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A SPECIAL MESSAGE TO THE
UTTERLY CONFUSED CALCULUS STUDENT

Our message to the utterly confused calculus student is very simple: You don't have to be
confused anymore.

We were once confused calculus students. We aren't confused anymore. We have taught
many utterly confused calculus students both in formal class settings and one-on-one.
They aren't confused anymore. All this experience has taught us what causes utter
confusion in calculus and how to eliminate that confusion. The topics we discuss here are
aimed right at the heart of those topics that we know cause the most trouble. Follow us
through this book, and you won't be confused anymore either.

Anyone who has taught calculus will tell you that there are two problem areas that prevent
students from leaming the subject. The first problem is a lack of algebra skills.
Sometimes it's not a lack of algebra skills but a lack of confidence in applying recently
learned algebra skills. We attack this problem two ways. One of the largest chapters in
this book is the one devoted to a review of the algebra skills you need to be successful in
working calculus problems. Don't pass by this chapter. Spend time there and refer back
to is as needed. There are insights for even those who consider themselves good at
algebra. When we do a problem we take you through the steps, the calculus steps and all
those pesky little algebra steps, tricks some might call them. When we present a problem
it is a complete presentation. Not only do we do the problem completely but also we
explain along the way why things are done a certain way.

The second problem of the utterly confused calculus student is the inability to set up the
problems. In most problems the calculus is easy, the algebra possibly tedious, but writing
the problem in mathematical statements the most difficult step of all. Translating a word
problem into a math problem (words to equation) is not easy. We spend time in the
problems showing you how to make word sentences into mathematical equations. Where
there are patterns to problems we point them out so when you see similar problems, on
tests perhaps, you will remember how to do them.

To aid you in referring back to important parts of the book we use a collection of icons as
described on the next page.

Our message to utterly confused calculus students is simple. You don't have to be
confused anymore. We have been there, done that, know what it takes to remove the
confusion, and have written it all down for you.



Watch
Outl

Pattern

Speed

Icons

This icon highlights things you should memorize. Right before a test, go
over these items to keep them fresh in your mind.

This icon appears next to the "deeper” insights into a problem. If you
have trouble understanding the details of why a problem makes physical
sense, then this is the icon to follow.

This icon highlights trouble spots and common traps that students
encounter. If you are worried about making frustrating little mistakes or
feel you are loosing points on tests due to missing little "tricks” then this
is the icon to follow.

The intention of this icon is to help you identify a pattern of solving one
problem that works for a general category of problems. In many cases
the pattern is reviewed in a step by step summary along with examples of
similar problems.

Items next to this icon can be skipped if you are really struggling. On a
second pass through the book, or for the more advanced student, this icon
is intended to show a few extra tricks that will allow you to do problems
faster. These items are included since speed is many times important to
success on calculus tests.



How To Study Calculus

Calculus courses are different from most courses in other disciplines. One big difference
is in testing. There is very little writing for a calculus tests. There is a lot of
mathematical manipulation.

In many disciplines you learn the material by reading and listening and demonstrate
mastery of that material by writing about it. In mathematics there is some reading, and
some listening, but demonstrating mastery of the material is by doing problems.

Another example of the difference between leaming and demonstrating mastery of a
subject is history. There is a great deal of reading in a history course, but mastery of the
material is demonstrated by writing about history. If you are not already doing this you
can improve your grades on history exams by practicing writing the answers to questions
you expect to encounter on those exams. Guess the questions on the test, practice writing
~ answers to those questions and watch your grades go up and your study time go down in
your history course or any other read-to-learn, write-to-demonstrate-mastery course.

In your calculus course practicing working potential problems as test preparation is even
more important than practicing writing the answers to potential questions in a history
course. Writing is more familiar to most people than performing mathematical
manipulations. You can almost always say something about a topic, but it is not at all
unusual to have no clue as to how to start a calculus problem. Practicing writing for a
history test will improve your grades. Practicing problems, not just reading them but
actually writing them down, may be the only way for you to achieve the most modest of
success on a calculus test.

To succeed on your calculus tests you need to do three things, PROBLEMS,
PROBLEMS and PROBLEMS. Practice doing problems typical of what you expect on
the exam and you will do well on that exam. This book contains explanations of how to
do many problems that we have found to be the most confusing to our students.
Understanding these problems will help you to understand calculus and do well on the
exams.

General guidelines for effective calculus study

1. If at all possible avoid last minute cramming. It is inefficient.

2. Concentrate your time on your best estimate of those problems that are going to be on
the tests.

3. Review your lecture notes regularly, not just before the test.



Keep up. Do the homework regularly. Watching your instructor do a problem that
you have not even attempted is not efficient.

Taking a course is not a spectator event. Try the problems, get confused if that's
what it takes, but don't expect to absorb calculus. What you absorb doesn't matter on
the test. It is what comes off the end of your pencil that counts.

Consider starting an informal study group. Pick people to study with who study and

don't whine. When you study with someone agree to stick to the topic and help one
other.

Preparing for Tests

Expect problems similar to the ones done in class. Practice doing them. Don't just
read the solutions.

Look for modifications of problems discussed in class.
If old tests are available, work the problems.

Make sure there are no little mathematical "tricks” that will cause you problems on
the test.

Test Taking Strategies

Avoid prolonged contact with fellow students just before the test. The nervous
tension, frustration and defeatism expressed by fellow students are not for you.

Decide whether to do the problems in order or look over the entire test and do the
easiest first. This s a personal preference. Do what works best for you.

Know where you are time wise during the test.
Do the problems as neatly as you can.

Ask yourself if an answer is reasonable. If a return on investment answer is 0.03%, it
1s probably wrong.



PREFACE

The purpose of this book is to present basic calculus concepts and show you how to do
the problems. The emphasis is on problems with the concepts developed within the
context of the problems. In this way the development of the calculus comes about as a
means of solving problems. Another advantage of this approach is that performance in a
calculus course is measured by your ability to do problems. We emphasize problems.

This book is intended as a supplement in your formal study and application of calculus. It
is not intended to be a complete coverage of all the topics you may encounter in your
calculus course. We have identified those topics that cause the most confusion among
students and have concentrated on those topics. Skill development in translating words to
equations and attention to algebraic manipulation are emphasized.

This book is intended for the non-engineering calculus student. Those studying calculus
for scientists and engineers may also benefitr from this book Concepts are discussed but
the main thrust of the book is to show you how to solve applied problems. We have used
problems from business, medicine, finance, economics, chemistry, sociology, physics,
and health and environmentsl sciences. All the problems are at a level understandable to
those in different disciplines.

This book should also serve as a reference to those already working in the various
disciplines where calculus is employed. If you encounter calculus occasionally and need a
simple reference that will explain how problems are done this book should be a help to
you.

It is the sincere desire of the authors that this book help you to better understand calculus
concepts and be able to work the associated problems. We would like to thank the many
students who have contributed to this work, many of whom started out uttrerly confused,
by offered suggestions for improvements. Also the fine staff at McGraw-Hill, especially
our editor, Barbara Gilson, have contributed greatly to the clarity of presentation. It has
been a pleasure to work with them.

Robert M. Oman
St. Petersburg, Florida

Daniel M. Oman
Orlando, Florida
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MATHEMATICAL BACKGROUND

The purpose of this chapter is to provide you with a review and reference for the
mathematical techniques you will need in your calculus course. Some topics may be
familiar to you while others may not. Depending on the mathematical level of your
course, some topics may not be of interest to you.

Each topic is covered in sufficient depth to allow you to perform the mathematical
manipulations necessary for a particular problem without getting bogged down in lengthy
derivations. The explanations are, of necessity, brief. If you are totally unfamiliar with a
topic it may be necessary for you to consult an algebra or calculus text for a more
thorough explanation.

The most efficient use of this chapter is for you to do a brief review of the chapter,
spending time on those sections that are unfamiliar to you and that you know you will
need in your course, then refer to specific topics as they are encountered in the solution to

problems. With this reference you should be able to perform all the mathematical
operations necessary to complete the problems in your calculus course.

Solving Equations

The simplest equations to solve are the linear equations of the form ax +b =0, which
have as their solution x = —b/a. The next most complicated equations are the quadratics.
The simplest quadratic is the type that can be solved by taking square roots directly.

1-1 solveforx:4x?=36

Solution: Divide by 4, then take the square root of both sides.

—_=T = x!=9 = x=43
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Both plus and minus values are legitimate solutions. The reality of the problem producing
the equation may dictate that one of the solutions be discarded.

The next complication in quadratic equations is the factorable equation.
1-2 Solve x*—x-6=0 by factoring.
Solution: x’—x-6=0 = (x=-3)x+2)=0  The solutions, the values of x

that make each parentheses equal to zero, and satisfy the factored equation, are x =3 and
x=-2.

If the quadratic cannot be solved by factoring, the most convenient solution is by
quadratic formula, a general formula for solution of any quadratic equation in the form

ax* +bx +c=0. The solution according to the quadratic formula is

—b+vb* —4dac

2a

X =

The problems in your course should rarely produce square roots of negative numbers. If
your solution to a quadratic produces any square roots of negative numbers, you are
probably doing something wrong in the problem.

1-3 Solve x* —5x+3=0 by using the quadratic formula.

Solution: Substitute the constants into the formula and perform the operations. Writing

ad +bx +c=0 above the equation you are solving helps in identifying the constants and
keeping track of the algebraic signs.

_ —b+ Vb2 —4dac _5+25-43) _ 52413
2

=430, 0.70
2a 2(1)

X

The quadratic formula comes from a generalized solution to quadratics known as
"completing the square.” Completing the square is rarely used in solving quadratics. The
formula is much easier. It is, however, used in certain calculus problems, so we will give
an explanation of the technique here. A completing the square approach is also used in
graphing certain functions.
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The basic procedure for solving by completing the square is to make the equation a
perfect square, much as was done with the simple example 4x® =36. Work with the x°
and x coefficients so as to make a perfect square of both sides of the equation and then
solve by direct square root. This is best seen by example. Look first at the equation

x?+6x+5=0, which can be factored and has solutions of -5 and —1, to see how
completing the square produces these solutions.

1-4 soive x> +6x+5=0 by completing the square.

Solution: The equation can be made into a perfect square by adding 4 to both sides of
the equation to read x? +6x+9=4 or (x+3)* =4 which, upon direct square root, yields
x +3 =22, producing solutions —5 and —1.

As you can imagine the right combination of coefficients of x> and x can make the
problem awkward. Most calculus problems involving completing the square are not
especially difficult. The general procedure for completing the square is the following:

e If necessary, divide to make the coefficient of the x2
term equal to 1.

e Move the constant term to the right side of the equation.
Take 1/2 of the x coefficient, square it, and add to both
sides of the equation. This makes the left side a perfect
square and the right side a number.

e Write the left side as a perfect square and take the square
root of both sides for the solution.

1-5 Solve x? +4x +1=0 by completing the square.

Solution: Move the 1 to the right side: x> +4x =~1

Add 1/2 of 4 (the coefficient of x) squared to both sides: X +4x+4=4-1
The left side is a perfect square and the right side a number: (x + 2)2 =3
Take square roots for the solutions: x+2 = :tw,/g or x=-2+ \B, -2- J§

Certain cubic equations such as x> =8 can be solved directly producing the single answer
x=2. Cubic equations with quadratic (x?) and linear (x) terms can be solved by
factoring (if possible) or approximated using graphical techniques. Calculus will allow
you to apply graphical techniques to solving cubics.

Pattern
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Binomial Expansions

Squaring (a + b) is done so often that most would immediately write a* +2ab+ b
Cubing (a +5) is not so familiar but easily accomplished by multiplying (a2 +2ab+b%)
by (a +b) to obtain a® +3a%h +3ab’ +b°.

There is a simple procedure for finding the n” power of (a+b). Envision a string of
(a +b)s multiplied together, (a+5)". Notice that the first term has coefficient 1 with a
raised to the n” power, and the last term has coefficient 1 with b raised to the n”* power.
The terms in between contain a to progressively decreasing powers, n,n—-1,n-2, . .

and b to progressively increasing powers. The coefficients can be obtained from an array
of numbers or more conveniently from the binomial expansion or binomial theorem

n -1 _ n-2;32

(a+b),,=a_+na” b+n(n Da" b
0! 1! 2!

The factorial notation may be new to you. The definitions are

0l=1, 1'=1, 2!=2-1, 31=3-2-1, etc.

)

As an exercise use the binomial expansion formula to verify (a + b)°.

Trigonometry

The trigonometric relations can be defined in terms of right angle trigonometry or through
their functions. The basic trigonometric relations, as they relate to right triangles, are
shown in the box below.

BASIC TRIGONOMETRIC FUNCTIONS

’ opposite (h) hypotenuse (c)
sing =b/c side from angle
B

cos § =a’c
adjacent (a)

tan § = b/a side to angle

Graphs of the trigonometric relations are shown in Fig. 1-1.
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sin &
tan ¢
2z
ﬂ\—/g
T 27
1 i
1 1
¢ cos@
W 0
Fig. 1-1

The tangent function is also defined in terms of sine and cosine: tan @ = sin&/cosé

Angles are measured in radians and degrees.

Radian measure is a pure number, the ratio of A s
arc length to radius to produce the desired angle. O=s/r or s=rb

Figure 1-2 shows the relationship of arc length

’
to radius to define the angle.

Fig. 1-2
The relation between radians and degrees is 2 rrad = 360°.

1-6 Convert 7/6 and 0.36 rad to degrees and 270 to radians.

0 e
Solution: Zrad 0% —30°. 036rad 200 =20.6°, 270° 27 _37 4—47rad
6 2xrad 2zrad 360° 2

TRIGONOMETRIC IDENTITIES

a*+b*=c? sin® 8+ cos’ f=1
sin @ = cos(90° - &) cos@= sin(90° — )
sin{ a x ff) = sin@cosftcosasinf tan 6= 1/ tan(90° - &)

cos(ax ) =cosacos f+sinasin S
tan(a + f) = tana t tan B/1F tana tan S
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There are a large number of mgonometric identities that can be derived using geometry
and algebra. Several of the more common are in the preceding box.

Coordinate Systems

The standard two-dimensional coordinate system works well for most calculus problems.
In working problems in two dimensions do not hesitate to arrange the coordinate system
for your convenience. The x-coordinate does not have to be horizontal and increasing to
the right. [t is best, however, to maintain the x-y orientation. With the fingers of the right
hand pointed in the direction of x they should naturally curl in the direction of y.

Positions in the standard right angle coordinate system are given with two numbers. In a
polar coordinate system positions are given by a number and an angle. In Fig. 1-3 it is
clear that any point (x,y) can also be specified by (r,8). Rather than moving distances in
mutually perpendicular directions,

the r and 6 locate points by Y
. . . x=rcos6

moving a distance r from the origin R e :
along what would be the +x y=rsiné y=rsin :
direction, then rotating counter- ,e }xz + yz
clockwise through an angle 8. The 9
relationship between rectangular @ =tan"' (y/x)
and polar coordinates is also shown x=rcosf X
in Fig. 1-3. .

Fig. 1-3

1-7 Find the polar coordinates for the point (3,4).
Solution: r=v32+4% =5 and 6 =tan"'(4/3)=53°

Be sure that you understand how to calculate 8 = tan ! (4/ 3) =53 on your calculator.
This is not 1/tan(4/3) . This is the inverse tangent. Instead of the ratio of two sides of a
right triangle (the regular tangent function), the inverse tangent does the opposite: it
calculates the angle from a number, the ratio of the two sides of the triangle. On most
calculators you need to hit a 2™ function key or "inv" key to perform this “inverse”
operation.
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1 -8 Find the rectangular points for (3,120%)

Solution: x=3cos120° =-1.5 and y=3sin120° =2.6
As a check, you can verify that (—1.5)2 +2.6% =32,

Three-dimensional coordinate systems are usually right-
handed. In Fig. 1-4 imagine your right hand positioned
with fingers extended in the +x direction closing naturally
so that your fingers rotate into the direction of the +y axis
while your thumb points in the direction of the +z axis. It
1s this rotation of x into y to produce z with the nght hand
that specifies a right-handed coordinate system. Points in
the three-dimensional system are specified with three
numbers (x,y,z).

Fig. 1-4
For certain types of problems, locating a point in space is more convenient with a
cylindrical coordinate system, as shown in Fig. 1-5. Notice that this is also a right-handed
coordinate system with the central axis of the cylinder as the z-axis.

x=rcosb
y=rsinf

r=‘/;2+y2

6 =tan™' (y/x)

Fig. 1-5

A point is located by specifying a radius measured out from the origin in the +x direction,
an angle in the x-y plane measured from the x-axis, and a height above the x-y plane. Thus
the coordinates in the cylindrical system are (r,6,z). The relation of these coordinates to
x,y,z 1s given in Fig. 1-5.
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Logarithms and Exponents

Logarithms and exponents are used to describe several physical phenomena. The
exponential function y =a” is a unique one with the general shape shown in Fig. 1-6.

-X Y y:ax

Fig. 1-6

This exponential equation y=a* cannot be solved for x using normal algebraic
techniques. The solution to y =a” is one of the definitions of the logarithmic function:

X

y=a = x=log,y

The language of exponents and logarithms is much the same. In exponential functions we
say "a is the base raised to the power x." In logarithm functions we say "x is the logarithm
to the base a of y." The laws for the manipulation of exponents and logarithms are
similar. The manipulative rules for exponents and logarithms are summarized in the box
below.

The term "log” is usually used to mean logarithms to the base 10, while "In" is used to
mean logarithms to the base e. The terms "natural" (for base ¢) and "common" (for base
10) are frequently used.

LAWS OF EXPONENTS AND LOGARITHMS
(a*)y =a% ylog, x =log, x¥
a*a’ =a**’ log, x +log, y=log, xy

x
g log, x —log, y =log, L3
a” y

1-9 convert the exponential statement 100 = 107 to a logarithmic statement.

Solution: y =a* is the same statement as x =log, y, so 100=10? is 2 =log,;100.
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1-10 convert the exponential statement el=7410a (natural) logarithmic statement.

Solution: ¢ =74 so In7.4=2

1-11 cConven log2=0.301 to an exponential statement.

Solution: 10°°°! =2

1-12 Find log(2.H(4.3)"%.

Solution: On your hand calculator raise 4.3 to the 1.6 power and multiply this result by
2.1. Now take the log to obtain 1.34,

Second Solution: Applying the laws for the manipulation of logarithms write:
log(2.1)(4.3)"® =log2.1+1log4.3" =log2.1+1.610g4.3=0.32+1.01=1.33

(Note the round-off error in this second solution.) This second solution is rarely used for
numbers. It is, however, used in solving equations.

1-13 solve 4=In2x.

Solution: Apply a manipulative rule for logarithms: 4=In2+Inx or 331=Inx.

Now switch to exponentials: x = e =274

A very convenient phrase to remember in working with logarithms is "a loganthm is an
exponent.” If the logarithm of something is a number or an expression, then that number
or expression is the exponent of the base of the logarithm.

9 ) Remember: A logarithm is an exponent!

A%
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Functions and Graphs

Functions can be viewed as a series of mathematical orders. The typical function is
written starting with y, or f(x), read as "fof x," short for function of x. The mathematical
function y or f(x) = x> +2x +1 is a series of orders or operations to be performed on an

as yet to be specified value of x. This set of orders is: square x, add 2 times x, and add 1.
The operations specified in the function can be performed on individual values of x or
graphed to show a continuous "function." It is the graphing that is most encountered in
calculus. We'll look at a variety of algebraic functions eventually leading into the concept
of the limit.

1-14 perform the functions 7(x)=x>~3x+7 on the number 2, or, find J ().
Solution: Performing the operations on the specified function

f(2)=2°-3(2)+7=8-6+7=9

In visualizing problems it is very helpful to know what certain functions look like. You
should review the functions described in this section until you can look at a function and
picture "in your mind's eye"” what it looks like. This skill will prove valuable to you as
you progress through your calculus course.

Linear The linear algebraic function (see Fig. 1-7 ) y=mx+b
is y = mx + b, where m is the slope of the straight line
and b is the intercept, the point where the line crosses /

the y-axis. This is not the only form for the linear b

function, but it is the one that is used in graphing and is

the one most easily visualized. x
Fig. 1-7

1-15 Graph the function y =2x -3,

Solution: This is a straight line, and it is in the correct form for graphing. Because the
slope is positive, the curve rises with increasing x. The coefficient 2 tells you that the
curve is steeper than a slope 1, (which has a 45° angle). The constant 3 is the intercept,
the point where the line crosses the y-axis. (See Fig. 1-8.)
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You should go through this little visualization exercise with every function you graph.
Knowing the general shape of the curve makes graphing much y

easier. With a little experience you should look at this function

and immediately visualize that (1) it is a straight line (first y=2x-3
power), (2) it has a positive slope greater than 1 so it is a rather
steep line rising to the right, and (3) the constant term means
that the line crosses the y-axis at ~3.

Knowing generally what the line looks like, place the first
(easiest) point at x=0, y=-3. Again knowing that the line )
rises to the right, pick x=2, y=1,and as acheck x =3, y=3. Fig. 1-8

If you are not familiar with visualizing the function before you start calculating points
graph a few straight lines, but go through the exercise outlined above before you place
any points on the graph.

QUOdl‘OﬁCS The next most complicated function is
the quadratic (see Fig. 1-9), and the simplest quadratic is
y= x?, a curve of increasing slope, symmetric about the
y-axis 8% has the same value for
x=+or —1, + or —2, etc.). This symmetry property
is very useful in graphing. Quadratics are also called
parabolas.  Adding a constant to obtain y=x*+c
serves to move the curve up or down the y-axis in the
same way the constant term moves the straight line up
and down the y-axis.

1-16 Graphy=x2—3.

Solution: First note that the curve is a parabola with the symmetry attendant to parabolas
and it is moved down on the y-axis by the —3. The point x =0, y = -3 is the key point,
being the apex, or lowest point for the curve, and the defining point for the symmetry line,
which is the y-axis. Now, knowing the general shape of the curve add the point
x==2, y=1. This is sufficient information to construct the graph as shown in Fig. 1-9.
Further points can be added if necessary.

Adding a constant a in front of the x? either sharpens (a > 1) or flattens (a < 1) the graph.
A negative value causes the curve to open down.
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1-17 Graph y=0.5x2+l.

Solution: Looking at the function, note that it is a
parabola (x2 term), it is flatter than normal (0.5

coefficient), it opens up (positive coefficient of the x?
term), and it is moved up the axis one unit. Now put
in some numbers: x=0, y=11is the apex, and the
y-axis is the symimetry line.  Add the points

x =12, y=3 and sketch the graph (Fig. 1-10).

1-18 Graph y =-2x*-2.

Fig. 1-10

Solution: Look at the function and verify the following statement. This is a parabola that
opens down, is sharper than normal, and is displaced two units in the negative direction.
Put in the two points x =0 and x = +1 and verify the graph shown in Fig. 1-10.

Adding a linear term, a constant times x, so that the function has the form y = ax® +bx +¢
produces the most complicated quadratic. The addition of this constant term moves the
curve both up and down and sideways. If the quadratic function is factorable then the
places where it crosses the x-axis are obtained directly from the factored form.

1-19 Graphthefunctiony=f(x)=x2 +2x—8.

Solution: This is a parabola that opens up, and is’

displaced up or down and sideways. This
quadratic is factorable to y =(x+4)(x—2). The
values x =2 and x=-4 make y =0 so these are
the points where the curve crosses the x-axis.
Place these points on the graph.

Now here is where the symmetry property of
parabolas is used. Because of the symmetry, the
parabola must be symmetric about a line halfway
between x=2 and x=-4, or about the line
x=—1. The apex of the parabola is on this
x=~1 line so substitute to find the appropriate
value of y: f(-1)=(-1+4)(—1-2)=-9 These

y=x2+2x—8

X

y=(x+4)(x-2)

| I Y N |

Fig. 1-11

three points are sufficient to sketch the curve (see Fig. 1-11).
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Before moving on to the graphing of quadratics that are not factorable there is one other
quadratic that is rather simple yet it illustrates the method necessary for rapid graphing of
non-factorable quadratics.

1-20 Graph y=x2+4x+4.

Solution: Notice in Fig. 1-12 that the right side of this
equation is a perfect square and the equation can be
written as y=(x+2)2. The apex of the curve is at
x=-2, and any variation of x from -2 is positive and
symmetric about the line x=-2. If x=-1 or x=-3, :
y=1. If x=0 or x=-4, y=4_ This is sufficient x=-2
information to sketch the curve. Notice, however, in the
second solution an even easier means for graphing the
function.

Fig. 1-12

Second Solution: The curve can be written in the form y = X2 if X is defined as

X=x4+2. At x=-2, X =0 and the line x = -2 effectively defines a new axis. Call it
the Y-axis. This is the axis of symmetry determined in the previous solution. Drawing in

the new axis allows graphing of the simple equation y = X 2 about this new axis.

Now apply this approach to a slightly more difficult problem.

1-21 Graph y=x*-6x+11.

_ Solution: Based on experience with the
previous problem subtract 2 from both sides to at
least get the right side a perfect square:
y—2=x2 —6x+9=(x—3)2. This form of the
equation suggests the definitions ¥ =y -2 and
X =x-3, so that the equation reads Y=X2.
This is a parabola of standard shape on the new
coordinate system with origin at (3,2). The new
coordinate axes are the lines x=3 and y=2.
This rather formidable looking function can now
be drawn quite easily with the new coordinate
axes. (See Fig. 1-13)
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The key step in getting going on problem 1-21 was recognizing that subtracting 2 from
both sides would make a perfect square on the right. This step is not always obvious so
we need a method of converting the right-hand side into a perfect square. This method is
a vanation of the "completing the square” technique for solving quadratic equations. If
you are not very familiar with completing the square (thas should include nearly everyone)
go back in this chapter and review the process before going on. Now that you have
"completing the square” clearly in your mind we'll graph a non-factorable quadratic with a
procedure that always works.

1-22 Graph y=x*+4x+7.

Solution: 1. Move the constant to the left side of
the equation: y—7=x%+4x.

Next, determine what will make the right-hand side
a perfect square. In this case +4 makes a perfect
square on the right so add this to both sides:

y-3=x>+4x+4 or y—-3=(x+2)°.

2. Now, make the shift in axes with the definitions Fig. 1-14

Y=y-3, and X=x+2. The ongin of the "new" coordinate axes is (-2,3).
Determining the origin from these defining equations helps to prevent scrambling the
(—2,3) and getting the origin in the wrong place. The values (-2,3) make X and Y zero

and this is the apex of the curve ¥ = X2 on the new coordinate axes.

3. Graph the curve as shown in Fig. 1-14.

Higher Power Curves The graphing of cubic and
higher power curves requires techniques you will leamm in
your calculus course. There are, however, some features of
higher power curves that can be learned from an "algebraic”
look at the curves.

The simple curves for y=x* and y = —x* are shown in Fig,

1-15. Adding a constant term to either of these curves serves
to move them up or down on the y-axis the same as it does
for a quadratic or straight line. Cubics plus a constant are
relatively easy to sketch. Adding a quadratic or linear term
adds complications that are almost always easiest met by
learning the calculus necessary to help you graph the curve.

If a curve contains an x° term, this term will eventually Fig, 1-15
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predominate for sufficiently large x. Operationally this means that if you have an
expression y=x3 + ()x2 +()x+(), while there may be considerable gyration of the

curve near the origin, for large (positive or negative) x the curve will eventually take the
shape shown in Fig. 1-15.

The same is true for other higher power curves. The curve y =x" is similar in shape to

y= x2, it Just rises more rapidly. The addition of other (lower than 4) power terms again
may add some interesting twists to the curve but for large x it will eventually rise sharply.

The next general category of curves is called conics, because they have shapes generated
by passing a plane through a cone. They contain x and y terms to the second power. The
simplest of these curves is generated with x? and y2 equal to a constant. More
complicated curves have positive coefficients for these terms, and the most complicated
conics have positive and negative coefficients.

Circles Circles are functions in the form x* + y* = const.
with the constant written in what tums out to be a convenient
form x% + y2 =r2. The curve x* + y2 =r?is composed of a

\&:
]
e

collection of points in the x-y plane whose squares equal r. P T
Look at Fig. 1-16 and note that for each (x,y) point that

satisfies the equation, a right triangle can be constructed with /
sides x, y, and r and the Pythagorean Theorem defines the

relationship X2+ y2 =r2. A circle is a collection of points Fig. 1-16

equal distance from a point called the center.

1-23 Graph xt4y?=9.

Solution: Look at the function and recognize that it is a
circle. It has radius 3 and it is centered about the origin. At
x=0, y=43, and at y=0, x=13. Now draw the circle
(Fig 1-17). Note that someone may try to confuse you by
writing this function as y? =9-x%. Don't let them.

1-24 Graph x> —6x+9+y? =16.

Solution: At first glance it looks as though a page is missing between problems 1-23 and
1-24. But if you make the identification that x* —6x+9 is the perfect square of (x —3)
then the equation reads X2+Y?=16if X=x-3 and ¥ =y. This is the identification
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that worked so well for parabolas. In the new coordinate system with origin at (3,0) this
curve is a circle of radius 4, centered on the point (3,0) (Fig. 1-18). Set up the new
coordinate system and graph the circle. At X =0, Y =34, andat Y =0, X =14.

If the function were written y* =6x —x2 +7 it
would not have been quite so easy to recognize
the curve. Looking at this latter rearrangement,
the clue that this is a circle is that the x? and »?
terms are both positive when they are together
on the same side of the equation. No matter x, X
how scrambled the terms are, if you can
recognize that the curve is a circle you can
separate out the terms and make some sense out
of them by making perfect squares. This next
problem will give you an example that is about Fig. 1-18
as complicated as you will encounter.

x?2 —6Jc+9+y2 =16

1-25 Graph x? +6x+y2 +2y=10.

Solution: Notice that the x and y terms are at least grouped together and further that the
constant has been moved to the night side of the equation. This is similar to the first step
in solving an equation by completing the square. Now with the equation written in this
form write the perfect squares that satisfy the x? and x terms and the y2 and y terms
adding the appropriate constants to the right side.

2 +6x+y P +2y=10
(x+3 +(y+1)?=10+9+1
2 242y=10
(x+3)2 +(y+1)1 =20 X +6x+y +2y=
Make the identification

X=x43 and Y=y+1 s0

X +7:=20
This is a circle of radius \/—26 centered
about the point (-3,-1) (Fig. 1-19). A
rather formidable function is not so
difficult when viewed properly.




MATHEMATICAL BACKGROUND 1 7

Circles can at first be very confusing. If the x* and y? coefficients can be made equal to
1 and they are positive, then you are dealing with a circle. Knowing the curve is a circle is
a long way toward drawing it correctly.

Ellipses Ellipses have x* and y? terms with positive but different coefficients. The
two forms for the equation of an ellipse are

2 2

a’ +by*=c*  or X+

=1
a2

%

Each form has its advantages with the latter form being the more convenient for graphing,

1-26 Graph 4x? +9)% =36.

Solution: This is an ellipse because the x and y terms are squared and have different
positive coefficients.  The different coefficients
indicate a stretching or compression of the curve in the Y1 ax? +9y% = 36

x or y direction. It is not necessary to know the
direction. That comes out of the graphing technique. | ( i !"‘

Rewrite the equation into a more convenient form for - x
graphing by dividing by 36. T
22
LD A Fig. 1-20
9 4

Now in this form set first x =0, so y =12, and then y =0, so x =13, With these points
and the knowledge that it is a circle compressed in one direction, sketch the curve (Fig. 1-
20).

1-27 Graph &0, 0= )
16 36

Solution: The problem is presented in this somewhat artificial form to illustrate the axis
shifting used so effectively in the graphing of parabolas and circles.

Based on this experience immediately write

xX? r?
2 42 o
16 36
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N B4 2 —4)?
YE-- (x+1) +(y 4) -1

ith the definiti X=x+1, Y=y—-4,
wi e definitions x+1, Yy 16 36

The origin of the new coordinate system is
at (—1,4), and in this new coordinate system
when X =0, Y=16 and when Y =0,
X=44

Sketch the curve (Fig. 1-21).

Fig. 1-21

1-28 Graph x? +4x+9y? —18y=—4.

Solution: The different positive coefficients of the x* and y’ terms tell us this is an
ellipse. The linear terms in x and y tell us it is displaced off the x-y axis. Graphing this
curve is going to require a completing the square approach with considerable attention to
detail.

First write x> +4x +9(y* ~2y) = -4.

