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A SPECIAL MESSAGE TO THE 

UTTERLY CONFUSED CALCULUS STUDENT 

Our message to the utterly conhsed calculus student is very simple: You don't have to be 
confused anvore. 

We were once conhsed calculus students. We aren't confbsed anymore. We have taught 
many utterly confused calculus students both in formal class settings and one-on-one. 
They aren't confbsed anymore. All this experience has taught us what causes utter 
confbsion in calculus and how to eliminate that confusion. The topics we discuss here are 
aimed right at the heart of those topics that we know cause the most trouble. Follow us 
through this book, and you won't be confused anymore either. 

Anyone who has taught calculus will tell you that there are two problem areas that prevent 
students from learning the subject. The frrst problem is a lack of algebra skills. 
Sometimes it's not a lack of algebra skills but a lack of confidence in applying recently 
learned algebra skills. We attack this problem two ways. One of the largest chapters in 
this book is the one devoted to a review of the algebra skills you need to be successfirl in 
working calculus problems. Don't pass by this chapter. Spend time there and refer back 
to is as needed. There are insights for even those who consider themselves good at 
algebra. When we do a problem we take you through the steps, the calculus steps and all 
those pesky little algebra steps, tricks some might call them. When we present a problem 
it is a complete presentation. Not only do we do the problem completely but also we 
explain along the way why things are done a certain way. 

The second problem of the utterly confused calculus student is the inability to set up the 
problems. In most problems the calculus is easy, the algebra possibly tedious, but writing 
the problem in mathematical statements the most difficult step of all. Translating a word 
problem into a math problem (words to equation) is not easy. We spend time in the 
problems showing you how to make word sentences into mathematical equations. Where 
there are patterns to problems we point them out so when you see similar problems, on 
tests perhaps, you will remember how to do them. 

To aid you in r e f d g  back to important parts of the book we use a collection of icons as 
described on the next page. 

Our message to utterly conhsed calculus students is simple. You don't have to be 
confused anymore. We have been there, done that, know what it takes to remove the 
confusion, and have written it all down for you. 

vii 



* 
Ranember 

This icon highlights things you should memorize. Right before a test, go 
over these items to keep them fresh in your mind. 

$v= This icon appears next to the "deeper" insights into a problem. If you 

Insight 
have trouble understanding the details of why a problem makes physical 
sense, then this is the icon to follow. 

\& 
Watch 

This icon highlights trouble spots and common traps that students fie encounter. If you are womed about making frustrating little mistakes or 
feel you are loosing points on tests due to missing little "tricks" then this 
is the icon to follow. 

The intention of this icon is to help you identifL a pattern of solving one 
problem that works for a general category of problems. In many cases 
the pattern is reviewed in a step by step summary along with examples of 
similar problems. 

Pattern 

Items next to this icon can be skipped if you are really struggling. On a 
second pass through the book, or for the more advanced student, this icon 
is intended to show a few extra tricks that will allow you to do problems 
faster. These items are included since speed is many times important to 

'pd success on calculus tests. 
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How T o  Study Calculus 

Calculus courses are different from most courses in other disciplines. One big difference 
is in testing. There is a lot of 
mathematical manipulation. 

There is 'very little writing for a calculus tests. 

In many disciplines you learn the material by reading and listening and demonstrate 
mastery of that material by writing about it. In mathematics there is some reading, and 
some listening, but demonstrating mastery of the material is by doing problems. 

Another example of the difference between learning and demonstrating mastery of a 
subject is history. There is a great deal of reading in a history course, but mastery of the 
material is demonstrated by writing about history. If you are not already doing this you 
can improve your grades on history exams by practicing writing the answers to questions 
you expect to encounter on those exams. Guess the questions on the test, practice writing 
answers to those questions and watch your grades go up and your study time go down in 
your history course or any other read-to-learn, write-to-demonstrate-mastery course. 

In your calculus course practicing working potential problems as test preparation is even 
more important than practicing writing the answers to potential questions in a history 
course. Writing is more familiar to most people than pdorming mathematical 
manipulations. You can almost always say something about a topic, but it is not at all 
unusual to have no clue as to how to start a calculus problem. Practicing writing for a 
history test will improve your grades. Practicing problems, not just reading them but 
actually writing them down, may be the only way for you to achieve the most modest of 
success on a calculus test. 

To succeed on your calculus tests you need to do three things, PROBLEMS, 
PROBLEMS and PROBLEMS. Practice doing problems typical of what you expect on 
the exam and you will do well on that exam. This book contains explanations of how to 
do many problems that we have found to be the most conhsing to our students. 
Understanding these problems will help you to understand calculus and do well on the 
exams. 

General guidelines f o r  effective calculus study 

I .  If at all possible avoid last minute cramming. It is inefficient. 

2. Concentrate your time on your best estimate of those problems that are going to be on 
the tests. 

3. Review your lecture notes regularly, not just before the test. 
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4. 

5 .  

6 .  

1.  

2. 

3. 

4. 

1. 

2. 

3. 

4. 

5 .  

Keep up. Do the homework regularly. Watching your instructor do a problem that 
you have not even attempted is not efficient. 

Taking a course is not a spectator event. Try the problems, get confused if that's 
what it takes, but don't expect to absorb calculus. What you absorb doesn't matter on 
the test. It is what comes off the end of your pencil that counts. 

Consider starting an informal study group. Pick people to study with who study and 
don't whine. When you study with someone agree to stick to the topic and help one 
other. 

Preparing for Tests 

Expect problems similar to the ones done in class. Practice doing them. Don't just 
read the solutions. 

Look for modifications of problems discussed in class. 

If old tests are available, work the problems. 

Make sure there are no little mathematical "tricks" that will cause you problems on 
the test. 

Test Taking Strategies 

Avoid prolonged contact with fellow students just before the test. The nervous 
tension, frustration and defeatism expressed by fellow students are not for you. 

Decide whether to do the problems in order or look over the entire test and do the 
easiest first. This is a personal preference. Do what works best for you. 

Know where you are time wise during the test. 

Do the problems as neatly as you can. 

Ask yourself if an answer is reasonable. If a return on investment answer is 0.03%, it 
is probably wrong. 

X 



PREFACE 

The purpose of this book is to present basic calculus concepts and show you how to do 
the problems. The emphasis is on problems with the concepts developed within the 
context of the problems. In this way the development of the calculus comes about as a 
means of solving problems. Another advantage of this approach is that performance in a 
calculus course is measured by your ability to do problems. We emphasize problems. 

This book is intended as a supplement in your formal study and application of calculus. It 
is not intended to be a complete coverage of all the topics you may encounter in your 
calculus course. We have identified those topics that cause the most confirsion among 
students and have concentrated on those topics. Skill development in translating words to 
equations and attention to algebraic manipulation are emphasized. 

This book is intended for the non-engineering calculus student. Those studying calculus 
for scientists and engineers may also benefitr Erom this book Concepts are discussed but 
the main thrust of the book is to show you how to solve applied problems. We have used 
problems firom business, medicine, finance, economics, chemistry, sociology, physics, 
and health and environments1 sciences. All the problems are at a level understandable to 
those in different disciplines. 

This book should also serve as a reference to those already working in the various 
disciplines where calculus is employed. If you encounter calculus occasionally and need a 
simple reference that will explain how problems are done this book should be a help to 
you. 

It is the sincere desire of the authors that this book help you to better understand calculus 
concepts and be able to work the associated problems. We would like to thank the many 
students who have contributed to this work, many of whom started out uttrerly confused, 
by offered suggestions for improvements. Also the fine staff at McGraw-Hill, especially 
our editor, Barbara Gilson, have contributed greatly to the clarity of presentation. It has 
been a pleasure to work with them. 

Robert M. Oman 
St. Petersburg, Florida 

Daniel M. Oman 
Orlando, Florida 
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1 
MATHEMATICAL BACKGROUND 

The purpose of this chapter is to provide you with a review and reference for the 
mathematical techniques you will need in your calculus course. Some topics may be 
familiar to you while others may not. Depending on the mathematical level of your 
course, some topics may not be of interest to you. 

Each topic is covered in sufficient depth to allow you to pedorm the mathematical 
manipulations necessary for a particular problem without getting bogged down in lengthy 
derivations. The explanations are, of necessity, brief. If you are totally unfamiliar with a 
topic it may be necessary for you to consult an algebra or calculus text for a more 
thorough explanation. 

The most efficient use of this chapter is for you to do a brief review of the chapter, 
spending time on those sections that are unfamiliar to you and that you know you will 
need in your course, then refer to specific topics as they are encountered in the solution to 
problems. With this reference you should be able to perform all the mathematical 
operations necessary to complete the problems in your calculus course. 

Solving Equations 

The simplest equations to solve are the linear equations of the form ax + b = 0, which 
have as their solution x = -b / a. The next most complicated equations are the quadratics. 
The simplest quadratic is the type that can be solved by taking square roots directly. 

1 - 1 Solve for x : 4x2 = 36 

Solution: Divide by 4, then take the square root of both sides. 

--I x 2 = 9  * x = S  
4x2 36 

4 4  
-=- 

1 



2 CHAPTER1 

Both plus and minus values are legitimate solutions. The reality of the problem producing 
the equation may dictate that one of the solutions be discarded. 

The next complication in quadratic equations is the factorable equation. 

1-2 Solve x2  - x - 6 = 0 by factoring. 

Solution: x2 - x - 6 = 0 --4 The solutions, the values of x 
that make each parentheses equal to zero, and satis@ the factored equation, are x = 3 and 
x=-2 .  

( x  - 3)(x + 2) = 0 

If the quadratic cannot be solved by factoring, the most convenient solution is by 
quadratic formula, a general formula for solution of any quadratic equation in the form 
a? + bx + c = 0. The solution according to the quadratic formula is 

-b k Jb2 - 4ac 

2a 
X =  

The problems in your course should rarely produce square roots of negative numbers. If 
your solution to a quadratic produces any square roots of negative numbers, you are 
probably doing something wrong in the problem. 

1 - 3 Solve x2 - 5x + 3 = 0 by using the quadratic formula. 

Solution: Substitute the constants into the formula and perform the operations. Writing 
d + bx + c = 0 above the equation you are solving helps in identifLing the constants and 
keeping track of the algebraic signs. 

The quadratic formula comes from a generalized solution to quadratics known as 
"completing the square." Completing the square is rarely used in solving quadratics. The 
formula is much easier. It is, however, used in certain calculus problems, so we will give 
an explanation of the technique here. A completing the square approach is also used in 
graphing certain functions. 
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The basic procedure for solving by completing the square is to make the equation a 
perfect square, much as was done with the simple example 4x2 = 36. Work with the x2 
and x coefficients so as to make a perfect square of both sides of the equation and then 
solve by direct square root. This is best seen by example. Look first at the equation 
x2 + 6x + 5 = 0, which can be factored and has solutions of -5 and - 1, to see how 
completing the square produces these solutions. 

1 -4 Solve x2 + 6x + 5 = 0 by completing the square. 

Solution: The equation can be made into a perfect square by adding 4 to both sides of 
the equation to read x2 + 6x + 9 = 4 or (x + 3)2 = 4 which, upon direct square root, yields 
x + 3 = k2 , producing solutions -5 and - 1. 

As you can imagine the right combination of coefficients of x2 and x can make the 
problem awkward. Most calculus problems involving completing the square are not 
especially difficult. The general procedure for completing the square is the following: 

0 

If necessary, divide to make the coeffrcient of the x2 
term equal to 1. 
Move the constant term to the right side of the equation. 
Take 1/2 of the x coefficient, square it, and add to both 
sides of the equation. This makes the left side a perfect 
square and the right side a number. 
Write the left side as a perfect square and take the square 
root of both sides for the solution. 

1 -5 Solve x2 + 4x + I = 0 by completing the square. 

I f i  
Solution: Move the 1 to the right side: x2 + 4x = -1 
Add 1/2 of 4 (the coefficient of x) squared to both sides: x2 + 4x + 4 = 4 - 1 
The left side is a perfect square and the right side a number: (x + 2)2 = 3 

Take square roots for the solutions: x + 2 = or x = -2 + I/?, - 2 - & 

IBB 
Pattern 

Certain cubic equations such as x3 = 8 can be solved directly producing the single answer 
x = 2. Cubic equations with quadratic (x2) and linear (x) terms can be solved by 
factoring (if possible) or approximated using graphical techniques. Calculus will d o w  
you to apply graphical techniques to solving cubics. 
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Binomial Expansions 

Squaring (a  + 6 )  is done so oRen that most would immediately write a2 + 2ab+ b2. 

Cubing ( a  + b) is not so familiar but easily accomplished by multiplying (a2 + 2ab + b2)  

by ( a  + 6 )  to obtain a3 + 3a2b + 3ag + b3. 

There is a simple procedure for finding the nth power of ( a  + b) . Envision a string of 

(a + b)  s multiplied together, ( a  + b)" . Notice that the first term has coeficient 1 with a 

raised to the nzh power, and the last term has coefficient 1 with b raised to the n* power. 
The terms in between contain a to progressively decreasing powers, n, n - 1, n - 2, . . ., 
and b to progressively increasing powers. The coefficients can be obtained fkom an array 
of numbers or more conveniently from the binomial expansion or binomial theorem 

an na"-'b n(n - 1)a"-2b2 
0 ! I! 2! 

(a+b)" =- +- + 4- . . .  

The factorial notation may be new to you. The definitions are 

O ! = l ,  l ! = l ,  2!=2-1, 3 !=3 -24 ,  etc. 

As an exercise use the binomial expansion formula to veriQ ( a  + b)3.  

Trigonometry 

The trigonometric relations can be defined in terms of right angle trigonometry or through 
their fbnctions. The basic trigonometric relations, as they relate to right triangles, are 
shown in the box below. 

BASIC TRIGONOMETRIC FUNCTIONS I 

adjacent (a) 
side to angle tan ,g = b/a 

Graphs of the trigonometric relations are shown in Fig. 1 - 1 .  
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sin61 

cos 8 

Fig. 1-1 

The tangent function is also defined in terms of sine and cosine: tan 6 = sin 6/cos 8 

Angles are measured in radians and degrees. 
Radian measure is a pure number, the ratio of 
arc length to radius to produce the desired angle. 
Figure 1-2 shows the relationship of arc length 
to radius to define the angle. 

The relation between radians and degrees is 2 nrad = 360'. 
Fig. 1-2 

1 -6 Convert n/6 and 0.36 rad to degrees and 270' to radians. 

2nrad 3n 
= 20.6' , 2 70' - = - rad = 4.7 rad Solution: -rad ____ = 30° ,  0.36rad - 

n 360' 360' 

6 2nrad 2nrad 3600 2 

TRIGONOMETRIC IDENTITIES 
a2+b2 = c 2  sin2 6+ cos2 8= 1 

sin 6 = cos(90' - 8) C O S ~ =  sin(90' - 8) 

sin(altrp) = sinacospltrcosasinp tan6=l/tan(9O0-6') 
cos(a +p) = cosa cosp T sin a sin p 
tan@ ltr p )  = tana *tan pll T tana tanp 



There are a large number of trigonometric identities that can be derived using geometry 
and algebra. Several of the more common are in the precedmg box. 

Coordinate Systems 

The standard two-dimensional coordinate system works well for most calculus problems. 
In working problems in two dimensions do not hesitate to arrange the coordinate system 
for your convenience. The x-coordinate does not have to be horizontal and increasing to 
the right. It is best, however, to maintain the x-y orientation. With the fingers of the tight 
hand pointed in the direction of x they should naturally curl in the direction of y. 

Positions in the standard right angle coordinate system are given with two numbers. In a 
polar coordinate system positions are given by a number and an angle. In Fig. 1-3 it is 
clear that any point (x,y) can also be specified by (r,O). Rather than moving distances in 
mutually perpencbcular dn-ections, 

moving a distance r from the origin 
along what would be the +x YZrsin8 

clockwise through an angle 8. The 
relationship between rectangular 8 = tan -' (y/x) 
and polar coordinates is also shown x=rcosB x 

in Fig. 1-3. 

the r and O locate points by x=rcos8 Y 

direction, then rotating counter- r=-\IX2+v2 
y = r sin 8 

Fig. 1-3 

1 -7 Find the polar coordinates for the point (3,4). 

Solution: r = J32 +42 = 5 and 8 = tan-'(4/3) = 53' 

Be sure that you understand how to calculate 0 = tan-' (4/3) = 53" on your calculator. 
This is not 1 / tan(4 / 3) . This is the inverse tangent. Instead of the ratio of two sides of a 
right triangle (the regular tangent fiction), the inverse tangent does the opposite: it 
calculates the angle from a number, the ratio of the two sides of the triangle. On most 
calculators you need to hit a 2"d function key or "inv" key to perform h s  "inverse" 
operation. 
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1 -8 Find the rectangular points for (3,120° ) . 

Solution: x=3cos120° =-1.5 and y=3sin120° =2.6 

As a check, you can veri@ that (-l.5)2 + 2.ti2 = 32. 

Three-dimensional coordinate systems are usually right- 
handed. In Fig. 1-4 imagine your right hand positioned 
with fingers extended in the +x clrrection closing naturally 
so that your fingers rotate into the direction of the +y axis 
while your thumb points in the direction of the +Z axis. It 
is this rotation of x into y to produce z with the right hand 
that specifies a right-handed coordinate system. Points in 
the three-dimensional system are specified with three 
numbers (x,y, 2). 

z 

Y 

Fig. 1-4 
/ 

X 

For certain types of problems, locating a point in space is more convenient with a 
cylindrical coordinate system, as shown in Fig. 1-5. Notice that this is also a right-handed 
coordinate system with the central axis of the cylinder as the z-axis. 

X 

Fig. 1-5 

A point is located by specifjring a radius measured out fiom the origin in the +x Qrection, 
an angle in the x-y plane measured from the x-axis, and a height above the x-y plane. Thus 
the coordinates in the cylinhcal system are (r, 0,z). The relation of these coorlnates to 
x,y,z is given in Fig. 1-5. 
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Logarithms and Exponents 

Logarithms and exponents are used to describe several physical phenomena 
exponential hc t ion  y = a" is a unique one with the general shape shown in Fig. 1-6. 

The 

X 

y = a  

A 

Fig. 1-6 

This exponential equation y = a X  cannot be solved for x using normal algebraic 

techniques. The solution to y = a" is one of the definitions of the logarithmic function: 

y = a X  x=log,y 

The language of exponents and logarithms is much the same. In exponential functions we 
say "a is the base raised to the power x." In logarithm functions we say "x is the logarithm 
to the base a ofy." The laws for the manipulation of exponents and logarithms are 
similar. The manipulative rules for exponents and logarithms are summarized in the box 
below. 

The term "log" is usually used to mean logarithms to the base 10, while "ln" is used to 
mean logarithms to the base e. The terms "natural" (for base e) and "common" (for base 
10) are fiequently used. 

LAWS OF EXPONENTS AND LOGARITHMS 
(a")Y = a y  ylog, x = log, .y 

1 -9 convert the exponential statement 100 = 102 to a logarithmic statement. 

Solution: y = a x  is the same statement as x = log, y so 100 = 102 is 2 = logl, 100. 
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1 - 10 convert the exponential statement e2 = 7.4 to a (natural) logarithmic statement. 

Solution: 2 =7.4 so ln7 .4=2  

1 - 1 1 Convert log 2 = 0.301 to an exponential statement. 

Solution: ~ o O . ~ O *  = 2 

1 - 12 Find log(2. 1)(4.3)'.6. 

Solution: On your hand calculator raise 4.3 to the 1.6 power and multiply this result by 
2.1. Now take the log to obtain 1.34. 

Second Solution: Applying the laws for the manipulation of logarithms write: 

log(2. l)(4.3)'.6 = log 2.1 + log 4.31.6 = log 2. I + 1.6 log 4.3 = 0.32 + 1 .01= 1.33 

(Note the round-off error in this second solution.) This second solution is rarely used for 
numbers. It is, however, used in solving equations. 

~ ~ 

1-13 Solve 4=1n2x. 

Solution: Apply a manipulative rule for logarithms: 4 = In 2 + In x or 3.3 1 = In x . 

Now switch to exponentials: x = e3.31 = 27.4 

A very convenient phrase to remember in working with logarithms is "a logarithm is an 
exponent." If the logarithm of something is a number or an expression, then that number 
or expression is the exponent of the base of the logarithm. 

Remember: A logarithm is an exponent! K A  



Functions and Graphs 

Functions can be viewed as a series of mathematical orders. The typical hc t ion  is 
written starting with y, or f( x), read as "fof x," short for function of x .  The mathematical 
function y or f (x) = x 2  + 2x + 1 is a series of orders or operations to be performed on an 
as yet to be specified value of x. This set of orders is: square x, add 2 times x, and add 1. 
The operations specified in the function can be performed on individual values of x or 
graphed to show a continuous "function." It is the graphing that is most encountered in 
calculus. We'll look at a variety of algebraic functions eventually leading into the concept 
of the limit. 

1 - 14 Perform the functions f ( x )  = x3 - 3x  + 7 on the number 2, or, find f ( 2 ) .  

Solution: Performing the operations on the specified function 

f (2) = 23 - 3(2) + 7 = 8 - 6 +  7 = 9 

In visualizing problems it is very helpful to know what certain functions look like. You 
should review the hctions described in this section until you can look at a hc t ion  and 
picture "in your mind's eye" what it looks like. This skill will prove valuable to you as 
you progress through your calculus course. 

Linear The linear algebraic function (see Fig. 1-7 ) 
is y = mx + b, where m is the slope of the straight line 
and b is the intercept, the point where the line crosses 
the y-axis. Th~s is not the only form for the linear 
hction, but it is the one that is used in graphing and is 
the one most easily visualized. X 

Fig. 1-7 

1-15 Graph the function y = 2x - 3. 

Solution: This is a straight line, and it is in the correct form for grqhing. Because the 
slope is positive, the curve rises with increasing x. The coefficient 2 tells you that the 
curve is steeper than a slope I,  (which has a 45" angle). The constant 3 is the intercept, 
the point where the line crosses the y-axis. (See Fig. 1-8.) 
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You should go through this little visualization exercise with every function you graph. 
Knowing the general shape of the curve makes graphing much 
easier. With a little experience you should look at this function 
and immediately visualize that (1) it is a straight line (first 
power), (2) it has a positive slope greater than 1 so it is a rather 
steep line rising to the right, and (3) the constant term means 
that the line crosses the y-axis at -3. 

Knowing generally what the line looks like, place the first 
(easiest) point at x = 0, y = -3. Again knowing that the line 
rises to the right, pick x = 2, y = 1, and as a check x = 3, y = 3. Fig. 1-8 

If you are not familiar with visualizing the function before you start calculating points 
graph a few straight lines, but go through the exercise outlined above before you place 
any points on the graph. 

Quadratics The next most complicated function is 
the quadratic (see Fig. 1-9), and the simplest quadratic is 
y = x2, a curve of increasing slope, symmetric about the 
y-axis (y has the same value for 
x = + or - 1, + or - 2, etc.). This symmetry property 
is very uselid in graphing. Quadratics are also called 
parabolas. Adding a constant to obtain y = x2 + c  
serves to move the curve up or down the y-axis in the 

2 y = x  

y = x 2 - 3  

X 

same way the constant term moves the straight line up 
and down the y-axis. Fig. 1-9 

1-16 Graphy=x2-3. 

Solution: First note that the curve is a parabola with the symmetry attendant to parabolas 
and it is moved down on the y-axis by the -3. The point x = 0, y = -3 is the key point, 
being the apex, or lowest point for the curve, and the defining point for the symmetry line, 
which is the y-axis. Now, knowing the general shape of the curve add the point 
x = +,2, y = 1. This is sufficient information to construct the graph as shown in Fig. 1-9. 
Further points can be added if necessary. 

Adding a constant a in front of the x2 either sharpens (a > 1) or flattens (a < 1) the graph. 
A negative value causes the curve to open down. 
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2 
1 - 17 Graph y = 0 . 5 ~ ~  + 1. 

Solution: Looking at the function, note that it is a 
parabola (x2 term), it is flatter than normal (0.5 

term), and it is moved up the axis one unit. Now put 
in some numbers: x = 0, y =  1 is the apex, and the 
y-axis is the symmetry line. Add the points 
x = +2, y = 3 and sketch the graph (Fig, 1-10). 

y = 0 . 5 ~  + I  

I l l  1 1 1  
1 1 1  1 1 1  

coefficient), it opens up (positive coefficient of the x2 - w  X 

Fig. 1-10 

1-18 Graphy=-2x2-2. 

Solution: Look at the function and veri& the following statement. This is a parabola that 
opens down, is sharper than normal, and is displaced two units in the negative direction. 
Put in the two points x = 0 and x = +1 and veriQ the graph shown in Fig. 1-10. 

Adding a linear term, a constant times x, so that the hc t ion  has the form y = L& +bx + c 
produces the most complicated quadratic. The addition of this constant term moves the 
curve both up and down and sideways. If the quadratic fbnction is factorable then the 
places where it crosses the x-axis are obtained directly from the factored form. 

1 - 19 Graph the function y = f ( x )  = x2 + 2x - 8. 

Solution: This is a parabola that opens up, and is’ 
displaced up or down and sideways. This 

values x = 2 and x = -4 make y = 0 so these are 
the points where the curve crosses the x-axis. 
Place these points on the graph. 

Now here is where the symmetry property of 
parabolas is used. Because of the symmetry, the 
parabola must be symmetric about a line halfway 
between x = 2  and x=-4, or about the line 

Y 
2 quadratic is factorable to y = (x + 4)( x - 2) . The Y = X  + 2 ~ - 8  

x = -1. The apex of the parabola is on this 
x = -1 line so substitute to find the appropriate 
value of y: f( -1) = (-1 + 4)( -1 - 2) = -9 These 
three points are sufficient to sketch the curve (see Fig. 1 - 1 1). 

I 

Fig. 1-11 
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Before moving on to the graphing of quadratics that are not factorable there is one other 
quadratic that is rather simple yet it illustrates the method necessary for rapid graphing of 
non-factorable quadratics. 

1 - ZO Graph y = x2 + 4x + 4. 

2 
Solution: Notice in Fig. 1-12 that the right side of this 
equation is a perfect square and the equation can be 
written as Y = ( x + ~ ) ~ .  The apex of the curve is at 
x = -2, and any variation of x from -2 is positive and 
symmetric about the line x=-2.  If x=-1 or x=-3 ,  X 

y = l .  If x = O  or x = - 4 ,  y = 4 .  This is sufficient x=-2 
information to sketch the curve. Notice, however, in the 
second solution an even easier means for graphing the 
bction. 

Fig. 1-12 

Second Solution: The curve can be written in the form y = X 2  if X is defined as 
X = x + 2 .  At x = -2, X = 0 and the line x = -2 effectively defines a new axis. Call it 
the Y-axis. This is the axis of symmetry determined in the previous solution. Drawing in 
the new axis allows graphing of the simple equation y = X 2  about this new axis. 

Now apply this approach to a slightly more difficult problem. 

1-21 Graphy=x2-6x+11. 

Solution: Based on experience with the 
previous problem subtract 2 fkom both sides to at 
least get the right side a perfect square: 
y - 2 = ~ ~ - 6 6 ~ + 9 = ( ~ - 3 ) ~ .  This form of the 
equation suggests the defrntions Y = y -  2 and 

X = x - 3 ,  so that the equation reads Y = X 2 .  
This is a parabola of standard shape on the new 
coordinate system with origin at (3,2). The new 
coordinate axes are the lines x = 3  and y = 2 .  
This rather formidable looking function can now 
be drawn quite easily with the new coordinate 
axes. (See Fig. 1-133 

y = 2  

X = 3  

Fig. 1-13 
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The key step in getting going on problem 1-21 was recognizing that subtracting 2 from 
both sides would make a perfect square on the right. This step is not always obvious so 
we need a method of converting the right-hand side into a perfect square. This method is 
a variation of the "completing the square" technique for solving quadratic equations. If 
you are not very familiar with completing the square (this should include nearly everyone) 
go back in this chapter and review the process before going on. Now that you have 
"completing the square" clearly in your mind we'll graph a non-factorable quadratic with a 
procedure that always works. 

1 - 22 Graph y = x2 + 4x + 7. 

Solution: 1. Move the constant to the left side of 
the equation: y - 7 = x 2  +4x. 
Next, detennine what will make the right-hand side 
a perfect square. ~n this case +4 makes a perfect 
square on the right so add this to both sides: 
y - 3 = x 2 + 4 x + 4  o r y - 3 = ( ~ + 2 ) ~ .  X 

X ~ = 3  -- -- 
l l l l l  l l l i l  

x = - 2  

2. Now, make the shift in axes with the definitions 
Y = y - 3 ,  and X = x + 2 .  The origin of the "new" coordinate axes is (-2,3). 
Determining the origin from these defining equations helps to prevent scrambling the 
(-2,3) and getting the origin in the wrong place. The values (-2,3) make X and Y zero 

and this is the apex of the curve Y = X 2  on the new coordinate axes. 

Fig. 1-14 

3, Graph the curve as shown in Fig. 1-14. 

Y =  
Higher Power Curves The graphing of cubic and 
higher power curves requires techniques you will learn in 
your calculus course. There are, however, some features of 
higher power curves that can be learned from an "algebraic" 
look at the curves. 

3 The simple curves for y = x and y = -x3 are shown in Fig. 
1 - 15. Adding a constant term to either of these curves serves 
to move them up or down on the y-axis the same as it does 
for a quadratic or straight line. Cubics plus a constant are 
relatively easy to sketch. Adding a quadratic or linear term 
adds complications that are almost always easiest met by 
learning the calculus necessary to help you graph the curve. 
I f  a curve contains an x3 term, this term will eventually Fig. 1-15 

3 
X 
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predominate for sufficiently large x. Operationally this means that if you have an 
expression y = x3 + Ox2 + ()x + (), while there may be considerable gyration of the 
curve near the origin, for large (positive or negative) x the curve will eventually take the 
shape shown in Fig. 1-15. 

The same is true for other higher power curves. The curve y = x4 is similar in shape to 
y = x2, it just rises more rapidly. The addition of other (lower than 4) power terms again 
may add some interesting twists to the curve but for large x it will eventually rise sharply. 

The next general category of curves is called conics, because they have shapes generated 
by passing a plane through a cone. They contain x and y t m s  to the second power. The 
simplest of these curves is generated with x2 and y 2  equal to a constant. More 
complicated curves have positive coefficients for these terms, and the most complicated 
conics have positive and negative coefficients. 

Circles Circles are iimctions in the form x2 + y2 = const. 
with the constant written in what turns out to be a convenient 
form x2 + y2  = r2 .  The curve x2 + y2  = r2 is composed of a 
collection of points in the x-y plane whose squares equal r 2 .  
Look at Fig. 1-16 and note that for each ( x , y )  point that 
satisfies the equation, a right triangle can be constructed with 
sides x, y, and r and the Pythagorean Theorem defines the 
relationship x2 + y 2  = r2 .  A circle is a collection of points 
equal distance from a point called the center. 

1-23 Graph x 2 + y 2  = 9 .  

Solution: Look at the function and recognize that it is a 
circle. It has radius 3 and it is centered about the origin. At 
x = 0, y = k3, and at y = 0, x = k3. Now draw the circle 
(Fig 1-17). Note that someone may try to confbse you by 
writing this function as y 2  = 9 - x2. Don't let them. 

1-24 Graph x 2 - 6 x + 9 + y 2  =16. 

Yl 

Fig. 1-16 

Fig. 1-17 

Solution: At first glance it looks as though a page is missing between problems 1-23 and 
1-24. But if you make the identification that x2 - 6x + 9 is the perfect square of (x - 3) 

then the equation reads X 2  + Y 2  = 16 if X = x - 3 and Y = y . This is the identification 
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that worked so well for parabolas. In the new coordinate system with origin at (3,O) this 
curve is a circle of radius 4, centered on the point (3,O) (Fig. 1-18). Set up the new 
coordinate system and graph the circle. At X = 0, Y = k4, and at Y = 0, X = f4. 

If the function were written y 2  = 6x - x 2  + 7 it 
would not have been quite so easy to recognize 
the curve. Looking at this latter rearrangement, 
the clue that th~s is a circle is that the x2 and y 2  
terms are both positive when they are together 
on the same side of the equation. No matter 
how scrambled the terms are, if you can 
recognize that the curve is a circle you can 
separate out the terms and make some sense out 
of them by making perfect squares. This next 
problem will give you an example that is about 
as complicated as you will encounter. 

Yi  x2 - 6 x + 9 + y 2  =16 

x = 3  

Fig. 1-18 

1-25 Graph x2 + 6 x + y 2  +2y=10. 

Solution: Notice that the x and y terms are at least grouped together and further that the 
constant has been moved to the right side of the equation. This is similar to the first step 
in solving an equation by completing the square. Now with the equation written in this 
form write the perfect squares that satis@ the x2 and x terms and the y2 and y terms 
adding the appropriate constants to the right side. 

x2+6x+y2+2y=lO 
( ~ + 3 ) ~ + ( y + 1 ) ~ = 1 0 + 9 + 1  

(x +3)2 + ( y +  1)2 = 20 

Make the identification 

X = x + 3  and Y=y+l  SO 

X 2 + Y 2  =20 

2 
x +  

%s is a circle of radm 420 centered 
about the point (-3,-1) (Fig. 1-19). A 
rather formidable f'unction is not so 
difficult when viewed properly. 

x z - 3 ;  t 
Fig. 1-19 
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Circles can at first be very confusing. If the x2 and y 2  coefficients can be made equal to 
1 and they are positive, then you are dealing with a circle. Knowing the c-e is a circle is 
a long way toward drawing it correctly. 

Ellipses Ellipses have x2 and y 2  terms with positive but diffaent coefficients. The 
two forms for the equation of an ellipse are 

X‘ y‘ 
aX2+~1y~=c’  or - + - = I  

a2 b2 

Each form has its advantages with the latter form being the more convenient for graphing. 

1 - 26 Graph 4x2 + 9y2 = 36. 

