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In the summer of 1666, Isaac Newton saw an apple fall in his 

garden, and promptly invented the theory of gravity.

That, at least, is the story.

And, however oversimplified this version of events may be, 

it makes as good a starting point as any for an introduction 

to calculus.

Because the apple speeds up as it falls.

1
Introduction

1. Newton and the apple.
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It even raises the whole question of what we mean, exactly, 

by the speed of the apple at any given moment.

This is because the well-known formula

 
speed

distance
time

=
 

only applies when the speed of motion is constant, i.e. when 

distance is proportional to time.

To put it another way, the formula only applies if the graph 

of distance against time is a straight line, the speed then 

being represented by the slope, or steepness of the line, as in 

Figure 2.

But, with a falling apple, distance isn’t proportional to time. 

As Galileo discovered, the distance fallen in time t is propor-

tional to t2.

So, after a certain time the apple will have fallen a certain 

distance, but after twice as long it will have fallen not twice as 

far but four times as far, because 22 = 4. And if we plot the dis-

tance fallen against time we get the curve in Figure 3, which 

bends upwards.

distance

time
slow

distance

time
fast

2. Motion at constant speed.
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Plainly, the increasing steepness of the curve reflects, in some 

way, the increasing rate at which the apple falls, as time goes on.

And this idea of the rate at which something is changing with 

time is one of the most central ideas in the whole of calculus.

Calculus is sometimes said to be all about change, but a bet-

ter description, arguably, is that it is all about the rates at which 

things change.

3. How an apple falls.

4. (a) Isaac Newton (1642–1727) (b) Gottfried Leibniz (1646–1716)
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The subject came fully to life in the second half of the 17th 

century, largely through the work of Isaac Newton, in England, 

and Gottfried Leibniz, in Germany.

The two never met, but there was a certain amount of wary 

(and indirect) correspondence between them. At first, this was 

amicable and polite, but the relationship eventually deteriorated 

into a major row about who had ‘invented’ calculus.

While I will say more about this later, my main concern in 

this short book is with calculus itself.

Above all, I want to offer a ‘big picture’ of the subject as a 

whole, concentrating on the most important ideas, and some-

thing of their history.

We will see, also, how calculus is fundamental to physics 

and the other sciences.

One particular aim, for instance, will be to take the theory 

far enough that we can understand the vibrations of a guitar 

string (see Figure 5).

But I will also stress, throughout the book, occasions on 

which results from calculus can be enjoyed purely for their 

own sake, regardless of any possible practical application.

5. Guitar string vibrations.
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Figure 6, for instance, shows an extraordinary connection 

between π—which is all about circles—and the odd numbers.

And, in due course, I will try to show just why this result is 

true.

In short, then, this little book is more ambitious than it 

looks.

If all goes well, we will see not only what calculus is really 

about, but how to actually start doing it.

And to set about that, we need first to think a little about the 

very nature and spirit of mathematics itself.

6. A surprising connection.



In the Babylonian Collection at Yale University there is a fam-

ous clay tablet, known as YBC 7289. It dates from roughly 

1700 bc, and has a simple geometrical figure on it (Figure 7).

The figure is accompanied by some cuneiform writing, and 

when that was deciphered it was found to be an approximation 

to the number √2—correct to better than 1 part in a million.

How, then, did the writer know that, for a square, the ratio of 

diagonal to side is √2?

We can only guess, I think, that they appealed to a diagram 

such as Figure 8.

The area of the large square is 2 × 2 = 4. The area of the 

shaded square is evidently half of this, and therefore 2. So the 

side of the shaded square must be √2.

2
The Spirit of Mathematics

7. Square and diagonals.
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Today, this deductive aspect of mathematics is seen as cen-

tral to the whole subject.

We continually ask not simply ‘What is true?’ but ‘Why is it 

true?’

Mathematicians also seek generality whenever possible, and 

Pythagoras’ theorem is a famous example, for it provides an 

unexpectedly simple relationship between the three sides of 

any right-angled triangle – short and fat or long and thin.

And, as with much that is best in mathematics, it is this gen-

erality which gives the theorem its power.

1

1√�2

8. A simple deduction.

c

a

ba2 + b2 = c2

9. Pythagoras’ theorem.
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Algebra

While geometry dates back to ancient Greece and beyond, 

algebra—at least as we know it today—is a much more recent 

development.

Even the familiar equals ‘=’ sign only appeared in 1557, less 

than a century before Newton was born.

The main purpose of algebra is, again, to help us express 

and manipulate general ideas in mathematics, in a succinct 

manner.

And one such result, of great value in this book, is

 ( ) .x a x ax a+ = + +2 2 22  

This is true for any numbers x and a, positive or negative, by 

the rules of elementary algebra, but when x and a are both 

positive it can even be seen geometrically, using areas 

(Figure 10).

a

a

ax

axx

x

x2

a2

10. Algebra as geometry.
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Proof

Sometimes in mathematics, the actual deductive arguments, 

or proofs, can be a source of pleasure in themselves.

Consider, for instance, the proof of Pythagoras’ theorem in 

Figure 11.

Here, we have placed four copies of our right-angled triangle 

inside a square of side a + b, leaving a square of area c2 in the 

middle.

Each right-angled triangle has area 1
2 ab, so the area of the 

large square is c2 + 2ab.

But it is also (a + b)2 = a2 + 2ab + b2.

So a2 + b2 = c2.

I would argue that this is one of the best proofs of Pythagoras’ 

theorem, in fact, because it is so concise and elegant.

a

a

a

a

b

b

b

b

c

c

c

c

11. Proving Pythagoras’ theorem.
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The way to the stars . . .

Throughout its history, mathematics has played a crucial part 

in our understanding of how the world really works.

The nature of the Universe, in particular, has always been a 

source of wonder. Yet to study it, we must begin, inevitably, by 

measuring the Earth.

And one way of doing that is to climb a mountain of known 

height H and estimate the distance D to the horizon (Figure 12). 

As the line of sight PQ will be tangent to the Earth, it will be at 

right angles to the radius of the Earth, OQ, so OQP will be a 

right-angled triangle.

Applying Pythagoras’ theorem, we have

 ( ) ,R H R D+ = +2 2 2  

where R is the radius of the Earth. After rewriting the left-

P
H D

Q

R
R

O

12. Measuring the Earth.
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hand side as R2 + 2RH + H2 and cancelling the R2 terms we 

have 2RH + H2 = D2.

In practice, H will be tiny compared to the radius of the 

Earth R, so that H2 will be tiny compared to 2RH. Thus, 2RH is 

approximately equal to D2, and so

 
2

.
2
D

R
H

»  

In about 1019, the scholar Al-Biruni used broadly similar 

ideas to estimate the radius R of the Earth, obtaining a result 

which differed from the currently accepted value by less than 

1%. This was a quite extraordinary achievement for the time.

Equations and curves

I should like to end this chapter by pointing out one particu-

larly powerful way in which geometry and algebra come 

together.

Today, if we have a relationship between two numbers—

y = x2, for example—we think nothing of using x and y as 

 coordinates to plot a graph, as in Figure 13. Our equation is then 

represented by a curve. And, conversely, if some problem in 

geometry involves a certain curve, we can try and represent it 

by an equation.
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But in Newton’s time this was a very new idea indeed, 

largely due to two French mathematicians, Pierre de Fermat 

(1601–65) and René Descartes (1596–1650).

And while it takes us very close to calculus itself, we need, 

first, just one more key idea . . .

y

y = x2

x

6

4

2

–3 –2 –1 0 1 2 3

13. Coordinate geometry.



Infinity enters our story very early, around the time of 

Archimedes, in about 220 bc.

To be more precise, what really matters is the idea of gradually 

approaching infinity, and I would like to offer two examples.

The area of a circle

The two formulae in Figure 14 are among the best known in 

the whole of mathematics. But why are they true?

3
Infinity

r Circumference = 2πr
Area = πr2

14. Circle formulae.
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Well, for the purposes of this book I would like to  

define π as

 p =
circumference of circle

diameter
,  

because that ratio is the same for all circles.

So, if the radius is r, the diameter is 2r, and the first result 

follows straight from the definition; it is, more or less, simply 

a re-statement of what we actually mean by the number π.

But the other formula, area = πr2, is quite a different  

matter.

So, to see why it is true, let us follow Archimedes—rather 

loosely, in the first instance—by inscribing within the circle a 

regular polygon with N equal sides (Figure 15).

Now, the polygon will consist of N triangles such as OAB, 

where O is the centre of the circle, and the area of each such 

triangle will be 1
2  its ‘base’ AB times its ‘height’ H. The total 

O

H

A B

r

15. Approximating a circle.
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area of the polygon will therefore be N times this, i.e. 
1

2  × (AB) × H × N. 

But (AB) × N is the length of the perimeter of the polygon, so

 area of polygon perimeter of polygon H= ´ ´
1

2
( ) .  

The idea now is to get at the area of the circle itself by con-

sidering what happens as N gets larger and larger, so that the 

polygon has more and more sides (Figure 16).

Plainly, as N increases, the perimeter gets closer and closer 

to the circumference of the circle, which is 2πr.

And H gets closer and closer to r.

So the area of the polygon gets closer and closer to

 
1
2

2´ ´pr r ,  

which is πr2.

N = 6 N = 12

16. Closer and closer . . .
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The idea of a limit

I should admit at once that all this talk of ‘getting closer and 

closer to’ is, at best, a little vague.

More precisely, we may view the area of the circle itself as the 

limit of the polygon’s area as N → ∞, i.e. as N tends to infinity.

And, broadly speaking, what we mean by this is that we can 

make the difference between the two areas as small as we like 

by taking N large enough.

This idea of limit is central to the whole of calculus, but it is 

a subtle idea, and one which will gradually evolve and sharpen, 

I hope, during the course of this book.

Matters are not helped by the fact that the very word ‘limit’ 

is being used in a rather different way from that in which it is 

used in everyday life.

So, for the time being—and speaking very loosely indeed—a 

limit in mathematics is something that we can approach as 

close as we like, provided that we try hard enough.

An infinite series

Another way in which infinity enters our story is through the 

idea of infinite series, such as

 

1
4

1
4

1
4

1
32 3+ + + × × × × = .

 

Now, at first sight, this is quite remarkable. For, as the dots 

suggest, the series of positive terms on the left-hand side 
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continues forever in the way indicated—yet the sum is finite, 

and just 1
3 .

For the time being, I simply offer a ‘proof by picture’ of this 

result, in which we take a square of side 1 and divide it up into a 

sequence of smaller and smaller squares (Figure 17).

The total shaded area then represents the sum of our  infinite 

series, and it is evident, I think, that this area represents 1
3  

of the whole, because there is, essentially, an exact copy of it 

on either side.

Here again, however, there are subtleties, and the proof in 

Figure 17 is a little casual.

A better description of what the result 

 
1
4

1
4

1
4

1
32 3+ + + =  

1
4

1
16

17. A ‘proof by picture’.
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really means is that we can make the running total on the left-

hand side as close to 1
3  as we like by taking enough terms.

In other words, 1
3  represents the limit of that running total 

as the number of terms, N, tends to infinity.

The road to calculus

Armed with all we have seen so far, and some concept of limit 

in particular, we are now ready to embark properly on our 

journey.

And the road to calculus involves four main themes:

 (i) the steepness of a curve,

 (ii) the area enclosed by a curve,

 (iii) infinite series, and

 (iv) the problem of motion.

We will look at each of these, in turn, in Chapters 4–12, and 

I hope, of course, that I will succeed in explaining the key 

ideas as simply and clearly as possible.

But I am not claiming that calculus is ever easy. It isn’t.

One reason I know this is a visit to my father some years 

ago, just a few weeks before he died.

He was not a mathematician, but he had kindly offered to 

comment on something I was writing at the time.

And we were sitting comfortably, looking out on the even-

ing sun in his back garden, when he suddenly said:
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‘I’m afraid I don’t agree with you that 1
4

1
16

1
64+ + + . . .  

is equal to 1
3 . I believe it is less than 1

3 , by an infinitely small 

amount.’

In reply, I said:

‘I might be tempted to agree with you, if I knew what it 

means for a number to be infinitely small. But I don’t.’

‘Ah!’ he said, most thoughtfully, and I immediately began to 

marshal my own thoughts in preparation for a counter-attack.

But, in the end, none came, and all he eventually said was:

‘Let’s have another glass of whiskey!’



Calculus is all about the rates at which things change.

And, as we have seen already, this idea is related to the 

steepness of a curve.

So, how do we determine the steepness, or slope, of a curve 

at any particular point?

The slope of a straight line

In the case of a straight line, the answer is simple: we just take 

two points P and Q on the line, and calculate the increases in 

x and y as we move from P to Q (Figure 18). Then

 slope
increase in
increase in

=
y
x

.  

The great merit of this definition is that it doesn’t matter 

which two points of the line we choose—this ratio is always 

the same.

And—fairly evidently, I think—the larger the ratio, the 

steeper the line.

4
How Steep is a Curve?
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The slope of a curve

But if we try to apply this same idea to determine the slope of 

a curve at some point P, we hit a problem, for the ratio

 
increase in
increase in

y
x

 

will typically depend on where we choose our second point, Q.

So, where should we choose Q?

As we are trying to determine the steepness of the curve at 

the point P, rather than somewhere else, we should presumably 

choose Q so that it is close to P.

But how close, exactly?

And, after a little more thought still, the natural answer 

would seem to be: the closer the better (Figure 19).

y

x

P

Q
increase

in y

increase
in x

18. A straight line.
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In this way, then, we are led to define the slope of the curve 

at P as the limit of the ratio as Q tends to P :

 slope of curve at
increase in
increase in

P =
®

lim .
Q P

y
x

 

An example

The simplest way to see this idea in action is, I think, with the 

curve y = x2 (Figure 20).

So, if the x-coordinates of P and Q are x and x + h, say, then 

the corresponding y-coordinates will be x2 and (x + h)2. And as 

we move from P to Q there is therefore an increase in y of 

amount 2xh + h2 (by Chapter 2).

It follows, then, that

 
increase in
increase in

y
x

xh h
h

=
+2 2

,  

and on cancelling the factors of h we have

 
increase in
increase in

y
x

x h= +2 .  

Q

P

Q

P
Q

P

19. Q approaching P.
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Finally, then, we fix the point P—and hence the coordinate 

x—and take the limit Q → P, that is h → 0, giving

 
slope of curve

y x
x

=
=2 2 .  

So the slope increases with x, and this makes sense, of 

course, because the curve y = x2 evidently ‘bends upward’, and 

therefore gets steeper as x increases.

The whole procedure which we have just described is fun-

damental to calculus, for two reasons.

From a purely geometrical point of view, it lets us con-

struct the tangent to the curve at any point, because the slope 

of the curve at that point will be the slope of the tangent 

(Figure 21).

y = x2

P
h

0

Q

y

x

20. Finding the slope of a curve.



How St e e p iS a Cu rv e?24

From a dynamical point of view, on the other hand, it lets 

us calculate the rate at which y increases with x, because that is 

precisely the slope of the curve.

And this whole procedure of obtaining the slope of a curve, 

from its equation, is called differentiation.

tangent

P

x

y

21. The tangent to a curve.



The whole idea of differentiation is so central to calculus that 

there is a special notation for it.

First, the Greek letter δ, i.e. ‘delta’, denotes not a number but 

the phrase ‘increase in . . .’. So, for example, if x were to increase 

from 1 to 1.01, then δx would be 0.01.

In this way, then, δx and δy denote the small increases in 

x  and y that occur as we move along some curve from the 

point P to a nearby point Q (Figure 22).

5
Differentiation

x

δx

δy
P

Q

y

22. Small increases in x and y.
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Now, as we have seen, the whole process of differentiation 

involves finding the limit of δy/δx as δx → 0, i.e. as Q moves closer 

and closer to P.

And we now denote this limit by the special symbol dy/dx, 

as in Figure 23.

This entity—pronounced ‘d y d x’—is called the derivative of y 

with respect to x, and represents both the slope of the curve 

and the rate at which y is increasing with x.

The distinctive notation, due to Leibniz, has proved superbly 

successful over the years, but there are some subtleties.

There seems no doubt that—in his earlier years, at least—

Leibniz viewed dy/dx as the ratio of two numbers, dy and dx, 

both of which were ‘infinitely small’.

We will not attempt to view it that way in this book, but, 

instead, will consistently view it as the limit of the genuine 

ratio δy/δx as δx → 0.

Indeed, if we ‘deconstruct’ the symbol dy/dx at all, it will 

tend to be in the following way:

 
d

dx
y( ),  

where we are viewing d/dx itself as a symbol, meaning ‘differ-

entiate with respect to x’.

23. Definition of dy/dx.
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Examples

Now, we saw in Chapter 4 how to actually do all this, and we 

already know from there how to differentiate y = x2 (Figure 24).

I now offer a second example, if only to show the dy/dx 

notation in action.

Suppose, then, that y = 1/x.

Notably, as x increases, y decreases in this case (see 

Figure  25), so we might reasonably expect a negative slope, 

and therefore a negative value of dy/dx.

