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Chapter 1

LINEAR EQUATIONS

1.1 Introduction to linear equations

A linear equation in n unknowns x1, o, -+, Xy is an equation of the form
a1x1 + agxe + -+ - + apx, =0,

where ay, ag,...,ay,, b are given real numbers.

For example, with = and y instead of x1 and zo, the linear equation
2z + 3y = 6 describes the line passing through the points (3, 0) and (0, 2).

Similarly, with z, ¥ and z instead of xi, xo and x3, the linear equa-
tion 2x + 3y + 42 = 12 describes the plane passing through the points
(6,0, 0), (0, 4, 0), (0, 0, 3).

A system of m linear equations in n unknowns x1, xa,- -, T, is a family
of linear equations

a11x¢1 + a12x2 + - + a1pxny, = by
a1 + agre + -+ + agpx, = by
am1%1 + amaT2 + -+ GpnTn, = by

We wish to determine if such a system has a solution, that is to find
out if there exist numbers x1, xs, -+, x,, which satisfy each of the equations
simultaneously. We say that the system is consistent if it has a solution.
Otherwise the system is called inconsistent.
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Note that the above system can be written concisely as
n
Zaijxj:bi, i:1,2,--~,m.
j=1

The matrix

ail ai2 e A1n
a1 a2 o A2n
Gml Gm2 " Qmn

is called the coefficient matrixz of the system, while the matrix

a1 a2 -+ aip b1
a1 a2 -+ G2, bo
aml Gm2 *** Gmn bm

is called the augmented matriz of the system.

Geometrically, solving a system of linear equations in two (or three)
unknowns is equivalent to determining whether or not a family of lines (or
planes) has a common point of intersection.

EXAMPLE 1.1.1 Solve the equation
2z + 3y = 6.

Solution. The equation 2z + 3y = 6 is equivalent to 2z = 6 — 3y or
=3 %y, where y is arbitrary. So there are infinitely many solutions.

EXAMPLE 1.1.2 Solve the system

r+y+z =
r—y+z = 0.

Solution. We subtract the second equation from the first, to get 2y = 1
and y = % Thenz =y — z = % — z, where z is arbitrary. Again there are

infinitely many solutions.

EXAMPLE 1.1.3 Find a polynomial of the form y = ag+a12z+asx®+azz?
which passes through the points (-3, —2), (-1, 2), (1, 5), (2, 1).
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Solution. When x has the values —3, —1, 1, 2, then y takes corresponding
values —2, 2, 5, 1 and we get four equations in the unknowns ag, a1, a2, as:

ap — 3a1 +9ag — 27a3 = —2

ap — a1 +ag —as

ap + a1 +as + as
ag + 2a1 +4az +8az =

This system has the unique solution ag = 93/20, a; = 221/120, as =
—23/20,
ag = —41/120. So the required polynomial is

_ 93 221 23, 4l g
Y= 90" 120" 20" T 120"

In [26, pages 33-35] there are examples of systems of linear equations
which arise from simple electrical networks using Kirchhoff’s laws for elec-
trical circuits.

Solving a system consisting of a single linear equation is easy. However if
we are dealing with two or more equations, it is desirable to have a systematic
method of determining if the system is consistent and to find all solutions.

Instead of restricting ourselves to linear equations with rational or real
coefficients, our theory goes over to the more general case where the coef-
ficients belong to an arbitrary field. A field F' is a set F' which possesses
operations of addition and multiplication which satisfy the familiar rules of
rational arithmetic. There are ten basic properties that a field must have:

THE FIELD AXIOMS.
1. (a+b)+c=a+ (b+c¢) forall a, b, cin F;
2. (ab)e = a(be) for all a, b, ¢ in F;
3. a+b=0b+aforall a, bin F}
4. ab = ba for all a, b in F
5. there exists an element 0 in F' such that 0 + a = a for all a in F

6. there exists an element 1 in F' such that 1la = a for all a in F;
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7. to every a in F, there corresponds an additive inverse —a in F', satis-
fying

8. to every non—zero a in F', there corresponds a multiplicative inverse
a~!in F, satisfying
aa b = 1;

9. a(b+c) = ab+ ac for all a, b, ¢ in F}

10. 0 # 1.

With standard definitions such as a — b = a + (—b) and % = ab~! for

b # 0, we have the following familiar rules:

—(a+b) = (—a)+(=b), (ab)'=a"1071;
—(=a) = a, (&) '=a
a b
—(a—b) = b-— ==
(1) a (=2
g_’_g _ad+be
b d bd '’
ac _ ac
bd bd’
b _ b & ac
ac ¢ (g b
—(ab) = (—a)b=a(-b);
_<9> _ *_ @
) b =V
Oa = 0

Fields which have only finitely many elements are of great interest in
many parts of mathematics and its applications, for example to coding the-
ory. It is easy to construct fields containing exactly p elements, where p is
a prime number. First we must explain the idea of modular addition and
modular multiplication. If a is an integer, we define a (mod p) to be the
least remainder on dividing a by p: That is, if a = bp + r, where b and r are
integers and 0 < r < p, then a (mod p) = r.

For example, —1 (mod 2) =1, 3 (mod 3) =0, 5 (mod 3) = 2.



1.1. INTRODUCTION TO LINEAR EQUATIONS )

Then addition and multiplication mod p are defined by

a®b = (a+b)(modp)
a®b = (ab)(modp).

For example, with p = 7, we have 3 @4 = 7(mod7) = 0 and 3 ® 5 =
15(mod 7) = 1. Here are the complete addition and multiplication tables
mod 7:

S

O TR W N = O
o U i w| | =|lo|lo
OO UY x| W DN = =
—| o] o ot x| | M| DO
| —| O o Ot | w| w
W | O o ot kx| i
Wl | | o o ot on
Gl | wl | = ooy o
DU W~ OR
olololololololo
o Ul x| W | = O =
Ul W | o x| | O o
| =] ol | o w| o w
w| || a = ] o
DO | | =] | o o ot
=N w| | oo oo

If we now let Z, = {0, 1,...,p—1}, then it can be proved that Z, forms
a field under the operations of modular addition and multiplication mod p.
For example, the additive inverse of 3 in Zr7 is 4, so we write —3 = 4 when
calculating in Z7. Also the multiplicative inverse of 3 in Z7 is 5 , so we write
37! = 5 when calculating in Z.

In practice, we write a®b and a®b as a+0b and ab or a X b when dealing
with linear equations over Z,,.

The simplest field is Zo, which consists of two elements 0, 1 with addition
satisfying 141 = 0. So in Zy, —1 = 1 and the arithmetic involved in solving
equations over Zs is very simple.

EXAMPLE 1.1.4 Solve the following system over Zo:

r+y+z = 0

r+z =

Solution. We add the first equation to the second to get y = 1. Then = =
1 —z =1+ z, with z arbitrary. Hence the solutions are (z, y, z) = (1, 1, 0)
and (0, 1, 1).

We use Q and R to denote the fields of rational and real numbers, re-
spectively. Unless otherwise stated, the field used will be Q.
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1.2 Solving linear equations

We show how to solve any system of linear equations over an arbitrary field,
using the GAUSS-JORDAN algorithm. We first need to define some terms.

DEFINITION 1.2.1 (Row—echelon form) A matrix is in row—echelon
form if
(i) all zero rows (if any) are at the bottom of the matrix and

(ii) if two successive rows are non-zero, the second row starts with more
zeros than the first (moving from left to right).

For example, the matrix

S = O

[ 0 0
0 0
0 0

0 0

o O O
[an)

is in row—echelon form, whereas the matrix

o O O O
S O = =
o O O O
o O O O

is not in row—echelon form.

The zero matrix of any size is always in row—echelon form.

DEFINITION 1.2.2 (Reduced row—echelon form) A matrix is in re-
duced row—echelon form if

1. it is in row—echelon form,
2. the leading (leftmost non—zero) entry in each non—zero row is 1,

3. all other elements of the column in which the leading entry 1 occurs
are zeros.

For example the matrices

10
[01] and

o O O O
o O o
S O O N
o O = O
o= O O
O = W
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are in reduced row—echelon form, whereas the matrices
100 1 2 0
010 and 010
00 2 0 00

are not in reduced row—echelon form, but are in row—echelon form.
The zero matrix of any size is always in reduced row—echelon form.

Notation. If a matrix is in reduced row—echelon form, it is useful to denote
the column numbers in which the leading entries 1 occur, by c1, co, ..., ¢,
with the remaining column numbers being denoted by ¢y41, ..., ¢y, Where
r is the number of non—zero rows. For example, in the 4 x 6 matrix above,
we haver =3, ¢c1=2,c0o=4,¢c3=5,¢c4 =1, c5 =3, cg = 6.

The following operations are the ones used on systems of linear equations

and do not change the solutions.

DEFINITION 1.2.3 (Elementary row operations) There are three
types of elementary row operations that can be performed on matrices:

1. Interchanging two rows:

R; < R; interchanges rows ¢ and j.

2. Multiplying a row by a non—zero scalar:

R; — tR; multiplies row ¢ by the non—zero scalar t.

3. Adding a multiple of one row to another row:

R; — R; +tR; adds t times row 7 to row j.

DEFINITION 1.2.4 [Row equivalence/Matrix A is row—-equivalent to ma-
trix B if B is obtained from A by a sequence of elementary row operations.

EXAMPLE 1.2.1 Working from left to right,

1 20 1 20

A= |2 11 Ry — Ry + 2R3 4 -1 5
1 -1 2 1 -1 2

1 20 2 40
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Thus A is row—equivalent to B. Clearly B is also row—equivalent to A, by
performing the inverse row—operations R; — %Rl, Ry < R3, Ro — Ro—2R5
on B.

It is not difficult to prove that if A and B are row—equivalent augmented
matrices of two systems of linear equations, then the two systems have the
same solution sets — a solution of the one system is a solution of the other.
For example the systems whose augmented matrices are A and B in the
above example are respectively

r+2y = 0 2x4+4y = 0
2e+y =1 and r—y = 2
r—y = 2 de—y = 5

and these systems have precisely the same solutions.

1.3 The Gauss—Jordan algorithm

We now describe the GAUSS-JORDAN ALGORITHM. This is a process
which starts with a given matrix A and produces a matrix B in reduced row—
echelon form, which is row—equivalent to A. If A is the augmented matrix
of a system of linear equations, then B will be a much simpler matrix than
A from which the consistency or inconsistency of the corresponding system

is immediately apparent and in fact the complete solution of the system can
be read off.

STEP 1.

Find the first non-zero column moving from left to right, (column c;)
and select a non—zero entry from this column. By interchanging rows, if
necessary, ensure that the first entry in this column is non—zero. Multiply
row 1 by the multiplicative inverse of aj., thereby converting a;., to 1. For
each non—zero element a;.,, @ > 1, (if any) in column c¢;, add —a;., times
row 1 to row i, thereby ensuring that all elements in column ¢y, apart from
the first, are zero.

STEP 2. If the matrix obtained at Step 1 has its 2nd, ..., mth rows all
zero, the matrix is in reduced row—echelon form. Otherwise suppose that
the first column which has a non—zero element in the rows below the first is
column cg. Then ¢; < ¢o. By interchanging rows below the first, if necessary,
ensure that ag., is non—zero. Then convert as., to 1 and by adding suitable
multiples of row 2 to the remaing rows, where necessary, ensure that all
remaining elements in column cy are zero.
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The process is repeated and will eventually stop after r steps, either
because we run out of rows, or because we run out of non-zero columns. In
general, the final matrix will be in reduced row—echelon form and will have
r non—zero rows, with leading entries 1 in columns cy, ..., ¢, respectively.

EXAMPLE 1.3.1

00 40 2 2 -2 5
2 2 -2 5| Rie<R [00 40
55 -1 5 55 -1 5
(11 -1 2 11 -1 3
Ri—%iR |0 0 4 0| Rs—R3—5R; |0 0 4 0
55 -1 5 00 4 -1
(11 -1 3 110 3
2 2
Ry—iRy |0 0 1 0 {glzgﬁfj‘f{ 001 0
15 3 3 T 2 15
00 4 b 000 L
110 3 1100
Ry— 2R3 |0 01 0| Ri—Ri—3R; [0 0 1 0
000 1 0001

The last matrix is in reduced row—echelon form.

REMARK 1.3.1 It is possible to show that a given matrix over an ar-
bitrary field is row—equivalent to precisely one matrix which is in reduced
row—echelon form.

A flow—chart for the Gauss—Jordan algorithm, based on [1, page 83] is pre-
sented in figure 1.1 below.

1.4 Systematic solution of linear systems.

Suppose a system of m linear equations in n unknowns z1, - - -, z, has aug-
mented matrix A and that A is row—equivalent to a matrix B which is in
reduced row—echelon form, via the Gauss—Jordan algorithm. Then A and B
are m X (n + 1). Suppose that B has r non—zero rows and that the leading
entry 1 in row ¢ occurs in column number ¢;, for 1 < ¢ < r. Then

1< << -, <. <n+1.
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START
!
Input A, m, n

!
i=1,j=1

Are the elements in the
jth column on and below

the 7th row all zero?

j=j+1

No Yes

Let a,; be the first non-—zero
element in column j on or
below the ith row

Isj=n?

No
Yes
Is p =147
Yes \\NO
Interchange the
pth and ith rows
Divide the ith row by a;;
Subtract a,; times the ith
row from tfle gth row for
forq=1,...,m(q #1)
Set ¢; = j
Yes Print A,
z::'.+11 Isi=m? > Ch--a
1=+ ,I\V }
No - Yes STOP
Is j =n? -

Figure 1.1: Gauss—Jordan algorithm.
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Also assume that the remaining column numbers are ¢,41, -+, Cht1, Where
1< <cga< - <cp <n+1l.
Case 1: ¢, = n+ 1. The system is inconsistent. For the last non—zero
row of B is [0, 0,---, 1] and the corresponding equation is
Ox1 4+ 022+ -4+ 0xy =1,
which has no solutions. Consequently the original system has no solutions.

Case 2: ¢, < n. The system of equations corresponding to the non—zero
rows of B is consistent. First notice that » < n here.

Ifr=n,thenci=1,¢c0=2, -+, ¢,, =n and
(1 0 -+ 0 d; ]
1 -+ 0 dy
B=]10 0 1 d,
0o 0 - 0
00 -~ 0 0 |
There is a unique solution x1 = dy, x9 = ds, -+, T, = dj.

If r < n, there will be more than one solution (infinitely many if the
field is infinite). For all solutions are obtained by taking the unknowns
Teys * 0 T, as dependent unknowns and using the r equations correspond-
ing to the non—zero rows of B to express these unknowns in terms of the
remaining independent unknowns ¢, ..., T¢,, which can take on arbi-
trary values:

Loy = bl n+1 — blcr+1$cr+1 — blcnvzcn
L, = by n+l — brcr+1xcr+1 — = brcnxcn-
In particular, taking z..., = 0,...,2., , = 0 and z., = 0, 1 respectively,

produces at least two solutions.
EXAMPLE 1.4.1 Solve the system
r+y = 0

r—y
dr +2y = 1.

I
—
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Solution. The augmented matrix of the system is

1 0
A=11 -1 1
4 1
which is row equivalent to
10 3
B=[0 1 —3
00 O
We read off the unique solution x = %, y= —%.

(Here n = 2,7 =2,¢1 = 1,0 =2. Alsoc, =3 =2<3=n+1 and
r=n.)

EXAMPLE 1.4.2 Solve the system

2x1 4+ 219 — 223 = 5
Trx1+ T7xe+2x3 = 10
521+ dxro —x3 = b.

Solution. The augmented matrix is

2 2 -2 5
A=|7 7 1 10
5 5 —1 5
which is row equivalent to
1100
B={0 010
00 01

We read off inconsistency for the original system.
(Heren=3,r=3,c1=1,c0=3. Also¢, =cg=4=n+1.)

EXAMPLE 1.4.3 Solve the system

Tr1 — T2 + T3
T1+x9—23 = 2.
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Solution. The augmented matrix is

1 -1 11
A:L 1 -1 2]

|

which is row equivalent to

B

@)
—_
|
—_
[N NGl [IV]

The complete solution is x; = % To = % + x3, with z3 arbitrary.

13

(Here n = 3,7 =2,¢1 = 1,0 =2. Alsoc, =3 =2<4=mn+1 and

r<n.)

EXAMPLE 1.4.4 Solve the system

6x3 + 24 — 4dxs — 8xg =

3x3 + x4 — 25 — 4

211 — 3xo + x3 + 4y — T25 + 26
6x1 — 929 + 11xy — 1925 + 326 =

Il
I U

Solution. The augmented matrix is

0 06 2 —4 -8 8

A 0O 03 1 -2 —4 4

12 =31 4 -7 1 2

6 -9 0 11 -19 3 1

which is row equivalent to

3 11 19 1

b bp % %

B 0 01 53 -5 0 3

0 00 O 01 4

0 00 O 00 O

The complete solution is
T1 = 51 + smo — Hay + Pas,
T3 = % - %u + %585,
ro =1,

with xo, x4, x5 arbitrary.

(Heren=6,r=3,c1=1,c0=3,¢c3=6;¢, =c3=6<7=n+1; r <n.)
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EXAMPLE 1.4.5 Find the rational number ¢ for which the following sys-
tem is consistent and solve the system for this value of ¢.

Tty
T—y =
3xr—y =

Solution. The augmented matrix of the system is

1 1 2
A=1]1 -1 0
3 -1 ¢

Hence if t # 2 the system is inconsistent. If ¢ = 2 the system is consistent
and

O =
O = O
O =

We read off the solution z =1, y = 1.

EXAMPLE 1.4.6 For which rationals a and b does the following system
have (i) no solution, (ii) a unique solution, (iii) infinitely many solutions?

x—2y+ 3z 4
20 —-3y+az = 5
3z —4y+5z = b.

Solution. The augmented matrix of the system is

1 -2 3 4
A=|[2 -3 a 5
3 —4 5 b
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R, — R, — 2R, 1 -2 3 4
Ry — R3 — 3R 0 Lamb 3
3 3 ! 0 2 -4 b—12

1 -2 3 4

R3—>R3—2R2 0 1 a—©6 -3 = B.
0 0 —2a+8 b—6

Case 1. a # 4. Then —2a + 8 # 0 and we see that B can be reduced to
a matrix of the form
U
v
b—6
—2a+8

1 00
010
0 01

and we have the unique solution z = u, y = v, z = (b —6)/(—2a + 8).

Case 2. a = 4. Then

1 -2 3 4
B=|0 1 -2 -3
0 0 0 b-6

If b # 6 we get no solution, whereas if b = 6 then

1 -2 3 4 10 -1 -2
B=]10 1 -2 -3 Ry — R1 + 2Ry 01 -2 =3 |. We
0o 0 0 O 00 0 0

read off the complete solution x = —2 + z, y = —3 + 2z, with z arbitrary.

EXAMPLE 1.4.7 Find the reduced row—echelon form of the following ma-
trix over Zs:

21 2 1

2 21 0|
Hence solve the system

2r+y+2z =
20 +2y+2 = 0

over Zs3.

Solution.
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[2121} Ry — Ry — Ry [21 2 1]:[2121]

2 210 01 -1 -1 01 2 2
1 2 1 2 1 0 0 1

The last matrix is in reduced row—echelon form.

To solve the system of equations whose augmented matrix is the given
matrix over Zs, we see from the reduced row—echelon form that x = 1 and
Yy =2—2z =2+ z, where z = 0, 1, 2. Hence there are three solutions
to the given system of linear equations: (z, y, z) = (1, 2, 0), (1, 0, 1) and
(1,1, 2).

1.5 Homogeneous systems

A system of homogeneous linear equations is a system of the form

a1121 +axa + - +apxr, = 0
azix1 + agnrs+ - +awmr, = 0
Am1T1 + AmaT2 + - + GpnTn, = 0.
Such a system is always consistent as 1 = 0, ---, x, = 0 is a solution.

This solution is called the trivial solution. Any other solution is called a
non—trivial solution.
For example the homogeneous system
T—-Y
Tty =

has only the trivial solution, whereas the homogeneous system

r—y+z = 0

r+y+z = 0
has the complete solution x = —z, y = 0, 2z arbitrary. In particular, taking
z =1 gives the non-trivial solution x = -1, y =0, z = 1.

There is simple but fundamental theorem concerning homogeneous sys-
tems.

THEOREM 1.5.1 A homogeneous system of m linear equations in n un-
knowns always has a non—trivial solution if m < n.



1.6. PROBLEMS 17

Proof. Suppose that m < n and that the coefficient matrix of the system
is row—equivalent to B, a matrix in reduced row—echelon form. Let r be the
number of non—zero rows in B. Then »r < m < n and hence n — r > 0 and
so the number n — r of arbitrary unknowns is in fact positive. Taking one
of these unknowns to be 1 gives a non—trivial solution.

REMARK 1.5.1 Let two systems of homogeneous equations in n un-
knowns have coefficient matrices A and B, respectively. If each row of B is
a linear combination of the rows of A (i.e. a sum of multiples of the rows
of A) and each row of A is a linear combination of the rows of B, then it is
easy to prove that the two systems have identical solutions. The converse is
true, but is not easy to prove. Similarly if A and B have the same reduced
row—echelon form, apart from possibly zero rows, then the two systems have
identical solutions and conversely.

There is a similar situation in the case of two systems of linear equations
(not necessarily homogeneous), with the proviso that in the statement of
the converse, the extra condition that both the systems are consistent, is
needed.

1.6 PROBLEMS

1. Which of the following matrices of rationals is in reduced row—echelon
form?

1000 -3 010 0 5 010 0
()| 0010 4| (M)|001 0 —4| (|001 o0
0001 2 000 -1 3 01 0 =2
[0 1 0 0 2] 1 20 00 00 00
0000 -1 00100 00 1 2
Dloo0o01 4| @Dloooo1| Dlooo
(0000 O] 00000 0000

1.0 0 0 1]

0100 2
() 000 1 -1 . [Answers: (a), (e), (g)]
(0000 0

2. Find reduced row—echelon forms which are row—equivalent to the following
matrices:

111 2 00
@lsio] @1y i] @il @) 0o
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[Answers:
1 00 1 00
(a)[égg} (b)[éa’_;] @lo 1ol @|oool]
0 01 0 00
3. Solve the following systems of linear equations by reducing the augmented

matrix to reduced row—echelon form:

(a) r+y+z = 2 (b) x1+x2—x3+2x4 = 10
20+ 3y — 2z = 8 3v1 —xo+Txs+4ry = 1
r—y—z = -8 —5x1 + 3x2 — 1523 — 624 =
(c) 3r—y+72 = 0 (d) 229 +3x3 —4xy = 1
20 —y+4z = 1 203+3x4 = 4
r—y+z = 1 2x1 +2x0 — bx3+22x4 = 4
6x —4y + 10z = 3 201 —6x34+9x4 = 7
[Answers: (a) z=-3,y="1, 2=1 (b) inconsistent;
(c) x = —3 — 32, y = —3 — 22, with z arbitrary;
(d) z — 93y, Ty = —2 + 17374, T3 =2 — 2x4, with x4 arbitrary.]

4. Show that the following system is consistent if and only if ¢ = 2a — 3b
and solve the system in this case.

2r—y+32 = a
3r+y—52z = b
-5 —o5y+21z = c
[Answer: z = 92 4 27 oy = =30420 4 19, with 2 arbitrary.]

5. Find the value of ¢ for which the following system is consistent and solve
the system for this value of t.

z+y = 1
tr+y = t
1+t)x+2y = 3.

[Answer: t =2,z =1,y =0]
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6. Solve the homogeneous system

—3z1+x2+T3+T4 =
r1 —3ra+x3+2x4 =
T1+x9—3r3+ 234 =

o o o o

r1+ax2+23—314 =

[Answer: z1 = x9 = x3 = x4, with x4 arbitrary.]
7. For which rational numbers A does the homogeneous system

r+AN=3)y =
A=3)z+y =

have a non—trivial solution?
[Answer: A = 2, 4.]

8. Solve the homogeneous system

3r1+x0+x3+24 = 0
51 —xo+ax3—24 = 0.
[Answer: x; = —%azg, Ty = —img — x4, with z3 and x4 arbitrary.]

9. Let A be the coefficient matrix of the following homogeneous system of
n equations in n unknowns:

1-—n)zi+a2+--+x, =
ri+(1-—n)zo+--+z, =

o o o o

T +z2+--+(1-n)z, =

Find the reduced row—echelon form of A and hence, or otherwise, prove that
the solution of the above system is x1 = 29 = - - - = x,,, with x,, arbitrary.

a b

10. Let A = [ e d ] be a matrix over a field F'. Prove that A is row—

equivalent to [ ] if ad — bc # 0, but is row—equivalent to a matrix

0 1
whose second row is zero, if ad — bc = 0.
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11. For which rational numbers a does the following system have (i) no
solutions (ii) exactly one solution (iii) infinitely many solutions?

r+2y—3z = 4
3z —y+952z = 2
dr+y+(a®>—14)z = a+2.
[Answer: a = —4, no solution; a = 4, infinitely many solutions; a # 44,

exactly one solution.]
12. Solve the following system of homogeneous equations over Zo:
T1t+x3+a5 =

Tot+ Ty +a5 =

T+ x2+x3+ T4 =

o o o o

r3+Tg4 =

[Answer: 1 = x9 = x4 + x5, 3 = x4, With x4 and x5 arbitrary elements of
Zo.]

13. Solve the following systems of linear equations over Zs:

(a) 2e0+y+32z = 4 ) 2x+y+3z =
de+y+42 = 1 de+y+4z = 1
d3x+y+2z = 0 x+y = 3.

[Answer: (a) x =1,y =2,2=0; (b) 2 =1+ 22,y = 2+ 3z, with z an
arbitrary element of Zs.]

14. If (v, ..., ) and (B4, ..., B,) are solutions of a system of linear equa-
tions, prove that

(1=t +tB1, ..., (1 —t)an +t6)

is also a solution.

15. If (aq,...,qp) is a solution of a system of linear equations, prove that
the complete solution is given by 1 = a1 + y1,...,Tn = @n + Yn, Where
(Y1, ..., Yn) is the general solution of the associated homogeneous system.
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16. Find the values of a and b for which the following system is consistent.
Also find the complete solution when a = b = 2.

rt+y—z
ar+y+ =z
3z + 2y +

+w = 1
+w = b
aw = 1+4a.

[Answer: a #2ora=2=b;x =1— 2z, y = 3z — w, with z, w arbitrary.]

17. Let F ={0, 1, a, b} be a field consisting of 4 elements.

(a) Determine the addition and multiplication tables of F. (Hint: Prove
that the elements 14+0, 1+ 1, 14+ a, 1+ b are distinct and deduce that
1+ 1414 1=0; then deduce that 1+ 1=0.)

(b) A matrix A, whose elements belong to F, is defined by

A=

prove that the reduced row—e

B =

(1 b
a b
|1 1

— o
QL =

chelon form of

o O =
o = O

0
0
1

_ o O

A is given by the matrix
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Chapter 2

MATRICES

2.1 Matrix arithmetic

A matrix over a field F' is a rectangular array of elements from F'. The sym-
bol M, xn(F') denotes the collection of all m x n matrices over F'. Matrices
will usually be denoted by capital letters and the equation A = [a;;] means
that the element in the i—th row and j—th column of the matrix A equals
a;j. It is also occasionally convenient to write a;; = (A);j. For the present,
all matrices will have rational entries, unless otherwise stated.

EXAMPLE 2.1.1 The formula a;; = 1/(i+j) for 1 <i<3,1<5<4
defines a 3 x 4 matrix A = [a;;], namely

1111
2 3 4 5
_ 111
A_3456
111l
4 5 6 7

DEFINITION 2.1.1 (Equality of matrices) Matrices A and B are said
to be equal if A and B have the same size and corresponding elements are
equal; that is A and B € Mp,xn(F) and A = [a;], B = [by;], with a;; = by;
for1<i<m,1<j<n.

DEFINITION 2.1.2 (Addition of matrices) Let A = [a;;] and B =
[bij] be of the same size. Then A + B is the matrix obtained by adding
corresponding elements of A and B; that is

A+ B = [aig] + [big] = [aij + bij].

23
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DEFINITION 2.1.3 (Scalar multiple of a matrix) Let A = [a;;] and
t € F (that is t is a scalar). Then tA is the matrix obtained by multiplying
all elements of A by ¢; that is

tA = t[aij] = [taij].

DEFINITION 2.1.4 (Additive inverse of a matrix) Let A = [a;;] .
Then —A is the matrix obtained by replacing the elements of A by their
additive inverses; that is

—A = —lay] = [-ai].

DEFINITION 2.1.5 (Subtraction of matrices) Matrix subtraction is
defined for two matrices A = [a;;] and B = [b;;] of the same size, in the
usual way; that is

A — B = [ag] — [bis] = [aij — bij].

DEFINITION 2.1.6 (The zero matrix) For each m, n the matrix in
M,sn(F), all of whose elements are zero, is called the zero matrix (of size
m x n) and is denoted by the symbol 0.

The matrix operations of addition, scalar multiplication, additive inverse
and subtraction satisfy the usual laws of arithmetic. (In what follows, s and
t will be arbitrary scalars and A, B, C' are matrices of the same size.)

1. (A+B)+C=A+ (B+C);
2. A+ B= B+ A;

3. 0+ A=A4

4. A+ (—A) =0;

5. (s+t)A=sA+tA, (s—t)A=sA—tA
6. t(A+ B)=tA+tB, t(A—B)=tA—tB;
7. s(tA) = (st)A;

8. 1A=A4, 0A=0, (-1)A=-A4;
9.tA=0=t=00r A=0.

Other similar properties will be used when needed.
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DEFINITION 2.1.7 (Matrix product) Let A = [a;;] be a matrix of
size m x n and B = [bj;] be a matrix of size n x p; (that is the number
of columns of A equals the number of rows of B). Then AB is the m x p
matrix C' = [¢;x] whose (i, k)-th element is defined by the formula

n
Cik, = § a;jbjr = aj1big + -+ + ainbpg.
j=1

EXAMPLE 2.1.2

L[ 2[5 6] _[1x5+2x7 1x6+2x871 _[19 22
13 4|7 8] | 3x5+4xT7 3x6+4x8 ] |43 50 |’
2'56 12_2334#12 5 6.

|7 8|3 4 |31 46 347 8]

3. -H[s 4]:[2 g};

(3 a)| ] =11l

=R

Matrix multiplication obeys many of the familiar laws of arithmetic apart
from the commutative law.

1. (AB)C = A(BC) it A, B, C are m X n, n X p, p X q, respectively;
2. t(AB) = (tA)B = A(tB), A(—B)=(—A)B=—(AB);

3. (A+B)C = AC + BC if A and B are m x n and C'is n X p;

4. D(A+ B)=DA+ DB if A and B are m x n and D is p X m.

e

ot

We prove the associative law only:
First observe that (AB)C and A(BC') are both of size m x gq.
Let A= [aij], B= [bjk], C = [Ckl]' Then

n

p
(AB)ixcr = Z Z a;jbjk | cr

k=1 \j=1

((AB)C); =

M=

i
I

n

aijbjrcr-
j

1j=1

I
M=

T
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Similarly
n p

(A(BC))y =YY aijbjrcn.

j=1k=1
However the double summations are equal. For sums of the form

n p P n
Y3 dip and DY dy
j=1k=1 k=1j=1

represent the sum of the np elements of the rectangular array [d;i], by rows
and by columns, respectively. Consequently

(AB)C)y = (A(BC))y
for 1 <i<m,1<1<gq. Hence (AB)C = A(BC).

The system of m linear equations in n unknowns

a1z + appxe + -+ apxr, = b
9171 + agexo + -+ + agpTy = bo
Am121 + AmaX2 + -+ AmpTn = bm

is equivalent to a single matrix equation

air a2 - Qlp 1 b1
a1 a2 -+ a2, ) bo

— )
Aml Am2 - (mn Tn bm

that is AX = B, where A = [a;;] is the coefficient matriz of the system,

I bl
xTo b2

X = . is the vector of unknowns and B = . is the vector of
Ip bm

constants.

Another useful matrix equation equivalent to the above system of linear
equations is

an a2 a1n b1
as1 a22 a2p by

am1 Am2 Gmn bm
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EXAMPLE 2.1.3 The system

rT+y+z =
r—y+z = 0.

is equivalent to the matrix equation

111 T
1 11|77 |o
z
and to the equation

R b

2.2 Linear transformations

An n—dimensional column vector is an n x 1 matrix over F'. The collection
of all n—dimensional column vectors is denoted by F™.

Every matrix is associated with an important type of function called a
linear transformation.

DEFINITION 2.2.1 (Linear transformation) With A € M, (F), we
associate the function Ty : F" — F™ defined by T4(X) = AX for all
X € F"™. More explicitly, using components, the above function takes the
form

Y1 = a11%1+a12T2 + -+ ainTy
Y2 = 211+ a2 + -+ Gy
Yn = Gm1T1+ am2T2 +  + Gmnon,
where y1, Y2, -, ym are the components of the column vector T4 (X).

The function just defined has the property that
TaA(sX +tY) = sTa(X) +tTy(Y) (2.1)
for all s, t € F' and all n—dimensional column vectors X, Y. For

Tu(sX +1Y) = A(sX +1Y) = s(AX) + t(AY) = sTu(X) + tTa(Y).
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REMARK 2.2.1 It is easy to prove that if T : F” — F™ is a function
satisfying equation 2.1, then T = T4, where A is the m X n matrix whose
columns are T(E1),...,T(E,), respectively, where Ei,..., E, are the n—
dimensional unit vectors defined by

1 0
0 0
Bi=| .|, ...  E,=
0 1

One well-known example of a linear transformation arises from rotating
the (z, y)-plane in 2-dimensional Euclidean space, anticlockwise through 6
radians. Here a point (x, y) will be transformed into the point (x1, y1),
where

r1 = wxcos —ysinb

y1 = xsinf + ycosh.

In 3-dimensional Euclidean space, the equations

x1 =xcosf —ysinf, y; =xsinf +ycosh, z; = z;
Tl =, Yy =ycoso — zsing, z; = ysin ¢ + z cos ¢;

r1 =xcosy — zsiny, y1 =y, 21 = xrsiny + zcosy;

correspond to rotations about the positive z, x, y—axes, anticlockwise through
0, ¢, ¢ radians, respectively.

The product of two matrices is related to the product of the correspond-
ing linear transformations:

If Ais mxn and B is nXxp, then the function Ty7Tp : F? — F™, obtained
by first performing Tg, then T4 is in fact equal to the linear transformation
Tap. For if X € FP, we have

TyTp(X) = A(BX) = (AB)X = Txp(X).

The following example is useful for producing rotations in 3-dimensional
animated design. (See [27, pages 97-112].)

EXAMPLE 2.2.1 The linear transformation resulting from successively
rotating 3—dimensional space about the positive z, x, y—axes, anticlockwise
through 6, ¢, ¥ radians respectively, is equal to T'4pc, where



2.2. LINEAR TRANSFORMATIONS (z,) 29
l
($1 ) yl)
0
Figure 2.1: Reflection in a line.
[ cosf® —sinf 0 1 0 0
C=| sinf cos® 0|, B=|0 cos¢p —sing
| 0 0 1 0 sing cos¢
cosyp 0 —siny
A= 0 1 0
| siny 0 cos
The matrix ABC' is quite complicated:
cosyp 0 —sinvy cos 6 —sind 0
A(BC) = 0 1 0 cospsinf cospcosf —sing
sinyy 0 cosvy singsinf singcosf cos¢
coscos —sinysingsind —cosysinf —sinysingsinf  —sin cos @
= cos ¢ sin 6 cos ¢ cos 0 —sin¢

sin cosf + cosypsingsinf —sinsind + cosysinpcosf  cospcos

EXAMPLE 2.2.2 Another example of a linear transformation arising from
geometry is reflection of the plane in a line [ inclined at an angle 6 to the
positive z—axis.

We reduce the problem to the simpler case 8§ = 0, where the equations
of transformation are x1 = z, y; = —y. First rotate the plane clockwise
through 0 radians, thereby taking [ into the x—axis; next reflect the plane in
the z—axis; then rotate the plane anticlockwise through 6 radians, thereby
restoring [ to its original position.
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(71,91)

Figure 2.2: Projection on a line.

In terms of matrices, we get transformation equations

R e (| e sty | by
[ cosf smeH cos 0 sm&}[w}

sinf —cos6 —sinf cosf Y

- [ cos 26 sin 260 T
sin20 — cos 260 y |

The more general transformation

T cos —sinf T U
=a . + , a>0,
Y1 sin 6 cos 6 Y v
represents a rotation, followed by a scaling and then by a translation. Such
transformations are important in computer graphics. See [23, 24].

EXAMPLE 2.2.3 Our last example of a geometrical linear transformation
arises from projecting the plane onto a line [ through the origin, inclined
at angle 6 to the positive x—axis. Again we reduce that problem to the
simpler case where [ is the z—axis and the equations of transformation are
r1=x,y =0.

In terms of matrices, we get transformation equations

I B | A e
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_ cosf O cosf sind z
N sinf 0 —sinf cosf y
[ cos?26 cosfsind ] [z ]

sin @ cos sin? 0 Y

2.3 Recurrence relations

DEFINITION 2.3.1 (The identity matrix) The n x n matrix [,, =
[0i5], defined by d;; = 1if i = j, §;; = 0 if i # j, is called the n x n identity
matrix of order n. In other words, the columns of the identity matrix of
order n are the unit vectors Fy, - - -, E,, respectively.

For example, Is = [ (1) (1) ]

THEOREM 2.3.1 If A is m x n, then I,,A= A= Al,.

DEFINITION 2.3.2 (k—th power of a matrix) If A is an nxn matrix,
we define A* recursively as follows: A® = I,, and A**1 = A*A for k > 0.

For example A' = AYA =1,A = A and hence A% = A'A = AA.
The usual index laws hold provided AB = BA:
1. AMA™ = AmHn (A = AT,
2. (AB)" = A"B™,
3. AmB™ = B"A™;

4. (A+ B)? = A2 + 2AB + B?;

5. (A+B)" =Y (NA'B";
=0

6. (A+ B)(A—- B) = A?- B2
We now state a basic property of the natural numbers.

AXIOM 2.3.1 (PRINCIPLE OF MATHEMATICAL INDUCTION)

If for each n > 1, P, denotes a mathematical statement and

(i) P is true,
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(ii) the truth of P, implies that of Pny1 for each n > 1,

then P, is true for all mn > 1.

EXAMPLE 2.3.1 Let A = [ _g _;l ] . Prove that
1+ 6n 4n .
n
— > 1.
A [ _on, 1—671] itfn>1

Solution. We use the principle of mathematical induction.
Take P, to be the statement

An:[l—i—Gn 4n }

—-9n 1-—6n

Then P; asserts that

Al 1+6x1 4x1 _ 7T 4
| -9x1 1-6x1]| | -9 =5 |’

which is true. Now let n > 1 and assume that P, is true. We have to deduce
that

ne1 | 14+6(n+1)  4(n+1)
AH—{ —9(n+1) 1—6(n—|—1)]

7+ 6n dn + 4
-9n—-9 —-5—-6n |’

Now

An—i—l — ‘flnA
1+6n  4n 7T 4
A | B
(14+6n)7+ (4n)(-9) (1 +6n)4+ (4n)(—5)
L (—9n)7T+ (1 —6n)(—9) (—9In)4+ (1 —6n)(=5)
[ 7+6n  4An+4 ]
| - -9 —5-6n |’

and “the induction goes through”.

The last example has an application to the solution of a system of re-
currence relations:
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EXAMPLE 2.3.2 The following system of recurrence relations holds for
all n > 0:

Tnt1 = TTp+4yn
Yn+l = —9Zn — dYn.

Solve the system for x, and v, in terms of xy and yp.

Solution. Combine the above equations into a single matrix equation

R

7 4 Tn,
or X1 =AX,, where A = [ 9 _5 } and X, = [ " }
We see that

X, = AX,

X, = AX; = A(AXy) = A%X,

X, = A"X,.

(The truth of the equation X,, = A"Xy for n > 1, strictly speaking

follows by mathematical induction; however for simple cases such as the
above, it is customary to omit the strict proof and supply instead a few
lines of motivation for the inductive statement.)

Hence the previous example gives

R R
_ (1 +6n)zo + (4n)yo
o e ]

and hence z,, = (14 6n)zo+4nyo and y, = (—9In)xo+ (1 —6n)yo, for n > 1.

2.4 PROBLEMS

1. Let A, B, C, D be matrices defined by

[E—

3
A=| -1 , B=| -
1

= O
|
S
— = ot
w O N
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-3 -1
C = 2 1 ,D:[;l _(1]].
4 3

Which of the following matrices are defined? Compute those matrices
which are defined.

A+ B, A+ C, AB, BA, CD, DC, D?.

[Answers: A+ C, BA, CD, D?;

0 —1 0 12 —14 3
1 31, -4 2|, 10 -2 |, [1;1 :;L].]
) 4 —10 5 22 —4
-1 0 1 . .
. Let A= 01 1l Show that if B is a 3 x 2 such that AB = I,
then

a b

B=| —-a-1 1-5b
a+1 b

for suitable numbers a¢ and b. Use the associative law to show that
(BA)QB = B.

CIfA= {i 2],provethat A? — (a+d)A+ (ad — be)I, = 0.

4

LI A= { -3 ], use the fact A2 = 4A — 31, and mathematical

1 0
induction, to prove that
(3" —1) 3-—-3"

A" = A I, ifn>1.
5 + 5 2 UnNn=>

. A sequence of numbers 1, xa,..., Ty, ... satisfies the recurrence rela-

tion xp41 = axy +bx,—1 for n > 1, where a and b are constants. Prove
that
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where A = | ¢ b and hence express Tl i terms of | !
1 0 Tn g
If a = 4 and b = —3, use the previous question to find a formula for
T, in terms of x1 and xg.
[Answer:
3" -1 . 3-—3" ]
Ty = x x
n 2 1 2 0
2a —a?
6. Let A= [ 1 0 ]
(a) Prove that
n (n+1a® —na™*! .
= > 1.
A { na® 1 (1 —n)a" ifn=1
(b) A sequence xg, x1,..., Ty, ...satisfies the recurrence relation x,; =

2ax,, — a’z,_1 for n > 1. Use part (a) and the previous question
to prove that x,, = na" tx; + (1 — n)a"xg for n > 1.

a
7.LetA—[c d

quadratic polynomial 22 — (a+d)x+ad—be. (A1 and Ay may be equal.)
Let k,, be defined by kg =0, k1 = 1 and for n > 2

b ] and suppose that A1 and Ao are the roots of the

kep, = iw”x;l.