Solution: This is an ellipse because the x and y terms are squared and have different 
positive coefficients. The different coefficients 
indicate a stretching or compression of the curve in the 
x or y direction. It is not necessary to know the 
direction. That comes out of the graphing technique. 
Rewrite the equation into a more convenient form for 
graphing by dividing by 36. 

’-- 4x2 +9y2 = 36 

-- 
x2 y2  ---+---=1 
9 4  

Fig. 1-20 

Now in this form set first x = 0, so y = f2, and then y = 0, so x = 3 3 .  With these points 
and the knowledge that it is a circle compressed in one direction, sketch the curve (Fig. 1- 
20). 

= 1 .  (x + 1)2 ( y  - 4)2 1-27 Graph ~ + 
16 36 

Solution: The problem is presented in this somewhat artificial form to illustrate the axis 
shifting used so effectively in the graphing of parabolas and circles. 

Based on this experience immediately write 

x2 Y 2  -+- - -=1  
16 36 
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withthedefinitions X = x + l ,  Y = y - 4 .  

The origin of the new coordinate system is 
at (- 1,4) , and in this new coordinate system 
when X = O ,  Y=k6 and when Y = O ,  
x = k4. 

Sketch the curve (Fig. 1-2 1). 

(Y - 4 s  
36 

= I  

Fig. 1-21 

1 - 28 Graph x2 + 4x + 9y2 - 18y = -4. 

Solution: The different positive coefficients of the x2 and y 2  terms tell us this is an 
ellipse. The linear terms in x andy tell us it is displaced off the x-y axis. Graphing this 
curve is going to require a completing the square approach with considerable attention to 
detail. 

First write x2 + 4x + 9(y2 - 2y) = -4. 

Now do the completing the square exercise, being very careh1 of the 9 outside the 
parentheses: (x + 2)2 + 9(y  - 1)2 = -4 + 4 + 9 = 9 

( x  4- 2)L ( y  - QL 
Now divide to reach +-= 1 

9 1 

Define X = x + 2 and Y = y - 1 to achieve 
x 2 + 4 x + 9 y 2 - 1 8 y q i  I”, 

x 2  Y 2  ..... ............... . ....... - + - = 1  
9 1 

Graph on the new coordinate system: when 
X = O ,  Y=+l,andwhenY=O, X = + 3 .  Fig. 1-22 

Alternate Solution: An alternative to graphing in the new coordinate system is to go 
back to the original coordinate system. When X = 3 3 ,  substitute and write x + 2 = k3 or 
x=-2 f3 ,  and when Y=+1,  substitute and write y - l = + l  or y = l + l .  Either way 
gives the Same points on the graph (Fig. 1-22). 
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Hyperbolas Ellipses are different fiom circles because of numericd coefficients for 
the x2 and y2 terms. Hyperbolas are different fkom ellipses and circles because one of 

the coefficients of these x2 and y 2  terms is negative. This makes the analysis somewhat 
more complicated. Hyperbolas are written in one of two forms, both of which are 
sometimes needed in the graphing. 

1 - 29 Graph -4x2 + 25y2 = 100. 

Solution: The form of the equation tells us this is a hyperbola. Now proceed as if this 
were a circle or ellipse: If x = 0, y = k2, and if y = 0, there are no real values of x. If the 
curve goes through the points (0,2) and (0,-2) and does not exist along the line y = 0, 

then the curve must have two separate parts! Rearrange the equation to 4x2 = 25y2 - 100 
and note immediately hat for real values of x, y has to be greater than 2 or less than -2. 
The curve does not exist in the region bounded by the lines y = 2 and y = -2. 

At this point in the analysis we have two points and a region where the curve does not 
exist. Further analysis requires a departure from the usual techniques applied to conics. 
Rewrite the equation again, but this time in the form y = . . . 

25y2 = 4x2 + 100 y 1 -4x2 +25y2 = 100 

How 

y 2 y + 4  4x2 

y = . J G  

this helps in graphing is that 
for large values of x, the fimction 
begins to look like a straight line, 
y +(2/5)x (for large x the +4 is 

Y =  

I 
Fig. 1-23 

small compared to 4x2/25). Use these two straight lines, one of slope (2/5) and the 
other of slope -(2/5) , as guides in drawing the curve. With the points (0,2) and (0, -2) 
and these lines as guides, the curve can be sketched (Fig. 1-23). In the language of 
mathematics these straight lines are asymptotes or asymptote lines. Asymptotes are lines 
the curve approaches but does not touch. 
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Now that you know the general shape of hyperbolas, we can look at some hyperbolas that 
are not symmetric about the origin. The next problem is somewhat artificial, but it is 
instructive and illustrates a situation that comes up in the graphing of hyperbolas. 

(Y -3)2  = 1.  1-30 Graph -- 
9 4 

Solution: This function is in a convenient form for graphing, especially if we make the 
identification X = x - 1 and Y = y - 3. This hyperbola is displaced up and down and 
sideways to the new coordinate system with origin at (I, 3 ) .  In this new coordinate system 
at X = 0, Y does not have any real values. At Y = 0, X = k3. Place these points on the 
graph- 

The asymptote lines are most 
easily drawn in the new 
coordinate system. 

The transformed function is 

9 Y 2  =4X2 -36 
Fig. 1-24 

Y2 = (4/9) X 2  - 4 and for large values of X ,  Y = +( 2/3)  X 

Straight lines of slope +(2/3) and - (2/3)  are drawn in the new coordinate system. With 
the two points and these asymptote lines the curve can be sketched. 

In Fig. 1-24 you will see a rectangle. This is used by some as a convenient construct for 
drawing the asymptote lines and finding the critical points of the curve. Two sides of the 
rectangle intersect the X-axis at the points where the curve crosses this axis and the 
diagonals of the rectangle have slopes zf(2/3) .  

1-31 Graph 9x2 -4y2 - 54x - 32y  = 19. 

Solution1 This is a hyperbola, and the presence of the linear terms indicates it is moved 
up and down and sideways. Graphing requires a completing the square approach. Follow 
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the completing the square approach through the equations below. 
multiplication of the parentheses very carefully. 

Watch the 

9x2 - 4y2 - 5 4 ~  - 32y = 19 

9(n2 - 6 ~ )  - 4(y2 + 8y)  = 19 
9 ( ~  - 3)2 - 4(y +4)2 = 19+81- 64 = 36 

Make the identification X = x - 3 and Y = y + 4 so the function can be written 

Draw in the new axes with 
origin at (3,-4). When X = O ,  
there are no real Y values. 
When Y = O ,  X = S .  Place 
these points on the graph. The 
asymptotes come out of the 

along the rearrangement to find 
the asymptote lines. (See Fig. 1- 
25.) 

y = . . . equation. Follow 9x 2 2  - 4y -54x - 

Y 2  = (9/4)X2 - 9 

Y = 4(9/4)X2 - 9 

For large values of X, Y = ( 3 / 2 ) X  Y = - ( 3 / 2 ) X  
Fig. 1-25 Y = +(3/2)X. The addition of 

these asymptote lines allows completion of the graph. 

In graphing conics the first thing to determine is whether the equation is a circle, ellipse, 
or hyperbola. This is accomplished by looking at the numerical coefficients, their 
algebraic signs, and whether they are (numerically) different. Knowing the curve, the 
analytrcal techniques begm by looking for the values of x when y = 0, and the values of y 
when x = 0. The answers to these questions give the intercepts for the circle and ellipse, Pawem 
and the square root of a negative number for one determines that the curve is a hyperbola. 
The addition of linear terms moves the conics up and down and sideways and almost 
always requires a completing the square type of analysis, complete with axis shifting. 

If you can figure out what the curve looks like and can find the intercepts (x = 0 and 
y=O) you are a long way toward graphing the function. The axes shifting just takes 
attention to detail. 
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Graphing Trigonometric Functions 

Graphing the trigonometric hctions does not usually present any problems. There are a 
few pitfalls, but with the correct graphing technique these can be avoided. Before 
graphing the functions you need to know their general shape. The trigonometric relations 
are defined in an earlier section and their functions shown graphically. If you are not very 
familiar with the shape of the sine, cosine, and tangent functions draw them out on a 3 x 5 
card and use this card as a bookmark in your text or study guide and review it every time 
you open your book (possibly even more often) until the word sine projects an image of a 
sine function in your mind, and likewise for cosine and tangent. 

Remember 

Let's look first at the sine fimction y = sin 0 and its 
graph in Fig. 1-26. The 8, called the argument of 
the fhction, is cyclic in 2n; whenever 8 goes from 
0 to 2n the sine function goes through one cycle. 
Also notice that there is a symmetry in the function. 
The shape of the curve from 0 to n/ 2 is mirrored in 
the shape fkom nl2 to n. Similarly the shape of the 
curve fi-om 0 to n is mirrored in the shape fiom n to 
2n. In order to draw the complete sine curve we 
only need to know the points defining the first 
quarter cycle. This property of sine curves that allows construction of the entire curve if 
the points for the first quarter cycle are known will prove very valuable in graplung sine 
functions with complex arguments. Operationally, the values of the function are 
determined by "punching them up" on a hand calculator. 

-1 -- 

Fig. 1-26 

1-32 Graphy=2sinx. Y 

Solution: The 2 here is called the amplitude and 
simply scales the curve in they direction. It is handled 
simply by labeling the y-axis, as shown in Fig. 1-27. -- 

-- 

Fig. 1-27 
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1-33 Graph y = cos2x. 

y=cos2x 

nl2 n / 4  
d] Solution: The 

phrase " cos" 
describes the 
general shape of 
the curve, the unique cosine shape. The 2x is the 
hard part. Look back at the basic shape of the -'-- 
cosine curve and note that when 8= n/ 2, the cosine 
curve has gone through 1 / 4 of its cycle. The values 

Fig. 1-28 

of x for the points where 2x is zero and n/ 2 defrne the first quarter cycle. (One-quarter 
of a cycle is all that is necessary to graph the function.) To graph h s  function (Y vs. x )  
we need to know only those values of x where the argument of the function (2x) is zero 
and n l 2 .  The chart in Fig. 1-28 shows the values necessary for graphing the hc t ion .  

Do not start this chart with values of x; start with values for 2x. Read the previous 
sentence again. It is the key to correctly graphmg trigonometric functions. Notice that the Pattern 

points on the x-axis are written as multiples of the first quarter cycle. It is a cumbersome 
way of writing the points, but it helps prevent mistakes in labeling the x-axis. 

Go back over the logic of graphing trigonometric hc t ions  in this way. It is the key to 
always getting them graphed correctly. As the hct ions become more complicated, the 
utility and logic of this approach will become more evident. 

1-34 Graphy=2sin(x/3). 

siIl(x / 3) 
~- 1 Solution: This is a sine hct ion:  the general shape 

of which can be seem clearly in your mind's eye. The 
amplitude of 2 is no problem. The argument x / 3  n / 2  3 n / 2  
requires setting up a chart to find the values of x 
defining the first quarter cycle of the sine fhction. 
Numbers associated with the argument of the 
fhction, the 3 (in the denominator) in thrs case, 
define the frequency of the fhction. While 
interesting in some contexts, knowing the 
fkequency is not important in graphing. 

is contained in Physics for the Utterly Confbsed.) 

Remember, in setting up the chart set x / 3  equal 
to zero and solve for x. The sine of zero is zero. 
Next set x / 3 equal to x /  2 and solve for x. The sine of n12 is 1. These two points 

(Discussion of the fkequency of periodic fhctions 
I- 

Fig. 1-29 
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Solution: The h c t i o n  shown in 
Fig. 1-3 1 has another little twist to it, 

CHAPTER 1 

2 ~ - ~ / 3  X cos(2x - n/ 3) 
0 n/ 6 = 2 Z/ 12 1 

n J 2  57r/12 0 

define the first quarter cycle of the function. The remainder of the function is drawn in 
(Fig. 1-29) using the symmetry properties of sine functions. 

1-35 Graph y=sin(2x+n).  

Solution: The introduction of the n in the argument of the function is the final 
complication in graphing trigonometric fhctions. This constant in the argument is called 
the phase and the sign of this constant moves the hnction to the left or right on the x-axis. 
It is not necessary to remember which sign moves the hc t ion  which way. The placement 
of the fbnction on the x-axis comes out of the analysis. 

sin(2x + n) Y y=sin(2x+n) 
-( n/ 2) 

-( n/ 4) - n 
2 

Figure 1-30 shows a sine function with I 

X amplitude 1. The 2 affects the frequency 7r - _  

-T-Lw and the n moves the function right or left. 
Set up the chart again forcing the argument 
to be zero or i2/2 and determining the 
appropriate x value. Set 2x + 7r= 0 and solve 
for x = -(n/ 2). Set 2x + n= n/ 2 and solve 
for x = -( n/ 4). Draw the graph starting with the first quarter cycle of the sine function 
in the region fiom -( n/ 2) to -( n/ 4). 

Fig. 1-30 

1-36 Graph y=(1/3)cos(2x-n/3).  

which has to do with the minus sign. 
Set up the chart and make 2 x - x l 3 = 0  
for the first point. This point is 
x = n16 or 2x1 12. The next point is for 
2x- x / 3 =  x l 2 .  This (second) point is 
thenat x=5x l12 .  

Set up the x-y coordinate system and place 
the first quarter of the cosine function 
between 2x112 and 5x112. With this 
section of the cosine function complete, 
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draw in the remainder of the curve. 

1-37 Graph y = tan(x - n/ 4). 

Solution: If you are at all unfamiliar with the 
tangent function go back and review it in the 
trigonometry section. The important features as 
far as graphing is concerned are that tan8 is zero 
when 8 is zero and tan8 is 1 when 8 is d 4 .  
The tangent curve goes infinite when 0 goes to 
d 2 ,  but a point at infinity is not an easy one to 
deal with. 

For the function shown in Fig. 1-32, set up a chart 
and find the values of x that make x - d 4 equal 
zero and d 4 .  These two points allow 
construction of the fkction. 

I x - d 4  I x I tan(x-d4)  1 
I 0  I n / 4 I  0 I 

Solve x-n/4=0 for x = z / 4 .  

Solve x - lr/4 = n/4 for x = x/2 = 2n/4. 

Y =  

Fig. 1-32 

Be carefbl graphing the tangent function, especially this one. This tangent function is zero 
when x = 4 4 ,  and 1 when x = 2x/4 . The standard mistake is to take the function to 

infinity at x = 2n/4 . 





LIMITS AND CONTINUITY 

The concept of the limit in calculus is 
very important. It describes what 
happens to a function as a particular 
value is approached. The derivative, 
one of the major themes of calculus, 
is defined in limit terms. This short 
chapter will help you to think in terms 
of limits. The first thing to 
understand about limits is that a limit 
of a function is not the value of the 
hction. The change in thinking 
(fiom value to limit) is important 
because most functions are 
understood as a series of mathematical operations that can be evaluated at certain points 
simply by substitution. 

The (polynomial) hc t ion  y = x2 + 2x + 3 can be evaluated for any real number: replace 
x with the number and perform the indicated operations. Askmg the limit of this hc t ion  
as x approaches 2, for example, is an uninteresting question. The fhction can be 
evaluated at 2 or any point arbitrarily close to 2 by substituting and performing the 
operations. 

Other functions, such as polynomial fractions, cannot be evaluated at certain points and 
these functions are best understood by thinking in terms of limits. The hc t ion  
y = (x2 - 4)/(x + 2) can be evaluated for any real number except -2. Replacing x by -2 
produces the meaningless statement 0 / 0. Remember that any number times 0 is 0, but 
any number divided by 0 is "meaningless" (including 010). Looking at the limit of the 
hction, as x approaches -2, tells us about the hc t ion  in the vicinity of -2 - The limit 
of the firnction is a convenient phrase for the question, "What happens to the function as a 
certain value is approached?" Writing this in mathematical notation we get the following: 

x2 - 4  (x + 2)(x - 2) 
lim ____ = lim = l im(x -2 )=-4  

X-b-2 x + 2  x+-2 x + 2  x+--2 

27 
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The notation in fi-ont of the functions is read "the limit, as x approaches minus two." In 
the case of rational functions, factoring and reducing the fraction helps in finding the 
limit. 

x2 - 4  
Finding the limit of this hc t ion  as x+-2 helps in Y y = -  -- x + 2  
understanding the function. Since the original fhction 
gives the meaningless 0 / 0 at the point where x = -2 , the 
fhction cannot exist, "does not have meaning," at x = -2. 
Graphing the hc t ion  illustrates this point. The 
(simplified) function y = x - 2 is a straight line of slope 1 
and intercept -2. The hc t ion  y = (x2 - 4)/(x + 2) is 
also a straight line of slope 1 and intercept -2, but it does 
not exist at the point where x = -2. This non-existence at 
x = -2 is illustrated on the graph in Fig. 2-1 with the open 
circle. 

Fig. 2-1 

2- 1 Find the limit of y = (x2 + x - 2)/(x - 1) as x + 1. 

Solution: At x = 1 the fi-action is 0 / 0, so perform some algebra on the h a a n  before 
taking the limit. 

x L + x - 2  (x + 2)(x - 1) 
lim = lim = l im(x+2)=3 
x+l x-1  x+l x - 1  x+l ' 

As an exercise graph the original hction, showing the non-existence at x = 1. 

Another category of hc t ion  that is understood with 
the help of limits is polynomial fractions, where the 
higher power polynomial is in the denominator y = l / x  
rather than the numerator. The simplest fimction to 
look at is y = 1 / x .  (The product of two variables 
equaling a constant describes certain relationships. For 
example, pressure and volume for a fixed amount of 
gas at constant temperature is described by 
pV = const; the cost of comparable real estate times 
the commuting distance fi-om a major commercial 
center is described by RD = const . ) 

X 

Fig. 2-2 
This relationship xy = 1  or y =  l / x  is best 
understood in the context of its graph. Numbers can be assigned to x, and y values 
calculated but note how the concept and language of limits make graphing so much easier. 
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Refer to Fig. 2-2 during this discussion. First consider positive values. The point x = 1 , 
y = 1 is so easy to calculate it should not be ignored. The curve goes through this point. 
Now as x is made a larger and larger positive number, y approaches zero, but remains 
positive. This can be expressed in a simple sentence, 

As x approaches plus infinity, y approaches zero, but remains positive 

or in mathematical symbolism, 

As x + +a, y + 0 + 

Write the situation for small values of x directly in mathematical symbolism, 

Asx-+O+,y++oo 

What we are saying here is that if x is a very, very, very small number, even smaller than 
0.000000001, the 1 divided by this number is a very, very, very large number. So as 
x+o+, l/O+++.O. 

With this information, the positive portion of the graph can be drawn. In the case of 
pressure and volume or cost of real estate and distance, the problem dictates only positive 
values. In the hc t ion  y = 1 / x no such restriction exists. Refer to the graph in Fig. 2-2 
and follow the logic and symbolism in the statements 

2-2 Graph the hc t ion  y = l / ( x  - I) using limit concepts and notation. lL Sohtion: At x = 1, the function has value l /O, 
which is hard to interpret. Using the limit concept 
the behavior of the function as x approaches 1 is 
easily understood. Note first that if x is greater Y = 1/(.x-- 1) 
than I , the fhction is positive, and if x is less than 
1 the bc t ion  is negative. Apparently the fhnction 

either the positive or negative side. Remember that 
on the number line, positive is to the right and 
negative is to the left. In taking the lirnit it is 
necessary, in this case, to specifjl the direction of 
approach to 1. Notice how this is done in the 
notation. Fig. 2-3 

X behaves differently as x = l  is approached from i x = l  

Pattern 
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Based on experience with y = 1 / x, this function has the same shape, it is just displaced 
(or translated) 1 unit to the right. In y = 1 / x, x = 0 is the asymptote line, but in 
y = 1 / (x - I ) ,  x = 1 is the asymptote line. Follow the logic of the limit calculations and 
verifL the graph as shown in Fig. 2-3. 

2-3 
no tation. 

Solution: 
statements. 

Graph y = 1 / x2 using limit concepts and 

J Think limits and write the symbolic 

A s x + + a , y + O +  Asx+O+,y++ao L 
ASX +0-, y + + a  AS x + -00, y +  O +  

Now draw in the curve. (See Fig. 2-4.) 
Fig. 2-4 

x + 2  
x - 5  

2-4 Discuss the function y = ___ in the vicinity of x = 5 .  

Solution: The numerator of the function presents Y 
no problem. Even at x=-2 ,  the function is 
0 / -7 = 0, perfectly understandable. Based on past 
n v n n 1 ; n n P m  t h m  y. - C in t h m  Ammn-imotnr n r n A w - m c  o 

X 

j \  
vertical asymptote at x = 5. Place the asymptote line ............. ................I .......................... 
u ~ p ~ i i u i i ~ u ,  uiu A ui uiu UuiiviimiaLwi pivuuuua a 

- -  

on the graph. Now, using limit language, describe 
the behavior of the function in the vicinity of x = 5 .  

A s x + ~ + , ~ + + ~ o  A s x + ~ - ,  y + - a  

There is an additional complication as x becomes 
large, either positive or negative. For large x the 
function becomes large number over large number. 
If, however, the fraction is multiplied by 1 / x over 1 / x the limit can be calculated easily: 

Fig. 2-5 

This limit produces a horizontal asymptote. When x is greater than 5 (refer to the original 
function statement), the fraction is positive so this horizontal asymptote is approached 
fiom the positive side. When x is less than 5, but greater than -2, the h c t i o n  is 
negative. At x = 0, y = -2 / 5. For values of x less than (to the left of) -2, the h c t i o n  is 
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always positive and for larger and larger negative x, the function approaches the limit 1 
from the negative side. Go through the logic and verie the graph of Fig. 2-5. 

As the powers of the polynomials increase, the fimctions become harder to graph. In 
chapter 4 more complicated polynomials will be graphed with the aid of calculus. 

3x2+2x+1 2-5 Find the limit of the function y = as x goes to infinity. 
x z + x + l  

Solution: Attempting to evaluate the b c t i o n  for large x produces the result large 
number over large number. Taking the limit with a little inventive algebra (multiplying 
the fiaction by I / x2 over 1 / x2) produces 

3 + 2 / x  + 1/x2 -- 3x2 + 2 x + l  1 /x2  
- 3  [ G] = E 1 + 1 / x + 1 / x2 

lim 
x-+cr, x 2 + x + l  

x4 + 3x2 2-6 Find the limit of as x goes to infinity. 
x5 +2 

Solution: Again use a little inventive algebra. Factor an x4 out of the numerator and an 
x5 out of the denominator: 

lim x4 +3x2 = lim x4(1 +3 /x2 )  = lim[-l[ 1 1+3/x 2 ] = 0  

x--)w x 5 + 2  ~ + 0 0 ~ ~ ( 1 + 2 / ~ ~ )  x+m x 1+2/x5 

The fust fraction has limit zero and the second limit 1. The product is zero. 

This problem illustrates a manipulative rule for limits. lim A - B = [ lim A][ lim B]  
X+C x+c X+C 

Continuous functions are defined mathematically, usually over specific intervals. The 
requirements of a continuous function are: 1) it exists at every point in the defrned 
interval, and 2) the iimit exists at every point and is equal to the value of the function at 
that point. Operationally, continuous functions are ones that can be drawn without lifting 
your pencil. 
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Y- -  
Another often used sample of a discontinuous function 
is the integer function, y = [ x ] ,  where the [XI 
symbolism is read as "the largest integer contained in x." y = [X I  - 
For example, the largest integer contained in 2 is 2. The 

-- - 
- M 

Look back over problems 2-1 through 2-4 and note that the discontinuity occurs at the 
vertical asymptote. 

Another example of a discontinuous function is one defined on certain intervals such as 

x + 3  for - 3 < x < O  

1.5x+4 for x 2 0  

This is a discontinuous function. Though it is defined 
everywhere over the interval, the limit as zero is approached 
fiom the positive side is 4, and the limit as zero is 
approached from the negative side is 3. The fhction is 
shown graphically in Fig. 2-7. 

An example of a function that is discontinuous from one side I 

Fig. 2-7 only is the square root function. The function y = Jx is not 
defined for negative x because there are no real square roots 
of negative numbers. In mathematical symbolism 

lim & = O  and lim &doesnotexist 
x+o+ x+o- 

The function is continuous to zero from the right side but not from the left side. 

The cube root function, y = &, behaves differently. There are real cube roots of both 
positive and negative numbers as well as zero. This function is continuous over the entire 
range of real numbers for x .  
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The derivative of a function is the slope of that function anywhere the function is well 
behaved. A function is well behaved in a region where there is a unique slope at every 
point. A constant function, y = 2 , y = -3, is a straight line of slope zero. A linear 
equation, y = 2x - 3 , y = -x + 5 , has a constant slope (2 and - 1 in these cases). 

The simplest hc t ion  that does not have a constant slope is the quadratic, y = x 2  (see 
page I 1  for a discussion of quadratics). The slope of the quadratic, considering only 

positive values of x, increases as x increases. Look at a magnified portion of the y = x 2  
curve and approximate the slope of the curve at any point by writing a general expression 
for the slope of the straight line connecting two points x and x + hx . The notation Ax 
means a small change in x so the point x + Ax is very close to x. 

Figure 3-1 shows the curve 

y = x 2  and the straight line 
connecting the 

2 points (x, y = x ) 

and (x + Ax, y = (x + A x ) ~ ) .  

The slope of the line 
between these adjacent 

points is 

Y 

l x  X 

The general expression for the 
slope of this curve at any point 
x is the limit of this approximate slope as 
symbolism of limits, the general expression for the slope of 

Fig. 3-1 

goes to zero. Using the mathematical 

is 

33 
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POlynOmidS There is a pattern to these derivatives 
as illustrated in the adjacent table. The pattern 

This defining equation for the derivative is called d y / d x ,  where the d notation indicates 

the limit of Ay/& , or y' , or f' (x) . For the quadratic, we have the following: 

f (4 f ' (4 
const 0 

= lim(2x+Ax)=2x 
(x2 + 2xAx + (hx )2 )  - x 2  

= lim - dy 
& AK+o Ax AX+O 

This general expression for the derivative is used to determine the slope of the curve 

y = x 2  atanypoint. When x=3,thefunctionhasvalue9andslope6. When x=4 , the  
function has value 16 and slope 8. 

Another, more general, way of writing this definition is 

where the expression y(x + Ax) means the value ofy at x + hx and y(x)  means the value 
of y at x. 

3 - 1 Use the definition of the derivative to find the derivative of y = x . 

Solution: Follow the definition of the derivative in equation 3- 1. 

(x + Ax)3 - x3 - x3  + 3x2Ax + 3 X h 2  + Ax3 - x3 -= dy lim - 

Remember 

Th~s power law works for positive and negative exponents, as well as fiactions. 
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3 3-2 Differentiate y = 3 x  + x + 2 .  

Solution: Following the general definition of the derivative (equation 3-1)  write: 

Looking at the parentheses, the 2's add to zero and the x's add to zero. The ( x  + A x ) ~  
term is in the previous problem as well so 

3 x 3  + 9 x 2 A x  + 9 X h 2  + 3 h 3  i- Ax - 3x3 
= lim 9 x 2  + 9 x A x + 3 h x 2  + I = 9 x 2  + 1  dY -= l h  

Look at the general power law rule (If f ( x )  = c x n ,  then f' (x) = cmn-' ) and notice that if 

this law were applied to each of the terms, first the 3 x 3  , then the x, this result would be 
aclueved. 

The previous problem is an example of a simple rule: The derivative of a collection of 
terms is the sum of the derivatives of the individual terms. In mathematical language 

I f  f ( x )  = ~ ( x )  + v ( x )  then f'(x) = U'@) + v ' ( x )  , and 
if f ( x )  = u(x) - v ( x )  then f ' ( x )  = U' ( . x )  - v ' ( x )  . 

3- 3 Using the general power law rule and the sum and difference rules (above) find the 

derivative of y = 4x3 + 3 x 2  - 2 x  - 3 .  

Solution: y ' = 3 ( 4 ~ ~ ) + 2 ( 3 ~ ) - 2 ( 1 ) - 0 = 1 2 ~ ~  +6x-2 

3-4 Findtheslopeof y = 4 x 3  +3x2 - 2 x - 3  at x = 2 .  

Solution: Using the expression for y' fiom the previous problem we can solve as 
follows: 

Remember 

y ' ( 2 )  = 12(2)2 + 6 ( 2 )  - 2 = 48+ 12 -- 2 = 58 
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3 - 5 The cost in dollars to manufacture a certain item is C M  = 120 +0.02x2 . This 
relation is valid for up to 70 items (maximum capacity of the facility) per month. Find 
the cost to manufacture the loth, 40th, and 70* items. This is called the marginal cost. 

Solution: The general expression for the cost per item is the derivative of the cost 
function, d(CM)/dx. 

-- d(CM) - 0 . 0 4 ~  yllo = $0.40 F140 =$1.60 F170 =$2.80 
dx 

The derivative can be thought of as a rate. A most convenient way to illustrate this is with 
velocity and acceleration. One of the easiest rates to visualize is velocity, distance divided 
by time. If something moves 200 meters (m) in 50 seconds (s) we say it has a velcoity of 
4 m/s . This 200 m in 50 s produces an average velocity, h / A t  in calculus language. 
The velocity at any instant during the 5 0 s  may, however, be quite different from the 
average. To find the instantaneous velocity we first need to know how x varies with time, 
or x = f(t) . Then dx/dt, the limit as the time interval becomes shorter and shorter, is an 
expression for the instantaneous velocity, v, that can be evaluated at any time. 

If something is changing velocity as it moves then we can take the difference in velocity 
between the beginning and end of a time interval and calculate the average acceleration 
over that time interval. The instantaneous acceleration (a  = dv/dt ), the rate at whch the 
velocity changes, is the derivative of the velocity-time relation evaluated at any time. 

3-6 Find the expression for the instantaneous velocity for the distance-time function 

x=kt3-Zt2+rnt andevaluatethevelocityat t = l s .  Take k=2m/s3 ,  Z=4m/s2,  
and rn = 5m/s. 

Solution: The general expression for velocity is the time derivative of the x = f ( t )  , or 

and the velocity evaluated at t = 1 is 
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3-7 Continue problem 3-6 by frnding the acceleration at t = 2 s . 

Solution: 
derivative of the expression for v. (See the previous problem for v . )  

The general expression for the instantaneous acceleration is the time 

m, 
dt 

a = - = 2.3kt - 21 

and the acceleration at t = 2 s is 

4 t=2  = (6) (2 m/s3 ) (2 s) - 2(4 m/s2 ) = 16 m/s2 

Velocity and acceleration problems are excellent test problems. Be sure you know that 
gven position as a hc t ion  of time x = f ( t )  , the velocity is the first derivative, and the 
acceleration is the second derivative. 

Given x = 4 + 6t - 5t  know how to frnd velocity ( v  = 6 - l o t )  and acceleration 
( a  = -10) and be able to evaluate velocity and acceleration at any time. 

The velocity is the first derivative of position, v = h / d t  . The acceleration is the first 

derivative of the velocity, a = dv/dt . Both derivatives come from the same function. 
The velocity is the first derivative and the acceleration the second derivative. It is 
common to write v as a first derivative and a as a second derivative: 

You will encounter second and third derivatives of the same function in other areas. 

Product and Quotient Rule Having established the derivatives of 
polynomials and worked some sample problems let's move on to fiactions and products. 

3 - 8 Find the derivative of the function y = x (x + 2) . 

Pattern 

dy S l u t  ion : -= lim (x + Ax) (x + ih + 2) - x (x + 2) 

dx hu+o Ax 
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dY 2 -=3x +4x 

Second Solution: The solution could have been obtained much easier by applying the 
rule for differentiating a product. The derivative of a product is the first term times the 
derivative of the second term plus the second term times the derivative of the first term. In 
mathematical sybolism, 

If f ( x )  = u(x)v(x) then f'(x) = u ( x ) v ' ( x )  + u'(x)v(x) * For this problem, then, 

Remember 
d 

dx dx dx 
- dv = x 2  -qx+2)+(x+2)-x2 =x2(1)+(x+2)(2x)=3x2 +4x 

A similar, though somewhat more complicated rule applies for fractions. Again, use the 
basic definition of the derivative to find the differential of a fraction and see how the 
differentiation can be performed much easier with the fraction rule. 

dv x + l  

dx X 
3 - 9 Use the basic definition of the derivative to find - of y = 2. 

Solution: 

x3 + x 2 A x + x 2  - (x3  +2x2Ax+xAx2 + x 2  +2xAx+Ax2) *= lim 
dx hu+o ( X + W 2 ( X 2 ) ( W  

dy -x2 -2x  - x + 2  

h x  
--- -- - 

X3 
4 
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Second Solution: The general rule for differentiating a fraction is: 

Remember 

By applying this rule the problem becomes much easier: 

d d 
x 2  -- ( x + l ) - ( x + 1 ) - ( x 2 )  

- 4)- - dx 
dx (x2 l2 x4  x4 X 

h -  - x2(1)-(x+1)(2x) - - -x2 -2x - --- x+2  - 
3 

Trigonometric Functions There is no gereral rule for determining the 
derivative of trigonometric functions. Each trigonometric function has a unique 
derivative. One will be done to demonstrate the approach. Consult the table of 
derivatives (pg. 182) for the derivative of each specific trigonometric function. 

3- 10 Apply the basic definition to find the derivative of the sine function, y = sin 6. 

Solution: 
dY sin(6+A6)-sin 6 - 
-= lim 
d6 A8+0 A 6  

The sin(B+AB) can be replaced with the sum of two angles identity (see page 5 or the 
Mathematical Tables at the back of the book for trigonometric identities). 

As A 6  goes to zero, cos A 6  goes to 1 (see the graph of the cosine hc t ion  on pg. 5 )  so 
the problem reduces to 

sin A 6  * = cos8 lim - 
d6 ne+o A 6  

As A 6  approaches zero, sin AB approaches AB . For small angles the sine function 
looks like a straight line of slope 1. Check this out with your hand calculator. 

