


No one likes a know-it-all. Most of us realize there’s no such thing—
how could there be? The world is far too complicated for someone 
to understand everything there is to know. So when you come across 
a know-it-all, you smile to yourself as they ramble on because you 
know better.

You understand that the quest for knowledge is a never-ending one, 
and you’re okay with that. You have no desire to know everything, just 
the next thing. You know what you don’t know, you’re confident enough 
to admit it, and you’re motivated to do something about it.

At Idiot’s Guides, we, too, know what we don’t know, and we make 
it our business to find out. We find really smart people who are 
experts in their fields and then we roll up our sleeves and get to work, 
asking lots of questions and thinking long and hard about how best 
to pass along their knowledge to you in the easiest, most-accessible 
way possible.

After all, that’s our promise—to make whatever you want to learn  
“As Easy as It Gets.” That means giving you a well-organized design 
that seamlessly and effortlessly guides you from page to page, topic 
to topic. It means controlling the pace you’re asked to absorb new 
information—not too much at once but just what you need to know 
right now. It means giving you a clear progression from easy to more 
difficult. It means giving you more instructional steps wherever 
necessary to really explain the details. And it means giving you fewer 
words and more illustrations wherever it’s better to show rather 
than tell.

So here you are, at the start of something new. The next chapter in 
your quest. It can be an intimidating place to be, but you’ve been here 
before and so have we. Clear your mind and turn the page. By the end 
of this book, you won’t be a know-it-all, but your world will be a little 
less complicated than it was before. And we’ll be sure your journey is 
as easy as it gets.

Mike Sanders 
Publisher, Idiot’s Guides
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Foreword
Here’s a new one—a calculus book that doesn’t take itself too seriously! I can honestly say that in 
all my years as a math major, I’ve never come across a book like this.

My name is Danica McKellar. I am primarily an actress and filmmaker (probably most recog-
nized by my role as “Winnie Cooper” on The Wonder Years), but a while back I took a 4-year 
sidetrack and majored in Mathematics at UCLA. During that time I also co-authored the proof of 
a new math theorem and became a published mathematician. What can I say? I love math!

But let’s face it. You’re not buying this book because you love math. And that’s okay. Frankly, 
most people don’t love math as much as I do … or at all, for that matter. This book is not for the 
dedicated math majors who want every last technical aspect of each concept explained to them in 
precise detail.

This book is for every Bio major who has to pass two semesters of calculus to satisfy the univer-
sity’s requirements. Or for every student who has avoided mathematical formulas like the plague, 
but is suddenly presented with a whole textbook full of them. I knew a student who switched 
majors from chemistry to English, in order to avoid calculus!

Mr. Kelley provides explanations that give you the broad strokes of calculus concepts—and then 
he follows up with specific tools (and tricks!) to solve some of the everyday problems that you 
will encounter in your calculus classes.

You can breathe a sigh of relief—the content of this book will not demand of you what your other 
calculus textbooks do. I found the explanations in this book to be, by and large, friendly and 
casual. The definitions don’t concern themselves with high-end accuracy, but will bring home 
the essence of what the heck your textbook was trying to describe with their 50-cent math words. 
In fact, don’t think of this as a textbook at all. What you will find here is a conversation on paper 
that will hold your hand, make jokes(!), and introduce you to the major topics you’ll be required 
to learn for your current calculus class. The friendly tone of this book is a welcome break from 
the clinical nature of every other math book I’ve ever read!

And oh, Mr. Kelley’s colorful metaphors—comparing piecewise functions to Frankenstein’s body 
parts—well, you’ll understand when you get there.

My advice would be to read the chapters of this book as a nonthreatening introduction to the 
basic calculus concepts, and then for fine-tuning, revisit your class’s textbook. Your textbook 
explanations should make much more sense after reading this book, and you’ll be more confident 
and much better qualified to appreciate the specific details required of you by your class. Then 
you can remain in control of how detailed and nitpicky you want to be in terms of the math-
ematical precision of your understanding by consulting your “unfriendly” calculus textbook.



Congratulations for taking on the noble pursuit of calculus! And even more congratulations to 
you for being proactive and buying this book. As a supplement to your more rigorous textbook, 
you won’t find a friendlier companion.

Good luck!

Danica McKellar 
Actress, summa cum laude, Bachelor of Science in Pure Mathematics at UCLA



Introduction
Let’s be honest. Most people would like to learn calculus as much as they’d like to be kicked in 
the face by a mule. Usually, they have to take the course because it’s required or they walked too 
close to the mule, in that order. Calculus is dull, calculus is boring, and calculus didn’t even get 
you anything for your birthday.

It’s not like you didn’t try to understand calculus. You even got this bright idea to try and read 
your calculus textbook. What a joke that was. You’re more likely to receive the Nobel Prize for 
chemistry than to understand a single word of it. Maybe you even asked a friend of yours to help 
you, and talking to her was like trying to communicate with an Australian aborigine. You guys 
just didn’t speak the same language.

You wish someone would explain things to you in a language that you understand, but in the 
back of your mind, you know that the math lingo is going to come back to haunt you. You’re 
going to have to understand it in order to pass this course, and you don’t think you’ve got it in 
you. Guess what? You do!

Here’s the thing about calculus: things are never as bad as they seem. The mule didn’t mean it, 
and I know this great plastic surgeon. I also know how terrifying calculus is. The only thing 
scarier than learning it is teaching it to 35 high school students in a hot, crowded room right 
before lunch. I’ve fought in the trenches at the front line and survived to tell the tale. I can even 
tell it in a way that may intrigue, entertain, and teach you something along the way.

We’re going to journey together for a while. Allow me to be your guide in the wilderness that is 
calculus. I’ve been here before and I know the way around. My goal is to teach you all you’ll need 
to know to survive out here on your own. I’ll explain everything in plain and understandable 
English. Whenever I work out a problem, I’ll show you every step (even the simple ones) and 
I’ll tell you exactly what I’m doing and why. Then you’ll get a chance to practice the skill on 
your own without my guidance. Never fear, though—I answer the question for you fully and 
completely in the back of the book.

I’m not going to lie to you. You’re not going to find every single problem easy, but you will even-
tually do every one. All you need is a little push in the right direction, and someone who knows 
how you feel. With all these things in place, you’ll have no trouble hoofing it out. Oh, sorry, 
that’s a bad choice of words.

How This Book Is Organized
This book is presented in five parts.

In Part 1, The Roots of Calculus, you’ll learn why calculus is useful and what sorts of skills it 
adds to your mathematical repertoire. You’ll also get a taste of its history, which is marred by 
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quite a bit of controversy. Being a math person, and by no means a history buff, I’ll get into the 
math without much delay. However, before we can actually start discussing calculus concepts, 
we’ll spend some quality time reviewing some prerequisite algebra and trigonometry skills.

In Part 2, Laying the Foundation for Calculus, it’s time to get down and dirty. This is the 
moment you’ve been waiting for. Or is it? Most people consider calculus the study of derivatives 
and integrals, and we don’t really talk too much about those two guys until Part 3. Am I just a 
royal tease? Nah. First, we have to talk about limits and continuity. These foundational con-
cepts constitute the backbone for the rest of calculus, and without them, derivatives and integrals 
couldn’t exist.

Finally, we meet one of the major players in Part 3, The Derivative. The name says it all. All 
of your major questions will be answered, including what a derivative is, how to find one, and 
what to do if you run into one in a dark alley late at night. (Run!) You’ll also learn a whole slew 
of major derivative-based skills: drawing graphs of functions you’ve never seen, calculating how 
quickly variables change in given functions, and finding limits that once were next to impossible 
to calculate. But wait, there’s more! How could something called a “wiggle graph” be anything 
but a barrel of giggles?

In Part 4, The Integral, you meet the other big boy of calculus. Integration is almost the 
same as differentiation, except that you do it backward. Intrigued? You’ll learn how the area 
underneath a function is related to this backward derivative, called an “antiderivative.” It’s also 
time to introduce the Fundamental Theorem of Calculus, which (once and for all) describes 
how all this crazy stuff is related. You’ll find out that integrals are a little more disagreeable 
than derivatives were; they require you to learn more techniques, some of which are extremely 
interesting and (is it possible?) even a little fun!

Now that you’ve met the leading actor and actress in this mathematical drama, what could pos-
sibly be left? The love story, of course! In Part 5, Differential Equations, I weave a beautiful 
narrative detailing the intricate relationship between derivatives and integrals sharing their lives 
together in a small, rural suburban neighborhood. Well, that’s not entirely true, but you do get 
to play with fun things called slope fields and you end this part by taking an exam on all the 
content in the book and get even more practice! What could be better than that?

At the back of the book, I’ve included the solutions to all the practice problems as well as a glos-
sary of helpful terms.
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Extras
As a teacher, I constantly found myself going off on tangents—everything I mentioned reminded 
me of something else. These peripheral snippets are captured in this book as well. Here’s a guide 
to the different sidebars you’ll see peppering the pages that follow.

CRITICAL POINT

These notes, tips, and thoughts will assist, teach, and entertain. They add 
a little something to the topic at hand, whether it be sound advice, a bit of 
wisdom, or just something to lighten the mood a bit.

DEFINITION

Calculus is chock-full of crazy- and nerdy-sounding words and phrases. In 
order to become King or Queen Math Nerd, you’ll have to know what they 
mean!

KELLEY’S CAUTIONS

Although I will warn you about common pitfalls and dangers throughout 
the book, the dangers in these boxes deserve special attention. Think of 
these as skulls and crossbones painted on little signs that stand along your 
path. Heeding these cautions can sometimes save you hours of frustration.

YOU’VE GOT PROBLEMS

Math is not a spectator sport! After we discuss a topic, I’ll explain how to 
work out a certain type of problem, and then you have to try it on your 
own. These problems will be very similar to those that I walk you through 
in the chapters, but now it’s your turn to shine. Even though all the answers 
appear in Appendix A, you should only look there to check your work.

Dedication
This book is dedicated to Lisa, who is no Linda Ronstadt. Despite not knowing much, I know I 
love you. I also know that one day our hit single about ham that we dropped on the floor will be 
a worldwide phenomenon.
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To my kids Nick, Erin, and Sara. I know that I will miss the noise (God in heaven, the noise) of 
you playing while I am working. One day soon you will be old enough to have loud children of 
your own. I love you very much. Now please shush—Dad is trying to write.

Finally, to Joe. It was a home run.

Special Thanks to the Technical Reviewers
Idiot’s Guides: Calculus I was reviewed by Robert Halstead, an expert who double-checked the 
accuracy of what you’ll learn here. He’s also the kind of super nice guy who helps you move 
furniture even when his shoulder is hanging out of its socket. The publisher would like to extend 
our thanks to Rob for helping us ensure that this book gets all its facts straight. We also thank 
Sue Strickland, who reviewed the previous editions and is still the best mathematics instructor 
that ever was.

Rob is a mathematics teacher at Northern High School in Calvert County, Maryland, with 22 
years of teaching experience. He spent the last 15 of those years teaching Advanced Placement 
Calculus. He has served as the Mathematics Core Lead and department chair at his school, and 
he was chosen as the school’s Teacher of the Year in 2012.

Susan received a BS in Mathematics from St. Mary’s College of Maryland in 1979, an MS  
in Mathematics from Lehigh University in Bethlehem, Pennsylvania, in 1982, and took  
graduate courses in Mathematics Education at The American University in Washington, 
D.C., from 1989 through 1991. She was an assistant professor of mathematics and supervised 
student mathematics teachers at St. Mary’s College of Maryland from 1983 through 2001. In 
the summer of 2001, she accepted the position as a professor of mathematics at the College of 
Southern Maryland, where she expects to be until she retires! Her interests include teaching 
mathematics to the “math phobics,” training new math teachers, and solving math games and 
puzzles.



PART

1
The Roots of Calculus

You’ve heard of Newton, haven’t you? If not the man, then at least the fruit-filled cookie? Well, 
the Sir Isaac variety of Newton is one of the two men responsible for bringing calculus into your 
life and your course-requirement list (or maybe I should say, one of the two men who should 
shoulder the blame). Calculus’s history is long, however, and its concepts predate either man. 
Before we start studying calculus, we’ll take a (very brief) look at its history and development and 
answer that sticky question: “Why do I have to learn this?”

Next, it’s off to practice our prerequisite math skills. You wouldn’t try to bench-press 300 pounds 
without warming up first, would you? A quick review of linear equations, factoring, quadratic 
equations, function properties, and trigonometry will do a body good. Even if you think you’re 
ready to jump right into calculus, this brief review is recommended. I bet you’ve forgotten a few 
things you’ll need to know later, so take care of that now!





CHAPTER

1
What Is Calculus, Anyway?

In This Chapter
• Why calculus is useful

• The historic origins of 
calculus

• The authorship 
controversy

• Can I ever learn this?

The word calculus can mean one of two things: a computa-
tional method or a mineral growth in a hollow organ of the 
body, such as a kidney stone. Either definition personifies the 
pain and anguish often endured by students trying to under-
stand the subject. It is far from controversial to suggest that 
mathematics is not the most popular of subjects in contempo-
rary education; in fact, calculus holds the great distinction of 
King of the Evil Math Realm, especially by the math phobic. 
It represents an unattainable goal, an unthinkable miasma of 
confusion and complication, and few venture into its realm 
unless propelled by such forces as job advancement or degree 
requirement. No one knows how much people fear calculus 
more than a calculus teacher.

The minute people find out I taught a calculus class, they 
are compelled to describe, in great detail, exactly how they 
did in high school math, what subject they “topped out” in, 
and why they feel that calculus is the embodiment of evil. 
Most of these people are my barbers, and I can’t explain why. 
All of the friendly folks at the Hair Cuttery have come to 
know me as the strange balding man with arcane and baffling 
mathematical knowledge.
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Most of the fears surrounding calculus are unjustified. Calculus is a step up from high school 
algebra, no more. Following a straightforward list of steps, just like you do with most algebra 
problems, solves the majority of calculus problems. Don’t get me wrong—calculus is not always 
easy, and the problems are not always trivial, but it is not as imposing as it seems. Calculus is a 
truly fascinating tool with innumerable applications to “real life,” and for those of you who like 
soap operas, it’s got one of the biggest controversies in history to its credit.

CRITICAL POINT

What we call “calculus,” scholars call “the calculus.” Because any method 
of computation can be called a calculus and the discoveries comprising 
modern-day calculus are so important, the distinction is made to clarify. 
I personally find the terminology a little pretentious and won’t use it. I’ve 
never been asked, “Which calculus are you talking about?”

What’s the Purpose of Calculus?
Calculus is a very versatile and useful tool, not a one-trick pony by any stretch of the 
imagination. Many of its applications are direct upgrades from the world of algebra—methods 
of accomplishing similar goals, but in a far greater number of situations. Whereas it would be 
impossible to list all the uses of calculus, the following list represents some interesting highlights 
of the things you will learn by the end of the book.

Finding the Slopes of Curves
One of the earliest algebra topics learned is how to find the slope of a line—a numerical value 
that describes just how slanted that line is. Calculus affords us a much more generalized method 
of finding slopes. With it, we can find not only how steeply a line slopes, but indeed, how steeply 
any curve slopes at any given time. This might not at first seem useful, but it is actually one of 
the most handy mathematics applications around.

Calculating the Area of Bizarre Shapes
Without calculus, it is difficult to find areas of shapes other than those whose formulas you 
learned in geometry. Sure, you may be a pro at finding the area of a circle, square, rectangle, or 
triangle, but how would you find the area of a shape like the one shown in Figure 1.1?
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Figure 1.1 
Calculate this area? We’re certainly not in Kansas anymore ….

Justifying Old Formulas
There was a time in your math career when you took formulas on faith. Sometimes we still need 
to do that, but calculus affords us the opportunity to finally verify some of those old formulas, 
especially from geometry. You were always told that the volume of a cone was one-third the 
volume of a cylinder with the same radius π( )=V r h1

3
2 , but through a simple calculus process 

of three-dimensional linear rotation, we can finally prove it. (By the way, the process really is 
simple even though it may not sound like it right now.)

Calculating Complicated x-Intercepts
Without the aid of a graphing calculator, it is exceptionally hard to calculate an irrational root. 
However, a simple, repetitive process called Newton’s Method (named after Sir Isaac Newton) 
enables you to calculate an irrational root to whatever degree of accuracy you desire.

DEFINITION

An irrational root is an x-intercept that is not a fraction. Fractional 
(rational) roots are much easier to find, because you can typically factor the 
expression to calculate them, a process that is taught in the earliest algebra 
classes. No good, generic process of finding irrational roots is possible until 
you use calculus.

Visualizing Graphs
You may already have a good grasp of lines and how to visualize their graphs easily, but what 
about the graph of something like y = x3 + 2x2 – x + 1? Very elementary calculus tells you exactly 
where that graph will be increasing, decreasing, and twisting. In fact, you can find the highest 
and lowest points on the graph without plotting a single point.
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Finding the Average Value of a Function
Anyone can average a set of numbers, given the time and the fervent desire to divide. Calculus 
enables you to take your averaging skills to an entirely new level. Now you can even find, on 
average, what height a function travels over a period of time. For example, if you graph the path 
of an airplane (see Figure 1.2), you can calculate its average cruising altitude with little or no 
effort. Determining its average velocity and acceleration are no harder. You may never have had 
the impetus to do such a thing, but you’ve got to admit that it’s certainly more interesting than 
averaging the odd numbers less than 50.

Figure 1.2 
Even though this plane’s flight path is not defined by a simple shape (like a semicircle), using calculus 

you can calculate all sorts of things, like its average altitude during the journey or the number of 
complimentary peanuts you dropped when you fell asleep.

Calculating Optimal Values
One of the most mind-bendingly useful applications of calculus is the optimization of functions. 
In just a few steps, you can answer questions such as “If I have 1,000 feet of fence, what is the 
largest rectangular yard I can make?” or “Given a rectangular sheet of paper which measures 
8.5 inches by 11 inches, what are the dimensions of the box I can make containing the greatest 
volume?” The traditional way to create an open box from a rectangular surface is to cut 
congruent squares from the corners of the rectangle and then to fold the resulting sides up, as 
shown in Figure 1.3.

Figure 1.3 
With a few folds and cuts, you can easily create an open box from a regular surface.

Flight path 

Average height
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I tend to think of learning calculus and all of its applications as suddenly growing a third arm. 
Sure, it may feel funny having a third arm at first. In fact, it’ll probably make you stand out in 
bizarre ways from those around you. However, given time, you’re sure to find many uses for that 
arm that you’d have never imagined without having first possessed it.

Who’s Responsible for This?
Tracking the discovery of calculus is not as easy as, say, tracking the discovery of the safety pin. 
Any new mathematical concept is usually the result of hundreds of years of investigation, debate, 
and debacle. Many come close to stumbling upon key concepts, but only the lucky few who 
finally make the small, key connections receive the credit. Such is the case with calculus.

Calculus is usually defined as the combination of the differential and integral techniques you 
will learn later in the book. However, historical mathematicians would never have swallowed the 
concepts we take for granted today. The key ingredient missing in mathematical antiquity was the 
hairy notion of infinity. Mathematicians and philosophers of the time had an extremely hard time 
conceptualizing infinitely small or large quantities. Take, for instance, the Greek philosopher Zeno.

Ancient Influences
Zeno took a very controversial position in mathematical philosophy: he argued that all motion 
is impossible. In the paradox titled Dichotomy, he used a compelling, if not strange, argument 
illustrated in Figure 1.4.

Figure 1.4 
The infinite subdivisions described in Zeno’s Dichotomy.

d1

d2
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CRITICAL POINT

The most famous of Zeno’s paradoxes is a race between a tortoise and the 
legendary Achilles called, appropriately, Achilles and the Tortoise. Zeno 
contends that if the tortoise has a head start, no matter how small, Achilles 
will never be able to close the distance. To do so, he’d have to travel half of 
the distance separating them, then half of that, ad nauseum, presenting the 
same dilemma illustrated by the Dichotomy paradox.

In Zeno’s argument, the individual pictured wants to travel to the right, to his eventual destina-
tion. However, before he can travel that distance (d1), he must first travel half of that distance (d2). 
That makes sense, since d2 is smaller and comes first in the path. However, before the d2 distance 
can be completed, he must first travel half of it (d3). This procedure can be repeated indefinitely, 
which means that our beleaguered sojourner must travel an infinite number of distances. No 
one can possibly do an infinite number of things in a finite amount of time, says Zeno, since an 
infinite list will never be exhausted. Therefore, not only will the man never reach his destination, 
he will, in fact, never start moving at all! This could account for the fact that you never seem to 
get anything done on Friday afternoons.

Zeno didn’t actually believe that motion was impossible. He just enjoyed challenging the theories 
of his contemporaries. What he, and the Greeks of his time, lacked was a good understanding 
of infinite behavior. It was unfathomable that an innumerable number of things could fit into a 
measured, fixed space. Today, geometry students accept that a line segment, though possessing 
fixed length, contains an infinite number of points. The development of a reasonable and yet 
mathematically sound concept of very large quantities or very small quantities was required 
before calculus could sprout.

CRITICAL POINT

In case the suspense is killing you, let me ruin the ending for you. The 
essential link to completing calculus and satisfying everyone’s concerns 
about infinite behavior was the concept of limit, which laid the foundation 
for both derivatives and integrals.

Some ancient mathematicians weren’t troubled by the apparent contradiction of an infinite 
amount in a finite space. Most notably, Euclid and Archimedes contrived the method of 
exhaustion as a technique to find the area of a circle, since the exact value of π wouldn’t be 
around for some time. In this technique, regular polygons were inscribed in a circle; the higher 
the number of sides of the polygon, the closer the area of the polygon came to the area of the 
circle (see Figure 1.5).
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Figure 1.5 
The higher the number of sides, the closer the area of the inscribed polygon comes to 

approximating the area of the circle.

In order for the method of exhaustion (which is aptly titled, in my opinion) to give the exact 
value for the circle, the polygon would have to have an infinite number of sides. Indeed, this 
magical incarnation of geometry can only be considered theoretically, and the idea that a shape 
of infinite sides could have a finite area made most people of the time very antsy. However, 
seasoned calculus students of today can see this as a simple limit problem. As the number of sides 
approaches infinity, the area of the polygon approaches πr2, where r is the radius of the circle. 
Limits are essential to the development of both the derivative and integral, the two fundamental 
components of calculus.

Although Newton and Leibniz were unearthing the major discoveries of calculus in the late 
1600s and early 1700s, no one had established a formal limit definition. Although this may not 
keep us up at night, it was, at the least, troubling at the time. Mathematicians worldwide started 
sleeping more soundly at night circa 1751, when Jean Le Rond d’Alembert wrote Encyclopédie and 
established the formal definition of the limit. The delta-epsilon definition of the limit we use 
today is very close to that of d’Alembert.

Even before its definition was established, however, Newton had given a good enough shot at it 
that calculus was already taking shape.

Newton vs. Leibniz
Sir Isaac Newton, who was born in poor health in 1642 but became a world-renowned smart 
guy (even during his own time), once retorted, “If I have seen farther than Descartes, it is 
because I have stood on the shoulders of giants.” No truer thing could be said about any major 
mathematical discovery, but let’s not give the guy too much credit for his supposed modesty 
(more to come on that in a bit). Newton realized that infinite series (e.g., the method of 
exhaustion) were not only great approximators, but if allowed to actually reach infinity, they gave 
the exact values of the functions they approximated. Therefore, they behaved according to easily 
definable laws and restrictions usually only applied to known functions. Most importantly, he 
was the first person to recognize and utilize the inverse relationship between the slope of a curve 
and the area beneath it.
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That inverse relationship (contemporarily called the Fundamental Theorem of Calculus) marks 
Newton as the inventor of calculus. He published his findings, and his intuitive definition of a 
limit, in his 1687 masterwork entitled Philosophiæ Naturalis Principia Mathematica. The Principia, 
as it is more commonly known today, is considered by some (those who consider such things, 
I suppose) to be the greatest scientific work of all time, excepting of course any books yet to 
be written by the comedian Sinbad. Calculus was actively used to solve the major scientific 
dilemmas of the time:

• Calculating the slope of the tangent line to a curve at any point along its length

• Determining the velocity and acceleration of an object given a function describing 
its position, and designing such a position function given the object’s velocity or 
acceleration

• Calculating arc lengths and the volume and surface area of solids

• Calculating the relative and absolute extrema of objects, especially projectiles

DEFINITION

Extrema points are high or low points of a curve (maxima or minima, 
respectively). In other words, they represent extreme values of the 
graph, whether extremely high or extremely low, in relation to the points 
surrounding them.

However, with a great discovery often comes great controversy, and such is the case with calculus.

Enter Gottfried Wilhelm Leibniz, child prodigy and mathematical genius. Leibniz was born 
in 1646 and completed college, earning his Bachelor’s degree, at the ripe old age of 17. Because 
Leibniz was primarily self-taught in the field of mathematics, he often discovered important 
mathematical concepts on his own, long after someone else had already published them. Newton 
actually credited Leibniz in his Principia for developing a method similar to his. That similar 
method evolved into a near match of Newton’s work in calculus, and in fact, Leibniz published 
his breakthrough work inventing calculus before Newton, although Newton had already made the 
exact discovery years before Leibniz. Some argue that Newton possessed extreme sensitivity 
to criticism and was, therefore, slow to publish. The mathematical war was on: who invented 
calculus first and thus deserved the credit for solving a riddle thousands of years old?

CRITICAL POINT

Ten years after Leibniz’s death, Newton erased the reference to Leibniz 
from the third edition of the Principia as a final insult. This is approximately 
the academic equivalent of Newton throwing a chair at Leibniz on The 
Jerry Springer Show (topic: “You published your solution to an ancient 
mathematical riddle before me and I’m fightin’ mad!”).
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Today, Newton is credited for inventing calculus first, although Leibniz is credited for its first 
publication. In addition, the shadow of plagiarism and doubt has been lifted from Leibniz, 
and it is believed that he discovered calculus completely independent of Newton. However, 
two distinct factions arose and fought a bitter war of words. British mathematicians sided with 
Newton, whereas continental Europe supported Leibniz, and the war was long and hard. In fact, 
British mathematicians were effectively alienated from the rest of the European mathematical 
community because of the rift, which probably accounts for the fact that there were no great 
mathematical discoveries made in Britain for some time thereafter.

Although Leibniz just missed out on the discovery of calculus, many of his contributions live on 
in the language and symbols of mathematics. In algebra, he was the first to use a dot to indicate 
multiplication (3 ∙ 4 = 12) and a colon to designate a proportion (1:2 = 3:6). In geometry, he 
contributed the symbols for congruent ( ≅ ) and similar (~). Most famous of all, however, are the 
symbols for the derivative and the integral, which we also use.

Will I Ever Learn This?
History aside, calculus is an overwhelming topic to approach from a student’s perspective. There 
are an incredible number of topics, some of which are related, but most of which are not in any 
obvious sense. However, there is no topic in calculus that is, in and of itself, very difficult once you 
understand what is expected of you. The real trick is to quickly recognize what sort of problem is 
being presented and then to attack it using the methods you will read and learn in this book.

CRITICAL POINT

Leibniz also coined the term function, which is commonly learned in an 
elementary algebra class. However, most of Leibniz’s discoveries and 
innovations were eclipsed by Newton, who made great strides in the topics 
of gravity, motion, and optics (among other things). The two men were 
bitter rivals and were fiercely competitive against each other.

I have taught calculus for a number of years, to high school students and adults alike, and I 
believe that there are four basic steps to succeeding in calculus:

Make sure to understand what the major vocabulary words mean. This book will present all important 
vocabulary terms in simple English, so you understand not only what the terms mean, but how 
they apply to the rest of your knowledge.

Sift through the complicated wording of the important calculus theorems and strip away the difficult language. 
Math is just as foreign a language as French or Spanish to someone who doesn’t enjoy numbers, 
but that doesn’t mean you can’t understand complicated mathematical theorems. I will translate 
every theorem into plain English and make all the underlying implications perfectly clear.
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Develop a mathematical instinct. As you read, I will help you recognize subtle clues presented by 
calculus problems. Most problems do everything but tell you exactly how they must be solved. If 
you read carefully, you will develop an instinct, a feeling that will tingle in your inner fiber and 
guide you toward the right answers. This comes with practice, practice, practice, so I’ll provide 
sample problems with detailed solutions to help you navigate the muddy waters of calculus.

Sometimes you just have to memorize. There are some very advanced topics covered in calculus that 
are hard to prove. In fact, many theorems cannot be proven until you take much more advanced 
math courses. Whenever I think that proving a theorem will help you understand it better, I will 
do so and discuss it in detail. However, if a formula, rule, or theorem has a proof that I deem 
unimportant to your mastering the topic in question, I will omit it, and you’ll just have to trust 
me that it’s for the best.

The Least You Need to Know
• Calculus is the culmination of algebra and geometry.

• Calculus as a tool enables us to achieve greater feats than the mathematics 
courses that precede it.

• Limits are foundational to calculus.

• Newton and Leibniz both discovered calculus independently, though Newton 
discovered it first.

• With time and dedication, anyone can be a successful calculus student.



CHAPTER

2
Polish Up Your Algebra Skills

In This Chapter
• Creating linear equations

• The properties of 
exponents

• Factoring polynomials

• Solving quadratic 
equations

If you are an aspiring calculus student, somewhere in your 
past you probably had to do battle with the beast called 
algebra. Not many people have positive memories associated 
with their algebraic experiences, and I am no different. Forget 
the fact that I was a math major, a calculus teacher, and even 
took my calculator to bed with me when I was young (a true 
but very sad story). I hated algebra for many reasons, not the 
least of which was that I felt I could never keep up with it. 
Every time I seemed to understand algebra, we’d be moving 
on to a new topic much harder than the last.

Being an algebra student is sort of like battling a famous 
boxer. Here is this champion of mathematical reasoning that 
has stood unchallenged for hundreds of years, and you’re in 
the ring going toe-to-toe with it. You never really reach back 
for that knockout punch because you’re too busy fending off 
your opponent’s blows. When the bell rings to signal the end 
of the fight, all you can think is “I survived!” and hope that 
someone can carry you out of the ring.

Perhaps you didn’t hate algebra as much as I did. You might 
be one of those lucky people who understood algebra easily. 
You are very lucky. For the rest of us, however, there is hope. 
Algebra is much easier in retrospect than when you were 
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first being pummeled by it. As calculus is a grand extension of algebra, you will, of course, need 
a large repertoire of algebra skills. So it’s time to slip those old boxing gloves back on and go a 
few rounds with your old sparring partner. The good news is you’ve undoubtedly gotten stronger 
since the last bout. If, however, a brief algebra review is not enough for you, pick up this book’s 
prequel, The Complete Idiot’s Guide to Algebra, by yours truly.

Walk the Line: Linear Equations
Graphs play a large role in calculus, and the simplest of graphs, the line, surprisingly pops up all 
the time. As such, it is important that you can recognize, write, and analyze graphs and equations 
of lines. To begin, remember that a line’s equation always has three components: two variable 
terms and a constant (numeric) term. One of the most common ways to write an equation is in 
standard form.

Common Forms of Linear Equations
A line in standard form looks like this: Ax + By = C. In other words, the variable terms are on the 
left side and the number is on the right side of the equal sign. Also, to officially be in standard 
form, the coefficients (A, B, and C) must be integers, and A is supposed to be positive. What’s 
the purpose of standard form? A linear equation can have many different forms (for example, 
x + y = 2 is the same line as x = 2 – y). However, once in standard form, all lines with the same 
graph have the exact same equation. Therefore, standard form is especially handy for instructors; 
they’ll often ask that answers be put into standard form to avoid alternate correct answers.

DEFINITION

An integer is a number without a decimal or fractional part. For example,  
3 and –6 are integers, whereas 10.3 and − 1

2  are not.

YOU’VE GOT PROBLEMS

Problem 1: Express in standard form:

3x – 4y – 1 = 9x + 5y – 12

There are two major ways to create the equation of a line. One requires that you have the slope 
and the y-intercept of the line. Appropriately enough, it is called slope-intercept form: y = mx + 
b. In this equation, m represents the slope and b the y-intercept. Notice the major characteristic 
of an equation in slope-intercept form: it is solved for y. In other words, y appears by itself on the 
left side of the equation.



Chapter 2: Polish Up Your Algebra Skills 15

Example 1: Write the equation of a line with slope –3 and y-intercept 5.

Solution: In slope intercept form, m = –3 and b = 5, so plug those into the slope-intercept formula: 

Another way to create a linear equation requires a little less information—only a point and 
the slope (the point doesn’t have to be the y-intercept). This (thanks to the vast creativity of 
mathematicians) is called point-slope form. Given the point (x1, y1) and slope m, the equation of 
the resulting line will be y – y1 = m(x – x1).

You will find this form extremely handy throughout the rest of your travels with calculus, so 
make sure you understand it. Don’t get confused between the x’s and x1’s or the y’s and the y1’s. 
The variables with the subscript represent the coordinates of the point you’re given. Don’t replace 
the other x and y with anything—these variables are left in your final answer. Watch how easy 
this is.

Example 2: If a line g contains the point (–5,2) and has slope − 1
5 , what is the equation of g in 

standard form?

Solution: Because you are given a slope and a point (which is not the y-intercept), you should use 
point-slope form to create the equation of the line. Therefore, = −m 1

5 , x1 = –5, and y1 = 2. Plug 
these values into point-slope form and get:

If this equation is supposed to be in standard form, you’re not allowed to have any fractions. 
Remember that the coefficients have to be integers, so to get rid of the fractions, multiply the 
entire equation by 5:

Now, move the variables to the left and the constants to the right and make sure the x term is 
positive; this puts everything in standard form:

x + 5y = 5

= +
= − +
y mx b
y x3 5

( )( )
( )

− = − − −

− = − +

y x

y x

2 5

2 5

1
5

1
5

( )− = − +

− = − −

y x

y x

5 10 5

5 10 5

YOU’VE GOT PROBLEMS

Problem 2: Find the equation of the line through point (0,–2) with slope 2
3  

and put it in standard form.
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Calculating Slope
You might have noticed that both of the ways we use to create lines absolutely require that you 
know the slope of the line. The slope of the line is that important (almost as important as wearing 
both shoes and a shirt if you want to buy a Slurpee at 7-Eleven). The slope of a line is a number 
that describes precisely how “slanty” that line is—the larger the value of the slope, the steeper 
the line. Furthermore, the sign of the slope (in most cases Capricorn) will tell you whether or not 
the line rises or falls as it travels.

Figure 2.1 
Calculating the slope of a line.

As shown in Figure 2.1, lines with shallower inclines have smaller slopes. If the line rises (from 
left to right), the slope is positive; if, however, it falls from left to right, the slope is negative. 
Horizontal lines have 0 slope (neither positive nor negative), and vertical lines are said to have an 
undefined slope, or no slope at all.

It is very easy to calculate the slope of any line: find any two points on the line, (a,b) and (c,d), 
and plug them into this formula:

= −
−slope d b
c a
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In essence, you are finding the difference in the y’s and dividing by the difference in the x’s. If the  
numerator is larger, the y’s are changing faster, and the line is getting steeper. On the other hand, 
if the denominator is larger, the line is moving more quickly to the left or right than up and 
down, creating a shallow incline.

YOU’VE GOT PROBLEMS

Problem 3: Find the slope of the line that contains points (3,7) and (–1,4).

You should also remember that parallel lines have equal slopes, whereas perpendicular lines 
have slopes that are negative reciprocals of one another. Therefore, if line g has slope 5

7 , then a 
parallel line h would have slope 5

7  also; a perpendicular line k would have slope − 7
5 .

Example 3: Find the equation of line j given that it is parallel to the line 2x – y = 6 and contains 
the point (–1,1); write j in slope-intercept form.

Solution: This problem requires you to create the equation of a line, and you’ll find that the 
best way to do this every time is via point-slope form. So you need a point and a slope. Well, you 
already have the point: (–1,1). Using your keen sense of deduction, you know that only the slope 
is left to find and that’ll be that. But how to find the slope?

If j is parallel to 2x – y = 6, then the lines must have the same slope, so what’s the slope of  
2x – y = 6? Here’s the key: if you solve it for y, it will be in slope-intercept form, and the slope, 
m, is simply the coefficient of x. When you do so, you get y = 2x – 6. Therefore, the slope of both 
lines is 2, and you can use point-slope form to write the equation of j:

Solve for y to put the equation in slope-intercept form:

( )
( )

( )
( )

− = −

− = − −

− = +

y y m x x

y x

y x

1 2 1

1 2 1

1 1

− = +
= + +
= +

y x
y x
y x

1 2 2
2 2 1
2 3
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Interpreting Linear Graphs
Calculus has undergone a renaissance over the last few decades, as researchers have gained 
more insight about the most effective way to present and learn mathematical material. Without 
climbing onto a soapbox, allow me to present the “bottom line”: you need to learn the concepts 
behind the math, not just memorize a series of steps to reach a solution.

Understanding based on pure memorization is fragile—without constant practice, it shatters. 
Therefore, throughout this book (and most likely throughout your calculus course) you will be 
presented with nontraditional problems, including problems presented graphically. If these types 
of problems feel strange, don’t worry. They are meant to stretch your understanding of the topic 
at hand, and upon wrestling with them for a bit, they provide you with a deeper and longer-
lasting mastery of mathematics.

In the next example, you’re not given a specific slope, intercept, or point to make a line. Instead, 
you’re given a graph. All the information you need is in there—you just have to harvest it 
yourself.

Example 4: The graph of line p is presented in Figure 2.2. Express the equation of the line 
perpendicular to p with the same x-intercept in standard form.

Figure 2.2 
The graph of line p.
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Solution: Before you jump into the solution, analyze the graph of the line and collect all the 
information you can, even if it later proves unnecessary. Here are my observations:

• The slope of p must be negative, because the line travels down as you move from left to 
right.

• The x-intercept of line p is 1, because it passes through the x-axis at point (1,0).

• The y-intercept of line p is 3, because it passes through the y-axis at point (0,3).

None of those are earth-shattering observations by any means, but that is all you need to solve 
the problem. You’re asked to find the equation of the line perpendicular to p, which means the 
slope of that line is the opposite reciprocal of the slope of p. You are given two points through 
which p passes, so apply the slope formula with (a,b) = (1,0) and (c,d) = (0,3):

The slope of p is –3. My assumption that the slope was going to be negative was correct, but you 
didn’t doubt me for a moment, did you? The slope of the line perpendicular to p must be the 
opposite reciprocal of –3, which is 1

3 .

According to the problem, the new line shares the same x-intercept as p, so the new line must also 
pass through point (1,0). You now know the slope of the line you are creating ( )=m 1

3  and a point 
on the line (x1,y1) = (1,0). Apply the point-slope formula.

The line needs to be in standard form, so no fractions are allowed. Multiply both sides of the 
equation by 3 to eliminate the fractions.

=

=

=

= −

−
−
−
−

−

slope

3

d b
c a
3 0
0 1
3
1

( )
( )

( )

− = −

− = −

= −

y y m x x

y x

y x

0 1
3

1

1
3

1

1 1

( )
( )

⋅ =











−

= −

= −

y x

y x

y x

3 3
1

1
3

1

3 1 1

3 1
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A linear equation in standard form has the variable terms on the left side of the equation and the 
constant (number term) on the right. Subtract x from both sides.

–x + 3y = –1

Almost finished! A line in standard form must have a positive x-coefficient, so multiply 
everything by –1:

The equation of the line perpendicular to line p that passes through the same x-intercept is 
x – 3y = 1.

( )( ) ( )( )− − + = − −

− =

x y

x y

1 3 1 1

3 1

YOU’VE GOT PROBLEMS

Problem 4: Calculate the y-intercept of line j in Figure 2.3. Hint: Express the 
equation of the line in slope-intercept form.

Figure 2.3 
The graph of line j, including two points through which it passes.
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You’ve Got the Power: Exponential Rules
I find that exponents are the bane of many calculus students. Whether they never learned 
exponents well in the first place or simply make careless mistakes, exponential errors are a 
treasure trove of frustration. Therefore, it’s worth your while to spend a few minutes and refresh 
yourself on the major exponential rules. You may find this exercise empowering.

• Rule one: ⋅ = +x x xa b a b

Explanation: If you multiply two terms with the same base (here it’s x), add the powers and keep 
the base. For example, ⋅ =a a a2 7 9 .

• Rule two: = −x
x

x
a

b
a b

Explanation: This is the opposite of rule one. If you divide (instead of multiply) two terms with 
the same base, then you subtract (instead of add) the powers and keep the base. For example, 

= =−w
w

w w
7

3
7 3 4 .

• Rule three: =−x
x
1a
a

Explanation: A negative exponent indicates that a variable is in the wrong spot, and belongs in 
the opposite part of the fraction, but it only affects the variable it’s touching. For example, in the 

expression 
−x y

3

3 2

, only the y is raised to a negative power, so it needs to be in the opposite part 
of the fraction. Correctly simplified, that fraction looks like this: x

y3

3

2 . Note that the exponent 
becomes positive when it moves to the right place. Remember that a happy (positive) exponent is 
where it belongs in a fraction.

CRITICAL POINT

Eliminate negative exponents in your answers. Most instructors consider 
an answer with negative exponents in it unsimplified. They must see the 
glass as half-empty. Think about it. How many cheery math teachers do 
you know?

• Rule four: (xa)b = xab

Explanation: If an exponential expression is raised to a power, you should multiply the exponents 
and keep the base. For example, (h7)3 = h21.
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• Rule five: ( )= =x x xa b ab b
a

/

Explanation: The numerator of the fractional power remains the exponent. The denominator of 
the power tells you what sort of radical (square root, cube root, etc.). For example, 43/2 can be 

simplified as either 43  or ( )4
3
. Either way, the answer is 8.

Example 5: Simplify xy1/3(x2y)3.

Solution: Your first step should be to raise (x2y) to the third power. You have to use rule four 
twice (the current exponent of y is understood to be 1 if it is not written). This gives you 

=⋅ ⋅x y x y2 3 1 3 6 3 . The problem now looks like this: ( )xy x y1/3 6 3 .

To finish, you have to multiply the x’s and y’s together using rule one:

⋅ ⋅ ⋅

=
=

( )+ +

x x y y

x y
x y

6 1/3 3

1 6 1/3 3

7 10/3

YOU’VE GOT PROBLEMS

Problem 5: Simplify the expression (3x–3y2)2 using exponential rules.

Breaking Up Is Hard to Do:  
Factoring Polynomials

Factoring is one of those things you see over and over in algebra. I have found that even among 
my students who disliked math, factoring was popular; it’s something that some people just “got,” 
even when most everything else escaped them. This is not the case, however, in many European 
schools, a fact that surprised my colleagues and me when I was a high school teacher.

Canadian exchange students gave me blank stares when we discussed factoring in class. This is 
not to say that these students were not extremely intelligent (they were); they just used other 
methods. However, factoring comes in handy throughout calculus, so I deem it important enough 
to cover here. Call it patriotism.

Factoring is basically reverse multiplying—undoing the process of multiplication to see what was 
there to begin with. For example, you can break down the number 6 into factors of 3 and 2, since 
3 ∙ 2 = 6. There can be more than one correct way to factor something.
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DEFINITION

Factoring is the process of “unmultiplying,” breaking a number or expression 
down into parts that, if multiplied together, return the original quantity.

Greatest Common Factor
Use the greatest common factor method of factoring if you have terms with elements in common. 
It’s easier than it sounds. Take the expression 4x + 8.

Notice that both terms can be divided by 4, making 4 a common factor. Therefore, you can write 
the expression in the factored form of 4(x + 2).

In effect, I have “pulled out” the common factor of 4, and what’s left behind are the terms once 
4 has been divided out of each. In this type of problem, ask yourself, “What do each of the terms 
have in common?” and then pull that greatest common factor out of each to write your answer in 
factored form.

YOU’VE GOT PROBLEMS

Problem 6: Factor the expression 7x2y – 21xy3.

Special Factoring Patterns
You should feel comfortable factoring trinomials such as x2 + 5x + 4 using whatever method suits 
you. Most people play with binomial pairs until they stumble across something that works, in 
this case (x + 4)(x + 1), whereas others undertake more complicated means. Regardless of your 
personal “flair,” there are some patterns you should have memorized:

• Difference of perfect squares: a2 – b2 = (a + b)(a – b)

Explanation: A perfect square is a number like 16, which can be created by multiplying something 
times itself. In the case of 16, that something is 4, since 4 times itself is 16. If you see one perfect 
square being subtracted from another, you can automatically factor it using the pattern above. 
For example, x2 – 25 is a difference of x2 and 25, and both are perfect squares. Thus, it can be 
factored as (x + 5)(x – 5).

KELLEY’S CAUTIONS

You cannot factor the sum of perfect squares, so whereas x2 – 4 is 
factorable, x2 + 4 is not!
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• Sum of perfect cubes: a3 + b3 = (a + b)(a2 – ab + b2)

Explanation: Perfect cubes are similar to perfect squares. The number 125 is a perfect cube 
because 5 ∙ 5 ∙ 5 = 125. This pattern is a little clumsier to memorize, but it can come in handy 
occasionally. This formula can be altered just slightly to factor the difference of perfect cubes, as 
illustrated in the next bullet. Other than a couple of sign changes, the process is the same.

• Difference of perfect cubes: a3 – b3 = (a – b)(a2 + ab + b2)

Explanation: Enough with the symbols for these formulas—let’s do an example.

Example 6: Factor x3 – 27 using the difference of perfect cubes factoring pattern.

Solution: Note that x is a perfect cube since x ∙ x ∙ x = x3, and 27 is also, since 3 ∙ 3 ∙ 3 = 27. 
Therefore, x3 – 27 corresponds to a3 – b3 in the formula, making a = x and b = 3. Now, all that’s 
left to do is plug a and b into the formula:

You cannot factor (x2 + 3x + 9) any further, so you are finished.

( )
( )

( )
( )

− = − + +

− = − + +

a b a b a ab b

x x x x27 3 3 9

3 3 2 2

3 2

YOU’VE GOT PROBLEMS

Problem 7: Factor the expression 8x3 + 343.

Solving Quadratic Equations
Before you put algebra in the rearview mirror, there’s one last stop. Sure, you’ve been able to solve 
equations like x + 9 = 12 forever, but when the equations get a little trickier, maybe you get a little 
panicky. Forgetting how to solve quadratic equations (equations whose highest exponent is a 2) 
has distinct symptoms: dizziness, shortness of breath, nausea, and loss of appetite. To fight this 
ailment, take the following 3 tablespoons of quadratic problem solving and call me in the morning.

Every quadratic equation can be solved with the quadratic formula (method three, which follows), 
but it’s important that you know the other two methods as well. Factoring is undoubtedly the 
fastest of the three methods, so you should try it first. Few people choose completing the square 
as their first option, but it (like the quadratic formula) works every time, though it requires a few 
more steps than its counterpart. However, you have to learn completing the square, because it 
pops up later in calculus, when you least expect it.
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Method One: Factoring
To begin, set your quadratic equation equal to 0; this means add and subtract the terms as 
necessary to get them all to one side of the equation. If the resulting equation is factorable, factor 
it and set each individual term equal to 0. These little baby equations will give you the solutions 
to the equation. That’s all there is to it.

Example 7: Solve the equation 3x2 + 4x = –1 by factoring.

Solution: Always start the factoring method by setting the equation equal to 0. In this case, start 
by adding 1 to each side of the equation: 3x2 + 4x + 1 = 0.

Now, factor the equation and set each factor equal to 0. This creates two cute little mini-
equations that need to be solved, giving you the final answer:

This equation has two solutions: = −x 1
3  or x = –1. You can check them by plugging each 

separately into the original equation, and you’ll find that the result is true.

Method Two: Completing the Square
As I mentioned earlier, this method is a little trickier than the other two, but you really do need 
to learn it now, or you’ll be coming back to figure it out later. I’ve discovered that it’s best to learn 
this method in the context of an example, so let’s go to it.

Example 8: Solve the equation 2x2 + 12x – 18 = 0 by completing the square.

Solution: In this method, unlike factoring, you want the constant separate from the variable 
terms, so move the constant to the right side of the equation by adding 18 to both sides:

2x2 + 12x = 18

This is important: For completing the square to work, the coefficient of x2 must be 1. In this case, 
it is 2, so to eliminate that pesky coefficient, divide every term in the equation by 2:

x2 + 6x = 9

KELLEY’S CAUTIONS

If you don’t make the coefficient of the x2 term 1, then the rest of the 
completing-the-square process will not work. Also, when you divide to 
eliminate the x2 coefficient, make sure you divide every term in the equation 
(including the constant, sitting dejectedly on the other side of the equation).

( )( )+ + =

+ =

= −
+ =

= −

x x

x

x
x

x

3 1 1 0

3 1 0
or

1 0
11

3
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Here’s the key to completing the square: take half of the coefficient of the x term, square it, and 
add it to both sides. In this problem, the x coefficient is 6, so take half of it (3) and square that  
(32 = 9). Add the result (9) to both sides of the equation:

At this point, if you’ve done everything correctly, the left side of the equation will be factorable. 
In fact, it will be a perfect square!

To solve the equation, take the square root of both sides. That will cancel out the exponent. 
Whenever you do this, you have to add a ± sign in front of the right side of the equation. This is 
always done when square rooting both sides of any equation:

To solve for x, subtract 3 from each side, and that’s it. It would also be good form to simplify 18  
into 3 2 :

Method Three: The Quadratic Formula
The quadratic formula is one-stop shopping for all your quadratic equation needs. All you have 
to do is make sure your equation is set equal to 0, and you’re halfway there. Your equation will 
then look like this: ax2 + bx + c = 0, where a, b, and c are the coefficients as indicated. Take those 
numbers and plug them straight into this formula (which you should definitely memorize):

You’ll get the same answer you would achieve by completing the square. Just to convince you  
that the answer’s the same, we’ll do the problem in Example 8 again, but this time with the 
quadratic formula.

+ + = +
+ + =

9 9x x
x x

6 9
6 9 18

2

2

( )( )
( )

+ + =

+ =

x x

x

3 3 18

3 18
2

( )+ = ±

+ = ±

x

x

3 18

3 18

2

= − ±x 3 3 2

= − ± −x b b ac
a

4
2

2
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Example 9: Solve the equation 2x2 + 12x – 18 = 0, this time using the quadratic formula.

Solution: Because the equation is already set equal to 0, it is in form ax2 + bx + c = 0, and a = 2, 
b = 12, and c = –18. Plug these values into the quadratic formula and simplify:

So although there are fewer steps to the quadratic formula, there is some room for error during 
computation. You should practice both methods, but primarily use the one that feels more 
comfortable to you.

=

=

=

=

= ±

= − ±

( )( )
( )
( )

− ± − −

− ± − −

− ±

− ±

−

x

x

x

x

x

x 3 3 2

12 12 4 2 18

2 2

12 144 144

4

12 288
4

12 12 2
4

12
4

12 2
4

2

YOU’VE GOT PROBLEMS

Problem 8: Solve the equation 3x2 + 12x = 0 three times, using three 
different methods: greatest common factor, completing the square, and the 
quadratic formula.

Synthesizing the Quadratic Solution Methods
Whenever you are learning (or reviewing) mathematical techniques, it’s easy to get lost in the 
details. While it’s true that many solution methods require you to understand and follow a series 
of steps, math is more than a process to follow. It is not merely a numbered list of commands to 
execute robotically.

You might be asking yourself, “When do I know which technique to use?” Well, you should 
always try factoring first, because it’s usually the easiest method. If factoring doesn’t work, then 
which should you choose: the quadratic formula or completing the square?

Honestly, the choice is yours. Select the method that feels most comfortable to you, because 
although the methods are very different in process, they are actually more related than they 
may at first appear. In fact, did you know that if you ever forget the quadratic formula, you 
can generate it from scratch? Just complete the square on the generic quadratic equation 
ax2 + bx + c = 0.



Part 1: The Roots of Calculus28

Example 10: Generate the quadratic formula by completing the square for ax2 + bx + c = 0.

Solution: The coefficient of x2 must be 1 in order to complete the square, so divide each term by 
the current coefficient (a) and then move the constant (the term with no x-part) to the right side 
of the equation by subtracting:

According to the technique described in Example 8, you must take half of the x-coefficient 

( )⋅ =ba
b
a

1
2 2 , square it ( )⋅ =b

a
b
a

b
a2 2 4

2

2 , and add the result ( )b
a4

2

2  to both sides of the equation.

The left side of the equation is a perfect square. Notice that the term inside the squared quantity 
is b

a2 , the value that you squared just a moment ago.

CRITICAL POINT

Whenever you complete the square, the constant inside the squared 
quantity is always half of the original x-coefficient.

In order to add the fractions on the right side, you will need common denominators.

+ + =

+ + =

+ = −

x x

x x

0

ax
a

bx
a

c
a a

b
a

c
a

b
a

c
a

0

2

2

2

+ + = − +x xba
b

a

c
a

b

a

2

4 4

2

2

2

2

( )+ = − +x b
a

c
a

b

a2

2

4

2

2

( )
( )
( )

+ = − ⋅ +

+ = − +

+ = −

x

x

x

b
a

c
a

a
a

b

a

b
a

ac

a

b

a

b
a

b ac

a

2

2 4
4 4

2

2 4

4 4

2

2 4

4

2

2

2

2

2

2

2
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You may have noticed the familiar “b2 – 4ac” from the quadratic formula. You’re almost done! 
To solve for x, take the square root of both sides of the equation.

Subtract b
a2  from both sides to solve for x, and you’ve generated the quadratic formula as if 

by magic!

The moral of this story: although the solution methods for quadratic equations may look quite 
different from one another, they have a lot in common.

Before wrapping up our discussion on quadratic equations, let’s review the relationship between 
the factors and x-intercepts of a quadratic equation.

Example 11: Create a quadratic equation that has x-intercepts x = –2 and x = 5.

Solution: First, a warning: there are many possible correct answers, but this is the easiest 
solution. You may want to look back at Example 7 for a moment, because you’re going to follow 
that process in reverse.

If x = –2 is a solution for the quadratic equation, then you could add 2 to both sides of the 
equation to get an equivalent equation:

Similarly, you could subtract 5 from both sides of the equation x = 5:

Notice that (x + 2) and (x – 5) could be factors of the quadratic equation you’re looking for, 
because they both equal zero. If one of the factors equals 0, then multiplying anything by that 
factor also gives you zero.

( )+ = ±

+ = ±

+ = ±

+ = ±

−

−

−

⋅

−

x

x

x

x

b
a

b ac

a

b
a

b ac

a

b
a

b ac

a

b
a

b ac
a

2

2 4

4

2
4

4

2
4

4

2
4

2

2

2

2

2

2

2

2

= − ±

=

−

− ± −

x

x

b
a

b ac
a

b b ac
a

2
4

2

4
2

2

2

= −
+ =

x
x

2
2 0

=
− =

x
x

5
5 0
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Why is this good news? If the entire equation equals 0, then you’ve found a root, an x-intercept. 
Therefore, the simplest quadratic equation with x-intercepts –2 and 5 would be the product of 
(x + 2) and (x – 5):

Quadratic equation y = x2 – 3x – 10 has x-intercepts x = –2 and x = 5. If you’re skeptical, 
substitute them back into the equation to verify. You’ll get y = 0, which means points (–2,0) and 
(5,0) lie on the graph (and also on the x-axis).

( )( )+ − = − + −

= − −

x x x x x

x x

2 5 5 2 10

3 10

2

2

YOU’VE GOT PROBLEMS

Problem 9: Create a quadratic equation that has x-intercepts x = –1 and 
=x 2

3 .

The Least You Need to Know
• Basic equation solving is an important skill in calculus.

• Reviewing the five exponential rules will prevent arithmetic mistakes in the long 
run.

• You can create the equation of a line with just a little information using point-
slope form.

• There are three major ways to solve quadratic equations, each important for 
different reasons.
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Equations, Relations, 

and Functions

In This Chapter
• When is an equation 

a function?

• Important function 
properties

• Building your function 
skills repertoire

• The basics of parametric 
equations

I still remember the fateful day in Algebra I when the 
equation y = 3x + 2 became f(x) = 3x + 2. The dreaded 
function! At the time, I didn’t quite understand why we had 
to make the switch. I was a fan of the y and was sad to see it 
go. What I failed to grasp was that the advent of the function 
marked a new step forward in my math career.

If you know that an equation is also a function, it guarantees 
that the equation in question will always behave in a certain 
way. Most of the definitions in calculus require functions in 
order to operate correctly. Therefore, the vast majority of our 
work in calculus will be with functions exclusively, with only 
a few minor exceptions. So it’s good to know exactly what a 
function is, to be able to recognize important functions at a 
glance, and to be able to perform basic function operations.

What Makes a Function Tick?
Let’s get a little vocabulary straight before we get too far. 
Any sort of equation in mathematics is classified as a relation, 
as the equation describes a specific way that the variables and 
numbers in the equation are related. Relations don’t have to 
be equations, although that is how they are most commonly 
written.
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DEFINITION

A relation is a collection of related numbers, usually described by an 
equation, graph, or list of ordered pairs. A function is a relation such that 
every input has only one matching output.

Here’s the most basic definition of a relation. You’ll notice that there’s not a whole lot to it, just a 
list of ordered pairs:

s:{(–1,5),(1,6),(2,4)}

This relation, called s, gives a list of inputs and outputs. In essence, you’re asking s, “What will 
you give me if I give you –1?” The reply is 5, because the ordered pair (–1,5) appears in the 
relation. If you input 2, s spits back 4. However, if you input 6, s has no response; the only inputs 
s accepts are –1, 1, and 2, and the only outputs it can offer are 5, 6, and 4.

In calculus, it is more useful to write relations like this:

This relation, called g, accepts any real number input. To find out the output g gives, you plug the 
input into the x slot. For example, if I input x = 21, the output—called g(21)—is found as follows:

A function is a specific kind of relation. In a function, no input is allowed to give you more than 
one output. When one number goes in, only one matching number is allowed to come out. 
The relation g here is a function of x, because for every x you plug in, you can only get one 
result. If you plug in x = 3, you will always get –2. If you did it 50 times, you wouldn’t suddenly 
get 101.7 as your answer on the forty-ninth try! Every input results in only one corresponding 
output. Different inputs can result in different outputs, for example, g(3) ≠ g(6). That’s okay. 
You just can’t get different answers when you plug in the same initial quantity.

CRITICAL POINT

A function does not have to have a name, like f(x) or h(x), to be a function. 
The relations y = x2 and f(x) = x2 are equally qualified to be functions even 
though they look different.

( ) = −g x x 31
3

( ) ( )= −

= −

= −
=

g 21 21 3

3

7 3
4

1
3
21
3
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The word domain is usually used to describe the set of inputs for a function. Any number that 
a function accepts as an appropriate input is part of the domain. For example, in the function 
s:{(–1,5),(1,6),(2,4)}, the domain is {–1,1,2}. The set of outputs to a function is called the range. 
The range of s is {4,5,6}.

Enough math for a second—let’s relate this to real life. A person’s height is a function of time. 
If I ask, “How tall were you at exactly noon today?” you could give only one answer. You couldn’t 
respond “5 feet 6 inches” and “6 feet 1 inch,” unless, of course, you lied on your driver’s license.

Sometimes you’ll plug more than a number into a function—you can also plug a function into 
another function. This is called composition of functions, and is not difficult to do. Simply start 
by evaluating the inner function and work your way out.

Example 1: If ( ) =f x x  and g(x) = x + 6, evaluate g( f(25)).

Solution: In this case, 25 is plugged into f, and that output is in turn plugged into g. Start in the 
belly of the beast and evaluate f(25). This is easy: ( ) = =f 25 25 5 . Now, plug this result into g:

g(5) = 5 + 6 = 11

Therefore, g( f(25)) = 11.

YOU’VE GOT PROBLEMS

Problem 1: If ( ) = −f x x 1
6 , g(x) = x2 + 15, and ( ) =h x x3 , evaluate h(g( f(43))).

Sometimes in calculus, you run across a weird entity: the piecewise-defined function. This 
function is similar to Frankenstein’s monster because it is created by sewing other functions 
together. The next example explains how to interpret and evaluate piecewise-defined functions.

Example 2: Given the piecewise-defined function f(x) defined below, calculate f(–1), f(2), and 
f(10). Then, draw the graph of f(x).

Solution: A piecewise-defined function like f(x) uses more than one expression to generate its 
values. In this case, you will either substitute values of x into 2x + 3 or x – 4. How do you know 
which one to use? It depends on the number, x, you’re substituting in.

( ) = + <
− ≥






f x

x x
x x

2 3, 2
4, 2



Part 1: The Roots of Calculus34

Notice the inequality statements attached to the expressions, such as x < 2 next to the expression 
2x + 3. Use this expression for any x-value less than 2. For example, x = –1 qualifies:

Use the other expression in the piecewise-defined function, x – 4, for all x-values greater than or 
equal to 2. Both f(2) and f(10) represent such x-values.