24. The derivative of x2.

y

x

1

1

2

2

3

3

4

4

5

5

1
xy = 

25. The graph of y = 1/x.
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In any event, our first task is to calculate the quantity δy. 

And when the x-coordinate changes from x to x + δx, y will 

change from 1/x to 1/(x + δx), so

 d
d

y
x x x

=
+

-
1 1

.  

By the usual rules of algebra, this may be rewritten as

 d
d
d

y
x

x x x
=

-
+( )

,  

so that

 
d
d d

y
x x x x
= -

+
1

( )
.  

On finally letting δx → 0, we find that dy/dx = −1/x2.

We have therefore shown that

 d
dx x x

1 1
2

æ
è
ç

ö
ø
÷ = - ,  

and the derivative is indeed negative in this case, as we antici-

pated.

In the same general way, we can gradually build up the col-

lection of results shown in Figure 26.

And if, by any chance, you feel that there might be a pattern 

developing here, with the derivative of x4 being 4x3, and so on, 

you are in fact quite right; the derivative of xn is given by 

Figure 27 for any positive whole number n, and we will explain 

why later, in Chapter 13.
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y = constant

 (constant) = 0d
dx

y = x

(x) = 1d
dx

y = x2

(x2) = 2xd
dx

(x3) = 3x2d
dx

y = x3

26. Some elementary derivatives.

27. Differentiating xn.
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Functions

In all the examples in the previous section there is just one, 

unique value of y corresponding to each given value of x.

Whenever this is the case, we say that y is a function of x.

Thus, y = x2 defines y as a function of x, but it does not define 

x as a function of y, because any given (positive) value of y leads 

to two possible values for x, one positive and one negative.

Two general rules

In addition to the specific results we’ve been discussing, there 

are two general rules which are very helpful:

 

1

2

. ( ) ( ) ( ).

.

( )

d
dx

u v
d

dx
u

d
dx

v

c

d
dx

cy c
d

dx

+ = +

=

If is a , thenconstant

(( ).y
 

Here, u, v, and y can be any functions of x which can be dif-

ferentiated.

In Chapter 6, for instance, we will find ourselves wanting 

to differentiate 4x − 2x2. Rule 1 says that we can differentiate 

4x and −2x2 separately, and simply add the results. And rule 

2 says that the derivative of 4x is just 4 times the derivative of x, 
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i.e. 4 × 1 = 4. In a similar way, the derivative of −2x2 is −2 × 

2x = −4x.

While a little technique of this kind will be needed in the 

pages which follow, the more pressing question, surely, is: 

what is all this differentiation for?



One major use of calculus is in problems of optimization, where 

we have some quantity, and want to find its maximum or min-

imum value.

Down on the farm . . .

Imagine, for instance, that you are a farmer, and you want to 

create a rectangular field next to a river (Figure 28). Suppose, 

too, that you have a fixed amount of fencing—say 4 km—for 

the other three sides.

How should you arrange things so that the area A of the 

field is as large as possible?

Should you, for example, choose the rectangle so that it is a 

square?

Now, I should confess at once that I have never actually met 

a farmer who wanted to do anything of the kind, but this little 

problem does illustrate well one particular aspect of calculus 

in action.

6
Greatest and Least
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To see this, let x denote the width of the field, so that the side 

parallel to the river must be of length 4 − 2x.

The area of the field will therefore be x(4 − 2x), so

 A x x= -4 2 2 ,  

and our problem is to choose x so that A is a maximum.

And the key step is to differentiate with respect to x, which 

gives

 
dA
dx

x= -4 4 .  

Now, plainly, if x < 1 then dA/dx is positive and A increases 

with x, but if x > 1 then dA/dx is negative and A decreases with x.

Not only does this help us sketch the graph of A against x 

(Figure 29), but it tells us, of course, that the maximum value 

of A must occur when

x

4 – 2x

A

River

28. A maximization problem.
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dA
dx

= 0,  

i.e. when x = 1, because this is where A stops increasing with x 

and starts decreasing.

And when x = 1, the side parallel to the river, namely 4 − 2x, 

is equal to 2. So we maximize the area by choosing a rectangle 

with an aspect ratio of 2:1 (Figure 30).

A

0 1 2
x

29. How A depends on x.

1 1

2

A

River

30. The solution to the problem.
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But, more generally . . .

The idea of tackling optimization problems by differentiating 

is a powerful one, due essentially to Fermat in about 1630, but 

there are subtleties.

In some problems, for instance, setting dy/dx = 0 will deliver 

the minimum value of y (Figure 31a).

More generally still, it might be that the graph of y against x 

looks something like Figure  31b. Setting dy/dx = 0 will then 

yield three values of x, corresponding to the points A, B, and C, 

and further work will be required to show that C gives the 

maximum value of y and that none of them give its minimum 

value, over the range of x shown in the figure.

So setting dy/dx = 0 is only ever part of the story.

y

x

y

A

B

C

x
(a) (b)

31. (a, b). Some optimization problems.
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What’s the best view of Nelson’s Column?

I should like to end this chapter with one of my favourite opti-

mization problems, even though the details require rather 

more technique than we have developed so far.

Imagine, then, that you are in Trafalgar Square, London 

looking up at Nelson’s column.

Clearly, if you stand too far away your viewing angle A will 

be very small, but it will also be small if you stand too close, 

because you will then be viewing Nelson very obliquely.

So, at what distance x should you stand to maximize A?

Calculus—eventually—gives the answer:

A

b

a

x

32. What’s the best view?
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 x a a b= +( ),  

where b is Nelson’s height and a the distance of his feet above 

your eyeline.

And because, in practice, b is small compared to a, this 

implies that you should look up at an angle of about 45°.

But watch out for the traffic!



Earlier, we proved that the area of a circle is πr2, by using an 

N-sided polygon and letting N → ∞.

But while we attributed this whole idea to Archimedes, it is 

not exactly what Archimedes does.

He begins, instead, by assuming that the area is greater than 

πr2. He then introduces an inscribed polygon, as we did in 

Chapter 3, and shows that a contradiction arises for some suf-

ficiently large, but finite, value of N.

He then tries the assumption that the area is less than πr2, 

draws a polygon touching the outside of the circle, and shows 

that another contradiction arises for some sufficiently large N.

The only possibility left, then, is that the area of the circle is 

exactly πr2.

7
Playing with Infinity

33. Approximations to a circle.
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And this whole line of argument is called reductio ad absur-

dum, or ‘proof by contradiction’.

The precise way in which the contradictions arise need not 

concern us here. The real point is that at no stage in the argu-

ment is N just allowed to tend to infinity—let alone be infinite; 

the number of polygon sides, N, is always finite.

In a broadly similar way, Archimedes proves the results for 

a sphere shown in Figure 34, and the result for a cone dates 

from even earlier work by Eudoxus (c.360 bc).

But, again, at no stage is anything allowed to just ‘tend to 

infinity’.

In their final, polished proofs, at least, the ancient Greeks 

avoided infinity like the plague.

Mathematicians living dangerously

By 1615 things had changed, and the German astronomer 

Johannes Kepler was apparently quite happy to regard a 

Volume 1
3

Volume 4
3

r

h

A

Ah πr3

Surface Area 4πr2

34.  Cone and sphere formulae.
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sphere as an infinite number of infinitely thin cones extending 

from its centre (Figure 35).

In this way, he reasoned, it is easy to obtain the volume of a 

sphere from the formula for its surface area.

After all, the volume of each cone is 1
3 r  times its base area, 

and the base areas of all the infinitely thin cones add up to the 

surface area of the sphere, 4πr2.

So the volume of the sphere must be

 1
3

4
4
3

2 3r r r´ =p p ,
mustn’t it?

A little later, Bonaventura Cavalieri, who had been a stu-

dent of Galileo, came up with an ingenious new approach to 

areas and volumes.

In Figure 36, for example, the two geometrical shapes have 

(a) the same height and (b) the same width, or horizontal 

extent, at every level.

According to Cavalieri, then, the two shapes must have the 

same area.

rr

35. Kepler’s approach to the volume of a sphere.



pl ay ing w i t h infini t y 41

(To take a loose analogy: we do not change the volume of a 

deck of playing cards simply by displacing some of them.)

Cavalieri’s principle makes it possible to calculate the area 

(or volume) of some awkwardly shaped object by reference to 

a much simpler one.

He appears to be regarding an area as composed of infinitely 

many lines, but what Cavalieri really tries to do, in effect, is 

sidestep the matter of infinity altogether.

Even later still, John Wallis, Savilian professor of mathemat-

ics at Oxford, threw caution completely to the wind and 

embraced infinity with sufficient confidence that he even 

invented a symbol for it: ∞.

Wallis was a brilliant mathematician, as indicated by the 

following extraordinary infinite product for π,

 
p
2

2
1

2
3

4
3

4
5

6
5

6
7

8
7

8
9

= ´ ´ ´ ´ ´ ´ ´ . . .  

which he discovered in 1655. But some of the things he did 

would now be viewed as downright dangerous.

36. From Cavalieri’s Exercitationes Geometricae Sex (1647).
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In Figure 37, for instance, Wallis considers a parallelogram 

whose height is ‘infinitely little’, and writes that height as 1/∞.

Elsewhere, he even writes

 
1

1
¥
´¥ = .  

Today, we view this as complete nonsense, and do not 

regard ∞ as a number at all.

37. First appearance of the infinity ‘∞’ sign, in John Wallis’s  
De Sectionibus Conicis (1656).
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Even at the time, the philosopher Thomas Hobbes, who 

was a great admirer of Euclidean geometry, poured scorn on 

Wallis’s whole approach, writing:

I verily believe . . . that since the beginning of the world there 
has not been . . . so much absurdity written in geometry.

A safer approach

It is safer, surely, to approximate a curved region by a finite 

number of simple pieces, and then see what happens as that 

number gets bigger and the pieces themselves get smaller.

Suppose, for example, that we want to find the area under 

the curve y = x2, between x = 0 and x = 1. We can approximate 

the region by N rectangles, each of width 1/N, as in Figure 38.

0 1

y = x2

38. Approximating a curved region by rectangles.
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Then, with the help of the formula

 1 2
1
6

1 2 12 2 2+ + + = + +.. ( )( ),N N N N  

which has been known since the time of Archimedes, we can 

show that the shaded area in Figure 38 is

 
1
6

1
1

2
1

+æ
è
ç

ö
ø
÷ +æ
è
ç

ö
ø
÷N N

.  

On finally letting N → ∞, so that the rectangles get thinner 

and more numerous, and approximate the curved region ever 

more closely, we obtain 1
3  for the area under the curve itself.

And in the 1630s Fermat and others used methods of this 

general kind to calculate many different areas with curved 

boundaries.

Yet there is, in fact, another way . . .



His name is Mr Newton; a fellow of our College, & very 
young . . . but of an extraordinary genius and proficiency in 
these things.

Isaac Barrow, of Trinity College Cambridge,  
in a letter of 1669

Suppose that we want to find the area A under some curve.

Plainly, if we change x, then A will also change, and Newton 

showed that it does so, in fact, in the way shown in Figure 39.

8
Area and Volume

A
y

x

39. The fundamental theorem of calculus.

And this result, called the fundamental theorem of calculus, is 

really quite extraordinary. After all, we have seen that— 
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geometrically at least—differentiation is all about finding the 

steepness of a curve.

Now we find that undoing differentiation is a way of finding 

area.

I say ‘undoing’ because, in practice, we will usually know y 

as a function of x in the equation in Figure 39, and will be try-

ing to find A.

And this process of undoing, or reversing, differentiation is 

called integration.

Here’s a simple example.

The area under y = x2, revisited

In this case, evidently,

 
dA
dx

x= 2 ,  

And so, to determine A, we find ourselves asking what func-

tion of x, when differentiated, gives x2.

Well, a glance back at Chapter 5 reminds us that the deriva-

tive of x3 is 3x2—which is getting close—and the second ‘gen-

eral rule’ then tells us that the derivative of 1
3 x3 will be x2.

At this point, a little care is needed, because 1
3 x3 is not the 

only function of x with derivative x2. The derivative of a con-

stant is zero, so we could add any constant c and still have the 

derivative dA/dx equal to x2:
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 A x c= +
1
3

3 .  

As it happens, if we are measuring the area A under the 

curve from x = 0, as in Figure 40, we require that A = 0 when 

x = 0. In our case, then, c is in fact zero, and A= 1
3 x3 emerges as 

the final answer.

In particular, on putting x = 1 we find that the area under 

the curve y = x2 between x = 0 and x = 1 is 1
3 , in agreement 

with the conclusion of Chapter 7.

Proof of dA/dx = y

To see why all this works, turn back, if you will, to Figure 39 

and imagine x increasing very slightly to x + δx. Then A will 

x

y = x2

0

y

40. The area under y = x2.
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increase very slightly also, and the additional area will be a 

tall, thin strip of width δx, as shown in Figure 41a.

Suddenly, then, it is rather easy to see, in rough terms, why 

dA/dx = y, because this additional area is, very nearly, a long, 

thin rectangle of width δx and height y, so that, very nearly, 

δA = y δx.

But we can sharpen our argument by borrowing an idea 

from an early Newton manuscript of 1669, commonly known 

as De Analysi (see Figure 41b).

Not surprisingly, the notation there is quite different: A, D, 

and δ denote points on the curve, and Bβ corresponds to our 

δx. But Newton observes that the additional area will be exactly 

that of some rectangle BβHK with width δx and height—in 

our terms—somewhere between y and y + δy.

So, in our terms, δA/δx is sandwiched firmly between y and 

y + δy. And in this way, then, if we finally let δx → 0 (so that 

δy → 0 also) we obtain the result: dA/dx = y.

y + δyy

δx

41. (a) A small increase in area. (b) From Newton’s  
De Analysi (1669, published 1711).
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Torricelli’s trumpet

The same general line of reasoning can be used to find vol-

umes, and the cone and sphere formulae in Chapter 7 can cer-

tainly be established by calculus, i.e. integration methods.

But I would like to consider instead a rather more exotic 

example.

In 1643, Evangelista Torricelli, another mathematician who 

had studied with Galileo, caused quite a sensation by discover-

ing a three-dimensional object that had infinite extent but finite 

volume.

Even 30 years later, when Thomas Hobbes heard of this 

result, he wrote:

to understand this for sense, it is not required that a man 
should be a geometrician or a logician, but that he should 
be mad.

But was Torricelli right?

To find out, we can use some calculus.

His example was a trumpet-shaped object, which we can 

obtain by rotating the curve y = 1/x about the x-axis, all the 

way from x = 1 to infinity (Figure 42).

Now, the volume V of the shaded region (measured from 

the end of the trumpet, at x = 1) will plainly depend on x, and 

if we increase x by a small amount to x + δx, the additional 

volume δV will be, essentially, a thin circular disc of radius y 

and thickness δx. The area of this disc will be πy2, so we will 

have, very nearly, δV = πy2 δx.
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In this way, then, we conclude that V must depend on x in 

such a way that

 
dV
dx

y=p 2 ,  

and this is, essentially, a three-dimensional equivalent of the 

equation dA/dx = y at the beginning of this chapter.

Now, in our particular case, y = 1/x, so

 
dV
dx x

=
p

2 ,  

and our recent experience (and another glance back at 

Chapter 5) allows us to integrate this fairly immediately:

 V
x

c= - +
p

,  

where c is a constant.

1
y = 1x

V

x

42. Torricelli’s trumpet.
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And, this time, the constant isn’t zero; we know that V must 

be zero at the end of the trumpet, x = 1, because it is measured 

from there. So c = π, and our final answer is

 V
x

= -æ
è
ç

ö
ø
÷p 1

1
.  

And when we take the limit x → ∞, corresponding to the 

whole trumpet, V → π, which is most certainly finite.

So Torricelli was right.

Would you believe it?

Calculus provides many other surprises concerning area and 

volume, though they are not always of great practical value.

Spherical bread

If the slices of a spherical loaf of bread are of equal thickness, 

which piece has the most crust?

43. Spherical bread.
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The answer, surprisingly, is that they all have the same 

amount of crust (i.e. surface area), and this result was known 

to Archimedes.

The pizza theorem

Take any internal point P of a circle, and make two cuts at 

right angles to each other. Then make a further two cuts 

bisecting the angles made by the first two.

The four shaded pieces will then have the same total area as 

the four unshaded pieces, making this an exotic way of shar-

ing a pizza equally.

To the Earth’s core . . .

A cylindrical hole, of depth L, is drilled through a sphere, 

passing straight through its centre.

What volume of material is left?

Answer: 1
6 πL3, regardless of the size of the sphere.

So if you drill a hole of depth 6 cm through a sphere the size 

of an apple you will have 36π cubic cm left over.

P

44. Sharing pizza.



a r e a a nd volu me 53

And if you bore a hole of depth 6 cm through a sphere the 

size of the Earth you will again have 36π cubic cm left.

At first, perhaps, this seems incredible, until we realize that 

with a hole of depth 6 cm there won’t, indeed, be much of the 

‘Earth’ left—just a very thin ring around the equator.

