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Author's Message to the Reader 

In our earlier book, Understanding Calculus-A Users Guide, we covered the essentials of 
one-variable calculus. This book continues in the same spirit with the treatment of vectors 
and the calculus of several variables. In both books our aim is to explain the material directly 
to the reader, in a way which makes sense to a beginning student. This approach is quite 
different from that of the usual calculus text. Those books are designed to appeal to the 
instructor rather than the student, for it is the instructor who chooses the text. Accordingly, 
the standard calculus book tries to include every topic that any instructor might want to 
cover. The result is a huge, heavy, expensive tome which is better suited for weight training 
than calculus instruction. 

Most of the techniques of calculus arose as mathematical approaches to concrete 
physical or geometric problems, and this is the spirit in which we approach the material. The 
reader always has something concrete to visualize, so useful intuition can be developed along 
with the computational skills. The presentation is never formal, but it is correct. There is 
nothing in this book which will ever have to be unlearned. 

Here is a final, practical observation for students who are currently enrolled in a 
standard calculus course. Most instructors prefer to lecture on theorems and proofs because 
that is what a mathematician cares about. Most tests, however, will be largely just 
problems-problems like those in this book. If you can do the problems in this book you will 
have learned what a calculus student is supposed to know. 

vii 
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ANNOTATED TABLE OF CONTENTS 

Chapter 1. Lines 

This chapter introduces the Cartesian coordinate system for the plane and explains the idea of 
the graph of an equation in x and y as a curve in the plane. The simplest curves are straight 
lines, which are the graphs of linear equations Ax + By + C = 0. We show how to graph a 
given equation and how to write the equation of a line described geometrically. 

Chapter 2. Parabolas, Ellipses, Hyperbolas 

These curves, the so-called conic sections, are the graphs of second-degree equations in x and 
y. Every curve y = Ax2 +Bx+ C = 0 is a parabola, every curve x2 + y2 +Ax+ By+ C = 0 
is a circle, and so on. The emphasis here is on being able to sketch a given curve quickly, for 
these curves play a large part in how we visualize the facts of calculus. 

Chapter 3. Differentiation 

The derivative is introduced as the kind of computation used to calculate speed, given a formula 
for distance in terms of time, or to calculate the slope of a curve y = f (x). The idea of a 
limiting value is treated intuitively, and several calculations involving limits are made before 
an informal definition of limit is presented. The exercises involve calculating derivatives for 
simple functions with applications to tangent lines, speeds, and other rates of change. 

Chapter 4. Differentiation Formulas 

The notation tu for a small change in x and l:!..y for the corresponding change in y is used in 
the arguments to justify the rules for differentiating sums, products, and so on, and to presage 
the * notation. The product rule and informal induction yield the formula fx xn = nxn-l for 
positive and negative integers n. The case n = ½ is also covered to foreshadow the rule for 
noninteger exponents. The limit theorems for sum, product, and so on are taken as obvious 
properties of the arithmetic operations. 

Chapter 5. The Chain Rule 

Examples of composite functions are given, using both functional notation and dependent 
variable notation. For example, g(f (x)) = (2x2 + 1)3 , with g(x) = x3 and f (x) = 
2x2 + 1, or y = z3 with z = 2x2 + 1. The dependent variable notation provides the clearest 
explanation of the chain rule, writing � = � • !! and taking limits. Related rate problems 
are introduced where, for example, a relationship between distances s and x is used to find ¥, 
f · dx rom a given dt • 

Chapter 6. Trigonometric Functions 

The functions cos x and sin x are defined to be the coordinates of the point x units around 
the unit circle from (1, 0). The distance x is also the radian measure of the angle between the 
positive x-axis and the radius to the point ( cos x, sin x). A table of degree-radian equivalencies 
and a list of the basic trigonometric identities are given to be memorized. The derivatives of 
cos x, sin x, tan x, and sec x are calculated and illustrated with many chain rule examples and 
rate problems. 
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Chapter 7. Exponential Functions and Logarithms 

The general shape of y = ax for a > 1 is explained, and it is shown that fx ax = k0ax 

for some constant k0 depending on a. We define e to be the number such that ke = 1, so 
;x e

x = eX , and it is shown that e = 2.718. The function log xis the inverse of ex , and the 
derivative ;x log x = � is calculated from the inverse relationship. Many chain rule exercises 
involving� and logx are given, as well as some problems involving the exponential growth 
of bacteria colonies and compound interest. 

Chapter 8. Inverse Functions 

General inverse functions are defined with � and log x as a convenient example. The nth root 
of x, x ¾, is the inverse of xn for x > 0. The derivative of y = x ¾ is obtained by differentiating 
both sides of yn = x, and the chain rule then extends the differentiation formula to fractional 
exponents. The functions sin- 1 x, cos- 1 x, tan- 1 x are defined, and their derivatives are cal­
culated. For example, if y = sin-1 x, we differentiate both sides of sin y = x and then use 
the appropriate right triangle to show that cos(sin-1 x) = J1 - x2 . 

Chapter 9. Derivatives and Graphs 

The first and second derivatives are used to determine the shape of a curve. For example, 
the function is increasing if f' (x) > 0, and concave up if f" (x) > 0. Local maxima and 
minima can only occur where f' (x) = 0. Implicit differentiation is used to find the slope 
and convexity of a function defined by an equation. Applications are given to curve sketching 
and stated max/min problems. 

Chapter 1 O. Following the Tangent Line 

L'Hospital's Rule for limits of the form g is derived quite simply, using the definition of/' (xo) 
and g'(x0) to show that if /(x0) = g(xo) = 0, then �&� - f&�� as x - xo. Newton's 
method of solving an equation f (x) = 0 consists of starting with an approximate solution 
of x

1 
and following the tangent line back to the x-axis to get the better approximation x2 = 

XI - f'(x1)" 

Chapter 11. The Indefinite Integral 

Indefinite integration is the operation inverse to differentiation, so F(x) is the integral or 
antiderivative off (x) if F' (x) = f (x ). We start with the problem of turning the gravitational 
equation � = g into a formula for s in terms oft. All the standard differentiation formulas are 
listed alongside the corresponding integration formulas. Some simple differential equations 
with initial conditions are solved. The u-substitution is used to explain the backwards use of 
the chain rule in integration problems. 

Chapter 12. The Definite Integral 

The area between the curve y = /(x) and the x-axis, for a � x � b, is defined to be the limit 
of the Riemann sums L /(c ; )(x; - x;_1) where the limit is taken as max(x; - X;-1) - 0. 
This limit is the definite integral. denoted J: f (x )dx. The Mean Value Theorem shows that J: f(x)dx = F(b) - F(a) for any antiderivative F(x) off (x). Areas between curves are 
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calculated using the mnemonic that the area is the sum, indicated by the integral sign, of 
vertical "rectangles" of height f (x) and width dx. For curves x = f (y), one uses horizontal 
"rectangles" to get the area in the form J: f (y)dy. 
Chapter 13. Work, Volume, Force 

Work, volume, and force are calculated as integrals that represent limits of sums of increments. 
If a force at point xis f (x), then an increment of work done by this force is f (x)dx, and the 
total work is the sum (integral ) of these increments. Similarly, if a solid has cross-sectional 
area A (y) at height y, then an increment of volume is A (y )dy, and total volume is the integral 
f A(y)dy. Many standard work/volume/force problems are treated. 

Chapter 14. Parametric Equations 

The x and y coordinates of a moving particle are frequently given as functions of t with 
equations y = f (t), x = g(t ). 1\vo such equations are called the parametric equations of 
the path. Many curves are most conveniently described by parametric equations, where the 
parameter could be time, or perhaps some variable of geometric importance to the curve. The 

!!1. 
( 2 ) slope of a parametrically given curve is � = f, and the concavity � is also calculated 

in terms oft. Cauchy's Mean Value Theorem is the ordinary Mean Value Theorem applied to 
parametric curves. 

Chapter 15. Change of Variable 

When a u-substitution is used to change a definite integral in x directly into a definite in­
tegral in u, the process is called a change of variable. If the interval of integration for the 
original integral is a ::: x ::: b, and u = c when x = a and u = d when x = b, then the 
u-integral will have lower limit c and upper limit d (even if d < c). The new integral formulas 
j (a2 + x2r 1 dx = ¼ tan-1 � and j (a2 - x2) -½ dx = sin- 1 � are introduced. There are 
lots of examples of the technique. 

Chapter 16. Integrating Rational Functions 

A rational function Wi, where P(x) and Q(x) are polynomials, can always be integrated 
if Q(x) can be completely factored. We consider the most common and most useful cases; 
namely, Q(x) is linear or quadratic, and the degree of P(x) is less that the degree of Q(x). 
Chapter 17. Integration by Parts 

The integration by parts technique uses the differentiation formula fx (uv) = u �: + v�� in the 
integrated form uv = f udv + f vdu. This equation can be used to write one integral in terms 
of another: f udv = uv - f vdu. We cover the principal examples where f vdu is simpler 
than f udv, and the technique works. Integration by parts is used to integrate log x and the 
inverse trigonometric functions. 

Chapter 18. Trigonometric Integrals 

Trigonometric functions are a basic part of scientific language, it is essential to be able to 
integrate formulas involving these functions. Trigonometric integrals also arise when substi­
tutions are made to integrate expressions involving radicals. The basic trigonometric identities 
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are listed for convenient memorization-and, yes, memorization really is necessary here. The 
basic techniques are covered for integrals with sines and cosines, and integrals with secants 
and tangents. 

Chapter 1 9. Trigonometric Substitution 

Integrands that contain the radical expressions ✓ a2 - x2 , J a2 + x2, ✓ x2 - a2 can frequently 
be integrated after a trigonometric substitution. The substitution x = a sin 0, for example, 
turns ✓ a2 

- x2 into a cos 0, using the identity 1 - sin2 0 = cos2 0. After integration, the 
appropriate right triangle is used to convert trigonometric functions of 0 back to formulas in 
x. Both definite and indefinite integrals are treated. 

Chapter 20. Numerical Integration 

There are several methods to get a numerical approximation to J: f (x )dx using different ways 
to choose the Ci in the Riemann sums L f(ci)(xi - xi_ 1 ) . These methods emphasize the fact 
that the integral is the limit of Riemann sums, but all such methods are all vastly less efficient 
than Simpson's Rule, which is the only approximation method we consider. Simpson's Rule 
approximates short segments of the curve by parabolic arcs, finds the exact areas under the 
parabolic arcs, and adds them up in one simple formula. In some cases, Simpson's Rule is less 
tedious than standard methods for getting the exact answer. 

Chapter 21 . Limits at oo; Sequences 

We consider the limits of the form lim f(x), where f(x) is defined on some interval (a , oo), 
x-oo 

and limits lim Xn , where {xn } is a sequence. For rational functions �Q<<x> the limit is simply 
n--+oo x 

lim :< , where anxn and bmxm are the highest order terms of P (x), Q (x), respectively. n-+oo m X 

L'Hospital's Rule for the indeterminate forms § and � is used to show that � ---+ 0 if 
p > 0, and �= ---+ 0 if a > I .  The four sequences {log n} ,  {nP } , {an } ,  {n ! }  represent distinct 
orders of magnitude as n ---+ oo so that !¥ ---+ 0, � ---+ 0, � ---+ 0. These limits are n a n .  
critical in our later treatment of power series. 

Chapter 22. Improper Integrals 

Initially, the definite integral J: f (x}dx is defined only for bounded intervals [a, b] and 
bounded functions f (x ). Now we extend the definition to cover functions that are unbounded 
on [a , b] , and integrals over unbounded intervals like (-oo, b] or [a, oo). These new (im­
proper) integrals are naturally defined as limits of the original (proper} integrals. Particular 
emphasis is placed on the integrals of the form fa00 f (x)dx, with f(x) > 0, since these 
integrals occur most often and have important applications to infinite series. 

Chapter 23. Series 

The sums of infinitely many terms, indicated a 1 + a2 + • • • + an + • • • ,  is defined to be the limit 
of the sums of the first n terms. This definition depends on the order in which the terms are 
listed, and changing that order can affect the value of the sum. For a series to have the standard 
properties of finite sums-for instance, the sum is not affected by the order of the terms-the 
series must converge absolutely; that is, the series of absolute values must converge. The 
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geometric series, 1 + x + x2 + · · · + xn + · · · ,  which equals J�x if jx j  < 1 , is extremely 
important since the convergence of a power series is usually determined by comparison with 
a geometric series. 

Chapter 24. Power Series 

Series of the form L an ( x  - xot , with xo possibly equal zero, are called power series. Such 
a series either converges for all x or converges on some open interval around x0 • All the basic 
functions of calculus can be represented by power series on some open interval. Power series 
can be differentiated or integrated term-by-term without changing the interval of convergence. 
The geometric series for ,�x yields series for i1x2 , ,!x , 1 �3x , and so on, by simple substi­
tutions, and these series in turn can be differentiated or integrated to get series for tan-1 x, 
log( l + x), ( 1  - 3x)-2 , and many others. 

Chapter 25. Taylor Polynomials 

The nth Taylor polynomial for /(x) at xo is the nth degree polynomial whose derivatives at 
xo agree with those of /(x) up to t<n> (xo) .  How close this polynomial, Pn (x) , is to f ( x) 
on an interval depends on how big t<n+l> (x) is on the interval, and how close x is to x0 • 
There is a formula to estimate the difference I f  ( x) - Pn ( x) j .  Many functions do not have an 
elementary antiderivative and so cannot be integrated directly. We can estimate such integrals 
by integrating the approximations Pn (x ). The Taylor polynomials for f ( x) are the partial sums 
of the power series for f(x). 

Chapter 26. Taylor Series 

If f ( x) is given by a series L anxn , then the coefficients an are given by an = � f<n> ( 0). 
This formula lets us calculate the series for a given function, and this uniquely determined 
series is the Taylor series for f ( x). The partial sums of the Taylor series are the Taylor 
polynomials Pn (x) ,  and we use the estimates for I f  ( x) - Pn (x) I from the last chapter to show 
that Pn � f ( x). The series for ex , sin x,  cos x,  and ( 1 + x) ½ are calculated and are shown to 
converge to the right function. The series for ( 1 + x) ½ is an example of the extended binomial 
expansion. 

Chapter 27. Separable Differential Equations 

A differential equation is an equation involving two variables and the derivative of one with 
respect to the other. Here we study first-order equations, which means only the first derivative 
occurs, and equations in which the variables can be separated: g(y)dy = f (x)dx . The 
solution of a first-order differential equation is a one-parameter family of curves, so an initial 
condition such as y(x0) = Yo is necessary to determine a specific solution. Examples are given 
to illustrate exponential growth/decay, Newton's law of cooling, and falling bodies with air 
resistance. 

Chapter 28. First-Order Linear Equations 

Linear differential equations are those in which y and its derivatives occur only to the first 
power and there are no cross-product terms like y�. A linear first-order equation therefore 
looks like this: � + p(x)y = q (x) .  If P (x) = J p(x)dx and both sides of the equation 
are multiplied by P(x), then both sides can be integrated to obtain a general formula for all 
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solutions. If p(x) is constant, the method of undetermined coefficients is the easiest approach 
for suitable functions q(x); for example, polynomials. The approach is applied to cooling and 
falling body problems. 

Chapter 29. Homogeneous Second-Order Linear Equations 

Here we treat second-order equations of the form � + a1Ji- + by = 0, where a and b are 
constant. The independent variable is now t since many of these problems involve a time­
dependent variable y. The general solution, which is a linear combination of real or complex 
exponentials, can be determined simply by solving a quadratic equation. An initial condition 
now requires specifying a value for both y and 1Ji- at some t0• If the equation has the form � + 
w2y = 0, then the motion is simple harmonic and y = K sin(wt + a). 

Chapter 30. Nonhomogeneous Second-Order Equations 

This chapter continues the study of linear second-order equations, and now the right-hand 
side is a function q(t). Since we know all the solutions of the reduced equation, we need 
only find one solution of the nonhomogeneous equation. Substituting y = y0v, where y0 is a 
solution of the reduced equation, leads to an equation in v which we can solve with a couple 
of (possibly unattractive) integrations. As was the case with the first-order equations, the 
method of undetermined coefficients is generally more efficient. We specify the types of 
functions q(t) for which the method works. 

Chapter 31 . Vectors 

Vectors are introduced as directed line segments in the plane. Vector addition is defined geo­
metrically and the operation is shown to be commutative and associative. Unit vectors i and j 
along the axes are introduced, and the vector operations are conveniently handled by express­
ing the vectors in the form xi + yj. The vector notation is a convenient way to handle prob­
lems involving the resolution of forces or velocities. 

Chapter 32. The Dot Product 

The dot product (scalar product) of vectors A and B is I I A I I  I IBI I  cos 0, where 0 is the angle be­
tween A and B. For two vectors written in terms of the unit vectors i and j the dot product is 
the product of the i-components plus the product of the j-components. The angle between the 
lines or vectors is readily computed from the dot product. The law of cosines has a particu­
larly simple derivation using vectors. 

Chapter 33. Lines and Planes in Space 

A third coordinate axis is introduced so points in space have coordinates (x, y, z). Equations 
z = f(x, y) or F(x, y, z) = 0 generally represent surfaces in 3-space. A third unit vector, k, is 
introduced, and 3-dimensional vector operations are conveniently carried out in terms of the 
i, j, k components. The linear equation ax + by + cz + d = 0 represents a plane, and ai + bj + 
ck is its normal vector. The cross product A x B is introduced. 

Chapter 34. Surfaces 

The quadratic surfaces have equations which involve only first and second powers of x, y, 
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and z. The intersection of these surfaces with planes parallel to the coordinate planes are the 
familiar conic section curves, so the surfaces are reasonably easy to visualize. Planes, 
spheres, and surfaces of rotation are among the surfaces studied, and are identified from their 
equations. 

Chapter 35. Partial Derivatives 

The first partial derivatives are defined, and their several different notations are given. Many 
simple calculations are worked out. Then the higher order partial derivatives are introduced, 
and examples are given which illustrate that the order of differentiation does not matter for 
mixed partials. There are problems which ask the reader to check that certain functions satis­
fy Laplace's equation or the heat equation. 

Chapter 36. Tangent Plane and Differential Approximation 

The partial derivatives.t_;,(x, y) and.t;,(x, y) are interpreted as the slopes of the curves where the 
planes x = constant or y = constant intersect the surface z = J(x, y). Tangent vectors to these 
curves are tx = i + fx(x, y)k and tY = j + .t;,(x, y)k, so a normal vector to the tangent plane is 
N = tx x ty. The tangent plane is used to make differential approximations to the function. The 
differential is also used to show how relative errors in x and y affect the relative error in the 
calculated z. 

Chapter 37. Chain Rules 

If z is a function of x and y and x and y are functions of t, then z is a function of t and the 
chain rule gives a formula for : . If x and y are functions of two variables r and s, then there 
are chain rule formulas for : and : . Similar rules hold if z is a function of three or more 
variables, each of which is a function of several other variables. Many examples are worked 
out. 

Chapter 38. Gradient and Directional Derivative 

The gradient ofJ(x, y) is VJ(x, y) = J/x, y)i + J/x, y)j ,  and this equation defines the operator 
del (V). The directional derivative ofJ(x, y) in the direction of a unit vector u is VJ · u, so VJ 
is a vector in the direction of the maximum directional derivative, and I IVJ(x, y)I !  i s  the maxi­
mum slope at (x, y). The tangents to the level curve J(x, y) = c are perpendicular to VJ, so T = 
J/x, y)i -J/x, y)j is a tangent to the level curve. 

Chapter 39. Maxima and Minima 

The functionJ(x, y) has a relative maximum or relative minimum at (x0, y0) if both first par­
tials are zero at (x0, y0), and all second directional derivatives at (x0, y0) have the same sign. 
The second directional derivatives at (x0, y 0) have the same sign in every direction if 
J);(x0, y0) -Jxx(x0, yo).t;,/x0, y0) is negative. To find the absolute maximum and minimum on a 
bounded region we must consider also the function values on the boundary points. 

Chapter 40. Double Integrals 

The double integral fR fJ(x, y)dA is defined as a limit of Riemann sums, but the definition is 
never used for calculation. Double integrals are always evaluated as iterated one-variable in-
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tegrals. The first integrals represents the area, A(x), of the cross section at x, and the second is the sum of the volumes A(x)dx of incremental slices. Examples show that sometimes chang­ing the order of integration simplifies the calculation. 
Chapter 41 . Line Integrals 

If P(x, y) and Q(x, y) are defined on a curve C parameterized by x = g(t), y = f(t), a :5 t :5 b, then the line integral f cP(x, y)dx + Q(x, y)dy is calculated by substituting g(t) for x, g'(t)dt for dx, andf(t) for y, f'(t)dt for dy, and integrating as t runs from a to b. Work done for a force F = P(x, y)i + Q(x, y)j moving along C is f cF · ds = f cP(x, y)dx + Q(x, y)dy. Three di­mensional line integrals are calculated similarly. The line integral does not depend on how the curve is parameterized. 
Chapter 42. Green's Theorem 

Green's theorem consist of the two identities PcP(x, y)dx = ff R - PyCx, y)dA and PcQ(x, y)dy = ff RQx(x, y)dA, where C is the positively oriented boundary curve of a plane region R. Sev­eral examples are given in which both the line integral and the corresponding area integral are calculated. The Green's identities are verified for simple types of regions, and it is indi­cated how more general regions can be decomposed into such simple regions. The line inte­grals pc -y dx and pc x dy are used to calculate areas. 
Chapter 43. Exact Differentials 

A differential expression Pdx + Qdy is called exact if there is a function F(x, y) such that dF 
= Pdx + Qdy; i.e., if there is F(x, y) such that Fx(x, y) = P(x, y) and F/x, y) = Q(x, y). If a dif­ferential is exact, its line integrals are independent of the path joining two given points. That is, if dF = Pdx + Qdy, then f cPdx + Qdy = F(c, d) - F(a, b) for any curve C from (a, b) to (c, d). In a simply connected region, Green's theorem shows that Pdx + Qdy is exact if 
Qx - PY = 0. Some exact differential equations are solved. 

H. S. Bear 
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Lines 

One of the very pleasant things about calculus is the fact that we can draw a picture of nearly 
everything we do. The graph of a function or an equation gives us something concrete to look 
at and hang our analytic ideas on. The clever device that allows us to geometrize our ideas 
is of course the Cartesian coordinate system, named after the French mathematician Rene 
Descartes. The Cartesian coordinate system not only gives us a pictorial representation of the 
ideas, but it allows us to use algebraic methods on geometric problems and geometric methods 
on algebraic problems. 

The coordinate system consists of two perpendicular lines, the horizontal one called the 
x-axis and the vertical one called the y-axis. Each point in the plane is identified by a pair of 
numbers (x, y), where x gives the distance to the right or left of the y-axis and y gives the 
distance up or down from the x-axis. If x > 0, then the point is x units to the right of the y-axis, 
and if x < 0, then the point is Ix I units to the left of the y-axis. ( Ix I denotes the magnitude of 
the number x, so lxl = x if x :::: 0 and lxl = -x if x < 0. !xi is called the absolute value 
of x.) Similarly, the point (x, y) is above the x-axis y units if y > 0, and below the x-axis 
if y < 0. The numbers x and y are the coordinates of the point (x, y ). The coordinate axes 
divide the plane into four quadrants ( Figure 1.1). 

The graph of an equation in x and y is the set of all points whose coordinates satisfy the 
equation. The graph of an equation is usually a curve in the plane, and here we look at the 
simplest curves, straight lines. 

If (x1 , Y1 ) and ( x2 , Y2) are any two points on a line, then the quantity m = ( y2 -y1 )/(x2 -
x1 ) is called the slope of the line. You get the same slope, m, no matter what two points you 
choose. Hence, if (x1 , y1 ) is any point on a given line with slope m, and (x, y) is any other 
point, then 

or 

y - YI -- = m, 
x- x1 

y - y1 = m(x - xi ) .  ( 1.1) 

Equation ( 1.1) therefore characterizes the line through (x1 , y1 ) with slope m. If the line with 

1 
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I I  3 
(- 1 ,  2)• 2 

-4 -3 
-

2 
- '- 1  

(-2, -2) • -2  

III 

slope m goes through the y-axis at (0, b), then the equation is 
y - b = m (x - 0) .  

or 
y = mx+ b. 

Understanding Calculus 

(2, I )  • 
2 3 4 

(3, -2) • 

IV Figure I.I 

( 1 .2) 
Equation ( 1 .2) is called the slope-intercept form, and the number b is called the y-intercept. 

Lines that are not parallel to the y-axis have equations of the form y = mx + b. Vertical 
lines have equations of the form x = c. Hence, any line has an equation of the form 

Ax + By + C = O, ( 1 .3) 
where at least one of A and B is nonzero. Conversely, the graph of any equation of the form 
( 1 .3) is a line. 

EXAMPLE 1 .1 

Write the equation of the line through (3 , - I )  and ( 1 ,  2) . What is the slope, and what is the y-intercept? 
Solution 

We first find the slope using m = <V2-Yi 1 : (xz-x1 )  
2 - (- 1 )  3 m = --- = 

1 - 3 2 
Now use either of the given points, say (3, - I ) ,  and write the equation ( I . I ) : 

The slope-intercept form is 

y _ (- 1 )  = (-D (x _ 3) . 

3 9 
y + l = - zx + 2 . 

3 7 
y

= - 2x + 2 . 
so the y-intercept is � , which is the value of y when x = 0. 

EXAMPLE 1 .2 

Write the equation and graph the line through (3 . I )  with slope ½ .  What are the x- and y-intercepts? 
Solution 

The equation of the line is 

y - 1 = 2 (x - 3) ,  

I I 
y = 2x - 2 ·  

The y-intercept is - ½ - To find the x-intercept. where the line crosses the x-axis. set y = 0 and solve 
for x :  

I I 
0 = -x - - · x = I .  

2 2 '  
The x-intercept is I .  The graph is shown in Figure 1 .2. 
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Figure 1.2 

Parallel lines have the same slope, but what about perpendicular lines? Let m I and m2 be the slopes of two perpendicular lines. In Figure 1 .3 we see that angles BAD and BDC are equal, since their respective sides are perpendicular. Hence, b/a = c/b, and b2 = ac. The slopes m I and m2 are given by 
so 

b b m1 = - and m2 = -- ,  
a C 

Lines are perpendicular if and only if their slopes are negative reciprocals of each other. 

Figure 1.3 

EXAMPLE 1 .3 Find the line through (3, 2) which is perpendicular to the line Sx + 2y - 1 = 0, and the line through (3, 2) which is parallel to Sx + 2y - 1 = 0. 
Solution We write the equation of the given line in slope-intercept form to determine its slope: 

S 7 

y 
= -2x + 2 ·  The given line has slope - !  , so a parallel line has slope - !  and a perpendicular line has slope � .  Hence, the perpendicular line through (3, 2) is 

and the parallel line through (3, 2) is 
2 y - 2 = - (x - 3) , s 

5 (y - 2) = -- (x - 3). 2 
The angle a a line makes with the x-axis, or any horizontal line, is called the inclination of the line. If a line has inclination a, then its slope is m = tan a (Figure 1 .4 ). 



4 

EXAMPLE 1 .4 

(a) If a line has inclination 20° , what is its slope? 
(b) If a line has slope 3, what is its inclination? 

Solution 

Understanding Calculus 

Figure 1.4 

Make sure your calculator is set for degrees and read that the slope is tan 20° = .36. To find the inclination of a line with slope 3, read tan-1 3 = 7 1 .6° . 
EXAMPLE 1 .5 Find the angle between the lines y = x - 4 and y = ½x - I (Figure 1 .5). 

y = x - 4  

Figure 1.5 

Solution From Figure 1 .5 we see that if a2 is the inclination of y = x - 4, and a1 is the inclination of y = ½ x - 1 ,  then the angle a between the lines i s  a = a2 - a 1 • Here 

so a  = 1 8.4° . 
a2 = tan- 1 l = 45° , 

- 1 l o a 1 = tan 2 = 26.6 • 

PROBLEMS 

1.1 Graph the pairs of points, and then describe the geometric relationship between any two points (a , b) and (b, a) ;  ( 1 ,  0) and (0, l ) ; (3, 2) and (2, 3) ; (- 1 ,  2) and (2, - 1 ) ;  (4, - 1) and (- 1 , 4) . Graph the lines and determine their slopes. 1.2 X + 2y = 4 1.3 X - y = 2 
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1.4 y = 2x - 3  
1.5 y = -x - 1 
1.6 X + 3y = 0 
1.7 2x + 3y + 6 = 0 

s 

Write the equations of the following lines, and put the equation in the slope-intercept form y = 
mx + b. 

1.8 through ( 1 ,  I )  and (3, 0) 
1.9 through (-2, 3) and (4, 1 )  

1.10 with y-intercept 7 and slope 2 
1.11 with y-intercept - 1  and slope -4 
1.12 through ( 1 ,  4) with slope -3 
1.13 through (2, 3) and perpendicular to x - 2y + 1 = 0 
1.14 through ( 1 , 2) and parallel to 7x - y = 4 
1.15 (i) Show that the lines x + y - 3 = 0 and x - y + 1 = 0 intersect at ( 1 ,  2) . 

(ii) Show that for any constant k 

(x - y + l ) + k(x + y - 3) = 0 

is the equation of a line through ( 1 ,  2). 

(*) 

(iii) Find k so that the line (*) goes through ( 1 ,  2) and (2, 4) , and write the equation of the 
line. 

1.16 Find the equation of the line through ( I , 1) and the intersection of the lines x - 2y + 2 = 0 
and x + y - 4 = 0. Hint: See Problem 1 . 15 . Notice that you don't have to find the 
intersection of the given lines. 

1.17 Find the equation of the line with slope 2 which passes through the intersection of the lines 
x + 2y - 5 = 0 and 3x + y - 1 = 0. 

1.18 Find the equation of the line through the intersection of x + 3y - 2 = 0 and 2x + y - 5 = 0 
which is perpendicular to x + 3y - 2 = 0. 

1.19 Find the angle (i) between the lines y = 2x and y = 3x ; (ii) between the lines y = 2x - 5 
and y = 3x + 7. 

1.20 Find the line through (3 , 4) which makes an angle of 25° with the x-axis. 





Parabolas , E l l i pses, 
Hyperbolas 

Mathematicians in ancient Greece discovered that if you cut a cone with a plane, you get curves with very interesting properties. For example, if the plane is perpendicular to the axis of the cone, you get a circle. Tilt the plane a little and the circle becomes an ellipse. Keep tilting and at one critical angle the curve is a parabola. Any further tilts yield a hyperbola. These curves are still of basic interest, and we will encounter them frequently. In the coordinate plane these curves, called conic sections for the obvious reason, all have equations of the second degree. We will consider the following simple cases: 
y = Ax2 + Bx+ C, parabolas; 

x2 y2 

a2 + b2 = 1 , ellipses; 
x2 y2 a2 - b2 = ± 1 , hyperbolas . 

Consider first the parabola y = x2 • The graph is symmetric about the y-axis since ( -x, y) lies on the curve whenever (x , y) does. The graph is shown in Figure 2. 1 .  If the coefficient of x2 is larger (e.g., y = 2x2), then the curve heads up more sharply, and if the coefficient is negative (e.g., y = - ½x2), the curve heads downward as lx l  increases. All the curves y = Ax2 + Bx + C with A -::/= 0 are parabolas, and they all have exactly the same shape as y = Ax2 • The axis of the parabola will move right or left depending on B,  and the curve will move up or down depending on B and C,  but the shape remains the same as y = Ax2 • Consider, for example, y = x2 - 4x + 3.  We show that this curve has the same shape as y = x2 by completing the square: 
y = x2 - 4x + 3, 
y = x2 - 4x + 4 - 1 , 
y = (x - 2)2 - 1 .  The graph of y = (x - 2)2 is just the graph of y = x2 moved over so that its axis is the line 

x = 2. The constant - 1  drops the whole curve down one unit. The three curves y = x2 , y = (x - 2)2 , and y = (x - 2)2 - 1 are shown in Figure 2.2. 
7 
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-3 -2 - I  

Flgure 2.l 

2 3 

Figure 2.2 

The distance r between points (x1 , Y1 ) and (x2 , y2) is given by 
r = J(x2 - x1 )2 + (y2 - Y1 )2 . 

Understanding Calculus 

It follows that the circle with center (xo , y0) and radius r is characterized by the equation 
J (x - xo) + (y - Yo)2 = r, or 
(x - xo>2 + (y - Yo>2 = r2 . From (2. 1 )  we see that every circle has an equation of the form x2 + y2 + Ax + By + C = 0. 

(2. 1 )  
(2.2) Conversely, every equation of form (2.2) which has a graph represents a circle or just a single point. For example, x2 + y2 + 1 = 0 has no graph, and the graph of x2 + y2 = O is just the single point (0, 0). 

EXAMPLE 2.1 
Find the center and radius of the circle x2 + y2 - 2x + 4y - 4 = 0. 
Solution 
We complete the squares to put the equation in the form (2. 1 ) :  

x2 - 2x + y2 + 4y = 4,  
x2 - 2x + I + y2 + 4y + 4 = 4 + l + 4 ,  
(x - 1 )2 + (y  + 2)2 = 9 .  

The circle has center ( l ,  -2) and radius 3.  

The graph of x2 y2 - + - = l  a2 b2 is an ellipse through the points (±a , 0) and (0, ±b) (Figure 2.3). If a = b, then the ellipse is a circle of radius a .  If b > a, then the ellipse is longer in the y-direction. The curves x2 Y2 x2 y2 - - - = l and - - + - = 1  a2 b2 a2 b2 are hyperbolas. The first hyperbola above intersects the x-axis, and the second intersects the y-axis (Figure 2.4). Both hyperbolas approach the asymptotes y = ±�x as x increases ; that is, the vertical distance between the curve and the asymptote tends to zero as x increases. 
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b 

x2 y2 

- + - =  1 
a2 b2 

-a a 

-b 

Figure 2.3 

x2 y2 

- - - = 1 
a2 b2 

x2 y2 

- - + - =  I 
a2 b2 

Figure 2.4 

EXAMPLE 2.2 Graph the curve -x2 + 4y2 = 4. 
Solution If we divide both sides by 4, we recognize the equation of a hyperbola: 

x2 y2 

- - + - = l . 
4 I 

9 

The hyperbola intersects the y-axis at (0, ±1 )  and has the lines y == ±½x as its asymptotes (Figure 2.5). 
Hyperbola x2 y2 

- - + - = I 
22 1 2  

Figure 2.5 

The equation y = ¾ or xy = 1 (Figure 2.6 ) also turns out to be a hyperbola. Specifically, 
this is the hyperbola -f + f = 1 rotated through 45° in the clockwise direction. The 
asymptotes are the coordinate axes. The graph of y = x�2 is the graph of y = ¾ moved two 
units to the right, and the graphs of the curves y = x�a are similar, with constant A effecting 
a scaling in the y -direction. 
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Hyperbola 

EXAMPLE 2.3 

Understanding Calculus 

I 
y = x 

or 
xy = I 

3 4 

Figure 2.6 

Find the equation of the circle which passes through the origin and the two points where the line x + y = I 
intersects the circle x2 + y2 = I .  
Solution 
Any circle has the form x2 + y2 + Ax + By + C = 0, so three given points will determine the three 
constants A, B, C. One solution would be to find the two points where x + y = I and x2 + y2 = l 
intersect and use these two points and (0, 0) to write three equations in A, B ,  and C. Here is an easier 
way: Any equation 

(x2 + y2 - I ) + k(x + y - I )  = 0 (*) 

is a circle because it has the right form. If a point (x0 , y0) satisfies both x2 + y2 - l = 0 and x +  y - l = 0, 
then it will certainly lie on the circle (*). We find k so the circle (*) also goes through (0, 0), 

(-02 + 02 - 1 ) + k(0 + 0 - I ) ,  
k = - 1 .  

Therefore, the sought-for circle is 

x2 + y2 - I - (x + y - I) = 0, 
or 

Graph the following curves. 

2.1 y = -x2 

2.2 y = 2x2 

l 2 2.3 y = 
2

x 

2.4 y = (x + 1 )2 

2.5 y = x2 + 1 
2.6 y = 1 - x2 

2.7 y = x2 - 2x + 2 
2.8 y = -x2 + 2x 
2.9 x2 + y2 = 4 

2.10 (x - 1 )2 + y2 = l 
2.11 x2 + y2 - 4y - 5 = 0 

x2 y2 

2.12 
9 + 4 = I 

y2 
2.13 x2 + - = 1 4 
2.14 4x2 + 9y2 = 36 

x2 + y2 - X - y = 0. 

PROBLEMS 



Chapter 2 ■ Parabolas, Ellipses, Hyperbolas 
2.15 x2 - y2 = I 
2.16 y2 - x2 = I 
2.11 xy = 2 I 2.18 y = -­

x - 1  

11 

2.19 Find the equation of the circle which passes through the origin and the two points where 
y = 4x - I intersects the circle x2 + y2 = 4. 

2.20 Find the parabola through the point (-4, 3) and the two points where the line y = x + l intersects the parabola y = x2 - I .  
2.21 Show that the set of points (x , y )  such that the distance from (x , y )  to (c, 0) plus the distance 

from (x , y) to (-c, 0) equals 2a is the ellipse � + 02�c2 = I .  Hint: Put the square roots on opposite sides of the equation and square both sides. Isolate the remaining square root and square both sides again. 
2.22 Show that the top part of the hyperbola � - � = I (i.e., the curve y = bJ � - I = 

� Jx2 - a2) approaches the asymptote y = �x as x ---+ oo. Hint: To show 
x - J x2 - a2 ---+ 0, multiply and divide by x + J x2 - a2 and let x ---+ oo. 





Different iat ion 

If s (t) is the position at time t of a car moving along a straight road, then the average speed over the distance from s (t0) to s (t) is the distance traveled divided by the elapsed time: 
s (t) - s (to) average speed = ----. 

t - to 

If the speed of the car is not constant, then the average speed may have little to do with the actual speed at any given time. However, if the time interval [to , t] is very small, then the speed will not vary much over the interval, and the actual speed at any given time will be close to the average speed. We define the speed at a particular time to, the instantaneous speed at to, to be the limit of the average speeds over smaller and smaller time intervals [to, t]. This limit is denoted s' (to), and we write 
' (t ) _ li 

s (t) - s (to) s O - m ---- . 
t➔ to t - to 

(3. 1 ) 

The number s' (t0) is called the derivative of s with respect to t at to, or the rate of change 
of s with respect to t at t0 . 

EXAMPLE 3.1 The distance s in feet which a falling object travels in l seconds is approximately s = 1612 • (This formula holds for the first few seconds, and then air resistance takes over. Falling bodies do not make sonic booms.) The distance traveled between to = 2 seconds and a subsequent time l is 
s (l) - s(2) = 1 612 - 16 . 22 

= 16(t2 - 4) 
= 16(t + 2) (t - 2) . 

Hence, the average speed over the time interval [2, t] is 
s (l) - s (2) 16(t + 2) (1 - 2) -

t---2
- = --t---2

-- = 16<1 + 2> ,  
13  
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and the instantaneous speed at t = 2 is 

s'(2) = lim 
s (t) - s (Z) 

1➔2 t - 2 
= lim 1 6(t + 2) = 64. 

t ➔ Z  

Since s is measured in feet and t in seconds, the speed at t = 2 is 64 ft/sec. 

Understanding Calculus 

Now consider what the derivative of a function means in a purely geometric setting. We look at the function y = f(x) = ½x2 , whose graph is the parabola shown in Figure 3. 1 .  The change in y over the interval from 1 to a nearby point x is 1 2 1 1 f(x) - f( l )  = 2x - 2 · 1 = 2 (x + l ) (x - 1 ) .  

Hence, the average rate of change of y over this interval is 
f(x) - f( l) ½ (x + I)(x - 1) 1 ---- = ----- = -(x + 1 ) . x - 1 x - 1 2 The above quotient (f (x) - f ( 1 ))/(x - 1)  is the slope m(x) of the secant line joining the two points ( 1 ,  ½ )  and (x, ½x2) .  The derivative, f' ( 1), is therefore the limiting slope of these secant lines: f'(l )  = lim m(x) 

x➔ I . 1 = hm - (x + 1 )  = l .  x➔ l 2 We define the tangent line to the curve at ( 1 ,  ½ )  to be the line that has this limiting slope 1 .  Hence, the tangent line to y = ½x2 at ( 1 ,  ½ > is 
y - 2 = 1 • (x - 1 ) .  

Figure 3.1 
Now we have these two ways to interpret the derivative 

J'(xo) = lim f(x) - f(xo) 
: (3 .2) 

X➔Xo X - Xo 

f' (xo) is the rate of change of f with respect to x ( or of y with respect to x if y = f (x) ), and is also the slope of the tangent line to y = f(x) at xo. The expression (f(x) - f(xo))/(x - xo) is the difference quotient for f atx0. In the preceding examples, we used the following two obvious limits: 
lim 16(t + 2) = 64; lim - (x + 1) = 1 . 
t➔2 x➔ I 2 The meaning of the limit concept is as follows: a function q (x) (such as the difference quotient in (3.2)) approaches a limit L as x approaches xo, written limx➔xo q (x)  = L, provided that 

q (x) is arbitrarily close to L for all x sufficiently close to xo. The phrases "arbitrarily close" and 
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"sufficiently close" can be made arithmetically precise as follows: limx➔xo q(x) = L provided that for any given positive number e (an arbitrary choice of closeness) there corresponds a positive number o (this is how close "sufficiently close" is) such that q (x) is within e of L if x is within o of x0 . The intuitive idea of q (x) approaching L as a limiting value as x approaches x0 will suffice for the limits we deal with in this course. The following examples show some more limits in action, and the action is again the calculation of derivatives. 
EXAMPLE 3.2 Find /' (- 1 )  if f(x) = 3x2 • 

Solution 

EXAMPLE 3.3 Find /'(4) if f (x) = ../x. 
Solution 

EXAMPLE 3.4 

f'(- 1) = lim f(x) - /(- 1 ) 
x-+-1  x - (- 1 )  

3x2 - 3 · I = lim ----
x-+-1  X + l 

= lim 3(x + l) (x - I )  
X-+ -1  X + l 

= lim 3(x - 1 )  = -6. 
X➔-1 

/'(4) = Jim f (x) - f (4) 
x-+4 X - 4 

= lim ../x - ../4 
x-+4 X - 4 

= lim (../x - 2) (../x + 2) 
x-+4 (x - 4) (../x + 2) 

x - 4  = lim ----­
x-+4 (x - 4) (../x + 2) 

. I I = hm -- = - . 
x-+4 ..jx + 2 4 

Find the equation of the line tangent to y = � at x = -2. 
Solution The slope we want is f'(-2) where f(x) = � -

3 3 /'(-2) = lim x - =i 
x-+-2 X - (-2) 

3 (! + ! )  = lim x 2 
X-+-2 X + 2 

= lim 3(2 + x) 
x-+-2 2x (x + 2) 

= lim 2_ = -� -
x--2 2x 4 



1 6  
The equation of the tangent line at (-2, - � )  is 

EXAMPLE 3.5 Find /'(4) if J(x) = Jx + � ­
Solution 

y + � = (-�) (x + 2) . 

. Jx + � - (✓<i + ¾) /' (4) = hm -----� 
x--+4 X - 4  
. (../x - ✓<i) + ( ! - ! ) 

= hm x 4 
x-4 X - 4 

= Im ------- + ---I. ( (,./x - J4)(,./x + J4) 4 - X ) x--+4 (x - 4)(../x + J4) 4x(x - 4) 
= !� Cx - 4;(:; + ✓<i) -

4� )  l I 3 = 4 - 16 = 1 6  

Understanding Calculus 

Notice that in Example 3 .5 we effectively found the derivatives of ,Ji and ¾ separately and then added the results. That is because the difference quotient for ,Ji+ ¾ can be separated into two groups, one group being the difference quotient for ,Ji and the other being the difference quotient for ¾ .  
EXAMPLE 3.6 A ball thrown downward with an initial speed of 32 ft/sec from the top of a tall building travels a vertical distance of s feet in 1 seconds, where s = l 612 + 321 . What is its speed at 1 = l ?  
Solution We are asked to find s'( I ) , and again we separate the difference quotient into the difference quotient for 1 612 and that for 32t. 

s'( l ) = Jim 
s (t) - s ( l ) 

1--+ I ( - l . 1 6t2 + 32t - (16 + 32) = hm -------, .... , t - I 

= hm --- + ---. [ 1 612 - 16 321 - 32 ] 
,.... ,  1 - l 1 - 1 

= hm ----- + ---. [ l6(t + l)(1 - l ) 32(1 - l ) ] ,.... ,  t - I 1 - 1  
= lim[l6(1 + 1 )  + 32) = 64. 

t--+ I 

Find f'(a) for the specified a.  3.1 f (x) = 2x2 ; a = l 
3.2 f (x) = -5x2 ; a = -2 

PROBLEMS 
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3.3 f(x) = x3 ; a =  3 

Hint: x3 - a3 = (x - a) (x2 + ax + a2) .  
3.4 f(x) = 2x3 ; a =  1 
3.5 f (x) = 3,,/x; a = 9 
3.6 /(x) = -Jx + x; a = 1 

I 3.7 f(x) = - ; a =  3 
X 
I 

3.8 f (x) = 2 ; a = l 
X 

I 
3.9 f(x) = x l ; a = 8 

I I 2 I I 2 
Hint: (x l - a l ) (x l + a l x l + a l ) = x - a . 

Find the equation of the line tangent to the curve at the given point. 
3.10 y = 2x2 ; ( I ,  2) 
3.11 y = 5 - x2 ; (2, l )  
3.12 y = 2,,/x; (4, 4) 

l 3.13 y = 
Jx

; ( l ,  1 )  

17 

3.14 A ball is thrown straight up from the ground, and its height s in feet after t seconds is 
s = I OOt - 16t2 • What is the speed of the ball at t = 2 seconds? What is the initial speed 
s' (0)? How high does the ball go? (Hint: The ball reaches maximum height when its speed is zero.) 

3.15 A ball thrown down from the top of a 104-ft building, with an initial speed of 20 ft/sec, travels a distance s = 20t + 16t2 in t seconds. When does it hit the ground, and how fast is it going then? 
3.16 A spherical balloon is blown up in such a way that its radius at t seconds is t cm; that is, 

r = t .  What is the rate of change of the volume at any time t?  The volume is V = } T( r3 , and the surface area is S = 4T(r2 • How do you interpret the fact that !; = S? 
3.17 A block of ice initially weighs 100 lbs and melts so that its weight W after t minutes is 100 - 2,/i. At what rate (lbs/min) is the ice melting at t = 100 min? 





Differentiat ion Formu las 

In this section we develop some general rules for differentiating functions, so  we don't have to go through the limit argument each time. What we have so far are techniques that will give us the derivative of a specific function at a specific point-for example, the derivative of x2 at 
x0 = 1 .  Now we search for a formula for the derivative of x2 at any x, and of course we want such formulas for all the common functions. Our definition for f' (x0) is the following: 

f'( ) _ 1. f (x) - f (xo) xo - 1m ----- . 
X➔Xo X - Xo 

(4. 1 )  
To get a formula for f'(x) ,  for any x ,  we replace xo i n  (4. 1 )  by x,  and write the nearby point as x + tu . Here tu just stands for a small change in x. With this notation, f (x) - f (xo) becomes f(x + tu) - f(x), and x - xo becomes t:.x . This gives us the alternative form 

f'( ) _ 1. /(x + 6x) - /(x) 
X - tm -------. 

ll. x➔O !::.x (4.2) 

If y = f(x), we let t:.y = f(x + t:.x) - f(x) ,  so t:.y is the change in y that corresponds to the change t:.x in x .  The difference quotient at any point x is 
!::.y f(x + t:.x) - f(x) - = -------t:.x t:.x 

We write U for the limit of f as 6x � 0, so we have the following alternative notations: 
dy = lim t:.y = lim f(x + t:.x) - f(x) = J'(x) .  dx t.x➔O t:.x t.x➔O t:.x 

We also use ;x as a differentiation operator so that ;x f (x) = f' (x ) .  In the examples of the last section. we saw that to differentiate the sum of two terms you just differentiate the terms separately and add the results. Thus, if y = z + w, where z and w are functions of x, then 
t:.y = t:.z + t:.w, 
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and consequently 

tiy tiz tiw 
- = - + -. tix tix tix 
dy = lim ( tiz 

+ 
tiw ) dx 6x➔O tix tix 

1. tiz . tiw = 1m - + hm -6x➔O tix 6x➔O tix 
dz dw  = dx  + dx  · 

Understanding Calculus 

The derivative of a sum ( or difference) is the sum ( or difference) of the derivatives. In the 
second equation above we used the fact that the limit of a sum is the sum of the limits. This is 
an obvious property of addition: If a is close to A and b is close to B,  then a + b is close to A +  B. Similar statements hold for a - b, ab, and a/b, so, for example, the limit of a product 
is the product of the limits, and so on. 

Now consider the derivative of a product of two functions. Let y = z • w, and again let tiz, ti w be the changes in z and w that result when x is changed by an amount tix. The new 
value of y is (z + tiz)(w + tiw), and therefore 

tiy = (z + tiz)(w + tiw) - zw 
= z • tiw + w • tiz + Az • Aw.  

I t  follows that 

- = hm z - + w - + tiz • -dy . ( tiw Az tiw ) dx 6x➔O tix tix tix 
dw  dz  dw = z- + w - + 0 · -dx dx dx 
dw dz  = z dx + w  dx · 

(4.3) 

Of course lim6x➔ o tiz = 0, for otherwise tiz/ Ax would not approach a limit as tix � 0. A 
function z with the property that Az � 0 as tix � 0 is continuous at the point in question. 
Differentiable functions are continuous, and calculus deals with differentiable functions. 

then 

or 

In functional notation formula (4.3) can be written as follows: if f (x) = g(x) · h (x) , 

J'(x) = g(x)h'(x)  + h (x)g'(x) , 

d d d 
dx f(x) = g(x) dx h (x) + h (x) dx g(x) . 

The derivative ( rate of change) of a constant function is obviously zero: !: = 0. It is 
also clear from the definition that 

d dy 
dx (cy) = c dx · 

The derivative of the function x is clearly one ( �� = 1), so :
x 

(ex) = c. 



Chapter 4 ■ Differentiation Formulas 

Now we use the product rule to find a formula for d: xn . 

d 2 d dx dx 
-x = - (x • x) = x - + x - = 2x , 
dx dx dx dx 

d d d b -x3 = - (x • x2) = x -x2 + x2 - = x • 2x + x2 = 3x2 , 
dx dx dx dx 
d d d b 

-x4 = - (x · x3) = x -x 3 + x3 - = x • 3x2 + x3 = 4x3 . 
dx dx dx dx 

The pattern is clear: 
d 

-xn = nxn-l , n = 0, 1, 2, 3, . . . . 
dx 

It follows that 

EXAMPLE 4.1 
Find t if y = 5x 1 0  - 3x5 + 2x2 - 5. 
Solution 
Differentiating the terms separately and adding, we get 

dy 
dx 

= 50x9 - l 5x4 + 4x . 

To find a formula for :x x-n ,  we start with x- 1 and find d;;
1 from the definition: 

That is, 

I I 
� � = lim � - ; 
dx x t.x➔O t:u 

. x - (x + t:::..x) = bm t.x-o t:::..x · x (x + t:::..x) 
-1 = lim ---­

t.x-o x (x + t:::..x) 
- 1 = 
X 2 

d - I -2 -x = -x . 
dx 

Now proceed as before, using the product rule and ( 4.5): 
d d dx- 1 dx- 1 

-x-2 = - (x-1 . x- 1 ) = x- 1  __ + x- 1 __ 
dx dx dx dx 

= x- 1 (-x-2) + x- 1 (-x-2) = -2x-3 , 

d d dx-2 dx- 1 
-x-3 = - (x- 1 . x-2) = x- 1 -- + x-2 --
dx dx dx dx 

= x- 1 (-2x-3) + x-2 (-x-2) = -3x-4 . 
Similarly, we show that 

d -4 4 -5 
dx

x = - x , d -5 
5 -6 -x = - X , 

dx 
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(4.4) 

(4.5) 
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and so on, and the general fonnula is 

d -n -n - l  -x = -nx , n = l , 2, 3 , . . . .  
dx 

(4.6) 
Notice that the rule in (4.6) is the same as that for positive exponents: to differentiate x" , for n positive or negative, multiply by the exponent, and subtract one from the exponent to get the new exponent. 
EXAMPLE 4.2 Find � if y = -;r - -3z + 2x4 • 

Solution Write the expression with negative exponents where appropriate, and use (4.4) and (4.6). 
y = sx-3 - 1x-2 + 2x4 . dy = -lsx-4 + 14x-3 + 8x3

• 

dx 

To find a fonnula for the derivative of the quotient of two functions, ix (-;) ,  we first find 
d
d ( l ), and then we can use the product rule to find 

d
d < 1· )  = 

d
d (z • l ) .  If y = l ,  then 

X W  X W  X W W /1y 1 [ l 1 ] tu = 11x w + 11w - w 
= _l [ w  - (w + LlW) ] Llx w (w + Llx) 

- 1 11w = ----
w (w + Llx) Llx Hence, taking the limit as Llx � 0, 

dy _ .!!__ (2-) - __ l dw 
dx -

dx w - w2 dx · 

Now we use the product rule to find ix (-;} :  
.!!___ (�) = .!!___ (z . 2-) 
dx w dx w 

= z .!!_ (2-) + __!__ dz 

dx w w dx 

= z (
- l

)
dw

+ !_ dz w2 dx w dx 

= 

= 

-z dw + W dz 
d x d x 

w2 

W dz _ z dw 
d x d x 

w2 

(4.7) 

(4.8) 

This formula is best remembered as "the bottom times the derivative of the top, minus the top times the derivative of the bottom, over the bottom squared," for this chant doesn't depend on which variables are used for the numerator and denominator. 
EXAMPLE 4.3 Find !!I if y = x3+3x . 

dx x2+2 



Chapter 4 ■ Differentiation Formulas 

Solution 

EXAMPLE 4.4 

dy (x2 + 2) -!; (x3 + 3x) - (x3 + 3x) -!; (x2 + 2) - = --��------�---
dx (x2 + 2)2 

(x2 + 2)(3x2 + 3) - (x3 + 3x)2x 
(x + 2)2 

3x4 + 9x2 + 6 - 2x4 - 6x2 

(x + 2)2 

= (x4 + 3x2 + 6)/(x + 2)2
• 

Find * if y = (x2 + l ) (4x - 1 ) .  
Solution 

23 

We can either use the product rule, or first multiply the two terms and differentiate the resulting sum, 
With the product rule we get 

If we multiply out first, we have 

dy - = (x2 + 1 )  • 4 + (4x - 1 )2x 
dx = 4x2 + 4 + 8x2 - 2x 

= 12x2 - 2x + 4. 

y = (x2 + 1 ) (4x - 1 ) = 4x3 - x2 + 4x - I ,  

dy = 12x2 - 2x + 4. 
dx 

To add some variety to our repertoire, we now compute ix ,Ji: 
d t= 

1 . Jx + b.x - ,Ji -....,x = 1m 
dx tu .... o b.x 

= lim (Jx + b.x - ,Ji)(Jx + b.x + ,Ji) 
�x .... o b.x(Jx + b.x + ,Ji) . x+ b.x- x  = hm 
�x .... o b.x (Jx + b.x + ,Ji) 

1 1 I = -- = -x- z . 2,Ji 2 

(4.9) 

Notice that the formula above, fxx ½  = ½x- ½ ,  follows the same rule as for integer exponents: fx xn = nxn- 1 
EXAMPLE 4.5 
F. d d ,Ii 

Ill dx Jx-2 · 
Solution 

d Jx (3x - 2) 27x - Jx · 3 - -- = 
dx 3x - 2 (3x - 2)2 

3x - 2 - 6x = 
2./x(3x - 2)2 

3x + 2  
2./x(3x - 2)2 • 



24 

Find � -
4.1 y = 5x4 + x2 + x I 4.2 y = -3x2 + 2x - 2 
4.3 y = 3x-4 - x- 1 + 2x3 2 3 1 6 4.4 y = - - - + 5x + -x x4 x3 2 1 4.5 y = x3 + -x3 

10 l 4.6 y = x  - w  
X 4.7 y = (x2 + 1 ) (2x + 3) 4.8 y = (x2 + l ) (x2 - l ) 5x3 + 2x1 - 3 4.9 y = ----x2 + 1 4.10 y = x2 - 1  1 4.11 y = 2 + x3 x3 4.12 y = --1 x +  x3 + x  4.13 y = 2x2 + l 2x + 1 4.14 y = -2 -x - l  1 4.15 y = 5,Jx + -

X 4.16 y = ,Jx(3x - 2) I 4.17 y = J'x 

Understanding Calculus 
PROBLEMS 

4.18 Show that formula (4.9) for fxx ½ and your answer to Problem 4.17 for fxx-½ both agree with the rule for integer exponents: fxx" = nx"- 1 • 4.19 Show that .E..(u • z • w) = zw � + uw !k + uz dw . dx dx dx dx In Problems 4.20 and 4.2 1 use the formula of Problem 4.19 to find � .  4.20 y = (x + l ) (x2 + 2) (x - 2) 4.21 y = x-3 (x + 3)(x2 - 4) 4.22 Check that fxx-4 = -4x-5 by differentiating the product: }x (x-2 • x-2) . 4.23 Check that fxx-5 = -sx-6 by differentiating the product: fx(x-2 • x-3) .  4.24 Find fx x 1 .  Hint: Use (a  - b )(a2 + ab + b2) = a3 - b3 . Multiply the top and bottom of 
I I 

l(x+t>1: -x 3 1 by a2 + ab + b2 with a = (x + �x) ! , b = x L 4.25 Use the product rule to show that if N is a positive integer and fxxN = NxN- t ,  then fxN+t = }x (xN - x) = (N + l )xN . This is the essential step in the inductive proof that 
fxx" = nx"- 1 for all positive integers. 



The Chain Rule 

Most of the functions we use are composites of simpler functions. For example, (2x2 + 1 )3 is calculated by evaluating 2x2 + 1 and then cubing that number. If f(x) = 2x2 + 1 and g(x) = x3 , then g(f(x)) = f(x)3 = (2x2 + 1 )3 . Similarly, we can write J3x + l as the composition of .jx and 3x + l :  if f (x) = 3x + 1 and g (x) = .jx, then 
g(f (x)) = J f (x) = J3x + 1 .  Here are some other examples :  1 1 (i) -2- = g(f(x)) with g(x) = - ,  f(x) = x2 + 4; 

X + 4  X (ii) (3x - 1)4 = g(f(x)) with g(x) = x4 , f(x) = 3x - l ; 
l 1 (iii) ,Jx2+x = h (g(f(x))) with h(x) = ; , g(x) = ./x, f(x) = x2 + x. 

Using dependent variable notation (y, z, w, etc.) instead of functional notation (j(x), g(x), etc.), the above examples would look like this: 
(1. ) .f l d 2 4 h I 1 z = - an y = x + . t en z = -2-- ; 

y X + 4  (ii) if z = y4 and y = 3x - l ,  then z = (3x - 1 )4 ; 

(iii) if z = .!. and w = ly and y = x2 + x. then z = �-w � J  vr� Situations like these are quite common in physical applications. For example, if the force F on an object depends on its position x, and the position x depends on the time t, then F is a (composite) function of t. Because most functions that occur in practice are compositions of simpler functions, we proceed to find the rule for differentiating such functions. Consider the general situation in which z is a function of y and y is a function of x, so that z also becomes a function of x. Let b.y be the change in y which results from changing x 
25 
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by an amount tu. Let !).z be the change in z which results from changing y by I). y, so !).z also 
corresponds to the change !).x in x . Notice that !).y ---+ 0 as !::,,.x ---+ 0, since y is necessarily 
continuous if * exists. Hence, 

dz . t:,,.z - = hm -
dx tu--+O !).x 

= lim !).z . Ay 
tu--+0 Ay !::,,.x 

. dz dy = hm - · -. 
t.x--+0 dy dx 

This is the important chain rule for differentiating composite functions. 

(5.1) 

In the argument leading to ( 5.1), we multiplied and divided by !::,,.y, which is clearly not 
legitimate if Ay = 0 for arbitrarily small values of Ax . However, in that case Az is also zero 
for arbitrarily small values of !::,,.x, since z doesn't change if y doesn't change, and both * and 
�� would then be zero, and (5 .1 )  would still hold in the form O = 0. 

We illustrate the chain rule with the function z = ( 2x2 + 1)3 , or z = y3 with y = 2x2 + 1. 
From ( 5.1), 

dz dz dy 
dx 

= 
dy

. 
dx 

= 3y2 dy 
dx 

= 3y2 ( 4x) 

= 3( 2x2 + 1)2 ( 4x). 
In practice, we think of this computation as 

:x ( )3 = 3( )2 
:x ( ) , 

which holds no matter what function is inside the parentheses. For example, if z = (,Ji+ x5)3 , 
then 

dz = 3( )
2 .!!__

( )  
dx dx 

= 3 (Jx +x5)2 . :
x 

(Jx +xs) 

= 3 (Jx +x5)2 . (
2� + 5x4) . 

To illustrate the chain rule with a different outside function, consider y = 1 / ( 3  - x2)4 • Here 
y = ( )-4 , 

so 
dy = -4( )-s .!!__

( ) 
dx dx 

2 s d 2 = -4( 3 - x )-
dx 

( 3  - x ) 

= -4( 3 - x2 )- 5 ( -2x). 



Chapter 5 ■ The Chain Rule 
Here are some more examples. 

d 
- (3x - 6x3)5 = 5(3x - 6x3 )4 • (3 - 1 8x2) ;  
dx 
d 

-(5x3 + 1)-2 = -2(5x3 + 1)-3 • (15x2) ; 
dx 

d 1 d 
- -- = -(1 + x2)- 1 = - (1 + x2 )-2(2x). 
dx 1 + x2 dx 

Recall that fx (Ji) = 2�, so the chain rule gives the general formula 

For example, 

d l d 
dx Jf) 

= 
2Jf) dx 

( ) . 

!..__ J3 - 5x = 1 
(-5) ; 

dx
�--

2J3 - 5x 

!..__J x2 + 5x4 = 1 
(2x + 20x3) ;  

dx 2Jx2 + Sx4 

d � l ( 1 )  
dxV

l + --;
= 

2j1 + � 
-

x2 . 

Now consider z = ✓ 
1 

2
• This is a composition of three functions: 

l+ x 

The derivative is 

1 2 z = - , w = ,,/y, y = 1 + x 
w 

dz dz dw dy - = - · - · -
dx dw dy dx 

1 1 = - - -- - 2x w2 2Jy 
1 1 

= - --- · --- - 2x 
(l + x2 ) 2Jt + x2 

= -x/(1 + x2) � .  