Prove that
kni1 = (A1 4+ A2)kn — Mok, 1,

if n > 1. Also prove that

e T =29)/ (A = Xa) i A # g,
" APt if \; = Ao

Use mathematical induction to prove that if n > 1,
A" = kA — M Aokn—11s,

[Hint: Use the equation A% = (a + d)A — (ad — be)I5.]
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8. Use Question 6 to prove that if A = [ ; ? ], then
311 (-)" ' -1 1
=7 { 11 } T 1 -1

ifn>1.

9. The Fibonacci numbers are defined by the equations Fy = 0, F; = 1
and Fpy1 = F, + F,—1 if n > 1. Prove that

() (57)

10. Let » > 1 be an integer. Let a and b be arbitrary positive integers.
Sequences x,, and ¥, of positive integers are defined in terms of a and
b by the recurrence relations

if n>0.

Tptl = Tp+TYn

Yntl = Tp+ Yn,

for n > 0, where zg = a and yg = b.
Use Question 6 to prove that

Tn
—_— T as n — oQ.
Yn

2.5 Non-—singular matrices

DEFINITION 2.5.1 (Non—singular matrix)

A square matrix A € M,x,(F) is called non-singular or invertible if
there exists a matrix B € My, (F) such that

AB =1, = BA.

Any matrix B with the above property is called an inverse of A. If A does
not have an inverse, A is called singular.
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THEOREM 2.5.1 (Inverses are unique)

If A has inverses B and C', then B = C.

Proof. Let B and C be inverses of A. Then AB = I,, = BA and AC =
I, = CA. Then B(AC) = BI,, = B and (BA)C = I,,C = C. Hence because
B(AC) = (BA)C, we deduce that B = C.

REMARK 2.5.1 If A has an inverse, it is denoted by A~!. So
AAT =1, =471A
Also if A is non-singular, it follows that A~! is also non-singular and
(A H™t=A.

THEOREM 2.5.2 If A and B are non—singular matrices of the same size,
then so is AB. Moreover

(AB)"'=pB7tA™l
Proof.
(AB)(B'A™Y) = A(BB YA ' = AL A7 = AA™ = I,,.

Similarly
(BTYA™Y(AB) = I,.

REMARK 2.5.2 The above result generalizes to a product of m non—
singular matrices: If Aq,..., A, are non—singular n X n matrices, then the
product Aj ... A,, is also non-singular. Moreover

(Ay... An) b =A 0 AT

(Thus the inverse of the product equals the product of the inverses in the
reverse order.)

EXAMPLE 2.5.1 If A and B are n x n matrices satisfying A> = B? =
(AB)? = I,,, prove that AB = BA.

Solution. Assume A% = B? = (AB)? = I,,. Then A, B, AB are non—
singular and A~! = A, B~ = B, (AB)~! = AB.
But (AB)™! = B~!A~! and hence AB = BA.
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EXAMPLE 2.5.2 A = le ; } is singular. For suppose B = [ Z Z ]

is an inverse of A. Then the equation AB = I, gives

el a]=lot)

and equating the corresponding elements of column 1 of both sides gives the
System

a-+2c =
da+8 = 0

which is clearly inconsistent.

THEOREM 2.5.3 Let A = [ Z Z ] and A = ad — be # 0. Then A is
non—singular. Also
Alop-r| 4
—c a |
REMARK 2.5.3 The expression ad — bc is called the determinant of A
and is denoted by the symbols det A or ¢ Z

d

Proof. Verify that the matrix B = A~} [
AB = I, = BA.

—b . :
a } satisfies the equation

EXAMPLE 2.5.3 Let

A=

ot O O
S O =
O = O

Verify that A3 = 515, deduce that A is non-singular and find A~

Solution. After verifying that A% = 513, we notice that

Al =I5 = 1a2) 4.
5 5

Hence A is non-singular and A~! = %AQ.
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THEOREM 2.5.4 If the coefficient matrix A of a system of n equations

in n unknowns is non-singular, then the system AX =

solution X = A~ 'B.
Proof. Assume that A~ exists.

1. (Uniqueness.) Assume that AX = B. Then

(A71A)X = A7'B,
I,X = A'B,
X = A'B.

2. (Existence.) Let X = A~'B. Then

AX

A(ATIB) =
THEOREM 2.5.5 (Cramer’s rule for 2 equations
The system

ax + by
cr + dy

e
f

has a unique solution if A =

a b
. d‘;é(), namely

where

‘ and Ag =

a
C

e
f

Proof. Suppose A # 0. Then A = [ Z 2

-

} has inverse

"

ATt =A"1

. ]

and we know that the system

4|

B has the unique

(AA"HYB =1,B = B.

in 2 unknowns)
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has the unique solution
x| _ a1 e _ 1 d —b e
] f Al —c a f
1

Hence © = A1 /A, y = Ag/A.
COROLLARY 2.5.1 The homogeneous system

ar+by = 0
cx+dy = 0

has only the trivial solution if A = ‘ (cl 2 ‘ #0.

EXAMPLE 2.5.4 The system

Tr+8y = 100
20 =9y = 10

has the unique solution z = A; /A, y = Ag/A, where

100 8

0 o = —130.

7 8
a-|;

I ’:—79,A1:‘

’:-980,@:‘ 7 100‘

2 10

__ 980 _ 130
Sox—ﬁandy—?g.

THEOREM 2.5.6 Let A be a square matrix. If A is non-singular, the
homogeneous system AX = 0 has only the trivial solution. Equivalently,
if the homogenous system AX = 0 has a non—trivial solution, then A is
singular.

Proof. If A is non-singular and AX = 0, then X = A~10 = 0.

REMARK 2.5.4 If A,q,..., A, denote the columns of A, then the equa-
tion
AX = 2140+ ...+ A0

holds. Consequently theorem 2.5.6 tells us that if there exist scalars x1, ..., Ty,
not all zero, such that

T1Am + ...+ 1A =0,
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that is, if the columns of A are linearly dependent, then A is singular. An
equivalent way of saying that the columns of A are linearly dependent is that
one of the columns of A is expressible as a sum of certain scalar multiples
of the remaining columns of A; that is one column is a linear combination
of the remaining columns.

EXAMPLE 2.5.5

1 2 3
A=11 0 1
3 47
is singular. For it can be verified that A has reduced row—echelon form
1 01
0 1 1
0 00
and consequently AX = 0 has a non—trivial solution z = -1, y = -1, z = 1.

REMARK 2.5.5 More generally, if A is row—equivalent to a matrix con-
taining a zero row, then A is singular. For then the homogeneous system
AX =0 has a non—trivial solution.

An important class of non—singular matrices is that of the elementary
row matrices.

DEFINITION 2.5.2 (Elementary row matrices) There are three types,
E;j, E;(t), Eij(t), corresponding to the three kinds of elementary row oper-
ation:

1. Ejj;, (i # j) is obtained from the identity matrix I,, by interchanging
rows ¢ and j.

2. E;(t), (t #0) is obtained by multiplying the i—th row of I,, by t.

3. E;i;(t), (i # j) is obtained from I,, by adding t times the j-th row of
I, to the i—th row.

EXAMPLE 2.5.6 (n=3.)

100 1 00 10 0
Eys=10 0 1|,E(-1)=[0 -1 0],Exs(-1)=]0 1 —1
010 0 01 00 1
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The elementary row matrices have the following distinguishing property:

THEOREM 2.5.7 If a matrix A is pre-multiplied by an elementary row—
matrix, the resulting matrix is the one obtained by performing the corre-
sponding elementary row—operation on A.

EXAMPLE 2.5.7

b
Ey3 f
d

o
o 8
a o 2

b 1 00 b
f 01 0 f

COROLLARY 2.5.2 The three types of elementary row—matrices are non—
singular. Indeed

1. B! = Ey;

2. E7Nt) = B;(t7Y);

3. (Ey(t) ™" = Eij(—t).

Proof. Taking A = I, in the above theorem, we deduce the following
equations:

EijEZ'j = 1,
E(ME() = I=E(#t )E({) ift#0
Eij(Q)Eij(=t) = In = Ei(=t)Ei(t).

EXAMPLE 2.5.8 Find the 3 x 3 matrix A = F3(5)F23(2)E12 explicitly.
Also find AL

Solution.
010 010 010
A=FE3(5)FE»3(2)| 1 0 0| =E35)|1 0 2|=]10 2
0 01 0 01 0 0 5

To find A~!, we have

A*l

( ( )E23(2)E12)
= By (Bs(2) " (Bs(5) "
= E12E23( 2)E3(571)
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100
= EpExp(-2)[0 1 0
00 %

10 0 01 -2

= Ep| 01 -2|=]|10 0

oog 00 1

REMARK 2.5.6 Recall that A and B are row—equivalent if B is obtained
from A by a sequence of elementary row operations. If E1,..., E, are the
respective corresponding elementary row matrices, then

B=E,(..(Es(E1A))...) = (E,...E))A = PA,

where P = FE,. ... F; is non—singular. Conversely if B = PA, where P is
non-singular, then A is row—equivalent to B. For as we shall now see, P is
in fact a product of elementary row matrices.

THEOREM 2.5.8 Let A be non—singular n X n matrix. Then
(i) A is row—equivalent to I,

(ii) A is a product of elementary row matrices.

Proof. Assume that A is non—singular and let B be the reduced row—echelon
form of A. Then B has no zero rows, for otherwise the equation AX = 0
would have a non—trivial solution. Consequently B = I,,.

It follows that there exist elementary row matrices F1, ..., E, such that
E.(...(F1A)...) = B = I, and hence A = E;'...E"!, a product of
elementary row matrices.

THEOREM 2.5.9 Let A be n x n and suppose that A is row—equivalent
to I,. Then A is non-singular and A~! can be found by performing the

same sequence of elementary row operations on [,, as were used to convert
A to I,.

Proof. Suppose that E,.... 1A = I,. In other words BA = I,,, where
B = E,...F is non-singular. Then B~1(BA) = B~'I,, and so A = B~!,
which is non—singular.

Also AL = (BY) ' = B=E,((...(E1l,) .. .), which shows that A~
is obtained from I, by performing the same sequence of elementary row
operations as were used to convert A to I,,.
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REMARK 2.5.7 It follows from theorem 2.5.9 that if A is singular, then
A is row—equivalent to a matrix whose last row is zero.

EXAMPLE 2.5.9 Show that A = [ 1 ? } is non-singular, find A~! and

express A as a product of elementary row matrices.

Solution. We form the partitioned matrix [A|I2] which consists of A followed
by I». Then any sequence of elementary row operations which reduces A to
I will reduce I to A~!. Here

=17 g Y]
rReronm o 3]
recom [ 1] 10
Ry — Ry — 2R, [(1) (1) ‘ _1‘ _ﬂ

Hence A is row—equivalent to I3 and A is non—singular. Also

4 -1 2
=[]

We also observe that
Elg(—2>E2(—1)E21(—1)A = IQ.
Hence

Al = Elg(—Q)EQ(—l)Egl(—l)
A = E21(1>E2<—1)E12(2).

The next result is the converse of Theorem 2.5.6 and is useful for proving
the non—singularity of certain types of matrices.

THEOREM 2.5.10 Let A be an n x n matrix with the property that
the homogeneous system AX = 0 has only the trivial solution. Then A is
non-singular. Equivalently, if A is singular, then the homogeneous system
AX = 0 has a non—trivial solution.
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Proof. If A is n x n and the homogeneous system AX = 0 has only the
trivial solution, then it follows that the reduced row—echelon form B of A
cannot have zero rows and must therefore be I,,. Hence A is non—singular.

COROLLARY 2.5.3 Suppose that A and B are n x n and AB = I,.
Then BA = I,,.

Proof. Let AB = I,, where A and B are n x n. We first show that B
is non-singular. Assume BX = 0. Then A(BX) = A0 =0, so (AB)X =
0, I,X =0 and hence X = 0.

Then from AB = I,, we deduce (AB)B~! = I, B~! and hence A = B~ 1.
The equation BB~! = I,, then gives BA = I,,.

Before we give the next example of the above criterion for non-singularity,
we introduce an important matrix operation.

DEFINITION 2.5.3 (The transpose of a matrix) Let A be an m xn
matrix. Then A?, the transpose of A, is the matrix obtained by interchanging
the rows and columns of A. In other words if A = [a;}], then (At)ji = ajj.

Consequently A? is n x m.

The transpose operation has the following properties:

1. (A" = 4

2. (A£B)! = A"+ B! if A and B are m x n;

3. (sA)! = sAl if s is a scalar;

4. (AB)! = B'Atif Ais m x n and B is n X p;

5. If A is non-singular, then A? is also non-singular and
()7 = (a7’

6. X!X =22 +...+22if X =[r1,...,2,]" is a column vector.

We prove only the fourth property. First check that both (AB)! and B!A!
have the same size (p x m). Moreover, corresponding elements of both
matrices are equal. For if A = [a;;] and B = [bj], we have

((AB)),, = (4B);

n
= Y aijby
j=1
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n

= (Bt)kj (At)ji

j=1
- (A,

There are two important classes of matrices that can be defined concisely
in terms of the transpose operation.

DEFINITION 2.5.4 (Symmetric matrix) A real matrix A is called sym-
metric if A' = A. In other words A is square (n x n say) and aj; = a;; for
all 1 <7< n,1<j<n. Hence

a b
=[5 ]
is a general 2 x 2 symmetric matrix.
DEFINITION 2.5.5 (Skew—symmetric matrix) A real matrix A is called

skew—symmetric if A' = —A. In other words A is square (n x n say) and
aj; = —a;j forall1 <i<n,1<j<n.

REMARK 2.5.8 Taking ¢ = j in the definition of skew—symmetric matrix
gives a;; = —ay; and so a; = 0. Hence

A= 0]

is a general 2 X 2 skew—symmetric matrix.
We can now state a second application of the above criterion for non—
singularity.
COROLLARY 2.5.4 Let B be an n x n skew—symmetric matrix. Then
A = I, — B is non-singular.
Proof. Let A = I, — B, where B! = —B. By Theorem 2.5.10 it suffices to
show that AX = 0 implies X = 0.
We have (I, — B)X =0, so X = BX. Hence X'X = X'BX.
Taking transposes of both sides gives
(X'BX)! = (X'X)
XtBt(Xt)t — Xt(Xt)t
X{(-B)X = X'X
-X'BX = X'X=X'BX.
Hence X'X = —X'X and X'X = 0. But if X = [21,...,2,]!, then X!X =
22 +...+22 =0 and hence 1 =0,...,1, = 0.
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2.6 Least squares solution of equations

Suppose AX = B represents a system of linear equations with real coeffi-
cients which may be inconsistent, because of the possibility of experimental
errors in determining A or B. For example, the system

T

Y
r+y

=1
= 2
3.001

is inconsistent.
It can be proved that the associated system A’AX = A'B is always
consistent and that any solution of this system minimizes the sum 7%+ ...+

r2, where 71,..., 7y, (the residuals) are defined by

ri = a1+ ...+ aipTy, — b,

for i = 1,...,m. The equations represented by A'AX = A'B are called the
normal equations corresponding to the system AX = B and any solution
of the system of normal equations is called a least squares solution of the
original system.

EXAMPLE 2.6.1 Find a least squares solution of the above inconsistent
System.

10 1
Solution. Here A= | 0 1 ,X:[x],B: 2
11 4 3.001
1 0]
1 01 2 1
t A _
ThenAA—[Oll} 0 1 —[12].
1 1]
1 01 ! 4.001
AlsoAtB:[O ) 1] 2 :[5'001].
3.001 | '
So the normal equations are
2r+y = 4.001
z+2y = 5.001
which have the unique solution
. 3.001 ~ 6.001
3 73



48 CHAPTER 2. MATRICES

EXAMPLE 2.6.2 Points (z1, y1),. .., (2n, yn) are experimentally deter-
mined and should lie on a line y = max + c¢. Find a least squares solution to
the problem.

Solution. The points have to satisfy

mxy+c = 1
maTnp +¢ = Yn,
or Ax = B, where
rp 1 (1
A=1| : |, x= [ m ] . B=| :
S c :
| Yn

The normal equations are given by (A*A)X = A'B. Here

i) 1 9 9
AtA— | TL e Tn A r{+...+x, T1+...+2x,
I O | S R T R n
Ty 1
Also
Y
AB — 1 ... Tp : _ T1Y1 + ...+ TpYn
1 ... 1 : ...+ Yn '
Yn

It is not difficult to prove that

A= det(A'A) = Y (2 —a))>%

1<i<j<n

which is positive unless 1 = ... = z,. Hence if not all of x1,...,x, are
equal, A'A is non-singular and the normal equations have a unique solution.
This can be shown to be

1 1
m= < Y (@wi—a)yi—yy) c= X > (wiyy —xyyi)(zi — ).

1<i<j<n 1<i<j<n

REMARK 2.6.1 The matrix A'A is symmetric.
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2.7 PROBLEMS

1 4
-3 1
express A as a product of elementary row matrices.

|

A = E91(—3)FE2(13)E12(4) is one such decomposition.]

1. Let A = { Prove that A is non-singular, find A~! and

[Answer: A1 = {

Slestl—
&l=Gle

2. A square matrix D = [d;;] is called diagonalif d;; = 0 for ¢ # j. (That
is the off-diagonal elements are zero.) Prove that pre-multiplication
of a matrix A by a diagonal matrix D results in matrix DA whose
rows are the rows of A multiplied by the respective diagonal elements
of D. State and prove a similar result for post—multiplication by a
diagonal matrix.

Let diag (aq,...,a,) denote the diagonal matrix whose diagonal ele-
ments d;; are ai,...,a,, respectively. Show that

diag (a1, ...,a,)diag (b1,...,b,) = diag (a1b1, ..., anby)

and deduce that if a; ...a, # 0, then diag (ay,...,ay) is non-singular
and
(diag (a1, . ..,a,)) "t = diag (a7 ;... a; ).
Also prove that diag (a1, ..., a,) is singular if a; = 0 for some i.
0 0 2
3. Let A= | 1 2 6 |. Prove that A is non-singular, find A~ and
3 79
express A as a product of elementary row matrices.
—12 7T =2
[Answers: A~1 = 5 -3 1],
5 0
2

A= E12E31 (3)E23E3(2)E12(2)E13(24)E23(—9) is one such decompo—
sition.]
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8.

CHAPTER 2. MATRICES

1 2 k
. Find the rational number k for which the matrix A= | 3 -1 1
5 3 -5
is singular. [Answer: k = —3.]
1 2 1. . . .
. Prove that A = [ 9 4 ] is singular and find a non—singular matrix

P such that PA has last row zero.

A= [ _:1)) le }, verify that A2 — 24 + 13l = 0 and deduce that
A"l = —1—13(A — 2[2)
1 1 -
.Let A=10 0
2 1

(i) Verify that A% = 342 — 34 + I3.

(ii) Express A% in terms of A?, A and I3 and hence calculate A*
explicitly.

(iii) Use (i) to prove that A is non-singular and find A~! explicitly.

-1 -8 —4
[Answers: (ii) A* =642 —8A + 3I3 = 12 9 4 |;
20 16 5
-1 =3 1
(iii) A= = A2 - 34 + 313 = 2 4 -1 1]
0 1 0

(i) Let B be an n x n matrix such that B3 = 0. If A = I, — B, prove
that A is non-singular and A~! = I,, + B + B2,
Show that the system of linear equations AX = b has the solution

X = b+ Bb+ B?.

0 r s
(i) fB= |0 0 ¢t |, verify that B3 = 0 and use (i) to determine
0 00
(I3 — B)~! explicitly.
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1 r s+rt
[Answer: | 0 1 t ]
00 1

9. Let A ben xn.

(i) If A%2 =0, prove that A is singular.
(ii) If A2 = A and A # I,,, prove that A is singular.

10. Use Question 7 to solve the system of equations

r+y—2z = a
z = b
2r4+y+22 = ¢

where a, b, ¢ are given rationals. Check your answer using the Gauss—
Jordan algorithm.

[Answer: © = —a—3b+c¢,y=2a+4b—c, z=1b.]

11. Determine explicitly the following products of 3 x 3 elementary row
matrices.

(i) E1oFas (i) E1(5)E12  (iii) E12(3)E91(—3) (iv) (El(l()O))_l
(V) Byt (vi) (Bi2(7))™" (vil) (Bra(7) B (1))~

12. Let A be the following product of 4 x 4 elementary row matrices:
A = E3(2)E14FE42(3).
Find A and A~! explicitly.
0 30

[Answers: A =

o O o
— o O O
w o = o
oNvE O O
o o o

010
0 0 2
1 00
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13.

14.

15.

16.
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Determine which of the following matrices over Zo are non—singular
and find the inverse, where possible.

(a)

—_ = O
S = O =
S = = O
— == =
C
_ O = =
el =)
— O = o

1
0
[Answer: (a) 1
1

— = =
_ o O =
O O =

Determine which of the following matrices are non-singular and find
the inverse, where possible.
[ 1 1 1] 2 2 4 (4 6 -3
(a) | =1 1 (b1 0 1 (¢l 0 0 7
. 2 0 0 | 010 | 0 0 5
o0y [L2ES] i
(d) | 0 =5 0| (e) (f) 5 6
0O 07 0012 5 79
- - 0 0 0 2 -
0 5 -1 2 00
[Answers: (a) | 0 1 3 | (b) 0 0 (A0 -1 0
1 -1 -1 : -1 - 0 01
1 -2 0 -3
0o 1 -2 2
©1o o 1 -1
o o o0 1

Let A be a non-singular n x n matrix. Prove that A? is non-singular
and that (A")~! = (A1)

Prove that A = [ CZ ] has no inverse if ad — be = 0.

d

[Hint: Use the equation A% — (a + d)A + (ad — be)I5 = 0.]
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17.

18.

19.

20.

21.

22.

1 a b
Prove that the real matrix A = | —a 1 ¢ | is non-singular by
b —c 1

proving that A is row—equivalent to [3.

If P~1AP = B, prove that P~'A"P = B" for n > 1.

Let A =
and deduce that

An_133+13” 4 -3
714 4 7\ 12 —4 3|

a b
LetA—[C d

[T

i P= L3 Verify that P~1AP = 15_2 0
%,—_14.er1ya =1 0 1

} be a Markov matrix; that is a matrix whose elements

are non—negative and satisfy a+c =1 = b+d. Alsolet P = [ g _1 ] .
Prove that if A # I then

1 0
. . o 71 —
(i) P is non-singular and P~ AP [ 0 atd—1 ],
1 b b 01
(ii) A _>b+C|:C C]asnﬂoo,lfA#[l O]‘
1 2 -1
fX=|3 4|andY = 3 |, find XX X'X, YY! Y'Y.
5 6 4
5 11 17 1 -3 —4
[Answers: | 11 25 39 |, [ ii ;l;l ] 1 -3 9 12 |, 26]
17 39 61 -4 12 16

Prove that the system of linear equations

r+2y = 4
r+y =
3r+5y = 12

is inconsistent and find a least squares solution of the system.
[Answer: z =6,y = —7/6.]
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23.

24.

25.
26.
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The points (0, 0), (1, 0), (2, —1), (3, 4), (4, 8) are required to lie on a
parabola y = a + bz + cx?. Find a least squares solution for a, b, c.
Also prove that no parabola passes through these points.

[Answer: a = 1, b= -2, c=1]

If A is a symmetric n x n real matrix and B is n x m, prove that B*AB
is a symmetric m X m matrix.

If Aism xn and B is n X m, prove that AB is singular if m > n.

Let A and B be n x n. If A or B is singular, prove that AB is also
singular.



Chapter 3

SUBSPACES

3.1 Introduction

Throughout this chapter, we will be studying F'™*, the set of all n—dimensional
column vectors with components from a field F. We continue our study of
matrices by considering an important class of subsets of F'™ called subspaces.
These arise naturally for example, when we solve a system of m linear ho-
mogeneous equations in n unknowns.

We also study the concept of linear dependence of a family of vectors.
This was introduced briefly in Chapter 2, Remark 2.5.4. Other topics dis-
cussed are the row space, column space and null space of a matrix over F,
the dimension of a subspace, particular examples of the latter being the rank
and nullity of a matrix.

3.2 Subspaces of I

DEFINITION 3.2.1 A subset S of F'™ is called a subspace of F™ if
1. The zero vector belongs to S; (that is, 0 € S);

2. Ifue Sand v € S, then u+v € §; (S is said to be closed under
vector addition);

3. Ifu e Sandte F, then tu € S; (S is said to be closed under scalar
multiplication).

EXAMPLE 3.2.1 Let A € My, xn(F). Then the set of vectors X € F™
satisfying AX = 0 is a subspace of F™ called the null space of A and is
denoted here by N(A). (It is sometimes called the solution space of A.)

55
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Proof. (1) A0 =0,s00¢€ N(A); (2) If X, Y € N(A), then AX = 0 and
AY =0,80 A(X+Y)=AX+AY =0+0=0andso X +Y € N(A); (3)
If X e N(A) and t € F, then A(tX) =t(AX) =t0=0,s0tX € N(A).

10

01 ], then N(A) = {0}, the set consisting of

For example, if A = {

1 2

just the zero vector. If A = [ 9 4

], then N(A) is the set of all scalar
multiples of [—2, 1]*.

EXAMPLE 3.2.2 Let Xq,...,X,, € ™. Then the set consisting of all
linear combinations 1 X1 + - -+ + ., Xi, where z1,..., 2, € F, is a sub-
space of F™. This subspace is called the subspace spanned or generated by
X1,..., X and is denoted here by (Xi,..., X,,). We also call X1,...,X,,
a spanning family for S = (Xy,..., X;,).

Proof. (1) 0 = 0X; + -+ 0Xm, 50 0 € (X1,...,Xm); (2) If X, Y €
(X1,..., Xm), then X =21 X1+ -+ 2z, Xpnand Y =1 X5 + - + ym X,
SO

X+Y = (o1 Xi+FzpXn)+WiXi+ -+ ymXm)
= ($1+y1)X1++(:Em+ym)Xm€<X1,,Xm>

(3)If X € (X1,...,X,n) and t € F, then

X = o1 Xi+ - +z,Xn
tX = t(fL'le + -+ CEme)
= (tSCl)Xl—f—"'—l-(tﬂjm)XmE <X1,...,Xm>.

For example, if A € My, «n(F'), the subspace generated by the columns of A
is an important subspace of F and is called the column space of A. The
column space of A is denoted here by C(A). Also the subspace generated
by the rows of A is a subspace of F™ and is called the row space of A and is
denoted by R(A).

EXAMPLE 3.2.3 For example F" = (Ey,..., E,), where E,..., E, are
the n—dimensional unit vectors. For if X = [z1,...,7,]' € F", then X =
1B+ -+ an By

EXAMPLE 3.2.4 Find a spanning family for the subspace S of R? defined
by the equation 2x — 3y + 5z = 0.
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Solution. (S is in fact the null space of [2, —3, 5], so S is indeed a subspace
of R3.)
If [z, y, 2]t € S, then x = % — %z. Then
_35
2
+z| O
1

<
Il
<
Il
<
O ow

and conversely. Hence [%, 1, 0]* and [—%, 0, 1]¢ form a spanning family for

S.

The following result is easy to prove:

LEMMA 3.2.1 Suppose each of Xi,...,X, is a linear combination of
Yi1,..., Y. Then any linear combination of Xi,..., X, is a linear combi-
nation of Yi,...,Ys.

As a corollary we have

THEOREM 3.2.1 Subspaces (Xi,...,X,) and (Y7,...,Ys) are equal if
each of X1, ..., X, is a linear combination of Y7, ...,Y; and each of Y7, ..., Y}
is a linear combination of X7y,..., X,.

COROLLARY 3.2.1 Subspaces (X1,...,X,, Z1,...,Z;) and (X1,..., X,)
are equal if each of Z1,...,Z; is a linear combination of X,..., X,.

EXAMPLE 3.2.5 If X and Y are vectors in R", then
(X, V)=(X+Y, X -Y).

Solution. Each of X +Y and X — Y is a linear combination of X and Y.
Also

1 1 1 1
so each of X and Y is a linear combination of X +Y and X — Y.

There is an important application of Theorem 3.2.1 to row equivalent
matrices (see Definition 1.2.4):

THEOREM 3.2.2 If A is row equivalent to B, then R(A) = R(B).

Proof. Suppose that B is obtained from A by a sequence of elementary row
operations. Then it is easy to see that each row of B is a linear combination
of the rows of A. But A can be obtained from B by a sequence of elementary
operations, so each row of A is a linear combination of the rows of B. Hence
by Theorem 3.2.1, R(A) = R(B).
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REMARK 3.2.1 If A is row equivalent to B, it is not always true that
C(A) =C(B).

11 11

1 1 0 0
reduced row—echelon form of A. However we see that

C(A):<{H’[”>:<[”>

and similarly C(B) = < [ (1] } >
1

Consequently C(A) £ C(B), as [ . ] € C(A) but [ } ] ¢ C(B).

For example, if A = [ ] and B = { ], then B is in fact the

3.3 Linear dependence

We now recall the definition of linear dependence and independence of a
family of vectors in F™ given in Chapter 2.

DEFINITION 3.3.1 Vectors Xi,...,X,, in F™ are said to be linearly
dependent if there exist scalars x1, ..., xmy,, not all zero, such that

1 X1+ -+ Xn =0.

In other words, X1, ..., X,, are linearly dependent if some X; is expressible
as a linear combination of the remaining vectors.

X1,..., X, are called linearly independent if they are not linearly depen-
dent. Hence X1, ..., X,, are linearly independent if and only if the equation

has only the trivial solution z; =0, ..., x,, = 0.

EXAMPLE 3.3.1 The following three vectors in R3

1 1 -1
Xi=|2|, Xo=| 1|, Xs=| 7
3 2 12

are linearly dependent, as 2X; + 3Xs 4+ (—1)X3 = 0.



3.3. LINEAR DEPENDENCE 59

REMARK 3.3.1 If X3,...,X,, are linearly independent and
1 X1+ X = Xa o+ ym X,
then x1 = y1, ...,y = ym. For the equation can be rewritten as
(1 —y) X1+ 4 (Tm — ym)Xm =0
andsox; —y1 =0,...,2m —ym = 0.

THEOREM 3.3.1 A family of m vectors in F'™ will be linearly dependent
if m > n. Equivalently, any linearly independent family of m vectors in F'™
must satisfy m < n.

Proof. The equation
01 X1+ -+ Xm =0

is equivalent to n homogeneous equations in m unknowns. By Theorem 1.5.1,
such a system has a non—trivial solution if m > n.

The following theorem is an important generalization of the last result
and is left as an exercise for the interested student:

THEOREM 3.3.2 A family of s vectors in (Xq,...,X,) will be linearly
dependent if s > r. Equivalently, a linearly independent family of s vectors
in (Xi,...,X,) must have s < r.

Here is a useful criterion for linear independence which is sometimes
called the left—to-right test:

THEOREM 3.3.3 Vectors X1,..., X, in F" are linearly independent if
(a) X1 #0;

b) For each k with 1 < k < m, X is not a linear combination of
(
X1, Xg1.

One application of this criterion is the following result:

THEOREM 3.3.4 Every subspace S of F™ can be represented in the form
S =(X1,...,Xm), where m < n.
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Proof. If S = {0}, there is nothing to prove — we take X1 =0 and m = 1.

So we assume S contains a non—zero vector X1; then (X;) C S as Sis a
subspace. If S = (X1), we are finished. If not, S will contain a vector Xy,
not a linear combination of Xi; then (X;, X3) C S as S is a subspace. If
S = (X1, X2), we are finished. If not, S will contain a vector X3 which is
not a linear combination of X; and Xs. This process must eventually stop,
for at stage k we have constructed a family of k& linearly independent vectors
X1,..., X}, all lying in F™ and hence k < n.

There is an important relationship between the columns of A and B, if
A is row—equivalent to B.

THEOREM 3.3.5 Suppose that A is row equivalent to B and let ¢1, ..., ¢,
be distinct integers satisfying 1 < ¢; < n. Then

(a) Columns A, ,..., A, of A are linearly dependent if and only if the
corresponding columns of B are linearly dependent; indeed more is
true:

xlA*cl 4+ m'rA*cT =0& xlB*cl 4+ xrB*cr =0.

(b) Columns A,c,, ..., As, of A are linearly independent if and only if the
corresponding columns of B are linearly independent.

(¢) If 1 < c¢py1 <mand ¢4 is distinet from ¢y, ..., ¢, then

Ao = 21A4e) + -+ 20 Ak, & Bic, .1 = 21Bse; + -+ + 27 Bie,.-

Proof. First observe that if Y = [y1,...,y,]" is an n—dimensional column
vector and A is m X n, then

AY = 1A + -+ ynAin.

Also AY =0 < BY =0, if B is row equivalent to A. Then (a) follows by
taking y; = ., if 1 = ¢; and y; = 0 otherwise.
(b) is logically equivalent to (a), while (c) follows from (a) as

A*CT'H - ZlA*Cl +ot ZTA*CT A Z]-A*Cl + 4+ ZTA*CT + (_1)A*Cr+1 =0
= ZlB*cl +”'+ZT'B*CT+(_1)B*CT+1 :0
~ B*cr+1 = ZlB*cl +---+ ZTB*q»
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EXAMPLE 3.3.2 The matrix

1 1 51 4
A=|2 -1 1 2 2
3 06 0 =3
has reduced row—echelon form equal to
10 2 0 -1
B=|(013 0 2
0001 3

We notice that By1, B2 and B,y are linearly independent and hence so are
A*l, A*Q and A*4. Also

B*3 = 2B*1 + 3B*2
B*5 == (_1)B>k1 + 2B>k2 + 3B*47

so consequently

A*S = 214*1 + 3A>k2
A*5 = <_1)A*1 + 2A*2 + 314*4

3.4 Basis of a subspace
We now come to the important concept of basis of a vector subspace.

DEFINITION 3.4.1 Vectors Xi,...,X,, belonging to a subspace S are
said to form a basis of S if

(a) Every vector in S is a linear combination of X7, ..., X,;
(b) Xi,..., Xy, are linearly independent.

Note that (a) is equivalent to the statement that S = (Xy,...,X,,) as we
automatically have (X1,...,X,,) € S. Also, in view of Remark 3.3.1 above,
(a) and (b) are equivalent to the statement that every vector in S is uniquely
expressible as a linear combination of X1, ..., X,,.

EXAMPLE 3.4.1 The unit vectors FE1,..., E, form a basis for F™.
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REMARK 3.4.1 The subspace {0}, consisting of the zero vector alone,
does not have a basis. For every vector in a linearly independent family
must necessarily be non—zero. (For example, if X; = 0, then we have the
non—trivial linear relation

1X1+0Xo+---+0X,, =0
and Xi,...,X,, would be linearly dependent.)

However if we exclude this case, every other subspace of F'™ has a basis:

THEOREM 3.4.1 A subspace of the form (Xy,...,X,,), where at least
one of Xi,...,X,, is non-—zero, has a basis X, ,...,X.,., where 1 < ¢; <
e < ep <M.

Proof. (The left-to—right algorithm). Let ¢ be the least index k for which
X}, is non—=zero. If ¢; = m or if all the vectors X with & > ¢; are linear
combinations of X, terminate the algorithm and let » = 1. Otherwise let
co be the least integer k > c; such that Xj is not a linear combination of
Xe, -

If ¢ = m or if all the vectors X} with & > c9 are linear combinations
of X, and X.,, terminate the algorithm and let » = 2. Eventually the
algorithm will terminate at the r—th stage, either because ¢, = m, or because
all vectors X with k > ¢, are linear combinations of X.,,..., X, .

Then it is clear by the construction of X, ..., X,,, using Corollary 3.2.1
that

(a) (Xeys-oos Xep) = (X1, o0, Xin);

(b) the vectors X,,,..., X, are linearly independent by the left—to-right
test.

Consequently X.,,..., X, form a basis (called the left-to—right basis) for
the subspace (X1,..., X;).

EXAMPLE 3.4.2 Let X and Y be linearly independent vectors in R".
Then the subspace (0, 2X, X, —Y, X +Y) has left—to-right basis consisting
of 2X, -Y.

A subspace S will in general have more than one basis. For example, any
permutation of the vectors in a basis will yield another basis. Given one
particular basis, one can determine all bases for S using a simple formula.
This is left as one of the problems at the end of this chapter.

We settle for the following important fact about bases:
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THEOREM 3.4.2 Any two bases for a subspace .S must contain the same
number of elements.

Proof. For if Xi,..., X, and Y1,...,Y; are bases for S, then Yi,...,Y}
form a linearly independent family in S = (X1,..., X,) and hence s < r by
Theorem 3.3.2. Similarly r < s and hence r = s.

DEFINITION 3.4.2 This number is called the dimension of S and is
written dim S. Naturally we define dim {0} = 0.

It follows from Theorem 3.3.1 that for any subspace S of F™, we must have
dim S < n.

EXAMPLE 3.4.3 If F1,..., E, denote the n—dimensional unit vectors in
F" then dim (E1,...,E;) =ifor 1 <i<n.

The following result gives a useful way of exhibiting a basis.

THEOREM 3.4.3 A linearly independent family of m vectors in a sub-
space S, with dim S = m, must be a basis for S.

Proof. Let Xi,...,X,, be a linearly independent family of vectors in a
subspace S, where dim .S = m. We have to show that every vector X € S is
expressible as a linear combination of X1, ..., X,,. We consider the following

family of vectors in S: X1,..., X,,, X. This family contains m 4+ 1 elements
and is consequently linearly dependent by Theorem 3.3.2. Hence we have

1 X1+t Xn +me1 X =0, (31)
where not all of x1,...,xy,+1 are zero. Now if x,,41 = 0, we would have

1 X1+ -+ X, =0,

with not all of z1, .. ., z,, zero, contradictiong the assumption that Xy ..., X,
are linearly independent. Hence z,,+1 # 0 and we can use equation 3.1 to
express X as a linear combination of Xy, ..., X;y:
—x —x
X=—2X+ . +—"x,.

Tm+1 Tm+1
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3.5 Rank and nullity of a matrix

We can now define three important integers associated with a matrix.
DEFINITION 3.5.1 Let A € My, xn(F'). Then

(a) column rank A =dim C(A);

(b) row rank A =dim R(A);

(¢) nullity A =dim N(A).

We will now see that the reduced row—echelon form B of a matrix A allows
us to exhibit bases for the row space, column space and null space of A.
Moreover, an examination of the number of elements in each of these bases
will immediately result in the following theorem:

THEOREM 3.5.1 Let A € Myyyn(F). Then
(a) column rank A =row rank A4;
(b) column rank A+ nullity A = n.

Finding a basis for R(A): The r non-zero rows of B form a basis for R(A)
and hence row rank A = r.
For we have seen earlier that R(A) = R(B). Also

R(B) = <B1*7"->Bm*>
— (Bis,..., B, 0....0)
— (Bu.....Bn).

The linear independence of the non—zero rows of B is proved as follows: Let
the leading entries of rows 1, ..., 7 of B occur in columns ¢y, ..., ¢,. Suppose
that

xlBl* +---+ -TTBT* =0.

Then equating components c1, ..., ¢, of both sides of the last equation, gives
1 =0,...,2, = 0, in view of the fact that B is in reduced row— echelon
form.

Finding a basis for C'(A): The r columns A, ,..., A, form a basis for
C(A) and hence column rank A = r. For it is clear that columns ¢y, ..., ¢,
of B form the left-to-right basis for C'(B) and consequently from parts (b)
and (c) of Theorem 3.3.5, it follows that columns cy,...,¢. of A form the
left—to-right basis for C'(A).
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Finding a basis for N(A): For notational simplicity, let us suppose that ¢; =
1,...,¢. = 7. Then B has the form

1 0 0 bipt1 -+ bin
0 1 0 b1 -+ bon
B=|00 - 1 byy1 - bm
00 -0 0 - 0
(00 -0 0 - 0 |

Then N(B) and hence N(A) are determined by the equations

1 = (=birp)Trir + -+ (“bin)zn
Ty = (_brr+1)$r+1 + -+ (_brn)$n7
where z,41, ..., T, are arbitrary elements of F'. Hence the general vector X

in N(A) is given by

T [ —bir11 —bn,

Ly _ —brrg1 —brn

Tyt = Tr41 1 + + 0 (32)
| Tn | 0 | 1 ]

= T Xi+ -+ Xn g

Hence N(A) is spanned by X,..., X, as x,41,...,x, are arbitrary. Also
X1,..., X, are linearly independent. For equating the right hand side of
equation 3.2 to 0 and then equating components r 4+ 1,...,n of both sides
of the resulting equation, gives z,41 =0,...,z, = 0.

Consequently X1, ..., X, _, form a basis for N(A).

Theorem 3.5.1 now follows. For we have

row rank A = dimR(A)=r

column rank A = dimC(A)

T.

Hence
row rank A = column rank A.
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Also
column rank A + nullity A =r +dimN(A) =r+ (n —r) = n.

DEFINITION 3.5.2 The common value of column rank A and row rank A
is called the rank of A and is denoted by rank A.

EXAMPLE 3.5.1 Given that the reduced row—echelon form of

1 1 5 1 4
A=|2 -1 1 2 2
3 06 0 -3
equal to
10 2 0 -1
B=|0130 2],
0 001 3
find bases for R(A), C(A) and N(A).

Solution. [1, 0, 2,0, —1], [0, 1, 3, 0, 2] and [0, 0, 0, 1, 3] form a basis for
R(A). Also

1 1 1
A*l - 2 ) A*2 - -1 ) A*4 - 2
3 0 0

form a basis for C(A).
Finally N(A) is given by

€1 —2x3 + x5 —2 1
) —3{[}3 — 2{L‘5 -3 —2
xr3 | = T3 =3 1 | + x5 0 | =x3X1 4+ z5X0,
T4 —3xs5 0 -3
I5 xT5 0 1

where 3 and x5 are arbitrary. Hence X; and X form a basis for N(A).
Here rank A = 3 and nullity A = 2.

1 2

EXAMPLE 3.5.2 Let A = [ 9 4

} Then B = [ (1) (2) } is the reduced

row—echelon form of A.
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Hence [1, 2] is a basis for R(A) and [ ; } is a basis for C'(A). Also N(A)

is given by the equation z1 = —2x9, where x5 is arbitrary. Then

===

and hence { _f ] is a basis for N(A).

Here rank A = 1 and nullity A = 1.

1 2

EXAMPLE 3.5.3 Let A = [ 3 4

} Then B = [ 10 } is the reduced

0 1
row—echelon form of A.

Hence [1, 0], [0, 1] form a basis for R(A) while [1, 3], [2, 4] form a basis
for C'(A). Also N(A) = {0}.

Here rank A = 2 and nullity A = 0.

We conclude this introduction to vector spaces with a result of great
theoretical importance.

THEOREM 3.5.2 Every linearly independent family of vectors in a sub-
space S can be extended to a basis of S.