Now do the completing the square exercise, being very careful of the 9 outside the
parentheses: (x +2)2+9(y- 12 =-4+4+9=9

2 2
(x+2 -1 _,

Now divide to reach

9 1
Define X =x+2 and ¥ = y—1 to achieve Yi
2 2 f YL
X 4+4x4+9y" —18y=-4:
2 2 ? = X
x* r:_ - S
9 1 : __ll X

Graph on the new coordinate system: when
X=0,Y=%1,and when Y =0, X =13. Fig. 1-22

Alternate Solution: An altemnative to graphing in the new coordinate system is to go
back to the original coordinate system. When X =13 substitute and write x +2 =3 or
x=-2%+3, and when Y =21, substitute and write y—1==1 or y=1%1. Either way
gives the same points on the graph (Fig. 1-22).
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Hyperbolas Ellipses are different from circles because of numerical coefficients for
the x* and y2 terms. Hyperbolas are different from ellipses and circles because one of

the coefficients of these x* and y2 terms is negative. This makes the analysis somewhat

more complicated. Hyperbolas are written in one of two forms, both of which are
sometimes needed in the graphing.

2
x° _
t+ax +byz=c2 oo +F2

2
=1
a®  b?

1-29 Graph -4x% +25y% =100.

Solution: The form of the equation tells us this is a hyperbola. Now proceed as if this
were a circle or ellipse: If x =0, y =12, and if y =0, there are no real values of x. If the
curve goes through the points (0,2) and (0,-2) and does not exist along the line y =0,
then the curve must have two separate parts! Rearrange the equation to 4x* =25 y2 -100
and note immediately that for real values of x, y has to be greater than 2 or less than —2.
The curve does not exist in the region bounded by the lines y=2and y =-2.

At this point in the analysis we have two points and a region where the curve does not
exist. Further analysis requires a departure from the usual techniques applied to conics.
Rewrite the equation again, but this time in the form y = . . .

25y% = 4x2 +100 _4x? 4+ 255" =100

How this helps in graphing is that
for large values of x, the function
begins to look like a straight line,
y~(2/5)x (for large x the +4 is Fig. 1-23

small compared to 4x? /25 ). Use these two straight lines, one of slope (2/5) and the
other of slope —(2/5), as guides in drawing the curve. With the points (0,2) and (0,-2)
and these lines as guides, the curve can be sketched (Fig. 1-23). In the language of

mathematics these straight lines are asymptotes or asymptote lines. Asymptotes are lines
the curve approaches but does not touch.
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Now that you know the general shape of hyperbolas, we can look at some hyperbolas that
are not symmetric about the origin. The next problem is somewhat artificial, but it is
instructive and illustrates a sitnation that comes up in the graphing of hyperbolas.

1-30 Graph ("_91)2 _(y;;;)z =1.

Solution: This function is in a convenient form for graphing, especially if we make the
identification X =x-1 and Y =y—-3. This hyperbola is displaced up and down and
sideways to the new coordinate system with origin at (1,3). In this new coordinate system
at X =0, Y does not have any real values. At Y =0, X =13, Place these points on the

graph.

The asymptote lines are most
easily drawn in the new
coordinate system.

"\..,...

The transformed function is (x—1)2  (y—3)bmm ... :
s 4 '

X2 Y2 _

9 4

Fig. 1-24

Y2 =(4/9)X? -4 and for large values of X, ¥ ~#(2/3)X

Straight lines of slope +(2/3) and —(2/3) are drawn in the new coordinate system. With
the two points and these asymptote lines the curve can be sketched.

In Fig. 1-24 you will see a rectangle. This is used by some as a convenient construct for
drawing the asymptote lines and finding the critical points of the curve. Two sides of the
rectangle intersect the X-axis at the points where the curve crosses this axis and the
diagonals of the rectangle have slopes +(2/3).

1-31 Graph 9x2 —4)? —54x-32y=19.

Solution: This is a hyperbola, and the presence of the linear terms indicates it is moved
up and down and sideways. Graphing requires a completing the square approach. Follow



MATHEMATICAL BACKGROUND 2 1

the completing the square approach through the equations below. Watch the
multiplication of the parentheses very carefully.

9x? —4y? —54x-32y=19
9(x? —6x)—4()* +8y)=19
9(x—3)> —4(y+4)* =19+81-64 =36
Make the identification X =x -3 and ¥ = y+4 so the function can be written

9x2-4y*=36 or - =1

Draw in the new axes with
origin at (3,—4). When X =0,
there are no real Y values.
When Y=0, X=1%2. Place
these points on the graph. The
asymptotes come out of the
y= ... equation. Follow 9x% _4)% _54x_32y=19
along the rearrangement to find
the asymptote lines. (See Fig. 1-

25)
Y? =(9/4)x* -9
Y =+J(9/4)x* -9 _ :
For large wvalues of X Y=3/2)X Y =—(3/2)X
Y ~1(3/2) X. The addition of Fig. 1-25

these asymptote lines allows completion of the graph.

In graphing conics the first thing to determine is whether the equation is a circle, ellipse,

or hyperbola. This is accomplished by looking at the numerical coefficients, their
algebraic signs, and whether they are (numerically) different. Knowing the curve, the
analytical techniques begin by looking for the values of x when y =0, and the values of y E
when x =0. The answers to these questions give the intercepts for the circle and ellipse, pattern
and the square root of a negative number for one determines that the curve is a hyperbola.

The addition of linear terms moves the conics up and down and sideways and almost

always requires a completing the square type of analysis, complete with axis shifting.

If you can figure out what the curve looks like and can find the intercepts (x =0 and
y=0) you are a long way toward graphing the function. The axes shifting just takes

attention to detail.
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6raphing Trigonometric Functions

Graphing the trigonometric functions does not usually present any problems. There are a
few pitfalls, but with the correct graphing technique these can be avoided. Before
graphing the functions you need to know their general shape. The trigonometric relations
are defined in an earlier section and their functions shown graphically. 1f you are not very
familiar with the shape of the sine, cosine, and tangent functions draw them outona 3 x 5
card and use this card as a bookmark in your text or study guide and review it every time
you open your book (possibly even more often) until the word sine projects an image of a
sine function in your mind, and likewise for cosine and tangent.

Let's look first at the sine function y =sin# and its 1
graph in Fig. 1-26. The @, called the argument of ’ y =sin@
the function, is cyclic in 2 7; whenever 8 goes from
0 to 27 the sine function goes through one cycle. } } 2%
Also notice that there is a symmetry in the function. x/2 7\ 372 0
The shape of the curve from 0 to 7/ 2 is mirrored in \/
the shape from 7z/2 to z. Similarly the shape of the -1
curve from 0 to 7 is mirrored in the shape from 7 to

2z. In order to draw the complete sine curve we Fig. 1-26

only need to know the points defining the first

quarter cycle. This property of sine curves that allows construction of the entire curve if
the points for the first quarter cycle are known will prove very valuable in graphing sine
functions with complex arguments. Operationally, the values of the function are
determined by "punching them up” on a hand calculator.

1-32 Graph y=2sinx. y

24 y=12sinx
Solution: The 2 here is called the amplitude and |+ 5
simply scales the curve in the y direction. It is handled 1 L i

simply by labeling the y-axis, as shown in Fig. 1-27. ' \/ x
+

Fig. 1-27
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1-33 Graph y = cos2x.

Y y=cos 2x

Solution: The 2x X cos2x 14
phrase "cos" 0 0 1 7” 47r
describes the a2 | n/4 0 }

general shape of
the curve, the unique cosine shape. The 2x is the 4
hard part. Look back at the basic shape of the -1 +
cosine curve and note that when 8= 7/2, the cosine Fig. 1-28

curve has gone through 1/4 of'its cycle. The values

of x for the points where 2x 1s zero and 7/2 define the first quarter cycle. (One-quarter
of a cycle 1s all that is necessary to graph the function.) To graph this function (y vs. x)
we need to know only those values of x where the argument of the function (2x) is zero
and z/2. The chart in Fig. 1-28 shows the values necessary for graphing the function.

[\

Do not start this chart with values of x; start with values for 2x. Read the previous

sentence again. It is the key to correctly graphing trigonometric functions. Notice that the Pattemn

points on the x-axis are written as multiples of the first quarter cycle. 1t is a cumbersome
way of writing the points, but it helps prevent mistakes in labeling the x-axis.

Go back over the logic of graphing trigonometric functions in this way. It is the key to
always getting them graphed correctly. As the functions become more complicated, the
utility and logic of this approach will become more evident.

1-34 Graph y =2sin(x/3).

Solution: This is a sine function: the general shape x/3 x sin(x / 3)
of which can be seen clearly in your mind's eye. The 0 0 0
amplitude of 2 is no problem. The argument x/3 72 | 3x/2 1

requires setting up a chart to find the values of x
defining the first quarter cycle of the sine function.

Numbers associated with the argument of the y )
function, the 3 (in the denominator) in this case, P s y = 2smn(x/3)
define the frequency of the function. While
) e T . 4 6% 127
interesting in some contexts, knowing the > 5
frequency is not important in graphing. + }
(Discussion of the frequency of periodic functions 1 3z 9z x
is contained in Physics for the Utterly Confused.) 2 2

_2—v-
Remember, in setting up the chart set x/3 equal Fig. 1-29

to zero and solve for x. The sine of zero is zero.
Next set x/3 equal to 7z/2 and solve for x. The sine of #/2 i1s 1. These two points
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define the first quarter cycle of the function. The remainder of the function is drawn in
(Fig. 1-29) using the symmetry properties of sine functions.

1-35 Graph y=smn(2x + 7).

Solution: The introduction of the 7z in the argument of the function is the final
complication in graphing trigonometric functions. This constant in the argument is called
the phase and the sign of this constant moves the function to the left or right on the x-axis.
It is not necessary to remember which sign moves the function which way. The placement
of the function on the x-axis comes out of the analysis.

2x+ 7 x sin(2x + ) Y1 y=sin(2x+7)
0 —(x/2) 0 BB
x/2 | (/4 1 z
2
Figure 1-30 shows a sine function with 1 { } }
amplitude 1. The 2 affects the frequency bia T /4 x
and the 7 moves the function right or left. Ty 4 4

Set up the chart again forcing the argument —
to be zero or z/2 and determining the

appropriate x value. Set 2x + 7 =0 and solve Fig. 1-30

for x=—(x/2). Set 2x + r= n/2 and solve

for x =—(x/4). Draw the graph starting with the first quarter cycle of the sine function
in the region from —(z/2) to —(x/4).

1-36 Graph y =(1/3)cos(2x - 7/3).

2x-7ml3 x cos(2x—7/3)
Solution: The function shown in 0 7l 6=27/12 1
Fig. 1-31 has another little twist to it, /2 Sn/12 0

which has to do with the minus sign.

Set up the chart and make 2x—7/3=0
for the first point.  This point is y y=(1/3)cos(2x - x/3)
x=7x/6 or 27/12. The next point is for 13
2x—7n/3=nx/2. This (second) point is
thenat x=57z/12.

Set up the x-y coordinate system and place
the first quarter of the cosine function
between 27/12 and 5x/12. With this
section of the cosine function complete, Fig. 1-31
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draw in the remainder of the curve.

1-37 Graph y =tan(x ~ 7/4).

Solution: If you are at all unfamiliar with the
tangent function go back and review it in the
trigonometry section. The important features as
far as graphing is concerned are that tan 6 is zero
when & is zero and tan 8 is 1 when 8 is n/4.
The tangent curve goes infinite when & goes to
7/ 2, but a point at infinity is not an easy one to
deal with.

For the function shown in Fig. 1-32, set up a chart
and find the values of x that make x — 7/ 4 equal
zero and 7#/4. These two points allow
construction of the function.

x—z/4 | x tan(x — 7/ 4)
0 n/4
z/4 27/4 1

Solve x—7n/4=0 for x=n/4.

Solve x—n/4=n/4 for x=r/2=2n/4.

y=tan(x —z/4)

LT

AL&:

By
A|g’-
=

Fig. 1-32

Be careful graphing the tangent function, especially this one. This tangent function is zero
when x=7/4, and 1 when x =2x/4. The standard mistake is to take the function to

infinity at x =27/4 .
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My favorite is completing
the square.

My favorite is graphing
hyperbolas.
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LIMITS AND CONTINUVITY

The concept of the limit in calculus is
very important. It describes what
happens to a function as a particular
value is approached. The derivative,
one of the major themes of calculus,
is defined in limit terms. This short
chapter will help you to think in terms
of limits. The first thing to
understand about limits is that a limit
of a function is not the value of the
function. The change in thinking \
(from value to limit) is important O
because  most  functions  are
understood as a series of mathematical operations that can be evaluated at certain points
simply by substitution.

The (polynomuial) function y = x% +2x+3 can be evaluated for any real number: replace
x with the number and perform the indicated operations. Asking the limit of this function
as x approaches 2, for example, is an uninteresting question. The function can be
evaluated at 2 or any point arbitrarily close to 2 by substituting and performing the
operations.

Other functions, such as polynomial fractions, cannot be evaluated at certain points and
these functions are best understood by thinking in terms of limits. The function
y=(x? —4)/(x +2) can be evaluated for any real number except —2. Replacing x by -2
produces the meaningless statement 0/0. Remember that any number times 0 is 0, but
any number divided by 0 is "meaningless” (including 0/0). Looking at the limit of the
function, as x approaches 2, tells us about the function in the vicinity of —2. The limit
of the function is a convenient phrase for the question, "What happens to the function as a
certain value is approached?” Writing this in mathematical notation we get the following:

2_ -
fim = =4 = fim FFDOD gy -2y =4
x>-2 X+2 x--2 x+2 x—>-2

27
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The notation in front of the functions is read "the limit, as x approaches minus two." In
the case of rational functions, factoring and reducing the fraction helps in finding the
limit.

_x2—4

Finding the limit of this function as x — —2 helps in y
understanding the function. Since the original function
gives the meaningless 0/0 at the point where x =-2, the
function cannot exist, "does not have meaning,” at x =-2.
Graphing the function illustrates this point.  The
(simplified) function y = x -2 is a straight line of slope 1
and intercept —2. The function y = (x? —4)/(x+2) is
also a straight line of slope 1 and intercept —2, but it does
not exist at the point where x =-2. This non-existence at
x =-2 is illustrated on the graph in Fig. 2-1 with the open Fig. 2-1
circle.

2-1 Findthelimitofy=(x2+x—2)/(x—1) as x> 1.

Solution: At x =1 the fraction is 0/0, so perform some algebra on the fraction before

taking the limit.

2 - -
lim Xt E 72 i FEDED i i9y=3
x—»1 x-1 x—>1 x—1 x—1

As an exercise graph the original function, showing the non-existence at x = 1.

Another category of function that is understood with yl
the help of limits is polynomial fractions, where the

higher power polynomial is in the denominator y=1l/x
rather than the numerator. The simplest function to
look at is y=1/x. (The product of two variables
equaling a constant describes certain relationships. For
example, pressure and volume for a fixed amount of
gas at constant temperature is described by
pV =const; the cost of comparable real estate times

the commuting distance from a major commercial
center is described by RD = const.) |

Fig. 2-2

This relationship xy=1 or y=1/x is best
understood in the context of its graph. Numbers can be assigned to x, and y values
calculated but note how the concept and language of limits make graphing so much easier.
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Refer to Fig. 2-2 during this discussion. First consider positive values. The point x =1,
y =1 is so easy to calculate it should not be ignored. The curve goes through this point.
Now as x is made a larger and larger positive number, y approaches zero, but remains
positive. This can be expressed in a simple sentence,

As x approaches plus infinity, y approaches zero, but remains positive
or in mathematical symbolism, E

Pattern
Asx >+, y>0+

Write the situation for small values of x directly in mathematical symbolism,
Asx >0+, y > +o0

What we are saying here is that if x is a very, very, very small number, even smaller than
0.000000001, the 1 divided by this number is a very, very, very large number. So as
x>0+, 1/0+ >+ .

With this information, the positive portion of the graph can be drawn. In the case of
pressure and volume or cost of real estate and distance, the problem dictates only positive
values. In the function y =1/ x no such restriction exists. Refer to the graph in Fig. 2-2
and follow the logic and symbolism in the statements

Asx —>0— y—>—0 and Asx—> 0,y >0~

2-2 Graph the function y = 1/(x — 1) using limit concepts and notation.

Solution: At x=1, the function has value 1/0,
which is hard to interpret. Using the limit concept
the behavior of the function as x approaches 1 is
easily understood. Note first that if x is greater ¥ =1/(x~-1)
than 1, the function is positive, and if x is less than
1 the function is negative. Apparently the function : ===
behaves differently as x=1 is approached from \ S x
either the positive or negative side. Remember that

on the number line, positive is to the right and
negative is to the left. In taking the limit it is
necessary, in this case, to specify the direction of
approach to 1. Notice how this is done in the
notation. Fig. 2-3

Y

. 1 ) 1
Iim ——=ow im ——=-w
x—=>(pos) X — 1 x—>l(neg) X — 1
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Based on experience with y =1/ x, this function has the same shape, it is just displaced
(or translated) 1 unit to the rightt In y=1/x, x=0 is the asymptote line, but in
y=1/(x-1), x=1 is the asymptote line. Follow the logic of the limit calculations and
verify the graph as shown in Fig. 2-3.

2-3 Graph y=l/x2 using limit concepts and y
notation.

Solution: Think limits and write the symbolic
statements.

Asx —> 4w, y—>0+ Asx >0+, y >+

Asx 50—, y>+0 Asx— -, y—>0+

; : Fig. 24
Now draw in the curve. (See Fig. 2-4.)

. . +2 L
2-4 Discuss the function y= X s in the vicinity of x = 5.
x—
Solution: The numerator of the function presents y

no problem. Even at x=-2, the function is
0/ -7 =0, perfectly understandable. Based on past
experience, the x —5 in the denominator produces a :
vertical asymptote at x = 5. Place the asymptote line  ............ B S boery.
on the graph. Now, using limit language, describe *—H—F‘HH—}"Ff—

the behavior of the function in the vicinity of x =5.

Asx >S5+, y>+0 Asx—>5- y—>—w

There is an additional complication as x becomes
large, either positive or negative. For large x the Fig. 2-5

function becomes large number over large number.

If, however, the fraction is multiplied by 1/ x over 1/ x the limit can be calculated easily:

x-2{1/x . 1=-2/x
m ——{=Iim =1
x—oX+51/x] xsol+5/x

This limit produces a horizontal asymptote. When x is greater than 5 (refer to the original
function statement), the fraction is positive so this horizontal asymptote is approached
from the positive side. When x is less than 5, but greater than -2, the function is
negative. At x=0, y=-2/5. For values of x less than (to the left of) -2, the function is
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always positive and for larger and larger negative x, the function approaches the limit 1
from the negative side. Go through the logic and verify the graph of Fig. 2-5.

As the powers of the polynomials increase, the functions become harder to graph. In
chapter 4 more complicated polynomials will be graphed with the aid of calculus.

2
2-5 Find the limit of the function y= —%x—zﬂf%l as x goes to infinity.
X +x+

Solution: Attempting to evaluate the function for large x produces the result large
number over large number. Taking the limit with a little inventive algebra (multiplying
the fraction by 1/ x% over 1/ x?) produces

C 3xt e 2x+1| x| 342/x+1/x%2
lim — 3 = lim 5=
= x 4 x+1 1 1/x e 14+ /x+1/x

4 2
2-6 Find the limit of =X

as x goes to infinity.
x” 42

Solution: Again use a little inventive algebra. Factor an x* out of the numerator and an
x> out of the denominator:

4 2 4 2
lim =~ +3x = lim * (1+3/x%)

T1+3/x2
; B B =llml:-1—:| 1——-/x—5 =0
il ) x0 x (14+2/x7) x>0l X 142/x

The first fraction has limit zero and the second limit 1. The product is zero.

This problem illustrates a manipulative rule for limits. lim 4-B = [lim A][lim B:I

X>C X—>C X—»C

lim A li *

n
Similarty lim--=-*2¢. and lim A" =|lim A] Remember
x—»cB lWmB x—¢ x—»¢
X—>C

Continuous functions are defined mathematically, usuvally over specific intervals. The
requirements of a continuous function are: 1) it exists at every point in the defined
interval, and 2) the limit exists at every point and 1s equal to the value of the function at
that point. Operationally, continuous functions are ones that can be drawn without lifting
your pencil.
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A discontinuous function is one that either: 1) doesn't exist at some point over the defined
interval, or 2) the limits from the positive and negative directions are different. Problems
2-1 through 2-4 are examples of discontinuous functions.

Another often used sample of a discontinuous function

is the integer function, y=[x], where the [x] *—o
symbolism is read as "the largest integer contained in x." Y =[x] —o0

For example, the largest integer contained in 2 is 2. The
largest integer contained in 2.99 is 2. Add as many 9's LI LI
as you like and the largest integer is still 2. The limit of

the function as x approaches 3 from the negative side

(slightly less than 3) is 2. The limit of the function as x
approaches 3 from the positive side (slightly greater

than 3) is 3. This discontinuity at each integer is shown in Fig. 2-6.

Fig. 2-6

Look back over problems 2-1 through 2-4 and note that the discontinuity occurs at the
vertical asymptote.

Another example of a discontinuous function is one defined on certain intervals such as

x+3 for -3<x<0
} f(x)

S {1.5x+4 for x>0

This is a discontinuous function. Though it is defined
everywhere over the interval, the limit as zero is approached
from the positive side is 4, and the limit as zero is
approached from the negative side is 3. The function is
shown graphically in Fig. 2-7.

An example of a function that is discontinuous from one side

only is the square root function. The function y = Jx is not Fig. 2-7
defined for negative x because there are no real square roots
of negative numbers. In mathematical symbolism

lim Vx=0 and lim s/? does not exist

x>0+ x>0~
The function 1s continuous to zero from the right side but not from the left side.
The cube root function, y = %/;, behaves differently. There are real cube roots of both

positive and negative numbers as well as zero. This function is continuous over the entire
range of real numbers for x.
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The derivative of a function is the slope of that function anywhere the function is well
behaved. A function is well behaved in a region where there is a unique slope at every
point. A constant function, y=2, y=-3, is a straight line of slope zero. A linear

equation, y =2x—-3, y=-x+5, has a constant slope (2 and —1 in these cases).

The simplest function that does not have a constant slope is the quadratic, y = x? (see

page 11 for a discussion of quadratics). The slope of the quadratic, considering only

positive values of x, increases as x increases. Look at a magnified portion of the y = x?

curve and approximate the slope of the curve at any point by writing a general expression
for the slope of the straight line connecting two points x and x+Ax. The notation Ax
means a small change in x so the point x + Ax is very close to x.

Figure 3-1 shows the curve y
y=x2 and the straight line

connecting the

points (x,y=x2)
and (x+Ax, y = (x+Ax)?).

The slope of the line
between these adjacent

points is X x
The general expression for the Fig. 3-1

slope of this curve at any point

x is the limit of this approximate slope as goes to zero. Using the mathematical
symbolism of limits, the general expression for the slope of is

33
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This defining equation for the derivative is called dy/dx, where the d notation indicates
the limit of Ay/Ax, or y', or f'(x). For the quadratic, we have the following:

2 2y 2
Q=lim (x° +2xAx +(Ax)")—x

= lim (2x + Ax)=2x
dx A0 Ax Ax—0

This general expression for the derivative i1s used to determine the slope of the curve
y= x? at any point. When x =3, the function has value 9 and slope 6. When x =4, the
function has value 16 and slope 8.

Another, more general, way of writing this definition is

Y _ iy YEHA) () 3-1)

dx—Ax—>0 Ax

where the expression y(x+Ax) means the value of y at x+ Ax and y(x) means the value
of y at x.

3-1 Use the definition of the derivative to find the derivative of y= x>

Solution: Follow the definition of the derivative in equation 3-1.

dy_ o A —x x? 430 Ax+ 3xAx? 4 Ax -
dx A0 Ax Ax

Y _ fim (3x% +3xAx + Ax? ) =3x?
dx A0

POIYHOH\iGlS There is a pattern to these derivatives f(x) f'(x)
as illustrated in the adjacent table. The pattern const 0
suggests a general rule for differentiating polynomials. nix m
n n-1 x? 2x
If f(x)=cx",then f'(x)=cnx" . ; 5
X 3x

This power law works for positive and negative exponents, as well as fractions.
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3-2 Differentiate y= 3x  +x42.
Solution: Following the general definition of the derivative (equation 3-1) write:

dy_ [B(x+Ax)? +(x+Ax)+2]—[3x> +x +2]
dx_Ax—>o Ax

Looking at the parentheses, the 2’s add to zero and the x’s add to zero. The (x+ Ax)’
term 1s in the previous problem as well so

o 3x? +9x%Ax +9xAx? +3Ax° -3
Y _ oy 22 XAX” +30%° +AX = 3X7 i 0x2 4 9xAx+3Ax2 +1=9x7 41
dx A0 Ax Ax—0

Look at the general power law rule (If f(x)=cx", then f'(x)= enx™ ') and notice that if
this law were applied to each of the terms, first the 3x’ , then the x, this result would be
achieved.

The previous problem is an example of a simple rule: The derivative of a collection of
terms is the sum of the derivatives of the individual terms. In mathematical language

If f(x)=u(x)+v(x) then f'(x)=u'(x)+Vv'(x), and *
if f(x)=u(x)—v(x) then f'(x)=u'(x)—Vv'(x).

Remember

3-3 Using the general power law rule and the sum and difference rules (above) find the

derivative of y =4x3 +3x1 - 2x-3.

Solution: y'=3(4x2)+2(3x)-2(1)-0=12x2 +6x -2

3-4 Find the slope of y =4x> +3x2 ~2x-3 at x=2.

Solution: Using the expression for y' from the previous problem we can solve as
foliows:

y'(2)=12(2)* +6(2)-2=48+12-2=58
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3-5 The cost in dollars to manufacture a certain item is CM =120+0.02x% . This
relation is valid for up to 70 items (maximum capacity of the facility) per month. Find
the cost to manufacture the 10", 40™ and 70" items. This is called the marginal cost.

Solution: The general expression for the cost per item is the derivative of the cost
function, d(CM)/dx .

d(CM) d(CM) d(CM)

= $0.40 =$1.60
10 40 70

=$2.80

_004x M
dx

The derivative can be thought of as a rate. A most convenient way to illustrate this is with
velocity and acceleration. One of the easiest rates to visualize is velocity, distance divided
by time. If something moves 200 meters (m) in 50 seconds (s) we say it has a velcoity of
4m/s. This 200m in 50s produces an average velocity, Ax/At in calculus language.

The velocity at any instant during the 50s may, however, be quite different from the

average. To find the instantaneous velocity we first need to know how x varies with time,
or x= f(t). Then dx/dt, the limit as the time interval becomes shorter and shorter, is an

expression for the instantaneous velocity, v, that can be evaluated at any time.

If something is changing velocity as it moves then we can take the difference in velocity
between the beginning and end of a time interval and calculate the average acceleration
over that time interval. The instantaneous acceleration (a = dv/dr), the rate at which the

velocity changes, is the derivative of the velocity-time relation evaluated at any time.

3-6 Find the expression for the instantaneous velocity for the distance-time function
x=kt* <1t +mt and evaluate the velocity at 1 =1s_. Take k=2m/s3 s I=4m/s2 .
and m=5m/s.

Solution: The general expression for velocity is the time derivative of the x = f(¢), or

v=—t—=3kt2 —2lt+m

and the velocity evaluatedat =1 is

v, =) @m/s*)(15)> () (Am/s*)(1s) +5m/s =3m/s
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3-7 Continue problem 3-6 by finding the acceleration at ¢ = 25

Solution:  The general expression for the instantaneous acceleration is the time
derivative of the expression for v. (See the previous problem for v.)

a=ﬂ=2-3kt~2/
dt

and the accelerationat 1 =2s 1is

a|,_, =(6)2m/s’)(25)-2(4m/s*) =16 m/s’

Velocity and acceleration problems are excellent test problems. Be sure you know that
given position as a function of time x = f(¢), the velocity is the first derivative, and the

acceleration is the second derivative.

Given x=4+6r—5t> know how to find velocity (v=6-10¢) and acceleration
(a=-10) and be able to evaluate velocity and acceleration at any time.

The velocity is the first derivative of position, v =dx/dt. The acceleration is the first
derivative of the velocity, a =dv/dt. Both derivatives come from the same function.

The velocity is the first derivative and the acceleration the second derivative. It is
common to write v as a first denivative and a as a second denvative:

dx d’x d dx]
v=— and a=———=—| —
dt dt?  di\ dt

Y ou will encounter second and third derivatives of the same function in other areas.

Product and Quotient Rule Having established the derivatives of
polynomials and worked some sample problems let's move on to fractions and products.

3-8 Find the derivative of the function y=x2(x+2).

2 2
- 2
Solution: d_y= lim (x+AX) (x+Ax+2)—-x"(x+2)
dx  Ax-0 Ax

Pattern
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dy_ . (x> +x2Ax+2x2 +2x 2 Ax+ 2xAx? + 4xAx + xAx? +Ax? +2Ax2 ) —(x* +2x2)
dx—Ax—>0 Ax

& =3x% +4x
dx

Second Solution: The solution could have been obtained much easier by applying the
rule for differentiating a product. The derivative of a product is the first term times the
derivative of the second term plus the second term times the derivative of the first term. In
mathematical sybolism,

If f(x)=u(x)v(x) then f'(x)=u(x'(x)+u'(x)v(x)

For this problem, then,

dy 2 d d 2 _ 2 2
—=x"—{x+2)+(x+2)—x" =x"(D+(x+2)(2x)=3x" +4x

= dx( )+(x+2) I (D+(x+2)(2x)

A similar, though somewhat more complicated rule applies for fractions. Again, use the
basic definition of the derivative to find the differential of a fraction and see how the
differentiation can be performed much easier with the fraction rule.

d
3-9 Use the basic definition of the derivative to find ix’- of y= "—*2'1
X

x+axdl x4l
2

—
dy _ lim (x + Ax) X

Solution: =
dx Ax—0 Ax
b _ 22(x+Ax+ ) - (x+1)(x? +2xAx + Ax?)
dx  Ax—0 (x+Ax)? (x? )(Ax)
dy _ x4 A4 - (00 + 20 A g xAx? 4 x? + 2xAx + Ax?)
dx  &x0 (x + Ax)? (x? )(Ax)

Q_ ~x2 —2x__x+2
dx oA B
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Second Solution: The general rule for differentiating a fraction is:

If f(x):u—gf% then f'(x)= V(X)u'(x)—-u(x)v'(x) *

v(x [v(x))?

Remember
By applying this rule the problem becomes much easier:

x? Zx(x+l)—(x+l);x(x2)

dy _ X M=(x+102x) _ —xP-2x  x+2
dx (x2)? - x* T

Trigonome'rric Functions There is no gereral rule for determining the
derivative of trigonometric functions. Each trigonometric function has a unique
denvative. One will be done to demonstrate the approach. Consult the table of
derivatives (pg. 182) for the derivative of each specific trigonometric function.

3-10 Apply the basic definition to find the derivative of the sine function, y =siné.

Solution: 4y _ o, SO +AD)—sin &

df Ae—0 A6

The sin(& +A8) can be replaced with the sum of two angles identity (see page 5 or the
Mathematical Tables at the back of the book for trigonometric identities).

d_y_ lim sin & cos A@ +cos & sin A@ ~sin 6
dg 430—)0 AB

As A8 goes to zero, cos A@ goes to 1 (see the graph of the cosine function on pg. 5) so
the problem reduces to

ﬂ =cosd lim sin AG
d A0 A8

As A@ approaches zero, sin A@ approaches A@. For small angles the sine function
looks like a straight line of slope 1. Check this out with your hand calculator.

Take the sine of 0.2 (rad), a little over 11°, and notice how close the sine of 0.2 is to 0.2,
Now decrease the angle to 0.1, 0.01, 0.001, until your calculator no longer displays a
difference between the sine and the angle. The limit of sin A8 over Af as A@ goesto
zero is 1 so:
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The denvative of the sine function is the cosine function.

The approximation sin =6 forsmall @ is used in many problems in physics and
engineering.

