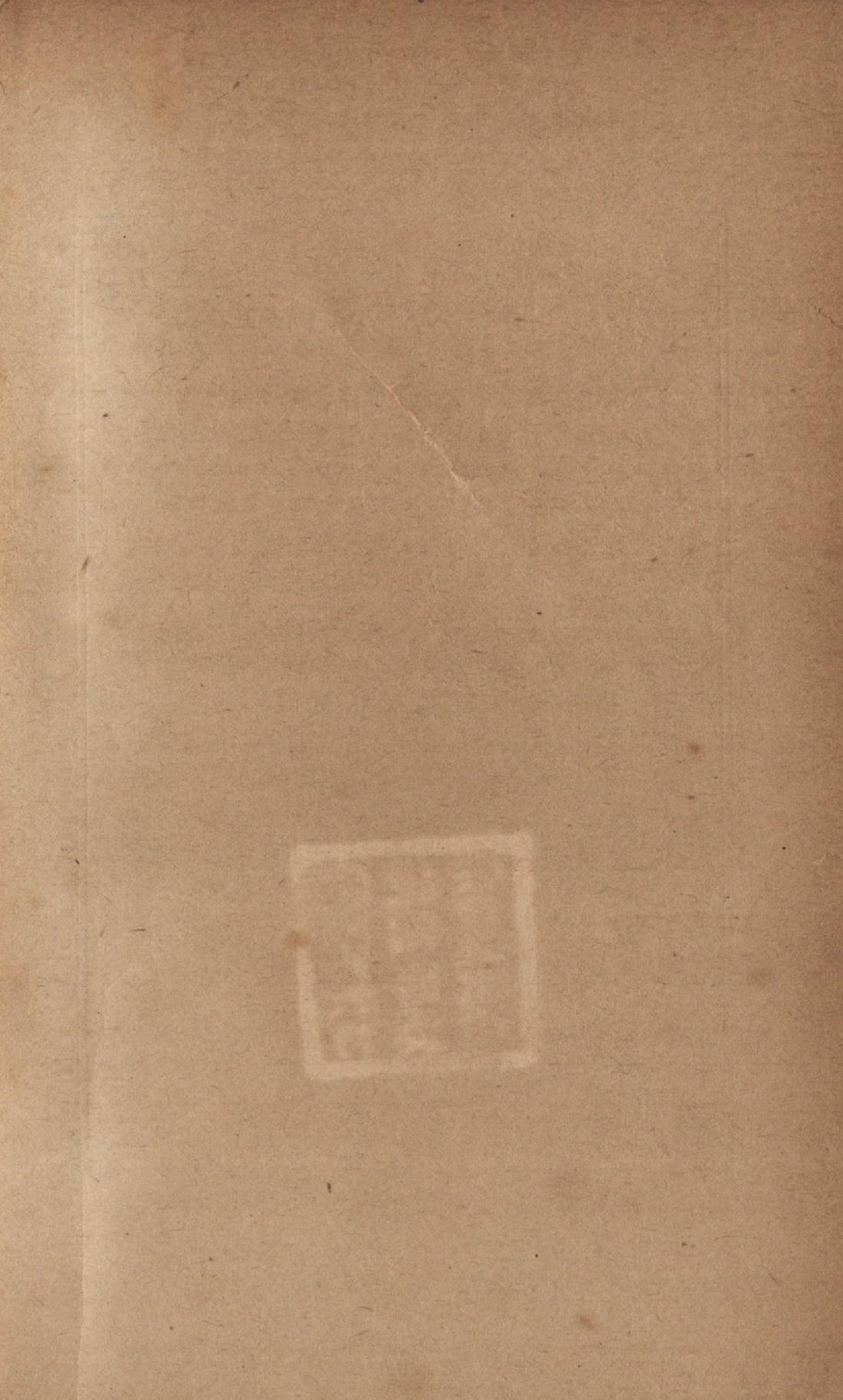
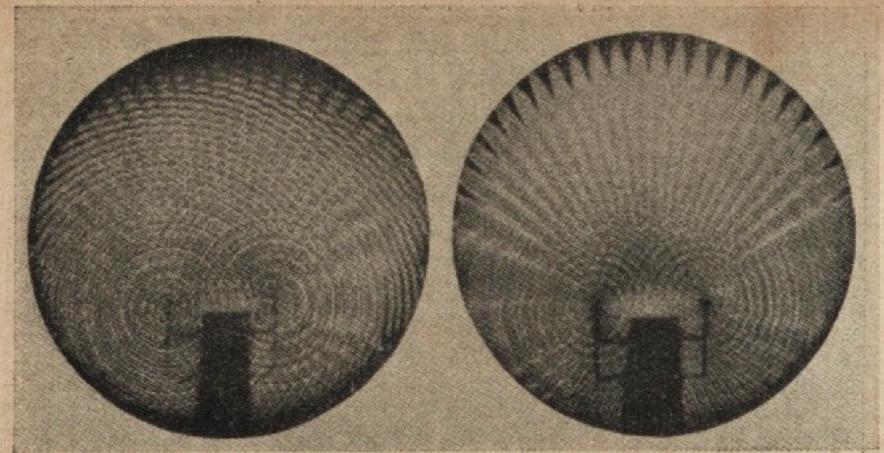
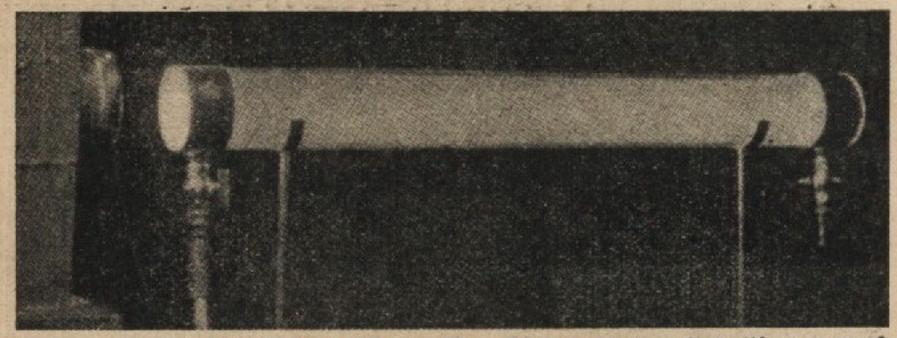


國立公共資訊圖書館典藏由國家圖書館數位化

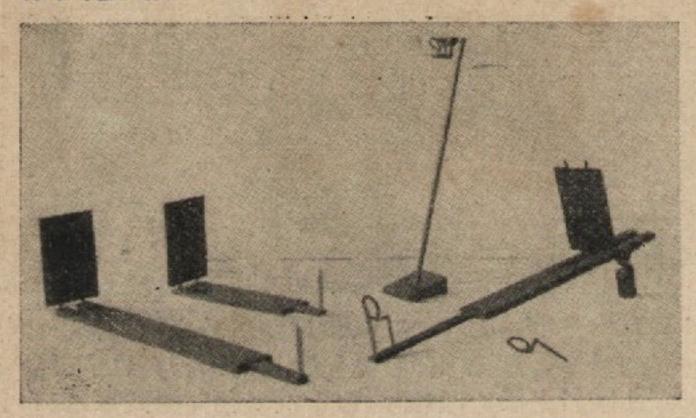

08317


64

自然科學小叢書 光的 下 脚 W. H. Bragg 著 陳 嶽 生 譯


王雲五 周昌壽 主編

商務印書館發行



A. 這兩幅照相,是安特雷特教授所攝的。它們代表水銀表面上波 較傳布的情形。波紋從兩點出發,激波器隔開一定的時間,屢屢在這 兩點打擊水銀表面。左面的照相,用電花攝取;右面的照相,用閃光攝 取,閃光時間一秒鐘。干涉作用,很容易看見:波紋分成輪輻狀的線 叢,可表繞射光柱產生的樣式,這些光柱為數甚多,因為激波器分離 頗遠之故(參閱第一六三頁)。

B. 丁達爾對於空氣中懸浮。前質點所散射的光,作實驗時所用的管子(參閱第一八二頁)。

銅 版 圖 十 六

A. 在這幅畫裏面,河水清澈,岸上橫過河中的樹,在水面上並無 影子(參閱第一八七頁)。

B. 但是在這幅畫裏面,水是混濁了, 樹彩即現於水面。把這兩幅畫比較,卻不可加以推廣,乃至兩幅畫幣屬的相對色調, 也拿來考究一下。泥水實際上確被太陽所照;不過置樣的兩幅簡單圖畫,要把它們的色調,加以相對的調節,使溫水被太陽照耀的情景,也能顯出來,這是很不便當的事情(參閱第一八七頁)。

光的選擇散射

天空 的 顏 色, 一變化多 端: 晴 朗 **##** 思 的時 候常 呈一片 純青, 這是基 本 的 颜 色雲氣遊 蔽日 月, 有 時

俠 在 日月的 四 圍, 現出 数重環 形的量繽 粉五彩; 朝日 初 昇, 夕陽 西 墜就 有紅色金黃色以 及 絲 色

的 霞 光 發 生; 此 外 尚 有 非 他 種 種 效 應不 能 盡逃凡 此 天 空 各 色它 們 的 成 因, 都 是 組 織 大 氣 以 及 浮

物 在 質 大 氣 存 在沒有一種東西, 裏 面 的 各 種 分子 其作用好比颜料, 與 質 點, 遇到了 光 的各 也會吸收若干種一定 波, 彼 此之 m 發 生反 的 應所 颜 色而讓別的色光過 致。 大氣 之中, 並 無 去。 着 天 色 空 的

中 弒 有 顏 色 的 分 離 作 用, 卻 沒 有顏 色 的生 破 壤 作 用。 以前 某一 時 期, 有 人 料 想 過, 以為 空 氣 果 面 包

含着 種青 色 氣 體,或 者 空氣本身就是青 的紅 光是被它吸 進去了 不 過 此 事 如 果園實 那 麽 日

第五章 天空之色

興 衆 星 當 它們 愈 挨 近 地 平 線, 因 而 它們 的 光 線, 在 尙 未 達 到 我 們 的 眼 中 以 前愈須横沿 過更 多 的 空

氣 時, 它 們 的 顔色就 要顯 得 愈變愈靑了我 們 應當看 見當 頂 是一片 淡青色而四 圍的下腳是呈 深

靑 但是 實 在 的 情 形 並 不 如 此。

從 波 動 說, 卻 可 想 出 _ 個 較 佳 的 解 釋 來。 光 在空 氣 中 經 過, 必 定 被 那懸浮 在空氣 裏面 的 質 點,

向 四 方散 射, 好 比 海 洋 中 的 波 浪, 沖激 在 凸 出 海 面 的 礁 石 上, 被 它 們 轉 過一邊而散射出去一般 組

成 光 譜 中 青 色一 歂 的 短 波, -定 比 較長 的 紅 波, 更 容 易 被 轉 向 4. 邊, 正 好 比微 小 的 水 波,撞 在 礁 石

6 激 回 去, 而 較 大 的 浪 頭, 卻 自 己 鼓 起 來 沖 過 礁 石, 再 往 前 進。 這 樣 來, 分 離 的 作 用 就 此 發 生,而 顏

色 也 出 現了。 根 據 這 _ 個 假 說我 們 應 當 預 料 太陽 的 光, 在 日 出 日 沒 的 時 候, 傾 向 於黃色甚一 至 於 紅

色, 因 爲 光 波 横 過 空 氣 的 路 愈 長, 色 一光線 的 除 掉, 就 愈 近 於完全。 這 被 轉 向 的青色光線同時 就 使

空 一變成 -片青 色。

它

是青

尤

其

在

煙中

所

光線

的

碳

是

很

小

很

小

的

時

看

起

來

如一盆木

炭火或

這 的, 種 效 應 的 例 子, 是 含散射 甚 多 甚 多, 普 通 得 很。 粒, 從 煙 囱 裹 面 冒 出 候, 來 的 煙, 襯 更青例, 着 黑 的 背 景, 望 過 去 就 見

爐 煤 炭 火, 在 尙 未添 進 生炭 或 生 一煤的時 候, 火 中 出 來 的 煙 色, 就 是 如 此。 一塊 的碳顏色當 然

是 不 渦 煙裏面所含 的碳 粒, 極 細 極 細, 這些細 碳 粒 的 散射 作 用, 其 效果遠 比顏 料 性質 的 吸 收

作 來 得、 大要得 更小了在另一方 好 看 的青 色, 碳 粒 子 應 當 比 光 的 波 長 更 小 纔行, 景, 而 在這 是發光的雲或竟 種 情 形之下, 吸 收 的 效 應,

身, 那 灰 看 過去就見透 出來的 光呈褐 色或紅 色。

卻

也

比

較

的

面

說,

假

使這

煙

的

後

面

是

光

明

的

背

或

是

太陽

本

捲 煙 燃 着 的 頭, 發出 來 的 煙 在 空 氣 中 上 昇 的 時 候, 顏 色 是青 的, 但 是 曾 經 吸 入 口 中, 再 噴 出

來 的, 卻! 呈 灰 色。 就 後 _ 種 情 形 而 論, 煙中 的 粒子已從 呼 出 來 的 暖氣, 得 到一層 潮氣包裹 在 外 面, 因

而 加 大了一些粒子一大就 更有散射長波的趨勢了。

在 有 霧 的 大 氣 裏 面, 紅 光 的 輸 送, 比 較 白 些 的 光 來 得 容 易, 因 爲 水 的 質 點, 能散射 的 紅 光

長 波, 沒 有 像 它 所 能散射 的 青 光 短 波 那麼 多。 在 霧 氣 籠 罩 之下要攝 取 照 相, 鉅細不 遺, 祇須 把黃 色

收 玻 去了駕駛汽 璃 一片, 遮 在 車 照 的 相 機 人 因 的 爲 透鏡 車燈發出去的光線, 面 前, 就 可 以 容 易得 有一 多, 部 因 爲 分被散射 這 樣一 來, 來, 被 散 回 射 到 的青 他 的 眼 光, 中很容易 都 給黄 玻 使 璃 他 吸

第五 章 天空之色

目 眩 心 迷, 141 以 往 往 在 汽 車 的 頭 燈 前 面, 罩 塊 糸 色 玻 璃, 以 便 剔 去 那些較 短 的 波, 使 餘 下 較 長 的

實 波, 驗, 卻已 容易受到散射作用。 經 證明 紅 光的應用, 在 大霧之中行 其利 益 不 車, 甚可靠因為 常 用 紅 光 大霧 信 號 的質 继 幫助, 點 也是 很大大得足以散射一切波 爲 7 這 個 緣 故。 然 而 近 長唯 姚 的

有 紅 外波, 方始長得 足以避 免散射作 用這紅外波不 **外就** 要講 到了

分子散射

如 是 看 來,當 光線 横 過 含 有 細 質 點 的 大氣時, 其 所 以 呈 現颜 色 的 原 因可 用 波 動 說 來 解 釋, 頗

它 爲 容 發 易。 這些細的 生顏色效應的主動 質 、點或 許是 者。 飛揚 不過已故的舒士雷理(Rayleigh)曾 的塵埃 或許 是飄 浮 的 水 蒸氣 質點: 由 計 兩 算方面 種 東 西, 證 都有 明若欲 人 提 尋 出 覓 過, 天 說

空顔 波 的 色 長 度 的 小得 成 因, 多, 無 須 但是各分子 在空 氣 本 彼 身 此所 的分子 發的微弱散射作 以 外, 更去 找 旁 用, 的 東 卻 也可 西容氣 以 集腋 的分 子, 成 裘分子 當 然 是 的 很 數 小 很 目 旣 小。 然 比 題 光

驚這積聚的作用一定可觀而我, 們 從靑天所見的 光其, 原因當然藉此足以說明了靠近 地 球

表 面 的 地 方大氣· 之中 有 很 多 的 物質懸浮 飄蕩, 這 也 是 發 生散射 作用 的 一個 原 因。不 過 地 球 面 上

的 尼 亞 州 埃, 飛揚 威 湖 起來 遜 **奉**觀 的高 象臺上, 度最 已能 多不會超出三千 測量天空所 英尺以 發之光 外而 的強 度其結 且 在高 出 果與從 Rayleigh 學說推得 海平 面五千英尺美國 加 利 脳

互相比較之下發見彼此完全符合。

從 太 陽 光向 旁侧被散射 的 光穿到了較下層 的 空 一氣時其所 現青色就不像在上層空氣中 那

樣 的 純 粹, 因 爲 在 上層 交 氣裏 面, 沒 有塵 埃 在空氣 分子 本 身 所 散射 的 短 波以外再 把較 長 的 波

也 散 射 出 來。 緯度較高 的 北 华 球 地方尤其是在我 們 英 國 境 內空 一氣裏面 所含的 溼氣通常 總 是 很

多 多所以天空的青色與緯度較低 的 別國境內所見的深青色 相比較前者帶灰白色並且是水

汪 的。 然 而 這 些緯 度較低 的 國 内, 雖 有 這 種 鮓 明 的 青 天可 見, 卻 也 不能常常享受有 時 候 熱 而 燥

的 風 捲 下 來, 吹起 了 塵埃, 飄 揚 在空中, 愈 飄 愈多, 直 到 青 色全消天 空變成 黑暗無色為止於是或許

有雨帶着空中的塵埃灌注下來真把天空洗了一洗。

丁達 爾 慣 常 做 種 實 驗, 用以 說明青 色的生 成, 由 於 懸浮 細 質 點的 這一種學說這實驗用 玻

璃 管 根, 大約 三 英 尺 長, 其 装 配 情 況, 如 銅 版 圖 + 五 B 所 示。 玻 璃 管 的 兩 口 都 封閉而 封 口 的 是 玻

璃 板 兩 塊, 所 以 可 使 光 柱 由 兩 端 通 過 此 管。 先 把 玻 璃 管 中 的 空 氣 完 全 抽 出, 然後把空氣鹽 酸 以 及

T 烷 基 亞 硝 酸 鹽 蒸氣, 這 三 種 的 混 台 物, 再 灌 進 去。 在 數 分 鐘 之 内, 就 起 化 學 反 應, 以 致 生 出 極 細 的

質 點, 懸 浮 於 這 混 合 氣 體 之 内; 其 大 小 都 是 均 勻 致, 這 卻 是 很 重 要 的 點這 些質 點 遇 到 青 光, 就

要 把 它 向 -邊散 射; 若 有 觀察 者 從 這 玻 璃 管 的 端, 向 內 窺 望, 由 這 此 質 點 開 始 生 成 的時 候 望 起,

望 明, 到 它 們 浉 濃。 浉 增 多, 他 就 要 看 見管 驗, 甚 中 先 興, 有 暗 的 深 靑 色, 然 後 因 質 話: 點 的 大 所 小 增 加, 也 色縱使 銀 着 愈 變 愈 鮮

過 最 濃 厚 最 純 粹 的 意 大 利 青 天, 卻 也 可 與 它 彼 此 媲 美

愈

變

愈

達

爾

發

明

這

實

爲

高

他

自

己

有

這

樣

句

我

們

造

的青

不

能

超

此 項 實 驗, 另 外 還 有 _ 種 方 式, 很 容 易 說 明。 取 玻 璃 缸 隻, 往 極 稀 薄 的 硫 硫 酸 鈉 溶 液。 使

光 線 通 過 此 缸, 射 在 屏 上, 屏 L 所 現 的 是 個 白 圓 班。 若 再 把 稀 鹽 酸 加 進 去, 硫 磺 的 質點 就 在 一分

鐘 色 或 就 從 兩 白 分 變 鐘 爲 內 黄, 分 由 離 黄 出 來, 再 變成 丽 且 紅, 大 imi 小 解 漸 漸 上 的 增 白 加: 圓 當 斑, 這 此 也 先變成 質 點 由 分 _ 個 離 黄 以 太陽, 至 增 再 大 變 時, 成 通 西 過 落 水 的 缸 紅 的 太陽。 光, 其 這 顏

效應的顏色照相見於銅版圖十四日。

T 達 爾 曾 相信 過,假 使 他從他 的 玻 璃管內把 所有 的 塵 埃 與 所 有 的 蒸氣都拿 掉, 那麽 玻 璃 管

内 就 沒 有 什 麽 東 西 留下 來, 可 以 散射 光 線, 因 而 光 沿 玻 璃 管直 進 的 時 候; 從光線 的 横 側 望 到 管 中,

就 沒 有 什麼 東 西可 以看 見在這一 點 上面, 達 阚 是錯了 不 過 他 的 實 驗卻極宜於表示質 點散 射

作用的存在以及被散射的顏色倚靠質點大小的關係。

現 在 的 爵 士雷理(Rayleigh)會 表明 空 一氣分子 的 散 射 作 用, 卽 使 在丁達 阚 所 用 那樣 大小 的

玻 璃 管 中, 也應當 有察見的可 能 性。 他 指示天空即使在 祇被月亮 照 着 的時候也有光從其中 出 來,

所 以 太陽 光既然 比 月 光 強,強 至 五十萬 倍, 那 麽太 陽 光 横 過 的 空 氣 層, 若 献 有 大氣 高 度 的 百 萬

分之 這空氣 層 所散射 的 光, 也應當 典 月 夜 的 天空 樣, 很 容 易 看 見: 在實 際上說來幾英 寸 厚 的

空 氣 其所 散射 的 光量已足以使我 們看 到了當我 們 用適宜 的 光學儀器來做這實驗的時 候, 情

形確是如此。

在 早 晨 與 將 晚 的 時 候太陽 與 天空 常呈 燦 爛 的 顏 色這 顏 色 的 大 部 分當然是空氣 分子 所

第五章 天空之色

引 起 的 效應以 外, 再 加 上塵 埃 與 水 蒸 氟 的散 射 作 用 所 致。 大 火 中 冒 出來的煙例 如森林偶 或 着 火

而 發 的 濃 煙 有 時 恢 使 天 空再 罩 上一 層 深 紅 色當 克 刺 卡 陀 阿 (Krakatoa) 火山在五十年 前 爆

發 的 時 候, 把 最 細 的塵 埃噴射 到 空 氣 裹 面, 噴射了不 少; 那 _ 年 全 世界所見的 天空顔 色, 都 是 出 奇

的 美 麗, 隔了 幾個 月之後方纔消 失這是因為 飛揚 在 一空中 的 塵 埃, 飄到了全世界人留於空中之 故。

在 輕 煙 淡 霧籠 罩之下遙望 遠 處 的 山 色 時, 看 見它們 似 乎 都 是青 的不過這些山送到 我 們 眼

前 來 的 光, 當 然 不 僅 是青 的 丽 已。這 一片青 色, 也 來 自 山 Tit 我 們 4 間 的 大氣分子與質點我 們 與 這

遠山其間當然隔了一部分的天空。

通 常 的 慧, 總 是 水 滴 的 集 團, m 這 些 水 滴, 其 大 小 都 足 以 散 射 光 譜 的一切 色光因, 其 如 此, 所 以

當 那 一片 片 的 雲, 把 太 陽 光 線 反射 到 我 們 的 掤 113 時, 它 們 都 現 作 -塊 塊 閃 光 的 白絮當它們 適 在

太 陽 與 我 們 的中 [11] 時, 它們 或一 許把 太陽光一 齊 遮 沒於 是 看 起 來 就 是黑的了祇在四周沿邊的 地

方, 有 充 足 的 太陽 光通 過, 纔被散射 而 腳 出 銀 光 燦 爛 的 輪 厚的 來。

海的顏色

深 海 的 所 以 呈現青色 也可 以 用 同 樣 的 理 由 來 解 釋。 不 過這 件 事 情 要證明它卻已覺 得 比

較 闲 難一些即使是大觀測家 如 巴 故 的節 士雷 理, 對 於 此 事 有 些懷 疑。 海的青色有許許多多 確

然 是 反 射 天空 所 來 的青 光 ilii 發生 的: 起 初 的 時 候, 或 許 以 爲 如 此 解釋, 其 理 由 已很 充 分在青 天 白

Ħ 之下 我們不得不察見 海 的 颜色, 起 來 也是青的, 尤 其 是 在 輕 風 吹皴 海 面, 激起 微 波盛 漾, 而 這

此 微 波 的 斜 面, 把天上照下來 的青光反射到我 們眼 中的 時 候更不能不 祇見青色一片在天色 陰

暗的時候海面看起來就呈灰色了。

然 mi 在 海灘近旁的水色卻是綠的因為 在 通地 方的 海水 惠 面, 有極 細的沙粒懸浮着這 些沙

粒 可 以 散 射 較 垃 的 波, 所以當 太陽 光 照 入 水中, 照到 T 沙 粒 E 面 的 時 候, 就 有被反 射 的黄 光, 加 在

被 散 射 的 青 光之 内, 這 樣 一來, 自 然 呈 现 綠 色了。 假 使 水 中 有 海 藻, 那 麽 它 的 紅 褐 色 光, 與 靑 色 光 及

綠 色 光 相 混 合就 成 功紫色光不問淡水或鹹水, 有 時候 岩 含 有許 多分得極 細 的懸浮質點或含 有

許 多 空 氣 細 泡, 那 麽 卽 使 少 許 的 水, 看 起 來 也 是 綠 的。 新 西 闢 Ne W Zealand) 地方 的 普 基 湖

Pukaki 它 的 水 是 冰 河 裏 灌 來 的, 這 湖 裏 的 水, 卽 使 汲 取 吊 桶看 起來也現綠色而且這 種 現

象的確不是不常見的現象。

如 此 說 來, 表 示 懸 浮 物 質可 使 海 水 呈 現靑 色 的 例 子, 是 很 多 的了然而還可以 證明 水 的 分

也 能 散射青 光, 興 空 氣 的 分子一 樣, 加 阚 各 答 (Calcutta) 的 拉 曼餌 士(Sir C. V. Raman)近 來

在 渡 過 海 洋 的時候, 從觀察得到 _ 個 結 論, 說 深 海 的 紫青 色, 就 可 以 如 此解釋其 原因他曾在實 驗

室 中 做了 幾 次 實 驗, 的 確 證 明 了 光 線 通 過 極 純 粹 的 水 中 時, 也 有 散 射 作 用 發 生。

光 線 投 在 光 滑清 潔 的 水 面 上, 並 不 是 從水 面 投 射 的 地 方, 向 各 方 被散射的所 以水 面 不 可 得

見; 水 面 Ŀ 並 沒有什麼細 微 之 處可 以 辨 認。 樹枝橫懸 在 清 水 的 E 不會把影子投在水面然而 水

中 若 是 混 濁 不 淸, 其 中 的 懸 浮 質 點, 又足 以 在 光 線 尙 未 深 深 透 入 之前, 把它散射出 來, 那 麼 就 有 影

子 有 可 異 以 看 見了因 這 種影 子, 爲 切不可 在 這 種 與 情 形之下眼 樹 的反射像 睛 相 纔 混: 可 前 以 者 察 浮 出 在 水 水 面 的 上 太 表 面後者則在水的底下其離水, 陽 光 照 不 到 的 地 方, 與 其 他 各 處 面

的 深 度, 正與 樹 在 水 面 上 方 的高度一 樣波浪 起 伏 的 海 面, 可 以 看 見 其上有雲的影子因為 雲 把 太

陽 光 截 住, 而 浪 頂 波 峯, 卻 把 太 陽 光 反 射 到 我 們 眼 中 之 故: 在 波 4 如 鏡 的 海 面, 我 們 祇 可 以 君 見 婁

在 水 中 反 映 出來 的 像假 使 在 大 海 輪上憑欄俯望水中 的 船 影, 就 看 見 舟沿 的影子不會伸 展 到 海 水

平 船 靜, 的 影 海 色 子 一深青 來在這 的 那一部 些地 方, 水 分 池 海 的 面 L 四 去祇 mi, 都 有輪 把 光 車專 船 向一 的 運 侧, 動 教 激 它射 得 浪 花 我 14 濺, 們 氣 的 泡 眼 中所以輪 堆 滿 的 地 船的 方, 纔 龐 看 大身 得 出

若 把 光 遮 斷, 散射 的 現 象 就 此消 滅, 而影 子 也 出現

在渾 水河 的 水 面 上影子是又濃又完全 參閱 銅 版 圖

日 暈 與 月

太 陽 與 月 亮 周 圍, 有 時 候 現 出一 輪 輪 的 彩 暈, 其 原 因 也 是 散射 效 應不 過 這 種 散射 效 應, 須

在 特 殊 的 環 境之下 纏 會 發 生。 浮 質 點 是 很 小 很 小 的 時 候, 它 可 把 光 向 四 方散射: 當它 們 與 光

的 波 長 相 比, 要 算很 大的時候它們 就 會把 光反射出 來, 像 固 體 或 水 滴一樣。 在這 兩 個 極 端 的 界 限

之 間, 有 _ 個 臨 界 大 小, 這 便 是 發 生 H 暈 與 月 量 的 原 因; 這 臨 界 小, 便 是 質 點 約 與 波 長 同 大。 當 我

們 觀 察 繞 射 光 棚 的 作 用 時, 我 們 就 有、 -個 相 同 的 例 子。 就 繞 射 光 棚 而 論, 光 棚 上條 紋 的 間 隔, 其 大

小 與 波 長 同 級 ~ 參閱 圖 六 + 六。 祇 在 兩 者 的匀 大 小, 約 略 相 等 的 時 候, 光 棚的繞射 光 柱, 縋 有 觀 察

之可 能。 假 使 各 細 隙 的 中 心, 相 剧惟 得 太遠 了, 這 些 中 心 就 各 自 發 生 作 用, 彼 此 獨 立, 有 關 係: 假 使 它

相 隔 得 太近 了 圖六十 六 的 副 波 前, 就 不 能 够 成 功。 所 以當 水 滴 被 生繞射效應的時 候, 水 滴 也 是

萬 不 可 以 過 分 大, 萬 不 M 以 過 分 小。

我 們 很 容 易 察 知, 假 使 _ 滴 水 滴 懸 浮 於 大 氣 裏 面, 丽 多 少 有 些繞射 效 應這 就 是 說, 假 使 它

可 以 使 顏 色 的 分 離作 用 發生, 那麼它 就一 定 顯 出 日 暈 或 月暈 來, 因 為可 以表示 此 項 效應 的, 沒 有

别 種 現 象 了, 假 使 有 ---道 特 殊 波 長 的 光, 在 水 滴 旁 邊 專 依 某 特 别 方 向 散 射 出去(這 是繞 射 的 主

特 點 文, 若 以 _ 屏 放 在 光 的 路 徑 中, 承 受這 被 散 射 的 光, 那 殛 這 光 在 解 上 必 定 現 出 個 環 狀

故, 來, 因 為 中 我 心 們 是 所 C, 說 如 的 圖 某 七 十二所 特 殊 方 向, 示 可 者 以 便 是; 隨 便 這 在DC C 點 就 是 水 滴 排 在 列, 解 祇 上射 它常與C交成等角好了我 影 的 中 心, 其所 以 有 此 現 象 之

的

周

韋

要

們

還

可 以 預 料 到 下 面 這 件 事 情, 即 波 長 愈 知, 則 散 射 的 特 殊 方 向, 班 原 來 方 向 所 成 的 角 愈 小, 所

以

由

單

獨 水 滴 所 生 的 量, 必定 呈五 一彩之色, 而青 色 在 最 內 的

環。 我 們 可 在 實 驗 万 面 來 譜 明 這 效 應, 甚 爲 容 易。 然 而 在

尙 未 做 此 宵 驗 以 前, 我 們 寧 可 先 在 理 論 方 面, 考 究 得 更

細 些, 因 為 在 做 這 質 驗 的引 時 候, 我們 义 找 到了 波 動

假 說 很 有 力量 的 證 城。

我 們 開 始 先 兆。 把 下 面 的 實 驗描 寫 與 我 們 自己 知

道; 的 這 注 意 個 好了假 實 驗 的 確可 定 我 們 以 在質 在 張 驗室中實 硬 紙 板 SS 行, 祇 L, 要 刺 加 兩 以 個 適 小 當 孔,

它 的 中 心 是 A 頭 В, 如 圖 七 十 三所 示: 义 假 定 我 們 把

要 這 有 孔 的 紙 片, 放 在 一個 點 源前 面, 如 圖 所 示。 我 重 所 疊 以

用 黑片 源 其 故 因 為 闊 大的 光 源, 必 生 出 許 多

(圖七十二) 假使從水滴 D 砂繞射的光線, 與原來的方向 DC 成功等於ADC的角,那麼全體澆射光線,就在屏上 構成一個環,如圖所示,因為像 DA, DB, DE, DF等 光線,都與DC成功等自之故。

A 九

九

头

糊 的 畫 不 像 能 來, 明 辨。 以 致 在 我 此 們 紙 片 所 要 的 離 觀 察 光 的 源 更 效 應, 速 模

某 球 側, 相, 某 它 有 形 幾 們 波, 座 的 點, 最 屏, 這 後 效 應 兩 就 從 就 組 落 A 與 在 波 合 倂 這 B 與 屏 SS 發 起 解 散 來。 相 出 在 上。 遇 其 時, 在 來 屏 他 彼 的 各 兩 此 上 同 組 點, 的

它

們

互

相

干

涉,

這

些

地

方

都

是

黑暗

無

光。

光

斑

可

見。

非

但

在

本

圖

平

面

内

的

C

點,

是

如

此

情

形,

凡

是

解

上

離

A

與

B

等

遠

的

各

等

遠,

在

這

點,

兩

組

波

系

互

相

合-

倂,

就

有

例

如

C

點,

在

這

圖

的

平

面

之

内,

離

A

與

 \mathbf{B}

(圖七十三) 解上的兩個小孔,放那來自左側的光通過,在 C點,從 A 與 B 傳布出來的兩組球形波, 互相加強,所以這 地方的光很亮。假使 DB比 DA 長過半個波,那麼在 D點 就沒有光,因爲根據楊氏干涉原理,這兩組波在 D 點干涉之 故。在E的他方又有光了,祇要EB比EA長過一個波, 此時的兩組波在此處又成同相。其他的音線只亮線,仿此遞 間而發生。這些線的地位,視波長而異,就青色而論,它們隔 得密一些,就紅色而論,隔得疏一些。

圖 所 示, 這 個 圖 所 表 示 的, 是 從 IE 面 所 見 解 上 的 外 觀。

在 屏 上 的 D 點, 加 DA 比 DB 短 去 半 個 波 長, 這 兩 組 波 織 續 相 抑, 所 以 在 此處 就黑暗 無 光。

像

這

種

子, 個, 線, 示: 此 線 微 彎

點 曲, 不 止 -也 排 列 成 _ 點, 條 如 圖 七 十 四 新作, 所 微

因 為 在 D 點 左 右 的 各 割推 開 A 與 B 的 距 比 D 點 到 A 移, 與

就 B 的 距 離 大, 而 兩 遠一些屏 距 離 相 差 適 為 半 波 長 的、 各 點, 線, 愈 向 左 右 外 此 生

愈 的。 離 水 平 線 稍 £ 的 兩 組 亮 線 與 暗 就 是 如

成

這 種 過 程, 其 中 還 包 含 着 顏 色 的 分 離 作 用, 因 爲 像 D 與

青 B 線 各 離 點, 開 以 及 圖 穿 七 + 過 它 四 的 們 的 水 各 平 線, 線, 其 比 地 紅 位 線 較 都 有 近: 賴 在 於 事 實 波 長 Lt, 之 各 線 故。 是 都 以 成

功 道 狹 的 光

現 在 假 定 我 們 使 這 有 A 與 B 兩 孔 的 硬 紙 片, 軸 旋

E 黑暗 D D' E'

才圖所表示者,是從正面看圖七十三屏 (圖七十四) 上所現的形狀。實線表現光亮,虛線表現黑暗。這些線明 亮相間、接連有一大串, 此處所畫的, 不過三四條罷了。各 條都是狹的光譜。

九

此

軸 貫 於 制氏 片 上 A 與 B 的 中 央, 且 颠 紙 片 垂 直。 解 上 所 現 的 條 紋, 也 同 時 嶞 着 紙 片 旋 轉。此 時 兩 孔

變 成 環; 假 使 原 來 兩 孔 相 接 觸 這 也 是可 以 有 的 事 情 那 麽 它 們 就 變成一個 較 大的 圓。 解 L.

的 圖, 在 此 時 就 變 成 了 量, 其 中 心 是 C, 而 华 徑 卻 比 CE 更 大。 後 面 這 點, 很 容 易 辞 明, 礼氏 要 在 張 硬

紙 板 上, 畫 兩 條 黑 線, 代 表 經 過 E 闽 \mathbf{E}' 的 亮 線, 然 後 使 和E 板 在 其 自 己 的 4 面 内 旋 **車**導, 以C 爲 旋 中

ili, 卽 得 量 的 雛 形。 假 使 所 盐 的 是 顏 色線, 那 麼 紙 板 E 所 現 的 同 心 輪, 更肖 眞 的 量。

由 此 可 見, 經 過 兩 圓 孔 的 光, 當這 兩 孔 旋 **車**專 的 時 恢, 就 生 出 暈 ※: 而 且 旋 中身 的 兩 孔, 雖 然 不 是 +

分 相 當 於 單 猶 的 大 圓 孔, 但 是 我 們 明 明 知 道 把 它 們 當 做 -個 單 獨 的 大 圓 孔, 也 不會 有 大錯

觊

發

生。 mi 把 這 鉗 誤 修 JF. 了, 的 外 貌, 也不 會 有 什 麽 大 差 異。

真 正 的 實 驗, 是 很 難 做 的, 除 非 在 謹 愼 選 擇 的 情 形 之下, 因 爲 其 中 有 些 數量, 是很 小 很 小 之 故。

假 使 A 與 B 兩 孔 的 中 心, 隔 開 半 毫 米, 加 屏 離 兩 孔 遠一 米, 那 麼 暈 的 半 徑 就 派有 兩 毫 米 左右: 而 且

極爲暗淡又暗又小自然看不清楚了。

我 們 還 有 一層 道 理, 必 須 說 _ 說, 然後 我 們 的 解 釋, 方 稳 算得 完 全因為 讀 者將見我們正 在 表

示 的, 是 光 從 小 孔 中 經 過 時, 如 何 生 出暈 來 的 情 形; 然 而 我 們 所 要 知 道 的卻是光從微小的 障 儗 物

74 園 經 過 時, 有 何 結 果。 不 過 我 們 可 以 表 示, 這 兩 種 情 形, 彼 此 實 在 相 同, 不 問 在 何 種 情 形 之下總 生

出 同 . 的 暈 來。 其 所 以 應當 如 此之 故可 從 波 動 說 推 知, 旣 巷 簡單, 叉 饒 趣 味; 巴平 納 脫 (Babinet)

在一八三七年曾對此推論加以注意他的辯證如下——

假 定 這 塊 板 SS 是 用 玻 璃 做 的。 要 是 玻 璃 板 Ŀ, 處 處 淸 淨 無 塵 的 話, 決 沒有 量 發 現 假 使 玻 璃 板

上 到 處 塗 黑, 祇 露 出 -個 小 孔, 那麼 暈 就 成 功了。 須 知 玻 璃 板 Ŀ 處 處 清 明 的 情 形可 以 看 做 其 他 兩

種 效 應 聯 合 起來 的 結 果第一 種 效 應, 玻 璃 板 上除 去 小 孔 外, 切 都 黑第二種 效 應是除了 有

個 小 黑 點, 占 據 以 前 小 孔 的 地 位 以 外, 其 餘 _ 切 都 清 明。 這 兩 - 種 效 應 的 聯 合 效 應,等 於 前 面 所 說 的

處 清 明 我 們 知 道 這 -處 處 清明 _ 的 情 形, 對 於 像 E 的 這 種 點 子, 是沒 有效 應 的。 所 以這 後

面 所 說 的 兩 種 效 應必定 互 相 干 涉, 干 涉 到 互 相 毁 滅 的 地 步。 兩 種 波 動 得 以 互 相 毀 滅; 這 兩 種 波 動

墨 的 相 頻 率 旣 與 波 然 長, 如 此, 必 須 上 文 都 所 相 等 說 纔 清 明 行, 而 的 且 玻 璃 此 板 波 有 的 峯, -必 小 黑 須 恰 點 時 前 彼 必 波 定 也 的 有 谷 暈 相 的 合, 此 現 象發 波 的 生其性質 谷, 必 須 與 與 彼 黑 波 玻 的

的 世 界

璃 板 上 有 小 孔 時 所 發 生 的 相 同。 至 於 這 兩 種 暈 有 何 差 異 之 處, 使 它 們 在 重 疊 之時, 可 以 互 相 毀 滅

九四

這 是 我 們 的 眼 睛 所 不 能 查 察 的 了: 推 想 起 來, 也不 濄 是 _ 組 波對 於 另一組 波移 前或 移 後 半 波 長

而

現 在 我 們 可 以 着 手 於 實 際 上 的 實 驗 要 造 出 團 暈 來, 使 其 大 小 適 於 觀 测 之 用, 那 些 生 暈

的 質 點, 的 確 非 很 小 很 小 不 可, 其 直 徑 須 在 _ 毫 米 的 + 分之一左 右, 乃 至 + 五分之一左 右。 由 單 個

這 種 質 點 所生 的 量, 當然 很 淡, 不 能够看 見。 但 是 我 們 可 以 把 幾千個 這 種 質 點所生的 效 應, 聯 合 起

來, 這 也 並 非 難 事。 假 使 我 們 取 玻 璃 板 _ 塊, 放 在 _ 道 細 小 的 光 束 前 面, 而 在 玻 璃 板 上 hul _ 口 熱 氣,

那 麽 停 留 在這 玻 璃 板 上 的 微 細 水 滴, 就 會 把 它們 所 生 的 量, _ 齊 合 倂 起 來, im 在 它 們 的 大 小 約 略

相 同 的 時 候, 尤能 如 此。 因 爲 這些質 點 所 占 的 地 位, 雖 然 彼 此 各 異, 但 是它 們 所 生的 量, 實 際 上 確 然

玻 互 璃, 相 放 重 在 疊 靜室 在 裏 起。 面, 如 隔 此 7 的 若 布 干 置, 時 使 間 我 以 們 後, 得 上面 到 可 積 見 聚了 的 效 _ 應, 層 如 灰 圖 塵, 七 就 十 足 玉 以 所 顯 示 示 者, 暈 卽 的 此 實 現 象: 驗。 不 -過 塊 我 淸 們 净 若 的

在 這 塊 玻璃上面呵 口 淫氣, 那麼質點 的 數 目 就 很 大 很 大以致 這 種 生 量 的 效應也增加了 許 多。

起 初 的 時 候, 水 滴 很 小, 所 以 看 見解 上早 已有 的, 那

由 塵 埃 所 生 的 彩 色 環, 如 何 被分 布 於屏 上 的 其

他 彩 色 環, 加 得 很 濃, 可 稱 爲 種 奇 觀; 到 後 來 因 爲

很 小 的 水 滴 -面 蒸 發掉, 面 疑 結 起 來, 所 以 叉 看

見 這 第二套彩 色 環, 消滅得 很 快。 在這 些 環 惠 间, 可

以 找 到一 切 顏 色如 在暗 房 中 做這 實 驗, 所 見 的 效

應 很 美 麗。 通 常 安 排 此 項實 驗 的 時 候, 總 在 解 的 中

心, 穿 個 孔, 使 那 主 要 部 分 的 光 線, 通 過該 孔, 復

得 見要不 是 如 此 的 話, 這 道 光線射 在 白 色 的 屏

顏 色, 與 它 相 形之下就 要變得朦朧 莫辨了。

反

射

出

來

就

使

人

眼

花

撩

亂,

那

此

叉

豔

麗

又淡

弱

的

日 或 月 四 周 的 量, 也從 相仿 的 原 因 而 來, 不 過 我 們 不可不察及下 面 這 點, 卽 眼 睛 所 看

(圖七十五) 從幻燈所發的光,穿過 A 處的小孔射出 來, 並由透鏡 L, 焦聚於圖中右側 听示匣子的左面一孔之 上。這匣子的內部是黑的,所以光線穿孔而入匣內,就消失 不復可見。玻璃板 G 上面, 滿布紅塵, 或潮氣, 故可生一 量,在匣子的左面出現。主要光柱的不見,可使這比較暗淡 的量,容易看清楚。

見

的

光

各 種 顏 色, 不 是 從 同 水 滴 而 來 的。 圖 七 + 六 所 示 者, 卽 係這件 事 實 的 說 明。 照適 纔所 描寫

驗 而 論, 懸 浮 於 大 氣 中 的 質 點 D, 將 在 遮 光 屏 E 造

成 暈, 其 中 心 必 是 MD 與 此 解 的 交 點。 課 我 們 假 定

眼 睛 的 地 位, 是 在 量 的 外 圈, 而 從 D 點 收 到 紅 色 光。

於 是 它 就 不 能 從 這 同 — 水 滴, 再 收 到 靑 色 光, 因 爲

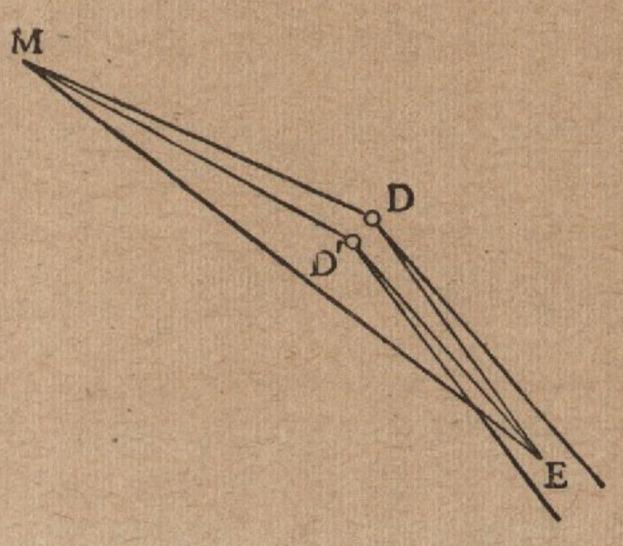
這 青 色 的 環, 套在 紅 環 之内它 的 光 線 不 能 射 入 眼

睛 裏 面 去。 但 是 在D 處 的 水 滴, 其 所 生 之量, 卻 使 眼

睛 可 以 從 它 那 裏 收 取青 色 光 線。 這 樣 __ 來, 驵 睛 就

此 從 D 點 收 到 紅 光, 而 從 D 點 收 到 靑 光, im 且 因 為

此 項 效 應, 在 月亮 與 眼 睛 聯 線 的 四 周 圍, 成 功 對 稱,


所 面 以 映 在 觀 解 察 上 者 者 看 相同: 見 月 亮 不 過 的 在 四 構 圍, 成 有 的 -情 輪 狀 _ 輪 方 面, 的 彩 稍 有一些 暈, 青 的 差 在 別能 内, 紅 了。 的 在 其結 果 恰 與 我 們

的

實

驗

裏

在 D 處的水滴,把紅光送入眼中, (圖七十六) 而在 D' 虚的水滴, 则把青光送來。所以照 E_M 的方向看出去,就見有彩色的量,環繞在月的四周。

九六

的

實

欲 得 完 美 的 量, 水 滴 的 大 小, 應當 律 相 同, 使 各 水 滴 所 生 的 量, 重 疊 起 來, 以增 加 其效應量 愈

大成量的水滴愈小。

個 人 要 坊 做 這 種 實 驗,以 觀 察 此 項 效 應, 甚 爲 容 易。 他 祇 要 取 平 面 玻 璃一塊呵一口氣 在 上 面,

使它 一蒙着 薄 層 細 水 滴, 然 後 從 這 玻 璃 向 外 望 明 亮 的 光 點, 就 गा 以 看 見暈 的 雛 形 了。

托 馬 司 . 楊 曾 在 他 的 测 毛器 __ 中, 應 用繞 射 的 原 理, 極 有 趣 味; 測 毛器是楊氏發 明了, 用

以 柱 量 的 度羊 進 行 毛 方 纖 向 成 絲 直 直 徑 角 的儀 的 時 器。 候, 目下 它 在屏 在 實用 上所 投 方 影 面, 子 仍 舊 的 通 兩 行。當一 旁, 就 顯 出 根 細 圳 亮 的 的 纖 線 絲, 來與影 放 在 光柱之中 子 相平 行。 而 此 與 光

