered to be a periodic signal with period set to infinity. Doing 
this will cause the Fourier series formulas to collapse to the Fourier transform formulas. For more information, 
read Section 4.4 of Signals and Systems by Oppenheim et al (1983). 

The Fourier series coefficients of a periodic signal are proportional to equally spaced samples of the Fourier 
transform of one period of the input signal. To see this, first convince yourself that any periodic signal can be 
represented as a single period convolved in time with an impulse train as shown below: 

X (t) x(t) s(t) p 

11 11 1 ... 0 0 0 ... 
_h7r * • •• . .. 

-T _Io I T t t -T 0 T t 
4 4 4 4 

So, to find the transform of x/t), we could just find the transform of x(t) and multiply it by the transform of 
s(t) since convolution in the time domain equals multiplication in the frequency domain. Using the above 
example, we can generate the following frequency domain picture: 

the area of these impulses is just the height 
of the Fourier transform at that sample point, scaled by 1/T 

~ AIT 

••• 

Summary 

X(f) 
p 

••• 
f 

S(f) 

• 

The Fourier transform of any periodic signal is always composed of just impulses. The area of these impulses 
are the Fourier series coefficients for the exponential form. Furthermore, these coefficients can be obtained by 
sampling the Fourier transform of one period of the signal at frequencies which are multiples of 1/T. 

20.5 The DC Offset 

Note that X [ OJ or a0 , the first term in the Fourier series, is merely the average value or DC offset of the peri­
odic signal. Those signals that have equal "weight" above and below the horizontal axis have no DC offset, and 
hence are equal to zero at the origin in the Fourier transform and series. 

Signals and Systems Made Ridiculously Simple 103 



CHAPTER 20 Fourier Series 

20.6 Properties of the Fourier Series Coefficients 

There are several special cases of periodic input signals that immediately imply certain properties of the 
Fourier series coefficients. Some of these rules will seem similar to those of the Fourier transform since the 
Fourier series is just a special case of the transform. For the table below, assume x(t) is real. 

Notes: 

Description Condition X[n] coeffs an, bn coeffs 

even x(t) = x(-t) purely real all bn= 0 

odd x(t) = -x(-t) purely imaginary all an= 0 

odd harmonic x(t- T/2) = -x(t) cmplx, X[n]=O, n even an&bn= 0, n even 

even harmonic x(t - T/2) = x(t) cmplx, X[n]=O, n odd an&bn= 0, n odd 

• a0, the DC offset term, can be non-zero even though all the other an's are zero. 

• An odd-harmonic function is one where the second half of its period is the negative of the first half. 

• An even-harmonic function is one where the second half of its period is exactly the same as the first 
half. Therefore, any function that is even-harmonic is actually a regular periodic function whose 
period has been labeled twice what it should be. In other words, there is nothing special about 
even-harmonic functions. 

• Shifting a signal left/right in time does not affect whether or not it is odd-harmonic. 

• Shifting a signal up/down (adding a DC offset) does not affect whether it is odd-harmonic, other than 
adding a term in the Fourier series at zero frequency. 

• An odd-harmonic function does not have to be odd. 

Some Examples: 

... /1 /1 /11/1 /1 /1 ;1 ... 
V V77 V1 V V V 

odd 

~777 
odd-harmonic 

·••r-i r, r-i hr, r, r,••· 
___J L...J L...J 9 L...J L...J L...J L_ 

odd and odd-harmonic 
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CHAPTER 20 Fourier Series 

20. 7 Parseval's Theorem for Fourier Series 

Parseval's theorem equates the average "energy" in one period of the input signal with its "energy" in the 
frequency domain. 

~:.Jlx(t}l2 dt = L IX [n] 12 

T n = -ex> 

20.8 Square Wave Reconstruction 

As an exercise to test your understanding of the material, verify that the following square wave can be repre­
sented by the cosine series shown. The approach is to first find the Fourier transform of the periodic signal by 
representing the square wave as a single pulse convolved with an impulse train. The transform will be then be a 
sine function multiplied by an impulse train in frequency. This product produces a series of impulses whose 
areas are the scaled samples of the sine function. Read Section 20.4 again if this didn't make any sense. The 
areas of these impulses are the Fourier series coefficients X [n] for the exponential form (see Section 20.3). 
Each symmetric pair of impulses represents a cosine wave in the time domain. 

x(t) = D 
-T -T/4 0 T/4 T 

x(t) 
1 L2(-])(k-l)/2 21tkt = - + ---'--'---- cos --
2 1tk T 

k odd 

We have just shown that the sum of cosine waves can produce a square wave! That probably doesn't seem 
obvious, so let's demonstrate it visually. The following plots show the sum of the first 1, 2, 5, and 20 terms in 
the above formula. 

