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Preface

Calculus is one of the great creations of the human mind. The mathemat-

ical ideas, concepts, and tools of calculus have played a major role in the

physical sciences since the 17th century, when Isaac Newton (1642-1727)

and Gottfried Wilhelm Leibniz (1646-1716) laid the foundations. Among

the early successes of calculus was a thorough understanding of the mo-

tion of planets and stars, a complicated phenomenon that had intrigued

mankind for thousands of years, and still continues to fascinate anyone

who ever looks up into a star studded sky. In modern times, these applica-

tions evolved, for example, into one of the pillars that support the launching

and tracking of communication satellites and that provide the theoretical

foundation for space travel. The basic ideas of calculus have branched out

and matured into Analysis, which for centuries has been viewed—next to

Algebra and Geometry—as one of the three major areas of mathematics.

In essence, calculus allows a precise formulation of rates of change in

very general and abstract settings, and it provides the tools to reconstruct,

analyze, and make predictions about the process under consideration from

information about the relevant rates of change. Historically, the develop-

ment of calculus has been intimately intertwined with the physical sciences.

However, in the last few decades the concepts and tools of calculus have

been applied successfully in many other areas of human endeavor, reaching

well beyond the classical applications. As areas such as biology, chemistry,

economics, finance, and psychology, to name just a few, have become more

quantitative, calculus has featured prominently among the mathematical

tools used in these disciplines. Consequently numerous academic programs

beyond mathematics, physics, and engineering encourage or require their

students to learn the fundamentals of calculus, and many high schools, too,

are offering introductions to calculus. Clearly there is much interest in

xv
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calculus today.

Unfortunately, the transition from high school mathematics to calculus

is not easy. Students are usually exposed to deep new concepts right at the

beginning. In particular, important central applications such as variable

velocity, slopes of tangents, and more general rates of change and deriva-

tives are introduced by an approximation process that involves “limits” of

certain expressions that formally approach the meaningless quotient 0/0.

Therefore it becomes necessary to investigate and understand such “limits”

in order to proceed. Algebraic examples involving polynomials, rational

functions, roots, and so on, often tend to confuse matters: The limit as the

input x approaches the value a, where x must be assumed 6= a, is ultimately

found—after algebraic manipulations to remove the troublesome zero from

the denominator—by what is de facto evaluation of an algebraic expres-

sion by setting x = a. Thus limits tend to get mixed up with evaluation,

often leaving one wondering about what seem unnecessary complications.

The confusing relationship between limits and evaluation had surfaced al-

ready at the origins of calculus in the 17th century, but that did not stop

the pioneers from moving forward. The difficulties were only resolved in

the 19th century, when mathematicians introduced precise—and necessar-

ily complicated—technical descriptions of limits. Since then, these new

abstract concepts—in varying degrees of technical detail—have become a

major component of any introduction to calculus. Even when discussed in

intuitive non-technical language, they present quite a challenge right at the

beginning for anyone who wants to learn and understand calculus.

In this book we present a more elementary approach to derivatives for

algebraic functions that completely avoids limits. More advanced concepts

are only introduced later, when algebraic methods no longer work, for ex-

ample while studying exponential functions. The heart of the matter is an

up-to-date version of a fundamental idea that goes back to René Descartes

(1596—1650), one of the intellectual giants of his time, and that has re-

mained on the sidelines for centuries.

In more detail, we begin with a Prelude to Calculus, in which the an-

cient tangent problem and some of its variations are introduced and solved

for polynomials and other algebraic functions—which are built up by finite

processes—by using only elementary concepts familiar from high school al-

gebra and geometry. In particular, no mysterious quotients 0/0 appear,

and no limits whatsoever are needed at this stage. Basic rules and for-

mulas are established in a direct and most natural way. The reader thus

begins to learn about tangents, derivatives, and all the mechanical rules
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of calculus in a familiar setting, without getting burdened by investiga-

tions of more advanced concepts based on limits and infinite processes. At

the end of the Prelude we turn our attention to the concrete exponential

function f(x) = 2x, perhaps the simplest and most familiar type of non-

algebraic function. Such functions arise naturally in important applications

involving, for example, compound interest, population growth, or radioac-

tive decay. It quickly becomes clear that the algebraic tools and finite

processes used up to this moment are no longer sufficient. In particular,

no elementary techniques allow us to reduce the calculation of the slope

of the tangent to simple evaluation. Instead, building upon the algebraic

approach, we recognize that as a consequence of an elementary estimate the

explicit algebraic derivative introduced earlier can also be captured by an

approximation process. This new non-algebraic idea opens the door to solv-

ing the tangent problem for the exponential function. Proceeding along this

way, numerical evidence reveals surprising new phenomena, and it becomes

apparent that new and more advanced tools are needed.

We are thus ready to move on to the main topic of this book, that is,

the “analysis” part of calculus. In Chapter I we review some necessary

background material, with particular emphasis on those aspects that are

important for our purposes. Much of this should be familiar to the reader

from high school mathematics. The one exception is most likely the “com-

pleteness” of the real numbers, that is, that fundamental property that

ensures the existence of those numbers that arise as “limits” in the study

of non-algebraic functions. Motivated by results in the Prelude, in Chapter

II we begin to develop the concepts of limits and tangents, i.e., derivatives,

in the setting of exponential functions, so as to keep the discussion of the

new and more complicated ideas as concrete as possible. Once this case is

understood, it is then an easy step to extend the new concepts, as well as

all the rules of differentiation already discovered in the Prelude in the alge-

braic setting, to the level of generality usually considered in calculus and in

mathematical analysis. Other concrete examples studied in detail include

logarithms (the inverses of exponential functions) and the trigonometric

functions. The latter ones are essential for modeling periodic phenomena

such as sound waves, or the motion of the planets around the sun. In Chap-

ter III we discuss some important applications, focusing on simple models

involving the basic transcendental functions, so as not to distract the reader

with complications that would obscure the simplicity of the basic ideas.

Finally, in Chapter IV, we consider the fundamental process of reversing

differentiation that arises, for example, when one tries to solve the concrete
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problem of reconstructing a motion from its known velocity and/or acceler-

ation. This requires a new type of approximation procedure that leads us to

the definite integral, the other central concept in calculus, whose roots, in

fact, go back to Archimedes (287 - 212 B.C.) and other Greek mathemati-

cians over 2000 years ago. It is easily seen that integrals are closely related

to the geometric notion of area, but their importance goes far beyond that

aspect. To further motivate this fundamental idea, we discuss several other

applications to concepts such as length of curves, income streams, proba-

bility distributions, and work of variable forces. The connection between

definite integrals and the reversal of the differentiation process is captured

by the so-called Fundamental Theorem of Calculus. Beyond its central role,

this result also provides an important computational technique to evaluate

integrals. We conclude with some significant applications of these results.

For example, we use the fundamental theorem to show that another type

of limit process, known as the Taylor series, provides an approximation of

elementary transcendental functions such as exponential and trigonometric

functions to any desired level of accuracy by certain explicit polynomials

(the Taylor polynomials) of sufficiently high degree. Aside from its theo-

retical importance, this latter result has great practical applications, as it

allows us to find explicit numerical approximations for the values of these

functions that in most cases cannot be obtained by finite procedures. The

highlight of the discussion of Taylor series reveals a deep and surprising

connection between exponential functions and trigonometric functions, i.e.,

between growth and periodicity, that only becomes visible as we expand

our horizon to include so-called complex numbers, an amazing extension of

the familiar (real) numbers.

This introduction to calculus aims to carefully motivate the new ideas

that are central to the subject and to discuss them in the proper context,

so that the reader will be able to understand them better and also rec-

ognize why they are necessary. The topics are developed in a well-ordered

sequence that progresses from familiar elementary algebra to the important

new concepts that distinguish calculus, culminating with some remarkable

deep results in analysis. Rather than developing a large number of formulas

and computational techniques—which too often are quickly forgotten—our

main goal is to deepen and enhance the understanding of the fundamental

concepts and ideas of calculus. We hope that this may be of more lasting

value for the reader when she/he applies these ideas and tools in the chosen

discipline. Altogether, this book should give the reader a solid foundation

in the ideas, main techniques, and classical applications of calculus with-
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out getting overwhelmed by distracting technical details. Beyond that, we

hope that the reader will also gain some lasting appreciation for the amazing

ideas and concepts that have become indispensable for an understanding of

the physical world around us.

Suggestions for the Reader

This book has been written for a reader who wants to learn about calculus

and understand why and how deep new mathematical concepts arise nat-

urally as we study the world around us. The presentation is broad enough

to suit readers at different levels and with different backgrounds. Many

will have been exposed to calculus, either at the level of a first introduc-

tion, or perhaps by completion of standard college calculus courses. Others

still may never have had the opportunity to explore mathematics beyond

high school material, but are interested in learning about a central and

historically significant part of mathematics. The Prelude should be studied

carefully—with help from sections in Chapter I, as needed—before proceed-

ing with the main part of the book. This applies, in particular, to readers

who have already been introduced to calculus. They may be tempted to

ignore this part (why do it differently?) and jump ahead to Chapter I, or

even to Chapter II. They would thus miss out on much of the motivation

for the need for limits and the fundamental property of completeness of the

real numbers. Also, in later sections we often refer back to the Prelude for

context and motivation. I therefore urge such readers to try to put aside

what they learned in an earlier introduction to calculus and to approach

the Prelude with an open mind. When moving on to the main part of the

book, some material may appear quite difficult on first reading. This is to

be expected. The new concepts are not easy, and precise mathematical no-

tation and technical language cannot be completely avoided, even though

we try to minimize these formal aspects. The reader should feel free to skip

some of the technical details and explanations; one can always come back

later to fill some gaps as needed. While moving forward, the reader should

at least try to understand the context and the question that is considered

at that moment, and keep track of the “big picture”. If one feels lost, it

might help to go back to the beginning of a section or chapter in order to

gain a better perspective.

As for prerequisites, there are two basic requirements. For one, the

reader should have the mathematical skills that are usually acquired
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through completion of high school algebra and geometry courses, includ-

ing quadratic equations, polynomials, and the algebraic operations such

as multiplication and factoring performed with them, and basic geometric

concepts such as lines and circles in the plane, and their representations

by algebraic equations in a coordinate system. While the essentials will be

reviewed at appropriate places, it will help if the reader is already familiar

with these topics. On the other hand, no prior knowledge of trigonometry

is needed. While derivatives and applications of sine and cosine functions

are studied thoroughly, the necessary background is carefully reviewed in

the text. The other requirement is more general: the reader should be able

to think clearly and be willing to put forth the effort required to learn and

understand some deep and at times abstract concepts that are at the heart

of important and central mathematical topics that are widely used in many

disciplines.

As for classroom use, this book could be used as a text for an honors

calculus class with well motivated students, where the instructor has quite

a bit more flexibility in adjusting the course content. Most of the material

could be covered in one semester; students would acquire a solid foundation

and would then be ready to proceed with multivariable calculus. It could

also be used as a text for a first course in “Analysis”, to be followed by

an “Advanced Calculus” course that would cover in detail the technical

aspects and move on to analysis in several variables. More broadly, this

book should be of interest and helpful as supplementary reading for students

as well as instructors of calculus and/or analysis. Perhaps one or the other

of the novel ideas found in this book (see the Notes for Instructors for more

details) might eventually be adopted by some instructors and authors.

Finally, the material in the Prelude should be of interest to high school

teachers. Polynomials and their zeroes and multiplicities are standard top-

ics in high school algebra and/or precalculus courses. Consequently, the ap-

proach to finding tangents for polynomials discussed in the Prelude should

fit right in. If desired, it could easily be extended to other functions, such

as rational or root functions, as well as to all the standard rules for differ-

entiation. In any case, this material would provide a highly non-trivial, yet

simple application of standard algebra tools to the solution of a historically

central problem.

To assist the reader, key formulas are numbered in sequence within each

chapter, for example (I.1), (I.2), ..., (II.1), ... . Similarly, statements such

as definitions, theorems, lemmas, etc., are numbered in a single sequence

within each section. Theorem 2.3 thus identifies the third such statement
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within Section 2 of the current chapter, and could be followed by Definition

2.4, and so on. A reference such as Section 2.5 identifies subsection 5 in

Section 2 in the current chapter. A reference to an item in a different

chapter is augmented by the appropriate Roman numeral, e.g., Theorem

III.2.3, or Section II.2.5. Exercises are found in the last subsection of each

section.
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As outlined in the Preface, this book differs significantly from most of

the existing calculus and/or analysis texts either designed for the typical

calculus sequence with a standard syllabus, or targeted at more special au-

diences, such as business, biology, or more advanced mathematics students.

Its main goals are described in the Preface. The emphasis is on motivating

and explaining the relevant concepts so that the reader will be able to un-

derstand how the various pieces fit together and recognize the need for the

new and at times abstract fundamental ideas that distinguish calculus from

high school algebra. The majority of the exercises are chosen so as to rein-

force such understanding. The focus on fundamental concepts emphasized

in this book should be valuable for all students in disciplines that require

a knowledge of calculus, whether or not such students will take any more

advanced courses in analysis or mathematics. This applies, in particular,

also to students in the mathematical and physical sciences. I believe such

students, too, would benefit from an introduction to calculus following the

approach developed in this book. It would equip them with a solid foun-

dation and understanding, so that they may then profitably pursue more

advanced and technical courses as appropriate.

The Table of Contents provides a detailed outline of the topics covered

in this book. In this section I explain the main differences to the more

traditional approaches and highlight a few other distinguishing features.

As stated in the Preface, a major new feature is a “Prelude to Calculus”.

Tangents and derivatives for polynomials and other algebraic functions are

introduced by a purely algebraic elementary process based on factorization

and double points. The basic idea goes back to René Descartes (1596—

1650), who used double points to construct normals (and hence also tan-

gents) for the ellipse and some other special algebraic curves. The imple-

xxiii
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mentation of this idea for general algebraic curves ran into major difficul-

ties, and Descartes’ method was eventually forgotten once the more analytic

methods of Leibniz and Newton proved so enormously successful. It was

discovered only recently that Descartes’ ideas—properly reformulated—can

be implemented in an elementary, transparent, and mathematically correct

way. (See R. M. Range: Where are Limits Needed in Calculus? Amer.

Math. Monthly 118 (2011), 404 - 417.) To summarize the method in the

simplest case, the tangent to the graph of a polynomial P at the point

(a, P (a)) is a line through (a, P (a)) that intersects the graph of P with

“multiplicity greater than or equal to 2”. It is then easily shown that there

exists a unique line that satisfies this condition, and that its slope is given

by q(a), where q is the polynomial determined by the standard factorization

P (x) − P (a) = q(x)(x − a). Motivated by the simple polynomial case, the

factorization result is easily extended to rational functions and their com-

positions, leading to the chain rule for derivatives. With just a bit more

work this algebraic method is extended to inverse functions, products, and

quotients, thereby obtaining all the familiar rules of differentiation. Most

of this material could easily be presented in a high school algebra course,

where it would provide a simple application of basic results about polyno-

mials and their zeroes and multiplicities to the solution of a central and

historically significant problem.

Most importantly, the simple factorization that is the heart of the

method discussed in the Prelude is used to establish an estimate that ex-

hibits in explicit form the continuity of an algebraic function f , that is,

|f(x)− f(a)| ≤ K |x− a| for all x near a, where K is a suitable constant.

Continuity is thus recognized as a fundamental property of all algebraic

functions before there is any need to introduce the concept of a limit. As

presented in the main part of this book, it is this estimate that motivates the

concept of continuity and—most significantly for calculus—leads to the con-

cept of derivative based on approximations and limits. In fact, when applied

to the factor q in P (x)−P (a) = q(x)(x−a), whose value q(a) is the deriva-

tive D(P ) at the point a, the estimate |q(x)− q(a)| ≤ K |x− a| reveals the
fundamental new idea that the value q(a)—that is, the derivative—can also

be captured by q(x) for x 6= a—that is, by the average rate of change—via

an approximation process. This is the critical insight that opens the door

to determining tangents and derivatives for non-algebraic functions.

The Prelude culminates with a preliminary investigation of the tangent

problem for the simple exponential function f(x) = 2x, where algebraic

tools and evaluation no longer work. Motivated by the approximation pro-



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page xxv

Notes for Instructors xxv

cedure discovered for the algebraic case, one thus attempts to follow this

alternate route. Numerical evidence quickly reveals that the slope of the

tangent at the point (0, 1) is approximated by numbers whose decimal ex-

pansions begins with 0.69314... . This unexpected and puzzling result makes

it clear that new and more intricate phenomena occur as soon as one con-

siders even the simplest non-algebraic functions. The stage is thus set for

the main part of the book, that is, an introduction to the analytic version of

calculus based on limits and continuity. Furthermore, since algebraic func-

tions are already taken care of in the Prelude by simple algebraic methods,

one can focus from the very beginning on the principal new ideas in their

natural context, where they truly are indispensable.

From this perspective calculus, as part of analysis rather than algebra,

begins with the simplest non-algebraic functions, such as exponential and

trigonometric functions. These are the functions that occur most often in

interesting applications involving growth or decay, or periodic phenomena,

and their derivatives are given by simple differentiation formulas that how-

ever hide intriguing and deep phenomena, as evidenced by the surprising

appearance of mysterious numbers such as 0.69314..., 3.14159..., 2.71828...,

and so on. The importance of transcendental functions in calculus has of

course been recognized for quite a while by many authors. Newer editions

of classic textbooks are often offered in so-called “early transcendental” ver-

sions. Similarly, most texts designed for biology and/or business students

also emphasize the elementary transcendental functions early on. Yet this

emphasis typically just involves rearranging the order of sections, rather

than a real shift in point of view. In contrast, in this book elementary tran-

scendental functions are used systematically from the very beginning, i.e.,

after the Prelude, to develop the central new concepts of calculus.1 Indeed,

it is the author’s view that the traditional introduction of derivatives of

algebraic functions via limits, and the somewhat prominent role given the

complicated product and quotient rules, lead to unnecessary detours and

complications that delay and hinder the understanding of the main ideas.

Given the introductory nature of this book and its intended broad au-

dience, the technical ε − δ definition of limits that features prominently in

most analysis texts is not emphasized at all in this book. After all, calculus

developed and flourished very well for over 200 years just based on a näıve

1Needless to say, a scientific calculator with graphing capabilities should be standard
equipment for today’s calculus students, just as decades ago slide rules and extensive
tables were the standard tools used to find numerical values of the elementary transcen-
dental functions.
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understanding of limits and continuity. An intuitive understanding of con-

tinuity captured by the statement that f(x) → f(a) as x → a, supported

by the stronger explicit estimates available for all algebraic functions, is

quite sufficient. For completeness’ sake we introduce the standard precise

definition of limit in one of the exercises and apply it in a couple of simple

situations, but we do not dwell further on it. More advanced mathematics

students, who will eventually have to learn this technical language, will

have to consult any of the numerous texts in analysis. In that same spirit,

proofs are often just discussed in a non-technical, though mathematically

correct, outline. On the other hand, the completeness of the real num-

bers R—a concept barely mentioned and/or relegated to an appendix in

most introductory texts—is central for an understanding of limits and for

analysis. Without it, there would be no assurance that the natural approx-

imation processes that appear in calculus would have a limit that is part

of our number system. Furthermore, in contrast to
√
2, for example, limits

such as those denoted by ln 2, e, π, and so on, are not even solutions of

algebraic equations. For these reasons the author believes that complete-

ness should not just be mentioned in passing and then ignored. Instead,

it is at the core of our understanding of numbers as we use them in cal-

culus once we go beyond algebraic functions. In particular, completeness

is needed to identify limits with specific points on the number line, i.e.,

with some precise real numbers. Consequently, completeness is introduced

early in Chapter I and formalized explicitly by the “Least Upper Bound

Property”. This geometric version appears as a natural property (i.e., an

axiom) of the (number) line that is our standard model for R. Given the

importance of this property for analysis, the reader is often reminded of

it along the way, especially when the correctness of certain intuitive argu-

ments critically relies on the completeness of R. Occasionally we also use

completeness explicitly in the justification of statements when it might help

to understand important principles.

Another significant difference to most calculus or analysis texts is the

way “differentiability” is defined. Motivated by the central role of the

factorization in the Prelude, one defines:

A function f defined in a neighborhood of a point a ∈ R is differen-

tiable at a if there exists a factorization

f(x)− f(a) = q(x)(x − a), where q is continuous at x = a. (*)

The value q(a) is called the derivative of f at a, and it is denoted by

D(f)(a) or f ′(a).
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It follows directly from this definition that if f is differentiable at a,

then its derivative f ′(a) = q(a) is well approximated by the values q(x) for

x 6= a as x → a , that is, by the average rates of change [f(x)−f(a)]/(x−a)

for x 6= a. In particular, one sees that this definition is equivalent to the

standard one in terms of limits of difference quotients.

The above definition has been known and used occasionally for many

years, but it still is not widely known, especially in the English language

literature. To the author’s knowledge it was first introduced by Con-

stantin Carathéodory (1873—1950) in his classic text Funktionentheorie

(Birkhäuser Verlag, Basel, 1950), and it has been used in a number of

other German texts since the mid 1960s, both in real and in complex anal-

ysis. (See R. M. Range, op. cit.) Aside from the translation into English of

Carathéodory’s text (Chelsea Publishing Company, New York, 1956), the

earliest English text known to the author that uses this formulation was

published only in 1996. (A. Browder, Mathematical Analysis, Springer,

New York, 1996.) A few years later it appeared also in the 3rd edition of

the text by R. G. Bartle and D. R. Sherbert (Introduction to Real Analysis,

3rd. ed., John Wiley, New York 2000), and in the book by S. R. Ghorpade

and B. V. Limaye (A Course in Calculus and Real Analysis, Springer, New

York, 2006); these latter books make reference to Carathéodory. Still, dif-

ferentiability continues to be defined via difference quotients, and it is then

proved that this definition is equivalent to the formulation stated above.

This latter version is then used in the proof of the chain rule and other

results.

I believe that Carathéodory’s definition has several advantages over the

standard one, as follows.

• It is the natural generalization of the algebraic formulation.

• It avoids quotients with denominators that approach zero. We

know that we cannot divide by 0, so—if at all possible—we should

avoid anything that comes even close to it.

• It provides an easy and most natural proof of the chain rule by

direct substitution, and of the inverse function rule (assuming the

inverse of f is continuous at f(a)).

• It reduces technical details to simple standard properties of contin-

uous functions.

• It naturally generalizes to the case of differentiable functions and

mappings of several variables, thereby allowing a seamless transi-

tion from single to multivariable calculus.
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• Last but not least it is a simple variation of the fundamental char-

acterization of differentiability in terms of approximation by linear

functions.

Regarding this last item, just rewrite the factorization (*) in the form

f(x) = [f(a) + q(a)(x − a)] + g(x)(x− a),

where g(x) = q(x) − q(a). Clearly the continuity of q at x = a is equiv-

alent to limx→a g(x) = 0, that is, to the familiar property that charac-

terizes the error term g(x)(x − a) in the linear approximation for differ-

entiable functions. This approximation property captures the critical geo-

metric information that graphs of differentiable functions are, at the local

level, essentially indistinguishable from their tangent lines. Rather than

appearing—as in many standard calculus texts—as an after-thought that

is mainly used to introduce “differentials” as a technique to approximate

values such as
√
4 + 0.01 or sin(0.1), or to prove the chain rule, this ap-

proximation by linear functions is presented as the easy way to think of

differentiability geometrically. Not only is this the property that is typi-

cally used as the defining one for functions of several variables, but it also

very much enhances the understanding of some basic results. For example,

it makes it clear that compositions and inverses of functions are the nat-

ural and more elementary operations to consider in calculus, rather than

products and quotients. In fact, since the collection of linear functions is

closed under composition and taking inverses, and since the verifications of

the relevant differentiation rules are completely elementary for such func-

tions, the extension of these properties to differentiable functions, which

locally are essentially linear, hardly needs any further justification, at least

at the conceptual level.2 In contrast, the structures of product and quo-

tient rules are necessarily quite a bit more complicated, since products and

reciprocals of the approximating linear functions are no longer linear, so

do not give potential linear approximations. Incidentally, the central role

of the chain rule becomes even more evident if one observes that product

and quotient rules can be viewed as simple special cases of the chain rule

in several variables.

Let us mention a few other features of this book that are usually not

found in standard calculus texts. For example, we follow the well-known

practice to introduce the number e = 2.7182... while searching for the base

2In fact, the definition of differentiability adopted here allows us to turn these intutitive
arguments into precise proofs in a most elementary way.
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for an exponential function y = bx with derivative 1 at x = 0. However,

instead of using a common trial and error technique, we show that the

value of the desired base is given by the exact formula e = 21/c, where c is

the derivative of y = 2x at 0, whose existence is firmly motivated first by

geometric and numerical evidence, and later verified exactly by explicitly

using the completeness of the real numbers. Once e and the natural loga-

rithm function are available, the number c is of course identified with ln 2.

Next, the derivatives of the sine and cosine functions are introduced via

elementary geometric arguments based directly on the definition of these

functions on the unit circle, rather than by the standard arguments that

involve trigonometric addition formulas. Last but not least, the central fact

that a function with derivative 0 at every point of an interval I is neces-

sarily constant on I, is obtained by a direct intuitive (and mathematically

correct) argument. (See R. M. Range, On Antiderivatives of the Zero Func-

tion, Math. Magazine 80 (2007), 387-390.) This avoids the unmotivated

standard proof that involves a lengthy detour via existence of extrema,

Rolle’s Theorem, and the Mean Value Theorem, and it makes the critical

role of completeness clearly visible. The basic intuitive argument is distilled

into a formal Mean Value Inequality, which is all that is needed in order to

discuss the relationship between properties of the derivative and geometric

properties of the graph. Furthermore, this inequality readily implies the

standard Mean Value Theorem for functions with continuous derivatives, a

mild restriction that is insignificant for the purposes of this book.

As for applications of derivatives, we give priority to examples involving

exponential growth models, simple initial value problems, and elementary

periodic phenomena. Applications of calculus to graphing techniques are

discussed thereafter, in a form that is much shorter than in traditional

texts. Given today’s highly sophisticated graphing calculators and com-

puter algebra programs, it seems that these techniques are no longer as

central as they used to be 30 years ago or so. A more significant difference

involves the early introduction of higher order approximations by Taylor

polynomials as a natural generalization of the linear approximation by the

tangent line. This leads directly to Taylor series (i.e., power series), without

the need for a separate detailed discussion of infinite series and all the con-

vergence criteria that typically go with it. A formula for the remainder in

the Taylor approximation and the related estimates are obtained later by a

simple application of the Fundamental Theorem of Calculus and successive

integrations by parts.

Another change from standard texts concerns the introduction and mo-
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tivation of definite integrals. Rather then starting off with the new problem

of calculating areas, which—taken by itself—is seemingly quite unrelated

to derivatives, we consider the natural question of reversing the process

of differentiation, i.e., how to recover the function if all one knows is its

derivative.3 This is first worked out in the context of motion, where the ve-

locity is the known quantity, and hence the existence of an antiderivative,

i.e., the distance function, is known a priori. The proof, of course, ap-

plies verbatim to the derivative D(F ) of any appropriate function F. Our

presentation here has been inspired by the ideas of Qun Lin (Calculus for

High School, People’s Education Press (www.pep.com.cn), Beijing 2010).

A precise version of the necessary uniformity condition is easily obtained

for integrands D(F ) that have a bounded derivative. The process is then

suitably modified to apply to functions f without any a priori knowledge

of an antiderivative. By starting with an initial value and moving along

short line segments with slopes given by the values of the function f at suc-

cessive points, one readily obtains an explicit approximation procedure for

constructing the values of a (potential) antiderivative of f . In essence, this

is just the classical Euler method for solving differential equations, applied

to the special case y′ = f(x). The approximating expressions are particu-

lar concrete realizations of Riemann sums, so that the limit that produces

an antiderivative turns into a definite integral. In the case f ≥ 0, these

approximating expressions are readily interpreted geometrically as sums of

areas of rectangles, thereby leading to the familiar approximation of the

area under the graph of y = f(x). This approach has the advantage that it

directly ties antiderivatives to definite integrals, i.e., the heart of the matter

is visible from the very beginning.

The proof of the integrability of continuous functions is quite subtle and

technical, as it relies on the uniform continuity of a continuous function

on a closed and bounded (i.e., compact) interval, a sophisticated concept

that is difficult to formulate correctly without resorting to some version

of the ε − δ machinery. Consequently many introductory calculus texts

omit the proof or place it in an appendix or among the exercises. We

bypass this difficulty by including a more elementary proof under the ad-

ditional assumption that the integrand has a bounded derivative over the

interval.4 Note that all algebraic functions, as well as most combinations

3This approach is indeed much closer to the historical roots, as developed by Newton
and Leibniz, than the emphasis on calculation of areas.
4Via the Mean Value Inequality this condition readily implies the Lipschitz continuity

of the function, which is all that is needed. Rather than introduce a new definition, we
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of elementary transcendental functions, satisfy this condition, so that for

introductory purposes this restriction is not serious at all. Related simpli-

fying techniques have also been investigated by H. Karcher (Analysis mit

gleichen Fehlerschranken, Univ. Bonn, 2002) and M. Livshits (You Could

Simplify Calculus, arXiv:0905.3611v1).

We conclude with some suggestions for instructors who want to use this

book for a non-traditional one-semester (honors) calculus course, or for a

first analysis course. The Prelude should be covered fairly quickly, say in

at most three weeks, so as to leave ample time for the main topics. Besides

the classical examples of tangents and their discussion for polynomials, one

should definitely include early on the chain rule and inverse function rule

(for rational functions) to highlight their elementary nature and emphasize

their importance. On the other hand, the discussion of more general alge-

braic functions could be postponed until Section 6 in Chapter I. Similarly,

product and quotient rules could also be deferred until they are taken up

at the end of Chapter II in full generality, so as to avoid distracting compli-

cated formulas in the early stages. However, the final section of the Prelude

should be covered carefully, as it provides essential motivation for the main

topics of the book. Among the basic concepts introduced and/or reviewed

in Chapter I, completeness and the exponential functions are the most im-

portant ones. The latter functions are the primary examples used in the

exploration of differentiability in Chapter II, which should be covered care-

fully. Section 2 in Chapter III includes fundamental results that are used

in the remainder of the book, and the discussion on Taylor approximations

in last section will be completed at the end of Chapter IV. The remaining

sections in this chapter are pretty much independent of each other, and the

instructor may choose to skip a few of them according to preference or if

running short of time. In Chapter IV, Section 6 is somewhat theoretical

and could be skipped. Section 7 includes, among others, the important

example of a trigonometric substitution to find the antiderivative of the

function given by
√
1− x2 that arises in the calculation of the area of a

disc. These results are not used thereafter, so this section could be left

out. Integration by parts, however, is critical for completing the discussion

of the convergence of the Taylor series in Section 9. The book concludes

with a brief introduction to complex numbers and the application of Taylor

series to the Euler Identity. This is a fitting grand finale for an introductory

calculus course that should be included if at all possible.

prefer to formulate a sufficient condition in terms of known concepts.
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Prelude to Calculus

1 Introduction

Differential calculus was developed in the 17th century in order to solve fun-

damental problems involving motion with variable velocity and the equiv-

alent geometric problem of finding tangents to general curves. Tangents to

simple special curves were already considered in antiquity, but their con-

struction for general curves became possible only after the introduction of

coordinates opened the door to using algebraic and analytic tools in the

description of geometric properties. Similarly, motion subject to forces and

acceleration could only be fully understood once the most creative minds

of the 17th century were able to apply the new mathematical methods to

real world phenomena, and expand their reach to new levels.

In this Prelude to Calculus we discuss tangents, their relationship to

motion with variable speed, and all the standard rules of “differentiation”

by means of elementary algebraic techniques familiar from high school al-

gebra, without ever mentioning limits or other more advanced concepts.

While the discussion is limited to the familiar algebraic functions (i.e., poly-

nomial, rational, and root functions, and standard combinations of them),

the simple proofs are presented in a form that will later readily general-

ize to exponential, trigonometric, and other more general functions that

will be considered in the main part of this book. In the final section of

this Prelude we attempt to use analogous methods for a simple exponential

function, and we quickly recognize that some deeper new ideas are needed

in order to deal with surprising new phenomena. This prepares the stage

for the main topic of this book, that is, an introduction to the analytic

version of calculus based on limits, and it will allow us to focus from the

very beginning on the principal new ideas in their natural context, where

1
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they truly are indispensable.

We shall freely use standard concepts and formulas familiar from typical

high school geometry and algebra courses, including, for example, the slope

of a line. The most important background material will be thoroughly

reviewed in Chapter I, in a form that will include and highlight the critical

concepts that are necessary to understand the new central ideas related to

limits. The reader is encouraged to refer to appropriate sections in Chapter

I as needed in order to follow the discussion in the Prelude.

2 Tangents to Circles

The construction of tangent lines to circles, parabolas, and similar classical

curves has a long history, going back to Euclid (4th century B.C.), Apol-

lonius (3rd century B.C.), and other Greek geometers over 2300 years ago.

In antiquity a tangent was defined as “a line which touches a curve but does

not cut it” [Victor J. Katz, A History of Mathematics, 3rd. ed., Addison-

Wesley, New York 2009, p. 120]. The tangent appears to fit the curve near

the point of contact in an optimal way. The situation is particularly simple

for a circle C, where the tangent at a point P on C is that unique line that

is perpendicular to the radial line connecting P to the center of the circle.

P

Fig. 1 Circle with tangent at point P.

In general, the line that is perpendicular to a tangent at a point P on a
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curve is called the normal to the curve at P . Circles are special, since all

normals go through the center and consequently are easy to draw for any

point P on the circle. However, when one considers more general curves,

there is no obvious way to construct normals and/or tangents. Finding

either one immediately determines the other.1 The main problem then is to

turn the intuitive but vague ancient idea of “tangent” recalled above into

a precise definition that can be used to identify tangents and determine

their slopes for arbitrary curves. Intuitively, we recognize that (in a small

neighborhood) a tangent intersects the curve under consideration only at

one point P—the point of tangency—while most small perturbations (i.e.,

changes) of the tangent will intersect the curve at two distinct points close

to P. (See Figure 2.)

Fig. 2 Perturbation of a tangent reveals two points of intersection.

So the tangent intersects the curve at the single point P , which however

covers two (or more) overlapping points that separate when the tangent is

rotated just so slightly. The point P of tangency really accounts for two

points of intersection that just happen to coincide in the special case of a

tangent. We call such a point a “double point”, or a point of “multiplicity

two”. Note that for any other line through P that “cuts” the curve—and

hence does not fit our intuitive idea of a tangent— the point of intersection

really gets counted only once. In Figure 3, the dashed lines are perturba-

tions of such a line through P ; they still intersect the curve only at one

1Typically, over the centuries, geometers have focused on tangents, although René
Descartes (1596 - 1650), perhaps the best known mathematician and philosopher of the
first half of the 17th century, preferred studying the normal to a curve. [V. Katz, op.
cit., pp. 511-512]
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point (at least in a neighborhood of P ).

P

Fig. 3 Perturbations of a line that is not a tangent.

In certain situations the point of tangency may hide more than two

points. In Figure 4 the horizontal line is tangent to the curve at P . Turn-

ing the tangent just so slightly counterclockwise will reveal two additional

distinct points of intersection, for a total of three points. Such a point P is

said to have “multiplicity three”.

P

Fig. 4 A point of tangency of multiplicity three.

Based on these considerations we make the following geometric defini-

tion of a tangent.



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 5

Prelude to Calculus 5

Definition 2.1. A tangent to a curve at the point P is a line that intersects

the curve at that point with multiplicity two or higher, that is, a suitable

arbitrarily small rotation of the line around P will separate P into two or

more points of intersection.

Now that we have a more precise definition of a tangent we can look

for appropriate tools to identify such tangents, i.e., to find lines that inter-

sect the curve with multiplicity two or higher. The introduction of coordi-

nates by René Descartes in the 17th century was a major turning point, as

it allowed mathematicians to translate geometric properties into algebraic

properties involving numbers and equations, thereby making available alge-

braic methods for solving geometric problems. In particular, for a quadratic

equation

x2 + 2bx+ c = 0

we are well familiar with the notion of a double zero, or zero of multiplicity

two. This means that the two solutions x1 = −b +
√
b2 − c and x2 =

−b −
√
b2 − c coincide; this occurs exactly when b2 − c = 0. In this case,

the equation takes the form

(x + b)2 = 0,

which shows that the zero x = −b has multiplicity 2, as the factor (x + b)

appears twice. Note that exactly in this case the x−axis is the tangent to

the graph of f(x) = (x + b)2. (See Figure 5.) Already at the dawn of

x

y

Fig. 5 Left: double zero; right: two distinct zeroes.
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calculus Descartes used this insight to construct the normals to an ellipse.2

Let us apply this algebraic process to identify the tangents for a circle.

To keep matters simple we place the center of the circle at the point (0, 0),

i.e., at the center of the coordinate system, and we choose the radius to be

1, so that the equation of the circle is x2 + y2 = 1. Any (non-vertical) line

through a fixed point (a , b) has an equation of the form y − b = m(x− a),

where m is the so-called slope of the line, which measures the inclination or

direction of the line. This particular equation is known as the point-slope

form of the line. (Note that b is not the “y-intercept” in this setting. Lines

and their slopes are reviewed in detail in Section I.2.) Let us now choose

(a , b) on the circle, so that a2 + b2 = 1, and consider lines through (a , b).

(See Figure 6 below.)

P = (a, b)

x

y

1

Fig. 6 Circle of radius 1 with lines through the point P.

We need to determine the slope m so that the line intersects the circle in

a double point. This can be done by using simple familiar algebraic tools,

as follows. The points of intersection (x, y) of the circle with such a line

2More precisely, Descartes constructed a circle which intersects the ellipse at a point
P with multiplicity 2. The normal to that circle at P then coincides with the normal
to the ellipse.
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must satisfy the two equations

x2 + y2 = 1 and y − b = m(x− a). (P.1)

While the straightforward substitution of y = b + m(x − a) into the first

equation in (P.1) leads to a quadratic equation for x that can readily be

solved by standard techniques, it is easier to take advantage of the fact that

x = a is one of the two solutions, i.e., the resulting equation must have a

factor (x− a). We use the equation a2 + b2 = 1 (the point (a, b) lies on the

circle!) and subtract it from the left equation in (P.1). One obtains

x2 − a2 + y2 − b2 = 0,

which can be factored into

(x+ a)(x − a) + (y + b)(y − b) = 0.

Now substitute m(x−a) for y−b and rearrange, so that the equation turns

into the form

[(x+ a) + (y + b)m] (x− a) = 0.

This clearly shows—as expected—that x = a is one of the solutions, and

that the other point of intersection (x, y) must satisfy

[(x+ a) + (y + b)m] = 0.

Since we are looking for the slope m for which the point (a, b) is a double

point of intersection, the second point (x, y) must be (a , b) as well, i.e.,

x = a and y = b. Substituting these values into the last equation shows

that m must satisfy

2a+ 2bm = 0.

If b 6= 0, that is, if (a , b) 6= (1, 0) or (−1, 0), it follows that m = −a/b is

the slope of the unique line for which the point (a , b) of intersection with

the circle is a double point. So m = −a/b is the slope of the tangent line

at the point (a, b). Note that this result confirms the classical construction:

if we also assume that a 6= 0, the slope mN of the normal, i.e., the radius

line from the center (0, 0) to (a, b), is b/a , and since (−a/b)(b/a) = −1, the

tangent we determined algebraically is indeed perpendicular to the normal.3

3We use the fact that if m1 and m2 are the (non-zero) slopes of two lines, then the
lines are perpendicular if and only if m1m2 = −1. This result is discussed in Section
I.2.3.
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2.1 Exercises

1. Consider the curve given by y = x2.

a) Find the points of intersection of this curve with the line of slope m

through (0, 0) given by y = mx.

b) For which m is the point of intersection (0, 0) a double point?

2. This example illustrates a point of tangency of multiplicity 3. Consider

the curve given by y = x3. The line y = 0, i.e., the x-axis, is tangential

to the curve and intersects the curve only at the point (0, 0).

a) Set up the equation to determine the x-coordinates of all points of

intersection of the curve with the line y = mx with slope m.

b) How many solutions are there in the case m = 0?

c) How many solutions are there in the case m < 0?

d) Find all points of intersection of the curve and the line in the case

m > 0 (no matter how small). Are they all different? How many

such points are there?

3. The (vertical) line given by x = 1 is the tangent to the circle x2+y2 = 1

at the point (1, 0). Explain why any small perturbation of that line

through (1, 0) is given by an equation x = 1+my for m close to 0. Find

all points of intersection of the line x = 1 +my with the circle C.

4. Modify the argument given in the text for the unit circle to find the

equation of the tangent line to the ellipse given by the equation

x2

9
+

y2

16
= 1

at the arbitrary point (a, b) on the ellipse.

5. Generalize problem 4 to the case of an arbitrary ellipse given by

x2

A2
+

y2

B2
= 1,

where A,B > 0 are the axis of the ellipse.

3 Tangents to Parabolas

Another classical curve studied extensively by Greek geometers is the

parabola, which has the remarkable physical property that light rays that

enter the parabola parallel to the axis of the parabola are reflected on the

parabola so that they all go through one single point F on the axis, the

so-called focus. (See Figure 7 below.) This property has important applica-

tions in optics; for example, the 3-dimensional version obtained by rotating
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the parabola around its axis provides the theoretical foundation for today’s

parabolic telescopes.

P

dd

Q V F

Fig. 7 Reflecting properties of the tangent of the parabola.

Parabolas arose in antiquity as special cases of so-called conic sections,

that is, those curves that are obtained by intersecting a circular cone with

a plane. Depending on the angle between the plane and the axis of the

cone, these curves are either ellipses, parabolas, or hyperbolas. In par-

ticular, parabolas arise when the plane is parallel to the mantle of the

cone. The great geometer Apollonius (3rd century B.C.) is credited with

systematically recording the geometric definitions and known properties of

the conic sections, and with discovering many additional properties. In

particular, Apollonius discovered—in geometric language—a description of

the parabola that is equivalent to the familiar algebraic formulation in

Cartesian coordinates that we shall recall below. Most important for our

discussion, based on this characterization, Apollonius deduced the follow-

ing geometric construction of the tangent to a parabola at a point P. As

shown in Figure 7, the (perpendicular) projection of P onto the axis of the

parabola identifies a point at distance d from the vertex V . Consider the

point Q on the extended axis that is at the same distance d from V on the

opposite side. The tangent to the parabola at P is then that line through

P that goes through the point Q.
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Let us now translate geometry into algebra and apply the double point

method—which was so successful for a circle—to determine the tangents

to a parabola. We place the vertex V at the center (0, 0) of a Cartesian

coordinate system and choose the axis of the parabola along the positive

y-axis. The equation of the parabola is then y = λx2 for some λ > 0 that

depends on the distance between the vertex and the focus. Let us fix a

point (a, b) on the parabola. As before, any (non-vertical) line through

(a, b) has an equation y = b+m(x− a). Its points of intersection with the

parabola are the solutions of

λx2 − b−m(x− a) = 0.

After replacing b = λa2 (the point (a, b) is on the parabola), this equation

factors into

λ(x + a)(x− a)−m(x− a) = [λ(x+ a)−m](x− a) = 0.

The two solutions are a and m/λ− a. Consequently (a, b) is a double point

of intersection of the line with slope m precisely when a = m/λ − a, or

m = 2λa.

Example. At the point (−1, 1) the slope of the tangent to the graph

of f(x) = x2 equals 2(−1) = −2. Hence the equation of the tangent line at

that point is y = 1 + (−2)(x− (−1)), or y = 1− 2(x+ 1).

To complete the discussion, let us compare the algebraic result with the

classical geometric construction of Apollonius. The projection of (a, λa2)

onto the axis of the parabola gives the point (0, λa2) that is at distance

d = λa2 from the vertex V = (0, 0). According to Apollonius, the tangent

at (a, λa2) goes through the point (0,−λa2), and consequently that tangent

has slope m = [λa2 − (−λa2)]/(a − 0) = 2λa2/a = 2λa. As expected, this

agrees with result obtained by the double point method.

3.1 Exercises

1. Find the equation of the tangent line to the parabola given by y = 3
2x

2

at the point (2, 6).

2. Consider the point (3, 9) on the parabola given by y = x2.

a) Determine the equation of the line through (3, 9) with slope m.

b) Substitute the equation in a) into the equation y = x2 to obtain

a quadratic equation in x of the form x2 + bx + c = 0 for the x-

coordinates of the points of intersection of the line with the parabola,

where the coefficients b, c depend on m.
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c) Determine m so that the discriminant b2 − 4c = 0. Determine the

solution(s) of the equation for this value m.

3. Consider the parabola y = x2/4. Use the construction of Apollonius

to find the points of tangency on the parabola for the tangents to the

parabola through the point (0,−6).

4. Find the equations of each of the tangents to y = x2 that go through

the point (3, 0). (Hint: Make a sketch of the situation before starting

any computations.)

4 Motion with Variable Speed

Before continuing with the study of tangents for other curves we first want

to discuss the relationship of the tangent problem with a fundamental prob-

lem of motion. In fact, the search for a deeper understanding of motion and

related phenomena in the physical world in the 17th century was arguably

the major driving force that led to the development of calculus by Newton

and Leibniz.

Experience shows that a stone that is dropped from the top of a building

falls towards the ground at an increasing speed. The higher the building,

the faster the stone will be falling just before impact. It was Galileo Galilei

(1564 – 1642) who first analyzed the situation precisely in order to discover

the underlying laws of motion. Rather than trying to explain the causes

of phenomena by hidden actions of some mysterious higher being, Galileo

thought to simply describe basic observations and use his analytical mind

to distill the information into mathematical relationships. This shift from

seeking to understand the causes of phenomena to the more modest goal

to describe them quantitatively, turned out to be the breakthrough that—

empowered by new mathematical tools—led to the amazing progress in

mankind’s understanding of the physical world since Galileo’s days.

Based on numerous observations of falling stones4 and balls rolling down

inclined planes, and trusting that the observed motion is governed by sim-

ple principles, Galileo recognized in 1604 that the motion of a freely falling

body is uniformly accelerated , i.e., the increase in speed over a time interval

from t1 to t2 is a fixed multiple of the length t2 − t1 of that interval. In

particular, if at time t = 0 the speed is zero, then at later times t > 0 the

speed v(t) equals a·t for a certain fixed number a, the so-called acceleration.

4It is often reported that Galileo carried out such experiments by dropping stones from
the Leaning Tower of Pisa.
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Another relevant quantity—more easily measurable than speed—is the dis-

tance that an object has moved in a given time interval.5 Indeed, Galileo

proved by geometric arguments that in the case of uniformly accelerated

motion starting from rest, the ratio of the distances d1 and d2 traveled in

corresponding times t1 and t2 equals the ratio of the squares of the times,

i.e., d1 : d2 = t21 : t22. This translates into the formula d(t) = ct2 for the

distance d(t) traveled in time t, where c is another constant. Galileo was

able to confirm the validity of this latter formula in numerous experiments,

thereby also obtaining a numerical value—which depends on the particu-

lar units chosen to measure distance and time—for the constant c. In the

case of a freely falling object, and using today’s standard units meters for

distance and seconds for time, c is approximately 4.9 m/sec2.6

Incidentally, Galileo’s formula for a freely falling stone provides a prac-

tical technique to estimate the height of buildings or rock walls, as follows.

Example. Suppose a stone is dropped from the top of a building of

unknown height H meters. Its height h(t) above ground after t seconds is

then given by the formula

h(t) = H − 4.9t2 m,

where the minus sign accounts for the fact that the distance d(t) traveled

by the stone needs to be subtracted from the initial height H in order to

get the height after t seconds. The rock hits the ground when h(t) = 0.

Suppose this happens after t0 seconds. Then H − 4.9t20 = 0 implies that

H = 4.9t20 m. This formula is sometimes applied by rock climbers who need

to estimate the height above a ledge in order to judge whether their rope is

long enough to rappel down. Suppose a climber drops a stone, and by using

a watch (a stop watch would be nice) she determines that the stone hits

the ground after 3.5 seconds. By the preceding formula, the height above

ground thus is approximately 5 · (3.5)2 ≈ 61 m, which is quite a bit more

than her 50 m long rope. The climber thus decides not to rappel down at

that location.

Returning to Galileo’s result, the basic question that arises is how to

derive a formula for the velocity v(t) 7 of the falling stone at time t from
5For example, one could envision a long ruler placed vertically on the side of the build-

ing, with its initial point 0 placed at the top. A stop watch is started at the moment
the stone is dropped, and one reads off the position of the falling stone against the ruler
after 1, 2, ..., seconds.
6The unit m/sec2 for the constant c is a consequence of the relationship distance =

c× (time)2. If feet is used instead of meters, the numerical value for c is approximately
16 ft/sec2.
7Velocity is the term generally used in science for what common language calls speed;
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the formula for the distance d(t) = ct2. In particular, one needs to give

precise meaning to the concept of velocity at a single moment in time. As

commonly understood, velocity is a measure of the rate of change of position

over time, that is

velocity =
distance

time
.

More precisely, for two distinct moments in time t1 and t2, the average

velocity over the time interval I = [t1, t2] (assume t1 < t2) is

vI =
d(t2)− d(t1)

t2 − t1
, (P.2)

where d(t) is the distance traveled from the starting point t = 0, so that

d(0) = 0. If the average velocity of a motion is independent of the time

interval I, we say that the motion has constant velocity v = vI . In the

case of constant velocity, the velocity v(t) at any moment t is always this

same number v that equals the average velocity over any interval I, and it

then follows easily that the distance d(t) equals vt. However, in the case

of the falling stone the velocity is not constant, so how do we define the

velocity v(t) at any particular moment? Intuitively, we agree that at any

moment the falling stone is moving with a certain velocity, which increases

with time until the stone hits the ground. Similarly in modern times, when

traveling in a car, we do experience the (variable) velocity (or speed) at

any moment, and the speedometer even gives us a number that measures

this speed. If we apply the brakes, the speedometer indicates a decreasing

speed. So what exactly is the speedometer measuring?

Notice that for a fixed moment t0, while we agree that there is a velocity

v(t0), surely we cannot compute the average velocity over the interval [t0, t0]

by formula (P.2), since this formula now gives the meaningless expression
0
0 . However, if we rewrite the equation that defines velocity as the product

distance = velocity × time, then the problem becomes more manageable.

In fact, let us consider the simple case considered by Galileo, i.e., d(t) = ct2.

If we fix a particular time t0, then d(t) − d(t0) = ct2 − ct20, which factors

into

d(t)− d(t0) = c(t+ t0)(t− t0). (P.3)

Note that if t > t0 the factor c(t+ t0) in this last formula obviously equals

the average velocity over the time interval from t0 to t. (Just divide both

velocity is allowed to be both positive and negative (or zero), with the sign accounting for
the direction of motion along a line. More generally, when the motion is not constrained
to a line, the velocity is represented by a so-called vector, a more complicated quantity
that encodes, for example, the direction of the motion in space.
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sides of (P.3) by t − t0 6= 0.) This also holds if t < t0, where the time

interval now goes from t to t0. (See Problem 2 of Exercise 4.1.) Therefore,

trusting in the consistency of the formula (P.3), we are led to define the

velocity at t0 by taking the value of this factor at t = t0, i.e., we define

v(t0) = c(t0 + t0) = 2ct0.