The graph of f(x) consists of two pieces, one for each expression. Begin by graphing the line 
y = 2x + 3, which has y-intercept 3 and slope m = 2. However, the graph only applies when x < 2, 
so erase any part of the graph to the right of x = 2.

Next, graph y = x – 4 (a line with y-intercept –4 and slope m = 1). This portion of the graph only 
applies when x ≥ 2, so erase the portion of the graph left of x = 2. The finished graph appears in 
Figure 3.1.

Figure 3.1 
The graph of piecewise-defined function f(x). Note the open and closed dots where the graph 

splits at x = 2.
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=
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Notice that y = 2x + 3 ends in an open dot at the point (2,7). The graph does not actually include 
this point, because 2x + 3 only applies when x is less than 2, not when x equals 2. However, the 
graph of y = x – 4 starts in a closed dot, because that graph applies to x-values greater than or 
equal to 2. An open dot indicates an excluded point, and a closed dot indicates an included point.

YOU’VE GOT PROBLEMS

Problem 2: Given the piecewise-defined function g(x) defined here, calculate 
g(–2), g(0), and g(5):

( ) = − ≤

− >






g x

x x

x x

12 , 0

9 0

2

2

The last important thing you should know about functions is the vertical line test. This test is a 
way to tell whether a given graph is the graph of a function or not. All you have to do is draw 
imaginary vertical lines through the graph and note the number of times these lines hit the graph 
(see Figure 3.2). If any imaginary line can be drawn through the graph that hits it more than 
once, the graph cannot be a function.

DEFINITION

The vertical line test tells you whether or not a graph is a function. If any 
vertical line can be drawn through the graph that intersects that graph 
more than once, then the graph in question cannot be a function.

Figure 3.2 
No vertical line intersects the graph on the left more than once, so it is a function. However, some 

vertical lines hit the right-hand graph more than once, so it cannot be a function.
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Working with Graphs of Functions
You don’t need to know the expressions that define functions in order to perform basic operations 
on them. You can conduct a lot of work given graphs or even tables of values. All of the same 
basic rules apply.

Example 3: Given the graph of f(x) in Figure 3.3, identify the domain and range of f(x) and 
calculate f(–4).

Figure 3.3 
The graph of a function f(x) and an assortment of points on the graph. Assume that the coordinates of 

the specified points have integer (nonfraction) values.

Solution: To determine the domain of a function based on its graph, imagine a vertical line 
sweeping along the graph from left to right. As that line intersects the graph, the intersections 
represent possible x-values for the function, so they belong in the domain.

For example, sketch the vertical line x = –5 on Figure 3.3. It intersects f(x) at the point (–5,–4). 
Therefore, x = –5 belongs in the domain of f(x).

In fact, any vertical line will intersect the graph of f(x) until you get to x = 5. The graph abruptly 
ends at point (5,–6); there is no arrow there indicating that the graph will continue infinitely 
downward. Therefore, the domain of f(x) consists of all real numbers less than or equal to 5.
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To determine the range, use a similar method: imagine a horizontal line sweeping from the 
bottom to the top of the graph. Any time the line intersects the graph, that y-value belongs in the 
range. Because the graph only reaches a height of y = 1, the range of the graph is all real numbers 
less than or equal to 1.

Finally, to calculate f(–4), find the point on the graph whose x-coordinate is –4. Notice that the 
point (–4,–3) lies on the graph. Therefore, according to the graph, f(–4) = –3.

If you got an answer of –5, don’t panic. You just mixed up the values of x and y. The graph does 
pass through the point (–5,–4), but that means f(–5) = –4. In that case, –4 is the output when –5 is 
the input. The problem asks you to calculate f(–4); it wants to know what the output is when –4  
is the input.

Example 4: Consider the functions g(x) and h(x) presented in Figure 3.4. You are given the graph 
of g(x) and a table that includes some of the function values of h(x). Based on the information 
given, calculate g(h(6)) and h(g(4)).

Figure 3.4 
Two functions are represented here, g(x) as a graph and h(x) as a table. Note that the specified 

points on g(x) have integer coordinates.
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Solution: Don’t be intimidated by the strange way these functions are presented. Whether 
they’re expressions, graphs, or charts, functions are just a relationship between pairs of numbers, 
between inputs and outputs.

In this example, the graph of g(x) highlights six of its function values:

The chart in Figure 3.4 reports five function values of h(x), in a very straightforward manner.

This is all the information you need to solve both problems. It’s time to calculate g(h(6)). First 
things first, work from the inside out, determining the value of h(6). According to the value list 
you just made, h(6) = 5. Replace h(6) with the equivalent expression, 5.

g(h(6)) = g(5)

According to the list of function values for g(x), g(5) = –3. Therefore, g(h(6)) = –3.

Think you’ve got it? Try the next problem on for size: h(g(4)). According to the list of values 
for g(x), g(4) = –1. That means h(g(4)) = h(–1). Note that h(–1) = 0. Therefore, you conclude that 
h(g(4)) = 0.
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YOU’VE GOT PROBLEMS

Problem 3: Given p(x) = 4 – x and the graph of q(x) in Figure 3.5, calculate 
p(q(1)).

Figure 3.5 
Like the preceding examples in this chapter, all highlighted points on the graph 

of q(x) have integer coordinates.
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Functional Symmetry
Now that you know a thing or two about functions, you should also know some of the key 
classifications and buzzwords. If you throw these words around at parties, you’ll surely wow your 
friends. Just think about how impressed they’d be with an offhand comment like, “That painting 
really exploits y-symmetry to show us our miniscule place in the world.” Maybe you and I don’t 
go to the same sorts of parties ….

A function is symmetric if it mirrors itself with respect to a fixed part of the coordinate plane. 
That sounds like a complicated concept, but it isn’t. Consider, for example, the graph of y = x2.

DEFINITION

A symmetric function looks like a mirror image of itself, typically across the 
x-axis, y-axis, or about the origin.
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In Figure 3.6, notice that the graph looks exactly the same on either side of the y-axis. This function 
is said to be y-symmetric. There is an easy arithmetic test for y-symmetry that doesn’t require the 
graph.

Figure 3.6 
Feast your eyes on a graph that is symmetric about the y-axis.

Example 5: Determine whether or not the graph y = x4 – 2x2 + 1 is y-symmetric.

Solution: Replace each of the x’s with (–x) and simplify the equation:

Whenever a negative number is raised to an even power, the negative sign will be eliminated. 
Notice that our simplified result is the same as the original equation. When this happens, you 
know that the equation is, indeed, y-symmetric. (By the way, y-symmetric functions are also 
classified as even functions.) In case you’d also like visual proof, check out the graph in Figure 3.7:

( ) ( )= − − − +

= − +

y x x

y x x

2 1

2 1

4 2

4 2
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Figure 3.7 
The graph of y = x4 – 2x2 +1.

The other two major kinds of symmetry are x-symmetry and origin-symmetry, illustrated by the 
graphs in Figure 3.8.

Figure 3.8 
Two other types of symmetry you may encounter. Note that most x-symmetric equations are not 

functions, because they fail the vertical line test.

x-symmetry origin-symmetry
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Very similar to y-symmetry, x-symmetry requires that the graph be identical above and below 
the x-axis. The test for x-symmetry is also similar to y-symmetry, except that you plug in (–y) 
for the y’s instead of (–x) for the x’s. Again, if the equation reverts to its original form when 
simplifying is over, then the equation is x-symmetric. If even one sign is different, the equation is 
not x-symmetric.

Origin-symmetry is achieved when the graph does exactly the opposite thing on either side of 
the origin. In Figure 3.8, notice that the origin-symmetric curve snakes up and to the right as x 
gets more positive, and it heads down and to the left as x gets more negative. In fact, every turn 
in the first quadrant is matched and inverted in the third quadrant.

To test an equation for origin-symmetry, replace all x’s with (–x) and all y’s with (–y). Once again, 
if the simplified equation matches your original equation, then that function is origin-symmetric. 
By the way, if a function is origin-symmetric, you can also classify it as an odd function.

Example 6: Demonstrate algebraically that the function y = 2x3 – x is origin-symmetric.

Solution: Replace y with –y and replace each x with –x:

–y = 2(–x)3 – (–x)

Simplify the equation.

–y = –2x3 + x

If the function is truly origin-symmetric, then solving it for y (rather than –y as it currently 
appears) will produce the original equation. Multiply all of the terms by –1 to solve for y.

The result matches the original equation, so y = 2x3 – x is origin-symmetric. For visual proof, 
check out Figure 3.9.

( )( ) ( ) ( )( )− − = − − + −

= −

y x x

y x x

1 1 2 1

2

3

3
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Figure 3.9 
The origin-symmetric graph of y = 2x3 – x.

1

1

2

3

4

5

–1

–2

–3

–4

–5

–2–3–4–5 2 3 4 5

–1

YOU’VE GOT PROBLEMS

Problem 4: Determine what kind of symmetry, if any, is evident in the graph 

of =y x
x

3

.

Graphs to Know by Heart
During your study of calculus, you’ll see certain graphs over and over again. Because of this, it’s 
important to know them intuitively. You’re already familiar with these functions, but make sure 
you know their graphs intimately, and it will save you time and frustration in the long run. Tell 
that someone special in your life that they can no longer possess your whole heart—they’re going 
to have to share it with some math graphs. If they don’t understand your needs, it wasn’t meant to 
be for the two of you.
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The descriptions are as follows:

• y = x: the most basic linear equation; has slope 1 and y-intercept 0; origin-symmetric; 
both domain and range are all real numbers

• y = x2: the most basic quadratic equation; y-symmetric; domain is all real numbers; range 
is y ≥ 0

• y = x3: the most basic cubic equation; origin-symmetric; domain and range are all real 
numbers

• =y x : the absolute value function; returns the positive form of the input; y-symmetric; 
made of two line segments of slope –1 and 1, respectively; domain is all real numbers; 
range is y ≥ 0

• =y x : the square root function; has no symmetry; domain is x ≥ 0 (you can’t find the 
square root of numbers less than 0); range is y ≥ 0

• =y x
1 : no x- or y-intercepts; origin-symmetric; domain and range are both all real numbers 

except for 0

Figure 3.10 
The six most basic functions that will soon reside in your heart (specifically the left ventricle).
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Constructing an Inverse Function
You’ve used inverse functions forever without even realizing it. They are the tools you break out 
to eliminate something unwanted in an equation. For example, how would you solve the equation 
x2 = 9? To solve for x, you would take the square root of both sides to eliminate the squared term. 
This works because =y x  and y = x2 are inverse functions.

Mathematically speaking, f and g are inverse functions if composing the two functions in any 
order produces x:

f(g(x)) = g( f(x)) = x

In other words, plugging g into f and f into g leaves behind no trace of the function (not 
even forensic evidence), only x. Let’s go back to =y x  and y = x2 for a second and show 
mathematically that they are inverse functions. If we plug these functions into each other, they 
will cancel out, leaving only x behind:

( ) = =x x x
2

2

YOU’VE GOT PROBLEMS

Problem 5: Verify mathematically that = −y x 31
2

3  and = +y x2 6  are 
inverse functions using composition of functions.

Inverse functions have special notation. The inverse to a function f(x) is written as f–1(x). This 
does not mean “f to the –1 power.” It is read “the inverse of f ” or “f inverse.” I know the notation is 
a little confusing, because a negative exponent usually means that the indicated piece belongs  
in a different part of the fraction.

Now for some good news. It’s easy to create an inverse function. The word “easy” is usually 
misleading when used by math teachers. In fact, whenever I qualified a class discussion with 
“Now, this is easy …,” the students knew that it was going to be anything but. However, I 
wouldn’t lie to you, would I? You decide as you read the next example.

Example 7: If ( ) = +g x x2 53 , find g–1(x).

Solution: For starters, replace the function notation g(x) with y:

Here’s the key step: reverse the x and y. In essence, this is what an inverse function does—it turns 
a function inside out so that the result has the spiffy property of canceling out the initial equation:

= +y x2 53

= +x y2 53
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Your goal now is to solve this equation for y, and you’ll be done. In this problem, that means 
raising both sides of the equation to the third power:

x3 = 2y + 5

Now, subtract 5 from both sides and divide by 2 to finish solving for y:

That is the inverse function. To finish, write it in proper inverse function notation:

− =

=−

x y

y

5 2
x

3

5
2

3

( ) =− −g x x1 5
2

3

YOU’VE GOT PROBLEMS

Problem 6: Find the inverse function of ( ) = +h x x 52
3 .

In the next example, you’ll work with the inverse of a function that’s defined by a chart. Just to 
spice things up a bit, it also throws in a review of composition of functions from earlier in the 
chapter.

Example 8: Calculate m–1(p(3)), assuming that functions m(x) and p(x) have inverse functions and 
that the tables below present a selection of their values.

Solution: Remember to work from the inside out when composing two functions. In other 
words, begin with the function that’s plugged into the other function. In this case, you begin by 
calculating p(3). According to the p(x) table, p(3) = –6.

Now you know that m–1(p(3)) = m–1(–6). However, you are only given a table for m(x), not for 
its inverse. Remember that an inverse function simply reverses the x- and y-coordinates of a 
function—the inputs become outputs and vice versa. Therefore, by reversing the columns of the 
m(x) table, you can create a table of values for its inverse function.

( ) ( )
− −
− −

−

−
−
− −

−
−

x m x x p x

2 6
1 3

0 1
2 4
3 7

6 5
3 1
1 2

1 4
3 6
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According to this new table, m–1(–6) = –2. Therefore, you conclude that m–1(p(3)) = –2.

Parametric Equations
With all this talk about functions, you might be leery of nonfunctions. Don’t get all closed-
minded on me. You can use something called parametric equations to express graphs, too, and they 
have the unique ability to represent nonfunctions (like circles) very easily. Parametric equations 
are pairs of equations, usually in the form of “x =” and “y =,” that define points of the graph in 
terms of yet another variable, usually t.

DEFINITION

Parametric equations define a graph in terms of a third variable, or parameter.

What’s a Parameter?
That definition’s quite a mouthful, I know. To get a better understanding, let’s look at an example 
of parametric equations:

x = t + 1 
y = t – 2

These two equations together produce one graph. To find that graph, you have to substitute a 
spectrum of things for the parameter t; each time you make a t substitution, you’ll get a point 
on the graph. So a parameter is just a variable into which you plug numeric values to find 
coordinates on a parametric equation graph. For example, if you plug t = 1 into the equations, 
you get the following:

x = t + 1 = 1 + 1 = 2 
y = t – 2 = 1 – 2 = –1

( )
− −
− −
−

−x m x

6 2
3 1
1 0

4 2
7 3

1
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Therefore, the point (2,–1) is on the graph. To get another point, I’ll plug in t = –2, but you can 
actually plug in any real number for t:

x = –2 + 1 = –1 
y = –2 – 2 = –4

A second point on the graph is (–1,–4). You can see that this process takes a while. In fact, it 
seems like only an infinite number of t-values will get you the exact graph.

Converting to Rectangular Form
Let’s be honest, no one wants to plug in an infinite number of points. Even if you had the time to 
do that, you could definitely find something better to do. Therefore, it behooves us to learn how 
to translate from parametric form to the form we know and love, rectangular form. In the next 
example, we’ll translate that set of parametric equations into something more manageable.

Example 9: Translate the parametric equations x = t + 1, y = t – 2 into rectangular form.

Solution: Begin by solving one of the equations for t. They’re both pretty basic, so it doesn’t 
matter which you choose. I’ll pick the x equation so my result is in the form “y =.” That makes it 
easier to graph:

Now you have t in terms of x. Therefore, you can replace the t in the y equation with (x – 1), 
because you know that t = x – 1:

This is just a line in slope-intercept form, so your parametric equations’ graph is the line with 
slope 1 and y-intercept –3. It’s graphed in Figure 3.11.

= +
− =
x t

x t
1

1

( )
= −
= − −

= −

y t
y x

y x

2
1 2

3
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Figure 3.11 
The graph of y = x – 3. Note that the points (2,–1) and (–1,–4) are both on the graph, 

as we suspected from our work preceding Example 9.

YOU’VE GOT PROBLEMS

Problem 7: Put the parametric equations x = t + 1, y = t2 – t + 1 into 
rectangular form.

The Least You Need to Know
• A relation becomes a function when each of its inputs can only result in one 

matching output.

• The inputs of a function comprise the domain and the outputs make the range.

• When a function is plugged into its inverse function (and vice versa), they cancel 
each other out.

• Parametric equations are defined by “x =” and “y =” equations that contain a 
parameter, usually t.
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Trigonometry: Last Stop 

Before Calculus

In This Chapter
• Characteristics of periodic 

functions

• The six trigonometric 
functions

• The importance of the unit 
circle

• Key trigonometric 
formulas and identities

Trigonometry, the study of triangles, has been around for a 
long time, creeping mysteriously from shadow to shadow and 
occasionally snatching unwary students into its razor-sharp 
clutches and causing the end of their mathematics careers. 
Few things cause people to panic like trig does, with the 
exception of TV weatherman Al Roker.

It is a commonly held belief that children on All Hallow’s Eve 
historically have marched from door to door, sacks in hand, 
chiming, “Trig or treat!” In response, homeowners would 
reward them with small protractors and compasses to avoid 
the wrath of neighborhood pranksters. If all the children went 
away happy, it was a good “sine” for harvest. However, this 
myth is definitely untrue, and I have gone off on a tangent.

Getting Repetitive: 
Periodic Functions

There are six major trigonometric functions, at least three of 
which you have probably heard: sine, cosine, and tangent. All 
of the trigonometric functions (even those that are offended 
because you haven’t heard of them) are periodic functions. 
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A periodic function has the unique characteristic that it repeats itself after some fixed period of time. 
Think of the rising of the sun as a periodic function—every 24 hours (a fixed amount of time) the 
sun appears on the horizon.

DEFINITION

A periodic function’s values repeat over and over, at the same rate and at 
the same intervals in time. The length of the horizontal interval after which 
the function repeats is called the period.

The amount of horizontal space it takes until the function repeats itself is called the period. 
For the most basic trigonometric functions (sine and cosine), the period is 2π. Look at the graph 
in Figure 4.1 of one period of y = sin x.

Figure 4.1 
One period of y = sin x.

The graph of the sine function is a wave, reaching a maximum height of 1 and a minimum height 
of –1. On the piece of the graph shown earlier, the maximum height is reached at = − πx 3

2  and 
= πx 2 . The distance between these two points, where the graph repeats its value, is 2π. If that 

doesn’t help you understand what is meant by period, consider the darkened portion of the graph.

This piece begins at the origin (0,0) and wiggles up and down, returning to a height of 0 when  
x = 2π. True, the graph hits a height of 0, repeating its value, when x = π, but it hasn’t completed 
its period yet—that is only finished at x = 2π.
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If you were to extend the graph of the sine function infinitely right and left, it would redraw 
itself every 2π. Because of this property of periodic functions, you can list an infinite number 
of inputs that have identical sine values. These are called coterminal angles, and the next example 
focuses on them.

DEFINITION

Coterminal angles have the same function value, because the space 
between them is a multiple of the function’s period.

Example 1: List two additional angles (one positive and one negative) that have the same sine 
value as π

4 .

Solution: We know that sine repeats itself every 2π, so exactly 2π further up and down the x-axis 
from π

4 , the value will be the same. To find these values, simply add 2π to π
4  in order to get one 

and subtract 2π from π
4  to get the other. In order to add and subtract the values, you’ll have to 

get common denominators:

Therefore, the angles π9
4  and − π7

4  are coterminal to π
4  and ( )= − =π π πsin sin sin9

4
7
4 4 .

CRITICAL POINT

Unless I specifically indicate otherwise, assume all angles in this book are 
measured in radians.

Introducing the Trigonometric Functions
Time to meet the cast. There are six players in the drama we call trigonometry. You’ll see 
a graph of each and learn a little something about the function. Whereas it’s not extremely 
important to memorize the graphs of these functions, it’s good to see how the graphs illustrate 
the functions’ properties.

One note before we begin. Throughout this book, I will refer to and evaluate trigonometric 
values in terms of radians, as they are used far more prevalently than degrees in calculus. Both 
degrees and radians are simply alternate ways to measure angles, just as Celsius and Fahrenheit 
are alternate ways to measure temperature. To get a rough idea of the conversion, remember that 
π radians = 180 degrees.

π π+ = +

=

− = −

= −

π π π

π

π π π

π

2 24 4
8
4

9
4

4 4
8
4

7
4
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If you want to convert from radians to degrees, multiply by π
180 . For example, π

2  is equivalent to 
⋅ =π

π 902
180  degrees. To convert from degrees to radians, multiply by π

180 .

Now, back to the six essential trigonometric functions, in roughly the order of importance to you 
in your quest for calculus.

Sine (Written as y = sin x)
The sine function is defined for all real numbers, and this unrestricted domain makes the 
function very trustworthy and versatile (see Figure 4.2). The range is –1 ≤ y ≤ 1, so all sine values 
fall within those boundaries. Notice that the sine function has a value of 0 whenever the input is 
a multiple of π. Sometimes, people get confused when memorizing unit circle values (more on the 
unit circle later in this chapter). If you remember the graph of sine, you can easily remember that 
sin 0 = sin π = sin 2π = 0, because that’s where the graph crosses the x-axis. The period of the 
sine function is 2π.

Figure 4.2 
y = sin x.

Cosine (Written as y = cos x)
Cosine is the cofunction of sine (see Figure 4.3). (In other words, their names are the same, 
except one has a “co-” prefix, but I bet you figured that out.) As such, it looks very similar, 
possessing the same domain, range, and period. In fact, if you shift the entire graph of y = cos x  
a total of π

2  radians to the right, you get the graph of y = sin x! The cosine has a value of 0 at all 
the “half-π’s,” such as π

2  and π3
2 .
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Figure 4.3 
y = cos x.

Tangent (Written as y = tan x)
The tangent is defined as the quotient of the previous two functions: =xtan x

x
sin
cos . Thus, to 

evaluate πtan 4 , you’d actually evaluate 
π
π
( )
( )

sin /4

cos /4  (which will equal 1 for those of you who are 
curious, but more about that later). Because the cosine appears in the denominator, the tangent 
will be undefined whenever the cosine equals 0, which (according to the last section) is at the 
half-π’s (see Figure 4.4). Notice that the graph of the tangent has vertical asymptotes at these values. 
The tangent equals 0 at each midpoint between the asymptotes. The domain of the tangent 
excludes the “half-π’s,” { }− −π π π π..., , , , , ...3

2 2 2
3
2 , but the range is all real numbers. The period of 

the tangent is π—notice that there’s a full copy of one tangent period between − π
2  and π

2 .

Figure 4.4 
y = tan x.
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In case you’re wondering, an asymptote is a line representing an unattainable value that shapes 
a graph. Because the graph cannot achieve the value, the graph typically bends toward that line 
forever and ever, yearning, stretching, but unable to reach it. A vertical asymptote typically indi-
cates the presence of 0 in the denominator of a fraction. For example, the vertical line = πx 2  is a 
vertical asymptote of y = tan x because the tangent has 0 in the denominator whenever = πx 2 .

Cotangent (Written as y = cot x)
The cofunction of tangent, cotangent, is the spitting image of tangent, with a few exceptions (see 
Figure 4.5). It, too, is defined by a quotient: =xcot x

x
cos
sin . In fact, the cotangent is technically the 

reciprocal of the tangent, so you can also write =xcot x
1

tan . Therefore, this function is undefined 
whenever sin x = 0, which occurs at all the multiples of π: {…, –2π, –π, 0, π, 2π, …}, so the 
domain includes all real numbers except that set. The range, like that of the tangent, is all real 
numbers, and the period, π, also matches the tangent’s.

Figure 4.5 
y = cot x.

DEFINITION

The reciprocal of a fraction is the fraction flipped upside down (for 
example, the reciprocal of 7

4  is 4
7 ). The word refliprocal helps me 

remember what it means.
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Secant (Written as y = sec x)
The secant function is simply the reciprocal of cosine, so =xsec x

1
cos . Therefore, the graph of  

the secant is undefined (has vertical asymptotes) at the same places (and for the same reasons) 
as the tangent, since they both have the same denominator (see Figure 4.6). Hence, the two 
functions also have the same domain. Notice that the secant has no x-intercepts. In fact, it 
doesn’t even come close to the x-axis, only venturing as far in as 1 and –1. That’s a fascinating 
comparison: the cosine has a range of –1 ≤ y ≤1, but the secant has a range of y ≤ –1 or y ≥ 1—
almost the exact opposite. Because secant is based directly on cosine, the functions have the same 
period, 2π.

Figure 4.6 
y = sec x.

CRITICAL POINT

It’s important to know how 0 affects a fraction. If 0 appears in the 
denominator of a fraction, that fraction is deemed “undefined.” It is against 
math law to divide by 0.

Cosecant (Written as y = csc x)
Very similar to its cofunction sister, this function has the same range and period as the 
secant, differing only in its domain. Because the cosecant is defined as the reciprocal of the 
sine, =xcsc x

1
sin , cosecant will have the same domain as cotangent, as they share the same 

denominator (see Figure 4.7).
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Figure 4.7 
y = csc x.

In essence, four of the trig functions are based on the other two (sine and cosine), so those two 
alone are sufficient to generate values for the rest.

KELLEY’S CAUTIONS

The cosecant is not the reciprocal of cosine. Many times, people pair these 
because they have the same initial co- sound, but that’s incorrect. Similarly, 
the secant is not the reciprocal of sine.

Example 2: If θ =cos 1
3  and θ = −sin 8

3 , evaluate tanθ and secθ.

Solution: Let’s tackle these one at a time. First of all, you know that θ = θ
θtan sin

cos , so:

Multiply the top and bottom by 3 to simplify the fraction:

Now, on to secθ—this is even easier. Because you know that θ =cos 1
3 , and θ = θsec 1

cos  (because 
the secant is the reciprocal of the cosine):

θ = −tan
8

3

1
3

θ = ⋅ = −−tan 8
8

3

1
3

3
1

3
1

θ = =sec 31
1/3
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What’s Your Sine: The Unit Circle
No one expects you to be able to evaluate most trigonometric expressions off the top of your 
head. If someone held a gun to my head and asked me to evaluate πcos 3

7  with an accuracy of 
.001, I would respond by calmly lying on the ground, drawing a chalk outline around myself, 
and preparing for death. I’d have no chance without a calculator or a Rain Man–like ability for 
calculation. Most calculus classes, however, will require you to know certain trigonometric values 
without a second thought.

These values are derived from something called the unit circle, a circle with a radius of length 
1 that generates common cosine and sine values. You don’t really have to know how to get those 
values (or how the unit circle works), but you should have these values memorized. Make flash 
cards, recite them with a partner, get a tattoo—whatever method you use to remember things—
but memorize the unit circle values in the chart in Figure 4.8.

DEFINITION

The unit circle is a circle whose radius is 1 unit that can be used to generate 
the most common values of sine and cosine. Rather than generating them 
each time you need them, it’s best to simply memorize those common 
values.

Figure 4.8 
Values for the confounded unit circle, a necessary evil to calculus. Memorize it now, 

and avoid trauma in the future. All angles are measured in radians.

If you’re having trouble remembering the unit circle, look for patterns. If you absolutely refuse 
to memorize these values and it’s okay with your instructor that you don’t, at the very least keep 
this chart in a handy place, because you’ll find yourself consulting it often.
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Now that you know the unit circle and all kinds of crazy stuff about trig functions, your powers 
have increased. ( Just make sure you always use them for good, not evil.) In fact, you are able to 
evaluate a lot more functions, as demonstrated by the next example.

Example 3: Find the value of πcos 23
4  without using a calculator.

Solution: You only know the values of sine and cosine from 0 radians to 2π radians.

Clearly, π23
4  is much too large to fit in this limited interval. However, because cosine is a periodic 

function, its values will repeat. Since cosine’s period is 2π, you can find a coterminal angle to 
π23

4 , which does appear in our unit circle chart, and evaluate that one instead—the answer will 
be the same.

According to Example 1 in this chapter, all you have to do is add or subtract the period (again, it 
is 2π for cosine) and you’ll get a coterminal angle. I’m looking for a smaller angle than π23

4 , so I’ll 
subtract 2π. Don’t forget to get common denominators to subtract correctly:

That’s still too big (the largest π
4  angle I have memorized is π7

4 ), so I have to subtract again:

Because π7
4  and π23

4  are coterminal, = =π πcos cos7
4

23
4

2
2 .

π− = −

=

π π π

π

223
4

23
4

8
4

15
4

− =π π π15
4

8
4

7
4

YOU’VE GOT PROBLEMS

Problem 1: Evaluate πcos 14
4  using a coterminal angle and the unit circle.

You might be interested in how the unit circle originates and how the previous values are 
derived. Here’s a quick explanation based on Figure 4.9. A unit circle is just a circle with radius 1,  
and we’ll center it at the origin. Now, draw a segment from the origin that makes a 30-degree 
( )π  radian6

 angle with the positive x-axis in the first quadrant, and mark the point where the ray 
intersects the circle. The coordinates of that point are, respectively, the cosine and sine of π

6 . 
To find the coordinates of the point, find the lengths of the legs of the right triangle.
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Figure 4.9 
The 30-60-90 right triangle here has legs whose lengths are the cosine and sine value 

of ° = π30 6 , the angle at the origin.

Incredibly Important Identities
An identity is an equation that is always true, regardless of the input. It’s easy to tell that, 
according to this definition, x + 1 = 7 is not an identity, because it is only true when x = 6. 
However, consider the equation 2(x – 1) + 3 = 2x + 1. If you plug in x = 0, you get 1 = 1, which is 
definitely true, wouldn’t you agree? Try plugging in any real number, and you’ll get another true 
statement. Thus, 2(x – 1) + 3 = 2x + 1 is an identity.

It is worth mentioning that it is a very stupid identity. You are not going to impress anyone by 
showing that equation off. With only two seconds’ worth of work, you can simplify the left side 
and show that the two sides are equal. Most math identities are much more useful because it’s not 
immediately obvious that they are true. Specifically, trigonometric identities help you rewrite 
equations, simplify expressions, and justify answers to equations. With this in mind, we’ll explore 
the most common trigonometric identities. They’re worth memorizing if you don’t know them 
already.
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Pythagorean Identities
The three most important of all the trig identities are the Pythagorean identities. They are 
named as such because they are created with the Pythagorean theorem. Remember that little 
nugget from geometry? It said that the sum of the squares of the legs of a right triangle is equal to 
the square of the hypotenuse: a2 + b2 = c2. I have always called these identities the Mama, Papa, 
and Baby theorems (after the Three Bears story), both for entertainment purposes and because 
they have no commonly accepted names. If I were in the company of math nerds, however, I 
wouldn’t use the terms. They will sneer and scowl at you.

• Mama theorem: cos2 x + sin2 x = 1

• Papa theorem: 1 + tan2 x = sec2 x

• Baby theorem: 1 + cot2 x = csc2 x

YOU’VE GOT PROBLEMS

Problem 2: The Mama theorem is an identity, and therefore true for every 
input. Show that it is true for = πx 2

3 .

The Wizard of Oz fans out there may remember that the Scarecrow spouts a formula when the 
Great and Powerful Oz grants him a brain. He states, “The sum of the square roots of any two 
sides of an isosceles triangle is equal to the square root of the remaining side.” This is a false 
statement! He was probably supposed to quote the Pythagorean theorem, since it is one of the 
most recognizable theorems to the general public, but missed it quite badly. Perhaps Oz was not 
so powerful after all. The Tin Man’s string of failed marriages and the Cowardly Lion’s lack of 
success as a motivational speaker offer further evidence to Oz’s lackluster gift-giving.

Now, let’s see how trigonometric functions and identities can make our lives easier. With a little 
knowledge of trigonometry and a little bit of elbow grease, even ugly expressions can be made 
beautiful.

Example 4: Simplify the trigonometric expression + xsinx
x

cos
sin

2
 using a Pythagorean identity.

Solution: One of these terms is a fraction. You know that you must first have common 
denominators in order to add fractions, so multiply the second term by x

x
sin
sin  to get his-and-hers 

matching denominators of sin x:

+ ⋅ = +x

x
x x

x

x

x

x

x

cos

sin
sin

1
sin
sin

cos

sin

sin

sin

2 2 2



Chapter 4: Trigonometry: Last Stop Before Calculus 63

Now that the denominators match, you can perform the addition in the numerator while leaving 
the denominator alone:

KELLEY’S CAUTIONS

The notation cos2 x is shorthand notation for (cos x)2. It wouldn’t make any 
sense for the letters cos to be squared. The shorthand notation is used to 
avoid having to write those extra parentheses.

That doesn’t look any easier! Hold on a second. The numerator looks just like the Mama theorem, 
and according to the Mama theorem, cos2 x + sin2 x = 1. Therefore, substitute 1 in for the 
numerator:

You could stop there, but you’re on a roll! You also know that = xcscx
1

sin since the cosecant is the 
reciprocal of the sine. Therefore, the final answer is csc x.

Double-Angle Formulas
These identities allow you to write trigonometric expressions containing double angles (such 
as sin 2x and cos 2x) into equivalent single-angle expressions. In other words, these expressions 
eliminate a 2 coefficient inside a trigonometric expression.

• sin 2x = 2sin x cos x (This is the simplest double-angle formula, and memorizing it is a 
snap.)

• 

The cosine double-angle formulas are a little trickier—there are actually three different things 
that can be substituted for cos 2x. You should choose which to substitute in based on the rest  
of the problem. If there seem to be a lot of sines in the equation or expression, use the last of the 
three, for example.

There isn’t a whole lot to understand about double-angle formulas. You should just be ready 
to recognize them at a moment’s notice, as problems very rarely contain the warning label, 
“Caution: This problem will require you to know basic trig double-angle formulas. Keep away 
from eyes. May pose a choking hazard to children under 3.” Watch how slyly these suckers slip in 
there.

+x x

x

cos sin

sin

2 2

x
1

sin

= −
= −
= −

x x x
x

x

cos2 cos sin
2cos 1
1 2sin

2 2

2

2
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CRITICAL POINT

There are a lot of trig identities—not just the few in this chapter—but you’ll 
use these far more than all the rest put together.

Example 5: Factor and simplify the expression cos4 θ – sin4 θ.

Solution: This expression is the difference of perfect squares, so it can be factored as follows:  
(cos2 θ + sin2 θ)(cos2 θ – sin2 θ). Notice that the left-hand quantity is equal to 1, according to the 
Mama theorem, and the right-hand quantity is equal to cos 2x, according to our double-angle 
formulas. Therefore, we can substitute those values to get (1)(cos 2x) = cos 2x.

YOU’VE GOT PROBLEMS

Problem 3: Factor and simplify the expression 2sin x cos x – 4sin3 x cos x.

Solving Trigonometric Equations
The last really important trig skill you need to possess is the ability to solve trigonometric 
equations. A word of warning: some math teachers get very bent out of shape when discussing 
trig equations. You will have to read the directions to these sorts of problems very carefully to 
make sure to answer the exact question being asked of you. This includes the interval for the 
solution.

When intervals are specified as [0,2π), that is shorthand for 0 ≤ x < 2π. The two numbers in the 
notation represent the lower and higher boundaries of the acceptable interval, and the bracket or 
parenthesis tells you whether that boundary is included in the interval or not. If it’s a bracket, that 
boundary is included, but not so with a parenthesis.

CRITICAL POINT

In interval notation, the expression x ≥ 7 looks like [7,∞). Because there is 
no upper bound, you write infinity. If infinity is one of the boundaries, you 
always use a parenthesis next to it.

Each of my examples will ask for the solution to the trigonometric equation on the interval [0,2π). 
Therefore, there may be multiple answers. Some instructors will demand that you write the 
specific correct answer for each equation. In other words, although there may be many angles 
that solve the problem, they only accept one answer. This answer falls within a specific range, 
and as long as you learn the appropriate range for each trigonometric function, you’ll be okay. 
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The best approach is to ask if they’ll require answers on a certain interval or if they expect only 
the answer on the appropriate range.

The procedure for solving trigonometric equations is not unlike solving regular equations. 
However, the final step often requires you to remember the unit circle!

KELLEY’S CAUTIONS

If your instructor demands one answer per equation, eliminate all of your 
solutions except for the one (and there will only be one) that falls into the 
appropriate range. That range is θ− ≤ ≤π π

2 2  for sine, tangent, and cosecant; 
for cosine, cotangent, and secant, use the interval of 0 ≤ θ ≤ π.

Example 6: Solve the equation cos 2x – cos x = 0 on the interval [0,2 π).

Solution: First of all, you want to eliminate the double-angle formula so that all of the terms 
are single angles. Because you are replacing cos 2x, there are three options, but I will choose the 
2cos2 x – 1 option since the problem also contains another cosine term:

Now you can factor this equation. (If you’re having trouble, think of the equation as 2w2 – w – 1 
and factor that, substituting in w = cos x when you’re finished.)

(2cos x + 1)(cos x – 1) = 0

Like any other quadratic equation solved using the factoring method, set each factor equal to 0 
and solve:

To finish, ask yourself, “When is the cosine equal to − 1
2  and when is it 1?” The question asks for 

all answers on [0,2π), so give all the correct answers on the unit circle:

All three answers should be given. If your instructor requires only answers on the appropriate 
ranges, your solutions would be = πx 2

3  and x = 0. You’d throw out = πx 4
3  because it does not fall 

in the correct cosine range of 0 ≤ θ ≤ π. In this case, it’s okay to have a total of two answers, since 
each of the individual, smaller equations has one answer.

( )− − =

− − =

x x

x x

2cos 1 cos 0

2cos cos 1 0

2

2

+ =

=
− =

=

x

x
x

x

2cos 1 0

cos
and

cos 1 0
cos 11

2

= π πx , , or 02
3

4
3
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The Least You Need to Know
• The six basic trigonometric functions are sine, cosine, tangent, cotangent, secant, 

and cosecant.

• Sine and cosine’s values are used to evaluate the other four trig functions.

• There are some angles on the interval [0,2π) whose cosine and sine values you 
should have memorized.

• Trigonometric identities help you simplify trig expressions and solve trig 
equations.

YOU’VE GOT PROBLEMS

Problem 4: Solve the equation sin 2x + 2sin x = 0 and provide all solutions on 
the interval [0,2π).



PART

2
Laying the Foundation  

for Calculus

I have some good news and some bad news. The good news is that we’ll be dealing with relatively 
easy functions for the remainder of calculus. The bad news is that we need to mathematically 
define exactly what we mean by “easy.” When math people sit down to define things, you know 
that theorems are going to start flying around, and calculus is no different.

When we say “easy” functions, we really mean continuous ones. In order to be continuous, the 
function can’t contain holes and isn’t allowed to have any breaks in it. That sounds nice, but  
math people like their definitions more specific (read: complicated) than that. In order to define 
“continuous,” we’ll first need to design something called a “limit.” During this part of the book, 
you’ll learn what a limit is, how to evaluate limits for functions, and how to apply limits to design 
a definition for continuity.





CHAPTER

5
Take It to the Limit

In This Chapter
• Understanding what a 

limit is

• Why limits are needed

• Approximating limits

• One-sided and general 
limits

When most people look back on calculus after completing it, 
they wonder why they had to learn limits at all. For some, it’s 
like getting all of their teeth pulled just for the fun of it. After 
a brief limit discussion at the start of the course, there are 
very few times that limits return, and when they do, it is only 
for a brief cameo role in the topic at hand. However, limits are 
extremely important in the development of calculus and in 
all of the major calculus techniques, including differentiation, 
integration, and infinite series.

As I discussed in Chapter 1, limits were the key ingredient in 
the discovery of calculus. They allow you to do things that 
ordinary math gets cranky about. In practice, limits are many 
students’ first encounter with a slightly philosophical math 
topic, answering questions like, “Even though this function is 
undefined at this x-value, what height did it intend to reach?” 
This chapter will give you a great intuitive feel of what a 
limit is and what it means for a function to have a limit; the 
next chapter will help you evaluate limits.

One final note: the official limit definition is called the 
delta-epsilon definition of limits. It is very complex, and is 
based on high-level mathematics. A discussion of this rigorous 
mathematical concept is not beneficial, so it is omitted here. 
In essence, it is possible to be a great driver without having to 
understand every principle of the combustion engine.
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What Is a Limit?
When I first took calculus in high school, I was hip-deep in evaluating limits via tons of different 
techniques before I realized that I had no idea what I was doing, or why. I am one of those 
people who needs some sort of universal understanding in a math class, some sort of framework 
to visualize why I am undertaking the process at hand. Unfortunately, calculus teachers are 
notorious for explaining how to complete a problem (outlining the steps and rules) but not 
explaining what the problem means. So for your benefit and mine, we’ll discuss what a limit actually 
is before we get too nutty with the math part of things.

Let’s start with a simple function: f(x) = 2x + 5. You know that this is a line with slope 2 and 
y-intercept 5. If you plug x = 3 into the function, the output will be f(3) = 2(3) + 5 = 11. Very 
simple, everyone understands, everyone’s happy. What else does this mean, however? It means 
that the point (3,11) belongs to the relation and function I call f. Furthermore, it means that the 
point (3,11) falls on the graph of f(x), as evidenced in Figure 5.1.

Figure 5.1 
The point (3,11) falls on the graph of f(x).

All of this seems pretty obvious, but let’s change the way we talk just a little to prepare for limits. 
Notice that as you get closer and closer to x = 3, the height of the graph gets closer and closer  
to y = 11. In fact, if you plug x = 2.9 into f(x), you get f(2.9) = 2(2.9) + 5 = 10.8. If you plug in  
x = 2.95, the output is 10.9. Inputs close to 3 give outputs close to 11, and the closer the input is  
to 3, the closer the output is to 11.
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Even if you didn’t know that f(3) = 11 (say for some reason you were forbidden by your evil  
stepmother, as was Cinderella), you could still figure out what it would probably be by plugging in 
an insanely close number like 2.99999. I’ll save you the grunt work and tell you that f(2.99999) = 
10.99998. It’s pretty obvious that f is headed straight for the point (3,11), and that’s what is meant 
by a limit.

A limit is the intended height of a function at a given value of x, whether or not the function 
actually reaches that height at the given x. In the case of f, you know that f does reach the value 
of 11 when x = 3, but that doesn’t have to be the case for a limit to exist. Remember that a limit is 
the height a function intends to reach.

DEFINITION

A limit is the height a function intends to reach at a given x value, whether 
or not it actually reaches it.

Can Something Be Nothing?
You may ask, “How am I supposed to know what a function intends to do? I don’t even know 
what I intend to do.” Luckily, functions are a little more predictable than people, but more on 
that later. For now, let’s look at a slightly harder problem involving limits. But before we do, let’s 
discuss how a limit is written in calculus.

In our previous example, we determined that the limit, as x approaches 3, of f(x) equals 11, 
because the function approached a height of 11 as we plugged in x values closer and closer to 3. 
As it seems with everything else, calculus has a shorthand notation for this:

This is read, “The limit, as x approaches 3, of f(x) equals 11.” The tiny 3 is the number you’re 
approaching, f(x) is the function in question, and 11 is the intended height of f at 3. Now, let’s 
look at a slightly more involved example.

Figure 5.2 is the graph of ( ) = − −
+g x x x
x

6
2

2
. Clearly, the domain of g cannot contain x = –2, because 

that causes 0 in the denominator, and that is just plain yucky.

Notice that the graph of g has a hole at the evil value of x = –2, but that won’t stop us. We’re 
going to evaluate the limit there. Remember, the function doesn’t actually have to exist at a 
certain point for a limit to exist—the function only has to have a clear height it intends to reach. 
Clearly, the function has an intended height it wishes to reach when x = –2 in the graph—there’s 
a gaping hole at that exact spot, in fact.

( ) =
→
f xlim 11

x 3
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CRITICAL POINT

If you substitute x = –2 into ( ) = − −
+g x x x
x

6
2

2
, you get 0

0 , which is said to be in 
“indeterminate form.” Typically, a result of 0

0  means that a hole appears in 
the graph at that value of x, which is the case with g(x).

Figure 5.2 
The graph of ( ) = − −

+g x x x
x

6
2

2

.

CRITICAL POINT

We will evaluate limits like ( )
→
f xlim

x 3
 and ( )

→−
g xlim

x 2
 in the next chapter 

without having to resort to the “plug in an insanely close number” 
technique. In this chapter, focus with me on the idea of a limit, and we’ll get 
to the computational part soon enough.

How can you evaluate ( )
→−
g xlim

x 2
? Just as we did in the previous example, you’ll plug in a number 

insanely close to x = –2, in this case, x = –1.99999. Again, I’ll do the grunt work for you (you can 
thank me later): g(–1.99999) = –4.99999. Even a knucklehead like me can see that this function 
intends to go to a height of –5 on the function g when x = –2.

Therefore, ( ) = −
→−
g xlim 5

x 2
, even though the point (–2,–5) does not appear on the graph of g(x). 

This is one example of a limit existing because a function intends to go to a height despite not 
actually reaching that height.

Example 1: Graph ( ) = − +
−f x x x
x

2 9 4
4

2

 and simplify the function to evaluate ( )
→
f xlim

x 4
.
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Solution: You might be thinking, “Graph something that complicated? How am I supposed to do 
that?” While you could spend an hour plotting points on the graph by substituting x-values into 
the function, there’s no need. Like the function g(x) graphed in Figure 5.2, f(x) will have a much 
simpler graph than you may initially think.

Begin by factoring the numerator of f(x): ( ) = ( )( )− −
−f x x x
x

4 2 1
4

Notice that the common factor (x – 4) appears in the numerator and denominator of the fraction. 
You can simplify the fraction by eliminating the common factor, basically crossing out (x – 4)  
like so:

This means the values of ( ) = − +
−f x x x
x

2 9 4
4

2
 are exactly the same as the values of f(x) = 2x – 1, with 

one gigantic exception. The original version of the function is a fraction, and if you substitute 
x = 4 into it, you get 0 in the denominator, which is not allowed.

What does all that mean? The graphs of ( ) = − +
−f x x x
x

2 9 4
4

2
 and f(x) = 2x – 1 look exactly the same 

except when x = 4. At that point on the line, you should place a hole in the graph, as illustrated in 
Figure 5.3.

Figure 5.3 
The graph of ( ) = − +

−f x x x
x

2 9 4
4

2
, which is not defined when x = 4. Note that it matches the graph of 

y = 2x – 1, except at x = 4.

( )
( )

=

= −

( ) ( )− −

−
f x

f x x2 1

x x

x

4 2 1

4
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One-Sided Limits
Occasionally, a function will intend to reach two different heights at a given x, one height as you 
come from the left side and one height as you come from the right side. We can still describe 
these one-sided intended heights, using left-hand and right-hand limits. To better understand this 
bizarre function behavior, look at the graph of h(x) in Figure 5.4.

Figure 5.4 
The graph of h(x) consists of two pieces; a graph like this is usually the result of a 

piecewise-defined function.

YOU’VE GOT PROBLEMS

Problem 1: Graph ( ) = + −
−j x x x
x
2 15

3

2

 and evaluate ( )
→
j xlim

x 3
.

Now to calculate ( )
→
f xlim

x 4
. Even though f(x) is not defined when x = 4, y = 2x – 1 is, and we 

know that the graphs exactly match each other everywhere else. Therefore, ( ) = − +
−f x x x
x

2 9 4
4

2
 

intends to reach the height f(x) = 2x – 1 reaches when x = 4. To calculate that height, substitute 
x = 4 into the simplified version of f(x).

You conclude that ( ) =
→
f xlim 7

x 4
, which you can verify visually using the graph in Figure 5.3.

( ) ( )= −

= −
=

f 4 2 4 1

8 1
7
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DEFINITION

A left-hand limit is the height a function intends to reach as you approach 
the given x value from the left; the right-hand limit is the intended height as 
you approach from the right.

This graph does something very wacky at x = 4: it breaks. Trace your finger along the graph as 
it approaches x = 4 from the left. What height is your finger approaching as you get close to (but 
don’t necessarily reach) x = 4? You are approaching a height of 6. This is called the left-hand limit 
and is written like this:

CRITICAL POINT

To keep from confusing right- and left-hand limits, remember the key word: 
from. A left-hand limit is the height toward which you’re heading as you 
approach the given x-value from the left, not as you go toward the left on 
the graph.

The little negative sign in the exponent indicates that you should only be interested in the height 
the graph approaches as you travel along the graph from the left-hand side. If you trace your 
finger along the other portion of the graph, this time toward x = 4 from the right, you’ll notice 
that you approach a height of 2 when you get close to x = 4. This is, as you may have guessed, the 
right-hand limit for x = 4, and it is written as follows:

Example 2: Graph the function k(x), defined here. Then, evaluate (a) ( )
→− −

k xlim
x 1

 and  
(b) ( )

→− +
k xlim

x 1
.

Solution: If you need to review piecewise-defined functions, check out Example 2 in Chapter 3.

The function k(x) is defined by two linear equations. Its values come from y = –x – 3 whenever 
–1 > x ≥ 1. It may help you to split that compound inequality into two simple inequalities:  
–1 > x and x ≥ 1. (It also may help to rewrite –1 > x with x on the left side: x < –1.) Basically, 
values of k(x) are generated by the expression –x – 3 for x-values less than –1 or greater than or 
equal to 1.

( ) =
→ −
h xlim 6

x 4

( ) =
→ +
h xlim 2

x 4

( ) = − − − > ≥
+ − ≤ <






k x

x x
x x

3, 1 1
2 2, 1 1
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Similarly, values of k(x) are generated by the expression 2x + 2 for x-values greater than or equal 
to –1 and less than 1. (Break the compound inequality into two simple inequalities again if that 
helps you visualize the interval.) The graph of k(x) appears in Figure 5.5.

Figure 5.5 
The graph of k(x) and four points of interest, the endpoints of the linear segments that form k(x).

Although your graph may be slightly inaccurate if you mix up the open and solid dots on your 
graph, it won’t affect the limit values at x = –1 and x = 1. Speaking of the limit values, it’s time to 
get calculating.

To evaluate ( )
→− −

k xlim
x 1

, you need to identify the height that k(x) intends to reach as you approach 

x = –1 from the left. Trace your finger from left to right along the graph, beginning at its left 
edge and approaching x = –1. Stop at x = –1, right before the graph jumps from point (–1,–2) to 
(–1,0). As you approach x = –1 from the left, the function intends to reach point (–1,–2), with an 
intended height of –2. Therefore, ( ) = −

→− −
k xlim 2

x 1
.

1

1

2

3

4

5

6

–1

–2

–3

–4

–5

–6

–2–3–4–5

(1,–4)

(–1,–2)

(1,4)

–6 2 3 4 5 6

–1

(–1,0)
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Figure 5.6 
Calculating the left- and right-hand limits of k(x) as x approaches –1.

To calculate ( )
→− +

k xlim
x 1

, approach that same break in the graph at x = –1, but this time approach 

from the right side, tracing your finger along y = 2x + 2 as it declines steeply. (Remember, you’re 
approaching x = –1 from right to left.) Again, stop before the jump in the graph at x = –1, this 
time at the point (–1,0). This line has an intended function height of 0, so ( ) =

→− +
k xlim 0

x 1
.

1

1

2

3

4

5

6

–1

–2

–3

–4

–5

–6

–2–3–4–5–6 2 3 4 5 6

–1

lim
x

k x
→− −

( )=−
1

2

lim
x

k x
→− +

( )=
1

0

YOU’VE GOT PROBLEMS

Problem 2: Using the piecewise-defined function k(x) defined in Example 2, 
calculate ( )

→ −
k xlim

x 1
 and ( )

→ +
k xlim

x 1
.

Until now, we have only spoken of a general limit (in other words, a limit that doesn’t involve 
a direction, such as from the right or left). Most of the time in calculus, you will worry about 
general limits, but in order for general limits to exist, right- and left-hand limits must also be 
present; this we learn in the next section, which will tie together everything we’ve discussed so 
far about limits. Can you feel the electricity in the air?
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When Does a Limit Exist?
If you don’t understand anything else in this chapter, make sure to understand this section. It 
contains the two essential characteristics of limits: when they exist and when they don’t. If you’ve 
understood everything so far, you’re on the verge of understanding your first major calculus 
topic. I’m so proud of you—I remember when you were only this tall.

Here’s the key to limits: in order for a limit to exist on a function f at some x-value (we’ll give it a 
generic name like x = c), three things must happen:

 1. The left-hand limit must exist at x = c.

 2. The right-hand limit must exist at x = c.

 3. The left- and right-hand limits at c must be equal.

In calculus books, this is usually written like this: if ( ) ( )=
→ →− +

f x f xlim lim
x c x c

, then ( )
→
f xlim

x c
 exists 

and is equal to the one-sided limits.

The diagram in Figure 5.7 will help illustrate the point.

Figure 5.7 
Yet another hideous graph called f(x). Can you spot where the limit doesn’t exist?

There are two interesting x-values on this graph: x = –1 and x = 6. At one of those values, a 
general limit exists, and at the other, no general limit exists. Can you figure out which is which 
using the guidelines?
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You’re reading ahead, aren’t you? Well, stop it. Don’t read any more until you’ve actually tried to 
answer the question I’ve asked you. Do it. I’m watching!

The answer: ( )
→−

f xlim
x 1

 exists and ( )
→
f xlim

x 6
 does not. Remember, in order for a limit to exist,  

the left- and right-hand limits must exist at that point and be equal. As you approach x = –1  
from the left and right sides, each time you are heading toward a height of 5, so the two one-
sided limits exist and are equal, and we can conclude that ( ) =

→−
f xlim 5

x 1
 (i.e., the general limit as 

x approaches –1 on f(x) is equal to 5).

However, this is not the case when we approach x = 6 from the right and left. In fact, 
( ) =

→ −
f xlim 5

x 6
, whereas ( ) =

→ +
f xlim 1

x 6
. Because those one-sided limits are unequal, we say that no 

general limit exists at x = 6, and that ( )
→
f xlim

x 6
 does not exist.

Visually, a limit exists if the graph does not break at that point. For the graph f(x) in question, 
a break occurs at x = 6 but not x = –1, which means a limit doesn’t exist at the break but can 
exist at the hole in the graph. Remember that a limit can exist even if the function doesn’t exist 
there—as long as the function intends to reach the same height from the left and the right, the 
limit exists.

When Does a Limit Not Exist?
You already know of one instance in which limits don’t exist, but two other circumstances can 
ruin a limit as well.

• A general limit does not exist if the left- and right-hand limits aren’t equal.

In other words, if there is a break in the graph of a function, and the two pieces of the function 
don’t meet at an intended height, then no general limit exists there. In Figure 5.8, ( )

→
g xlim

x c
 does 

not exist because the left- and right-hand limits are unequal.

Figure 5.8 
The graph of g(x).
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• A general limit does not exist if a function increases or decreases infinitely at a given 
x-value (i.e., the function increases or decreases without bound).

In order for a general limit to exist, the function must approach some fixed numerical height. 
If a function increases or decreases infinitely, then no limit exists. In Figure 5.9, ( )

→
h xlim

x c
 does 

not exist because h(x) has a vertical asymptote at x = c, causing the function to increase without 
bound there. A limit must be a finite number in order to truly exist.

Figure 5.9 
The graph of h(x).

• A general limit does not exist if a function oscillates infinitely, never approaching a 
single height.

This is rare, but sometimes a function will continually wiggle back and forth, never reaching a 
single numeric value. If this is the case, then no general limit exists. Because this is so rare, most 
calculus books give the same example when discussing this eventuality, and I will be no different. 
(Math peer pressure is harsh, let me tell you.) No general limit exists at x = 0 in Figure 5.10 
because the function never settles on any one value the closer you get to x = 0.
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Figure 5.10 
The graph of =y sin x

1 ; 
→

lim sin
x x0

1  does not exist.

Example 3: A function f(x) is defined by the graph in Figure 5.11. Based on the graph and your 
amazing knowledge of limits, evaluate the limits that follow. If no limit exists, explain why.

Figure 5.11 
The hypnotic graph of f(x). Mortal men may turn to stone upon encountering its terrible visage.
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 (a) ( )
→− +

f xlim
x 4

Solution: As you approach x = –4 from the right, the function increases without bound. You 
have two ways to write your answer; either say that the limit does not exist because the function 
increases infinitely, or write ( ) = ∞

→− +
f xlim

x 4
.

 (b) ( )
→
f xlim

x 4

Solution: As you approach x = 4 from the right and left, the function approaches a height of 3. 
Therefore, the general limit exists and is 3.

 (c) ( )
→−

f xlim
x 3

KELLEY’S CAUTIONS

If a graph has no general limit at one of its x-values, that does not affect any 
of the other x-values. For example, in Figure 5.10, a general limit exists at 
every x-value except x = 0.

Solution: No general limit exists here because the left-hand limit (1) does not equal the right-
hand limit (–3).

CRITICAL POINT

Giving a limit answer of ∞ or –∞ is equivalent to saying that the limit does 
not exist. However, by answering with ∞, you are also explaining why the 
limit doesn’t exist and specifically detailing whether the function increased 
or decreased infinitely there.

YOU’VE GOT PROBLEMS

Problem 3: Here are a few limits to try on your own based on the graph of 
f(x) in Figure 5.11:

(a)  ( )
→− −

f xlim
x 4

(b)  ( )
→
f xlim

x 3

(c)  ( )
→
f xlim

x 1
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The Least You Need to Know
• The limit of a function at a given x-value is the height the function intends to 

reach there.

• A function can have a limit at an x-value even if the function has a hole there.

• A function cannot have a limit where its graph breaks.

• If a function’s left- and right-hand limits exist and are equal for a certain x = c, 
then a general limit exists at c.

• A limit does not exist in the cases of infinite function growth or oscillation.





CHAPTER

6
Evaluating Limits Numerically

In This Chapter
• Three easy methods for 

finding limits

• Limits and asymptotes

• Finding limits at infinity

• Trig and exponential limit 
theorems

Now you know what a limit is, when a limit exists, and when 
it doesn’t. However, the question of how to actually evaluate 
limits remains. In Chapter 5 we approximated limits by 
plugging in x values insanely close to the number we were 
approaching, but that got tedious quickly. As soon as you 
have to raise numbers like 2.999999 to various exponents, it 
becomes clear that you either need a better way or a giant 
bottle of aspirin.

Good news: there are lots of better ways, and this chapter will 
lead you through all of the major processes to evaluate limits 
and the important limit theorems you should memorize. For 
those of you who were uncomfortable with math turning a 
little conceptual and philosophical there for a little bit, don’t 
worry—we’re back to comfortable, familiar, soft, fuzzy, and 
predictable math techniques and formulas.

All of that theory you learned in the last chapter will resurface 
to some degree in Chapter 7, when we discuss continuity of 
functions, so keep it fresh in your mind. A lot of our discus-
sion about limits will get hazy quickly when you move on to 
derivatives and integrals as the book progresses. Make sure 
you come back and review these early topics often throughout 
your calculus course to keep them fresh in your brain.
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The Major Methods
The vast majority of limits can be evaluated by using one of three techniques: substitution, 
factoring, and the conjugate method. Usually, only one of these techniques will work on a given 
limit problem, so you should try one method at a time until you find one that works. Because I 
am efficient (understand, by that I mean extremely lazy) I always try the easiest method first, 
and only move on to more complicated methods if I absolutely have to. As such, I’ll present the 
methods from easiest to hardest.

Substitution Method
Prepare yourself—you’re going to weep with uncontrollable joy when I tell you this. Many limits 
can be evaluated simply by plugging the x value you’re approaching into the function. The fancy 
term for this is the substitution method (or the direct substitution method).

Example 1: Evaluate ( )− +
→

x xlim 2
x 4

2 .

Solution: In order to evaluate the limit, simply plug the number you’re approaching (4) in for the 
variable:

42 – 4 + 2 = 16 – 2 = 14

According to the substitution method, ( )− + =
→

x xlim 2 14
x 4

2 . That was too easy! Just to make sure 

it actually worked, let’s check the answer by looking at the graph of y = x2 – x + 2 in Figure 6.1.

Figure 6.1 
Use the graph of y + x2 – x + 2 to visually verify the limit at x = 4.
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As we approach x = 4 from either the left or the right, the function clearly heads toward a height 
of 14, which, as we know, guarantees that the general limit exists and is 14. It worked! Huzzah!

CRITICAL POINT

When I say that the methods of evaluating limits are listed from easiest to 
hardest, I should qualify it by saying that hard is not a good word choice; 
none of these methods is hard. The number of steps increases slightly from 
one method to the next, but these methods are easy.

If every limit problem in the world could be solved using substitution, there would probably be 
no need for mathematically induced antidepressants. However (and there’s always a however, 
isn’t there?), sometimes substitution cannot be used. In such cases, you should resort to the next 
method of evaluating limits: factoring.