One term 

Two terms 

Five terms 

Twenty terms 
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The Gibbs Phenomenon 

If you look carefully, you will notice that there are some ripples near the transitions of the reconstructed square 
wave. Increasing the number of terms in the summation increases the frequency of their oscillation, but does 
not decrease their amplitude. In fact, the peak overshoot remains fixed at about 9% of the height of the discon­
tinuity (height of square wave); however, the total energy in the oscillations does decrease as more terms are 
used. This behavior is known as the Gibbs phenomenon. See Section 15.3 of Circuits, Signals, and Systems by 
Siebert (1986) and Example 4.6 on page 184 of Signals and Systems by Oppenheim et al (1983) for more infor­
mation. 

20.9 A Sample Problem 

A periodic square wave signal is passed through a filter whose impulse response is shown below. Find the 
equation for the output signal y(t). 

·_··~P-~4
~P-~3-4~D~5-··_· t---~1 Md 

Answer: 

= sin ( 1.51tt) 
1tt ► y(t) 

This problem is a bit tricky. Notice that the square wave as shown is not an even function; this means that its 
Fourier transform is not purely real, which makes for a bit of a mess. An easy way to get around this is to make 
the input even by shifting it 0.5 seconds to the left. After finding the output for this modified input signal, just 
shift the answer to the right by 0.5 seconds to get the true output. Remember, we are allowed to perform such 
manipulations since this is a time-invariant system. 

The system designated by h(t) is an ideal lowpass filter that has cutoffs at f = ±3/4Hz. Only three terms in the 
Fourier transform of the periodic square wave make it through the filter: an impulse at the origin and two 
impulses atf = ±1/2. Taking the inverse transform, these three impulses correspond to a cosine wave with a DC 
offset. If you didn't get the right answer, be sure you took into account the height of the input square wave as 
well as the 1/T scaling factor on the transform of an impulse train. 

y(t) 

y(t) 

8 
= 2+-cos(1tt) 

1t 

8 
= 2+-cos(n(t-0.5)) 

1t 

8 

(answer if input is shifted 0.5 seconds to the left) 

(shift the answer 0.5 seconds back to the right) 

y(t) = 2+-cos(1tt-1t/2) 

1t ....... 1 ------• I y(IJ = 2+~sin(1tt) 
1t 
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APPENDIX 

Overview 

Review Topics 

This chapter is designed to review a few basic mathematical issues you 
will likely encounter in the study of signals and systems. Topics covered 
are complex numbers, linear circuit theory, the quadratic formula, trigo­
nometric identities, partial fraction expansion, logarithms, sequences 
and series, binomial expansions, and linear algebra. 

A.1 Complex Numbers 

What is a complex number? What is an imaginary number? Why do we need them? We all know about real 
numbers - examples include 0, 1, -5.2, 3.1415926, $/,etc.In order to describe the square root of negative 
real numbers, the "number" j was created ( electrical engineers will use j instead of i since i is primarily used to 
represent current). It is defined as the principal square root of -1. 

For example, F-4§ = J ( -1) ( 49) = ./49 H = 7 j . Any number with a j in it is known as an imaginary 
number. A complex number is a number consisting of both a real and imaginary part. 

C a+ bj complex number 

Some example complex numbers are 4 + 2j and - 2.3 - Jsi. An alternative way to express a complex number 
is by talking about its magnitude and phase. This is best seen by drawing the complex number as a vector in the 
complex plane. It is also common to refer to the real and imaginary parts of a complex number separately. 
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Complex Numbers 

C= 4 + 7j 
Real part = Re{C} = 4 

Imaginary part = / m { C} = 7 
(do not include the j) 

Im 

7~---4+7) .,t, 
t I 
~ I 

ph~ 

4 Re 

magnitude = ICI = J (real part) 2 + (imaginary part) 2 = J4 2 + 72 = 8.062 

( imaginary part) phase = LC= tan-1 --"'----"----"-- = tan-1 (7/4) = 60.26° 
real part (be sure to choose the correct quadrant) 

Phase is usually expressed in radians. The conversion isx degrees = 1tx radians. 
180 

Euler's identity is a fundamental result in the area of complex number analysis. It can be verified using the sine, 
cosine, and exponential power series described in Section A. 7. 