Perhaps you have some doubts about the validity of this definition. After

all, the basic formula distance = velocity × time reduces, in the case t = t0,

to the equation 0 = c(t0+ t0) ·0, which surely is correct, but then any other

number k also satisfies the equation 0 = k · 0. So you may ask why do

we single out the particular number c(t0 + t0) among all the other possible

numbers k that satisfy the equation?

One justification surely comes from the fact that c(t0 + t0) is exactly

that number that arises when t is replaced by t0 in the algebraic formula

d(t)−d(t0) = c(t+t0)(t−t0). Since this formula does represent a “universal

truth”, the value of c(t + t0) at t = t0 should have an interpretation that

is analogous to that for all other values t, that is, it should represent a

velocity. And since only one moment in time t0 is involved, it is reasonable

to think of c(t0 + t0) as the velocity at t0.

Another justification is based on the geometric interpretation involving

tangents to parabolas that we discussed earlier in Section 3. As we showed

then (just replace x = t and y = d(t) = ct2), the line through the point

(t0, ct
2
0) with slope 2ct0 is the tangent to the graph of the function d(t) = ct2,

i.e., it is that line that fits the graph in an “optimal” way. Rephrasing this

in the context of motion we thus can say that at the moment t = t0, the

constant speed motion l(t) = ct20 + 2ct0(t− t0) with velocity 2ct0 (i.e., the

equation that defines the tangent) provides an optimal description of the

motion given by d(t) = ct2 at that moment. More precisely, this constant

speed motion matches the given motion described by d(t) at the moment

t0 “with multiplicity two”, that is, at two points in time that just happen

to coincide. Alternatively, think of a vehicle starting from rest at t = 0

under the same uniform acceleration as a falling stone, so that—according

to Galileo—the distance traveled at time t > 0 equals d(t) = ct2. At

time t0 the driver takes off his foot from the accelerator. Neglecting minor

factors such as friction, air resistance, and so on, the car would continue

rolling with constant velocity equal to 2ct0.

Finally we can also consider a dynamic point of view, which perhaps

reflects most closely the crux of motion with variable speed, as follows.

As we saw, for t 6= t0 the value q(t) = c(t + t0) gives the average velocity
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during the time interval [t0, t] (or [t, t0] if t < t0). Surely we expect that the

velocity at t0, no matter how defined, should be very close to the average

velocity over very short time intervals, i.e., when t is very close to t0, and

furthermore, this approximation should improve as the time interval gets

shorter, i.e., the closer t gets to t0. The chosen value v(t0) = q(t0) fulfills

this expectation perfectly, since

|q(t)− q(t0)| = |c(t+ t0)− 2ct0| = |c| |t− t0| . (P.4)

Evidently formula (P.4) shows that when t is “very close” to t0, then the

average velocity q(t) from t0 to t is “very close” to q(t0) as well. For

example, let us use meters and seconds, so that c ≈ 4.9 m/sec2. Suppose

t0 = 5 sec and t = t0 + 1/1000 = 5.001 sec; then the average velocity q(t)

during the interval [t0, t] equals 4.9× 10.001 m/sec, which differs from the

velocity q(5) = v(5) = 2 × 4.9 × 5 m/sec by 4.9 × 1/1000 = 0.0049 m/sec.

Stated differently, formula (P.4) gives a precise meaning to the intuitive

statement that as t approximates t0 (we write t → t0), then q(t) → q(t0)

as well. As we shall see later, the property we just discussed and that we

encode in the statement

if t → t0, then q(t) → q(t0),

is an elementary example of a fundamental abstract property that is known

as continuity.

Our discussion shows that the concept of instantaneous velocity, i.e.,

velocity at a particular moment, is really just another version of the tangent

problem. The techniques one develops in order to find the slope of tangents

also allow us to define and calculate the velocity at a single moment in time.

In particular, returning to Galileo’s investigations of freely falling bodies,

where d(t) = ct2, we have determined that the velocity after t seconds is

given by v(t) = 2ct. This confirms that the motion indeed is uniformly

accelerated, with the acceleration a given by 2c ≈ 9.8 m/sec2. Thus the

distance formula under uniform acceleration takes the more informative

form

d(t) =
1

2
× acceleration × t2.

4.1 Exercises

1. Suppose a stone is pushed off a tower which is 60 m high. After how

many seconds will the stone hit the ground?
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2. Explain why the formula (P.2) gives the same value regardless of whether

t1 < t2 or t2 < t1.

3. A coin dropped into a deep well hits water after 2.5 seconds. How deep

is the well?

4. Let f(x) = x2 + 4x.

a) Establish an estimate |f(x) − f(a)| ≤ c |x− a| for |x− a| ≤ 1 and

some constant c > 0. (Hint: Factor f(x)− f(a).)

b) Explain why this implies that f(x) → f(a) as x → a.

5 Tangents to Graphs of Polynomials

Before continuing with the tangent problem, let us review an important

fundamental fact about zeroes of polynomials. Recall that a polynomial

P is a function whose value at the real number x is given by a formula

P (x) = cnx
n+ cn−1x

n−1+ ...+ c1x+ c0, where the coefficients c0, ..., cn are

certain fixed numbers. If cn 6= 0, the polynomial P is said to have degree

n.

Proposition 5.1. If the polynomial P of degree n ≥ 1 has a zero at the

point x = a, then (x − a) is a factor of P, i.e., there exists a unique

polynomial q of degree n− 1 such that

P (x) = q(x)(x − a).

Proof 1. This is a well known simple consequence of the division al-

gorithm for polynomials, as follows. By that algorithm, P (x)/(x − a) =

q(x) + R(x)/(x − a) for some polynomial q, where the remainder R is a

polynomial of degree less than the degree of x− a, which is one. So R has

degree 0 and hence must be a constant R0. Thus P (x) = q(x)(x−a)+R0,

and evaluation at a shows that 0 = q(a) · 0 + R0, so that R0 = 0. This

completes the proof of the proposition. �

Because this result is so important for our discussion, we shall also verify

it by a different argument that does not rely on the division algorithm. The

reader eager to proceed may surely skip this alternate verification.

Proof 2. We rewrite x as (x − a) + a and note that

x2 = [(x− a) + a]2 = (x− a)2 + 2(x− a)a+ a2 .

More generally, for k = 3, 4, 5, ... one similarly has

xk = [(x−a)+a]k = (x−a)k+bk,k−1(x−a)k−1a1+ ...+bk,1(x−a)ak−1+ak
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for some numbers bk,1, ..., bk,k−1. (The numbers bk,j can be described ex-

plicitly in terms of binomial coefficients: bk,j =
(

k
j

)

.) All summands on the

right side, except the last term ak, contain the factor (x−a). Consequently,

[(x− a)+ a]k = qk(x)(x− a)+ ak, where qk is a polynomial of degree k− 1.

Therefore

P (x) = cn[(x− a) + a]n + cn−1[(x− a) + a]n−1 + ...+ c1[(x− a) + a]1 + c0

= cn[qn(x)(x − a) + an] + cn−1[qn−1(x)(x − a) + an−1] + ...

...+ c1[(x− a) + a] + c0

= [cnqn(x) + cn−1qn−1(x) + ...+ c1] (x − a)+

...+
[

cna
n + cn−1a

n−1 + ...+ c1a+ c0
]

= q(x)(x − a) + P (a),

where q(x) = [cnqn(x) + cn−1qn−1(x) + ...+ c1]. Since P (a) = 0, the

proposition is proved. �

Given the factorization P (x) = q(x)(x−a), if q has a zero at some point

a#, which means that P has zeroes both at a and a#, the proposition gives

a factorization q(x) = q#(x)(x−a#) for some other polynomial q# of degree

n− 2, and consequently P (x) = q#(x)(x− a#)(x− a). This result remains

correct if the two points a and a# happen to coincide, so that the zero at

a = a# is counted twice, that is, it has multiplicity 2 (or higher). One is

thus led to the following definition.

Definition 5.2. The polynomial P of degree n has a zero of multiplicity

≥ m at a for some m between 1 and n, if there exists a factorization

P (x) = qm(x)(x − a)m

with some polynomial qm of degree n−m.

We say that the zero at a has multiplicity equal to m if the multiplicity

is ≥ m but not ≥ m + 1; clearly this occurs precisely when in the above

factorization one has qm(a) 6= 0.

We are now ready to apply the double point method to an arbitrary

polynomial P , which we might as well assume to have degree ≥ 2. We fix

a point (a, P (a)) on its graph. A non-vertical line through this point has

equation y = P (a)+m(x−a), and its points of intersection with the graph

of P are the solutions of the equation

P (x)− [P (a) +m(x− a)] = 0. (P.5)
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We need to find the slope m so that this equation has a zero of multi-

plicity at least 2 at x = a. Since P (x)− P (a) has a zero at a, Proposition

5.1 implies that P (x) − P (a) = q(x)(x − a), and similarly it then follows

that q(x) − q(a) = k(x)(x − a), where q and k are polynomials of appro-

priate degrees. We want to emphasize that the polynomials q and k that

are determined by these factorizations depend also on the point a that has

been fixed. By combining the two factorizations one obtains

P (x) − [P (a) +m(x− a)] = q(x)(x − a)−m(x− a) = [q(x) −m](x− a)

= [q(a)−m](x − a) + [q(x) − q(a)](x − a)

= [q(a)−m](x − a) + k(x)(x − a)2.

This representation shows that the equation (P.5) has a zero of multiplicity

at least 2 at a if and only if m = q(a).

We are thus justified in making the following definition that is just an

algebraic version of the earlier geometric Definition 2.1.

Definition 5.3. The tangent line to the graph of a polynomial P at

the point (a, P (a)) is the (unique) line through (a, P (a)) that intersects the

graph at that point with multiplicity at least 2. The slope of the tangent is

called the derivative of P at a, and it is denoted by D(P )(a), or also by

P ′(a).

This definition also applies if the graph of P is a line L, i.e., if P has

degree ≤ 1. Note that in this case another line can intersect L with multi-

plicity greater than one only if the two lines coincide.

The preceding calculation proves the following elementary, but most

important result.

Theorem 5.4. The slope of the tangent line to the graph of P at the

point (a, P (a)) is given by q(a), where q is the polynomial factor in the

representation P (x) − P (a) = q(x)(x − a), that is, D(P )(a) = q(a).

We shall say that a function f is algebraically differentiable at the point

a if the graph of f has a tangent line at (a, f(a)) according to the definition

above, where the meaning of “multiplicity at least two” will have to be

suitably modified according to the properties of f . Using this language,

the result we just proved means that every polynomial is algebraically dif-

ferentiable at every point. The process of finding the derivative (i.e., the

slope) is also called differentiation.
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Remarks on Notation. The symbol D refers to Derivative, and it is

used to indicate that it is an operation applied to the polynomial P that

results in a new function D(P ), the derivative of P . The symbol P ′ is

often used for the sake of brevity. Historically, the derivative has also

been denoted by the “differential quotient” dP/dx, a formal quotient of

“differentials” dP and dx that were used to denote the vague concept of

infinitesimals, or infinitely small quantities. This latter notation reminds us

of the relationship of the derivative to the average rates of change ∆P/∆x

that we encountered, for example, in the context of average velocity in the

previous section. Since the approach chosen in this book emphasizes the

factorization formula as a product, and since we avoid quotients that lead

to 0/0, we shall limit the use of the notation dP/dx mainly to applications,

when we want to highlight the relevant variables under consideration and

the interpretation of derivatives as rates of change.

As we just noted, the derivative D(P ) = P ′ of a polynomial P defines a

new function given by y = P ′ (x). By the rules established in Section 6, P ′

is again a polynomial. Consequently P ′ is also algebraically differentiable;

its derivative (P ′)′ is written as P ′′ (or D(D(P )) = D2(P )) and it is called

the second derivative of P , or the derivative of order two. Similarly one

can define derivatives of order three or higher, with analogous notations

P ′′′ = P (3), or D3(P ), etc.

The factor q, whose value at a provides the critical piece of information

to describe the tangent at the point (a, P (a)), can be computed by the

division algorithm for polynomials, although that may not be the most

practical approach for calculating the derivative. As we shall see in the next

section, once we have developed some basic general rules, finding derivatives

will turn out to be a quick and rather simple mechanical process. Let us

discuss one such basic rule that is at the core of the differentiation rule for

polynomials.

Example. For a positive integer n the derivative of f(x) = xn is

obtained as follows. Fix a and factor xn − an = q(x)(x − a), where

q(x) =

n−1
∑

j=0

xn−1−jaj . (P.6)

Then

D(f)(a) = q(a) = n an−1.

Consequently, the derivative of f(x) = xn at an arbitrary value x is given

by f ′(x) = nxn−1, or D(xn) = nxn−1. Alternatively, we may simply write
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(xn)′ = nxn−1. This formula is called the power rule for differentiation.

Note that in the case n = 0, i.e., if f is the constant function with value 1,

one has f(x) − f(a) = 0, so that the factor q equals 0; this implies that f

has derivative 0 at every point. Thus the power rule holds in this case as

well.

Remark. The validity of formula (P.6) for q can readily be checked by

multiplication. Another technique to find the value q(a), i.e., the deriva-

tive, is based on replacing x = a + h, where h = x − a, and observing

that

xn − an = (a+ h)n − an

= an + nhan−1 + h2k(h)− an

= [nan−1 + h · k(h)]h,
where k is a polynomial in h of degree n− 2 that also depends on the fixed

number a. After substituting back h = x − a in the last expression, one

obtains

xn − an = [nan−1 + (x − a)k(x− a)](x− a).

This shows that the factor q is given by q(x) = nan−1 + (x − a)k(x − a).

While this does not give the full explicit expression for q stated in (P.6), it

does however imply the critical information that

D(xn)(a) = q(a) = nan−1 + 0k(0) = nan−1.

The algebraic differentiation process that we just discussed for polyno-

mials extends immediately to rational functions R = P/Q (i.e., quotients of

polynomials) at any point a where R is defined, that is, where the denomi-

nator Q is non-zero. Given that Q(a) 6= 0, if R(a) = 0, then one must have

P (a) = 0 as well, and hence P (x) = qP (x)(x − a) for some polynomial qP .

Consequently R(x) = q(x)(x − a), where q = qP /Q is a rational function

defined at a. If R(a) 6= 0, one obtains a corresponding factorization

R(x)−R(a) = qR(x)(x − a) (P.7)

with another rational function qR defined at a. In analogy to the case of

polynomials we say that a rational function R has a zero at a of multiplicity

≥ m, where m is a positive integer, if R(x) = km(x)(x − a)m for some

rational function km(x) defined at a. By an argument analogous to the

one used earlier for polynomials, it follows that a rational function R is

algebraically differentiable at every point a where it is defined, i.e., its graph

has a (unique) tangent line at the point (a,R(a)) defined by the property
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that it intersects the graph of R at (a,R(a)) with multiplicity at least two.

The slope of the tangent (i.e., the derivative D(R)(a) of R) equals the

value qR(a), where qR is the factor in equation (P.7), just as in the case of

polynomials.

5.1 Exercises

1. Verify the following generalization of the power rule for differentiation.

If c is a constant, then D(cxn) = cnxn−1 for n = 1, 2, ... .

2. Show that if the rational function R is defined at the point x = a, then

D(cR)(a) = cD(R)(a) for any constant c.

3. Consider the rational function R defined by R(x) = 1/x for all x 6= 0.

a) If a 6= 0, show that 1
x − 1

a = −1
ax (x − a).

b) Use the result in a) to find the derivative of R at the point a.

4. Find the equation of the tangent line to the graph of f(x) = 3x4 at

the point (1, 3). (Hint: Use Problem 1 above to find the slope of the

tangent.)

5. Find the equation of the tangent line to the hyperbola described by

1 = xy at the arbitrary point (a, 1/a) on the graph, where a 6= 0, by the

following two methods.

a) Write the equation of an arbitrary line through (a, 1/a) with slope

m. Substitute this into 1 = xy and determine m, so that the point of

intersection (a, 1/a) of the line with the hyperbola is a double point.

b) Write the equation as y = 1/x and use Problem 3 above to find the

slope of the tangent directly.

6 Rules for Differentiation

In this section all functions will be assumed to be rational. As we shall see

in the next section, the rules we develop in this section, as well as their

proofs, will apply verbatim if rational functions are replaced by functions

that are algebraically differentiable, which we defined earlier. Later, in

the main part of this book, we will see that these rules also remain valid

for arbitrary differentiable functions. In fact, except for a minor—though

most critical—additional argument, the same proofs will work in that most

general case.
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6.1 Elementary Rules

We begin with the simplest rules, whose verification is straightforward.

Rule 0 (Power Rule). If n ≥ 0 is an integer, then (xn)′ = nxn−1.

This is the rule we established already at the end of Section 5.

Rule I (Linearity).

(1) D(cf) = c D(f) for any constant c.

(2) D(f ± g) = D(f)±D(g).

Rules 0 and I allow us to easily find the derivative of any polynomial P .

Examples.

i) (4x3)′ = 4 · (x3)′ = 4 · 3x2 = 12x2.

ii) (3x2 − 5x4)′ = (3x2)′ − (5x4)′ = 3x− 5 · 4x3.

iii) (5x7 − 3x6 + 2x4 − 5x2 + 7x− 4)′ = 35x6 − 18x5 + 8x3 − 10x+ 7.

In general, if P (x) = cnx
n + cn−1x

n−1 + ...+ c1x+ c0, then

D(P )(x) = P ′(x) = ncnx
n−1 + (n− 1)cn−1x

n−2 + ...+ c1

is a polynomial of degree one less than the degree of P .

The verification of Rule I is straightforward. We prove Rule I.2, and

leave Rule I.1 to the reader. Consider the factorizations f(x) − f(a) =

qf (x)(x − a) and g(x)− g(a) = qg(x)(x − a). Then

(f + g)(x) − (f + g)(a) = f(x)− f(a) + g(x)− g(a)

= [qf (x) + qg(x)](x − a).

It follows that (f + g)′(a) = [qf + qg](a) = qf (a) + qg(a) = f ′(a) + g′(a).
The proof with − instead of + works exactly the same way.

Rule II (Chain Rule). Recall that for two functions f and g, the

composition f◦g of f and g is defined by evaluating first g and then inserting

the output into f , i.e., (f ◦ g)(x) = f(g(x)). Since we allow the functions

to be rational, one must limit the input x to values a for which g is defined

and so that f is defined at b = g(a). (If both f and g are polynomials, there

is no restriction on x.) The chain rule then states that

D(f ◦ g)(a) = D(f)(b) ·D(g)(a), where b = g(a), or

(f ◦ g)′(a) = f ′(g(a)) · g′(a).



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 23

Prelude to Calculus 23

By using functional notation, the chain rule can be written D(f ◦ g) =

(D(f) ◦ g) · D(g). The crux of the matter is that the derivative of a

composition is the product of the derivatives. The proof is very sim-

ple and natural. As before, we write f(y) − f(b) = qf (y)(y − b) and

g(x) − g(a) = qg(x)(x − a), where qf and qg are the appropriate ratio-

nal factors, and substitute y = g(x) and b = g(a) to obtain

(f ◦ g)(x)− (f ◦ g)(a) = f(g(x))− f(g(a))

= qf (g(x))(g(x) − g(a))

= qf (g(x))qg(x)(x − a).

Since qf (g(x))qg(x) is a rational function defined at a, it follows that

(f ◦ g)′(a) = qf (g(a))qg(a) = f ′(g(a))g′(a),

as claimed.

Examples. i) Suppose F (x) = (3x3 − 5x2 + 2)10. We could expand

F into standard polynomial form by the binomial theorem and apply rules

0 and I to find the derivative. However, this involves a messy algebraic

computation, and the simple structure of F and of its derivative would be

lost. Instead, we note that F is the composition F = f ◦ g of the simpler

functions f(y) = y10 and g(x) = 3x3 − 5x2 + 2. By the chain rule it then

follows that

F ′(x) = [(3x3 − 5x2 + 2)10]′ = f ′(g(x))g′(x)

= 10g(x)9g′(x)

= 10(3x3 − 5x2 + 2)9(9x2 − 10x).

ii) Let m and n be two positive integers. Then (xm)n = xmn by a

standard rule for exponents. We calculate the derivative on the left by the

chain rule, obtaining

[(xm)n]′ = n(xm)n−1(mxm−1)

= nmxm(n−1)xm−1

= mnxmn−1,

where in the final step we have used another standard rule for exponents,

i.e., xsxt = xs+t. Note that the answer agrees with the direct application

of the power rule to the right side xmn.
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6.2 Inverse Function Rule

Suppose the rational function R is one-to-one on the interval I, that is, if

x1 and x2 are any two points in I with R(x1) = R(x2), then x1 = x2. It

then follows that R has an inverse function x = S(y) defined on the set

J = R(I) = {y : y = R(x) for some x ∈ I},
which satisfies S(R(x)) = x for x ∈ I and R(S(y)) = y for y ∈ J . The

following rule for the derivative of the inverse S is most natural, although

its precise verification requires a little bit more work than the preceding

rules.

Rule III. If a ∈ I and R′(a) 6= 0, then S is algebraically differentiable

at b = R(a), and

D(S)(b) =
1

D(R)(a)
. (P.8)

Remark. In explicit examples, such as the ones discussed below,

one can typically check directly whether a function is one-to-one on a given

interval (for example, one could apply the so-called “horizontal line test”).8

It is noteworthy that one can show that the condition R′(a) 6= 0 is already

sufficient for R to be one-to-one on a suitably small interval that contains

a. This will be discussed in greater generality in Chapter III.

Example. Consider the function R(x) = x2 on the interval I = {x :

x > 0}. R is one-to-one on I, and R′(x) = 2x > 0 for x ∈ I. So R has an

inverse S given by S(y) =
√
y that is defined on J = {y : y > 0}. Note

that we can avoid any difficulties involving irrational numbers such as
√
2

if we limit x to just positive rational numbers, so that

J = {y : y = x2 for x rational and x > 0}.
Rule III then implies that S is algebraically differentiable at any point

b = a2 with a > 0, and that, by (P.8),

D(
√
y)(b) =

1

D(x2)(a)
=

1

2a
=

1

2
√
b
.

Note that in exponential notation
√
y = y1/2, so that the preceding result

translates into
(

y1/2
)′

=
1

2

1

y1/2
=

1

2
y−1/2 =

1

2
y1/2−1.

8The “test” states that a function y = f(x) is one-to-one on the interval I if every
horizontal line intersects the graph {(x, f(x)) : x ∈ I} in at most one point.
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This shows that the power rule 0 holds also for the exponent 1/2. More

generally, by applying the inverse function rule to y = xn with a positive

integer n, one can check that the power rule remains valid for any exponent

of the form 1/n, that is,

D
(

y1/n
)

=
1

n
y1/n −1 for all y > 0. (P.9)

(See Problem 5 in Exercise 6.5.)

The proof of the Inverse Function Rule III follows the familiar pattern.

Proof. Fix a ∈ I. By hypothesis,

R(x)−R(a) = q(x)(x − a),

where q is a rational function defined at x = a, and q(a) = D(R)(a) 6= 0. It

follows that there exists an interval Ia ⊂ I centered at a such that q(x) 6= 0

for x ∈ Ia. Therefore the rational function 1/q is defined on Ia as well, and

it follows that

x− a =
1

q(x)
(R(x) −R(a)) =

1

q(x)
(y − b) for x ∈ Ia. (P.10)

By substituting x = S(y) and a = S(b), one obtains

S(y)− S(b) =
1

q(x)
(y − b) =

1

q(S(y))
(y − b). (P.11)

If S were rational, the proof would be complete. However, since the inverse

function S is not rational in general (i.e., it cannot be written as the quotient

of two polynomials), some additional arguments are needed to show that

S is algebraically differentiable. We note that for the rational function 1/q

one has a factorization (1/q)(x)−(1/q)(a) = k(x)(x−a), where k is rational

as well. Hence

(1/q)(x) = (1/q)(a) + k(x)(x − a).

By substituting this into formula (P.11) and rearranging, one obtains

S(y)− S(b)− 1

q(a)
(y − b) = [k(x)(x − a)](y − b)

=
k(x)

q(x)
(y − b)2 = [(

k

q
) ◦ S](y)(y − b)2,

where in the second equation we replaced (x− a) by using formula (P.10).

Since [(k/q) ◦ S]—while not rational in general—is a well-defined compo-

sition of a rational function with S, this final formula shows that the line

given by

L(y) = S(b) +
1

q(a)
(y − b)



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 26

26 What is Calculus? From Simple Algebra to Deep Analysis

does indeed intersect the graph of S at y = b with “multiplicity at least

2”. Indeed, this procedure naturally leads to the appropriate general-

ization of “multiplicity” from the known rational case to functions of a

more general type. So S is algebraically differentiable at b with derivative

S′(b) = 1/q(a) = 1/R′(a), as claimed. �

In particular, we see that just as in the case of rational functions, the

derivative 1/q(a) = 1/q(S(b)) of S at b is precisely the value at b of the

factor 1/q(S(y)) in the relevant factorization (P.11).

Note that the inverse function rule becomes a special case of the chain

rule once the latter has been extended to more general functions. In fact,

if R and S are inverses of each other and algebraically differentiable at

a and b = R(a), respectively, the chain rule applied to the composition

S ◦R—which satisfies (S ◦R)(x) = x—implies that

S′(R(a)) ·R′(a) = (S ◦R)′(a) = (x)′(a) = 1.

It follows that both R′(a) and S′(b) = S′(R(a)) must be 6= 0, and the

inverse function rule follows by dividing by R′(a).

6.3 Product Rule

From the perspective of algebra, the product f · g of two functions defined

by (f · g)(x) = f(x)g(x) might appear more natural and simpler than the

composition f ◦ g. However, for derivatives, the opposite is the case. Since

by the chain rule the derivative of a composition is the product of the

derivatives, we cannot expect the simple formula D(f · g) = D(f) ·D(g) for

the product of two functions, because the right side is already “reserved”.

In fact, the rule for finding the derivative of a product is more complicated,

as follows.

Rule IV (Product Rule).

D(f · g) = D(f) g + f D(g).

Proof. Notice that rule I.1 is a special case of the product rule: (cf)′ =
c′f + cf ′ = cf ′, since c′ = 0. For the proof of the product rule we suppose,

as usual, that the two rational functions f and g are defined at the point

x = a, and we rewrite the standard factorizations in the form

f(x) = f(a) + qf (x)(x − a) and g(x) = g(a) + qg(x)(x − a).
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Then

f(x)g(x) = f(a)g(a)+g(a)qf (x)(x−a)+f(a)qg(x)(x−a)+qf (x)qg(x)(x−a)2.

It follows that the relevant factorization for f · g is given by

(fg)(x)− (fg)(a) = [g(a)qf (x) + f(a)qg(x) + qf (x)qg(x)(x − a)](x− a)

= q(x)(x − a),

where q denotes the rational function in the edged bracket [...]. Therefore

(fg)′(a) = q(a) = g(a)qf (a) + f(a)qg(a) = g(a)f ′(a) + f(a)g′(a). �

Example. Let us take f(x) = g(x) = x. Then (fg)(x) = x2, and

hence (fg)′(x) = 2x. Since f ′(x) = g′(x) = 1, clearly f
′

(x)g′(x) = 1 6=
(fg)′(x). On the other hand, the product rule

(fg)′(x) = 1g(x) + f(x)1 = 1x+ x1 = 2x

gives the correct derivative of fg. More generally, if f(x) = xn and g(x) =

xm for two positive integers n and m, then, by the product and power rules,

(fg)′(x) = (xn)′xm + xn(xm)′

= nxn−1xm + xnmxm−1

= (n+m)xn+m−1.

The answer agrees, as it should, with the direct application of the power

rule to xn+m = xnxm.

Example. Use the product rule to find the derivative of

f(x) = (x3 − 4x+ 1)(4x5 + 2x4 − x3 + 20x).

Solution.

D(f)(x) = [D(x3 − 4x+ 1)](4x5 + 2x4 − x3 + 20x)

+(x3 − 4x+ 1)D(4x5 + 2x4 − x3 + 20x)

= (3x2 − 4)(4x5 + 2x4 − x3 + 20x)

+(x3 − 4x+ 1)(20x4 + 8x3 − 3x2 + 20).

Do not simplify the answer any further.
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6.4 Quotient Rule

The rule for differentiating the quotient of two functions is even more com-

plicated then the product rule. Let us first consider the simpler case of

the reciprocal 1/f of a rational function f with f(a) 6= 0. With q the

appropriate rational factor that satisfies f(x)− f(a) = q(x)(x− a), so that

q(a) = f ′(a), it follows that

1

f(x)
− 1

f(a)
=

f(a)− f(x)

f(x)f(a)
=

−q(x)(x − a)

f(x)f(a)

= − q(x)

f(x)f(a)
(x− a).

This factorization leads to the reciprocal rule
(

1

f

)′
(a) = − q(a)

(f(a))2
= − f ′(a)

(f(a))2
,

or

D

(

1

f

)

= −D(f)

f 2
.

Examples. i) Let us apply the reciprocal rule to find the derivative of

y = 1/x at x 6= 0. It follows that
(

1

x

)′
= − x′

x2
= − 1

x2
.

ii) More generally, let m be any positive integer. Then
(

1

xm

)′
= −mxm−1

x2m
= (−m)

1

xm+1
.

By the definition of powers with negative exponents, this translates into

[x−m]′ = (−m)x−m−1.

In this form the formula matches exactly the power rule 0 with exponent

n = −m, i.e., for n a negative integer. By combining this last result with

rule 0 one thus obtains the power rule

(xn)′ = nxn−1 for any integer n and all x 6= 0.

Of course the result holds also for x = 0 in the case n ≥ 0. By combining

this result with the formula (P.9) for D(x1/n) for x > 0, and with the chain

rule II, one verifies that the power rule

D(xr) = rxr−1 for x > 0
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holds for any rational exponent r. (See Problems 7 and 8 of Exercise 6.5.)

iii) By the reciprocal rule, one obtains

D(
1

x3 + 1
) = − 3x2

(x3 + 1)2
for all x 6= −1.

Remark. The reciprocal rule can also be obtained directly from the

product rule. (See Problem 3 in Exercise 6.5.)

Finally, the general case of a quotient g/f of rational functions follows

by combining the product rule IV with the reciprocal rule, as follows.

D

(

g

f

)

(a) = D[g ·
(

1

f

)

](a) = D(g)(a)
1

f(a)
+ g(a)D

(

1

f

)

(a)

= D(g)(a)
1

f(a)
+ g(a)

(

−D(f)(a)

f(a)2

)

.

Adding the two fractions gives the following formula.

Rule V (Quotient Rule).

D

(

g

f

)

(a) =
D(g)(a) f(a)− g(a) D(f)(a)

f(a)2

The expression in the numerator is very similar to the result of the product

rule, except for the minus sign. It is thus very important to keep the order

straight, i.e., to remember that differentiation begins with the numerator.

Symbolically, if Num is the Numerator and Den is the Denominator, then

Quotient Rule:

[

Num

Den

]′
=

Num′ Den−Num Den′

Den2
.

Example.
[

x3 − 4x2 + 3x− 1

x2 − 9

]′

=
(x3 − 4x2 + 3x− 1)′(x2 − 9)− (x3 − 4x2 + 3x− 1)(x2 − 9)′

(x2 − 9)2

=
(3x2 − 8x+ 3)(x2 − 9)− (x3 − 4x2 + 3x− 1)2x

(x2 − 9)2
for all x 6= ±3.

It is best to leave the answer in this last form which reflects the structure

of the quotient rule, rather than to attempt any algebraic “simplification”.

Remark. The quotient rule implies that the derivative R′(x) of a ratio-

nal function R(x) is again a rational function that is defined wherever R(x)
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is defined. Therefore R′ is algebraically differentiable, and one can define

its derivative R′′, i.e., the second order derivative, as well as derivatives of

higher order. All derivatives R(n) = Dn(R) are again rational with the

same domain as R.

We conclude with an example that combines several rules of differenti-

ation. It is best to proceed with one rule at a time, as appropriate, until

all differentiations have been carried out. Moreover, do not attempt any

simplifications neither during the calculations nor at the end.

(

(x3 + 2x)6
√
x2 + 1

4x+ 5

)′

=

D[(x3 + 2x)6
√
x2 + 1] · (4x+ 5)− [(x3 + 2x)6

√
x2 + 1] ·D(4x+ 5)

(4x+ 5)2
= (I)

by Rule V. Next,

(I) =
[D((x3 + 2x)6)

√
x2 + 1 + (x3 + 2x)6 D(

√
x2 + 1)] · (4x+ 5)

(4x+ 5)2

+
−[(x3 + 2x)6

√
x2 + 1] ·D(4x+ 5)

(4x+ 5)2
= (II)

where we have used the Product Rule IV. Finally, by using Rules 0-III, one

obtains

(II) =
[6(x3 + 2x)5(3x2 + 2)

√
x2 + 1 + (x3 + 2x)6(12

1√
x2+1

2x)](4x+ 5)

(4x+ 5)2

+
−[(x3 + 2x)6

√
x2 + 1] 4

(4x+ 5)2
.

6.5 Exercises

1. Find the derivatives of the following functions:

a) P (x) = 4x5 − 6x4 − 1
5x

3 + 3x2 + 2.

b) f(x) = 5x3 + 7x1/2 − 3(x2 + 1)7 for x > 0.

c) g(x) = 1/(3x4 + 7x2 + 2)5. (Hint: Use 1/(b5) = b−5.)

d) k(x) = 5x3−2x
4x2+x−1 .



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 31

Prelude to Calculus 31

e) h(x) = 4/x3 + 5x1/5 − 2
√
x4 + 2 for x 6= 0.

2. Find the derivative of G(x) = (x3 − 2x2 + 4x)
√
3x2 + 1.

3. a) Derive the reciprocal rule for differentiation directly from the product

rule by differentiating both sides of the equation f · (1/f) = 1. Note

that the reciprocal 1/f of a rational function f is rational as well,

and therefore it is algebraically differentiable.

b) Apply the analogous method to f · (g/f) = g to find the derivative

of g/f .

4. Note that the reciprocal 1/f of a function f with f(a) 6= 0 can be written

as the composition 1/f = g ◦ f , where g(y) = 1/y for y 6= 0. Use the

chain rule and power rule to prove the reciprocal rule for the derivative

D(1/f)(a).

5. Let n be a positive integer. The function y = R(x) = xn is one-to-one on

the interval I = {x > 0}, with R(I) = I. Use the inverse function rule

III to find the derivative of the inverse x = S(y) = y1/n on I. Verify

that D(y1/n) = 1
ny

1/n −1.

6. This problem illustrates that root functions (i.e., the inverse function

rule) can be presented just by using rational numbers, as follows. Re-

strict the domain of the function R(x) = xn in Problem 5 to the set

Q+ = {r ∈ Q : r > 0} of positive rational numbers. Let S be the inverse

of R restricted to the set J = R(Q+). Find the derivative D(S)(rn) at

the point rn = R(r). Note that the graph {(r, rn) : r ∈ Q+} is, for all

practical purposes, indistinguishable from the familiar graph of R over

the positive real numbers.

7. Prove that the power rule holds for arbitrary rational exponents r =

m/n, n > 0. (Hint: Note that f(x) = xm/n = (x1/n)m and apply the

chain rule and the power rule for exponents m ∈ Z and 1/n.)

8. Do Problem 7 by reversing the order in the composition, i.e., write

f(x) = (xm)1/n.

7 More General Algebraic Functions

Notice that once one takes inverses of rational functions one ends up with

functions that usually are no longer rational, but that are of a more general

type. It is then natural to try to apply the differentiation rules we consid-

ered for rational functions to these new functions. More generally, let us

consider the collection of functions A that are obtained from the rational
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functions by applying compositions and inverses, as well as the standard

algebraic operations, a finite number of times, where the relevant functions

are restricted to appropriate domains consisting of finite unions of open

intervals, so that relevant quotients, compositions, and inverses are defined

and algebraically differentiable on these intervals. For example, the sum of

two functions f1, f2 ∈ A with domains Ω1 and Ω2 is defined on the domain

Ω = Ω1∩ Ω2 provided Ω is not empty. Similar conventions need to be ap-

plied when one considers other algebraic operations involving functions in

A. Functions in A are also called algebraic.

The most important fact is that the familiar factorization result for

polynomials generalizes to functions f ∈ A, as follows.

Lemma 7.1. (Factorization Lemma.) If f ∈ A and a is in the domain

of f, then there exists q ∈ A defined on the domain of f such that

f(x)− f(a) = q(x)(x − a). (P.12)

The proof of this statement basically involves checking through the

proofs of the rules we discussed in the preceding section, where in each

instance we were able to conclude that, given the factorization for the ini-

tial functions, one ends up with an appropriate factorization of the function

that results by application of one or several of the admissible operations.

Based on the factorization result, it is clear how to generalize the notion

of multiplicity of a zero a to the case of a function f ∈ A.

In analogy to the case of polynomial and rational functions, successive

application of the factorization lemma then implies the following result.

Corollary 7.2. Given f ∈ A and the factorization (P.12), then

f(x)− [f(a) +m(x− a)] = (q(a)−m)(x− a) + k(x)(x − a)2

for some other k ∈ A that is defined on the domain of f .

Geometrically, this means that the line described by the linear function

y = f(a) + m(x − a) intersects the graph of y = f(x) at (a, f(a)) with

multiplicity at least two if and only if m = q(a). Consequently, the line

given by y = f(a)+q(a)(x−a) is the tangent to the graph of f at (a, f(a)).

This shows that the function f ∈ A is algebraically differentiable at a, with

derivative D(f)(a) = f ′(a) = q(a), where q is defined by (P.12).

Furthermore, note that the differentiation rules I - V, including their ver-

ifications, only used the relevant factorizations and appropriate (algebraic)
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combinations of the functions and factors that arise. If the given functions

are in A, these combinations result in functions that remain within the

class of functions A. We thus obtain the following result.

All the rules for differentiation established in Section 6 remain valid

for functions in the class A at all points in the domains of the respective

functions.

It then follows that if f ∈ A is defined on the interval I, its derivative

D(f) defines a function on I that is again a member of the collection

A. Consequently one can define derivatives of higher order D(D(f)) =

f ′′, f ′′′, ..., f (n), ... All derivatives f (n) are in the class A and have the

same domain as the original function f .

Example.Let f(y) =
√
y be the inverse of y = x2 on x > 0. We already

saw that f is (algebraically) differentiable on I = (0,∞), with

f ′(y) =
1

2x
=

1

2
√
y
.

Let g(x) = x2 − 3x. Since g(x) > 0 on J = (−∞, 0) ∪ (3,∞), the compo-

sition (f ◦ g)(x) =
√
x2 − 3x is defined on J , is in A, and is (algebraically)

differentiable on its domain J, with

(f ◦ g)′(x) = [(f ′ ◦ g) · g′](x)

=
1

2
√
x2 − 3x

(2x− 3) for x ∈ J .

One can then apply the rules from Section 6 to calculate (f◦g)′′ = D[(f◦g)′]
at points x ∈ J as follows.

D[(f ◦ g)′](x) = D

[

1

2
√
x2 − 3x

]

(2x− 3) +
1

2
√
x2 − 3x

D(2x− 3)

=

[

−1

4
(x2 − 3x)−1/2−1(2x− 3)

]

(2x− 3) +
1

2
√
x2 − 3x

2

=
− (2x− 3)2

4(
√
x2 − 3x)3

+
1√

x2 − 3x
.

The structure of the formula for D[(f ◦ g)′] is summarized by

D[(f ◦ g)′] = D[(f ′ ◦ g) · g′]
= [(f ′′ ◦ g) · g′] · g′ + (f ′ ◦ g) · g′′.

As is well visible from this example, the calculation of successive derivatives

of functions in A, while based on repeated applications of the same basic
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differentiation rules, will very quickly result in more and more complicated

functions in A.

We conclude the discussion of algebraic functions with another impor-

tant consequence of the factorization (P.12).

Theorem 7.3. Given f ∈ A and a point a in the domain of f , there exist

numbers δ > 0 and K, such that one has the estimate

|f(x)− f(a)| ≤ K |x− a| for all x with |x− a| < δ. (P.13)

We had seen the significance of this kind of estimate already in Section

4, where it was used to recognize that the instantaneous velocity v(t0)

is well approximated by average velocities over shorter and shorter time

intervals around t0. The crucial property expressed by the estimate (P.13)

is that the values f(x) approach f(a) as x → a, since clearly the left side of

(P.13) becomes increasingly smaller as |x− a| → 0. This is the essence of

what is known as the continuity of the function f , a fundamental property

that will be discussed more in detail in Chapter II. As we shall see in the

next section, this approximation property is the critical ingredient that will

allow us to study the tangent problem for more general functions that are

not of algebraic type.

Proof. The proof of the theorem easily follows from the fact that func-

tions q ∈ A are locally bounded, as follows: given a in the domain of q,

there exist numbers δ > 0 and K that depend on q and a, so that

|q(x)| ≤ K for all x with |x− a| < δ. (P.14)

In order to prove the estimate (P.13), recall that by (P.12) one has

f(x) − f(a) = q(x)(x − a), where q ∈ A as well. Now use the above local

bound (P.14) for the factor q to obtain

|f(x)− f(a)| = |q(x)| |x− a| ≤ K |x− a|
for all x with |x− a| < δ. �

To verify the existence of a local bound for functions in A is particularly

simple for polynomials. Let q(x) = cnx
n + cn−1x

n−1 + ... + c1x
1 + c0 and

choose any positive number δ. Standard estimations then imply that

|q(x)| ≤ |cn| δn + |cn−1| δn−1 + ...+ |c1| δ1 + |c0| for all x with |x| ≤ δ,

that is, |q(x)| ≤ K, with K equal to the constant on the right side of the

preceding inequality. Things are a little bit more delicate in general. For
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example, note that the function q defined by q(x) = 1/x is NOT bounded

on the interval (0, 1). However, if a is any point in the domain of q, then

a 6= 0. Suppose a > 0, and take δ = a/2 > 0. Then for all x that satisfy

|x− a| ≤ δ one has x ≥ a − δ = a/2, and therefore |q(x)| = 1/x ≤ 2/a.

The same sort of argument, choosing δ = |a| /2, handles the case when

a < 0. We shall discuss the proof of the estimate (P.14) in the general case

in Chapter I.6.

7.1 Exercises

1. a) At which points is f(x) =
√
x2 − 4 algebraically differentiable?

b) Calculate D(f) and D2(f). (Do not try any algebraic simplifications

in the resulting formulas.)

2. Note that g(x) = x1/3 is defined for all x ∈ R. Show that g is alge-

braically differentiable at all x 6= 0 and find first and second derivative

of g at such points.

3. Show that the function g in Problem 2 is NOT (algebraically) differen-

tiable at x = 0. Reconcile this result with the (obvious) fact that the

line x = 0 (the y-axis) is the tangent to the graph of g at (0, 0).

4. Determine where

F (x) = 4

√

x1/2
4x− 1

(x3 + 3)5

is (algebraically) differentiable and find D(F )(x) at those points.

8 Beyond Algebraic Functions

The discussion in the preceding sections has covered the differential calculus

of algebraic functions. Only elementary algebraic tools were used, begin-

ning with the basic factorization lemma for polynomials and the related

concept of multiplicity of zeroes. These tools were then generalized in a

natural and systematic way to all functions built up from polynomials by

applying standard algebraic operations, including compositions and taking

inverses, a finite number of times. No new results and concepts needed to

be introduced beyond what is learned in typical high school algebra and

geometry courses. In particular, we did not require any advanced concepts

such as “limits” or “continuity”, and no subtle properties of numbers were

used beyond the basic arithmetic properties of the rational numbers, i.e.,
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the quotients of integers. You may further have noticed that the formulas

and other technical aspects really remained quite simple and natural until

we got to the product and quotient rules. While the operations of taking

products and quotients of functions are of course natural and useful, the

complicated algebraic structure of the corresponding differentiation rules

is quite surprising indeed, but it is important not to let these “unnatural”

rules obscure the simplicity of the fundamental ideas.

In summary, the central ideas appear already at the very beginning, in

the setting of the familiar polynomial functions. All subsequent work is

just a variation of that theme, namely an enlargement by finite standard

algebraic operations of the class of functions under consideration. The crux

of the matter is the (algebraic) factorization

f(x)− f(a) = q(x)(x − a),

where the factor q is just another function of the same type as the original

function f , which in principle can be computed explicitly, and that—most

importantly—is well defined also at the point a by a unified algebraic for-

mula. (See Lemma 7.1.) The value q(a) is then the derivative D(f)(a) of

f at the point a. Depending on the setting, q(a) = D(f)(a) gives the slope

of the tangent line at the point (a, f(a)), the instantaneous velocity at time

a, or, more generally, it can be viewed as an appropriate instantaneous rate

of change at the input value a. From this point of view, the instantaneous

velocity and other rates of change “at a single point” are captured by the

derivative of the relevant functions. In particular, we do want to emphasize

that many applications to classical topics in the physical sciences, such as

velocity and acceleration, as well as to other areas, can be handled by the

algebraic methods we have discussed so far, as long as the functions that

are used to model the underlying phenomena are of algebraic type.

Unfortunately, the algebraic functions and the algebraic techniques we

have discussed in this Prelude to Calculus are much too simple and limited

in order to describe many of the fundamental phenomena of the real world.

In response to this limitation the human mind, in its quest for deeper

understanding, has created amazing new functions and abstract concepts

that go well beyond the algebraic tools we have considered so far, and that—

at its roots—require a sophisticated extension of the concept of number,

resulting in the creation of the so-called real numbers that generalize the

familiar fractions or rational numbers. As we shall see, the real story of

differential calculus—in contrast to the elementary side discussed in this

Prelude—begins when we reach beyond the algebraic functions and enter

new uncharted territory.



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 37

Prelude to Calculus 37

Among the familiar phenomena that transcend algebraic methods are

periodic events, such as the revolution of planets around the sun, waves

in various media (e.g. sound waves or electromagnetic waves), or the fine

structure of electrons circling the nucleus of an atom, and problems related

to growth and decay, as they arise, for example, in the areas of biology

(growth of populations), finance (compound interest), or physics (radioac-

tive decay). The relevant simplest mathematical functions that need to be

considered—such as trigonometric, exponential, and logarithm functions—

have long been known, but they cannot be captured by finite algebraic

formulas, concepts, and techniques. To highlight this fact, these func-

tions and their close “relatives” are usually referred to as the elementary

transcendental functions.

The more complex nature of these transcendental functions shows up

clearly as soon as one investigates the tangent problem for these functions.

To be specific, let us consider the simple exponential function f(x) = 2x

that is used to describe a process in which the output doubles whenever

the input is increased by one unit. In fact, by one of the basic rules of

exponents, f satisfies

f(x+ 1) = 2x+1 = 2x21 = 2f(x) for any x.

It follows that if n is a positive integer, then f(x + n) = 2nf(x). Let us

recall the definition of 2x in the case where the exponent x is a rational

number. (This was already used in Section 6 in the discussion of the power

rule for differentiation in the case of rational exponents.) If m and n are

integers, with n > 0, then f(m/n) = 2m/n = n
√
2m, i.e., γ = 2m/n is that

(unique) positive number γ that satisfies γn = 2m. It follows that γ can

also be written as γ = (21/n)m. We must emphasize that—even though

the same operation of “exponentiation” is used—the exponential function

f(x) = 2x and the power function y = x2, or more generally, y = xm/n are

very different. The latter y = xm/n is of algebraic type, and its derivative

was handled by finite algebraic methods in Section 6, while the exponential

function f(x) = 2x, as we shall see, forces us to come to grips with amazing

new phenomena.

The graph of y = 2x for x ∈ Q, which is easily produced with a graphing

calculator (see Figure 8), looks just like an unbroken line that has been

gently bent in the same direction across its total length according to some

hidden rule.

Compared to the graphs of polynomials or rational functions, things

could not get any simpler, short of just considering lines. And yet, this
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Fig. 8 Graph of the exponential function y = 2x with a tangent.

simplicity hides remarkable new phenomena that come to light as soon as

one attempts to determine the tangent line at some point P on the graph.

Figure 8 certainly suggests that there indeed is a line that fits our intuitive

concept of tangent line—a line that touches the graph but does not cut it.

Again, as we had seen in Section 2, this geometric feature is made precise

by observing that small rotations of the tangent reveal that the point of

tangency P is indeed a double point. In order to investigate the slope of

the tangent more in detail, we simplify by choosing P = (0, 1). Proceeding

along the familiar path that was so successful in the case of polynomials

and other algebraic functions, we look for a factorization

f(x)− f(0) = q(x)(x − 0), i.e., 2x − 1 = q(x)x.

Unfortunately, there is no obvious explicitly known factor q defined at x = 0

that fits this factorization. In particular, there is no algebraic function q(x)

that does the job. Furthermore, searching for some explicit expression for

q built up from 2x that would provide an unambiguous natural definition

for q(0) turns out to be futile. Of course, as long as x 6= 0, the value q(x)

is completely determined by the formula

q(x) =
2x − 1

x
for x 6= 0,
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but this is useless for x = 0, since the formula would result in the mean-

ingless expression 0/0. Hence there is no way to evaluate q(0), which—by

analogy to the case of algebraic functions—would produce the value of the

slope of the tangent, i.e., the derivative of f(x) = 2x at x = 0. However, the

discussion of instantaneous velocity in Section 4 provides an important clue

about how we might proceed. Recall the insight—based on an intuitive un-

derstanding of instantaneous velocity consistent with our experience—that

the velocity v(t0) at a single moment t0 should be approximated as closely

as desired by the average velocity over smaller and smaller time intervals

[t0, t]. As we had seen, this important approximation property was made

precise by a suitable simple estimate. In fact, at the end of the last section

we generalized this estimate to all algebraic functions in the class A. (See

Theorem 7.3.)

If q were algebraic, the estimate |q(x)− q(0)| ≤ K |x− 0| (see equation

(P.13)) would imply that q(x) → q(0) as x → 0. In the case at hand q

is of course not algebraic, and furthermore, we do not even have any clue

for the value q(0). The geometric version of this idea in the present setting

suggests that the missing value q(0) for the slope of the tangent should

be approximated by the slope of lines through (0, 1) and a second distinct

nearby point (x, 2x) on the graph as x 6= 0 approaches 0. (See Figure 9.)

In fact, for x 6= 0, the slope of such a line is given precisely by the quotient

q(x).

It certainly looks very plausible that the unknown slopem of the tangent

can be approximated by q(x) as the non-zero value of x gets closer and

closer to 0. In Figure 9, as x > 0 moves closer and closer to 0, the point

(x, 2x) glides towards (0, 1) along the curve that is the graph of f(x) =

2x, so that the line through (0, 1) and (x, 2x) slowly turns in clockwise

direction. In contrast to the situation in Section 4, where the value v(t0) of

the instantaneous velocity was known to us by algebra, the present situation

is more complicated, as we do not know a value m for the slope of the

tangent, nor do we even have any obvious guess for it. We are literally

shooting in the dark. Lacking a value for m, there is no way to estimate

|q(x) −m| as in the case of the velocity in Section 4. The best we can do is

to analyze the behavior of the average rate of change q(x) as the non-zero

value x approaches 0.