LL

45. A hole through a sphere.



We have already seen that an infinite series can have a finite 

sum:

 
1
4

1
4

1
4

1
32 3+ + +¼= . 

But in order to apply this idea to calculus we need to broaden 

our scope a little, and consider series in which the individual 

terms are functions of x.

The simplest of these is the so-called geometric series:

 
1

1
1
1 1

2 3+ + + +¼=
-

- < <

x x x
x
xfor

 

And there is a remarkably easy way of proving this particular 

result.

We start by writing down the sum sn of the first n terms, and 

then multiply by x:

 
s x x x

xs x x x
n

n

n
n

= + + + +
= + + × +

-1 2 1

2



 .
 

9
Infinite Series
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On subtracting, there is a spectacular amount of cancellation 

on the right-hand side, and we are left with

 ( ) .1 1- = -x s xn
n  

Finally, we take the limit as n → ∞. Provided −1 < x < 1, we 

then find that xn → 0, so that sn → 1/(1 − x). This completes the 

proof.

So, as a particular case, we could set x = 1/4, for instance, 

getting 4/3 as the sum of the infinite series. And if we subtract 

1 from both sides we then get

 
1
4

1
16

1
64

1
3

+ + + = ,  

in agreement with our earlier ‘proof by picture’.

Setting x = −1/2, on the other hand, produces a series with 

alternating signs:

 1
1
2

1
4

1
8

2
3

- + - + = .  

The running total, sn, therefore oscillates (see Figure 46), but 

convergence is fast, so that sn gets quite close to the limit 2/3 

after just six or seven terms.

But these are just special cases. We have shown that the series

 
1 2 3+ + + +x x x 

 

converges to the sum 1/(1 − x) for any value of x in the range  

−1 < x < 1.

And there is, I think, a slight danger at this point that the 

condition on x may appear rather ‘obvious’. It does, after all, 



infini t e se r ies56

ensure that the individual terms get smaller (rather than big-

ger) in magnitude as the series goes on.

In fact, however, convergence can be a very subtle matter, 

and it turns out that, more generally, getting smaller isn’t enough.

A divergent series

Consider, for instance,

 1
1
2

1
3

1
4

1
5

+ + + + +.  

Here, again, the individual terms get steadily smaller, yet in 

this case the series has no finite sum, for we can make the run-

ning total as large as we like by taking enough terms.

This was proved as long ago as 1350 by the French scholar 

Nicole Oresme, and the proof itself is stunning in its simplicity. 

He just groups the terms, after the first, in the  following way:

Sn 1

2
3

1 2 3 4 5 6 7 8 9
n

46. Convergence to a limit.
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so that each new group has twice as many terms as the previ-

ous one.

Oresme then observes that 1
3

1
4+  is greater than  

1
4

1
4

1
2+ = , that the next group is greater than 

1
8

1
8

1
8

1
8

1
2+ + + = , that the one after that is greater than 

8 1
16

1
2´ = , and so on, for ever.

And as 1
2

1
2

1
2+ + + . . . doesn’t converge to a finite sum, it 

follows that the series in question can’t either.

This, then, is something of a cautionary tale, with important 

consequences that we will see later.

But I would like to end this chapter on a quite different note. 

For it turns out that this particular result has a practical appli-

cation—albeit a rather exotic one.

Extreme box-stacking

Imagine stacking some boxes, one on top of another, so that the 

column leans, somewhat perilously, over the edge of a table.

If each box has length 1 unit, how big can the overhang be 

before the whole column topples over, under gravity?

1
2
1
3

1
4

1
5

1
6

1
7

1
8

+

+ + +



,
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With just one box, evidently, the maximum overhang is  
1

2 , but with four boxes this climbs to

 
1
2

1
1
2

1
3

1
4

+ + +æ
è
ç

ö
ø
÷ ,  

which is a little greater than 1, so that no part of the top box is 

directly over the table (Figure 47).

And if we want an overhang of more than two box lengths, 

then we can just achieve that with 31 boxes, because the 

 maximum overhang in this case turns out to be

 
1
2

1
1
2

1
31

2 0136+ + +æ
è
ç

ö
ø
÷ = .  

(see Figure 48).

And it goes on like this, with the maximum possible over-

hang with n boxes being

47.  4-box overhang.
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1
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n
. 

Somewhat surprisingly, then, it turns out that we can make 

the overhang as big as we like—if only we have enough boxes—

because the infinite series

 1
1
2

1
3

1
4

+ + + +  

diverges, with no finite sum.

I have to admit, however, that I had never appreciated just 

how slowly it diverges until I once found myself in a maths 

show, with a lot of pizza boxes, in a major city-centre theatre.

Before the show began I calculated, just out of interest, how 

high the column of pizza boxes would have to be—on the 

above model—to overhang right across the stage.

The answer turned out to be 5.8 light years.

48.  31-box overhang.



Integration, or undoing differentiation, is often quite chal-

lenging, and can require considerable ingenuity.

But infinite series can help, and, to see how, let us follow in 

Newton’s footsteps for a moment, and try to determine the 

area under the curve in Figure 49, between 0 and x.

10
‘Too Much Delight’

y = 1
1+x

1

0 x

A

49.  Area under a hyperbola.



61‘ Too Much De l igh T ’

We can, of course, start by writing

 
dA
dx x

=
+
1

1
.
 

But what function of x do we know that, when differentiated, 

gives 1/(1 + x)? Our limited repertoire so far, in Chapter  5, 

 certainly doesn’t contain the answer—or give much of a clue.

Yet there is a way forward—if we rewrite the function  

1/(1 + x) as an infinite series:

 
1

1
1

1 1

2 3

+
= - + - +

- < <
x

x x x

x



for .
 

While it may look a little different, this is in fact the same 

mathematical result as that in Chapter 9. (Setting x = 1/2 here, 

for instance, gives the same outcome as setting x = − 1/2 there.)

Now, integrating simple  powers of x is relatively easy, because 

we know from Chapter 5 the following:

So integrating x gives x2/2 (plus a constant), integrating x2 

gives x3/3, and so on.

y dy/dx

x 1

x2 2x

x3 3x2

x4 4x3
⋮
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50.  Two details from an early (c. 1665) Newton manuscript, concerning 
the area under the hyperbola y = a2/(a + x). Only a small part  

of his enormous calculation (with a = 1) is shown.
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In this way, then, we can take the new form of our equation

 
dA
dx

x x x= - + - +1 2 3
  

and integrate it term by term. And on applying the condition 

that A = 0 when x = 0 we obtain

 A x
x x x

= - + - +
2 3 4

2 3 4


 

for 0 < x < 1.

In principle, then, we can calculate A to any desired degree 

of accuracy by taking enough terms of the series. In practice, 

this will work best when x is quite small, so that successive 

terms get smaller quite quickly.

In Figure 50 we see some details from a very early manu-

script by Isaac Newton in which he does, essentially, just this. 

In fact, he tries to calculate the area between x = 0 and x = 0.1 

to an almost absurd accuracy.

In his own words:

in summer 1665 being forced from Cambridge by the 
Plague 1 computed the area of the Hyperbola at Boothby 
in Lincolnshire to two and fifty figures

In fairness, the real source of Newton’s excitement lay in 

the fact that he had discovered a general method for doing this 

kind of thing, as we will see later in the book.

Even so, several years later, he himself wrote:

I am ashamed to tell to how many places I carried these 
computations, having no other business at the time: for 
then I took really too much delight in these inventions . . .



We now turn to the fourth and final strand in the early devel-

opment of calculus, namely dynamics.

And it is only natural to revisit, first, the falling apple of 

Chapter 1. We saw there that the distance fallen, s, is propor-

tional to t2, and it is usually written in the manner shown in 

Figure 51.

11
Dynamics

51. The falling apple, revisited.
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The constant g has a special significance, and we can use 

calculus, quite easily, to see what this is.

Note first that the downward velocity of the apple, v, is 

 simply the rate at which the distance s increases with time. So  

v = ds/dt, and as the derivative of t2 is 2t we find that

 v gt.=  

So the downward velocity of the apple increases with time, as 

we observed at the start of the book.

Moreover, acceleration is simply the rate at which velocity 

changes with time, and this is 

dv
dt g.=

So the constant g denotes the downward acceleration due to 

gravity, which is approximately 9.81 m s−2.

Velocity and acceleration

Before going any further, I should perhaps emphasize the dis-

tinction, in both mathematics and science, between speed and 

velocity.

Speed is simply a positive number, but velocity is a vector 

quantity, and therefore has both magnitude and direction.

So the two motions represented schematically in Figure 52 

have the same speed but different velocity, because the two 

motions are in different directions.

This distinction becomes even more important as soon as 

we start talking about acceleration.
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When travelling in a car, for instance, we tend to think of 

acceleration as rate of change of speed, without regard to the 

direction of motion.

But this is, in fact, mathematically and scientifically 

 inaccurate. Acceleration isn’t rate of change of speed; it’s rate 

of change of velocity.

So, even if an object is moving at constant speed, it will 

have a nonzero acceleration if the direction of motion is 

changing.

And acceleration itself, like velocity, is a vector quantity, 

with both magnitude and direction.

Force and acceleration

The reason that acceleration is so important in dynamics is 

that, for an object of constant mass:

 Force Mass Acceleration.= ´  

This fundamental law of dynamics is due, essentially, to 

Newton, though it was never actually stated by him in pre-

cisely these terms.

V V

52. Two different velocities.
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Figure 53, for instance , shows some people on the inside of 

a giant, rapidly rotating drum at a funfair in the 1950s. And the 

only reason they don’t fall down is that a large friction force at 

the wall holds them up against gravity.

This friction force is itself a consequence of the way in 

which the wall exerts a large force inward, towards the rotation 

axis, on each mass m as it moves along its circular path.

And the reason for that inward force – however strange this 

might seem at first sight – is that each object (and person) in 

the picture is continually accelerating towards the centre of the circle.

53. Defying gravity.
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Circular motion

When an object moves at constant speed v around a circle of 

radius r it has an acceleration v2/r towards the centre.

To demonstrate this, our approach will be calculus-like, in 

the sense that we will suppose the object to be at a certain 

point, and then see where it is a very short time later.

Suppose, then, that it is at the point P at a certain instant 

(Figure 55).

Now, if it were not accelerating, it would have to continue at 

the same old speed in the same old direction, i.e. along the tan-

gent at P, so that it would be at the point R a time t later, having 

travelled a distance vt.

Let Q be the point where the straight line OR meets the  circle.

Suppose now that the elapsed time t is very small, so that vt 

is much smaller than r. The points Q and R will then be very 

close to P.

r

v

0
Acceleration
towards centre

v2
r=

54. Acceleration in circular motion.
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In that case (and only then) the distances PQ and PR will be 

very nearly equal, so that at time t the object—which has been 

travelling at speed v round the circle—will be, very nearly, at the 

point Q.

It will therefore have ‘fallen’ a distance QR towards O, and 

because QR is tiny compared to r the final formula in Chapter 2 

applies, and (with a little rearrangement) tells us that QR = 

(vt)2/2r.

But this can be rewritten in the form

 QR
v
r

t=
1
2

,
2

2æ

è
ç

ö

ø
÷  

and we see at once that this is precisely the 1
2

2gt  formula for 

the falling apple, but with a different constant factor—v2/r 

instead of g.

And this is why v2/r represents the acceleration, towards the 

centre, in circular motion.

O r
P

vt

R
Q

55. Proof that acceleration = v2/r.



There goes the man that writt a book that neither he nor 
anybody else understands.

remark by a student at Cambridge, soon after  
the publication of Newton’s Principia (1687)

The story of planetary motion is one of the greatest in the his-

tory of science, and the central ideas of calculus play a key 

part, albeit in a slightly hidden way.

Yet it all begins, really, in ancient Greece, with the geometry 

of an ellipse.

To draw an ellipse, mark out two focal points H and I, and run 

a loop of string around them. Then keep moving the point 

E—as in Figure 56—while keeping the string taut.

If the loop of string is very long the resulting ellipse will be 

almost circular, but if it barely stretches round the two focal 

points the ellipse will be very long and thin.

And just in case this all seems incredibly remote from the 

whole idea of planetary motion, it was—until . . . 

12
Newton and Planetary Motion
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Kepler’s laws

In 1609, after an extraordinarily painstaking analysis of the 

astronomical observations of the planets, Johannes Kepler 

proposed the following:

 1. The orbit of each planet is an ellipse, with the Sun at one 

focus.

 2. A line drawn from the Sun to a planet sweeps out equal 

areas in equal times.

The first law, then, is about the shape of the orbit, and the 

second about the variation in speed as a planet goes round its 

56. An ellipse, from van Schooten’s Exercitationum Mathematicorum (1657).
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orbit, moving faster when close to the Sun and slower when 

further out, so that the areas swept out in a given time are the 

same.

C

D

S

B

A

57. Kepler’s equal-area law.

Orbital data for the six planets known in Kepler’s time

 r  (units of r
Earth) T (years)

Mercury 0.387 0.241

Venus 0.723 0.615

Earth 1.000 1.000

Mars 1.524 1.881

Jupiter 5.203 11.862

Saturn 9.539 29.46
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Somewhat later, in 1619, Kepler added a third law:

 3. The orbital times T of the different planets increase with r , 

the mean distance from the Sun, in such a way that

T2 is proportional to r 3.

While we now see Kepler’s laws as a landmark in the his-

tory of science, they were viewed with some scepticism in 

Newton’s day. The second, area-sweeping law was regarded as 

particularly doubtful.

But the third law, T 2 proportional to r 3, gained more gen-

eral acceptance, and eventually helped point the way towards 

a gravitational theory of planetary motion.

An inverse-square law of gravitation?

In modern terms, the argument goes something like this.

The planetary orbits are only slightly elliptical, so if we 

approximate them by circles we can use Kepler’s third law to 

work out how v, and hence v2/r, depends on r.

Now, the orbital period—i.e. the time taken for each com-

plete orbit—will be circumference divided by speed, 2πr/v. So 

Kepler’s third law implies that r2/v2 is proportional to r3, so v2 

must be proportional to 1/r.

That then implies that v2/r, the acceleration towards O, must 

be proportional to 1/r2.
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And, as acceleration is caused by a force, this suggests, at least, 

a force of attraction towards the Sun which is proportional to 1/r2.

Now, a calculation of this kind was certainly done by 

Newton, and possibly others, in the late 1660s, but the out-

come will not have been so clear-cut, for two reasons.

First, the connection between force and (what we now call) 

acceleration had not been clearly established.

Second, while Newton had identified the quantity v2/r—by 

an argument broadly similar to that in Chapter 11—he seems 

to have been in some doubt about what it meant, referring to 

it on occasion as an ‘endeavour from the centre’ (my italics).

In any event, there was a more serious problem—planetary 

orbits aren’t really circles; they’re ellipses.

Newton resumes the attack

It was some ten years later, in 1679, and partly as a result of a let-

ter from Robert Hooke, that Newton took up the problem again.

r

v
planet

0

Sun

58. The circular approximation to planetary motion.
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And he soon showed that if a planet P is subject to a force 

directed always towards one fixed point, S, then the line SP will 

sweep out area at a constant rate, i.e. equal areas in equal times.

This result, which holds for a planetary orbit of any shape, 

was a real breakthrough. For Kepler’s second law—if true—

could then be explained, instantly, by assuming that the 

 gravitational force on each planet was directed always towards 

the Sun.

Yet this breakthrough, in itself, provided no hint whatso-

ever about the magnitude of that force, or how it might 

depend on r.

That came only later still, when Newton finally showed that 

if, in addition, the orbit is an ellipse, with the Sun S at one 

focus, then the force must, indeed, be proportional to 1/r2.

59. A sketch of orbital motion from Newton’s unpublished manuscript  
De Motu corporum in gyrum (1684). S denotes the Sun.
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And, from the point of view of the present book, one of the 

most interesting things is how he did this.

At a first glance of the manuscripts we are assailed by 

geometry. But what looks like pure geometry, as in Figure 59, 

isn’t. The planet is first at P and then moves to Q, but, in the 

end, Newton lets Q become closer and closer to P. In our 

terms, if δt is the time increase between P and Q, then he even-

tually lets δt → 0.

In other words, the most fundamental idea in the calcu-

lus—that of taking a limit—is at the heart of what he does, 

though hardly in the form we would do it today.

And yet, as so often with Newton, all this was done privately, 

almost secretly, and no one really knew about it until . . . 

Halley’s visit to Newton

This famous occasion, probably in August 1684, took place 

when the astronomer Edmund Halley visited Newton at 

Cambridge.

By then, the possibility of a gravitational force proportional 

to 1/r2 was a talking point among mathematicians and scien-

tists in the coffee houses of London, and Halley wanted 

Newton’s views on the matter.

According to one of Dr Halley’s contemporaries:

after they had been some time together, the Dr asked him 
what he thought the Curve would be that would be 



Ne w toN a Nd Pl a Ne ta ry Mot ioN 77

described by the Planets supposing the force of attraction 
towards the Sun to be reciprocal to the square of their dis-
tance from it. Sr Isaac replied immediately that it would be 
an Ellipsis, the Doctor struck with joy & amazement asked 
him how he knew it, why saith he I have calculated it . . .