Take the sine of 0.2 (rad), a little over Il' ,  and notice how close the sine of 0.2 is to 0.2. 
Now decrease the angle to 0.1, 0.01, 0.001, until your calculator no longer displays a 
difference between the sine and the angle. The limit of sin A 6  over AB as AB goes to 
zero is 1 so: 
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The derivative of the sine function is the cosine function. 

The approximation sin 8 = 8 for small 8 is used in many problems in physics and 
engineering. 

I t@iCi t  OifferentiatiOn The general procedure for differentiating a 

polynomial fhction y = x2 + 2x is to apply the power law rule to each term and write 

dy/dx = 2x + 2 .  Another and often very convenient way of lookmg at the problem would 
be to differentiate the entire equation term by term, dy = 2xdx + 2dx , and then write 

dy/& = 2x +2 .  You should notice that most differential tables are written in this 
manner. As hc t ions  become more complicated implicit differentiation becomes more 

convenient. Suppose you have a fhction x4  + x2y2 - xy3 = 18 where it is impossible to 
solve for x in terms of y or y in terms of x. Implicit differentiation is the only way to find 

Pattern 

dY/& - 

3- 1 1 Find dy/dx for x4 +x2y2  - x y 3  = 18 by implicit differentiation. 

Solution: The x2y2 and xy3 terms are treated as products. 

4x3& + x2d(y2 ) + y 2  d(x2 ) - xd(y3 ) - y3dx = 0 

4 x 3 h  + x2 (2ydy) + y ( 2 x d ~ )  - x(3y2dj) - y3dx = 0 

Separate out the terms multiplying dy and dx. 

(2x2y-3xy2)dy = -(4x3 +2xy2 -y3)dx 

and solve for dy/dx. 

dy - 4x3 +2v2 - y 3  --- 
dx 2x2y-3xy2 

3- 1 2 Continue problem 3-1 1 by finding the value of the slope at x = 2, y = 1 . 

Solution: The dy/dx is fiom the previous problem so 
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4(2)3 + 2(2)(1) - 1 32 +4 - 1 35 

-- = -17.5 - - - _  - 
z l x = 2  y=l =-  2(2)2(1)-3(2)(1) 8-6 2 

The graph of x4 + x 2 y 2  - x y 3  = 18 goes through the point ( 2 4  and has a slope at this 
point of -17.5. 

Change of Variable Implicit differentiation and a change of variable become 
essential when hc t ions  become complicated and more than one rule is needed to 
perform a differentiation. 

3- 13 Find the derivative of y = (x + 3)25. 

Solution: You could try to find someone to raise x+3 to the 25* power or you could 
view the x + 3 as a variable and apply the power rule. Implicit differential also helps to 
simplify the problem. 

dy = 25(x + 3)24 d(x + 3 )  so 9 = 25(x + 3)24 
dx 

Second Solution: Instead of just thinking of the x + 3 as the variable you can define a 

new variable, U = (x+3) so the function reads y = u25 with implicit derivative 

4 = 2 5 ~ ~ ~ d u .  The derivative of u is fiom the defrnition of u, so du = dx and 

4) 4 = 25(x +3)24 dx and - = 2 5 ( ~  + 3)24 
dx 

3-14 Findthederivativeof y=cos3(x2 + 2 ) .  

Solution: 
negative sine. Use the power rule first to obtain dy = 3 cos (x + 2)d cos( x + 2) . 

View the x2 + 2  as the variable and take (the derivative of) 

From the Mathematical Tables (pg. 184), the derivative of the cosine is 

dcos(x2 +2)=-sin(x2 +2)d(x2 +2)=-2xsin(x2 +2)& 
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Combining, 

-=[3cos2(x2 dY +2)][-2xsin(x2 +2)]=-6xcos2(x2 +2)sin(x2 +2) 
dr 

Second Solution: Notice how much easier and less susceptible to error the problem 

becomes when a change of variable is made early on in the problem. First set U = x2 + 2 

so du = 2xdx. Now write the problem as y = cos3 U and differentiate implicitly. 

dy = 3(cos2 u)d cos U = 3(cos2 ux-sin u)du = 3[cos2 ( x 2  + 2)][- sin(x2 + 2)}2xdx 

Chain Rule In many practical situations a quantity is given in terms of a variable and 
then this variable is expressed in terms of a third variable. A problem may be described 
this way because the first variable is not easily written in terms of the third or perhaps it is 
conceptually easier to understand the process in two steps. 

Suppose the cost of manufacturing a certain item, say a computer chip, depends on the 
number of items produced. The number of items produced depends on the length of time 
the "fab" facility operates to produce the chips, the length of time for the production run. 
If the cost per unit (dollars per chip) is dC/& and the rate of production (chips per hour) 
is dN/dt , then cost per unit of time is the product of these two derivatives. 

dC dC dN 
di dN dt 
---- - 
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2 3-15 Find du/dt for u = x  +2x and x = t 3 - 3 .  

du du dx 
Solution: This requires a chain derivative: - = - - 

dt 05 dt 

du du dx - 
dt dx dt 

= (2x + 2)(3t 2 ,  ---- 

Logarithms and Exponents The differentials of several logarithms and 
exponents are listed below. 

If y = e X  then & = e x &  

If y = a X  and a > O a n d a # l  then dy=(lna)aXdx 

If y = l n x  

If y = log, I 

1 
then dy=-dx 

X 

x and a > O a n d a + l  then &=- l d x  
(In a ) x  

2 
3-16 Findthederivativeof y = e X  - 3 .  

Solution: Think, or write, y = e" and the derivative is 

2 
dY 

2 
dy=eUdu=eX - 3 ( 2 x d x )  or -=(2x)eX -3 

dx 

3-17 Find dy/& of y = l n x 2 .  

1 d Y 2  &=-2x& or -=- 
2 d x x  

Solution: 
X 

3-18 Findthederivativeof y=x%(x* +2). 

Solution: This looks bad. But, if you proceed slowly, applying the rules one at a time, 
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the differentiation is not all that difficult. The hard part is proceeding logically. This is a 
product so write 

dy = ~ ' . ~ d [ l n ( x ~  +2)]+ln(x2  +2)alx1.5 

2xdx 
d(x2 +2) = -. The differential of h(x2 + 2) is, according to the table, - 

1 

x2 +2 x2 + 2  

The differential of x ' . ~  is (1.5)x0%x. 

Putting it all together we get the following: 

dy = x ' . ~  *+(I.~)x'.~ h ( x 2  +2)& or - @ = - 2x2.5 +(1 .5)~ ' -~  h ( x 2  +2) 
x +2 dx x 2 + 2  

tanX 3-19 Findthederivativeof y = - .  
X 

Solution: 
Apply the fraction rule. 

Your first reaction to this problem probably is to apply a fraction rule. 

d d 
x -(tan x) - (tan x) - x - xsec2 x-(tanx) 

-- dY- dx - ~ 

2 65 X 
2 

X 

Second Solution: 
differential. Switching to an implicit differential and viewing the problem as a product, 