Euler's Identity and Relations 

ejS = cosS + jsinS 

cos0 = 
eje - e-j0 

sin0 = ---
2j 

The vector diagram for a complex number as shown above together with Euler's formula lead us to the 
compact representation of a complex number known as polar form. 

Polar Form 

C=a+bj= 
~ ·s 

r ( cosS + jsinS) = rel 

r = magnitude = Ja 2 + b2 

a = Re{ C} = rcos0 

Operations on Complex Numbers 

0 =phase= tan-1 (bla) 
(be sure to choose the correct quadrant) 

b = lm{C} = rsin0 

Addition/Subtraction: To add or subtract two complex numbers, merely add or subtract the real and imagi­
nary parts separately and then combine. For example, (2 + 3j) - ( 4 + j) = - 2 + 2j 

Conjugation: The conjugate of a complex number C, denoted by C*, is obtained by negating the imaginary 
part of C. If C =a+ bj then C* = a - bj. Note that the product CC* = magntiude squared= ICl 2 = a2 + b2 . 

Also note that, (Cl C2) *=cl *C2* and (C1IC2) *=cl */C2*. 
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Multiplication: Multiply complex numbers just like you were multiplying two binomial expressions, keeping 
inmindthatj2 = -1.Forexample, (2+3}) (4+}) = 8+2j+l2j+3j2 = 5+14}. 

Division: To divide two complex numbers, multiply both the numerator and the denominator by the complex 
conjugate of the denominator and simplify. 

2 + 3} = 
4 + j 

(2 + 3}) ( 4 - j) = 
( 4 + j) ( 4- j) 

11 + 10} 

17 

Multiplication and Division in Polar Form: It is much easier to perform multiplication and division when 
complex numbers are written in their polar form. To multiply two complex numbers in polar form, simply 
multiply the magnitudes and add their phases. When dividing, divide their magnitudes and subtract the phases. 

= ~ei(0,-02) 

Tz 

Exponentiation: What if someone asked you to find ( 1 + j J3) 4 ? Seems like a real pain right? Not really. 
Rewriting in polar form, this question becomes quite manageable. Observe: 

(1 +JJ3) 4 = (2ejitl3) 4 = 2 4ej4it13 = 16(cos(47t/3) +jsin(47t/3)) = -8-8J3J 

This general procedure of raising complex numbers to powers is known as DeMoivre's Theorem. 

Roots: Now if you really want to impress your friends ask them, "If the square root of -1 is j, then what is the 
square root of j?" If that doesn't stump them, try this one: "Hey Joe, the two square roots of the number 4 are 2 
and -2, right? Can you name the three cube roots of 8?" Again, the key to answering this question is rewriting 
the number in polar form. The other roots are evenly spaced along a circle in the complex plane. Verify for 
yourself that the two square roots of j are ( 1 + j) I Ji and - ( 1 + j) I Ji . 

·( 0 21tk) 
NJa + bj = (rej8) IIN = r 11N/ N+N , k = 0, l, ... , N- l The three cube 

roots of 8 

Vs = 
·(o 21tk) 

= 8113 / + 3 , k = 0, l, 2 

Summary 
It still may not be clear to you why complex numbers are really necessary or why they have anything to do with 
signals and systems. The answer lies in the fact that complex exponentials are eigenfunctions of LTI systems. 
That probably won't make sense to you either, unless you read the rest of this book. 
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A.2 Basic Linear Circuit Theory 

Some of the most basic linear circuit concepts are illustrated in this section. For more information, consult a 
introductory circuits textbook like Engineering Circuit Analysis by Hayt and Kemmerly (1986). 

Resistor 
R ohms (Q) 

Capacitor 
C Farads (F) 

Inductor 
L Henries (H) 

Voltage Source 
V Volts (V) 

Current Source 
/ Amps (A) 

,(t) :+ l ;(,) 

Basic Circuit Elements 

I- V Relation 

V = iR 

i = Cdv 
dt 

L di 
v= -

dt 

V = constant 

I = constant 

Comments 

Cannot store energy; instantaneous power 
dissipated is i2R or v 2/R (Watts). 