We could also find �! by the quotient rule in this example. 

EXAMPLE 5.1 

d 1 J1 + x2 iL(l) - 1 . iL.Jf+x2 
dx dx --- = ---�-------

dx .Jf+x2 (1 + x2) 

-x = ---
( 1 + x2 )!

. 

27 

Grain pours out of a spout at 5 cu ft/min onto a concrete floor and forms a conical pile whose radius and height are equal. At what rate is the height of the pile increasing when h = 4 ft? 
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Solution The volume of a cone is ½Jrr2h , and since here r = h , V = ½Jrh3 • We are given that �� = 5, and the chain rule shows that 

d V 
= Jr h2 dh 

dt dt Therefore, 5 = Jrh2 t1Jf,  and t1Jf = 5/Jrh2 . When h = 4, t1Jf = 5/ 1 6Jr ft/min. 
EXAMPLE S.2 A car drives east at 40 mph starting at town A, which is 60 miles due south of town B. At what rate is the distance (as the crow flies) between the car and town B increasing when t = 2 hr? 
Solution 
If s  is the distance between the car and town B, and x is the distance from the car to town A, then 
Hence, 
When t = 2, x = 80 and 
S. dx 40 mce di = 

Find � -5.1 y = ( I  + 3x)4 5.2 y = (x + x2)5 

5.3 y = ( I + 2x)- l 5.4 y = (x3 + x7)- 10 I 5.5 y = --2 + 3x I 5.6 y = I + x2 5.7 y = .Jf+xI 5.8 y = (,Ji + 1 )3 

5.9 y = G
x

/x! y 
( ,Ix )5 5.10 y = -­

x + I I 5.11 y = � vx3 - 2  

s2 = 602 + x2 . 

2s
ds = 2x 

dx
. 

dt dt 

s = J602 + 802 = JI0,000 = 100. 
ds x 80 - = - • 40 = - • 40 = 32(m1/hr). 
dt s 100 

PROBLEMS 

5.12 y = (.Jf+x + xr
2 

Write * in terms of x :  5.13 z = y-3 , y = 2x + I s I 5.14 z = y , y = -­x + l 
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I 5.15 z = - ,  y = Jx 
y I 5.16 z = ..jy, y = -

X I 2 5.17 Z = - ,  W = ..jy, y = X + 9 
w 5.18 z = w2 , w = I + Jy, y = x + I 
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5.19 If a rectangle has sides x and y and x is increasing at 1 cm/sec and y at 3 cm/sec, how fast is the area increasing when x = 4 and y = 5? Hint: 
dA d dy dx - = - (xy) = x - + y - .  
dt dt dt dt 5.20 In Example 5 . 1  suppose the grain flows out of the spout at 3 cu ft/min and the pile retains the shape of a cone with height equal to the diameter of the base. At what rate is the height increasing when h = 6? At what rate is the area of the base of the cone increasing when 

h = 6? 5.21 The temperature on a rod is given by T = 3 + Jx where x is the distance from the left end in inches and T is measured in degrees Centigrade. A sensor moves along the rod so that its position after t seconds is x = t + ½ t3 . At what rate is the temperature at the sensor changing when t = 2? 5.22 Water flows into a cylindrical bucket at 10 cu in/sec. The bucket has diameter 1 ft. How fast is the water rising in the bucket? Hint: The volume V of water in the bucket is n62 y in3 , where y is the height of the water in inches. 5.23 A spherical balloon is inflated so that its volume at time t is .Jf+t. At what rate is the radius r increasing when r = 5? (V  = �nr3) 5.24 Two ships leave the same dock at the same time. One goes east at 20 knots and the other north at 10  knots. At what rate (nautical miles per hour) is the distance between them changing when t = 3 hr? (1 knot is one nautical mile ( 1 . 1 5  miles) per hour.) 5.25 The top half of the circle x2 + y2 = a2 has the equation y = J a2 - x2 • Find the slope of the tangent at (x , Ja2 - x2 ) ,  and show that the tangent is perpendicular to the radius to the point; that is, show that the tangent has slope -x/y. 5.26 An object moves along the x-axis so that its position at time t is given by x = (t2 - 4t)3 • The object moves to the right when ¥, > 0 and to the left when ¥, < 0. When does the object change direction? 5.27 Suppose f'(x) = � - If g(x) = f(x2 + x),  what is g' (x)? 





Trigonometric Functions 

In trigonometry courses, the functions sin x and cos x have to do with the angle x. If x is an acute angle in a right triangle (Figure 6. 1 ), then sin x is the opposite side over the hypotenuse and cos x is the adjacent side over the hypotenuse. If the hypotenuse has length l ,  then the opposite side has length sin x and the adjacent side has length cos x. In calculus we more often think of sin x and cos x as functions of a number x. Suppose you start at the point ( l ,  0) and go x units around the unit circle in the counterclockwise direction. The point you arrive at has coordinates ( cos x, sin x) as indicated in Figure 6.2. For calculus purposes this is the definition of cos x and sin x. The angle at the origin which cuts off an arc of length x on the unit circle is an angle of x radians. If x is a negative number, then cos x and sin x are the coordinates of the point which is Ix I units around the circle in the clockwise direction. The picture shows that for all x, cos(-x) = cos x; sin(-x) = - sin x .  Since the unit circle has length 2n , the angle 2n radians corresponds to 360° . From this we can easily calculate the equivalent radian measure for any number of degrees. For example, 30° corresponds to ;� • 2n = % radians, and 90° corresponds to 3� • 2n = I radians. Table 6. l gives the values of cos x and sin x for common values of x corresponding to angles in the first quadrant. For angles outside the first quadrant (radian measure outside [O, I]), we read the values of cos x and sin x from the appropriate diagram as indicated in Figure 6.3. From the definition it is clear that if you go 2n units around the circle from the point x units from ( 1 , 0) you get back to the same point (cos x, sin x) .  That is, for any x ,  sin(x + 2n) = sin x ,  cos(x + 2n) = cos x. The functions cos x and sin x are thus periodic functions with period 2n . The remaining four trigonometric functions are defined as follows: sin x tan x = -- ; 
cos x 

COS X cot x = -- · sin x ' 
l I sec x = -- ; csc x = -.-. cos x sm x We will deal almost entirely with cos x, sin x,  tan x ,  and sec x. 
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Figure 6.1 
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sin x 

TABLE 6.1 

Degrees 

radians (x) 

cos(x) 

sin(x) 

-1 

-1 

(- 1 , 0) 

Figure 6.2 
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1f 
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,,fj 
2 
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-1 

-1 

-1 

-1 (0, -1 )  
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The following identities are used constantly in our calculations and should be memorized. (i) sin2 x + cos2 x = l (ii) sin(x + y) = sin x cos y + cos x sin y sin(x - y) = sin x cos y - cos x sin y (iii) sin 2x = 2 sin x cos x (iv) cos(x + y) = cos x cos y - sin x sin y cos(x - y) = cos x cos y + sin x sin y (v) cos 2x = cos2 x - sin2 x = 1 - 2 sin2 x = 2 cos2 x - l (vi) cos2 x = ½ (1 + cos 2x) (vii) sin2 x = ½ O  - cos 2x) (viii) tan2 x + l = sec2 x. The first identity, (i), simply says that (cos x, sin x) is a point on the unit circle. Identities (ii) and (iv) are not too hard to verify, but the verification does nothing to uplift the spirit and so will be omitted. Identities (iii) and (v) for sin 2x and cos 2x, respectively, follow from (ii) and (iv) by substituting x for y. The alternative forms for cos 2x in ( v) result from replacing cos2 x by 1 - sin2 x or sin2 x by 1 - cos2 x. These last two equations give the formulas (vi) and (vii) for cos2 x and sin2 x in terms of cos 2x, and these will be used later to integrate cos2 x and sin2 x. The final identity involving tan2 x and sec2 x results by dividing the identity sin2 x + cos2 x = l through by cos2 x. To differentiate the trigonometric functions, we will need the following limits: . sin x hm -- = 1 ,  
x➔O X l - cos x lim --- = 0. 

x➔O X The geometry of Figure 6.4 suggests that . sin x sm x < x < -- , cos x 

(6. 1 ) 

(6.2) 

and these inequalities do indeed hold for all x with O < x < I .  From the first inequality we get 
and from the second we get 

(0, I )  

(- 1 , 0) 
Figure 6.4 

sin x -- < l , 
X 

sin x 
cos x < -- .  

X 

Arc length x 
ta sin x - n x = COS X 

\ ( 1 - cos x) 
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Putting these together we have sin x 
cos x < -- < 1 .  (6.3) 

X Since cos x � l as x � 0, sin x / x ---+ l .  To see what happens as x � 0 through negative values, notice that cos(-x) = cos x and sin(-x)/(-x) = sin x/x, so (6.3) still holds for negative x. To verify (6.2) we notice from Figure 6.4 that the arc of length x is longer than the hypotenuse of the right triangle whose sides are sin x and l - cos x. Therefore, sin2 x + ( l  - cos x)2 .'.:: x2 , sin 2 x + cos2 x + l - 2 cos x .'.:: x2 , 2 - 2 cos x .'.:: x2 , 

l - COS X l --- < -x .  
X - 2 Hence, ( l  - cos x)/x � 0 as x � 0, which is (6.2). This limit can also be deduced from (6. 1 )  by algebraic manipulation as follows: l - cos x (l - cos x) ( l  + cos x) --- = --------

X x(l + cos x) l - cos2 x = ----- =  
x(l + cos x) 

sin x sin x 
x 1 + cos x Since sin x --* l and � � 0 as x � 0 we again get that l -cos x � 0. x ( l+cos x) ' x Now we can calculate the derivatives of sin x and cos x. 

d . . sin(x + tu) - sin x - sm x = hm 
dx t:.x➔O t:..x . sin x cos t:..x + cos x sin t:..x - sin x = hm 

t:.x➔O l::..x 

l . . (cos t:..x - l)  sin t:..x = 1m sm x----- + cos x --
t:.x➔O t:..x l::..x 

= (sin x) • 0 + (cos x) • I 
= cos x. We differentiate cos x using the identity 

Therefore, 

( 1( )  . 1C • 1C sin x + 2 = sm x cos 2 + cos x sm 2 
= (sin x) • 0 + (cos x) • l = cos x. 

!!_ cos x = !!_ sin (x + �) 
dx dx 2 

= cos (x + �) 
1C • • 1C = cos x cos - - sm x sm -
2 2 = (cos x) • 0 - (sin x) · l 

= - sin x .  
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The derivatives of tan x and sec x are easily calculated (Problem 6.2), and the four basic trigonometric differentiation formulas are 

EXAMPLE 6.1 Find � if dx 

Solution 

d - sm x = cos x; 
dx 
d 

dx 
tan x = sec2 x; 

d - cos x = - sin x; 
dx 

d 
dx 

sec x = sec x tan x. 

(i) y = sin(x3 + I) ;  (ii) y = cos 3x + tan2 x ;  (iii) y = sec Jx. 

Each of these problems involves a chain rule differentiation. 
(i) dy = .!!:_ sin(x3 + l) = [cos(x3 + l )]3x2 ; dx dx 

(ii) dy = .!!:_ (cos 3x + tan2 x) = -3 sin 3.x + 2 tan x sec2 x ;  dx dx 

(iii) dy = d
d (sec Jx) = (sec -./x tan -./x) I

r.:: . dx x 2�x 

EXAMPLE 6.2 A searchlight, rotating at 3 radians/min, plays a spot on a wall that is I 00 ft away. At what rate is the lighted spot traveling along the wall when the beam is perpendicular to the wall? 
Solution Measure distance along the wall from the point, 0, directly opposite the light (Figure 6.5). We are given that !If!- =  3. Since x/ 1 00 = tan 0 ,  

dx d - = - l00 tan 0 
dt dt 

2 d0 = 100 sec 0 - .  
dt When x = 0, 0 = 0, sec2 0 = l. then ¥, = 300 ft/min or 5 ft/sec. 

Figure 6.S 

PROBLEMS 

6.1 Graph y = sin x and y = cos x on the same coordinate system for 0 :S x :S 21r . Use your calculator (set for radians, not degrees) to find values for x = 0, 0.5, l .0, 1 .5 ,  . . .  , 5.5, 6.0, 6.28. 
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6.2 Derive the formulas f tan x = sec2 x and f sec x = sec x tan x, using f sin x = cos x 

d 
X X X and d"x cos x = - sin x . 

F. d dy m J"x ·  
6.3 y = cos 2x 
6.4 y = sin(3x + 1 ) 
6.5 y = cos2 x 
6.6 y = COS X sin x 
6.7 y = sin2 8x 6.8 y = cos3 (5x + 1 ) 6.9 y = JI + cos x 6.10 y = (sin x + cos x)2 

6.11 y = x sec x 
6.12 y = tan(4x) 
6.13 y = sec x tan x 
6.14 y = sec2 x - I 
6.15 y = tan2 X 6.16 y = sec3 x sin x 
6.17 y = ---1 + COS X 6.18 y = (tan x  + 1 )2 

6.19 y = (2x2 + 1 )  cos 3x sin 5x 6.20 y = --
x 

6.21 y = x2_+ I sm x 
x sin x 6.22 y =  --
cos x 

6.23 Derive identities (vi) and (vii) from (v). 6.24 Show that ½ sin x = sin 1 cos 1 · 
6.25 Show that tan(x + y) = ':'.'..�::; -6.26 In the situation of Example 6.2, at what rate is the lighted spot traveling when the beam makes an angle of 45° with the wall? 
6.27 A pendulum swings so that the angle 0 the rod makes with the vertical is given by 0 = 

fi sin(wt), where w is a constant and t is measured in seconds. (i) If the pendulum is at its maximum swing from the vertical for the first time at t = I , what is w, and what is the next time the pendulum is at its maximum swing on the other side of its arc? (ii) Let x be the point on the ground directly under the pendulum, with x = 0 when t = 0. 
If the pendulum is 30 in long, what is � when t = I ? When t = 2? t = 3? 6.28 Let 0 be the angle a ladder makes with a wall. If the ladder is IO ft long and the base is pulled away from the wall at 3 ft/sec, what is � when the top of the ladder is 5 ft above the floor? 6.29 A boat passes point A going east at 44 ft/sec. A searchlight at B, 200 feet south of point A, follows the boat. At what rate is the searchlight turning after 3 seconds? Hint :  Let 0 be the angle between the line AB and the line from B to the boat; find � .  6.30 Show that cos x = sin(x + I) .  

6.31 Show that for any two numbers a and b such that a2 + b2 = I there is a number 0 such that 
a = cos 0 ,  b = sin 0. How many such numbers 0 are there? 
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6.32 Every curve y = A sin x + B cos x is a sine curve; that is, for all A and B there are numbers 

K and 0 such that A sin x + B cos x = K sin(x + 0) . Hint: Write 
A sin x + B cos x = J A2 + B2 [(sin x) A + (cos x) B ] . 

J A2 + B2 J A2 + B2 

Notice that if a =  � and b = �. then a2 + b2 = I . Consult Problem 6.3 1 .  
'\I A2+B2 '\I A2+B2 Find all points x in [0. 2rr] where the tangent line is horizontal. 6.33 y = sin x 6.34 y = cos x 6.35 y = sin x + COS X 6.36 y = sin2 x 6.37 y = x - tan x 





Exponential Funct ions 
and Logarithms 

The exponential functions are the functions of the fonn y = ax , where a is a positive constant. For example, 

are exponential functions. Consider for a moment what ax means for a positive number a and an arbitrary real number x .  If x is an integer, there is no problem: a2 , a5 , a -3 -these expressions are part of arithmetic. If thf exponent x is a fraction, the� �x is no longer just multiplication or division. For example, a 2 ,  a 3 are the roots of a, and 1t 1s a fact that we here take for granted that a positive number has a square root, cube root, and so on. If x is a fraction, say x = � for positive integers p and q, then a � is the pth power of the qth root of a. That takes care of rational exponents x .  If x is an irrational number like ../2 or rr ,  then ax is the limit of the numbers a � where the rational numbers P.. approach x. It is a theorem that the limit exists and that exponentials defined this way satisfyq all the usual rules for all exponents x .  Notice the distinction between the exponential function ax and the power function xn . In the power functions we have considered so far, y = x2 , y = x ½ , y = x-3 , and so on, the base x is the variable, and the exponent is fixed. In the exponential function ax , the exponent is the variable. The graphs of y = 2x and y = ( ½ Y are shown in Figure 7 . 1 .  Notice that the two curves are symmetric about the y-axis, since ( ½ Y = 2-x . The curve y = ax for a > 1 will rise steeply as x increases, and decrease rapidly to zero as x ----+ -oo. If O < a < 1 ,  then the curve decreases rapidly to zero as x --+ oo, and increases sharply as x � -oo. 
39 
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-3 -2 -1  

We calculate fx ax as follows: 
d a

x+t.x - a
x -a

x = lim dx t.x->O t:u 
a

x
a

t.x - a
x 

= lim t.x->0 Ax 
(a6x - 1 )  = lim a

x ___ _ t.x->0 Ax 
a6x - 1 = a

x lim t.x->0 Ax It can be shown that this limit exists for any a > 0, and we let 
With this notation we can write 

a6x - 1 ka = lim t.x--+O Ax 
d X X -a = kaa .  dx 

Understanding Calculus 

2 3 Figure 7.1 

(7 . 1 )  
The derivative of any exponential function (i .e., any a) i s  always proportional to the function value. Now we do some experimenting to see how the proportionality constant ka depends on a . First let a = 2 and calculate (26x - 1 )/ Ax for small values of Ax . 

Ax 
26x - 1  

0. 1 
.07 1 8  
.7 18 

.01 
.00695 
.695 

.001 
.000693 

.693 
As far as our eight-place calculator can tell 26x - 1 k2 = lim --- == .693 . t.x->o Ax 

. 0001 
.000693 

.693 

If we do the same calculations (Problem 7 . 1 )  for a = 3, we get the approximate limit 3t.x - 1 k3 = lim --- == 1 .099. t.x->0 Ax It is clear that the difference quotient (a6x - 1 )/  Ax gets bigger as a increases, for any fixed Ax . Therefore, ka increases as a increases. It is therefore plausible that there is some number 
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e between 2 and 3 such that ke = 1, and experimentation shows (Problem 7 .2) that e is approximately equal to 2. 7 18 .  Now for this number e, 
d -ex = ex , dx (7.2) 

and the elegance of (7 .2) is the justification for introducing the number e. The chain rule then gives the formulas 
or 
As examples, we have 

.!!.___et<x> = ef<x> J'(x), dx 
d u u du -e = e - . dx dx 

d 2 2 -ex = ex · 2x ; dx 
d -e-3x = e-3x (-3); dx 
d 1 

-e..fx = e..fx -- ; dx 2,./x 
d . . -esm x = esm x COS X .  dx The graph of y = � is shown in Figure 7.2, along with its tangent line at (0, 1 ) .  

7 

Figure 7.2 

The function ex is strictly increasing, is not bounded above, and approaches zero as x � -oo. Every positive number y is � for some unique number x. This number x is called the natural logarithm of y and is denoted log y. In other words, y = � and x = log y mean the same thing. The functions ex and log x are inverse functions; � is defined for all x and takes as values all positive numbers; log x is defined for all positive numbers and takes as values all numbers. For all x > 0, elog x = x, and for all x, log ex = x. The graphs of y = ex and y = log x are shown together in Figure 7.3. Notice that the graphs are symmetric about the line y = x. This is true of every pair of inverse functions and simply reflects the fact that (a , b) is on the graph of one function if and only if (b ,  a) is on the graph of its inverse. 
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-2 

Figure 7.3 

In general, the notation /-1 ( x) is used for the function inverse to / ( x) , so / (f-1 ( x)) = 
1- 1 ( /  (x)) = x. Notice that the exponent notation is not used consistently here: / (x  )2 means 
f( x) · f(x), but 1-1 (x) never means 1//(x). 

The logarithm of a number is an exponent; that is, £ = log N means el = N. Therefore, 
the rules for logarithms are just the algebraic rules for exponents. The log of a product is the 
sum of the logs since ee • • el2 = el 1 +l2 • That is, 

log( ab) = log a +  log b. 

Similarly, 

log Nk = k log N 

since if el = N, ekl = Nk , and the log of Nk is k times the log of N. 
To find the derivative of log x, we let y = log x, so eY = x , and then differentiate: 

eY = x, 
dy eY - = I ,  dx 
dy = dx eY 

= - . 

The general chain rule formula is 

For example, 

d I du 
- log u = -- .  dx u dx 

d 2x 
- log( x2 + 1) = --; 
dx x2 + 1 d sin x 

- log cosx  = ---; 
dx cos x 

d ex 
- log( l + �) = --. dx I + ex 
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Many times a logarithm formula can be simplified before it is differentiated; for example, d d 
- log[(x + l )(x3 - 3 )] = - [log(x + l )  + log(x3 - 3 )] 
dx dx 

I 3x2 
= 

x + I + x3 - 3 ;  
d I d 

- log 2 = - log(5x + 1 )-2 
dx (5x + 1 )  dx 

d = 
dx 

(-2 ) log(5x + 1 )  

5 = (-2 ) · 5x + 1 ; 

d d 
- log 2x = -x log 2 = log 2. 
dx dx 

43 

We chose e as the primary base for an exponential function because ke = 1 ;  that is, 
because fx ex = e • 1 .  Now let's go back to fx ax for general a. Since log ax = x log a and 
u = elog u for all u , we can write 

ax = eloga' = ex loga . 
From this we get d d 

-ax = ex loga _(x log a )  
dx dx 

= ax log a.  
Hence, the constant k0 = log a. Earlier we computed the approximate value k2 = .693, so 
from fr 2x = k22x and fx 2x = 2x log 2 we conclude that log 2 = .693. 

Functions that involve the variable in both the base and the exponent do not fall under 
either of the rules 

d d 
-xn = nx

n- 1 ; -ax = ax log a . 
dx dx 

To differentiate such a function, we first take its logarithm. For example, let 

Then 
y = (x2 + 2 )3x . 

log y = 3x log(x2 + 2 ), 
1 dy 2 2x 
- - = 3 log(x + 2 )  + 3x • -­
Y dx x2 + 2 

dy = y [3 log(x2 + 2 )  + 2
6x2 

] dx x + 2  

= (x2 
+ 2 )3x [3 log(x2 

+ 2 )  + x:� 2] . 

PROBLEMS 

7.1 Approximate k3 by evaluating (36x - 1 )/ /::,.x for /::,.x = . l ,  .01 , .001 , .0001 . 
7.2 Approximate k, by calculating [(2.7 1 8 )6x - I ] /  1::,.x for 1::,.x = . 1 , .0 1 , .001 , .0001 . 
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Find � . 

7.3 y = e2x 
2 1.4 y = e +x 

1.S y = l /e 2 

1.6 y = (e./x + 1 )2 

7.7 y = Jxei  
7.8 y = 3x 

1.9 y = 2x2 

7.10 y = x2e3x + X COS X 
7.11 y = e COS X + e-x sin x 
7.12 y = e log x 
7.13 y = e2 log( l + x3) 
7.14 y = log 3x 
7.15 y = log(x2 + x) 
7.16 y = log[xe] 
7.17 y = log[(x + l ) (x + 2)) 
7.18 y = log(x2 /Y) 
7.19 y = xx 

Hint: Find fx log y first. 

1.20 y = (2x + lY 
7.21 y = (sin x + cos xY 

Understanding Calculus 

7.22 The number y of bacteria at time t in any given colony is given by y = Aek1 for some 
constants A and k. If y = 1000 at t = 0 and y = 3000 at t = 2, what are A and k? What 
is y when t = 4? 

7.23 Show that if y = Aek1 and y = 2A when t = t0, then y will double in any time interval t0 ; 
that is, for all t ,  

Aek<r+to> I Aekr = 2. 
7.24 If y is the number of bacteria in a culture, and y = 500 at t = 0, so y = 500ek1 (t is hours), 

and y doubles every hour, what is k? 
7.25 If an amount A of money is invested at 6%, compounded annually, then after n years the 

investment is worth A ( l .06t . How long does it take to double your money at 6%? 
7.26 A common rule of thumb says that money doubles at interest rate r% after n years, where 

n = ?f .  For example, at 7% money doubles in IO years. Explain, keeping in mind that 
log 2 == . 70 and for small x ( e.g., .05, .07, etc.), log( l + x) = x .  

7.27 Show that the only functions y such that � = y are the functions y = Ae .  Hint: Assume 
y is such a function; let u = ye-x and show that ;l; = 0. 

7.28 The hyperbolic cosine and hyperbolic sine are defined as follows: 

Show that 

e + e-x . e - e-x 
cosh x = 2 , smh x = 2 

(a) fx cosh x = sinh x and fx sinh x = cosh x ;  
(b) cosh2 x - sinh2 x = l .  

I 7.29 (a) Graph the curve y = e 2X , - 1  ::; x ::;  3 .  
(b) Find the point P = (x , e"x ) on the curve y = e0x such that the tangent line at  P passes 

through the origin. Does your answer look right if a = ½ ?  
(c) Find the point where the line perpendicular to y =  e0x at P intersects the x-axis. 

7.30 (a) Find the point(s) on the graph of y = xe where the tangent line is horizontal. 
(b) Graph the curve for -5 ::; x ::; l .  



I nverse Funct ions 

A function f is said to be one-to-one on an interval I provided f does not take the same value for different values of x in / .  For the continuous functions we consider here, a one-to-one function is either strictly increasing on 1 (f (x2) > f (x1 ) if x2 > x1 ), or strictly decreasing (f(x2) < f (x1 ) if x2 > x1 ). If f is a one-to-one function, then for each function value y there is a unique x such that f(x) = y. This mapping - from y to x - is denoted 1- 1 (read /-inverse), so that x = 1-' (y) and y = f(x) mean the same thing. In the last chapter we saw that log x and ex are inverse functions, so that if f (x) = � ,  1-1 (x) = log x. For any one-to-one function f, f(f- 1 (x)) = x and 1- 1 (/(x)) = x. Now consider the inverses of the power functions xn. If n = I ,  3 ,  5, . . .  , then xn is strictly increasing for all x, and if n = 2, 4, 6, . . .  , then xn is strictly increasing for x :::-: 0. We use x ¾ to denote the inverse of xn, so if f (x) = xn , then 1- 1 (x) = x ¾ ,  and x ¼ is the nth root of x. If n is odd, then x ¾ is defined for all x, but if n is even, x ¼ is defined only for x :::: 0. Thus, x ½ denotes the positive square root of the positive number x. We let y = x¾  and calculate * · Since yn = x, we differentiate and get 
n- l dy 1 ny dx = ' 

dy dx = nyn- l · 
Now write yn- l in terms of x. Since y = x¾ ,  dy I = dx n (x ¾ r-1 

1 1 =
;; x i- ¾  l L t  = - x n n The rule for differentiating x ¾ is the same as that for differentiating xn or x-n : multiply by the exponent, and subtract one from the exponent to get the new exponent. The chain 

4S 
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rule extends the exponent rule to fractional exponents (x ; = (x � r) and negative exponents (x-;  = (x ; ) - 1 ) :  d m m !!!_ 1 

-x ii = -x n  ; 
d m m _ !!!_ 1 -X n = - -X n 

dx n dx n Indeed, the exponent rule holds for any exponent: 
d -xr = rxr-1  

Here are some examples: dx 

d 1 1 _ i  
-X 3 = -X J •  
dx 3 ' 

d 4 4 I 
-x 3  = -x- 3 · 
dx 5 ' 

d 1 7 4 
-x 3 = -x 'i ·  
dx 3 ' d s 5 1 -x- 2 = - -x- 2 ·  

dx 2 ' 
.!!:_ X ../2 = ✓

2

x ../2- I 
• dx Now consider the inverses of the trigonometric functions. The functions sin x and cos x are periodic (sin x = sin(x + 2rr)) and so are not one-to-one. However, the functions are one­to-one on certain intervals. For example, sin x is one-to-one (strictly increasing) on [- 1} ,  I] ,  and cos x is one-to-one (strictly decreasing) on [O, rr] .  We define sin- 1 x and cos- 1 x to be the inverses of the functions on these restricted domains. This is just what we did when we defined x ½  to be the inverse of x2 restricted to [0, oo). So sin- 1 x ,  for - 1  .:::: x .:::: I ,  is the unique y between -1 and I such that sin y = x. Similarly, cos- 1 x is the unique number y between O and rr such that sin y = x .  Now we calculate the derivatives. Let y = sin- 1 x ,  so 

sin y = x ,  dy cos y- = I ,  
dx dy 1 = 
dx cos y ' 

l = cos(sin- 1 x) · A similar process shows that if y = cos- 1 x, then dy d _ 1 l - = - cos x = ----­
dx dx sin(cos- 1 x) 

(8. 1) 

(8.2) 

To simplify the expressions cos(sin- 1 x) and sin(cos- 1 x), we draw the right triangle (Figure 8 . 1 )  in which the angles 0 = sin- 1 x and <p = cos- 1 x are displayed. From the figure we can read the identities cos(sin- 1 x) = cos 0 = .Jf=xI, sin(cos- 1 x) = sin <p = .Jf=xI. (8.3) 
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X 

Figure 8.1 

Now rewriting (8 . 1 ) and (8.2) using (8.3), we have 
d . I I - sm- x = --=-= , dx � 
d - I I - COS X = ----. dx � 

Here are some chain rule examples with sin- 1 x and cos- 1 x: 
d 3 - sin- 1 (3x) = --;::::=== ; dx JI - (3x)2 

d - I 2 l - COS X = --,.....,..,,,,- · (2x); dx Ji - x4 

d . I X 
� - sm- e = --- ; dx JJ - e2x 

d l l - cos- 1 (log x) = - --;::==== dx ✓I - (log x)2 x 
Notice that all these functions have limited domains: 

sin- 1 3x is defined if - I :::: 3x :::: I ; 
cos- 1 x2 is defined if - J :::: x :::: l ; 
sin- 1 ex is defined if - oo < x :::: 0. 
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The function tan x is strictly increasing for - 1 < x < I and takes on all real values on this interval. Therefore, tan- 1 x is defined for all x and takes values in ( -I ,  I) .  To find 
fx tan- 1 x we let y = tan- 1 x, so 

tan y = x , 
2 dy sec y dx = l , 

dy - = cos2 y . dx 
From Figure 8.2 we see that cos y = ✓ 1 

2 , so 
l +x 

Figure 8.2 y = tan-1 x 

d l - tan- I X = -- . dx l + x2 (8.4) 
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A variant of (8.4) that is important for our later work in integration is 

Find � : 
2 8.1 y = I + x ' 

3 I 8.2 y = x- � + 5x � 
7 7 8.3 y = 3x 3 - 2.x- 3  8.4 y = x./i - 3x2.fi 8.S y = (x2 
+ o- i  8.6 y = sin(x i + I )  8.7 y = ( I  + x2) ½  8.8 y = (cos2 x + I ) ½  

I 8.9 y = tan(X l + I )  
I 8.10 y = (sec x + 1 )- ,  

d I - I X I 
- - tan - = --- . 
dx a a a2 + x2 

PROBLEMS 

Find the exact values; that is, sin- 1 f = i (not .785). 
8.11 sin- 1 � 

- I ,./j, 8.12 cos 2 
-I I 8.13 tan .J3 
- I .J3 8.14 cos 2 

8.1S sin- 1 (-'7) 
8.16 cos- 1 (-D 
8.17 cos- 1 (- 1)  8.18 sin- 1 ( I )  8.19 sin- 1 (sin rr)  8.20 cos- 1 (cos (- i)) 

Find � -8.21 y = sin- 1 x2 8.22 y = sin- 1 3x 8.23 y = sin- 1 (2x - I )  8.24 y = cos- 1 ./i 8.25 y = cos- 1 (e' ) 8.26 y = cos- 1 (x + I )  8.27 y = tan- 1 3x 8.28 y = tan-1 (X + 2) 8.29 y = tan- 1 (log x) 

(8.5) 
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8.30 
_ 1 ( 

sin x 
) y = tan --cos x 

8.31 (a) Verify that -1; tan- 1 t = - 1;  tan- 1 x 
(b) Draw a right triangle which shows that tan- 1 x + tan- 1 t = f · 

8 32 h .  d '" d ) I m "' I • Use the c am rule to show that iix (x n )  = iix (x"' ;; = -;;x " - . 
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8.33 Show that the identity cos(sin- 1 x) = -Jf="x"2follows from the identity cos u = J1 - sin2 u . 
8.34 (a) Verify: -1; ¼ tan- 1 C!b ) = 

02+(!+b)2 · 
(b) Find y if � = 25+<!-2l2 . 

8.35 Use Figures 8. 1  and 8.2 to write the following as algebraic functions of x :  
(a) tan(sin- 1 x )  
(b) cos(tan- 1 x )  
(c) sec(sin- 1 x )  
(d) tan(sec- 1 J1 + x2 ) 





Derivatives and G raphs 

In this section we see how information about the graph of a function can be obtained from its 
derivative f', and still more information from the derivative of the derivative, f". 

If /' ( x0) > 0, then since this positive slope is the limit of the slopes of segments from 
(xo, f ( xo)) to nearby points (x, /( x)), all such segments must have positive slope. Hence, 
f ( x) > /(xo) for all x just to the right of xo, and f (x) < f(xo) for all x just to the left of xo. 

We say that f has a local maximum at x0, provided f ( xo) :::: f ( x) for all x sufficiently 
close to x0, and a local minimum at xo, provided f ( x0) � f ( x) for all x sufficiently close to 
x0• From the argument above it is clear that f can have neither a local maximum nor a local 
minimum at x0 if /' ( x0) > 0 or if /' (x0) < 0. Therefore, if f ( x0) is either a local maximum 
or a local minimum, then J'(x0) = 0. The condition /'( x0) = 0 is necessary for /(x0) to be 
a local maximum or minimum, but not a sufficient condition; J' can be zero at points where f does not have a maximum or minimum. ( See Figure 9. 1 .) If we are concerned only about 
the values of f ( x) for x in some closed interval [a, b], then f can have a local maximum or 
minimum at a or b without f' being zero. Indeed, if, for example, /'( a) > 0, then /( a) is 
necessarily a local minimum on [a, b] . 

If f' (x) > 0 for all x in some interval, then f ( x) is strictly increasing throughout that 
interval. Similarly, f ( x) is strictly decreasing on any interval on which f' ( x) < 0. These 
facts are consequences of the following important result: 

Mean Value Theorem: If f'(x) exists for a � x � b, then there is some c E (a , b) 
such that 

/( b) - f(a) = J' (c) (b - a). 

The Mean Value Theorem is simply a precise statement of the obvious fact ( Figure 9.2) 
chat a graph cannot get smoothly ( i.e., no comers) from (a, f ( a)) to (b, f(b)) without pointing 
in the right direction for at least one point c between a and b. As another interpretation of 
the Mean Value Theorem, suppose f ( t) is the distance your car goes from time t = a to time 
t = b. The average speed over the interval a � t � b is (/(b) - /(a))/(b - a). The Mean 
Value Theorem ( and common sense) says that there must be a least one point t = c at which 
the instantaneous speed /'( c) equals the average speed. 
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/'(xo) = /'(x 1 ) = /'(x2) = 0 

/
'
(c) 

= f(b) -f(a) 
b - a  

(a,f(a)) 

b - a 

a C 

Figure 9.1 

b Figure 9.2 

One obvious but very important consequence of the Mean Value Theorem is the fact that 
if /'( x) = 0 on some interval, then /( x) is constant on that interval. That is, if x1 and x2 are 
any two points, then f (x1 ) = /(x2) because 

/( x2) - /( x1 ) = J'( c) (x2 - x, ) = 0 · (x1 - x2) = 0. 

A corollary of this fact that we will use in integration theory is the following: If two functions 
have the same derivative, then they differ by a constant. That is, if f' (x) = g' (x ) , and 
h(x) = f(x) - g(x), then h'(x) = 0 so h(x) = f (x) - g(x) is a constant. 

If /' (x) > 0 for all x in some interval I ,  then for any interval [x1 , x2] within I we can 
apply the Mean Value Theorem to get 

/(x2) - /(x1 ) = /'( c) (x2 - x1 ) .  
Since /'( c) > 0, /(x2) > /(x1 ) and f is increasing in /. 

If f'(x) > 0 on an interval (x1 , x0) , so /(x) is increasing up to /(x0) , and /'(x) < 0 
on an interval (x0 , x2) ,  so f(x) decreases away from xo, then /(xo) is a local maximum. 
Similarly, if f' ( x) < 0 on (x1 , xo) and /' ( x) > 0 on (xo , x2) ,  then f (xo) is a local minimum. 

If /' (xo) = 0, the value of the second derivative at x0 furnishes an easy way to check 
the sign of f' (x) on either side of xo. If /' (x0) = 0 and f" (x0) > 0, then f' ( x) > 0 on some 
interval to the right of x0, and /' ( x) < 0 on some interval to the left of x0• It follows that f ( x0) 
is a local minimum if f'(x0) = 0, J"(x0) > 0. Similarly, if /'( x0) = 0 and f"(x0) < 0, then 
f (x0) is a local maximum. 

The common functions we deal with in calculus-powers, roots, exponentials, loga­
rithms, trigonometric functions, and inverse trigonometric functions-all have derivatives of 
all orders on any open interval on which the function is defined. The notation for these suc­
cessive derivatives is as follows: if y = f (x) ,  then 

dy I d2y II d3y Ill d4y /(4) 

dx 
= f (x), dx2 = f (x), dx3 = f (x), dx4 = (x), . . . .  

We write :
x 

to indicate the derivative of whatever follows. For example, 

1 f(x) = J'(x), :
x 

( 3x2 + sin x) = 6x + cos x. 
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The notation � then indicates the differentiation operator fx applied n times, as suggested by the notation <fx t y = !:! . The third and higher order derivatives become important later when we discuss power series, but for now we will be concerned only with the first and second derivatives. 
EXAMPLE 9.1 Find the local maxima and minima of f (x) = !x3 - ½x2 - !x + 2. 
Solution We know that a local maximum or minimum can only occur where f'(x) = 0, so we first find all these so-called critical points where f'(x) = 0. 

f'(x) = 0 if and only if 

I 3 I 2 3 f (X) = 6 X - 2 X - 2 X + 2, 

I I 2 3 f (X) = 2 X - X - 2 ; 

l 2 3 
-x - x - - = 0  
2 2 ' 

x2 - 2x - 3  = 0, (x - 3)(x + I ) =  0, 
x = 3 or x = - l . The critical points, where there might be a local maximum or local minimum, are x = - l and x = 3. We check the second derivative at these points. f"(x) = x - l ,  

/"(- 1 )  = - 2  < 0 ;  /"(3) = 2 > 0. 

Since /'(- 1 )  = 0, f"(- 1 )  < 0, f has a local maximum at (- 1 ,  .!j) .  Since /'(3) = 0 and /"(3) > 0, 
f has a local minimum at (3. - �) .  The graph is shown in Figure 9.3. 

Figure 9.3 

f(x) = lx3 - lx2 - lx + 2  
6 2 2 

If f" (x) > 0 on an interval I, then f' (x) is increasing on I and the graph of such a function is called concave up. If f" (x) < 0 on I ,  then /' (x) is decreasing on I, and the graph is concave down. For the function I 3 l 2 3 
f (x) = 6x - 2x - 2x + 2 

of the preceding example, we saw that f" (x) = x - 1 .  Therefore, f" (x) > 0 if x > l , so the graph is concave up on ( 1 ,  oo), and f"(x) < 0 if x < 1 ,  so the graph is concave down on (-oo, 1 ) .  A point like ( 1 ,  ¾ >  where the concavity changes is called a point of inflexion. The second derivative is necessarily zero at a point of inflexion, and a cubic that has a local 
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maximum at x 1 and local minimum at x2 will always have a point of inflexion midway between them at (x1 + x2)/2 (see Problem 9. 16). The graph of any equation in x and y is some sort of curve in the plane, but this curve need not be the graph of a function. For example, the equation x2 + y2 = 1 does not define y as a function of x, since there are two values of y for each x in (- 1 ,  1 ) . However, if we restrict our attention to part of the graph-say the top half of x2 + y2 = 1-we do get the graph of a function (in this case y = J1 - x2) . It is easy to find � for such functions y whose graphs form part of the graf,h of an equation. We simply differentiate both sides of the equation to get an equation for * · If you differentiate both sides of x2 + y2 = 1 ,  you get 

dy 2x + 2y - = 0, dx 
dy X - = --dx y Notice that the value of � depends on both y and x as it must, since the slope on the top half of the circle (y = .Jf=xz) is the negative of the slope on the bottom half (y = -.Jf=xf). In general, it may not be possible to solve for y in terms of x. Nevertheless, the procedure above, called implicit differentiation, will give a value for � at any point of the curve. 

EXAMPLE 9.2 Find � and � at (2, 1) for the function y which is defined implicitly by the equation 2y3 +6y = 3x2 -4. 
Solution Notice that it would not be easy to solve this cubic for y in terms of x. Nevertheless, the curve does go through (2, l ), and we can find � and � there: 

2 dy dy 6y dx + 6 dx = 6x , 
dy 
dx (6y2 + 6) = 6x , 

dy X 
dx = l + y2 • 

At (2, l ) ,  � = I . Now differentiate x/(1  + y2) to find � -
d2y ( 1  + y2) - x (2y �) = -----,--� dx2 ( 1  + y2)2 Substituting 2 for x, 1 for y, and 1 for � gives the value of � at (2, l ) :  

Find f'(x) and /"(x) . 

d2y ( l  + l) - 2(2 · l · 1 )  l 
dx2 = ( l + 1 )2 = - 2 . 

PROBLEMS 

9.1 f(x) = x3 - 5x2 + 3x - l 9.2 f(x) = x7 - 2x3 + 3x-4 

I I 9.3 f(x) = x 2  - x- J l 9.4 f (x) = -1 -2 + x  

(9. l )  
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Find '!1. and d
2

y .  dx dx'f 

2 9.5 y = ex 
9.6 y = sin 2x - cos 3x 
9.1 y = sin- 1 x 

_ , x 
9.8 y = tan 2 

Find the local maxima and minima and graph the curve. 

9.9 y = x3 - 3x 
9.10 y = x3 + 3x2 + 4 

l 
9.11  y = 4x + -

9.12 y = x3 ( l  - x) .  Hint: If � = 0 at a critical point, consider * on either side. 
9.13 y = x4 + 4x + 3 
9.14 y = x3 - 6x2 + 9x - 2 
9.15 Show that the local maximum of y = x + � is less than the local minimum. 
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9.16 If f(x) is a cubic polynomial that has a local maximum at x = a and a local minimum 
at x = b, then J has an inflexion point at x = aib , which is halfway from a to b. 
Hint: If f(x) is cubic, then J'(x) is a quadratic. Moreover, f'(a) = f'(b) = 0, so 
J'(x) = k(x - a)(x - b). 

9.17 Find the dimensions of the rectangle of largest area that has a perimeter of 40 in. 
9.18 A pan is to be made from a 12" square piece of tin by cutting squares out of the comers and 

folding up the sides. What is the maximum volume of such a pan? 
9.19 What is the ratio of height (h) to radius (r) if a can of volume V is to have minimum total 

area? (A = 2:rrr2 + 2:rrrh; V = :rrr2h. V is given, so h = V /:rrr2 .) 

9.20 (i) What is the largest product of two positive integers whose sum is 10; that is, what is 
the largest of the products 1 • 9, 2 • 8, 3 • 7, 4 • 6, 5 • 5? 

(ii) What is the largest product of two positive numbers whose sum is a given number B? 
(N.B. numbers, not integers.) 

9.21 Find the radius x and height h of the largest cylinder which can be inscribed in a cone of 
radius R and height H. 

9.22 Find the point (x, y) on the line y = 3 - ¾x which is  closest to (0, 1) .  Hint: Let s be the 
square of the distance and find (x , y) on the line so s is minimum. 

9.23 Find the point (x , y) on the curve y2 = 2(x - I) which is closest to the origin. 
9.24 Find the shortest ladder that will fit over a fence h feet high to a wall b feet behind the 

fence. Hint: Let 0 be the angle the ladder makes with the ground. Show that the length is 
0 h b d dl O h ll h l 
<- = sine + cose an Te = w en tan u = � -

9.25 The cost per hour of running a cargo boat is proportional to the cube of the speed through 
the water. Find the speed through the water, v, which minimizes the cost of a given trip 
upriver against a a 5 mph current. Hint: The speed over the ground is v - 5, so the time of 
the trip is proportional to c v� Sl • 

9.26 A piece of string 100 in long is cut into two pieces. One piece, of length x, is formed into a 
circle, and the rest into a square. Let A (x) be the sum of the two areas. Find x so that A (x) 
is maximum and find x so that A(x) is minimum. Hint: There is one x0 between O and 100 
such that A'(x0) = 0, and you can easily tell whether A(x0) is a maximum or minimum. 
To find the other extreme value, consider how A (x)  behaves on [0, x0] and on [x0 , 100] . 
Remember that x = 0 (all circle) and x = 100 (all square) are possibilities. 





Fol lowing the Tangent Line 

The tangent line to y = f (x) at x0 has the equation 

y = f(xo) + /'(xo)(x - xo) .  ( 10. 1 )  

Consequently, if you know f (xo) and /' (xo), you can calculate exactly the value of y on the 
tangent line for any given x. If x is close to x0, then the graph off will be close to the tangent 
line, and we can use the value of y from ( IO. I )  to approximate the value of /(x) .  In this 
section, we examine several ways this approximation can be used. 

Suppose we want a rough approximation for J4.o4 or Jf.§9 and the calculator is not 
at hand. If f(x) = Jx, then f' (x) = 1 /2,Jx and /' (4) = ¼ - We know that J4 = 2 and the 
slope of the tangent at x = 4 is ¼ . Therefore, Jx changes from J4 by about ¼ the change in 
x from 4. Thus, 

✓4M � 2 + 1 (.04) = 2.01 and 

I 
✓

399 � 2 + 4 (-.01)  = 2 - .003 = 1 .997 . 

The notation f' (x) dx is frequently used for the change on the tangent line corresponding 
to a change dx from x, and dy is then defined by dy = f'(x) dx to correspond to the � = f'(x) 
notation. In the preceding example we would have /(x) = Jx, x = 4, dx = .04, giving l dy = r:. (.04) = .01 . 

2v 4 
The expression f' (x) dx is called the differential of f at x .  

As another example of the use of the differential, suppose that your business i s  stamping 
out circular pieces of sheet metal. The buyer cares not only about the accuracy in the radius, 
but also about the accuracy in the weight of each piece. You therefore need to know how the 
relative error in weight, d:' ,  depends on the relative error, !ff,  in the radius. If p is the density 
(ounces per square inch, say), then W = prrr2 and dW = 2prrrdr ; hence, 

dW 2prrrdr 2dr 
= --- = -w prrr2 r 
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The relative error in weight is twice the relative error in the radius. The number of years it takes to double your money at a compound interest rate r is n = log 2/ log( l +r) .  If f(x) = log(l +x), then /'(x) = l /( l +x) .  Hence, /(0) = log I =  0 and f' (0) = I .  The change in log(l  + x) from x = 0 is approximately I • x .  Thus, log(l + r) = r. For example, at 5% (r = .05) and using .70 for a crude approximation to log 2, we get .70 70 . n = - = - = 14 years . . 05 5 This is the businessman's rule of thumb: The number of years to double your money at interest 
p% is 70 / p. The formula for tripling your money is n = log 3 / log( I + r) = 1 . 10 / r. For example, at 10%(r = . 10) , n = 1 . 10/. 10 = 1 1  years. Tangential approximation can also be used to evaluate certain nonobvious limits of the form 0/0 using the following result: 

l 'Hospital 's Rule: lf lim f(x) = f(a) = 0 and lim g(x) = g(a) = 0, and x➔a x➔a 
. f (x) . J'(x) J' (a) g' (a) :/= 0, then lim -) = hm --) = -(

-
)

. 
x➔a g(x x➔a g' (x g' a To verify this, notice that if we define e 1 (x) by 

f(x) - f(a) - J'(a) = £1 (x) ,  x - a then e1 (x) � 0 as x � a since f' (a) is the limit of the difference quotient (/ (x) -f(a))/(x - a). Therefore, since f (a) = 0, 
J(x) = J'(a) (x - a) + £1 (x) (x - a) where e1 (x) � 0 as x � a.  Similarly, 
g(x) = g'(a) (x - a) + e2 (x) (x - a) where e2 (x) � 0 as x  � a. Therefore, for x =/. a, 
J(x) f' (a) (x - a) + e1 (x) (x - a) g(x) = g' (a) (x - a) + e2 (x) (x - a) /' (a) + £1 (x) J' (a) = ----- � --. g' (a) + e2 (x) g' (a) To apply !'Hospital's Rule, first check that f (a) = g(a) = 0, and then write 

For example, 
lim /(x) = lim f' (x) . 
x➔a g(x) x➔a g' (x) 

ex - I ex lim -- = lim - = I ;  x➔O X x➔O I 
I - cos x sin x 

0 lim --- = lim -- = x➔O X x➔O I If limx➔a f'(x)/g'(x) also has the form 8 ,  then apply I 'Hospital's Rule again: 
l. 1 - cos x 1. sin x Im --- = Im --
x➔O x2 x➔O 2x 

= lim cos x = ! .  x➔O 2 2 
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We can also use tangential approximation to find numerical estimates for the roots of equations. In geometric terms, to solve the equation f (x) = 0 means to find the numbers r where the curve y = f(x) crosses the x-axis. If x1 is a first approximation to a root r, then we get a better approximation, x2 , by following the tangent line back to the x-axis as shown in Figure 10. 1 .  
Newton's method 

Figure 10.1 

The line from (x2 , 0) to (x 1 , /(x 1 ) )  has slope /'(x 1 ) ,  so 

( 10.2) 

The number x2 determined by ( I 0.2) will generally be a better approximation to the root r than x 1 • We can then use the same formula to get a better approximation, x3 , from x2 : 

This technique is called Newton's method. 
EXAMPLE 1 0.1 Use Newton's method to approximate ./3. 

Solution We let /(x) = x2 - 3 and search for a root of the equation f(x) = 0. Since /( I )  < 0 and /(2) > 0, there will be a root between I and 2, and we start with x1 = 1 .5 . Since f'(x) = 2x, we have 
5 ( 1 .5)2 - 3 X2 = I .  - 2(1 .5) (2.25 - 3) = 1 .5 - ---3.0 .75 = l .5 + 3 = 1 .75. 
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Now calculate x3 : 

( 1 .75)2 - 3 
X3 = 1 .75 - ----

2(1 .75) 

.0625 = 1 .75 - --
3.5 

= 1 .732 14. 

The five decimal place approximation to ./3 is 

✓
3 = 1 .73205 , 

Understanding Calculus 

so x3 is off by only .00009, close enough for government work. Notice that since x1 and x2 are 
only rough approximations, it is pointless to do the arithmetic with many significant figures. 
Use more significant figures for x3 , x4, and so on, and you will be able to see the accuracy 
improving as the first few decimals remain the same in subsequent approximations. 

PROBLEMS 

Use differentials to approximate the following. 

10.1 sin 29° 
( i.e. , sin ( i - 1 ;0 )) 

10.2 J4fil 
10.3 eo.2 

10.4 tan- 1 1 .04 
10.5 log 1 .002 
10.6 2.0 1 3 

10.7 30 ! 
10.8 Estimate /(3 . 1 ) ,  given that /(3) = 25 and f'(x) = .Jf+x. 
10.9 Find the relative error in the weight of a ball bearing ( W = � pn r3 ) in terms of the relative 

error in the radius measurement. 

Find the following limits. 
e-' - l 

10.10 lim --_, ..... o 3x 
e" - l - x 

10.11 lim 2 x-+0 X 
log x 

10.12 lim --
_, ..... 1 2x - 2 

10.13 lim 
log( l + x) 

.,-+0 X 
cos x 

10.14 !ill! � .,-+ 7 X - 4 
l - cos x 

10.15 lim x-+0 X Slll X 2x - 4  
10.16 lim r::,-;; ., .... 2 ,vx2 - 4  

10.17 lim 
log( l  + x) 

x➔O ✓X 
Use Newton's method as indicated. 
10.18 Approximate ,./s. Use f (x) = x2 - 5, with x 1 = 2.5 . Find x3 •  

10.19 Approximate J3. Use x 1 = l .5 and find x3 •  



Chapter 10 ■ Following the Tangent Line 61 
10.20 Approximate the root of x3 + x - 1 = 0 which lies between 0 and I .  Use x 1 = .5 and continue until you are sure of three decimal places. 10.21 (i) Show that xe" - 1  = 0 has exactly one root. Hint: If /(x) = xe" - l ,  then /(x) < 0 if x < 0, and f' (x) > 0 if x > 0. (ii) Approximate the root of xe" - 1 = 0 to three decimal places. 





The I ndefi n ite I ntegral 

In many applications, the information about the dependent variable is given in terms of its 
derivative or derivatives. For example, if an object falls to the earth under the influence of 
gravity, Newton's law says that the acceleration is a constant. Ifs is the distance the object 
falls in time t, and v and a are its velocity and acceleration of time t, then 

ds dv d2s V = - , a = - = -. (11 . l ) 
dt dt dt2 

Hence, Newton's law in mathematical terms is 
d2s 
dt2 

= g, (11.2 ) 

where g is a constant that depends on the units used. ( If s is measured in feet and t in seconds, 
then g is approximately 32 ft/sec2 .) 

If we are given an expression like ( 11.2) which describes the derivatives of s, then 
naturally we want to be able to convert it into an explicit formula for s. This process is called 
( indefinite) integration. We start with 

d2s dv 
dt2 = 

dt 
= g. 

Of course, fi (gt) = g, and we know that any other function, v, which has this same derivative, 
g, must differ from gt by a constant. Therefore, 

V = gt + C 1  

for some constant c 1 • Now use ¥i = v,  so 

ds 
dt 

= gt + c1 . 

Clearly, ½ gt2 + c 1 t has derivative gt + c 1 , so 
I 

S = 2, gt2 + C1 t + C2 
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for some constant c2 • The constant c2 is the value of s when t = 0 (the initial value of s) ,  and the constant c1 is the value of v = * when t = 0 (the initial velocity). Now we will systematize this process of going from the derivative to the function. If F'(x) = f(x) ,  then F(x) is called an antiderivative or indefinite integral of f(x),  and we indicate this with the notation 
F(x) = f f(x) dx + c, 

where c is understood to be an arbitrary constant. The rules for integration are equivalent to the rules for differentiation, since 
f f(x) dx = F(x) means !!_F(x) = f(x) . dx Here are some of the differentiation formulas we have, with the corresponding integration formulas. In writing integration formulas, we will suppress the arbitrary additive constant and understand that a formula like J x dx = ½x2 means that ½x2 is one of the infinitely many integrals of x, the rest all having the form ½x2 + c. 

f xn dx = _l_xn+I 
n + l 

!!_ sin x = cos x ; f cos x dx = sin x ;  dx 
d 

. f . d - cos x = - sm x ; sm x x = - cos x ;  dx 
!!_ex = ex ; J ex dx = ex ; dx 

!!.___ log x = ! ;  f -x
1 d x  = log x ;  dx x 

d . 1 / dx 
dx sm- 1 x = .Jf=x2 ; .Jf=x2 = sin- 1 x ; 
!!.___ tan- 1 x = -1-; j _!!!___ = tan- 1 x .  d x  1 + x2 I +  x2 

(n f= - 1) ;  

Notice that integration i s  a linear operation because differentiation i s  linear. That is, 
f (f(x) + g(x)) dx = f f(x) dx + f g(x) dx,  

For example, 

EXAMPLE 1 1 .1 

f af (x) dx = a f f  (x) dx.  

f (3 cos x + 5x) dx = 3 f cos x dx + 5 f x dx 
. 5 2 = 3 sm x  + 2x + c. 

Suppose that at every point (x , y) of a curve the slope of the curve is ex - x, and the curve passes through 
(0, 2). Find y in terms of x .  
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Solution We are given the differential equation 

dy X - = e  - x , dx with initial condition y(O) = 2. Hence 

Since y (O) = 2, we must have 

Finally, 

y = /<ex - x) dx 
I = ex - -x2 + c. 2 

o l 2 = e - - · O + c, 2 
C = J. 

l y = ex - -xi + I . 2 
The integration process frequently involves some juggling of constants. Consider 

f sin 2xdx. 

We notice that 
d - (- cos 2x) = 2 sm 2x,  

dx 
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so - cos 2x is almost the answer, with an extra factor of 2 resulting from the chain rule. We write 
f sin 2xdx = l f (sin 2x) (2) dx , 

and notice that the last integral has the form 
� f sin u du= - �  cos u 2 2 ' 

where u = 2x .  Thus, with u = 2x 

f sin 2xdx = � f (sin 2x)2 dx 
1 f = 2 sm udu 

1 = - - cos u 2 
1 = -2 cos 2x . 

This technique is called making a u-substitution. Here are some more examples: 
(i) / e3xdx . 

Make the substitution u = 3x, du =_3 dx, dx = ½ du, so 
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(ii) / xcos(4x2) dx. 

Let u = 4x2 , du = Sx dx , x dx = ½ du. Then 

(iii) / � x dx. 

f xcos x2 dx = f cos u (i) du 

= l f cos udu 

l = 8 sm u 
l . 2 = 8 sm 4x . 

Understanding Calculus 

In all these examples, the key is to recognize the chain rule in reverse. Here that means noticing that except for a constant, x is the derivative of l - x2 • Hence, we let u = l - x2 , du = -2xdx, dx = - ½ du, so 

(iv) / 4 :\2 dx. 

J �xdx = J Ju(-�) du 

= - � J u½ du 

l 2 1 = - - (l - x ) 2 .  3 

If u = 4 + x2 , then du = 2x dx, and 3x dx = ½ du. Therefore, 
! -

2:_
dx=

f 
½du 

4 + x2 u 

= � 1
du 

2 u 
3 = 2 log u 
3 = 2 log(4 + x2) . 

In the last example we used the formula J �; = log u, which is not quite complete. 
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Recall that log x is defined only for x > 0, and consequently fx log x = ¾ only makes sense for x > 0. However, log Ix I makes sense for all x 'I 0, and it is easy to see (Problem 1 1 .34) that d l dx log lx l = � ( l  l .3) 
for all x 'I 0. Consequently, the proper integration version of ( l  l .3) is 

f d: = log lx l -
For example, the curve y such that � = ¾ and y (-e) = 3 is determined by: 

y = f � dx = log lx l + c. 
Since y(-e) = 3, 3 = log I - e I + c = log e + c 

= l + c, so c = 2, and y = log Ix I + 2. 

Find the indefinite integrals. 
11.1 f x3 dx 
11.2 j x-4 dx 
11.3 f x � dx 
11.4 f J-; dx 
11.5 f 5x- i  dx 
11.6 f ?x ¾ dx 
11.7 / (2,Jx + 3x3) dx 
11.8 I x2 

: 
5x4 dx 

11.9 f sin 3x dx 
11.10 / cos 5x dx 
11.11 / (sin �x - 3 cos 2x) dx 
11.12 / x2 cos x3 dx 
11.13 / sin ( l  + x) dx 
11.14 / x cos( l + x2) dx 
11.15 / J4 + x3x2 dx 

PROBLEMS 
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11.16 / ( I  + x2) 10x dx 

11.17 / (3x + 5e4x ) dx 

11.18 / ( I  + ex }2 dx Hint: Square the binomial. 
1 1.19 / xex2 dx 

11.20 / ex cos ex dx 

11.21 / x : 3 
dx 

11.22 f 
3 �:3 dx 

11.23 / 2x + 1 
dx 

x2 + x  + 5 
11.24 / dx Jl - 4x2 
11.25 I dx = I dx 

J4 - x2 2J1 - (02 11.26 / � 
1 + 9x2 

11 27 1 � - ! 
dx 

• 
9 + x2 - 9 (1 + (n

2

) 11.28 / _.!!!___  
x + 5 Find the function y that satisfies the given conditions. 

11.29 dy = 3x2 + x - 1, y( l )  = 2 
dx 
dy 1 11.30 - = ex + -- , y(O) = 2 
dx l + x  
dy 1 11.31 
dx 

= 
1 + x2 , y( l )  = 0 

dy l 11.32 -
d 

= ,,--,, y(O) = 5 x v l - x2 

Understanding Calculus 

1 1.33 Suppose a car's locked brakes provide a constant negative acceleration (¥, = -k) which will stop the car going 60 mph (88 ft/sec) in 4 seconds. What is k? 11.34 Show that fx log lx l = !- Hint: If x > 0, there is nothing to show, so assume x < 0 and log lx l = log(-x) . 



The Defin ite I ntegral 

The definite integral we consider in this section has many interpretations and many applications. We start with the simple geometric idea of the area under a curve. Let f (x) be a positive function defined on some interval [a ,  b] . We want to find the area A between the x-axis and the curve 
y = f (x) for a � x � b. To approximate the area A, slice up the region under the curve into narrow near-rectangles whose sides are the lines x = x; , for points x0 , x 1 , x2 , . . .  , Xn between 
a and b (Figure 12. 1 ). The area of the slice between x = x; _ 1 and x = x; is approximately 
f(c; ) (x; - xi- I ) for any point c; in [x;_ 1 , x; ] ,  since the values of f(x) will not vary much in a small interval [x;- 1 , x; ] .  The sum of the areas of the small slices is the following Riemann sum for f: 

n 

L f (c; ) (x; - X;- 1 ) .  ( 12. l )  
i= l  For a continuous function, these sums will approach a limit as max(x; - x;- 1 )  --+- 0, and this limit is the definite integral of f over [a , b], denoted J: f(x) dx. This integral is what we define to be the area under the positive function f. Now let F(x) be any indefinite integral of f(x) ;  that is, F'(x) = f(x) .  Apply the Mean Value Theorem to F(x) over each subinterval [x;- i , x; ] ,  and for each i choose c; E [x;_ 1 , x; ] such that 

F(x; ) - F(x;_ 1 ) = F'(c; ) (x; - x;_ i ) 
= f(c; ) (X; - X;- J ) .  ( 1 2.2) 

Notice that if we add all the terms on the left of ( 12.2), the intermediate terms all cancel, so 
n 

L(F(x; ) - F(x;- 1 )) = F(xn ) - F(xo) 
i = I  

( 1 2.3) 
= F(b) - F(a) .  Hence, from ( 12.2) and ( 12.3) we have 

n 

F(b) - F(a) = L f (c; ) (x; - x;- 1 ) ,  ( 1 2.4) 
i=l  

69 
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Area = /(c;)(x; - x;- 1 )  

Figure 12.1 
where F(x) is any indefinite integral of f (x), and the c; are appropriately chosen. Since the Riemann sums on the right of ( 1 2.4) converge to the definite integral as max(x; - x;_ 1 ) � 0, i 

F(b) - F(a) = 1b f (x) dx 
for any F such that F'(x) = f(x). We use the convenient notation 

F(x) ]! = F(b) - F(a), so 
lb b a f(x) dx = F(x)Ja = F(b) - F(a) 

( 1 2.5) 
( 12.6) 

for any antiderivative F (x). The variable x on the left of ( 12.6) is a dummy variable that could be replaced by any other variable without changing the meaning. Thus 

EXAMPLE 1 2.1 

lb f (x) dx = lb f (t) dt = 1b f (y) dy = · · · . ( 12.7) 
Find the area bounded by the coordinate axes, the curve y = ½ex , and the line x = 2. 
Solution The first step in any area problem (and this is important) is to graph the curves (Figure 12.2). The area is 12 !ex dx = !ex]

2 

= ! [e2 - l ] ,;,, 3. 19. 
0 2 2 0 2 

4 

3 

2 

2 

Element 
of area = f(x) dx 

Figure 12.2 
The notation J: f (x) dx is meant to suggest the limit of sums of terms of the form f (x) dx. For area problems we regard f (x) and dx as the height and width of a typical 
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small rectangular slice of the region, and this provides a good mnemonic device for setting up area integrals . For example, let us find the area between the parabolas y = x2 - 2 and 
y = 4x - x2 - 2. The first step (and this is still important) is to draw the figure. To graph the second parabola we complete the square: 

4x - x2 - 2 = -(x2 - 4x + 4) - 2 + 4 
= 2 - (x - 2)2 • 

The parabola has the line x = 2 as its axis, and its vertex is (2,2) (Figure 1 2.3) . 