Often viewing a fraction as a product makes for an easier 

Speed @ = x-'d(tan x) + (tan x)d(x-') = x-l sec2 xalx + (tan x ) ( - f 2 ) d x  

dy - xsec2x-tanx -- 
dx X 2  

~~~~~ ~ ~ 

3- 20 Find the derivative of y = e-x sin x . 

Solution: This is a product. Proceed methodically and the problem is not difficult. 

dj = e-xd(sin x) + sin xd(e-x ) = e-x (cos x)& - e-x (sin x)dx 



4 
GRAPHING 

The next three chapters, graphing, max-min problems, and 
related rate problems, all deal with applications of the 
derivative. They are considered the most difficult topics in 
the first semester of calculus, particularly graphing. 

Before going any farther in this chapter go back and review 
the graphing of parabolas, paying particular attention to 
visualizing the curve before plotting points and sketching the 
curve. Also go back and look over the concept of asymptotes 
in the chapter on limits. Many authors approach graphing in 
the calculus by using calculus only. We do not use that 
approach. Graphing is difficult enough without using 

c 

exclusively new techniques. We use the graphing techniques 
of algebra; particularly those techniques discussed in the graphing of parabolas and 
higher power curves. Let's look at a couple of simple problems and see how the 
derivative can be used in curve sketching. 

4- 1 Sketch the graph of y = 4 .  

Solution: Th~s is a straight line parallel to the x-axis as 
shown in Fig. 4-1. Further, it is a horizontal line. The 
derivative of y = 4 is zero. 

X 

Any curve in the form y=const. is a horizontal line Fig. 4-1 
parallel to the x-axis and has zero slope. 

4-2 Sketch the graph of y = 2 x .  I / y = 2 x  

Solution: The derivative of y = 2 x  is 2. The slope is 

everywhere constant and equal to 2 (see Fig. 4-2). Any 
linear function has a constant derivative and a constant 
slope. 

Fig. 4-2 

45 
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4-3 Sketchthegraphof y = - x 2  - 2 x + 8 .  

Solution: This is a parabola (the 2 in the exponent) that opens down (the minus sign in 
front of the squared term) and it is shifted up or down and sideways (the 8 means it is 
shifted up and down and the presence of an x term means it is shifted sideways). If you 
did not know this go back and review the sections relating to graphing parabolas. 

Factoring, y = (-x + 2)(x + 4) tells us that the 
curve crosses the x-axis when x = 2  and 
x = - 4 .  These are the values of x that make 
y = 0 .  Place these two points on the graph and 
with the knowledge that the curve opens down, 
expect a positive value of y at the symmetry 
line, x=-1 .  Substituting x=-1  into the 
original function produces y = 9 .  These points 
and the knowledge that the curve is a parabola 
are sufficient for drawing the sketch shown in 
Fig. 4-3. x=-1  

Fig. 4-3 There is another point that is so easy it is not 
worth passing up. Look at the original h c t i o n  
andnotethatat x = O ,  y = 8 .  

So, where does calculus come in? At the point (-1,9) the slope of the curve is zero. 
This means that the derivative must be zero at the point x = -1. When the derivative of a 
h c t i o n  is zero, the slope is zero and the curve is flat (at that point). Setting the 

derivative of y = -xL - 2x + 8 equal to zero should produce the value of x = -1 

The function y = -x2 - 2x + 8 has derivative y'= -2x - 2 = -2(x + I).  Setting 
- 2(x + 1) = 0 produces the solution x = -1 and we already know y = 9 for x = -1. 

How does calculus help in graphing? When the derivative of a parabola is zero, the curve 

parabola is flat is at a peak or a valley. The broader application of this approach is very 
has a A or U shape. Zero slope means the curve is flat and the only place where a 

helpful in higher (than 2) power curves such as the one in the next problem. 

* 
Remember 

4-4 Sketch the graph of y = x3 - 3x2 + 2. 

Solution: The dominant term is x3 so for large enough values of x the curve looks like 
a cubic. If you have any trouble It goes up to the right and down to the left. 



understanding that last sentence go back to the chapter on graphing and look up cubics. 
For x = 0 ,  y = 2 .  With this most rudimentary analysis we know that the curve goes up 
to the right, down to the left, and passes through (0,2). 

and a 
quadratic has two solutions or, in this case, two points 
where the slope is zero. 

The derivative of y = x  -3x +2  is 

y'= 3x2 - 6x = 3x(x - 2) with solutions x = 0 and 
x = 2 .  Substituting these values into the original 
function produces the points (2,-2) and f0,2). Place 
these points on the coordinate system, remembering 
that they are points on the curve where the slope is 
zero, and the curve is easily sketched. 

The derivative of a cubic is a quadratic, Y -- 

3 2 

-- 

Fig. 4-4 

The point (1,O) is easy to calculate. And if more detail is desired the values of (2,2) and 
(-4-2) can be obtained easily. These last two points show an approximate position 
where the curve crosses the x-axis (Fig. 4-4). 

A 3rd power curve has a 2nd power derivative. The 2nd wer derivative has at most two 
points, solutions, where the derivative is zero. A 4 power curve has a 3rd power 
derivative and at most three points where the derivative is zero and so on for higher 
power curves. The number of points where a polynomial has zero slope is at most equal 
to one less than the power of the polynomial. There is, however, another little twist to 
this rule as illustrated in the following problem. 

r 
Pattern 

4-5 Sketch the graph of y = 3x4 - 4x3 + 1 . 

Solution: This is a 4th degree equation. The 

3x4 term dominates for large x so the curve 
eventually rises to the right and the left. The point 
(0,l) is easy. The point (1,O) is almost as easy. 
Now apply some calculus analysis. Differentiate 
the function, set the derivative equal to zero, and 
find where the curve has zero slope. 

Differentiating the function, 

y'=12x3-12x =12x (x-I), and setting the -- 
derivative equal to zero, 12x2 (x - 1) = 0, produces 
two values of x where the slope is zero, x = 0 and 

y =3x4 -4x3 + I  

2 2 

Fig. 4-5 
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BBB] 
Pattern 

that at points where the first derivative 
goes to zero, the curves are concave up 
when the second derivative is positive and 
concave down when the second derivative 
is negative. This is a calculus method of 
determining where the curves are concave 

x = 1. We already have the coordinates of these points, and now we know the curve has 
zero slope at these points. 

Concave up 

Concave down 

This analysis has produced a dilemma. How can the curve go up to the right, go up to the 
left, and have two points such as U or n ? It can't! One of the points where the slope is 
zero must be a point where the curve, going up or down, becomes flat and continues on 
up or down. The point x = 1 is lower than the point x = 0 so the point at x = 1 must be 
the one with shape U and the point at x = 0 must be the one where the curve flattens 
out (Fig. 4-5). The exact shape in the vicinity of both x = 0 and x = 1 can be checked by 
trying some points in the original equation. There is, however, a better way. It involves 
calculus and it is easier. 

\J& 
Watch 
at! 

The first derivative of a function set equal to zero determines where the function has zero 
slope. At these points the curve is either concave up or concave down, or has an 
inflection point where the slope is zero. The second derivative of the function produces 
the answers here. To get a feel for how the second derivative works look at the previous 
problems. 

Problem 4-3 is the sketch of y = -x2 - 2x + 8 and algebra analysis indicates a parabola 
that looks llke n , symmetric about the line x = -1. The first derivative of y is 
y'= -2x - 2 = -2(x + 1) and setting y'= 0 produces the point (for zero slope) of x = -1. 

The second derivative of y = -x - 2x + 8 is y" = -2 . The second derivative is negative 
at x = -1 and in fact everywhere on the curve. 

A simple parabola y = x k ()x k () opens up ( U ). The first derivative is y'= 2x k () and 
the second derivative is y"= 2 .  For a parabola that opens up, the second derivative is 
positive at the minimum value. 

Look at problem 4-4, the graph of y = x3 - 3x + 2 . The first derivative y' = 3x - 6x 
produces zero slopes at x = 0 and x = 2 .  The second derivative y" = 6x - 6 is negative 
at x = 0 ,  and positive at x = 2 .  
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Now let's take a look at problem 4-5, the one with the horizontal inflection point. The 

original function is y = 3x4 - 4x3 + 1 with first derivative y'= 12x3 - 12x2 producing 
x = O  and x = l  as the points where the slope is zero. The second derivative is 

y' ' = 36x2 - 24x = 12x(3x - 2). At x = 1,  the second derivative is positive indicating the 
curve is concave up at this point. At x = 0 ,  the second derivative has value 0 inQcating 
neither concave up nor concave down, but a point of inflection. 

These three problems illustrate the use of calculus in graphing. What we have learned so 
far can be summarized as follows: 

Take the first derivative. Set this first derivative equal to zero and solve the resulting 
equation to find points where the curve has zero slope. 

Take the second derivative and evaluate the second derivative at the points where the 
slope is zero. 

If the second derivative is positive, the curve is concave up. 

If the second derivative is negative, the curve is concave down. 

If the second derivative is zero, the curve has a point of inflection. 

4-6 Sketchthegraphofy=x3+x2-2x. 

Solution: The dominant term is x3 so the curve eventually goes up to the right and 
down to the left. The point x = 0,  y = 0 is easy. Before differentiating, note that the 
curve has zero slope at no more than two points because the highest power is 3. Follow 
along the rules as they are written above. 

The first derivative is y'= 3x2 +2x - 2 .  Setting 3x2 +2x - 2 = 0 results in a quadratic 
that cannot be factored so apply the quadratic formula 

= 0.55,- 1.2 
-24- - - - 2 4 5  

x =  
2(3) 6 

Figure 4-6 is a first cut at the graph. It is based only 
on knowing that the curve goes up to the right, down 
to the lee, passes through (O,O), and has zero slope 
at x=0.55 and x=-1.2. 

Is it possible to easily find the points where the 
curve y = x3 + x2 - 2 crosses the x-axis? Maybe, 

Fig. 4-6 
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maybe not, but it is at least worth trying a couple of obvious points: 

At x = l ,  y(l)=1+1-2(1)=0. 

At ~ = - - f ,  y(- l )=-1+1+2=2.  

At ~ = - 2 ,  y(-2)=-8+4+4=0. 

There is no point in t y n g  fiuther numbers. A 
cubic only crosses the x-axis at most three times 
and we have the three places where it crosses. 
Findmg they values at the turning points, where the 
slope is zero, may or may not be important to you. 
With this added information, the curve can be 
sketched as in Fig. 4-7. 

Fig. 4-7 

Second Solution: There is another feature of th~s curve that can be analyzed using 
calculus. Look at the left part of the curve that looks like a parabola opening down and 
then the right part of the curve that looks like a parabola opening up. On this left part of 
the curve the slope becomes more and more negative until some point, between x = -1.2 
and x = 0.55, the slope of the curve, though still negative, starts becoming more positive. 
The point where this happens is also called a point of inflection. The strict definition of 
this point (of inflection) is that it is the point where the slope changes from becoming 
more negative to becoming more positive or vice versa. 

The analysis of points of inflection can be confusing which is why these subtleties have 
been put off until now. There are two kinds of points of inflection, one where the curve 
goes to zero slope but does not have a U or r\ shape, and the other where the curve 
changes fiom having an increasingly negative slope to an increasingly positive slope. 

The confbsion does not end here, however. The first type of point of inflection is 
determined by evaluating the second derivative at the point where the first derivative 
goes to zero. The second type of point of inflection is found by setting the second 
derivative equal to zero. Read this paragraph again and again until the distinction is clear 
in your mind. 

\I& 

Watch 

ye 

The first derivative of y = x3 + x2 - 2x is y'= 3x2 + 2x - 2 and this resulted in the 
points x = 0.55 and x = -1.2 where the curve crossed the x-axis. The second derivative 
is y"=6x+2 which is positive at x=O.55 and negative at x=-1.2 confirming the 
previous analysis of h s  curve. The new feature is obtained by setting the second 
derivative equal to zero 2(3x + 1) = 0 . The second derivative is zero at x = - 1/3. Look 
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again at the curve in Fig. 4-7 and see that this is a very reasonable point for the curve to 
change slope from becoming more and more negative to becoming more and more 
positive. This is another graphing tool involving calculus. 

4-7 Sketchthegraphof y = 8 x 5  -5x4 -20x3. 

Solution: This is a Sth degree curve so it 
increases (rises) rapidly with large positive x 
and goes rapidly negative for large negative 
values of x. The function factors to 
y = x3 (8x2 - 5x - 20) producing the points 
x = o ,  y = o .  

The first derivative is 

y '= 40x4 - 20x3 - 60x2 

y'=20x2(2x2 -3-3) 

y'= 20x2(2x-3)(x+1) Fig. 4-8 

Setting the frrst derivative equal to zero (y '=O) produces three points 
x = 0, 3/2, and - 1 . These are the points where the curve has zero slope. 

The second derivative is 

y"=16Ox3 - 6 0 ~ ~  - 1 2 0 ~  

y"= 2Ox(8x2 - 3 ~ - 6 )  

To determine the shape of the curve where the slope equals zero, find y" at each point: 
y"(0) = 0,  horizontal point of inflection; y"(3/2) = 225, U shape; y"(-1) = -100, n 

shape. 

The value of the function at each turning point is found by putting the values of x in the 
function. 

At x = O ,  y(O)=O 

At x = 3/2, ~ ( 3 1 2 )  = (3/2)3 [8(3/2)2 - 5(3/2) - 201 = -64 

At x = -1, y(-1) = -1(8+5 -20) = 7 
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All the inflection points, both horizontal and vertical, are found by setting y"= 0 : 

20x(8x2 - 3 x  - 6 )  = 0 . The inflection points are at x = 0 and the solutions to 

8x2  - 3 x - 6  = 0 are 

= -0.70,l. 1 
3 f J9-4(8)(-6) - 3 k14.2 -- x =  

16 

These are most reasonable points, being where we expect the points of inflection to 
occur. The function is sketched in Fig. 4-8. 

So far we have looked at polynomials. This is the type of function you will encounter 
most often. Your course may or may not include the graphing of rational functions 
(polynomial fiactions). Polynomial fiactions introduce one more interesting twist to the 
use of derivatives in curve sketching, what happens to a curve when the derivatives are 
undefined. This is best illustrated by example. 

4-8 Sketch the graph of y = x2/x-1. 

Solution: At x = l  this hc t ion  is 
undefrned (l/O). Therefore draw a 
dashed vertical line on the coordinate 
axes at x = l  indicating that the curve 
may exist to the right or left of this line, 
but not on the line. There is no 
dominant term in the same manner as 
for polynomials but, applying similar 
reasoning, look what happens when x is 
a large positive or negative number. 
When x is large the x-1 in the 
denominator looks like x and the 
hc t ion  looks like y = x .  In the 
language of the chapter on limits: As 
x+fao,  y = x .  

Add a dashed line, y = x ,  to the 
coordinate axes remembering that this is 
an asymptote line. 

I I I  
I I I x  

Fig. 4-9 

Now apply some calculus analysis. The first derivative of the function is, using the 
quotient rule: 
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(x-1)(2x)-x2 2x2 --2x-x2 - x 2  -2x 

(x-l)2 (X-1)2 (x - 1)2 
-- - y' = - 

Before setting y'= 0 ,  note that the derivative does not exist at x = 1. But we already 
knew that because the function does not exist at x = l  so it is not surprising that the 
derivative does not exist there. Note, however, that as x approaches 1 from either the 
positive or negative side, the slope of the curve is negative. This information may be 
helpfbl in sketching the graph. (See Fig. 4-9.) 

Setting y'= 0 produces x(x-2) = 0 ,  and the two points where the slope equals zero, 
x = 0 ,  and x = 2 .  The values of the firnction for these two points are: 

L 
y(O)=O and y(2)=- = 4 so the slopeof the curve is zero at (0,O) and (2,4). 

2-1 

If you are unsure of the shape of the curve in certain regions, check a point. With the 
information generated from the calculus and the concepts of limits you should get very 
close to the correct curve. As you gain more confidence you will not resort to checking 
specific areas of the curve by testing a point. 

The previous problem is typical of the more difficult ones you will encounter in your 
course. It is probably beyond what you will encounter on a test because of the 
complexity of the analysis and the potential for confusion. Sketches of the graphs of 
polynomials are much more popular as test problems. Know how to graph polynomials 
and you will be well along toward a good test score in graphng. 

Having gone through examples of what you can expect to encounter in graphing 
problems, it is now time to write down some procedural guidelines for graphing curves of 
the general form y = f ( x )  . 

Guidelines for Graphing with Calculus 

1. Look for the dominant term. If the function is a polynomial, the highest-power term 
gives the shape of the curve for large positive or negative numbers, and one less than 
this highest power gives the maximum number of points where the curve has zero 
slope. 

2. If the function is a fraction ask how it behaves for large x.  Does it look like a straight 
line, a parabola, or what? Also look for places where the curve does not exist. 

3. Take the first derivative. Set the frrst derivative equal to zero and solve for values of 
x where the curve has zero slope. Determine the y-value at these points and add these 
points to the coordinate axes. 

Remember 
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4. Take the second derivative. Evaluate the second derivative at the points where the 
slope is zero: If the second derivative is positive, the curve is concave up; if the 
second derivative is negative, the curve is concave down; if the second derivative is 
zero, the curve has a point of horizontal inflection. 

5. Set the second derivative equal to zero and solve for values of x where the curve 
changes concavity. These are points where the slope of the curve changes fi-om 
going more positive to going less positive or from going more negative to going less 
negative. 

6. Sketch the curve. If you are unsure of the curve in certain places, plot a few points 

These are guidelines for graphmg hnctions. You may not always need all of the steps 
listed here. Depending on what you are looking for in the problem, you may not need to 
perform each step in detail. These guidelines will, however, allow you to graph just 
about any b c t i o n  you encounter. Now it is time for some application problems. 

4-9 The number of sales of a certain consumer item is growing in a quadratic way 
with time while the discard rate remains a constant over time. Analysts expect this trend 
to continue for five years. The number of these items in the hands of consumers as a 
hnction of time is N(t)=3.2t2 -3t+24. The 3.2t2 term represents the quadratic 
growth in sales, the -3t term represents the discard rate, and the 24 represents the 
number now in consumer hands. Sketch the graph of N vs. t . Determine if there is 
anything else in the graph or the calculus analysis that will help in business planning. 

Solution: This h c t i o n  is a quadratic that opens up. It starts at N = 24 when t = 0 .  
Only positive values o f t  have meaning. The equation cannot be factored so let’s continue 
with the analysis remembering that we can always come back to the solution for N = 0 if 
necessary. 

The first derivative of the function 

N(t)=3.2t2 -3t+24 is N‘=6.4t-3.  

Setting the first derivative equal to zero 
produces 6.4t -3 = 0 and the value t = 0.47 
for zero slope of N vs. t . The value of the 
function at t = 0.47 is 

I l l 1  
1 1 1 1  

N(0.47) = 3.2(0.47)* - 3(0.47) + 24 = 23.3. t 
0.47 yr. 

The second derivative is 6.4, a positive Fig. 4-10 
number so the shape of the curve at x = 0.47, 
and everywhere is U. With this information 
the curve can be plotted as in Fig. 4-10. The curve never crosses the t-axis. 
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In addition to showing graphically the number of writs predicted as needed, the first 
derivative tells us something else. For the first half-year the number of items in 
consumer hands will decline (the minimum in the curve is at 0.47 yr.), then will rise. If 
the model is correct, suppliers need to be prepared for modest increase followed by a 
much greater increase in demand for the product. 

4- 10 The volume of lumber available in a managed forest 

follows the formula V = (0.08)t2 -(0.001)t3 over the first 60 
years’ life of the forest. Find the general shape of the curve 
fiom 0 to 60 years and determine the optimum time for 
harvesting the forest. 

Solution: Only positive time fiom 0 to 60 years is 
interesting. The volume of lumber is in arbitrary units 
depending on the size of the forest. The curve starts out as a 

quadratic and then begins to flatten out with the growth of the t 3  term. This is 
reasonable. Trees grow rapidly in their early years and then slow down as they reach 
maturity. 

Take the first derivative of the function V = (0.08)t2 -(0.001)t3 to obtain 

V’ = (0.16)t - (0.003)t . Set this first derivative equal to zero to find the times when the 
curve has zero slope. t(O.16-0.0031) = 0 produces values of t =0, and t = 533. The 
time of 533 years is well beyond where the formula is valid. The time t = 0 is very 
reasonable. The curve is flat at t = 0 and rises throughout the 60 years when the formula 
is valid. 

Take a second derivative: V”=0.16-(0.006)f and set this equal to zero; 
0.16- (0.006)t = 0 produces a value of This second t = 0.16/0.006 = 27 years. 
derivative test shows a change in concavity 
at 27 years. This means that the change in 
volume with time, the slope of the V vs. t 
curve, reaches a maximum at 27 years and 
after this time begins to drop off. 

V 

The most appropriate time to harvest this 
forest is at 27 years. A year or two more or 
less fiom this number won’t make much 
difference because the slope is not changing 
rapidly around 27 years (Fig. 4-1 1). 

I 

27 yrs. 

Fig. 4-11 
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4-11 A certain disease is infecting an animal 
population. Experience with this disease shows that &er 
injection with the appropriate antidote the number of 
animals infected with the disease follows the following 

formula: P( t )  = (202 + 8) /(t + 1) where t is measured in 
weeks. Find the time &er the injection when the most 
animals will be affected by the disease and the total number 
affected. P( t )  is measured in thousands. 

Solution: The t 2  term in the denominator insures that as time goes on the number of 
infected animals will eventually tend to zero. If it did not, we should be looking for 
another antidote! There are no positive values of t  where the curve does not exist. If this 
model correctly predicts the total number of animals affected by the disease and the time 
when this maximum occurs, then the antidote is working as predicted and we are assured 
that all the animals will eventually be cured shortly after the disease peaks. 

At t = 0 ,  P( t )  = 8 .  This is when the antidote is administered to the animals. Finding the 
general shape of the P vs. t curve is ideally suited to calculus analysis. 

( t  + 1)20 - (201 + 8)(2r) - - 20t - 161 + 20 is P'= - 20t+8 
The first derivative of P(t )  = - 

t 2  +1 ( t 2  +1)2 ( t 2  +1)2 

Set the first derivative equal to zero and obtain 

- 5 t 2  -4t+5 
P 20t + 8 

= O  or 5 t 2 + 4 t - 5 = 0  

P( t )  = ~ 

14.8 -- t 2  + 1  
( t 2  +1)2 

This equation cannot be factored, so solve by 
quadratic formula: 

= 0.68, - 1.5 
-4,J16-4(5)0 -4kJi-G 

t =  
2(5) 10 

I 
I I 
I I t  

Only the positive value has meaning so take 
t = 0.68 weeks for the zero slope condition and 
calculate P 0.68 wk. 

20(0.68)+8 13.6+8 21.6 Fig. 4-12 
(0.68)2 + 1  1.46 1.46 

- - - = 14.8 -- P(0.68) = - 

The disease should peak at 0.68 week or 5 days &er administration ofthe antidote with a 
maximum of 14.8 thousand animals infected on that day. After the 5* day, the number 
infected should decline as illustrated in Fig. 4-1 2. 
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MAX-MIN PROBLEMS 

Max-min problems are unique to calculus. 
As the name implies, a variable is 
maxlfTLlzed or minimized in terms of 
another variable. A typical problem would 
ask the question: 

. .  

"What is the maximum volume of a cylindrical container that can be made fiom a given 
mount of material?" The volume of the container is the variable to be maximized while 
the surface area of the container is limited by the amount of material allowed. In this 
example an equation for the volume ( V  = ... ) is the defining equation. It defines the 
variable to be maximized, the volume, in tenns of the dimensions of the container. The 
specification of a certain amount of material for the container is called the constraint 
equation. It relates the variables in the defining equation so the defining equation can be 
written in terms of one variable. This all becomes much clearer after a couple of 
problems. 

Once the defining equation is written in terms of one variable it is differentiated to find 
where the slope is zero. Where the slope of this curve is zero, the curve is at a maximum 
or a minimum. The value of the second derivative tells whether that point is a maximum 
or a minimum. Finding the points where the slope is zero and then identifjhg those 
points as either maximum n , or minimum U, has already been done in the graphing 
chapter. Max-min problems use much the same analysis techniques as with graphing. 

Writing the defining equation is usually relatively easy. The hard part of max-min 
problems is finding the constraint equation and then doing the algebra so as to get the 
defining equation written in terms of one, other than the one to be maximized or 
minimized, variable and in as simple a fonn as possible. 

There are very few max-min problems where the defining equation is written directly in 
terms of one variable. They are seen rarely on tests. They are considered too easy! Let's 
slowly go through a couple of max-min problems before setting down guidelines for 
worlung the problems and going on to the more challenging problems. Learn the 
procedure and max-min problems are not difficult. 

57 



58  CHAPTER^ 

5-1 Design an open-top box for maximum volume. 
The box is to be made from a square piece of material of 
dimension a. What size square should be cut from each 
corner to make the box? 

Solution: The side of the square taken from each corner 
is x. After the corner pieces are removed, the box is 
formed by bending the sides along the lines indicated. 

The defining equation is V = (a - 2 ~ ) ~  x . 

- 
............... 

............... -x [ 
- 

................ 71 

................ 

Fig. 5-1 
The bottom of the box is a - 2 x  by a - 2 x  and the height 
is x. The a is a constant, making the equation for V one with only one variable, x.  
Multiplying, we have the following: 

Differentiate 
curveof V V S . ~ .  

and set the derivative equal to zero to find the maxima and minima of the 

V'=12x2 -8ax+a2 = a2 -8ax+12x2 =(a-6x)(a-2x) 

Setting V' = 0 produces values for x of a/6 and a/2. These are the maxima or minima. 
The value a/2 is obviously the minimum since this is a box of zero volume! The value 
a/6 must be the maximum. The second derivative test will tell for sure. The second 
derivative of V is V"= 24x -8a. At x = a/2, V"= 12a -8a = 4a (positive or minima), 

and at x = a/6, V' ' = 4a - 8a = -4a (negative or maxima). 

Maximum volume occurs when the square piece removed from the edge of the original 
square is one-sixth the length of the side. 

5-2 A rectangular area is to be enclosed with 320 feet of fence. 
What dimensions of rectangle give the maximum area? 

Solution: The quantity to be maximized is the area, the product of the 
lengths of the two sides of the rectangle. The defining equation, the A 
equals.. . equation, is A = a6 . Before maximizing the area (taking the 
derivative of A), the product a6 must be written in terms of one 
variable. This requires a "constraint" equation relating a to b. The 
constraint in the problem is that the total length of fence 2a + 26 must 
equal 320. With this constraint equation A can be written in terms of a 
or b, it makes no difference. 

b 

Fig. 5-2 
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Solve the constraint equation for a, and substitute in the area equation. 

2a+2b=320 so a=160-b  and A=(160-b)b=160b-b2 

The maximum occurs when the graph of A vs. b goes through a maximum. A maximum 
is defined, in calculus, as slope zero and second derivative negative. 

dA 
db 

Solving - = 160 - 2b and setting this equal to zero we get 160 - 2b = 0 and b = 80. 

d 2 A  The second derivative - = -2 confirming b = 80 as a maximum. 
db 

Go back to the constraint equation and note that for h = 8 0 ,  a = 8 0 .  
maximum for a square. 

The area is 

ORen max-min problems can be done with the 
first and second derivative. If you fell a little 
insecure, sketch the graph of the fhction. All A = 160b-b2 

6400 t the idormation, and then some, is already 
available for sketching the graph. 

The original equation A = 1606 -b2  is a 
parabola that opens down and goes through the I /  \ 
points b = 0 and b =160 with symmetry line at 
b = 80. If you had any trouble with that last 
sentence go back to the graphing of parabolas 

Fig. 5-3 and review the procedure. The calculus tells us 
that the slope is zero at b = 80 and that the curve 
goes through a maximum at that point. This confirms what we already know fiom 
algebra analysis. The curve is sketched in Fig 5-3 .  

This problem is an excellent pattern for max-min problems. Go through th~s problem 
again concentrating on the procedure, not the mathematics, and follow along the 
guidelines for doing max-min problems. 

Guidelines for  Max-Min Problems 

1 .  
2. 
3 .  
4. 
5 .  
6 .  

Draw a diagram to help visualize the problem. 
Write down the defining equation. 
Tie the two variables in the defining equation together with a constraint equation. 
Write the defining equation in terms of one variable. 
Take the first and second derivatives to frnd maxima and minima. 
Go back to the constraint equation and find all the quantities desired in the problem. 
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5-3 The strength of a rectangular wooden beam varies 
jointly as the width and cube of the depth of the beam. 
Find the dimensions of the strongest beam that can be cut 
fiom a log of radius R. 

Solution: Sketch the round log and the rectangular 
beam. Do you remember word problems in algebra that d 
contained phrases like " ... varies jointly as ... ?" This 
problem is included to remind you that some instructors 
use this language in calculus problems. The first 
statement in the problem, translated into algebra, is 

S = wd . This is the defining equation. 

W 
Fig. 5-4 

To translate the problem statement completely, there should be a constant in front of the 
w but we are not going to calculate specific strengths, just the dimensions for maximum 
strength so the constant is not necessary. The constraint equation involves writing the 
Pythagorean statement for the right triangle formed by d, w, and 2R (Fig. 5-4). 

The constraint equation, d + w2 = 4R2 can be solved for either d or w and substituted 
in the defining equation. Either way does not look too appealing. Solving for w keeps 

the numbers smaller so write w = (4R2 - d 2  )'/2 and substitute into the defining 
equation to write S in terms of d only. 

Differentiate S with the product rule 

d 4  

(4R2 -d2)'I2 
S' = (4R2 - d ) '1' (3d ) + d (4R2 - d )-'I2 (-2d) = 3d (4R2 - d ) 'I2 - 

Set S' equal to zero 

or d 2  = 3 ( 4 R 2  - d 2 )  or 4d2 =12R2 
3d2(4R2 -d2)'I2 = d 4  

(4R2 -d2) ' I2  

and 

produces w 2  = 4 R 2  -3R2  = R 

d = +& R . The positive value for d substituted into the constraint equation 
2 and w = R .  

The maximum strength beam that can be cut fiom a log of radius R is one of dimensions 
R and & R. It is not necessary to formally determine that h s  is a maximum. It is the 
only reasonable choice fiom the first derivative equals zero condition. 
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5-4 A park area of 5000 square meters is to be built in the shape of a rectangle along a 
river. Fencing will be on three sides. What is the minimum length of fencing for the 
desired area? 

Solution: Fencing is required only on three sides of the 
rectangle as shown in Fig. 5-5. The defining equation is for the 
perimeter, the variable we want to minimize: P = 2a + b .  The 
constraint equation is from the area requirement. Stated in the 
form of an equation: ab = 5000. In order to write P in terms of 
one variable, solve the area equation for b and substitute. 

so P = 2a + ~ = 2a + 5000a-l 

b 

Fig. 5-5 
5000 5000 b=- 

a a 

Take the derivative of P:  P'= 2 + 5000(-a-2 ) and set P'= 0 : 

and a2 =2500 or a = 5 0 .  
5000 2 = -  
a2  

is positive for all positive 
5000 

P"= -5000(-2a-3) = - 
a3 

The second derivative of P: 

values of a, so a = 50 is a minimum. 

Putting a = 50 back into the constraint equation: 506 = 5000 yields b = 100. 

The dimensions a = 50 , b = 100 provide the minimum fencing requirement. 

The graph of P vs. a is helpfbl in understanding this problem. The form 

P = 2a +-is most convenient for graphing. Only positive a has meaning. The first 

step in graphing (page 53 contains the guidelines 

There are two here. The 2a term dominates for 
large a and the 5000/a term dominates for small 
a. 300 
In mathematical terms; as a + O ,  P+t.cx,; 
andas a + w ,  P = 2 a .  
The value of the function at a = 5 0 ,  the point 
where the slope equals zero, is 

5000 
a 

for graphing) is to look for dominant terms. P 

P(50) = 2(50) + 5000/SO = 200. 

With this information the curve can be sketched 
as in Fig. 5-6. 

a 
200 

Fig. 5-6 

a 
200 

Fig. 5-6 
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5-5 An orange fanner knows fiom experience that in a certain field 60 orange trees 
will produce an average of 400 oranges per tree. For each additional tree planted the 
average yield per tree will drop by 4 oranges. What number of trees will produce 
maximum total yield? 

Solution: The total yield for 60 trees with an average of 400 oranges per tree is: 

400 oranges 

tree 
Yl,  = (60 trees) = 24,000 oranges 

396 oranges 

tree 
For one more tree the yield is: Y I = (6 1 trees) = 24,156 oranges 

392 oranges 

tree 
For another tree (total 62) the yield is: YI,, = (62 trees) = 24,304 oranges 

Looking at these numbers, the general formula for total yield as the number of trees is 
increased is: 

Y = (60 + ~)(400 - 4 ~ )  

where x is the number of trees in excess of 60. 

Problem statements similar to this one can be confusing. You may have already figured 
that out! One way of getting a handle on the defining equation is to put in some numbers. svE In this case, writing the total yield for 60 trees producing an average of 400 oranges per 
tree and then increasing the number of trees by 1 and decreasing the yield per tree by 4, 

Insight then repeating the process (increasing the number of trees to 62 and decreasing the yield 
per tree another 4 oranges) provides an education in how to write the general statement 
for the yield. The numbers also allow you to check the defining equation you have 
written. 

Write the yield equation as Y = (60 + x)(400 - 4x) = 24,000 + 160x - 4x2.  

The first derivative of Y is Y'=  160-8x and setting Y'=  0 ,  x = 20.  

The second derivative of Y is Y"= -8 verifj4ng that x = 20 is a maximum. 

The total number of trees for maximum yield is 80 (20 more than the original 60). 
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5- 6 Find the minimum cost to construct a cylindrical container if material for the top 
and bottom costs 4 cents per square inch and material for the sides costs 3 cents per 
square inch. The container is to have volume 100 cubic inches. 

r 

h 

Solution: Draw a cylinder of radius r 
and height h. The area of the top and 

bottom is n r 2 .  The area of the side is 
(2nr)h.  Imagine the side as a piece 
2nr long, the circumference of the 
container, and h high. 

The defining equation is the cost equation 
which in words is 4 cents times the area 
of the top and bottom plus 3 cents times 
the area of the side. 

Area (top) = n r  

Area (side) = (2nr)h 

Volume= (nr2 )h  

Fig. 5-7 

C =4(nr2  +nr2)+3(2nrh)=8nr2 +6nrh 

container is the area 

Set V = 100 , solve 

h=100/nr2 and 

The constraint is that the volume must be 100 cubic inches. The volume of a cylindrical 

of the bottom, nr 2 ,  times the height, h: V = n r 2  h . 

for h, and substitute into the defining equation: 100 = nr2h or 

2 100 2 600 
C=8nr  +6nr---=8nr +-=8nr2 +600r-' 

nr2 r 

The first derivative of C is: C' = 16nr - 600r -2 and setting (I' = 0 produces 

3 600 600 600 

r 2  16n 16n 
and r = i-- = 2.3 16nr--=O or r =- 

1200 
The second derivative of C is: C" = 16n + - 

r 3  

C" is positive for all positive r indicating a minimum for the curve. 

Substituting the r for zero slope back into the constraint equation 100 = n r  h produces 

213 

loo=*(--) 600 2'3 h or h = - ( = )  100 16n ~ 6 . 1  
n 
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5-7 Postal rates increase when the girth (once around) plus the length of a package 
exceeds 84 inches. What are the dimensions of a "bricklike" shaped box with square 
ends to provide maximum volume? 

Solution: The defining equation is the volume 

which in this case is the area of the end, x 2 ,  times 

the length, y: v = x L y  

The constraint is that the girth, 4x plus the length, y7 
is limited to 84: 4x + y = 84 

The simplest way to write the V = ... equation in 
one variable is to solve the constraint equation for y: 
y = 84 - 4x and substitute for y in the defining equation. 

X 

X 

Fig. 5-8 

The first derivative of V is 12x(14 - x) = 0 
produces two values of x where the slope of V vs. x is zero: x = 0 and x = 14. The 
value x = 0 produces a zero volume, about as minimal as you can get, so x = 14 is a 
good bet for maximum volume. 

The second derivative of V is V1'=168-24x. Evaluating V" at x=14  is 
V"(14) = 168-24(14 = 168-336 = -168 verifying our suspicion that x = 14 produced 
the maximum volume. 

Going back to the constraint equation solved for y7 the corresponding y dimension is 

V' = 168x - 12x2 and setting V'= 0 ,  

y = 84 -4(14) = 84 - 56 = 28. 

A box with a square end 14 inches on a side and length 28 produces the maximum 
volume within the girth and length restrictions. 



RELATED RATE PROBLEMS 

Related rate problems relate one rate, written as a derivative, to another rate written as a 
derivative. An excellent example of a related rate problem, and one that is in nearly 
every calculus book including this one, is a ladder sliding down a wall. (See Fig. 6-1.) 
The top of the ladder is moving down the wall while the bottom of the ladder is moving 
away fiom the wall. The rate (speed) the top is moving down the wall can be related to 
the rate (speed) the bottom is moving away from the wall. Thus the name of these 
problems, related rate problems. 

A little review is in order. Related rate problems are similar to problems involving 

implicit differentiation. Equations in the form y = f ( x )  such as y = x 2  + 2 x  - 3  are 
differentiated term by term according to the rules for differentiating polynomials, 
products, quotients, or whatever. Equations where the x's and y's are mixed together so 
the equation cannot be written as y = f ( x )  or x = f(y) (an x alone or a y  alone on one 
side of the equation) are differentiated implicitly. 

For example, the equation 2xy2 +xy3 = 0 must be differentiated implicitly as 

2y dx + 4xydy + 3xy dy + y dx = 0 with dy/dx formed by grouping and rearranging. 

If x and y could both change over time then a related rate associated differentiation of this 
equation would be 

2y2 &+4xy--+3xy2 dY *+y3 *=o 
dt dt dt dt 

dx dY . In this statement, - is directly related to - . 
dt dt 

2 3 d x  2 d Y  dx 4 x y + 3 x y 2 9  (2y  + y  )-=-(4xy+3xy )- or -=- 
dt dt dt 2 y 2 + y 3  dt 

This is an example of a related rate differentiation. Now take a look at perhaps not the 
simplest related rate problem, but possibly the simplest to visualize. Notice how this 
problem is written. The general situation is described, then a rate is specified and the 