Proof. Suppose S has basis Xi,...,X,, and that Y7,...,Y, is a linearly
independent family of vectors in S. Then

S=(X1,.. ., Xpn)=M,....Y,, X1, ..., Xpm),

as each of Y1,...,Y, is a linear combination of X, ..., X,,.
Then applying the left—to—right algorithm to the second spanning family
for S will yield a basis for S which includes Y71, ..., Y.

3.6 PROBLEMS

1. Which of the following subsets of R? are subspaces?

(a) [z, y| satisfying x = 2y;
(b) [z, y] satisfying x = 2y and 2z = y;
(¢) [z, y] satisfying = = 2y + 1;

) [z, 4]

x, y] satisfying xy = 0;
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. Determine if X7 =
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(e) [z, y] satisfying x > 0 and y > 0.

[Answer: (a) and (b).]

. If X, Y, Z are vectors in R", prove that

(X,Y,Z2)=(X+Y, X+ 2, Y + 2).

, Xo and X3 = are linearly

N = O =
N = = O
W = = =

independent in R*.

. For which real numbers A are the following vectors linearly independent

in R3?
A -1 -1
Xi=| -1, Xyo= A, Xg=| -1
-1 -1 A

. Find bases for the row, column and null spaces of the following matrix

over Q:

1
2
0

[eoBEGL RN \V]

1
3
3

o O N
O = O O

1

—_
—_
Nej

11

. Find bases for the row, column and null spaces of the following matrix

over Zs:

2

I
O = O =
O = = O

1
0
1
1

=)
S O = =

. Find bases for the row, column and null spaces of the following matrix

over Zs:

w o N =
O O = =
N O =N
N = =)
w W w
N O N W
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10.

11.

12.

13.

14.
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. Find bases for the row, column and null spaces of the matrix A defined

in section 1.6, Problem 17. (Note: In this question, F' is a field of four
elements. )

If X4, ..., X, form a basis for a subspace S, prove that

X, Xi+Xo, oo, X+ + Xy

also form a basis for S.

Let A = [ (11 ll) (1: ] . Find conditions on a, b, ¢ such that (a) rank A =

1; (b) rank A = 2.
[Answer: (a) a = b= ¢; (b) at least two of a, b, ¢ are distinct.]

Let S be a subspace of F™ with dim .S = m. If X4,..., X,, are vectors
in S with the property that S = (Xy,..., X,,), prove that X ..., X,
form a basis for S.

Find a basis for the subspace S of R? defined by the equation
T+ 2y +32=0.

Verify that Y7 = [—1, —1, 1]* € S and find a basis for S which includes
Y;.

Let Xi,..., X, be vectors in F". If X; = X}, where i < j, prove that
X1,...X,, are linearly dependent.

Let Xi,..., X;n41 be vectors in F". Prove that
dim (X1, ..., Xpt1) = dim (X5, ..., X;)
if X;u41 is a linear combination of X7,..., X,,, but
dim (Xq,..., Xpy1) =dim (Xy, ..., X)) + 1

if X141 is not a linear combination of X7,..., X;,.

Deduce that the system of linear equations AX = B is consistent, if
and only if
rank [A|B] = rank A.
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15

16.

17.

18.

19.
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. Let ay,...,a, be elements of F, not all zero. Prove that the set of
vectors [x1,...,x,]" where xq,. .., x, satisfy

a1y + -+ apTy =0
is a subspace of F™ with dimension equal to n — 1.
Prove Lemma 3.2.1, Theorem 3.2.1, Corollary 3.2.1 and Theorem 3.3.2.
Let R and S be subspaces of F", with R C S. Prove that
dim R < dim S

and that equality implies R = S. (This is a very useful way of proving
equality of subspaces.)

Let R and S be subspaces of F™. If RU S is a subspace of F™, prove
that RC Sor S C R.

Let X1,..., X, be a basis for a subspace S. Prove that all bases for .S
are given by the family Yi,...,Y,, where

.
Y=Y ayX;,
i=1

and where A = [a;j] € M,x,(F) is a non-singular matrix.



Chapter 4

DETERMINANTS

DEFINITION 4.0.1 If A = [ Z” ;”12 ] we define the determinant of
21 22

A, (also denoted by det A,) to be the scalar
det A = aj1a92 — a12a91.

aip a2
a21 a2

The notation is also used for the determinant of A.

If A is a real matrix, there is a geometrical interpretation of det A. If
P = (21, y1) and @ = (z2, y2) are points in the plane, forming a triangle
1 N

L2 Y2
of the triangle OPQ. For, using polar coordinates, let 1 = r1 cosf; and

1

3 is the area

with the origin O = (0, 0), then apart from sign,

y1 = r18in 61, where ri = OP and 6, is the angle made by the ray OP with
the positive xz—axis. Then triangle OP(Q) has area %OP - OQ sin «, where
a = ZP0OQ. If triangle OP(@ has anti-clockwise orientation, then the ray

5@ makes angle 0o = 01 + a with the positive x—axis. (See Figure 4.1.)
Also 9 = rocosfy and yo = rosinfy. Hence

1

AreaOPQ = §OP - 0@ sin«a
= %OP-OQsin (92 —91)
= %OP - O0Q(sin O3 cos B — cos By sin b))

1
= E(OQ sin Ay - OP cos 61 — OQ) cos B2 - OP sin 6;)

71
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01

O

Figure 4.1: Area of triangle OPQ.

1
= 5(1/23?1—332311)
I N 1

2| 2 Y2

Similarly, if triangle OPQ has clockwise orientation, then its area equals
T W
T2 Y2

1
2

For a general triangle P;PoPs, with P, = (z;, v;), i = 1, 2, 3, we can
take P; as the origin. Then the above formula gives

T2 —T1 Y2 — U1
r3 —T1 Y3 — Y1

T2 —T1 Y2 — Y1
3 —T1 Ys— U1

or —

1
2

1
2
according as vertices P, P, P53 are anti—clockwise or clockwise oriented.

We now give a recursive definition of the determinant of an n x n matrix
A= [aij], n > 3.

DEFINITION 4.0.2 (Minor) Let M;;(A) (or simply M;; if there is no
ambiguity) denote the determinant of the (n — 1) x (n — 1) submatrix of A
formed by deleting the i—th row and j—th column of A. (M;;(A) is called
the (i, j) minor of A.)

Assume that the determinant function has been defined for matrices of
size (n—1) x (n—1). Then det A is defined by the so—called first-row Laplace
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exrpansion:

detA = alan(A) — alngg(A) + ...+ (—1)1+ann(A)

n

= S (-1)"*ay Myy(A).

j=1
For example, if A = [a;;] is a 3 X 3 matrix, the Laplace expansion gives

det A = allMll(A) — a12M12(A) + CL13M13(A)

a21 @23
a31  ass

a1 a2
aszy as2

a22 a23
asz2 ass
ai1(agazs — aszaze) — aiz2(aziazs — aszazy) + aiz(aziaze — azeazn)

= ai — a12 + ais

= 011022033 — (11023032 — 012021033 + @12023031 + 413021032 — 413022031.

(The recursive definition also works for 2 x 2 determinants, if we define the
determinant of a 1 x 1 matrix [¢] to be the scalar ¢:

det A = a11M71(A) — a12M12(A) = aj1a22 — ai2a21.)

EXAMPLE 4.0.1 If P P,Ps is a triangle with P; = (x4, v;), 1 = 1, 2, 3,
then the area of triangle P P> Ps is

1 oy 1 11z w0 1
—| x2 yo 1 or ——|x2 yo 1],
2

3 y3 1 r3 ysz 1

according as the orientation of Py P, Ps is anti—clockwise or clockwise.

For from the definition of 3 x 3 determinants, we have

T 1
1| 1 y2 1 T2 T2 Y2
9| " ¥ o 2\ y3 1 o r3 1 x3 Y3
z3 ysz 1
_ llm—m -
2| z3—21 Ys— U1

One property of determinants that follows immediately from the defini-
tion is the following:

THEOREM 4.0.1 If a row of a matrix is zero, then the value of the de-
terminant is zero.
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(The corresponding result for columns also holds, but here a simple proof
by induction is needed.)

One of the simplest determinants to evaluate is that of a lower triangular
martrix.

THEOREM 4.0.2 Let A = [a;;], where a;; = 0 if i < j. Then
det A = a11a92 ...0npn. (4.1)

An important special case is when A is a diagonal matrix.
If A =diag(ai,...,a,) then det A =aj...a,. In particular, for a scalar
matrix t1,,, we have det (tI,,) = t"™.

Proof. Use induction on the size n of the matrix.
The result is true for n = 2. Now let n > 2 and assume the result true
for matrices of size n — 1. If A is n x n, then expanding det A along row 1

gives
ano 0 e 0
detA = a1y ai'%Q 33 0
anl Aan2 ... Gnpp

= a11(a22 cee ann)

by the induction hypothesis.

If A is upper triangular, equation 4.1 remains true and the proof is again
an exercise in induction, with the slight difference that the column version
of theorem 4.0.1 is needed.

REMARK 4.0.1 It can be shown that the expanded form of the determi-
nant of an n x n matrix A consists of n! signed products *a1;, a2, - - . ani,,
where (i1, i2,..., i) is a permutation of (1, 2, ..., n), the sign being 1 or
—1, according as the number of inversions of (i1, io, ..., i) is even or odd.
An inversion occurs when i, > i5 but r < s. (The proof is not easy and is
omitted.)

The definition of the determinant of an n X n matrix was given in terms
of the first-row expansion. The next theorem says that we can expand
the determinant along any row or column. (The proof is not easy and is
omitted.)
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THEOREM 4.0.3

det A = Z 1) q;;M;;(A)
for i =1,...,n (the so—called i—th row expansion) and

det A = Z 1) q;;M;5(A)

for j =1, ...,n (the so—called j—th column expansion).

REMARK 4.0.2 The expression (—1)**7 obeys the chess-board pattern
of signs:

The following theorems can be proved by straightforward inductions on
the size of the matrix:

THEOREM 4.0.4 A matrix and its transpose have equal determinants;
that is

det A = det A.

THEOREM 4.0.5 If two rows of a matrix are equal, the determinant is
zero. Similarly for columns.

THEOREM 4.0.6 If two rows of a matrix are interchanged, the determi-
nant changes sign.

EXAMPLE 4.0.2 If P, = (x1, y1) and P, = (x2, y2) are distinct points,
then the line through P; and P, has equation

r y 1
r1 Y1 1 =0.
x2 y2 1
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For, expanding the determinant along row 1, the equation becomes
axr +by+c=0,
where

y1 1
yo 1

T
T2 1

a:’ ‘:yl—ygandb:— ’21'2—1‘1.
This represents a line, as not both a and b can be zero. Also this line passes
through P;, ¢ = 1, 2. For the determinant has its first and i—th rows equal

if x = x; and y = y; and is consequently zero.

There is a corresponding formula in three-dimensional geometry. If
Py, P,, P3 are non—collinear points in three—dimensional space, with P; =
(i, i, i), 1 = 1, 2, 3, then the equation

r y =z 1
vy oz b 0
T2 Y2 22 1
r3 ys z3 1

represents the plane through P;, P, P;. For, expanding the determinant
along row 1, the equation becomes ax + by 4+ cz + d = 0, where

y1oz1 1 1 2 1 1 y1 1
a= |1y zo0 1|, b=—|x0 20 1|, c=|x0 3o 1
ys 23 1 r3 z3 1 r3 ys 1

As we shall see in chapter 6, this represents a plane if at least one of a, b, ¢
is non—zero. However, apart from sign and a factor %, the determinant
expressions for a, b, ¢ give the values of the areas of projections of triangle
PP, Ps on the (y, 2), (x, z) and (z, y) planes, respectively. Geometrically,
it is then clear that at least one of a, b, ¢ is non—zero. It is also possible to
give an algebraic proof of this fact.

Finally, the plane passes through P;, ¢ = 1, 2, 3 as the determinant has
its first and i—th rows equal if z = x;, vy = y;, 2 = 2; and is consequently
zero. We now work towards proving that a matrix is non—singular if its
determinant is non—zero.

DEFINITION 4.0.3 (Cofactor) The (i, j) cofactor of A, denoted by
Ci;j(A) (or Cyj if there is no ambiguity) is defined by

Cij(A) = (—1)"F My;(A).
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REMARK 4.0.3 It is important to notice that C;;(A), like M;;(A), does
not depend on a;;. Use will be made of this observation presently.

In terms of the cofactor notation, Theorem 3.0.2 takes the form
THEOREM 4.0.7

det A = ZaijC’ij(A)
j=1
fori=1,...,n and
det A = ZaUC’ij(A)
=1
forj=1,...,n.

Another result involving cofactors is

THEOREM 4.0.8 Let A be an n X n matrix. Then
(@) Y ayCri(A)=0 ifi#k
j=1

Also .
(b) Zaijcik(A) =0 ifj#k.
i=1

Proof.

If Aisnxn and i # k, let B be the matrix obtained from A by replacing
row k by row ¢. Then det B = 0 as B has two identical rows.

Now expand det B along row k. We get

O=detB = Y by;Ci;(B)
j=1

= ) aiCri(A),
j=1

in view of Remark 4.0.3.
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DEFINITION 4.0.4 (Adjoint) If A = [a;;] is an n X n matrix, the ad-
joint of A, denoted by adj A, is the transpose of the matrix of cofactors.
Hence

Cini Cu -+ Cn
adi A — Q12 Co - C.n2
Cln CQn e Cnn

Theorems 4.0.7 and 4.0.8 may be combined to give
THEOREM 4.0.9 Let A be an n x n matrix. Then

A(adj A) = (det A)I,, = (adj A) A.

Proof.

(A adJ A)zk = Z aij (adJ A)]k
7j=1

= > a;Cii(A)
j=1
= O;pdet A
Hence A(adj A) = (det A)I,,. The other equation is proved similarly.
COROLLARY 4.0.1 (Formula for the inverse) If det A # 0, then A

is non—singular and

1
-1 .
= dj A.
det A
EXAMPLE 4.0.3 The matrix
[1 2 3
A=|4 5 6
| 8 8 9
is non—singular. For
5 6 4 6 4 5
wan = 28] o] 4 8wt 2]
= —3+24-24

—3#£0.



Also

[ Cn

Ci2
Ci3

Co1
Cao
Cas

C31
U3z
C33
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The following theorem is useful for simplifying and numerically evaluating
a determinant. Proofs are obtained by expanding along the corresponding

row or column.

THEOREM 4.0.10 The determinant is a linear function of each row and

column.
For example

a23
ass

ta13
a23

=t

ail + a’n aio + a’12 a13 + a’13
(a) az a2
asi as2
tan ta12
(b) as  ag
asi as2

a33

ail
az;
a31

a1
a21
a3

aig
as2
a32

a12
a22
a32

a3
az3
ass

a13
a3
a33

/ ! !
app Gy ays

+ a1
asi

a2
as2

a23
ass

COROLLARY 4.0.2 If a multiple of a row is added to another row, the
value of the determinant is unchanged. Similarly for columns.

Proof. We illustrate with a 3 x 3 example, but the proof is really quite

general.
a1 +tag1 aiz + tags
asi a2
a3l a32

a1z + tass
a3
as3

aii
a1
a3l

aig
a22
a32

ais
a3 |+
ass

tagl
az1
asi

tas

a22
as2

ta23
a23
a33
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ail ai2 a13 az1 a2 a23
= az1 Qoo G23 |+ 1| a1 age as3
azy az2 as3 azy as2 ass

ail a2 ai3
= | a1 az a3 |+tx0
aszyp asz ass
ail a2 ais
= | a21 a2 a3
aszyp asz ass

To evaluate a determinant numerically, it is advisable to reduce the matrix
to row—echelon form, recording any sign changes caused by row interchanges,
together with any factors taken out of a row, as in the following examples.

EXAMPLE 4.0.4 Evaluate the determinant

1
4
8

oo Ut N
O Oy W

Solution. Using row operations Ry — Ro — 4R; and R3 — R3 — 8R; and
then expanding along the first column, gives

123 1 2 3
45 6| = -3 —6 —‘_2 __1?‘
8 89 0 —8 —15
12 12
B _3|—8 —15’__3‘0 1‘__3'

EXAMPLE 4.0.5 Evaluate the determinant

11 2 1

31 4 5

7 6 1 2

1 1 3 4

Solution.

11 2 1 1 1 2 1
3145 [0 -2 =2
76 12| |0 -1 —-13 -5
1 1 3 4 0 O 1 3
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1 2 1
1 1 -1
-1 -13 -5
0 1 3
1 2 1
1 1 -1
0 —-12 -6
0 1 3
2 1
1 -1
1 3
-12 —6

OO Ok OO0 o

[\)

3 = 60.

30

S OO = OO0 O -
OO = = OO K =

O =

EXAMPLE 4.0.6 (Vandermonde determinant) Prove that

1 1
a b ¢ |=((b-a)c—a)(c—Db).
a? b 2

Solution. Subtracting column 1 from columns 2 and 3 , then expanding
along row 1, gives

1 1 1 1 0 0
a b ¢ = a b—a c—a
a2 v A2 a? v —a? 2—ad?

B2 a2 2 2

_ b—a c—a
c“—a

1 1

= (b-a)lc—q) b+a c+a

=(b—a)(c—a)(c—0D).

REMARK 4.0.4 From theorems 4.0.6, 4.0.10 and corollary 4.0.2, we de-
duce

(a) det (E;;A) = —det A,

(b) det (E;(t)A) =tdet A, if t # 0,
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(c) det (Esj(t)A) =det A.

It follows that if A is row—equivalent to B, then det B = cdet A, where ¢ # 0.
Hence det B # 0 < det A # 0 and det B = 0 < det A = 0. Consequently
from theorem 2.5.8 and remark 2.5.7, we have the following important result:

THEOREM 4.0.11 Let A be an n x n matrix. Then
(i) A is non-singular if and only if det A # 0;
(ii) A is singular if and only if det A = 0;

(iii) the homogeneous system AX = 0 has a non-trivial solution if and
only if det A = 0.

EXAMPLE 4.0.7 Find the rational numbers a for which the following
homogeneous system has a non—trivial solution and solve the system for
these values of a:

r—2y+3z = 0
ax + 3y +2z =
br+y+az =

Solution. The coefficient determinant of the system is

1 -2 3 1 -2 3
A=|a 3 2 = 0 34+2a 2-3a
6 1 a 0 13 a—18
| 3+2a 2-3a
- 13 a-—18
= (34+2a)(a—18) —13(2 — 3a)
= 2a%>+6a —80 =2(a +8)(a —5).
So A =0« a=—8or a=>5 and these values of a are the only values for
which the given homogeneous system has a non—trivial solution.
If a = —8, the coefficient matrix has reduced row—echelon form equal to
1 0 —1
01 -2

00 O
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and so the complete solution is x = z, y = 2z, with z arbitrary. If a = 5,
the coefficient matrix has reduced row—echelon form equal to

10 1
0 1 -1
00 O
and so the complete solution is z = —z, y = z, with z arbitrary.

EXAMPLE 4.0.8 Find the values of ¢ for which the following system is
consistent and solve the system in each case:

r+y = 1
tr+y =t
1+t)z+2y = 3.

Solution. Suppose that the given system has a solution (zg, yo). Then the
following homogeneous system

r+y+z = 0
tr+y+tz = 0
(I+t)r+2y+32z = 0
will have a non—trivial solution
T = Xo, Y = Yo, z=—1.

Hence the coefficient determinant A is zero. However

1 11 1 0 0 Lt o
A=| ¢t 1 t|=| ¢t 1—t 0 —’1t Qt':(l—t)(Q—t).

1+t 2 3 1+t 1—-¢t 2—-1¢

Hencet =1 or t =2. If t =1, the given system becomes

z+y =1
rt+y =
20 4+2y = 3

which is clearly inconsistent. If t = 2, the given system becomes

r+y =
2z +y
3z +2y =
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which has the unique solution z =1, y = 0.

To finish this section, we present an old (1750) method of solving a
system of n equations in n unknowns called Cramer’s rule . The method is
not used in practice. However it has a theoretical use as it reveals explicitly
how the solution depends on the coefficients of the augmented matrix.

THEOREM 4.0.12 (Cramer’s rule) The system of n linear equations
in n unknowns x1,...,x,

a1171 + ajpre + -+ apxT, = by
a91x1 + agoTo + -+ + agpT, = bo
Ap1T1 + Gp2X2 + « - + AppTy = bn

has a unique solution if A = det [a;;] # 0, namely

_B D2 _ B
xl—A,xQ—A,...,xn—A,

where A; is the determinant of the matrix formed by replacing the i—th
column of the coefficient matrix A by the entries by, bo, ..., by,.

Proof. Suppose the coefficient determinant A # 0. Then by corollary 4.0.1,

A1 exists and is given by A7 = % adj A and the system has the unique

solution

x1 b1 [ Cin Coi -+ O b1
T2 | e bo _ 1 Ciz Co -+ Oy bo
: : A : : :
Tn bn L Cin Con -+ Ciup bn

[ 01011 + b2Ca1 + ... + b,Cra
baCl2 4 baCoo + ... + b, Ch2

1
A

L bncln + bQCZn + ...+ annn

However the i—th component of the last vector is the expansion of A; along
column 7. Hence

I Al Al/A
Ay Ay/A

Tn A, An/A
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PROBLEMS

. If the points P; = (x4, y;), i = 1, 2, 3, 4 form a quadrilateral with ver-

tices in anti—clockwise orientation, prove that the area of the quadri-
lateral equals

1

2
(This formula generalizes to a simple polygon and is known as the
Surveyor’s formula.)

Tl T2
Yy Y2

T2 X3
Y2 Y3

T3 T4
Ys Y4

T4 T
Ya Y1

. Prove that the following identity holds by expressing the left—-hand

side as the sum of 8 determinants:

a+z b+y c+z a b c
r+u y+v z4+w |=2|x y =z
u+a v+b wHec U vow

. Prove that

n? (n+1)2 (n+2)?
(n+1)?% (n+2)? (n+3)? |=-8.
(n+2)* (n+3)* (n+4)>°

. Evaluate the following determinants:

246 427 327 7; i 72 g
(a) | 1014 543 443 (b) 3 4 _1 9
—342 721 621 A 3 9 1
[Answers: (a) —29400000; (b) 900.]
. Compute the inverse of the matrix
1 0 =2
A=13 1 4
5 2 =3

by first computing the adjoint matrix.

—-11 —4 2
[Answer: A~! = 21 29 7 —10 | ]
1 -2 1
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. Prove that the following identities hold:

2a 26 b-c

(i) 26 22 a+tc| = —2(a—b)*(a+b),
a+b a+b b

b+c b c

(ii) c c+a a = 2a(b*+ ).
b a a+b

. Let P, = (x4, yi), i = 1, 2, 3. If x1, w9, w3 are distinct, prove that there

is precisely one curve of the form y = ax? + bz + ¢ passing through
Pl, P2 and P3.

. Let

1 1 -1
A=1|2 3 k
1 k 3
Find the values of k for which det A = 0 and hence, or otherwise,
determine the value of &k for which the following system has more than
one solution:
r+y—2z = 1
20 +3y+kz = 3
r+ky+3z = 2.

Solve the system for this value of k and determine the solution for
which 22 + y? + 22 has least value.

[Answer: k =2; x =10/21, y = 13/21, z = 2/21.]

. By considering the coefficient determinant, find all rational numbers a

and b for which the following system has (i) no solutions, (ii) exactly
one solution, (iii) infinitely many solutions:

r—2y+bz =
ar + 2z =
5x + 2y =

Solve the system in case (iii).

[Answer: (i) ab = 12 and a # 3, no solution; ab # 12, unique solution;
a = 3, b =4, infinitely many solutions; z = —%z—}— %, Y= %z — %, with
z arbitrary.]
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12.

13.

14.
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Express the determinant of the matrix

11 2 1

1 2 3 4
B= 2 4 7T 2t+6

2 2 6-t t

as as polynomial in ¢ and hence determine the rational values of ¢ for
which B~! exists.

[Answer: det B = (t —2)(2t — 1); t # 2 and t # 3.]
If Ais a 3 x 3 matrix over a field and det A # 0, prove that
(i) det(adjA) = (detA)?

. = 1 oA
(i) (adjA)™! = mA:adJ(A .

Suppose that A is a real 3 x 3 matrix such that A'A = I3.

(i) Prove that AY(A —I3) = —(A — I3)t.
(ii) Prove that det A = £1.
(iii) Use (i) to prove that if det A =1, then det (A — I3) = 0.
If A is a square matrix such that one column is a linear combination of

the remaining columns, prove that det A = 0. Prove that the converse
also holds.

Use Cramer’s rule to solve the system

—2x+3y—2z = 1
r+2y—z = 4
—2r—-y+2z = -3

[Answer: z =2,y =3, z =4.]
Use remark 4.0.4 to deduce that
det Bjj = —1, detE;(t)=t, detE;(t)=1
and use theorem 2.5.8 and induction, to prove that
det (BA) = det Bdet A,

if B is non-singular. Also prove that the formula holds when B is
singular.
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16.

17.

18.

19.

20.
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Prove that
a+b+c a+b a a
a+b a+b+c a a 9
a N ctbte axab |=€ (2b+c)(4a+2b+c).
a a a+b a+b+c
Prove that
14+ u; U1 (751 Uy
U2 1+ uo U9 U9
= 1+U1+U2+U3+U4.
us us 1+U3 us
Uy Uy Uy 1+ uy

Let A € Myxn(F). If At = —A, prove that det A = 0 if n is odd and
14+1#0in F.

Prove that

e B B
S 3 = o=
S R e
== = =

Il

—

—

|

<

S—

w

Express the determinant

1 a2—bc a*
1 b2 —ca b
1 2—ab

as the product of one quadratic and four linear factors.

[Answer: (b— a)(c—a)(c—b)(a+ b+ c)(b? + be+ c® + ac + ab + a?)]



Chapter 5

COMPLEX NUMBERS

5.1 Constructing the complex numbers

One way of introducing the field C of complex numbers is via the arithmetic
of 2 x 2 matrices.

DEFINITION 5.1.1 A complex number is a matrix of the form

ZE—y_
y x|’

where x and y are real numbers.

z 0
0 =z |
real complex numbers and are denoted by the symbol {z}.
The real complex numbers {z} and {y} are respectively called the real
-y
y

are scalar matrices and are called

Complex numbers of the form [

part and imaginary part of the complex number

1 _(1) ] is denoted by the symbol i.

The complex number [

We have the identities
] = (el el e el
= {z} +i{y},
=[] ] )

89
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Complex numbers of the form i{y}, where y is a non—zero real number, are
called imaginary numbers.
If two complex numbers are equal, we can equate their real and imaginary
parts:
{z1} + {y1} = {z2} + {y2} = 1 = 22 and y; = yo,

if x1, 2, y1, Y2 are real numbers. Noting that {0} + {0} = {0}, gives the
useful special case is

{z}+i{y} ={0} =2 =0and y =0,

if x and y are real numbers.
The sum and product of two real complex numbers are also real complex

numbers:
{z} +{y} ={z+y}, {aHy} = {ay}.

Also, as real complex numbers are scalar matrices, their arithmetic is very
simple. They form a field under the operations of matrix addition and
multiplication. The additive identity is {0}, the additive inverse of {z} is
{—=}, the multiplicative identity is {1} and the multiplicative inverse of {z}
is {z~!}. Consequently

{z} —{y} ={z} + (-{y}) = {z} + {-y} = {=z -y},

{z} o1 R N
) ) = Mo = fa 1}—{y}.

It is customary to blur the distinction between the real complex number
{z} and the real number = and write {x} as x. Thus we write the complex
number {z} + i{y} simply as x + iy.

More generally, the sum of two complex numbers is a complex number:

(1 +iy1) + (z2 +iy2) = (21 + 22) +i(y1 + v2); (5.1)

and (using the fact that scalar matrices commute with all matrices under
matrix multiplication and {—1}A4 = —A if A is a matrix), the product of
two complex numbers is a complex number:

(w1 +iy1) (22 + iy2) = x1(22 + iy2) + (iy1) (22 + iy2)

= z1@2 + 21 (iy2) + (iy1) 22 + (iy1) (iy2)

= z1@9 + iT1y2 + Y122 + Y1y

= (w122 + {-1}y1y2) + i(z192 + Y172)

= (122 — y192) + i(T1Y2 + Y172), (5.2)
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The set C of complex numbers forms a field under the operations of
matrix addition and multiplication. The additive identity is 0, the additive
inverse of x + iy is the complex number (—z) + i(—y), the multiplicative
identity is 1 and the multiplicative inverse of the non—zero complex number
x + 1y is the complex number u + v, where

€T Y

Uu=———=and v=——>"—.
$2+y2 xQ—i—yQ

(If z + iy # 0, then x # 0 or y # 0, so 2% + y? # 0.)

From equations 5.1 and 5.2, we observe that addition and multiplication
of complex numbers is performed just as for real numbers, replacing i by
—1, whenever it occurs.

A useful identity satisfied by complex numbers is

12+ 5% = (r 4 is)(r — is).
This leads to a method of expressing the ratio of two complex numbers in
the form z + iy, where x and y are real complex numbers.

14y (w14 dyn) (@2 — iy2)

zo+1ys (224 ty2)(z2 — iyo)
_ (zize +yiye) Hi(—z1y2 + yizo)
a 3 + 3 '

The process is known as rationalization of the denominator.

5.2 Calculating with complex numbers

We can now do all the standard linear algebra calculations over the field of

complex numbers — find the reduced row—echelon form of an matrix whose el-

ements are complex numbers, solve systems of linear equations, find inverses

and calculate determinants.
For example,

‘ “7” 82_222, — (1498 —20) —T(2—1)

= (8—2)+i(8—2i)—14+7Ti
—4+13i #0.
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Then by Cramer’s rule, the linear system

Q+idz+(2—dw = 247
Tz+(8—-20)w = 4-9

has the unique solution

247 2—i
‘4—% 8 —2i
—4+ 13
(2 + 7i)(8 — 2i) — (4 — 9i)(2 — 1)
—4 4 13i
2(8 — 2i) + (74)(8 — 2i) — {(4(2 — 1) — 9i(2 — i)}
—4+13;
16 — 41 + 560 — 1442 — {8 — 44 — 18i + 9i%}
—4+ 134

31 4 74i

—4 4 13i

(31 4 74i)(—4 — 134)
(—4)%2 + 132

838 — 699:

(—4)2 4132

838 699

185 185

—698 229
— =
185 185

and similarly w =

An important property enjoyed by complex numbers is that every com-
plex number has a square root:

THEOREM 5.2.1
If w is a non—zero complex number, then the equation z
two solutions z € C.

2 = w has precisely

Proof. Case 1. Suppose b = 0. Then if a > 0, z = y/a is a solution, while
if a <0, iv/—a is a solution.

Case 2. Suppose b # 0. Let z =z +1iy, w =a+1ib, x, y, a, b € R. Then
the equation z? = w becomes

(z +iy)? = 2% — y* 4 2xyi = a + ib,
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so equating real and imaginary parts gives

?—y*=a and 2zy=>.

Hence x # 0 and y = b/(2x). Consequently

b
2 _ (P )2 _
x <2x> a,

so 4z — 4ax?® — bv? = 0 and 4(2?)? — 4a(2?) — b? = 0. Hence

o datV16a%+1602  a+ Va2 +b?
B 8 B 2 '

x
However 22 > 0, so we must take the + sign, as a — Va2 + b2 < 0. Hence

s a+Va®+b? N a+va? 4 b?
r = ——— Tr = S —
2 ’ 2

Then y is determined by y = b/(2x).
EXAMPLE 5.2.1 Solve the equation 22 =1 + 4.

Solution. Put z = x + 4y. Then the equation becomes
(z +iy)? = 2% —y* + 2zyi = 1 +1,
so equating real and imaginary parts gives
22 —y? =1 and 22y = 1.

Hence x # 0 and y = b/(2x). Consequently

1
2 2
——)"=1
v (233) ’
50 4x* — 422 — 1 = 0. Hence

x2:4i\/16+16:1i\/§.
8 2

Hence

—
+
&
—
+
5

e = and z ==+




94 CHAPTER 5. COMPLEX NUMBERS

Then

1
y:—:ii.
2z V2V 1+ /2

Hence the solutions are

1+\/§Jr i
RN W

EXAMPLE 5.2.2 Solve the equation 22 + (v3+4)z+1 = 0.

z ==+

Solution. Because every complex number has a square root, the familiar

formula
L —b+ Vb2 — dac
- 2a

for the solution of the general quadratic equation az? 4 bz + ¢ = 0 can be
used, where now a(# 0), b, ¢ € C. Hence

—(V3+i) x4/ (V3+i)2—4
2
—(\/§+i)ﬂ:\/(3—|—2\/§i—1)—4
2

—(V341i) V-2 +2V3i
5 .

Now we have to solve w? = —2 + 2v/3i. Put w = x + ty. Then w? =
22 — 4% + 2zyi = —2 + 2¢/3i and equating real and imaginary parts gives
22 —y? = —2 and 2xy = 2v/3. Hence y = v/3/z and so 22 — 3/x? = —2. So
7t +222 —3=0and (22 + 3)(z?2 — 1) = 0. Hence 22 — 1 =0 and x = +1.
Then y = ++/3. Hence (1 + v/3i)?> = —2 + 2¢/3i and the formula for z now
becomes

—V3 —i+ (1+/30)
2

1-V3+(1+v3)i —1—V3—(1+V3)i
2 2 '

EXAMPLE 5.2.3 Find the cube roots of 1.
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Solution. We have to solve the equation 2% = 1, or 22> — 1 = 0. Now
P —1=(z-1)F*+2+1).S022-1=0=z2z-1=0o0r22+2+1=0.

But
—1+V12-4  -1+3i
2 B 2
So there are 3 cube roots of 1, namely 1 and (—1 + v/37)/2.
We state the next theorem without proof. It states that every non—
constant polynomial with complex number coefficients has a root in the
field of complex numbers.

P4z +l=0=>z2=

THEOREM 5.2.2 (Gauss) If f(2) = a,2" + an_12""1 + -+ + a1z + ao,
where a,, # 0 and n > 1, then f(z) = 0 for some z € C.

It follows that in view of the factor theorem, which states that if a € F is
a root of a polynomial f(z) with coefficients from a field F, then z —a is a
factor of f(z), that is f(z) = (2 — a)g(z), where the coefficients of g(z) also
belong to F'. By repeated application of this result, we can factorize any
polynomial with complex coefficients into a product of linear factors with
complex coefficients:

f(z) =an(z—21)(z — z2) -+ (2 — 2zn).

There are available a number of computational algorithms for finding good
approximations to the roots of a polynomial with complex coefficients.

5.3 Geometric representation of C

Complex numbers can be represented as points in the plane, using the cor-
respondence = + iy < (x, y). The representation is known as the Argand
diagram or complex plane. The real complex numbers lie on the x—axis,
which is then called the real azis, while the imaginary numbers lie on the
y—axis, which is known as the imaginary axis. The complex numbers with
positive imaginary part lie in the upper half plane, while those with negative
imaginary part lie in the lower half plane.
Because of the equation

(z1 +iy1) + (22 + iy2) = (z1 + x2) +i(y1 + v2),

complex numbers add vectorially, using the parallellogram law. Similarly,
the complex number z; — z3 can be represented by the vector from (x2, y2)
to (x1, Y1), where z1 = x1 + iy; and 29 = x3 + iy2. (See Figure 5.1.)
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z1 + 29

<1

21 — %2
Y

Figure 5.1: Complex addition and subraction.

The geometrical representation of complex numbers can be very useful
when complex number methods are used to investigate properties of triangles
and circles. It is very important in the branch of calculus known as Complex
Function theory, where geometric methods play an important role.

We mention that the line through two distinct points P; = (x1, y1) and
Py = (x9, y2) has the form z = (1 — t)z1 + tzo, t € R, where z = x + iy is
any point on the line and z; = x; +1y;, ¢ = 1, 2. For the line has parametric
equations

r=(1—-t)x;+tre, y= 11—ty +ty2

and these can be combined into a single equation z = (1 — )21 + tzo.
Circles have various equation representations in terms of complex num-
bers, as will be seen later.

5.4 Complex conjugate

DEFINITION 5.4.1 (Complex conjugate) If z = = + iy, the complex
conjugate of z is the complex number defined by z = = — iy. Geometrically,
the complex conjugate of z is obtained by reflecting z in the real axis (see
Figure 5.2).

The following properties of the complex conjugate are easy to verify:



5.4. COMPLEX CONJUGATE 97

|

Figure 5.2: The complex conjugate of z: Z.

- (21/22) = z1/72;

. z is real if and only if Z = z;

S R I S
—
—
~
N
~—
|
—_
~
N

. With the standard convention that the real and imaginary parts are
denoted by Rez and Im 2z, we have

z2+z zZ—Z
ez 5 mz TR

9. If z = x + iy, then 27 = z2 + 3.

THEOREM 5.4.1 If f(z) is a polynomial with real coefficients, then its

non-real roots occur in complex—conjugate pairs, i.e. if f(z) = 0, then
fz) =0.
Proof. Suppose f(z) = apz™ + 12"+ -+ a1z + ap = 0, where
Qp, ..., aq are real. Then
0=0=f(2) = apz"+apn12" ' +---+az+ag
= a4, 2"+ 8, 12" +---+ a1z +ag

anzn + anflzn_l —+ -+ alz + aq

f(@).
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EXAMPLE 5.4.1 Discuss the position of the roots of the equation
2=—-1

in the complex plane.

Solution. The equation z* = —1 has real coefficients and so its roots come

in complex conjugate pairs. Also if z is a root, so is —z. Also there are
clearly no real roots and no imaginary roots. So there must be one root w
in the first quadrant, with all remaining roots being given by w, —w and
—w. In fact, as we shall soon see, the roots lie evenly spaced on the unit
circle.

The following theorem is useful in deciding if a polynomial f(z) has a
multiple root a; that is if (z —a)™ divides f(z) for some m > 2. (The proof
is left as an exercise.)

THEOREM 5.4.2 If f(z) = (z — a)"g(z), where m > 2 and g(z) is a
polynomial, then f’(a) = 0 and the polynomial and its derivative have a
common root.

From theorem 5.4.1 we obtain a result which is very useful in the explicit
integration of rational functions (i.e. ratios of polynomials) with real coeffi-
cients.

THEOREM 5.4.3 If f(z) is a non—constant polynomial with real coeffi-
cients, then f(z) can be factorized as a product of real linear factors and
real quadratic factors.

Proof. In general f(z) will have r real roots zi,...,2, and 2s non-real
TOOtS Zpi1, Zr4l,---52rt+s, Zr+s, OCCUrring in complex—conjugate pairs by
theorem 5.4.1. Then if a, is the coefficient of highest degree in f(z), we
have the factorization

f(z) = apn(z—21) - (z2—2) X
X(2 = 2r41)(2 = Zr41) - (2 = 2r45) (2 — Zrgs)-

We then use the following identity for j = r 4+ 1,...,r + s which in turn
shows that paired terms give rise to real quadratic factors:

(z=z)(z—2) = 22— (2 +7)2+ 27
= 22— 2Rez; + (x? + yjz),
where z; = x; + 1y;.

A well-known example of such a factorization is the following:
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Figure 5.3: The modulus of z: |z|.

EXAMPLE 5.4.2 Find a factorization of 2441 into real linear and quadratic
factors.

Solution. Clearly there are no real roots. Also we have the preliminary
factorization z* 41 = (22 — i)(2%2 + ). Now the roots of 22 — i are easily
verified to be £(1 4 i)/v/2, so the roots of z2 + i must be (1 —4)/v/2.
In other words the roots are w = (1 +4)/v/2 and W, —w, —w. Grouping
conjugate—complex terms gives the factorization

A1 = (z-w) (e - W)(2 +w)(z + W)
= (22 = 22Rew + ww)(2* 4+ 22Rew + ww)
= (V22 +1)(Z*+V22+1).

5.5 Modulus of a complex number

DEFINITION 5.5.1 (Modulus) If z = z + iy, the modulus of z is the
non-negative real number |z| defined by |z| = /22 + y2. Geometrically, the
modulus of z is the distance from z to 0 (see Figure 5.3).

More generally, |21 — 22| is the distance between z; and z3 in the complex
plane. For

|21 — 20| = [(z1 +iy1) — (w2 +iy2)| = |(z1 — 22) +i(y1 — y2)|
= \/(561 —x2)% + (y1 — y2)2.

The following properties of the modulus are easy to verify, using the identity
R

= 2Z:

(i) |z122| = |21]|22l;
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(i) =7 =[N
Z1 |21|
1il —| = —
(iii) =~ =l

For example, to prove (i):
|2’12’2\2 = (z122)7122 = (2122)71 22
= (a171)(27) = |21*|22f” = (|21]]22])”.
Hence |z1 22| = |21]]22]-

(1414)*

EXAMPLE 5.5.1 Find |z| when z = . —.
(14 69)(2 —T71)

Solution.

11 +4
(VIZ+12)1
VIZ+62,/22 + (-7)2
4
V3TV/53

THEOREM 5.5.1 (Ratio formulae) If z lies on the line through z; and
zZ9.

2| =

z=(1—1)z1 +tze, teR,
we have the useful ratio formulae:

zZ—2 t

. B "
(i) o 1| Hz#F2=,
o |z—2

= [t
(i) po—— 2]

Circle equations. The equation |z — 29| = r, where zp € C and r >
0, represents the circle centre zp and radius r. For example the equation
|z — (14 2i)| = 3 represents the circle (x — 1)% + (y — 2)?2 = 9.

Another useful circle equation is the circle of Apollonius :

Z—a

z—20b

=\,
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a
=

D
N>

Figure 5.4: Apollonius circles: =2 T D88 13105
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where a and b are distinct complex numbers and A is a positive real number,
A # 1. (If A =1, the above equation represents the perpendicular bisector

of the segment joining a and b.)

An algebraic proof that the above equation represents a circle, runs as

follows. We use the following identities:

(i) |z—al*> = |2]?> —2Re(za) + |al?
(i) Re(z1£22) = RezitRez
(iii) Re(tz) = tRezifteR.
We have
z—a

po— = A& [z —a)? = Nz — b

& |z]? = 2Re {Za} + |a)® = X?(|z|? — 2Re {Zb} + |b]?)
& (1= X)|z]? = 2Re {Z(a — \?b)} = X2|b|? — |a)?