Figure 12.3 

A typical slice of the region ( and we get this information from the figure) is a "rectangle" whose height is the difference of the y-values on the two curves; namely, 
(4x - x2 - 2) - (x2 - 2) = 4x - 2x2 • ( 1 2.8) 

The x-range is from x = 0 to x = 2, which we see from the graphs. If the graphs were not quite so nice, then we would have to solve the two equations simultaneously to find the intersections of the curves. The area is, from ( 12.8), 
A = fo2 

(4x - 2x2) dx 

= 2x2 - -x3 2 ] 2 

3 0 
16 8 = S - 3 = 3 · 

The same slicing technique will work for curves given in the form x = f (y) . For example, the area bounded by the y-axis and the parabola 
x = 2 + y - l = ! - (y - �) 2 

(Figure 12.4) is given by 
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- I  -I 

x = 2 + y - y2 

= .2 - (v - l)2 
4 • 2 

3 

Figure 12.4 
In our definition of J: f (x) dx, we assumed that a < b. It is clear from the definition that if a < b < c, then 

1b f(x) dx + l e f(x) dx = 1 c f(x) dx. 
It is convenient to make the following additional agreements: if a < b, we define 

la f(x) dx = - lb f(x) dx, 
and for any a we define 

1a f(x) dx = 0. 

( 12.9) 

With these conventions, the identity ( 1 2.9) holds for any three numbers a,  b, c; for example, 
i3 f(x) dx + 16 f(x) dx = 16 f(x) dx. 

Evaluate the definite integrals. 
12.1 12 (x2 - 2x + 7) dx 

12.2 J_ '. (3x2 + x5 ) dx 

12.3 14 (2.Ji + 5x) dx 
12.4 /_�2 (x i + D dx 

12.5 17 J2 + 2y dy 
12.6 1" cos Gy) dy 
12.7 [ x� dx 
12.8 1 7 sin 2x dx 
12.9 1 ' xe-'2 dx 

PROBLEMS 
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12.10 { I � Jo 1 + x 1 ½ dx 12.11 .Jf"=x2 o 1 - x2 1 1 x dx 12.12 --

2 0 1 + x Graph the region and find the area bounded by the following curves. 
12.13 The x-axis and the curve y = 9 - x2 • 12.14 The x-axis and the one arch of the curve y = sin x (e.g., 0 ::: x ::: ,r). 12.15 The curves y = 4 - x2 and y = x + 2. 12.16 The curves y = 1 - x2 and y = x2 - 1 . 12.17 The y-axis and the curve x = 2y - y2 • 12.18 The y-axis, the curve x = y3 , and the line y = 1 .  12.19 The curves y = sin x and y = ¾x for O :::  x ::: f .  12.20 The coordinate axes, the curve y = 2x2 + 4x + 3, and the line x = 1 .  
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12.21 Show that fx J; f (u) du = f(x). Hint: Let F'(x) = f(x) so J; f(u) du = F(x) - F(a) . 12.22 Use Problem 12.21 to calculate the following. (i) - e12 dt d 1x 
dx 0 (ii) - � du d ix 
dx 1 (iii) .!!___ ix sin 02d0 dx " 

(iv) .!!____ f0 log(l + s2) ds dx lx 12.23 Use Problem 12.21 and the chain rule to evaluate fx J;<x> f(u) du. Hint: Let F(x) = J: f (u) du, so the problem is to evaluate fx F(g(x)) . 





Work, Volume, Force 

In this chapter we consider some other applications of the definite integral. First, we examine 
the work done by a force acting over a given distance-for example, the work done pushing a 
car up a slope or lifting a bucket of water. For a constant force F acting in the direction of the 
motion, work is simply force times distance: 

W = F - d. 

If the force is not constant (the car is pushed up a slope of increasing steepness, or the bucket 
is leaking water as it's lifted ), then we are led to a definite integral. 

Suppose the force applied at a point x is given by the nonconstant function f (x) .  We 
divide up the interval [a , b] over which the force acts into small subintervals [x;_ 1 , x;] on 
which the force is nearly constant. If c; E [x;_ 1 , x; ] , then f (x) will differ little from f (c; )  for x; _ 1 � x � x;, and the work done from x; _ 1 to x; is approximately f ( c; )(x; - x; _ 1 ) .  The total 
work done from a to b is approximately I:7=1 f (c; ) (x; - X;- 1 ) . As the lengths of the integrals 
get smaller, so max(x; - x;_ 1 ) - 0, these better and better approximations approach the 

i 
definite integral as a limit, and that is the work done by f (x) from a to b :  

W = lb f(x) dx. 
When setting up such a work problem we can skip the intermediate step of approximating 

the work over many small intervals. Think of the increment of work done by the force f (x) 
over the interval of length dx as f (x) dx, and the total work as the sum (integral ) of all these 
increments. 

EXAMPLE 1 3.1 The force F required to stretch a steel spring is proportional to the distance the spring is stretched, so 
F = kx where k is a constant. Suppose a two-pound force stretches a spring 4 inches. How much work is done in stretching the spring from 4 inches to 12  inches? 
Solution First, we determine the constant k, and since work is generally measured in foot pounds we measure distance in feet. We are given that 2 lbs corresponds to 4 in ( ½ ft), so 2 = ½ k, and k = 6 lbs/ft. Therefore, 
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F (x) = 6x . The work done in stretching from ½ foot to I foot is 

EXAMPLE 1 3.2 

1 1 2 ]I l 8 W = 6x dx = 3x 1 = 3 - - = - ft-lbs. 
l 

l 3 3 

Understanding Calculus 

How much work is done in pumping the water out of a hemispherical tank of radius 4 ft? 
Solution (See Figure 13 .  l) .  We think of the increment of work as the work done in lifting a thin "slice" of water to the top of the tank. The area of a slice x units down from the top is rr(42 - x2) , and the thickness is 
dx . If the density of water is 62 lbs/ft3 , then the weight of the slice is 62rr(42 - x2) dx, and the work done lifting it x feet is 
The work done emptying the tank is 

62rr( 16  - x2)x dx . 

W = 14 62rr( 16  - x2)x dx 

= 621!' 14 ( 16x - x3 ) dx 

= 621!' [ 8x2 - � x4 J: 
= 62rr [ l28 - 64] 
= 62 · 64rr = 3968rr ft lbs. 

JC 

Figure 13.1 

Another application of the integral involves calculation of the volume of various solids. Suppose we have a solid whose horizontal cross-section at any given height y is known. In the simplest instance, a rectangular parallelopiped (i.e., a brick), the cross-sectional area A is constant, and the volume V is A times the height h. In general, the cross-sectional area A(y )  will depend on the height. The volume of a thin slice at height y is A(y) dy, where dy is the thickness of the slice. The total volume is the sum of all these incremental volumes: 
V = 1

h 

A(y) dy. 

EXAMPLE 1 3.3 Find the volume of a cone of base radius r and height h (Figure 13.2). 
Solution The cross-section at a distance y from the vertex is a circle of radius x, where } = f, or x = fr .  The 
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Figure 13.2 

cross-sectional area is A (y) = rr ( f y )2 , and 

EXAMPLE 1 3.4 

1h 7r r2 V =  - y2 dy 
o h2 

-
rr r2 ! J

] h 

- h2 3 Y 
0 1 = 31rr2h . 
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The base of a solid is a semicircle of radius a, and every cross-section perpendicular to one diameter is 
a square. Find the volume. 
Solution 
(Figure 13 .3). The cross-section at x has area y2 where x2 + y2 = a2 , so the area is a2 - x2

• The 
thickness is dx so dV = (a2 - x2) dx, and 

V = 1_: (a2 - x2) dx . 
By the symmetry of the figure, we can write 

V = 2 f O (a2 - x2) dx 

= 2 [a2x - ix3J: 
= 2 [ a3 - �a3] = ; a3 . 

Figure 13.3 A(x) = y2 = a2 - x2 
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If a plane region is rotated about an axis, the volume swept out is called a volume of 

revolution. The cone of Example 13.3 is the volume obtained by rotating about the y -axis 
the triangular area between the line x = iY and the y -axis, for O :::: y :::: h. If the area 
under y = f (x) ,  a :::: x :::: b is rotated about the x-axis, the volume of revolution will have 
circular cross-sections of radius f (x) and hence cross -sectional area Jr f (x )2 • The increments 
of volume-discs of thickness dx-will be 1r f (x )2 dx, so the total volume is 

V = lb nf(x)2 dx. 
EXAMPLE 1 3.5 Find the volume of the solid swept out by rotating one arch of the sine curve about the x-axis. 
Solution The sine curve has one arch between O and 1r, so the volume of revolution of this area is (see Figure 1 3 .4) 

V = 1T 1" sin2 x dx . 

To evaluate the integral, recall the identity 

Hence, 
• 2 l - cos 2x sm x = 2 

[ 1 I ]" = 1r 2 x - 4 sin 2x 0 
= 1r [ ( � - � sin 2rr) - (0 - sin 0)] 

2 

- I  

Figure 13.4 

As a final application, consider the problem of computing the force exerted on a vertical 
surface by liquid pressure. Water weighs about 62 pounds per cubic foot, so the pressure at 
a depth y is 62y pounds per square foot. Consider a rectangular fish -viewing window in an 
aquarium tank. The window is 6 feet long and 4 feet deep, and the top of the window is one 
foot below the surface of the water. What is the force on the window? Force is pressure times 
area, so we divide the window up into thin horizontal strips where the depth, and hence the 
pressure, is constant. At depth y , the pressure is 62y , and the force on a strip 6 feet long and dy 
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high is d F = (62y)(6dy) . The total force on the window, with y ranging from l to 5 feet, is 

F = f 5 (62) (6)y dy 

= 62 · 6 y2] 5 
2 I 

= 62 · 3 · (25 - l )  = 4464 lbs. 

PROBLEMS 

13.1 Find the work done in stretching a spring 2 feet, if a force of 3 pounds is required to stretch the spring 6 inches. 
13.2 A 20-pound weight is hung from a spring, and the spring stretches 8 inches. How much work is done in pulling the weight down an additional foot? 
13.3 A leaking bucket of water is lifted 50 feet. The bucket weighs 60 pounds initially and loses weight uniformly until it weighs 30 pounds at the top. How much work was done? 
13.4 How much work is done in pumping the water out the top of a cylindrical tank whose radius is 4 feet and whose depth is 6 feet? Hint: Consider the increment of work done in lifting a "slice" of water y feet from the top and dy thick. The slice weighs 62 • rr • 42dy, and the work done lifting this slice up y units is its weight times y .  
13.S Find the work done in  pumping the top 2 feet of water out of a hemispherical bowl of radius 5 feet. Hint: The slice at depth y feet has radius x = J52 - y2 • 

13.6 An in-egular solid has horizontal cross-sectional area at height y equal to A(y) = .,/9=y, for O ::: y ::: 9. What is its volume? 
13.7 In Example 13 .4 suppose the solid again has a base that is a semicircle of radius a, but now the vertical cross-sections are quarter circles. Find the volume. 
13.8 Find the volume of the sphere obtained by rotating about the x-axis the area under the curve y = Ja2 - x2 , -a ::: x :::  a .  
13.9 What i s  the volume obtained by rotating the area under the parabola y = x2 , for O ::: x ::: I ,  about the x-axis? 

13.10 Rotate the area of Problem 13 .9 about the y-axis. What is the volume? Hint: The slices for fixed y are washers with thickness dy, outer radius I ,  inner radius .Jy. 
13.11 Rotate about the y-axis the area between the curve y = sin - • x and the y-axis, for O ::: 

y ::: I .  What is the volume? 
13.12 Find the volume of the ellipsoid obtained by rotating the ellipse 5- + � = I about the x-axis. Then find the volume of rotation about the y-axis. 
13.13 A body moving with constant velocity v goes a distance v(t2 - 1 1 ) between times 1 1 and t2 • 

If v(t) is a varying velocity, the distance is J,'.2 v(t) dt. Show that if a body has constant acceleration a, so v = at, then the distance it travels in t seconds is ½at2 • (If a is the acceleration of gravity, 32 ft/sec2 , then this is the falling body again.) 
13.14 Suppose a car has a constant acceleration and goes from O to 60 mph in 6 seconds. How far does the car go in these 6 seconds? Hint: 60 mph is 88 ft/sec, so v = !t ft/sec at time t .  
13.15 The shallow end of a swimming pool is a vertical rectangle, 4 feet deep and 20 feet across. What is the force on this surface exerted by the water when the pool is full? 
13.16 A 15-foot chain weighing 2 lbs/ft lies coiled on the ground. A line of negligible weight is attached to one end and used to lift the chain straight up until the bottom just clears the ground. How much work was done? 
13.17 A IO-foot chain weighing ½ lb per foot hangs from a roof. How much work is done in pulling the chain up onto the roof? 





Parametric Equations 

So far we have described curves with equations of the fonn y = f(x) or F(x , y )  = 0. To 
describe the path of a moving object, it is frequently more convenient and more relevant to 
determine the individual coordinates as functions of time t; thus, 

X = g(t), y = f (t). (14.1 ) 

Equations (14.1) are called parametric equations of a curve, and the variable t is called the 
parameter. 

EXAMPLE 1 4.1 A cannon fires a projectile with muzzle velocity v at an elevation 0 from the horizontal. Describe the path of the projectile. 
Solution (See Figure 14. 1 .) The horizontal component of the velocity is v cos 0, and that is the constant speed in the x-direction. Therefore, with the cannon at the origin, 

x = (v cos 0)t .  

The initial vertical component of the velocity is v sin 0 , so as we have seen earlier, the motion in the vertical direction is given by 
y = (v sin 0)t - 16t2 , 

where the term - 16t2 is due to the downward acceleration of gravity. The two equations 
x = (v cos 0)t 
y = (v sin 0)t - 16t2 ( 14.2 )  

are parametric equations of the path of the projectile. 
The Cartesian equation that corresponds to a given pair of parametric equations can be 

found by eliminating the parameter to get an equation in x and y. For example, in (14.2 ) we 
could solve the first equation for t and substitute that expression in the second equation. This 
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gives 

v sin 0 

t = x/v cos 0 ,  

y = (v sin 0) (-x-) - 16  (-x_· -) 2 
v cos 0 v cos 0 

16  2 = (tan 0)x - v2 cos2 0
x

. 

Understanding Calculus 

Figure 14.1 

Since y is a quadratic function of x (remember that 0 and v are given constants) , the path is a 
parabola. 

In Example 14. l ,  the parameter is time, which is most appropriate when the curve is the 
path of a moving object. Curves can also be described in terms of a parameter that has purely 
geometric significance. A simple illustration is the curve 

x = cos 0 
y = sin 0 

( 14.3) 

for O ::: 0 :S rr . If the parameter were unrestricted, then equations (14.3) would be the 
parametric equations of the unit circle, and the parameter 0 would be the distance you would 
have to go around the circle from ( 1, 0 )  to get to (x , y ). Since in ( 14.3 ) 0 is restricted to [0, T{ ] ,  
( 14.3) represents just the top half of the unit circle. 

A parametrically defined curve may consist of only a part of the corresponding Cartesian 
curve that results when the parameter is eliminated. Consider the curve 

x = sin 0 ,  y = l - sin2 0. (14.4) 

The corresponding Cartesian equation is 

y = l - x2 • ( 14.5) 

Notice , however, that in equation (14.4) x takes only values between - 1  and 1 ,  and y takes 
only values between O and l. The parametric curve ( 14.5) therefore consists only of the part 
of the parabola (14.5) for - I  ::: x :S 1 .  

To find the slope of a parametric curve x = x(t) , y = y(t ) ,  let D.x and D.y be the 
corresponding changes in x and y ,  both of which result from a change D.t in t .  Then 

dy . D.y 
- =  hm -dx t.r➔O D.x 

. D.y/D.t = hm --­
t.1➔0 D.X / D.t 

= dy / dx
. 

dt dt 
For example, the slope of the parabola (14 .4) at the point corresponding to a given 0 is 

dy !� -2 sin 0 cos 0 - = - = ----- = -2 sin 0. 
dx dx cos 0 dB 

(14.6) 
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When 0 = f , so the point is ( 1 ,  0) , 

dy = -2 sin � = -2.  
dx 2 
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When x and y are given in terms of a parameter t, then the calculation of the slope gives 
�; as a function oft. To find � we simply use ( 14.6) again to find the derivative of � with 
respect to x in this situation where both x and � are functions oft. That is 

EXAMPLE 1 4.2 

d2 d (1.1.) _2:'_ = dt 
d;x ( 14.7) 

dx2 
dt 

Find the tangent line to y = t2 + 1 , x = 3t - 2 at t = 1 ,  and tell whether the curve lies over or under the 
tangent line near (x ( l ) ,  y ( l )) .  
Solution 
First calculate ¥x :  

dy _ � _ 2t 
dx - !!..! - 3

. 
dr 

At t = 1 ,  x = 1 ,  y = 2, and ¥x = r Hence, the tangent line at ( 1 ,  2) has the equation 
2 

y - 2 = 3 (x - I ) .  

Recall that if B i s  positive, the first derivative i s  increasing, and the curve i s  concave up. A 
curve that is concave up will lie above its tangent lines, and a curve that is concave down ( E < 0) will 
lie below its tangent lines. We use ( 14.7) to calculate E: 

d2 d ( dv ) y dt -;; 
dx2 = 

� dr 
.!!. (�)  2 = .4!......l_ = - .  

3 9 
The curve has a constant positive second derivative and so is concave up everywhere, and the curve lies 
over every tangent line. To change to Cartesian coordinates, solve for t,  t = ! <x + 2) , and substitute in 
the formula for y :  

y = [� (x + 2{ + 1  

I = - (x + 2)2 + I .  9 
The curve is an upward-pointing parabola. 

Let f (t) and g(t) be any two differentiable functions on an interval [a, b] , and consider 
the curve 

x = g(t), y = f (t) , a � t � b. 
Suppose that g' (t) > 0 on [a, b] so that x increases and the curve moves from left to right as t 
goes from a to b. By the ordinary Mean Value Theorem, there must be some point (g (to) , f (t0) )  
on the curve between (g (a) ,  f(a) )  and (g(b) , f(b))  where the slope of the curve is  the same 
as the slope of the secant line; namely, (f (b) - f (a) )/(g (b) - g(a) ) . Since the slope of the 
curve is given by 

dy 
dx 

¥r - f'(t) 
dx - g' (t) ' dt 
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this says that there must be some to in (a, b) such that f(b) - f(a) !'(to) ---- = --g(b) - g(a) g' (to) 

Understanding Calculus 

(14.8 ) 

The statement above is called Cauchy's Mean Value Theorem. The two forms of the Mean 
Value Theorem look different, since Cauchy's version (14.8 ) involves two functions, but the 
geometric content is identical. A curve cannot get smoothly from P to Q without somewhere 
pointing in the same direction as the line segment joining P and Q. 

The length of a curve is  defined to be the limit of the lengths of polygonal paths joining 
consecutive points along the curve. ff the curve is given by parametric equations x = x(t), y = y(t) for a :S: t :S: b, then for each partition a = to < t1 < t2 < • • · < tn = b of [a, b], we 
get a polygonal path whose length is 

n I:✓ 1:uf + tiyJ, 
i=I 

where fix; = x(t;+i ) -x(t; ) and liy; = y(t;+ 1 ) - y(t; ) . We can write the length of the polygon 
as 

n n ( )2 ( )2 2 2 fix; liy; I:✓ tix; + tiy; = I: tit + tit· tit; . 
i= I i=I I I 

(14.9 ) 

As the partition becomes finer and finer, with max lit; - 0, the sums in (14.9 ) approach the 
following integral, which is the arc length: 

s = l
b 
(!;Y + (1rY dt. (14. 10 ) 

If the curve is given in the form y = f(x) for a :S: x :S: b, this is the same as the parametric 
form 

x = t ,  y = f(t) ,  a :S: t :S: b, 
and the integral (14.10) becomes 

(dy ) 2 

1 + --;I; dx 

= lb 
Ji + (f' (x))2 dx. 

EXAMPLE 1 4.3 Find the length of the curve x = 2t ,  y = � t3l2, 0 � t � l .  
Solution 
S. dx 2 d t!l. 2 I mce Tr =  an d, = 1 2 ,  

s = [ J4 + 4t dt 

= 2  [ .Jf+idt 

4 3 I 4 3 

= - ( l  + t) 2 ]0 = - (2 7 - I) . 
3 3 

(14.11 ) 
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PROBLEMS 

Graph the following curves. Notice that both x and y have a specific finite range of values for all 
these curves. Indicate these ranges clearly on your graph. 

14.1 x = t, y = t2 , 0 S t  S 1 
14.2 x = t2 , y = 2t - l , 0 S t S I 
14.3 x = 2 cos t ,  y = sin t ,  0 S t  S rr 
14.4 x = } ,  y = t ,  I S  t S 2 

Write the Cartesian equations of the following curves, and graph them. 

14.5 x = sin2 t + l , y = cos t, -oo < t < oo  
14.6 x = t2 , y = 2t4 - I , -oo < t < oo 
14.7 x = 1 - e' , y = e2' , -oo < t < oo 
14 8 · 2 2 T( • x = sm t, y = cos t, 0 S t  S 2 

Find the equation of the tangent line at the indicated point. Does the curve lie under or over the 
tangent line near this point? 

14.9 X = 2t3 - 1 ,  y = t2 , t = 2 
14.10 X = e1

, y = COS t, t = 0 
14.11 x = t2 - I ,  y = t2 + 1 ,  t = 1 13 
14.12 x = e' , y = e2' ,  t = 0 
14.13 A ball is thrown at an angle of 45° with the ground and an initial velocity of 64 ft/sec. Find 

how high it goes by finding when ¥, = 0. 
14.14 If a body is projected upward at an angle 0, we have seen that its path is given by x = 

(v cos 0)t ,  y = (v sin 0)t - 16t2 , where v is the initial velocity. At what time does the 
body reach maximum height, and when does it hit the ground? At what angle does the 
curve hit the ground? What is the slope of the curve when the body hits the ground? 

Find the lengths of the following curves. 

14.15 x = a cos t ,  y = a sin t, 0 S t S 2rr 
8 3 

14.16 y = 3x ! , 0 s x s 5 

14.17 x = .Jf+rI, y = log(t + ./f+i'2), 0 S t S 5 
14.18 x = tan- 1 t, y = ½ log( l + t2) , 0 � t 5 l 
14.19 x = e' cos t ,  y = e' sin t ,  0 5 t 5 rr 
14.20 y = cosh x,  0 S x S x0 (See Problem 7.28, Chapter 7.) 
14.21 Find the parametric equations of the hyperbola � - t = I using the parameter 0 defined 

by x = a sec 0 .  Hint: tan2 0 + 1 = sec2 0 .  
14.22 Find the parametric equations of  the parabola ay = x2 using as parameter the slope of the 

line from (0, 0) to (x , y) . 
14.23 If a circle rolls along the x-axis, the point P on the circle that starts at (0, 0) traces out a 

cycloid. Show that the parametric equations are x = a0 - a sin 0, y = a - a cos 0 ,  where 
a is the radius of the circle and 0 is the angle through which the radius to P has turned. 

14.24 Find the parametric equations of the ellipse � + t = I using as parameter the angle 0 
defined by x = a cos 0 .  

14.25 A rod AB moves with its end A on  the y-axis and its end B on the x-axis. Find the 
parametric equations of the curve traced out by the point P on the rod which is a units 
from A and b units from B. Hint: Use as parameter the angle 0 the rod makes with the 
x-axis. 





Change of Variable 

We have already seen that most integration problems involve the chain rule in reverse, and the 
u-substitution is a useful way to keep track of the constants in these problems. For example, 
to integrate 

f x2(x3 + 1 )4 dx 

we first recognize that x2 is the essential part of the derivative of x3 + 1, and we let 
1 

u= x3 + 1, 4u= 3x2 dx, x2 dx= - du. 

This gives 
3 

x2(x3 + 1)4 dx = -u4 du= -u5 = -(x3 + 1)5 . I I 1 1 1 
3 15 15 

( 15.1) 

For definite integrals we can carry this technique one step further and incorporate the 
limits of integration in the change of variable. For example, using the final answer in ( 15.1) 
we can evaluate the following definite integral: 

1 1 
x2(x3 + 1)4 dx = _!_(x3 + 1)5] t = 25

. 
- I 15 - 1 15 

Here we ignored the intermediate steps involving u and used just the final antiderivative 
( -�)( x3 + 1)5 • Instead of this approach, notice that if u = ( x3 + 1), then u = 0 when 
x = -1 and u = 2 when x = l .  Therefore, we can make the u-substitution with the new 
limits: 

x\x3 + 1)4 dx = -u4 du = -u5 = - • 25 • 1 1 

1

2 I 1 ]
2 l 

- 1 0 3 15 0 15 
( 15.2) 

The general rule for changing the variable in a definite integral is the following formul� 

lb 
l u(

b
) 

f(u(x) )u'(x) dx = f(u) du. ( 15.3) 
a u (a) 
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In Equation ( 15 .2), 
1 u = x3 + 1 ,  f(u(x)) = 3 (x3 + 1)4 , 
l u'(x) dx = 3x2 dx , f(u) du = 3u4 du , 

u (- 1 )  = 0, u ( l ) = 2. 

To verify the change of variable equation ( 15 .3), we let F(x) be any antiderivative of f (x),  so F'(x) = f (x) .  It follows that 

lu(b) 
]

u(b) f(u) du = F(u) = F(u(b)) - F(u(a)). 
u(a) u(a) 

From the chain rule we also have 
d I I I dx F(u(x)) = F (u(x))u (x) = f (u(x))u (x), 

so F(u(x)) is an antiderivative of the integrand on the left of ( 15 .3). Therefore, 

( 15 .4) 

l

b f(u(x))u'(x) dx = F(u(x))I = F(u(b)) - F(u(a)). ( 15.5) 

Comparison of ( 15 .4) and ( 15 .5) verifies the change of variable equation ( 15 .3). 
Here are some more examples. 

EXAMPLE 1 5.1 1 3 
J3x - 5 dx . 

Let u = 3x - 5, du = 3 dx,  dx = ½ du .  When x = 2, u = 1 and when x = 3, u = 4. Therefore, 

13 
J3x - 5 dx = 14 � ✓,i du = � • �u � ]

4 

= � (8 - I ) = 14
. 

2 , 3 3 3  , 9 9 
EXAMPLE 15.2 1� sin2 x cos xdx . 

Let u = sin x,  du = cos x dx. When x = 0, u = 0 and when x = I •  u = 1 .  Therefore, 

EXAMPLE 1 5.3 ls log x 
dx . 

l X 

{ � ( ' 1 
]

' 1 
lo sin2 x cos x dx = lo u2 du = 3u3 

0 
= 3 . 

Let u = logx ,  du = �  dx. When x = I , u = 0 and when x = 5, u = log 5. Therefore, 

EXAMPLE 15.4 

lo 
xex2 dx . 

- I  

15 logx 1 1og 5 1 
]
log s I - dx = u du = -u2 = -(log 5)2 • 

l X O 2 0 2 

Let u = x2 , du = 2x dx, x dx = ½ du . When x = -1 ,  u = I and when x = 0, u = 0. Therefore, 

1° 
xe_..2 dx = f0 

�e" du = �e"]
0 

= � ( 1 - e) . 
- I  I 2 2 I 2 



Chapter 1 5 ■ Change of Variable 89 

The answer is negative, which we expect since the first integrand xex2 is negative on [- 1 ,  OJ . The 
integrand after the substitution, ½e" ,  is positive, but the integration is from right to left (from I to 0), so 
the result is negative. 

We have already used the important differentiation-integration formulas d l / dx 
dx tan- • x = 

l + xi ; I + x2 = tan- •  x ; 
d . I - sm-• x = ---; dx Jf7 

I dx . _ 1 
� = sm x . 'I/ l - x2 For integration problems, the following more general forms are convenient: 

EXAMPLE 1 5.5 1,/5 __:!!_ 
o 5 + x2 . 

I dx l _ 1 x --- - - tan - · 
a2 + x2 - a a ' 

I ---;:::::;:d=x=:;;: = sin - 1 :, . 
Ja2 - x2 a 

This is ( 1 5 .6) with a2 = 5, a = ./5, so 

{./5 dx l x ]./5 
lo 5 + x2 = ./5 tan- • ./5 o 

= � [� - o] = rr/4✓5. 

EXAMPLE 1 5.6 1 1 dx 
o J4 - 2x2 • 

( 1 5 .6) 

(15.7) 

Let u = Jix so u2 = 2x2 and dx = }i du . When x = 0, u = 0 and when x = l ,  u = ,/2. Therefore, 
using ( 1 5 .7), 

t dx {.Ji 72 du 

lo J4 - 2x2 
= 

lo J4 - u2 

} . - I " ].Ji = v'2 sm 2 o 

= � [sin- 1 � - o] 
1 1T = 

,/2 4 '  

PROBLEMS 

Make a change of variable to evaluate the following integrals. 

15.1 1' x(x2 + 3)5 dx 

15.2 f2 

� 1 3 + 2x 

15.3 f 5 J2x - 1 dx 
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15.4 1->�dx 

15.5 1 ¾ cos x sin x dx 

15.6 1 ; � cos x dx 

15.7 1
2 log 2x dx 

I X 1'2 (log x)3 
15.8 -- dx 

e X 14 x2 + l 15.9 --1 
dx (Divide first.) 

o x +  

15.10 1 1 
3xex2 dx 

14

e..fx 
15.11 

1 Jx
dx 

15.12 {2 

4 
dx 

2 lo + x 

15.13 (
1 

l 
dx 

2 lo + 4x 
[3 xdx 15.14 lo l + x2 

1 1 edx 15.15 -. 2x o + e 

15.16 (
1 dx 

lo Jt6 - x2 

15.17 t �  lo 5 - 3x 

15.18 1" sin 2x dx 

15.19 1
2 

9 
dx 

2 
1 + 4x 

15.20 (
1 dx 

lo Jt6 - 9x2 

13 dx l5.2l 
I 4 + 25x2 

15.22 f
1 2x + l 

lo x2 + x + 5 

15.23 12 
x(x - l) 10dx Let u = x - l .  

15.24 11 
xJx + 2dx Let u = x + 2. 

1 1 x + 2  15.25 � dx 
o -vx + l 

15.26 12 
x2 (x - 1) ¼ dx 

1 1 x2 

15.27 � dx 
o -vx + 2  

Understanding Calculus 



I ntegrati ng Rational Funct ions 

A rational function is an expression £ffi, where P(x ) and Q(x) are polynomials. There is 
a standard algorithm for finding the antiderivative of any rational function in which you can 
completely factor the denominator. In most cases, the method requires a ridiculous amount of 
algebra and is not practical. However, if Q(x )  is linear or quadratic, or a product of distinct 
linear factors, the method is quite straightforward. 

The first thing to notice when integrating any rational function ��;� is that if P(x) has 
degree greater than or equal to the degree of Q (x ), you can divide and get 

P(x) R(x) 
Q(x) = S(x) + Q(x) ' 

where S(x) is a polynomial, and R(x) has degree strictly smaller than that of Q(x) .  The 
polynomial S(x) is easy to integrate, so we only have to consider rational functions ��:� in 
which the numerator has smaller degree than the denominator. IMPORTANT: First divide if you can. 

Now we consider only cases where the numerator has smaller degree. If Q(x) is linear, 
the integration is straightforward. 

f _k _ dx = k log Ix - a I . 
x - a  

Now suppose Q(x) is quadratic. We can always factor out the coefficient of x2 , so we 
assume Q(x) has the form Q(x ) = x2 + Bx +  C.  There are three cases to consider: 

(i) Q(x ) = (x - a)2 

(ii ) Q(x) = ( x  - a)( x - b ) with a ¥=  b 
(iii ) Q(x ) = x2 + Bx +  C with B2 - 4C < 0, so Q(x) does not factor. 

We illustrate each case with a specific example which shows the technique. 
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f 2x + 4 Case (i). 2 dx .  
(x - 3) 

We substitute u = x - 3, x = u + 3, and du = dx.  
x = ---- dx f 2x + 4 d f 2(u + 3) + 4 

( x  - 3)2 u2 

= - du +  - du f 2u f 10 
u2 u2 

= 2 log lu l - 10u- 1 
= 2 log jx - 3 1  - lO(x - 3)- 1 • 

f 2x + 7  Case (ii). ----- dx. 
( x  - l) (x + 2) 

Since the denominator has distinct factors, there will be constants A and B such that 
2x + 7  A B ----- = -- + --(x - l) (x + 2) x - 1  x + 2 

A(x + 2) + B(x - 1)  = 
(x - l ) (x + 2) 

For ( 1 6. 1 )  to be an identity, the numerators must be identical: 
2x + 7 = A(x + 2) + B(x - 1) .  

( 16. 1 )  

( 16.2) 
Let x = -2 and this becomes 3 = -3B, B = - 1 .  Let x = 1 and ( 16.2) becomes 9 = 3A, A = 3 .  Therefore, the integrand has the following partial fractions decomposition: 

Now we can integrate 
2x + 7 3 - 1  ----- = -- + --.  (x - l ) (x + 2) x - l x + 2 

f 2x + 7  dx = f -3 dx - f � 
( x  - l ) (x + 2) x - 1 x + 2 

= 3 log Ix - 1 1  - log Ix + 2 I .  
Case (iii). Q (x) = x2 + Bx + C with B2 - 4C < 0. 
In this case, Q(x) can always be written in the form (x + a)2 + b2 , and then the substitution u = x + a, x = u - a, du = dx works. For example: 

f 3x + 7  ---- dx. x2 + 2x + 5 

First complete the square in x2 + 2x + 5 to get the form (x + a)2 + b2 : 

x2 + 2x + 5 = x2 + 2x + 1 + 4 
= ( x  + 1 )2 

+ 4. 
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Now let u = x + l ,  x = u - I ,  du = dx: 
f 3x + 7 dx _ f 3x + 7 dx x2 + 2x + 5 - (x+ I )2 + 4  

f 3(u - I ) +  7 = ---- du 
u2 + 4  

= f 3u + 4  du 
u2 + 4  

- - -- + 4 --
3 f 2u du f du 

- 2 u2 + 4  u2 + 4  

3 (x + 1) = 2 log lx2 + 2x+ s 1 + 2 tan-1 -
2

- . 
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The partial fractions technique we used for quadratic denominators of the form (x - a)(x - b )  will actually work for any rational function m. where R(x) has degree 
less than that of Q(x), and Q(x) can be completely factored into linear and unfactorable 
quadratic factors. For example, if Q(x) = (x - a)(x - b) (x - c), with a, b, c distinct, then 
there are numbers A, B ,  C such that 

R(x) A B C ------- = -- + -- + --. (x - a)(x - b)(x - c) x - a x - b x - c 

If Q(x) has repeated factors, then these factors must occur in the partial fractions. For 
example, 

R(x) A B C D E ------ = -- + --- + --- + -- + --- . (x - a )3(x - b )2 x - a (x - a )2 (x - a )3 x - b (x - b )2 

If Q(x ) has both linear and nonfactorable quadratic factors, then the decomposition 
looks like the following. 

R(x) A Bx + C 
(x - l )(x2 + 4 )  

= 
x - I 

+ 
(x2 + 4 ) ' 06.3 ) 

R(x) A B C Dx + E Fx + G 
-------- = -- + -- + --- + --- + --­(x - l )(x - 2 )2 (x2 + 4 )2 x - I x - 2 (x - 2 )2 x2 + 4 (x2 + 4 )2 · 

(16.4) 

We know how to integrate all the terms on the right above except (x2�)2 , and we will see how 
to do this by trigonometric substitution in Chapter 19. The following example illustrates how 
to find the constants A, B ,  C, and so on. 

EXAMPLE 1 6.1 

f 5x2 - 3x + l 3  d 
(x - l ) (x2 + 4) 

x . 
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The partial fractions decomposition is ( 16.4): 

5x2 - 3x + 13 A Bx + C 
----- = -- + ---
(x - l ) (x2 + 4) x - 1 x2 + 4  

Understanding Calculus 

(A +  B)x2 + (C - B)x + (4A - C) 

For this to be an identity we must have 
(x - l ) (x2 + 4) 

A + B = 5  
C - B = -3 

4A - C =  1 3 . 
Adding the corresponding sides of the first two equations gives 

A + C = 2  
4A - C = 13 .  

Adding again, we find 5A = 15, A = 3 ;  then from die first equation, B = 2, and from' the second equation C = - 1 .  Thus. 
f 5x2 - 3x + 13 d f 3 f 2x - l d x =  -- dx + -- x 

(x - l ) (x2 + 4) x - l x2 + 4 

O l ( X = 3 log Ix - 1 1  + log Ix· + 41 - - tan- - . 

16.1 f -3- dx 
x + 2 

16.2 f --1-3 
dx 

(x - 3) 
16.3 f -3- dx 4x + I 
16.4 j x + I dx 

x - 1 

16.5 f x2 +: + 1 dx 

16.6 1 � dx 
x + 4 

16.7 f 2 dx 
(x - 5) (x - 2) 

16.8 f I dx 
(x + l ) (x - 2) 

16.9 j x dx 
(x - l ) (x - 2) 

16.10 / -2 

2 dx 
X - I 

f dx 16.11 --2 4 - x 

PROBLEMS 

2 2 
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16.12 / dx 

x2 + 2x + 2  

16.13 / dx 
x2 + 4x + 5 

16.14 /-P-- dx 
X + I 

I 2x +  I 
16.15 x2 + 9 

dx 
16.16 / x

2

+ 1 dx X + 4  
I 4x 16.17 

2 
dx x + 6x + IO 

16.18 / dx 
x2 + 3x + 2 

I 3x - 6  
16.19 , 8 dx x- + 4x + 

16.20 / 5x2 + 2x + 3 dx (x + I ) (x2 + I )  

16.21 / 6x2 + l lx + 8 dx x (x2 + 2x + 2) 

16.22 / 2x2 - IOx + 2 dx Hint: (x - l ) (x + 2) (x - 3) 

is equivalent to 
2x2 - IOx + 2 A B C 

------- = -- + -- + --(x - l ) (x + 2)(x - 3) x - 1 x + 2 x - 3 

2x2 - IOx + 2 = A(x + 2) (x - 3) + B(x - l ) (x - 3) + C(x - l ) (x + 2) . 

Let x = I to find A, x = -2 to find B, and x = 3 to find C. 
16.23 / 2x2 + 7x + 4 dx x (x + l ) (x + 2) 
16.24 (i) Find A, B, C so that xc)+4> = � + �1:; . (ii) Integrate J ,()+4> 

dx . 
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I ntegration by Parts 

Integration by parts is the name given to the product rule for differentiation when it is used as an integration technique. From the differentiation formula 
d I I 

dx 
(f(x)g(x)) = f(x)g (x) + g(x)f (x) ,  

we get the integration formula 
f(x)g(x) = f f(x)g' (x) dx + f g(x)J'(x) dx , 

or, equivalently, 
f f(x)g' (x) dx = f(x)g(x) - f g(x)f' (x) dx . ( 17. 1 )  

Formula ( 17 . I )  allows you to trade one integral, f f (x )g' (x) dx, for another, f g(x) f' (x) dx . The trick is to recognize the cases in which the second integral is simpler than the first. The utilitarian form of ( 17 .  I) is 
f udv = uv - f v du, ( 1 7.2) 

where we have let u = f (x), dv = g' (x) dx, so v = g(x), and du = f'(x) dx . A noteworthy particular case of equation ( 17 . 1 )  is the case g(x) = 1 , or, in the notation of (2), dv = dx. In this case, 
f f(x) dx = xf(x) - f xf'(x) dx .  ( 17 .3) 

Sometimes xf'(x) is easier to integrate than f(x), and we will use ( 17 .3) to integrate log x and the inverse trigonometric functions. 
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EXAMPLE 17.1 

f Iogx dx. 
We let u = logx, dv = dx, so v = x, and du = ¼ dx. Then 

f Iog x dx = x log x - f x • :; dx 
= x log x - f dx 
= x logx - x. 

Understanding Calculus 

( 17.4) 

Since log x is one of our standard elementary functions, ( 17 .4) should be considered one of our standard integration formulas. It wouldn't hurt to memorize it. 
EXAMPLE 1 7.2 

/ sin- 1 x dx. 
Let u = sin- 1 x, dv = dx, so v = x and du = )-, dx. Thus, 

y l -x2 

/ sin- 1 x dx = x sin- 1 x - /  � dx I - x2 

= x sin- 1 x + JI - x2 . 
The technique of Example 1 7.2 also works easily for cos- 1 x, tan- 1 x, but these integrals occur infrequently, and it is easier to go through the integration technique or look in the integration table than it is to memorize the formula. The more usual situation, where dv is not simply dx, is illustrated in the next example. 

EXAMPLE 17.3 

f xex dx . 
Let u = x, dv = ex dx, so v = ex and du = dx. Thus, 

f xex dx = xex - f ex dx 
= x� - ex . 

For definite integrals the integration by parts formula is 

EXAMPLE 1 7.4 

12 x�f2 dx. 

b 

]

b b 1 u dv = uv 
a 
- 1  v du. 

Here we let u = x, dv = �12 , so v = ½�'2 and du = dx . Then we have 

12 xex/2 dx = x Gex/2) I - 12 �ex/2 dx 
= 2 . ! . e - ex/2] 2 2 0 

= e - (e - I ) = I . 
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EXAMPLE 1 7.5 Find the volume swept out by rotating about the y-axis the area bounded by y = e' 12 , the x-axis, and the line x = 2 (Figure 1 7  . 1 ). 

Figure 17.1 

This method of calculating volume is called the cylindrical shells method. We think of the thin­walled cylindrical shell swept out by the vertical strip ext2 high and dx wide. As this strip moves around a circle of circumference 21rx, it sweeps out a thin cylindrical shell of circumference 21rx, height e<'2 , and thickness dx. If you cut the shell and flatten it out you get an approximate rectangular solid 21rx long, e f wide, and dx thick. Thus, this increment of volume is dV = 21rx · ex12 dx . The volume swept out by strips between x = 0 and x = 2 is therefore, using the result of Example 17 .4, 
V = 12 21rxext2 dx 

= 21r 12 xexti dx 
= 21r(l ) .  

The following problems, except Problem 17 .25, are examples of problems where the integration by parts technique works. Moreover, these problems contain most of the standard examples where integration by parts works. We mention this because many students fall in love with integration by parts and try to use this technique for every problem. If your integration problem does not look like one of those in this section, try something else. 
PROBLEMS 

17.1 / cos- 1 x dx 
17.2 / tan- • x dx 
17.3 / xe-2x dx 
17.4 / x2ex dx (Integrate by parts twice.) 
17.5 / x3e-2x dx 
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17.6 / x sin x dx 

17.7 / x cos 3x dx 

17.8 / x2 sin 5x dx 

17.9 / x log x dx 

17.10 / .J,x log x dx 

17.11 / x1 1og x dx 

17.12 / (logx)2 dx 

17.13 / (logx)3 dx 

17.14 / x.Jf+x dx 

17.15 / log( )  + x2) dx 

Understanding Calculus 

17.16 / ex sin x dx .  (Integrate by parts twice, with u = ex each time, and solve the resulting equation for the integral.) 
17.17 / log(x + l ) dx 

Jx+1 
17.18 / x3e-x2 dx 

17.19 1 ; x cos x dx 

17.20 [ x log( I  + x) dx 

17.21 12 

x✓x + 2 dx 

f x2 dx 
Hint: -- is an easy Chapter 16 problem. x + l 

I 17.22 1 � sin- 1 2x dx 

17.23 Use the cylindrical shells method to find the volume obtained by rotating about the y-axis the area in the first quadrant under y = log x, for 1 :5 x :5 e. 17.24 Find the volume obtained by rotating about the y-axis the area in the first quadrant under 
y = sin x, for O :5 x :5 f .  1 7  .25 Use the cylindrical shells method to find the volume of the hemisphere obtained by rotating about the y-axis the area under y = ✓ a2 - x2 for O :5 x :5 a.  (This is not an integration by parts problem.) 17.26 (i) Integrate f sec3 x dx by parts using u = sec x, dv = sec2 x dx. (ii) Use the same idea to integrate J sec" x dx to get the reduction formula J sec" x dx = 

_!__ sec•-2 x tan x + ( "-2 ) J sec"-2 x dx . n - 1  n - 1  



Trigonometric Integrals 

Integrals involving trigonometric functions arise very frequently, in part because of substitu­tions that tum radical expressions into trigonometric functions. It is therefore necessary to gain some proficiency in such integrals, and that is our goal in this chapter. We start by reviewing some familiar integrals: 
f sin x dx = - cos x ;  
f cos x dx = sin x ;  
f tan x dx = f sin x 

dx = - log I cos x I = log I sec x I ;  cos x 
/ sec2 x dx = tanx. 

The following standard trigonometric identities will be used constantly, and should be memorized: sin2 x + cos2 x = I ;  
tan2 x + I = sec2 x; 

I 
sin(x + y) = sin x cos y + cos x sin y ;  sin(x - y) = sin x cos y - cos x sin y ;  

I 
cos(x + y) = cos x cos y - sin x sin y ;  cos(x - y) = cos x cos y + sinx  sin y ;  

sin2 x = ( l  - cos 2x)/2; 
cos2 x = ( I  + cos 2x)/2. 

( 1 8 . l )  
( 18 .2) 
( 1 8.3) 
( 1 8 .4) 
( 1 8.5) 
( 1 8.6) 
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102 Understanding Calculus 
We deal primarily with sin x, cos x, tan x, and sec x .  We have integration formulas for sin x, cos x, and tan x, and the integral of sec x is the following: 

j sec x dx = log I sec x + tan x I . ( 1 8.7) 
Fonnula ( 1 8.7) can easily be checked by differentiating the right side: 

d sec x tan x + sec2 x - log I sec x + tan x I = ------
dx sec x + tan x 

sec x( tan x + sec x) = -------
( sec x + tan x) 

= sec x. If you put integral signs in front of the above fonnulas and read from down to up, you get the usual "derivation" of formula ( 1 8. 7). The simple u-substitution, u = sin x, du = cos :x dx, works for any integral of the form 
f sink x cos x dx = j ukdu = -1- sink+ ' x. ( 1 8.8) k+ l Here k can be any number except - 1 ;  that is, k can be positive or negative, fraction or integer. The u-substitution of ( 1 8 .8) is so simple that the intermediate formula J ukdu need not be written down. The following integrals are examples of ( 1 8.8): 

f sin2 x cos x dx = } sin3 x; 

f �cos x dx = � sin ! x; 

-- dx = - - sm- x .  I COS X 1 . 4 sin5 x 4 The same trick works, of course, if the sines and cosines are interchanged; in this case 
u = cos x, du = - sin x dx, and we have I cosk x sin x dx = f uk ( - I )du = --1 - cosk+ 1 x.  ( 1 8.9) k + l The following are examples of ( 1 8.9): 

f cos ! x sin x dx = -I cos� x ;  

I cos-2 x sin x dx = -1- = sec x ;  cos x 

j cos4 x sin x dx = -1 cos5 x .  

The following example illustrates a simple variation of the J sink x cos x dy integrals. The trick depends on cos x occurring to an odd power. 
j sin2 x cos3 x dx = j sin2 x cos2 x cos x dx 

= f sin2 x( l  - sin2 x) cos x dx 

= f sin2 x cos x dx - f sin4 x cos x dx 

1 3 1 . 5 = - sin x - - sm x.  
3 5 
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This technique works for all integrals of the form f sinm x cosn x dx where either m or n is a positive odd integer. For example, (m = 5, n = 0) ,  
f sin5 x dx = f sin4 x sin x dx 

= f (l - cos2 x )2 sin x dx 
= f ( 1 - 2 cos2 x + cos4 x) sin x dx 

2 l = - cos x + 3 cos3 x - 5 cos5 x . 
Integrals of the form f sinm x cosn x dx where both m and n are even are handled using formulas ( 1 8.5) and ( 1 8.6), which express the squares in terms of cos 2x. For example, (m = 0, n = 2), 

I 2 d f l + cos 2x d COS X X = 2 X 

l l . = 2x + 4 sm 2x . 
It is sometimes more convenient to have the answer expressed in terms of sin x and cos x rather than sin 2x. In this case, use ( 1 8.3), which gives sin 2x = 2 sin x cos x ,  so 

l 1 . 1 l 
2x + 4 sm 2x = 2x + 2 sin x cos x .  

Here i s  another example, involving both the sine and cosine to an even power: 
I sin4 x cos2 xdx = I ( 1 - �os 2x ) 

2 ( 1 + �os 2x ) dx 
= t f ( 1  - 2 cos 2x + cos2 2x) ( l  + cos 2x) dx 
= � f ( 1  - cos 2x - cos2 2x + cos3 2x) dx .  

The integral J cos2 x dx was done above, and J cos3 x dx uses the trick for m or n odd: 
/ cos3 2x dx = f cos2 2x cos 2x dx 

or 

= f ( l  - sin2 2x) cos 2x dx 
1 . 2 1 3 = 2 sm x - 6 sin 2x. 

Integrals involving secants and tangents use the substitutions 
u = tan x ,  du = sec2 x dx, 

u = sec x ,  du = sec x tan x dx .  

( 1 8. 10) 
( 1 8. 1 1 ) 
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For example, using ( 1 8 . 1 0), we get 

Using ( 1 8 . 1 1 ) we have 

/ tani x sec2 x dx = f u i du 

3 5 = - U 3  
5 3 5 = 5 tan 3 x .  

/ sec3 x tan x dx = f sec2 x sec x tan x dx 

= f u2du 

1 3 = -u 3 
1 = 3 sec3 x .  

Understanding Calculus 

The following integral pops up curiously often, and it will pay you to remember that it is written down here: 
/ sec3 x dx = } csec x tan x + log I sec x + tan x I ) ,  ( 1 8 . 1 2) 

Notice that the integral is the average of the derivative of sec x and the integral of sec x ;  this is a coincidence, but it makes the formula easy to remember. It is easy to check ( 18 . 1 2) by differentiating (Problem 1 8.25). 

18.1 f sin3 x cos x  dx 

18.2 f sin � x cos x dx 

18.3 f cos5 x sin x dx 

18.4 f c�
s x  

dx sm x 

PROBLEMS 

18.S f cos3 x dx = f (f - sin2 x) cos x dx 

18.6 f sin x cos3 
x dx 

18.7 f sin3 x dx 

18.8 f .Jcosx sin x dx 

18.9 f cos2 x sin3 x dx 

18.10 J sin2 
xdx . Write the answer in terms of sin x and cos x . 

18.11 J sin2 x cos2 x dx . Write the answer in terms of sin x and cos x .  
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18.12 f cos4 x dx 

18.13 f cos4 x sin2 x dx 

18.14 f sec2 2x dx 

18.15 / tan2 x sec2 x dx 

18.16 / tan2 x dx 

18.17 / sec4 3x tan 3x dx 

18.18 / tan x 
dx sec x 

18.19 / Jianx sec2 x dx 

18.20 / tan3 x dx = f (sec2 x - I )  tan x dx 

18.21 / I + sin x 
dx 

cos x 

18.22 j sec3 4x dx 

f sec 2x 18.23 ----:i--2 
dx 

COS X 

18.24 / tan x 
dx cos x 
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18.25 Verify formula ( 1 7 . 1 2) by showing that the derivative of ½ [sec x tan x+log I sec x+tan x I ]  is sec3 x.  
18.26 (i) Integrate by parts to derive the reduction formula J sin" x dx = - � sin"- 1 x cos x + ( ";' ) J sin"-2 x dx . (ii) Use the formula twice to integrate J sin4 x dx . 
18.27 Find the area under y = sin 2 x cos2 x for O ::, x ::, I ·  
18.28 Find the volume obtained by rotating around the x-axis the area under y = sin2 x,  0 ::,  

X ::, 1C .  

18.29 Let x I be the largest negative number where the curves y = cos x,  y = sin x intersect, and let x2 be the smallest positive number where the curves intersect. Find the area between 
y = cos x and y = sin x for x 1 ::: x :::  x2 • 

18.30 Show that for integers m and n ,  J:" sin mx cos nx dx = 0. Hint: sin mx cos nx = Hsin(m + n)x + sin(m - n)xJ. 
18.31 Show that for all integers n ,  J:'' sin2 nx dx = J/' cos2 nx dx = rr . 
18.32 Find the indefinite integrals (cf. Problem 1 8.30). (i) J sin 3x cos 2x dx (ii) J sin x cos 5x dx 





Trigonometric Substitution 

Integrands that contain one of the radical expressions J a2 - x2 , J a2 + x2 , J x2 - a2 can frequently be simplified by making a trigonometric substitution. 
For Ja2 - x2 , let x = a sin 0, dx = a cos 0 d0 . 
For J a2 + x2 , let x = a tan 0, dx = a sec2 0 d0 .  
For Jx2 - a2 , let x = a sec 0, dx = a sec 0 tan 0 d0. 

With these substitutions the radicals simplify as follows: 
J a2 - x2 = J a2 - a2 sin2 0 = a cos 0 ; 
J a2 + x2 = J a2 + a2 tan2 0 = a sec 0 ;  
Jx2 - a2 = Ja2 sec2 0 - a2 = a tan 0 . 

( 19. 1 )  
( 1 9.2) 
( 19.3) 

( 1 9.4) 
( 1 9.5) 
( 1 9.6) 

In these substitutions we assume that a > 0 and 0 is such that the right sides of ( 19 .4 ), ( 19 .5), ( 1 9.6) are positive. 
EXAMPLE 1 9.1 

Find the area of the top half of the circle x2 + y2 = 4. 
The equation of the top half of the circle is y = J 4 - x 2 , and the area is 

( 1 9.7) 

We make the substitution x = 2 sin 0 ,  dx = 2 cos 0 d0 .  When x = -2, sin 0 = - I  and 0 = -f .  
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108 Understanding Calculus 
Similarly, when x = 2, sin 0 = I and 0 = f . Therefore, the new integral is 

2 n 1 J4 - x2 dx = 1: J4 - 4 sin2 0 2 cos 0 d0 
-2 - 7  

= 1� 2J1 - sin2 0 2 cos 0 d0 
- 7  

= 4 1  � cos2 0 d0 
- 7  4 1�  = - ( I  + cos 20) d0 2 - � 

The term sin 20 is zero at both f and -f .  As expected, the answer is ½ rr (2)2 = 2rr . 
EXAMPLE 19.2 

f J4 - x2 dx . 

( 1 9.8) 

The integrand here is the same as in Example 19 . 1 ,  but here we want an antiderivative -a function of 
x - rather than a number. Make the same substitution as in Example 19 . 1 ,  ignoring the limits, and follow the calculations down to the fifth line: 

f J4 - x2 dx = 2 [e + � sin 20J . 
To turn the right side back into a function of x, we use 0 = sin - I ½ ,  and sin 20 = 2 sin 0 cos 0 ;  thus, 

f J4 - x2 dx = 2[0 + sin 0 cos 0] .  
From Figure 19 .  I we see that i f  sin 0 = I ,  then cos 0 = J 4 - x2 /2, and so 

EXAMPLE 19.3 1 3 J9 + x2 dx . 

f 
r_;--;; 

[ 
X X �

] v 4 - x2 dx = 2 sin- 1 2 + 2 • 2 
I X  I r_;--;; = 2 sin- - + -xv4 - x2 • 2 2 

cos(sin- 1 1) = ½ ✓4 - x2 

X 

Figure 19.1 

Here we let x = 3 tan 0, dx = 3 sec2 0 d0 . When x = 0, tan 0 = 0 so 0 = 0. When x = 3, tan 0 = l so 
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0 = f .  Therefore, we have 

3 " 1 J9 + x2 dx = L' J9 + 9 tan2 0 3 sec2 0 d0 
= 1 f 9✓sec2 0 sec2 0 d0 
= 9 1 f sec3 0 d0. 

Using equation ( 18 . 12) from the last chapter, 1
¾ 

9 " 9 sec3 0 d0 = - [sec 0 tan 0 + log l sec 0 + tan 0 1 ]; 0 2 

EXAMPLE 1 9.4 

f J9 + x2 dx . 

9 [  rr rr I rr rr l ] = 2 sec 4 tan 4 + log sec 4 + tan 4 - sec 0 tan 0 - log l sec 0 + tan 0I 
= ;  [✓-i - 1  + log l✓-i + 1 1 - 0 - 0] 
= ; ( ✓-i + log I ✓-i + l I) . 
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This is the same integrand as Example 19 .3, but now we want an antiderivative. With the same substitution, 
x = 3 tan 0, and the same calculations we arrive at 

f J9 + x2 dx = 9 f sec3 0 d0 
9 = 2 [sec 0 tan 0 + log I sec 0 + tan 0 I ] .  

From Figure 19 .2  we see that if tan 0 = i ,  then sec 0 = ✓9 + x2/3. Hence, 
f J9 + x2 dx = � [� · � + log I � + i i] 

= � xJ9 + x2 + � log IJ9 + x2 + x i  - � log 3 .  The last step uses 
1 ✓9 + x2 + x l I r,::-:-;;  I log 3 = log v 9 + x2 + x  - log 3 .  

We can discard the constant - � log 3 since antiderivatives are unique only up to an additive constant, and we write the antiderivative as 
f J9 + x2 dx = � xJ9 + x2 + � log IJ9 + x2 + x i .  

X 

Figure 19.2 3 
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EXAMPLE 1 9.5 

f _Jx_2_-_1 
dx . 

X 

Understanding Calculus 

Here the substitution is x = sec 0, dx = sec 0 tan 0 d0 . Since we want an antiderivative as a function of 
x, we will need the triangle of Figure 1 9  .3 .  With the substitution we get 

EXAMPLE 1 9.6 

f dx 
(a2 + x2)2 · 

f 
Jxi-=1 f Jsec2 0 - 1 
--- � = ---- � 0 � 0 @  

x sec 0 

= f tan2 0 d0 

= f (sec2 0 - l ) d0 

= tan 0 - 0  

= Jxi-=-r - sec- 1 x .  

tan(sec-1 x) = ✓ x2 - I 

Figure 19.3 

This integral does not involve a radical, but it is an important example of a rational function of a type we 
did not cover previously. We let x = a tan 0, dx = a sec2 0 d0 . I dx I a sec2 0 d0 

(a2 + x2)2 
= [a2 ( 1  + tan2 0)]2 

= _!_ f sec2 0 d0 
a3 sec4 0 

= _!_ f cos2 0 d0 
a3 

= - - 0 + - sin 20 
l I [ I ] 

a3 2 2 

I = 
2a3 [0 + sm 0 cos 0] . 

From Figure 1 9.4 we see that if tan 0 = x/a, then sin 0 = x/Ja2 + x2 and cos 0 = a/Jx2 + a2 . Hence, 

I dx I 
[ I X ax 

] (a2 + x2)2 
= 

2a3 tan- � + 
x2 + a2 

( 19.9) 
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Figure 19.4 

Recall the definitions of the hyperbolic cosine and hyperbolic sine: 
1 1 cosh x = - (ex + e-x ) ;  sinh x = - (ex - e-x ) .  
2 2 
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The hyperbolic functions can also be used to simplify integrals involving radicals, using the following identities, which are similar to the familiar trigonometric identities . 
.!!_ cosh x = sinh x ; dx 

d - smh x = cosh x ; dx 
cosh2 x - sinh2 x = I ;  

I cosh2 x = 2 ( 1  + cosh 2x) ; 
sinh 2x = 2 sinh x cosh x .  

( 1 9. 10) 
( 19. 1 1 ) 
( 1 9. 1 2) 
( 19. 13) 

The function sinh x is strictly increasing on the whole line, and its inverse is denoted sinh- 1 x. The function cosh x is increasing on [0, oo),  and we let cosh- 1 x denote the non­negative number y such that cosh y = x .  The functions sinh- 1 x, cosh- 1 x can be expressed in tenns of the logarithm, as we show next. Let y = sinh- 1 x, so sinh y = x ;  then we have 
I V y - (e· - e- ) = x ,  
2 

eY - 2x - e-Y = 0, 
e2Y - 2xeY - I = 0. 

The last equation is quadratic in e.v , so 
.v 2x ± J4x2 + 4  � e = ------ = x ± v x� + I .  2 ( 1 9. 14) 

Since eY > 0 and x - .Jx2+l" is negative, we must have the plus sign in ( 19  . 14 ), and 

EXAMPLE 1 9.7 f Ja2 + x2dx . 

eY = X + .Jx2+1", 
y = sinh- 1 x = log(x + .Jx2+I°). ( 19. 15) 
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We let x = a sinh u , dx = a cosh u du, and use the identities ( 19. 10), ( 19. 1 1 ), ( 19. 1 2), ( 19. 1 3). 

j Ja2 + x2 dx = j Ja2 ( 1  + sinh2 u) a cosh u du 

= j a2 cosh2 u du 

02 j = 2 
(1  + cosh 2u) du 

a2 
= 

2
[u + sinh u cosh u] 

= a; [sinh- 1 (�) + �✓I + (�)2] 

=
a
; [log (� + J(�}

2 
+ l) + � -Ja_2

0

+_x2

] 

a2 I = - log(x + Jx2 + a2) + - xJa2 + x2 . 
2 2 

In the last step we discarded the constant ( �)  ( - log a). 