related rate is requested for a certain condition. 

Pattern 
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6- 1 A 7-meter-long ladder is sliding down a wall. The bottom of the ladder is pulled 
fiom the wall at 1.5 m/s . What is the rate at which the top of the ladder is going down 
when the bottom is 3 m fiom the wall? 

Solution: Help to visualize the problem by 

the bottom being pulled out fiom the wall at 
dx/dt = 1.5 m/s (Fig. 6-1). 

sketching a ladder leaning against a wall with Y 

The question, written in mathematical 
language, is: "What is dy/dt when x = 3 m 
and &/dt = 1.5 m/s ?" 

In max-min problems the defining equation is 
a mathematical statement of the problem. In 
related rate problems the defining equation is X 
sometimes a little more obscure, actually 
sometimes a lot more obscure! Look at the 
ladder in the graphic and think of a way to 
relate x to y. Don't start by trying to write the &/dt and dy/dt . The rates come out of 
the differentiation. 

Fig. 6-1 

The hard part of the problem is to see, and then write down, a relationship between the 
variables. Writing the defining equation that ties x and y together is the key step in the 
problem. In this problem the Pythagorean theorem for a right triangle relates x and y. 

d 
The defining equation is x 2  + y 2  = 72 and taking - we write 

dt 

dx dY dy x dx 
dt dt dt y dt 

2 ~ - + 2 y - = O  or -=--- 

Now the numbers can be put in the equation to frnd dy/dt when h / d t  = 1.5 m/s and 
x = 3 m . What about the y in the denominator? The y can be determined fiom the 

Pythagorean relation y = d72  - 32 x 6.3 . With these numbers, dy/dt is calculated as 

(1.5m/s) = -0.71m/s d y -  xcLx 3 

dt y dt 6.3 
- ----=-- 

The top of the ladder is coming down the wall at 0.71m/s when the bottom of the ladder 

is 3 m away fi-om the wall and moving at 1.5 m/s . 
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6- 2 A girl is flying a kite. The kite is moving horizontally at a height of I20 ft when 

250 ft of string is out and the rate of increase in string length is 2 ft/s . How fast is the 
kite moving in the x-direction for these conditions? 

Solution: Visualize the problem and set up a right 
triangle with the height, horizontal direction, and 

horizontally, and the string is straight - idealized - but 
the conditions make for a problem that can be solved. 

Referring to Fig. 6-2, the problem question can be 
written in mathematical terms as: 

D X 

string. In this problem the hte  only moves 120ft 

Fig. 6-2 

dx ds 
dt dt 

What is - when - = 2 , the height of the lute is 120 ft , and the distance out is 250 ft ? 

' '< =8- Go back over the problem statement and practice changing the problem statement into 
this mathematical statement. One of the more challenging parts of any calculus problem 
is translating the words into mathematical statements. Insight 

The Pythagorean theorem relates the variables x and s in the right triangle: 
2 1202 + x 2  = s  . 

d dx ds dx s d s  
Take - toget 2 x - = 2 s -  or -=-- 

dt dt dt dt x dt 

The h / d t  rate ( 2 ft/s ) is given in the problem as is the height ( 120 ft ) and the distance 
out (250 ft ). The x value for these conditions can be calculated from the Pythagorean 
theorem: 

x2 =s2-1202 or x=J2502 -1202 =219 

Now the numbers can be put into the formula for dx/dt : 

- --_- dx - ds -- 250ft (2ft/s) = 2.3 ft/s 
dt x dt 219ft 

When the kite is 250 ft away from the girl, at a height of 120ft , and the string is going 

out at 2 ft/s , the kite is moving 2.3 fi/s horizontally. 

These first two problems have utilized the Pythagorean theorem as their defining, or 
"getting started" equation. Related rate problems use a variety of defining statements to 



tie the variables together. As you go through this chapter be aware of the various 
techniques for relating the variables. If you see a related rate problem on a test that can 
be analyzed with the Pythagorean theorem you will know how to do that problem. 

* 
Remember 

This next problem uses the Pythagorean theorem but it has another little twist. The 
information for the problem is given primarily in terms of rates, and the solution involves 
three different rates. 

6- 3 Two ships are traveling at right angles. The first ship, traveling at 8 m/s , crosses 
the path of the second ship when it is 1OOOm away (from the point where the paths 

cross) and traveling at 6 m/s  . What are their positions, separation, and rate of separation 
300 s after their paths cross? 

Solution: Diagram the problem 
on an x-y coordinate system with 

direction and the second ship going 
in the x-direction. Figure 6-3 is 

i y  

the first ship going in the y-  d y - 8 y t  
dt s 

for t = 0 , the time when the ships 
cross paths. The drawing helps to 
visualize the problem. 

The position of the first ship at any 
time t is y = (8m/s)t . 

X I . . . . . .... ....... ........ .... .. .. .... .. ............... ,-+ ......... 

- h m  

dt s 
- = 6 -  1000m 

Fig. 6-3 

The position of the second ship at any time t is x = 1000 m + (6 m/s)l. 

The separation of the ships is from the Pythagorean theorem s = dx  + y . 

The position of the first ship at 300 s is its speed (8 m/s ) times the 300 s : 

= (8 m/s)(300 s) = 2400 m YI 300 

The position of the second ship at 300 s is the 1000 m plus the 6 m/s times the 300 s : 

XI 3oo = 1000 m + (6 m/s)(300 s) = (1000 + 1 800) m = 2800 m 

The separation of the ships is a straight Pythagorean theorem problem. 

s = J24OO2 -I-28002 = 3688m 



The rate at which they are separating is 
the fun, er calculus, part of the problem. 
The rate at which they are separating is, 
in calculus talk, dsldt, and we already 

have the &/dt and dy/dt . Start with the 
separation written in Pythagorean 

theorem form s =(x2 +y2) lJ2  and 
differentiate, carefully. 

I 
2 

Writing ds =-(x2 +y2)-l12d(x2 + y 2 )  

RELATED RATE PROBLEMS 

2400m I j 
\ l / ,  ...................................................... +........... A ..... 

-d~ m 
dt s 
-=6- 2800m 

Fig. 6-4 
as the first step will help to prevent errors 
with 1/2's and the minus signs. 

1 

2 
Continuing, ds = -(x2 +y2)-l12 (2xdx+ 2ydy) and finally 

This rate of separation is to be evaluated at t = 300s (Fig. 6-4). 

I [(2800m)(6m/s) + (2400m)(8rn/s)]= 9.8m 
S 
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* These next two problems utilize similar triangles to write the d e f ~ g  equation for the 
problem. The first problem, concerning the rate a shadow of something is moving, is in 
nearly every calculus book. The following problem concerning a conical-shaped 
container is also in nearly every calculus book in one form or another. If you know how Remember 

to use similar triangles to "get started" on a problem you will have mastered yet another 
category of related rate problems. 

6-4 A 3-A tall penguin (Penny) is taking a leisurely stroll at O S  A/S away from a 12-fi 
tall penguin way light. What is the length of her shadow and how fast is the tip of her 
shadow moving when she is 40 Et away from the light? 
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Solution: when you see a 
triangle in a related rate problem 
look for similar triangles. Don't 
start the problem looking for 
derivatives. Concentrate on the 
defining equation for the 
problem. The derivatives come 
later. 

Your first order of business in a 
related rate problem is to find 
relationshps between the 
variables. In this problem set up the triangle, complete with known numbers, and then 
label some of the distances. The change in length of the hypotenuse of h s  triangle is not 
what we are looking for. It is lengths along the ground: the length fkom the light to 
Penny and the length of her shadow. Take x as the length from beneath the light to 
Penny, and z as the length from beneath the light to the end of her shadow. The length of 
her shadow is z - x . Draw this triangle (refer to Figs. 6-5 and 6-6). 

Notice that the triangle with 
sides z--x and 3 is similar to 
the triangle with sides z and 
12. Similar triangles are 
triangles with the same angles 
and their sides in proportion. 
This means that the ratios of 
the sides are equal. 

Fig. 6-5 

12 

2--x X 

z-x z - --- 
3 12 

L 

Fig. 6-6 

Eliminating the fraction, 122 - 12x = 32 or 9z = 12x or 32 = 4x , produces a simple 
relationship between x and z. The related derivative rates are 

dz 4 dx 
dt 3 dt 
- -_- - 

Notice that x and z don't enter into the rate relationship. Penny is moving at 

ft dz dx - 4 ( o . 5 t ) = o . 6 7 T .  ft 
= 0.5 - so the tip of her shadow is moving at - = -- - - 

dx 
dt S dt 3 dt 3 
- 

Since Penny is walking away from the light at 0.5ft/s and the tip of her shadow is 

growing at 0.67 ft/s her shadow is getting longer as she moves away from the light. 
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As an exercise, go to a desk or table with a lamp. Place a pencil near the lamp and 
observe the length of the shadow. The pencil should be a foot or so from the light and 
perhaps slightly tilted. Now move the pencil away from the light and observe the 
shadow. The shadow will grow and the tip of the shadow will move faster than the 
pencil. 

6-5 A conical container of base radius 5 ft and height 10 R is being filled with sand at 

the rate of 2 A’/&. How fast is the level of the sand rising when it is 6 ft above the 
apex of the conical container? 

r = 5 R  
Solution: The formula for the 
volume of a cone is, from the 
Mathematical Tables in the back of the 

book, V = (1/3)nr2h. 

The dimensions defining the cone are 
given in the problem so calculating the 
total volume of the container is not a 
problem. 

10 

\ 

/ J 
Fig. 6-7 Sketch the cone, and next to the cone 

sketch the profile of the entire cone 
and a partially filled cone with radius x and height h. This is another similar triangles 
problem! The radius to height ratio is the same for any radius and depth. In this case the 
similar triangles are the ones with sides x and y, and 5 and 10. 

5 x  Y 
10 Y 2 

The similar triangle statement is - = - or x = - . 

The question “How fast is the level of the sand rising . . .?” means, what is - ? dY 
dt 

dV dy Knowing - and requiring ~, we need to write Y in terms of y only. 

Time derivatives of V in terms of y only will produce a relation between - and - . 

dt dt 
dV dy 
dt dt 

Substituteinthevequation 
3 

dV n 2 d y  dy 4 dV 
dt 4 dt dt ny2  dt 

And taking derivatives produces - = - y - or - = - - . 
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R - Adding numbers for y = 6R,  - a -  - -- 4 dV - 
dt n y 2  dt (36ft2)n min 

At a depth of 6ft the sand is rising at O.O7lft/min. 

Another category of related rate problems involves increasing or decreasing area, 
volume, radius of a sphere, or some other geometric property. These next two problems 
involve geometry. In general, geometry problems are not overly difficult, usually 
involving just one equation. 

6-6 A circular oil slick is forming in such a way that the radius of the slick is 
increasing at a constant rate of 12 R/hr . What will be the rate of area increase when the 
slick has radius 300 R ? 

Solution: The area is related to the radius by A = nr2 (see the 
Mathematical Tables). The rate of A and the rate of r are directly 
available fiom this one equation. 

dr 
-211.r- 

dA 
dt dt 

Using the numbers given in the problem 

-- 

Fig. 6-8 

hr 
=2nr--=2n(300R dr +I 300 dt 

The area of the oil slick is increasing at 22,600 ft2 /hr when the radius is 300 f€ . 

6-7 An obstruction in an artery is to be removed by inflating a spherical balloon in the 
artery. The rate of increase of the radius of the balloon must be limited to 
1 mm/min when the radius is 4 mm . What is the maximum volume rate increase, the 
rate at which oxygen is pumped into the balloon, corresponding to this radius rate 
increase? 

Solution: The volume of a sphere is Y = (4/3) 7rr3 (see the Mathematical Tables). 

Again, the rate relations are immediately available from this equation for the volume of a 
sphere. 
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2 dr -=4nr - 

dV 

dt dt 

dr mm Evaluating at r = 4mm and - = 1- 
dt min 

Oxygenin / 

Fig. 6-9 
The maximum rate that the balloon can be 

filled at the 4 mm radius is 20 1 mm3 /min . 

These last two problems are illustrative of problems where the formulas are given to you. 
In most of these types of problems, differentiating the formula is the challenge. 

6-8 When the price of a certain product is p dollars per unit, customer demand is x 

hundreds of units (per month). The relation between p and x is x2 +2px +0.5p2 = 80.  
When the price is $4.00 and dropping at the rate of $0.25 per month, what is the rate of 
increase in demand? 

Solution: This equation requires an implicit type of differentiation to find dp/dz, the 

rate of price change, and dx/dt , the rate of demand change. 

dx dx dP dP dx dP 2~ - + 2p -+ 2~ - + p -  = 0 or (2x + 2p)  --+ (2x + p )  __ = 0 or 
dt dt dt dt dt dt 

dx - 2 x + p  dp 

dt 2 x + 2 p d t  
- -  - 

The rate of price change, dp/dt,  is given in the problem as is p,  the price. The demand 
rate, x, is not given and must be computed from the original equation. Substituting for 

p = 4  (p=$4.00) in x2 +2px+0.5p2 =80 yields x 2  +8x+8=80 or x2 +8x-72=0.  
The quadratic formula produces two answers. The positive 5.4 is the realistic one. 

- 8 k ,/64 - 4(1)(-72) - 8 f 18.8 
= 5.4, - 14.4 - X =  - 

2 0 )  2 
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With all the needed values &/dt can be evaluated. Watch the signs closely. 

2(5.4) + 4 14.8 

18.8 
(-0.25) = - (0.25) = 0.20 

The demand rate is 
$4.00 and dropping 
difficult because the 

increasing by 0.20 hundreds of units per month when the price is 
by $0.25 per month. Carrying the units through this problem is 
constants in the original equation must have the appropriate units to 

make each term in the equation have the same units. 

6-9 The mount of trash, measured in thousands of pounds, accumulating in a city 

dump follows the formula T = 1 .3p2 - 1 OOp + 30, where p is the population in hundreds 
of thousands. What is the rate of trash increase when the population is 200 thousand and 
increasing by 0.2 thousand (0.1%) per month? 

Solution: Relating the rate of trash increase, dT/dt, to the population increase, dp/dt , 
comes directly from implicit type differentiation of the expression for the amount of 
trash. 

dP dP dP - = 2 . 6 ~  -----1OO- = ( 2 . 6 ~ -  100) - 
dT 
dt dt dt dt 

The population and the rate of increase in population are given in the problem so we have 

= [(2.6)(200) - 1001j0.2 thousand per month] = 84 thousand of pounds per month. 

This is also an interesting max-min problem. 

dT 
Take - = ( 2 . 6 ~  - 100) and set equal to zero to find p = 38 . 

dP 

= 2.6 so the point p = 38 is a minimum. 
d2T 

The second derivative - 
dP2 

The city dump can accommodate the trash from 38 thousand p ople, but at 200 thousand 

worse. 
the curve becomes progressively more positive and the tras 1 problem progressively 
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There are many calculus problems 
where the derivative of a function 
is known and the hc t ion  is 
desired. For example, if a 
mathematical expression for the 
rate of population growth dP/df is 
known, is it possible to "work 
backwards" to find the expression 
for P, how the population varies 
over time? 

The process of starting with a derivative and working back to the function is quite 
naturally called the antiderivative. The antiderivative of a hc t ion  is an easy concept but 
often is operationally difficult. There are many integragtion problems where hding  the 
antiderivative will prove a major challenge. 

In some problems the integral can be viewed as the area under the curve of the function 
being integrated. This is often very helpful in getting a physical "feel" for the problem 
,and the process of integration. This view of the integral will be discussed later in the 
chapter. 

Some problems in integration require a great deal of imaginative thinking and 
manipulative ability. The simplest first approach to integration is via the antiderivative. 
After that we will move on to using the area under the curve approach and finally to the 
more difficult integral problems. 

The Antiderivative 

Start with a simple function, y = x2 . The derivative of that fimction is written as 

75 
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Keeping this short review of differentiation in mind, suppose we encountered a derivative 

du 
-=2v 
dv 

and want to know how U varies with v. Keep the differential (of y = x2 ) in fiont of you 
and just work backwards 

du 
__ = 2v can be written as du = 2vdv 
h, 

Now all we need to do is perform the inverse or “anti” derivative operation to fmd U in 
terms of v. This being mathematics, no operation can be performed without a symbol. 
For integration we use this elongated “s” shape, so write 

Jdu = S2.d~ 

The left side of this equation is the integral of the differential, two inverse operations. 

The d acting on U is the derivative while the acting on du is the antiderivative. The 

result of these inverse operations on U is that the left side of this equation is U. The 
operation is somewhat like squaring a square root. The right side is not so easy except 

that we have the differential example just above us. The differential of x2 is 2x&, so 

the integral of 2vdv is v 2 .  The function described by the lfferential statement 

du = 2vdv is therefore U = v L  . 

Conceptually the antiderivative is not difficult. Actually finding the antiderivative of a 
complicated function is often not at all easy. Polynomials are the easiest to work with and 
that is where we will start. 

7-1 Find l y 3 d y .  

Solution: We seek a function that differentiates to y3dy. 

The differential of y 4  is 4y”dy which is very close to what we want. 

Thedifferentialof- Y4  is y3dy so the J’y’dy is -. Y 4  
4 4 

Check the answer by differentiating it. The differential of Jy’dy is y3dy(inverse 

operations), and the differential of y4 /4 is y3dy . 
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Doing a few integrals of polynomials leads to 
polynomials. 

Xn+l 
p k = -  

n + l  

a general formula for integrating 

Pattern 

This formula is valid for all n, including fractions and negative exponents, except n = -1. 
That special case will be taken up later and in more detail in Chapter 8, Exponents and 
Logarithms. With this general formula for integrating polynomials take the integrals of 
some other differentials. 

7- 2 Find the fhction x in terms of t, starting with the differential statement 

--_ - t 3  + 5 t 2  + 4  
dt 3 

Solution: First rewrite the problem as alx = 

Theintegralof altz isxsowrite x =  

Most formal integral problems are presented in this form. Now perform the integration 
term by term, the Same way the differential was formed to produce this integral: 

t 4  5t3 
x = -  - + 5  - + 4 t = - + - - - - + 4 t  

3 4  l ( t 4 )  (3 12 

Don't forget that the integral of a constant times dt is the constant times t .  

The antiderivative as described so far is not the complete story of antiderivatives, as is 

illustrated in the next problem. Take a look at a simple function, y = x 2  + 2x + 7 .  The 
derivative is dy/& = 2x + 2 .  Now take the antiderivative of 2x + 2 . 

dy=(2~+2)dx  and y = 1 ( 2 ~ + 2 ) & = 2 - + 2 ~ = ~ *  X 2  + 2 ~  
2 

Where did the 7 in the original fhction go? Differentiating the fhction produced a zero 

for the 7. Integrating the 2x + 2 with the antiderivative approach produced the x 2  + 2x 
terms but not the 7. Given an integral problem as 
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y = I ( 2 x  + 2)dx 

the integral of 2xdx is x2 and the integral of 2dx is 2x but it is impossible to determine 
if there is a constant in the expression for y. 

Integrals obtained by takmg the antiderivative must be written with an arbitrary constant. 
The constant can be determined if other details are specified in the problem. Integrals 
requiring a constant (of integration) are called indefinite integrals. There is a way around 
tlus problem but for the time being just remember to include the constant and evaluate it if 
possible from the information in the problem. 

Remember 

The correct solution to this integral is: y = J'(2x + 2 ) d ~  = x2 + 2x + c 

7-3 Evaluate y = I ( x 2  +2x-' +3)dX.  

Solution: Follow the formula for integrating polynomials as stated earlier in this chapter 
or fiom the Mathematical Tables at the end of the book. 

2x-' + 3 x  + c x3 
+3x+c=- -  y=-+- x3 2x-' 

3 - 1  3 

7-4 The population of a certain region is growing with time according to 11 + 0 . 2 4 .  
Population is measured in thousands and time in years. The current population is 30 
(thousand). What is the expression for P as a h c t i o n  oft? 

Solution: The words "population growing with time" translated into calculus means 

d P  
d t  

1 1 +  0.2& =- 

Writing this as an integral problem, we have I d P  = 1 ( 1 1 +  0.2t  1/2 )dt  and 

0 4  + C = l It +'t3/2 + C = 1 It + 0.13t3I2 +C P = l l t  +- 0.2t 3/2 

3/2 3 

The words "current population . . . 30" mean that at t = 0, P = 30 . Put these numbers 
into the general expression for P to determine C. (If a variable such as P is gtven a value 
when t = 0 it is sometimes referred to as "the initial condition.") 
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30 = 1 l(0) + 0. 13(0)312 + C makes C = 30 so the specific relation is 

P=llt+0.13t312 +30 

7- 5 A certain car decellerates under braking at a rate of 16 ft/s . If the car is traveling 

at a speed of 60ft/s (approximately 40 miles per hour) when the brakes are applied, how 
far does it take the car to stop? 

a=-16ft/s2 v = o  

Solution: A little review is in order. Position speed and acceleration were discussed in 
Chapter 3, Derivatives. You may want to review problems 3-6 and 3-7 dealing with 
speed and acceleration. Stated in calculus terminology, speed, v = ds/dt , is change in 

position with time, and acceleration, a = dv/dt , is change in speed with time. Keep in 
mind that a is measured in Ws2, v, in Ws, and s, in fi. 

In this problem start with the acceleration, which is a negative number, so the first 

dv 
dt 

statement of the problem is - = -16. The integral to find v is 

v=-J16dt=-16t +C, 

When the brakes are applied ( f  = 0) , v = 60 ft/s so 60 = -16(0) + C, and C,  = 60 so 

ds 
~=-=-16 t+60  

dt 

We are looking for the distance, not the velocity, so one more integral is in order. 

16 
2 

s = J(- 16t + 60)dt = - -t + 60t + C,  = -8t + 60t + C,  

The stopping distance s is measured from where, and when, the brakes are applied so at 
t = 0 , s = 0 . This fact allows evaluation of C2. 
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0=-8(0)2 +6O(O)+C2 SO C2 = O  and 

s = -8t2 +60t 

To recap what we have done so far, we started with the acceleration, a = -16, integrated 

to get the speed, v = -16t + 60,  and integrated again to get s = -8t2 + 60t. All this work 
and we still don't have the stopping distance! 

A little more logic provides the frnal answer. The stopping distance s could be evaluated 
if we knew the braking time. But the time can be determined fkom the speed statement. 
When the bralung has gone on long enough, the car stops (setting v = 0 in v = -16t + 60 
produces the time to stop). 

0 = -162 + 60 or t = 60/16 = 3.8 

The stopping distance, using this time, is 

s =-8t2 + 60t = -8(3.8)2 + 60(3.8) = -1 16 + 228 = 112 

The problems so far have been in the form y equals the integral of some polynomial in x 
times dx. The next problem illustrates a type of problem where the derivative depends on 
both variables. 

7-6 The rate of change of a certain variable x with y is proportional to the square root 
of the product of x and y. Find y as a bc t ion  of x. 

Solution: This is a problem that needs to be translated from words to mathematics. The 
phrase "the rate of change of. . . x with y" means derivative; the phrase "the square root of 
the product" is explicit. Form the product and take the square root. Read the sentence 
carefully, several times if necessary, and write 

With the problem written down, another difficulty appears. This is not a simple dy equals 
a polynomial times dx problem. Separating the variables is going to take a little more 
work. Notice that with a little manipulation the statement can be written as 
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This process is called separating the variables. * 

Remember 
While this problem is a little different from the previous problems neither integral is 
difficult. 

x i / 2  y 3 ~ 2  
Performing the integration, - = - + C and with a little algebra x = ... or y = ... 

112 312 

3/2 
can be written as x ' / ~  = - 

3 

Notice that instead of writing C / 2 ,  a new constant C,  was introduced. If at the end of 
the problem the constant is evaluated it does not matter whether the constant is 2 times the 
original or any other multiple, root, or whatever of the original. Also notice that C ,  is a 
new constant. 

7-7 Due to an unusually favorable habitat the deer population in 
a certain area is growing at an average rate of 0.0% + 5 thousand 
per month. Find the formula for population. The present 
population is 200,000. If the rate continues, what will be the 
population in 6 months? 

Solution: The rate stated in the problem is dP/dt so 

- = 0.08t + 5 or dP = (0.08t + 5)dt 
dP 

dt 
and integrating 

7 

t" 
P = J(0.08t + 5)dt = 0.08- + 5t + C = 0.04t2 + 5t + C 

2 

Use t = 0 and P = 200 to evaluate C (the original equation was in thousands): 

200 = 0.04(0)2 + 5(0) + C SO C = 200 

and the population formula for this region is 
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P(t) = 0.04t + 5t + 200 

In 6 months, t = 6,  the population will be 

P(6) = 0.04(6)' + 5(6) + 200 = 1.44 + 30 + 200= 23 1.44 t h o u a d  

There was one exception to the formula for integrating polynomials and that was the 

polynomial l/x or x-'. This h c t i o n  will be discussed in more detail in Chapter 8, 

Exponents and Logarithms. However, the integral of is lnlxl. Note that this 

logarithm is the natural, or base e, logarithm and that the absolute value is required. There 
are no logarithms of negative numbers - try taking the ln of a negative number on your 
calculator. The formal definition of h s  integral is 

Remember 

Now apply this rule to some integral problems. 

7-8 Find J'?. 

Solution: This is one of those innocent looking little problems that will drive you crazy 
if you don't see the little "trick." The fraction (x + 1) / x is the problem, but fi-actions 
often come fi-om, or at least they can be written as, other fractions. 

x + l  x 1 1 -=-+-=1+- 
x x x  X 

If you see to write the fraction thls way, the problem is easy. If you don't see to write the 
fi-action this way, you probably can't do the problem. Armed with this little algebra 
"trick," the integral is 
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3x”  + 2xL + x 7-9 Find [ 

J X J  

Solution: With all the experience from the previous problem the fraction can be written 
as three fiactions: 

3 x 3  + 2 x 2  + x  - -- 3x3 + - + - = 3 + - + -  2 x 2  x 2 1  

x 3  x 3  x 3  x x 2  3 
X 

The integral now is three reasonable integrals. 

3 x 2  + 2 x 2  + x  =I( 3 + f + x-’)dr =3x + 21: + Jx-2dr =3x + 2lnlXl- x-1 + c I x 3  

7- 10 The rate at which algae are growing in a certain pond 
is proportional to the amount of algae according to 
dA/df = 0.02A,  where A is measured in pounds and t in days. 
At present there is 300 pounds of algae in the pond. Find the 
time for the amount of algae to double. 

dA 
dt 

Solution: The rate statement is - = 0.02A . 

The integral of this statement is accomplished after separating the variables 

dA 
- = 0.02d1 or IT = P.02df and the integration is lnlAl= 0.021 + C 
dA 
A 

At f = 0, there is 300 pounds of algae in the pond so 

In 300 = 0.02(0) + C whxh makes c‘ = In 300. 

Don’t worry about finding a number for In 300, In 300 is a perfectly good constant. 

The statement connecting A to t is 

InA-h300=0 .02 t  

The doubling time is when A = 600, double the o r i p a l  amount. 

In 600 - In 300 = 0.021 or 6.39 - 5.70 = 0.69 = 0.021 and 1 = 34.5 days 

(Remember also that In 600 - In 300 = ln(600/300) = In 2 = 0.69 .) 
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There is one other integral formula to add to our growing collection and that is the 
formula for the integration of the exponential function. It is fairly simple. 

Remember 
jeXcix = ex + c 

This formula becomes particularly usefbl as the exponent becomes more complicated. 

7-11 Find U =  evdv when u = 2  and v = O .  I 
Solution: The integral is U = ev +C . Set U = 2 and v = O  to find C. Remember: 
anythmg raised to the zero power is 1. 

2 = e 0 + C  or 2 = 1 + C  so C = 1  and 

This is a good place to stop and take another look at this process called integration. The 
antiderivative and formula approach work well on many problems. The next approach, 
the area under the curve, has some distinct advantages in certain problems. After going 
through the area under the curve view of integration you will be able to switch back and 
forth choosing which view is most convenient for a particular problem. 

Area Under the Curve 

Integrals are often introduced as a means of measuring the area under a curve. In certain 
problems the area under a curve has physical meaning and is very helpful in 
understanding the problem. Rather than doing a formal derivation relating the integral to 
the area under a curve we will show how the area is consistent with the antiderivative 
approach. And as usual we will do this in the context of solving problems. 

7-12 Findtheareaunderthecurve y=4,betweenthelines x=O and x = 5 .  

Solution: Graph the function. It is a straight line at y = 4, parallel to the x-axis. To 
find the area, integrate 4cix between the lines x = 0 and x = 5 .  

This area integral is written as 



The 0 and 5 mean, evaluate the integral at 5 and then subtract the value for 0. The 
operations are 

I 

5 
A = f4dx = 4x1, = 4(5) - 4(0) = 20 

The rectangular area shown as shaded in Fig. 7-1 has 
dimensions 4 by 5 and area 20, the value obtained with 
this integration. Integrals written with "limits" on the 
integral sign are called definite integrals. Since these 
limits clearly define the extent of the area represented 
the integral does not need an arbitrary constant. 

A 

Fig. 7-1 

7- 13 Find the area under the curve y = x between x = 0 and x = 4 .  

Solution: Graph the curve as shown in Fig. 7-2. The area 
is Y 

4 

A = c x & = $ l  = 8 - 0 = 8  

0 

This curve y = x  forms a triangle with the x-axis and the 
line x = 4 .  
times the height (1/2)4 - 4 = 8,  the same value as obtained 

The area of this triangle is one-half the base X 

Fig. 7-2 
through integration. 

2 7- 14 Find the area under the cwve y = x between x = 0 and x = 2 .  

Solution: Graph the curve as shown in Fig. 7-3. The area is 

The area under this curve is less than the area within a triangle 
formed by connecting the points (O,O),  (2,4), and (0,2). Such a 
triangle has area (1/2)2 - 4 = 4 ., and as expected is more than 
the area computed with the integral (2.7). 

Y 

A 

Fig. 7-3 



Remember 

The curve y = x 2  goes through the points (1,l) and (2,4) so 
approximate the area under this curve with a triangle and trapezoid as 
shown in Fig. 7-4. The area of the triangle is (1/2)1-1=1/2. The 
area of a trapezoid is (1/2)(sum of the opposite faces)(height) which 
in this case is (1/2)(1+ 4)(1) = 2.5. The sum of these areas is 3, even 
closer to the area of 2.7 obtained through the integral. Fig. 7-4 

If this process were continued with narrower and narrower trapezoids 
the area would approach the 2.7 obtained through the integral. 

These three problems all point toward an interpretation of the integral of a hc t ion  as the 
area under the graph of that fimction over the prescribed limits. The successive 
approximations of narrower and narrower trapezoids, or rectangles, leading to the area 
under the curve is the classic definition of the integral. 

Use the curve y = x2 shown in Fig. 7-5 as an 
example, though any curve would work as well, and 
look to approximating the area not with trapezoids, 
but with a collection of narrow rectangles. The 
rectangles can be constructed in a variety of ways. 
It really doesn't make any difference how they are 
constructed because we are going to take the limit 
by making their width go to zero. The ones shown 

Y 

2 -  
Xn 

h x  here are an average height. Look at the x,'th I 

rectangle of width Ax that has height x i .  Fig. 7-5 

The area under this curve can be written as a sum of similar rectangles. With this view, 
the area under the curve is 

with the area 
decreases and 

getting closer and closer to the actual 
their number increases. 

area as the width of the rectangles 

Using a 
the area 

limit approach, and the knowledge that the integral over a specified range in x is 
under the curve, A is the limit of the sum as hx goes to zero. 



The integral is viewed as the area generated by summing an infrnite number of rectangles 
of infinitely small width. 

7-15 Findtheareaunderthecurve y = x 3  - 1  from x = l  to x = 3 .  

Solution: Graph the function as shown in Fig. 7-6. 
This is a cubic, it rises steeply, and it crosses the y-axis 
at - 1. The rectangle shown in Fig. 7-6 represents one 
of the rectangles that is being surnrned in the 
integration process. The shaded area is 

3 
A = J  3 (x3 -i)&+4 

1 

81 12 69 3 72 A =  --_. ( ,)-(+-:)=-+-=-=18 4 4 4  Fig. 7-6 

The next several problems will explore some of the unique uses of integral calculus for 
finding areas. 

7- 16 Find the area bounded by y = 2 - (1/2) x2 and the x-axis. 

Solution: First graph the function as shown I 
in Fig. 7-7. All that work you did learning 
how to graph is beginning to pay off. 
Knowing that this function is a parabola that 
opens down and crosses the x-axis at y = 2  
allows you to concentrate on the calculus part 
of the problem. If you have any difficulty 
graphing this curve, go back and review 
graphing parabolas in Chapter 1, 
Mathematical Background. Fig. 7-7 

The limits on the integral have to be from where the curve crosses the x-axis on the 
negative side to where it crosses on the positive side. To find these points set y = 0 and 
solve for x. 
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The shaded area is 

A = ?  [2-(1/2)x2]dx= 
-2 

Second Solution: There is a little faster, a little easier, and a little less susceptible to 
error way of doing h s  problem. Remember the symmetry that was so helpful in 
graphing parabolas? Not only is there a symrnetry in the graph of the curve between 0 
and 2 and 0 and - 2 ,  but the area under the curve from 0 to 2 is the same as the area 
under the curve from 0 to - 2 .  Therefore, the entire area between this curve and the x- 
axis is twice the area between x = 0 and x = 2 .  Notice how much easier the numbers 
manipulate in ths solution. 

Speed 

A = 26[2 2 - (1/2)x2]dr = 2[ 2x - $1' = 2{[ 2(2) - $1 - [0 4 = 2{ 4 - $} = 2(- 12 - -} 4 = 7 16 

0 L3 3 

In doing area problems look for symmetry that will make the problem easier and cut 
down on the amount of numbers you have to manipulate. 

7- 17 Find the area between the coordinate axes and the curve y = & - 2 .  

Solution: This has got to be an odd looking curve. 
Start by looking at where the curve crosses the axes. At 
x = O ,  y=-2 andat y = O ,  x = 4 .  Oneotherpoint, 
x = 1 , y = -1 , is sufficient, along with the points where 
the curve crosses the axes, to sketch in the curve as 
shown in Fig. 7-8. 

The shaded area is the only area between the curve and 
the axes. The area is 

y 

Fig. 7-8 
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How can the area come out negative? Are areas below the axis negative? Just to be sure, 
change the limits on the integral to 4 and 5 and see if that area comes out positive, as we 
would expect from the graph. 

A = [  2(s3I2 - 4312 )]-I*+*=[ 2(11.2 - 8) ]-2=2.1-2=0.1 

This area comes out positive and very small, about as expected considering the curve. 

The previous problem illustrates an important point. Be careful when finding an area 
below the axis. You can end up with a negative number for the area. The next problem is 
a typical test problem involving positive and negative area. There is a simple way out of Insight 
this negative area situation, as illustrated in the next problem. 

7-18 Calculate the area between the curve y = x 2  +x-2and the x-axis between 
x=O and x = 2 .  

Solution: Do not write down the integral of 

x2 + x - 2 with the prescribed limits and perform 
the integration to find the answer. If you do, you 
will get the problem wrong! 

Sketch the graph of this function. Factor 

y = x 2  + x  - 2 = (x - l)(x +2)  and notice that the 
curve crosses the x-axis at x = 1 and x = -2 . Look 
at the limits of the integration. At x = 0 ,  y = -2. 
At x = 2 y = 4 .  With this information the curve 
can be sketched as in Fig. 7-9. More detail for the 
sketch is not necessary. 

Watch 
out! 

Fig. 7-9 

The area between this curve and the x-axis has to be calculated in two pieces 
corresponding to the two areas marked A, and A,. 
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1 2 A, =I,ro 1 - (2 + x - 2)IdX = -[ $ +iF;;- 2.1 

0 

Notice the integrand is written as [0 - ( x 2  + x - 211 . This statement is the "top curve," 

y = 0,  minus the "bottom curve," y = x + x - 2 .  Writing the integrand this way, top 
curve minus bottom curve, keeps the area positive. This is the preferred way of writing 
the problem. It will prove very helpful in more complicated problems. 

2 

Insight 

Now find the second area, A,. The integrand x2 + x - 2 would be viewed as top curve 
minus bottom curve. We just have not bothered to write - 0 for the bottom curve. 

2 
A ,  =J;"(x' +'-2)&=[y+TZ"] x 2  

1 

A , =  -+--2(2) - -+--2(1) = --- + --- +[-4+2] [': : ] [:' :" ] [: :I [: :I 
The total area between the curve and the x-axis is the sum of these two areas. 

= 3  
7 1 1  18 
6 6 6  

A = A ,  + A ,  =-+-=-- 

Standard Mistake Solution: Don't make this mistake. If you take the integral of 

x2 + x - 2 between the limits of 0 and 2 you will get an answer that is equal to A ,  - A,. 

It will look great but it is wrong. Take the integral of x 2  + x - 2 ,  using the limits 0 and 
2, and verifi that this is the difference in the areas and the incorrect answer. Thrs is the 
kind of problem that math professors use to separate the A's from the B's. 

3 
Watch 
Out! 

We've had A's and we've had B's. A's are better. 
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These next few problems take you to another level. The "standard mistake" of the 
previous problem can be avoided by graphing. Likewise graphing is essential in these 
next few problems. As we mentioned in A Special Message to the Utterly Confused 
Calculus Student at the beginning of this book, graphing is one of the skills you need to 
do calculus problems. We keep emphasizing this point because we know that a primary 
source of confusion in integration is inability to visualize the problem, and you visualize 
problems by graphmg the curves. 

7- 19 Find the area in the positive x and y region between the curves y = (0.5)~ and 

y = 4 - (0.5)~ . 

Solution: Graph the two curves as shown in Fig. 7-10, keeping in mind that only the 
positive x and y region is interesting. The straight line is easy. The parabola is 4 at x = 0 

and opens down. The parabola crosses the x-axis when y = 0 or x 2  = 8 or x = 6 . 
As far as the limits of integration are concerned 
the important point is where the curves cross. 
This point is found by setting the two equations 
for y equal and solving for x. 

There is a point along the y = ( 0 . 5 ) ~  curve that 

satisfies y = 4 - ( 0 . 5 ) ~ ~ .  Th~s point is where 
the curves cross and is found by setting (0 .5 )~  

equal to 4 - ( 0 . 5 ) ~ ~  and solving the equation 

Y 

( 0 . 5 ) ~  = 4 - ( 0 . 5 ) ~ ~  or x 2 + x - 8 = 0 Fig. 7-10 

This quadratic is solved by formula 

2.4 2.8 

Only the positive root is interesting in this problem. Figure 7-10 shows a sketch, not a 
detailed drawing. The essential feature is the point where the curves cross and the 
visualization that the integral is over a!x and between the two curves. Great detail is not 
necessary. A clear picture of the curves, where they cross, and the limits is sufficient 
information. 
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The integral is written as going fiom the top curve, or most positive part of the dx 
rectangle, to the bottom curve, or most negative part of the rectangle with the appropriate 
limits 0 and 2.4. 

A = f.4[(4 - 0 . 5 ~ ~ )  - (O.Sx)]& = 
x 3  

4x--- 
6 

3, 2.4 

-[O]=[9.6-2.3-1.4]=5.9 

7-20 Find the area bounded by the y-axis and the curves y = 1 + 6 and y = x - 1 .  

Solution: The curve y = x - 1 is a straight line 
of slope 1 that intercepts the y-axis at - 1. The 