YOU’VE GOT PROBLEMS

Problem 1: Evaluate the following limits using substitution:

(a) 
π→

lim
x

x
x

cos (b) 
→−

+
−

lim
x

x
x2

1
1

2

2

Factoring Method
Consider the function ( ) = −

+f x x
x

9
3

2
. How would you find the limit of f(x) as x approaches –3? 

Well, if you try to use substitution to find the limit, bad things happen:

What kind of an answer is 0
0 ? A gross one, that’s for sure. Remember that we can’t have 0 in the 

denominator of a fraction; that’s not allowed. If you recall, in the last chapter we called this an 
“indeterminate form,” which means the answer can be anything. Clearly, then, the limit is not 0

0 , 
but that answer does tell us two things:

 1. You must use a different method to find the limit, because …

 2. … the function likely has a hole at the x value you substituted into the function, and you 
need to determine the height of that hole.

=

=

=

( )
→−

−
+

− −
− +

−

lim
x

x
x3

9
3

3 9
3 3

9 9
0

0
0

2 2
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The best alternative to substitution is the factoring method, which works just beautifully in this 
case. In the next example, we’ll find this troubling limit.

Example 2: Evaluate 
→−

−
+lim

x

x
x3

9
3

2

 using the factoring method.

Solution: To begin the factoring method, factor! It makes sense, because the numerator is the 
difference of perfect squares and factors very happily:

Now both the top and bottom of the fraction contain (x + 3), so you can cancel those terms out to 
get the much simpler limit expression of:

Now you can use the substitution method to finish:

–3 – 3 = –6

So = −
→−

−
+lim 6

x

x
x3

9
3

2

.

( )( )
→−

+ −
+lim

x

x x
x3

3 3
3

( )−
→−

xlim 3
x 3

YOU’VE GOT PROBLEMS

Problem 2: Evaluate these limits using the factoring method:

(a) 
→

− −
−lim

x

x x
x5

2 7 15
5

2

(b) 
→

−
−lim

x

x
x1

1
1

3

Conjugate Method
If substitution and factoring don’t work, you have one last bastion of hope when evaluating limits, 
but this final method is very limited in its scope and power. In fact, it is most useful for limits 
that contain radicals, as its power comes from the use of the conjugate. The conjugate of a binomial 
expression (i.e., an expression with two terms) is the same expression with the opposite middle sign. 
For example, the conjugate of −x 5  is +x 5 .

DEFINITION

For our purposes, the conjugate of a binomial expression simply changes 
the sign between the two terms to its opposite. For example, + x3  and 

− x3  are conjugates.
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The true power of conjugate pairs is displayed when you multiply them together. The product 
of two conjugates containing radicals will, itself, contain no radical expressions! In other words, 
multiplying by a conjugate can eliminate square roots:

You should use the conjugate method whenever you have a limit problem containing radicals for 
which substitution does not work—always try substitution first. However, if substitution results 
in an illegal value ( )like 0

0 , you’ll know to employ the conjugate method, which we’ll use to solve 
the next example.

Example 3: Evaluate 
→

+ −
−lim

x

x
x5

11 4
5 .

Solution: If you try the substitution method, you get 0
0 , indicating that you’ll need another 

method to find the limit because the function probably has a hole at x = 5. The function itself 
contains a radical and a number being subtracted from it—the fingerprint of a problem needing 
the conjugate method. To start, multiply both the numerator and denominator by the conjugate  
of the radical expression ( )+ +x 11 4 :

Multiply the numerators and denominators as you would any pair of binomials—i.e.,  
(a + b)(c + d) = ac + ad + bc + bd—and all of the radical expressions will disappear from the 
numerator. Do not actually multiply the nonconjugate pair together. You’ll see why in a second:

Here’s the neat trick: the numerator and denominator now contain the same term (x – 5) so you 
can cancel that term and then finish the problem with the substitution method:

( )( )− + = + − −

= −
= −

x x x x x

x
x

5 5 5 5 25

25
25

2

2

⋅
→

+ −
−

+ +
+ +

lim
x

x
x

x
x5

11 4
5

11 4
11 4

=

=

( )
( )

( )

( )

( )

( )

( )

→

+ + + − + −

− + +

→

+ −

− + +

→

−

− + +

lim

lim

lim

x

x x x

x x

x

x

x x

x

x

x x

5

11 4 11 4 11 4

5 11 4

5

11 16

5 11 4

5

5

5 11 4

2 2

=

=

=

=

=

+ +

+ +

+

+

x
1
11 4
1

5 11 4
1

16 4
1

4 4
1
8
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What If Nothing Works?
If none of the three techniques we have discussed works on the problem at hand, you’re not out of 
hope. Don’t forget we have an alternative (albeit tedious, mechanical, and unexciting—like most 
television sitcoms) method of finding limits. If all else fails, substitute a number insanely close to 
the number for which you are evaluating, as we did in Chapter 5.

Let me also play the part of the soothsayer for a moment. For maximum effect, read the next 
sentences in a creepy fortune-teller voice. “I see something in your future, yes, off in the 
distance. A promised method, a shortcut, a new way to evaluate limits that makes hard things 
easy. I’m getting a French name … L’Hôpital’s Rule … and an unlucky number … 13. Chapter 13. 
Look for it in Chapter 13.”

Limits and Infinity
There is a deep relationship between limits and infinity. At first they thought they were “just 
friends,” and then one would occasionally catch the other in a sidelong glance with eyes that 
spoke volumes. Without going into the long history, now they’re inseparable, and without their 
storybook relationship, there’d be no vertical or horizontal asymptotes.

Vertical Asymptotes
You already know that a limit does not exist if a function increases or decreases infinitely, such as 
at a vertical asymptote. You may be wondering if it’s possible to tell if a function is doing just  
that without having to draw the graph, and the answer is yes. Just as a substitution result of 0

0  
typically means a hole exists on the graph, a result of 5

0  indicates a vertical asymptote. To be 
more specific, you don’t have to get 5 in the numerator—any nonzero number divided by 0 
indicates that the function is increasing or decreasing without bound, meaning no limit exists.

Example 4: At what value(s) of x does no limit exist for ( ) = + +
−

f x x x
x

7 10
25

2

2 ?

Solution: Begin by factoring the expression, because knowing what x values cause a 0 in the 
denominator is key:

( ) = ( )( )
( )( )
+ +

+ −
f x x x

x x

5 2

5 5

YOU’VE GOT PROBLEMS

Problem 3: Evaluate the following limits:

(a) 
→−

+
+ −

lim
x

x
x2

2
6 2

(b) 
→

+ −
+lim

x

x
x1

4 3
1
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At x = –5, the function should have a hole, as substituting in that value results in 0
0 . You can use 

the factoring method to actually find that limit:

However, you’re supposed to determine where the limit doesn’t exist, so let’s look at the other 
distressing x-value: x = 5. If you substitute that into f(x), you get 70

0 . This result, any number 
(other than 0) divided by 0, indicates the presence of a vertical asymptote at x = 5, so ( )

→
f xlim

x 5
 

does not exist because f will either increase or decrease infinitely there.

If substitution results in 0
0 , that does not guarantee that a hole exists in the function. You can only 

be sure there’s a hole there if a limit exists, as was the case with x = –5 in this example.

Example 5: Calculate all values of c for which = ∞ − ∞( )( )→

−
+ +

lim  or 
x c

x x
rx s vx w

2 62

.

Solution: This problem looks like a spilled bowl of alphabet soup, doesn’t it? Don’t let all of the 
unknowns in there discourage you. Although r, s, v, and w don’t look like numbers, that’s all they 
are. You don’t know their values, but don’t let that bother you. Think of them as little boxes, 
hidden inside each of which is a plain old harmless number.

Because the limit of the function is either ∞ or –∞, technically that limit doesn’t exist because 
the rational function either increases or decreases without bound near that value of c. This 
happens at a vertical asymptote.

In other words, this question is actually wondering, “At what x-values does this function have a 
vertical asymptote?” Begin by setting the denominator equal to zero and solving. Remember, the 
x-values you’re looking for will cause the denominator to equal 0 but not the numerator.

Now you know the denominator equals 0 whenever = − −c  or s
r

w
v . Why use a c there instead 

of an x? The question wants specific x-values that cause a vertical asymptote, and it names those 
values c, so you should do the same. One thing left to consider: these strange c-values won’t 
actually represent vertical asymptotes if their values also cause the numerator to equal 0.

( ) =
=

=

=

→−

+
−

− +
− −

f xlim
x

x
x5

2
5

5 2
5 5

-3
-10

3
10

( )( )+ + =

+ =
= −

= −

+ =
= −

= −

rx s vx w

rx s
rx s

x

vx w
vx w

x

0

0
or

0

s
r

w
v
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Your next step is to find out when the numerator equals 0 to specifically avoid those values. 
You’ll need to set the numerator equal to 0 and solve using the factoring method.

Believe it or not, you’re finished! The answer isn’t all that satisfying, but here goes nothing.  
The function will increase or decrease without bound for c-values − − and s

r
w
v , as long as those 

values are neither equal to 0 nor equal to 3.

( )
− =
− =

=
=

− =
=

x x
x x

x
x

x
x

2 6 0
2 3 0

2 0
0

or
3 0

3

2

YOU’VE GOT PROBLEMS

Problem 4: Determine the x–values at which ( ) = − +
+ −

g x x x x
x x x

2 3
2 5 3

3 2

3 2  is undefined. If 

possible, evaluate the limits as x approaches each of those values.

Horizontal Asymptotes
Vertical asymptotes are caused by a function’s values increasing or decreasing infinitely as that 
function gets closer and closer to a fixed x-value; so, if a function has a vertical asymptote at  
x = c, we can write ( ) = ∞ − ∞

→
f xlim  or 

x c
. Horizontal asymptotes have a lot of the same 

components, but everything is reversed. One minor exception: a function can cross a horizontal 
asymptote (but not a vertical asymptote), because horizontal asymptotes only deal with the “end 
behavior” of the function, the intended heights of the function at the far right and left ends of 
the graph.

A horizontal asymptote is the height that a function tries to, but cannot, reach as the function’s 
x-values get infinitely positive or negative. In Figure 6.2, f(x) approaches a height of 5 as x gets 
infinitely positive and a height of –1 as f(x) becomes infinitely negative.
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Figure 6.2 
The graph of f(x) has different horizontal asymptotes as x gets infinitively positive and negative. 

A rational function won’t look like this—it will have (at most) one horizontal asymptote.

This is written as: ( ) ( )= = −
→∞ →−∞
f x f xlim 5 and lim 1

x x
.

These are called limits at infinity, since you are not approaching a fixed number, as you do with 
typical limits. However, the limit still exists because the function clearly intends to reach the 
limiting height indicated by the horizontal asymptote, although it never actually reaches it.

Evaluating limits at infinity is a bit different from evaluating standard limits; substitution, 
factoring, and the conjugate methods won’t work, so you need an alternative method. Although 
L’Hôpital’s Rule works quite nicely, you won’t learn that until Chapter 13. In the meantime, you 
can evaluate these limits simply by comparing the highest exponents in their numerators and 
denominators.

Let’s say we calculate ( )
→∞
r xlim

x
, where r(x) is defined as a fraction whose numerator, n(x), and 

denominator, d(x), are simply polynomials. Compare the degrees (highest exponents) of n(x) and d(x):

• If the degree of the numerator is higher, then ( ) = ∞ − ∞
→∞
r xlim  or 

x
 (i.e., there is no limit 

because the function increases or decreases infinitely).

• If the degree of the denominator is higher, then ( ) =
→∞
r xlim 0

x
.

• If the degrees are equal, then ( )
→∞
r xlim

x
 is equal to the leading coefficient of n(x) divided by 

the leading coefficient of d(x).
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CRITICAL POINT

If r(x) is a rational (fractional) function and has a horizontal asymptote, then 
it is guaranteed that ( ) ( )=

→∞ →−∞
r x r xlim lim

x x
. In other words, a rational function 

has the same horizontal asymptote at both ends of the function. However, 
once you include a radical, this guarantee goes down the drain.

Remember, these guidelines only apply to limits at infinity.

DEFINITION

The degree of a polynomial is the value of its largest exponent. The leading 
coefficient of a polynomial is the coefficient of the term with the largest 
exponent. For example, the expression y = 3x2 – 5x6 + 7 has degree 6 and 
leading coefficient –5.

Example 6: Evaluate 
→∞

+ − +

+ − +
lim
x

x x x

x x x

5 4 7 4

2 6 8

3 2

2 3
.

Solution: This is a limit at infinity, so you should compare the degrees of the numerator and 
denominator. They are both 3, so the limit is equal to the leading coefficient of the numerator (5) 

divided by the leading coefficient of the denominator (8), so =
→∞

+ − +
+ − +

lim
x

x x x
x x x

5 4 7 4
2 6 8

5
8

3 2

2 3 .

YOU’VE GOT PROBLEMS

Problem 5: Evaluate the following limits:

(a) 
→∞

+
− +

lim
x

x
x x
2 6

3 4 1

2

2 (b) 
→−∞

+ +
+ +

lim
x

x x
x x
3 4 3

8 14

2

3

Now that you’ve got the basics down, let’s turn the difficulty up a notch.

Example 7: Given the function g(x) as defined here, assume that ( ) =
→∞
g xlim

x
1
3 . If a + f = 12, 

what is the value of a – f?

Solution: Remember, as with Example 5, all of the letters except for g and x (in other words a, b, 
c, d, e, and f ) are just numbers.

Although there are letters all over the place in this fraction, you do have a few numbers to work 
with. Specifically, a couple of 2s, the exponents in the numerator and denominator. That means, 
as ugly as they are, the expressions in both parts of the fraction are just quadratics.

( ) = + +

+ +
g x ax bx c

d ex fx

2

2
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A fraction where the degrees of the numerator and denominator are equal? Sounds familiar! When 
those degrees are equal, the limit as x approaches infinity is equal to the leading coefficient of the 
numerator (a) divided by the leading coefficient of the denominator ( f ). The problem tells you 
that the limit is equal to 1

3 .

Okay, that’s a start, but you need more information to move forward. Luckily, the problem 
provides that information. It tells you that a + f = 12. Now you have two equations that 
explain the relationship between a and f; you have a system of equations that you can solve by 
substitution. Solve the linear equation for a by subtracting f from both sides:

Because a has the same value as 12 – f, you can replace a with 12 – f in the other equation, the 
proportion you created earlier:

Finally! An equation with just one variable. Solve this for f by cross-multiplying.

Now that you know the value of f, you can find the corresponding value of a. Just use that 
equation you used to solve for a only a few moments ago:

That was a lot of work, but now we can finally answer the question posed by the problem. If 
a + f = 12, what is the value of a – f?

( ) = =
→∞
g xlim

x

a
f

1
3

+ =
= −

a f
a f

12
12

=

=−

a
f

f
f

1
3

12 1
3

( )− = ⋅

− =
=

=

=

f f

f f
f

f

f

3 12 1

36 3
36 4

9

36
4

= −
= −
=

a f12
12 9
3

− = −
= −

a f 3 9
6
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Special Limit Theorems
The five following special limits are not special because of the way they make you feel all giddy 
inside. By “special,” I mean they can’t be evaluated by the means we’ve discussed so far, yet you’ll 
see them frequently and should probably memorize them, even though that stinks. Now that 
we’re on the same page, so to speak, here they are with no further ado:

• 

This formula is only true when you approach 0, so don’t use this under any other circumstances. 
The α can be any quantity.

• 

As with the first special limit, this formula is only true when approaching 0. Sometimes, you’ll 
also see this formula written as α

α
−1 cos ; the limit is still 0 either way.

• 

If any real number is divided by x, and we let that x get infinitely large, the result is 0. Think 
about that—it makes sense. What is 4 divided by 900 kajillion? Who knows, but it’s definitely 
very, very small. So small, in fact, that it’s basically 0.

• 

This basically says that 1 plus an extremely small number, when raised to an extremely high 
power, is exactly equal to Euler’s number (2.71828 …). You will see this very infrequently, but it’s 
important to recognize it when you do.

• 

This is another specialty trigonometric limit that pops up now and again. Tuck it into the folds of 
your brain in case it shows up on a test.

=
α

α
α→

lim 1
0

sin

=
α

α
α→

−lim 0
0

cos 1

=
→∞

lim 0
x x

any real number
any integer > 0

( )+ =
→∞

elim 1
x x

x1

=
α

α
α→

lim 1
0

tan

YOU’VE GOT PROBLEMS

Problem 6: Identify a rational function h(x) for which ( ) =
→∞
h xlim 0

x
 and 

( )
→
h xlim

x 3
 do not exist.
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Example 8: Evaluate 
→

lim
x

x
x0

sin 3 .

Solution: This is the first special limit formula, but notice that the value inside sine must match 
the denominator for that formula to work; therefore, we need a 3x in the denominator instead of 
just x. The trick is to multiply the top and bottom by 3 (because that’s really the same thing as 
multiplying by 1—you’re not changing the expression’s value):

You can evaluate the limits of the factors separately and multiply the results together for the 
final answer:

⋅ = ⋅
→ →

lim 3
3

lim 3
x

x
x x

x
x0

sin 3

0

sin 3
3

( )( ) ( )( )= =
→ →

lim lim 3 1 3 3
x

x
x x0

sin 3
3 0

YOU’VE GOT PROBLEMS

Problem 7: Evaluate ( )+ +



→∞

lim 1
x x x

x5 1
3

.

Evaluating Limits Graphically
Throughout this chapter, you have focused on computational methods to calculate limits. Before 
you move on, it’s time to reinforce everything you’ve learned by calculating limits graphically. 
Why do this? It may help you determine whether or not you understand what finite and infinite 
limits actually mean. Sometimes it’s easy to fall into a “computational trap,” where you get so 
focused on the step-by-step algorithms of calculus that you forget how the techniques connect to 
reality.

Example 9: Given the graph of f(x) in Figure 6.3, evaluate the following limits:

 (a) ( )
→
f xlim

x 0
 (b) ( )

→−∞
f xlim

x
 (c) ( )

→
f xlim

x 1
 (d) ( )

→
f xlim

x 2



Part 2: Laying the Foundation for Calculus98

Figure 6.3 
The graph of f(x). Assume that the dotted lines are asymptotes.

Solution:

 (a) As you approach x = 0 from the right and the left, the graph approaches the hole at point 
(0,1). Because the graph intends to reach a height of 1, ( ) =

→
f xlim 1

x 0
.

 (b) Trace your finger along the graph from right to left. As the graph heads off toward 
–∞ at its left edge, it is trying to reach a height of 4. The horizontal asymptote at that 
height will prevent it from ever reaching y = 4, but that does not change the limit: 

( ) =
→−∞

f xlim 4
x

.

 (c) As you approach x = 1 from the left and the right, the graph intends to reach (and actu-
ally does reach) a height of –1. Thus, ( ) = −

→
f xlim 1

x 1
.

 (d) Whether you approach x = 2 from the left or the right, the graph plummets, decreasing 
without bound. Therefore, the limit does not exist, because ( ) = −∞

→
f xlim

x 2
.

1

1

–1
–1

2

–2

3

–3

–3

4

–4

5

–5

6

–6

2 3 4 5 6 7 8 9–2
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YOU’VE GOT PROBLEMS

Problem 8: Use the graph of f(x) in Figure 6.3 to evaluate the following 
limits:

(a)  ( )
→
f xlim

x 5
 (b)  ( )

→∞
f xlim

x

Technology Focus: Calculating Limits
Most calculus courses these days allow you to use a graphing calculator or other technology 
tool, at least some of the time. The tools vary widely in their functionality, but the process 
we’ll explore here works the same for all calculators (except for a few tricks I included for Texas 
Instruments calculator owners).

How can you use graphing calculators to check your homework on limit problems? Well, 
calculators don’t mind plugging really small, annoying numbers into expressions—and we love 
them for their embrace of the mundane.

Back in Example 3, you applied the conjugate method to calculate a fairly complicated limit:

The problem asks you to calculate a limit as x approaches 5, so plug an x-value very close to 5 into 
the fraction, such as x = 5.0001:

I don’t know about you, but I can’t calculate 16.0001  off the top of my head, let alone subtract 4 
from it and then divide it by 0.0001. Your calculator, however, is more than happy to do the work 
for you:

Figure 6.4 
Your calculator may be able to express mathematical expressions that look like this, or your screen 

might look more like Figure 6.5.

Your digital buddy reports an approximate limit of 0.124999805, which is very close to 0.125, or 1
8 .

=
→

+ −
−lim

x

x
x5

11 4
5

1
8

=+ −
−

−5.0001 11 4
5.0001 5

16.0001 4
0.0001
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By the way, the calculator screen in Figure 6.4 formats mathematics very neatly. The fractions 
and the square roots look just like they do in a regular math book. However, your calculator 
doesn’t need to be so fancy to get the correct answer. You just need to use parentheses carefully, 
as demonstrated in Figure 6.5.

Figure 6.5 
This screen isn’t formatted as neatly, but you still get the same answer.

So, your calculator can help you check answers for problems that approach a finite limit, in this 
case x = 5. What about limits at infinity?

In Example 6, you calculated a limit as x approaches infinity of a rational function:

Near that problem, in a “Critical Point” sidebar, I insisted that if a rational function has a limit as 
x approaches ∞, then it has the same limit as x approaches –∞. Let’s use your calculator to make 
sure I’m not lying to you and verify that the limit as x approaches –∞ is the same: 5

8 .

Replace x in the rational function with a really large negative number, something like 
x = –10,000. The result should come back close to 0.625, the decimal equivalent of 5

8 :

Figure 6.6 
There are a lot of zeros on this screen, so it’s pretty confusing. If only there were a better way ….

The final result, .6249031227, proves that I’m not a liar (at least not about asymptotes). The limit 
as x approaches –∞ is 5

8 . Let’s be honest, though. That was a lot of typing, which leaves a lot of 
places to make mistakes. Luckily, there is a shortcut!

Your calculator probably lets you store values of variables in memory. On the Texas Instruments 
family of calculators, the  button tells the calculator to store a number as a variable. For 
example, you could set A = –10,000 by typing “ .” (Pressing the 
green  button allows you to access the green letters above the buttons, and the green letter 
A appears above the  button.) Your screen should look like Figure 6.7. If you own a different 
calculator, check the manual for more information and instructions.

=
→∞

+ − +

+ − +
lim
x

x x x

x x x

5 4 7 4

2 6 8

5
8

3 2

2 3
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Figure 6.7 
This set of keystrokes sets the variable A equal to –10,000 in your calculator’s memory.  

From now on, whenever it sees “A,” it thinks “–10,000.”

Now that you have stored –10,000 as A, you can type the rational expression using A, which is 
much easier on the eyes; the result is the same.

Figure 6.8 
This is the same calculation as Figure 6.5, but this time the value –10,000 is represented by A.

The Least You Need to Know
• Most limits can be evaluated via the substitution, factoring, or conjugate methods.

• If a function f(x) has a vertical asymptote x = c, then ( ) = ∞ − ∞
→
f xlim  or 

x c
.

• If a rational function f(x) has a horizontal asymptote y = L, then 
( ) ( )= =

→∞ →−∞
f x f x Llim lim

x x
 (as long as there are no radicals in there).

• There are five common limits that defy our techniques and must be memorized.





CHAPTER

7
Continuity

In This Chapter
• What it means to be 

continuous

• Classifying discontinuity

• When discontinuity is 
removable

• The Intermediate Value 
Theorem

Now that you understand and can evaluate limits, it’s time to 
move forward with that knowledge. Flip through any calculus 
textbook and read some of the most important calculus 
theorems, and you’ll find that nearly every one contains a sig-
nificant condition: continuity. In fact, almost none of our most 
important calculus conclusions (including the Fundamental 
Theorem of Calculus, which sounds pretty darn important) 
work if the functions in question are not continuous.

Testing for continuity on a function is very similar to testing 
for the existence of limits on a function. Just as three stipula-
tions must be met in order for a limit to exist at a given point 
(left- and right-hand limits existing and being equal), three 
different stipulations must be met in order for a function to 
be continuous at a point. Just as there are three major cases 
in which limits do not exist, there are three major causes that 
force a function to be discontinuous.

Calculus is handy like that—if you look hard enough, you 
can usually see how one topic flows into the next. Without 
limits, there’d be no continuity; without continuity, there’d be 
no derivatives; without derivatives, no integrals; and without 
integrals, no sleepless, panicked nights trying to cram for 
calculus tests.
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What Does Continuity Look Like?
First of all, let’s set our language straight. Continuous is an adjective that describes a function 
meeting very specific standards. Just as Boy Scouts must pass tests to earn merit badges, there are 
three tests a function must pass at any given point in order to earn the “Continuous” merit badge.

Before we get into the nitty-gritty of the math definition, let’s approach continuity from a visual 
perspective. It is easiest to determine whether or not a function is continuous by looking at its 
graph. If the graph has no holes, breaks, or jumps, then we can rest assured that the function is continuous. 
A continuous function is simply a nice, smooth function that can be drawn completely without 
lifting your pencil. With this intuitive definition in mind, study Figure 7.1. Can you tell which of 
the following three functions is continuous?

Figure 7.1 
One of these things is not like the others; one of these things just doesn’t belong. Which is the 

continuous function?

CRITICAL POINT

A continuous function is like a well-built roller coaster track—no gaps, holes, 
or breaks means safe riding for its passengers.

Of these functions, only h(x) can be drawn with a single, unbroken pen stroke. The other 
functions are much more unpredictable: f has an unexpected hole in it, and g suddenly breaks 
without warning. Only good old h provides a nice smooth ride from start to finish. Function h 
is like the good, solid, dependable boyfriend or girlfriend you wouldn’t be embarrassed to bring 
home to Mom and Dad, and the fact that it guarantees no unexpected breakups means peace of 
mind for your emotional well-being.

The Mathematical Definition of Continuity
The mathematical definition of continuity makes a lot of sense if you keep one thing in mind: 
whereas limits told us where a function intended to go, continuity guarantees that the function 
actually made it there. As the saying goes, “The road to hell is paved with good intentions.” 

f (x) g (x)

h (x)
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Continuity has the mathematical role of policeman, determining whether or not the function 
followed through with its intentions (meaning it is continuous) or not (making the function 
discontinuous).

Many functions are guaranteed to be continuous at each point in their domain, including 
polynomial, radical, exponential, logarithmic, rational, and trigonometric functions. Most of the 
discontinuous functions you’ll encounter will be due to undefined spots in rational functions 
and jumps due to piecewise-defined functions. We’ll discuss more about specific causes of 
discontinuity in the next section.

CRITICAL POINT

A function is continuous at a point if the limit and function value there are 
equal. In other words, the limit exists if the intended height matches the 
actual function height.

With that in mind, here is the official definition of continuity:

A function f(x) is continuous at a point x = c if the following three conditions are met:

• ( )
→
f xlim  exists

x c

• f(c) is defined

• ( ) ( )=
→
f x f clim

x c

In other words, the limit exists at x = c (which means the function has an intended height); 
the function exists at x = c (which means that there is no hole there); and the limit is equal to the 
function value (i.e., the function’s value matches its intended value). (By the way, if a function is 
continuous, you can evaluate any limit on that function using the substitution method, since the 
function’s value at any point will be equal to the limit there.)

Example 1: Explain why the function f(x), defined here, is continuous at x = –3.

Solution: To test for continuity, you must find the limit and the function value at x = –3 (and 
make sure they are equal). Now, that’s one ugly function. How can you determine its intended 
height (limit) at x = –3? Clearly, the top rule in this piecewise-defined function governs the 
function’s value for every single x except for x = –3. When you are finding a limit, you want to 
see what height is intended as you approach x = –3, not the value actually reached at x = –3, so 
you’ll find the limit of the larger, ugly, top rule for f. Use the conjugate method:

( ) = ≠ −

= −







+ −
+f x

x

x

, 3

, 3

x
x

19 4
3

1
8
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Whew! Now that (x + 3) no longer appears in the denominator, you can apply the substitution 
method:

The limit clearly exists when x = –3, and it is equal to 1
8 . The first condition of continuity 

is satisfied. Now, on to the second. According to the function’s definition, you know that 
( )− =f 3 1

8 , so the function does exist there. Therefore, you can conclude that the function is 
continuous at x = –3, because the limit is equal to the function value there.

Example 2: Determine whether the function g(x), defined here, is continuous at =x 1
2 :

Solution: If g(x) is continuous at =x 1
2 , three things have to be true: (1) ( )

→
g xlim

x 1/2
 must exist,  

(2) ( )g 1
2  must exist, and (3) those values must be equal. The easiest of the three conditions to 

test is the second one. Calculate ( )g 1
2 :

⋅

=

=

=

=

( )
( )

( )

( )

( )

( )

( )

→−

+ −
+

+ +
+ +

→−

+ + + − + −

+ + +

→−

+ −

+ + +

→−

+

+ + +

→− + +

lim

lim

lim

lim

lim

x

x
x

x
x

x

x x x

x x

x

x

x x

x

x

x x

x x

3

19 4
3

19 4
19 4

3

19 4 19 4 19 4

3 19 4

3

19 16

3 19 4

3

3

3 19 4

3

1
19 4

2 2

=

=

=

− + +

+

1
3 19 4

1
16 4

1
8

( ) = <

≥







+ −
−
−

g x
x

x

,

,

x x
x
x

2 3 2
2 1

1
2

8 1
2

1
2

2

( ) =
=

=

( )−

−

g 1
2

8 1/2 1
2

4 1
2

3
2
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So far so good; ( )g 1
2  exists, but now there’s no avoiding the much more difficult task of 

determining whether the limit exists there. Notice that the way g(x) is defined changes at 
=x 1

2 , which means g(x) may intend to reach two different heights on the graph as you approach 
from the left and the right. Good news! You have already calculated the right-hand limit using 
the substitution method:

Evaluating the left-hand limit is a little trickier. You need to employ the factoring method:

Red alert! The left- and right-hand limits are not equal as x approaches 1
2 , because ≠3

2
5
2 . If the 

left- and right-hand limits aren’t equal, then the general limit doesn’t exist at =x 1
2 . That means 

the first condition of continuity has not been met.

Your goal was to determine whether or not g(x) is continuous when =x 1
2 , and the answer is no. 

Take a look at the graph of g(x) to visually verify that the function does not intend to reach the 
same location as you approach =x 1

2  from the left and the right.

( ) =
=

→ →

−
+
g xlim lim

x x

x

1/2 1/2

8 1
2

3
2

( )

( )

=

=

=

= +

= +

= +

=

( )( )

( ) ( )

→ →

+ −
−

→

− +
−

→

− +

−

→

−
g x

x

lim lim

lim

lim

lim 2

2

x x

x x
x

x

x x
x

x

x x

x

x

1/2 1/2

2 3 2
2 1

1/2

2 1 2
2 1

1/2

2 1 2

2 1

1/2
1
2
1
2

4
2

5
2

2
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YOU’VE GOT PROBLEMS

Problem 1: Determine whether or not the function g(x), defined here, is 
continuous at x = 1.

( ) = ≠

− =







− −
−g x x

x

, 1

2, 1

x x
x

3 2
1

2

Figure 7.2 
Function g(x) is not continuous at =x 1

2 . The graph also helps you decide which expression to use 

as you approach from the left and the right: the graph of + −
−

x x
x

2 3 2
2 1
2

 is left of =x 1
2  and the graph of 

−x8 1
2  is right of =x 1

2 .

A function cannot be continuous at an x-value where a limit does not exist; g(x) is discontinuous 
at =x 1

2  due to a jump discontinuity. Are you asking yourself, “What’s a jump discontinuity?” If so, 
I’m glad you asked. If not, play along and pretend you did. Either way, I’ll meet you in the next 
section to explain what I mean.

1

1

2

3

4

5

6

–1

–2

–3

–4

–5

–6

–2–3–4–5–6 2 3 4 5 6

–1
 1

2
x =
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Types of Discontinuity
Not much happens in the life of a graph—it lives in a happy little domain, playing matchmaker 
to pairs of coordinates. However, there are three things that can happen over the span of a 
function which change it fundamentally, making it discontinuous. Memorizing the three major 
causes of discontinuity is not so important; instead, recognize exactly what causes the function to 
fall short of continuity’s requirements.

Jump Discontinuity
A jump discontinuity is typically caused by a piecewise-defined function whose pieces don’t meet 
neatly, leaving gaping tears in the graph large enough for an elephant, or other tusked mammal, 
to walk through. Consider the function:

This graph is made up of two linear pieces, and the rule governing the function changes when  
x = 0. Look at the graph of f(x) in Figure 7.3.

DEFINITION

A jump discontinuity occurs when no general limit exists at the given  
x value (because the right- and left-hand limits exist but are not equal). 
A function is everywhere continuous if it is continuous for each x in its 
domain.

Figure 7.3 
The graph of f(x) exhibits an unhealthy dual personality since it is defined by a  

piecewise-defined function.

( ) = − + <
+ ≥






f x

x x
x x

3, 0
1, 0
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When x = 0, the graph has a tragic and unsightly break. Whereas the left-hand piece is heading 
toward a height of y = 3 as you approach x = 0, the right-hand piece has a height of y = 1 when 
x = 0. Does this sound familiar? It should: the left- and right-hand limits are unequal at x = 0, 
so ( )

→
f xlim

x 0
 does not exist. This breaks the first rule requirement of continuity, rendering f(x) 

discontinuous.

In the next example, you are given a piecewise-defined function. Your goal is to shield it from 
the same fate as the pitiful function f(x) by choosing a value for the constant c that ensures that 
the pieces of the graph will meet when the defining function rule changes. Godspeed!

Example 3: Given h(x) as defined here, calculate the real number c that makes h(x) everywhere 
continuous:

Solution: The top rule in h(x) will define the function for all numbers less than or equal to 3, 
and its reign ends once x reaches that boundary. At that point, h(x) will have reached a height of 
h(3) = 3 – 2 = 1. Therefore, the next rule (x2 + c) must start at exactly that height when x = 3, even 
though it is technically defined only when x > 3. That’s the key: both pieces must reach the exact 
same intended height when the graph of a piecewise-defined function changes rules. Thus, when 
x = 3:

x2 + c = 1

Plug in that x value and solve for c:

Thus, the second piece of g(x) must be x2 – 8 in order for h(x) to be continuous. You can verify 
the solution with the graph of h(x) (as shown in Figure 7.4)—no jump discontinuity anywhere to 
be found.

( ) = − ≤
+ >






h x

x x
x c x

2, 3
, 32

+ =
+ =

= −

c
c
c

3 1
9 1

8

2
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Figure 7.4 
The graph of h(x) is nice and continuous now—the pieces of the graph join together seamlessly.

Example 4: Given the function q(x) defined here, calculate the values of a and b that ensure q(x) 
is continuous for all real numbers. Verify your answers with a graph of q(x).

Solution: The individual pieces of function q(x) are each continuous over their domains. The 
graphs of y = –x2 (a parabola), y = a (a horizontal line at height a), and y = ax + b (a line with slope 
a and y-intercept b) are unbroken and free of jump discontinuities. Of course, this is a piecewise-
defined function, so each of the pieces need to meet when x = –2 and x = 2 if the overall function 
is going to be continuous. You need to pay special attention to these x-values, where the rules 
that define the function change.

Let’s start with x = –2. If you substitute that value into –x2, you calculate the left-hand limit of 
q(x) as x approaches –2.

The right-hand limit at x = –2 must be equal to the left-hand limit for the general limit to exist. 
The right-hand limit is simply the constant a. If the right- and left-hand limits are equal, you can 
conclude that a also equals –4.
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Not only is a = –4 the limit as you approach x = –2 from the right, it is also the limit as you 
approach x = 2 from the left:

In order for a limit to exist at x = 2, the right-hand limit must also equal –4:

That right-hand limit is equal to the expression ax + b, when x = 2:

a(2) + b = –4

Recall that a = –4 and solve for b:

Consider the graph of q(x) in Figure 7.5. Notice that there are no jump discontinuities at x = –2 
or x = 2.

Figure 7.5 
The graph of q(x) is continuous for all real numbers, including x = –2 and x = 2.
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YOU’VE GOT PROBLEMS

Problem 2: Calculate the value of a that makes the function h(x) everywhere 
continuous, given:

( ) = + − < −
+ ≥ −






h x x x x

ax x
2 7, 1

6, 1

2

Point Discontinuity
Point discontinuity occurs when a function contains a hole. Think of it this way: the function is 
discontinuous only because of that rascally little point, hence the name.

DEFINITION

A point discontinuity occurs when a general limit exists, but the function 
value is not defined there, breaking the second condition of continuity.

Consider the function ( ) = + +
+p x x x
x
11 28

4
2

. It is a rational function, so it’s continuous for all points 
in its domain. Hold on a second, though. The value x = –4 is definitely not in the domain of p(x) 
(look at the denominator), so p(x) will automatically be discontinuous there. The question is: 
what sort of discontinuity is present?

Classifying the discontinuity in this case is very easy—all you have to do is to test for a limit at 
that x value. To calculate the limit, use the factoring method:

In conclusion, because x = –4 represents a place where p(x) is undefined, and ( ) =
→−
p xlim 3

x 4
, you 

know that there is a hole in the function p(x) at the point (–4,3), a point discontinuity. See the 
graph of p(x) in Figure 7.6.

( )
=

= +

= − +
=

( )( )
→−

+ +
+

→−

+ +
+

→−
x

lim

lim

lim 7

4 7
3

x

x x
x

x

x x
x

x

4

11 28
4

4

4 7
4

4

2



Part 2: Laying the Foundation for Calculus114

Figure 7.6 
The graph of p(x) is also the graph of y = x + 7, except when x = –4, where the 

function is undefined.

CRITICAL POINT

Any x-value for which a function is undefined will automatically be a point 
of discontinuity for the function. If a limit exists at the point of discontinuity, 
then it must be a point discontinuity.

Infinite/Essential Discontinuity
An infinite (or essential) discontinuity occurs when a function neither has a limit (because the 
function increases or decreases without bound) nor is defined at the given x-value. In other 
words, this type of discontinuity occurs primarily at a vertical asymptote.
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DEFINITION

An infinite discontinuity is caused by a vertical asymptote. Since the 
function increases or decreases without bound, there can be no limit, and 
since the function never actually touches the asymptote, the function is 
undefined there. Thus, the presence of a vertical asymptote ruins all the 
conditions necessary for continuity to occur. Vertical asymptotes are the 
home wreckers of the continuity world.

It’s easy to determine which x-values cause a vertical asymptote if you remember the shortcut 
from the last chapter: a function increases or decreases infinitely at a given value of x if 
substituting that x into the expression results in a constant divided by 0. On the other hand, a 
result of 0

0  usually means that point discontinuity is at work. However, since a result of 0
0  doesn’t 

guarantee you’ve got point discontinuity, you’ll need to double-check to see if the limit exists 
there. We’ll do this in Example 5, in case you’re confused.

In summary: if no general limit exists, you have jump discontinuity; if the limit exists but the 
function doesn’t, you have point discontinuity; if the limit doesn’t exist because it is ∞ or –∞, you 
have infinite discontinuity.

Now that you’ve got the field guide to discontinuity, let’s look at a typical problem you’ll be 
given. In it, you’ll be asked either to identify where a function is continuous or, instead, to 
highlight areas of discontinuity and to classify the type of discontinuity present.

Example 5: Give all x-values for which the function f(x), defined here, is discontinuous, and 
classify each instance of discontinuity.

Solution: This is a rational function, so it’s guaranteed to be continuous on its entire domain; 
the only points you have to inspect are where f(x) is undefined. Because f(x) is rational, it is 
undefined when its denominator equals 0, and the easiest way to find those locations is by 
factoring f(x):

Set the denominator equal to 0 to see that x = –4 and = −x 1
3  will be points of discontinuity. 

Now, we need to explain what kinds of discontinuity they represent. Plug each into f(x). 
Substituting x = –4 results in 154

0 , indicating the presence of a vertical asymptote and an infinite 
discontinuity. However, substituting = −x 1

3  into f(x) gives you 0
0 , which means there is probably 

a hole in the function there. That’s not good enough supporting work, however. You need to prove 
that there’s a hole there in order to conclude that = −x 1

3  represents a point discontinuity. All 
the proof you’ll need is to verify the presence of a limit at = −x 1

3 . To do so, use the factoring 
method:

( ) = − −
+ +

f x x x
x x

9 3 2
3 13 4
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( )( )

+ −

+ +
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Convert the complex fraction into a regular fraction by multiplying the numerator (–3) by the 
reciprocal of the denominator ( )3

11 :

Because the limit exists, there is a point discontinuity when = −x 1
3 . You can verify this with the 

graph of f(x) in Figure 7.7.

Figure 7.7 
The graph of f(x) has an infinite discontinuity at x = –4 and a point discontinuity at = −x 1

3 .
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YOU’VE GOT PROBLEMS

Problem 3: Give all x-values for which the function here is discontinuous, 
and classify each instance of discontinuity.

( ) = + −
−

g x x x
x

2 5 25
25

2

2

Removable vs. Nonremovable Discontinuity
Occasionally you’ll see a function described as having removable or nonremovable discontinuity. 
These terms are more specific than simply stating that a function is discontinuous, but less 
specific than stating that it has point, jump, or infinite discontinuity.

However, because these terms appear often, it’s good to know what they mean. A removable 
discontinuity is one that could be eliminated by simply redefining a finite number of points. 
In other words, if you can “fix” the discontinuity by filling in holes, then that discontinuity is 
removable. Let’s go back to the function we examined in Example 5 for a moment:

DEFINITION

A removable discontinuity occurs at a given x-value if a limit exists there, 
since you can redefine the function to fill in the holes (and thus remove 
the discontinuity) if you choose to. Therefore, point and removable 
discontinuity are essentially synonymous.

This function has a point discontinuity at = −x 1
3 , because ( ) = −

→−
f xlim

x 1/3
9
11 . If I redefine f(x) 

slightly, setting ( )− = −f 1
3

9
11 , then the limit equals the function value when = −x 1

3 , and f(x) is 
continuous there. Mathematically, the new function f(x) looks like this:

You don’t actually have to change the function for it to be removably discontinuous (in fact, 
if you did change the function, it wouldn’t be discontinuous when = −x 1

3 ). However, if it is 
possible to change a few points in order to fill in the function’s holes, the discontinuities are 
removable.
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Nonremovable discontinuity occurs when a function has no general limit at the given x-value, as is the 
case with infinite and jump discontinuities. There is no way to redefine a finite number of points 
to “repair” this type of discontinuity; the function is fundamentally discontinuous there, and no 
amount of rehabilitation or mood-altering medication can make this function safe for a cultured 
society. I gasp at the thought, but not even a charity rock concert can help (sorry, U2). Back to the 
function f(x) from Example 5 for illustration. Since a vertical asymptote occurs at x = –4 and no 
general limit exists there, x = –4 represents an instance of nonremovable discontinuity.

DEFINITION

A nonremovable discontinuity occurs at a given x-value if no general limit 
exists there, making it impossible to remove the discontinuity by redefining 
a fixed number of points. Jump and infinite discontinuities are both 
examples of nonremovable discontinuity.

The Intermediate Value Theorem
Break out the party favors—we’ve arrived at our first official calculus theorem.

The Intermediate Value Theorem: If a function f(x) is continuous on the closed interval [a,b], then for 
every real number d between f(a) and f(b), there exists a real number c between a and b such that 
f(c) = d.

Now, let me explain what the heck that means using a simple example. Like all red-blooded 
Americans, I enjoy a little too much holiday dining during the winter months of November 
and December. If we were to exaggerate my weight gain (a little), it might have the following 
humorously titled “Kelley’s Date vs. Weight Graph,” which I’ll call w(x) in Figure 7.8.

Figure 7.8 
Kelley’s Date vs. Weight Graph.
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From the graph, we can see that I weighed 180 pounds on December 1 and porked up to 191 
by the time December 30 “rolled around,” poor pun definitely intended. Comparing this to 
the Intermediate Value Theorem, a = Dec 1, b = Dec 30 (weird values, but go with me on this), 
f(a) = w(Dec 1) = 180, and f(b) = w(Dec 30) = 191. According to the theorem, I can choose any 
value between 180 and 191 (for example, 183), and I am guaranteed that at some time between 
December 1 and December 30, I actually weighed that much.

The Intermediate Value Theorem does not claim to tell you where your function reaches that 
value or how many times it does. The theorem simply claims (in a calm, soothing voice) that every 
height a function reaches on a specific x-interval boundary will be output at least once by some 
x within that interval. As it only guarantees the existence of something, it is called an existence 
theorem.

Example 6: Explain why the function j(x) = x4 + 3x2 – x – 6 must have a root (x-intercept) on the 
interval [–2,–1].

Solution: To get more information about the interval, substitute its endpoints into j(x):

Function j(x) is continuous for its entire domain—there are no denominators that might equal 
zero and cause a vertical asymptote, no radical expressions that might be negative under a square 
root sign and become undefined, no piecewise-defined functions that might cause a break in the 
graph. All you have here is a nice, smooth, unbroken graph of a polynomial, and as long as the 
function is continuous over a closed domain, like [–2,–1], you can apply the Intermediate Value 
Theorem.

Watch carefully now. This problem is a lot like a magic trick—if you blink you might miss it. 
Here we go.

You know that the function j(x) passes through point (–2,24) and (–1,–1). According to the 
Intermediate Value Theorem, every y-value between 24 and –1 corresponds to some x-value 
between –2 and –1. That’s it—you’re done!

Did you miss it? Every y-value between 24 and –1, including 0, has a corresponding x-value 
between –2 and –1. In other words, at some x-value on the interval [–2,–1], y has a value of 0, 
causing a root or x-intercept in the graph.

Don’t get all muddled up in the semantics of the theorem. Here’s the gist of it. Imagine that 
there’s a huge line on the floor of the room you’re currently in, a line that divides the room 
roughly in half. Well, if at 10 a.m. you’re standing on one side of that line and at 11 a.m. you’re 
standing on the other side, then at some point between 10 and 11 a.m. (assuming you didn’t leave 
the room or teleport through space and time) you crossed the line.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )− = − + − − − −

= + + −
=

− = − + − − − −

= + + −
= −
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If you are particularly interested, this happens at approximately x = –1.08, as you can see in the 
graph of j(x) in Figure 7.9.

Figure 7.9 
Function j(x) also has a root between x = 1 and x = 2.
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YOU’VE GOT PROBLEMS

Problem 4: Use the Intermediate Value Theorem to explain why the function 
g(x) = x2 + 3x – 6 must have a root on the interval [1,2].

The Least You Need to Know
• A continuous function has no holes, jumps, or breaks in its graph.

• If a function reaches its intended height at a particular x-value, the function is 
continuous there.

• If a function is undefined but possesses a limit at a given x-value, there is point 
discontinuity, which is removable.

• Infinite discontinuity is caused by a vertical asymptote, whereas jump discontinuity 
is caused by a break in the function’s graph; both are nonremovable discontinuities.

• The Intermediate Value Theorem uses rather complex language to guarantee the 
“wholeness” or “completeness” of a graph.
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8
The Difference Quotient

In This Chapter
• Creating a tangent from 

scratch

• How limits can calculate 
slope

• “Secant you shall find” the 
tangent line

• Both versions of the 
difference quotient

Although limits are important to the development of calculus 
and are the only topic we have even discussed so far, they are 
about to take a backseat to the two major topics comprising 
what most people call “calculus”: derivatives and integrals. 
It would be rude (and actually mathematically inaccurate) to 
simply start talking about derivatives without describing their 
relationship to limits.

Brace yourself. This chapter describes the solution to one of 
the most puzzling mathematical dilemmas of all time: how to 
calculate the slope of a tangent line to a nonlinear function. 
We’re going to use limits to concoct a general formula that 
will allow you to find the tangent slope to a function at 
any given point. The process is a little tedious and is a bit 
algebra-intensive. You may ask yourself, “Am I always going 
to go through so much pain to find a derivative?” The answer 
is no. In Chapter 9, you’ll learn lots of shortcuts to finding 
derivatives.

For now, however, prepare to be dazzled. You’re about to 
create a tangent line to a function and calculate its slope 
through a little “mathemagics.”
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When a Secant Becomes a Tangent
Before we go about calculating the slope of a tangent line, you should probably know what a 
tangent line is. A tangent line is a line that just barely skims across the edge of a curve, hitting it at 
the point you intend.

DEFINITION

A tangent line skims across the curve, hitting it once in the indicated 
location; however, a secant line does not skim at all. It cuts right through a 
function, usually intersecting it in multiple spots.

In Figure 8.1, you’ll see the graph of y = sin x with two of its tangent lines drawn, one at = πx 2  
and one at = πx 7

4 . Notice that the tangent lines barely skim across the edge of the graph and 
hit only at one point, called the point of tangency. If you extend it, the tangent line may hit the 
function again somewhere else along the graph, but that doesn’t matter. What matters is that it 
only hits once relatively close to the point of tangency.

Figure 8.1 
Points of tangency.

A secant line, on the other hand, is a line that crudely hacks right through a curve, usually hitting 
it in at least two places. In Figure 8.2, I have drawn both a secant and a tangent line to a function 
f(x) when x = 3. Notice that the dotted secant line doesn’t have the finesse of the tangent line, 
which strikes only at x = 3.
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Figure 8.2 
A secant and a tangent line to a function f(x) when x = 3.

Through a little trickery, we are going to make a secant line into a tangent. This is the backbone 
of our procedure for calculating the slope of a tangent line. So now that you know what the words 
mean, let’s get started.

Honey, I Shrunk the Δx
Take a look at the function graph in Figure 8.3 called f(x). I have marked the location x = c on the 
graph. My final, overall goal will be to calculate the slope of the tangent line to f at x = c. You may 
not understand this to be a very important goal, but trust me, it is world-shatteringly important.

Figure 8.3 
The graph of some function f(x) with location x = c.
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Now, let’s add a few things to the graph to create Figure 8.4. First of all, I know the coordinates of 
the indicated point. In order to get to that point from the origin, I have to go c units to the right 
and f(c) units up (so that I hit the function), which translates to the coordinate pair (c,f(c)). Now 
let’s add another point to the graph to the right of the point at x = c. How far to the right, you 
ask? Let’s be generic and call it “Δx” more to the right. (“Δx” is math language for “the change in 
x,” and since we’re changing the x value of c by going Δx more to the right, it’s a fitting name.)

Figure 8.4 
Now appearing on the graph of f(x), a new x value, which is a distance of Δx away from c.

Once again, all we’re doing is making a new point that is a horizontal distance of Δx away from the 
first point. Can you figure out the coordinates of the new point? In the same fashion that we got 
the first coordinate pair to be (c,f(c)), this point has coordinates (c + Δx, f(c + Δx)). Now connect 
these two points together, and what have you got? A secant line through f, as pictured in Figure 8.5.

Figure 8.5 
We’ve added the coordinates to the new point. Note that the secant line connecting the points looks a 

little like the dotted tangent line at x = c. It’s a little too steep, but it’s pretty close.
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True, our final goal is to find the slope of the tangent line to f at x = c, but for now, we’ll amuse 
ourselves by finding the slope of the secant line we’ve drawn at x = c. We know how to calculate 
the slope of a line if given two points—use the procedure from Problem 3 in Chapter 2:

CRITICAL POINT

Here comes the connection to limits: the smaller I make Δx, the closer the 
slope of the secant line comes to approximating the slope of the tangent 
line. I am not allowed to make Δx = 0, because that would mean I was 
dividing by 0 in the slope equation we created a few moments ago.

So we found the slope of the secant line, and that slope is relatively close to the slope of the 
tangent line we want to find—both have nearly the same incline. However, we don’t want an 
approximation of the slope of the tangent line, we want it exactly. Here’s the key: I am going to 
redraw the second point on the graph of f (the one that was Δx away from the first point), and 
this time I am going to make Δx smaller. Figure 8.6 shows the new, improved point and secant 
line. Why is it improved? It has a slope closer to the tangent line we’re searching for.

Figure 8.6 
When Δx is smaller, the new point is closer to x = c. In addition, the solid secant line looks even 

more like the dotted tangent line.
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This new secant line isn’t as steep as the previous one, and it is an even better impersonator of 
the actual tangent line at x = c. The funny thing is, if I were to calculate its slope, it would look 
exactly the same as the slope I came up with before:

Here’s my moment of brilliance: if I make Δx infinitely small, so small that it is basically (but 
not quite) 0, then the two points on the graph would be so close together that I would, in effect, 
actually have the tangent line. Therefore, by calculating the secant line slope, I’d actually be 
calculating the tangent line slope as well. How do I make Δx get that small, though? It’s easy, 
actually, since we know limits. We’re just going to find the limit of the secant slope function 
as Δx approaches 0. This limit is called the difference quotient and is the very definition of the 
derivative:

CRITICAL POINT

The formula is called the difference quotient because (1) it represents 
a quotient since it is a fraction, and (2) the numerator and denominator 
represent the difference in the y’s and the x’s, respectively, between the two 
points on our secant line.

This is the most important calculus result we have discussed thus far. We now have an admittedly 
ugly but very functional formula allowing us to calculate the slope of the tangent line to a 
function. What’s amazing is that we really forced it, didn’t we? We actually created a tangent line 
out of thin air by forcing a secant line to undergo radical and mind-altering changes. But if you’re 
like me, you’re thinking, “Enough with the theory, already—I’ll probably never have to create 
the definition of a derivative. Instead, I’d rather know how to use the difference quotient to find a 
derivative.” Your wish is my command.

DEFINITION

The derivative of a function f(x) at x = c is the slope of the tangent line 
to f at x = c. You can find the value of the derivative using the difference 
quotient, which is this formula:

As you can see, I usually write the formula with x’s instead of c’s, but that 
doesn’t change the way it works.

( ) ( )+ −f c x f c
x

( ) ( )
→

+ −lim
x

f c x f c
x0

( ) ( )
→

+ −lim
x

f x x f x
x0
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Applying the Difference Quotient
In order to find the derivative f ′(x) of the function f(x), you’ll apply the difference quotient 
formula. To get the numerator, you’ll plug (x + Δx) into f and then subtract the original function 
f(x). Then, divide that quantity by Δx, and calculate the limit of the entire fraction as Δx 
approaches 0.

Example 1: Use the difference quotient to find the derivative of f(x) = x2 – 3x + 4, and then 
evaluate f ′(2).

Solution: The difference quotient has one ugly piece in the numerator: f(x + Δx). So let’s figure 
out exactly what that is ahead of time and then plug it into the formula. Remember, when you 
evaluate f(x + Δx), you have to plug in (x + Δx) into all the x terms in f. In other words, plug it 
into x2 and –3x:

That entire disgusting quantity must be substituted into the difference quotient for f(x + Δx) 
now, and we’ll try to simplify as much as possible:

KELLEY’S CAUTIONS

Here are the three most common errors students make when applying the 
difference quotient:

(1)  not subtracting f(x) in the numerator

(2) not distributing the negative sign through f(x)

(3) omitting the denominator completely
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You’ve got to admit, that looks a lot better than it did a second ago. You were starting to panic, 
weren’t you? All of these difference quotient problems are going to simplify significantly like this. 
Now, how do we evaluate the limit? Substitution is a no-go, because it results in 0

0 , so we should 
move on to the next available technique: factoring. That works like a charm:

Now for the second part of the problem: calculating ( )′f 2 , the slope of the tangent line when 
x = 2. It’s as easy as plugging x = 2 into the newfound derivative formula:

CRITICAL POINT

There are many notations that indicate a derivative. The most common are 
f ′(x), y′, and 

dy
dx . The last two of these are typically used when the original 

function is written in “y =” form, rather than “f(x) =” form. The second 
derivative (the derivative of the first derivative) is denoted f ″(x), y ,̋ and 

d y
dx

2

2 .

Once you find the general derivative using the difference quotient ( f ′(x) = 2x – 3), you can then 
calculate any specific derivative you desire (like f ′(2)). However, finding that general derivative 
is not a whole lot of fun. In fact, it’s just about as fun as that time you got nothing but socks 
and underpants for your birthday. Calculus does offer you an alternative form of the difference 
quotient if you feel hatred toward this method welling up inside of you.

( )= + −

= + −
= −

( )
→

+ −

→
x x

x
x

lim

lim 2 3

2 0 3
2 3

x

x x x
x

x

0

2 3

0

( )
( ) ( )
( )
( )

′ = −

′ = −

′ = −

′ =

f x x

f

f

f

2 3

2 2 2 3

2 4 3

2 1

YOU’VE GOT PROBLEMS

Problem 1: Find the derivative of g(x) = 5x2 + 7x – 6 using the difference 
quotient and then calculate g′(–1).
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The Alternate Difference Quotient
I have good news and bad news for you. First, the good news: the alternate difference quotient 
involves much less algebra and absolutely no Δx’s at all. But the bad news is that it cannot find the 
general derivative—you can only calculate specific values of the derivative. In other words, you’ll 
be able to use this method to find values such as f ′(3), but you won’t be able to find the actual 
derivative f ′(x). This definitely limits its usefulness, but it is, without question, much faster than 
the first method once you get used to it.

The alternate difference quotient: The derivative of f(x) at the specific x-value x = c can be found 
using the formula:

Notice the major differences between this and the previous difference quotient. For one thing, in 
this limit you approach the number c, not x, at which you are finding the derivative; in the other 
method, Δx always approached 0. In the numerator of this formula, you will calculate f(c), which 
will be a real number; in the previous formula, both pieces of the numerator, f(x + Δx) and f(x), 
were functions of x. Clearly, the two formulas have different denominators as well. Since both are 
limits, though, evaluating them is quite similar once you’ve plugged in the initial values.

For grins, let’s redo the second part of Example 1, since we already know the correct answer. 
Ever notice that math teachers just love doing this—reworking the same problem twice using 
different methods and arriving at the same answer as if by magic? I remember doing this in class, 
turning around at the conclusion of the second problem, and saying, “You see, they’re equal!” 
Needless to say, I was the only one impressed. However, I still do this, hoping against hope that 
one day a student will faint from pure shock and delight when the answers work out the same.

Example 2: Evaluate f ′(2) if f(x) = x2 – 3x + 4. Use the difference quotient to identify f ′(x).

Solution: The formula requires us to know f(c), in this case f(2), so calculate that first:

( )′ = ( ) ( )
→

−
−f c lim

x c

f x f c
x c

( )
( ) ( )
( )
( )

= − +

= − +

= − +

=

f x x x

f

f

f

3 4

2 2 3 2 4

2 4 6 4

2 2

2

2
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Now, plug that into the alternate difference quotient, and you’ll be pleasantly surprised by how 
much simpler it looks than Example 1:

To finish, evaluate the limit using the factoring method:

Like magic (although I’m sure you’re unimpressed), we get the same answer as before. Ta-da!
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YOU’VE GOT PROBLEMS

Problem 2: Calculate the derivative of ( ) = +h x x 1  when x = 8 using the 
alternate difference quotient.

The Least You Need to Know
• The slope of the tangent line to a curve at a certain point is called the derivative 

at that point.

• There are two forms of the difference quotient; both give the value of a function’s 
derivative at any given x-value.

• The original form of the difference quotient can provide the general derivative 
formula for a function, whereas the alternate form can only give the derivative’s 
value for a specific x.



PART

3
The Derivative

At the end of Part 2, you learned the basics of the difference quotient and that it calculates  
something called the derivative. In the study of calculus, the derivative is huge. Just about  
everything you do from here on out is going to use derivatives to some degree. Therefore,  
it’s important to know exactly what they are, when they do and don’t exist, and how to find  
derivatives of functions.

Once you’ve got the basic skills down, you can begin to explore the huge forest of applications 
that comes along with the derivative package. Since derivatives are actually rates of change,  
they classify and describe functions in ways you’ll hardly believe. Have you ever wondered, 
“What’s the maximum area I could enclose with a rectangular fence if one side of the rectangle  
is three times more than twice the other side?” If you have, well, you scare me because no one 
has thoughts like that. However, the good news is that you’ll be able to find your answer once  
and for all.





CHAPTER

9
Laying Down the Law 

for Derivatives

In This Chapter
• When can you find a 

derivative?

• Calculating rates of 
change

• Simple derivative 
techniques

• Derivatives of 
trigonometric functions

• Multiple derivatives

• Using calculators to 
evaluate derivatives

One of my most memorable college professors was a kindly 
Korean man named Dr. Oh. One of the reasons his class sticks 
out in my mind is the way he was able to illustrate things 
with bizarre but poignant imagery. The day we first discussed 
the Fundamental Theorem of Calculus, he described it in his 
usual understated way. “Today’s topic is like the day the world 
was created. Yesterday, not interesting. Today, interesting!”

One of the classes I took from Dr. Oh was Differential 
Equations. Dr. Oh constantly (but jokingly) harassed the 
young lady who sat next to me, because she would always do 
things the long way. No matter what shortcuts we learned, she 
wouldn’t use them. I never understood why, and she simply 
explained to me, “This is the way I do things. I can’t change 
it now!” I remember Dr. Oh repeatedly asking her, “If you 
want potatoes, do you buy a farm, till the field, plant the seed, 
nurture the plants, and then harvest the potatoes? If I were 
you, I would just go to the grocery store.”