_(a— )N A2[b|2 — |al?
= ‘Z|2—2Re{2<1_)\2>}:’1|_)\2’|

a— 22|

2 2|32 2
9 _(a— X% a—Nb|]"  A?b — |al
& K ‘QRe{Z(ﬁ)}* el

1— A2
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Now it is easily verified that

la — A2b]2 + (1 = A (N)b% = |af?) = A%|a — b)°.
So we obtain
2 X2a -

a—A\%b
()| =
Z_<a—/\2b>’_/\|a—b

1— A2 11— A2

The last equation represents a circle centre zg, radius r, where

Z—a

=)\ &
z—0b

=

a— A\?b and _ Aa—b|
1-a M TTE e

zZ0 —

There are two special points on the circle of Apollonius, the points z; and
zo defined by

Z1—a Zo—a

zl—b:/\ and Zz_b:—)\,
o Ab b
a— a
Zl_l—/\ and 22—1+)\. (5.3)

It is easy to verify that z; and zo are distinct points on the line through a

and b and that zg = Zl;@. Hence the circle of Apollonius is the circle based

on the segment 21, 25 as diameter.

EXAMPLE 5.5.2 Find the centre and radius of the circle
lz—1—i] =2z —5—2i.
Solution. Method 1. Proceed algebraically and simplify the equation
|x + iy — 1 —i| = 2|z + iy — 5 — 24|

or
2 —1+i(y—1)| =2jz —5+i(y — 2)|.

Squaring both sides gives
(=124 (y - 1)* =4((x =5 + (y — 2)%),

which reduces to the circle equation

38 14
$2+y2—§x—?y+38:0.
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Completing the square gives

19, T, (19\* [(7\? 68

so the centre is (3, I) and the radius is y/%.
Method 2. Calculate the diametrical points z; and zo defined above by

equations 5.3:
21—1—i = 2(21—5—2i)
22—1—i = —2(22—5—2i).
We find z; = 9+ 3¢ and 22 = (11 + 5¢)/3. Hence the centre zg is given by

Z_Z1+22_§ Zz
0T T T 373

and the radius r is given by

19 7
T:|zl—zo|='<3+3i)—(9+3i)

5.6 Argument of a complex number

Let z = x + iy be a non—zero complex number, r = |z| = y/22 + y2. Then
we have x = rcosf, y = rsinf, where 0 is the angle made by z with the
positive z—axis. So 6 is unique up to addition of a multiple of 27 radians.

DEFINITION 5.6.1 (Argument) Any number 6 satisfying the above
pair of equations is called an argument of z and is denoted by argz. The
particular argument of z lying in the range —7m < 6 < 7 is called the principal
argument of z and is denoted by Argz (see Figure 5.5).

We have z = rcos + irsinf = r(cosf + isinf) and this representation
of z is called the polar representation or modulus—argument form of z.

EXAMPLE 5.6.1 Argl =0, Arg(—1) =7, Argi = §, Arg(—i) = — 3.

We note that y/z = tan if  # 0, so 6 is determined by this equation up
to a multiple of 7. In fact

Argz = tan~! Y + km,
x
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Figure 5.5: The argument of z: argz = 6.

where k=0ifx>0; k=1ifx<0,y>0; k=—-1ifx <0, y<D0.

To determine Arg z graphically, it is simplest to draw the triangle formed
by the points 0, x, z on the complex plane, mark in the positive acute angle
a between the rays 0, x and 0, z and determine Arg z geometrically, using
the fact that a = tan='(|y|/|z|), as in the following examples:

EXAMPLE 5.6.2 Determine the principal argument of z for the followig
complex numbers:

z=443i, —4+3i, —4 -3¢, 4 30.
Solution. Referring to Figure 5.6, we see that Argz has the values

o, T— @, —T+Q, —Q,

where o = tan™! %.

An important property of the argument of a complex number states that
the sum of the arguments of two non—zero complex numbers is an argument
of their product:

THEOREM 5.6.1 If ¢, and 0, are arguments of z; and zs, then 6 + 05
is an argument of z7z9.

Proof. Let z; and 2y have polar representations z; = ri(cos@; + isinf;)
and zo = 19(cosfy + isinfs). Then

z1zg = ri(cosfy +isinb;)ra(cosba + isinby)
= r1r2(cos by cos By — sin 0y sin Oy + i(cos 0 sin O3 + sin Oy cos s))
= rira(cos (61 + 02) + isin (61 + 602)),
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A A
44+ 3 —4 4+ 3
< Q > L < » L
Y Y
Y Yy
A A
< > L < > L
Q. (64
Y¥a_3; 4 — 31
Y Y

Figure 5.6: Argument examples.

which is the polar representation of z1zy, as r179 = |21]|22| = |2122|. Hence
01 + 65 is an argument of zqz9.

An easy induction gives the following generalization to a product of n
complex numbers:

COROLLARY 5.6.1 If6y,...,0, are arguments for z1, ..., z, respectively,
then 61 + - -+ + 6,, is an argument for z; - - - z,.

Taking 61 = --- = 0, = 0 in the previous corollary gives

COROLLARY 5.6.2 If 6 is an argument of z, then nf is an argument for

2™,

THEOREM 5.6.2 If 0 is an argument of the non—zero complex number
z, then —6 is an argument of 2.

Proof. Let 0 be an argument of z. Then z = r(cosf+isinf), where r = |z].
Hence
2zt = r7l(cosh +ising)!
= 7 cosf —isinb)
= 771 (cos(—0) +isin(—0)).
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Now r~! = |2|7t = |27, so —0 is an argument of 27!

COROLLARY 5.6.3 If #; and 05 are arguments of z; and z9, then 61 — 65
is an argument of z;/zs.

In terms of principal arguments, we have the following equations:

(i) Arg(z12z9) = Argzi+Argzs + 2k,

(ii) Arg(z71) = —Argz+ 2kom,

(iii) Arg(z1/22) = Argz—Argzy + 2ksm,

(iv) Arg(z1---2zn) = Argzi+---+Argz, + 2k,
(v) Arg (2") = nArgz+ 2ksm,

where ki1, ko, k3, k4, k5 are integers.

In numerical examples, we can write (i), for example, as
Arg (2129) = Argz; + Arg2o.

EXAMPLE 5.6.3 Find the modulus and principal argument of

17
L (VB
o\ 144

and hence express z in modulus—argument form.

V3 2 17/2
T+i7 ~ (V2)i7 '

Argz = 17Arg (?_:—Z)

Solution. |z| =

= 17(Arg (V3 +41i) — Arg (1 +1))

T T —17m
_ 1<___>: ,
7 6 4 12

Hence Argz = (_1127”) + 2km, where k is an integer. We see that k£ = 1 and

hence Argz = %T Consequently z = 217/2 (cos % + isin %)
DEFINITION 5.6.2 If 6 is a real number, then we define e by
¢ = cosf + isin .

More generally, if z = = + iy, then we define e* by

e =ee.
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For example,
i

=7, =-1,e 2 = —1i.

Ny

e

The following properties of the complex exponential function are left as

exercises:
THEOREM 5.6.3 (i) ee = gt
(11) efl .. .efn = ezl+"'+2’n’
(iii) et #£ 0,
(IV) (ez)_l = 6_27
(v) el/e = %,
(vi) e = e
THEOREM 5.6.4 The equation
ef =1

has the complete solution z = 2k, k € Z.

Proof. First we observe that
k™ — cos (2km) 4 isin (2kw) = 1.

Conversely, suppose e = 1, z = x +iy. Then e*(cosy + isiny) = 1. Hence
e?cosy =1 and e”siny = 0. Hence siny = 0 and so y = nm, n € Z. Then
e® cos (nm) =1, so e*(—1)" = 1, from which follows (—1)" =1 as e* > 0.
Hence n = 2k, k € Z and e® = 1. Hence x = 0 and z = 2kmi.

5.7 De Moivre’s theorem

The next theorem has many uses and is a special case of theorem 5.6.3(ii).
Alternatively it can be proved directly by induction on n.

THEOREM 5.7.1 (De Moivre) If n is a positive integer, then
(cosf +isinf)" = cos nf + isin nb.

As a first application, we consider the equation z" = 1.

THEOREM 5.7.2 The equation 2™ = 1 has n distinct solutions, namely
the complex numbers ( = e%nm, k=20,1,...,n — 1. These lie equally
spaced on the unit circle |z| = 1 and are obtained by starting at 1, moving
round the circle anti—clockwise, incrementing the argument in steps of 27”
(See Figure 5.7)

21

We notice that the roots are the powers of the special root ( = e » .
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S
1
27 /n
21 /n
21 /n o
Cnfl

Figure 5.7: The nth roots of unity.

Proof. With (; defined as above,

i\ T e
C;ﬂ’b = <6%> = e%n = 1’
by De Moivre’s theorem. However || = 1 and arg(, = %T”, so the com-
plex numbers (i, k =0, 1, ...,n — 1, lie equally spaced on the unit circle.

Consequently these numbers must be precisely all the roots of z” — 1. For
the polynomial 2™ — 1, being of degree n over a field, can have at most n
distinct roots in that field.

The more general equation 2™ = a, where a €,C,a # 0, can be reduced
to the previous case:

Let a be argument of z, so that a = |a|e’®. Then if w = ]a\l/"e%, we

have
w' = <|a|1/"e%)n
= (" (%)
= |ale’ = a.

So w is a particular solution. Substituting for a in the original equation,
we get 2" = w", or (z/w)” = 1. Hence the complete solution is z/w =
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21
|2 = (ja)!/"
20
27 /n
Q@
Zn—1
Figure 5.8: The roots of 2" = a.
elem" k=0,1,...,n—1, or
[1e" L i(a+2km)
2 = ]a\l/nefey; = |a|'/"e +n , (5.4)
k=0,1,...,n—1. So the roots are equally spaced on the circle
2| = |al/"

and are generated from the special solution having argument equal to (arga)/n,
by incrementing the argument in steps of 27 /n. (See Figure 5.8.)

EXAMPLE 5.7.1 Factorize the polynomial z° — 1 as a product of real
linear and quadratic factors.

=27 4w

. 2mi —4mi
Solution. The rootsare 1, e 5 ,e 5 ,e5 ,e 5 , using the fact that non—
real roots come in conjugate—complex pairs. Hence

2mi —2mi 4ri —4mi
P—l=(z-1(z—e35)(z—€e5 )(z—e5 )(z—e 5 ).

Now

2mi —27i 2 27i —27i

(z—€e5 )(z—e5 ) = z2—2z(e5 +e 5 )+1
= z2—2zcos2%+1.
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Similarly

4mi —4mi

(z—e5 )(z—e5 ):ZZ—QZCOS%T-FL

This gives the desired factorization.

EXAMPLE 5.7.2 Solve 2% = i.

Solution. |i| =1 and Argi = § = a. So by equation 5.4, the solutions are
o = i35 k=0, 1, 2.

First, k = 0 gives

V3

0 T tisin Z +
= = — in —=—+—.
Zp=e cos6 1S 5 5 5
Next, k = 1 gives
zlzesﬁzcos%—i-isin%:T\/_—k%.
Finally, k = 2 gives
omi 97T+.. .
Z1=€6 =Cos — +isin — = —i.
! 6 6

We finish this chapter with two more examples of De Moivre’s theorem.

EXAMPLE 5.7.3 If

C = 14cosf+---+cos (n—1)0,
S = sinf+---+sin (n—1)6,

prove that
i nb i nl
sin &% _ sin &5 | _
C=—=2cos (n 21)9 and § = —=sin (n 21)6,
Sin 5 S1n 5

if 0 # 2k, k € Z.
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Solution.

C+iS = 1+ (cosf+isinf)+---+ (cos (n—1)0+isin (n —1)0)
14l g g gitn=1)0

= 14z+---+2""" where z ="

1—2" .
= 3 , if z £ 1, ie. 0 # 2km,
—z
1= eind B e%(eﬂ;g — 6”59)
1_610 e%(e%ﬁ —e%)
: 6
_ ei(n—l)gsm%
Sin 5
sin ¢
= (cos (n—1)4 +isin (n —1)§)— 3 :
Sin )

The result follows by equating real and imaginary parts.

EXAMPLE 5.7.4 Express cos nf and sin nf in terms of cosf and sin @,
using the equation cos nf + sin nf = (cos @ + isinh)™.

Solution. The binomial theorem gives

(cosf +isinf)™ = cos™ 0 + () cos" ! O(isin ) + (5) cos™ 2 (isinf)? + - - -
+ (isinf)".

Equating real and imaginary parts gives
cos nf = cos™ @ — (%) cos" "2 0sin? @ + - - -

sin nf = (’f) cos" L fhsinfh — (g) cos" 3 0sin0 + - .

5.8 PROBLEMS

1. Express the following complex numbers in the form x + iy, z,y real:

i i)?
(i) (=3 +4)(14 — 20); (i) f - i (i) 7(1;“_21,) .

[Answers: (1) —40 + 204; (i) —12 + H4; (i) —% + £]

2. Solve the following equations:
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(i) iz+(2—-10i)z = 3z+2i
i) (A+i)z+2—-)w = =3i
(14+2i)z+B+id)w = 2+2
[Answers:(i) z = —4% — 4@—1; (i) z = —1 +5i, w = 1_59 % ]
. Express 1+ (1+4) + (14+4)2 +... + (1 +14)% in the form z + iy, z,y
real. [Answer: (1 + 2°0)i.]

. Solve the equations: (i) 22 = —8 — 6i; (i) 22 — (3+4)z+4+3i = 0.

[Answers: (i) z = £(1 — 37); (i) 2 =2—1, 1 + 2i/]

Find the modulus and principal argument of each of the following
complex numbers:

(i) 4+i; (i) —

\S][oV]

— % (iil) —1+2i;  (iv) 3(=1+iV3).

[Answers: (i) V17, tan™'1; (ii) @, —m + tan~1 35 (iii) V5, T —

tan~12)

Express the following complex numbers in modulus-argument form:
(i) 2= (1+d)(14+iv3)(V3 — ).

(14451 —iv3)®

() == (V3 + i)

[Answers:

(1) z = 4\/_(COS S + 7sin %) (11) y = 27/2(COS 1lm +isin %) ]

(i) If z =2(cos F+isin §) and w = 3(cos g +isin §), find the polar
form of
5

(a) zw; (b) F;(c) £5(d) &=

w)’ z) w?”

(ii) Express the following complex numbers in the form z + iy:
() (1402 0) (1)

[Answers: (i): (a) 6(cos 2% +isin 57); (b) Z(cos 75 + isin 5);

(c) 3(cos =& +isin —%); (d) %(cos Hx 4 jsin 1T);

(i): (a) —64; (b) —i.]
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8. Solve the equations:

(1) 22 =144V3; (i) 2* = 4; (iii) 2° = —8i; (iv) 2 =2 — 2i.

[Answers: (i) 2 = £9550 (i) i*(cos T+ isin 5),k = 0,1,2,3; (i)
2=2i, —v/3—i, V3—1i; (iv) 2 = i*28 (cos & —isin &), k=0,1,2,3]
9. Find the reduced row—echelon form of the complex matrix

241 —-1+2¢ 2
1+7 —-1+43 1
1+2¢ 244 143

[Answer:

S O =
O O =

0
1]
0

10. (i) Prove that the line equation lx + my = n is equivalent to
pz + pz = 2n,

where p =1 + im.

(ii) Use (ii) to deduce that reflection in the straight line
Pz+pz=mn
is described by the equation
pw + pz = n.

[Hint: The complex number [ + im is perpendicular to the given
line.]

(iii) Prove that the line |z —a| = |z —b| may be written as pz+pz = n,

where p = b — a and n = |b|? — |a|?. Deduce that if z lies on the
Apollonius circle % = ), then w, the reflection of z in the line
|z—al

|z — a| = |z — b], lies on the Apollonius circle =

>

11. Let a and b be distinct complex numbers and 0 < a < .

(i) Prove that each of the following sets in the complex plane rep-

resents a circular arc and sketch the circular arcs on the same
diagram:
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Z J—
Arg =, —q, T —Q, @ — T.
z—b
z—a
Also show that Arg ;=7 represents the line segment joining
z

a and b, while Arg Z = 0 represents the remaining portion of

Z —
the line through a and b.
(ii) Use (i) to prove that four distinct points z1, 29, 23, 24 are con-

cyclic or collinear, if and only if the cross—ratio

24 — 21,23 — 21

24— 29" 23 — 29

is real.

(iii) Use (ii) to derive Ptolemy’s Theorem: Four distinct points A, B, C, D
are concyclic or collinear, if and only if one of the following holds:

AB-CD+ BC-AD = AC-BD

BD-AC+ AD-BC = AB-CD
BD-AC+ AB-CD = AD-BC.



Chapter 6

EIGENVALUES AND
EIGENVECTORS

6.1 Motivation

We motivate the chapter on eigenvalues by discussing the equation
2 2 _
az” + 2hxy + by” = ¢,

where not all of a, h, b are zero. The expression az? + 2hzy + by? is called
a quadratic form in x and y and we have the identity

2 2 a h T
ax® + 2hay + by’ = [ y][h b}{y]:XtAX,

a h

T
WhereX—[y}andA—[h b

] . A is called the matrix of the quadratic

form.

We now rotate the x, y axes anticlockwise through 6 radians to new
x1, y1 axes. The equations describing the rotation of axes are derived as
follows:

Let P have coordinates (x, y) relative to the z, y axes and coordinates
(1, y1) relative to the z;, y1 axes. Then referring to Figure 6.1:

115
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Y P

al x1

Figure 6.1: Rotating the axes.

x = O0Q =OPcos (0+ «)
= OP(cosfcosa — sinfsin o)
= (OPcosa)cosf — (OPsina)sin 6
= ORcosf — PRsinf

= x1cosf —ypsind.

Similarly y = x1sin 6 + y1 cos 6.
We can combine these transformation equations into the single matrix

equation:
x | | cosf —sind T
y | | sinf@  cosf |

or X = PY. where X = | © | v = | ® | ana p = | €00 —sinf ¢
Y Y1 sin 0 cos 6

We note that the columns of P give the directions of the positive x; and y;
axes. Also P is an orthogonal matrix — we have PP! = I, and so P~! = P,
The matrix P has the special property that det P = 1.

cosf) —sinf
sinf  cosf
We shall show soon that any 2 x 2 real orthogonal matrix with determinant

A matrix of the type P = } is called a rotation matrix.
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equal to 1 is a rotation matrix.
We can also solve for the new coordinates in terms of the old ones:

1| _y _pty — c9s0 sin ¢ x 7
Y1 —sinf cosf Y

so x1 = xcosf + ysinfh and y; = —xsinf + ycosf. Then
X'AX = (PY)'A(PY) =YY (P'AP)Y.

Now suppose, as we later show, that it is possible to choose an angle 6 so
that PLAP is a diagonal matrix, say diag(\1, A2). Then

and relative to the new axes, the equation ax? + 2hxy + by? = ¢ becomes
A2 + Xoy? = ¢, which is quite easy to sketch. This curve is symmetrical
about the x1 and y; axes, with P, and P», the respective columns of P,
giving the directions of the axes of symmetry.

Also it can be verified that P; and P, satisfy the equations

AP1 == )\1P1 and APQ = )\2P2.

u1

These equations force a restriction on A1 and Ao. For if P, = [ ], the

U1
first equation becomes

P e e R P b

Hence we are dealing with a homogeneous system of two linear equations in
two unknowns, having a non—trivial solution (u1, v1). Hence
a — )\1 h

h b— X\
Similarly, Ao satisfies the same equation. In expanded form, A; and As
satisfy

=0.

M —(a+bX+ab—h*=0.
This equation has real roots
\ a+b=++/(a+b)?2—4(ab— h?) _atbE/(a—b)+4n° (6.2)
2 2
(The roots are distinct if a # b or h # 0. The case a = b and h = 0 needs
no investigation, as it gives an equation of a circle.)

The equation A2 — (a+b)A+ab—h? = 0 is called the eigenvalue equation
of the matrix A.
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6.2 Definitions and examples

DEFINITION 6.2.1 (Eigenvalue, eigenvector)
Let A be a complex square matrix. Then if A is a complex number and
X a non—zero complex column vector satisfying AX = AX, we call X an
eigenvector of A, while A is called an eigenvalue of A. We also say that X
is an eigenvector corresponding to the eigenvalue .

So in the above example P; and P, are eigenvectors corresponding to A;
and Ao, respectively. We shall give an algorithm which starts from the
a

nob ] and constructs a rotation matrix P such that

eigenvalues of A = [

P'AP is diagonal.

As noted above, if X\ is an eigenvalue of an n x n matrix A, with
corresponding eigenvector X, then (A — A[,)X = 0, with X # 0, so
det (A — AI,) = 0 and there are at most n distinct eigenvalues of A.

Conversely if det (A — AI,,) =0, then (A — AI,,) X = 0 has a non—trivial
solution X and so A is an eigenvalue of A with X a corresponding eigenvector.

DEFINITION 6.2.2 (Characteristic equation, polynomial)
The equation det (A — AI,,) = 0 is called the characteristic equation of A,
while the polynomial det (A — \I},) is called the characteristic polynomial of
A. The characteristic polynomial of A is often denoted by ch 4 ().

Hence the eigenvalues of A are the roots of the characteristic polynomial
of A.

a

For a 2 x 2 matrix A = [ . b } , it is easily verified that the character-

d
istic polynomial is A? — (trace A)\ +det A, where trace A = a+d is the sum
of the diagonal elements of A.

2 1

EXAMPLE 6.2.1 Find the eigenvalues of A = [ 1 o

] and find all eigen-

vectors.

Solution. The characteristic equation of A is A2 — 4\ +3 =0, or
A=1)(A=3)=0.

Hence A =1 or 3. The eigenvector equation (A — AI,,) X = 0 reduces to

NI
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or
2-Nz+y =
r+(@2-Ny =
Taking A = 1 gives
rt+y =
z4+y = 0,
which has solution * = —y, y arbitrary. Consequently the eigenvectors

corresponding to A = 1 are the vectors [ _z } , with y £ 0.
Taking A = 3 gives

r—Yy = 07
which has solution x = y, y arbitrary. Consequently the eigenvectors corre-
sponding to A = 3 are the vectors [ ‘z } , with y #£ 0.
Our next result has wide applicability:

THEOREM 6.2.1 Let A be a 2 X 2 matrix having distinct eigenvalues \;
and Ay and corresponding eigenvectors X; and Xo. Let P be the matrix
whose columns are X; and Xp, respectively. Then P is non-singular and

A1 O
-1 - 1
P AP_[O AQ].

Proof. Suppose AX; = A1 X7 and AXs = Ao X5. We show that the system
of homogeneous equations

X1 +yXe=0

has only the trivial solution. Then by theorem 2.5.10 the matrix P =
[X1]|X?2] is non—singular. So assume

Then A(zX; +yX2) = A0 =0, so z(AX1) + y(AX2) = 0. Hence

xA X1 + yAaXs = 0. (6.4)
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Multiplying equation 6.3 by A; and subtracting from equation 6.4 gives
(/\2 — )\1>ng =0.

Hence y = 0, as (A2— A1) # 0 and X5 # 0. Then from equation 6.3, zX; =0
and hence z = 0.
Then the equations AX7 = A\ X1 and AXs = A X5 give

AP = A[X1|X,o] = [AX1|AX,] = [MX1|AXo]
_ A0 A0
= [X] &) [ 0 o ]‘P [ 0 )Xo }’
SO
s [ M0
P AP{O L

EXAMPLE 6.2.2 Let A = [ ? ; ] be the matrix of example 6.2.1. Then

-1 1
X, = [ ] and Xy = [ ] are eigenvectors corresponding to eigenvalues

1 1
. . -1 1
1 and 3, respectively. Hence if P = 11 | have
1 10
P AP = [ 0 3|

There are two immediate applications of theorem 6.2.1. The first is to the
calculation of A™: If P~'AP =diag (\1, A2), then A = Pdiag (A1, o) P!
and

- M0 oo\ ST A 0 o ST A 0]
N AL I S I A

The second application is to solving a system of linear differential equations

dx

i ax + by
d
d—? = cr+ dy,
where A = [ CCL d ] is a matrix of real or complex numbers and z and y

are functions of ¢. The system can be written in matrix form as X = AX,

o[ []- (4]

where
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We make the substitution X = PY, where Y = { il ] Then z; and ¥
1

are also functions of ¢ and

X =PY =AX = A(PY), soY = (P"'AP)Y = [ Aol f ]Y
2

Hence 1 = A\iz1 and 41 = Aoy1.
These differential equations are well-known to have the solutions z1 =
21(0)eM? and x5 = 29(0)e?2!, where 1(0) is the value of 21 when ¢ = 0.

[If ‘fl—f = kx, where k is a constant, then

d( ke \ _ —kt g dr —kt Kty _
dt(e x)— ke™"x +e i ke "z +e "kx = 0.
Hence e *z is constant, so e ¥z = ¢7*02(0) = 2(0). Hence z = x(0)e** )]
However [ zlégg } =p! [ igg; ], so this determines x1(0) and y;(0) in
1

terms of z(0) and y(0). Hence ultimately x and y are determined as explicit
functions of ¢, using the equation X = PY.

EXAMPLE 6.2.3 Let A = [ Z :2 } Use the eigenvalue method to
derive an explicit formula for A™ and also solve the system of differential
equations

dx

=T 9y —

o r — 3y
dy

= = 4x-5
dt "r y?

given x =7 and y = 13 when ¢t = 0.

Solution. The characteristic polynomial of A is A24+3A+2 which has distinct

roots Ay = —1 and Ay = —2. We find corresponding eigenvectors X; = [ 1 ]

13

aHdX2:|:3 1 4

4]. HenceifP:[

}, we have P~1AP = diag (-1, —2).

Hence

A" = (Pdiag(-1, —2)P™")" = Pdiag ((—1)", (-2)")P*

- LS Gl T
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21 371 0 4 -3
= =D 1 4“0 Q"H—l 1]
A1 3x2n 4 -3
= U7 4><2”H—1 1]
" 4—-3x2" —3+3x2"
- | 4—4x2" —344x2"

To solve the differential equation system, make the substitution X =
PY. Then x = x1 + 3y1, y = 1 + 4y1. The system then becomes

T = -1
?)1 == _2y17

—t

so 21 = 21(0)e", y1 = y1(0)e *". Now

z1(0) | p-1 z(0) | 4 -3 T | -1

n(0) | y(O) | [ -1 1]l 13] 6]’
so 71 = —1le7t and y; = 6e=2. Hence v = —11le~! + 3(6e7%") = —11le~! +
18e72t y = —1le™t +4(6e7 %) = —11le™t + 242t

For a more complicated example we solve a system of inhomogeneous
recurrence relations.

EXAMPLE 6.2.4 Solve the system of recurrence relations

Tnt1 = an —Yn — 1
Yn+l = —Tp+ 2yn + 27

given that xo = 0 and yy = —1.
Solution. The system can be written in matrix form as

Xn+1 = AXn + B,

a2 i [1]

It is then an easy induction to prove that

where

X, =A"Xog+ (A" ...+ A+ IL)B. (6.5)
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Also it is easy to verify by the eigenvalue method that

CREI AP B RS
whereU:[i 1]andV:[_1 _i].Hence
A g f A4, = ZU+(3n_l+”2'+3+l)V
- 2y 8y

Then equation 6.5 gives

e 50 3] e ) ]

which simplifies to

(o] <[ Grrom],

Hence x, = (2n — 1+ 3")/4 and y, = (2n — 5+ 3")/4.

REMARK 6.2.1 If (A — I)~! existed (that is, if det (A — I3) # 0, or
equivalently, if 1 is not an eigenvalue of A), then we could have used the
formula

An_l—{—---—i-A—{—IQ = (An—IQ)(A—IQ)_l. (66)

However the eigenvalues of A are 1 and 3 in the above problem, so formula 6.6
cannot be used there.

Our discussion of eigenvalues and eigenvectors has been limited to 2 x 2
matrices. The discussion is a more complicated for matrices of size greater
than two and is best left to a second course in linear algebra. Nevertheless
the following result is a useful generalization of theorem 6.2.1. The reader
is referred to [28, page 350] for a proof.

THEOREM 6.2.2 Let A be an n x n matrix having distinct eigenvalues

A, ..., A\ and corresponding eigenvectors X1,...,X,. Let P be the matrix
whose columns are respectively Xi,...,X,,. Then P is non-singular and
M O - 0
) Xy - 0
P AP = . . .

0 0 - A
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Another useful result which covers the case where there are multiple eigen-
values is the following (The reader is referred to [28, pages 351-352] for a
proof):

THEOREM 6.2.3 Suppose the characteristic polynomial of A has the fac-
torization

det (M, —A)=A—c1)™ - (A—c)™,
where c1,...,¢; are the distinct eigenvalues of A. Suppose that for i =

1,...,t, we have nullity (¢;I,—A) = n;. For each i, choose a basis X1, ..., Xin,
for the eigenspace N(c;I, — A). Then the matrix

P = [XH’"'|X1n1|"‘|Xt1|"‘|tht]

is non-singular and P~'AP is the following diagonal matrix

cily, 0 o 0
pigp_ | 0 @le e 0
0 0 - cly,

(The notation means that on the diagonal there are n; elements c;, followed
by ng elements ca,. .., n; elements ¢;.)

6.3 PROBLEMS

1. Let A = [ 111 _g ] . Find a non-singular matrix P such that P~1AP =

diag (1, 3) and hence prove that
3" -1 3-3"

A" = A L.
2 Ttk

0.6 0.8

2. 1A= [ 0.4 0.2

} , prove that A™ tends to a limiting matrix

[ ]

as 1n — OQ.
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3. Solve the system of differential equations

dx

= = 3z-—2
di Ty
dy

-~ = bHr—4
dt xg’

given z = 13 and y = 22 when ¢ = 0.
[Answer: z = Te! + 6e72, y = Tel + 15e72 )

4. Solve the system of recurrence relations

Tn4+1 — 3z, — Yn
Yn+l = —Tp+ 3Yn,
given that xog = 1 and yy = 2.
[Answer: x, = 2" 1(3 —2"), y, = 2""1(3 +2")

5. LetA:[a
c

] be a real or complex matrix with distinct eigenvalues

d
A1, A2 and corresponding eigenvectors X, Xo. Also let P = [X1|X3].

(a) Prove that the system of recurrence relations

Tpy1 = axy + by,

Yn+1 = cxn""dyn

has the solution
Tn

Yn

where « and 3 are determined by the equation

B!

(b) Prove that the system of differential equations

} = a1 X1 + A3 Xy,

"
pi ax + by
d

d_:z = cr+dy

has the solution

z ] = aeM X + e X,



126

CHAPTER 6. EIGENVALUES AND EIGENVECTORS

where a and ( are determined by the equation

HEa

. Let A= [ @ dn } be a real matrix with non-real eigenvalues A =

a1 a22
a+ib and A = a — ib, with corresponding eigenvectors X = U + iV
and X = U — iV, where U and V are real vectors. Also let P be the
real matrix defined by P = [U|V]. Finally let a + ib = re?, where
r > 0 and 6 is real.

(a) Prove that

AU = aU —-bV
AV = bU +dV.

(b) Deduce that

plap—|® P
b a |’

(c) Prove that the system of recurrence relations
Tnt+l = Q11Tn + Q12Yn
Ynt+1 = Q21Tn + A22Yn

has the solution

[ i" ] =r"{(aU + V) cosnbf + (BU — aV)sinnb},

where a and ( are determined by the equation

B

(d) Prove that the system of differential equations

dz
dt
dy
dt

= ax+by

= cx+dy
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has the solution
[ i } = e™{(aU + BV) cosbt + (BU — aV)sin bt},

where « and 3 are determined by the equation

M

[Hint: Let [ z ] =P [ zl ] Also let z = x1 4 iy;. Prove that
1
Z=(a—ib)z

and deduce that
x1 +iy; = e™(a + i3)(cos bt + isin bt).

Then equate real and imaginary parts to solve for z1, y1 and
hence z, y.]

7. (The case of repeated eigenvalues.) Let A = [ CCL Z ] and suppose

that the characteristic polynomial of A, A\? — (a + d)\ + (ad — bc), has
a repeated root «. Also assume that A # als. Let B = A — als.

(i) Prove that (a — d)? + 4bc = 0.

(ii) Prove that B2 = 0.
(iii) Prove that BX2 # 0 for some vector Xo; indeed, show that Xo

can be taken to be [é]or [(1]]

(iv) Let X; = BXs. Prove that P = [X;|X5] is non—singular,
AXl = aX1 and AXQ = CMXQ + X1
and deduce that

piap—| @ 1
0 ol

8. Use the previous result to solve system of the differential equations

dx

= 4y —
dt vy
d

Y 4x + 8y,

dt
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given that x =1 =y when t = 0.

[To solve the differential equation

pri kx = f(t), k a constant,

multiply throughout by e~**, thereby converting the left-hand side to
FACREIN

[Answer: z = (1 — 3t)e%, y = (1 + 6t)e® ]

9. Let
1/2 12 0
A=|1/4 1/4 1/2
1/4 1/4 1/2
(a) Verify that det (AI3 — A), the characteristic polynomial of A, is
given by
1
A=1AN— Z)

(b) Find a non-singular matrix P such that P"YAP = diag(1, 0, ).
(c) Prove that

TRER 1 2 2 —4
A”:5 11 +34n -1 -1 2
11 1 ' -1 -1 2
ifn>1.
10. Let

5 2 -2

A= 2 5 -2

-2 -2 5

(a) Verify that det (A[3 — A), the characteristic polynomial of A, is
given by
(A =32\ —9).

(b) Find a non-singular matrix P such that P~1AP = diag (3, 3, 9).



Chapter 7

Identifying second degree
equations

7.1 The eigenvalue method

In this section we apply eigenvalue methods to determine the geometrical
nature of the second degree equation

ax® + 2hxy + by? + 292 + 2fy + ¢ =0, (7.1)

where not all of a, h, b are zero.

Let A = [ a h } be the matrix of the quadratic form ax? 4 2hay + by?.

h b
We saw in section 6.1, equation 6.2 that A has real eigenvalues A1 and Ao,
given by
\ a+b—+/(a—0)?+4h? \ a+b++/(a—0b)?+4h?
1= , = .
2 2

We show that it is always possible to rotate the x, y axes to x1, x2 axes whose
positive directions are determined by eigenvectors X; and Xy corresponding
to A1and As in such a way that relative to the x1, y; axes, equation 7.1 takes
the form

dz? +0y?+2dx+ 2f'y +c=0. (7.2)

Then by completing the square and suitably translating the x1, y; axes,
to new z9, yo axes, equation 7.2 can be reduced to one of several standard
forms, each of which is easy to sketch. We need some preliminary definitions.

129
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DEFINITION 7.1.1 (Orthogonal matrix) An n x n real matrix P is
called orthogonal if
P'P = I,.

It follows that if P is orthogonal, then det P = +1. For
det (P'P) = det P'det P = (det P)?,

so (det P)2 =det I,, = 1. Hence det P = =+1.
If P is an orthogonal matrix with det P = 1, then P is called a proper
orthogonal matrix.

THEOREM 7.1.1 If P is a 2 x 2 orthogonal matrix with det P = 1, then
p_ [ cosf) —sinf ]

sin 6 cosf

for some 6.

REMARK 7.1.1 Hence, by the discusssion at the beginning of Chapter
6, if P is a proper orthogonal matrix, the coordinate transformation

M

represents a rotation of the axes, with new z; and y; axes given by the
repective columns of P.

Proof. Suppose that P!P = I5, where A =det P = 1. Let
a b
P= [ c d ] '
P =p1l= lade
A

el

Hence a = d, b = —c and so
P [ a —c } 7
c a

where a? + ¢ = 1. But then the point (a, ¢) lies on the unit circle, so
a = cosf and ¢ = sinf, where 6 is uniquely determined up to multiples of
2.

Then the equation

gives
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DEFINITION 7.1.2 (Dot product). If X =
X .Y, the dot product of X and Y, is defined by

andY:{c],then

a
b d
XY =ac+ bd.
The dot product has the following properties:
i) X - Y+2)=X-Y+X-Z;
(i) X Y=Y X,

(ili) (tX) Y =¢(X -Y);

(iv) X-X:az—l—bQifX:[Z];

(v) XY =X'Y.
The length of X is defined by
X = Va2 + b2 = (X - X)"2

We see that || X || is the distance between the origin O = (0, 0) and the point
(a, b).

THEOREM 7.1.2 (Geometrical interpretation of the dot product)
Let A = (z1, y1) and B = (z2, y2) be points, each distinct from the origin

O=(0,0). Thenif X = | “! | and V = | 2

} , we have
Y1 Y2

X Y =0A 0OBcos?,
where 6 is the angle between the rays OA and OB.
Proof. By the cosine law applied to triangle OAB, we have
AB? = OA% 4 OB? — 20A - OB cos 6. (7.3)

Now AB? = (z9 — 21)? + (y2 — 11)?, OA% = 2% + 42, OB? = x% + y%.

Substituting in equation 7.3 then gives

(22 — 21)% + (g2 — y1)? = (22 + y?) + (22 + y3) — 204 - OB cos b,
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which simplifies to give
OA - OBcosf = z1x9 + 12 = X - Y.

It follows from theorem 7.1.2 that if A = (21, y1) and B = (x2, y2) are
points distinct from O = (0, 0) and X = [ il ] and Y = [ 317 ], then
1 2

X -Y = 0 means that the rays OA and OB are perpendicular. This is the
reason for the following definition:

DEFINITION 7.1.3 (Orthogonal vectors) Vectors X and Y are called
orthogonal if
X Y =0.

There is also a connection with orthogonal matrices:

THEOREM 7.1.3 Let P be a 2 x 2 real matrix. Then P is an orthogonal
matrix if and only if the columns of P are orthogonal and have unit length.

Proof. P is orthogonal if and only if P!P = I. Now if P = [X;|X3], the
matrix P'P is an important matrix called the Gram matrix of the column
vectors X; and Xs. It is easy to prove that

PtP:[XZ--Xj]:[Xl'Xl Xl-XQ].

Xo- X1 Xo-Xo
Hence the equation P!P = I is equivalent to

X X, Xi-X,] [10
Xo- Xy Xo-Xo | |0 1]

or, equating corresponding elements of both sides:
X1-X1=1,X1-X9=0, Xo-X5=1,

which says that the columns of P are orthogonal and of unit length.

The next theorem describes a fundamental property of real symmetric
matrices and the proof generalizes to symmetric matrices of any size.

THEOREM 7.1.4 If X; and X5 are eigenvectors corresponding to distinct
eigenvalues \; and Ay of a real symmetric matrix A, then X; and X5 are
orthogonal vectors.
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Proof. Suppose
AXy =M X1, AXy = Ao Xo, (7.4)

where X7 and X5 are non-zero column vectors, A® = A and \; # \o.
We have to prove that X} Xs = 0. From equation 7.4,

XEAX, = M XEX, (7.5)

and
XIAXy = M XX, (7.6)

From equation 7.5, taking transposes,
(X3AX1)" = (M X3X1)!

SO
XIA' Xy = M XEX.

Hence
XIAXy = M XEXo. (7.7)

Finally, subtracting equation 7.6 from equation 7.7, we have
(A —A)XiXo =0

and hence, since \; # Ao,
Xixy =o.

THEOREM 7.1.5 Let A be a real 2 x 2 symmetric matrix with distinct
eigenvalues A\; and A9. Then a proper orthogonal 2 x 2 matrix P exists such
that

P'AP = diag (A1, X2).

M

“diagonalizes” the quadratic form corresponding to A:

Also the rotation of axes

XPAX = Ma? + Aoy
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Proof. Let X; and X5 be eigenvectors corresponding to A; and As. Then
by theorem 7.1.4, X; and X, are orthogonal. By dividing X; and X3 by
their lengths (i.e. normalizing X1 and X5) if necessary, we can assume that
X1 and Xo have unit length. Then by theorem 7.1.1, P = [X;|X3] is an
orthogonal matrix. By replacing X; by —Xj, if necessary, we can assume
that det P = 1. Then by theorem 6.2.1, we have
t 1 A1 0
P'AP =P AP = [ 0 )\2].

Also under the rotation X = PY,

X'AX

(PY)'A(PY) = YY(P'AP)Y = Y'diag(\1, X\2)Y
= )\1(5% + )\Qy%

EXAMPLE 7.1.1 Let A be the symmetric matrix

12 —6
a1

Find a proper orthogonal matrix P such that P!AP is diagonal.
Solution. The characteristic equation of A is A2 — 19\ + 48 =0, or
(A=16)(A—3)=0.

Hence A has distinct eigenvalues \; = 16 and Ao = 3. We find corresponding

eigenvectors
-3 2
X1:|: 2:|andX2:|:3:|

Now || X1|| = || X2|| = V13. So we take

[ 4] e ]

Then if P = [X;|X3], the proof of theorem 7.1.5 shows that

s [16 0
par=[" 0.

However det P = —1, so replacing X; by —X; will give det P = 1.
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Figure 7.1: 1222 — 12zy + Ty? + 602 — 38y + 31 = 0.

REMARK 7.1.2 (A shortcut) Once we have determined one eigenvec-

tOrX1:|:Z

are always orthogonal. Also P = [X1|X3] will have det P = a® + b* > 0.

} , the other can be taken to be [ _Z ] , as these these vectors

We now apply the above ideas to determine the geometric nature of
second degree equations in x and y.

EXAMPLE 7.1.2 Sketch the curve determined by the equation
1222 — 12zy + Ty? + 60z — 38y + 31 = 0.

Solution. With P taken to be the proper orthogonal matrix defined in the
previous example by

p_ 3/V13 2/V13
_[2/x/ﬁ 3/\@}’

then as theorem 7.1.1 predicts, P is a rotation matrix and the transformation

(3]
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or more explicitly

_ 3x1 + 21 _ —2x1 + 31 (7.8)

vi3 7 V13

will rotate the x, y axes to positions given by the respective columns of P.
(More generally, we can always arrange for the x1 axis to point either into
the first or fourth quadrant.)

12 -6
NOWA—|:_6 7

} is the matrix of the quadratic form
1222 — 122y + Ty?,
so we have, by Theorem 7.1.5
1222 — 122y + Ty? = 1622 + 3y3.

Then under the rotation X = PY, our original quadratic equation becomes

60 38
1627 + 3y7 + —=(3w1 + 2y1) — ——=(—221 + 3y1) + 31 =0,

V13 V13
o 256 6
1622 + 392 + —x1 + ——1; + 31 = 0.
1 yl \/ﬁ 1 \/ﬁyl

Now complete the square in x; and y;:

16 2
16 x2+—az>+3< 2y )+31:o,
<1 \/ﬁl yl 13y1

PETICE UETARES TN Y
— 48 (7.9)

Then if we perform a translation of axes to the new origin (z1, y1) =

(_L _L>.
V137 V137" )

V13’

8
$2=$1+\/—1»3,y2=y1+

equation 7.9 reduces to

or
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TN
T

Figure 7.2: — + be =1,0 < b < a: an ellipse.