other curve starts at y = l  and increases. To 
integrate in the x-direction the limits are 
required. In this case the upper limit in x is 
where the curves cross, which is obtained by 
setting the equations for y equal and solving 

1 + & = x - 1  or & = x - 2  

and squaring 

x = x 2  - 4 x + 4  or x 2  - 5 x + 4 = 0  Fig. 7-11 

This quadratic is factorable, (x - 4)(x - 1) = 0 , producing values of x = 1 and x = 4 . 

The value x = 1 requires a negative square root to work in both original equations and is 
seen from Fig. 7-1 1 as incorrect. The value x = 4 is the correct limit value. The x = 1 
point is a spurious one caused by squaring a square root and then factoring the resulting 
equation. With the limits, set up the integral from 0 to 4 of the upper curve minus the 
lower curve and integrate. 

4 
312 

A = f[(l+ &) - (x - l)]& = f(2 + x1I2 - x)& = [ 2~ +3/2 - q] 
0 
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The next two problems are practical problems illustrating how calculus can help in 
forecasting revenue generation in the one instance, and yield from a mining operation in 
the other instance. The unique aspect of these problems is that they start not with a 
statement of revenue, but with a statement of revenue rate, the revenue generated per year 
and the yield of the mine in tons per year. Watch the way these problems are worded. 
Don't be fooled on a test by misreading a rate statement. 

7- 2 1 A certain machine generates revenue at 

the rate of R ( f )  =2000-5t2 where R is in 
dollars per year and t is in years. As the machine 
ages the cost of repairs increases according to 

C ( t )  = 500 + 2f2 . How long is the machine 
profitable and what are the total earnings to this 
point in time? 

Solution: The two curves are both parabolas, the R(t) curve opening down and the C(f) 
curve opening up. The curves are sketched in Fig. 7-1 2. When the revenue generated per 
year equals the cost of repairs per year the machine stops being profitable. 

Mathematically this situation occurs when the curves cross. The time when they cross is 
found by setting the equations equal and solving for the time. 

2000-5f' =500+2t2  or 1500=7f2 

- = t 2  1500 or f = , / y = 1 4 . 6 y e a r s  1500 

7 
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Figure 7-12 is a rough sketch 
illustrating the general shape of the 
curves and the time when they cross. 

The total earnings up to 14.6 years is 
the (revenue generated) area under the 
R(t )  curve minus the (cost) area under 
the C(2) curve. This is an integral. 
Look at the units. The rate of return in 
dollars per year times the time is the 
total number of dollars. Fig. 7-12 

14.6 

E = g4.6[(2000 - 5 t 2 )  - (500 + 2t2 )Id2 = I (1500 - 7t2)dt = [ 15002 - :] 
0 

E = 1 SOO(14.6) - 7(14'6)3 = 2 /900 - 7262 = 14,638 
3 

The total earnings until the machine becomes unprofitable, that is, costs more to operate 
each year than it returns in revenue, is $14,638. 

7-22 In a mine the yield per unit cost for a particular ore is 
declining according to Y = 8 - 0.42 where the yield is in millions of 
tons per year and t is in years. Find the time for the mine to produce 
60 million tons of ore. 

Solution: Be carem with rate statements like this one. The yield 
equation is in millions of tons per year, not millions of tons total. @ Since the yield is in millions of tons per year, the time for 60 million tons has to come 
from an internon over time. Integration is required rather than multiplication because 
the rate per year is changing. The total yield then is 

Watch 

t 

T = t ( 8  - 0.4t)dt =[,, - $1 = 82 - 0.2Z2 
0 

Notice that in this problem the limits are 0 and t because we are looking for the time to 
produce a total of 60 (million tons). Therefore set T = 60 in the equation 

T = 82 - 0.22 
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generated by the integral and solve for the time. 

60=8t-0.2t2 or 0.2t2 -8t+60=O or t 2  -4Ot+300=0 

This quadratic is factorable to ( t  - lO)(t - 30) = 0 producing time values of 10 and 30. 

Go back to the original statement for the yield Y =8-0.4t and note that at t =10 the 

yield is Y(10) = 8 - 0.4(10) = 4 and at t = 30 the yield is Y ( 3 0 )  = 8 - 0.4(30) = 8 - 12 = -4. 

The 10 year figure is the realistic one. Who would work the mine until the yield reached 
zero and then continue, putting ore back, until the 60 million total was acheved? 

Further Insight Solution: If the yield is Y = 8 - 0.4t then in 10 years the yield goes 
from 8 (starting at zero time) to 8 - 4 = 4 in a linear fashion so the average yield over the 
10 years is 6. This 6 million tons per year average times the 10 years produces the 60 
million tons. 

The 30 year figure is also true. If the yield goes according to Y = 8 - 0.42 for 30 years 
then the yield goes from 8 at time zero to - 4 at the end of 30 years and the average is 2 
million tons per year for 30 years for the 60 million ton total. 

No one would actually do this because when the yield went to zero you would have to 
start putting ore back into the mine to achieve your 60 million tons total! You would also 
expect the yield equation to not accurately represent the mine production after the 
production rate had gone to zero. 

Sometimes, in problems involving quadratics, solutions are generated that are 
mathematically correct but unrealistic. It is good practice to always look at the answer 
and ask if it is reasonable. 

7-23 A demographic study inlcates that the population of a certain town is growing 

at the rate of 4 + 2x0.' people per month when x is measured in months. What will be 
the increase in population between the 1 O* and 1 2fh months? 

Solution: This is an integral problem. The growth function has to be integrated and 
evaluated at the 1 Oh and 12* months. Write the integral as the number ( 10 - 12 ) and use 
the growth function integrated over time. 
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N(10-12)=Jo(4+2~o.8)dx= 12 

10 

2(10) 1.8 

1.8 

Before going any fiuther review how to take a fractional power with your calculator. To 

find (12)1.8 enter 12 on your calculator, then find a key that raises "hngs" to a power 

(this key will look like y x  or x-") and press it . Your calculator will probably blink and 
continue to display the 12. That's OK. Don't worry about the 12, enter 1.8, and press the 
equal sign. The calculator should take a short time to display 88. 

N(10 - 12) = [ 48 + F] - 140 + z] = [48 + 981- [40 + 70]= 36 

A total of 36 peole will enter the town in the 1 Oth to 12* month interval. 

7-24 A rare stamp is, and has been, appreciating at the rate of 
5 +0St in thousands of dollars per year when t is measured in 
years. If this stamp is purchased for a newborn child and allowed 
to appreciate, what will be the value of the stamp on the child's Mth 
birthday? 

Solution: This is a rate problem and an integral is required. The stamp is purchased (at 
t = 0)  for $5000. Integrate the rate over time with the limits of 0 and 18 to find the value 
after 18 years. 

In 18 years the stamp will be worth $17 1,000. 
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Average Value of a Function 

Integral calculus can be used to determine the average values of functions. The average 
value of some quantity that may be varying in a very complicated way can be a valuable 
piece of information. The average value of a function is the area under the curve of that 
function over a certain range divided by that range. The area under the curve is viewed as 
the area of a rectangle with one dimension equal to the range of the integral and the other 
dimension, the height equal to the average height to produce the area under the curve. 

The formal definition is 

1 
Average value = ~ 

b - a  

The several problems in this section show how to fmd the average value of several 
different functions and illustrate applications of the technique. 

7-25 On an employee stock purchase plan one share of stock is purchased each month 
for 10 months. The share prices start at $10 at the end of the first month and decrease by 
$1 per month thereafter for the duration of the offer. This is an incentive (to stay with the 
company) plan and it does not reflect the actual stock price. 

Solution: You don't need calculus to do this 
problem. Graph the stock purchase price as in Fig. 
7-13. Look at the graph and conclude that the 
average purchase price is $5 over the 10 month 
interval for a total cost of $50 for the 10 shares. 

Think Calculus Solution: The area enclosed by 
the triangle in Fig. 7-13 represents the total cost for 
the 10 shares of stock, $50. This area is also (1/2) 
base x height = (I / 2)(10)(10) = 50 . This area could Month 
be represented by a rectangle of the same base and 
height 5. The height of 5 is an average height of the 
triangle. In mathematical language the height of the 
rectangle would be 

Fig. 7-13 

Area of rectangle 
Base of Rectangle 

Height = 
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0.8( 12) 

1 
12 

C ,  = -[480 + 5’7.61 

C ,  =44.80 

7-26 In another stock purchase plan one share of stock is 
offered each month starting at $40. The history of the stock 
indicates the price will follow C = 40 + 0.82 for the next year 
where t is in months. If twelve shares are purchased according to 
this plan, what will be the average price of the stock? 

C = 40 + 0.82 

Solution: Graph the price of the stock as shown in Fig 7-14. The 
area under the curve is the total cost for the 12 shares. This (total 
cost) area divided by 12, the base of the rectangle with area 
equivalent to this total cost, gives the average price of the stock. 

Following the form of integral stated earlier we calculate 

r - 1 1 2  

L Jo 

The average price of the stock will 
be $44.80. Fig. 7-14 

The average-value-of-a-fction problems so far have had pretty tame-looking hctions. 
This next problem will illustrate how to apply the average value of a fhction to some 
more complex hctions. 

2 7-27 Find the average value of the function y = x 3  - 2x + 3 fiom x = -1 to x = 3 .  

Solution: It is important to graph this function, or at least put in some values so we 
know whether the hnction is positive or negative over the region. In some problems it 
may be perfectly acceptable for the values of the fhction to be negative while in other 
functions we may be confrned to averaging only positive values. The dominant term is 
the cubic so for large x the curve has the cubic shape (see Chapter 1, Mathematical 
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Background). A third-degree equation has at most two points where the slope is zero (see 
Chapter 4, Graphing). 

Since only a rough sketch is necessary 
perhaps it will prove sufficient to just 
find a few points and place them on the 
graph- 

y ( ~ )  =03 - 2(o12 + 3 = 3 

y(l) = l3 - ~ ( 1 ) ~  + 3 = 2 

y ( 2 ) = 2 3  - 2 ~ ) ~  + 3 = 3  

y(3) = 33 - 2(3)2 + 3 = 12 

Fig. 7-15 

This function is positive over the range where it is to be averaged. Don't be fooled by an 
exam question that asks you to average all the positive values for a function over a certain 
range and then gives you a hction that is negative over part of the range. 

The shaded area in Fig. 7-15, the prescribed region in x, is all above the axis so the 
integral for the average value of the bc t ion  can be written knowing that there will not be 
a negative area. 

Watch 
Out1 

3 
I x 4  2x3 

( x 3 - 2 x  +3)dx=- --- 
Ymg 3 - ( 4 )  -1 

4[ + 3 x ]  -1 

2 1 - ---I' 

Look at the graph and ask if this is reasonable. This average value means that the 
rectangle equivalent to the area under this curve would have base 4 and height 4.1, which 



looks very reasonable. The mistake you are looking for here is a sign mistake amongst 
the fractions or forgetting the (114) outside the whole integral. 

Area Between Curves Using dy 

All of the area under the curve and average value of a function problems encountered so 
far have been ones where the integration was carried out in the x-direction. There are 
problems where this is inconvenient or even impossible, and it is necessary to integrate in 
the dy direction. Tfits takes a little reorientation from the usual. In addition, the integrals 
are often more difficult. These problems tend to separate the A's from the B's. Follow 
through the several examples and leam how to find areas using integration in the y-  
direction as well as the x-direction. 

7- 28 Find the area bounded by the curves x = y 2  and x = 4 .  

Solution: The curve x = y 2  is a parabola, but it is an unusual one in that it is written 

x = y 2 ,  rather than the more familiar y = x2 .  his means that the parabola is symmetric 

about the x-axis rather than the y-axis. The two curves x = y 2  and x = 4 are graphed in 
Fig. 7-16. 

Imagine placing a representative rectangle of width 

immediately. The rectangle doesn't go fiom one 
curve to another. It begins and ends on the same 
curve! 

You could solve x = y 2  for y to get y = and 
then use a symmetry argument and say that the 
desired area is twice the area between the curve 
y = & ,  y=O and x=3 .  Thiswouldworkforthis 
particular problem but with only a slight 
modification to the paraboia (add a constant, for 
instance) the solution for y becomes most 
complicated. 

drc on this graph. There is a problem almost Y 

Fig. 7-16 



INTEGRATION 10 1 
Using a rectangle of width dy is much easier. Draw a rectangle as shown in Fig. 7-1 6 and 
integrate over dy. The most convenient limits of the integral are y = 0 and y = 2 the top 
half of the desired area. The shaded area is then twice this integral. 

7-29 Findtheareaboundedby x = y 2 ,  y=-x+3  and y = O .  

Solution: To do this problem in a5 would require two separate integrals, one from 0 out 

to the value of x for the intersection of y=-x + 3  and x = y 2 ,  and another from this 
point out to x = 3. 

It is easier to integrate in the y-direction. This integral is no longer the "top curve" minus 
the "bottom curve" but the "most positive in x curve" minus the "least positive in x curve." 

The "most positive in x curve" is y = --x + 3 which has to be rewritten as x = 3 - y . (To 
integrate in they-direction, the equations have to be in terms ofy's.) The "least positive in 

x curve" is x = y2 . Figure 7- 17 shows the curves and the rectangle. 

The limits for y are zero and the value of y where the line x = 3 - y and the parabola 

x = y2  intersect. This intersection point is obtained by setting these two equations equal 
and solving for y. 

2 2 3 - y = y  or y + y - 3 = 0  
Y l  

This quadratic has to be solved by formula: 

The positive root, 1.3, is the one for this point. 

The integral for the shaded area is 
y=-x+3  t 

Fig. 7-1 7 
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A =  

[r 

1.3 

2 3 

A =3 .9  - 0.84 - 0.73 = 2.3 

7-30 Find the area between x = y 2  and y = x - 2 .  

Solution: First graph the parabola x = y 2  and the line y = x - 2 as shown in Fig. 7-18. 
This is one of the more difficult problems in area between two curves because of the little 
piece of the area near the apex of the curve. An integration in x is incorrect because in 
this piece of area near the apex of the curve you would be integrating between the same 
curve. This integration must be done in they-direction if it is to be performed with one 
integral. 

Rewrite the line as x = y + 2 and set this equal to x = y 2  to find the values ofy where the 
curves intersect. 

y 2 = y + 2  or y 2 - y - 2 = 0  or ( ~ - 2 ) ( y + l ) = O  producing values of y = 2  and 
y = - 1 .  

The points where the curves intersect are obtained from either equation: (2 ,4)  and (1,-1) . 

y = x - 2  The integral for the desired area is 

A =  - + 2 y - q , *  Y 2  2 3 

Fig. 7-18 
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A ={ [ 2 + 4 - ;] -[+ - 2 + 3} 

7-31 Findtheareabetween y = s i n x  andthex-axisfi-om x=O to x = n .  

Solution: Graph y=sinx from x = O  to 
x = n  as shown in Fig. 7-19. Here is 
another instance where symmetry can be 
used in calculating the area. 

I 

The area between x=Oand x = n / 2  is 0 
twicetheareabetween x=Oand x = n .  

Writing the area in the form of an integral, 

Fig. 7-19 

A = 2Jn’2sinxdu 0 = - 2c0sxI;’2 = -2[0 - 1]= 2 

The easiest way to verie this integral is to refer to the Mathematical Tables. If you have 
any trouble recalling the shape of the cosine curve, check Chapter 1, Mathematical 
Background. 





TRIGONOMETRIC FUNCTIONS 

The review of the essentials of trigonometry in Chapter 1, Mathematical Background, is a 
review of the bare necessities for getting started in calculus. Now that you understand 
differentials and integrals, it is time to move on to a more complete understanding of 
trigonometry. This chapter covers fkom right angle trigonometry to the differentiation and 
integration of trigonometric hctions. If you want a comprehensive review of 
trigonometry that will help you in your study of calculus this is the chapter for you. 
Formula> for the area and volume of geometric figures encountered in this chapter are in 
the Mathematical Tables at the end of the book. We begin the study of trigonometry at 
the very basis of trigonometry, the right triangle. 

Right Angle Trigonometry 

The basic right triangle is shown in Fig. 8-1. An angle and the three sides are labeled as 
shown. The side "opposite" is opposite the angle, whichever one it may be, and the 
"djacent" is the side adjacent to the angle. The hypotenuse is always the side opposite the 
right angle. The little square placed in the corner indicates a right angle and the other 
angle is designated with a 8 . 

Opposite b sine= =- 
Hypotenuse c 

Adjacent - -- a Opposite (b) 
Hypotenuse c 

Opposite - b tan8= -- 
Adjacent a 

Hypotenuse (c) 
mse = 

Adjacent (a) 
Fig. 8-1 

105 
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The ratio of the sides and either side, the opposite or adjacent, to the hypotenuse is unique 
for each angle. These three ratio combinations are called the sine, cosine, and tangent. 
The inverses of these ratios are almost totally uninteresting. 

The angles are measured in degrees with 360 degrees the total (complete circle) angle. A 

right angle is 90 degrees, written 90'. Each degree is further subdivided into 60 minutes, 
and each minute into 60 seconds. Your hand calculator probably works in degrees and 
decimal parts of degrees unless you have done something to make it read minutes and 
seconds. The minutes and seconds feature may not be available on your calculator. Most 
calculations are carried out to the nearest degree or nearest tenth of a degree. 

The three basic ratios, the sine (sin), cosine (cos), and tangent (tan), are defined in Fig 8- 1. 
The ability to calculate this ratio information is stored in your hand calculator. If it is not 
stored in your present calculator, get a better calculator. This information is so important 
and the calculator so inexpensive you should obtain one. If you are not familiar with how 
to work the calculator, practice taking a few sines, cosines, and tangents. 

[sin 30' = 0.50, COS 75' = 0.2697 , tm 45' = 1.00 ] 

If you did not get these numbers when you punched in sin 30' your calculator may have 
been in the wrong mode. Your calculator will take the sine in thee different modes, 
degrees, rads (short for radians), and gads. Here's a simple rule. Never use gads, rarely 
use rads, and always check you calculator for mode. Being in the wrong mode is too 
embarrassing a mistake to make on a test. Actually you will, or may, use rads 
ocassionally, but not in the context of right angle trigonometry problems. Rads will be 
taken up later. For now, stick to degrees. 

A couple of simple problems will illuaate the use of these angle ratios in right angle trig. 

8- 1 Fifty feet out fiom the base of a tree the angle measured to the top of the tree is 

3 5 . How tall is the tree? 

Solution: Figure 8-2 shows the tree, distance 
along the ground, the adjacent 50 ft side, and 

the 35' angle. The tangent function relates the 
two sides to the angle. 

50 ft 
opposite h 

t a n 3 5 O  = -- - 
adjacent S o f t  Fig. 8-2 

Solve tins statement for h the same as with any algebra statement. 
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h = (50 ft)tan35' = (50 ft)(0.70) = 35 ft 

The height of the tree is 35 R. 

8- 2 A certain right triangle has sides 5 and 7. Find the angles and the other side. 

Sobtion: Sketch a right triangle and label the sides as shown in Fig. 8-3. 

Start by calculating the angle 8 .  

5 5 
7 

tane=- .  

This presents a new manipulative problem in 
that we seek the angle with tangent ratio 5/7. On 
your hand calculator, enter 5 divided by 7 to 
display the decimal 0.7 1. 

7 

Fig. 8-3 

Now perform the inverse tan firnetion. This is usually a key labeled "inv" or "arc" or 

'' tan-' ," or sometimes the operation requires two keys "arc" and "tan," or "inv" and "tan." 

The tan-' is the more popular. Pressing the appropriate key or series of keys should 

produce an angle of 3 5.5' . Remember to keep your calculator in degree mode. 

The mathematical operaiion wormed by these sequence of keystrokes is the inverse of 
tan B . Take the tan-' of each side of the tan 6 = 5/7 equation. 

tan-l(tan8) = tan-'(5/7) or 8 =tan-'(0.71) = 35.5' 

Rather than say "tangent to the minus 1" the words "arc" or "inverse" are used. The 

equation 8 = tan-'(5/7) would be said, "theta is the arctangent of five over seven" or, 
"theta is the inverse tangent of five over seven." 

Now calculate the angle 4 .  All the angles of the triangle have to add to 180' so 

180' -90' -35.5' = 54.5'. The angle q5 is 54.5' . 

Find the hypotenuse using the cosine hetion. 
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= 8.6 
7 

or c =  
7 

cos35.5° =- 
c cos 3 5 .  So 

The hypotenuse is 8.6. 

Another usell  property of right triangles is the Pythagorean theorem. In words, the 
Pythagorean theorem is: In a right triangle the sum of each side (individudly) squared 
equals the hypotenuse squared. Referring to Fig. 8-1, the theorem is written symbolically 

as a2 +b2 = c 2 .  

8-3 Find all the sides and angles in a right triangle with side 4 and opposite angle 2 8 O .  

Solution: Sketch the triangle (see Fig. 8-4). 

Find the hypotenuse using the sine function. 

4 - - - = 8.5 
4 

or c=------- 
4 

sin 28' = - 
C sin28" 0.47 a 

Now use the Pythagorean theorem to frnd the 
adjacent side. 

Fig. 8.4 

c2 =42  +a2  or a2 = c 2  -42  =8S2 -42 =56.6 or a=7.5 

The other angle is 90' - 28' = 62' 

8-4 A force of 70 lb is pulling on a box sliding along a floor. The rope exerting the 

force is at an angle of 20' from the floor. What forces acting parallel to the floor and 
perpendicular to the floor would produce this force? 

Sobtion: Finding the components of a force or speed is common in many problems. 
The force is viewed as having components along the floor, because that is the direction of 
motion of the box, and perpendicualr to the floor as shown in Fig. 8-5. 
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E,  = (70 lb) sin 20' 

701b 

20° 

FH = (70 lb)cos20° 

70 lb 

Fig. 8-5 

The horizontal component of the force is FH = (701b)cos20° = 66 lb. 

Write cos 20' = -% and solve for FH . 
70 lb 

The vertical componemt of the force is Fv = (70 lb)sin20° = 24 lb. 

Notice that the horizontal force and the vertical force do not add up to the 70 Ib. The 
reason for this is that they are not in the same direction. Certain measured quantities have 
this directional property. To describe motion or force it is necessary to add a direction. If 
you move 3 f and then 4 ft you will be at very different positions relative to your starting 
point if you make both moves either in a straight line, at right angles to one other or first 
forward and then backward. Depending on the angle between the subsequent moves you 
will be anywhere fiom 1 to 7 f from your starting point. 

To describe temperature no such direction is required. Tempexatwe is just a number 
while motion requires a number plus a direction for complete description. 

The components of the force are the sides of a right triangle and as such their squares 
should add up to the square of the hypotenuse (Pythagorean theorem). 

a2 +b2  = c 2  or 662 +242 =702 

Special Triangles 

There are certain triangles that occur often enough to have their own names. When 
someone describes a problem using the phrase "similar" triangles, for example, it is 
important to know what that means. These definitions of triangles are not difficult, 
though they are sometimes difficult to remember on tests. The features and some typical 
uses of these traingles are shown below. 
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Pythagorean 
sided right triangles 
triangles occur oRen 

them. The simplest A3 
Triangles Certain integral-number- 

, satis@ the Pythagorean theorem. These 
enough so you should at least be aware of 
is the 3,4,5 triande: 32 +4* =s2 .  The 

double of this one also works: 62 + 82 = 102. 4 

Congruent Triangles TWO triangles are congruent if they are exactly the m e ,  
sides the same and angles the same. 

E @ h k ' d  Triangles Equilateral triangles have all their sides equal and all 
their angles equal. Since all three equal angles must add to 180°, the angles in an 
equilateral triangle are each 60". 

Isosceles Triangles An isosceles triangle has two sides quid and the two 
angles opposite the equal sides also equal. 

Similar Triangles Similar triangles have the same angles. A triangle similar to 
another is either larger or smaller than the other. The angles are the same and the sides are 
in proportion. The proportion is illustrated in Fig. 8-6. 

/ 
a b c  - 
a' b' c? 
- --=- 

C 

C' 
Fig. 8.6 

8-5 similar triangles often occur one 
inscribed inside another. For the situation 
shown in Fig. 8-7, frnd the height of the 
"inner" triangle. 

1 
20 6 

Fig. 8-7 
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Solution: These are similar triangles. Their angles are the same and the ratios of their 
sides are equal. In the larger triangle the side ratio is 10/26. In the smaller triangle this 

ratio is h/20 . Set these ratios equal and solve for h.. 

Mathematician ' s 
Clock 

Radians and Small Angles 

Right angle trigonometry is closely related to 11 I 

the circle. Figure 8-8 shows a circle on a 
right angle coordinate system with a radius 
and the projection of that radius on both the 
x- and y-axes. The radius is 1. If the angle is 
measured counterclockwise f?om the x-axis 
(mathematicians always measure angles 
counterclockwise), then the sine and cosine 
are defrned as: 

sin6=b/l or b = s i n 6  

I 

If you were confronted with the problem of decidmg how to measure an angle 0 for a 
circle of radius 1, you probably would take the ratio of the arc length to the radius, and if 
the radius were 1 then the angle would be measured by the arc length. Figure 8-9 shows a 
radius, the angle and the arc length. For a circle of radius 1, the circumference is 2n so a 
complete angle, all the way around, in this rather logical system. would have an arc length 
of 2n. One-quarter of the way around would be a right angle and have an arc length of 
z/2, and so on. This arc length to radius ratio produces a pure number (no units) and 
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Y defrnes what is known as radian measure. The 

relation between degrees and radians is 360' = 21c 

radians. 

A radian, because of its definition, is dimensionless 
so the use of the word radian or rad as a unit is for 

measured in degrees. Radians are not cancelled as 
meters or seconds or other conventional units. 

S 

r S 
e=-  

I 

convenience and a reminder that the angle is not X 

Fig. 8-9 

8-6 Convert 76' to radians and 1 radian to degrees. 

Solution: Use unit multiplication here. Watch the units and keep the ratios correct and 
everything will work out fine. 

= 57.3' 
2n rad 360' 

76' ____ = 1.33rad lrad- 
360' 2n rad 

You need to remember that 2n rad = 360'. The other number, 57.3'/radian is not so 

Remember important and can be worked out with the 2n = 360' definition. 

Go through the following exercise so you are absolutely sure you know how to go back 
and forth between radians and degrees. This is another mistake that is embarassing and 
costly on exams. 

Place your calculator in degree mode and take sin 57.3'. You should see 0.84 displayed. 
Now place your calculator in rad mode. There is usually a DRG (degree, rad, gad) key 
that cycles through the various modes. There also should be some indicator on the face of 
the calculator indicating the mode, usually a D or R or G. In rad mode take sin 1. You 
should see the same number, 0.84, displayed. Try a few other angles in radians and 
degrees to insure that you know how to frnd the trigonometric hc t ion  of any angle, 
whether in degrees or radians. 

Refer to Fig. 8- 10 which shows a triangle with a very small angle inscribed in a small part 
of a circle. The angle measured in radians, and the sine and tangent of the angle, are 
defined in Fig. 8- 10. 

For small enough angles, s is approximately the same as b, and a is approximately the 
same as c. Therefore, for small angles with the angle measured in radians, the angle, the 
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sine of that angle, and the tangent of that angle are all nearly equal. The next problem 
illustrates the error in making the approximation that the sine is the angle for some small 
angles. 

\ 
S b 

8=-  sine=- 
C c 

b 
a 

me=- 

Fig. 8-10 

8-7 What is the difference (error) between the angle in radians, the sine, and the 
tangent for an angle of 0.1 radians? 

Solution: As a warm up to this problem take the sine of 5.7' and the tangent of 5.7". 

sin 5.7' = 0.0993 tan 5.7' = 0.0998 

The difference between these two is approximately 5 parts in 1000 or 0.5% error. Now 

8 (in radians) = 0.1000 

sin(O.1) = 0.0998 

tan(O.1) = 0.1003 

The difference between the sine and the angle at 0.1 radians is 2 parts in 1000. 
The difference between the tangent and the angle at 0.1 radians is 3 parts in 1000. 
The difference between the sine and the tangent at 0.1 radians is 5 parts in 1000. 

8-8 Redo problem 8-7 but at 0.5 radians, approximately 30" . 

Solution: 8 = 0.5, sine = 0.48, tan 8 = 0.55 

The difference between 0 and sin8 at 0.5 radians is about 4%, and the difference 
between 8 and tan8 is about 10%. 

Use the approximation 8 = sin 8 = tan 8 for angles up to 10' and possibly 20° ,  but 
certainly not much bigger. 
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Non-Right Angle Trigonometry 

You may encounter some situations requiring the side or angle in a non-right triangle. 
The laws relating the sides and angles in non-right triangles are not surprisingly called the 
Law of Sines and the Law of Cosines. These laws will not be derived, rather they will be 
stated and illustrated with problems. Actually the Law of Sines and the Law of Cosines 
are applicable to any triangle. Their greatest utility, however, is in non-right triangles. 

Law o f  Cosines Referring to Fig. 8-11, the 
Law of Cosines is written symbolically as A 

b2  + c2  - 2bc(cos A) = a2  . Small letters refer to the 
sides and capital letters to the angles. 

In words, the Law of Cosines is "one side squared plus 
an adjacent side squared minus twice the product of 
the two sides and the cosine of the included angle 
equals the side opposite the angle squared." This 
statement is a clearer xplanation of the Law of 
Cosines. Any side and adjacent side and included 
angle follow the Law of Cosines. 

B 

Fig. 8-1 1 

Follow the statement, refer to Fig. 8-1 1, and write the following: 

b2  +a2 -2ab(cosC)=c2 or c 2  +a2 -2ac(cosB)=b2 

8-9 Find the base and the two equal angles of an isosceles triangle with equal sides 4 

and included angle, 40' . 

Solution: An isosceles triangle has two sides and the opposite two angles equal. The 
word "base" implies that the unequal side is horizontal. An isosceles triangle as described 
in the problem statement is shown in Fig. 8- 12. 

Following the written statement of the Law of Cosines, "One 
side squared plus an adjacent side squared minus twice the 
product of the two sides and the cosine of the included angle 
equals the side opposite the angle squared," the equation can be 
written as 

42 +4* -2 .4-4(~0~40 ' )  = b2 b 

32-32(~0~40") = b 2  
Fig. 8-12 
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b 2  =7.5 or b=2.7 

The base is 2.7, and to complete the picture the equal angles are 70' each 

(70' + 70' + 40' = 180'). 

8- 10 Find the distance and angle to the final position for a person who travels 6 

meters at 20' north of east and then 8 meters at 50' north of east. 

Solution: Instead of an x-y coordinate 

representing the compass directions and 
place arrows representing the 6- and 
8-meter distances as shown in Fig. 8- 13. 

Perhaps the hardest part of this problem is 
finding the large angle (a + p )  between the 
6- and 8-meter lengths. The dashed line at 

is parallel to the E-axis, so the little angle 

system use the N-S-E-W system N 

P 

the tip of the line representing the 6 meters E 

labeled a is 20' (alternate interior angles 
of a bisector of pardlel lines). The angle 

Fig. 8-13 

labeled p is 130' (180' - 50'). Therefore, the large angle between the 6 and 8-meter 
lines and opposite the line from the start to the finish is the sum of these two angles 

130' + 20' = 15OU. 

Now write the Law of Cosines for the length 1. 

Before going any farther on this problem, stop and look at the cos150°. Take cosl50' 
on your hand calculator and you will see - 0.87 displayed. This is most reasonable. The 
length, I, is greater than 6 or 8 and, just ti-om looking at the sketch, close to 14, the sum of 

6 and 8. With a negative number for the cos 150' , the Law of Cosines looks as though it 
is going to produce a reasonable number. Now proceed with the calculation. 

Insight 

36+64-(2)(6)(8)(-0.87) = Z 2  

Z2 =183 or 1=13.5 
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Insight 

Qre w 
Watch 
Out1 

The important point to notice in this problem, and that is why it was included, is that the 

Law of Cosines works for angles greater than 90' . 

Law Of SineS Referring to Fig. 8-14, the Law of Sines 
is written symbolically as A 

-=--- 4 c 

sinA sinB - sinC 
a b C 

The Law of Sines works in some instances when the Law of 
Cosines does not. The following problem is an example 
where the Law of Sines works and the Law of Cosines does 
not. 

B 

Fig. 8-14 

8- 1 1 For a non-right triangle with angles A = 30" and B = 40' and one opposite side 
b = 1 1, find all the sides and angles. 

Solution: Sketch the triangle as in Fig. 8- 15. 

Notice that the Law of Cosines will not work in th~s 
problem. There are not two sides given. 

A = 30' 

Using the Law of Sines 
____ sin40' 1 1  - -- sin30' a 

c b e  a 

B = 40' sin 30' 
a=ll----- 

sin 40' Fig. 8-15 
and solving for a we calculate 

Do not at this point divide 30 by 40; take the sine and multiply by 1 1 ! 

Carefully find sin 30', then divide by sin 40' , and finally multiply by 1 1. 

sin30' 0.50 
a=ll- = 1 1 -  = 8.6 

sin 40' 0.64 

The angle C is 1 10' (180' -30' -40' = 110'). 

And finally use the Law of Sines to fmd side c. 
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= 16.2 
sin110' 0.94 

or c = l l  =11- 
C 11 sin 40' 0.64 

sin 110' - sin 40' -- -~ 

Trigonometric Functions 

The definition of the trigonometric functions starts with the right triangle inscribed in the 
unit circle first shown in Fig. 8-8. 

Place a unit circle on a right angle coordinate 
system as shown in Fig. 8-16. The sides of 
the inscribed triangle are the sine and cosine 
of the angle, 6. These sides of the inscribed 
triangle are also the projections of the point 
on the circle that defines the angle on the 
axes. The projection on the x-axis is the 
cosine of 0 ,  and the projection on the y-axis 
is the sine of 6. 

As the point defining the angle moves 
around the circle in a counterclockwise 
manner, the projection on the x-axis traces 
out the cosine function and likewise fcr the 
sine function. We will eventually graph the 

I 
Fig. 8-16 

sine h c t i o n  versus angle, but right now work with the unit circle a little longer. 

Follow the sine function and confirm the values in Table 8-1 as the angle is increased. 
Remember that the angle increases counterclockwise ftom what would be the +x-axis. 

Sine At 6 = 0 ,  the projection on the y-axis that is the value of the sine function is 0. 

At 8 = n/4 or 45', the projections on the x- and y-axes are the same. Applying the 
Pythagorean theorem, two equal lengths, I, squared equal the radius (of I )  squared. 

I 2  + i 2  =12 or 212 = I  or 1 2  =1/2 or I=1/&=0.71 

With your hand calculator, confirm that sin 45' = cos(n/4) = 0.71. Confirm this number 
in Table 8- I.  
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0 4 4  4 2  3 4 4  5x14 3x12 7x14 2n 
sin 0 0.71 1 0.7 1 0 - 0.7 1 - 1  -071 0 
cos 1 0.71 0 -0.71 - 1  -0.71 0 0.71 1 

At 6 = n/2, the projection on the y-axis is 1. 
At 8 = 3n/4, the projection on the y-axis is positive and equal to the value at n/4.  

At 6 = n , the sine function goes to zero. 

At 6 = 5n/4, the projection on the y-axis is negative, 

At 6 = 3n/2, the sine firnction has value - 1 ,  and at 

tozero at 27r. 

n/4. 
but numerically equal to the value at 

8 = 7 4 4  , - 0.71, and finally back 

Cosine At 0 = 0, the cosine function is the projection on the x-axis, or 1.  As 8 goes 
fiom 0 to 27r, the shape of the cosine curve is the same as the shape of the sine curve. 
They just start at different places; the sine curve starts at zero and the cosine curve starts at 
1. 

Tangent The tangent h c t i o n  can be thought of as either y-projection over 
x-projection or sine hc t ion  over cosine function. Use whichever is more convenient. 

At 6 = 0 ,  ~ i n 6 = 0  and  COS^=^ SO ( s i n 6 / ~ 0 ~ 8 ) = 0 .  
At 6 = n/4,  the projections are the same so tan(nl4) = 1 . 
At 8 = ~ / 2 ,  the sin(n/2) over cos(n/2) isl/O . There is no point at 1/0 so look to a 

limit view of how the tangent curve behaves in the vicinity of 4 2 .  As 8 approaches 

n/2, with values less than x/2, the cos8 becomes small making the tangent of 6 

become a very large positive number. When 6 goes just beyond 4 2 ,  cos 8 is a small 

negative number making tan 8 a very large negative number. 

On one side of n/2 the tangent h c t i o n  goes to plus infinity and on the other side it goes 
to minus infinity. The best way to depict this on the chart is with &a. In limit language, 
the tangent h c t i o n  has a vertical asymptote at n/2, 3n/2, and every n interval in both 
directions. The tangent function is usually graphed between -9712 and n/2 so a 
complete curve from minus infinity to plus infinity is shown. 

Table 8-1 
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The sine, cosine and tangent functions are graphed in Fig. 8- 17. 

Fig. 8-17 

Identities 

It is not our intention to work out all of the many trigonometric identities. What we will 
do is show you how broad categories of identities are developed, working out a few 
examples along the way. Our purpose is to give you a flavor for trigonometric identities, 
not make you an expert at them. 

The simplest of the identities are the reciprocals of the sine, cosine, and tangent 
hctions.  These are called the cosecant (csc), secant (sec), and cotangent (cot). 
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Look back to Fig. 8-8 and Fig. 8-16 and notice that the inscribed right triangle has radius 
1 and write the Pythagorean theorem statement for these inscribed triangles. In terms of 
the x and y components, the statement would be 

In terms of the trigonometric 

x 2 + y 2 = 1  

functions the statement would be 

sin2 e+cos2 e = i  
This last statement is often called trigonometric identity number one. 

statement by cos2 8 to obtain 

Divide this 

or I + tan2 8 = sec2 8 
2 1 

tan e+i=---- 
cos2 e 

A variety of similar identities based on sin 8 +cos2 8 = 1 can be created and are 
tabulated in the Mathematical Tables. 

Another category of identity concerns the sum or difference of two angles and angles plus 

or minus 90' or 180'. These can be worked out with the unit circle but they are easier to 
see from the function graphs. Look just at the sine function graph in Fig. 8-1 8 and follow 
the argument presented below. 

Fig. 8-18 

On the sine function graph a vertical line is drawn indicating the position and value of 6 .  
The point -8 has the same numeric value for the sine fimction as 8 (it is just negative) 
so identity-wise sin 8 = - sin(-@) . Similarly sin 6 and sin(n -8) have the same value, 
so sin 8 = sin@ - 8) . The sin( + 8) has the same numeric value as sin 8 , one is just the 
negative of the other, so sin 8 = - sin(z + 8). The relations between the sine and cosine 
are a M e  more complicated, but not much. Many of the popular trigonometric identities 