Imp|ici‘r Differentiation The general procedure for differentiating a

polynomial function y =x?+2x isto apply the power law rule to each term and write
dy/dx =2x+2. Another and often very convenient way of looking at the problem would
be to differentiate the entire equation term by term, dy =2xdx+2dx, and then write
dy/dx=2x+2. You should notice that most differential tables are written in this
manner. As functions become more complicated implicit differentiation becomes more
convenient. Suppose you have a function x4 xt y2 - xy3 =18 where it is impossible to
solve for x in terms of y or y in terms of x. Implicit differentiation is the only way to find

dy/dx.
3-11 Find dy/dx for x* +x?y? —xy* =18 by implicit differentiation.
Solution: The x’ y2 and xy3 terms are treated as products.
4x3dx+x2d(y2)+y2d(x2)—xd(y3)—y3dx =0
4x3dx + x> 2ydy) + y2 (2xdx) - x(3y dy)— y dx = 0
Separate out the terms multiplying dy and dx.
(2x2y—3xy?)dy = —(4x> +2xy? — y*)dx
and solve for dy/dx.

dy _ 4x° +2xy2 —y3

dx 2x2y—3xy2

3-12 cContinue problem 3-11 by finding the value of the slope at x=2, y=1.

Solution: The dy/dx is from the previous problem so



DERIVATIVES 41

3
@l __AQ 21 3244-1_ 35

dex2 - 22)-3@)) 86 2

The graph of x* +x2y2 —xy3 =18 goes through the point (2,1) and has a slope at this
point of —17.5.

Change of Variable implicit differentiation and a change of variable become
essential when functions become complicated and more than one rule is needed to
perform a differentiation.

3-13 Find the derivative of y =(x+3)%.

Solution: You could try to find someone to raise x+3 to the 25™ power or you could
view the x+3 as a vanable and apply the power rule. Implicit differential also helps to
simplify the problem.

dy =25(x+3)** d(x+3) so %=25(x+3)24

Second Solution: Instead of just thinking of the x+3 as the variable you can define a

5

new variable, ¥ =(x+3) so the function reads y=u®® with implicit derivative

dy =25u 2 du . The derivative of  is from the definition of u, so du =dx and

dy=25(x+3)**dx and Zx—y =25(x +3)*

3-14 rind the derivative ofy=cos3(x2+2).

Solution: From the Mathematical Tables (pg. 184), the derivative of the cosine is
negative sine. Use the power rule first to obtain dy =3 cos? (x2 +2)d cos(x® +2).

View the x° +2 as the variable and take (the derivative of)

d cos(x? +2) = —sin(x? +2)d(x? +2) = 2xsin(x? + 2)dx
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Combining,
% =[3cos?(x? +2)][-2xsin(x? +2)] = —6x cos? (x2 +2)sin(x? +2)
Second Solution: Notice how much easier and less susceptible to error the problem

becomes when a change of variable is made early on in the problem. First set u = x2+2

s0 du=2xdx. Now write the problem as y= cos® u and differentiate implicitly.
dy = 3(cos? u)d cosu = 3(cos? u)(—sin u)du =3[cos? (x* + 2)][-sin(x? + 2)[2xdx

d_y = —6x cos? (x2 +2) sin(Jur2 +2)

Chain Rule in many practical situations a quantity is given in terms of a variable and
then this variable is expressed in terms of a third variable. A problem may be described
this way because the first variable is not easily written in terms of the third or perhaps it is
conceptually easier to understand the process in two steps.

Sand
Precious metals

Chip Factory

Dog Chips

Suppose the cost of manufacturing a certain item, say a computer chip, depends on the
number of items produced. The number of items produced depends on the length of time
the "fab" facility operates to produce the chips, the length of time for the production run.
If the cost per unit (dollars per chip) is dC/dN and the rate of production (chips per hour)

is dN/dt , then cost per unit of time is the product of these two derivatives.

dc _dc av
dt dN dt
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3-15 Find dufdr for u=x>+2x and x=¢-3.

Solution: This requires a chain derivative: du _ du dx
dt dx dt
du du dx 2
LTI (2x+ 2)3t
dt  dx dt (2x+2)3%)

Logarithms and Exponents The differentials of several logarithms and
exponents are listed below.

If y=e® then dy=e"dx
If y=a* and a>0and a#1 then dy=(Ina)a*dx

If y=Inx then dy=—l—dx
x

1

(Ina)x

If y=log,x and a>0 and a#1 then dy=

2
3-16 Find the derivativeof y=e* 3.

Solution: Think, or write, y =¢“ and the derivative is

3 dy 2 3
dy=e"du=e* ~°(2xdx) or Ex—=(2x)eJr -

3-17 Find dy/dx of y=Inx?.

1
Solution: dy =— 2xdx or
x

& _2
dx x

3-18 Find the derivative of y=x"> In(x? +2).

Solution: This looks bad. But, if you proceed slowly, applying the rules one at a time,
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the differentiation is not all that difficult. The hard part is proceeding logically. This is a
product so write

dy = x"d[ln(x? +2)]+In(x? +2)dx'?

The differential of ln(x2 +2) is, according to the table, 21 ( +2)= Zde
x“+2 x2+2

The differential of x'° is (1.5)x*’dx.

Putting it all together we get the following:

15 2xdx
x2 +2

dy=x"° 2 (1.5)x%° In(x? +2)dx or L +(1 5)x% In(x? +2)
dx x2+2

tan x

3-19 Find the derivative of y =

Solution:  Your first reaction to this problem probably is to apply a fraction rule.
Apply the fraction rule.

dy x%(tanx)—(tanx)%x

_ xsec? x —(tan x)
dx x? x?

Second Solution: Often viewing a fraction as a product makes for an easier
differential. Switching to an implicit differential and viewing the problem as a product,

dy = x 'd(tan x) + (tan x)d(x ') = x 7! sec? xdx + (tan x)(—x 2 )dx
ﬁdl_ xsec? x —tan x
dx x?

3-20 Find the derivative of y=e *sinx.
Solution: This is a product. Proceed methodically and the problem is not difficult.
dy = e *d(sin x) +sin xd(e ™) = e ¥ (cos x)dx — e~ * (sin x)dx

—dz=e_x(cosx—sinx)
dx
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GRAPHING

The next three chapters, graphing, max-min problems, and
related rate problems, all deal with applications of the
derivative. They are considered the most difficult topics in
the first semester of calculus, particularly graphing.

Before going any farther in this chapter go back and review
the graphing of parabolas, paying particular attention to
visualizing the curve before plotting points and sketching the
curve. Also go back and look over the concept of asymptotes
in the chapter on limits. Many authors approach graphing in
the calculus by using calculus only. We do not use that
approach.  Graphing is difficult enough without using
exclusively new techniques. We use the graphing techniques

of algebra; particularly those techniques discussed in the graphing of parabolas and
higher power curves. Let's look at a couple of simple problems and see how the

derivative can be used in curve sketching.

4-1 Sketch the graphof y=4.

Solution: This is a straight line parallel to the x-axis as
shown in Fig. 4-1. Further, it is a horizontal line. The
derivative of y =4 is zero.

Any curve in the form y=const. is a horizontal line
parallel to the x-axis and has zero slope.

4-2 Sketch the graph of y=2x.

Solution: The derivative of y =2x is 2. The slope is

everywhere constant and equal to 2 (see Fig. 4-2). Any
linear function has a constant derivative and a constant
slope.

Fig. 4-2

45
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4-3 Sketch the graph of y= -x2 -2x+8.

Solution: This is a parabola (the 2 in the exponent) that opens down (the minus sign in
front of the squared term) and it is shifted up or down and sideways (the 8 means it is
shifted up and down and the presence of an x term means it is shifted sideways). If you
did not know this go back and review the sections relating to graphing parabolas.

Factoring, y=(-x+2)(x+4) tells us that the
curve crosses the x-axis when x=2 and y
x=—4. These are the values of x that make
y=0. Place these two points on the graph and
with the knowledge that the curve opens down,
expect a positive value of y at the symmetry
line, x=-1. Substituting x=-1 into the
original function produces y =9. These points
and the knowledge that the curve is a parabola

]
1

are sufficient for drawing the sketch shown in ,
Fig. 4-3. x=-1

L il i1y

There is another point that is so easy it is not
worth passing up. Look at the original function
and note that at x=0, y=8.

So, where does calculus come in? At the point (—1,9) the slope of the curve is zero.

This means that the derivative must be zero at the point x =—1. When the derivative of a
function is zero, the slope is zero and the curve is flat (at that point). Setting the

dernivative of y = —x?—2x+8 equal to zero should produce the value of x =—1.

The function y= -x2—2x+8 has derivative y'==-2x-2=-2(x+1). Setting
—2(x+1)=0 produces the solution x = -1 and we already know y=9 for x=-1.

How does calculus help in graphing? When the derivative of a parabola is zero, the curve
has a m or v shape. Zero slope means the curve is flat and the only place where a
parabola is flat is at a peak or a valley. The broader application of this approach is very
helpful in higher (than 2) power curves such as the one in the next problem.

4-4 Sketch the graphof y = x}-3x242.

Solution: The dominant term is x* so for large enough values of x the curve looks like
a cubic. It goes up to the right and down to the left. If you have any trouble
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understanding that last sentence go back to the chapter on graphing and look up cubics.
For x=0, y=2. With this most rudimentary analysis we know that the curve goes up

to the right, down to the left, and passes through (0,2).

The denivative of a cubic is a quadratic, and a y
quadratic has two solutions or, in this case, two points
where the slope is zero.

The derivative of y= x3-3x? 42 is

y'=3x? —6x =3x(x—2) with solutions x=0 and .
x=2. Substituting these values into the original
function produces the points (2,-2) and (0,2). Place
these points on the coordinate system, remembering
that they are points on the curve where the slope is

zero, and the curve is easily sketched. Fig. 4-4

The point (1,0) is easy to calculate. And if more detail is desired the values of (2,2) and
(-1,-2) can be obtained easily. These last two points show an approximate position
where the curve crosses the x-axis (Fig. 4-4).

A 3" power curve has a 2™ power derivative. The 2™ power derivative has at most two

points, solutions, where the derivative is zero. A 4™ power curve has a 3™ power
derivative and at most three points where the derivative is zero and so on for higher E
power curves. The number of points where a polynomial has zero slope is at most equal  Pattern
to one less than the power of the polynomial. There is, however, another little twist to

this rule as illustrated in the following problem.

4-5 Sketch the graph of y=3x4 —4x° +1.

Solution: This is a 4™ degree equation. The

3x*term dominates for large x so the curve
eventually rises to the right and the left. The point
(0,1) is easy. The point (1,0) is almost as easy.
Now apply some calculus analysis. Differentiate
the function, set the derivative equal to zero, and
find where the curve has zero slope.

y=3x4 —4x® +1

Differentiating the function, —+
y'=12)c3 —12x* =12x*(x-1), and setting the -+

derivative equal to zero, 12x%(x —1) =0, produces
two values of x where the slope is zero, x =0 and
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x=1. We already have the coordinates of these points, and now we know the curve has
zero slope at these points.

This analysis has produced a dilemma. How can the curve go up to the right, go up to the
left, and have two points such as U or m? It can't! One of the points where the slope is
zero must be a point where the curve, going up or down, becomes flat and continues on
up or down. The point x =1 is lower than the point x =0 so the point at x =1 must be
the one with shape  and the point at x =0 must be the one where the curve flattens
out (Fig. 4-5). The exact shape in the vicinity of both x =0 and x =1 can be checked by
trying some points in the original equation. There is, however, a better way. It involves
calculus and it is easier.

The first derivative of a function set equal to zero determines where the function has zero
slope. At these points the curve is either concave up or concave down, or has an
inflection point where the slope is zero. The second derivative of the function produces
the answers here. - To get a feel for how the second derivative works look at the previous
problems.

Problem 4-3 is the sketch of y = -x% -2x+8 and algebra analysis indicates a parabola
that looks like ~, symmetric about the line x=-1. The first derivative of y is
y'=-2x-2=-2(x+1) and setting y'=0 produces the point (for zero slope) of x=-1.
The second derivative of y = —x2 —2x+8is y''=-2. The second derivative is negative
at x =-1 and in fact everywhere on the curve.

A simple parabola y = x2 +()xx() opens up (). The first derivative is y'=2x%() and
the second derivative is y''=2. For a parabola that opens up, the second derivative is
positive at the minimum value.

Look at problem 4-4, the graph of y = x*> —3x? +2. The first derivative y'= 3x? - 6x
produces zero slopes at x =0and x=2. The second derivative y''=6x—6 is negative
at x=0, and positive at x =2

Both of these problems illustrate the rule
that at points where the first denivative Concave up
goes to zero, the curves are concave up =+
when the second denivative is positive and "
concave down when the second derivative fr=-

is negative. This is a calculus method of Concave down
determining where the curves are concave

up and where they are concave down.
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Now let's take a look at problem 4-5, the one with the horizontal inflection point. The
original function is y= 3x* —4x? +1 with first derivative y'= 12x% —12x2 producing
x=0 and x=1 as the points where the slope is zero. The second derivative is
y'= 36x2 - 24x=12x(3x ~2). At x =1, the second derivative is positive indicating the
curve is concave up at this point. At x =0, the second derivative has value 0 indicating
neither concave up nor concave down, but a point of inflection.

These three problems illustrate the use of calculus in graphing. What we have learned so
far can be summarized as follows:

e Take the first derivative. Set this first derivative equal to zero and solve the resulting
equation to find points where the curve has zero slope.

e Take the second derivative and evaluate the second derivative at the points where the
slope is zero.

If the second derivative is positive, the curve is concave up.
If the second derivative is negative, the curve is concave down.

If the second derivative is zero, the curve has a point of inflection.

4-6 Sketch the graph of y =x’+x?-2x.

Solution: The dominant term is x* so the curve eventually goes up to the right and
down to the left. The point x=0, y=0 is easy. Before differentiating, note that the
curve has zero slope at no more than two points because the highest power is 3. Follow
along the rules as they are written above.

The first derivative is y'= 3xt+2x-2. Setting 3x2 +2x-2=0 results in a quadratic
that cannot be factored so apply the quadratic formula

RN 3 2
_—2i\/—2_2——4(3)(-—2)__2i‘/—2'3-055_12 y | y=x"+x"-2x
2(3) 6 R

Figure 4-6 is a first cut at the graph. It is based only 1
on knowing that the curve goes up to the right, down H—}
to the left, passes through (0,0), and has zero slope / x

at x=055 and x=-12.

Is it possible to easily find the points where the Fig. 4-6

curve y= x* +x2 -2 crosses the x-axis? Maybe,
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maybe not, but it is at least worth trying a couple of obvious points:
At x=1, y(H=1+1-2(1)=0.

At x=-1, y(-)=-1+1+2=2. y y=x3+x2_2x
At x==-2, y(-2)=-8+4+4=0.

There is no point in trying further numbers. A

cubic only crosses the x-axis at most three times
and we have the three places where it crosses. /

1

x
Finding the y values at the turning points, where the \j
slope is zero, may or may not be important to you.
With this added information, the curve can be Fig. 4-7
sketched as in Fig. 4-7.

Second Solution: There is another feature of this curve that can be analyzed using
calculus. Look at the left part of the curve that looks like a parabola opening down and
then the right part of the curve that looks like a parabola opening up. On this left part of
the curve the slope becomes more and more negative until some point, between x =—1.2

and x =0.55, the slope of the curve, though still negative, starts becoming more positive.
The point where this happens is also called a point of inflection. The strict definition of
this point (of inflection) is that it is the point where the slope changes from becoming
more negative to becoming more positive or vice versa.

The analysis of points of inflection can be confusing which is why these subtleties have
been put off until now. There are two kinds of points of inflection, one where the curve
goes to zero slope but does not have a w or m shape, and the other where the curve
changes from having an increasingly negative slope to an increasingly positive slope.

The confusion does not end here, however. The first type of point of inflection is
determined by evaluating the second derivative at the point where the first derivative
goes to zero. The second type of point of inflection is found by setting the second
derivative equal to zero. Read this paragraph again and again until the distinction is clear
in your mind.

The first derivative of y=x>+x?—2x is y'=3x>+2x-2 and this resulted in the
points x =0.55 and x =-1.2 where the curve crossed the x-axis. The second derivative
is y''=6x+2 which is positive at x=0.55 and negative at x=-1.2 confirming the
previous analysis of this curve. The new feature is obtained by setting the second
derivative equal to zero 2(3x+1)=0. The second derivative is zero at x =—1/3. Look
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again at the curve in Fig. 4-7 and see that this is a very reasonable point for the curve to
change slope from becoming more and more negative to becoming more and more
positive. This is another graphing tool involving calculus.

4-7 Sketch the graph of y =8x° -5x* -20x*.

Solution: This is a 5™ degree curve so it

increases (nse':s) rapldly. with large posmvc? X y y= 8x5 —5x* —20x
and goes rapidly negative for large negative (-17)
values of x. The function factors to
y= x*(8x? —5x-20) producing the points
x=0, y=0. ' v

| ]

x
The first derivative is /
' A0vd 203 02

y'=40x" ~20x" - 60x (3/2,-64)
y'=20x?(2x* -x-3)
y'=20x2(2x-3)(x+1) Fig. 4-8

Setting the first derivative equal to zero ()'=0) produces three points
x=0, 3/2, and —1. These are the points where the curve has zero slope.

The second derivative is
y'= 160x> —60x? —120x
y''=20x(8x% —3x—6)

To determine the shape of the curve where the slope equals zero, find 3" at each point:
y''(0) =0, horizontal point of inflection; y''(3/2) =225, U shape; y''(-1)=-100, »
shape.

The value of the function at each turning point is found by putting the values of x in the
function.

At x=0, y(0)=0
At x=3/2, y(3/2)=(3/2)*[8(3/2) - 5(3/2) - 20] ~ —64
At x=-1, y(-1)=-1(8+5-20)=7
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All the inflection points, both horizontal and vertical, are found by setting y''=0:
20x(8x> —3x—6)=0. The inflection points are at x=0 and the solutions to
8x% —3x-6=0 are

339 48)X-6) _3t142
- 2(8) T 16

=-0.70,1.1

These are most reasonable points, being where we expect the points of inflection to
occur. The function is sketched in Fig. 4-8.

So far we have looked at polynomials. This is the type of function you will encounter
most often. Your course may or may not include the graphing of rational functions
(polynomial fractions). Polynomial fractions introduce one more interesting twist to the
use of derivatives in curve sketching, what happens to a curve when the derivatives are
undefined. This is best illustrated by example.

4-8 Skeich the graphof y = xz/x—l .

Solution: At x=1 this function is
undefined (1/0). Therefore draw a

dashed vertical line on the coordinate
axes at x =1 indicating that the curve
may exist to the right or left of this line,
but not on the line. There is no
dominant term in the same manner as

for polynomials but, applying similar
reasoning, look what happens when x is
a large positive or negative number.
When x is large the x-1 in the
denominator looks like x and the
function looks like y=x. In the
language of the chapter on limits: As
xX—>xw, prx.

Add a dashed line, y=x, to the

coordinate axes remembering that this is
an asymptote line.

Fig. 4-9

Now apply some calculus analysis. The first derivative of the function is, using the
quotient rule:
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_(x=D@x)-x _2x?-2x-x?  x?-2x
(x-1? x-n* (-1’

Before setting y'=0, note that the derivative does not exist at x=1. But we already

knew that because the function does not exist at x=1 so it is not surprising that the
denvative does not exist there. Note, however, that as x approaches 1 from either the
positive or negative side, the slope of the curve is negative. This information may be
helpful in sketching the graph. (See Fig. 4-9.)

Setting y'=0 produces x(x—2)=0, and the two points where the slope equals zero,
x=0,and x=2. The values of the function for these two points are:

2

2
y(0)=0 and y(2)= 51 =4 so the slopeof thecurve iszeroat (0,0) and (2,4).

If you are unsure of the shape of the curve in certain regions, check a point. With the
information generated from the calculus and the concepts of limits you should get very
close to the correct curve. As you gain more confidence you will not resort to checking
specific areas of the curve by testing a point.

The previous problem is typical of the more difficult ones you will encounter in your
course. It is probably beyond what you will encounter on a test because of the
complexity of the analysis and the potential for confusion. Sketches of the graphs of
polynomials are much more popular as test problems. Know how to graph polynomials
and you will be well along toward a good test score in graphing.

Having gone through examples of what you can expect to encounter in graphing
problems, it is now time to write down some procedural guidelines for graphing curves of
the general form y = f(x).

Guidelines for 6raphing with Calculus

1. Look for the dominant term. If the function is a polynomual, the highest-power term
gives the shape of the curve for large positive or negative numbers, and one less than
this highest power gives the maximum number of points where the curve has zero
slope.

2. If the function is a fraction ask how it behaves for large x. Does it look like a straight
line, a parabola, or what? Also look for places where the curve does not exist.

3. Take the first derivative. Set the first derivative equal to zero and solve for values of
x where the curve has zero slope. Determine the y-value at these points and add these
points to the coordinate axes.

Remember
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4. Take the second derivative. Evaluate the second derivative at the points where the
slope is zero: If the second derivative 1s positive, the curve is concave up; if the
second derivative is negative, the curve 1s concave down; if the second derivative is
zero, the curve has a point of horizontal inflection.

5. Set the second derivative equal to zero and solve for values of x where the curve
changes concavity. These are points where the slope of the curve changes from
going more positive to going less positive or from going more negative to going less
negative.

6. Sketch the curve. If you are unsure of the curve in certain places, plot a few points

These are guidelines for graphing functions. You may not always need all of the steps
listed here. Depending on what you are looking for in the problem, you may not need to
perform each step in detail. These guidelines will, however, allow you to graph just
about any function you encounter. Now it is time for some application problems.

4-9 The number of sales of a certain consumer item is growing in a quadratic way
with time while the discard rate remains a constant over time. Analysts expect this trend
to continue for five years. The number of these items in the hands of consumers as a
function of time is N(1)=3.2¢> —3t+24. The 3.2¢> term represents the quadratic
growth in sales, the —3¢ term represents the discard rate, and the 24 represents the
number now in consumer hands. Sketch the graph of N vs. ¢. Determine if there is
anything else in the graph or the calculus analysis that will help in business planning.

Solution: This function is a quadratic that opens up. It starts at N =24 when (=0.
Only positive values of 7 have meaning. The equation cannot be factored so let's continue
with the analysis remembering that we can always come back to the solution for N =0if
necessary.

The first denvative of the function N
N()=3.2%-3t+24 is N'=6.41-3

Setting the first derivative equal to zero
produces 6.4/-3=0 and the value 1 =047
for zero slope of N vs. 1. The value of the
function at 1 =0.47 is

24 _
N\ N()=3.2% -31+24

1
LI i I
N(0.47)=3.2(0.47)2 ~3(0.47)+24 =23.3. t

0.47 yr.

The second denvative is 6.4, a positive Fig. 4-10
number so the shape of the curve at x=0.47,
and everywhere is v . With this information
the curve can be plotted as in Fig. 4-10. The curve never crosses the t-axis.
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In addition to showing graphically the number of units predicted as needed, the first
denivative tells us something else. For the first half-year the number of items in
consumer hands will decline (the minimum in the curve is at 0.47 yr.), then will rise. If
the model is correct, suppliers need to be prepared for modest increase followed by a
much greater increase in demand for the product.

4-10 The volume of lumber available in a managed forest

follows the formula ¥ = (0.08)r% —(0.001):* over the first 60
years' life of the forest. Find the general shape of the curve
from 0 to 60 years and determine the optimum time for
harvesting the forest.

Solution: Only positive time from O to 60 years is
interesting. The volume of lumber is in arbitrary units
depending on the size of the forest. The curve starts out as a

quadratic and then begins to flatten out with the growth of the 1® term. This is
reasonable. Trees grow rapidly in their early years and then slow down as they reach
maturity.

Take the first derivative of the function ¥ =(0.08)2 —(0.001)%> to obtain

V'=(0.16)t - (0.003) 2 Set this first derivative equal to zero to find the times when the
curve has zero slope. #(0.16-0.003¢) =0 produces values of t=0, and 1=533. The

time of 533 years is well beyond where the formula is valid. The time =0 is very
reasonable. The curve is flat at 1 =0 and rises throughout the 60 years when the formula
is valid.

Take a second derivative: V''=0.16-(0.006) and set this equal to zero;
0.16—(0.006): =0 produces a value of 1=0.16/0.006=27years. This second
derivative test shows a change in concavity
at 27 years. This means that the change in 4
volume with time, the slope of the V vs. ¢
curve, reaches a maximum at 27 years and

after this time begins to drop off. V =(0.08 —(0.001°
The most appropriate time to harvest this

forest is at 27 years. A year or two more or L i

less from this number won't make much LY

difference because the slope is not changing 27 yrs.

rapidly around 27 years (Fig. 4-11).



56 CHAPTER 4

4-11 A certain disease is infecting an animal
population. Experience with this disease shows that after
injection with the appropriate antidote the number of
animals infected with the disease follows the following
formula: P(f) =(201 +8) /(t> +1) where ¢ is measured in
weeks. Find the time after the injection when the most
animals will be affected by the disease and the total number
affected. P(¢) is measured in thousands.

Solution: The ¢* term in the denominator insures that as time goes on the number of
infected animals will eventually tend to zero. If it did not, we should be looking for
another antidote! There are no positive values of 7 where the curve does not exist. If this
model correctly predicts the total number of animals affected by the disease and the time
when this maximum occurs, then the antidote is working as predicted and we are assured
that all the animals will eventually be cured shortly after the disease peaks.

At t=0, P(t)=8. This is when the antidote is administered to the animals. Finding the
general shape of the P vs. ¢ curve is ideally suited to calculus analysis.

20048 . b _ (12 +1)20— (201 +8)(2f) _ —201% —161+20

The first derivative of P(f) = — 2 2 2 132
12 +1 (% +1) (" +1)

Set the first derivative equal to zero and obtain

p— 2 —
——5’2 4’2+5=0 or St2+41-5=0 p 20148
@+ P(t) =
. . 148 | 12 +1
This equation cannot be factored, so solve by
quadratic formula:
-4+ J16-4(5)(-5) -4+ 8 —
= (5X=5) -4+v116 =0.68,-1.5
2(5) 10
Only the positive value has meaning so take i i
t = 0.68 weeks for the zero slope condition and t
calculate P 0.68 wk.
Fig. 4-12
P(0.68)=20(0'68)+8=13'6+8—21'6—14.8 ig

(068)2+1 146 146

The disease should peak at 0.68 week or 5 days after administration of the antidote with a
maximum of 14.8 thousand animals infected on that day. After the 5™ day, the number
infected should decline as illustrated in Fig. 4-12.
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MAX-MIN PROBLEMS

Max-min problems are unique to calculus.
As the name implies, a variable is
maximized or minimized in terms of
another variable. A typical problem would -
ask the question; Min

"What is the maximum volume of a cylindrical container that can be made from a given
amount of material?" The volume of the container is the variable to be maximized while
the surface area of the container is limited by the amount of material allowed. In this
example an equation for the volume (V' =... ) is the defining equation. It defines the
variable to be maximized, the volume, in terms of the dimensions of the container. The
specification of a certain amount of material for the container is called the constraint
equation. It relates the variables in the defining equation so the defining equation can be
written in terms of one variable. This all becomes much clearer after a couple of
problems.

Once the defining equation is written in terms of one variable it is differentiated to find
where the slope is zero. Where the slope of this curve is zero, the curve is at a maximum
or a minimum. The value of the second derivative tells whether that point is a maximum
or a minimum. Finding the points where the slope is zero and then identifying those
points as either maximum ~, or minimum , has already been done in the graphing
chapter. Max-min problems use much the same analysis techniques as with graphing.

Writing the defining equation is usually relatively easy. The hard part of max-min
problems is finding the constraint equation and then doing the algebra so as to get the
defining equation written in terms of one, other than the one to be maximized or
minimized, variable and in as simple a form as possible.

There are very few max-min problems where the defining equation is written directly in
terms of one variable. They are seen rarely on tests. They are considered too easy! Let's
slowly go through a couple of max-min problems before setting down guidelines for
working the problems and going on to the more challenging problems. Leamn the
procedure and max-min problems are not difficult.

57
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5-1 Design an open-top box for maximum volume.
The box is to be made from a square piece of material of
dimension a. What size square should be cut from each
corner to make the box?

a
Solution: The side of the square taken from each comer
is x. After the comer pieces are removed, the box is
formed by bending the sides along the lines indicated.
The definin uation is ¥ = (a-2x)°x.
£ ( ) Fig. 5-1

The bottom of the box is a—2x by a—2x and the height
is x. The a is a constant, making the equation for / one with only one variable, x.
Multiplying, we have the following:

V =(a2 —4ax+4x2)x= 4x% —4ax? +a’x

Differentiate V, and set the derivative equal to zero to find the maxima and minima of the
curve of Vvs. x.

V'=12x* -8ax+a® = a* —8ax +12x? =(a—-6x)a—-2x)

Setting V'=0 produces values for x of a/6 and a/2. These are the maxima or minima.
The value a/2 is obviously the minimum since this is a box of zero volume! The value
a/6 must be the maximum. The second derivative test will tell for sure. The second
derivative of Vis V'"'=24x—-8a. At x=a/2, V''=12a-8a =4a (positive or minima),
and at x =a/6, V''=4a—-8a =—4a (negative or maxima).

Maximum volume occurs when the square piece removed from the edge of the original
square is one-sixth the length of the side.

5-2 a rectangular area is to be enclosed with 320 feet of fence.
What dimensions of rectangle give the maximum area?

Solution: The quantity to be maximized is the area, the product of the a
lengths of the two sides of the rectangle. The defining equation, the A
equals... equation, is 4 =ab. Before maximizing the area (taking the

derivative of A), the product ab must be written in terms of one
variable. This requires a "constraint" equation relating a to b. The b
constraint in the problem is that the total length of fence 2a+2b must Fig. 5-2
equal 320. With this constraint equation A can be written in terms of a

or b, it makes no difference.
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Solve the constraint equation for g, and substitute in the area equation.
2a+2b=320 so a=160-b and A=(160—b)b =160b—b>

The maximum occurs when the graph of 4 vs. b goes through a maximum. A maximum
is defined, in calculus, as slope zero and second derivative negative.

Solving % =160-2b and setting this equal to zero we get 160—-2b=0 and b=80.

2

The second derivative ‘;b—f =-2 confirming b =80 asa maximum.

Go back to the constraint equation and note that for »=80, a=80. The area is
maximum for a square.

Often max-min problems can be done with the

first and second derivative. If you fell a little A A= 160b—b>
insecure, sketch the graph of the function. All =1606-b
the information, and then some, is already 6400 -1~

available for sketching the graph.

The original equation A= 160b-b° is a
parabola that opens down and goes through the
points b=0 and b =160 with symmetry line at

|
b=80. If you had any trouble with that last o5 ! " F—
sentence go back to the graphing of parabolas 80
and review the procedure. The calculus tells us Fig. 5-3

that the slope is zero at b =80 and that the curve
goes through a maximum at that point. This confirms what we already know from
algebra analysis. The curve is sketched in Fig 5-3.

This problem is an excellent pattern for max-min problems. Go through this problem
again concentrating on the procedure, not the mathematics, and follow along the
guidelines for doing max-min problems.

Guidelines for Max-Min Problems

Draw a diagram to help visualize the problem.

Write down the defining equation.

Tie the two variables in the defining equation together with a constraint equation.
Write the defining equation in terms of one variable.

Take the first and second derivatives to find maxima and minima.

Go back to the constraint equation and find all the quantities desired in the problem.

SR W=
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5-3 The strength of a rectangular wooden beam varies
jointly as the width and cube of the depth of the beam.
Find the dimensions of the strongest beam that can be cut
from a log of radius R.

Solution: Sketch the round log and the rectangular
beam. Do you remember word problems in algebra that
contained phrases like "... varies jointly as ... 7" This
problem is included to remind you that some instructors
use this language in calculus problems. The first
statement in the problem, translated into algebra, is

S=wd?>. This is the defining equation.

To translate the problem statement completely, there should be a constant in front of the
w but we are not going to calculate specific strengths, just the dimensions for maximum
strength so the constant is not necessary. The constraint equation involves writing the
Pythagorean statement for the right triangle formed by d, w, and 2R (Fig. 5-4).

The constraint equation, d 2 +w? =4R? can be solved for either d or w and substituted
in the defining equation. Either way does not look too appealing. Solving for w keeps

the numbers smaller so write w=(4R? —d? )1/ 2 and substitute into the defining
equation to write S in terms of d only.

S=@R*-d»H)V?4*

Differentiate S with the product rule

4
S'=(4R? -d)1? (3d2)+d3(1](4122 —d?y " (~2dy=3d*(4R? -d?*)V? 4
Set S' equal to zero
d4

oY or d* =3(4R*-d?) or 4d*? =12R?

3d2(4R* -d?)? =
and d=tv3R. The positive value for d substituted into the constraint equation
produces w? =4R?*-3R*=R? and w=R.

The maximum strength beam that can be cut from a log of radius R is one of dimensions
Rand V3R Itisnot necessary to formally determine that this is a maximum. It is the
only reasonable choice from the first denivative equals zero condition.