This equation is now in one of the standard forms listed below as Figure 7.2
and is that of a whose centre is at (z2, y2) = (0, 0) and whose axes of
symmetry lie along the x2, y2 axes. In terms of the original x, y coordinates,
we find that the centre is (z, y) = (=2, 1). Also Y = P!X, so equations 7.8
can be solved to give

3x1 — 2 _ 2z1 + 3y1

\/ﬁ 7y1_ \/ﬁ .

T =
Hence the ys—axis is given by
0 + i
= = €T E—
2 1 3
3x — 2y n 8
V13 V13

or 3x — 2y + 8 = 0. Similarly the zs axis is given by 2z 4+ 3y + 1 = 0.
This ellipse is sketched in Figure 7.1.

Figures 7.2, 7.3, 7.4 and 7.5 are a collection of standard second degree
equations: Figure 7.2 is an ellipse; Figures 7.3 are hyperbolas (in both these

b
examples, the asymptotes are the lines y = +—z); Figures 7.4 and 7.5
a

represent parabolas.

EXAMPLE 7.1.3 Sketch y2 — 4z — 10y — 7 = 0.
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. N N S A
Figure 7.3: (1);—1)—2—1, (11)¥—b—2——1,0<b,0<a.
Yyl
y
X X

Figure 7.4: (i) y? = 4ax, a > 0; (i) y* = daz, a < 0.
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Figure 7.5: (iii) 2% = 4ay, a > 0; (iv) 2% = 4ay, a < 0.

Solution. Complete the square:
P —10y+25—42—-32 = 0
(y—5)2=4r+32 = 4(z+38),
or y? = 4w, under the translation of axes 1 = x + 8, y; = y — 5. Hence we
get a parabola with vertex at the new origin (z1, y1) = (0, 0), i.e. (z,y) =
(=8, 5).
The parabola is sketched in Figure 7.6.
EXAMPLE 7.1.4 Sketch the curve 2 — 4zy + 4y? + 5y — 9 = 0.

Solution. We have z? — 4zy + 4y? = X' AX, where

1 -2
a1
The characteristic equation of A is A2 —5\ = 0, so A has distinct eigenvalues
A1 =5 and Ay = 0. We find corresponding unit length eigenvectors

1 1 1 [2
w-gl ) -]
Then P = [X;]X3] is a proper orthogonal matrix and under the rotation of

axes X = PY, or

1+ 2y1

V5
—2z1 4+ 0

y:T7
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Figure 7.6: y? — 4z — 10y — 7 = 0.

we have
2?2 — day + 4y? = \a? + \yd = 5.

The original quadratic equation becomes

V5
2
1
51— —=)?=10-vVbyr = V5(y1 —2V5),
V5
or 51’% = —%yg, where the x1, y; axes have been translated to s, yo axes

using the transformation

1
%,
Hence the vertex of the parabola is at (x2, y2) = (0, 0), ie. (z1,y1) =
(%, 2v/5), or (z, y) = (25—1, %) The axis of symmetry of the parabola is the
line 5 = 0, i.e. 21 = 1/4/5. Using the rotation equations in the form

Y2 = Y1 —2V/5.

To =1T1 —

T —2y
V5

r, =
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y AY
.
.
AY
4l |
.
AY
\\ y2
2 N

Figure 7.7: 2% — 4oy + 4y> + 5y — 9 = 0.

20 +y

y1 = \/57

we have
x—2y 1

VBB

The parabola is sketched in Figure 7.7.

or x—2y=1.

7.2 A classification algorithm

There are several possible degenerate cases that can arise from the general
second degree equation. For example x2 +? = 0 represents the point (0, 0);
22 4+ y?> = —1 defines the empty set, as does 22 = =1 or > = —1; 22 = 0
defines the line x = 0; (x + y)? = 0 defines the line z +y = 0; 22 —y> = 0
defines the lines ¢ —y = 0, z +y = 0; 22 = 1 defines the parallel lines
r = +1; (x + y)? = 1 likewise defines two parallel lines x +y = +1.

We state without proof a complete classification ! of the various cases

LThis classification forms the basis of a computer program which was used to produce
the diagrams in this chapter. I am grateful to Peter Adams for his programming assistance.
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that can possibly arise for the general second degree equation
az? + 2hay + by? + 292 + 2fy + ¢ = 0. (7.10)

It turns out to be more convenient to first perform a suitable translation of
axes, before rotating the axes. Let

a h g
A=|h b f|, C=ab—h% A=bc— f? B=ca—g°
g [ ¢
If C #0, let
_’g h Ja g
fb h f
_ S I 11
CASE 1. A=0.

(1.1) C # 0. Translate axes to the new origin («, ), where a and [ are
given by equations 7.11:

r=x1+a, Yy=y+p8.

Then equation 7.10 reduces to
2 2 _
axy + 2hx1y1 + by = 0.

(a) C > 0: Single point (z, y) = («a, 3).
(b) C < 0: Two non—parallel lines intersecting in (z, y) = (a, ).

The lines are

y—>8 - —hxv-C if b0,
T —a b
_ y—-6_ a
=« and o on if b=0.
(1.2) C=0
(a) h =0.
(i) a=g=0.

(A) A > 0: Empty set.
(B) A =0: Single line y = —f/b.
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(C) A <0: Two parallel lines

—f+V-A
Y= by
(ii) b= f =0.
(A) B > 0: Empty set.
(B) B =0: Single line x = —g/a.
(C) B < 0: Two parallel lines

—-g+t+v—B
r=———

a
(b) h #0.
(i) B > 0: Empty set.
(iil) B = 0: Single line ax + hy = —g.
(iii) B < 0: Two parallel lines

axr+hy=—-g+tv-B.
CASE 2. A #0.

(2.1) C # 0. Translate axes to the new origin («, ), where o and [ are
given by equations 7.11:

r=x1+a, Y=y +p8.

Equation 7.10 becomes

A
ax? + 2hxiy + byi = -G (7.12)

CASE 2.1(i) h = 0. Equation 7.12 becomes ax? + by? = %.
(a) C < 0: Hyperbola.
(b) C >0 and aA > 0: Empty set.

(¢) C >0 and aA < 0.

(i) a =0b: Circle, centre (o, 3), radius \/@-

(ii) a # b: Ellipse.
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CASE 2.1(ii) h # 0.
Rotate the (z1, y1) axes with the new positive xo—axis in the direction
of

[(b—a+ R)/2, —h],

where R = 4/(a — b)% + 4h2.

Then equation 7.12 becomes

A
)\1$% + )\2?/% = ——. (7.13)
C
where
AM=(a+b—R)/2, \a=(a+b+ R)/2,
Here Mo = C.

(a) C <0: Hyperbola.
Here Ay > 0 > A1 and equation 7.13 becomes

a3 y3  —A

w2 w2 |A]

uo ol - [l
CA\’ —C)y’

(b) C > 0 and aA > 0: Empty set.

(¢) C >0 and aA < 0: Ellipse.

Here A1, A9, a, b have the same sign and A\ # Ao and equa-
tion 7.13 becomes

where

3,0
w2 w2 7
where
B A B A
SV Zen ' TV o
(2.1) C =0.
(a) h =0.

(i) a=0: Then b # 0 and g # 0. Parabola with vertex

—A f
(- 5)
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Translate axes to (z1, y1) axes:

(ii) b=0: Then a # 0 and f # 0. Parabola with vertex

g —B
<_5’ 2f—a>

Translate axes to (z1, y1) axes:

(b) h # 0: Parabola. Let

ga—+bf
k= .
a+b

The vertex of the parabola is

<(2ak‘f — hk? — hac) a(k® + ac — ng))
d ’ d '

Now translate to the vertex as the new origin, then rotate to
(2, y2) axes with the positive zo—axis along [sa, —sh], where

s = sign (a).

(The positive xo—axis points into the first or fourth quadrant.)
Then the parabola has equation

—2st

Th = 1,
va? + h?
where t = (af — gh)/(a +b).

REMARK 7.2.1 If A =0, it is not necessary to rotate the axes. Instead
it is always possible to translate the axes suitably so that the coefficients of
the terms of the first degree vanish.

EXAMPLE 7.2.1 Identify the curve

20 +ay —y? + 6y —8 = 0. (7.14)
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Solution. Here

2 3 0
A=|3 -1 3|[=0.
0 3 -8

Let x = 1 + «, y = y1 + 0 and substitute in equation 7.14 to get
214+ a)’ + (@1 + )y +8) — (1 + ) + 4y + ) —8=0.  (7.15)
Then equating the coefficients of 1 and y; to 0 gives

da+pB = 0
a+260+4 = 0,

which has the unique solution @ = — %, 8= %. Then equation 7.15 simplifies
to

227 + z1y1 — i = 0 = (221 — y1) (21 + 1),
so relative to the x1, y1 coordinates, equation 7.14 describes two lines: 2x; —
y1 = 0 or z1 + y1 = 0. In terms of the original x, y coordinates, these lines
become 2(z+ %) — (y— %) =0and (zx+2)+(y— %) =0,ie 20 —y+4=0
and x + y — 2 = 0, which intersect in the point

2 8
(.’L’, y) - (Oé, ﬁ) - (_57 g)
EXAMPLE 7.2.2 Identify the curve
2%+ 2zy +y* + 22+ 2y +1 = 0. (7.16)

Solution. Here

1 1 1

A=]|1 1 1|=0.
1 11

Let = z1 4+ «, y = y1 + (8 and substitute in equation 7.16 to get
(z1+a)? +2(z1+a) (y1+6)+ (1 +8)* +2(x1+a) +2(y1 +8) +1 = 0. (7.17)
Then equating the coefficients of 1 and y; to 0 gives the same equation
204+28+2=0.
Take a = 0, 8 = —1. Then equation 7.17 simplifies to
2+ 201 + 47 = 0= (21 +11)°,
and in terms of z, y coordinates, equation 7.16 becomes

(z+y+1)2=0, orz+y+1=0.
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7.3

1.

PROBLEMS
Sketch the curves
(i) 2? — 8z + 8y + 8 = 0;

(i) y? — 12z + 2y + 25 = 0.

. Sketch the hyperbola

4oy — 3y? =8

and find the equations of the asymptotes.

[Answer: y =0 and y = 3]

. Sketch the ellipse

822 — dzy + 5y% = 36

and find the equations of the axes of symmetry.

[Answer: y = 2z and z = —2y.]

. Sketch the conics defined by the following equations. Find the centre

when the conic is an ellipse or hyperbola, asymptotes if an hyperbola,
the vertex and axis of symmetry if a parabola:

(i) 42 — 9y? — 24x — 36y — 36 = 0;

(ii) 522 — 4y + 8y% 4+ 4v/5x — 165y + 4 = 0;
(iii) 422+ y% — 4zy — 10y — 19 = 0;
(iv) 7722 + 78zy — 27y + 70z — 30y + 29 = 0.

[Answers: (i) hyperbola, centre (3, —2), asymptotes 2z — 3y — 12 =
0, 22 + 3y = 0;

(ii) ellipse, centre (0, v/5);

(iii) parabola, vertex (—%, —%), axis of symmetry 2z —y + 1 = 0;

(iv) hyperbola, centre (—%, %), asymptotes 7x + 9y + 7 = 0 and
11z =3y —1=0.]

. Identify the lines determined by the equations:

(i) 222+ y? + 32y — 5z — 4y + 3 =0;
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(i) 922 +y? — 62y + 62 — 2y + 1 = 0;
(iii) 2?4+ 4oy +4y> —x -2y —2=0.

[Answers: (i) 2z +y—3=0andx+y—1=0; (ii) 3z —y+ 1 =0;
(iii) z+2y+1=0and x + 2y —2=10]



Chapter 8

THREE-DIMENSIONAL
GEOMETRY

8.1 Introduction

In this chapter we present a vector—algebra approach to three-dimensional
geometry. The aim is to present standard properties of lines and planes,
with minimum use of complicated three—dimensional diagrams such as those
involving similar triangles. We summarize the chapter:

Points are defined as ordered triples of real numbers and the distance
between points Py = (z1, y1, z1) and P» = (x9, Y2, 22) is defined by the
formula

PPy = /(22— 1)% + (y2 — y1)2 + (22 — 21)*

Directed line segments AB are introduced as three-dimensional column
vectors: If A = (z1, y1, 21) and B = (x2, y2, 22), then

Ty — X1
AB= | y2—u1
z9 — 21

If P is a point, we let P =OP and call P the position vector of P.

With suitable definitions of lines, parallel lines, there are important ge-
ometrical interpretations of equality, addition and scalar multiplication of
vectors.

(i) Equality of vectors: Suppose A, B, C, D are distinct points such that
no three are collinear. Then AB=CD if and only if AB I CD and
AC I BD (See Figure 8.1.)

149
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VA
B
A D
@) Y
C
AB=CD, AC=BD

Figure 8.1: Equality and addition of vectors.

(ii) Addition of vectors obeys the parallelogram law: Let A, B, C' be non—
collinear. Then

AB + AC=AD,

where D is the point such that AB I CD and AC || BD. (See Fig-
ure 8.1.)

(iii) Scalar multiplication of vectors: Let AP=t AB, where A and B are
distinct points. Then P is on the line AB,

AP
a5 = M

(See Figure 8.2.)
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i

=)

—tAB, 0<t<1

T

Figure 8.2: Scalar multiplication of vectors.

al ag
The dot product XY of vectors X = | by | andY = | by
C1 (&)

by
XY =ajag + bi1by + cie9.

The length || X|| of a vector X is defined by
X = (X - X)'/?
and the Cauchy—Schwarz inequality holds:

(XY < [IXT - [[Y]-

151

, is defined

The triangle inequality for vector length now follows as a simple deduction:

X+ Y| < [[X][ + Y]]

Using the equation
AB=|| AB ||,

we deduce the corresponding familiar triangle inequality for distance:

AB < AC + CB.
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The angle 6 between two non—zero vectors X and Y is then defined by

XY
cosf=——— 0<0<m.
X 1Y

This definition makes sense. For by the Cauchy—Schwarz inequality,

< XY oy
XYY T
Vectors X and Y are said to be perpendicular or orthogonalif X -Y = 0.
Vectors of unit length are called unit vectors. The vectors

1 0 0
i=|01|, j=(1], k=1|0
0 0 1

are unit vectors and every vector is a linear combination of i, j and k:

a
b | =ai+bj+ck
C

Non—zero vectors X and Y are parallel or proportional if the angle be-
tween X and Y equals 0 or 7; equivalently if X = tY for some real number
t. Vectors X and Y are then said to have the same or opposite direction,
according as t > 0 or ¢ < 0.

We are then led to study straight lines. If A and B are distinct points,
it is easy to show that AP + PB = AB holds if and only if

E]B:tﬁ, where 0 <t < 1.
A line is defined as a set consisting of all points P satisfying
P=Po+tX, te R orequivalently ]7073: tX,

for some fixed point Py and fixed non—zero vector X called a direction vector
for the line.
Equivalently, in terms of coordinates,

T =x0+ ta, y = yo + tb, z = 2y + tc,

where Py = (9, yo, 20) and not all of a, b, ¢ are zero.
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There is then one and only one line passing passing through two distinct
points A and B. It consists of the points P satisfying

where t is a real number.
The cross—product X xY provides us with a vector which is perpendicular
to both X and Y. It is defined in terms of the components of X and Y:
Let X = a1i+b1j+ cik and Y = aoi + baj + cok. Then

X XY =ai+ bj+ ck,
where

aq b1
az bo

bl C1
by c2

a €

) b:_
az C2

a= , c=

The cross—product enables us to derive elegant formulae for the distance
from a point to a line, the area of a triangle and the distance between two
skew lines.

Finally we turn to the geometrical concept of a plane in three-dimensional
space.
A plane is a set of points P satisfying an equation of the form

P=Py+sX+tY, s, t€ R, (8.1)

where X and Y are non—zero, non—parallel vectors.
In terms of coordinates, equation 8.1 takes the form

r = x0-+ saj; +tas
= yo+ sby + tbo
z = zg+ Sscp+tea,

where Py = (o, Yo, 20)-
There is then one and only one plane passing passing through three
non—collinear points A, B, C. It consists of the points P satisfying

XPZSEB—f—tZé,

where s and ¢ are real numbers.
The cross—product enables us to derive a concise equation for the plane
through three non—collinear points A, B, C, namely

AP (AB x AC) =0.
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When expanded, this equation has the form

ax + by + cz = d,

where ai 4 bj + ck is a non—zero vector which is perpendicular to ﬁﬁg for
all points P;, P» lying in the plane. Any vector with this property is said to
be a normal to the plane.

It is then easy to prove that two planes with non—parallel normal vectors
must intersect in a line.

We conclude the chapter by deriving a formula for the distance from a
point to a plane.

8.2 Three—dimensional space

DEFINITION 8.2.1 Three-dimensional space is the set E® of ordered
triples (z, y, z), where z, y, z are real numbers. The triple (z, y, 2) is called
a point P in E? and we write P = (x, 5, z). The numbers z, y, z are called,
respectively, the x, y, z coordinates of P.

The coordinate azes are the sets of points:

{(2,0,0)} (z—axis), {(0,y,0)} (y-axis), {(0, 0, 2)} (z-axis).
The only point common to all three axes is the origin O = (0, 0, 0).

The coordinate planes are the sets of points:

{(z,y,0)} (zy-plane), {(0,y, 2)} (yzplane), {(z, 0, 2)} (zz plane).

The positive octant consists of the points (z, y, z), where z > 0, y >
0, z>0.

We think of the points (x, y, z) with z > 0 as lying above the xy—plane,
and those with z < 0 as lying beneath the zy—plane. A point P = (x, y, z)
will be represented as in Figure 8.3. The point illustrated lies in the positive
octant.

DEFINITION 8.2.2 The distance P P, between points P, = (z1, y1, 21)
and Py = (2, y2, 22) is defined by the formula

PPy = /(29 — 21)2 4 (y2 — 1) + (22 — 21)2.

For example, if P = (z, y, 2),

OP = \/x2 +y2 + 22.
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(0,0, 2)

(2,0,0)

X

155

P= (.’L‘,y,Z)

(0,,0) y

(z,9,0)

Figure 8.3: Representation of three-dimensional space.

(07 07 ZQ)

(07 07 Zl)

(:Ela 07 0)
($2>070)

(07 Y1, 0)

(07 y270> Y

Figure 8.4: The vector AB.
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DEFINITION 8.2.3 If A = (x1, y1, 21) and B = (x9, y2, 22) we define

the symbol AB to be the column vector

T2 — I
AB= | y2—u1
22 — 2]

We let P =OP and call P the position vector of P.

The components of AB are the coordinates of B when the axes are
translated to A as origin of coordinates.

We think of AB as being represented by the directed line segment from
A to B and think of it as an arrow whose tail is at A and whose head is at
B. (See Figure 8.4.)

Some mathematicians think of AD as representing the translation of
space which takes A into B.

The following simple properties of AB are easily verified and correspond
to how we intuitively think of directed line segments:

(i) AB=0< A= B;

(i) BA= — AB;
(iii) AB + BC=AC (the triangle law);
(iv) BC=AC — AB=C - B;

(v) if X is a vector and A a point, there is exactly one point B such that
AB= X, namely that defined by B = A + X.

To derive properties of the distance function and the vector function

f?f’z, we need to introduce the dot product of two vectors in R3.

8.3 Dot product

ai a2
DEFINITION 83.1 If X = | b; | and Y = | by |, then X - Y, the
C1 ()]

dot product of X and Y, is defined by
X Y =ajas + bibs + creo.
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v =AB —v=BA

Figure 8.5: The negative of a vector.

R

A C A
(a)  AB=CD (b)  AC=AB + BC
BC=AC — AB

Figure 8.6: (a) Equality of vectors; (b) Addition and subtraction of vectors.

The dot product has the following properties:
) X-Y+2)=X Y+ X -Z;
(i) X Y =Y X,

(i) (tX) Y =t(X-Y);

a
(iv) X - X=a’>+0?+c2if X=| b |;

(v) XY = XY,
(vi) X -X =0if and only if X = 0.
The length of X is defined by
X1 = Va2 + 2 + 2 = (X - X) V2

We see that ||P|| = OP and more generally || PP, || = PP, the
distance between P; and Ps.
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z
ck
A
P =ai+bj+ck
A
Kk
o IR bj y
i
ai ai + bj
i

Figure 8.7: Position vector as a linear combination of i, j and k.

Vectors having unit length are called unit vectors.
The vectors

1 0 0
i= , j=|11|, k=10
0 0 1

are unit vectors. Every vector is a linear combination of i, j and k:

a
b | =ai+bj+ ck.
| ¢
(See Figure 8.7.)
It is easy to prove that
[[EX| = 1¢] - 11X11,

if t is a real number. Hence if X is a non-zero vector, the vectors

1
+ X
[1X1]

are unit vectors.

A useful property of the length of a vector is

IX£Y|2=|X|?+2X-Y +]|]Y|2 (8.2)
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The following important property of the dot product is widely used in
mathematics:

THEOREM 8.3.1 (The Cauchy—Schwarz inequality)
If X and Y are vectors in R?, then

(XY < {IX]]- 1YY (8.3)
Moreover if X # 0 and Y # 0, then

XY =[IX]|-|IY]] & Y=tX,t>0,
XY =—||X||-[[Y]| & Y=tX,t<0.

Proof. If X = 0, then inequality 8.3 is trivially true. So assume X # 0.
Now if ¢ is any real number, by equation 8.2,

0< X = Y|P = [[tX[]° = 2(tX) - Y +|[Y]]?
= PlIX|P - 2(X - V)t + Y]
= at® — 2bt + ¢,

where a = || X||>>0,b=X Y, c= ||V~
Hence

Substituting ¢ = b/a in the last inequality then gives

ac — b?
=Y
SO
b] < Vae = vaye

and hence inequality 8.3 follows.
To discuss equality in the Cauchy—Schwarz inequality, assume X # 0
and Y # 0.
Then if X - Y = || X|| - ||Y||, we have for all ¢
[tX = Y|P = £X|P-2tX Y + Y|P
= 2IIX]17 = 2|IX]] - Y]]+ 1Y)
— Jlex - Y|
Taking ¢ = ||X||/||Y]| then gives |[tX — Y||?> = 0 and hence tX — Y = 0.
Hence Y = tX, where t > 0. The case XY = —||X||-||Y is proved similarly.
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COROLLARY 8.3.1 (The triangle inequality for vectors)
If X and Y are vectors, then

X+ Y| < [[X][ + Y]] (8.4)

Moreover if X # 0 and Y # 0, then equality occurs in inequality 8.4 if and
only if Y =tX, where ¢t > 0.

Proof.
IX+Y|? = |IX]?+2X Y +||Y]]?
< X2+ 201X Y+ Y
= (IXI1+IYI)?

and inequality 8.4 follows.
If || X + Y| =||X]|| + ||Y]|, then the above proof shows that

XY = [ X][ - [IY]].

Hence if X # 0 and Y # 0, the first case of equality in the Cauchy—Schwarz
inequality shows that Y = tX with £ > 0.

The triangle inequality for vectors gives rise to a corresponding inequality
for the distance function:

THEOREM 8.3.2 (The triangle inequality for distance)
If A, B, C are points, then

AC < AB + BC. (8.5)

Moreover if B # A and B # C, then equality occurs in inequality 8.5 if and
only if AB=r Xé, where 0 < r < 1.

Proof.
AC=|AC|| = ||AB+ BC ||
< [|AB ||+ BC ||
= AB + BC.

Moreover if equality occurs in inequality 8.5 and B # A and B # C, then
X :Xé7é 0 and Y :Eé7é 0 and the equation AC' = AB + BC becomes
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| X + Y| = ||X]|| + ||[Y||. Hence the case of equality in the vector triangle
inequality gives

Y =BC=tX =t AB, where t > 0.
Then

BC = AC - AB=tAB

AC = (1+4t)AB
AB = rAC,

where r = 1/(t + 1) satisfies 0 < r < 1.

8.4 Lines

DEFINITION 8.4.1 A line in E? is the set £(Py, X) consisting of all
points P satisfying

P=Po+tX, te R orequivalently PyP=tX, (8.6)

for some fixed point Py and fixed non—zero vector X. (See Figure 8.8.)
Equivalently, in terms of coordinates, equation 8.6 becomes

T =x0+ ta, y =yo + tb, z = zy + tc,
where not all of a, b, ¢ are zero.

The following familiar property of straight lines is easily verified.

THEOREM 8.4.1 If A and B are distinct points, there is one and only
one line containing A and B, namely L(A, ZB) or more explicitly the line

defined by AP=t ZE, or equivalently, in terms of position vectors:

P=(1-t)A+tB or P=A+tAB. (8.7)

Equations 8.7 may be expressed in terms of coordinates: if A = (x1, y1, 21)
and B = (za, y2, 22), then

x=1—-t)axy +tee, y=(1—t)y; +ty2, 2= (1 —t)z1 + t2o.
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C
P
P D
O Y
PoP=1tCD

T

Figure 8.8: Representation of a line.

P—A+tAB, 0<t<1
x
Figure 8.9: The line segment AB.
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There is an important geometric significance in the number ¢ of the above
equation of the line through A and B. The proof is left as an exercise:

THEOREM 8.4.2 (Joachimsthal’s ratio formulae)
If ¢ is the parameter occurring in theorem 8.4.1, then
AP t ' AP

O =5 () |7 =p5 UPAB

Also
(iii) P is between A and B if 0 < t < 1;
(iv) B is between A and P if 1 < ¢;

(v) Ais between P and B if t < 0.

(See Figure 8.9.)
For example, t = % gives the mid—point P of the segment AB:

P— %(A+B).

EXAMPLE 8.4.1 L is the line AB, where A = (-4, 3, 1), B = (1, 1, 0);
M is the line CD, where C = (2, 0, 2), D = (—1, 3, —2); N is the line EF,
where E = (1, 4, 7), F = (—4, —3, —13). Find which pairs of lines intersect
and also the points of intersection.

Solution. In fact only £ and N intersect, in the point (—%, g, %) For
example, to determine if £ and N meet, we start with vector equations for
L and N:
P=A+tAB, Q=E+sEF,
equate P and Q and solve for s and t:
(—4i+3j+ k) +t(bi —2j — k) = (i+4j + 7k) + s(—5i — 7j — 20k),

which on simplifying, gives

5t+5s = 5
—2t4+7s =
—t+20s = 6

This system has the unique solution t = %, s = % and this determines a
corresponding point P where the lines meet, namely P = (—%, %, %)
The same method yields inconsistent systems when applied to the other

pairs of lines.
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EXAMPLE 8.4.2 If A= (5,0, 7) and B = (2, -3, 6), find the points P
on the line AB which satisfy AP/PB = 3.

Solution. Use the formulae

— t AP
P=A+tAB d |—|=—=3
* o '1—15‘ PB
Then ;
m =3or — 3,
sot= % ort= % The corresponding points are (171, %, %) and (%, %, 17)

DEFINITION 8.4.2 Let X and Y be non—zero vectors. Then X is parallel
or proportionalto Y if X = tY for somet € R. We write X||Y if X is parallel
to Y. If X =tY, we say that X and Y have the same or opposite direction,
according as t > 0 or ¢ < 0.

DEFINITION 8.4.3 if A and B are distinct points on a line £, the non—

zero vector AB is called a direction vector for L.

It is easy to prove that any two direction vectors for a line are parallel.

DEFINITION 8.4.4 Let £ and M be lines having direction vectors X
and Y, respectively. Then L is parallel to M if X is parallel to Y. Clearly
any line is parallel to itself.

It is easy to prove that the line through a given point A and parallel to a
given line C'D has an equation P = A + ¢ CD.

THEOREM 8.4.3 Let X = a1i + b1j + cik and Y = aoi + baj + 2k be
non—zero vectors. Then X is parallel to Y if and only if

a1 by
az by

ay ¢
az C2

by oy = 0. (8.8)

_'bl c1

Proof. The case of equality in the Cauchy—Schwarz inequality (theorem 8.3.1)
shows that X and Y are parallel if and only if

[ XY= [[X]] - [[Y]].
Squaring gives the equivalent equality

(102 + biby + c162)* = (af + b + ¢7) (a3 + B3 + 3),
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which simplifies to
(arby — agb1)? 4 (brca — bac1)? + (ayco — aser)* =0,
which is equivalent to
a1bg — agby = 0, bico — bocy =0, a1ce — age; = 0,

which is equation 8.8.

Equality of geometrical vectors has a fundamental geometrical interpre-
tation:

THEOREM 8.4.4 Suppose A, B, C, D are distinct points such that no

three are collinear. Then AB=CD if and only if AB I CD and AC I BD
(See Figure 8.1.)

Proof. If XB:@ then

B-A = D-C,
C-A = D-B

and so AC=BD. Hence AB I CD and AC I BD.

Conversely, suppose that AB I CD and AC I BD. Then

or
B-A=s5D-C) and C—A=tD-B.

We have to prove s = 1 or equivalently, t = 1.
Now subtracting the second equation above from the first, gives

B-C=sD-C)—#D-B),

SO
(1-t) B=(1-5)C+(s—1t)D.
If ¢t # 1, then
1—s s—1
B=— —D
1—tC+1—t

and B would lie on the line CD. Hence ¢t = 1.
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8.5 The angle between two vectors

DEFINITION 8.5.1 Let X and Y be non—zero vectors. Then the angle
between X and Y is the unique value of # defined by

XY
cos=——, 0<6O6<m.
X (|- Y]]

REMARK 8.5.1 By Cauchy’s inequality, we have

1< XY <1
XY T

so the above equation does define an angle 6.
In terms of components, if X = [ay, by, ¢1]® and Y = [ag, by, 2], then

aiaz + biba + cie2
N R RN R

cosf =

(8.9)

The next result is the well-known cosine rule for a triangle.

THEOREM 8.5.1 (Cosine rule) If A, B, C are points with A # B and
A # C, then the angle 6 between vectors AD and AC satifies

AB? + AC? — BC?
cosf = 2+ABC~'AC ¢ , (8.10)

or equivalently
BC? = AB® + AC® — 2AB - AC cos¥.
(See Figure 8.10.)

Proof. Let A = (x1, y1, 21), B = (22, Y2, 22), C = (x3, y3, z3). Then

AB = ali + blj + Clk
AC = agi+ baj + c2k

BC = (a2 —a1)i+ (b2 — b1)j + (c2 — 1)k,

where

a; = Tiy1 — T1, bj = Yit1 — Y1, ¢ = Zip1 — 21, 1 =1, 2.
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z
B
AL 0
O N Y
C
AB24+ AC?—B(C?
cost) = 2+AB-AC

x
Figure 8.10: The cosine rule for a triangle.

Now by equation 8.9,

araz + biba + c1e2
AB - AC

cosf =

Also

AB? + AC? —BC?* = (a?+ b3 +¢c3)+ (a3 + 03+ c3)
— ((ag —a1)” + (by — b1)* + (c2 — c1)?)
= 2aya3 + 2b1bsy + c1co.

Equation 8.10 now follows, since
ZB . Zé: aias + biby + cieo.

EXAMPLE 8.5.1 Let A = (2,1,0), B=(3,2,0),C = (5,0,1). Find
the angle 6 between vectors AB and AC.

Solution.
cosf = @
AB - AC’
Now

AB=i+j and AC=3i—-j+k
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C
AB? + AC? = BC?
T
Figure 8.11: Pythagoras’ theorem for a right—angled triangle.

Hence
0 Ix3+1x(=1)+0x1 2 V2
COSU = = = .
VIZH12402,/32+ (-1)2+12  V2v11 V11
— el V2
Hence 6 = cos T

DEFINITION 8.5.2 If X and Y are vectors satisfying X - Y = 0, we say
X is orthogonal or perpendicular to Y.

REMARK 8.5.2 If A, B, C are points forming a triangle and ADB is or-
thogonal to Zé’, then the angle 6 between AB and AC satisfies cosf = 0

™

and hence § = 5 and the triangle is right-angled at A.
Then we have Pythagoras’ theorem:

BC? = AB* + AC*. (8.11)

We also note that BC' > AB and BC' > AC follow from equation 8.11. (See
Figure 8.11.)

EXAMPLE 8.5.2 Let A= (2,9, 8), B= (6, 4, —2), C = (7, 15, 7). Show

that AB and AC are perpendicular and find the point D such that ABDC
forms a rectangle.
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x
Figure 8.12: Distance from a point to a line.
Solution.

AB - AC= (4i — 5j — 10k) - (5i + 6j — k) = 20 — 30 4 10 = 0.

Hence AD and AC are perpendicular. Also, the required fourth point D
clearly has to satisfy the equation

Ebz@, or equivalently D — B —AC .
Hence
D = B+ AC= (6i+ 4j — 2k) + (5i + 6j — k) = 11i + 10j — 3k,
so D = (11, 10, —3).

THEOREM 8.5.2 (Distance from a point to a line) If C' is a point
and L is the line through A and B, then there is exactly one point P on £

such that CP is perpendicular to ZE, namely

— AC - AB
P=A+tAB, t="rp (8.12)

Moreover if @) is any point on £, then C'Q) > C'P and hence P is the point
on L closest to C.
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The shortest distance C'P is given by

—_— —

\/ AC2AB? — (AC - AB)?

CP = 1B

(8.13)

(See Figure 8.12.)

Proof. Let P = A +t AB and assume that CP is perpendicular to AB.
Then

CP.-AB =
(P-C)AB =
(A+tAB -C)- AB =
(CA +t AB)- AB =
CA-AB +t(AB - AB) =

_ A0 AB +t(AB - AB) -

o O o o o O

so equation 8.12 follows.
The inequality CQ > C'P, where @ is any point on £, is a consequence
of Pythagoras’ theorem.

Finally, as CP and PA are perpendicular, Pythagoras’ theorem gives

CP? = AC? - pA?

= AC?— ||t AB|]?
= AC? - t?AB?
2
AC - AB
_ 2 2
= AC g | AB

AC2AB? — (AC - AB)?
AB? ’

as required.
EXAMPLE 8.5.3 The closest point on the line through A = (1, 2, 1) and

B = (2, —1, 3) to the origin is P = (%, %, %) and the corresponding
shortest distance equals %\/ 42.

Another application of theorem 8.5.2 is to the projection of a line segment
on another line:
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z Cy

Co

x
Figure 8.13: Projecting the segment C;Cs onto the line AB.

THEOREM 8.5.3 (The projection of a line segment onto a line)
Let Ci, C5 be points and P, P> be the feet of the perpendiculars from
C1 and C5 to the line AB. Then

PPy = | C1Cy 7,

where .
W= AB
"= UAB
Also
Ci1Cy > P P. (8.14)

(See Figure 8.13.)
Proof. Using equations 8.12, we have

P1:A+t1TB, P2:A+t2Z§,

where
_A¢,-AB 4G, 4B
V7 Az 0 T ARz

Hence
PP, = (A+tyAB)— (A +1t AB)

= (ta—t) AB,
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SO

PP, = ||[PPy| =|ta—t:|AB

A0, 4B A0, - 4B

AB? AB? AB

\c?ce -ﬁz|
= gz 4B

C1Cy

Y

where n is the unit vector

1 —
= — AD .
"= AB

Inequality 8.14 then follows from the Cauchy—Schwarz inequality 8.3.

DEFINITION 8.5.3 Two non—intersecting lines are called skew if they
have non—parallel direction vectors.

Theorem 8.5.3 has an application to the problem of showing that two skew
lines have a shortest distance between them. (The reader is referred to
problem 16 at the end of the chapter.)

Before we turn to the study of planes, it is convenient to introduce the
cross—product of two vectors.
8.6 The cross—product of two vectors

DEFINITION 8.6.1 Let X = a1i+ b1j + cik and Y = aqi + b2j + c2k.
Then X x Y, the cross—product of X and Y, is defined by

X XY =ai+ bj+ ck,
where

a1 by
az by

ap ¢
az €2

— b:— =

)

_)bl c1

by c2

The vector cross—product has the following properties which follow from
properties of 2 x 2 and 3 x 3 determinants:

() ixj=k jxk=i kxi=j
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(i) X x X = 0;

(i) Y x X = —X x Y;

(V) Xx(Y+2)=X xY + X x Z;
(v) (tX) xY =t(X x Y);

(vi) (Scalar triple product formula) if Z = asi + bsj + csk, then

al bl C1
X(YXZ): a2 bg (&) :(XXY)Z,
az bs c3

(vii) X - (X xY)=0=Y - (X xY);

(viii) [|X x Y| = VIIX[PIY]? = (X - V)%

(ix) if X and Y are non—zero vectors and 6 is the angle between X and Y,
then
[|X > Y| = [IX][ - [[Y]|sin 6.
(See Figure 8.14.)

From theorem 8.4.3 and the definition of cross—product, it follows that
non—zero vectors X and Y are parallel if and only if X x Y = 0; hence by
(vii), the cross—product of two non—parallel, non—zero vectors X and Y, is
a non—zero vector perpendicular to both X and Y.

LEMMA 8.6.1 Let X and Y be non—zero, non—parallel vectors.

(i) Z is a linear combination of X and Y, if and only if Z is perpendicular
to X XY;

(ii) Z is perpendicular to X and Y, if and only if Z is parallel to X x Y.
Proof. Let X and Y be non—zero, non—parallel vectors. Then
X xY #0.
Then if X x Y = ai+ bj + ck, we have

a b ¢
det[ X xY|X|Y]'=| a1 b ¢ |=(XxY) (X xY)>0.
ag bg C2
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X xY

x
Figure 8.14: The vector cross—product.

Hence the matrix [X x Y|X|Y] is non—singular. Consequently the linear

system
r(X xY)+sX+tY =2 (8.15)

has a unique solution r, s, t.
(i) Suppose Z = sX +tY. Then

Z- (X xY)=sX - (XxY)+tY - (X xY)=s0+1t0=0.
Conversely, suppose that
Z (X xY)=0. (8.16)
Now from equation 8.15, r, s, t exist satisfying
Z=r(XxY)+sX+tY.
Then equation 8.16 gives

0 = (M XxY)+sX+tY) (X xY)
= [ X xY|P+sX - (X xY)+tY (Y x X)
= 7|X x Y|~

Hence r =0 and Z = sX + tY, as required.
(ii) Suppose Z = A(X x Y). Then clearly Z is perpendicular to X and Y.
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Conversely suppose that Z is perpendicular to X and Y.
Now from equation 8.15, r, s, t exist satisfying

Z=r(XxY)+sX+1tY.
Then
sX - X+tX-Y = X-Z=0
sY - X+tY Y = Y -Z=0,
from which it follows that
(sX +tY)-(sX +tY)=0.

Hence sX +tY =0 and so s = 0,¢t = 0. Consequently Z = r(X xY), as
required.
The cross—product gives a compact formula for the distance from a point

to a line, as well as the area of a triangle.

THEOREM 8.6.1 (Area of a triangle)
If A, B, C are distinct non—collinear points, then

(i) the distance d from C to the line AB is given by

|| AB x AC ||
d=+—"—— 1
AB ’ (8.17)
ii) the area of the triangle ABC' equals
(ii) g
|\AB>2<AC’H:||A><B+B>2<C+C><AH' (8.18)

Proof. The area A of triangle ABC' is given by

_AB-CP

= 5 ,

where P is the foot of the perpendicular from C to the line AB. Now by
formula 8.13, we have

A

\/AGZ-ABL(XC’J-EB)?
AB
| AB x AC ||
AB

CP =
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which, by property (viii) of the cross—product, gives formula 8.17. The
second formula of equation 8.18 follows from the equations

ABx AC = (B-—A)x(C—-A)
= {(B-A)xC}—{(C-—A)x A}
= {BXxC-AxC)}-{(BxA-AxA)}
= BxC-AxXxC-BxA
= BxC+CxA+ A xB,

as required.

8.7 Planes

DEFINITION 8.7.1 A plane is a set of points P satisfying an equation
of the form
P=Py+sX +1tY, s,t € R, (8.19)

where X and Y are non—zero, non—parallel vectors.

For example, the zy—plane consists of the points P = (z, y, 0) and corre-
sponds to the plane equation

P=zi+yj=0+zi+yj

In terms of coordinates, equation 8.19 takes the form

r = x9+ sa; + tas
= yo + sb1 + tbo
z = 2o+ scy+teg,

where Py = (x0, yo, 20) and (a1, b1, ¢1) and (ag, ba, ¢12 are non—zero and
non—proportional.

THEOREM 8.7.1 Let A, B, C be three non—collinear points. Then there
is one and only one plane through these points, namely the plane given by
the equation

P=A+sAB+t AC, (8.20)
or equivalently
AP=sAB +t AC . (8.21)

(See Figure 8.15.)
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z
C/
A
P
B

0) B’ Y
ZE’ZSZE, A=t AC
AP= s AB +t AC

Figure 8.15: Vector equation for the plane ABC.

Proof. First note that equation 8.20 is indeed the equation of a plane
through A, B and C, as AB and AC' are non-zero and non—parallel and
(s,t) = (0,0), (1,0) and (0, 1) give P = A, B and C, respectively. Call
this plane P.

Conversely, suppose P = Py + sX + tY is the equation of a plane Q
passing through A, B, C. Then A = Py + 50X + tyY, so the equation for
Q may be written

P=A+(s—50)X+({t—t)Y =A+sX+1Y;

so in effect we can take Py = A in the equation of Q. Then the fact that B
and C lie on Q gives equations

B:A+51X+t1Y, C:A+82X+t2Y,

or
ZBZ 51X +11Y, Xéz s9X + toY. (822)

Then equations 8.22 and equation 8.20 show that
PCO.

Conversely, it is straightforward to show that because AB and AC are not
parallel, we have

51t
S92 tQ

£0.
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D z
* ¢ p
A
B
o) y
AD=AB x AC
AD - AP=0

x
Figure 8.16: Normal equation of the plane ABC.

Hence equations 8.22 can be solved for X and Y as linear combinations of
AB and Xé’, allowing us to deduce that

QCP.
Hence

Q=7

THEOREM 8.7.2 (Normal equation for a plane) Let

A= («Th Y1, Zl)v B = ($27 Y2, 22)7 C = (LU3, Y3, ZS)

be three non—collinear points. Then the plane through A, B, C' is given by

AP -(AB x AC) =0, (8.23)

or equivalently,
=T Y-y 22—z
To—1T1 Y2—y1 22—z | =0, (8.24)
I3 —T1 Ya—Yr 23— 2

where P = (z, y, z). (See Figure 8.16.)
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ai+ bj+ ck

ar +by+cz=d
o y

x
Figure 8.17: The plane ax + by + cz = d.