In the land of derivatives, the difference quotient (see 
Chapter 8) is the equivalent of growing your own potatoes. 
Sure, the process works, but I gave you very specific 
examples so that it would work for you without any trouble 
or heartache. I was shielding you against the harsh weather of 
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complicated derivatives to come. However, I have to let you grow up sometime and stare in the 
face of an ugly, complicated derivative. The good news, though, is that you can buy all your solu-
tions from the grocery store.

When Does a Derivative Exist?
Before you run around finding derivatives willy-nilly, you should know that there are three 
specific instances in which the derivative to a function fails to exist. Even if you get a numerical 
answer when calculating a derivative, it’s possible that the answer is invalid, because there 
actually is no derivative! Be extra cautious if the graph of your function contains any of the 
following things.

CRITICAL POINT

You’ll hear the statement “Differentiability implies continuity” in your calculus 
class. That means exactly this: if a function has a derivative at a specific 
x value, then the function must also be continuous at that x value. That 
statement is the logical equivalent of saying, “If a function is not continuous 
at a certain point, then that function is not differentiable there either.”

Discontinuity
A derivative cannot exist at a point of discontinuity. It doesn’t matter if the discontinuity is 
removable or not. If a function is discontinuous at a specific x value, there cannot be a derivative 
there. For example, take a look at this function:

Without doing a bit of work, you can conclude that f(x) has no derivative at x = –2 and x = 6. 
In other words, f(x) is not differentiable at those values of x.

Sharp Point in the Graph
If a graph contains a sharp point (also known as a cusp), then the function has no derivative at 
that point. Not many functions have cusps; in fact, they are pretty rare. You’re most likely to see 
them in functions containing absolute values and in piecewise-defined functions whose pieces 
meet, but not smoothly. In Figure 9.1, you’ll find the graphs of the function f x x 1 2( ) = − −  and 
this piecewise-defined function:

f x x x

x x

1 2

2 6( ) = ( )( )
( )( )

− +

+ −

g x x x
x x

, 1
, 1

2

( ) = ≤
>
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Both f(x) and g(x) contain nondifferentiable cusps at x = 1.

DEFINITION

A function is differentiable at a given value of x if you can take the derivative 
of the function at that x value. In other words, f(x) is differentiable at x = c if 
f ′(c) exists. A function whose derivative does not exist at a specific x value is 
said to be nondifferentiable there.

Figure 9.1 
Both graphs have a sharp point at x + 1 and, therefore, are not differentiable there.

Vertical Tangent Line
Remember that the derivative is defined as the slope of the tangent line. What if the tangent line 
is vertical? Keep in mind that vertical lines don’t have a slope, so a derivative cannot exist there. 
It’s pretty tough to spot when this happens using only a graph, but luckily, the mathematics of 
derivatives is quick to expose it when it happens, as shown in the next example.

Example 1: Show that no derivative exists for the function f(x) = x1/3 when x = 0.
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Solution: You don’t know how to find the derivative of f(x) = x1/3 yet (but you will soon), so I’ll 
tell you that it’s f x

x
1

3 2/3( )′ = . If you try to evaluate f ′(0), you get:

The slope of the tangent line is a nonexistent number, because you can’t divide by 0.

Basic Derivative Techniques
Learning how to find derivatives using the difference quotient can be long, tedious work, but 
once you’ve mastered it, you’ve “paid your dues,” so to speak. Now, you’ll learn some really handy 
techniques. Here are three derivative shortcuts that will make things a whole lot faster and easier.

The Power Rule
Even though the Power Rule can only find very basic derivatives, you’ll definitely use it more 
than any other of the rules we’ll learn. In fact, it often pops up in the final steps of other rules, 
but let’s not get ahead of ourselves. Any term in the form axn can be differentiated using the 
Power Rule.

CRITICAL POINT

Don’t worry about the phrase “with respect to x” in the Power Rule 
definition. Because x is the only variable in the expression, we really 
don’t need to say that. In Chapter 10, we’ll cover implicit differentiation, 
and then you’ll have to know what the phrase “with respect to” actually 
means. For now, just understand that the phrase refers to the variable in 
the problem, but won’t affect any of your derivative techniques.

The Power Rule: The derivative of the term axn (with respect to x), where a and n are real 
numbers, is (a ∙ n) xn – 1.

Here are the steps you’ll use to find a derivative with the Power Rule:

 1. Multiply the coefficient by the variable’s exponent. If no coefficient is stated—in other 
words, the coefficient equals 1—the exponent becomes the new coefficient.

 2. Subtract 1 from the exponent.

Some examples will shed some light on the matter.

f 0 1

3 0

1
3 0
1
0

2/3( )′ =

=

=

( )

⋅
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Example 2: Use the Power Rule to find the derivative of f x x x6 54
3

3( ) = + − .

Solution: Even though there are a number of terms here, you can find the derivative of each one 
separately using the Power Rule. Before you start, I’ll tell you that the derivative of the constant 
term (–5) is 0. (More on this in a minute.) For the other terms, multiply the coefficient of each 
one by the exponent and then subtract 1 from the exponent:

Remember, the exponent of 6x is understood to be 1 because it’s not written explicitly, and a 
variable to the zero power equals 1: 6x0 = 6 ∙ 1 = 6.

The derivative of any constant is 0. Here is a quick justification if you are interested. Consider 
the constant function g(x) = 7. If you wanted to, you could write this function with a variable 
term: g(x) = 7x0. I am not changing the value of the function because a variable to the 0 power has 
a value of 1, and 7 ∙ 1 = 7. So now that you’ve rewritten the function, use the Power Rule:

f x x x

x x
x

3 6 1 0

4 6
4 6

4
3

3 1 1 1

2 0

2
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YOU’VE GOT PROBLEMS

Problem 1: Find derivatives using the Power Rule:

(a)  y x x x3 6 12
3

3 2= + − + (b)  f x x x23 5( ) = +
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The Product Rule
If a function contains two variable expressions multiplied together, you cannot simply find the 
derivative of each and multiply the results. For example, the derivative of x2 × (x3 – 3) is not  
(2x)(3x2). Instead, you have to use a very simple formula, which (by the way) you should memorize.

KELLEY’S CAUTIONS

Overlooking the Product Rule is a very common mistake in calculus. 
Remember: if two variable expressions are multiplied together, you have to 
use the Product Rule. If, however, you want to find the derivative of 5 × 7x2, 
you don’t need the Product Rule (because 5 is not a variable expression). 
Instead, you can rewrite it as 35x2 and use the Power Rule to get the correct 
derivative of 70x.

The Product Rule: If a function h(x) = f(x) × g(x) is the product of two differentiable functions f(x) 
and g(x), then

h′(x) = f(x) ∙ g′(x) + f ′(x) ∙ g(x)

Here’s what that means. If a function is created by multiplying two other functions together, then 
the derivative of the overall function is the first one times the derivative of the second plus the 
second one times the derivative of the first.

Example 3: Differentiate f(x) = (x2 + 6) (2x – 5) using (1) the Product Rule, and (2) the Power 
Rule, and show that the results are equal. Hint: to use the Power Rule, you’ll first have to multiply 
the terms together.

Solution: (1) Apply the Product Rule:

(2) As the hint indicates, you need to multiply those binomials together before you can apply the 
Power Rule: f(x) = 2x3 – 5x2 + 12x – 30. Now, apply the Power Rule to get f ′(x) = 6x2 – 10x + 12, 
which matches the answer from part (1).

f x x x x

x x x
x x

6 2 2 2 5

2 12 4 10
6 10 12

2

2 2

2

( )( ) ( ) ( )( )′ = + + −

= + + −
= − +

YOU’VE GOT PROBLEMS

Problem 2: Find the derivative of g(x) = (2x – 1)(x + 4) using the Power Rule 
and the Product Rule, and show that the results are the same.
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The Quotient Rule
Just as the Product Rule prevents you from simply taking individual derivatives when you’re 
multiplying, the Quotient Rule prevents the same for division. Every year on my first derivatives 
exam, one of the problems is to find the derivative of something like x x

x x
7

3 2 4

2

3
+

+ + , and half of my 
students always answer x

x
2 7
9 22

+
+ , no matter how many times I warn them to use the Quotient Rule. 

You must use the Quotient Rule any time two variable expressions are divided.

KELLEY’S CAUTIONS

It is very important to get the subtraction order correct in the numerator of 
the Quotient Rule. Whereas in the Product Rule, either of the two functions 
could be f or g, in the Quotient Rule, g must be the denominator of the 
function.

The Quotient Rule: If h x f x

g x( ) = ( )
( ) , where f(x) and g(x) are differentiable functions and g(x) ≠ 0, then:

In other words, to find the derivative of a fraction, take the bottom times the derivative of the top 
and subtract the top times the derivative of the bottom; divide all of that by the bottom squared. 
Of course, by top and bottom, I mean numerator and denominator, respectively.

Example 4: Find the derivative of y x
x
3 7

12= +
−

 using the Quotient Rule.

Solution: The numerator is f(x) in the Quotient Rule, and the denominator is g(x): f(x) = 3x + 7 
and g(x) = x2 – 1. Therefore, f ′(x) = 3 and g′(x) = 2x. Plug all of these values into the appropriate 
spots in the Quotient Rule:

h x g x f x f x g x

g x
2( )′ = ( ) ( ) ( ) ( )

( )
⋅ ′ − ⋅ ′
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YOU’VE GOT PROBLEMS

Problem 3: Use the Quotient Rule to differentiate f x x x x
x

3 2 7
5

4 2( ) = + −
−  and 

simplify f ′(x).
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The Chain Rule
Consider, for a moment, the functions f x x( ) =  and g(x) = 3x + 1. With the skills you now 
possess, you could find the derivative of each using the Power Rule. You could even find the 

derivatives of their product f x g x( ) ( )⋅  or their quotient 
f x

g x
( )
( ) , using the Product and Quotient 

Rules, respectively (no big surprise there).

However, you don’t know how to find the derivative of two functions plugged into (or “composed 

with”) one another. In other words, the derivative of f g x x3 1( )( ) = +  requires a technique 
you’ve not yet learned, a technique called the Chain Rule.

If this function were simpler, such as y x= , there would be no need for the Chain Rule, but the 
inner function (in this case 3x + 1) is too complicated. Here’s a good rule of thumb: if a function 
contains something other than a single variable, like x, then you should use the Chain Rule to 
find its derivative.

The Chain Rule: Given the composite function h(x) = f(g(x)), where f(x) and g(x) are differentiable 
functions, then h x f g x g x( )( ) ( ) ( )′ = ′ ⋅ ′ .

CRITICAL POINT

The derivatives of logarithmic and exponential equations use the Chain 
Rule heavily. Make sure to learn these patterns:

• f x f xlogd
dx a a f x

1
ln( )( ) ( )= ⋅ ′( ) ( )⋅

• a a a f xlnd
dx

f x f x( ) ( ) ( )= ⋅ ⋅ ′( ) ( )

There are special cases for the natural logarithm (ln x) and the natural 

exponential function (ex), so you’ll see those more often: xlnd
dx x

1( ) =  and 

e ed
dx

x x( ) = .

In other words, to take the derivative of an expression where one function is “trapped inside” 
another function, you follow these steps:

 1. Take the derivative of the “outer” function, leaving the trapped, “inner” function alone.

 2. Multiply the result by the derivative of the “inner” function.

Example 5: Use the Chain Rule to find the derivative of y x3 1= + .

Solution: Rewrite the function so that it’s clear what’s actually plugged into what. In this  
case, 3x + 1 is plugged into x . In other words, if f x x( ) =  (the outer function) and  
g(x) = 3x + 1 (the inner function, because it’s trapped inside the square root symbol in f(x)),  
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then f g x x3 1( )( ) = + . Rewriting the function like this helps you plug everything into the 
right spots in the Chain Rule formula.

Your first step is to take the derivative of f(x), leaving g(x) alone. This just means you should 
find the derivative of f(x) and, once you’re done, plug g(x) into all of its x spots. According to the 
Power Rule, if f(x) = x1/2:

Now plug g(x) in for x:

You’re almost done. The final step is to multiply this ugly monstrosity of a fraction by the 
derivative of g(x). A quick nod to the Power Rule tells you that if g(x) = 3x + 1, then g ′(x) = 3:

f x x

x

x

1
2

1/2

1

2
1

2

1/ 2

( )′ =

=

=

−

f g x
x

1
2 3 1( )( )′ =

+

y f g x g x'

3
x

x

1
2 3 1

3
2 3 1

( )( ) ( )= ′ ⋅ ′

= ⋅

=
+

+

YOU’VE GOT PROBLEMS

Problem 4: Use the Chain Rule to differentiate y = (x2 + 1)5.

Rates of Change
Derivatives are so much more than what they seem. True, they give the slope of the tangent 
line to a curve. But that slope can tell us a great deal about the curve. One characteristic of the 
derivative we will exploit time and time again is this: the derivative of a curve tells us the instantaneous 
rate of change of the curve. This is key because a “curvy” function will change at different rates 
throughout its domain.

On the other hand, the graph of a line always changes at the exact same rate. For example,  
g(x) = 4x – 3 will always increase at a rate of 4, because that is the slope of the line and also the 
derivative. Curves, however, do not have the same slope everywhere, so we rely on the slopes 
of their tangent lines. Sometimes a curve is increasing quickly and the tangent line is steep 
(causing a high-valued derivative). At other places the curve may be increasing shallowly or even 
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decreasing, causing the derivative to be small or negative, respectively. Look at the graph of f(x) 
in Figure 9.2.

Figure 9.2 
The graph of f(x), with three points of interest shown.

At x = a, f is increasing ever so slightly, causing the tangent line there to be shallow. Because a 
shallow line has a slope close to 0, the derivative here will be very small. In other words, the rate 
of change of the graph is very small at the instant that x = a. However, at the instant that x = b, 
the graph is climbing more rapidly, causing a steeper tangent line, which in turn causes a larger 
derivative. Finally, at x = c, the graph is decreasing, so the instantaneous rate of change there is 
negative (because the slope of the tangent line is negative).

You can also use the slope of a secant line to determine rates of change on a graph. However, the 
slope of a secant line describes something different: the average rate of change over some portion 
of the graph. Finding the slope of a secant line is very easy, as you’ll see in the next example.

CRITICAL POINT

Remember, the slope of a tangent line to a curve tells you the curve’s rate 
of change at that value of x (the instantaneous rate of change, because you 
can only tell what’s going on at that instant). The slope of the secant line to 
a curve tells you the average rate of change over the specified interval.

Example 6: Poteet, Inc. has just introduced a new, revolutionary brand of athletic sock into the 
market. The new innovation is a special sweat-absorbing “cotton-esque” material that supposedly 
prevents foot odor. On their fourth day of sales, the snappy slogan, “If you smell feet, they ain’t 
wrapped in Poteet’s,” was released, and sales immediately increased. Figure 9.3 is a graph of the 
number of units sold during the first six days of sales.
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Figure 9.3 
The rise of a new sweat sock empire.

What was the average rate of units sold per day between day one and day six?

Solution: The problem asks us to find an average rate of change, which translates to finding the 
slope, m, of the secant line connecting the points (1,6.5) and (6,8.5). To do that, use our tried-and-
true method from algebra:

That means Poteet’s socks sold at a rate of two-fifths of a thousand units per day, or 
1,000 4002

5 ( ) =  units/day on average. So even through the moderate decreases they experienced, 
the new slogan probably helped.

m y y
x x

8.5 6.5
6 1

2
5

2 1

2 1
=

=

=

−
−

−
−

YOU’VE GOT PROBLEMS

Problem 5: Given the function g(x) = 3x2 – 5x + 6, find the following values:

(a) The instantaneous rate of change of g(x) when x = 4
(b) The average rate of change on the x-interval [–1,3]
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Trigonometric Derivatives
Before we leave the land of simple derivatives, we must first discuss trigonometric derivatives. 
Each trig function has a unique derivative that you should memorize. Whereas some are easy to 
build from scratch (as you’ll see in Problem 6), others are quite difficult, so it’s best to memorize 
the entire list. Trust me—a little memorization now goes a long way later. Take a deep breath 
and gaze upon the following list of important trig derivatives:

It’s not as bad as you think—half of the inverse trig derivatives are different from the other half 
by only a negative sign.

You’ll notice that I have included the inverse trig functions in this list, but you may not recognize 
them. Instead of using the notation y = sin–1x to indicate the inverse sine, I use the notation  
y = arcsin x. I am a huge fan of the latter notation, because sin–1x looks a lot like (sin x)–1, which is 
equal to csc x (which is not the inverse of sin x).

CRITICAL POINT

The notation f xd
dx ( )( )  means “take the derivative of the expression inside 

the parentheses.” In other words, f x f xd
dx ( )( ) ( )= ′ .

You’ll have to be able to use these formulas with the Product, Quotient, and Chain Rules, so here 
are a couple of examples to get you used to them. Remember, if a trig function contains anything 
except a single variable (like x), you have to use the Chain Rule to find the derivative.

Example 7: If f(x) = cos x sin 2x, identify f ′(x) and evaluate f 2( )′ π .

Solution: Because this function is the product of two variable expressions, you’ll have to 
use the Product Rule. In addition, you’ll have to use the Chain Rule to differentiate sin 2x, 
because it contains more than just x inside the sine function. According to the Chain Rule, 

x x xsin 2 cos 2 2 2cos2d
dx ( ) ( )= ⋅ = . Here’s the Product Rule in action:

x x x

x x x

x x x

x x x

x x x x

x x x x

sin cos arcsin

cos sin arccos

tan sec arctan

cot csc arccot

sec sec tan arcsec

csc csc cot arccsc

d
dx

d
dx x

d
dx

d
dx x

d
dx

d
dx x

d
dx

d
dx x

d
dx

d
dx x x

d
dx

d
dx x x

1

1

1

1

2 1
1

2 1

1
1

1

1

1

2

2

2

2

2

2

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

= =

= − =

= =

= − =

= =

= − =

−

−

−

+
−

+

−

−

−



Chapter 9: Laying Down the Law for Derivatives 145

f x x x x x

f x x x x x

f

cos 2cos2 sin sin 2

2cos cos2 sin sin 2

2cos cos sin sin

2 0 1 1 0

0 0
0

2 2
2
2 2

2
2( ) ( ) ( ) ( ) ( )

( ) ( )( )
( )

( )( ) ( )

′ = ⋅ + −

′ = −

′ = −

= − −

= −
=

π π π π π

YOU’VE GOT PROBLEMS

Problem 6: Use the Quotient Rule to prove that x xcot cscd
dx

2( ) = − .

Tabular and Graphical Derivatives
This chapter is chock full of important techniques and formulas to memorize and practice, but 
as you’re mastering the Power, Product, Quotient, and Chain Rules, don’t get so caught up in the 
calculations that you miss the concepts. Derivatives are a foundational element of calculus, so 
let’s throw a few nontraditional examples at you before we conclude the chapter.

Example 8: Assume functions f(x) and g(x) are continuous and differentiable for all real numbers. 
The following table lists values of the functions and their derivatives for specific x values.

Based on this information, calculate the following:

 (a) h h x f x g x1 , given ( ) ( ) ( ) ( )′ = ⋅  (b) j j x g f x3 , given ( )( ) ( ) ( )′ − =

x f x g f g xx x

3 0 8 2 3
2 3 6 5 6
1 1 2 6 10
0 3 2 7 12
1 2 1 8 4
2 1 7 1 5
3 4 3 9 15

( ) ( ) ( ) ( )′ ′

− − −
− − −
− − −

− −
− − − −
−
− − −
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Solution: Although you don’t have specific functions that define f(x) and g(x), you can still apply 
the derivative techniques you learned in this chapter.

 (a) The function h(x) is defined as the product of functions f(x) and g(x). That means you 
need to use the Product Rule to calculate h ′(x):

  What now? You don’t know what f(x) or g(x) are equal to, so how are you supposed to 
know what their derivatives are? No need to worry. You aren’t asked to find the general 
derivative, just the value of the derivative when x = 1.

h′(1) = f(1) ∙ g′(1) + g(1) ∙ f ′(1)

  Find f(1), f ′(1), g(1), and g′(1) in the table and substitute them into the formula.

 (b) Function j(x) is a composition of functions: f(x) is substituted into g(x). You need to apply 
the Chain Rule to calculate j′(x):

  You’re asked to calculate j′(–3), so replace x with –3:

  According to the chart, f(–3) = 0.

j′(–3) = g′(0) ∙ f ′(–3)

  Once again, refer to the chart to identify the values of g′(0) and f ′(–3):

h x f x g x

h x f x g x g x f x

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

= ⋅

′ = ⋅ ′ + ⋅ ′

h 1 2 4 1 8

8 8
16

( ) ( )( ) ( )( )′ = − − + − −

= +
=

j x g f x

j x g f x f x

( )
( )

( ) ( )
( ) ( ) ( )

=

′ = ′ ⋅ ′

j g f f3 3 3( )( ) ( ) ( )′ − = ′ − ⋅ ′ −

j 3 12 2

24
( )′ − = ⋅

=

YOU’VE GOT PROBLEMS

Problem 7: Use the table of values provided in Example 8 to calculate k ′(–1), 
given k x f x

g x( ) = ( )
( ) .
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Example 9: Given the graph of f(x) in Figure 9.4, estimate the following:

 (a) f ′(3)  (b) f ′(–2)

Figure 9.4 
The graph of a function f(x).

Solution: As Chapter 8 explains, the derivative of a function is the slope of the tangent line at a 
specific x value. Therefore, to estimate the derivatives of f(x) in this example, you should draw 
tangent lines at the given x values and calculate their slopes.

 (a) The graph of f(x) seems to be changing direction at x = 3. Before it passes x = 3, as you 
travel from left to right, it is decreasing. However, after x = 3, it increases. The tangent 
line at x = 3, therefore, will be horizontal, as illustrated in Figure 9.5. Remember, this 
is an estimation, so even if the tangent isn’t perfectly horizontal, this is a good enough 
guess.
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Figure 9.5 
The line tangent to f(x) when x = 3 is horizontal.

  What is the derivative when x = 3? The slope of a horizontal line is 0, so you can confi-
dently assert that f ′(3) ≈ 0.
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 (b) Draw the line tangent to the graph at x = –2.

Figure 9.6 
The line tangent to the graph of f(x) when x = –2.

  Your line may vary a little from mine, but remember that you’re only asked for an 
estimate. My dotted tangent line passes through points (–2,3) and (1,0). Use the slope 
formula to calculate the slope of the tangent:

  You conclude that f ′(–2) ≈ –1.

slope

1

y y
x x

0 3
1 2

3
1 2

3
3

2 1

2 1
=

=

=

= −

= −

( )

−
−

−
− −

−
+

YOU’VE GOT PROBLEMS

Problem 8: Use the graph of f(x) in Figure 9.4 to estimate f ′(4).
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Technology Focus: Calculating Derivatives
Different calculators have different capabilities when it comes to calculating derivatives. Some 
calculators, like the TI-89, can differentiate symbolic expressions. By accessing the Calculus 
menu on the home screen, you can select the differentiate function, as illustrated in Figure 9.7. If 
you own a symbolic calculator, you can check most of your homework in a snap. (However, don’t 
be tempted to depend on your calculator to do your work for you.)

Figure 9.7 
The Calc menu contains common calculus functions, including “differentiate.”

For example, you can check your work for Example 3 in this chapter by entering the expression, 
as shown in Figure 9.8. Notice that the expression is followed by “,x” indicating that the 
expression you typed contains the variable x, and that is the variable you are differentiating with 
respect to. (More about what “with respect to” means in Chapter 10.)

Figure 9.8 
The calculator verifies the solution to Example 3 in this chapter, from the Product Rule section.

Pretty powerful! The calculator applied the Product Rule for you automatically and even 
simplified the expression. Symbolic calculators are very smart devices. Check out Figure 9.9 to 
see that even trigonometric and inverse trigonometric functions are just as easy to differentiate.
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Figure 9.9 
The TI-89 doesn’t blink an electronic eye at the thought of differentiating trigonometric functions.

Here’s the bad news: symbolic calculators are so powerful that most classes and exams don’t allow 
them. After all, teachers and exam makers want to make sure you understand calculus; they aren’t 
interested in measuring your graphing calculator skills. Other calculators are allowed, including 
the TI-84 family. While they cannot handle symbolic differentiation, they can calculate 
derivatives at specific x values.

For example, in Example 3 (and in the calculator screens above), you determined that the 
derivative of f(x) = (x2 + 6)(2x – 5) was 6x2 – 10x + 12. Your TI-84 calculator would not be able 
to tell you the derivative expression, but it could evaluate the derivative for a specific value of x. 
In other words, it can’t tell you what f ′(x) is, but it can tell you what f ′(–2) is … almost.

Press the  button and scroll down to the “nDeriv(” option, as illustrated in Figure 9.10. This 
stands for “numeric derivative,” as opposed to symbolic derivative.

Figure 9.10 
Some of your screens may look different from mine if you have MathPrint enabled in the Mode menu. 

You can always toggle display options in the Mode menu.
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Now type the expression from Example 3, followed by “,x,–2)” to indicate that you are taking the 
derivative of the x variable and evaluating the derivative at x = –2. See Figure 9.11 for the result.

Figure 9.11 
This is an estimate of the correct answer. It is not 100 percent accurate.

We can give the calculator a lot of credit for trying, but let’s be honest—it did not get the answer 
right. If you substitute x = –2 into the derivative you get 56, not 56.000002.

Why does the calculator get it wrong? Remember, it’s not actually calculating the symbolic 
derivative. It is using a method similar to the difference quotient to calculate a tangent slope, so 
you cannot count on it for exact measurements. However, 56.000002 is pretty close to 56, so you 
can still use it to check any numeric derivative answers.

One warning: your calculator may try to calculate a derivative even if it doesn’t exist! For example, 
the function g x x( ) =  is not differentiable when x = 0, because it contains a cusp there. The 
algorithm your calculator uses to approximate the derivative may not test for cusps, so the 
calculator reports a derivative of 0 (see Figure 9.12).

f x x x

f

f

f

f

6 10 12

2 6 2 10 2 12

2 6 4 10 2 12

2 24 20 12

2 56

2

2

( )
( ) ( ) ( )
( ) ( ) ( )
( )
( )

′ = − +

′ − = − − − +

′ − = − − +

′ − = + +

′ − =
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Figure 9.12 
The derivative of y x=  does not exist when x = 0, but that’s news to your calculator, which 

managed to find a derivative anyway.

There are pros and cons to using your graphing calculator. A symbolic calculator is very smart—
too smart, you could argue, to use on a quiz or test. A calculator that provides only numeric 
derivatives is smart enough to be helpful, as long as you interpret the results appropriately.

The Least You Need to Know
• If a function is differentiable, it must also be continuous.

• A function is not differentiable at a point of discontinuity, a sharp point (cusp), or 
where the tangent line is vertical.

• The slope of a function’s tangent line gives its instantaneous rate of change, and 
the slope of its secant line gives the average rate of change.

• Products and quotients of variable expressions must be differentiated using the 
Product and Quotient Rules, respectively.

• You must use the Chain Rule to differentiate any function that contains something 
other than just x.

• You can use your calculator to check your work when evaluating derivatives.





CHAPTER

10
Common Differentiation Tasks

In This Chapter
• Equations of tangent and 

normal lines

• Differentiating equations 
containing multiple 
variables

• Derivatives of inverse 
functions

• Differentiating parametric 
equations

• Solving gross equations 
with your calculator

Even though the derivative is just the slope of a tangent line, 
its uses are innumerable. We’ve already seen that it describes 
the instantaneous rate of change of a nonlinear function. 
However, that hardly explains why it’s one of the most 
revolutionary mathematical concepts in history. Soon we’ll be 
exploring more (and substantially more exciting) uses for the 
derivative.

In the meantime, there’s a little bit more grunt work to 
be done. (That makes you happy to read, doesn’t it?) This 
chapter will help you perform specific tasks and find 
derivatives for very particular situations. Think of learning 
derivatives as being like trying to get your body in shape. 
In the last chapter, you learned the basics, the equivalent of 
a good cardiovascular workout, working all of your muscles 
in harmony with each other. In this chapter, we’re working 
out specific muscle groups, one section at a time. There’s 
not a lot of similarity between each individual topic here, 
but exercising all of these abilities at the appropriate time 
(and knowing when that time arrives) is essential to getting 
yourself in shape mathematically.
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Finding Equations of Tangent Lines
Writing tangent line equations is one of the most basic and foundational skills in calculus. You 
already know how to create the equation of a line using point-slope form (see Chapter 2). Since 
it’s the equation of a tangent line you’re after, the slope is the derivative of the function! All that’s 
left to do is figure out the appropriate point, and if that were any easier, it’d be illegal.

Example 1: Write the equation of the tangent line to the curve f(x) = 3x2 – 4x + 1 when x = 2.

Solution: Take a look at the graph of f(x) in Figure 10.1 to get a sense of our task.

Figure 10.1 
The graph of f(x) = 3x2 – 4x + 1 and a future point of tangency.

You want to find the equation of the tangent line to the graph at the indicated point (when x = 2). 
This is the point of tangency, where the tangent line will strike the graph. Therefore, this point 
is both on the curve and on the tangent line. Since point-slope form requires you to know a point 
on the line in order to create the equation of that line, you’ll need to know the coordinates of this 
point. Since you already know the x value, plug it into f(x) to get the corresponding y value:

f 2 3 2 4 2 1

12 8 1
5

2( ) ( )= − ⋅ +

= − +
=
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So the point (2,5) is on the tangent line. Now all you need is the slope of the tangent line, f ′ (2):

Now that you know a point on the tangent line and the correct slope, slap those values into 
point-slope form and out pops the correct tangent line equation:

Figure 10.2 verifies the solution visually.

Figure 10.2 
The (dotted) line y = 8x – 11 is tangent to f(x) at x = 2.

f x x

f

f

f

6 4

2 6 2 4

2 12 4

2 8

( )
( ) ( )
( )
( )

′ = −

′ = −

′ = −

′ =

y x

y x
y x

5 8 2

5 8 16
8 11

( )− = −

− = −
= −
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Occasionally you’ll be asked to find the equation of the normal line to a curve. Because the normal 
line is perpendicular to the tangent line at the point of tangency, you use the same point to create 
the normal line, but the slope of the normal line is the negative reciprocal of the slope of the 
tangent line.

DEFINITION

A normal line is perpendicular to a function’s tangent line at the point of 
tangency.

Example 2: Calculate the slope of the normal line to the curve g(x) = tan (x2 – π) at x 4= π , 
reporting the answer accurate to the thousandths place.

Solution: Now this is a crazy-looking graph. I definitely do not recommend trying to sketch it 
by hand. If you don’t mind spoilers, go ahead and peek at Figure 10.3. Anyway, enough gawking. 
Let’s keep moving. Remember, the slope of the normal line is perpendicular to the slope of the 
tangent line. Apply the Chain Rule to calculate the derivative of g(x):

Now calculate g 4( )′ π . It is going to get messy, so plan on using decimal forms provided by your 
calculator.

Although that number was a little ugly looking, you’re headed in the right direction. This is  
the perfect time to double-check your derivative with your calculator, as demonstrated in  
Figure 10.3.

g x x x

x x

x x

sec

sec 2

2 sec

d
dx

2 2 2

2 2

2 2

π π

π

π

( ) ( )
( )

( )

( )′ = − ⋅ −

= − ⋅

= −

g 2 sec

sec

2.3607725

4 4
2

4

2

2
2

16

2

π

π

( ) ( ) ( )′ = −





= ⋅ −






≈

π π π

π π

YOU’VE GOT PROBLEMS

Problem 1: Find the equation of the tangent line to g(x) = 3x3 – x2 + 4x – 2 
when x = –1.
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Figure 10.3 
If decimals bring you no joy, I’d argue that knowing the actual value of the derivative, 

sec2
2

16

2

π⋅ −






π π
, isn’t much better.

The slope, m, of the normal line to g(x) at x 4= π  is the opposite reciprocal of the slope of the 
tangent line:

Implicit Differentiation
I’ve mentioned the phrase “with respect to x” a few times in other chapters, but now I need 
to define exactly what that means. In 95 percent of your problems in calculus, the variables in 
your expression will match the variable you are “respecting” in that problem. For example, the 
derivative of 5x3 + sin x, with respect to x, is 15x2 + cos x. The fact that I said you were finding 
the derivative with respect to x didn’t make the problem any harder or any different. In fact, I 
didn’t have to tell you which variable you were “respecting,” so to speak, because x was the only 
variable in the problem.

In this section, we’ll take the derivative of equations containing x and y, and I will always ask 
you to find the derivative with respect to x. What is the derivative of y with respect to x, you ask? 
The answer is this notation: dydx . It is literally read, “the derivative of y with respect to x.” The 
numerator tells you what you’re deriving, and the denominator tells you what you’re respecting.

Let’s try a slightly more complex derivative. What is the derivative of 3y2, with respect to x? 
The first thing to notice is that the variable in the expression does not match the variable you’re 
respecting, so you treat the y as a completely separate function and apply the Chain Rule. I know 
you’re not used to using the Chain Rule when there’s only a single variable inside the function, 
but if that variable is not the variable you’re respecting, you have to give it a hard time and 
“rough it up” a little. So to differentiate 3y2, start by deriving the outer function and leaving y 

m

0.424

1
2.3607725

1( )≈ −

≈ −

−
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(the inner function) alone to get 6y. Now multiply this by the derivative of y with respect to x, 
and you get:

You will encounter odd derivatives like this whenever you cannot solve an equation for y or for 
f(x). You may not have noticed, but every single derivative question until now has been worded 
“Find the derivative of y = …” or “Find the derivative of f(x) ….” When a problem asks you to 
find dydx  in an equation that cannot be solved for y, you have to resort to the process of implicit 
differentiation, which involves deriving variables with respect to other variables. Whereas in past 
problems the derivative would be indicated by y’ or f ′(x), the derivative in implicit differentiation 
is indicated by dydx .

DEFINITION

Implicit differentiation allows you to find the slope of a tangent line when 
the equation in question cannot be solved for y.

Example 3: Find the slope of the tangent line to the graph of x2 + 3xy – 2y2 = –4 at the point 
(1,–1).

Solution: Yuck! Clearly this is not solved for y, and if you try to solve for y, you’ll get discouraged 
quickly—solving it for y is impossible due to that blasted y2. Implicit differentiation to the rescue! 
The first order of business is finding the derivative of each term of the equation with respect to x. 
Because you’re new at this, I’ll go term by term.

The derivative of x2 with respect to x is 2x. Nothing fancy is needed, since the variable in the 
term is the variable we’re respecting. However, in the next term, 3xy, you have to use the Product 
Rule, since there are two variable terms multiplied (3x and y).

Remember that the derivative of y, with respect to x, is dydx , so the correct derivative of 3xy is 
x y3 3dy

dx⋅ + ⋅ . Finally, the derivative of –2y2 is y4 dy
dx− ⋅  and the derivative of –4 is 0.

Don’t forget to differentiate on both sides of the equation! Even though I differentiate implicitly 
pretty often, I still sometimes forget to differentiate a constant term to get 0. I know; I’m a 
lunkhead.

All together now, you get a derivative of:

y6 dy
dx⋅

x x y y2 3 3 4 0dy
dx

dy
dx+ ⋅ + − ⋅ =
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Move all of the terms not containing a dydx  to the right side of the equation. Once you’ve done 
that, factor the common dydx  out of the terms on the left side of the equation:

To finally get the derivative 
dy
dx( )  by itself, divide both sides of the equation by 3x – 4y:

That’s the derivative. The problem asks you to evaluate it at (1,–1), so plug those values in for x 
and y to get your final answer:

x y x y

x y x y

3 4 2 3

3 4 2 3

dy
dx

dy
dx

dy
dx ( )
⋅ − ⋅ = − −

− = − −

dy
dx

x y
x y
2 3

3 4= − −
−

dy
dx

2 1 3 1

3 1 4 1

2 3
3 4
1
7

=

=

=

( ) ( )
( ) ( )

− − −

− −

− +
+

YOU’VE GOT PROBLEMS

Problem 2: Find the slope of the tangent line to the graph of  
4x + xy – 3y2 = 6 at the point (3,2).

Differentiating an Inverse Function
Let’s say you’re given the function f(x) = 7x – 5 and are asked to evaluate f 11( ) ( )′−

, the 
derivative of the inverse of f(x) when x = 1. To find the answer, you would first find the inverse 
function (using the process we reviewed in Chapter 3) and then find the derivative. However, did 
you know that you can evaluate the derivative of an inverse function even if you can’t find the inverse 
function itself ? (Insert dramatic soap opera music here.) You’ll learn how to do it in just a second, 
but we have to review one skill first.

It’s important that you’re able to find values for an inverse function given only the original 
function before we try anything more difficult. The procedure we’ll use is based on one of the 
most important properties of inverse functions: if the point (a,b) is on the graph of f(x), then the 
point (b,a) is on the graph of f –1(x). In other words, if f(a) = b, then f –1(b) = a.
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Example 4: If g(x) = x3 + 2, evaluate g–1(1).

Solution:

Method 1: The easiest way to do this is to figure out exactly what g–1(1) is and then plug in 1. 
According to our procedure from Chapter 3, here’s how you’d go about doing that:

Therefore, g 1 1 2 1 11 3 3( ) = − = − = −− . However, there is another way to do this without actually 
finding g–1(1) first.

Method 2: You’re asked to find the output of g –1 (x) when its input is 1. Remember, I just said that 
f(a) = b implies f –1(b) = a, so therefore the output of g –1(x) when you input 1 is the same exact 
thing as the input of the original function g(x) when you output 1. So set the original function 
equal to 1 and solve; the solution will be g –1(1):

Either method gives you the same answer.

y x
x y
y x

y x

g x x

2
2

2

2

2

3

3

3

3

1 3( )

= +
= +
= −

= −

= −−

x
x

x
x

2 1
1

1
1

3

3

3

+ =
= −

= −
= −

YOU’VE GOT PROBLEMS

Problem 3: Use the technique of Example 4, Method 2 to evaluate 

f f x x6  if 2 181 3( ) ( ) = −−
.

CRITICAL POINT

Here’s a quick summary of this inverse function trick. If I want to evaluate 
f –1(a), set f(x) = a and solve for x.
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Now that you possess this skill, we can graduate to finding values of the derivative of a function’s 
inverse (say that 10 times fast, I dare you). As is the case with just about everything in calculus, 
there is a theorem governing this practice:

So evaluating the derivative is as simple as plugging the value into this slightly more complex, 
fractiony-looking formula. Once you substitute, your first objective will be to evaluate f –1(x) in 
the denominator (a skill which we just finished practicing, by no small coincidence).

By the way, are you wondering where this formula comes from? It is pretty easy to generate. Start 
with the simple inverse function property f ( f –1(x)) = x and take the derivative with the Chain 
Rule:

Example 5: If f(x) = x3 + 4x + 1, evaluate f 21( ) ( )′−
.

Solution: According to the formula you learned only moments ago:

Start by evaluating f –1(2), which is the equivalent of solving the equation x3 + 4x + 1 = 2. This 
is not an easy equation to solve; in fact, you can’t do it by hand. You’ll have to use some form 
of technology to solve the equation, whether it be a graphing calculator equation solver or a 
mathematical computer program.

One way to solve this equation is to set the equation equal to zero and calculate the x-intercept 
on a graphing calculator. See the final section of this chapter (“Technology Focus: Solving 
Gross Equations”) for step-by-step walkthroughs that explain how to solve equations with your 
graphing calculator (including this gross equation).

Whichever method you choose, the answer is x = 0.2462661722, which you can plug into the 
formula:

f x
f f x

1 1
1( ) ( )′ = ( )( )

−
′ −

f f x f x

f x

1

f f x

1 1

1 1
1

( ) ( )
( )

( ) ( )
( )

′ ⋅ ′ =

′ = ( )( )

− −

−
′ −

f 2
f f

1 1

21( ) ( )′ = ( )( )
−

′ −

f 2

0.239

f
1 1

0.2462661722

3 0.2462661722 4

1
4.1819411

2

( ) ( )′ =

=

=

≈

( )

( )

−
′

1

+
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KELLEY’S CAUTIONS

The equation in Example 5 may be difficult to solve, but it is just plain 
impossible to calculate the inverse function of f(x) = x3 + 4x + 1 using our 
techniques. So the hard equation is the only way to get an answer at all!

I know that’s a lot of decimals, but I didn’t want to round any of them until the final answer, or it 
would have compounded the inaccuracy with every step.

YOU’VE GOT PROBLEMS

Problem 4: If g(x) = 3x5 + 4x3 + 2x + 1, evaluate (g–1)′(-2).

Parametric Derivatives
In order to find a parametric derivative, you differentiate both the x and y components separately 
and divide the y derivative by the x derivative. In fancy-schmancy mathematical form, it looks 
like this:

This formula suggests that you should derive with respect to t, but you should derive with respect 
to whatever parameter appears in the problem. In the following example, for instance, you’ll 
derive with respect to θ.

Example 6: Find the slope of the tangent line to the parametric curve defined by x = cos θ and  
y = 2sin θ when 5

6θ = π  (pictured in Figure 10.4).

Solution: Since the parameter in these equations is θ, the derivative of the set of parametric 
equations is:

dy
dx

dy
dt

dx
dt

=

dy
dx

dy
d

dx
d

= θ

θ
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Figure 10.4 
The graph of the parametric curve defined by x = cos θ and y = 2sin θ with the tangent line 

drawn at 5
6θ = π .

Calculate each derivative:

Finally, calculate the derivative when 5
6θ = π :

Multiply the numerator by the reciprocal of the denominator to simplify the complex fraction:

The second derivative (which, like all second derivatives, has the almost incomprehensible 
notation d ydx

2

2 ) of parametric functions is not just the derivative of the first derivative. Instead, it is 
the derivative of the first derivative divided by the derivative of the original x term:

sin and 2cosdx
d

dy
dθ θ= − =θ θ

dy
dx

2 cos

sin

2 3 3
5
6

5
6

3
2

1
2

1
2

1
2

= = = =
− −

−

−

π

π

−


















3 2 3dy
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Technology Focus: Solving Gross Equations
Solving linear equations is a snap once you’ve had enough practice. Quadratics take a little more 
work, but with the handy quadratic formula in your nerdy mathematical fanny pack/tool belt, 
quadratic equations are harmless. However, once you run across equations raised to the third 
degree or higher, all bets are off. These equations follow no mortal law. It’s the Thunderdome 
and you’re Mad Max, but instead of cool face paint and cars, all you have is a graphing calculator 
and an unsharpened pencil.

In the last section of this chapter, I’ll show you how to use your graphing calculator to bring 
third-degree and higher equations (in other words, gross equations) to justice.

Using the Built-In Equation Solver
Both the TI-84 and TI-89 families of calculators have similar equation-solving functionality. 
Let’s look at both as we try to solve the equation 2x2 – 19x = –35. To be fair, that’s not a 
completely gross equation because it’s a quadratic and because it’s actually factorable if you add 
35 to both sides and set it equal to 0. The solutions are x x and 75

2= = . Once we practice with 
this simple equation, we can set our sights on bigger and more dangerous game.

Let’s look at the TI-89 first. When you turn the calculator on or press the  button, you 
should see something like Figure 10.5. Select the “Numeric Solver” option.

Figure 10.5 
Solutions to life’s equations are a few button presses away.

Now type your equation into the solver (see Figure 10.6) and press .

YOU’VE GOT PROBLEMS

Problem 5: Determine dydx  and 
d y
dx

2

2  (the first and second derivatives) for the 
parametric equations x = 2t – 3 and y = tan t.
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Figure 10.6 
The TI-89 has something the TI-84 calculators don’t have: an equal sign. You can type your 

equations verbatim into the solver.

You’re prompted for a guess. We know the solutions already, but pretend for a moment that we 
don’t. Let’s guess 1, which is close to the actual solution of x 2.55

2= = . Don’t worry about the 
“bound” line beneath your guess—just leave that alone.

Figure 10.7 
Can the calculator solve the equation? The tension in the air is palpable ….

Warning: nothing actually happens if you press enter on your guess. You have to select the “solve” 
option by pressing . After muttering to itself for a few moments, the calculator displays its 
solution, in Figure 10.8.
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Figure 10.8 
Oh, trusty calculator, how could we have ever doubted you?

The process works very similarly with the TI-84. Access the solver by pressing the  button 
and scrolling to “B:Solver…” (see Figure 10.9).

Figure 10.9 
The solver is a little harder to find on the TI-84.

There’s a key difference in the TI-84 solver (pun intended): the “=” key is missing, so your equation 
must be set equal to 0. In order to set the equation 2x2 – 19x = –35 equal to 0, you need to add 35 to 
both sides: 2x2 – 19x + 35 = 0. Type that into the solver and press  (see Figure 10.10). (To 
change the equation once you’ve typed it in, press the “up” button.)
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Figure 10.10 
Remember, equations must be equal to 0 to use the TI-84 solver.

You are prompted to guess at the answer, just like the TI-89. For grins, let’s guess 9, which is 
close to the actual solution of x = 7 (see Figure 10.11).

Figure 10.11 
There are two solutions to this equation. Your guess determines the solution provided by your 

calculator.

Again, don’t mess around with the bounds settings. The  button doesn’t do anything, so 
make sure to press , which activates the “Solve” button, written in green above the 

 key. As you might expect, the calculator deftly returns the correct answer of x = 7 (see 
Figure 10.12).
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Figure 10.12 
The second solution to the equation 2x2 – 19x = –35.

The Equation-Function Connection
You may be asking yourself a key question here: how am I supposed to guess a solution? Great 
question—glad you asked. The easiest way to generate a guess is to look at a graph of the equa-
tion. Simply set your equation equal to 0 and then type it into the  screen.

Let’s turn our attention to the gross equation from Example 5: x3 + 4x + 1 = 2. Set this equation 
equal to 0 by subtracting 2 from both sides:

Now enter this equation into the  screen, as demonstrated in Figure 10.13.

The Y variab 

Figure 10.13 
The Y variable takes the place of the 0 in the equation you set equal to 0. Why?  

Keep reading to find out.

x x
x x
4 1 2 0

4 1 0

3

3

+ + − =
+ − =
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The graph of the function (Figure 10.14) crosses the x-axis somewhere between x = 0 and x = 1. 
In other words, the equation equals 0 somewhere on the interval (0,1). Because the graph crosses 
the x-axis only once, you know that the original equation, x3 + 4x + 1 = 2, has only one solution.

Figure 10.14 
The solution to the equation x3 + 4x + 1 = 2 is also the x-intercept of the function 

Y1 = x3 + 4x – 1.

You can use the solver to calculate the solution to the equation, and 0.5 would be a terrific guess 
(see Figure 10.15).

Figure 10.15 
Your solver should look like this just before you press the “Solve” button.

The solution is x ≈ 0.2462661722. Here’s the key connection you’ll want to remember: a solution 
to an equation is equal to a root of a function if you create that function by setting the equation 
equal to 0.
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The Least You Need to Know
• To write the equation of a tangent line, use the point of tangency and the deriva-

tive at that point in conjunction with the point-slope form of a line.

• You must differentiate implicitly if an equation cannot be solved for y.

• The derivative of a function’s inverse is given by the formula f x
f f x

1 1
1( ) ( )′ = ( )( )

−
′ − .

• To calculate a parametric derivative, divide the derivative of the y equation by the 
derivative of the x equation.

• Solutions to equations are equivalent to roots of functions when you create those 
functions by setting the equations equal to 0.

• You can use your calculator’s built-in solver or x-intercepts to solve gross 
equations.



CHAPTER

11
Using Derivatives to Graph

In This Chapter
• Critical numbers and 

relative extrema

• Understanding wiggle 
graphs

• Determining direction  
and concavity

• The Extreme Value 
Theorem

Though astrologers have maintained for decades that an  
individual’s astrological sign provides insight into his or  
her personality, tendencies, and fate, many people remain 
unconvinced, deeming such thoughts absurd or (in extreme 
cases) poppycock. (This could be due to the fact that state-
ments such as “The moon is in the third house of Pluto” 
sound like the title of a new-age Disney movie.) Astrologers 
don’t realize how close they actually came to the truth. It 
turns out that the signs of the derivatives of a function deter-
mine and explain the function’s behavior.

In fact, the sign of the first derivative of a function explains 
what direction that function is heading, and the sign of the 
second derivative accurately predicts the concavity of the 
function. It is the third derivative of a function, however, 
that is able to predict when you will find true love, success 
in business, and how many times a week it’s healthy to eat 
eggs for breakfast. The easiest way to visualize the signs of a 
function is via a wiggle graph, which sounds racy but is really 
quite ordinary when all is said and done.
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Relative Extrema
One common human tendency is to compare oneself with his or her peers on a regular basis. 
You probably catch yourself doing this all the time, thinking things like, “Of all my friends, 
I am definitely the funniest.” Perhaps you compare more mundane things, like being the 
best at badminton or having the loudest corduroy pants. However, when you go outside your 
social sphere, you often find someone who is significantly funnier than you or who possesses 
supersonically loud pants. This illustrates the difference between a relative extreme point and an 
absolute extreme point. You can be the smartest of a group of people without being the smartest 
person in the world.

For example, look at the graph in Figure 11.1, with points of interest A, B, C, D, and E noted.

Figure 11.1 
This graph has only one absolute maximum and one absolute minimum, but several relative extrema.

The absolute maximum on the graph occurs at D, and the absolute minimum on the graph occurs 
at E. However, the graph has a relative maximum at B, and a relative minimum at C. These may 
not be the highest or lowest points of the entire graph, but (as little hills and valleys) they are the 
highest and lowest points in their immediate vicinity.

A relative extrema point (whether a maximum or a minimum) occurs when that point is higher 
or lower than all of the points around it. Visually, a relative maximum is the peak of a hill in the 
graph, and a relative minimum is the lowest point of a dip in the graph. Absolute extrema points 
are the highest or lowest of all the relative extrema on a graph. Remember that the term extrema is 
just plural for “extremely high or low point.”
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Finding Critical Numbers
A critical number is an x value that causes a function either to equal zero or become undefined. 
They’re extremely useful for finding extrema points because a function, f(x), can only change 
direction at a critical number of its derivative, f ′(x). Why? When f ′(x) is 0, then f(x) is neither 
increasing ( f ′(x) ≥ 0) nor decreasing ( f ′(x) ≤ 0), meaning f(x) is most likely about to do something 
drastic.

DEFINITION

A critical number is an x value that either makes a function zero or 
undefined.

Example 1: Given f(x) = x3 – x2 – x + 2, identify f ′(x) and its critical numbers.

Solution: Begin by finding the derivative of f(x), then set it equal to 0 and solve:

There are no places where f ′(x) does not exist, so x 1
3= −  and x = 1 are the only two critical 

numbers.

If you take a look at the graph of f(x), you’ll notice that the graph does, indeed, change direction 
at those x values (see Figure 11.2).

However, you don’t need to use the graph of a function to determine if the graph changes 
direction, or if it does, whether it causes a relative maximum or minimum.

f x x x

x x
x x

x

3 2 1

0 3 2 1
0 3 1 1

,1

2

2

1
3

( )

( )( )

′ = − −

= − −
= + −

= −
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Figure 11.2 
This graph changes from increasing to decreasing at x 1

3= −  and then returns to increasing once 
x = 1.

Classifying Extrema
As I alluded to earlier, the sign of f ′(x) tells you whether f(x) is increasing or decreasing. This is 
true because an increasing graph will have a tangent line with a positive slope and a decreasing 
graph will possess a negatively sloped tangent line. Therefore, you can tell what’s happening 
between the critical numbers of f ′(x) (i.e., if f(x) is increasing or decreasing) by picking some 
points on the graph between the critical numbers and determining whether the derivatives there 
are positive or negative.

Example 2: If f(x) = x3 – x2 – x + 2 and the critical numbers of its derivative, f ′(x), are x 1
3= −  

and x = 1, describe the direction of f(x) between those critical numbers using the sign of f ′(x).
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Solution: Choose three x values, one less than the first critical number, one between the critical 
numbers, and one greater than the second. I will choose simple values to make my life easier:  
x = –1, 0, and 2. Plug each of these x’s into f ′(x), and the sign of the result will tell you if the 
function f(x) is increasing or decreasing there:

Because f ′(x) is positive when x = –1, and x = –1 comes before the first critical point, the function 
will be increasing until x 1

3= − , the first critical number. However, the derivative turns negative 
between the critical numbers, so f(x) is decreasing between x 1

3= −  and 1.

After x = 1, the derivative turns positive again, so f(x) will increase beyond that point. This is 
no giant surprise, because you already saw the graph of f(x) in Figure 11.2, but notice how the 
critical numbers create regions where the graph is going different directions (up and down) as 
you travel along the graph from left to right. Figure 11.3 shows the signs of f ′(x) and the graph of 
f(x) at the same time to help you visualize what’s going on.

Figure 11.3 
Notice how the sign of the derivative correlates with the direction of the original function. The 

number line is actually a wiggle graph, as you’ ll learn in the next section.

f

f

f

1 3 1 2 1 1 3 2 1 4

0 3 0 2 0 1 0 0 1 1

2 3 2 2 2 1 12 4 1 7

2

2

2

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

′ − = − − − − = + − =

′ = − − = − − = −

′ = − − = − − =



Part 3: The Derivative178

The Wiggle Graph
A wiggle graph is a nice, compact way to visualize the signs of a function’s derivative all at once. 
To create a wiggle graph, we’ll use the procedure from Example 2. In other words, we’ll find 
the critical numbers, pick “test values” between those critical numbers, and plug those into 
the derivative to determine the direction of the function. The result will be a number line, 
segmented by critical numbers, and labeled with the signs of the derivative in each of its intervals. 
This will help us to quickly find all relative extreme points on the graph.

DEFINITION

A wiggle graph (or sign graph) is a segmented number line that describes 
the direction of a function. It’s called a wiggle graph because it tells you 
which way the graph is wiggling (i.e., if it is increasing or decreasing).

Example 3: Create a wiggle graph for the function f x x x
x

2 1
5

2( ) = + +
−  and use it to determine which 

critical numbers are relative extrema.

Solution: First you must find the critical numbers, where f ′(x) is either equal to 0 or is undefined. 
You use the Quotient Rule to find f ′(x):

Because this is a fraction, it is equal to 0 when the numerator equals 0 and undefined when the 
denominator is equal to 0. Both of these events interest us for the purpose of finding critical 
numbers, so factor the numerator and set both it and the denominator equal to 0 and solve:

The derivative equals 0 when x = 11 or x = –1 and is undefined when x = 5, so these are the 
critical numbers. Draw a number line and mark these numbers on it as shown in Figure 11.4.

f x
x x x x

x

x x

x

5 2 2 2 1

5

10 11

5

2

2

2

2

( )′ =

=

( )
( )

( )

( )( )− + − + +

−

− −

−

f x x x

x

11 1

5
2( )′ =

( )
( )( )− +

−

YOU’VE GOT PROBLEMS

Problem 1: Given h(x) = – x2 + 6x + 27, calculate the critical number of 
h′(x), and determine whether or not it represents a relative maximum or 
minimum, based on the signs of h′(x).
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Figure 11.4 
The beginnings of a wiggle graph. Note that you don’t need to label any numbers on it except 
the critical numbers; you don’t even have to worry about drawing it to scale. It’s just a tool for 

visualization, not a scientific graph.

These three critical numbers split the number line into four intervals. Remember that the 
function will always go in the same direction during each interval, because it can only change 
direction at a critical number. Therefore, you can choose any number in each interval as a 
“test value.” I’ll choose the numbers x = –2, 0, 6, and 12. Now, plug these four numbers into the 
derivative:

Because f ′(–2) is positive, f ′(x) is actually positive for the entire interval (–∞,–1), so indicate that 
with a “+” above the interval in the wiggle graph. Similarly, the first derivative is negative on 
the interval (–1,5), negative on (5,11), and positive on (11,∞). In Figure 11.5, this information is 
summed up on the wiggle graph.

Figure 11.5 
The signs of f ′(x) correspond to the direction of f ′(x). Positive means increasing, negative means 
decreasing. Note that the wiggle graph is clearly labeled “ f ′(x).” Always label your wiggles to avoid 

confusion.

Now you can tell that the function changes direction from increasing to decreasing at x = –1. If 
you plug that critical number into f(x), you get the critical and relative maximum point (–1,0). 
Similarly, a sign change at x = 11 indicates a relative minimum at the critical point (11,24).

5 11-1
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6 35
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13
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The Extreme Value Theorem
Your first experience with existence theorems was the Intermediate Value Theorem (see Chap-
ter 7). Do you remember it fondly? I guess that’s a rhetorical question, because whether you 
liked it or not, here comes your second existence theorem. The Extreme Value Theorem, like 
its predecessor, really doesn’t say anything earth shattering, but it should make a lot of sense, so 
that’s a plus.

The Extreme Value Theorem: If a function f(x) is continuous on the closed interval [a,b], then f(x) has 
an absolute maximum and an absolute minimum on [a,b].

KELLEY’S CAUTIONS

Before you conclude that a sign change in a wiggle graph indicates a 
relative extrema point, make sure that the original function is defined 

there! For example, in f x x
1
2( ) = , the function changes from increasing to 

decreasing at x = 0 (verify with a wiggle graph of f ′(x)). However, x = 0 is not 
in the domain of f(x), so it cannot be a relative maximum.

This theorem simply says that a piece of continuous function will always have a highest point and 
a lowest point. That’s all. Here’s a little tip: a function’s absolute extrema can only occur at one 
of two places—either at a relative extrema point or at an endpoint. This little trick makes finding 
the absolute extrema points very easy.

Example 4: Find the absolute maximum and absolute minimum of the function 

f x x x x 23
5

5 2
3

3( ) = − − +  on the interval [–2,1].

Solution: The absolute extrema you’re looking for are guaranteed to exist according to  
the Extreme Value Theorem, because f(x) is continuous on the closed interval. In fact,  

YOU’VE GOT PROBLEMS

Problem 2: Draw the wiggle graph for the function 
g x x x x2 3 103 7

2
2( ) = − − + , and determine the intervals on which g(x) is 

increasing.
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f(x) is continuous everywhere! Start by drawing a wiggle graph. Same process as always: set f ′(x) 
= 0 and plug test values into the derivative:

Check out the wiggle graph in Figure 11.6. Because the sign of its derivative changes at both 
critical numbers (and they are both in the domain of f(x)), you know that x = –1 and 1 mark 
relative extrema and, therefore, possibly absolute extrema as well.

Figure 11.6 
According to this wiggle graph, f(x) changes direction twice.

Because an extreme value (an absolute maximum or minimum) can only occur at a critical 
number (x = –1 or 1) or an endpoint (x = –2 or 1), plug each of those x values into f(x) to see which 
yields the highest and lowest values:

KELLEY’S CAUTIONS

There is no solution to the mini-equation 3x2 + 1 = 0 in Example 4, because 

solving it gives you x 1
3= ± − , and you can’t take the square root of a 

negative number.

Therefore, the absolute maximum of f(x) on the closed interval [–2,1] will be 46
15  and the absolute 

minimum is 148
15− . I know that those fractions were ugly, but whatever doesn’t kill you makes you 

stronger, right? You’re not buying that, are you?

f x x x

x x

x x x

x

3 2 1

0 3 1 1

0 3 1 1 1

1,1

4 2

2 2

2

( )( )
( )

( )

( )( )

′ = − −

= + −

= + + −

= −

3
–1
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f (x)

2
3

f

f

f

2 9.867

1 3.067

1 0.9333

148
15

46
15
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15
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( )

− = − ≈ −

− = ≈

= ≈
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KELLEY’S CAUTIONS

Reporting an absolute maximum of –1 and an absolute minimum of –2 
for Example 4 is a common error. Although these are the x values where 
the extrema occur, they are not the extreme values themselves. Absolute 
maxima and minima are heights—function values, not x values.

Determining Concavity
Concavity describes how a curve bends. A curve that can hold water poured into it from the top 
of the graph is said to be “concave up,” whereas one that cannot hold water is said to be “concave 
down.” Notice that the concave-up curve in Figure 11.7 would catch water poured into it, 
whereas the concave-down curve would dump the water onto the floor, causing your mother to 
get angry.

DEFINITION

The concavity of a curve describes the way the curve bends. A curve that 
is “concave up” would catch water, whereas one that is “concave down” 
would dump the water.

The sign of the second derivative f ʺ(x) describes the concavity of f(x). If f ʺ(x) is positive for some 
x value, then f(x) is concave up at that point. If, however, f ʺ(x) is negative, then f(x) is concave 
down at that point. You can remember this relationship between the second derivative’s sign and 
concavity using Figure 11.8.

Figure 11.7 
A tale of two curves whose second derivatives differ. (You’ ll soon see what I mean.)