Modern technology has created powerful tools that make this analysis

easy and quick. A good programmable calculator would serve the purpose;

a computer that runs one of the powerful computer algebra programs such
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Fig. 9 Secant to y = 2x of slope q(x) = (2x − 1)/x for x > 0.

as Maple or Mathematica would be even better. Equipped with such tools,

we can readily evaluate q for very small non-zero points x, and thereby

obtain numerical approximations for the elusive slope m. Table P.1 shows

the values q(xk) for xk = 10−k, k = 1, 2, ..., 10, evaluated to ten decimal

places.

xk q(xk) = (2xk − 1)/xk

10−1 0.7177346253

10−2 0.6955550056

10−3 0.6933874625

10−4 0.6931712037

10−5 0.6931495828

10−6 0.6931474207

10−7 0.6931472045

10−8 0.6931471829

10−9 0.6931471808

10−10 0.6931471805

Table P.1. Approximation of slope of tangent to 10 digits.
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It appears that the values q(xk) approach a number whose decimal

expansion begins with 0.69314... . Who could have guessed this by just

looking at Figure 9? Let us increase the precision by evaluating q(xk) to

30 digits for k = 11, ..., 20. The result is shown in Table P.2.

xk q(xk) = (2xk − 1)/xk

10−11 0.693147180562347574486828678992

10−12 0.693147180560185535924191277674

10−13 0.693147180559969332067928032084

10−14 0.693147180559947711682301712470

10−15 0.693147180559945549643739080558

10−16 0.693147180559945333439882817368

10−17 0.693147180559945311819497191049

10−18 0.693147180559945309657458628417

10−19 0.693147180559945309441254772154

10−20 0.693147180559945309419634386527

Table P.2. Approximation of slope of tangent to 30 digits.

Consistent with the geometric interpretation, the numerical data does

provide evidence that the values q(x) approximate some “number” m2 as

x → 0 that lies between 0.6931471 and 0.6931472, or—more precisely—

between 0.69314718055994530 and 0.69314718055994531. However, even

though we could narrow the interval that containsm2 as far as we wish, lim-

ited only by the available computing technology, no precise familiar value

seems to emerge from this process. For example, no periodicity appears in

the decimal expansions displayed above, so it is not clear at all whether m2

is a rational number.9 And if m2 is not rational, what type of “number” is

it? Is it some “irrational” number that is the root of a polynomial equation

with integer coefficients, analogous to the positive number λ that satisfies

λ2 − 2 = 0 and which is denoted by
√
2? Or does m2 even transcend such

“algebraic” numbers? We really cannot answer these questions at this

time.

What is clear, however, is that the tangent problem for the simple nat-

ural function f(x) = 2x leads us into new, unknown territory. At the

most fundamental level we are not even sure whether our basic concept
9Recall that a number is rational if and only if its decimal expansion is finite or periodic.
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of number—which includes “irrationals” such as
√
2 beyond the familiar

rational numbers—is sufficient to describe the truly complex phenomena

that have come to light, and ultimately capture the “correct” value of the

slope.

In order to answer some of these questions that are central for an under-

standing of basic growth phenomena, we need to take a few steps back and

first build an appropriate foundation. This foundation should include, in

particular, an understanding of the critical properties of the number system

that we are using, of the basic concept of function, and of the approximation

process that has emerged, first in an elementary and post-facto version in

the study of tangents and of instantaneous velocity in the algebraic setting,

and now in the far more intriguing form that arises in the study of tangents

to the graph of a simple exponential function. We will therefore begin the

main part of this book with an exploration of these foundations. We will

try to focus on the principal ideas without getting entangled in technical-

ities. However, the reader needs to be willing to think carefully and not

be deterred by some mathematical abstractions, as we try to describe one

of the amazing creations of the human mind that has developed into an

indispensable fundamental tool for understanding the world around us.

8.1 Exercises

1. Let m = m2 denote the elusive number that measures the slope of the

tangent to f(x) = 2x at (0, 1). Show that if the analogous approximation

process is worked out at the arbitrary point (a, 2a) on the graph of f , it

leads to the apparent result that the slope of the tangent at this arbitrary

point is given by m22
a. (Hint: Consider a second point (a + h, 2a+h)

with h > 0 and use 2a+h = 2a2h by a basic property of exponentials.

2. Use a scientific calculator or appropriate computing software to inves-

tigate, as in the preceding discussion, numerical approximations to the

slope of the tangent to the graph of g(x) = 10x at the point (0, 1). Try

to estimate the first 4 digits of that slope.
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The Cast: Functions of a Real

Variable

In this chapter we introduce and discuss in some detail the basic objects

of study in calculus. Some of this material may be familiar to the reader,

but other parts will be new, and particular attention should be given to the

latter. As we realized at the end of the Prelude, the required foundations

will include some material that is not part of typical high school courses.

Consistent with the goals of this book, rather than aiming for technical

completeness, we shall focus on the key concepts and ideas, and we will

emphasize those aspects that are most important for an understanding of

calculus.

I.1 Real Numbers

I.1.1 Rational Numbers

As we stated in the Preface, Calculus provides the mathematical ideas,

tools and techniques to analyze rates of change in very general settings.

These concepts have proved extremely useful for modeling phenomena in

the natural sciences, including physics, chemistry, biology, as well as many

areas of the social sciences. The quantities involved, such as time, distance,

velocity, population size, blood pressure, profits, rate of inflation, invento-

ries, etc., are usually described and measured by numbers. Relationships

between different quantities are then expressed by functions of one or sev-

eral variables, where each of the input variables, as well as the output of

the function takes on numerical values.

Thus numbers are an important ingredient, and we need to have a solid

understanding of their basic properties. While most people typically only

43
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have to deal with rational numbers, that is, with fractions, we recognized at

the end of the Prelude that investigations of tangents for simple exponential

functions require us to consider a number concept that is sufficiently broad

to include the “limits” of certain natural approximation processes. This

leads us to consider the intriguing and elusive property known as “complete-

ness” that is usually not part of high school algebra. Completeness, while

not always mentioned explicitly, is the critical ingredient without which the

fundamental concept of limit—so central for the ideas of calculus—would

more often than not lead nowhere and hence be meaningless.

Before getting to that new deep idea, let us first quickly review the basics

of the rational number system. We are all familiar with the collection of

counting numbers 1, 2, 3, ..., also known as the set of natural numbers N,

and with the basic arithmetic operations of addition and multiplication.

When reversing addition and multiplication, one sees that it is important

to extend the natural numbers first by adding 0 and all their “negatives”,

thereby obtaining what is called the set Z of integer numbers, and next, by

considering the reciprocals of non-zero integers and the related fractions.

One thus obtains the set of rational numbers, such as −2, 4/7, 0,−1/3, and

so on. More precisely, the set Q of rational numbers is given by

Q = {m
n
, where m,n are integers, with n 6= 0}.

There is a slight complication, due to the fact that certain fractions are

“equivalent”, i.e., they may look different but in fact represent the same

number. For example, 2/3 = 6/9 = (−4)/(−6), or 5 = 5/1 = 10/2. The

general rule is that
m

n
=

p

q
precisely when mq = pn.

In particular, a rational number is not changed if the numerator and de-

nominator are multiplied by the same non-zero number. This property is

used extensively in calculations involving rational numbers.

Every non-zero number q ∈ Q has a unique multiplicative inverse,

denoted by q−1 or 1/q, defined by the property that q · q−1 = 1. If

q = m/n 6= 0, then m 6= 0 and q−1 = n/m. Division by a number n is just

multiplication by its reciprocal (or multiplicative inverse) 1/n = n−1. You

should be familiar with these matters and with the arithmetic operations

on rational numbers. One important, though often forgotten or overlooked

fact is that the denominator of a rational number is never allowed to be

zero. In other words, 0 does not have a multiplicative inverse or reciprocal,

that is, we never divide by zero!
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Perhaps it is instructive to review the simple reasoning that forces us

to ban division by zero forever. As you know, a basic arithmetic rule states

that 0 · a = 0 for any number a. So, if m and p are any two integers, one

has m · 0 = p · 0 and hence, if one could divide by 0 (i.e., multiply by a

reciprocal 0−1 of 0) on both sides of this equation, one would get m = p,

i.e., all integers would be equal. This is clearly absurd. Stated differently,

the rules of arithmetic are incompatible with division by zero.

Most of elementary arithmetic never needs anything more complicated

than rational numbers, which do include all numbers with finite decimal

representation. That is why most people typically never learned, or do

not recall much, if anything, about any other numbers, such as
√
2 or π.

Fractions—in contrast to integers—are already hard enough, yet it is not

easy to avoid them in ordinary life. For example, any measurement typically

involves fractional components, whether expressed with a decimal point, or

whether involving outright fractions such as 9/16 inches. Or consider a

cooking recipe formulated to serve 4 people, and you want to use it to serve

6 people.

Any ruler serves as a concrete model for the fundamental process of

identification of numbers with points on a line. The number line, our fa-

vorite model for the set of numbers, is just a ruler without any end on either

side, that is, an infinitely long ruler. Once the numbers 0 and 1 are marked

on it, all other rational numbers correspond to a unique spot on the line.

(See Figure I.1.) Metric rulers highlight fractions with denominators 10,

1/2−1/2

−1−2 0 1 2

Fig. I.1 A small section of the number line.

100, 1000, ..., while anglo-saxon rulers favor fractions with denominators

2, 4, 8, 16, and so on. In any case, every rational number corresponds to a

specific point on the number line. Conversely, every point on the number

line or on a ruler “seems” to be identified with a rational number. However,

as we shall see shortly, this latter statement is not correct.

In the following, we think of “numbers” to be just points on the ruler,

and all operations on numbers follow the same rules that we are familiar

with from the system of rational numbers.
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I.1.2 Order Properties

The next important property of numbers concerns their order. Moving from

0 towards 1 identifies the preferred direction of the line (usually displayed

from left to right, or from bottom to top). This direction reflects the natural

order in the numbers: numbers a to the right of zero, i.e., on the side where

1 is, are said to be greater than zero ( a > 0), and are also called positive,

those on the left are said to be less than zero (a < 0) and are called negative.

Also, a < 0 if and only if its additive inverse −a is positive. If b is further

to the right than a, then b − a > 0 and one writes b > a (b is greater than

a) or, equivalently, a < b (a is smaller (or less) than b). For any number

a exactly one of the following three distinct possibilities must hold: either

a = 0, or a > 0, or a < 0. More generally, given any two numbers a, b one

of the following must hold: either a = b, or a < b, or a > b. It is convenient

to introduce the notation a ≤ b (or, equivalently, b ≥ a) to mean that either

a = b or a < b.

The natural ordering interacts with arithmetic operations according to

precise rules. First of all, given two positive numbers a, b > 0, then their

sum a+b and their product ab are positive, as is readily seen on the number

line. Other rules then follow. For example, assume that a < b and let c be

any other number. Then a+c < b+c. The analogous multiplicative version

ac < bc however holds only if c is positive! If c < 0, the inequality reverses,

i.e., one has ac > bc, or, equivalently, bc < ac. For example, multiplication

of 2 < 3 by (−1) on both sides gives −3 < −2, since on the number line the

number −2 is to the right of −3. (See Figure I.2.) These rules are not at

−3 −2 −1 1 2 30

Fig. I.2 Positions of −3 and −2 compared to 2 and 3.

all arbitrary, but they are a consequence of the need to work with numbers

in a logically consistent manner. For example, the rule that (−1) · a = −a

(i.e., that unique number that satisfies a+ (−a) = 0) is verified as follows.

Notice that

(−1) · a+ a = (−1) · a+ 1 · a = ((−1) + 1) · a = 0 · a = 0,

where we have used the distributive property and the fact that (−1)+1 = 0

since −1 is the additive inverse of 1. The equation (−1) · a + a = 0 then

implies that (−1) · a is the additive inverse of a, i.e., the number denoted
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by −a. This rule is at the heart of the familiar rules for multiplication

negative× positive = negative, and negative× negative = positive.

For example, if a, b > 0, then ab > 0, and −a < 0. Hence (−a)b =

[(−1)a]b = (−1)(ab), where we have used the associative property of mul-

tiplication. It then follows that (−1)(ab) = −(ab) < 0, since ab > 0.

We also recall that the absolute value |a| of the number a is defined by

|a| =
{

a if a = 0 or a > 0

−a if a < 0.

So |a| ≥ 0 for any number a. For example, |−4| = 4, |4| = 4. Geometri-

cally, |a| measures the distance between a and 0 on the number line. More

generally, if a, b are two numbers, |a− b| = |b− a| measures the distance

between the two corresponding points on the number line.

The reader should be well familiar with all the standard rules of arith-

metic and inequalities involving (rational) numbers. In particular, we recall

the so-called “triangle inequality”1 and its variations, which states

|a+ b| ≤ |a|+ |b| .
Replacing b with −b results in the equivalent estimate

|a− b| ≤ |a|+ |b| for all a and b.

By applying the former estimate to |a| = |(a− b) + b|, one obtains |a| ≤
|a− b|+ |b|, i.e., |a| − |b| ≤ |a− b|. This same estimate holds if a and b are

interchanged, so that |b| − |a| ≤ |b− a| = |a− b|. It follows that
||a| − |b|| ≤ |a− b| .

These estimates will be used extensively throughout this book.

I.1.3 Irrational Numbers

We now want to focus on a much more subtle property of the “points” on

the number line that is not readily visible. It turns out that as one looks

more closely at the number line (say with a super magnifying glass), one

would see an unimaginable quantity of “tiny holes” scattered among the

rational numbers. This “empty” space, i.e., points on the number line that

are not rational, is indeed “real”, that is, it cannot just be ignored. This
1This name originates by considering the distance of points in the plane; in that setting

the corresponding inequality states that in a triangle the length of one side is less than
or equal to the sum of the lengths of the other two sides.
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fact, first recognized by Greek philosophers in the 4th century B.C., ranks

among the great discoveries of the human mind. It shattered the belief that

all observed quantities could be measured by integers and ratios between

them (i.e., fractions).

Fact: The diagonal in a square of side one cannot be measured exactly

by a ruler that just includes rational numbers.

We analyze the simple argument. Consider the unit square placed so

that one side covers the number line from 0 to 1, as shown in Figure I.3. By

Pythagoras’ Theorem, the length d of its diagonal satisfies d2 = 12+12 = 2.

The diagonal is rotated onto the number line, thereby identifying a point

at distance d from 0. The startling fact, as we shall explain in a moment,

d

d0 1

1

Fig. I.3 Diagonal d in a square of sides 1.

is that there is NO fraction d = m/n that satisfies d2 = 2. We are thus

forced to conclude that the point d =
√
2 on the number line cannot be

represented by a rational number, i.e.,
√
2 is an “irrational” number. The

number line contains more than just rational numbers!

So how do we see that no rational number m/n satisfies (m/n)2 = 2?

Suppose we had integers m,n that satisfy this equation. Clearlywe must

have n 6= 0, and we can also assume that m,n > 0. By basic number facts,

we can cancel all common factors in numerator and denominator. Suppose

that has been done, so that m,n cannot both contain a factor 2, i.e., we

can assume that m and n are not both even. From (m/n)2 = 2 one obtains

m2 = 2n2, so m2 is even. Since the square of an odd number is odd (check

it!), this implies that m itself must be even, so m = 2p for some integer p.
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Therefore (2p)2 = 4p2 = 2n2. After dividing by the common factor 2 on

both sides one gets 2p2 = n2, so n2 is even. Again, this implies that n itself

is even. So the assumption (m/n)2 = 2 leads to the conclusion that both

m and n are even, but that had been ruled out at the very beginning by

canceling all common factors! This contradiction shows that it is impossible

to find integers m,n with (m/n)2 = 2, i.e., the number
√
2 , which surely

exists on the number line (the diagonal of the unit square!), is not rational.

Note that on a practical level the matter that
√
2 is not a rational

number is not that important. We can always approximate the length of

the diagonal by rational numbers to any desired degree of accuracy, say, by

1.414, or 1.41421, and so on. Again, this explains why in everyday life the

matter is largely ignored. Any calculator displays
√
2 as a rational number,

typically showing 8 or 12 digits, and no one worries that this is not “exact”.

Yet for theoretical considerations, and in particular for understanding and

formulating basic concepts of calculus, it is important to be confident that

the rational approximations really do approximate a concrete and precise

point d =
√
2 on the number line, rather than some “hole” in the line.√

2 is just one particular example of a number that is not rational. It

is a solution of the polynomial equation x2 − 2 = 0. More generally, an

algebraic number is a number x that satisfies a polynomial equation

anx
n + an−1x

n−1 + an−2x
n−2 + ...+ a1x+ a0 = 0,

where the coefficients a0, ..., an are integers, with an 6= 0. Every rational

number p/q satisfies the equation q x− p = 0, where p, q are integers, and

hence is algebraic. On the other hand, as we just saw, algebraic numbers

like
√
2 or

√
3 are not rational. More generally, for a rational number

r = p/q ≥ 0, its nth root n
√
r, n a positive integer, is algebraic (a solution

of qxn − p = 0) but will not be rational in most cases. Still other algebraic

numbers are not even found on the number line: for example, there is no

point on the number line that solves the equation x2 + 1 = 0.2 This latter

phenomenon leads us to consider “complex” numbers, but we shall not

pursue this right now.

Unfortunately, algebraic number points on the line still do not capture

the vastness of space on the line. In fact, filling in the potholes in the

rational line by algebraic numbers hardly makes a dent. This amazing fact

was discovered in 1874 by the German mathematician Georg Cantor (1845

2Note that any point a on the number line satisfies a2 ≥ 0, so a2 + 1 ≥ 0 + 1 = 1 > 0,
and hence a2 + 1 6= 0.
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- 1918).3 This discovery is perhaps even more surprising than the discovery

of irrational numbers, and yet it is even more removed from everyday life.

Furthermore, while it was quite elementary—at least with hindsight—to

recognize that
√
2 is not rational, it requires quite a bit more ingenuity

to identify specific points on the number line that are not even algebraic.

Such points are called transcendental numbers. Certainly the reader has en-

countered at least one such number in high school mathematics, the famous

number Pi, or π, the ratio between the circumference and the diameter of a

circle. Because of its concrete geometric visualization—specifically, π equals

the length of the circumference of a circle of diameter 1—this number “ex-

ists” just as well as any other number on the line. (Just think of your ruler

as a flexible thin wire that you can wrap around a circle with diameter 1.)

Approximate values for π, such as 22/7, were already known in antiquity,

and it has been known since the middle of the 18th century that π is not

a rational number. However, it was only verified comparatively recently in

1882 by Ferdinand Lindemann (1852 - 1939) that π is not even algebraic.

I.1.4 Completeness of the Real Numbers

As it became visible in Section 8 of the Prelude, a thorough discussion of

tangents and derivatives reveals new phenomena that require a more ex-

tensive number system than just the rationals. In contrast to high school

mathematics and algebra, one must include all points on the line, and most

definitely the non-algebraic, i.e., the transcendental ones. The most impor-

tant functions in calculus and its many applications, such as exponential,

logarithm, and trigonometric functions, literally thrive on transcendental

numbers. But most importantly, the fundamental idea of limit, which dis-

tinguishes calculus from algebra, requires that the system of numbers used

is sufficiently “complete”, so that one is guaranteed that in a wide variety

of situations the limiting processes that need to be considered converge to

a definite point on the line, which more often than not will turn out not to

be a rational or not even an algebraic number.

So how do we recognize if and when we have filled in all the potholes in

the number line? Well, we take a leap of faith, and postulate that the num-

3Cantor found a way to distinguish different orders of infinity. He showed that the set
of algebraic numbers is “countable” (the simplest type of infinity that is modeled by
the set N of counting numbers), while the set of points on the “complete” number line
is “uncountable”, that is, it corresponds to a much higher order of infinity. We shall
discuss this more in detail in the next section.
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ber line is complete in a precise technical sense. Just as Euclid formulated

his famous axioms to describe the properties of lines and of other basic ge-

ometric objects, we now add the requirement that a line—and consequently

the “numbers” corresponding to it—satisfies the so-called completeness ax-

iom, sometimes also referred to as the continuity axiom. A line, as drawn

on paper, conveys the intuitive idea of something that can be drawn with

a continuing stroke of a pen. We idealize by trusting that indeed there are

no holes at all in the line. (Note: This really is a major idealization: the

concrete physical line and the underlying paper have vast gaps of empty

space between the molecules and atoms that make up its matter.) This

idealization entails the statement that all holes are completely filled in by

points, without any gaps whatsoever. By introducing a ruler, points on the

line are related to numbers. The totality of numbers so obtained is the set

of all real numbers, denoted by R. Every point on the “complete” line cor-

responds to exactly one real number and vice-versa. The rational numbers

Q are just a small proper subset of the set R of real numbers, though a

very important one indeed. On the one hand the rational numbers have a

simple representation as fractions, on the other hand the rational numbers

are densely and evenly distributed along the line. In particular, every real

number can be approximated to any desired accuracy by a rational number.

More precisely, if a ∈ R, for each positive integer n one can find a rational

number sn, such that the distance between a and sn is smaller than 10−n,

i.e., so that |a− sn| < 10−n.

So what exactly is the set of real numbers? This question has no simple

answer. A geometric model for R is given by the “complete” or “con-

tinuous” number line. Another concrete representation of real numbers

is through their (usually infinite) decimal expansion. As you may recall,

rational numbers are precisely those numbers whose decimal expansion is

either finite or periodic. One could say that R is the set of all “possibly

infinite decimal expansions”, although it takes much detailed work to give

this a precise meaning.

What ultimately matters are the properties of real numbers. As far

as arithmetic and order, the relevant properties are exactly those one is

familiar with from the rational numbers. The critical new feature is the

completeness of the real numbers, i.e., that property that ensures that

there are no hidden holes in the number line. This property, that is,

the completeness axiom, needs to be formulated precisely so that it can

be used effectively in arguments involving real numbers. Over the years,

mathematicians have introduced several different equivalent formulations
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for this axiom. We shall focus on one of them, the so-called Least Upper

Bound Property, which has a simple geometric visualization, and which can

readily be applied in a variety of situations.

Suppose S ⊂ R is a set of numbers. We say that a number M is an

upper bound for S if s ≤ M for every s ∈ S.

The Least Upper Bound (=LUB) Property of R (A version

of the Completeness Axiom). For every non-empty set S ⊂ R that

has an upper bound, there exists a number LS ∈ R that has the following

properties:

i) LS is an upper bound for S.

ii) Any number c < LS is not an upper bound for S, i.e., given c < LS,

there exists s ∈ S, such that c < s.

Clearly the properties i) and ii) characterize the number LS as the

smallest (or least) upper bound for the set S. The situation is visualized

on the number line by starting with an upper bound, i.e., a point M to

the right of all points in S. We then move the point M to the left as long

as it is possible to keep it to the right of S, i.e., we want that the new

points M# ≤ M are still upper bounds for S. Clearly S provides a barrier

for this process on the left, and therefore it intuitively looks very plausible

that this process must stop at a “smallest” upper bound LS . As expressed

by the LUB property, the completeness axiom simply ensures that the real

number line indeed matches what our intuition clearly expects. In other

words, the completeness property ensures that the process of decreasing the

upper bounds as much as possible really ends at a point LS ∈ R, rather

than at some “hole” in the number line.

We note that the properties i) and ii) imply that there can be only one

least upper bound LS for the set S. In fact, if r ∈ R is not equal to LS,

then either r < LS, so that r is not an upper bound of S by ii), or r > LS,

so that r could not satisfy ii), since LS would be an upper bound for S that

is smaller than r.

In order to better understand the significance of the LUB property, we

shall analyze why the set Q of rational numbers does not have the LUB

property. Let us consider the set A ⊂ Q defined by

A = {r ∈ Q : r > 0 and r2 < 2}.
This set is clearly bounded. We claim that there is NO rational number b

that satisfies the properties of a “least upper bound” in Q, i.e., the rational

numbers Q are not complete in the precise sense described by the com-

pleteness axiom. In fact, any positive rational number b ∈ Q must satisfy
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b2 < 2 or b2 > 2. (Remember: We cannot have b2 = 2 for b ∈ Q!) One

then shows by elementary, though somewhat tedious arguments involving

inequalities that the following is true. If b2 < 2, then (b + r)2 < 2 as well

for any sufficiently small rational r > 0, that is, b+ r is a rational number

in A that is larger than b, so that b is not an upper bound for A. And if

b2 > 2, then b is an upper bound for A, but one also has (b − r)2 > 2 for

any sufficiently small rational r > 0. Therefore any such number b − r is

smaller than b and still an upper bound for A, so that b is not the smallest

upper bound. We thus have verified that any rational b is definitely not a

least upper bound for A. Hence there is no smallest upper bound for A

within the rational numbers. On the other hand, if one considers A as a

subset of R, then completeness of R implies that A has a least upper bound

LA ∈ R. By what we just saw, neither (LA)
2 < 2 nor (LA)

2 > 2 can hold

for the least upper bound of A. Therefore (LA)
2 = 2. In other words, we

just verified how the completeness of R implies the “existence” of
√
2 inside

the real numbers.

Note that the least upper bound LS of a set S may or may not be an

element of S. For example, the least upper bound LA of the set A we just

considered is not contained in A, which only consists of rational numbers.

On the other hand the set B = {x ∈ Q : x ≤ 0} contains its least upper

bound 0, which in this case happens to be a rational number!

The LUB property implies that R also satisfies the analogous Greatest

Lower Bound Property: If the non-empty set S ⊂ R has a lower bound l,

i.e., if there exists a real number l, so that l ≤ s for all s ∈ S, then there

exists a (unique) greatest lower bound GS ∈ R for S. This means that GS

is a lower bound for S with the property that any number c > GS is not a

lower bound for S, that is, there exists s ∈ S so that s < c. (See Problem

13 of Exercise I.1.6.)

I.1.5 Intervals and Other Properties of R

From now on we shall assume that the set of real numbers R is complete.

In particular, every non-empty bounded subset S of R (that is, S has both

an upper and a lower bound) has a least upper bound, denoted by supS

(supremum of S) and also a greatest lower bound, denoted by inf S (infimum

of S).

Just as we had seen that completeness implies the existence of a positive

real number labeled b =
√
2 that satisfies the equation b2 = 2, one can show

the following more general result.
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Lemma 1.1. For every positive integer n and for any real number a > 0,

there exists exactly one real number b > 0 that satisfies bn = a.

This number is given by b = sup{r ∈ R : rn < a}. It is called the nth

root of a, and it is denoted by b = n
√
a, or a1/n. For n = 2 one simply

writes 2
√
a =

√
a. Note that the symbol

√
a denotes the positive solution of

x2 = a; the other (negative) solution of this equation is then the number

−√
a.

The following result will turn out to be quite useful in many applications.

Lemma 1.2. If c > 0 is any real positive number, then there exists a

natural number n such that 0 < 1/n < c.

Proof. While this may appear obvious, the proof for arbitrary real

c > 0 does in fact involve the completeness axiom. We shall first verify the

following equivalent property, also known as the Archimedean Property of

the real numbers.

The set N of natural numbers is NOT bounded in R, i.e.,

N does not have any upper bound.

Stated differently, the symbol ∞ (= infinity), which is commonly used

to label “something” that is larger than any natural number, cannot be

identified with a real number.

We prove this latter result by contradiction. Assume N had an upper

bound in R. By the LUB property there then exists a real number L that

is the least upper bound for N. Hence the number L − 1 < L is not an

upper bound for N, i.e., there exists m ∈ N such that L − 1 < m. It then

follows by the properties of order that L < m + 1. We have thus found a

natural number m+1 ∈ N that is larger than L, so L could not be an upper

bound for N. We end up with a hopeless contradiction. This means that

our initial assumption cannot be correct, and therefore N does not have an

upper bound.

Returning to an arbitrary real number c > 0, the number 1/c is also

real and positive. As we just saw, there exists a natural number n > 1/c.

By the order properties, this implies that 0 < 1/n < c, and we have verified

the Lemma. �

We review some standard useful notations. Given two numbers a < b,

the open interval with boundary points a, b equals the set

(a, b) = {λ ∈ R : a < λ < b}.



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 55

The Cast: Functions of a Real Variable 55

If one adds the boundary points to (a, b) one obtains the closed interval

[a, b] = {λ ∈ R : a ≤ λ ≤ b}.

Notice that a is the greatest lower bound of both (a, b) and [a, b], and

similarly b is the least upper bound of each set. Intervals with boundary

points a, b are examples of bounded sets. More generally, every bounded set

of numbers is contained in some bounded interval. Sometimes one considers

unbounded intervals such as {λ ∈ R : a < λ}, which—in analogy to the

notation for bounded intervals—we also denote by (a,∞). As previously

noted, ∞ is just a symbol and not an element of R; consequently we do not

call ∞ a boundary point of (a,∞). Correspondingly, the interval [a,∞) =

{λ ∈ R : a ≤ λ} is a closed interval, as it contains its (only) boundary point

a. Similarly, R itself can be identified with the interval (−∞,∞). Note that

the interval (−∞,∞) is open (it does not contain any boundary points),

and since there are NO boundary points to include, it is also said to be

closed. If this sounds strange, think of a door that stands alone, without

any frame and wall around it.

Given a point a ∈ R, one often needs to identify intervals centered at a

that satisfy specific properties. It is convenient to introduce the following

notation: given δ > 0, the symbol Iδ(a) denotes the set {x ∈ R : |x− a| <
δ}, which can also be written in interval notation as Iδ(a) = (a− δ, a+ δ).

Informally, we shall also say that U ⊂ R is a neighborhood of a if there exists

a positive δ, so that Iδ(a) ⊂ U . Note that Iδ(a) is then a neighborhood of

any of its points x ∈ Iδ(a).

Finally, we discuss another special property of the complete real num-

bers R that is often used to prove the existence of specific numbers that

are required to satisfy certain properties. For example, suppose we want to

find explicit rational approximations for
√
2. We begin by choosing r0 = 1

and s0 = 2, so that r0 <
√
2 < s0. We then take the midpoint 3/2 of

r0 and s0. Since (3/2)2 = 9/4 > 2, we have
√
2 < 3/2. Set r1 = 1 and

s1 = 3/2, so that r1 <
√
2 < s1; note that s1 − r1 = 1/2. By continuing

this process we obtain rational numbers rn and sn for each n = 2, 3, ..., so

that rn <
√
2 < sn (we cannot have equality since

√
2 is not rational) and

sn− rn = 1/2n. More in detail, suppose we have found rn−1 and sn−1 with

the desired properties. We then choose the midpoint mn between rn−1 and

sn−1. If mn <
√
2, we set rn = mn and sn = sn−1; if mn >

√
2, we set

rn = rn−1 and sn = mn. In either case we will have rn <
√
2 < sn, and

sn − rn = 1/2(sn−1 − rn−1) = 1/2n. Each interval [rn, sn] is contained in

the preceding one. We claim that
√
2 is the only number that is contained
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in each interval [rn, sn]. In fact, if λ 6=
√
2, we will show that λ is not

contained in [rn, sn] if n is sufficiently large. Since c =
∣

∣

√
2− λ

∣

∣ > 0, by

the Lemma there exists a natural number n∗ > 1, so that 1/n∗ < c, and

therefore one also has 1/2n
∗

< c. Since
√
2 ∈ [rn∗ , sn∗ ], every other number

x ∈ [rn∗ , sn∗ ] satisfies
∣

∣

√
2− x

∣

∣ ≤ sn∗ − rn∗ = 1/2n
∗

< c =
∣

∣

√
2− λ

∣

∣; it

follows that λ /∈ [rn∗ , sn∗ ], as required.

We generalize this approximation process as follows. Suppose for each

n = 1, 2, 3, ... we are given a closed bounded interval [an, bn] so that

[a1, b1] ⊇ [a2, b2] ⊇ ... ⊇ [an, bn] ⊇ [an+1, bn+1] ⊇ ... .

We call such a sequence a nested sequence of closed bounded intervals. The

following result states an intuitively obvious property in a precise form.

Recall that the symbol ∅ denotes the “empty set”, that is, a set that does

not contain any elements at all.

Theorem 1.3. If In = [an, bn], n = 1, 2, ..., is a nested sequence of closed,

bounded intervals in R, then

F =
∞∩

n=1
[an, bn] 6= ∅,

i.e., there exists at least one real number c ∈ R that is contained in each

interval [an, bn].

While this result may appear obvious to you, the situation is not quite

so simple. For example, let us take the open intervals In = (0, 1/n) for

n = 1, 2, 3, ..., which satisfy In ⊃ In+1 for each n. Since each interval In
contains only positive numbers, clearly neither 0 nor any negative number

is contained in ∩ In. On the other hand, if c is any positive real number,

then we know that there is n∗ ∈ N with 1/n∗ < c, which means that

c /∈ (0, 1/n∗), and therefore c /∈ ∩ ∞
n=1In. We conclude that

∞∩
n=1

(0, 1/n) = ∅ .

Similarly, Jn = [n,∞) for n = 1, 2, ... defines a nested sequence of closed

intervals that are NOT bounded. By the Archimedean property it easily

follows that ∩∞
n=1[n,∞) = ∅. So the particular hypothesis for the inter-

vals in the theorem are indeed essential. More significantly, the theorem

is false if we just consider rational numbers. For example, recall the ra-

tional numbers rn and sn introduced in the example before the theorem.

Let In,Q = {x ∈ Q : rn ≤ x ≤ sn}. Clearly I1,Q ⊇ I2,Q ⊇ I3,Q ⊇ ... is a

nested sequence of “non-empty closed bounded intervals of rational num-

bers”. Since In,Q ⊂ Q by construction, it follows that ∩∞
n=1In,Q ⊂ Q as
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well. And since the only number λ ∈ R that satisfies rn ≤ λ ≤ sn for all

n ∈ N is the number
√
2, and

√
2 is not rational, i.e.,

√
2 /∈ Q, it follows

that
∞∩

n=1
In,Q = ∅.

We see that the validity of the theorem must rest on the completeness of

the real number.

To prove the theorem, observe that for any nested sequence of intervals

[an, bn], n = 1, 2, 3, ..., one must have

a1 ≤ a2 ≤ ... ≤ an ≤ an+1 ≤ ... ≤ bn+1 ≤ bn ≤ ... ≤ b2 ≤ b1.

Therefore the set A = {a1, a2, ...} of left boundary points is not empty and

it is bounded above by any of the right boundary points. It then follows

that the real number supA—here we use completeness—is contained in the

interval [an, bn] for each n. A more detailed outline of this argument is

given in Problem 15 of Exercise I.1.6.

To summarize, the completeness axiom provides the firm foundation

that supports our sometimes faulty and vague geometric intuition, and it

ensures that many problems, algebraic or more general, do indeed have

solutions within the set of real numbers. Along the way we will see many

applications of completeness, often via the theorem we just discussed. One

of the most surprising consequences is a proof of Georg Cantor’s amazing

discovery that the set of real numbers is of a much higher order of infinity

than the set of natural numbers N. More precisely, a set S is said to be

countable if its elements can be arranged in a suitable order, so that they

can be “counted”, that is, if one can write S = {s1, s2, s3, ...}. Clearly every

finite set is countable, and the set of natural numbers N is the prototype of

countable sets that are not finite. By writing Z = {0, 1,−1, 2,−2, 3,−3, ...}
one sees that the set of integers is countable as well. Similarly, one can show

that the set of rational numbers is countable (see Problem 16 of Exercise

I.1.6), and Cantor proved that even the set of all algebraic numbers is

countable.

Theorem 1.4. (G. Cantor). The set R of real numbers is NOT countable.

Proof. We prove this by contradiction. Suppose that R is count-

able. That means that we can arrange R in a counting sequence

R = {c1, c2, c3, ...}. Every number λ ∈ R must eventually appear in this

sequence, that is, there must be some k ∈ N so that λ = ck. We will

show that this assumption is incompatible with the completeness of R,

so that the statement that R is countable must be false. We construct
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a nested sequence of non-empty closed bounded intervals In as follows.

Choose any interval I1 = [a1, b1] with a1 < b1, so that c1 /∈ I1. Next, choose

I2 = [a2, b2] ⊂ I1 with a2 < b2, so that c2 /∈ I2. This is easily done as

follows. If c2 /∈ I1, just choose I2 = I1; if c2 = a1, let a2 be any point with

a1 < a2 < b1 and take b2 = b1; and if a1 < c2 ≤ b1, choose a2 = a1 and b2
so that a1 < b2 < c2. Next, choose I3 = [a3, b3] ⊂ I2 with a3 < b3, so that

c3 /∈ I3, and so on. This process can be continued, provided the interval

In = [an, bn] is always chosen with an < bn. By Theorem 1.3 there exists

a real number λ ∈ ∩∞
n=1[an, bn]. As we observed earlier, according to our

hypothesis, this number λ must occur at some place in the ordering of R,

i.e., λ = ck for some k ∈ N. But then λ = ck /∈ Ik by the construction of

Ik, and this contradicts λ ∈ ∩∞
n=1[an, bn]. We thus conclude that R is not

countable.4 �

I.1.6 Exercises

Solve the inequalities in Problems 1 through 5. Write each solution set as

an interval.

1. 1− 6x > 2

2. 3 + 4x < 1

3. −6 < 5− 2x < 2

4. |x+ 5| ≤ 2

5. |5x− 4| < 4

Simplify the following expressions by eliminating the absolute value sign.

6. |(−3)(5− 9)|
7.
∣

∣(−2)3
∣

∣

8. − |2− 5|
9.
∣

∣(−1)2n
∣

∣, where n is a positive integer.

10. Use the fact that (−1)a = −a to verify that the product of two negative

numbers is positive.

11. Explain by using Problem 10 why there is no real solution of the equa-

tion x2 = a for a < 0.

12. Modify the argument used to show that
√
2 is not rational to show that√

3 is not rational either. More generally, show that if an integer p > 0

is not a perfect square (i.e., if p is not equal to m2 for some integer m),

then
√
p is not rational.

4The author learned of this proof from the text of Bartle and Sherbert (op. cit.). It
differs from Cantor’s orginal proof, which was based on what has become known as
“Cantor’s Diagonal Sequence” argument.
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13. In analogy to the LUB property, one can define the Greatest Lower

Bound Property of R as follows: A set S of numbers is bounded from

below if there is a number l ∈ R so that l ≤ s for all s ∈ S. Such

l is called a lower bound for S. A number GS is called a Greatest

Lower Bound for S if GS is a lower bound for S, and any number

c > GS is not a lower bound. Verify that the real numbers R satisfy

the Greatest Lower Bound property, that is, each non-empty set

in R that is bounded from below has a unique Greatest Lower Bound.

(Hint: If l is a lower bound for S, then (−l) is an upper bound for the

set S∗ = {s : −s ∈ S}.)
14. Find the least upper bound and greatest lower bound for the set S =

{1− 1
n : n = 1, 2, 3, ...}.

15. Suppose In ⊂ R is a closed bounded interval [an, bn] for n = 1, 2, ... so

that I1 ⊇ I2 ⊇ ...In ⊇ In+1 ⊇ .... Show that ∩
n
In 6= ∅ by completing

the following steps.

a) Let A = {an : n = 1, 2, ...}. Show that each right endpoint bn is an

upper bound for A.

b) Explain why supA ≤ bn for each n ∈ N.

c) Show that b) implies that supA ∈ [an, bn] for each n ∈ N, and

consequently supA ∈ ∩∞
n=1In.

d) More generally, prove that the closed interval [supA, inf B] ⊂
∩∞
n=1 In, where B = {bn : n = 1, 2, ...} is the set of right endpoints.

16. Consider the set Q+ = {m
n : m,n positive integers}. Arrange Q+ in

the following pattern.

line 1:
1

1
,
2

1
,
3

1
, ...,

m

1
, ...

line 2:
1

2
,
2

2
,
3

2
, ...,

m

2
, ...

line 3:
1

3
,
2

3
,
3

3
, ...,

m

3
, ...

...

line n:
1

n
,
2

n
,
3

n
, ...,

m

n
, ...

...

a) Use this pattern to show that Q+ is countable. (Hint: Start “count-

ing” in the upper left corner, then take 1/2 and next 2/1, and

continue by moving along the diagonals parallel to the first one,

skipping any number that has already been covered, and so on.)
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b) Show that this implies that Q is also countable. (Hint: Look at how

we saw that Z is countable.)

I.2 Functions

Most readers will probably be familiar with the concepts in this section.

Still, for completeness’ sake we include a brief review to help the readers

refresh their memory.

I.2.1 Functions of Real Variables

A function is a rule or machine that assigns a specific output to a given

input. Stated in this form, this is a very general concept. We shall primarily

consider functions whose inputs and outputs are subsets of real numbers.

Such functions are often described by some mathematical formula. The

simplest examples are the constant functions. Fix a number c ∈ R; the

constant function fc assigns to each input x ∈ R the output c, in other

words, fc(x) = c for all inputs x.

A less trivial example describes the conversion of degrees Fahrenheit to

degrees Celsius that is given by the formula

C = C(F ) =
5

9
(F − 32).

Here the input is a temperature measured in degrees Fahrenheit, and the

output is the corresponding temperature in degrees Celsius.

The area A of a disc is a function of its radius r; it is given explicitly

by the formula A(r) = πr2.

A function with only finitely many inputs (not too many) is often de-

scribed by a table that lists the input values and the corresponding output

values. (See Figure I.4.)

52°

Mo, 4/3 Tu, 4/4฀฀฀฀฀7E, 4/�฀฀฀฀฀4h, 4/6฀฀฀฀฀฀&r, 4/7฀฀฀฀฀฀3a, 4/8฀฀฀฀3u, 4/9

50° 47° 49° 45° 46° 47°

Fig. I.4 Average temperature as a function of the days of one week.

Sometimes the rule is not given by a single formula. For example, the

federal income tax T (x) due on a taxable income of $ x is described in tax

tables; the mathematical formula for T (x) varies, depending on the level of

income x.
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The “function” keys on a scientific calculator provide other concrete

examples of functions. For example, the key x2 identifies the squaring

function. After entering a number such as 2.1 (the input) into the calcu-

lator, pressing the x2 key results in the calculator displaying the output

4.41 (= 2.12). Note that input and outputs of calculators are numbers with

finite decimal expansion, i.e., rational numbers. So the square root func-

tion identified by the key
√

on a calculator (sometimes invoked by inv

followed by x2 ) only provides an approximation of the abstract function.

Let us fix some basic terminology and notation. The collection of num-

bers that can be taken as input is called the domain of the function f and

it is denoted by dom(f). If the function machine is denoted by the letter

f , one writes symbolically f : Ω → R to indicate that f is a function with

dom(f) = Ω that takes its values, i.e., outputs, in the real numbers. The

value of the function f at the input x ∈ Ω is denoted by f(x). The set

of all output values f(Ω) = {f(x) : x ∈ Ω} is called the image of f , or,

more precisely, the image of Ω under f . It is common practice to denote a

function f also by the symbol y = f(x), or simply by f(x), thereby blur-

ring the distinction between the function machine f and the output of f

at x. Since x is just a symbol for the unspecified variable input, this abuse

of notation is not fatal. On the other hand, if a specific value is replaced

for x, say x = 2, the symbol f(2) definitely should not be used to denote

the function f . The symbol f(2) uniquely identifies just a single number,

namely the output of f corresponding to the input 2.

The most important fact to remember about functions is that for every

input from an appropriate domain there is exactly one output. One is

free to choose the notation for the input and output variables. In general

discussions mathematicians like to use x and y, although in applications

other letters may be chosen to help identify the meaning of the variable.

For example, the letter t is often used for a variable that corresponds to

time.

I.2.2 Graphs

Real valued functions of a real variable can be visualized by their graphs.

We first need to recall the concept of a rectangular (or Cartesian) co-

ordinate system in the plane. One fixes a pair of perpendicular number

lines, each one with the number 0 at the point of intersection. (See Figure

I.5.)
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−2 −1

−1

0 1

2

y

1

2 3

P = (3,1)

x

Fig. I.5 A Cartesian coordinate system.

On the horizontal axis (labeled x), numbers are increasing to the right,

on the vertical axis (labeled y), numbers are increasing towards the top.

According to Figure I.5, each point P in the plane determines an ordered

pair of numbers (a, b), its coordinates with respect to the given coordinate

system. (The notation (a, b) does not refer to an open interval here; the

context should make clear what is meant in a particular instance.) Con-

versely, every ordered pair (a, b) of numbers determines a unique point P

in the plane; one writes P = (a, b). By convention, the first number in an

ordered pair refers to the horizontal axis. The point of intersection of the

two axes has coordinates (0, 0). It is often called the origin of the coordinate

system and is denoted by O.

By means of a coordinate system, geometric properties can be translated

into algebraic or analytic statements involving the coordinates. Conversely,

algebraic formulas involving the coordinates (x, y) can be interpreted geo-

metrically.

Example. The distance between two points P1 = (x1, y1) and P2 =

(x2, y2) is given by

dist(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2.

This formula is a consequence of Pythagoras’ Theorem (See Figure I.6.)

Example. The equation x2 + y2 = r2 describes the set

{P : [dist(P,O)]
2
= r2}.

This set is a circle of radius r centered at the origin. (See Figure I.7.)
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y

y2

y1

x1

x2 – x1

P1=(x1,y1)

dist (P
1
,P 2

)
P2 = (x2,y2)

y2 – y1

x2
x

Fig. I.6 Length of hypothenuse measures the distance d(P1, P2).

0

P = (x, y )

x

r

r

Fig. I.7 Circle of radius r centered at O.

Given a function f : I → R defined on the interval I, its graph is the

set

Graph (f) = {(x, y) : y = f(x), x ∈ I}.
Figure I.8 illustrates the concept. Notice that the graph of f is a “curve”

with the distinctive property that the vertical line through any point x ∈ I

meets the graph in exactly one point (x, f(x)), corresponding to the fact

that a function has exactly one output for each input. This is the so-called

vertical line test for graphs of functions. Every curve that satisfies the
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y

f (x )
(x, f (x ))

xbxa0

Fig. I.8 Graph of the function y = f(x) .

vertical line test can be viewed as the graph of a function. Notice that a

(complete) circle fails the vertical line test, and hence is not the graph of a

function. (See Figure I.9.)

Fig. I.9 A circle fails the vertical line test.



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 65

The Cast: Functions of a Real Variable 65

I.2.3 Some Simple Examples

The temperature conversion function C = C(F ) mentioned earlier is an

example of a linear function

y = f(x) = mx+ b,

wherem and b are constants. Algebraically, the formula for a linear function

is given by a polynomial of degree 1. The name reflects the fact that the

graph of a linear function is a line. We shall discuss this relationship more

in detail in the next section.

Slightly more complicated algebraically are quadratic functions, i.e.,

functions of the form

f(x) = ax2 + bx+ c,

where a, b, c are constants with a 6= 0. The graphs of such functions are

parabolas, the classical curves we had discussed in Section 3 of the Prelude.

An important application of quadratic functions arises in the description

of a stone dropped from a tower. (See Prelude, Section 4.) If the height

of the tower is H meters, the stone falls towards the ground according to

the following law: its height s(t) in meters after t seconds is given by the

formula, i.e., by the function

s(t) = H − 4.9t2 .

This relationship can be tested experimentally. The rock hits the ground

when s(t) = 0. See Figure I.10 for the graph of s corresponding to H = 100.

This formula reflects the fundamental physical fact that near the surface

of the earth the gravitational force is approximately constant. By Newton’s

Law of Motion, the acceleration of an object is a constant multiple of the

force acting on it; hence the motion of a freely falling object close to the

ground is uniformly accelerated. This was the key discovery of Galileo men-

tioned in Section 4 in the Prelude. We shall discuss motion with constant

acceleration more in detail in Section 4 of Chapter III.

More generally, one can consider f(x) = axn, where n is a positive

integer, and a 6= 0 is a fixed real number. Such functions are called power

functions. The characteristic feature is that the input variable is in the

base of the power, while the exponent is fixed, in contrast to exponential

functions discussed later on, where the input variable is in the exponent. By

adding up power functions with non-negative integer exponents one obtains

the familiar polynomial functions P , which are defined by a formula

P (x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 .
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10 2 3 t (sec)

s (ft)

100

Fig. I.10 Height of a falling stone as a function of time t.

One says that P has degree n if the coefficient an of the highest power is

not zero. Accordingly, quadratic functions are polynomials of degree 2.

As we saw in Section 7 of the Prelude, most algebraic expressions in-

volving one variable can be used to define a function. More details will be

discussed in Section 6 of this chapter later on.

Often the formula under consideration is meaningful only for inputs that

are restricted by certain conditions, so that the domain will be a proper

subset of the real numbers.

Example. The function y =
√
x has as its domain the set of non-

negative numbers {x ≥ 0}. Its graph is shown in Figure I.11. As we

saw in Section 6 of the Prelude, the function f(x) =
√
x is algebraically

differentiable at all points x > 0 , but not at 0. Consequently we shall

exclude 0 from the domain when considering derivatives for this function..

Remark on notation. As already mentioned earlier, the square root

symbol
√
a for a > 0 represents a unique number, namely that positive

number c > 0 that solves the equation x2 − a = 0. The other solution of

this equation is the negative number denoted by −√
a.

I.2.4 Linear Functions, Lines, and Slopes

We shall now review linear functions f , which are given by a formula f(x) =

mx+b, i.e., polynomials of degree ≤ 1, more in detail. Clearly the constant
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20

2

y
y = √

4

x

6 x

Fig. I.11 Graph of the function y =
√
x for x ≥ 0.

b is the value of f for x = 0, i.e., it identifies the point (0, b) where the graph

of f intersects the y−axis. To understand the geometric meaning of m, fix

a point (x1, y1) on the graph and let (x, y) = (x,mx+b) be any other point

on the graph with x 6= x1. Then
∆y

∆x
=

y − y1
x− x1

=
mx+ b− (mx1 + b)

x− x1
=

m(x− x1)

x− x1
= m.

This shows that in the right triangle in Figure I.12 the angle α is inde-

pendent of the particular point (x, y), so that all such points lie on the

unique line through (x1, y1) that forms an angle α with the horizontal x-

axis. The ratio m = (y − y1)/(x − x1)—sometimes also referred to as

the “rise over the run”—is called the slope of the line. It measures the

inclination of the line, and—for those familiar with basic trigonometry—it

relates to the angle α by the formula tanα = m.

Conversely, if we begin with the line through (x1, y1) shown above, the

ratio (y − y1)/(x− x1) is independent of any other point (x, y) on the line

since the right triangles obtained by different points (x, y) all have the same

angle α at the point (x1, y1), so that they are similar to each other. If we

denote this constant ratio bym and solve the equation (y−y1)/(x−x1) = m

for y, one obtains y− y1 = m(x− x1), which implies y = mx+ (y1 −mx1).

We thus see that the given line is the graph of a linear function.

As we saw in the Prelude, the so-called point-slope form y−y1 = m(x−
x1) of a line, which can also be written as the function f defined by f(x) =

y1 +m(x− x1), is most useful in describing tangents to curves.
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(x1, y1)

(x, y )

y – y1

x  – x1

x1 x

α

Fig. I.12 Constant ∆y/∆x implies constant angle α.

Note that horizontal lines (i.e., those lines parallel to the x-axis), which

are the graphs of constant functions, are precisely those lines that have

slope 0. In contrast, observe that the vertical line through the point (x1, y1)

definitely is not the graph of a function f (the vertical line test fails); also,

the formula for the slope becomes meaningless in this case, since x = x1 for

all points (x, y) on this line. Therefore the slope of vertical lines is NOT

defined.