19.1 1_: �dx 

19.2 f �dx 

19.3 j x2dx 
J4 - x2 

19.4 { x�dx 

PROBLEMS 

19.5 j xdx Do this two ways-trigonometric substitution and u-substitution. 
� 

19.6 f x2dx 
3 

( 1  - x2) 2 

19.7 f dx 
3 

(9 - x2) % 

19.8 j dx Let x = J3 sin 0 .  
J3 - x2 

19.9 j dx Use x = a cos 0 .  
xJa2 - x2 

19.10 Find the area inside the ellipse � + � = I (i.e., twice the area under the curve y = 
'1.Ja2 - x2) .  a 
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19.11 / � I + x2 

19.12 J � 
4 + x2 

19.13 / dx 
x2.Jt+x2 

I Jx2 - 4  19.14 x 
dx 

19.15 f � 
X X2 - 4  I x2dx 19.16 c,-,;. ,v x2 - 9 

19.17 / � dx 

19.18 / dx , 2 ( I + x-) I x + I  19.19 2 2 dx 
( I + x ) separately. 

Do this two ways. 

Write as the sum of two fractions, and integrate the two fractions 
19.20 The answer in Example 1 9. 15  involves sec- 1 x, which we haven't used before. Use Figure 19.3 to show that sec- 1 x = tan- 1 Jx2=1. Differentiate sec- 1 x as usual by letting 

y = sec- 1 x, sec y = x. Then compare with f; tan- 1 ✓xr-=1. 19.21 A small weight at (a ,  0) is attached to a string of length a that initially lies along the x-axis from O to a. The end of the string is moved up the y-axis, pulling the weight along a curve called a tractrix. Find the equation of the curve. Hint: When the weight is at (x .  y ), the string is the hypoteneuse of a right triangle whose horizontal leg has length x and whose vertical leg along the y-axis has length J a2 - x2 • Therefore. ;/; = - � - Integrate to get y as a function of x .  Note: If you prefer more exciting imagery. imagine (x ,  y) to be the position of a fast attack submarine, tracking its target at a constant distance, a, while the target sails due north along the y-axis. 19.22 Verify ( 19 . 1 1 ) ,  ( 19 . 1 2), ( 1 9. 1 3) . 
. I 19.23 Show that smh2 x = 2 [cosh 2x - I ] .  

19.24 Let (x , y) be a point on the curve formed by a flexible cable that is suspended at two points-for example, a telephone line. Assume the low point on the curve is at (0. a) .  If s is the weight of the line between (0, a) and (x , y ), then parametric equations of the curve are 
x = a sinh- 1 � ;  y = Ja2 + s2 . a 

Solve both equations for 5- and eliminate the parameter s .  Show the Cartesian equation is y = a cosh � - (Such a curve is called a catenary.) 19.25 (i) Use a trigonometric substitution to show 
f � = 1og(x + Jx2 + a2 ) .  

a2 + xi 
(ii) Use a hyperbolic substitution to show 

f __ d_x_ = sinh- 1 :: .  Ja2 + xi a 
(iii) Use ( 1 9. 1 5) to show that the two answers differ by a constant. 
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19.26 Find a formula for cosh- 1 u in terms of the logarithm. Hint: The ambiguity of the plus or minus sign is solved by noticing that u + .Jui--=-1 = �. so log(u + .Jui--=-1) = 

u-,v u2 - I  - log(u - .Jui--=-1). For any given u > 1 ,  there are two numbers x and -x such that cosh x = cosh(-x) = u .  By definition, cosh- 1 u is the positive one of these numbers. 19.27 Show that x = a cosh t, y = b sinh t are parametric equations of a hyperbola. (Recall that 
x = a cos t ,  y = b sin t are the parametric equations of the ellipse � + f = 1 .) 



Numerical I ntegration 

We have devoted several chapters to techniques for finding antiderivatives, and we can, indeed, 
find antiderivatives of many common functions. However, many simple functions do not have 
antiderivatives that can be written in terms of our familiar formulas. For example, �2 , s�x , 
./f=x3 are functions for which no integration technique will work. In spite of this, we might 
well need to know a numerical answer for definite integrals such as 

{ ' [ ! 
( sinx) { ' 

lo 
ex

2 dx, 1� 7 dx, lo �dx. 
4 

To get an approximate answer for integrals like these, or indeed for any definite integral, we 
can go back to the definition of the definite integral as the limit of Riemann sums of the form 

n 

L f(c;)(x; - X;- 1 ) . (20.1) 
i = l  

Here {xo, x 1 , . • •  , Xn } is  a partition of the integration interval, and c; is  a point chosen from the 
ith subinterval. 

We will calculate a Riemann sum approximation for the simple integral Ji3 � dx. We 
know the answer is log 3, and this will allow us to see what kind of accuracy we get. Partition 
the interval [ I , 3] into eight equal subintervals with the points { 1 , ¾ , � , ¾ , } , ? , � ,  ¥-, ¥ } . We 

·11 h "d . " th 9 I I  1 3  23 d I w1 use t e ffil pomts 1or e c; ,  so c1 = 8 , c2 = 8 , CJ = 8 , ... , cs = 8 , an x; - X;- 1 = 4 
for all i .  Now calculate: 

1 
[
8 8 8 8 ] L f (c;)(x; - X;- i) = 4 9 + ii + 13 + · · · + 23 1= 1  

= 2 (! + 2- + _!_ + . . .  + _!_] 
9 11 13 23 

= 2(.54816) = l .09632. 
The eight-place approximation to log 3 is l.0986123, so our error is about .002. 

The so-called midpoint rule used here effectively uses a polygonal path joining the points 
(xo, /(xo)) ,  (xi , /(x1 )) ,  ... , (xn , /(xn)) to approximate the graph of f(x) . Since most graphs 
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are curved rather than straight, we will get much better results by approximating the graph of f (x) by segments of parabolas. Parabolas are curved. and they are algebraically the simplest 
curves next to straight lines. 

Here is the idea: We divide up the integration interval [a , bJ into an even number, n, 
of equal subintervals with the partition {xo, x1 , . . .  , Xn } .  Let y; = f (x; ), so the curve passes 
through the points (xo, Y o), (x1 , y1 ), . . .  , (xn , Yn ), There is exactly one parabola through the 
first three points (xo, Y o), (x1 , y1 ), (x2 , y2 ), and we can find the area under that parabola 
exactly. If the intervals [x;- 1 , x; ] are small, then the parabola will closely approximate the 
curve y = f (x ) ,  and the area under the parabola will approximate f �2 f (x) dx. We do the 
same thing with the next three points (x2 , y2 ), (x3 , y3 ), (x4 , y4 ), and so on, and we use the total 
area under the � parabolas as our approximation to J: f (x) dx. (See Figure 20. 1 . ) 

Y = f(x) 

Figure 20.1 

Suppose we partition [a , bJ into n subintervals, each of length h = <b:a> .  To find the 
area under the parabola through (xo, Y o), (x1 , Yi ), (x2 , Y2 ), we move the three points over so 
that the middle point lies on the y -axis. This simplifies the calculation but doesn't change the 
area. The three points are then (-h , y o), (0, yi ), (h , Y2 ). It is easy to check (Problem 20.6 ) 
that the parabola through these points is 

l x2 1 x 
P(x) = -(y o+ Y2 - 2yi )- + -(y2 - Y o)- + YI 2 h2 2 h ' 

and the area under p(x) is 

1h h 
-

h 

p(x) dx = 
3 [Y o + 4yi + Yz]. 

(20.2 ) 

(20.3 ) 

Now add up the areas under the I parabolas (and you see why n must be even ) to get 
Simpson's Rule for n points: 

Ii h h 
Sn = 

3 [y o  + 4y1 + Y2] + 3 [y2 + 4y3 + y4J + · · · + 3 [Yn-2 + 4Y11- 1 + Y11 J 

h 
= 

3 [y o  + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 4Y11- l + Yn J ,  
(20.4 ) 

We will use Simpson's Rule with n = 8 to approximate Ji3 ¾ dx, and compare the result 
' th 1 · . H h l d th . . . . I 5 6 12 w1 our ear 1er estimate. ere = 4 , an e partition pomts are agam , 4 , 4 , . . .  , 4 so 

Y o, . . .  , Yn are the reciprocals 

4 4 4 4 1' 5' 6 ' 7 ' " ' ' 12 · 
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Hence, 
Ss = 1 · � [ 1 + 4 ( 1) + 2 ( i) + 4 (;) + 2 ( i) + 4 ( �) + 2 ( �) + 4 ( :l ) + �] 

l [ l 4 2 4 2 4 2 4 1 ] = 3 4 + 5 + 6 + 7 + 8 + 9 + 10 + ii + 12  
l = 3 (3 .296176) = l .09873 .  

Comparing this with log 3 � 1 .0986123, we see that the error is  about .0001 ,  considerably less than the .002 error with the midpoint rule. Suppose we do not know the "exact" value of J/ � dx, so we do not know how good an approximation Ss is. We then try a larger n and smaller h to see how the approximation changes. For example, we compute S10 (h = 0.2) and S20 (h = 0. 1 )  and compare with S8 : 

Ss = l .0987253, 
S10 = l .0986606, S20 = l .0986 155.  

The error in S,, is less than � ,  where K is a constant that depends on the function f (x) and the interval [a , b] . It follows that doubling n will cut the error by a factor of 16  and thus provide at least one more decimal place of accuracy. Looking at S8 and S10  as given above, we would guess that log 3 = 1 .0986 or 1 .0987. Knowing that S20 is one decimal place more accurate than S10, we can then be pretty sure of l .0986. In many cases, a reasonable decimal approximation to a definite integral can be obtained by Simpson's Rule with less effort than finding an antiderivative and evaluating it. We illustrate with the following integral, which is Example 19 .3 of the last chapter: 
13 J9 + x2 dx . 

With the substitution x = 3 tan e, we arrive, after much calculation, at 
3 !e lo J9 + x2 dx = 9 1 4 sec3 e de 

9 !e = 
2

[sec e tan e + log I sec e + tan e 1 ]0 
9 = 
2

[✓2 + log l l + ✓2 1 ] .  
There are many time-consuming steps left out of the above outline. Now to get a decimal answer, we consult the calculator and find 

1 3 J9 + x2 dx = 10.330142. 
Now use Simpson's Rule with, say, n = 6, h = .5 ,  and we get 

s6 = f [ J9 + 4J9+.si + 2�+ 
+ 4J9 + 1 .52 + 2✓9 + 2.02 + 4✓9 + 2.52 + J9 + 32] 

= 10.330122. This is close enough for most purposes and requires very little effort. 
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PROBLEMS 

20.1 Estimate log 2 = Ji2 � using S4 and S10 . 20.2 Find S10 (h = i\i) for fo1 
� = tan- 1 1 = f .  

Understanding Calculus 

20.3 Find S10 for Jd .Jr-=? dx. (This is the area of one-quarter of the unit circle, so the answer is p 20.4 (a) Find an exact answer for fo1 ✓9 + x2 dx, using the substitution Jd ✓9 + x2 dx = 
1an-l I 3 rin I f0 

3 9 sec 0 dO, and the 1 ,  3, -v 10  triangle to express sec 0 when tan 0 = 3 . (b) Approximate the exact answer of (a) as a decimal. (c) Calculate S10 for the integral. 20.S Find S4 (h = i)  and S8 (h = �) for f1 sin x2 dx. (There is no elementary antiderivative for sin x2 .) 20.6 (a) Verify that the quadratic function p(x) of (20.2) goes through (-h ,  Yo) ,  (0, yi ),  (h, Y2) .  (b) Verify that th p(x) dx = HYo + 4y1 + y2] .  20. 7 Explain why Sn , for any n, gives the exact answer to J: (Ax2 + Bx +  C) dx, for any quadratic function and any interval. Start with n = 2. 20.8 (i) Check that S2 (with h = (b·t> , xo = a, x1 = <at> , x2 = b) gives the exact answer to 
J: x3 dx. 

(ii) Show that Simpson's Rule with n = 2 gives the exact answer for J: Q(x) dx for any cubic polynomial Q(x), and any interval [a , b] . 



Lim its at oo; Sequences 

In this chapter we study the limiting behavior of functions f (x) as x ---+ oo. We write 
limx➔oo f (x) = L ,  or f (x) ---+ L as x ---+ oo, provided the difference I /(x) - L I 
becomes arbitrarily small for all sufficiently large x. If the function f (x) becomes arbitrarily 
large, we write limx➔ oo f (x) = oo, or f (x) ---+ oo as x - oo. The usual rules for limits 
apply, so the limit of a sum is the sum of the limits ,  and so on. 

The limit 
. X 

hm -- = l 
x➔oo X + 1 

is an obvious example of the kind of behavior we consider. More generally, limits of rational 
functions at oo are all easy to evaluate simply by dividing both numerator and denominator by 
the highest _power of x which occurs in either. 

EXAMPLE 21 .1 
( ) I. x2-3x (b) J " 5x4+3x2 a Imx-+oo 4x3-ir+I ; Imx-+oo 1x4+WOx ;  ( ) I . x2+2x C 1m,t-+OO 3x+5 • In part (a) we divide top and bottom by x3 : 

x2 3x 1 - 4 Jim ----- = Jim x x- = 0. x-+oo 4x3 - 2x + I .r➔oo 4 - -:,r + -;x 
Since the numerator on the right tends to 0 and the denominator to 4, the limit is 0. In (b) we divide top and bottom by x4 : 

Jim 5x4 + 3xz = Jim 5 + '¾ = � x-+oo 7x4 + lOOx x-+oo 7 + � 7 
In (c) we divide top and bottom by x2 : 

I . x2 + 2x . 1 + t 1m --- = hm -- = oo. x-+oo 3x + 5 x-+oo 1 + J.,. 
X x-Since the numerator tends to I and the denominator to 0, the "limit" is oo. 

It is clear from this example that if P (x) and Q(x) are polynomials, then �i;\ ---+ 0 if 
Q (x) has larger degree than P (x), and �i;\ ---+ oo if P(x) has larger degree than Q(x), and 
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the lead coefficients of P(x) and Q(x) have the same sign. If P(x) and Q(x) have the same 
degree, then ��;\ -+ � where an and bn are the lead coefficients of P (x) and Q(x). 

If a limit isn't obvious, then it is probably one of the following indeterminate forms: �, g ,  oo . 0, 100
, or 00° . For example, 

log x oo 
(i ) lim -- has the form - ;  

(ii ) 

(iii) 

(iv ) 

(v ) 

x➔oo x 00 
! 0 

lim .2..._1 has the form - ; 
x➔oo - 0 logx 

lim x log (1 + �) has the form oo • 0; 
x➔oo X 

lim (1 + �)
x 

has the fonn 100
; 

X-+00 X 

lim x¼ has the fonn 00° . X➔OO 
Notice that (i ) and (ii ) are exactly the same limit, and this illustrates how g fonns can 

be rewritten as � and vice versa. Our standard weapon against the indetenninate fonns is 
!'Hospital's Rule. Since !'Hospital's Rule applies only to the fonns g and � .  the others must 
first be put in one of these fonns. For example, the oo • 0 fonn of (iii ) can be put in the g fonn 
as follows: 

( 
1 

) 
log ( 1 + ! ) 

lim x log 1 + - = lim 
! 

x 
x➔oo X x➔oo 

The fonns 100 and 00° are treated by considering the limit of the logarithm. Taking the 
logarithm changes both 1 00 and 00° to the fonn oo • 0 ( or O • oo ), which can then be treated 
like (iii ) above. 

l'Hospital's Rule for g or � as x -+ oo: If both f (x) and g(x) approach zero 
"f b h f . h . fi . 1· . h 1 · /(x) 1 · /'(x) as x -+ oo, or 1 · ot uncuons ave an m mte 1m1t, t en tmx-+oo g(x) = tmx-+oo g'(xJ 

provided that f'.�� approaches a finite limit or tends to infinity, that is, that limx ➔oo fl;; = L 
• f'(x) or hmx➔ OO g' (x) = 00. 

EXAMPLE 21 .2 

l. log x !ill --
x---+oo X This has the form � so !'Hospital's Rule will apply if � has a limit. Here 

so 
Jim J' (x) = l = 0. 

x-+oo g' (x) 1 
logx 1 lim -- = lim L. = 0. 

X--+00 X X---+OC l It is not really necessary to check first that limx-.oo � makes sense, for that becomes clear in the computation; just write 
lim f(x) = lim J'(x) . x-+oo g (x )  x-.oo g' (x )  
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EXAMPLE 21 .3 

lim x log (1 + !) . 
X➔ OO X First put this in the form i :  

( 1 ) log ( l  + !) lim x log 1 + - = lim 1 x 
X-+00 X X➔OO -

X 

i:t-r (-M = lim ' 1 X➔OO - ;2" 

I. 1 = 1m --1 = 1 .  
X➔OO 1 + ; 
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A sequence is a function that is defined only for positive integers, and we will be 
interested principally in limits at oo of sequences. We use the notation {xn } to denote the 
sequence whose values are x1 , x2 , x3 , . . . .  For sequences, Xn is used in place of the usual 
functional notation x(n). A sequential limit will be indicated by limn➔oo Xn = L, or Xn � L 
as n � oo. 

If f(x) � L as x � oo, and we let xn = f(n), then clearly Xn � L as n � oo. 
For example, from Example 21.1, we have 

n2 - 3n 
lim 3 = 0, n ..... oo 4n - 2n + 1 

and Example 21.2 shows that 
. log n 

hm -- = 0. n➔OO ll 

From Example 21.3 we get 

lim n log (1 + !) = lim log (1 + !)
n 

= 1, n➔oo n n➔oo n 
and since the logarithm of (1 + ¾ t approaches 1, we have the important limit 

(1 + �r � e1 = e. 

Now consider the following four sequences, which we will show represent different 
orders of growth as n � oo: 

{(log nl} .  {nP } , {an } , {n! } ; (21.1 ) 
here k > 0, p > 0, and a > l are fixed positive numbers. The notation n!, read n-factorial, 
denotes the product of the first n positive integers: 

n! = 1 · 2 • 3 · • • • • n. 
Each of the sequences (21. l) approaches oo as n � oo, but they grow at very different rates, 
so that for any k > 0, p > 0, and a > 1, 

For example, 

(log nl nP an 
-- � 0; - � 0· - � 0. (21.2 ) nP an ' n! 

(logn )5 ✓n � o; 1ooon -- � o ' . 
n .  
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We use l'Hospital's Rule to show that � - 0 if p > 0, and this of course shows that � - 0. 

. log x . � . l 1 hm -- = hm -- = hm - - = 0. 
X➔ OO xP X ➔ OO pxP- 1 X➔ OO p xP We again use !'Hospital's Rule to show that f,- - 0 for p = 1 ,  2, 3 ,  . . .  and hence for any p > 0. If a > 1 , then 
• X 1 hm - = lim -- = 0; (2 1 .3) x➔oo ax x➔oo ax log a . x2 • 2x 2 x hm - = hm --- = -- lim - = O; (2 1 .4) x➔oo ax x➔oo ax log a log a x➔oo ax 

x3 3x2 3 x2 lim - = lim -- = lim - = 0. (2 1 .5) x➔oo ax x➔oo ax log a log a x➔oo ax In equations (2 1 .3)-(21 .5) we used the result (2 1 .3) in the last step of (2 1 .4), and the result of (21 .4) in the last step of (21 .5). The process obviously can be continued to show that � - 0 for all positive integers n, and hence for arbitrarily large numbers p, and hence for any positive number p. 

EXAMPLE 21 .4 (log n)3 Show --- --- 0 for all p > 0. 
nP 

Solution We write nP = n � · n � · n � .  Since � > 0, <1:r) - 0. Therefore, 
(log n)3 _ ( log n ) 3 0 

nP -
n � - · The argument of Example 21 .4 will work for any power of log n, so for any k and any p > 0, 

EXAMPLE 21 .5 F. d 1· (log n)2 m 1m --- . 
n-+oo 3" 

Solution 

(log nl - O. 
nP 

Since 3" dominates nP and nP dominates (log n)2 for any p, it follows that 3" dominates (log n)2 • We can make an explicit comparison as follows: 

EXAMPLE 21 .6 . . n4 log n Fmd hm ---
n--+oo en 

Solution Since log n < n for all large n, 

(log n)2 = ( log n ) 2 n2 
- 0 . 0 = O. 3" n 3" 

n4 log n n5 lim --- < lim - = 0. 
11--+00 e" - n--+oo e" 

The eyeball rule for fractional sequences like those in Examples 2 1 .5 and 2 1 .6 is to search out the dominant term - 3n in Example 2 1 .5 and en in Example 2 1 .6. If the dominant term is in the denominator, the fraction tends to zero; if the dominant term is in the numerator, the fraction tends to oo. 
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EXAMPLE 21 . 7 
F. d 1 . 

n w + Jn iog n 
m 1m ----- . n➔oo n !  + n2 log n 

Solution 
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The dominant term is n !, so the fraction tends to zero. We can make an explicit estimate by using Jn < n 9 
and log n < n to increase the numerator, and dropping the term n2 log n to decrease the denominator. 
Thus, 

n 10 + Jn log n n 1 0  + n9 • n n 1 0  
----- < ---- = 2 · - - 0. 

n! + n2 log n n !  n !  

EXAMPLE 21 .8 
lim n ¾ .  

n ➔ OO  

This has the indeterminate form 00° . For any such indeterminate exponential expression, we first take 
the logarithm 

Jim log n ¾  = lim ! log n = 0. 
n--+ 00  11➔00 n 

Since the logarithm tends to zero, the function tends to e0 = I ; that is, 

lim n ¾ = 1 .  
n➔ OO  

To see why � - 0, no matter how large a is ,  let N be some number larger than 2a , n . 
so fi < ½ - Then for n = N + k,  

a" 
[ 

a · a · a · • • · · · a 
] ( a ) ( a ) ( a ) 

n !  
= 

1 · 2 · 3 · · · · · N 
. 

N + l N + 2 
. . . N + k 

< [�J (�Y 
Since N i s  fixed, � i s  a fixed number. and ( ½ l - 0 ,  � - 0 as n = N + k - oo. 

In our later works we will be concerned with functions of the form a11x11
• For these 

functions, the critical question will be for what values of x is lim11 ..... 00 a11x" = 0, and for what 
values of x is lim11 ..... 

00 
a11x" = oo. 

EXAMPLE 21 .9 
Find the values of x such that ;.t!"n -----+ 0, and the values of x for which the limit is oo. 
Solution 
The dominant terms are the exponentials lx l" and 2n , so we write 

n2 1x l" n2 

j
x

j " 211 log n = 
log n 2 

If I 1 I < I ,  the terms approach zero /ince the sequence is the same as 00;;>•" with a = I �  I > I .  If 
1 1 1  > l ,  the terms tend to oo, since 70;

1

: - oo if a � l .  
The same sort of argument shows that 

(log n) l x l n 
----;;z 2 - o if lx l :s 2, 

(log n) j
x

j
" ----;;z 2 - oo if lx l > 2. 
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We finish with a computation that shows how !'Hospital's Rule for § as x � oo follows from l'Hospital's Rule for § as x � 0+: 

x3 21.1 lim -1 --3 X➔ OO - X  . 2x + l 21.2 hm -2--3 X➔OO X + 21.3 lim i-x 
x➔OO 

21.4 lim sin x 
x➔ oo 5x + l x4 21.5 lim -
X-+00 eX 

21.6 lim (log x)2 

X ➔ OO  X n2 21.7 lim -02 n➔ OO  (1 . )" 
21.8 lim ,./ii, 

n➔OO n !  
21.9 lim IO" 

n➔ OO  n! 
21.10 lim n log n 

n➔OO 2n 

21.11 lim n sin ! 
n➔OO n 21.12 lim 2 ¼ 
n➔OO 

n➔OO 

21.14 lim 2" · 3" 
n➔OO 5n n4 21.15 lim 4-n-+oo n 

21.16 lim (l + � )" 
n➔ OO n 

lim /(x) = lim f (¾) 
x➔oo g(x) x➔o+ g (¾) 

= lim f' (¾) (-:r) x➔o+ g' {¼) (-:r) 

= lim f' (¾) 
X➔O+ g' (¾) 

= lim f'(x) . 
X➔ OO g'(X) 

PROBLEMS 

Hint: Consider sinx as x - 0. 
X 

(log n ) 10n 100 100" 21.17 lim ------
n➔oo n !  
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n '  
21.18 lim _:_ 

n ➔ oo en 

2n+I . n2 
21.19 lim ---n➔ oo 3n 

21.20 lim 
log n + n2 

n➔ oo ( ½ )n + ,Jn 
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Find the values of x for which the following sequences approach zero, and the values of x for 
which they approach oo. 

21.21 ! jx jn 

21.22 n3 Jx in 

21.23 (log n; jx jn 

n 
2n j x j " 21.24 n3 
(n2 + l ) Jx in (n2 + I )  

I
x 
I n 21.25 --- = -- -

3n + n  l + f,,  3 
21.26 n ! j x jn 

21.27 
n ! Jx ln !x i" 

(n + 2)! (n + 2) (n + 1 )  

21.28 
(n + 2) ! Jx jn 

n !  





I mproper I ntegrals 

So far all our integrals J: f (x) dx involve bounded functions f (x) on bounded intervals [a , b ] . 
Now we extend the definition to include some unbounded functions and some unbounded 
intervals. Such integrals are called improper integrals. The integral 

14 I - dx 
0 ,Ix 

is an example of an improper integral with an unbounded integrand, and ioo I - dx I x2 

is an example of an improper integral over an unbounded interval. 

(22.1 ) 

(22.2) 

For integrals over unbounded intervals (i.e., intervals of the form [a , oo )  or (-oo, b] ), 
we make the definition: 

100 f (x) dx = lim lb f (x) dx, 
a b➔oo a 

I: f(x) dx = 
0
_!!�

00 
l

b f(x) dx. 
(22.3 ) 

(22.4) 

Here we assume that f (x) is integrable over every bounded subinterval of the interval of 
integration, so all the integrals on the right in (22.3 ) and (22.4 ) make sense. If the limit on the 
right in (22.3 ) or (22.4 ) exists. we say the improper integral on the left converges. 

Consider, for example, the improper integral (22.2 ); by definition, 

{
°" 

� dx = lim f 
b 

� dx 
11 X b➔oo }, X 

= lim _!]b 

b➔oo X I 

= lim [-! + !] = I . 
b➔oo b I 
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Since the limit exists, the improper integral fi°0 -}i dx converges, and its value is I .  If the integrand f(x) is unbounded at one end of an interval [a , b] , we again use a limit to define J: f (x) dx . If f (x) is unbounded at b, but J: f (x) dx exists for every c with 
a < c < b, then we define 

lb f(x) dx = lim le f(x) dx. 
a e➔b- a The notation c � b- means that c approaches b from the left side. If f (x) is unbounded at 

a but integrable on [c, b] for every c between a and b, then we define 
lb f(x) dx = lim {b f(x) dx, 

a e➔a+ le where the limit is taken as c approaches a from the right side of a .  If the limit that defines the integral exists, we say the integral converges; otherwise, the integral diverges, and we attach no meaning to it. As an example of this second type of improper integral, consider the integral 
14 � dx, 

that is improper since Jx � oo as x � 0+. From the definition we have 
f

4 _I_ dx = lim f
4 -1- dx 

lo .Ji c➔O+ le .Ji 
= lim 2,/x]4 

c➔o+ e 

= lim (2✓4 - 2,/c) = 4. 
e➔O+ The most significant improper integrals are those with positive integrands, and we will stick to that case. If f (x) :::. 0, then J: f (x) dx or fa00 f (x) dx represents the area of the region under the curve y = f (x ), and convergence of the integral means that this area is finite even though the region is unbounded. It is clear from this area interpretation that the following comparison theorem holds: If O � f (x) � kg(x) for x :::. a_ and ft g(x) dx converges (so that J

0

00 kg(x) dx converges), then ft f (x) dx converges. In other words, if there is finite area under y = kg(x), then there is finite area under the lower curve y = f (x) .  A similar statement, of course, holds for improper integrals like Ji2 2d_:_x or J; :1 where the integrand is unbounded at one end of the interval. We will pay particular attention to integrals of the form ft f (x) dx, with f (x) :::. 0, since these integrals figure importantly in the study of infinite series. 
EXAMPLE 22.1 100 I 1"" l 
(a) 

1 ,./i 
dx; (b) 

1 x2 dx . 

Using the definition, we calculate as follows: 100 
� dx = lim lb � dx 

I ,v X b-+oo 
I ,v X 

= Jim 2./x]b 
b➔oo I 

= lim (2✓b - 2) = oo. 
b➔OO The limit does not exist, and the integral diverges. 
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The calculation for (b ) is similar, but this time the integral converges. 

100 
_!_ dx = lim lb 

_.!_ dx 
I x2 b➔OO I x2 

= Jim _!] b 

b➔oo X I 

= lim (-! + 1 ) = 1 . 
b➔OO b 

The limit exists, so the integral converges and has the value one ( I ): 100 I 
2 dx = l . 

I X 
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Example 22.1 shows that Ji°" }p dx converges for some p (e.g., p = 2 )  and diverges 
for some p (e.g., p = ½ >- Since � gets smaller on [ l ,  oo) as p gets bigger, there must be a 
critical point P o such that the integral ft" }p dx converges if p > p0 and diverges if p < p0 . 

Here is the calculation: 

J
oo 1 lb 

- dx = lim x-P dx 
I xP b➔oo I 

= lim 
1 

x-p+1 ]
b 

b➔oo -p + l 1 

= lim 
1 

[b-p+t - l ] . 
b➔oo -p + 1 

If p > l ,  then the exponent in b 1 -P is negative, limh➔oo b 1 -P = 0, and the integral converges. 
If p < 1, then 1 - p > 0 and limb➔oo b 1 -P = oo. Therefore, ft" }p dx converges if p > 1 
and diverges if p < 1. If p = 1, the integration formula is different and we check that case 
separately: 

f 00 
� dx = lim {

b 
� dx 

Ji X b➔oo J1 X 

The integral diverges if p = 1. Hence 

= Jim Iog x]
b 

b➔oo I 
= lim (log b - 0 ) = oo. 

b➔oo 

Joo 1 
- dx converges if and only if p > l . 

I xP 
The lower limit in the integrals above was taken to be 1 for simplicity. Of course, the 

lower limit must be positive since }P is unbounded at 0. However, for any a > 0, f0
00 f (x) dx 

converges if and only if ft f (x) dx converges, since the area between x = 1 and x = a is 
certainly finite. 

Integrals over unbounded intervals (-oo, b] are treated in exactly the same way: 

J: f(x) dx = a21!!oo 1
b 

f(x) dx. 

Now consider integrals of the type 

la 1 
- dx, 0 xP 

(22.5 ) 



130 Understanding Calculus 

where a > 0 and p > 0. The convergence or divergence of (22.5 ) does not depend on how 
big a is, so we let a = 1 for convenience. Consider the following two special cases: 

(a ) [
1 

� dx; (b) [
1

� dx. 
Jo vx Jo x 

The same simple integration as in Example 22.1 shows that 

[
1 � dx = lim [

1 
� dx = lim (2 - 2,,/a) = 2, 

Jo y X  a➔O+ }0 y X  x➔O+ 1 1 1 1 1 1 ( I ] 
2 dx = lim , dx = lim - 1  + - = oo. 

o X a➔D+ 0 x- a➔D+ a 
The functions -h for p > 0 are all unbounded at 0, and some integrals converge ( e.g., p = ½ )  
while others diverge (e.g. , p = 2 ). The bigger pis, the faster -h grows as x --+ 0+, and the 
same kind of calculation as we made for integrals fi°0 }p dx shows that 

[
1 

_!_ dx converges if and only if p < 1. 
Jo xP 

There is an obvious similarity between integrals f01 -h dx and integrals ft° x'r dx. For 
positive p, p > 1 if and only if ¼ < I ,  so 

100 _!_ dx and [
1 

� dx 
1 xP Jo x;; 

both converge or both diverge. The geometry makes the situation even clearer. Consider, for 
example, the functions � and 4 .  These functions are inverses of each other, since 

,; X  X 

I I 
-- = --2 = x, # (Jx) 

so their graphs are symmetric about the line y = x. Thus, the two shaded areas in Figure 22. 1 
are equal; that is, 

£ 1 (-1 
- 1) dx = f

00 
_!_ dx = 1 .  

Jo ,Ix 11 x2 

Similarly, the curves y = :1-s and y = --4- are symmetric about the line y = x, and both of the X x l  
following integrals converge: 

fo 1 ( � - 1) dx = 100 
:3 dx = � .  

Figure 22.1 
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EXAMPLE 22.2 1 1 sin x 
(a) -3- dx . 

o x i 
For O S  x S 1 ,  0 S sin x S x . Therefore, 

sin x x 1 
-i- S --r = - . 

x i x i Jx 

Since f01 )x dx converges (p = ½ < 1 ) ,  the given integral with a smaller integrand also converges. 

EXAMPLE 22.3 

100 
� dx . 

, 1 + x  
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First notice that the convergence or divergence of the integral doesn't depend on the lower limit. Since 
�' x l behaves roughly like 3 = -:1r for large x, we make this comparison: 

+x X X 

X X 
-- < - = - . I +  x3 x3 x2 

Since J,00 -!r dx converges (p = 2 > 1) ,  the given smaller integral converges. 

EXAMPLE 22.4 

100 7x dx . 

This integral is improper for two reasons-the integrand is unbounded at 0, and the interval [O, oo) is 
unbounded. All such integrals must be broken up into integrals with a single impropriety, and convergence 
of the integral requires convergence of all the pieces. Thus, we write 

100 
e; dx = [ e; dx + J00 

e; dx, 

and check the two integrals separately for convergence. For O S x S l ,  e-x S 1 ,  so •; S )x,  and the 
first integral converges. For x :::: 1 ,  •; S e-x , and f1

00 e-x dx converges: 

100 
e-x dx = lim lb 

e-x dx 
I b➔oo I 

= lim [-e-x ]f 
b➔oo 

I 
= Jim (e-b + e- 1 ) = - . 

b--+oo e 

Since Ji°° e-x dx converges, f100 -,:;; dx also converges. Therefore, Jo"° •; dx converges. 

PROBLEMS 

Evaluate the integral, or show that it diverges. 

22.1 100 
e-x dx 

1oc dx
s 22.2 

8 X l  

22.3 100 
I :

x

x2 
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22.4 100 __<!!_ , x log x 
22.5 100 xe-x dx 
22.6 f00 

d: 12 X 

22.7 100 d� 
I X 3  

22.s 15 � I X - } 
22.9 {0 1 dx Jo I - x2 

22.10 { I ____!!!__ lo 0-=-i 100 1 22.11 og x dx I X 
22.12 f

1 h Jo I - x2 100 log x 22.13 -2- dx (Integrate by parts with u = log x.) e X 
22.14 f00 

� Jo 9 + 4x 100 dx 22.15 -2-1 X - X 100 I I 22.16 ( � - r.:) dx . 
1 vx + I  vx 

Hint: £TI - ./x = $-TT+Jx · 

Understanding Calculus 

Use the comparison test to tell whether the following converge or diverge. 
22.17 100 

� I 1 + x4 

22.18 f 
00 e-x 2 dx 

}0 l + x 
22.19 100 ( 1  + x3)-4 dx 
2 20 loo 1 + COS X 2. 2 dx I X Find the volume obtained by rotating about the x-axis the following areas: 
22.21 The area under y = � for 1 � x < oo. 22.22 The area under y = e-x for 1 � x < oo. 22.23 The area under y = h, for O � x < oo. 

y l +x2 22.24 The area under y = xe-x for O � x < oo. 22.25 (i) Show that Jo"" xe-x dx = l .  (ii) Use integration by parts with u = x•+I to show that Jo"" x•+ •e-x dx = (n + 1) f000 x"e-x dx. (iii) Use (i) and (ii) to find Jo"" x"e-x dx for n = 2, 3, 4, . . . .  



Series 

We extend the operation of addition from a finite number of terms to an infinite number of terms by taking a limit; that is, we define the infinite sum 
a , + a2 + a3 + · · · + an + · · ·  to be a limit of the finite sums sn , where Sn = a1 + a2 + · · · + an . 

(23 . 1 )  
(23.2) Any indicated infinite sum like ( 1 )  is called a series, and the sum of the series (23 . 1 )  is the limit of the sequence {sn } :  a 1 + a2 + · · · + an + · · · = lim Sn . (23 .3) 

n➔OO The numbers (sn } ,  with each Sn defined by (23 .2), form the sequence of partial sums of the series ( 1 ). The number Sn is the nth partial sum of the series. The following notation for series is convenient: 
00 L an = a1 + a2 + · · · + an + · · · 

n=I This I:-notation can also be used for finite sums. For example, 
5 L an = a1 + a2 + a3 + a4 + as , 

n=I 6 
L2  = 2 + 2 + 2 + 2 + 2 + 2 = 1 2. 
n=l 
n L ak = a, + a2 + · · · + a,, = sn . 

k= I We say the series I::, an converges if the sequence {sn } of its partial sums converges. If the sequence (sn } does not converge, the series diverges. We will frequently omit the range on the indices when dealing with infinite series, and write L an instead of r:: 1 an . 
133 
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If L an is a convergent series, with {Sn } its sequence of partial sums, then Sn - s, and Sn- I - S, SO an = Sn - Sn- I - s - s = 0. A series cannot converge unless the terms tend to zero. The condition an - 0 is Nar sufficient for convergence, only necessary. We will see many divergent series whose terms tend to zero. 

EXAMPLE 23.1 Show that the following series diverge. 
(a) L 2n: l ; (b) L(- I t .  In series (a), an = 2n:i ---+ ½ - The terms approach a limit, but the limit is not zero, so the series diverges. In (b ), the terms (- 1 t oscillate between 1 and - 1 ,  so the sequence Ian ) does not approach a limit, and the series diverges. 

It is easy to see that if L an converges, then L can also converges and 
L ea,, = c  L an . 

Similarly, you can add the corresponding terms of two convergent series, so that if L an and 
L bn both converge, then I:(a11 + bn ) converges and 

L(an + bn ) = L a,, + L b,, . The convergence or divergence of a series has nothing to do with the first 100 terms, or the first 100 million terms. It is only the tail of the series that determines convergence. Therefore, to determine convergence or divergence, we need only consider how the terms a,, behave for all sufficiently large n. The following two series are instructive: l 1 1 l 
1 + 2 + 3 + 4 + ... + ;; + . . . ' ( 23.4) 

1 1 1 l 1 - 2 + 3 - 4 + . . . ± ;; =f . . .  . (23.5) 
The first series, called the harmonic series, diverges, and the second series converges. To see that the harmonic series (23.4) diverges, consider the following partial sums: 

l 
SJ = l > -- 2 · 

1 1 s2 = 1 + - > 2 · -2 - 2 ' 1 ( 1 1 ) l 
S4 = l + 2 + 3 + 4 � 3 . 2 '  
sg = l + ! + (! + !) + (! + ! + ! + !) > 4 · ! . 2 3 4 5 6 7 g - 2 Continuing this way, we see that s 16 � 5 · ½ , s32 � 6 · ½ , and so on. Clearly, sn - oo, so 

L ¼ diverges. Now consider (23.5), and more generally any series of the form 
( 23.6) 
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where a ,  ::: a2 ::: a3 ::: · · · and an - 0. The partial sums s,, of (23.6) start at s1 = a 1 , and then jump successively to the left and right as a2 is subtracted, a3 is added, a4 subtracted, and so on. The jumps get smaller since the a11 decrease, and all partial sums beyond s,, lie in a fixed interval of length a,, . These intervals collapse to a single point since a,, - 0, so f sn } converges to that point. Any series converges if the signs alternate, the terms decrease 
in magnitude, and the terms tend to zero. We will call such a series a proper alternating 
series, where the word "proper" indicates that not only do the signs alternate, but the other two conditions are also satisfied, so any proper alternating series converges. Moreover, because of the way the s,, jump back and forth in a proper alternating series, it is clear that sn is always within a distance an+ i  of the limiting sum. 
EXAMPLE 23.2 The following series is a proper alternating series, and it is known that the sum is } : 

I I I rr ) - - + - - - + · · · = - . 3 5 7 4 
How many terms must you add to get an approximation to } accurate to within .05? We know the error between s,, in this alternating series and the sum, f, is less than the first term omitted. If the first term omitted is fi, the error will be less than .05 . Your calculator will show 

I I I I I I I I I I - - + - - - + - - - + - - - + - - - = . 760. 3 5 7 9 I I 1 3  1 5  1 7  1 9  
Your calculator will also show that } = .785, so .760 i s  indeed accurate within .05 . Notice that since the partial sums jump back and forth over the limit, the number halfway between the sum to - �  and the sum to + TI is a much better approximation; that is. 

EXAMPLE 23.3 

( 
I I I 

) 
I l I - - + - - · · · - - + - · - = 760 + 024 = 784 3 5 1 9  2 2 1  . . . . 

Tell whether the series converges or diverges, and why: 
(a) I)- 1 )" 

(log n) ; (b) I)- l)" -n_2 - . 
n 3n2 + I 

The first series, (a), converges because the signs alternate, and (log nJ decreases, and decreases to zero. The series (a) is therefore a proper alternating series. The series (b)1diverges because ,3;2� 1 )  -+> 0. Don 't be misled by alternating signs. The terms must decrease to zero or it isn't a proper alternating series. 
A series L an such that L a,, converges but L la,, I diverges is called conditionally 

convergent. The series (23 .5) is conditionally convergent. If L a,, and L Ian I both converge, then L an is absolutely convergent. It is a theorem that if the series L la,, I of absolute values converges, then the series L a,, necessarily also converges. Any cancellation because of differing signs of the a,, only helps the convergence. A very simple and very important series is the geometric series 

00 

L ax" = a + ax + ax2 + • • . + axn + . . . . 
n=O 

(23.7) 
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If x 'I 1, we find a formula for Sn as follows: Sn = a + ax + ax2 + · · · + ax" , XSn = ax + ax2 + · • • + ax" + axn+ I , ( 1 - X)Sn = a - axn+ I , a - axn+ I Sn = ----1 - x  

(23.8) 
The formula (23.8) works for any geometric series with x / 1, but the series converges only if lx l < 1 .  If lx l < 1 ,  then xn+ t -+ 0, so ct�:� -+ 0, and Sn -+ ( l�x) " Hence, for - l < x < l , 

EXAMPLE 23.4 

L n 2 n a ax = a + ax + ax + · · • + ax + · · ·  = --. 1 - x  n=O 

Find the sums of the geometric series. 
00 1 (a) L 2. ;  (b) 0.333 . . . . 

n=I (a} The common ratio is ½ < 1 ,  so the series converges. The first term is a = ½, so 
00 1 ! L 2n = 1 � 1  = l .  

n=I 2 (b) Repeating decimals are simply a way of indicating a convergent geometric series. Here we have 3 3 3 0 333 = - + - + - + · · · . . . . 10 100 1000 

A conditionally convergent series has both positive and negative terms; the positive terms add up to +oo, and the negative terms to -oo. Conditional convergence therefore depends on a delicate cancellation between the positive and negative terms. It can be shown that a conditionally convergent series can be rearranged to converge to anything you like, or to diverge. Since the order in which the terms are added is all important in a conditionally convergent series, this kind of summation is not an entirely satisfactory generalization of a finite sum. On the other hand, if a series converges absolutely, then any rearrangement will also converge, and converge to the same number. Moreover, if L an and I: bn both converge absolutely, then you can add up all the products anbk , in any order, and the result will be the product of (1: an ) and (L bk) as it ought to be. No such statement can be made about conditionally convergent series. Absolute convergence is the property that allows us to treat infinite series pretty much like finite sums in terms of rearrangement, grouping, and multiplying. Since checking a series L an for absolute convergence involves checking the positive series E Ian I , we now develop some tests for convergence of positive series; that is, series I: an with an ::: 0 for all n. If Sn is the nth partial sum of a positive series, then {sn } is an increasing sequence since each new term is obtained by adding a positive number; that is, Sn+ I = Sn + an+ 1 , and an+ 1 ::: 0. It is a basic property of numbers that an increasing sequence is either bounded, and converges, or is unbounded and diverges to +oo. Therefore, a positive 
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series converges if and only if its partial sums remain bounded. This observation immediately 
gives us the following comparison test: 

Comparison Test: lf O _::: a11 _::: bn and L b11 converges, then L a,, converges; if L a,, 
diverges, then L b11 diverges. 

EXAMPLE 23.5 
3n ( 2 )" (a) L n + I 3 ; (b) L log n

. 
n 

(a) This series converges by comparison with the geometric series L 3 • ( t )" , since for all n, 

� (�)
" 

< 
3 . 

(�)
" n + I 3 - 3 

(b) Since L ¾ diverges and � 2'.: ¾ for n 2'.: 3 , the series L � diverges. 

Our next test makes a comparison between the partial sums sn of a positive series, and 
integrals J;' f (x) dx of a positive function. The improper integral Jt,o f (x) dx converges if 
and only if the integrals J;' f (x) dx remain bounded. We see from Figure 23. 1 that if f is 
positive and decreasing, 

and 

/( 1 )  + /(2) + · · · + J(n - I ) :": l
n 

f(x) dx , (23.9) 

/(2) + /(3) + · · · + f(n) _::: J11 f(x) dx. (23. 10) 

The first inequality shows that if L f (n) converges, then Jt,o f (x) dx converges. The second 
inequality shows that if fi°0 f (x) dx converges, then the series L f (n) converges. Therefore, 

/( l ) + .. · +f(n - 1 ) :2:  fi !(x)dx ----, 

2 3 4 n - 1 n 

/(2) + /(3) + . . .  + /(n) � fi
11

f(x) dx 

/(2) f(n) 

r-.::/ u_..,.,-i---
Figure 23.1 3 4 n - 1 n 
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we have the following convergence test: 

Integral Test: If f (x) is a positive decreasing function, then L f (n) converges if and 
only if ft,., f (x) dx converges. 

EXAMPLE 23.6 x l 
� n log n ' 

The function /(x) = x l�g x is positive and decreasing for x � 2. We can therefore compare the series with f2oc _1_
1 - dx . x og x The integrand has the form t du, with u = log x ,  du = � .  so 

-- dx = Jim -- dx 100 

J 1n l 
2 x log x n--+oo 2 x log x = Jim log I log x l ]n 

n➔OO 2 = Jim log I log n l - log I log 2 1  = oo. 
n --+ OC  Since the integral diverges, the series diverges. 

Series of the form I: � are called p-series. If p ::S 0, � -r+ 0 and the series surely diverges, so we consider only p-series for p > 0. The divergent harmonic series is a p-series with p = l .  We saw in Chapter 22 that fi°0 }r dx converges if and only if p > 1 ,  so a p-series 
converges if and only if p > l .  
EXAMPLE 23.7 

(a) L n� ; (b) L n3: l ; 
'°' 2 + sin n (c) L.., ..jn . 

(a) This is a p-series with p = � > l ,  so the series converges. (b) Clearly, ,,/i- n ::, ;!r , and I; ;;r is a convergent p-series . The given series therefore converges. (c) The numerator 2 + sin n is always greater than or equal to l ,  so <2+;n> � .rn·  Since I: .fii is a divergent p-series (p = ½ < 1 ), the given series diverges. 
An easy way to make the kind of comparison in (b) and (c) is given in the following test. 
Limit Comparison Test: If L an and L b11 are positive series, andlimn➔ oo t = f, # 0, 

then L a,, and L b,, both converge. or both diverge. 

The limit comparison test works because if t - f, # 0, then an and bn are roughly multiples of each other for large n. Specifically, for all large n, t must be close enough to 
f, so that f ::S t and t ::S 2£ . Hence, b11 ::S ¾ an and an ::S Ubn for all large n. The first inequality shows that if I: an converges, so that L ¾an converges, then L bn also converges. The second inequality shows that if L bn converges, then L an converges. If t - 0, then a,, ::S bn for all large n and consequently L an converges if L bn converges, but not conversely. If t - oo, then b11 ::S an for all large n and I:; bn converges if L a" converges, but not conversely. 
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EXAMPLE 23.8 

'°' n2 + 1 00n 
L.., 3n3 + I . 

139 

Here the dominant term in the numerator is n2 , and the dominant term in the denominator is 3n3 • Therefore, for large n, the fraction will behave like 6 = fn ,  so we make a limit comparison with L fn : 
n2 + I OOn 3n 3n3 + 100n2 lim ---- • - = lim ---- = I .  11--+oo 3n3 + I I 11--+"" 3n3 + I 

The limit is nonzero, so both series behave in the same way. L fn diverges so that the given series diverges. 
PROBLEMS 

Find the following finite sums. Brute force with a calculator will work, but a little thought will save time and be more interesting. 
5 23.1 I: 100 n=I 100 

23.2 L n .  Hint: I f  S = I:!�\ n,  then also S = I:!�1 ( 10  I - n) .  Hence S + S = I::,�1 1 0 I .  
11=1 
20 23.3 Ln 

n= l IO 
23.4 L (2n - I )  = I + 3 + 5 + • • • + I 9 

rr= l  
= (l + 1 9) + (3 + 1 7) + (5 + 1 5) + (7 + 1 3) + (9 + 1 1 ) 

N 

23.5 })2n - I )  = I + 3 + 5 + · · · + l2N - I )  
n= I IO 2 

23.6 '°' -L.., 311 
n=I  

23.7 tG)" 
n=2 Show that the series converges, or show that it diverges. 

23.8 '°' ( - I )" _n_ L, n + I 

23.9 I)- 1 )114 
n i  

23.10 '°' ( - 1 )11 log n 
L, n + 1 

n3 23.11  L<-1 )" 2" 
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23.12 L -1-log n 
23.13 L log n 

n 23.14 L e-n 
23.15 " !!:._ L...., en en 23.16 L 2 n 

23.11 L 1 (n + l ) log n 
23.18 " -2 n 

L...., n  + 1  1 1 23.19 L - sin - . Hint: Compare with -:!,: . n n n 4n 23.20 " - . L...., n · 3n 
23.21 L e¼ 

2n 23.22 " -­L...., 3n + 4n 

H . . 1 · 4" -? mt. lffin➔ OO n3" - • 

Understanding Calculus 

23.23 Show that if an � 0 for all n and L an converges, then L a; converges. 23.24 Show that if an � 0 for all n and L an converges, then L sin an converges. 



Series of the form 

Power Series 

00 or L an (X - Xo)" 
n=O 

(24. 1 )  
are called power series. The sum of a power series i s  a function of x, and all our elementary functions (log x ,  eX , sin x ,  Jx, cos- 1 x , rational functions, etc.) can be expressed locally as power series. The two types of series in (24. l ), one in powers of x, and one in powers of (x - x0), are obviously similar, and any statement about one type of series implies a corresponding statement about the other kind. For example, if I: anx11 converges for all x such that lx l < 2, then I: a11 (x - 3t converges for all x such that Ix - 3 1  < 2, and vice versa. We will therefore make our calculations with series in powers of x for simplicity; we realize that all our results will apply with appropriate changes to series in powers of (x - x0) .  The power series I: anx" converges or diverges depending on the value of x . Since the terms ja11x11 I get larger or smaller as Ix I gets larger or smaller, we expect that the closeness of 
x to the origin is the key to convergence. It is, and here is the precise statement: 

Convergence Condition: If lim,,-oo GnXo = 0 then L GnX 11 converges absolutely if lx l < lxo l - /f a,,x0 -A 0, then I: a,,x" diverges if lx l 2':. lxo l -
To verify the condition, first notice that if a,,x0 -A 0, then a11x11 

-A 0 for all !x i 2':. lxo l , so the series surely diverges at Xo and all Ix I 2':. lxo l - Now suppose a,,x0 - 0. This does not imply that L GnXo converges, but it does imply that lanxo l  < I for all large n. If lx l < lxo l , so that I .:!..  I < I ,  then for large n, 
XO 

la11x11 I = la11Xo l 1 � 1n < 1 � 1
11 - xo xo Since I: I :il is a convergent geometric series, I: lanxn I converges if Ix I < lxo I ;  that is, 

L a11x11 converges absolutely if Ix I < lxo I -We saw in Chapter 2 1  that In !x11 I - oo for all x cl 0. Hence, I: n !x" converges only at x = 0. Such a series is of no use, since we want to use series to represent functions, and we will therefore now consider only series that converge for some nonzero values of x .  
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If a power series converges for some values of x f::. 0 and diverges for some x, then it follows from the Convergence Condition that there will either be a largest number r such that 

a,, rn - 0, or a smallest number r such that a,,r" - 0. In either case, the series will converge absolutely if Ix I < r and diverge if Ix I > r .  The number r is called the radius of convergence, and the interval ( -r, r) is the interval of convergence. The series may converge at either or neither or both of the numbers r and -r. The convergence or divergence at these points is generally of no importance. If a,,x" - 0 for all x ,  then the series converges absolutely for all x ,  and we say the radius of convergence is oo and the interval of convergence is the whole line (-oo, oo) . For example, we saw in Chapter 2 1 that � - 0 for all x, so L � converges absolutely for all n. n .  
x. We will show in Chapter 26 that 

oc xn x2 x3 x4 ex = '°'  - = 1 + x + - + - + - + . .  · L, n ! 2! 3 ! 4! 
n=O Recall that the sequences { (log n)k } , (nP } with p > 0, {an } with a > 1 , and {n ! } represent different orders of growth in the sense that (log nl nP an 

- o. - - o - - o. 
nP  an ' n ! (24.2) 

Since � - 0 for all a > I ,  it follows, writing x = ¼, that nPxn - 0 for all lx l  < 1 .  
EXAMPLE 24.1 Find the radius of convergence of L fn-xn = L n2 ( f )" . From (24.2) we know that n2x" - 0 if Ix !  < l ,  and of course Jn2x" I - oo if Ix ! :':': 1 .  Hence, n2 ( ½ )" - 0 if and only if I f I < l . The radius of convergence is 3, and the series converges absolutely on (-3 , 3) . 

Coefficients that are powers of n, like n2 in Example 24. 1 ,  have no effect on the radius of convergence. All three of the following series have the same radius, 3 :  
This follows from the convergence condition because both ln2 (j t I and l � (j ) I approach 0 if 
I j I < 1 ,  and both tend to oo if I j I > 1 . A similar statement holds for log n or powers of log n. For example, both l ()og n )k x" I and I (lo�n)l xn I tend to zero if Ix I < 1 ,  and both tend to oo if lx l > l .  Therefore, all three of the following series have radius 1 for any value of k: 

EXAMPLE 24.2 
1 '°'(Jog n)k x" '°' xn '°' --xn . L, ' L, ' L, (log n )k 

Find the radius of � 2" (log n )3 x" and � 2" x" . L, L, (log 11)3 We write the terms in the following form: (log n)3 (2x)" and 00;11>3 (2x)" . Both terms approach zero for J2x l < I . and both tend to oo if J2x !  > l . Therefore, the radius for both series is ! -
The following test, the ratio test, is a popular technique because it requires very little thought. The ratio test applies to any series, so we state the test for a series of constants, L an , and then show how it applies to power series. 
Ratio Test: The series L a,, converges absolutely if limn➔oo I ¥. I < I and diverges if lim,,_oo I "�: ' I > I .  
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To verify the ratio test, first notice that if limn...,.00 I a.+, I > l ,  then lan+ 1 I > Ian I for all a. large n, so an -+> 0 and the series surely diverges. Now assume limn...,.00 I an+i I = r < l ,  and an let s be a number between r and l .  Then I �  I < s for all sufficiently large n - say for all a. 
n ::=: N. Hence, 

l aN+l I < s laN+i l < laN ls , aN 
l aN+2 1 < s , laN+2 I < laN+i ls < laN ls2 , aN+l and in general laN+k l < laN li.  Since I: Sk and E laN li are convergent geometric series, 

L Ian I converges. 
EXAMPLE 24.3 Use the ratio test to find the radius of convergence of L .���;2 xn . 

lim ----xn+I _ __ _ I log(n + I )  n2sn+Z I I n➔oo (n + 1 )2Sn+3 log n xn 
= lx l lim _n_2 _ log(n + 1 ) I = � -n➔oo (n + 1 )2 log n 5 5 The series converges if I � I < I ;  the radius is 5. 

Example 24.3 could also be done simply by rewriting the terms: 
log n n log n (X )" n25n+2 x = 25n2 5 The factor � does not change the radius from that of L ( ft .  The ratio test provides a mechanical way of showing the insignificance of � relative to ( ! t .  The next example shows a more realistic use of the ratio test. 

EXAMPLE 24.4 Find the radius of convergence of L ;¼ xn . We calculate the limiting ratio: 

The radius is e. 

. I (n + l ) !  n+I nn 1 I hm ---x - - -n➔oo (n + l )n+I n ! xn 
. (n + l ) !  nn = lx l hm --- · ---n➔oo n !  (n + l )n+I 

I . (n + 1) • n !  nn = lx l 1m ---- · ------
11➔ 00 n !  (n + l ) • (n + J )n . ( n )n . I lx l = lx l hm -- = lx l  hm --- = - . n➔oo n + 1 n➔oo ( 1  + ! )n e 

From the preceding examples we see that for power series L anxn , the ratio test always looks like this: 

The radius is the reciprocal of limn ..... oo I On+I , .  a. 
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A power series represents a function on its interval of convergence, and much of the importance of power series derives from the fact that they can be differentiated and integrated term-by-term. That is, if 

CXl f(x) = L anxn = ao + a1x + a2x2 + a3x3 + · · · , n=O and the series converges on (-r, r) , then f'(x) and J; f (t) dt exist on (-r, r) ,  and 
CXl J'(x) = 1: nanxn-l = a1 + 2a2x + 3a3x2 + · · · 

n=I 

lx � a,, n+ l a1 2 a2 3 f (t)dt = L., --x = aox + -x + -x + · • • . o n=O n + I 2 3 

(24.3) 

(24.4) 
(24.5) 

The radius does not change when you differentiate or integrate a series term-by-term, and the resulting series represent the right functions. If f (x) has a power series representation, then f (x) has derivatives of all orders, and all these derivatives have power series, and all the series have the same radius of convergence. Now consider some of the functions we can represent with series, starting with the geometric series. If Ix I < I ,  then 
CXl 1 � n 2 3 -- = L., x = I + x + x  + x  + · · · . 1 - x n=O (24.6) 

Since I - x I < I and I ± x2 I < I if and only if Ix I < I ,  we can substitute in (24.6) to get 
CXl 1 �( )n l 2 3 4 -- = L., -x = - x + x - x  + x  - • · · , I + x  n=O 
CXl 1 L( 2)n 2 4 6 -- = x = l + x + x  + x  + · · · , 1 - x2 n=O 
CXl 1 L( 2)n l 2 4 6 -- = -X = - X + X - X + · · · . 1 + x2 n=O 

(24.7) 
(24.8) 
(24.9) 

Now the series above can be differentiated or integrated, and for x in ( - 1 ,  I) we get: 
I dx 1 2 I 3 l 4 log( I + x) = 1 + x = x - 2 x + 3 x - 4 x + • • • , (24. 10) 

1 = !:__ _I_ = 1 + 2x + 3x2 + 4x3 + · · · (24. 1 1 ) ( l  - x)2 dx 1 - x 
- I f dx I 3 I 5 I 7 tan x = 1 + x2 = x - 3x + 5x - 1x + • · · . (24. 12) 

The series for log( l + x) and tan- 1 x are proper alternating series when x = 1 ,  and it can be shown that they converge to the right thing; that is, I 1 I log 2 = I - 2 + 3 - 4 + · · · , (24. 1 3) 
1 n I 1 l tan- l = - = 1 - - + - - - + • · · . 4 3 5 7 (24. 14) 
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If we substitute 3x for x in the series for l�x , we get 

-1 3- = 1 + ( 3x) + ( 3x )2 + (3x )3 + • • . I - X 

145 

(24. 15) 
and this series converges provided 1 3x I < 1; that is, provided Ix I < ½ . Similarly, if we replace 
x by ½ in (24. 1 1 ), we get 

1 4 2x 3x2 4x3 = -- = l + -2 + -4 + -8 + · · ·  ( 1 - n 2 (2 - X )2 
and this series converges if I ½  I < 1 ,  or Ix I < 2. 
EXAMPLE 24.5 Find a power series for log(l + 3x) and find its radius of convergence. From (24. 10) we have, for lx l < 1 ,  1 2 I J l 4  log(] + x) = x - 2x + 3 x - 4x + · · · • 
We can substitute 3x for x as long as 1 3x l  < 1 ,  or lx l < ½ - Therefore, I 2 1 J I 4 log(l + 3x) = 3x - 2(3x) + 3(3x) - 4(3x) + · · · 

and the radius of convergence is ½ . 
EXAMPLE 24.6 We will show in Chapter 26 that 

. 1 3  1 5  1 7  sm x = x - -x + -x - -x + • • • . 3 !  5 !  7! Use this to find a series for cos x . What is the interval of convergence for both series? Since fx sin x = cos x, we have 
d ( x3 x5 x1 ) cos x = 

dx 
x - 3! + 5! - 7! + . . .  

x2 x4 x6 
= 1 - - + - - - + · · ·  2! 4! 6! 

00 2n 
= �)- 1)" -x _ _  

n=<l 
(2n) !  

(O! is defined to be I .) To find the interval of convergence, we use the ratio test: 
lim --- · --· = lx2 1 lim ------ = 0. I x2n+2 (2n) '  I I 

n➔oo (2n + 2) ! x2n n➔oo (2n + 2)(2n + 1 )  The limiting ratio i s  less than I for all x,  so  the series converges for all x. 

EXAMPLE 24.7 Find a power series for cos I .  Since the series for cos x converges for all x ,  we can substitute I for x : 
cos � = I - _!_ (�)2 

+ _!_ (�)4 
-

_!_ (�)6 
+ · · 

· 2 2! 2 4! 2 6! 2 

(24.16) 
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Find the radius of convergence. 

24.1 L n3x" 

24.2 L n4 (2x)" 

24•3 L ! c�r . n  4 
24.4 L 2" (log n )x" 

ns 
24.5 '°' -x" L., 5n 

24.6 L n + .Jn x" 
log n 
3 

24.7 '°' �x" 
L., n !  

24.8 '°' n22n 

x" 
L., n !  

24.9 I: ;;;;, 
24.10 L e"x" 

24.11 '°' � (�)" L., n2 + l 2 
I + 2 

24.12 L n .  n 
x" n !  + log n 

24.13 '°' n !  + !On 
x" 

L., n !  · IO" 

PROBLEMS 

24.14 '°' (log nl x" (k and p are arbitrary numbers.) 
L., nP 

Find the interval of convergence. 

24.15 L n3 (x - 3)" 

2" 24.16 L - (x - l )" n 

24.17 '°' ..!.. (x + 5)" 
L., n !  

n2 

24.18 '°' - (x + l )" 
L., 5" 

Understanding Calculus 

Use the series given in the chapter for eX , sin x ,  cos x,  and the series derived from the series for 
1 � x , to find the series for the given function by substitution, differentiation, or integration. Give 
the interval of convergence. 