MAX-MIN PROBLEMS 6 1

5-4 A park area of 5000 square meters is to be built in the shape of a rectangle along a

river. Fencing will be on three sides. What is the minimum length of fencing for the
desired area?

Solution: Fencing is required only on three sides of the
rectangle as shown in Fig. 5-5. The defining equation is for the
perimeter, the variable we want to minimize: P=2a+b. The
constraint equation is from the area requirement. Stated in the
form of an equation: ab=5000. In order to write P in terms of b
one variable, solve the area equation for b and substitute.

Fig. 5-5
5= o p=24+22% 544500007
a a
Take the derivative of P: P'=2+ 5000(—a"2) and set P'=0:
0
2= 50(2) and a® =2500 or a=50.
a
. " -3, 5000 . . .
The second derivative of P:  P''=-5000(-2a )=—3— is positive for all positive
a

values of a, so a=50 isa mmnimum.

Putting a =50 back into the constraint equation: 50b = 5000 yields b =100,

The dimensions a =50, b =100 provide the minimum fencing requirement.

The graph of P vs. a is helpful in understanding this problem. The form

P=2a+ 5000 is most convenient for graphing. Only positive a has meaning. The first
a

step in graphing (page 53 contains the guidelines

for graphing) is to look for dominant terms. P

There are two here. The 2a term dominates for
large a and the 5000/a term dominates for small

. 300\ /7 P=2a+5000a""

In mathematical terms; as a—>0, P — +0;
and as a > o, P=2a. -+ .
The value of the function at a =50, the point
where the slope equals zero, is T/
A I
P(50) = 2(50) +5000/50 = 200 . rrr1

With this information the curve can be sketched .
as in Fig. 5-6. Fig. 5-6
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5-5 An orange farmer knows from experience that in a certain field 60 orange trees

will produce an average of 400 oranges per tree. For each additional tree planted the
average yield per tree will drop by 4 oranges. What number of trees will produce
maximurm total yield?

Solution: The total yield for 60 trees with an average of 400 oranges per tree is:

400
Y [ o = (60 trees) SToranges _ 24,000 oranges
4 tree
- 396
For one more tree the yield is: Y [ o= (61 trees) 27boranges 24,156 oranges
g 392 oranges
For another tree (total 62) the yield is: ¥ | ¢ = (62 trees) ——————— = 24,304 oranges

Looking at these numbers, the general formula for total yield as the number of trees is
increased is:

Y = (60+ x)(400 —4x)

where x is the number of trees in excess of 60.

Problem statements similar to this one can be confusing. You may have already figured
that out! One way of getting a handle on the defining equation is to put in some numbers.
In this case, writing the total yield for 60 trees producing an average of 400 oranges per
tree and then increasing the number of trees by 1 and decreasing the yield per tree by 4,
then repeating the process (increasing the number of trees to 62 and decreasing the yield
per tree another 4 oranges) provides an education in how to write the general statement
for the yield. The numbers also allow you to check the defining equation you have
written.

Write the yield equation as ¥ = (60 + x)(400 — 4x) = 24,000 + 160x — 4x° .

The first derivative of Yis Y'=160—8x and setting Y'=0, x=20.

The second derivative of Y'is V''=-8 verifying that x =20 is a maximum.

The total number of trees for maximum yield is 80 (20 more than the original 60).



MAX-MIN PROBLEMS 63

5-6 Find the minimum cost to construct a cylindrical container if material for the top

and bottom costs 4 cents per square inch and material for the sides costs 3 cents per
square inch. The container is to have volume 100 cubic inches.

Solution: Draw a cylinder of radius r
and height h. The area of the top and Area (top) = 7’ ‘@
bottom is 7r”. The area of the side is

(2zr)h. Imagine the side as a piece Area (side) = (2zr)h h
2zr long, the circumference of the

container, and # high. Volume = (2 )h \_)
url =

The defining equation is the cost equation Fie. 5.7
which in words is 4 cents times the area 18 >
of the top and bottom plus 3 cents times

the area of the side.

C=4nr? +nrt)+3Qnrh)y=87r’ +6xrh

The constraint is that the volume must be 100 cubic inches. The volume of a cylindrical
container s the area of the bottom, rt , times the height, #: V' = xrih.

Set V=100, solve for A, and substitute into the defining equation: 100=7r’h or

h:100/7rr2 and

C =8zr’ +67zri(?%=87rr2 +@=8n’r2 +600r™"!

nr r

The first derivative of Cis: C'=167r-600r7 and setting ('=0 produces

600
16m‘—@(—)=0 or r3=@ and r=3—0-z2.3
r2 167 V167

1200

3
r

The second denvative of Cis: (''=167+

C"' s positive for all positive r indicating a minimum for the curve.

Substituting the r for zero slope back into the constraint equation 100 = zrih produces

2/3 23
100=n71 20—0 h or h=@ léfj ~ 6.1
167 7 600
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B-7 Postal rates increase when the girth (once around) plus the length of a package

exceeds 84 inches. What are the dimensions of a "bricklike" shaped box with square
ends to provide maximum volume?

Solution: The defining equation is the volume

which in this case i1s the area of the end, x2 , times

the length, y: V =x2y

x
The constraint is that the girth, 4x plus the length, y, y
is limited to 84: 4x+y =284 ”
The simplest way to write the " =... equation in Fig. 5-8

one variable is to solve the constraint equation for y:
y=84-4x and substitute for y in the defining equation.

V =x2(84—4x) =84x? —4x>

The first derivative of V is V'=168x—12x*> and setting V'=0, 12x(14-x)=0
produces two values of x where the slope of V' vs. xis zero: x=0 and x=14. The

value x=0 produces a zero volume, about as minimal as you can get, so x=14 isa
good bet for maximum volume.

The second derivative of V' is V''=168-24x. Evaluating V' at x=14 is
V'(14) =168-24(14 =168-336 =—168 verifying our suspicion that x=14 produced
the maximum volume.

Going back to the constraint equation solved for y, the corresponding y dimension is
y=84-4(14)=84-56=28.

A box with a square end 14 inches on a side and length 28 produces the maximum
volume within the girth and length restrictions.
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RELATED RATE PROBLEMS

Related rate problems relate one rate, written as a derivative, to another rate written as a
denivative. An excellent example of a related rate problem, and one that is in nearly
every calculus book including this one, is a ladder sliding down a wall. (See Fig. 6-1.)
The top of the ladder is moving down the wall while the bottom of the ladder is moving
away from the wall. The rate (speed) the top is moving down the wall can be related to
the rate (speed) the bottom is moving away from the wall. Thus the name of these
problems, related rate problems.

A lhttle review is in order. Related rate problems are similar to problems involving
implicit differentiation. Equations in the form y = f(x) such as y =x?+2x-3 are
differentiated term by term according to the rules for differentiating polynomials,

products, quotients, or whatever. Equations where the x's and )'s are mixed together so
the equation cannot be written as y = f(x) or x= f(y) (an x alone or a y alone on one

side of the equation) are differentiated implicitly.

For example, the equation 2@/2 +xy3 =0 must be differentiated implicitly as

2 y2 dx +4xydy + 3xy2dy + y3 dx =0 with dy/dx formed by grouping and rearranging,

If x and y could both change over time then a related rate associated differentiation of this
equation would be
2 dy -0

2 dx
2y° —+4x +3x
Y y ar Y i

. d
In this statement, % is directly related to j}:— :

dxy+3xy® d
(2y2 +y3)£=—(4xy+3xy2)g or £=_%_y
dt dt di 2y +y dt

This is an example of a related rate differentiation. Now take a look at perhaps not the m
simplest related rate problem, but possibly the simplest to visualize. Notice how this
problem is written. The general situation is described, then a rate is specified and the
related rate is requested for a certain condition.

65
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6-1 A 7-meter-long ladder is sliding down a wall. The bottom of the ladder is pulled
from the wall at 1.5m/s. What is the rate at which the top of the ladder is going down
when the bottom is 3 m from the wall?

Solution: Help to visualize the problem by
sketching a ladder leaning against a wall with y
the bottom being pulled out from the wall at

dx/dt =1.5m/s (Fig. 6-1).

The question, written in mathematical
language, is: "What is dy/dt when x=3m
and dx/dt =1.5m/s ?"

In max-min problems the defining equation is
a mathematical statement of the problem. In
related rate problems the defining equation is x
sometimes a little more obscure, actually
sometimes a lot more obscure! Look at the
ladder in the graphic and think of a way to
relate x to y. Don't start by trying to write the dx/df and dy/dt. The rates come out of

the differentiation.

Fig. 6-1

The hard part of the problem is to see, and then write down, a relationship between the
variables. Writing the defining equation that ties x and y together is the key step in the
problem. In this problem the Pythagorean theorem for a right triangle relates x and y.

. . . d .
The defining equation is x? +y2 =72 and taking i we write

2x£+2y2=0 or d—y-———igl

dt dt at y dt
Now the numbers can be put in the equation to find dy/dt when dx/dt=1.5m/s and
x=3m. What about the y in the denominator? The y can be determined from the

Pythagorean relation y =+ 7% —3? ~6.3. With these numbers, dy/dt is calculated as

b __xdx__3 0 5misy=-07im/s
dt y dt 6.3
The top of the ladder is coming down the wall at 0.71m/s when the bottom of the ladder

is 3 m away from the wall and moving at 1.5m/s.
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6-2 A girl is flying a kite. The kite is moving horizontally at a height of 120ft when
2501t of string is out and the rate of increase in string length is 2 ft/s. How fast is the
kite moving in the x-direction for these conditions?

Solution: Visualize the problem and set up a right
triangle with the height, horizontal direction, and
string. In this problem the kite only moves
horizontally, and the string is straight - idealized - but
the conditions make for a problem that can be solved.

120 ft

Referring to Fig. 6-2, the problem question can be
written in mathematical terms as: Fig. 6-2

What is % when g =2, the height of the kite is 120t , and the distance out is 250 ft ?

N\ ,/

Go back over the problem statement and practice changing the problem statement into :v_
this mathematical statement. One of the more challenging parts of any calculus problem .
is translating the words into mathematical statements. Insight

The Pythagorean theorem relates the variables x and s in the right triangle:
1202 +x2 =52,
d:

Take 4 to get 2x£=25§ or Ex_:i_s

dt dt dt dt x di
The ds/dt rate (2 fi/s) is given in the problem as is the height (1201t ) and the distance
out (250ft). The x value for these conditions can be calculated from the Pythagorean
theorem:

x?=52-120% or x=42502 1202 =219

Now the numbers can be put into the formula for dx/dt

0
dt xd 2191t
When the kite is 250t away from the girl, at a height of 120ft, and the string is going

out at 2 fit/s , the kite is moving 2.3 ft/s horizontally.

These first two problems have utilized the Pythagorean theorem as their defining, or
"getting started” equation. Related rate problems use a variety of defining statements to
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tie the variables together. As you go through this chapter be aware of the various
techniques for relating the variables. If you see a related rate problem on a test that can
be analyzed with the Pythagorean theorem you will know how to do that problem.

This next problem uses the Pythagorean theorem but it has another little twist. The
information for the problem is given primarily in terms of rates, and the solution involves
three different rates.

6-3 Two ships are traveling at right angles. The first ship, traveling at 8m/s, crosses
the path of the second ship when it is 1000m away (from the point where the paths
cross) and traveling at 6 m/s. What are their positions, separation, and rate of separation
300s after their paths cross?

Solution: Diagram the problem Y

on an x-y coordinate system with A (=0
the first ship going in the y- dy _m

direction and the second ship going Qo =8 S

in the x-direction. Figure 6-3 is
for + =0, the time when the ships
cross paths. The drawing helps to >

visualize the problem. < > g

1000m —=6—
The position of the first ship at any a s
time tis y =(8m/s). Fig. 6-3

The position of the second ship at any time ¢ is x =1000m+ (6 m/s)? .

The separation of the ships is from the Pythagorean theorem s = \/xz + y2 :

The position of the first ship at 300s is its speed (8 m/s ) times the 300s:

Yo = (8m/s)(3005) = 2400m

The position of the second ship at 300s is the 1000m plus the 6 m/s times the 300s:
xlsoo =1000m + (6 m/s)(300s) = (1000 +1800)m = 2800 m

The separation of the ships is a straight Pythagorean theorem problem.

s =+/2400% +2800° =3688m
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The rate at which they are separating is

the fun, er calculus, part of the problem. T
The rate at which they are separating is, d = g_nlﬁ
in calculus talk, ds/dr, and we already dt s 1 =300

have the dx/dr and dy/dt. Start with the
separation  written in  Pythagorean 2400m

theorem form s=(x%+ y? )¥? and x

differentiate, carefully. ( ............................................ > __: ..................
i 2800m —-=6—

Writing ds=—()c2+y2)_1/2d(x2 +y2) al s
2 Fig. 6-4

as the first step will help to prevent errors
with 1/2's and the minus signs.

Continuing, ds = % (x2 +y2) V2 (2xdx + 2ydy) and finally

di (x?+yH)y2\ dt ydt

This rate of separation is to be evaluated at 1 =300s (Fig. 6-4).

ds| 1
dt|y, 3688m

[(2800m)(6 m/s) + (2400m)(8m/s)] = 9.8 =
S

These next two problems utilize similar triangles to write the defining equation for the
problem. The first problem, concerning the rate a shadow of something is moving, is in *
nearly every calculus book. The following problem conceming a conical-shaped

container is also in nearly every calculus book in one form or another. If you know how Remember
to use similar triangles to "get started" on a problem you will have mastered yet another

category of related rate probiems.

6-4 A3-fiall penguin (Penny) is taking a leisurely stroll at 0.5 ft/s away from a 12-ft

tall penguin way light. What is the length of her shadow and how fast is the tip of her
shadow moving when she is 40 ft away from the light?
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Solution: When you see a
triangle in a related rate problem
look for similar triangles. Don't
start the problem looking for
derivatives. Concentrate on the
defining equation for the
problem. The derivatives come
later.

Your first order of busjness in a Fig. 6-5

related rate problem is to find

relationships between the

variables. In this problem set up the triangle, complete with known numbers, and then
label some of the distances. The change in length of the hypotenuse of this triangle is not
what we are looking for. It is lengths along the ground: the length from the light to
Penny and the length of her shadow. Take x as the length from beneath the light to
Penny, and z as the length from beneath the light to the end of her shadow. The length of
her shadow is z—x. Draw this triangle (refer to Figs. 6-5 and 6-6).

Notice that the triangle with
sides z-x and 3 is similar to

the triangle with sides z and 12

12. Similar triangles are 3
triangles with the same angles
and their sides in proportion. } 4
This means that the ratios of < >& >
the sides are equal. z—x X
< Z >
z—x _z
3012 Fig. 6-6

Eliminating the fraction, 12z-12x=3z or 9z=12x or 3z =4x, produces a simple
relationship between x and z. The related derivative rates are

dz _4 dx
di 3 di

Notice that x and z don't enter into the rate relationship. Penny is moving at

— =0.5— so the tip of her shadow is movingat —=——=—1 05— |=0.67—.

dx fi dz_4dx_4( ft) fi
dt s dt 3dt 3 S s

Since Penny is walking away from the light at 0.5ft/s and the tip of her shadow is
growing at 0.67 ft/s her shadow is getting longer as she moves away from the light.
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As an exercise, go to a desk or table with a lamp. Place a pencil near the lamp and
observe the length of the shadow. The pencil should be a foot or so from the light and
perhaps slightly tilted. Now move the pencil away from the light and observe the
shadow. The shadow will grow and the tip of the shadow will move faster than the
pencil.

6-5 A conical container of base radius 5ft and height 10 ft is being filled with sand at

the rate of 2 ﬁ3/m1'n. How fast is the level of the sand rising when it is 6 ft above the
apex of the conical container?

r=5Mt 5
Solution:  The formula for the <>
volume of a cone 1s, from the A
Mathematical Tables in the back of the

book, ¥ =(1/3)zr’h. 10 ft x

The dimensions defining the cone are
given in the problem so calculating the Y
total volume of the container is not a
problem. v

Sketch the cone, and next to the cone Fig. 6-7

sketch the profile of the entire cone

and a partially filled cone with radius x and height h. This is another similar triangles
problem! The radius to height ratio is the same for any radius and depth. In this case the
similar triangles are the ones with sides x and y, and 5 and 10.

The similar triangle statement 1s S_x orx=2.
10 y 2
@,

The question "How fast is the level of the sand rising . . .?" means, what is "

Knowing E:—IK and requiring % , we need to write }in terms of y only.
t

. . Vv d
Time derivatives of ¥ in terms of y only will produce a relation between %1— and :5 :

2
. 1 1
Substitute in the V equation V = gﬂxzy = 57{%) y= —”—y .

. . av m ,dy dy 4 dv
And taking d tive d —=—y = or —=—r-—
g derivatives produces iy y o a5y d
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3
Adding numbers for y =61t, Q= 4 d—V= 4 2 ﬁ, =0.07l—1?—.
dt  gy* dt (36f%*)z\ min min

At adepth of 6ft the sand is rising at 0.071ft/min .

Another category of related rate problems involves increasing or decreasing area,
volume, radius of a sphere, or some other geometric property. These next two problems
involve geometry. In general, geometry problems are not overly difficult, usually
involving just one equation.

6-6 A circular oil slick is forming in such a way that the radius of the slick is
increasing at a constant rate of 12 fi/hr. What will be the rate of area increase when the
slick has radius 300 ft ?

Solution: The area is related to the radius by A =zr? (see the

Mathematical Tables). The rate of 4 and the rate of r are directly dar
available from this one equation. dt
dA ar
—_ = 2 Ty —
dt dt
Fig. 6-8

Using the numbers given in the problem

2
il 2mr ar_ 27(300 ft)(lzﬁj = 22,600ﬂ—
dt {309 dt hr hr

The area of the oil slick is increasing at 22,600 ft /hr when the radius is 300 ft .

6-7 An obstruction in an artery is to be removed by inflating a spherical balloon in the
artery. The rate of increase of the radius of the balloon must be limited to
1 mm/min when the radius is 4mm. What is the maximum volume rate increase, the

rate at which oxygen is pumped into the balloon, corresponding to this radius rate
increase?

Solution: The volume of a sphere is ¥ = (4/3) 7r> (see the Mathematical Tables).

Again, the rate relations are immediately available from this equation for the volume of a
sphere.
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L =47r? ar

dt dt
. dr _ mm
Evaluating at r =4mm and — =1—
dt  min

dv 3

min Oxygen in

=47z(4mm)2(1 mm] =201
4 min

_ Fig. 6-9
The maximum rate that the balloon can be

filled at the 4 mm radius is 201 mm° / min.

These last two problems are illustrative of problems where the formulas are given to you.
In most of these types of problems, differentiating the formula is the challenge.

6-8 When the price of a certain product is p dollars per unit, customer demand is x

hundreds of units (per month). The relation between p and x is x* +2px+0.5 p?=80.

When the price is $4.00 and dropping at the rate of $0.25 per month, what is the rate of
increase in demand?

Solution: This equation requires an implicit type of differentiation to find dp/dt, the
rate of price change, and dx/d!, the rate of demand change.

dx dx dp dp dx dp
2x—+2p—+2x—+p-—=0 2x+2p)—+(2x+p)—=0 or
dt pdt dt pdt or ( p)dt ( p)dt
dx _ 2x+p dp
at 2x+2p dt

The rate of price change, dp/dt, is given in the problem as is p, the price. The demand
rate, x, is not given and must be computed from the original equation. Substituting for
p=4(p=%$4.00) in x*> +2px+0.5p =80 yields x> +8x+8=80 or x* +8x—72=0.
The quadratic formula produces two answers. The positive 5.4 is the realistic one.

N ~8+/64-4(1)(-72) -8+18.8

=54,-14.4
2(1) 2
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With all the needed values dx/d! can be evaluated. Watch the signs closely.

& __204)+4 05 148
dil,  2(54)+8 18.8

(0.25)=0.20

The demand rate is increasing by 0.20 hundreds of units per month when the price is
$4.00 and dropping by $0.25 per month. Carrying the units through this problem is
difficult because the constants in the original equation must have the appropnate units to
make each term in the equation have the same units.

6-9 The amount of trash, measured in thousands of pounds, accumulating in a city

dump follows the formula 7 =1.3 p2 -100p + 30, where p is the population in hundreds

of thousands. What is the rate of trash increase when the population is 200 thousand and
increasing by 0.2 thousand (0.1%) per month?

Solution: Relating the rate of trash increase, d7/dt, to the population increase, dp/dt,
comes directly from implicit type differentiation of the expression for the amount of

trash.

dar dp dp dp
A ep® 100 = (2.6p-100)%
a Py = (2op-100) 7

The population and the rate of increase in population are given in the problem so we have

ar =[(2.6)(200)—100][0.2 thousand per month] = 84 thousand of pounds per month .

dt |00
This is also an interesting max-min problem.

Take c;_l =(2.6p—100) and set equal to zero to find p=38.
/4

2

The second derivative

T : . ..
=2.6 so the point p =38 is a minimum.
dp2

The city dump can accommodate the trash from 38 thousand people, but at 200 thousand
the curve becomes progressively more positive and the trash problem progressively
WOrse.
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INTEGRATION

There are many calculus problems
where the derivative of a function
is known and the function is
desired. For example, if a
mathematical expression for the
rate of population growth dP/dt is
known, is it possible to "work
backwards" to find the expression
for P, how the population varies
over time?

The process of starting with a derivative and working back to the function is quite
naturally called the antiderivative. The antiderivative of a function is an easy concept but
often is operationally difficult. There are many integragtion problems where finding the
antiderivative will prove a major challenge.

In some problems the integral can be viewed as the area under the curve of the function
being integrated. This is often very helpful in getting a physical "feel” for the problem
and the process of integration. This view of the integral will be discussed later in the
chapter.

Some problems in integration require a great deal of imaginative thinking and
manipulative ability. The simplest first approach to integration is via the antiderivative.

After that we will move on to using the area under the curve approach and finally to the
more difficult integral problems.

The Antiderivative

Start with a simple function, y = x2 . The derivative of that function is written as

dy =2xdx and finally as dy/dx=2x.

75
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Keeping this short review of differentiation in mind, suppose we encountered a derivative

du_

—=2
dv

and want to know how « varies with v. Keep the differential (of y = x%) in front of you
and just work backwards

%vu—=2v can be written as du = 2vdv

Now all we need to do is perform the inverse or "anti" derivative operation to find u in
terms of v. This being mathematics, no operation can be performed without a symbol.
For integration we use this elongated "s" shape, so write

Jdu = I2vdv

The left side of this equation is the integral of the differential, two inverse operations.
The d acting on u is the derivative while the I acting on du is the antiderivative. The

result of these inverse operations on u is that the left side of this equation is u. The
operation is somewhat like squaring a square root. The right side is not so easy except

that we have the differential example just above us. The differential of x% is 2xdx, so
the integral of 2vdv is v?. The function described by the differential statement
du=2vdv is therefore u =v?>.

Conceptually the antiderivative is not difficult. Actually finding the antiderivative of a

complicated function 1s often not at all easy. Polynomals are the easiest to work with and
that is where we will start,

7-1 Find Iy3dy.

Solution: We seek a function that differentiates to y3 dy.
The differential of y4 is 4 y3dy which is very close to what we want.

4 4
The differential ofyT 18 y3dy so the J‘y3dy is !4—

Check the answer by differentiating it. The differential of j y3 dy is y’dy(inverse
opérations), and the differential of y* /4 is y3dy.
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Doing a few integrals of polynomials leads to a general formula for integrating

polynomials.
-t i

n+l Pattermn

This formula is valid for all », including fractions and negative exponents, except n=—1.
That special case will be taken up later and in more detail in Chapter 8, Exponents and
Logarithms. With this general formula for integrating polynomials take the integrals of
some other differentials.

7 -2 Find the function x in terms of , starting with the differential statement

£=lt3+512 +4
d 3

Solution: First rewrite the problem as dx = (% P45+ 4)dt )

The integral of dx is x so write x = J.GR +5¢2 +4)d:.

Most formal integral problems are presented in this form. Now perform the integration
term by term, the same way the differential was formed to produce this integral:

4 3 4 3
Jc=l L +35 L +4t=l—+l+4t
3 4 3 12 3

Don't forget that the integral of a constant times d is the constant times ¢.

The antiderivative as described so far is not the complete story of antiderivatives, as is
illustrated in the next problem. Take a look at a simple function, y = x2+2x+7. The
derivative is dy/dx=2x+2. Now take the antiderivative of 2x + 2.

2
dy =(2x +2)dx and y=j(2x+2)(1x=23‘2—+2x=x2 +2x

Where did the 7 in the original function go? Differentiating the function produced a zero

for the 7. Integrating the 2x +2 with the antiderivative approach produced the x” +2x
terms but not the 7. Given an integral problem as
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y=[@x+2)ax

the integral of 2xdx is x? and the integral of 2dx is 2x but it is impossible to determine
if there is a constant in the expression for y.

Integrals obtained by taking the antiderivative must be written with an arbitrary constant.
The constant can be determined if other details are specified in the problem. Integrals
requiring a constant (of integration) are called indefinite integrals. There is a way around
this problem but for the time being just remember to include the constant and evaluate it if
possible from the information in the problem.

The correct solution to this integral is: y= I(Zx +2)dx= x2+2x+C

7 -3 Evaluate y=J-(x2 +2x72 +3)dx.

Solution: Follow the formula for integrating polynomials as stated earlier in this chapter
or from the Mathematical Tables at the end of the book.

3
+3x+(]=’%-2x‘1 +3x+C

7-4 The population of a certain region is growing with time according to 11+ 0.241.
Population is measured in thousands and time in years. The current population is 30
(thousand). What is the expression for P as a function of 1?

Solution: The words "population growing with time" translated into calculus means

11+0_2\ﬁ=i’1£
dt

Writing this as an integral problem, we have Ia’P = J'(l 1+0.2¢Y2 )dt and

3/2
p=tl+ 22

+C=111+9—;t3/2+C=11!+O.l3t3/2 +C

/

The words "current population . . . 30" mean that at =0, P=30. Put these numbers
into the general expression for P to determine C. (If a variable such as P is given a value
when ¢ = 01t is sometimes referred to as "the initial condition.")
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30=110)+0. 13(0)3/2 +(C makes C =30 so the specific relation is

P=11t+0.13¢>* +30

7-5 A certain car decellerates under braking at a rate of 16 ﬁ/ s? . If the car is traveling
at a speed of 60ft/s (approximately 40 miles per hour) when the brakes are applied, how
far does it take the car to stop?

——>  v=60ft/s

+—— a=-16f1/s? v=0

iy

Solution: A little review is in order. Position speed and acceleration were discussed in
Chapter 3, Derivatives. You may want to review problems 3-6 and 3-7 dealing with
speed and acceleration. Stated in calculus terminology, speed, v =ds/dt, is change in

position with time, and acceleration, a =dv/dt, is change in speed with time. Keep in
mind that a is measured in ft/s?, v, in fs, and s, in ft.

In this problem start with the acceleration, which is a negative number, so the first

statement of the problem is % =—-16. The integral to find v is

v=—[16dt=-161+C,

When the brakes are applied (1 =0), v=601ft/s so 60=-16(0)+C, and C; =60 so

v=£=—16t+60
dt

We are looking for the distance, not the velocity, so one more integral is in order.

s=f(—l6t+60)dt=—1—26-t2 +60t +C, ==812 + 60t +C,

The stopping distance s is measured from where, and when, the brakes are applied so at
=0, s =0. This fact allows evaluation of C,.
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0=-8(0)2 +60(0)+C, so C, =0 and

s=-8% +60¢

To recap what we have done so far, we started with the acceleration, a =-16, integrated

to get the speed, v =-16¢ + 60, and integrated again to get s = —8:% +601. All this work
and we still don't have the stopping distance!

A little more logic provides the final answer. The stopping distance s could be evaluated
if we knew the braking time. But the time can be determined from the speed statement.
When the braking has gone on long enough, the car stops (setting v=0 in v=-161+60
produces the time to stop).

0=-16/+60 or {=60/16=3.8
The stopping distance, using this time, is

s=-812 +60r=—-8(3.8)2 +60(3.8) =—116 + 228=112

The problems so far have been in the form y equals the integral of some polynomial in x
times dx. The next problem illustrates a type of problem where the derivative depends on
both variables.

7-6 The rate of change of a certain variable x with y is proportional to the square root
of the product of x and y. Find y as a function of x.

Solution: This is a problem that needs to be translated from words to mathematics. The
phrase "the rate of change of . . . x with )" means derivative; the phrase "the square root of
the product” is explicit. Form the product and take the square root. Read the sentence
carefully, several times if necessary, and write

dx
ey

With the problem written down, another difficulty appears. This is not a simple dy equals
a polynomial times dx problem. Separating the variables is going to take a little more
work. Notice that with a little manipulation the statement can be written as

%ﬂﬁdy
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This process is called separating the variables. *

) ) _ Remember
While this problem is a little different from the previous problems neither integral is

difficuit.
x—l/de=yl/2dy or Ix"l/zdxz_[yvzdy

12 312
Performing the integration, X -2 __4C and with a little algebra x=.. or y=...

12 32

3/2 32 2
can be written as xl/2=yT+Cl or x=l:yT+C1:| or

) 3
y3/2 =3x!? +C, or y=[3):1/2 +(72]2/

Notice that instead of writing /2, a new constant C| was introduced. If at the end of

the problem the constant is evaluated it does not matter whether the constant is 2 times the
original or any other multiple, root, or whatever of the original. Also notice that C, i1sa
new constant.

7 -7 Due to an unusually favorable habitat the deer population in
a certain area is growing at an average rate of 0.08/ +3 thousand
per month. Find the formula for population. The present
population is 200,000. If the rate continues, what will be the
population in 6 months?

Solution: The rate stated in the problem is dP/d so

fj—}: =0.08t+5 or dP=(0.08¢+5)dt

and integrating
2
P=[(0.08(+5)di = o.os’—z— +5(+C=0042 £50+C

Use =0 and P =200to evaluate C (the original equation was in thousands):
200 =0.04(0) + 5(0) +C so C =200

and the population formula for this region is



*
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P(1)=0.04t% + 5 + 200

In 6 months, ¢ =6, the population will be

P(6) =0.04(6)* + 5(6) + 200 = 1.44 + 30 + 200 = 231.44 thousand

There was one exception to the formula for integrating polynomials and that was the
polynomial 1/x or x~'. This function will be discussed in more detail in Chapter 8,
Exponents and Logarithms. However, the integral of xis ]n]x.. Note that this

logarithm is the natural, or base e, logarithm and that the absolute value is required. There
are no logarithms of negative numbers - try taking the In of a negative number on your
calculator. The formal definition of this integral is

J%dx =Injx|+C

Now apply this rule to some integral problems.

7-8 Find [l
X

Solution: This is one of those innocent looking little problems that will drive you crazy
if you don't see the little "trick." The fraction (x+1)/x is the problem, but fractions

often come from, or at least they can be written as, other fractions.

x+1 x 1 1
=—+—=1+—
X X X X

If you see to write the fraction this way, the problem is easy. If you don't see to write the
fraction this way, you probably can't do the problem. Armed with this little algebra
"trick," the integral is

JE = (e e e [ L= x il
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3x +2x% +x
7-9 Find ——B——dx
X

Solution: With all the experience from the previous problem the fraction can be written
as three fractions:

33 +2x2 +x 3% 2t x 2 1
3 =t +—3=3+—+—
X X X X X x

The integral now is three reasonable integrals.

J'sz +2x2 +x

3

=J(3+3+)c_z)dx=3Jr+Z—J'gx—+"‘.7c_2a’.:c=3)c+21n|xl—Jc'l +C
X X X

7-10 The rate at which algae are growing in a certain pond
is proportional to the amount of algae according to
dA/dt =0.024, where A is measured in pounds and f in days.
At present there is 300 pounds of algae in the pond. Find the
time for the amount of algae to double.

Solution: The rate statement is % =0.024.

The integral of this statement is accomplished after separating the variables
%4 =0.02d! or I‘—? = I0.0Zdt and the integration is In|4|=0.027 +C

At 1 =0, there is 300 pounds of algae in the pond so
In300=0.02(0) + C which makes (" =1n300.
Don't worry about finding a number for In300, In300 is a perfectly good constant.
The statement connecting A4 to ¢ is
In A -1n300=0.02¢
The doubling time is when 4 =600, double the original amount.
In600—-1n300=0.02r or 6.39-570=0.69=0.02¢r and 7=34.5days

(Remember also that In 600 — In 300 = In(600/300) =1n2 = 0.69 .)
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There is one other integral formula to add to our growing collection and that is the
formula for the integration of the exponential function. It is fairly simple.