Example. Let us find the equation of the line of slope −2 that passes

through the point (4, 3). If (x, y) is any point on the line different from

(4, 3), then

y − 3

x− 4
= −2, or y − 3 = (−2)(x− 4).

The advantage of the second version is that it makes sense also for x = 4.

Solving for y gives

y = (−2)(x− 4) + 3, i.e.,

y = −2x+ 11.

While the last equation identifies the y intercept 11, the coordinates of the

original point (4, 3) have been lost in the process.

Example. Find the equation of the line that goes through the points

(−1, 1) and (2, 3). (See Figure I.13.)

Solution. We first use the given points to calculate the slope m =
3−1

2−(−1) = 2
3 . Now one can readily write down the point-slope form of the
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(−1,1)

−1 1 2

(2, 3)

y

x

Fig. I.13 Line through (−1, 1) and (2, 3).

equation by using either one of the two points. By choosing the first point,

one obtains

y − 1 =
2

3
(x− (−1)).

If the other point is chosen, the resulting equation is y − 3 = 2/3(x − 2),

which is easily transformed into the previous equation by adding 2 on both

sides.

Example. We want to see how one can find the conversion formula

from degrees Fahrenheit F to degrees Celsius C that was mentioned ear-

lier. The relevant property is that the conversion is uniform, regardless

of the temperature level. More precisely, for any change in temperature

the corresponding change ∆C in Celsius measurement is a constant multi-

ple ∆C = m∆F of the change ∆F measured in Fahrenheit degrees. This

means that the relationship between the two temperature scales is a linear

one, that is, C is a linear function

C = mF + b

of F. The constantsm and b can be determined from the known temperature

values at any two distinct points. For example, the freezing point of water is

00C , or 320F, while the boiling point (at sea level) is 1000C, or 2120F. Thus

the two points (32, 0) and (212, 100) lie on the graph of this function. The

slope of the line through these points is (100− 0)/(212− 32) = 100/180 =

5/9. Hence the equation of this line in point-slope form, i.e., the desired

conversion formula, is

C = C − 0 =
5

9
(F − 32).
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Finally, we examine the relationship between the slopes m1 and m2 of

two perpendicular lines, neither of which is vertical. The triangle corre-

sponding to the line with slope m2 shown in Figure I.14 is obtained by

rotating the other triangle by 900 in the mathematically positive direction.

This has the effect of interchanging the “rise” and the “run”, whereby the

slope m2

slope m1

b (> 0)

−b (< 0)

a

a

•

Fig. I.14 Slopes a/b and −b/a of two perpendicular lines.

original (positive) run b results in the negative rise −b after rotation. Thus

m1 = a/b and m2 = (−b)/a, and it follows that

m1m2 = −1 for any two perpendicular lines.

Example. Let us determine the slope of the tangent to the circle

of radius 1 at the point P = (1/2,
√
3/2). We know that the tangent

is perpendicular to the radius through P . That radius has slope m1 =

(
√
3/2)(1/2) =

√
3. The slope m of the tangent must satisfy m1m = −1,

and therefore m = −1/
√
3. The point-slope form of the tangent line thus

is y −
√
3/2 = (−1/

√
3)(x− 1/2).

I.2.5 Exercises

1. Identify the points P = (−3, 4), Q = (0, 3) and R = (4,−2) in a Carte-

sian coordinate system.

2. Find the distance between P and R in Problem 1.

3. Sketch the graph of the function y = 1
2x

2 − 2.

4. Use the conversion formula given in the text to find the temperatures

in Celsius degrees corresponding to 950F and 2120F.
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5. If the temperature is 250C, what is the temperature in degrees Fahren-

heit? More generally, write out explicitly a conversion formula from

degrees Celsius to Fahrenheit.

6. Consider the following example of a tax function T . For incomes x ≤
$10, 000, the tax T (x) = 0. If $10, 000 ≤ x ≤ $30, 000, the tax is 10%

of the income above $10, 000, for $30, 000 ≤ x ≤ $50, 000, the tax is

$2, 000+20% of the amount over $30, 000, and for incomes x ≥ $50, 000,

the tax is $6, 000 + 30% of the amount above $50, 000.

a) Write out formulas for T (x). There will be different expressions for

the various income levels.

b) Sketch the graph of the function T .

7. Sketch the set of points {(x, y) : x = y2} in a Cartesian coordinate

system. Is the curve so obtained the graph of a function? Explain.

8. Do Problem 7 with the set {(x, y) : y ≤ 0 and x = y2}. Write a formula

for the function whose graph is given by this set.

9. a) Find the slope of the line that goes through the points (3, 1) and

(6,−2).

b) Find the equation of the line in a).

10. Consider the line given by y = 3x + 2. Find the coordinates of the

points on the line at distance 4 from the point (0, 2)̇. (Hint: Make a

sketch!)

11. Find the equation of the line that is perpendicular to the graph of

y = 1
3x+ 4 and that goes through the point (1, 2).

I.3 Simple Periodic Functions

Certain phenomena keep repeating a particular pattern over time. Typical

examples include the motion of a pendulum, the bouncing motion of a

spring, the rotation of the earth around its axis, the (regular) heart beat of

a person, waves in the ocean, sound waves in the air, and electromagnetic

waves as they appear in the propagation of light or radio signals. The

functions used to model such phenomena must be “periodic”, that is, they

must exhibit the repetition of basic patterns. More precisely, one says that

a function f is periodic with period ω if

f(x+ ω) = f(x) for all x in the domain of f.

In particular, this implies that if x ∈ dom(f), then x+ω must be in dom(f)

as well.
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I.3.1 The Basic Trigonometric Functions

Except for constant functions, none of the familiar algebraic functions such

as polynomials, root functions, and so on (see Prelude) are periodic. Other

mathematical concepts are required to produce concrete precise examples

of periodic functions. We shall now examine two of the most useful periodic

functions that have found wide applications in the natural sciences and in

mathematics, and that are fundamental for studying general periodic func-

tions. These are the (trigonometric) functions sine and cosine. They have

been used for thousands of years in many practical applications, mainly

involving relationships between angles of a triangle and ratios of appro-

priate sides, in order to solve geometric problems or carry out large scale

measurements. Many readers will be familiar with them from high school

trigonometry courses, where geometric applications and numerous formu-

las and identities are emphasized. However, we shall not require any such

prior knowledge; instead, we shall start from the beginning and focus on

the essential features that are most useful for the applications in calculus.

In order to exhibit the periodic behavior of the sine and cosine functions

it is best to describe them in the context of the unit circle in the plane rather

than through triangles and ratios of their sides. We consider the unit circle

x2+y2 = 1 in a Cartesian coordinate system. Beginning at the point (1, 0),

given a number s we measure the distance |s| along the circle, moving

counterclockwise—this is known as mathematically positive—around the

circle if s > 0 , and moving clockwise if s < 0, thereby reaching a well

defined point P (s) on the circle. (See Figure I.15.) The precise concept of

distance along a curve is actually quite complicated, but we can intuitively

visualize the process by using a measuring tape, i.e., a flexible number line,

placing its 0 at the point (1, 0) on the circle, wrapping it around the circle,

and then reading off the distance on the tape. Naturally, an infinitely long

measuring tape can be wrapped around the circle numerous times. One

full tour around the circle takes us back to P (0) = (1, 0). This occurs after

having moved a distance s corresponding to the circumference of the circle,

i.e., when s = 2π. So P (2π) = P (0) . Similarly, if one moves a distance 2π

around the circle clockwise, one obtains P (−2π) = P (0). Starting from an

arbitrary point P (s) and moving farther along the circle a distance 2π also

takes us once around the circle back to P (s), so that

P (s+ 2π) = P (s) for every s.

We have thus constructed a periodic function with period 2π (≈ 6.28) whose

values, however, are not real numbers but points in the plane. Writing
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Fig. I.15 Arc of length s on the circle of radius 1.

P (s) = (x(s), y(s)), one sees that the coordinate functions x(s) and y(s)

satisfy the same periodicity relation

x(s+ 2π) = x(s), y(s+ 2π) = y(s).

Because of their importance, these periodic functions are given the spe-

cial names cosine and sine, abbreviated as

cos s = x(s) and sin s = y(s) .

The point P (s) is thus described by

P (s) = (cos s, sin s) .

Since the reflection of the point P (s) across the x-axis gives the point

P (−s), it follows immediately that

cos(−s) = cos s and sin(−s) = − sin s.

Figure I.16 illustrates the connection of these functions with the right

triangle with vertices

(0, 0), (cos s, 0), and P (s) = (cos s, sin s)

and hypotenuse of length 1, and with the angle θ(s) at the vertex (0, 0).

As long as the angle θ(s) is between 00 and 900 one sees that
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cos s

θ(s)

sin s

s

P(s) = (cos s, sin s)

1

1

Fig. I.16 Right triangle with legs cos s and sin s.

sin s =
sin s

1
=

opposite leg

hypotenuse
, cos s =

cos s

1
=

adjacent leg

hypotenuse
.

These are the classical formulas that have long been used to define the

basic trigonometric functions of an angle of a right triangle. Note that the

values of the ratios are independent of the radius of the circle as long as the

angle θ(s) is kept fixed, since the resulting triangles are similar. In order to

recognize the periodic nature of the trigonometric functions it is important

to consider arbitrary real arguments s as inputs, as introduced here, rather

than being restricted to angles in a triangle.

I.3.2 Radian Measure

When the input of the trigonometric functions sine and cosine is inter-

preted as an angle, it becomes important to specify how angles are to be

measured. The number s (i.e., the distance along the unit circle from the

point (1, 0) to the point P (s)) is known as the radian measure of the angle

θ(s) formed by the ray from (0, 0) to P (s) and the positive x-axis. (See

Figure I.16.) Note that (0, 1) = P (π/2), so that the right angle between

the (positive) coordinate axis has radian measure π/2. The familiar degree

measure for angles is based on dividing a right angle into 90 equal pieces,

each piece identifying an angle of 10 (= 1 degree), so that radian measure

π/2 corresponds to 900. In general

s radians correspond to (
180

π
s) degrees, and
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α degrees correspond to s =
π

180
α radians.

While we will occasionally use degree measure for angles in some appli-

cations, we shall only use the radian measure of angles as the input of

trigonometric functions.

Except for very special choices of inputs there is no direct computational

procedure to determine exact numerical values of the sine and cosine func-

tions. Of course, approximate values can be obtained from careful graphs

of the points P (s) on the unit circle, or from measuring the length of the

sides in appropriate right triangles. As we will see later, other analytical

approximations can be obtained with the tools of calculus. At a practical

level, years ago people had to use tables and slide rules to look up appropri-

ate values of trigonometric functions. Technology has now improved, and

the common method to determine (approximate) values for these functions

uses scientific calculators. (Warning: It is important to set the calculator

to the appropriate mode (degree or radian), so that the given input is un-

derstood correctly. In most scientific calculators the default mode is degree

mode.)

We emphasize that for the purposes of calculus it is more convenient to

use the radian measure of an angle as the input in trigonometric functions.

Radian measure is based on intrinsic geometric concepts, while degree mea-

sure is based on the (arbitrary) partition of a full circle into 360 equal parts.

I.3.3 Simple Trigonometric Identities

Since cos s and sin s are the coordinates of the point P (s) on the unit circle,

one has the obvious fundamental trigonometric identity

(sin s)2 + (cos s)2 = 1 for all s ∈ R.

Other basic relations follow from the geometric observation that P (s+ π
2 ) =

(− sin s, cos s) for all s ∈ R. (See Figure I.17.)

In terms of coordinates, this means that

cos(s+
π

2
) = − sin s, and

sin(s+
π

2
) = cos s.

Replacing s by −s in these formulas one obtains

cos(
π

2
− s) = − sin(−s) = sin s,

sin(
π

2
− s) = cos(−s) = cos s.
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P(s)

2
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Fig. I.17 Location of P (s) and P (s+ π/2) on the circle.

These latter formulas express the trigonometric functions of the complemen-

tary angle π/2− s in a right triangle in terms of the opposite trigonometric

functions of the original angle.

These formulas are useful in order to translate known statements about

one of the trigonometric functions into statements about the other function.

Rather than memorizing all these formulas—it is easy to get mixed up

with the minus sign—one should clearly understand the geometric construc-

tion that defines the point P (s) = (cos s, sin s) on the unit circle.

There are many other identities for trigonometric functions. To keep

matters simple, we just recall the addition formula

sin(s+ t) = sin s cos t+ cos s sin t

for the sine function that is discussed in high school trigonometry courses.

From this identity the corresponding addition formula for the cosine func-

tion is readily obtained by using the simple formulas we mentioned earlier,

as follows.

cos(s+ t) = sin(
π

2
− (s+ t)) = sin((

π

2
− s) + (−t))

= sin(
π

2
− s) cos(−t) + cos(

π

2
− s) sin(−t)

= cos s cos t− sin s sin t.

Other formulas will be reviewed as needed in appropriate places later on.
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In trigonometry courses one usually introduces other functions that are

simple algebraic combinations of the two basic functions sine and cosine.

For example, the tangent function is defined by

tan s =
sin s

cos s
for all s with cos s 6= 0.

Note that cos s = 0 precisely when P (s) lies on the y-axis, i.e., when s =
π
2 + kπ, k any integer. One easily checks that tan(s + π) = tan s for all

s ∈ dom tan, i.e., the tangent function is periodic with period π. In terms of

the sides of a right triangle with hypotenuse 1 (see Figure I.18), the tangent

of an angle α of s radians is

tan s =
opposite side

adjacent side
=

b

a
.

1

α = α (s)

a = cos s

b = sin s

Fig. I.18 Right triangle with angle α of s radians.

In this book we shall mainly use the sine and cosine functions.

I.3.4 Graphs

The graphs of the sine and cosine functions are shown in Figures I.19 and

I.20. Rough approximations of these graphs can be obtained by inspection

of the coordinates of P (s) as the point moves around the circle. Note that

because of the periodicity, only points for 0 ≤ s ≤ 2π need to be sketched.

This part of the graph is then repeated on adjacent period intervals, and

so on. Of course, graphing calculators or computers are the most efficient

tool for graphing these functions.
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Fig. I.19 Graph of y = sinx.
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Fig. I.20 Graph of y = cos x.

I.3.5 Exercises

1. Show that if ω is a period for the periodic function f , then 2ω and −ω

are also periods, i.e., f(x + 2ω) = f(x) and f(x − ω) = f(x) for all x.

More generally, verify that any integer multiple kω is also a period.

2. Find

a) sin(kπ) and cos(kπ) for any integer k, and

b) sin(π2 + kπ) and cos(π2 + kπ) for any integer k.

3. Identify the point P (π/4) = (x, y) on the unit circle and calculate its

coordinates x, y, making use of the fact that x = y. Use this to evaluate

sin π
4 and cos π

4 .

4. Use the addition formulas for sine and cosine to find formulas for sin(2s)

and cos(2s) in terms of sin s and cos s.

5. Find the radian measure of 300, 450, and 600.

6. What is the degree measure of the angle of π/12 radians?

7. a) Determine the mode of your scientific calculator as follows. Enter

sin(1.57). Explain why the result is either close to 1 or close to 0,
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depending on the mode. Use this fact to determine the mode your

calculator is set for.

b) Find sine and cosine of 150. (Make sure that the calculator is set to

degree mode.)

c) Compare the results in b) to the values of sin 15 and cos 15. (Use

radian mode.)

8. Use a graphing calculator to display the graphs of the sine function and

of f(x) = sin 3x and g(x) = sin(x3 ) in one window.

I.4 Exponential Functions

We had already mentioned power functions of the form f(x) = axn, where

n is a positive integer. Here the input variable x is in the base. This makes

the evaluation of such functions quite easy, since only basic arithmetic

operations are involved. Furthermore, as seen in the Prelude, finding the

derivatives of such functions just involves elementary algebra. The situation

is quite different if the base is kept fixed, and the input variable occurs in

the exponent. Such functions are called exponential functions. In the last

section of the Prelude we recognized that finding tangents to the graphs

of such functions involves considerably more complicated phenomena and

new mathematical concepts. In this section we carefully discuss exponential

functions, with particular attention to their definition for real numbers, in

order to lay the foundations for the study of their tangents in Chapter II.

I.4.1 Compound Interest

It turns out that exponential functions are most important for many appli-

cations. A typical example involves the calculation of compound interest in

the area of finance. Suppose a bank pays interest on a savings account at

the rate of 6% per year, compounded annually. This means that at the end

of a year the interest earned during the past year is added to the principal.

More precisely, if A(k) is the balance (in $s) on the account at the end of

year k, then A(k+1) = A(k)+0.06 ·A(k) = A(k)(1+0.06) (assuming there

have been no other deposits or withdrawals). It follows that after t years

(t = 1, 2, ...) the value of the account is given by

A(t) = Q (1 + 0.06)t = Q 1.06t,
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where Q = A(0) is the amount deposited at the beginning, i.e., when t =

0. Since annual compounding is assumed, only integer values for t would

seem to matter. Still, it is natural to ask how much the initial deposit would

have grown after 1/2 year, or after one month, that is, when t = 1/12, and

so on. You may recall that powers with fractional exponents involve roots.

For example, one has 21/2 =
√
2. So numerical evaluation, even for simple

rational inputs, gets quite difficult. Values such as 2
√
2 or 2π are even more

complicated. Explicit numerical calculations with exponential functions

usually require the use of a scientific calculator.

I.4.2 The Functional Equation

Because a thorough familiarity with exponential functions is critical for the

study of calculus and for many of its most important applications, we shall

carefully review the basic steps involved in the definition. In particular, we

shall emphasize the importance of the functional equation that characterizes

them, and show how the definitions for different classes of numbers follow

from simple general principles.

Starting at the beginning, the meaning of the power bn for positive inte-

gers n = 1, 2, 3, ... is just a shorthand notation for repeated multiplication

bn = b · b · ... · b, the factor b appearing n times.

Examples. 34 = 3 · 3 · 3 · 3 = 81, (1/2)2 = (1/2) · (1/2) = 1/4,

π3 = π · π · π ≈ (3.14)3 ≈ 30. 959.

Note that 1n = 1 and 0n = 0 for all n ∈ N. From now on we shall only

consider the case when the base b is different from 0 and 1, as otherwise

there would be nothing interesting to say.

If m,n are two positive integers, the basic definition and a simple count-

ing argument show that

bm+n = bm · bn (I.1)

Since mn = n+ n+ ...+ n (m summands n), it follows that

bmn = bn+n+...+n = bn · bn · ... · bn (m factors)

= (bn)m.



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 81

The Cast: Functions of a Real Variable 81

Another useful formula that can easily be checked states that (bc)n = bncn.

However, since two different bases are involved, this formula will not be so

relevant for the discussion that follows.

The basic principle that controls the generalization of bn to exponents

u other than just positive integers is the desire to keep matters simple, that

is, to stick to the same familiar rules as much as possible. More concretely,

if we consider the function Eb(u) = bu, then the rule (I.1) states that

Eb(u + v) = Eb(u)Eb(v) (I.2)

whenever u and v are positive integers. This is an example of a functional

equation. It states an internal law of the function under consideration. The

basic principle requires that this internal law remains valid for all numbers

u and v.

I.4.3 Definition of Exponential Functions for Rational

Numbers

We shall now step by step extend the domain of Eb(n) = bn from posi-

tive integers to other numbers, always staying “within the law”, i.e., by

observing the functional equation (I.2).

First we want to define Eb(0). Since b = b1 = Eb(1) = Eb(0 + 1), we

apply the law to get Eb(0 + 1) = Eb(0)Eb(1) = Eb(0)b. Since b 6= 0, the

equation b = Eb(0)b implies that we must define Eb(0) = 1.

Next we take a positive integer n, and we try to define Eb(−n). Again,

according to the law (I.2),

Eb(−n+ n) = Eb(−n)Eb(n),

and we also know that Eb(−n + n) = Eb(0) = 1. The equation 1 =

Eb(−n)Eb(n) then implies that Eb(−n) must be the multiplicative inverse

of Eb(n) 6= 0, i.e.,

Eb(−n) =
1

Eb(n)
, also written [Eb(n)]

−1.

In fact, it is this conclusion that justifies the notation b−1 for the reciprocal,

that is, for the multiplicative inverse 1
b . So we see that the law requires that

b−n = 1
bn for a positive integer n. We have thus extended the definition of

Eb(m) to arbitrary integers m ∈ Z in the only way that is consistent with

(I.2). It is easy to now check that the functional equation (I.2) remains

valid for all u, v ∈ Z.
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The next extension involves the definition of Eb(u) for a rational number

u. We first consider u = 1/n, where n is a positive integer. The law requires

that

Eb(1) = Eb(n · 1
n
) = Eb(

1

n
+

1

n
+ ...+

1

n
) (n summands)

= Eb(
1

n
) ·Eb(

1

n
) · ... ·Eb(

1

n
) = [Eb(

1

n
)]n .

By taking n = 2, one sees that the last quantity is positive, so b =

Eb (1) > 0. Extension of the law to rational numbers thus requires that the

base b must be positive. Furthermore, it also follows that Eb(1/n) must

be a real number that solves the equation xn = b. As we noted earlier, it

is a consequence of the completeness of R that this equation has a unique

positive solution denoted by n
√
b. One therefore defines

Eb(1/n) = b1/n =
n
√
b.

Note that when n is even the equation xn = b has two real solutions ( n
√
b

and − n
√
b); the definition chosen for Eb(1/n) selects the positive solution

n
√
b.

The case of an arbitrary rational number u = m/n now follows easily,

since the law requires that Eb(m/n) = Eb(m
1
n ) = [Eb(

1
n )]

m. A slight

modification of the last argument shows that one also has Eb(m/n) =
n
√

Eb(m). To summarize, it follows that one must define

Eb(
m

n
) = b

m
n = [

n
√
b]m =

n
√
bm for any n ∈ N and m ∈ Z.

So, following the law (i.e., the equation (I.2), we have now extended the

domain of Eb to all rational numbers. It would appear that the resulting

function still obeys the law. While one could try to make a legal argument

for this based on some higher principles, mathematicians prefer to check the

validity of the functional equation for rational numbers by a more precise

argument. In essence, this involves some routine verifications that can

safely be skipped, as no surprises appear. We shall therefore assume from

now on that the exponential function Eb(u) = bu is defined for any rational

number u, and that the functional equation

Eb(u + v) = Eb(u)Eb(v)

and the related equation

Eb(u · v) = EEb(u)(v) = Eb(u)
v = (bu)v

hold for all u, v ∈ Q.
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I.4.4 Properties of Exponential Functions

We now list a few important properties of exponential functions that easily

follow from the functional equation and the definitions discussed in the

preceding section. While we only consider rational inputs at this time, all

results will remain valid for arbitrary real numbers as inputs, as will be

considered in the next section.

We fix the base b > 0. First of all, Eb(u) 6= 0 for all u. This follows from

Eb(−u) · Eb(u) = Eb(−u+ u) = Eb(0) = 1. Furthermore, the definition of

Eb(m/n) implies that Eb(u) > 0.

Assume b > 1. Then

Eb(u) = bu > 1 for all u > 0, and Eb(u) = bu < 1 for u < 0.

In fact, if one had λ = Eb(1/n) ≤ 1 for some n ∈ N, it would follow

that b = λn ≤ 1, which contradicts the assumption b > 1. Consequently

Eb(u) > 1 for all u > 0, and hence Eb(−u) = 1/Eb(u) < 1. If 0 < b < 1,

corresponding properties follow by using Eb(−u) = 1/Eb(u) = E1/b(u),

where now 1/b > 1.

The graphs of exponential functions are most easily obtained by means

of a graphing calculator. Note that only rational numbers, or rational

approximations to irrational numbers can be processed by a calculator or

computer. Figure I.21 shows the graph of E2.

8

6

4

2

−2 −1 0 1
x

2 3

Fig. I.21 Graph of y = E2(x) = 2x.

The graphs of Eb for b > 1 look very similar to the graph of E2. Figure

I.22 shows three more such graphs.
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Fig. I.22 Exponential functions with base b > 1.

The graphs suggest the following fact.

If b > 1, the exponential function is strictly increasing:

If u < v, then Eb(u) < Eb(v).

In fact, write v = u+ γ, where γ > 0. Then 1 < Eb(γ), and multiplica-

tion on both sides of this inequality with the positive number Eb(u) gives

Eb(u) < Eb(u)Eb(γ) = Eb(u+ γ) = Eb(v).

If 0 < b < 1, the situation is reversed: it follows that Eb is strictly

decreasing, i.e., if u < v, then Eb(u) > Eb(v). Since Eb(−u) = b−u =

(1/b)u = E1/b(u), the graph of Eb (b < 1) is obtained by reflecting the

graph of E1/b (1/b > 1) on the y-axis, that is, by replacing u with −u.

Figure I.23 shows some graphs of exponential functions with base b < 1.

Finally we note the following property that is intuitively obvious from

the graphs of the exponential functions.

Eb(u) → 1 as u → 0.

Anticipating the discussion of limits in Section II.4.1, we write this property

in the form

lim
u→0

Eb(u) = 1. (I.3)

Let us verify a precise version of this statement. We want to show that the

distance between Eb(u) and 1 can be made arbitrarily small by choosing u

sufficiently close to 0. Assume b > 1. Then the number 1 is a lower bound
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Fig. I.23 Exponential functions with base b < 1.

for the set {Eb(1/n) : n ∈ N}, and therefore the greatest lower bound λ

for this set, i.e., the infimum λ = inf{Eb(1/n) : n ∈ N} must be ≥ 1.

Since λ ≤ b1/n implies λn ≤ b for all n, one clearly must have λ = 1.

Hence, given any small number ε > 0, the number 1 + ε is not a lower

bound for {Eb(1/n)}, so that there exists a natural number n0 such that

Eb(1/n0) < 1 + ε; since for u > 0 the values Eb(u) decrease as u → 0,

we have 1 < Eb(u) ≤ Eb(1/n0) < 1 + ε for all 0 < u ≤ 1/n0 as well. By

taking reciprocals, it then follows that 1 > Eb(−u) > 1/(1 + ε) for all such

u. Since 1/(1 + ε) = 1− ε/(1 + ε) > 1− ε, one obtains altogether that

1− ε < Eb(u) < 1 + ε for all u with |u| < 1/n0, (I.4)

that is,

|Eb(u)− 1| < ε for all u with |u| < 1/n0.

This shows that no matter how small ε is chosen, the distance between

Eb(u) and 1 will be smaller than ε provided u is sufficiently close to 0.

These estimates therefore give precise meaning to the statement (I.3). If

b < 1, note that bu = 1/E1/b(u), where now 1/b > 1; the result then follows

by applying the estimate (I.4) to E1/b(u) and taking reciprocals.

We also identify some properties of exponential functions for large input

values. If b > 1, the graph suggests that bx grows larger than any fixed

large number M if x is chosen sufficiently large. In fact, if δ = b − 1 > 0,

then b = 1+ δ. It readily follows from the binomial theorem that for n ∈ N

one has bn = (1 + δ)n > 1 + nδ. Given M, it follows that if n > M/δ, then
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bn > M . Since Eb is strictly increasing (b > 1), one has bu > M for all

u ≥ n > M/δ. One writes

lim
x→∞

bx = ∞ when b > 1.

We emphasize once again that∞ is not a number. The preceding statement

is just a convenient shorthand notation to refer to a quantity (bx in the case

at hand) that grows without any bound as x gets larger. Since b−x = 1/bx,

it then follows that b−x → 0 as x → ∞. We write this symbolically as

limx→∞ b−x = 0, a statement that is also written as

lim
x→−∞

bx = 0 when b > 1.

By considering numerical examples, one recognizes that exponential func-

tions bx with base b > 1 in fact grow much faster than any particular power

function xk, no matter how large the exponent k is chosen. More precisely,

if b > 1 and k is any fixed positive integer, then

bx

xk
→ ∞ as x → ∞, or lim

x→∞
bx

xk
= ∞.

This latter result can also be established for x ∈ N by using the binomial

theorem. (See Problem 6 of Exercise I.4.6.)

I.4.5 Exponential Functions for Real Numbers

Recall that the collection of all real numbers is visualized by the (con-

tinuous) number line, which has no gaps whatsoever. The graph of an

exponential function Eb (for rational inputs) is given by a curve that is

obtained by gently bending the “line” consisting of the rational numbers

according to a particular rule. Extending the definition of Eb to all real

numbers should result in a graph that to the eye looks exactly like the

graph corresponding to rational inputs, where now the curve is assumed to

be completely filled in without any gaps whatsoever, i.e., the curve should

satisfy the same “continuity property” as the real line R.

Let us consider the case with base b > 1, so that Eb is strictly increasing.

If x ∈ R, the point (x,Eb(x)) on the graph should arise as the “least upper

bound” of the set of points {(r, Eb(r)) : r ∈ Q and r < x}, where the order

relation on the curve is the natural one coming from the order relation on

the number line. More precisely, given x ∈ R, choose a natural number n

with x < n. For any r ∈ Q with r < x one then has r < n as well, and

hence Eb(r) < Eb(n). Therefore the set S(x) = {Eb(r) : r ∈ Q with r < x}
has the upper bound Eb(n), and consequently, by the completeness axiom,

it has a least upper bound supS(x) in R.
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Definition 4.1. Assume b > 1. For x ∈ R one defines

Eb(x) = sup{Eb(r) : r ∈ Q with r < x}.

An analogous definition involving the greatest lower bound is made in

the case 0 < b < 1.

Remark. In the case q ∈ Q to begin with, bq is already defined, and

since Eb is increasing, b
q clearly is an upper bound for S(q) = {Eb(r) : r ∈ Q

with r < q}. Indeed, bq is the least upper bound of this set; this follows

from (I.3), since Eb(q − 1/n) = Eb(q)Eb(−1/n) → Eb(q) as n → ∞. In

other words, if q is rational, one has sup{Eb(r) : r ∈ Q with r < q} = bq,

so that the above definition is consistent with the original definition of the

exponential function for rational inputs.

A somewhat more concrete interpretation of the definition of Eb(x) = bx

for arbitrary real x is as follows. Choose any (increasing) sequence {rn : n =

1, 2, 3, ...} of rational numbers that approximates x, i.e., with rn → x; then

brn is defined, and it follows from the preceding discussion that the sequence

{brn} approaches a certain number, namely the supremum of {brn}. This

latter value is taken as the definition of bx. So bx can be approximated by

the values brn as rn approximates x.

Given this definition of Eb for arbitrary input x ∈ R, one can then show

that the functional equation (I.2) remains valid for arbitrary real numbers

u, v, and that all the other properties that were listed in the preceding

section for rational inputs still hold in the more general case. We shall not

go into the details of these technical verifications. Most important for our

purposes are the functional equation and the understanding that the graph

of y = Eb(x) for x ∈ R looks just like a bent copy of the complete number

line, as shown in Figures I.22 and I.23.

At the intuitive level, the function Eb(u) = bu has been defined in such a

way that its graph is a curve that is obtained by simply bending the number

line so that it fits through all the points {(r, br) : r ∈ Q}. The continuity

axiom (i.e., completeness) of R and the definition of Eb for arbitrary real

numbers ensure that there are no “gaps” in the graph, just as there are no

gaps in the number line.

Let us summarize the basic properties of exponential functions.

Properties of Exponential Functions of Real Numbers

(1) For any b > 0 the exponential function Eb(x) = bx is defined for all

real numbers and Eb(0) = 1.
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(2) Eb(x) > 0 for all x ∈ R, so that, in particular, Eb(x) is never zero.

(3) Eb satisfies the functional equation

Eb(u + v) = Eb(u)Eb(v) for any u, v ∈ R .

(4) If u, v ∈ R, then Eb(u · v) = [Eb(u)]
v.

(5) If 1 < b, then Eb is strictly increasing (i.e., bc < bc
′

whenever c < c′),
and if 0 < b < 1, then Eb is strictly decreasing (i.e., bc > bc

′

whenever

c < c′).
(6) If b 6= 1, and if c 6= c′, then bc 6= bc

′

.

Remark. Functions that have the property stated in (6). are said to

be one-to-one. (See Definition 5.2 below.)

I.4.6 Exercises

1. Evaluate the expressions 5−3, 271/3, 4−2 · 24, 323/5, 66 · 6−4 by ap-

plying appropriate functional equations. (Do NOT use a calculator!)

2. Use a calculator to find approximate values for 100.6, 3
√
3, piπ,

[sin(1)]3.2.

3. Simplify as much as possible:

i)
b−3b5b1/2

b3/2b−2
ii)

5
√
c

2
√
c4

c−2/5 2
√
c2

(b, c > 0).

4. Use a graphing calculator to plot the functions f(x) = x10 and g(x) = 2x

in one window for −1 ≤ x ≤ 5.

a) Which function grows faster?

b) What are the solutions of the equation f(x) = g(x)? (Use graphing

techniques.)

c) Are you sure to have found all solutions in b)? How does the graph

relate to the statement that exponential functions grow faster than

power functions?

d) Investigate the behavior of f and g by changing the viewing window.

5. Use a scientific calculator to estimate the value of x20 · 2−x as x → ∞,

i.e., as x gets larger and larger.

6. a) Suppose b > 1, i.e., b = 1 + δ, where δ > 0. Fix a positive integer k.

Show that if n ≥ k+1, then bn > 1+

(

n

k + 1

)

δk+1, where

(

n

k + 1

)

=
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n!
(k+1)!(n−k−1)! is the binomial coefficient. (Hint: Expand (1 + δ)n by

the binomial theorem.)

b) Show that there exist a constant ck > 0, such that n!
(k+1)!(n−k−1)! ≥

nk+1 · ck for all n ≥ 2k.

c) Use a) and b) to show that bn

nk → ∞ as n → ∞.

7. A roast is taken out of an oven at 3500 F at time t = 0 and set on the

counter to cool off. Its temperature (in degrees F) after t hours is given

by T (t) = 350−Q · (1 − 2−t) for some constant Q.

a) Make a rough sketch of the graph of T . (Do NOT use a graphing

calculator!)

b) Give an interpretation of the number Q. (Hint: See what happens

after a long time.)

I.5 Natural Operations on Functions

Given two or more functions, there are various ways in which they can be

combined to build up new functions. Operations such as addition or mul-

tiplication are possible whenever the functions take on values in the real

numbers, or in other sets for which certain algebraic operations are well de-

fined. We shall consider such algebraic operations in the next section. On

the other hand, there are some even simpler operations that relate directly

to the function concept, without requiring any additional structures, as fol-

lows: apply one function after another function, or, if possible, “reverse”

a function. As we recognized in the Prelude, the corresponding differenti-

ation rules are particularly simple and natural. In this section we briefly

review these operations, mainly to recall the basic notions, and to introduce

logarithm functions.

I.5.1 Compositions

Given two functions f and g, it seems reasonable to first apply one function

and then the other one, thereby obtaining a new function. For this to make

sense, the output values of the first function, say g, must be among the

possible inputs for f. In formulas, if x ∈ dom(g), one needs g(x) ∈ dom(f),

so that one can consider f(g(x)). The assignment x → f(g(x)) defines a

new function that is denoted by f ◦ g, and that is called the composition of

g with f . Note that the language suggests that one begins with the function
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g, although the chosen notation f ◦ g displays f as the first function as we

read from left to right. The apparent confusion is resolved by observing that

in standard functional notation the input variable is placed after (i.e., to the

right of) the function symbol, as shown in the following formal definition.

Definition 5.1. Suppose Ω is the domain of g and that the image g(Ω) of

Ω is contained in dom(f). Then the composition f ◦g is the function with

domain Ω defined by

(f ◦ g)(x) = f(g(x)) for x ∈ Ω.

Examples.

(1) If f is defined by f(u) = u3, and g(x) = cosx, then f ◦ g is defined by

(f ◦ g)(x) = (cos x)3 for all x ∈ R. Note that one can also apply first f

and then g, resulting in the function g ◦ f, with (g ◦ f)(x) = g(f(x)) =

cos(x3). Clearly f ◦ g 6= g ◦ f .
(2) h(u) =

√
u has domain {u : u ≥ 0}, and g(x) = 4 − x2 has domain R.

In order for h ◦ g to be defined at x ∈ R, one needs that the output

u = g(x) = 4−x2 ≥ 0; this holds precisely if x2 ≤ 4, i.e., if −2 ≤ x ≤ 2.

So h ◦ g has domain I = [−2, 2], and (h ◦ g)(x) =
√
4− x2.

(3) It is often useful to recognize how more complicated function are built

up by composition of simpler functions, and to identify the simpler

pieces. For example, F (x) = 3x
2+1 is the composition f ◦ g of g(x) =

x2 + 1 with f(u) = 3u.

(4) Composition of more than two functions is defined in an analogous

manner.

a) If f(u) = sinu, g(x) = x2+4, and h(t) = 2t, then f ◦g ◦h is defined

by

(f ◦ g ◦ h)(t) = f(g(h(t))) = sin((2t)2 + 4).

b) The function F (t) = [cos(t3 + t)]2 is the composition f ◦ g ◦ h of

f(u) = u2, g(x) = cosx, and h(t) = t3 + t.

Notice that it follows readily from the definition that it does not matter

in which way the functions are grouped, i.e., (f ◦ g) ◦ h = f ◦ (g ◦ h). We

see that composition satisfies the associative law familiar from addition

and multiplication of numbers. On the other hand, as we already noted,

composition is not commutative.
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I.5.2 Inverse Functions

Another general principle to obtain new functions involves putting a func-

tion in “reverse”. Given

f : x → f(x) = u,

consider

g : u → x, where x satisfies f(x) = u.

In order for this assignment to define a function, one needs that there is

exactly one output g(u) for the input u, i.e., given u there is only one

value x that satisfies f(x) = u. Functions f with this property are called

one-to-one, or 1-1 in short version. Let us state the formal definition.

Definition 5.2. The function f : Ω → R is one-to-one on its domain

Ω if the equation f(x1) = f(x2) for x1, x2 ∈ Ω implies that x1 = x2.

Alternatively, f is one-to-one if x1 6= x2 implies that f(x1) 6= f(x2).

Geometrically, if Ω ⊂ R, and f is real-valued, then f is one-to-one if

its graph satisfies the “horizontal line test”: any horizontal line meets the

graph of f at most in one point. (See Figures I.24 and I.25.)

y = f(x)

Fig. I.24 f is one-to-one.

Example. We had seen in Section I.4 that all exponential functions

Eb(x) = bxwith b 6= 1 are one-to-one on R.
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y = g (x)

Fig. I.25 g is NOT one-to-one.

Definition 5.3. If f : Ω → R is one-to-one on its domain Ω, then the

function g : f(Ω) → Ω defined by

g(u) = x,where x ∈ Ω is the unique value that satisfies f(x) = u,

is called the inverse function of f .

We note that if g is the inverse of f , then g is also one-to-one on its

domain, with f the inverse of g. Furthermore, g ◦ f is the identity function

idΩ(x) = x on the domain Ω, and f ◦g is the identity function on dom(g) =

f(Ω), i.e., f ◦ g(u) = u for u ∈ f(Ω).

The inverse function g of f is often also denoted by the symbol f−1,

since g acts like a “multiplicative inverse” of f if composition is viewed

as “multiplication” of functions. Great care must be used not to confuse

this with the reciprocal 1/f of f , defined by (1/f)(x) = 1/f(x) provided

f(x) 6= 0, since 1/f(x) is also denoted by f(x)−1.

Example. The function f(x) = 1
2x − 3 is one to one. Its graph is the

line shown in Figure I.26. Clearly every horizontal line meets the graph in

exactly one point.

For this simple function one can calculate the point of intersection

(x, f(x)) with horizontal lines very easily. In fact, let such a line be given

by y = u. Then u = f(x) = 1
2x − 3 can be solved for x, resulting in the

unique solution x = 2u + 6. So the function g : u → 2u + 6 describes the
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−2 −1

−0.5

−1

−1.5

 u = −2

x = g (u)

−2.5

−3

−3.5

0 1 2 3
x

4 5

Fig. I.26 The function f(x) = 1

2
x− 3 is one-to-one.

inverse of f. As expected, one obtains

g ◦ f(x) = g(f(x)) = 2(
1

2
x− 3) + 6 = (x − 6) + 6 = x.

Notice that one also has f ◦ g(u) = u, i.e., f is the inverse of g. On the

other hand, (1/f)(x) = 1/(12x − 3) is defined for x 6= 6, and clearly this

function differs from the inverse g of f .

More generally, if m 6= 0, then the linear function f(x) = mx + b is

one-to-one, with inverse g(u) = 1
m (u − b). Notice that the latter formula

does not make sense if m = 0; in fact, the function f(x) = 0x + b = b is

constant and certainly not one-to-one.

Periodic functions are definitely not one-to-one. In particular, sine and

cosine functions are not one-to-one on their natural domainR. For example,

sin(x) = sin(x + 2π) = sin(x + 4π), and so on. For every value y ∈ [−1, 1]

there are infinitely many solutions of sinx = y, so the horizontal line test

fails. However, as we shall discuss later, by suitably shrinking the domain,

one can extract portions of these functions that are one-to-one and intro-

duce appropriate inverse functions.

I.5.3 Logarithm Functions

We had seen that all exponential functions

Eb(x) = bx with 0 < b 6= 1

are one-to-one. The inverse function of Eb is called the logarithm func-

tion to the base b, and it is denoted by logb. More precisely, if
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Eb(x) = u = bx, then x = logb u, and vice-versa. So one has the equa-

tions

u = blogb u and logb(b
x) = x.

Recall that the values of an exponential function Eb are always positive.

Moreover, it is evident from the shape of the graph of an exponential func-

tion that every positive real number u > 0 arises as the image Eb(x) of some

x ∈ R.5 Therefore the domain of the function logb is the set R+ of positive

real numbers. Usually, when considering exponential and logarithm func-

tions one assumes that the base b is greater than 1, so that both functions

are (strictly) increasing.

In order to visualize the graph of logarithm functions, it is best to first

examine the relationship between the graphs of a function f and of its

inverse g in general.

f (x)

g (u)x

u

Fig. I.27 Graph of f and the reverse relation.

According to Figure I.27, the graph of the function y = f(x) can also

be used to describe the inverse function g of f. Just start with a point u on

the vertical axis that lies in f(Ω). The horizontal line y = u intersects the

graph of f in precisely one point (x, u) (horizontal line test!); then u = f(x)

and g(u) = x. In order to be consistent with the convention to mark the

input value of a function on the horizontal coordinate axis, usually labeled

5To be precise, the completeness of R is needed to turn this geometrically “evident”
fact into a correct statement. The result used here is a consequence of the so-called
Intermediate Value Theorem that will be discussed in the next chapter.
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x-axis, we need to interchange the coordinate axis and switch notation, i.e.,

we interchange x with u and write g(x) = u. Geometrically, interchanging

the coordinates of a point (a, b) leads to the point (b, a) that is visualized

by reflecting (a, b) on the line y = x. (See Figure I.28.)

a

•
•

a

b

x

b

y 
= 

x

(a, b)

(b, a)

Fig. I.28 Reflection of (a, b) on the line y = x.

Applying this reflection to each point (x, f(x)) on the graph of f gives

the set of points {(f(x), x), x ∈ Ω} = {(u, g(u)), u ∈ f(Ω)}. This set is

evidently the graph of g displayed in the usual form, i.e., the input variable

is displayed on the horizontal axis and labeled u instead of the commonly

used x. Lastly one may replace u with x to make the notation consistent.

To summarize:

The graph of the inverse function g of a one-to-one function f is ob-

tained by reflecting the graph of f on the line y = x.

By applying this result to the graph of E2(x) = 2x one obtains the

graph of the inverse function y = log2 x as shown in Figure I.29.

We summarize the basic properties of logarithm functions logb, where

we assume that the base b > 1.

i) logb is defined on R+ = (0,∞) and is strictly increasing and one-to-

one;

ii) logb(1) = 0;

iii) logb(uv) = logb(u) + logb(v);

iv) logb(u
a) = a logb(u).
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2 4
x

6 8−2

−2

2

4 y 
=
 2

x y 
= 

x

y = log2 x

6

8

Fig. I.29 Graph of y = log2 x.

The properties iii) and iv) are the functional equations of the logarithm

that follow from the corresponding equations for the exponential function.

For example, in order to verify iii), set x1 = logb(u) and x2 = logb(v). Then

u = bx1 and v = bx2 , and therefore

uv = bx1bx2 = bx1+x2

by the functional equation for the exponential function Eb. This latter

equation implies that

logb(uv) = x1 + x2 = logb(u) + logb(v).

Property iv) is left as an exercise. Properties iii) and iv) were used be-

fore the era of computers to facilitate large scale computations. Extensive

tables of logarithms had been compiled, so that large numbers could be

readily replaced by their logarithms, and vice-versa. By using logarithms,

multiplication of two large numbers could be replaced by the simpler oper-

ation of adding the corresponding logarithms. Because our number system

is based on powers of 10, the logarithms most widely used were the ones to

base 10. For example, log10 100 = 2, log10 1000 = 3, and so on. Given the

importance of the binary number system in today’s digital world, one would

think that the logarithm function to base 2 should be the more useful one

today. However, it turns out that the so-called natural logarithm, whose
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base is the special transcendental number e = 2.71828..., is the one most

widely used. We shall discuss this more in detail in Section II.2.4 when we

examine the tangent problem for exponential functions.

I.5.4 Inverting Functions on Smaller Domains

The function y = S(x) = x2, whose natural domain consists of all real

numbers, is a simple function that is not one-to-one, since S(−x) = S(x),

and x 6= −x except when x = 0. Note that its graph (see Figure I.30) clearly

does not satisfy the horizontal line test. On the other hand, Figure I.30

suggests that the right half of the graph, taken alone, does indeed satisfy the

horizontal line test. Therefore the function S+ with graph {(x, x2) : x ≥ 0}
is one-to-one on its domain Ω = {x ∈ R : x ≥ 0} = [0,∞), and hence has

an inverse g that is given by g(u) =
√
u,6 whose domain is also the interval

[0,∞) = S+(Ω). After reflection on the line y = x we obtain the graph of

g in standard form as shown in Figure I.30.

−2 −1 0

1

2

y = s+(x)

y = √

y = x2
3

4

1 2 3 4

x

Fig. I.30 Inverse of y = x2 for x ≥ 0.

Similarly, one may consider the left half of the graph of y = x2, which

corresponds to the function S− defined on (−∞, 0] by S−(x) = x2. This

function is also one-to-one, and its inverse is given by y = −√
x.

An analogous procedure can be done with other functions that are not

one-to-one on their given domain, such as the sine function. We just restrict

6Recall that the symbol
√
u denotes the unique non-negative number x that satisfies

x2 = u.
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the domain to an appropriate interval on which the function is one-to-

one. For example, the function f with domain I = [−π
2 ,

π
2 ] defined by

f(x) = sinx,whose graph is shown in Figure I.31, is clearly one-to-one.

0.5−0.5

−0.5

−1

0.5

1

−1−1.5 1.51

x

2
π

2
π−

Fig. I.31 Graph of y = sinx restricted to [−π
2
, π
2
].

Its inverse function is called the inverse sine, or arc sine function,

and it is denoted by y = arcsinx. Its graph is shown in Figure I.32; it is

obtained by reflecting the graph of the sine function in Figure I.31.

−1 −0.8 −0.6 −0.4 −0.2 0.2

0.5

1

1.5 2

−0.5

π

−1.5

−1

0.4 0.6 0.8 1

x

2
π−

Fig. I.32 Graph of y = arcsinx on [−1, 1].
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Just as for the function y = x2 one could obtain different inverse func-

tions by restricting the function to either the domain [0,∞) or the domain

(−∞, 0], one can obtain many different inverses for the sine function, for

example, by restricting y = sinx to the interval I = [π2 ,
3π
2 ] or, more gener-

ally, to any interval Ik = [−π
2 + kπ, π

2 + kπ], where k is some integer. Our

initial choice I0 = [−π
2 ,

π
2 ] is singled out by being the largest interval that

is symmetric about 0 on which the sine function is one-to-one; the inverse

function corresponding to it is referred to as the principal branch of the

inverse sine function.

I.5.5 Exercises

1. Find a formula for the composition f ◦ g, where f(u) = sinu and

g(x) =
√
9− x2. What is the domain of f ◦ g?

2. With f and g as in Problem 1, show that the domain of the composition

g ◦ f is the set of all real numbers.

3. Which of the function(s) whose graphs are shown in Figure I.33 are

one-to-one? Explain!

(a) (b) (c)

Fig. I.33 Graphs of functions for Problem 3.

4. a) Sketch the graph of the inverse function g of the function f whose

graph is shown in Figure I.34.

b) Use the graph to estimate g(−1) and g(2).

5. a) Find the explicit formula for the inverse function of f(x) = 4x− 5.

b) Use a geometric argument to show that the product of the slopes of a

non-constant linear function and of its inverse equals 1. (Hint: The

corresponding graphs are the reflections of each other on the line

y = x. Express the relevant slopes by using the point of intersection

(c, c) of the two lines as one of the points. Compare with Figure

I.28).
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2 x

y

1

1

−1

−1

Fig. I.34 Graph of f for Problem 4.

c) Verify by algebra that for m 6= 0 the inverse of y = mx + b is a

linear function with slope 1/m.

6. Use properties of exponential functions to verify property iv) of loga-

rithm functions, i.e., logb(u
a) = a logb(u).

7. Without using any calculators, determine the values

i) log3 9, ii) log4(
1
2 ), iii) log10 10, 000, iv) log2(8

5).

8. Write the following functions as compositions of two simpler functions.

i) F (t) = 4(3t)2 − 5(3t)4.

ii) F (x) = 2(sinx).

iii) H(s) = 5 cos(log10 s)

iv) L(x) =
√

(cosx)4 + 1.

9. Write the function G(x) = log2(cos
2 x + 1) as a composition of three

simple functions.

10. a) Show that for any base b > 1 one has the equation

logb x = log10 x
1

log10 b

for all x > 0.

b) Use a) and a graphing calculator that has the logarithm function

to the base 10 (often denoted just by log) to plot the function y =

log4 x.

11. Let g denote the inverse function of f(x) = sinx restricted to the

interval [− 3π
2 ,−π

2 ].

a) What is the domain of g?
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b) Determine g(0) and g(1).

c) Determine g(1/2). (Hint: Recall sin(π/6) = 1/2.)

d) Sketch the graph of g.

12. Verify that the function cosx is one-to-one on the interval [0, π] and

sketch the graph of its inverse in standard form, i.e., with input on the

horizontal x-axis. This function is called the principal branch of the

inverse cosine.

I.6 Algebraic Operations and Functions

Composition and inverse of functions that we discussed in the last section

are natural operations on functions that are meaningful in very general

settings, not just in the case of real valued functions of real variables that

we have been considering. However, for functions f : Ω → R that are real

valued, the arithmetic properties of R readily lead to additional operations

on functions that the reader should be familiar with. We shall briefly review

the basic ideas.

I.6.1 Sums and Products of Functions

Given two real valued functions f, g with domain Ω, one defines the sum

f + g and the product fg by the formulas

(f + g)(x) = f(x) + g(x),

and

(fg)(x) = f(x) · g(x)
for any x ∈ Ω. Note that the product defined here is very different from the

composition f ◦ g we considered earlier. To define quotients f/g requires

that one avoids inputs x for which g(x) = 0. If Ω∗
g = {x ∈ Ω : g(x) 6= 0},

one defines
f

g
(x) =

f(x)

g(x)
for x ∈ Ω∗

g.