But Newton couldn’t find the actual calculation amongst his 

papers, so promised to send it to Halley as soon as he could.

Halley was, of course, delighted with the prospect, but as his 

coach clattered back to London he can have had no idea, pre-

sumably, that his visit would prompt Newton into eventually 

producing his great masterpiece on dynamics—the Principia.

Nor could he have known, I imagine, that the means for 

taking Newton’s dynamical ideas much, much further—

namely the calculus roughly as we know it today—was just about 

to make its first appearance, in a paper by Leibniz.



From a modern perspective, Leibniz’s landmark paper of 

1684 is really rather strange.

He leaps straight into a series of general rules for what we 

call differentiation, but with little explanation of what it all 

means, and virtually no explanation at all of why it all works.

The first rule concerns the differentiation of a sum, which 

we would write as

 
d

dx
(u v)

du
dx

dv
dx

.+ = +  

This is valuable—though hardly surprising—and we have 

already used it, several times, in this book. An equivalent rule 

is given for the difference of two functions.

But Leibniz then gives the rule for differentiating the product 

of two functions of x.

This is far less obvious, and we now know that Leibniz him-

self got it wrong, at first, in his own early manuscripts.

13
Leibniz’s Paper of 1684
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60.  Leibniz’s first paper on the calculus, in the Acta Eruditorum, 1684.
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Differentiating a product

The rule is given by Figure  61, and we may prove it by the 

same sort of approach we have used previously, in Chapter 5.

Let x increase to x + δx, and let δu, δv be the consequent 

increases in u and v.

Then the increase in uv, that is δ(uv), will be (u + δu)(v + δv) – uv, 

which is u.δv + v.δu + δu.δv.

So, dividing by δx, we get

 
d
d

d
d

d
d

d
d

d
(uv)

x
u

v
x

v
u
x

u
x

v.= + + ´  

Finally, we let δx → 0, so that δu → 0 and δv → 0 also. The 

result then follows, from the definition of derivative in Chapter 5, 

because the final term tends to 0, on account of the factor δv.

When u and v are both positive we may, if we wish, view the 

result in geometric terms, regarding u and v as the dimensions 

of a rectangle, and uv as its area (Figure 62).

Plainly, when δu and δv are very small, the small increase in 

61.  Differentiating a product.
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u δu

v

δv

62.  Slightly increasing a rectangle.

area is accounted for almost entirely by the area of the two 

thin (shaded) rectangles, which is u.δv + v.δu, and that is why 

the rule for differentiating a product takes the form that it 

does.

Differentiating a ratio

The rule for differentiating the ratio u/v of two functions of x 

can be deduced in a very similar way.

When x increases to x + δx, so that u increases to u + δu and 

v to v + δv, the consequent small increase in u/v is

 u u
v v

u
v

v. u - u. v
(v + v)v

.
+
+

- =
d
d

d d
d
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This, then, is δ(u/v), and on dividing by δx and letting δx → 0 

(so that δu → 0 and δv → 0 also) we obtain the result shown in 

Figure 63.

This is the last of the general rules in Leibniz’s 1684 paper, 

and we will use it in Chapter 17 to help prove one of the great-

est mathematical results of all time.

Differentiating xn

We claimed earlier, in Chapter 5, that

 
d

dx
(x ) nx ,n n= -1  

where n is any positive (and constant) whole number, and we 

can now use Leibniz’s product rule to see why this is so.

If we start with our very first, major result,

 
d

dx
(x ) x.2 2=  

63. Differentiating a ratio.



83L e ibniz’s Pa Pe r of 168 4

we can then differentiate x3 by regarding it as the product x2.x. 

Thus, using the product rule:

 
d

dx
(x ) x.x + x .

             x .

3 2

2

2 1

3

=

=
 

We can then use this result, in exactly the same way, to dif-

ferentiate x4, obtaining 4x3, and if we actually proceed in this 

way it quickly becomes apparent why the emerging pattern 

must inevitably continue forever as n increases.

Yet the result is in fact even more general. Leibniz empha-

sizes in his 1684 paper that the derivative of xn is nxn−1 even 

when the power n is fractional or negative.

Note, for example, that x
1
2  denotes the positive square root 

of the positive number x, i.e.

 x x for x
1
2 0= > ,  

because, by the law of indices, x x x
1

2
1

2 = 1´ . And, by similar 

reasoning,

 x
x

x for x- = = ¹1 01
1 0, .  

And, according to Leibniz, we can differentiate these powers 

of x by the same general rule.

In the case n = −1, for instance, it gives the derivative of 1/x 

as −1/x2, which we already know to be correct from Chapter 5.
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Leibniz and the ‘infinitely small’

As mentioned earlier, there are no derivations of these results 

in Leibniz’s paper.

And, as the extract in Figure 60 shows, the results are writ-

ten differently. Leibniz writes the product rule, for example, as

 d(uv) v.du u.dv.= +  
Curiously, it is never explained very clearly what quantities 

like du and dv really are, but in an earlier, unpublished manu-

script, from about 1680, Leibniz writes:

 
d(xy) (x dx)(y dy) xy

x.dy y.dx dx.dy

= + + -
= + +

 

and says that this

will be equal to x.dy + y.dx if the quantity dx.dy is omitted, 
which is infinitely small with respect to the remaining 
quantities, because dx and dy are supposed infinitely 
small. . . .

So Leibniz’s view seems to be very different from the 

approach in this book, which is based not on the idea of 

‘infinitely small’, but on the idea of a limit.
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A shortest-time problem

Towards the end of his 1684 paper, Leibniz applies his new 

techniques to one practical problem of real significance.

While he doesn’t put it quite like this, we may rephrase the 

problem using Figure 64. And the question is: how do we get 

from a point A on the beach to the point B in the sea as quickly 

as possible?

Now, the shortest path from A to B is clearly a straight line, 

but if we run a lot faster than we swim we may be well advised 

to take a path more like the one in the figure, involving a 

greater distance on sand but a shorter distance in the water.

i sand

sea

A

B
r

64.  A shortest-time problem.
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In any event, calculus eventually provides the answer: it 

turns out that we minimize the time if we choose the angles 

i and r so that

 
sin
sin

i
r

c
c

,sand

water

=  

where csand is the speed at which we run, and cwater the speed at 

which we swim.

In truth, though, this problem isn’t really about running 

and swimming; it’s all about light, and that is how Leibniz 

introduces it in his paper.

When light is refracted, as it passes from one medium to 

another, the angle of incidence i and the angle of refraction r 

also satisfy the same equation, with csand and cwater replaced by 

the speeds of light in the two media.

So calculus shows, then, that when light is refracted at the 

plane boundary between two media, it travels from one given 

point to another in the shortest possible time.

And for some people, at least, this always prompts the ques-

tion: how does light know how to take the path of shortest time?

And I have always rather liked the playful (and quantum-

mechanical) answer once given by the physicist Richard 

Feynman: ‘It doesn’t. It tries them all.’



The advent of calculus completely transformed mathematics. 

Yet, at the time, very few mathematicians could understand 

properly what Newton and Leibniz had done.

Even the great Swiss mathematician John Bernoulli, for 

instance, described Leibniz’s 1684 paper as

an enigma rather than an explication.

But Bernoulli persisted, and eventually lectured on the subject 

to—amongst others—the Marquis de l’Hôpital, who went on 

to publish the first textbook on differential calculus, in 1696.

L’Hôpital’s book, Analyse des infiniment petits pour l’intelligence 

des lignes courbes, was enormously influential, and written very 

much in the notation and spirit of Leibniz’s approach to 

 calculus.

One of the earliest calculus textbooks in English, on the 

other hand, was Charles Hayes’ A Treatise of Fluxions, published 

in 1704 (see Figure 65).

The title here is a reference to the way that Newton often 

thought about some curve in terms of motion along it, so that 

x and y both depend on some time-like variable t. Newton 

14
‘An Enigma’
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65. An early textbook on calculus (1704). This particular copy was owned 
and inscribed by Thomas Foy, a student of Oxford University, in 1709.

used the term ‘fluxion’ for the rate at which some variable 

depends on t, and denoted that by a dot, so that the fluxion of 

x was x,̇ and this particular notation for dx/dt is still in use 

today.
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It was through early textbooks such as this, then, that cal-

culus began to spread. And before long it was even reaching 

some rather unlikely places, including the pages of The Ladies 

Diary, a popular journal of the time which included some 

mathematical puzzles among its ‘Delightful and Entertaining 

Particulars’ (see Figure 66).

And in the 1714 issue, Mrs Barbara Sidway poses a problem 

involving a circular cylinder inside a cone of given height H.

While it is thinly disguised (in verse) as a gardening ques-

tion, Mrs Sidway’s problem is essentially this: what height 

should the cylinder be if its volume is to be as large as possible?

The Diary eventually received four correct solutions from 

its readers, and while we cannot be sure of the methods used, 

calculus certainly gives the right answer: 13H .

66. (a) The Ladies Diary. (b) Mrs. Sidway’s problem.

(a)

H

(b)
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Notation, notation . . . 

As we have seen, Leibniz’s notation for calculus is still in 

widespread use today, and one reason for its success is this: 

while we do not regard dy/dx as a ratio of two quantities dy and 

dx, it often behaves as if it is.

Differentiation

Suppose, for instance, that y is some function of x, and that x 

itself is some function of another variable—say t. Then we 

can, if we wish, consider y as a function of t, and then

 
dy
dt

dy
dx

dx
dt

.= ×  

This is a major result in the subject, called the chain rule.

A quick way of differentiating y = (t2 + 1)3 with respect to t, for 

instance, would be to first set x = t2 + 1, so that y = x3. Then dy/dx = 

3x2 and dx/dt = 2t, so the chain rule gives dy/dt = 6t(t2 + 1)2.

One major consequence of the chain rule is

 dy
dx

dx
dy

,× =1  

and we will use this, shortly, in a rather striking context.

Another piece of Leibniz notation that has stood the test of 

time is that used when we want to differentiate some function 

of x twice:

 
d y
dx

d
dx

dy
dx

,
2

2 means æ
è
ç

ö
ø
÷  
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and, again, we will use this later in the book.

Integration

As we have seen already, integration can be much more diffi-

cult than differentiation, but even here a good notation helps.

And it was, again, Leibniz who introduced the famous 

‘integral’ sign: ∫.

Thus if

 
dA
dx

y,=  

we may write this equivalently as

 A y dx,= ò  

called ‘the integral of y with respect to x’ (Figure 67).

The symbol ∫ itself is really just an elongated letter ‘s’ denot-

ing ‘sum’, for A represents the area under the curve of y against 

x, and that is, indeed (the limit of) the sum of lots of little 

 rectangular areas, each of amount y δx.

So, for example,

 ,21
constant

2
x dx x= +ò  

67. The first appearance in print of the integral sign ∫,  
in a paper by Leibniz dated 1686.
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and, more generally,

 ò ¹x dx
x
n

n
n

=
+

+ -
+1

1
constant for n 1  

Finally, Leibniz’s notation helps with one particularly 

 powerful integration technique.

This is integration by change of variable, which involves writ-

ing x, and therefore y, in terms of some new variable t. The idea 

is to convert a difficult integration with respect to x into an 

easier integration with respect to t:

 ò ò=y dx y
dx
dt

dt,  

and, once again, Leibniz’s notation makes the whole procedure 

seem almost ‘natural’—and certainly easy to remember.

Leibniz’s emphasis on a good mathematical notation was 

wholly consistent with his wider philosophical ideas, and he 

was quite explicit about it, once writing to a friend:

In symbols one observes an advantage in discovery which 
is greatest when they express the exact nature of a thing 
briefly and, as it were, picture it. . . .



In the Royal Society of London’s Philosophical Transactions for 

1708 there is a largely forgotten paper by the Oxford math­

ematician John Keill.

Forgotten, that is, save for the following short passage 

where Keill refers to the calculus

which Mr. Newton, beyond all doubt, first discovered . . .  
though the same Arithmetic was published later by 
Mr.  Leibniz in the Acta Eruditorum with changes in the 
name and method of notation.

When Leibniz eventually saw this, in 1711, he took it as an 

accusation of plagiarism, and immediately put in an official 

complaint to the Royal Society, demanding an apology from 

Keill.

A committee was set up to investigate the matter, but did 

not uphold Leibniz’s complaint.

In retrospect, however, this is hardly surprising, because by 

that time Newton was President of the Royal Society, and he 

not only stuffed the committee full of his own supporters, but 

wrote much of the final report himself.

15
Who Invented Calculus?
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Newton v. Leibniz

In truth, the question of priority with regard to the calculus 

had been simmering for years.

We now know that Newton had many of the main results in 

1665–6, long before Leibniz had even turned his attention to 

mathematics.

For much of that time, Cambridge University was closed, 

because of the plague, and Newton retreated to his family 

home in Lincolnshire. And for him, at least, this was an 

extraordinarily creative time.

One striking example is the link between differentiation 

and the area under a curve, which we would now write (using 

Leibniz’s notation) as

 
dA
dx

y= ,  

for this appears—in a different form—in a manuscript dated 

as early as October 1666, when Newton was only 23.

He wrote a short account of these early results in his De 

Analysi of 1669 (see Figure 68), and in a much more extensive 

work—Methodus Fluxionum et Serierum Infinitarum—two years 

later, in 1671. And Newton allowed these manuscripts to be seen 

by a small, select number of contemporary mathematicians.

Somewhat later still, in 1674–6, Leibniz made many of his 

discoveries in calculus, while working in Paris.

Towards the end of this period, in October 1676, Leibniz 

visited London on a diplomatic mission, and this lies at the 
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68. The first page of Newton’s De Analysi, as eventually  
published in 1711.
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heart of the priority dispute. For while he never met Newton, 

Leibniz was shown, during the visit, some of Newton’s early 

work in manuscript form, including De Analysi.

So, while Leibniz was certainly the first to publish—in 

1684—his detractors eventually began to ask what he might 

have gleaned from the London visit and from an occasional—

and rather wary—exchange of correspondence with Newton 

himself.

‘The most . . . suspicious temper’

It is all too easy to speculate that the whole calculus dispute 

could have been avoided if Newton had published his works 

on calculus, in full, earlier.

Why, then, didn’t he?

Some scholars have cited the dire state of the book trade, 

following the Great Fire of London in 1666. Most, however, 

see the explanation in Newton’s own character, which seems 

to have been extraordinarily introverted and secretive.

According to one contemporary, he had

the most fearful, cautious and suspicious temper that 
ever I knew.

And Newton himself admitted to an almost pathological 

dread of controversy, especially one in print.

In any event, there were other ways, too, in which the whole 

dispute was slightly absurd.
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After all, calculus did not just appear out of nowhere. As we 

have already seen, it owed much to earlier work by Archimedes, 

Descartes, Fermat, and Wallis, to say nothing of Isaac Barrow, 

whom Newton succeeded at Cambridge as Lucasian Professor.

Yet it was Newton and Leibniz who took a whole host of 

disparate ideas and created the calculus as a coherent subject, 

centred on the concepts of differentiation, integration, and 

the fundamental theorem.

And the verdict of most historians of mathematics today is 

that they did this independently, and in really rather different 

ways.

‘They have changed the whole point . . . ’

The most conspicuous difference between the two approaches 

lies, perhaps, in the role played by infinite series.

Time and again, Newton used infinite series as an aid to 

integration, in a way similar to that in Chapter 10.

And here he had what he seemed to view, almost, as a secret 

weapon—the binomial series:
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This was already well known when n is a positive whole 

number, in which case it holds for any x and stops after n + 1 

terms, because all subsequent coefficients are 0.
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But Newton, in one of his earliest and most highly prized 

mathematical discoveries, realized that it holds as an infinite 

series if n is fractional or, even, negative.

Thus, setting n = −1 gives an infinite series representation of 

the function 1/(1 + x)—in fact, precisely the one we saw in 

Chapter 10. And setting n = 12 , for instance, gives an infinite 

series for 1+ x .

And Newton used these ideas so prolifically that it is some­

times difficult, almost, to find him doing what we would call 

calculus without them.

For Leibniz, on the other hand, infinite series seem to have 

been far less central to the subject as a whole, and something 

of this emerges, even, from a reply of his to the Royal Society’s 

report on the priority dispute:

They have changed the whole point of the controversy, 
for in their publication . . . one finds hardly anything about 
the differential calculus; instead every other page is made 
up of what they call infinite series. . . .

It is a little ironic, then, that one of the most stunning results 

ever involving infinite series, namely

69.  The famous infinite series involving the odd numbers,  
in Leibniz’s own hand, from a letter dated 1676.
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1
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- + - +¼=
p
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is usually attributed to Leibniz.

And, as it happens, we are almost ready to see how this 

extraordinary connection between circles and odd numbers 

comes about.

Almost.

But not quite . . .



In mathematics, some functions oscillate.

The most well-known examples are sin θ and cos θ, and 

they have the striking property that they are almost—but not 

quite—derivatives of one another (Figure 70).