Jexdx=ex+C7

This formula becomes particularly useful as the exponent becomes more complicated.

7-11 Find u=J.evdv when #=2 and v=0.

Solution: The integral is u=¢" +C. Set u=2 and v=0 to find C. Remember:
anything raised to the zero power is 1.

2=e’+C or 2=1+C so C=1 and

u=e" +1

This is a good place to stop and take another look at this process called integration. The
antiderivative and formula approach work well on many problems. The next approach,
the area under the curve, has some distinct advantages in certain problems. Afier going
through the area under the curve view of integration you will be able to switch back and
forth choosing which view is most convenient for a particular problem.

Area Under the Curve

Integrals are often introduced as a means of measuring the area under a curve. In certain
problems the area under a curve has physical meaning and is very helpful in
understanding the problem. Rather than doing a formal derivation relating the integral to
the area under a curve we will show how the area is consistent with the antiderivative
approach. And as usual we will do this in the context of solving problems.

7 -12 Find the area under the curve y=4, between the lines x=0 and x=5.

Solution: Graph the function. It is a straight line at y =4, parallel to the x-axis. To
find the area, integrate 4dx between the lines x=0 and x=5.

This area integral is written as
5
A= 4ax
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The 0 and 5 mean, evaluate the integral at 5 and then subtract the value for 0. The

operations are
5 5
A= [ 4dx=4x ] =4(5) - 4(0)= 20

The rectangular area shown as shaded in Fig. 7-1 has
dimensions 4 by 5 and area 20, the value obtained with
this integration. Integrals written with "limits" on the
integral sign are called definite integrals. Since these
limits clearly define the extent of the area represented
the integral does not need an arbitrary constant.

Remember

Fig. 7-1

7 -13 Find the area under the curve y=x between x=0 and x=4.

Solution: Graph the curve as shown in Fig. 7-2. The area
is

2
A=Exdx=% =8-0=8

4
0

This curve y=x forms a triangle with the x-axis and the
line x=4. The area of this triangle is one-half the base
times the height (1/2)4-4 =8, the same value as obtained
through integration.

Fig. 7-2

7 - 14 Find the area under the curve y=x2 between x =0 and x=2.

Solution: Graph the curve as shown in Fig. 7-3. The area is

2 x3 2 2} 8

A:j0 xldx="— =S--0==~27
3 3 3
0

The area under this curve is less than the area within a triangle
formed by connecting the points (0,0), (2,4), and (0,2). Such a
triangle has area (1/2)2-4 =4, and as expected is more than
the area computed with the integral (2.7).

y

Fig. 7-3
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The curve y= x? goes through the points (1,1) and (2,4) so
approximate the area under this curve with a triangle and trapezoid as
shown in Fig. 7-4. The area of the triangle is (1/2)1-1=1/2. The
area of a trapezoid is (1/2)(sum of the opposite faces)(height) which
in this case is (1/2)(1+4)(1)=2.5. The sum of these areas is 3, even
closer to the area of 2.7 obtained through the integral. Fig. 7-4

If this process were continued with narrower and narrower trapezoids
the area would approach the 2.7 obtained through the integral.

These three problems all point toward an interpretation of the integral of a function as the
area under the graph of that function over the prescribed limits. The successive
approximations of narrower and narrower trapezoids, or rectangles, leading to the area
under the curve is the classic definition of the integral.

Use the curve y=x2 shown in Fig. 7-5 as an

example, though any curve would work as well, and y=x

look to approximating the area not with trapezoids, x.'th
but with a collection of narrow rectangles. The x2
rectangles can be constructed in a variety of ways.

It really doesn't make any difference how they are
constructed because we are going to take the limit

by making their width go to zero. The ones shown NEN
here are an average height. Look at the x,'th Ax  x

rectangle of width Ax that has height x,f. Fig. 7-5

The area under this curve can be written as a sum of similar rectangles. With this view,
the area under the curve is
2
A~ Z (x})Ax
n

with the area getting closer and closer to the actual area as the width of the rectangles
decreases and their number increases.

Using a limit approach, and the knowledge that the integral over a specified range in x is
the area under the curve, A is the limit of the sum as Ax goes to zero.

BT 2 _[*.,2
A—Alxullog(xn)Ax-Lx dx
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The integral is viewed as the area generated by summing an infinite number of rectangles
of infinitely small width.

7-15 Find the area under the curve y=x3 -1 from x=1to x=3,

Solution: Graph the function as shown in Fig. 7-6.
This is a cubic, it rises steeply, and it crosses the y-axis y y= x -1
at —1. The rectangle shown in Fig. 7-6 represents one
of the rectangles that is being summed in the
integration process. The shaded area is

3 4 }
a=[ —l)dx=[x7—x:|

1

ZERFE

4=({81_12)_(1_4) 69 3 72 .
4 4) 4 4) 4 4 1 Fig. 7-6

The next several problems will explore some of the unique uses of integral calculus for
finding areas.

7-16 Find the area bounded by y =2 —(1/2) x* and the x-axis.

Solution: First graph the function as shown
in Fig. 7-7. All that work you did learning
how to graph is beginning to pay off
Knowing that this function is a parabola that
opens down and crosses the x-axis at y=2

allows you to concentrate on the calculus part
of the problem. If you have any difficulty
graphing this curve, go back and review
graphing  parabolas in  Chapter 1,
Mathematical Background.

Fig. 7-7

The limits on the integral have to be from where the curve crosses the x-axis on the
negative side to where it crosses on the positive side. To find these points set y =0 and

solve for x.

0=2-(1/2)x> or 2=(2)x> or 4=x" or x=%2
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The shaded area i1s

2
2 200 |, X 2 o (=2}
A= j_z[z (1/2)x ]dx—[2x 6L [2(2) } [2( 2) —

L e R A

Second Solution: There is a little faster, a little easier, and a little less susceptible to
error way of doing this problem. Remember the symmetry that was so helpful in
graphing parabolas? Not only is there a symmetry in the graph of the curve between 0
and 2 and 0 and — 2, but the area under the curve from 0 to 2 is the same as the area
under the curve from 0 to — 2. Therefore, the entire area between this curve and the x-
axis i1s twice the area between x =0 and x=2. Notice how much easier the numbers
manipulate in this solution.

A=2J'G2[2—(1/2)x2]dx=2[2x—%}2= {{2(2)——} [0]} {4“} 2{%_% 13é

0

In doing area problems look for symmetry that will make the problem easier and cut
down on the amount of numbers you have to manipulate.

7-17 Find the area between the coordinate axes and the curve y= Jx-2.

Solution: This has got to be an odd looking curve.
Start by looking at where the curve crosses the axes. At
x=0, y=-2 and at y=0, x=4. One other point,
x=1, y=-1, is sufficient, along with the points where
the curve crosses the axes, to sketch in the curve as
shown in Fig. 7-8.

The shaded area is the only area between the curve and
the axes. The area is

3/2

4
A=J::(xl/2 —dx =T 2k
0

3/2
=[%_2(4)j| [0]__~8_E_gi _8
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How can the area come out negative? Are areas below the axis negative? Just to be sure,
change the limits on the integral to 4 and 5 and see if that area comes out positive, as we

32
- 2(5)] - [3‘{?—— - 2(4)]

would expect from the graph.

5
2

X 24
3/2

) ‘2(5)3/2

5
A=L(xl/2 ~2)dx =

4 L

32 432 - _
Az[z(s 4 )}_10”: 2(11.2 -8)

3

]—2=2.1——2=0.1

This area comes out positive and very small, about as expected considering the curve.

The previous problem illustrates an important point.

Be careful when finding an area
below the axis. You can end up with a negative number for the area. The next problem is
a typical test problem involving positive and negative area. There is a simple way out of Insight
this negative area situation, as illustrated in the next problem.

7-18 Calculate the area between the curve y=x2 +x —2and the x-axis between

x=0and x=2.

Solution: Do not write down the integral of

x2 +x—2 with the prescribed limits and perform
the integration to find the answer. If you do, you
will get the problem wrong!

Sketch the graph of this function. Factor
y=x2 +x—2=(x-1)}(x+2) and notice that the
curve crosses the x-axis at x=1 and x=-2. Look
at the limits of the integration. At x=0, y=-2.
At x=2, y=4. With this information the curve

can be sketched as in Fig. 7-9. More detail for the
sketch is not necessary.

M

y=x2 +x-2
f—— A2
x
Ay
Fig. 7-9

The area between this curve and the x-axis has to be calculated in two pieces

corresponding to the two areas marked A, and A4,.

Lo

—
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1
! 3 2
A =] 10~ +x—2)]dx=—{%+%—2x}

It 2 3 12 77 7
A,=—[?+7—2(l)}+[0]={g+g_~6_]=_[_g]=g

Notice the integrand is written as [0 — (x2 +x—2)}. This statement is the "top curve,”

y =0, minus the "bottom curve,” y=x2 +x—2. Writing the integrand this way, top
curve minus bottom curve, keeps the area positive. This is the preferred way of writing
the problem. It will prove very helpful in more complicated problems.

Now find the second area, A,. The integrand x? +x -2 would be viewed as top curve
minus bottom curve. We just have not bothered to write — 0 for the bottom curve.

2
2 3 2
4= +x—2)dx={%+%—2x}

3 2 3 2
Az=[2?+2T2(2)]_[%+%_z(n]:[g_gH;_ﬂq_“z]

AZ =Z+§_2=E+2_E=E
3 2 6 6 6 o

The total area between the curve and the x-axis is the sum of these two areas.

A=4;,+ 4, =Z+11=1_§=3
6 6 6
Standard Mistake Solution: Don't make this mistake. If you take the integral of

x? 4+ x — 2 between the limits of 0 and 2 you will get an answer that is equal to 4, — 4,.

It will look great but it is wrong. Take the integral of x2 4+ x—2, using the limits 0 and
2, and verify that this is the difference in the areas and the incorrect answer. This is the
kind of problem that math professors use to separate the A's from the B's.

We've had A's and we've had B's. A's are better.
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These next few problems take you to another level. The "standard mistake" of the
previous problem can be avoided by graphing. Likewise graphing is essential in these
next few problems. As we mentioned in A Special Message to the Utterly Confused
Calculus Student at the beginning of this book, graphing 1s one of the skills you need to
do calculus problems. We keep emphasizing this point because we know that a primary
source of confusion in integration 1s inability to visualize the problem, and you visualize
problems by graphing the curves.

7-19 Find the area in the positive x and y region between the curves y =(0.5)x and
y=4-(0.5)x2.

Solution: Graph the two curves as shown in Fig. 7-10, keeping in mind that only the
positive x and y region is interesting. The straight line is easy. The parabolais 4 at x=0

and opens down. The parabola crosses the x-axis when y =0 or x? =8 or x= J8.

As far as the limits of integration are concerned
the important point is where the curves cross.
This point is found by setting the two equations
for y equal and solving for x.

There is a point along the y =(0.5)x curve that

satisfies y=4—(0.5)x2. This point is where
the curves cross and is found by setting (0.5)x

equal to 4 — (0.5)x? and solving the equation

(05)x=4-(0.5)x* or x*+x-8=0

This quadratic is solved by formula

x=—1¢,/12 — 4(1)(-8) —11\@:24

2(1) 2

Only the positive root is interesting in this problem. Figure 7-10 shows a sketch, not a
detailed drawing. The essential feature is the point where the curves cross and the
visualization that the integral is over dx and between the two curves. Great detail is not
necessary. A clear picture of the curves, where they cross, and the limits is sufficient
information.
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The integral is written as going from the top curve, or most positive part of the dx
rectangle, to the bottom curve, or most negative part of the rectangle with the appropriate
limits 0 and 2.4.

3 , 24
A =L2-4[(4—0.5x2)— (0.5x)]dx=[4x_f6__ 0.52x }

0

3 2
A= [4(2-4) - 2%'— ——2%] ~[ol=[96-23-14]=59

7-20 Find the area bounded by the y-axis and the curves y=l+\/; and y=x-1,

Solution: The curve y=x —1 is a straight line
of slope 1 that intercepts the y-axis at —1. The y R
other curve starts at y=1 and increases. To Z =X
integrate in the x-direction the limits are
required. In this case the upper limit in x is y=1+x
where the curves cross, which is obtained by
setting the equations for y equal and solving

1+\/;=x—1 or \/;=x—2 X
and squaring
x=x2-4x+4 or x> -S5x+4=0 Fig. 7-11

This quadratic is factorable, (x—4)(x—1)=0, producing valuesof x=1 and x=4.

The value x =1 requires a negative square root to work in both original equations and is
seen from Fig. 7-11 as incorrect. The value x =4 is the correct limit value. The x =1
point is a spurious one caused by squaring a square root and then factoring the resulting
equation. With the limits, set up the integral from 0 to 4 of the upper curve minus the
lower curve and integrate.

2 4
A=E[(1+w/;)—(x—l)]dx=_':(2+xl/z —x)dx=|i2x+?/2—_..2_i|0

432 42 2 16
A—{2(4)+3/—2——7}—[8+§(8)—S]——§—
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The next two problems are practical problems illustrating how calculus can help in
forecasting revenue generation in the one instance, and yield from a mining operation in
the other instance. The unique aspect of these problems is that they start not with a
statement of revenue, but with a statement of revenue rate, the revenue generated per year
and the yield of the mine in tons per year. Watch the way these problems are worded.
Don't be fooled on a test by misreading a rate statement.

This is a job for
Captain Calculus!

7-21 A certain machine generates revenue at

the rate of R(1)=2000—5/> where R is in
dollars per year and ¢ is in years. As the machine
ages the cost of repairs increases according to
C(H)=500+ 2t>. How long is the machine

profitable and what are the total earnings to this
point in time?

Solution: The two curves are both parabolas, the R(¢) curve opening down and the C(¢)
curve opening up. The curves are sketched in Fig. 7-12. When the revenue generated per
year equals the cost of repairs per year the machine stops being profitable.

Mathematically this situation occurs when the curves cross. The time when they cross 1s
found by setting the equations equal and solving for the time.

2000 — 5¢2 =500+ 212 or 1500=7¢>

E_:)—o:t2 or I=JE70—O— =14.6 years
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Figure 7-12 is a rough sketch 5
illustrating the general shape of the Rate C(1) 7500+ 2t
curves and the time when they cross. of

The total earnings up to 14.6 years is
the (revenue generated) area under the
R(t) curve minus the (cost) area under R(f) =2000 — 5¢
the C(f) curve. This is an integral.

Look at the units. The rate of return in | | \ p
dollars per year times the time is the 14.6
total number of dollars. Fig. 7-12

14.6
14.6 3
E=L [(2000—-512)—(500+212)]dt=_[ (1500—7tz)dt=[15001—1;—]
0

7(14.6)°

£ =1500(14.6) - =21900-7262=14,638

The total earnings until the machine becomes unprofitable, that is, costs more to operate
each year than it returns in revenue, is $14,638.

7-22 In a mine the yield per unit cost for a particular ore is
declining according to Y =8 — 0.4 where the yield is in millions of
tons per year and { is in years. Find the time for the mine to produce
60 million tons of ore.

Solution: Be careful with rate statements like this one. The yield
equation is in millions of tons per year, not millions of tons total.
Since the yield is in millions of tons per year, the time for 60 million tons has to come
from an integration over time. Integration is required rather than multiplication because
the rate per year is changing. The total yield then is

2 t
T= ﬁ(s —0.41)dt =[81 - 0";_' } =81-0.22
0

Notice that in this problem the limits are 0 and ¢ because we are looking for the time to
produce a total of 60 (million tons). Therefore set 7 =60 in the equation

T =81—0212
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generated by the integral and solve for the time.

60=8/—021% or 0.2t -8/+60=0 or t*—40r+300=0

This quadratic is factorable to (1 —10)(r —30) =0 producing time values of 10 and 30.

Go back to the original statement for the yield ¥ =8 —0.4¢ and note that at 1 =10 the
yield is Y(10) =8-0.4(10)=4 and at 1 =30 the yield is Y (30)=8-0.4(30)=8-12=-4.

The 10 year figure is the realistic one. Who would work the mine until the yzeld reached
zero and then continue, putting ore back, until the 60 million total was achieved?

Further Insight Solution: If the yield is ¥ =8—0.4¢ then in 10 years the yield goes
from 8 (starting at zero time) to 8 —4 =4 in a linear fashion so the average yield over the
10 years is 6. This 6 million tons per year average times the 10 years produces the 60
million tons.

The 30 year figure is also true. If the yield goes according to Y =8 — 0.4/ for 30 years
then the yield goes from 8 at time zero to — 4 at the end of 30 years and the average is 2
million tons per year for 30 years for the 60 million ton total.

No one would actually do this because when the yield went to zero you would have to
start putting ore back into the mine to achieve your 60 million tons total! You would also
expect the yield equation to not accurately represent the mine production after the
production rate had gone to zero.

Sometimes, in problems involving quadratics, solutions are generated that are
mathematically correct but unrealistic. It is good practice to always look at the answer
and ask if it is reasonable.

7-23 a demographic study indicates that the population of a certain town is growing

at the rate of 4 +2x%8 people per month when x is measured in months. What will be
the increase in population between the 10" and 12™ months?

Solution: This is an integral problem. The growth function has to be integrated and
evaluated at the 10™ and 12™ months. Write the integral as the number (10 —12) and use
the growth function integrated over time.
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12
12 18
N(10—12)=L0(4+2x°'8)dx=|:4x+2:8 }
’ 10

18
N(10-12) ={4(|2) + %} —[4(10) +

2(10)'8
1.8

Before going any further review how to take a fractional power with your calculator. To
find (12)"® enter 12 on your calculator, then find a key that raises "things" to a power

(this key will look like y™ or x*) and press it . Your calculator will probably blink and

continue to display the 12. That's OK. Don't worry about the 12, enter 1.8, and press the
equal sign. The calculator should take a short time to display 88.

N(IO—12)=[48+%]—[40+%}=[48+98]—[40+70]=36

A total of 36 peole will enter the town in the 10" to 12 month interval.

7-24 A rare stamp is, and has been, appreciating at the rate of
5+0.5t in thousands of dollars per year when ¢ is measured in
years. If this stamp is purchased for a newborn child and allowed
to appreciate, what will be the value of the stamp on the child's 18"
birthday?

Solution: This is a rate problem and an integral is required. The stamp is purchased (at
t =0) for $5000. Integrate the rate over time with the limits of 0 and 18 to find the value
after 18 years.

i8
18 2 2
V=J'O (5+0.51)dt=[51+0';t } =[5(18)+O—'5-%9—]=[90+81]=171
0

In 18 years the stamp will be worth $171,000.
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Average Value of a Function

Integral calculus can be used to determine the average values of functions. The average
value of some quantity that may be varying in a very complicated way can be a valuable
piece of information. The average value of a function is the area under the curve of that
function over a certain range divided by that range. The area under the curve is viewed as
the area of a rectangle with one dimension equal to the range of the integral and the other
dimension, the height equal to the average height to produce the area under the curve.

The format definition is

1
b—a

Average value = r f(x)dx
a

The several problems in this section show how to find the average value of several
different functions and illustrate applications of the technique.

7-25 Onan employee stock purchase plan one share of stock is purchased each month
for 10 months. The share prices start at $10 at the end of the first month and decrease by
$1 per month thereafter for the duration of the offer. This is an incentive (to stay with the
company) plan and it does not reflect the actual stock price.

Solution: You don't need calculus to do this

problem. Graph the stock purchase price as in Fig. Share
7-13.  Look at the graph and conclude that the Price
average purchase price is $5 over the 10 month

interval for a total cost of $50 for the 10 shares.

Think Calculus Solution: The area enclosed by

the triangle in Fig. 7-13 represents the total cost for

the 10 shares of stock, $50. This area is also (1/2)

base x height=(1/2)(10)(10)=50. This area could Month
be represented by a rectangle of the same base and Fig. 7-13

height 5. The height of 5 is an average height of the )

triangle. In mathematical language the height of the

rectangle would be

Area of rectangle
Base of Rectangle

Height =
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7-26 In another stock purchase plan one share of stock is
offered each month starting at $40. The history of the stock
indicates the price will follow C =40+0.8t for the next year
where ¢ is in months. If twelve shares are purchased according to
this plan, what will be the average price of the stock?

Solution: Graph the price of the stock as shown in Fig 7-14. The
area under the curve is the total cost for the 12 shares. This (total
cost) area divided by 12, the base of the rectangle with area
equivalent to this total cost, gives the average price of the stock.

Following the form of integral stated earlier we calculate

12 27
=L [ @o+0.gnar="| 400+ 2
12-0 2

e 12
0
1 0.8(12)°
Cong =—=| 40(12) + 2302 Cost per C=40+08
12 2
Share /
i
C,,=—|480+57.6
wg = 5k ]
C g =44.80
12 Time

The average price of the stock will
be $44.80. Fig. 7-14

The average-value-of-a-function problems so far have had pretty tame-looking functions.
This next problem will illustrate how to apply the average value of a function to some
more complex functions.

7-27 Find the average value of the function y=x> —2x? +3 from x=-1to x=3.

Solution: It is important to graph this function, or at least put in some values so we
know whether the function is positive or negative over the region. In some problems it
may be perfectly acceptable for the values of the function to be negative while in other
functions we may be confined to averaging only positive values. The dominant term is
the cubic so for large x the curve has the cubic shape (see Chapter 1, Mathematical
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Background). A third-degree equation has at most two points where the slope is zero (see
Chapter 4, Graphing).

Since only a rough sketch is necessary
perhaps it will prove sufficient to just
find a few points and place them on the

graph. y

y=x3 -2x%+3

(3,12)
y(0)=0° —2(0)> +3=3

0,3
y)=1 -2 +3=2 ©3) )

A

A

(1,2)

Fig. 7-15

y2)=23-2(2)* +3=3 (-1,0)

_

1

y3)=3*-2(3)° +3=12
(=== =2(-1)? +3=0

This function is positive over the range where it is to be averaged. Don't be fooled by an W
exam question that asks you to average all the positive values for a function over a certain é‘
range and then gives you a function that is negative over part of the range. f

The shaded area in Fig. 7-15, the prescribed region in x, is all above the axis so the
integral for the average value of the function can be written knowing that there will not be
a negative area.

1 P 1] x* 2x° ’
-1

(3% 2(3)° A TEE
et o 222 ]

oo t5) 108 ) 1) o,
Yavg = 3074V 3 3] a3/ 12 "

Look at the graph and ask if this is reasonable. This average value means that the
rectangle equivalent to the area under this curve would have base 4 and height 4.1, which
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looks very reasonable. The mistake you are looking for here is a sign mistake amongst
the fractions or forgetting the (1/4) outside the whole integral.

Area Between Curves Using dy

All of the area under the curve and average value of a function problems encountered so
far have been ones where the integration was carried out in the x-direction. There are
problems where this 1s inconvenient or even impossible, and it is necessary to integrate in
the dy direction. This takes a little reorientation from the usual. In addition, the integrals
are often more difficult. These problems tend to separate the A's from the B's. Follow
through the several examples and learn how to find areas using integration in the y-
direction as well as the x-direction.

7-28 Find the area bounded by the curves x = y2 and x=4.

Solution: The curve x= y2 is a parabola, but it is an unusual one in that it is written
x= y2 , rather than the more familiar y = x? . This means that the parabola is symmetric
about the x-axis rather than the y-axis. The two curves x= y? and x=4 are graphed in
Fig. 7-16.

Imagine placing a representative rectangle of width

dx on this graph. There is a problem almost y
immediately. The rectangle doesn't go from one x=y*
curve to another. It begins and ends on the same <4 —
curve! 4

Tz x=4
You could solve x=y? for y to get y=+/x and \ N X
then use a symmetry argument and say that the T \\
desired area is twice the area between the curve ~+ ' —
y=\/;, y=0 and x=3. This would work for this

particular problem but with only a slight

modification to the parabola (add a constant, for Fig. 7-16
instance) the solution for y becomes most

complicated.
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Using a rectangle of width dy is much easier. Draw a rectangle as shown in Fig. 7-16 and
integrate over dy. The most convenient limits of the integral are y =0 and y =2, the top

half of the desired area. The shaded area is then twice this integral.

2
2 2y° 16
A=2Ly2d}’=[“§—] =3
0

7-29 Find the area bounded by x=y* y=-x+3 and y=0.

Solution: To do this problem in dx would require two separate integrals, one from 0 out

to the value of x for the intersection of y=-x+3 and x= y2 , and another from this
pointoutto x=3.

It is easier to integrate in the y~direction. This integral is no longer the "top curve” minus
the "bottom curve" but the "most positive in x curve" minus the "least positive in x curve.”

The "most positive in x curve” is  y =~x +3 which has to be rewritten as x=3-y. (To
integrate in the y-direction, the equations have to be in terms of y's.) The "least positive in

x curve" is x = y2 . Figure 7-17 shows the curves and the rectangle.

The limits for y are zero and the value of y where the line x=3-y and the parabola

x= y2 intersect. This intersection point is obtained by setting these two equations equal
and solving for y.

3—y=y2 or y2 +y-3=0

This quadratic has to be solved by formula:

=13,-23

_-121-4)(-3)  -1:413
B (1) T2

The positive root, 1.3, is the one for this point.

-4 y=-x+3

The integral for the shaded area is

A=f;'3[(3~y)—y2]dy Fig. 7-17
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2 3
A= {[3(1.3) - % - ﬂ} - [0]}

A=39-084-073=23

7 -30 Find the area between x=y2 and y=x-2.

Solution: First graph the parabola x = y2 and the line y=x—2 as shown in Fig. 7-18.
This is one of the more difficult problems in area between two curves because of the little
piece of the area near the apex of the curve. An integration in x is incorrect because in
this piece of area near the apex of the curve you would be integrating between the same
curve. This integration must be done in the y-direction if it is to be performed with one
integral.

Rewrite the line as x = y +2 and set this equal to x = y2 to find the values of y where the
curves intersect.

yr=y+2 or y2~y—2=0 or (y-2)y+1)=0 producing values of y=2 and
y=-1.

The points where the curves intersect are obtained from either equation: (2,4) and (1,-1).

The integral for the desired area is y y=x-2

A= 1 +2)- v lay

Fig. 7-18
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7-31 Find the area between y =sin x and the x-axis from x=0 to x=r.

Solution: Graph y=sinx from x=0 to
x=x as shown in Fig. 7-19. Here is
another instance where symmetry can be
used in calculating the area.

The area between x=0and x=7/2 is 0

twice the area between x=0and x=r.

Writing the area in the form of an integral,

2
A =2I0”/ sin xdx = — 2005x|g/2 =

y=sinx

Fig. 7-19

-2o-1]}=2

The easiest way to verify this integral is to refer to the Mathematical Tables. If you have
any trouble recalling the shape of the cosine curve, check Chapter 1, Mathematical

Background.
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That was so

much fun! I can hardly wait

for the next
chapter.
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TRIGONOMETRIC FUNCTIONS

The review of the essentials of trigonometry in Chapter 1, Mathematical Background, is a
review of the bare necessities for getting started in calculus. Now that you understand
differentials and integrals, it is time to move on to a more complete understanding of
trigonometry. This chapter covers from right angle trigonometry to the differentiation and
integration of trigonometric functions. If you want a comprehensive review of
trigonometry that will help you in your study of calculus this is the chapter for you.
Formulas for the area and volume of geometric figures encountered in this chapter are in
the Mathematical Tables at the end of the book. We begin the study of trigonometry at
the very basis of trigonometry, the right triangle.

Right Angle Trigonometry

The basic right triangle is shown in Fig. 8-1. An angle and the three sides are labeled as
shown. The side "opposite” is opposite the angle, whichever one it may be, and the
"adjacent" is the side adjacent to the angle. The hypotenuse is always the side opposite the
right angle. The little square placed in the comer indicates a right angle and the other
angle is designated with a @ .

sin @ Opposite _ &

Hypotenuse ¢

. Hypotenuse (¢

cosf = Adjacent _a yp © Opposite (b)

Hypotenuse ¢
tan 6 = Op¥)051te _ b f

Adjacent a (.

Adjacent (a)
Fig. 8-1

105
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The ratio of the sides and cither side, the opposite or adjacent, to the hypotenuse is unique
for each angle. These three ratio combinations are called the sine, cosine, and tangent.
The inverses of these ratios are almost totally uninteresting.

The angles are measured in degrees with 360 degrees the total {complete circle) angle. A

right angle is 90 degrees, written 90° . Each degree is further subdivided into 60 minutes,
and each minute into 60 seconds. Your hand calculator probably works in degrees and
decimal parts of degrees unless you have done something to make it read minutes and
seconds. The minutes and seconds feature may not be available on your calculator. Most
calculations are carried out to the nearest degree or nearest tenth of a degree.

The three basic ratios, the sine (sin), cosine (cos), and tangent (tan), are defined in Fig 8-1.
The ability to calculate this ratio information is stored in your hand calculator. If it is not
stored in your present calculator, get a better calculator. This information is so important
and the calculator so inexpensive you should obtain one. If you are not familiar with how
to work the calculator, practice taking a few sines, cosines, and tangents.

fsin30° =0.50, cos75° =0.2697, tan 45° =1.00}

If you did not get these numbers when you punched in sin 30° your calculator may have
been in the wrong mode. Your calculator will take the sine in three different modes,
degrees, rads (short for radians), and grads. Here's a simple rule. Never use grads, rarely
use rads, and always check you calculator for mode. Being in the wrong mode is too
embarrassing a mistake to make on a test. Actually you will, or may, use rads
ocassionally, but not in the context of right angle trigonometry problems. Rads will be
taken up later. For now, stick to degrees.

A couple of simple problems will illustrate the use of these angle ratios in right angle trig.

8-1 Fifty feet out from the base of a tree the angle measured to the top of the tree is
35?. How tall is the tree?

Solution: Figure 8-2 shows the tree, distance
along the ground, the adjacent 50 ft side, and

the 35° angle. The tangent function relates the
two sides to the angle.

35°

50 ft

opposite A

tan 35° = = .
adjacent SO ft Fig. 8-2

Solve this statement for / the same as with any algebra statement.
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h = (50 ft)tan35° = (50 f£)(0.70) =35 ft

The height of the tree is 35ft.

8-2 A certain right triangle has sides 5 and 7. Find the angles and the other side.

Solution: Sketch a right triangle and label the sides as shown in Fig. 8-3.

Start by calculating the angle 8.

tan9=§‘ 5
7

This presents a new manipulative problem in
that we seek the angle with tangent ratio 5/7. On
your hand calculator, enter 5 divided by 7 to .
display the decimal 0.71. Fig. 8-3

Now perform the inverse tan function. This is usually a key labeled "inv" or "arc" or

”" tan_l

," or sometimes the operation requires two keys "arc” and "tan,” or "inv" and "tan."
The tan™

produce an angle of 35.5° . Remember to keep your calculator in degree mode.

is the more popular. Pressing the appropriate key or series of keys should

The mathematical operation performed by these sequence of keystrokes is the inverse of
tan @ . Take the tan ' of each side of the tan & = 5/7 equation.

tan " (tan @) = tan "' (5/7) or & =tan"'(0.71)=35.5°

Rather than say "tangent to the minus 1" the words "arc” or "inverse" are used. The
equation 4 = tan”l(5/7) would be said, "theta is the arctangent of five over seven" or,
"theta is the inverse tangent of five over seven.”

Now calculate the angle ¢. All the angles of the triangle have to add to 180° so
1809 —90° —-35.5% =54.5°. The angle ¢ is 54.5°.

Find the hypotenuse using the cosine function.
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c0835.5° = 7

=——=86
cos 35.5°

or ¢

[ RIES |

The hypotenuse is 8.6.

Another useful property of right triangles is the Pythagorean theorem. In words, the
Pythagorean theorem is: In a right triangle the sum of each side (individually) squared

equals the hypotenuse squared. Referring to Fig. 8-1, the theorem is written symbolicaily

as a* +b% =c?.

8-3 Find all the sides and angles in a right triangle with side 4 and opposite angle 28°.

Solution: Sketch the triangle (see Fig. 8-4).

Find the hypotenuse using the sine function. 4
28°
sin28°=i or c= 4 =——4—=8.5
¢ sin28° 047 a
Now use the Pythagorean theorem to find the Fig. 8-4

adjacent side.
c2=4244a% or a?=c?-4?=852-42=566 or a=75

The other angle is 90° —28% =62°.

8-4 A force of 70 1b is pulling on a box sliding along a floor. The rope exerting the

force is at an angle of 20° from the floor. What forces acting parallel to the floor and
perpendicular to the floor would produce this force?