現 方 象 向, 的 都 與 解 釋, 光 線 與 成 前 此 功 對 直 角, 於 放 兩 小孔 在 光 線 的情形所用 的 通 路 之 中, 者 相 那 麽 同, 這 各 對 裹 無 的 庸 輝 世 線, 就 述了假使有若干纖 在屏 上交 成 許 多十字 維指着 形; 假 切 使

纖. 維 的 數 目 很 充 足, 那 麼 所 生 的 效 應, 宛 如 對 很 強 的 輝 線, 在 旋 轉 時 所 生 者一般; 以 前 對 於 圖 七

3753

+ 24 的 解 釋, 此 處 也 可 以 參 證。這 就 是說, 將 有 暈 出 現, 而 暈 的 直 徑, 卽 視 纖 維 的 粗 細 而 定。

鲖 版 圖 + 五 C 所 示 的, 便 是 這 種 儀器。 以羊 毛 纖 維 束, 裝 在 枚 釕 Ŀ, 眼 睛 即 從毛隙中 窺 望

第五章 天空之色

光

個 小 輝 點: 此 小 輝 點 的 發 生, 由 於 解 後 的 燈 光, 或 發 光 表 面 所 發 的 光穿 過屏上的小孔所致這小

輝 點 的 周 圍, 看 起 來 就 有 -個 環 圍 繞 着。

繞 射 的 效 應, 可 以 時 時 察 見。 街 E 的 路 燈, 從 傘 的 尖 頂 望 出 去, 看 見它現 作 五 色的 星 形。 星 的 各

道 光 芒, 都 和 傘 綢 的 經緯 45 行。 從 絲 的簾幔望出 去,或 從 任 何 細 緻 mi 並非完全不 透明 的 織品望 出

去, 也 可 以 看 見 同 -效 應。 小 孩 子 們 把 眼 睛 半 張 半 閉 望 着 很 亮 的 火, 據 他 們 說, 常 看 見有 稻 草 梗 從

火 燄 中 射 出 來。 以 油 布 潤 溼 玻 璃, 玻 璃 上 就 留 下 45 行 的 皴 紋 來, 這 些 皺 紋 都 顯 出 糸口 色 與 綠 色。

繞 射 的 效 應常常 由 於分 岛性 波 長而 生 出 各 種 顏 色, 此 與 顏 料 的 結 果有所不同因為 顏 料 的 呈

現 各 種 色 彩, 是 _ 種 有 選 擇 性 的 破 壞 作 用。 照 以 前 諸 例 看. 來, 這 繞 射 作 用, 可 算 是 波 動 說 的 叉 天 然

叉 特 殊 的 結 果。 在 托 馬 司 . 楊 以 後 的 _ 百 年 間, 繞射 的 效 應, 經 人 加 以 多 方 面 的 研究, 而 此 項 效 應

的 足 以 解 釋 世 觀 察 的 結 果, 以 及 預 示 其 他 倘 未 知 道 的 現 象令人極 為 滿意在以前 興 現 在都是 波

的。

動 說 的 主 要 豁 據。 這 種 學 說, 必定 是無 往 而 不 眞 確

光的品質

光 還 有 種 品質, 是 眼 睛 所 不 能 够 觀 察 或 測度的。 方 向、 強 度顏 色此三 者 都可 以 觀 察而且 在

晋 視 的 覺 字 的 過程中, 氣波等大家所公有的。 要用 到 它 們: 這 些品質, 但 是還有一 或它們 種品質卻就 的 類 似品質 使 是所 各 種 波 有 助之間, 種 種 波動, 發 生了 如以太波水波以及 ,差別這一 種 品 聲 質,

興 波 動 本 身 内 部 的 運動 狀 態, 大有關 係所 謂 內 部 運 動, 並非 波 的 前 進 連 動, 而為 波動 在 其 所 經 過

的介質中所發生的運動。

例 如 海 中 的 波, 在 海 面 上前 行 的 時 恢, 任何 點 的 水, 都 因 爲 有 波 經 過而作一起一落 的 運 動。

須 知 向 前 進 行 的, 不 過 是 波 的 形 式並不是波的 實 質。 在 水 面 上的 船或 其 他 物 體, 水 波是不載了

第六章 光的偏極化

它 同 向 前 行 的; 它 祇 在 水 E 隨 波 昇 降, 微 微 有 些 间订 後 傾 側 韶 個 會 游 泳的人仰 面 躺 在 開 敞 的

海 當 那 海 波 從 他 的 身 體 底 下 經 過 時, 他 就 隨 波 起 伏, 但 是 彻 波 並 不 把 他 帶 着 同 行。 脈 在 能 近 海

灘 的 地 方, 海 水 捲 向 灘 上 去, 游 泳 者 稳 會 跟 着 海 水 同 到; 這 地 方 的 水, 運 動 起 來又是一樣, 而 且 嚴 格

地 說, 此 項 連 動 並 不 是眞 正 的 波, 僅 係一 種 碎 波 破 浪。 所 以 海 波是「横波」即 水 的 運動, 與 波

系前進的方向成直角。

在 聲 波 裏 面, 空 氣 的 運 動 是 與 此 大 不 相 同。 空 氣 的 分 子, 來 -往 的 運 動, 其 方 向 卽 在 波 系 前

進 方 向 之 内, 並 非 從 這 _ 側 到 那 側。 丁 達 爾 在 聖 誕 節 演 講 的 時 候, 曾命 童子若干人, 排 成一 隊, 站

在 講 桌 的 前 方, 每 人 把 雙手 攀 住 前 面 -人 的 雙 肩。 他 把 歐 末 的 童 子 猛 然 推一下, ·這一推 就 像 脈 搏

般, 沿 着 這隊 伍 遞傳 過 去, 而 在 隊首 的 童 子, 就 跌 倒 在 個 替 他 預 備 好的墊 **繰上面**一 切 連 動, 其

方 向 都 在 這 隊 伍 的 陣 線 裏 面。 假 使 他 的 舉 動, 稍 稍 和 緩 些, 把 隊 末 的 童 子 向 前 後 搖 動 幾 回, 那 麽

這 陸 續 的 脈 搏, 就 必 定 像 _ 組 波, 沿 着 隊 伍 Bij 行, 很 可 以 代 表 聲 波 通 過 空 氣, 或 通 過 任 何 實 體 物 質

時 的 大 略 情 況空氣 分 子 相 當 於童 子; 丽 他 們 的 來 往 運 動, 當 然 比 T 達 爾 實 驗所能表示 的, 還要: 快

最 後 我 們 還 可 以 想 到, 條 長 繩子 頭 拿 在 手 中,一 頭 縛 牢 在 釘 上,把 繩 子 近 手 的一 端, 急 敲

下, 有 何 情 形 發 生。 我 們 都 知 道 所 見 的 是 -陣 脈 搏, 沿 着 繩 子 疾 傳 過 去, 而 這 _ 陣 脈 搏 就 很 像 光

波 的 連 動, 比 以前 所 說 的 兩 種 情 形, 更 像 ___ 些這 也 是横 波, 好 像 海 洋 裏 的 波 浪一 樣, 卻 不 是 像 聲 波

那 樣 的 一縱 波 <u></u> 不過 就 海 波 imi 論, 海 水 發 生 運 動 所 循 的 方 向, 是 有 定 限 制 的; 水 的 各 質 點, 祇 有

上 昇 與 下 降 的 運 動, 卻 並 不 或 左或 右, 在 那 垂 直 於 進 行 方 向 的 水 平 方 向 内 進 動。 所 以 由 繩 子 所 發

而 的 横 且 對 波, 於 用 光 做 的 光 某某數 波的 比 種 喻, 格外 現 象為 完美一些它 說 明 其 所 的横 以 然 運動, 起 見, 必 是 須 可 作 以 在任 如 是 想, 何 假 垂 定 直 就 於 繩 光 而論, 子 的 這 方 是 向 內 件 發 可 生 能 的。

的 事 情。

此 項 假 說 的 重 要, 在 於 由 此 叫 得一 機 會,藉 以 使 光 賦 有 種 新 的 品 質, 此 項 品 質, 眼 睛 的 確 不

能 够 察 見 但 是 可 用 其 他 方 法, 把 它檢 查 出 死, 所 以 我 們 必 須 把 它 明 白 敍 述 -番。 我 們 到 後 面 就 要

知 道, 檢 查 此 項 新 品 質, 通常 概 川 某某數種 晶 體: 借了 品 體 的 幫 就 可 以 在 大 規 模方面察得 從

卒 發 來之 光, 有 這 種 品 質還有 像 海 水 那 樣 的 透 明 體 表 面, 其 所 反射之光也具有這品 質。

因 爲 這 -個 問 題 有 很 大 的 趣 味, 又很 重 要, 而 且 有 不 少 埋 頭 苦幹之士先後對於它加 以 種 種

考 察, 此等 考察業, 巴 對 於 我 們目今 所持 光 的 觀念大有貢 獻, 更 因 為它的歷史說明了科學觀念 的

漸 浉 發 展, 說 得 很 優 美, 所 以 讓 我 們 把 這 個 問 題, 從 頭 至 尾 考 究 下由 牛頓與 惠 更 司 的 時 代, 此 問

題 的 發 軔 期 講 起。 惠 更司 在 一六 七八 那 一年, 曾 發 表 -篇 文 字, 其 中 有這樣一段話「北 海 裏 面 緯

度 六 十六度 的 地 方有一個 島, 叫 做 冰 洲; 這島 上 產一 種 品 體, 卽 透 明 的石頭有人把它帶到了我 們

這 邊 來。 此 種 晶 體, 其 形 狀 極 爲 稀 希, 而且 還 有 其 他 的 特 别 性 質, 不 過 最 最奇怪的是它具有一 種 特

殊 的 折射 作 用。 我 們 現 在 都 知道, 大多 數的 品 體, 都 有 相 似 的 性 質不過「從冰洲來的這種石頭」,

卻 最 最 著 名 無 疑, 因 爲 它 的 大 小合 度, 表 裏瑩 潔, 愐 且 所 發 生 的 現 象甚為 **明顯惠更司說第一個** 注

意 這 種 晶 體 的 人, 是 伊 刺 司 墨 司 • 巴 托 立 墨司 (Erasmus Bar tolimus) 但是他 雖然 如 此 說, 卻

仍 售 在 他自己)見惠更司所著的「光論 所著 的 書裏 面 (二)寫了 」(Treatise on light)有譯本西 這樣一段「 我 巴 爾范納 經 應 用 斯 極精密的方法自己把這些特殊 湯姆撥孫所譯麥美倫圖普公司出版。

的 折 射 性 質, 加 以 考 察, 俾 可 先 對 於 它 們, 有 十 分 確 定 的 認 識 之 後, 纔 着手 於解釋它們 的原因。

塊 塊 的 冰 洲 石 照 相, 見 銅 版 圖 + 七 與 十 八。 我 們 現 在 知 道 它 的 成 分 是 CaCO3 就是碳酸鈣這

種 晶 石, 很 容 易順 着 某某方 向 內 的 4 面, 自 行 裂 開, 其 裂 面 的 天 然 形 狀成功一個菱形在 銅 版 圖

七 A 中, 可 以 看 見這 此菱 形 的 表 面; 放 在 桌 子 上, 處 於 兩 塊 大 晶 石 的下方並未用它做 光學 實 驗 的

那 _ 小 塊, 其 表 面 所 現 的 菱 形, 看 起 來 最 最 清楚: 义 在 銅 版 圖 + 八 A中也可以看見這齊整的菱形。

如 圖 七 + 七 所 示, 在菱 形 的 頂 絀 0 與 T, 各 角 都 是 鈍 角, 約 等 於一 百 零二度左右。

最 初 引 動 了 惠 更司 注 意 的 _ 點, 便 是 下 面這 _ 件 希 奇 的 事 實, 即射 入 此 種 品體 的 光線(特

别 的 情 形 除 外), 常 分為 兩 道, 各 依不 同 的 方向 進 行, 丽 透 過 這 晶 石; 雖然它們在透出了晶體之後,

恢 復 它 們 的 原 來 方 向, 但 是 彼 此 仍 各 分 開, 各 循 徑 而 行, 不 過 互 相 平 行 罷 了。本 書插 圖七十七

從 更 司 所 著 的 {光 {論 書 中 摘 取 下 來 的, 看 了 此 圖, 對 於 這 種 效 應 就 清楚了為使說 明 簡 單 起

假 定 光 線 AB 射 在 此 晶 體 上, 是 與 受 光 表 面 成 功 直 角。 它 射 到 晶 體 內 部就分成B與BD 兩 道 光 線,

這 兩 條 光 線 透 出 晶 體 之 後, 就 變 成 平 行 光 線 CE 與 DG. 銅 版 圖 A 的實驗把這個效應表示得 很

光

的

世

界

未 明 射 白。 到 在 晶 如 石 此 布 以 前, 置 102° 於空 的 情 形之下有 氣 中 進行 的 光 線 路線, 道, 就 使它射 可 以 看 見了。 在

這一個圖,是從惠更司 所著的光論上面, 摹繪得來的。爲便於 表示起見, 假定此晶體割裂的時候,是 使 O P, O Q 以及 O S 都相等, 在這 種情形之下,0 T 即係過 0 點之軸,而 ORTS即係含有此軸的截面。光線A B,垂直於表面 OPRQ; 此光線在此 晶體內, 分成兩部分, 一部分是尋常光 線 B D, 與 A B 成一直線, 還有一部 分是 B C, 不與 A B 成一直線: 兩道 光線都在平面ORTS之內。它們離 開晶體之後, 仍舊恢復其原來的方向。

的, 體 中,

因

爲

品

十

分

清

澈,

以

致

散

射

的

光

線,

極

少标

不過它

們

雕

開

品

體

以

後,

這

分

開

的

兩

條

光

線,

在

在這品一

石

的

内

部,

那

雙

重

的

徑

跡,

是

看

不

見

塊

品

石

的

面

L;

借

了

庫

輕

煙

的

幫

助,

它

在

煙 雲 迷 條 漫 光 的 線 空 分 氣 成 兩 就 條, मि 這 以 看 種 見 分 鹬能 作 用, 也可 以 用下

面這

件事

實

來

做

證

卽

在

有

黑

點

或

隨

便

據,

什 麼 記 號 的 張 紙 L: 放 _ 塊 冰 洲 石, 這 認黑點 或 其 他 記 號, 就 現 出 雙重 的像來銅版圖十八 A所 表

示 的, 便是 一行 鉛 即 文 字 的 雙重 像。

現 在, 我 們 假 使 妙 動 這 冰 洲 石 與 入 射 光 線 的 相 對 地 位, 而 把 這 實 驗 連 試 幾 次, 我 們 就 胂 惠 更

司 在 着 手 考 察 這 個 問 題 時 _ 樣, 也 發 見那 入 射 光 線 分 成 的 兩 部 分, 其動 作 彼此各異其中 的 部

分, 遵 照 平 常 的 折射定 則。 因 爲, 我 們 假 使 把這品 石, 放 在一 張 有 個 小黑點的紙上(這是舉的例)

而 命晶 石 旋 轉, 常 使 其 與 紙 面 接 觸, 我 們 就 會 看 見 所 現 的 雙 像, 其 中 有一個 常常 靜止不動這一個

像, 好 比 用 一塊 玻 璃, 代替 這 晶石 時 所 見 的 _ 般 請 閱 圖 七 十八。 還有一點, 卻繞着第一點 旋 轉

於 圓 之上而 其位置 顯 然 與晶 體 的 形式以 及 地 位, 都 有 關 係。 這 兩 個 像的聯結線與品體 表 面 較

大 角 的 4 分 線, 互 相 平 行。 那 個 靜 止 不 動 的 ____ 點, 似 乎 比 動 的 點, 跳 眼 睛 要近得 多它所 受 的 扩 射

作 用, 则 明 是 大一 些: 造 成 此 像 的 光, 在 品 體 裹 面 進 行, 必 定 比 造 成 另 -像 的光更慢一些。

遵 守 平 常 折 射 定 則 的 光 線, 叫 做 45 常 光線, 還 有 -條 光 線 叫 做 非 常 光線惠更司自己下了決

心, 要 查 期 支 配 這 非 常 光 線 方 向 的 定 則。 他 在 這 上 面, 居 然 大 功 全 告成: 他 所 著 的「光論」 裏 面,

就有敍述他得到解決所用巧妙

方法的話然而這些光線的物理

作用他卻不能够加以說明光線

與晶體之間有何關係他也不能

够找到他的失敗的理由與他的 (

幾 趣 味, 何 我 方 們 面 現 的 成 在 就 功 要 的 理 知 道 由, 樣 有

有的能線理如 O Se aso P

R
(圖七十八) 此圖表示從冰洲石晶體窺望其下的黑點時,所見平常之像與非常之像,兩者之間有何關係。觀察者看見在 So 與 Se 的地方,都有一個黑點,而在 So 的黑點,離觀察者要近一些。假使令此晶體旋轉,例如從 O P R Q 的地位,轉到 O' P' R' Q' 的地位,那麼 So 處的黑點,並不移動,動的只是 Se,從 Se 轉到 Se';這 Se' 一點,位於 O' R' 線上。假使這晶體在紙上四向移動,但是並不旋轉,那麼兩點都不變動地位,

氣與玻璃的表面上或者總說一

在

分

離

空

氣

)))

水,

或

分

離

而 句, 使 在 用 分 某 跳 種 兩 透 幾 明 何 物 作 圖 體 方 的 表 法, 此 面 法 上, 所 在 實 起 際 反 射 E 與 我 折 們 射 自 的 現 也 象惠 已 用 更司 過 於

早

年

加

以

研

究

的

時

恢,

曾

因

此

假 定 有一 組 正 在 前 進 的 波, 遇 到了 刺 有 若 干 小 孔 的 解。 在 圖 六 十六所 示 的 實 驗 裏

亩,

波

前

是

與 屏 互 相 平 示之狀。 行 的, 但 是 我 們 現 在 卻要 除 孔, 去 這 個 限 制, 而 源, 設 想這 組 波 的 趨 近 此 屏, 紋 是 來, 偏 傳 斜 布 於 於 解 側, 的 另 如

圖 七 九 所 此時屏 上 的 毎 <u></u> 小 相 機成 爲 光 從它 發 出 圓 形 的 波

側。 這 些 小 圓 波 漸 洲 融 合 imi 成 個 波 前, 我 們 在 前

面 巴 經 知 道 了。 假 使 在屏 的 兩 侧, 波 的 速 度 相 同, 那 麼

新 的 波 前, 平行 於 舊 的 波 前。 假 使 在 兩 侧 的 速度 不 相

那 麽 波 前 的 傾 斜 度, 就 要 改 變 請 閱 圖 七 九, 叉

閱 圖 二十 與二十一。 須 知 這 些小 孔, 假 使 在 個 數

或 或 許 大 有 小 方 很 面, 多 有所改 很 多 的 變, 小 孔, 這 靠緊在 現象 也 決 處; 不 其 船 實 發 連屏 生 差 異 都 的。 不

A

此圖表示一組波穿過 (圖七十九) 屏上的小孔,行入另一介質的情形;它 在後一介質中的速度, 比在前一介質 中慢。止此圖,可見有圓形的波紋,成 爲波前之一。

必

我 們 在 尙 未 往 下 再 講 之 前, 應 當 更 注 意 點。 在 我 們 這 實 驗 裹 面, 從 -A 發 出 來 的 波 紋, 由 圖 所

示, 已達 B 點, 在這 地 方, 它 成 爲 波前 的 部 分。 如 果 把 A 孔 塞 沒, 那 麼 在 B 處 的 擾 動, 必 將 有 所 欠 缺;

第六章

光的

偏

極

化

在 光 學 上 類 似 於 此 的, 便 是 B 處 的 光, 將 有 所 不 足。 假 使 這 解 在 實 際 上是沒 有 的, 不 過爲 描 寫 便 利

起 以 我 見, 在 們 此 可 處 以 以 說, AB 表 是 示 兩 光 線 種 透 在 折 明 射 介 質 以 之 後 間 的 方 的 向。 界 線, 在 折射 那 麼 以 在 前 A 處 的 方 的 障 向 是 礙, CA. 就 要 惠更司分析折射 在 B 處 投射一個 現 象的 影 子。 方 所

法便是如此。

就 品 體 而 論, 假 使 也 用 相 似 的 解 釋, 而 欲 望 其 成 功, 那 麽 必 須 把 它 擴 充一下, 或修 正一下 纔 行。

非 常 光 線 的 發射, 决 不 能 說 它祇 因 爲 在 晶 體 裏 面 有 第二 光 速 度 存 在, 而可用第二組 球 形波 來 代

表。 纔 行; 兩 個 然 速 而 這 度, 非常 固 然 ग 光 線, 以 卻 生 出 遵 守 兩 它 道 自己 光 線, 的 這 定律, 是 不 這 錯 定 的, 律 不 使 過 那 這 對 兩 道 於 入射 光 線, 光 都 線並不 應當 遵守 傾斜 4 常 的 晶 的 體 折 射 表 面, 定 宛 律

如傾斜了一般。

所 以 惠 更 司 察 知 這 非 常 光 線 的 定 則, 不 能 引 用 球 面 波 來 說 明; 於 是 他就 試 用「 橢 圓 波 來 說

明 贵 特 是 用 的 橢 圓 波, 霓 然 是 用 的 橢 球 波。 用 這 橢 球 波 來 說 1111, 的 確 足 以解 决 他 的 問 題。 他 的 應

當 試 用 橢 球 波原 本 是一 件 很 自 然 的 事 情, 因 爲 這 橢 球 也是 最 簡 單 的 表 面, 與 球 面僅差一 肩 而 球

面 卻 巴 被 人 認 爲 過 於 簡單, 把它 除 去 不 用了橢 球 是 橢 圓 繞 其 兩 軸 之一旋 轉 而成 的, 此 旋 車事 軸 卽

變 為 橢 球 的 軸, 球, 例 如 地 球, 便是 很著 名 的 種, _ 個 橢 球 樣 子惠更司 般; 以 說, 爲 這 此 波 是分布 軸, 放 橢 球 面 的。 他

直 徑。

還

覺

得

這

些

橢

必定是

屬

於

扁

的一

好

像

地

球

_

這

就

是

它

的

極

徑

或

旋

車專

是它

的

最

短

這 些 橢 球 表 面, 顯然非 與品 體 的 形 式, 發 生關 係 不 可, 這一句 的 意 思是指 桁 球 的 軸, 必 定 與

菱 形 的 各 線, 發 生某 種 關 係。 否 則 橢 球 表 面 的 概 念, 就 要 變 成 沒 有意 義 了。 有 此 槪 念之後, 七十八 圖

中, 我 們 所 觀 察 的 事 宵, 卽 非常 光 線 的 方 向, 與 品 體 形 式 有 關 係 的 事 實, 立可 有獲得解釋之望。

如 果是這樣 的 話, 那 麼 橢 球 的 軸 所 能 取 的 方 向, 祇 可 以 有一 個: 此 方 向 必 定 興 晶 體 軸 的 方 向

那 相 同。 相 這 遇 於 便 是 0 的 經 Ξ 過 0 面, 點 傾 斜 的 線 之 度 的 方 相 等。 问 我 ~ 看 們 最 圖 七 好 十七) 不 要 忘了 在 晶 0 點 體 的 内 的 三 角, 軸, 都 並不是一條 等 於 一百 零二度, 特 殊 的 線, 而 祇是 此 線 與

個 特 殊 的 方 向。 經 過 任 何 點, 都 可 以 畫 個 軸 的。 在 圖 七 + 七 中, 過 0 點 所 作 的 軸, 不 . 定 經 過 菱

形 的 對 角 頂, 除 非 OQ, 與 OS 都 相 等這不 過 是晶 石 如 何 劃 法 的 件 事 情 能 了。 軸 的 地 位, 祇 與 品

第 六章 光的 偏極 化

的 性 質 有 關 係, 與 它 的 大 小 是 沒 有 關 係 的。

現 在 讓 我 們 來 察 看 下, 惠 更 司 如 何 用 他 的

概 念, 以 解 釋 他 的 觀 察, 我 們 把 圖 七 + 七 所 示 的 情 形,

拿 來 說 -說。 在 這 圖 中, 光 線 AB 代 表 組 波, 正 向 晶 體

進, 它 們 的 波 前, 都 與 品 體 的 表 面 平 行。 排 波 前,

前

體 在 內 晶 部 進 表 去, 面 就 上 以 可 後 以 照 ~ 惠 看 更 圖 司 八 的 + 方 與 法, 八 十一, 推 算 它 ~ 再 的 往 形 式,

祇 要 畫 若 干 波 面, 從 各 入 射 點 L. M, N 等 等 傳 布 出

與 以 前 所 說 的 情 形 相 同, 仍 為 球 狀, 圖 中 的 虚 線, 指 示

好

圖

八

十,

表

示

光

線

遵

守

平

常

折

射

定

律

時,

其

波

光 線 進 行 的 方 向。 這 平 常 光 線 行 動 起 來, 宛 如 這 品 體

像

玻

璃一般。

但是就

非常

光線而論

就

不然了,

其

波

面

都

成

橢

球

狀,

而

橢

球

的

軸,

都

與晶體的

軸

平

行。

來 晶 打 面 新 :M (圖 八十) (圖八十一)

八十與八十一這兩個圖,表示惠更司作圖,求冰洲石中平 党光線與非常光線的方法。

圖 斜, 而 八 實 驗 方 裏 面 面 的這些橢球代替了圖八十 的 觀 察 結 果, 其 所 以然 之故, 裏 也 面的 就 此 球: 可 以 現 在 說 就 明 可 了惠更司曾測定在此情形之下非常 以察知晶體中的波前行動已經 偏

光線與平常光線歧離多少因此他又能決定橢球的形式。

惠更司把 他的方法 如此 擴充以後人家覺得凡 是從實 驗 方 面所 觀察的入射 光 線 興 晶 體 所

分 兩 光線 間 的 幾何關係, 都可 以 藉 此 說明 其所以然之故這實在是惠更司的非凡功績。

惠更司的驚人現象

比 這更進一步, 惠更司 卻 不能够向 前 了 因為 我 們所 謂 偏極 化這一種品質它的存在與本性

他 並 未實在察覺他所感到的困難見於他自己所寫 的 字裏行 間, 而且表示得很顯 明。 他會說 過 下

面 的 話: 「光線經過兩塊 分 離 的 透 明晶體, 有 _. 種 驚 人的 現象出現; 此 種 現象的原因無從解釋」他

所 畫 說 明 他 的 觀 察的圖, 我 們 摹繪於此便是 本 書 中 的圖七十七他的敍述文字也摘錄如下(銅

版圖十七ABC各照相所表示者都是真正的實驗)—

第六章 光的偏極化

塊 的 各 這 面, 都 種. 與 那 現 象 塊 如 下: 的 試 各 面 取 平 這 行, 種 品 那 麽一 體 兩 塊, 道 光 把 它 線 們 例 並 如 AB, 列 射 起 來, 入 第 它 塊 們 隔 晶 開適當 體 後, 就 分成 的 距 離; 兩 假 道 使 光 這 線, 就

射 BD 到 與 第 BC, 塊 _ 品 條 體 伙 照 裹 平 面, 常 都 是 的 單 折 射 獨 定律, 徑 通 過晶 條 體, 卻 就 並 不 不 守 再 分 定 成 則 了。 兩 道: 這 兩 但 是 條 以 光 前 線 受 從第 過 有 -塊晶 規 則 體 折 射 透 作 出 來, 用 再 的

光 線, 卽 圖 中 的 DG, 卻 於 GH 再 受 到 有 規 則 折 射 作 用, 而 且 祇 受 到 有 規 則 折 射 作 用: 還 有 條 光 線

第 於 EF 塊 再 晶 受 體 到 後, 無 規 不 再 則 折 與 第 射 作 條 用, 光 丽 線 且 祇 AB 受 樣, 到 這 也 作 都 用。 分 成 現 兩 在 要 條, 這 問, 爲 真 不 什 麽 可 CE 思 議 與 了有人就 DG 兩 條 光線, 要 從 說, 空 原 因 氣 必 射 定 入

是 樣 的, 卽 光 線 DG 在 通 過 第 -塊 晶 體 時, 巴 經 失 去了 什麽 東 西, 不 能 够 激 動 無 規 則 折 射 合 用 的

物 是 質, 那 個 m 光 人 線 必 CE 定 以 則 失去了 爲 平 常 什麼 光 線 東 永 遠 西, 是 不 能 平 够 常 光 激 動 線, 有 丽 非 規 則 常 折 光 射 線 合 永 用 遠 是 的 非 物 質。 常 光 _ 他 線。 所 他 再 說 往 的 這 下 話意 說 的 思 是: 就

的 -但 是 截 還 面 所 有 在 的 種 平 現 面; 象, 互 卻 把 相 交 這 成 -直 層 角 理 的 由 時 推 候, 翻 那條 了。 這 受 現 過 象 有 便 規 是, 當 則 折 這 射 兩 作 晶 用後, 體 排 再透出第一晶體 列 的 位 置, 是 使 兩 品 來 約 體

光 線 卽 圖 中 的 DG)射 入 第二 品 體 中, 就 祇 受到 無 規 則 折射 作 用, mi 在反 面 說來那條受 過 無 規

則 折 射 作 用 的 光 線, 卽 圖 中 的 CE, 卻 在 第二品體 中 祇 受 到 有 規 則 折射 作用」他這 話 的 意 思, 就 是

說 平 常 光 線 已 變 成 非 常 光 線, 丽 非 常 光 線 已變 成 平 常 光 線。 所 謂 主 截 面, 便 是 通 過 那 交 於 鈍 角 頂

諸 稜 之 看 圖 七十 七 而 且 平 分 其 餘二 稜 所 成 之 角 的 截 面, 例 如 圖 七十七中 的 0 S H H,

卽 係 主 截 山。

他 叉 說: 但 是 除了 我 剛 纔 所 說 的 那 兩 種 位 置 以 外」 種 是 兩 晶 體 的 主 截 面彼 此 平 行;

還 有 種 是 兩 品體 的 主 截 亩, 互 相 垂 直), 兩 品 體 在 其 餘 無 限 多 的位置時光線G 與 CE, 叉 在 第

晶 體 之 中, 各 自 受 到 兩 種 折 射 作 用, iffi 分 成 兩 道, 以 致 從 原 來 的 單 條 光 線 AB, 分 成 四 條 光 線 這 四

卻 並 不 顯 得 比 單 獨 的 光 線 AB 更亮 些。 條

光

線,

有時

候

亮度

相

等,

有

時

候

此

明

彼

暗,

要

看

兩

晶

體

的

排

列

位

置

丽

定:

但

是四

條

光線合併起

光線 CE 핽 DG, 雖 然 未 嘗 變 動, 還 是原 來 的 兩 道 光 線, 但 是 第 塊 晶 體, 卻要看 實驗 者 使 它 所

處 的 是 什 麽 地 位。 rm 把 這 兩 道 光線或 者 都 分 成 兩 條, 或 者 都 不 分開; 當觀察者考究 到這裏面 有 如

何 的 關 係, 叉 考 究 到 光 線 AB, 何 以 常 被 第 晶 體 所 分 的 時 候, 他 似 乎 不 得不 推出下面 的 結 論 來, 即

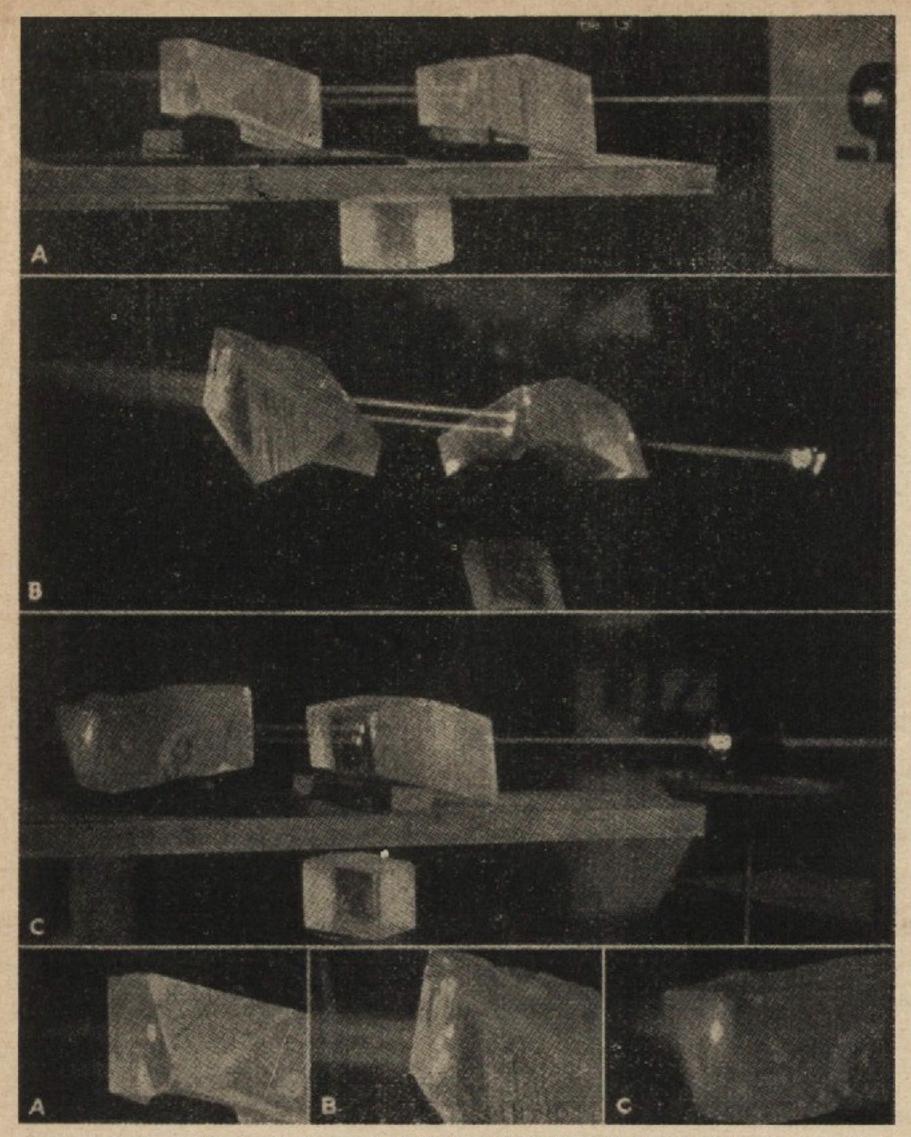
光 波 通 過 第一 塊 晶 體 之 後, 獲得 了某 種 定 的 形 式, 或 排 列 情 況, 靠 着 這種 形式或排列 情 況, 於 遇

見 第 塊 晶 體 的 織 地 時, 若 第 _ 晶 體 是 在 某 某 定 的 地 位, 它 們 就 能 够 激 動 那 合 用 於 兩 種 折 射

的 兩 種 不 同 的 物 質; 若 所 遇 的 第 _ 晶 體, 是 在 另一 位 置, 它 們 就 祇 能 够 激 動這 兩 種 物質 裏 面 的

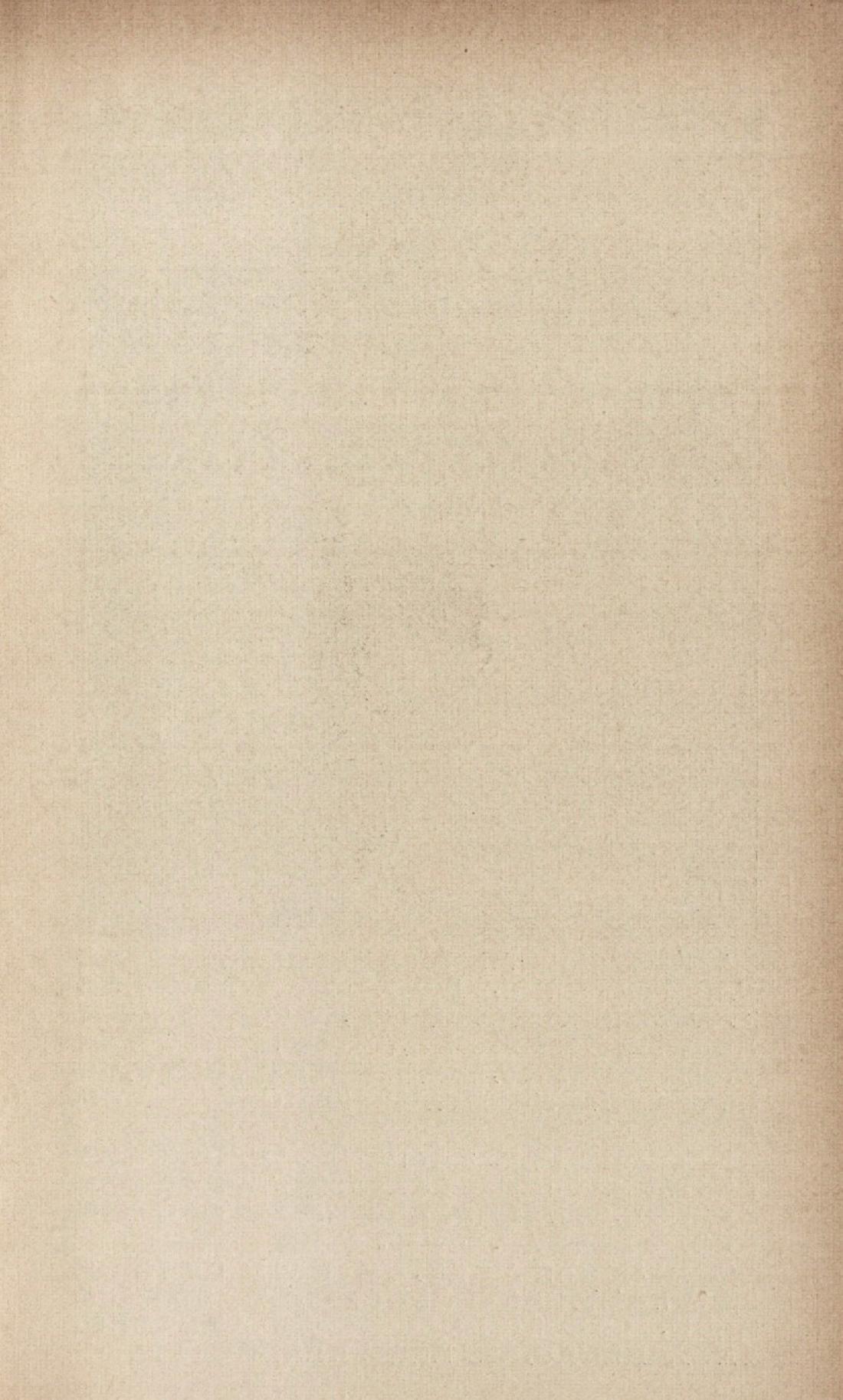
種, 但 是 要 說 出 這 是 怎 樣 發 生 的, 直 到 現 在, 我 還 沒 有 發 見 可 以 令 我 滿 意 的 解 釋。 所 以 他 就 把

這 種 研 究 工 作, 留 給 别 人。 他 所 說 的 7 某 種 _ 定 形 式 或 排 列 情 況, 究 竟 是什麽, 他 不 曾 能 够 猜


中: 那 時 候 大家 說, 光線 離 開 了 第 __ 晶 體 之後, 巴 經 有了 -多 方 面, 這 一個名詞後來曾 沿用了 好

久 時 候。 至 於 他 所 提 及 的 兩 種 不 同 的 物 質, 是 與 他 自 己 所 用 解 釋 雙折 射 的方法, 互 相 配 合 的,

我們現在無庸加以顧慮。


銅 版 圖 + 七 的 各 照 相, 可 以 表 明 惠 更 司 的 觀 察。 銅 版 圖 + 七 A 裏 面 的 光 線通 過 圖 右第一 塊

所 冰 以 洲 藉 石 散射 後, 被 作 分 用, 為 可 兩 條, 以 給 其 我 在 們 未 看 射 見圖 入 此 晶 左 的第二 體 以 前, 塊 與 冰洲 巴 透 出 石, 其 此 各 品 稜 體 都 以 與 後 第一塊 的 徑 跡, 的各稜平行 因 空 氣 中 噴 這 有 兩 煙 塊 雲,

A. 雨塊冰洲石,放在平行的地位。這是皇家學院所有的雨塊上冰洲石,還沒有琢成整齊的菱形,但是它們天生的邊緣,很容易被我們看出來,是互相平行的。從幻燈出來的單條光線,因空氣中預先噴有烟雲,所以可以看見,這光線經過第一冰洲石,被分為兩條,再經第二冰洲石而出,分離更遠。讀者須注意,光線透出石塊的白斑點,它們的聯線,平行於這兩個斑點所在表面鈍角的平分線(參閱第二〇三、二一一、二一四頁)。

- B. 在此照相中,可見第二冰洲石已經轉過某角度,兩晶體中光線透出的表面,仍保持平行的條件。現在從第一冰洲石出來的兩條光線,經過第二冰洲石,又被再分爲四條。第二冰洲石透出光來的表面上,有四個亮的斑點(參閱第二一一、二一五頁)。
- C. 第二塊冰洲石從 A 的位置,轉過一百八十度。這兩塊晶體,偶因差不多厚薄相等,途致從第一晶體透出來的兩條光線,在離開第二晶體的時候,重行合爲一條(參閱第二一一、二一五頁)。光透出來的表面,另用較大的照相來表示,以便上面的斑點,可以看得清楚一些。

晶 體 的 排 列 方向, 完全 相同; 換 句話說它 們是處 於 相 似 的 地 位。 在 如 此 的情形之下光線不再分歧;

由 第 _ 塊晶 體出來 的 兩道光線, 通過第二塊晶體之後, 祇 把 原 有 的 兩條路徑分離得更遠一些罷

要追 尋 這 此 光 線 的 踪 跡, 或 由 於 觀察它們 在 空 氣 中 的 路 徑, 或 由 於察看 它們出入 晶 體 的 地

因未 磨 光 的 表 面, 有散射 作 用 而呈 現 的 兩 輝 點。 我 們 還 可 以 察見這一 兩 輝 點 的 聯結線與光線 所 經

兩 面 的 鈍 角平分線平行與 前面各圖所 指 示 的 情 形, 正 相 符 合。

在 銅 版 圖 十七 B 所 示 的 實 驗裏 面, 第二塊 晶 體 已經 轉 動, 其 旋 轉 軸 是光線 的方向現在通 過

第 塊 冰洲 石 以後出來 的光線卻有四條了攝 取 照 相 的 觀 點, 也已換 過使第二次分歧的現象可

以 看 得 清 楚一些這是惠更司所謂 無 限 多位 置 裏 面 的 個 位 置。

在 銅 版 圖 十七 C 所 示 的 實 驗裏 面, 第二 塊 冰 洲 石已 經 轉 過了一百 八十度一即 兩 直角) 現

在 我 們 將 察見從 第一 晶 體出 來 的兩道光線通過, 第二 塊晶體之後重行合倂成爲一條這兩塊冰

册 恰 巧厚度差不 多 相 等,因 一而它們 的作用, 就 互 相抵 消

馬 呂 斯 的 實 驗

惠 更司以 後 的 一百 年之間, 並 沒 有人企 圖 對 於 這 種 神 秘 的 現 象,再 求 適 當 的 解釋。 但是 在

八 0 八 那 一年馬呂斯(Malus) 偶 然 在 巴黎 的 盧 森 堡 宮 中拿了 -塊 冰洲 石放 在 眼 睛 上 向 外 窺

望 那 玻 璃窗 中所 反 射 的 落 日之 光, 見 那 兩 個 日 傪 的 濃 淡, 並 不 相 等, 深 覺 得 奇 怪。 他 就 把 拿 在 手 中

的 冰 洲 石, 向 左右 旋 轉, 正. 如 本 書 圖 七 十八 所 示 的 旋 轉 樣; 這 種 動 作, 他是當 然 要做 的, 因 為 他

看 見了 兩 個 像 彼 此繞着 旋 轉, 不 禁的着了 迷。 他在 旋 轉 這 冰 洲 石 的 時 候察見那一 兩 像 的 明 晤, 忽 增

忽 減。這 與 圖 七十八所 示, 恵更司 的 實 驗 41 所 發 現 的 情 形, 般 無 一馬 呂 斯 就 此 發 見了, 從一 塊 玻

璃 反 射 出 來 的 光 也 是 有 「多 方 面 的。 他 創 造了「 偏 極 化 這 個 名 詞, 以 描 舄 這 種 光 線 的 情

泥; 這 名 詞 隱 隱含着 下面 的 意 義, 即當 沿 着 光 線 望出 去 時, 所 見 的 差 異, 與 羅 盤 面上 所 可 引 的 不 同

方 向, 其 間 的: 所 有 的 m 別 正 相 同: 例 如 聯 結 眼, N 極 與 S 極 的 線, 與 連 結 E 與 W 的 方 向 線, 或 性質, 其 他 方 向, 是

彼

此

各

異

馬呂斯選用這樣的

一個

字

並

不最

最

战

切,

因

爲

極

性」

所

指的

方向

是

連

帶

表 明 兩 端 有 岡 别 的; 它 可 以 適 用 於 支箭, 但 是 不 能 够 適 用 於 掛 帳 幔 的 銅 梗。

這 冰 洲 這 石 _ 個 的 位 實 置, 驗, 放得 要 重 很 新 適 再 當, 做, 使 也 那 不 是 平 常 難 事, 光 線 銅 與 版 非 圖 常 + 光 八 線, B 位 所 於 示 同 的 便 是。 鉛 直 在 面内冰洲石以外還, 此 照 相 中, 我 們 可 以 有 看 見 玻

璃 塊, 也 放 在 光 路 中, 其位 置 也 可 使 切 反 射 光 線, 都 在 這 同 平 面之內我們將察見平常 光線

仍 被 反 射, iffi 非 常 光 線 則 不 經 反射。 這 光 線 也 有 多 方 面 的。

此 時 適 值. 托 馬 司 • 楊 正 在闡 發 他 的 波 動 干 涉 原 理, 而 且 正 在 力謀使久已處 於雲霧 中 的 波

動 說, 仍 售 大 放 光 明。 那 個 時 代 的 哲 學 家, 都 根 據 牛 頓 的 著 述, 拘 泥 於 微 粒 之說, 堅持成日 見食古 而 不

化, 所 以 楊 氏 就 遇 到 了 很 強 的 反 對。 馬 呂 斯 的 發 見, 更 加 重了 他 的 困 難, 因 爲 照 他 想 徽 起 來, 他 不 能

够 建 議 有 什麼情 形, 波 動 說 在 此 情 形 之下可 以 有 多 方 面 -這 是 因爲 他尚未領悟 波動 說 的一

切 可 能 性。 他 在 那 個 時 候, 假 定 光 波 的 振 動, 與 聲 波 的 振 動 相 似, 其 方 向 就 在 波 系 進 行 的 方 向 之 内。