REMARK 8.7.1 Equation 8.24 can be written in more symmetrical form

as
r y =z 1
1 oy 21 1
=0. 8.25
T2 Yo 22 1 ( )
T3 Y3 23 1

Proof. Let P be the plane through A, B, C. Then by equation 8.21, we
have P € P if and only if AP is a linear combination of AB and AC' and so
by lemma 8.6.1(i), using the fact that AB x Zé’;é 0 here, if and only if AP

is perpendicular to AB x AC'. This gives equation 8.23.
Equation 8.24 is the scalar triple product version of equation 8.23, taking
into account the equations

AP = (z—z)i+ (y—w)i+ (z — 2k,
AB = (xa —x1)i+ (y2 —y1)j + (22 — 21)k,

—

AC = (xg—x1)i+ (y3 —y1)j+ (23 — 21)k.

REMARK 8.7.2 Equation 8.24 gives rise to a linear equation in x, y and
z:
ar + by + cz =d,
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where ai + bj + ck # 0. For

r — X Yy—uy zZ— z21
T2 —T1 Y2 —Y1 22 —%1 | =
T3 —2T1 Ys—Y1 23 —2A
z Y z r1 Y1 21
Ta—T1 Y2—Y1 22—21 |— | T2—T1 Yy2—y1 22— 21 |(8.26)
T3 —T1 Ys— Y1 23— 2 T3 —T1 Y3—Yy1 23— 2
and expanding the first determinant on the right—hand side of equation 8.26
along row 1 gives an expression

ax + by + cz
where

Y2t =2—2
Ys — Y1 23— 21

Tro9o — 1 79 — 21
T3 —T1 23 — 21

T2 —T1 Y2 — U1
L3 —T1 Ys— U1

a ,b=—

But a, b, ¢ are the components of AB x Ié’, which in turn is non—zero, as
A, B, C are non—collinear here.
Conversely if ai + bj + ck # 0, the equation

ar+by+cz=d

does indeed represent a plane. For if say a # 0, the equation can be solved
for z in terms of y and z:

T _d _b _c
a a a
z 0 0 1

which gives the plane
P=Py+yX +2Y,

where Py = (—g, 0,0) and X = —gi +jand Y = —2i+ k are evidently
non—parallel vectors.

REMARK 8.7.3 The plane equation ax + by + cz = d is called the normal
form, as it is easy to prove that if P; and P, are two points in the plane,

then ai + bj + ck is perpendicular to ﬁ’g. Any non—zero vector with this
property is called a normal to the plane. (See Figure 8.17.)
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By lemma 8.6.1(ii), it follows that every vector X normal to a plane
through three non—collinear points A, B, C is parallel to AB x Ié’, since
X is perpendicular to AB and AC.

EXAMPLE 8.7.1 Show that the planes
r+y—2z=1 and z+4+3y—z=4

intersect in a line and find the distance from the point C = (1, 0, 1) to this
line.

Solution. Solving the two equations simultaneously gives

1 5 3 1
=+ =--= 2

x 5T 5% Y=g~ 5% (8.27)

where z is arbitrary. Hence
1, 3 5, 1
Lok — i O Oy Lig
ri+yj+z 51 23+z(21 i+ ),

which is the equation of a line £ through A = (-1, —2,0) and having

direction vector gi — %J + k.

We can now proceed in one of three ways to find the closest point on £
to A.

One way is to use equation 8.17 with B defined by

— b 1
AB=-i—-j+ k.
3 T
Another method minimizes the distance C'P, where P ranges over L.

A third way is to find an equation for the plane through C, having

5§ — % j + k as a normal. Such a plane has equation

2
St —y + 2z =d,
where d is found by substituting the coordinates of C' in the last equation.

d=5x1-0+2x1=T.

We now find the point P where the plane intersects the line £. Then cP
will be perpendicular to £ and C'P will be the required shortest distance
from C to L. We find using equations 8.27 that

1 5 3 1

a2y (2 9y —
5( 2+22) (2 22)+z 7,
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aii+bij+ cak ) )
agi + baj + 2k

a1z +biy+ciz=dy asx+ by + caz = do

Figure 8.18: Line of intersection of two planes.
S0 2z = % Hence P = (%, %, %)

It is clear that through a given line and a point not on that line, there
passes exactly one plane. If the line is given as the intersection of two planes,
each in normal form, there is a simple way of finding an equation for this
plane. More explicitly we have the following result:

THEOREM 8.7.3 Suppose the planes
ar+biy+cz = dp (8.28)
asT +boy + oz = do (8.29)

have non—parallel normals. Then the planes intersect in a line L.
Moreover the equation

Marx + by + c12 — dy) + plage + bay + coz — do) = 0, (8.30)
where A and p are not both zero, gives all planes through L.

(See Figure 8.18.)
Proof. Assume that the normals a1i + b1j + c1k and aoi + boj + cok are
non—parallel. Then by theorem 8.4.3, not all of

bi ¢
by ¢

ar by
az by

ap ¢

A =
az €2

Ag =

) A2:'

(8.31)
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are zero. If say Ay # 0, we can solve equations 8.28 and 8.29 for x and y in
terms of z, as we did in the previous example, to show that the intersection
forms a line L.

We next have to check that if A and p are not both zero, then equa-
tion 8.30 represents a plane. (Whatever set of points equation 8.30 repre-
sents, this set certainly contains L.)

(Aa1 + pag)x + (Nby + puba)y + (Aer + pez)z — (Ady + pda) = 0.
Then we clearly cannot have all the coefficients
Aay + pag,  Aby 4 pba,  Aci + pca

zero, as otherwise the vectors a1i + b1j + c1k and aoi + baj + cok would be
parallel.

Finally, if P is a plane containing £, let Py = (g, yo, 20) be a point not
on L. Then if we define A and p by

A = —(agzo + bayo + c220 — d2), p = ayxo+ biyo + 120 — di,

then at least one of A and p is non—zero. Then the coordinates of Py satisfy
equation 8.30, which therefore represents a plane passing through £ and P
and hence identical with P.

EXAMPLE 8.7.2 Find an equation for the plane through Py = (1, 0, 1)
and passing through the line of intersection of the planes

r4+y—2z=1 and z+4+3y—z=4.
Solution. The required plane has the form
Me+y—2z—1)+pule+3y—2z—4)=0,

where not both of A and p are zero. Substituting the coordinates of Py into
this equation gives

22X+ u(—4) =0, A= —-2u.
So the required equation is
2ur+y—2z—1)+pulz+3y—2—4) =0,

or
—x+y+3z2—2=0.

Our final result is a formula for the distance from a point to a plane.
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Py

ai+ bj+ ck

ar +by+cz=d
o y

x
Figure 8.19: Distance from a point Py to the plane ax 4 by + cz = d.

THEOREM 8.7.4 (Distance from a point to a plane)
Let Py = (xo, Yo, 20) and P be the plane

ax + by + cz = d. (8.32)

Then there is a unique point P on P such that P_0>P is normal to P. Morever

lazo + byo + czo — d|

PyP =
Va2 +b% +c2

(See Figure 8.19.)
Proof. The line through Py normal to P is given by

P =Py + t(ai + bj + ck),
or in terms of coordinates
r=xz9+at, y=uyo+bt, z=zy+ct.
Substituting these formulae in equation 8.32 gives

a(xo + at) + by + bt) + c(z0 +ct) = d
t(a®> +b*+¢®) = —(awg+byo+ czo — d),

SO

‘ axg +byo +czg —d
- a? + b2 + 2 '
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Then

PP = || BP ||

||t(ai + bj + ck)||
[tV a? 4 b? + 2
lazg + byo + czo — d| JETRETE
- a? + b2 + ¢2 a? +b% +c?
lazo + byo + czo — d|
Va2 +2+e2

Other interesting geometrical facts about lines and planes are left to the
problems at the end of this chapter.

8.8

PROBLEMS

. Find the point where the line through A = (3, =2, 7) and B =

(13, 3, —8) meets the zz—plane.
[Ans: (7,0, 1).]

Let A, B, C' be non—collinear points. If E is the mid—point of the
segment BC' and F' is the point on the segment F A satisfying % =2,

prove that
1

(F is called the centroid of triangle ABC'.)

. Prove that the points (2, 1, 4), (1, —1, 2), (3, 3, 6) are collinear.

.IfA=(2,3,—1) and B = (3, 7, 4), find the points P on the line AB

satisfying PA/PB = 2/5.

Ase (8,2, 9) and (4,5, 1))

. Let M be the line through A = (1, 2, 3) parallel to the line joining

B =(-2,2,0)and C = (4, —1, 7). Also NV is the line joining £ =
(1, -1, 8) and F = (10, —1, 11). Prove that M and N intersect and
find the point of intersection.

[Ans: (7, —1, 10).]
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10.

11.

12.

13.

CHAPTER 8. THREE-DIMENSIONAL GEOMETRY

. Prove that the triangle formed by the points (=3, 5, 6), (=2, 7, 9) and

(2, 1, 7) is a 30°, 60°, 90° triangle.

. Find the point on the line AB closest to the origin, where A =

(=2, 1,3) and B = (1, 2, 4). Also find this shortest distance.

[Ans:( 16 13 35) and

_ 16 13 35 50]
110 110 11

150
i

. A line V is determined by the two planes

r+y—2z=1, and zx4+3y—z=4.
Find the point P on A closest to the point C' = (1, 0, 1) and find the
distance PC.

[Ans: (%, %, %) and —Vfgo.]

. Find a linear equation describing the plane perpendicular to the line

of intersection of the planes x +y — 22 =4 and 3x — 2y + z = 1 and
which passes through (6, 0, 2).

[Ans: 3z + Ty + 5z = 28]

Find the length of the projection of the segment AB on the line L,
where A = (1, 2,3), B = (5, —2, 6) and L is the line CD, where
C=(7,1,9) and D = (-1, 5, 8).

[Ans: 13—7]

Find a linear equation for the plane through A = (3, —1, 2), perpen-
dicular to the line £ joining B = (2, 1, 4) and C' = (=3, —1, 7). Also
find the point of intersection of £ and the plane and hence determine
the distance from A to £. [Ans: 5z+2y—3z =7, (%, %, %) , ,/%.]

If P is a point inside the triangle ABC, prove that

P=rA+sB+tC,

where r+s+t=1andr>0,s>0,¢>0.

If B is the point where the perpendicular from A = (6, —1, 11) meets
the plane 3z 4 4y 4+ 5z = 10, find B and the distance AB.

. _ (123 —286 255 _ 59
[ADS. B = (W’ 50 W) and AB = \/—5—0]
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14.

15.

16.

17.

18.

19.
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Prove that the triangle with vertices (-3, 0, 2), (6, 1, 4), (=5, 1, 0)
has area % 333.

Find an equation for the plane through (2, 1, 4), (1, —1, 2), (4, =1, 1).
[Ans: 2z — Ty + 6z = 21.]

Lines £ and M are non—parallel in 3—dimensional space and are given
by equations
P=A+sX, Q=B+tY.

(i) Prove that there is precisely one pair of points P and @ such that
f@ is perpendicular to X and Y.
(ii) Explain why PQ is the shortest distance between lines £ and M.
Also prove that
| (X xY)- AB|
X < Y|

PQ =

If £ is the line through A = (1, 2,1) and C' = (3, —1, 2), while M
is the line through B = (1,0, 2) and D = (2, 1, 3), prove that the

shortest distance between £ and M equals 4

NGE
Prove that the volume of the tetrahedron formed by four non—coplanar
points A; = (zy, vi, zi), 1 <1 <4, is equal to
1
6
which in turn equals the absolute value of the determinant

| (A1 Ay x A1As)- A1 A4,

I 21 y1 o~

LIl 22 y2 2
6|1 3 y3 =23
1 x4 ya 24

The points A = (1, 1,5), B =(2,2,1), C = (1, —=2,2) and D =
(=2, 1, 2) are the vertices of a tetrahedron. Find the equation of the
line through A perpendicular to the face BC'D and the distance of A

from this face. Also find the shortest distance between the skew lines
AD and BC.

[Ans: P = (1 +¢)(i+j+5k); 2v/3; 3]
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Chapter 9

FURTHER READING

Matrix theory has many applications to science, mathematics, economics
and engineering. Some of these applications can be found in the books
(2, 3, 4, 5, 11, 13, 16, 20, 26, 28].

For the numerical side of matrix theory, [6] is recommended. Its bibliography
is also useful as a source of further references.

For applications to:

1.

2.

10.

Graph theory, see [7, 13];

Coding theory, see [8, 15];

. Game theory, see [13];
. Statistics, see [9];
. Economics, see [10];

. Biological systems, see [12];

Markov non—negative matrices, see [11, 13, 14, 17];

. The general equation of the second degree in three variables, see [18];

. Affine and projective geometry, see [19, 21, 22];

Computer graphics, see [23, 24].
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SECTION 1.6

~ [0 0 0 2 40 . 120]
2‘(1){2 4 o]RlHRQ{o 0 O]Rl_ﬁRl[o 0 0}’
[0 1 3 1 2 4 10 -2
(“)[1 2 4]R1HR2[0 1 3]R1_’R1_2R2[0 1 3];
B R B N Sy T I
i) |1 1 0 e Ru— R 0 0 -1
100 3 S N SRS R |
Ri — R+ R3 1 0 0 1 00
Ry——Ry |0 1 fia =Mt s g 1o |
Ry < Ry 00 -1 ° > Lo o1
2.0 0 100
)| 00 o0 R3R_’ if;le 00 0]
—4 0 0 T2 00 0
1 1 1 2 1 1 1 2]
3.0 | 2 3 -1 8 %:%:le 0 1 -3 4
1 -1 -1 -8 3 T lo 2 —2 —10
(10 4 -2 10 4 2]
51:514:2};2 01 -3 4 |Ry—=ZR3|0 1 -3 4
3 2100 -8 —2 00 1 1]
R — R1 — 4R3 3(1)8_1_3
Ry — Ro + 3R3 _0 0 1 4%

The augmented matrix has been converted to reduced row—echelon form

and we read off the unique solution x = —3, y:%, z:i.
1 1 -1 2 10 1 1 -1 2 10
| 3 -1 7 4 1 ?:giggl 0 —4 10 -2 -29
-5 3 —15 -6 9] B Yo 8 —20 4 59

1 1 -1 2 10
Rs — R3+2Ry | 0 —4 10 -2 -29
0 0 0 0 1

From the last matrix we see that the original system is inconsistent.



3 -1 7 0 1 -1 1 1
2 -1 4 1 2 —1 4 1
2 2
O T R P O
6 —4 10 3 6 —4 10 3
_ =1
mﬁm—%lé 1§:§ Ry — Ri+ Ry égg;é
R3—>R3—3R1 2 R4_’R4_R3 2
Ry — Ry — 6R, 0 2 4 -3 Rs — Ry — 2R, 000 O
4 0 2 4 -3 000 0
The augmented matrix has been converted to reduced row—echelon form
and we read off the complete solution z = —% -3z, y = —% — 2z, with z
arbitrary.
2 -1 3 a 2 -1 3 a
4. 3 1 -5 b R2—>R2—R1 1 2 -8 b—a
-5 -5 21 ¢ -5 -5 21 c
1 2 -8 b—a 1 2 -8 b—a
Ri—Ry| 2 -1 3 ?:?ig 0 -5 19 —2b+3a
-5 -5 21 3 3 Y10 5 —-19 5b—5a+c
1 2 =8 b—a
Rs — Rs 1+ Ry 0o 1 =19 2b—3a
i § 5 5
e T R
_ bt
10 2
Ri—Ri—2Ry | 0 1 =22 2b—3a

1S

5

5
0 0 0 3b—2a+c

From the last matrix we see that the original system is inconsistent if
3b—2a+c#0. If 3b — 2a + ¢ = 0, the system is consistent and the solution

xr =

where 2z is arbitrary.

1 11
d. t 1t
1+t 2 3
1
R3s — R3 — Ry 0
0

(b+a) 2 ~ (2b—3a)
5 5°YT ;5
1
Ry — Ry — tR; 01
R3—>R3—(1—|—t)R1
01
1 1
1-—t 0 = B.
0 2—t

Case 1. t # 2. No solution.

19
—z,
)
1
-t 0
t 2—t



1 1 01
Case2. t=2.B=1|0 —1 O 010
00 0

0
We read off the unique solutlon =1,
6. Method 1.
-3 1 1 1 Ri — Ry — Ry -4 0 0 4
1 -3 1 1 0 —4 0 4
Ry — Ry — Ry
1 1 -3 1 e Ru— R 0 0 —4 4
1 1 1 -3 s 1 1 1 -3
100 -1 1 00 -1
01 0 -1 01 0 -1
I R R T A s R R N S R
111 -3 000 O

Hence the given homogeneous system has complete solution
T1 = T4, T2 = T4, T3 = X4,
with x4 arbitrary.

Method 2. Write the system as

r1+rotaz3+axg = 41
T1+xotaxz3+ax4g = 4dxo
r1+x2+ 23+ 24 = 4T3
1 +x9t+a3+x4 = 4duy.

Then it is immediate that any solution must satisfy 1 = z9 = z3 = x4.
Conversely, if x1, x2, x3, x4 satisfy x1 = zo = x3 = 14, We get a solution.

7.
A-3 1 1 A-3
[ 1 )\—3]R1HR2[A—3 1 ]

1 A3
R2—>R2—(>\—3)R1[0 _A2+6A_8}:B.

Case 1: —A2 +6) —8 # 0. That is —(\ —2)(A —4) # 0 or A # 2, 4. Here B is

1
row equivalent to [ 0 (1) ]:

1 Xx=-3 10

Hence we get the trivial solution z =0, y = 0.



Case 2: A = 2. Then B = (1) _(1)} and the solution is x = y, with y
arbitrary. ]
11 L .
Case 3: A = 4. Then B = 0 0] and the solution is x = —y, with y
arbitrary. ]
8.
3 11 1 1 IR S S
- 3 3 3
5 -1 1 _1}R1 - 3R1[5 -1 1 -1
1 1 1 1
R2 — R2_5R1|:0 % % g]
3 73 73
3 1111
e 3 3
wo [
1 10 to
ol

Hence the solution of the associated homogeneous system is

1 1
I = 4373, Ty = 4363 T4,
with z3 and x4 arbitrary.
9.
—1—71 1 1 R1—>R1—Rn —n 0 n
1 1—n 1 R2—>R2—Rn 0 —-Nn n
A= .
|1 1 1—n R, 1— R, 1—R, 1 1 1—n
[1 0 -1 10 - —1
o1 -+ -1 0o 1 - -1
- .. . Ry,—Ry,—Rp—1---— Ry
|11 1—n 0 0 0

The last matrix is in reduced row—echelon form.

Consequently the homogeneous system with coefficient matrix A has the
solution

Tl = Tp, TQ =Tp,...,Tpn—-1 = Tp,



with x,, arbitrary.
Alternatively, writing the system in the form

T+ +xTy = NI

r1+---+xy = N2

r1+---+xTy = NIy
shows that any solution must satisfy nx; = naxe = -+ = nx,, so r1 = x9 =
o« = x,. Conversely if x1 = z,,...,Tn_1 = T,, we see that z1,...,z, is a

solution.

10. Let A = [ CCL Z } and assume that ad — be # 0.

Case 1: a # 0.
b 12 1 @
LT I L Y

" 1 ¢t 10
R2_)adbcR2|:0 (i:|R1—>R1—§R2|:O 1:|

Case 2: a = 0. Then bc # 0 and hence ¢ # 0.
0 b c d 1 4 10
LR P R PR R ER Y

So in both cases, A has reduced row—echelon form equal to [ (1) (1) ] .

11. We simplify the augmented matrix of the system using row operations:

1 2 -3 4 Ry — Ry — 3R, 1 2 -3 4

3 -1 5 2 B — B — AR 0 -7 14 —-10

4 1 a®2—14 a+2 3 3 V6lo -7 a2-2 a—14
R3—Rs—Ry [1 2 =3 4 1o 1 2
Ry — =Ry 01 -2 0 Ri - R —2Ry | 0 1 =2 2
Ri— R —2R; | 0 0 ¢>—16 a—4 0 0 a>—16 a—4

Denote the last matrix by B.



Case 1: a® —16 #0. i.e. a # +4. Then

8a+25
oo | 000
Rl — Rl — R3 0 ]. 0 7(214)
Ry—=Ry+2Rs | 0 0 1 —
and we get the unique solution
8a + 25 10a + 54 1
= s = s Zz = .
7a+4) V" Ta+4) a+t4
10 1 %
Case2: a=—-4. Then B= | 0 1 -2 17 , SO our system is inconsistent.
00 0 -8
10 1 %
Case 3: a=4. Then B= | 0 1 -2 17 . We read off that the system is
00 0 O
consistent, with complete solution z = % -z, Y= 1—70 + 2z, where z is

arbitrary.

12. We reduce the augmented array of the system to reduced row—echelon
form:

1010 1 1010 1
0101 1 01011
11110 Bs7RstR g g
00110 00110

1010 1 1001 1
01 011 Ri — R1+ Ry 01011
Ry—Rs+Re | o g ¢ 0 Rs & Ry 00110
00110 00000

The last matrix is in reduced row—echelon form and we read off the solution
of the corresponding homogeneous system:

Tl = —T4—T5=2T4+T5

T3 —X4 — T = T4+ Ts

T3 = —T4= T4,



where x4 and x5 are arbitrary elements of Z,. Hence there are four solutions:

o»—nHoij
Or—tHOSz
HHOOQ&,
HI—‘OOE
—o Rk ol

13. (a) We reduce the augmented matrix to reduced row—echelon form:

21 3 4 1 3 4 2
4 1 4 1 Ry — 3Ry 4 1 4 1
31 20 3120
1 3 4 2 1 3 4 2
gtﬁfﬁ 0043 3| RomdRy |0 1 2 2
S 1020 4 020 4
B [L 03 1] p i, [100 ]
R3s — R3+ 3R> 0010 Ro — Ro + 3R3 0010
Consequently the system has the unique solution x =1, y =2, 2 = 0.

(b) Again we reduce the augmented matrix to reduced row—echelon form:

2 1 3 4 110
414 1| RRoRs |41 41
1103 2 1 3 4
1103 110 3
gtffg 02 44| Rh—3R, |0 1 2 2
3 3 V'10 4 3 3 0 4 3 3
Ri— R1+ 4Ry 1031
R; — Ry + R 0 122
3 3T 1000 0

We read off the complete solution

r = 1—-3z2=1+42z
= 2—-22=2+4 3z,

where z is an arbitrary element of Zs.



14. Suppose that (aq,...,a,) and (51,...,3,) are solutions of the system
of linear equations

n
Zai]mj =b, 1<i<m.
j=1

Then

n

Z aijaj = bz and iaijﬂj = bz

j=1 J=1
for 1 <i<m.
Let ;=(1—t)a;+1t6; for 1 <i<m. Then ( 1,..., ) is a solution of
the given system. For

doaij i = Y ag{(l—t)a; +16;}
j=1

j=1
n n
= D ay(l—ta;+ Y aith;
j=1 j=1
= (1 —1t)b; +tb;
= b.
15. Suppose that (aq,...,ay) is a solution of the system of linear equations
n
Zai]’l‘j = bi, 1 S 7 S m. (1)

j=1
Then the system can be rewritten as
n n
Zaijmj = Zaijaj, 1 < 1 < m,
=1 =1
or equivalently

n
Zaij(xj—aj)zo, 1§z§m
7j=1

So we have .

Zaijyjzo, 1§z§m

j=1
where z; — oj = y;. Hence z; = aj +yj, 1 < j < n, where (y1,...,yn) is
a solution of the associated homogeneous system. Conversely if (yi,...,Yn)



is a solution of the associated homogeneous system and z; = a; +y;, 1 <

j < n, then reversing the argument shows that (z1,...,x,) is a solution of
the system 1 .

16. We simplify the augmented matrix using row operations, working to-
wards row—echelon form:

11 -1 1 1 Ry — Ry — aliy 11 -1 1 1
a 1 1 1 b e Re— 3R 0 1—-a 14+a 1—a b—a
3 2 l1+a 3 3 Llo -1 3 a—3 a-—2

Ry o Ry 11 -1 1 1
R _R 0 1 -3 3—-a 2—a
2 210 1-a 1+a 1—a b—a
11 -1 1 1
R3—>R3+(CL—1)R2 01 -3 3—a 2—a
0 0 4-2a (1—a)(a—2) —a’+2a+b—2

Case 1: a # 2. Then 4 — 2a # 0 and

1 1 -1 1 1

B— 101 -3 3—a 2—a
-1 —a?+42a+b-2

00 1 % =g

Hence we can solve for x, y and z in terms of the arbitrary variable w.

Case 2: a = 2. Then
11 -1 1 1

B=]01 -3 1 0
00 00 b-2

Hence there is no solution if b # 2. However if b = 2, then

11 -1 11 10 2 01
B=]01 -310|—]01-3120
00 00O 00 000

and we get the solution x =1 — 22, y = 3z — w, where w is arbitrary.

17. (a) We first prove that 1 +1+ 1+ 1 = 0. Observe that the elements

140, 1+1, l+a, 1+b



are distinct elements of F' by virtue of the cancellation law for addition. For
this law states that 1+ =14y =x =y and hencez #y = 14+x # 1+y.

Hence the above four elements are just the elements 0, 1, a, b in some
order. Consequently
(14+0)+(1+1)+(1+a)+(14+bd) = 0+1+a+b
I+14+14+1)+0O0+14a+b) = 0+0+1+a+b),
so 1+ 1414 1=0 after cancellation.

Now 1+1+1+1=(1+1)(1+1), so we have 2% = 0, where z = 1 + 1.
Hence x =0. Thena+a=a(l+1)=a-0=0.

Next a + b = 1. For a + b must be one of 0, 1, a, b. Clearly we can’t
have a +b = a or b; also if a +b = 0, then a + b = a + a and hence b = q;
hence a +b = 1. Then

a+l=a+(a+b)=(a+a)+b=0+b=0.

Similarly b + 1 = a. Consequently the addition table for F' is

4+ 0 1 a b
010|1]al|b
1[1(0|b]|al
ala|b|0]1
b|bla|1]|0

We now find the multiplication table. First, ab must be one of 1, a, b;
however we can’t have ab = a or b, so this leaves ab = 1.

Next a? = b. For a® must be one of 1, a, b; however a
a = 1; also

’=1=2d’-1=0=(a—1(a+1)=0=>(a—1)°’=0=a=1;

2—g=a=0o0r

hence a? = b. Similarly b2 = a. Consequently the multiplication table for F
is

x 0 1 a b
0[0]0]0|0O
1/0|1]al|b|
a|0la|b]|1l
b{O0O|b|1l]|a

(b) We use the addition and multiplication tables for F':

Ry — Ry +aRy
R3s — Rs+ Ry

— o Q

b
b
1

SIS

1
0
0

> O Q
L L o
O Q2

[ 1
A= a
_1

10



1 a b a
R2<—>R3 0O b a O 221222
0 0 a a | 3 3
1 0 a a
RioRi+aR, |0 1 b o fr—Tatals
00 1 1 Ry — Ry + bR3

The last matrix is in reduced row—echelon form.

11



Section 2.4

a b
2. Suppose B= | ¢ d | and that AB = I,. Then
e f
a b
[ 101} . d 10} [—a—i—e b+ f
10 e f 0 1 c+e d+f
Hence
—a+e=1 —-b+f=0
c+e=0 " d+f=1"
e=a+1 f=b )
c=—e=—(a+1) " d=1—f=1-b"
a b
B=| —a—-1 1-%
a+1 b
Next,

(BA)?B = (BA)(BA)B = B(AB)(AB) = BI,I, = BI, = B

4. Let p,, denote the statement

An = B0 gy BB

Then p; asserts that A = @A + @IQ, which is true. So let n > 1 and
assume p,. Then from (1),

AL AoAn— A (3"2—1)A+ (3—23")12 — (3n2—1)A2 + (3—23n)A

_ @y gy) 4 G 4 - @IDBEIY ) @0y

. (4 .3n_ 3n) A+ (3 3n+1)1_2

_ (3"“ SPENCS Glyy

Hence py,+1 is true and the induction proceeds.

5. The equation x,1 = axy, + bx,—1 is seen to be equivalent to

RN

12



or

Xp = Aanla
where X,, = [ x;“ ] and A = [ Cll 8 ] Then
n
X, =A"X,

if n > 1. Hence by Question 3,
Tn+1 (3" - 1) (3 — 3”) T
= A I

- {520 ST =
B (3" =12+ 257 (3" —1)(-3) [ﬂ

3"—1 3—-3"
2 2

Hence, equating the (2,1) elements gives

n_1 __an
xn:(g 5 )$1+(3 23 )xo ifn>1

7. Note: A1 + Ao =a+d and A\ A = ad — be.
Then

O+ Aolin — Adaknot = O+ )N+ A 2hg 4+ A2+ X3
—/\1>\2(/\7f_2 + )\711_3)\2 NS /\1)\721—3 + /\721—2)

= AP+ AT A+ AT
AT A+ M)
AP e 4+ AT

= AN HANTIA A MAT A = Ey

If A1 = A, we see

kn, = )\?_1 + /\711_2)\2 4+t )\1)\721—2 + )\3—1
= )\?_l + )\?_2)\1 4+t )\1)\711—2 + )\711—1

_ n—1
= nAj

13



If A1 # A2, we see that

(A= X)kn, = (M1 — )\2)()\?_1 + )\711_2)\2 4+t )\1)\3—2 + )\g—l)
= A AT Dot AN
SO g AT D)
= AT -5

AT AR

Hence k,, = SYE

We have to prove
An = knA - )\1)\2]{,‘77,_1]2. *

n=1:

Al = A; also k1A — MAokolys = k1A — M0l
= A

Let n > 1 and assume equation % holds. Then

AL = A" A = (kpA— Mok, 11)A

Now A? = (a+ d)A — (ad — bc)Iy = (A + A2)A — A\ Aalo. Hence

Antl En(A1 + X2)A — M Aaly — Mdok, 1A

= {kn(A1 +X2) = MA2kn_1}A — Mok, o
= kpr1A — Mok, 1o,

and the induction goes through.

8. Here A1, \g are the roots of the polynomial 22 — 2z — 3 = (z — 3)(z + 1).
So we can take Ay = 3, Ao = —1. Then

S e 4
Hence
an = [BHCUTIL Ly [ET 0N
= w{}l 2%3%3”1;1(1)’%[21 0}
4 2 1 1 01l



which is equivalent to the stated result.

9. In terms of matrices, we have

=[] [ ] e
ESEEHIREIG

Now A1, Ag are the roots of the polynomial 22 — 2 — 1 here.
Hence A\ = # and Ay = % and

() ()

kn =

1+2\/5 _ (1—2\/5)
n—1 n—1
() (%)
B Vb
Hence
A" = k,A— Mok, _11>
= k‘nA'f‘knflIZ
So
F, 1
[ le] = (knA+kn_1IQ){0}
1 1 . kn + kn—1
o1 fema 5] =[5
Hence . .
145\ (1=vB\"T
()

10. From Question 5, we know that
Tn | | 1 7 "Ta
yn | |1 1 b |-

15



Now by Question 7, with A = { 1 I } ,

A" = kpA— Mi)oknp11p
= knA — (1 — T)kn_lfg,

where \y = 14 /r and Ay = 1 — /r are the roots of the polynomial
2?2 =22+ (1 —7) and
AP — A

kn, =
27

Hence

A= =kt | § ]

e W L s D
k

" (11; S o — (1kirr)kn1 ] [ b ]

alky — (1 —r)kp—1) + bkpr ]
akp +b(ky — (1 —1)kp_1) |~

¥
|
|

Hence, in view of the fact that

S I P (S P 1))
knot APTT AR — {2

— A1, asn — oo,

we have

[ Tn ] a(ky, — (1 = r)ky—1) + bkypr
aky, + b(kn, — (1 —1r)kp—_1)
a(kf’i —(1—=7))+ b%r
gt + b — (1-7)
()\1 (1 — 7")) b)\lr
ari +b(A —(1—1))
a(y/r+7r)+b(1+/1)r
a(l+/r)+b(/r+7)
Vri{a(l+r) +b(1 + Vr)y/r}
a(l1+ /1) +b(y/r +7)
s

16



Section 2.7

1 4|10 1 4 10
L [Auﬂ_[—?, 1 ‘ 0 1} fty = Hp 431 [0 13 ' 3 1]
14 1 0 1 0| 1/13 —4/13
1 _
Bz = 13R2[0 1 ’ 3/13 1/13} B~ 4R [o 1 ‘ 3/13  1/13 ]
. . _ 1/13 —4/13
. 1_
Hence A is non—singular and A [ 313 1/13 } .
Moreover
Er12(—4)E2(1/13)E91(3)A = I,
S0
AT = Bio(—4)Fy(1/13) Ex (3).
Hence

A ={Ex(3)} {E2(1/13)} {E1a(—4)} " = E21(—3)Ea(13) E12(4).

2. Let D = [d;;] be an m x m diagonal matrix and let A = [a;] be an m xn
matrix. Then .
(DA)y, = Z dijajr = diaik,
j=1
as d;j = 0 if ¢ # j. It follows that the ith row of DA is obtained by
multiplying the ¢th row of A by d;;.

Similarly, post-multiplication of a matrix by a diagonal matrix D results
in a matrix whose columns are those of A, multiplied by the respective
diagonal elements of D.

In particular,

diag (a1, ..., ay)diag (by,...,b,) = diag (a1by, ..., anby),

as the left-hand side can be regarded as pre-multiplication of the matrix
diag (b1, ...,by) by the diagonal matrix diag (a1,...,a,).

Finally, suppose that each of aq,...,a, is non—zero. Then afl, o ant
all exist and we have

diag (a1, . ..,an)diag (a7',...,a,") = diag(aia?,..., ana,")
= diag(1,...,1) =1I,.
Hence diag (a1, . . ., a,) is non-singular and its inverse is diag (a7 ’,...,a;").

17



Next suppose that a; = 0. Then diag (a1,...,a,) is row—equivalent to a
matix containing a zero row and is hence singular.

002|100 126 010
3.[Al=]1 2 6| 0 1 0| Ri<Ry [ 0O 0O 2 1 0 O
3791001 379001
1 2 6 0 10 1 2 6 0 1
Ry —R3—3R; [0 0 21 00| Roe=R3 |0 1 -9 0 =3
01 -90 =31 00 21 0
1 2 6 0 10 1 0 24 0
Ry —3sR3 | 01 -9 0 3 1| -Mi—=R—-2R, |0 1 -9 0
00 1 1/2 00 00 1 1/2
Ry — Ry — 24Rs 1 0 0 —-12 7T =2
Ry — Ry + 9R; 010 9/2 -3 1
2 001 1/2 0 0
—12 7T =2
Hence A is non-singular and A=t = | 9/2 -3 1
/2 0 0
Also
E53(9)E13(—24)E12(—2)E3(1/2) Eag E31(—3) E12A = 3.
Hence
A_l = E23(9)E13(—24)E12(—2)E3(1/2)E23E31(—3)E12,
S0
A = E12FE31(3)E23 E3(2) E12(2) Eq3(24) E23(—9).
4.
1 2k 1 2 k 1 2 k
A=|3 -1 1|—=|0 -7 1-3k|—-|0 -7 1-3k |=0B.
5 3 =5 0 -7 —5-5k 0 0 —6-2k

Hence if —6 — 2k # 0, i.e. if k # —3, we see that B can be reduced to I3
and hence A is non—singular.

1 2 -3
If k=-3,then B=| 0 —7 10 | = B and consequently A is singu-
0 0 O

lar, as it is row—equivalent to a matrix containing a zero row.

18



5. FE2(2) [ _; _i } = [ (1) g } Hence, as in the previous question,

270, . 1

_o _y | issingular.

6. Starting from the equation A% — 24 + 131, = 0, we deduce
A(A —215) = =131, = (A — 215) A.

Hence AB = BA = I, where B = 73 (A — 2I5). Consequently A is non-
singular and A~ = B.

7. We assume the equation A% = 342 — 34 + I3.

(i) A' = APA=(342-3A+L)A=34%-3424+A
= 3(34%2 —3A+1I3) —3A%2 + A =6A% —8A + 3Is.

(iii) A3 —3A2 +3A = I3. Hence
A(A% —3A 4 313) = I3 = (A® — 3A + 313) A.
Hence A is non—singular and

A7l = A2 _3A 43I,

-1 -3 1
= 2 4 -1
0 1 0

8. (i) If B3 =0 then

(I, - B)(I,+ B+ B? = I,(I,+ B+ B?) — B(I, + B + B?)
= (I,+B+B% —(B+B?+B?%
= I,-B’=1,-0=1,.

Similarly (I, + B + B%)(I,, — B) = I,,.

Hence A = I,, — B is non-singular and A~! = I,, + B + B2
It follows that the system AX = b has the unique solution

X=A"'%=(I,+ B+ B*b=b+ Bb+ B%.

19



0 r s 0 0 rt
(ii)Let B=|0 0 t |.ThenB?= |0 0 0 | and B3 =0. Hence
000 00 0
from the preceding question
(I3—B)™' = I3+ B+ B?

1.0 0 0 r s 0 0 rt

= 01 0(4+]0O0¢t]|+]00 0
|0 0 1 00 0 0 0
(1 r s+t

= 0 1 t
| 0 0 1

9. (i) Suppose that A% = 0. Then if A~! exists, we deduce that A~1(AA) =
A~'0, which gives A = 0 and this is a contradiction, as the zero matrix is
singular. We conclude that A does not have an inverse.

(ii). Suppose that A? = A and that A~! exists. Then

A7H(AA) = A2 A,

which gives A = I,,. Equivalently, if A2 = A and A # I,,, then A does not
have an inverse.

10. The system of linear equations

r+y—z =
z = b
2r4+y+22 = ¢

is equivalent to the matrix equation AX = B, where

1 1 -1 T a
A=10 0 11, X=|y |, B=
2 1 2 z

By Question 7, A~! exists and hence the system has the unique solution

-1 -3 1 a —a—3b+c
X = 2 4 -1 b | =] 2a+4b—c
0 1 0 c b

Hencex = —a—3b+c, y=2a+4b—c, z=0.

20
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1 0 00
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1 0 01

1 010

0100

1101

0 011

1 1 11

0100
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1
1
e

11
0 0
01
1110

1
1
1

10 0 0
0100
0 010
0 001

) [
Hence A is non—singular and

— - O O

— O

— o O -

™ = o~

, S0 A is singular.

— - O O

S — - O

— - O O

— O —H O

Ry — Ry + Ry

— - O

S - — O

— - O -

— O~

(b) A=

14.

|

1/2
1/2
~1/2

0
1
10

0
0

0
0
1

0
1
1

1
0
0

|

1
213

R3 —
Ry — Ry — R3

Ry — Ry + Rs

Ry < R3
0 1/2
1 1/2

0
0

0
0

0
1

0

R3 — R3 — Ry

Hence A1 exists and

] |

0 1/2
1 1/2

0
-1

0
1

-1

AT =

S —H O
— O A
_
S O
— O A
O — A
— O O
N
S
223
| &K
i
= 11
—
T
i
~
I 1
S O -
S - O
— O O
<t — O
aN O
A —H O
1
—~
0
~—

1
—
_

S~

— O

(el [

OOﬂ

o ™ =
— O

— O
o O

O - O

QN — O O

s I
N

. £
™

R —

5e) 2]

&~ &
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Ry — R1 — R3

Hence A1 exists and

Hence A is singular b

<

~N O O
S O =

00
10
01

R2—+%R2
R3 — gRg

virtue of the zero row.

46
00 1
00 1]

Ry — iR
Ry — =Ry
Rg — 7R3

[ 1
0
| O

Hence A™! exists and A~ = diag (1/2, —1/5, 1/7).

(Of course this was also immediate from Question 2.)

()

o O O
OO =N
O = N
DO O
o O O
O O = O
O = O O

Ry — Ry — 2R3

Ry — Ry — 3Ry

Ry — Ry + 2Ry

R3 — R3 — Ry
Ry — 3Ry

Hence A1 exists and

ATl =

_ o O O

o O O

o O O

o O O

Ry — Ry — 2Ry
00 61
10 —4]0
01 20
00 2|0
00 0] 1 —2
1000 1
010[0 0
00 1|0 0
-2 0 -3
1 -2 2
0o 1 -1
0 0 1/2

23

O = O

o O O = = o O

O = N O

o O = O

R3s — R3 — IRy

1/2

= o O O
O = NN O

=N W

—
~
\]

S O

0
~1/5

NN OO
o O o

o O O

0

1/7

S O~ N

S = W

O = O O

_ o O O



(f)

12 3 1 2 3 1 2 3
45 6 22:22:‘5121 0 -3 6| Ry—R3—Ry | 0 -3 —6
5 7 9] P Lo -3 -6 0 0 0

Hence A is singular by virtue of the zero row.

15. Suppose that A is non—singular. Then
AA™ =1, =471A.
Taking transposes throughout gives

(AA—l)t —_ It —_ (A—IA)t

(A—l)tAt = I, = At(A_l)t,
so Al is non-singular and (A?)~! = (A71)L

a b

16. Let A = [ . d } , where ad — bc = 0. Then the equation

A? —(a+d)A + (ad — bc)I, =0

reduces to A% — (a + d)A = 0 and hence A? = (a + d)A. From the last
equation, if A~! exists, we deduce that A = (a + d)I3, or

a b| |a+d 0
cd| | 0 a+d]|’

Hencea =a+d, b=0, c=0,d=a+dand a =b = c =d = 0, which
contradicts the assumption that A is non—singular.

17.
1 a b 1 a b
A=| —a 1 ¢ Zi:gﬁizgi 0 1+a®> c+ab
b —c 1 0 ab—c 14102
1 a b
Ry — 1+%Rz 0 1 fi—gg
0 ab—c 1+
1 a b
Ry— Ry —(ab—c)Ry | 0 1 ctab
0 0 14052+ abicrad)
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Now

_ 2 _ (b2
o (¢ —ab)(c+ ab) e (ab)
1+ a? 1+a?
1+ a?+ b+
= T # 0.

Hence B can be reduced to I3 using four more row operations and conse-
quently A is non-singular.

18. The proposition is clearly true when n = 1. So let n > 1 and assume
(P~'AP)" = P~1A"P. Then

(P7tAP)"l = (P7lAP)"(P7'AP)
(P1A"P)(PT'AP)
PlAv (PP HAP
PIAMTAP
Pl1(A"A)P
= plamtlp

and the induction goes through.

1 2/3 1/4 - 1 3 1] 4 =3
19.LetA—[1/3 3/4]andP—{_1 4].ThenP =714 11

5/12 0

We then verify that P~ AP = [ } . Then from the previous ques-

0 1
tion,
PlAnP:(PlAP)n:P/Om g]":{@/g}zw 0 ] :[<5/(1)z>" (1)]
Hence
an - P'(5/12)" 0] 1 _ 1 3 (5/12)» 0]1[4 -3
_1_ (50/12)n1jp4[31 4“ 0 1]7[1 1]
7] —(512)" 4“1 1}
_ L] 4(5/12)"+3  (=3)(5/12)" + ]
71 —4(5/12)"+4  3(5/12)" +
S PR




Notice that A™ — % [ i i as n — o0o. This problem is a special case of

a more general result about Markov matrices.

a b
20. LetA—[c d

} be a matrix whose elements are non-negative real

numbers satisfying

a>0,b>0,¢>0,d>0, a+c=1=b+d.