Solution: Finding the components of a force or speed is common in many problems.
The force is viewed as having components along the floor, because that is the direction of
motion of the box , and perpendicualr to the floor as shown in Fig. 8-5.
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E, =(701b)sin 20° 70 Ib

70 1b

Fy =(701b)cos20°

Fig. 8-S

The horizontal component of the force is F; =(701b)cos20° =661b .

—

F
Write cos 20° =—_ and solve for Fy, .
701b

The vertical component of the force is 7, = (701b)sin20° =241b.

Notice that the horizontal force and the vertical force do not add up to the 70 Ib. The
reason for this is that they are not in the same direction. Certain measured quantities have
this directional property. To describe motion or force it is necessary to add a direction. If
you move 3 ft and then 4 ft you will be at very different positions relative to your starting
point if you make both moves either in a straight line, at right angles to one other or first
forward and then backward. Depending on the angle between the subsequent moves you
will be anywhere from 1 to 7 ft from your starting point.

To describe temperature no such direction is required. Temperature is just a number
while motion requires a number plus a direction for complete description.

The components of the force are the sides of a right triangle and as such their squares
should add up to the square of the hypotenuse (Pythagorean theorem).

a’ +b%=c? or 66%+24% =707

Special Triangles

There are certain triangles that occur often enough to have their own names. When
someone describes a problem using the phrase "similar" triangles, for example, it is
important to know what that means. These definitions of triangles are not difficult,
though they are sometimes difficult to remember on tests. The features and some typical
uses of these traingles are shown below.
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Pythagorean Triangles Certain integral-number-
sided night triangles satisfy the Pythagorean theorem. These 5
triangles occur often enough so you should at least be aware of 3

them. The simplest is the 3, 4, 5 triangle: 32 +42 =52_ The
double of this one also works: 6% +8% =102, 4

Congruen'r Tricmgles Two tnangles are congruent if they are exactly the same,
sides the same and angles the same.

Equilateral Triangles Equilateral triangles have all their sides equal and all
their angles equal. Since all three equal angles must add to 180°, the angles in an
equilateral triangle are each 60° .

Isosceles Triangles An isosceles triangle has two sides equal and the two
angles opposite the equal sides also equal.

Similar Triangles Similar tnangles have the same angles. A triangle similar to

another is either larger or smaller than the other. The angles are the same and the sides are
in proportion. The proportion is illustrated in Fig. 8-6.

a b
=<

C

Fig. 8-6

8-5 Similar triangles often occur one

mscribed inside another. For the situation
shown in Fig. 8-7, find the height of the 10

" " - h
inner" triangle.
< >< >
20 6
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Solution: These are similar triangles. Their angles are the same and the ratios of their
sides are equal. In the larger triangle the side ratio is 10/26 . In the smaller triangle this

ratio is #/20 . Set these ratios equal and solve for 4..

h_10 o, (2010)

—_=— 7.7

20 26 26
Mathematician's
Clock

Radians and Small Angles

Right angle trigonometry is closely related to
the circle. Figure 8-8 shows a circle on a
right angle coordinate system with a radius
and the projection of that radius on both the
x- and y-axes. The radius is 1. If the angle is
measured counterclockwise from the x-axis
(mathematicians always measure angles
counterclockwise), then the sine and cosine
are defined as;

sin@=5/1 or b=siné

cos@=all or a=cosf

Fig. 8-8

If you were confronted with the problem of deciding how to measure an angle & for a
circle of radius 1, you probably would take the ratio of the arc length to the radius, and if
the radius were 1 then the angle would be measured by the arc length. Figure 8-9 shows a
radius, the angle and the arc length. For a circle of radius 1, the circumference is 27 so a
complete angle, all the way around, in this rather logical system would have an arc length
of 27 . One-quarter of the way around would be a right angle and have an arc length of

/2, and so on. This arc length to radius ratio produces a pure number (no units) and
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defines what 1s known as radian measure. The

relation between degrees and radians is 360° =27x
radians.

A radian, because of its defimition, is dimensionless P
so the use of the word radian or rad as a unit is for
convenience and a reminder that the angle is not
measured in degrees. Radians are not cancelled as
meters or seconds or other conventional units. Fig. 8-9

8-6 Convert 76° to radians and 1 radian to degrees.

Solution: Use unit multiplication here. Watch the units and keep the ratios correct and
everything will work out fine.

(o]
o271d |\ 3rad 1rad >0

360° 2z rad

76 =57.3°

You need to remember that 27 rad =360°. The other number, 57.3° /radian is not so

important and can be worked out with the 27 =360° definition.

Go through the following exercise so you are absolutely sure you know how to go back
and forth between radians and degrees. This is another mistake that is embarassing and
costly on exams.

Place your calculator in degree mode and take sin 57.3°. You should see 0.84 displayed.
Now place your calculator in rad mode. There is usually a DRG (degree, rad, grad) key
that cycles through the various modes. There also should be some indicator on the face of
the calculator indicating the mode, usually a D or R or G. In rad mode take sinl. You
should see the same number, 0.84, displayed. Try a few other angles in radians and
degrees to insure that you know how to find the trigonometric function of any angle,
whether in degrees or radians.

Refer to Fig. 8-10 which shows a triangle with a very small angle inscribed in a small part
of a circle. The angle measured in radians, and the sine and tangent of the angle, are
defined in Fig. 8-10.

For small enough angles, s is approximately the same as b, and a is approximately the
same as ¢. Therefore, for small angles with the angle measured in radians, the angle, the
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sine of that angle, and the tangent of that angle are all nearly equal. The next problem
illustrates the error in making the approximation that the sine is the angle for some small
angles.

Fig. 8-10

8-7 What is the difference (error) between the angle in radians, the sine, and the
tangent for an angle of 0.1 radians?

Solution: As a warm up to this problem take the sine of 5.7° and the tangent of 5.7° .

sin5.7° =0.0993 tan5.7° =0.0998
The difference between these two is approximately 5 parts in 1000 or 0.5% error. Now
& (in radians) = 0.1000
sin(0.1) = 0.0998
tan(0.1) =0.1003
The difference between the sine and the angle at 0.1 radians is 2 parts in 1000.

The difference between the tangent and the angle at 0.1 radians is 3 parts in 1000.
The difference between the sine and the tangent at 0.1 radians is § parts in 1000.

8-8 Redo problem 8-7 but at 0.5 radians, approximately 30° .

Solution: =05, sin@=048, tanf =0.55

The difference between 8 and sin@ at 0.5 radians is about 4%, and the difference
between 6 and tan @ is about 10%.

Use the approximation & =sin@ =tand for angles up to 10° and possibly 20°, but
certainly not much bigger.
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Non-Right Angle Trigonometry

You may encounter some situations requiring the side or angle in a non-right triangle.
The laws relating the sides and angles in non-right triangles are not surprisingly called the
Law of Sines and the Law of Cosines. These laws will not be derived, rather they will be
stated and illustrated with problems. Actually the Law of Sines and the Law of Cosines
are applicable to any triangle. Their greatest utility, however, is in non-right triangles.

Law of Cosines Referring to Fig. 8-11, the
Law of Cosines 1is written symbolically as

b? +¢? =2bc(cos A)=a’. Small letters refer to the
sides and capital letters to the angles.

In words, the Law of Cosines is "one side squared plus
an adjacent side squared minus twice the product of
the two sides and the cosine of the included angle
equals the side opposite the angle squared." This
statement is a clearer xplanation of the Law of
Cosines. Any side and adjacent side and included
angle follow the Law of Cosines.

Follow the statement, refer to Fig. 8-11, and write the following:

b +a® —2ab(cosC) = ¢ or ¢?+a? —2ac(cos B) =p?

8-9 Find the base and the two equal angles of an isosceles triangle with equal sides 4
and included angle, 40°.

Solution: An isosceles triangle has two sides and the opposite two angles equal. The
word "base" implies that the unequal side is horizontal. An isosceles triangle as described
in the problem statement is shown in Fig. 8-12.

Following the written statement of the Law of Cosines, "One 40°
side squared plus an adjacent side squared minus twice the 4
product of the two sides and the cosine of the included angle 4
equals the side opposite the angle squared,” the equation can be
wriften as
42 442 -2-4-4(cos40°) = b* b
Fig. 8-12

32-32(cos 40°) = b
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b*=75 or b=27

The base is 2.7, and to complete the picture the equal angles are 70° each
(70° +70° +40° =180°).

8-10 Find the distance and angle to the final position for a person who travels 6

meters at 20° north of east and then 8 meters at 50° north of east.

Solution: Instead of an x-y coordinate
system use the N-S-E-W system
representing the compass directions and
place arrows representing the 6- and
8-meter distances as shown in Fig. 8-13.

Perhaps the hardest part of this problem is
finding the large angle (a + ) between the
6- and 8-meter lengths. The dashed line at
the tip of the line representing the 6 meters
is parallel to the E-axis, so the little angle

labeled a is 20° (alternate interior angles Fig. 8-13
of a bisector of parallel lines). The angle

labeled B is 130° (180° —50?). Therefore, the large angle between the 6 and 8-meter
lines and opposite the line from the start to the finish is the sum of these two angles
130% +20° =150°.

Now write the Law of Cosines for the length /.
6% +8% ~2-6-8(cos150°) = /2
Before going any farther on this problem, stop and look at the cos150°. Take cos150°

on your hand calculator and you will see —0.87 displayed. This is most reasonable. The ;‘v’i

length, /, is greater than 6 or 8 and, just from looking at the sketch, close to 14, the sum of -

6 and 8. With a negative number for the cos150°, the Law of Cosines looks as though it Insight

is going to produce a reasonable number. Now proceed with the calculation.
36+ 64 —(2)(6)8)(-0.87) = 1*

/? =183 or /=135
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\\7
:Q{: The important point to notice in this problem, and that is why it was included, is that the

Law of Cosines works for angles greater than 90 .

Insight
Law of Sines Referring to Fig. 8-14, the Law of Sines y
is written symbolically as
sind _sinB _sinC 9 b
a b c
B
The Law of Sines works in some instances when the Law of a
Cosines does not. The following problem is an example c
where the Law of Sines works and the Law of Cosines does Fig. 8-14
not.
8-11 For a non-right triangle with angles 4 =30° and B=40° and one opposite side
b =11, find all the sides and angles.
Solution: Sketch the triangle as in Fig. 8-15.
) . . . ) A=30°
Notice that the Law of Cosines will not work in this
problem. There are not two sides given. b=11
sin40° _ sin 30° ¢ ¢
Using the Law of Sines =
11 a a
sin 30° B=40°
and solving for a we calculate a=11
sin 40° Fig. 8-15
W
= Do not at this point divide 30 by 40; take the sine and multiply by 11!
Watch

Ot Carefully find sin 30°, then divide by sin 40°, and finally multiply by 11.

: [}
a=llsm30 =110.50_

=8.6
sin 40° 0.64

The angle C is 110° (180° —30° —40° =110°).

And finally use the Law of Sines to find side c.
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sin110°  sin 40°
c 11

or c=11

: 4
sin110 —11

0.94 ~16.2

sin 40°

0.64

Trigonometric Functions

The definition of the trigonometric functions starts with the right triangle inscribed in the

unit circle first shown in Fig. 8-8.

Place a unit circle on a right angle coordinate
system as shown in Fig. 8-16. The sides of
the inscribed triangle are the sine and cosine
of the angle, 8. These sides of the inscribed
triangle are also the projections of the point
on the circle that defines the angle on the
axes. The projection on the x-axis is the
cosine of #, and the projection on the y-axis
is the sine of @.

As the point defining the angle moves
around the circle in a counterclockwise
manner, the projection on the x-axis traces
out the cosine function and likewise for the
sine function. We will eventually graph the

y - y=sin@
¢
e
. -
N x=cosf
Fig. 8-16

sine function versus angle, but right now work with the unit circle a little longer.

Follow the sine function and confirm the values in Table 8-1 as the angle is increased.
Remember that the angle increases counterclockwise from what would be the +x-axis.

Sine At 8 =0, the projection on the y-axis that is the value of the sine function is 0.
At @=r/4 or 45°, the projections on the x- and y-axes are the same. Applying the
Pythagorean theorem, two equal lengths, /, squared equal the radius (of 1) squared.

12412 =1 or 27 =1 or 1* =2 or I=1/J2=0T1

With your hand calculator, confirm that sin 45° = cos(7/4) =0.71. Confirm this number

in Table 8-1.
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At 6 = z/2, the projection on the y-axis is 1.

At @ =37/4, the projection on the y-axis is positive and equal to the value at 7/4.

At @ = xr, the sine function goes to zero.

At @ =57z /4, the projection on the y-axis is negative, but numerically equal to the value at
7/4.

At @ =37z/2, the sine function has value —1, and at § =7z/4, —0.71, and finally back
to zero at 2w .

Cosine At 6=0, the cosine function is the projection on the x-axis, or 1. As 6 goes
from O to 27, the shape of the cosine curve is the same as the shape of the sine curve.

They just start at different places; the sine curve starts at zero and the cosine curve starts at
I.

Tangen'l' The tangent function can be thought of as either y-projection over
x-projection or sine function over cosine function. Use whichever is more convenient.

At 8=0, sin® =0 and cos@ =1 so (sin&/cosf)=0.

At @ = /4, the projections are the same so tan(z/4)=1.

At 8 =r/2, the sin(x/2) over cos(z/2) is1/0. There is no point at 1/0 so look to a
limit view of how the tangent curve behaves in the vicinity of 7/2. As 6 approaches
72, with values less than /2, the cos# becomes small making the tangent of &
become a very large positive number. When @ goes just beyond 7/2, cosé is a small
negative number making tan € a very large negative number.

On one side of 7/2 the tangent function goes to plus infinity and on the other side it goes

to minus infinity. The best way to depict this on the chart is with +co. In limit language,
the tangent function has a vertical asymptote at 7/2, 37/2, and every r interval in both

directions. The tangent function is usually graphed between —7/2 and 7/2 so a
complete curve from minus infinity to plus infinity is shown.

Table 8-1
0 /4 z/2 3r/4 z 57/4 37/2 Tr/4 27
sin 0 0.71 1 0.71 0 -0.71 -1 -071 0
cos 1 0.71 0 -0.71 -1 -0.71 0 0.71 |
tan 0 1 +w -1 0 i tw -1 0
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The sine, cosine and tangent functions are graphed in Fig. 8-17.

tan 6

-n/4

/4

sin &

cos@

37[/2 2t
| L J]
T 1
72 T 6
T
| l
| |
7f2 3z/2 2z 9
Fig. 8-17
Identities

It is not our intention to work out all of the many trigonometric identities. What we will
do is show you how broad categories of identities are developed, working out a few
examples along the way. Our purpose is to give you a flavor for trigonometric identities,
not make you an expert at them.

The simplest of the identities are the reciprocals of the sine, cosine, and tangent
functions. These are called the cosecant (csc), secant (sec), and cotangent (cot).

cscl = ——1—~

sin

secl =

cotd = ——l—
cosd tan&
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Look back to Fig. 8-8 and Fig. 8-16 and notice that the inscribed right triangle has radius
1 and write the Pythagorean theorem statement for these inscribed triangles. In terms of
the x and y components, the statement would be

x°+ y2 =1
In terms of the trigonometric functions the statement would be

sin? @+cos? G=1

This last statement is often called trigonometric identity number one. Divide this

statement by cos’ @ to obtain

tan’ @ +1= or 1+tan’ @ =sec’ @

bl
cos™ 8

A variety of similar identities based on sin? @+cos’ @=1 can be created and are
tabulated in the Mathematical Tables.

Another category of identity concerns the sum or difference of two angles and angles plus

or minus 907 or 180 . These can be worked out with the unit circle but they are easier to
see from the function graphs. Look just at the sine function graph in Fig. 8-18 and follow
the argument presented below.

sin &

9

Fig. 8-18

On the sine function graph a vertical line is drawn indicating the position and value of & .
The point —& has the same numeric value for the sine function as @ (it is just negative)
so identity-wise sin 8 = —sin(—8). Similarly sin# and sin(x —#8) have the same value,
so sind =sin(x —#). The sin(x +8&) has the same numeric value as sin 8 , one is just the
negative of the other, so sin & = —sin(7 +8). The relations between the sine and cosine
are a little more complicated, but not much. Many of the popular trigonometric identities
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dealing with different angles being equal to or the negative of one another are listed in the
Mathematical Tables.

Another category of identities is the sum and difference formulas and the half and double
angle formulas. Many of these identities come about from a derivation similar to the one
given below for the cosine of the difference of two angles. In addition, this exercise is a
good review of basics.

Figure 8-16 shows that any point on the unit circle can be given by the coordinates x and y
or the coordinates cos@ and sin & . On a unit circle the coordinates of the angle 6 are
(cos8,sin 8). The coordinates of another angle, ¢, are (cos ¢, sin @) .

y
(cos8,sin 8)

{cos ¢, sin @)
sin @ —sin ¢ $ ¢

cos —cos @

Fig. 8-19
The distance between these two points, d, in terms of the Pythagorean theorem, is
d? = (sin @ —sin qﬁ)2 +(cos @ —cos ¢?)2

In words, this is "the hypotenuse d squared equals the difference in x-coordinate squared
plus the difference in the y-coordinate squared.”

d? =[sin2 8 —2sin l9sin¢+sin2 g¢r5]+[cos2 9—2cosl9cosqz§+cos2 @)
sin? @+cos? =1 and sin? ¢+cos2 ¢ =1 so this statement reduces to
d? =2-2sin@sin ¢ -2cosf cosg

The distance d 2 can also be written in terms of the Law of Cosines. The sides are 1, and
the included angle is (@ — @), which makes the statement easier.
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d? =1% +1% = 2()(1) cos(6 - @)
Set these two statements equal to produce an identity.
2-2cos(@ —¢) =2 —2(stn &sin ¢ +cos @ sin @)
cos(8 —¢) = sin &sin ¢+ cosB cos ¢

This identity gives the cosine of the difference of two angles in terms of the sines and
cosines of the individual angles. A myriad of sum and difference of two angles formulas
as well as double and half angle formulas come from exercises similar to this one.
Fortunately they are all tabulated in many places, most notable in Mathematical Tables in
the back of this book. These tables given here are not complete, just sufficient for most of
the problems you will encounter

Differentiating Trigonometric Functions

A somewhat intuitive justification for the derivative of the sine function was given in
Chapter 3, Derivatives. Now it is time to look a little more closely at derivatives of
trigonometric functions and apply those denvatives to some problems.

The derivative of the sine function is the cosine function and the derivative of the cosine
function is the negative of the sine function. The justification for the derivative of the sine
function (Chapter 3) is enough to give you a feel for how the denivatives of trigonometric
functions come about. The more popular derivatives are listed below, with a larger list
presented in the Mathematical Tables.

d(sin @) =cos8d@, d(cosf)=-sinfd8, d(tanh)= sec? 0d0

One thing that occurs fairly often in trigonometric fuctions is that the variable, the &, the x,
or whatever is not simply 6 or x but something more complicated, like 2x, for example.

8-12 Find the derivative of cos2x.

Solution: This kind of problem is best done in an implicit style. Write d(cos2x) and
then differentiate according to the fomula for the differential of the cosine.

d(cos 2x) = —(sin 2x)d(2x) = —2(sin 2x)dx
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In words, "the differential of cos 2x is equal to minus sin 2x (times the) differential of
2x." The differential of 2x is 2dkx.

With this experience % (cos2x)=-2sin2x .

The implicit derivative approach with the equation written in one line is the easier method.

8-13 Find % for y=sin3x.

Solution: Before differentiating the sin x we first have to deal with the cube of sin x.
If the problem were y = u’, the mmplicit style derivative would read dy = 3uldu.

For the function y=s'm3 x, the parallel (approach) denvative would be

dy = 3(sin? x)d(sin x). The d(sin x) is cosx, or % =3(sin’ x)(cos x).

8-14 rind % of y=tan®26.

Solution: Go slowly and don't get confused. Do the tangent squared part of the
derivative and then take care of the 26 part.

dy = 2(tan 28)d(tan 20)

dy = 2(tan 20)(sec’ 20)d(26)
_ 2 dy _ 2
d = 4(tan 28)(sec” 20)df or 0 4(tan 26)(sec” 26)

The problem can be rewritten using the identity sec2 20 =1+tan’ 26 .

%=4(tan 26)(1+tan* 20) = 4tan 26 + 4 tan” 20
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8-15 What s the angle between y =cos3x and the x-axis when the curve crosses the
axis?

Solution: This is one of those innocent-looking problems that looks easy but perhaps is
not so easy. Oh, but it is not difficult for Captain Calculus, because he always "thinks
calculus.”

This is a job for
Captain Calculus!

The phrase "the angle” should trigger a connection between geometry and calculus. To
know the slope is to know the angle, so if we know the slope when the curve crosses the
axis then we can easily find the angle. The slope, in general, is the derivative.

dy = —sin 3xd3x = —3sin 3xdx
or y
g“\i=—3sin 3x y =cos3x
dx

What we need is the specific slope when the 7/ n
function y =cos3x crosses the x-axis. We -
have the general expression for the slope so all o/
we need is the x-value when the function
crosses the x-axis.

The function y=cos3x crosses the x-axis

Fig. 8-20
when '8

3x=nr/2 or x=7x/6
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Substituting 7/6 into the general expression for the slope, we calculate

d . .
cd =-3sin(37/6) = -3sin(7r/2) =-3
dx x=n{6
Figure 8-20 shows the first quarter cycle of the curve y =cos3x. The slope is clearly
negative at this point. The angle between the axis and the curve as shown in Fig, 8-20
has tangent of 3. Solve tan ' =3 for 6 =72°.

8-16 The risc and fall of ocean tides follows
y=03 ﬁ)sin(—zl—’ir—t) , where y is the relative height of the

ocean, taking y =0as the mid point between high and
low tide, and ¢ is the time in hours from the mid point in
height. When, in the cycle, is the tide rising at its
greatest rate, and what is that rate?

Solution: The sine function describes the up and down
motion of the tide. The 3 ft is the height or depth of the ocean from the midpoint between
high and low tide.

The 27/11 is determined by the frequency of the tide and the nature of the sine function.
The time for one tide cycle is approximately 11 hours. When ¢ has gone from O to 11, the
argument of the sine function, the (27/11)¢, has gone from O to 2z, or through one

complete cycle. Read this paragraph until you understand how to write descriptions of
processes that vary in a sinusoidal manner.

The function is graphed y
in Fig. 8-21. The ] _ . 2n
vertical scale shows the 3f - =0 ﬁ)sm( T ')

3 ft up and down of the
tide and the horizontal 11
scale shows one
complete cycle after 11
hours.

4
+

-3ft T

The rate at which the
tide is rising is the time
denivative of y. Fig. 8-21
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TR EANCANCIANCY
dt 11hr 11 11 hr 11

The 2z/11 has the units 1/hr. If ¢ is measured in hours then 27/11 must have the units
of reciprocal hours so that the sine is of a pure number. It is impossible to take the sine

of 31t or 6 hours or $1.25. The only choices in taking a sine are a pure number (radians)
or degtrees.

The rate at which the tide is rising, dy/dt, is a maximum when cos(2z/11)¢ is

maximum. The cosine function 1s a maximum at 0 or in this case at £ =0. This point,
t =0, corresponds to the midpoint between high and low tide (see Fig. 8-21).

The tide is rising at its fastest rate midway between high and low tide.

The maximum rate is gﬁ— = 0.57E .
i1 hr hr

Second Solution: Captain Calculus, who always "thinks calculus,” would not need to
take a denivative to know when the tide was rising at maximum rate. The Captain would
look at the sine curve (Fig. 8-21) describing how the ocean level was going up and down
with the tide and ask where the slope had the greatest positive value. Just by looking at
the curve, the maximum positive slope and the greatest rate of nise of the tide are at the
midpoint between high and low tide.

Integrating Trigonometric Functions

Three basic integral formulas can be obtained by taking the antiderivative of the
differential formulas at the beginning of the previous section.

Id(sinﬂ) = jcosﬁdﬁ , Id(cos&) = —Isin 6deo, Id(tan )= Isecz 0da
[cos8df =sin0, [sin0df=-cos8, [sec’ 046 =1tan6
Two other popular integrals of trigonometric functions are

j tan 8d6 = ~In(cos 9) J' cot 0d6 = In(sin 6)
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These and a few other trigonometric integrals are listed at the back of the book in the
Mathematical Tables.

Handling integrals other than the standard integral, Isin, cos,ortan(x)dx, is a little

harder with integrals than it was with differentials. The following problem illustrates the
procedure.

8-17 Find the integral of y = j sin 2046 .

Solution: Here again is a case where Isin udu is known but this is not the exact

problem. The first step in this problem is to make the jsin 268d0 look like Isin udu .

Constants can be placed inside or outside the integral sign; it makes no difference. To
make this problem read I sin udu , multiply by 2/2 and take the 2 in the numerator inside
the integral and associate it with the 4@, and leave the remaining 1/2 outside the integral.
-1 [ sin 20426
772

Now the integral is in the form Isin udu and has the following solution.

1 1
=—(-cos 20) =-—cos 20
y 2( 0s 26) 5

8-18 Find y = sin’ 040 .

Solution: Don't be fooled by this integral. It is not a power law problem. It is not an
easy integral and do not get involved in trying to work it out. Go to the Mathematical
Tables or some tabie of integrals and copy the answer.

y = [sin’ 640 = —%cosB(sinz 6+2)

Watch
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8-19 Find the average value of the sine function from 0 to 7.

Solution: The average value of the function

uses the definition of the average value of a *
function over a range (see Chapter 7, 1 4+
Integration). The integration is over the first 064 7>

half-cycle of the sine function as shown in
Fig. 8-22. The average value of the function

x=sin@ fromOto x 1s

x| =—t[singd6
™ 7-0

Carry out the integration to find the average value of the sine function over one
half-cycle.

xlavg =%[—cos€]g = %[—cosrz—(—cosO)]= —71;[—(—])—(——])]= ;2; =0.64

Figure 8-22 shows the rectangle with height 0.64 and base 7 with area equal to the area
under the first half-cycle of sin @ .

8-20 The power delivered by a loudspeaker is P=F, sin? wt f
where P, is the peak power and w is a constant with the units of
reciprocal time. What is the average power in terms of the peak \/

power?

Solution: Start by graphing sin wt (Fig. 8-23). The w! is not important to the graph.
When wt has gone from 0 to 27, the sine function has gone through one cycle.

Now graph the sin? r,—+ — e
curve. Look first at

., P=P,sin 2 ot
the range from 0 to -

z. The sin’ curve
starts at zero when 2 wi
wt =0, and goes to
1 when wt=r/2,
and then back to zero
again when w!=x. Fig, 8-23
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The sin? curve, however, has a different shape from the sin curve. The unique shape of

2 curve is due to the fact that when a number less than 1 is squared, the result is

the sin
smaller [0.52 =0.25]. The smaller the number, the smaller the result on squaring

[0.92 =0.81 but 0.3% =0.09].

2 2

When the sin curve is negative, the sin” curve is positive (see Fig. 8-23). The sin

curve is periodic in 7 so the average value of the sin 2 curve is the average value between
0and 7.

The average value of this sin? -type function follows the definition of the average value
of the function.

= ——1— P, " sin’ wid(w!)

P|‘”g -0

The I sin? 8do integral is (from the Mathematical Tables) %0 —%sin 20 so

P P
P, b la)t—~l—si112a).! =% [z—lsin?.ﬂ - 0—lsin0 =%
M oxl2 4 T L2 4 4 2

The average power for the loudspeaker is one-half the peak power.

8-21 What is the area bounded by y, =cosx, y, =sinx,and x=07?

Solution: The sine and cosine functions are shown
in Fig. 8-24. The integral of the areca between the o

. . - Yy =sinx
carves i1s i the  x-direcion and  has

formf(cos x —sin x)dx . The integral is from x=0 to

<17

¥y =cosx
the intersection point of the two curves. At this point

) sin x
SINX=CO0SX oOr =1 or tanx=1.
cos x

Fig. 8-24

From the graph of tanx, tanx=1 when x=7x/4.
Check the number in your hand calculator. Take the inverse tangent of 1. Table 8-1 also
shows sin x equal to cosx at x = /4 so the complete integral, complete with limits, is
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A= _[0”/4 (cos x —sin x)dx

A =[sin x +cos x](',’/4 = {:sin % +cos —;5} - [s'm 0+cos0)

A=071+071-1=141-1=041
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EXPONENTS AND LOGARITHMS

The short review of exponents and
logarithms in  Chapter 1,
Mathematical = Background,
presumed a rudimentary
knowledge of exponents and
logarithms. No  such
presumption is made in this chapter.
Here we start with basic definitions and work up to
differentiation and integration of exponential and logarithmic functions.

When I'm on my
birdhouse, I'm as
powerful as an

exponent!

Exponential functions describe a wide variety of phenomena including radioactive decay,
bacteria growth, learning retention, growth of investments, proliferation of disease, and on
and on, providing many good examples of the application of exponential functions.

The statement of some of these phenomena is often quite simple but the specific laws
govemning them and the predictive ability of these laws require a good understanding of
exponents, logarithms, and calculus. This chapter is very applications oriented. No
matter what your field of interest, there will be some applications that bear directly on
your area of interest.

Exponent Basics

A number written as 2%, which is just a short-hand way of writing 2-2-2, is a number, 8
in this case, written in exponential form where 2 is called the base and 3 the exponent.
Two numbers such as 32 and 5° cannot be added and the answer written in a meaningful
exponential form. The 32 is equal to 3-3 and the 53 equal to 5-5-5. There is no
combination of 3's and 2's and 5's that represents the addition of the two numbers. The
only way to add the numbers is to write 3% as 9 and 5% as 125 and add them to obtain
134. Likewise, there is no way to subtract numbers written as exponents. Even 32 plus
32 cannot be written as an exponent.

131
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Multiplying is much easier: 3*.3% is 37, just add the exponents. Visualize 3* as four
3's multiplied together and 3> as three 3's multiplied together and all of them multiplied
together as seven 3's multiplied together.

Dividing is equally easy: 3°/3° =3°. Five 3's divided by three 3's means there are two
of them remaining in the numerator.

Raising to a power is a slight variation on multiplying. The form (23 )2 is viewed as 2°

times 2° or 26,
These examples illustrate the three basic laws of exponents.

m n m+n a m-n (am )n =am~n

1

a™

Negative exponents mean reciprocal, or one over: a~" =

The laws of exponents work equally well for negative and fractional exponents.

7
9-1 Evaluate: 2°.25; >—: 37.3%; 43S, (7%?)

5]1 2 bl *

32

Solution: For 2°.2° add the exponents to obtain 2°.

7

For % subtract the exponents keeping the signs correct to obtain 5711 =574
5
For 377 -3* add the exponents keeping the signs correct to obtain3 "** =373,

For (42 )'6 multiply the exponents to obtain4~'2.

For (7 32 )? multiply the exponents keeping the fractions correct to obtain 73.

0.2
For 333— read the problem as 392.372 and add the exponents to obtain 3718,
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Exponential Functions

Exponential functions are in the form y=a”. Taking a =2 the function reads y=2*.
This is a rapidly increasing function as tabulated and shown in Fig. 9-1.

y

y 1 2 |4 | 8 12)1/4

Kig. 9-1

The function y=2"" is also interesting and is tabulated and graphed in Fig. 9-2.
Remember that any number raised to the zeroth power is 1.

y=2""

y {1 |2 |ua |2 |4

e

Fig. 9-2

9-2 Certain cells grow by splitting; one cell begets two and each
of these begets two (more) with each cycle taking 3 hours. A

simple model for the growth in the number of cells is N = N,2"3,
where N, is the number of cells at 1 =0 and ¢ is the time in hours.

If 1000 cells are left to grow over 60 hours, how many cells are
there at the end of the 60 hours?
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Solution: At time zero there are 1000 cells. At the end of 3 hours there are 2000 cells,
and at the end of 6 hours there is another doubling to 4000 cells. The model as described

in words and by the equation N = (1000)2"" is consistent. Make the time go on for 9
hours and the number doubles again to 8000 cells.

CHAPTER 9

Use the formula for this specific situation to find the number at 60 hours.
N=N,2"% =(1000)2%" = (1000)2%° =1.0x10° cells

The power of an exponential function to generate large numbers is tremendous.

The Number e

The number e, approximately 2.72, is an irrational number (irrational numbers cannot be
written as fractions) that occurs in nature in many different places. Two of the definitions
are associated with calculus and are outlined here.

The first definition of e involves a limit. The number e is defined as

l X
e=lim (l + ——)
X—»a0 X

That is a rather strange looking definition but one that is easy to check on your hand
calculator.