For example, if f(x) = 2x and g(x) = x2 − 4, then

(f + g)(x) = 2x + x2 − 4 for all x ∈ R,

(fg)(x) = 2x(x2 − 4) for all x ∈ R, and

f

g
(x) =

2x

x2 − 4
for all x ∈ R with x 6= −2, 2.
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I.6.2 Simple Algebraic Functions

Polynomial functions are obtained by successively taking sums and prod-

ucts of constant functions and the identity function id(x) = x. Examples of

such functions are described by the formulas x3−2x+3, 5x4+2x3−4x2+6,

πx52 − 2x6, and so on. In general, a polynomial P is a function described

by a formula

P (x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x+ a0

=

n
∑

j=0

ajx
j ,

where n is a positive integer, and a0, a1, ..., an ∈ R are the coefficients

of P . If in the above representation of P one has an 6= 0, the integer

n is called the degree of the polynomial P ; the degree is the highest

power of the variable x that occurs with a non-zero coefficient. Non-zero

constant functions are polynomials of degree 0, while the degree of the zero

polynomial P (x) = 0 for all x is not defined. Note that the domain of

polynomials is the set of all real numbers.

Rational functions R(x) are quotients of two polynomials P,Q :

R(x) =
P (x)

Q(x)
, defined for all x with Q(x) 6= 0.

For example, the functions

y =
1

x− 1
and y =

3x4 − 2x+ 4

x3 − x2 + 4x− 1

are rational functions defined at all points where the denominator is differ-

ent from 0.

Note that every polynomial is also a rational function (with denominator

1). By applying the familiar rules of algebra, one sees that sums, products,

and quotients of rational functions are again rational.

The special polynomials Pn(x) = xn, n = 1, 2, 3, ..., are also called

power functions. These functions are strictly increasing and hence one-

to-one on the set R+ = {x ≥ 0}, with range Pn(R
+) = R+. The inverse

Rn of Pn is the nth root function.

Rn(x) =
n
√
x = x1/n for x ≥ 0.

By considering the composition ofRn(x) = x1/n with the power function

Pm(x) = xm, wherem ∈ Z, one obtains the power function (x1/n)m = xm/n

with rational exponent m/n.
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The simple functions we just considered illustrate how the basic oper-

ations lead to the definition of new functions. Starting with the constant

functions and the function P1(x) = x, polynomials are obtained by repeat-

edly applying multiplication and addition of functions. Rational functions

are obtained by dividing polynomials. Root functions are obtained by tak-

ing inverse functions of simple power functions, and compositions then lead

to power functions with rational exponents. These various operations can,

in turn, be applied to the functions so obtained, and this process can be

continued, leading to increasingly more complicated functions defined by

algebraic expressions. One must be careful with specifying the domains

of the relevant functions, so that the newly obtained functions are defined

correctly. For example, when taking quotients f/g of functions one must

exclude points a where g(a) = 0. We also saw that in order to define the

inverse of a function one must restrict its domain so that the function is

one-to-one on the new domain. If f1 : Ω1 → R and f2 : Ω2 → R are two

functions, their sum or product are defined on the domain Ω1∩Ω2, provided

this set is not empty. If Ω1∩Ω2 = ∅, then f1+f2 and f1 ·f2 are not defined.
For example, f1 =

√
4− x2 has domain Ω1 = [−2, 2] and f2 =

√
x2 − 9 has

domain Ω2 = (−∞,−3] ∪ [3,∞), and clearly Ω1 ∩ Ω2 = ∅; so it does not

make sense to consider f1 + f2. Proceeding with such operations a finite

number of times one obtains the collection A of algebraic functions that we

had already considered in the Prelude.

Recall that in the Prelude we recognized the importance of the Fac-

torization Lemma for identifying tangents and defining the derivative of

algebraic functions. In particular, when one considers the corresponding

factorization for the inverse of such functions, an additional restriction on

the domains of the functions becomes necessary. More in detail, consider

f ∈ A and a ∈ dom(f), and the factorization

f(x)− f(a) = q(x)(x − a),

where the factor q is again in A with the same domain as f . If one assumes

that f is one-to-one (perhaps after restricting the domain appropriately), in

order to obtain the corresponding factorization for the inverse function f−1,

one needs to divide by q(x), i.e., it is necessary to require that q(x) 6= 0. In

particular, if q(a) = 0, then b = f(a) has to be excluded from the domain

of the inverse function. For example, the function P (x) = x3 is one-to-one

on R; however, the factorization

P (x)− P (0) = x3 = x2(x− 0)
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shows that the factor q(x) = x2 is zero at x = 0, and hence there is no

corresponding factorization for the inverse g(x) = 3
√
x at the point 0. In

fact, if 3
√
x −

√
0 = 3

√
x = q 3

√
x(x)x, then q 3

√
x(x) = 3

√
x/x = 1/ 2/3

√
x for

x 6= 0, and 1/ 2/3
√
x is not defined at 0. Therefore, when viewed as an

algebraic function in A with the relevant factorization at all points of its

domain, the domain of g(x) = 2/3
√
x excludes 0, i.e., dom( 2/3

√
x) = R−{0}.

Similarly, the domain of k(x) =
√
x ∈ A is the open interval (0,∞).

Let us emphasize once again that for functions f ∈ A the factorization

f(x)− f(a) = q(x)(x− a) is the essential technical feature that makes such

a function algebraically differentiable (see Prelude, Sections 5 and 7). In

particular, the value q(a) is, by definition, the derivativeD(f)(a) = f ′(a) at
the point a. If f is one-to-one, its inverse f−1 is (algebraically) differentiable

only at points b = f(a) where D(f)(a) 6= 0. Consequently, we shall assume

that the domains of functions in A are restricted accordingly, so that the

Factorization Lemma holds at all points in the domain.

I.6.3 Local Boundedness of Algebraic Functions

The following intuitively obvious property will be quite useful for establish-

ing important properties of algebraic functions.

Theorem 6.1. Suppose f ∈ A and let a be in the domain of f . Then there

exists δ > 0 such that f is bounded on [a− δ, a+ δ].

The proof of this result is somewhat tedious and repetitive, and we

shall not present all the details. Instead, we discuss a few special cases to

illustrate the techniques and in order to identify the critical special property

of polynomials that needs to be preserved as one performs the various

operations on polynomials resulting in more and more general functions

in the class A.

As already noted in Section 7 of the Prelude, the result is essentially

obvious if f is a polynomial. In fact, let I be any bounded interval and

suppose P (x) =
∑n

j=0 cjx
j . We may assume that I is contained in an

interval [−M,M ] for some integerM . Since for x ∈ I one then has |x| ≤ M ,

standard estimations imply that

|P (x)| ≤

∣

∣

∣

∣

∣

∣

n
∑

j=0

cjx
j

∣

∣

∣

∣

∣

∣

≤
n
∑

j=0

|cj | |x|j ≤
n
∑

j=0

|cj | |M |j = K for x ∈ I.

In order to prove the theorem for a rational function R = Q/P , where
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P and Q are polynomials, we need the following immediate consequence of

the local boundedness. Recall from Section 1.5 that Iδ(a) = (a− δ, a+ δ).

Lemma 6.2. If P is a polynomial and a ∈ R, then for any δ > 0 there

exists a constant K such that

|P (x) − P (a)| ≤ K |x− a| for all x ∈ Iδ(a). (I.5)

Proof. Note that P (x) − P (a) = q(x)(x − a), where q is a polynomial.

By the preceding result, given δ > 0, |q(x)| is bounded by a constant K for

all x ∈ Iδ(a). The result then follows by a standard estimation. �

We note that the above estimate, in turn, implies the local boundedness

of P , since P (x) = P (a) + [P (x) − P (a)] implies that |P (x)| ≤ |P (a)| +
|P (x) − P (a)|, and hence |P (x)| ≤ |P (a)|+K |x− a| ≤ |P (a)|+Kδ for all

x ∈ Iδ(a). Furthermore, the estimate (I.5) also implies the following bound

from below.

Lemma 6.3. If P is a polynomial and P (a) 6= 0, there exists δ > 0 such

that |P (x)| ≥ |P (a)| /2 > 0 for all x ∈ Iδ(a).

Proof. By Lemma 6.2, there exists a constant K so that

|P (x)− P (a)| ≤ K |x− a| for all x ∈ I1(a).

Choose 0 < δ ≤ 1 so that δ ≤ |P (a)| /(2K). For |x− a| ≤ δ it then follows

that |P (x)− P (a)| ≤ Kδ ≤ |P (a)| /2. The triangle inequality then implies

that

|P (x)| = |P (a) + [P (x)− P (a)]| ≥ |P (a)| − |P (x) − P (a)|
≥ |P (a)| − |P (a)| /2 = |P (a)| /2

for all x ∈ Iδ(a). �

Returning to the rational function R = Q/P , if a ∈ dom(R), then

P (a) 6= 0. Choose δ > 0 according to Lemma 6.3. If KQ is a constant so

that |Q(x)| ≤ KQ for x ∈ Iδ(a), it then follows that

|R(x)| = |Q(x)|
|P (x)| ≤

KQ

|P (a)| /2 if |x− a| ≤ δ, (I.6)

so that R is indeed bounded in a neighborhood of a.

In particular, the function R is defined for all x ∈ Iδ(a). Consequently,

in the factorization R(x)−R(a) = qR(x)(x − a) the factor qR is a rational

function defined on Iδ(a) as well. Therefore, by the preceding argument,

qR is bounded as well on a suitable interval I of positive length centered at

a. One thus obtains the estimate

|R(x)−R(a)| ≤ KR |x− a|
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for all x ∈ I, that is, any rational function satisfies the analogue of (I.5).

Consequently, the proof of Lemma 6.3 applies to rational functions as well,

so that the conclusion in that Lemma holds for rational functions and, more

generally, for any other function that satisfies (I.5).

As for taking inverses, suppose a ∈ dom(R), b = R(a), and that the

derivative D(R)(a) = qR(a) 6= 0. As we just showed, Lemma 6.3 applies to

qR, so that |qR(x)| ≥ |qR(a)| /2 for all x in some interval Iδ(a), and hence

1/qR is bounded on Iδ(a). By using the completeness of the real numbers,

one can show that J = R(Iδ(a)) contains an interval Iγ(b) for some γ > 0.

(See Problems 7 and 8 of Exercise I.6.5 for details.) Suppose, in addition,

that R is one-to-one on Iδ(a) (perhaps after choosing a smaller δ), so that

the inverse g of R is defined on J , with g(J) = Iδ(a). As we saw in Section

6.3 of the Prelude, it follows that the inverse g has the factorization

g(y)− g(b) =
1

qR
(g(y))(y − b)

for y ∈ J . The estimate for |qR(x)| then implies that |(1/qR)(g(y))| ≤
2/ |qR(a)| for y ∈ Iγ(b) ⊂ J. Therefore the inverse g also satisfies the esti-

mate (I.5) for an appropriate constant K and interval I.

We thus see from these examples how the estimate (I.5) continues to

hold as we apply various operations on rational functions that are involved

in building up functions in the class A.

In order to prove the theorem for arbitrary f ∈ A one needs to verify,

more generally, that the various operations such as products, quotients,

compositions, and inverses, when applied to functions that satisfy (I.5),

result in functions that still satisfy such an estimate. For example, suppose

it is known that f ∈ A satisfies (I.5), and we want to prove the analogous

estimate for 1/f . If a ∈ dom(1/f), then f(a) 6= 0; the proof of Lemma

6.3 applies, and therefore there is δ > 0 so small that |f(x)| ≥ |f(a)| /2 for

x ∈ Iδ(a). Since

1

f(x)
− 1

f(a)
= −f(x)− f(a)

f(x)f(a)
,

it follows that
∣

∣

∣

∣

1

f(x)
− 1

f(a)

∣

∣

∣

∣

≤ K
1
2 |f(a)| |f(a)|

|x− a| for x ∈ Iδ(a).

We conclude this discussion by explicitly stating the two relevant prop-

erties for functions in A that have been used in the preceding arguments.

The proofs follow by techniques analogous to those we just used for rational

functions.
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Corollary 6.4. Let f be a function in A with domain Ω. Given a ∈ Ω,

i) there exist δ > 0 and K so that Iδ(a) ⊂ Ω and

|f(x)− f(a)| ≤ K |x− a| for all x ∈ Iδ(a), and

ii) if f(a) 6= 0, there exists δ > 0, such that

|f(x)| ≥ |f(a)| /2 > 0 for all x ∈ Iδ(a).

I.6.4 Global Boundedness

The proofs of the local estimates in the preceding section only required

basic algebraic tools and estimations. By using the completeness of R one

can prove a corresponding global result, as follows.

Theorem 6.5. Suppose f ∈ A with domain Ω, and let J be any closed and

bounded interval contained in Ω. Then f is bounded on J .

It is noteworthy that both conditions on the interval J are critical. If

one of the conditions is dropped, then the theorem is no longer true. For

example, the interval I = (0, 1] is bounded but not closed, and it is con-

tained in the domain of f(x) = 1/x; note that f is NOT bounded on I.

Similarly, the interval J = [0,∞) is closed (it contains its only boundary

point 0) but not bounded, and the function g(x) = x is NOT bounded on

J .

Proof. We shall prove the result by contradiction, that is, let us assume

that f is NOT bounded on J. So for each natural number n one can find

a point xn ∈ J such that |f(xn)| ≥ n. Set J = J0, divide the interval J0
in half, and denote the two closed bounded intervals so obtained by J ′ and
J ′′. Then at least one of the intervals J ′ and J ′′ must contain points xn

for infinitely many n ∈ N. Label that half interval by J1. By repeating

this process over and over one obtains a nested sequence of closed bounded

intervals J = J0 ⊃ J1 ⊃ .... ⊃ Jk ⊃ ... such that each interval Jk contains

points xn for infinitely many n, and so that length(Jk) = length(J0)/2
k. In

particular, f is NOT bounded on any interval Jk. By the nested interval

theorem (Theorem 1.3), there exists a point a ∈ R with a ∈ Jk for all

k = 1, 2, 3, ...

By Theorem 6.1 there exist δ > 0 and K, such that |f(x)| ≤ K for all

x ∈ Iδ(a) = {x : |x− a| < δ}. Choose an integer N such that length(JN )=

length(J0)/2
N < δ. Since a ∈ JN , it follows that JN ⊂ Iδ(a), and therefore
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|f(x)| ≤ K for all x ∈ JN . On the other hand, by the construction of JN ,

the function f is NOT bounded on JN ! This contradiction shows that our

assumption that f is not bounded on the interval J is incompatible with

the local boundedness property of algebraic functions. Therefore it follows

that f must indeed be bounded on the interval J . �

Corollary 6.6. Suppose f ∈ A with domain Ω, and let J be any closed

and bounded interval contained in Ω. Given a ∈ J , there exists a constant

K = K(J, a), such that

|f(x)− f(a)| ≤ K |x− a| for all x ∈ J .

Proof. Consider the factorization f(x) − f(a) = q(x)(x − a), where

q ∈ A also has domain Ω. By the theorem, q is bounded over J , so that

|q(x)| ≤ K for some constant K and all x ∈ J , and the desired estimate

follows. �

Note that the factor q, and hence also the bound K depends on the

fixed point a. We shall see later in Chapter III that it is possible to choose

the constant K independently of a ∈ J , although K will still depend on

the interval J .

I.6.5 Exercises

1. Determine the largest possible domain of the following functions:

i) f(x) =
√
x2 + 2x− 8;

ii) y = 1
1+x4 ;

iii) g(s) = s−1
s+1 .

2. a) Find the domain of the function g(x) = 1
1−x2 .

b) Use a graphing calculator to display the graph of g.

c) Describe the behavior of g(x) as x approaches the points that are not

in the domain.

d) Determine limx→∞ g(x).

3. Show that (2x + 1)(2x − 1) = 22x − 1 for all x ∈ R.

4. Show that (sinx/ cosx)2 + 1 = (1/ cosx)2 for all x with cosx 6= 0.

5. a) Define Ch(x) = (2x + 2−x)/2 and Sh = (2x − 2−x)/2. Show that

[Ch(x)]2 − [Sh(x)]2 = 1 for all x ∈ R.

b) More generally, show that [Eb(x)+Eb(−x)
2 ]2 − [Eb(x)−Eb(−x)

2 ]2 is a con-

stant and determine its value.
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6. Assume that f and g are algebraic functions in the class A which satisfy

the estimates i) and ii) in Corollary 6.4 at the point x = a. Show in

detail that f + g and fg satisfy the corresponding estimates as well.

7. Suppose f ∈ A and that a is in the domain of f. Then f(x) − f(a) =

q(x)(x − a), with q ∈ A.

a) Suppose that q(a) > 0. Show that there exists δ > 0 such that

q(x) > 0 for all x with |x− a| ≤ δ. (Hint: Apply Corollary 6.4

to q.)

b) With δ as in a), show that c = f(a− δ) < f(a) < f(a+ δ) = d.

c) Formulate and prove an estimate corresponding to b) in the case

q(a) < 0.

8. Suppose f ∈ A with domain Ω.

a) Assume that the interval [a, b] is contained in Ω and that f(a) < 0

and f(b) > 0. Use the completeness of R to show that there exists

x0 ∈ (a, b) such that f(x0) = 0. (Hint: Let x0 be the Least Upper

Bound of S = {x ∈ [a, b] and f(x) ≤ 0}; use Corollary 6.4 to show

that f(x0) = 0.)

b) Use a) to show that if f(a) < f(b) and λ is any number with f(a) <

λ < f(b), then there exists xλ ∈ (a, b) such that f(xλ) = λ. (Hint:

Apply a) to f(x)− λ.)

c) Use b) and the notations and results from Problem 7 to show that if

q(a) 6= 0, then the image f(Iδ(a)) contains an open interval centered

at f(a).
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Chapter II

Derivatives: How to Measure Change

As seen in the Prelude, derivatives—which were introduced by algebraic

techniques based on double points and multiplicities—provide the solution

to the ancient problem of finding tangent lines for large classes of curves.

These elementary methods, however, fail in the case of non-algebraic func-

tions, in particular for the important case of exponential functions. Moti-

vated by the application to velocity that we considered in Section 4 of the

Prelude, we recognized that derivatives can also be captured by an approx-

imation process, e.g., the velocity at time t0 is approximated by average

velocities over decreasing time intervals containing t0. Such average veloc-

ities, or more generally, average rates of change, are very easy to define.

The main new difficulty thus concerns understanding the approximation

process and developing a general setting where it leads to meaningful re-

sults. Starting with the elementary case of algebraic functions and guided

by the example of exponential functions, we shall now investigate this ap-

proximation process in detail, culminating with a notion of differentiability

that generalizes the algebraic formulation and that is equivalent to the

classical version used in analysis. Along the way we shall highlight the in-

terpretation of derivatives as instantaneous rate of change, a concept that

is the foundation for the numerous applications of calculus to the natural

sciences over several centuries and to many other disciplines in more recent

times.

Before proceeding with this chapter, the reader is urged to review Sec-

tions 4 and 8 of the Prelude.

111
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II.1 Algebraic Derivatives by Approximation

II.1.1 From Factorization to Average Rates of Change

As we saw in the Prelude, given a polynomial f and a point a ∈ R, the

elementary algebraic factorization

f(x)− f(a) = q(x)(x − a),

where q is a uniquely determined polynomial, provides the critical infor-

mation to solve the tangent problem for the curve that is defined by f .

In fact, the value q(a) is the slope of that unique line through the point

P = (a, f(a)) that intersects the graph of f with multiplicity 2 or higher.

This is the special property that singles out the tangent line to the graph at

P , and the value q(a) is called the derivative D(f)(a) = f ′(a) of f at a. We

then showed how this factorization, and consequently the solution of the

tangent problem, extends by simple algebraic techniques to all functions

that are built up from polynomials by standard algebraic operations and

the natural operations of composition and taking inverses of functions. In

particular, that includes the familiar rational functions and root functions.

While the calculation of an explicit formula for the factor q in concrete

cases typically involves lengthy computations, we showed in the Prelude

that its value at a, that is, the derivative D(f)(a), can readily be found for

all algebraic functions by a routine application of specific rules. We shall

now consider in detail the values of q at inputs x that are different from a.

Regardless of the nature of the function f , or whether a particular explicit

expression for the factor q is available, the value q(x) for x 6= a is uniquely

determined by

q(x) =
f(x)− f(a)

x− a
for x 6= a. (II.1)

The quotient on the right side, which is NOT defined for x = a (plugging

in x = a leads to the expression 0/0, which is meaningless), contains im-

portant information that not only is most useful in applications, but that is

critical in order to solve the tangent problem for more general non-algebraic

functions, where the value q(a), i.e., the derivative, is not accessible by any

elementary methods.

In order to illustrate the significance of the quotient (II.1), we shall now

consider several concrete situations.
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II.1.1.1 Average Velocity

Let us begin with the concept of “average velocity” that we had already

considered in Section 4 of the Prelude. We are all familiar with the basic

idea as it arises, for example, with a moving automobile. A car that travels

a distance of 15 km between 12:10 p.m. and 12:22 p.m. is said to have

traveled with a velocity of 15
12 km/min over that time period. Note that

this number does not take into account any changes that may occur during

the time interval considered, such as slowing down to avoid an obstacle,

stopping for a traffic light, or accelerating to pass another car. Instead,

what has been measured is the average velocity between 12:10 p.m. and

12:22 p.m. Formally, for two distinct moments in time t1 < t2, one defines

average velocity between t1 and t2 =
distance traveled between t1 and t2

t2 − t1
,

or, more briefly,

average velocity =
distance

time
.

Note that the numerical value of the average velocity depends on the

units chosen to measure distance and time. For example, since 12 minutes

are 0.2 hours, the velocity of 15
12 km/min corresponds to a velocity of 15

0.2 =

75 km/hour. Converting 15 km into 9.32 miles results in an average velocity

of 9.32
0.2 = 46.61 miles/hour. Commonly used units for velocity are m/sec =

meters/second, ft/sec = feet/second, km/h = kilometer/hour, and mi/h =

miles/hour.

The distance traveled between two points in time t1 and t2 relates to

the change in position of the automobile. Suppose the car moves along a

highway, and let s(t) measure its position at time t as given, for example,

by the km-markers along the road. Between the times t1 and t2 the car will

have traveled a distance ∆s = s(t2)− s(t1). (See Figure II.1.)

35 km
35–20

km

20 km

s (t1) s (t2)

Fig. II.1 Distance traveled on a road.
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The average velocity between t1and t2 is thus given by the quotient

∆s

∆t
=

s(t2)− s(t1)

t2 − t1
,

where the symbol ∆ (= delta = capital Greek “D”) is generally used to

indicate a difference of relevant quantities. Note that this latter expression

has exactly the structure of the general quotient (II.1), with the function

f replaced by the position function s.

A car is said to move with constant velocity (during a particular time

period) if the average velocity between any two points in time during that

period is always the same number. In that case the position of the car in

dependence of time can easily be described precisely. Suppose that the car

travels with constant (average) velocity v. Then

s(t2)− s(t1)

t2 − t1
= v for any t1 6= t2.

Therefore, if we fix the initial time t1, and let t2 = t be arbitrary, one

obtains

s(t)− s(t1)

t− t1
= v for any t 6= t1.

(This formula holds both when t > t1 and when t < t1.) This equation can

be solved for s(t), resulting in

s(t) = v(t− t1) + s(t1).

Note that the latter formula is valid also for t = t1. We see that constant

velocity implies that the position s(t) is described by a linear function of

time t, i.e., by a polynomial of degree 1.

II.1.1.2 Lines and Slopes

An analogous discussion applies when one considers the inclination or steep-

ness of a highway, as shown in Figure II.2.

A measure of the “steepness” is given by the change in height ∆h =

h(x2)−h(x1) that occurs over the (horizontal) distance ∆x = x2 −x1 > 0.

What matters is not the value of ∆h itself, but rather the value of the ratio

∆h

∆x
=

h(x2)− h(x1)

x2 − x1
.

Note that if x1 < x2 , then ∆h/∆x < 0 is equivalent to ∆h < 0, so

a negative quotient indicates that the height is decreasing, i.e., that the
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h

x

∆h

∆x

h (x2)

h (x1)

x1 x2

Fig. II.2 Inclination of a straight line.

h

h (x2) − h (x1)

x1 x2 x3

x4 − x3 

x2 − x1

x4

h (x4) − h (x3)

Fig. II.3 Measure of steepness is independent of position.

road goes downhill. In the case where the road follows an inclined straight

line, the quotient ∆h
∆x is a constant m independent of x1 and x2, since the

corresponding right triangles shown in Figure II.3 are similar, and hence

the ratios of corresponding sides are equal.

This constant number

m =
∆h

∆x
=

“rise”

“run”
,

which depends on the units chosen to measure length, is called the slope

of the line. For example, if the road rises by 40 meters over a horizontal

distance of 1 kilometer, m = 40/1 = 40 m/km. Using the same units for

the height and the distance results in a slope of 40/1000 = 0.04 m/m, which

is a quantity without any “dimension”. One often then writes the result
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as a percentage, i.e., in the example just considered one says that the road

rises with a slope of 4% or at a rate of 4%.

Let us fix x1 and consider x2 = x 6= x1 as variable. We then solve the

equation

m =
h(x)− h(x1)

x− x1

for h(x), resulting in

h(x) = m(x− x1) + h(x1) = mx+ (h(x1)−mx1).

Again, the relevant function—the height h in this case—is given by a linear

function.

II.1.1.3 Average Rate of Climb

More generally, suppose the steepness of the road changes along the way,

perhaps alternating between climbing and descending. Again, denote by x

the position in the horizontal direction and let h(x) be the height of the

road above sea level, measured in meters, at the position x. In this case

the quotient ∆h/∆x = [h(x2)−h(x1)]/(x2 −x1) depends on the particular

locations x1 and x2 chosen, i.e., it is not constant along the way. This

quotient thus describes the average rate of change in altitude between the

two points x1 and x2, or also the average rate of climb of the road between

the points identified by x1 and x2.

II.1.1.4 Average Rates of Change

Returning to the case of a general function f , for a fixed value x1 6= a,

the numerator f(x1) − f(a) of the quotient in (II.1) simply measures the

difference ∆f , or change in the values of f , between the two input values

a and x1. As in the examples we just considered, division by the change

∆x = x1−a in the input thus provides a measure of the “rate of change of f”

between the two points a and x1. Since the quotient [f(x1)−f(a)]/(x1−a)

contains no information whatsoever about the function f at any point x

between a and x1, this rate of change again is just an average rate of change

of f between a and x1.

Example. The average rate of change of f(x) = sinx over the interval

[0, π/2] is

sin π
2 − sin 0
π
2 − 0

=
1
π
2

=
2

π
≈ 0.637.
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Over the interval [π/6, π/2] one obtains

sin π
2 − sin π

6
π
2 − π

6

=
1− 1

2
π
3

=
3

2π
≈ 0.477,

which is—no surprise—a different value.

Let us consider a geometric interpretation of this abstract notion, as

follows. The graph of a general (non-linear) function f describes a curve in

the coordinate plane. For x1 6= x2 the ratio

∆f

∆x
=

f(x2)− f(x1)

x2 − x1
(II.2)

can then be interpreted as the slope of the line through the two points

(x1, f(x1)) and (x2, f(x2)) on the graph (such a line through two distinct

points is called a secant, to distinguish it from a tangent). (See Figure II.4.)

y =
 f (

x )

∆x

∆y

(x2, f (x2))

(x1, f (x1))

Fig. II.4 Average rate of change or slope given by ∆y/∆x.

Clearly the graph of f varies quite a bit from that line, i.e., the secant

only provides crude information about the curve. The quotient (II.2) is

therefore called the average slope of the curve between x1 and x2.

Our discussion shows that (non-vertical) lines are exactly those curves

whose average slopes are constant.

II.1.1.5 Other Examples of Rates of Change

Average rates of change occur in numerous applications. Here are some

additional examples.

Suppose the function T measures the temperature in Celsius degrees

at the current location in dependence of the time of day t, e.g., T (8) is

the temperature at 8 a.m. If T (8) = 160, and T (11) = 250 the quotient



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 118

118 What is Calculus? From Simple Algebra to Deep Analysis

∆T /∆t = (25 − 16)/(11 − 8) = 3 measures the average rate of change in

temperature, i.e., the temperature is increasing between 8 and 11 a.m. at

the average rate of 30 per hour. Again, the numerical value depends on the

chosen temperature scale and units of time.

Volume V , pressure p, and temperature T of an ideal gas are related by

the formula V p = kT , where k is a numerical constant. Keeping T fixed, we

can view V as a function of pressure that is explicity given by V (p) = kT/p.

The ratio

∆V

∆p
=

V (p2)− V (p1)

p2 − p1

describes the average rate of change of volume between the pressure points

p1 and p2.

Finally, suppose P = P (t) describes the size of the population in a

town in year t. If P (2007) = 80, 000 and P (2015) = 92, 000, the ratio

∆P/∆t = (92, 000−80, 000)/(2015−2007) = 1, 500 gives the average rate of

growth of the population between the years 2007 and 2015, i.e., during this

period the population grew at an average rate of 1, 500 people per year. In

order to compare rates of growth of cities of different sizes, it is more useful

to consider the average relative rate of growth, defined by [∆P/∆t]/P ,

where usually the value of the population at the beginning of the time period

is chosen. In the case at hand, the relative growth rate between the years

2007 and 2015 is thus given by 1, 500/P (2007) = 1, 500/80, 000 = 0.01875.

The relative growth rate is most commonly expressed as a percentage, i.e.,

one says that in the relevant period the population grew at an average rate

of 1.875% ≈ 1.9% per year. The use of “percentages” signals that one

considers the relative growth rate of the population.

To summarize, we see that “average rates of change” occur in many

different settings. The reader is encouraged to add additional examples

related to her/his own experience and interest.

Returning to the basic factorization

f(x)− f(a) = q(x)(x − a),

we thus see that the values of the factor q(x) = [f(x)−f(a)]/(x−a), x 6= a,

contain important information about the particular process that is modeled

by the function f .

We conclude this section with a basic relationship between average rates

of change over adjacent intervals that will turn out to be significant in later

discussions. To illustrate the simple idea, let us consider average velocities

over two consecutive time intervals T1 = [t0, t1] and T2 = [t1, t2]. For
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example, if the average velocity over T1 is 40 km/h and over T2 it is 55 km/h,

then surely the average velocity over the combined time interval T = T1∪T2

must be between 40 and 55 km/h. We expect that this relationship holds

in general, i.e., that the average velocity over the combined time interval

is at least as large as the smaller of the average velocities over each of the

two intervals, and that, similarly, it cannot exceed the larger one of these

two velocities.

Indeed, this remains correct for general average rates of change, as

follows. Let us assume that the function f is defined on the two adja-

cent intervals [x0, x1] and [x1, x2], where x0 < x1 < x2. For j = 1, 2

we denote the average rate of change of f over the interval [xj−1, xj ] by

Aj = A([xj−1, xj ]) = [f(xj)− f(xj−1)]/(xj − xj−1).

Lemma 1.1. With the notations introduced above, the average rate of

change A([x0, x2]) over the combined interval [x0, x2] satisfies the estimate

min{A1, A2} ≤ A([x0, x2]) ≤ max{A1, A2}.
Furthermore, if A1 6= A2, then both inequalities are strict.

Proof. For completeness’ sake we give the simple proof. By writing the

definition of average rate of change in product form, one obtains

f(xj)− f(xj−1) = Aj(xj − xj−1) for j = 1, 2.

It follows that

min{A1, A2}(x1 − x0) ≤ f(x1)− f(x0) ≤ max{A1, A2}(x1 − x0)

and

min{A1, A2}(x2 − x1) ≤ f(x2)− f(x1) ≤ max{A1, A2}(x2 − x1) .

After adding the two inequalities and rearranging, the terms involving x1

and f(x1) cancel, and one is left with

min{A1, A2}(x2 − x0) ≤ f(x2)− f(x0) ≤ max{A1, A2}(x2 − x0) .

The desired result follows by dividing the last inequality by the positive

number (x2 −x0). If A1 6= A2, we may assume that A1 < A2 after perhaps

renumbering. Then min{A1, A2} = A1 < A2 and A1 < A2 = max{A1, A2},
so that min{A1, A2}(x2 − x1) < f(x2) − f(x1) and f(x1) − f(x0) <

max{A1, A2}(x1 − x0); proceeding as before, it follows that the inequal-

ities are now strict. �

The result clearly generalizes to any finite collection of adjacent intervals

[xj−1, xj ], j = 1, ..., n, with n ≥ 2. Furthermore, when the average rates of

change are strictly increasing, one has the following easy consequences.
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Corollary 1.2. Let n ≥ 2 and x0 < x1 < ... < xn−1 < xn, and assume

that the average rates of change of the function f defined on [x0, xn] satisfy

A([xj−1, xj ]) < A([xj , xj+1]) for j = 1, ..., n− 1.

Then

(i) A([x0, x1]) < A([x0, xn]) < A([xn−1, xn]) and

(ii) A([x0, xj ]) < A([x0, xj+1]) for j = 1, ..., n− 1.

Proof. The proof of (i) is an immediate consequence of the Lemma, gen-

eralized to n adjacent intervals, since the hypothesis implies that A([x0, x1])

and A([xn−1, xn]) are the minimal, resp. maximal of the rates of change

over the n intervals. As for (ii), replacing n with j in (i), one obtains

A([x0, xj ]) < A([xj−1, xj ]). If j < n, the hypothesis gives A([xj−1, xj ]) <

A([xj , xj+1]), and it then follows that A([x0, xj ]) < A([xj , xj+1]). We now

apply the lower estimate in Lemma 1.1 to the two adjacent intervals [x0, xj ]

and [xj , xj+1], resulting in A([x0, xj ]) < A([x0, xj+1]). �

Of course, corresponding results with the inequalities reversed are true

as well. See Problem 7 of Exercise II.1.4 for details.

II.1.2 From Average to Instantaneous Rates of Change

As we saw in the preceding section, the average slopes of the graph of a

function f over different intervals provide only limited information about

the function. Many details are simply not captured by such averages. It

therefore seems desirable to introduce more refined ways to describe the

behavior of the function or of its graph. Recall that in the Prelude we had

considered the classical problem of finding tangents to curves. In analogy

to the (average) rate of change or slope between two distinct points P1 and

P2 on the graph of a function, the tangents at points P or Q on the graph

capture the rates of change or slopes at the single point P , respectively

Q, thereby defining the rate of change of a function at single points. (See

Figure II.5.)

The situation is particularly simple in the case where the function f is a

polynomial, or more generally of algebraic type, i.e., when f is in the class

A introduced in Section 7 of the Prelude (see also Section I.6). Given the

factorization f(x) − f(a) = q(x)(x − a), we saw in the Prelude that the

value q(a) gives the slope of the tangent line to the graph of f at the point

(a, f(a)). On the other hand, for x 6= a, the value q(x) = [f(x)−f(a)]/(x−a)

is the average slope of f between the two distinct points Pa = (a, f(a)) and

Px = (x, f(x)). (See Figure II.6.)
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P

P1

P2

Q

y = f (x)

Fig. II.5 Average slopes and tangent slopes.

Px = (x, f (x ))

Pa = (a, f (a ))

y = f (x)
∆x

∆f

Fig. II.6 q(x) gives the slope ∆f/∆x of the secant.

From this perspective it thus seems natural to interpret q(a) = D(f)(a)

in exactly the same way as q(x) = ∆f/∆x for x 6= a, that is, q(a) is the

(average) slope of the graph of f between the two (now identical) points

Pa and Pa. The two distinct points of intersection of the secant with the

graph of f when x 6= a coincide when x = a, i.e., we have only one point

Pa of intersection, which however is counted twice, that is, Pa is now a

“double point” of intersection between the secant and the curve. According

to the discussion in Section 2 of the Prelude, this is exactly the defining
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geometric property of the tangent line to the curve at Pa. When x = a

the secant has become the tangent line, and q(a) still measures its slope.

Since only one point is involved (which however is counted twice), the

value q(a), i.e., the slope of the tangent, measures the rate of change of f

at the single point Pa = (a , f(a))! In more general settings, we say that

the derivative D(f)(a) = q(a) of f at a measures the “instantaneous” rate

of change of f at the point a. In order to highlight this interpretation, in

applications one often denotes the derivative by the formal quotient df
dx ,

i.e., D(f)(a) = df
dx(a). This notation—which is analogous to ∆f

∆x—helps to

remind us that the derivative measures a “rate of change”.

An analogous interpretation remains valid in all other applications. For

example, if s(t) describes the position of an automobile at time t, the deriva-

tive D(s)(t0) at time t0 measures the velocity at that moment, i.e., the

instantaneous velocity at time t0, and we also write D(s)(t0) = ds/dt(t0).

Similarly, if V (p) = kT/p is the volume of a fixed amount of gas in depen-

dence of the pressure p, the derivative D(V )(p0) = dV/dp(p0) = −kT/p20
describes the instantaneous rate of change of volume with respect to pres-

sure when the pressure has value p0.
1 Regarding the application to pop-

ulation growth, where P = P (t) measures the size of the population in a

town at time t, it turns out that in all “natural” situations the relevant

function P is not of algebraic type, so the preceding discussion does not

apply directly. As we shall see later, models of population growth involve

exponential functions. Of course, once we have developed the appropriate

concept of derivative, we shall say that the derivativeD(P )(t0) = dP/dt(t0)

measures the instantaneous rate of change of the population at time t0. Cor-

respondingly, D(P )(t0)/P (t0) measures the (relative) rate of growth of the

population at time t0.

II.1.3 Approximation of Algebraic Derivatives

The discussion of derivatives for algebraic functions in the Prelude, com-

bined with the results of the preceding two sections, provide a detailed

analysis of the critical factor q in the basic factorization f(x) − f(a) =

q(x)(x − a). In order to avoid any possible misunderstanding, in this sec-

tion we shall indicate explicitly that the factor q, which is a function of

x, depends on the fixed point a in the domain of f : changing the point a

requires changing the factor q. We shall write qa for the factor that appears

1The derivative D(V ) is calculated by applying the power rule for negative integer
exponents discussed in Section 6 of the Prelude.
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in

f(x)− f(a) = qa(x)(x − a). (II.3)

In the preceding sections we recognized that the values qa(x) can be

interpreted in a uniform and consistent manner as average rates of change

of f between the two points a and x. When the two points coincide we have

a special situation, but the same conceptual interpretation applies. Instead

of the slope of a secant through two distinct points, the value qa(a), i.e.,

the derivative of f at a, measures the slope of the secant through the double

point corresponding to a, that is, the slope of the tangent. Tangents are

just special cases of secants, and the basic algebraic technique, that is, the

factorization (II.3), treats the two in a unified way. The single formula for

qa in the algebraic case suggests that there is a strong bond between the

derivative D(f)(a) = qa(a), i.e., the slope of the tangent, and the average

rate of change qa(x) = ∆f/∆x for x 6= a. This is justified also at an intuitive

level. For example, regardless of how we actually define and calculate the

instantaneous velocity at a single moment in time t0, we expect that this

value is very close to the average velocity over very short time intervals

surrounding t0. Furthermore, the average velocity should get closer and

closer to the velocity at t0 as the length of the time intervals shrinks to 0.

In other words, the instantaneous velocity at t0 is approximated by average

velocities over shorter and shorter time intervals. Similarly, Figure II.6

clearly suggests that as the input x gets closer and closer to a, i.e., when

the point Px moves towards the point Pa on the graph of f , the secant

through Pa and Px turns towards the position of the tangent at Pa. In

other words, the slope of the tangent at Pa is approximated by the average

slope between Pa and Px as x approaches a.

Conceptually, we write:

[average slope between Pa and Px] → [slope of tangent at Pa] as Px → Pa,

or even more briefly,

qa(x) → qa(a) as x → a.

What seems quite obvious to the eye is, in fact, easily justified precisely

in the case of algebraic functions. In Section 4 of the Prelude we had

already examined this approximation process in some detail in the case of

the velocity of a freely falling object, subject only to the gravitational force

of the earth. Before considering the general case, let us look at another

example to illustrate the idea as concretely as possible.
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Example. Let us consider the function f(x) = x3 at the point a = 1.

The relevant factorization is

f(x) − f(1) = x3 − 1 = q1(x)(x − 1),

where the factor q1 is given by q1(x) = x2 + x+ 1. Then q1(1) = f ′(1) = 3

is the slope of the tangent at the point (1, 1), while for x 6= 1,

q1(x) =
f(x) − f(1)

x− 1

measures the average slope of f over the interval with endpoints 1 and x.

Note that

q1(x)− q1(1) = x2 + x+ 1− 3 = x2 + x− 2

= (x+ 2)(x− 1).

Let us consider the interval I = [0, 2] centered at a = 1. Clearly |x+ 2| ≤ 4

for all x ∈ I, so that

|q1(x) − q1(1)| ≤ 4 |x− 1| for x ∈ I.

This explicit estimate clearly shows that q1(x) → q1(1) as x → 1. For

example, if we want to approximate the slope of the tangent within 10−5 =

0.00001 by average slopes q1(x), it is enough to choose x within a distance

of 10−5/4 from the point 1, i.e., choose any x 6= 1 that satisfies |x− 1| ≤
10−5/4.

The corresponding estimate in the case of an arbitrary algebraic function

is obtained by the same method. In fact, the critical result has already

been discussed in detail in Section I.6. Recall from the Prelude that if f is

a function in the class A and a is in the domain of f , the factor qa in the

basic factorization f(x)− f(a) = qa(x)(x− a) is again in the class A , and

a is in the domain of qa as well. This is the (algebraic) generalization of the

standard fact that if f is a polynomial, then the factor qa is a polynomial

as well. One therefore can apply Theorem I.6.1. It follows that there exist

an interval Iδ(a) and a constant K, so that

|qa(x)− qa(a)| ≤ K |x− a| for all x ∈ Iδ(a). (II.4)

This is the critical estimate that gives precise meaning to the approximation

property captured by the statement that qa(x) → qa(a) as x → a. For

example, suppose we want to approximate qa(a) within 10−10. Formula

II.4 obviously implies that |qa(x)− qa(a)| < 10−10 for all x ∈ Iδ(a) that

satisfy |x− a| < 10−10/K. Clearly the same argument works if 10−10 is
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replaced by the much smaller number 10−100, or for that matter, by any

arbitrarily small number ε > 0. Just choose |x− a| < ε/K to ensure that

|qa(x)− qa(a)| < ε. To summarize:

The closer x is to the point a, the closer the average slope qa(x)

will be to the slope of the tangent qa(a).

More generally, the preceding discussion establishes the following ab-

stract result.

Theorem 1.3. Let a be a point in the domain of the function f ∈ A, and

denote by A(Jx,a) the average rate of change of f over the interval Jx,a
with endpoints a and x. Then there exist an interval I centered at a and a

constant K, such that

|A(Jx,a)−D(f)(a)| ≤ K |x− a| for x ∈ I and x 6= a.

In a less formal way we can say that the average rate of change of f over

small intervals (with one of the endpoints at a) approaches the derivative

D(f)(a) = f ′(a) of f at the point a as the lengths of the intervals go to

zero. Symbolically we may write

∆f

∆x
→ D(f)(a) =

df

dx
(a) as ∆x → 0, or

lim
∆x→0

∆f

∆x
= D(f)(a) =

df

dx
(a).

This fundamental approximation process involving rates of change for

algebraic functions is the precursor of the general concept of “limit” that

needs to be considered when one studies functions that are not algebraic.

We shall formalize the appropriate notions after we have examined in detail

the case of exponential functions in the next section. Recall that the Prelude

already culminated with a preliminary investigation of the tangent problem

for such functions. In particular, we had recognized that the approximation

property that we just identified and verified for all algebraic functions is

the critical ingredient that suggests how to overcome the new difficulties

that appear in the non-algebraic case.

In essence, we have discovered that the algebraic definition of deriva-

tive based on the identification of double points can be replaced by a new

non-algebraic approximation process that views a double point as the

“limiting” position of two distinct points that move towards each other.

Historical Remark. This approximation process is the crux of the

new ideas developed by Leibniz and Newton. The history of Calculus and



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 126

126 What is Calculus? From Simple Algebra to Deep Analysis

Analysis in the 17th century shows that Descartes’ algebraic method based

on double points was never fully implemented as we have done in the Pre-

lude. Instead, Leibniz and Newton started directly with the much deeper

and more powerful approximation process. Given that apparently they

were not aware of the elementary algebraic approach and of the explicit

estimates that provide a direct motivation for the approximation process,

the discovery of the approximation process by Leibniz and Newton to solve

the tangent problem is particularly remarkable and a lasting testimony to

their creativity.

II.1.4 Exercises

1. An airplane departed Albany, NY, at 1:50 p.m. and it landed at Newark

Airport at 2:35 p.m. Determine the average velocity (in miles/hour) of

the airplane on this trip. (You will need to look up a relevant piece of in-

formation that is not given here. Alternatively, use your best estimate.)

2. A motorcycle travels along a highway from 9 to 10 a.m. with a con-

stant speed of 70 km/h. Determine the function s(t) that measures the

distance (in km) at time t from the position at 9 a.m.

3. Determine the average rates of change on the interval [1, 5] of the func-

tions F (x) = x2 and E2(x) = 2x.

4. a) Find the average rate of change of the function f(x) = x3 on the

interval [0, t], where t > 0. (Note: the answer depends on t.)

b) Show that for any fixed number c the average rate of change of f (as

in a) on the interval [c, t] for t 6= c can be expressed by a polynomial

of degree 2 in t.

c) Find the polynomial given in b). What is its value at t = c?

5. The Department of Fisheries estimates that the population of trouts in

a mountain lake grew from about 50,000 to 80,000 from March 1 to

July 31.

a) Determine the average rate of growth per month of the fish

population.

b) Determine the average relative rate of growth per month of the fish

population. Give the answer in percentage form.

6. a) A train traveled at an average velocity of 70 mph between 10 a.m.

and 12 p.m. Thereafter, because of the poor condition of the tracks,

the train had to slow down and traveled at an average velocity of

only 35 mph between 12 and 1 p.m. Determine the average velocity

of the train over the whole trip, i.e., between 10 a.m. and 1 p.m.
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b) Verify that your answer in a) is consistent with Lemma 1.1.

7. With the same notations as in Corollary 1.2, assume that A([xj−1, xj ]) >

A([xj , xj+1]) for j = 1, ..., n− 1. Prove that

(i) A([x0, x1]) > A([x0, xn]) > A([xn−1, xn]), and

(ii) A([x0, xj ]) > A([x0, xj+1]) for j = 1, ..., n− 1.

8. Let f(x) = 1
2 x4 − 3x.

a) Determine the difference between the slope of the tangent line to the

graph of f at the point (2, 2) and the slope of the line through the

points (2, 2) and (2.1, f(2.1)).

b) Determine a precise estimate for the difference between the slope of

the tangent line to the graph of f at the point (2, 2) and the slope of

the line through the points (2, 2) and (x, f(x)) that is valid for all x

between 1 and 3.

9. a) Determine the instantaneous rate of change df/dt of the function f

given by f(t) = 4
√
t at points t > 0. (Hint: Use the power rule - see

Prelude, Section 6.)

b) What happens to df/dt(t) in part a) as t → 0?

c) Interprete the result in b) geometrically by looking at the graph of f

and its tangents.

II.2 Derivatives of Exponential Functions

Exponential functions arise in numerous central applications. However,

as we already recognized at the end of the Prelude, the study of their

tangent lines and the related notion of instantaneous rate of change leads

to new phenomena that transcend the elementary algebraic methods used

so far. The discussion in the Prelude and in Section 1.2 showed that in

the algebraic case we were able to define and calculate derivatives by an

easy application of a basic algebraic factorization property. The relevant

approximation property we identified was then a simple by-product of our

analysis that helped us to better understand the concept of derivative of a

function, i.e., the instantaneous rate of change. In contrast, for exponential

functions, as well as for all other non-algebraic functions, we need to turn

this process around, since no appropriate factorization is available to us

at the beginning. Therefore we will have to take average rates of change

as our starting point and use them to capture and define derivatives by a

limit process that is motivated by the discussion of the algebraic case in the
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previous section. Given the importance of exponential functions, we shall

investigate the existence and properties of their derivatives in great detail.

In the subsequent section we shall then use the insights gained along the

way to formulate the general concepts of limits and derivatives that are the

core of analysis.

II.2.1 Tangents for y = 2x

Let us begin with the concrete exponential function E2(x) = 2x that we

already considered in Section 8 of the Prelude. (The reader may wish to

review Sections I.4.4 and I.4.5 before proceeding.) Inspection of the graph

of this function suggests that it has a (non-vertical) tangent line at every

point. (See Figure II.7.) Again, the point P of intersection is a double

point (just rotate the tangent slightly to reveal the two points), but there

is no (algebraic) technique to identify that particular slope for which the

corresponding line through P intersects the graph with multiplicity at least

two.

8

6

4

y = 2x

2
P

x
−2 −1 0 1 2 3

Fig. II.7 Graph of y = 2x with a tangent.

The basic problem thus is to find the slope of such tangents. Given a

fixed number a, we consider the factorization

E2(x)− E2(a) = qa(x)(x − a)
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where qa(x) is uniquely defined for all x 6= a by the average rate of change

qa(x) =
E2(x)− E2(a)

x− a
.

In contrast to the algebraic case, there is no explicit formula for qa that is

defined for x = a, so there is no obvious way to capture the derivative of

E2 at x = a. However, motivated by the results in the algebraic case we

obtained in Section 1, we consider the double point as the limiting position

of two distinct points that approach each other. For x 6= a, the average

slope between the two corresponding points on the graph of E2 is given

by qa(x). We are thus led to investigate whether there is a value L that

arises as the “limit” of qa(x) as x → a. In analogy to the algebraic case,

that limit L would give us the desired slope of the tangent to the graph

of E2 at the (double) point (a,E2(a)). Note that this problem is quite a

bit more complicated than the approximation in the algebraic case. Since

we do not know any value of L a priori—note that we cannot evaluate qa
at x = a—we cannot attempt to estimate |qa(x) − L| directly. Instead, we
need to determine the existence of the “limit” by carefully studying the

behavior of qa(x) when x 6= a gets closer and closer to a.

Before proceeding with the analysis, let us simplify the problem as fol-

lows. Set h = x − a, so that x = a + h and x → a corresponds to h → 0.

Then notice that by the functional equation of the exponential function one

has

E2(a+ h)− E2(a) = 2a+h − 2a = 2a2h − 2a

= 2a[2h − 1] = E2(a)[E2(h)− E2(0)]

= E2(a)[q0(h) · h],

where in the last step we have used the factorization E2(h) − E2(0) =

q0(h)(h − 0) at the point a = 0 for h 6= 0. Since E2(a + h) − E2(a) =

qa(a+ h) · h, it follows that

qa(a+ h) = E2(a)q0(h) for all h 6= 0. (II.5)

This shows how finding the derivative of E2 at the arbitrary point a is

reduced to finding the derivative for the case a = 0. More precisely, assume

for the moment that the limiting process for q0(h) as h → 0 indeed leads

to a meaningful result that we denote by the expression

lim
h→0

q0(h).
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Equation (II.5) then shows that the corresponding limit process for qa at

the arbitrary point a also is meaningful, and that it results in

lim
h→0

qa(a+ h) = E2(a) lim
h→0

q0(h).