Energy stored is J i(t)v(t)dt = 0.5 Cv2 

(Joules); charge stored in Coulombs is 
Q = Cv; also, i = dqldt; capacitors are 
open circuits to DC; voltage across capacitor 
cannot change instantaneously (except for 
impulse inputs) 

Energy stored is 0.5Li2 (Joules); inductors 
are short circuits to DC; current through 
inductor cannot change instantaneously 
( except for impulse inputs) 

Voltage is fixed and independent of amount 
of current flowing; product of 1-V is nega­
tive, indicating that the source supplies 
power to the circuit 

Current is fixed and independent of amount 
of voltage produced; product of 1-V is nega­
tive, indicating that the source supplies 
power to the circuit 
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___/\/\1\r­

R eq 

APPENDIX Review Topics 

Parallel 

R = ( _!_ + _!_ ,-1 = R1R2 = product* 
eq R 1 R/ R 1 +R2 sum 

Note: inductors combine just like resistors while capacitors are opposite (caps in parallel add) 

* While the reciprocal of the sum of the reciprocals relationship is always true, the product over 
sum shortcut only holds in the case of combining two circuit elements. 

Kirchhoff's Current Law (KCL) 

i I (t) iz(t) 

i1(t) + ii(t) + iit) = 0 

the sum of all currents entering 
a node must be zero 

i = ??? 

Superposition 

i1 = 0.2A 

Kirchhoff's Voltage Law (KVL) 

-v1(t)+v2(t)+vit) = 0 

the sum of all voltage drops around 
a closed loop must be zero 

60 

+ 
~2A 

i2 = 0.8A 

i = i, + i2 = IA I 
A circuit with multiple independent sources may be analyzed by super­
imposing the results of turning one source "on" at a time; turn voltage 
sources off by replacing them with a short circuit; turn current sources 
off by replacing them with an open circuit. 
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Thevenin and Norton Equivalents 

r------------
1 ' 

' ' 'VTH + 
' ' ' ' 
.., ___________ .J 

V Thevenin = V open circuit 

+ 
r------------ .. 
' ' ' ' 'VTH + 
' ' ' ' 
____________ ... 

R _ Vopen circuit 
Thevenin - / 

short circuit 

·------------
' ' ' + 
' 
:~ ~c 

' ' ' ~--~--0 , ___________ ... 

/ Norton = / short circuit 

Any portion of a linear circuit can be replaced with a single box containing a single 
voltage source and resistor combination (known as the Thevenin equivalent), or by a 
single current source and resistor combination (known as the Norton equivalent). 

Voltage Divider 

+ 

t 
V(t) 

! + ii(t) 

Z2 
V2 = ---V 

Z1 +z2 

+t 
V2(t) 

J 

V(t) = v1(t) + vi(t) 

i1(t) = ii(t) 

Current Divider 

Z2 
ii=---! 

Z1 +Z2 

/(t) = i1(t) + ii(t) 

V1(t) = vi(t) 

/J,.-Y or n-T Transformation 

ZA' Z8 , Zc are arbitrary impedances 
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First Order Responses 

parallel R-C circuit 

R V0 't = RC Li+ v(t) = Voe-tit 

_ seconds= (ohms)(Farads) 

Op-Amps 

APPENDIX Review Topics 

series R-L circuit 

i(t) = I oe-tlt 

't = LIR 
seconds= (Henries)/(ohms) 

An ideal operational amplifier, or op-amp for short, is nothing more than a 
voltage-controlled voltage source with a very high gain. 

Characteristics of the ideal op-amp: 

• Both the V+ and V- terminals have infinite input impedance, meaning that no 
current enters or leaves the op-amp there. 

• The output node has zero output resistance, meaning that it behaves like an ideal 
voltage source supplying as much current as necessary. 

• When hooked up in a feedback configuration with the output finite, the voltages 
at the two input terminals are identical. 

• The op-amp gain A is infinitely large. Note that in real op-amps the gain A is still 
quite large (say around 106), but is never known exactly. That's why op-amps 
are primarily used in feedback configurations where the effects of variations in 
A are eliminated. 