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dealing with different angles being equal to or the negative of one another are listed in the 
Mathematical Tables. 

Another category of identities is the sum and difference formulas and the half and double 
angle formulas. Many of these identities come about from a derivation similar to the one 
given below for the cosine of the difference of two angles. In addition, this exercise is a 
good review of basics. 

Figure 8- 16 shows that any point on the unit circle can be given by the coordinates x and y 
or the coordinates cos 6 and sin 8 . On a unit circle the coordmates of the angle 6 are 
(cos 8, sin 8). The coordinates of another angle, #, are (cos #, sin #) . 

(COS 8, sin 8) 

I 

Fig. 8-19 

The distance between these two points, d, in terms of the Pythagorean theorem, is 

d ’ = (sin 8 -sin #)2 +(cos 6 -cos #) 

In words, this is “the hypotenuse d squared equals the difference in x-coordinate squared 
plus the difference in the y-coordinate squared. ” 

d’ =[sin2 6-2sinBsin#+sin2 4]+[cos2 6-2cosOcos~+cos2 41 

sin’B+cos’ 8=1  and sin’ #+cos2 # = 1  sothsstatementreducesto 

The distance d can also be written in terms of the Law of Cosines. The sides are 1, and 
the included angle is (6 - #) , which makes the statement easier. 
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d = l2 + l2 - 2(1)(1) cos(6 - 4) 

Set these two statements equal to produce an identity. 

2 - 2 cos(6 -4) = 2 - 2(sin 6 sin 4 +cos B sin 4) 

cos(@ -4)  = sin 6 sin 4 + cos6 cos 4 

This identity gives the cosine of the difference of two angles in terms of the sines and 
cosines of the individual angles. A myriad of sum and difference of two angles formulas 
as well as double and half angle formulas come from exercises similar to this one. 
Fortunately they are all tabulated in many places, most notable in Mathematical Tables in 
the back of this book. These tables given here are not complete, just sufficient for most of 
the problems you will encounter 

bif f erentiating Trigonometric Functions 

A somewhat intuitive justification for the derivative of the sine function was given in 
Chapter 3, Derivatives. Now it is time to look a little more closely at derivatives of 
trigonometric he t ions  and apply those derivatives to some problems. 

The derivative of the sine function is the cosine hc t ion  and the derivative of the cosine 
function is the negative of the sine fhction. The justification for the derivative of the sine 
function (Chapter 3) is enough to give you a feel for how the derivatives of trigonometric 
functions come about. The more popular derivatives are listed below, with a larger list 
presented in the Mathematical Tables. 

d(sin8) = ~ 0 ~ 6 d 6 ,  d(coSB)=-sin6d6, d(tanB)=sec2 6dB 

One thmg that occurs fairly often in trigonometric fuctions is that the variable, the 6, the x, 
or whatever is not simply 8 or x but something more complicated, like 2, for example. 

8- 1 2 Find the derivative of cos 2x. 

Solution: This kind of problem is best done in an implicit style. Write d(cos2x) and 
then differentiate according to the fomula for the differential of the cosine. 

d(cos 2x) = -(sin 2x)d(2x)  = -2(sin 2x)dx 
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In words, "the differential of cos 2x is equal to minus sin 2x (times the) differential of 
2x." The diffaential of 2x is 2dx. 

d 
With this experience -(cos 2x) = -2 sin 2 x .  

& 

The implicit derivative approach with the equation written in one line is the easier method. 

dY 3 8-13 Find - for y=sin x .  
& 

Solution: Before differentiating the sin x we first have to deal with the cube of sin x . 

If the problem were y = U , the implicit style derivative would read dy = 324 du . 

For the function y=s in3  x ,  the parallel (approach) derivative would be 

dv 2 dy = 3(sin x)d(sin x) . The d(sin x) is cosx , or - = 3(sin x)(cos x )  . 
f i x  

dY 2 8-14 Find - of y = t m  2 8 .  
Ilx 

Solution: 
derivative and then take care of the 28 part. 

Go slowly and don't get confused. Do the tangent squared part of the 

dy = 2(tm 28)d(tm 26) 

The problem can be rewritten using the identity sec 28 = 1 + tan 2 6 .  
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8- 15 What is the angle between y = cos3x and the x-axis when the curve crosses the 
axis? 

Solution: This is one of those innocent-looking problems that looks easy but perhaps is 
not so easy. Oh, but it is not difficult for Captain Calculus, because he always "thinks 
calculus . " 

The phrase "the angle" should trigger a connection between geometry and calculus. To 
know the slope is to know the angle, so if we know the slope when the curve crosses the 
axis then we can easily find the angle. The slope, in general, is the derivative. 

dy = -sin 3 x d 3 ~  = -3sin 3 ~ d x  
or 

What we need is the specific slope when the 
function y = cos3x crosses the x-axis. We 
have the general expression for the slope so all 
we need is the x-value when the fbnction 
crosses the x-axis. 

The function y = cos3x crosses the x-axis 
when 

3x = n/2 or x = x/6 

Y 
v =cos3x 

I 

Fig. 8-20 
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Substituting n/6 into the general expression for the slope, we calculate 

= -3 sin(3n/6) = -3 sin(z/2) = -3 jX+ 
Figure 8-20 shows the first quarter cycle of the curve y = cos3x .  The slope is clearly 
negative at this point. The angle between the axis and the curve as shown in Fig. 8-20 

has tangent of 3. Solve tan-' 0 = 3 for 8 = 72'. 

8-16 The rise and fall of ocean tides follows 

y = (3 ft)sin - f , where y is the relative height of the (;: ) 
ocean, takmg y = 0 as the mid point between high and 
low tide, and t is the time in hours fiom the mid point in 
height. When, in the cycle, is the tide rising at its 
greatest rate, and what is that rate? 

Solution: The sine fimction describes the up and down 
motion of the tide. The 3 ft is the height or depth of the ocean fiom the midpoint between 
high and low tide. 

The 215/11 is determined by the frequency of the tide and the nature of the sine fhction. 
The time for one tide cycle is approximately 1 1 hours. When t has gone from 0 to 11, the 
argument of the sine function, the (2~ /11) t ,  has gone fiom 0 to 215, or through one 
complete cycle. Read this paragraph until you understand how to write descriptions of 
processes that vary in a sinusoidal manner. 

The function is graphed Y 
in Fig. 8-21. The 
vertical scale shows the 
3 ft up and down of the 
tide and the horizontal 
scale shows one 
complete cycle &er 11 
hours. 

The rate at which the 
-3ft  -- 

tide is rising is the time 
derivative ofy. Fig. 8-21 
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9 = (3R)(=)cos(zl) = ( - - ) cos (~ f )  6n R 
dt l l h r  11 hr 

The 27r/11 has the units l/hr . If t is measured in hours then 27r/11 must have the units 
of reciprocal hours so that the sine is of a pure number. It is impossible to take the sine 
of 3 fl or 6 hours or $1.25. The only choices in taking a sine are a pure number (radians) 
or degrees, 

The rate at which the tide is rising, dy /d t ,  is a maximum when c0s(27r/l1) t is 
maximum. The cosine function is a maximum at 0 or in th~s case at t = 0 .  This point, 
t = 0,  corresponds to the midpoint between high and low tide (see Fig. 8-2 1). 

The tide is rising at its fastest rate midway between high and low tide. 

2n R R 
The maximum rate is - - = 0.57 - 

11 hr hr 

Second Solution: Captain Calculus, who always "thnks calculus," would not need to 
take a derivative to know when the tide was rising at maximum rate. The Captain would 
look at the sine curve (Fig. 8-2 I ) describing how the ocean level was going up and down 
with the tide and ask where the slope had the greatest positive value. Just by looking at 
the curve, the maximum positive slope and the greatest rate of rise of the tide are at the 
midpoint between high and low tide. 

Integrating Trigonometric Functions 

Three basic integral formulas can be obtained by taking the antiderivative of the 
differential formulas at the beginning of the previous section. 

Two other popular integrals of trigonometric hc t ions  are 
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These and a few other trigonometric integrals are listed at the back of the book in the 
Mathematical Tables. 

Handling integrals other than the standard integral, I s i n ,  cos, or tan@)& , is a little 

harder with integrals than it was with differentials. The following problem illustrates the 
procedure. 

6-17 Findtheintegralof y= j s in26d6 .  

Solution: 

problem. The first step in this problem is to make the I sin 28d8 look like [sin udu . 

Here again is a case where Isin udu is known but this is not the exact 

Constants can be placed inside or outside the integral sign; it makes no difference. To 

make ths problem read lsin udu , multiply by 2 / 2  and take the 2 in the numerator inside 

the integral and associate it with the d o ,  and leave the remaining 1/2 outside the integral. 

y=-!-1sin26d26 2 

Now the integral is in the form Isin udu and has the following solution. 

1 1 
2 2 

y = - ( -COS 26)  = -- COS 26  

8-18 Find y=Is in3BdB.  

@ Solution: Don't be fooled by this integral. It is not a power law problem. It is not an 
easy integral and do not get involved in trylng to work it out. Go to the Mathematical 
Tables or some table of integrals and copy the answer. OUtl 
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8- 19 Find the average value of the sine b c t i o n  from O to n. 

Solution: The average value of the h c t i o n  
uses the defrnition of the average value of a 
h c t i o n  over a range (see Chapter 7, 
Integration). The integration is over the first 
half-cycle of the sine function as shown in 
Fig. 8-22. The average value of the function 
x = sin 8 fiom 0 to n is 

Fig. 8-22 

Carry out the integration to find the average value of the sine function over one 
hal f-cycl e. 

1 1 1 2 
= - [- COS O E  = - [- COS x - (- COS O)] = - [- (-1) - (-l)] = - = 0.64 

n n n 

Figure 8-22 shows the rectangle with height 0.64 and base n with area equal to the area 
under the first half-cycle of sin 8 . 

8-20 The power delivered by a loudspeaker is P = PO sin wt 
where PO is the peak power and o is a constant with the units of 
reciprocal time. what is the average power in terms of the peak 
power? 

Solution: Start by graphing sin ot (Fig. 8-23). The ot is not important to the graph. 

When w z  has gone fiom 0 to 2n, the sine function has gone through one cycle. 

Now graph the sin2 
curve. Look first at 
the range from 0 to 

n. The sin' curve 
starts at zero when 
wt = 0 ,  and goes to 

1 when wt=lr /2 ,  
and then back to zero 
again when ot = n . 

I 
Fig. 8-23 
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The sin curve, however, has a different shape from the sin curve. The unique shape of 

the sin2 curve is due to the fact that when a number less than 1 is squared, the result is 

smaller [ O S L  = 0.25 1. The smaller the number, the smaller the result on squaring 

[ 0.92 = 0.81 but 0.32 = 0.091. 

When the sin curve is negative, the sin2 curve is positive (see Fig. 8-23). The sin2 

curve is periodic in n so the average value of the sin curve is the average value between 
0 and n. 

The average value of this sin2 -type function follows the definition of the average value 
of the function. 

1 1  
2 4  

The I sin 6d8 integral is (fi-om the Mathematical Tables) - 8 - - sin 28 so 

The average power for the loudspeaker is one-half the peak power. 

8-21 Whatistheareaboundedby y1 =cosx, y 2  =sinx,and x = O ?  

Solution: The sine and cosine hctions are shown 
in Fig. 8-24. The integral of the area between the 
curves is in the x-direction and has 

form J’(cos x - sin x ) h  . The integral is fiom x = o to 

the intersection point of the two curves. At this point 

sin x 
sinx=cosx or -=1  or t a n x = l .  

Y 

cos x 
Fig. 8-24 

From the graph of tanx, tanx=l when x = n / 4 .  
Check the number in your hand calculator. Take the inverse tangent of 1. Table 8-1 also 
shows sin x equal to cosx at x = n/4 so the complete integral? complete with limits, is 
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A = [sin x +cos xg/4 sin -+cos- - [si. 0 +coso] =[ : "J 4 

A = 0.71+ 0.71 - 1 = 1.41 - 1 = 0.41 



EXPONENTS AND LOGARITHMS 

The short review of exponents and 
logarithms in Chapter 1, 
Mathematical Background, 
presumed a rudimentary 
knowledge of exponents and 
logarithms. No such 
presumption is made in this chapter. 
Here we start with basic definitions and work up to 
differentiation and integration of exponential and logarithmic functions. 

When I ' m  on my 
birdhouse, I ' m  OS 

powerful as an 

Exponential functions describe a wide variety of phenomena including radioactive decay, 
bacteria growth, learning retention, growth of investments, proliferation of disease, and on 
and on, providing many good examples of the application of exponential hctions. 

The statement of some of these phenomena is often quite simple but the specific laws 
governing them and the predictive ability of these laws require a good understanding of 
exponents, logarithms, and calculus. This chapter is very applications oriented. No 
matter what your field of interest, there will be some applications that bear directly on 
your area of interest. 

Exponent Basics 

A number written as z3 , which is just a short-hand way of writing 2.2 - 2 ,  is a number, 8 
in this case, written in exponential form where 2 is called the base and 3 the exponent. 
Two numbers such as 32 and 53 cannot be added and the answer written in a meaningful 
exponential form. The 32 is equal to 3.3 and the 53 equal to 5 4 . 5 .  There is no 
combination of 3's and 2's and 5's that represents the addition of the two numbers. The 
only way to add the numbers is to write 32 as 9 and 53 as 125 and add them to obtain 
134. Likewise, there is no way to subtract numbers written as exponents. Even 3 L  plus 
32 cannot be written as an exponent. 

131 
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Multiplying is much easier: 34 .33 is 3 7 ,  just add the exponents. Visualize 34 as four 
3's multiplied together and 33 as three 3's multiplied together and all of them multiplied 
together as seven 3's multiplied together. 

Dividing is equally easy: 35/33 = 3 2 .  Five 3's divided by three 3's means there are two 
of them remaining in the numerator. 

Raising to a power is a slight variation on multiplying. The form (23)2 is viewed as 23 

times z3 or 2% 

These examples illustrate the three basic laws of exponents. 

1 

am 
Negative exponents mean reciprocal, or one over: Krn = - . 

The laws of exponents work equally well for negative and fi-actional exponents. 

30.2 
312 2 - 3-7 .34 ;  (42)"; (7 ) , -. 

57  

511 ' 32 
9-1 Evaluate: 23.25; - 

Solution: For 23 ~2~ add the exponents to obtain 2 8 .  

57  

5*'  
For - subtract the exponents keeping the signs correct to obtain 5 7-1 = 5 -4 . 

For 3-7 0 3 ~  add the exponents keeping the signs correct to 0btain3-~+~ = 3-3. 

2 - 6  For (4 ) multiply the exponents to 0btain4-l~ . 

312 2 For (7 1 multiply the exponents keeping the fi-actions correct to obtain 73 . 

3 0.2 

32 
For - read the problem as 3°.2 3-2 and add the exponents to obtain 3-'.8 . 



EXPONENTS AND LOGARITHMS 1 33 
Exponential Functions 

Exponential fhctions are in the form y = ax . Taking U = 2 the fhction reads y = 2 
This is a rapidly increasing function as tabulated and shown in Fig. 9-1. 

X 

112 114 

y = 2 x  

I 1 1  1 1 1  
1 1 1  1 1 1  

x 

Fig. 9-1 

The hc t ion  y = 2-x is also interesting and is tabulated and graph4 in Fig. 9-2. 
Remember that any number raised to the moth power is 1. 

Fig. 9-2 

9-2 Certain cells grow by splitting; one cell begets two and each 
of these begets two (more) with each cycle taking 3 hours. A 

simple model for the growth in the number of cells is N = N o  Z t ' 3 ,  

where No is the number of cells at t = 0 and t is the time in hours. 
If 1000 cells are left to grow over 60 hours, how many cells are 
there at the end of the 60 hours? 
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Try a few numbers in your hand calculator. 
These few short calculations produce a 
value for e good to three significant 
figures. Your hand calculator probably 
computes e with this algorithm and a high 
enough value for x to reproduce the 
precision appropriate to your calculator. 

Solution: At time zero there are 1000 cells. At the end of 3 hours there are 2000 cells, 
and at the end of 6 hours there is another doubling to 4000 cells. The model as described 

in words and by the equation N = (1000)2r'3 is consistent. Make the time go on for 9 
hours and the number doubles again to 8000 cells. 

X 1+- 1 (1.:)" 
X 

1 1+1 2 
' 2  1+0.5 2.25 

10 1 . 1  2.59 
100 1.01 2.70 

1000 1 .oo 1 2.72 

Use the formula for this specific situation to find the number at 60 hours. 

N = N ,  2*13 = ( 1 0 0 0 ) 2 ~ ~ / ~  = (1000)2~~  = i . o X i o 9  cells 

The power of an exponential function to generate large numbers is tremendous. 

The Number e 

The number e, approximately 2.72, is an irrational number (irrational numbers cannot be 
Written as fiactions) that occurs in nature in many different places. Two of the definitions 
are associated with calculus and are outlined here. 

The first definition of e involves a limit. The number e is defined as 

The second definition of e is that y = ex is the exponential function whose derivative is 

everywhere equaI to the value of the function. At x = 2 ,  the function y = e2 has value 
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7.39 and its derivative (slope) is also 7.39. In calculus language this means that 

d 
- ( e x ) = e X .  
& 

The base, e, is generated by taking the derivative of some general 

d d 
dx dx 

exponential hc t ion  - ( a X )  and asking if there is a value of a such that - of ax is 

a'. Such a number exists and it is the number e. 

These two very calculus oriented questions: 

"What number do you get when you take lim 1 + - 

"What value of a in the function y = ax gives a derivative equal to itself?" 

produce the number e. 

?" and 
x+ao ( Y 

Most of the exponential problems in the remainder of this chapter will use the number e. 
As we get further into the study of logarithms, e will return again as an important number. 

The derivative of the basic exponential function ex is e * , or 

d 
ak 

d(ex)=e"dx  or - e X = e X  

Taking this one step further, any function represented by the symbol U is differentiated as 

d(e" ) = e" du 

The integral of e' is dso eu 

I e U d u  = eu 

dY 9-3 Find - for j = e a t .  
dt 

Solution: The safest way to do this problem is in an implicit derivative format. 

dY dy = eat d(at)  = a(ea' )dt and - = a(eat) 
dt 
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dv f 3  9-4 Find - for y = e  . 
dt 

Solution: Again, use an implicit derivative format. 

+ = e t  3 d ( t3 )=3t  2 (e  t3 )dt and - = 3 t  4Y 2 (e  t3  ) 
dt 

9-5 Find l e s"dx .  

1 

3 
Solution: Change the integral to -Je3Id(3x) so it is in standard form, 1e"du = e" , 

and write 

~ e 3 x d x = - I e 3 x d ( 3 x ) = - e 3 X  1 1 
3 3 

9- 6 What is the accumulated balance on $1000 placed at 6% 
interest for 5 years if the interest is compounded (a) quarterly or 
(b) monthly? 

Solution: If the interest on a principal amount is compounded 
once at the end of an interval the amount is A = P(I+r )  where r 
is the rate of return Written as a decimal. A one time 10% interest payment on $1000 
would produce A = $1000(1 +O. 10) = $1 100. If  ttus $1 100 remained at the 10% and the 
interest compounded again at the end of the next interval the amount would be 
A = [ P( 1 + r)]( 1 + r )  = $1 1 Owl+ 0.10) = $12 1 0.  The expression in brackets represents the 
amount after one compounding and the entire expression represents the amount after two 
compoundings. 

Depending on the number of compoundings, in general the amount would be 

A = P(l +r)" where r is the rate for the compounding interval and n is the number of 
intervals. 

Interest is usually stated on a yearly basis with specified compounding. The phrase "6% 
compounded quarterly" means that the 6% is divided by 4 for the rate per interval 
(quarter) and there are 4 intervals per year. In mathematical symbolism 
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4 

A = P(l+?) 

would be the balance for an amount P placed at 6% interest for 4 quarters or 1 year. 

The stated problem asks for the accumulated balance on $1000 &er 5 years at 6% interest 
compounded quarterly so the appropriate formula is 

20 
A = $ 1 0 0 0 ( 1 + ~ )  = $1000(1.015)20 = $1346.86 

If the compounding is done monthly then the rate has to be divided by 12 and the number 
of compoundings increased to 12 x 5 = 60 .  

A=$100 I+- =$1348.85 i O l 0 2 6 j g  

9-7 In the previous problem what would be the balance at the end of the 5 years if the 
compounding were increased to instantaneous compounding? 

Solution: Start with the statement 

kz 
A = r ( l + i )  , where k represents the 

compounding rate (12 for monthly, 365 for daily) 

and kt is the number of compoundings over time. 

This looks so much like the definition of e, define 

k / r  as n so the expression for the amount reads 

nrt 

A = P ( l + i )  . 

As the number of intervals increases (k increases and Wr increases) the compunding 
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approaches instantaneous and the expression in the brackets becomes lim 
??-MU 

SO in the limiting case ofinstantaneous compounding the amount is A = Per'. 

For this problem with P = $1000, r = 0.06, and t = 5 years, the maximum balance for 
instantaneous compounding is 

Logarithms 

There are several definitions 
of logarithms. We will 
consider only the simpler 
ones. Further, we will 
consider only natural, or 
base e, logarithms. 

The simplest definition of a logarithm is that it is a hc t ion  that allows the exponential 

equation y = ex to be written in the form x =. . . . The equation y = ex cannot be solved 
for x with conventional algebraic methods. The logarithrmc h c t i o n  is the way out of this 
dilemma. The equivalence between exponents and logarithms is 

y = e X  w h y = x  

Although there are exponential equations other than base e, most of the exponential and 
logarithmic functions you encounter will be base e. Your hand calculator uses base e and 
base 10, though base 10 is used rarely. The notation In, as opposed to log, specifies 
base e. The logarithmic equation just above is read as "log base e" or "ln e" or simply 
"log" with the later presuming that if the base were other than e it would be specified. 

Run a few numbers on your calculator to become familiar with talung logarithms and 
calculating with exponents. This is not something you do every day and you don't want to 
make a calculating mistake on a test. 

On your hand calculator raise e to a power, then take the In of that number to return to the 
original power (number). [ e3 = 20; ln20 = 3 ] As you go through the problems in this 
chapter keep your calculator handy and practice "punching the numbers." 
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9-8 Solvetheequations 7 = e X  and lnu=14. 

Solution: The equation 7 = e x  has to be switched to a logarithmic one: x = In 7 with 
x = 1.95. 

The equation In U = 1.4 has to be switched to an exponential one: 
U = 5.68. 

u = e1.4 with 

The key phrase to remember in switching from an exponential equation to a loagrithmic 
equation and vice versa is "a logarithm is an exponent." The logarithm of something is a 
number and that number is the exponent of e. 

There are manipulative laws for logarithms that parallel similar laws for exponents. 

ln(uv) = In U + In v 

U 

V 
In-=hu-Inv 

lnu* =nhu 

A little manipulation of exponents will verie the f h t  law. 

Set k = h u  and I = h v  sothat e R  = U  and e l = ~ .  

Form the product uv=ek S e '  = e k + l ,  and convert to a logarithm equation 

In uv = k + I  = In U +In v . 

The derivative of In x is 

1 d 1 
d(lnx)=-dx or - ( l n x ) = -  

X dx X 



Solution: Use the chain rule and go slowly. 

dy = x 2d(ln x) + (ln x)d (x  ) = x !. dx + (In x)(2xdx) = (x + 2 x  In x)dx 
X 

or 
-=xx(l+2Inx) dv 
dx 

9- 10 Find - dY for y = ln(2x2 + 1). 
dx 

dx 4x 
(4x)aLu = - 

2x2 + 1  2x2 + 1  2x2 + I  

1 
d(2x2 + 1) = - 1 Solution: dy = ~ 

or 

9- 1 1 Find the derivative of y = x1.5 h(x2 + 2) .  

Solution: This looks bad. But, if you proceed slowly, applying the rules one at a time, 
the differentiation is not all that difficult. The hard part is proceeding logically. This is a 
product so write 

dy = ~ ' . ~ d [ l n ( x ~  + 2)] + h(x2 + 2)& 

2xdx 
d(x2+2)=-----.  The differential of h(x2 +2) is - 1 

x 2  +2 x 2  +2 

The differential of x1.5 is X O . ~ ~ W .  

Putting it all together we write 
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9- 12 Find the derivative of y = e-' sin x . 

Solution: This is a product. Proceed methodically and the problem is not difficult. 

dy=e-Xd(s inx )+s inxd(e -X)  =e-X(cosx)cEu-e-x(sinx)dx 

dY - = e-x (cos x - sin x) 
dx 

There is a simple rule for diffientiating logarithmic functions that some authors use. 

This is equivalent to using the chain derivative approach and the derivative of a logarithm 
as defrned in the Mathematical Tables. 

VerifL for yourself that the two forms are equivalent by working problem 9- 10 both 
ways. 

Integration of the logarithmic function follows [I. xdx = x In x - x which is used so 
rarely that we only give this one example. 

9-13 Findy=1lnZ~dx.  

y = l j l n 2 x d ( 2 x )  = 2 x l n 2 x - 2 x  
2 

Solution : 
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Growth and Decay Problems 

The growth and decay model is appropriate to many 
phenomena, such seemingly diverse problems as population 
growth, radioactive decay, the spread of disease, the cooling of 
a cup of coffee, and the number of yeast in a culture, just to 
name a few. Before working some problems, a very simple 
model of bacteria or yeast growth will be developed and worked 
through in detail. Notice the pattern in the problem. Many 
mathematical models of different phenomena parallel this one. 

A simple experiment performed in elementary chemistry, biology, or physical science 
courses is the growth of bacteria or yeast. In this experiment a certain number (the 
number is often determined or measured by weight) of bacteria are placed in a nutrient 
environment. This means that the bacteria have optimum growing conditions, food, 
temperature, etc. Their growth is then limited by their growth mechanism and not by 
anythlng external. 

The bacteria grow by budding, one bacteria grows on another, splitting, each bacteria 
divides producing two identical bacteria, so that each bacteria over an average time 
period becomes two bacteria and these two repeat the same process in the same time 
period and on and on. At any time in the process the number of bacteria produced per 
unit of time is proportional to the number present. This is the mathematical statement of 
the growth model for bacteria. In symbolic form, d N / d t ,  the number produced per unit 
of time is proportional to the number present, kN . 

Solving this statement for N as a function of time is a calculus problem, and one we 
already have some experience with. 

In practical terms the dificulty with the rate statement is that the N is on the wrong side 
of the equation. It needs to be associated with the dN if we are to make any progress 
toward a solution. A little algebra fixes this. 

dx du 
Now integrate both sides of the equation. (Remember: l d ( lnx)  = I, so I- = In x )  

X 
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The constant is required because there are no limits on the integrals. 

In this problem, as with every problem in growth or decay, there is an initial amount of 
material. In this case there is an initial number of bacteria at the start of the experiment. 
Call this initial amount N o .  In the language of mathematics, at t =o, N = N o .  
Substitute these values into In N = kt + C . 

InN,=k(O)+C SO C=lnNo  

With the constant evaluated in terms of the initial amount of material the basic relation is 

If you had any trouble manipulating the logarithms in the previous line, go back and 
review the manipulative rules for logarithms. 

At this point switch to an exponential format. 

This last statement correctly describes the model. The number of bacteria at any time 

starts out at No ( eo = 1) and increases with time in an exponential manner. 

This N = Noekr is the general growth law for something with growth proportional to the 
number present. Some text authors begin the discussion of growth and decay with this 
equation. This approach is simple but neglects the development of a mathematical model 
of a simple statement that "the growth of . . . is proportional to the number of . . . 
present at any time." A little reflection will convince you that this model fits many 
different phenomena. 

Suppose in this bacteria growth problem that 100 bacteria are introduced into a growth 
environment (water, nutrients, etc.) and that 2 hours later the bacteria are separated fiom 
the environment or otherwise identified and that their number has increased to 130. Can 
this information be used to determine the growth law? 

With these two numbers, N and N o ,  and the time interval the constant k can be 
evaluated. The calculation is a little logarithm and exponent intense but follow along 
with your calculator. Substitute as follows: 

2k 130 = 100e2k or 1.30 = e 



To solve for k switch 1.30 = e2k to a logarithmic equation. (Buzz Word Bee says "A 
logarithm is an exponent.") The logarithm of something is an exponent so 

1 
2 

ln1.30=2k or k=-h1.30=0.13  

The specific law governing the growth of these bacteria in this environment is 

With this law it is possible to predict how many of these bacteria would be present, say, 
after 12 hours and starting with 50 bacteria. Put in the 50 for N o  and the 12 hours for t 
and we get 

= 50(4.76) = 238 N - - 50~0.13'12 

This model that starts with the statement that the growth rate is proportional to the 
amount present can, with a modest amount of calculus and initial information, be used to 
predict hture growth. 

There is a standard pattern to growth and decay problems that always works. The general 
procedure for these problems is outlined below. 

Pattern 

1) Any problem where the number of events is proportional to the number of 
participants present can be written as dN/dt equals a constant (+k for growth and 

- k for decay) times the number: - = +W. 
dN 
dz 

dN dN 
N N 

2) Rearrange to - = fkdt  and integrate I - = f k l  dt to get In N = fkt  + A .  Take 

aninitialnumber No,at t=O,toevaluate A=InN,,andwrite InN=+_kr+InN,. 

N 
3) Rearrange the equation to In---=M and switch to an exponential format 

NO 

-=eefk t  or N = N o e f k t .  
N 

No 

4) One data point, a certain N at a specific time, allows calculation of k. (For example, a 
20% increase in N o  in one hour means 1 .2N0 = Noelk or 1.2 = e l k .  Switch to a 

logarithmic equation and k = In 1.2 = 0.69 and finally write N = N0e0.69' .) 
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5 )  With the calculation of k, the specific growth or decay equation is written for the 

same conditions that produced the initial data. With this specific growth or decay 
equation N at any time can be predicted. 

Refer to this procedure in subsequent problems. It is a very logical procedure for growth 
and decay problems and it works. Growth and decay problems are favorite test problems. 
Know how to work them and especially know how to switch fiom exponential equations 
to logarithmic equations and vice versa and know how to take logs and perform 
exponentiation on your hand calculator. 

9- 14 If "a fool and his money are soon parted," the rate at 
which it leaves is probably proportional to the amount 
remaining. If a certain fool starting with $20,000 starts 
gambling his money away and after 2 hours has lost $2000, how 
long will it take for him to loose 90% of the original amount? 

Solution: The basic assumption in this problem is that the fool will loose in proportion 
to the amount he has at any time. Humans are a little harder to predict than bacteria, but 
this is a good assumption. Follow the procedural steps as written previously and be 
aware of the logic in the problem. 

Stepl: The statement "the rate at which the fool looses money is proportional to the 
amount present" means that 

Step 2: Rearrange, integrate, and evaluate the constant of integration with the initial data. 

- = -kjdZ, In A = -kt +C 
U% 
- = - k d t ,  
A 

At I = 0 , the fool has $20,000, so In 20,000 = -k(O) + C and C = In 20,000. 

Now the equation reads 
In A = -kt + In 20,000 

Step 3: Rearrange and switch to exponents. 

A A 
20,000 20,000 In - = -kr , and switching to exponents - = ehkr or A = 20,000e-kr. 
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Step 4: Use the given data to determine k. 

At t = 2 hrs , A has declined to 18,000, so put these numbers into the amount statement 
and find k. 

18,000 = 2000esk , 0.9 = e-2k 

Switch to logarithms to solve this equation for k. 

- 0.053 ln(0.9) k = - - 2 - - 2k = h( 0.9) , 

As you were following along this problem and "punching the numbers," so you would be 
very proficient at this logarithm and exponent calculating for the test on this topic, you 
may have noticed that your calculator displayed a negative number for ln(0.9). This is 
correct. In the original statement of the problem, dA/dt = -kA so that the calculation of k 
should produce a positive number. The reason for the In of numbers less than 1 being 
negative has to do with one of those other defintions of the ln and will be taken up 
shortlv. 

Step 5 :  The specific equation for this situation is A = 2 0 , 0 0 0 ~ ~ . ~ ~ ~ ~  . 

The time for 10% remaining is the time for A to reach 2000. Substitute for A = 2000 and 
solve for t .  

-0.0531 2000 = 2 0 , 0 0 0 ~ ~ ~ ~ ~ ~  , 0.1 = e 

Switching to logarithms, ln(O.1) = -0.053t or t = -- ln(O.l) = 43hrs. 
0.053 

Based on this model, it would take this particular fool 43 hours to loose 90% of an 
original amount of $20,000. 

9-15 Hot or cold objects cool down or heat up to the temperature of their 
surroundings. The temperature difference, AT , between the object and its surroundmgs 
decreases over time in proportion to that temperature dfference. This is Newton's Law 
of Cooling. If a cup of coffee cools from 85' C to 80' C in 2 minutes in room 
temperature surroundings, how long does it take for the coffee to cool from 85' C to 

30' C (20' C isroom temperature)? 
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Solution: Dodt be fooled by the wording of this problem. It is not the temperature that 
is important, but the difference in temperature between the coffee and its surroundings. 
The defrnitive statement is "the change in the temperature difference is proportional to 
the difference." Call AT the difference in temperature between the coffee and its 
surroundings. The mathematical statement of Newton's Law of Cooling then is 

Rearrange and integrate. 

- = - k d t ,  W T )  = - k / d t ,  h ( A T )  = -kt +C 
AT 

When the coffee starts cooling, the temperature difference is 65' C = (85 - 20)' C so 

In 65 = -k(O) +C and C = In 65 so the equation becomes 

AT 
65 

ln(AT)=-kt+ln65 or In-=-kt 

Switching to exponents we write 

Be carefbl with this next step. The temperature changes by 5' C so the temperature 

difference is now 60" C ,  and this occurs over 2 minutes so put in these values and 
evaluate k. 

60 -2k 60 = 65e-2k - = e , and switching to logarithms 
' 65 

60 1 60 
65 2 65 

-2k  = ln-, k = --In- = 0.04 

The temperature dfference statement is now 

AT = 65e4.04r 
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Be carefbl again. Go back and read the question and make sure you understand that the 

desired time is for the temperature to reach a 10' C difference between the coffee and its 

surroundings. Use the 10' C temperature difference and calculate the time. 

1 10 
' 65 65 ' 0.04 65 

t = --ln - = 47 minutes 10 
, -0.04t=In-- 1o = 65e-0.04t '0 -0.04r = e  

It takes 47 minutes for this cup of coffee to cool to within 10' C of room temperature. 

9- 16 A wildlife manager needs to reach a 10,000 population of mule-eared deer in a 
certain habitat in 6 years. There are presently no deer in the habitat. The environment is 
such that the deer can grow without being limited by their environment. This means that 
the growth of the deer population will be proportional to the population, dP/dt = kP . In 
order to detennine the growth equation, 100 deer are introduced into the habitat. There 
are half males and half females, the same ratio as when they reproduce. At the end of the 
year there are 130 deer. How many deer need to be introduced to the habitat to acheve 
the 10,000 goal in the remaining 5 years? 

Solution: The first part of the problem is to determine the growth equation. Starting 
with 

dP kt - = kP , the general growth equation is P = Poe . 
dt 

The 100 deer population grows to 130 in 1 year so put this data into P=P,ek' and 
determine k. 

130 = 100elk or 1.30 = elk so that on switching, In 1.30 = k or k = 0.26. 

The specific growth law for these deer in this habitat is P = Poe0.26t , 

Now solve for the initial number PO needed to produce the 10,000 population in 5 more 
years. 

10,000 = P0e0.26'5 = P0e1.30 = 3.67Po or PO = 2725 

This number minus the 130 already there, or 2725-130 = 2595, deer need to be 
introduced to achieve the 10,000 goal in the prescribed time. 
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The Natural Logarithm 

Another and more formal definition of the 
natural logarithm relates the lnx to portions 
of the area under the curve y = l/t . 

The natural logarithm of any number x is 

deflnedby l n x =  J;:. 

The curve y = l/t and the graphical depiction 
of lnx as the area under the curve are shown 
in Fig. 9-3. The area under the curve between 
x = l  and x = 2  is ln2. This area can be 
determined by taking as many narrow 
trapezoids or rectangles approximating this 
area as necessary to achieve a desired precision. 

Look more closely at the piece of the curve 
between t = 1 and t = 1.1 (Fig. 9-4). The area 
under this part of the curve is approximated by 
the area of the rectangle 0.10xO.91=0.091 
and the (area of the) small triangle 
(1/2)(0.10)(0.09) = 0.0045. 

The total area of this rectangle and triangle is 
0.0955, thus In 1.1 = 0.0955 The logarithm 
produced in most hand calculators is 0.0953, 
just a little bit smaller than this number as is 
expected from the shape of the curve. 

1 2 l  

Fig. 9-3 

y I  
1 

0.91 

1 1.1 

Fig.  9-4 

For numbers less than 1, the integration in dx is in the negative direction. Tlus produces 
the negative numbers for In’s of numbers less than 1. 

The function y = ln x is shown in Fig. 9-5. Referring to Fig. 9-3 and remembering that 
the definition of In x is the area under the curve, note the following features of the ln x 
curve. 

0 Only positive values of x are allowed. 

0 In 1 is zero (no area). 

0 As x goes from 1 to zero, ln x (the area) goes from 0 to large negative numbers. 
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As x goes fkom 1 to large positive numbers, ln x increases with the increase less and 
less as x goes to large positive numbers. 

The connection between this definition of the 

The constant e raised to the power equal to the 
area under the curve is equal to the upper limit 
of the integral. 

natural logarithm and the constant e is amazing! Y 

The precise calculation of the area 
corresponding to an upper limit for the integral 
of 1.1  is 0.0953. 

eureu = upper limit of area calculation 

X 

Fig. 9-5 
ln(upper limit of area calculation) = area 

Verify for yourself that e0.0953 = 1. I ,  and that In 1.1 = 0.00953 . 

Again, a reasonably simple area problem in calculus produces a number that occurs other 
places in nature. 

More Exponential Functions 

In many real-life problems growth is 
limited. Exponential models are used to 
describe limited growth. The simplest 
model for limited growth involving 
exponentials is one in the form 

N = No (1 - eek t )  . This statement is the 
result of a rate equation, as were the 
growth and decay equations, but the 
complexity of these rate equations places 
them above the level of this book. 
Therefore, we will discuss limited growth 
exponentials starting with equations with 

the form N = N,(l-Ckt). 

t 

Fig. 9-6 
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This equation is depicted in Fig. 9-6. Note that the N starts at zero at time zero. In 

N = N , ( l - e - " )  when t = O ,  e0 = I  and N = N o ( l - 1 ) = 0 .  Afteralongtime, e-kt or 

l/ek' becomes very small so that N approaches No. The slope of the curve is the 
derivative, or 

At t = 0 the slope is (positive) Nok and as time goes on the slope decreases. This type 