This may possibly come as something of a surprise, because 

most of us meet sin θ and cos θ for the first time through 

 trigonometry, where θ is one angle of a right-angled triangle 

(Figure 71).

And yet, as we shall see, all these ideas are related.

Angles

First, we need to measure any angles which occur not in 

degrees but in radians. These are defined as follows.

Draw a circle, and then move around the circumference by 

a distance equal to the radius, r.

16
Round in Circles
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1

0

–1

π 2π 3π

1

0

–1

π 2π 3π

sin θ

θ

θ
cos θ

70.  The functions sin θ and cos θ.

1

cos θ
θ

sin θ

71.  A right-angled triangle.
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This will, by definition, trace out an angle of 1 radian, which 

is about 57.3 degrees (Figure 72).

And, by the same token,

 
p
2
radians = 90 degress,  

because both correspond to going a quarter way round the 

circumference, which is a distance 12p r .

Oscillations

Now draw a circle of radius 1 unit, and imagine a point P 

which starts at R in Figure 73 and then moves round the cir-

cumference of the circle over and over again, so that θ, the angle 

through which P turns, keeps on increasing.

r r

P

R

1 radian

rO

72.  Definition of a radian.
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Taking a lead from the elementary geometry of a right-

angled triangle, we now define cos θ and sin θ, for any number 

θ, as the x- and y- coordinates, respectively, of the point P.

So, if P starts at R, with θ = 0, the y-coordinate, or sin θ, 

starts as 0, then goes up to 1 at θ = π/2 after one quarter-turn 

anticlockwise. In subsequent quarter-turns it goes back down 

to 0, down to −1, and finally back up to 0 again when θ = 2π, 

whereupon the whole business starts again as P makes a sec-

ond ‘orbit’ with θ going from 2π to 4π.

And cos θ, the x-coordinate of P, varies with θ in exactly the 

same way, but out of step by an amount π/2, as the graphs in 

Figure 70 show.

This, then, is how– and why—the functions sin θ and cos θ 

continually oscillate as the variable θ is steadily increased.

And, not surprisingly, the most interesting question—from 

a calculus point of view—concerns the rate at which they do 

this.

1

P

0 R x

y

θ
θ

sin θ

π 2π 3π

1

–1

73.  Sin θ as an oscillation.
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Rates of change

Imagine, now, the point P moving round the circle in such a 

way that θ = t, where t denotes time, as in Figure 74.

Then 
d
dt

t(cos )  and 
d
dt

t(sin )  will simply be dx/dt and dy/dt, 

and there is a very simple way of deducing these.

One merit of radian measure—together with a unit 

radius—is that the distance travelled, PR, is not just propor-

tional to the angle POR—it is actually equal to it, and will 

therefore be t.

So P travels a distance t in time t and therefore goes round 

and round the circle at unit speed. Its velocity at any moment is 

therefore 1, directed along the tangent.

And because the tangent is perpendicular to the radius OP, 

this direction of motion makes an angle t with the y-axis 

(Figure 75).

t

P (x,y)

1

1

t
O R

x = cos t
y = sin t

74.  Finding the rates of change.
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Now, moving with speed 1 in the direction shown is equiva-

lent to moving in the negative x-direction with speed sin t, 

at the same time as moving in the y-direction with speed cos t. 

So dx/dt = −sin t and dy/dt = cos t.

And that is why

 

d
dt

t t

d
dt

t t

(sin ) cos

(cos ) sin ,

=

= -

 

as we claimed at the beginning of the chapter.

As we shall see, these ideas are crucial for virtually any 

physical problem involving oscillations.

But, more surprisingly, perhaps, they also provide the key 

to unlocking the mysteries of the Leibniz series.

t
cos t

sin t

1

Velocity

75.  The velocity components.



You have discovered a very remarkable property of the circle, 
which will forever be famous among geometers.

Christiaan Huygens to Leibniz, in a letter of 1674

We are now—at last—in a position to shed light on one of the 

most extraordinary results in the whole of mathematics, link-

ing π and the odd numbers.

The history of this result is a little curious. It was first pub-

lished by Leibniz, without any derivation or proof, in the Acta 

Eruditorum for 1682, but he had discovered it much earlier, in 

about 1674, while working in Paris.

It is likely, however, that the Scottish mathematician James 

Gregory knew the result a few years earlier still.

What seems more certain is that the result was known to 

mathematicians in Kerala, India much earlier, and possibly three 

centuries before Leibniz or Gregory, for it is now often attributed 

17
Pi and the Odd Numbers

76.  The Leibniz series.
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to Madhava, who founded the Kerala school. Their methods, 

however, were rather different, and more highly geometrical.

In any event, if we are to use calculus to see, at last, how π 

and the odd numbers are connected, we are going to need vir-

tually all of the most important ideas we have seen so far.

It will therefore be helpful, I think, to split the argument 

into several stages.

In search of π/4 . . . 

Consider two numbers x and θ related in the following way:

 
x =

sin
cos

,
q
q  

for values of θ between 0 and π/4 (Figure 77).

1

0

sinθ
cosθ

π
4

θ

77.  The function sin θ/cos θ.

Note, first, that

 x = =0 when 0,q  
and that as we increase θ the value of x = sin θ/cos θ gradually 

increases until

 

x = =
p

1 when
4

.q
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The reason for this is that an angle of π/4 radians corresponds 

to 45°, and the right-angled triangle defining sin θ and cos θ 

is then isosceles, so that the two shorter sides are equal (Figure 78).

This, then, is how π/4 is going to enter our argument; it is 

the special value of θ which makes x = sin θ/cos θ equal to 1.

In search of an infinite series . . . 

This is where calculus really kicks in, and we can split the 

development into six small steps.

Step 1. Differentiate

 
x =

sin
cos

,
q
q  

using Figure 70 and Leibniz’s rule for differentiating a ratio 

(Figure 63) to obtain

 

dx
dq

q q q q
q

=
- -cos .cos sin .( sin )

(cos )2 .
 

Step 2. Use x = sin θ/cos θ to rewrite the above right-hand side 

in terms of x itself:

1

cos θ
θ

sin θ

1

π
4

π
4

78.  Why x = 1 when θ = π/4.
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dx
d

x
q
= +1 .2

 

Step 3. Use Leibniz’s chain rule (Chapter 14) to rewrite this as

 

d
dx x
q
=

+
1

1
,2

 
so that we now think of θ as a function of x, rather than the 

other way round.

Step 4. Now re-write the right-hand side as an infinite series, by 

replacing x by x2 in the infinite series from Chapter 10:

 

d
dx

x x x
q
= - + - +1 .. .2 4 6

 
This step will be valid if x2 < 1.

Step 5. Now use calculus again, this time to integrate with 

respect to x, in a similar way to that in Chapter 10.

This gives

 
q = - + - +x

x x x3 5 7

3 5 7
. . .,

 
the constant of integration being 0, because x = 0 when θ = 0.

Step 6. Finally, recall that x = 1 when θ = π/4, as we observed at 

the beginning.

On substituting these values in, we obtain Leibniz’s famous 

result, linking π and the odd numbers:

 

p
4

1
1
3

1
5

1
7

= - + - + ×
 

(Figure 79).
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Before we leave this chapter, however, I ought to make a 

number of remarks.

First, there was a certain amount of living dangerously in 

the very last step. Step 4 was valid for x2 less than 1, yet we set 

x actually equal to 1 in step 6. This can be justified, but only by 

a more rigorous and technically demanding argument.

Second, this whole approach is not exactly what Leibniz 

did—his treatment was rather more geometrical, and he 

explained it in a letter sent (indirectly) to Newton in August 

1676.

Thirdly—and somewhat incidentally—Newton immedi-

ately fired back a similar-looking series of his own,

 
p

2 2
1

1
3

1
5

1
7

1
9

1
11

= + - - + + -,  

though he was at pains to point out that

ye signes of ye series . . . are rightly put . . . it being a different 
series from yt of M. Leibnitz.

79.  Illustrations from Leibniz’s paper of 1682.
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Finally, we need to face the fact—pointed out somewhat 

sarcastically by Newton—that the Leibniz series is hopeless 

as a practical device for actually calculating π, because it con-

verges so slowly.

Even after 300 terms, for instance, it manages to estimate π 

less accurately than the well-known approximation 22/7, 

obtained by Archimedes roughly 2000 years earlier!

But while there are plenty of other infinite series which 

converge faster to some number involving π, none of them 

comes close—in my opinion—to the breathtaking elegance 

and simplicity of the Leibniz series.



Leibniz died in 1716.

It was a strange end for one of the greatest mathematicians 

and philosophers that the world has ever known, for no one 

attended his funeral except a few friends and his secretary.

And just over ten years later, Newton, too, was gone.

Now, therefore, it fell to others to take calculus further, and 

one serious matter concerned the logical foundations of the 

whole subject.

These were brought into particularly sharp relief in 1734 by 

an essay entitled The Analyst, or a Discourse Addressed to an Infidel 

Mathematician (Figure 80).

The author was George Berkeley, Bishop-elect of Cloyne in 

Ireland, and the ‘infidel mathematician’ in question is gener-

ally thought to be Edmund Halley, who was a well-known 

agnostic.

Berkeley was essentially challenging any mathematicians 

who viewed religion as having shaky foundations to put their 

own house in order first.

He questioned, even, whether some of the concepts used in 

calculus actually exist. In the most well-known and oft-quoted 

18
Calculus under Attack



80.  Berkeley’s essay The Analyst (1734).
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part of The Analyst, for instance, he directs his sarcasm at 

Newton’s whole idea of fluxions, which involve consideration 

of what Newton calls ‘evanescent increments’.

Berkeley is scathing:

And what are these same evanescent Increments? They 
are neither finite Quantities nor Quantities infinitely 
small, nor yet nothing. May we not call them the Ghosts 
of departed Quantities?

Arguably, however, Berkeley’s most trenchant criticism is 

directed at the actual reasoning used in calculus.

Rate-of-change revisited

To see something of Berkeley’s objections, consider again 

what we actually do, algebraically, when we differentiate even 

something as simple as y = x2.

First, we increase x to x + h, say, so that the consequent 

increase in y is (x + h)2 − x2 = 2hx + h2.

We then divide one increase by the other:

 
2 2hx h

h
i

+
, ( )  

and cancel the factor of h to get

 2x h ii+ . ( )  

Finally, we omit (or ‘blot out’, as Newton liked to say) the last 

term to obtain
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 2x iii( )  

as the derivative of x2.

But Berkeley would immediately ask: is h zero or not? For, if 

h is zero, then stage (i) is not allowed, because you can’t divide 

by zero. But if h isn’t zero, then some kind of error is made in 

passing from (ii) to (iii).

In Berkeley’s eyes we seem, as it were, to be having our cake 

and eating it:

All which seems a most inconsistent way of arguing, and 
such as would not be allowed of in Divinity.

And Berkeley was just as unimpressed by the standard 

 justification at the time for what is going on, namely that h is 

‘infinitely small’:

Now to conceive a quantity infinitely small, that is, infinitely 
less than any sensible or imaginable quantity . . . is, I con-
fess, above my capacity.

He just didn’t believe that such things exist.

Did Newton or Leibniz really believe  
in the ‘infinitely small’?

We have already seen Leibniz, in about 1680, invoking the 

‘infinitely small’ (Chapter 13).

And Newton, too, used the idea in his early work on calcu-

lus, though he was evidently uncomfortable with it. This 
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comes across quite clearly in a manuscript from 1665 where 

he remarks that the mathematical operations he is perform-

ing cannot be allowed

unlesse infinite littlenesse may bee considered geomet-
rically.

Yet, as time went on, both men seem to have moved away 

from the idea.

In Book 1 of the Principia (1687), for example, Newton 

writes:

I don’t here consider Mathematical Quantities as com-
posed of Parts extreamly small, but as generated by a con-
tinual motion . . . 

and later still, in a letter of 1706, Leibniz writes:

Philosophically speaking, I no more believe in infinitely 
small quantities than in infinitely great ones . . . I con-
sider  both as fictions of the mind for succinct ways of 
speaking . . . .

In this way, Newton and Leibniz were well aware that their 

deductive arguments lacked the rigour of the ancient Greeks, 

with their brilliant (but often cumbersome) proofs-by-contra-

diction.

But for Leibniz, in particular, such rigour was not the top 

priority. The key question was, rather, ‘Does calculus give cor-

rect results?’, and, even more importantly, ‘Does it facilitate 

the discovery of new ones?’
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Limits

I should like to end this chapter by returning for a moment to 

the steps involved in the differentiation of y = x2.

For we may well claim, of course, that we do not get from 

2x + h to 2x by ‘setting h = 0’ but, instead, by ‘taking the limit of 

2x + h as h tends to 0’.

I imagine, however, that Berkeley would immediately ask 

what we really mean by this, exactly.

And, in the event, it took mathematicians a very long time 

indeed to put the whole idea of ‘limit’ on a rigorous footing—

as we will see later.

In the meantime, calculus just raced ahead, sometimes at 

almost breakneck speed.

Because it worked.



It appears clear to me . . . that foreign Mathematicians have, 
of late, been able to push their Researches farther, in many 
particulars, than Sir Isaac Newton and his followers here, 
have done.

British mathematician Thomas Simpson, writing in 1757

The next towering figure in our story is Leonhard Euler 

 (1707–83).

Euler was Swiss, and studied with John Bernoulli, but then 

spent most of his mathematical career in Berlin and St. 

Petersburg.

And according to a contemporary:

Leonhard Euler is not, like the great algebraists usually 
are, of sinister character and clumsy behaviour, but cheer-
ful and lively.

He was also one of the most prolific mathematicians who 

ever lived, and the St. Petersburg Academy was still publishing 

his legacy of scientific papers some fifty years after his death.

Several of his most important contributions were to 

dynamics, where by building on Newton’s groundbreaking 

19
Differential Equations
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work he helped lay the foundations for an approach to the 

subject which is still in widespread use today.

And one key idea is to first formulate the physical problem 

in terms of differential equations.

A differential equation is one in which we are told some-

thing about the rate at which some quantity is changing. Our 

task is then to determine how the quantity itself changes with 

time.

And to illustrate this, we now turn to one of the oldest sub-

jects of scientific enquiry.

81. Leonhard Euler.
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The simple pendulum

In its most primitive form, a simple pendulum is just a mass 

suspended from a fixed point by a length of string.

And it turns out that small oscillations of such a pendulum 

are then governed by the differential equation in Figure 82.

Here θ is the angle (in radians) between the pendulum and 

the vertical at time t, while l denotes the length of the pendu-

lum and g the acceleration due to gravity (9.81 m s−2).

The equation itself is essentially just a statement of the fun-

damental law of motion: force = mass × acceleration, in a direc-

tion perpendicular to the string.

Without going into all the details, we should note that the 

right-hand side is proportional to θ, and comes from the force 

due to gravity. The minus sign arises because that force is 

always trying to push the pendulum back towards the down-

ward-hanging θ = 0 state.

82.  The differential equation for small oscillations of a simple pendulum.
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The left-hand side, on the other hand, comes from the 

acceleration, and d2θ/dt2 denotes the second derivative of θ, as 

explained in Chapter 14.

And our task now is to solve this equation to find how the 

angle θ depends on time t.

The nature of the problem

We are faced, then, with

 
d
dt

g
l

2

2

q
q= - ,  

and a perfectly reasonable first reaction would be: ‘Integrate 

twice with respect to t.’

But there’s a problem.

And it’s rather serious.

The problem is not that the right-hand side is some tremen-

dously awkward function of t, making integration with 

respect to t difficult.

The problem is that the right-hand side isn’t given in terms 

of t at all; it’s given in terms of θ, and we have no idea at the 

outset how θ depends on t, because that is what we are trying to 

find out.

This is absolutely typical of differential equations, and why 

they often call for a great deal of ingenuity.
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A solution

As it happens, in this particular case, it isn’t quite true that we 

have no idea how θ depends on t; we are expecting the pendu-

lum to oscillate.

Now, we saw in Chapter 16 that the functions cos t and sin t 

are oscillatory, so let us allow ourselves a bit more leeway and 

try a solution

 q w= A tcos ,  

where A and ω are both constant. A will then measure the size 

of the oscillations (assumed small) and ω will measure how 

rapidly they occur.

A slight generalization (by Leibniz’s chain rule) of the 

results in Figure 70 then gives

 

d
dt

t t

d
dt

t t

(cos ) sin

(sin ) cos .

w w w

w w w

= -

=

 

So when we differentiate θ = A cos ωt twice we get

 
d
dt

A t
2

2
2

2

q
w w

w q

= -

= -

cos

.
 

Suddenly, then, we see that θ will be a solution of the original 

differential equation if w = g / l , in which case
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 q =
æ

è
çç

ö

ø
÷÷A

g
l

tcos .  

And this is, in fact, the solution of the problem if the pendu-

lum starts, at t = 0, from a stationary position making a small 

angle A with the vertical.

The oscillation period

At this point, the obvious question is: how long does it take 

for each complete oscillation?

And we can answer this quite simply, because we know 

from Chapter 16 that the function cos x performs one com-

plete oscillation whenever x increases by 2π.