24.19 e2x 

24.20 e-x 
24.21 log( l - x) 
24.22 log( l + 2x) 
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24.23 --­(1 + x)2 

I 24.24 I + x3 24.25 sin 2x 24.26 tan-• G) 
24.27 cos x2 

24.28 __ x_ (l + x)2 

24.29 sin x 
X 

X 
24.30 I + x2 24.31 log(l + x2) 
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24.32 Show that if limn➔oo I �  I = ! , so r is the radius.of convergence of L anxn , then the ratio test gives the same radi�s for i: nanx"- 1 and L ;;txn+i . Hint: For x # 0, L nanxn-l converges if and only if L nanxn converges, and L ;;t xn+I converges if and only if 
L .!!E.... xn converges. x+I 





Taylor Polynomials 

In this chapter, we show how functions can usefully be approximated by polynomials. For example, there is no elementary antiderivative for ex2
, so Jd e2 dx can only be evaluated by some approximation method. If we can find (and we can) a polynomial P (x) that is close to 

ex2 on [0, l ] ,  then Jd P (x) dx approximates Jd ex2 dx . In the next chapter, we use these ideas to show how functions can be represented by power series. Suppose we want to find an nth degree polynomial that approximates a function f (x) as well as possible near zero. The reasonable thing to do is to find the polynomial that agrees with f (x) at 0 and has the same derivatives as f (x) at 0. All the derivatives of an nth degree polynomial are zero beyond the nth derivative, so we can only match the first n derivatives of 
f (x) at 0 with those of an nth degree polynomial. If Pn (X) = ao + a1x + a2x2 + · · · + anx" , then Pn (x) has the following derivatives: P� (x)  = a1 + 2a2x + 3a3x2 + · · · + nanx"- 1 , P�' (x) = 2a2 + 3 · 2a3x + 4 · 3a4x2 + · · · + n (n - l)a11xn-2 , P�" (x) = 3 · 2a3 + 4 · 3 · 2a4x + 5 · 4 • 3asx2 + • • • + n (n - l ) (n - 2)anxn-3 , 

p�n > (x) = n !a11 • Evaluating the derivatives at x = 0, we get 
P11 (0) = ao , P� (0) = ai , P�' (0) = 2a2 , P�"(0) = 3 · 2a3 , and in general p�kl (0) = k !ak , 0 ::::  k :::: n.  To match up the derivatives of Pn (x) with those off (x)  at 0, we must have for each k :::: n, P/> (0) = k!ak = J<k> (0) , 1 (25 . l )  ak = - j<kl (0) . k ! 
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The equations (25. 1 )  determine ao, a 1 , a2 , . . . •  an , so we know what Pn (x) must be: 

1 1 1 
Pn (x) = f (0) + f' (0)x + 2 ! 

J" (O)x2 + 3 ! 
f'" (0)x3 + · · · + 

n ! 
J <n\0)xn . (25 .2) 

The polynomial (25 .2), called the nth Taylor polynomial for f (x) at 0, is the unique nth degree polynomial whose first n derivatives at zero match those of f (x), 

EXAMPLE 25.1 Find Pn (X) for f (x) = tr . If f(x) = eX , then J<"> (x) = ex for all n, so J<"l (0) = l for all n . Therefore, 

EXAMPLE 25.2 

1 2 1 3 l n P, (x) = l + lx + -x + -x + · • • + -x . n 2! 3 ! n !  

Find the general Taylor polynomial for sin x and for cos x .  
(25 .3) 

We calculate the successive derivatives of sin x at x = 0. This fortunately also gives us the derivatives of cos x at 0, since cos x is the first derivative of sin x .  

f(x) = sin x ,  f(0) = 0,  ao = 0, 
f'(x) = cos x ,  f' (0) = l ,  a1 = I ,  
f"(x) = - sin x ,  f"(0) = 0 ,  0 a2 = 2! ' 

f"' (x) = - cos x ,  f"'(0) = - 1 ,  - 1  (25.4) a3 = 3!' 

J<4l (x) = sin x ,  j<4l (0) = 0, ll4 = 4! ' 

f'51 (x ) = COS X ,  J'51 (0) = I ,  as = 51 . 

The derivatives repeat after n = 4. and the pattern for the derivatives of sin x at 0 is 0, 1 ,  0, - 1 ,  0. 1 ,  0, -1 . . . .  Therefore, the Taylor polynomials for sin x are given by 
x3 x5 x1 (- l)"x2n+I 

P2n+1 (x) = x - - + - - - + . .  · + ----3 !  5 !  7 !  (2n + 1 ) !  (25.5) 
The successive derivatives of cos x can also be read from the list (25 .4); the values at zero are 1 ,  0, - 1 ,  0, 1 ,  0, - 1 ,  0, . . . .  Therefore, the Taylor polynomials for cos x are 

x2 x4 x6 (- ltx2n 
P2n (x) = I - - + - - - + · . . + ---2! 4! 6! (2n) ! (25 .6) 

Now we will see what we can say about how well Pn (x) agrees with f (x) for values of 
x near zero. The graph of P1 (x) is just the tangent line to y = f (x) at x = 0. How close the linear function P1 (x) is to f (x) depends on how rapidly f' (x) changes as x moves away from 0, and that depends on how large f" (x) is. Suppose we have the estimate 

m � J"(x) � M 

on some interval [0, a] .  If R1 (x) = f (x) - P1 (x), then R1 (0) = 0 and R� (0) = 0 since P1 (x) has the same value and slope as f (x) at x = 0. Moreover, Rf (x) = f" (x ), since P{' (x) = 0. 
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Therefore, if O :::: x :::: a, 

m ::::  R1 (x) :::: M, 

1x 
m dx :S: 1x 

R1 (x) dx :::: 1x 
M dx, 

mx :::: R; (x) :'.S Mx, 

1x 
mx dx ::::  1x 

R; (x) dx :::: 1x 
Mx dx, 

!mx2 < Ri (x) < !Mx2 • 2 - - 2 
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(25.7) 

Since f (x) = P1 (x) + R1 ( x), we can conclude from (25 .7) that f (x) lies between two 
parabolas over the interval [0, a] :  

1 1 
Pi (x) + 2mx2 :::: f( x) :::: P1 (x) + 2Mx2 • 

If we have an estimate on the size of f"' ( x  )-say m :::: /"' ( x) :::: M on [O, a ]-then the 
argument above, with one more integration, shows that 

..!..mx3 < R2 ( x) < ..!__Mx3 , 
3 ! - - 3 ! 

and f (x) lies between two cubics over [O, a] :  
m M P2 ( x) + 
3 ! 

x3 :::: f (x) :'.S P2 (x) + 
3! 

x3 • 

In general, if m :::: t<n+ 1 > (x) :::: M for O :::: x :::: a, then on this interval 

EXAMPLE 25.3 

m M ---xn+I < R (x) < ---xn+I _ 
(n + 1 ) ! - n - (n + 1 )! 

Use the fifth-Taylor polynomial P5 (x) for e to approximate e ! .  Estimate the error. 
From (25.3) we have 

I I I I Ps (x) = I + x + 
21x2 + 

31x3 + 41x4 + 
51x5 , 

from which we get the approximation 

e ½ == Ps - = 1 + - + - - + - - + - - + - - = 1 .64870. ( I ) l I ( I )
2 I ( 

I 
)

3 l ( I )
4 I ( 

I 
)

5 

2 2 2! 2 3! 2 4! 2 5 !  2 

Since e < 3, e ½ < 2, and for 0 ::: x ::: ½, I ::: �e ::: 2. Therefore, 

-�2 = ¼i G) 6 
< Rs G) < i G) 6 

= -�. 

(25.8) 

and 1.64870 is accurate to four places. In fact, since the error is between .�2 and .�. we can say 
e ½ = 1.64873 ± .�I. 

EXAMPLE 25.4 
Use P4 (x) for e to approximate fo1 e2 dx. 
Since I ::: e ::: 3 for 0 :::  x ::: I, we know that for these values of x,  

I s 3 s P4(X) + 1x < e < P4(X) + 1x . 5. 5. (25.9) 
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Since O � x2 � 1 if O � x � 1 ,  we can substitute x2 for x in (25.9), and get 
p (x2) + !x w < ex

2 < p (x2) + �x 10 
4 5! 4 5 !  ' 

Understanding Calculus 

{ ' P4 (x2) dx +-
1- < { ' ex

2 dx < { ' P4 (x2) dx + -
3- .  lo 1 1  · 5 !  lo lo 1 1  · 5 !  Substituting x2 for x in  P4 (x) and integrating, we get an approximation to the integral with error between 

1/5 ! = .00076 and 1
/

5 ! = .0023. Rounding off, we would have to use .001 and .002 for lower and upper bounds on the error. Now calculate the integral of P4 (x2) :  

{ ' P4 (x2) dx = { ' ( 1 + x2 + -21 x4 + _!_x6 + _!_x8) dx lo lo ! 3! 4! 
_ l ! _I_ _l_ _I_ - + 3 + 5 · 2! + 7 · 3! + 9 · 4! 
= l .462. Using the error estimates of .001 and .002, we can finally say that 
l .463 < 1 • ex

2 dx < l .464. 
If we wanted more accuracy, we could go to P5 (x2) and get an error between 1 316! = .0001 and 1;,6! = .0003 (see Problem 25. 10). As a comparison, Simpson's Rule with n = 1 0, and carrying eight places for the arithmetic, gives 1 .4626814 for f01 ex

2 dx . Of course, we have no way to estimate the accuracy of the Simpson's Rule number. 
The preceding examples involving ex are particularly simple since all the derivatives of ex are the same, and we considered intervals to the right of 0. In case we are interested in negative x, or the derivatives off (x) have different signs, it is more convenient to use the following estimate for Rn (x): 

lf l J <n+ l) (x) I :5 M on [-a, a], then I Rn (X) I :5 (n
: l) ! lx ln+ t . 

EXAMPLE 25.5 Calculate cos I = cos 57.2958° to within .0005 . Let f (x) = cos x , and notice thatforall n,  J<n+l> (x) equals ± cos x or ± sin x . Therefore, 1/ <"+ 1 > (x) I  � 1 for all n and all x . Consequently, we have the following estimates: 
I R  (x) I < _l_ lx l"+' " - (n + l ) !  l I Rn ( l ) I � (n + l ) ! . We find the smallest n such that cn11) ! < .0005 : l l l l 3! = . 1 6, 4! = .04, 5! = .008, 6! = .0014, 7! = .0002. 

Therefore, P6 ( 1 )  will be within .0002 of cos l. Notice, however, that P6 (x) = P7 (x) since the coefficient of x7 is 0. Therefore, R7 ( 1 )  will also give the difference between P6( 1 )  and cos 1 .  I R7 ( 1 ) 1  � � = .00002, and 
l I l P6( 1 )  = P1(l )  = 1 - - + - - - = .54028. 2! 4! 6! Therefore, cos l = .54028 ± .00002. 
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We can translate the whole approximation process to any xo and use polynomials in 
(x - x0) rather than polynomials in x. For example. it makes no sense to try and approximate 
logx with polynomials in x, since log O is not defined. However, log x and its derivatives are easy to calculate at x0 = 1 ,  so it does make sense to use polynomials in x - 1 .  In general, the 
nth Taylor polynomial for f (x) at x0 is 

Pn(x ) = f(xo ) + J'(xo )(x - xo ) + �! J"(xo )(x - xo)2 
I "' 3 I (n) n + 3 ! f (xo )(x - xo ) + · · · + n ! f (xo )(x - xo ) , 

with the usual error estimate: 
If I J<n+l l (x) I � M on [xo - a ,  xo + a], then for x in th is interval, 

EXAMPLE 25.6 

M I Rn (x) I < --- Ix - xo ln+I . - (n + I ) ! 
Calculate the nth Taylor polynomial at l for log x and find log 1 .5 to two decimal places. 

Let f (x) = log x, and calculate the derivatives at x0 = I :  

f(x)  = log x ,  
f' (x) = x- 1 , 

f" (x) = -x-2 , 
f'" (x) = 2x-3 , 

f'4l (x) = -3!x-4 , 

f ( I )  = 0, 
f' ( l )  = I ,  
f" ( l ) = - 1 .  
f"' ( l )  = 2. 
J l4> ( 1 ) = -3! ,  

and in general we see that f(n) ( l )  = (- 1 )"+1 (n - l) ! . Hence, 
l z 2 3 3! 4 

Pn (x) = (x - I )  - 2! (x - I ) + 3! (x - I ) - 4! (x - l )  

(- 1 )"+ 1 (n - I ) !  n + · · · + ----- (x - I )  
n !  

I 2 I 3 I 4 
= (x - 1 ) - - (x - l ) + - (x - 1 ) - - (x - 1 ) 

2 3 4 
(- l )n+I 

+ · · · + -- (x - l t .  
n 

For X � I ,  l f(n+ l > (x ) I  = ln !x-(n+ l ) 1 ::: n ! .  Therefore, for X � I ,  I R,. (x) I  ::: 
(n

:!l )! (x - 1r+1 • For 
X = 1 .5 ,  

I Rn ( l .5) 1 ::: 
n � 1 

(.5r 1 • 

We calculate values of ';�:;l
1 

until we get a value less than .005 : 

(.5)3 
= 04 (

.5)4 
- 02 

(.5)5 

= .006, 
3 

. 
' 4 - . 

' 5 

(.5)6 
= .003 . 

Therefore, with an error less than .003, 

log l .5 = Ps ( l .5) = G) · � GY + � GY - � GY + � GY = .40?. 

The calculator gives log 1 .5 = .405 . 
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PROBLEMS 

25.1 Find Pi (x) ,  P2(x) ,  P3 (x) ,  and P4 (x) for /(x) = 5x3 - 2x2 + 3x - I .  
25.2 Find P4(x) for /(x) = o!

x)
· 

25.3 Find P3 (x) for /(x) = tan-•  x .  
25.4 (a) Find P4 (x) for /(x) = sin x2 . 

(b) Substitute x2 for x in P2 (x) for sin x .  
25.5 Find P5 (x) at x0 = l for /(x) = x L 
25.6 Let P4 (x) be the fourth Taylor polynomial for eX . Use P4 ( ½ )  to approximate ffe. and 

estimate the error. 
25.7 Let P3 (x) be the third Taylor polynomial for sin x .  Evaluate J; P3 (x2

) dx to approximate 
f01 sin x2dx . Estimate the error. Notice that P3 (x) = P4(x).  

25.8 Let P4 (x) be the fourth Taylor polynomial for cos x .  Evaluate J; P4 ( ,./x)dx to approximate 
J; cos ,./x dx . Estimate the error. 

25.9 Use Simpson's Rule with n = lO to approximate J; eX2 dx . (See Example 25.4). 
25.10 Let P5 (x) be the fifth Taylor polynomial for eX on [0, I ] . Calculate fo1 P5 (x2)dx to estimate 

J; eX2 dx and estimate the error. 



Taylor Series 

We have seen that if f (x) has a power series representation, 
f(x) = ao + a1x + a2x2 + a3x3 + · · · + anxn + · · · , 

then f (x) has derivatives of all orders, and the derivatives have power series 
f' (x) = a1 + 2a2x + 3a3x2 + 4a4x3 + · · · , J" (x) = 2a2 + 3 · 2a3x + 4 · 3a4x2 + · · · , and all these power series have the same radius of convergence. By substituting 0 for x in the series for f (x) ,  f'(x) ,  f" (x) ,  and so on, we see that 

and in general 
/ 1 II ao = f(0), a1 = f (0) , a2 = 2, J (0) , . . .  

(26. 1 )  
Formula (26. 1 )  shows that the an are determined by  the function, so  a power series represen­tation is unique. If f(x) is any function with derivatives of all orders at zero, we can form the power series with the coefficients (26. 1 ), and the result is the Thylor series for f (x) in powers of x :  

t � f(n) (0)xn . 
n=O n .  

(26.2) 
I This series does not always converge to f (x) .  For example, if f (x) = e- -;,: for x "I- 0, and f (0) = 0, then J<n> (0) = 0 for all n. The Taylor series for this function is identically zero, but the function is obviously positive if x "I- 0. This function is severely atypical-all the common elementary functions of calculus do have a Taylor series that converges to the function on some interval. 
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We will show that the Taylor series (26.2) converges to f(x) for several elementary 

functions. Let Pn ( x) be the nth partial sum of the series ( 26.2): 

Pn ( X) = f( O) + f'( O)x + _!_ J"( O)x2 + · · · + _!_ f(n) ( O)xn . ( 26.3) 2 !  n !  
Notice that Pn ( x) is the same as the nth Taylor polynomial for f ( x). We show that Pn ( x) -
f(x) by showing that Rn (x) = f(x) - Pn (x) - 0. Recall that if 1 /(n+l ) ( x ) I  � M on an 
interval [-a, a], then for these values of x, 

M M 
I R (x) I  < --- lxn+I I < ---an+I . ( 26.4) 

n - (n + l ) !  - (n + 1) ! 
If all of the derivatives J<n> (x )  satisfy the same estimate, 1/(nl (x ) I  � M on [-a, a]-that is, 
if the bound M does not depend on n-then Rn ( x) - 0 for all x E [-a, a], since � - 0 
for any a. 

Consider the functions sin x and cos x. If f (x )  = sin x or f ( x) = cos x .  then I J<n\x) I � 
1 for all x and all n, so for both sin x and cos x, 

lx l n+l 
I Rn (x ) I � ( n  + l ) ! , ( 26.5) 

and so Pn (x )  - f(x) for all x for both f(x) = sin x and f(x) = cos x. Using the Taylor 
polynomials from the last chapter, we see that sin x has the Taylor series 

x3 xs x1 

sin x = x - - + - - - + · · · 
3 !  5! 7! ' ( 26.6) 

and the series converges for all x. Similarly, the Taylor polynomials for cos x converge to 
cos x for all x ,  and cos x has the Taylor series 

EXAMPLE 26.1 Find cos(½)  to within .00005. 

x2 x4 x6 
cos x = 1 - - + - - - + . .  · . 2! 4! 6! 

( 26.7) 

We could use the remainder estimate, but we get the same estimate very simply now that we know the series (26. 7) converges to cos x. The series (26. 7) is a proper alternating series for Ix I < 1 ,  so the error is less than the first term omitted. We calculate several terms at x = ½ :  

Hence. i GY = . l 3 ; i GY = -003; � GY = -00002-

l 1 ( 1 ) 2 1 ( I )4 cos 2 = I - 2! 2 + 4! 2 = .87760. 
The error will be negative, since the first term omitted is negative, so l 

and 

.87760 > cos 2 > .87758. 
The Taylor polynomials for ex are 

x2 x3 xn 

P, (x) = 1 + X + - + - + · . .  + -n 2! 3 !  n ! ' 

( 26.8) 
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On any fixed interval [-a, a], l� I � e0

, lx ln+l � an + l , so on [-a, a], 
eaan+ l I Rn (x) I � 
(n + l ) !  ---+ 0. 
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Thus, Pn (x) ---+ ex on every interval [-a, a] ,  and the Taylor series for ex converges to � for all x :  
x

2 
x

3 
x

n ex = 1 + x + - + - + · · ·  + - + · · · . 
2! 3 !  n! 

EXAMPLE 26.2 Find the Taylor series for �2
• 

(26.9) 

Since the series (26.9) converges for all x, we can substitute anything for x in (26.9). In particular, substituting x2 for x, we get 
x2 2 x4 x6 xB e = l + x + - + - + - + · · · . 2! 3! 4! (26. 10) 

Since (26. 10) is a power series and power series representations are unique, (26. 10) is the power series for ex2
• 

EXAMPLE 26.3 Find the Taylor series for .Jf+x and find the radius of convergence. We calculate the derivatives at O and the coefficients an : 
I 

f(x) = ( I  + x) ! ;  I I f'(x) = 2 ( 1  + x)- ! ;  

f"(x) = � (-D ( I  + x)- i ;  
/,,, I (  I ) ( 3 ) ( _ s  

(X) = 2 -2 - 2 1 + X) ! ; 

I · 3 · 5 1 J'4> (x) = - � (I + x)- ' ;  
In general, we see that 

/(0) = 1 ;  
/' (0) = � ; 
/,, I ( I )  

(O) = 2 -2 ; 
1 · 3 f"' ( 0) = l3 ; 

/(4) (0) = - 1 
· :4 · 

5 ; 
1 · 3 · 5 · · · · (2n - 3) an = (- l )n+ I _______ _ n! · 2n and 

a0 = 1 1 a , = 2 

I 1 · 3 a3 = 3! l3 -I  1 - 3 - 5  a4 = 41 - � . 

t<n+ l ) (x) = ± I · 3 · 5 · · · · · (2n - I )  2n+ I (I + x) ¥ . 
If O 5 x < 1 , then ( 1  + x) -!2,+" 5 1 ,  and I • 3 • 5 · · · · · (2n - 1 )  lx in+ ' 1 Rn (x) l 5 2n+ I  (n + I ) ! " For n = 2, 3, 4, . . .  , the coefficients of jx jn+I in (26. 1 3) are I 1 1 - 3 1 J . 3 . 5 I - · - = . 1 3  - · - = .06- -- · - = .04· 22 2 ' 23 6 , 24 24 ' and so on. The coefficient of lx 1n+2 is obtained by multiplying the coefficient of lx ln+i by 2n + l 2n + 1 

--- = -- < 1 , 2 • (n + 2) 2n + 4 

(26. 1 I )  

(26. 12) 

(26. 13) 

so ! Rn (x) I  5 an lx ln+I where an 5 a2 = . 1 3  for all n 2:: 2. Clearly, Rn (x) ---► 0 if O 5 x < 1, and the Taylor series for .Jf+x converges to the function on (0, I ) .  The series therefore converges on (- 1 ,  1 ) ,  
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since power series converge on intervals symmetric about the origin. The series does converge to .Jf+x also on ( - 1 ,  OJ , although the argument above does not include this case. Hence, for - 1  < x < 1 ,  I 1 1 1 2 1 1 - 3 3 1 1 • 3 • 5 4 (1 + x) 7 = 1 + -x - - -x + - -x - - --x + • • • (26. 14) 2 2! 22 3! 23 4! 24 

Recall the binomial expansion for a positive integer exponent n :  
1 n (n - 1 )  2 n (n - l ) (n - 2) 3 ( 1  + x )ll = + nx + 2! x + 3 ! x 

n (n - l ) (n - 2) (n - 3) 4 n + --------x + · · • + x . 4! 
(26. 15) 

If we formally substitute ½ for n in (26. 15), we get the Taylor series (26. 14) for ( 1  + x) ½ .  If n is a positive integer, the binomial expansion (26. 15) is an nth degree polynomial. If n is a fraction, the binomial expansion is an infinite series. The Taylor series for f (x) in powers of (x - xo) is I::o � t<n> (xo) (x - xot . This is the series whose partial sums are the Taylor polynomials at x0 • 

EXAMPLE 26.4 Find the Taylor series for tr in powers of x - 2. If f(x) = ex , then J<nl (x) = ex for all n, and so t<nl (2) = e2 for all n. Therefore, an = � and 
x 2 e2 

2 e2 
3 e = l + e (x - 2) + 2! (x - 2) + 3! (x - 2) + · • · . (26. 1 6) 

We could also obtain the result (26. 16) as follows. Substitute (x - 2) for x in the series for tr and get x 2 l 2 l 3 e - = l + (x - 2) + - (x - 2) + - (x - 2) + • • • . 2! 3! Since ex-2 = � tr = e2 • tr-2 and e� ' , 

x 2 [  l 2 l 3 ] e = e l + (x - 2) + - (x - 2) + - (x - 2) + • • • 
2! 3 ! which is the same as (26. 1 6). 

EXAMPLE 26.5 Find the Taylor series for � in powers of (x - 1 ) .  We compute the coefficients as follows: 
f(x) = x-• ;  f( l) = l ;  llo = l ; 
f' (x) = -x-2 ; f' ( l )  = - I ;  a1 = - 1 ;  
f"(x) = 2x-3 ; 2 

f"(l ) = 2; a2 = - = 1 ;  2! 
f111 (x) = -3!x-4 , f"'( l ) = -3! ;  a3 = - I .  It is easy to see the general pattern: 

so the Taylor series is t<n> (x) = (- l tn!x-<n+ IJ , an = (- It , 
l 2 3 - = I - (x - l)  + (x - l) - (x - 1)  + · • · . 
X Notice that we can also easily obtain (26. 17) from the geometric series for I�x : l 2 3 4 -- = l - x + x - x  + x  - · · · , 

l + x 

(26. 17) 
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so if Ix - 1 1  < 1 ,  1 2 3 - = --- = 1 - (x - I ) +  (x - I ) - (x - 1)  + • • • .  

x 1 + (x - 1 ) 
EXAMPLE 26.6 Find the Taylor series at 1 for log x .  We simply integrate the series (26. 17) : jx I I 2 1 3 log x = - dt = (x - 1 ) - - (x - l )  + - (x - 1 ) - • • • . 

J I 2 3 
EXAMPLE 26.7 Use the series for sin x to show that sin x - 1 and � - - -61 as x ---+ 0. 

X X Since 
we have, for all x ::/= 0, 

so sin x ---+  1 as x ---+ 0. Also X 

x3 xs x1 sin x = x - - + - - - + - · ·  
3 !  5 !  7 !  

sin x x2 x4 x6 
- = 1 - - + - - - + · · ·  

X 3 !  5 !  7! ' 

sin x - x = I [-x3 + xs _ x1 + . .  · ]  
x3 x3 3 !  5 !  7 !  

1 x2 x4 

= - 3!
+ 

5! - 7! 
+ · · · '  and hence, as x ---+ 0, 

PROBLEMS 
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(26. 1 8) 

26.1 Find cos ¾ to within .0005. Do you need more terms for this accuracy or fewer than for cos ½ as in Example 26. l ?  26.2 Find sin f«i to within 10-7 • 26.3 Evaluate e- � to within .0002. 26.4 Find five terms (through x4) of the Taylor series for ( 1 + x) ! , and check with the binomial expansion. 26.5 Use the Taylor series (26. 14) for .JT+x to obtain the Taylor series for .JT=x and for 
JI+?. 26.6 Find the Taylor series for ex in powers of x - 3 and in powers of x + I .  26.7 Find the Taylor series for � in powers of (x - 2) two ways: (i) Calculate � J<"l (2) for all n ; 
· ·  I I

n
. I (11) use :. = '2 i +c�i -26.8 Find the Taylor series for log x in powers of x - 2. Hint: log x = log 2 + /2' � so you can integrate the series in Problem 26. 7. 26.9 Use the series for cos x to show that (cosx-;- 1 >  ---+ -½ as x ---+ 0. 26.10 for X ::/= 0, sin x x2 x4 x6 - = l - - + - - - + · · · . 

X 3 !  5 !  7 !  



160 Understanding Calculus 
Therefore, for O < x ::, l ,  I si: x - [ l - �: + �: ] I :::: ;: . 
Use this to approximate f01 s: x dx to within J; t dx � .00003. Hint: Since s:x - l as x - 0+, you can regard this as a proper integral. 



Separable Differential 
Equations 

Many physical facts attain their mathematical expression as differential equations. In the simplest case, a differential equation is an equation expressing a relationship between two variables and the rate of change (derivative) of one variable with respect to the other. For example, �� = 3x2 is a simple differential equation, and the solutions are all the functions 
y = x3 + c. All the indefinite integration problems we have treated can be considered differential equations in this way. Thus, "find f f  (x) dx" means the same as "solve the differential equation �� = f (x) ." The solutions are all the functions y = f f (x) dx + c. Notice that now we want all solutions, so the arbitrary constant is necessary. In general, the solutions of a differential equation represent a fam ily of curves, and not just a single curve. To specify a specific solution, we must specify an initial condition like y(xo) = Y o, 

EXAMPLE 27.1 Find all solutions of the differential equation. and find the specific solution that satisfies the given initial condition: � = -d;,r,  y(O) = I .  
Solution 

dy 
dx 

= 
4 + x2 ' 

y = f -1-
2 

dx = ! tan- 1 � + c. 
4 + x  2 2 

This is the family of all solutions. To find c so that the initial condition is satisfied, substitute O for x and 1 for y :  
1 0 1 = 2 tan- 1 

2 + c; c = I .  
The solution that satisifies the initial condition is 

l I X y = 2 tan- 2 + l .  
A first-order differential equation is one that involves only the first derivative. A first­order differential equation generally has a one-parameter family of solutions; that is, the solutions depend on a single arbitrary constant. In this chapter, we will study the following 
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useful type of first-order equation: 

or equivalently, 
dy f(x) - = -- , dx g (y) 

dy g(y) dx = f (x) .  (27 . 1 )  
An equation of  this type i s  called separable, and we say the variables separate because we can write all the x ' s  on one si<;le and all the y's on the other. We bend the notation a little and agree that (27. 1 )  can also be written 

g(y) dy = f(x) dx. (27.2) As this last form suggests, the solutions of (27 . 1 )  or (27 .2) are obtained simply by integrating: 
f g(y) dy = f f (x) dx + c. (27 .3) 

That is, the solutions y of (27 .2) will be the functions that are defined implicitly by one of the equations 
G(y ) = F(x) + c where G and F are antiderivatives of g and f, respectively. 

EXAMPLE 27.2 
dy y2 Solve - = -- .  
dx x +  l 

Solution We separate the variables and integrate: 
1 I 

- dy =  -- dx, 
y2 X + l 

I -- = log Ix + 1 1  + c. 
y Since c is arbitrary, we can write log c instead of c to simplify the expression: 

I - - = log Ix +  I i + log e = log c lx + I I , 
y 

- I 
y - ----- log c lx + I I . 

The process of separating the variables and integrating appears to be a purely formal one, but it really does give all the solutions. It is easy to see by differentiating both sides that if y satisfies an equation 
G(y ) = F(x) + c, (27.4) where G'(y ) = g(y) and F'(x) = f(x), then y also satisfies the differential equation dy g(y) - = f (x) . (27.5) dx It is also easy to show (Problem 27 . 1 9) that there are no solutions of the differential equation (27.5) other than functions that satisfy (27.4). One very common separable differential equation is the exponential change equation dy dx = ay, (27 .6) 
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where a is a given constant. The equation expresses the fact that y increases ( a  > 0) or decreases ( a  < 0) at a rate proportional to y. This equation characterizes a number of physical phenomena, ranging from the growth of bacteria colonies to the decay of radioactive substances. We can separate variables and integrate to solve (27 .6), but it is simpler just to notice that the functions y = ceax all satisfy the differential equation. Moreover, if y is any solution, (i.e., any function such that � = ay ), then 
!!__ (ye-ax ) = dy . e-ax _ aye-ax 
dx dx 

= ay · e-ax - aye-ax = 0. 
Since :fx (ye-ax ) = 0, ye-ax is constant, and 

y = ceax _ (27.7) 
That is, every function (27. 7) satisfies the differential equation, and any function that satisfies the differential equation has the form (27.7). 
EXAMPLE 27.3 Let y be the number of bacteria in a colony at time t, and assume � = a y, so y = ce'" for some constants 
c and a. If y = 500 at t = 0 and y = 2000 at t = 2 hours, what is y at t = 4 hours? 
Solution Since y = 500 at t = 0, we have 500 = ce0 = c and c = 500. Notice that c will always be the value of 
y at t = 0 in exponential change problems. Now we use the fact that y = 2000 when t = 2 to find a, or more usefully, to find e" :  

2000 = 500e2a = 500{e")2 , 

(ea)2 = 4, ea = 2, eat = 21 • 

The final solution is y = 500 • 2' . When t = 4, y = 500 • 24 = 8000. 
EXAMPLE 27.4 

dy Solve - = 2xy + 2x . 
dx 

Solution 
dy - = 2x(y + 1 ) ,  
dx 

dy 
-- = 2x dx , y + l 

log IY + 1 1  = x2 + log e. 
We write the arbitrary constant in the form log c and use e108 '' = c to simplify the expression: 

IY + 1 1 = ex2 
• e108 '' = ce

2
. 

y + 1 = ±ce
2

• 

We now allow c to be positive or negative and we drop the ± sign, so finally 
2 y = - I  + ce-' . 

EXAMPLE 27.5 Newton's law of cooling says that a hot body will cool off at a rate proportional to the difference between its temperature and the temperature of the surroundings. Suppose a cup of coffee has temperature 
T == 1 30°F at t = 0 in a room at temperature 70°F. If T == J00°F at t = 3 minutes, what is the temperature at t = 5 minutes? at t = ·6 minutes? 
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Solution 

The cooling law gives the differential equation 
dT dt = -k(T - 70) , 

where T is the temperature in degrees Fahrenheit and k is a positive constant of proportionality. 
We separate the variables and solve. 

dT 
-- = -k dt 
T - 70 

log(T - 70) = -kt + log e, 
T - 70 = ce-k1 • 

Since T = 1 30 at t = 0, c = 60 and 

T = 70 + 60e-kr _  

Now we use the condition T = 100 when t = 3 to find e-k .  
100 = 70  + 60e-Jk , 

30 _ = (e-k)3 , 
60 
e-k = 2- ! , e-k1 = 2-1/3 . 

Finally, we have 

T = 70 + 60 · i-'13 • 
When t = 5 minutes, this gives 

When t = 6 minutes, 

60 . T = 70 + -;- = 70 + 1 9  = 89. 
2 3  

60 T = 70 + 6 = 70 + 15 = 85. 
2 3  

A body falling in a vacuum accelerates at a constant rate of 32  ft/sec2 • Since tall vacuums are rare, air resistance usually plays a significant role, with the acceleration usually being retarded at a rate proportional to the speed. Thus, a more realistic differential equation for the velocity v of a falling object is 
dv - = 32 - kv ,  (27.8) 
dt where the constant k depends on the shape of the object. In Problem 27 . 1 8  you are asked to solve (27 .8) and show that 32 

V = - ( 1  - e-kt ) ,  
k from which we conclude that v approaches a terminal velocity of ¥ ft/sec. 

PROBLEMS 

Solve the differential equation. Find the constant if an initial condition is given. 
dy 2 27.1 - = x cos x ; y(0) = 2  dx 

27.2 !: = sec2 x; y (�) = 0 
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dy 3 n 

27.3 
d
- = -2

- ;  y(3) = -
2 X X + 9 

dy X 
27.4 -

d 
= 2 ; y(O) = 5 

X X + I 
21.5 

dy = x
1 + l 

y (O) = 2 
dx y 
dy 

21.6 
dx 

= ex-y ;  y(O) = log 2 
27.7 dy = 4 +  y1 

dx I + x2 

27.8 dy = y 
dx .Jf=x2 
dy 

21.9 
dx 

- 5y = 0 

dy 
27.10 

dx 
- 5y = 10  

dy 27.11 - - 2xy = 0 
dx 
dy 27.12 - - 2xy = 2x 
dx 
dy y 

27.13 - = - + y 
dx x 

27.14 dy = y + 2 
dx x - 1  

165 

27.15 Suppose a beaker of boiling water at I00°C cools to 40°C in five minutes in a room at 20°C. What is its temperature T at time t?  at time t = 10  minutes? 
27.16 Suppose there are 100 bacteria in a colony at t = 0 and 500 three hours later. When will there be 1000 bacteria in the colony? When will there be 2500? 
27.17 Show that the solutions of i = ay can be written y = y0A' where y0 is the initial value and A is a constant. 
27.18 Solve equation (27.8) for a falling body with air resistance proportional to speed, and 

v = 0 when t = 0, and show that v - ¥ as t - oo. (A skydiver with unopened chute reaches a terminal velocity of about 120 mph, or about 176 ft/sec, which gives k = . 1 8.) 
27.19 Show that if y satisfies g (y) � = f (x) ,  then y must satisfy an equation G (y) = F (x) + c, with G' = g and F' = f. Hint: Define H(x) = G(y(x)) and show that H'(x) = F'(x), so H(x) = F(x) + c. 





Fi rst-Order 
Linear Equations 

A first-order linear differential equation is one that can be written in the following form: 
dy 
dx 

+ p(x)y = q (x), (28.1 ) 

where p(x) and q (x) are given functions. The equation is called linear because ifwe let L (y) 
denote the left side of (28. l ), then for any constant c and any two functions y 1 and Y2 we have: 

L (cy1) = cL(yi), 

L(y1 + Y2 ) = L(y1) + L (y2). 
(28.2 ) 

If q (x) = 0 the equation (28. l )  is called homogeneous, and the equation looks like this: 
dy 

L(y) = 
dx 

+ p(x)y = 0. (28.3 ) 

The homogeneous equation (28.3) is called the reduced form of equation (28. l ). Notice that 
if Yo is a solution of (28. 1 ) ,  so that L(yo) = q (x), and y1 is a solution of the reduced equation 
(28.3 ), so that L(y1 ) = 0, then Yo + cy1 is again a solution of (28.1 ), since 

L(yo + cyi) = L(yo) + cl(y1) = q (x) + c · 0. 
The process of solving the linear equation (28.1 ) consists of finding one solution yo and adding 
to it all solutions cy1 of the reduced equation. 

The following observation is the key to finding the solutions of (28. 1 ) and (28.3 ). Let 
P (x) = J p(x) dx, so that P'(x) = p(x), and check that 

d dy _ [ eP (x) y] = eP(x) _ + eP (x) p(x) y 
dx dx 

= eP (x) [�: + p(x)y l 
(28.4 ) 

This calculation shows that the left side of (28.1 ) becomes exactly the derivative of eP <x> y if 
we multiply by eP <x> .  Multiplying both sides of (28.1 ) by eP <x), we get the equivalent equation 

eP (x) [ :: + p (x)y] = eP (x)q (x), 
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which because of (28.4) can be written 
d _ [eP(x> y] = eP(x)q (x) .  dx 

Understanding Calculus 

(28.5) 
The solutions of (28.5), and hence the solutions of (28. l ), since (28. 1 )  and (28.5) are equivalent, can now be obtained by integrating both sides of (28.5): 

eP<x> y = f eP(x>q (x) dx + C, 
y = e-P(x) I eP(x>q (x) dx + ce-P<x> . (28.6) 

If q (x) = 0, then (28.6) gives the general solution y = ce-P<x> of the reduced equation. The expression 
Yo = e-P(x) I eP<x>q (x) dx 

is the one particular solution of (28. 1 )  that we need to go with the general solution ce-P<x> of the reduced equation. Rather than memorizing the formula (28.6), it is much easier to multiply both sides of the equation by eP<x> ,  and integrate. 
EXAMPLE 28.1 

dy Solve - + 3x2y = 0. 
dx 

Solution Here p(x) = 3x2 , P(x) = x3 , and we multiply both sides by e-'3
: 

3 dy 3 2 ex 
dx + ex · 3x y = 0, 

! [c3 y] = 0, 
e'3

y = c, 

y = ce-x3 . We could also have solved the equation by separating the variables, but the above method is simpler and cleaner. 
EXAMPLE 28.2 

dy I Solve -
d 

+ -y = Jx. 
X X 

Solution Here p(x) = �. P (x) = log x, and we multiply both sides by e10&x = x: 
dy 3 

x 
dx 

+ y = x 7 , 

d 3 
dx 

[xy] = x 7 , 

2 s 
xy = -x 7 + c, 5 

2 3 
y =  5x 7 + ex- • . 
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EXAMPLE 28.3 

dy Solve - + y = x2 . 
dx 

Solution We multiply both sides by ex : 

ex y = f x2ex dx + C. 

Integrating by parts twice, or more efficiently, consulting an integral table, we get exy = x2e - 2xe + le + c. 
y = x2 - 2x + 2 + C e-x. 

The general fonnula for the particular solution in Example 28.3 is 
e-x f exx2 dx = x2 - 2x + 2. 

For any equation 
dy 
dx 

+ ay = q(x), 

with p(x) a constant, a, the particular solution will be 
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(28.7) 

Yo = e-ax f eaxq (x) dx. ( 28.8) 

If q(x) is a polynomial, then (28.8) will again be a polynomial of the same degree. For instance, in Example 28.3, we had q(x) = x2 , and y0 = x2 - 2x + 2. Rather than fight through the integration in (28.8), we can just substitute a general polynomial in the equation and see what the coefficients must be. 
Second Solution to Example 28.3. Since q(x) = x2 , we try 

y = A+Bx+ Cx2 , 

dy = B + 2Cx. 
dx Substituting in the equation, we get 

(B  + 2Cx) + (A +  Bx+ Cx2) = x2 , 

(A + B) + (B  + 2C )x + Cx2 = x2 • Hence, we must have 

Thus, C = I ,  B = -2, A = 2, and 

A + B = O  
B + 2C = 0  C = l .  

Yo =  2 - 2x +x2 

is the same as the particular solution given by the integral (28.7). 
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It is important to emphasize here that the substitution trick works only if the coefficient p(x) is a constant, so the equation looks like this: 
dy - + ay = q(x). 
dx However, if p(x) is constant, the substitution technique works not just for polynomials q (x ), but also if q(x) = K cos bx or q (x) = K sin bx or q(x) = K 1 cos bx + K2 sin bx. In this case, try y = A cos bx + B sin bx. You must include both sine and cosine terms in your trial function, even if q (x) has only one term. If q (x) = K ebX ,  then try y = Aebx provided b -:/= -a. 

If b = -a , ebx is a solution of the reduced equation, and the particular solution has the form 
y = Axe-ax (Problem 28. 14). 
EXAMPLE 28.4 

dy 
Solve - - 4 y = 5 cos 2x . dx 
Solution 
We know the solutions of the reduced equation are y = C e4x . To find a particular solution, we try 

Substituting in the equation gives 

y = A cos 2x + B sin 2x 

dy - = -2A sm 2x + 2B cos 2x . dx 

(-2A sin 2x + 2B cos 2x) - 4(A cos 2x + B sin 2x) = 5 cos 2x , 
(2B - 4A) cos 2x + (-2A - 4B) sin 2x = 5 cos 2x . 

Therefore, y will be a solution if 
-4A + 2B = 5 
-2A - 4B = 0. 

Multiply the first equation by two and add: 
(-8A - 2A) + (4B - 4B) = 10, 

- lOA = 10, 
A =  - l . 

From the second equation B = - ½ A, so B = ½ ,  and the particular solution is 
l . 2 y0 = - cos 2x + 2 sm x . 

The general solution is 

EXAMPLE 28.5 
dy 3x - - y = 4e 
dx 
Solution 
We try 

y = - cos 2x + � sin 2x + Ce4x . 

y = Ae3x , 
dy = 3Ae3x _ 
dx 

Substitution yields the condition 

The general solution is 
3Ae3x - Ae3x = 4e3x , 2A = 4, A = 2. 

y = 2e3x + Cex . 
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EXAMPLE 28.6 dy -2t - + 2y = Se dx 
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Here y = ce-2x is the general solution of the reduced equation, and to get a particular solution we try 
y = Axe-2X ,  dy = Ae-2x - 2Axe-2x . dx Substituting these in the equation, we get 

The general solution is 

EXAMPLE 28.7 

(Ae-2x - 2Axe-2x ) +2Axe-2' = se-2x , 
Ae-2' = se-2' ,  A = 5 .  

Recall from the last chapter the differential equation for the velocity v i n  ft/sec of a falling body with air resistance: dv - = 32 - kv,  dt dv - + kv = 32. dt The constant right side, 32, is a zero degree polynomial, so there will be a constant particular solution 
y = A. Substituting, we get 

dA - + kA = 32. dt 
Since �; = 0, A = ¥, and the general solution is 

32 k t  V = - + Ce-k 
With the initial condition v = 0 at t = 0, this gives C = -¥ -
EXAMPLE 28.8 If T is the temperature of a beaker of water at time T and T = 90°C at t = 0, T = 40°C at t = IO minutes in a room of temperature 25°C, what is T at t = 20 minutes? Assume Newton's Jaw of cooling: 
�; = k(T - 25) . 
Solution We write the equation 

dT - - kT = -25k . dt The coefficient p(x) is constant, -k, and the right side is constant, so there will be a constant particular solution T = A. Substituting gives -kA = -25k, or A = 25. Thus, the solution is 
T = 25 + ce-k' .  

Since T = 85 at t = 0 ,  C = 60 and 
T = 25 + 60e-k' .  

Since T = 40 at t = J O, 
40 = 25 + 60e-lOk 
1 5  _ = (e-k) IO 60 
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For any t 

and when t = 15, 
3 

T = 25 + 60 o-r + 25 + 60 0) = 32.5 .  

Solve these equations: 
dy 1 28.1 - + -y = 0  
dx x 
dy 1 28.2 - + -y = x  
dx x 
dy 28.3 - + 2xy = 0 
dx 
dy 28.4 - + 2xy = x  
dx 
dy 28.5 - + y = ex 

dx 

PROBLEMS 

28.6 dy + y = 2e-x (Try y = Axe-x .) 
dx 
dy 28.7 - - 3y = 6x + 1 
dx 

28.8 dy + 2y = 4x2 + 4x 
dx 
dy 28.9 - - 6y = -15  sm 3x 
dx 
dy 28.10 - + y = cos 2x 
dx 

Understanding Calculus 

dy 28.11 - + y = ex + cos 2x Hint: Look at Problems 28.5 and 28. 10, and the linearity 
dx condition (28.2). 
dy 28.12 - - 6y = 6x - 15 sm 3x Hint: Use Problem 28.9. 
dx 

28.13 dy + 3y = 5e2x 

dx 28.14 Show that � + ay = K ebx has a solution y = Aehx unless b = -a. If b = -a, there is a solution of the form y = Axe-ax . 28.15 Suppose a light body falls under gravity, with air resistance as in Example 28.7, and its terminal velocity is 16 ft/sec. How fast is it falling after one second? 28.16 If T = 25 + ce-k' as in Example 28.8, and T = 75 when t = 0 and T = 65 when t = 5 min, what is the temperature at 15 min? 



Homogeneous Second-Order 
Linear Equations 

The two common physical situations indicated schematically in Figures 29. l and 29.2 are 
typical applications of the kind of equation we study in this chapter. In Figure 29. l we show 
a mass m attached to a spring and a damping device that could simply represent friction. The 
spring exerts a force -ks on the mass, where s is the amount the spring stretched (s > 0 )  or 
compressed (s < 0 ), and the damper exerts on the mass a retarding force -c* proportional 
to the speed. Newton's law says that force is mass times acceleration, so we have the equation 
of motion 

or 

d2s ds 
m - = -ks - c- ,  

dt2 dt 

d2s c ds k 
- + - - + -s = 0. 
dt2 m dt m 

(29. 1 )  

Figure 29 . 2  represents a simple LCR circuit with an inductance L, a capacitance C, and 
a resistance R. The current I in the circuit is determined by 

d2 I R d/ l 
dt2 + L dt + LC

1 = o. <29-2) 

Both equations (29.1 ) and (29.2 ) have the same form, 

d2y dy 
dt2 + 

b dt 
+ cy = 0, (29.3) 

where b and c are constants. Equation (29.3 ) is the general form of a homogeneous linear 
second-order equation with constant coefficients. 

If we denote the left side of (29.3) by L(y) ;  that is, let 

d2y dy 
L (y) = 

dt2 + 
b dt 

+ cy
, 

(29.4 ) 

then the linearity properties of L are 

L (ky) = kL(y) and L (Y1 + Y2 )  = L(y1 ) + L(y2 ) (29.5 ) 
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Natural length Amount of stretch of spring / �-s� Shock absorber 
-+-- F1 = -ks / a�o o�oo�oo�o� ds - F2 = -c ­dt 

M . . h O ds O d2s 0 ass movmg to ng t: 
s > , dt > , dt2 > 

Figure 29.1 

d2s ds m - = -ks - c -dt2 dt 

C 

R 

I 
L ) 

L di/ +  R di + _!_ I =  0 dt2 dt C 
Figure 29.2 

for every constant k and all functions y, Y1 , yz . From (29.5 ) we see that if Y1 and Y2 are solutions 
of(29.3 ), so that L(y1 ) = 0 and L(yz ) = 0, then any linear combination C1 Y1 + C2Y2 is also 
a solution. In fact, the general solution of (29.3 ) is 

Y = C1 Y1 + C2Y2 ,  (29.6 ) 
provided Yt and Y2 are independent solutions of (29.3 ); that is, neither Yt nor Y2 is a multiple 
of the other. To determine a specific function from the two-parameter family (29.6 ), we specify 
an initial condition of the form y(to ) = a o, y' (a o) = a1 ; that is, we must specify the values 
of both y and ¥, at some initial time t0 • 

In the simple case � = 0, we have already seen that the solutions are y = C 1 + C2t. If 
either b or c is not zero in the general equation (29.3 ), then we look for solutions of the form 
y = emt . Substituting y = emt , ¥, = memt , � = m2em1 in (29.3 ) we get 

em1(m2 + bm + c )  = 0. 
Thus, if r is a root of the auxiliary equation 

m2 + bm + c = 0, (29.7 ) 
then y = err is a solution of the differential equation. If the auxiliary equation has two real 
roots r1 and r2 , then er, ,  and er2 1 are independent solutions, and the general solution is 

EXAMPLE 29.1 

Solve � - 3 t + 2y = 0, and find the solution such that y(0) = 3, y'(0) = 5. 

Solution 

The auxiliary equation is 
m2 - 3m + 2 = (m - l ) (m - 2) = 0, 

with roots I and 2. The general solution is 
y = C1 e' + C2e21 • 

(29.8 ) 

Now use y(0) = 3, y'(0) = 5 to find C1 and C2 . Since y'(t) = C 1 e' + 2C2e21 ,  at r0 = 0 we have: 
C, + C2 = 3 

C1 + 2C2 = 5 . 
Subtracting the first equation from the second gives C2 = 2, and then from the first equation we get 
C 1 = 1 .  The solution that satisfies the initial condition is 

y = e' + 2e2' .  
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If the auxiliary equation has only one real root, r, then it is easy to check (Problem 29.6) 
that err and t e'1 are two independent solutions of the differential equation. 

EXAMPLE 29.2 
d2 y dy Solve 
dt2 + 4 dt + 4y = 0. 

Solution 
Here the auxiliary equation is 

m2 + 4m + 4 = (m + 2)2 = 0, 

with the single root r = -2. The functions e-2• and re-21 are independent solutions. and the general 
solution is 

The roots of the auxiliary equation for the general equation (29.3) are 

-b ± �h' - 4c � - � ± J(�)'
- c ( 29.9) 

If b and c are both positive, as they are in the physical situations pictured in Figures 29.1 and 
29.2, then both the roots r1 and r2 in (29.9) will be negative. so e'1 1 and e'21 both approach 
zero as t � oo. This is an obvious physical necessity, since neither system has any external 
source of energy and all solutions are necessarily transients. 

If the auxiliary equation has complex roots r + i s  and r - is ,  then y1 = e<r+is)t and 
y2 = e<r-is)t are complex valued solutions of the differential equation. The famous Euler 
formula states that 

e<r±is), = err cos st ± ie" sin st . 

Both the real and imaginary parts of this complex function will be real solutions to the differen­
tial equation. That is, if r ± i s are complex roots of the auxiliary equation, then y1 = e'1 cos st 
and y2 = e'1 sin st are independent solutions to the differential equation, and the general 
solution is 

EXAMPLE 29.3 
d2y dy Solve 
dt2 + 4 dt + l 3y = 0. 

Solution 
The auxiliary equation is 

m2 + 4m + 13 = 0, 
and the quadratic formula gives the roots 

The solutions are 

-4 ± J16 - 4 - l 3 r ± is =  2 
= -2 ± J4 - 13 = -2 ± 3i. 
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EXAMPLE 29.4 d2y Solve dt2 + 9y = 0. 
Solution 

Understanding Calculus 

The two roots of m2 + 9 = 0 are 3i and -3i . Since r = 0 and e01 = 1, the two solutions are cos 3t and sin 3t, and the general solution is 
y = C1 cos 3t + C2 sin 3t . 

Any equation of the fonn 
d2y 
dt2 

+ <,}y = 0, 

as in Example 29.4, describes what is called simple harmonic motion. The general solution 
is 

y = C1 cos wt + C2 sin wt. 
By rewriting ( 29.10) as follows, 

y = Jcr + Ci [ C, cos wt + C2 sin wt] , ✓ Cr + Ci ✓ Cr + Ci 

letting K = J Cf + Ci, and defining a by 

. C, C2 sm a = ---;::===, cos a = ---;::===, ✓ Cf + Ci ✓ Cf + Ci 
we can write the general solution ( 29.10) in the fonn 

y = K sin( wt + a). 

( 29.10) 

( 29.11) 
This fonnula exhibits the simple hannonic motion as a sine wave with amplitude K and 
frequency 2':, . The number a is called the phase shift. 

EXAMPLE 29.5 The general solution of the simple harmonic motion � + 9y = 0 can be written either as y = CI cos 3t + C2 sin 3t as in Example 29.4 or as y = K sin(3t + a). Find K and a so that y(O) = 1, y' (O) = 3 . What is the frequency? 
Solution We have 

y(t) = K sin(3t + a), y (O) = K sin a, 
y'(t) = 3K cos(3t + a), y'(O) = 3K cos a. 

Therefore, sin a = � and cos a = �, so 

Hence, 

sin a = 3y(O) = � = l ,  
cos a y'(O) 3 

1( a = 4 · 

rr I y (O) = I = K sin - = K - ,  
4 -12 

K = ,/2. 
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Hence, the amplitude, K, is .../2, and the phase shift, a, is % . The frequency is ¾;.  The solution is 

y = .Ji. sin ( 3t + �) . 

PROBLEMS 

29.1 Verify that L(y), defined in (29.4), has the linearity properties (29.5). Find the general solutions, as well as the specific solution that satisfies the initial condition. 
29.2 
29.3 
29.4 
29.5 

d2y dy 
dt2 + 5 dt + 6y = 0; y(0) = l , y' (0) = 5 
d2y dy 
dt2 -

dt 
- 2y = 0; y(0) = 2, y' (0) = 7 

d2y dy 
dt2 

+ 3 
dt 

+ 2y = 0; y(0) = - 1 ,  y' (0) = I 
d2y dy 2 3y - 0· )' ( I )  = 2e3 + e- 1 , y' ( l ) = 6e3 - e- 1 
dt2 -

dt 
- - ' 
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29.6 Suppose the auxiliary equation has just one root, r, so the equation is (m - r )2 = 0. Write the differential equation and verify that terr is a solution. 
d2 d · 29.7 Find the general solution of ';j;f - 2-fi + y = 0. 29.8 Find the general solution of � +  IO� +  25y = 0. 29.9 Show that the auxiliary equation for � - 2A �  + (A2 + B2)y = 0 has complex roots 

A ± i B. Check that y1 = eAr cos B t and y2 = eAt sin B t are independent solutions. Find the general solution and the specific solution that satisfies the given initial conditions. 
29.10 
29.11 
29.12 
29.13 

d2y dy - - 2- + 2y = 0; 
dt2 dt 
d2y dy - - 2- + 5y = 0; 
dt2 dt 
d2y dy - - 6- + 10y = 0; 
dt2 dt 
d2y dy - - 4- + 20y = 0; 
dt2 dt 

y (0) = 3, y' (0) = 10  
y(0) = 3, y' (0) = 1 1  

y(0) = 0, y' (0) = 6 

( Jr )  n I (Jr ) n 
y 4 = -e 'I , y 4 = -2e ! 

29.14 Solve � + 4 y = 0 and find the frequency of this simple harmonic motion, 29.15 Write the solution of � + 4y = 0 in the form y = K sin(wt + a) .  What is w here? Find 
K and a so that y(0) = ,J3, y' (0) = 2. 29.16 If a pendulum has length e feet and e is the angle the pendulum has swung from the vertical at time t, then � + �e = 0, where g = 32 ft/sec2 is the acceleration of gravity. (a) How long should e be so that the pendulum swings from one side to the other in one second? Hint: One cycle would consist of a swing from the extreme right to the extreme left and back to the extreme right. The frequency in this situation is therefore ½ cycle per second. (b) With e the length of part (a), suppose e = 0 when t = 0 (so the phase shift a is zero), and ¥, = .495 (radians per second, or about 28 degrees/sec) when t = 0. Find e in terms of t .  What is the maximum angle 0 the pendulum makes with the vertical? 





Non homogeneous 
Second-Order Equations 

In this chapter, we treat the nonhomogeneous linear second -order equation 

d2y dy 
dt2 

+ a 
dt 

+ by = q (t), (30.1 ) 

where a and b are still constants but q (t) is an arbitrary function. In physical terms, q (t) could 
be an imposed electromotive force in the LCR circuit of the last chapter or an outside force 
acting on the spring -mass system. 

The reduced form of (30.1 ) is the homogeneous equation 

d2y dy 
dt2 

+ a 
dt 

+ by = 0. (30.2 ) 

If we let L(y) denote the left side of (30.1 ) or (30.2 ), then L(y) is a linear operator, which 
means that 

L(ky) = kL(y) and L(y1 + Y 2) = L(y1) + L(y2) (30.3) 

for all constants k and functions y, y1 , yz. From the linearity properties (30.3 ) it is clear 
that if Yo is any solution of (30.1), so L(y0) = q (t), and y1 , y2 are solutions of (30.2), so 
L(yi) = L(y2) = 0, then 

(30.4 ) 

is a solution of (30.1 ), since 

L(yo + C1 Y1 + C 2y 2 ) = L (yo) + C1 L(y1 ) + C 2L(y 2) 
= q(t )  + C1 · O + C 2 · 0. 

In fact, (30.4) is the general solution of (30.1 ) provided y1 and y 2 are independent solutions 
of (30.2 ); that is, neither is a multiple of the other. 

Recall that for the first -order equation 
dy 
dx 

+ p(x)y = q (x) (30.5) 
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we found the following general solution: 

y = e-P(x) I eP<x>
q (x) dx + ce-P<x > , (30.6 ) 

where P (x) = J p(x) dx, and e-P<x> is a solution of the reduced form of (30.5 ). From (30.6 ) 
we see that (30.5 ) has a particular solution of the form y = yov,  where Yo = e-P <x> is a 
solution of the reduced equation, and v is the function given by the integral in (30.6 ). With 
this guideline, we try to find a particular solution of (30. l ) of the form y = yov, where Yo is a 
solution of the reduced equation. So let Yo = e'1 be a solution of the reduced equation (30.2 ), 
and substitute y = e'1 v into (30. l ) to see what v must be if y is to be a solution. The terms 
involving v drop out because L(e'1 ) = 0, and we get 

d2v dv 
e't dt2 

+ (2r + a)e't dt 
= q (t) , 

d2v dv 
dt2 +(2r + a )  

dt 
= e-,1 q(t ). 

Equation (30.7 ) is a first -order equation in !� ; let u = !� and (30.7 ) becomes 
du - + (2r + a)u = e-'1

q (t) . 
dt 

(30.7 ) 

(30.8 ) 

We solve this as usual by multiplying both sides by eP<t> where P (t) = J p (t) dt = (2r + a )t .  
du e<Zr+a)t _ + (2r + a)e(2r+a)tU = e<2r+a)te-rtq (t) , 
dt d - (e<2r+a)tu) = e<r+altq (t) , 

dt 
(30.9 ) 

e<2r+a)tu = I e<r+a)tq (t ) dt. 

Now we have an integral formula for u : 

u = e- <2,+a>t f e<r+a>1
q (t) dt. (30. 10) 

Since v = J u(t) dt, we also have an integral formula for v, and therefore a guaranteed 
solution y = e'1 v, where v is given explicitly in terms of two integrations involving q (t) and 
exponentials. We chase through the computations above in the following example. 

EXAMPLE 30.1 
d2y dy Solve 
dt2 - 3 

dt 
+ 2y = 4t . 

Solution The reduced equation has solutions e' and e21 • We let y0 = e' and substitute y = e' v in the equation to get 
, d2v 1 dv e - - e  - = 4t ,  

dt2 dt 
d2 v - dv = 4te_, 
dt2 dt Notice that v is missing from this equation as in (30.7). We let u = � and multiply both sides by e-1 : 

du e-1 
- - e-'u = 41e-21 , 
dt 
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Integrate by parts ( or consult the table of integrals) to get 

Now integrate u to get v : 
e-'u = e-21 (-2t - I ) ,  

u = e-1 (-2t - l ) .  

v = f e-' (-2t - l) dt = e-' (2t + 3) .  

This gives the particular solution 
y = e' v = e' • e-1 (2t + 3) = 2t + 3. 
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Notice that although q (t) = t is a very simple function, the computations are nevertheless 
formidable. This prompts us to investigate what general form a solution would have for certain 
functions q (t). For example, if we knew that a polynomial q (t) would always lead to a 
polynomial solution (and it does), then it would be much easier just to substitute a general 
polynomial At + B in the equation to determine the coefficients A and B.  

Suppose q (t) = ek1 Qn (t), where Qn (t) is an nth degree polynomial. Here are some 
examples of this form of q (t): 

q (t) = 5e31 ; Q0(t) = 5 , k = 3; 
q (t) = 3t3 + t ;  Q3 (t) = 3t3 + t ,  k = 0 so ekt = 1; 

Q 1 (t) = 2t , k = -1. If q (t) = ek1 Qn (t), then the integral in (30.10) has the form 

I e<r+a)1ekt Qn (t) dt = I ect Qn (t) dt, (30.11) 

where c = r + a + k is a constant. From the integral tables ( or see Problem 30.1 ), we find that 
if c -::j:. 0, then 

I ect Qn (t) dt = ect Rn (t), 

where Rn (t) is another nth degree polynomial. Hence (30.9) looks like this: 

e<2r+a)t u = f e <r+a+k)t Qn (t) dt 

= e<r+a+k)t Rn (t), 
from which 

u = e<k-r)t Rn (t). 
The function v is the integral of u, so if k - r -::j:. 0, 

V = I e<k-r)t Rn (t) dt = e<k-r)I Sn (t), 

(30.12) 

(30. 1 3) 

(30. 1 4) 

(30.15) 

for some new nth degree polynomial Sn (t). If k = r, so ek' is a solution of the reduced 
equation, then 

V = f Rn (t) dt = Tn+1 (t), (30.16) 

where Tn+I (t) is a (n + l )st degree polynomial with no constant term. We can write Tn+1 (t) 
in the form tSn (t). 

Finally, the solution y = e" v has the form 
(30.17) 
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if k -::j:. r, and has the form 

if k = r. 

To find a particular solution of (30. 1) if q (t) = ek' Qn (t), try y = ek1 Sn (t) if ek1 is not 
a solution of the reduced equation, and try y = ek' t Sn (t) if ek' is a solution of the reduced 
equation. 

Here are some examples of this rule. In all these examples, the reduced equation is 
d2

y 3 � 2 0 ' th l . I d 2' tfiT - dt + y = , w1 so ullons e an e . 

d2y dy I ( a) 
dt2 

- 3 
dt + 2y = 6e- . 