他 對 於 這 種 過 程 的 描 寫, 根 據 所 假 定 的 鋼 球 或 玻 璃 球 這 -類 物 體 的 前 後 連 動, 與丁 達 爾 用 排

童 子 所 做 的 實 驗 相 同 這 種 連 動, 並 沒 有 從這 方 面 到 那 方 面 的 特 托馬 司 楊隔了很久的時 間

第六章 光的偏極化

ニース

以 後, 方 始 察 知 此 項 困 難, 可 用 光 波 屬 於 横 波 類 的 假 定, 把 它绿 掉。 個 人 若 反 省 到 海 面 上 的 波

是 横 波 的 時 候, 他 對 於 楊 氏 的 此 舉, 似 乎 要覺 得 奇怪; 不 過 他 或 許 也 要 想 起, 就 因 爲 這 些横 波 祇 限

於 海 水 表 面, 所以 他 想不 到 這 些 横。 波表 示 有 波 動 通 過 海 水 本體。 這一層困難有許多人一定已

經

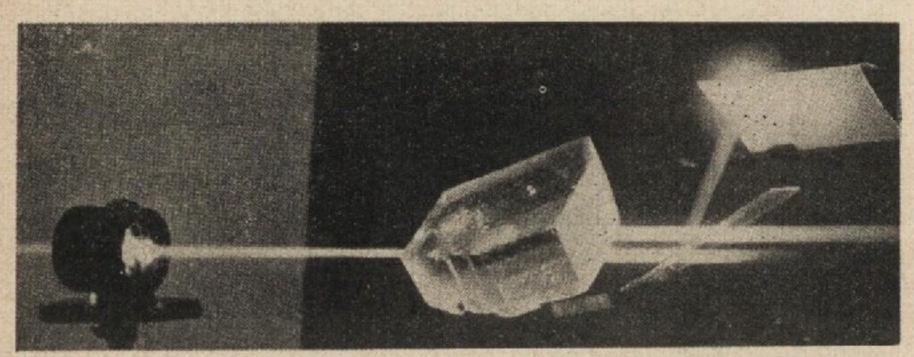
覺 得 或 方 纔覺得。 用 比 喻 說 明 事, 是常 常 發 生這 種 結 果 的。

楊氏與夫累涅爾的橫振動

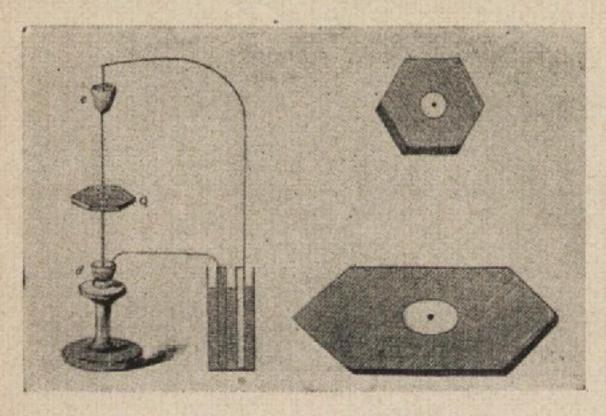
托 馬 司 楊 終 究 找 到了 逃 過 這 難 關 的 方 法。 在 八 七 年 正 月裏 邊離開馬呂 斯 的 發 見 九

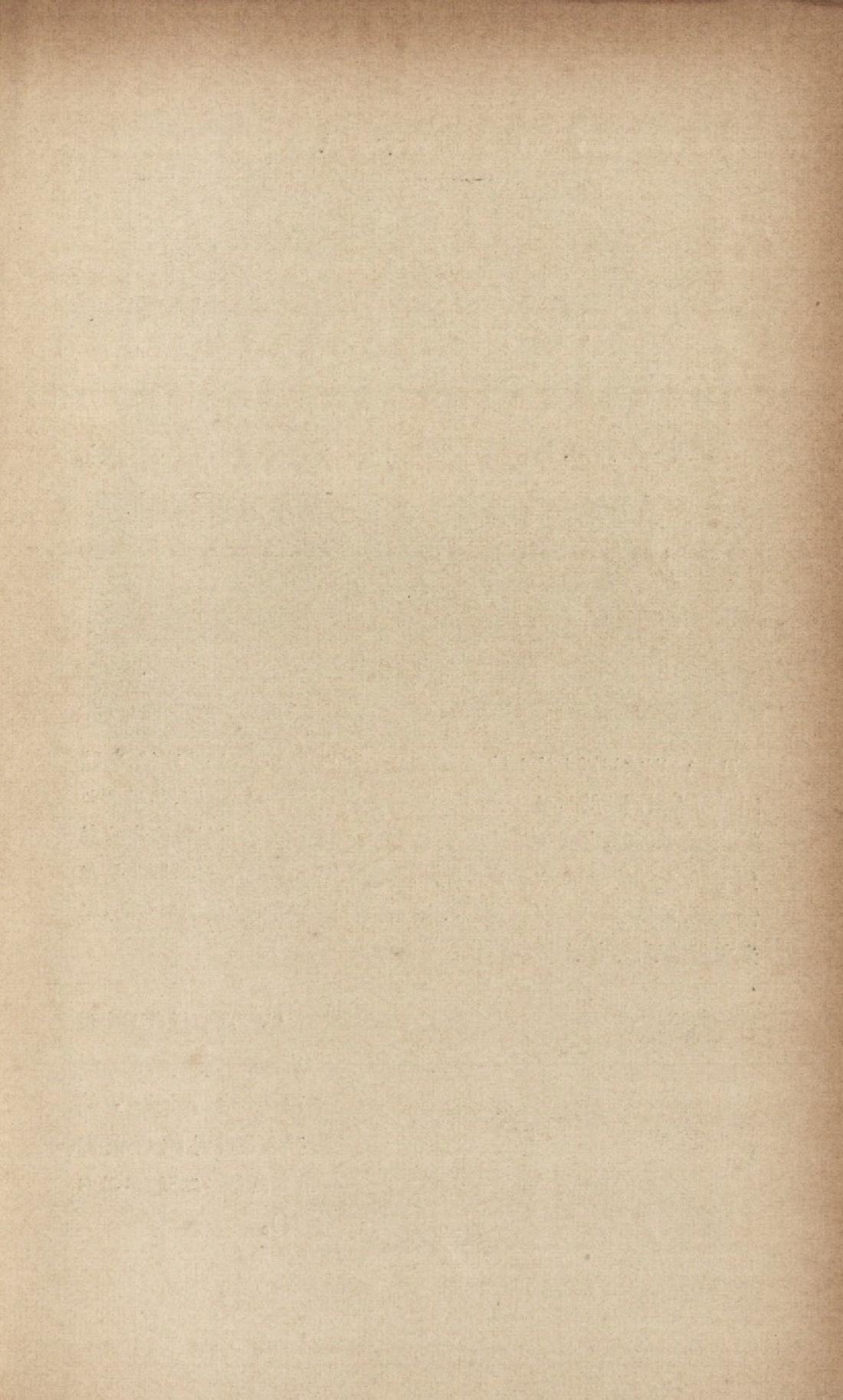
年 之後, 楊 氏 寫 信給 阿 刺 各(Arago) 說: 我 也 在 這 兒深 思 熟 慮, 想 有什麽可 能的方法對 於 光 的

發 生 偏 極 化 的 原 因, 求 得 _ 個 不 完 全 的 解 釋, 而 叉 不 違 背 精 妙 的 波 動 學 說。 他 就 建 議 了 種 可


能 性, 卽 横 振 動 傳 布 於 半 徑 的 方 向 之 內, 而 質 點 運動 的 方 向, 對 於 半 徑 是 固 定 不 變 一的; 他 又 說,

偏 這 斜 成 便 是 任 何 偏 極 角 度不 化。 一他 過 在寫 他已經大大的 這封 信 的 跨前了 時 候, 並 未 步。 想 赫赫 到 質 有 點 名 的 的 運 法 動 國 方 一青年 向, 祇 工程師夫累涅爾領會了 可 以與 光線 成 直角, 不 能


銅版圖十八


A. 這一幅照相,表示由冰洲石窺見物體的雙像(參閱第二〇三頁)。

B. 冰洲石把原來的光線, 分成兩條。透出光來的兩點的聯線, 與該兩點所在表面的鈍角平分線, 互相平行。被分後下面的一條, 是平常光線, 它的光振動, 方向與此線垂直, 換句話說, 即與旁邊反射玻璃片的表面平行。光線的一部分, 被玻璃反射, 如圖所示。上面的一條, 顯然是非常光線, 因為它與原來的光線。不成一直線; 這非常光線的振動方向, 與光斑聯線平行。它不被玻璃反射(參閱第二一七頁)。

C. 此圖採自丁達爾 所著熱之運動觀第二四 四頁。它所表示的,是 孫那芒脫實驗的裝置 (參閱第二二五、二二六 頁)。

楊 氏 建議 的 重 要意 義, 進 而 表 明可 以 根 據 此 項建議, 立說 以解 釋 光 在 晶體中 運動 的一切 現 象, 把

光 線 的 兩 歧以及 偏 極 化, 都 包括 進 去。 累 湟爾 在 洲 個 時 候, 的 確 已 經 自己 想出了 光 的 干 涉 理 論,

並 沒 有 知 道 托 馬 司 在 英 國 已 成 此 大 功: 但 是 他 立 即承 認, 他 已被人搶了先着 去, 而 且 替

氏 辩 護 其應居首 功甚 ・楊 爲 熱 心他 早 在一八一六年寫 給 楊氏 的信, 有 這 樣 的話「我雖不能捷 足先 楊 得,

但 是 在 我 看 來, 我 卻 遇 到了 _ 位 學 者, 他 對 於 物 理 學 有 許 多 重 要 的 發 見, 使 物 理 學 增 輝 不 少, 而 1

同 時 叉 把 我 的 膽量, 大 大 的 增 強了一 下, 使 我 對 於 我 所 採 用 的 理 論, 格 外 深信有 此二者, 巴 足 以 自

慰 |楊 氏 的 覆信措辭 也 很客氣波動 說在十九世 紀, 所以能 得 優 越 的 地位其第一層 原因當 然

是這兩個人聯合的努力。

光 波 的 横 動 特 性 -成 立, 波 動 說 立 卽 很 順 利 的 向 前 再 行 發 展, 直到十九世 紀末葉為 止。此 說

的 堅 固, 足 以 向各方 面擴 充 而 不失 敗著 述家與實驗家 都覺 得 他 們 可 以 倚 靠波 動 說, 解 釋 極 複 雜

的現象。

凡 此 種 種 發展, 若 欲 悉 加 以考 究必 將 使 我 們 離 開 主 題 太 因爲 我 們 的宗旨 祇在於說光 與

第六章 光的偏極化

字 宙 所 生 關 係 的 粗 枝 大 略 罷了一 而 且 其 中 有 許 多 問 題, 不 用 算 學 L 的 計算方法 不 參用 别 的 學 說,

當 然 不 能 够 加 以 研 究, 尤 其 是關 於 電 與 磁 的 學 說, 更 不 能 不 借 重。 然 而 我 們 卻 可 以 回 轉 去 再 講 惠

更司 的 觀 察, 看 看 横 偏 極 化 的 概 念, 如 何 能 够 解 决 惠 更 司 的 困 難。 同 時 我 們 又可 以 察 知, 這 ---件

事 情 在 大體 上 如 何 不得 不 用晶 體結 構 的 觀念, 此 項觀 念近 年 來 經 大 有發展了第一讓 我 們 把

我 們 所 用 的 名 詞, 重 新 說 說 我 們 所 下 的 定 義。 在 偏 極 化 光 線 中。 振 動 的 方 向, 都 种 -方 向 平

這 方 向 當 然 與 光 線 垂 直。 海 面 上 的 波, 可 以 說 它 是 偏 極 化 的, 因 爲 切 運 動, 都 是 垂 直 於 水 波 進

行 的 水 平 方 向。 在 光 線 裏 面 連 動 的, 是 些 什 麼 東 西, 我 們 無 須 對 於 它 們 構 成一種 心象: 我們 祇 要 設

想, 這 _ 種 波 動 帶 着 干 涉 現 象 以 及 其 他 現 象, 就 巴 經 够 了。

未 偏 極 化 的 光 線, 卽 正常 光 線, 除 -切 運 動 對 於 光線 方 向 都 是 横 運 動 以 外是沒有 特 殊 運 動

方 向 的。 大 多 數 的 光 線, 差 不 多 都 是 免 於 偏 極 化, 不 過 偏 極 化 卻 也 往 往 發 生一些, 因 為 反 射 作 用 很

容 化, 或 易 全 使 它 部 偏 發 極 生。 化。 有 件 事 情, 卻 不可忘了即 我 們 的 眼 睛, 不 能 够分 辨 光線是未 偏極 化,部 分 偏

極

現 在讓我 們假 定, 道 正常 光線, 卽 未 偏 極 化 的 光 線, 通入晶 體 之中分裂為 兩道光線其 強 度

相 等, 而 且 都 被 完 全 偏 極 化: 並假 定 在這 兩 道 光 線 裏 面, 振 動 的 方 向, 互 相 空直有了 如 此 的 假 定, 我

們 的 實 驗已 足以 解釋了例 如 在 鲖 版 圖 + 七 A 所 示-的 實 驗 中, 原 光 線 所 含 的 横 振 動, 其 取向 各 方

俱 但 是 通 過了 第一 塊 晶 體, 再 射 出 來 的 那 兩 道 光線, 卻 須當 它 們 已經受了偏 極 化。 平 常 光 線

圖 中 下 方 的 -條, 與 原 光 線 連 成 一直 線 射 入 第二 塊 品 體 後, 它 的 振 動 所 依 的方 向, 就 是不 再

使 分 歧 作 用 發 生 的 方 向, 第 塊 品 體 中 的 平 常 光 線, 在 第 塊 晶 體 中 依舊是平常光線它所: 有 的

切 振 動, 早已在 適 當 的 方 间 之 內以 便 再 行 組織 續 原 狀。 以 非常 光 線 也繼續 原 狀仍 爲 非 常 光 線。

但 是 第 塊 晶 體 所 處 的 地 位, 如 銅 版 圖 + 七B 所 示 的 時 候, 熟推 開 第 塊 晶 體 的 兩道 光線, 其 振 動

的 方 向, 旣 不 能 使 它 們 成 功 平 常 光 線 而通 過第 _ 塊 晶 體, 叉不 能 使 它 們 成 功非常 光線 而 通 過。 兩

條 線 都 非 再 被 分開 不 可。 在 銅 版 圖十七 C 裹 面, 從 第 塊 晶 出 來 的 平 常 光 線, 到 第二 塊 晶 體

中 卻 變 成 了 非 常 光 線, iffi 原 來 的 非 常 光 線, 卻 變 m 爲 平 常 光 第 塊 晶 體 的 作 用, 恰 與 第 塊

品 體 相 反。 假 使 這 横 振 動 的 假 說, 確 是不錯 的 話, 那 麼 這 些 效 應 的 原 因, 必 定 在 晶 體 的結構 方 面。 所

的 世 界

以 我 們 要 問, 在 晶 體 結 構 方 面, 究 有 什 麽 情 形可 使 這 些 一效應 發生

由 品體 結 構 所 致 的 偏 極 化

基 本 的 事 實, 是晶 體 中 原 子 的 排 列, 有 _ 定 的 狀 沉; 品 體 的 賦 有 切 特 性, 其原因 就 在 這件 事

實 面。 我 們 還可 以 觀 察 到, 這 些 性 質, 是 萬 物 所 同 具 的, 因 爲 凡 屬 固 體 的 物質都有結晶 化 的 傾 向,

助, 而 且 我 在 們 實 在 際上它 這 _ 方 們 面 所 的 化 具 成 的 晶 知 識, 體, 巴 其 經 情 大 況 大 如 的 何, 擴 遠 充了晶 非 我 們 體 的 所 目 カ 由 以 所 能及不 構 成 的 過近 原 子 與 來借了X 分 子依 照 射 線 某 的 種 確

定 的 花 樣。 排 成 很 整齊 的 行 列, 這 種 確定 的 花樣是晶 體 所 特 具 的。 塊 晶 體與一塊玻璃其 間之 有

例 差 别, 如 導 同 熱 於 性, _ 對 塊 織 於 品或 壓 力 及 _ 張 塊 木 力 的 材, 抵. 與 抗, _ 塊 在 沒 乾 有 燥 拉 時 緊 的 的 收 縮, 橡 皮。 諸 木 如 材 此 類, 也 都 有 種 是。 種 不 同 的 性質有賴 於方 向:

在 品 體 裏 面, 排 列 的 情 況 遠較 織 物 興 木 材 爲 細 密, 而 且 眼 睛 不 能够察覺原子與分子 是 太 小

了, 都 看 不 見 的。 這 種 排 列 的 整齊有 條人 巴 推想 其 如 此, 所 憑 的 根 據, 便是晶體的外形十分完整而

且 具 有 特 性, 華 衆 不 同; 現 在 我 們 靠了 X 射線, 巴 有 本 領 發 見 這 種 花 樣, 並且把各原子填 進 去, 放 在

它 們 所 處 的 相 對 地 位。 有些花 樣, 極 其 簡 單例 如岩 鹽與 金剛 石 便 像 這 種 晶 體, 實在說 起 來, 結 構

太 簡 單 了, 以 致 我 們 現 在 正 在 說 起 的, 與 晶 體 結 構 有 關 係 的 效 應, 它 們 不 能 够 明 白 表 顯 出 來; 這 些

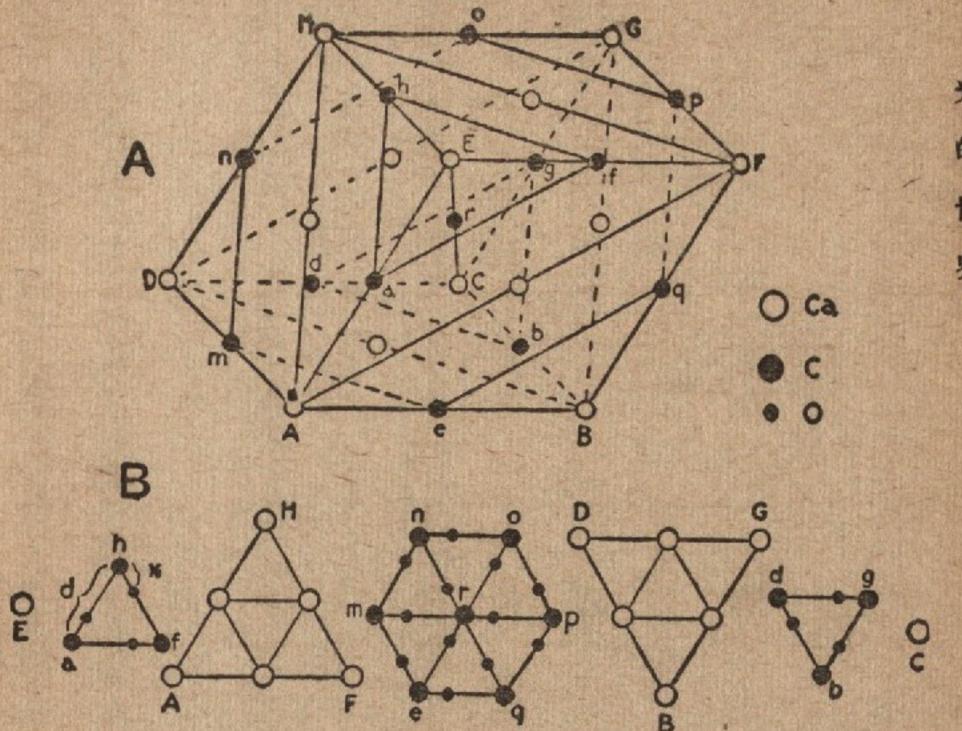
效 應 的 發 生, 是需要某 種 複 雜 性 的。 在冰洲 石 裏邊複 雜 性 的 程 度, 經 够高了而且高得 足以 發 生

很 大 的 效 應。 冰 洲 石 的 所 以 有 人 注意 它其 原 因 就 在 於 它 有 這 些環 境, 以及它 具 有完 整 的 品 體 形

式, 而 且 這 種 晶 體, 有 很 大 的 大 塊, 可 以 給 我 們 得 到。

圖 八 十二所 示, 是冰 洲 石 的 模型, 其中 各原 子 的 相 對 地 位, 都 是 由 X 射線採知 的。 在 冰 洲 石 中,

也 像 在 其 他 晶 體 中 ___ 樣, 有 _ 個 基 本 的 單 位; 而 這 個 模 型 的 大 小, 足 以 包 括 幾 個胡 這 種 單 位, 以 及 它


的 幾 部 分。 在 毎 _ 個 單 位 裏 面, 有 -個 原 子 的 鈣, 個 原 子 的 碳, 還 有 三 個 原 子 的氧這一 個 模 型, 它

所 具 的 形 式, 題 然 與 圖 七十七 所示 冰 洲 石 的 形 式 相同: 我 們 非 這 樣 預 料 不 可, 因 爲 在 實 際上 說 來,

遭 冰 洲 石 的 本 身, 祇 不 過 是 足 數 的 基 本 單 位, 積 聚 而 成 的 罷 在 圖 八 + = 中,除 了 所 示 整 個 的 模

型 以 還 表 示 這 模 型 的 種 種 截 面; 標 明 B 的 排 小 圖, 便 是這 些截 面, 都 是 依了 垂 直於EC 線 的 方

三四

(圖八十二) 圖 A 所代表的,是冰洲石 CaCO₃ 所由構成的各原子排列狀況。其中白圈代表鈣原子,黑點代表碳原子。為避免混淆起見,圖中未示氧原子所在地位。垂直於主軸 E C 的相繼名層,其原子排列狀況如圖 B 所示。在這些圖裏面,氧原子用小黑點來代表。這幾個圖所表示的,無非是各原子所處的相對地位罷了。B圖中各層相隔的距離,是 2.79 埃斯特稜單位,約等於一英寸的一兆(即萬萬) 分之一。至於各原子的大小和形狀,圖中並未指示出來;因為決定原子的大小形狀,比了決定它們中心的相對地位,要雖得多。

向, 割 原 出 子 來 羣 的; 的一層, 帅 且 它們 這就是說在這 還 表 示 各 原 第二層 子 錯 綜 裹 相 面, 間, 每 排 成 _ 個 碳 層 原 層, 子, 都 第 有 11/12 三 層 個 是 氧 鈣 原子 原 子 圍繞 層, 其 着 次 它, 是 成 祇 功 含 心 有

對 稱 的 形 狀, 此 後 各 層, 都 是這 樣 相 間 排 列。 這 CO3 原 子 羣 的 排 列 情 形, 在 圖 裹 i面 中 央一 層 的 r 處,

得 最 最 清楚, 最 最 明 白。 在 一第二層 與 第六層這 兩 個 截 面 裏 邊這 原 子 羣 祇 題出了一部 分。 假 使 我

們 從 這 晶 體 切 出一片 來, 切面與 這些平 面 相平 行, 而與 EC 垂 直, 那 麽 像 這 樣 的一片冰洲 石, 就 具 有

定 格 式 的 對 稱 性: 這片品體 像 個 鐵 絲 網, 網 眼 全 是 正 六 角 EÇ 這 個 方 间, 叫 做 這 晶 體 的 軸,

因 爲 這 對 稱 形是繞着它排列成 功 的。 假使我 們用這樣 的 晶 體 片, 來 做 物 理 的 實 驗, 那 麽這 對 稱 性

就 立 刻 自 行 出 現。 例 如結 晶 學 家 孫 那 芒 脫 (Senarmont)在 好 多 年 以 前, 曾 測 定 水晶 的 導 熱 性, 他

所 用 的 方 法, _ 如 銅 版圖十八〇所 示。 水晶 與 冰 洲 石 樣, 也 屬 於 晶 體 中 單 具 對 稱 軸 的 那 -類:

所 以 它 們 的 物 理 性質彼 此 相 像的很 多孫 那芒脫 切出 片 水 品 片, 切 面 與 這 對 稱 軸 垂 直, 並 在 它

的 中 心 鑽 _ 個 孔。 於 是再 在 這 水 晶 片 的 面 Ŀ, 敷 了 -薄 層 的 白 他 叉 使一條 金 屬 絲, 穿 過 這 小 孔,

而 用 電 流 加 熱 於 這 金 屬 絲, 水 晶 片 上 的 白 蠟 就 開 始 熔解 起 來孫 那 芒脫發見 那 巴熔 解 的 部 分, 其

第六章 光的偏極化

輪 成 直 鄭 角, 呈 圓 再 用 形, 它 由 做 此 同 师 知 -的 熱 實 已 從 驗, 他 金 發 屬 見 絲 白 向 蠟熔 各 方 化 平 部 均 分 傳 的 布。 輪 然 廓, IMI 他 不 再 叉 是 另 圓 切 形。 片, 它 是 其 切 個 面 卵 不 形, 與 對 如 圖 稱 所 軸 示 交

上 說 見 來, 鲖 版 由 此 圖十 實 八 驗, 可 C 右下 知 導 角。 熱 性 ~ 當 沿 對 這 水晶 稱 軸 片 最 大, 的 mi 平 在 面, 含 垂 直 有 對 於 對 稱 稱 軸 的 軸 時 的 任 恢, 何 與 方 圓 向 形 內 的 最 相 差 小。 此 最 外 大。 任 在 何 實 際 方

向 內 的 導 熱 性, 其 大 小 介 於 這 兩 個 極 端 之 間。

冰 洲 石 内 的 原 子, 其 排 列 情 況 雖 很 複 雜, 我 們 仍 可 以 察 知, 在 那· 含

圖 有 對 八 + 稱 三 軸 所 的 示 平 者, 面 中, 就 是 比 含 在 有 與 對 對 稱 稱 軸 軸 的 垂 直 平 面 的 內, 平 鈣 面 原 中, 對 子 與 稱 碳 性 原 如 子 何 的 少 排 得 多。 列

情 形。 在 此 圖 中, 可 見 圖 八 十二所 示 的 六 角 形 對 稱 排 列 式, 種 也 沒 有。

就 冰 是 洲 這 石 樣 的 奇 的 發 特 生了 結 構 物 理 的 其 實 性 質 也 與 就 是 現 象, 大 多 這 些 數 性 晶 質 體 興 的 現象, 奇 特 有 結 賴 於 構

E

其

在

晶

體

內

發

生時所

取

的

方

向。

我

們

已

經學

過一

個

熟

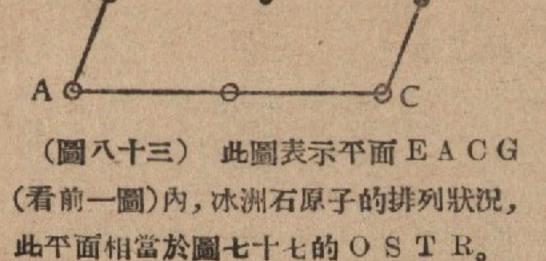
的

傳

布

的

例子了須


知當

光

線通過

種

物

質 的 時 候, 其 主 要 的 手續, 是 種 振 動, 此 項 振動, 我 們 雖 然 說它 屬 於 以太但是多少也要受 到 這 種

物 質 的 些 影 響。 所 以 我 們 大 可 以 預 料當 光 正 在 通 過 個 晶 體 的 時 候, 它 的 進 行 速 度, 將 有 賴 於

振 動 的 方 向, 與 晶 體 結 構 的 特 性 方 向, 其 間 所 有 的 某 種 關 係。 切 振 動, 凡 是 與 晶 體 軸 垂 直 的, 必 定

具 有 相 似 的 特 性, 好 比 熱的傳 布 這種 類 似 的 情 形 -般。 因 此, 切 光 線凡是其中 的 振 動 都 與 晶 體

軸 垂 直 的, 它 在 進 行 時 常 依 同 -的 速 率。 在 實 際 上 說 來, 這 就 是惠更司 所 謂 平 常光線。 其他 切 光

線, 進 行 的 速 率 都 不 相 同, 就 成 了 非 常 光 線。

不 過當 光線 射入晶 體 的 時 候, 凡 是 與 它 本 身 垂 直 的 切 方 向, 本 來 都 是它 的 振 動 方 向。 然 則

爲 什 麽 應當 發 生 選 擇 的 作 用, 以 至 於 它在 品 體 裏 面, 祇 留 下 了 兩 種 振 動 方向其一工 垂 直 於晶 體 軸,

而 生 出 平 常 光線來還有 種 • 不 垂 直 於晶 體 軸, 而 生 出 非常 光 線 來 呢?

這 個 問 題 的 答 案, 是 其 他 許 多 振 動 能 再 分 問 題 所 公 有 的 我 們 舉 鋼 棒 的 振 動一 例 來 說, 頗

爲 合 宜。 先 假 定 這 錮 棒 的 截 面 是 圓。 假 使 輕 輕 拿 住 這 條 棒 的 中 而 在 它 的 一端 敲一下, 它 就 按 着

速 率 彎 來 曲 去, 發 出 相 當 的 純 晋 來。 在什麼 地 方敲 它, 是無 關 緊 要 的但是 此 棒 的 截 面, 出者稍帶 橢

第六章 光的偏極化

圓 扁 形, 平 那 麽 _ 側 所 的 起 P 的 點 效 敲 應, 它 就 不 看 這 圖 樣 八十四 簡 單 了。 ·, 這 鋼 那 麽 棒 它 在 的 方 振 動 面 速 的 率, 振 比 動, 此 在 Q 在 點 别 依 方 垂 面 直 容 於 易 前 些。 者 的 假 方 使 向 在 敲 橢

它, 要 慢 些; 所 以 就 前一 種 情 形 而 論, 鋼 棒 所 發 純 音 的 香 調 較

低, 時 棒 就 所 後 發 出 種 情 的, 並 形 非 mi 介 論, 於 背 調 敲 較 P 與 高。 敲 現 Q 在 所 假 發 定 再 兩 純 於 音 R 之 點 敲 間 的 這 純 棒。 此

卻 是 這 兩 個 純 晋 的 混 台 音。 這 是 很 重 要的 個 特 點。 在 R 點 加

於 鋼 棒 的 能, 立 刻 自 己 分 成 兩 部 分; __ 部 分 儲 版 於 較 慢 的 種

振 動 裹 面, 還 有 -部 分 儲藏 於 乾 快 的 振 動 方 面。 假 使 R 到 P, 比

了 R 到 Q 近 _ 些, 那 麽 慢 的 種 就 有 占 優 勢 的 傾. 向; R 若 離

較 近, 那 麽 慢 的 振 動 就 要 占 優 勢了。

棒 在 此 種 情 形 之下 受 擊 而 發 聲, 其 原 因 在 於 棒 的 形 式 所

起

有

規

則

的

擾

動,

此

擾動又在空氣中

激

起

脈

搏

來,

所謂

脈

搏,

就

是

聲波這擾動

的

本

便是

此

棒

在

身,

(岡十八圖)

橢圓截面的鋼棒,在 Q 點敲它, 比在 P 點敲它, 所發純音較高; P 點是在扁平 的一面。在R 點敲它的時候,它在同時發出Q 的高純音,與 P 的低純音,但是並不發出中間音 調的純音來。

其 所 彎 曲 的 兩位置 之間, 來 往 的 運 動, 如 圖 八 + 五. 所 示 的 便 較低 的 純 晋, 其發生 由 於 P 處

的 敲 擊, 因 爲 就 這 情 形 iffi 韵, 鋼 棒 的 彎曲 比 較 容易。 這 擾 動, 也 可 以 想 像 它 是 陣 脈 搏, 沿 着 棒

疾 振。 這 脈 搏 的 發 生, 由 於 敲 擊, 其 進行 的 速 率, 則 _ 方 面 有 賴 於 棒 的 崛 強 性,

他 方 面 有 賴 於 棒 的 巨 大當它 到 達 棒 的 一端 時, 就 被反 射 回來。 用 種 說 法

以 表 示 擾 動, 等 於 前 面 種 說 法, 祇 要 把 在 兩 歂 的 複 雜 反 射 過 程, 加 以 適 當

圖八十四的振動棒,

前後相間的呈虛線所示兩種形式。

的 審 察 好了, 這 種 過 程, 是 不 像 拉 緊 了 繩 子 那 樣 簡 單 的。 假 使 這 棒 是 無 限 長,

那 麽 由 敲擊 mi 生 的 脈 搏, 就 沿 着 棒 疾 傳 出 去, 永遠 不 回 來, 所 以 就 要 沒 有 聲

音 可 在 P 點 敲 棒 而 發 生 的 脈 搏, 比 在 Q 點 敲 出 來 的, 走 得 慢 些。 所 以 後

者 把 前 者 丢 在 後 面。

光 在横 過晶 體 時, 也 表 現 相 坊 的 效 應。 假 使 它 沿線 而 進, 成 功 道 射 線, 那麼它 的 振 動, 就 在 兩

個 方 向 的 個 方 向 之 內, 或 兼 在 這 個 方 向 之 内, iffi 這 兩 個 方 向, 互 相 垂 直。 晶 體 裏 邊, 有 相 當 於 鋼 棒

崛 強 性 者 存 在 因 此, 這 兩 種 振 動, 就 依 不 同 的 速 率 進 行, iffi 其 中 種, 就 超 出 另一 種 了。 在冰 洲 石 裹

第六章 光的偏 極 化

種 面, 振 恰 巧 動, 對 都 是 於 最 垂 直 小, 於 好 比 軸 在 的 孫 振 那 動, 芒 脫 崛 強 的 實 性 _ 驗 裏 最 面 小, 뻾 見 且 對 銅 版 於 圖 切 十 七 此

C 對 於 所 有 這 種 方 向 的 導 熱 性 都 相 同 般。 因 此, 在 任 何 方 向

內 第 爲 且 相 七 平 進 中, 此 什 厅 振 行 垂 方 行, 直 動 的 向 那 成 光 麼 愈 垂 於 功 它 線, 直, 扁 近 紙 其 在 橢 好 於 面 晶 像 振 球, 平 的 動 體 而 行 鋼 振 它 晶 之 動, 内 棒 其 一, 體 部, 的 的 方 是 就 情 軸 軸, 按 向 向, 此 形 垂 它 直 振 _ 卽 爲 樣, 動 所 垂 於 什 晶 前 能 麼 假 直 體之 行 同 使 進 於 OT 得 這 得 於 晶 愈 最 第 軸。 軸 = 體 快。 快 其 的。 振 它 軸, 的 他 例 速 動, 其 的 如 _ 傳 振 在 故 率 恰 圖 就 布 前 巧 動, 與 進: 在 表 必 七 興 而 軸 於 面,

了,

所

謂

解

决

的

意

義,

是

可

以

用

著

名

的

力

學

效

應

與

定

律,

來

個

的

向

外

傳

布,

可

用

球

面

來

描

這

樣

來,

惠

更

司

的

問

題

就

此

解

寫。

此。

第

種

振

動,

不

問

光

線

的

方

向

如

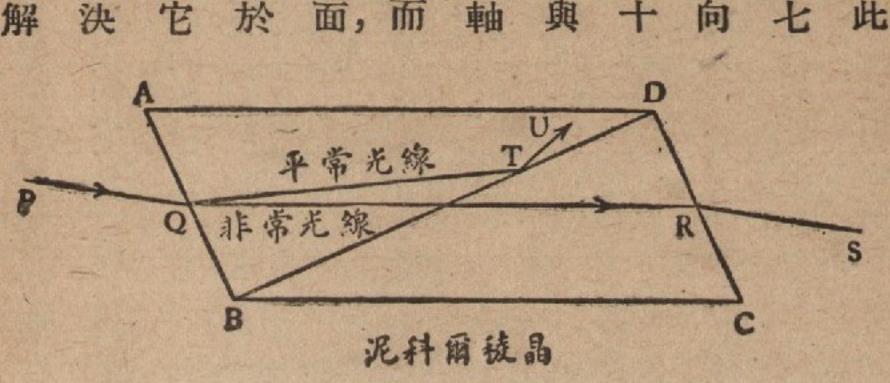
何,

常

依

同

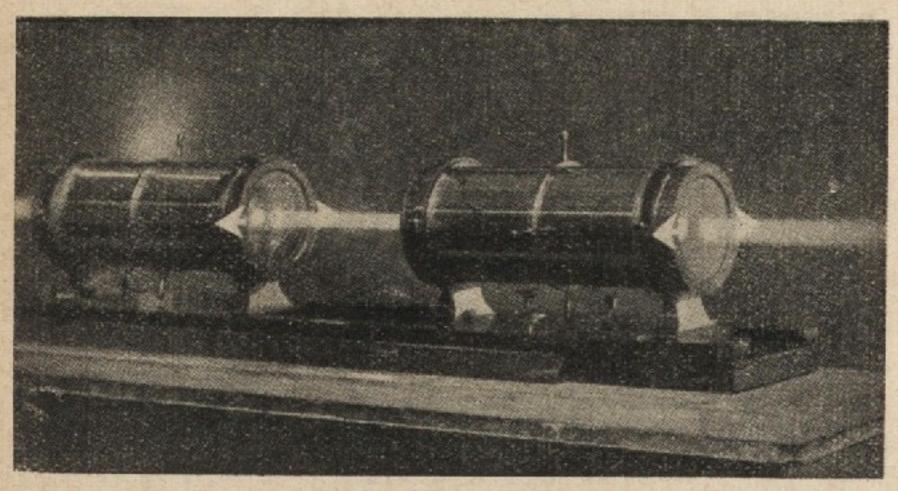
速

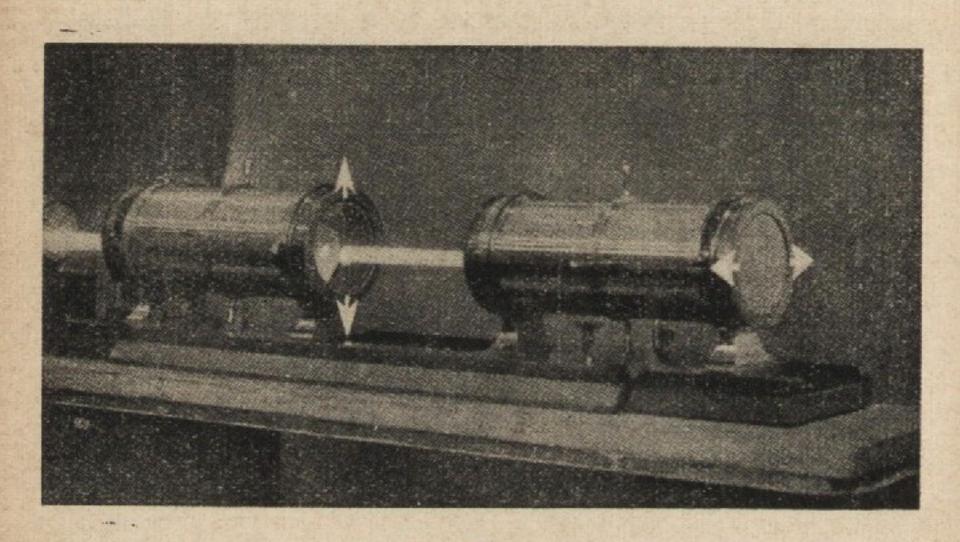

率

前

進,

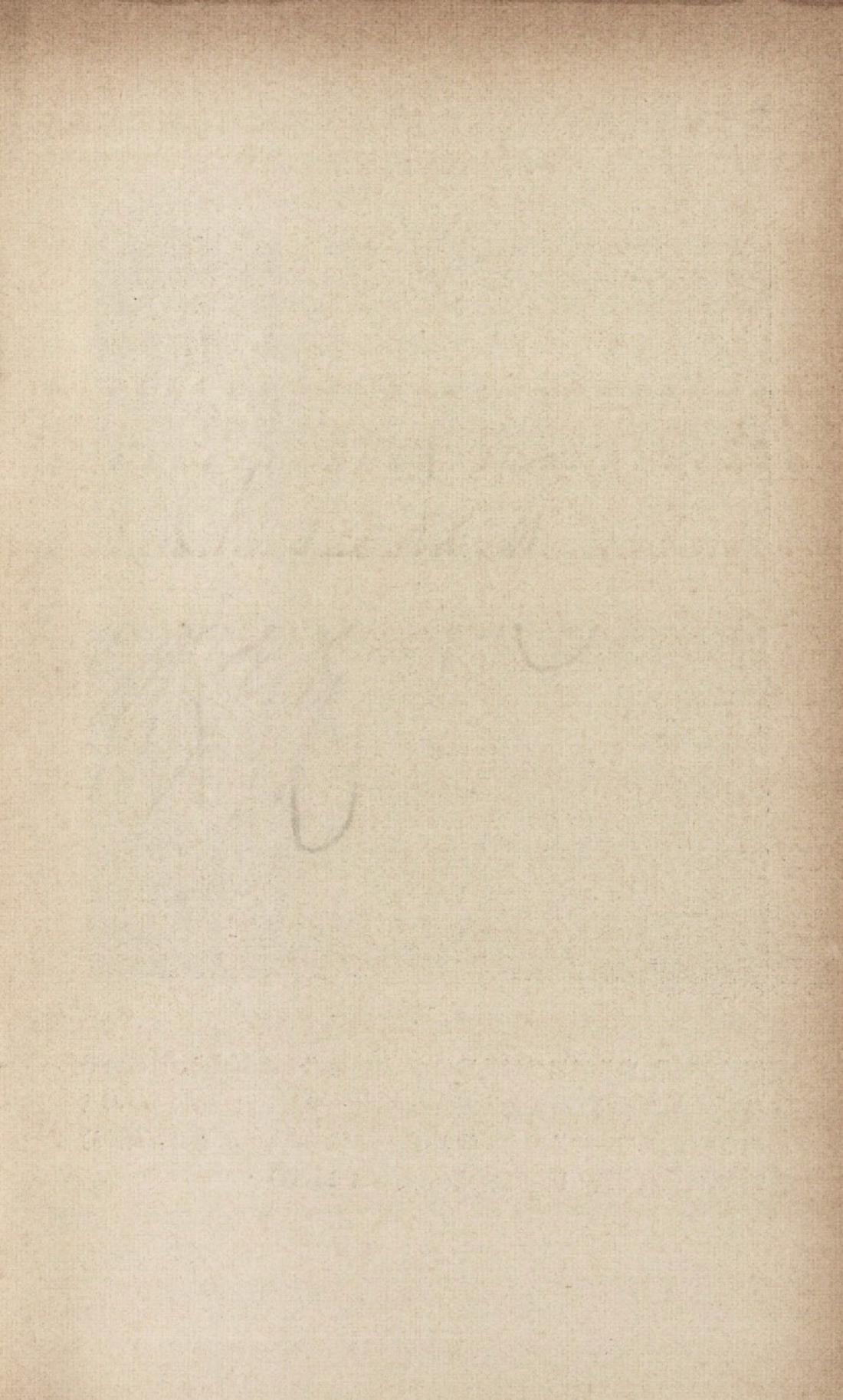
所


以


(圖八十六) 一塊長的冰洲石,截成兩塊,再用加拿大樹膠,把它 們膠合起來。截面與這晶體的形狀,有如下的關係,即入射線被分為 二的光線。祇有一道能够通過這稜晶。

三三〇

銅版圖十九



A.