Also let P = [ IC) _1 } and suppose that A # Is.

(i) det P = —-b—c= —(b+¢). Now b+ ¢ > 0. Also if b+ ¢ = 0, then we
would have b = ¢ = 0 and hence d = a = 1, resulting in A = I5. Hence
det P < 0 and P is non-singular.

Next,
-1 [ -1 -1 a b b 1
1 _
PAP_b+c_—c b][c d][c —1}
-1 —-a-c -b—d b 1
N b+c| —ac+bc —cb+bd c —1
S B -1 b1
"~ b+c| —ac+bc —cb+bd c —1
-1 —b—c 0
~ btec| (mac+be)b+ (—cb+bd)c —ac+bec+chb—bd |’
Now
—ach +b*c—cb+bde = —cb(a+ c¢)+ be(b+ d)
= —cb+0bc=0.
Also
—(a+d—-1)b+¢c) = —ab—ac—db—dc+b+c
—ac+b(1 —a)+c(1—d)—bd
= —ac+ bc+ cb—bd.
Hence
B 1 [ —(b+e) 0 10
IAp _ _
P Ap_b—l—c 0 —(a+d—1)(b+c)}_[0 a—i—d—l]
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(ii) We next prove that if we impose the extra restriction that A # [

01
1 0}

then |a +d — 1| < 1. This will then have the following consequence:

A = P

A" = P

b+c |
[ —b
b+c|
(b b
b+c |

-1

1

0 1
a+d—1}P

0 "
a—i—d—l} P

(a+£—D”]P1

)
16 o)5vel
=

b 0
—b
—C

c 0

-1 -1
—c b

—C

c C

where we have used the fact that (a +d —1)" — 0 as n — co.

We first prove the inequality |a +d — 1| < 1:

at+d—1 <

1+4d—-1=d<1

a+d—-1 > 04+40-1=-1.

Next, ifa+d—1=1, we have a+d = 2; so a =1 = d and hence ¢ = 0 = b,
contradicting our assumption that A # I,. Also if a+d —1 = —1, then

a+d:0;soazOzdandhencec:1:bandhenceA:[

01
1 0|

22. The system is inconsistent: We work towards reducing the augmented

matrix:

1 2
11
3 5| 12

R3 — Ry — Iy

wenn [)2]
Ry—Ry—=3Ri | o _ |,
1
0 -1
0 —
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The last row reveals inconsistency.
The system in matrix form is AX = B, where

1 2 4
35 y 12

The normal equations are given by the matrix equation

A'AX = A'B.
Now

(1 2

11 3 11 18

2 15 3 5 18 30
[ 4

11 3 45

AtB:[ ] 5 :[ }
2 15 12 73

Hence the normal equations are

11z +18y = 45

18z + 30y = 73.
These may be solved, for example, by Cramer’s rule:
45 18
73 30 36
11 18 6
18 30
11 45
18 73 -7

11 18 6 -
18 30

23. Substituting the coordinates of the five points into the parabola equation
gives the following equations:
a =0
a+b+c = 0
a4+ 2b+ 4c
a+3b+9c
a+4b+ 16c =

I
|
—_
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The associated normal equations are given by

5 10 30 a 11
10 30 100 b | =1 42 |,
30 100 354 c 160

which have the solution a = 1/5, b= -2, ¢ = 1.
24. Suppose that A is symmetric, i.e. A' = A and that AB is defined. Then

(B'AB)! = B'AY(B")' = B'AB,
so B'AB is also symmetric.

25. Let A be m x n and B be n x m, where m > n. Then the homogeneous
system BX = 0 has a non-trivial solution Xy, as the number of unknowns
is greater than the number of equations. Then

(AB)X, = A(BXg) = A0 =0

and the m x m matrix AB is therefore singular, as X # 0.

26. (i) Let B be a singular n x n matrix. Then BX = 0 for some non—zero
column vector X. Then (AB)X = A(BX) = A0 = 0 and hence AB is also
singular.

(ii) Suppose A is a singular n x n matrix. Then A? is also singular and
hence by (i) so is B!A* = (AB)!. Consequently AB is also singular
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Section 3.6

1. (a) Let S be the set of vectors [z, y] satisfying © = 2y. Then S is a vector
subspace of R?. For

(i) [0, 0] € S as © = 2y holds with x = 0 and y = 0.

(ii) S is closed under addition. For let [z1, y1] and [z2, y2] belong to S.
Then 1 = 2y; and z9 = 2y». Hence

1+ x2 = 2y1 + 2y2 = 2(y1 + y2)
and hence

[T1 + 72, y1 + yo] = [z1, y1] + [72, ¥2]
belongs to S.

(iii) S is closed under scalar multiplication. For let [z, y] € S and ¢ € R.
Then x = 2y and hence tz = 2(ty). Consequently

[tz, ty] = t[x, y] € S.

(b) Let S be the set of vectors [z, y| satisfying x = 2y and 2z = y. Then S is
a subspace of R%. This can be proved in the same way as (a), or alternatively
we see that = 2y and 22 = y imply « = 42 and hence x = 0 = y. Hence
S = {[0, 0]}, the set consisting of the zero vector. This is always a subspace.

(c) Let S be the set of vectors [z, y] satisfying z = 2y + 1. Then S doesn’t
contain the zero vector and consequently fails to be a vector subspace.

(d) Let S be the set of vectors [z, y] satisfying xy = 0. Then S is not
closed under addition of vectors. For example [1, 0] € S and [0, 1] € S, but
1,0]+ [0, 1] = [1, 1] ¢ 5.

(e) Let S be the set of vectors [z, y] satisfying x > 0 and y > 0. Then S is
not closed under scalar multiplication. For example [1, 0] € S and —1 € R,
but (—1)[1, 0] = [-1, 0] € S.

2. Let X, Y, Z be vectors in R". Then by Lemma 3.2.1
(X+Y, X+2Z, Y+2Z)C(X,Y, Z),

aseach of X +Y, X + 7, Y + Z is a linear combination of X, Y, Z.
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Also

1 1 1
1 1 1
-1 1 1
Z = 7(X+Y)+§(X+Z)—I—§(Y+Z),
SO
(X, Y, 2) C(X+Y, X+2Z Y+ 2).
Hence
(X, Y, Z2)=(X+Y, X+Z Y+ 2).
1 0 1
0 1 1 Sy
3. Let X1 = NE Xy = 1 and X3 = e We have to decide if
2 2 3

X1, X9, X3 are linearly independent, that is if the equation X + yXs +
zX3 = 0 has only the trivial solution. This equation is equivalent to the
folowing homogeneous system

r+0y+z =
Ox+y+z =
r+y+z =
2042y + 3z =

o o o o

We reduce the coefficient matrix to reduced row—echelon form:

101 100
011 010
—

111 0 01
2 2 3 0 00

and consequently the system has only the trivial solution x =0, y =0, z =
0. Hence the given vectors are linearly independent.

4. The vectors

A ~1 —1
Xi=| 1], Xo=| M|, Xs=| -1
—1 —1 A
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are linearly dependent for precisely those values of A for which the equation
X1+ yXo+2X3 = 0 has a non—trivial solution. This equation is equivalent
to the system of homogeneous equations

A—y—z =
—x+ Ay —z =
—x—y+iz = 0.

Now the coefficient determinant of this system is

A -1 -1
-1 A —1|(=AX+1)2*0N-2).
-1 -1

So the values of A which make X7, X5, X3 linearly independent are those A
satisfying A # —1 and X\ # 2.

5. Let A be the following matrix of rationals:

1 1 2 0 1
2 2 5 0 3
A= O 0 0 1 3
8 11 19 0 11
Then A has reduced row—echelon form

1 0 00 -1

0100 O

B= 0 01 0 1

0O 00 1 3

From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A
also form a basis for R(A).)

(b) The first four columns of A form a basis for C'(A).

(c¢) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

r1 = X5

Tro9 = 0

r3 = —T5
T4 = —31’5,
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with x5 arbitrary. Then

Is 1
0 0
X = —X5 = Iy -1 s
—3:65 -3
T5 1

so [1, 0, —1, —3, 1] is a basis for N(A).

6. In Section 1.6, problem 12, we found that the matrix

1 01 01
01 011
A= 1 1110
00110
has reduced row—echelon form
1 00 1 1
01 0 11
B= 00110
00 0 00

From B we read off the following:
(a) The three non—zero rows of B form a basis for R(A).
(b) The first three columns of A form a basis for C'(A).

(¢) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

Tl = —T4—T5=2T4+T5
Tg = —T4—T5=2T4+Ts
T3 = —T4 = T4,

with x4 and x5 arbitrary elements of Zo. Hence

T4+ T35 1 1

T4+ X5 1 1

X = T4 =x4| 1 | +|[0
T4 1 0

I5 0 1

Hence [1, 1, 1, 1, 0] and [1, 1, 0, 0, 1] form a basis for N(A).
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7. Let A be the following matrix over Zs:

11 2 01 3

21 4 0 3 2

A= 000130
| 3 0 2 4 3 2|
We find that A has reduced row—echelon form B:
1 0 0 0 2 4]

01 00 4 4

B= 001 00O

100 01 30

From B we read off the following:

(a) The four rows of B form a basis for R(A). (Consequently the rows of
A also form a basis for R(A).

(b) The first four columns of A form a basis for C'(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

r1 = —2x5—4xg = 3x5+ x4
To = —4dxs—4xg=1T5+ X6
z3 = 0

x4 = —3x5=2xs5,

where x5 and x¢ are arbitrary elements of Zs. Hence

3

+x6

_ o O O = =

O = N O =

so [3,1,0,2,1,0]" and [1, 1, 0, 0, 0, 1]* form a basis for R(A).

8. Let F'={0, 1, a, b} be a field and let A be the following matrix over F:

A=

— Q
— o Q
— o o
SIS
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In Section 1.6, problem 17, we found that A had reduced row—echelon form

B =

S O =
O = O
— o O
_ o O

From B we read off the following:

(a) The rows of B form a basis for R(A). (Consequently the rows of A
also form a basis for R(A).

(b) The first three columns of A form a basis for C'(A).

(c) To find a basis for N(A), we solve AX = 0 and equivalently BX = 0.
From B we see that the solution is

1 = 0
Tro9 = —b.CC4 = ba;4
T3 = —X4= Xy,

where x4 is an arbitrary element of F'. Hence

X:$4

_ = o O

so [0, b, 1, 1]* is a basis for N(A).

9. Suppose that Xi,...,X,, form a basis for a subspace S. We have to

prove that
—X17X1+X27"’7X1+"'+Xm

also form a basis for S.
First we prove the independence of the family: Suppose

$1X1—i—xQ(Xl—|—X2)+"'+£Um(X1+"'+Xm):0.

Then
(371—|-x2—|—”-+117m)X1+"'+$me:0.

Then the linear independence of X1, ..., X,, gives

Ty +xo+ - +xy,m=0,...,2, =0,
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form which we deduce that 1 =0,...,z,, = 0.
Secondly we have to prove that every vector of S is expressible as a linear
combination of X1, X1 + Xo,..., X1+ -+ X,,. Suppose X € S. Then

X=a1Xi+ 4+ anXmnm.
We have to find z1,...,x, such that

X = mXi+x(Xi+Xo)+ 4 an(Xi+ -+ Xn)
= (z14a2+ -+ T) X1+ + T X

Then
a1 Xy + -t am Xy = (1 22+ 2) Xg T X
So if we can solve the system
1 +To+ -+ Ty =A1,...,Tm = O,

we are finished. Clearly these equations have the unique solution

Ty =0a1 —az, ..., Tm-1 = am — Am—-1, Tm = Qm-
a b c : . .
10. Let A = [ 111 ] If [a, b, ¢] is a multiple of [1, 1, 1], (that is,

a=b=c), then rank A = 1. For if
la, b, ¢ =t[1, 1, 1],
then
R(A) = ([a, b, o], [L, 1, 1]) = (¢[1, 1, 1], [1, 1, 1]) = ([1, 1, 1]),

so [1, 1, 1] is a basis for R(A).

However if [a, b, c] is not a multiple of [1, 1, 1], (that is at least two
of a, b, ¢ are distinct), then the left—to-right test shows that [a, b, ¢] and
[1, 1, 1] are linearly independent and hence form a basis for R(A). Conse-
quently rank A = 2 in this case.

11. Let S be a subspace of F™ with dimS = m. Also suppose that
X1,...,Xm are vectors in S such that S = (Xi,...,X,,). We have to
prove that Xi,...,X,, form a basis for S; in other words, we must prove
that X,..., X, are linearly independent.
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However if X1,...,X,, were linearly dependent, then one of these vec-
tors would be a linear combination of the remaining vectors. Consequently
S would be spanned by m — 1 vectors. But there exist a family of m lin-
early independent vectors in S. Then by Theorem 3.3.2, we would have the
contradiction m < m — 1.

12. Let [z, y, 2]' € S. Then z + 2y + 3z = 0. Hence z = —2y — 3z and

x —2y — 3z —2 -3
y | = Yy =y 1L ]+=z 0
z z 0 1

Hence [—2, 1, 0] and [-3, 0, 1]* form a basis for S.

Next (=1) +2(=1) +3(1) =0, so [-1, —1, 1]t € S.

To find a basis for S which includes [—1, —1, 1], we note that [-2, 1, 0]*
is not a multiple of [—1, —1, 1]¢. Hence we have found a linearly independent
family of two vectors in S, a subspace of dimension equal to 2. Consequently
these two vectors form a basis for S.

13. Without loss of generality, suppose that X; = X5. Then we have the
non—trivial dependency relation:

1X, —|—(—1)X2+0X3+"'+0Xm = 0.

14. (a) Suppose that X,,1; is a linear combination of X1,..., X,,. Then
<X17 s 7Xm7 Xm+1> = <X1a s 7Xm>

and hence
dim <X1, e ,Xm, Xm+1> = dim <X1, e ,Xm>

(b) Suppose that X,, 11 is not a linear combination of X1,...,X,,. If not
all of X1,...,X,, are zero, there will be a subfamily X,,,..., X, which is
a basis for (X1,...,X,).

Then as X,,+1 is not a linear combination of X, ..., X,,, it follows that
Xeyyo oy Xe,, X4 are linearly independent. Also

(X1, ooy Xy Xn1) = (Xeys o Xy, Ximg1)-
Consequently

dim<X1,...,Xm, Xm+1>:T+1:dim<X1,...,Xm>—|-1.
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Our result can be rephrased in a form suitable for the second part of the
problem:
dim <X1, ce 7Xm7 Xm+1> = dim <X1, ce 7Xm>

if and only if X,,11 is a linear combination of Xi,..., X;,.
If X =[z1,...,2,)", then AX = B is equivalent to
B=x1Ag+ -+ 2.

So AX = B is soluble for X if and only if B is a linear combination of the
columns of A, that is B € C'(A). However by the first part of this question,
B € C(A) if and only if dim C([A|B]) = dim C(A), that is, rank [A|B] =
rank A.

15. Let aq,...,a, be elements of F, not all zero. Let S denote the set of
vectors [x1,. .., %]t where x1, ..., z, satisfy

a1z1 + - +apzy, =0.

Then S = N(A), where A is the row matrix [aj,...,a,]. Now rank A =1
as A # 0. So by the “rank + nullity” theorem, noting that the number of
columns of A equals n, we have

dim N(A) = nullity (A) =n —rank A =n — 1.

16. (a) (Proof of Lemma 3.2.1) Suppose that each of X1,..., X, is a linear
combination of Y7,...,Y,. Then

s

Now let X = ©_; ;X; be a linear combination of X1,...,X,. Then

X = zi(anYr+ -+ asYs)

+
+ xr(arlyi +---+ ars}/s)
= Y1+ +ysYs,
where y; = a1;21+- - -+a,jr,. Hence X is a linear combination of Y1,...,Y,.

Another way of stating Lemma 3.2.1 is

(X1,..., X)) € (N1, Y, (1)
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if each of X1,..., X, is a linear combination of Y7,...,Ys.

(b) (Proof of Theorem 3.2.1) Suppose that each of X1,..., X, is a linear
combination of Y7, ..., Y, and that each of Y1,..., Y} is a linear combination
of X1,...,X,. Then by (a) equation (1) above

<X17'-->XT'> - <Y17"'7YYS>

and
(Y1,...,Ys) C(Xq,..., X,).

Hence
<X17"'7X7"> = <lea7YTS>

(c) (Proof of Corollary 3.2.1) Suppose that each of Z1,...,Z; is a linear
combination of X1,...,X,. Then each of X1,...,X,, Z1,...,Z; is a linear
combination of X1,..., X,.

Also each of X1, ..., X, is a linear combination of X1, ..., X,, Z1,..., Z,
so by Theorem 3.2.1

(X1, Xy Z1, o 20 = (X1, X

(d) (Proof of Theorem 3.3.2) Let Yi,...,Ys be vectors in (Xy,...,X,)
and assume that s > r. We have to prove that Yi,... Y, are linearly
dependent. So we consider the equation

T1Yi -+ 2V, =0,
Now Y, = 7]7:1 a;; X, for 1 <i <s. Hence
Y14+ xYs = zi(anXi+--+a, X))
+
+ mr(alel +-- asrXr)-
= X1+ +uX, (1)
where y; = ay;71 + - - - + as;75. However the homogeneous system
un :O’ Tty yT':O

has a non—trivial solution x1,...,zs, as s > r and from (1), this results in a
non—trivial solution of the equation

r1Y1 4+ 2sYs = 0.
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Hence Y71, ...,Y; are linearly dependent.

17. Let R and S be subspaces of F", with R C .S. We first prove
dim R < dim S.

Let X1,..., X, be abasis for R. Now by Theorem 3.5.2, because X1, ..., X,
form a linearly independent family lying in .S, this family can be extended
to a basis X1,...,X,,..., X for S. Then

dimS =s>r =dimR.

Next suppose that dim R = dim S. Let X1,..., X, be a basis for R. Then
because Xi,..., X, form a linearly independent family in S and S is a sub-
space whose dimension is r, it follows from Theorem 3.4.3 that Xy,..., X,
form a basis for S. Then

S=(X1,....,X,)=R.

18. Suppose that R and S are subspaces of F” with the property that RUS
is also a subspace of F™. We have to prove that R C S or S C R. We argue
by contradiction: Suppose that R S and S € R. Then there exist vectors
u and v such that

ueRandv ¢S, veSandv¢gR.

Consider the vector u+v. As we are assuming RU S is a subspace, RU S is
closed under addition. Hence u+v € RUS andso u4+v € Roru+wv € 5.
However if u +v € R, then v = (u + v) —u € R, which is a contradiction;
similarly if u +v € S.

Hence we have derived a contradiction on the asumption that R Z S and
S ¢ R. Consequently at least one of these must be false. In other words
RCSorSCR.

19. Let Xq,..., X, be a basis for S.
(i) First let
Yi = anXq+--+a, X,

Y, = anXi+--+a Xy,
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where A = [a;;] is non-singular. Then the above system of equations can
be solved for Xi,..., X, in terms of Y7,...,Y,. Consequently by Theorem
3.2.1

(Y1,....Y,) =(X1,..., X)) = S.

It follows from problem 11 that Y7,...,Y, is a basis for S.

(ii) We show that all bases for S are given by equations 2. So suppose
that Yi,...,Y, forms a basis for S. Then because X1,..., X, form a basis
for S, we can express Y7,...,Y, in terms of Xi,..., X, as in 2, for some
matrix A = [a;;]. We show A is non-singular by demonstrating that the
linear independence of Y7,...,Y, implies that the rows of A are linearly
independent.

So assume

xl[an,...,alr]—|—~-—|—xr[arl,...,aw] :[O,...,O].

Then on equating components, we have

anxy+ - +amnz, = 0
arxy + -+ apery, = 0.
Hence
oY1+ +2Y, = si(anXi+--+a X))+ F (e X+ + 0 X))
= (anr1 + - +anz) Xy + -+ (apzy + o+ apeae) Xy
= 0X;+.--4+0X, =0.
Then the linear independence of Yi,...,Y, implies 1 =0,...,z, = 0.

(We mention that the last argument is reversible and provides an alter-
native proof of part (i).)
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Py

Py

Section 4.1

1. We first prove that the area of a triangle P, P Ps, where the points
are in anti—clockwise orientation, is given by the formula

A J

Referring to the above diagram, we have
Area PiP,P; = AreaOP Py + AreaOPy,P3 — Area OP P
1 1 1
2 2

T T2
yr Y2

T2 T3
Y2 Y3

T3 T
Ys Wi

Tr1 X2
Yy Y2

T I3
Y2 Y3

r1 T3
Yy Y3

- )

2

which gives the desired formula.

We now turn to the area of a quadrilateral. One possible configuration
occurs when the quadrilateral is convex as in figure (a) below. The interior
diagonal breaks the quadrilateral into two triangles Py P, P; and Py P3P;.
Then

Area Py P, P3Py = Area P PoP3 + Area Py P3P,

{ }

Tl T2
Yy Y2

T2 T3
Y2 Y3

r3 I
Yys %

N =
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P4 P3

P
P,
(a) (b) 1
P1 Pl
P2 P2
+1{ Ir1 I3 Tr3 X4 Ty T }
2 v w3 Y3 Y4 Y4 Y1
_ 1{ T1 T2 To XT3 T3 T4 T4 T }
2w w Y2 Y3 Yz  Ya ya Y1 |J’

after cancellation.

Another possible configuration for the quadrilateral occurs when it is not
convex, as in figure (b). The interior diagonal PP, then gives two triangles
PP, Py and P, P3P, and we can proceed similarly as before.

2.
a+zr b4+y c+z a b c T Y z
A=|lz4+u y+v z4+w |=|2x2+u y+v z4+w |+l x2+u y+v z4w
u+a v+b wHec u+a v+b w+Hec u+a v+b wHec
Now
a b c a b c a b c
r+u y+v z4+w | = T Y z + U v w
u+a v+b w+Hec ut+a v+b wHc u+a v+b wHc
a b ¢ a b c a b c a b ¢
= Ty z |+|x Yy +|lu v w U vow
U v W a b U v w a b ¢
a b ¢
= xT Yy z
U v w
Similarly
x Y z T Yy =z T Yy z a b c
z4+u y+v z4+w |=|u v =—|la b c|=|2 y =z
u+a v+b w+Hec a b ¢ U v ow U v w
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a b c
Hence A=2| 2 y =z
U vow
n? n+1)2 (n+2)?2| C3— C3—Cy n? 2n+1 2n+3
3.l (n+1)2 (n+2)? n+3)?%]| Co—Co—C1 | (n+1)? 2n+3 2n+5
(n+2)? (n+3)2 (n+4)?2 = (n+2)% 2n+5 2n+7
n*  2n+4+1 2
C3_>C_j3_02 (n+1)2 2n+3 2
N (n+2)? 2n+5 2
Rs — R3 — Ry n? 2n+1 2
Ry — Ry — Ry 2n+1 2 0| =-8.
= 2n+3 2 0
4. (a)
246 427 327 246 100 327 246 1 327
1014 543 443 | =| 1014 100 443 | =100| 1014 1 443
—342 721 621 —342 100 621 —-342 1 621
246 1 327
= 100| 768 0 116 | = 100(—1)‘ _;gz ;;Z ‘ = —29400000.
—588 0 294
(b)
1 2 3 4 1 2 3 4
-2 1 -4 3] 1|0 5 2 1
3 -4 -1 2| [0 —-10 =10 -10
4 3 -2 -1 0 -5 —-14 -17
5 2 1 5 2 11
= | —-10 —-10 —-10 |=-10| 1 1 1
-5 =14 17 -5 —14 -17
5 -3 6 3 6
= —-10 1 O 0 |=-10(-1) 9 _19 = 900.
-5 -9 —12
1 0 =2 10 0 1 10
5.detA=|3 1 4|=]3 1 10 |= 9 7 = —13.
5 2 -3 5 2 7



Hence A is non—singular and

1 Cii Co C3
A7l = _—Bade =3 Ci2 Cy Cs
Ciz Oy Cs3
6. (i)

2a 2b b—c

2b 2a a-+c R1_>}_%1+R2
a+b a+b b o
2 2 1

= (a+b)| 2b 2a a+ec
a+b a+b b

2 1
—2(a+b)(a—b)'a+b b
(i)
b+ c b c O — Cy— O,
c cta a B
b a a+b o
c b 0
C3_>€3_Cl —a c¢+ta 2a
o b—a a 2a
c b 0
RS_)IES_RZ 2| —a c+a 1 |=-2a
o b —c 0

Cr— C1 —Cq

-11 -4 2
29 7 -10
1 -2 1

2a+2b 2b+2a b+a

2a a—+c

a-+b a-+b b

0 2 1

(a+b)| 2(b—a) 2a a+c

0 a—+b b

' = —2(a+b)(a—b)>

c b 0

—a c+a 1
b—a a 1

_l; = 2a(c? + b?).

7. Suppose that the curve y = ax? + bz + ¢ passes through the points
(xla y1)7 <x27 y2)7 (1'3, y3)7 where Ty 7é mj le 7é j Then

ax? 4+ bry +c
ax3 +bry+c¢ =
ax3 +brz+c =

The coefficient determinant is essentially a Vandermonde determinant:

2 om 1 3 23 2} 1 1
2

x5 w2 1l |=|x1 22 23 |=—| 21 T2
2 2
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Hence the coefficient determinant is non—zero and by Cramer’s rule, there
is a unique solution for a, b, c.

1 1 -1
8. Let A=detA=1|2 3 k |. Then
1 k 3
1 0 0
C3 — C3+ (4 ‘ 1 k:+2‘
A= 2 1 k+2 | =
Cy — Cy—C4 L k-1 4 k-1 4

= 4—(k—1)(k+2)=—(k*—k—6)=—(k+3)(k—2).

Hence det A = 0 if and only if £k = —3 or k = 2.
Consequently if & # —3 and k # 2, then det A # 0 and the given system

rT+y—z =
20 +3y+kz = 3
r+ky+3z =2

has a unique solution. We consider the cases k = —3 and k = 2 separately.
k=—
1 1 -1 1 1 1 -1
AM=|2 3 -3 3 ]2__’)%__251 0 1 -1
1 -3 3 2 L O I
11 -1 1
R3 — R3 + 4Ry 01 —1 11,
00 065
from which we read off inconsistency.
k=
1 1 -1 1 1 1 -1 1
AM=1]2 3 2 3 ];3:];2__2]51 01 41
12 32 S S IV RO |
1 0 =5 0
Rs — Rs — Ry 01 41
00 00
We read off the complete solution x = 5z, y = 1 — 4z, where z is arbitrary.
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Finally we have to determine the solution for which 2 + y? + 2? is least.

22y + 22 = (52)2 4+ (1—42)2+ 2% =422 - 82+ 1

We see that the least value of z2+y2+22 is 42x &3 = 13 and this occurs when

882 — 21

z = 2/21, with corresponding values z = 10/21 and y = 1 — 4 X % =13/21.

1 -2 b
9. Let A= | a 0 2 |Dbethe coefficient determinant of the given system.

5 20
Then expanding along column 2 gives

a 2 1 b
A = 2 5 0‘—2 2‘-—20—2(2—@())

= 2ab— 24 = 2(ab — 12).

Hence A = 0 if and only if ab = 12. Hence if ab # 12, the given system has
a unique solution.
If ab = 12 we must argue with care:

1 -2 b 3 1 2 b 3
AM = a 02 2| =10 2 2—ab 2—3a
L S 2 01 0 12 —5b —-14
(1 -2 b 3 1 -2 b 3
_5b _7 _5b —7
- (01 5 5 |—=|0 1 =5 F
L 0 2a 2-— ab 2 — 3a 0 0 125@6 6—32(1
1 -2 b 3
_ —5b -7 _
a ! ! 1z 6?211 =B
000 0 &

Hence if 6 — 2a # 0, i.e. a # 3, the system has no solution.
If @ = 3 (and hence b = 4), then

1 -2 4 3 1 0 —2/3 2/3
B=|0 1 3 FL|—-|l0o1 z
00 0 0 00 0 0
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Consequently the complete solution of the system is x = %—F%z, Y= %7—1- %z,
where z is arbitrary. Hence there are infinitely many solutions.

10.

11 2 1 | Ry—Ri—2R |1 1 2 1
A _ |12 3 4 | Rs—Ry—2R; [0 1 1 3
T |24 7 246| Re—Ro—Ry |0 2 3 2t+4
2 2 6-t ¢ = 00 2—t t—2
11 3 11 3
I R e R
0 2—¢t t—2 N 0 2—¢t t—2
1 2t—2 1 2t—2
= oy 1.5 ‘(t—Z)‘ 1 ‘(t—2)(2t—1)

Hence A =0 if and only if t =2 or t = % Consequently the given matrix
B is non—singular if and only if £ # 2 and t # %

11. Let A be a 3 x 3 matrix with det A £ 0. Then
(i)
AadjA = (detA)ls (1)
(det A)det (adjA) = det(det A-I3) = (det A)>.
Hence, as det A # 0, dividing out by det A in the last equation gives
det (adj A) = (det A)>.

(ii) . Also from equation (1)

1
= A) adjA=1
(detA > ad) 5

so adj A is non—singular and

1

i A = A.
(adj ) det A

Finally
A adj (A7) = (det A N3
and multiplying both sides of the last equation by A gives

1
= A.
det A

adj (A™1) = A(det A1) I3
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12. Let A be a real 3 x 3 matrix satisfying A*A = I3. Then

() A{A—I;) = A'A— Al =I3— A
—(A'=I3) = (A" - I5) = (A - Iy)".

Taking determinants of both sides then gives

det Aldet (A —1I3) = det(—(A—I3)")
det Adet (A—1I3) = (—1)*det(A— I3)*
= —det (A~ 1) (1).

(i) Also det AA' = det I3, so
det Aldet A =1 = (det A)2.

Hence det A = +1.
(iii) Suppose that det A = 1. Then equation (1) gives

det (A — I3) = — det (A — I3),

s0 (1 +1)det (A — I3) = 0 and hence det (A — I3) = 0.

13. Suppose that column 1 is a linear combination of the remaining columns:

Aui = 20A0 + -+ 2 An.

Then
T2a12 + -+ + TpGln Q12 -0 Alp
Toagy + -+ XTpaoy Q22 - G2p
det A = ]
T20n2 + - -+ TpQpn An2 - App

Now det A is unchanged in value if we perform the operation

Cl 4)01*1'202*“‘*33710”:
0 a2 -+ a
0 az -+ a2

det A= . . ) . =0.
0 an2 -+ apn
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Conversely, suppose that det A = 0. Then the homogeneous system AX =0
has a non-trivial solution X = [z1,...,2,]". So

1A + -+ xpAgn = 0.

Suppose for example that x1 # 0. Then

Agq = <_2> + .o+ <_ﬁ> A,
T T

and the first column of A is a linear combination of the remaining columns.

14. Consider the system

—2x4+3y—2z = 1
x4+2y—z = 4
—2r—y+z = -3
-2 3 -1 0 7 -3 7 _3
Let A = 1 2 -1 |=|1 2 -1 :—‘3 _1‘:—27&0.
-2 -1 1 0 3 -1

Hence the system has a unique solution which can be calculated using
Cramer’s rule:

A Ay _Ag
€T = A7 Y= A’ z= A’
where
1 3 —1
Ay = 4 2 -1 |=-4,
-3 -1 1
-2 1 -1
Ay = 1 4 -1 |= -6,
-2 -3 1
-2 3 1
Az = 1 2 4 |=-8
-2 -1 -3
Hencex::—g:zy::—g:i’),z::—g:

15. In Remark 4.0.4, take A = I,,. Then we deduce
(a) det Eij = —1;
(b) det E;(t) =t;
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(C) det Eij(t) =1.

Now suppose that B is a non—singular n x n matrix. Then we know that B
is a product of elementary row matrices:

B=E;---Ep,.
Consequently we have to prove that
det F1--- Ej,A=det By -+ By, det A.

We prove this by induction on m.
First the case m = 1. We have to prove det F1A = det By det A if Ey is
an elementary row matrix. This follows form Remark 4.0.4:

(a) det EjjA = —det A = det E;; det A;
(b) det E;(t)A = tdet A = det E;(t) det A;
(c) det E;(t)A = det A = det E;;(t) det A.

Let m > 1 and assume the proposition holds for products of m elementary
row matrices. Then

det By - EpEmi1A = det(Ey--- Ep)(Emt14)

det (Eq -+ Ep) det (Epi1A)
( )
(

det (E1--- Fp)det Epiqdet A
= det((Ey-- - Ep)Epny1)det A

and the induction goes through.

Hence det BA = det B det A if B is non-singular.

If B is singular, problem 26, Chapter 2.7 tells us that BA is also singlular.
However singular matrices have zero determinant, so

det B=0 detBA=0,

so the equation det BA = det B det A holds trivially in this case.
16.

a+b+c a+bd a a
a+b a+b+c a a
a a a+b+c a+b
a a a+b a+b+c

51



Ry — R —Ry | ¢ —c 0 0
R2—>R2_R3 b b+c¢c —-b-—c b
Rs — R3 — Ry 0 0 c e
= a a CL—I—b CL—I—b—I—C
C 0 0 0
Co—Cy+Cr | b 2b+¢c —b—c b 2+c¢c —b—c b
=C 0 c —c
) . 2 : b 20 a+b a+b+c
a 2a a+b CL—i—b—i—c

2b+c¢c —-b—c¢ —2b—c¢

C3 — C3+ Oy 5| 2b+c —2b—c¢
= ¢ 0 ¢ 0 — ¢ 2a 2a +2b+c
- 2a a+b 2a+2b+c
= (20 +¢) L -1 = c2(2b+ ¢)(4a + 2b + ¢).
2a 2a+2b+c
1+ Ui Ul Uuq ul
1
17. Let A = 2 + U2 2 12 . Then using the operation
us us 1+ us us
Ug Ugq Ug 1+ uy
Ri — Ri+Ra+R3s+ Ry
we have
t t t t
u9 1+ (25 u9 (%)
A =
uz  uz  l+wus  ug
Uy Uy Uy 14+ uy

(where t = 1 + uy + ug + uz + uy)

1 1 1 1
_ upy 1+ wuo (%) U9
—(1+U1+U2+U3+U4) s us 1+ us us
Uy Uy Uy 1+ uy
The last determinant equals
1 0 00
Cr=Ce=Cil 10 0
Cs —=C3—Cp | 2 =1.
N ug 0 1 0
TR b, 0 001
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18. Suppose that Al =

—A, that A € My, xn(F), where n is odd. Then

det A* det(—A)
det A = (—1)"det A= —det A.

Hence (1 + 1)det A = 0 and consequently det A=0if 1 +1# 0 in F.

19.
1 111 Ci—Cy—Cg | 1 0 0 0
r 11 1] C3g—C3-Cy |r 1—71 0 0 —(1—7“)3
rr 11| Co—Co—=Ci |7 0 1—r 0 o
r r r 1 = T 0 0 1—r
20.
1 a2=bc a*| Ry = Ry— Ry | 1 a? — be a*
1 v»’—ca b* | Rg— R3—R; | 0 b>—ca—a®’+be b*—a
1 2—ab = 0 2—ab—a®+bc c*—at
B b2 —ca—a®+bec b*—at
Tl Z—ab—a?+be *t—at
|l =a)b+a)+ed—a) (b—a)b+a)®+a?)
~ |l (c—a)(c+a)+blc—a) (c—a)(c+a)(c?+a?)
_ (b—a)b+a+c) (b—a)b+a)(d®+a?)
(c—a)(ct+a+b) (c—a)(c+a)(c®+a?)
o B b+a+c (b+a)b®+a?
= (b-a)lc—a) cta+b (c+a)+a?
_ 1 (b+a)(*+a?)
= (b—a)(c—a)(a+b+c) 1 (et a)(c® +a?)
Finally

1
1

(b+

@) +a?)
(c+a)(c? +a?)

(® 4+ ac® + ca® + a®) — (b® + ab® + ba® + a®)

(A =) +a(® —b*) +a*(c—D)

(c —b)(c? + cb+ b% + alc +b) + d?)
= (c—b)(?+ cb+b*+ ac+ ab+ d?).
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Section 5.8

1.
(i) (=3414)(14 —2i) = (=3)(14 — 26) + (14 — 24)
= {(—3)14 — (=3)(24)} +i(14) — i(25)
= (=42 +6i) + (14i + 2) = —40 + 20i.
(ii)2+3i (24 30)(1 + 49)
1—4i (1 —4i)(1+40)
(24 30) + (2 + 3i)(44)
B 12 + 42
B —10+11z’_—10+Ei
B I T T
1+ 2i)2 1+ 44 + (2i)?
(iii)( + z') _ 1+ z+'( i)
1—1 1—2
 1+44i—4 344
B [
_ (—3+4i)(1+i)_—7+i__z+1i
B 2 o2 227
2. (i)
iz+(2-100)z2=32+2i & z2(i+2-10i—3)=2i
—2i
= —1—9i)=2i =
< z( i) =22 R
o =2(1-9i) —18-2i —-9—i
B 1+81 8 41
(ii) The coefficient determinant is
1+i 2—i| . . : N :
‘14—22’ 34 =(1+9)B+i)—2—-9)(1+2i)=-2+1i#0.

Hence Cramer’s rule applies: there is a unique solution given by

-3 2—1
242t 3+1 -3 —-11: .
z = - = — =—1+51
-2+ -2+
142 —31
1+2¢ 2421 —6+ T2 19 — 8¢
w e = = .
—2+1 —241 5
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. , 140)1% —1
14+ (1 e (1 99 _ (—
+ (1 +d)+ -+ (1+19) A+i)-1

(144)10—1

Now (1 +i)? = 2i. Hence
(1 + Z')lOO — (2Z)50 — 2502'50 — 250(_1)25 — _250'
Hence —i {(1+14)1% — 1} = —i(—250 — 1) = (250 + 1)i.
4. (i) Let 22 = —8 — 6i and write z=x-+iy, where x and y are real. Then

22 =2 —y? + 2zyi = —8 — 61,

so 22 —y?> = —8 and 2xy = —6. Hence

—3\2
y= —3/$, 332 - <—> = _8a

so 2% + 822 — 9 = 0. This is a quadratic in 2. Hence 2> = 1 or —9 and

consequently 22 = 1. Hence x = 1, y = —3 or x = —1 and y = 3. Hence
z=1—-3tor z=—-1+4 31.

(i) 22 — (3 +1i)z + 4+ 3i = 0 has the solutions z = (3 +1i & d)/2, where d is
any complex number satisfying

d?> = (3+i)* —4(4 + 3i) = —8 — 6i.

Hence by part (i) we can take d = 1 — 3i. Consequently

(13
p= O 2( 5 9 i o 140 Y

(i) The number lies in the first quadrant of 4

the complex plane. a : !

[44i] =42+ 12 = V17,

Also Arg (4 4 i) = «, where tana = 1/4
and 0 < o < 7/2. Hence o = tan ~1(1/4).
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(ii) The number lies in the third quadrant of Y
the complex plane.

=31

‘—B—i

! V10 3
2 2

Also Arg (=3-1) = —m + «, where tana =
3/3=1/3 and 0 < a < m/2. Hence a =

—1(1/3).
tan="(1/3) 142

(iii) The number lies in the second quadrant of Y
the complex plane.

| — 142 = /(-1)2 + 22 = V5.

Also Arg (—1+42i) = m—«, where tana =
2 and 0 < a < /2. Hence a = tan ~12.

vl L
+
o

(iv) The number lies in the second quadrant of Y
the complex plane.

y—1+z‘\/§\

- %x/— SVIT3=

Also Arg (5 + @2) = 7 — «, where
tana = 73/% =+V3and 0 < a < 7/2.
Hence a = /3.

6. (i) Let 2 = (1+4)(1 + v/3i)(v/3 —4). Then
lz| = |14l + V3i||vV3 -]
= VIR 124 (VB2 (VB + (-1)2
= V2Vi4Vi=4V2.

Argz = Arg(14i)+ Arg(1+V3) + Arg (V3 —14) (mod 27)
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Hence Argz = -% and the polar decomposition of z is

12
5% 5
2 =4V2 <COS— —|—zsm—7r>

12 12

(ii) Let z = % Then

A+DPI0=VBIP _ (V2’2 o

z| = =
. (V3 +i) 2!
Argz = Arg(1+44)° +Arg(1 —V3i)° — Arg (V3 +4)*  (mod 2n)
= 5Arg(1+41) 4 5Arg (1 — V/3i) — 4Arg (V3 + 1)
m - —137  1lxw
= 5- TT) T T
54 5 < 3 ) 6 12 12
Hence Argz = H—” and the polar decomposition of z is
11 11
z=27/? ((:081—27r +isin1—;> .

7. (i) Let z = 2(cos § +isin}) and w = 3(cos § +isin §). (Both of these
numbers are already in polar form.)
(a) zw = 6(cos (7 + §) +isin(F + §))
= 6(cos 2F + isin 27).

= 2(cos (X — Z) +isin (5 — %))

2(cos & + isin ).
(c) 2 = 3(cos (& — F) +isin (E — )

%(cos (13) +isin(53)).

(b)

SN

SHIS

(d) ;—5 = g—i(cos(%” — %“) —i—zsm(EZr — 26”))
%(COS 1112” + 3 sin 1112” ).

(a) (1+1i)%=2i, so
(1+0)'% = (20)% = 2%° = 64(4%) = 64(—1)> = —64.
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1 -1 1
= —73:—:—:—:—
S = i

8. (i) To solve the equation 2% = 1 + V/3i, we write 1 4+ /37 in modulus—

argument form:

1+V3i = 2(008% + isin g)

Then the solutions are

T +2k 42k
zk:\/§<cos<#>+isin<¥>>, k=0, 1.

Now k = 0 gives the solution

20 zx/ﬁ(cos%—i—isin%) = \/5(

| %

Clearly z1 = —2g.

4

(ii) To solve the equation z* = i, we write ¢ in modulus—argument form:

. T .. T
z:cos§+zsm—.

2

Then the solutions are

T+ 2k T+ 2k
zk:cos<¥>+isin<¥>, k=0,1,2, 3.

2

= TR e (T AT
ar = cos{ g 5 s s T

( 7T+,,7T>k( 7r+,,7r)
= — in — — in —
cos2 %S 2 cos8 tS 3

.k ™ R

= 17(cos — +78In —).