There is a particular solution of the form y = Ae-1
• 

d2y dy I (b) 
dt2 - 3 

dt + 2y = e .  

Since e' is a solution of the reduced equation, there will be a solution of the form Ate' . 

d2y dy ( c) - - 3 - + 2y = 4t2e3' . 
dt2 dt 

There is a solution of the form y = (At2 + Bt + C)e31 • 
d2y dy 21 ( d) 
dt2 

- 3 
dt 

+ 2y = (-6t + 8)e 

There will be a solution of the form y = (At2 + Bt)e2' since e21 is a solution of the 
reduced equation. 

d2y dy 
(
e
) 

dt2 
- 3 

dt 
+ 2y = 4t . 

This is the problem of Example 30.1. Now we know there is a solution of the form 
y = At + B,  so we can substitute this general linear polynomial and determine A and B. 
That's a whole lot simpler than the calculations of Example 30. l .  

The same kind of argument we used above shows that if q (t) = Qn (t) cos a t  or q (t) = 
Qn (t) sin at for a polynomial Qn (t) , then there will be a solution of the form 

y = Rn (t) cos at + Sn (t) sin at.  

Notice that both cos at and sin at must occur in the trial solution, even if q (t) involves one of 
these functions. For example, 

if q ( t) = 3 sin 4t, try y = A cos 4t + B sin 4t ; 

if q (t) = 2t cos t ,  

try y = (At + B) cos t + (Ct + D) sin t . 
If cos at and sin at are solutions of the reduced equation, both Rn (t) and Sn (t) must be 
multiplied by t. 

EXAMPLE 30.2 
d2y dy Solve - - - - 2y = lO cos t .  
dt2 dt 
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Solution The auxiliary equation is 
m2 - m - 2 = (m - 2) (m + I )  = 0, so e2' and e-1 are solutions of the reduced equation. There will be a particular solution of the form 

y = A cos t  + B sin t, so we calculate derivatives and substitute: 
y = A cos t  + B sin t 

dy = B cos t  - A sin t 
dt 

d2 v -· = -A cos t  - B sin t .  
dt2 Substituting in the equation gives 

Hence, we must have 
(cos t ) (-A - B - 2A) + (sin t ) (-B + A - 2B) = I 0 cos t , (-3A - B) cos t  + (A - 3B) sin t = IO cos t .  

-3A - B = I O 
A - 3B = 0. Multiply the first equation by -3 and add: 

IOA = -30, A = -3. This gives B = -3A - IO = - 1 ,  and hence 
y = -3 cos t  - sin t .  

EXAMPLE 30.3 d2y Solve 
dt2 + 4y = 4 sin 21 . 

Solution Here cos 2t and sin 2t are solutions of the reduced equation, so the trial solution has the form 
y = At cos 2t + Bt sin 2t , 

i, = A cos 2t - 2At sin 2t + B sin 2t + 2Bt cos 2t 

= (cos 2t)(A + 2Bt) + (sin 2t) (-2At + B) d2y 
dt2 = (cos 2t) (2B) - 2(A + 2Bt) sin 2t 

+(sin 2t) (-2A) + 2(-2At + B) cos 2t 
= (cos 2t) (-4At + 4B) + sin 2t (-4Bt - 4A). Substitution in the equation gives (cos 2t) [4B] + (sin 2t) [-4A] = 4 sin 2t . Hence, 

-4A = 4, A =  - I  
4 B  = 0, B = 0 and the solution is 

y = -t cos 2t . 
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PROBLEMS 

30.1 (a) Integrate by parts to show that if n :?: 1 , 

I tnee' dt = �tnee' - � I tn-l ee' dt 

(b) Use (a) and f ee' dt = ¼ee' to integrate the following in tum: 

f tee' dt , f t2ee1 dt , f t3ee1 dt .  

Understanding Calculus 

(c) Show why f ee' Qn (t) dt = ee' Rn (t) for some nth degree polynomial Rn (t) if Qn (t) is 
an nth degree polynomial and c #= 0. 

Find a particular solution using the examples (a)-(e) in the text. 

d2
y dy I 

30.2 dt2 - 3 dt +
 2y = 6e- (Example (a)) 

d2
y dy I 30.3 dt2 - 3 dt + 2y = e (Example (b)) 

d2
y dy 30.4 -
2 - 3 - + 2y = 4t2e3' (Example (c)) dt dt 

30.5 d2y lY 6 8) 2/ d dt2 - dt 
+ 2y = (- t + e (Example ( )) 

d2
y dy 30.6 dt2 - 3 dt + 2y = 4t (Example (e)) 

30.7 Solve � - � - 2y = lO sin t. 
d2y_ 30.8 Solve di'f + y = 6 cos t. 

30.9 Solve � - 2� + y = -25 sin 2t. 
30.10 Solve � - 2� + 2y = e' cos t. Hint: Try y = Ate' cos t + Bte' sin t. 



Vectors 

Some physical quantities are determined by a single number. For example, temperature is so 
many degrees, distance is so many feet, time is so many seconds. Other quantities, such as 
force and velocity, have both a magnitude and a direction. A quantity which has both magni­
tude and direction is called a vector. When we deal with vectors ordinary numbers are some­
times called scalars to make the distinction. We use bold face letters A, B, F, v, etc. for vec­
tors, and ordinary letters a, b, k, v, x, y for scalars. 

Vectors are represented geometrically by a directed line segment; i.e. , a line segment 
with an arrow head on one end. The length of the segment is the magnitude of the vector­
for example the number of feet per second for a velocity vector. The direction of a vector is 
the direction of the line segment-for a velocity vector that is the direction where the object 
if headed at so many feet per second. 

We will start with plane vectors to keep the notation simple. The vector from -
P =  (xp y1 ) to Q = (x2, y2) is denoted PQ, and its magnitude or norm is given by 

I IPQII = V(x2 - xi)1 + (y2 -y1)2 . 

Vectors are not tied to a particular point in the plane, so two segments with the same 
length and same direction represent the same vector. (Figure 31. l ). For example the vector 
from (0, 0) to (2, I )  is the same as the vector from (2, 2) to (4, 3) and the vector from (-2, 1) 
to (0, 2). 

Vectors are added in the way that reflects how vector quantities such as force or veloc­
ity add up in a physical situation. To add two vectors A and B put the tail of B at the head of 
A .  The vector from the tail of A to the head ofB is the sum A +  B. (Figure 31.2). The vector 
A + B forms a diagonal of the parallelogram whose adjacent sides are A and B. Figure 31.2 
shows that B + A is the same as A + B, so vector addition is a commutative operation: 

A + B = B + A. 

Figure 31.3 shows that vector addition is also associative; i. e. , that 

(A + 8) + C = A +  (B + C). 
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(4, 3) 

(2, 2) � 
�(3, 2) 

B 

(2, 1 ) (3, 1 ) (4, 1 ) 

B 

2 3 4 

-1 --- (1 , -1 ) 
B 

Figure 31.l 

Figure 31.2 

Figure 31.3 

Hence we can write A + B + C without parentheses, and vector sums can be written in any 
order. For example, 

A + B + C = B + C + A = C + B + A  

To make the connection between vectors and the coordinate system we introduce unit 
vecton i and j parallel to the axes: i is the vector from (0, 0) to ( 1 ,  0), and j is the vector from 
(0, 0) to (0, I) . (Figure 3 1 .4). Clearly i and j have length one, so l li l l  = I U I I  = 1 .  
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We can conveniently write any vector in terms of i and j. The vector from the origin 0 
to the point = (x, y) is (Figure 31.5) 

OP = x i + y i. 

More generally, the vector from P = (xi ' y 1) to Q = (x2, y2) is (Figure 31.6) 

-1 2 

Figure 31.4 

P = (x, y) 

yj 

2 X 

Figure 31.S 

Figure 31.6 
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B 
Figure 31.7 

- 8  
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If B has the same magnitude as A but the opposite direction we write B = -A. Hence if A = xi + yj, then B = -A = -xi -yj. Clearly A + (-A) is the zero vector O = Oi + Oj . The zero 
vector is the one vector with no direction. We naturally define A - B to be A +  (-B). (Figure 
3 1 .  7). Geometrically, A - B is the vector from the tip of B to the tip of A when A and B orig­
inate at the same point, so A - B is the vector you add to B to get A. If A =  a 1i + a:J and B = 
b 1i + b:J, then 

A + B = (a 1 + b 1) i + (a2 + b2) j ,  

A - B = (a1 - b1) i + (a2 - bi) j .  

Multiplying a vector A by a positive scalar k gives a vector in the same direction and k 
times as long. For example, 2A has the same direction as A and twice the magnitude. If the 
scalar is negative, the direction of the vector is reversed. We have already seen that -A = 
(-1 )A has the opposite direction to A and the same length. In general, kA is lkl times as long 
as A and points in the same or opposite direction depending on whether k is positive or nega­
tive. (Figure 3 1 .8). It is easy to check that 

k(A + B) = kA  + kB. 
In terms of i and j this says 

k( X i +  y j) = kx i + ky j. 

Figure 31.8 
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EXAMPLE 31 .1 Let P = (2, I) and Q = (5, -3). 
Solution 

EXAMPLE 31 .2 

(i) Write PQ in terms of i and j .  (ii) Find I IPQII . 

-+ (i) PQ = (5 - 2) i + (-3 - l) j = 3 i - 4 j . (ii) I IPQII = v'3!+42 = vE = 5. 
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Let P = (l, 2) and Q = (5, 3). Find the point R on the segment from P to Q which is ½ of the way from P 
to Q. 
Solution Let P be the vector from the origin to P = ( I ,  2) and Q be the vector from the origin to Q = (5, 3). Then Figure 3 1 .9) 

-+ 

P = i  + 2j, 

Q = 5i + 3j, 

PQ = Q - P = 4i + j .  

If R is the vector from the origin to point R, then I -+ 
R = P + -PQ 3 

= (i + 2j) + 3(4i + j) 

= ( 1 + f ) i + (2 + ¾ ) j 

7 . 7 . = 31 + 3l· 
Since R = Ji +  Jj is the vector from the origin to R, R is the point (J, J). 

4 

3 

2 7 3 
Figure 31.9 

4 

Q = (5, 3) 

5 6 
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Now look back at what happened in the preceding example. To fmd the point (x, y) which is one­
third of the way from P =  (x1 , y1) to Q = (x2, y2) you add ½(x2 - x1) to x1 to get x, and add ½(Jl2 -y1) toy1 
to gety. For example, the point l of the way from (-1 ,  2) to (3, 5) is (x, y), where 

EXAMPLE 31 .3 

7 28 
x = -1 + 

8
(3 - (-1)) = -1 + 

8
, 

7 21  
y = 2 +  

8
(s - 2) = 2 +  

8
. 

Find the point R = (x, y) on the line through P = (0, I) and Q = (5, 2) so that P and R are on opposite 
sides of Q, and R is twice as far from Q as P is. 

Solution 
Ifwe let P, Q, and R be the vectors from (0, 0) to P, Q, and R respectively, then 

Since Q = Si + 2j and P = j, 

Hence R = (15, 4). 

EXAMPLE 31 .4 

R = Q + 2PQ 
= Q + 2(Q - P) 
= 3Q - 2P. 

R = 3(5 i + 2 j) - 2 j 
= 15 i + 4 j .  

A boat heads directly east across a river which runs north-south and is flowing due south at 5 mph. The 
boat moves at IO mph through still water. What is the velocity vector and speed of the boat, and how 
long does it take to cross the mile wide river? 

Solution 
The boat's velocity vector through the water is lOi (10 mph due east), and the river's velocity vector is 
-5j (5 mph due south). Hence the resultant over-the-ground velocity of the boat is v = IOi - 5j, and the 
boat's speed is llvll = � = vIB ""' 1 1 .�h. From Figure 3 1 . 10 we see that ifs is the length 
of the boat's path, then t = "W. The speed is V 125 mph, so the time for the crossing is 

s vill I 1 
t = 

jj;jj 
= 10 · vIB 

= 10 hr. 

The time is the same as if the boat were going one mile through still water. Of course if the captain's 
ambition was to land directly across the river from the starting place then he is off by half a mile. 

s "125 1 1 
t = TivIT = 10 ff25 = 1 0  

Figure 31.10 

T 
.l mi 2 
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EXAMPLE 31 .5 
Let P, Q, R be the vertices of a triangle. Let P, Q, R be the vectors from P, Q, R to the midpoints of the 
opposite sides. 

Show that P + Q + R = 0. (Figure 3 1 . l  l ). 

Solution 
--+ --+ --+ --+ --+ --+ 

First notice that PQ + QR + RP =  0. Now write P, Q, and R in terms of PQ, QR, and RP: 

Therefore 

EXAMPLE 31 .6 

- l -
R = RP + - PQ 2 

--+ --+ --+ 1 --+ --+ --+ 
P + Q + R = PQ + QR +  RP + -(PQ + QR +  RP) 2 

= 0 + 20 = 0. 

In Figure 3 1 . 12  a l 00 lb. weight hangs from two cords as shown. Find the tension in each cord. 

Solution 
If F

1 
and F

2 
are the forces exerted by the two cords, then their respective tensions are I IF\ 1 1  and I IF2 I I . 

The horizontal components of F1 and F2 must cancel (B1 = -Hi) since the weight isn't moving side­
ways. Therefore 

The two vertical components VI and V 2 must have magnitudes which add up to 100 since the weight 
also is not moving up or down. Hence 

; 
I 

I 
I 

I 

R /  

I 
I 

I 

I 
I 

I 
I 

I 

I 

t,: ..._ I ' ,  
,' .... ..... ..... ....  Q I ' ,  

I ' ,  
I ' ,  

R 

P • =-------------<----------� 

Figure 31.11 
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As a check we calculate 

1 00 lb 

Figure 31.12 

I IF 1 1( V'2 . v'3 + .!.) = 100 2 2 V'2 2 

I IF2 I I  = 200/(I + V3) == 73.2(Ibs), 

I IF1 I I  = v1 I IF2 I I  == 89.7(Ibs). 

Understanding Calculus 

I IH1 I I  = 89.7 cos 45° = 63.4; 

I IV1 I I  = 89.7 sin 45° = 63.4; 
I IH2 I I  = 73.2 cos 30° = 63.4; 

I IV2 I I  = 73.2 sin 30° = 36.6. 

The horizontal components have equal magnitude, H 1 = - "2, and the sum of the vertical components 
is 100: I IV1 + V2 I I  = 100. 

PROBLEMS 

31.1 Write PQ in terms ofi and j and find the norm I IPQII . 
(a) P = (2, 4), Q = (-1 ,  3) 
(b) P = (0, 0), Q = (3, -2) 
(c) P = (5, 2), Q = ( 1 ,  -4) 
(d) P = (1 ,  7), Q = (6, -5) 

31.2 Find the point R = (x, y) on the segment from P = (3, 1 ) to Q = (-1 , 5) so that R is � of the 
way from P to Q. 

31.3 Find the coordinates of the point R on the line through P = (2, 1) and Q = (5, 0) so that P 
and R are on the same side of Q, and the distance from Q to R is twice the distance from 
Q to P. 

31.4 Find a unit vector A which is parallel to i - 2j . 
31.5 Find a unit vector which is parallel to a line with slope j. 
31.6 Find a unit vector parallel to a line with slope 3. 
31.7 Find a unit vector which is parallel to a line which makes an angle 0 with the x-axis. 
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V = 200 j 

0 = ?  
I I  F I I = ?  

50 i 
200 

Figure 31.13 

31.8 What is the slope of a line parallel to v = 3i + 7j? 
31.9 Check that the line 3y = 4x + 4 goes through the point (2, 4). 

(a) Find a unit vector parallel to the line. 
(b) Find the two points on the line which are a distance 5 units from (2, 4). 
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31.10 The segment from (1 ,  1) to (2, 3) and the segment from (1 , 1) to (4, 2) are adjacent sides 
of a parallelogram. What is the fourth vertex? 

31.11 Let A, B, C, D, E, F, G, H be vectors along consecutive sides of a regular octagon with 
sides of length I .  Let A = i, B = � i - � j, C = -j, etc. 
(a) Draw the figure and write D, E, F, G, and H in terms of i and j. Check that the sum 

is 0. 
(b) Write D, E, F, G, and H in terms of A and B. 

31.12 In Figure 3 1 . 1 1 it appears that the three median vectors intersect in a point. Show that 
this is the case, and the point is 1 of the way along each. Hint: It suffices to show that for 
instance PQ + 1Q = PR + 1R. (The point of intersection is called the centroid of the tri­
angle.) 

31.13 A bucket of wet concrete weighing 200 lbs. hangs from a crane. A control rope puts a 50 
lb. horizontal force on the bucket, pulling the suspension cable away from the vertical 
(Figure 3 1 . 1 3). What is the tension I IFI I in the cable, and what angle does the cable make 
with the vertical? 

31.14 An airliner maintains a heading of 60° (60° east ofnorth). The plane's speed through the 
air is 500 mph, and the wind at cruising altitude is 1 00 mph toward the east. What is the 
plane's true course ( degrees east of north) and what is its speed over the ground? Hint: 
The plane's velocity through the air is 500 (sin 60° i + cos 60° j) and the wind's velocity 
is 100 i. 





The Dot Product 

The dot product of two vectors A and B is define by 

A . B = I IA I I  1 1B1 1  cos 0, 

where 0 is the angle between A and B. The dot product is sometimes also called the scalar 
product since the result is a number-a scalar. 

It is clear from the definition that B · A is the same as A · B, so the dot product is a 
commutative operation. It is also easy to see that scalars behave nicely with the dot product, 
so that 

(aA) · B = a(A · B) = A · (aB). 

If C is a unit vector, I ICI I = l ,  then A · C = I IA I I  cos 0 is the length of the projection of A 
on C (Figure 32. la). This projection is a signed number, so if ¥ <  0 :s 1T with cos 0 < 0, then 
A · C is a negative number (Figure 32. lb). 

From Figure 32.2 we see that the projection of A +  B on C is the sum of the projections 
of A on C and B on C. Therefore, if C is a unit vector, 

(A + B) · C = A · C + B · C. (32. 1) 

If C is not a unit vector, then both sides of (32.1) are multiplied by the length of C, so (32. 1 )  
holds for any vector C.  Since the dot product is  commutative we also have from (32. 1)  

C · (A + B) = C · A +  C · B = A · C + B · C. 

Two vectors A and B are perpendicular if the angle between them is ¥, so cos 0 = 0. 
Hence A and B are perpendicular if and only if A · B = 0. Of course if A = 0 or B = 0 then 
A · B = 0, so we agree for convenience that the zero vector is perpendicular to every vector. 
In particular, i and j are not only unit vectors, they are perpendicular to each other, so 

i · i = j · j = l  i · j = j · i = 0. (32.2) 
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I 

I 

I 

I 

I 

I 

I 

l-- 11 A l l cos 0 --J 
(a) 
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.. 
C 

----�----- - - - - - - -----------
1-- II A l l cos e -j 

(negative) 
(b) 

Figure 32.1 

C 

(A + B) • C = A • C + B • C 

Figure 32.2 

C 

We use (32.2) to calculate A · B when A and B are expressed in terms of i and j. If 
A = a1i + aJ and B = b1i + bJ, then 

A · B = (a1i + a2j) · (b1i + bJ) 
= a1b 1 i · i + a 1b2 i · j + a2bd · i + a2b2 j · j 
= a 1b, + a2b2 · 

If A = a1i + aJ, then B = -a2i + a1j is perpendicular to A since 

A · B = (a1i + aJ) · (-a2i + a 1j) = -a 1a2 + a2a 1 
= 0. 

If A = a 1i + aJ is a unit vector, af + a� =  1, then of course B = -a2i +a1j is also a unit vector. 
Here B is obtained by rotating A through 90° in the positive direction (Figure 32.3). 

EXAMPLE 32.1 
Find the angle 8 between the vectors A = Si + 2j and B = 3i - j. 

Solution 
Since I IAII = � = V'29 and 11B1 1 = V'32+P = vio, the vectors ,*9 A and vro B are  unit vec­
tors and their dot product gives the cosine: 
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Figure 32.3 

l l l 
cos 8 = V29 A · VioB = V290 A · B 

cos 8 =  vT9o (5i + 2j) · (3i - j) 

l 1 3  
= V290 ( 5  · 3 + 2(-1)) = V290. 

From the calculator we get 8 � 40.2° or 8 � .702 radians. 

EXAMPLE 32.2 
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Find the angle between the line through P = (1 ,  3) and Q = (6, 1), and the line through R = (-1 ,  3) and 
S = (2, 0). (Figure 32.4). 

Solution 
PQ and ifs are vectors parallel to the lines, and 

PQ = 5i - 2j ifs = 3i - 3j . 

-2 

Figure 32.4 
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We find unit vectors along these vectors and take the dot product: 

1 1 
cos 8 = 

V29 (5i - 2j) · Vl8 (3i - 3j) 

1 2 1 
= V'297g (15 + 6) = V'297g . 

The calculator gives 8 == 23.2° or 8 == .405 radians. 

EXAMPLE 32.3 

Understanding Calculus 

Find a unit vector u parallel to A =  4i + 3j and a unit vector v perpendicular to A. Write a general vec­
tor B = xi + yj in the form au + bv. 

Solution 
Since I IAI I  = 5, we can take 

I 4 3 
u = -(4i + 3j) = -i + -j. 5 5 5 

A unit vector perpendicular to A and u is 

3 . 4 . v = --1 +  -J .  
5 5 

The component of B along u will have length B · u and the component of B along v will have length 
B · v. Therefore 

B = x i +y j  
= (B · u) u + (B · v) v 

= (x i +  y j) · ( f i + ¾j) u + (x i +  y j) · (-¾i + f j) v 

= ( {x +  ¾y) u + (-¾x +  {y) v. 

The kind of calculation in Example 3 is useful if you want to introduce a new coordinate system 
with the new axes rotated through an angle 8. (Figure 32.5). Let x and y denote the coordinates of a 
point in the rotated system. As we saw in Example 3, the u-cornponent of OP (i.e., the x-cornponent) 
will have length OP · u. Hence 

Similarly, 

Here are the rotation equations: 

x = OP · u  
= (xi + yj) · ( cos 8 i + sin 8 j) 
= X COS 8 + y Sin 8. 

y = OP · v  
= (xi + yj) · (-sin 8 i + cos 8 j) 
= -x sin 8 + y cos 8. 

x = x cos 8 + y sin 8 
y = -x sin 8 +y cos 8. 

(32.3) 
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x 

Figure 32.S 
Since the x and y coordinates are obtained from the x, y coordinates by rotating through the angle -8, we use (32.3) with -8 in place of (J to get 

EXAMPLE 32.4 

x = xcos 9-y sin (J y = xsin (J + y cos 9. 

Show that the curve xy = 1 is the hyperbola ½(x2 -y2) = I rotated through 45° . 
Solution If the coordinate system is rotated 45° the new coordinates satisfy 

V2 V2 x = x-- -y-
2 2 

V2 V2 y = x-2- + y-2- ·  
We get the x, y equation for the curve by substituting the above formulas in x and y for x and y: 

xy = 1 ,  
(x V2 -y V2 )(x V2 +y V2 ) = t 2 2 2 2 ' 

1 1 
2.x2 - 2? = 1 .  

(32.4) 

We recognize the last equation as that of a hyperbola, so xy = 1 is this hyperbola rotated through 45° . 
As a final application, which shows dramatically how vector notation simplifies many calcula­tions, we derive the law of cosines. Let A and B be two vectors from the origin, with I IAI I  = a, 1 1B1 1  = b. Let C = A - B be the third side of the triangle, with I ICI I = c. (Figure 32.6). Then 

C · C = (A - B) · (A - B), C · C = A · A +  B · B - 2A · B, c2 = a2 + b2 - 2ab cos 8. 
Formula (32.5) is the law of cosines. 

(32.5) 
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B 

Figure 32.6 

PROBLEMS 

Understanding Calculus 

Find the angle between A and B, and find the length of the projection of A on B. 
32.1 A = i + j ; B = -i + j . 
32.2 A =  3i - 2j B = Si + j .  
32.3 A = -2i + j ; B = 3i + 4j. 
32.4 A = 6i + 2j ; B = l 2i + 5j. 

Find the vector A = ai + bj which has the given properties. 
32.S A makes an angle of 45° with the X-axis, and IIAII = 3. 
32.6 A is a unit vector along the line y = 3x - 2. 
32.7 A is perpendicular to 2i + j and I IAI I  = 2. 
32.8 Find the angle between the line through (0, 0) and (3, 4) and the line through (3, 4) and 

(5, 0). 
32.9 Find the angle between the lines y = 2x + 3 and y = -x + l .  

32.10 Let A = 2i + 2j and C = 4i + j .  Write A as the sum A1 + Ai where A1 is parallel to C and 
A:z is perpendicular to C. 

32.11 Let.Kand fbe � axes ofa rotated coordinate system, and let u ='1o i +*3 j be a unit 
vector along the X-axis. 
(i) What was the angle of rotation? _ 
(ii) Let v be the unit vector along the Y-axis. Find x and y such that 6i - 5j = x u + y v. 

32.12 Verify the identity: I IA + B1 12 - I IA - B! i2 = 4A · B. 
32.13 Let A and B be perpendicular, and C = A + B. Calculate (A + B) · (A + B) to verify the 

Pythagorean Theorem: I ICl l2 = I IAl l2 + 1 1B1 !2. 
32.14 Show that every angle inscribed in a semicircle is a right angle. Hint: In Figure 32.7, 

write C and D in terms of A and B and show that C · D = 0. 

-A A 

Figure 32.7 



Lines and Planes i n  Space 

To introduce coordinates into 3-space, we put another axis-the z-axis-perpendicular to the xy-plane as shown in Figure 3 3 . 1 .  The points in the xy-plane now have coordinates (x, y, 0), and the point (x, y, z) is lzl units up or down from (x, y, 0). The three coordinate planes-the xy­plane, the xz-plane, and the yz-plane-divide 3-space up into eight octants. The fint octant consists of the points (x,y, z) with positive coordinates, and the other octants are unnamed. An equation of the form F(x, y, z) = 0 or z = /{x, y) generally represents a surface in space. For example, the equation z = 1 is the equation of a plane parallel to the xy plane. (Fig­ure 33 .2). The equation x = z is the plane which makes an angle of 45° with the xy and yz planes. (Figure 33 .3). Vectors in space are again represented by directed line segments. We add a new unit vector, k, along the z-axis, so any vector in space has a representation of the form ai + bj + ck. In particular, the vector R from the origin to the point (x, y, z) is R = xi + yj + zk, 
and the magnitude or norm ofR is (Figure 33. 1 )  

I IRI I  = Vx2 + y2 + z2. 
Vector addition, and multiplication by a scalar, and the dot product behave just as for plane vectors. Thus if A = a 1i + a:J + a3k and B = b 1i + b2j + b3k, then 

cA = ca 1i + ca} + ca3k, A + B = (a1 + b 1) i + (a2 + b2) j + (a3 + b3) k, A ·  B = I IAI I  I IBl lcos 0 = a 1b 1 + ai2 + a3b3 • The straight line through PO = (x0, y 0, z0) and parallel to A = ti + mj + nk can be repre­sented by the vector function 
R(t) = OP0 + IA = Xoi + Yoj + Zok + t( e i + m j + n k) = (x0 + tt) i + (y0 + tm) j + (z0 + tn) k. 

201 



202 Understanding Calculus 

z 

X 

Figure 33.1 

z 

Z = 1 

X 

Figure 33.2 

z 

The plane x = z 

y 

X 

Figure 33.3 
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The single vector equation above is equivalent to the three parametric equations 

x = x0 + tf y = y0 + tm z = z0 + tn. 

203 

Here the parameter t can be thought of as time, with R(t) giving the position of a point at 
time t. 

Non-parallel lines in space do not necessarily intersect, but we define the angle be­
tween any two lines to be the angle that would be formed if the lines were moved parallel to 
themselves so they did intersect. A line's orientation in space is determined by the angles it 
makes with the coordinate axes. Let A = ai + bj + ck be a unit vector parallel to some line, 
and picture A with its tail at the origin. Let a, {3, -y be the angles A makes with the axes, and 
hence also be angles the line makes with the axes. Since A and i, j ,  k are unit vectors, 

A ·  i = a = I IAl l  l lil l  cos a = cos a, 

A · j = b = cos /3, 

A · k = c = cos -y. 

The numbers a, b, c, or cos a, cos {3, cos -y, are called the direction cosines of the line. Since 
A is a unit vector, a2 + b2 + c2 = 1 ,  so for any direction cosines, 

cos2 a + cos2 f3 + cos2 -y = I .  
Any numbers t, m,  n which are proportional to cos a, cos {3, cos -y are called direction num­
bers of the line. In the plane the orientation of a line is determined by a single number, the 
slope. In three-space we require three numbers, direction numbers, to determine the direction 
of a line. 

EXAMPLE 33.1 

Find a vector representation and a parametric representation for the line through P0 = ( 1 ,  2, 3) and par­
allel to A = 4i - j + 2k. Give the direction cosines of the line. 

Solution 
A vector representation is 

R(t) = OP0 + tA 
= (i + 2j + 3k) + t(4i - j  + 2k) 
= (1 + 4t) i + (2 - t) j + (3 + 2t) k. 

The equivalent parametric representation is 

x = 1 + 4t y = 2 - t  z = 3 + 2t. 

For each real number t the point (1 + 4t, 2 - t, 3 + 2t) lies on the line, and conversely every point on 
the line corresponds to some t. We can also think of R(t) as giving the position of a point at time t 
as the point moves along the line. The numbers 4, -1, 2 are the direction numbers of the line. Since 
I IAI I  = V 42 + 12 + 22 = V'2f, A/V21 is a unit vector, and 

4 
cos a = 

V'2f 

are direction cosines of the line. 

-I 
cos /3 =  -­

V'2f 
2 

cos y =  --
V'2f 

The orientation of a plane in space is determined by a vector perpendicular to the 
plane. If P

0 
= (x0, y 0, zo) is any point in a plane, an� = ai + bj + ck is perpendicular to the 

plane, then for any point P = (x, y, z) on the plane P cl' ·  A = 0. (Figure 33 .4). That is, 
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P = (x, y, z) 

a(X- Xo) + b(y - Yo) + c(Z - Zo) = 0 

Figure 33.4 

[(x -xo)i + (v -y0)j + (z -z0)k] · [ai + bj + ck] = 0, 
a(x -xJ + b(v -y0) + c(z -z0) = 0. (33 . 1)  

Equation (33 . 1 )  is the equation of the plane through (x
0

, y
0, zJ and perpendicular to A = ai + bj + ck. Expanding (33 . 1 )  we see that any plane has an equation of the fonn 

ax + by + cz + d = 0. (33 .2) 
Conversely, any equation (33 .2) represents a plane. If one of the coefficients a, b, c is miss­ing from equation (33 .2), then the plane is parallel to the corresponding axis. For example, 
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ax + by + d = O  (33.3) 

is the plane which is parallel to the z-axis and goes through the line in the xy-plane which has 
this equation. If (x

0, y0
, 0) satisfies (33 .3), then (x0, y0, z) satisfies (33.3) for any number z. 

(Figure 33.5). 

EXAMPLE 33.2 Write the equation of the plane which is perpendicular to A =  2i - j + 3k and passes through the point (3 ,  2, 5). Where does the plane intersect the x-axis? 

Solution From (33 . 1) the equation is 
2(x - 3) - (y - 2) + 3(z - 5) = 0, 

or 
2x -y + 3z - 19 = 0. 

To find the intersection with the x-axis put y = z = 0 and find x = 19/2. 
EXAMPLE 33.3 Graph the part of the plane 3x + 2y + 6z = 6 in the first octant. 
Solution Since the intersection of two planes is a line, the given plane will intersect the three coordinate planes in three different lines. To determine these lines it suffices to find the points where the given plane in­tersects the coordinate axes. If y = z = 0, then x = 2, so (2, 0, 0) is on the graph. Similarly, putting 
x = z = 0 we gety = 3, so (0, 3 ,  0) is on the graph. Ifx = y = 0, thenz = 1 ,  so (0, 0, 1) is on the graph. The intercepts are (2, 0, 0), (0, 3, 0), and (0, 0, 1), and the graph is shown in Figure 33.6. 

z 

3x+ 2y + 6z= 6 
2y+ 6Z= 6 

3 
Z= 0, 3x+ 2y= 6 

X 

Figure 33.6 
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Our final vector operation is called the cross product and is denoted A x B. The cross 
product of vectors A and B is a vector perpendicular to both A and B, with length 

I IA x BI i = I IAI I  I IBl lsin 8, 

where O is the angle between A and B. The vector A x B points in the direction a right hand 
screw would move if A were rotated into B through the smallest possible angle. (Figure 
33.7). If A and B are parallel, A x  B is the zero vector. 

A x B  

Right angles -.. 

Figure 33.7 

From the definition it follows that 

B x A = -A x B, 
and for every scalar c, 

(cA) x B = A x (cB) = c(A x B). 

A 

We originally set up our coordinate system so the x, y, z axes form a right-handed sys­
tem as shown in Figure 33 . l .  That is, so that i x  j = k. In this system we have the following 
relations: 

i X j = k  

j X i = -k 

j X k = i  

k x j = -i 

i x i = j x j = k x k = 0. 
The cross product satisfies the distributive law: 

k X i = j , 

i X k = -j .  

A X (B + C) = A X B + A X C. 

(33 .4) 

We can use (33 .4) and (33.5) to compute A x  B for any vectors A and B written in terms of i, 
j , and k. If A =  a 1i + aiJ + a3k and B = b1i + b2j + b3k, then 

A x B = (a 1i + aiJ + a3k) x (b 1i + biJ + b3k) 
= a 1b1i x i + a 1b2i x j + a 1b3i x k 
+ ai 1j x i + aiJ x j + a2bJ x k 

+ a3b1k x i + a3b2k x j + a3b3k x k. 

The three terms i x i, j x j, and k x k are zero, so 

A x B = (ai3 - a3b2) i - (a 1b3 - ai 1) j + (a 1b2 - a2b1) k. (33.6) 

The easy way to remember the formula (33.6) is to write the cross product as a 3 x 3 
determinant. Recall that 2 x 2 determinants are defined as follows: 

(33.7) 

Three by three determinants are given by 
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= x(a2b3 - a3b2) - y(a 1b3 - a3b1) + z(a1b2 - a2bi). 

If we replace x, y, z by i, j, k, then (33.8) is the fonnula for A x B: 

j k 

EXAMPLE 33.4 
(a) Evaluate the 3 x 3 determinant 

1 2 3 
4 -1 5 · 
7 0 6 

(b) Find the cross product of A = 4i - j + 5k and B = 7i + 6k. 

Solution 
(a) Using (33.8) and (33.9) we get 

2 3 

� -� � = 1 · 1 -� ! l - 2 · 1 � ! l + 3 · I � -� 1 
= (l)(--6 - 0) - (2)(24 - 35) + (3)(0 + 7) 

= (1)(--6) - (2)(-1 1) + (3)(7) = 37. 

(b) The coefficients ofi, j, k in A x  B are the 2 x 2 determinants of part (a), so 

EXAMPLE 33.5 

i j 
A x B = 4 -1 

7 0 

k 
5 = --6i + l lj + 7k. 
6 

Find the equation of the plane through P = ( l ,  l ,  l ), Q = (5, 2, l), R = (3, 4, 0). 

Solution 
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(33.8) 

(33 .9) 

Once we have a normal vector A = ai + bj + ck, then we can write the equation using any one of the 
points P, Q, R; i.e., 

a(x - l) + b(y - 1) + c(z - 1) = 0, (33 . 10) 

or 

a(x - 5) + b(y - 2) + c(z - l)  = 0, (33. l l ) 

or 

a(x - 3) + b(y - 4) + cz = 0. (33 . 12) 

Since PQ and PR lie in the plane, PQ x PR is a normal vector. 

PQ = 4i + j PR = 2i + 3j - k 
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A 

Q 
/ 

- - 7� - - - - - - - -r-------,, 
/ 

/ 
/ 

➔ ➔ d = IIPO ll cos0 = PO • A / II AII 
Figure 33.8 

i j k 
PQ x PR = 4 2 0 = -i + 4j + I Ok, 2 3 -1 

and using (33 . 10) the equation of the plane is 
--{x - 1) + 4(y - l) + IO(z - 1) = 0. 

EXAMPLE 33.6 Find the distance between the parallel planes 

Solution 

2x + y + 2z = 2, 

2x + y +  2z = 8. 

(33. 1 3) 

The vector A = 2i + j + 2k is perpendicular to both planes. If P and Q are points on the respective planes, and O is the angle PQ makes with the common normal A, then IIPQII cos O is the distance be­tween the planes. (Figure 33.8). Therefore 
d = PQ · AIIIAII . We find P on the first plane by putting x = y = 0, so z = I ,  and P = (0, 0, I) is one point. Similarly, Q = (0, 0, 4) is a point on the second plane, and PQ = 3k. Hence 

d = 3k · (2i + j + 2k)/3 
= 6/3 = 2. 

PROBLEMS 

Write the vector representation R(t) for the following lines. Give the direction cosines. 33.1 The line through (0, 0, 0) and (2, 1, 2). 33.2 The line through (2, 4, I) and parallel to A = 4i + 4j - k. 33.3 The line through ( 1 ,  2, 3) with direction numbers 5, 1 ,  3. 33.4 The line (in the .xy-plane) which is tangent to the circle x2 + y2 = 25 at (3, 4). 33.5 (a) Show that the point P = (5, 1 ,  3) does not lie on the line 
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R(t) = (5 - t)i + (4 + 3t)j + (I - t)k. 

(b) Find the point Q on the line such that PQ is perpendicular to the line. 
(c) Find the distance d from P = (5, I ,  3) to the line. 

Find the angle between the following lines. 
33.6 Rl(t) = (I + t) i + (2 - t) j + (2 + 2t) k; 

Ri(t) = (I + t) i + (2 + 2t) j + (2 - 2t) k. 
33.7 Rl(t) = t i +  2t j + 3t k; 

Ri(t) = (I + 2t) i + (2 + 3t) j + (3 - 2t) k. 
Find the equation of the plane described. 
33.8 Through (I ,  2, 3) and perpendicular to A =  i - j  + 2k. 
33.9 Through (2, 0, l ) and perpendicular to A = 2i + 3j - k. 

33.10 Through (0, 0, 0) and perpendicular to A = j. 
33.11 Through (0, 0, l ) and perpendicular to A = -i + j. 
Find the cross products A x B. 
33.12 A =  i - 2j + k B = 3i + 2j - 5k. 

B = 2i + 3j . 33.13 A = 4i + j + k 
33.14 A = i - k  B = i + j + k. 
33.15 A = 7i - 2j + 3k 
Find the equation of the plane. 

B = 3i + 5j - 4k. 

33.16 Through (2, I, 3), (4, 2, -1), (5, 1, 1). 
33.17 Through (1 ,  0, 5), (2, 2, 3), (-1 ,  1, 0). 
33.18 Through (1 ,  1, I), (2, I , 0), (0, 1, 3). 
Find the distance between the parallel planes. 
33.19 4x + 2y + 4z = 6 4x + 2y + 4z = 24. 
33.20 x - 2y + z = 2 x - 2y + z = 5. 
33.21 3x -y + 2z = 2 6x - 2y + 4z = 8. 
Find the distance from the point to the plane. 
33.22 P = (3, 0, 1) 2x -y + 4z = 2. 
33.23 P = (l , 0, 3) 3x - 2y + z = 7. 
33.24 Show that if A = a 1i + a2j + a3k, B = h 1i + bj + b3k, C = c1i + c2j + c3k, then 

33.25 (a) Show that I IA x BI i  is the area of the parallelogram whose sides are A and B. 
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(b) Show that IC · A x  Bl is the volume of the parallelepiped with A, B, C at one comer. 





Surfaces 

We started our study of plane curves by looking at the graphs of lines, parabolas, ellipses, 
and hyperbolas. These curves are called conic sections because they can all be realized as the 
intersection of a plane and a cone. The equations of the conics involve only the first and sec­
ond powers of the variables x and y. To start our study of surfaces in three space we will look 
at a few standard surfaces which involve only the first and second powers of x, y, and z. 
These surfaces, except for the planes, are called quadric surfaces. 

In the plane all linear equations ax + by + c = 0 represent lines, and in three space all 
linear equations Ax + By + Cz + D = 0 (34. l) 

represent planes. The orientation of the plane (34. l )  is detennined by the normal vector Ai + Bj + Ck. 
After the planes, the next simplest surfaces are the spheres. The sphere centered at 

(x0, y 0, z0) has the equation 

(34.2) 

where r is the radius of the sphere. The left side of (34.2) is the square of the distance from 
(x, y, z) to (x0, y0, z0), so (34.2) is the condition that points (x, y, z) be a constant distance from 
(xo, Yo, zo)-

By expanding the terms in (34.2) we see that every sphere has an equation of the fonn 

x2 + y2 + z2 + Ax + By + Cz + D = 0. (34.3) 

An equation of the form (34.3) need not have any graph (e.g., x2 + y2 + z2 + l = 0), or may 
have a single point as its graph (e.g. ,  x2 + y2 + z2 = 0). However, if (34.3) does have a proper 
graph, then the graph is a sphere. One sees this by completing the squares, which gives us the 
coordinates of the center, and the radius. 

211 



212 Understanding Calculus 

EXAMPLE 34.1 
Find the center and radius of the sphere 

x2 + y2 + z2 - 2x + 4z - 4 = 0. 

Solution 
Complete the squares as follows by adding I to the x-terms and 4 to the z-terms: 

(x2 - 2x + I) + y2 + (z2 + 4z + 4) - 4  = 5, 

(x - I )2 + y2 + (z + 2)2 = 9. 

The center is ( I ,  0, -2) and the radius is 3. 

We know that in the .xy-plane the graph of ax + by + d = 0 is a line. However, if we con­
sider this an equation in x, y, and z, then the graph is a plane parallel to the z-axis. In the same 
way we can consider the graph of 

x2 +y2 = 1  

to be the unit circle in the .xy-plane, or as the cylinder consisting of all points (x, y, z) such 
that (x, y, 0) lies on the circle. (Figure 34. 1). 

We will more generally refer to the three dimensional graph of any equation of the 
form F(x, y) = 0 or F(x, z) = 0, or F(y, z) = 0 as a cylindrical surface. The surface consists of 
all lines which pass through the plane curve and are perpendicular to the plane of the curve. 
For example, Figure 34.2 shows the parabolic cylinder consisting of all the lines which are 
parallel to the x-axis and pass through the parabola y = z2 in the yz-plane. The graph of any 
equation in two variables is a cylindrical surface in 3-space. 

Surfaces of revolution are particularly easy to identify, and easy to graph. Consider the 
surface (Figure 34.3) 

(34.4) 

In any plane z = constant (z .::: 0), the cross section of the surface is a circle centered at the z­
axis. Hence the surface is a surface of revolution about the z-axis. The fact that z is a func­
tion of x2 + y2 is what identifies this as a surface of revolution. The trace of the surface in the 
.xz-plane (i.e., with y = 0) is the parabola z = x2, and the trace in the yz-plane is the same 

(x, y, z) 

z 

I 
I 
I 
I / 
I / I / ,,,..---r,--.... 

Cylinder 

/ I / ' ,  
---1 - - -11 -----1----- Y 

I 
I 

X 

Figure 34.1 
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X 

z 
2 

Figure 34.2 

Figure 34.3 

Parabolic 
cylinder 

Paraboloid of 
revolution 
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parabola rotated through 90° to z = y2. The surface is generated by rotating either of these parabolas about the z-axis. This surface is called a paraboloid of revolution. (Figure 34.3.) The surfaces y = x2 + z2 and x = y2 + z2 have the same shape, only with different axes. For ex­ample, the y-axis is the axis for y = x2 + z2. 
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EXAMPLE 34.2 Graph the surface z = 2�. 
Solution The cross sections in the planes z = constant. z � 0, are again circles, so this is a surface of revolution about the z-axis. The trace in the xz-plane is the part of the line z = 2x with z � 0. In general, the z co­ordinate of a point on the surface is twice the distance V x2 + y2 from the z-axis. The surface is the cone of Figure 34.4. 

The following surface is called a hyperboloid of one sheet (Figure 34.5) 
x2 y2 z2 - + - - - = l .  a2 b2 c2 

In each plane z = k, the cross section is the ellipse 

When z = 0 we get the ellipse 
x2 y2 li2 - + - = ! + - . a2 b2 c2 

x2 y2 - + - = I a2 b2 , 
and when z = ±c, the cross section is the larger ellipse, 

x2 y2 - + - = I 2a2 2b2 ' 

(34.5) 

with semi-axis V2a and V2b instead of a and b. The trace in the yz-plane (x = 0) is the hy­perbola 

X 

y2 z2 - - - = I b2 c2 ' 
z 

Figure 34.4 

Cone 
Z = 2  ✓x2 + y2 
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Hyperboloid of one sheet 
z 

Figure 34.S 

Hyperboloid of two sheets 

Figure 34.6 

21S 

y 
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and the trace in the xz-plane (y = 0) is the hyperbola 

The graph of 

x2 z2 - - - = I .  
a2 c2 

x2 y2 z2 
- + - - - = -1 
a2 Ir c2 

Understanding Calculus 

is the hyperboloid of two sheets shown in Figure 34.6. The surface intersects the planes z = 
k, for lkl 2': c, in the ellipses 

x2 y2 12 - + - = - - 1 
a2 Ir c2 ' 

and the traces in the xz-plane and yz-plane are again hyperbolas. If a = b, the figure is a sur­
face of revolution. 

PROBLEMS 

Graph the part of the following planes in the first octant. 
34.1 The plane x + 2y + 2z = 4. 
34.2 The plane 2x + y + 4z - 8 = 0. 
34.3 The plane through the line x + y = 2 and the point (0, 0, I). 
34.4 The plane through the points (4, I, 0), (0, 5, 0) and (0, 0, 4). 
34.S The plane x + 2y = 4. (This plane is a cylindrical surface.) 

Graph the cylindrical surfaces. 
34.6 x2 + y2 = 9. 
34. 7 y2 + z2 = 1 .  
34.8 x = z2 • 
34.9 x2 + (z - 1 )2 = I . 

34.10 x = Vy. 
Find the center and radius of the spheres. 
34.11 x2 + y2 + z2 - 2z =  3 .  
34.12 x2 + y2 + z2 - 4x + 2y - 6z = 1 1 .  
34.13 x2 + 3x + y2 + y +  z2 = 1.r. 
34.14 x2 + y2 + z2 - 2x + 4y - 8z = -17.  
34.1S (a) What is the highest point (i.e., biggest z) on the sphere 

x2 + y2 + z2 - 2x + 4y - 8z +  17 = 0? 
(b) Describe the set where the sphere intersects the xz-plane. 

Graph the following surfaces. 
34.16 x2 + z2 = 4. 
34.17 x2 + z2 = y. 
34.18 x2 + y2 = z2• 

34.19 z = 3(x2 + y2). 
34.20 x2 + y2 - z2  = 1 .  
34.21 t +  y2 + z2 = 1 .  
34.22 x2 + z2 -y2 = -1 . 
34.23 1- + 1 + 1 = I .  



Partial Derivatives 

Suppose z = f(x, y) is a function of the two independent variables x andy. If we fix one of the 
variables, say y, then z becomes a function of the single variable x, and we can calculate the 
derivative of z with respect to x in the usual way. This derivative, the partial derivative of z 
with respect to x, is denoted %:. The curly-d is used to indicate that the other variables are 
fixed. Alternative notations for the partial derivative with respect to x are 

The formal definition of %; is 

a-z a 
ax = ax f(x, y) = fx(x, y). 

a-z = J, (x, y) = lim 
f(x + Ill, y) -f(x, y)

. ax x Ax---o Ill 

The partial derivative of z with respect to y is defined similarly: 

a-z = J,(x, y) = lim f(x, y  + !:iy) -f(x, y) . ay Y a.,,-o !:iy 
Notice that -ff; and t are again functions of both x andy. 

Here are some sample computations. 
Iff(x, y) = x2 + xy + 3y5, then 

If f(x, y) = xy2ex, then 

fx(x, y) = 2x + y, 

J;,(x, y) = x + I5y4. 

l<x, y) = reX + xy2eX, 

J;,(x, y) = 2xyeX. 
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If z = x sin(x2 + y), then 

iJz 
- = sin(x2 + y) + x(cos(x2 + y))2x, ax 

If z = xeXY, then 
iJz ay = x cos(x2 + y). 

iJz 
- = eXY + .xyeXY ax , 

If there are three or more independent variables, say u = f(x, y, z ), then u has a partial derivative with respect to each of its independent variables. The notation is 

For example, if 
then 

au au au ax = fx(x, y, z), ay = f;,(x, y, z), & = fz(x, y, z). 

u = rye' + y2z + siny2, 
au ax = 2xye, 
au - = x2e + 2yz + 2y cos y2, ay 
au - = x2ye + y2. iJz 

The partial derivatives fx(x, y) and J;,(x, y) are functions of two variables, so they also have partial derivates. The functionfx(x, y) has the two partialsfx_,,(x, y) andfx/x, y). The func­tion_t;,{x, y) similarly has two partials,_t;,,,(x, y) andf
Y,!:'

(x, y). If z = f(x, y), then these second partials are indicated with the curly-d notation as follows: 

For example, if 

a ( iJz ) ifl-z ax ax = ax2 = fxx(x, y), 
a ( iJz ) ifl-z ay ax = ayax = fx/x, y), 

a ( az )  a2z 
- - = - = f. (x y). 
ay ay  ay2 Y.Y

' 

z = x2eY + sin(.xy), (35. l) 
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then 
<fZ 
ax = 2x&' + y cos(xy), 

iPz 
ax2 = 2&' -y2 sin(xy), 

iPz 
-- = 2x&' + cos(xy) - xy sin(xy). ayax 
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(35.2) 

The four second partials are nominally four distinct functions, but it turns out that the 
two mixed partials, A and $Jx, are the same. We check this for the function (35. l ) above: 

z = x2&' + sin(xy), 
<fZ 
ay = x2&' + x cos(xy), 

iPz 
-- = 2x&' + cos(xy) - xy sin(xy). axay 

Equations (35.2) and (35.3) are the two mixed partials, and they are equal. 

(35.3) 

If the mixed second partials are continuous ( and they are for the common functions of 
calculus), then f � = A-, and there are only three distinct second partials. 

EXAMPLE 35.1 

Calculate $:, �. tJx, and fJy and verify that the mixed second partials are equal if 

Solution 

z = x3y + xy2 + e"Y. 

tJz 
iJx = 3x2y + Y' + ye'Y, 

if'-z -- = 3x2 + 2y + e"Y + xye"Y, 
iryiJx 

tJz - = x3 + 2xy + xe'Y 
try ' 

if'-z -- = 3x2 + 2y + e")' + xye'Y, 
iJxiry 

The mixed second partials are the same, so the order of differentiation doesn't matter. This is also 
true for higher order partial derivatives. For example, if you differentiate z with respect to x, then y, then 
x again you get the same function as if you differentiate with respect to x twice, and then with respect to 
y, or if you first differentiate with respect toy, then differentiate twice with respect to x. In symbols, 

EXAMPLE 35.2 
Show thatf.u_/x, y) andfxyx<x, y) are the same forf(x, y) = xy2  + ye'. 

Solution 

f(x, y) = xy2 + ye, 

fx(x, y) = y + ye', 
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Thusf
xyx(x, y) = fxxy

(x, y) = e'. 

fxx<x, y) = ye', 
fxxy

(x, y) = e', 
fx/x, y) = 2y + e', 

fxyJx, y) = e'. 

PROBLEMS 

Find the indicated partial derivatives. 35.1 z = x2y + sin(x2 + y2) ilz ilz ax and ay· 35.2 z = xy sin(xy) 
35.3 z = sec(x + y) 35.4 z = e' tan(x + 2y) 

ilz ilz ax and ay· 
�-ilz ilz ax and ay· 35.5 z = x2y + 3xy2 + y3 ; 

z = e'2+y2 ; if}. 
A iPz axay and ayax· 35.6 35.7 z = r2(I - cos 8) 

35.8 z = sin <p cos 0 35.9 V = '11"r2h 

35.10 S = 5 wt  
35.11 u = se-1 

ilz ilz a, and a8-
fj. °J and �-

� as oh and at · * and JJ,. au au 35.12 u = tan5 a, and a8-

Understanding Calculus 

Check that the given mixed partials are the same for the following functions. 35.13 f(x, y, z) = x2 + y3 + xz ; fxxz andf zxx• 35.14 f(x, y, z) = ze<2+y2 ; fyyz andfzyy• 35.15 f(x, y, z) = x sin(yz) ; iyx, andfxyz• 35.16 f(x, y, z) = x2y cos z ; fxxy andfxyx
• Show that the following functions u(x, y) satisfy Laplace's equation uxx + uYY = 0. 35.17 u = x2 -y2. 35.18 u = 2xy. 35.19 u = x3 - 3xy2. 35.20 u = e' cos y. 35.21 u = 1og(x2 + y2). 35,22 U = tan-I { Show that the following functions satisfy the heat equation uxx = u,. 35.23 u = e-t sin x. 35.24 u = e-41 cos 2.x. 35.25 u = e"2

' cosh ax. 35.26 u = x2 + 2t. 35.27 u = x4 + 12x2t + 12t2. 35.28 u = &i e-x2141• 



Tangent Plane and 
Differential Approximation 

The partial derivative fx(x, y) represents the slope of a certain curve in the same way that the one-variable derivative g' (x) does. The graph of z = f(x, y) is a surface in three-space. If we fix one variable, say y = y0, then we determine the curve where the plane y = y0 intersects the surface z = f(x, y). (Figure 36. 1) . The x-partial,fx(x, yo) is the slope of this curve, i.e., the tan­gent of the angle the tangent line makes with the xy-plane. A tangent vector to the curve z = f(x, yo) at a point (x0, y0 ,f(x0, yo)) is 
tx = i + fx(xo, y Jk. 

There is no j-component in the vector tx since it lies in the plane y = y0 which is parallel to the xz-plane. The derivative J;,(x0, y) is the slope of the curve where the plane x = x0 intersects the surface z = f(x, y). A tangent vector to this curve at (x0, y0,f(x0, y0)) is 
ty 

= j + J;,(xo, Yo)k. 

EXAMPLE 36.1 On the curve where the plane x = 2 intersects the surface z = y3 + 2xy2 - 2 find the tangent vector t at P 
y = (2, I , 3). Write the vector equation of the tangent line to the curve at (2, I , 3), and write the corre-sponding parametric equations for the line. 

Solution Since x is constant on the curve, the tangent line will have slope : at x = 2, y = I . We calculate 
i)z 

ay 
= 3

y2 
+ 

4xy. 
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Plane X = XiJ 

X 

z 

Figure 36.l 

At (2, I ), %; = 3 + 8 = 1 1 .  The tangent vector ty is therefore ty = j + I lk. The tangent line has the vector equation 
R(t) = OP + t t  

y = (2i + j + 3k) + t(j + l lk) 
= 2i + ( I + t)j + (3 + l l t)k. The corresponding parametric equations are 

x = 2, y = 1 + t, z = 3 + 1 1 t. 

Understanding Calculus 

y 

For functions y = g(x) of one variable we used the tangent line to approximate the val­ues of g(x) near a given point x0. The tangent to y =  g(x) at x0 is the linear function 
T(x) = g(x0) + g' (x0)(x - xJ. 

For x near x0, T(x) is approximately equal to g(x) in the sense that 
g(x) - T(x) = e(x)(x - x0), 

where e(x) - 0 as x - x0• The distance between g(x) and its tangent thus approaches zero an order of magnitude faster than x - x0 approaches zero. We get the same sort of approximation for functions z = f(x, y) of two variables by us­ing the tangent plane at (x0, yJ. The tangent vectors tx and tY (see Figure 36. 1 )  will of course be in this plane. Since two non-parallel vectors determine a plane, the tangent plane is the plane containing tx and ty. We get a normal vector N to the tangent plane by computing the cross product of the tangent vectors tx = i + fx(x, y)k and tY = j + J;,(x, y)k. 

N = t  X t 
X y 
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j k 
= I O fx(x0, yJ 

0 J;,(xo, YJ 

= -f,{xo, Yo)i -J;,(xo, Yo)J + k. 
Hence the tangent plane to z = f(x, y) at (x0, y0, z0) has the equation 

-fx(x0, y o)(x - x0) -J;,(x0, y o)(y -yo> + (z -z0) = 0, 

or 

EXAMPLE 36.2 
Find the equation of the plane tangent to the surface z = 2x2y + y3 - x  at (I ,  3). 

Solution 
We first calculatefx(l ,  3) andJ;,(1 ,  3). 

fx(x, y) = 4xy - 1 ; fx(l ,  3) = 1 1 ; 

J;,(x, y) = 2x2 + 3y2 ; J;,(1 ,  3) = 29. 

Since/( 1 ,  3) = z0 = 32, the equation of the tangent plane is 

z = 32 + l l (x - 1)  + 29(y - 3). 
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(36. 1) 

(36.2) 

If z = T(x, y) is the tangent plane (36.2), then the error between/(x, y) and T(x, y) is limited by 
the inequality 

Jflx, y) - T(x, y)I s; e(x, y) [jx - x0 J + [y -y0 1] , 

where e(x, y) - 0 as (x, y) - (x0, y0). The error between the function values and the tangent plane is 
again an order of magnitude smaller than the distance from (x, y) to (x0, y0). We can express this ap­
proximation as follows: 

(36.3) 

For t:..x and fly small, the right side gives a good approximation tof(x0 + t:..x, y0 + fly) in terms of the 
values of/and its derivatives at (x0, y0). 

EXAMPLE 36.3 
Use the tangent plane approximation (36.3) to find the approximate value of f(x, y) = x3# + cos y at 
(0.9, 0.2). 

Solution 
We can easily compute/(x, y) and its partials at ( 1 ,  0), which is near (0.9, 0.2). 

/(1 ,  0) = 1 3 • eO + COS 0 = 2; 
fx(x, y) = 3:x2# ; fx(l ,  0) = 3; 

J;,(x, y) = x3# - siny ; J;,(1 , 0) = 1 . 

Now use t:..x = -0. 1 and fly = 0.2: 

/(.9, .2) ""/(1 ,  0) + 3(-0. 1) + 1 (0.2) = 
= 2 - 0.3 + 0.2 = 1 .9. 

The calculator gives/(0.9, 0.2) "" 1 .87, so our quick approximation is off by only .03. 
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For a function z = f(x, y) of two variables, the differential is defined by 

dz = df(x, y) = fx(x, y)dx + J;,(x, y)dy. (36.4) 
This is simply an alternative notation for the tangent plane approximation expressed in (36.3). If dx and dy are small, then dz is approximately the corresponding change in z. The notation of (36.4) is frequently used instead of the /:u, �y notation of (36.3) because (36.4) suggests the form of the chain rules we study in the next chapter. 
EXAMPLE 36.4 Use the differential approximation to estimate the changes in z = sin(xy) as x changes from O to --0.01 andy changes from 2.00 to 2.05. 
Solution When x = 0 and y = 2, z = sin O = 0. We calculate dz with dx = --0.0 l and dy = 0.05. The partials at (0, 2) are: 

Hence 

iJ:. iJx = y cos(xy) 
iJ:. ay = x cos(xy) 

iJ:. -(0 2) = 2· iJx ' ' 
az -(0 2) = O  ay ' . 

dz =  2dx + Ody = 2(--0.01) = --0.02. 
The exact change is approximately -.0205. 

In the real world there are no exact measurements. The next example indicates how the differential approximation can be used to see how the inevitable errors in measurement will affect a calculated value. 
EXAMPLE 36.5 Cylindrical bearings 1 cm. in diameter and 2 cm. long must be machined so their weight is within I% of the specified value. The manufacturing process allows a relative error in the diameter which is twice the relative error in the length. Find the maximum relative error in the dimensions which will keep the weight error less than 1 %. 
Solution The weight of a bearing is l W= -k1rD2f. 4 ' 

where k is the density, D the diameter, and f the length. The approximate error in W is 

The relative error in W is 

dW= aw dD +  aw df 
an at 

l l 
= 2k1r DfdD +  4k1rD2dt. 
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dD df 
= 2- + -. 

D f 

22S 

If the relative error dDID in the diameter measurement is twice the relative error df/f in the length 
measurement, then 

dW df w = 5 e · 
If dWIW is to be less than .01 (i.e., 1%) then df/fmust be less than .002. The error in the length meas­
urement must be less than .2%, with the error in the diameter less than .4%. The error in the diameter 
measurement accounts for an error of .8% in the weight calculation. 

For functions u = F(x, y, z) of three variables the differential again gives a useful ap­
proximation to the change in the function for small changes in the variables. The differential 
of F(x, y, z) is 

du = dF(x, y, z) = Fx(x, y, z)dx + F/x, y, z)dy + Fz<x, y, z)dz 

or, in the curly-d notation, 

EXAMPLE 36.6 

au au au du = -dx + -dy + -dz. ax ay iJz 

Let u = xy2!z4· Find the approximate maximum percentage error in the calculated value of u if the meas­
ured values ofx, y, z are off by at most 1%. 

Solution 
We calculate the differential: 

The relative change in u is 

du = y1z-4dx + 2xyz-4dy - 4xy2z-5dz. 

du I 2 4 - = - dx + - dy - - dz. 
U X y Z 

If dx!x, dyly, and d:zlz are all .01 in magnitude, and dzlz is negative so the errors add up, then du/u = .07 . 
Hence I% errors in x, y, and z can result in a 7% error in the calculated value of u. 

PROBLEMS 

Find the two tangent vectors tx and tY and the normal vector N at the given point. Write the equa­
tion of the tangent plane at the given point. 
36.1 z = x2 + 3xy (3, 1 ) 
36.2 z = 2x + xy2 ( I , 2) 
36.3 z = e"(x + y) (0, I)  
36.4 z = y log(l + x2) 

36.S z = e" cos y 
(0, 2) 

(0, 0) 
36.6 z = x tany + x2 +y (3, 0) 

Find the points on the given surfaces where the tangent plane is horizontal. 
36.7 z = xy + x 
36.8 z = x2 + y - 2x 
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36.9 z = x3 - 3x + y2 36.10 z = x2 + xy +  y2 + 2x + 2y Use the differential approximation to find approximate values for z at the given point. 36.11 z = xy2 (2.9, 3 . 1) 36.12 z = x!y2 36.13 Z = X 'Vx+y 

36.14 z = x cos y 

( 1 .3, -2. 1) (.9, 3 .2) (3 . 1, --0. 1) 36.15 Z = Xe>' ( l . l, 0. 1) 36.16 What percent error is allowable in length and diameter of the bearings of Example 5 if the percent error is the same for length and diameter and the maximum allowable error for weight is l %. 