–1 1

– ++
f (x)

YOU’VE GOT PROBLEMS

Problem 3: Find the absolute maximum and minimum of  
g(x) = x3 + 4x2 + 5x – 2 on the closed interval [–5,2].
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Figure 11.8 
A smile is concave up, indicating a positive second derivative via the plus-sign eyes. You’d be 

unhappy too, if you were concave down.

The sign of f ʺ(x) not only describes the concavity of f(x), it also describes the direction of f ′(x). This 
is because f ʺ(x) is also the first derivative of f ′(x), and remember that first derivatives describe the 
direction of their predecessors. For example, if gʺ(2) = –7 for some function g(x), then we know 
g(x) is concave down when x = 2 (because the second derivative is negative) and we know g′(x) is 
decreasing at x = 2.

As with direction, however, the concavity of a curve can change throughout the function’s 
domain (the points of change are called inflection points). You’ll use a process that mirrors the first-
derivative wiggle graph to determine a function’s concavity.

DEFINITION

A graph changes concavity at an inflection point.

Another Wiggle Graph
Hopefully you’ve seen how useful a wiggle graph can be in helping you visualize a function’s 
direction. It is just as useful when visualizing concavity, and is just as easy. This time, you’ll use 
the second derivative to create the wiggly number line, and you’ll plug test values into the second 
derivative rather than the first derivative to come up with the appropriate signs. Let’s revisit an 
old friend, f(x), from Example 4.

Example 5: On what intervals is the function f x x x x 23
5

5 2
3

3( ) = − − +  concave up?

Concave
down

Concave
up
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Solution: Find the second derivative, f ʺ(x), and use it to create a wiggle graph, as you did earlier 
in the chapter. The only difference is that you’ll use f ʺ(x) for everything instead of f ′(x):

Set f ʺ(x) = 0 and solve for x to get your critical numbers:

Don’t forget the ± sign, because you are square-rooting both sides of an equation. It’s time to 
draw the wiggle graph and choose test points just like before. Because you already know how to 
do this, let’s jump straight to the correct graph in Figure 11.9.

Figure 11.9 
The second derivative wiggle graph for f(x).

The function f(x) is concave up whenever f ʺ(x) is positive, so f(x) is concave up on 

,0  and ,1
3

1
3( ) ( )− ∞ .

f x x x

f x x x

3 2 1

12 4

4 2

3

( )
( )
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YOU’VE GOT PROBLEMS

Problem 4: When is f(x) = cos x concave down on (0,2π)?

The Second Derivative Test
The Second Derivative Test is a little math trick that tells you whether or not an extrema point is 
a relative maximum or minimum. You did this using the signs of the first derivative and a wiggle 
graph earlier. However, the Second Derivative Test uses the sign of the second derivative (and 
therefore the concavity of the graph at that point) to do all the work.
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The Second Derivative Test: Plug the critical numbers that occur when f ′(x) = 0 or f ′(x) is undefined 
into f ʺ(x). If the result is positive, that critical number is a relative minimum on f(x). If the result 
is negative, that critical number marks a relative maximum on f(x). If the result is 0, you cannot 
draw any conclusion from the Second Derivative Test and must resort to the first-derivative 
wiggle graph.

Example 6: Classify all the relative extrema of the function g(x) = 3x3 – 18x + 1 using the Second 
Derivative Test.

Solution: First find the critical numbers as you did earlier in the chapter:

CRITICAL POINT

If you think about it, the only possible extrema point you can have on a 
concave-up graph is a relative minimum—consider the point (0,0) on the 
graph of y = x2 as an example.

Plug both x x2  and 2= = −  into gʺ(x) = 18x. Because g 2 18 2( )′′ = , which is positive, 

x 2=  represents the location of a relative minimum (according to the Second Derivative Test). 

Conversely, because g 2 18 2( )′′ − = − , that point represents a relative maximum.

The Least You Need to Know
• Critical numbers are x values that cause a function to equal 0 or become 

undefined. The graph of f(x) can only change direction at a critical number of its 
derivative, f ′(x).

• If f ′(x) is positive, then f(x) is increasing; a negative f ′(x) indicates a decreasing f(x).
• If f ʺ(x) is positive, then f(x) is concave up; a negative f ʺ(x) indicates a concave- 

down f(x).
• You can use both the first derivative wiggle graph and the Second Derivative Test 

to classify relative extrema points.
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x
x
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x

9 18
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CHAPTER

12
Derivatives and Motion

In This Chapter
• What is a position 

equation?

• The relationship between 
position, velocity, and 
acceleration

• Speed versus velocity

• Understanding projectile 
motion

Mathematics can actually be applied in the real world. This 
may shock and appall you, but it’s true. It’s probably shocking 
because most of the problems we’ve dealt with have been 
purely computational in nature, devoid of correlation to real 
life. (For example, estimating gas mileage is a useful math-
ematical real-life skill, whereas factoring difference of perfect 
cube polynomials is not as useful in a straightforward way.) 
Most people hate real-life application problems because they 
are (insert scary wolf howl here) word problems!

Factoring and equation solving may be rote, repetitive, and 
a little boring, but at least they’re predictable. How many 
nights have you gone to sleep haunted by problems like this: 
“If Train A is going from Pittsburgh to Los Angeles at a rate 
of 110 kilometers per hour, Train B is traveling 30 kilometers 
less than half the number of male passengers in Train A, and 
the heading of Train B is 3 degrees less than the difference of 
the prices of a club sandwich on each train, then at what time 
will the conductor of the first train remember that he forgot 
to set the DVR to record Jeopardy?”

Position equations are a nice transition into calculus word 
problems. Even though they are slightly bizarre, they follow 
clear patterns. Furthermore, they give you the chance to show 
off your new derivative skills.
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The Position Equation
A position equation is an equation that mathematically models something in real life. Specifically, 
it gives the position of an object at a specified time. Different books and teachers use different 
notation, but I will always indicate a position equation with the notation s(t), to stay consistent. 
By plugging values of t into the equation, you can determine where the object in question was at 
that moment in time. Just in case you’re starting to get stressed out, I’ll insert something cute and 
cuddly into the mix—my cat, Peanut.

DEFINITION

A position equation is a mathematical model that outputs an object’s 
position at a given time t. Position is usually given with relation to some 
fixed landmark, like the ground or the origin, so that a negative position 
means something. For example, s(5) = –6 may mean that the object in 
question is 6 feet below the origin after 5 seconds have passed.

Peanut pretty much has the run of my basement, and her favorite pastime (apart from her strange 
habit of chewing on my eyeglasses) is batting a ball back and forth along one of the basement 
walls. For the sake of ease, let’s say the wall in question is 20 feet long; we’ll call the exact middle 
of the wall position 0, the left edge of the wall (our left, not her left) position –10, and the right 
edge of the wall position 10, as in Figure 12.1.

Figure 12.1 
The domain of Peanut the cat. For sake of reference, I have labeled the middle and edges of the room.

Let’s examine the kitty’s position versus time in a simple example. We’ll keep returning to this 
example throughout the chapter as we compound our knowledge of derivatives and motion (and 
cat recreation).

–10 feet 0 feet 10 feet
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Example 1: During the first four seconds of a particularly frisky playtime, Peanut’s position (in 
feet at time = t seconds) along the wall is given by the equation s(t) = t3 – 3t2 – 2t + 1. Evaluate 
and explain what is meant by s(0), s(2), and s(4).

Solution: Plug each number into s(t). A positive answer means she is toward the right of the 
room, whereas a negative answer means she is to the left of center. The larger the number, the 
farther she is to the right or left:

KELLEY’S CAUTIONS

The position given by s(t) in Example 1 is the horizontal position of the 
cat—had it meant vertical position, that negative answer would have been 
disturbing. Every position problem should infer what is meant by its output 
and will usually include units (such as feet and seconds) as well.

Therefore, when t = 0 (i.e., before you start measuring elapsed time), s(0) = 1 tells you the cat 
began 1 foot to the right of the center. Two seconds later (t = 2), she had used her lightning-fast 
kitty movements to travel 8 feet left, meaning she was then only 3 feet from the left wall, and 
7 feet left of center. Two seconds after that (t = 4), she had moved 16 feet right, now only 1 foot 
away from the right-hand wall. That is one fast-moving cat.

CRITICAL POINT

The value s(0) is often called initial position, because it gives the position of 
the object before you start measuring time. Similarly, v(0) and a(0) are the 
initial velocity and initial acceleration.

There’s nothing really fancy about the position equation; given a time input, it tells you where the 
object was at that moment. Notice that the position equation in Example 1 is a nice, continuous, 
and differentiable polynomial. You can find the derivative awfully easily, but what does the 
derivative of the position equation represent?

s

s

s

0 0 3 0 2 0 1 1

2 2 3 2 2 2 1 8 12 4 1 7

4 4 3 4 2 4 1 64 48 8 1 9

3 2

3 2

3 2

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

= − − + =

= − − + = − − + = −

= − − + = − − + =
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Velocity
Remember that the derivative describes the rate of change of a function. Therefore, s′(t) 
describes the velocity of the object in question at any given instant. It makes sense that velocity 
is equivalent to the rate of change of position, because velocity measures how quickly you move 
from one position to another. Speed also measures how quickly something moves, but speed and 
velocity are not the same thing.

CRITICAL POINT

If an object is moving downward at a rate of 15 feet per second, you could 
say that its velocity is –15 feet/second, whereas its speed is 15 feet/second. 
Speed is always the absolute value of velocity.

Velocity combines an object’s speed with its direction, whereas speed just gives you the rate at 
which the object is traveling. Practically speaking, this means that velocity can be negative, but 
speed cannot. What does a negative velocity mean? It depends on the problem. In a horizontal 
motion problem (like the Peanut the cat problem), it means velocity towards the left (because 
the left was defined as the negative direction). In a vertical motion problem, a negative velocity 
typically means that the object is dropping.

To find the velocity of an object at any instant, calculate the derivative and plug in the desired 
time for t. If, however, you want an object’s average velocity (i.e., average rate of change), 
remember that this value comes from the slope of the secant line. Remember how quickly Peanut 
was darting around in Example 1? Let’s get those exact speeds and velocities using the derivative.

Example 2: Peanut the cat’s position, in feet, for 0 ≤ t ≤ 4 seconds is given by  
s(t) = t3 –3t2 – 2t + 1. Find her velocity and speed at times t = 1 and t = 3.5 seconds, and give her 
average velocity over the t interval [1,3.5].

Solution: There are lots of parts to this problem, but none are hard. Start by calculating her 
velocity at the given times. Remember that the velocity is the first derivative of the position 
equation, so s′(t) = v(t) = 3t2 – 6t – 2:

v

v

1 3 6 2 5 ft/sec

3.5 36.75 21 2 13.75 ft/sec

( )
( )

= − − = −

= − − =

YOU’VE GOT PROBLEMS

Problem 1: A particle moves vertically (in inches) along the y-axis according 
to the position equation s t t t t5 3 61

2
3 2( ) = − + + , where t represents seconds. 

At what time(s) is the particle 30 inches below the origin?
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Peanut is moving at a speed of 5 feet/second to the left (because the velocity is negative) at t = 1 
second, and she is moving much faster, at a speed of 13.75 feet/second to the right, when t = 3.5 
seconds. Now to find the average velocity on [1,3.5]—it’s equal to the slope of the line segment 
connecting the points on the position graph where t = 1 and t = 3.5. To find these points, plug 
those values into s(t):

KELLEY’S CAUTIONS

The slope of a position equation’s tangent line equals the instantaneous 
velocity at the point of tangency. The slope of a position equation’s secant 
line gives the average velocity over that interval. Notice that instantaneous 
and average rates of change are both based on linear slopes drawn on the 
position equation, not its derivative.

Calculate the secant slope using the points (1,–3) and (3.5, 0.125):

Therefore, even though she runs left and right at varying speeds over the time interval [1,3.5], 
she averages a rightward speed of 1.25 feet/second.

s

s

1 1 3 2 1 3

3.5 42.875 36.75 7 1 0.125

( )
( )

= − − + = −

= − − + =

m 1.25 ft/sec.125 3
3.5 1= =( )0 − −

−

YOU’VE GOT PROBLEMS

Problem 2: A particle moves vertically (in inches) along the y-axis according 
to the position equation s t t t t5 3 61

2
3 2( ) = − + + , where t represents seconds. 

Rank the following from least to greatest: the speed when t = 3, the velocity 
when t = 7, and the average velocity on the interval [2,6].

Acceleration
As velocity is to position, so is acceleration to velocity. In other words, acceleration is the rate of 
change of velocity. Think about it—if you’re driving in a car that suddenly speeds up, the sense 
of being pushed back in your seat is due to the effects of acceleration. It is not the high rate of 
speed that makes roller coasters so scary. Aside from their height, it is the sudden acceleration 
and deceleration of the rides that causes the passengers to experience dizzying effects (and 
occasionally their previous meal).
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CRITICAL POINT

The units for acceleration will be the same as the units for velocity, except 
the denominator will be squared. For example, if velocity is measured in 
feet per second (ft/sec), then acceleration is measured in feet per second 
per second, or ft/sec2.

To calculate the acceleration of an object, evaluate the second derivative of the position equation 
(or the first derivative of velocity). To calculate average acceleration, find the slope of the secant 
line on the velocity function (for the same reasons that average velocity is the secant slope on the 
position function). Let’s head back to the cat of mathematical mysteries one last time.

CRITICAL POINT

If the first derivative of position represents velocity and the second 
derivative represents acceleration, the third derivative represents “jerk,” 
the rate of change of acceleration. Think of jerk as that feeling you get as 
you switch gears in your car and the acceleration changes. I’ve never seen a 
problem concerning jerk, but I have known a few mathematicians who were 
pretty jerky.

Example 3: Peanut the cat’s position, in feet, at any time 0 ≤ t ≤ 4 seconds is given by  
s(t) = t3 – 3t2 – 2t + 1. When, on the interval [0,10], is she decelerating?

Solution: Because the sign of the second derivative determines acceleration, you want to know 
when sʺ(x) is negative. So make an sʺ(x) wiggle graph by setting it equal to 0, finding critical 
numbers, and picking test points (as you did in Chapter 11). The wiggle graph for the second 
derivative is given in Figure 12.2.

Figure 12.2 
Because s (̋x) is negative on (0,1), the cat is decelerating on that interval.
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The acceleration equation sʺ(t) is negative on the interval (0,1), so the cat decelerates only 
between t = 0 and t = 1.

Vertical Projectile Motion
One of the easiest types of motion to model in elementary calculus is projectile motion, the 
motion of an object acted upon solely by gravity. Have you ever noticed that any thrown object 
follows a vertical path to the ground? It is very easy to write the position equation describing 
that path with only a tiny bit of information. Mind you, these equations can’t give you the exact 
position, because ignoring wind resistance and drag makes the problem much easier.

Scientists often pooh-pooh these little pseudoscientific math applications, saying that ignoring 
such factors as wind resistance and drag renders these examples worthless. Math people usually 
contend that, although not perfect, these examples show how useful even a simple mathematical 
concept can be.

CRITICAL POINT

Unquestionably, one of the grossest examples of projectile motion is in the 
movie The Exorcist. We will not be doing any examples involving pea soup.

The position equation of a vertical projectile looks like this:

You plug the object’s initial velocity into v0, the initial height into h0, and the appropriate 
gravitational constant into g (which stands for acceleration due to gravity)—if you are working in 
feet, use g = –32, whereas g = –9.8 if the problem contains meters. Once you create your position 
equation by plugging into the formula, it will work just like the other position equations from this 
chapter, outputting the vertical height of the object in relation to the ground at any time t (for 
example, a position of 12 translates to a position of 12 feet above ground).

Example 4: Here’s a throwback to 1970s television for you. A radio station called WKRP in 
Cincinnati is running a radio promotion. For Thanksgiving, they are dropping live turkeys from 

s t g t v t h1
2

2
0 0( ) = ⋅ + ⋅ +

YOU’VE GOT PROBLEMS

Problem 3: A particle moves vertically (in inches) along the y-axis according 
to the position equation s t t t t5 3 61

2
3 2( ) = − + + , where t represents seconds. 

At what time t is the acceleration of the particle equal to –1 in/sec2?
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the station’s traffic helicopter into the city below, but little do they know that turkeys are not so 
good at the whole flying thing. Assuming that the turkeys were tossed with a miniscule initial 
velocity of 2 ft/sec straight up from a safe hovering height of 1,000 feet above ground, how long 
does it take a turkey to hit the road below, and at what speed will the turkey be traveling at that 
time?

Solution: The problem contains feet, so use g = 32 ft/sec2; you’re given v0 = 2 and h0 = 1,000, so 
plug these into the formula to get the position equation of s(t) = –16t2 + 2t + 1,000. You want to 
know when they hit the ground, which means they have a position of 0, so solve the equation 
–16t2 + 2t + 1,000 = 0. You can use a calculator or the quadratic formula to come up with the 
answer of t = 7.9684412 seconds. (The other answer of –7.84 doesn’t make sense—a negative 
answer suggests going back in time, and that’s never a good idea, especially with poultry.) If you 
plug that value into s′(x), you’ll find that the turkeys were falling at a velocity of –252.990 ft/sec. 
Oh, the humanity.

CRITICAL POINT

Notice that g always equals either –32 or –9.8, depending on the units of the 
problem. This is because the pull of gravity never changes.

YOU’VE GOT PROBLEMS

Problem 4: A cannonball is fired straight up from a fortification 75 meters 
above ground with an initial velocity of 100 meters/second. Given this 
information, answer the following questions:

(a)  When will the cannonball reach its maximum height? Round your 
answer to the nearest thousandth of a second.

(b)  What is the maximum height of the cannonball? Round your 
answer to the nearest meter.

(c)  Assuming the cannon is firing into flat terrain, how long does it 
take the cannonball to first hit the ground?

The Least You Need to Know
• The position equation tells you where an object is at any time t.
• The derivative of the position equation is the velocity equation, and the derivative 

of velocity is acceleration.

• If you plug 0 into position, velocity, or acceleration, you’ll get the initial value for 
that function.

• The formula for the position of a vertical projectile is s t g t v t h1
2

2
0 0( ) = ⋅ + ⋅ + .
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13
Common Derivative 

Applications

In This Chapter
• Approximating zeroes of 

functions

• Limits of indeterminate 
expressions

• The Mean Value Theorem

• Rolle’s Theorem

• Calculating related rates

• Maximizing and 
minimizing functions

It’s been a fun ride, but our time with the derivative is almost 
through. Don’t get too emotional yet—I’ve saved the best  
for last, and this chapter will be a hoot (if you like word  
problems, that is). As in the last chapter, we’ll be looking at 
the relationship between calculus and the real world, and 
you’ll probably be surprised by what you can do with very 
simple calculus procedures.

This chapter has it all: cool shortcuts, a few more existence 
theorems, romance, adventure, and the two topics most first-
year calculus students find the trickiest. We’ll go through the 
topics in the order of difficulty, starting with the easiest and 
progressing to the more advanced.
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Newton’s Method
You may remember that Sir Isaac Newton was one of the two men responsible for discovering/
inventing calculus. One technique named for him allows you to approximate difficult-to-find 
roots (or zeroes) of a function.

This technique is interesting mostly because of its historic significance rather than its modern-
day usefulness. Back in Chapter 10 you learned how to use your calculator to approximate 
difficult roots, rather than churning them out by hand.

You may be interested to know that your calculator uses a technique very similar to Newton’s 
Method to calculate those roots, and after spending a few moments working with it, you may 
gain an appreciation for all the work your calculator is doing behind the scenes.

Newton’s Method is an iterative formula that can be repeated over and over, each time producing 
a value that is slightly closer to the correct answer (if everything is working correctly). You begin 
with a seed value, something relatively close to the right answer (like the guesses your calculator 
required in Chapter 10). Often, that seed value is called x0, and after running it through the 
formula you end up with a better guess called x1. You can then run x1 through the formula to get 
an even better guess called x2 and so on.

DEFINITION

An iterative formula is used repeatedly to sleuth out a specific value. Each 
time you get a value from the formula, you plug that value back in to get a 
more accurate value for the next round.

With this in mind, Newton’s Method calls your current guess xn and the resulting better guess 
xn + 1. To generate that better guess you apply this formula:

In other words, from your original guess xn, you subtract the function evaluated at xn divided by 
the derivative of the function evaluated at xn.

Example 1: Calculate two iterations of Newton’s Method to approximate the positive root of 
f(x) = x2 – 5 using an initial (seed) value of x0 = 2.

Solution: Look at the graph of f(x) in Figure 13.1. It appears to cross the x-axis at a value slightly 
greater than 2 and a value slightly less than –2. The problem asks you to estimate the positive 
root, so the seed value of x0 = 2 seems like a good guess to begin with.

x xn n
f x

f x1
n

n
= − ( )

( )+ ′
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Figure 13.1 
The graph of f(x) = x2 – 5.

Begin by evaluating the function and its derivative, f ′(x) = 2x, at the seed value, x0 = 2:

                  f(2) = 22 – 5 = –1 f ′(2) = 2 ∙ 2 = 4

Substitute these values into Newton’s Method to calculate xn + 1 = x0 + 1 = x1:
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According to Newton’s Method, x 2.251
9
4= =  is a better estimate of the positive root of f(x) than 

the original guess of x0 = 2. For an even better guess, substitute x1
9
4= into Newton’s Method to 

calculate x2:

KELLEY’S CAUTIONS

If, for some reason, the iterations of Newton’s Method produce values that 
are getting farther apart, rather than closer together, then you started 
with a lousy initial seed value. Pick a value closer to the x-intercept and 
start over.

Time out! These fractions are getting ugly, and they only get uglier with every iteration. I think 
it’s time to cut our losses and type this into a calculator to finish:

After two iterations of Newton’s Method, you have calculated an estimated root of 2.23611 for 
f(x). You could go on, getting closer and closer to the root, but I think we all have better things  
to do.

x x f x

f x

f

f

2 1

9
4
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9/4

9
4

9/4 5

2 9/4

9
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81/16 5
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1/16
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= −

= −

= −

= −

= −

= −

( )
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( )
( )

( )
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−

−

−

2.23611

2
9
4

2
144

322
144

= −

=

≈

YOU’VE GOT PROBLEMS

Problem 1: Given x0 = 2, apply Newton’s Method to calculate x1 and 

approximate the root of g x x 2 3( ) = + − .
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Evaluating Limits: L’Hôpital’s Rule
Way, way back, many chapters ago, in a galaxy far, far away, you were stressed about limits. Since 
then, you’ve had a whole lot more to stress about, so it’s high time we destressed you a bit. Little 
did you know that as you were plugging away, learning derivatives, you also learned a terrific 
shortcut for finding limits. This shortcut (called L’Hôpital’s Rule) can be used to find limits that, 
after substitution, are in indeterminate form.

CRITICAL POINT

L’Hôpital’s Rule can only be used to calculate limits that are indeterminate 
(i.e., the value cannot immediately be found). The most common 
indeterminate forms are ±∞

±∞ , 0 0 , and 0 . ∞.

To show just how useful L’Hôpital’s Rule is, we’ll return briefly to Chapter 6 and fish out two 
limits we couldn’t previously calculate by hand. These two limits will comprise the next example. 
The first limit we could only memorize (but couldn’t justify via any of our methods at the time). 
We calculated the second limit using a little trick (comparing degrees for limits at infinity), but 
that method was a trick only. We had no proof or justification for it at all. Finally, a little pay dirt 
for the curious at heart.

L’Hôpital’s Rule: If h x
f x

g x( ) = ( )
( )  and h xlim

x c
( )

→
 is in indeterminate form (e.g., 0

0  or ∞
∞ ), then 

h xlim lim
x c x c

f x

g x( ) = ( )
( )→ →

′

′ . In other words, take the derivatives of the numerator and denominator 

separately (not via the Quotient Rule) and substitute in c gain to find the limit.

KELLEY’S CAUTIONS

You can only use L’Hôpital’s (pronounced low-pee-TOWELS) Rule if you 
have indeterminate form after substituting—it will not work for other, more 
common, limits.

Example 2: Calculate both of the following limits using L’Hôpital’s Rule:

(a) lim
x

x
x0

sin

→

Solution: If you substitute in x = 0, you get sin 0
0

0
0= , which is in indeterminate form. So  

apply L’Hôpital’s Rule by taking the derivative of sin x (which is cos x) and the derivative of  
x (which is 1) and replacing those pieces with their derivatives:

lim
x

x

0

cos
1→
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Now the substitution method won’t give you 0
0 . In fact, substituting gives you cos 0, which 

equals 1. You learned that 1 was the answer in Chapter 6, but now you know why.

(b) lim
x

x x x
x x x

5 4 7 4
2 6 8

3 2

2 3
→∞

+ − +
+ − +

Solution: If you plug in x = ∞ for all the x’s you get a huge number on top divided by a huge 
number on the bottom, or ∞

∞ , which is in indeterminate form. Apply L’Hôpital’s Rule:

Uh-oh. Substitution still gives you ∞
∞ . Never fear! Keep applying L’Hôpital’s Rule until 

substituting gives you a nonindeterminate answer:

Once there are no more x’s in the problem, no substitution is necessary, and the answer falls out 
like a ripe fruit.

You might remember this problem—it was Example 6 in Chapter 6. You used a different method 
to compute the limit then, but you got the same answer: 5

8 .

lim
x

x x
x x

15 8 7
1 12 24

2

2
→∞

+ −

− +

lim

lim
x

x
x

x

30 8
12 48

30
48=

→∞

+
− +

→∞

lim
x

30
48

30
48

5
8

=

=
→∞

YOU’VE GOT PROBLEMS

Problem 2: Evaluate x xlim ln
x

2( )⋅
→∞

−  using L’Hôpital’s Rule. Hint: begin by 

writing the expression as a fraction.

More Existence Theorems
Man has struggled for centuries to define life and to determine what, exactly, defines existence. 
Descartes once mused, “I think; therefore, I am,” suggesting that thought defined existence. Most 
calculus students go one step further, lamenting, “I am in mental anguish; therefore, I am in 
calculus.” Philosophy aside, the next two theorems don’t try to answer such deep questions; they 
simply state that something exists, and that’s good enough for them.
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The Mean Value Theorem
This neat little theorem gives an explicit relationship between the average rate of change of a 
function (i.e., the slope of a secant line) and the instantaneous rate of change of a function (i.e., 
the slope of a tangent line). Specifically, it guarantees that at some point on a closed interval, the 
tangent line will be parallel to the secant line for that interval (see Figure 13.2).

CRITICAL POINT

It’s called the Mean Value Theorem because a major component of it is the 
average (or mean) rate of change for the function. It has no twin called the 
Kind Value Theorem.

Figure 13.2 
Here, the secant line is drawn connecting the endpoints of the closed interval [a,b], at x = c, which 

is on that interval; the tangent line is parallel to the secant line.

Mathematically, parallel lines have equal slopes. Therefore, there is always some place on an 
interval where a continuous function is changing at exactly the same rate it’s changing on average 
for the entire interval. Here’s the theorem in math jibber jabber:

The Mean Value Theorem: If a function f(x) is continuous and differentiable on the closed interval [a,b], 

then there exists a value c between a and b such that f c f b f a
b a( )′ = ( ) ( )−
−

. In other words, a value c is 

guaranteed to exist such that the derivative there ( f ′(c)) is equal to the slope of the secant line for the 

interval [a,b] f b f a
b a( )( ) ( )−
− .

a c b

f(x)
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CRITICAL POINT

The Mean Value Theorem makes good sense. Think of it like this: if, on a 
2-hour car trip, you averaged 50 miles per hour, then (according to the 
Mean Value Theorem) at least once during the trip, your speedometer 
actually read 50 mph.

Example 3: At what x-value(s) on the interval [–2,3] does the graph of f(x) = x2 + 2x – 1 satisfy 
the Mean Value Theorem?

Solution: The function is continuous and differentiable because there are no domain restrictions. 
Somewhere, the derivative must equal the secant slope, so start by finding the derivative of f(x):

f ′(x) = 2x + 2

That was easy. Now find the secant slope over the interval [–2,3]. To calculate it, first plug –2 
and 3 into the function to get the secant’s endpoints, (–2,–1) and (3,14):

Therefore, at some point on the interval, the derivative, f ′(x) = 2x + 2, and the secant slope you 
calculated, 3, must be equal:

Look at the graph of f(x) in Figure 13.3 to verify that the tangent line at x 1
2=  is parallel to the 

secant line connecting (–2,–1) and (3,14).

3y y
x x

14 1

3 2
15
5

2 1

2 1
= = =( )

( )
−
−

− −

− −

x
x
x

x

2 2 3
2 3 2
2 1

1
2

+ =
= −
=

=

YOU’VE GOT PROBLEMS

Problem 3: Given the function g x x
1( ) = , find the x-value that satisfies the 

Mean Value Theorem on the interval ,11
4  .
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Figure 13.3 
Equal secant and tangent slopes result in parallel secant and tangent lines.

Rolle’s Theorem
Rolle’s Theorem is a specific case of the Mean Value Theorem. It says that if the slope of a 
function’s secant line is 0 (in other words, the secant line is horizontal because the endpoints of 
the interval are located at the exact same height on the graph), then somewhere on that interval, 
the tangent slope will also be 0. Because you already understand the Mean Value Theorem, this 
isn’t new information. Our previous theorem guaranteed the lines would have the same slope no 
matter what the secant slope was. Here’s how Rolle’s Theorem is defined mathematically:

Rolle’s Theorem: If a function f(x) is continuous and differentiable on a closed interval [a,b] and  
f(a) = f(b), then there exists a c between a and b such that f ′(c) = 0.

Let’s prove this with the Mean Value Theorem—it guarantees that the secant slope will equal the 
tangent slope somewhere on [a,b]. The secant slope connecting the points (a,f(a)) and (b,f(b)) is 
f b f a
b a

( ) ( )−
−

, but because the theorem states that f(a) = f(b), this fraction becomes 0b a
0 =− . Therefore, 

the slope of the secant line is 0. According to the Mean Value Theorem, f ′(x) has to equal 0 
somewhere inside the interval, at a point Rolle’s Theorem calls c.

(3, 14)

(-2,-1)
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Related Rates
Related rates problems are among the most popular problems (for teachers) and feared problems 
(for students) in calculus. You can tell if a given problem is a related rates problem because it 
will contain wording like “how quickly is … changing?” Basically you’re asked to figure out 
how quickly one variable in a problem is changing if you know how quickly another variable is 
changing. No two problems will be alike, but the procedure is exactly the same for all problems 
of this type, and they actually become sort of fun once you get used to them.

Let’s walk through a classic related rates problem: a ladder-sliding-down-the-side-of-a-house 
dilemma. The only step that will differ between this and any other related rates problem is the 
very first one: finding an equation that characterizes the situation. Once you get past that initial 
step, everything is smooth sailing.

Example 4: Goofus and Gallant (of Highlights magazine fame) are painting my house. Whereas 
Gallant properly secured his 13-foot ladder before climbing it, Goofus did not, and as he climbs 
his ladder, it slides down the side of the house at a constant rate of 2 feet/second. How quickly 
is the base of the ladder sliding horizontally away from the house when the top of the ladder is 5 
feet from the ground?

Solution: You can tell this is a related rates problem because it’s asking you to find how quickly 
something is changing or moving. I always start these by drawing a picture of the situation (see 
Figure 13.4).

Figure 13.4 
Recipe for disaster: the 13-foot ladder, with its top only 5 feet from the ground, and Goofus heroically 

clinging to it.

5 feet
2 ft/sec 13 feet

?

�
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You need to pick an equation that represents the situation. Notice that the ladder, the house, and 
the ground make a right triangle; the problem gives you information about the lengths of the 
legs of a right triangle. Therefore, you should use the Pythagorean Theorem as your primary 
equation, as it relates the lengths of the sides of a right triangle. To make it easier to visualize, I 
will strip away all of the extraneous visual information:

Figure 13.5 
Goofus’s predicament, minus the clever illustration.

KELLEY’S CAUTIONS

Remember, you won’t use the Pythagorean Theorem for every related rates 
problem. You’ll have to pick your primary equation based on the situation. 
Look at Problem 3 in the “You’ve Got Problems” sidebar earlier in this 
chapter for a different example.

According to Figure 13.5 (and the Pythagorean Theorem), you know that a2 + b2 = c2. Warning: 
don’t plug in any values you know (like a = 5) until you complete the next step, which is 
differentiating everything with respect to t:

You might be wondering, “What does dadt  mean?” It represents how quickly a is changing.  
The problem tells you that the ladder is falling, so side a is actually getting smaller at a rate 
of 2 ft/sec, so write 2da

dt = − . At this moment, you have no idea what dbdt  equals, because that’s 
the quantity you’re looking for. However, you do know that 0dc

dt = , because c (the length of the 
ladder) will not change as it slides down the house.

KELLEY’S CAUTIONS

If a variable is decreasing in size, its accompanying rate must be negative. 
In Example 4, because a is decreasing at 2 ft/sec, 2da

dt = − , not 2.

a = 5 

b = ? 

c = 13 

a b c2 2 2da
dt

db
dt

dc
dt+ =
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Now you know most of the variables in the equation. In fact, you can even calculate b = 12 using 
the Pythagorean Theorem, knowing that the other sides of the triangle are 5 and 13. So plug in 
everything you know:

All you have to do is solve for dbdt , and you’re finished:

Therefore, b is increasing at a rate of  ft/sec5
6 , and that’s how quickly the base of the ladder is 

sliding away from the house.

KELLEY’S CAUTIONS

If you’re wondering where all those dadt ’s and dbdt ’s are coming from, flip back 
to Chapter 10.

Here are the steps to completing a related rates problem:

 1. Construct an equation containing all the necessary variables.

 2. Before substituting any values, differentiate the entire equation with respect to t.

 3. Plug in values for all the variables except the one for which you’re solving.

 4. Solve for the unknown variable.

Example 5: If air leaks out of a spherical balloon at a rate of 2 in3/hour, how quickly is the 
balloon’s radius decreasing (in inches/hour) when its volume is 4,000

3
π  in3? Hint: the formula for 

the volume of a sphere is V r4
3

3π= .

Solution: You’re asked to calculate the rate the radius is decreasing. If r represents the radius, 
that means you’re looking for drdt . You are told that the air is leaking out of the balloon, which 
means that the volume of the balloon is decreasing 2dV

dt = −  in3/hour.

Take the derivative of the volume formula for a sphere, with respect to t:

2 5 2 2 12 2 13 0

20 24 0

db
dt
db
dt

( )⋅ ⋅ − + ⋅ ⋅ = ⋅ ⋅

− + =

24 20

 ft/sec

db
dt
db
dt
db
dt

20
24
5
6

=

=

=

V r

r3dV
dt

dr
dt

4
3

3

4
3

2

π

π

=

= ⋅ ⋅ ⋅
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Note that you should treat π like any other number—it is part of the coefficient of the term. 
When you apply the Power Rule for derivatives, you multiply the coefficient 4

3π( )  by the 
original exponent (3) and then subtract 1 from the exponent (3 – 1 = 2).

To solve for drdt  and complete the problem, you will need to know the value of r. To calculate it, 
return to the original formula for the volume of a sphere and calculate the radius of a sphere that 
has a volume of 4,000

3
π  in3:

Multiply both sides of the equation by 3 to eliminate the fractions:

Now substitute r = 10 and 2dV
dt = −  into the derivative you calculated earlier and solve for drdt :

The radius of the spherical balloon is decreasing at a rate of 0.0015921
200 ≈π  inches/hour.

r

r

3

4

dV
dt

dr
dt

dV
dt

dr
dt

4

3

2

2

π

π

= ⋅ ⋅ ⋅

= ⋅

V r

r
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4
3

3

π

π

=

=π

r
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r

r
r

4000 4

1000

1000
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3
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4

3

3

3 33

π π=

=

=

=
=

π
π

r4

2 4 10

2 400
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dr
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Optimization
Even though optimization is (arguably) the most feared of all differentiation applications, I have 
never understood why. When you’re looking for the biggest or smallest something can get (i.e., 
optimizing), all you have to do is create a formula representing that quantity and then find the 
relative extrema using wiggle graphs. You’ve been doing these things for a while now, so don’t 
get freaked out unnecessarily. To explore optimization, we’ll again examine a classic calculus 
problem that has haunted students like you for years and years.

Example 6: If you create a box by cutting congruent squares from the corners of a piece of paper 
measuring 11 by 14 inches, give the dimensions of the box with the largest possible volume. 
(Assume that the box has no lid.)

Solution: Back in Chapter 1, I hinted about how to create a box out of a flat piece of paper. Try 
it for yourself. Place a rectangular sheet of paper in front of you and cut congruent squares from 
the corners. You’ll end up with smaller rectangles along the sides of your paper. Fold these up, 
toward you, along the seam created by the inner sides of the recently removed squares. Can you 
see how the remaining rectangles correspond to the dimensions of the box (see Figure 13.6)?

I have labeled the sides of the corner squares as x in Figure 13.6. Once you cut out those squares, 
the length of the top and bottom is 11 – 2x, because it was 11 inches and you removed two lengths, 
each measuring x inches. Similarly, the sides of the box will measure 14 – 2x inches.

YOU’VE GOT PROBLEMS

Problem 4: You’ve heard it’s a bad idea to buy pets at mall pet stores, but 
you couldn’t resist buying an adorable little baby cube. Well, after three 
months of steady eating, it’s begun to grow. In fact, its volume is increasing 
at a constant rate of 5 cubic inches a week. How quickly is its surface area 
increasing when one of its sides measures 7 inches?
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Figure 13.6 
The height of the box will be x inches, because the side length of the cut-out squares dictates how 

deeply to fold the paper.

Now that you have a good idea what is happening visually, let’s get hip-deep in the math. You are 
trying to make the largest possible volume, so your primary equation should be for the volume 
for this box. The volume for any box like this is V = l ∙ w ∙ h, where l = length, w = width, and  
h = height. Plug in the correct values for l, w, and h:

KELLEY’S CAUTIONS

In Example 7, consider only values of x between 0 and 5.5. Why? Well, if x is 
less than 0, you’re not cutting out any squares, and if x is greater than 5.5, 
then the (11 – 2x) width of your box becomes 0 or smaller, and that’s just 
not allowed. A real-life box must have some width.

If you plug in any x, this function gives you the volume of the box generated when squares of 
side x are cut out. Cool, eh? You want to find the value of x that makes V the largest, so find the 
value guaranteed by the Extreme Value Theorem. Take the derivative with respect to x and do a 
wiggle graph (see Figure 13.7), just like you did in Chapter 11.

x x 

x x 

x x 

x x 

14 

11 

11–2x 

14–2x 

x x 

x x 

x x 

x x 

V l w h
V x x x

V x x x

V x x x

14 2 11 2

154 50 4

4 50 154

2

3 2

( )
( )( )

= ⋅ ⋅
= − −

= − +

= − +
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Figure 13.7 
The wiggle graph of V′. A relative maximum occurs at x = 2.039.

V ′ = 12x2 – 100x + 154

Set the derivative equal to 0, and while you’re at it, divide everything by 2 in order to simplify 
the coefficients a bit.

6x2 – 50x + 77 = 0

You can use your calculator or the quadratic formula to solve the equation, and you get solutions 
x ≈ 2.039 and x ≈ 6.295. Although x = 6.295 appears to be a minimum, because the function 
changes from decreasing to increasing there, the answer doesn’t make sense. See the “Kelley’s 
Cautions” sidebar for more details.

KELLEY’S CAUTIONS

As you plug the variables into the primary equation, your goal should be to 
have only one main variable. In Example 6, you change l, w, and h so they 
all contain only one variable (x). Don’t worry that V is a variable—you don’t 
deal with the left side of the equation at all.

The maximum volume is reached when x = 2.039 (because V′ changes from positive to negative 
there, meaning that V goes from increasing to decreasing), so the optimal dimensions are 2.039 
inches by 6.922 inches by 9.922 inches (x, 11 – 2x, and 14 – 2x, respectively).

Here are the steps for optimizing functions:

 1. Construct an equation in one variable that represents what you are trying to maximize.

 2. Find the derivative with respect to the variable in the problem and draw a wiggle graph.

 3. Verify your solutions as the correct extrema type (either maximum or minimum) by 
viewing the sign changes around it in the wiggle graph.

Example 7: A company wishes to package its fruit in a cylindrical aluminum can with a volume 
of 30 in3. Identify the radius and height of the can that minimizes the aluminum needed, 
reporting each accurate to the thousandths place.

+

2.039 6.295

V (t)– +



Chapter 13: Common Derivative Applications 211

Solution: The aluminum is used to fabricate the cylinder of the can. If you are trying to 
minimize the amount of aluminum used, you are actually trying to minimize the surface area of 
the can. Less surface area means less aluminum.

Consider Figure 13.8, which illustrates how to calculate the surface area of a cylinder. The total 
surface area is equal to the surface area of the circular top and bottom plus the surface area of 
the sides of the can.

Figure 13.8 
A cylindrical can has three parts. Two circles with radius r form the top and bottom. A rectangle with 

length 2πr and height h forms the sides of the can.

The sides of the can are formed by a single rectangle wrapped in a circle. Therefore, the length 
of the rectangle is equal to the circumference of the circle (2πr), and the height of the rectangle 
matches the height of the can. Now you can write the formula for S, the surface area of the can:

Unfortunately, there are too many variables present. You need a function that expresses surface 
area in terms of r or h, but not r and h. Luckily, there is more information in the problem, 
including something you haven’t used yet. The volume of the can must be 30 in3. Set the formula 
for the volume of a cylinder equal to 30 and solve for one of the variables. It is easier to solve for 
h than to solve for r:

h h

2πr

r

r

r

S
S r r rh
S r rh

area of top and bottom  area of sides
2

2 2

2 2

2

π π π
π π

= +
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r h

h

Volume of cylinder 30
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π
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If you substitute this value for h into the surface area function, you get a function completely 
devoid of h’s, containing only r’s:

Take the derivative with respect to r. It may help to rewrite r
60  as 60r–1 so you can use the Power 

Rule:

Set S′ = 0 and solve for r by cross-multiplying:

You can verify that this value of r is a minimum using a wiggle graph if you wish. One more task: 
it’s time to calculate the corresponding height. Substitute this value of r into the formula you 
solved for height only moments ago:

The cylinder with a volume of 30 in3 that uses a minimum amount of materials for construction 
has a radius of 1.684 inches and a height of 3.368 inches.
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The Least You Need to Know
• Newton’s Method is an iterative formula used to approximate the roots of a func-

tion based on the values of the function and its derivative.

• L’Hôpital’s Rule is a shortcut to finding limits that are indeterminate when you try 
to solve them using substitution.

• The Mean Value Theorem guarantees that the secant slope on an interval will 
equal the tangent slope somewhere on that interval—i.e., the average rate of 
change must somewhere be equal to the instantaneous rate of change.

• You can determine how quickly a variable is changing in an equation if you know 
how quickly the other variables in the equation are changing.

• The first derivative can help you determine where a function reaches its optimal 
values.

YOU’VE GOT PROBLEMS

Problem 5: What is the minimum product you can achieve from two real 
numbers, if one of them is three less than twice the other?





PART

4
The Integral

For those of you with a good background in superhero (or Seinfeld) lore, you’ll know what I mean 
by Bizarro world. In Bizarro world, everything is the opposite of this world; good means bad, up 
means down, and right means left. Because Superman is smart in our world, Bizarro Superman is 
stupid. Well, integrals are Bizarro derivatives. Deriving takes us from a function to an expression 
describing its rate of change, but integrating takes us in the opposite direction—from the rate of 
change back to the original function.

Even though integrating is simply the opposite of deriving, you might think that its usefulness 
would be limited. You’d be wrong. There are just about as many applications for integrals as there 
are for derivatives, but they are completely different in nature. Instead of finding rates of change, 
we’ll calculate area, volume, and distance traveled. We’ll also explore the Fundamental Theorem 
of Calculus, which explains the exact relationship between integrals and the area beneath a 
curve. It’s surprising how straightforward that relationship is and how dang useful it can be.





CHAPTER

14
Approximating Area

In This Chapter
• Using rectangles to 

approximate area

• Right, left, and midpoint 
sums

• Trapezoidal 
approximations

• Parabolic approximations 
with Simpson’s Rule

Have you ever seen the movie Speed with Keanu Reeves and 
Sandra Bullock? If not, here’s a recap. Everyone’s trapped in 
this city bus, which will explode if the speedometer goes below 
50 mph. So, you’ve got this killer, runaway bus that’s flying 
around the city and can’t stop—the perfect breeding ground 
for destruction, disaster, high drama, mayhem, and a budding 
romance between the movie’s two stars. (Darn that Keanu. 
Talk about being in the right place at the right time ….)

By now, you probably feel like you’re on that bus. Calculus 
is tearing all over the place, never slowing down, never stop-
ping, and (unfortunately) never inhabited by such attractive 
movie stars. The more you learn about derivatives, the more 
you have to remember about the things that preceded them. 
Just when you understand something, another (seemingly 
unrelated) topic pops up to confound your understanding. 
When will this bus slow down? Actually, the bus slows down 
right now.

You may feel a slight lurching in the pit of your stomach as 
we slow to a complete stop, and start discussing something 
completely and utterly different for a while. Until now, we’ve 
spent a ton of time talking about rates of change and tangent 
slopes. That’s pretty much over. Instead, we’re going to start 
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talking about finding the area under curves. I know that’s a big change, but it’ll all come together 
in the end. For now, take a deep breath, and enjoy a much slower pace for a few chapters as we 
talk about something different. And if you see Sandra Bullock, tell her I said hi.

Riemann Sums
Let me begin by saying something deeply philosophical. Curves are really, really curvy. It is this 
inherent curviness that makes it hard to find the area beneath them. For example, take a look at 
the graph of y = x2 + 1 in Figure 14.1 (only the interval [0,3] is pictured).

Figure 14.1 
If only the shaded region between y = x2 + 1 and the x-axis were a square or rectangle—that 

would make finding the area so much easier.

We want to try and figure out exactly how much area is represented by the shaded space. We 
don’t have any formulas from geometry to help us find the area of such a curved figure, so we’re 
going to need to come up with some new techniques. To start with, we’re going to approximate 
that area using figures for which we already have area formulas. Even though it seems kind 
of lame, we’re going to approximate the shaded area using rectangles. The process of using 
rectangles to approximate area is called Riemann sums.

DEFINITION

A Riemann sum is an approximation of an area calculated using rectangles.
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We will be exploring simple Riemann sums. Some calculus courses will explore very complicated 
sums, which involve crazy formulas containing sigma signs (Σ). In my opinion, these won’t help 
you understand the underlying calculus concepts, so I omit them.

CRITICAL POINT

When I say we are looking for the area beneath the curve, I actually mean 
the area between the curve and the x-axis; otherwise, the area beneath a 
curve would almost always be infinite. You can always assume that you are 
finding the area between the curve and the x-axis unless the problem states 
otherwise.

Right and Left Sums
I’m going to approximate that shaded area beneath y = x2 + 1 using three rectangles. Because I’m 
only finding the area on the x-interval [0,3], that means I’ll be using three rectangles, each of 
width 1. (If I had been using six rectangles on an interval of length 3, each rectangle would have 
width 1

2 .) How high should I make each rectangle? Well, I choose to use a right sum, which means 
that the rectangles will have the height reached by the function at the right side of each interval, 
as pictured in Figure 14.2.

Figure 14.2 
I’m using three rectangles to approximate the area on [0,1], [1,2], and [2,3].
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The rectangle on [0,1] will have the height reached at the far right side of the interval (i.e., x = 1), 
which is 2. Similarly, the second rectangle is 5 units tall, because that is the height of the function 
at x = 2, the right side of its interval. Therefore, the heights of the rectangles are 2, 5, and 10, 
from left to right. The width of each rectangle is 1.

We can approximate the area beneath the curve by adding the areas of the three rectangles 
together. Because the area of a rectangle is equal to its length times its width, the total area 
captured by the rectangles is 1 ∙ 2 + 1 ∙ 5 + 1 ∙ 10 = 17. Therefore, the right Riemann sum 
approximation with n = 3 rectangles is 17.

CRITICAL POINT

It was easy to see that the width of every rectangle in our right sum was 
1. If the width of the rectangles is not so obvious, use the width formula 

= −x b a
n  to calculate the width. In this formula, the interval [a,b] is split  

up into n different rectangles, and each will have width Δx. In our right  
sum example, = =−x 13 0

3 , because we are splitting up the interval [0,3] 
into n = 3 rectangles.

Clearly, the area covered by the rectangles is much more than is beneath the curve. In fact, it 
looks like a lot more. This should tell you that we have got to come up with better methods later 
(and indeed we will). For now, let’s have a go at the same area problem, but this time use four 
rectangles and left sums.

DEFINITION

The kind of sum you’re calculating depends on how high you make the 
rectangles. If you use the height at each rectangle’s left boundary, you’re 
finding left sums. If you use the height at the right boundary of each 
rectangle, the result is right sums. Obviously, midpoint sums use the height 
reached by the function in the middle of each interval.

Example 1: Approximate the area beneath the curve f(x) = x2 + 1 on the interval [0,3] using a left 
Riemann sum with four rectangles.

Solution: To find how wide each of the four rectangles will be, use the formula = −x b a
n :

If each of the four intervals is 3
4  wide, and the rectangles start at 0, then the rectangles will  

be defined by the intervals        0, , , , , ,  and ,33
4

3
4

3
2

3
2

9
4

9
4 . (This is because + =0 3

4
3
4 ,  

+ = =3
4

3
4

6
4

3
2 , etc.) You will be using the heights reached by the function at the left boundary 

= =−x 3 0
4

3
4



Chapter 14: Approximating Area 221

of each interval. Therefore, the heights will be ( ) ( ) ( )( )f f f f0 , , ,  and3
4

3
2

9
4

, as illustrated in 
Figure 14.3.

Figure 14.3 
Each of the four rectangles is 3

4  wide, and they are as high as the function f(x) = x2 + 1 at the left 
edge of each rectangle, hence left sums is the result.

The area of each rectangle is its width times its height, so the total area is:

This number underestimates the actual area beneath the curve, because there are large pieces of 
that area missed by our rectangles.

Midpoint Sums
Calculating midpoint sums is similar to calculating right and left sums. The only difference is 
(you guessed it) how you define the heights of the rectangles. In our ongoing example of  
f(x) = x2 + 1 on the x-interval [0,3], let’s say we wanted to calculate midpoint sums using (to make 

1

10

9

8

7

6

5

4

3

2

1

2 3

( ) ( ) ( )
( ) ( ) ( )

( )
( )

⋅



 + ⋅



 + ⋅



 + ⋅





= + + +

≈

f f f f0

1

8.906

3
4

3
4

3
4

3
4

3
2

3
4

9
4

3
4

3
4

25
16

3
4

13
4

3
4

97
16
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The Trapezoidal Rule
Unfortunately, unless you use a ton of rectangles, Riemann sums are just not all that accurate.  
The Trapezoidal Rule, however, is often a more accurate way to approximate area beneath a curve. 
Instead of constructing rectangles, this method uses small trapezoids. In effect, these trapezoids  
look the same as their predecessor rectangles near their bases, but completely different at the top.  
To construct the trapezoids, you mark the height of the function at the beginning and end of the 
width interval (which is still calculated by the formula = −x b a

n ) and connect those two points. 
Figure 14.4 shows how the Trapezoidal Rule approximates the area beneath our favorite function 
in the whole world, y = x2 + 1.

CRITICAL POINT

This is going to freak you out. Remember how the left and right sums offset 
one another when we approximated the area beneath y = x2 + 1—one too 
big and the other too small? Well, the Trapezoidal Rule (with n trapezoids) 
is exactly the average of the left and right sums (with n rectangles). We 
already know that the right sum of y = x2 + 1 (with n = 3) is 17. You can find 
the corresponding left sum to be 8. If you calculate the Trapezoidal Rule 
approximation (with n = 3 trapezoids), you get 12.5, which is the average of 
8 and 17.

YOU’VE GOT PROBLEMS

Problem 1: Approximate the area beneath the curve g(x) = –cos x on the 
interval 




π π,2
3
2  using n = 4 rectangles and (1) left sums, (2) right sums, and 

(3) midpoint sums.

it easy) n = 3 rectangles. As before, the intervals defining the rectangles’ boundaries will be [0,1], 
[1,2], and [2,3], and each rectangle will have a width of 1. What about the heights?

Look at the interval [0,1]. If we were using left sums, the height of the rectangle would be f(0). 
Using right sums, it’d be f(1). However, we’re using midpoint sums, so you use the function value 
at the midpoint of the interval, which in this case is 1

2 . Therefore, the height of the rectangle is 
( )f 1

2 . If you apply this to all three intervals, the midpoint Riemann approximation of the area 
would be:

( ) ( ) ( )⋅ + ⋅ + ⋅ = =f f f1 1 1 11.751
2

3
2

5
2

47
4
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Figure 14.4 
The “tops” of our approximating shapes are no longer parallel to the x-axis. Instead they connect the 

function’s heights at the interval endpoints.

There’s a lot less room for error with this rule, and it’s actually just as easy to use as Riemann 
sums were. One difference—this one requires that you memorize a formula.

CRITICAL POINT

If you’re dying to know the actual area beneath y = x2 + 1 on the interval 
[0,3], it is exactly 12. Of our approximations so far, the midpoint sum came 
the closest (even though we used only three rectangles with this method 
but four with left sums).

The Trapezoidal Rule: The approximate area beneath a continuous curve f(x) on the interval [a,b] 
using n trapezoids equals:

In practice, you pop the correct numbers into the fraction at the beginning and then evaluate the 
function at every interval boundary. Except for the endpoints, you’ll multiply all the values by 2.

The area of any trapezoid is one-half the height times the sum of the bases (the bases are the 
parallel sides). For the trapezoid in Figure 14.5, the area is ( )+h b b1

2 1 2 . You may not be used to 
seeing trapezoids tipped on their side like this—in geometry, the bases are usually horizontal, 
not vertical. The reason you see all those 2’s in the Trapezoidal Rule is that every base is used 
twice for consecutive trapezoids except for the bases at the endpoints.

1 2 3

( ) ( ) ( ) ( ) ( ) ( )+ + + + ⋅⋅ ⋅ + + 
−

−f a f x f x f x f x f b2 2 2 2b a
n n2 1 2 3 1
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Figure 14.5 
Our approximate trapezoids are simply right trapezoids shoved onto their sides, with bases b1 and b2, 

and height h.

CRITICAL POINT

There’s another way to get better approximations using Riemann sums. 
If you increase the number of rectangles you use, the amount of error 
decreases. However, the amount of calculating you have to do increases. 
Eventually, we’ll find a way to obtain the exact area without much work 
at all. The way is rooted in Riemann sums, but uses an infinite number of 
rectangles in order to eliminate any error completely.

Let’s go straight into an example, and you’ll see that the Trapezoidal Rule is not very hard at 
all. Just for grins, let’s use f(x) = x2 + 1 yet again to see if the Trapezoidal Rule can beat out our 
current best estimate of 11.75 given by the midpoint sum.

Example 2: Approximate the area beneath f(x) = x2 + 1 on the interval [0,3] using the Trapezoidal 
Rule with n = 5 trapezoids.

Solution: Because you are using five trapezoids, you need to determine how wide each will be, 
so apply the Δx formula:

KELLEY’S CAUTIONS

Although the Trapezoidal Rule’s formula contains the expression −b a
n2 , you 

still use the formula −b a
n  to find the width of the trapezoids. Don’t get them 

confused—they are separate formulas.

b1

h

b2

= = =− −x b a
n

3 0
5

3
5
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Therefore, the boundaries of the intervals will start at x = 0 and progress in steps of 
: 0,  ,  ,  ,  ,3

5
3
5

6
5

9
5

12
5  and 3. These numbers belong in the formula as a, x1, x2, x3, x4, and b. So 

according to the Trapezoidal Rule, the area is approximately:

This is actually the closest approximation yet, although it is a bit too big. Had this curve been 
concave down instead of up, the result would have underestimated the area. Can you see why? 
The teeny bit of error would have been outside, rather than inside, the curve.

( ) ( ) ( ) ( )( ) ( )+ + + + +





= + ⋅ + ⋅ + ⋅ + ⋅ +





=

=

( )
− f f f f f f0 2 2 2 2 3

1 2 2 2 2 10

12.18

3 0
2 5

3
5

6
5

9
5

12
5

3
10

34
25

61
25

106
25

169
25

609
50

YOU’VE GOT PROBLEMS

Problem 2: Approximate the area beneath y = sin x on the interval [0,π] using 
the Trapezoidal Rule with n = 4 trapezoids.

Simpson’s Rule
Our final area-approximating tool is Simpson’s Rule. Geometrically, it creates tiny little 
parabolas (rather than the slanted trapezoidal interval roofs) to wrap even closer around the 
function we’re approximating. The formula is astonishingly similar to the Trapezoidal Rule, but 
here’s the catch: you can only use an even number of subintervals.

Simpson’s Rule: The approximate area under the continuous curve f(x) on the closed interval [a,b] 
using an even number of subintervals, n, is:

In this formula, the outermost terms get multiplied by nothing. However, beginning with the 
second term, you multiply consecutive terms by 4, then 2, then 4, then 2, etc. Make sure you 
always start with 4, though. Back to Old Faithful, f(x) = x2 + 1, for an example.

Example 3: Approximate the area beneath that confounded function f(x) = x2 + 1 on the closed 
interval [0,3], this time using Simpson’s Rule and n = 6 subintervals.

Solution: Some quick calculating tells us that our subintervals will have the width of 
= = =− −x b a

n
3 0

6
1
2 . Now, to the formula we go:

( ) ( ) ( ) ( ) ( ) ( )+ + + ⋅⋅ ⋅ + + + 
−

− −f a f x f x f x f x f b4 2 2 4b a
n n n3 1 2 2 1

( ) ( ) ( )( ) ( ) ( ) ( )+ + + + + +





− f f f f f f f0 4 2 1 4 2 2 4 3b a
n3

1
2

3
2

5
2
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Remember to multiply ( )f 1
2  by 4, the next term by 2, etc. However, the first and last terms get 

no additional coefficient:

Whoa! Because Simpson’s Rule uses quadratic approximations, and this is a quadratic function, 
you get the exact answer. This only happens for areas beneath quadratic equations, though.

( )

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +





= + + + + + + 
=

=

−
⋅ 1 4 2 2 4 2 5 4 10

1 5 4 13 10 29 10

72

12

3 0
3 6

5
4

13
4

29
4

1
6
1
6

YOU’VE GOT PROBLEMS

Problem 3: Approximate the area beneath =y x
1  on the interval [1,5] using 

Simpson’s Rule with n = 4 subintervals.

The Least You Need to Know
• Riemann sums use rectangles to approximate the area beneath a curve; the 

heights of these rectangles are based on the height of the function at the left end, 
right end, or midpoint of each subinterval.

• The width of each subinterval in all the approximating techniques is = −x b a
n .

• The Trapezoidal Rule is the average of the left and right sums, and usually gives a 
better approximation than either does individually.

• Simpson’s Rule uses intervals topped with parabolas to approximate area; there-
fore, it gives the exact area beneath quadratic functions.



CHAPTER

15
Antiderivatives

In This Chapter
• “Un-deriving” expressions

• The Power Rule for 
Integration

• Integrating trigonometric 
functions

• Don’t hate, separate!

• The Fundamental 
Theorem: the connection 
to area

• The key to u-substitution

Are you a little perplexed? Probably. We spent the first 
13 chapters of the book discussing complex mathematical 
procedures, and then suddenly and without warning we’re 
calculating the area of rectangles in Chapter 14. Kind of a 
letdown, I know. Most people have this terrifying view of 
calculus, and assume that everything in it is impossible to 
understand; they are usually surprised to be calculating 
simple areas this deep in the course.

In this chapter, we’ll find exact areas beneath a curve.  
We’ll also uncover one of the most fascinating mathematical 
relationships of all time: the area beneath a curve is  
related to the curve’s antiderivative. You heard me right— 
antiderivative. After all this time learning how to find the 
derivative of a function, now we’re going to go backward and 
find the antiderivative. Before, we took f(x) = x3 – 2x2 and got  
f ′(x) = 3x2 – 4x; now, we’re going to start with the derivative 
and figure out the original function.

It’s a whole new ballgame, and we’re going to learn everything 
from the first half of the course in reverse. For those of us 
who always seem to do things backwards, this should come as 
a welcome change! Sound exciting? Sound painful? It’s a little 
from column A and a little from column B.
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The Power Rule for Integration
Before we get started, let’s talk briefly about what reverse differentiating means. The process of 
going from the expression f ′(x) back to f(x) is called antidifferentiation or integration—both words 
mean the same thing. The result of the process is called an antiderivative or an integral. Basically, 
an antiderivative (or integral) is the opposite of a derivative.