The time for one complete oscillation of the pendulum 

must therefore be

 T
l
g

= 2p .  

This is one of the oldest and most well-known formulae in 

the whole of physics, and we have just seen how it follows 

directly from the law force = mass × acceleration, together with a 

bit of calculus.

Notably, the oscillation period doesn’t depend on the con-

stant A, so provided the oscillations are small, it doesn’t mat-

ter exactly how small they are.
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But the most striking feature, surely, is that T is proportional 

to the square root of the length l.

This was discovered by Galileo, in around 1609, in one of 

his most famous experiments. And we can, if we wish, follow 

(loosely) in his footsteps.

To do this, just set a pendulum swinging, and count every 

time it performs half a complete oscillation, by reaching one 

end or other of its swing.

Next, while still counting, shorten the string by a factor of 4.

When you set the pendulum swinging again it should then 

perform—quite convincingly—a complete to-and-fro oscil-

lation, in time with your count.



While differential equations are the key to understanding the 

physical world, they are often of a rather different kind from 

anything we have met so far.

This is simply because, all too often, the quantity we are 

trying to determine depends on more than one variable.

If you pluck a guitar string, for instance, the string displace-

ment y plainly depends not only on time t but on the distance 

x from one end (Figure 83).

So y is a function of two variables, t and x, and a more sophis-

ticated form of calculus is therefore needed, involving things 

20
Calculus and the Electric Guitar

y
x

83. Vibrations of a guitar string.
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called partial derivatives:

 

¶
¶

¶
¶

y
t

y
x

and .
 

The first of these is simply the rate of change of y with t at a 

fixed value of x, and it is therefore the vibration velocity of the 

string at that particular point.

In a similar way, ∂y/∂x is the rate of change of y with x at a 

fixed time t, so that it represents the slope of the string at that 

particular moment, as if we were taking a ‘snapshot’.

And the slightly different notation ‘∂’—a sort of curly ‘d’—is 

simply to remind us that we are now differentiating a function 

of more than one variable.

The wave equation

Suppose, then, that a guitar string has tension T and mass per 

unit length ρ. It turns out that the displacement y is governed 

by a partial differential equation (Figure 84).

Here, ∂2y/∂t2 is the acceleration of a small bit of the string, 

and the right-hand side is the force (per unit mass) causing it.

84. The partial differential equation for a vibrating string.
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To see why that force takes the form that it does, imagine 

taking a snapshot of that small bit of the string. If ∂2y/∂x2 > 0, 

then the slope of the string ∂y/∂x is increasing with x at that 

moment, so that particular bit of the string curves slightly 

‘upwards’ (Figure 85).

The upward pull from the right-hand portion of the string 

is then slightly greater than the downward pull from the left-

hand portion, resulting in a net force upward, i.e. in the posi-

tive y-direction.

In short, it is the curvature of that little bit of the string that 

gives rise to the net force that we see in the partial differential 

equation.

That equation itself, known as the wave equation, was first 

derived, and solved, by Jean le Rond D’Alembert, in 1747. And 

the most striking feature of his solution is that it involves trav-

elling waves. These are disturbances which travel along the 

string, in the x-direction, without change of shape (Figure 86).

Moreover, the speed at which they travel is T / r , so the 

greater the tension T in the string, the faster they go. In fact, 

they travel so fast on a guitar string that it’s almost impossible 

T

Ty

x

85.  Forces on a tiny portion of the string.
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to see them, but they can be seen quite clearly on a slack wash-

ing line, for instance, where T/ρ is typically so much smaller.

Vibrating strings

In order to understand the sounds of a guitar string, however, 

we need to examine some rather different solutions.

Suppose, then, that the string is of length l, and extends 

between x = 0 and x = l, where it is fixed, so that y = 0 there.

The simplest solution of the partial differential equation

 
¶
¶

=
¶
¶

2

2

2

2

y
t

T y
xr

 

then turns out to be of the form

 y A
x

t= sin cos ,
p

w
l

 

where ω is a constant which we will discuss shortly.

The whole string therefore vibrates with a single period 

2π/ω, but different parts of the string, corresponding to differ-

ent values of x, vibrate by different amounts (Figure 87).

y

x

T
ρ

86.  A travelling wave.
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In particular, y is always 0 at the two ends x = 0 and x = l, as 

required, because sin 0 = sin π = 0 (see Figure 70).

This motion, in which all parts of the string are moving in 

the same direction at any given moment, is called the ‘funda-

mental’ mode.

And the frequency of this mode—i.e. the number of vibra-

tions per unit time—is

 
w
p r2

1
2

=
l

T
.  

This emerges at once if we substitute the expression for y into 

the differential equation itself, in much the same way that we 

saw with the pendulum problem in Chapter 19.

For any particular guitar string, the tension T and density ρ 

tend to be fixed, so the feature of most interest here is that the 

vibration frequency is proportional to 1/l.
This is why pressing down on a fret, and therefore shorten-

ing the string, produces a higher note.

In particular, pressing down on the 12th fret halves the 

length of the string, l, and therefore doubles the fundamental 

frequency, which is why the resulting note sounds an octave 

higher than the open string.

y

x = 0 x = l

87.  The fundamental mode.
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As it happens, however, the fundamental mode is only the 

first of a whole sequence (Figure 88).

And, most strikingly, the vibration frequency of each mode 

is a whole-number multiple, N, of the fundamental frequency.

Again, this emerges from the differential equation itself, 

though conditions at the two ends also play a crucial role. 

This is because, for these higher modes, y is proportional to 

sin Nπx/l, and this is only 0 at the right-hand end, x = l, if N is a 

whole number (see Figure 70).

In particular, then, the N = 2 mode—in which the two 

halves of the string move in opposite directions at any given 

N = 1

N = 2

N = 3

…

Frequency 
ρ

N
2l

T
=

88.  Modes of vibration.
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moment—vibrates at twice the frequency of the fundamen-

tal, and therefore sounds an octave higher.

In practice, when we pluck a guitar string, the response is 

typically a complicated mixture of all these different modes. 

And while the fundamental, N = 1, tends to dominate, it is 

possible to give more emphasis to the higher harmonics by 

plucking the string near to one end, and this is why the result-

ing note then sounds harsher, and less well-rounded.

In addition, there are various more sophisticated playing 

techniques—well known to rock guitarists—for suppressing 

some modes of vibration and highlighting others. And several 

of these ‘tricks’ exploit the fact that the higher modes have 

nodes, or points of no motion, at select places along the string.

Often, then, it is by artificially creating a suitable node that 

you get the particular mode you want—if you’re lucky.



Nature operates by the simplest and most expeditious ways 
and means.

Pierre de Fermat, 1662

The idea that we might be living in ‘the best of all possible 

worlds’ is one of Leibniz’s most controversial contributions to 

philosophy, and in 1759 it was famously ridiculed in Voltaire’s 

satirical novel Candide.

Yet the possibility that our world might be optimal in some 

way was, at the time, acquiring a certain scientific credibility.

As early as 1662, for instance, Fermat had proposed that 

light always travels from one given point to another in such a 

way as to take the least time. And, as we saw in Chapter  13, 

Leibniz himself used his brand new differential calculus to 

show that light does indeed behave in this way when refracted 

at a plane boundary (Figure 89).

It is true that critics had been quick to point out some 

exceptions to the rule—including, for example, reflection in a 

concave spherical mirror—but this had not stopped ideas of 

this general kind being explored, and by the middle of the 

18th century they had entered mechanics as well as optics.

21
The Best of all Possible Worlds?
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And, not surprisingly, all this helped trigger a renewed 

mathematical interest in problems of optimization.

Yet to understand something of this, we need now to 

broaden our ideas well beyond those of Chapter 6.

Optimization extended

First, the quantity that we want to maximize or minimize may 

depend on more than one variable.

89. The refraction of light, as illustrated in Leibniz’s 1684 paper.
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To illustrate this, I would like to consider a specific prob-

lem, even though it will be scarcely more credible, I fear, than 

the farmer-and-his-field of Chapter 6.

Imagine nonetheless, if you will, that we want to make a 

bookcase of given volume V, with two shelves, using as little 

material as possible (Figure 90).

With width x, height y, and depth D, the total surface area 

will be A = xy + 2yD + 3xD. And if we use the given volume  

V = xyD to eliminate D, say, then

 A xy
V
x

V
y

= + +
2 3

.  

So, if we wish to minimize A, in order to use as little material 

as possible, we must minimize a function of two independent 

variables, x and y.

And we can do this by calculating the two partial  derivatives:

y

x

D

90. A two-shelf bookcase.
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¶
¶

= -

¶
¶

= -

A
x

y
V

x

A
y

x
V

y

2

3

2

2

,

,
 

and setting both equal to 0. This gives two equations for the 

two unknowns x and y, and on combining those with V = xyD 

we learn that the width, height, and depth must be in the pro-

portion 2:3:1.

Now, as it happens, this is the solution to our problem, but 

the situation in general is rather more complicated.

For if z is some function of two variables, x and y, we can 

think of it geometrically as a surface. And the three functions 

in Figure 91 all have both partial derivatives 0 at x = 0, y = 0. Yet 

the first has a minimum there, the second a maximum, and 

the third neither, for the origin of coordinates in that case is a 

‘saddle-point’.

So, as with the optimization problems of Chapter 6, setting 

derivatives equal to 0 is only part of the story.

y

z

z = −x2−y2

x

y

z = x2−y2

z

x

y

z

z = x2+y2
x

91. Some functions of two variables.
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The calculus of variations

There is an even more demanding type of problem, where the 

quantity that we are trying to maximize or minimize depends 

on a whole curve or surface.

The most famous example is, perhaps, the ‘brachistochrone’ 

problem, posed by John Bernoulli in 1696. The question is: 

which curve, between two given points A and B, allows an 

object to descend under gravity in the shortest possible time?

Galileo had shown, much earlier, that the shortest path—a 

straight line—is not the answer, but had mistakenly claimed 

that the real answer was the arc of a circle.

Bernoulli showed, however, that the real answer is an 

upside-down cycloid (Figure  92), a cycloid being the curve 

traced out by a point on the rim of a wheel rolling along a 

horizontal surface.

A

B

92. The brachistochrone problem.
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In general, problems of this kind call for a sophisticated 

branch of the subject called the calculus of variations, developed 

in the 18th century by Euler and by Joseph-Louis Lagrange 

(1736–1813). And the outcome is typically a differential equa-

tion for the curve or surface that has the desired maximal or 

minimal property.

Imagine, for instance, two circular hoops with a soap film 

extending between them (Figure 93). The film will try to settle 

in such a way that its surface area is as small as possible, in 

order to minimize its surface energy.

And, according to the calculus of variations, the differential 

equation for its radius y is

 y
d y
dx

dy
dx

2

2

2

1-æ
è
ç

ö
ø
÷ = .  

x = −a x = a

R
y

x

93. A soap film between two hoops.
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The mathematical problem, then, is to solve this equation 

subject to the boundary conditions that y = R when x = −a and 

when x = a.

As it happens, however, the most intriguing feature in this 

case is not the solution itself, but the way in which there is no 

solution at all if a/R > 0.6627, that is if the two hoops are fur-

ther apart than about 23  of their diameter.

And if, in an actual experiment, we gradually increase the 

separation distance beyond this critical value, the whole film 

suddenly collapses—for no apparent reason—into two flat, 

circular films, one on each hoop.



In calculus, one particular number stands out as ‘special’:

 
e = + +

´
+

´ ´
+

´ ´ ´
+

» ×

1 1
1

1 2
1

1 2 3
1

1 2 3 4
2 718



.
 

And to see how this number arises we start with a rather 

unlikely subject—the spread of disease.

Exponential growth

In the early stages of an epidemic, the number of cases typically 

doubles in some given time—say a few days.

So, if we use this ‘doubling time’ as our unit of time, the 

number of cases at time t = 0, 1, 2, 3, 4, . . . will be 1, 2, 4, 8, 

16, . . . , i.e. 2t. This is so-called exponential growth, and it is a 

direct mathematical consequence of the very natural assump-

tion (at least in the early stages) that the rate of infection will 

be proportional to the number of people who have the disease 

already.

22
The Mysterious Number e
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And this result has its direct counterpart in calculus, 

where the function y = 2t is defined for all t, and not simply 

when t is a whole number.

For the rate of change of y = 2t turns out to be proportional 

to 2t itself.

The function et

More notably still, there is a slightly larger number e such 

that et is actually equal to its own derivative:

 
d
dt

t t( ) .e e=  

And this is, arguably, the key property that singles out e as 

a special number in calculus.

While

 eo =1,  

in accord with Chapter 13, the function y = et increases rap-

idly with t, as Figure 94 shows.

The simplest way of actually calculating the number e is, 

perhaps, to represent et as an infinite series:

 et t
t t t

= + +
´

+
´ ´

+
´ ´ ´

+1
1 2 1 2 3 1 2 3 4

2 3 4

  

And it is easy to check that this is, indeed, the correct one. 

For if we differentiate, we get
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d
dt

t t tt( )e = + +
´

+
´ ´

+
´ ´ ´

+0 1
2

1 2
3

1 2 3
4

1 2 3 4

2 3

  

and after some obvious cancellation we realize that the right-

hand side is the original series itself, i.e., et.

It also satisfies the requirement that e0 = 1, because all terms 

but the first are then 0.

This series turns out to be convergent for all t, and by set-

ting t = 1 we finally obtain the series for e at the start of this 

chapter:

 e = + +
´

+
´ ´

+
´ ´ ´

+¼1 1
1

1 2
1

1 2 3
1

1 2 3 4
 

–3 –2 –1 0

5

10

15

y

y = et

t

20

1 2 3

94.  The function y = et.
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Convergence is rapid, and the most well-known approxima-

tion to e, namely 2·718, emerges after only 7 terms of the series.

e and Euler

The number e has a complicated history, but it first came to 

prominence in Euler’s classic Introductio in analysin infinitorum 

of 1748.

Euler introduced it, however, in a different way, which we 

would now write as:

 e = +æ
è
ç

ö
ø
÷®¥

lim .
n

n

n
1

1
 

This limit is intriguing, because any fixed number greater 

than 1, raised to an ever-increasing power, would tend to 

infinity. But here, as the power goes up, the number being 

raised to that power goes down, and edges closer and closer to 

1, in just such a way that a finite limit results.

n sum of the first n terms

1 1

2 2

3 2·5
4 2·666 …

5 2·7083 …

6 2·7166 …

7 2·71805 …

8 2·71825 …
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e and gambling

Suppose that the chances of winning the jackpot on a slot 

machine are 1 in 100, and we play it 100 times.

What is the probability of winning?

Well, the probability of losing every single time is 

1 1
100-( )100, which is very close to e−1, i.e. 1/e, and therefore 

about 37%.

So the probability of winning is about 63%.

e and logarithms

Sharp-eyed readers may have noticed that there was one excep-

tion to the rule in Chapter 14 for integrating any power of x.

The exceptional case is x−1, or 1/x, and, somewhat curiously, 

this has a completely different integral involving the logarithm 

of x to base e:

 
1
x

dx x= +ò log .e constant  

e and the search for happiness

When searching for a partner, the best strategy, apparently, is 

to reject the first 1/e possibilities—that is, the first 37%—and 

then settle down with the first new possibility who is better 

than any of the first 37%.

I say ‘apparently’, because I haven’t actually tried it.



One of Euler’s many contributions to calculus was a subtle 

change of viewpoint as to what the subject is really all about.

In its early stages, calculus was viewed in a very geometric 

way, and seen as being all about curves, and their various 

properties. In the 18th century, however, a more algebraic 

viewpoint began to emerge, with Euler and others seeing 

 calculus as being all about functions.

23
How to Make a Series

95.  Euler’s Introductio in Analysin Infinitorum of 1748.
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And it was Euler who introduced the notation

 y f x= ( ),  

now almost universal, to denote that y is some function of x.

The modern view of the function itself, f, is—as we have 

seen—just some rule that assigns to each value of x a definite 

and unique value of y, such as f(x) = x2 or f(x) = sin x.

It is sometimes convenient, too, to use a dash to denote a 

derivative. Thus,

 ¢ ¢¢= =f x
dy
dx

f x
d y
dx

( ) , ( )
,

2

2
 

and so on (see Chapter 14).

But my real reason for introducing the notation at this stage 

is in connection with infinite series.

I am well aware, for instance, that when I produced a series for 

et in Chapter 22, it was rather like pulling a rabbit out of a hat.

And in Figure  96 we see Newton obtaining infinite series 

for sin θ and cos θ, in 1669, but by a brilliant ad hoc method 

that would be difficult to implement more generally.

96. Infinite series for sin θ and cos θ in Newton’s De Analysi of 1669 
(published 1711). His z is our θ, and his x our sin θ.
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So it is only natural to ask whether there is some easier, 

more routine way of representing a given function as an 

 infinite series.

Taylor series

Suppose, then, that we want to write some function f(x) in the 

form

 f x A Bx Cx Dx( ) .= + + + +2 3
  

The obvious question is: how do we determine the con-

stants A, B, C, . . . ?