Chain Rules 

Recall the chain rule for differentiating functions of one variable: if y is a function of x, y = ft.x ), and x is a function of t, x = g( t), then y is a function of t, and 

The equation 

dy d dy dx  
- = -f(g(t)) =f'(g(t))g'(t) = - -. dt dt dx dt 

dy dy dx 
- = - --dt dx dt 

(37. 1 )  

most clearly reflects what happens in  chain rule differentiation. If  t changes by an amount /::,.t, 
then this causes a change /::,.x in x, which in turn causes a change !:,.y in y. The derivative i is 
the limit of t as 6.t - 0. As a,- 0, /::,.x also approaches zero, so 6.y 6.y /::,.x dy dx 

- - - · - - - · -.  (37.2) 6.t /::,.x at dx dt 
Now we consider chain rules for functions of two or more variables, each of which is a 

function of one or more variables. As a first case, suppose z is a function of x and y, and x and 
y are functions of t. Then z becomes a function of the single variable t, and we want a formu­
la for �; . Let 6.t be an arbitrary change in t, and let /::,.x and 6.y be the corresponding changes 
in x and y. The change az in z which corresponds to changes /::,.x and 6.y in x and y is approx­
imately 

az .,,. fx(x, y)/::,.x + J;(x, y)6.y. (37.3) 
Therefore 

{37.4) 
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and the error in (37.4) goes to zero faster than 1ax1 + 1ay1 . Hence if At -+ 0, 

dz . az dx dy 
dt = l�o at = fx(x

, y)
dt + J;,

(x, y) 
dt · 

(37.5) 

In the curly-d notation this reads 

dz az dx az dy - = - - + - -
dt iJx dt ay dt 

. 

EXAMPLE 37.1 

Find �: at t = 2 ifz = x&' + xy2, with x = t2, y = 2t + 3 .  

Solution 
Using (37.6) we write 

dz a d a d - = -(x&' + xy2)-(t2) + -(x&' + xy2) -(2t + 3) dt ax dt ay dt 
= (eY + y2)(2t) + (x&' + 2xy)(2). 

When t = 2, x = 4 andy = 7, so at t = 2, 

dz 
dt = (e1 + 49)(4) + (4e7 + 56)(2) 

= 12e7 + (4 · 49 + 2 · 56) 

= 12e7 + 308. 

(37.6) 

Now suppose z = f(x, y) and x and y are both functions of two new variables r and s. 
Then z becomes a function of r and s, and we want to calculate t and f. We start with the 
same differential approximation for az: 

az ""' uz ax + !!....ay. 
iJx ay 

The changes ax and ay now depend on ar and as as follows: 

ax ax ax :::::: -ar + -as 
iJr as ' 

ay :::::: ay ar + ay as. 
iJr as 

To find t: we hold s fixed, so as = 0, and 

ax ::::::  ax ar 
iJr 

ay :::::: ay ar. 
iJr 

Now we use these formulas in (37.7), with as =  0, to get 

uz ax uz ay az :::::: - -ar + - -ar. 
ax ar ay ar 

The error in (37.8) goes to zero like e(ar) · ar, where e(ar) --+ 0, so 

uz . A.z uz ax uz ay - = hm - = - - + - - . 
ar Ar--+O 11r ax ar ay iJr 

The companion formula for f is 

(37.7) 

(37.8) 

(37.9) 



Chapter 37 ■ Chain Rules 229 

jJz jJz iJx jJz iJy - = - - + - - .  
as ax as iJy as (37. 10) 

EXAMPLE 37.2 
Let z = x2 + y3, with x andy functions of r and s such that ifr = I and s = 2, thenx = 3 ,y = 4, t = 5, and l = 6. Find : when r = I ,  s = 2. 

Solution 
We use (37. 1 0) :  

At r = l , s = 2, we have 

az az ax az ay - = - - + - -
as ax as ay as · 

a ax a ay 
= -(x2 + y3)- + -(x2 + y3)-

iJx as ay as 
ax ay 

= 2x- + 3y2- . 
as as 

jJz - = 2(3)(5) + 3(4)2(6) as 
= 30 + 288 = 3 1 8. 

lfwe are given explicit formulas for x andy in terms of r and s, then we can write z ex­plicitly in terms of r and s and calculate :;, f directly. This is not a possibility in Example 2 because there we were given information about the variables and their derivatives only at the single point corresponding to r = 1 ,  s = 2. In the next example we express z in terms of r and 
s and differentiate directly. 
EXAMPLE 37.3 
Let z = ye', with x = rs and y = r2 + s3• Find t at r = I ,  s = 0. 

Solution 
Substitute rs for x and r2 + s3 for y: 

Now calculate -S:- directly: 

At r = 1 , s = 0, 

z = (r2 + s3)2e". 

d'Z - = 2(r2 + s3)(2r)e" + (r2 + s3)2 e" · s ar 

= [4(r3 + rs3) + s(r2 + s3)2]e". 

jJz - = [4( 1  + 0) + 0]e0 = 4. ar 

Notice that this is NOT a chain rule calculation. 

EXAMPLE 37.4 
Suppose z is a function of u and v, and u and v are functions x and y. At (x0, y0), i = 3, :; = 4, -: = 5, 
and * = 6. What is i at (x0, y0)? 
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Solution Here there is no question of writing z as an explicit function of x and y, but we are given enough infor­mation to answer the question. First the general formula, (37. 1 0), with x andy replaced by u and v, and r and s replaced by x and y iJz iJz au iJz av - = - - + - -IJy au ay av ay · Now substitute the given values at (x0, y0): 

IJy = 3 · 5 + 4 · 6 = 1 5  + 24 = 39. 
For functions of three or more variables the chain rule patterns are similar. Here are two examples: 
A. u = f(x, y, z); x, y, and z are functions of t. 

du = au dx + au dy + au dz  dt ax dt IJy dt iJz dt _ dx dy dz -J,(x, y, z)- + f(x, y, z)- + J,(x, y, z)- .  
X dt y dt z dt B. u = f(x, y, z), and x, y, z are functions of r and s: 

au au ax au ay au iJz - = - - + - - + - -ar ax ar ay ar iJz ar 
- ax ay iJz -f,(x, y, z)- + f,(x, y, z)- + J,(x, y, z)-. x ar Y ar z ar Now consider a 3-part chain rule situation. Let u be a function ofx andy, with x andy functions of r and s, and r and s  functions of t. The basic differential formulas provide the proper pattern. 

du = U/lx + U/1Y, 
dx = xlr + xis, 

dy = ylr + yis, 

dr = r'dt, 

ds = s'dt. 

Now put these all together: 
du = u dx + u dy X y 

Hence 

= uJxrdr + X/is) + u/ylr + uis) 

du = u (x r' + x .\' ') + u (y r' + y· .\' '). dt x r s" y r s" 
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EXAMPLE 37.5 

Let u = x + y, x = r2, y  = r +  1, r = fl. (So u is a function of two variables x and y, each of which is a 
function of one variable r, and r is in turn a function of t.) We want to find ��-

Solution 

Hence 

du = U/ix + uiy 
dx dy = u - dr + u - dr x dr Y dr 
dx dr dy dr 

= u - - dt + u - - dt. x dr dt Y dr dt 

du dx dr dy dr - = u - - + u - ­
dt x dr dt Y dr dt " 

EXAMPLE 37.6 
Calculate �t It cos x2dx. 

Solution 
The integral f cos x2dx is not one we can write out explicitly. However, if we let F( u) = f � cos x2dx, we 
know that F'(u) = cos u2• So the problem is to find f,F(u) where u = t 2• The answer is simple: 

d du 
dt F(u) = F'(u)dt = (cos u2)2t = (cos t4)2t. 

PROBLEMS 

Write out the appropriate chain rule and then use it to find the indicated derivative. 
37.1 z = x2 + 2xy; x = r + s, y = r - s. 

Find t at r = 1 ,  s = 2. 
37.2 z = xeY; x = r2 + s, y = 3s2 + s. 

Find t at r = 2, s = 0. 
37.3 z = x2 -y2; x = rs, y = 3r - s. 

Find ;: at r = 1 ,  s = -I . 
37.4 z = u cos v; u = 2x +y, v = xy2. 

Find :.;- at x = 0, y = 2. 
37.S u = x2 + y2 + z2; x = t, y = t2, z = t3. 

du 
Find di at t = 2. 
37 .6 u = 2x + 3y2 + 4.z3, and x, y, z are functions of t. Find �: at a point t0 where x = 1, y = 2, 

Z - 3 dx - 5 �- 6 dz - 7 - , dt - , dt - , dt - · 
37.7 u = x2y +yz3, x = t + s, y = t2 - s2, z = 2t. 

Find t when t = 1 , s = 2. 
. dV . dx � dz 37.8 Fmd dt at (2, 3, 4) tf V = xyz and at (2, 3, 4), dt = -1 , dt = 0, dt = 3 .  

37.9 A point moves on the surface z = x2 + 3xy so that ;; =  3 and � =  4. Find ;Z when the 
point passes through (5, 2, 55). 
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37.10 Let z = Hx y) with x = e" cos s y = e sin s. Show that z2 + z2 = e'(z2 + z 2 ) \: ' ' r S X y • 37.1 1  Let z = F(x, y) with x = r - s, y  = s - r. Show that z, + z, = 0. 37.12 (a) If F'(x) = f(x), then f�f(()dt = F(u) - F(O). Use this to show that if u = u(x), then 
d 1" du 
dx 

O 
f(t)dt = f(u) dx ·  

d f ex 

(b) Calculate dx O 
v'I + cos t dt. 37.13 Let z = u(x, y) with x = r cos B andy = r sin 8. Show that u� + � u� = u; + u; . 



Grad ient and 
Directional Derivatives 

We have seen that the partial derivative fx(x
0

, y 0) gives the slope of the curve where the plane 
x = x

0 
intersects the surface z = ft.x, y). Now we will find the slope of the curve where an ar­

bitrary vertical plane intersects the surface z = ft.x, y). (Figure 38.1.) Fix a point (x0, yJ, and 
consider an arbitrary line in the xy-plane through (x0, yJ. If the line makes an angle 8 with 
the x-axis, then the line has the parametric equation 

x = xo + s cos e 
y = y

0 
+ s sin 8. (38.1) 

In the representation (38. 1 ), s is the distance from (x, y) to (x0, y
0

), since 

-V(x - xJ2 + (y -yJ2 = -Vs2cos28 + s2sin28 = s. 

Since s gives the distance along the line, the slope of the line is �- By the chain rule 
dz itz dx itz dy - = - - + - -
ds tJx ds ay ds 

itz itz 
= - cos 8 + - sin e. (38.2) tJx ay 

The right side of (38.2) is the directional derivative of z (or /(x, y)) in the direction 
8. We'll use the notation D8z or D8

f(x, y) so 

D 8z = D J(x, y) = fx(x, y) cos e + J;,(x, y) sin e. (38.3) 
If e = 0, then the line is parallel to the x-axis, sin e = 0, cos e = l ,  and D

0
/(x, y) = fx(x, y). 

Similarly, if e = f , then lJ.:!f f(x, y) = J;(x, y ). 
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X 

EXAMPLE 38.1 

z 

(Xo, Yo) / 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  !/ 

Figure 38.1 

/ 

/ 
/ ,, 

Find D6z at (0, 2) ifz = x2  + ye" and 8 = f. 
Solution 

At (0, 2), 

a 1r a 1r D.z.. z = -(x2 + ye") cos - + -(x2 + ye") sin -
3 ax 3 ay 3 

1 V3 
= (2x + ye"

) . 2 + e" 
. -2- . 

1 V3 V3 Dt z = 2  · l + I · -
2
- = 1 + -

2
- .  

Ifwe letf(x, y) = x2 + ye" we could also write this as 
V3 Dff(0, 2) = 1 + -2-. 

The idea of directional derivative extends to higher dimensions most naturally in vector 
notation, so we reformulate the two dimensional case in vector notation. Let u be a unit vec­
tor in the .xy-plane, and think of u as determining a direction from a fixed point (x0, y 0). So u 
determines the direction 0 of the differentiation, and hence 

u = cos 0 i + sin 0 j. (38.4) 

(Notice that u · i = cos 0, so 0 is the angle between u and the x-axis.) 
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We define a vector function Vf(x, y) (read "delf(x, y)") as follows: 

Vf(x, y) = fx(x, y) i + J;,(x, y) j .  (38.5) 

The vector function Vf(x, y) is called the gradient off(x, y). If u is the unit vector (38.4) in 
the direction 0, then 

D(d(x, y) = Vf(x, y) · u 
= (fx(x, y) i + J;,(x, y) j) · (cos O i + sin O j) 
= fx(x, y) cos O + J;,(x, y )sin 0. (38.6) 

If the direction is given by a unit vector u then VJ· u is the directional derivative in that di­
rection. We also write Duffor DJ when u = cos () i  + sin 8j .  

EXAMPLE 38.2 
Find the directional derivative off(x, y) = 2x -y2 + 3xy in the direction ofv = 3i - 4j, at the point (I ,  3). 

Solution 
We let u = �i - !j, so u is a unit vector in the direction ofv. The gradient off(x, y) is 

At (1 ,  3) we have 

so 

a a 'Vf(x, y) = -(2x -y2 + 3.xy)i + -(2x -y2 + 3.xy)j ax ay 
= (2 + 3y)i + (-2y + 3x)j. 

V/(1 ,  3) = l l i - 3j, 

3 4 v1<1. 3) . u = (1 1i - 3j) . (5i - 5j) 

33 12 45 = 5 + 5 = 5 = 9· 

From the vector form VJ· u it is clear what direction u must be to get the maximum di­
rectional derivative. Since VJ· u = I IVfllcos 8, u must be parallel to Vffor the derivative to be 
maximwn, and the maximwn derivative is just I IVfll - The gradient VJ is a vector which points 
in the direction of the maximum directional derivative, and its magnitude I IVfll is the maxi­
mum directional derivative. 

If you think of z = f(x, y) as the surface of a hill, and you are standing on the hill at 
(x0, y0, z0), then Vf(x0, y0) is a horizontal vector-like a compass direction-which points in 
the steepest uphill direction. The two horizontal vectors perpendicular to Vf(x0, y0) will be 
tangent to the level curve f(x, y) = c, where c = z0 = f(x0, y0). 

EXAMPLE 38.3 
The surface of a mountain has the equation z = 10 - 2x2 + 2xy - y2, where x, y, and z are measured in 
thousands of feet. You are standing on the mountainside at x = 2, y = 3, z = 5, and you want to climb as 
fast as possible. What direction (i.e .• what compass heading) do you go, and how steep will be the slope 
in that direction? 

Solution 
The maximum directional derivative is in the direction of'Vf 

Vf(x, y) = (-4x + 2y) i + (2.x - 2y) j, 
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so 

V/(2, 3) = (-8 + 6) i + (4 - 6) j = -2i - 2j . 
The gradient says head southwest for the steepest slope, and the steepest slope will be I IV/(2, 3) 1 1  = 2V'2. Since a slope of2V'2 ""' 2.8 is pretty steep, you might then decide to go around the mountain in­stead ofup over it. In that case v = 2i - 2j is tangent to the level curve at (2, 3), since 

V/(2, 3) · (2i - 2j) = (-2i - 2j) · (2i - 2j) = 0. 

You should head southeast for a level path. 
EXAMPLE 38.4 Find a vector T tangent to the curve xy2 + x3y = -6 at (2, -1) and a vector N normal to the curve at (2, -1). 
Solution We can consider the curve as a level curve of the surface z = xy2 + x3y so Vz(2, -1) will be normal to the curve. 

Vz = (y2 + 3.x2y) i + (2xy + x3) j . 

At (2, -1), Vz = -1 li + 4j and this vector will be normal to the curve at (2, -1). The vector --4i - 1 lj (or 4i + l lj) will be tangent to the curve at the point. 
For a function of three variables, w = f�, y, z), the gradient is the vector defined by 

Vw = Vf(x, y, z) = fx i + J;, j + fz k. 

If u = ai + bj + ck is a unit vector then the line through (x0, y 0, z0) in the direction u is given parametrically by 
x = x0 + as  z = z0 + cs, 

where s is the distance from (x0, y 0, z0). It follows from the chain rule that 
dw = aw dx + aw dy + aw dz  
ds iJx ds  By ds tJz ds  

aw aw aw = -a + -b + -c 
iJx By tJz 

= Vf- u. 

(38.7) 

(38.8) 
The directional derivative of a function of three variables is again the dot product of V f and a unit vector in the specified direction. 
EXAMPLE 38.5 The temperature in a certain three dimensional region is given by 

T(x, y, z) = x3y + yz + z2 . 

A sensor moves through the region and its velocity at the point (2, 1 ,  3) is v = 2i - 2j + k. At what rate is the temperature at the sensor changing as it passes through (2, 1 ,  3)? 
Solution 

T T What we want here is <fJ, where t is time. We know that f = VT ·  u where u = v/l lvl l .  Since 
dT dT ds dt ds dt 
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ds and at = l lvl l , we have 

dT 
( 

v 
) - = VT · - llvl i = VT · v. 

dt l !vl l  

We calculate VT at (2, I ,  3): 

Finally, 

VT= Vt(x3y + yz + z2
) 

= 3x2y i + (x3 + z) j + (y + 2z) k. 

VT(2, I ,  3) = 1 2i + l lj + 7k. 

dT - = VT · v 
dt 

= ( I2i + l lj + 7k) · (2i - 2j + k) 
= 24 - 22 + 7 = 9, 

and the temperature is changing at 9 degrees per second. 

PROBLEMS 

Find D 6 f(x0, y 0) for the following functions. 
38.1 f(x, y) = xe>' + sin(xy) (x0, y0) 

= (j, 0) 
38.2 f(x, y) = 2xy3 - 3x2y - I (x0, yo) = (I ,  2) 
38.3 f(x, y) = x2y + xy2  (x

0
, yo) = ( 1 , 2) 8 = 1T. 

38.4 /(x, y) = x tan y + log( l + x2) (x0, y0) = ( 1 , 0) 8 = J. 
8 = -J. 

8 = 0. 
38.5 f(x, y) = cos2x + sin2y 
38.6 f(x, y) = sinh(x + y) 
38.7 f(x, y) = sin-Ix +  sec y 
38.8 f(x, y) = e'2+y2 

(xo, Yo) = (J, D 
(x0, y0) = (0, 0) 

(xo, Yo) = (0, D (x0, y0) = (0, l )  
Find the derivative in the direction v at the given point. 
38.9 f(x, y) = 3x - 2y + x2 v = 2i + j 

38.10 f(x, y) = e' + x2y v = -i + 3j 

8 = f. 
8 = ¥-

(x0, y0) = (3, I). 
(x0, y0) = (-1 ,  I). 

38.11 f(x, y) = tan-Ix +  tan(x2 + y2) v = 5i - j  (x0, yo) = (0, 0). 
38.12 f(x, y) = sinh(xy) v = 3i - 4j (x0, y0) = (2, 4). 
38.13 f(x, y, z) = x2yz + z2y 
38.14 f(x, y, z) = x log(l + x2) +yz 

v = i - j + 2k 
v = 3i - 4k 

(Xo, Yo• Zo) = ( l ,  2, 3). 
(x0, y0, z0) = ( I ,  0, 2). 
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Find a vector N normal to the given curve and a vector T tangent to the curve at the given point. 
38.15 xe>' + xy = l at ( l ,  0). 
38.16 tanx + y3 = 9 at (!, 2). 
38.17 log(x2 + y2) + xy = 2 at (e, 0). 
38.18 x cosh y + y cosh x = I at ( l , O). 
38.19 If T(x, y, z) = x + y2 + xz is the temperature of a particle at (x, y, z), and v = i - j + 2k is 

the velocity of the particle, what is dJ at (2, 0, I ), where t is time? 





Maxima and M in ima 

To find the relative maximum and minimum values of a function/(x) of one variable we first 
find all the critical points x0 such that/'(x0) = 0. The condition/'(xJ = 0 is necessary for/(x) 
to have a max or min at x0, but not a sufficient condition. For example, if/(x) = x3, then/'(0) 
= 0 but /(0) is neither a maximum nor a minimum. To get a sufficient condition we use the 
second derivative. If/'(x

0
} = 0, then/(x

0
) is a relative minimum if /"(x

0
) > 0 andf(xJ is a 

relative maximum if/"(x0) < 0. 
For a function f(x, y) of two variables the geometry is a little more complicated. The 

critical points as usual are the points (x0, yJ where the first derivatives are zero: fx(x0, y0} = 
J;,(x0, y0) = 0. If both first partials are zero at (x0, y0), then the surface z = f(x, y) has a hori­
zontal tangent plane at (x0, y 0}, and this is a necessary condition for a relative max or min, but 
not a sufficient condition. Consider the saddle shaped surface 

z = f(x, y) = 2x2 -y2 (39.1) 

shown in Figure 39.1. Here we have the single critical point (0, 0), andfxx(0, 0) = 4 > 0 and 
JYY(0, 0) = -2 < 0. The curve z = 2x2 in the xz-plane has a relative minimum at x = 0, and the 
curve z = -y2 in the yz-plane has a relative maximum at y = 0. Clearly/�, y) has neither a 
maximum nor a minimum at (0, 0). 

It is clear from the example (39.1) that bothfxx andfYY must have the same sign at a crit­
ical point if f(x, y) is to have a relative extreme point there. This is indeed a necessary condi­
tion, but still not a sufficient condition. Consider the function 

f(x, y) = 2(x -y)2 - (x + y)2 

= x2 - 6xy +y2. (39.2) 

The surface z = f(x, y) is saddle shaped like the surface of Figure 39.1, only rotated 45° about 
the z-axis. For the function (39.2), (0, 0) is the only critical point, andfxx(0, 0) = 2,f,,i0, 0) = 
2. However,f(x, y) does not have a relative minimum at (0, 0) as the second derivatives sug­
gest, since on the line y = x the function is -(2x)2, which has a relative maximum at (0, 0). 
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z 

Figure 39.1 

Z = 2X2 - y2 

Hyperbolic paraboloid 

X 

The second directional derivative off(x, y) must have the same sign in every direction to en­
sure thatf(x, y) has a relative extreme value at a critical point. So now we calculate the sec­
ond directional derivative. 

We start with the first derivative of f(x, y) in the direction 0: 

D8f(x, y) = fx(x, y) cos 0 + J;,(x, y)sin(0). (39.3) 

For fixed 0, D8 j(x, y) is again a function ofx and y, and we calculate its derivative in the di­
rection 0: 

a a 
Do{D8f(x, y)) = ax (DJ(x, y)) cos 0 + ay (DJ(x, y)) sin 0 

a a 
= ax [l cos 0 + .t;, sin 0] cos 0 + ay [l cos 0 + .t;, sin 0]sin 0 

= fxx cos20 + fyx sin 0 cos 0 + hy cos 0 sin 0 + J
YY sin

20 
= fxx cos20 + 2/xy sin 0 cos 0 + fyy sin

20. (39.4) 
In the last step we used the fact that/xy = f

yx
• We will write DJJ(x, y) for Do(D8 f(x, y)). 

Now suppose (x0, yJ is a critical point. The second directional derivative at (x0, y0) has 
this form 

DJJ(x0, y0) = cos20 [A + 2B tan0 + C tan20], (39.5) 

where we let A = fxx(x0, y0), B = f
xy(x0, y0), C = J;/x0, yJ. As 0 runs through all directions, 

0 s 0 < 277', tan0 runs through all real numbers. The second derivative DJJ(x0, y0) has the 
same sign as the bracket in (39.5), and this expression takes on the same values as the func­
tion 

A + 2Bx + Cx2 (39.6) 

as x runs through all real numbers. The expression (39.6) changes sign only if the quadratic 
equation 

A + 2Bx + Cx2 = O (39.7) 
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has real roots. Equation (39. 7) has real roots only if B2 - AC 2:: 0. Therefore, D;f(x0, y 0) al­
ways has the same sign if B2 - AC < 0. This is the sufficient condition we need: 

lf fx(x0, y0) = 0 and.t;,(x0, yo) = 0, and/2 (x0, yo) -fxx(x0, yo).t;,y(x0, yo) < 0, then/ 
has a relative maximum at (x0, yo) if fxr(x0, y0) < 0, and/has a relative minimum 
at (x0, yo) iffxr(x0, y0) > 0. 

The quantity D = f!(x, y) -fxr(x, y}/YY(x, y)  is called the discriminant of/ at (x, y). 

EXAMPLE 39.1 
Find all relative maxima and minima off(x, y) = x2 - 2x - 4y2. 

Solution 
We first find all critical points. 

fx(x, y) = 2x - 2  J;,(x, y)= -Sy. 

The only point where 2x - 2 = 0 and -Sy = 0 is ( I ,  0). Now check the second partials. 

fxx(x, y) = 2 

Since/xx and/Y.Y have opposite signs at ( 1 ,  0) there is no relative max or min. 

EXAMPLE 39.2 
Find all relative maxima and minima off(x, y) = x3 -y3 + 3xy. 

Solution 
We first find the critical points. 

Now solve simultaneously the equations 

fx(x, y) = 3x2 + 3y, 

J;,(x, y)= -3y2 + 3x. 

x2 + y = 0  

-y2 + x = 0. 

From the second equation we have x = y2 and substituting this in the first equation we get 

(y2)2 + y = 0, 

y(y3 + 1) = 0, 

y = 0 or y = -l . 

If y = 0, then x = 0, so (0, 0) is one critical point. If y = -l ,  then x = I ,  so ( I ,  -I) is the other critical 
point. 

Now calculate the discriminant at each critical point. 

f xx(x, y) = 6x fx/x, y) = 3 

At (0, 0),f
xy 

= 3,fxx = 0,fY.Y = 0, and D = 9. Since D is positive at (0, 0), there is neither max nor min at 
(0, 0). At ( I ,  -1),fxx = 6,f

xy 
= 3, fY.Y = 6, and D = 9 - 36 < 0. Since D is negative at (I ,  -1) there is a rel­

ative extreme value there, and since f xx and fY.Y are positive at ( 1, -1 ),f( 1, -1) is a relative minimum. 

EXAMPLE 39.3 
Find the point on the plane x + 2y + z = 6 which is closest to the origin. 

Solution 
It is clear from the geometry that there is exactly one point on the plane which is closest to the origin. 
We write z = 6 - x - 2y to express the distance as a function of x and y: 
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f(x, y) = '\/x2 + y2 + z2 

= Vx2 + y2 + (6 - x - 2y)2 . 

We want to find x and y where f(x, y) is minimum. This is evidently the same point (x, y) where f(x, y)2 is minimum, so consider g(x) = f(x)2 instead off(x) to simplify the calculation. 
g(x) = x2 + y2 + (6 - x - 2y)2 

= x2 + y2 + 36 + x2 + 4y2 - I2x - 24y + 4xy = 2x2 + 5y2 + 36 - 12x - 24y + 4xy. 

At the minimum point we must have gjx, y) = gyCx, y) = 0, so we solve 
gx<x, y) = 4x - 12 + 4y = 0 

gyCx, y) = I0y - 24 + 4x = 0. 
We rewrite the two equations as 

x + y = 3 

2x + 5y = 1 2. 

Multiply both sides of the first equation by 2 and subtract to get 3y = 6, y = 2. From the first equation we then get x = 1 .  Therefore (I ,  2) is the only critical point for g(x, y ), and hence the only critical point 
forf(x, y). At x = 1 , y = 2, 

z = 6 - x - 2y = 6 - I - 4 = I .  
Hence ( I ,  2 ,  I )  is the point on the plane which is closest to the origin. In this example we know from the geometry that there is a minimum at the critical point so the second derivative calculations are not nec­essary. 

If we want to find the absolute maximum or minimum that f(x, y) takes on some 
bounded region then we have to consider boundary points as well as interior points. If 
f(x0, y0) is an absolute maximum and (x0, yJ is an interior point of the region R, then of course f(x0, y 0) is also a relative maximum, and fx and J;, will be zero at (x0, y 0).  If (x0, y 0) is a boundary point, then the partial derivatives need not be zero. Suppose f(x, y) = x2 + y2 and we want the maximum value of f(x, y) on the rectangle R of points (x, y) with 1 s x s 3, 0 s y s I . The answer is obvious since f(x, y) is the square of the distance from (x, 
y) to the origin, and the point of R farthest from the origin is (3 , I) .  However, fx = 2x and 
J;, = 2y, so neither derivative is zero at (3 , 1). If there are no critical points in the interior of the region, then the maximum and minimum will occur on the boundary, and one looks only at boundary points. 
EXAMPLE 39.4 Find the maximum value off(x, y) = xy + 3x -y on the triangle with vertices at (0, 0), (2, 0), and (0, 4). (Figure 39.2.) 
Solution We first check to see if there are critical points in the interior. 

fx(x, y) = y + 3 J;,(x, y) = X - 1 .  
The only critical point is ( I ,  -3) which is not in the region. On the segment O s  x s 2,/(x, y) = 3x, so 3 · 2 = 6 is the maximum value on this side. On O s y s 4,/(x, y) = -y, so O is the maximum on this side. On the segment from (2, 0) to (0, 4), y = -2x + 4, so 

f(x, y) = x(-2x + 4) + 3x - (-2x + 4) 
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3 

2 

2 

Figure 39.2 
= -2x2 + 4x +  3x + 2x - 4  = -2x2 + 9x - 4. 
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Now we want the maximum value of the quadratic function q(x) = -2x2 + 9x - 4 for O :s; x :s; 2. We cal­culate q'(x): 

q'(x) = -4x + 9. 

On the interval O :s; x :s; 2, q'(x) > 0 so q(x) is increasing, and q(2) = 6 is the maximum value. The max­imum off(x, y) occurs at (2, 0), and the maximum value is 6. 

PROBLEMS 

Find all relative maxima and minima. 39.1 f(x, y) = x2 + y. 39.2 f(x, y) = x2 + 4xy + 2y. 39.3 f(x, y) = x3 - 3xy + y3. 39.4 f(x, y) = x2 + y - 2x. 39.S f(x, y) = x2 -y + 2x - 4y +  1 .  39.6 f(x, y) = 3x2y + x2 - 6x - 3y. 39.7 f(x, y) = y3 - x2 + 2x + 3-y. 39.8 f(x, y) = e' siny 39.9 f(x, y) = x sin y 39.10 Find the point on the plane 2x + y + z = 6 which is closest to the origin. 39.11 Find the point on the plane x + y + z = I which is closest to (2, 3, 6). 39.12 Find the minimum value that the function/(x, y) = xy + 3x -y of Example 4 takes on the closed triangle with vertices (0, 0), (2, 0), (0, 4). 39.13 Find three positive numbers x, y, z such that x + y + z = 20 and xyz is maximum. Hint: Maximize the function/(x, y) = xy(20 - x -y) for x and y positive and x + y :s; 20. 





Double I ntegrals 

Let z = f(x, y) be a function of two variables defined on some region R in the .xy-plane. The 
double integral of f(x, y) over R is a  limit of Riemann sums: 

f fJ(x, y)dA= lim I f(xi, y;)AAc R �r ... o i=I 
(40.1) 

To form the sum on the right side of ( 40.1) we divide the region R up into small subregions 
R I ' R2, • • •  , Rn, and let AAi be the area of Ri, and (xi, y) be a point in Re If f(x, y) is a pos­
itive function, then/(xi, y)AAi is the volume of a small solid whose base has area AAi and 
whose height is f(xi, yJ (Figure 40.1.) Thus f(x;, y)AA; is approximately the volume over 
R; and under the surface z = f(x, y). The Riemann sum I�J(xi, y)aAi is an approximation 
to the total volume over R and under the surface. The Riemann sums approach a limit as 
the subregions are taken smaller and smaller, with all aAi approaching zero, and this limit 
is the double integral JR ff(x, y")dA. The volume over R and under the surface is defined to 
be the integral. 

We have already calculated the volumes of some solids which were solids of revolu­
tion. Recall that to find the volume obtained by rotating the area under y = f(x) about the x­
axis, for a ::s; x ::s; b, we slice the solid into discs of radius/(x) and thickness dx. The volume 
of such a disc is 1r f(x)2dx and the total volume is (Figure 40.2) 

V = t 'TT f(x)2dx. 
a 

Not all volumes are volumes of revolution, but our general approach to finding vol­
umes uses this same sort of slicing technique. Let z = f(x, y) be a surface over the rectangular 
region R consisting of points (x, y) with a ::s; x ::s; b and c ::s; y ::s; d. (Figure 40.3.) We fix a 
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z 

Figure 40.1 

value of x in [ a, b ], and calculate the area of the cross-section of solid where the plane x = 
constant intersects the solid. If A(x) is this area, then 

A(x) = r f(x, y)dy. 
C 

(40.2) 

Now think of slicing the volume into thin slices of width dx, where the area of the slice at x is 
A(x). The volume of such a slice is dV = A(x)dx. We add up (integrate) all these volumes as x 
runs from a to b to get the total volume: 

(40.3) 

y 

__ b ___ X 

b 
V = I 1rf(x2) dx 

" 

Figure 40.2 
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z 

dV = A(x)dx Z =  F(x, y) 

r--------------

Figure 40.3 

The right side of (40.3) is an iterated integral. That is it consists of just two ordinary one­variable integrals, calculated one after the other. The parentheses are usually omitted so (40.3) is written 
V= tf\(x, y) dy dx. 

a C In the first (inside) integral x is considered a constant, sof(x, y) is a function of y. The answer then depends on x, and that is the second function to be integrated. All double integrals are 
evaluated as iterated integrals, so no new integration technique is required. 

EXAMPLE 40.1 
Find the volume in the first octant bounded by the coordinate planes and the plane x + y + z = I .  (Figure 
40.4.) 

Solution 
The cross section at a given x is a triangle whose area is A(x) = f zdy where y runs from O to the line 
y = 1 - x, where the plane intersects the xy-plane. 

{y=l-x 
A(x) = lo z dy  

{y=l-x 
= 10 

( 1 - x -y) dy 

= 
�-xy- ½r ] �1-x 

1 
= 1 - x - x(l - x) - 2(1 - x)2 - 0 

1 
= l - 2x + x2 - 2 (1 - x)2 

1 1 
= ( 1 - x)2 - 2 (1 - x)2 = 2 (1 - x)2. 
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z 

X 

Figure 40.4 

The volume is given by f A(x)dx as x runs from O to 1 :  

V= L'A(x) dx 

i i 1 
= -(1 - x)2 dx 

0 2 1 ] '  
= --(l - x)3 

6 0 

= 6 . 

We will generally indicate these two steps with the single expression: ill y=I-x 
V= 

0 0 
( 1 - x -y) dy dx. 

EXAMPLE 40.2 

Understanding Calculus 

Find the double inte� f x2ydA where R is the region in the xy-plane bounded by the coordinate axes 
and the curvey = V l  - x. (Figure 40.5.) 

Solution 
The curve in the first quadrant can be expressed either as y2 = 1 - x or as x = I - y2. We can integrate 
first with respect to either x or y. We show both integrations. 

I f.  x2y dy = ff y=vf=i x2y dy dx, 
R O 0 

= L' [ ½xY ]:vr-; 
t1.x 

= J,' .!_x2( 1 - x) dx 
0 2 

= L'(½x2 - ½x3) dx 

1 1 4 - 3  
= - - - = -- = -

6 8 24 24 . 
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1 .0 

0.5 

y =� 

0.5 1 .0 

Figure 40.S 

Now we calculate the same double integral by integrating first in the x-direction. 
I x,= l-i 

f f x2ydA = J, J, x2ydx dy 
R O 0 

= LT½ x
3y] �

1

-? dy 

= L I 
.!..(I -y2)3y dy 

0 3 

= L1 (-¼ )(1 -y2)3(-2y)dy 

= -
.!_ . .!_( l -y2)4]

1 
= 

_l 
6 4 o 24 · 
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As the above example shows, the two possible orders of integration can lead to very different integration problems, and one might be considerably simpler than the other. 
EXAMPLE 40.3 
Graph the region R in the xy-plane which is the region of integration for the integral nf;3 f(x,y) dy dx. 
Express the integral as an iteration in the other order. 

Solution 
In the interval between x = 0 and x = 1 the variable y ranges between y = x3 and y = x. (Figure 40.6.) 
This region can also be expressed by letting x run from y to y113 for values of y between O and 1. Thus 

L'f x Llf y
l

/3 3 /(x, y) dy dx = f(x, y) dx dy. 
0 X O y 

(40.4) 

Iff(x, y) = 1 ,  then the integrals just give the area of R. Setting up the integral in the two ways is much 
the same as expressing the area of R as the two integrals: 

EXAMPLE 40.4 
Evaluate fU✓x cos(l + y3) dy dx. 

A = f (x - x3) dx = f (y113 -y) dy. 
0 0 
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y 

0.2 0.4 0.6 0.8 1 .0 

Figure 40.6 

Solution 
In the form presented, we are faced with the impossible integral f cos(I + y3) dy. Our only hope is that 
the integration in the other order will be more tractable. The region of integration is the area between 
the curve y = Vx and y = l ,  for O :s x :s I .  (Figure 40. 7.) We rewrite the integral with the iteration in 
the other order: 

2 J,1 
f ' cos(I + y3) dy dx = J,1

f
x =y 

cos(I + y3) dx dy o lv'x o x--o 

1 

0 
II 

= {'(cos(I + y3)x]:f) dy 

= L' [cos(l + y3)y2] dy 

I ] 
I I I 

= 3 sin(l + y3) 
0 
= 3 sin 2 - 3 sin I .  

y = 1 (1 , 1 )  

'Y = 'IX 

'-x = y2 

Figure 40.7 
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Figure 40.8 

EXAMPLE 40.5 
Find fR fxy2dA where R is the region bounded by the lines y = 0, y = l , x = -1 ,  andy = x. (Figure 40.8.) 

Solution 
Since the equation for the bottom boundary comes in two pieces (y = 0 for -I s x s 0 and y = x for 0 
s x s I), it is more convenient to integrate first in the x-direction, from x = -I to x = y. 

I I. xy2dA = r r xy2 dx dy 
R O -I 

L I I 
]
y 

= -x2y2 dy 
O 2 -I 

-2 

Figure 40.9 
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EXAMPLE 40.6 Find ff il  + y)dA where R is the larger region bounded by the y-axis, the line y = x, and the curve 
x = 2 -y2. (Figure 40.9.) 
Solution No matter whether we integrate first in the x-direction, or first in the y-direction, there are going to have to be two integrals, because both the top boundary and the left boundary are given in two pieces. If we integrate from left to right first we have the right hand boundary x = 2 - y2. If we inte­grate from down to up first we will have the two boundarys y = ±-vz=-i. Polynomials are easier than radicals, so we will integrate in the x-direction first, with separate integrals for R 1 and R2 (see Figure 40.9). 

I f LI r=2-i 
( I + y)dA = )_ (I + y) dx dy 

R1  0 x=y 

L
I 

r2-y
2 

= (x + yx) - dy 
0 �y 

= L' ([2 -y2 + y(2 -y2)] - [y + y2]) dy 
= L' (2 -y2 + 2y -y3 -y -y2) dy 
= L' (2 - 2y2 + y - y3) dy 
= [2y - � y3 + .!..y2 _ .!..y4]1 3 2 4 0 

2 1 I 24 - 8 + 6 - 3  19  = 2 - 3 + 2 - 4 = 12 = 12 · 
For the lower region R2 we have 

The final result is 

2 I f  (1 + y)dA = r r
=2

-y ( 1 + y) dx dy 
R2 -V'2 x=O 

Jo J:-2-? 
= (x + yx) dy -v'2 
= r [2 -y2 + y(2 -y2)] dy -v'2 
= r (2 + 2y - y2 -y3) dy  -v'2 1 I ] o = 2y - 3Y + r- 4.Y' -V2 
= -[-2V1 + j (2V1) + 2 - 1 ]  

2 4 = 2V1 - 3V1 +  1 = 3V1 +  1 .  
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f f  ( l  + y)dA = f f  + f f  R R

1 
R2 

= � + I + iyz 1 2  3 
3 1  4 

= 12 + 3V'2. 

PROBLEMS 

2S3 

Evaluate the iterated integral. Graph the region of integration in the xy-plane. Calculate the same integral by integrating in the opposite order, with the appropriate new limits. (The answers should be the same.) 40.1 W1 cx2 + y) t1y <ix. 40.2 fJfixy dy dx. 40.3 fJI'o2 (x + y) dy dx. 40.4 fof�( (2 + y) dx dy. 40.S Hfo xy2 dy dx. Evaluate the following double integrals. 40.6 fRfx2ydA, R = {(x, y) : 0 :S y :S x, 0 :S x :S I } . 40.7 fRf(x2)dA, R is the region betweeny = x1 12 andy = x113, O :S x :S I . 40.8 fRf eY2dA, R = {(x, y) : 0 :S x :S 2y, 0 :S y :S I } . 40.9 fRfyeXdA, R =  {(x, y) : 0 :S x :S y, 0 :S y :S I } .  40.10 fRf 2ydA, R is the region bounded by the axes and the lines x + y = l, x + y = 2. 40.11 Use symmetry arguments to show that the following integral is zero: fRf x(l + y)dA, where R is bounded below by y = -l + Ix! and above by y = -vf=""?. 





Line I ntegrals 

As we saw in an earlier chapter, work is defined as force times distance. Specifically, the work done by a constant force F acting along the segment from a to b is F x (b - a). If the force is not constant, say F = F(x), then the work done in moving from a to b is 
W= tF(x) dx. (4 1 . l)  

a Now suppose a particle moves along the segment from (x i ' y1) to (xz, y2) in the plane, and a constant force F = ai + bj acts on the particle at every point of the segment. The work done is again force times distance, but now "force" means the component ofF along the seg­ment. The vector from (xi ' y1) to (x2, y2) is V = (x2 - x1) i + (y2 -y1) j, and the component of F along V is I IFl lcos e, where e is the angle between F and V. The force acts through a dis­tance I IVI I , so 
W= (I IF! lcos 0) ! IVI I  = F · V. (4 1 .2) Suppose the force is not constant, 

F(x, y) = P(x, y) i + Q(x, y) j , 
and the path is a curve C rather than a segment. To evaluate the work done by F moving along C we divide the curve up into small pieces with points (x;, y) on the curve. Let t:u; = X; - X;_1 and ay; = Y; -y;_ 1 • Then 

as; = t:ui i + ayj j is the vector from (x;_ 1 , Y;_1) to (x;, Y;)- If t:u; and ay; are small, as; is close to the curve, and the work done by F going from (x;_p Y;_1) to (x;, Y;) is approximately 
a1Y; = F(x;, Y) · as; 

= (P(x;, y) i + Q(x;, y) j) · (t:u; i + ay; j) 
= P(x;, y)!:u; + Q(x;, y)aY;· (4 1 .3) 

25S 
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The actual work done by F moving along C is the limit of the sums Iaw; as all llx; and ay; 
approach zero: 

W = lim I F(x;, y) · Lls; 

= lim I P(x;, y)Llx; + Q(x;, y)LlY;· 

This limit is called a line integral and is denoted 

f} · ds = (P(x, y) dx + Q(x, y) dy. (4 1 .4) 

If C is parameterized by the equations 

x= f(t), y = g(t), a s  t s b, 

then the line integral (41.4) is evaluated by substitutingf(t) for x, g(t) for y, and replacing the 
differentials dx and dy by f'(t)dt, g'(t)dt. The resulting expression is integrated over the range 
of the parameter; i.e., from a to b, so 

EXAMPLE 41 .1 

J, F · ds = J, P(x, y) dx + Q(x, y) dy 
C C 

= t [P(f(t), g(t))f'(t) + Q(f(t), g(t))g'(t)] dt. 
a 

Let F(x, y) = (x + 1 )  i + 2xy j, and let C be the curve x = t2, y = 2t, 0 s t s I . Find f cF · ds. 

Solution 

EXAMPLE 41 .2 

f F · ds = f, (x + l} dx + (2xy) dy le c 

= f [(t2 + 1 )2t + 2t2(2t)2] dt 

= f [2t3 + 2t + 8t3] dt 

(4 1 .5) 

A particle moves through the force field F(x, y) = (x2 + r) i + xy j along the top half of the unit circle, 
from ( 1 ,  0) to (-1 ,  0). Find the work done. 

Solution 
The work is given by 

The curve is conveniently parameterized by 

X = COS fJ, y = Sin fJ, 0 S (J S 7T. 

The line integral, with dx = -sin (J d(J and dy = cos (J d(J, becomes 
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W = r[( sin28 + cos28)(- sin 8) + ( sin 8 cos O)(cos 8)] d8 
0 

= r (- sin 8 + sin e cos28) d8 

= [cos e - f cos3 e]: 

= -1 + ½ - ( 1 - ¾) = -2 + ¾ = -¾ -
If a force field is defined in space, say by 

F(x, y, z) = u1(x, y, z) i + uz(x, y, z) j + uix, y, z) k, 

then the line integral of F · ds over a space curve C has the form 

If the curve has parametric equations 

x = f(t), y = g(t), z = h(t), a s. t s.  b, 
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then the integral is evaluated by substituting /(t), g(t), and h(t) for x, y, and z respectively, and 
replacing the differentials dx, dy, dz by f'(t)dt, g'(t)dt, h '(t)dt. 

EXAMPLE 41 .3 
Find f O F · ds where C is the helix x = cos t, y = sin t, z = t, for O ::5 t ::5 2'1T, and 

F(x, y, z) = xy i + y  j +yz k. 

Solution 
Here dx = -sin t dt, dy = cos t dt, and dz = dt, so 

i i2
1T 

i2
Tr 

i2
Tr 

F · ds = (cos t sin t)(- sin t) dt + sin t cos t dt +  t sin t dt 
C O O 0 

= _.!_ sin3t] 277 
+ .!_ sin2 r] 

277 
+ [-t cos t + sin t]277 

3 0 2 0 0 

= -27T. 

A given curve C can be parameterized in any number of ways. For example, the arc of the 
parabola y = x2 from (0, 0) to (1, 1) can be parameterized by any of these pairs of equations: 

(i): 
(ii): 

x = t, 
X = t + I , 

y = t2, O s. t s. I ; 

y = (t + 1)2 , -1 s. t s. O; 
(41.6) 

(41.7) 

(iii): x = sin t, y = sin2 t, O s. t s.  !!... (41.8) 2 
To calculate a line integral over C any of these parameterizations can be used, and indeed any 
parameterization which traces the curve out in the direction from (0, 0) to (1, 1). Changing 
the parameterization is the same as changing the variable in the integral. Two parameteriza­
tions which trace out the curve in the same direction will give the same answer, and parame­
terizations which trace the curve out in opposite directions will give answers that are nega­
tives of each other. 
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EXAMPLE 41 .4 
Let P(x, y) = x + y. Calculate f cP(x, y) dx for parameterizations (41 .6) and (41 .8) of the parabolic arc 
from (0, 0) to ( I ,  I) .  Then parameterize the same arc in the opposite direction, call that -C, and evaluate 
LcP(x, y) dx. 

Solution 
For the parameterization ( 4 1 .6), we have 

fc<x + y) dx = L1 (t +  t2) dt 

= .!_p + .!_ t3]1 
2 3 o 
l I 5 

= - + - = -
2 3 6 . 

For the parameterization (41.8) we get 

Hence 

fc<x + y) dx = f
r1
\sin t + sin2 t)(cos t) dt 

= .!_ sin2t + .!_ sin3t]'ITl2 
2 3 0 

I I 5 
=

2 + 3 = 6 . 

We can parameterize --C for instance by 

x = l - t, y = (l - t)2, 

f (x + y) dx = f [ I  - t + ( 1 - t)2](--dt) 
-C 0 

= f [-(1 - t) - (1 - t)2] dt 
0 

0 S t S l .  

I I ]I 1 1 5 
= 

2(l - t)2 + 3 (l - t)3 
o = -2 - 3 = -6 . 

PROBLEMS 

Find the integral fcF · ds for the given function F and the given curve C. 
41.1 F(x, y) = y i + x j ;  C is  the segment from (0, 0) to ( 1 ,  1 ). 
41.2 F(x, y) = (x + y) j ;  C is  the segment from (0, 1 )  to ( I ,  0). 
41.3 F(x, y) = i - j; C is the arc ofthe parabolay = x2 from (-1 ,  l ) to ( l ,  1 ). 
41.4 F(x, y) = (x +y) i + (x -y) j;  x = t2, y = t + I ,  I s  t s 2. 

Evaluate the line integrals. 
41.5 fc (x + y)2 dx; C is the segment from (1 ,  1) to (3, I) .  
41.6 fcxy dy; C is the segment from (I, 0) to ( I ,  I ). 
41.7 fcx dy; C is the boundary of the rectangle, {(x, y) : 0 s x s 2, 0 s y s  I } , traced out 

counterclockwise; i.e., C consists of the four segments: (0, 0) to (2, 0), (2, 0) to (2, I ), (2, 
I) to (0, 1 ), and (0, I) to (0, 0). 

41.8 f cY dx; C is the boundary of the top half of the unit circle, traced out counterclockwise, 
i.e., C consists of the segment from (-1 ,  0) to ( 1 ,  0), followed by the top half of the unit 
circle from (I ,  0) to (-1 ,  0). 



Green's Theorem 

There is  a remarkable ( and useful) relationship between a line integral around a boundary 
curve, and a double integral over the region bounded by the curve. Here we deal with closed 
curves, in which the starting and ending points are the same. Boundary curves are simple 
closed curves, which means the curve does not intersect itself except at the beginning and 
ending point. (Figure 42.1.) 

Closed curve Simple closed curve 

Figure 42.1 

Any simple closed curve divides the plane into two disjoint regions-the inside and the 
outside. We will always orient such a curve in the positive (counterclockwise) direction, so 
the inside region always lies on the left side as you proceed along the curve. 

Let P(x, y) and Q(x, y) be functions defined on a simple closed curve C and the region 
R bounded by C. With C oriented in the positive direction, the following two identities hold: 

fc P(x, y) dx = f L - P/x, y) dA, (42. 1)  

f c Q(x, y) dy = ff Qx(x, y) dA, 
R 

(42.2) 

The little circle through the integral sign indicates that C is a simple closed curve, and hence 
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a boundary curve. The identities (42.1) and (42.2) can be combined in a single equation, and 
this is called Green's theorem: 

f cP(x, y) dx + Q(_x, y) dy = f {<Qx(x, y) - P/x, y)) dA. (42.3) 

Notice that (42.3) implies both (42. 1 )  and (42.2) since we can let P(x, y) or Q(_x, y) be identi­
cally zero in (42.3). 

EXAMPLE 42.1 Let R be the part of the disc x2 + y2 :5 4 in the first quadrant, and let C be its boundary (Figure 42.2). Evaluate fc P(x, y) dx and ff R - PyCx, y) dA if P(x, y) = xy. 

Solution Write C = C1 + C2 + C3 where C1 is the segment from (0, 0) to (2, 0), C2 is the arc of the circle from (2, 0) to (0, 2), and C3 is the segment from (0, 2) to (0, 0). Then 
J, xy dx = 0 sincey = 0  on C1 ; 
Cl 

J, xy dx = 0 since x = 0 and dx = 0 on C3 . C3 
We parameterize the circular arc C2 with 

Then we have 
X = 2 COS 8, y = 2 Sin 8, 'TT 0 :5 8 :5 - . 2 

J, xy dx = f"\2 cos 8)(2 sin 8)(-2 sin 8) d8 c3 0 
(11'12 

= lo - 8  sin28 cos 8 d8 
8 

= -3 sin38];12 

(0, 2) 
2 

R 

Figure 42.2 

(2, 0) 
2 
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Therefore 

f cxy dx = f xy dx + f xy dx + J, xy dx 
C c

2 
c

3 
8 8 

= 0 - - + 0 = --3 3 ·  
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For the double integral we have 

IL - ; (xy) dA = IL - x  dA 

f
2 f� = lo o 

-x dy dx 
= f -xy!=o� dx 
= f - x� dx 

0 

2 I ] 2  8 
= 3 . 2<4 - x2)3'2 0 = -3 · 

We will verify the Green's identity ( 1) for the region R between two curves y = g(x) and y = f(x), for a :s; x :s; b (Figure 42.3): 

R = {(x, y) : g(x) ::5 y :s; f(x); a ::s; x :s; b}. (42.4) 

The double integral is calculated as follows: 

If - p (x, y) dA = r
b

1
y

=

f(
x) 

- p (x, y) dy dx 
R y Ja 

y
=g(

x) 
Y 

= f
b -P(x, y/

=f(x) dx 
a lv=g(x) 

= t[-P(x,f(x)) + P(x, g(x))] dx. (42.5) 
a 

For the line integral, the curve C comes in four pieces-the lower and upper graphs of g(x) andf(x), and the two vertical segments on the lines x = a and x = b. The integrals on the ver­
tical segments are both zero, since if x = constant, dx = 0. On the lower curve we integrate 
from a to b, and on the upper curve from b to a. Thus 

f c?(x, y) dx = I:P(x, g(x)) dx + r P(x,f(x)) dx 

a b 

Figure 42.3 
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X =  k (y) 

Figure 42.4 

= r[P(x, g(x)) - P(x,f(x))] dx. 
a 

(42.6) 

Since (42.5) and (42.6) are equal, we have verified the Green's identity (42.1) for regions of 
the type shown in Figure 42.3. Basically, this is the type of plane region where a double inte­
gral would be evaluated by integrating first in the y-direction. 

The second Green's identity (42.2) is verified by the same sort of argument for regions 
of the type (Figure 42.4) 

R = {(x, y) : h(y) s x s k(y); c s  y s d}. (42.7) 

For this region R we would have 
d[-k(y) ff Qx(x, y) dA= f - Q/x, y) dx dy 

R c x=h(y) 

fd r=k(y) = c Q(x, y) Jx=h(y/Y 

= r[Q(k(y), y) - Q(h(y), y)] dy. 
C 

Figure 42.S 
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The last formula above is the same as j cQ(x, y) dy since once again the integrals on the line segments (here y = constant) are zero. Figure 42.5 shows how a general region can be divided up into subregions each of which can be considered as either the type of ( 42.4) or ( 42. 7). That is, in the subregions one could integrate either y or x first, so (42. 1 ) and (42.2) both hold in each subregion. The inte­grals over the interior segments all cancel, so the sum of the integrals around the subregions is just the integral around the boundary of the whole region. 
EXAMPLE 42.2 Calculate �JI - x2) dy and ff Rfx(l - x2) dA where R is the right side of the unit disc, 
R = {(x, y) : x2 + y2 :5 1 , x ;?:  0},  and C is its boundary (Figure 42.6). 
Solution Let x = cos 8, y = sin 8, -¥ :5 8 :5 ¥, for the half circle, and x = 0 on the segment from (0, 1) to (0, -1 ). 

The area integral is 

,( (1 - x2) dy = f 7rl2 (1 - cos28)cos 8 d8 + [1 l dy ic -w/2 I 

f7r/2 

]-I 
= sin28 cos 8d8 + y -m2 I 1 ]m2 = - sin3 8 + (-1 - 1) 

3 -m2 1 2 4 = 3( 1 - (-1)) - 2  = 3 - 2  = -3 · 

ff a fl fx=VI-y1 -(l - x2) dA = - 2x dx dy  
R tJx -I Al 

C 

C 

-1 

f l tvT-y1 = - x2 dy 
-1 -0 

R 

Figure 42.6 

X = COS 0 
y = sin 0 
_ I!. < 0 < 1!.  

2 - - 2 
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If P(x, y) = -y in Green's theorem, so -P/x, y) = I ,  then 
f c -y dx = ft ldA = area of R. 

Understanding Calculus 

This shows how area can be calculated as a line integral around the boundary. There is a similar formu­la using Q(x, y) = x, so Qx<x, y) = I ,  and 

EXAMPLE 42.3 

fc x dy = ft ldA = area of R. 

Use the formula � c -y dx = ff R dA to find the area of the ellipse t + { = I .  
Solution We can parameterize the curve by 
Then 

EXAMPLE 42.4 

x = 3 cos 8, y = 2 sin 8, 0 :5 8 :5 21r. 

f c -y dx = f 7T(-2 sin 8)(-3 sin .8) d8 

i21r I - cos 28 = 6  --- d8 
0 2 

[ 1 ]2" = 3  8 - 2 sin 28  
0 

= 3[ (21r- 0) - }<o - O)] = 61r. 

Calculate � Jx2 log(x2 + 1) -y] dx where C is the unit circle, and R is the disc x2 + y2 :5 1. 

Solution Since 
a a - ay (x2 log(x2 + 1) -y) = - ay (-y) = 1 ,  

the term x2 log(x2 + 1) adds nothing to the integral, which i s  the same as 
fc -y dx = It l dA = 1r. 

The message of Example 4 is that for any simple closed curve C, 

f cf(x) dx = f cg(y) dy = 0. 
So, for example, 

f c (f(x) + g(y)) dx = f cg(y) dx, 

and 
f c (f(x) + g(y)) dy = f c f(x) dy. 

It is important to keep in mind that in all these examples C is a simple closed curve, and not just any curve. 
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EXAMPLE 42.5 
Evaluate !lidx3 cos2x + x2y2) dx where C is the boundary of the rectangle with comers at (3, I), (6, I), 
(6, 2), (3, 2). 

Solution 
We start with the observation that 

f c (x2 cos2x + x2y2) dx = f c x2y2 dx. 

On the vertical segments dx = 0, so 

1c
x2.Y2 dx =  (x2 • 12 dx + fx2y2 dx 

I 4 
= -(63 - 33) + - (33 - 63) 

3 3 
= -63 + 33 = -189. 

It is easy to check (Problem 13) that JfR - 2x2y dA = -1 89. 

1 .0 

-1 .0 

-1 .0 

Figure 42.7 

1 .0 
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PROBLEMS 

Evaluate the integrals lcP(x, y) dx and ff R - P/x, y) dA for the following regions R and their boundary curves C. 42.1 P(x, y) = x2 +y2; R = {(x, y) : .x2 +y2 :5 l } .  42.2 P(x, y) = x2 +y; R = {(x, y) : y :5 1 - x2, y � 0} .  42.3 P(x, y) = xy; R is  the top half of the ellipse � +1= l ;  (x = 3 cos 8, y = 2 sin 8). Evaluate p cQ(x, y) dy and ff R Qx<x, y) dA for the following. 42.4 Q(x, y) = x2 + y; R is the unit square R = {(x, y) : 0 :5 x :5 1 ,  0 :5 y :5 1 } .  42.S Q(x, y) = x ;  C i s  the ellipse i + f = I .  42.6 Q(x, y) = x3 sin y ;  R i s  the square with vertices (0, 0), (!, 0), (!, !), (0, !). 42.7 Evaluate lex dy where C is the boundary of the triangle with vertices at (0, 0), ( 1 ,  0), and (1 ,  1). (Since the integral is the area, your answer should be ½,) 42.8 Use the fact that p cX dy = area of R to find without calculation the value of pc x dy where 
C is the circle (x - 2)2 + (y + 3)2 = 5. 42.9 Find p #eY + xy)dy where C is the circle .x2 + y2 = 4. 42.10 Find the area bounded by the parabola y = 4 - x2 and the x-axis as a line integral p ex dy. 42.11 Find the area inside the curve (Figure 42.7) x213 + y2f3 = 1 as a line integral. Hint: Show that x = cos3 8, y = sin3 8, 0 :5 8 :5 2'1T, is a parameterization, and use g1r cos48 sin28 d8 = i g1r(I + cos 28 -- cos228- cos328) d8. Notice that 

J,21T 

0 
cos 28 d8 = 0; f2?T J, cos328d8 = 0. 

0 42.12 Find the area under one arch of the cycloid x = 8 - sin 8, y = 1 - cos 8, 0 :5 8 :5 2 'IT and over the x-axis (y = 0, 0 :5 x :5 2'1T). Check the orientation of your curve. 42.13 Check that the area integral in Example 5 equals -189. 



Exact Differentials 

Suppose F(x, y) i s  defined in some region R, and 
dF(x, y) = P(x, y) dx + Q(x, y) dy; (43 . 1 )  

that is, asswne that P(x,y) = Fx(x, y) and Q(x, y) = F/x,y). In  this case we say that Pdx + Qdy is an exact differential in the region R. Line integrals are particularly simple if the differen­tial is exact. To evaluate fc Pdx + Qdy where the differential is exact as in (43 . 1 ), we let C be a curve in R from (a, b) to (c, d), with C parameterized by 
X = x(t), y = y(t), a '!5 t '!5 /3. (43 .2) 

Thus (x(a), y(a)) = (a, b) and (x(/3), y(/3)) = (c, d), and the integral is evaluated as follows: 
J, Pdx + Qdy = f13[FJx(t), y(t))x'(t) + F (x(t), y(t))y'(t)] dt. (43.3) 
C a y 

If we let G(t) = F(x(t), y(t)), then the integrand on the right in (43 .3) is just G'(t), so 
J, Pdx + Qdy = r G'(t) dt 
C a 

= G(/3) - G(a) 
= F(x(/3), y(/3)) - F(x( a), y( a)) 
= F(c, d) - F(a, b). 

In other words, if Pdx + Qdy = dF, then for any curve C from (a, b) to (c, d), 
t P(x, y) dx +  Q(x, y) dy = F(c, d) - F(a, b). 

(43 .4) 
(43.5) 
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We can also write (43 .5) as 

r(c, d) J, · dF = F(c, d) - F(a, b) (a, b) (43 .6) 

to emphasize the similarity with one-variable integration. For an exact differential, the line 
integral is independent of path, and depends only on the end points of the curve. 

EXAMPLE 43.1 
Given that 2xy dx + (x2 + 3y2) dy is exact, find a function F(x, y) such that dF(x, y) is the differential, 
and use F(x, y) to calculate f c2xy dx + (x2 + 3y2) dy where C is the arc of the circle (x - 2)2 + (y - 1 )2 = I 
from (2, 2) to (3, I ). 

Solution 
Since FJx, y) = 2.xy, F(x, y) is the x-antiderivative of 2.xy: 

F(x, y) = f 2xy dx = x2y + <p(y). (43.7) 

Here y is considered constant, and the arbitrary function <p(y) is a "constant of integration". Now use 
F/x, y) = Q(x, y): 

a F/x, y) = ay [
x2y +  <p(y}] = x2 + rp'(y); 

Q(x, y) = x2 + 3y2. (43 .8) 

Hence rp'(y) = 3y2, <p(y) = y3. Finally, 

F(x, y) = x2y + y3. (43.9) 

Now to calculate the line integral, we forget about the curve C, and just evaluate F(x, y) at the 
end points: 

f 2xy dx + (x2 + 3y2) dy = F(3, l) - F(2, 2) 
C 

= 32 · l + I - (22 • 2 + 23) 

= 10 - 1 6 = -6. 