Geometrically, this means that the slope of the tangent to the graph of E2

at the point x = a equals E2(a) ·c2 = 2a ·c2, where c2 = limh→0 q0(h) is the

slope of the tangent at x = 0. As in the algebraic case, let us denote the

slope of the tangent line at (a,E2(a)), that is, the derivative of the function

E2 at the point x = a, by D(E2)(a), or also by E
′

2(a). Thus

D(E2)(a) = lim
h→0

qa(a+ h).

This is consistent with the corresponding results in the algebraic case dis-

cussed in the Prelude and reviewed in Section 1.3, whereD(f)(a) = qa(a) =

limh→0 qa(a + h) for f ∈ A. The preceding arguments show that one has

the formula

D(E2)(a) = E2(a)D(E2)(0), or

(2x)′ = 2x · derivative at 0.

So, in order to determine the derivative of E2 at arbitrary points, it is

enough to study in detail the derivative at a = 0.

II.2.2 The Tangent to y = 2x at x = 0

The relevant factorization for E2 at the point 0 is given by 2x−1 = q0(x)x.

Since the point a = 0 is fixed in this section, we shall simplify notation by

using q instead of q0.

Figure II.8 shows that for x 6= 0 the slopes q(x) = (2x − 1)/x of the

secant lines through the points (0, 1) and (x, 2x) increase as x increases. In

particular, q(x) decreases as x → 0 from the right side. Let us recall

the explicit numerical data for the values of q
(

10−k
)

that we had already

considered in Section 8 of the Prelude.
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x

(x, 2x)

2x−1

−2 −1
x

0 1 2

2

4

6

8

3

Fig. II.8 Secant to y = 2x of slope (2x − 1)/x for x > 0.

xk q(xk) = (2−xk − 1)/xk

10−1 0.7177346253

10−2 0.6955550056

10−3 0.6933874625

10−4 0.6931712037

10−5 0.6931495828

10−6 0.6931474207

10−7 0.6931472045

10−8 0.6931471829

10−9 0.6931471808

10−10 0.6931471805

Table II.1.

Table II.1 confirms that the numbers q(10−k) decrease as k gets larger

and larger, i.e., as 10−k → 0, and that they seem to approximate a num-

ber whose decimal expansion begins with 0.69314... . We will now verify

precisely that q(x) is indeed an increasing function on R− {0}, and that



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 132

132 What is Calculus? From Simple Algebra to Deep Analysis

the limiting process suggested by Table II.1 is meaningful, that is, we shall

identify a specific real number c2 that is the “limit” of q(x) as x → 0 in

an appropriate sense. (The subscript 2 is in reference to the base 2 of the

exponential function that is considered here.) In contrast to the algebraic

case, there is no explicit formula for c2; instead, the existence of the limit

must be verified by a more abstract argument that utilizes the axioms of the

real numbers R, including the critical “completeness” property introduced

in Section I.1.4.

For the remainder of this section we will continue to think of limits and

use their basic natural properties in an informal and intuitive way. We shall

formulate the notion of “limit” and the basic rules more precisely in the

next section.

Lemma 2.1. Suppose x1, x2 6= 0, and x1 < x2 . Then q(x1) < q(x2).

As mentioned earlier, this statement is geometrically evident from the

graph of E2, as seen in Figure II.8. Also, Table II.1 provides numerical

evidence. However, as the property stated in the Lemma is critical in order

to make precise the existence of the desired limit for q(x) as x → 0, we

shall present the somewhat technical details of the proof. The reader may

skip these details on first reading and just accept the geometric argument.

Proof. Note that for x > 0 q(x) = E2(x)−E2(0)
x−0 is the average rate of

change A([0, x]) of the function E2 over the interval [0, x]. For fixed δ > 0

and any x ∈ R one has

A([x, x + δ]) =
E2(x+ δ)− E2(x)

δ
= E2(x)

E2(δ)− 1

δ
.

Since E2 is a (strictly) increasing function, one sees that A([x, x + δ]) is

a strictly increasing function of x. We shall first consider the case of two

non-zero rational numbers r1 < r2 and use Lemma 1.1 and its Corollary

to relate the average rates of change over appropriate intervals, as follows.

By choosing a sufficiently large common denominator n ∈ N for r1 and

r2, we may assume that rl = ml/n for l = 1, 2, where m1,m2 ∈ Z, and

m1 < m2.We consider the intervals [ jn ,
j
n+

1
n ] = [ jn ,

j+1
n ] for j ∈ Z. By what

we just observed, A([x, x + 1/n]) is strictly increasing in x, and therefore

A([ jn ,
j+1
n ]) < A([ j+1

n , j+2
n ]) for all j, so that the hypotheses of Corollary

1.2, with xj = j/n, are satisfied for any finite collection of successive inter-

vals. Note that x0 = 0. If r1 > 0, and hence also m1 > 0, part (ii) of that

Corollary for 0 ≤ j ≤ m2 then implies that

A([0, xj ]) < A([0, xj+1]) ≤ A([0, xm2
])
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for any j with 0 < j < m2. In particular, for j = m1 one obtains q(r1) =

A([0, xm1
]) < A([0, xm2

]) = q(r2). In the case r1 < 0, note that q(r1) =

A([xm1
, 0]) with m1 < 0. For any j with m1 < j < 0, part (i) of the

Corollary implies that

A([xm1
, xj ]) ≤ A([xj−1, xj ]) < A([xj , xj+1]) ≤ A([xj , x0]).

2

Lemma 1.1 applied to the intervals [xm1
, xj ] and [xj , 0] then implies that

A([xm1
, 0]) < A([xj , 0]). (II.6)

In particular, if m2 < 0 we can take j = m2 in (II.6), resulting in q(r1) =

A([xm1
, 0]) < A([xm2

, 0]) = q(r2). Finally, if m2 > 0, use j = −1 in (II.6)

to obtain A([xm1
, 0]) ≤ A([x−1, 0]) (the case m1 = −1 being trivial). It

then follows that

q(r1) = A([xm1
, 0]) ≤ A([x−1, 0]) < A([0, x1]) ≤ A([0, xm2

]) = q(r2),

thereby completing the proof of Lemma 2.1 in the case of rational numbers.

For the general case, recall from Section I.4 that E2(x) for x real is

approximated by E2(r) for rational numbers r with r → x. Given x 6= 0,

it then follows from general properties of limits—made precise in the next

section—that one has

q(r) =
E2(r) − 1

r
→ E2(x)− 1

x
= q(x)

as r → x. Therefore, if x1 < x2, approximate x1 and x2 sufficiently closely

by non-zero rational numbers r1 and r2 with x1 < r1 < r2 < x2. Since

q(r1) < q(r2) by the first part of the proof, it then readily follows that

q(x1) < q(x2) as well. (See Problem 4 of Exercise II.2.8 for more details.)�

We now want to identify the limit of q(h) as h > 0 approaches 0. Clearly

q(h) =
2h − 1

h
> 0 for h > 0,

so that the set S+ = {q(h) : h > 0} is bounded from below. Therefore,

by the completeness axiom of the real numbers, S+ has a greatest lower

bound in R that we denote by c2. We will now explain why this number

c2 = inf S+ is the desired limit of q(h) as h → 0. Note that in particular

c2 is a lower bound for S+, i.e., q(h) ≥ c2 for h > 0. More significantly, c2
is the greatest lower bound, that is, for any natural number n the number

c2 + 1/n > c2 is NOT a lower bound for S+. So there exists hn > 0 such
2In the Corollary, the counter j began at 0, while here the counter begins at a negative

integer, but that detail is irrelevant for the conclusions.
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that c2 ≤ q(hn) < c2 +1/n. Since by Lemma 2.1 q(h) is getting smaller as

h decreases, it then follows that one even has

c2 ≤ q(h) < q(hn) < c2 + 1/n for all h with 0 < h < hn.

Thus, no matter how small 1/n > 0 has been chosen, all the values q(h)

will eventually be at a distance < 1/n from c2 provided h > 0 is sufficiently

small. Surely these estimates make precise that the numbers q(h) have the

limit c2 as h > 0 goes to zero . We thus write

lim
h→0+

q(h) = c2, (II.7)

where we use the notation h → 0+ (instead of h → 0) to encode that h

approaches 0 from the right only, i.e., from the positive side. The numerical

data in Table II.1 suggests that c2 = 0.69314... .

In order to complete the discussion and obtain a more precise numerical

estimate for c2 we need to also consider the values q(h) for negative h that

approach 0. Note that since for h < 0 one has q(h) < q(s) for all s > 0

by Lemma 2.1, it follows that q(h) ≤ c2 for h < 0. Here is some relevant

numerical data.

xk q(xk) = (2xk − 1)/xk

−10−1 0.6696700846

−10−2 0.6907504562

−10−3 0.6929070095

−10−4 0.6931231584

−10−5 0.6931447783

−10−6 0.6931469403

−10−7 0.6931471565

−10−8 0.6931471781

−10−9 0.6931471803

−10−10 0.6931471805

Table II.2.

According to the data in Tables II.1 and II.2 we have the estimate

q(−10−9) = 0.6931471803...≤ c2 ≤ 0.6931471808...= q(10−9).

This estimate determines the first 9 digits of c2. More digits of c2 can be

captured by increasing the computing technology, i.e., by increasing the

number of significant digits in the calculations, and evaluating q(−xk) and

q(xk) for numbers xk closer and closer to zero.
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The numerical evidence in Table II.2 clearly suggests that

lim
h→0−

q(h) = c2, (II.8)

where the notation h → 0− encodes that h approaches 0 from the left, i.e.,

through negative numbers. We will now show that this last equation is

indeed correct. Note that for h 6= 0 one has

q(−h) =
2−h − 1

−h
= 2−h 1− 2h

−h
(II.9)

= 2−h 2
h − 1

h
= 2−hq(h).

Now recall from Section I.4.4, that 2h → 1 as h → 0, i.e., limh→0 2
h = 1,

and consequently also limh→0+ 2−h = 1. It then follows from (II.9) that

lim
h→0+

q(−h) = 1 · lim
h→0+

q(h) = c2.
3 (II.10)

Since for h > 0 one has −h < 0, equation (II.10) surely proves equation

(II.8). Since the limits from the two sides coincide, we can combine the

equations (II.7) and (II.8) into the single statement

lim
h→0

q(h) = lim
h→0

2h − 1

h
= c2 = 0.6931471805... . (II.11)

We want to emphasize that the limit c2 in the preceding equation is iden-

tified precisely as c2 = inf{q(h) : h > 0}, and that the proof is theoretical

and does not depend on any numerical data. Computing technology is only

used in order to obtain the decimal expansion of c2 to any desired level of

accuracy, subject to the limitations of the technology.

Note that while the decimal expansion of c2 looks quite mysterious, the

geometric meaning of c2 is very simple and not at all mysterious:

c2 is the slope of the tangent to the graph of y = 2x at the point (0, 1)!

The number c2 can thus be readily visualized by the length of the short

vertical line segment shown in Figure II.9.

This limit c2 identified in equation (II.11) represents the “missing value

q(0)” for q at h = 0: it is that particular number that is approximated

by slopes of secants, just as in the case of algebraic functions discussed

in Section 1.3. In analogy to the familiar case of algebraic functions we

thus say that the function y = E2(x) is differentiable at x = 0 (i.e., there
3We have used natural properties of limits, for example, that the limit of a product

equals the product of the limits. This and other rules will be formalized in the next
section.
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0

2

y = 2x

slope c2 = 

1

1

1

c2

4

x

6

c2

Fig. II.9 Visualization of c2, the slope of the tangent at (0, 1).

exists a well-defined tangent at the point (0, 1)), and that the value c2 =

limh→0 q(h) is the derivative D(E2)(0) = (E2)
′(0) of E2 at 0. As we already

observed at the beginning of this section, the functional equation for E2

then implies that E2 is differentiable at each point a ∈ R, and that

(E2)
′(a) = lim

h→0
qa(a+ h) = E2(a) · c2,

where c2 is defined by (II.11). We have thus solved the tangent problem at

every point of the graph of E2(x) = 2x.

II.2.3 Other Exponential Functions

The discussion in the preceding section readily generalizes to exponential

functions Eb(x) = bx with an arbitrary base b > 0. In particular, for each

such b there exists a real number cb defined by

cb = lim
h→0

bh − 1

h
= lim

h→0

Eb(h)− Eb(0)

h

that is the slope of the tangent to the graph of y = Eb(x) at the point

(0, 1). We call cb the derivative E′
b(0) of the exponential function Eb at 0.

Furthermore, for any other point a ∈ R one has

E′
b(a) = lim

h→0

Eb(a+ h)− Eb(a)

h
= Eb(a) · cb.
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Note that for b = 1 one trivially has c1 = 0, but otherwise the numbers

cb are quite unexpected and intriguing. For example, with the help of a

computer one readily obtains the following numerical approximations:

c3 = 1.098612...

c4 = 1.386294...

c5 = 1.609437...

c10 = 2.302585... .

These numbers cb with mysterious decimal representations thus appear very

naturally as soon as one considers the tangent problem for exponential

functions. We repeat that their geometric meaning is clear:

cb equals the slope of the tangent to the graph of y = bx at the point (0, 1).

We shall soon find another interpretation of these numbers that gives fur-

ther insight than just the (approximate) decimal expansion.

II.2.4 The “Natural” Exponential Function

Surely the strange values cb that we identified prompt the question whether

there exists a base b for which the slope of the tangent to y = bx at x = 0 is

some simple natural number, say the number 1. Since c2 = 0.693... < 1 and

c3 = 1.098... > 1, it appears reasonable that there is a base b# somewhat

smaller than 3 for which cb# = 1 exactly. A simple “rescaling” argument

will allow us to verify this precisely and to determine this particular base

b# in terms of the number c2, i.e., in terms of the derivative of E2 at 0.

In the discussion that follows, we shall continue to use the intuitive idea

of limit and relevant natural rules as they occurred in the previous section.

A more detailed discussion of limits will be given in Section 3.1.

Starting with c2 = limh→0(2
h − 1)/h, we can use logarithms to express

the values of cb for arbitrary bases b > 0 in terms of c2, as follows. Since

log2 is the inverse function of E2(x) = 2x, one has b = E2(log2 b) = 2log2 b,

and hence, by the properties of exponentials,

bh = (2log2 b)h = 2h log2 b for any h.

Therefore,

cb = lim
h→0

bh − 1

h
= lim

h→0

2h log2 b − 1

h
.

We now rescale: instead of considering h → 0 we consider t = h log2 b → 0.

This is analogous to a change in units in measurements of physical quanti-

ties, for example, changing from meters to centimeters (or feet) to measure
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a distance that goes to 0. Let us assume that b 6= 1, so that log2 b 6= 0.

Substituting h log2 b = t, so that h = t/ log2 b, one obtains

2h log2 b − 1

h
=

2t − 1

t/ log2 b
= log2 b

2t − 1

t
.

Since t → 0 precisely when h → 0, it now follows that

cb = lim
h→0

2h log2 b − 1

h
= (log2 b) lim

t→0

2t − 1

t
= log2 b · c2.

Note that c1 = 0 and log2 1 = 0, so this last equation holds also for b = 1.

We thus see that

cb = c2 log2 b for any b > 0.

Rather than starting with a familiar base b for an exponential function,

such as b = 2, thereby ending up with the mysterious and awkward value

c2 = 0.69314718..., we can now turn matters around and prescribe a con-

venient value for the slope cb. The preceding equation then allows us to

determine the corresponding—and possibly quite strange—base b. Of par-

ticular interest is to find the base b# that satisfies cb# = 1—clearly as

simple as it gets—so that the exponential function with the corresponding

base b# will satisfy the differentiation formula

(Eb#)
′ = cb# Eb# = 1 Eb# = Eb# .

This base b# is uniquely determined by

1 = cb# = c2 log2 b
#, i.e., log2 b

# =
1

c2
,

and hence

b# = E2(log2 b
#) = 21/c2 = 21/0.6931478... = 2.7182818... .

This number b# turns out to be ubiquitous in mathematics, at a par with

the number π. It is most commonly denoted by the letter “e”. The cor-

responding exponential function y = ex is called the natural exponential

function, and we shall also denote it by the letter “E”, i.e., E denotes the

function that is defined by E(x) = ex for all real numbers x. It is important

to clearly understand that this number

e = 2.7182818...

has been identified as that unique base for which the tangent at the point

(0, 1) to the graph of the corresponding exponential function E(x) = ex has

slope 1. In particular e satisfies

lim
h→0

eh − 1

h
= 1.

Later on we shall discover other formulas that directly express the number e

as a limit. Let us mention in passing that e—just as π—is not an algebraic

number, and hence, in particular, e is not rational.
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II.2.5 The Natural Logarithm

The natural exponential function E(x) = ex with base e was singled out

among all possible exponential functions so as to satisfy the property

E′(x) = E(x) for all x ∈ R.

Just as any other exponential function with base b 6= 1, E(x) is one-

to-one on its whole domain R, and hence is invertible. Its inverse function

is the logarithm loge to the base e. This particular function is called the

natural logarithm, and it is denoted by lnx, or log x (no indication of

base). Accordingly, the number e is also referred to as the base of the

natural logarithm. Its domain is the set of all positive real numbers. The

inverse relationship between E(x) = ex and lnx is captured by the formulas

eln y = y for y > 0 , and

ln(ex) = x for x ∈ R.

We now revisit the expression for the number cb in terms of log2 b that

we had obtained earlier by using the natural logarithm instead. Just as

before, by replacing b = eln b and then h ln b = t, it follows that

cb = lim
h→0

bh − 1

h
= lim

h→0

eh ln b − 1

h

= lim
t→0

et − 1

t/ ln b
= ln b · lim

t→0

et − 1

t

= ln b · 1.

We have therefore identified the number cb as the natural logarithm ln b of

b, i.e., cb is that unique number that satisfies b = ecb . In particular,

c2 = 0.693147... = ln 2, and e0.693147... = 2.

More generally, the above formula shows how to calculate approximations

of ln b for any b > 0 by considering the limit

ln b = lim
h→0

bh − 1

h
.

The formula for the derivatives of exponential functions now takes the form

D(Eb)(x) = (bx)′ = ln b bx,

or

E′
b(x) = ln b Eb(x).
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The natural exponential function E(x) = ex and its inverse y = lnx

occur so often in mathematics and in many applications that most scien-

tific calculators have special function keys for them.4 The reader should

get familiar with evaluating these functions by practicing with a suitable

calculator. Most numerical work involving these functions is now handled

with the aid of such scientific calculators, which have replaced the use of

tables or slide rules from decades ago.

II.2.6 The Derivative of lnx

Recall from Section I.5.3 that the graph of the inverse of the function E

is obtained by reflection of the graph of E on the line y = x. Since the

tangent to the graph of E at (0, 1) has slope 1 and hence is parallel to the

line y = x (see Figure II.10), reflection of that tangent on the line y = x

gives the line through (1, 0) with that same slope 1. Clearly this line is the

tangent to the graph of y = lnx at that point. Again, we say that y = lnx

is differentiable at x = 1, i.e., the graph has a tangent line at that point,

and we call the slope of that tangent the derivative of ln at x = 1. This

geometric argument thus suggests that D(ln)(1) = (ln)′(1) = 1.

y = E (x )
y = x

y = ln x

(0,1)

2

0
−2 −1 1

(1,0)

2

Fig. II.10 Reflection of the tangent of y = ex at (0, 1).

A similar simple relationship holds true at all other points (a, b) on the

graph of E, where b = ea. The tangent at that point with slope ea = ∆2/∆1

is reflected to the tangent to the graph of the natural logarithm at the point

4Sometimes one of the functions is accessed by entering the inverse key before the other
function key, for example ex is obtained by entering a number for x followed by [inv] +
[ln].
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(b, a) = (b, ln b). (See Figure II.11.)

−1

−1

1

1

2

3

4

0 2

x

y

y = ln x

y = ex

3 4

∆1

∆1

∆2

∆2

Fig. II.11 Slope of tangent to y = lnx at b = ea.

A look at the triangles shown in Figure II.11 reveals that the slope of

the reflected tangent at (b, ln b) is ∆1/∆2 = 1/ea = 1/b.

We have thus verified by an intuitive geometric argument that the func-

tion given by y = lnx has a tangent, i.e., is differentiable, at all points

x > 0, and that

D(ln)(x) = (ln x)′ =
1

x
for all x > 0.

This differentiation formula is a special case of a general relationship be-

tween the derivative of a function and that of its inverse that we had already

established in the case of algebraic functions in Section 6.2 of the Prelude.

As we shall see in Section 6.4 later in this chapter, this relationship remains

valid in general.

II.2.7 The Differential Equation of Exponential Functions

We conclude this section by focusing on a relationship that characterizes the

family of exponential functions Eb. Each such function y = Eb(x) satisfies

the simple “differential equation”

y′ = k y
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for some constant k. Note that the trivial case b = 1,with E1(x) = 1x = 1,

is covered as well, with the corresponding constant k = 0. Conversely, we

shall eventually see in Section III.2.4 that any function f that satisfies

such an equation, i.e., f ′(x) = k f(x), is necessarily equal to some constant

multiple C Eb(x) of a particular exponential function. The base b must

satisfy ln b = k, so that b = ek.

More generally, a relationship expressed by some equation that involves

an (unknown) function and its derivative is called a (first order) differential

equation. Many phenomena in nature are modeled by such differential

equations, which often involve “higher order derivatives” and/or more than

one variable. It is one of the principal tasks of mathematical analysis to

determine specific properties of the functions that satisfy a given differential

equation.

To illustrate how differential equations and properties of their solutions

can be used to estimate and make predictions about processes whose be-

havior can be modeled by such equations, let us consider a population of

bacteria whose size at time t is given by the function P = P (t), which we

shall assume to be differentiable. Under suitable external conditions, the

instantaneous rate of change dP/dt(t) = P ′(t) of the population at time t

is proportional to the size of the population P (t) at that time. This prop-

erty is consistent with common sense and can be verified experimentally in

numerous settings. This means that there exists a constant k so that

P ′(t) = kP (t).

It then follows from the preceding discussion that P (t) must be described

by an exponential function. This same process applies to many other “pop-

ulations” that are growing according to an “exponential model”. This in-

formation can be used to answer questions about the particular population

under consideration, and to make predictions about the future.

Example. The population of a city is projected to grow at a rate of

2% annually over the next five years. Assuming the population is 450,000

in 2013, estimate the size of the population in 2018.

We measure time t in years and denote the population at time t by P (t).

The statement about the growth rate means that the relative instantaneous

rate of change P ′(t)/P (t) at time t equals 2% per year. This translates into

the equation

P ′(t) = 0.02P (t).
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As we mentioned earlier, solutions of this equation are functions of the form

P (t) = CEb(t) for suitable constants C and b. In the present case we must

have ln b = 0.02, or b = e0.02. If we count the years so that t = 0 corresponds

to the year 2013, then C = P (0) = 450, 000. Therefore, according to this

model, the population after t years will be

P (t) = 450, 000 (e0.02)t = 450, 000 e0.02t.

Hence the population in 2018 is estimated by P (5) = 450, 000 e0.02·5 =

450, 000 e0.1 = 450, 000 · 1.1052 ≈ 497, 000.

Other questions can readily be answered based on this formula for the

population. For example, suppose the city continues to grow at the same

rate. After how many years will the population reach about 1 million?

The number of years t asked for must satisfy 1, 000, 000 = 450, 000 e0.02t,

or e0.02t = 1/.45 = 2.2222. Therefore 0.02t = ln 2.2222 = .7985, and

consequently t = .7985/0.02 ≈ 40. It follows that assuming the same

growth rate in future years, the population will reach the one million mark

in approximately 40 years, that is, in 2053.

We shall study further applications of this sort in Chapter III.

II.2.8 Exercises

1. a) Find the derivative of y = 3x.

b) Determine the equation of the tangent lines to the graph of y = 3x

at the points where x = 0 and where x = 1.

2. Find the equation of the tangent line to the graph of y = 2x that goes

through the point (2, 0). (Note that the given point is NOT on the

graph. Make a sketch including the (unknown) point of tangency.)

3. At what point does the tangent to the graph of y = 2x have slope 1?

4. Complete the details in the final step of the proof of Lemma 2.1 (Hint:

Given non-zero x1 < x2, choose non-zero rational numbers r#1 , r#2 with

x1 < r#1 < r#2 < x2. Then d = q(r#2 )− q(r#1 ) > 0. Approximate q(xl)

by q(rl), rl 6= 0, l = 1, 2, within d/4, where r1 < r#1 < r#2 < r2. Verify

that q(x2)− q(x1) > d/2 > 0.)

5. Use a scientific calculator to evaluate e2 and
√
e. (If your calculator does

not have a separate key for the exponential function, try [inv]+ [ln], or

check the website for your calculator.)

6. Simplify the following expressions without using any calculators !

a) ln(e3), b) ln(
1

e
), c) 5 ln 4 + 7 ln

1

2
, d) e1/ ln(e2).



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 144

144 What is Calculus? From Simple Algebra to Deep Analysis

7. a) Evaluate ln 10, log10 e, and the product ln 10 · log10 e by using a

calculator.

b) Show by using the properties of logarithms that for any b > 0 with

b 6= 1 one has

ln b · logb e = 1.

c) More generally, verify the equation loga b · logb a = 1 for any a, b > 0

and 6= 1.

8. Find the equation of the tangent to the graph of y = lnx at the point

where x = 2.

9. Use numerical approximations to find the value of c6, the derivative of

y = 6x at x = 0.

10. Suppose f is an exponential function, and let k > 0 be a constant.

Introduce the rescaled function fk by fk(x) = f(kx). Show that

f ′
k(a) = kf ′(ka) at the point x = a. (Hint: Replace kh = t, and hence

1/h = k/t,in the average rates of change that approximate f ′
k(a), as in

the proof of cb = log2 b · c2.)
11. Suppose a population of bacteria of size P (t) at time t (in hours) grows

according to the differential equation dP
dt = kP . Determine k if the

population doubles in 12 hours.

II.3 Differentiability and Local Linear Approximation

The discussion of the tangent problem for exponential functions in the pre-

ceding section shows that approximations and limits are the critical new

ideas that allow us to capture the slope of the tangent, i.e., the deriva-

tive, for non-algebraic functions. We clearly need a solid understanding of

these new “transcendental” concepts in order to formulate and understand

tangents and derivatives in the most general setting.

II.3.1 Limits

We had seen in Section 1.2 that an algebraic function f in the class A
satisfies the following important approximation property at each point a in

the domain.

f(x) → f(a) as x → a.
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More precisely, we had seen that there exist an interval I centered at a and

a constant K, such that

|f(x)− f(a)| ≤ K |x− a| for all x ∈ I. (II.12)

The estimate (II.12) implies, in particular, that for any natural number n

one has

|f(x)− f(a)| < 1

n
for all x ∈ I that satisfy 0 < |x− a| < 1

nK
.

While studying the tangent problem for exponential functions in the preced-

ing section we saw that a more general abstract version of this relationship

between |f(x)− f(a)| and |x− a| needs to be considered, as follows.

Definition 3.1. A function F defined at all points near a, but not neces-

sarily at a, has a limit at a if there exists a number L such that the values

F (x) for x 6= a approach L arbitrarily close for all x that are sufficiently

close to a. The number L is determined uniquely by this property. It is

called the limit of F at a, and one writes

L = lim
x→a

F (x),

or also

F (x) → L as x → a.

While the intuitive idea is quite clear, the precise relationship is rather

subtle. It is most easily understood in the case of algebraic functions,

where we can rely on the explicit estimation (II.12) given above, as follows.

We interpret “arbitrarily close” to mean that |F (x) − L| < 1/n for an

arbitrarily chosen natural number n. Of course a fixed value x cannot satisfy

this estimate for all n unless F (x) = L. Therefore, given a “measure of

closeness” 1/n to the limit L, one has to specify the corresponding meaning

of “all x that are sufficiently close to a”, which will depend on the choice

of 1/n. In the algebraic case described above one sees that an appropriate

“closeness condition” between x and a is specified by requiring x (∈ I and

6= a) to satisfy |x− a| < 1/(nK). In Problem 1 of Exercise II.3.5 we will

formulate a more general and precise formulation of the above definition

that forms the foundation for all technical proofs involving limits. For our

purposes, it will be quite sufficient to have a firm understanding of the

concept of limit as formulated in the definition above.

Let us verify that if a function has a limit, then that limit is determined

uniquely. Suppose that L1 and L2 are limits of F at a. Let n be any

natural number. Then for all x 6= a sufficiently close to a one has both

|F (x)− L1| < 1/n and |F (x) − L2| < 1/n.
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In particular, we can choose xn in the domain of F so close to a that

|F (xn)− L1| < 1/n and |F (xn)− L2| < 1/n.

This implies that

|L1 − L2| ≤ |L1 − F (xn)|+ |F (xn)− L2| < 2/n. (II.13)

Therefore |L1 − L2| < 2/n for all n ∈ N, and this clearly implies that

|L1 − L2| = 0, i.e., L1 = L2.
5

The basic estimate for algebraic functions shows that f ∈ A has a limit

at every point a ∈ dom(f), and that, in fact,

lim
x→a

f(x) = f(a).

At points that are not in the domain, algebraic function may or may

not have limits. For example, g(x) = 1/x defined for x 6= 0 has no limit

as x → 0, since the values of 1/x become arbitrarily large as x → 0 from

the right side, so that they cannot approach any fixed number L. On the

other hand, consider the rational function k(x) = (x2 − 4)/(x + 2) that is

defined for x 6= −2; by canceling the common factor x + 2 6= 0 from the

numerator and denominator one obtains k(x) = x − 2 for x 6= −2, which

clearly implies limx→−2 k(x) = −4.

Another situation occurs for the function

A(x) =
|x|
x
, defined for x 6= 0.

Note that A(x) = x/x = 1 for x > 0 and A (x) = (−x)/x = −1 for x < 0,

so the values of A(x) cannot approach a single number L as x → 0. There-

fore the function A(x) has no limit as x → 0. This example suggests that

sometimes it might be useful to consider one-sided limits. The notation

x → a+ means that one only considers x > a, with the corresponding

meaning for x → a−. With A(x) as above, one then has the correct state-

ments limx→0+ A(x) = +1, and limx→0− A(x) = −1, while limx→0 A(x)

does NOT exist. One can easily show the following result.

A function F has a limit at a if and only if the two one-sided limits

limx→a+ F (x) and limx→a− F (x) exist and have equal value.

We emphasize once more that F need not be defined at a in order to

have a limit at a. This allows us to consider functions that are more general

than the algebraic ones, such as the function

q(x) =
2x − 1

x
, defined for x 6= 0,

5To be precise, if |L1 − L2| > 0, by Lemma I.1.2 there exists a positive integer l, such
that 0 < 1/l < |L1 − L2|, that is 2

2l
< |L1 − L2|. The integer n = 2l then violates the

estimate (II.13).
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that we studied in Section 2.2. Recall that we had established that

limx→0 q(x) = c2, where c2 = inf{q(x) : x > 0}. In fact, the details of

the proof for the one-sided limit limx→0+ q(x) = c2 given there fit exactly

the somewhat more precise formulation given in the definition above, as

follows. The (arbitrary) measure of closenesss is given by 1/n for an arbi-

trary n ∈ N. We then saw that there exists a number hn > 0, such that

c2 ≤ q(x) < c2 + 1/n for all x with 0 < x < hn. In other words, given n,

there exists hn such that

|q(x)− c2| <
1

n
for all x > 0 that satisfy |x− 0| < hn.

Based on the argument given in Section 2.2, one can verify—after suitably

changing hn—that the estimate above holds for negative x as well, although

we shall not go through the details. What matters is that given the fixed,

but arbitrarily small bound 1/n, in this case it is the estimate |x− 0| < hn

that gives precise meaning to “all x sufficiently close to 0” in the definition

of limit. Notice that in contrast to the algebraic case we now do not have

any simple formula that expresses hn explicitly in terms of n. Instead,

we only determined the existence of a suitable hn by appropriate abstract

arguments that relied on the properties of the greatest lower bound (i.e.,

on the completeness of R) and of the exponential function E2.

II.3.2 Continuous Functions

Guided by the case of algebraic functions, we now highlight the relationship

between the limit of a function f as x → a and its value f(a) as follows.

Definition 3.2. The function f defined on an interval I centered at a is

said to be continuous at a if f has a limit as x → a and

lim
x→a

f(x) = f(a).

Corollary 3.3. Every algebraic function in the class A is continuous at

every point of its domain.

A function is said to be continuous if it is continuous at every point of

its domain.

The geometric interpretation of continuity means that the graph of a

continuous function has no holes or tears (though corners are possible).

Figures II.12 and II.13 show some examples.
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x x

Fig. II.12 Graphs of continuous functions.

a a xx

Fig. II.13 Functions that are NOT continuous at x = a.

The x-axis, i.e., the real number line, which has no holes by the com-

pleteness (or continuity) axiom, is the prototype of a graph of a continuous

function, namely of the function f defined by f(x) = 0 for all x. The graphs

of continuous functions are precisely those that are obtained by reshaping

an interval of the number line into some “curve” that satisfies the vertical

line test, without making any holes, cuts, or tears, although “kinks” are

allowed.

Aside from the algebraic functions, most other functions that occur

“naturally” are continuous. This statement makes precise the ancient Latin

saying “natura non facit saltum”, i.e., “nature does not make any jumps”.

In particular, all exponential functions Eb and logarithm functions logb are

continuous on their domains. At an intuitive level this should be clear from

a look at their graphs.

In order to gain more experience with these new concepts, let us consider
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an exponential function Eb.in more detail. The verification of the continuity

of Eb uses ideas that were already introduced as we defined Eb for non-

rational inputs in Chapter I. Recall from Section I.4 that if a is a real

(non-rational) number, Eb(a) was defined by

Eb(a) = sup{Eb(r) : r rational and r < a}. (II.14)

Furthermore, we saw that if a is rational, the above equation still re-

mains correct. Let us first show that Eb is continuous at a = 0, i.e., that

Eb(x) → 1 = Eb(0) as x → 0. In fact, this property was already identified

in statement (I.3) in Section I.4.5. For completeness’ sake, let us review

the essential arguments in the more precise language of limits that is now

available. Let us assume that b > 1, so that Eb is increasing. Given any

natural number n, we must show that

|bx − 1| < 1/n

for all x that are sufficiently close to 0. Let S0 = {br : r < 0}. By applying

(II.14) with a = 0, one sees that 1 = b0 = supS0. So the number 1−1/(n+1)

is not an upper bound for S0, and therefore there exists rn > 0, so that

1 − 1/(n + 1) < b−rn < 1. By taking reciprocals (note 1 − 1/(n + 1) =

n/(n+ 1), and careful with the inequalities), one obtains

1 < brn <
n+ 1

n
= 1 + 1/n.

Since Eb is increasing, it follows that for all x with −rn < x < rn one has

1− 1/n < b−rn < bx < brn < 1 + 1/n, and hence

|bx − 1| < 1/n for all x with |x− 0| < rn.

Since 1/n can be chosen arbitrarily small, this last statement verifies that

lim
x→0

bx = 1 = b0,

i.e., that Eb is continuous at 0.

The functional equation then implies for an arbitrary number a that

lim
x→a

Eb(x) = lim
x→a

Eb(a)Eb(x− a) = Eb(a) lim
x→a

Eb(x− a).

Since (x − a) → 0 as x → a, one has limx→a Eb(x − a) = 1. Therefore

limx→aEb(x) = Eb(a), which means that Eb is continuous at a as well.

Note that a function that has a limit at x = a and that is also defined

at a is not necessarily continuous at a. For example, let

k(x) =

{

(x2 − 4)/(x+ 2) for x 6= −2

0 for x = −2
.
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We had seen earlier that limx→−2 k(x) = limx→−2(x−2) = −4 6= k(−2), so

k is not continuous at x = −2. If you think that this example is somewhat

artificial you are right. Since all algebraic functions in the class A are

continuous at each point in their domain, a function that is discontinuous

at some point needs to be built up in some “artificial” way, that is, it cannot

just be given by a single basic algebraic formula. Note that our example

fails to be continuous because we made a poor choice for k(−2). Clearly

the discontinuity disappears if one changes that value, i.e., if one defines

k(−2) = limx→−2 k(x) = −4.

II.3.3 Differentiable Functions

The example at the end of the previous section illustrates the following

important procedure. Suppose the function f has a limit limx→a f(x) = L.

Then f may fail to be continuous at x = a either because f is not defined

at a, i.e., if there is no value f(a), or because f(a) 6= L. In either case,

the discontinuity of f is said to be removable: by (re)defining f(a) = L

one readily transforms f into a function that is continuous at a. Thus the

existence of a limit as x → a is the essential property that allows to extend

the domain of function defined for x 6= a to x = a, so that it becomes a

function that is continuous at a.

We now apply the principle of removing a discontinuity to the factor

qa(x) in the formula 2x − 2a = qa(x)(x− a) that we studied in Section 2.2.

Recall that qa(x) is not defined at x = a. On the other hand, we had seen

that

lim
x→a

qa(x) = 2a · ln 2.
We therefore add a to the domain of qa by defining qa(a) = 2a · ln 2. The
function so extended is then continuous at x = a, that is, we have verified

the existence of a factorization

2x − 2a = qa(x)(x − a),

where the factor qa is continuous at x = a. We are thus led to the following

definition.

Definition 3.4. Suppose f is defined on an interval containing the point

a. We say that f is differentiable at a if there exists a factorization

f(x)− f(a) = qa(x)(x − a),

where the function qa is continuous at x = a. The value qa(a) is then called

the derivative of f at a and it is denoted by D(f)(a) or f ′(a).
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Note that since the values qa(x) are completely determined by f for x 6=
a, the requirement of continuity at x = a and the uniqueness of limits imply

that the value q(a) is determined uniquely by the differentiable function f .

Remark. We had seen in Section 7 of the Prelude, that if f ∈ A
is an algebraic function and a is in the domain of f , then there exists a

factorization as above with qa ∈ A and a in the domain of qa as well.

We also verified (Corollary 3.3) that every function in A is continuous.

Consequently qa ∈ A is continuous at a, and therefore f is differentiable

at a according to the new definition, with D(f)(a) = qa(a). The definition

we just gave thus generalizes in a natural way the elementary definition of

“algebraically differentiable” that we had introduced in the Prelude.

Note that if f is differentiable at a, then its derivative D(f)(a) =

qa (a) = limx→a qa(x). Since for x 6= a the value qa(x) is the average

rate of change of f between a and x, the derivative is approximated by

average rates of change, and hence it measures the instantaneous rate of

change of f at a, just as in the algebraic case.

Corollary 3.5. If f is differentiable at x = a, then f is continuous at

x = a.

Proof. Note that f(x) = f(a)+qa(x)(x−a). Since the constant function

f(a) and the factor (x−a) are clearly continuous at a, and qa is continuous

at a by the hypothesis, this representation of f readily implies that f is

continuous at a as well. (See Section 4.2 below for an explicit formulation

of relevant natural rules for continuous functions.) �

On the other hand, there are continuous functions that are NOT differ-

entiable. For example, consider the function f(x) = |x| that is continuous
at x = 0. (See Figure II.14.)

−2 −1

2
y = |x |

1.5

1

0.5

0
1 2
x

Fig. II.14 f(x) = |x| is not differentiable at x = 0.
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The factorization f(x) = q(x)x implies q(x) = f(x)/x = |x| /x for

x 6= 0; we had seen earlier in Section 3.1 that the function A(x) = |x| /x
does not have a limit as x → 0, so that there is no way to define A(0) to

make A continuous at 0. Consequently, f is not differentiable at 0.

The following result is an immediate consequence of the results in Sec-

tions 2.2 and 2.3, and of the discussion that led up to the definition of

differentiability formulated above. We state it as a separate theorem be-

cause of its central importance.

Theorem 3.6. For each b > 0 the exponential function y = Eb(x) = bx is

differentiable at all points x ∈ R, with derivative

D(Eb)(x) = ln b Eb(x).

Finally we state the following characterization of differentiability that

is the one that has traditionally been used in most calculus texts.

Theorem 3.7. f is differentiable at the point a if and only if

lim
x→a

f(x)− f(a)

x− a

exists. The limit is then equal to the derivative D(f)(a) = f ′(a).

Proof. Just notice that f(x) − f(a) = qa(x)(x − a) is equivalent to

qa(x) = [f(x) − f(a)]/(x − a) for x 6= a. Then qa extends to a continuous

function at x = a if and only if limx→a qa(x) exists. �

II.3.4 Local Linear Approximation

Suppose the function y = f(x) is differentiable at x = a. In particular this

implies that the graph of f has a well defined tangent at (a, f(a)) whose

slope is given by f ′(a). The equation of the tangent line is given by the

linear function

Lf,a(x) = f(a) + f ′(a)(x− a).

In the algebraic case, the tangent line is distinguished among all possible

lines through the point (a, f(a)) by the fact that it intersects the graph of

f at the point (a, f(a)) with multiplicity at least two. In particular, the

error Ea(x) = f(x)−Lf,a(x) between the function and its tangent satisfies

Ea(x) = k(x)(x − a)2, and therefore it goes to 0 much faster than (x − a).

In less explicit form this remains true in the general differentiable case, i.e.,

the rate of decrease of the error Ea(x) is faster than (x − a), although it
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may, in general, be slower than (x − a)2. To understand this better, note

that

Ea(x) = f(x)− Lf,a(x) = f(x)− f(a)− f ′(a)(x− a).

Since f is differentiable, one has f(x) − f(a) = qa(x)(x − a), with qa con-

tinuous at x = a and qa(a) = f ′(a). Therefore

Ea(x) = qa(x)(x − a)− f ′(a)(x − a)

= [qa(x) − qa(a)](x − a).

Since [qa(x) − qa(a)] → 0 as x → a, when x is sufficiently close to a the

error Ea(x) is considerably smaller than x−a, in the sense that the relative

error Ea(x)/(x − a) goes to zero as well, i.e.,

lim
x→a

Ea(x)
x− a

= lim
x→a

[qa(x)− qa(a)] = 0.

Figure II.15 shows the relationship geometrically.

a

∆f 

x x

y = f (x )

(a, f (a ))

x − a

εa(x )

Fig. II.15 Error Ea(x) between the function and its tangent.

So the graph of f and its tangent are very close indeed near the point

(a, f(a)), and the approximation gets better as x → a. The intuitive geo-

metric interpretation of this approximation suggests that one can say that

a function is differentiable at x = a precisely when its graph looks essen-

tially like a line (that is, the tangent) near that point. (See Figure II.16.)

In fact, if one looks with a magnifying glass into a very small neighbor-

hood of the point (a, f(a)), the graph of f and the line become de facto

indistinguishable.

This discussion verifies one part of the following characterization of

differentiability.



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 154

154 What is Calculus? From Simple Algebra to Deep Analysis

(a, f (a))

(a, f (a))

y = f (x )

Fig. II.16 Graph of function and tangent near (a, f(a)).

Theorem 3.8. The function f is differentiable at a if and only if f is well

approximated near a by a linear function Lf,a(x) = f(a)+m(x− a), in the

sense that the “error” Ea(x) = f(x)− Lf,a(x) is of the form

Ea(x) = g(x)(x − a), where g is continuous at x = a with g(a) = 0.

If this condition is satisfied, the slope m of the approximating line is

uniquely determined and agrees with the derivative D(f)(a).

As noted earlier, the crux of the condition on g is the requirement that

lim
x→a

g(x) = 0.

In essence, this Theorem gives a precise quantitative description of the

ancient notion that the tangent “touches” the curve but does not cut it.

(See Section 2 in the Prelude.)

Proof. To complete the proof of the second part of the theorem, note

that if the approximation of f by Lf,a holds for some m, with the error

Ea(x) satisfying the condition stated in the theorem, then

f(x)− f(a) = m(x− a) + Ea(x)
= [m+ g(x)](x − a).

The factor qa(x) = m + g(x) is then continuous at x = a with

limx→a qa(x) = m + g(0) = m, so that f is indeed differentiable at a,

with f ′(a) = qa(a) = m as required. �
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In the days before hand-held calculators became widely available, the

linear approximation of a differentiable function was often used to approx-

imate (unknown) values of a function near a particular point at which the

value is known, or in order to estimate errors in experimental work. (See

Problem 7 of Exercise II.3.5.) For example, for the exponential function

E2(x) = 2x with E′
2(x) = ln 2 2x, one knows that E2(2) = 4, and one can

then estimate

22.1 ≈ E2(2) + E′
2(2)(2.1− 2)

= 4 + 4 ln 2 · (0.1)
= 4. 2773,

or, more generally,

22+h ≈ 4 + 4(ln 2) · h for small h.

Since the derivative of y = ex at x = 0 is equal to 1, the linear approxima-

tion for this function at x = 0 is particularly simple and gives the practical

estimate

ex ≈ 1 + x for small x.

Aside from such practical estimations, which are of less interest today, the

most important application of the linear approximation is the conceptual

understanding that is summarized in the following statement.

Differentiability is equivalent to good local linear approximation.

Stated differently, one can say:

Locally the graph of a differentiable function

looks like a (non-vertical) line.

This property is the foundation for the important principle that whatever

is correct for linear functions should remain correct—locally—for differen-

tiable functions in general. As we shall see later, this principle turns out to

be useful for understanding key properties of differentiable functions. Fur-

thermore, it is this idea of good local linear approximation that is critical

for understanding differentiability in more general contexts, for example in

the case of functions of more than one variable.

Based on the property stated above, it is easy to recognize from the

graph of a continuous function where that function fails to be differentiable.

For example, if the graph has a corner at a point P , as in the case of

f(x) = |x| at (0, 0), the graph surely does not look like a line near P , and
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consequently the function represented by that graph is NOT differentiable

at that point. (See Figure II.14 above.) Another problem occurs if the

graph of a function does have a tangent that is vertical, so that no slope is

defined. Since derivatives evaluate the slope of tangents, a function cannot

be differentiable at such points.

Example. Consider the function g(x) = x1/3. Since |g(x)| ≤ |x|1/3,
one surely has limx→0 g(x) = 0, so that g is continuous at x = 0. ( g is

continuous at all x 6= 0 since g is algebraic.) The tangent to the graph of

g at (0, 0) is given by the y-axis (see Figure II.17), i.e., it is vertical. By

factoring

x1/3 = q(x)x for x 6= 0, with q(x) = x−2/3,

y = x1/3

Fig. II.17 Graph of y = x1/3 with vertical tangent at (0, 0).

one sees that q(x) has no limit as x → 0. Consequently, q(x) cannot be

extended as a continuous function to x = 0, that is, g(x) = x1/3 is not

differentiable at x = 0. On the other hand, relating this example to the

general rule about inverse functions (rule III in Prelude, Section 6), we

note that g is the inverse of f(u) = u3. Consequently, by that rule, one

knows that g is differentiable at all points b = u3 with f ′(u) = 3u2 6= 0,

that is, at all points b = u3 6= 0, and that g′(b) = 1/f ′(u) = 1/(3u2) =

1/(3b2/3) = 1
3b

−2/3. However, the rule cannot be applied at the point

0, since f ′(0) = 0. The function f has a horizontal tangent at (0, 0), and

consequently, by reflection, its inverse g has a vertical tangent at that point.

To summarize, if near a point P = (a, f(a)) the graph of a function f

looks very much like a non-vertical line (which is then part of the tangent

line), one may safely conclude that the function f is differentiable at x = a.
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Finally, we use the function g just considered to define the function

F = g4. By the chain rule, or simply because F (x) = x4/3 is algebraic, F

is (algebraically) differentiable at all points different from 0. In contrast to

g, however, it turns out that F is differentiable at 0 as well. Just note that

F (x)−F (0) = x4/3 = x1/3 ·x, where the factor g(x) = x1/3 is continuous at

0. So F is indeed differentiable at 0, with F ′(0) = g(0) = 0. However, F is

not algebraically differentiable at 0, since the error term E0(x) = F (x)−0 =

g(x)x does not have a zero of multiplicity 2 at 0.

II.3.5 Exercises

1. The technical formulation used to make the definition of limit more

precise, and that needs to be used in order to rigorously prove statements

about limits, is the following. The function f defined on an interval I

centered at a, but not necessarily defined at a itself, is said to have a

limit L at a, written as limx→a f(x) = L, if for every positive ε > 0 one

can find a positive δ = δ(ε)̇ > 0 such that

|f(x)− L| < ε for all x ∈ I that satisfy 0 < |x− a| < δ.

a) Use the definition above to verify that if limx→a f(x) = L1 and

limx→a f(x) = L2, then L1 = L2. This shows that limits are unique.

(Hint: Look at the intuitive proof given in the text.)

b) Show that if limx→a f(x) = L and L > 0, then there exists an

interval J ⊂ I centered at a such that f(x) > L/2 for all x ∈ J with

x 6= a.

c) Formulate and prove a statement corresponding to b) if L 6= 0.

2. Use the technical definition of limit in Problem 1 to carefully prove that

if f1 and f2 have a limit at x = a, then f1 + f2 has a limit as well, and

limx→a(f1 + f2)(x) = limx→a f1(x) + limx→a f2(x).

3. Let c−2 = sup{ q(h) : h < 0} and c+2 = inf{ q(h) : h > 0}, where

q(h) = (2h − 1)/h for h 6= 0.

a) Show that c−2 ≤ c+2 .

b) Show that for h > 0 one has q(−h) = (1/2h)q(h).

c) Use a) and b) to show that 0 ≤ c+2 − c−2 ≤ q(h)(1 − 1/2h) for all

h > 0.

d) Let h → 0 and conclude that c+2 − c−2 = 0. (You may use that 2h → 1

as h → 0.)

4. Prove that if f is continuous at x = a, then there exists an interval I

centered at a and a constant K such that |f(x)| ≤ K for all x ∈ I. Note
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that this generalizes the corresponding result given in Section I.6.3 for

functions in A. (Hint: Use the definition of limit stated in Problem 1

above.)

5. a) Use techniques of linear approximation to justify the approximation

eh ≈ 1 + h for small values of h.

b) Estimate the error E0(h) = k(h) ·h made by the above approximation

in the case h = 0.1, 0.01 and 0.001 with the help of a calculator.

c) Evaluate k(h) = E0(h)/h for the values of h in b). Do the results

appear to support the statement that limh→0 k(h) = 0?

d) Use additional smaller values of h, if necessary, to estimate

limh→0 k(h)/h.

6. Let f(x) = x2 and denote its linear approximation at x = a by Lf,a.

a) Determine Lf,a(x) explicitly. (Recall f
′(x) = 2x).

b) Evaluate the error Ea(x) = f(x)−Lf,a(x) by algebra and simplify as

much as possible.

c) Use the result in b) to verify limx→a
Ea(x)
x−a = 0.

7. In order to estimate the area of a circular platform one measures its

radius with a measuring tape. The result is 5 m ±0.001. Use the linear

approximation of the area function A(r) = πr2 at r = 5 to estimate that

the area of the platform equals 25π ± π(0.01)m2.

II.4 Properties of Continuous Functions

The differentiation rules that we discussed in the Prelude in the context of

algebraic functions extend naturally to the more general class of differen-

tiable functions that was introduced in the last section. All that is needed

in addition are some basic natural properties of continuous functions that

we shall make explicit in this section. We shall discuss the differentiation

rules in Sections 6 and 7 later on.

II.4.1 Rules for Limits

We begin by summarizing basic properties of limits. We had already verified

the following fundamental property of the limits of algebraic functions f in

the class A.