And, somewhat remarkably, there is a very simple way of 

doing this. We just differentiate, repeatedly, with respect to x, 

term by term:

 

¢

¢¢

¢¢

= + + +

= + +

¢ = +¼

f x B Cx Dx

f x C Dx

f x D

( )

( ) .

( ) .

.

2 3

2 2 3

2 3

2




 
Finally, we set x = 0 in all of these equations. This tells us 

immediately that

 

A f B f

C f D f

= =

= = ¢¢

¢

¢¢ ¢

( ), ( ),

( ),
.

( )

0 0

1
2

0
1

2 3
0

 
and so on.
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In short,

 f x f xf
x

f
x

f( ) ( ) ( )
.

( )
. .

( ) .= + + + ¢¢ +¼¢ ¢¢ ¢0 0
1 2

0
1 2 3

0
2 3

 

So, if we set aside some (thorny) questions such as conver-

gence, the key to representing a function in this way is to 

know the values of the function and all its derivatives at one 

particular point, in this case x = 0.

The series is named after the English mathematician Brook 

Taylor, who published an equivalent result in 1715, but it 

seems to have been known to James Gregory as early as 1671. 

It can also be found—with just the same reasoning—in an 

unpublished manuscript by Newton of 1691/2 (see Figure 97).

The simplest example of a Taylor series in action is, per-

haps, f(x) = ex, because f(x) and all its derivatives are then equal 

97.  Newton discovering ‘Taylor series’ in 1691/2, for the case in which  
f(0) = 0. He uses a dot to denote a derivative with respect to  

some fluxional variable t, as explained in Chapter 14.
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to 1 at x = 0, and the series reduces to the one we met in 

Chapter 22:

 ex x
x x

= + + + +¼1
1 2 1 2 3

2 3

. . .
 

But the functions sin x and cos x also lend themselves very 

easily to this kind of treatment, and repeated use of the results 

in Figure 70 leads to

 

sin
. . . . . .

cos
. . . .

.

x x
x x

x
x x

= - + -

= - + -

3 5

2 4

1 2 3 1 2 3 4 5

1
1 2 1 2 3 4





 
And there is, in fact, a reason why I have placed these two 

series right next to the one for ex . . . 



In 1748, Euler took calculus in an altogether different direc­

tion with an extraordinary result linking e with the trigono­

metric functions (Figure 98).

The most remarkable feature here is the appearance of the 

imaginary number

 i = -1,  

which was, at the time, still treated with a certain amount of 

scepticism.

Yet, to see how this result comes about, all we have to do is 

take the infinite series for ex from Chapter 23, pluck up a bit of 

nerve, and substitute in the imaginary number x = iθ, where θ 

is real.

24
Calculus with Imaginary 

Numbers

98. A surprising connection.
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It is then just a matter of using i2 = −1, over and over again, 

and collecting real and imaginary terms separately, to obtain

 

ei

i

q q q

q
q q

= - +
´ ´

- ¼
æ

è
ç

ö

ø
÷

+ -
´

+
´ ´ ´

- ¼
æ

è
ç

ö

ø
÷

1
2 2 3 4

2 3 2 3 4 5

2 4

3 5

,
 

whereupon the result follows, because the two series in brack­

ets are precisely those for cos θ and sin θ in Chapter 23!

One particular case, obtained by setting θ = π, is widely 

regarded as one of the most remarkable equations in the 

whole of mathematics:

because it connects, in a most surprising way, the three special 

numbers e, i, and π. (Somewhat curiously, however, this particu­

lar equation never appears explicitly in any of Euler’s writings.)

Functions of a complex variable

By around 1800 or so, the general idea of a complex number

 z x iy= + ,  

99. The most beautiful equation ever?
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where x and y are both real, was becoming more familiar, and 

mathematicians began to visualize such numbers, even, as 

points in a complex plane with real and imaginary axes (Figure 100).

And a little later still, in about 1820, the French mathemat­

ician Augustin­Louis Cauchy began developing the calculus 

of functions of a complex variable z.

Not surprisingly, this included the key idea of a derivative 

with respect to z, so that if w is some complex variable which 

is a function of z, then

 
dw
dz

w
zz

=
®

lim .
d

d
d0

 

But while this definition might seem fairly innocent and 

innocuous, it isn’t. This is because we could, in principle, take 

the limit δz → 0 in many different ways, because—loosely 

speaking—we could approach the point z from many different 

–i

i

2i

3i
imaginary

axis

y

x
real
axis

z = x + iy

–2i

1–1 2–2

100. The complex plane.
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directions in the complex plane. And requiring that all these 

different approaches give the same limiting value, dw/dz, 

depending only on the point z itself, turns out to have far­

reaching and sometimes quite extraordinary consequences.

The calculus of flight

One of these consequences arose at the beginning of the 20th 

century, in the early days of aerodynamics.

The problem, in short, was: how can we find the airflow 

pattern around a wing?

In principle, of course, we write down, and solve, the appro­

priate differential equations of fluid motion.

In practice, however, the complicated shape of the wing, 

with its sharp trailing edge, poses severe mathematical diffi­

culties (see Figure 101).

101.  Airflow past a wing.
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The corresponding problem for flow past a circular cylin­

der, on the other hand, is much easier to analyse mathematically 

(Figure 102).

And, quite remarkably, it is possible to apply a simple trans­

formation to those streamlines, and get the flow pattern past 

the wing instead, if we view the streamlines as being curves in 

the complex plane.

In short, and however unlikely it might seem, it is possible 

to solve certain very real problems in fluid dynamics by leap­

ing into the complex plane, applying a cunning transformation, 

and leaping out again.

102.  Streamlines past a circular cylinder.



Cauchy is mad . . . but, right now, he is the only one who 
knows how mathematics should be done.

Norwegian mathematician Niels Abel, in a letter of 1826

During the 19th century, Cauchy and other mathematicians 

fought to put calculus on a more rigorous foundation.

So much of the subject involved infinity, in one way or 

another. And playing with infinity could be very dangerous 

indeed.

A vanishing ‘trick’

One example of this is the infinite series

 1
1
2

1
3

1
4

1
5

1
6

- + - + - +,  

which is a bit like the Leibniz series, but uses all the whole 

numbers instead of just the odd ones.

The series does, in fact, converge, and its sum turns out to 

be loge 2 = 0.693 . . . 

25
Infinity Bites Back
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But suppose we now add up the terms in a different order, by 

taking two negative terms after each positive one:

 1
1
2

1
4

1
3

1
6

1
8

1
5

1
10

1
12

-æ
è
ç

ö
ø
÷ - + -æ

è
ç

ö
ø
÷ - + -æ

è
ç

ö
ø
÷ - +.  

I am tempted to stress here that we are not ‘missing out’ any 

terms, or ‘smuggling in’ any new ones. Nor are we changing 

the sign of any of the terms.

It might seem, then, that the new series must inevitably 

converge to the same sum as before.

But it doesn’t.

If we simplify all the brackets, we can rewrite the new 

series as

    
1
2

1
4

1
6

1
8

1
10

1
12

- + - + - + , 

and this is equal to

 
1
2

1
1
2

1
3

1
4

1
5

1
6

- + - + - + ¼æ
è
ç

ö
ø
÷ ,  

which is half the sum of the original series!

In other words, we seem to have made half of 0.693 . . . 

 ‘disappear’.
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Limits to the rescue

This ‘vanishing trick’ was discovered by Bernhard Riemann in 

1854, and we can begin to understand it if we consider first 

two separate infinite series, one consisting of all the positive 

terms, and the other consisting of the negative ones:

 1
1
3

1
5

1
7

+ + + + ××  

and

 - - - - - ××
1
2

1
4

1
6

1
8

  

And, as so often with infinite series, the safest way to pro-

ceed is to begin by considering the sum sn of the first n terms, 

and then let n → ∞.

The trouble is that, like one of the series in Chapter 9, nei-

ther of these series converges to a finite limit. In the first case 

sn → ∞ as n → ∞, and in the second case sn  → −∞ as n → ∞.

Suddenly, then, it is rather less surprising that if we com-

bine the two the result will depend rather critically on how we 

do it.

Riemann went on to show, in fact, that we can make the 

resulting combination tend to any limit we like if we take the 

positive and negative terms in a suitably cunning order!
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A Fourier series

A very different example comes from the series

 y x x x= + + + ¼sin sin sin . ,
1
3

3
1
5

5  

which arose in a study of heat conduction by Joseph Fourier, 

who was working in Paris in the 1820s.

It is, of course, unlike any infinite series that we have seen so 

far, because the individual terms are not simply powers of x.

Nonetheless, each individual term is a nice, continuous 

function of x, so it might seem reasonable to suppose that y 

will be also.

But it isn’t.

If we plot y against x the result is a square wave, with y tak-

ing the value π/4 or −π/4 virtually everywhere, the only excep-

tions being wherever x is a multiple of π, where y = 0 

(Figure 103).

π 2π 3π x0

π
4

π
4–

y

103. A ‘square wave’.
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In other words, the value of the function y jumps every time 

x passes through a multiple of π.

And yet, we again obtain some insight into what is happen-

ing if we consider the sum sn of the first n terms. Some graphs 

of sn against x are shown in Figure 104, and even on the basis 

of this small sample, it is possible to imagine how, at any par-

ticular fixed x, sn tends to −π/4, 0, or π/4 as n → ∞.

π
4

π
4

π
4–

π
4–

π
4

π
4–

n = 1

n = 2

n = 4

104. Graphs of s
n
 against x.
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And just in case this is still not wholly convincing, it  is 

worth noting that the result is certainly correct in the special 

case x = π/2, because it then reduces to the famous Leibniz 

series of Chapter 17:

 1
1
3

1
5

1
7 4

- + - + =

p
.  

Limits everywhere

So limits are vital for a proper understanding of infinite series.

But differentiation is essentially a limit process, too, as we saw 

in Chapter 5:

 
dy
dx

y
xx

=
®

lim
.d

d
d0

 

δy

δx

105.  The derivative as a limit process.
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And integration can also be viewed as a limiting process. 

Consider, for instance, the problem of finding the area under a 

curve between, say, x = a and x = b, normally denoted by

 .
b

a

ydxò  

This whole problem started life, after all, with Fermat (and 

even—in a sense—Archimedes), as the limit of a sum 

(Figure 106).

It is true that we have often viewed integration in this book 

as undoing differentiation, partly because that is what it often 

means in day-to-day mathematical and scientific practice, 

and  partly because of the fundamental theorem of calculus 

(Figure 39).

But that theorem (and its proof in Chapter 8) is for when y is 

a continuous function of x, so that the curve has no gaps or 

jumps in it. And by the mid-19th century, mathematicians 

were beginning to take an interest in integrating far more gen-

eral and badly behaved functions.

y

a b x

y

a b x

106. The integral as a limit process.
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In any event, when Cauchy and Riemann set about trying 

to put calculus on a more rigorous footing, they both defined 

integration not as undoing differentiation, but as the limit of a 

sum.

On top of all this, some quite subtle questions were emerging 

about procedures involving multiple limits.

In Chapter 21, for instance, in order to find the coefficients 

A, B, C, D . . . , we took an infinite series and differentiated it by 

differentiating each term.

But this amounts, in effect, to reversing the order of two 

limit processes (in that case ‘n → ∞’ and ‘δx → 0’), and in gen-

eral this is really quite risky.

Yet even as the 19th-century mathematicians began to 

grapple with matters as subtle as this, one crucial question 

remained.

What is a limit, exactly?



I find it really surprising that Mr. Weierstrass . . . can attract 
so many students—between 15 and 20—to lectures that are 
so difficult and at such a high level.

colleague of Karl Weierstrass, 1875

What do we really mean when we say that

 y x® ®¥0 as ,  

or, equivalently, that the limit of y is 0 as x tends to infinity?

In order to explore this, I am going to suppose, in the first 

instance, that y is always positive.

And the first example which comes to mind is, perhaps, y = 

1/x (Figure 107). Yet, even with something as simple as this, 

why are we so sure that y → 0 as x → ∞?

The answer

‘y gets closer to 0 as x increases’

is plainly not good enough; the same could be said, for instance, 

of y = 1 + 1/x, which certainly doesn’t tend to 0 as x → ∞.

A better answer, surely, would be:

26
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‘We can make y as close to 0 as we like by taking x large 
enough’

and this is, I believe, the kind of thinking that we have used so 

far, from time to time, in this book.

But there is, in fact, still a problem.

The trouble is that definition would let in something like this:

 y
x x

x
=
ì
í
î

1

1

/
.

if is not a whole number

if is a whole number  

This looks just like the graph in Figure 107 except that it has a 

sort of ‘hiccup’, and leaps up to the value 1, every time x is a 

whole number.

However artificial this example might seem, it is a perfectly 

valid function of x. It hardly conforms to any intuitive idea of 

‘y → 0 as x → ∞’, because it never completely ‘settles down’, 

but the awkward truth is that we can make y as close to 0 as we 

like by taking x large enough; we just have to be careful not to 

choose x as a whole number.

y = 1x

y

x

107. The function y = 1/x.
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To kill off problems of this kind, then, we refine our definition 

further to:

‘We can make y as close to 0 as we like for all x greater 
than some sufficiently large number.’

The only remaining difficulty then lies in the phrases ‘as 

close as we like’ and ‘sufficiently large’. These are just too 

unwieldy for rigorous mathematical work, and so we refine our 

definition still further to:

‘Given any positive number ε, there exists a positive num-
ber X such that y < ε for all values of x which are greater 
than X.’

Behind this definition is the idea that it must work no matter 

how small ε is, but we don’t need to state this explicitly, because 

it is covered by the key word ‘any’.

And our simple example y = 1/x does, indeed, conform to 

this, because, given any positive number ε, y = 1/x will be less 

than ε for all values of x which are greater than 1/ε.

Finally, however, we should relax our assumption that y is 

always positive, which I made purely for convenience of 

explanation. It might be, for instance, that y → 0 in an oscilla-

tory way as x → ∞ (Figure 108).

As it happens, this final task is quite easy, for all we have to 

do is replace ‘y < ε’ in our definition with ‘−ε < y < ε’.

This whole approach, which finally put the idea of a limit on 

a rigorous footing, is due to the German mathematician Karl 

Weierstrass, in the late 19th century.
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In retrospect, however, it is quite interesting to see just how 

close some earlier mathematicians came to the idea.

At one point in the Principia (1687), for instance, Newton 

wrote of one thing ‘approaching’ another

more closely than by any given difference.

And later, in 1765, D’Alembert wrote that one quantity is the 

limit of another

if the second approaches the first closer than any given 
quantity, however small.

With Weierstrass, however, all talk of ‘approaching’ has 

gone, to be replaced by extensive use of the inequality signs < 

and >. In this respect, it even contains faint echoes of 

Archimedes and Eudoxus, some 2000 years earlier.

Ultimately, however, Weierstrass’s work looked forward, 

not back, and towards a more rigorous foundation for not 

only calculus, but even the whole idea of number itself.

y

x

108. A decaying oscillation.
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And on that particular note I ought really to add what may 

seem a rather strange postscript.

Way back in Chapter 3, I said—quite correctly—that I do 

not know what it means for a number to be ‘infinitely small’.

But there are mathematicians today who do deal with such 

numbers, in a branch of the subject called non-standard analysis, 

effectively started in the 1960s by the mathematician Abraham 

Robinson.

The truth, then, as I understand it, is that in order to be 

really certain about the foundations of calculus we eventually 

have to grapple successfully with either the idea of a limit or the 

idea of ‘infinitely small’.

Until now, at least, most mathematicians have taken the 

first of these two routes, but in the end, it seems, the choice 

is ours.



As we approach the end of this short book on calculus, I 

should like to return to its applications, and, first, to partial 

differential equations.

For these lie at the heart of so much of modern science, 

often in surprising ways.

Calculus and light

In 1865 the Scottish physicist James Clerk Maxwell formu-

lated the mathematical theory of electromagnetism.

In particular, he discovered that electric and magnetic fields 

both satisfy the same partial differential equation.

And in its simplest form, in today’s (S.I.) units, that equa-

tion is

 ¶
¶

=
¶
¶

2

2

2

2

1y
t

y
xo om e

.
 

Here, μo and εo are two electromagnetic constants which, even 
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in Maxwell’s time, were known, to some considerable accuracy, 

from laboratory studies.

And if this equation strikes you as vaguely familiar, it will 

be, I think, because, from a purely mathematical point of 

view, it is exactly the same equation as the one for a stretched string in 

Chapter 20!

The only difference is that in place of the constant T/ρ we 

have a new constant, 1/μoεo.

Maxwell therefore knew immediately that the equation 

would have wavelike solutions, and that these electromag-

netic waves would travel with speed 1/ .m eo o

Moreover, this speed turned out to be so close to the meas-

ured speed of light that Maxwell at once concluded that light 

itself must be an electromagnetic phenomenon.

And in this way, then, calculus played a major part in one of 

the greatest discoveries in the history of science.