Now the question arises: how do we know whether a differential Pdx + Qdy is exact or 
not? There is an obvious necessary condition. If P(x, y) = Fx(x, y) and Q(x, y) = FyCx, y), then 
we must have 

P = F = F = Q . 
y xy yx X 

If Pdx + Qdy is exact, then Qx = PY. It turns out that the condition Qx = PY is also sufficient 
for Pdx + Qdy to be exact, at least with a little quibbling about the geometry of the region. 

If Qx = PY in the whole plane, then the integral of Pdx + Qdy will be independent of 
path. To see this, let C1 and C2 be two curves from (a, b) to (c, d), then C1 - C2 is a closed 
curve (Figure 43 . 1  ), and since Qx - PY = 0 inside C1 - C2, the line integral around the bound­
ary curve is zero by Green's Theorem. That is, 

I Pdx + Qdy = I Pdx + Qdy 
ct c2 

for any two curves with the same end points. If C1 and C2 intersect each other on the way 
from (a, b) to (c, d), then we apply Green's Theorem to each loop (Figure 43 .2) and get the 
same result. 

If Qx = PY so that the integral of Pdx + Qdy is independent of path, then we can define 
a function F(x, y) by 
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Figure 43.1 

f(X,Y
) F(x, y) = P(x, y) dx + Q(x, y) dy, 

(a.b
) 
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where (a, b) is any fixed point. For this function, Fx(x, y) = P(x, y) and F/x, y) = Q(x, y), so 

dF(x, y) = P(x, y) dx + Q(x, y) dy. 

EXAMPLE 43.2 
Check that (ye< +  xy e<) dx + (xe< + 2y) dy is exact, and evaluate 

J(3, I ) 
(ye< + xye<) dx + (xe< + 2y) dy 

( 1 ,2
) 

over any curve from (I, 2) to (3, I ). 

Solution 
We check the condition Qx = PY: 

Qx(x, y) = iJx (xe< + 2y) = e< + xe<, 

P/x, y) = � (ye< + xye'") = e'" + xe<. 

Since Qx = PY the differential is exact. 

Figure 43.2 



270 

Figure 43.3 

F(x, y) = f P(x, y) dx 

= f (ye + xye) dx 

=ye + y[xe - e] + cp(y) 
= xye + cp(y). 

Now we find cp(y) so that F/x, y) = Q(x, y): 

a 
F/x, y) = 

iJy 
(xye + cp(y)) = xe + ip'(y), 

Q(x, y) = xe + 2y. 

Therefore ip'(y) = 2y, cp(y) = y2, and 

F(x, y) = xye + y2. 

To evaluate the line integral from (1, 2) to (3, 1) we calculate F(3, 1 ) - F(l,  2) : 

F(3, 1 ) - F(l, 2) = 3  · l · e3 + l2 - (l · 2 · e + 22) 
= 3e3 - 2e - 3. 

Understanding Calculus 

Now let's be a little more careful about the geometry. To define F(x, y) as the integral 
of Pdx + Qdy from a fixed (a, b) to a general point (x, y) we need to know that the integral is 
independent of path in the region R. This will be true if the identity Qx - PY = 0 holds inside 
every closed curve in R 1 and that will be true only if every closed curve in R encloses only 
points of R. Figure 43 .3 shows a region with a hole in it. (The shaded region consists of 
points which are not in R.) C1 and C2 are two curves in R from (a, b) to (x, y), but Qx does not 
equal PY inside C1 - C2, so we cannot conclude that the integral of Pdx + Qdy is the same 
over cl and c2 . 

This leads us to the following condition. A region R is called simply connected pro­
vided every simple closed curve in R encloses only points of R. The region R of Figure 43 .3 
is not simply connected. Any square or disc is simply connected. By the Green's Theorem ar­
guments above we showed that if R is a simply connected region, and Qx = P

Y 
in R, then 

Pdx + Qdy is exact in R. 
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EXAMPLE 43.4 
Let C1 be the top half of the unit circle from ( 1 ,  0) to (-1 ,  0), and let C2 be the bottom half of the unit 
circle from ( l ,  0) to (-

1
, 0). Calculate f cx9 dx +� dy for each of the curves C1 and C2 . 

Solution 
It is easy to check (Problem 9) that Qx = PY at all points where both P and Q are defined; i.e., at all 
(x, y) except (0, 0). Since the origin lies inside the closed curve C1 - C2 we cannot conclude that the two 
integrals are the same. To calculate the line integrals we parameterize the circle with x = cos fJ, 
y = sin fJ. On Cl ' (J goes from O to 1r, and on C2, 8 goes from O to -7T. 

J, 
-y X -- dx + --

cl x2 + y2 x2 + y2 dy 

J,1 -sin (J cos (J 
] = 28 . 28 (- sin U) + 28 . 28 (

cos 8) d(J o cos + sm cos + sm J,1 sin2(J cos2(J
] = -- + -- d8 o l 1 

= rd8 = 1r. 
0 

With the same algebra we get 

f __:J!__ dx + _
x
_ dy = [" dfJ = -1r. lei x2 + y2 x2 + y2 o 

The integrals are indeed different. The plane with the origin punctured out is not simply connected. 

EXAMPLE 43.5 
Solve the exact differential equation 

Solution 
We write the equation in the form 

dy = 
dx 

log y +yeX 
X 
- + eX + 3y2 
y 

(1og y + yeX) dx + (f + eX + 3y2) dy = O  

and check that the differential is exact. 

a 1 
IJy 

(log y + yeX) = y + eX, 

IJ ( x ) 1 
- - + eX + 3y2 = - + e. 
iJx y y 

The differential is exact in the upper half plane (where logy and x-y are def med), so 

To find rp(y), calculate F/x, y): 

F(x, y) = f (log y + yeX) dx 

= X log y + yeX + rp(y). 

X 
F (x, y) = - + eX + ip'(y), 

y y 
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Therefore q/(y) = 3y2, q,(y) = y3, and 

X 
Q(x, y) = - + e + 3y2. 

y 

F(x, y) = x  log y + ye + y3. 

The differential equation is dF(x, y) = 0, so the solution is F(x, y) = c; i.e., 

x log y + ye + y3 = c. 

PROBLEMS 

Understanding Calculus 

Check that the following differentials are exact in the given region R. Evaluate f cPdx + Qdy for 
the given curve C. Then find F so dF = Pdx + Qdy, and check your answer by evaluating 
F(c, d) - F(a, b) where (a, b) and (c, d) are the end-points of C. 
43.1 f c 2xy dx + (x2 -y2) dy; C is the straight line from (0, 0) to ( 4, 3). R is the plane. 
43.2 f c<x + y)dx + (x + eY) dy; C is the vertical line from (2, 0) to (2, 5). R is the plane. 
43.3 f cit; dx + T+y dy; C is the arc of the circle x2 + y2 = l from ("q-, ½) to ( �. �). R is 

the right half-plane x > 0. 
Show the differential equations are exact, and solve them. 

43.4 (x2 + cosy) 1 + 2xy = 0. 
dy eY 43.s ax = sm y-xeY . 

43.6 (3x2y2 - 2.xy3) dx + (2x3y - 3x2y2) dy = 0. 
43.7 sin y dx + (x cosy +  l ) dy = 0  

dy � 43.8 ax = -x+2_y· 
43.9 Show that Qx = PY 

except at (0, 0) if P(x, y) = ?+?• Q(x, y) = T+y· 



CHAPTER 1 

1 . 1  ( a, b) and (b, a) are symmetric about the line y = x. 
1.2 m = -½  1 .3 m = 1 
1.4 m = 2 
1.5 m = -1 1 .6 m = -½  1 .7 m = -i  
1.8 y = - ½ x  + ! 
1 .9 y = -½x + � 

1 . 10 y = 2x + 7 
1. 1 1  y = -4x - I 
1 . 12  y = -3x + 7 
1 . 1 3  y = -2x + 7  
1 . 14 y = 7x - 5 
1 . 1 5  (iii) k = ½ 
1 . 1 6  x - 2y + 2 + ½(x + y - 4) = 0, or x - y = 0 
1.17 y = 2x- 2 
1 . 1 8  -3x + y + 8 = 0 
1.19 8. 1 ° 

1.20 y - 4 = .466(x - 3) 

CHAPTER 2 

2. 1 Downward parabola with axis x = 0, vertex (0 , 0) 
2.2 Upward parabola with axis x = 0, vertex (0, 0) 

Answers 
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2.3 Upward parabola with axis x = 0, vertex (0, 0 )  
2.4 Upward parabola with axis x = - 1 , vertex ( -1, 0 )  
2.5 Upward parabola with axis x = 0, vertex (0, 1 )  
2.6 Downward parabola with axis x = 0, vertex (0, 1 )  
2.7 Upward parabola with axis x = 1 ,  vertex (1, I ) 
2.8 Downward parabola with axis x = I ,  vertex ( l ,  1 )  
2.9 Circle with center (0, 0 ), radius 2 

2.10 Circle with center (1, 0 ), radius I 
2. 1 1  Circle with center (0, 2 ), radius 3 
2.12 Ellipse through (±3 , 0 )  and (0, ±2 ) 
2. 1 3  Ellipse through (± l ,  0 )  and (0, ±2 ) 
2.14 Ellipse through (±3 , 0 )  and (0, ±2 ) 
2.15 Hyperbola through (± I ,  0 ), asymptotes y = ±x 
2. 16 Hyperbola through (0, ± 1 ), asymptotes y = ±x 

Answers 

2. 17 Hyperbola through (Ji, Ji )  and (-Ji, -Ji ), asymptotes x = 0 and y = 0 
2.18 Hyperbola through (2, 1 )  and (0, - 1 ), asymptotes y = 0 and x = l 
2. 19  x2 + y2 - 2x + 4y = 0 
2.20 y = ½ <x + 1 )2 

CHAPTER 3 

3. 1 4 
3.2 20 
3.3 27 
3.4 6 
3.5 ½ 
3.6 ½ 
3.7 -½  
3.8 -2 
3.9 ti 

3. 10 y - 2 = 4(x - 1 )  
3.11 y - I = -4(x - 2 )  
3. 1 2  y - 4 = ½ (x - 4 )  
3 . 1 3  y - I = - ½ (x - l )  
3. 14 s'(2 ) = 36 ft/sec; s' (0) = 100 ft/sec; max height = 1 56.25 ft 
3. 1 5  s (2 )  = 104; s' (2) = 84 ft/sec 
3. 1 6  �� = 4rrt2 

3. 17 W' ( lOO ) = -to lb/min 

CHAPTER 4 

4. 1 * = 20x3 + 2x + l 
4.2 * = -6x + ½ 



Answers 

4 3 � = -12x-5 + x-2 + 6x2 • dx 

4 4 dy = -Sx-5 + 9x-4 + 5 + 3x5 • dx 

4 5 � - 3x2 - 3x-4 • dx -
4.6 * = 10x9 + lOx- 1 1  

4.7 * = 6x2 + 6x + 2 
4 8 � = 4x3 • dx 
4.9 * = lOx + 2 + 3x-2 

4 lo dy _ -4x • dx - (x2-1)2 

4 11 � -3x2 
• dx = (2+x3)2 

4 12 � = 2xJ+3x2 
· dx (x+l)2 

4 13 � - (2x4+x2+1) . dx - (2x2+J)2 
4 14 � -4 • dx = (2x-1 )2 

4 15 � _ 5 I • dx - 2../i - x2 
4 16 � - � 'x - ---1.. · dx - 2 -V A Jx 
4.17 � = --½-

dx 2x 2 

4.20 * = (x2 + 2) ( x - 2) + ( x  + 1)( 2x)( x - 2) + ( x + l)(x2 + 2) 
4.21 * = -3x-4( x  + 3)(x2 - 4) + x-3 (x2 - 4) + x-3 ( x  + 3)( 2x) 

CHAPTER S 

5.1 �! = 12( 1 + 3x)3 

5.2 * = 5(x + x2)4( 1  + 2x) 
5 3 � = -2( 1 + 2x)-2 • dx 
5.4 �! = -10(x3 +x7 )- 1 1 ( 3x2 +7x6) 
5.5 :! = -3( 2 + 3x)-2 

5 6 � = -2x( l + x2)-2 • dx 

5.7 * = x( l + x2)- ! 
5 8 � - 3(/i:+1)2 
• dx - 2../i 

5 9 � _ -6(2x+l)2 (x2+x- l) • dx - (J+x2)3 
5 10 � = 5xz ( l -x) • dx 2../i(x+J)6 
5.11 * = - !x2 ( x3 - 2)- !  
5.12 �! = -2(v'l+x +xr\

2k + I)  
5.13 :� = -6( 2x + 1)-4 

5. 14 :� = -5(x + 1)-6 

5 15 dz = - lx- !  . dx 2 

5 16 dz - - lx- !  . d x - 2 

5 17 dz = -x(x2 + 9)- !  • dx 

275 
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5 . 1 8  5 . 19  5 .20 5 .21 5 .22 5.23 5 .24 

dz _ ( l+./x+TT 
dx - Jx+T 
�� = 17  cm2/sec dh = J.. ft/min- dA = 1 ft2/min dt 3,r ' dt 

�� = 
4
J3 degrees/sec dh 5 · / dr = 1 8,r m. sec ift. _ _ 3 _ _ _ 3_ 

dt - 2s .,r2 .5s - 105,rZ 50 
./5 5 .25 � = ----2-
dx � 5 .26 t = 2 5 .27 g' (x) = (2x + l )/(x2 + x) 

CHAPTER & 

6.3 * = -2 sin 2x 6.4 �; = 3 cos(3x + 1 )  6.5 * = -2 cos x sin x 6.6 * = cos2 x - sin2 x 6.7 �� = 16 sin 8x cos 8x 6.8 * = - 15  cos2 (5x + l ) sin(5x + 1 )  6 9  � _ - sin x • dx - 2Jl+cosx 6. 10 �; = 2(sin x + cos x)(cos x - sin x) 6. 1 1  �; = x sec x tan x + sec x 6. 12  * = 4 sec2 4x 6. 1 3  * = sec3 x + sec x tan2 x 6. 14 �� = 2 sec2 x tan x 6. 15 * = 2 tan x sec2 x 6. 16  * = 3 sec3 x tan x 6. 17 6. 1 8  6. 19 
� _ ( l+cosx) cos x+sin2 x _ _ I_ 
dx - (l+cosx)2 - l+cos x * = 2(tan x + 1 )  sec2 x * = -3(2x2 + 1 )  sin 3x + 4x cos 3x 6.20 dy (5x cos 5x-sin 5x) 
dx = x2 6 2 1 � _ 2x sin x-(x2+1) cos x • dx - sin x 6 22 � _ cos x(x cosx+sin x)+x sin2 x 

• dx - cos x _ x+sin x cosx - cos2 x 6 25 tan(x + ) = sin(x+y) = sin x cosy+c�x s�ny · Y cos(x+y) cos x cos y-sm x sm y  Divide top and bottom by cos x cos y. 6.26 600 ft/min or 10 ft/sec 

Answers 



Answers 
6.27 (i) w = I ;  t = 3 sec (ii) !; = 0 when t = l ,  ';i; = -30 in./sec at t = 2; !; = 0 at t = 3 6.28 !� = ¾ rad/sec 6.29 At t = 3, �� = (2J;��22) rad/sec 6.33 f . 3; 6.34 0, rr ,  2rr 6.35 % ,  5: 6.36 o, 1 , rr,  3f , 2rr 6.37 0, rr ,  2rr 

CHAPTER 7 

7. 1 1 . 16, 1 . 105, l .099, l .099 7.2 1 .05, 1 .005, 1 .0004, 7.3 �: = 2e2.x 
7.4 q_i_ = ex2+-' (2x + 1 )  dx 7.5 �: = e-x\-2x) 7.6 dy = 2(e./x + 1 ) (-1 ev'x) dx 2./x dy I I ., I I ., 7 .7 dx = 2x z e z + 2x- 1 e2 7.8 �� = 3-' log 3 7.9 �� = 2x2 

• 2x log 2 7. 10  7. 1 1  7 . 1 2  
dy = 2xe3x + 3x2e3x + cos x - x  sin x dx 
�; = � cos x - ex sin x - e-x sin x + e-x cos x dy = ex log x + !ex dx x 7. 1 3  d 2 .,2 3 2 ..l'. = 2xex log( l + x3) + !........:....£ dx l+x3 7. 14 dy - I dx - � 7_ 15  dv 2x-t- l  dx = x2+x 7. 1 6 * = � + 1 7. 17 q_i_ - -1

- + _I_ dx - x+ I x+2 7 1 8  q_i_ = 1 - log 3 · dx x 7 . 19 log y = x log x ;  !� = log x + 1 · q_i_ = xx (log x + 1 )  y dx ' dx 7.20 �; = (2x + lY [log(2x + 1 )  + 2;:1 ] 7.2 1 q_i_ = (sin x + cos x)x [1og(sin x + cos x) + x (<:os x-sin x) J dx smx+cosx 7.22 A =  1000; k = ½ log 3 = log -v'3; y(4) = 9000 7.24 k = log 2 7 25 � N 1 2 ....:.. 69 d l ( 1 ) ....:.. s: ll � ....:.. ·69 . log( l .06) . ote og - . an og + x - x 1or sma x so log( l+x) - -;-(70 divided by the interest rate is the usual approximation). 7.26 n = log 2/ log( ] + x) � .70/x 
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7.29 (b) ( ¼ ,  e) ; (c) x = (a2e2 + 1 )/a 
7.30 ( - 1 ,  -¼) 

CHAPTER S 

8 1 !Q. 2 _ ! 
' dx = 3X 

3 

8 2 !Q. 3 _ 1 + 5 _ i . dx = - 4X 4 4X 4 

8 3 !Q. - llx� + .!1x- ¥ · dx - 5 5 
8 4  !Q. - �x½ - 11x! ' dx - 2 2 

8.5 � = - i (x2 + 1 )- i (2x) 

8.6 � = [ cos(xf + l )Hx- ½  
8.7 � = x( l + x2 )- ½ 
8.8 � = ½ (cos2 x+ l)- ½ (-2cos xsin x) 
8.9 � = sec2(x½ + l )(½x- f ) 

8. 10 � = - ½(sec x + 1 )- � (sec xtan x) 
8. 1 1  sin- 1 ½ = f 
8. 12 cos- 1 f = i 
8. 1 3  tan- I ./3 = % 
8. 14 cos- 1 f = f 
8. 1 5  sin- 1 ( - f) = - j 
8. 16 cos- 1 ( - ½ ) = 2f 
8. 17 cos- 1 (- 1 ) = rr 
8. 1 8 sin- 1 (1 )  = I 
8. 19  sin- 1 (sin rr ) = 0 
8.20 cos- 1 (cos(- j)) = j 
8 21 !Q. - _k_ ' dx - � 
8 22 !Q. - _3_ • dx - Jl-9x2 

8.23 !Q. - 2 
dx - J1- (2x- t )2 

8 24 � - _=.!_ , _!_ ' dx - � 2.,/x 
8 25 !Q. - ....=£_ • dx - J1- e2x 
8.26 !Q. - - I dx - J1- (x+l )2 
8 27 !Q. _ 3 • dx - 1+9x2 

8 28 !Q. - I • dx - l+(x+2)2 

!Q. _ i 8,29 dx - l+(logx)2 

8 30 !Q. = 1 ' dx 
8.34 y = ! tan- I ( x52 ) 
8.35 (a ) x/Jl - x2 

(b ) 1 /Jl + x2 

Answers 
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(c) l /� 
(d) X 

CHAPTER 9 

9.1 f'(x) = 3x2 - lOx + 3; f"(x) = 6x - 10 
9.2 f'(x) = 7x6 - 6x2 - 12x-5 ; f"(x) = 42x5 - 12x + 60x-6 
9.3 f'(x) = ½x- ! + !x- ; ; f"(x) = -¼x- ! - ;x- l 

9 4 f'( ) - -2.r . f"(x) - -2( 1+x2)2+sx2(l+x2) 
• X - ( l+x2)2 , - (J+x2)4 

_ 2(3x2
2v - (l+x )  

!!1_ 2 d2y 2 2 2 9.5 dx = 2xex ; Tx'J = 2ex + 4x ex 

9.6 * = 2 cos 2x + 3sin 3x; fx{ = -4 sin 2x + 9 cos 3x 

9.7 !!l. = -1 - ;  � = x(l - x2)- !  dx � dx 
9.8 !!l. = 1 · ! - � = -4x(4 + x2)-2 

dx l+,2_ 2 ' dx 
4 

9.9 local max at x = - l ;  local min at x = l 
9.10 local max at x = -2; local min at x = 0 
9. l l local max at x = -½ ; local min at x = ½ 
9.12 local max at x = ! 
9.13 local min at x = -1 
9.14 local max at x = l ;  local min at x = 3 
9.17 10 in. by 10 in. 
9.18 128 cu in. 
9.19 � = 2 
9.20 ( f )2 

9.21 x = � R, h = ½H  
9 22 _ 12 _ 2 1 · x - 13' Y - TI 
9.23 x = l ,  y = 0 

2 2 J 9.24 e = (h 3 + b J ) 2 

9.25 v = 7.5 mph 
9.26 A is minimum for x = 100,r/(4 + ,r) = 44 in. 

A is maximum for x = l 00 in. 

CHAPTER 10  

lo l Sl·n (!L  - 2L) ..:.. 5 - Y1 • 2L - 4849 · 6 1 80 - • 2 180 - · 
10.2 J4.02 = 2 + 2J4 · (.02) = 2.005 

10.3 e0 ·2 = e0 + e0 • (0.2) = 1.2 
10.4 tan- 1 (1.04) = tan- 1 l + 1112 · (.04) = .8054 
10.5 log( l.002) = log l + f · (.002) = .002 
10.6 2.01 3 = 23 + 3 · 22 · (.01) = 8.12 

! · ! I =1 2 10.7 30 s = 32 s + 5 (32) s · (-2) = 2 - 5. 16 = 1 .975 
10.8 /(3. l )  = /(3) + /'(3) · ( . 1 ) = 25 + 2(. 1) = 25.2 
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10.9 d: = 3� 
10. 10 f 
10. 1 1  ½ 
10. 1 2  ½ 
10. 13 1 
10. 14 -¼ 
10. 1 5  ½ 
10. 16 0 
10. 1 7  0 
10. 1 8  X2 = 2.25; X3 = 2.236 
10. 19 X2 = 1 .444; X3 = 1 .4423 
10.20 .6823 
10.2 1 .567 

CHAPTER 1 1  

1 1 . 1  ¼x4 

1 1 .2 - ½  x-3 
3 .!l1 1 1 .3 wX l 

1 1 .4 2x ½ 
1 1 .5 - lox-½  
1 1 .6 4x l 
1 1 .7 ;x i + ¾x4 

1 1 .8 ½x2 + ¾x4 

1 1 .9 -½ cos 3x 
1 1 . 10 ½ sin 5x 
1 1 . 1 1  -2 cos ½ - ¾ sin 2x 
1 1 . 1 2  ½ sin x3 

1 1 . 1 3  - cos(l  + x) 
1 1 . 14 ½ sin ( l  + x2) 
1 1 . 1 5  � (4 + x3) i  
1 1 . 1 6  i O + x2) 1 1  

l l . 17 !x2 + ¾e4x 

l l . 1 8  x + 2e + ½e2x 

1 1 . 19 ½ex2 

l l.20 sin ex 

1 1 .2 1  x + 3 log Ix I 
1 1 .22 j log 13 + x3 1 
1 1 .23 log lx2 + x + 5 I 
1 1 .24 ½ sin- 1 (2x) 
1 1 .25 sin- 1 <½ ) 

Answers 
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1 1 .26 i tan- 1 (3x) 
1 1 .27 ½ tan- 1 ! 
1 1 .28 log Ix+ 5 1  
1 1 .29 y = x3 + ½x2 - 7x + ¥ 
1 1 .30 y = ex + log 1 1  + XI + 1 
l l .3 1 y = tan- 1 x - % 
1 1 .32 y = sin- 1 x + 5 
1 1 .33 k = 22 ft/sec2 

CHAPTER 12  

12. 1  ¥ 
12.2 2 
12.3 1�2 

12.4 ¾ (3 i - 2i ] + log j 
12.5 ?f 
1 2.6 2 - 2 sin ½ 
1 2.7 ½ 
12.8 1 
1 2.9 ½ (e - 1 )  

12. 10 % 
1 2. l l  % 
12. 1 2  ½ log 2 
12. 1 3  36 
12. 14 2 
12. 1 5  � 
12. 1 6  i 
12. 17 1 
12. 1 8  ¼ 
12. 1 9  1 - :f 
12.20 J?-
1 2.22 (i ) ex.2

; (ii ) J1 + x3 ; (iii ) sin x2 ; (iv) - log(l + x2) 
12.23 f (g (x))g' (x) 

CHAPTER 1 3  

1 3. l  1 2  ft lbs 
1 3.2 35 ft lbs 
1 3.3 2250 ft lbs 
1 3.4 ½ · 62 · 1r • 1 6  · 36 ft lbs 
1 3.5 2852 ft lbs 
1 3.6 1 8  cubic units 
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13.7 ½1ra3 cubic units 
13.8 11ra3 cubic units 
1 3.9 if cubic units 

13. IO I cubic units 
13. 11 �2 cubic units 
13.12 11rab2 ; 11rba2 cubic units 
13.14 264 ft = '1o mi 
13. 15 9920 lbs 
13.16 225 ft lbs 
13.17 25 ft lbs 

Answers 

CHAPTER 14  

14. l The curve is the arc of the parabola y = x2 between (0, 0) and (1 , 1) . 
14.2 The curve is the arc of the parabola (y + 1)2 = 4x between (0, -1) and ( I , 1 ). 
14.3 The curve is the top half of the ellipse ( f ) 2 + y2 = 1. 
14.4 The curve is the arc of the hyperbola y = � from (½ ,  2) to (1, 1 ). 
14.5 X = -y2 + 2; 1 � X � 2 
14.6 y = 2x2 - 1; X � 0 
14.7 y = (x - 1 )2 ; -00 < X < 1 
14.8 y = l - x; 0 � x � 1 
14.9 y - 4 = ¾ <x - 15 ); curve lies under the tangent line 

14.10 y = 1; curve lies over the tangent line 
14.11 y = x + 2; curve is the tangent line 
14. 12 y - 1 = 2(x - 1 ) ; curve lies over tangent line 
14.13 � = 0 when t = ../2 sec and y = 32 ft 
14. 14 t = v sin 0 /32 for max. height. t = v sin 0 / 16 when body hits the ground. When 

the curve hits the ground, � = - tan 0 ,  so the angle of impact is ;rr - 0. 
14.15 2;rra 
14 16 728 _ 2J. • 24 - 3 
14.17 5 
14. 18 log l../2 + 1 I 
14.19 Ji(e" - 1) 
14.20 sinh xo 
l4.21 x= a sec 0 ,  y = b tan 0 
14.22 x = am, y = am2 

14.24 x = a cos 0 ,  y = b sin 0 
14.25 x = a cos 0 ,  y = b sin 0 

CHAPTER 1 5  

15.1 tz(46 - 36) 

15.2 ½ log � 



Answers 
15 .3 � 
15 .4 0 
15 .5 ¼ 
15.6 � 
15 .7 � (log 2 )2 

15 .8 1f 
15 .9 4 + 2 log 5 

15 .10 � (e - 1) 
15 . l l  2(e2 - e) 
15 . 1 2  f 
15 .13 ½ ( tan- 1 2) 
15 .14 ½ log IO 
15 .15 tan- 1 e - ¼ 
15 .16 sin- 1 ¼ 
15 .11 HJs - v'2) 
15 .18 0 
15 .19 ¾ ( tan- 1 � - tan- 1 n 
15 .20 ½ sin- 1 ¾ 
15 21 .!.. ( tan- 1 ll - tan- 1 � }  · 1 0 2 2 
15 .22 log 61 - log 5 
15 .23 f2 + rt 
15 .24 H35 - 25) - 1 (33 - 23) 
15 .25 H2� - I} + 2(2½ - I} 
15 .26 t1i + � + ¾ 
15 .27 ¥J3 - �J2 

CHAPTER 1 6  

16. 1 3 log Ix+ 21 
16.2 -½ (x�

3)2 

1 6.3 ¾ log 14x + I I  
1 6.4 x + 2 log I x  - 11  
16.5 ½x2 + x + log !xi 
16.6 ½x2 - 4x + 16 log Ix + 41 
16.7 I 1og 1 x-5 I 3 x-2 

1 6.8 ½ log ! ;�� I 
1 6.9 log I <:-:-2/2 I 

16.10 log I ;�: I 
16. l l ! log I x+2 1 4 x-2 
16.12 tan- 1 (x + l )  
16.13 tan- 1 (x + 2) 
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16. 14 ! log lx2 + 1 I 
16. 1 5  log l x2 + 9 1 + ½ tan- 1 1 
16. 16  ½ log lx2 + 4 1  + ½ tan-1 f 
16. 17 2 log lx2 + 6x + IO I - 1 2 tan- 1 (x + 3) 
16. 1 8  log I ;!� I 
16. 19 ! log lx2 + 4x + 81 - 6 tan- 1 (x!21 

16.20 3 log Ix+ 1 1  + log l x2 + I I 
16.21 4 log lxl + log lx2 + 2x + 21 + tan-1 (x + 1 )  
1 6.22 log I (x- ��3+Z)2 I 
16.23 log I x2;:� I) I 
16.24 log lxl - ½ log lx2 + 4 1 

CHAPTER 17  

17. 1 xcos- 1 x + .Jf'=x'Z 
17.2 X tan-1 X - ½ log 1 1  + x2 1 
17.3 - ½xe-2x - ¼e-2 x 
17.4 x2eX - 2xex + 2ex 

17 5 _ !x 3 e-2x - lx2e-2 x - lxe-2x - le-2 x 
0 2 4 4 8 

17.6 -x cos x + sin x 
17.7 ½x sin 3x + ! cos 3x 
17.8 -½x2 cos 5x + i\xsin 5x + 1�5 cos 5x 
17.9 ½x2 log x - ¼x2 

17. 10 ix ½ logx - ix ½ 
17. 1 1  ½x8 log x - tix8 

17. 12 x(log x )2 - 2x log x + 2x 

17. 1 3  x(log x )3 - 3x(log x )2 + 6x log x - 6x 

17. 14 ix O + x ) i - rsO  + x ) i 
17. 1 5  x log(l + x2) - 2x + 2 tan- 1 x 

17. 1 6  ½ex (sin x - cos x) 
17. 17 2,Jx+T[ log(x + 1 ) - 2] 
17. 1 8  - ½e- x2

(x2 + 1 )  
1 1. 1 9  I - 1 
17.20 ¼ 
17.21 "5 [32 + 1 6J2] 

17.22 � + 1 - ½ 
17.23 ½ (e2 + 1 )  
17.24 2rr 
17.25 �rra3 

3 
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Answers 
CHAPTER 1 8  

1 8. 1  ¼ sin4 x 
2 . 5 1 8.2 5 sm2 x 1 8.3 -¼ cos6 x 1 8.4 log I sin xi 1 8.5 sin x - ½ sin3 x 1 8.6 - ¼  cos4 x 1 8.7 - cos x + ½ cos3 x 1 8.8 - j cos i x 1 8.9 ½ cos3 X - ½ cos5 X 1 8 . 10  ½ x - ½ sin x cos x 1 8. 1 1  lx - l sin x cos3 x + l sin3 x cos x 8 8 8 1 8. 1 2  ix + ¼ sin 2x + i sin 4x 1 8. 1 3  1-x - 1- sin 2x + 1- sin3 2x 16 64 48 1 8. 14 l tan 2x 2 1 8 . 1 5  ! tan3 x 3 1 8. 16  tan x - x 1 8 . 1 7  ti sec4 3x 1 8. 1 8  - cos x 1 8. 19 j tan i X 1 8.20 ½ tan2 x + log I cos xi 1 8.21 log I sec x + tanx 1 - log l cos x l 1 8.22 ½ £sec 4x tan 4x + log I sec 4x + tan 4x l ] 1 8.23 ¼ [sec 2x tan 2x + log I sec 2x + tan 2x l ] 1 8.24 sec x 1 8 .26 (ii) - ¼ sin3 x cos x - ¾ sin x cos x + ¾x 1 8 .27 T6 1 8.28 }n 2 

1 8.29 2,./2 1 8.32 (i) -io cos 5x - ½ cos x (ii) --b cos 6x + ½ cos 4x 

CHAPTER 19  

19. 1 1 19.2 ½ sin- 1 x + ½x-Jf=x2 19.3 2 sin- 1 1 + ½xJ4 - x2 

19.4 % 19  .5 --Jf=x2 
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19 6 x • - I . � - sm x 
19. 7 � ,/9x_x2 
}9 8  . - I x . sm ./3 
19.9 - ¼ log i 0+� 1 

19. 10  1rab 
19. l l log I Jl + x2 + x i  
19. 12  J4 + x2 

19. 1 3  - � 
19. 14 Jx2 - 4 - 2 sec- 1 ½ 
19. 1 5  ½ sec- 1 ½ 
19. 16 ½xJx2 - 9 + � log Ix +  Jx2 - 9 1  
19. 17  ½x.Jxf"=I" - ½ log Ix + .Jxf"=I"I 
19. 18  ½ [ tan- I x +  i :xd 

19. 19  - ½  l�x2 + ½ [ tan-I X +  i :xi J 

19.2 1  y = a log 1 °-q:;? 1 - v',....,a2::-_-x...,..2 

19.26 cosh- 1 u = log l u  + ./u2=11 

CHAPTER 20 

20. l S4 = .69325; S10 = .693 150 
20.2 S10 = .7853982 
20.3 S10 = .78 18  
20.4 (i) H� + log ( 4+ 1 )]  

(ii) 3.0546645 
(iii) S10 = 3.0546645 

20.5 S4 = .8285; Ss = .8282 

CHAPTER 21 

2 1 . 1  - 1  
2 1 .2 0 
2 1 .3 0 
2 1 .4 0 
2 1 .5 0 
2 1 .6 0 
2 1 .7 0 
2 1 .8 0 
2 1 .9 0 

2 1 . 10 0 
21 . 1 1  1 
2 1 . 1 2  I 

Answers 



Answers 
2 1 . 1 3  0 2 1 . 14 00 2 1 . 15 0 2 1 . 16 e2 2 1 . 17 0 2 1 . 1 8  oo 2 1 . 19  0 21 .20 00 2 1 .2 1  ¾ lx ln - O if lx l s I ; ¾ lx ln - oo if lx l > l 21 .22 n3 1x ln - 0 if lx l < 1 ;  n3 1x ln - oo if lx l  � l 21 .23 (log;/ lx l" - 0 if lx l S 1 ;  (log;/lx l" - 00 if lx l > I 21 .24 2" lx 1" - 0 if lx l < 1 · 2· 1� 1• - oo if lx l > ! --;;r- - 2 ' n 2 2 1  25 (n2+l)!xl" - 0 if lx l  < 3 · (n2+I llX!" - 00 if lx l  > 3 · 3•+n ' 3•+n -21 .26 n ! lx ln - 0 if x = O; n ! lx ln ---+ oo if x # 0 21 27 n ! lx l" - 0 if jx j < 1 · n !Jx l" - 00 if lx l  > I · (n+2)! - ' (n+2) ! 2 1 .28 (n+2J!!x!" - 0 if lx l < 1 · (n+2J!!xl" - 00 if lx l > I n ! ' n ! -

CHAPTER 22 
22. 1 1 22.2 i 22.3 1 22.4 diverges 22.5 1 22.6 ½ 22.7 diverges 22.8 diverges 22.9 diverges 22. 10  2 22. 1 1  diverges 22. 1 2  1 22. 1 3  � 22. 14 T2 22. 15  diverges 22 16  .-=L. . l+v'2 22. 17 converges 22. 1 8 converges 22. I 9 converges 22.20 converges 22.21  rr 22.22 fer 
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22.23 ;2 

22.24 f 
22.25 (iii ) f000 x2e-x dx = 2, ft x3e-x dx = 3 • 2 

ft x4e-x dx = 4 · 3 · 2, · · · , ft xne-x dx = n! 

CHAPTER 23 

23.1 500 
23.2 ½ · 100 · 101 = 5050 
23.3 210 
23.4 100 
23.5 N2 

23.6 I - � 

23.7 72.38672 = [(����f ;n 
23.8 diverges; n:I � I 
23.9 converges; proper alternating series 

23.10 converges; proper alternating series 
23.11 converges; proper alternating series 
23.12 diverges; lo�n > ¼ 
23.13 diverges· � > l ' n n 
23.14 converges; geometric series 
23.15 converges; integral test 
23.16 diverges; $ � oo 
23.17 diverges; integral test 
23. 1 8  diverges; integral test 
23 .19 converges; ¼ sin ¼ < � 
23.20 diverges; n�" � oo 
23.21 diverges; e ¼ � l 

. 2" ( 2 )n 23.22 converges, 3"+4" < 3 
23.23 a2 < a if O < a < l 
23.24 sin a < a ifO < a < l 

CHAPTER 24 

24. 1 I 
24.2 ½ 
24.3 4 
24.4 ½ 
24.5 5 
24.6 l 
24.7 oo 
24.8 oo 

Answers 



Answers 

24.9 oo 
24. 10 ; 
24. 1 1  j 
24. 12  I 
24. 1 3 10  
24. 14 I 
24. 1 5  (2, 4 )  
24. 1 6  (½ ,  D 
24. 17 (-oo, oo )  
24. 18  (-6, 4 )  
24. 19 e2x = I +  2x + f! (2x)2 + t (2x)3 + • • • ; (-oo, oo) 
24.20 e-x = l - x + f!X2 - tx3 + · · · ; (-oo, oo) 
24.21 log(l - x) = -x - ½x2 - ½x3 - ¼x4 - • . .  ; (- 1 . 1 )  

( 2 2 23 3 24 4 25 5 24.22 log l + x) = 2x - 2x + 3x - 4x + 5x - · · · ; 
24.23 o1x)2 = l - 2x + 3x2 - 4x3 + . . .  ; (-1, 1 )  
24.24 i1x3 = l - x3 + x6 - x9 + x1 2 - - - • ;  (- 1 , 1 )  
24.25 sin 2x = 2x - t(2x)3 + fi(2x)5 - • • • ;  (-oo,  oo )  
24.26 tan- I 1 = 1 - ½(f )3 + ½(f )5 - �(f }7 + · · · ; (-2, 2 )  
24.27 cos x2 = l - ix4 + ¼ix8 - ¼ix12 + . .  • ;  (-oo, oo )  
24.28 o:x)2 = x- 2x2 + 3x3 - 4x4 + • · · ; (- 1 , 1 )  

24 29 sin x 1 x2 x4 x6 
( ) · -x- = - 3f + sf - 7f + · · · ; -00, 00 

24.30 1:x2 = x- x3 + x5 - x7 + • · · ; (- 1 , l )  
24.3 1 log(l + x2 ) = x2 - ½x4 + ½x6 - ¼x8 + - · · ; (- 1 , l )  

289 

(_ !  !) 2 ' 2 

CHAPTER 25 

25 . l  P1 (x) = - 1  + 3x; P2 (x) = - 1  + 3x - 2x2 ; P3(x) = - 1  + 3x - 2x2 + 5x3 ; 
P4 (X) = P3 (X) 

25.2 P4 (x) = l - x + x2 - x3 + x4 

25.3 P3 (x) = x - ½x3 

25.4 P4 (x) = x2 ; answer to (b ) is the same 
25.5 P5 (x) = 1 + ½ (x - 1 )  + ti{ - i\-) (x - 1 )2 + t i (x - 1 )3 

+.!. (-5 -3) (x _ l )4 + .!. (7-5-3) (x _ l )5 4! 24 5! 25 

25.6 P4 (½) = 1 . 39558 
R4 (½ ) :'.S ti {½f = .00007 

25.7 f01 P3(x) dx = ;\½ = .3095 
R4(x2 ) :'.S fix 1 0; f d R4(x2 ) dx :'.S 11

1_5 , = .0008. 
25.8 fd P4 (,./x) dx = f01 P5 (Jx) dx = .7639; 

j R4 (Ji) I = j R5 (Jx) I :'.:: ti lxl 3 ; 

fd tx3 dx = .0003 ; 
Jd cos Ji dx = .7639 ± .0003. 
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25.9 S10 = 1 .4627 25. 1 0  Jd P5(x2) dx = 1 .4625 
r' 2 1 .4625 + .0001 < Jo ex dx < 1 .4625 + .0003 

CHAPTER 26 

26. l  cos ¼ == .9688. Two terms are enough. 26.2 sin fo == .0998333 ± 10-7 
26.3 .7786 < e- ¼  < .7788 26 4 P. ( ) l I I 2 2 I 2-5 3 I 2-5-8 4 • 4 X = + 3x - 21 • yX + 31 yX - 41 yx 6 5 ( l ) l l I I I 2 I 1 -3 3 I 1 -3 •5 4 2 .  - X  2 = - 2X - 2f pX - 31 vX - 41 2'X - · · · ( l  + x2) ½ _ I + lx2 _ .!. I x4 + .!_ 1 -3 x6 _ .!. 1 .3 .5 xs + . . .  - 2 2 ! P  3 ! P  4! 2' 26.6 ex = e3 + e3(x - 3) + �(x - 3)2 + �(x - 3)3 + . .  · 

� = e- 1 + e- 1 (x + 1 )  + e;/ (x + 1 )2 + e;/ (x + 1 )3 + • • • 26.7 ¼ = ½ -J (x - 2) + � (x - 2)2 - -}dx - 2)3 + . . · 

Answers 

26.8 log x = log 2 + ½ <x - 2) - ½ . -jr (x - 2)2 + ½ . � (x - 2)3 - ¼ . � (x - 2)4 + . . .  26 9 cos x- 1 I x2 x4 x6 . ----;r- = - 2! + 4! - 6! + sf - . . .  
26. 10  .94608 < f01 si: x dx < .946 1 1 

CHAPTER 27 

27. l y = ½ sin x2 + 2 27 .2 y = tan x - l 27.3 y = tan- I } + i 27.4 y = ½ log (x2 + l ) + 5 27 .5 ½ y2 = ½ x3 + X + 2 27.6 y = log (ex + l ) 27.7 ½ tan- 1 i = tan- 1 x + c 27.8 log I Y I = sin- 1 x + c 27.9 y = ce5x 27. 10  y = -2 + ce5x 
2 27. l l  y = c� 27. 1 2  y = - 1  + cex 2 

27. 1 3  y = ex� 27. 14 y = -2 + c(x - 1) 27. 1 5  T = 20 + 80{¼) 3 ; T(lO) = 25 27. 16  y = 100(5) i ;  y = 1 000 at t = 4.29 hrs ; y = 2500 at t = 6 hrs 
CHAPTER 28 

28. 1 y = ex-I 28.2 y = ½x2 + ex- I 
28.3 y = ee-x

2 



Answers 

28.4 y = ½ + ce-x2 

28.5 y = ½ex + ce-x 
28.6 y = 2xe-x + ce-x 

28.7 y = -2x - 1 + Ce3x 

28.8 y = 2x2 + ce- 2x 

28.9 y = cos 3x + 2 sin 3x + Ce6x 

28.10 y = ½ cos 2x + i sin 2x + ce-x 

28.11 y = ½ex + ½ cos 2x + i sin 2x + ce-x 

28.12 y = -x - ¼ + cos 3x - 2 sin 3x + Ce6x 

28.13 y = e2x + ce- 3X 

28.15 v = 13 .8 ft/sec 
28.16 T = 50.6 

CHAPTER 29 

29.2 y = C 1 e- 31 + C2e-21 ; y = -7e-3' + 8e- 2' 
29.3 y = C 1 e21 + C2e- 1 ; y = 3e21 - e-1 

29.4 y = C1 e- 21 + C2e-r ; y = -e-1 

29.5 y = C1 e31 + C2e- 1 ; y = 2e3' + e-1 

29.6 � - 2r * + r2y = 0 
29.7 y = Cie' + C2te1 

29.8 y = Ci e- 5' + C2te-51 

29.10 y = C 1 e' cos t + C2e' sin t ;  y = 3e1 cos t + 7e1 sin t 
29.11 y = C 1 e' cos 2t + C2e1 sin 2t ; y = 3e1 cos 2t + 4e1 sin 2t 
29.12 y = C1 e3' cos t + C2e3' sin t ;  y = 6e3' sin t 
29.13 y = C 1 e21 cos 4t + C2e2' sin 4t ; y = e21 cos 4t 
29.14 y = C 1 cos 2t + C2 sin 2t ; frequency = ¾ 
29.15 y = 2 sin (2t + 1) 
29.16 (a) f = 3.24ft; (b) 0 = .158 sin rrt ,  .158rad = 9.01° 

CHAPTER 30 

30.1 (b) f tec'dt = � [ct - 1] 
f t2ec1dt = � [c2t2 - 2ct + 2] 
f t3ec1dt = :: [c3t3 - 3c2t2 + 6ct - 6] 

30.2 y = e-1 

30.3 y = -te' 
30.4 y = (2t2 - 6t + 7)e31 

30.5 y = (3t2 + 2t)e21 

30.6 y = 2t + 3 
30.7 y = -3 sin t + cos t + C1 e21 + C2e- 1 

30.8 y = 3t sin t + C 1 cos t + C2 sin t 
30.9 y = -4 cos 2t + 3 sin 2t + C1 e' + C2te' 

30.10 y = ½te' sin t + C1 e' cos t + C2e' sin t 
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CHAPTER 31 

31.1 (a) -31 - j; vffi 
(b) 3t - 2J; vn 
(c) -41 - 6j; v'32 
(d) 51 - 12j; 13  

31.2 R = (0, 4) 
31.3 R = (-1 ,  2) 
31.4 A = "0s I - � j 
31.5 � I +  � j 
31 6 _j_ I +  ...J_ .  • viii viii J 
31.7 cos 8 i +  sin 8 j 
31.8 ½ 
31.9 u = ! i + 1  j; (5, 8) and (-1 , 0) 

31.10 (5, 4) 
31.11 (a) D = ;½l - �j; E = -i; F = -�l + �j; G = j ; H = �l + �j 

(b) D = B - A; E = -A; F = -B; G = -V2B + A; H = A - B  
31.12 Write Q = ½ PR - .PQ and R = ½ .PQ- PR 
31.13 11.Fll = � ... 206 lbs; 8 ... 14° 

31.14 Course 65°; speed 588 mph. 

CHAPTER 32 

32.1 o = ¥; I IA l lcos o = o 
32.2 8 = f; I IA l lcos 8 = vfltv2 
32.3 8 ... 1 .75 rad; I IAUcos 8 = -.4 
32.4 () = .073 rad; IIAl lcos () ... 6.32 
32.5 A = �l + '7iJ 
32.6 A = *°(I + 3j) 
32.7 A = �(l - 2j) 
32.8 8 = 1 . 1 1 rad = 63.4° 

32.9 8 ... 7 1 .6° ... 1 .25 rad 
32.10 A1 

= � i + -WJ; A2
= -f; l + �j 

32.11 56.3°; 61 - SJ = (-�u - (¼)v 
32.12 Write I IA + B1 12 = (A + B) · (A + B) etc. 

CHAPTER 33 

33.1 R(t) = t(2i + j + 2k); cos a = i, cos � = J, cos 'Y = 1 
33.2 R(t) = (2 + 4t)i + ( 4 + 4t)j + (1 - t)k; cos a =�. cos � = �. cos 'Y = � 
33.3 R(t) = (1 + St)i + (2 + t)j + (3 + 3t)k; cos a = � cos � =*' cos 'Y = *5 
33.4 R(t) = (3 + 4t)i + (4 - 3t)j ; cos a = t cos /3 = 1, cos 'Y = 0 
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33 .5 (a) If (5, 1 ,  3) were on the line, then t would have to be zero, and t = 0 gives 

y = 4 instead of y = 1 
(b) Q = (6, 1 , 2) 
(c) I I.POi i = v'2 

33 .6 47. 1 ° ; .82 rad 
3 3.7 82.6° ; 1 .44 rad 
33 .8 (x - l ) - (y - 2) + 2(z - 3) = 0  
33 .9 2x + 3y - z - 3 = 0 

33 .10 y = 0 
33 .11 y = x 
33.12 Si +  8j + 8k 
33 .13 -31 + 2j + 10k 
3 3.14 i - 2j + k 
33 .15 -7i + 37j + 41k 
33 .16 2(x - 2) + 8(y - 1) + 3(z - 3) = 0  
33 .17 -8(x - 1) + 9y + 5(z - 5) = 0 
33 .18 y = l 
33 .19 3 
33 .20 3/V6 
33 .2 1  2/vl4 
33 .22 8/v2T 
3 3.23 1/vl4 

CHAPTER 34 

34 .1 The plane has intercepts (4, 0, 0), (0, 2, 0), (0, 0, 2) 
34 .2 The plane has intercepts (4, 0, 0), (0, 8, 0), (0, 0, 2) 
34 .3 The plane has intercepts (2, 0, 0), (0, 2, 0), (0, 0, 1)  
34.4 Draw the lines joining the three points 
34 .5 The plane passes through the line and is perpendicular to the xy-plane 
34 .6 A circular cylinder of radius 3 centered on the z-axis 
34 . 7 A circular cylinder centered on the x-axis 
34 .8 The surface consists of all lines through the curve x = z2 and parallel to the 

y-axis 
34 .9 Circular cylinder of radius one, parallel to the y-axis, with its axis through the 

point (0, 0, 1) 
34 .10 The surface consists of all lines through the curve x = vy and parallel to the 

z-axis 
34 .11 (0, 0, 1), 2 
34 .12 (2, -1 ,  3), 5 
34 .13 (-?, - ½, 0), i 
34 .14 ( 1 ,  -2, 4), 2 
34 .15 (a) ( 1 ,  -2, 6) 

(b) the point (1 , 0, 4) 
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34 .16 
34 .17 
34 .18 
34 .19 
34 .20 

34 .2 1  
34 .22 

34 .23 

Understanding Calculus 

Cylinder centered on the y-axis 
Rotate the parabola y = x2 about the y-axis 
The double cone obtained by rotating the line z = x ( or z = y) about the z-axis 
Rotate the curve z = 3x2 about the z-axis 
This is a hyperboloid of one sheet; the cross-sections in the planes z = const. 
are circles 
An ellipsoid; rotate the ellipse f + y2 = l about the x-axis 
A hyperboloid of two sheets; rotate the hyperbola x2 - y2 = -1 about the 
y-axis 
An ellipsoid (a closed surface such that every cross-section perpendicular to an 
axis is an ellipse). The intercepts are (±1, 0, 0), (0, ±2, 0), (0, 0, ±3) 

CHAPTER 35 

35.1 

35.2 

35.3 
35.4 

35.5 
35.6 
35.7 
35.8 
35.9 

35.10 
35.11 
35.12 
35.13 
35.14 
35.15 
35.16 

f = 2xy + 2x cos(x2 + y2) 
-: = x2 + 2y cos(x2 + y2) 
$: = y sin(xy) + xy2cos(xy) 
%; = x sin(xy) + x2y cos(xy) 
� = sec(x + y) tan2(x + y) + sec3(x + y) 
$: = e tan(x + 2y) + esec2(x + 2y) 
%; = 2e sec2(x + 2y) 
h_ a2z 2x 6 axay = ayax = + r 
� = 2e4y2 + 4x2e2+>2 
;:. = 2r(l - cos 6); � =  r2 sin 6 
� = -sinq> cos 6 
1}f = 21r rh; � =  21rh 
d£ !!!IL d£ wh2 

ah = IO t , at = -57< 
';; = e-1; � = se-1 

11:: = b  sec2f; t = -{2 sec2 f 
r = O  lxxz 
J, = 2e2+>2 + 4y2e2+>2 yyz 

fyxz = cos(yz) -yz sin(yz) 
!XX)' = 2 cos z 

CHAPTER 36 

36 .1 
36 .2 
36 .3 
36 .4 
36 .5 

t = i + 9k; t = J0 + 9k; X y 
t = i + 6k t = J0 + 4k X ' y ' 

t = i + 2k; t = J0 + 2k 
X y 

' 

N = -9i - 9j + k. z = 18 + 9(x - 3) + 9(v - 1) 
N = -6i - 4j + k. z = 6 + 6(x - I) + 4(v - 2) 
N = -2i - 2j + k. z = I + 2x + 2(v - 1)  

t = i· t = J·. N = k; z = 0 X ' y ' 

t = i + k t = J•. N = -i + k z = l - x X , y , ' 



Answers 

36 .6 
36 .7 
36 .8 
36 .9 

36 .10 
36 .11 
36 . 12 
36 . 13 
36 .14 
36 . 15 
36 .16 

t = i + 6k t = j + 4k 
X ' y , 

(0, -1 ,  0) 
( 1 ,  0, -1)  
( 1 , 0, -2), (-1 , 0, 2) 
(-1, -1, -i) 
z ""' 27.9 
z ""' ¼ + .050 = .30 
z ""' 2 - io ""' 1 .825 
z ""' 3. 1 
z ""' 1.2 
.33% 

CHAPTER 37 

37 .1 
37 .2 
37 .3 
37 .4 
37 .5 
37 .6 
37 .7 
37 .8 
37 .9 

37 . 12 

f = IO  
1; = 5  

f = -22 

! = 2 
<fl: = 228 

�� = 838 

Z = -86 
dV_ 6 dt -

'ft =  108 
(b) eV�l �+_cos_e�-

CHAPTER 38 

38.1 D m3 f(�, 0) = ½ + � 
38.2 DmJ(l,  2) = ll:f-
38.3 D" /( l , 2) = -8 
38.4 DmJ(l,  O) = V2  
38.5 D_m3 f(!, � = -½ - 4 
38.6 Dof(0, 0) = 1 
38.7 DmJ(0, � = 4 + '1-
38.8 fJ "12/(0, l )  = 2e 
38.9 16/VS 

38.10 (5 - ;)/VIo 
38.ll 5/'\/'Jl, 
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N = -6i - 4j + k; z = 9 + 6(x - 3) + 4y 
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38 .12 ! cosh 8 
38 .13 28/V6 
38 .14 �1 + log 2) 
38 .15 N = i + 2j ;  T = 2i - j  
38 .16 N = 2i + 12j; T = 12i - 2j 
38 .17 N = 1 i + ei · T = ei - 1 J' e J , e 

38 .18 N = i + ½(e + ;)j ;  T = ½(e + ;)i - j  
38 .19 'fi{ = 6  

CHAPTER 39 

39.1 /(0, 0) is a relative minimum 
39.2 No relative maximum or minimum 

Understanding Calculus 

39.3 There is no relative maximum or minimum at the critical point (0, 0) (consider 
f(x, 0));f(l , 1) is a relative minimum 

39.4 /(1, 0) is a relative minimum 
39.5 No relative maxima or minima 
39.6 /(1, 1) is a relative minimum;/(-1, -i) is a relative maximum 
39.7 /(1, -2) is a relative maximum;/(1, 0) is neither max nor min 
39.8 There are no critical points 
39.9 No relative maxima or minima 

39.10 (2, l , 1) 
39.11  (-1, -½, f) 
39.12 f(O, 4) = -4 is the minimum 
39.13 X = y = Z = 20/3 

CHAPTER 40 

40 .1 1i; J1 lb (x2 + y)dx dy 
40 .2 ½; lb f�xy <1x t1y 
40 .3 fo; lb f;112 (x + y)dx dy 
40 .4 1f; f�, lb-x (2 + y)dy dx 
40 .5 ¥, JUt xy2dx dy 
40 .6 To 
40 .7 15 
40 .8 e - 1  
40 .9 ½e - 1  
40 .10 
40 .11 

2 3 
The region is symmetric about the y-axis, andf(-x, y) = -f(x, y), so the integral 
over the left half of R cancels the integral over the right half of R. 



Answers 
CHAPTER 41 

4 1.1 1 
4 1.2 -1 
41.3 2 
4 1.4 15 
4 1.S ¥ 
4 1.6 ½ 
4 1.7 2 
4 1.8 -¥ 

CHAPTER 42 

42 .1 0 
42 .2 -1 
42 .3 0 
42 .4 1 
42 .S 27T 
42 .6 ( ¥)3 
42 .7 0 + Ii l dy + f? x dx = ½ 
42 .8 57T 
42 .9 0 

42 .10 
42 .11  i7T 
42 .12 37T 

CHAPTER 43 

43 .1 39 
43 .2 9 + e5 

43 .3 � 
43 .4 x2y + siny = c 
43 .S cos y + x&' = c 

43 .6 x3y2 - x2y3 = c 
43 . 7 x sin y + y = c 
43 .8 x2 + X)l + _y2 = C 
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A 
absolute convergence, 135 
absolute value, 1 
acceleration of gravity, 63 
addition of vectors, 1 85 
alternating series, 135 
amplitude of simple harmonic motion, 176 
angle between lines, vectors, 196, 197 
antiderivative, 64 
approximation with differentials, 57, 222, 223 
approximation by tangent plane, 222, 223 
arc length, 84 
area, 69 

as a line integral, 264 
asymptotes, 8 
auxiliary equation, 174 

B 
bacterial growth, 44, 163 
binomial expansion, 158 

C 
catenary, 1 13 
Cauchy's Mean Value Theorem, 84 
centroid of a triangle, 193 
chain rules, 26, 227-23 1 
change of variable, 87 
circles, 8 
closed curve, 259 
comparison tests, 

for integrals, 128 

I ndex 

for series, 137 
components of a vector, 1 87 
composite function, 25 
compound interest, 58 
concave up, concave down, 53 
conditional convergence, 135 
conditions for exact differential, 268, 269 
cone, 214 

volume of, 76 
continuous function, 20 
convergence of power series, 141 
coordinates, I 
coordinate planes, 201 
cosh x, 44 
critical points, 53, 239 
cross product, 206 
curly-d, 217, 2 1 8  
cycloid, 85 

area under, 266 
cylindrical shells method, 99 
cylindrical surface, 212  

D 
DfJ' Du, 233 
definite integral, 69 
del(V), 235 
derivative, 13 

higher order, 52 
determinant, 206, 207 
difference quotient, 14, 1 9 
differential, 57, 223-225 
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differential equation, 16 1  
differentiation, implicit, 54 
differentiation rules, 19-23 
direction angles, cosines, numbers, 203 
directional derivative, 233 
dot product, 195, 201 
double integral, 245 
double your money, 58 

E 
e, 41 ,  121  
e", graph and derivative of, 41 
ellipse, 7 
ellipsoid, volume of, 79 
Euler formula, 175 
exact differential, 267 

integral of, 267 
exponential functions, 39, 40 

F 
factorial, 121  
falling body, 13  

with air resistance, 164 
first order differential equation, 16 1  
first order linear equations, 1 67 
force field, 255 
frequency of simple harmonic motion, 176 

G 
g, the acceleration of gravity, 63 
geometric series, 135 
gradient, 235 
Green's Theorem, 259 

H 
harmonic series, 134 
heat equation, 220 
homogeneous differential equation, 1 67 
hyperbola, 7 
hyperbolic identities, Ill 
hyperbolic sine and cosine, 44, 1 1 1  
hyperboloid, 214--216 

i ,  j, 1 86 
implicit differentiation, 54 
improper integrals, 127 
inclination of a line, 3 
indefinite integral, 64 
independent of path, 268 
independent solutions, 1 74, 179 
indeterminate forms, 120 
inflexion, point of, 53 
initial condition, 16 1 , 174 

integral, indefinite, 64 
definite, 69 

integral test for series, 13 8 
integration by parts, 97 
interest, compound, 44 
interval of convergence, 142 
inverse functions, 41 ,  42, 45, 46 
iterated integral, 247 

L 
Laplace's equation, 220 
law of cosines, 199 
LCR circuit, 173 
length of a curve, 84 
level curve, 235, 236 
!'Hospital's Rule, 58, 120 
limit, 14 

at oo, 1 19 
limit comparison test, 138  
linear differential equations, 1 67 
linear operator, 179 
line integral, 255 

for area, 264 
lines in space, 201 , 203 
local maximum and minimum, 5 1  
log x, 41 , 42 

M 
maximum and minimum, 5 1 , 239 
maximum directional derivative, 235 
max/min sufficient conditions, 239, 241 
Mean Value Theorem, 5 1  
measurement errors, 223, 224 
mixed partials, 219  
midpoint rule, 1 15 

N 
Newton's law of motion, 63 
Newton's law of cooling, 1 63 
Newton method, 59 
non-homogeneous equations, 179 
norm of a vector, 1 85 
normal vector 

to a plane, 2 1 1 
to a tangent plane, 222 

numerical integration, 1 15 

0 

octants, 201 
one-to-one function, 45 
orientation of a curve, 259 

p 
parabolas, 7 

Index 
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paraboloid of revolution, 213  
parameterizations of a curve, 256 
parallel lines, 3 
parametric equations, 8 1  

tangent line for, 83 
partial derivative, 217 
partial fractions, 92 
partial sums, 133 
pendulum, 36 
periodic function, 3 1  
perpendicular lines, 3 
phase shift, 176 
plane, equation of, 2 1 1 
positive series, 136 
power series, 141 
projection of A on B, 195 
p-series, 138 
Pythagorean Theorem, 200 

Q 
quadrants, 1 
quadric surface, 2 1 1  

R 
radian measure, 3 1  
radius of convergence, 1 42 
rate of change, 13 ,  29 
ratio test, 142 
rational function, 91  
reduced form of a differential equation, 167 
relative error, 57, 224 
Riemann sum, 69 

for double integral, 245 
rotation of coordinates, 198 

s 
saddle surface, 239, 240 
scalar product, 195, 201 
second derivative, 52 
second directional derivative, 240 
second order differential equation, 173 
second partials, 218  
separable differential equation, 162 
sequence, 121 
sequence of partial sums, 133 
series, 133 
simple closed curve, 259 
simple harmonic motion, 176 
simply connected region, 270 
Simpson's Rule, 1 16 

sin x and cosine x, 3 1  
derivatives of, 34 

sine curve, 37 
sitr1 x and cos-1 x, 46 
sinh x, 44 
slope of a line, 1 
slope intercept form, 2 
solid of revolution, 78, 245 
sonic boom, 13 
speed, 13  
surfaces, 201 ,  2 1 1 

of revolution, 213  

T 
tangent line, 14 
tangent plane, 221-223 
tangent vectors tx, ty, 221 
tangents 

on surfaces, 221 
to approximate a function, 57 

tan x, 3 1  
Taylor polynomials, 150 

at x0, 153 
Taylor series, 155 
terminal velocity, 164 
tractrix, 1 13 
trajectory of a projectile, 81, 85 
trigonometric functions, 31 
trigonometric identities, 33, 101 
trigonometric integrals, 101 
trigonometric substitution, 107 

u 
unit vector, 1 86 
u-substitution, 65 

V 
variables separate, 162 
vectors, 1 85 

in space, 201 
norm of, 185 
sum of, 185, 201 

volume, 76 
volume of revolution, 76, 78 
volume under a surface, 245 

w 
work, 75, 255 

along a curve, 255 
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