B,

泥科爾稜晶,處於互相平行的地位時 光線從第一稜晶透出,可再通過 第二稜晶。各稜晶旁的白色箭頭,在晶體的主平面之內。當兩主平面互 相垂直時,從第一稜晶透出來的光線,就不能够通過第二稜晶。光線的 路徑,因空氣中噴有烟霧而得見(參閱第二三二頁)。

威 亷 泥 科 爾 (William Nicol) 曾發明一 種 稜晶用. 它來 做 偏 極 化光 的實驗大感便利。

塊 冰 洲 石 切 成 兩 塊, 再用 加 拿 大樹 膠 把 它們膠 合 起 來: 這 切 口 是 沿 着 圖八十六中 的 BD 線 切下去

的。 須 知 光 在 樹 膠裏 面 進行, 其速度: 比 冰洲 石中 的 兩 條 光 線 之一, 卽 比 所謂 平 常 光線要快一些, 而

且 遵 守 規 定 的 折射定律: 但 是光 在 樹膠中 的 進行 速 率, 卻 叉 比冰 洲 石 中非常光線 慢。

兩 條 光線, 在 加拿大 樹 膠裏 面, 都 依照同一 的 速 率 向 前 進行; 光 在 液 體 裏 面 前 進時, 偏 極 化 的

作 用, 是 不會使 其 所 依 的 速 率, 受 到 影響 的。 祇 在晶體之中, 光 的 進行 速 率, 纔 會受 到 光波 振 動 的 方

向, 以 及 晶 體 形式 之 間 的 關係所 加 於 其 上的 影響。 如 圖 八 十六五 示, 由 於 此 種巧妙 的排列, 平 常 光

線 遇 到 加拿 大樹膠時, 其斜射 之角 度適使, 其 全 被反射へ參 脚 圖 四 + 五, 而 非 常 光線 則 仍 向 前

通 過。 這樣 來, 原 光 線一 半 的 能, 卽 被 吸 收 於泥 科 阚 的 裝 置 之中, IMI 其 餘 一半, 則 成 爲 偏 極 化 光, 透

出 外 面。 冰 洲 石 優 良 的 很 少所 以 塊 大 的 泥 科 阚 稜晶價: 值 十 分 昂 貴。

假 使 如 圖 八十七 所示, 有 一道 光線, 使它接 連 通過 兩 塊 泥 爾 稜晶, 那 麽 最 後透 出 來 的 光 量,

其 所 放 多 任 少 須 通 視 過 稜 稜 品 品 的 的 排 光 振 列 情 動, 方 形 向 iffi 定。 與 假 該 使 圖 第 的 平 塊 面 平 稜 晶 行 所 一 處 如 的 這 地 位,

那 麽 第 塊 稜 晶 處 的 地 與 第 晶 會 樣 說,其

所 位, 岩 塊 稜 樣, 這 光 就 透

第 它 塊 就 稜晶, 退 把 射 絲 毫 在 沒 它 有 上 第二 面 的 次 偏 的 極 損 化 失。 光, 完 若 全 將 吸 第二 收 進 塊 去, 稜 因 品 而 沒 中學 過 有 光 九

品 透 出 來。 銅 版 圖 + 九 В, 就 是 表 示 此 項 效 應 的 實 驗

這

對

稜

影。

有 光, 泥 科 爾 稜 品 的 用, 幇 助, 我 們 還 可 以 證 從 透 明 體 表 面 發

如 圖 八 + 八 所 示, 先 使 偏 極 化 光 射 於 塊 玻 璃 L, 射 在 G

中

所

示

般,

在

紙

的

平

面

内

時,

反

射

後

徐

徐

使

泥

科

埘

稜

晶

繞

其

軸

旋

轉,

的

反

射

也

起

偏

極

化

作

部

明

的

作 車事 方 用 到 法, 最 泥 比 弱; 以 科 划 前 明, 但 是 容 稜 品 易 把 這 得 的 泥 多。 主 科 截 阚 迪, 處。 與 然

(圖八十七) 泥科爾稜晶兩塊,排在一起,處相似的地位。第一塊 稜晶, 把入射光線分成兩部分, 而使其中一部分, 透出第一塊, 射入 第二塊; 第二塊稜晶既不把這光線再分成雨部分, 也不阻止其通過。 但是第二塊稜晶,若以平行於長邊的線爲軸,轉過九十度之角,邪麼 這兩邊所夾的一對晶體,就要把一切光線,悉行遮斷了。

輻

盘

的

從 現 在 的 地 位 更 轉 過 九 十 度 時反 射 作 用 就 很 強了。 依 照 我

對 於 品 體 中 發 生 偏 極 化 的 槪 念而 論, 此 種 現 象, 暗 指 光 的

們 振 動 平 行 於 玻 璃 表 面 的 時 候, 被 這 塊 玻 璃 反 射 得 最 多。 叉

請 參 閱 銅 版 圖 十 八 B ·. 玻 璃 板 與 光 線 的 交 角, 應 當 是

五 度 右。 驗我

左 這 就 是 馬 呂 斯 的 實 們 把 它 重 做 _ 下 罷

光 從 透 明 物 質 的 表 面 被 反射 出 來, 旣 然 多 少 有 些 偏 極

化, 起 的 那 麼 此 項 在 效 海 應, 面 必 上 非 以 及 不 常 其 見 他 水 的 事 面 情。 上 的 然 許 im 多天 我 們 自己 然 反 射, 不 ·要忘了, 其 所

這 偏 極 化 的 效應, 1 的 眼 睛 是 不 能 够 直 接 檢 查 出 來 的: 我 們

須 利 用 _ 種 偏 極 化 的 裝 置, 像 泥 科 阚 稜 晶 般, 或 利 用

必

塊 玻 璃, 使 它 與 偏 極 化 光 成 功 適 當 的 角, 纔 能 察 知 此 事。 站 在

近傍 某位 置 內 時, 若 欲 除 去 那 討 厭 的 玻 璃 反 射 光可 取 泥 科 阚 稜 晶 塊, 向 外窺望,

此圖所表示的,是一道偏極化光線,遇到了一 (圖八十八) 塊平面玻璃後,有激弱的反射作用發生:光線的全部,差不多 都透過了這塊玻璃。但是這一塊玻璃,或這一塊泥科爾稜晶, 以圖中所示通過玻璃的光線爲軸,旋轉九十度,那麼反射作用 就變得很強。這是馬呂斯的實驗。

而

把

光

的

光,它 起了 徐 徐 偏 旋 極 車專, 化 直 之 到 故。 它 不 把 過 反 射 祇 有 光 觀 完 察 全 者 消 站 滅 在 爲 適當 止: 泥 的 科 地位 爾 時, 纔 的 能 所 有 以 能 此 成 如 功, 此, 所 是 以 因 爲 到 美 玻 璃 術 品 表 陳 面 列 的 所 反 射 去

太陽

(圖八十九) 在〇點的觀察者,正依〇P的方向,仰望天空。假使此人取泥科爾發品一塊,放在他的眼睛面前,使稜晶的主平面,即圖八十六的ABCD,是在平面〇PS之內,那麼他就看見天空似乎是黑暗的了;〇PS平面,含有〇P線,以及觀察者至S處太陽的聯線。假使把稜晶繞軸旋轉一直角,那麼天空又光明了。

海 不 叄 過 觀 面 這 的 發 來 人, 種 的 並 設 反 不 計, 射 能 仍 光, 由 不能 因 此 得 而 + 深 到 分 實 深 切 窺 用 合實 見 方 面 海 用。 底: 的 有 幫 時 助。 候 用 飛 同 機 _ 上 的 的 方 人, 法, 要觀 在某 察 某 數 地 面 種 情 情 形之下, 形, 也 用 還可 過 這 以 個 消

方

法。

滅

從

偏 極 化 作 用 的 天 然發 生在天空之光 這 方面, 有 種 非 凡 有 趣 的情 形其所以 有 很 大 的 趣 味

之 故, 第 一層 原 因, 在於 波 動 說 的 能够解 釋 自然事 實又 得 到 了 個例證第二層原因在於 它的 實

驗 方 面之研 究, 極 為 巧 妙而且還引起了 幾 種 極 優 美 的 證 法。

從 天 空 來 的 光若 欲 觀察 其偏 極 化, 事 情 很 容 易, 祇 要 借 重 泥 科 爾 稜晶好了一參閱八 十九。

假 定 S 代 表 太陽, P 是散射 太陽 光 的質 點, 而の 是觀察 者 的眼睛。 倘 然這稜晶拿在手中時, 其 主截

面 是 興 SP, PO 二線, 在同一 平 面 之 內, 那 麼天 空 就 好 像 黑暗 無 光。 但 若把 這 稜品繞 它 的 軸 車專 過一 直

角, 天 空 就 現 出 光 明 來。 用一 塊 玻 璃, 當 然 也 可 以 做這同一 的實 驗, 但是不可用 塗有 水 銀 的 玻 璃 鏡

子, 這 是 必 須留意 的。 假 使照 圖 九 十的樣 子, 装 置 這 玻 璃 鏡, 那麼 在 E 處的 眼睛就會看見M 處鏡子

裏 的 反 射 光: 但若 把 鏡 架 轉 過 直角, 使鏡子的 正 面, 在我們 看 這 個 圖 的 時候正對着 我們, 那麼它

的反射光就要變得暗淡了。

第六章 光的偏極化

我 們 曾 假 定通過, 稜 品 的 光, 其 振 動 的 方 向, 是 在主 45 面 内。 依 此 假 定, 在這 兩 個 圖 中, P 點 向 鏡

觀察者也可以

不用泥料 爾稜晶,而用未塗

水銀的玻璃 M 來代替,好像

銅版圖十八B 所示者一般,

把天空來的光, 反射到他的

眼睛(圖中王處)裏去。照

圖中的佈置, 此人所見天空

的反射光很明亮; 若把玻璃

鏡子繞 Р М 旋轉, 即繞鏡

架的鉛直方向旋轉, 旋轉到

必須依垂直於此圖平下的方

向,望這玻璃,紅作智察其上

的反射時, 他所見的天空反

射光就較暗了。

眼 睛 所 散 射 的 光 波, 非 振 動 方 向 它。 與 本 書 紙 的 平 面 垂 直。 須 知 我 們 從 波 動 說, 也 可 預 料 有 此 情

(圖九十)

子

或

形。

點,

मि

17

用

-

個

比

喻

來

說

明

白

這

用 繩 兩 條, 營 如 說 長 + |英 尺 或 三 + 英 尺, 打 個 結 在 中 央, 請 四 個 人 各 執 繩 的 端, 把 繩 拉

進。 直, 起 但 是 初 第 也 不 拉 次, 得 通 是 + 鉛 分 緊 直 向 看 的 振 圖 動, 九 卽 十 上一 在 下 A 端 的 振 的 動。 人, 當 發 這 出 些 脈 串 搏 脈 傳 動 到 來, 使 E 它 處 依 的 AB 時 候, 的 方 在 這 向, 沿 點 繩 的 而

結 子, 開 始 上下 連 動 起 來, 因 而 脈 搏 就 沿 EC 與 ED 前 進; 原 來 的 運 動, 也 沿 EB 進 行。 但 是 A 所 給 興 繩

的

111 六 中

所

見

通

過

E

點

的

困

難。

從

A

點

發

出

來

的

光,

在

切

情

形之下都

可

以通過

E

點

的。

然

沒

有

什

麽,

相

當

於

追

繩

索

比

喻

讓

它

過

去。

在

實

際

的

現

象

方

面

當

點 振 動, 的 運 假 動, 使 是 絕不能發 左 右 向 生可 的, 如 在 圖 EC 中 與 波 ED 狀 L 虚 通行 線 所 的 示 横 般, 振 動, 那 厅 除 非 沿 EC 由 與 A 出 ED 發 兩 繩, 的 就 原 沒 振 動, 有 運 其 中 動 傳 多 少含有 過 去, 因 爲 E

運 動 的 成 分 在 內。 在這 第 _ 種 情

形之 下, 確 有 某 種 連 動 通 過 E 點,

傳 至 EB 部 分而 由 A 所 發 出 的 脈

搏, 成 爲 横 運 動, 通 過 E 點 後, 仍 业

AE 的 方 向 前 進, 直 到 B 端, 因 爲 E

處 的 結, 對 於 這 種 運 動, + 分 遷 就,

B E

(圖九十一) 兩條經結在一處,結點是 E,而 四端都固定。假使有一陣振動, 其方向在圖的平 面內, 如圖中波狀虛線所示者, 發生於 A 端, 那 麼這陣振動可使BE跟着也動,但是不能教EC 振動, 也不能傳典 E D: 不過這振動的方向, 假 使垂直於圖的平面, E C 與 E D 就也跟着動 起來,和EB一樣了。

動, 若 與 這 EC _ 個 或 實 ED 驗 成 功 的 直 目 角, 的, 就 在 會 於 被 比 喻 E 微 處 的 小 質 質 點, 點, 向 例 EU 如 空 與 ED 氣 散射 的 分 子, 出 去; 對 若 於 典 光 它們平行就不然了介於 的 散 射作 用。 AB 前 行 的 兩 振

者 之 間 時, 祇 有 _ 部 分 沿 EC 與 ED 的 方 向, 被 散 射 出 去。

現 在, 讓 我 們 把 圖 九十的 情 形, 拿 來 考 究一 下。 光 波 從 S 處 的 太陽發送出來沿P 而 前 進。 假 使

它 們 的 振 動 方 向, 是 在 紙 的 平 面 之 內, 那 麼 它 們 就 不 能 够 激 起 陣 横 振 動可 沿 PM 前 進: 此 興 圖 九

時, + 它 們 所 就 示 能 第 够引 _ 種 情 起 形 串横波沿M 相 當。 但 是這 前 些 進, 振 又與 動, 若 繩 與 索 紙 的 面 情 成 形 直 角, 般。 那 從 麽 當它 太陽 發出而沿P 們 遇見了P 處 進 行 的 散 的 射 原 質 來 點 的

光, 必 須 假 定 它 含 有 切切 方 向 內 的 横 波: 不 過 沿 PM 傳 下 來 的, 卻 祇 含有 特 殊 的横波其振動 方 向 垂

直 於 紙 的 平 面。 所 以 天 经 的 光, 是受 過 偏 極 化 的。

在 實 一驗室中, 可 以 做 幾 種 美 觀 的 實 驗, 來 證 明 這 幾 點。 例 如 圖 九十二所示從幻燈 L 發 出 來 的

光, 被 泥 科 線, 阚 稜 品 偏 極 化, 再 次。 被 塗 銀 鏡 定這 M 反 射, 鏡 的 地 位, 適 可 使 反 射 光 柱 候是在水平面 向 下 通 入高 甁 J 中。 這 被

反

射

的

光

义受

偏

極

化一

今

如

假

些振

動

離

開

泥

科

爾

稜

晶

的

時

內,

且與

圖

平 面 垂 直, 那 麽 當 它 們 横 過 甁 中 時, 必 依 然 如 此。 設 這

裏 的 面 灌 着 淸 水, 水 中 溶 有 少 許 黏 性 水 泥: 這 水 泥 成 功 微

的 質 點, 懸 均。 浮 於 水 中。 這 些 質 點 都 把 光 向 來, 外 散 射, 然 而 各 方 細

是 並 觀 不 察 平 者 倘 在 若 紙 繞 平 着 面 甁 內 轉 E 過 處 來, 的 轉 眼 睛 到 甁 看 的 側 甁 中 面, 卽 似 乎 此 很 圖 所 示 但

的 面, 那 麼 他 就 要 看 見 甁 中 是 黑 暗 無 光。 假 使 觀 察 者 站

在 的 此 原 變 處 發 不 生。 動, 叉 而 把 如 室 泥 内 科 不 阚 稜晶 止 有 轉 個 過 觀 九 + 察 度, 者, 那 麼 麼 也 有 些看 有 同 見

亮, 暗。 那

甁

中

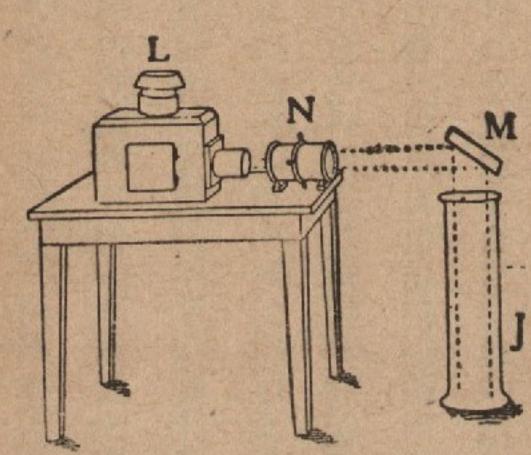
很

有

些

看

見


甁

中

黑

這 種 效 應, 可 令 人 大 吃 _ 驚: 把 這 實 驗 變 動 下, 有 非

常 固 體 美 的 麗 糖, 的 或 現 糖 象 可 的 溶 覩。 液, 以 糖若 對 於 通 干, 過 投 該 入 固 甁 體 中, 或 使 它 該 容 溶 液 解 的 於 光, 水。 成

(圖九十二) 從幻燈 L 出來的光,由泥科爾稜晶 N,加以偏極 化, 並由鏡子反射於高瓶 J 之內, J 瓶中充以含有細粒子的液體, 粒 子成懸浮狀態。被散射的光量,隨散射的方向而變,詳見本書正文。

二三九

種 奇 特 的 偏 極 化 作 用; 除 糖 以 外, 尙 有 别 的 許 多 物 質, 也 有 這 種 作 用, 與 糖 相 同。 振 動 的 方 向, 沿 路

變 化, 好 像 在 螺 旋 上 面, 隨 繞 隨 進 ___ 般。 當 光 在 甁 的 頂 Ŀ, 初 進 糖 溶 液 的 時 候, 讓 我 們假定它 的 振 動

方 向, 與 圖 九 + 的 紙 平 面 交 成 直 角。 光 在 抵 中 向 下 而 降, 它 的 振 動 方 向, 一路 發生 越 化, 降 到 某

深 度 的 時 候, 這 振 動 方 向 就 -在 _ 紙 的 平 面 之中 了。 此 時 E 處 的 眼 睛, 就 不 能 够 再 收 到 任 何 被 散

射 的 光。 光 從這一 個 深 度 再 往 F 降, 在 E 處 的 眼 睛 看 見 甁 中 的 光 明, 似乎又恢 復舊 狀讀 者 須 知, 這

些 明 暗 的 部 分, 彼 此 相 間 的 闊 狹, 是 隨 波 長 而 變動 的, 青 色 光 旋 下 去, 比 紅 色 光 快一些, 卽 旋 距 比 紅

色 光 長 ---些: 其 結 果 是 甁 中 顯 出 玉 顏 六 色, 燦 爛 奪 目, 從 甁 口 到 甁 底, 愈 F 愈 濃。若 取 水 晶 片, 放 在

光 的 路 徑 之 内, 介 於 泥 科 阚 稜 品 與 甁 的 中 間, 那 麽 瓶 中 溶 液, 自 頂 到 底, 可 使 它 全 部 放 出 彩 色 來。 這

片 水 品, 倘 若 它 的 截 面,)前 晶 體 之 軸 垂 直, 那 麼 它 就 與 糖 _ 樣, 也 有 那 種 本 領, 能 够 使 振 動 的 方 向

旋 所 以 把它插 入 稜 晶 與 甁 之 間, 就 可 以 把 各 種 波 長 的 光, 先 行 分 開, 再 射 入瓶 内。

很 人 時 天 候以 E 的 前天 星, 在 文學家已經告 我 們 看 起 來, 好 訴 像 是許 我 們, 多 說 亮晶 显 的 品 移 動, 的 是 點 使 子, 我 在 天空 們 知 中 道 地 成 球 奉結隊一齊運動橫 在 一那兒旋 轉並非 它們 越 而 自 過。

己真 在 那 兒 連 動。 然 im 由 極 有 耐 心 與 極 具 技 巧 的 觀 察, 卻 知 道 在 這 些恆 星之 間, 也 有 相 對 的 運 動,

間, 不 過 微 乎 其 微, 以 至 於 從 消息猜詳 人 類 能够描 寫 各 星 座 以 來, 它 加了。 們 仍 舊 保 留 原 來 的 形式未變在 衆 近百 況了。 年 我 之

們 不 再 把它 們 祇當做 _ 簇亮 晶 品 的 點 子, 散 布 於 天 空 各 處, 亂 七 八 糟 的 並 無 規 則; 甚 至 於 也 不 再

我

們

對

於

光所報

告

的

的

本

領

已

經

大

大

增

我

們

現

在已可

深

知

星

的

情

把 它 們 祇 看 做一 簇 太 陽, 其 所 發出 的 光, 與 我 們 的 太陽 相 同, 而 且 也 被散射到空間深遠之處在 我

們 看 死, 它 們 已變 一成了 個 活 宇 宙 的 若 干 部 分, 我 們 自 己 的 太 陽 系, 也 是 這活 宇宙 的一 部 分。 它 們

的 距 離, 它 們 的 重 量, 它 們 的 發 光本 領它 們 的 組 織 成 分它 們 的 運 動, 我 們 都 能够 測定了 連帶它們

第 七章 日光與星 光

在 歷 史 上 的 過 去 與 未 來, 我 們 也可 以 估計一 下。 我 們 的 知 識 界, 我 們 的 **感覺界已經頓然擴張我** 們

對於它的各種較大的定律正在開始有所領悟。

極古 舊 的天文科 學在過去時 代差不多 完 全倚 賴 天 體位 置 的 觀察以前利用天體所發的 光,

不 過 藉 以 測 定各 種 角 度, 而 可 把 太陽月球 以及各星 的 貌 似 運 動, 在天球 上面 描出圖 來。 最 近 百

年 之 內, 天文學的 知 識已經有了極大的擴張其 發端 即在 於 非 但 考 察光所從來的方向而且要 檢

査 光 的 本 身從太陽來 的 光它的品 質以及 強 度, 都 足以 表 示 這 光 源 的 本 性 與 物 理 情 形 的 特 色: 把

這 品 質 與 強 度 研 究 番, 就 可 得 到 新的 方法, 以探索 天空 情况, m 且 在同時又可使用之已久的各

種舊方法也有了新的可能性。

恆星的距離

舊 時 的 觀察確嘗 能使 我 們獲得若干機會以, 測 量 空 間 的 距 離這一類 的 測量最最重要 並 有

最 大 的 興 趣: 天空的 衆星不僅是許多亮晶晶 的 點子分布 在以 地 球為中心的天球上面卻 是許 多

體, 其 體 積 的 大 小温 度的 高低以及 别 種 品質, 都 可 與 太陽 列 入同 級其分布 的範圍占廣 大 的 空

並 不 限 於 薄 層 的 地 方我們 由 這一 點 想 來, 當 然 驚 愕萬 分詫 為 不 可 思議所以天文學 家 的 各

項 初 步 工作, 其中之一便 是 測 定 天 體 的 距 路能: 這 _ 件任 務, 以 前 是 做過了以後 仍 售是缺少不 得。

開 始 的時 候, 必須 選 定一個 長度 的單位。 距 離 的量度其 必然要 取 的 方式便是與標準單位 比

較: 而 這 一個 標 準 單位, 又必須具有一 種 形 式使天 文 學 家 便 於 利 用 它可 把 它 自 由處 置。 特 製 的 金

屬 棒, 由 各 國 政 府 保 守保守得 非常 謹 愼, 用 爲 測 量 _ 切 長 度 的 根 據, 其中 最 通用 的 兩 種, 是 標 準 米

與 標 準 碼, 差不 多可以除 去 其 他一 切 的單位。 天 文學 家 由這 些單位 出 發直到 測定衆星的 廣 大 距

其 間 經 過 了 很 長 的 工 作。 此 項工 作 的 完 成, 非 經 過 若 干 階 段 不 可, 每一 階 段 完 畢之後, 結 果 知 道

了 某 確 定 距 離, 可 用 這 單位 來 表示 它, 而且 每 階 段 所 得 的 距 離, 至 少要比前一階 段所 已測 定

的, 上 這 麽 幾千 倍。

第 步, 先委 託 測 量 家 做 下 面 這 件 事 務, 卽 在 地 球 表 • 面 引 條 指 南 向 北, 長 約 幾 英 里 的

線, 求 出 此 線 中 所 含 的 單位 數 來。 然 後天文學家 在這條 線 的 兩 架 起 他 的 望遠鏡先測量緯 度 方

面 的 差 數。 他可 以 選 定 顆 星 做 標 準, 這 顆 星 在 這 當 兒, 由 兩 處 的 觀 臺 看 起 來, 都 是 向 南 移 動

度 將 譬 差。 於 假 兩 如 這 使 處 樣 觀 大 象 說 地 是 量 ·, 於 扁 上 是這 加 4 以 的, 觀 _ 那 察: 條 厅 要 這 高 度 差 測 的 量 别 計 的 恐 量, 線, 怕 是 就 就 用 指 不 會有 角 着 的 這 度 顆 數 因 星 To 做 為 單位 當 水 215 此 線 的。 這 際, 的 這 方 兩 向, 個 星 在 在 角 度 水 此 時 的 平 線 是 差 數, 以 到 處 通 LE 稱 相 的 同, 高 為 緯 度, 面

星卻在很遠很遠的地方(兩處S

所 就 實 接 際 的 光 的 線, 情 差 形 而 不 多 論, 45 差 數 行 的 之 多 故。

有賴於地球的曲率因而又可以

用這差數來量度地球的曲率。

如圖九十三所示若P與Q

是這 是 地 球 兩 表 點 與 面 上 星 的 球 兩 S 點, 的 聯 而 PS₁ 結 線, 與 QS_2 此

P Q H₂

C (圖九十三) 在 P 處 的 觀察者, 看見水 平線是在 P H₁ 的方向之内。S₁ P H₁ 角的度數, 就是星球 S 在水平線以上的角高度。S₂ Q H₂ 角的 f 數, 是 Q 處 的 觀察者, 所測同一星球在水平線上的角高度。這 兩角的差, 就是 P C Q 角, 而此角就等於 兩觀察者所在地的緯度差。

第 七章 B 光與星 光 這S₂QH₂,兩 線 實 際 上差 不 多 是 互 相 平 行 的。 又 岩 PH₁ 與 QH_2 是 在 P 與 Q 兩 處 的 水 平 線, 那 麽 所 測 的 兩 角 交 S₁PH₁ 與

它 們 的 差 就 是 PH1 與 短,QH, 兩 線 所 成 的 角; 而 此 角 即 等 於 從 P 與 Q 兩 點, 向 地 心 所 引 兩 線 間 的 角。

樣 來, 因 爲 PQ 的 長 與 PCQ 角 的 大 小, 都 已 知 道, 所 以 地 球 的 半 徑, 也可 以 求到了。 地 球 並 不 是 +

分 圓 的: 它 是 --個 橢 球, 並不 是 一個 球。 它 的 極 半 徑, 是 三千 九百 无 + |英 里差不多很 正確, 它 的 赤 道

半 徑, 約 更 長十 三 英 里。

有 了 這 地 球 的 华 徑, 就 可 以 完 成 第 階 段: 地 球 本 身, 成 了 測 量 範 圍 更 形 擴 大 時 的 基 線, 因 爲

來, 現 無 在 須 地 球 再 用 的 米 形 桿或碼 式 巴 經 桿, 知 道, 步一步去 所 以 地 面 上 測 量不過 任 何 兩 經 點 緯 間 度 的 的 實 測定, 在 距 祇 離, 就 有借了望遠鏡 可 以 從 測 量 與鐘的 經 緯 度 幫助 而 推 算 纔 可 出

以 成 功。

像 這 類 的 測 量 方 面, 我 們 覺 得 使 用 望 遠 鏡, 是 把它 當 做 種 精 確 的 儀器這時 候 的望 遠 鏡,

不 僅 是 具 放 大 的 儀 器, 好 像 我 們 大 多 數 人 使 用 它 般。 在 天 文 學 家 看 來望 遠 鏡 的 功 用, 遠 不

止 於 此。 物 鏡 把 天 空 某 _ 部 分 的 像, 造 在 焦 點 的 地 方, 仍 與 第二章 中 所 說 過 的 情 形 相 同。 不過天 文

學 在 家 還 起: 所 可 以 以 在 把 觀 -察 組 的 細 時 線 候, 或 就 蛛 可 絲, 以 張 在同 把 望 遠 鏡 焦 移 點 動, 的 直 地 到 方, 使 _ 顆 眼 睛 星 或 借 其 了 他所 目 鏡 考察 的 幫 的物 助, 看 體落 見像 於 與 這 蛛 些 絲, 細 合

線 中 某 -條 之 上 爲 止。 現 在 假 使 把 望 遠 鏡 重 新 移 動, 直 到 另 外 顆 星 又 落 在同一細線 之上, 那 麼

這 望 遠 鏡 移 動 的 多 少, 就 可 以 用 裝 在鏡 上 的 角 度 標 尺, 量 度出 來。 在 另 外一類 實 驗裏 面, 望 遠 鏡

以 讓 它 固 定 不 動, 而 從鏡 中 向 外 窺 望 衆 星 的 貌 似 運 動, 直 到 另 星 落 在細線上面為止如 此 觀 察,

地 球 旋 轉 的 時 間, 也 攙 進去 了。 此 種 測 量, 數百 年 來, 時 有 改 良, 現 在 經 達 到 很完善的 地 步: 因 爲 這

樣, 所 以 天 文學 家 巴 能 把 他 的 測 量, 向 空 間 擴 張 出 去, 愈 擴 愈 遠。

叉 其 次 的 _____ 階 段, 便是 測 定 月 球 與 太 陽 到 地 球 的 距 離: 要 使 測 量 天 空的範 圍更向前 進展太

陽 的 距 離 是 必 須 知 道 的。 月 球 恰 恰 經 過 天 空 中 某 確 定 標 記, 例 如 星, 或 日 蝕 時 太 陽 的 邊 緣, 其 所

在 的 時 刻, 若 於 地 球 表 面 上不 同 的 兩 點, 加 以 觀 察, 那 麽 月 球 與 地 球 的 距 離, 就可以 推算 出 來 了。 因

為 由 此 卽 可 以 推 算 月 球 的 速 度, 正 與 汽 車 的 速度可, 由 身 處 兩 地, 相 隔 巴 知距 離 的二警士觀察車

子經過的時刻而加以推算一般。

在 圖 九 + 四 中, PM₁ 與 QM2 二線是互相平 行 的即 使 僅 屬 大 約 如 此, 但 是事 實 上 也 可 以 算 它 們 是 球

平 行 線, 所 以 M₁M₂ 就 等 於 PQ; 道 PQ 是 地 球 表 面 上 的 已 知 距 雕。 月 球 的 速 度, 於 是 來。 就 可 以 知 道, 且 因 月

用 同 樣 的 方 法, 當 金 星 偶 爾 出

繞

地

週,

所

費

時

間,

也

已

知

道,

所

以

月球

軌

道的华

徑,

卽

可

以

推

算

出

入 太 陽 視 面 的 時 候, 由 地 球 上 相 隔

巴 知 距 離 的 兩觀察者, 觀察 金 星 出

入 的 時 間, 也 可 以 推 得 太 陽 到 地 球

的 距 離, 不 過 計 算 的 手 續, 並 不 如 此

直 接 **能了所觀察** 的 時 間 差 數, 很 小 很 小: 卽 使 兩 觀察者 身處 地 球 的 兩 對 面, 而 且 能 够 測 量 得 很

正

確, 這 差 數 也 不 過 等 於 五 分 鐘 左 右。

地 球 軌 道 的 半 徑, 已 用 此 法 測 定約 等 於 九千 三百萬 英 里。 現 在, 天文學家已得到 條 基線,

索。

他 從這 基線出 第 七章 發, H 光與星光 就 可 以在天空諸星之 間, 作 最後 的 探

Q P

(圖九十四) 在 P 處的觀 察者, 仰望 8 星, 似見月球 在 M₁ 的地位時,恰把 S星 遮去; 在 Q 處的觀察者,則 見月球在 M2 的地位時, S 星恰被它遮住。M1 M2 遺 一段距離,與PQ相等,而 P Q 是早已知道的。因此, 月球的速度,就可以求得了。

這 樣 的 條 基 線, 其 在 决 定 地 球 與 衆 星 的 相 對 運 動 這 方 面 的 價 值, 於 尙 未能用它做 計 算 的

基 礎 以 前, 久 已 被 人 賞 識 了。 我 們 用 琪 安 司 的 簡 單 比 喻 來 說 見 琪 妆 司 所 著 {我 {們 {四 {周 {的 [字 [雷

書 _ 個 小 孩 坐 在 鞦 韆 上 面, 盪 來 盪 去 的 時 候, 他 看 見 四 週 圍 近 處 的 各 物 體, 以 遠 處 的 物 體 爲 背

景, 也 在 這 背 景 之前 移 左 移 右。 因 此 可 知 在 地 球 上 面, 也 應 當 察 見 有 些 恆 星, 對 於 别 的 恆 星 mi 說, 是

在 往 復 連 動, 其 往 復 的 時 間, 與 地 球 在 軌 道 上 繞 日 往 復 的 時 間, 彼 此 相 應。 這 _ 種 觀 察, 於 一八 三 八

年 以 前, 從 來 沒 有 成 功 過, 其 理 由 很 簡 單, 即 因 所 可 觀 察 的 運 動, 異 常 微 小, 比 所 能 意 料 的 還 要 微 小

得 多, र्णा 且 那 些 效 能 比 較 不 充 足 的 儀 器, 共 所 具 檢 查 本 倾, 遠 不 能 及。 在一八 三 八 這一 年, 適 見 有 天

鵝 座 六 + -星, 半 人 馬 座 甲 星, 以 及 天 琴 座 甲 星 卽 織 女 星, -三 星 正 以 天 球 為 背 景 丽 發 生 貌 似

運 動, 這 運 動 雖 甚 微 細 然 而 觀 察 的 結 果, 卻 明 白 無 課。 這 些 恆 星 離 開 地 球 很 遠 很 遠, 以 至 於 它 們 所

發 的 光, 到 我 們 抽 球 上 來, 須 要 經 過 好 幾 年: 例 如 就 半 人 馬 座 甲 星 而 論, 所 需 的 時 間 約 爲 四 三

年。 陽 離 地 球 儿 千 三 百 萬 英 里, 其 所 發 的 光 行 至 地 球, 須 經 Ji. 百 秒, 以 四 Ξ -年 與 正 百 秒 相 比,

我們就可想見這距離的如何廣大了。

最 近 的 諸 星, 以用 此 法 處 理的為 數很少 很 少祇有不多幾 個。 其餘各星雕 地球 都是很 遠 很

遠, 遠 至 最 精 良 的 望 遠 鏡, 비 使 放 在 地 球 軌 道 的 兩 對 面, 也 不 能 察 見 它 們 的 位 置, 有 何 差 别。 然 而 對

於 這 少 數 的 恆 星, 能 够獲 得 如 許 版 績, 已好算 是 馬亥 人 聽 聞 之 舉, 因 為 約 略 說 起 來它 們 路惟 開 地 球 的

路, 與 最 近 的各 行星 相比已大上差不多一百萬倍所以天文學家說 起星 的 距離來都用光年計

平 常 的 長度單位 是 太小了。

光 的 速 度

在 以 前 各 章 裹 曲, 我 們 還 沒 有 考 究 到 光 的 速 度有 何 數 值: 因 爲 我 們 所 巴討 論 過 的 各 項 可 見

效 應, 都 與 光 速 度 的實在 大小 沒有關係。 不 過 現 在 這 7 光 年一一 詞, 假使要知道它的確定意義, 我

們 對 於 光 的 速度就 非 略 知 其 桃 況 不 可。

光 在 地 球 上 經 過 测 定 的 距 離, 其 所 費 時 間 很 短 很 短, 短 至 祇 能 够 用 極 *****荷 確 的 儀器總 可 以 把

它 查 察 出 來: 伽 利 略 曾做 過 這 種 實 驗但是沒有成 功無怪第 次 測 定光的速度(其實就是第一

次 證 明 光 有 速 度 要 與 光 的 穿 過 地 球 軌 道 直 徑 億 八千六百 萬 英 里 所 톪 的 時 間, 發 生 關 係 了。

依 照屢屢 聽 人 談 起 的 故 事, 奥 萊 夫 盧 穆 (Olaf Römer) 在 + 七 世 紀 的 末 葉, 曾 在 巴 黎 地

方, 觀 察 木 星 各 衞 星 被 蝕 的 時 間。 從 連 接 數 次 的 觀 察, 他 算得了 每 衞 星 的 平 均 旋 轉 週 期。 他 於 是

叉 察 見當 地 球 與 木 星, 彼 此 相 隔 的 距 離 最 短之時, 木 星 衞 星 每 次 開 始 被 蝕 的 時 間, 比 根 據 平 均 週

期 所 推 算 的, 要早 八 分鐘 左右當 木 星 與 地 球 相 距 最遠 的 時 候, 其 衞 星 毎 次 被 蝕 的 時 刻, 要 遲 八 分

鐘。 他 就 下 個 結 論, 說 觀 察 的 結 果 所 以 與 計 算 的 結 果 不 同, 其 原 因 在 於 光 的 穿 過 地 球 軌 道, 需 要

費 去 若 干 時 問; 他這 結 論 說 得 很 對。 我 們 可 以 很 容 易 設 想 _ 個 簡 單 的 比 喻。 假 使 英 格 蘭 的 -個 商

人, 慣 常 收 到 澳 大 利 亞寄 去 的 信, 毎星 期 寄 出一 封, 不 問 此 人 是 在什 麼 地 方, 郵 局 總把 此 信 遞 到 他

手 叉 若 此 人 慣 在 倫 敦 與 都 伯 林 兩 地 間, 來 往 旅 行, 那 麽 此 信 若 在 倫 敦 地 方 遞 給 與 他, 他 收 信 的

時 間 就 要 比 平 均 時 間 早 _ 些; 假 使 他 在 都 伯 林 地 方, 那 麽 接 信 時 間 就 要 比 平 均 時 間 遲 _ 些: 而 此

信 從 澳 洲 來, 在 都 伯 林 地 方傳 到 他手 中, 其 所 費 的 時 間, 與 從 澳 洲 到 倫 敦 所 費 的 時 間, 彼 此 的 差 數,

就

是這

信從

倫

敦

傳

遞

到

都

伯

林

所需

的

時

在這

種

情

形之下光

的

穿

過

地

球

軌

道,

旣

然

需

時

約

間。

千 秒 左 右, 那麼 地球 軌道的 直徑若假定它是一億八千六百萬英 光 的速度就是每秒十八萬六

千 里決定 光速度的方法此外還有幾 種, 現在所 知道 的數值是, 分準確的了這一個速度是一

切 波 動 在空 間 的 以 太內所公 有 的 速 度: 在透 明 體 如 玻 璃 興 水 之 內多 少 要 小一些而在 空 氣 裏

雖 也 小 些, 卻 是 相 差得微乎其微有人常常要說, 光 的 速度既 然 是一 切 波動 在以太 中 的 速度, 那

厅 無 線電所播 送的音樂或許 由無線電波運送出去到了 遠處之後, 音樂廳的那一端纔會聽見空

氣 中 聲波傳 來 的音 樂這 句 話 倒 也 說 得 並 沒 有 錯。

以 上 所 說 種 種, 都 是 心應用量桿以 探 求各 星 的 間 隔, 在這一方 面 借 重 光 的 地方不過是靠 它 來

决 定 方 向罷了用光以決定方向已歷好 幾千 - 年然而直 到 伽 利 略 發明了望遠鏡之後其效用 方 繼

大 著。 此 後 望遠鏡 的 製 作, 繼 續 改 良不 絕, 角 度 的 測 量, 因 而 大 爲 增 加 觀察 的 結 果平添了許 多 價

在 另 外 方 面 說 來, 更有一種 十分新穎 的 科學可 使我 們察見 衆 星 所發之光的品質從而 推 知 其

本性與各項運動。

星光的分析

當 我 們 用 稜 鏡 或 光 棚, 以 分 析 星 光 的 時 候, 我 們 巴 獲 得 此 種 知 識 的 第一步了在各種 情 形 之

下, 我 們 所 見 光 譜 上 的 顏 色 都 相 同, 從 **糸**L 排 列 起, 直 排 到 紫; 這 是 因 爲 各 星 所 發射 的 光, 它 的 複 雜

情 形, 我 們 的 眼 睛 所 能 察 覺 的, 單 是這 些 顏 色 罷 了 不 過 光 譜 各 部 分 的 明 度, 卻不常 常 相 同: 這 是 隨

各 星 而 異 的。 靑 色 的 星, 常 比 紅 色 的 星 來 得 熱。 星 的 温 度, 在 實 際 n 以 從 光 譜 上 最 明 部 分 的 地 位,

加 以 决 定。 此 事 的 所 以可 能, 就 因 爲 有 下 面 這 -條 很 著 名 的 定 律, 即 物 質 所 發射 的 光, 除 在 华 别 情

形 之下 以 外, 它的 品質 祇 靠 該 物 質 的 温 度而定, 與 該 物 質 的 本 性 並 沒有關係例 如 有一只 正 在 燃

着 的 煤 爐, 我 們 若 向 那 灼 熱 通 **糸**L 的 小 孔 望 進 去, 假 使 這 孔 非 常 之 小, 我 們 就 不 會 看 見 爐 内 煤 塊 的

輪 廓, 因 為 煤 塊 與 爐 壁 的 温 度 相 同, 叉 如 爐 內若 有 金 屬 塊 或 碰 器, 也 獲 得了火 的 温 度, 那 麼 從 這 小

以 它 們 彼 此不 能 够 有 所 副 别。 在 鼓 風 爐裏 面, 温 度 因 射 氣器 而 更 高它所 發 出 的 光, 其品質 就 與 平

孔

向

內

窺

望,

也

是

看

不

見

的。

煤

塊,

金

屬,

磁

器,

旣

然

温

度

都

相

同,

大

家

自

然

發

出同一品質

的

輻射

死,

所

常 煤 爐所 發 的光 不同這 鼓 風爐 的 光是白一 些, 爲 明 度 已 經 移 向 光譜靑色的一端, 即青 色的

線, 數 量 是 增 多了假使爐 火 的 温 度, 可 以 加 高 到 |攝 氏 六千 度, 那 麼 它 所 發 出 的 光, 就 有 日 光 的 品 質: 光

因 爲 這 前 太陽 的温度, 已相 近 似。 有 的 星 比 太陽 更熱青 色 光 線 的 相 對 強度也 更形增 加。 是 以 星 的

温 度, 可 從 它 的 光 譜 的 品品 質 推 知, 這 就 是 說可 由 各 種 不 同 波 長 之 間, 能 的 相 對 分 布 情 形 而 推 知。 以

前 我 們 曾 說 過 在實 驗室 中可 以 决 定 光 的 品 質 如 何 隨 温 度 而 變 化, 現 在這一句話, 隱隱 也 含 有 此

意。 不 温度決不能 匹敵因, 星 量 方面多少有些不確實。 我

們 必 過實 須 假 定適 驗室中的 用 於 實 驗室 範 圍 與 以 熱 內 於的星 的 定律, 相 也適用 而 於 在 超 過 實 的 際 測 實 驗範 圍 的 温 度。 恆星 光 所以 譜 的 例

子, 見 於 銅 版 圖二十 Ao

有 個 極 簡 單 的實 驗可 以 證 明 光 的 品質, 興 温 度之 間, 有 這 種 關 係。 我 們把 電 弧 的 光, 析 成 光

把它 映 在屏 上,然後 將 電 流 關 斷, 當 那 炭 棒 的 光, 趨暗 淡, 而 其 温 度 漸降 的時 候 我們 看 見光 譜

也 跟 着 消 减, 但 是青 色 先 隱, 紅 色 最 後。

光譜分析應用於衆星

恆 星 的 光 譜, 我 們再 加 以 更 精 細 的 考 察, 就 可 以 找 出 該 星 的 本 性 來。 當 星 光 被稜鏡 分 析 的 時

候, 我 們 發 見它所 生 的 光 譜, 連 温 度 的 效應 也 算 在 内, 與 其 他 任 何 發 光 物 質例 如 弧 光 燈 裹 面 的 碳

棒, 所 生 的 光 譜 大 致 相 同, 祇 有 個 很 重 要 的 不 同 之 點。 這 便 是 有 若 干 界 限分 明 的 波 長, 缺 而 不 見,

其範圍通常總是異常狹小。

我 們 在 考 究顏 色 的 來 源 時, 也 曾 遇 到 過 類 此 的 吸 收 輻 射 的 情 形; 然 而 此 處所 遇到 的, 卻 與 以

前 不 同, 不 同 的 地 力, 卽 在 於 光 譜 中 所 缺 掉 的, 都 是 界 限 極 分 明, 極 確 定 的 波 長, 而 且為 數大 概 總 是

很 多 很 多。 銅 版 圖二 十人 所 示 的 光 譜, 可 以 證 明 此 種 特 色。

對 於 此 種 現 象 的 解 釋, 倒 是 現 成 的; 我 們 仍 叫 以 根 據 從 前 用 過 的 比 喻即音 叉 與 無 線電 接 收

機 波, 無 的 線 比 電 喻。 波, 在 以及 比 喻 光 的 波, 時 其 候, 發送器 我 們 非 較 興 從 接 收器 前 看 得 間 的 更 透 重 要 徹 關 些 係, 不 我 可, 們 是 因 爲 必須 這 察 裏 有 知 種 的。 種 形式 的 輻 射, 卽 聲

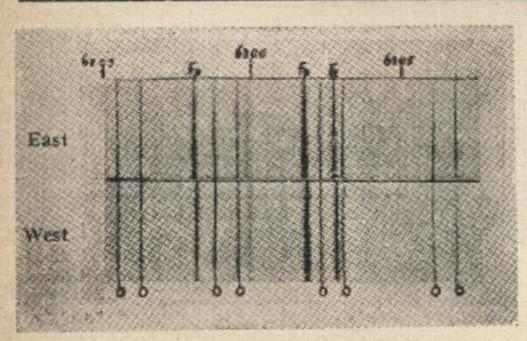
B

A

F

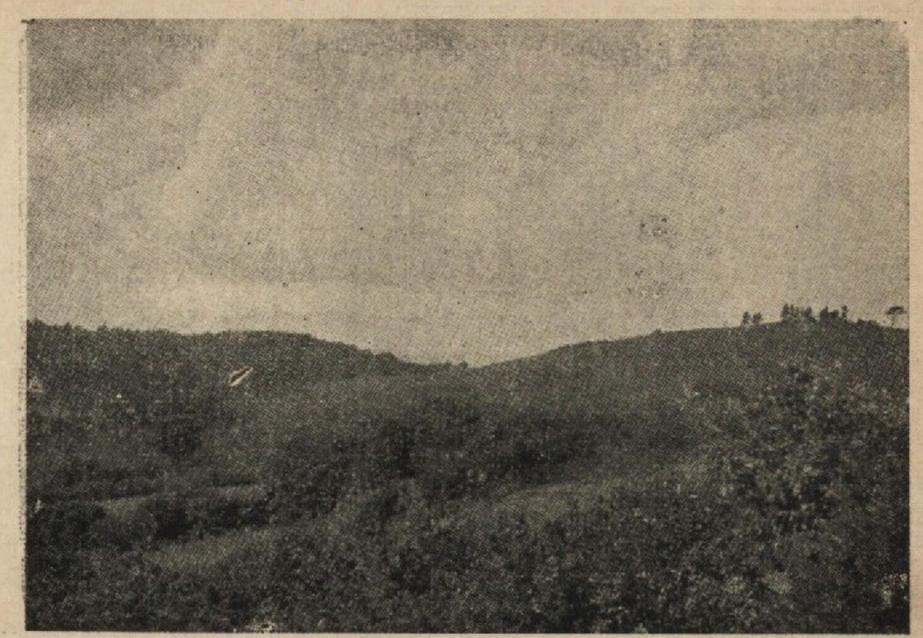
G

K


M

A. 少數恆星光譜,表示極大 強度的移動,從 F 級自熱星,例 如小狗座第一星 (Procyon),與 華蓋星 (Canopus)等起,到 M 級較冷的紅星,例如獵戶座 a 星 (Betelgeuse)等為止(參閱第二 五三頁)。本圖摘自史馬脫(W.M. Smart)所著「太陽,恆星與宇宙」 一書。

Violet Blue Green


(參觀原書)

B. 在電弧中蒸發的各種元素,其發光氣體的光譜(由福勒(A. Fowler)所攝)(參閱第二五七頁)。

C. 由於比較太陽的行近與遠離兩邊的光譜,以說明都卜勒效應。兩幅照相之中,由地球大氣中的氧氣所生的線,地位固定不動,由太陽中的鐵所生的線,就不固定了(參閱第二六四頁)。

銅版圖二十一

這兩幅照相,是伊爾福特公司所攝的。下面一幅,用紅外光濾波鏡攝成,上面一幅,則用平常方法攝成。須注意青天現作黑色,因為它不反射紅外線之故。在另一方面說來,樹與草反射很多的紅外線,所以現作白色。全部的色調,有些異常,因為所用的光線,不是眼睛所智見的光線,又須注意細微的地方,異常明顯,尤以遠處的景色更清晰(參閱第二六八頁)。

率 確 定 叉, 的 空 氣 波 所 組 成 的。 這 -種 聲 同, 波, 向 各 方 傳 布 出 去。 假 使 在 某 一方 振動這時 向 之 内, 這 聲 波 遇 到 了 第

掉 _ 音 部 其音 分 的 能。 調 這樣一來, 恰 與 第 一音叉完 在 此 方 向 全 內 相 進行 那 麽它 的 聲 就 波, 要使 就 因 第 此 變得 三音 叉 衰 弱 也 了換句話說有了吸收 跟 着 候它當 的 然 作 要 費 用。

這 筆 損 失, 决 不 能 由 第 二音 叉 的 發 聲, 而 得 到 彌 補, 因 爲 第二 音 叉 所 發 的 聲 波, 也 是 向 各 方 傳 布

出 去, 在 這 特 殊 的 -方 向 内, 决 不 能 補 償 全 部 的 損 失。 便 是顏 色 的 吸 收 與 產 生 的 根 據, 我 們 在 前

面 早 巴 知 道 了。此 處 有一件事 情, 我 們 須 加以 注 意,即 發 送器 與 接 收 器有同一的音調照樣無 線 電

臺 的 發 送 無 線 電 波, 須 在 確 定 的 頻 率 範 圍 之 内, 加 以 失 銳 的 調 節; 要 是 在這 一方 面, 不 留 心 的 話, 播

晋 就 决 不可 能。 义若接收器 可 以 調譜 得 很 尖銳, 適 合 於 同 的 頻 率, 那麼它就 把中 央 電 臺 所

分 布 的 能, 吸 收 部 分, 因 而 中 央 電 臺 的 能, 就 此 減 少了 些。 具 無 線 電 機, 至少可 以 使它 發 出 微

弱 的 輻 射 來, 假 使它 發 出 來 的 話它 所 發 射 的 電 波, 其 頻 率 必 與 它 所 接 收, 而為 播音 臺 所 發 的 完 全

相 我 們 都 知 道, 有 的 無 線 電 收音 機可 以 調 譜 得 很 尖 銳: 使 無 線電臺所 發的電 波, 頻率 興 這

種 收 晋 機 的 原 有 頻 率, 依 附 甚 近, 那 麼 這 種 收 音 機 祇 有 在 調 諧 得 很 當 心 的 時 候, 纔 會發生咸 應, 而

且 這 時 候 的 威 應 很 強。

同 樣, 個 原 子, 也 可 以 教 它 發 生 振 動, 祇 要 加 熱 於 該 原 子 所 在 的 固體或氣體好了假 使該 原

子 所 發 的 輻 射, 遇 到 了 若 干 别 的 原 子, 而 這 此 原 子, 也 能 够 依 同 頻 率 而 振 動 或 不 止 種 頻

率 那 厅 第 -原 子 的 能, 就 被 後 來 各 原 子 吸 去 _ 部 分, 變 得 衰 弱 了 再 往 前 進。這 裏有一件 重 要

的 事 情, 卽 調諧 必 須 完 全 正 確。 個 原 子, 就 其 本 身 而 論, 若 不 受 鄰 近 他原子的影響那麼就 像一 架

優 良 的 無 線 電 發 送 器, 它所 發射 的 振 動, 是 在 梅 狹 小 的 範 圍 之 內。 我 們 與 其 說 範 圍, 毋寧 說 若 干 範

園, 因 爲 個 原 子 與 其 和 音 叉 比 較, 毋 寧 和 -隻 鐘, 或 提 琴 的 條 弦 比 較音 一叉是異 常簡 單 的一 件

東 西, 除 種 純 晋外, 不 能 再 發第二 種 的 了; 但 是 鐘 與 弦 索, 以 及 原 子, 卻 都能在同時一 次 一發出若一 干

單 純 振 動 來。 然 而 各 單 純 振 動, 卻 义 界 限 極 確 定, 欲 將 别 的 振 動 調 譜 到 同 頻 率, 可 以 達 + 分 正

確 候 最 的 多: 地 彼 步。 此 這 衝 種 突, 調 譜 然 銳 也要發生但 度, 是 氣 體 中 是諸原 諸 原 子 子 所 彼 獨 此 具 + 的 分接 特 性, 近, 因 為 至 在 氣 於 互 體 裹 相影響到振動這種時 面, 諸 原 子 互 相 獨 立 間 的 時 是