109. An electromagnetic wave, as sketched by Maxwell in his  
Treatise on Electricity and Magnetism, 1873.
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Calculus in the quantum world

Some 60 years later, in the 1920s, the world of physics was 

again in upheaval, this time with the advent of quantum 

mechanics.

This had been triggered, in part, by some experiments 

which could only be explained by regarding light not as a 

wave, but as a succession of particles called photons, each 

with a tiny amount of energy:

 E h= n .  

Here ν is the frequency of the light and h is Planck’s constant 

(6.626 × 10−34 Joule sec).

Just as strangely, there were other experiments with 

 particles—such as electrons—which could only be explained 

by viewing the particle as a wave.

To imagine all this, it can be helpful to think of a moving 

particle in quantum mechanics as a small packet of waves of 

limited extent (Figure 110).

110.  A quantum wave packet.
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And in 1926 Erwin Schrödinger introduced the idea of a 

wave function, ψ, to describe the form of a quantum mechanical 

wave, by writing down a differential equation for it.

In the simplest case, for a single particle of mass m moving 

in the x-direction in a potential V, Schrödinger’s equation is

 i
t m x

V

¶
¶

= -
¶
¶

+
y y

y
2 2

22
,  

where h̵ = h/2π.

Once again, then, we find a partial differential equation at 

the heart of a physical theory, but this time with an interesting 

twist.

For the imaginary number

 i = -1  

now appears directly in the differential equation itself. The 

wave function ψ is therefore complex, with real and imaginary 

parts that both depend on x and t.

Needless to say, then, this is all very different from the clas-

sical wave equation. And yet, one of the first successes of the 

full, three-dimensional Schrödinger equation was to account 

for the energy levels of an electron in a hydrogen atom:

 E
R

NN
o= -

hc
2 .  

Here c is the speed of light, Ro is Rydberg’s constant (1.097 × 

107 m−1), and, most importantly, N = 1, 2, 3, . . . is a whole number.
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The energy levels are therefore quantized, and if these dis-

crete energy levels remind you at all of the discrete frequencies 

in Chapter  20, then you are in good company, because 

Schrödinger himself wrote:

I wish to consider . . . the hydrogen atom, and show that . . . 
when integralness does appear, it arises in the same nat-
ural way as it does in the case of the node-numbers of a 
vibrating string.

Calculus goes supersonic

The 20th century saw major advances, too, in more classical 

areas of physics, including fluid dynamics. In particular, there 

was much excitement in the 1950s about the prospect of 

supersonic flight.

Even today most people know, I think, that something spe-

cial happens when the speed of an aircraft passes through 

the speed of sound. But, from a mathematical point of view, 

what is it?

To answer this, it is simplest, I think, if we effectively move 

with the aircraft, so that the wing appears stationary.

Imagine, then, air moving with speed U, in the x-direction, 

past a thin wing. This will cause a small disturbance to the air-

stream, measured by a function of x and y called the velocity 

potential, ϕ. And it turns out that ϕ itself satisfies the partial 
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differential equation

 ( ) .1 02
2

2

2

2-
¶
¶

+
¶
¶

=M
x y
f f

 

Here M is the Mach number, defined as

 M
U
c

= ,  

where c is the speed of sound.

It is immediately apparent, then, that as M increases past 1 

the coefficient of the first term changes sign, and it is this change 

of sign which alters the whole character of the differential 

equation and, indeed, its solution.

For subsonic flow, with M < 1, the equation has strong links 

with the complex variable theory mentioned in Chapter 22, 

and there is some disturbance to the airstream everywhere, 

though it is very small at large distances from the wing 

(Figure 111a).

y
U

x

(a) M2 <1 (b) M2 >1

111. (a) Subsonic and (b) supersonic flow past a thin symmetrical wing.
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For supersonic flow, however, with M > 1, the equation 

becomes, essentially, the classical wave equation, and there is 

no disturbance at all to the airstream outside the two shaded 

regions in Figure 111b.

The Mach lines (dashed) that border those regions make an 

angle α with the x-axis such that

 
sin .a =

1
M  

So, the more supersonic the airstream, the smaller the value 

of α, and the more swept back the Mach lines.

Those lines themselves are, essentially, gentle versions of 

shock waves, and they travel along with the aircraft.

And, until the leading one arrives, a stationary observer on 

the ground hears absolutely nothing.



Differential equations continue, to this day, to be the most 

important way in which calculus meets the real world.

And our ability to tackle them received an enormous boost 

in the 1960s, largely as a result of the computer revolution.

28
From Calculus to Chaos

112. Chaos from the Lorenz equations: a path of a moving  
point with coordinates (x, z).
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Calculus by computer

The basic idea is really quite simple, and dates back to the time 

of Euler.

Suppose we have a differential equation, such as

 
dy
dt

y= .  

As it happens, we know how to solve this particular one, 

from Chapter 22.

But suppose we didn’t.

Imagine, instead, that we simply know the value of y—or at 

least a good approximation to it—at some particular time t.

Then the differential equation itself implies that a short 

time δt later the corresponding increase δy will be given, very 

nearly, by

 
d
d

y
t

y= .  

So, using our approximation to y at time t, we can calculate 

the small increase δy, add it to our ‘current’ value of y, and hence 

obtain an approximation to the ‘new’ value of y at time t + δt.

And, crucially, we can then take that value of y, and use 

exactly the same updating procedure to get an approximation 

to y a short time δt later still, and so on.

This whole approach is known as a step-by-step method, 

and should, in principle, give a good approximation to the 

true solution of the original differential equation if we take a lot 

of very small time steps.
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In Figure 113, for instance, we have tried to solve

 
dy
dt

y y t= = =with at1 0.  

The lower ‘curve’ was obtained with δt = 0.1, and a gradual 

build-up of error is evident. The one above, however, was with 

the smaller value δt = 0.02, and is scarcely distinguishable on 

this time scale from the true solution y = et.

In practice, much more sophisticated and accurate ways of 

approximating δy are used.

Yet the basic idea is essentially the same—choose a small, 

fixed time step δt, replace the differential equation itself by an 

approximate updating procedure, and get a computer to 

implement that updating procedure, over and over again.

Most importantly, exactly the same idea can be used when 

dy/dt is given as some thoroughly awkward function of y.

200

y

0
t 6

113. Euler’s step-by-step method in action.
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And it can even be used if we have a whole system of differ-

ential equations like this involving several unknown variables.

Chaos

A famous example of this is provided by the Lorenz equations, 

which, in their most iconic form, are as follows:

 

dx
dt

y x

dy
dt

x y zx

dz
dt

z xy

= -

= - -

= - +

10

28

8
3

( )

 

They are therefore three differential equations for the three 

‘unknown’ variables x, y, z as functions of time t.

A key feature of this system is that it is nonlinear. This is because 

of the terms −zx and xy, which involve products of variables 

that we are trying to find. And it is that feature which makes 

these equations particularly challenging.

They first appeared in 1963 in a paper by the American 

meteorologist Ed Lorenz, where they arose from a highly 

oversimplified model of thermal convection in a layer of fluid.

Lorenz solved them using a step-by-step method on a very 

primitive ‘desktop’ computer, and if we do the same, and plot 

one of the variables against time t, we typically see oscillations.
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But the oscillations are chaotic, and seemingly haphazard, so 

that the system never settles down to either a steady state or a 

regular, periodic motion (Figure 114).

And there is a second, crucial, feature of chaos.

The black and white graphs in Figure 114 result from two 

initial conditions which are very slightly different, so that, at 

first, the two graphs are practically indistinguishable.

Yet, after just a few oscillations, the two graphs diverge sub-

stantially, and the system evolves thereafter in two completely 

different ways.

This extreme sensitivity to initial conditions is a key hallmark of 

chaos, and implies major problems with predicting the long-

term behaviour of chaotic systems, simply because, in practice, 

the initial conditions may not be known to high accuracy at all.

This is a serious issue, for we now know chaos to be a com-

mon feature of many systems involving sets of nonlinear 

 differential equations, whether in physics, engineering, chem-

istry, or biology.

114. Chaos in the Lorenz equations, showing extreme  
sensitivity to initial conditions.
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And while some of the key ideas date back to the great 

French mathematician Henri Poincaré, in the late 19th cen-

tury, the full importance of chaos came to be widely recog-

nized only after the pioneering work by Ed Lorenz and others 

in the 1960s.

As it happens, Lorenz first came upon some of these ideas 

while working on an earlier, more elaborate, computer 

weather model involving twelve variables. And that model was, 

in turn, motivated in part by some remarkable laboratory 

experiments by the physicist Raymond Hide in the 1950s.

These involved a rotating water tank, of annular shape, 

with inner and outer boundaries maintained at different tem-

peratures. In a sense, then, this was the atmosphere stripped 

down to its absolutely bare essentials: a basic uniform rota-

tion and some differential heating (Figure 115).

At low rotation speeds, the flow relative to the rotating tank 

was symmetric about the rotation axis (Figure 115a), while at 

(a) (b)

115. Two flows of a differentially-heated rotating fluid.
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higher rotation rates that flow became unstable, and a dis-

tinctive meandering flow structure (Figure  115b) emerged 

instead, reminiscent of the jet stream in the atmosphere.

But at higher rotation rates still, the wavy jet fluctuated in 

an irregular manner, and it was this behaviour that particu-

larly intrigued Ed Lorenz.

And it was while Lorenz was trying to study a flow of this 

general kind, with his early 12-variable model, that fate lent 

something of a hand.

At some point, he decided to rerun a certain section of the 

output, so stopped the computer and typed in the initial con-

ditions for that particular section. But, for practical reasons, 

he typed in not the original numbers, which were to 6-figure 

accuracy, but 3-figure approximations.

In his own words:

I started the computer again and went for a cup of coffee. 
When I returned, about an hour later . . . I found that the 
new solution did not agree with the original one.

At first, Lorenz suspected some kind of computer failure, 

but he soon realised that the output itself told a quite different 

story.

For, while he had been having his coffee, the computer had 

simulated about two months of ‘weather’. And, at first, the 

tiny round-off errors in the initial conditions made only small 

differences to the output. 

Gradually, however, those differences steadily amplified, 

roughly doubling every four days or so, until sometime in the 
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second month all resemblance to the original ‘weather’ com-

pletely disappeared.

It was in this way, then, that Lorenz stumbled, more or less 

by accident, on what we now call ‘sensitivity to initial condi-

tions’, and he eventually came to the conclusion, even, that 

this extreme sensitivity is, to a large extent, the actual cause of 

chaos.

Ed Lorenz was a modest man, and saw himself, I think, as 

just one more scientist using mathematics—and particularly 

calculus—to try to understand how the world really works.

I once played tennis with him, in 1973.
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1089 AND ALL THAT
A Journey into Mathematics

-
David Acheson

‘Every so often an author presents scientific 

ideas in a new way . . . Not a page passes with-

out at least one intriguing insight . . . Anyone 

who is baffled by mathematics should buy it. 

My enthusiasm for it knows no bounds.’ Ian 

Stewart, New Scientist

‘An instant classic . . . an inspiring little mas-

terpiece.’ Mathematical Association of America

‘Truly inspiring, and a great read.’ Mathematics 

Teaching

This extraordinary little book makes math-

ematics accessible to everyone. From very simple beginnings Acheson 

takes us on a journey to some deep mathematical ideas. On the way, via 

Kepler and Newton, he explains what calculus really means, gives a brief 

history of pi, and introduces us to chaos theory and imaginary numbers. 

Every short chapter is packed with puzzles and illustrated by world 

famous cartoonists, making this is one of the most readable and imagina-

tive books on mathematics ever written.

978-0-19-959002-5 | Paperback | £8.99



MATH HYSTERIA
Fun and games with mathematics

-
Ian Stewart

Professor Stewart presents us with a wealth of 

magical puzzles, each one spun around an 

amazing tale: Counting the Cattle of the Sun; 

The Great Drain Robbery; and Preposterous 

Piratical Predicaments; to name but a few. 

Along the way, we also meet many curious 

characters: in short, these stories are engag-

ing, challenging, and lots of fun!

978-0-19-861336-7 | Paperback | £12.99



HOW TO CUT A CAKE
And other mathematical conundrums

-
Twenty curious puzzles and fantastical math-

ematical tales from Professor Ian Stewart, one 

of the world’s most popular and accessible 

writers on mathematics.

Welcome to Ian Stewart’s magical world of 

mathematics! This is a strange world of never-

ending chess games, empires on the moon, 

furious fireflies, and, of course, disputes over 

how best to cut a cake. Each quirky tale pre-

sents a fascinating mathematical puzzle — 

challenging, fun, and also introducing the 

reader to a significant mathematical problem 

in an engaging and witty way.

978-0-19-920590-5 | Paperback | £11.99



COWS IN THE MAZE
And other mathematical explorations

-
Ian Stewart

From the mathematics of mazes, to cones with 

a twist, and the amazing sphericon - and how 

to make one - Ian Stewart is back with more 

mathematical stories and puzzles that are as 

quirky as they are fascinating, and each from 

the cutting edge of the world of mathematics.

We find out about the mathematics of time 

travel, explore the shape of teardrops (which 

are not tear-drop shaped, but something much, 

much more strange!), dance with dodecahedra, 

and play the game of Hex, amongst many more 

strange and delightful mathematical diversions.

978-0-19-956207-7 | Paperback | £8.99



INFINITY
A Very Short Introduction

-
Ian Stewart

The infinitely large (infinite) and the infinitely 

small (infinitesimal) are deeply fascinating 

topics, with connections to religion, philoso-

phy, metaphysics, logic, and physics – and in 

mathematics many vital ideas – notably cal-

culus – rest upon some version of infinity. Its 

history goes back to ancient times, with espe-

cially important contributions from Euclid, 

Aristotle, Eudoxus, and Archimedes. Cos-

mologists consider sweeping questions about 

whether space and time are infinite. Philo-

sophers and mathematicians ranging from 

Zeno to Russell have posed numerous paradoxes about infinity and infin-

itesimals.

In this Very Short Introduction, Ian Stewart argues that working with infin-

ity is not just an abstract, intellectual exercise but that it is instead a con-

cept with important practical everyday applications, and considers how 

mathematicians use infinity and infinitesimals to answer questions or 

supply techniques that do not appear to involve the infinite.

978-0-19-875523-4| Paperback | £7.99



NOTHING
A Very Short Introduction

-
Frank Close

‘A fascinating subject covered by a fascinating 

book. - Marcus Chown, Focus

What is ‘nothing’? What remains when you 

take all the matter away? Can empty space - a 

void - exist? This Very Short Introduction explores 

the science and the history of the elusive void: 

from Aristotle who insisted that the vacuum 

was impossible, via the theories of Newton 

and Einstein, to our very latest discoveries and 

why they can tell us extraordinary things about 

the cosmos.

Frank Close tells the story of how scientists 

have explored the elusive void, and the rich discoveries that they have 

made there. He takes the reader on a lively and accessible history through 

ancient ideas and cultural superstitions to the frontiers of current 

research.

978-0-19-922586-6 | Paperback | £7.99



FOUR LAWS THAT DRIVE 
THE UNIVERSE

-

Peter Atkins

‘A brief and invigoratingly limpid guide to the 

laws of thermodynamics.’ The Guardian

‘Atkins’s systematic foundations should go 

a long way towards easing confusion about 

the subject . . . an engaging book, just the right 

length (and depth) for an absorbing, informa-

tive read.’ Nature

‘Atkins’ ultra-compact guide to thermody-

namics is a wonderful book that I wish I had 

read at university.’ New Scientist

The laws of thermodynamics drive every-

thing that happens in the universe. From the 

sudden expansion of a cloud of gas to the cooling of hot metal, and from 

the unfurling of a leaf to the course of life itself - everything is directed and 

constrained by four simple laws. They establish fundamental concepts 

such as temperature and heat, and reveal the arrow of time and even the 

nature of energy itself.

Peter Atkins’ powerful and compelling introduction explains what the 

laws are and how they work, using accessible language and virtually no 

mathematics.

9780199232369 | Hardback | £13.99



The story of a supremely elegant equation which connects five of the most 

important concepts in mathematics

In just seven symbols, Euler’s Equation connects five of the most 

important ideas in mathematics – our counting system; the concept of 

zero; the irrational number π; the exponential e; and the imaginary num-

ber i. Robin Wilson explains how mathematicians arrived at their under-

standing of each of these – and how Euler brought them all together.

978-0-19-879492-9 | Hardback | £14.99

EULER’S PIONEERING 
EQUATION

The most beautiful theorem in mathematics

-
Robin Wilson

CONJURING THE UNIVERSE
The Origins of the Laws of Nature

-
We know that the marvellous complexity of the Universe emerges from 

several deep laws and a handful of fundamental constants that fix its 

shape, scale, and destiny. The question Atkins addresses is How did these 

come into existence? They are, in Atkins’s memorable words, the product 

of ‘anarchy, indolence, and ignorance’.

Conjuring the Universe describes how laws such as the conservation of 

energy spring from deep symmetries, and explores how electromagne-

tism, thermodynamics, classical and quantum mechanics can all arise 

naturally out of the previous state – of absolute nothing.

978-0-19-881337-8 | Hardback | £14.99
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