Rule i) If a is a point in the domain of the function f ∈ A, then

limx→a f(x) = f(a).
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Furthermore, the following somewhat more abstract rules do appear to

be intuitively quite reasonable.

Rule ii) If limx→a f(x) and limx→a g(x) exist, then the following limits

exist as well, with their values as indicated:

ii-a) If c, d are constants, then limx→a(cf(x)+dg(x)) = c limx→a f(x)+

d limx→a g(x);

ii-b) limx→a[f(x)g(x)] = limx→a f(x) limx→a g(x);

ii-c)

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
provided that lim

x→a
g(x) 6= 0;

Note that by Problem 1 b) and c) of Exercise II.3.5, the assumption on g

implies that g(x) 6= 0 for all x 6= a in some interval I centered at a. Hence

the quotient f/g is defined on I − {a}.

Rule iii) If f(x) ≤ h(x) ≤ g(x) for all x 6= a near a and limx→a f(x) =

limx→a g(x) = L, then limx→a h(x) exists and equals L as well .

Rule iv) limx→a f(x) = f(a) if f is continuous at a.

We note that iv) is not really a “rule”, but is just a restatement of the

definition of the continuity of f at the point a. However, once one knows

large classes of continuous functions, this property is often quite useful. In

fact, a fundamental technique to analyze a limit limx→a q(x) when q is not

defined at a or it is not readily identified as a function continuous at a,

involves transforming the expression that defines q(x) (without changing

its values at points x 6= a near a!) by whatever (algebraic or other) means

available into some other expression F (x) known or recognized to be a

function that is continuous at a. Then

q(x) = F (x) for x 6= a implies that lim
x→a

q(x) = lim
x→a

F (x) = F (a).

Here is a typical simple example of this technique. Suppose we want to

determine whether g(x) = (
√
x− 3)/(x− 9) has a limit at x = 9, which is

the one point where the algebraic function g is not defined, so that rule i)

does not apply. Observe that for x 6= 9 one has
√
x− 3

x− 9
=

√
x− 3

x− 9

√
x+ 3√
x+ 3

=
x− 9

(x− 9)(
√
x+ 3)

=
1√
x+ 3

.
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The final expression is algebraic and defined at x = 9, so

limx→9 g(x) = limx→9 1/(
√
x+ 3) = 1/(

√
9 + 3) = 1/6.

The formal verification of these rules requires a precise technical defini-

tion of limit. (See Problems 1 and 2 of Exercise II.3.5.) We shall not go

into these details. The basic message to remember is that limit statements

that appear “reasonable” and that can be written in a meaningful way are

indeed correct. Rule ii-c) illustrates the message clearly; the additional

assumption that limx→a g(x) 6= 0 is necessary, since otherwise the answer

would be meaningless.

II.4.2 Rules for Continuous Functions

We already stated that most natural functions are “continuous” at all points

in their domains. Familiar examples include all algebraic functions in the

class A, and the exponential and logarithm functions. The rules for limits

stated above readily imply corresponding results for continuity, as follows.

Theorem 4.1. If f and g are continuous at the point a, then f ± g, fg,

and f/g are continuous at a, provided one assumes that g(a) 6= 0, i.e., the

denominator is non-zero, in the case of a quotient.

Next we consider composition of continuous functions. Suppose g is

defined on the interval I and assume that g(I) is contained in the domain

of f , so that the composition f ◦ g is defined on I.

Theorem 4.2. If g is continuous at a ∈ I and f is continuous at b = g(a),

then f ◦ g is continuous at a.

Proof. Let u = g(x). Then b = g(a) = limx→a g(x) implies that u → b

as x → a. Since limu→b f(u) = f(b), it follows that

lim
x→a

(f ◦ g)(x) = lim
x→a

f(g(x)) = lim
u→b

f(u) = f(b),

which equals (f ◦ g)(a). This shows that f ◦ g is continuous at a. �

Finally we consider inverse functions. Note that the hypotheses require

more than continuity at just one point.

Theorem 4.3. Suppose f is one-to-one on the open interval I and that

it is continuous on I, that is, at each point a ∈ I. Then J = f(I) is an

interval, and the inverse g : J → I of f is continuous on J .

The rigorous proof of this result is somewhat more delicate, as it does

require explicit use of the completeness of the real numbers, e.g., the Inter-
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mediate Value Theorem, discussed in the next section, as well as a rather

precise formulation of continuity. (See Problem 1 of Exercise II.3.5.) How-

ever, at the intuitive geometric level the result is clear, as follows. The

hypotheses imply that the graph of f is a “continuous curve” without any

cuts or holes that satisfies both the vertical and horizontal line tests. Recall

from Section I.5.2 that the graph of the inverse g is obtained by reflecting

the graph of f on the line y = x, a process that does not make any changes

to the graph but just places it in a different way in the coordinate system.

Hence the graph of the inverse g is also a “continuous curve” without any

cuts or holes, i.e., g is continuous as well. We shall discuss a more rigorous

proof in the next subsection.

II.4.3 The Intermediate Value Theorem

One of the conclusions in the last theorem was the claim that the image

J = f(I) of the interval I is also an interval. This result remains correct

as long as f is continuous on the interval I, and not necessarily also one-to-

one. This fact is an easy consequence of the following important theorem,

known as the Intermediate Value Theorem.

Theorem 4.4. Suppose the function f is continuous on the interval I

and that for two points a < b in I one has f(a) 6= f(b). Let λ be any

number between f(a) and f(b). Then there exists a point x0 ∈ (a, b) with

f(x0) = λ.

Note that in the case where f is in the class A a version of this result

was already stated in Problem 8 of Exercise I.6.5.

Proof. Since the graphs of continuous functions have no holes or tears,

this result is geometrically clear. Its precise verification requires the com-

pleteness of the real numbers. (See Problem 9 of Exercise II.4.5 for details.)

Let us see how this result implies that J = f(I) is an interval if f is

continuous at all points in I. Suppose A < B are any two distinct points

in J . It is enough to show that (A,B) ⊂ J . Choose a, b ∈ I with f(a) = A

and f(b) = B, and let λ ∈ (A,B). By the theorem (interchange a and b

if a > b) there exists x0 ∈ (a, b) with f(x0) = λ. Thus λ ∈ J and we are

done.

We shall now use this result to prove Theorem 4.3. So assume that f

is continuous and one-to-one on the open interval I. It then follows that f

is either strictly increasing or f is strictly decreasing on I. This is usually
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known directly for any specific function, so we shall skip the somewhat tech-

nical verification of this fact. So let us assume that f is strictly increasing.

(The case of a decreasing function follows by an analogous argument.) As

shown above, J = f(I) is an interval, and since f is one-to-one, its inverse

g is defined on J , with g(y) ∈ I for y ∈ J . Let b ∈ J . We want to prove

that g is continuous at b, i.e., limy→b g(y) = g(b). Note that g(b) = a ∈ I.

Since I is assumed open, a is not a boundary point of I. We prescribe the

(arbitrary) closeness of g(y) to the expected limit g(b) = a ∈ I by fixing an

arbitrarily small closed interval [a− ε, a+ ε] ⊂ I with ε > 0. Let us show

that for all y that are sufficiently close to b one has g(y) ∈ (a − ε, a + ε).

Since f is increasing, f(Iε(a)) = (f(a−ε), f(a+ε)), and this latter interval

is open and contains the point b, since f(a − ε) < f(a) = b < f(a + ε).

Now choose δ > 0 sufficiently small, so that the interval Jδ(b) is contained

in f(Iε(a)). Then g(Jδ(b) ⊂ Iε(a), i.e.,

|g(y)− g(b)| < ε for all y with |y − b| < δ,

as required. �

Additional applications of the intermediate value theorem are given in

the Exercises.

II.4.4 Continuity and Boundedness

It follows readily from the definition of continuity that a function that is

continuous at a point a is bounded in some neighborhood of a, thereby

generalizing a property we had established in Section I.6.3 for algebraic

functions f ∈ A. In fact, since limx→a f(x) = f(a), the estimate

|f(x)− f(a)| ≤ 1 must hold for all x in the domain of f that are suffi-

ciently close to a, that is, there must exist a number δ > 0 such that the

estimate holds for all x with |x− a| < δ. Then

|f(x)| = |[f(x)− f(a)] + f(a)| ≤ |f(a)− f(x)|+ |f(a)|
≤ 1 + |f(a)| for all x ∈ Iδ(a).

The proof of Theorem I.6.5 can therefore be applied to prove the fol-

lowing important result.

Theorem 4.5. Suppose the function f is continuous on the closed and

bounded interval I. Then f is bounded on I.
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As we had already noticed in the case of algebraic functions, the con-

ditions on the interval are indeed necessary for this result to hold. In fact,

f(x) = x is not bounded on [0,∞), and g(x) = 1/x is not bounded on (0, 1].

Suppose the function f is continuous on the closed and bounded in-

terval I. By the preceding Theorem, the set {f(x) : x ∈ I} is bounded.

Consequently, by the completeness of R, supI f = sup{f(x) : x ∈ I} and

infI f = inf{f(x) : x ∈ I} are well defined real numbers. In fact, it is a

remarkable result that under the given hypotheses both supI f and infI f

are actually elements of {f(x) : x ∈ I}, as follows.

Theorem 4.6. (Existence of maximum and minimum) Suppose the

function f is continuous on the closed and bounded interval I. Then there

are points xm and xM in I, so that

f(xm) ≤ f(x) ≤ f(xM ) for all x ∈ I.

We call maxI f = f(xM ) the maximum and minI f = f(xm) the min-

imum of f on the interval I. We emphasize that in general a function

that is bounded on a set S does not necessarily have a maximum (or mini-

mum) on that set. For example, f(x) = x is clearly bounded on S = (0, 1),

with supS f = 1, but f does not have a maximum on S. Of course f has

a maximum f(1) = 1 on the closed interval [0, 1]. These differences may

appear irrelevant in practical situations, but it is important to understand

the distinction between max f and sup f made by precise mathematical

language.

Proof. The proof involves another application of the completeness of

R. We shall prove the existence of the maximum of f. The existence of

the minimum then follows by observing that min f = −max(−f). Let

M = supI f. Divide the interval in half, i.e. I = I ′ ∪ I ′′, where the lengths

of I ′ and I ′′ equal 1/2 the length of I. Let M ′ = supI′ f and M ′′ = supI′′ f.

Since max{M ′,M ′′} ≤ M is an upper bound for {f(x) : x ∈ I}, and M is

the least upper bound, we must have max{M ′,M ′′} = M. Let I1 denote a

half of I for which supI1 f = M (if both halves satisfy this, choose the one on

the left). Continue this process to obtain a nested sequence I1 ⊃ I2 ⊃ ... of

closed and bounded intervals In with supIn f = M and length In = 1/2n×
length I. By Theorem I.1.3 there exists a point ξ ∈ ∩∞

j=1In. We claim that

f(ξ) = M , i.e., ξ can be chosen as the point xM required in the theorem.

Clearly f(ξ) ≤ M . Suppose we had f(ξ) < M . Then ε = M−f(ξ) > 0. By

the continuity of f at ξ there exists an interval Iδ(ξ) so that |f(x)− f(ξ)| <
ε/2 for all x ∈ Iδ(ξ). It follows that f(x) < f(ξ) + ε/2 < M − ε/2 for all
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x ∈ Iδ(ξ). Since length In → 0 as n → ∞, we can chose n so large that

In ⊂ Iδ(ξ). Then f(x) < M − ε/2 for all x ∈ In, so that M − ε/2 would be

an upper bound for {f(x) : x ∈ In} that is smaller than M , contradicting

the fact that supIn f = M . �

II.4.5 Exercises

1. Determine the limits

a) limx→2(x
3 − 2x2 + 3x), b) limx→2(3

x − x32−x), c) limt→2
2t

t2 ,

d) lims→0
4
√

2(s)3 + 9 · 3s + 7, e) limx→2(2
x − 5x),

f) limx→−1
x3x

x2+3x−1 .

(Hint: Use the continuity of the functions.)

2. Determine the limits

a) lim
x→25

x− 25√
x− 5

, b) lim
r→2

4− r2

r3 − 8
.

3. Let the function f be differentiable at x = 2, and define

G(x) =

{

f(x)−f(2)
x−2 for x 6= 2

f ′(2) for x = 2
.

Is G continuous at x = 2? Explain!

4. Define g(x) =

{

x−1
x+3 for x 6= −3

−4 for x = −3
. At which points a ∈ R is g continu-

ous? Explain!

5. Define P (t) =

{

2t + 3 t2 for t ≤ 1

(t+ 2)2 − 4t for t > 1
. Is the function P continuous at

t = 1? Explain!

6. Determine limx→3
2x−8
x−3 . (Hint: Think of a particular derivative!)

7. a) Show that x3 − 7 = 0 has a solution between 1.9 and 2.

b) Use the Intermediate Value Theorem to show that every polynomial

of odd degree has at least one zero in R.

8. Suppose g : [0, 1] → [0, 1] is continuous at every point in [0, 1]. Show

that there exists at least one point x ∈ [0, 1] with g(x) = x. (Hint:

Apply the Intermediate Value Theorem to f(x) = g(x)− x.)

9. Prove the Intermediate Value Theorem. (Hint: Suppose f(a) < λ <

f(b); let x0 be the least upper bound of {x ∈ [a, b] : f(x) < λ}. Use

the continuity of f at x0 to prove f(x0) = λ. (See also Problem 8 of

Exercise I.6.5.)
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II.5 Derivatives of Trigonometric Functions

II.5.1 Continuity of sine and cosine Functions

The trigonometric functions sine and cosine were introduced in Section

I.3.1. The reader should briefly review that section before proceeding. Since

sine and cosine are defined in terms of the unit circle in the x, y - coordinate

plane, we shall use t to denote the input variable. Values of these functions

at points t ∈ R are best obtained by means of a scientific calculator. A

look at their graphs—obtained with a graphing calculator (See Figures I.19

and I.20 in Section I.3.4)—suggests that these functions are continuous at

all real numbers t, so that limt→a sin t = sin a for each a, and so on. In

particular,

lim
t→0

sin t = sin 0 = 0, lim
t→π/2

sin t = sinπ/2 = 1, and

lim
t→0

cos t = cos 0 = 1, lim
t→π/2

cos t = cosπ/2 = 0.

The preceding statements follow readily from the geometric definition of

sine and cosine on the unit circle. For example, as shown in Figure II.18,

the length 2 sin t of the secant spanned by the arc of length 2t centered at

the point (1, 0) surely is shorter than the arc.

sin t t

Fig. II.18 The arc t and sin t.

It follows that sin t ≤ t for t > 0, which implies that

|sin t| ≤ |t| for all t near 0.

This is the same kind of estimate we are familiar with for algebraic func-

tions. It clearly shows that sin t → 0 = sin 0 as t → 0. This type
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of estimate generalizes to prove continuity at an arbitrary point a. Let

t 6= a be close to a. Then the distance dist(P (a), P (t)) between the points

P (a) = (cos a, sina) and P (t) = (cos t, sin t) on the unit circle is less than

or equal to the length |t− a| of the arc on the circle connecting these two

points, i.e., dist(P (a), P (t)) ≤ |t− a|. By the formula for the distance

between these two points one then has

|cos t− cos a| ≤ dist(P (a), P (t)) ≤ |t− a| and

|sin t− sin a| ≤ dist(P (a), P (t)) ≤ |t− a| .

Just as in the case of algebraic functions, these estimates clearly imply the

continuity of sine and cosine at the point a.

By general rules about continuous functions it then follows, for example,

that tan t = sin t/ cos t is continuous at all points t 6= π/2+kπ, k ∈ Z. Also,

since cos t = sin(π/2−t) and sin t = cos(π/2−t) for all t, it is usually enough

to verify basic results just for one of the trigonometric functions, and then

apply appropriate general principles to extend the results to other functions.

For example, once one knows that sin t is continuous, since h(t) = π/2− t

is clearly continuous, the composition cos t = sin(h(t)) is continuous as well

at each point.

II.5.2 The Derivative of sin t at t = 0

The graph of y = sin t suggests that this function has a tangent at every

point, that is, sin t is differentiable everywhere. In order to study its

derivative, we shall rely on the definition of the sine function on the unit

circle in the x, y - coordinate plane.

Let us begin by considering the point t = 0. As usual, we need to study

the factorization sin t = q(t) · t. The factor q(t) is uniquely determined for

t 6= 0 by q(t) = sin t/t, but just as in the case of the exponential function,

the value of q at t = 0 is missing, and there is no obvious formula that

would produce a suitable value q(0) that would make q continuous at 0. So

we must examine directly the behavior of q(t) as t → 0.

Let us first consider numerical approximations for tk = 10−k, k =

1, 2, 3, ..., as shown in the following Table II.3.
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k tk qa(tk)

1 10−1 0.998334166468282

2 10−2 0.999983333416666

3 10−3 0.999999833333342

4 10−4 0.999999998333333

5 10−5 0.999999999983333

6 10−6 0.999999999999833

7 10−7 0.999999999999998

8 10−8 1.00000000000000

9 10−9 1.00000000000000

10 10−10 1.00000000000000

Table II.3. Approximations to derivative of sine function at 0.

The data convincingly shows that

lim
t→0

q(t) = lim
t→0

sin t

t
= 1.

How can we recognize that this statement is indeed correct, without

relying on incomplete and possibly misleading numerical “evidence”? There

is no obvious method to simplify the expression sin t/t, so we try to argue

by using the geometric definition of the sine function, as shown in Figure

II.19.

cos t

cos t
t

sin t
sin t

0 1

Fig. II.19 The arc t, and the values of sin t and cos t.

According to this figure, if the number t > 0 represents the length

of the arc on the unit circle, then sin t measures a line segment that is
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approximately of length t when t is “small”. As t → 0, the approximation

appears to improve, so that—geometrically—it is reasonable to expect that

sin t

t
→ 1 as t → 0.

We can make this precise by comparing the areas of the right triangles

shown in Figure II.19 with the area t/2 of the relevant circular sector. For

t > 0 one obtains

1

2
sin t cos t ≤ t

2
≤ 1

2

sin t

cos t
,

and hence, after dividing the inequalities by (sin t)/2 > 0, it follows that

cos t ≤ t

sin t
≤ 1

cos t
.

Now take reciprocals (careful with the inequalities!) to obtain

1

cos t
≥ sin t

t
≥ cos t.

The geometric argument assumed t > 0, but all three expressions above do

not change their values if t is replaced by −t, so that the latter inequalities

hold for all t 6= 0. Since the expression in the middle remains squeezed

between the numbers 1/ cos t and cos t, both of which approach 1 as t → 0,

by limit rule iii) in Section II.4.1 one obtains

lim
t→0

sin t

t
= 1.

This is exactly the result we expected based on the numerical data.

We now define

q(0) = lim
t→0

sin t

t
= 1,

thereby extending q(t), defined for t 6= 0 by q(t) = sin t/t, to a function that

is continuous at 0. Altogether, we have verified that y = sin t is differentiable

at 0 with derivative equal to q(0) = 1.

Let us translate the limit result we just obtained to the setting of average

slopes. Figure II.20 shows the graph of y = sin t, and the line through the

points (0, 0) and (t, sin t) (i.e., secants) for several values t > 0. (Replace x

by t in Figure II.20.)

Clearly the slope of each secant line is the average rate of change

sin t− sin 0

t− 0
=

sin t

t
= q(t)

of y = sin t between 0 and t. As t → 0, these secants turn around the point

(0, 0) to approximate a line that is “tangential” to the graph of y = sin t
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(x, sin x)

Fig. II.20 Graph of y = sinx with some secants through (0, 0).

at the point (0, 0). The slope of this limiting line is limt→0
sin t
t , which has

value 1 as we just determined. We conclude that the line of slope 1 through

(0, 0), i.e., the graph of

y = t,

is the tangent to the graph of y = sin t at the point (0, 0).

II.5.3 The Derivative of sin t

In order to find the derivative of sin t at other points a 6= 0, we shall use

a geometric variation of the argument that we used for the derivative at

a = 0. It, too, relies on the definition of the sine function in terms of the unit

circle. (See Section I.3) Let us first point out a useful consequence of the

important formula limt→0 sin t/t = 1 that we established in the preceding

section. By reflecting the arc of length t and the corresponding segment

of length sin t on the x-axis (see Figure II.21), one obtains that the ratio

of the chord 2 sin t over the length 2t of the corresponding arc also has

limit 1 as the length of the arc goes to zero. The result states a general

geometric property of arcs centered at any point on the unit circle, as shown

in Figure II.22.

One always has

lim
h→0

c(h)

h
= 1.

Let us now consider the factorization sin(a + h) − sin a = qa(a + h)h. For

h 6= 0 the factor qa(a+h) = (sin(a+h)−sina)/h. The situation is visualized

in Figure II.23.
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sin t t

Fig. II.21 Chord spanned by arc of length 2t.

c (h )

h

Fig. II.22 Arc of length h spans a chord of length c(h).

h
a (h)

a

∆f

a

0 1

sin a

Fig. II.23 Geometric visualization of qa(a + h) = ∆f/h.
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We note the small right triangle whose hypotenuse is the chord c(h)

spanned by the arc of length h 6= 0 that has the angle a(h) opposite to

P (a). Figure II.24 shows an enlargement of that small triangle.

a (h)

c(h)

a

P (a)

∆f

Fig. II.24 Triangle with hypothenuse c(h) and leg ∆f .

Since the leg ∆f in this right triangle is adjacent to the angle a(h), one

has ∆f/c(h) = cos a(h). Note that as h → 0 the chord c(h) (i.e., the secant

through P (a) and P (a + h)) will rotate into the direction of the tangent

at P (a), which is perpendicular to the radius at P (a). Therefore the angle

π/2 − a(h) at the vertex P (a) opposite to the angle a(h) will have limit

π/2− a; hence the angle a(h) has limit a as h → 0.

It follows that

qa(a+ h) =
∆f

h
=

∆f · c(h)

c(h) · h =
c(h)

h
cos a(h).

Since cos(s) is continuous, one has cos a(h) → cos a as h → 0. By basic

limit rules one therefore obtains

lim
h→0

q(a+ h) = lim
h→0

∆f

h
= lim

h→0

c(h)

h
lim
h→0

cos a(h) = 1 · cos a.

By defining qa(a) = limh→0 qa(a + h) = cos a, we extend qa to a function

that is continuous at point a as well. If one sets t = a+h, the factorization

sin t − sin a = qa(t)(t − a) with q continuous at t = a therefore confirms

that sin t is differentiable at the arbitrary point a, and that its derivative

satisfies

D(sin)(a) = (sin)′(a) = qa(a) = cos a for all a ∈ R.

Another proof of this differentiation formula, based on the functional

equation of the sine function, is outlined in Problem 7 of Exercise II.5.6.
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II.5.4 The cosine Function

A geometric argument quite similar to the one we just used for the sine

function can be used to analyze cos t. (See Problem 13 of Exercise II.5.6.)

A different argument is based on the relation cos t = sin(g(t)), where g(t) =

π/2−t, as follows. Fix the point a, set b = g(a) = π/2−a, and consider the

factorization sin(u)− sin b = qb(u)(u− b), where qb is continuous at b, with

qb(b) = cos b, that was just established in the previous section. Substitute

u = g(t), and note that u− b = g(t)− g(a) = −t− (−a) = −(t− a). It then

follows that

sin g(t)− sin g(a) = qb(g(t))[g(t)− g(a)] = − qb(g(t))(t− a).

Since g is continuous at a and q is continuous at b = g(a), the composition

− qb ◦ g is continuous at a; the above factorization shows that sin g(t) is

differentiable at a, with derivative

D(sin ◦g)(a) = − qb(g(a)) = − cos(π/2− a). 6

Since cos(π/2 − a) = sina, we have therefore established that cos t =

(sin ◦g)(t) is differentiable at a and that

D(cos)(a) = (cos)′(a) = − sin a for all a ∈ R.

The derivatives of the sine and cosine functions are very simple indeed.

It is important not to overlook the minus sign that appears in the preceding

formula in contrast to the earlier one for the derivative of sin t.

II.5.5 A Differential Equation for sine and cosine

As we just verified, the sine and cosine functions satisfy the simple differ-

entiation formulas

(sinx)′ = cosx,

(cosx)′ = − sinx.

By standard differentiation rules (see Prelude for the case of algebraic

functions, and the next section for the general case) it then follows that a

6The reader may notice that this argument involves just a special case of the chain rule
for derivatives that we had verified earlier for algebraic functions. The proof in the case
at hand— as well as in the case of general differentiable functions discussed in the next
section—is a simple modification of the earlier argument.
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function f defined by f(x) = A sinx+B cosx, where A and B are constants,

satisfies

D(f)(x) = f ′(x) = (A sinx+B cosx)′ = A cosx−B sinx.

Upon differentiating one more time one obtains

D(f ′)(x) = f ′′(x) = −A sinx−B cosx = −f(x).

We thus see that f satisfies the differential equation

y′′ + y = 0.

In analogy to the differential equation y′ = ky that models processes in-

volving growth and decay, the differential equation y′′ + y = 0, or more

generally

y′′ + ω2y = 0

for some constant ω, appears in many applications that involve periodic

processes such as waves or a pendulum, to mention just a few. As we shall

prove later on, it is indeed the case that any solution of this equation,

i.e., any function y = f(x) that satisfies the equation f ′′(x) + ω2f(x) = 0

on some interval I is of the form f(x) = A sinωx + B cosωx for suitable

constants A,B. This result and related applications will be discussed in

Chapter III.

II.5.6 Exercises

1. a) The basic addition formula for the sine function states that

sin(α + β) = sinα cosβ + cosα sinβ. (This result is usually proved

in a course on trigonometry.) Use this formula to show that sinx

is continuous at every a ∈ R. (Hint: Apply the addition formula to

x = (x − a) + a, and note that x → a if and only if (x− a) → 0.)

b) Use a) and the identity cosx = sin(π/2 − x) to prove that cosx is

continuous at every a ∈ R.

2. Use numerical methods to estimate the slope of the tangent line to the

graph of y = sin(2x) at the point (0, 0).

3. Given that limx→0
sin x
x = 1, verify that limx→0

sin(ax)
x = a for any

number a. (Hint: Replace xa = h, and consider h → 0.)

4. The tangent function is defined by tanx = sin x
cos x for x 6= π

2 + nπ, n

integer. Determine

a) lim
s→0

tan s

s
, b) lim

s→0

s

tan(3s)
.
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5. a) The graph of the cosine function suggests that its tangent at (0, 1) is

the horizontal line y = 1. Use numerical data to confirm this

geometric conclusion.

b) Use an accurate graph of y = cosx to estimate the slope of the

tangent at the point (π3 ,
1
2 ).

c) Use a calculator to confirm your answer in b) by approximating

the slope of the tangent by average rates of change on intervals

[π3 ,
π
3 + 10−k] for k = 2, 3, ..., 6.

6. Determine limx→π/2
cosx

x−π/2 . (Hint: Use cos(π2 − t) = sin t .)

7. As stated in Problem 1, the sine function satisfies the functional equa-

tion (i.e., addition formula) sin(α + β) = sinα cosβ + sinβ cosα. Use

this equation to give an analytic proof of the formula for the derivative

of sinx. Use the following outline.

a) Prove that limx→0
cosx−1

x = 0.

b) Apply the functional equation to sin(a + h) and use the result

to determine a formula for qa(a + h) = [sin(a + h) − sina]/h for

h 6= 0.

c) Take the limit as h → 0 in the formula in b).

8. Determine the limits

a) lim
x→0

cosx− 1

x2
, b) lim

t→0

t3/2

sin t
.

9. Determine whether limx→0 sin
1
x and limx→0 |x|1/2 sin 1

x exist, and find

the limits, if possible. Make sure to justify your conclusions.

10. a) Find the 4th derivatives of sinx and cosx.

b) Find a general formula for the nth derivative (sinx)(n), n = 1, 2, 3, ... .

11. Find the equation of the tangent line to the graph of y = cosx at x = π
4 .

12. Use derivatives to decide where the graph of y = sinx has horizontal

tangents.

13. Work out the details of the geometric argument analogous to the one

used for the sine function to find the derivative of f(t) = cos t di-

rectly. (Hint: Start with a sketch similar to Figure II.23; note that

∆f now corresponds to a different segment than in the case of the sine

function.)
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II.6 Simple Differentiation Rules

We shall now extend the differentiation rules we had established in the

Prelude for algebraic functions in the class A to arbitrary differentiable

functions. The essential new ingredient is the application of the rules

for continuous functions (see Section 4.2) at the appropriate places in the

proofs that were given in the Prelude.

II.6.1 Linearity

Rule I. If f and g are differentiable at the point a and c, d are constants,

then cf(x) + dg(x) is differentiable at a and

D(cf + dg)(a) = (cf + dg)′(a) = cD(f)(a) + dD(g)(a).

As in the case of algebraic functions (see the Prelude), the factor q in the

factorization (cf + dg)(x)− (cf + dg)(a) = q(x)(x − a) is given by

q(x) = cqf (x) + dqg(x),

where qf and qg are the corresponding factors for f and g. Since qf and

qg are continuous at a by assumption, q is continuous at a as well, and the

rule follows.

Examples.

(3 · 4x + 5x4)′ = 3 ln 4 · 4x + 20x3,

D(5 sinx− 4 cosx+ 2ex) = 5 cosx− 4(− sinx) + 2ex.

II.6.2 Chain Rule

The composition f◦g of two functions f and g is a most important and natu-

ral operation on functions. Hence one would expect that the corresponding

differentiation rule is particularly simple. The formula established in the

algebraic case (Rule II in Section 6.1 of the Prelude) surely confirms this:

the derivative of the composition is the product of the derivatives. It does

not get any simpler than this! At an intuitive level, the extension to general

differentiable functions is then clear: since the linear approximations Lf

and Lg of f and g at the relevant points are algebraic, one has (Lf ◦Lg)
′ =

(Lf )
′ · (Lg)

′, and since Lf ◦Lg is again linear, it provides the linear approx-

imation to f ◦ g, and the result follows. In essence, since differentiability
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is equivalent to good local linear approximation, what is correct for linear

functions remains correct (locally) for arbitrary differentiable functions.

The precise verification of the preceding intuitive argument is just as

easy. Suppose that g is differentiable at a and f is differentiable at b = g(a).

As in the case of functions in A, by direct substitution it then follows that

(f ◦ g)(x) − (f ◦ g)(a) = qf (g(x)) · qg(x)(x − a),

where qf and qg are the continuous factors in the relevant factorizations of

f and g, that is, the resulting factor q for the composition f ◦ g satisfies

q(x) = qf (g(x)) · qg(x).

Since g and qg are continuous at a and qf is continuous at b = g(a), the

rules for continuous functions now imply that q is continuous at a as well.

Therefore f ◦ g is differentiable at a, and

D(f ◦ g)(a) = q(a) = qf (g(a)) · qg(a)
= D(f)(g(a)) ·D(g)(a)

= D(f)(b) ·D(g)(a).

We have thus verified Rule II (Chain Rule), that is

D(f ◦ g) = [D(f) ◦ g] ·D(g), or even shorter,

(f ◦ g)′ = f ′ · g′,

for arbitrary differentiable functions. In the second formulation one of

course needs to be careful to choose the input values correctly. In particular,

the formula for (f ◦ g)′(a) cannot involve f ′(a), since f and hence f ′ need
not be defined at all near the point a. Instead, for the composition to be

defined, f must be defined near the point b = g(a). Correspondingly, the

appropriate input for the derivative f ′ is this point b as well. In fact, the

formula (f ◦ g)′(a) = f ′(b) · g′(a) that we just obtained exhibits the only

meaningful way to choose the input values in each factor.

Let us consider some examples.

i) F (x) = cos(4 · 2x). We recognize that F = f ◦ g, where f(u) = cos(u)

and g(x) = 4 · 2x. Hence, by the chain rule, F is differentiable and

F ′(x) = f ′(g(x)) g′(x) = − sin(4 · 2x)(4 ln 2 · 2x).

ii) (ex
2

)′ = ex
2

(x2)′ = ex
2

(2x).
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iii) F (x) = (sinx)10. This function is the composition of sinx with

f(u) = u10. Hence

D((sinx)10) = 10(sinx)9D(sinx) = 10(sinx)9 cosx.

iv) H(x) = sin(2x+ (4x3 + 5x)6).

Here the chain rule must be used twice. Let us denote the inner function

by g(x) = 2x + (4x3 + 5x)6. Then H(x) = sin(g(x)), so that H ′(x) =

cos(g(x)) · g′(x). Next, differentiation of the second summand in g requires

the chain rule once again (unless one wants to expand the bracket according

to the binomial theorem), resulting in g′(x) = 2 + 6(4x3 + 5x)5(12x2 + 5).

Putting everything together gives the somewhat messy formula

H ′(x) = cos(2x+ (4x3 + 5x)6) · [2 + 6(4x3 + 5x)5(12x2 + 5)].

Note: Unless explicitly asked for, no further (algebraic or other) sim-

plification should be attempted! The formula above clearly reflects the

structure of the differentiation rules that have been applied; any further

transformations would make it difficult to recognize the steps that have

been taken.

II.6.3 Power Functions with Real Exponents

The chain rule and the derivative formula for the natural logarithm (see

Section 2.6) allow us to easily handle power functions p(x) = xr where

the exponent r is an arbitrary real number. Recall that in the Prelude

we already verified the power rule (xr)′ = rxr−1 in the case where the

exponent r = m/n is rational. When the exponent r is not rational, the

power function xr is not of algebraic type, and therefore it needs to be

studied by different techniques. We also note that—except for certain spe-

cial exponents—the domain of such a function is the set of positive real

numbers.7 For example, xm is defined for all x 6= 0 if m is an integer, and

also at 0 if m ≥ 0. In order to handle arbitrary real exponents r ∈ R,

assuming that x > 0, we use the natural logarithm to replace x = eln x. By

the rules for exponentials it follows that

p(x) = xr = (eln x)r = er ln x,

so that p(x) is transformed into the composition of eu with u = r lnx.

By the chain rule it follows that p(x) is differentiable for all x > 0, and

7Recall the discussion in Section 1.4: powers br with arbitrary (rational) exponent are
defined only for b > 0 !
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furthermore (recall (eu)′ = eu !) one obtains

D(xr) = D(er lnx) = D(eu)(r lnx) ·D(r lnx)

= er ln x(r
1

x
) = r (xr 1

x
)

= r xr−1.

The result matches exactly the power rule that we had obtained earlier in

the case of a rational exponent. For example, one now has the non-algebraic

differentiation formula

(xπ)′ = πxπ−1 for x > 0.

It is important to remember that this power rule applies only when the

variable appears in the base. When the variable x appears in the exponent

rather than in the base, one deals with an exponential function, whose

differentiation formula looks quite different, namely D(bx) = bx ln b.

II.6.4 Inverse Functions

Next we shall discuss the simple formula for the derivative of the inverse

of a differentiable function. In particular we will justify the formula for

the derivative of the natural logarithm lnx—which is the inverse of the

exponential function E(x) = ex—that we just used in the preceding section,

and that we had established in Section 2.6 by a geometric argument.

Let us first discuss the intuitive argument that is at the heart of the

proof. Since differentiable functions are locally essentially linear, we con-

sider first the case of a linear function L(x) = mx + b. Such a function is

one-to-one precisely if m 6= 0, i.e., if L′ 6= 0. In this case the inverse g is

again linear, and by Rule III in the Prelude (or by direct calculation) one

has g′ = 1/L′. Turning to an arbitrary invertible function f (i.e., f must be

one-to-one) that is differentiable at a, we consider its linear approximation

Lf,a(x), and we assume that f ′(a) = L′
f,a 6= 0. Let b = f(a). By reflecting

the graphs of f and Lf,a (note that the latter is the tangent line of f at the

point (a, f(a))), we obtain the graph of the inverse g of f together with its

tangent line at the point (f(a), a) = (b, g(b)). (See Figure II.25.)

As seen in Figure II.26, if the line L1 has slope m1 = d/c, the reflected

line L2 has slope m2 = c/d = 1/m1.

Since the reflection clearly preserves the geometric properties of the lin-

ear approximation, i.e., the relationship between the graph of the function

and its tangent line, one obtains Rule III:

The inverse g of f is differentiable at b = f(a), with
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f (a) = b

y = f (x)

y = g (x)

g (b) = a

a b

Fig. II.25 Graph of f and its inverse, with tangents.

L2

L1

d

c

x

y
y = xc

d

Fig. II.26 The slopes of the reflection L2 of the line L1.

D(g)(b) =
1

D(f)(a)
=

1

D(f)(g(b))
.

This geometric argument suggests that exactly the same formula that we

had verified for algebraic functions in the class A (Prelude, Rule III), re-

mains correct for general differentiable functions provided f ′(a) 6= 0. This

is easily verified precisely by considering the factorization

f(x)− f(a) = q(x)(x − a), (II.15)

with q continuous at a and q(a) = f ′(a) 6= 0. It follows that 1/q is defined on

a small interval I centered at a and is continuous at a as well. Since f is one-

to-one and continuous on I, it follows that the inverse g is continuous as well

on the interval J = f(I). (See Theorem 4.3 in Section 4.2.) Consequently,



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 180

180 What is Calculus? From Simple Algebra to Deep Analysis

assuming x ∈ I, by substituting f(x) = y ∈ J , f(a) = b, and x = g(y),

a = g(b) into the above factorization for f one obtains for all y ∈ J that

y − b = q(g(y))(g(y)− g(b)), i.e.,

g(y)− g(b) =
1

q(g(y))
(y − b). (II.16)

Since the composition (1/q) ◦ g of continuous functions is continuous at b,

the last equation (II.16) shows that g is differentiable at b, with derivative

D(g)(b) = 1/q(g(b)) = 1/f ′(a), as claimed.

This result is another concrete instance of the general principle that

whatever is true for linear functions will usually remain correct locally for

differentiable functions as well.

Note that Rule III is meaningless if f ′(a) = 0. In this case the tangent

line to the graph of f is horizontal, and hence its reflection is vertical, so that

its slope is not defined. Therefore the inverse g of f is NOT differentiable

at points b = f(a) where f ′(a) = 0.

Let us apply what we just learned to the exponential function E(x) = ex.

Here E′(a) 6= 0 for all a (why?), and hence the inverse function g(x) = lnx

of E is differentiable at all points b = ea, i.e., at all points of its domain

{b ∈ R : b > 0}. Furthermore, by Rule III one obtains

g′(b) =
1

E′(a)
=

1

E(a)
=

1

b
where b = E(a) = ea.

We have thus verified the differentiation formula

D(ln)(x) =
1

x
for all x > 0,

for the natural logarithm function that we had already obtained in Section

2.6 by a geometric argument.

Completely analogous arguments show that

D(logb)(x) =
1

x ln b

for any base b 6= 1 and all x > 0.

II.6.5 Inverse Trigonometric Functions

A more intriguing application of the differentiation formula for inverse func-

tions concerns the function y = sinx. Since this function is not one-to-one

on the whole real line, we proceed as in Section I.5.4 and select a suitable

smaller section of its graph. We thus consider S defined for x ∈ [−π/2, π/2]

by S(x) = sinx, whose graph is the thick curve shown in Figure II.27.
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1

0.5

2 4x
−0.5

−1

−2−4
2
π

2
π−

Fig. II.27 Graph of sinx for −π/2 ≤ x ≤ π/2.

Clearly this function is strictly increasing on [−π/2, π/2], and so it has

an inverse

g : [−1, 1] → [−π/2, π/2],

that is continuous by Theorem 4.3. The graph of g is shown in Figure II.28.
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x

Fig. II.28 Graph of the inverse of S(x) = sinx.

Since S is differentiable with S′(x) = cosx, and S′(a) 6= 0 for all a ∈ I

= (π/2,−π/2) (no endpoints!), Rule III in the preceding section implies

that the inverse g of S(x) is differentiable at all points b = sin a ∈ S(I) =

(−1, 1), and that

g′(b) =
1

S′(a)
=

1

cos a
.

In order to write this formula in terms of b = sin a, recall that

sin2 a+ cos2 a = 1 for all a. Therefore

cos2 a = 1− sin2 a.
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Since for a ∈ (−π/2, π/2) one has cos a > 0, it follows that

cos a = +
√

1− sin2 a =
√

1− b2 for a ∈ (−π/2, π/2),

and hence

g′(b) =
1√

1− b2
for − 1 < b < 1.

After introducing the name arcsin (or inverse sine) for the function g and

replacing b with x, this formula translates into the differentiation formula

D(arcsinx) =
1√

1− x2
for − 1 < x < 1

for the inverse of the (partial) sine function. Note that the inverse sine

is not differentiable at the endpoints −1 and +1, even though arcsinx is

defined and continuous at these points.

Remark. Let us conclude this discussion by pointing out a remark-

able feature. While differentiation of the simple transcendental (i.e. non-

algebraic) functions E(x) = ex , S(x) = sinx, and C(x) = cosx leads to the

same type of transcendental functions, differentiation of the corresponding

inverse functions (where defined) results in algebraic functions, i.e., func-

tions of a completely different nature that are, in fact, more elementary.

Differentiation thus establishes a surprising and deep link between tran-

scendental and algebraic objects! As we saw in the Prelude, the tangent

problem and differentiation are solved for algebraic functions by algebraic

methods. This appears to be the more elementary setting, as no com-

pleteness of the real numbers and no limits need to be introduced. On

the other hand, once differentiation is extended to the elementary tran-

scendental functions—indispensable for understanding growth phenomena

and periodic processes—one discovers that the differentiation formulas for

these functions have a particularly simple structure, much simpler than for

most algebraic functions. Even more surprising, the derivatives of the in-

verses of these functions turn out to be—in the important cases considered

here—algebraic functions. In Chapter IV we will see that reversing the

process of differentiation also establishes a connection between algebraic

and transcendental functions.

II.6.6 Exercises

1. Determine the derivatives of the functions

a) 3 · 4x − 5x4, b) πx5 − 4

x
for x 6= 0.
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2. Find the derivatives of the functions

a) 5 cosx+ 3x, b) 6x4 − 2 sinx, c) 3 sinx+ 2x7 − 3ex.

3. Let g(x) = x+ sinx.

a) Find the equation of the tangent line to the graph of g at the point

where x = π
2 .

b) Are there any points on the graph of g where the tangent is hori-

zontal? If yes, find all such points.

c) Plot the graph of g with a calculator to verify your conclusions in

b).

4. Find the derivatives of the following functions.

a) f(x) = ln(x2+1), b) g(t) = sin(2t), c) f(u) = 3cosu,

d) p(x) = x
√
3, e) f(x) = xe+ex, f) q(s) =

1

s4 + 2s2 + 3
.

(Hint for f): Write q (s) as power with negative exponent.)

5. Determine the derivative of F (x) = cos(sin(x2 + 1)).

6. Suppose that g is differentiable with g(4) = 2 and g′(4) = 1/2, and

that f is differentiable at 2, with f(2) = 0 and f ′(2) = 3. Determine

the derivative of the composition f ◦ g at x = 4.

7. Let f : R → R be differentiable and satisfy the property f(0) = 0.

a) Show that (f ◦ f)′(0) = [f ′(0)]2 and (f ◦ f ◦ f)′(0) = [f ′(0)]3.
b) Let n be a positive integer. Determine the derivative of (f ◦f ◦...◦f)

(n compositions) at 0 in dependence of n.

8. Let b > 0 and define f1(x) = b−x and f2(x) = (bx)−1.

a) Evaluate the derivatives of f1 and f2 by using the chain rule and

power rule as needed.

b) Do your answers in a) agree? Explain!

9. Suppose f is a one-to-one differentiable function with differentiable in-

verse g. Apply the chain rule to the function f◦g to find the relationship

between f ′ and g′. (Hint: Recall that (f ◦ g)(x) = x; take derivatives

on both sides!)

10. Use the formula for the derivative of the inverse function to verify in

detail that

D(logb x) =
1

x ln b
, x > 0

for any base b 6= 1.



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 184

184 What is Calculus? From Simple Algebra to Deep Analysis

11. a) Verify that C(x) = cosx restricted to the domain [0, π] is one-

to-one with image [−1, 1]. (Look at the definition of cosx on the unit

circle.)
b) Let g be the inverse of the function in a). Modify the argument in

the text used for the inverse sine to determine the derivative of g.

Where does g fail to be differentiable?

12. The function S+(x) = x2 is one-to-one on the interval [0,∞),with

inverse g(x) =
√
x also defined on [0,∞). Use the result in this section

to obtain the derivative of g.Where does g fail to be differentiable?

13. If r = m/n, withm and n both positive integers and n odd, the function

p(x) = xr is defined in a full neighborhood of 0. Determine the values

r = m
n > 0 for which p is not differentiable at 0, and those values for

which p is differentiable at 0.

II.7 Product and Quotient Rules

By now the pattern is clear. All differentiation formulas established in the

Prelude for algebraic functions continue to apply to arbitrary differentiable

functions. As we already noticed in the Prelude, the rules for differentiating

products and quotients turn out to be quite a bit more complicated than

the rules we discussed so far.

II.7.1 Statement of the Rules

Based on the general principle that local properties of differentiable func-

tions simply reflect the corresponding properties for the respective linear

approximations, we can now understand better why things get more com-

plicated with these last two rules. Rules I - III discussed in Section 6.2

simply reflect that sums, compositions, and inverses of the respective lin-

ear approximations Lf and Lg of two given functions f and g are again

linear, and hence provide natural candidates for the linear approximations

of the corresponding functions obtained by combining f and g. However,

the product Lf · Lg and the quotient Lf/Lg are NOT linear. So neither

provides us with potential linear approximations of product and quotient

of f and g at the point a under consideration. Instead, when considering

the product fg, one needs to take an additional step and determine first

the linear approximation

L(Lf · Lg)
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of the product Lf ·Lg. Application of the basic principle would then suggest

that the known (algebraic) differentiation formula for the product Lf · Lg,

i.e., D(Lf ·Lg) = D(Lf )·Lg+Lf ·D(Lg) (recall Prelude, Section 6), remains

valid for the derivative of the product f · g of differentiable functions in

general, that is, we expect a formula

D(fg) = D(f) g + f D(g).

Similarly, applying the algebraic quotient rule to the quotient of the lin-

earizations would lead to a corresponding quotient rule for general differ-

entiable functions.

The precise verifications of these rules for general differentiable functions

simply follow from the proofs given in the Prelude by noticing that the

relevant combinations of the factors qf and qg obtained in the algebraic

case will be continuous at the point a as a consequence of basic theorems

about continuous functions.

For completeness’ sake let us state the two rules one ends up with.

Assume that f and g are differentiable at the point a. Then

Product Rule : fg is differentiable at a and

D(fg) = D(f) g + f D(g) at a,

and

Quotient Rule : If f(a) 6= 0, then g/f is differentiable at a,

and D

(

g

f

)

=
D(g) f − g D(f)

f2
at a.

Notice the complicated structure of the quotient rule. In particular, the

numerator resembles the result of the product rule, except for the minus

sign. Therefore the order of the terms in the numerator must be firmly

observed. Always begin by differentiating the numerator of a quotient!

II.7.2 Examples

i) Find the derivative of f(x) = sinx · 3x. We use the product rule to

obtain

D(sinx · 3x) = cosx · 3x + sinx · (ln 3 · 3x ).
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ii) If G(x) = (x3 + 4x2 − 2x+ 5) e5x, then

D(G)(x) = (3x2 + 8x− 2) e5x + (x3 + 4x2 − 2x+ 5) e5x5.

iii)

D(
x3−2 sinx

cos2 x+1
)=

(3x2−2 cosx)(cos2 x+1)−(x3−2 sinx)(2 cos x)(− sinx)

(cos2 x+1)2
.

Do not attempt any (algebraic or other) simplification. Such changes would

destroy the structure of the quotient rule, without any particular benefit.

iv) The tangent function is defined by the quotient tanx = sin x
cosx for all

x with cosx 6= 0. Its derivative is given by

D(tanx) = D

(

sinx

cosx

)

=
cosx cosx− sinx(− sinx)

(cos x)2

=
cos2 x+ sin2 x

cos2 x
=

cos2 x

cos2 x
+

sin2 x

cos2 x
= 1 + (tanx)2.

By using the identity cos2 x + sin2 x = 1 before splitting up the fraction,

the answer can also be written in the form

D(tanx) =
1

cos2 x
.

v)

D

(

3x

2x + cosx

)

=
3(2x + cosx) − 3x D(2x + cosx)

(2x + cosx)2

=
3(2x + cosx) − 3x (ln 2 · 2x − sinx)

(2x + cosx)2
.

vi)

D(ln
x

x2 + 1
) =

1
x

x2+1

D(
x

x2 + 1
)

=
x2 + 1

x

1 · (x2 + 1)− 2x · x
(x2 + 1)2

.

Alternatively, one may first use the equation ln x
x2+1 = lnx − ln(x2 + 1);

differentiation is then much simpler and leads to the answer

D(ln
x

x2 + 1
) =

1

x
− 2x

x2 + 1
.

We leave it to the reader to check by algebra that the two answers indeed

give the same rational function.

As we saw in examples iv) and vi) above, different correct procedures

may lead to answers that may look quite different. Readers should be

careful when comparing their answers to a particular problem with those

of other readers.
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II.7.3 Exercises

DO NOT attempt to simplify the expression you obtain after carrying out

all the differentiation steps!

1. Find the derivatives of the following functions.

a) g(x) = x23x, b) h(s) =
√
s cos s, c) f(t) = sin t

t2+1 ,

d) f(x) = ex sinx e) q(t) = 2t−3t4

cos t

f) F (x) = (x+ sinx)5(3x− cosx)6.

2. Find the derivatives of

a) G(t) = 4 cos2 t+et

(sin2 t+1)5
, b) H(x) = sin(4x2ex).

3. a) Find the derivative of f(x) = log2 x · (x3 + 4x2 − 1) · cosx. (Hint:

Apply the product rule twice!)

b) More generally, show that

(f · g · h)′ = f ′ · g · h+ f · g′ · h+ f · g · h′.

4. Consider the function F (x) = xx defined for x > 0.Note that 00 is mean-

ingless (is it 0 or 1?), so that F is not defined at 0. It is not clear what

rule of differentiation could be applied, since F combines the features of

a power function with those of an exponential function. Determine the

derivative of F at points x > 0 as follows.

a) Verify that lnF (x) = x lnx.

b) Explain why lnF is differentiable, and find its derivative.

c) Explain why it follows from b) that F is differentiable.

d) Take the derivative of lnF (x) by using the chain rule.

e) Use b) and d) to find the derivative of F .

The technique outlined in this problem is known as logarithmic

differentiation.

5. The product rule can also be obtained by logarithmic differentiation (see

Problem 4) as long as the factors have no zeroes, as follows.

a) If f and g are differentiable at a, and f and g are > 0 in a neighbor-

hood of a, apply the rules of logarithms to ln(fg).

b) Take the derivative at a on both sides of the equation obtained in a)

by using the chain rule.

c) Solve the resulting equation in b) for (fg)′(a).
d) If f > 0 and g < 0 on some interval, apply the previous procedure to

f and (−g). Note that fg = −[f(−g)].
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e) Discuss how to handle the case when both f and g are negative.

6. Apply logarithmic differentiation as in Problem 5 to find the derivative

of f/g when f and g are as in 5 a).

7. Explain why xx = ex ln x for x > 0. Use this result and the chain rule to

obtain the derivative of F (x) = xx. (This approach is somewhat more

direct than the one suggested in Problem 4.)