以

固

不 長 的所以 成 功氣 體 的 大 奉 原 子若 在 一發射 光 波 的 時 候, 就 好 像一座良好的 無線電臺而在

接 收 光 波 的 時 候, 就 像 -架 「善於 選擇 _ 的 無 線 電 收音 機。

於 是若 有光 線一道, 含有一 切頻率者, 通過 這 羣 善 於 選 擇一 的 原子時它們 對 於 這 光 線

中 的 特 殊 幾 種 頻 率, 就 發 生 銳 敏 的 吸 收 或 選 擇 作 用, 因 而 光 譜 就 顯 出 若 干 極 狹 的 空 隙 來, 如

銅 版 圖 二十人所 示。假 使 這氣 體 正 在 發射, 那麼它所 發 送 的 光, 其 頻 率 一定與它所 吸收 的 相 同。 此

項效應如銅版圖二十B所示者便是。

太陽光譜

在 太 陽 的 光譜上這 些界 限確定的空隙有無數之多, 通常叫 它 們做「線」各種物質例 如 蠘、

鈣、 的 氫 光, 等 各 等, 含 有若干 當 它 們 界 的 限確 温 度 定 因 受 的 熱 頻 率。 而 昇高, 我 們 叉 直 到 發 見這 本 身 些頻 化 爲 率, 發 興 光 蒸 太 陽 氣 光 的 譜 時 裏 候, 我 面 的 們 線, 發 一一吻 見它 們 合。 各 自 於 所 是 顯 發

然 可 得 下 面 的 結 論: 從 太陽發出 來的 光必定在什麽 地 方通過了這些原子的雲而且就 鐵 與鈣 這

第七章 日光與星光

光

的 類 分, 物 可 質, 發這 或 其 充 他 大多 分 的 數 熱 元 量, 使這 素 說 來這原一 些物 質 子 變 雲必 成 發 定 光 在 氣 體 太 陽 的 狀 的 態。 表 所 面 以 若 因 爲 在 太陽 實 驗室 光 中, 的 路 使 徑中沒有 各 種 不 同 的 别

元 素, 成 爲 發 光氣 體, 生 出 各 種 光 龤 來, 再 把 太 陽 與 衆 星, 以 及 其 他 發 光 物 體 所 生 的 光 譜, 加 以 分 析,

而 興 各 元 素 的 光譜 互 相 比較就 可 以 立 刻 說出這些元 素, 是否在 體 上面 興 地 球上 面 都 有。 對 於

這 件 事 情, 首 先 作 大 規 模 研 究 的, 是 胡 琴 司 (Huggins) 洛 克葉爾 Lockyer)以 及 他 們 的 同 時 代

這 班 人 都 有 很 強 的 熱 心。 從 那 個 時 候 起, 直 到 現 在這 種 研 究 的 趣 味 已 經 大 增, 而且 變 得 很 重 要

而 了, 因 爲 各 巴 元 有人 素 的 發見這裏! 若 干 特 殊 邊所 頻 率, 含的緣 有 賴 於 故决不 該元 素 址 的 兩 情 狀, 類 光 而 譜中 該 元 有岩 素 的 干 電 子, 確 可 定 以 的 被 頻 奪 率, 其地 去 _ 個 位 彼 或 此 幾 -個, 相 每 合

少 去 個 電 子, 就 可 以 改 變 它 的 單 純 振 動: 這 極 情 狀, 有 賴 於 氣 體 的 温 度 與密度所以 由 恆 星 光

的 分 析, 旣 可 得 知 恆 星 的 狀 態, 叉可 推 知它 的 成 分。

陽 光 在 斷 地 定 球 地 上 球 覓 上有 得 的 某種元 元 素, 在 素存 星 體 在, 裏 其後再 面 也 發見了有 在實驗室 中 個 發 著 見該 名 的 例 種 元素洛克葉爾曾於 子, 便 是洛 克 葉 爾 先 太陽 由 觀 光 察 太

中, 察 得 有 若 干 很 清 楚 的 線, 不 能 與 當時 所 巴 知 的 任 何 元 素 對 應, 他 就 推 斷 必有 某 種 新 的 元 素 43

裏 在, 他 就 把 它提 叫 它做 取 出來現 -氦 在 直 是 到 大家都 隔 了 許 已 30 時 知 道這是立 候 以 後, 充 纔 實 從 飛行 _ 種 船 挪 氣 威 袋 產 的 的 結 最 晶 佳 瀝青 氣 體, 因為 鈾 礦, 它比空 以 及 别 氣 的 輕 礦 得 物

多, 與 氫 相 坊 而 且 叉 是 不 會 着 火 的。 在 實 驗 室 中 氦 是 非 常 有 趣 味 的 樣 東 西, 因 爲 氦 11-1 原 子, 便

是 放 射 質 所 放 射 的 a 質 點。 因 爲 它 在 發射 時, 具 有 驚 人 的 高 速 度, 所 以 它 能 够 衝 入 其 他 原 子 的 領

域 內, 而 且 就 衝 進了該 原子 的 核, 甚 至 於 可以 把 該 原子 核 敲 碎, 通 常 總是被 該 核反撞 向一 邊。 現

代 的 原 子 論, 其 主 要 的 根 源, 就 出 於 這 些 效 應 的 觀 察, 因 爲 在 魯 塞 阚 福 特 以 及 他 的 門 徒 手 中, 這 些

觀 察 已 建 立了 原 子 結 核 論, 以 及 由 此而 造 成 的 -切 學 說。

不 過 現 在 卻 又有一 個 很 重 要 的 問 題, 須 找 出 它 的 答 案 來。 我 們 巴 經 一假定太陽 所 發 的 輻 射,

那 如 麽 果 它 不 因 必 爲 已 生 在 那 完 向 全無缺 我 們 mi 來 的 光 的 譜了這 路 上, 通 過了 些氣 太陽 體 本 周 圍, 身, 含 有 成 氣 體 狀 光, 而且 態 的 正在 各 種 發射 元 素 的 大 氣 之 率, 故, 其

的

必

定

可

以

發

各

種

頻

所 射 者, 就 是 我 們 假 定 它 們 正 在 吸 收 的, 所 以 使 光 譜 裏 面, 有 黑線 現 出 來。 那 麼 原 來的 輻 射 是什

第 七 章 H 光與星 光

出

麼 呢? 這 原 來 的 輻射 定 很 豐富, 以 至 於 它 因 太 陽 大 氣 的 吸 收 m 受 的 損 失不能够由 大氣本 身 的

發 光 本 領, 加 以 補 償。 而-且 它 的 能 量, 是 分 布 於 全 光 譜 的: 它 的 頻 率, 也 是 無 所 不 包。

知, 子, 率, 確。

立 的 我 原 們 子: 當 早 它 已 察 們 的 運 獨 動, 立 的 使 它 諸 們 原 互 要 相 各 衝 自 突 放 的 時 出 它 候, 它 們 們 固 有 就 得 的 耗 頻 去 + 部 分 分 正 的 時 不 過 間, 它 各在 們實 別 非 原 完 子 全 的 鄰 獨

近, 躭 擱 下, 在 這 躭 擱 的 _ 瞬 間, 它 們 就 不 會 如 此 嚴 格 地 放 出 固 有 的 頻 率 了。 假 使它們擠 得 很 近,

以 至 於 費 掉 大 部 分 的 時 間, 在 相 互 影響之下, 那 麼 固 有 頻 쬭 的 範 圍, 就 要擴 張開 來 直 到 這些範 圍,

相 遇 而 重 疊, 整 個 的 光 譜 就 此 發 生。 說 _ 個 約 略 的 比 喻, 假 使 取 若 干 音 叉, 各立 於 其 架 1. 把 它 們 亂

丢 入 • 只 大 箱 子 裏 面, 然 後 把 這 箱 子 猛 烈 地 大 搖 -陣, 那 麼 所 聽 見 的, 不 再 限 於 諸晋 叉 的 純 晋, 而

爲 片 雜 聲 了。 在 太 陽 的 本 體 裏 面, 諸 原 子 都 是擠 在 起 的, 而 且 由 驚 人的 高 温度激 動 得 非常 猛

烈: 我 們 可 以 說 它 的 光 譜 是 連 續 光 譜, 就 因 爲 這 個 緣 故。 環 繞 太 陽 的 大 氣。 多少要冷一些, 所 以 就 除

去 某 某 幾 種 頻 率, 因 此 光 譜 E 有 許 多 線。

我 們 可 以 用一 個 實 驗,來 枋 效這 種 情 形。 把 炭 棒 兩 支, 插 入 火 泥 匣子的壁内如圖九十五所 示, 線,

在

原

來

黄

線

的

地

位

出

現;

這

蒸

氣

在

這

時

候,

黄

色

的

線

巴

經

消

滅

不

見,

而

此

種

蒸

氣若

干英

寸

以後,

方

纔

能

够

第

個

小

孔,

向

爐

外

冒

出

去。

於

是這

光

Ŀ

的

孔

塞

没,

使

那

熾

熱

的

氣

體,

祇

能

鈉

的

黄

色

輝

線,

看

起

來

+

分

顯

著。

現

有

個

隧道

式

的

小

孔,

讓

電

弧

的

光

枚

透

鏡

與

枚

稜

鏡,

而

在解

E

造

成

氣

雲

般

的

昇

起

來,

由

顶

L

小

孔

逸

出

取

鈉

放

在

電

弧

中

於

是

有

極

濃

然 接 後 觸, 然 通 塊, 後 以 電 照 流, 平 常 做 成 的 方 功 間。 法, 把 只 它 小 電 們 爐, 稍 炭 稍 棒 拉 開 先 使 其 些。

射 已把它自 冒 在 有 出 從 我 出 爐 必 的 來, 爐 黄 孔 須 道 外: 們 條 穿 把 光 來: 側 通 爐 色 譜。 蒸 過 頂 現 的 過 側 過A的水平截面

(圖九十五) 這一個小小的電爐,是用難於鎔化的質料做成的。 在爐的內部,由電流生出一個電弧來。在頂上開有一孔,把金屬由 孔中放入爐內。當孔開着的時候,蒸氣自孔逸出,而在 A 處所發的 光,即可分析爲很明亮的線狀光譜。把金屬栓子 P 插進爐中的時 候,蒸氣就充塞於 A 處的空隙之中,而光線非通過這蒸氣不可。 現在光譜裏面,就有暗線現出來,以前這些地方,都是輝線。

所 發射 的 頻 率, 從 電 弧 所 發 的 光 裏 面 取 出 去 了。

昏 暗 當 的 視 太 陽 面 以 發 外: 生 並 全 且 蝕 看 的 見這 時 候, 些蒸 我 們 氣 可 的 以 光 看 譜, 見 由 在 它 串 的 明 大 氣 線 中 排 列 間 m 的 成, 熾 熱蒸氣, JE. 在我們的 向 外 擴 意料之中絲毫不 張 開 來, 遠 出 於

錯。

產 生 明 線 光 譜 _ 的 發 光 氣 體, 假 使 它 的 數 量 是 十 分 充 足, 這時 候它就 會產 生完 全 的 光 譜,

這 所 由 件 構 事 成 實, 的 原 旣 子, 有 其 趣 味又, 所 具 很 特 重 殊 頻 要。 此 率 的 種 輻 氣 體 射。 須 的 輻 知 這 射, 特 其 中 殊 常 頻 兼 率 含 的 輻 射, 定 分量 在 穿 的普 過 氣 體 遍輻射以及 的 時 候, 被 該 吸 氣 收 掉

的, 比 普 遍 輻射 來得 多, 所 以 這 特 殊 輻 射, 好 像 祇 從 外 面 的 氣層 發 出 來 而 普 遍 輻射, 則 發 源 於 較 深

的 氣 層一 般。 假 使 氣 體 的 各 層, 充 分 深 厚, 那 麽 兩 種 效 應, 互 相 抵 償, 因 此 這 兩 種 輻 射, 多寡 相 埒, 而 光

譜 就 完全 了。 於 是 此 事 卽 足 以 表 示 温 度 的 特 性, 而 與 發射 物 體 的 本 性, 一無 關 係。 照 這 樣 看 來, 天體

光 譜 的 完 全 無 缺, 並 不 足 以 表 示 該 天 體 是 個 固 體, 祇 可 以 表 示 該天體十分充足而 已。

正 在 向 由 地 於 球 另 外一 疾 奔 種 而 來 仔 細 ~ 營 的 觀 如 這 察, 樣 我 説 們 叫 ·, 那 以 麼 决 它 定 恆 就 在 星 波 趨 的 向 後 地 面, 球, 把 或 波 離 向 開 前 地 一 軋, 球 的 所 速 有 率。 因 的 波 爲 長, 恆 都 星 給 假 它 使

軋 短, 因 而 變 成 更 易 於屈 折。 -輛 由 遠 漸 近 的 汽 車, 把 聲 波 都 軋 得 很 短, 而 在 由 近 漸遠 的 時 候, 就 把

聲 波 拉 得 很 長, 星 的 運 動 對 於 光 波 的 情 形, 正 與 此 相 仿。 天 到 晚, 聽 見 有 汽 車 疾 馳 而 過, _ 輛 汽 車

所 發 的 種 種 噪 晋, 當 該 輛 汽 車 正 在 經 過 的 _ 瞬 間, 它 的 晋 調 就 要 降 落。 假 使這 輛 汽 車 正 在 按 每 小

十 玉 英 里 的 速 率, 疾行 丽 過, 那 麽音 調 的 降 落, 差不 多 是 半 個 純 香講 到 恆 星假使它 所產 生 的

光 譜, 甚 爲 完 全, 絕 無 暗 線 那 麽 這 種 變 動, 我 們 就 不 能 够 查 察 出 來, 因 爲 發 生 極 端 紫 色 光 的 各 波 長,

必 已 因 星 的 移 近 而 減 短, 就 此 變 成 不 可 見, 丽 在 紅 色 的 __ 端, 剛 剛 太 長以 致 不可 見 的 光 波, 現 在 也

因 此 而 縮 短 了 _ 些, 加 入 紅 光 之 內。 _ 切 波 長, 可 見 的 興 不 可 見 的, 都 要 因 此 多 少 縮 短一些: 但 是 可

見 的 各 種 顏 色, 在 我 們 的 眼 睛 看 來, 與 前 一般無 二所 以 我 們 不 應 當察見 有 什麽變化然 而 在 光 譜

第七章 日光與星光

的 各 線 方 面, 卻 有 可 以 觀 察 的 移 動 情 况, 這 種 效 應, 第一 個 敍 述 的 是 都 1 勒。 因 爲 光 譜 線 的 地 位, 可

以 測 得 + 分 正 確, 叉 因 爲 地 位 的 移 動, 與 恆 星 對 於 地 球 的 相 對 速 度, 成 功 正 比 例, 所 以 星 神 地 球 這

兩 個 物 骨费, 在 它 們 聯 結 線 上 的 相 對 運 動, 就 有 測 量 的 可 能了。 此 種 效 應 的 例 證, 見於 銅 版 圖 十 C

的 照 相。 在 這 照 相 裏 面, 所 示 的 兩 種 光 譜, 是 太 陽 視 面 的 東 西 兩 邊 綠, 所 發 的 光 線 產 生 的, 就 其 中

種 情 形 而 論, 光 源 正 向 地 球 行 近, 因 爲 太 陽 也 在 自 轉 之 故, 於 是 就 還 有 _ 種 情 形 而論, 光 源 就 正 在

離 開 地 球 而 去 了。 在 兩 種 情 形 之下, 光 都 經 過 地 球 的 大 氣, 而 在 光 譜 裏 面, 有 幾條 暗 線, 由 於 氧 的 吸

收 所 致。 若 把 這 兩 種 光 譜, 並 列 於 _ 處, 使 這 幾 條 暗 線 相 合, 那 麽 兩 光 譜 的 -切 波 長, 就 彼 此 恰 相 對

於 是 可 以 察 見, 其 他 諸 線, 稍 微 有 些不 相 吻 合。 這 些 不 吻 合 的 線, 都 由 太 陽 大 氣 的 吸 收 作用 。所 生。

它 們 的 所 以 不 能 啣 接, 就 因 爲 都 1 勒 效應 之 故, 就 太 陽 趨 近 地 球 的 邊 所 發 的 光 而 論, 這 些 暗 線

微 向 短 波 的 端 移 動, 就 太 陽 遠 離 地 球 的 THE REAL PROPERTY. 邊 所 發 的 光 而 論, 這 些 暗 線 微 長 波 的 _ 端 移 動。 因

有 太 陽 氧 線 的 例 呈 子 現, 所 樣, 以 可 如 使 此 容 這 易 兩 呈 種 光 露。 譜, _ 切 彼 太陽 此 相 對, 光 譜 正 線 確 無 可 誤。 以 察 恆 見其 星 光 譜 移 動 裏 都 面 的 相 各 同。 線, 其移 動 情 況, 並 不 與

這 些 測 量與 距 離 沒有關係所以發生了 下 述 的 奇 怪 景况, 卽 大 多 數 的 恆星雖然 離 開 地 球 很

遠 很 遠, 遠 至不 能 够 看 見它 們横 越天 空 的行 動 但 是 它 們 的 趨 向 地 球 與 離 開 地 球 的 連 動, 卻 可 以

測 量 得 非 常 準 確。 例 如 用 這 光譜 線 的 方 法, 巴 一發見遠 處 的 星 雲, 至 少 是 那 些發 出 充 分 的 光 來, 足 以

供 我 們實 驗之用的少數星 雲都 在 離開 地 球: 而那些 最遠 的星 雲, 看 起 來行 得最 快現代 的 膨 脹 宇

念 就 這 事實 而 來」 有許 多 恆 星, 按 _ 定 的 間 隔, 忽 近忽遠: 而 且 毎 個 這 種 星, 明 明 都 有

個 宙 黑 的 暗 概 的 伴侶, 從 該 星 卽 繞 其 伴侶旋 轉。 不 過 這 類 的 推 論, 都 屬 於 天 文 學上更 詳 細 的研 究, 其 他 還

有 不 少 問 題像各種 不同之星的 發 光本領以及 聯 合 發 光 本 領 興 温 度 的 知 識,所 可 抽 繆 的 推 論 等

等, 也 在 天 文 學 範 圍 之 内。 就 我 們 現 在 的 目 的 而 論, 知 道了 從字 宙 各 部 分 來 到 我 們 面 前 的 光, 其 所

具 谷 項 特 性, 多 麼 豐 於 知 識, 已經 足够

我 們 講 到 此處可 以 暫 時停 止一下而! 把 來 自 衆 星 的 光, 其 中 所 有 大家 知 道 的 種 奇 特 現

考 番。 找 們 在 晚 間 抑 望 天 空 常 見繁 星 點 點, 閃 爍 不 定, 這 種 閃 爍 的 效 應, 實 由 大 氣 的 缺 乏 勻 稱

性 所 致。 在 空 曠 的 地 方舉 火或, 在房間裏 面 燃燭, 我 們常 從上方 熱 空 氣中 望見各 物體 都 在 那 兒 發

抖, 星 光 的 閃 爍, 正 與 此 種 情 形 類 似。 恆 星 的 光 線, 由天 空一 路 行 來, 直 到 觀 察 者 的 面 前, 頗 有 些 搖

顫 動。 有 時 候 星 光 的 __ 部 分暫 被遮 斷, 因 爲 居 間 的 大 氣, 有 _ 部 分 的 折 射 性, 興 周 圍 各 部 分 的 折 射

性, 微 有 不同, 以 至 於使 光 線擺 過一邊之 故。 顏 色也會 呈 現, 因 爲 從 星 體 射 到 眼 中 的 紅 色 光 線, 其 所

循 路 徑, 與 靑 色 光 線 並 不 完全 相 同。 m 大 氣 的 有 礙 部 分, 所 遮 斷 的 或 許 是那一 種 色 光並不 是 這

種 色 光。 這一 種 效 應, 我 們 用 眼 睛 注 視 星 體, 是看 不 清 楚 的, 但 是 星 光 岩 照 在一 面 微 搖 不 止 的 鏡 子

上, 而 觀察這鏡子 的反射, 那麼這 種 效應, 立刻可 以 看 見了一 粒 明 珠 般 的 光 點, 變成了一串 玉 彩

的 石。 我 們 再 借 了 分 光 鏡 的 力 量, 把 星 光 譜 考 察 得 更 仔 細 些 卽 見 光譜上面常有若干 暗 斑, 左

右 横 遊 不 息, 從 紅 色橫 行 到 青 色, 或 從青 色横 行 到 紅 色, 視 星 在 西 方 或 東方而 定。 這 種 現 象, 立 刻

可 以 得 到 解 釋。當 地 球 旋 轉 的時 候, 是帶着它 的 大 氣 同 轉 的, 於 是 大 氣 中 的 有礙部 分, 也 從 西 向 東

移 動。 所 以 就 星 在 西 方 的 情 形 而 論, 這 有 礙 部 分 就 先 遮 斷 光 譜 的 紅 色部 分,後 遮 斷青 色部 分, 因 爲

在 西 方 的 星, 它 所 發 的 光 線, 射入 我 們 眼 中 所 循 的 路 徑, 比了 青 色 光 線 的 路 徑要少彎曲一些, 就 是

多 偏 西一些之故。

在 本 書 開 始 的 時 候, 我 們 曾 自 己 立 過 界 限, 專 講 看 得 見 的 波長, 現在 這 界 限 是可 以 打 破 了;

界 限 旣 已 打 破, 我 們 就 要 把 我 們 的 뭾 睛 所 不 能 見 的 波 長, 拿 來 考 究 考究第一我們 可 以 想 到 那 些

圍, 長這時! 候, 我 全倚賴儀器 的幫 助但 是 儌 倖

得 接 近 很, 這 於 些不 可 見 可 色 光 見 的 的 範 輻 射, 可 而 在 以 光譜 用 好 幾 兩 端 種 方 的 波 法, 把 它 們 查 察 出 們 來。 卻 要完 這 些 方 法 裏 面, 最 主 要 的 幾 種, 便 是

照 相 術 的 方 法。 照 相 片 的 咸 光 性, 可 以 弄 得 非常 靈 敏, 使 它 對 於 輻 射 的 這 _ 類品性有許 許 多 多, 皆

能 起 威 光 作 用。 其實 平 常 的 照相 片已經 通用了 許 多 年 的, 非 但 是 對 於 光譜 中 較 短 的 波, 特 别 靈 敏,

卽 對 於 恰 在 光 譜 以 外 的 短 波, 所 謂 紫 外 光 波, 也 是 異 常 靈 敏 善 感。 所 困 難 的, 在 於 使 照 相 片 對 於 較

長 的 波, 也 起 咸 光 作 用: 不 過 在 近 幾 年 中, 此 事 巴 經 如 願 以 償 最 近 的 時 候 此 種 進 步 的 結 果, 已 引

起 很 大 的 興 趣其中 有 種 結 果,可 以 拿 來做 個 優 美 的 例 證, 把 我 們 起 初所 考 究 的 某某幾

說 明

第 七章 H 光與星光

我 們 在 前 面 曾 經 知 道, 紅 色 的 光 線, 比 了 光 普 另 端 的 靑 色 光線, 不容 易 被 空氣 的 分 子 與 原

子, 以 及 空 氣 中 所 含 的 塵 埃 與 水 蒸 氣, 折 向一 邊。 因 此 之 故, 假 使 塊 照 相片可以對 於 紅 色光 線 起

威 光 作 用, 非 但 如 此, 面 且 還 可 以 擴 展 它 的 威 光 性, 擴 展 到 紅 外 線 範 圍 裏面 去那麼照 相 器 果 面 所

造 成 的 物 體 之 像, 其 有 眼 睛 看 起 來 朦朧 不 明 的 部 分, 在 這 種 照 相 片 上就 可 攝 取下來了用 這 植 照

相 片, 巴 有 人 攝 過 好 幾十英 里 以 外 的 山 景, 成 績 極 佳。 近 來 各 期 {秦 晒 士報上 已刊登很美麗 的 遠 景

照 片, 例 如 英 國 海 峽 遠 眺 ∟, 愛 爾 關 海 濱 遠 賜 等 等, 都 是 用 眼 睛 望 不 見 的 景 緻。 銅 版 圖二

-的 照 相, 爲 伊 阚 福 特 公司 所 攝, 是 利 用 紅 外 線 攝 取 遠 景 的 好 榜 樣。 照 相 機 當 然常 常 有 ___ 個 很 大

的 優 點, 勝 過 人 的 眼 睛, 就 是 所 攝 照 相 的 強 度, 隨 露 光 的 時 間 增 加: 這一個優點在天文學上, 也 有 很

大 的 價 值。 所 以 有 幾 種 隔 光 鏡 頭, 可 以 用 它 隔 開 知 光 波 的, 雖 然 要 把 紅 色 光 線 與 紅 外 線, 遮 斷 些,

仍 不 是 無 用 的 東 西: 所 必 要 的 條 件, 不 過 是 增 加 露 光 時 間 罷 了。 光 波 雖少一些當 然仍足 以 使 細 微

的 地 方, 在 照 相 片 上 顯 出 來。

在 這 種 照 相 裹 面, 綠 色 的 植 物, 總 是 顯 得 很 強。 有 件 事 情, 不 可忘了卽葉綠素並不吸收深 紅

色 光, 所 以 由 樹 葉 與 草 所 反 射 出 來 的 光, 在 這 種 特 製 的 照 相 片 上, 有 很 強 的 效 應因為 有這 種 作 用

的 緣 故, 樹 木、叢 林 以 及 草 地, 在 這 種 照 相 上 看 起 來, 好 像 都 罩 着 層 白 雪一般。

在 物 理學家看 來, 紅 外線 對 於 他們 有特 殊 的 關 係, 因 爲 紅 外 線 的 發生與其說由於原子的 振

動, 毋 寧 說 由 於 分 子 的 振 動, 而 且 研 究 紅 外 線, 足 以 幇 助 他 們了 解 分 子 的 結 構。

所 謂 紫 外線 _ 這 一個 名 詞 的 意 思, 通 常 是 指達 於 地 球 表 面 的 輻射其中的不可 見部分 而

說, 它 們 都 由 短 於可 見 光 波 的 短 波所 組 成。 謝 開 太陽 的 光 裏 面, 必 定還 有 更 短於紫外線 的 波 長, 但

是 大 氣 卻 把它 們 都 吸 收掉 了。 最 短 波 的 限制 是十萬分之三釐 米, 比一英寸的十萬 分之 稍 微 大

達 到 地 球 表 面 上 的輻射, 其波長是沒 有比這一 更 短的了大氣 因 吸 收輻射之故而得很多 的 熱, 所

以 自 地 球 表 面 往 上 昇 高, 到 -百 英 里以 上 的 地 方, 空 氣 比 在 他 球 表 面 要熱得多這樣 的 空 氣 層, 其

情 形 興 下 方 的 空 氣, 大有 不 同 之 處, 例 如 它 旣 可 把 無 線 電波 反射 下 來又可把聲波反射下來 而且

反 射 作 用 很 強, 這是我 們 在 前 面 早 巴 看 到 的 了。

螢光

紫 外 線 有 很 多 屬 於 能 的 作 用, 這 些 作 用 裏 面, 有 幾 種 還 不 過 正 在 開 始 受 人重 視。 可 注 意 的

種, 便 是使 有幾 植 物 體 發生 螢 光 的 作 用, 這 種 作 用, 著 聞 已 久, 而 且 巴 給 人用 過 了,假 使 我 們 把 弧

光 的 光 譜, 投 射 在 已 塗 有 硫 酸 規 那 ຼ 的屏 上, 我 們 就 會 看 見紫 色 外 的 地 方, 有一 長 條 顏 色, 在 實

際 說 來, 紫 外 線 已 變 成 可 見的 光 了。 假使 我們 用 水晶 來 代替 玻 璃, 製造 透鏡 與稜鏡, 那 麽 這 種 效

應, 就 可 以 大 大 的 增 加。 水 品 讓 紫 外 線透 過; 遠 比 玻 璃。 來 得 自 由 容 易, 玻 璃 對 於 最 短 的 波 長, 的 確 好

算是 不 透 明 體。 有 _ 件 事 情, 要請 你 們 記憶 勿忘, 卽 玻力 璃 對 於 我 們 所 以 成 爲 透 明 物 質。 就 因 爲 它 不

光, 吸 收 那 麽 可 見 我 光線之故 們 就 前 -但是 種 情 我 形 而 們 的 論, 眼睛假 應 當 把 使有這樣 透 明 這一 的構 個 造, 名 卽 詞, 我 們 送 給 所 見 水 晶, 的 丽 反 就 而是紫外光或 後 種 情 形 是 說 起 紅 外 來,

應當送給岩鹽纔對。

紫 外 光 照在這 特 製 的屏 上我! 們 就 見凡 是受 照 的 地 方差 不 多 通 體 都 現出一種 青的色澤

這 種 靑 色,全 然 不 是 新 的 顏 色: 我 們 用 分 光 鏡 加 以 考 察 的 時 候, 就 可 發見它 的波 長, 屬 於 可 見 光

譜 的 部 分。 所 以 紫 外 線 並 未 變 成 可 見之 光, 不 過 巴 經 激 起了 種可 見 的 顏 色能了這一 種 波 長

的 輻 射, 業已消 沙成 不 見另 _ 種 波 長 的 光, 就 現出 來代替它是 這 種 現象初 次 看 起來似乎 興 我 們 對

於 波 動 的 經 驗, 互 相 矛 盾: 我 們 -向 總 假 定, 無 論 是 反 射, 是 折 射, 或 是繞 射, 都 不 改 變 原 來 的 波 長, 而

且 在 尋 常 所 遇 的 經 驗 之 中, 也 未 嘗 觀 察 過這 種 效 應然 而 彼 此 實 在 並 不 矛 盾: 我 們的 假定, -向 是

很 對 的, 而且 興 經 驗 相合签 光 的 發 生, 並不 是平 常 的 反射作 用, 或 折射作用而在另外一方 面 說 起

來, 這 的 確 是一 件 極 不 尋 常 的 事 情。 其實 這 是 初 次 的 徵 兆, 表 示 我 們 的 波 動 說, 還沒 有完全: 它 並 不

表 示 我 們 的 波 動 說 有錯 誤, 而 我 們 也 無 須 把 我 們 所 講 關 於 波 動 說 的 話, 齊 取消。 我 們 祇 覺 得 有

幾 種 現 象, 不 能 用 這 波 動 說 來 包 括 進去: 當 我 們 再 研 究 得 深 些 的 時 候這件 事 情 就 可 多 明、 白

些了

明 下。 有 使 太陽 個 極 光 有 通 趣 味 過 暗 的 實 室 的 驗 室 光 中 開 關 的 實 上 的 驗, 可 小 隙 以 縫 把 把 我 它 們 引入室 在 目 今 這 再 次 用透鏡 辩 論之中, 與 所 稜鏡,把光譜 已達 到 的 投 地 射 位, 在 說

第七

章

H

光與星

光

弦 水 的 表 面, 水 中 先 巴 投 有 少 許 伊 阿 新 (eosin)或 其 他 鳖 光 性 極 強 的 染料 銅 版 圖 C 所

示, 便 是 此 項 實 驗 的 照 相。) 紅 色 光 線 與 黄 色 光 線, 直 透 入水 中, 射 在 盆 底 上面: 但 是 其 他 切 色 光,

卻 都 保 持 在 在水面上這綠 水 面 上。 它 們 的 顏 色 都 沒有了代替 外直伸遠 這 綠 與 青二 種 顏 色 的, 是暗 外我們祇 綠 色 的一條, 看 去 好 像

片, 條 投 綠 入 盆 帶, 浮 中, 使它 浮 在 色 光 色條 影 裏 子 的 向 水 面 上, 就 可 出 以 於 很 光譜中 容 易 的 青 驗 色 明 的 此 語 端 屬 實。 以 假 使 那 條 要 隙 撕一 縫, 非 張 常 細 紙

小, 那 麼 太 陽 光 譜 的 主 要 各 線, 就 都 看 得 明 明 白 白: 而 且 有 幾 條 線, 將 於紫 外 光 的 部 分 出 現, 此 事 更

可 證 明 下 面 這一點, 卽 我 們 可 見 的 輻 射,與 我 們 不 可 見 的 輻 射, 其 間 並 無 客 觀 的 區 别。 光譜 中 的 青

色 光 線 與 綠 色 光 線, 透射 入 水, 不 過 稍 微 進 去了 些 兒 深 度: 它 們 的 變 換 爲 低 頻 쬭 光 線, 完 全 在 離

著 水 的 面 極 退 淺 級 的 化 地 **L**: 方。 紅 消 色 滅 不 光 線透 見的 顏 入 色它 水 中, 們 卻 的 祇 受到 替 代 者, 極 就 小 的 全 體 阻 礙。 而 論, 我 更 們 近 可 以察 於 光 見在這種 譜紅 色 的 現象 一端。 請 裹 面。 讀 者 有 再 顯

參閱銅版圖十四C

鮝 光 並 非 不 常 見 的 效應觀察螢 光有一個 最 現 成、 最 便 當 的 方 法, 便是注 視 玻璃杯中 所 盛礦

質 滑 潤 機 器 油, 由的 的 表 面 現 種青色這 青 色 即 由 此 種 螢 光 的 作 用 所 致。

定 限 我 度之下的 們 早 巴 波 察 長。 及, 空 須 氣 知 對 我 們 於 極 知 很多 的 波 的 長, 是 方 很 法, 產 強 生 的 吸 短 收 的 光 者。 所 波, 以 比 從 在 太陽 太陽 射 光 惠 到 面, 我 祇合有一 們 面 前 來 不 出 的 於 更 短:

而 且 我 們 發 見這 種 签 光 的 作 用, 隨 波 長 的 流龙 短 而 迅 逨 增 加。 水 銀 蒸 汽 燈, 是極 強 的 短 波 光 源: 假 使

燈 光 所 從 發 生 的 眞 空管, 是用 水 品 做成 的, 那 麽 這 短 波 光 線 就 能 透 出管來射入空中我 們 向 這 種

管 看 着, 是有 傷 H 力 的: 假 使 大氣 不 把 太陽 輻 射 的 短 波 吸 收 掉, 那 麼 太陽 光也 要傷 害 眼 睛 了。 在

種 水 效 銀 應。在 汽 燈 這等情 照 耀之 形之下 下。 有 許 所 多 激 物 質 發 的 都 颜 會 色, 放 出 多 叨 亮 很 多, 的 各 光 各 死, 不 此 同, 等 物 而 質, 且 整 在 個 白 效應非凡美 晝 的 H 光之下就 麗。 我 們 不 可 會 以 有 做 這

種 遮 光 的 解, 把一 切 M 見 的 光 線, 悉 數 遮 斷, 單 讓紫 外 線 通 過: 在 這 種 情形之下發 獈 光 的 物 似

乎 是 發 光 體。 我 們 叫 以 向 這 些光 線 的 來 源 遠 望, 因 為 我 們 假 使 站 得 稍 遠一些這 通 過 遮 光 屏 丽 力

卻 減 察 弱 見 的 紫 種 外 希 線, 奇 _ 時 的 效應 對 於 眼 全 睛 房 是沒有損 間 似乎 充滿 害 了霞 的, 可 光萬 是 這 些光 道。 是 線 因 的 爲 來 紫外 源, 我 們當然 線 激發了螢 看 不 見此 光, 而我 時 我 們 們 的

眼 睛 以 爲 如 此 能 了: 效應完全屬 於 主觀一 方 面。 假 使 我 們 把 遮 光屏放 在燈前, 遮去這紫外 線, 那

麼全 部 效 應 立即 消 失。

由 紫 外 光 的 放 電

紫 外 光還 有一 種 非 凡 的 性質, 便是 具有 種 本 領, 叫. 把 陰電 從它所照的 金屬裏面放 出 來, 對

於 鹹 土 金屬以及鋅, 此 種 性質尤其顯 著紫外 光 的 有 此 特 性, 立 刻 미 以證明用電機一座使它生 出

連 串 的 電 花, 跳 耀 於 兩 球 極 之 間。 兩 球 極之 是 用 錊 做 成 的, 得 非 常 清 潔, 而且 新 用 水 銀 塗 過:

電 機 的 運 轉, 恰使 上,堆 此 球 極 帶陰電遠 再堆, 有一 個 球 極, 一的電荷使一 與 地 通 連。 在 這 些環 空氣堅張到不能再勝任的 境之下這座電 機 儘把 陰電 堆

步: 於 是 雙 方 破 裂, 電 火 就 衝 過 去了。 在

這

特

製

的

球

極

到

無可

以至於球

上

兩

極

間

的

地

現 在 假 使 把 某種 光 源 所 發 的 紫 外 線, 射 在 錊 球 L 面, 電 花 就 停 止 一發生在實 際上說 來, 錊 球 被

外線 照陰電就不 不能够積聚在球上面, 因為 紫外 光等它 聚 起 來立刻就使它放掉假使把一

塊 玻 璃, 放在紫 外光 與 鋅 球 之間電 花 叉 機續發 生, 因 爲 玻璃對 於 見 的 光, 雖然是透明 體, 但是 紫

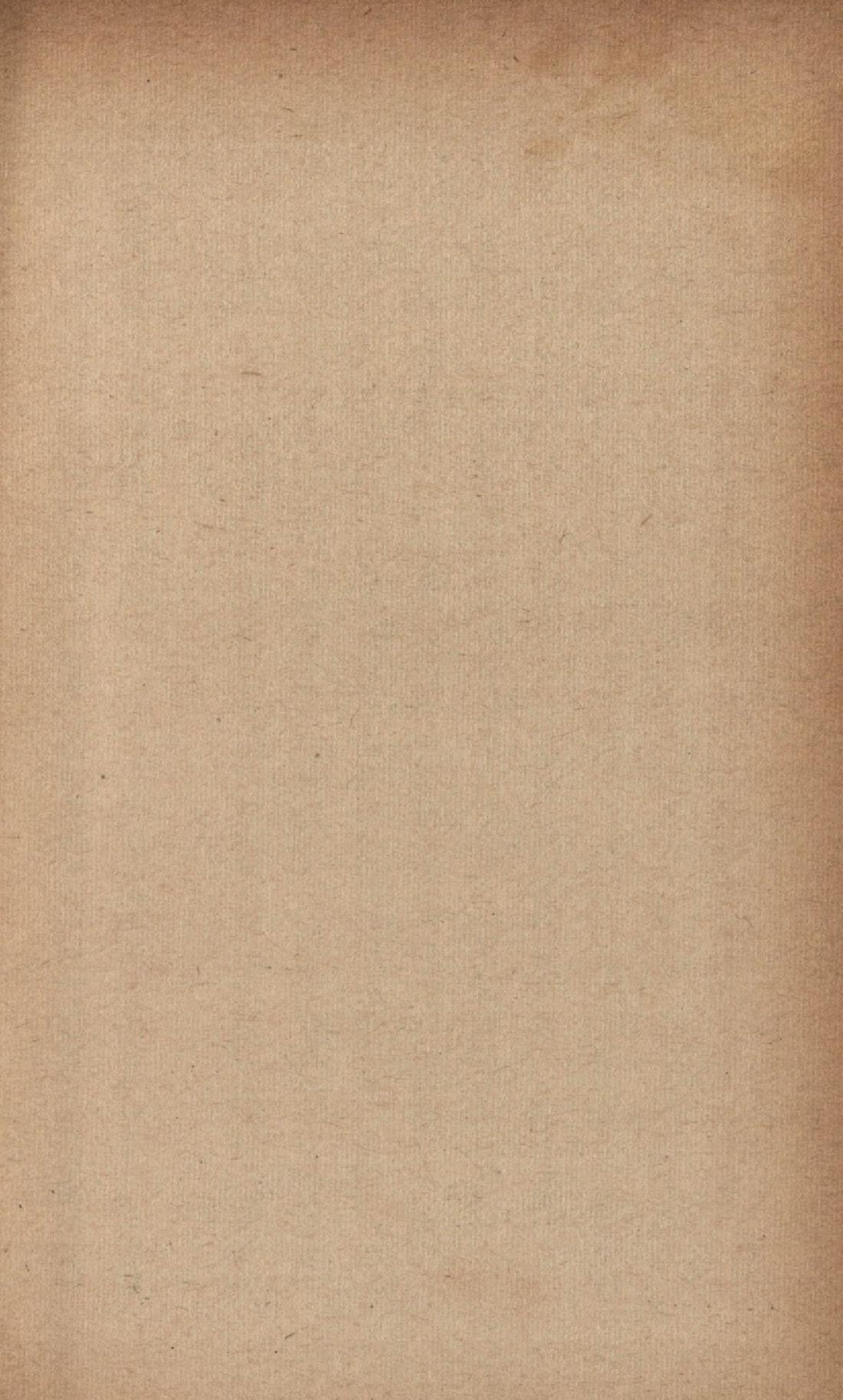
外 線 卻 全 給 它 隔 斷了我們 把 這 玻 璃 忽兒拿 掉, 忽 兒 插 進 就 看 見 電 花 突 滅 突 生, 情 形 頗 爲

奇特。

從 這些實 驗以 及 相 類 的 實 驗, 們 就 可 推 想到下 面 的 即 象, 即 波 長愈短其作 用 愈 強, m 且 由

此 使 人悟 及, 應當 儘 量 用 短 的 波, 把 這 種 賃 驗 重 做 幾 次。 做 了之後, 我 們 或 許 能 够 使 有 些 現 象, 更 為

顯 明, 而 且 我 們 或許可 以 對 於它 們, 有一 般 的了 解。 結 果 確 是 如 此。 我 們 所 用 的 是 X射線第 一, 我 們


必 須 確信 這種射線也可 以當作以 太波, 正與把光當作 以 太波, 一樣 有 理 由於 是我 們可 以 考 究 它

們 的 性 質, 我 們 還 要發 見 有 幾 種 現 象同 於 紫 外 光 所 表 示 的 現 而 .目. 活 躍 得 多。 我 們 行 將 察 知, 所

觀 察 的 專 實, 其 中 最 最 令人 驚 異 的, 有 許 許多 多, 不 能 够 用 波 動 說 來 解 釋 其 原 因, 所 以 需 要 補 助 的

學 補 助 的 方 法 如 何, 我 們 卻還 沒 有 完 全領 悟。 們 所 遇 到 的 困 難 問 題, 使 我 們目下的研 究入於

非常的迷途因為這些問題都還沒有解決。

倫 琴 發 見一 種 新 輻射時 在 一八 九 玩. 年當 時 因爲 它 的 本 性, 很 難 斷定所: 以倫 琴 就叫 它 做 X

射 線。 它與 巴 知 各 杠 輻 射 間 的 關係立刻變成了 研究 得 最 熱 心 的 題 目。 倫 琴 在 發 見 X射 線 之後, 隔

了 不 多 幾 個 星 期, 他就 定 出這 種 射 線 的 特 性 來, 至於它 的 本 性, 他 卻 並 不 知道。 直 到一九 一二年, 當

勞厄 證 明了 X射 級與 平 常 的 光 -樣, 也能 够被 繞射之後, 纔 經人 認 定, 確係一種 波長 極 短的 以 太

波。 面, 勞 與 厄 光 完 的 全 繞 射 相 同, 光 柵, 但 是 是 在品 用 品 體 性 做 万 面, 的, 他 卻 與 的 實 光 驗 大 方 相 縣 殊: 法, 我 這 們 _ 不 種 久 就 事 態, 要 עול 對 於 以 考 我 察。所 們 擴 以X 充 這 射 種 輻 線 射 在 的 本 性 般 方

知 識, 非常 有 利它還有 特 殊 的 趣 味, 因爲 研 究這 種短 波, 可 以 腳 示 我 們 的 波 動 說, 雖 然 在 我 們 所 巴

應 用 的 各 方 面, 證 實不 虚, 卻 還 沒 有 完全: 舊 時 的 波 動 說, 不 船 够 把 爲 數 極 多 的 新 事 實, -齊 吸 收 進

去。 有一 個 範 圍 更 廣 大 的 系 統, 正在自行 漸 漸 形 成, 這樣 _ 來, 所 發 生 的 情 況, 就 有 最 大 的 興 趣了。

第八章 倫琴射線

X 射 線 的 發 生, 通 常 總 是 含 有 壓 力 極 低 的 空 氣 或 其 他 氣體 的 空間之內有電花通過或起放

電 作 用 的 結 果, 電 花 成 爲 有 趣 味 研 究 的 目 標, 巴 歷 數 百 年,

但 是 _ 向 沒 有 什 麽 大 進 步, 直 等 到 使 放 電 ---事, 發 生 於 玻

璃 管 或 玻 璃 球 内, m 管 與 球 中 的 空 氣, 多 少是完 全 抽 去了

的, 纔 發 見 種 種 新 奇 現 象當 管 中 壓 力 减 低 的 時 候, 電 花 愈

變 愈 長, 愈、 極絶 愈 闊, 丽 H 颜 色 更 爲 明 顯。 當 克 魯 克 斯

把空 氣 喞 筒 加 以 改 良, 使 玻 璃 管 中 的 氣 壓, 可 以 減 低

到 大 氣 壓 力 的 百 萬 分 之 幾 的 時 候, 就 有 _ 種 現 象 發 生, 此

現 象 以 前 顯 然 未 曾 察 見 過。 陰 極 於 此 時 變 成 種 輻 射

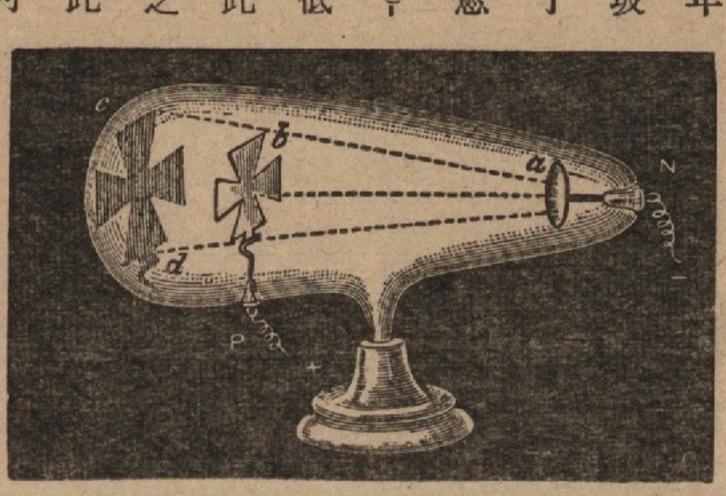
源, 此 輻 射 依 直 線 進行, 穿 過 玻 管, 而 且 有 力 學 的 效 應。 當 此