of curve is sometimes called the learning curve because it describes someone learning a 
skill and eventually reaching a limit in productivity with that skill. 

9- 17 Workers hued to assemble sewing machines 
become more skilled with experience. The most 
experienced workers can assemble 10 sewing machines 
per day. The learning curves are &fferent for different 
workers but they all eventually reach a peak production 
of 10 sewing machines per day. A newly hired 
assembler learns to assemble 5 sewing machines per 
day after 6 working days, How long will it take for this 
worker to reach 9 sewing machines per day? 

Solution: 
N o  =10 is the maximum rate of sewing machine assembly. 
governing the number of sewing machines assembled per day then is 

The simple learning curve model is most appropriate for this problem. 
The general equation 

N =10(1-e-") =lO-lOe-k' 

The k can be determined with the information that after 6 days this particular worker can 
assemble 5 sewing machmes per day. Substitute N = 5 and z = 6 and solve for k. 

and switching to logarithms 

1 1 1  
2 6 2  

In - = -6k , k = - - in - = 0.1 15 
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The specific learning equation for this worker is: 

N = 1 0 ( 1 - ~ - 0 . ' ~ ~ ~ )  

The time for this worker to achieve a rate of 9 sewing machines per day is obtained by 
putting in 9 for N and solving for t. 

and switching to logarithms 

- 0.1152 = In 0.1, t = -- I n O . l =  20days 
0.115 

It will take this worker 20 days to be able to assemble 9 sewing machines per day. 

Another type of exponential function used to describe limited growth has the form 

A 

1 + Be-b 
R =  

R 
At t = O ,  R=- A .  hisi is the present A 

l + B  

rate or number, whatever R represents. 

AS I goes to infinity, e-b = l/ekr goes to 
0 and R approaches A. A is the maximum 
rate or number. 

This curve has the general shape shown in 
t 0 

Fig. 9-7. Fig. 9-7 

Many industries follow this type of a growth curve. When a new product is introduced 
there is considerable demand, but as more and more people acquire the product sales drop 
to a level determined by the number of new people entering the marketplace and 
replacement of old or outdated product. The automobile industry is an excellent example 
of this type of growth. 
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9- 18 A microchip production line has a theoretical maximum output of 400 chips per 
day. The factory production managers know fkom experience that new microchip 

where R is in production lines reach maximum production according to R = 
4 

1 + 3e -0.OSt 

hundreds of chips per day. 

Sketch the function and find the production rate on the first day of operation, the tenth 
day of operation, and finally, the maximum rate of production. 

R Solution: The curve is the standard 
one shown in Fig. 9-8. 

Take t = O  for the first day of 
production so we have 

400 

R=-=--= 1oochipsperday. 
1+3(1) 4 

0 
Take t = 1 0  for the tenth day of 
production so Fig. 9-8 

= 170 chips per day . 4 
1 + 3(0.45) 

- - 4 
1 + 3e-0.08('0) R =  

t 

As t goes to infdty, the denominator in the rate equation goes to 1 and the maximum rate 
goes to 400 chips per day. 





10 
MORE INTEGRALS 

There is an almost 
limitless supply of 
increasingly complex 
integrals and applications 
of integrals. Depending 
on your interests, certain 
topics and integrals in 
this chapter may be very 
interesting to you while 
others may be completely 
uninteresting. 

If you are looking for help with a particular integral or a particular application, you may 
want to survey the chapter to find those problems and associated discussions that fit your 
interest. We have concentrated on four topics: volumes, arc lengths, surface areas, and 
non-standard integrals that occur often in real-world problems. This latter area is often 
called techniques of integration, the name suggesting the study of integration techniques 
that work for a number of different problems. Most texts and extensive integral tables are 
organized around various categories of integrals. Within the space limitations, we have 
attempted to pick those integrals and applications that will help the largest number of 
people. We start with a discussion of volumes. 

Volumes 

Finding volumes of non-standard geometric shapes can only be accomplished with 
calculus. This work is a logcal extension of the study of the calculation of areas using 
calculus. You will find many parallels between area and volume calculations. Finding 
volwnes is also extremely visual. If you can visualize the problem, you can usually do it. 
We start with some simple problems and work up to the more challenging ones. The first 
problem uses the method of disks to calculate the volume generated by rotating a 
parabola of a fixed height about its symmetry axis. Next the problem is done again using 
the method of cylindrical shells. 

155 
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10- 1 Find the volume generated by rotating y = x2 about the y-axis and bounded by 
theplane y = 4 .  

~- 

In two dimensions, y = 4 defines a horizontal line at y = 4 .  In three dimensions, y = 4 
defines a plane normal to the y-axis and parallel to the x-z plane. 

Solution: This is a three-dimensional picture. Start with the y =x2  curve from y = 0 
up to y = 4 (and x = k2). The rotation of this part of the parabola about the y-axis 
produces a rounded cone shape (Fig. 10-1). 

Y The volume can be viewed as a collection (integral?) of 
disks of width @ and radius dictated by the radius of the 
cone. The volume of each of these disks is generically 

jr x (radius)2 x thickness . The radius of the disk is x so the 

differential volume of each disk can be written m dy . The 
sum of all these disks is an integral over y. 

Start by writing jm2dy. 

The first thing wrong with this integral is the x2 tern. I f  
the integral is over dy, we can't have x's under the integral 

sign. Replace x2 by its equivalent, y. 

'/ 
Fig. 10-1 

The next thing that needs to be added to the integral is the limits. There are none. 
Integration in the y-direction is from y = 0 to y = 4 . The curve starts at y = 0, and the 
problem gives the upper boundary as the plane y = 4 .  

n I4 

The volume integral is 

10- 2 Find the volume generated by rotating y = x2 about the y-axis and bounded by 
the plane y = 4 using the method of cylindrical shells. 

Solution: In the previous problem the volume was visualized as a stack of disks of 
thickness dy. This is the method of disks. 
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This problem prescribes using the method of cylindrical shells. Visualize a cylinder, 

and width dx. 
actually a cylindrical shell, of radius x, height the difference between y = 4 and y = x 2 

The volume of the cylindrical shell, as shown in Fig. 10- 
2, is 2n times the radius times the height of the shell 
times the thickness of the shell. The 27rtimes the radius 
effectively wraps the rectangle of height between the 
curves and width dlx around the y-axis. 

7 

The radius is x, the height of the rectangle is (4 - x2)  

(the top of the rectangle is at y = 4  and the bottom of 

the rectangle is on the y = x 2  curve), and the width is 

dx, so the differential volume is Zm(4 - x2)& . The 
sum of these cylindrical shells is an integral over x. Fig. 10-2 

Start by writing an integral: 

I 2 m ( 4  - x 2 ) &  

The integral is in x from 0 to 2 so 

A l2 

0 

Y = ~ m ( 4 - x 2 ) d l x = 2 n  ( 4 x - x  3 )u!x=Zn = 2 n [ 8 - 4 ] = 8 n  P 
10-3 Find the volume 
generated by rotating the area 

bounded by x2 + y 2  = 2 5 ,  
x = 5 ,  and y = 4  about thex- 
axis. 

Solution: Start by finding the 
area to be rotated. The line 
x =  5 and the circle intersect at 
x = 5  on the x-axis. The line 
y = 4  intersects the circle when 

y = 4  (x2 + 4 2  =25,  x2  =9, 
x = 3). The circle and the line 
y = 4 intersect at (3,4). 

Fig.  10-3 
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Visualize the volume obtained by rotating this area about the x-axis as composed of disks 
with outer radius equal to 4, inner radius on the circle, and width dx. See Fig. 10-3. The 

outer radius of the disk is 4 and the inner radius is the solution of x2 + y 2  = 25 for y 

( x2 + y 2  = 25, y = 425 - x 2  ). The differential volume of the disk is d(outer radius)2 
minus (inner times d ~ .  The integral in dx is from 3 to 5, so the volume integral 
is 

5 

V = fn[42 -(25 -x2)]cjjC =nf(16 - 25 +x2)(Ix = n f ( - 9 + x 2 ) d x = n [ - 9 x  +$] 
3 

V = n  

3 

10-4 Find the volume of cement required to build the top of a birdbath. The bottom 

of the birdbath follows the parabola y = 0. Sx2 . The inside of the birdbath follows 

y = 0.20 + 0 . 0 8 x L .  All the dimensions are in feet. The top edge of the birdbath is 
bounded by the horizontal line y = 0.4 . 

Solution: Start with the profile of the 
birdbath in x-y as shown in Fig. 10-4. 

The bottom parabola, y = 0. 1x2, starts at 
x = 0 ,  y = 0 and intersects y = 0.4 

when x = 2  (0.4=0.1x2, x 2 = 4 ,  
x = 2 ) .  

The top parabola starts at x = 0 , y = 0.2 
and intersects y = 0.4 when x = 1.6 
(0.4=0.2+0.08x2, 0.2=0.08x 2 , x=1.6).  

y = 0.4 

y = 0.2 

X 

Fig. 10-4 

Now rotate the profile around the y-axis. The volume of the birdbath is the volume inside 
the bottom parabola up to y=O.4 minus the volume inside the top parabola up to 
y = 0.4.  Figure 10-5 shows the birdbath and the disks. The volume of the disks is n 
times (radius)2 times thickness. 
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Fig, 10-5 

The volume within the bottom parabola is n(xbotto,,, ) dy = x 

.4 
The volume within the inner parabola is $, n(xinner 

Be careful of the limits! 

The volume of cement in the birdbath is the larger volume minus the smaller volume as 
shown by the disks in Fig. 10-5. The volume integral is 

0.4 

~ p . 4 ~ ~  - --p n .4 ( y  - 0.2)dy = 

0.2 
0.1 0 0.08 0.2 

n It It 
V = - (0.08)- - ([0.08 - 0.081- [0.02 - O.O4])= 0 . 8 ~  - - (0 + 0.02) 

0.1 0.08 0.08 

n 
V = 0.8n - - = n(0.8 - 0.25) = 0.5% = 1.73 f13 of cement 

4 
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Y 

Any small change in s can be viewed as a small 
change in x and a small change in y. Solve this 
equation for h 

Arc Lengths 

dx 

A small length of a curve in x-y denoted by ds can be written in terms of dx and dy using 
the Pythagorean theorem. The geometry of ds, dx, and dy with ds as a straight line 
approximating the curve is shown in Fig. 10-6. The Pythagorean relation is 

and factor out first a dx, and then a dy. 

I 

I X 

Fig. 10-6 

I 

This little exercise is sufficiently easy so that you do not have to use precious memory 
space remembering it, just work it out as needed. The total length of an arc is the integral 
between the appropriate limits of this differential statement. 

Because of the square root, and the square of the slope or inverse of the slope, the 
integrals are usually not easy. 

The curve y 2  = x 3  turns out to be one of the easier arc lengths to calculate. Form 

*Id- 
dy 3x2 9x4 9x4 -- 9x 

2ydy=3x2dX and -=- 
dx 2Y 

The general integral for arc length o f ~ s  curve is s = J , / q h ,  
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Most of the time the integrals are so dificult it is worth looking at both formulas for the 
arc length in an attempt to find the easiest integral. The other possible integral starts 
from &/@. 

--- & -  2y and [?%)2 -4y2 
dY 3x2 9x4 

The x4 term in the denominator cannot be conveniently written in terms of y without 
getting into fkactional powers so the previous integral looks at this point to be the easier. 

This type of integral will be taken up later in problem 10-8. 

Surfaces of Revolution 

Determining the surface area of non-standard shapes is another uniquely calculus 
problem. The technique for finding the surface area of a shape produced by rotating a 
curve about an axis is similar to finding volumes and additionally uses concepts from 
length of arc calculations. 

Start with a parabola, y = x2 , rotated about the 
y-axis and consider the surface of that parabola up 
to y = 4.  The curve doesn't have to be a parabola. 
A parabola is just convenient to visualize. The 
surface area is viewed as a collection of strips 
wrapped around the parabola. The area of these 
strips is 2n (radius), the length around, times the 

curve rotated about the y-axis is 2ltxd.s. Refer to 
Fig. 10-7. The total surface area is found by adding 
up, integrating, all of the 2nxds segments. 

Y 

width, ds. The differential piece of surface for a X 

Fig. 10-7 

Since the length of the strip G!S is written 2 n x ,  use the 1 + - dx form for ds. d (nl' 
2 

Startwith *=2x and 
dx 

=4x2  and ,/l+($) = d z .  
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The integral for the surface area of the parabola then is 

The integrals encountered in surface area calculations are usually worse than the ones for 
arc length. This integral is done in problem 10-9 of the next section, Techniques of 
Integration. 

Techniques o f  Integration 

In this section we show you some techniques for handling particularly difficult looking 
integrals. Along the way we will do some interesting practical problems that so far have 
been avoided because of the difficulty of integrating. These techniques of integration are 
actually general approaches that work for a variety of similarly structured problems. We 
start with the simpler and work through the more popular, or more often encountered 
techniques. 

Change of Variable The change of variable technique is  SO called the method 
of substitution. As the names imply, the approach is to define a new variable that will 
transform the integral to one that is a standard form. The procedure is to define a new 
variable, take the derivative of that new variable, and then write the integral in terms of 
the new variable and derivative. There is some skill in picking the new variable but 
sometimes you just have to try a few. The best first choice for a change of variable is to 
look for the worst looking part of the integral and make that worst looking part the new 
variable or at least incorporate it into the new variable. The best way to understand any 
of these techniques is to jump right in and start doing some problems. 

10-5 Find I x e x 2 d r .  

Solution: Make a change of variable. Let U = x 2  so that du = 2xdx. This transforms 

the integral. Replace xdx by du/2 and x2 with U. 

Remember to translate back to the original variable at the end of the problem. 
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10-6 Find I*. 

x lnx  

Solution: The worst looking part of this integral is the lnx  so make a substitution 

v = In x so that dv = - dx . This transforms the integral into a standard form. 
1 
X 

This is a bit of a strange answer, but then it was a bit of a strange integral. 

Solution: A new variable 3 - 2x would allow the 43 - 2x to be written as a power, 
and integrals of "a variable raised to a power d (variable)" are standard integrals. Let 
w z 3 - 2 ~  with hy = -2dx . The integral is transformed and solved. 

10-8 Findthearclengthbetween x = l  and x = 3  forthecurve y L  = x 3 .  

Solution: This is the curve used as the example in 
the discussion of arc lengths (previous section). A 
rough sketch of the curve is shown in Fig. 10-8. 

Taking the square root of both sides, the y 2  = x 3  

equation becomes y = x ls . This is a curve that has a 
shape somewhere between the shape of y = x ,  a 

straight line, and y = x 2 ,  a parabola. The curve 
slopes upward but not as rapidly as the quadratic. 

Y 

Fig. 10-8 

The general formula for the arc length is s = 1 ,/a& . 
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2 9x4 9x4 9x For the curve y 2  = x 3 ,  - dy =- 3 x 2  and (2) =4y2=G-Q - so the arc length 
a5 2Y 

from x = l  to x = 3  is 

The integral has been simplified to the point where a change of variable is in order. Let 
U = 4 + 9x so that du = 9& and rewrite the integral. 

S=--t[4+27]”2 1 - [4+9f/2}=-[313/2 1 -133/2]=-[172.6-46.9]=4.66 1 
27 27 27 

The limits on the integral can be confusing. The strictly correct way to evaluate the 
integral is to change the limits when the variable is changed. Looking at the definition of 
U; for x = l ,  u=4+9(1)=13, and for x = 3 ,  u=4+9(3)=31.  Using this approach, the 
integrals would read 

However you choose to do the problem, be careful of the limits. If you write x = ... or Ue U = ... in the limits you will avoid getting confused. There are enough pitfalls in 
evaluating these integrals without getting tripped up with the limits. Watch 

Out1 

10-9 Find the surface area of y = x2 rotated about the y-axis fi-om x = 0 to x = 2 . 

Solution: The surface area is the area generated by rotating the parabola about the 
y-axis up to y = 4 which corresponds to x = 2 . This is the problem used to illustrate the 
calculation of sdace  of revolution. The integral is the integral of a strip of surface area 
with length equal to the circumference, 2;rc(radius), times the differential length along 
any arc of the surface, ds. 



Figure 10-9 shows the 
y = 4  corresponding to 
differential strip of area. 
area is 
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parabola up to 
x = 2  and the plane, y = +  

The differential 7- 

I X 

uY 2 nd o f y = x  is 2x so 

A = 2 n f x 7 / a d x  Fig. 10-9 

In looking for a change of variable, look for the worst part of the integral which is the 

1 +4x2.  Let v =1 +4x2 with dv =8xdx. Replace 1 + 4x2 with v and x& with &/8. 
Changethelimits. When x = O ,  v=l,andwhen x = 2 ,  v=17. 

10-10 Find 

Solution: The 

I tan(3x - 2)dx . 

worst part of this integral is the 3x - 2 so let w = 3x - 2 and mY = 3dx. 
The integral transforms to a standard integral. 

1 1 1 
tan(% - 2)dx = -1 tan wh.V =  C COS W )  = -- ~ [ c o S ( ~ X  - 2)] 

3 3 3 

10-1 1 The price of a product varies with supply and demand in such a way that 

- = k(5 - 2 p ) .  Find the price as a function of time and graph the price versus time. 

The price is $4.50 when t = 0 ,  and $4.00 when t = 2 . The t is in years. 

dP 
dt 
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Solution: The first step in solving for p(t)  is to write the rate statement in a form that 
can be integrated. 

Deal with this integral in p as a separate exercise. Make a substitution for 5 - 2 p  by 
letting z = 5 - 2 p  so dz = -247 and the integral becomes 

With this little side calculation and remembering that integrating -- J 5 :p - lkdl 
produces a constant of integration, the integration produces 

1 
2 

- -h(5 - 2p)  = kt + C 

Rearranging for convenience in writing as an exponent ln(5-2p)=-2&-2C and 
Writing as an exponential (This is the only way to get an equation that reads p = . . .) we 

get 

5 - 2 p  = ,-2kt-2C - - e-2kte-2C 

The constant of integration can be carried as 
long as you like but defining a new constant 

at this point looks convenient. Make e-2c 
equal to 2 0 .  

- 2 p  = -5 + 2De-2kt 

p = 2.5 - De-zkt 

Now apply the condition that p = 4.5 at t = 0 .  

4.5=2.5-D(1) and - D = 2  SO 

p = 2.5 + 2e-2k' 
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The second condition that p = 4 when t = 2 will define the constant k. 

4 = 2.5 + 2e4', 1.5 = 2e4', 0.75 = eAk 

Switch to logarithms: 
1 
4 

- 4k 4110.75, k = --ln 0.75 = 0.072, and 2k = 0.144 

-0,144t p = 2.5 + 2e 
Finally, 

= 2.5 + 2e~.144t 

Now graph the function. At t = 0, p = 4.5 as 2.5 
given in the problem. As time goes on, the 

term gets smaller and smaller and as 144t 

t + m ,  p j 2 . 5 .  The line p=2.5  is an t 

Fig. 10-10 asymptote. The curve is shown in Fig. 10- 10. 

Trigonometric Integrals There are a large, large number of trigonometric 
integrals. Some are relatively easy. Most are relatively difficult. Solving trigonometric 
integrals involves changes of variables and using trigonometric identities and a good bit 
of ingenuity, imagination some might call it. The following several problems 
demonstrate the more popular techniques (did someone say tricks?) for solving 
trigonometric integrals. 

10-12 Find jsin2 xcosxdx. 

Solution: Recognizing that cosx is the derivative of sin x suggests a change of 
variable might make this integral into a standard form. Take U = sin x and du = cosxdx . 
Making these substitutions 
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10- 1 3 Find J(sin x)(c0s3 x)dx  . 

Solution: This problem is a little harder than the previous one. If we let v = sin x and 
dv = cos xdx , the integral becomes 

which doesn't seem to be much of an improvement. 

sin2 x + cos2 x = 1, cos2 x = 1 - sin2 x and the integral becomes 

However, using the identity 

Jv3(1 -v2)dv=I (v3  -v5 )dv=- - - -  v 4  v6 v 4  2 i 2 ) -  -- x(l  -- 2si3'x) 
4 6 4  

10-14 Find 14&(c0s3 x)dx. 

Solution: Use the identity sin x + cos2 x = 1 to replace cos2 x so the integral now 
reads 

jJSinx(1- sin2 x)cosxdx 

Now make a change of variable. Let w = sin x and dw = cosxdx so that the integral now 
reads 

All trigonometric integrals are not this easy. Though there are some patterns to doing 
trigonometric integrals, as demonstrated in the previous problems, trigonometric integrals 
can be some of the most difficult you will encounter. Fortunately there are tables of 
trigonometric integrals that will help you out of most problems. 
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IntegfatiOn by Parts Integration by parts is somewhat similar to the method 
of substitution in that the correct association will make a difficult integral into a not so 
difficult integral. The fomula for integration by parts, which we will not derive or even 
justi@, is found in the Mathematical Tables. 

Iudv = uv - Jvdu Remember 

The key to successfid application of this rule is the correct initial choice of U and dv. 
Sometimes you have to try more than one combination to get one to work well. The 
purpose of the choice is to make the integral on the right side easier and not harder than 
the one you started with. The best way to learn this is to go directly to some problems 
and see how it is done. 

10-15 Find I x e x d r .  

Solution: Fit the integral to the pattern Iudv = uv - Ivdu . 

A good first identification is to take ex& as dv, and x as U. If this identification is made 

then du = dx and I e x h  =I& makes ex = v .  Follow the pattern and write 

. . 

J’x(eXa!x) = xex - J’eXh 

meintegral j’eXm is ex so 

j’xexdx = xex - e x  = ex(x - I) 

10- 16 Find I x 2 e x d x  by integration by parts. 

Solution: The form of integration by parts is ju (dv)  = uv - j v d u .  

Take U = x 2  and dv = ex& . From these identifications du = 2x& and Idv = l e X d x  

makes v = e x .  Write the original integral as an integration by parts. 

J’x2eX& = x2ex - 2J’xexcix 
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The lxe*drx can itself be integrated by parts as was done in the previous problem. Use 

the result of problem 10- 16 to write 

Jx2eXcix = x 2 e x  - 2(xeX - e x )  = x 2 e x  - 2xeX + 2eX = e X ( x 2  - 2 x  + 2 )  

This problem is an excellent example of the multiple uses of integration by parts. 
Multiple integrations by parts is typical of complex exponential and trigonometric 
integrals. 

10- 17 The income for a certain company is a combination of steady growth and a 
cyclic component with the income following S = 2t + t s in (n t l2 )  where S is in tens of 
thousands of dollars per month and t is a quarter of a year ( t = 1 corresponds to 3 months, 
or one-quarter). The income for any period is the integral of this income per month 
function over that period. Find the income for the next 3 quarters. 

Solution: The income for 3 quarters is the integral of S over t fiom t = O to t = 3 .  

2 t=3 (3 1t=0(3sh(3d(3 3 3 

0 
s = &[2z + 3 t  sin(nz/2)]dr = 21 tdz + - 

Take the first integral as S1 and the second integral as S2 . 

The fEst integral S,  =y = 9 and means that $90,000 in income was received in the 
L 

It=O 

3 quarters (S is in tens of thousands of dollars). 

Make a change of variabIe in the second equation. Let y = n t / 2  so dy = d ( n t / 2 ) .  The 
new limits are: for t = 0, y = 0 and for t = 3,  y = 3n/2 . The second integral now reads 

The integration is performed by parts. 

judv = uv - jvdu 
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Let u = y  and dv=sinydy producing du=dy and Jdv=Isinydy or v=-cosy. 

2 
8, = ( ;)2 [- Y COSY - j ( - c o s y ) d y ~  = 3 ~  12 = (21 [- y cosy + sin yKzo = 3 ~ / 2  

y=o n 

The sinO=O and (O)cosO=O so the 
second bracket is zero. 

37r 37r 
The cos7=0 and sin7=-1 sothis 

L L 

integral is 

f 9 \ 2  

S2 = [I ,J (-1) = -(;J = -0.40 

This means a loss due to this cyclic component of $4000. 

The total income over the 3 quarters is $90,000 minus $4000 or $84,000. 

Partial Fractions A single complicated fraction can often be written as two 
fractions, each of which is less complicated than the original. The fraction 

x 2  +2x+1  x 2  2x 1 1 2 1  
canbewrittenas ?+?+- oras -+-+- 

X 3 x x x  3 x x2 x 3 ’  

If you needed to integrate this fraction it would be much easier to integrate three simpler 
fractions, than the more complicated single fraction. Making multiple simpler fi-actions 
from a single fi-action is a logical process that is best learned by worlung an example. 

To use partial fiactions the denominator has to be factorable and the numerator has to be 
one degree less than the denominator. Watch 

Out1 
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in partial fractions. 
2 10-18 write 

x2  - x - 2  

Solution: The denominator of the fi-action can be factored indicating that 

the fi-action can be written as something over the first factor and something else over the 
second factor. Set up two fiactions with undetermined numerators and equal to the 
original fraction. 

A B 

( x  - 2)(x + 1) 

--+- - 2 
( x -2 ) (x+l )  x - 2  x + l  

As with most equations involving fractions multiply both sides by the common 
denominator to clear the fiactions. 

2 = A(x + 1) -+ B(x - 2) = AX + A + BX - 2B = ( A  + B)x + ( A  - 2B) 

Equating the constants and the coefficients of x produces two identities: A + B = 0 and 
A - 2B = 2 . This is sufficient information to determine A and B. Subtract the second 
identity fiom the first [ ( ( A +  B=O)-(A-2B=2)]  to eliminate A. Now 3B=-2 or 
B=-2/3.  If B=-2/3,  then A=2/3 ( A + B = O )  and the original fi-action is now 
written as 

- 213 213 ---- 2 
( x  - 2)(x + 1) x - 2) ( x  + 1) 

3x2 +7x-4  
by partial fi-actions. I x 3 - 4 x  

10- 19 Integrate 

Solution: First write the fraction in terms of partial fractions. The denominator is 
factorable so write 

3x2+7x-4  A B C 
x(x+2)(x-2)  x x + 2  x - 2  

-- - +-+- 

Multiply by the common denominator. 

3x2 + 7x  - 4 = A(x2 - 4)  + B(x2 - 2 ~ )  + C(x2 + 2 ~ )  = ( A  + B + C)x2 + (-2B + 2C)x + (-4A) 
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A + B + C = 3  

Write the identities - 2B + 2C = 7 
B + C = 2  

. With A = 1 ,  
- 2B + 2C = 7 

- 4A =-4 

Multiply the frrst equation by 2 and add the equations to eliminate B so 4 C = l l  or 
C=11/4. Substitute in B + C = 2  so B=2-11/4=8/4-11/4=-3/4. The fraction 
now is written as 

3x2 + 7 x - 4  1 314 1114 +- - _--- 
x3-44x x x + 2  x - 2  

The integral now reads 

J 3 x ' t 7 x - 4 _ 1 :  - -&-- 3 J  - 1 dx+- "1 - dx 
x3 -4x 4 x + 2  4 x - 2  

The integral f-!-dx is a logat-ihmc derivative. Replace x - a with U and du = dx 
x - a  

so J---!--dx is in the form . The three integrals can now be written easily. 
x - a  

3x2 + 7 x - 4  3 1 1  
= l n x  - - ln (x  + 2) + - h ( x  - 2) 5 x3  -4x 4 4 

Integrals from Tables 
One of the best techniques of 
integration is to use the table of 
integrals found in most texts. A 
table of integrals is found in the 
Mathematical Tables included at the 
back of this book. 

Some instructors do not allow the 
use of tables on tests. We do not 
share that view. Why take up 
precious memory space with 
formulas that are available in an 
inexpensive mathematical table? Regardless of your instructor, you will eventually want 
to use tables, and these examples will give you an introduction to the process. Most 
tables are organized by categories: trigonometric, logarithmic, exponential, or those 
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containing quadratic equations or fractions or whatever. The examples we have chosen 
are, hopefizlly, appropriate for what you will encounter. 

Solution: An integral in this form is in the tables. It reads 

Make the identification that x = U and a = 2 and write down the integral. 

dj, 

x(l+2x) * 

10-21 F i n d 1  

Solution: An integral in this form is in the tables. It reads 

Make the identification that x = U , a = 1 , and b = 2 and write down the integral. 

Using the tables is this easy. Go slowly and make sure you are identified with the correct 
integral and make the substitutions. Remember that some tables include the constant of 
integration and some do not. If you are working an indefinite integral be sure to include 
the constant in any calculation. 
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Approximate Methods When all else fails, use numeric integration! For the 
definite integral 

y = &ome impossible to integrate function of x)dx 

the area under the curve of y versus x from a to b is the value of the integral. 

There are several different approximation methods. The general approach to numerical 
integration will be illustrated by a relatively simple one, the trapezoid rule or method. 
As the name implies the area to be determined is divided up into trapezoids. Consider the 
area under some general curve as shown in Fig. 10-1 1. Divide the region within the 
limits into several narrow regions bounded by the vertical lines at xo , xl, x2 . . . with a 
fixed width Ax between each line. Corresponding to each of the xo, x1 , x2 . . . values is a 
value of the hc t ion  fo, fi , f2 , .. . . The first two regions are shown in exploded view 
and better illustrate that the curve is approximated by a straight line creating a collection 
of trapezoids. 

X 
xo x1 x2 x3 

Fig. 10-11 

The area of the first region is the large rectangle with dimensions Ax and f o  plus the 
small rectangle on top of it with base h and height fi - fo . 

1 
The area ofthe first region is A, = foAx + ,Ir, - f o  & . 

1 
The area of the second region is A, = fi Ax + 5 k2 - fi 
By analogy the next region is A, = f2b + ,b3 - f 2  & . 

. 

1 
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The total area taken over all the intervals is the sum of these individual areas. 

A = A o  +A1 +A2 +... 

Multiplying and collecting terms, we calculate 

Certain of these tenns combine and the pattern that emerges is 

Ax 
2 

Continuing the pattern, the last area, call it n, has an associated term f n  - . 

Another way of writing the area sum is 

The f o  term is the left-most limit and the f n  term is the right-most limit. The width of 
each individual region, Ax , is the extent of the limits (b  - a) divided by n, the number of 
intervals. 

Apply this technique to a simple and then a not so simple problem. 

10-22 Find the value of the definite integral of the curve y 2  = x3.4 from x = 0 to 
x = 2 using the trapezoidal rule for the area under the curve. 

Solution: Take the square root of both sides of the equation to find y as a hc t ion  of x: 

y = xl.’ . This curve is something less than a quadratic. The integral to be evaluated is 

~ x l . ’ d x  and it is the area under y=x’. ’  fiom x=O to x =  2 .  A rough sketch of the 

curve is shown in Fig. 10-12. 
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Y 

3.2 

Ax 
2 

Use 10 intervals so that Ax = 0.20 and - = 0.10. 

Following the trapezoidal rule for area we write 

Ax 
2 A = -kO 2f0 .2  2 f 0 . 4  + * * * + 2fl.8 + f 2 . 0  1 

Adding the numbers 
Fig. 10-12 

A = 0.10[0+0.13+0.42+0.84+1.37+2+2.73+3.54+4.45+5.43+3.25]= 2.42 

2 
Check this answer by performing the integral and evaluating ~ ' . ~ d x .  

10-23 Evaluate l d s d r  using the trapezoidal 
I 

rule with 4 intervals. 1 

Solution: In the range between x =  0 and x = 1  , the 

function I/= goes fiom 1 to 0. A detailed curve is 
not necessary to the calculation. However, a rough 

X sketch is shown in Fig. 10-13. Four intervals means 1 
Fig. 10-13 that Ax = 0.25 and using the formula for the trapezoidal 

rule 

0.25 
2 

A = -[I + 2.00 + 1.97 + 1.75 + 01 = 0.84 

10-24 Suppose that $2000 is invested in a find at the beginning of each of 10 years 
and that the average rate of return is 20% per year. What is the total value of this fund at 
the end of the 10 years? 

Solution: Visualize the process with the aid of the time line. The first $2000 grows 

compounded at 20% for 10 years so this is 2000e 0.20(10) 
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Refer to problem 9-7 for a discussion of the effective rate for continuous compounding. 
Use the continuous compounding as an approximation, because the $2000 is deposited at 
the beginning of each interval rather than in small increments throughout the interval. 

0 1  2 3 4 5  6 7 8 9 1 0  

-+ 2000e 0.20(9) 

The first $2000 grows compounded at 20% for 10 years to an amount 2000e 0.20(10) 

The second $2000 grows compounded at 20% for 9 years to an amount 2000e 0.20(9) 

The third $2000 grows compounded at 20% for 8 years to an amount 2000e0.20(8) . 

And so on through the 10 deposits. 

The general expression for the terms is ~ o o o ~ ~ . ~ ~ ( ' ~ - ~ )  where t goes from 0 to 9. The 
total amount at the end of the 10 years is $2000 times the 10 years plus the interest earned 
on the different intervals. This can be expressed as a sum: 

n=O 

n=10 

This is the notation for adding, or summing, all the exponents. If the funds were 

deposited continuously and the compounding was continuous, then this sum would be an 
integral. Many programs for placing f h d s  in a compounding account are monthly 
throughout the year rather than once at the beginning of the year, making those programs 
closer to the continuous model. For tlus case the integral is an approximation! h 
mathematical language, the h d s  being deposited continuously means that the interval 
goes to zero, or n, the number of intervals, goes to infinity. In symbolic language we 
write 

n=O 
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The exponent can be reworked to e 0.20(10-r) = e2e-0.20s so the integral for the total 
amount is 

Make a change of variable and integrate. 

This number is lower than the actual amount if the h d s  were deposited at the beginning 
of each year. If the h d s  were placed continuously throughout the year then this number 
is correct. Programs for making calculations similar to this one are usually found in 
financial calculators. If you have one, check this answer with the answer from your 
calculator. Your calculator uses a calculating algorithm similar, if not identical, to the 
summation notation used earlier in the problem. 
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Perimeter 

Geometry 

Area Volume 

r is radius, h is height, a and b are sides 

square side a 

rectangle sides a and b 

2 4a a 

2a +2b ab 

circle radius r 2 z r  nr2 

4zr2 + 2nrh (4 J 3 ) m  

2nr2 n r 2 h  

cone r and h ( z / 3 ) r  h 

Algebra 

Any quadratic equation of the form 
-bkdb2  -4ac 

2a 
ax2 +bx+c = 0 has solution x = 

Factorials O!= l, l!= 1, 2' = 24!= 2.1, 3!= 3.2!= 3-24 ,  etc. 

an na"-'b n(n-l)anP2b2 
O! I! 2! 

Binomial expansion (a + b)  = - + - + +... forb2 < a 2 .  

181 
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parabola 

circle 

ellipse 

hyperbola 

Opposite - b sine= -- 
Hypotenuse c 

Adjacent - a cos8 = -- 
Hypotenuse c 
Opposite - b me= -- 
Adjacent a 

1 
cosec0 = ~ 

sin e 

Conics 

2 y=ax +bx+c 

x 2  + y 2  = r 2  

2 x 2  y 2  ax + b y 2 = c 2  or -+-=1 
a2 b2 

3 3 

Trigonometry 

Adjacent (a) 

C - a b 
Law of sines - = - - - 

sinA sinB sine 

Lawofcosines c2  = a 2  + b 2  -2abcosC 

360' = 27r radians 
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Trigonometric Functions 

e 

Trigonometric fdent it ies 

~ i n ~ 8 + ~ 0 ~ ~ 8 = 1  a2 +b2 = c 2  

sm8 = C O S ( ~ O ~  -8) case = sin(9o0 -8) tan8 = cot(9o0 -e) 

sin@ k f l )  = sin a cosp kcosa sin p coqa +p) = COsa cos p T sin a sin p 

2 2 tana*tanp 
sin2a=2sinacosa cos2a=cos a-sin a tan(a-+p)= 

1 T tan a tan p 
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Exponents and Logarithms 

log, U + log, v = log(uv) 

Differential 

d(ax) =a& 

d(u + v )  = du + dv 

d(uv) = U&+ vdu 

de" =ex& 

1 
d h x = - &  

x 

d sin x = cos xdx 

dtanx=sec2 xdx 

d secx = tan xsecxdx 

and Integral Formulas 

f ( d u + d v ) = u + v  

dx 
xn+l 

JX"& =- 
n + l  

JeX& = ex 

p n  xdx = x In x --x 

Isin xdx =-cos 

jcos-x& =sin x 

J tan x& = - ln(c0s x) 

sec = h(sec x + tan x) 

dcotx=-csc2 x& 

J csc xdx = ln(csc x - cot x> 

jcotx&=ln(sinx) 
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Integral Formulas 

dx 
= In(cscx-cot x )  

Jxsinxdx=sinx-xcosx 

Jx cosxdx = cos x + x sin x 

X L  X L  

2 4 
I x  In xdx = -hx -- 

em 
Cemdx = - 
J a 

except n = -1 
(a + bx)”+’ 

(n  + 1)b 
I ( a  + bx)”C;tr = 

d x 1  
s+bx b 

= - In(a + bx) 
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xdx 1 - = -[a + bx - a ln(a + b x ) ]  
a+bx  b2 

2(2a - 3bxd(a  + b ~ ) ~  

15b2 
j X J X & = -  
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Acceleration, 37,79 
Angle: 

definition of, 5 
indegrees, 5,182 
in radians, 5,182 

Antiderivative, 75 
Approximation: 

area, 86, 175 
interest, 177 
trapemidal rule, 86, 175 

Arc length, 160 
Area: 

between curves, 9 1,100,129 
formulas, 181 
under a curve, 84 

Asymptotes, 19,29,52,167 
Average value of a function, 97, 128 

B 

Binomial expansion, 4,18 1 

C 

Chain rule, 42 
Change of variable, 4 1 
Circle, 15 
Completing the square, 2, 14 
Compound interest, 136,177 
Concavity, 48 
Congruent triangles, 1 10 
conics: 

formulas, 182 
graphLng7 11 

Constant of integration, 78 
Continuous compoundmg, 178 
Coordinate systems, 6 
Cosine: 

definition, 105 
function, 48 
law of, 114 

Cubic equation, 3 
Curve sketching, 45 

Definite integral, 84 
Degree of a polynomial, 2 
Derivative, 

definition, 34 
notation, 34 
of a product, 38 
of a quotient, 39 
power rule, 34 

definition, 34 
formula, 184 
rules, 34,38,39 

Discontinuity, 32 
Disks, method of, 156 
Doubling time, 142 

Differential: 

E 

e, the number, 134 
Ellipse, 17 
Equilateral triangles, 1 10 
Exponential function, 133 
Exponential equation, 134 
Exponential derivative, 184 
Exponent laws, 8,132,184 
Exponential: 

decay, 145 
growth, 142 

F 

Factorial, 4 
Facbring, 2 
First derivative, 48 
Function: 

continuous, 3 1 
definition of, 10 
exponential, 133 
implicit, 40 
logarithrmc, 138 
polynomial, 27 
trigonometric, 183 

Geometric formulas, 18 1 
Graphing, 45 

H 

Half-Life, 133 
Horizontal asymptote, 30,150,153 
Hyperbola, 19 

I 

Implicit differential, 40 
Indefinite integral, 76 
Integral: 

definite, 84 
exponential, 84 
formulas, 185 
indefinite, 76 
powers, 77 
tables of, 173, 184 
trigonometric, 167 

Integration: 
of exponentials, 135 
oflogarithms, 149 
numerical, 175 
by parts, 169 
by substitution, 162 
by trapezoidal rule, 175 

compound, 136,177 
continuous, 178 

Isosceles triangles, 1 10 

Interest: 

J 

K 

187 
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L 

Law of cosines, 114 
Law of exponents, 132,189 
Law of sines, 116 
Law of supply and demand, 165 
Learningcurve, 151 
Length of arc, 160 
Limit, 27,3 1 
Limits of integration, 84 
Line: 

equation for, 10 
intmcepts, 10 
slope, 10 

Linear equation, 10 

Logarithm: 
Linear function, 10 

defmitions, 138,184 
derivative, 82,139,184 
graph of, 150 
integral of, 184 
laws, 8, 139, 184 
natural, 144 

M 

Maximum,57 
Methd 

of disks, 156 
of shells, 157 

Minimq57 
Motion, 79 

N 

Natural logarithm, 
definition, 149 
derivative, 139 

integral, 149 
graph, 150 

Newton's law of cooling, 146 
Numerical integration, 175 

0 

P 

Parabola, 11 
Partial fractions, 17 1 
Perimeter formulas, 18 1 
Phase, 24 
Polynomials, 27 

Power rule: 
for differentiation, 34 
for integration, 77 

Product rule, 38 
Pythagoreantheorem, 15,108 

Q 

Quadratic: 
completing the square, 2 
equation, 1 , l l  
formula, 2 

Quotient rule, 39 

U 

V 

Variable, change of, 162 
Velocity, 36,79 
Volumes: 

bydisks, 156 
byshells, 157 
formulas, 181 

W 

X 
R 

Y 
Radian., 111 
Rational function, 134 
Related rates, 65 

S 

Second derivative, 37,48 
Second derivative test, 37 
Separation of variables, 80 
Shells, method o& 157 
similar triangles, 110 
Sine: 

definition, 105 
hction, 1 17 
law of, 116 

Slop, 33 
Substitution method, 162 
Sums, 175 
Summation notation, 86 
Surfaoe: 

area, 181 
of revolution, 16 1 

T 

Tangent: 
def~tion, 105 
fimction, 118 

Trapemidal rule, 86,175 
Trigonometric : 

defmitions,105, 182 
differentiation of, 122 
equations, 124 
functions, 183 
identities, 1 19,183 
integration of, 126 
tables, 182 
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