DEFINITION

The antiderivative is the opposite of a derivative, but you probably 
guessed that. The derivative of x2 is 2x, so one of the antiderivatives  
of 2x is x2.

Integration is denoted using a long, stretched-out letter S, like this:

This is read “The integral of 2x, with respect to x, is equal to x2 plus some unknown constant” 
(called the constant of integration). This integral expression is called an indefinite integral because 
there are no boundaries on it.

Why do you have to use a constant of integration? Lots of functions have the same derivative—
for example, both h(x) = x3 + 6 and j(x) = x3 – 12 have the same derivative, 3x2. Therefore, when 
we integrate ∫ x dx3 2

, you say the antiderivative is x3 + C, because you have no way of knowing 
what constant was in the original function.

Whereas an indefinite integral has no boundaries next to the integration sign, a definite integral 

does. For example, ∫ x dx2
1

3
 is a definite integral because it contains the limits of integration 1 

and 3. The result of an indefinite integral is a new expression, but the result of a definite integral 

is a real number. For example, ∫ = +x dx x C2 2
, but ∫ =x dx2 8

1

3
. (You’ll learn how to solve these 

kinds of problems soon.)

Both definite and indefinite integrals contain a “dx”; don’t worry about this little piece—you 
don’t have to do anything with it. Just make sure its variable matches the variable in the function 
(in this case, x).

That’s a lot of vocabulary for now. Before you get overwhelmed, let’s get into the meat of the 
mathematics. Remember finding simple derivatives with the Power Rule? There’s a way to 
find simple integrals using the Power Rule for Integration. Instead of multiplying the original 
coefficient by the exponent and then subtracting 1 from the power, you’ll add 1 to the power and 
divide by the new power.

∫ = +x dx x C2 2
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CRITICAL POINT

According to the Power Rule for Integration, the integral of a constant is a 

linear term: ∫ = +dx x C8 8 . Just glue a variable onto the number and you’re 
done.

The Power Rule for Integration: The integral of a single variable to some power is found by adding  
1 to the existing exponent and dividing the variable by the new exponent:

∫ = ++

+

x dx Cn x
n 1

n 1

Remember, you can only use the Power Rule for Integration if you are integrating a single 
variable to a power, just like the regular Power Rule. However, if the only thing standing in your 
way is a coefficient, you are allowed to yank it out of the integral to get it out of your way, as 
indicated in the first example.

CRITICAL POINT

You pull the coefficients out of the integrals to make the integration itself 
easier. As soon as the integration sign is gone, you end up multiplying that 
coefficient by the integral anyway, so it’s not as though it “goes away” 
somewhere. It just hangs around, waiting for the integration to be done.

Example 1: Evaluate ∫ ( )+x x dx7 63 5
.

Solution: Even though there are two terms here, each is simply a variable to some power with 
a coefficient attached. You can actually separate addition or subtraction problems into separate 
integrals as follows:

Don’t worry about the ∫  or dx in the problem. They’re the “bookends” of an integral expression, 
marking where it begins and ends; just integrate whatever falls between them. Before you can 
apply the Power Rule for Integration, you should “pull out” the coefficients:

∫ ∫+x dx x dx7 63 5

∫ ∫+x dx x dx7 63 5
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Integrating Trigonometric Functions
As with learning trigonometric derivatives, learning trigonometric integrals just means 
memorizing the correct formulas. If you forget them, you can actually create some of them 
from scratch easily (like the integral of the tangent function, as you’ll see later in the chapter). 
However, not all of them are quite so easy to build by yourself, so I see some quality memorizing 
time in your not-too-distant future.

I can tell by that unhappy look on your face that the thought of more memorizing doesn’t excite 
you. (You’re going to be even unhappier if you haven’t flipped ahead to the actual formulas yet—
they are crazy looking.) Think back. You had to memorize the multiplication tables in elementary 
school, remember? This is just sort of the grandfather of the multiplication tables, but important 
all the same.

And now, with no further ado, here are the trigonometric functions with their antiderivatives:

• ∫ = − +x dx x Csin cos

• ∫ = +x dx x Ccos sin

• ∫ = − +x dx x Ctan ln cos

• ∫ = +x dx x Ccot ln sin

• ∫ = + +x dx x x Csec ln sec tan

• ∫ = − + +x dx x x Ccsc ln csc cot

YOU’VE GOT PROBLEMS

Problem 1: Evaluate ∫ + +






x x dx2 x4
3

3

.

Now the expression in each integral looks like the one in the Power Rule for Integration theorem. 
Add 1 to each power and divide each variable by its new power. The integral sign and the “dx” 
will disappear, but don’t forget to add “+ C” to the end of the problem, because all indefinite 
integrals require it:

⋅ + ⋅ +

= + +

C

x x C

7 6x x
4

4 6
7
4

4 6

6
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CRITICAL POINT

All of the integrals on the list containing a “co-” function are negative.

There are a lot of natural log functions in the list of trig integrals. That is due, in no small part, 

to the fact that ∫ = +dx x Clnx
1 , another important formula to memorize.

Here’s another, while we’re at it: the integral of ex is itself, just like it was its own derivative; 

therefore, ∫ = +e dx e Cx x
. Integrating logarithmic functions is very, very tricky, so we don’t 

even attempt that in Calculus I. We’ll save that for Calculus II—that way you have something to 
look forward to! (Or dread. Take your pick.)

Example 2: Integrate: ∫ ( )+x x dxsec5
.

Solution: Rewrite this sum as a sum of two separate integrals:

The radical can be expressed as a fractional exponent ( )=x x15 1/5 , which means you can apply 
the Power Rule for Integration:

To complete the problem, recall that ∫ = + +x dx x x Csec ln sec tan .

While technically both integrals produce a coefficient of integration (C), you can add those 
constants to a new (and still completely unknown) constant C. Is it weird to add C to C and get 
C? Yes, but remember that we have no idea what C equals, and we have no way of ever finding 
out in the context of indefinite integrals. For all intents and purposes, just remember to staple a 
single “+ C” to the end of any indefinite integral, no matter how many individual integrals you 
introduce along the way.

∫ ∫ ∫( )+ = +x x dx x dx x dxsec sec5 5

∫ ∫
∫

∫

∫
∫

= +

= + +

= + +

= + +

= + +

( )

( ) ( )

+

+

( )

( ) ( )

+

+

x dx x dx

C x dx

C x dx

C x dx

x C x dx

sec

sec

sec

sec

sec

x

x

x

1/5

1/5 1

1/5 5/5

6/5

5
6

6/5

1/5 1

1/5 5/5

6/5

= + + +x x x Cln sec tan5
6

6/5
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Separation
Breaking up is hard to do, but under specific circumstances, it is really quite worthwhile. 
Sometimes things just don’t work out, and fractions have to go their separate ways. After a long, 
sunny time in the numerator together, terms just want a little more “me” time and some personal 
space. However, after all the time they’ve spent together, they’ve saved up a little bundle in the 
denominator, and both want to walk away with it.

The good news is, in the math world, both pieces of the numerator get a full share of the 
denominator—no lawyers, no haggling over how it should be broken up. Both terms of the 
numerator walk away with a full denominator, and are a little wiser for having gotten involved in 
the first place.

Back in grade school, you learned that two fractions couldn’t be added unless they had the same 
denominator. With this knowledge, you proudly calculated things like + = =+1

3
7
3

7 1
3

8
3  and never 

looked back. Well, look at it backward for just a moment. If you are given the fraction +a b
c , you 

can rewrite it as +ac
b
c , just as you know that = +8

3
7
3

1
3 .

Top-heavy integrals (which have lots of terms in the numerator but only one in the denominator) 
and other fractional integrals are occasionally easier to solve if you split the larger integral 
into smaller, more manageable ones. Although the original problem couldn’t be solved via 
u-substitution or the Power Rule, the smaller integrals usually can.

KELLEY’S CAUTIONS

Never split the denominator of a fraction—only split the numerator. 
Although = ++1 3

2
1
2

3
2 , watch what happens if you flip the fraction over: 

≠ ++
2

1 3
2
1

2
3 .

Example 3: Find ∫ − + − + dxx x x x

x

2 5 3 14 3 2

2  using the separation technique.

Solution: This is a fraction, so the Power Rule for Integration doesn’t apply, and setting the 
numerator or denominator equal to u is not going to do a whole lot for you, so u-substitution is 
out. If, however, you separate the five terms of the large numerator into five separate fractions, 
watch what happens:

∫ ∫ ∫ ∫ ∫− + − +dx dx dx dx dx2 5 3x

x

x

x

x

x

x

x x

1
4

2

3

2

2

2 2 2
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The Fundamental Theorem of Calculus
Finally, it’s time to solve two mysteries of recent origin: how do you find exact areas under 
curves, and why are we even mentioning areas—isn’t this chapter about integrals? It turns out 
that the exact area beneath a curve can be computed using a definite integral. This is one of two 
major conclusions, which together make up the Fundamental Theorem.

Part One: Areas and Integrals Are Related
After all the time we spent approximating it in Chapter 14, we’re finally going to calculate the 
exact area beneath y = x2 + 1 on the interval [0,3].

From now on, we’re going to equate definite integrals with the area beneath a curve (technically 
speaking, the area between the function and the x-axis, remember?). Therefore, I can say that the 

area beneath x2 + 1 on the interval [0,3] is equal to ∫ ( )+x dx12
0

3
.

This new notation is read, “the integral of x2 + 1, with respect to x, from 0 to 3.” Unlike indefinite 
integrals, the solution to a definite integral, such as this one, is a number. That number is, in fact, 
the area beneath the curve. How in the world do you get that number, you ask? How about a 
warm welcome for the Fundamental Theorem?

The Fundamental Theorem of Calculus (part one): If g(x) is the antiderivative of the continuous function 
f(x), then ∫ ( ) ( ) ( )= −f x dx g b g a

a

b
.

YOU’VE GOT PROBLEMS

Problem 2: Find ∫ + dxx x
x

sin cos
cos  using the separation technique.

When you simplify each of these fractions, you get simple integrals, each of which can be 
integrated via the Power Rule for Integration:

∫ ∫ ∫ ∫ ∫− + − +

= − ⋅ + ⋅ − + +

= − + − − +

−

−

−

x dx x dx dx
x
dx x dx

x C

x x x C

2 5 3 1

2 5 3ln

5 3ln

x x x x

x
x

2 2

3 2 1 1

3
2 1

3
2 1 1

3
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CRITICAL POINT

You will get a negative answer from a definite integral if the area in question 
is below the x-axis. Whereas the concept of “negative area” may not make 
sense to you, you automatically assign all area below the x-axis with a 
negative value.

In other words, to calculate the area beneath the curve f(x) on the interval [a,b], you must first 
integrate the function. Then, plug the upper bound (b) into the integral. From this value, subtract 
the result you get from plugging the lower bound (a) into the same integral. It’s a brilliantly 
simple process, as powerful as it is elegant.

Example 4: Once and for all, find the exact area beneath the curve f(x) = x2 + 1 on the interval 
[0,3] using the Fundamental Theorem of Calculus.

Solution: This problem asks you to evaluate the definite integral:

CRITICAL POINT

Here are two important properties of definite integrals:

• ∫ ( ) =f x dx 0
a

a
: If the upper and lower limits of integration are equal, the 

definite integral equals 0.

• ∫∫ ( ) ( )= −f x dx f x dx
b

a

a

b
: You can swap the limits of integration if you 

like—just pop a negative sign out front.

Begin by integrating x2 + 1 using the Power Rule for Integration. When you complete the 
integral, you no longer write the integration symbol, and you do not write “+ C.” Instead, draw a 
vertical slash to the right of the integral, and copy the limits of integration onto it. This signifies 
that the integration portion of the problem is done:

Plug 3 into the function (for both x’s) and subtract 0 plugged into the function:

∫ ( )+x dx12
0

3

+






xx

3
0

3
3

+





− +





= + =3 0 9 3 123

3

0

3

3 3
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YOU’VE GOT PROBLEMS

Problem 3: Calculate ∫π
π

x dxcos
/2

3 /2
. Explain what is meant by the answer.

Part Two: Derivatives and Integrals Are Opposites
I kind of spoiled this revelation for you already—I’m sorry. However, the second major 
conclusion of the Fundamental Theorem still holds some surprises. Let’s check out the theorem 
first:

The Fundamental Theorem of Calculus (part two): If f(x) is a continuous and differentiable function, 

∫ ( )( ) ( ) ( )




= ⋅ ′

( )
g y dy g f x f xd

dx a

f x
, if a is a real number.

That looks unsightly. Here’s what it means without all the gobbledygook. Let’s say you’re taking 
the derivative of a definite integral whose lower bound is a constant (i.e., just a number) and 
whose upper bound contains a variable. If you take the derivative of the entire integral with 
respect to the variable in the upper bound, the answer will be the function inside the integral sign 
(unintegrated), with the upper bound plugged in, multiplied by the derivative of the upper bound. 
This theorem looks, feels, and even smells complex, but it’s not hard at all. Trust me on this one. 
All you have to do is learn the pattern.

Example 5: Evaluate ∫

t dtd

dx x
2

sin

3
.

Solution: You don’t have to use the shortcut in part two of the Fundamental Theorem, but it 
makes things easier. Notice that the variable expression is in the lower (not the upper) bound, 
which is not allowed by the theorem. Therefore, you should swap them using a property of 
integrals I discussed earlier in the chapter. It says that flip-flopping the boundaries of an integral 
is fine, as long as you multiply the integral by –1.

Because you are deriving with respect to x (and x is in the upper bound) and the lower bound is a 
constant, you are clear to apply the new theorem. All you do is plug the upper bound (sin x) into the 
function t2 to get (sin x)2, and multiply by the derivative of the upper bound (which will be cos x). 
Don’t forget the negative, which stays out in front of everything:

–sin2 x ∙ cos x

Here’s a question for you: what if you forget this theorem? No problem—you can do Example 5 
the long way, working from the inside out. Start with the integration problem and then take the 

∫−

t dtd

dx

x 2
3

sin



Part 4: The Integral236

derivative. You’ll get the same thing. If you apply the Fundamental Theorem (part one) to the 
integral, you get:

Take the derivative with respect to x to get –sin2 x ∙ cos x. Don’t forget to apply the Chain Rule 
when differentiating xsin1

3
3 ; that’s where cos x comes from.

You don’t always have to switch the boundaries and make the integral negative. Only do it if the 
constant appears in the upper boundary. What happens if both boundaries contain variables? If 
this is the case, you can’t use the shortcut offered by the theorem and must resort to the long way.

( ) ( )= − x9 sind
dx

t

x

d
dx3

sin

3
1
3

33

YOU’VE GOT PROBLEMS

Problem 4: Evaluate ∫

e dtd

dx
tx

1

tan
 twice, once using the Fundamental 

Theorem of Calculus part one, and once using part two.

u-Substitution
At this point, you can’t solve too many integration problems. You should have a handful of 
antiderivatives memorized (such as ∫ = +x dx x Ccos sin  and ∫ = +e dx e Cx x ) and should have 
a pretty good grip on the Power Rule for Integration (meaning, for instance, you know that 

∫ = +x dx Cx7
8
8

). However, what do you do if both of those techniques fail? You look, with hope 
glinting in your eyes, to a new method—u-substitution. You’ll use u-substitution almost as much 
as the Power Rule for Integration—it’s a calculus heavy hitter.

The key to u-substitution is finding a piece of the function whose derivative is also in the 
function. The derivative is allowed to be off by a coefficient, but otherwise must appear in the 
function itself.

Here are the steps you’ll follow when u-substituting:

 1. Look for a piece of the function whose derivative is also in the function. If you’re not 
sure what to use, try the denominator or something being raised to a power in the 
function.

 2. Set u equal to that piece of the function and take the derivative with respect to x.

 3. Use your u and du expressions to replace parts of the original integral, and your new 
integral will be much easier to solve.
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Example 6: Use u-substitution to find ∫ dxx
x

sin
cos  (i.e., prove that the integral of tangent is equal to 

− +x Cln cos ).

Solution: Set u equal to a piece of the integral whose derivative is also in the integral. Because 
sine and cosine are both present (and the derivative of each is basically the other function), 
you could pick either one to be u, but remember the hint I gave you: if you’re not sure which 
expression to choose, pick the denominator or something to a power. Therefore, set u = cos x and 
derive with respect to x to get du = –sin x dx.

There’s the sin x you expected. It, like u = cos x, appears in the integral. Well, almost. In the 
original integral, sin x is positive, so multiply both sides of du = –sin x dx by –1 so that the sine 
functions match:

–du = sin x dx

Now it’s time to write the original integral with u’s instead of x’s. Instead of sin x, the new 
numerator is –du (because –du = sin x dx). The new denominator is u (because u = cos x).

Remember that the integral of x
1  is xln , so ∫− = − +u Clndu

u . The final step is to replace the u 
using your original u equation (u = cos x) to get the final answer of − +x Cln cos .

The trickiest part of u-substitution is deciding what u should be. If your first choice doesn’t work, 
don’t sweat it. Try something else until it works out for you. It eventually will. The only way 
to get really good at this is to practice, practice, practice. Eventually, picking the correct u will 
become easier.

∫∫ = −−du
u

du
u

YOU’VE GOT PROBLEMS

Problem 5: Evaluate ∫ ⋅
π

x x dxsec tan2
0

/4
. Hint: if you are performing 

u-substitution with a definite integral, you have to change the limits of 

integration as you substitute in the u and du statements. To change the 
limits, plug them each into the x slot of your u equation.

Tricky u-Substitution and Long Division
When we first discussed u-substitution, I made it a point to say that the derivative of u must 
appear in the problem. This is usually true, so I wasn’t technically lying. There is a way to use 
u-substitution, even if it’s not the most obvious choice.
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Example 7: Find ∫ −
− dxx
x
2 1

2 .

Solution: For grins, let’s go ahead and try to find the antiderivative using u-substitution. Once 
again, remember our tip: if you’re not sure what to set equal to u, try the denominator. Therefore, 
u = x – 2 and du = dx. If you make the appropriate substitutions back into the problem, you get:

To be honest, it doesn’t look much better than the original, does it? Don’t give up, though; we’re 
not out of options. Go back to your u equation and solve it for x to get:

Now substitute that x value into the numerator of our integral, and suddenly everything is a little 
cheerier:

At least all of our variables are the same now. That’s a relief. Can you see where to go from here? 
This fraction is top-heavy, with lots of terms in the numerator but only one in the denominator, 
so we can use the separation method from last section to finish. What a happy coincidence that 
we just learned it!

You may be wondering why the −4  vanished in the last step. Remember that C is some constant 
you don’t know. If you subtract 4 from that, you’ll get some other number (which is 4 less than 
the original mystery number). Since I still don’t know the value for C, I just write it as C again, 
instead of writing C – 4.

There are alternatives when integrating fractions like these. In fact, you can begin a rational 
integral by applying long division; it helps to simplify the problem if the numerator’s degree is greater 
than or equal to the denominator’s degree. It works like a charm if the denominator is not a single term, 
as is the case with this example.

∫ − dux
u

2 1

= −
= +
u x
x u

2
2

∫
∫=

+ −

+

du

du

u
u

u
u

2( 2) 1

2 3

∫ ∫
∫ ∫
+

= +

= + +

= − + − +

= − + − +

= + − +

du du

du du

u u C

x x C

x x C

x x C

2 3

2 3ln

2( 2) 3ln 2

2 4 3ln 2

2 3ln 2

u
u u

u

2 3

1
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Because the degree of the numerator (1) is greater than or equal to the degree of the denominator 
(1), begin by dividing 2x – 1 by x – 2:

Therefore, you can rewrite the integral as ∫ ( )+ − dx2 x
3

2
, and tricky u-substitution is no longer 

required. The solution will again be + − +x x C2 3ln 2 .

)= − −
− +

= +−
− −x x

x
2 2 1

2 4

3

2
2x

x x
2 1

2
3

2

YOU’VE GOT PROBLEMS

Problem 6: Find ∫ +
− dx
x
x

2 1
2 3  using tricky u-substitution or by using long 

division.

Technology Focus: Definite and Indefinite 
Integrals

Symbolic calculators like the TI-89 are very powerful integration machines. They work whether 
you’re dealing with indefinite integrals (which have no bounds of integration) or definite integrals 
(which do).

In Example 1 from this chapter, you applied the Power Rule for Integration to determine that 

∫ ( )+ = + +x x dx x x C7 63 5 7
4

4 6 . To check the answer with your TI-89, you need to access the 

calculus tools in the f 3  menu. Integration is option 2, as illustrated in Figure 15.1.

Figure 15.1 
The integration tool is located just beneath the differentiate tool you used in Chapter 9.
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As with differentiation, you follow the expression by a comma and then the variable that comes 
after the “d” in the problem. For example, this problem contains “dx” so you should type “,X” 
before you close the expression with a parenthesis (see Figure 15.2).

Figure 15.2 
The solution verifies our solution to Example 1.

The calculator’s solution looks a little different from our solution. For one thing, it lists the terms 
in order of exponent, from greatest to least. It also does not list the required “+ C” as part of the 
solution. Remembering that constant is up to you.

To compute a definite integral on your TI-89, enter the lower and upper bounds immediately 
following “,X” and separate them with commas. For example, in Example 4 you concluded that 

∫ ( )+ =x dx1 122
0

3
. Check this answer by entering the expression in Figure 15.3.

Figure 15.3 
If you’re faced with a definite integral, be sure to include the bounds.

Are you ready to be really impressed with a symbolic calculator? You can use them to check 
problems like Example 5, which are Fundamental Theorem of Calculus problems containing 
multiple variables (see Figure 15.4).
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Figure 15.4 
The TI-89 correctly computes the derivative, with respect to x, of a definite integral written in terms 

of t that has a lower bound defined as a function of x!

For those of you not wielding the humbling power of a symbolic calculator, hope is not lost. Your 
TI-84 may not be able to figure out definite integrals, but definite integrals are a snap. Press the 

 button and scroll down to “9:fnInt(” as illustrated in Figure 15.5.

Figure 15.5 
You can’t spell “ fnInt” without “ fun”! Never mind—you absolutely can.

If you have MathPrint enabled on your calculator, you are greeted with a fancy template into 
which you can plug your definite integral (see Figure 15.6).



Part 4: The Integral242

Figure 15.6 
Insert your bounds, the expression you’re integrating, and the variable you’re integrating with respect 

to into the appropriate boxes.

When you do, you get the correct answer of 12, as illustrated in Figure 15.7.

Figure 15.7 
The right solution is definitely 12. Hooray for disappointing math puns!

If MathPrint is not enabled, you enter the expression exactly as you would on the TI-89 (see 
Figure 15.8).
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Figure 15.8 
If you don’t want to be bothered with arrowing between the boxes in the MathPrint template, you can 

compute the definite integral by typing this command.

The Least You Need to Know
• Integration, like differentiation, has a Power Rule of its own, in which you add 1 to 

the exponent and divide by the new exponent.

• Trigonometric functions have bizarre integrals, some of which are difficult to 
produce on your own; therefore, it’s best to memorize them.

• The separation technique allows you to write an integral that’s a sum or difference 
as a sum or difference of separate integrals.

• The two parts of the Fundamental Theorem of Calculus tell you how to evaluate 
a definite integral and give a shortcut for finding specific derivatives of integral 
expressions.

• u-substitution helps you integrate expressions that contain functions and their 
derivatives.

• Long division and tricky u-substitution are useful tools in your integration 
repertoire.





CHAPTER

16
Applications of the 

Fundamental Theorem

In This Chapter
• Finding yet more curvy 

area

• Integration’s Mean Value 
Theorem

• Position equations and 
distance traveled

• Functions defined by 
definite integrals

• Pretending you’re Noah: 
finding arc length

Once you learned how to find the slope of a tangent line 
(a seemingly meaningless skill), it probably seemed as though 
the applications for the derivative would never stop. You were 
finding velocity and rates of change (both instantaneous and 
average), calculating related variable rates, optimizing func-
tions, determining extrema, and, all in all, bringing peace and 
prosperity to the universe.

If you think that it’s about time for applications of definite 
integrals to start pouring in, you must be psychic. (Either 
that or you read the table of contents.) For now, we’ll look at 
some of the most popular definite integral-related calculus 
topics. We’ll start by finding area bounded by two curves 
(rather than one curve and the x-axis). We’ll briefly backtrack 
to topics we’ve already discussed, but we’ll spice them up 
a little with what we now know of integrals. Finally, we’ll 
look at definite integral functions, also called accumulation 
functions.
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Calculating Area Between Two Curves
This’ll blow your mind. In fact, after you read it, you may question your very sanity. The thin 
ribbons of consciousness tying you to this mortal world may stretch and break, catapulting you 
into madness, or at least making you lose your appetite. Perhaps you should sit down before you 
continue.

CRITICAL POINT

If you have functions containing y instead of functions containing x (i.e., 
f(y) = y2), you can still calculate the area between the functions. However, 
instead of subtracting top minus bottom inside the integral, you subtract 
right minus left.

You’ve been calculating the area between curves all along without even knowing it. There, I said it. I 
hope you’re okay.

If you want to calculate the area between two continuous curves, we’ll call them f(x) and g(x), on 
the same x-interval [a,b], here’s what you do. Set up a definite integral as you did last chapter, 
with a and b as the lower and upper limits of integration, respectively. You’ll stick either  
f(x) – g(x) or g(x) – f(x) inside the integral. To decide which one to use, you have to graph the  
functions—you should subtract the lower graph from the higher graph. For example, in Figure 
16.1, g(x) is below f(x) on the interval [a,b].

Figure 16.1 
At least on the interval [a,b], the graph of f(x) is always higher than the graph of g(x).

a b

g(x)

f(x)
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Watch out! If you subtract the functions in the wrong order you’ll get a negative answer, and you 
should never get a negative answer when finding the area between curves, even if some of that 
area falls below the x-axis.

What if the curves switch places? For example, look at the graph in Figure 16.2. To the left of  
x = c, f(x) is above g(x), but when x > c, the functions switch places and g(x) is on top.

Figure 16.2 
The graphs take turns on the top bunk—neither is above the other on the entire interval.

To find the shaded area, you’ll have to use two separate definite integrals, one for the interval 
[a,c], when f(x) is on top, and one for [c,b], when g(x) is:

CRITICAL POINT

The reason we’ve technically been doing this all along is that we’ve always 
been finding the area between the curve and the x-axis, which has the 
equation g(x) = 0. Thus, if a function f(x) is above the x-axis on [a,b], the area 

beneath the two curves is x dx1 02
0

3

∫ ( )+ −



 . That second equation has 

been invisible all this time.

Example 1: Calculate the area between the functions f(x) = sin 2x and g(x) = cos x on the 
interval ,23

2 π 
π .

Solution: These graphs play leapfrog all along the x-axis, but on the interval ,23
2 π 
π , g(x) is 

definitely above f(x) (see Figure 16.3).

a c
b

g(x)
f(x)

f x g x dx g x f x dx
a

c

c

b

∫ ∫( ) ( ) ( ) ( )−  + − 
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Figure 16.3 
On the interval ,23

2 π 
π , g(x) = cos x rises above f(x) = sin 2x.

Therefore, the integral will contain g(x) – f(x):

Split this up into separate integrals:

Calculating the first is fairly easy:

π (3π)/2 2ππ/2

1 f(x) g(x)

x x dxcos sin 2
3 /2

2

∫ ( )−
π

π

x dx x dxcos sin 2
3 /2

2

3 /2

2

∫ ∫−π

π

π

π

x dx xcos sin

sin 2 sin

0 1

1

3 /2

2

3 /2

2

3
2

∫
π

( )

( )

=

= −

= − −

=

π

π

π

π

π
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Use u-substitution to integrate sin 2x, setting u = 2x:

Don’t forget to change your x boundaries into u boundaries when you u-substitute. For example, 
to get the new u boundary of 4π, plug the old x boundary of 2π into the u equation: u = 2(4π) = 
4π. The final answer is the first integral minus the second:

u du usin cos

cos4 cos3

1 1

1 1

2

1

1
2 3

4 1
2 3

4

1
2

1
2

1
2
1
2

∫
π π

( )

( )
( )

( ) ( )

( )

= −

= − − − 
= − − − −





= − − 
= −

= −

π

π

π

π

g x dx f x dx 1 1 2
3 /2

2

3 /2

2

∫ ∫( ) ( ) ( )− = − − =
π

π

π

π

YOU’VE GOT PROBLEMS

Problem 1: Calculate the area between the curves y = x2 and y = x3 in the first 
quadrant.

The Mean Value Theorem for Integration
Think back to the original Mean Value Theorem from Chapter 13. It said that somewhere on an 
interval, the derivative was equal to the average rate of change for the whole interval. It turns out 
that integration has its own version of a Mean Value Theorem, but because integration involves 
area instead of rates of change, it’s a bit different.

A Geometric Interpretation
In essence, the Mean Value Theorem for Integration states that at some point along an interval 
[a,b], there exists a certain point (c, f(c)) between a and b (see Figure 16.4). If you draw a 
rectangle whose base is the interval [a,b] and whose height is f(c), the area of that rectangle will 
be exactly the area beneath the function on [a,b].
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Figure 16.4 
A visual representation of the Mean Value Theorem for Integration. The area of the shaded rectangle, 

whose height is f(c), is exactly equal to f x dx
a

b

∫ ( ) .

CRITICAL POINT

In the Mean Value Theorem for Integration, (b – a) represents the length of 
the rectangle, because it is the length of the interval [a,b]. The height of the 
rectangle is, as we’ve already discussed, f(c). There may be more than one 
such c in the interval that satisfies the Mean Value Theorem for Integration, 
but there must be at least one.

The Mean Value Theorem for Integration: If a function f(x) is continuous on the interval [a,b], then 

there exists c, a ≤ c ≤ b, such that b a f c f x dx
a

b

∫( ) ( ) ( )− ⋅ = .

This Mean Value Theorem, like its predecessor, is only an existence theorem. It guarantees that 
the value x = c and the corresponding key height f(c) exist. You may wonder why it’s so important 
that a curvy graph and a plain old rectangle must always share the same area. We’ll get to that 
after the next example.

Example 2: Find the value f(c) guaranteed by the Mean Value Theorem for Integration for the 
function f(x) = x3 – 4x2 + 3x + 4 on the interval [1,4].

Solution: The Mean Value Theorem for Integration states that there is a c between a and b so 

that b a f c f x dx
a

b

∫( ) ( ) ( )− ⋅ = . You know everything except what c is, but that’s okay.

a c b

f(x)
(c, f(c))
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Plug in everything you know:

CRITICAL POINT

If Example 2 had asked you to find the c-value rather than the value of f(c), 
you’d still follow the same steps. At the end, however, you’d plug the point 
f c

f c

f c

f c

f c

3

4.75

57
4

57
4

1
3

57
12
19
4

( )
( )
( )
( )
( )

=

= ⋅

=

=

=  into f(x) and solve for c.

After the quick subtraction problem on the left (and the slightly lengthier definite integral on the 
right), you should get this:

This means that the area beneath the curve f(x) = x3 – 4x2 + 3x + 4 on the interval [1,4] (which 
is 19

4 ) is equal to the area of the rectangle whose length is the same as the interval’s length (3) and 

whose height is c, 19
4( ) .

f c x x x dx4 1 4 3 43 2
1

4

∫ ( )( ) ( )− ⋅ = − + +

57
4

YOU’VE GOT PROBLEMS

Problem 2: Find the value f(c) guaranteed by the Mean Value Theorem for 

Integration on the function f c
f x dx

b a
a

b

∫( ) = ( )
−  on the interval [1,100].

The Average Value Theorem
The value f(c) that you found in both Example 2 and Problem 2 has a special name. It is called 
the average value of the function. If you take the Mean Value Theorem for Integration and divide 
both sides of it by (b – a), you’ll get the equation for average value:

f x x
x

ln( ) =
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DEFINITION

The average value of a function is the value f(c) guaranteed by the Mean 
Value Theorem for Integration (the height of the rectangle of equal area). 
The average value is found via the equation  

t t t dx t t t dx15.5 86.25 117.25 48.75 15.5 86.25 117.25 48.753 2
0

3.78586 3 2
3.78586

4

∫ ∫( ) ( )− + − + − − + − + .

This is simply a different form of our previous equation, so it doesn’t warrant much more 
attention. However, some textbooks completely skip over the Mean Value Theorem for 
Integration and go right to this, which they call the Average Value Theorem. They might word 

Problem 2 earlier as follows: “Find the average value of f c
f x dx

b a
a

b

( ) = ∫ ( )
−  on the interval [1,100].” 

You’d solve the problem the exact same way (see Figure 16.5).

Figure 16.5 
Here’s the diagram for the Mean Value theorem for Integration once more. The height of the denoted 

line is the function’s average value. Although the function dips below and shoots above f(x), that’s 
how high f(x) is on average.

Here’s one way to think of the relationship between the theorems. Most functions twist and 
turn throughout their domains. If you could “level out” a function by filling in its valleys and 
flattening out its peaks until the function was a horizontal line, the height of that line (i.e., its 
y-value) would be the average value for that function.

a c b

f(x)
(c, f(c))
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Finding Distance Traveled
Definite integrals also play well with position and velocity functions. Remember that derivatives 
measure a rate of change. Well, it turns out that definite integrals of rate of change functions 
measure accumulated change. For example, if you are given a function that represents the rate of 
sales of the new must-have toy, the Super Fantastic Hula Hoop, then the definite integral gives 
you the actual number of hula hoops sold.

Most often, however, math teachers like to explore this property of integrals as it applies to 
motion. Specifically, the definite integral of the velocity function of an object gives you the total 
displacement of the object. A word of caution: you will most often be asked to find the total distance 
traveled by the object—not the total displacement. To calculate the total distance, you’ll first have 
to determine where the object changes direction (using a wiggle graph) and then integrate the 
velocity separately on every interval that direction changes.

Here’s the difference between total distance traveled and total displacement. Let’s say at any 
hour t, I want to know (in miles) how far I am away from my favorite bright orange 1970s-style 
easy chair that my wife hates. My initial position (i.e., t = 0 hours) is in the chair, so s(0) = 0. Two 
hours later, I am at work, 50 miles away from my chair, so s(2) = 50 miles. Once my workday 
and commute home are complete, I am back home in the chair, and s(12) = 0. I have traveled a 
total distance of 100 miles, counting my travel away from the chair and back again. However, my 
displacement is 0. Displacement is the total change in position counting only the beginning and 
ending position; if the object in question changes direction any time during that interval of time, 
displacement does not correctly reflect the total distance traveled.

Example 3: In the book The Fellowship of the Ring by J.R.R. Tolkien, a young hobbit named Frodo 
embarks on an epic, exciting, and hairy-footed adventure to destroy the One Ring in the fires of 
Mount Doom. Based on a little estimation and the book Journeys of Frodo: An Atlas of J.R.R. Tolkien’s 
The Lord of the Rings by Barbara Strachey, I have designed an equation modeling Frodo’s journey. 
During the first four days of his journey (from Hobbiton to the home of Tom Bombadil), his 
velocity (in miles per day) is given by this equation:

v(t) = – 15.5t3 + 86.25t2 – 117.25t + 48.75

For example, v(2) gives his approximate velocity at the exact end of the second day. Find the total 
distance Frodo travels from t = 0 to t = 4.

Solution: Because you want to find the total distance traveled, you need to determine if Frodo 
changed direction at any point, and actually started to wander toward Hobbiton rather than away. 
This is not necessarily caused by poor hobbit navigation, but perhaps by hindrances such as the 
old forest, getting caught in trees, etc. To see if his direction changed, create a wiggle graph for 
velocity (see Figure 16.6).
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Figure 16.6 
The hobbits have a pretty good sense of direction; in fact, they are heading farther and farther away 

from Hobbiton until just before the end of the fourth day.

Integrate the velocity equation separately, on both of these intervals. Because they are heading 
slightly backward (i.e., toward their beginning point) on the interval (3.78586,4), that definite 
integral will be negative. However, because it still represents the distance the hobbits are 
traveling, you don’t want it to be subtracted from your answer, so turn it into its opposite by 
multiplying it by –1. You should do this for any negative pieces of your wiggle graph in this type 
of problem. Therefore, the distance traveled is:

Although the numbers are darn ugly, the premise is very simple. I’ll leave the figuring up to you. 
You should get 108.298 for the first interval (distance away from Hobbiton) and –(–3.298) for the 
second, which is the small distance back toward Hobbiton; the sum is 111.596 miles.

Right about now, you’re seeing that the numbers in this problem are not easy whole numbers. 
They rarely turn out to be so in real-world (or Middle Earth) examples, so calculators are 
a necessary tool. There are those who would have me burned at the mathematical stake for 
suggesting such a thing. In fact, I was once yelled at fiercely by the lunch ladies in the high 
school cafeteria where I worked for suggesting that you should use a calculator to check your 
answers when converting fractions to decimals. I’ve never received fewer tater tots than I did that 
day. Lunch ladies can be so bitter.

0 43.78586

v(t)

x dtln t

x
1

1∫=

YOU’VE GOT PROBLEMS

Problem 3: When satellites circle closely around a planet or moon, the 
gravitational field surrounding the celestial body both increases the 
satellite’s velocity and changes its direction in an orbital move called 
a “slingshot.” (As you may know from the movie Apollo 13, Tom Hanks 
and his crew executed a slingshot maneuver around the moon to hurl 
themselves back toward Earth.) Let’s say that a ship executing this 
maneuver has position equation s(t) = t3 – 2t2 – 4t + 12, where t is in hours 
and s(t) represents thousands of miles from Earth. What is the total distance 
traveled by the craft during the first five hours?
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Accumulation Functions
Before we close out this chapter and make it a fond memory, let’s talk about accumulation 
functions. You’ll probably see a few of them lurking around contemporary calculus classes, as 
they are now “in” because of the advent of calculus reform. An accumulation function is a definite 
integral with a variable expression in one or more of its limits of integration. They are called 
accumulation functions because they get their value by accumulating area beneath curves, as do 
all definite integrals.

DEFINITION

An accumulation function is a function defined by a definite integral; the 
function will have a variable in one or both of its limits of integration.

The most famous accumulation function is the natural logarithmic function: < y t
1= . The natural 

log function gets its value by accumulating area under the simple curve y t
1= ! For example, the 

value of ln 5, which always seemed so alien to me (where the heck do you get 1.60944?) is equal 
to the area beneath f x t dt4

x

2∫( ) ( )= −  on the interval [1,5].

Practically speaking, you should be able to evaluate and differentiate accumulation functions, so 
let’s get to it. Believe it or not, evaluating accumulation functions is just as easy as evaluating any 
other function—just plug in the correct x-value. Once you plug in the value, you’ll apply the 
Fundamental Theorem to the resulting definite integral.

Example 4: Given the accumulation function f t dt4 4
2

4

∫( ) ( )= − , complete the following tasks:

 (a) Calculate f(4).

 (b) Determine f ′(x).

Solution:

 (a) Plug 4 into x, not t, because f(x) is a function of x. In other words, x becomes the upper 
limit of integration:

f t4 4

16 8

8 16 2 8

8 6

2

t
2

2

4

16
2

4
2

2( )
( ) ( )

( )

( ) ( )
( )

= −

= − − −

= − − −

= − − −

= −
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  Now you can integrate like normal:

 (b) To find the derivative of an accumulation function, look no further than part two of 
the Fundamental Theorem. In this case, f ′(x) = x – 4. Just plug the top bound into t and 
multiply by its derivative (which is 1 in this case). Pretty easy, eh? You already knew how 
to tackle these problems, even before they showed up. Kudos!

g x t dtcos2
x /2

∫( ) =
π−

YOU’VE GOT PROBLEMS

Problem 4: Given f x dx1 ( )
a

b 2

∫ ( )+ ′ , calculate the following:

(a) g(4π) (b) g′(4π)

Arc Length
At this point, you can do all kinds of crazy math calculating. Geometry told you how to find 
weird areas, and calculus took that one step further. The kinds of areas you can calculate now 
would have boggled your mind back in your days of geometric innocence. However, it remains 
a math skill that has visible and understandable application, even to those who don’t know the 
difference between calculus and a tuna sandwich. Now, let’s add to your list of skills the ability 
to find lengths of curves. By the time you’re done, you’ll even be able to prove (finally) that the 
circumference of a circle really is 2π.

Rectangular Equations
The term “rectangular equations” really means “plain old functions.” Mathematicians use the 
term for the obvious reason that it takes less time to say (mathematicians are busy people). 
It turns out that finding the length of a curve (on some x interval) is as easy as calculating a 
definite integral. In fact, the length of a continuous function f(x) on the interval [a,b] is equal to 
g x x( ) = . In other words, find the derivative of the function, square it, add 1, and integrate the 
square root of the result over the correct interval.

Example 5: Find the length of the function g x
x

1
2( )′ =  between points (1,1) and (16,4) on its 

graph.
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Solution: Use the Power Rule to find the derivative of g(x) = x1/2, and you get 

dx dx1 1
x x

1
2

2

1

16 1
41

16

∫ ∫( )+ = + . All you do now is plug into the arc length formula:

The integration problem that results is not simple at all. For our purposes, it is enough to know 
and apply the formula, not to struggle through the integral itself. You’ll find that many (if not 
most) arc length integrals will end up complicated and require somewhat advanced methods to 
integrate. We will, however, satisfy ourselves with a computer- or calculator-assisted solution—
they have no problem with complex definite integrals. The final answer is approximately 15.3397.

Don’t feel like you’re cheating by using a calculating tool rather than solving this problem by 
hand. You’d have to know just about every integration technique there is to find the arc lengths of 
even very simple functions.

dtdx
dt

dy
dta

b 2 2

∫ ( ) ( )+

YOU’VE GOT PROBLEMS

Problem 5: Which function is longer on the interval [0,2], f(x) = x2 or 
g(x) = x3? Find the length of each and compare.

Parametric Equations
We haven’t mentioned parametric equations for a while—they’ve been lurking in the shadows, 
but now they get to come out and play. There are numerous similarities in the formula for 
parametric equation arc length and rectangular arc length. Both are definite integrals, both 
involve a sum of two terms beneath a radical, and both involve finding the derivative of the 
original equation.

The arc length of a curve defined parametrically is found with this definite integral:

In other words, find the derivatives of the x and y equations, square them both, add them 
together, take the square root, and integrate the whole mess. Note that a and b are limiting 
values of the parameter t this time—not x boundaries.

Example 6: The parametric representation of a circle with radius 1 (centered at the origin) is 
x = cosθ, y = sinθ. Prove that the circumference of a circle really is 2π by calculating the arc 
length of the parametric curve on sin and cosdx

d
dy
dθ θ= − =θ θ .

0 2θ π≤ ≤
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KELLEY’S CAUTIONS

Don’t get confused because the parameter in Example 6 is not t. The 
formula for arc length with a parameter of θ is exactly the same—it just has 
θ ’s instead of t’s in the formula.

Solution: Start by finding the derivatives of the x and y equations with respect to θ (it’s easy):

Now, plug those values into the parametric arc-length formula and simplify using the Mama 
theorem (review Chapter 4 if you don’t know what the heck I mean by that):

d

d

sin cos

1

2 0 2

2 2

0

2

0

2

0

2

∫
∫

θ θ θ

θ

θ

π π

( ) ( )

( )

− +

=

=

= − =

π

π

π

f x dx
a

b

∫ ( )

YOU’VE GOT PROBLEMS

Problem 6: Find the arc length of the parametric curve defined by the 
equations x = t + 1, y = t2 – 3 on the t-interval [1,3].

The Least You Need to Know
• To find the area between two curves, integrate the curve on top subtracted by the 

curve below it on the proper interval.

• The average value of a function, f(x), over an interval, [a,b], is found by dividing 
the definite integral of that function, f x dx

a

b

∫ ( ) , by the length of the interval itself, 
b – a.

• To calculate the distance traveled by an object, calculate the definite integral of 
its velocity function separately for each period of time it changes direction.

• Accumulation functions get their value by gathering area under a curve; they 
are defined by definite integrals with variables in one or more of their limits of 
integration.

• You can find the arc length of rectangular or parametric curves via similar defi-
nite integral formulas.



PART

5
Differential Equations and More

The final leg of your Calculus I journey ends here, in the strange sea of differential equations, a 
churning whirlpool of complicated mathematics. Not to worry—as a calculus student, you won’t 
dive headfirst into the whirlpool so much as just dip your big toe in.

Why end with differential equations? They are an extension of everything you’ve worked on so 
far. They are literally equations containing derivatives that you will solve using integration. All 
your preparation is about to pay off !

Finally, it’s time to put away your notes, stick your backpack under your chair, and take the final 
exam to find out how much you’ve learned. Eyes on your own paper!





CHAPTER

17
Differential Equations

In This Chapter
• What are differential 

equations?

• Separation of variables

• Initial conditions and 
differential equations

• Modeling exponential 
growth and decay

Most calculus courses contain some discussion of differential 
equations, but that discussion is extremely limited to the 
basics. Most math majors will tell you that they had to suffer 
through an entire course on solving differential equations at 
some point in their math career. This is because differential 
equations are extremely useful in modeling real-life  
scenarios, and are used extensively by scientists.

A differential equation is nothing more than an equation  
containing a derivative. In fact, you have created more than 
your fair share of differential equations simply by finding 
derivatives of functions in the first half of the book. In this 
chapter, you’ll begin with the differential equation (i.e., the 
derivative) and work your way backward to the original  
equation. Sound familiar? Basically you’re just going to be 
applying integration methods, as you have for numerous 
chapters now.

However, solving differential equations is not the same thing 
as integrating. There are lots of complicated differential  
equations (that we won’t be exploring). Luckily, the most 
popular differential equation application in beginning  
calculus (exponential growth and decay) requires you to use a 
very simple solution technique called separation of variables. 
Let’s start there.
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Separation of Variables
If a differential equation is nothing more than an equation containing a derivative, and solving 
a differential equation basically means finding the antiderivative, then what’s so hard about 
solving differential equations, and why does it get treated as a separate topic? The reason is that 
differential equations are usually not as straightforward as this one:

Clearly, the solution to this differential equation is y = 3sin x + x + C. All you have to do is 
integrate both sides of the equation. Most differential equations are all twisted up and knotted 
together with variables all over the place, like this:

It looks like someone chewed up a whole bunch of equations and spat them out in random order 
(which is both puzzling and unappetizing). In order to solve this differential equation, you’ll have 
to separate the variables. In other words, move all the y’s to the left side of the equation and all 
the x’s to the right side. Once that is done, you’ll be able to integrate both sides of the equation 
separately. This process, appropriately called separation of variables, solves any basic differential 
equations you’ll encounter.

DEFINITION

Differential equations are just equations that contain a derivative. Most 
basic differential equations can be solved using a method called separation 
of variables, in which you move different variables to opposite sides of the 
equation so that you can integrate both sides of the equation separately.

Example 1: Solve the differential equation = kydy
dx , where k is a constant.

Solution: You need to move y to the left side of the equation and move dx to the right side. 
Because k is a constant, it’s not clear whether or not you should move it. As a rule of thumb, move 
all constants to the right side of the equation. Your goal is to solve for y, so you don’t want any 
non-y things on the left side of the equation. Start by moving the y, so divide both sides of the 
equation by y to get:

Now shoot that dx to the right side of the equation by multiplying both sides by dx:

= +x3cos 1dy
dx

= xy dxdy

e
x2

=⋅ kdy
y dx

= k dxdy
y
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At this point, you can integrate both sides of the equation. Because k is a constant, its 
antiderivative is kx, just as the antiderivative of 5 would be 5x:

You’re not quite done yet. Your final answer to a differential equation should be solved for y. To 
cancel out the natural log function and accomplish this, you have to use its inverse function, ex, 
like this: = +e ey kx Cln . (Drop the absolute value signs around the y now—they were only needed 

because the domain of the natural log function is only positive numbers. As the natural log 
disappears, let the absolute value bars go with it.)

In other words, rewrite the equation so that both sides are the powers of the natural exponential 
function. This gives you y = ekx + C, because ex and ln x are inverse functions, and as such, 

( )= =e e xlnx xln . You could stop here, but go just one step further. Remember the basic 
exponential rule that said xa ∙ xb = xa+b? The preceding equation looks like xa+b, so you can break it 
up into xa ∙ xb:

y = ekx ∙ eC

Almost done. I promise. Because you have no idea what value C has, you have no idea what eC 
will be. You know it’ll be some number, but you have no idea what number that is. As you’ve done 
in the past, rewrite eC as C, signifying that even though it’s not the same value as the original C, 
it’s still some number you don’t know: y = Cekx.

That’s the solution to the differential equation. It took you a while to get here, but this is a very 
important equation, and you’ll need it in a few pages.

∫ ∫=
= +

k dx

y kx Cln

dy
y

YOU’VE GOT PROBLEMS

Problem 1: Solve the differential equation: ( )− =x dy1 x dx
y

2
cos .

Types of Solutions
Just like integrals, solutions to differential equations come in two forms: with and without a  
“+ C” term. Definite integrals had no such term, because their final answers were numbers rather 
than equations. Whereas the solution to a differential equation will always come in delicious, 
equation form (with candy-shaped marshmallows), in some cases, you’ll be able to determine 
exactly what the value of C should be, so you can provide a more specific answer.
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Family of Solutions
If you are only given a differential equation, you can only get a general solution. Example 1 and 
Problem 1 are two such instances. Remember, integration cannot usually tell you exactly what a 
function’s antiderivative is, because any functions differing only by a constant will have the same 
derivative.

The solution to a differential equation containing a “+ C” term is actually a family of solutions, 
because it technically represents an infinite number of possible solutions to the differential 
equation. Think about the differential equation = +x2 7dy

dx . If you use the separation-of-
variables technique, you get a solution of y = x2 + 7x + C. You can plug in any real-number value 
for C, and the result is a solution to the original differential equation.

For example, y = x2 + 7x + 5, = + −y x x72 105
13 , and y = x2 + 7x + 4π all have a derivative of 2x + 

7. These three (plus an infinite number of other equations) make up the family of solutions. The 
members of a family of solutions have nearly identical graphs, differing only in their vertical 
position along the y-axis.

DEFINITION

Any mathematical solution containing “+ C” is called a family of solutions, 
because it doesn’t give one specific answer. It compactly describes an 
infinite number of solutions, each differing only by a constant.

Knowing a family of solutions is sometimes not enough. Differential equations are often used as 
mathematical models to illustrate real-life examples and situations. In such cases, you’ll need to 
be able to find specific solutions to differential equations, but to do so you’ll need a little more 
information up front.

Example 2: Graph the family of solutions for the differential equation = + −x x3 2 6dy
dx

2  when 
C = –4, –2, 0, 2, and 4.

Solution: To solve the differential equation, begin by separating the variables. In other words, 
multiply both sides of the equation by dx to isolate the y-variables on the left side of the equal 
sign and the x-variables on the right side:

dy = (3x2 + 2x – 6) dx

Now integrate both sides of the equation separately.

∫ ∫ ( )= + −

= + − +

= + − +

dy x x dx

y x C

y x x x C

3 2 6

6

6

x x

2

3

3

2

2
3 2

3 2
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This is a family of solutions, because substituting any real number C into the equation creates 
a new solution whose derivative (with respect to x) is the original differential equation. In this 
problem, you are asked to graph specific members of the family of solutions. Plug each given 
value of C into the solution to create five unique solutions:

The only difference in each equation is the constant, the value at which the graph crosses the 
y-axis when x = 0. Therefore, the graphs are all vertical translations (or shifts) of each other, as 
illustrated in Figure 17.1.

Figure 17.1 
The family of solutions to the differential equation when C = –4, –2, 0, 2, and 4.
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= + −
= + − +
= + − +

y x x x
y x x x
y x x x
y x x x
y x x x

6 4
6 2
6
6 2
6 4

3 2

3 2

3 2

3 2

3 2

10

10

8

8

6

6

4

4

2

2

-2

-10

-8

-6

-4

-2

-4-6-8-10



Part 5: Differential Equations and More266

Specific Solutions
To determine exactly what C equals for any differential equation solution, you’ll need to know at 
least one coordinate pair of the differential equation’s antiderivative. With that information, you 
can plug in the (x,y) pair and solve for C. To explain what I mean, I have thrown together a little 
example for those game show fans out there.

I don’t know what it is that makes people (by which I mean my wife and me) so excited to watch 
other people agonize about winning dishwashers by throwing comically oversized dice, but it 
doesn’t stop us from watching game shows. However, the sudden trend in these programs isn’t 
playing silly games for prizes anymore; instead, they subject the contestants to peril in order to 
win vast sums of money.

Example 3: A new television game show in the works already is making quite a stir. Terminal 
Velocity will suspend contestants by their ankles on a bungee cord. Producers are still working out 
the details, but one of the show’s features will be dropping the participants from the ceiling and 
allowing them to repeatedly lurch their way toward the studio floor as the length of the bungee 
slowly increases. Also, the audience will throw things at them (like small rocks or maybe piranhas 
if ratings begin to sag).

Suppose that the velocity of a contestant (in ft/sec), for the first 10 seconds of her fall, is given by 
( )= − −t80sin 2 4ds

dt . If the initial position of the doomed individual is 115 feet off the ground, 
find her position equation.

Solution: You are given a differential equation representing velocity. The solution to the 
differential equation will then be the antiderivative of velocity, position. The problem also tells 
you that the initial position is 115 feet high. This means that the contestant’s position at time 
equals 0 is 115, so s(0) = 115. You’ll use that in a second to find C, but first things first—you need 
to apply separation of variables to solve the differential equation:

∫ ∫ ( )
( ) ( )

= − − 
= − +

ds t dt

s t t t C

80sin 2 4

40cos 2 4

YOU’VE GOT PROBLEMS

Problem 2: Identify the family of solutions to the differential equation 
= x ycscdy

dx
4 . Then, identify a solution that passes through point (x,y) = (1,0).
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There you have it—the position equation. Remember that you should get 115 if you plug in 0 for 
t; make that substitution, and you can find C easily:

Therefore, the exact position equation is s(t) = 40cos(2t) – 4t + 75.

( )
( )

= ⋅ − ⋅ +

= +

= ⋅ +
=

C

C

C
C

115 40cos 2 0 4 0

115 40cos 0

115 40 1
75

YOU’VE GOT PROBLEMS

Problem 3: A particle moves horizontally back and forth along the x-axis 
according to some position equation s(t); the particle’s acceleration  
(in ft/sec2) is described accurately by the equation a(t) = 2t + 5 – sin t. If 
you know that the particle has an initial velocity of –2 ft/sec and an initial 
position of 5 feet, find v(t) (the particle’s velocity) and s(t) (the particle’s 
position).

Exponential Growth and Decay
Most people have an intuitive understanding of what it means to exhibit exponential growth. 
Basically, it means that things are increasing in an out-of-control way, like a virus in a horror 
movie. One infected person spreads the illness to another person, then those two spread it to 
other people. Two infected people become four, four become eight, eight become sixteen, until 
it’s an epidemic and Jackie Chan has to come in to save the day, possibly with karate kicks.

Truth be told, actual exponential growth doesn’t happen a lot. An exponential growth model 
assumes that there is an infinite amount of resources from which to draw. In our epidemic example, 
the rate of increase of the illness cannot go on uninhibited, because eventually, everyone will already 
be sick. To get around such restrictions, many problems involving exponential growth and decay 
deal with exciting things like bacterial growth. Bacteria are small, so it takes them much longer to 
conquer the world (thanks in no small part, once again, to Jackie Chan).

DEFINITION

Exponential growth occurs when the rate of change of a population 
is proportional to the population itself. In other words, the bigger 
the population, the larger it grows. Logistic growth begins almost 
exponentially but eventually grows more slowly and stops, as the 
population reaches some limiting value.
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Notice that in Figure 17.2, the logistic growth curve changes concavity (from concave up to concave 
down) about midway through the interval. This change in concavity indicates the point at which 
growth begins to slow.

Figure 17.2 
Two kinds of growth. Neither explains that weird mole on your neck.

A more realistic example of growth and decay is logistic growth. In this model, growth begins 
quickly (it basically looks exponential at first) and then slows as it reaches some limiting factor 
(as our virus could only spread to so many people before everyone was already dead—isn’t that a 
pleasant thought?). Although it is not beyond our abilities to examine logistic growth, it is by far 
more complicated to understand and model, so we’ll stick with exponential growth.

Mathematically, exponential growth is pretty neat. We say that a population exhibits exponential 
growth if its rate of change is directly proportional to the population itself. Thus, a population P 
grows (or decays) exponentially if dPdt  and P are in proportion to each other.

So how fast something grows or decays is based on how much of it there is. Without getting into 
a lot of detail (too late for that, isn’t it?), we can say that these two things are in proportion when 
they’re equal to each other, if one of the terms is multiplied by a constant (for instance, one thing 
is two times or five times as big as the other).

Recognize that? It’s Example 1! Because you already solved this differential equation earlier in 
the chapter, you know that a population showing exponential growth has this equation:

y = Nekt

(I know I used C as the constant before, but I like having the N there better, because when 
you read the formula, it looks like the word naked, and I am immature enough to think that’s 
pretty funny.) In this formula, N represents the beginning or initial population, k is a constant 

Logistic growth

limiting value

Exponential growth

= ⋅k PdP
dt
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of proportionality, and t stands for time. (The e is a constant—Euler’s number, which you’ve 
undoubtedly seen lurking about in your precalculus work. Most calculators, even scientific ones, 
have a button for Euler’s number, so you don’t have to memorize it.) The y represents the total 
population after time t has passed.

Your first step in the majority of exponential growth and decay problems is to find k, because you 
will almost never be able to determine what k is based on the problem. Don’t even try to guess 
k—it’s rarely, if ever, obvious. For example, if your population increased in the familiar sequence 
2, 4, 8, 16, 32, etc., you might be tempted to think that k = 2 because the population constantly 
doubles, but instead, k ≈ 0.693147, which is actually ln 2.

CRITICAL POINT

You use the same formula for both exponential growth and decay. The only 
difference in the two is that k will turn out to be negative in decay problems 
and positive in growth problems. In both cases, N represents the initial 
value.

Example 4: Even after the movie Pay It Forward came out, the movement promoted by the film 
never really caught on. Its premise was that you should do a big favor for three different people, 
something they couldn’t accomplish on their own. In turn, they would provide favors for three 
other people, and so on. Unfortunately, a new movement called Punch It Forward is catching on 
instead. It’s the same premise, but with punching instead of favors. On the first day of Punch It 
Forward, 19 people are involved in the movement. After 10 days, 193 people are involved. How 
many people will be involved 30 days after Punch It Forward begins, assuming that exponential 
growth is exhibited during that time?

Solution: Use the exponential growth and decay formula y = Nekt. N represents the initial 
population (19). You know that after 10 days have elapsed, the new population is 193. Therefore, 
when t = 10, y = 193. Plug all these values in and solve for k:

( )

=
=

=

=

=

≈

( )

y Ne
e

e

k

k

k

193 19

ln 10

0.231825

kt

k

k

10

193
19

10

193
19

ln 193/19
10
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Therefore, the exponential growth model is y = 19e0.231825t. To determine the population after the 
first 30 days, plug in 30 for t:

Approximately 19,914 people have been inducted (and possibly indicted) into the Punch It 
Forward society after only one month. It’s a brave new world, my friend.

Example 5: According to Sir Isaac Newton (the very same cofounder of calculus discussed in 
Chapter 1), the rate at which an object cools is directly proportional to the temperature of its 
environment. This property is known as Newton’s Law of Cooling. Now that I have shared this 
tasty nugget of information with you, how about a couple of questions to help you digest it?

 (a) Assume that an object cools at a rate of dTdt , where T is the temperature of the object 
after time t has elapsed. Furthermore, the object’s environment has temperature TE and 
the constant of proportionality described by Newton is equal to k. Create a differential 
equation based on Newton’s Law of Cooling and solve it for T. Then, identify the 
specific solution stating that the original temperature of the object (when t = 0 and no 
time has passed) equals T0.

 (b) According to scientists, the optimum temperature for tea is 140°F. You leave a cup of tea 
at this temperature in a 72°F room, and exactly 17.5 minutes later it reaches 113°F, the 
minimum temperature at which scientists deem the tea still drinkable. At approximately 
what time was the tea’s temperature 125°F?

Solution:

 (a) The first part of this problem requires you to generate Newton’s Law of Cooling. It 
states that the rate dTdt  at which an object’s temperature T changes is proportional to  
the difference between the object’s temperature T and the temperature of the environ-
ment TE.