幅 射 達 於 對 面 的 管 壁, 或 任 何 障 礙 其 進 行 的 物 體 時, 就

出 熱 來: 它可 以 激 發 玻 璃 與 許 多 礦 物 的 鮝 光: 假 使它 打 मा 在 風 車

的

葉子板上就可使該


風

車

轉

動。

發

(圖九十六) 陰極在 a 的右側。射線在管中直進, 而激起對面壁上的螢光。金屬十字形 b, 在壁上投一 界限分明的影子。

可

而 且 它 還 有 種 最 重 要 性質, 卽 此 幅 射 流, 可 用 碰 鐽 移 近 它 而 使 它偏 向這是異常重要 的 觀察 因

爲 由 此 可 以 領 悟, 這 種 輻 射 流 是 疾 飛 的

帶 電 質 點 所 構 成。 此 種 輻 射 流, 同 於 電 流,

所 以 容 易 受 磁 石 的 起 動。 克 魯 克 斯 的 實

驗可用圖九十六九十七九十八九十九

來 說 明。 這 些 圖 的 版 子, 都 是 克 鲁 克 斯 於

一八七九年四月在皇家學院的演講稿

射流是某種分子而構成的他爭着說他,

即

刷

時

所

用

的

原

克

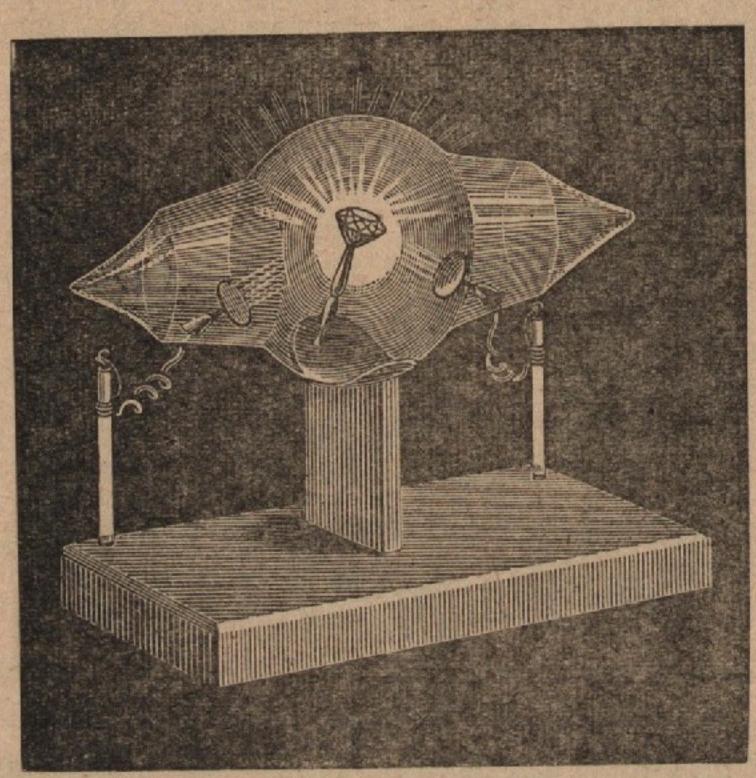
魯

克

斯

相

信


這

輻

圖。

有 的 比 空 氣 較 少 喞 數 筒 的 巴 分 到 子, 很 留 完 在管 備 的 内, 地 這 步, 些 所 分 以 子 祇

以 在管 內移 動, 其 所 移 的 距 雕, 可 與管 的 長 度 相 比 挺, 而 彼 此 並 不 會碰 撞。 他又說這種 情 形

(圖九十七) 真空管中央,裝有金鋼石一枚,受射線的激勵,而發活躍的螢光。

與

氣

的 差 别, 獪 如 氣 體 與 液 體 之不 同, 他 就 在這一年へ一 八 七 九

皇家 文 錐 學 然 暗 院 昧措解 做 了一 篇 卻 頗 諭 文, 有 在這 趣 味, 論 而 且 文 他 的 的 末 預 尾, 測, 預 後 dil 來 這 有 陰 極 部分可 射 線 的 以 前 應 途,

現 在 把 他 所 說 的句 話, 摘 錄 於下:

這 些真 、空管 裹 面 的 現 象, 對 於 物 理 學 顯 露了 片 新 境 在

新 的 境 界 並不常依直線進行但是這境界裏面我 中, 物 質 呈 共 第 179 狀態而 存 在, 此 處 可 們 以 卻 適 用 永遠 光 走不進 的 微 塵 說, 我 此 們 處

能 够 在它 的 外 面 觀察, 在它 的 外 面 做實 驗, 而 自 以 爲 滿 足。

祇

湯 過,這 好 遜(J. J. Thomson)魏孝 種 幅 射 流是 帶 有 陰電 的 質 脱(Wiechert)以 點 所 組 成, mi H. 又表示 及 其 他 過, 諸 道 此

質

比

氫

原

子

史

小

得

多「電

子」

的

名

詞,

就

給

與

它

們。

那

時

他

們

似

假

使用

威

應图或其他電

機,

生

出

必需

的

功

쭂,

而

把

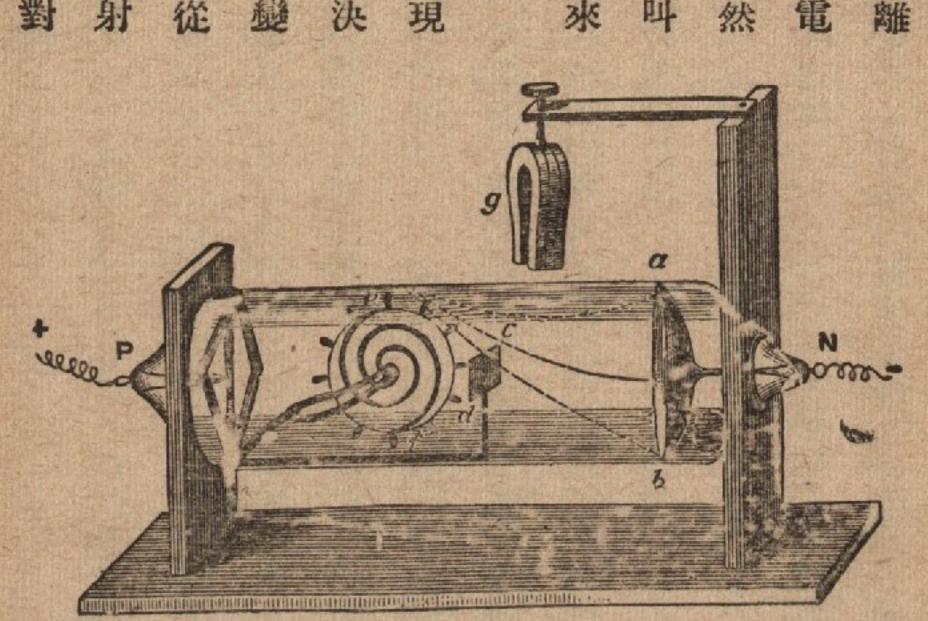
充分的

電

表

驗。

(圖九十八) 在 a 處的陰極前方,置一隙縫,使陰極射線通 **遣此隙縫,成爲一狹小的射線束。於是用蹄形磁鐵使此射線偏** 向,就容易觀察了。


它 子, 該 的。 於 做 都 原 任 是 陰 物 子; 何 完 質 梅 他 種 射 們還 原 的 全 子之 基 線, 相 覺 因 同。 本 上就 爲 成 待, 於 分了這種 從 它 是 是從陰 n 電 以 子 切 硬使 這 原 電 樣 極 子 子 電 東 出 發 射 流, 來 子 西,

脫

的

電

端 線 他 沒 象 實 打 有 的 的 在 驗 原 被 時 倫 玻 用 琴 因, 光 候, 璃 發見了 探 就 的 照 是在 索 壁 射, 玻 上 璃 下, 而 的 球 竟 近 IE. 當研 地 就 變 發 處 方 出, 得 發 的 發出; 見有一 究陰 mi 模 照 糊 且 相. 於 了 極 特 乾 射 是 從 種 他 片, 他 線 輻 把 雖 层 就 極 各 射, 這 然 對 射 决 從 越 現

出

來

就

叫

顯

然

(圖九十九) 陰極 a, 做成一隻茶托的形狀 這樣的陰極,覺得它 有把各射線集中於一點的效應。有一塊 c 板, 遮住了這些射線, 但是 磁鐵 g, 使它們偏向, 恰能從 c 抵的上方過去, 而擊在小風車 e f 的葉子板上, 這風車於是就很快的轉動起來。假使把磁石的地位顧倒 一下, 這射線就在 c 板的下方經過, 而風車也依反對方向旋轉。

於 這 種 偶 然 發 見 的 射 線,着 手 考察 它 的 特 性。

在 許 多 地 方, 這射 線 與 光 相似它 們 依 直 線 進行, 而 投 射 界 限 分 明 的 影 子, 它 們 在 空 間 內 遊 歷,

並 沒 有 明 腳 的 物 質 的 遷 移, 它 們 對 於 照 相 乾 片 發 生 作 用, 它 們 激 勵 若 干 物 質, 發 生 签 光, 而 且 它 們

與 紫 外 光 -樣, 也 能够 使導 電 放電。 在另 外 幾 方 面。這 射 線 卻 似乎 與 光 不 同。 鏡 子稜鏡 以 及 透 鏡, 都

可 使 光 偏 向, 但 是 對 於 X射線; 用 平 常 的 方法 製 成 的 光 棚, 不 能 使 它 們 繞 射品 體 的 作 用, 旣 不 發

雙 射 現 象, 也 不 產 生 偏 極 化 的 現 象。 此 外, 它 們 還 具 有 _ 種 透 射 物 質 的 非 常 本 領。 雖 然 各 種 東 西,

多 少 總 有 _ 些 吸 收 本 領, 卻 似乎 沒 有一 種 東 西, 能 够 把 它 們 完 全 擋 住: 就 吸 收 本 領 而 論, 重 的 原 子,

效 應 大 於 輕 的 原 子。因 此, 立刻 使我 們 多了一 種 本 領, 凡 是 不 透光 的 東 西, 其 内 部 的 組 織 情 形, 就 可

以 藉 這 X 射 線 的 功 用 直 接 窺 見: 例 如 骨 頭 所 投 射 的 影 子, 比 24 旁 肉 所 投 射 的 影 子, 來 得 深 些。

假 使 可 以 舒 明, X 射 線 的 速 度, 同 於 光 速 度 im -無 問 題, 那 麽 它 們 的 彼 此 完 全 相 同, 就 早 巴 確

定: 祇 要 但 把它們發源 是 此 種 實 驗 雖 的 環 有 人 境, 適當 試 濄, 卻 地布置一下但是 X射線 是 太 難了。 巴克拉(Barkla) 的 偏 表 極 示 化, 卻 X 射 在 線 有 些 束, 可 地 以 方, 與 使 光 它 的 發 偏 生 偏 極 化 極 不 化,

同。 相 同 等 到 之 勞厄 後, 此疑 的 始釋: 實 驗 假 成 功,證 使 我 明了 們 可 以 X 射線, 倚靠這繞 也可 射 以 現 使它 象以 繞射, 證 明 而 光 且 這 的 波動 繞 射 說, 作 用, 那麽這同一證 與 光 的 繞射 據,剛 作 用 剛 處 處 又

可以維持工射線的波動說了

勞厄的實驗

除 射 線 因 射線 束, 現 通過 在 東的 譲 一塊 我 入射而生的主要之 們 晶 把 勞厄 體, im 照 的 著 在 名 -塊 質 像以外或許還 驗, 照 相 細 乾片 細 考 上, 究 如 有 圖 下, 其 這 _ 實 百 他 所 副 驗 示。 像。 的 勞厄 他 結 的 預 曾 使人十分驚異。 測, 推 測 是 根 照 機用光試 相乾片上所 一道 驗 細 時 發 小 現 所 的 得 X 的,

過 的 這 塊 類 板, 效 或 應, 迪 這 過 種 __ 效 層 應, 大 我 們 氣, 大氣 在 削 之 面 中懸浮着 巴 經 說 過了。 大 小 列 _ 以 致 太 的 波岩: 細質 落 點, 在 那 麽 -塊 船 劃 _ 有 平 的 傳布, 行 槽 就 的 起 板 有 上, 規 或 則 通

它 的 們 偏 考 向, 究 所 偏方 過。 就 向 這 各各 類 的 不 同, 所 有 而成 各 爲一 種 情形 繞 射」 而 論, 波 波 的 束。 長 這 度 種 與 效 槽 應 的 的 例 間 隔 或 我、 質 們 點 巴 的 經 直 遇 徑, 到 彼 幾 此 個, 並且 間 的 相 已 差, 把

第八章 倫琴射線

决 個 不 能 條 + 件 分 之 故。 大 他 勞 有 厄 若 以 為 干 從 理 由, 前 就 相 信 X 射 X 射 線 線 找 蒋 的 繞 波 長, 射 比 現 象共 光 的 波 所 以 長 要 屢 小 次 幾千 失 败, 倍, 或 許 如 果 因 爲 所 料 沒 不 有 錯, 注 那 意 殛 到 這 用

尋 的 光 棚, 照 尋 常 的 方 法, 來 觀 察 X 射 線 的 繞 射 效 應, 當 然

用 了所以若 有人 要 做 這 植 實 驗, 他 就 應 當 採 用 種 光

柵, 其 條 紋 的 間 隔, 比 平 常 的 光 棚, 緊 密 幾 干 倍。 這 在 實 際 是

辦 不 到 的 事 情: 決 沒 有一 個 A, 能 够 在 英 寸 之中, 畫 LE 好 幾

百 萬 條 的 平 行 線。

然 而 大 自 外 卻 巴 替 我 們 預 備 了 種 I. 具, 這 種 工 具, 我

們 人 類 的 I 場 裹 面, 萬 不 能 製 造, 這 本 是 可 能 的 事 情。 品 惯 或

許 定 適 的 用 规 於 則 X 而 射 排 線 列, 其 的 彼 光 棚, 此 因 相 爲 隔 我 的 們 距 曾 跳, 假 就 定 可 它 以 計 的 算 原 的 子, m 都 依

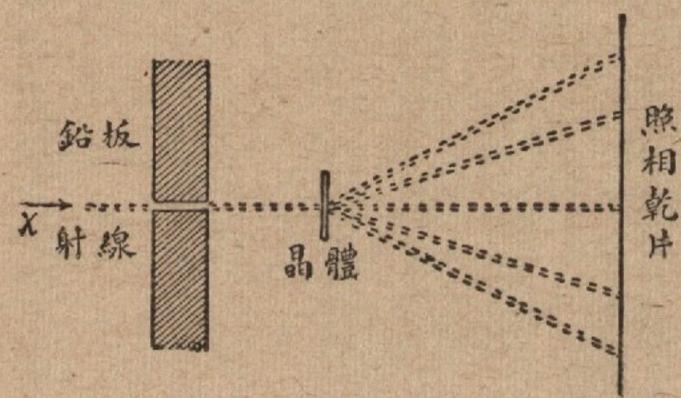
同 般。 不問 這 些 預 料, 其 根 據 是 否 可 靠, 當勞厄 的 同 事 們, 弗 律 特 理 煦(Fried-

興

X

射

線


的

波

長,

屬

於

(圖一百) X射線穿過鉛板上的小孔, 擊圖中所示的晶體。勞厄的繞射圖案,就在照 相乾片上出現。

rich) 崩 聶 彬 (Knipping) 在一九一二年 做這實 、驗完全 成 功 的 時 候這些預 料 就 都 越 成 無 足

重 輕 了。 照 相 乾 片上 所現 的是許 多 點 子 的 複 雜 圖 案, 但 是 成 功 對 稱, 這 圖 紫 雖然 前 光 的 繞 射 作 用

所 產 生 的, 有 些不 同, 其 本 性 顯 然 無二其時 立 刻 又.發 見, 凡 是晶 體, 各 有 其自己 的 圖 案 並 且發 見 這

種 驗, 非 但 一啓示了 _ 個 新 的 方 法, 可 藉 以 研 究 X 射線 的 本 性, 而 几 還 使 我 們 獲 得一 種 新 的 工 具,

可 用 以 分 析晶 體 的 結 構。 銅 版 圖二 += A 與 B, 就 是這 些圖 案 的 例 子它們 可 與 銅 版圖二十三C

互 相 比

爲 使 這 幾 個 主 要 之 點, 可 以 明 瞭 起 見, 必 須 把 這實 驗 的 詳 細 情 形以及它所 牽 涉 的 各 事, 拿

來 考察 考 察 過 泛幾種了不 番, 而 所 說 的話當 過 我 們 然不 在 此 處卻宜 過 於

於

於

長

關 把這 個 題目重 於 品 僧禮 新 結 構 再 考 的 究 現 象, 下, 就 冰洲 並且討論 石的例子而 得 更普 遍一些。 論, 我 們 早

可

品 體 所 具 最 他 人驚 異 的 中 徵, 便 是 它 的 形 式 整 齊, 合 乎 規 律, 表 面 平 滑 光 潔, 稜 角 鋒 銳 分 明。 假

使 們 把 成 分 相 同 的 晶體, 拿 來 比 較一下我 們 就 覺 得 各 面 間 所 夾 的 角, 從這一個品體 到 那一 個

品 總 是 恰 恰 相 同, 絲 毫無二: 然 而 各表 面 的 面 積, 其 相 對 値 的 化, 卻可 以 有 很 大的範 圍。 用專 門

第 章 倫琴射線

的 術 語 來 說, 種 類 相 異 的 晶 體, 其 表 面 可 以 有 不 相 等 的 展 開。 我 們 當 然 要 推 測 到 F 面 這 種 情 形, 即

晶 體 的 結 構, 整 齊 不 亂, 總 有 基 本 的 規 則, 以 爲 根 據, 其 中 包 括 空 間 内 某 單 位 的 重 複 出 現, 而 這 種 單

位 是 太 小 了, 無 法 可 見。 我 們 可 取 _ 塊 織 物, 來 做 簡 單 的 比 喻; 照 通 常 的 習 惜, 織 物 總 是 經 緯 交 錯, 互

直。 我 把 這 総 物 撕 碎, 不 問 如 何 撕 法, 所 撕 成 的 各 片, 它 們 的 四 角 總 歸 都 是 直 角: 但 是 各 片

相 垂 們 若 痕,

不 的 是 形 與 狀, 這 卻 未 -個 必 _ 主 定 方 是 向 正 垂 方。 直, 便 經 緯 是 與 的 那 排 列, _ 個 有 兩 主 要 個 方 主 向 要 的 垂 直。 方 向, 假 使 彼 這 此 交 兩 個 成 直 方 角: 向, 把 就 織 其 可 物 撕 加 開, 以 考 切 察 的 撕 各

項 特 性 mi 論, 完 全 相 似, 例 如 撕 起 來 假 使 _ 樣 容 易, 叉 如 撕 散 的 邊 緣, 各 面 若 都 相 同, 那 麼 經 線 颠 緯

線, 必 定 完 全 _ 樣; 它 們 必 由 同 數 的 維 纖 構 成, 丽 且 有 相 等 的 間 隔。 我 們 可 以 很 合 理 的 說, 這 種 織 物

是 依 據 正 方 _ 圖 案 織 成 的。 卽 使 經 線 與 緯 線, 都 不 是簡 單 的 線, m 是 複 雜 的 線, 例 如 各 線 岩 按

定 的 間 隔, 攙 雜 有 色 的 線, 情 形 仍 舊 是 如 此。 祇 要 經 與 緯 的 重 複 組 織 相 同, 我 們 仍 可 以 說 這 圖 案 是

IF. 方 形: 例 如 格 子 花 呢, 棋 盤 式 花 布 等 等 都 是。

晶 體 的 結 構, 其 種 種 複 雜 情 況, 要 用織 物 的 比 喻 來 代 表, 當 然 不 足 以代 表 其一 切; 因為 織 物 的

經 興 緯 彼 此 相 变, 除 直 角 以 外决 不 能 互 相 傾 斜, 交 成 任 何 角 度 的: 但 是這 成, 個 比 喻, 體 的 卻 角, 說 明了 必 然 是 常 述

的 重 要 之 點, 卽 在 任 何 結 構 之中若 此 結 構 是空 間 內 的 重 複 作用 所 造 那 麽 全

常 相 同, 而 各 表 面 的 面 積, 其 大 小 就 沒 有 這 種 限 制。

角 的 形 式, 則 視 各 方 向 內 所 重 複 的 單 位 如 何 而 定。

例 如 在 同 ___ 平 面 內 的 成 分, 假 使 有 圖 -百 零 _ 所

示 的 小 單位 形式, 那 麼 全 體 就 川 以 有 同 圖 内 所 示

的 種 種 形 狀。 其 兩 邊 所 夾 的 角, 固 然 不 必 常 與 A 的

兩 邊 所 夾 者 相 同, 但 是 每 種 樣 子, 各 有 其 不 變 的

交角 這 卻 是 必定 如 此 的。

照 樣, 在 品 狀 的 固 體 裏 面, 也 可 以 把 它 的 表 面,

展 開 繑 種 種 不 同 的 形 狀, 這 些 表 面, 就 其 彼 此 所 交

成 的 角 而 論, 都 類 得 具 有 同 固 定 的 互 相 頃 斜 之

第八章

倫琴射線

(圖一百零一) 平面圖案的單位,包括在大網 A 之 內。單位的集合,可以集成種種不同的形狀,圖中略舉 數例以示。邊緣的互相傾斜,限於交成若干一定的角度。

二八七

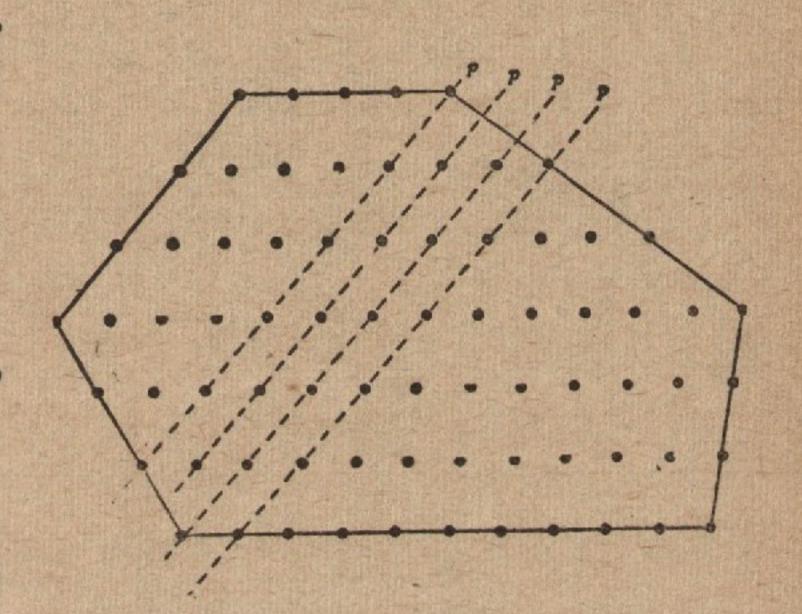
度。 假 使 品品 情豐 是 由 各單 位 所 組 成, 而 各 單 位 在

各 方 向 内 的 重 複, 整 齊 致, 那. 麽 種 情 形 應

當 在 我 們 的 意 料 之 中; 現 在 旣 然 不 出 我 們 所

料 事 實 竟 鲀 推 想符合, 那 麼 我 們 以 前 對 於 品

體 結 構 所 假 定 的 槪 念, 是 不 銟 的


我 們 要 問, 當 以 太波 列 遇 到 這 種 品 狀

排 列 的 時 候, 有 什 麽 事 情 發 生 呢?

個 品 僧。 可 以 想 徽 它 是 許 多 層 的 組 織,

因 接 次 連 堆 的 平 積 面 而 裏 成, 邊, 各 層 組 的 有 間 規 隔 則 都 的 相 點 等, 的 好 集 比 團, 在 印

以 祛 排 想 傪 列, 它 與 是 前 幾行 所 舉 點 簡 子 單 所 的 **利L** 例 子一 成, 各 樣, 行 間 所 以 的 距 任 離 何 相 塊 等, 晶 叉 體, 如 圖 可 以 百 按 零 無 限多的 所 示, 各行 方法, 分成平 可 依 植 行 種 的 不 各 同 層。 的 方

(圖一百零二) 此圖中的各點,可依種種不 同的方法,排列成行。

ニスス

的 散 射 作 用, 於 是 再 考 究 幾 片單位層 疊 mi 成 的 整 個 晶 體 的 散 射 作 用。

品 體 裹 面 的單位是若 干原子 依 ___ 定 的方 法 排 列 而 成: 其 成 分 與 排 列, 此 晶 體 與 彼晶 體各 不

相 同。 當 波 列 遇 到 了 這 單 位 的 時 候, 其 中 的 毎 個 原 子, 都 把 波 散 射 出 來, m 且可 以 看 做 串 向 外 傳

布 的 球 形 波 的 中 心心 經 過 很 短 的 距 點推 之後, 這些 球 形 波 互 相 融 合 起 來, 到 末了 献 有一個 球 形 波, 其

中 心 在 此單 位以內 的 某一點。 然而 此 等球 形 波, 卻 有一 個 奇 特 之 處, 喞 各 方向內 的 強 弱 不 等。 取

個 簡 單 的 例 子 來 說, 設 想 此 單 位 是 兩 個 原 子 A 與 B 所 構 成, 彼 此 相 隔 的 距 离惟, 等 於 波 長 的 半, 如

圖 百 零 三所 示。 外 來 的 波, 同 時 到 達 這 兩 個 原 子。 由 A 與 B 所 散 射 的 波, 一齊 向 外 出 發。 在 ,ABC 方 向

之 内, 這 兩 個 波 系常常 相反: 這一 波 系 的 峯恰巧 嵌 入 那 波 系 的 谷。 所 以 在這一個 方 向 之 内 它 們

把 彼 此 的 效 應 都 消 滅 掉。 在 反 對 方 向 BAD 內, 也 有 同 樣 的 情 形 發 但 是 在 其 他 方 向 之 內, 就 沒 有 如

此 全 的 干 涉 作 用: 例 如 在 標 有 字 母 P 的 箭 頭 所 指 方 向 之 內, 它 們 卻 彼 此 多 少 互 助 一些 方 向 P

與 方 向 C 或 C 的 偏 差 愈 大, 互 助 愈 甚。 在 此 種 情 形之下, 被 散 射 的 波 連 合 起 來, 就 有一個 球 的 形 式,

光

但 是 它 的 強 弱, 各 方 向 並 不 相 等。 如 圖 所 示, 就 有 C 與 D 兩 點在這地 方 的 波 消 域 無

原 子 的 排 列 情 形 與 此 不 同,

在 這 球 面 Ŀ 強 度 的 分 配 狀 況, 也

因 此 im 不 同: 原 子 的 排 列 愈 複 雜,

分 配 的 狀 況 也 愈、 複 雜。

然 im 這 種 複 雜 性, 對 於 我 們

發 展 現 在 的 辩 論, 並 沒 有 影 響, 我

們 所 以 要 說 訊 的 緣 故, 不 過 是

爲 體 了 了。 有 使 我 個 們 主 的 要之 描 寫, 點, 更 來 便 得 是 無 眞 實

晶 體 單 位 的 成 分 如 何, 排 列 如 何, 所 有 各 單位 的 行 爲, 都 相 同。 就 目 與 我 們 暫 時 有 關 的 而 論, 被

射

的

球

形

波

表

面

上能量分布

的處處不

等,

我們

可以

不

去管

它,

我

們

祇

要

牢

牢

記

住,

各

波

到

末了

都

散

B

由縱線代表的波,正向A與B (圖一百零三) 兩原子前進,到達的時候,它們的能,就給 A 與 B 散射掉一部分。這兩個原子的距離,等於波長的 一半。向外傳布的球形波,在ABC或BAD 兩方向內,互相消除,因爲一波的峯,適與他波的 谷相合。但是在其餘各方向之內,例如圖中標有字 母P的,卻有一部分的能被散射出去。這實在是圖 七十三的特例。

二九〇

存。

成 功 球 形, ıfii 且可 以 看 做 發 源 於 排 列 整 齊 的各 點,這 些點子 就 代 表 各單位的 位置。

現 在 我 們 繼 續 把 層 内 的 各 單 位 的 聯

合 效 應, 拿 來 考 究。 假 定 圖 _ 百 零 四 中 的 點

代 表 層 裏 面 的 圖 案, 其 中 若 干 單 位, 這 層

與 紙 交 成 直 角。 圖 中 表 示 有 _ 組 波 正 向 各 點

前 進, 其 截 面 由 直 線 pp p'p' 等 代 表。 因 爲 每

個 波, 掃 過 各 點, 所 以 有 若 干 球 形 波 從該 點 繼

續 向 外 傳 布, 而 H 這 些 波 聯 合 成 功 個 反

波。 在 實 際 E 說 來, 這 是 惠 更 司 原 理 應 用 的

例。 這 點, 是 種 簡 声 的 反 射, 實, 其 與 鏡 子 的 反 射

不

同

之

祇

在

下

面

這

件

事

卽

原

來

的

第八章

倫琴射線

祇 有 部 分 被 反 射 波帶 去。 我 們 由 實 驗 知 道就 單 獨 層 而論, 這 部分眞 、是微乎 其 微X射線往

能 射 子, 义 -

(圖一百零四) p p, p' p', …… 各波, 掃過一排點子, 在這地方就有散射作用發生。能的人部分,繼續前進,但 是有一小部分, 卻被反射, 成功 q q, q' q', ……各波。

光

往 要 先 摕 過 幾 百 萬 層, 纏 船 够 最 後 給 我 們 耗 費。

就 聲 晋 而 論, 有 _ 種 相 類 的 效 應, 我 們 時 常 可 以 觀 察

到。 部 分 在 的 能, 排 卻 鐵 通 欄 過 杆 鐵 的 欄 面 杆, 前, 組織 可 以 續 前 發 進。 生 當 整 我 齊 們 的 乘 反 着 射 汽 作 車, 用, 經 Im 過 大

這 些 鍵 欄 杆 的 時 候, 我 們 就 可 以 聽 見 這 被 反 射 的 聲

有 _ 件 事 情 須 加 以 注 意, 卽 晶 體 的 各 單 位, 以 及 區

零 四 中 代 表 這 些 單 位 的 點 子, 就 單 層 的 效 應 iffi 論, 其 間

百

隔 無 需 均 勻 致。 鐵 欄 杆 的 排 列, 雖 不 整 齊, 也 可 以 發 出 P

壂 體 内 來: 卽 不 同 使 是 的 許 無能 笆, 多 組 也 可 平 以 面, 聽 其 見 所 它 具 反 所 射 反 射 的 可 的 船 聲 性, 音。 非 由 等 我 到 品 加

以 考 究 在 圖 的 時 百 候, 零 各 單 玉 中, 位 我 的 們 排 作 列 整 前 齊 線 S1, 與 S2. 否, S_3 是 無 等 等, 關 代 表這 要 的。 些

S4

(圖一百零五) 本圖表示問隔相等的各層,把波列反射出來 每一層能够反射這波列所有能量的一小部分。

單 層 的 各 截 口; 我 們 所 以 把 它 們 畫 成 完 全 直 線, 而 不 把 它 們 畫 成 若 干 排點子其故 是 因爲 單 位 或

代 方 向, 表 單 我 位 們 的 也 點 用 子, 其· 前 線 在 表 各 示, 層 不 中 再 把 的 位 波 置, 的 不 本 論 身 畫 在 什麽 出 來。 地 例 方, 如 是 aPa₁ 無 所 12 關 緊 表 要 的, 便是 的。 又為 我 們 便利起見波動 適 纔 所 討 論 進行 過 的, 的 在

單 層 内 的 反 射 情 形。 除 aPa₁ 所 代 表 的 -組 以 外另 外還 有 -種 反 射 情 形, 由 bQb_1 折線 代表又有 -種 由

cRc1 表, 話 如 此 類, 該 圖 的 大 小, 在 有 幾 個 方 向 內 故 意 放 寬, 以 便 將 根 據 此 圖 的 論 史 明 白

些。 各 層 間 的 距 離, 在 實 際 上 颠 光 束 的 寬 度 比 較 起 來, 是 很 微 很 微 的。 每一條 射 線,證, 例如 bQb₁,得 線, 其 所 代

表 向 前 進 行 的 波 列, 波 前 很 闊, 所 以 各 反 射 波 列 的 左 右 翼 耳 相 重 壘。

由 bQb_1 所 代 表 的 波 組, 必 須 比 al'a1 所 代 表 的 波 組, 多行 若 干 路, 纔 能 够 再出現而與後者聯合 起來。

假 使 我 們 作 垂 直 線 與 PN, 那 麽 就 是 多 行 的 距 雕。

波 組 面, cRc, 落 後 於 bQb₁ PM 的 距 離, 與 bQb, MN 落 後 於 aPa₁ 的 距 離, 剛 剛 相 等, 因 爲 各 層 -的 間 隔, 距 離相等在這 次

們 反 射 以 的 用 後 圖 其 他 百 零 各 次 反 表 射, 示 這 也 些波 按 定 相 的 加 的 間 情 隔 形, 别 在 上 來晶 道 圖 裏 體 所 面, 代 反 表 射 的 波便是所 組 反射 波 有這些 的 正 弦曲線, 波 的 上下分 總 和。 我

第 八 章 倫 琴 射 線

光 的 世 界

列: 在 F 的 各 Oa, 波, Ob, 比 在 上 等, 的 各 波 落 起, 後 距 雛 MN. 這 些 波 可 量, 以 加 起 來; 例 號, 如、 沿 着 圖 百 零 六 量, 所 示 的 縱 線,

號。 這 些 量 的 總 和, 通 常 總

我

們

可

以

把

Oc

等

加

在

水

平

線

Lt.

方

的

各

給

它

們

正

水

4

線

下

方

的

各

給

它

們

負

是 零, 因 爲 它 們 在 水 平 線

線 以 F 的 機 會 樣 多, 而

以

上

的

機

會,

正

與

在

水

平

且 它 們 全 體 的 總 數, 共 計

好 幾 百 萬 個, 所 以 可 在 其

中 直 求 得 到 極 切 大 的 可 量 能 爲 的 此。 大 這 小,

句 話 的 意 思 是 說, 沒 有 被

反

射

的

光

東:

它

的

各

成

分,

都

已互

相

毀

滅了對

於

這

條定

則,

祇

有

們

例

外。

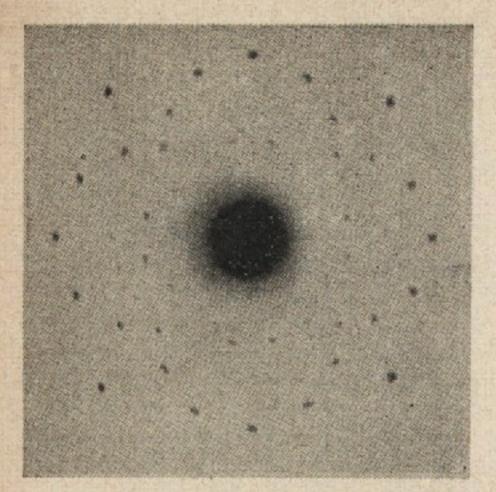
假

使落後

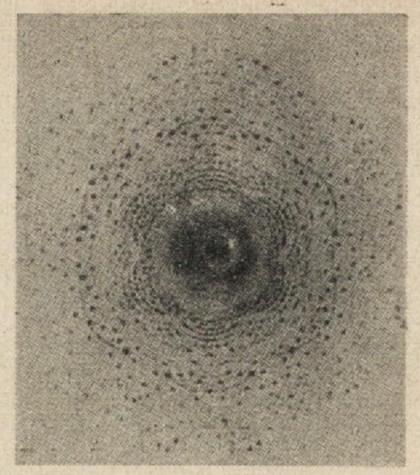
的

距

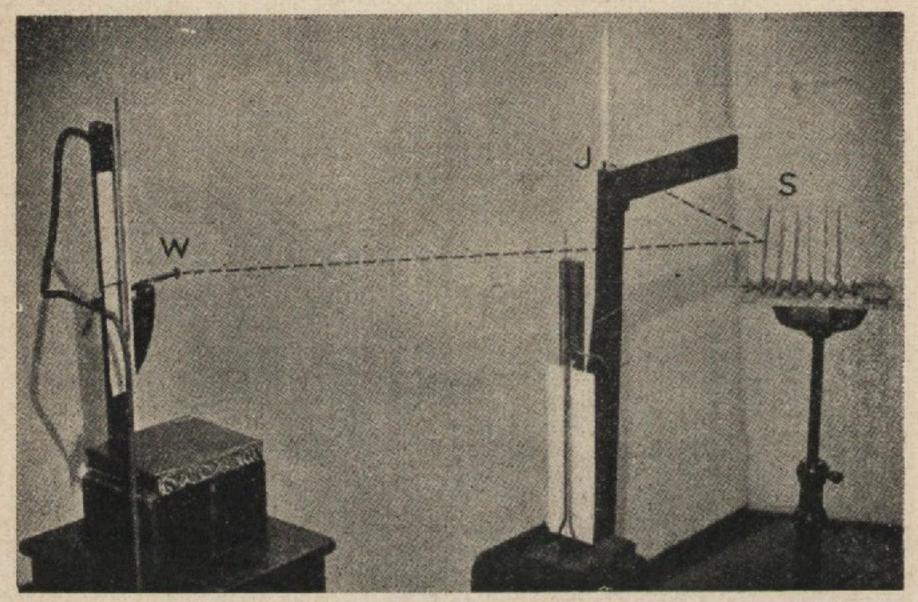
離,


恰

等

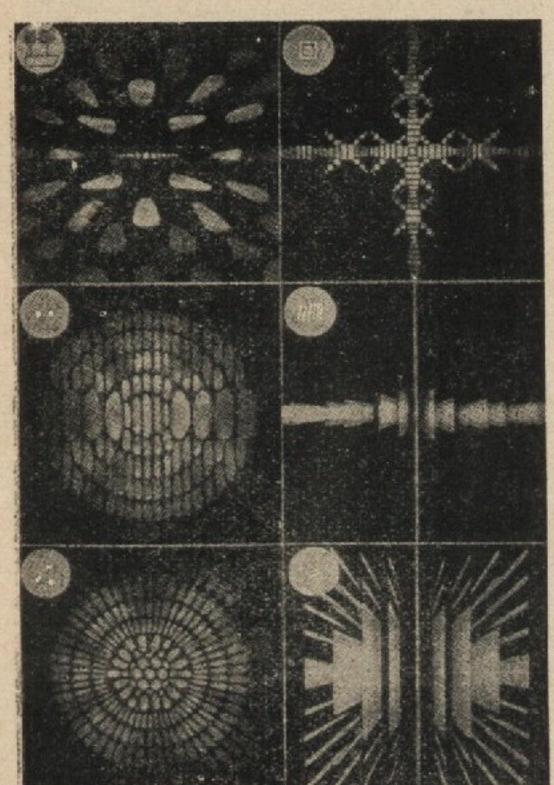

此圖表示圖一百零五中的 (圖一百零六) 各反射波, 假使全體不完全同位相, 那麼各 波加起來就等於零。oa+ob+oc+ ··· 這一 個數量是零, 因為在必須加起來的幾百萬項之 中, 正項與頁項的項放是相等的。除非各反射 波的位相都同, 即一組波的波峯, 恰在其余各 組波的波峯之上或下(就本圖而論),在這時 候,方纔沒有這種等於零的情形。

九 四


銅版圖二十二


A. 岩鹽的 X 射線繞射光譜 (參閱第二八五頁)。

B Kaliophil te 的 X射線繞射光譜(參閱第二八五頁)。(班尼斯德(Bannister)所攝)。



C. 此照相所示者,是雷理爵士實驗所用的器具,見本書第二九六至七頁。叫子在 W 地方,一組紗屏在 S 處,而發光氣體在 J。 處線約略表示聲波影響到氣注的路徑 從這照相看來,知道這時候沒有聲音,或屏(見圖中右側)的地位不適當,以致它們所反射的聲波,不能够互相加強。J 處的噴口,因為形式奇特,所以從 W 直接傳到 J 的聲波,不會使靈燄受到影響。當紗屏的間隔,長短適宜的時候,火燄就會伸絡搖擺起來。

A. 表示金剛石結構的模型。 每一個黑球,代表一個碳原子, 不過所表示者是各原子相對的 位置,並不是形式和大小 相鄰 雨原子中心的距離,等於 1·54 埃(一埃等於一盤米的一萬萬 分之一)(參閱第二九九頁)。

B. 硬脂酸晶體分子的拼列 狀況。每一排鋸齒狀的圓點羣, 代表單獨一個分子 裏的 碳原 子。相鄰兩個碳原子的中心,距 離等於 1·51 埃, 與金剛石相 同。 A 與 B 這兩個模型,其製 造所據的比例尺不同。 氫原子 圖中未示 (參閱第二九九頁)。

C. 夫牢因和斐(Freun-höfər)所攝的一組光學繞射光譜,採自古禮銘所著自然之力一書。就每一光譜而論,光的繞射,都是含有羽毛一部分的解所致。原圖是有彩色的,但是在這複製的照相裏面,顏色的差別卻沒有表示出來。這些光學光譜。可與銅版圖二十二 A、B 的 X 射線光譜,互相比較(參閱第二八五頁)。

於 波 長或二 波 長或三 波 長或 波長 的 任 何 整倍 量, 以 至 於 圖 百 零 六中所 示 的各 正 弦 曲 線, 彼

此 上下 恰 恰 相 對, 那 麽它 們 全 體 的 總 和1, 就 剛 剛 等 於 其 中 __ 量 的 倍 量, imi 且因為 乘數很大之 故, 所

以 反 射 作 用 也 很 大被 反 射 的 能 量, 當 然 决 不能 比 入射 的 能 量 來 得 大但是 由計 算, 卻知道 在反 射

角 兩 側 的 極 小 範 圍 之 内, 反 射 是 完 全 的。

落 後 的 多 少, 看 兩 種 數量 ımi 定, 種 是 入 射 光 線 射 在晶 體 表 面 上 的角度還有一種 是 各層 的

間 隔。 假 使 入 射 光 線 差 不 多 與 品 體 表 面 垂 直, 那 麼 落 後 就 等 於 相 鄰 二層 間 距 離 的 兩 倍; 這 是 落 後

的 極 大 值。 人 射 的 光 線 愈 偏 斜, 落 後 愈 小; 斜 到 差不 多 掠 人 表 面, 落 後 就 變得很 小很 小了所 以 祇 要

波 長 不 十分大必, 然 常有 某特 别 人 射角, 光 線 依 此 角入 射 時, 其 落 後 恰等 於一波長或, 竟 等 於 幾 波

長: mi 反 射 光 線 也 依 此 角 跳出 來, 很 強 烈 的 跳 出 來。

假 使 原 來 的 射線, 祇 有 種 波長, 那麽 我 們 必 須 把 晶 體 旋 轉, 直 到 入射角度等於適當 的 數 値

而 假 使 入 射 角 有 固 定 之 值, 那 麽 我 們 可 把 混 合 的 射 線 柱, 投 射 於 晶 體 之 上以得 反 射 作 用, 因 爲

波 長 旣 然 不 北 種, 自 有適合 的 射 線, 被 選 作 反射之用 而 其 餘 合 格 的, 173 舊 通 過已故雷 理 爵

有 次 在 皇家 學 院 演 講, 曾 表 示 過 聲 學 方 面 的 種 相 類 的 實 因 爲 實 驗中各數量的大 小遠 比

X 射 線 來得 大, 所 以 對 於 體 會 X 射 線 的 情 形, 颇 有 稗 益。 雷 理 實 驗 時, 用 晋 調 極高 的 叫 子一隻 所

鳥 笛 的 便是)發出 很 短 的 聲 波 來。 這 些 波 的 長 度, 祇 不過 英 寸 左右, 比尋常說話的 聲 波 短 得

多, 然 IMI 比 起 X 射 線 的 以 太 波 班, 卻 還 要 大 上 這 麽 好 幾 萬 萬 倍。 所 發 純 香 之高, 有 許多人的 耳 朵

够 聽 得 見, 尤 其 是 老 年 人 的 耳 朵, 更 聽 不 見。 另 蠳 紗 屏 多 少 座, 每 屏 大約一英日 尺見方把它 們 平 行

變 排 成 就 串, 插· 我 們 在一個 現 在 的 菱 目 形 的 網 而 眼 論, 這 活 動 些 紗 架 上,此 屏, मि 架可 以 把 以 它 拉 們 長可 看 做 以 相 縮 當 於 短, 圖 因 丽 各紗屏 百 零 五的各層每一紗 的 間隔, 長程 也可 屏, 以

以 把 入 射 的 聲 波, 反 射 其 _ 小 部 分, 但 是 卻 讓 大 部 分 透 過 去。

現 在 假 使 照銅 版圖二 十二 C 所 示 的樣 子, 把 叫 子 與 紗 解 布 置 好, 那麼叫一 子 所 發的聲 波, 就

以 被 紗 解 反 射。 反 射 的 聲 香, 如 果 是 有 的 話, 很 容 易 查 察 出 來, 祇 要 借 用 「靈燄」好了這 靈 燄 是

到 發 閃 光 的 地 步在這一 種 環 境之下高音 調的 聲波可, 以 使這火燄 仰 縮閃動俯仰生姿煞是奇觀之

到

巨

大

壓

力,

從

絀

是

的

管

子,

經

過

窄

小

的

噴

口

噴

出

管

外

的

發

光

氣

注。

壓

力

可

加

以

調

節,

使

火

燄

恰

至。這 效 應 的 直 接 的 原因便是 聲 波 裏 面 的 壓 力高 低 變 化得 很 快 之 故靈燄的 地位務須適宜合 度,

使 它 恰 能 把 或 有 的 反 射聲 波, 查 察 出 來, 叉 要用 屏 遮 住 它, 使 它 不 受鳥 笛 的 任 何 直 接 作 用。

假 便借 菱 形 網 眼 活 動 架 的 進 退 自 如, 而 把 各 紗屏 間 的 距 離, 漸 漸 粉錢 續 改變, 那麽 靈 焰 就 有 時

閃 動, 有 時 의 靜, 相 間 相繼。 這 種效應與我 們 剛 綫 所 說 的 X 射線 效 應, 理 由 相 同。 假 使 鰄 燄 閃 動 不 安,

就 表 示 從 各 屏 陸 續 而 來 的 反 射, 共 同 協 助; 此 項 現 象 的 發 生, 就 因 爲 各 屏 的 間 隔, 恰恰 調 節 到 適 當

地 步, 使 這 一次 反 射 落 後 於 那一 次反 射, 恰 是 波 長 的 整 倍量。

雷 理 做 這 類 似的實 驗, 其目 的 在 於 解 釋 氯酸鉀品 體 何 以 呈 現 光 明 燦 爛 的 顏 色。這 些晶 體, 具

有 奇 特 的 楷 造, 其 所 由 組 成 的 各 層, 錯 綜 相 間, 而 此 項 結 晶 的 材 料, 其 不 同 之 處, 祇 在 於它 們 結 晶 軸

的 隔, 取 向 有 異能 了各 倍。 層的厚 度比了! 小與可 紗 屏 的 間 隔, 要 小 好幾千 級。 倍, 但 形, 是 比 晶體單位所 可 同 排成 的 理 的 論 各 來 層 說 明。 的

間 還 我 們 大 還 好 有 幾 千 點, 須 它 得 的 大 考 究一 下, 纔 見 能 之 够 光 的 知 道勞厄實 波長 同 驗 這 三 的 可 種 貴。 情 我 們 都 必 須 以 牢 用 記, 晶 -體 的 可 以 被 分

成 平 行 各 層, 其 方 法不 止 種, 丽 有無限之多假定圖一 百 零七 所 代 表 的, 是 立 方晶 體內へ 儘 如 這

第八章 倫琴射線

樣 面。 說 各 單 位 的 排 列 情 泥: 用 這 種 圖 表 示 晶 體 結 構, 所 可 容 易 表 示 的, 不 過 是 4 行 於 本 圖 紙 張 的