. o . 1Y
The definition states that as x gets closer and closer to infinity, the operation (1+~j
x

approaches a limit, the number e.

X 1 x
1+— 1
Try a few numbers in your hand calculator. x (1 +;]
These few short calculations produce a
. 1 1+1 2
value for e¢ good to three significant
2 1+0.5 2.25
figures. Your hand calculator probably 10 1 250
computes e with this algorithm and a high : :
enough value for x to reproduce the 100 1.01 2.70
1000 1.001 2.72

precision appropriate to your calculator.

The second definition of ¢ is that y =e” is the exponential function whose derivative is

everywhere equal to the value of the function. At x =2, the function y = e’ has value
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7.39 and its derivative (slope) is also 7.39. In calculus language this means that
d . . o

Ex—(ex)=e’” . The base, e, is generated by taking the derivative of some general
exponential function %(a") and asking if there is a value of a such that % of a* is
a” . Such a number exists and it is the number e.

These two very calculus oriented questions:

x
"What number do you get when you take lim (1 +l) 7" and

X—»Q0 X
"What value of a in the function y =a* gives a derivative equal to itself?"

produce the numnber e.

Most of the exponential problems in the remainder of this chapter will use the number e.
As we get further into the study of logarithms, e will return again as an important number.

The derivative of the basic exponential function e” is e*, or
X X d x x
de*)=e’dx or —e" =e
dx

Taking this one step further, any function represented by the symbol u is differentiated as
d(e")Y=e"du
The integral of e” is also e*

Je"du=e“

9-3 Find 4 for y=e?.
dt
Solution: The safest way to do this problem is in an implicit derivative format.

d
dy=ed(at)=a(e™)dt and 7;1 = a(e™)
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9-4 Find % for y=e'3.

Solution: Again, use an implicit derivative format.

dy = e’ d(t3)=312(e’3 )dt  and %:3:2@'3)

9-5 rind je3"dx.

Solution: Change the integral to %Iekd@x) s0 it is in standard form, Ie"du =e",

and write

3x _1 3x ____1_ 3x
j'e dx-;j'e d(3x)=e

Q-6 What is the accumulated balance on $1000 placed at 6%
interest for 5 years if the interest is compounded (a) quarterly or
(b) monthly?

Solution: If the interest on a principal amount is compounded
once at the end of an interval the amount is A = P(1+r) where r
is the rate of return written as a decimal. A one time 10% interest payment on $1000
would produce A4 =3$1000(1+0.10)=$1100. If this $1100 remained at the 10% and the
interest compounded again at the end of the next interval the amount would be
A=[P1+r))(1+r)=%1100(1+0.10) =$1210. The expression in brackets represents the

amount after one compounding and the entire expression represents the amount after two
compoundings.

Depending on the number of compoundings, in general the amount would be
A=P(1+r)" where r is the rate for the compounding interval and n is the number of
intervals.

Interest is usually stated on a yearly basis with specified compounding. The phrase "6%
compounded quarterly” means that the 6% is divided by 4 for the rate per interval
(quarter) and there are 4 intervals per year. In mathematical symbolism
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4
A= P[l+———0'06)
4

would be the balance for an amount P placed at 6% interest for 4 quarters or | year.

The stated problem asks for the accumulated balance on $1000 after 5 years at 6% interest
compounded quarterly so the appropriate formula is

0.06\%°
A=51000(1+—'4—) = $1000(1.015)%° = $1346.86

If the compounding is done monthly then the rate has to be divided by 12 and the number
of compoundings increased to 12x5=60.

60
A =smo<{1+9§) — $1348.85

9-7 Inthe previous problem what would be the balance at the end of the 5 years if the
compounding were increased to instantaneous compounding?

Solution: Start with the statement

Show me the

r\¥ money!
A=P(l+;) , where Kk represents the

compounding rate (12 for monthly, 365 for daily)

and k7 is the number of compoundings over time.

This looks so much like the definition of e, define

k/r as n so the expression for the amount reads
1 nrt

A= P(l +-] .
n

: 1Y’
Now, knowing the laws of exponents, A can be writtenas A4 = P[(l +—] ]
n

As the number of intervals increases (k increases and A7 increases) the compunding
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n
approaches instantaneous and the expression in the brackets becomes lim [l + —) =e.

n—oo

So in the limiting case of instantaneous compounding the amount is A4 = Pe” .

For this problem with P=$1000, »=0.06, and 7 =5 years, the maximum balance for
instantaneous compounding is

A=3$1000("%3) = $1000(e®* ) = $1349.85

Logarithms

There are several definitions
of logarithms. We will
consider only the simpler
ones. Further, we will
consider only natural, or
base e, logarithms.

The simplest definition of a logarithm is that it is a function that allows the exponential

equation y =e” to be written in the form x =.... The equation y =e”* cannot be solved

for x with conventional algebraic methods. The logarithmic function is the way out of this
dilemma. The equivalence between exponents and logarithms is

y=e < Iny=x

Although there are exponential equations other than base e, most of the exponential and
logarithmic functions you encounter will be base e. Your hand calculator uses base e and
base 10, though base 10 is used rarely. The notation In, as opposed to log, specifies
base e. The logarithmic equation just above is read as "log base ¢" or "In e" or simply
"log" with the later presuming that if the base were other than e it would be specified.

Run a few numbers on your calculator to become familiar with taking logarithms and
calculating with exponents. This is not something you do every day and you don't want to
make a calculating mistake on a test.

On your hand calculator raise e to a power, then take the In of that number to return to the
original power (number). [e® =20; In20=3] As you go through the problems in this
chapter keep your calculator handy and practice "punching the numbers."
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9-8 Solve the equations 7 =e* and Inu=14.

Solution: The equation 7 =e” has to be switched to a logarithmic one: x=1In7 with
x=195.

The equation Inz=14 has to be switched to an exponential one: wu=e'* with
u=568.

The key phrase to remember in switching from an exponential equation to a loagrithmic
equation and vice versa is "a logarithm is an exponent." The logarithm of something is a
number and that number is the exponent of e.

First let's handle that new buzz
phrase: "a logarithm is an exponent, a
logarithm is an exponent . . ."

There are manipulative laws for logarithms that parallel similar laws for exponents.

In(uv)=lnu+inv *

mZ=lny-inv Remember

\%
Inu” =nlnu

A little manipulation of exponents will verify the first law.
Set k=Inu and /=Inv sothat e* =u and e’ =v.
Form the product wv= e* e’ =e**! and convert to a logarithm equation

Inuv=k+i=lnu+lnv.
The derivative of In x is

d(lnx)=ldx or %(lnx)zl
x x
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9-9 Find 2 of y=x’Inx.
dx
Solution: Use the chain rule and go slowly.

dy = x*d(In x) + (In x)d(x?) = x* %dx + (In x)(2xdx) = (x + 2x In x)dx
or

%=x(l+2lnx)

9-10 Find % for y=In(2x? +1).

1 1 4x

Solution: dy=-——d(2x* +1)=——(4x)dx = dx
2x2 +1 2x% +1 2x2 +1
or
_dl_ 4x
dx  2x% 41

9-11 Find the derivative of y=x'" In(x> +2).

Solution: This looks bad. But, if you proceed slowly, applying the rules one at a time,
the differentiation is not all that difficult. The hard part is proceeding logically. This is a
product so write

dy =x"d[In(x? + 2)] + In(x? + 2)dx

d(x2 +2) = 22

The differential of In(x> +2) is —.
x“ 42 x“+2

The differential of x!° is x% dx.

Putting it all together we write

25
dy=)\c]‘5 _gi‘é_+x0.5 ln(x2 +2)dx or %g-=—zi———+xo'S ln(x2 +2)

xt 42 xt 42
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9-12 Find the derivative of y=e *sinx.

Solution: This is a product. Proceed methodically and the problem is not difficult.

dy = e *d(sin x) +sin xd(e ) = e ¥ (cos x)dx ~ e ¥ (sin x)dx

&[&

=& *(cos x —sin x)

There is a simple rule for differentiating logarithmic functions that some authors use.

If y=Inf(x) then —="———.

This is equivalent to using the chain derivative approach and the derivative of a logarithm
as defined in the Mathematical Tables.

1
=—d
dy @ (f(x)

Verify for yourself that the two forms are equivalent by working problem 9-10 both
ways.

Integration of the logarithmic function follows j‘ln xdx =xInx—x which is used so

rarely that we only give this one example.

9-13 Find y = [In 2xdx.

Solution: y=:;—jln 2xd(2x)=2xIn2x-2x
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Growth and Decay Problems

The growth and decay model is appropriate to many
phenomena, such seemingly diverse problems as population
growth, radioactive decay, the spread of disease, the cooling of
a cup of coffee, and the number of yeast in a culture, just to
name a few. Before working some problems, a very simple
model of bacteria or yeast growth will be developed and worked
through in detail. Notice the pattern in the problem. Many
mathematical models of different phenomena parallel this one.

A simple experiment performed in elementary chemistry, biology, or physical science
courses is the growth of bacteria or yeast. In this experiment a certain number (the
number is often determined or measured by weight) of bacteria are placed in a nutrient
environment. This means that the bacteria have optimum growing conditions, food,
temperature, etc. Their growth is then limited by their growth mechanism and not by
anything external.

The bacteria grow by budding, one bacteria grows on another, splitting, each bacteria
divides producing two identical bacteria, so that each bacteria over an average time
period becomes two bacteria and these two repeat the same process in the same time
period and on and on. At any time in the process the number of bacteria produced per
unit of time is proportional to the number present. This is the mathematical statement of
the growth model for bacteria. In symbolic form, dN/dt, the number produced per unit

of time is proportional to the number present, &N .

Solving this statement for N as a function of time is a calculus problem, and one we
already have some experience with,

In practical terms the difficulty with the rate statement is that the N is on the wrong side
of the equation. It needs to be associated with the dN if we are to make any progress
toward a solution. A little algebra fixes this.

dN

dx
Now integrate both sides of the equation. (Remember: I d(lnx)= J‘ — $0 ngx" =lnx)
x

fiﬁ:j'kdt o IN=k+C
N
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The constant 1s required because there are no limits on the integrals.

In this problem, as with every problem in growth or decay, there is an initial amount of
matenial. In this case there is an initial number of bacteria at the start of the experiment.
Call this initial amount N,. In the language of mathematics, at /=0, N=N,.
Substitute these values into In N = kt+C .

InN,=k(0)+C so C=hN,

With the constant evaluated in terms of the initial amount of material the basic relation is

InN=kt+lnN, or mMN-InN,=kt or ln]\]:j-—:kt

o

If you had any trouble manipulating the logarithms in the previous line, go back and
review the manipulative rules for logarithms.

At this point switch to an exponential format.

lniv—=kt & —=e¥ or N=N,e"
NO NO

This last statement correctly describes the model. The number of bacteria at any time
starts out at N, (eo =1) and increases with time in an exponential manner.

This N = N,e" is the general growth law for something with growth proportional to the

number present. Some text authors begin the discussion of growth and decay with this
equation. This approach is simple but neglects the development of a mathematical model
of a simple statement that "the growth of ... is proportional to the number of . ..
present at any time.” A little reflection will convince you that this model fits many
different phenomena.

Suppose in this bacteria growth problem that 100 bacteria are introduced into a growth
environment (water, nutrients, etc.) and that 2 hours later the bacteria are separated from
the environment or otherwise identified and that their number has increased to 130. Can
this information be used to determine the growth law?

With these two numbers, N and N,, and the time interval the constant k can be

evaluated. The calculation is a little logarithm and exponent intense but follow along
with your calculator. Substitute as follows:

130=100e?* or 130=e%*
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To solve for k switch 1.30=¢

* t0a logarithmic equation. (Buzz Word Bee says "A

logarithm is an exponent.”) The logarithm of something is an exponent so

In1.30=2k or k=%lnl.30=0.13

The specific law governing the growth of these bacteria in this environment is

N=N e0.13l

o

With this law it is possible to predict how many of these bacteria would be present, say,
after 12 hours and starting with 50 bacteria. Put in the 50 for N, and the 12 hours for ¢
and we get

N =50e%112 = 50(4.76) = 238

This model that starts with the statement that the growth rate is proportional to the
amount present can, with a modest amount of calculus and initial information, be used to
predict future growth.

There is a standard pattern to growth and decay problems that always works. The general
procedure for these problems is outlined below.

D

2)

3)

4

Any problem where the number of events is proportional to the number of
participants present can be written as dN/d! equals a constant (+k for growth and

—k for decay) times the number: % =+kN .
Rearrange to —6—1131 = thkdt and integrate _deN =tk I dit toget InN=1ki+A4. Take

an initial number N, at t =0, to evaluate A=InN,, and write In N =tkt+In N, .

Rearrange the equation to lnNL=ikz and switch to an exponential format
o

N
=etkt or N=N0ei'“.

o

One data point, a certain N at a specific time, allows calculation of k. (For example, a

1k

20% increase in N, in one hour means 1.2N, = N, e or 1.2=¢' . Switchto a

logarithmic equation and & =In1.2=0.69 and finally write N = N,e%%% )
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5) With the calculation of 4, the specific growth or decay equation is written for the
same conditions that produced the initial data. With this specific growth or decay
equation N at any time can be predicted.

Refer to this procedure in subsequent problems. It is a very logical procedure for growth
and decay problems and it works. Growth and decay problems are favorite test problems.
Know how to work them and especially know how to switch from exponential equations
to logarithmic equations and vice versa and know how to take logs and perform
exponentiation on your hand calculator.

9-14 if "a fool and his money are soon parted,” the rate at
which it leaves is probably proportional to the amount
remaining. If a certain fool starting with $20,000 starts
gambling his money away and after 2 hours has lost $2000, how
long will it take for him to loose 90% of the original amount?

Solution: The basic assumption in this problem is that the fool will loose in proportion
to the amount he has at any time. Humans are a little harder to predict than bacteria, but
this is a good assumption. Follow the procedural steps as written previously and be
aware of the logic in the problem.

Stepl: The statement "the rate at which the fool looses money is proportional to the
amount present” means that
“_
dt

Step 2: Rearrange, integrate, and evaluate the constant of integration with the initial data.

_dﬁ=_kd¢, jﬁ-_-_kj'dt, InA=-kt+C
A A

At 7 =0, the fool has $20,000, so 1n 20,000 =—£(0)+C and C =1In20,000.

Now the equation reads
In 4 =—kt +1n 20,000

Step 3: Rearrange and switch to exponents.

4 -k , and switching to exponents e™ or A4=20000e7".

0 0,000 20,000
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Step 4: Use the given data to determine k.

At t =2hrs, 4 has declined to 18,000, so put these numbers into the amount statement
and find &.

18,000 = 2000e 2%, 0.9=¢*
Switch to logarithms to solve this equation for k.

_In(0.9)

~2k=In(09), k= =0.053

As you were following along this problem and "punching the numbers,” so you would be
very proficient at this logarithm and exponent calculating for the test on this topic, you
may have noticed that your calculator displayed a negative number for In(0.9). This is
correct. In the original statement of the problem, d4/dt =—kA so that the calculation of &

should produce a positive number. The reason for the In of numbers less than 1 being
negative has to do with one of those other definitions of the In and will be taken up
shortly.

Step 5: The specific equation for this situation is A = 20,000e ~0.033r

The time for 10% remaining is the time for A to reach 2000. Substitute for 4 = 2000 and
solve for ¢.

2000 = 20,0008‘0‘53‘ , 0.1= e—0.053t

Switching to logarithms, In(0.1)=-0.053t or 1= —ﬁln(& 1)=43hrs.

Based on this model, it would take this particular fool 43 hours to loose 90% of an
original amount of $20,000.

9-15 Hot or cold objects cool down or heat up to the temperature of their
surroundings. The temperature difference, AT, between the object and its surroundings
decreases over time in proportion to that temperature difference. This is Newton's Law
of Cooling. If a cup of coffee cools from 85° C to 80° C in 2 minutes in room
temperature surroundings, how long does it take for the coffee to cool from 85° C to
30° C (20° C is room temperature)?
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Solution: Don't be fooled by the wording of this problem. It is not the temperature that
is important, but the difference in temperature between the coffee and its surroundings.
The definitive statement is "the change in the temperature difference is proportional to
the difference.” Call AT the difference in temperature between the coffee and its
surroundings. The mathematical statement of Newton's Law of Cooling then is

AT _ T

Rearrange and integrate.

dAD) JLd(AT)= —kjdz, n(AT) = ~kt +C
AT AT

When the coffee starts cooling, the temperature difference is 65° C=(85-20)° C so

n65=-k(0)+C and C =In65 so the equation becomes

In(AT)=~kf +1n65 or 1nA6—§=—k1

Switching to exponents we write

—A—T— =e™® or AT =65
65
Be careful with this next step. The temperature changes by 5° C so the temperature

difference is now 60° C, and this occurs over 2 minutes so put in these values and
evaluate k.

60 = 65¢ 2% -2—(5) =e %% and switching to logarithms

-—2k=ln6—0, kz—lln~6—9=0.04
65 2 65

The temperature difference statement is now

AT = 65¢ 04
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Be careful again. Go back and read the question and make sure you understand that the
desired time is for the temperature to reach a 10° C difference between the coffee and its
surroundings. Use the 10° C temperature difference and calculate the time.

10 1 10

10
10=65¢ 0% Z =00 _004y=ln—, t=-——In— =47 minutes
65 65 0.04 65

It takes 47 minutes for this cup of coffee to cool to within 10° C of room temperature.

9-16 A wildlife manager needs to reach a 10,000 population of mule-eared deer in a
certain habitat in 6 years. There are presently no deer in the habitat. The environment is
such that the deer can grow without being limited by their environment. This means that
the growth of the deer population will be proportional to the population, dP/dt =kP. In
order to determine the growth equation, 100 deer are introduced into the habitat. There
are half males and half females, the same ratio as when they reproduce. At the end of the
year there are 130 deer. How many deer need to be introduced to the habitat to achieve
the 10,000 goal in the remaining 5 years?

Solution: The first part of the problem is to determine the growth equation. Starting
with
dP . . kt
o =kP, the general growth equationis P =Fe" .
The 100 deer population grows to 130 in 1 year so put this data into P=Poek' and

determine £.

130=100e"* or 1.30=e'" sothat onswitching, In130=k or k=026.

The specific growth law for these deer in this habitatis P = POeO‘ZG' .

Now solve for the initial number P, needed to produce the 10,000 population in 5 more
years.

10,000= P,e%%®° = p '3 =367P, or P, =2725

o

This number minus the 130 already there, or 2725-130=2595, deer need to be
introduced to achieve the 10,000 goal in the prescribed time.
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The Natural Logarithm

Another and more formal definition of the
natural logarithm relates the Inx to portions
of the area under the curve y =1/1.

The natural logarithm of any number x is

X
defined by Inx= _‘!ﬁ

1 ¢

The curve y =1/t and the graphical depiction
of Inx as the area under the curve are shown
in Fig. 9-3. The area under the curve between
x=1 and x=2 is In2. This area can be
determined by taking as many narrow
trapezoids or rectangles approximating this
area as necessary to achieve a desired precision.

Look more closely at the piece of the curve
between ¢t =1 and t=1.1 (Fig. 9-4). The area
under this part of the curve is approximated by
the area of the rectangle 0.10x0.91=0.091
and the (area of the) small triangle
(1/2)(0.10)(0.09) = 0.0045 .

The total area of this rectangle and triangle is
0.0955, thus In1.1=0.0955 The logarithm
produced in most hand calculators is 0.0953,
just a little bit smaller than this number as is
expected from the shape of the curve.

y
1 1
’=
I
12 N
1 2 !
Fig. 9-3
y
1
0.91

Fig. 9-4

For numbers less than 1, the integration in dx is in the negative direction. This produces

the negative numbers for In's of numbers less than 1.

The function y =Inx is shown in Fig. 9-5. Referring to Fig. 9-3 and remembering that
the definition of In x is the area under the curve, note the following features of the In x

curve.

¢ Only positive values of x are allowed.

¢ Inl is zero (no area).

e Asx goes from 1 to zero, Inx (the area) goes from O to large negative numbers.
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e Asx goes from 1 to large positive numbers, In x increases with the increase less and
less as x goes to large positive numbers.

The connection between this definition of the

| . =1
natural logarithm and the constant e is amazing! Y y=ma
The constant e raised to the power equal to the
area under the curve is equal to the upper limit
of the integral. R
1
The precise calculaion of the area
corresponding to an upper limit for the integral
of 1.1is 0.0953.
¢“*® = upper limit of area calculation
Fig. 9-§

In(upper limit of area calculation) = area

Verify for yourself that ¢%%%°* =1.1, and that 1n1.1=0.00953.

Again, a reasonably simple area problem in calculus produces a number that occurs other
places in nature.

More Exponential Functions

In many real-life problems growth is

limited. Exponential models are used to N
describe limited growth. The simplest

model for limited growth involving N,
exponentials is one in the form

N=N,(1-e™). This statement is the N=N,(1-e™)
result of a rate equation, as were the
growth and decay equations, but the
complexity of these rate equations places
them above the level of this book.
Therefore, we will discuss limited growth
exponentials starting with equations with Fig. 9-6

the form N =N, (1-e™).




EXPONENTS AND LOGARITHMS 1 51

This equation is depicted in Fig. 9-6. Note that the N starts at zero at time zero. In
N=No(1—e_’“) when 1=0, ¢’ =1 and N=N,(1-1)=0. After a long time, e X or

l/ e¥ becomes very small so that N approaches N,. The slope of the curve is the
derivative, or

dN =d(-N,e ™ )=-N,d(e™)y=-N, e Md(—kt)y= -N ,(—k)e ™ d

dN_ _k,_ 1
’Z—Noke —Nok‘e_kr"

At t =0 the slope is (positive) N,k and as time goes on the slope decreases. This type

of curve is sometimes called the learning curve because it describes someone learning a
skill and eventually reaching a limit in productivity with that skill.

9-17 Workers hired to assemble sewing machines
become more skilled with experience. The most
experienced workers can assemble 10 sewing machines
per day. The learning curves are different for different
workers but they all eventually reach a peak production
of 10 sewing machines per day. A newly hired
assembler learns to assemble 5 sewing machines per
day after 6 working days. How long will it take for this
worker to reach 9 sewing machines per day?

Solution: The simple learning curve model is most appropriate for this problem.
N, =10 is the maximum rate of sewing machine assembly. The general equation
governing the number of sewing machines assembled per day then is

N=10(1-e ®)=10-10¢ ¥

The k can be determined with the information that after 6 days this particular worker can
assemble 5 sewing machines per day. Substitute N =5 and ¢ =6 and solve for k.

5=10-10e%, -5=-10e%, ¢ % =

?

!
2
and switching to logarithms

lnl=—6k, k=——1—lnl=0.115
2 6 2
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The specific learning equation for this worker is:

The time for this worker to achieve a rate of 9 sewing machines per day is obtained by
putting in 9 for N and solving for ¢.

and switching to logarithms

-0.115t=In0.1, t=———1——ln0.l=20days
0.115

It will take this worker 20 days to be able to assemble 9 sewing machines per day.

Another type of exponential function used to describe limited growth has the form

R=*—'A—7:
1+ Be™

At =0, R=—A—. This is the present
1+B

rate or number, whatever R represents.

As f goes to infinity, e ¥ =1/e* goes to
0 and R approaches 4. A is the maximum

rate or number.

This curve has the general shape shown in
Fig. 9-7. Fig. 9-7

Many industries follow this type of a growth curve. When a new product is introduced
there is considerable demand, but as more and more people acquire the product sales drop
to a level determined by the number of new people entering the marketplace and
replacement of old or outdated product. The automobile industry is an excellent example
of this type of growth.
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9-18 A microchip production line has a theoretical maximum output of 400 chips per
day. The factory production managers know from experience that new microchip

production lines reach maximum production according to R = _ 4 where R is in

1437008
hundreds of chips per day.

Sketch the function and find the production rate on the first day of operation, the tenth
day of operation, and finally, the maximum rate of production.

Solution: The curve is the standard
one shown in Fig. 9-8.

Take =0 for the first day of
production so we have

4 4
R= =— =100 chips .
1+3(1) 4 ps per day
0 t
Take =10 for the tenth day of
production so Fig. 9-8
R 4 4 =170 chips per day .

14300800 143(0.45)

As 1 goes to infinity, the denominator in the rate equation goes to 1 and the maximum rate
goes to 400 chips per day.



154

CHAPTER 9

If our cells are
decaying, why are
we still growing?

Because our growing
cells are growing
faster than our
decaying cells are
decaying.
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MORE INTEGRALS

There is an almost
limitless  supply  of
increasingly complex
integrals and applications
of integrals. Depending
on your interests, certain
topics and integrals in
this chapter may be very
interesting to you whiie
others may be completely
uninteresting.

I prefer Dad's
Adventures of
Captain Caleulus.

I love it when Mom
does integrals
before our nap.

If you are looking for help with a particular integral or a particular application, you may
want to survey the chapter to find those problems and associated discussions that fit your
interest. We have concentrated on four topics: volumes, arc lengths, surface areas, and
non-standard integrals that occur often in real-world problems. This latter area is often
called techniques of integration, the name suggesting the study of integration techniques
that work for a number of different problems. Most texts and extensive integral tables are
organized around various categories of integrals. Within the space limitations, we have
attempted to pick those integrals and applications that will help the largest number of
people. We start with a discussion of volumes.

Volumes

Finding volumes of non-standard geometric shapes can only be accomplished with
calculus. This work is a logical extension of the study of the calculation of areas using
calculus. You will find many parallels between area and volume calculations. Finding
volumes is also extremely visual. If you can visualize the problem, you can usually do it.
We start with some simple problems and work up to the more challenging ones. The first
problem uses the method of disks to calculate the volume generated by rotating a
parabola of a fixed height about its symmetry axis. Next the problem is done again using
the method of cylindrical shells.

155



1 56 CHAPTER 10

10-1 Find the volume generated by rotating y = x> about the y-axis and bounded by
the plane y=4.

In two dimensions, y =4 defines a horizontal line at y =4. In three dimensions, y=4
defines a plane normal to the y-axis and parallel to the x-z plane.

Solution: This is a three-dimensional picture. Start with the y=x> curve from y=0
up to y=4 (and x=12). The rotation of this part of the parabola about the y-axis
produces a rounded cone shape (Fig. 10-1).

The volume can be viewed as a collection (integral?) of 4
disks of width dy and radius dictated by the radius of the
cone. The volume of each of these disks is generically +

X (radius)2 x thickness . The radius of the disk is x so the

differential volume of each disk can be written mx’dy . The dy
sum of all these disks is an integral over y.

Start by writing [’y

The first thing wrong with this integral is the x* term. If
the integral is over dy, we can't have x's under the integral Fie. 101
sign. Replace x? by its equivalent, y. e

The next thing that needs to be added to the integral is the limits. There are none.
Integration in the y-direction is from y =0 to y=4. The curve starts at y =0, and the

problem gives the upper boundary as the plane y=4.
514
The volume integral is V= 7:"2 ydy=nr y7_ =8z

0

10-2 Find the volume generated by rotating y = x? about the y-axis and bounded by
the plane y =4 using the method of cylindrical shells.

Solution: In the previous problem the volume was visualized as a stack of disks of
thickness dy. This is the method of disks.
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This problem prescribes using the method of cylindrical shells. Visualize a cylinder,

actually a cylindrical shell, of radius x, height the difference between y=4 and y = x2
and width dx.

y dx
The volume of the cylindrical shell, as shown in Fig. 10- 4
2, is 27 times the radius times the height of the shell
times the thickness of the shell. The 2z times the radius T
effectively wraps the rectangle of height between the 24)
curves and width dx around the y-axis.

-

The radius is x, the height of the rectangle is (4 — x?)
(the top of the rectangle is at y=4 and the bottom of

the rectangle is on the y=x’ curve), and the width is x

dx, so the differential volume is 2mx(4 — x*)dx. The

sum of these cylindrical shells is an integral over x. Fig. 10-2

Start by writing an integral: ‘
J’znx(4 —x)dx

The integral is in x from 0 to 2 so

2
) 5 2 4

v =L2m(4—x2)dx=2nL(4x—x3)dx=2n'[%—£4——] =278 -4]=8x

0

) x=5
10-3  Find the  volume y Yl
generated by rotating the area y=4 (3.4 / (5,4)
bounded by  x?+y?=25,

dx \

x=5,and y=4 about thex-

axis.

Solution: Start by finding the

area to be rotated. The line x

x=35 and the circle intersect at

x=5 on the x-axis. The line

y=4 intersects the circle when

y=4 (x*+47=25, x? =9, -~

x=3). The circle and the line
¥y =4 intersect at (3,4).

Fig. 10-3
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Visualize the volume obtained by rotating this area about the x-axis as composed of disks
with outer radius equal to 4, inner radius on the circle, and width dx. See Fig. 10-3. The

outer radius of the disk is 4 and the inner radius is the solution of x? + yt =25 for y

(x2 + y2 =25, y=+v25 —x% ). The differential volume of the disk is #{(outer radius)®

minus (inner radius)’] times dx. The integral in dx is from 3 to 5, so the volume integral
is

5
5 5 5 3
V=j37r[42—(25—x2)]dx=;rj3 (16-25+x2)dx=7zj3 (—9+x2)dx=7rli—9x+f3—]
3

V=7r{[—45+1—:2;—5}-[—27+9]}=7r{—45+1§—5+27—9}=7z’{—1—§—5-—27}

V___”{]25—81}= 447
3 3

10-4 Find the volume of cement required to build the top of a birdbath. The bottom
of the birdbath follows the parabola y=0.1x>. The inside of the birdbath follows

y=0.20+0.08x2. All the dimensions are in feet. The top edge of the birdbath is
bounded by the honzontal line y=0.4 .

Solution: Start with the profile of the
birdbath in x-y as shown in Fig. 10-4.

1.6,0.4) (2,04
The bottom parabola, y =0.1x>, starts at y=04 (1.6,04) (2,0.4)

x=0, y=0 and intersects y=04 y=0.2/
when x=2 (04=0.1x?, x’=4,

x=2). x

The 'top parabola starts at x=0, y=0.2 Fig. 10-4
and intersects y =0.4 when x=1.6

(0.4=02+0.08x2, 0.2=0.08x>, x=1.6).

Now rotate the profile around the y-axis. The volume of the birdbath is the volume inside
the bottom parabola up to y=0.4 minus the volume inside the top parabola up to

y=04. Figure 10-5 shows the birdbath and the disks. The volume of the disks is =
times (radius)’ times thickness.
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There's nothing like a
parabolic birdbath.

y=04 N (1.6,0.4) (2,0.4)

Fig. 10-5

4 0.4
The volume within the bottom parabola is Jj (X portom Ydy=n Olldy .
0 .

4
The volume within the inner parabola is IOO 5 Koy ) Ay =7 -—Q—%dy

o2 0.08
Be careful of the limits!

The volume of cement in the birdbath is the larger volume minus the smaller volume as
shown by the disks in Fig. 10-5. The volume integral is

2104 2
T o4 y T |y
= vy - Jj —0dy=T{Y L 1Y g,
0.113 Y =G ogdoa ¥ 0O {2}0 0.08{2 y}
=L{O.l6}_ 4 [0.16_0‘08} [004_004}
01l 2 | o008 2 2

T V.4 ju
V=17 {0.08}- 508 {{0.08 - 0.08)-[0.02 - 0.04]} = 0.87 - 508 {0+0.02}

0.4

0.2

V=087 —%=7r(0.8— 0.25)=0.557 = 1.73ft° of cement
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Arc Lengths

A small length of a curve in x-y denoted by ds can be written in terms of dx and dy using
the Pythagorean theorem. The geometry of ds, dx, and dy with ds as a straight line
approximating the curve is shown in Fig. 10-6. The Pythagorean relation is

ds? =dx? +dy?
Any small change in s can be viewed as a small dy

change in x and a small change in y. Solve this
equation for ds dx

ds=,/dx2 +dy? x

and factor out first a dx, and then a dy. Fig. 10-6

This little exercise is sufficiently easy so that you do not have to use precious memory
space remembering it, just work it out as needed. The total length of an arc is the integral
between the appropriate limits of this differential statement.

o[ (5 o

Because of the square root, and the square of the slope or inverse of the slope, the
integrals are usually not easy.

The curve y* =x> turns out to be one of the easier arc lengths to calculate. Form

dy/dx.

2ydy =3x’dx and

&|&

2 4 4
3 (dyj 9T o' _9x
dx

2
2y 2yt 22Xt 2

: . 9
The general integral for arc length of this curve is s =J I+ —2{dx .
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Most of the time the integrals are so difficult it is worth looking at both formulas for the
arc length in an attempt to find the easiest integral. The other possible integral starts
from dx/dy .