A.3 Quadratic Formula 

The roots of a second order polynomial can be found by using the quadratic formula as shown below: 

2 -b±Jb2 -4ac 
The two solutions of ax + bx+ c = 0 are x = 

2a 

Sum of roots: - (b/a) Product of roots: c I a 
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A.4 Trigonometric Identities 

Here are a few of the more common trigonometric identities that you may want to keep in mind. If you don't 
know them, at least read them over and remember that they exist so that you can look them up if necessary . 

sin20 = 2sin0cos0 

cos20 = cos20-sin 20 = 2cos 20-l = l-2sin 20 

sin (a+ P) = sinacosP + cosasinP 

sin ( a - p) = sin a cos p - cosa sin p 
cos(a+P) = cosacosP-sinasinP 

cos(a-P) = cosacosP+sinasinP 

sin a + sin P = 2 sin ( a ; p) cos (a; p) 

sin a - sin P = 2 cos ( a ; p) sin ( a ; p) 

. 0 + Jl - cos0 
sm2 = - 2 

0 _ + Jl + cos0 cos 2 - _ 2 

2 sin a sin p = cos ( a - P) - cos ( a + P) 

2cosacosP = cos (a- P) + cos (a+ P) 

2sinacosP = sin(a+P) +sin(a-P) 

2cosasinP = sin(a+P)-sin(a-P) 

cosa + cos p = 2 cos ( a ; p) cos ( a ; P) 

cosa - cos P = - 2 sin ( a ; p) sin ( a ; p) 
A cos (x) + Bsin (x) = JA 2 + B2 cos (x- tan -I (Bl A)) 

A.5 Partial Fraction Expansion 

Partial fraction expansion (PFE) is the name given to the process of expanding the ratio of polynomials into the 
sum of ratios of smaller polynomials. The first step is to make sure that the degree of the denominator is greater 
than the degree of the numerator (not greater than or equal to). If this isn't the case, then perform long division 
on the offending fraction until you have something you can work with. PFE is quite useful in a variety of situa­
tions, especially when doing inverse Laplace or Z-transforms. The easiest way to describe the process is 
through the following examples: 

Example 1: 
2s + 3 2s + 3 A B 5 3 

X(s) = =-----=--+-- =-----
s2+7s+ 12 (s+4) (s+3) s+4 s+3 s+4 s+3 

Example 2: X(s) 
2s3 8s A B 4 4 

= -- = 2s + -- = 2s + -- + -- = 2s + -- + --
s2 - 4 s2 - 4 s - 2 s + 2 s - 2 s + 2 

The values for A and Bin the above examples are known as the residues or residuals. How did we find these 
values? Well, it depends on the situation: 
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Linear, Non-Repeating Factors 

For denominator polynomials that can be broken up into simple first-order (non-repeating) factors, solving for 
the residuals is actually quite easy. The general procedure is: 

PFE for linear, non-repeated factors 

k; = X(s)(s-p;) ls=p, 

One of the previous examples using this method: 

X(s) = 
2s+ 3 

(s+4) (s+3) 
A B 

= --+--
s+4 s+3 

A = 2s+ 31 = 5 
s+3 s=-4 

Always check your work by plugging in for 
A and B and recombining into one denominator! 

B = 2s + 31 = _3 
s + 4 s = -3 

Linear, Repeating Factors 

What about polynomials with multiple order roots? This becomes a bit more complicated. 

PFE for linear repeated factors 

A = .l(nk [N(s)]) I 
k k! s G(s) 

s = Pi 

Dk = differentiation of the kth 
s order with respect to s 

The above formula is somewhat difficult to remember and is probably best used when programming a 
computer to do partial fraction expansion for you. Let's try another method for handing linear repeated factors. 
When finding the residual for the highest power term in the expansion of a repeated root, note that the above 
formula reduces to the standard procedure for non-repeated roots. To illustrate, let's dive into an example: 

X(s) = 
(s+2) 3(s+l) 

Ao A, Ai B 
= ---+---+---+--

(s+2)3 (s+2) 2 (s+2) s+l 

A 0 = X(s)(s+2)31,=_2 = -1 B = X(s)(s+l)ls=-I = 1 
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Now, how are we going to find A I and A2 ? One method would be: plug in for A 0 and B, recombine into one 
fraction ; match coefficients on appropriate powers of s in the resulting numerator to the coefficients of s in the 
original numerator of X(s); and solve the resulting system of equations for A I and A2 • Another method is to 
subtract off the highest order term from both sides, and repeat the PFE procedure until all residuals are found. 
The example is finished using the latter method as shown below: 

subtract from both sides 

1 X -1 Al A2 
X(s) = ------,---- = --- + --- + --- + --

(s + 2) 3 (s + l) (s+2)3 (s+2)2 (s+2) s+l 

Xnew(s) = -(s_+_2_)...,.3_(_s_+_l_) 
-1 

(s + 2) 3 

Al A2 
xnew<s) = _(_s_+_2_)-,,2 + -(s_+_2_) + s-+-1 

I s + I = ------+------
(s+2)3(s+ I) (s+2) 3(s+ I) 

repeat subtraction procedure to find A2 

(s+2) 2(s+l) 