反 截 射 作 我 用。 們 原 可 來 以 的 把 射 所 線 分 東必定 成 的 各 含有 層, 當 種 做 種 都 波 與 長, ab 其中 平 行, 有 而 那 就 適當 這 的, 組 將 平 經 行 精 層 選 而 論, 而 對 依 Y 於 方 X 向 射 線 被 將 反 射, 有 反 部 射 分

的各波其彼此的

落後等於波長落:

後的多少視各層

而定這是我們早的間隔與入射角

巳說過的了。

(圖一百零七) 各黑點代表立方晶體的單位。本圖與真正大小的比,約為一億與一之比。用 X 表示的方向。是 X 射線 八入射方向。在 Y 方向內的反射,由平行於 a b 的平面所致;在 Z 方向內的反射,由平行於 c d 的平面所致。此外還有別的方向內,也起反射作用,圖中未能一一指示。

向 發 出 生, 去, 其 這 而在 晶 角 度與 體 又可 照 相乾 前 並 以 片上又留下了一個 分 不 成 相 另 同, 外 而 且 組單 被 反 層, 射 黑 的 與 點。 波 、本 長, 圖 也 平 與 面 前 的 交線, 種 相 平 行 異。 這 於 cd. 道 就 被 這 反 _ 射 種 的 情 射 形 線, ımi 依 論, Z 反 的 射

方

的

所 以 有許多 被反射 的射 線同時 射出而在照相乾片上各自 留下它 的 即 象。 使晶 體 是 個

立 方, 而 入 射 線 與 一 稜 平 行, 那 麽 所 造 成 的 圖 案, 將 依 互 相 垂 直 的 二直 線 成 功 對 稱, 加 銅 版 圖

二 = A 所 示。 在 另外一 方 面 說 來, 假 使這 品 體 是正六 角 形, 那 麼 我 們 就 得一個六 邊 的 圖 案, 如 銅

版 圖 二十 _ B所 示我 們 由 觀 察 而 得 的 結 果, 及 由 計 算 而 有 的 預 料, 其 間 儿 是 符 合 之 處, 都 完 全

無 缺 所 以 基 本 的 假 說, 顯 然 沒 有錯 誤。 要說X射線 也是以太波, 其 理 由 與 說 光 的 本 身是 以 太 波, 正

復相同。

銅 版 圖 二十 二所 示勞厄 照 相 的二 例, 彼 此 相 差 很 大: 由 這 種 差 别, 可 見 這 _ 類 的 照 相, 是 五 花

八 各 各 不同。 每 種 品體, 都 有它自己所簽的 花 押。 有些情 形 而 論, 從 品體 所 特繪 的 圖 畫, 很 容

易 推 知 它 的 結 構。 但是 再 就 别 的 情 形 而 說, 做 成 功 這 件 事 情, 卻 很 困 難: 以 現 在 的 I 具 與 技 術, 所 不

能 勝 任 的, 例 子 JE. 還 多 得 很。 因 爲 凡 是固 體 物 質, 都 含有 部 分 的 晶 體, 叉 因 爲 其 中 有 許 許 多 多, 全

體 JHE. 數 品 體 聚 集而成, 所以 我 們 立 可 領 悟, 對 於晶 體 結 構 所 具 的 知 識, 往往 叫 藉 以 解 釋 該 物 質

的 各 項 特 性。 銅 版 圖 + 三 A 興 B是本 書 所略 舉 的二 例 不 過這 個 問 題, 要 在這裏 詳 細 討 論, 為

光

MOC

篇 幅 所 不 許, 其 實 是不 可 能, 因 爲 目下 這 問 題 的 進 展一日千 里, 以 至 於 須 用盈篇累牘的文章纔 能

够 說 明 它 的合 理 的 原因。 我 們 知道了 X射線可 以 看 做 以 太 波, 業 經 證 明 無 誤, 也 就 非滿足不 可

放 射 質 所 發 的 幾 種 射 線, 要把 它 們 同 歸 於 以 太 波 這 ____ 類, 也 很 容 易這 些射 線, 做 ツ射 線。 有

人 勞 厄 的 實 驗, mi 對 於這 問 題作 初 次 的發展之後馬 L 义 有 人證 明, ク射 線也可以被岩鹽 的 晶

所 反 射, 情 形 正與 X 射 線 完全 相 同。 假 使X 射 線 是以 太 波, 那 麼 射 線 必 定 也是以太 波。 後 者 的

透 射 本 領, 更比X射線 來得 大它們可 以 透過 幾英 寸 厚 的 鉛 板, 而 H. 還可 以保持原來強 度的一大

部分。

在 這 些 階 級 的 另 端, 便 是 廣 播 所 用 的 以 太 波。 這 些 波 是 用 電 機 產 生 的當 馬 士滅計 算 此 種

就 波 假 的 定 速 光 度, 是一 mi 發 種 見 電 興 磁 光 擾 的 動, 速 度 由 此 相 假定引, 等 之 時, 起了許 卽 巴 舒 多計 明 它 算, 們 這 的 些計 本 性, 算, 前 都 光 世 的 經 本 有 性 實驗證 相同。 自 從 明 無 那 個 誤。 時 候 起,

所 以 總 而言 之, 我 們 覺 得 我 們 已 能 觀 察 的 以 太 波, 其 波 長 的 相 差, 很 大 很 大。 我 們 開 始 從 無 線

電 作 所 用 的 長 波 說 起這些波是用電 力產生的長 的 有 好 幾百 米。 把發電機的尺寸縮小我們可

線 電 波, 由 此 以下有 _ 段缺口為了 學 術 上 的 理 曲, 要 把 此 缺 口 塡 補, 殊 威棘 手但是? 我 們 再 把 斷 線 無

檢 起, 與 前 遙 相 啣 接, 仍 循 此 線 貫 im 下, 就 到了 所 謂 紅 外 線 的 振 動 的 地 界, 在這 裏 的 波 長, 祇 有

釐 米 的 萬 分之 幾。 於 是 往下 就入 於可 見 的 範 圍, 我 們 對 於 這 個 鮠 圍 所 有 的 知 識,當 然 比 其 餘 多

這 個 範 圍十分狹 小因為 極端 的 紅色其波 長 比一 釐 米 的一萬 分 之一還小一些而 極 端 的 靑

色, 波 長 約 等 於 此 數 的 __ 半。 我 們 n 以 說, 全 部範 圍, 成 功 個 倍 頻 程。 其 次 就 是紫外 線, 這 個 名 詞

的 意 義, 迪 常 指 恰 在可 見 範 圍 以 外 的 波 長, -直 到 尙 未 確 定 的 數 值, 讓 我 們姑 且說, 到一釐 米 的 +

萬 分 之 幾,再 下去 的區域, 又很 難探 悉在這 區 域 裏 面 的 射 線, 被 大 氣 大量 吸 收, 因而一切 研 究工 作,

必 須 在 眞 空 裏 面 實 行。 要 渡 過這 個 缺 口 以 達 彼 岸 的 X 射 線, 向 認 爲 非 常 困 難: 然 而 在 近 死 這 幾

中, 此 項 任 務, 卻 已 大 功告 成。 在 X 射 線 區 域 内工 作 叉 變得 容 易 了: 再 下去 就 到 γ射 線, 其 透 射

力 漸 漸 增 加, 最後或 許 就 是所謂 宇 宙射線 據 說 此 種 射 線, 來 自 空 間, 透射 力異 常 強 大, 而 且 與

ク射 線 似乎 同 宗。 爲 便 於 說 明 起 見我 們 可 把這 幾種 射 線 的 大小 排 列 成 一張 表同時 再 添 入幾 種

別 的 數 量, 以 作 比 較。

以 太 波 的 鮠 圍, 我 們 已 綜 覽 其 全 部, 而 得 其 概 况。 現 在 我 們 可 神 1 測 定 波 長 的 方 法, 稍 稍 說

說,

以 作 此 章 線, 的 結 直 束。 這 在 些 繞 方 射 法 之 中, 栅 多 上, 半 如 圖 靠 着 + 繞 九 射 所 光 棚 示, 那 的 麽 利 繞 用, 射 我 光 們 英 在 第 就 四 向 章 左 右 的 兩 末 了, 側 散 巴 開: 經 提 這 些 過 了。 光 束 假

使 與 原 _ 道 光 光 線 的 方 垂 向 射 所 成 之 角, 光 要 看 波 長 與 光 棚 條 紋 間 的 距 既能 之 比 rm 定, 當 光 柵 在 劃 線 機 中 割 線 的

時 候, 每 釐 米 中 川 劃 多 少 線, 全 覛 該 機 動 作 部 分 的 排 列 而 定, 因 而 這 是 個 知 道 的 數 目。 所 以

當

遭 角 度 經 測 定 之 後, 波 長 的 計 算, 就 很 容 易 了。

以 Z 鉛筆的 直徑,來代這 一級物體的大小。在零以 上的一格上,我們放一個 大小約十釐米的物體;一 手的寬度,差不多可以代 表。再上去一格的。體, 長約一百釐米,例如小的 傢具。街道的寬,可以代 表一千釐米; 塔的高,可 以代表一萬釐米,或一百 米; 再上去的各種長度, 見左表不贅。在零下的一

格上,可放一毫米的物

體,例如一張紙片;於是

再下來到一莖頭髮 的 粗

細,其餘見左表不贅。微

住物 在零下第三格與第

匹格,其大小不等 分子

差不多在第八格上。縱線

的左侧,用同一排列大小

的方法,表示種種的波

長。距離也有用數目表示

的。例如太陽的距離,是

十五兆釐米,或者用 記號

氯成 1.5×1013。所以把

它寫在第十三格以上。

此表所示者,是我們觀

察其測量的各種物體,其

大小的比較。這表好像一

只書架,架上放着各種大

小物體的樣品,由極大以

至極小。在中央的一格

上, 我們用零做標記,我

們用一釐米的長度單位,

最近的恆星 17 16 15 14 (1.5 × 1013) 太陽的距離 13 12 11 月球的距離 (4×10¹⁰) 10 地球的直徑 (1.3×10°) 9 8 7 6 公里(一條長街) 塔的高度 無線電波 街的宽度 · 椅子的長 米·鉛筆的直徑 0 紙片的厚度 頭髮的直徑 微生物 紅外波可見波 5 6 7 X射線8 7射線 10 宇宙射線 .11 12

長, 不 過 紅 這 外 件 線 事 與 紫 情 最 外 近 線 纔 的 得 波 成 長, 功。 也 第 可 以 次 應 测量X射 用 光 柮 法 線 來 的 測 波 定。 長, 連 利 X 射 用晶體做 線, 也可 以用這 繞射光 栅, 方法測定它 而以 此為 測 的

三〇三

量

波

的 根 據。 簡 單 的 品 體, 像 岩 鹽 或方 解 石 之類, 其 結 構 經 知 曉 之後, 品體圖案重複的距 離,馬 上就可

以 算 出 來。 原 子 的 重 量, 從 化 學 與 物 理 學 兩 方 面 加 以 考 究, 是 測 得 非 常 精 確 的 了現在 叉 知 道了

晶 體 中 原 子 的 排 列 狀 泥, 各 原 子 的 間 隔, 當 然 也 可 以 測 定。 例 如 就 岩 鹽 而論, 它的原 子是 依 直 行 排

列 的: 立 方 釐 米 的 岩 鹽, 它 的 重 量 可 以 衡 定鈉 原 子與 氯 原 子 的 重量, 也都是已知數從這幾個 數

字, 品 體 各 層 的 間 隔, 就 可 以 照 式 推 算。 X 射 線 束 由 品 體 的 反 射, 若 加 以 觀 察(如圖一百零五 所示,

其 反 射 角 岩 加 以 測 定, 那 麽 X 射 線 的 波 長, 就 變 成 巴 知 數 了, 至 於 這 些測 量的詳 細說明另 見專書,

此處不能盡述。

更 近 的 時 候, X 射 線 的 繞 射 作 用, 巴 能 用 平 常 的 光 柵, 加 以 觀 察。 此實驗入射 角必須 很 大, 卽

人 射 線 必 須 極 偏 斜, 因爲 人 造 光 柵 的 間 隔, 與 波 長 的 相 差 很 大 之 故。 我 們 總還記得這種實 驗以 前

似 乎 覺 得 太 難, 因 而 未 曾 嘗 試, 勞 厄 的 提 議 利 用 品 體, 就 爲 這 個 緣 故。 然 mX 射 線 完全 與 光 同 宗

的 證 明, 以 及 測 量 波 長 的 重 要, 卻 自 然 而 然 的 鼓 勵 我 們 再 加 嘗 試, 終 究 得 告成 功。 這 種 新 的 方 法, 比

利 用 品 體 的 方 法, 有 更為 準 確的 可 能 性。 新法 比 舊 法 當 然 更 直 接 些不過用晶體的方法有一點

值得加以 注意即 X 射線 的各 種 波長彼此 相比以及品體 間 隔 的 彼此相比其準確的程度遠勝於

二者與標準長度相比較。

ク射 線 的 波長, 也可 以 借品體 的 幫助而 求得現在祇 剩 下 無 線電長波的測定方法尚未說 及。

這 些 波 的長 度可從 觀察 頻 率 丽 求得 即可 從其每 秒 振 動 數 推 算 以太波的一般速度是已經 知道

的所以從頻率即可推算它的波長。

第九章 波與微粒

在 前 章 裏 面, 我們 巴 經 知 道, 有 範 圍 很 廣 的各 種 以 太 波, 则 供 我 們實 驗時任意取用。 其 中 有

幾 種 在 很 狹窄 的範 圍 一之內我 們 的 眼 睛 可 以 看 見它 們: 除 此 以 外, म् 由它們對於照相乾片的作 用,

而 把 它 們 查 察 出 來。 極 長 的 無 線 電 波, 可 藉 幾 種 電 器 的 組 合, 所 謂 無 線電 收 音 機 的 幫助, 而 給 我 們

咸 覺 到。 現 在 我 們急須 把 其 他 檢 查以 太波 的 方 法, 加 以 考 究 如 下:

我 們 把 光當 做以 太 内 的一 種 波 動, 是由 光 所 特 具 的 現 象, 惹 起 我 們作 如是想 的這種 現 象, 在

輻 射 的 全 部 範 開 之內, 到 處 呈 露: 尤其 是 繞 射 現 象, 更 為 普 及這 種 現 象, 我 們 巴 經 大 大 的 利 用 過

我 可 以 預 期, 任何 别 的 現 象, 我 們若 可 以發 見 有一 種 品品 性 的 輻 射, 使此 項 現象呈露那麽 其 餘 的

一切輻射也必顯示此種現象。

有 種 很 特 殊 的 現 象, 由 波 長 最 短 的 輻 射, 表 現 得 非 常 顯 著; 長 波 也表現這種現象不過可

觀

察 的 程 度差一些 這便是所謂 光 電效應就 這一 點 而 論, 幫助了 我 們 很久的 波動說, 竟不能提 議 任

何 解 釋 而 實以及 告 失 敗。 表 示 我 們 的 波 動 假 說, 並. 不 完 實。 全, mi 且 使 我 們 年, 的 物 理 學, 目下 議以爲 處 於 奇 特 之 境 者, 就

棄 置 得 太急了。

是這

件

事

與

這

有連

帶

關

係

的

其

他

事

在一

九〇

五

愛因斯

坦就

提

光

的

微

粒

光 電 效應

因 也 包 此 描 括 有 這 寫 些射 光 光 電 電 線 效 效應是很容易 所 應 引 這 起 的 _ 個 這 名詞: 的 種 效應。 事 情。 因 爲 叉 因 射 X 射 在任 爲 線 就 一何實質 這 與 兩種 タ射 的 射 線, 物 線 也 可 體 而 論, 以 電子 歸 它 就 人 的發射是 使該物體的原子發射電 光 的一類, 極顯著 所 以這 的 -個 事 名 情, 詞, 旣

容 易 觀 察, 又容 易 測 定, 所以 借 這 些 短 波 的 幫 助, 來 研 究 這 種 效 應,手 續 比 較 簡 單 一些有一 點 我

們 可 加 以 注 意, 卽 此 種 效 應, 從 這 _ 波 長 到 另 1 波 長, 仍 機 續 表 現: 在 X 射 線 倘 未 發 見以 前, 曾 用 可

見 光 線 研 究 過 這 種 效 應, 現在 一不用可 見光 線而 用 短 波, 其 故 不 過 是爲了 研 究起 來容易得多 能了。

局

概

泡 中 况, 外 產 最 的 生 容 對 易 X 情 於 射 的 這 况。 方 線 開 法, 種 或 始, 現 許 象, 然 要 是 後 綜 先 再 觀 研 從 究 其 X 它 射 全

透

出

線

泡

玻 眞 璃 空 容 做 X 射 的; 器 線 本 管 身, 此 兩 或 器 個 泡 至 的 金 少有 要 屬 素 導 體, 有 部 兩 是 分 種: 陰 是 極, 用

這 種 出 察 去

來,

好

像

水

從

噴

裏

面

注

射

出

來

般。

過

幾

種

了。

有

股

電

子

流,

從

陰

極。

抛

射

之

後,

所

發

生

的

放

電

現

象,

我

們

早

巴

觀

管

子

裏

面,

當

管

中

的

空

氣,

巴

經

大

部

抽

是

陽

極,

或

對

陰

極、

或

靶、

或

陽

。能

在

這

(圖一百零八) 這一個圖與九十六、 九十七、九十八、九十九各圖一樣,也是 一八七九年克魯克斯在皇家學院演講 時, 用以說明的木刻原圖 此圖中所示 者,是玻璃吹成的一個泡;陰極在這玻 璃球的底部:頂上有一個陽極,但是它 的位置不論在何處; 無關緊要。靶是鉑 線 b 做成的: 這靶也可以當作陽極用。 杯状的陰極,使電流集中,打在靶上。照 克魯克斯說:「鉑線非但到白熱的地步, 你們還可以看見電花從鉑線向各方进 出去,足以表示它實際上正在熔化」。這 一個實驗,是用以說明熱的發揚的。在一 彼時尚未知道鉑線正在輻射 X 射線, 此後歷二十年,倫琴始發見了它。圖中 所示的玻璃球, 約高二英寸。

股 論 原 因 在 這 L 電 電 子 俾 何 的 氣 處它 子 電 可 麼 股 體 子 電 與 克 他 分子, 魯 流 使 東 流 荷, 路 第九章 的 在 極 受 電 並 依 時 的 西。 克 其 細 那 一定 不 因 完 子 直 此 候, 作 的 個 斯 外它 流 爲 加 線 用 成, 發 時 假 此 波與微粒 打 以 而運 比 電 候, 定 對 光 的 必 較 在 注 所 制 須 線 子 這 於 必 意; 靶 撞 動, 限以 它 束。 有 射 的 流 須 上。 賴 擊 但 可 粗 爲 線 的 由 笨 是 及 使 於 實 的 保持 以 形 流, 得 它 可 中 用 地 --驗, 式, 看 是 靶 用 直 多, 的。 的 方, 陰 見, 可 更 他 不 磁 所 它 陽 做 鄙推 有 因 極 知 的 論 以 陽 石 管 爲 必 極, 開 直 發 觀 陰 陰 使 須 在 飛 看 極, 念而 接 子 出 它 極, 何 把 極 那 與 行 起 的 來 來似乎 麽 偏 陽 處, 的 射 影 陰 與 的 總 電 向: 電 極 線 正 直 人 輻 它 透 分 在 有 流 爭 的 子, 射 X射 具 給 在 製 與 過 裏 形 辯, 物 造 有 氣 玻 面 那 那 狀, 質 因 管子 電子 機 線 璃 兒 爲 對 體 可 所 械 輻 於它 管, 作 以 分 構 發 壁 的 自 射 的 子 都 聯 見了下面 成 效 碰 己 時 出 是 上 的 絡 的。 應, 電 恢, 來。 撞 最 表 觀, 形 但是實 堪 陰 而 式, 就 之 現 路 大有影響: 極 且 的 故。 注 必 的 的 加熱於 速度它, 須 線 這時 意 原 現 象即此 的事 子 際上它決 流, 將 興 靶 對 候 它所 於陽 分子; 放 而積 情當 們 電 在 並 陰極射線若 子

聚

於管

壁

流

的

徑

跡,

管

內

有

少

沒

有

得

到。

不

過

這

些

不

能

如

此,

適

當

的

地

打

礟

的

不

極

的

地

位

打 擊 在管 壁 L 薄 的 地 方, 它 能 够 透 過 玻 璃, 冒 出 管 外, 射 到 空 氣裏 邊, 這 現象 在暗室裏面 隱約 可 見。

把 極 海 的 屏, 放 在 管 內 射 線 的 路 徑 之 中, 也 可 以 察 見 同一 的 透 射 作 用。 因 此 之故有人爭 以為 這 種

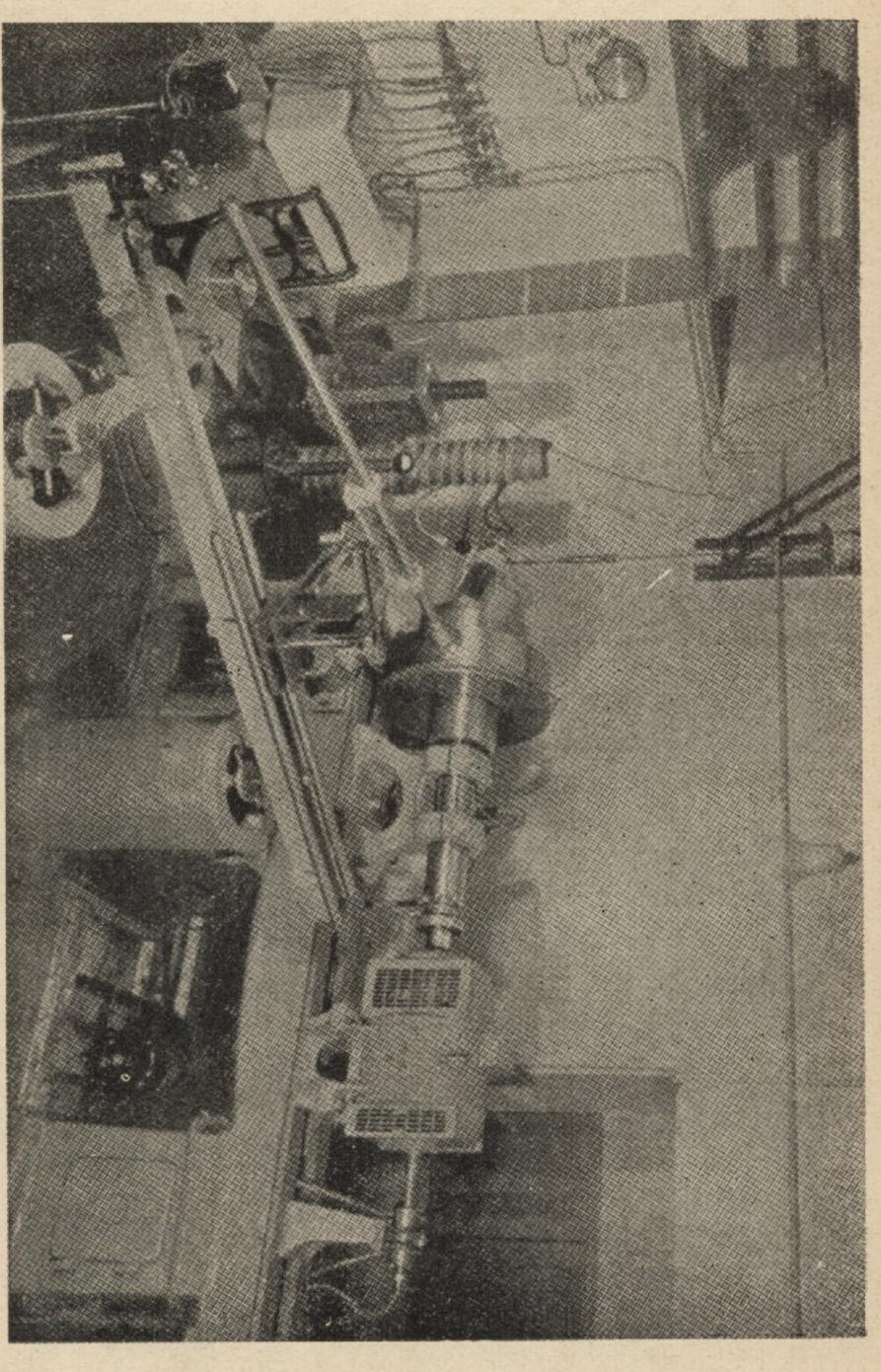
射 線 不 能 够 由 帶 有 負 電 荷 的 質 點 所 在, 如 克 魯 克 斯 的 想 像, 必 定 是 某 種 波 動, 在 那 個 時 恢, 大 家

並 不 以 爲 任 何 種 質 點, 可 依 直 線 透 過 物 質 的 薄 層, 不 論 薄 到 什 麽 地 步, 都不可 能。 然 而當 湯 姆 遜 證

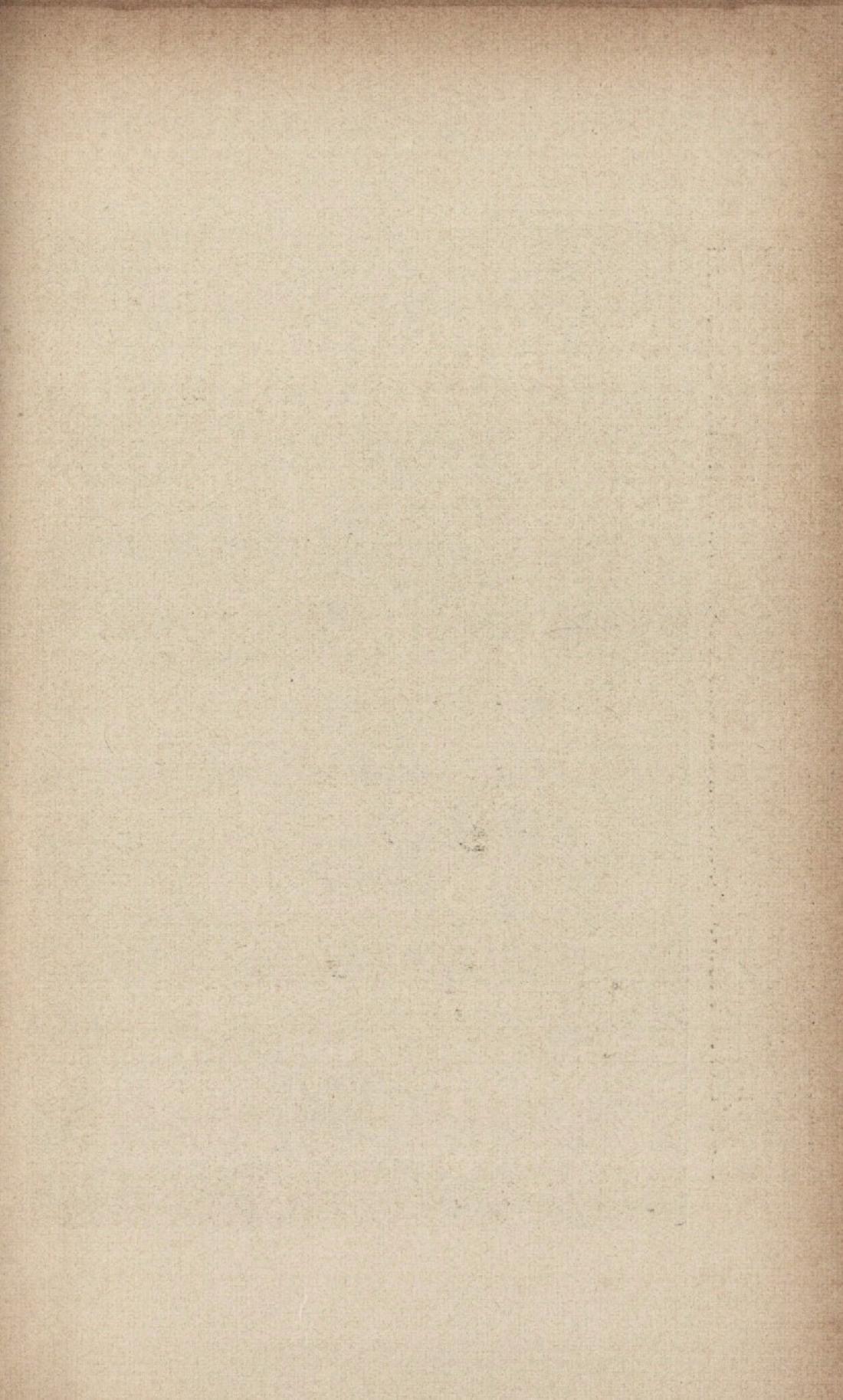
明 這 射 線 流 由 帶 有 負 電 的 微 粒 組 成之 時, 克 魯 克 斯 的 觀 念 完 全得到了辯護完全 正 確 無 誤;

我 此 處 用 微 粒 _ -語, 是 湯 姆 遜 最 初 的 說 法, 後 來 纔 叫 它 們 做 電 子。 姆 遜 遠 能 够 測 定 這 電

子 的 電 荷, 以 及 它 的 質 量, 並 且 證 明 在 _ 切 環 境 之下, 就 各 種 X 射 線 管 而 論, 電荷 與 質 量 都 相 同。 它


的 質 量 非 常 微 小: 以 前 大 家 -向 相 信 氫 原 子 是 世 界 上 最 小 的 質 點, 但 是 到 了 那 個 時 恢, 纔 知 道 它

比 電 子 還 大 _ 千 八 百 四 + 正 倍。 由 電 子 的 _ 致 性, 可 知 它 是 _ 切 原 子 的 基 本 成 分: 現 在 大家 都 已


知 道, 正 常 的 原 子, 可 以 說 它是一 個 原子 核, 與 若 干 電 子 所 組 成, 電 子 的 個 數, 適足以與原子 核 的 陽

電荷彼此相均衡。

電 子 從 陰 極 射 出 來 的 速 率, 以前 曾 用 電 磁 的 方 法, 加 以 决 定, mi 且 察見加於管上的電力愈

這是-裝於滑子上面, 遊在圖的中央稍下的地方(參閱第三-過左邊的細長管子,射到左下角的晶體架上。被反射的 X 射線,由一架照相器接收過來;這照相器 完全消散。車林左端有圓筒一個,靶卽在此圓筒之內。運轉靶的電動機,在車林的右端。 X 射線通 二十四磅,每分鐘旋轉二千次。由於此種運動,並由水冷的装置,可使陰極射線向靶撞擊而生的熱, 架機器,可以大量產生波長較大的X射線,以供晶體分析之用。它的靶是一大塊鋼,重二百

電 子 的 飛 行 愈 快這 原 是 意 料 中 的事 情要 說 得 更 正 確一 些必須 用 專門名詞十伏 特 的 電勢產 生

時 光 速 度百 速 率 分 與 之 光 速度就 -的 速 率: 相 差 一千 不 遠了。 伏 特 然 的 而 電 從十萬 勢,產 生 伏 差 特 不 起, 多 電 光 勢往 速 度 + 再增高, 分之 的 不 問 速 增高 率: 而 到 在 十萬 如 何 地 伏 步, 特 速 的

率 永 不 能 超 過 光 速度它依電 勢 的 增 加緩緩 達 於 最 後 的 數 值。

現 代 的 X 射 線管, 是設 計 極 細 密 的 _ 種 儀 器, 如 銅 版 圖 二 十 四 所 表 示 的 便是主要 的 部 分, 依

然 未 變, 但 是 由 經 驗 已經 知 道, 若 欲獲得 美滿 的 結 果, 設計 是十 分重 要。這 些細 微精妙 的 地 方我 們

在此處無庸加以深究了

其 次 我 們 必 須 考究 的, 是 X 射 線 的 如 何 發 源。 我 們 早 巴 說 過, 首 先 發 見有X射 線 存 在 的, 是 倫

首 先 表示它們從陰極射線撞擊管壁的一 點或從放在管 中 以 承受 這陰極射線的 靶 發 出 來

的, 也 是 倫 琴。 陰 椒 射 線 的 能, 有一 部 分 是 換 成 X 射 線 的 能 了。 這 電 流 的 能, 頗 有一 大 部 分 在 射 線

撞 擊 的 地 方, 變 成了 熱: 而 且 除 極 弱 的 管 子 以 外, 在 任 何 X 射 線 管 中, 假 使 讓 電 流 通 過不 停, 那 麽 所

發 熱 量, 足 以 把管 子 很 快 的穿一個 洞。 通常 所 用 的 靶, 總 是做 得 很 堅實、 很笨 重用原子量較高 的

金 屬, 例 如 鉑 或 鎢 製 成。 卽 使 用 如 此 堅 固 的 靶, 也 可 以 變 成 紅 熱,除 非 在 設 十 製 造管子 的 時 候, 把 水

冷的裝置包括進去。

不 問 X 射 線 是 什 麽 東 西, 我 們 現 在 可 以 自 己 想 像, 當 電 子 打 在靶上它就 從被打 的 地 方 射 出

來。 欲 求 它 們 的 方 向 與 強 度, 可 用 照 相 乾 片。 我 們 早 巴 說 過它 們 循 直 線連 動, 而 且 有 透射 的 本 領,

問 何 種 材 料, 它 們 遇 到了 就 透 過 去, 在 透射 的 時 候, 仍 依 直 線 進行, 這 兩 種 性質, 很 快 的 就 被 人 發 見。

它 們 的 透射 本 領, 還 附 得 與 它 們 的 產 牛 環 境, 有 連 帶 關 係, 環 境 變 動, 透射 本領隨着 大大變動。 陰 極

線 流 中 電 子 的 速 度 愈 大, 電 子 所 產 生 的 X 射 線, 其 透射 本 領 也 愈 強。 這 種 品 性, 還 多 少 有 賴 於 電 子

所 擊 的 靶 的 本 性。 製 靶 的金 屬, 其 原 子 量 愈 高, 則 在 -般 射 線 團 裏 面 具 有 透射力的X線射, 其 所 占

部 分 也 愈 大; 不 過 欲 從 任 何 靶 產 生 X 射 線, 原 子 的 飛 行 必 須 充 分 迅速。 醫 藥 Ł. 所 用 的 X 射 線 管, 通

常 總 是 用 鎢 製 成 的: 就 品 體 分 析 的 特 殊 情 形 而 論, 用 銅 或 鐵, 更 爲 普 通, 因 爲 所 需 要的是「軟 輻

射即透射力較弱的輻射。

在. 實 用 方 面 利 用 X 射 線管 的 人, 包括 藥劑 師 與 外 科醫 生 在 内, 他們 所 注意的便是這 種 透射

的 性 質。 取 _____ 個 簡 單 的 例 來 說, 太 軟 _ 的 射 線, 卽 透 射 本 領 太 小 的 射 線, 就 不 能够替外 科 醫 生, 攝

得 幅 有 用 的 斷 足 折 臂 的 照 相。 軟 的 X 射 線, 不 能 够 深 深 透 過 肌 肉若把 照 相 乾片放 在手 足 的

面, 以 備 承 受 這 X 射線, 肉 所 投 射 的影 子與骨所 投 射 的 差 不 多 _ 樣深 淡若把較高的電 勢,卽 伏 特

數 較 多 的 電 壓, 加 在 X 射 線 管 上, 那 麽 電 子 的 速 度 就 增 加, 而 射 線 的 透 射 本 領 也大了起 來: 此 時 肉

巴 不 投射 很 深 的 影 子, 祇有骨 的 影 子, 非常 明 顯, 在 較 淡 的 肉 影 裏 面極可 辨 認因為 骨 中 含 有 鈣

質, 以 及 其 他 重 的 原 子, 仍 舊 把 X 射 線 吸 收 得 很 多 之 故。 假 使 電 壓 太高了, ,那麼即 使是骨 頭, 也 不 能

充 分 遮 斷 X 射 線, 它 們 的 影 子, 也 要 變 得 很 淡 了。

由 晶 體 分析 法, 可 以 立 卽 證 明 X 射 線 的 透射 作 用, 直 接 倚 賴 其 波 長產生 X射線的電子, 增 加

其 速 度 所 得 的 效 果, 就 是 把它 們 所 生 的 X 射 線 的 波 長 縮 短。 假 使 陰 和这 線 流 的 強 度 增 加, 卽 每 秒 中

很 打 在 快。 靶 X 射 L 線 的 電 的 品品 子 性, 數, 換一 假 使 句 加 話 多, 那 說, X 麽 射 X 射 線 線 的 波 的 長, 強 完 度 全 也 不 增 倚 加。 靠 露 陰 在 極 這 線 射 流 線 裏 裏 面 面 的電子數只靠它們 的 照 相 乾 片, 黑 越 的

速 電 子 數 所 決 定 的 是 強 度 速 쬭 所 决 定 的 是 波

第九章 波與微粒

現 在 我 們 要 講 到 光 電 效 應 了。 凡 是 X 射 線 所 射 到 的 物 體, 都 因 此 把 電 子 排 斥 出 來它們 消 耗

它 各 們 原 的 子 分 能, 别 就 發 在 生 這 的。 Ŀ 這 面。 此 這 射 種 線, 效 祇 應, 把 並 原 不 子 是 對 _ 個 於 該 _ 個 物 體 的 處 的 理 全 部 ~ 竟 總 可 以 發 說 生 處 的, 理 卻 ·, 是 卻 對 不管 於 組 各 成 原 該 子 物 體 如 何 的

集 成 分 子, 各 分 子 如 何 集 成 固 體。 -道 X 射 線 流, 經 過 _ 個 現 成 的 電 子 時, 就 有 機 會對 該 原子 發 生

作 用, 而 使 它 排 斥 _ 個 電 子。 在 任 何 情 形 之 下, 這 是 -個 異 常 小 的 機 會; 假 使 各 射 線 竟 能 够 對 於 所

經 過 的 各 原 子, 都 是 如 此 的 話。 那 麽 它 們 的 能, 就 要 很 快 的 用 壶 了。 然 而 失 败 的 有 好 幾 千 萬 回, 成 功

的 卻 祇 有 _ 次。 不 過 這 機 會 無 論 其 大 小 如 何, 並 不 因 _ 個 原 子 旁 邊 附 有 别 個 原 子而有 所 更 變。

有 然 很 就 大 __ 切 的 關 波 長 係。 但 而 是 論, 就 不 X 都 是這 射 線 丽 樣 論, 的; 我 這 效 們 應 的 至 確 少可 熟 知 以 下 不 面 計。 這 件 關 事 於 化 實, 趣 卽 1 成 光 分 波 的 的 效 吸 應已 收, 經 興 找 化 到 學 幾 的 個 成 例 分,

子, 但 是 這 些 效 應 旣 很 稀 少, 义 很 微 小, 以 致 它 們 的 觀 察, 頗 感 困

移 到 同 假 使 _ 原 我 子 們 內 把 别 下 的 面 地 的 位以 情 形, 致 卽 排 X 斥作 射 線 用 對 未 於 能 原 完 子 全 的 的 作 情 用, 形, 使 電 也 包 子 括 從 在"排斥」一語之中, 其 所 在 原 子 內 本 來 那 的 麼 地 我 位, 們 遷

所 描 寫 的 X射 線 的 作 用實 際上是完全了X射線對 於實質 物 體, 是 沒有 其 他 的 效應了而且它 的

自 電 子 運 表 動, 現 彼 自 己 此 存 的 在, 情 形 也 沒 正 有 相 同當X 别 的 方 射 法 了, 線 X 落 射 於 線 銀 鹽 管 內 製 成 的 運 的 動 照 相 電 子, 乾 產 片 生 上 時, X 它 射 們 線, 就 現 使電 在 這 子 X 射 活 動 線 叉 起 來, 使

而 使 化 學 作 用 發 生, 成 爲 照 相 乾片 變 化 的 主 要 過 程 者, 就 是這 些活 動 的 電 子。當 它 們 透 人 人 體 之

爆炸無二。

中

時,

體

組

織

所受

的

作

用,

就

是被它

們

激

動

的

電

子

所

致。

此

時

人體

所

受

的

作

用,

宛

然

與

小

鎗

彈

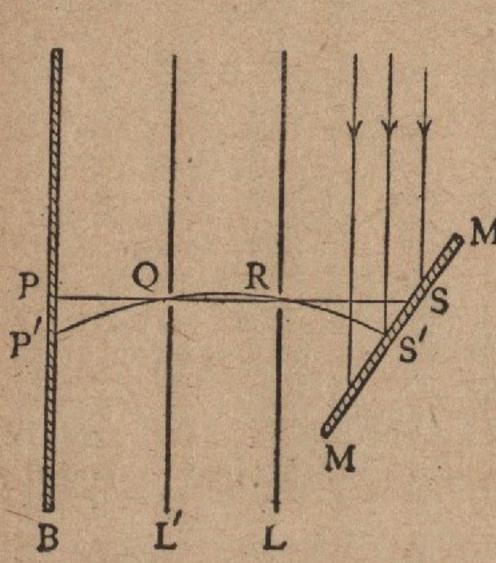
的

原 子 在 X 射 線 的 勢 力 之下, 排 斥 出 來 的 電 其

速 度 的 大 小 如 何, 這 _ 個 問 題, 也 是 一件 極 有 趣 味 的

情。 很 久 的時 候 以前, 曾 有 過 種 種 企 圖, 要 回 答 這 個

問題般納司(Innes)於一九〇七年首先發表了一


個 答 案。 他 所 用 的 方 法 很 簡 單, 敍 述 起 來 很 容 易。 如 圖

百 零 九 所 示, 他使 X 射 線 打在一 塊 板 MM 上, 板 用

第九章

波與微粒

三一五

(圖一百零九) 本圖所表示者,是殷納司實驗的主要原理。

種 材 料 製 成, 電 子 即 從 此 板 被 排 斥 愐 向 四 方 發 射。 有 屏 兩 座, L 與 L', 屏上各 穿 有 小 孔, 孔 在 Q 與

穿 過 這 兩 孔 的 電 子, 打 在 P 處 的 照 相 乾 片 上, 而 RQP 是 _ 條 直 線。 此 圖 所 表示的是各部分的 布 置 槪

况, 但 是 4 常 用 威 光 片 時 所 需 的一 應 器 具, 圖 中 並 未 畫 出。

須 知 在 飛行 中 的 電子 流, 可 用 磁 石 使它彎 曲, 這 是 我 們 早 已 講 過 的 了在實際上這路 徑 變 成

圓 形, 丽 電 子 流有 自己 循 環 的 趨 勢。 曲 的程度, 方 面 靠磁 石 的 強度他方面還有賴於電 的 載 連

者 所 負 的 電 荷, 以 及 它 的 速 度 與 質 量。 當 般 納 同 實 行 他 的 實 驗之 時, 電 子 的 電荷 胂 質 量, 巴 由 湯 姆

遜 加 以 測 定: 而就 現 在 這 情 形 說, 假 定 電 子 是載 連 者, 這 是 不 錯 的。 |般 納 可 把磁石 移近他 的 器 具,

是 到 曲 個 線 決 流 定 S 的 H 位 QP' 置。 現 了, 在 使 這 曲 照 線 相 乾 成 片 功 受 . 到 段 圓 效 應 弧。 般 而 納 現 司 黑 斑 由 的 於 觀 電 子 察 流已非 Q, R, 及 P 循直 的 線前 相 對 位 進的電子 置, 能 够 流, 找 到 卻

圓 的 华 徑。 他所 用磁 石 的 強 度, 他 是 知 道 的, 所 以 它 就能 够 計 算 餘 來的一個 未知量就是電 子 的

速度。

由 這 些 觀 察得 到了第 等重要 的 結 果。 據 發 見電子運動 的 速 度很高可與產生X射線 的 真

空 泡 中 電子 的 速 度互 相 比 擬。 這 速 度與X 射 線 的 強 度, 並 無 關 係: 這一件 事 實很容易證 明, 祇 要 把

這 實 馬競 再 做 _ 次, imi 使 MM 板 到 X射線管 的 距 離 變動 好 了。 卽 使 眞 空 泡 到 MM 板 的 距 離, 增 加到 八 倍,

變 以 動。 至 於 欲 落 在 在 照 板 相 乾 上 片上 的 X 得 射 可 線, 見 依 的 照 平 斑 點, 方 露 反 光 比 當 律, 降 然 必 低 須長 到 六 + 久一些不 四 分之 過這 的 時 與 射 候, 線 斑 點 P 流 中 的 的 電 地 位, 子 數當 也 沒 然 有

有 關 係, 電 子 愈、 少露 光 就 愈 須長人。 不 過 電 子 的 數 目 雖 然 減 少, 它 們 的 速度卻是不 變 的。

在 另 外 -方 面 說 來, X 射 線 泡 裹 面 的 電 子, 使它 飛 行 得 更 快 些, 因 有 透 射 力

量 的 時 候, 卽 見 此 實 驗 中 的 電 子 流, 其 速 度 也 變 得 更 快。

板 的 本 性 變 更, 也 發 生一些 差異, 但 是並 不 大。 提 高 原 子 量, 例 如 用 金 換 銀, 則 在一般 的 射 線

專 中, 就 有 更 快 的 電 子, 因 此 發 現。 在 實 際 上 說 來, 這 種 速 率 在 某 定範 圍 之內, 最快 的 速率 超 過 最

慢 約 在 百 分 之二十 左 右: 它 的 最 低限 度, 然 固 定 不 變, 但 是 最 高 限 度有時卻會提高一些這 應罷了。 種

殷 納 司 的 觀 察, 後 來 叉 經 旁 人 證 實, 並加 以 擴

觀

若

與

那

時

候

所

臆

測,

而

我

們

現

在

所

知

道

的

其

他

觀

察

相

比

較,

不

過是一

種

副

效

第 九章 波與微 粒

這 樣 看 來, 整 個 的 聯 合 現 象, 呈 現 了 比 較 簡 單 的 局 面。 起 初 是 電 子 在 X 射 線 管 內, 按 確 定 的 速

度 射 在 靶 上; 讓 我 們 姑 且 說 確 定 的 速 度, 其 實 要 把 這 速 度 限 制 於 狹 小 的 範 圍 之 内, 是 很 困 難 的。 第

由 X 射 線 的 居 間, 使 能 穿 過 管 壁, 遷 移 到 管 外 的 空 間 之 中。 最 後 步, 電 子叉 發 現, 其 運 動 的 速

度, 與 原 來 管 中 電 子 的 速 度 同 級 在 事 實 上 說 來, 决 不 會 那 麽 這 好 徽 是 ___ 股 水 流, 穿 入 地 中

不 見 之 後, 义 在 别 的 地 方 重 行 出 現: 不 過 我 們 當 然 不 能 够 假 定, 在 兩 種 情 形 之下 的 明 明 是 同 電

子。 我 們 對 於 水, 叫 以 放 _ 些 顏 料 下 去, 以 資 識 别; 對 於 電 子, 决 不 能 這 樣 幹。 射 線 管 與 MM 板 的 材 料, 實

驗 時 各 樣 用 具 的 排 列, 都 絕 鮮 關 係, 或 竟 沒 有 關 係。 我 們 起 初 有 的 電 子, 在 處 地 方 依 確 定 的 速

度 而 運 動, 而 我 們 最 後 有 的 也 是 電 子, 差 不 多 按 同 _ 速 度, 在 又一 處 地 方 運 動。

最 便 莫 如 想 像 全 部 過 程, 放 得 很 大 很 大, 因 爲 這 樣 _ 來, 我 們 對 於 電 子 與 原 子以及 此 實 驗 的

範 圍, 者 的 相 對 大 小, 就 可 得 到 __ 些 觀 念。 假 定 X 射 線 管 的 靶, 放 萬 萬 倍 -卽 _ 億 倍 而 與

月 於 平 球 常 可 以 狀 況下X 比 挺。 此 射 時 線 打 泡 在 到 靶 觀察 上 的 電 者 的 子, 距 仍 舊 離。 這 太 時 小, 候一 肉 眼 個 仍 原 看 子 不 的 見。 大 月 球 約 到 等 地 於一粒 球 的 距 櫻桃。 離, 現 代 在 表電 約 略 子 相 當 的

微 粒, 極 細 極 細, 細 到 不 能 看 見, 此 時 正 撒 和 胡 椒 末 般 的, 灑 在 月 球 上。 地 球 的 各 處,立 刻 也 有 相 似 的

微 粒 跳 出 來: 譬 如 說, 粒 從 南 美 洲 的 安 第 斯 (Andes) 山 頂 -塊 石 頭 惠 面 跳出 來, 其 次一 粒 從 印

度 變, 洋 顯 然 的 是 ___ 各 滴 不 水 相 中 關, 躍 彼 出, 叉 此 其 獨 立。 次 然 _ 粒 mi 射 從 向 英 月 國 球 樹 的 林 微 中 粒, --片 不 論 葉 其 子 速 上 率 跳 出 如 何, 去, 這 諸 些 如 第二次發 此 類。 這 連 出 續 的 發 微 生 粒, 的 事 卻

具 有 相 似 的 速 率, 這 速 率 的 大 小, 隨 第 _ 次 微 粒 imi 變 化。

這 _ 件 事 情, 明 明 超 出了 我 們 所 旦描 寫 過 的 波 動 說 範 圍; 這 些 奇 怪 現 象, 不 能 够當 做 波 動 的

有 平 這 常 特 種 性, 遷 移。 而 把 在 它 初 見 們 的 包 括 時 在 候, 内。 我 們 主 或 要 許 的 假 困 定當 難, 在 X 於 射 說 線 明 打 能 擊 從 某 _ 原 處 子 遷 時, 移 從 到 該 别 原 處。 子 因 跳 爲 出 我 們 來 不 的 電 得 子, 不 假 定 所

扳 具 動 之 能, 般。 得 自 但 是 原 子 此 說 的 如了 本 果屬實, 身, 並 假 定X 我 們 應當 射 線 所做 預 期 每 的 -事 個 情, 原 不 子 過 所 激 射 起 出 該 來 原 電 子 子, 發 各 生 有 作 其 用, 特 好 有 像 的 我 速 們 度, 把 然 鎗 而 機

我 卻 發 見, 這 次 發 射 電 子 的 速 度, 顛 其 所 從 罐 出 的 原 子 本 性, 並 無 關 係。 它 與 激 勵 原 子 的 X 射

線, 倒 有 關 係, 但 是 我 們 決 不 能 够 設 想, 開 鎗 放 彈 時, 彈 的 速 率 颠 扳 鎗 機 者 的 品 性 有 關 係。

另 外 有 -種 實 驗, 可 用 放 射 質 所 發 的 射 線 來 試 做, 我 們 若 把 這 個 實 驗 考 究 -下, 就 覺 得 鎗

機 假 說 的 本 性, 更 不 能 令 人 滿 意。 放射 質 所 發 的 輻 射, 共 有三 種, 叫 做 a 射 線角射 線以 及 ツ射 線。 這

種 射 線 裏 面 的 第 --種, 由氦 原 子 流 所 組 成, 在 這 裹 興 我 們 無 涉: 第 種 也 由 連 動 的 電 子 組 成, 其

速 度 極 高 極 高, 通 常 比X 射 線 管 中 的 電 子 還高。 組 成 第 三 種 的 輻 射。 其 本 性 與 光 及X 射 線 相 同, 這

我 早 巴 知 道 的了它們比 X 射線 更有透射 力而且 與β射 線 的 關 係, 猶如 X 射線 典 其 所 由 生

的 電 子 的 關 係當 ク射 線 通 過 原 子 時, 原子 的 極 小 部 分, 就 射 出 電 子 來, 其 速 度 幾 同 於 放 射 質 所 發

的 B 射 線, 放 射 質 放 射時β 射 線 興 γ射 線 是同 時 發 出 的。 就 這 種 情 形 而 論, 全 部 的 過 程, 顯 然 與 電

射 線 間 的 交 互作用有類似 之點: 在 實 際 E 說 來, 這 是規 模 不同 的 同一 過 程。 適合於這 種 情

形 不 問 是 什 嬷, 必 定 也 有 幾 分 適 合 於 那 種 情 形。

須 知 有 幾 種 實 驗 此 處 無 庸 詳 述 ·, 表 示 當 γ射 線 激 起 B 射 線 的 時 候後者 離開 原 子 的 方

向, 殊 並 難 不 了 是 解: 任 試 何 偶 問 一個 然 的 人假 方 向, 使 卻 奔 與 到 γ射 -支 線 架 的 好 原 方 的 鎗 向, 的 多 旁 少 邊, 相 用 同。 手 像 扳 這 機, 種 結 不 用別 果, 依 的 據 力, 任 那 何 鎗 鎗 彈 機 出 理 去 論 的 來 方 解

向, 如 何 能 與 此 人 奔 來 的 方 向, 發 生 什 麼 關 係 呢?