2 2
a_2y .a_bc_) _4
dy  3x? dy 9x*

The x* term in the denominator cannot be conveniently written in terms of y without
getting into fractional powers so the previous integral looks at this point to be the easier.

This type of integral will be taken up later in problem 10-8.

Surfaces of Revolution

Determining the surface area of non-standard shapes is another uniquely calculus
problem. The technique for finding the surface area of a shape produced by rotating a
curve about an axis is similar to finding volumes and additionally uses concepts from
length of arc calculations.

Start with a parabola, y=x2 , rotated about the

y-axis and consider the surface of that parabola up
to y=4. The curve doesn't have to be a parabola. ds

A parabola is just convenient to visualize. The
surface area is viewed as a collection of strips
wrapped around the parabola. The area of these
strips is 27 (radius), the length around, times the
width, ds. The differential piece of surface for a X
curve rotated about the y-axis is 2w xds. Refer to

Fig. 10-7. The total surface area is found by adding Fig. 10-7

up, integrating, all of the 27 xds segments.

2 2
The ds is either 1+(§_}i) dx or .[1+ Ld dy.
dx dy

2
d
Since the length of the strip ds is written 27 x, use the /1 + (i] dx form for ds.

2 2
Start with fll:Zx and (fy—] =4x% and 1+(fi')i) =y1+4x2 .
dx dx dx
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The integral for the surface area of the parabola then is
2 2 3
A= [2rxds =2 [ x\1+4x7 dx

The integrals encountered in surface area calculations are usually worse than the ones for
arc length. This integral is done in problem 10-9 of the next section, Techniques of
Integration.

Techniques of Integration

In this section we show you some techniques for handling particularly difficult looking
integrals. Along the way we will do some interesting practical problems that so far have
been avoided because of the difficulty of integrating. These techniques of integration are
actually general approaches that work for a variety of similarly structured problems. We
start with the simpler and work through the more popular, or more often encountered
techniques.

Chcmge of Variable The change of variable technique is also called the method
of substitution. As the names imply, the approach is to define a new variable that will
transform the integral to one that is a standard form. The procedure is to define a new
variable, take the derivative of that new variable, and then write the integral in terms of
the new variable and derivative. There is some skill in picking the new variable but
sometimes you just have to try a few. The best first choice for a change of variable is to
look for the worst looking part of the integral and make that worst looking part the new
variable or at least incorporate it into the new vanable. The best way to understand any
of these techniques is to jump right in and start doing some problems.

10-5 Find Ixexzdx.

Solution: Make a change of variable. Let u = x? so that du=2xdx. This transforms
the integral. Replace xdx by du/2 and x* with u.

2 2
Ixe" dx=1Ie“du=le“ =—1—ex
2 2 2

Remember to translate back to the original variable at the end of the problem.
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10-6 Find fx‘lin"x.

Solution: The worst looking part of this integral is the Inx so make a substitution

1 . .
v=Inx sothat dv=-—dx. This transforms the integral into a standard form.

X
f dx =J%dv=mV=m(mx)

xlnx

This is a bit of a strange answer, but then it was a bit of a strange integral.

10-7 Find I\/3—2xdx.

Solution: A new variable 3-2x would allow the v3—2x to be written as a power,
and integrals of "a variable raised to a power d (variable)" are standard integrals. Let
w=3-2x with dw=-2dx . The integral is transformed and solved.

IJ3—2xdx——lIw]f/2dw——lﬂi~-—lwm ELYCRPEL
2 232 3 3

10-8 Find the arc length between x =1 and x =3 for the curve y=x>

Solution: This is the curve used as the example in y
the discussion of arc lengths (previous section). A y-=x
rough sketch of the curve is shown in Fig. 10-8.

Taking the square root of both sides, the y? =x’

equation becomes y = x!? . This is a curve that has a
shape somewhere between the shape of y=x, a - } %
1 3

straight line, and y= x? , a parabola. The curve
slopes upward but not as rapidly as the quadratic. Fig. 10-8

2
The general formula for the arc lengthis S = J 1+ (%) dx .
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3x2 dyY ox* ox* ox
For the curve 2=x3, Q=~ and (—) =" =""-=""— g0 the arc length
7 dx 2y dx 4y2 4x° 4 g

from x=1to x=3 is

=J 1+—de 4+9xdx -J‘J4+9xdx
1

The integral has been simplified to the point where a change of variable is in order. Let
#=4+9x so that du =9dx and rewrite the integral.

x=3

32 x=3
=~1—(4 +9x)%?
27 x=1

I\/Z—9dx—ll xsu]/zdu Lu

= 18 3/2

1 1 1
=57{[4+27]3/2 ~[a+9p" }=E[313/2 - 133/2]=§7[172.6 —46.9]=4.66

The limits on the integral can be confusing. The strictly correct way to evaluate the
integral is to change the limits when the variable is changed. Looking at the definition of
u; for x=1, u=4+9(1)=13, and for x=3, u=4+93)=31. Using this approach, the

integrals would read

¥2
=%J J419x abc_llf1 Vagy - L X

—17-[313/2 132|466

13 18 3/2
However you choose to do the problem, be careful of the limits. If you write x=... or
u=... in the limits you will avoid getting confused. There are enough pitfalls in

evaluating these integrals without getting tripped up with the limits.

10-9 Find the surface area of y = x 2 rotated about the y-axis from x=0 to x=2.

Solution: The surface area is the area generated by rotating the parabola about the
y-axis up to y =4 which corresponds to x =2. This is the problem used to illustrate the
calculation of surface of revolution. The integral is the integral of a strip of surface area
with length equal to the circumference, 27 (radius), times the differential length along
any arc of the surface, ds.
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Figure 10-9 shows the parabola up to y

y=4 comesponding to x=2 and the plane, y=4
differential strip of area. The differential
area is :
2
y=x
2 ds
dA=2nxds =2xx,|1 +(Q) dx
dx
and Y ofy=x2 1S 2x SO
dx
x
2 2
A=27er 14+ 4x dx Fig. 10-9

In looking for a change of variable, look for the worst part of the integral which is the

1+4x?. Let v=1+4x’ with dv=8xdx. Replace 1+4x> with v and xdx with dv/8.
Change the limits. When x=0, v=1,and when x=2, v=17 .

A= 2ﬂL2le+ 4x dx = 27[%]‘1” v 2y

32 V7 , .
A=Z’_[V_l =E[173=‘2—13’2]:-’5[70.1—1]:36.2
4032 6 6

10-10 Find J’tan(3x - 2)dx .

Solution: The worst part of this integral is the 3x —2 so let w=3x-2 and dw=3dx.
The integral transforms to a standard integral.

Itan(3x - 2)dx = éj‘ tan wdw = —% In(cos w) =— % In{cos(3x — 2)]

10-11 The price of a product varies with supply and demand in such a way that

51;13 =k(5~2p). Find the price as a function of time and graph the price versus time.
t

The price is $4.50 when ¢ =0, and $4.00 when ¢=2 . The ¢ is in years.
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Solution: The first step in solving for p(r) is to write the rate statement in a form that
can be integrated.

—@L—=kdt or —tip———=fkdt
5-2p 5-2p

Deal with this integral in p as a separate exercise. Make a substitution for 5—-2p by
letting z=5-2p so dz=-2dp and the integral becomes

f dp =—1fi‘i:—llnz=—11n(5—2p)
5-2p 2) z 2 2

With this little side calculation and remembering that integrating 5~d—p2—=_[kdt
—<p

produces a constant of integration, the integration produces
1
—Eln(S—Zp)=k1+C

Rearranging for convenience in writing as an exponent In(5-2p)=-2k&t-2C and
writing as an exponential (This is the only way to get an equation that reads p=...) we
get

—2kt-2C =e—-2kte -2C

5~-2p=e

My brother Newt always
has to be reminded, "A

The constant of integration can be carried as R "
logarithm is an exponent.

long as you like but defining a new constant

at this point looks convenient. Make e ¢

equal to 2D.
—2p=-5+2De”"
p=25- De K
Now apply the condition that p=4.5 at 1 =0.
45=25-D(1) and -D=2 so

p=25+2e7H
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The second condition that p =4 when ¢ =2 will define the constant 4.

4=25+2e%  15=2e*,  075=¢7
Switch to logarithms:
~4k=1n0.75, k=—%|n0.75=0.072, and 2k=0.144

Fi
inally, 4 -0 134¢

p=25+2e7014 .s —Q

Now graph the function. At +=0, p=4.5 as 25

given in the problem. As time goes on, the

term gets smaller and smaller and as
t>o, p—>25. The line p=25 is an {

asymptote. The curve is shown in Fig. 10-10. Fig. 10-10

Trigonometric Integrals There are a large, large number of trigonometric
integrals. Some are relatively easy. Most are relatively difficult. Solving trigonometric
integrals involves changes of variables and using trigonometric identities and a good bit
of ingenuity, imagination some might call it. The following several problems
demonstrate the more popular techniques (did someone say tricks?) for solving
trigonometric integrals.

10-12 rind Isinz xcos xdx .

Solution: Recognizing that cosx is the derivative of sinx suggests a change of
variable might make this integral into a standard form. Take u =sinx and du = cosxdx.
Making these substitutions

3 .3
Isinz xcosxdx=ju2du=u—= s X
3 3
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10-13 Find I(sin3 )c)(cos3 x)dx .

Solution: This problem is a little harder than the previous one. If we let v=sinx and
dv = cos xdx , the integral becomes

J.(sin" x)(cos3 x)dx = Iv‘(cosz x)dv

which doesn't seem to be much of an improvement. However, using the identity

sinx+cos’ x=1 R cos? x=1-sin’ x and the integral becomes

4 6 4 2 ‘o4 (2
J‘v3(l—v2)dv=‘|‘(v3—v5)dv=L—L=L I_2\ _sin x ]_2sm x
4 6 4 3 4 3

10-14 rind I\/gi;;(cos3 x)dx .

Solution: Use the identity sin Zx+cos’x=1to replace cos’ x so the integral now
reads

I\/sin x(l- sin 2 x)cos xdx

Now make a change of variable. l.et w=sinx and dw = cosxdx so that the integral now
reads

3:2 172 s 132 s NTi2
J‘wl_:z(] _ wz)d\v=j(uz""2 _ w5"2)dw= wowt (smx)""  (sinx)
32 72 3 7

All tngonometric integrals are not this easy. Though there are some patterns to doing
trigonometric integrals, as demonstrated in the previous problems, trigonometric integrals
can be some of the most difficult you will encounter. Fortunately there are tables of
trigonometric integrals that will help you out of most problems.
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Integration by Parts Integration by parts is somewhat similar to the method
of substitution in that the correct association will make a difficult integral into a not so
difficult integral. The formula for integration by parts, which we will not derive or even
justify, is found in the Mathematical Tables.

Iudv =uy— Ivdu

The key to successful application of this rule is the correct initial choice of u and dv.
Sometimes you have to try more than one combination to get one to work well. The
purpose of the choice is to make the integral on the right side easier and not harder than
the one you started with. The best way to learn this 1s to go directly to some problems
and see how it is done.

10-15 Find jxe‘dx.

Solution: Fit the integral to the pattern Iudv =uv—~ jvdu )

A good first identification is to take ¢*dx as dv, and x as u. If this identification is made
then du =dx and Ie’dx=jdv makes e* =v. Follow the pattern and write

Iu(dv)= uv — J'vdu
J.x(e"dx)=xe" —Ie‘dx
The integral je"dx is e* so

Ixe‘dx=xe' -e¥=e*(x-1)

10-16 Find sz e”dx by integration by parts.

Solution: The form of integration by parts is ju(dv) =uv - J vdu .
Take u=x’ and dv=e*dx. From these identifications du = 2xdx and Idv=je"dx

makes v=e* . Write the original integral as an integration by parts.

Ixze‘dx =x%e" - 2Ixe‘dx

Remember
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The Ixe’dx can itself be integrated by parts as was done in the previous problem. Use
the result of problem 10-16 to write

Ixze‘dx=x2e‘ —2(xe* —e*)=x2e* - 2xe* +2e" =e*(x} =2x+2)

This problem is an excellent example of the multiple uses of integration by parts.
Multiple integrations by parts is typical of complex exponential and trigonometric
integrals,

10-17 The income for a certain company is a combination of steady growth and a
cyclic component with the income following S =21+ fsin(z¢/2) where S is in tens of

thousands of dollars per month and 1 is a quarter of a year (¢ =1 corresponds to 3 months,
or one-quarter). The income for any period is the integral of this income per month
function over that period. Find the income for the next 3 quarters.

Solution: The income for 3 quarters is the integral of S over ¢ from 1=0 to 1 =3
3 3 AN CAWECAVE?
S =\ [2¢+3tsin(zt/2)]dt = 2| tdt +| — — {sin| — |d| —
flsssmcmympaafas (3] | (5ol 15
Take the first integral as S, and the second integral as §, .

=3
22

The first integral S, = 51 T 9 and means that $90,000 in income was received in the

=0
3 quarters (S is in tens of thousands of dollars).

Make a change of variable in the second equation. Let y=x1/2 so dy=d(nt/2). The
new limits are: for r=0, y=0 and for =3, y=37/2. The second integral now reads

2
()
/g

The integration 1s performed by parts.

y=37,2 .
I ysin ydy

y=0

Iudv =yv —Ivdu
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Let u=y and dv =sin ydy producing du =dy and Idv=jsinydy or v=-cosy.

2
S, =(_2_j [ ycos y — _f( cosy)dy]'v i ( ) [—}’cosy+siny};:3”/2

2
S, = (%) {[— 37” cos( 3;) + sin —2—:’ [— {0)cos 0 + sin O]}

The sin0=0 and (0)cos0=0 so the \ /
second bracket is zero. —+ ;

sin [¢18 1)

The cos§2£=0 and sing—g:—l so this

2 2
S, =(§J (-1)={—72;J =-0.40

This means a loss due to this cyclic component of $4000.

integral is

The total income over the 3 quarters is $90,000 minus $4000 or $86,000.

Partial Fractions A single complicated fraction can often be written as two
fractions, each of which is less complicated than the original. The fraction

x2 +2x+1 . x? 2x 1 1 2 1
— can be written as —t 5t oras —+—+—.
X X X X X x X

If you needed to integrate this fraction it would be much easier to integrate three simpler
fractions, than the more complicated single fraction. Making multiple simpler fractions
from a single fraction is a logical process that is best learned by working an example.

To use partial fractions the denominator has to be factorable and the numerator has to be
one degree less than the denominator.

Watch
Outl
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10-18 write ~2—?-— in partial fractions.
x°—x=2
Solution: The denominator of the fraction can be factored _ 2 indicating that
(x=2)(x+1)
the fraction can be written as something over the first factor and something else over the
second factor. Set up two fractions with undetermined numerators and equal to the
original fraction.
2 A B

= +
(x-2)x+H) x-2 x+1

As with most equations involving fractions multiply both sides by the common
denominator to clear the fractions.

2=A(x+1)+B(x-2)=Ax+ A+ Bx-2B=(A+ B)x+(4-28B)

Equating the constants and the coefficients of x produces two identities: A+ B=0 and
A-2B=2. This is sufficient information to determine 4 and B. Subtract the second
identity from the first [((4A+ B=0)—-(A-2B=2)] to eliminate A. Now 38=-2 or

B=-2/3. If B=-2/3, then A=2/3 (A+B=0) and the original fraction is now
written as

2 _ 23 23
(x=2)x+1) x-2) (x+1)

3

2
Tx-4 . :
10-19 Integrate J’2—+—:— by partial fractions.
x" —4x

Solution: First write the fraction in terms of partial fractions. The denominator is
factorable so write
3x2+7x-4 A B _C

- = +
x(x+2)(x-2) x x+2 x-2

Multiply by the common denominator.

3x2 4+ Tx—4=A(x2 -4+ B(x1 =20+ COx2 +2x)=(A+ B+ C)x? + (2B + 2C)x + (-4 A
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A+B+C =3
) ) .. . B+(C=2
Write the identities —2B+2C =7 . With A=1, N
44 =d -2B+2C =7

Multiply the first equation by 2 and add the equations to eliminate B so 4C =11 or
C=11/4. Substitute in B+C=2 so B=2-11/4=8/4-11/4=-3/4. The fraction
now is written as

3x +7x-4_1_ 34 1V4
x> —4x x x+2 x-2

The integral now reads

3x% +7x - 4J-dx——j 11 1dx
X} —4x x+2 x=2

The integral = dx

1 .. . . .
S0 J dx is in the form fldx The three integrals can now be written easily.
x—a X

2 —
J’i{—;i)-‘—i~lnx——ln(x+2)+~— In(x - 2)
x  —4x

Integrals from Tables
One of the best techniques of
integration is to use the table of
integrals found in most texts. A
table of integrals is found in the
Mathematical Tables included at the
back of this book.

My sister Liebie never
uses tables. She likes to
show of f and work all the
integrals.

Some instructors do not allow the
use of tables on tests. We do not
share that view. Why take up
precious memory space with
formulas that are available in an
inexpensive mathematical table? Regardless of your instructor, you will eventually want
to use tables, and these examples will give you an introduction to the process. Most
tables are organized by categories: trigonometric, logarithmic, exponential, or those
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containing quadratic equations or fractions or whatever. The examples we have chosen
are, hopefully, appropriate for what you will encounter.

. dx
10-20 Find jﬁ .

Solution: An integral in this form is in the tables. It reads

val +u? +a

=—lln —
u

J du
uya® +u? a
Make the identification that x =u and a =2 and write down the integral.

Va+x?+2

X

———I—In

J_dx__
x\)x2+4 2

10-21 Find j%

Solution: An integral in this form is in the tables. It reads

J du =l[nl u |
u(a+bu) a |a+bu|

Make the identification that x=u, a=1, and b =2 and write down the integral.

[t x|l ]
x(1+2x) U |1+2x] |1+ 2x)

Using the tables is this easy. Go slowly and make sure you are identified with the correct
integral and make the substitutions. Remember that some tables include the constant of
integration and some do not. If you are working an indefinite integral be sure to include
the constant in any calculation.
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Appl"OXiﬂ'\OfC Methods When all else fails, use numeric integration! For the
definite integral

y= r(some impossible to integrate function of x)dx
a

the area under the curve of y versus x from a to b is the value of the integral.

There are several different approximation methods. The general approach to numerical
integration will be illustrated by a relatively simple one, the trapezoidal rule or method.
As the name implies the area to be determined is divided up into trapezoids. Consider the
area under some general curve as shown in Fig. 10-11. Divide the region within the
limits into several narrow regions bounded by the vertical lines at x, x;,x; ... with a
fixed width Ax between each line. Corresponding to each of the x,, x,,x, ... valuesisa
value of the function f, f|, f,,.... The first two regions are shown in exploded view

and better illustrate that the curve is approximated by a straight line creating a collection
of trapezoids.

1 ’
...... e
fo— / f’/
5
Ay
Xo X X Yo X1 X X3 :
Fig. 10-11

The area of the first region is the large rectangle with dimensions Axand f; plus the
small rectangle on top of it with base Ax and height f, — /.

. 1
The area of the first region is Ay = foAx + 5[[1 —fole.
.. 1
The area of the second region 1s 4, =f,Ax+5[f2 - filax.

. 1 .
By analogy the next region is 4, = f,Ax +E[f3 —leAx.
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The total area taken over all the intervals is the sum of these individual areas.

A=A0 +A| +A2 +...

1 . 1 1 .
A=foAx+5[f1 —]O]Ax+f,Ax+5[f2 _.fl]Ax+f2Ax+5[f3 - frlax
Multiplying and collecting terms, we calculate
Ax Ax Ax Ax Ax
A=fobx—fo—+ hdx+ i ——f1——+ i+ L —— fL —+...
2 2 2 2 2
Certain of these terms combine and the pattern that emerges is
Ax
A=f07+fle+f2Ax+...

Continuing the pattern, the last area, call it », has an associated term £, % .

Another way of writing the area sum is

Ax . .
A=7[f(, F2£,+ 205+ 42 01+ fo]

The f,, term is the left-most limit and the f, term is the right-most limit. The width of
each individual region, Ax, is the extent of the limits (b — @) divided by »n, the number of
intervals.

Apply this technique to a simple and then a not so simple problem.

10-22 Find the value of the definite integral of the curve y2 =x>* from x=0 to
x =2 using the trapezoidal rule for the area under the curve.

Solution: Take the square root of both sides of the equation to find y as a function of x:

y =x"7_ This curve is something less than a quadratic. The integral to be evaluated is

2
L x'7dx and it is the area under y=x"7 from x=0 to x=2. A rough sketch of the

curve is shown in Fig. 10-12.
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Use 10 intervals so that Ax=0.20 and %"—:0.10. y yr=x
32
Following the trapezoidal rule for area we write
Ax
A=—2—[f0+2f0.2+2f04 +..+2f1g + fr0] ’
3 X
Adding the numbers Fig. 10-12
A= 0.10[0+O.l3+0.42+O.84+1.37+2+2.73+3.54+4.45+5.43+3.25]= 242
2
Check this answer by performing the integral and evaluating _L xMdx.
|
10-23 Evaluate L\/l —x>dx using the trapezoidal y
5
rule with 4 intervals. 1 y=vl-x

Solution: In the range between x=0 and x=1, the

function v1- x> goes from 1 to 0. A detailed curve is
not necessary to the calculation. However, a rough

sketch is shown in Fig. 10-13. Four intervals means 1 *
that Ax=0.25 and using the formula for the trapezoidal Fig. 10-13
rule

Ax .
A =7[fo +2 /025 +2f050 +2fp9s + fl]

025

A== [142.00+1.97+1.75+0}=0.84

10-24 Suppose that $2000 is invested in a fund at the beginning of each of 10 years
and that the average rate of return is 20% per year. What is the total value of this fund at
the end of the 10 years?

Solution: Visualize the process with the aid of the time line. The first $2000 grows
compounded at 20% for 10 years so this is 2000e %2009
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Refer to problem 9-7 for a discussion of the effective rate for continuous compounding.
Use the continuous compounding as an approximation, because the $2000 is deposited at
the beginning of each interval rather than in small increments throughout the interval.

—P  2000e°2000
—P> 20007209

—  2000e"20®

The first $2000 grows compounded at 20% for 10 years to an amount 2000¢ %2000

The second $2000 grows compounded at 20% for 9 years to an amount 2000e%2%® |

The third $2000 grows compounded at 20% for 8 years to an amount 2000e%2°®

And so on through the 10 deposits.

The general expression for the terms is 2000¢° 219" where ¢ goes from 0 to 9. The

total amount at the end of the 10 years is $2000 times the 10 years plus the interest earned
on the different intervals. This can be expressed as a sum:

n=10
>°2000e* M Ar with 1, =0,1y,...
n=0

n=10
This Z is the notation for adding, or summing, all the exponents. If the funds were
n=0
deposited continuously and the compounding was continuous, then this sum would be an
integral. Many programs for placing funds in a compounding account are monthly
throughout the year rather than once at the beginning of the year, making those programs
closer to the continuous model. For this case the integral is an approximation! In
mathematical language, the funds being deposited continuously means that the interval
goes to zero, or n, the number of intervals, goes to infinity. In symbolic language we
write

10
lim Z 200080'20“0_’")Al — L 200080‘20(]0_,%1[
n

n—o
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020(10-1) _ 2 ,-0.20¢

The exponent can be reworked to e so the integral for the total

amount 1S

10
A =2000¢> L e 020 gy

Make a change of variable and integrate.

4= 2000

10 10
e[ e02%4(-0.200) = —10,000¢* [e‘°~2°‘ ]0
-0.20

A=-10,000¢ [e"- - 1]= lO,OOOeZ[l - lz} = $63900
e

This number is lower than the actual amount if the funds were deposited at the beginning
of each year. If the funds were placed continuously throughout the year then this number
is correct. Programs for making calculations similar to this one are usually found
financial calculators. If you have one, check this answer with the answer from your
calculator. Your calculator uses a calculating algorithm similar, if not identical, to the
summation notation used earlier in the problem.



180

CHAPTER 10

Did you enjoy the book?

Oh yes, I'm looking
forward to the movie!

I'd like to play
Captain Calculus.

| see you more as the
bird singing on the
natural log.

Liebie, you're an
incurable romantic.

I'm smart, too.
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Geometry

risradius, Ais height, aand b are sides

Perimeter Area Volume
square side a 4a a?
rectangle sides a and b 2a +2b ab
circle radius » 2rr xr?
sphere radius r 47r? +27rh (4/ 3yrr’
cylinder r and A 2rr? zrih
cone r and h ﬂrm (7r/3)r2h
trapezoid a. b, h (1/2)(a+b)h
triangle b and h (1/2)bh

Algebra
—btyb? —4qc_.

Any quadratic equation of the form ax? +bx+c=0 hassolution x=— >
a

Factorials 0'=1, 1I'=1 2=2-1'=2-1 3'=3.21=3.2.1, etc.

n n-1 N\, 242
Binomial expansion (a+b)" = %'_+ ha . b nn 1;7 b

+.. forb? <a’.

181
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Conics
parabola y=ax? +bx+c
circle x? +y2 =r?
2 )2
ellipse ax? +by? =c? or T+ =1
2 p2
2 2_ 2 x? Y :
hyperbola tax“Fby  =c° or t—F—=1
a® b
Trigonometry
<in 6 = Opposite b
Hypotenuse ¢
. Hypotenuse (¢
o5 = Adjacent _a P © Opposite (b)
Hypotenuse ¢
tan 8 = ———OpPosne =2 7 rJ
Adjacent a
Adjacent (a)
cosech = ,l secl = I cot9=—l—
sin 8 cosd tan 8
. b
Law of sines d

Law of cosines ¢

sinA sinB sinC

2 =a?+b*-2abcosC

360° = 27 radians
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Trigonometric Functions

sin 8 = cos(90° —8)

4

n/4

sin 6

cosO

183

7f2

37/2

Trigonometric Identities

sin?@+cos? §=1

cos & = sin(90° - 6)

sin{a t B) =sin a cos St cosasin S

sin 2a = 2sin@ cosa@  COs 2a = Ccos

2

at+bl =¢

2

tan @ = cot(90° —0)

27

cos(at B)=cosacos S Fsinasin B

a —sin

2

a tan(atf)=

tan a ttan S

1Ftang tan S
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Exponents and Logarithms

m__n m+n a m-n (am)n =aq™" a ™= 1
n a™

log, u+log, v=log(uv) log,u—log,v=log, l log, u" =nlog, u
v

Differential and Integral Formulas

d{ax) = adx
du+v)y=du+dv

d(uv) = udv+vdu

u _ vdu-udy

d2
\4 v2
dx" =nx""dx
de* =e*dx
1
dinx=—dx

X

d sin x = cos xdx
d cos x = —sin xdx

dtan x = sec’ xdx

Iadx=ax
I(du+dv)=u+v
Iudv=ujldv-—jvdu=uv—jvdu

Julpas=u-[v %

n+l

IX”dX::HI
Je’dx=e"

j'ln xdx=xInx—x
Isin xdx = —cos
fcosxdx =sin x

Itan xdx =~ In{cos x)

d sec x = tan x sec xdx J-secxdx=ln(secx+tanx)

d ¢sc x = —cot x ¢csc xdx j'cscxdx= In(csc x — cot x)

d cot x = —csc? xdx Icot xdx = In(sin x)



MATHEMATICAL TABLES

Integral Formulas

J dx = In(csc x — cot x)
sin x

J & = In(sec x + tan x)
cos x

jxsinxdx=sinx—xcosx

jxcosxdx=cosx+xsinx

2 X2
jxlnxdx=—lnx——
4
ax
edy=5—
a
ax
j xe®dx=5—(ax-1)
2
a
(& L, ax
.;x2+02 a
( dx =Llna+x

J xz—az 2a x+a

n+l
I(a +bx)"dx=£a(—:—i—xl—)5b— except n=—1
& =lln(a+bx)
a+bx b

185
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-
xdx =L[a+bx—aln(a+bx)]
J a+bx p?

( dx — 1 tan“] x\/a_b
J a+bx? \/E a

[_xx =—l—ln(x2 +%)

J a+bxt 2b

jJa +hxdx = 327) (a+bx)°

_ J bx)3
Ixmdxz—z(za 3bxy/(a +bx)

1562

j x2+atde= %[xs/xz ta’+a’ ln(x+\/xZ +a? )]

dx 2, 2
———=In(x+Vx  ta
J\/x2 ta?

I a? —xzdx=%[n/a2 —x%+a’ sin"(ﬁ)jl

a

[ (2]



A

Acceleration, 37, 79
Angle:

definition of, 5

in degrees, 5, 182

in radians, 5, 182
Antiderivative, 75
Approximation:

area, 86, 175

interest, 177

trapezoidal rule, 86, 175
Arc length, 160
Area:

between curves, 91, 100, 129

formulas, 181
under a curve, 84
Asymptoltes, 19, 29, 52, 167

Average value of a function, 97, 128

B
Binomial expansion, 4, 181
C

Chain rule, 42
Change of vanable, 41
Circle, 15
Completing the square, 2, 14
Compound interest, 136, 177
Concavity, 48
Congruent tnangles, 110
Conics:

formulas, 182

graphing, 11
Constant of integration, 78
Continuous compounding, 178
Coordinate systems, 6
Cosine:

definition, 105

function, 48

law of, 114
Cubic equation, 3
Curve sketching, 45

INDEX

D

Definitc intcgral, 84
Degrec of a polynomial, 2
Derivative,
definition, 34
notation, 34
of a product, 38
of a quotient, 39
power rule, 34
Differential:
definition, 34
formula, 184
rules, 34, 38, 39
Discontinuity, 32
Disks, method of, 156
Doubling time, 142

E

e, the number, 134
Ellipse, 17
Equilateral triangles, 110
Exponential function, 133
Exponential equation, 134
Exponential derivative, 184
Exponent laws, 8, 132, 184
Exponential:

decay, 145

growth, 142

F

Factorial, 4

Factorng, 2

First derivative, 48

Function:
continuous, 31
definition of, 10
exponential, 133
implhcit, 40
logarithmic, 138
polynomial, 27
trigonometric, 183

G

Geometric formulas, 181
Graphing, 45

H

Half-Life, 133

Hortzontal asymptote, 30, 150, 153

Hyperbola, 19
I

Implicit differential, 40
Indefinite integral, 76
Integral:
definite, 84
exponential, 84
formulas, 185
indefinite, 76
powers, 77
tables of, 173, 184
trigonometric, 167

Integration:
of exponentials, 135
of logarithms, 149
numerical, 175
by parts, 169
by substitution, 162
by trapezoidal rule, 175
Interest:
compound, 136, 177
continuous, 178
Isosceles triangles, 110

J

K

187
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L

INDEX

Law of cosines, 114
Law of exponents, 132, 189
Law of sines, 116
Law of supply and demand, 165
Learning curve, 151
Length of arc, 160
Limit, 27, 31
Limits of integration, 84
Line:
equation for, 10
intercepts, 10
slope, 10
Linear equation, 10
Linear function, 10
Logarithm:
definitions, 138, 184
derivative, 82, 139, 184
graph of, 150
integral of, 184
laws, 8, 139, 184
natural, 144

M

Maximum, 57
Method:
of disks, 156
of shells, 157
Minimum, 57
Motion, 79

N

Natural logarithm,
definition, 149
derivative, 139
graph, 150
integral, 149

Newton's law of cooling, 146

Numerical integration, 175

o
P

Parabola, 11

Partial fractions, 171
Perimeter formulas, 181
Phase, 24

Polynomials, 27

Power rule:

for differentiation, 34

for integration, 77
Product rule, 38
Pythagorean theorem, 15, 108

Q

Quadratic:
completing the square, 2
equation, 1, 11
formula, 2

Quotient rule, 39

R

Radian, 111
Rational function, 134
Related rates, 65

S

Second derivative, 37, 48
Second derivative test, 37
Separation of vanables, 80
Shells, method of, 157
Similar triangles, 110
Sine:

definition, 105

function, 117

law of, 116
Slope, 33
Substitution method, 162
Sums, 175
Summation notation, 86
Surfaoe:

area, 181

of revolution, 161

T

Tangent:
definition, 105
function, 118

Trapezoidal rule, 86, 175

Trigonometric:
definitions, 105, 182
differentiation of, 122
cquations, 124
functions, 183
identities, 119, 183
integration of, 126
tables, 182

U
\4

Variable, change of, 162
Velocity, 36, 79
Volumes:

by disks, 156

by shells, 157

formulas, 181

N < % g
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