(cos < 3

Z+2km - ke
2 -_—
NOW COS ( 7 ) = COS (8 + ), SO
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Geometrically, the solutions lie equi—spaced on the unit circle at arguments

s 7r+7r 5% 7T+ 97 7r+371' 137
—_ —_ —_——= — —_ m = — —_ _— = —
8 8 2 87 8 8" 8 2 8
Also z9 = —zp and z3 = —27.
(iii) To solve the equation z® = —8i, we rewrite the equation as

(&) -

<z):17 —1++/3i —1—\/52"

Then
o 2 2

Hence z = —21, V3 +ior —3+i.
Geometrically, the solutions lie equi-spaced on the circle |z| = 2, at

arguments

oML I _om o 2w 3w
66 3 66 327

(iv) To solve z* = 2 — 2i, we write 2 — 2i in modulus-argument form:

9 — 9 = 23/2 <COS_TW +z’sin_%> .

Hence the solutions are

==+ 2k == + 2k
2k = 23/8 cos <447T> + i sin <447T>, k=0,1,2, 3.

We see the solutions can also be written as

. - .. T
zE = 23/8;k (cos — +1¢sin —)

16 16
= 923/8;k (COS 17r_6 — ¢sin %) .

Geometrically, the solutions lie equi-spaced on the circle |z| = 2%/8, at ar-
guments

-7 —-T 7 Tm -

T 157 —m T 237

16’16 2 1616 ‘216" 16 2 16

Also z9 = —zp and 23 = —2;1.
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24+1 —14+2 2 1 /) 1
1+i —1+i 1 = Bo=To )y
. . ) R3 — R3 — Ry X )
1420 —2417 142 /) —1 7
. 1 2 1 1 7 1
RQ;ng(ile)Rl 00 —i | Ro—iRy |0 0 1
3 T 00 0 000
1 2 0
R — R — Ry 0 01
0 0 O
The last matrix is in reduced row—echelon form.
10. (i) Let p=1+im and z = = + iy. Then
pz+pz = (I—im)(x+iy)+ (I +im)(z —iy)
= (lz + liy — imx + my) + (lz — liy + imz + my)

= 2(lz +my).
Hence pz 4+ pz = 2n < lx + my = n.

(ii) Let w be the complex number which results from reflecting the com-
plex number z in the line [x + my = n. Then because p is perpendicular to
the given line, we have

w—z=1p, teR. (a)

Also the midpoint wT‘*'z of the segment joining w and z lies on the given line,

ﬁ<w32>+p<ﬁ> = n,
(o) e

Taking conjugates of equation (a) gives

W—Z = tp. (c)

Then substituting in (b), using (a) and (c), gives

_ (2w —tp n 2Z+tp
=n
P P
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and hence
pw + pz =n.

(iii) Let p=b —a and n = |b|> — |a|?. Then

z—al=|z-b & |z—af*=]|z—0b
S (z-a)z—a) = (z-b)(z-D)
& (z—a)(z—a) (z—b)(Z—b)
& 2Z —azZ — za+ aa 2Z — bz — zb + bb
sb-a)z+(b—a)z b2 — |a|?
& pz+pz = n.

zZ—a

Suppose z lies on the circle z—b‘ and let w be the reflection of z in the

line pz + pz = n. Then by part (ii)
pw + pz =n.

Taking conjugates gives pw + pz = n and hence

(a)

Substituting for z in the circle equation, using (a) gives

n—pw

A= |2t _|nopwopa) (b)
nopw n — pw — pb
However
n—pa = |b?>—la*—(b—1a)a
= bb—aa— ba+aa
= b(b—a)=bp.

Similarly n — pb = ap. Consequently (b) simplifies to

b—
A= =
a —

gl &l

w—al’

Bp—pw B
ap — pw -

==

w—a
w—b

which gives ‘

>l
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11. Let a and b be distinct complex numbers and 0 < a < .
(i) When z; lies on the circular arc shown, it subtends a constant angle
a. This angle is given by Arg(z; — a) — Arg(z; — b). However

Arg (zl — Z) = Arg(z; —a) — Arg(z — b) + 2km
Z1 —

= «a+ 2km.
It follows that k =0, as 0 < a < 7 and —7 < Argf < w. Hence
Arg (Zl — a) =aq.
Z1 — b
Similarly if z9 lies on the circular arc shown, then

Arg <"‘2_“> —— ——(r—a)=a-m.

Zg—b

Replacing o by m — «, we deduce that if z4 lies on the circular arc shown,

then
Arg <Z4_a> =T —aq,
24— b

while if z3 lies on the circular arc shown, then

Arg <Z3 — a) = —a.
23— b

The straight line through a and b has the equation

z=(1—t)a+tbh,
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where t is real. Then 0 < ¢t < 1 describes the segment ab. Also

zZ—a t

2—b t—1

Hence Z= is real and negative if 2 is on the segment a, but is real and

positive if z is on the remaining part of the line, with corresponding values
zZ—a
Arg < ) =, 0,
z—b

(ii) Case (a) Suppose z1, z2 and z3 are not collinear. Then these points
determine a circle. Now z; and zo partition this circle into two arcs. If z3
and 2,4 lie on the same arc, then

Z3— 2 Z4— 2
Arg(3 1>:Arg(4 1);
zZ3 — 22 Z4 — 29
whereas if z3 and z4 lie on opposite arcs, then
z3— 2
Arg ( 3 1) =«
Z3 — 29
Z4— 2
Arg ( 1 1) =a—T.
zZ4 — R9
Hence in both cases

Arg (23_21/24_Zl> = Arg <23_21>—Arg <Z4_Zl> (mod 2m)
Z3 — 29 24 — 22 zZ3 — 29 Z4 — %9

= 0Oor .

respectively.

and

In other words, the cross—ratio

23 — 21 R4 — 21

R3 —R2 24 — k2
is real.
(b) If z1, 22 and z3 are collinear, then again the cross—ratio is real.
The argument is reversible.
(iii) Assume that A, B, C, D are distinct points such that the cross—ratio

23 — 21 24 — 21

23 — k9 Z4 — 22

is real. Now r cannot be 0 or 1. Then there are three cases:
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(i) 0<r<1;
(ii) r < 0;
(iii) 7 > 1.

Case (i). Here |r|+ |1 —7r| =1. So

+‘1_ <Z4—21 ‘23—22>‘ -1

Ry — %2 23—~
Multiplying both sides by the denominator |z4 — 23||z3 — 21| gives after
simplification

R4 — 21 k3 — %2

R4 — 22 R3—Z1

|24 — 2z1||23 — 22| + |22 — 21|24 — 23| = |24 — 22|23 — 21],

or

(a) AD.BC+AB-CD = BD - AC.
Case (ii). Here 1 + |r| = |1 — r|. This leads to the equation

(b) BD-AC + AD-BC+ = AB - CD.
Case (iii). Here 1 + |1 — 7| = |r|. This leads to the equation
(c) BD-AC+ AB-CD = AD - BC.

Conversely if (a), (b) or (c) hold, then we can reverse the argument to deduce
that r is a complex number satisfying one of the equations

rl=rl =1 =] 1= =)

from which we deduce that r is real.
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Section 6.3
4 -3

1. Let A= { 1 0 ] . Then A has characteristic equation A2 — 4\ +3 =0

or (A—3)(A—1) =0. Hence the eigenvalues of A are \; =3 and Ay = 1.
A1 = 3. The corresponding eigenvectors satisfy (A — A\112)X =0, or

=

or equivalently x — 3y = 0. Hence

3

and we take X = 1

Similarly for Ao = 1 we find the eigenvector X5 = [ 1 ]

31

Hence if P = [X;|X32] = [ 11

} , then P is non—singular and

30
-1 .
pan[10].
Hence

o [3 07,
a=rfs Ve

and consequently

no__ 3" 0 -1
w30
31 30 )1 1 —1
- 11 0O 1|2 -1 3
_ o 1p3mt g 1 -1
20 3 1 -1 3
_ 1 3n+1_1 _3n+1+3
2| 31 —3" 43
3n—1 3—3"
= A L.
2 Tt b
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2. Let A = [ g?g leg ] . Then we find that the eigenvalues are A\ = 1 and
A2 = —1/5, with corresponding eigenvectors

2 -1
X1:|:1:| and X2:|: 1:|
Then if P = [X]|X32], P is non-singular and

P‘lAP:[l 0 ] and A:P[l 0 ]P—l.

0 —1/5 0 —1/5
Hence
R T
Hp[ég]P—l
- [T 10 o5 2]
-5t
SURRE

3. The given system of differential equations is equivalent to X = AX,

where
3 -2 T
4[] wa x=[7)
. 2 11, . . .
The matrix P = 51|82 non-singular matrix of eigenvectors corre-

sponding to eigenvalues A\; = —2 and Ay = 1. Then

., [-20
par-[2 0]

The substitution X = PY, where Y = [z1, y1]?, gives

. [ -2 0
e
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or equivalently 1 = —2x; and 31 = 1.
Hence z1 = x1(0)e™2" and y; = y1(0)e’. To determine z1(0) and y1(0),
we note that

z1(0) | p-l z(0) | _ 1 1 -1 131 |3
y1(0) | y©0) | 3| -5 2 21 | 7|
Hence 21 = 3e~2 and y; = 7e!. Consequently

r=2x +1y =6e 2 +7 and y=>5x 4y =15e 2 4 Tel

4. Introducing the vector X,, = [ n ] , the system of recurrence relations

Yn
Tpt1 = 3Tp —Yn
Yn+tl = —Tp+ 3Yn,
3 -1
becomes X, +1 = AX,,, where A = { 1 3 } Hence X,, = A" X, where
1
Xp = 5

To find A™ we can use the eigenvalue method. We get
b QN AN QN _yn
- 9 QN _gn  9n + qn
Hence
[ 2” + 4" 1
— 4" 2” + 4” 2
[ 4n 4 2(2n — 4m)
| 27" =47 202" +47)
[3x 2" — (3 x 2 —4m)/2
3><2"+4n (3 x 2" +4)/2

N~ N~ N

Hence z, = 1(3 x 2" —4") and y, = 3(3 x 2" +4").

b . . .
5. Let A= CCL d ] be a real or complex matrix with distinct eigenvalues

A1, A2 and corresponding eigenvectors X1, Xs. Also let P = [X7|X5].

(a) The system of recurrence relations

Tny1 = arp + by,
Ynt1l = CTp +dyn
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has the solution
Tn, n| To A1 0 —1>n [ xo ]
= A = (P P
[ Yn ] { Yo } ( [ 0 A ] Yo
A0 T

- P 1 P—l |: 0 :|
[ U ] Yo

_ AT 0 o

- wabal |4 ][]

[X1|Xo] [ igg

B

(b) In matrix form, the system is X = AX, where X = [ Zj ] . We substitute

:| = )\?OtXl + )\gﬂXQ,

where

X = PY, where Y = [z1, 11]'. Then
X = PY = AX = A(PY),
SO

Y:(PlAP)Y:[/\Ol inﬂ

Hence 1 = A1x1 and 41 = A2y1. Then

z1 =21(0)eM" and  y; = y1(0)e".

o l=r 1o |

o = el = 15 ]

Consequently z1(0) = a and y;(0) = 8 and

i A1t
MR

ae™Mt X + B Xy,
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a b
6. Let A= [ e d
and X\ = a—1ib, with corresponding eigenvectors X = U+iV and X = U—iV,
where U and V are real vectors. Also let P be the real matrix defined by
P = [U|V]. Finally let a + ib = re®, where r > 0 and 0 is real.

] be a real matrix with non—real eigenvalues A = a + ib

(a) As X is an eigenvector corresponding to the eigenvalue A\, we have AX =
AX and hence

AU +iV) = (a+ib)(U+iV)
AU +iAV = aU — bV +i(bU + aV).

Equating real and imaginary parts then gives
AU = aU-bV
AV = bU +aV.

(b)

AP = A[U|V] = [AU|AV] = [aU—bV [bU+aV] = [U|V] [ = 2 } = P{ ?

Hence, as P can be shown to be non—singular,

plap—| @0
—b a |’

(The fact that P is non—singular is easily proved by showing the columns of
P are linearly independent: Assume xU + yV = 0, where x and y are real.
Then we find

(x+iy)(U—=iV) + (z —iy)(U +1iV) = 0.

Consequently x+iy = 0 as U —iV and U+iV are eigenvectors corresponding
to distinct eigenvalues a — ib and a + @b and are hence linearly independent.
Hence x =0 and y = 0.)

(c¢) The system of recurrence relations

Tpy1 = aTp+ by,

Yn+1 = anJden
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has solution
-]
Yn Yo
. a b " -1
- e[

T
Y

_ P[ r cosf rsin@]
—rsinf rcosf

]

0

[5]
p

W[ cos® sind 1" [

= b [—sin& Cosﬁ] [ﬂ]

cosnf sinnd } [ «o ]

—sinnf cosnf I}

acosnb + Bsinnd }

= UV [

—asinnf + § cosnb
= 7" {(acosnb + Bsinnh)U + (—asinnd + Bcosnh)V'}
= 1" {(cosnb)(alU + V) + (sinnh)(BU — aV)}.

= UV [

(d) The system of differential equations

@ b
a T
d

d—i = cx+dy

is attacked using the substitution X = PY, where Y = [x1, 11]*. Then

Y = (P 'AP)Y,

HEERH

Equating components gives

SO

1 = azr1+ b
yl = —b$1+ay1.

Now let z = x1 + ty;. Then
=21+ = (axl + byl) + i(—b:(;l + ayl)
= (a—1ib)(x1 +iy1) = (a —ib)z.
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Hence
z = z(O)e(“*ib)t
w1 +iy1 = (21(0) +iy1(0))e™(cos bt — isinbt).
Equating real and imaginary parts gives

r1 = e {x1(0)cosbt + y1(0)sin bt}
y1 = e {y1(0)cosbt — x1(0)sinbt} .

Now if we define o and [ by

=l ]

we see that o = x1(0) and 8 = y1(0). Then

MR
Y B Y1
B e (o cos bt + B3sin bt)
= [OWV] [ e (B3 cos bt — asin bt) ]
= e"{(acosbt + Bsinbt)U + (B cosbt — asin bt)V'}
= e"{cosbt(aU + BV) +sinbt(BU — aV)}.

7. (The case of repeated eigenvalues.) Let A = [ Z Z ] and suppose that

the characteristic polynomial of A, A2 — (a +d)\ + (ad — bc), has a repeated
root . Also assume that A # als.

(i)
M —(a+dM+(ad—be) = (A—a)?
A2 — 20\ + o,
Hence a + d = 2« and ad — be = o2 and
(a+d)? = 4(ad—bc),
a?+2ad+d®> = 4ad— 4be,

a® —2ad + d?> + 4bc = 0,
(a —d)? +4bc = 0.
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(ii) Let B — A — aly. Then

B?=(A—-al)? = A%2-2aA+ d?I,
A? — (a+ d)A + (ad — be) Iy,

But by problem 3, chapter 2.4, A? — (a + d)A + (ad — bc)Iz = 0, so
B?=0.

(iii) Now suppose that B # 0. Then BE; # 0 or BE, # 0, as BE; is the
i—th column of B. Hence BXs # 0, where Xo = Ey or Xo = Es.

(iv) Let X; = BXy and P = [X;|X32]. We prove P is non-singular by
demonstrating that X; and X are linearly independent.
Assume X1 + yXo = 0. Then

tBXo+yXo = 0

B(xBX2+yX2) = B0=0
tB?’Xy +yBXy, = 0
20X9+yBXe = 0
yBXy, = 0.

Hence y = 0 as BX5 # 0. Hence xtBX2 = 0 and so x = 0.
Finally, BX1; = B(BX3) = B?X3 =0, so (A — al3)X; =0 and

AX1 = aXl. (2)
Also
X1 = BXQ = (A - a[2)X2 = AXQ - Ong.
Hence
AXo = X1 + aXs. (3)
Then, using (2) and (3), we have
AP = A[X1|Xs] = [AX1]|AXY]
= [aX1|X1 + OzXQ]
a 1
= [X1|X2] [ 0 a ]
Hence
a 1
ar=r|o 1]
and hence
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plap—| @ 1
0 ol

8. The system of differential equations is equivalent to the single matrix

equation X = AX, where A = [ j _é ]

The characteristic polynomial of A is A2 — 12X + 36 = (A — 6)2, so we
can use the previous question with o = 6. Let

B:A-%:[_Z _;]

4 0
P = [X1]|X3], we have

ThenBng[_z];é[0],ifX2:[é].AlsoletXlzBXg. Then if
14p |61
P AP_[O 6 |-

I

Now make the change of variables X = PY, where ¥ = [ ] . Then

L [6 1
Y =(P AP)Y_[O G]Y,

or equivalently 1 = 6x1 4+ y1 and y; = 6y1.
Solving for y; gives y; = y1(0)e. Consequently

41 = 61 + y1(0)e®.
Multiplying both side of this equation by e~5 gives
d, _ —6t _
%(e Or1) = e %% —6e %z = 41(0)
e Oz = y(0)t+c,
where c is a constant. Substituting ¢ = 0 gives ¢ = x1(0). Hence

e %z = y1(0)t 4 21(0)

and hence
21 = " (y1(0)t + 21(0)).
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However, since we are assuming z(0) =1
o] = [

1 0 —1 1

" [ —4 -2 ] [ 1

Hence 21 = €% (3t + 1) and y; = 3e5.
Finally, solving for z and y,

M

Hence x = €5 (1 — 3t) and y = €% (6t + 1).

9. Let

1/2 1/2
1/4 1/4
1/4 1/4

A:

0
1/2
1/2

y(0), we have

E

}:

(a) We first determine the characteristic polynomial ch4(\).

B

A—1/2 —1/2 0
cha(\) = det(\3—A)= 1/4 A—1/4 —1/2
—1/4  —1/4 A—1/2
= (A-2)| T 2T | s| e a0
= () 0D 0m) s fT 0
()3

|

)_

1

8

|



5A 1
— 2_ 74z
= a(e-2a)

— AA=1) (A—i).

(b) Hence the characteristic polynomial has no repeated roots and we can
use Theorem 6.2.2 to find a non—singular matrix P such that
1
) Z)
We take P = [X;|X2|X3], where X1, X2, X3 are eigenvectors corresponding

to the respective eigenvalues 1, 0, %.
Finding X;: We have to solve (A — I3)X = 0. we have

P1AP = diag(1, 0

~-1/2  1/2 0 10 -1
A-I=| 1/4 =3/4 1/2|—=]0 1 -1
/4 1/4 —1/2 00 0

Hence the eigenspace consists of vectors X = [z, y, z|* satisfying r = 2 and
y = z, with z arbitrary. Hence

z 1
X = =z 1
z 1

and we can take X1 = [1, 1, 1]°.
Finding Xo2: We solve AX = 0. We have

1/2 1/2 0 1 10
A=|1/4 1/4 1/2 | —- |0 0 1
1/4 1/4 1/2 0 00
Hence the eigenspace consists of vectors X = [z, y, z|' satisfying = —y

and z = 0, with y arbitrary. Hence

—y 1

X = y | =vy 1

0 0

and we can take Xy = [—1, 1, 0]".
Finding X3: We solve (A — 1I5)X = 0. We have

1/4 1/2 0 10 2
A= lz=11/4 0 1/2 =101 -1
1/4 1/4 1/4 00 0
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Hence the eigenspace consists of vectors X = [z, y, z|' satisfying + = —22

and y = z, with z arbitrary. Hence

—2z -2
0 0
and we can take X3 = [-2, 1, 1]
1 -1 -2
Hence we can take P = | 1 1 1
1 0 1
(c) A = Pdiag(1, 0, 1)P~! so A" = Pdiag(1, 0, )P~
Hence
1 -1 -2 1o o7, 11
A" = |1 1 1 0.0 0 |2
1 0 1 00 4 -1 -1
r 2
(10— 1 1 1
10 & -1 -1 2
r 2 2 4
) 1+? 1+? 1—4;
B B
Ll 1z 1+4
TREER! ) 2 2 —4
= g| !l i+gm| -t -1 2
111 ' -1 -1 2
10. Let
5 2 -2
A= 2 5 -2
-2 -2 5

(a) We first determine the characteristic polynomial ch ().

2
cha(\) = | -2 A—5 2
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0

5

-2 2
A—5H 2
A=3 A-=3



A—5 =2 4

C3—-C3—-Cy = (A=3)| =2 A=5 —A+7
0 1 0
A—=5 4
A=y gy
—A=3){(A=5)(=A+T7)+8}
—~(A=3) (=A% + 51+ T\ —35+8)
—(A=3)
—(A=3)

(

>/
OO

(—
= —(A=3)(=A\?+12)\—-27)
= —(A=3)(-1)A=3)(A-9)
= (A=3)(A-9).

We have to find bases for each of the eigenspaces N(A—913) and N(A—3I3).
First we solve (A — 3I3)X = 0. We have

2 2 =2 11 -1
A =313 = 2 2 -2|—-=(100 0
-2 =2 2 00 O
Hence the eigenspace consists of vectors X = [z, y, 2] satisfying x = —y+2z,
with y and z arbitrary. Hence
—y+z -1 1
z 0 1
so X1 = [-1,1,0]" and X5 = [1, 0, 1]* form a basis for the eigenspace
corresponding to the eigenvalue 3.
Next we solve (A — 9I3)X = 0. We have
-4 2 =2 1 01
A—9]3= 2 4 -2 | —-|011
-2 -2 -4 0 00
Hence the eigenspace consists of vectors X = [z, y, z|' satisfying z = —2
and y = —z, with z arbitrary. Hence
—Zz —1
X=|—-2|=2z| -1
z 1
and we can take X3 = [—1, —1, 1]* as a basis for the eigenspace correspond-

ing to the eigenvalue 9.
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Then Theorem 6.2.3 assures us that P = [X]X2|X3] is non-singular and

PlAP =

S O W

0
3
0

o O O
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9 4.5 1459 135
1-45 |
1o

Figure 1: (a): 22 — 8 + 8y + 8 = 0; (b): v — 122 +2y+25=0

Section 7.3

1. (i) 22 —8x+8y+8 = (z—4)2+8(y—1). So the equation 72 —8x+8y+8 =0
becomes
2} +8y1 =0 (1)

if we make a translation of axes x —4 =x1, y — 1 = y1.
However equation (1) can be written as a standard form

which represents a parabola with vertex at (4, 1). (See Figure 1(a).)

(i) y?2 — 120+ 2y + 25 = (y +1)2 — 12(z — 2). Hence y? — 122+ 2y +25 =0
becomes
Y — 122, =0 (2)

if we make a translation of axes x — 2 =x1, y+ 1 =y.
However equation (2) can be written as a standard form

y% = 12z,

which represents a parabola with vertex at (2, —1). (See Figure 1(b).)

2. day — 3y? = X'AX, where A = [g _3] and X = [z] The
ecigenvalues of A are the roots of \> + 3\ — 4 = 0, namely \; = —4 and

Ay =1.
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The eigenvectors corresponding to an eigenvalue A\ are the non—zero vec-

tors [z, y]! satisfying
0-Xx 2 2] [0
2 —=3-A y | |0

A1 = —4 gives equations
dr +2y =
2r+y =
which has the solution y = —2x. Hence

T | T 1
y | | =2z | -2 |
A corresponding unit eigenvector is [1/v/5, —2/v/5]".

Ao = 1 gives equations

—r+2y = 0
20 —4y = 0

which has the solution z = 2y. Hence

r | | 2y | 2
NN
A corresponding unit eigenvector is [2/v/5, 1/v/5]*.
Hence if

P=

SIS
S-Sk

then P is an orthogonal matrix. Also as det P = 1, P is a proper orthogonal

represents a rotation to new x1, y; axes whose positive directions are given
by the respective columns of P. Also

o

-4 0
t —
pap-[ 40,
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Then X!AX = —42? + y? and the original equation 4zy — 3y? = 8 becomes
—422 + y? = 8, or the standard form

2 2

—21 Y

_ —:1
5 + 3 ,

which represents an hyperbola.
The asymptotes assist in drawing the curve. They are given by the
equations

.2 2
%—I—%ZO, or 1y = £2x;.
Now
aerl- 2 g )
Y1 Yy V5 V5 Yy
SO

Hence the asymptotes are

9 _
x+y:i2<:n 2y>’
V5

which reduces to y = 0 and y = 4x/3. (See Figure 2(a).)

8 -2
—2 )
eigenvalues of A are the roots of A> — 13\ + 36 = 0, namely \; = 4 and

A2 = 9. Corresponding unit eigenvectors turn out to be [1/4/5, 2/v/5]" and
[—2//5, 1/4/5]t. Hence if

3. 8x2—4xy—|—5y2:XtAX,whereA:[ ]andX:[z].The

1 =2
P= 9 ¥
V5 V5

then P is an orthogonal matrix. Also as det P = 1, P is a proper orthogonal
matrix and the equation
o ]-rln]
Y Y1

represents a rotation to new x1, y; axes whose positive directions are given
by the respective columns of P. Also

" 140
PAP—[O 9 |
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Figure 2: (a): 4ay — 3y? = 8; (b): 822 — 4wy + 5y? = 36

Then X'AX = 422 + 9y? and the original equation 822 — 4xy + 5y? = 36
becomes 4z + 9y} = 36, or the standard form

“1 -1
9+4 ’

which represents an ellipse as in Figure 2(b).
The axes of symmetry turn out to be y = 2z and z = —2y.

4. We give the sketch only for parts (i), (iii) and (iv). We give the working
for (ii) only. See Figures 3(a) and 4(a) and 4(b), respectively.
(ii) We have to investigate the equation

522 — dry + 8y + 4V5x — 16v5y + 4 = 0. (3)

Hel"e 5$2—4$y+8y2:XtAX’ WhereA: |:_g _§:| andX: |:ay?:|

The eigenvalues of A are the roots of A2 — 13\ + 36 = 0, namely \; = 9 and
A2 = 4. Corresponding unit eigenvectors turn out to be [1/v/5, —2/+/5]* and
[2/v/5, 1/4/5]t. Hence if

P=

SIS

then P is an orthogonal matrix. Also as det P = 1, P is a proper orthogonal
matrix and the equation



Figure 3: (a): 42? — 9y? — 242 — 36y — 36 = 0;

VBx —16V5y +4 =0

(b): 522 — 4wy + 8y? +

y
lg /
~. 43’15 _y2
N ' ‘ X X
9 48 /] 45 9
/ |9 T X,

Figure 4: (a): 422 +y? — dzy — 10y — 19 = 0;

70 — 30y +29=0
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represents a rotation to new x1, y; axes whose positive directions are given
by the respective columns of P. Also

tan |90
PAP[O4.

Moreover
5z — dxy + 8y? = 9x? + 492

To get the coefficients of 21 and y; in the transformed form of equation (3),
we have to use the rotation equations

T = %(xl +2y1), y= %(—2961 + 1)
Then equation (3) transforms to
922 4 4y? + 3621 — Sy; +4 =0,
or, on completing the square,
9(z1 +2)% + 4(y1 — 1)* = 36,

or in standard form

x_% + @ =1
4 9 ’
where 9 = 1 + 2 and y3 = y3 — 1. Thus we have an ellipse, centre

(x27 y2) = (07 0)7 or (xla yl) = (_27 1)1 or (.’L’, y) = (07 \/5)
The axes of symmetry are given by o = 0 and y2 = 0, or 1 +2 = 0
and y1 —1 =0, or

1( 2y)+2=0 and 1(2+) 1=0
—(x — = n —= 2z —1=0,
s s

which reduce to x — 2y + 2v/5 = 0 and 2z +y — /5 = 0. See Figure 3(b).
5. (i) Consider the equation

222 + y* 4 3zy — bz — 4y + 3 = 0. (4)
2 3/2 —5/2 4 3 -5 1 1 -1
A=| 3/2 1 —2|=8 3 2 —4|=8| 3 2 —4|=0.
—-5/2 -2 3 5 —4 6 —2 -2 2
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Let = x1 + a, y = y1 + [ and substitute in equation (4) to get
2(r1+a)? + (1 +B8)? +3(x1 + ) (1 +B) = 5(z1+a) =41 +B)+3 =0 (5).
Then equating the coefficients of 1 and y; to 0 gives

do+38-5 =
3a+28-4 = 0,
which has the unique solution a = 2, § = —1. Then equation (5) simplifies

to
227 + 47 + 3z1y1 = 0 = (2z1 +y1) (21 + ).

So relative to the x1, y; coordinates, equation (4) describes two lines: 2x1 +
y1 = 0 and z1 +y; = 0. In terms of the original z, y coordinates, these lines
become 2(x —2)+ (y+1)=0and (z —2)+(y+1)=0,ie. 2 +y—3=0
and x + y — 1 = 0, which intersect in the point

(ii) Consider the equation

922 4+ y? — 6y + 62 — 2y +1=0. (6)

Here
9 -3 3
A=1|3 1 —-1|=0,
3 -1 1
as column 3 = — column 2.

Let x = 1 + o, y = y1 + B and substitute in equation (6) to get
91+ )’ + (11 + 8)* — 6(z1+ ) (y1 + B) +6(z1 + ) —2(y1 + B) +1 = 0.
Then equating the coefficients of 1 and y; to 0 gives

18a—64+6 =
6a+28-2 = 0,

or equivalently —3a+ 3 —1 = 0. Take « = 0 and # = 1. Then equation (6)
simplifies to

977 + yi — 62191 =0 = (321 —y1)* (7)

85



In terms of x, y coordinates, equation (7) becomes
(Bx—(y—1)?=0, or3z —y+1=0.
(iii) Consider the equation
22 Aoy + 42—z —2y—2=0. (8)
Arguing as in the previous examples, we find that any translation
r=xi+ta, y=y+p

where 2a + 46 — 1 = 0 has the property that the coefficients of x1 and y;
will be zero in the transformed version of equation (8). Take § = 0 and
a =1/2. Then (8) reduces to

9
o3 + dzyyr + 4y — 1= 0,

or (z1+2y1)? = 3/2. Hence z1 +2y; = £3/2, with corresponding equations

r+2y=2 and x+2y=-1.
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Section 8.8

1. The given line has equations

x = 3+t(13—-3) =3+ 10t,
= —2+1t(3+2)=-2+5t,
z = T7+t(—-8—7)="7-—15¢.
The line meets the plane y = 0 in the point (z, 0, z), where 0 = —2 4 5¢, or
t =2/5. The corresponding values for z and z are 7 and 1, respectively.

2. E=3(B+C), F=(1—-t)A +(E, where

L_AF _ AP AF/FE 2
AE  AF+FE (AF/FE)+1 3

Hence

1 2 (1
F = _A+-(=(B
3 +3<2( +C)>

1 1
= —A+-(B
3 +3( +C)

1

3. Let A= (2,1,4), B=(1,-1,2), C = (3,3,6). Then we prove AC'=

t AB for some real t. We have

1 1
AC= |2 |, AB=| -2
2 )

Hence AC'= (—1) AB and consequently C is on the line AB. In fact A is
between C' and B, with AC = AB.

4. The points P on the line AB which satisfy AP = %PB are given by

P = A +t AB, where |t/(1—t)] =2/5. Hence t/(1 —t) = £2/5.
The equation ¢/(1 —t) = 2/5 gives t = 2/7 and hence

2] ,[1 167
~1 5 3/7
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Hence P = (16/7, 29/7, 3/7).
The equation ¢/(1 —t) = —2/5 gives t = —2/3 and hence

2 51 4/3
P=| 3|-|4]= 1/3
~1 5 ~13/3

Hence P = (4/3, 1/3, —13/3).

5. An equation for MisP = A +1¢ ﬁé’, which reduces to

r = 146t
= 2-3t
z = 3+ Tt

An equation for A is Q = E + s EF, which reduces to

r = 1+4+09s
= -1
z = 84 3s.

To find if and where M and A intersect, we set P = Q and attempt to solve
for s and t. We find the unique solution t = 1, s = 2/3, proving that the
lines meet in the point

(x,y,2)=(146,2-3,3+7)=(7, —1, 10).

6. Let A= (3,5,6), B=(-2,7,9), C=(2,1,7). Then
(i)
cos ZABC = (BA - BC)/(BA - BO),

where BA=[~1, —2, —3]' and BC= [4, —6, —2]'. Hence

—4+1246 14 1
V1456 VI4VE6 2

Hence ZABC = m/3 radians or 60°.

cos ZABC =
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(if)
cos /BAC = (AB - AC)/(AB - AC),

where AB=[1, 2, 3]' and AC= [5, —4, 1]*. Hence

5-8+43
V14+/42
Hence ZABC = m/2 radians or 90°.

cos ZBAC = 0.

(iii)
cos LACB = (CA - CB)/(CA-CB),
where C A= [-5, 4, —1] and CB= [—4, 6, 2]'. Hence

20+24-2 42 V4
VA2VE6  VA2V56 /56

Hence ZAC'B = 7/6 radians or 30°.

\)
[\
S

cos LZACB =

7. By Theorem 8.5.2, the closest point P on the line AB to the origin O is
given by P = A + ¢ ZE, where

,_AD AB A 4B

AB? AB?
Now
-2 3
A- AB= 1 1 [ =-2
3 1
Hence t = 2/11 and
—2 ., [3 —16/11
P=| 1+ (1|=]| 13/1
3 1 35/11

and P = (—16/11, 13/11,35/11).
Consequently the shortest distance OP is given by

11 11 11 11 11 Vil

\/(—16>2+ (13)2+ <35>2 VIG5 _ VIEXIIx 10 _ VI50
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Alternatively, we can calculate the distance OP?, where P is an arbitrary
point on the line AB and then minimize OP?:

-2 3 —2+3t
P=A+tAB= 1{+t]1]|= 1+t
3 1 3+t
Hence
OP? = (=243t +(1+t)2+B3+1)?
= 112 —4t+14
4 14
= 11(2 -2 =
(t 11t+11>
212 14 4
= 11(<t—= —
({ 11} T 121)
2312 150
= 11(<t—= .
({ 11} +121>
Consequently
150
P?>11x —
OP" 211X o7
for all t; moreover
150
P2 =11 x —
0 * 121

when t = 2/11.
8. We first find parametric equations for N by solving the equations

r4+y—2z =1
r+3y—z = 4.

The augmented matrix is
11 -2 1
1 3 -1 4}’

Rl

which reduces to

Hence x = —% + %z, Yy = % — 5, with z arbitrary. Taking z = 0 gives a point

A= (—%, %, 0), while z = 1 gives a point B = (2, 1, 1).
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Hence if C = (1, 0, 1), then the closest point on N to C is given by
P=A+tAB, where t = (ZE’ : IB)/ABQ.

Now
3/2 5/2
AC=| =3/2 and AB=| —-1/2 |,
1 1
SO
. Sx34+FExF+1x1 11
= 2 182 TS
@+ G+ B
Hence
—1/2 1 5/2 4/3
P= 3/2 +1—5 -1/2 | = | 17/15 |,
0 1 11/15

so P =(4/3,17/15, 11/15).
Also the shortest distance PC is given by

4\ 2 17\ 2 11\? /330
PC=4/(1-2 L 1—— ) =¥X222,
() o Y (Y

9. The intersection of the planes x +y — 2z =4 and 3z — 2y + z = 1 is the
line given by the equations

:J:*g—i-%,z *E—i—zz
5757 YT T TE”

where z is arbitrary. Hence the line £ has a direction vector [3/5, 7/5, 1]
or the simpler [3, 7, 5]'. Then any plane of the form 3z + 7y + 52 = d will
be perpendicualr to £. The required plane has to pass through the point
(6, 0, 2), so this determines d:

3X6+7Tx0+5x2=d=28.

10. The length of the projection of the segment AB onto the line C'D is
given by the formula

|CD - AB|
cD
Here CD= [—8, 4, —1] and AB= [4, —4, 3]¢, so
|CD-AB|  |(—8) x4+4x (—4) + (—1) x 3|
¢D V(=8)2 + 42 4 (—1)2
_ =515t 17
V81T 9 37
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11. A direction vector for L is given by BC= [—5, —2, 3]'. Hence the plane
through A perpendicular to £ is given by

—bx —2y+32=(-5) x3+(-2)x(-1)+3x2=-T.

The position vector P of an arbitrary point P on L is given by P = B+t E&',

x 2 -5
y =111+t -2 ],
z 4 3

or equivalently x =2 —5t, y =1—2t, z = 4 + 3t.

To find the intersection of line £ and the given plane, we substitute the
expressions for z, y, z found in terms of ¢ into the plane equation and solve
the resulting linear equation for :

—5(2—5t) —2(1 —2t) +3(4+ 3t) = -7,

which gives t = —7/38. Hence P = (13—181, %, %) and

1112 52\ 2 131\ 2
AP = - 1= 9 2=
o) () (- 12)
V11134 /293 x 38 /293
38 38 /38

12. Let P be a point inside the triangle ABC. Then the line through P and
parallel to AC will meet the segments AB and BC in D and F, respectively.
Then

P = (1-rD+7E, 0<r<I;
D (1-s)B+sA, 0<s<l;
E = 1-t)B+tC, 0<t<l.

Hence

P = 1-n{1-5B+sA}+r{(1-t)B+tC}
1-r)sA+{1—-r)(1-s)+r(1—1t)}B+rtC
aA+ B+ C,
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where
a=1-r)s, B=>0-r)(1-3s)+r(1-1), =rt.
Then0<a<1l, 0< <1,0<pB<(1—=r)+r=1. Also

a+pf+ =1Q-r)s+1-r)(Q—-s)+r(1—1t)+rt=1.

13. The line AB is given by P = A +¢[3, 4, 5], or
r=6+3t, y=-1+4t, z=11+5t
Then B is found by substituting these expressions in the plane equation
3r +4y + 5z = 10.

We find ¢ = —59/50 and consequently

1 2 2 123 -2 2
B:<6—£ _1_ﬁ 11— 95>:< 3 86 55>.

50 ° 50 ° 50 507 50 ' 50
Then
—_— 3
AB = [|[AB||=|[t| 4 |||
5
59 59
= [t{V32+42 452 =" x50 = ——.
It] =0 =5

14. Let A = (-3,0,2), B=(6,1,4), C = (=5,1,0). Then the area of
triangle ABC is 1|| AB x AC ||. Now

9 -2 —4
AB x AC= |1 | % 1| = 14
2 -2 11

Hence || AB x AC || = v/333.

15. Let A1 = (2,1,4), Ay = (1, —1, 2), A3 = (4, —1, 1). Then the point
P = (z,y, z) lies on the plane A; A3 As if and only if

AP (A1 Ay x A1Az) =0,
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or
r—2 y—1 z—-4
-1 -2 -2 | =20 —-Ty+62—-21=0.
2 -2 -3

16. Non—parallel lines £ and M in three dimensional space are given by
equations
P=A+sX, Q=B+tY.

(i) Suppose PQ is orthogonal to both X and Y. Now
PO=Q-P=B+1tY)— (A+5sX)=AB +tY — sX.
Hence

(AB +tY +sX)-X = 0
(AB +tY +5X)-Y = 0.

More explicitly

HY - X)—s(X-X) = —AB-X
HY-Y)—s(X-Y) = —AB.Y.

However the coefficient determinant of this system of linear equations
in t and s is equal to

Y. X -X-X

Y.V -X.Y | —(X Y+ (X-X)(Y-Y)
= [[X xY[]*#0,

as X #0, Y # 0 and X and Y are not proportional (£ and M are
not parallel).

(ii) P and @ can be viewed as the projections of C and D onto the line PQ,
where C and D are arbitrary points on the lines £ and M, respectively.
Hence by equation (8.14) of Theorem 8.5.3, we have

PQ < CD.

Finally we derive a useful formula for PQ). Again by Theorem 8.5.3

| AB-PQ| -

= AB -h
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X

where 1 = - F@ is a unit vector which is orthogonal to X and Y.
Hence

n=tXxY),
where t = +1/||X x Y||. Hence

| AB (X x Y)|
PQ =
||X = Y]

17. We use the formula of the previous question.
Line £ has the equation P = A + sX, where

2
X =AC=| -3
3

Line M has the equation Q = B + tY, where

1
Y =BD=| 1
1

Hence X x Y =[-6, 1, 5] and || X x V|| = V62.
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Hence the shortest distance between lines AC' and BD is equal to

0 —6
-2 - 1
|AB (X xY)| _ 1 5] 3
|1 X x Y| V62 V62

18. Let E be the foot of the perpendicular from A4 to the plane A;AsAs.
Then )
vol A1A2A3A4 = g( area AA1A2A3) . A4E

Now

1 — —
areaAA1A2A3 = §|| A1A2 X A1A3 ||

Also A4F is the length of the projection of Ay A4 onto the line A4E. See
figure below.)
Hence A4FE = | E‘M -X|, where X is a unit direction vector for the line
A4E. We can take
ATAQ X ATA:;

X = — —
H A1A2 X A1A3 ||

Hence

| AL Ay (A1 Ay x AL A3)]
| AiAs x AiA; ||
1 — — —

= 6‘ A1A4 -(A1A2 X A1A3)|

vol A1A2A3A4 = %H ATAQ X ATAg H
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(A1 Ay x Ay As)- Ay Ay |.

1
I
19. We have CB= [1, 4, —1]*, CD=[-3, 3, 0], AD=[3, 0, 3]'. Hence

OB x CD= 3i+ 3j + 15k,
so the vector i+ j + 5k is perpendicular to the plane BC'D.
Now the plane BC'D has equation z +y + 5z =9, as B = (2, 2, 1) is on

the plane.
Also the line through A normal to plane BC'D has equation

x 1 1 1
yl=|1|+t]1]|=0+0]1
z 5 5 5

Hence x =1+t y=1+4+1t, z=5(1+1).
[We remark that this line meets plane BC'D in a point F which is given
by a value of ¢ found by solving

(L+4)+ (1+1) +5(5+5t) = 9.

Sot=-2/3 and F=(1/3,1/3,5/3).]
The distance from A to plane BC'D is

Mx1+1x14+5x5—9| 18
= = 2V3.
12 +12 452 V27 V3

To find the distance between lines AD and BC, we first note that

(a) The equation of AD is

1 3 1+ 3t
P=|1]|+tlo|=| 1 |[;
3 5+ 3t
(b) The equation of BC is
2 1 2+s
Q=|2|+s| 4|=]|2+4s
1 —1 1-s



Then f@: [14+s—3t, 1+4s, —4 — s — 3t]" and we find s and ¢ by solving
the equations F@ . AD=0 and F@ .BC= 0, or

(1+s5—=3t)3+(1+45)0+ (-4 —s—3t)3 =
(14+s—3t)+4(1+4s) —(—4—s-3t) =
Hence t = —1/2 = s.
Correspondingly, P = (—1/2, 1, 7/2) and Q = (3/2, 0, 3/2).

Thus we have found the closest points P and () on the respective lines
AD and BC. Finally the shortest distance between the lines is

PQ=|PQJ =3
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