所 以 鎗 機假 說, 非廢 乗 不 可。 X 射 線 必定 在 某 種 情 形 之下把 能 帶 到原子裏來再分給發射 出

去的電子此事我們如何可以假定呢?

X 射 線 旣 然當 做 __ 種 波, 從 其 原 點 向 外 成 功 球 形 傳 布 出 去, 球 面 愈 展愈 大那麽它的 能 量 分

布 於 球 面 之 上當然 愈遠 愈 薄, 外 mi 我們已經 知 道, 電子 被 發射 的 速 率, 與 X 射 線 的 強 度 並 沒 有 關

係。 我 們 是 否 將 假 定, 每 個 原 子 必 然 把 船 儲 積 起 來, 直 積 到 定 的 分量, 稳 有一種 爆 炸 發 生, 是 否

將 有 此 假定 呢? 但 是 從計算 很 容 易 知 道, 要把能 積 聚 起 來, 須 經 過 很 長 久的時間 間。 個原 子, 與波 動

能 分 布 其 上, 漸 漲 漸 大 的 球 面 比 較 起 來, 眞是 微 乎 其 微: 它 祇 能 够 把 能 慢 慢 地 吸 收, 慢 到 經 過了 比

X 射 線 泡 的 壽 命 更 長 的 時 間, 纔 能 積 聚 充分 的 能 量。 然 mi X 射線 的 效 應, 當又射線一發 的 時 候, 立

刻 就 表 現出 來 了。 況 且還 有 件 事 情 難 於了 解, 爲 什麽 被 排 **下的** 電 子, 其 速度與其所從 射 出 的 原

子 沒 有 關 係, 反 而 與 原 來電 子 流 中 的 電 子 速度 有 關 係 呢? 假 使 我 們 再 想 像 個 大 規 模 的 例 子, 那

麼 此 種 困 難 愈 可 明 顯。 假 定我 們 在高 的 地 方,譬 如 說 百 英 尺把 塊板 丢下去丢入海 中: 海 水 受

激 四 濺, im 且 有 波 浪 從 海 面 傳 布 出 去。這 些 波 浪 經 過 大 小 船 隻, 都 沒有 效應發生在行了幾千 英 里

的 路 之 後, 遇到 了一 隻 州台, 它 們 的 效 應不幸 突 發: 於 是 也 有 -塊 板 從 船 的一邊破壁而出 竄 入空

高 達 九 十 英 尺、 或 玉 十 尺或 二 + 尺, 這 事 情 會 不 會 發 生 呢? 假 定 這 些 數目還不是荒談可 笑麽? 然 而

根 據 簡 單 的 波 動 說, 要 解 釋 光 電 效 應, 這 卻 是 _ 個 很 好 的 比 喻。

要 走 出 這 重 難 關, 祇 有一 個 方 法; 這 方 法 又簡 單、 叉直 接; 而 且 我 們 剛纔所討論的一切 實 驗 方

面 的 事 實, 都 可 以 適 用 此 法 來 解 釋。 爲 團 結 各 種 事 實 起 見, 我 們 必 須 把X射線當作 有 些 像 微 粒, 而

用 這 概 念 做 我 們 的 學 說 根 據; 這 種 微 粒 在X 射 線管 内, 當 電 子 打 着 靶 内某原子的時候即於 其 時

地, 吸 取 丁 電 子 的 能。 它 问 外 出 發, 是 成 功 實 體 的。 它 具 有 種 本 領可 以 穿 透 玻 璃 泡 的 壁以及 其

他 物 質, 但 是 到 末 了 的 時 候, 顛 它 相 遇 的 無 數 原 子 中, 有 個 把 產 生 它 的 過 程 倒 過 頭來它 的 能 遷

移 _ 個 電 子, 這 電 子 就 向 外 行 動, 其 情 形一 如 實 驗 時 所 見。 什 麽 原 子 產生第一次變化或第二 次

變 决 不 能 有 重 大 關 係: 而 第 _ 次 發 射 的 電 子, 大 可 以 等 於 第 次 發 射 電子 的 速 率, 或 與 這 速 率

相 近, 差不 了 多 少X 射 線 或 ク射 線 的 運 動 方 向, 興 這 些射 線 所 從 發生或所發生的電子運動 方 向,

這 是 _ 種 微 粒 說: 所以 我 們已 得 這 個 問 題 的 要 領, 卽 我 們 所 發 見 的 現象與其說它可使我們

想 到 波, 想 到 以 前 很 替 我 們 效 過勞 的 波, 毋寧 說 它 可 使 我 們 想 到 微 粒 的 利 用。

十 月 號 但 及以 是 我 後數 們 建 期 議 的 起 {哲 來, {學 將謂 雑誌上) 能 够 實 我 行 曾 這 有 些 過一 任務 個 的, 建 是 何 議, 以 種 爲 微 粒 這 呢? 種 微 許 多 粒或許是一種「中 年 以 前(在一九 〇七 性 耦 年

卽 個 電 子 與 某 種 陽 性 質 量 的 組 合, 而 此 陽 性 的 質 量, 帶 有 與 電 子 相 抵 消 的電荷這一 種 中 性 耦, 旣

然 沒 有 電 荷, 就 可 以 預 料 它 的 穿 透物 質 如 此 容 易是它 的 兩 種 成 分 都 辦 不 到的事情因為 它 的 電

力 與 磁 力, 將 被 限 制 於 極 狹 窄 的 限 度 以 內 之 故, 我 於 是 假 定 這 中 性 耦, 可 以 由 放 射 質 的 兩 種 微 粒

射 性 線 輻 的 射 特 所 造 性 與 成; 它 光 可 相 以 同, 所 含 以 有 我 _ 個 的 這 電 子, _ 與 個 建議, _ 個 其靠 帶 陽 電 不 荷 住 的 的 程 氦 度似乎 原 子。 在 低一些。 那 個 時 但是後來 知道了 X 候, 還 沒 有 明 白 表 示, 射 X

線 也 有 波 的 本 性, 興 光 完 全 樣, ıfii 光 也 具 有 微 粒 的 本 性, 興 X 射 線 的 似乎 具 有 此 種 本性完全 一

樣, 到 這 時 候, 就 不 能 够 再 把 光 與 X射 線, 再 當 做 中 性 耦 假 說 所 暗 指 的 兩 種 不 同 現象了。

光

代 替 牛 頓 微 粒 的 能包現在 叫 做 光子。 切 波 長的 光 X 射線 外 線 等 等,可 以看 做 成 功 光

流 的 形 式。 然 而 中 子 的 觀 念卻也 沒 有 完 全 棄 去, 因 爲 近 來 已 一提出了 證 據; 證 明它 們帶下 述 的 形 態,

卽 由 個 電 子, 興 . 個 帶 陽 電 的質 子密 切 組 合 而 成。

韋 爾 生 (O. H. H. Wilson)於一九一一年, 用一 種 最 巧 妙 的 裝 置, 很 新奇的式樣竟能 證 實

驗 方 面 的 結 果以及 由 此 等 結 果 推 出 的 結 論, 這 些結 論, 便 是 我 們 方 纔 所 敍 述 過 的。 他 的 方 法,

使 我 們 得 到 個 目 墼 的 證 據, 這證 據 可 使人深信不 疑。 方 法 有賴 於 幾 種 物 理 效應, 我 們 可 以 略

爲說明一下

第 點 必 須 要察 及 的, 便 是一 個 電 子 在 氣 體 中 穿 過 時, 能 够 從 它 所 穿 過 的 若 干原 子, 或 它所

經 過 的 近 傍岩 干 原 子 裏 面, 把電子 趕 走假 使它要有 這 趕 走 電 子 的 本 領, 那麽它的速度, 非 超 過

定 的 限 度 不可大約在每秒一萬萬釐 米左右確使它 的 速度低 於 這 個 數 目, 那麼它就 的 確 不 能 够

穿 X 射 過 線 所激 體, 鰛 動 然 的電子其速度有十倍 祇 能 够 被 它 所 遇 的 原 大乃 子 拉 至百 住了 倍 吸 大; 收 由 進 去, ツ射 差 線 不 所激 多 第 動 一次 的電子具有更 遇 見 的 原 子 大的速 都 穿 不 度。前 過。 由

種 運 動 電 子其穿 過 空氣 或 任 何 氣 體 的 路 徑, 在 平 常 温 度 與 壓 力之下可用毫米或釐米計算, 而

後 者 的 路 徑, 则 須 用 米 計 算。 兩 者 的 路 徑, 或長 或 短, 都 因 已 有 電 子 破 逐的各原子以及被逐電子暫

時 依 附 的 其 他 各 原子 而顯。 所 以 電子 所 經 過 的 路 線, 其 兩 旁 沿 路 各處既有帶陽電的原子又有帶

陰 電 的 原 子, 復 合 作 用, 立即 開 始 發 動, 帶 有 過 剩 電 子 的 各 原 子, 都 在恢復其未奪去電子以前 的 原

狀: 但 是 在 幾 秒 鐘 或 幾 分 鐘之內, 這 兩 種 原子 卻 都 暫 維 現 狀。

韋 阚 生 所做的這 個 精美質 驗它的 第二 特 色, 便 是 利 用 物 理 學上一種著名的效應當一種

氣 體 讓 能, 它 膨 脹 的 時 候, 可。 它 就 變得 冷 一些它 面, 在 膨 脹 氣, 的 過 程 中, 必 須 耗 費一些能所以非把它自己所 的傾向大氣壓力驟然降

低 之 後, 往 往 跟 着 油 然 作 雲, 沛然 下 雨, 這 種 現 象氣象 學 家 卽 以 上 述的 效應 來解 釋。 儲

臧

的

用

掉

一些不

假

使

這

氣

體

裏

含

有

溼

那

麼

後

者

就

有

疑

結

溼 氣 在 此 種 情 形下 疑 結 的 時 候, 格 外 容 易 向 四 面 收 聚 帶 電 的 原 子 或 質 點。

這 個 實 驗 的 方 法, 現 在 總 可 明 瞭 了。假 使 潮 溼 的 氣 體, 讓它 突然膨脹而在這氣體中有電子

及 其 帶 電 的 被 毁 原 子 的 徑 跡, 那 麽 溼 氣 就 先 沿 路 疑 結, m 這 些徑 跡 爲 適當 的 光所照就顯出白色

的 條 紋 來, 襯 托 在 暗 黑 的 背 景 具, 上 面。 在 單, 這 種 情 形 之 下, 電 子 的 路 徑, 就 處。 可 以 看 見了 百

底, 是 --枚 活 塞: 這

韋

爾

生

實

驗

所

用

的

器

異

常

簡

這

也

是

此

實

驗

所

獨

擅

的

佳

圖

+

所

示

的,

便

是。

氣

室

活 的 塞 可 以 降 到 所 需

A S P →通到藏氣櫃

此圖所表示的,是韋爾牛膨脹 (圖一百十) 器具的原理。氣室的蓋 A,是用玻璃做成的, 室內有活塞 P, 可以上下滑動。P 下面的空 間,與藏氣櫃通連,藏氣櫃中空氣的壓力,可以 變化。所觀点的電子徑跡,在空間S之中。這 空間由水封口, 與 P 下面的空間, 以及外面 的空氣隔絕,好像氣量計也用水封口一般。假 使在 P 下面的空氣, 教它稍稍昇高一些, 那 廖 P 就昇上去,到如圖所示的位置。假使再 教 P 下面的氣壓介然降低,那麼 P 就砰然 落下,而 S 裏面的空氣,就膨脹發冷。促使其 中有電子或 a 質點行動的徑跡, 那麼沿路就 有陽生出來。此時即可在很亮的光照耀之下, 攝取這些徑跡的照相了。

由 預 置 室 内 的 放 射 質, 卽 在室 內 產

生。

室

內,

或

究

的

射

線,

可

以

穿

過

可

以

常

保

潮

溼,

因

有

少

許

之

水

在

場。

待

研

使

這

氣

體

發

冷。

空

氣

內

的

空

氣

膨

因

加

脹,

降

低

的

地

位,

以

使

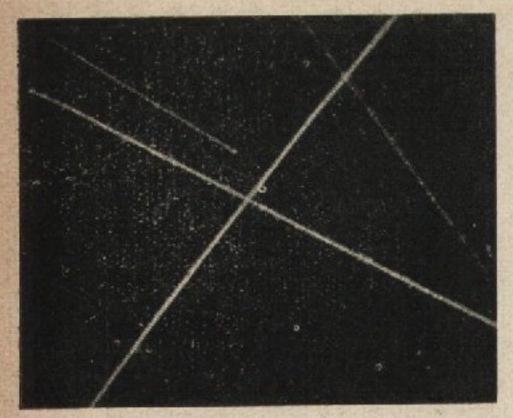
室

壁

上

適

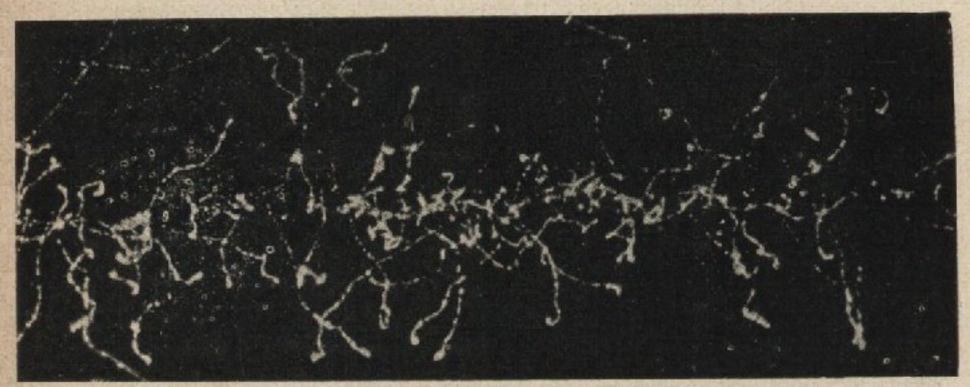
當


的

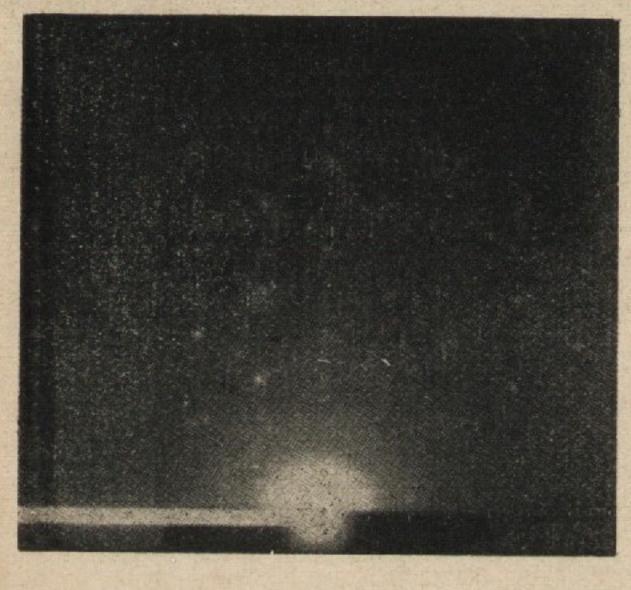
小

孔,

射


銅版圖二十五

A. a 質點 (即氮原子) 的徑跡,差不多從頭到尾,成功直線。霧滴又多又密,以致這些徑跡看起來好像是連續的白線。這些質點,是放射質射出來的(參閱第三二七頁)。


(C 圖)

B. 由 X 射線而生的電子徑跡。 X 射線本身,圖中並未顯出。它們成功一條很細的直線束,橫穿過這照相的中央,但是像 C 圖那樣的直線,卻一條也看不見。圖中所可看見的,是 X 射線使其所遇的若干原子,把電子排斥出去的徑跡。這些徑跡的彎曲不直,是它們的特性:電子是太輕了,不能像 a 射線一樣,維持它們的直路,因為它們所遇見的原子,可把它們拋來擲去之故。由此可以證明, X 射線進行時,沿路引起電子的運動,這一點我們已經提過。圖中 X 射線的進行方向,從左到右(參閱第三二七頁)。

A. 在這張照相裏面,有一道很細的射線束,從右向左而進,遇見了一塊銅的扉。此射線束激起銅裏面的一陣電子雲來;而且可以察見,此射線束有攜帶電子同行的傾向。X 射線透過銅犀穿出來的一侧,電子的數目多於它射入銅犀的一側(參閱第三二七頁)。

B. 這是電子繞射 的照相(由奇·披·湯 姆遜所攝)一道電子 流,使官射在晶體的 表面上,然後用照相 器來接收繞射光柱 (參閱第三三一頁)。

銅 版 圖二十 五二十六 就 是 此 實 驗 結 果 的 幾 個 例 子。 從這 幾 個 圖, 我 們 立刻可以 以 察見由工 射

線 所 引 起 的 效 應, 其徑 跡 從 頭 至 尾, 完 全在 氣 室之內。 這 些 徑 跡 的 中 斷, 以 及 曲 折 不 齊, 是 因 爲 電

穿 過 氣 體 而 前 進 時, 網絡 續 經 過 偏 向 作 用之故。 有 時 候 專專 折 極 峻: 在 這 種 情 形之下電子 已 經 多 少 透

原 子 裹 面它 剛 剛 打在原 子 的中 央所以它比 尋常電子 離開 原 子 核 要近一些, 而 且已 在 原 子 核

74 疾 **事**專, 猶 如 -顆 彗 星, 已 經 行 近 了 太 陽 般。 徑 跡 上 面 的 點 子, 足 以 表 示 下 述 的 特 徵, 卽 射 線 所

打 所 穿 過 的 各 原 子, 其所 受的作 用。 並 不 平 均。 有 時 候 所 排 除 的, 是 個 電 子, 有時 候 是一 點 近 傍

的 小 羣 電子: 有時 候 被 第一次發射的電子 所排 斥 的電子其勢 很 猛 烈,以 致 藉 其 所 獲 得 的 運 動

能, 竟 可 從 它 所 遇 見 的 各 原 子 裏 面, 再 拉 出 少 數電 子 來。 電 子 將 近 走 到 它路 徑 的 終 點時, 它 的 作 用

更 激 烈。 它 的 速 度 是 逐 獑 减 低 的, 所 以 毎 衝 進原子一 次, 就 在該原 子 中 多停留一會, 而結 果 也 就 愈

愈、 厲 害 了在開 始 的 時 候, 它 的 速 度較高所以它可 很 快 的 穿 過 所 遇 見 的 原 子, 而 原 子 所 受 到 的

損 壤 也 小。 銅 版 圖二 十 五 C 的 B 射 線, 表 示 此 點 很 明 顯; 它 們 的 速 度 很 大, 大 至 在 有些 情 形之下, 霧

滴 沿 路 散 布, 祇 有 薄 薄 的 層, 於是這 路徑 比 較直一 些, 然 而 也 難 於辨認了 了我們 還 可 以 注意 到

第九章 波與微粒

件 事, 卽 X 射 線 的 透 射 本 領 愈 大,。 它們 所 產 生 的 電 子, 其 徑 跡 也 愈 長。

在 前 面 _ 章 中, 我 們 巴 知 道 紫 外 光 有一 種 作 用, 能 使 帶 陰 電 的 導 體放電這一種作用與 X 射

線 激 動 電 子 時 所 起 的 作 用 相 同。 紫 外 光 照 在 導 體 的 原 子 上 面, 也 把 該 原子 中 的 電 子 排 斥 出 去。 就

這 種 情 形 而 論, 速 度 是 小 得 多, 丽 且 祇 有 在 順 利 的 環 境之下, 纔 可 察 見此 種 效 應。 如 此 被 斥 的 電

運 動 很 慢, 以 致 紫 外 光 所 照 的 物 質, 其 本 性 也 有 重 要 的 關 係。 不 同的物質所出微小的電 力,

小 也 不 同, 這 不 同 的 電 力, 對 於 電 子 的 排 斥, 就 發 生 多 少 障 礙。 就 X 射 線 iffi 論, 這 些 電 力 太 微 小 容 殊

易, 不 足 而 以 久 干 露 涉 在 空 其 氣 作 中 用, 以 但 致變 是 就 得 光 很 而 汚 論, 穢 卻 的 可 以 鋅, 這 使 所 放 電 攝 效 的 應 照 差 相, 不 模 糊 多 沒 不 清。 有。 是以 表 面 清 潔 的鋅放 電

很

較 長 的 光 波, 决 然 與 那 較 短 的 光 波 -樣, 也 具 有 同 本 領 無 疑。 它 們 對 於原子 裏 面 的 單 獨 電

子, 也 可 以 發 生 作 用, 但 是 就 兩 種 情 形 丽 論, 它 們 所 分 給 電 子 的 能, 都 不 足 以 幫助電子使它 脫 離 其

於 所 電 的 效 應這 種 效應必 定是電 子 的 位 移 所 組 成。 於 是 我 們還 मि 以 假定波長 極知的射線例 如 紫

屬

的

原

子。

因

此

之

故,

我

們

人

類

的

所

以

不

能

够

看

見

紅

外

線,

或

許

是

因

爲

眼

睛

的

靈

敏度,

似乎

有

賴

外 線, X射線等 等,都 是有害 的 射 線, 因爲 它們 所 激 動 電 子, 動 得 太 快 了作用· 太激烈了 的 緣 妆。 波 長

短 的 射 線, 對 於 照 相 乾 片 有 很 強 的作 用, 愐 紅 外 線 欲 使 照 相 片 起 威 光作用必須 把乾片用很 困

難

的 法 加以處 理之後纔行, 這 理 由 與 前 正 相 枋。

如 此 呈 現 於 我 們 之前 的 這幅 畫, 把 電 子 與 各 種 輻 射 間 的 交互 作 用約略描了一個 輪 廓, 旣 很

單, 索解。 在 X 射線管中, 而運動。 個原子上在這 方,

候, 簡 能 又 就 被 易 遷 移 到某 植 實體 上面 電子 去, 被 此 實體 激 近來得 它 到了 飛 出來 光 子 打 的 在 名 靶的 稱。 光子循 直 線 而 運 地 動, 透射 在這 各 種 時

物 其 透 射 程 度, 視 其 能量 的 多 少 丽 定。 遲 早 之 間, 這 種 透 射 原 子 與 穿 越原 子 的 作 用, 終 歸 停 此, 因

爲 原 子 惠 面 有 個 給 它破壞了光子 於 是不再 成 爲 光 子, 而 電 子 再 負 能而逸電子當飛行的時 候,

因 其 所 穿 過 的 各 原子 中, 把 别 的 電子 拉 出 來, 而 把 它 的 能 失 掉, 這一 種 效 應, 光子 卻 可 免 去。 它 有

時 候 遇 到 了 原 子, 或 許 把 它 所 餘 的 一能 量, 分一 部 分 出 去, 以 致 再 產 生 個 新 的光子, 這 光 子 也 照 樣

繼 續 它 的 工 作。 到 最後 全部 之能, 都 成爲 熱作 用 與 化 學 作 用 而 耗 盡。 有時 候 發射 電 子或光子 所 遇

見 似乎 並 不 簡 單: 光子 或電 子的 能, 可 因 遇 見 個 原 子, 而分 兩 個 這 種 實體 不 過這些補 助 現

第九章 波 四微粒

雖 然 對 於 整 個 的 研 究, 極 有 趣 味, 極 爲 重 要, 卻 不 是三 言 兩 語, 所 可 說完 的主要的一點是 如 此, 卽

有 兩 種 實 體, 種 帶 電, _ 種 不 帶 電, 大 家 都 有 本 事 帶 着 能 穿過 空 間逐段把能送出去各有各的 式

樣, 而 且 還 有 本 事 把 它 們 的 負 擔, 互 相 交 换。

光 的 這 _ 種 桃纸 念,無 論 其作 何 形 式, 當 然 與 從 前 很 有 用 處, 現 在 175 有用處的 的波 動 說, 彼 此

合, 至 少 在 外 表 F. 是 如 此。 但 是 在 尙 未 打 算 考 究 到 它 們 的 互 相 矛 盾 以 前, 我 們 必須沿着同一的 路,

向 前 更 進 岩 干 步, 走 到 了 那 個 地 方, 我 們 卽 將 發 見, 待 解 釋 的 事 情, 正還 多 着 呢?

種 種 不 同 形 式的 光, 其 行 動 有時 候 像 波, 有時 候 义 像 微 粒: 我 們 慣 於認為 微粒的 那 種實體, 會

不 會 在 某 種 環 境 之 下, 其 行 動 可 以 像 波 般 呢?

這 種 實 驗, 也 曾 有 人 試 過, 其 結 果 的 確 也 現 出 這 雙 關 的 性 質 來。 其實 這種 |效應在 布置 適 當

的 候, 很 容 易 舒 明: 不 過 此 事 的 成 功, 雖 有 可 能 性, 卻 祇 在 近 來 這 幾 年 之內經過精 細的 探 求 以 後,

候, 稳 就 能 有 使 繞 此 射 事 圖 實 **築**發 現, 而 現, 由 此 此 圖 得 案 到 雖 適 爲 當 電子 的 設 射 計, 線 以 所 作 特 此 有, 種 但 實 是 驗。 與 當 X 射 極 細 線 的 所產 電 子 生的繞射圖 束, 被射 在 晶 案具有 體 上 面 同 的 時

的 特 性。 銅 版 圖 二十六日 所 示 的 例 子, 奇 披 湯 姆 遜 9 P Thomsor)所攝的電子 的 透 射

作 用, 異 常 微 小所 以 必 須 用 極 薄 極 薄 的 晶 僧豐 膜。 纔 能 够 有 好 的 果此外從晶體表面的反射也可:

以 發 生 關 於 反 射 的 效 應。 無 論 如 何, 祇 要技 術 上 的 困 難, 旦除 去, 效 應即可大白於此可 見電 子 的

行動與波無二。

最 後 還有 原子的 本 身, 以前 的 人除了把它 看 做物 質 的 質 點 之外從未有人再作別想須知 對

於 原 子 的 實 驗, 現 在 是 格 外 州 難了, 不 過 就 這 原 子 而 論, 似 乎一 道 原子 流 衝 擊 在晶 體 上 面, 也 可 以

現 出 繞 射 的 圖 案。 樣 看 來, 我 們 所 熟 悉 的 基 本 實 體, 其 全 部 範 圍 內 都 有這雙關 的行動大家 都 能

够 有 微 粒 一般的一 行動, 又能够有波一 般 的行 動, 隨 環 境 而 定我 們 對 於輻射與物質間的區別變成 了

程度上的區別並不是種類上的區別了。

這 段 短 知 的 關 於 物 質 的 槪 論, 當 然 省 去 許 多 實 驗 方 面 的 結果,許 多 理論 方面 的 關 係 興 類

似 之 凡 此 種 種, 如 果可 以包括 在 本 書中 的 話, 必須 說 得 更 詳 細 一些而且也祇能說一個極略 的

大 柢 情 形。 但 是 本 書篇 幅 有 限這 種文 字叉枯 燥 乏味, 所以 不能 再 說了。

第九章 波與微粒

我 們 對 於 事 物 的 本 性, 有 如 此 廣 闊 的 見 解, 的 確 是 現 代 研 究 最 可 注 意 的 推 論之一這 種 基 本

的 致 性, 從 來 沒 有 人 能 够 預 料。 雲 霧 開, 已使 我 們 獲 睹 前 途 有 的 是 聯 合 與 相 似, 以 前 我 們 曾 想

像 過, 那 地 方 是 分 離 與 差 别。 可 見 的 與 不 可 見 的 光, X射線、 放 射 質 的 射氣電子物質 本 身,現 在 知 道

它 們 都 有 公 共 的 性 質, 而且可 以 聯 合 起 來, 其 聯 合 的 情 形, 我 們 還 沒 有完全了解。 我 們 的 鑑 别 力, 有

個 最 顯 明 的 缺 點, 就 是 會 兒 可 以 看 做 波, -會 兒 叉 可 以 看 做 微 粒 的 那 種 東 西其 本 性 如 何, 我

們 很 難 明 白。 這 種 似乎 有些 矛 盾 的 說 法, 我 們 自己 怎 樣 想 像 呢?

或 許 我 們 現 在 巴 到 了 結 東之 點, 在 這 _ 點, 個 人 的 傾 向, 引 起 他 所 欲 選 擇 的一 種 表 示。 論 到

事 實, 的 有 岩 組 干 現 象, 自 可 然 以用 現 象, 微 मि 粒 以 說 根 表示, 據 波 動 表 示 說 得十分清 聯 合 在 -處, 楚。 須 E 以 知 琪 根 安司 據 波 動 早 巴 說 爲 說 過我們沒有理由, 最 相 宜另外 叉 有 同 希 望 樣 驚 我

們 應 當 常 常 能 够 用 早 巴 通 用 的 名 詞, 來 表 示 新 的 現 象 與 新 的 觀 念。 們 用 波 颠 微 粒, 就 它 們 自

矛 的 地 盾。 卽 位 以 丽 現 論, 在來 都 是 說, 對 波 的: 動 假 力學這 使 我 們 在 -門 用 新 它 科學, 們 的 它的 時 候, 發展, 要 說 也 得 使 更 我 安 善 們 知 道, 些, 我 們的路可以漸漸 們 最 好 要能够 免 通 除 到 互 較 相

佳 的 地 方當局 部的 風, 在有限 的 海 面上吹起一 庫 波浪的 時 候這 此 波 浪 是 成 奉結隊的前 進, 波

是 個 特 殊 的實 體整個 波羣 的速度並非波 羣 ·裏面各 波 的 速 各波 是繼續從後方移 至 前 方,

含 而 在 有 能: 前 它的波, 方 消 滅。 假使所經的 此 處 卽 有 各 路 不 相 相 交, 同 就 的 現出 兩 個 一切干涉 特 點, ---是 的 整 現象來企 個 波 羣, 是 用這 其 中 種 的 波波 新奇的方法來解釋 羣 向 前 進 行, 其 輻 中

射 的 性 質已經 有驚人的 成 就了。

我 們 的 確 不 能 把任何 現 象, 以及 它的發 展, 永 遠 約 束 於 我 們 現 在 所 選擇 的 理 論這是 很 顯 明

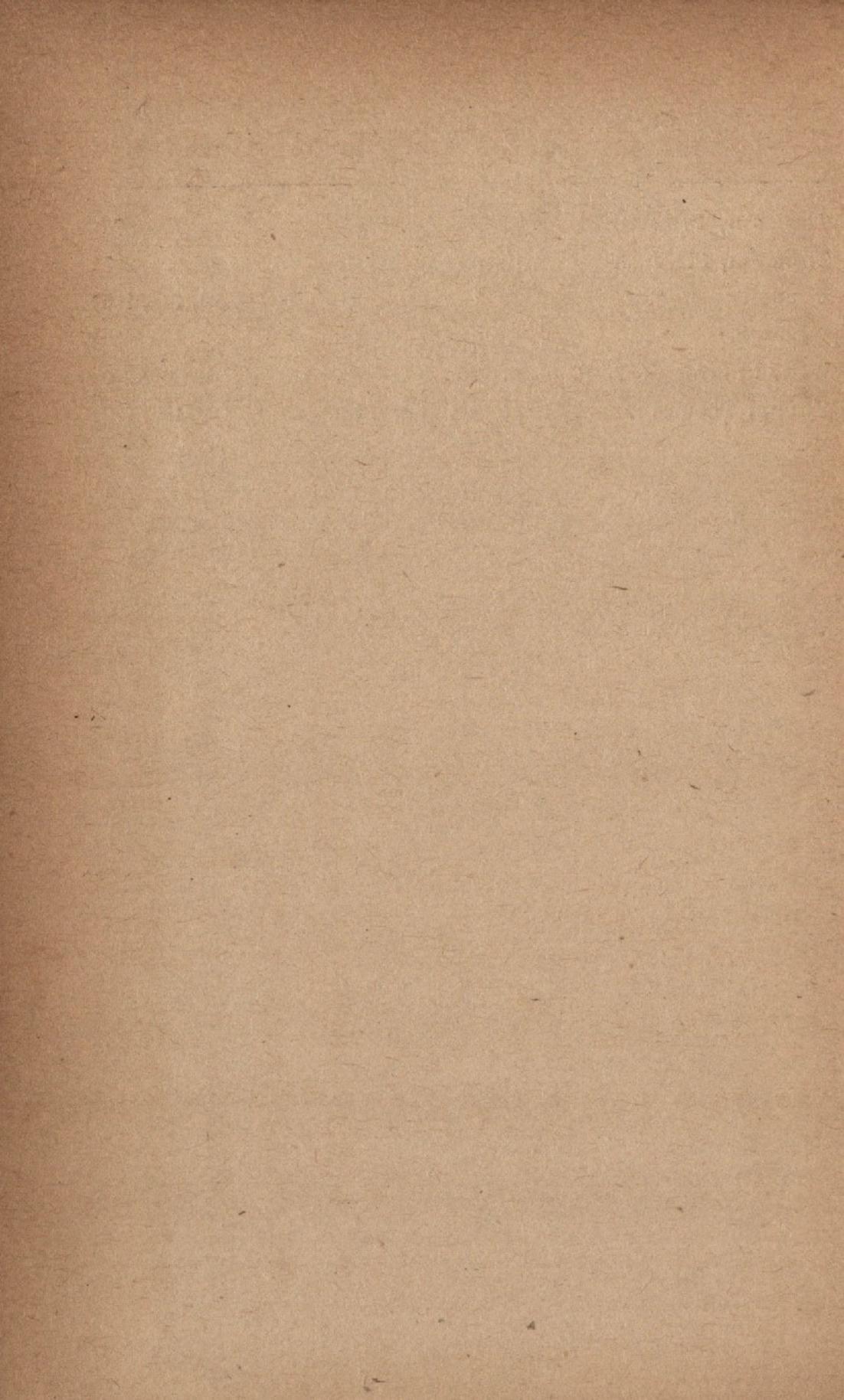
的 事 情當徽章爾(Whewell)在他所著歸納科學史中 ·敍述光 的 波 動 說 逐漸發展的經過時, 他 曾

指 明 切 新 的 發見完全可 以 配 入波 動 說 所 預備 的 組 織 裏 面, 並 且 大 聲 疾 呼, 說 這 是 眞 學 說 打 倒

僞 學 說 的 明 證: 牛 頓 的 微 粒 說, 已經丟在一旁, 波動 說 已經 代替了 微 粒 說, 永遠 可 以 代 替下 去。 他 這

力 種 明 的 無 心理何嘗預 疑 也 在 其 內) 還 料 到 波 有 動 尚 說的繼續成 未 成 功 的 新 功日後 槪 念, 都 會 祇 遇 好 到挫 用 做 折這 繩 子 把 兩 各 種 奉已發 舊 的學說以及新 見 的 現 象, 束 的 波 於 動

處 而 且 使 我 們 能 够 想得 更 淸 楚一些能够決 定研究 的 新 方 針罷了。 就 我 們目下 的 情 形而 論, 假 使


第九章 波與微粒

有互 相 抵 觸 的 地 方令我 等 迷惑那. 麽 我 們 的 學 說 與 例 證 方 面, 定 有了缺點纔至於此我 們無 庸

高 強 的 求 解 時 決的方法水到 候, 解 决 的 辨 法, 自會 渠成瓜熟蒂落當我 應 時 而 出 的。 其 們 時 的 我 們已獲 知識, 有 因 研究而增 條 神 秘 加, 的 我們 原 理此原理可把各式 的 見解已因研 究而 輻 提 射,

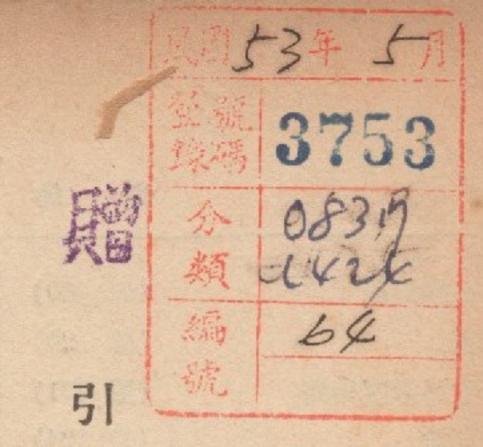
各種 物 質, 聯合 起來預料 那 個 時候, 我 們 巴 知光 的 完全意義在這時 候 說宇宙是光所組成 的或許

可 以不錯了。

是你给你还是我想到这些事情的 医外侧角膜炎 医神经炎		建		NO ELECT		
Thomson, Prof. G. P.	湯	姆	遜	教	授	(原 276)
Thomson, Sir J. J.	湯	姆	遜	爵	±	(原 221, 257)
Tyndall	T		達		爾	(原 74, 149, 165)
Whewell	徽		章		爾	(原 278)
Wilson, Prof. C. T. R.	韋	爾	生	授	教	(原270)
Young, Thomas	批	馬	i	司	楊	(原 138, 162, 179)

人 名 表

Appleton, Prof. E. V.	藍	普	勒	登	(原 788)
Babinet	巴	平	納	脫	(原 1588)
Barnard, J. E.	巴	别	III	特	(銅版圖 14 BB)
Bidwell, Shelford	希爾	所福特別特威		战爾	(原 611)
Clerk Maxwell	馬	=	t	威	(原 2499)
Crookes	克	魯	克	斯	(原 2299)
Dalton	道	1	辑	頓	(原 999)
Dollond	道	F	隆	特	(原 1077)
Fresnel	夫	累	湟	爾	(原 1860)
Galileo	伽	,	利	略	(原 2006)
Huygens	惠		更	司	(原7, 166, 1744)
Jeans, Sir James	琪	安	可爵	+	(原 205, 2777)
Laue, Von	勞			厄	(原 2288)
Lockyer	洛	克	葉	爾	(原 2113)
Malus	馬	, 1	呂	斯	(原 1788)
Newton	4			頓	(原 7, 1666)
Raman, Sir C. V.	拉	曼	爵	+	(原 1552)
Rayleigh, the late Lord.	故	爵	土 雷	理	(原 148, 2445)
Rayleigh, Lord.	雷	理	爵	士	(原 1560)
Römer, Olaf.	奥	荻	夫 盧	穆	(原 2006)
Röntgen	倫			琴	(原 2228)
Senarmont					(原 1835)
Thompson, Silvanus P.	湯	姆	藢	孫	(原 1636)


3

望遠鏡	(原 54)	晶體內波的形式	(原 173)
光的橫振動	(原 180)	光的波動說	(原 3)
X 射線的鎗機假說	(原 266)	自	(原 95)
由紫外光而故電	(原 225)	X射線分析	(原 117)
紫外線	(原 222)	X射線管	(原 258)
紫外光照相衝	(原 109)	X射線	(原 228)
晶體的單位	(原 238)	X射線與晶體	(原 234)
原子與分子的振動	(原 117)	風信子玉	(原 84)
水的貌似深度	(原 70)	旭日與落日	(原 150)
水彩畫	(原 92)	海的顏色	(原 152)
波動與微粒	(原 254)		

生 男 法 1 元

THE R. L.

光學幻視	(原 60)	晶體結構所致的偏極化	(原 183)
像	(原 20)	光的偏極化	(原 164)
紅外線照相衝	(原 221)	從天空來的光偏極化	(原 193)
藍靛	(原 124)	光的品性	(原 193)
干涉	(原 137)	波長的範圍	(原 89)
不可見的輻射	(原 220)	反射	(原 11)
器涅勒·赫維賽德層	(原 78)	在曲面上的反射	(原 22)
勞厄的實驗	(原 234)	在平面上的反射	(原 13)
勞厄的照相	(原-248)	X 射線由晶體的反射	(原 243)
透鏡的作用	(原 41)	內全反射	(原 72)
光澤	(原 33)	折射 (原 39,67)
宛鏡	(原 35)	由大氣的折射	(原 71)
放大	(原 52)	共振原理	(原 111)
顯微鏡	(原 54)	網膜	(原 38)
海市蜃樓	(原 75)	網膜上的倒像	(原 49)
分子的散射	(原 148)	光譜線的自蝕	(原 215)
月暈	(原 161)	波紋水櫃	(原 5)
水平線上的月	(原 62)	光的散射	(原 15)
恆星的運動	(原 217)	親而得見	(原 26)
牛頓與光譜	(原 85)	在濁水上的影子	(原 153)
牛頓的望遠鏡	(原 107)	肥皂膜	(原 139)
泥科爾稜晶	(原 190)	恆星光譜分析	(原 208)
油畫	(原 93)	太陽光譜分析	(原 212)
半影	(原 31)	恒星的閃爍	(原 219)
視覺暫留	(原 66)	硬脂酸的晶體模型 鉓	版圖 23 b)
光電效應	(原 255)	實體視覺	(原 28)
顏料的作用	(原 91)	史德林的幻視	(原 61)
針孔像	(原 29)	物體大小比較表	(原 251)
		一种企业工作的企业工作,	

索

消色差性 /	(原 105)	總射圖解 (原 131)
a 質點·	(原 213)	繞射光栅 (原 134)
花青素	(原 120)	X 射線由晶體而繞射 (原 234)
花黄素	(原 122)	月與太陽到地的距離 (原 203)
像散性(俗稱散光)	(原 57)	恆星到地的距離 (原 200)
微菌照相	(原 109)	都卜勒效應 (原 218)
雙眼視覺	(原 28)	塵埃示暈圖 (原 160)
天空的青色	(原 148)	無塵箱實驗 (原 16)
陰極射線	(原 229)	染料 (原 123)
葉絲素	(原 118)	電子的繞射 (原 276)
色盲	(原 99)	電子 (原 231)
色幻視	(原 102)	測毛器 (原 162)
天空的顏色	(原 146)	以太 (原 18)
色視覺	(原 96)	眼 (原 46)
花的顏色	(原 119)	眼的光學缺點 (原 47)
互補色	(原 100)	螢光 (原 222)
凹鏡	(原 25)	漁距 (原 44)
凸鏡	(原 23)	夫牢因和斐繞射圖 (銅版圖 23 c)
光的微粒說	(原 7)	γ射線 (原 253)
X 射線的微粒說	(原 268)	暈 的成因 (原 154)
晶體與 X 射線	(原 234)	氮的發見 (原 213)
金剛石的反射	(原 80)	冰洲石 (原 167, 184)
繞射	(原 126)	運動的幻視 (原 64)

小自

光

册

The 部 Universe 定 價 國 of of Light 幣 陸 元

每

者者 地 點占 外 另 加 運費

即

刷

*

版

翻

原

著

*

ಡಿತ

aó

B

河昌雲嶽 8

權

譯

述

有所

究必印

主

編

者

發

行

人

行 刷 所 所 商 印商 朱 周王 陳

務各

書地

館

印

發

上海 務 印 刷印經

書 中 路

廠館 農 壽五 生

(本書校對者陳敬衡)