Complex Roots 

Sometimes factoring the denominator of X(s) (with real coefficients) will lead to complex conjugate roots. In 
that case, the residuals are always complex conjugates of each other. Take the following example: 

X(s) = 
s2 + 2s + 2 

1 ----=----------( s + ( I + j) ) ( s + ( I - j) ) 
= 

A A* 
----+----
s + ( 1 + j) s + ( 1 - j) 

A= X(s)(s+ (1 +j))I _ 1 = - 2~ 
s-- -1 j 

Nonlinear Factors 

What if you don't want to factor the denominator of X(s) into possibly complex roots? For second order terms, 
completing the square might prove useful. Otherwise, leave the higher order term as is and use a polynomial 
for its residual (the polynomial should be one order less than the denominator). Take the following example: 

25 As+B C 
X(s) = ------­

(s2 + 2s + 10) (s + 5) 
= ----+--

s2 + 2s + 10 s + 5 

get A and B by cross multiplying and 
matching coefficients in numerators 

(A+ C) s2 + (5A + B + 2C) s + (5B + JOC) = 25 

A +C = 0 5A +B +2C = 0 5B+ JOC = 25 
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A.6 Logarithms 

The logarithm is an extremely common mathematical function that for some reason often strikes fear in the 
hearts of many students. Logarithms (or "logs" for short) become much easier to deal with when you remember 
that they are the inverse operation of exponentiation. For example, 103 = 1000 and log 101000 = 3. Loga­
rithms are useful for amplifying differences in very small values yet at the same time compressing differences 
in very large values; the difference between log 101000 and log 10100 is the same as the difference between 
log 100.1 and log 100.01 . Here is a plot illustrating the inverse relationship between exponents and logarithms: 

Y = 10x y=x 

In the previous examples, the number 10 is known as the base of the logarithm. When the base is I 0, it is often 
omitted, in which case the function is called the common logarithm. When the base is the transcendental 
number e (2.718281828 ... ), the function is written as In and is known as the natural logarithm. Logarithms can 
exist in any base, and there is a simple way of converting between them. But first, implant the following core 
relationship between logarithms and exponentiation firmly in your brain; use the arrows to help you remember. 

How Logarithms Work 

a7 = b Io g b """;;;- ? 
a~ 

some data points 

base conversion 

multiplication = addition 

division = subtraction 

inverse operations 

exponents in logs 

Properties of Logarithms 
(for any base a>0) 

loga(0) = -oo (a> I) 

log/negative num) = undefined 

= In (b) _ log (b) = logi 
In (a) - log (a) logca 

log a (x/y) = log~ - logaY 

alog,;: = X elnx = X 
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Examples 

1. Verify the following relationships: 

log 100 = 2 20log0.001 = -60 e-ln2 = 0.5 

2. Solve for x in the following equation: 2x = 5 

x = log 5 = log 5 = 
2 log2 

0.699 = 2 322 
0.301 . 

3 

3. Evaluate L 2xdx 

3 3 3 1 13 L 2xdx = L eln (2") dx = Le (ln2) xdx = ln2 e (ln2) x o = 10.1 

A.7 Sequences and Series 

Taylor Series 

A Taylor series expansion is a polynomial of infinite length used for approximating functions around a 
particular operating point. The number of terms used depends on the accuracy desired in the approximation. 
The series expansion can be derived using the following procedure: 

If a function and all its higher order derivatives are known at point a, then the func­
tion evaluated at point x can be found by using the following formula. The closer x 
is to a, the fewer terms you need for accurate results. 

n=O 

Examples 

_l_ = ~ xn = 1 + x + x 2 + x3 + . . . for lxl < 1 
I -x L..i 

n=O 

~ !'. 
L..i n! 
n=O 

x x2 x3 
= 1+-+-+-+ .. 