  Recall that if two values are proportional, it means you can multiply one of those values 
by a constant (in this case k) to get the other value. Separate the variables, dividing both 
sides of the equation by T – TE and multiplying both sides by dt:

=
≈

( )y e
y

19
19,914.2

0.231825 30

( )= −k T TdT
dt E

=
−

k dtdT

T TE
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  Integrate both sides of the equation:

  Note that TE and k are constants, so treat them as you would any other number. That 
means ∫ = ⋅ +k dt k t C . Use u-substitution to integrate the left side of the equation. If 
u = T – TE, then du = dt and ∫ = + = − +u C T T Cln lndu

u E . Set these two new integrals 
equal to each other as described in the above differential equation:

  The absolute value bars are unnecessary. The object will eventually cool to room 
temperature (TE), but it will not get colder than that. Because T ≥ TE, you can conclude 
that T – TE ≥ 0.

ln (T – TE) = kt + C

  Don’t lose sight of your goal, to solve this equation for T. Exponentiate both sides of the 
equation, making them powers of e, to eliminate the natural logarithm.

  Recall that eC is another unknown constant, which can be represented once again by C.

  Whew! That’s a lot of work but finally you have an equation solved for T. This is a family 
of solutions, and to complete this problem, you need to identify the specific solution for 
which T = T0 when t = 0. Your goal is to figure out what C should equal:

  Substitute this value of C into your solution:

∫ ∫=
−

k dtdT

T TE

− = +T T kt Cln E

=( )−e e eT T kt Cln E

− = ⋅

− =

= +

T T e C

T T Ce

T T Ce

E
kt

E
kt

E
kt

( )

= +

= +

= +

− =

( )T T Ce

T T Ce

T T C

T T C

1

E
k

E

E

E

0
0

0
0

0

0

( )
= +

= + −

T T Ce

T T T T e
E

kt

E E
kt

0
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  The final equation is the solution you’re looking for. It translates Newton’s Law of 
Cooling into a handy formula that you can use any time you want. For example, you 
could use it in part (b) of the problem!

KELLEY’S CAUTIONS

This problem is just riddled with t’s. There’s t, T, dt, dT, T0, TE , and there’s even 
tea in the cup! Proceed carefully or your answer might dt-iorate right before 
your eyes.

 (b) Begin by taking inventory of the information you are given. You know that the original 
temperature of your tea was T0 = 140 in a room with temperature TE = 72. After t = 17.5 
minutes, the tea has a new temperature of t = 113. Plug all of this information into the 
equation you created in part (a).

  The only information the problem does not give you is the unique value of k for this 
situation. Luckily, you can solve this equation to determine the value of k:

  Now that you know the value of k, you can finally take the t out of “mystery.” Come to 
think of it, that would leave you with “mysery,” which sounds like “misery,” which is an 
apt description for a problem this long.

( )
( )

( )

= + −

= + −

− =

=

( )
T T T T e

e

e

e

113 72 140 72

113 72 68

41 68

E E
kt

k

k

k

0

17.5

17.5

17.5

( )
( )

( )
=

=

=

=

− ≈

( )

e

e

k

k

k

ln ln

ln 17.5

0.028910608

k

k

41
68

17.5

41
68

17.5

41
68

ln 41/68
17.5
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  You want to know what time t elapses between your drink’s original temperature of 
T0 = 140 and the new temperature T = 125. You already know that TE = 72 and you just 
discovered a shiny new value of k to use. Let’s break out Newton’s Law of Cooling one 
last time:

  Your tea cools to 125°F after approximately 8.62 minutes. There are 60 seconds in a 
minute, so 0.62 minutes is equal to (0.62)(60) = 37.2 seconds. Therefore, your tea reaches 
125°F after approximately 8 minutes, 37.2 seconds.

( )

( )
( )

= + −

= + −

− =
=

=

= −

=

≈

( )

( )

−

−

−

−

−

T T T T e

e

e
e

e

t

t

t

125 72 140 72

125 72 68
53 68
53
68

ln 0.028910608

8.62

E E
kt

t

t

t

t

0

0.028910608

0.028910608

0.028910608

0.028910608

53
68

ln 53/68
0.028910608

YOU’VE GOT PROBLEMS

Problem 4: Those big members-only warehouse superstores always sell 
things in such gigantic quantities. It’s unclear what possessed you to buy 
15,000 grams of Radon-222 radioactive waste. Perhaps you thought it 
would complement your 50-gallon barrel of mustard. In any case, it was a 
bigger mistake to drop it in the parking lot.

All radioactive waste has a defined half-life—the period of time it takes for 
half of the mass of the substance to decay away. The half-life of Radon-222 
is 3.82 days. (In other words, 3.82 days after the waste pours out on the 
asphalt, 7,500 grams remain, and only 3,750 grams 3.82 days after that.) 
Approximately how long will it take for the 15,000 grams of Radon-222 to 
decay to a harmless 50 grams?
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The Least You Need to Know
• Differential equations contain derivatives; solutions to basic differential equations 

are simply the antiderivatives solved for y.

• If a problem contains sufficient information, you can find a specific solution for a 
differential equation; it won’t contain a “+ C” term.

• If a population’s rate of growth or rate of decay is proportional to the size of the 
population, the growth or decay is exponential in nature.

• Exponential growth and decay are modeled with the equation y = Nekt.



CHAPTER

18
Visualizing Differential Equations

In This Chapter
• Approximating function 

values with tangent lines

• Slope fields: functional 
fingerprints

• Using Euler’s Method 
to solve differential 
equations

• Drawing slope fields with 
a calculator

Our brief encounter with differential equations is almost 
at an end. Like ships passing in the night, we will soon go 
our separate ways, and all you’ll have left are the memories. 
Before you get too nostalgic, though, we have to discuss some 
slightly more complex differential equation topics.

We’ll start with linear approximation, which we actually 
could have discussed in Chapter 9, because it is basically an 
in-depth look at tangent lines. However, it is a precursor to 
a more complex topic called Euler’s Method, which is an 
arithmetic-heavy way to solve differential equations if you 
can’t use separation of variables. It’s a good approximation 
technique to have handy, because there are about 10 gijillion 
other ways to solve differential equations that we don’t know 
the first thing about at this level of mathematical maturity.

Before we call it quits, we’ll also spend some quality time 
with slope fields. They are exactly what they sound like—a 
field of teeny little slopes, planted like cabbages. By examin-
ing those cabbages, we can tell a lot about the solution to 
a differential equation. All in all, this chapter focuses on 
ways to broaden our understanding of differential equations 
without having to learn a whole lot more mathematics in the 
process. You have to love that.
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Linear Approximation
We’ve been finding derivatives like mad throughout this entire book. Even though the derivative 
is the slope of the tangent line, it took us a while to appreciate why that could be even a remotely 
useful thing to know. In time, we learned that derivatives describe rates of change and can be 
used to optimize functions, among other things.

Let’s add something new to the list about how mind-numbingly useful derivatives are. Take a 
look at the graph of a function f(x) and its tangent line at the point (c, f(c)) in Figure 18.1.

Figure 18.1 
The graphs are very close to one another at x = c, but the father away from the point of tangency, 

the father apart they get. The line, for example, would not give you a good approximate value for f(0). 
The y-intercept of the line is negative, but the function is positive when x = 0.

Notice how the graph of f(x) and the tangent line graph get very close to each other around  
x = c. If you were to plug a value of x very close to c into both functions, you’d get almost the 
same output.

Because the equation of a tangent line to a function has values that usually come very close to 
the function around the point of tangency, that tangent equation is a good linear approximation 
for the function. No matter how simple a function may be to evaluate, not many functions are 
simpler than the equation of a line. Furthermore, some functions are way too hard to evaluate 
without a calculator, and linear approximations come in handy for approximating such functions.

DEFINITION

A linear approximation is the equation of a tangent line to a function used 
to approximate the function’s values lying close to the point of tangency.

f(x)

(c,f(c))
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Example 1: Estimate the value of ln(1.1) using the linear approximation to f(x) = ln x centered at 
x = 1.

Solution: The problem asks you to center your linear approximation at x = 1; this means that you 
should find the equation of the tangent line to f(x) at that x-value. It’s easy to build the equation 
of a tangent line—you did it way back in Chapter 10. All you need is the slope of the tangent 

line, which is ( )′ = =f 1 11
1 , and the point of tangency, which is f(1) = ln 1 = 0.

With this information, use the point-slope equation to build the tangent line:

KELLEY’S CAUTIONS

Remember: use a linear approximation only for x-values close to the x at 
which the approximation was centered. Notice that the approximation 
in Example 1 gives an awful approximation of ln x when =x 1

8 : –0.87. The 
actual value of ln 1

8  is –2.079. That’s rather inaccurate, even though 1
8  is less 

than one unit away from the center of the approximation!

Now plug x = 1.1 into the linear equation; you’ll get y = 1.1 – 1 = 0.1. The actual value of ln(1.1) is 
0.09531, so your estimate is pretty close.

( )
( )

− = −

− = −

= −

y y m x x

y x

y x

0 1 1

1

1 1

YOU’VE GOT PROBLEMS

Problem 1: Estimate the value of arctan (1.9) using a linear approximation 
centered at x = 2.

Slope Fields
Even if you can’t solve a differential equation, you can still get a good idea of what the solution’s 
graph looks like. You just learned that a graph’s tangent line looks a lot like the graph right 
around the point of tangency. Well, if you draw little tiny pieces of tangent line all over the 
coordinate plane, those pieces will show the shape of the solution graph. It’s similar to using 
metallic shavings to determine where magnetic fields lie, or sprinkling fingerprint powder on a 
table’s surface to highlight the shape of the print.

Drawing a slope field is a very simple process for basic differential equations, but it can get a 
bit repetitive. All you have to do is plug points from the coordinate plane into the differential 
equation. Remember, the differential equation represents the slope of the solution graph, as it is 
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the first derivative. You will then draw a small line segment centered at that point with the slope 
you calculated.

DEFINITION

A slope field is a tool to help you visualize the solution to a differential 
equation. It is made up of a collection of line segments centered at points 
whose slopes are the values of the differential equation evaluated at those 
points.

Let’s start with a very basic example: = x2dy
dx . You know that the solution to this differential 

equation is y = x2 + C, a family of parabolas with their vertices on the y-axis. Let’s draw the slope 
field for = x2dy

dx . First, let’s identify the fertile field where our slopes will grow and flourish (see 
Figure 18.2).

Figure 18.2 
Each of the points indicated has coordinates that are integers; this makes the substitution a little 

quicker and easier.

At every dot on that field, you’re going to draw a tiny little segment. Let’s start at the origin. If 
you plug (0,0) into = x2dy

dx , you get = ⋅ =2 0 0dy
dx , so the slope of the tangent line there will be 

0 (i.e., the line is horizontal). Therefore, draw a small horizontal segment centered at the origin. 
The substitution was pretty easy—you didn’t even have to plug the y-value in, because there is 
no y in the differential equation.

Now, you should do the same thing for every other point in Figure 18.2. Let’s do one more 
together to make sure you’ve got the hang of this. For fun, I’ll pick the point (1,2)—doesn’t that 
sound fun? Plugging it into the differential equation gives you = ⋅ =2 1 2dy

dx . Therefore, the line 
segment centered at (1,2) will have a slope of 2.

-1
-1

1

1

-2

-2

-3

-3

2

2

3

3
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Once you’ve plugged all those points into the differential equation, you should end up with 
something like Figure 18.3.

Figure 18.3 
A slope field with just a hint of parabola.

CRITICAL POINT

As a rule of thumb, a slope of 1 means a segment with a 45-degree angle. 
Greater slopes will be steeper and smaller slopes will be shallower. Negative 
slopes will fall from left to right, whereas positive slopes rise from left to 
right.

Can you see the shape hiding among all the little twigs? It’s not perfect, but these little segments 
do a pretty good job of outlining the shape of a parabola whose vertex is on the y-axis. The slope 
field traces the shape of its solution curve. If you use a computer to draw the slope field, the 
shape is even clearer. (Computers don’t tire as easily as I do when plugging in points; they don’t 
even mind fractions.) For example, Figure 18.4 is a computer-generated slope field for = x2dy

dx  
with a specific solution shown, so you can see how well the slope field traces the solution.

KELLEY’S CAUTIONS

A slope field will always outline a family of solutions. If you are given a point 
on the graph of the solution, place your pencil there and follow the paths of 
the slope segments to get an approximate graph of the specific solution.
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YOU’VE GOT PROBLEMS

Problem 2: Draw the slope field for = +
−

dy
dx

x y
x y  and sketch the specific solution 

to the differential equation that contains the point (0,1).

Figure 18.4 
Although one parabola is drawn as a possible solution, it’s easy to see that there are a lot of possible 

parabolas hiding in the woodwork. The solution graph assumes that the point (0,–1) is a point on the 
solution.

Again, this is a very detailed slope field; the computer calculates slopes at many fractional 
coordinates as well as integer coordinates. If you know that the solution to the differential 
equation contains the point (0,–1), you get the specific solution, represented by the darkened 
graph.

CRITICAL POINT

You can download a fantastic program called Graphmatica that draws slope 
fields on your computer at graphmatica.com.

Slope fields are most useful when you can’t solve the given differential equation by separation 
of variables but still want to see what the graph of the solution looks like. There are many 
differential equations out there that we can’t solve at this level of our journey toward 
mathematical enlightenment, so it’s good to enlist as many allies as we can.
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Euler’s Method
To understand what Euler’s Method really accomplishes in the land of differential equations, 
we need to talk about navigating through the woods. I’m not a huge fan of the outdoors, to be 
perfectly honest. I’m glad to be inside with the air conditioning on, away from flies, ticks, and 
those ugly little spiders that burrow under your skin and lay eggs in your brain. You may say 
those kinds of spiders don’t exist and you’re probably right, but there’s nothing wrong with being 
too careful.

DEFINITION

Euler’s Method is a technique used to approximate values on the solution 
graph to a differential equation when you can’t actually find the specific 
solution to the differential equation via separation of variables. By the way, 
Euler is pronounced OIL-er, not YOU-ler.

This was not the case when I was younger. I always enjoyed tromping around outside and 
coming in as dirty as possible, covered in mud, sand, grass stains, and mashed bugs. In particular, 
I enjoyed exploring the woods with my friends. Most of the time, we’d be in areas either my 
friends or I knew extremely well. We even had crude maps of the woods drawn out, not that we 
ever actually had to resort to them. In new or unfamiliar woods, however, we’d rely on a compass 
to direct us to a road we knew: “Okay, if we get lost we’ll go west and meet at the rotten tree 
trunk John lost his shoe in last year; watch out for those brain-egg spiders along the way.”

When you solve a differential equation using separation of variables, you’re given a map to all the 
correct solutions for that differential equation. In fact, the correct path to follow is the graph of 
the equation’s solution. Back to our simple example from earlier: if the solution to the differential 
equation = x2dy

dx contains the point (3,6), you can find the exact solution using separation of 
variables. The antiderivative will be y = x2 + C, and you can plug in the coordinate pair to find C:

= +
= +

− =

C
C

C

6 3
6 9
3

2
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Therefore, the exact solution to the differential equation is y = x2 –3. Now that you have this 
solution, it maps your way to other values on the solution graph. For example, it’s very easy to 
determine what the value of y(4) is (i.e., the solution graph’s output when you input x = 4):

The solution graph “map” makes it easy to find the correct y-value corresponding to any x-value. 
But—and this is a big but—what if you can’t solve the differential equation by separation of 
variables? Instead of a map, you’ll use the compass of Euler’s Method.

You’ll still be given a point on the solution curve in these problems, but you won’t be able to 
use it to find C. Instead, you’ll use it as your reference point (“If you get lost, go west and meet 
at the shoe-devouring tree trunk”). From there, you’ll take a compass reading (“We should go 
north—that big tree that looks like Scooby Doo is north from here”). When you have gone a 
fixed distance, you’ll take another compass reading (“Okay, we’re at the tree; now we should go 
northeast to that log with the frog on it”). After every small journey (as you reach each landmark), 
you’ll take a compass reading and make sure that your course is true, and that you’re heading in 
the right direction. After all, you are navigating in unknown lands without a map, with dangerous 
spiders everywhere. Better keep checking your compass.

Remember, a function and its tangent line have nearly equal values near the point of tangency. 
This is essential to Euler’s Method. Taking compass readings in the woods is analogous to finding 
the correct derivative for the given function. We’ll then step carefully along this slope for a 
fixed amount of time. If we go too far, the values of the slope will become too different from the 
values of the function (whose map we don’t have). So we’ll make another derivative check and 
start moving down this new direction. Remember, we don’t know where the path is, but by using 
derivatives, we’re staying as close to it as possible.

Before we can actually perform Euler’s Method, we need to possess one prerequisite skill. Let’s 
say you are at the point (0,3) and want to walk along a certain line that passes through that point. 
If that line has slope =m 2

5 , then walking up two units and to the right five units—arriving at 
the point (5,5)—ensures that you stay on the line. However, what if you only want to go 1

3  of a 
unit up? How many units would you go right to make sure you were still on the line?

Example 2: Line l passes through (0,3) and has slope =m 2
5 . Without finding the equation of line l, 

find the correct y in the coordinate pair ( )y,1
3  if that point is also on line l.

( )
( )
( )

= −
= −

= −

=

y x
y

y

y

3
4 4 3

4 16 3

4 13

2

2
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CRITICAL POINT

In Example 2, you’re learning how to use a compass reading ( )=m 2
5  to walk 

a short distance ( )=x 1
3  and yet stay on the correct path.

Solution: The point ( )y,1
3  is exactly 1

3  of a unit to the right of the original point (0,3), so you can 
say that the change in x is 1

3  from the first to the second point. Mathematically, this is written 
Δx = 1

3 . All you have to do is find the corresponding Δy to determine how far you should go 
vertically from the original y-value of 3. Remember that according to the slope equation you 
learned in your mathematical infancy, slope is equal to the change in y divided by the change in 
x: =m y

x . Use this equation to find the correct Δy:

According to this, you need to go up 2
15  of a unit from the original y-value of 3 to stay on the 

line. Because + = + =3 2
15

45
15

2
15

47
15 , the point ( ),1

3
47
15  is guaranteed to be on the line through (0,3) 

whose slope is 2
5 .

=

=

=

= ⋅

=

m

y

y

y

5

y
x
y2

5 1/3
2
3
2
3

1
5

2
15

Now it’s time to actually use Euler’s Method. Euler’s problems give you a differential equation, a 
starting point, and a value that needs estimating on the solution curve. You’ll be told how many 
steps of what width to use, and you’ll take steps of that width using the same method you used in 
Example 2.

Example 3: Use Euler’s Method with three steps of width Δx = 1
3  to approximate y(3) if 

= +x ydy
dx  and the point (2,1) appears on the solution graph.

Solution: It should be clear why the width of the steps is Δx = 1
3 —you’re stepping from  

x = 2 to x = 3 in three steps. You’ll repeat the same process three times, one for each step.

Step 1: From x = 2 to =x  (or 2 )7
3

1
3

YOU’VE GOT PROBLEMS

Problem 3: If you begin at point (–1,4) and proceed to the right a distance 
of Δx = 1

2  along a line with a slope of = −m 2
3 , at what point do you arrive?
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The tangent slope at the point (2,1) is:

KELLEY’S CAUTIONS

The more steps you take (i.e., the smaller the width of each step), the 
more accurate your final approximation will be. Even with large steps, 
however, Euler’s Method gets messy quickly; the ugly fractions compound, 
and it’s easy to make an arithmetic mistake. It’s best to check your work 
with a calculator.

Use this slope to calculate the correct value of Δy:

This tells you to go up one unit from y = 1 while stepping right 1
3  from x = 2:

Step 2: From = =x x (or 2 ) to  (or 2 )7
3

1
3

8
3

2
3

Repeat the same process as before, but use a starting point of ( ),27
3  instead of (2,1). This time, 

the tangent slope is = + = + =x y 2dy
dx

7
3

13
3  while Δx remains 1

3 . Find Δy:

So the starting point for the final step will be:

Step 3: From =x  (or 2 )8
3

2
3  to x = 3

= +

= +
=

x y

2 1
3

dy
dx

=

=

= ⋅

=

y

y

3

3

1

dy
dx

y
x
y

1/3
1
3

( ) ( )+ + =2 ,1 1 ,21
3

7
3

=

=

=

y

y

3

y13
3 1/3

13
3

13
9

( ) ( )+ + =,2 ,7
3

1
3

13
9

8
3

31
9
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This time, the slope of the tangent line is = + =dy
dx

8
3

31
9

55
9 ; again, use it to find that =y 55

27 . Add 

Δx and Δy to ( ),8
3

31
9 :

According to Euler’s Method, the solution to the differential equation = +x ydy
dx  at x = 3 is 

approximately 148
27 , or 5.481.

( ) ( )+ + =, 3,8
3

1
3

31
9

55
27

148
27

YOU’VE GOT PROBLEMS

Problem 4: Use Euler’s Method with three steps of width =x 1
3  to 

approximate y(1) if = −x y2dy
dx  given that the solution graph passes through 

the origin.

Technology Focus: Slope Fields
I have good news and bad news. I’ll start with the bad news: TI-84 calculators cannot generate 
slope fields natively. There is no function built into the factory software that allows you to draw 
them. However, there are plenty of programs you can download and install on your calculator 
if you are somewhat technologically savvy. Check out websites like ticalc.org for archives of 
programs including slope field generators.

Now for the better news: the TI-89 calculator can generate slope fields. The technique is a little 
counterintuitive, but it can be done. Let’s start with Example 2 in this chapter, which asked 
you to draw the slope field for = x2dy

dx  and then draw the specific solution to the differential 
equation that passed through point (0,–1).

Start by pressing =y  and under the “Graph” option, change “Function” to “Diff Equations,” as 
illustrated in Figure 18.5.

Figure 18.5 
When you’re finished graphing slope fields, be sure to change the mode back to “Function.”



Part 5: Differential Equations and More286

The familiar F1 screen, which you access by pressing “ = x2dy
dx ,” suddenly looks very unfamiliar. 

Because you are entering derivatives, the equations are labeled y1 ′ and y2 ′ instead of Y1 and Y2 
(see Figure 18.6).

Figure 18.6 
Enter your differential equations here.

You want to graph the slope field for = x2dy
dx . Here’s the strange part: use t instead of x when you 

type the equation. Because you also want the specific solution that equals –1 when x = 0, type –1 
as the initial value for the differential equation: yi1 = –1 (see Figure 18.7).

Figure 18.7 
This will generate the slope field for = x2dy

dx  that passes through point (0,–1).

Before you graph the slope field, be sure to adjust your graph window by pressing = +
−

dy
dx

x y
x y  

and selecting “ZoomSqr” or “Zoom Std.” This ensures that the units are of equal length both 
horizontally and vertically. It keeps your graph in the correct proportions. The graph of the 
function (Figure 18.8) looks like the solution we expected, based on Figure 18.4.
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Figure 18.8 
The slope field for = +

−
dy
dx

x y
x y  and specific solution with initial (x = 0) value of –1.

How about something a little more complicated? If your differential equation contains x’s and y’s, 
the notation is, once again, sadly unintuitive. Let’s use the calculator to check your solution to 
Problem 2 from the “You’ve Got Problems” sidebar earlier in this chapter. You’re asked to draw 
the slope field for = +

−
dy
dx

x y
x y  and then graph the specific solution that passes through (0,1).

When you type this into your calculator, once again replace x with t. In addition, you should  
type y as y1. You don’t need to use any special characters—just type the y followed by a 1. You’re 
also looking for the specific solution that equals 1 when x = 0, so enter a value of 1 for yi1 (see 
Figure 18.9).

Figure 18.9 
This will draw the slope field for = +

−
dy
dx

x y
x y

 and a specific solution that equals 1 when x = 0.

The resulting graph (Figure 18.10) matches the solution provided in Appendix A.
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Figure 18.10 
This graph is tricky to generate by hand, but the calculator can determine how best to draw the 

solution curve.

The Least You Need to Know
• A function and its tangent line have similar values near the point of tangency.

• Slope fields are collections of small tangent lines spread out over the coordinate 
plane that trace the graphs of solutions to differential equations.

• Euler’s Method is used to approximate solutions to differential equations via linear 
approximation.

• Some calculators can draw slope fields, which is pretty handy for checking your 
work.



CHAPTER

19

In This Chapter
• Measuring your 

understanding of all major 
calculus topics

• Practicing your skills

• Determining where you 
need more practice

Nothing helps you understand math like good old-fashioned 
practice, and that’s the purpose of this chapter. You can use 
it however you like, but I suggest one of the following three 
strategies:

 1. As you finish reading each chapter, skip back here and 
work on the practice problems from that chapter.

 2. If you’re using this book as a refresher for a class you’ve 
already taken, complete this test before you start 
reading the book. Then, go back and read the chapters 
containing problems you missed. After you’ve reviewed 
those topics, try these problems again.

 3. Save this chapter until the end, and use it to see how 
much you remember of each topic when you haven’t 
seen it for a while.

Final Exam

Because these problems are just meant for practice, and not meant to teach new concepts, only 
the answers are given at the end of the chapter, usually without explanation or justification 
(unlike the problems in the “You’ve Got Problems” sidebars throughout the book). However, these 
practice problems are designed to mirror those examples, so you can always go back and review if 
you forgot something or need extra practice.

Are you ready? There’s a lot of practice ahead of you—as some problems have multiple parts, 
there are actually more than 100 practice problems in this chapter! (But no one said you have to 
do them all at one sitting.)
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 13. Given the graph of function j(x) and a 
table of values for the following function 
k(x), calculate j–1(k(2)). Assume that j(x) has 
inverse function j–1(x); also assume that all 
points indicated on the graph of j(x) have 
integer coordinates.

 14. Put the parametric equations x = 2t + 6, 

= −y t 1  into rectangular form.

Chapter 4
 15. If θ = −cos 7

4  and θ = −sin 3
4  calculate  

cscθ and cotθ.

 16. Evaluate πsin 14
3  using a coterminal angle 

and the unit circle.

 17. Factor and simplify the trigonometric 
expression 1 – tan4θ.

 18. Solve the equation 

( )( )+ − =x x2cos 2 sin 1 0  and provide all 
solutions on the interval [0,2π).

j(x)

6

5

4

3

2

1

-1

-2

-3

-4

-5

-6

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

x
-4
-3
-2
-1
1
2
3

5
4
2
0
-3
-4
-6

k(x)

Chapter 2
 1. Put the linear equation in standard form: 

–3(x + 2y) – 4y + 8 = x – 1.

 2. Determine the equation of the line that 
passes through the point (–5,3) and has slope 
− 1

2 ; write the equation in standard form.

 3. Calculate the slope of the line that passes 
through points (2,–3) and (–5,–8).

 4. Line n passes through the point (2,–1) and is 
perpendicular to the line 3x – 5y = 2. Write 
the equation of n in standard form.

 5. Simplify the expression 
( )
( )
xy

x y

2
3

9
2

3

4 2
.

 6. Factor the expression completely:  

32x2 – 98y2.

 7. Solve the equation 2x2 – 16x = 22 by 
completing the square.

 8. Solve the equation by factoring: x2 – 256 = 0.

 9. Solve the equation using the quadratic 
formula: 3x2 + 4x + 1.

Chapter 3
 10. If f(x) = x2 – 4x, ( ) =g x x , and  

h(x) = x – 4, evaluate f(g(h(13))).

 11. Determine what kind of symmetry, if any, is 
evident in the graph of y = x5 – x3 + x – 5.

 12. Find the inverse function, f–1(x), if 
f(x) = 5x – 3; verify that f(x) and ( )−f x1  
are inverses by demonstrating that 
( ) ( )( ) ( )=− −f f x f f x1 1

.
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 23. Evaluate the limits using the factoring 
method:

  (a) 
→

+ +

+lim
x

x x

x3/2

2 7 6

2 3

2

  (b) 
→−

+ −

+ +
lim
x

x x

x x4

3 11 4

5 23 12

2

2

 24. Evaluate 
→−

+ −
+lim

x

x
x4

5 1
4  using the conjugate 

method.

 25. Evaluate the limit of ( ) = − +

− −
g x x x

x x

11 24

2 3

2

2
 as 

x approaches each value for which g(x) is 
undefined.

 26. Evaluate the following limits:

  (a) 
→−∞

−

+ −
lim

x

x

x x

9

5 7 3

2

2

  (b) 
→∞

+

− +
lim
x

x x

x x

4 6

19 5 2

3 2

2

  (c) 
θ

θ
θ→

−lim
0

1 cos 4

  (d) ( )−
→

+ −
− + −lim

x

x x
x x

x
x2

4 12
11 18

3
4

2

2

 27. Given h(x) = tan x, evaluate the following 
limits:

  (a) ( )
π→
h xlim

x 3 /4

  (b) ( )
π→
h xlim

x /2

Chapter 7
 28. Determine whether or not the function f(x), 

as defined here, is continuous at x = 4:

( ) = ≠

=







− −

−f x x

x

, 4

19, 4

x x
x

4 13 12

4

2

Chapter 5
 19. Evaluate 

→−

−

+lim
x

x

x8

64

8

2

.

 20. Given f(x) as defined here, calculate 

( )
→ +

f xlim
x 4 .

 21. Evaluate the limits on the graph:

  (a) ( )
→
g xlim

x 10

  (b) ( )
→
g xlim

x 7

  (c) ( )
→
g xlim

x 0

  (d) ( )
→
g xlim

x 5

Chapter 6
 22. Evaluate the limits using substitution:

  (a) ( )⋅
π→

x xlim sin
x /4

  (b) ( )− +
→

x xlim 3 1
x a2

2

( ) = ≤
− >






f x x x

x x
, 4
5, 4

(7,4)

(5,0)

(0,1)

(0,-2)

x = 10

g(x)
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 29. Find the value of c that makes the function 
g(x) everywhere continuous:

 30. Find all the x-values for which the function 

( ) = − +

− −
h x x x

x x

12 35

2 13 7

2

2
 is discontinuous and 

classify each instance of discontinuity.

 31. Does the Intermediate Value Theorem 
guarantee the following function values for 
f(x) = 3x2 – 12x + 4 on the closed interval 
[0,5]? Why or why not?

  (a) 10

  (b) 20

Chapter 8
 32. Use the difference quotient to find the 

derivative of f(x) = x3 – 2x and use it to 
evaluate f ′(–3).

 33. Determine g ′(1) if g(x) = 3x2 – 8x + 2 using 
the alternative formula for the difference 
quotient.

Chapter 9
 34. Find the derivative of each expression with 

respect to x:

  (a) + − + − +x x x x x2 6 7 95 4 3 1
5

2

  (b) (3x2 + 4)(9x – 5)

  (c) +
−

x
x
2 1

4

3

2

  (d) (x2 – 7x + 2)10

  (e) ( )−x x2 33 4

( ) = + − ≤
− >






g x x x x

x c x
3 5, 1

, 1

2

 35. Given the function h(x) = 3x4 – 9x2 + 2, 
calculate the following values:

  (a)  The average rate of change of h(x) on the 
x-interval [–1,3]

  (b)  The instantaneous rate of change of h(x) 
when x = 2

 36. Given f(x) = tan (cos x), calculate ( )′ πf 3
2 .

 37. Assume functions j(x) and k(x) are 
continuous and differentiable for all real 
numbers. The following table lists values 
of the functions and their derivatives for 
specific x-values.

  Given this information, calculate the 
following:

  (a) ( )( ) ( ) ( )′ =v v x j k x3 , given 

  (b) ( ) ( )′ = ( )
( )p p x0 , given k x

j x

Chapter 10
 38. Identify the equation of the tangent line 

to f(x) = x2 sin x when x = π. Hint: use the 
Product Rule to differentiate f(x).

 39. Calculate the slope of the tangent line to 
the graph of x2 – 7xy – 4y2 + y – 9 = 0 at the 
point (–3,0).

 40. Calculate the slope of the normal line to the 
graph of j(x) = tan x cos x when x = 0.

 41. Given g(x) = x3 – 4, evaluate (g–1)′(–3).

( ) ( ) ( ) ( )′ ′

− −
− −

−

x j x k j k xx x

0 1 3 1 5
1 2 1 3 2
2 5 2 6 1
3 9 4 10 3
4 15 0 12 3



Chapter 19: Final Exam 293

 42. If h(x) = –2x3 – 5x + 3, calculate (h–1)′(–1).

 43. Given the parametric equations x = cosθ  

and y = 2θ, determine dydx  and d ydx
2

2 .

Chapter 11
 44. If f(x) = x3 – 16x, find f ′(x), determine its 

critical numbers, and determine if f(x) 
changes direction at each.

 45. If some function g(x) has derivative 

( )′ = ( )( )( )+ − +
−g x x x x
x

3 5 4
1 , use a wiggle graph to 

determine the interval(s) on which g(x) is 
decreasing.

 46. What are the absolute maximum and 
minimum values of ( ) = −h x x

x 4

2

 on the 
closed interval [–4,3]?

 47. On what interval is f(x) = x3 – 8x2 + 9x – 12 
concave up?

 48. Use the Second Derivative Test to classify 
the relative extrema of the function 
( ) = + − +g x x x x30 193 13

2
2 .

Chapter 12
 49. A goldfish swims back and forth inside 

a large fish tank featuring a plastic, 
bubbling, sunken treasure chest ornament. 
At time t, the horizontal position of the 
goldfish (relative to the treasure chest) is 
( ) = − −s t t tcos4 31

9
2  inches. (If s(t) > 0, 

the fish is right of the treasure chest, and a 
negative s(t) means the fish is left of it.)

  Based on this information, answer the 
following questions:

  (a)  At what time(s) is the fish 3.5 inches left 
of the treasure chest?

  (b)  What is the speed of the fish at t = 4.2 
seconds?

  (c)  What is the fish’s average velocity 
between t = 0 and t = 5?

  (d)  On what interval(s) does the fish have 
positive acceleration between t = 0 and  
t = 2 seconds?

 50. Nick throws a baseball straight up from an 
initial height of 3 feet, with a velocity of  
25 ft/sec. Given this information, answer 
the following questions:

  (a)  What is the velocity of the ball t = 1 
second after Nick throws it?

  (b)  When does the ball reach its maximum 
height?

  (c) What is the maximum height of the ball?

  (d)  Assuming no one catches the throw, 
how long does the ball remain in the air 
before it hits the ground?

Chapter 13
 51. Given x0 = 0, apply Newton’s Method to 

calculate x1 and approximate the root of 
f(x) = e3x – 2.

 52. Evaluate 
π π→ −lim

x

x
x/2

cos
2 .

 53. Given the function f(x) = 6x2 – 2x + 3, find 
the x-value that satisfies the Mean Value 
Theorem on the interval [–1,1].
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 54. Erin and Sara are coworkers and exit their 
office at precisely the same time, 5 p.m. 
Erin walks due south from the office at a 
constant speed of 3.5 miles per hour. Sara 
bikes due west at a constant speed of 12 
miles per hour. At what rate is the distance 
between Erin and Sara increasing at exactly 
5:15 p.m.?

 55. A farmer owns a plot of land whose western 
boundary is a river. He wishes to design a 
rectangular pasture but will only use fence 
for three of its sides, trusting the river to 
define the remaining side of the pasture, as 
illustrated here.

  What are the dimensions of the largest 
pasture he can create using 2,500 feet of 
fence?

w

w

l

Chapter 14
 56. Approximate the area under the curve 

( ) = −f x x 3  on the interval [4,8] using 
the following:

  (a) Right sums with n = 8 rectangles

  (b) Midpoint sums with n = 4 rectangles

  (c) Trapezoidal Rule with n = 4 trapezoids

  (d) Simpson’s Rule with n = 6 subintervals

Chapter 15
 57. Evaluate: ∫ ( )− + − +x x x dx4 7 5x5 3

8
23 .

 58. Integrate: ∫
− + dxx x
x

3 4 1
2

.

 59. Calculate the area beneath the curve 
( ) =f x x  on the interval [4,8] using a 

definite interval.

 60. Calculate the derivative: ∫

−

wdwcosd
dy

y

4

3

.

 61. Integrate using u-substitution:

  (a) ∫ x dxsec5

  (b) ∫ ⋅x e dxx
0

3 2

  (c) ∫ −
+ dx
x
x

6
5

Chapter 16
 62. Calculate the area between the functions 

( ) =f x x  and ( ) =g x x
3

.

 63. Calculate the value guaranteed by the 
Mean Value Theorem for Integration on the 
function ( ) = +

h x
x

1
1 2  on the interval [0,1].
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  (b) Approximately how many songs will have 
been sold exactly 730 days (2 years) after 
release? Note: round your answer to four 
decimal places.

 69. By ignoring any standards of cleanliness, 
and choosing to live a life of squalor, you 
have inadvertently invented a new kind 
of chemical weapon forged out of soggy 
Cheetos, stagnant milk-filled cereal 
bowls, and a chocolate Easter bunny of 
indeterminate age.

  Here’s the downside. The government has 
quarantined you inside your filthy house 
until the nasty mixture disintegrates a bit. 
In a truly disturbing development, they’ve 
determined that (like nuclear waste), your 
food weapon has a half-life, and they’re 
reasonably sure the half-life is four days.

  Assuming this is true, how long will 
it take the 3,000 grams of dangerous 
procrastination-produced glop to decay to a 
safer (but equally stinky) 10 grams?

Chapter 18
 70. Estimate the value of 9.1 without a 

calculator by using a linear approximation 

to ( ) =f x x centered at x = 9.

 64. The velocity of a particle moving 
horizontally along the x-axis is modeled by 
the equation v(t) = t3 – 7t + 6, measured in 
inches per second. Use this information to 
answer the following questions:

  (a) What is the total displacement of the 
particle between t = 0 and t = 3?

  (b) What total distance does the particle 
travel between t = 0 and t = 3?

 65. Given ∫( ) =f x e dttx 3
0

2

, evaluate the 
following:

  (a) f(1)

  (b) f ′(1)

 66. Write an integral expression representing 
the length of each graph segment described 
here, and then use a computational tool 
(such as a graphing calculator) to compute 
each integral:

  (a)  f(x) = tan x, between = πx 6  and = πx 3

  (b)  The parametric curve defined by x = e2t 
and y = ln (4t + 2) on the t-interval [0,3]

Chapter 17
 67. Solve the differential equation x2dy = –2dx.

 68. A popular new song is predicted to sell at a 
rate of =

+
dy
dt t

10
252  million purchases per day. 

In fact, it sells 1.85 million copies by the end 
of the first day alone! Use this information 
to answer the following questions:

  (a) What equation, y(t), models the sales of 
this CD? Note: calculate C accurate to four 
decimal places.
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Solutions
Chapter 2

 1. 4x + 10y = 9

 2. x + 2y = 1

 3. 5
7

 4. 5x + 3y = 7

 5. y
x

8
81

5

5

 6. 2(4x + 7y)(4x – 7y)

 7. = −x 4 3 3  or = +x 4 3 3

 8. x = –16 or x = 16

 9. x = –1 or = −x 1
3

Chapter 3

 10. –3

 11. no symmetry

 12. ( ) = +−f x x1 1
5

3
5 , 

( )( )− + = + − =x x x5 3 5 31
5

3
5

1
5

3
5

 13. 5

 14. = −y x 41
2

Chapter 4

 15. θ = −csc 4
3  and θ =cot 7

3

 16. = =π πsin sin14
3

2
3

3
2

 17. sec2θ(1 + tanθ)(1 – tanθ)

 18. = π π πx , ,2
3
4

5
4

 71. Draw the slope field for = +
dy
dx

x
y 1  by 

calculating slopes at each point indicated in 
the following coordinate plane:

  Sketch the specific solution to the 
differential equation that contains the  
point (0,1).

 72. If you begin at the point ( )−, 21
3  and 

proceed =x 1
5  units to the right along 

a line with slope =m 3
8 , what are the 

coordinates of your destination?

 73. Use Euler’s Method with three steps of 
width =x 1

4  to approximate ( )−y 1
4  if 

= xydy
dx , given that the solution graph passes 

through (–1,1).

-3 -2 -1 1

1

0 2

2

3

3
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Chapter 7

 28. Because ( ) ( )= =
→

f f x4 lim 19
x 4

, f(x) is 
continuous at x = 4

 29. c = 2

 30. = −x 1
2  (infinite discontinuity) and x = 7 

(point discontinuity)

 31a. yes, because f(0) = 4, f(5) = 19, and  
4 ≤ 10 ≤ 19

 31b. no, because 20 does not fall between the 
function values of the endpoints f(0) = 4 and 
f(5) = 19

Chapter 8

 32. f ′(x) = 3x2 – 2, f ′(–3) = 25

 33. g′(1) = –2

Chapter 9

 34a. + − + −x x x x10 24 21 14 3 2 2
5

 34b. 81x2 – 30x + 36

 34c. 
− −
− +

x x x
x x

2 24 2
8 16

4 2

4 2

 34d. 10 (x2 – 7x + 2)9 (2x – 7)

 34e. ( )+ −( )− x x x8 2 3x x3 2 3

2

3
4

. Note: use the 
Product Rule and take the derivative of  
(2x – 3)4 with the Chain Rule

 35a. 42

 35b. 60

 36. ( ) ( ) ( )
( ) ( )

′ = ⋅ −

= ⋅− −

= ⋅

= ⋅

=

π π πf sec cos sin

sec 0 1

1

1

1

3
2

2 3
2

3
2

2

1

cos 0
1
1

2

Chapter 5

 19. –16

 20. –1

 21a. does not exist because 
( ) ( )= = ∞

→ →+ −
g x g xlim lim

x x10 10
, but ∞ is not a 

finite number

 21b. 4

 21c. does not exist because 

( )( ) ( )≠
→ →− +
g x g xlim lim

x x0 0

 21d. 0

Chapter 6

 22a. π 2
8

 22b. 4a2 – 6a + 1

 23a. 7
2

 23b. 13
17

 24. 1
2

 25. ( ) = −
→
g xlim

x 3
5
4 , ( )

→−
g xlim

x 1  
does not exist

 26a. 1
3

 26b. = ∞
→∞

+
− +

lim
x

x x
x x

4 6
19 5 2

3 2

2 , which means it does not 
exist

 26c. 0

 26d. 13
7 : split the two terms into separate limits, 

apply factoring and substitution methods, 
and add the results

 27a. –1, because ( ) = = = −π π
π

( )
( ) −

tan 13
4

sin 3 /4

cos 3 /4
2 /2
2 /2

 27b. does not exist, because the graph of 
y = tan x has a vertical asymptote at x = π/2 
(see Figure 4.4)
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 45. g(x) decreases on (–4,–3) and (1,5)

 46. maximum = 0, minimum = –9

 47. ( )∞,8
3

 48. =x 5
3  is a relative minimum because 

( )′′ = >g 23 05
3 , x = –6 is a relative 

maximum because ( )′′ − = − <g 6 23 0 .

Chapter 12

 49a. t = 0.2596, t = 1.3756, and t = 1.7194 seconds

 49b. ( ) ( ) ( )′ = + ≈ − =s 4.2 4.2 4sin 16.8 2.617 2.617 in/sec2
9

 49c. 0.6739 in/sec

 49d. (0,0.3962) and (1.1746,1.9670)

 50a. v(t) = s′(t) = –32t + 25, so 
v(1) = –32(1) + 25 = –7 ft/sec (the ball is 
falling at a rate of 7 ft/sec, so this tells you 
the ball has already reached its maximum 
height before t = 1)

 50b. v(t) = 0 when –32t + 25 = 0, or 
= =t 0.7812525

32

 50c. maximum height: s(0.78125) ≈ 12.7656 feet

 50d. Solve equation –16t2 + 25t + 3 = 0 for t and 
select only the positive solution: t ≈ 1.674 
seconds.

Chapter 13

 51. = − = − = − =− −
⋅

−x 0 0e
e1

2
3

1 2
31

1
3

1
3

0

0

 52. − 1
2

 53. x = 0

 37a. Apply the Chain Rule:  

( )( ) ( ) ( )
( ) ( )

′ = ′ ⋅ ′

= ′ ⋅ ′

= ⋅
=

v j k k

j k

3 3 3

4 3

12 3
36

 37b. Apply the Quotient Rule:  

( )′ =

=

=

=

( )

( ) ( ) ( ) ( )
( )

( )( ) ( )( )

⋅ ′ − ⋅ ′







− − −

−

−

p 0

2

j k k j

j

0 0 0 0

0

1 5 3 1

1

5 3
1

2

2

Chapter 10

 38. y = –π2x + π3. Note: f(π) = 0 and f ′(π) = – π2

 39. ′ = = =− +
− − +y x y
x y
2 7

7 8 1
6
22

3
11

 40. j ′(x) = –tan x sin x + cos x sec2 x, so 
j ′(0) = 0 + 1 = 1, which means tangent 
and normal slopes are both 1 (as 1 is the 
reciprocal of itself)

 41. 1
3

 42. ( ) ( )′ = ≈ −
( )

−

− −
h 1 0.1291 1

6 0.676280053 5
2

 43. θ= = −θ− 2cscdy
dx

2
sin , 

θ θ= − = −θ
θ

2csc cotd y
dx

2cos
sin

22

2 3

Chapter 11

 44. f(x) changes from increasing to decreasing 
at = − ≈ −x 2.3094

3
, because f ′(x) changes 

from positive to negative there; similarly, 
f(x) changes from decreasing to increasing at 
= ≈x 2.3094

3
, because f ′(x) changes from 

negative to positive there
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Chapter 15

 57. − + − + +x x x x C7 3x
6

4 1
16

2 5/3
6

 58. − + +x x x C4 ln3
2

2

 59. −32 2
3

16
3

 60. 3y2 cos y3

 61a. + +x x Cln sec5 tan51
5 . Note: set u = 5x

 61b. ( )−e 11
2

9

 61c. − + +x x C11ln 5

Chapter 16

 62. ∫ ( )− =x x dx1/2 1
30

9 9
2

 63. 
∫( ) = = = π

−
+h c xarctan0

1

1 0 0

1

4

dx
x1 2

 64a. ∫ ( ) = =v t dt 6.75
0

3 27
4

 64b. ∫ ∫ ∫( ) ( ) ( )− + = =v t dt v t dt v t dt 8.25
0

1

1

2

2

3 33
4

 65a. ∫( ) = = −f e dt1 t e3
0

1

3
1
3

2 3

 65b. ( )′ = ⋅ =( )f e x e1 2 2x3 3
2

 66a. ∫ + ≈
π

π
x dx1 sec 1.2774

/6

/3
. Note: you may 

need to enter sec4 x as (1/cos(x))4

 66b. ∫ ( ) ( )+ ≈+e dt2 402.616t
t

2 2
4

4 2

2

0

3

Chapter 17

 67. = +y Cx
2

 68a. ( )( ) = +y t 2arctan 1.4552t
5 . Note: 

∫ ( )( ) = = ⋅ ⋅ +
+

y t C10 arctandt
t

t10
25

1
5 52  and 

 y(1) = 1.85, so you need to solve the 
equation ( )= + C1.85 2arctan 1

5  for C

 54. After 15 minutes, Erin has traveled 
= 0.8753.5

4  miles and Sara has traveled 

= 312
4  miles, so allow those to be the 

lengths of two sides of the right triangle 
illustrated here:

  Apply the Pythagorean Theorem to 
determine that the length D of the 
hypotenuse, the distance between them, 
is 3.125 miles and then differentiate the 
Pythagorean Theorem with respect to t:

  Solve for dDdt  to get 12.5 miles per hour.

 55. w = 625 feet, l = 2500 – 2(625) = 1250 feet. 
Note: pasture perimeter is 2w + l = 2500 so 
l = 2500 – 2w, plug this into the primary 
equation A = lw to get A = (2500 – 2w)w and 
optimize

Chapter 14

 56a. ( ) ( ) ( ) ( )( ) ( ) ( ) ( )+ + + + + + +



 ≈f f f f f f f f5 6 7 8 7.0901

2
9
2

11
2

13
2

15
2

 56b. ( ) ( ) ( ) ( )+ + +



 ≈f f f f1 6.7989

2
11
2

13
2

15
2

 56c. + + + +



 ≈1 2 2 2 3 4 5 6.7641

2

 56d. ( ) ( ) ( ) ( )( ) ( ) ( )+ + + + + +



 ≈( )

− f f f f f f f4 4 2 4 6 2 4 8 6.7878 4
3 6

14
3

16
3

20
3

22
3

( )( ) ( )( ) ( )

+ =

+ =

+ =

E S D

E S D2 2 2

2 0.875 3.5 2 3 12 2 3.125

dE
dt

dS
dt

dD
dt

dD
dt

2 2 2
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 68b. y(730) ≈ 4.5831, so 4,583,100 copies sold in 
two years

 69. 32.915 days. Note: y(t) = 3000e–0.173287t

Chapter 18

 70. 3.01667. Note: linear approximation is 
= +y x1

6
3
2

 71. 

 72. ( ) ( )+ − + = −, 2 ,1
3

1
5

3
40

8
15

77
40

 73. ( )− =y 1
4

273
512 . Note: the coordinates of the 

three steps are ( ) ( )− + − = −1 ,1 ,1
4

1
4

3
4

3
4 ,  

( ) ( )− + − = −, ,3
4

1
4

3
4

9
64

1
2

39
64 , and 

( ) ( )− + − = −, ,1
2

1
4

39
64

39
512

1
4

273
512



APPENDIX

A
Solutions to  

“You’ve Got Problems”

All of the answers to the problems that haunted you throughout the book are listed here, 
organized by chapter. The important steps are all shown, unless the skill needed to complete 
a problem was already discussed in a previous chapter. For example, once you learn how to do 
u-substitution in Chapter 15, I no longer focus on its details if problems in subsequent chapters 
require u-substitution as a component of their answers. If I didn’t do that, this appendix would be 
a book unto itself !

Chapter 2
 1. 6x + 9y = 11. Don’t forget that 6x has to be 

positive to be in standard form. You may 
need to multiply everything by –1.

 2. 2x – 3y = 6. You can treat (0,–2) as a point or 
use it as the y-intercept, so both forms work.

 3. 3
4 . Remember that =−

−
3
4

3
4 .

 4. 11
5 . Calculate the slope of line j:  
= = =( )

−
− −

m 3 1
4 6

2
10

1
5 . Substitute the slope and 

a point, such as (x,y) = (4,3), into slope-
intercept form (y = mx + b): ( )= + b3 41

5 . 
Solve: − = =b3 2  or 4

5
1
5

11
5 . Remember 

that b represents the y-intercept in slope-
intercept form.

 5. 
y
x

9 4

6 . When you square everything, 
you get 9x6y4, and the term with the 

negative exponent has to be moved to the 
denominator.

 6. 7xy(x – 3y2). The greatest common factor is 
7xy, so divide it out of each term to get the 
factored form and write 7xy in front.

 7. (2x + 7)(4x2 – 14x + 49). This is a sum of 
perfect cubes, with a = 2x and b = 7.

 8. x = 0,–4. Method one: Factor out 3x. 
Method two: First divide by 3 to get x2 + 4x 
= 0. Half of 4 is 2, whose square, 4, should 
be added to both sides. Take the square 
root of both sides, and don’t forget the “±” 
symbol. Then subtract 2 from both sides. 
Method three: a = 3, b = 12, and c = 0, 
because there is no constant term.
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Chapter 4
 1. 0. Simplify π14

4  to get π7
2 . Subtract 

π ( )π2  or 4
2  to get =π π π;  cos cos = 03

2
3
2

14
4 .

 2. ( )( )− + = + = 11
2

2 3
2

2
1
4

3
4

 3. sin 2x cos 2x. Factor out the greatest 
common factor of 2sin x cos x to get 2sin 
x cos x (1 – 2sin2 x) and use double angle 
formulas to substitute in replacements for 
each factor.

 4. x = 0,π. Substitute 2sin x cos x for sin 2x and 
factor to get 2sin x (cos x + 1) = 0; solve each 
equation set equal to 0.

Chapter 5
 8. Factor the numerator: ( ) = ( )( )+ −

−j x x x
x
5 3

3 .  
Thus, j(x) = x + 5 is equivalent for all 
x-values except x = 3, as illustrated in the 
following graph.

2

(3,8)

4

6

8

10

-2

-4-6-8-10

-4

-6

-8

-10

j(x) =
x

x −

2 15+ 2x –
3

2-2 4 6 8 10

 9. y = 3x2 + x – 2. Set the equations x = –1 
and =x 2

3  equal to 0 to get x + 1 = 0 and 
− =x 02

3 . To eliminate fractions, multiply 
the second equation by 3 to get 3x – 2 = 0. 
The quadratic equation you are seeking is 
y = (x + 1)(3x – 2). Multiply and simplify.

Chapter 3
 1. 4. f(43) = 7; g(7) = 64; h(64) = 4.

 2. g(–2) = 8, g(0) = 12, g(5) = 4. Because x = –2 
and x = 0 are both less than or equal to 0, 
substitute them into 12 – x2. Substitute 5 

into −x 92 .

 3. 9. The graph of q(x) passes through 
point (1,–5), so q(1) = –5. Next, 
p(–5) = 4 – (–5) = 4 + 5 = 9.

 4. Origin symmetry. Plug in –x for x and –y 
for y to get − = −y x

x

3
. Multiply both sides by 

–1, and you’ll get the original function.

 5. 

 6. ( ) = −−h x x1 3
2

15
2 . After switching x and 

y, subtract 5 from both sides and then 
eliminate 2

3  by multiplying each side of the 
equation by 3

2 .

 7. y = x2 – 3x + 3. Start by solving the x 
equation for t (t = x – 1), plug that into both 
t spots in the y equation, and simplify.

( ) ( )
( )

+ − = − + =

+ − = − + =

+ − = =
= =

x x x

x x x

x x x
x x x

2 6 3 2 3 6

2 6 3 6 6

3 3

1
2

2
1
2

2

1
2

2

2
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 3. (a) 4. Multiply numerator and denominator 
by + +x 6 2  and cancel out resulting  
(x + 2) terms to get ( )+ +

→−
xlim 6 2

x 2
;  

substitute x = –2 into the expression: 

( ) ( )− + + = + = +2 6 2 4 2 2 2 .

  (b) −5 3
2 . Did I fool you? You don’t use the 

conjugate method here, because substitution 
works; to get the answer, just plug in x = 1 
for all x’s (no simplifying can be done).

 4. Factor to get 
( )( )
( )( )

− −

− +

x x x

x x x

2 1 1

2 1 3 . The function is 

undefined at x = 0, =x 1
2 , and x = –3. Using 

the factoring method, ( ) = −
→
g xlim

x 0
1
3  and 

( ) = −
→

g xlim
x 1/2

1
7 , so holes exist on the graph 

for those values. However, no limit exists 
for x = –3, because substitution results in 
− 84

0 , indicating that x = –3 is a vertical 
asymptote.

 5. (a) 2
3 . The degrees of the numerator and 

denominator are the same.

  (b) 0. The denominator has the higher 
degree; the fact that you’re approaching –∞ 
doesn’t matter, because all rational functions 
possessing an infinite limit approach the 
same height as x approaches ∞ and –∞.

 6. ( ) = −h x x
1

3
 is one possible solution, but 

answers will vary. Here’s how to check a 
different answer. First, ( ) =

→∞
h xlim 0

x
, so 

h(x) has a horizontal asymptote of y = 0. 
That means the degree of the numerator of 
h(x) must be lower than the degree of the 
denominator. In my solution, the degree of 
the numerator is 0 (because 1 is a constant) 
and the degree of the denominator is 1 
(because x – 3 is linear).

  Substitute x = 3 into the simplified version 
of j(x) to compute ( )

→
j xlim

x 3
: j(3) = 3 + 5 = 8.

 2. (a) ( ) =
→ −
k xlim 4

x 1
. As you approach x = 1 

from the left, k(x) intends to reach point 
(1,4).

  (b) ( ) = −
→ +
k xlim 4

x 1
. As you approach x = 1 

from the right, k(x) intends to reach point 
(1,–4).

 3. (a) –∞. The graph decreases infinitely as 
you approach x = –4 from the left. You can 
also answer that no limit exists because the 
graph decreases infinitely—both methods 
of answering are equivalent.

  (b) Does not exist. The left-hand limit (–2) 
does not equal the right-hand limit (3), so no 
general limit exists.

  (c) 1. The left- and right-hand limits are 
both 1, so the general limit exists and is 1.

Chapter 6
 1. (a) − π

1 . Plug in π for each x to get π
π

cos ; you 
know that cos π = –1 from the unit circle.

  (b) = = =( )
( )→−

+
−

− +

− −

+
−lim

x

x
x2

1
1

2 1

2 1

4 1
4 1

5
3

2

2

2

2 .

 2. (a) 13. Factor the numerator to get (2x + 3)
(x – 5); cancel the (x – 5) terms and plug  
x = 5 into 2x + 3.

  (b) 3. The numerator is the difference of 
perfect cubes (remember the formula?), 
which factors to (x – 1)(x2 + x +1); the 
(x – 1) terms cancel, leaving only x2 + x + 1; 
substitute x = 1 into that expression to get 
the answer.
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  Second, ( )
→
h xlim

x 3
can’t exist. In my function, 

that limit does not exist because h(x) has 
a vertical asymptote at x = 3. When you 
substitute x = 3 into h(x), you get a 0 in the 
denominator but not in the numerator—an 
indication of a vertical asymptote.

  You should also verify your solution with  
a graph. The graph of my solution, 
( ) = −h x x

1
3 , appears here:

 7. e. Break into two limits to get 

( )+ +
→∞ →∞

lim lim 1
x x x x

x5 1
3

; each of these is a 

separate special limit rule. The first limit is 
equal to 0 (by the third rule) and the other 
limit is equal to e (by the last rule), so the 
answer is 0 + e = e.

 8. (a) 0. The graph of f(x) passes through point 
(5,0), so ( ) =

→
f xlim 0

x 5
.

  (b) 4. At the right-hand edge of the graph, 
f(x) is straining to reach a height of 4, the 
same height it intends as x approaches –∞.

1

1

-1
-1

2

-2

3

-3

-3

4

-4

5

-5

6

-6

2 3 4 5 6 7 8 9-2

Chapter 7
 1. Discontinuous. Examining the piecewise-

defined function, it’s clear that g(1) = –2, 
but using the factoring method, you get 

( ) =
→
g xlim 5

x 1
. Because these are unequal, 

g(x) is discontinuous at x = 1.

 2. a = 12. Notice that ( ) =
→− −

h xlim 6
x 1

, because 

2(–1)2 + (–1) – 7 = –6. (Even though h(x) 
technically doesn’t reach that height, because 
the domain restriction is x < –1, –6 is still the 
left-hand limit as x approaches –1.) Therefore, 
ax + 6 = –6 when you plug in x = –1.

 3. x = 5 (infinite discontinuity), x = –5 (point 

discontinuity). Factor to get 
( )( )
( )( )
+ −

+ −

x x

x x

5 2 5

5 5 ; a 

limit exists for x = –5, but not for x = 5.

 4. Because g(1) = –2 and g(2) = 4, we know 
that all values between –2 and 4 are outputs 
of g for 1 < x < 2. Clearly, 0 is between –2 
and 4, so the function has a height of 0 (and 
has an x-intercept) somewhere between 
x = 1 and x = 2.

Chapter 8
 1. g′(x) = 10x + 7; g′(–1) = –3. First, calculate 

g(x + Δx):

  After plugging this into the difference 
quotient and simplifying, you get:

( ) ( ) ( )
( )

+ = + + + −

= + + + + −

g x x x x x x

x x x x x x

5 7 6

5 10 5 7 7 6

2

2 2

( )
→

+ +lim
x

x x x x
x0

10 5 7
2
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  Solve using the factoring method.

 2. 1
6 . Begin by calculating h(8):

  Apply the alternate difference quotient:

  Calculate the limit using the conjugate 
method:

Chapter 9
 1. (a) y′ = 2x2 + 6x – 6. Here is the work behind 

the scenes:

( )
( )

= + +

= + +

= +

( )
→

+ +

→
x x

x

x

lim

lim 10 5 7

10 5 0 7

10 7

x

x x x

x

x

0

10 5 7

0

( )
( )
( )
( )

= +

= +

=

=

h x x

h

h

h

1

8 8 1

8 9

8 3

=

( ) ( )
→

−
−

→

+ −
−

lim

lim
x

f x f
x

x

x
x

8

8
8

8

1 3
8

( )( )
( )( )

( )( )

( ) ( )

( )

=

=

=

=

=

=

→

+ − + +

− + +

→

+ −

− + +

→

−

− + +

→ + +

+ +

lim

lim

lim

lim

x

x x

x x

x

x

x x

x

x

x x

x x

8

1 3 1 3

8 1 3

8

1 9

8 1 3

8

8

8 1 3

8

1

1 3

1
8 1 3

1
6

( ) ( ) ( )′ = ⋅ + ⋅ − ⋅ +− − −y x x x3 3 2 6 1 02
3

3 1 2 1 1 1

  (b) ( )′ = +f x
x x

1

3

2

5
2/3 4/5 . Begin by writing the 

radical terms as fractional exponents and 
then apply the Power Rule:

 2. To use the Power Rule, you must multiply 
to get g(x) = 2x2 + 7x – 4 and differentiate 
that to get g′(x) = 4x + 7. Applying the 
Product Rule gives you:

 3. Make sure to simplify carefully:

 4. 10x(x2 + 1)4. Here you have a function  
(x2 + 1) inside another function (x5). In the 
Chain Rule formula, f(x) = x5 and  
g(x) = x2 + 1, because f(g(x)) = (x2 + 1)5. 
Therefore, you use the Power Rule to derive 
the outer function (while leaving x2 + 1 
alone) and then multiply by the derivative  
of x2 + 1 to get 5(x2 + 1)4 × (2x).