1 ! 2! 3! . 

n=O 

118 Signals and Systems Made Ridiculously Simple 

f'(a) = n th derivative off evaluated at a 

cos (x) = ~ (-l)nx2n = 
L..i (2n)! 
n=O 

sin (x) = ~ ( -1) n x2n + 1 = X _ ::= + ~ _ £ + ... 
L..i ( 2n + 1) ! 3 ! 5 ! 7 ! 
n=O 

for lxl < 1 

In all cases, the smaller xis, the fewer terms you need ... 



Other Useful Formulas 

A Definition of e 

Infinite Geometric Series 

Finite Geometric Series 

Positive Numbers 

Odd Numbers 

Examples with Infinite Series 
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Jim ( 1 + ~)n = ex 
n ➔ oo n 

~ 

~ al 
al 4.J rn = al + al r + al r2 + al r3 + . . . = 1 - r lrl < 1 

n=O 

N 

a1Lrn 

n=O 

al(l-rN+I) 
= a 1 +a1r+a1r 2 + .. . +a1rN = -----
~ 1-r 

N+l terms 

N 

Ln = 1+2+3+4+5+ . .. +N = N(N/l) 

n = I 

N 

L ( 2n - 1) = 1 + 3 + 5 + 7 + 9 + . .. + ( 2N - 1) = N2 
n = I 

The rest of this section illustrates a few applications of infinite series. See how many you can solve without 
looking at the solutions that follow. Some of them are rather tricky! 

Problems 

1. Express 0.32432432 . .. as a fraction. 

2. Evaluate 

~ 

3. Evaluate ~ 1 
4.J(n+l)n 
n = I 

4. Evaluate the following repeating fraction: 

2 
-----=? 

2 
2+ 2 

2+--
2 + ... 

5. Find the equivalent resistance between A and B 
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Solutions 

1. o.324 = 324 < 1 o-3) + 324 < 10-6) + 324 < 1 o-9) + ... = 324 , 10-3) = 324 =I 12 I 
1 - IQ-3 999 37 

2. 

!+(!)2+(!)3+ = 2 2 2 ... 
0.5 

1 -0.5 

+ (1)2 (1)3 0.25 2 + 2 + . . . = 1 - 0.5 = 0.5 

2 
1 -0.5 

cancels cancels 
~ ~ ~ 

3. = IU-n!1) = ( 1 -D+U-D+O-D+ ... +U-n!1) 
n=l 

= Jim ( 1 - - 1 ) =Jil n ➔ ~ n+l LJ 

4. Rewrite repeating fraction as 2 
-- =x 
2+x 

⇒ x2 + 2x-2 = 0 

⇒ X = - 1 + J3 =I 0.7321 

5. If xis the equivalent resistance between points A and B, then the circuit can be redrawn as: 
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x=lQ+lnllx 

⇒ X = 1 + ___:::_ 
x+l 

⇒ x2 -x-1 = 0 

(the negative solution is rejected) 
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A.8 Binomial Expansion 

The general formula for the expansion of a binomial raised to a power is: 

(a+ b)n = ± (:) an-kbk where (n) =n(n-1) (n-2) ... (n-(k-1)) 
k k! 

k=O 

An often used form of the above formula is: 

(l+x)n = l+nx+(;)x2 +(;)x3 + ... xn 

== 1 + nx if x is small 

= kl(:~ k) ! if n is a positive integer 

A less commonly known fact is that the power "n" does not always have to be an integer: 

3/(l +x) = 1 (l/3) (1/3)(-2/3) 2 (1/3)(-2/3)(-5/3) 3 
✓ + X + 2 ! X + 3 ! X + ... 

A.9 Linear Algebra 

Linear algebra facilitates the analysis oflarge linear time-invariant systems and becomes practically mandatory 
when dealing with multiple-input, multiple-output systems. Matrices provide a useful, compact representation 
for the state equations of a system. Once a system is in matrix or "state-space" form, there are a wide variety of 
system properties that can be derived directly from the state transition matrix. Another advantage is that once 
in matrix form, systems can be easily analyzed using a computer software package such as MATLAB. 

Since this book is primarily concerned with single-input, single-output systems, a thorough review of linear 
algebra will be left for another book. In the meantime, it is suggested that the reader refer to a linear algebra 
textbook such as Introduction to Linear Algebra by Strang (1993) if necessary. 
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