 5. (a) 19. The instantaneous rate of change is 
synonymous with the derivative, so find 
g′(4); according to the Power Rule,  
g′(x) = 6x – 5, so g′(4) = 19.

( ) ( )
( )
( )

= +

′ = ⋅ + ⋅

= +

− −

− −

f x x x

f x x x

x x

2

1 2

1/3 1/5

1
3

1/3 1 1
5

1/5 1

1
3

2/3 2
5

4/5

( ) ( )( ) ( )′ = − + +

= − + +
= +

g x x x

x x
x

2 1 1 2 4

2 1 2 8
4 7

( )′ =

=

=

( ) ( )

( )
( )

( ) ( )− + − − + −

−

− + − + − − +

− +

− + − +
− +

f x
x x x x x x

x

x x x x x x x

x x

x x x x
x x

5 12 4 7 3 2 7 1

5

12 60 4 27 35 3 2 7

10 25

9 60 2 20 35
10 25

3 4 2

2

4 3 2 4 2

2

4 3 2

2
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  (b) 1. You’ll need to find the slope of 
the secant line, so first get the points 
representing the x-values of –1 and 3 by 
plugging those x-values into the equation. 
Because g(–1) = 14 and g(3) = 18, the 
endpoints of the secant line are (–1,14) and 
(3,18). Calculate the slope of the secant line:

 6. Begin by writing cot x as a quotient: 
= =( )

−
− −

118 14
3 1

4
4 ; apply the Quotient Rule to 

differentiate:

  Factor –1 out of the numerator and use the 
Mama theorem (see Chapter 4) to replace 
sin2 x + cos2 x with 1:

 7. Apply the Quotient Rule to differentiate 
k(x):

  Use the table to identify the function values 
in the formula and simplify:

( )+x x10 12 4

=xcot x
x

cos
sin

( ) =
=

( ) ( )− −

− −

d
dx

x
x

x x x x

x

x x
x

cos
sin

sin sin cos cos

sin

sin cos
sin

2

2 2

2

=

=

= −

( )− +

−

xcsc

x x

x

x

sin cos

sin
1

sin
2

2 2

2

2

( )

( )

′ =

′ − =

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

⋅ ′ − ⋅ ′







− ⋅ ′ − − − ⋅ ′ −

−





k x

k 1

g x f x f x g x

g x

g f f g

g

1 1 1 1

1

2

2

 8. Consider the following graph of f(x), which 
includes a tangent line at x = 4.

  Your tangent line may look slightly 
different, because this is only an estimate. 
The tangent line illustrated appears to pass 
through points (–1,–4) and (0,–3.5). Apply 
the slope formula:

  Therefore, 

1

2

3

4

5

6

-1

-2

-3 -1-4-5-6

-3

-4

-5

-6

21-2 3 4 5 6

( )′ − =

=

=

= −

( ) ( )( )− − −

− +

−

k 1 2 6 1 10

2
12 10

4
2

4
1
2

2

=

=

=

=

=

( )
( )

− − −

− −

− +
+

slope

0.5

3.5 4

0 1

3.5 4
0 1

0.5
1

1
2



Solutions to “You’ve Got Problems” 307

Chapter 11
 1. First of all, h′(x) = –2x + 6. When you 

set that equal to 0 and solve, you get the 
critical number of x = 3. Choose numbers 
before and after 3 and plug them into the 
derivative—for example, h′(2) = 2 and  
h′(4) = –2. Because the derivative changes 
from positive to negative, the function 
changes from increasing to decreasing at 
x = 3, so the critical number represents a 
relative maximum.

 2. Find the derivative: g′(x) = 6x2 – 7x – 3; 
critical points occur where this equals 0  
(it is never undefined). So factor to get  
(3x + 1)(2x – 3); critical numbers are dydx  and 

   

   .

  Pick test values and plug into the derivative 
to get this wiggle graph:

  Because f ′(x) is positive on the intervals 
= −x 1

3  and =x 3
2 ,  f(x) is increasing on 

those intervals.

 3. Absolute max: 32; absolute min: –52. Notice 
that g′(x) = 3x2 + 8x + 5, which factors into 
(3x + 5)(x + 1), so ( )−∞ −, 1

3  and x = –1 
are both critical numbers. A wiggle graph 
verifies that they are also relative extrema. 
Test all four x-value candidates, including 
those and the endpoints: g(–5) = –52, 
( )∞,3

2 , g(–1) = –4, and g(2) = 32.

=

=

=

( )⋅ ⋅

t tsec tan

d y
dx

t t t

t

2 sec sec tan

2

sec tan
2

1
2

2

2

2

1

2

2

3
1

2
3

f (x)

Chapter 10
 1. y = 15x + 5. The point of tangency is (–1,–10) 

and because g′(x) = 9x2 – 2x + 4, g′(–1) = 15. 
Point-slope form gives you y – (–10) =  
15(x – (–1)), which you can put into slope-
intercept form like I did, if you wish.

 2. ( )′ ≈f 4 1
2

. The derivative, with 
respect to x, is 2

3 . Solve this for 
+ ⋅ + − ⋅ =x y y4 6 0dy

dx
dy
dx  to get dydx .  

To finish, plug in 3 for x and 2 for y and 
simplify.

 3. 3. Evaluating f–1(6) is the same as solving 
= − −

−
dy
dx

y
x y

4
6 . Square both sides to get  

2x3 – 18 = 36, and solve for x by adding 
18 to both sides, dividing both sides by 2, 
and then cube rooting both sides of the 
equation.

 4. 0.0945. Remember that − =x2 18 63  and 
g –1(2) is the solution to the equation  
3x5 + 4x3 + 2x + 1 = –2, which 
is –0.6749465398. Therefore, 

( ) ( )′ − = ( )( )
−

′ −−g 2
g g

1 1
21 .

 5. ( )−−g 21 . This is the derivative of the y 
piece divided by the x piece’s derivative. 
To get the second derivative, derive 

( ) ( )′ − = =( )
−

′
g 2 0.0945

g
1 1

–0.6749465398
 (with 

the Chain Rule) and divide by 2 (the 
original x equation derivative):

= = tsecdy
dx

tsec
2

1
2

22
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then ( ) ( )= − + +s t t t9.8 100 751
2

2  and 

( )′ = − + − + = ≈−
−s t t t t9.8 100,  0= 9.8 100, 10.204100

9.8
 

is the time the ball reaches this height. You 
can verify that it is a relative maximum 
using the Second Derivative Test if you like, 
noting that ( )′′ = −s t 9.8  is always negative.

  (b) 585 meters. In part (a), you determined 
that the cannonball will reach its maximum 
height t = 10.204 seconds after launch. The 
position equation gives you the height of 
the cannonball at any time t seconds after 
launch. Therefore, the maximum height of 
the cannonball is s(10.204):

  (c) 21.132 seconds. The cannonball will hit  
the ground when its position is 0—in other  
words, when s(t) = 0. Set the position 
equation equal to 0 and solve. It is advisable 
to use your calculator to solve the equation. 
See the “Technology Focus” section at the 
end of Chapter 10 for more information.

  Note that the quadratic has two solutions. 
The other solution, t = –0.724, does not 
make sense because it is negative. Think 
about it: You cannot conclude that the 
cannonball hit the ground 0.724 seconds 
before it launched!

( ) ( ) ( )
( )

= − + +

= − + +

= − + +
≈

s 10.204 4.9 10.204 100 10.204 75

4.9 104.121616 1020.4 75

510.1959184 1020.4 75
585.204

2

− + + =
≈

t t
t

4.9 100 75 0
21.13245774 sec

2

 4. = −x 5
3  and ( )− ≈ −g 3.8525

3 . If f(x) = cos x, 
then f ′(x) = –sin x and f ʺ(x) = – cos x. The second 
derivative wiggle graph for [0,2π] looks like 
this:

   Remember f(x) is concave down wherever  
f ʺ(x) is negative.

Chapter 12
 1. t = 4 and t = 8.196 seconds. This question is 

asking, “When is the position equal to –30?” 
To answer it, use some form of technology 
to solve the equation ( )π0, 2 . Again, I usually 
set it equal to 0 and find the x-intercepts 
(i.e., solve the equation π( )π ,23

2 ). Negative 
answers make no sense and should be 
discarded. (Negative time is nonsensical.)

 2. The correct order is: the average velocity, 
the velocity at t = 7, and lastly the speed 
at t = 3. The average velocity is the slope 
connecting the points (2,–4) and (6,–48): 

− + + = −t t t5 3 6 301
2

3 2  in/sec. The velocity 
at t = 7 is v(7) = s′(7) = 6.5 in/sec. The speed 
at t = 3 is the absolute value of the velocity 
there: − + + =t t t5 3 36 01

2
3 2  in/sec.

 3. t = 3 seconds. Because sʺ(t) = 3t – 10, the 
answer is the solution to the equation  
3t – 10 = –1.

 4. (a) t ≈ 10.204 seconds after launch. Create 
the position equation: = = −( )− − −

−
− 1148 4

6 2
44
4 , or 

s(t) = –4.9t2 + 100t + 75. The highest point 
reached by the cannonball is the relative 
maximum of the position equation.  
Because ( )′ = − =s 3 13.5 13.5 ,  

22
0 π 3π 2π

f (x)
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is S = 6l2, where l is the length of a side. 
Think about it—the surface area of a cube 
comprises six squares, each having area l2.

  Differentiate the surface area formula to 
get dadt . You know that l = 7, but what is 

= ⋅s12da
dt

ds
dt ? To find it, you have to use the 

given information about dsdt , so you need a 
second equation containing V.

  The volume of a cube with side l is V = l3, 

so let’s derive that baby to get dVdt : dVdt .  

You know that = ⋅s3dV
dt

ds
dt

2  and l = 7,  
so plug them into this new equation to get 

= 5dV
dt , so = ⋅ ⋅5 3 7 ds

dt
2 .

  Now that you finally know what =ds
dt

5
147  is,  

plug it back into the dsdt  equation to solve  
for dadt :

da
dt

 5. 

  You want to optimize the product, whose 
equation is P = xy, where x and y are the 
numbers in question. You know that  
y = 2x – 3, so P = x(2x – 3) = 2x2 – 3x.  
So P′ = 4x – 3, and the wiggle graph of P′ is

  Therefore, one of the numbers is − 9
8  and 

the other is 3
4 . Remember, you’re asked 

for the optimal product, so the answer is 
= ⋅ − = −y 2 33

4
3
2 .

( )
= ⋅

= ⋅

=

=

s12

12 7

 in /week

da
dt

ds
dt

5
147

420
147
20
7

2

3
4

P

Chapter 13
 1. 6. Apply Newton’s Method:

  Note that f(x) = (x + 2)1/2 – 3, so 

.

 2. 0. Because x–2 has a negative power,  

move it to the denominator: 
→∞

lim
x

x
x

ln
2 .  

Substitution results in ∞
∞ , so apply 

L’Hôpital’s Rule and remember that the 
derivative of ln x is x

1 : 
→∞

lim
x

x
x

1/
2

. This can 

be rewritten as 
→∞

lim
x x

1
2 2 . Substitution now 

results in 1 divided by a giant number, 
which is basically 0 according to the third of 
the special limit theorems from Chapter 6.

 3. =x 1
2 . Because g x( )  and g(1) = 1, the 

secant slope is ( ) =g 41
4 . The Power Rule 

tells you that = = −−
− − 44 1

1/4 1
3
3/4 . Thus, the 

solution to ( )′ = −g x
x
1
2  is the value for c 

guaranteed by the Mean Value Theorem:

  Only =

= ±

= ±

= ±

x

x

x

x

2 1
4

2 1
4

1

4

1
2

  falls in the interval =x 1
2 , so discard the 

other answer.

 4.  ,11
4  in2/week. You know from the problem 

that ≈ 2.85720
7  if V represents volume. 

Let’s label the surface area S; you want to 
calculate = 5dV

dt . The surface area of a cube 

= − = − = − = − = + =( )
( ) ( )

( )
( )′ ′

− −x x 2 2 2 2 4 6
f x

f x

f

f1 0
0

0

2

2
4 3

1/ 2 4

1
1/4

( ) ( )′ = + = =
( )

−

+ +
f x x 2

x x
1
2

1/2 1
2 2

1
2 21/ 2

− = −4
x
1
2



Appendix A310

 3. 1.622. Each subinterval has the width of 
  

  Apply the Simpson’s Rule formula: 
Δx = 5−1

4 = 1

Chapter 15
 1. 

  Start by writing each term as a separate 
integral with its own + + +x x x C2

5
5 1

12
4 2

3
3/2  

sign and dx: ∫ . Factor out the coefficients to 

get ∫ ∫ ∫+ +x dx x dx x dx2 4 1
3

3 1/2 . Apply the 
Power Rule for integrals and simplify:

  Don’t get confused when adding 1 to the 
fractional power:

.

π

( ) ( )( )

( )

+ + + +





= + + + +





= + +





= +





= +

=

π π π π

π

π

π

π

( )
− sin0 2sin 2sin 2sin sin

0 2 2 1 2 0

2

2

2

1.896

0
2 4 4 2

3
4

8
2

2
2

2

8
2 2

2
2 2

2

8
4 2

2

8 2 2

( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )+ + + + 

= + + + +





= + + + +





= + +





= +





=

=

≈

−
⋅ f f f f f1 4 2 2 3 4 4 5

1 4 2 4

1 2 1

4

1.622

5 1
3 4

4
12

1
2

1
3

1
4

1
5

1
3

2
3

1
5

1
3

10
15

3
15

1
3

60
15

13
15

1
3

73
15

73
45

∫ ∫ ∫+ +x dx x dx x dx2 4 1
3

3 1/2

⋅ + ⋅ + +

= + + +

C

x x x C

2 x x x
5

1
3 4 3/2

2
5

5 1
12

4 2
3

3/2

5 4
3/ 2

Chapter 14
 1. The width of all the rectangles will be 

( )( )= − = −xy 3
4

3
2

9
8 . The left-hand sum will 

be (you can factor out the = =π π π−x 3 /2 /2
4 4  

width from each term to make the answers 
easier to read): π

4 .

  The right-hand sum will be: 

  You’ll need a calculator to find the midpoint 
sum because  
  

values aren’t on the unit circle: π
8 .

 2. 1.896. Each trapezoid has width  
 

so according to the Trapezoidal Rule:

Δx = π−0
4 = π

4

π

( ) ( )

( )

( )
− − − −





= − − − − − −





= + +





= +





= +

≈

π π π π

π

π

π

π

cos cos cos cos

0 1

1

1

2 1

1.896

4 2
3
4

5
4

4
2

2
2

2

4
2

2
2

2

4
2 2

2

4

π

( ) ( )

( )

( )
( )

− − − −

= − − − − − − −





= + +





= +





= +

≈

π π π π

π

π

π

π

cos cos cos cos

1 0

1

1

2 1

1.896

4
3
4

5
4

3
2

4
2

2
2

2

4
2

2
2

2

4
2 2

2

4

( )− − − − ≈π π π π πcos cos cos cos 2.0524
5
8

7
8

9
8

11
8
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 4. Part one: Start by evaluating the definite 
integral (remember the integral of et is et):

  Now differentiate; because e is a constant 
(there is no x exponent) its derivative is 
0: etan x × sec2 x. (You use the Chain Rule, 
first leaving the exponent alone and then 
multiplying by its derivative.)

  Part two: Because you are deriving with 
respect to the variable in the upper bound 
(and the lower bound is a constant), plug the 
upper bound into the function and multiply 
by the upper bound’s derivative: etan x × sec2 x.

 5. 

  Set u = tan x and du = sec2 x dx. Use those 
two expressions to rewrite the integral  
using u’s: ⋅e xsecxtan 2 . Don’t forget the 
limits of integration—plug them into  
u = tan x to get the new limits: tan(0) = 0 
and 1

2 . Integrate ∫ u du : =πtan 14 .

  Note: you’ll get the same final answer if you 
start with u = sec x and du = sec x tan x dx.

−

= − −
= −

π πsin sin

1 1
2

3
2 2

( )



 = −e e ed

dx
t x d

dx
x

1

tan tan

 2. + =1 1
2

3
2 . If you write each fraction 

separately with − + +x x Cln cos  in the 
denominator of each, you get: xcos .

  You memorized the integral of tangent, and 
the integral of 1 couldn’t be easier.

 3. –2. The integral of cos x is sin x (not –sin x, 
which is the derivative of cos x). So plug the 
limits of integration into the integral in the 
correct order:

  This is the area between the graph of  
y = cos x and the x-axis. As you can see 
in the graph of cos x, the area is below the 
x-axis, which is why the definite integral is 
negative.

The graph of  y = cos x.

∫∫
∫ ∫

+

= +

dx dx

x dx dxtan 1

x
x

x
x

sin
cos

cos
cos

 2
�

2
3�
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 3. 71,000 miles. Distance-traveled problems 
require you to use the velocity equation,  
so differentiate the position equation to get  
v(t) = 3t2 – 4t – 4. Now create a wiggle graph 
of v(t):

  The ship changes direction (i.e., starts 
heading away from earth) at t = 2, so you 
have to use two integrals for velocity—one 
for [0,2] and one for [2,5]. Because the 
integral on [0,2] will be negative, you need 
to multiply it by –1. Total distance is:

 4. (a) g(4π) = 0. To calculate g(4π), plug it into 
the integral and evaluate it. You’ll have to 
use u-substitution to integrate cos 2t:

  (b) ∫ ∫( ) ( )
( )

− − − + − −

= − − +

=

t t dt t t dt3 4 4 3 4 4

8 63

71

2
0

2 2
2

5

  Begin by finding g′(x) using the 
Fundamental Theorem part two (plug  
  

into t and multiply by π( )′ =g 4 1
2 ). Then 

evaluate the derivative normally: π
2 .

520

v(t)

=du dxx
1

∫( )

( )

( )
( )

=

=






= −

≈

( )

f c u du

f c

f c

f c

99

99

99 0

0.107

u

ln1

ln100

2
ln1

ln100

ln100

2

2

2

∫π( )
( )

=

=

=

π

π

π

π

( )
−

−

g t dt

u

4 cos2

sin

0

4 /2

1
2 2

4

 6. ∫ u du0

1
. Tricky u-substitution: set u = 2x – 3 

and it gives you = − =0u

2
0

1
1
2

1
2

2

.  

In addition, solve the u equation for x to get 

+ − +x x C2ln 2 3 . Substitute all of these 

into the original integral and solve:
   .

  Long division: rewrite = +x u 3
2  as 

  

  You get the same answer.

Chapter 16
 1. +

−
x
x

2 1
2 3 . These curves intersect at x = 0 and  

x = 1, which you deduce by setting  
x2 = x3 and solving for x so those x-values 
bound the area the functions enclose. The 
graph of x2 is above x3 on that interval, so 
the area will be + −1 x

4
2 3 , which equals: 1

12 .

 2. 0.107. According to the Mean Value 
Theorem for Integration, you know that 

∫ ( )−x x dx2 3
0

1
. To integrate, you have to 

use u-substitution with u = ln x and 
   

.

= dxdu
2

∫
∫
∫ ∫( )

( )

( )
( )

+

=

= +

= + +

= − + − +

= + − +

+

+

du

du

du du

u u C

x x C

x x C

2 1

4

4ln

2 3 2 ln 2 3

2 ln 2 3

u

u

u
u

u

1
2

3
2

1
2

4

1
2

1

1
2

1
2

−






= −





− =0x x

3 4
0

1
1

3

1

4
1

12

3 4 3 4

∫( ) ( )− ⋅ =f c dx100 1 x
x

ln
1

100
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 2. Begin by solving the differential equation, 
separating the x-terms from the y-terms: 

=
−

y dycos x dx

x 1
2 .

  Note that csc y and sin y are 
reciprocal functions. In other words, 

= − +y x Csin ln 11
2

2 : sin y dy = x4 dx.

  Integrate both sides of the equation: 
= x dxdy

ycsc
4 .

  This is the family of solutions to the 
differential equation. The problem now 
asks you to find a specific solution whose 
graph passes through the point (x,y) = (1,0). 
The easiest way to accomplish this task is to 
substitute x = 1 and y = 0 into the equation 
you just created and solve for C:  

= ysiny
1

csc .

  The specific solution  
 

 

passes through the point (x,y) = (1,0).

∫ ∫=
− = +

y dy x dx

y C

sin

cos x

4

5

5

( )
( )

− = +

− = +

− − =

− =

C

C

C

C

cos 0

1

1

1

5
1
5

1
5
6
5

5

 5. g(x) = x3. Use the arc length formula to find 
the length of each separately: 1

2 .

  The cubic graph is steeper, so it covers more 
ground during the same x-interval.

 6. 8.2682. Because  
  

the arc length is:

Chapter 17
 1. = = t1 and 2dx

dt
dy
dt . Divide both sides by  

(x2 – 1) and multiply both sides by cos y  
to get:

  

  Integrate both sides (use u-substitution for 
the right side): ( )= − +y x Carcsin ln 11

2
2 .

  Finally, solve for y by taking the arcsine 
of both sides (i.e., cancel out sine with its 
inverse function).

π π

π

π

( )( )
( )

( ) ( )
( )
( )

′ = ⋅ ⋅

′ =

′ =

′ = ⋅

′ =

g x

g x x

g

g

g

cos 2

cos

4 cos 4

4 1

4

x
2

1
2

1
2
1
2
1
2
1
2

∫
∫
∫

∫

∫
∫

( )
( ) ( )+ ′

= +

= +

≈

+ ′

= +

= +

≈

f x dx

x dx

x dx

g x dx

x dx

x dx

1 ( )

1 (2 )

1 4

4.6468

1 ( )

1 3

1 9

8.6303

2

0

2

2
0

2

2
0

2

2

0

2

2 2

0

2

4
0

2

∫
∫

( )+

= +

≈

t dt

t dt

1 2

1 4

8.268

2 2

1

3

2
1

3
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Chapter 18
 1. 1.08715. The slope of the tangent line to  

f(x) = arctan x is: 
  

  Therefore, the slope of your linear 
approximation will be: 

  

  The point of tangency is (2, arctan 2). That 
gives the following linear approximation:  

( )′ =
+

f x
x

1
1 2 .

  Therefore, arctan 1.9 is approximately equal 
to: ( )′ = =

+
f 2 1

1 2
1
52 .

  This is pretty close to the actual value: 
arctan(1.9) ≈ 1.08632.

( )

=
=

=

=

=

− ≈

( )

y Ne
e

e

k

k

k

7,500 15,000

ln 3.82

0.181452

kt

k

k

3.82

1
2

3.82

1
2

ln 1/2
3.82

=
=

=

=

≈

( )

−

−

−

−

y e
e

e

t

t

15,000
50 15,000

31.4341 days

t

t

t

0.181452

0.181452

1
300

0.181452

ln 1/300
0.181452

 3. Integrate the acceleration function to find 
velocity:  

  You know that v(0) = –2, so substitute t = 0 
into v(t) and set the result equal to –2:  

  Therefore, v(t) = t2 + 5t + cos t – 3. Integrate 
to get the position function:

  

  Now use the fact that s(0) = 5 to find the 
corresponding value of C:

  

  The final position equation is: 
  

 4. 31.434 days. First things first; you need to 
calculate k. The initial amount is 15,000, so 
that will equal N. After t = 3.82 days, 7,500 
grams remain, so plug into the exponential 
decay equation:

  

  Thus, the model for exponential decay is  
y = 15,000e–0.181452t. Set it equal to 50 and 
solve for t to resolve the dilemma:

  

− = −ycos x
5

6
5

5

− =






−yor cos x 6

5

5

∫( ) ( )
( )

=

= + + +

v t a t dt

v t t t t C5 cos2

( ) ( )= + + +

− = + + +
− =

v C

C
C

0 0 5 0 cos0

2 0 0 1
3

2

∫ ( )( )
( )

= + + −

= + + − +

s t t t t dt

s t t t C

5 cos 3

sin 3t t

2

3

5

2

3 2

( ) ( )= + + − ⋅ +

= + + − +
=

⋅s C

C
C

0 sin0 3 0

5 0 0 0 0
5

0

3

5 0

2

3 2

( ) = + + − +s t t tsin 3 5t t
3

5

2

3 2
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 4. − 1
3 . Here are all three steps:

  Step 1: ( ) ( )− + − = −1 ,4 ,1
2

1
3

1
2

11
3

  knowing ( ) =y 1 16
27 , find Δy:

  

  This gives you a new point of =x 1
3 .

  Step 2: 0 = Δy
1/3

Δy = 0

  Knowing ( ) ( )+ + =0 ,0 0 ,01
3

1
3

, find Δy:

  

  This gives you a new point of Δx = 1
3 .

  Step 3: =

=

=

y

y

3

y2
3 1/3

2
3
2
9

  knowing that ( ) ( )+ + =,0 ,1
3

1
3

2
9

2
3

2
9 , find Δy:

  

  This gives you a new point of Δx = 1
3 .

( )= − = − =x y2 2 0 0 0dy
dx

( )= − = − =x y2 2 0dy
dx

1
3

2
3

( )= − = − =x y2 2dy
dx

2
3

2
9

10
9

 2. The slope field spirals counterclockwise; the 
specific solution to the differential equation 
passing through (0,1) should look like the 
darkened graph:

  Determine the value of the slopes by 
plugging into the differential equation. For 
example, the slope of the segment at point 
(2,–1) will be:

  

 3. ( ) − + ≈1.9 arctan 2 1.087151
5

2
5 . You’re 

traveling a distance of 
  

  from point (–1,4), so use that and the given 
slope to calculate Δy: ( )− ,1

2
11
3 .

  So you should go right Δx = 1
2  and down 

  

  from (–1,4) to stay on the line. Make those 
adjustments to the coordinate to get the 
answer: 1

2 .

�1 0

0

1

2

3

4

1 2 3 4 5 6 7�2�3�4�5�6�7

�1

�2

�3

�4

y

x

( )− = −

= − +

y x

y x

arctan 2 2

arctan 2

1
5
1
5

2
5

= = =( )
+
−

−
− −

dy
dx

x y
x y

2 1
2 1

1
3

=

− =

− = ⋅

= −

m

y

y

3 2

y
x
y2

3 1/2
1
2

1
3





APPENDIX

B
Glossary

absolute extrema point The highest or lowest point on a graph.

acceleration The rate of change of velocity.

accumulation function A function defined by a definite integral; it has a variable in one or 
both of its limits of integration.

antiderivative The opposite of the derivative; if f(x) is an antiderivative of g(x), then 

∫ ( ) ( )= +g x dx f x C , where C is a constant.

antidifferentiation The process of creating an antiderivative or integral.

asymptote A line representing an unattainable value that shapes a graph; because the graph 
cannot achieve the value, the graph bends toward that line but won’t intersect it.

average value of a function The value, f(c), guaranteed by the Mean Value Theorem for 

Integration found via the equation ( ) = ∫ ( )
−f c
f x dx

b a
a

b

.

Chain Rule The derivative of the composite function h(x) = f(g(x)) is h′(x) = f ′(g(x)) ∙ g′(x).

cofunction Trigonometric functions with the same name, apart from the prefix “co-,” like sine 
and cosine or tangent and cotangent.

concavity Describes how a curve bends; a curve that can hold water poured into it from the 
top of the graph is concave up, whereas one that cannot hold water is concave down.

conjugate A binomial whose middle sign is the opposite of another binomial with the same 
terms (e.g., + x3  and − x3  are conjugates).

constant A polynomial of degree 0; a real number.
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constant of integration The unknown constant that results from an indefinite integral, usually 
written as C in your solution; it is a required piece of all indefinite integral solutions.

continuous A function f(x) is continuous at x = c if ( ) ( )=
→
f x f clim

x c
.

coterminal angles Angles that have the same function value, because the space between them 
is a multiple of the function’s period.

critical number An x-value that causes a function to equal zero or become undefined.

cubic A polynomial of degree 3.

definite integral An integral that contains limits of integration; its solution is a real number.

degree The largest exponent in a polynomial.

derivative The derivative of a function f(x) at x = c is the slope of the tangent line to f at x = c, 
usually written f ′ (c).

difference quotient One of two formulas that define a derivative: 

( ) ( )′ = ′ =( ) ( ) ( ) ( )
→

+ −

→

−
−f x f clim or lim

x

f x x f x
x x c

f x f c
x c0

.

differentiable Possessing a derivative at the specific x-value; if a function does not have a 
derivative at the given x-value, it is said to be “nondifferentiable” there.

differential equation An equation containing a derivative.

displacement The total change in position counting only the beginning and ending position; 
if the object in question changes direction any time during that interval of time, it does not 
correctly reflect the total distance traveled.

domain The set of possible inputs for a function.

essential discontinuity See infinite discontinuity.

Euler’s Method A technique used to approximate solutions to a differential equation when you 
can’t apply separation of variables.

everywhere continuous A function that is continuous at every x in its domain.

exponential growth and decay A population grows or decays exponentially if its rate of 
change is proportional to the population itself—in other words, = ⋅k PdP

dt , where k is a constant 
and P is the size of the population.

extrema point A high or low point in the curve, a maximum or a minimum, respectively; it 
represents an extreme value of the graph, whether extremely high or extremely low, in relation to 
the points surrounding it.

Extreme Value Theorem If a function f(x) is continuous on the closed interval [a,b], then f(x) 
has an absolute maximum and an absolute minimum on [a,b].
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factoring Reversing the process of multiplication. The results of the factoring process can be 
multiplied together to get the original quantity.

family of solutions Any mathematical solution containing “+ C”; it compactly represents an 
infinite number of possible solutions, each differing only by a constant.

function A relation such that every input has exactly one matching output.

greatest common factor The largest quantity by which all the terms of an expression can be 
divided evenly.

implicit differentiation Allows you to find the slope of a tangent line when the equation in 
question cannot be solved for y.

indefinite integral An integral that does not contain limits of integration; its solution is the 
antiderivative of the expression (and must contain a constant of integration).

indeterminate form An expression whose value is unclear; the most common indeterminate 

forms are ± ±∞
∞ ,  ,0

0  and 0 ∙ ∞.

infinite discontinuity Discontinuity caused by a vertical asymptote. Also called essential 
discontinuity.

inflection points Points on a graph where the concavity changes.

integer A number without a decimal or fractional part.

integral The opposite of the derivative; if f(x) is the integral of g(x), then ∫ ( ) ( )= +g x dx f x C , 
where C is a constant.

integration The process of creating an antiderivative or integral.

intercept Numeric value at which a graph hits either the x- or y-axis.

Intermediate Value Theorem If a function f(x) is continuous on the closed interval [a,b], then 
for every real number d between f(a) and f(b), there exists a c between a and b so that f(c) = d.

irrational root An x-intercept that cannot be written as a fraction.

jump discontinuity Occurs when no general limit exists at the given x-value because the  
left- and right-hand limits are not equal.

left sum A Riemann approximation in which the heights of the rectangles are defined by the 
values of the function at the left-hand side of each interval.

left-hand limit The height a function intends to reach as you approach the given x-value from 
the left.
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L’Hôpital’s Rule If a limit results in an indeterminate form after substitution, you can take the 
derivatives of the numerator and denominator of the fraction separately without changing the 

limit’s value =( )
( )

( )
( )→ →

′

′
lim lim
x c

f x

g x x c

f x

g x
.

limit The height a function intends to reach at a given x-value, whether or not it actually 
reaches it.

limits of integration Small numbers next to the integral sign, indicating the boundaries when 
calculating area under the curve; in the expression ∫ x dx5

1

3
, the limits of integration are 1 and 3.

linear approximation The equation of a tangent line to a function used to help approximate 
the function’s values lying close to the point of tangency.

linear expression A polynomial of degree 1.

logistic growth Begins quickly (it initially looks like exponential growth) but eventually slows 
and levels off to some limiting value; most natural phenomena, including population and sales 
graphs, follow this pattern rather than exponential growth.

Mean Value Theorem If a function f(x) is continuous and differentiable on a closed interval 

[a,b], then there exists a point c, a ≤ c ≤ b, so that ( )′ = ( ) ( )−
−f c f b f a
b a .

Mean Value Theorem for Integration If a function f(x) is continuous on the interval [a,b], 
then there exists a c, a ≤ c ≤ b, such that ∫( ) ( ) ( )− ⋅ =b a f c f x dx

a

b
.

midpoint sum A Riemann approximation in which the heights of the rectangles are defined by 
the values of the function at the midpoint of each interval.

nondifferentiable Not possessing a derivative.

nonremovable discontinuity A point of discontinuity for which no limit exists (e.g., infinite or 
jump discontinuity).

normal line The line perpendicular to a function’s tangent line at the point of tangency.

optimizing Finding the maximum or minimum value of a function given a set of circumstances.

parameter A variable into which you plug numeric values to find coordinates on a parametric 
equation graph.

parametric equations Pairs of equations, usually in the form of “x =” and “y =,” that define 
points of a graph in terms of yet another variable, usually t or θ.

period The amount of horizontal space it takes a periodic function to repeat itself.

periodic function A function whose values repeat over and over after a fixed interval.

point discontinuity Occurs when a general limit exists but the function value is not defined.
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point-slope form A line containing the point (x1,y1) with slope m has equation y – y1 = m(x – x1).

position equation A mathematical model that outputs an object’s position at a given time, t.

Power Rule for Differentiation The derivative of the expression axn with respect to x, where a 
and n are real numbers, is (a ∙ n)xn–1.

Power Rule for Integration The integral of a single variable to a real-number power is found 
by adding 1 to the existing exponent and dividing the entire expression by the new exponent 

∫ = ++
+x dx Cn x

n 1
n 1

, assuming n ≠ –1.

Product Rule The derivative of f(x)g(x), with respect to x, is f(x) ∙ g ′(x) + f ′(x) ∙ g(x).

quadratic A polynomial of degree 2.

Quotient Rule If ( ) = ( )
( )h x f x

g x
, then ( )′ = ( ) ( ) ( ) ( )

( )
⋅ ′ − ⋅ ′







h x g x f x f x g x

g x
2 .

range The set of possible outputs for a function.

reciprocal The fraction with its numerator and denominator reversed (e.g., the reciprocal of 7
4  

is 4
7 ).

related rates A problem that uses a known rate of change to compute the rate of change for 
another variable in the problem.

relation A collection of related numbers, usually described by an equation.

relative extrema point Occurs when that point is higher or lower than all of the points in the 
immediate surrounding area; visually, a relative maximum is the peak of a hill in the graph, and a 
relative minimum is the lowest point of a dip in the graph.

removable discontinuity A point of discontinuity for which a limit exists (i.e., point 
discontinuity).

Riemann sum An approximation for the area beneath a curve calculated by adding the areas of 
rectangles.

right sum A Riemann approximation in which the heights of the rectangles are defined by the 
values of the function at the right-hand side of each interval.

right-hand limit A function’s intended height as you approach the given x-value from the right.

Rolle’s Theorem If a function f(x) is continuous and differentiable on a closed interval [a,b] and 
f(a) = f(b), then there exists a c between a and b such that f ′(c) = 0.

secant line A line that cuts through a graph, usually intersecting it in multiple locations.

separation of variables A technique used to solve basic differential equations; in it, you move 
the different variables of the equation to different sides of the equal sign in order to integrate each 
side of the equation separately.
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sign graph See wiggle graph.

Simpson’s Rule The approximate area under the curve f(x) on the closed interval [a,b] using an 

even number of subintervals, n, is: ( ) ( ) ( ) ( ) ( ) ( )+ + + ⋅⋅ ⋅ + + + 
−

− −f a x f x f x f x f b4 2 2 4b a
n n n3 1 2 2 1 .

slope Numeric value that describes the “slantiness” of a line.

slope field A tool to visualize the solution of a differential equation; a collection of line 
segments centered at points whose slopes are the values of the differential equation evaluated at 
those points.

slope-intercept form A line with slope m and y-intercept b has equation y = mx + b.

speed The absolute value of velocity.

symmetric function A function that looks like a mirror image of itself, typically across the 
x-axis, y-axis, or about the origin. Symmetry across the x-axis is possible as well but results in a 
graph that is not a function.

tangent line A line that skims across a curve, hitting it only once at the indicated location.

Trapezoidal Rule The approximate area beneath a curve f(x) on the interval [a,b] using n 
trapezoids is: ( ) ( ) ( ) ( ) ( ) ( )+ + + + ⋅⋅ ⋅ + + 

−
−f a f x f x f x f x f b2 2 2 2b a

n n2 1 2 3 1 .

u-substitution Integration technique that is useful when a function and its derivative appear in 
an integral.

velocity The rate of change of position; it includes a component of direction, and therefore 
may be negative.

vertical line test Tests whether or not a graph is a function; if any vertical line can be drawn 
through the graph that intersects the graph more than once, then the graph in question cannot be 
a function.

wiggle graph A segmented number line that describes the direction of a function and the signs 
of its derivative.
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A
absolute extrema points, 180-181
absolute value function, 44
acceleration, 191

calculating, 192-193
initial, 189
jerk, 192

accumulation functions, 255-256
Achilles and the Tortoise, 8
d’Alembert, Jean Le Rond, 9
algebra

exponents, 21-22
factoring, 22

defined, 23
greatest common factor, 23
special patterns, 23-24

functions
as relations, 32
composition, 33
defined, 32
domains, 33
graphs, 36-38
inverse, 45-47
names, 32
piecewise-defined, 33-35
ranges, 37
symmetric, 39-42
vertical line test, 35

linear equations, 14
calculating slope, 16-17
point-slope form, 15
slope-intercept form, 14
standard form, 14

linear graphs, 18
point-slope form, 19
solution, 19
standard form, 20

parametric equations
converting to rectangular form, 48
parameters, 47-48

quadratic equations, 24
completing the square, 25-26
factoring, 25
factors/x-intercept relationship, 29-30
quadratic formula, 26-27
solving, 27-29

relations, 32
alternate difference quotient, 129-130
ancient influences, 7-9
angles, 53
antiderivatives

areas, 233-234
defined, 228
definite

accumulated change measurements, 253
accumulation functions, 255-256
area between two curves, 246-249
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u-substituting
antiderivatives, 238
derivatives of functions, 236-237
steps, 236

velocity, 253-254
approximating

area
Riemann sums, 218-221
Simpson’s Rule, 225-226
Trapezoidal Rule, 222-225

differential equations, 282-285
function values with tangent lines, 276-277

arc length
parametric equations, 257-258
rectangular equations, 256-257

Archimedes, 8
area

approximating
Riemann sums, 218-221
Simpson’s Rule, 225-226
Trapezoidal Rule, 222-225

between two curves, 246-249
integration, 233-234
Mean Value Theorem for Integration, 249

defined, 250
example, 250-251
visual representation, 249

shapes, 4
asymptotes

defined, 56
horizontal, 92-95
vertical, 90-92

Average Value Theorem, 252
average values, 6, 252

defined, 228
velocity, 253-254

fractions, 232-233
indefinite, 228
long division, 238
trigonometric functions

example, 231
listing of, 230

u-substitution, 238
antidifferentiation, 228

areas, 233-234
Average Value Theorem, 252
definite

accumulated change measurements, 253
area between two curves, 246-249
defined, 228

definite integrals
accumulation functions, 255-256
evaluating, 233-234
graphing calculators, 240-242
properties, 234
velocity, 253-254

distance traveled, 253-254
graphing calculators, 239-242
indefinite integral, 228
long division, 238
Mean Value Theorem, 249

defined, 250
example, 250-251
visual representation, 249

notation, 228
Power Rule, 228-230
separation, 232-233
specific derivatives, 235-236
trigonometric functions

example, 231
listing of antiderivatives, 230
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calculus
defined, 3
discovery, 7

ancient influences, 7-9
Leibniz, Gottfried Wilhelm, 10-11
Newton, Sir Isaac, 9-10
Zeno, 7-8

success, 11-12
Chain Rule, 140-141
chapter practice problems, 290-296
characteristics of limits

do exist, 78-79
don’t exist, 79-82

charts, 46-47
classifying extrema points

absolute, 180-181
relative, 176-177

Second Derivative Test, 184-185
wiggle graph, 178-179

completing the square, 25-26
composition of functions, 33
computer-generated slope fields, 279
concavity

defined, 182
direction, 183
inflection points, 183
up/down, 182
wiggle graphs, 183-184

conjugating limits, 88-89
continuity

differentiability implies continuity, 134
discontinuity, 109

infinite, 114-116
jump, 109-112
nonremovable, 118
point, 113
removable, 117

mathematical definition, 105

B
balloon radius problem, 206-207
boxes, volume example, 208-210
built-in equation solvers, 166-169

C
calculating

acceleration, 192-193
areas of shapes, 4
average values, 6
derivatives

calculators, 150-152
Chain Rule, 140-141
Power Rule, 136-137
Product Rule, 138
Quotient Rule, 139

distance traveled, 253-254
irrational roots, 5
limits

alternative method, 90
conjugating, 88-89
factoring, 87-88
graphically, 97-98
graphing calculators, 99-101
substitution, 86-87

normal line equations, 158-159
optimal values, 6
parametric derivatives, 164-165
slope, 16-17

curves, 4
secant lines, 125
tangent lines, 126

tangent line equations, 156-157
velocity, 190-191
zeroes of functions, 196-198
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overview, 267
populations, 268
Punch It Forward example, 269-270

definite integrals
accumulated change measurements, 253
accumulation functions, 255-256
area between two curves, 246-249
defined, 228
evaluating, 233-234
graphing calculators, 240-242
properties, 234
velocity, 253-254

degrees to radians conversion, 53
delta-epsilon definition of limits, 69
derivatives

acceleration, 191
calculating, 192-193
jerk, 192

antiderivatives, 228
areas, 233-234
defined, 228
definite. See antiderivatives; definite
fractions, 232-233
indefinite, 228
long division, 238
trigonometric functions, 230-231
u-substitution, 238

calculating
alternate difference quotient, 129-130
calculators, 150-152
Chain Rule, 140-141
difference quotient, 127-128
Power Rule, 136-137
Product Rule, 138
Quotient Rule, 139

official definition, 105
testing, 105-108
visual definition, 104

converting
parametric equations to rectangular form, 48
radians to degrees, 53

cosecant function, 57-58
cosine function, 54
cotangent function, 56
coterminal angles, 53
critical numbers, 175
cubic equations, 44
curves

approximating area beneath
Riemann sums, 218-221
Simpson’s Rule, 225-226
Trapezoidal Rule, 222-225

area between two, 246-249
concavity

defined, 182
direction, 183
inflection points, 183
up/down, 182
wiggle graphs, 183-184

exact areas, 233-234
length equations

parametric, 257-258
rectangular, 256-257

rates of change, 141-143
slopes, 4

cylinder optimization example, 210-212

D
decay

logistic growth, 268
Newton’s Law of Cooling example, 270-273
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tangent line equations, 156-157
trigonometric, 144
u-substitution, 236-237
velocity

acceleration, 191-193
calculating, 190-191
negative, 190
speed comparison, 190

wiggle graphs, 178
concavity, 183-184
defined, 178
direction of functions, 178-179
“with respect to,” 159

Dichotomy, 7
difference quotient

alternate, 129-130
calculating derivatives, 127-128
common errors, 127
defined, 126
formula, 126

differentiability
functions, 135
implies continuity, 134

differential equations
defined, 262
Euler’s Method, 282-285
exponential growth

defined, 267-268
Newton’s Law of Cooling, 270-273
populations, 268
Punch It Forward example, 269-270

family of solutions, 264-265
linear approximation, 276-277
separating the variables, 262-263
slope fields

computer-generated, 279
defined, 278

concavity
direction, 183
up/down, 182
wiggle graphs, 183-184

curve rates of change, 141-143
defined, 126
differentiation

implicit, 160-161
inverse functions, 161-163

existence, 134
discontinuity, 134
sharp points in graphs, 134
vertical tangent lines, 135

graphical, 147-149
integral specific, 235-236
L’Hôpital’s Rule, 199-200
Mean Value Theorem, 201-202
Newton’s Method, 196-198
normal line equations, 158-159
notations, 128
optimization, 208

aluminum can example, 210-212
box volume example, 209-210
steps, 210

parametric, 164-165
related rates

balloon radius problem, 206-207
defined, 204
ladder-sliding-down-the-side-of-a-house 

problem, 204-206
steps, 206

relative extrema points, 174
classifying, 176-177
critical numbers, 175

Rolle’s Theorem, 203
Second Derivative Test, 184-185
tabular, 145-146
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family of solutions, 264-265
linear approximation, 276-277
separating the variables, 262-263
slope fields, 277-279, 285-287
solution graph maps, 281-282
specific solutions, 266-267

gross
built-in equation solver, 166-169
x-intercepts, 170-171

linear, 14
calculating slope, 16-17
point-slope form, 15
slope-intercept form, 14
standard form, 14

normal lines, 158-159
parametric, 47

arc length, 257-258
converting to rectangular form, 48
parameters, 47-48

position, 188
acceleration, 191-193
defined, 188
initial position, 189
notation, 188
Peanut the cat playtime example, 188-189
velocity, 190-193
vertical projectile motion, 193

quadratic, 24
completing the square, 25-26
factoring, 25
factors/x-intercept relationship, 29-30
quadratic formula, 26-27
solving, 27-29
y = x2, 44

rectangular, 256-257
tangent lines, 156-157
trigonometric, 64-65

drawing, 277
example, 278-279
family of solutions, 279
graphing with calculators, 285-287

solution graph maps, 281-282
specific solutions, 266-267

differentiation
implicit, 160-161
inverse functions, 161-163
reverse, 228

discontinuity, 109
derivative existence, 134
infinite, 114-116
jump, 109-112
nonremovable, 118
point, 113
removable, 117

discovery of calculus, 7
ancient influences, 7-9
Leibniz, Gottfried Wilhelm, 10-11
Newton, Sir Isaac, 9-10

displacement versus distance traveled, 253
distance traveled, 253-254
dividing exponents, 21
domains, 33, 36
double angle identities, 63-64

E
Encyclopédie, Jean Le Rond d’Alembert, 9
equations

cubic, 44
differential

defined, 262
Euler’s Method, 282-285
exponential growth. See exponential growth 

and decay
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relative
classifying, 176-177
critical numbers, 175
Second Derivative Test, 184-185
wiggle graph, 178-179

Extreme Value Theorem, 180-181

F
factoring, 22

defined, 23
greatest common factor, 23
limits, 87-88
quadratic equations, 25
special patterns, 23-24
x-intercept relationship, 29-30

family of solutions, 264-265, 279
forms

linear equations
point-slope, 15
slope-intercept, 14
standard, 14

linear graphs
point-slope, 19
standard, 20

rectangular, 48
formulas

difference quotient
alternate, 129-130
calculating derivatives, 127-128
common errors, 127
defined, 126
notation, 126

iterative, 196
old, 5
quadratic, 26-27

essential discontinuity, 114-116
Euclid, 8
Euler’s Method, 281-285
Euler’s number, 269
existence

derivatives
discontinuity, 134
sharp points in graphs, 134
vertical tangent lines, 135

limits
do exist, 78-79
don’t exist, 79-82

theorems
Average Value, 252
Extreme Value, 180-181
Intermediate Value, 118-120
Mean Value, 201-202, 249-251
Rolle’s, 203

exponential growth and decay
defined, 267
logistic growth, 268
Newton’s Law of Cooling example, 270-273
populations, 268
Punch It Forward example, 269-270

exponents
negative, 21
rules, 21-22

expressions
definite integrals

defined, 228
evaluating, 233-234

indefinite integrals, 228
integration

specific derivatives, 235-236
u-substituting, 236-238

extrema points
absolute, 180-181
defined, 10
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graphs, 36
domains, 36
inputs/outputs relationship, 38
ranges, 37

inverse
creating, 45-46
defined, 45
defined by charts, 46-47
differentiating, 161-163
notation, 45

names, 32
natural log, 255
nondifferentiable, 135
optimization, 6, 208

aluminum can example, 210-212
box volume example, 209-210
steps, 210

periodic, 51-53
piecewise-defined, 33-35
relations, 32
secant, 57
sine

defined, 54
period, 52

square root, 44
symmetric, 39

defined, 39
origin, 42
x-symmetry, 42
y-symmetry, 40

tangent, 55
trigonometric

antiderivatives, 230
integration example, 231

vertical line test, 35
zeroes, 196-198

fractions
0s, 57
integration, 232-233
long division, 238
reciprocals, 56

functions
absolute extrema points, 180-181
absolute value, 44
accumulation, 255-256
approximating values with tangent lines,  

276-277
average values, 6, 252
composition of functions, 33
continuous

discontinuity, 109
infinite discontinuity, 114-116
jump discontinuity, 109-112
mathematical definition, 105
nonremovable discontinuity, 118
official definition, 105
point discontinuity, 113
removable discontinuity, 117
testing, 105-108
visual definition, 104

cosecant, 57-58
cosine, 54
cotangent, 56
defined, 11, 32
derivatives

alternate difference quotient, 129-130
defined, 126
difference quotient, 127-128
notations, 128
u-substituting, 236

differentiable, 135
direction, 178-179
domains, 33
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linear, 18
approximation, 276-277
point-slope form, 19
solution, 19
standard form, 20

memorizing, 43
no x-/y- intercepts, 44
parametric equations, 47

converting to rectangular form, 48
parameters, 47-48

relative extrema points, 174
classifying, 176-177
critical numbers, 175
Second Derivative Test, 184-185

secant lines, 124
sharp points, 134
slope fields

computer-generated, 279
defined, 278
drawing, 277
example, 278-279
family of solutions, 279
graphing calculators, 285-287

square root function, 44
symmetry

origin, 42
x-symmetry, 42
y-symmetry, 40

vertical line test, 35
visualizing, 5
wiggle, 178

concavity, 183-184
defined, 178
direction of functions, 178-179

y = x, 44
greatest common factor, 23

Fundamental Theorem of Calculus, 10
areas and integration, 233-234
specific derivatives of integrals, 235-236

G–H
graphical derivatives, 147-149
graphing calculators

derivatives, 150-152
gross equation solving

built-in equation solver, 166-169
x-intercepts, 170-171

integration, 239-242
limits, 99-101
slope fields, 285-287

Graphmatica software, 280
graphs

absolute extrema points, 180-181
absolute value function, 44
asymptotes, 56
concavity

defined, 182
direction, 183
inflection points, 183
up/down, 182

continuous functions, 104
curves, 141-143
derivatives, 147-149
differential equations

Euler’s Method, 282-285
solution graph maps, 281-282

functions, 36
domains, 36
inputs/outputs relationship, 38
ranges, 37

Intermediate Value Theorem, 118-120
limits, 72-74, 97-98
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definite
accumulated change measurements, 253
area between two curves, 246-249
defined, 228

definite integrals
accumulation functions, 255-256
evaluating, 233-234
graphing calculators, 240-242
properties, 234
velocity, 253-254

distance traveled, 253-254
graphing calculators, 239-242
indefinite integral, 228
long division, 238
Mean Value Theorem, 249

defined, 250
example, 250-251
visual representation, 249

notation, 228
Power Rule, 228-230
separation, 232-233
specific derivatives, 235-236
trigonometric functions

example, 231
listing of antiderivatives, 230

u-substituting
antiderivatives, 238
derivatives of functions, 236-237
steps, 236

velocity, 253-254
Intermediate Value Theorem, 118-120
inverse functions

creating, 45-46
defined, 45
defined by charts, 46-47
differentiating, 161-163
notation, 45

gross equations
built-in equation solver, 166-169
x-intercepts, 170-171

growth
exponential

defined, 267
logistic growth, 268
Newton’s Law of Cooling example, 270-273
populations, 268
Punch It Forward example, 269-270

logistic
defined, 267
growth and decay example, 268

horizontal asymptotes, 92-95

I
identities

defined, 61
double-angle, 63-64
Pythagorean, 62-63

implicit differentiation, 160-161
indefinite integrals, 228
infinite discontinuity, 114-116
infinity limits

horizontal asymptotes, 92-95
vertical asymptotes, 90-92

inflection points, 183
initial acceleration, 189
initial position, 189
initial velocity, 189
integers, 14
integration, 228

areas, 233-234
Average Value Theorem, 252
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infinity
horizontal asymptotes, 92-95
vertical asymptotes, 90-92

L’Hôpital’s Rule, 199-200
one-sided, 74-77
shorthand notation, 71
slopes of secant lines, 125
special theorems, 96-97

linear approximation, 276-277
linear equations, 14

calculating slope, 16-17
forms

point-slope, 15
slope-intercept, 14
standard, 14

linear graphs, 18
point-slope formula, 19
solution, 19
standard form, 20

lines
asymptotes, 56
graphing, 18

point-slope form, 19
solution, 19
standard form, 20

normal, 158-159
secant

defined, 122
graphing, 124
slope, 125

tangent
approximating function values, 276-277
defined, 122
equations, 156-157
points of tangency, 122
slope, 126

vertical tangent, 135

inverse trigonometric derivatives, 144
irrational roots, 5
iterative formulas, 196

J–K
jerk, 192
jump discontinuity, 109-112
justifying old formulas, 5

L
ladder-sliding-down-the-side-of-a-house related 

rates problem, 204-206
left-hand limits, 74-77
left sums, 220-221
Leibniz, Gottfried Wilhelm, 10-11
length equations

parametric, 257-258
rectangular, 256-257

L’Hôpital’s Rule, 199-200
limits, 9

calculating
alternative method, 90
conjugating, 88-89
factoring, 87-88
graphically, 97-98
graphing calculators, 99-101
substitution, 86-87

defined, 71
delta-epsilon definition of limits, 69
existence

do, 78-79
don’t, 79-82

explaining, 70
graphs, 72-74
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N
natural logarithmic function, 255
negative exponents, 21
negative slopes, 279
Newton, Sir Isaac

influence on calculus, 9-10
Law of Cooling, 270-273
Newton’s Method, 196-198
Philosophiæ Naturalis Principia Mathematica, 10

nondifferentiable functions, 135
nonremovable discontinuity, 118
normal lines, 158-159
notation

derivatives, 128
integration, 228
inverse functions, 45
position equations, 188
trigonometric derivatives, 144

O
old formula justification, 5
one-sided limits, 74-77
optimization, 6, 208

aluminum can example, 210-212
box volume example, 209-210
steps, 210

origin symmetry, 42

P
paper boxes, 208
parametric derivatives, 164-165

logistic growth
defined, 267
growth and decay example, 268

long division, 238

M
Mean Value Theorem, 201

defined, 201
example, 202
integration, 249

defined, 250
example, 250-251
visual representation, 249

memorizing graphs, 43
midpoint sums, 221
motion

acceleration, 191
calculating, 192-193
initial, 189
jerk, 192

distance traveled, 253-254
position equations, 188

defined, 188
initial position, 189
notation, 188
Peanut the cat playtime example, 188-189

velocity
acceleration, 191-193
calculating, 190-191
definite integral, 253-254
initial, 189
negative, 190
speed comparison, 190

vertical projectile, 193-194
multiplication of exponents, 21
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position equations, 188
acceleration, 191-193
defined, 188
initial position, 189
notation, 188
Peanut the cat playtime example, 188-189
velocity

acceleration, 191-193
calculating, 190-191
negative, 190
speed comparison, 190

vertical projectile motion, 193
positive slopes, 279
Power Rule

derivatives, 136-137
integration, 228-230

practice problems, 290-296
Principia. See Philosophiæ Naturalis Principia 

Mathematica
Product Rule, 138
projectile motion, 193-194
Pythagorean identities, 62-63
Pythagorean theorem, 62

Q
quadratic equations, 24

completing the square, 25-26
factoring, 25
factors/x-intercept relationship, 29-30
quadratic formula, 26-27
solving, 27-29

quadratic formulas, 26-27
Quotient Rule, 139

parametric equations, 47
arc length, 257-258
converting to rectangular form, 48
parameters, 47-48

periodic functions, 51
coterminal angles, 53
defined, 52
periods, 52
sine, 52

periods
periodic functions, 52
sine function, 52-54

Philosophiæ Naturalis Principia Mathematica, Sir Isaac 
Newton, 10

piecewise-defined functions, 33-35
plugging functions into functions, 33
point-slope form

linear equations, 15
linear graphs, 19

points
absolute extrema, 180-181
discontinuity, 113
extrema, 10
inflection, 183
relative extrema, 174

classifying, 176-177
critical numbers, 175
Second Derivative Test, 184-185
wiggle graph, 178-179

tangency, 122
polynomial factoring

greatest common factor, 23
special patterns, 23-24

population exponential growth
defined, 268
Punch It Forward example, 269-270
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rules
Chain, 140-141
exponents, 21-22
L’Hôpital’s, 199-200
Power

derivatives, 136-137
integration, 228-230

Product, 138
Quotient, 139
Simpson’s, 225-226
Trapezoidal Rule, 222

defined, 223
example, 224-225

S
secant function, 57
secant lines

defined, 122
graphing, 124
slope, 125

Second Derivative Test, 184-185
separation

integration, 232-233
variables, 262-263

shape area, 4
sharp points in graphs, 134
Simpson’s Rule, 225-226
sine function

defined, 54
period, 52

slope fields
computer-generated, 279
defined, 278
drawing, 277
example, 278-279

R
radians to degrees conversion, 53
ranges

functions based on graphs, 37
sine function, 54

rates of change, 141-143
reciprocals, 56
rectangle area approximation, 218-221
rectangular equations, 256-257
rectangular form, 48
related rates

balloon radius problem, 206-207
defined, 204
ladder-sliding-down-the-side-of-a-house 

problem, 204-206
steps, 206

relations, 32
relative extrema points, 174

classifying, 176-177
Second Derivative Test, 184-185
wiggle graph, 178-179

critical numbers, 175
removable discontinuity, 117
respecting derivatives, 159
reverse differentiating, 228
Riemann sums

defined, 218
left sums, 220-221
midpoint sums, 221
right sums, 219-220

right-hand limits, 74-77
right sums, 219-220
Rolle’s Theorem, 203
roots

irrational, 5
square, 44
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tangent lines
approximating function values, 276-277
defined, 122
equations, 156-157
points of tangency, 122
slope, 126
vertical, 135

tests
continuity, 105-108
Second Derivative, 184-185
symmetry

origin, 42
x-axis, 42
y-axis, 40

vertical line, 35
theorems

Average Value, 252
Extreme Value, 180-181
Fundamental of Calculus, 10
Intermediate Value

example, 119-120
overview, 118-119

Mean Value, 201
defined, 201
example, 202
integration, 249-251

Pythagorean, 62
Rolle’s, 203
special limit, 96-97

Trapezoidal Rule, 222
defined, 223
example, 224-225

trigonometric derivatives, 144
trigonometry

cosecant, 57
cosine, 54
cotangent, 56

family of solutions, 279
graphing calculators, 285-287

slope-intercept form, 14
slopes

calculating, 16-17
curves, 4
positive/negative, 279
secant lines, 125
tangent lines, 126

solving
quadratic equations, 24, 27-29

completing the square, 25-26
factoring, 25
factors/x-intercept relationship, 29-30
quadratic formula, 26-27
solving, 27-29

trigonometric equations, 64-65
special limit theorems, 96-97
speed, 190
square root function, 44
standard form

linear equations, 14
linear graphs, 20

substitution method for limits, 86-87
success, 11-12
symmetry, 39

defined, 39
origin, 42
x-symmetry, 42
y-symmetry, 40

T
tabular derivatives, 145-146
tangent function, 55
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integration, 253-254
negative, 190
speed comparison, 190

vertical asymptotes, 90-92
vertical line test, 35
vertical projectile motion, 193-194
vertical tangent lines, 135
visualizing graphs, 5

W
wiggle graphs, 178

concavity, 183-184
defined, 178
direction of functions, 178-179

writing
inverse functions, 45-47
relations, 32

X
x-intercepts

factor relationship, 29-30
gross equation solutions, 170-171

x-symmetry, 42

Y–Z
y-symmetry, 40
y = x graphs, 44

Zeno
Dichotomy, 7
influence on calculus, 7-8

zeroes of functions, 196-198

defined, 51
equations, 64-65
identities

defined, 61
double-angle, 63-64
Pythagorean, 62-63

integration
example, 231
listing of antiderivatives, 230

periodic functions, 51
coterminal angles, 53
defined, 52
sine, 52

secant, 57
sine, 54
tangent, 55
unit circles, 59-60

U
unit circles, 59-60
u-substituting

antiderivatives, 238
derivatives of functions, 236-237
steps, 236

V
variable separation, 262-263
velocity

acceleration, 191
calculating, 192-193
initial, 189
jerk, 192

calculating, 190-191
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