8. Find the equation of the tangent line to the graph of f(x) = 1
1+x2 at the

point where x = 1.
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Chapter III

Some Applications of Derivatives

III.1 Exponential Models

III.1.1 Growth and Decay Models

We had already seen in Section II.2.7 how a simple model for the growth

of a population leads to the differential equation y′ = ky, where k is a

constant. We will show in the next section that all solutions f of this

equation (i.e., functions f that satisfy f ′(t) = kf(t)) are functions of the

form f(t) = Cekt. This is the result that is the basis for all further analysis

of this and similar models. The basic hypothesis underlying this model

states that the rate of change dP
dt (t) of a population P (t) is proportional to

the size P (t) of the population, i.e., that there exists a constant k so that
dP

dt
(t) = kP (t) for all times t under consideration.

It is of course assumed that there is no change in any of the relevant external

conditions during the time period that is studied. This is certainly not

true in concrete situations. At best, one may say that conditions remain

approximately stable over a limited period of time, so that the “exponential

growth model” has to be applied with care.

A much more stable, and hence better, situation arises with natural

decay processes, such as they occur with radioactive substances. For ex-

ample, the isotope U238 of uranium emits radiation that arises from the

splitting of the uranium atoms into other element. Experiments reveal that

this radioactive decay process is not affected by any changes in the envi-

ronment whatsoever, and hence is extremely stable over very long periods

of time. The amount A(t) of U238 present at time t decays at a rate dA
dt

that is proportional to the amount A(t), so
dA

dt
(t) = −λA(t)

189
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for a constant λ > 0 that is called the decay constant (specific to U238).
1

Experimental data leads to the value λ = 0.155× 10−9 when t is measured

in years. The differential equation then implies that

A(t) = Ce−λt

for a constant C that is identified with the amount A(0) = Ce0 = C that

is present at time t = 0.

Rather than describing the decay process by the decay constant λ, physi-

cists often use the half life T of a radioactive element. This is that time T

in which half of the initial amount has decayed. So T satisfies the equation

A(0)e−λT = A(T ) =
1

2
A(0),

or

e−λT =
1

2
.

Notice that this last equation does not depend on the initial amount A(0).

It follows that

eλT = 2, or λT = ln 2.

For example, the half life of uranium U238 equals T = ln 2/λ = 4.47×109 =

4.47 billion years. Uranium does indeed decay very slowly.

III.1.2 Radiocarbon Dating

For other radioactive substances the half life is much shorter. For example,

the isotope C14 of carbon is radioactive (hence called radiocarbon) with a

half life of about 5730 years. The corresponding decay constant is λ =

ln 2/5730 = 0.00012.

Radiocarbon has been used successfully to date ancient objects that

have biological origins. The method is based on the fact that radiocarbon

occurs naturally in the atmosphere, and that it is continuously created in

the upper atmosphere from nitrogen subject to intensive cosmic radiation,

at a rate that compensates the loss due to radioactive decay. Consequently,

the ratio of radiocarbon to the normal carbon C12 in the atmosphere has

remained quite stable over very long periods of time. All living organ-

isms assimilate radiocarbon along with normal carbon, but this process

stops when the organism dies, and hence the amount of radiocarbon in the
1In a decay process, dA/dt is negative; it is convenient to write the relevant equation

so as to make this clearly visible.
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remnants will then decrease over time. The amount of radiocarbon in an

ancient object derived from living organisms can be measured, and that

information can be used to estimate the age of the object.

Example. Archeologists find remnants of a skeleton in a cave. Analysis

of a specimen reveals that the ratio of radiocarbon to carbon is about 82%

of the ratio q found in the atmosphere. If A(t) is the amount of radiocarbon

in the specimen at time t (measured in years, with t = 0 corresponding to

the time the specimen stopped living), then the decay model

dA

dt
= −λ A(t)

implies that A(t) = A(0) e−λt. The value A(t) measured today is .82A(0),

so that

.82A(0) = A(0) e−λt

implies e−λt = .82. Hence −λt = ln(0.82). With λ = 0.00012, one obtains

t = − ln(0.82)/λ ≈ 1653.

Therefore one may conclude that the cave was inhabited about 1650 years

ago.

III.1.3 Compound Interest

An exponential growth model arises also in finance. A principal amount of

A(t) dollars at time t (t measured in years) is said to grow under continuous

compounding at an annual rate r, if the rate of growth of the capital A(t)

satisfies

dA

dt
(t) = rA(t).

It then follows that

A(t) = A(0)ert.

Other compounding methods are based on dividing the year into n equal

compounding periods of length 1/n years. At the end of each such period

simple interest is added to the principal at the beginning of that period at

the rate r/n obtained by dividing the annual interest rate evenly over the

n periods. The resulting formula for compound interest after t years reads

An(t) = A(0)(1 +
r

n
)nt.
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(See Section I.4). Commonly used methods are annual compounding (n =

1), quarterly compounding (n = 4), and daily compounding (n = 360).

The question arises about the relationship of these compound interest

formulas with continuous compounding. Let us investigate what happens

with An(t) as n gets increasingly larger, thereby making the compounding

periods increasingly shorter. Since

An(t) = A(0)(1 +
r

n
)nt = A(0)

(

(1 +
r

n
)n
)t

,

we are led to consider

lim
n→∞

(1 + r/n)n.

For simplicity, consider r = 1 first, so we need to analyze (1 + 1/n)n. Let

us set 1/n = h, so that n = 1/h. Then n → ∞ is equivalent to h → 0, and

therefore

lim
n→∞

(1 +
1

n
)n = lim

h→0
(1 + h)1/h.

Now, for h close to 0, yet h 6= 0, use the equation (1+h) = eln(1+h) to write

(1 + h)1/h = [eln(1+h)]1/h = e[ln(1+h)]/h.

Recall that since ln 1 = 0, one obtains

lim
h→0

ln(1 + h)

h
= lim

h→0

ln(1 + h)− ln 1

h
= derivative of lnx at the point x = 1.

Since (lnx)′ = 1/x, the value of this limit is 1/1 = 1. The continuity of

E(x) = ex then implies that

lim
n→∞

(1 + 1/n)n = lim
h→0

(1 + h)1/h

= lim
h→0

e[ln(1+h)]/h = lim
u→1

eu = e1 = e.

We have thus discovered the representation

e = lim n→∞(1 +
1

n
)n

for the base e of the natural logarithm.

A minor modification of this argument shows that

er = lim n→∞(1 +
r

n
)n for any real number r.

Consequently, we obtain that continuous compounding of interest at the

annual rate r, given by the function Ac(t) = A(0)ert, arises as the limiting
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case n → ∞ of compounding over n equal periods per year. Continuous

compounding may be viewed as “instantaneous” compounding, i.e., interest

is added to the capital at every moment.

It is of interest to compare the growth of capital under various com-

pounding methods. Suppose the annual interest rate is 6%, i.e., r = 0.06,

and that A(0) = $100, 000. After 10 years, annual compounding results in

A1(10) = 100000× (1 + 0.06)10 = 1. 79084 77× 105 = $179, 848.

Quarterly compounding gives

A4(10) = 100000× (1 + 0.06/4)40 = 1. 81401 84× 105 = $181, 402,

while daily compounding results in

A360(10) = 100000× (1 + 0.06/360)3600 = 1. 82202 99× 105 = $182, 023.

Finally, continuous compounding gives

Ac(10) = 100000× exp(0.06 ∗ 10) = 1. 82211 88× 105 = $182, 212.

Notice that continuous compounding yields the best result. While the

difference to daily compounding is perhaps insignificant, continuous com-

pounding yields almost $2, 500 more than annual compounding. For this

reason, banks often state the “yield” of continuous compounding, i.e., that

annual rate that produces the same result by annual compounding. For

example, for continuous compounding at 6%, the yield is determined by

solving

e0.06 = (1 + r)

for r. The result is r = e0.06 − 1 = 1. 06183 65− 1 = .0 61836 5, i.e., the

yield is 6.18%.

III.1.4 Exercises

1. A bank offers a 5-year certificate of deposit which pays interest at an

annual rate of 7.5% compounded continuously. Determine the effective

yield of the certificate.

2. Bank ABC offers a certificate of deposit at 6.125% compounded monthly,

while its competitor Bank QRS offers 6.1% compounded continuously.

Which bank would you choose? Justify your choice by comparing

yields.
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3. A population of bacteria in a laboratory grows exponentially at the rate

of 5% per day. If the initial size is 1000, after how many days will the

population have grown to 2000?

4. Radon 222 is a radioactive gas that is found to be harmful to humans if

they are exposed to it in excessive amounts. Its half life is about 3.8 days.

Because of a leak, the basement of a factory has reached dangerously high

levels of Radon 222, and the health inspector recommends that no one

should enter the basement until the radioactive level has decreased to

10% of the original level. How many days should people stay out of the

basement?

5. Newton’s Law of Cooling states that the temperature T (t) of an object

placed in an environment at constant temperature A changes at a rate

that is proportional to the difference A − T (t), i.e., there is a constant

k > 0 so that

dT

dt
= k(A− T ).

a) Explain the meaning of the sign of dT/dt. Consider the cases

A > T and A < T separately.

b) Show that if T (0) > A, then T (t) = A + (T (0)− A)e−kt. (Hint: Set

y = T (t)−A and show that y′ = −ky.)

c) Will the temperature T (t) ever be equal to A? Explain.

6. At 5 p.m. police find the body of the victim of a murder in a room whose

temperature was maintained at 200C. At that time the temperature of

the body was measured to be 300C, and two hours later it had decreased

to 250. Assuming that the normal body temperature of a living human is

370 C, determine how many hours ago the murder was committed. (Hint:

Use Newton’s Law of Cooling (Problem 5). Use the initial condition

T (0) = 300 and T (2) = 250 to determine k. Then set T (0) = 370 to

determine the time t at which T (t) = 300.)

7. An ice cube tray with water at 120C is placed in a freezer kept at −100C.

An hour later the temperature of the water is measured at 60C. Estimate

how much longer it will take until the ice cubes are ready. (Assume this

will happen when the water has reached the freezing temperature 00C.

Use Newton’s Law of Cooling (Problem 5).)
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III.2 The Inverse Problem and Antiderivatives

III.2.1 Functions with Zero Derivative

In order to apply a differential equation such as y′ = ky in studying expo-

nential models in applications, as we did in Section 1, one needs to know

that all its solutions are of the form

f(t) = Cekt.

We shall first investigate the analogous, but apparently simpler problem

of determining all solutions of the differential equation y′ = 0. Once this

case is well understood, other cases can often be handled by appropriate

simple modifications.

Obviously any function f(x) = c = constant satisfies f ′ = 0. Are the

constants the only functions with this property? We have not encountered

any other function whose derivative is always zero, and—intuitively—it is

hard to imagine a non-constant function that has zero derivative every-

where. Geometrically, the graph of a function that has always a horizontal

tangent appears to necessarily be a horizontal line. Yet attempts to turn

these intuitive ideas into precise form run into difficulties. Further analysis

reveals that any correct verification of this apparently so “obvious” conclu-

sion ultimately requires the completeness of the real numbers. In fact, if

all we could “see” were just the rational numbers (realistically, is this not

the case?), one could indeed build such strange non-constant functions with

zero derivative “everywhere” (i.e., at all visible rational points).

We shall now discuss a process that will allow us to extract a precise

verification of what seems so obvious to the eye. In order to motivate

our arguments, let us translate the problem into the setting of motion and

velocity. So we assume that the function s = s(t) measures the position

of a vehicle at time t. Suppose we know that the instantaneous velocity

v(t) = ds
dt (t) is zero for all t in a time interval I. We want to conclude

that s(t) is constant on I, i.e., that there is no motion at all. Alternatively,

assume that there is some motion between two points in time t1 and t2,

i.e., there are t1 < t2 ∈ I with s(t1) 6= s(t2); we must then be able to find

a time t∗ in the time interval [t1, t2] at which the instantaneous velocity

v(t∗) = ds/dt(t∗) 6= 0. Our experience tells us that this must indeed be

correct, but how do we back up our experience with a solid argument? The

only thing we can be absolutely certain about is that the average velocity
s(t1)−s(t2)

t1−t2
in the time interval [t1, t2] is non-zero. We want to use this fact

to produce a point t∗ with v(t∗) 6= 0. Since the instantaneous velocity is
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approximated by average velocities over very short time intervals, we need

to find a sequence of shrinking intervals, so that the corresponding average

velocities will remain non-zero, and will in fact converge to a non-zero limit,

i.e., to a non-zero instantaneous velocity. The crux of the construction is

based on the relationship between average rates of change that we had

already established in Lemma II.1.1. Here we shall just use the following

version of that result.

If during each of two successive time periods [t0, t1] and [t1, t2] the av-

erage velocity is less than or equal to v∗, then the average velocity over the

combined period [t0, t2] is also less than or equal to v∗.

Again, this statement is consistent with our experience and completely

“obvious”. But in contrast to the earlier situation, no subtle “limits” are

involved here; in fact, the proof of Lemma II.1.1 only required simple al-

gebra. The reader may wish to review the proof of that Lemma before

moving on.

It is now clear how to proceed. We assume that the average velocity

v0 over a time interval [c0, d0] is non-zero, say v0 > 0. Divide the interval

in half. By the observation just made, v0 cannot exceed the maximum of

the average velocities over each half interval. In other words, the average

velocity v1 over at least one of these half intervals must be at least as large

as v0, i.e., v1 ≥ v0. Label that half by [c1, d1]. Now repeat this process

starting with v1 and the interval [c1, d1], and then repeat over and over.

At the nth step one obtains an interval [cn, dn] ⊂ [cn−1, dn−1] ⊂ [c0, d0] of

length (d0 − c0)/2
n, so that the average velocity vn over [cn, dn] satisfies

vn ≥ vn−1 ≥ v0. The nested interval theorem (Theorem I.1.3), which is a

consequence of the completeness of R, guarantees that there is at least one

point t∗ contained in all these intervals. Then the instantaneous velocity

v(t∗), being the limit of average velocities vn ≥ v0 over shorter and shorter

time intervals shrinking to t∗, must also be greater than or equal to v0 > 0,

and hence v(t∗) 6= 0 as needed. (If desired, the last (intuitive) argument

can be made rigorous by invoking the precise limit definition of derivatives

combined with the observation above to pass from average velocities over

[cn, dn] = [cn, t
∗] ∪ [t∗, dn] to intervals with one endpoint at t∗.)

What if v0 < 0? Then the preceding argument still gives v(t∗) ≥ v0,

although now this does not imply v(t∗) 6= 0. Yet surely the whole argument

can be modified to find another t# with v(t#) ≤ v0. We therefore have

verified the desired conclusion: If the average velocity over a time interval
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is not zero, then at some time during that interval the instantaneous velocity

has to be non-zero as well.

III.2.2 The Mean Value Inequality

Let us recast the conclusion we just obtained in the setting of an arbitrary

differentiable function. Given such a function f defined on an interval I,

we define the average rate of change of f over [a, b] ⊂ I, where a < b, by

∆(f, [a, b]) =
f(b)− f(a)

b− a
.

The argument we just went through (in the language of velocities) proves

the second inequality in the following theorem. The first inequality follows

by applying that result to −f in place of f . We refer to this result as the

Mean Value Inequality.

Theorem 2.1. (Mean Value Inequality) Assume that f is differentiable

on I. If [a, b] ⊂ I, then there exist xlow and xhigh ∈ [a, b] such that

D(f)(xlow) ≤ ∆(f, [a, b]) ≤ D(f)(xhigh).

As we saw already at the end of the previous section, the result that

prompted the whole discussion follows immediately.

Corollary 2.2. If f is differentiable on the interval I with f ′ ≡ 0 on I,

then f is constant.

Proof. By the Theorem, the hypothesis implies 0 ≤ ∆(f, [a, b]) ≤ 0,

i.e., ∆(f, [a, b]) = 0, and hence f(b) = f(a) for all a, b ∈ I. We have thus

verified that the only solutions of the differential equation y′ = 0 are indeed

just the constant functions. �

Corollary 2.3. If two differentiable functions f1 and f2 satisfy f ′
1(x) =

f ′
2(x) for all x in an interval I, then f1 and f2 differ by a constant, i.e.,

there is C ∈ R such that f2(x) = f1(x) + C for all x ∈ I.

Proof. The function f2 − f1 has derivative (f2 − f1)
′ = f ′

2 − f ′
1 = 0, and

hence is a constant C. �

We therefore know all solutions to the differential equation y′ = g as

soon as we know one solution.
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Examples.

i) Find all functions that satisfy y′ = 2x4. By the standard differenti-

ation rules, (ax5)′ = a5x4 for any constant a. Choose a so that 5a = 2,

i.e., a = 2/5. Then the function f(x) = 2
5x

5 satisfies f ′(x) = 2x4, so is one

solution. All other solutions are therefore of the form 2
5x

5 +C, where C is

a constant.

ii) All solutions of y′ = sinx are of the form f(x) = − cosx+ C.

iii) All solutions of y′ = 3x are of the form g(x) = 1
ln 33

x + C.

Another important consequence of Theorem 2.1 is the following

estimate.

Corollary 2.4. Suppose f is differentiable on I and that its derivative

D(f) is bounded on the interval [a, b] ⊂ I, i.e., there exists K such that

|D(f)(x)| ≤ K for x ∈ [a, b]. Then

|f(x1)− f(x2)| ≤ K |x1 − x2|
for all x1, x2 ∈ [a, b].

Proof. Since |D(f)(xlow)| ≤ K and |D(f)(xhigh)| ≤ K, the Mean Value

Inequality implies |∆(f, [x1, x2])| ≤ K. The desired estimate then follows

by multiplying with |x1 − x2|. �

Finally, the Mean Value Inequality easily implies also the following the-

orem, which is known as the Mean Value Theorem.

Corollary 2.5. (Mean Value Theorem) Suppose f is differentiable on

the interval I and that its derivative D(f) is continuous on I. Given [a, b] ⊂
I, there exists a point c ∈ [a, b] such that

D(f)(c) = ∆(f, [a, b]) =
f(b)− f(a)

b− a
.

Proof. By the Mean Value Inequality one has

D(f)(xlow) ≤ ∆(f, [a, b]) ≤ D(f)(xhigh).

Since D(f) is assumed to be continuous, the Intermediate Value Theorem

II.4.4 gives the existence of the desired solution c of the equationD(f)(x) =

∆(f, [a, b]). �

III.2.3 Antiderivatives

We introduce a new name and notation to describe a generalization of the

equation D(F )(x) = 0 for all x in some interval, as follows. A function F
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on an interval I is called an antiderivative of f if F is differentiable and

F ′(x) = f(x) for all x ∈ I. An antiderivative of f is denoted by the symbol
∫

f(x)dx. Therefore

F =

∫

f(x)dx ⇐⇒ F ′ = f .

Sometimes the symbol
∫

f(x)dx, also called an indefinite integral of f , is

used to denote the collection of all antiderivatives of f .

By simply reversing known rules of differentiation one obtains the fol-

lowing formulas for antiderivatives.

i)
∫

exdx = ex + C;

ii)
∫

bxdx = 1
ln bb

x + C, for any b > 0 and 6= 1;

iii)
∫

sinx dx = − cosx+ C;
∫

cosx dx = sinx+ C;

iv)
∫

xrdx = 1
r+1x

r+1 + C for r 6= −1 and x > 0. In particular, if n is

a positive integer, then
∫

xndx = 1
n+1x

n+1 + C for all x ∈ R.

v)
∫

1
xdx = lnx +C for x > 0;

∫

1
xdx = ln(−x) +C for x < 0.

vi)
∫

[af(x) + bg(x)]dx = a
∫

f(x)dx+ b
∫

g(x)dx for any constants a, b.

We shall see in Chapter IV that every continuous function f on an

interval I has an antiderivative on I.

III.2.4 Solutions of y′ = ky

It is now easy to also describe all solutions of the differential equation

y′ = ky. Suppose that y = f(x) is a solution of this equation on an interval

I, i.e., f satisfies f ′(x) = kf(x) for all x ∈ I. We want to show that

f(x) = Cekx for some constant C. We therefore consider the function h

defined by

h(x) = f(x)/ekx = f(x)e−kx.

Differentiation (use the product rule, the differential equation for f , and

the chain rule) gives

h′(x) = f ′(x) e−kx + f(x)[e−kx]′

= kf(x) e−kx + f(x)[e−kx](−k)

= e−kx[kf(x)− kf(x)] = 0.

By Corollary 2.2 above, h is a constant C and we are done. In particular,

it follows that every solution of y′ = ky is defined on the whole real line.

Remark. Notice that if a solution f(x) = Cekx of y′ = ky takes on the

value 0 at some point x0, then necessarily C = 0, since ekx 6= 0 for all x.
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Therefore f(x) = 0 for all x. So the only solution that takes on the value

zero at some point is the constant function f ≡ 0. All other solutions are

never zero.

Let us summarize the main conclusions.

Theorem 2.6. Let f be a solution of the equation y′ = ky on the interval

I. Then there exists a constant C, so that f(x) = Cekx for all x ∈ I. If

f(x0) = 0 for some point x0 ∈ I, then f(x) = 0 for all x ∈ I.

Note that for k = 0 this theorem includes the earlier result that a

function whose derivative is always zero is necessarily constant.

III.2.5 Initial Value Problems

We saw in the preceding section that the solutions of differential equations

such as y′ = g(x) and y′ = ky are determined up to a constant. By prescrib-

ing the value y0 of a solution at one fixed point x0 one obtains an additional

condition that typically will be satisfied by one and only one choice of that

constant. In this way one singles out a particular solution. Combining the

differential equation with such a choice (x0, y0) determines what is called

an initial value problem.

Example. Solve the initial value problem y′ = 2 cosx with y(π/2) = 1.

Solution. The differential equation has solutions
∫

2 cosx dx = 2 sinx+

C. The initial value condition requires

2 sin
π

2
+ C = 1,

or 2 + C = 1, so that C = 1 − 2 = −1. So the desired solution f is given

by f(x) = 2 sinx− 1.

Geometrically, we see that the graphs of the family of all solutions of

y′ = 2 cosx are obtained by parallel translation in the vertical direction

(i.e., by adding a constant to the y-coordinate) of the graph of a particular

solution. Specifying an initial value (x0, y0) therefore selects the one graph

that goes through that particular point.

Example. Describe, for varying times, the number of bacteria in a

culture that is of size 2000 at 1 p.m. and which doubles every 5 hours. Use

an exponential growth model.

Solution. Let P (t) denote the size of the culture, where t is measured

in hours, so that t = 0 corresponds to 1 p.m. Assuming an exponential
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growth model, one has P ′ = kP for a constant k. The solutions are of the

form P (t) = Cekt. The initial value condition implies 2000 = P (0) = C.

To determine k we use the information P (5) = 2P (0); this implies ek5 = 2.

Hence k5 = ln 2, so that k = (ln 2)/5 = .13862 944 ≈ 0.139. The desired

function that describes the number of bacteria at time t therefore is

P (t) = 2000 e0.139 t.

If we want to describe the populations in terms of the time T given by the

clock, note that T = t+ 1, or t = T − 1. Hence P (T ) = 2000e0.139 (T−1).

This example generalizes easily to the following result, which is the

prototype of the general existence and uniqueness theorem for initial value

problems.

Theorem 2.7. Given an arbitrary point (x0, y0) in the plane, there exists

exactly one solution f of the differential equation y′ = ky defined on R that

satisfies the initial value condition f(x0) = y0.

Proof. We know that any solution f is of the form f(x) = Cekx.The

condition y0 = f(x0) = Cekx0 implies that C = y0/e
kx0 = y0e

−kx0 . So

f(x) = y0e
−kx0ekx = y0e

k(x−x0)

is the (unique) solution to the initial value problem. �

III.2.6 Exercises

1. Let f(t) = cos(t)

a) Determine the average rate of change R = ∆(f, [0, π]) of f over the

interval between t = 0 and t = π.

b) Find specific points l and m in [0, π] so that f ′(l) ≤ R ≤ f ′(m) .

c) Is there any subinterval [a, b] ⊂ [0, π], with ∆(f, [a, b]) > 0? Explain

your answer!

2. Let p(x) = 4x3 − 2x2 + 1.

a) Find all antiderivatives of p(x).

b) Find a function F so that F (1) = 0 and F ′(x) = p(x) .

3. Suppose the functions f and g satisfy f ′(x) = 4g′(x) for all x. If f(0) =
g(0) = 1, and f(10) = 5, what is g(10)?

4. Solve the following initial value problems.

a) y′ = 2 cosx, y(0) = 1;

b) y′ = 3x, y(0) = 0;
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c) y′ = 2y, y(0) = 10;

d) y′ = 3y, y(0) = 0;

e) y′ = −y, y(2) = 3.

5. A particle moves along the graph of a function f , so that at each point

(x, f(x)) on the trajectory the tangent has slope 4x. Assume the particle

goes through the point (1, 2). Determine the function f .

6. Use a graphing calculator to sketch in one window the graphs

of the antiderivatives of g(x) = 3x2 that go through the points

(0,−1), (0, 0), (0, 1), (0, 2). Describe the geometric relationship of the

graphs.

7. Find a function F that satisfies the equation F ′ = kF for some constant

k, and so that F (0) = 2 and F (1) = 5.

III.3 “Explosive Growth” Models

III.3.1 Beyond Exponential Growth

The basic model underlying exponential growth is described by the differ-

ential equation y′ = ky, where k > 0 is constant. It implies that both

y(t) and the rate of growth dy/dt = y′ increase in time. The differen-

tial equation requires that dy/dt and y are just a fixed constant multiple

of each other. The rate of growth of dy/dt is measured by its derivative

D(dy/dt) = D(ky) = kD(y), so the rates of growth D(dy/dt) and D(y) of

dy/dt and y are still proportional, with the same factor k. Furthermore,

D(2)(y) = D(ky) = k2y. Continuing to differentiate, one sees that for each

positive integer n one has

D(n)(y) = kD(n−1)(y) = k2D(n−2)(y) = ... = kny.

Thus there is a linear relationship between any two derivatives of a solu-

tion. Each derivative of y still satisfies an exponential growth model in

relationship to y, although the relevant constant kn changes according to

the number of differentiations involved. This situation expresses a deep

regularity of the underlying process. As we know, the solutions are given

by exponential functions that are defined for all values of t, and unless ex-

ternal conditions change, the growth process continues indefinitely, leading

to limt→∞ y(t) = ∞ as soon as y(t0) > 0 at some moment in time.

The situation changes dramatically if one considers a non-linear growth

model described, for example, by the differential equation y′ = ky2, where
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k is again constant. Here y′ grows much faster than y. The relationship

is not linear but quadratic. To simplify, let us choose k = 1. We want

to differentiate the equation again. Since the solution y(t) is assumed to

be differentiable, it follows that y′(t) = [y(t)]2 is differentiable as well,

and therefore D(y′) = D([y(t)]2) = 2y(t) · D(y) by the chain rule. The

differential equation then implies that

D(y′) = 2y · y′ = 2y · y2 = 2y3.

Thus D(y′) = D2(y) grows very much faster in comparison to D(y) = y′ as
y increases. By differentiating again, and so on, one obtains that

D(n)(y) = n · (n− 1) · ... · [y]n+1

for n = 2, 3, ... . We see that the nth derivative of any solution y(t) must

grow like the power yn+1. In contrast to the exponential model y′ = y, the

derivatives in this simple non-linear model grow progressively faster, far

exceeding the rate of natural growth of exponential models. This suggests

a most unusual behavior of the solutions.

As we will show, there exists a critical point in time Tc that depends on

the initial conditions, such that the corresponding solution is defined only

for t < Tc. Furthermore, the process literally blows up as t approaches the

critical point Tc.

III.3.2 An Explicit Solution of y′ = y2

It turns out that we can quite easily determine a formula for the solution

of any initial value problem related to the non-linear differential equation

y′ = y2. To be specific, suppose that f(t) is a solution defined near the

point t = 0, and that f(0) = 1. By continuity of f it follows that f(t)

> 0 on a sufficiently small interval I centered at 0. Hence the differential

equation D(f) = f2 can be written in the form

D(f)(t)

f(t)2
= 1 for t ∈ I.

By the reciprocal rule for derivatives we see that h(t) = −1/f(t) is an

antiderivative of the left side on the interval I. Since
∫

1dt = t is also an

antiderivative of D(f)/f2, it follows that there exists a constant C such

that

h(t) = t+ C for t ∈ I,
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that is, we have verified that −1/f(t) = t+ C. The initial value condition

implies that C = −1/f(0) = −1, and therefore 1/f(t) = 1 − t. Since

f(t) > 0 for t ∈ I, we must have t < 1 for t ∈ I. It follows that

f(t) =
1

1− t
(III.1)

is the unique solution of y′ = y2 with f(0) = 1 on the interval I. The formula

(III.1) shows that the solution f initially defined on the interval I has a

natural extension to the interval {t : t < 1} which satisfies the differential

equation for all t < 1. In fact, the expression on the right side of (III.1) is the

only extension of the solution f from the interval I to the interval (−∞, 1)

that continues to satisfy the differential equation y′ = y2. (See Problem 2

of Exercise III.3.3 for more details.) Furthermore, (III.1) shows that f(t)

cannot be extended in any meaningful way to t = 1, since f(t) → ∞ as

t → 1 from the left side. Thus the solution f(t) “blows up” as t approaches

the critical value Tc = 1. Figure III.1 shows the “explosive” behavior of

the graph of f(t) as t → 1−. Simple modifications of these techniques

show that all solutions of y′ = kyr exhibit similar explosive behavior at

corresponding critical points as soon as the exponent r is greater than 1.

The (linear) exponential model y′ = ky thus is the borderline case beyond

which non-linear growth exhibits very different properties.

0.5
t

−0.5

50

40

30

20

y

10

0 1.51

Fig. III.1 The solution f(t) blows up as t approaches 1.
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III.3.3 Exercises

1. Modify the arguments given in the text for the initial value f(0) = 1 to

show that if b 6= 0, then the initial value problem y′ = y2 with y(t0) = b

has a unique solution on some interval I centered at t0.

2. a) Verify that g(t) = 1/(1 − t) satisfies g′(t) = g(t)2 for t < 1 and

g(0) = 1.

b) Let f be any solution of the initial value problem in a) on the interval

(−δ, 1) for some δ > 0. Let Λ = {λ∈(−δ, 1) : f(t) = g(t) for all

t ∈ (−δ, λ)}. Show that Λ is not empty. (Hint: Modify the argument

in the text.)

c) Let λ∗ = supΛ. Suppose that λ∗ < 1. Show that f(λ∗) = g (λ∗) 6= 0

and that any solution h(t) of the initial value problem y′ = y2 with

h(λ∗) = g(λ∗) must agree with g(t) for all t in some interval I =

(λ∗ − ε, λ∗ + ε) centered at λ∗. (Hint: Use Problem 1).

d) Show that c) implies that f(t) = g(t) for all −δ < t < λ∗ + ε.

e) Show that the result in d) implies that λ∗ = 1, so that f(t) = g(t)

for all t < 1. (Hint: Explain why the conclusion in d) contradicts the

assumption λ∗ < 1 made in c).)

3. a) Given r > 1, find a solution fr(t) for the initial value problem y′ = yr

with y(0) = 1 on some interval centered at 0.

b) Determine the critical point Tr for fr, so that fr(t) is defined for all

t < Tr and limt→T−

r
fr(t) = ∞.

4. Follow the steps below to show that if f(t) is a solution of y′ = y2 on

some interval I centered at 0 which satisfies f(0) = 0, then there exists

an interval [−δ, δ] ⊂ I such that f(t) = 0 for all t with |t| ≤ δ. Thus this

initial value problem has the unique solution f(t) = 0 for all t near 0.

a) Show that there exists 0 < δ < 1/2, such that |f(t)| < 1/2 for all t

with |t| ≤ δ.

b) Show that if for some k ∈ N one has |f(t)| ≤ (1/2)k for all t with

|t| ≤ δ, then |f(t)| ≤ (1/2)2k+1 for all t with |t| ≤ δ. (Hint: Use

the differential equation to first estimate |f ′(t)|, and then apply the

Mean Value Inequality to estimate |f(t)| for |t| ≤ δ < 1/2.)

c) Show that a) and b) imply that |f(t)| = 0 for |t| ≤ δ.

5. Consider the differential equation y′ = y1/2. Show that there are two

different solutions of this equation on R that satisfy the initial value

condition y(0) = 0. Hence uniqueness of solutions fails for this initial

value problem. (Hint: Clearly g(t) = 0 for all t solves the initial value
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problem. Show that the function f defined by f(t) = (1/4)t2 for t ≥ 0

and f(t) = 0 for t < 0 is differentiable at t = 0 and (trivially) at all

other points, and that it also solves the initial value problem.)

III.4 Acceleration and Motion with Constant Acceleration

III.4.1 Acceleration

Given a motion described by the position function s which measures the

distance from a fixed point in dependence of time t, we had seen that the

instantaneous velocity v(t) at time t is defined by the derivative D(s)(t).

It is convenient to use the notation ds
dt (t) for this and similar derivatives to

remind us that the derivative measures a rate of change.

The rate of change of velocity is known as the “acceleration” of the

motion. Again, one distinguishes between the average acceleration

v(t2)− v(t1)

t2 − t1

during the time interval [t1, t2], where t1 6= t2, and the instantaneous ac-

celeration a(t0) at time t = t0 defined by the derivative D(v)(t0) =
dv
dt (t0)

of the velocity function v(t) at t0. This means that a(t0) equals the limit

of the average accelerations, i.e.,

a(t0) = lim
t→t0

v(t)− v(t0)

t− t0
.

We see that the acceleration at t0 is approximated very well by the aver-

age acceleration over shorter and shorter time intervals ending at t0. The

derivative dv/dt of the velocity function is the second order derivative of

the position function s, so that

a(t) =
d

dt
(
ds

dt
)(t) = s′′(t) = D2(s)(t).

Example. A boat floating on the sea bounces up and down with the

waves. Suppose the motion is described by the function h(t) = 12 sin(0.25t),

where h(t) measures the amount in feet that the boat rises above or drops

below a fixed level. At what times does the acceleration have maximal

absolute value? What is that maximal acceleration?

Solution. By differentiation one obtains h′(t) = 12(.25) cos(0.25t) and

h′′(t) = −12(.25)2 sin(0.25t).Hence |h′′(t)| = 3
4 |sin(0.25t)| .The maximal

value 3/4 ft/sec2 occurs when |sin(.25t)| = 1. The motion is “roughest” at

those moments when the boat is on top of a wave or in the valley between

two waves.
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III.4.2 Free Fall

To illustrate how to apply the general relationship between position, veloc-

ity, and acceleration established by the process of differentiation, we shall

consider the simplest case when the acceleration is constant. In particular,

as a consequence of basic physical principles, we shall recover the results of

Galileo’s investigations about falling objects that we had already discussed

in Section 4 of the Prelude. We consider an object (say a rock falling off

a cliff) falling towards the ground. We denote by s(t) its height above

ground at time t. Neglecting all perturbations due to wind or air resis-

tance, the only force that acts on such an object is the gravitational force

Fg exerted by the earth. At heights that are very small compared to the

radius of the earth, this force can be assumed to be constant, i.e., inde-

pendent of the height of the rock. According to Newton’s law of motion

force = mass × acceleration, this force causes an acceleration a (i.e., a

change in velocity) on the object, which therefore must also be constant

near the surface of the earth. This acceleration a due to earth’s gravity is

usually denoted by −g with g > 0, where the minus sign makes explicit

the fact that the force pulls downwards, so that the height is decreasing.

Depending on the units chosen, the numerical value of the constant g is

9.81 m/sec2 or 32 ft/sec2.

Given information about the acceleration a, we can now determine the

position function s by using the tools of calculus. Let v = ds/dt be the

velocity of the object. Since v′(t) = a, the velocity is an antiderivative of

the acceleration. By the results in Section 2.3 one has

v(t) =

∫

a(t)dt =

∫

−gdt = −gt+ C

for some constant C, whose value C = v(0) is the “initial velocity” v0 at

time t = 0. In particular, it then follows from the above formula that

v(t2)− v(t1) = (−g) · (t2− t1), that is, the motion of a freely falling body is

“uniformly accelerated”. This, of course, is the fundamental fact discovered

by Galileo early in the 17th century. Next, since s(t) is an antiderivative
∫

v(t) dt of the velocity, it follows that

s(t) =

∫

(−gt+ v0)dt = −g
t2

2
+ v0t+ s0,

where s0 = s(0) is the initial position (at time t = 0). Therefore the motion

is completely determined by this equation once one knows the values of

initial position and velocity.
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Example. A stone is dropped from the top of a tower, and it hits the

ground 4 seconds later. Find the height of the tower.

The model for the motion under constant acceleration applies. Let h

denote the (unknown) height of the tower in meters. This is the initial

position at time t = 0. Since the stone is simply “dropped” at that time,

the initial velocity v0 = 0, so that

s(t) = −9.81

2
t2 + h meters.

When the stone hits the ground (t = 4), the height s(t) is zero, so that

s(4) = − 9.81
2 42 + h = 0. Solving for h gives

h =
9.81

2
· 16 = 75.48.

The tower is approximately 75 meters high.

III.4.3 Constant Deceleration

We discuss another situation where constant acceleration occurs.

Example. A car travels along a highway at 50 miles/hour. The driver

sees a washed out bridge approximately 100 ft down the road, and immedi-

ately applies the brakes with constant pressure. After one second his speed

is down to 35 miles/hour. Will the car stop in time?

Solution. Based on the given information, we assume that the car de-

celerates at a constant rate of a ft/sec2. Let t = 0 correspond to the time

when the brakes are first applied, measured in seconds. Conversion of the

initial speed of 50 miles/hour to ft/sec gives 50 · 5280/3600 ≈ 73.3 ft/sec.

Thus v(t) =
∫

−a dt = −at + 73.3. (The minus sign reflects the fact that

the braking action slows down the car, which we interpret as a negative

acceleration.) Since we are told that

v(1) = 35m/h = 35 · 5280/3600≈ 51.3 ft/sec,

we can determine the deceleration rate a from the equation 51.3 =

−a · 1 + 73.3, resulting in a = 22. Next we can determine the time re-

quired for the car to stop (assuming that there is no interruption) from the

equation 0 = v(t) = −22t+ 73.3. One obtains t = 73.3/22 ≈ 3.3 seconds.

We can now calculate the distance the car would travel until coming to a

stop as follows. The position function s(t) satisfies

s(t) =

∫

v(t) dt = −22
t2

2
+ 73.3t+ 0.
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Hence s(3) = −22 · 9/2 + 73.3 · 3 = 120.9. Unfortunately, the car will not

stop in time before falling over the edge... if only the driver had replaced

his worn tires the day before!

III.4.4 Exercises

1. The specifications for a shipping box state that the box should with-

stand an impact against a fixed object up to a speed of 10 ft/sec. What

would happen to the box if it is dropped from a balcony 20 ft above the

ground?

2. While traveling at 95 miles per hour in your Ferrari you spot a state

trooper in the distance and immediately apply the brakes with constant

pressure. After 100 ft your speed is down to 70 m.p.h. Continuing with

the same deceleration, what will be your speed when you pass the trooper

who is an additional 100 ft away? Will you get a ticket? (60 m.p.h. equals

88 ft/sec.)

3. A car accelerates under constant acceleration from 0 to 100 km/h in

6 seconds. Find the acceleration in m/sec2.

4. A cannon fires its ammunition straight up with an initial speed of

60 m/sec.

a) How high will the cannon ball reach?

b) How long will it take for the cannon ball to hit the ground again?

(Better move away... ).

c) At what speed does the cannon ball hit the ground?

5. A stone dropped from a tower takes 6 seconds to hit the ground. How

high is the tower?

6. On a snowy afternoon Joe Q. travels on the very slippery interstate

highway at a speed of 60 ft/sec (roughly 40 m.p.h.), when he suddenly

sees a big truck ahead losing control, rolling over and blocking the road.

He applies the brakes, but because of the snow his deceleration is just

10 ft/sec2.

a) Find the speed of Joe’s car t > 0 seconds after he applies the brakes.

b) How many seconds would it take for the car to come to a stop?

c) When Joe applied the brakes, the truck was about 200 ft away. Will

Joe be able to stop before hitting the truck? Explain!
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III.5 Periodic Motions

III.5.1 A Model for a Bouncing Spring

Suppose a steel ball of mass m is attached to a spring that hangs from the

ceiling. The weight will stretch the spring by an amount s0, at which point

the ball will be at rest at the equilibrium position. Suppose the ball is now

pulled down an additional amount c0 and released; it will then bounce up

and down around the equilibrium point. (See Figure III.2.) We want to

find a mathematical model to describe the motion of the ball under the

action of the spring. As the motion appears to involve some periodicity,

we expect that the model will involve trigonometric functions or perhaps

other more complicated periodic functions.

s

h(0)

h(t )

s = 0

s0

c0

Equilibrium level

Start level

Fig. III.2 The mass stretches the spring by |s0|.

At the equilibrium level s = s0 the ball is at rest. (Recall that according

to our choice of orientation, s0 is a negative number.) So the sum F (s0)

of all forces acting on the ball at that position is zero. One force is the

gravitational force FG, which equals −mg. The other force FS comes from

the spring. According to Hooke’s Law from physics, that force is a multiple

−ks of the amount s that the spring has been stretched, where k > 0 is the

so-called spring constant. In particular, FS(s0) = −ks0. Since s0 < 0, one

has FS(s0) > 0, which is consistent with the fact that the spring pulls the

ball upwards. The equation F (s0) = FG(s0)+FS(s0) = −mg+(−ks0) = 0

then implies that −mg = ks0. Incidentally, this result gives a practical
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method to determine the spring constant k: If a mass m stretches the

spring by the amount −s0, then k = −mg/s0 = mg/(−s0). If one uses the

standard metric units kilograms for mass, meters for length, and seconds

for time, the spring constant k is measured in kg/sec2. For example, if a

mass of 1 kg stretches the spring by 10 cm (= 0.1 m), then k = 1·9.81/0.1 =
98.1 kg/sec2.2

Rather than focusing on the level s(t) of the mass, we shall consider the

(signed) distance h(t) = s(t) − s0 of the mass from the equilibrium level

given by s0. Since h(t) and s(t) differ by a constant, one has h′′(t) = s′′(t).
Newton’s law of motion and Hooke’s law then imply

mh′′(t) = ms′′(t) = FG + FS(s(t)) = −mg − ks(t) = ks0 − ks(t)

= −k(s(t)− s0) = −k · h(t)

at time t. Therefore the function h = s− s0 satisfies

h′′(t) +
k

m
h(t) = 0.

If we set ω =
√

k/m, the position function h(t) relative to the equi-

librium point of the bouncing ball must satisfy the differential equation

y′′ + ω2y = 0.

The main result proved in the next section implies that

h(t) = A sin(ωt) +B cos(ωt)

for some constants A and B. The constants are determined by the initial

position and velocity of the ball at time t = 0. In fact, the above equation

implies that h(0) = B and h′(0) = Aω. Concretely, suppose the experiment

is started by pulling the ball down from the equilibrium level by an amount

c0 > 0 and then releasing it at time t = 0, so that its velocity right at that

moment is zero. This means that h(0) = −c0 and h′(0) = 0. Consequently,

given these initial conditions, the motion of the ball is described by the

function

h(t) = −c0 cos(ωt) = −c0 cos(
√

k/m t).

Figure III.3 qualitatively visualizes the vertical displacement h(t) of the

ball as a function of time t in seconds. The constant c0 in this equation is
2The unit kg/sec2 for the spring constant k may appear quite unnatural. If one intro-

duces a separate unit to measure forces, one obtains a different description for k. More
precisely, one defines 1 Newton (1 N) to be the size of a force that accelerates a mass
of 1 kg by 1 m/sec2. The unit kg/sec2 translates to kg·(m/sec2)/m = N/m. This latter
unit for k more directly reflects Hooke’s law F = −k s, which implies k = −F/s.



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 212

212 What is Calculus? From Simple Algebra to Deep Analysis

1284
0

c0

−c0

h(t )

t

Fig. III.3 The motion of the spring over time t.

called the amplitude of the (periodic) motion. It measures the maximum

displacement from the equilibrium position. The other quantity that is

often used to describe periodic motions is the so-called frequency ν, which

gives the number of cycles per unit of time. The frequency thus is an

aggregate measure of the speed by which the ball bounces up and down,

sort of like an average speed.

The reciprocal T = 1/ν of the frequency is the period of the motion,

i.e., T is that time it takes the ball to complete a full cycle to return to

the initial position at the bottom. In Figure III.3 the period T equals 2

seconds and hence the frequency ν is equal to 1/2 cycles per second. Since

the cosine function has a period 2π, the period T of the bouncing mass

must satisfy the equation
√

k/mT = 2π, that is, T = 2π
√

m/k. The result

shows, in particular, the effect of the spring constant k and the mass m on

the motion of the ball. The period increases if the mass m of the ball is

increased. Similarly, if one uses balls of equal weights with two springs of

different stiffness, the equation shows that the period for the stiffer spring

(i.e., larger k) will be shorter than the one for the softer spring. Stated

differently, a stiffer spring produces a much quicker bounce, i.e., higher
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frequency, than a softer spring.

Remark. A more accurate model of the bouncing spring needs to take

into account other factors, such as the resistance encountered by the motion

of the ball in the surrounding medium and internal friction of the spring.

The main new effect is that energy is lost over time, thereby slowing down

the motion until the ball eventually comes to a stop. The resistance gives

an additional force FR acting on the ball. The simplest model assumes

that this force is proportional to the velocity y′ and acts in the direction

opposite to the direction of the motion, i.e., FR = −Ry′ for some constant

R > 0. The total force F = my′′ now satisfies F = −mg + FR +FS . The

resulting differential equation for the displacement y(t) from equilibrium

then is

my′′ +Ry′ + ky = 0,

where all constants are positive. The analysis of the solutions for this

equation when R > 0 is more involved than the case when R = 0. The

reader interested in more details should consult a basic text on Differential

Equations.

III.5.2 The Solutions of y′′ + ω2y = 0

We saw in the preceding section that the function h that describes the

motion of a ball attached to a spring must be a solution of the differential

equation y′′ + ω2y = 0. Recall that sin t and cos t satisfy the differential

equation y′′ + y = 0. More generally, we had already remarked in Section

II.5.5 that all functions f of the form f(t) = A sin(ωt) +B cos(ωt), where

A and B are constants, satisfy the corresponding equation

y′′ + ω2y = 0. (III.2)

In order to conclude that the position function h of the spring is of this

particular form one needs to know that the functions f of the form given

above do indeed represent all possible solutions of the equation (III.2). The

analogous problem of identifying all solutions for the differential equation

y′ = ky was handled in Section III.2.4 by reducing the problem to the

simpler equation y′ = 0. Similarly, the equation y′′ + ω2y = 0 can be

reduced to that form by a simple procedure. We multiply the equation

(III.2) by the derivative y′ to obtain

y′′y′ + ω2yy′ = 0.
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Note that by the chain rule one has D([y(t)]2) = 2y(t)D(y(t)) = 2yy′. Sim-

ilarly, D([y′(t)]2 = 2y′(t)D(y′(t)) = 2y′y′′. Combining these two equations

results in

D([y′(t)]2 + ω2[y(t)]2) = 2y′y′′ + ω22yy′

= 2y′[y′′ + ω2y].

Therefore, if the function y is a solution of (III.2), then D([y′(t)]2 +

ω2[y(t)]2) = 0. This easily implies the following statement.

Lemma 5.1. Let y be any solution of the differential equation y′′+ω2y = 0

on the interval I. Then

[y′(t)]2 + ω2[y(t)]2 is constant for all t ∈ I.

In particular, any such solution y that satisfies y(t0) = y′(t0) = 0 at some

point t0 ∈ I must satisfy y(t) = 0 for all t ∈ I.

Proof. We saw that for any solution y of (III.2) the function [y′(t)]2 +
ω2[y(t)]2 has zero derivative on I. Hence it must be a constant C on I. The

conditions y(t0) = y′(t0) = 0 imply that C = 0. Since [y′(t)]2 ≥ 0 and

ω2[y(t)]2 ≥ 0, their sum can be zero only if the terms are zero individually.

It follows that ω2[y(t)]2 = 0, and hence y(t) = 0 for all t ∈ I. �

We can now readily prove the main result of this section.

Proposition 5.2. If the function f satisfies the differential equation y′′ +
ω2y = 0 on the interval I, then there exist constants A and B such that

f(t) = A sin(ωt) +B cos(ωt).

Proof. Let us assume first that 0 ∈ I. Let

h(t) = f(t)− [f ′(0)/ω] sin(ωt)− f(0) cos(ωt).

It follows that h also satisfies h′′+ω2h = 0. Furthermore, h(0) = f(0)−0−
f(0) = 0, and since h′ = f ′ − f ′(0) cos(ωt) + f(0)ω sin(ωt), it also follows

that h′(0) = f ′(0)−f ′(0)+0 = 0. By the Lemma, h(t) = 0 for all t ∈ I, and

clearly this implies the desired conclusion. An appropriate modification of

this argument works in the case 0 /∈ I. See Problem 3 Exercise III.5.4 for

details. �

III.5.3 The Motion of a Pendulum

A pendulum, such as found, for example, in big wall clocks, provides an-

other familiar example of a periodic motion. We shall now investigate the
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corresponding mathematical model. We consider a pendulum consisting of

a weight of mass m attached to the bottom of a rigid rod of length L, whose

mass we assume to be negligible compared to m. (See Figure III.4.) The

rod swings from a hinge at the top. Neglecting, as usual, factors such as

resistance, etc., the only force acting on the pendulum is the gravitational

force FG = −mg that pulls the weight vertically down. The motion of

θ(t )

s(t)

m

L

FG

Fig. III.4 Motion of a pendulum of length L.

the pendulum is described by the arc s(t) on the circle of radius L that

measures the distance the weight has moved from the central position at

the bottom. The orientation is chosen so that s(t) > 0 corresponds to a

position on the right of the center, while s(t) < 0 means that the weight is

on the left side. As shown in Figure III.4, the position is also identified by

the angle θ(t) that the rod forms with the vertical line. If θ(t) is measured

in radians, one has s(t) = L · θ(t).
In order to apply Newton’s law of motion we need to identify the force

that acts in the direction of the motion of the weight along the circle.

According to basic physical principles, at any position s(t), the gravitational

force FG may be decomposed into

FG = FT + FN ,

where FT is tangential to the circle and FN is normal, i.e., perpendicular to

the circle at the point corresponding to s(t). (See Figure III.5.) Clearly FN

has no effect on the motion of the pendulum: it simply tries to stretch the

rod, which is assumed to be rigid. So the only force relevant to the motion
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of the pendulum is the tangential component FT . Consequently one has

ms′′ = FT .

FT

FN

FG
θ

θ

Fig. III.5 Decomposition of the force FG.

According to Figure III.5, FT = FG sin θ(t) = −mg sin θ(t). Note that

the sign of FT indicates that this force pulls the weight towards the center,

regardless of whether θ(t) (i.e., sin θ(t)) is positive or negative. Newton’s

law of motion thus takes the form

ms′′(t) = FT = −mg sin θ(t).

Since s′′(t) = Lθ′′(t), after rearranging and dividing by mL, one obtains

θ′′(t) +
g

L
sin θ(t) = 0.

We notice that this equation is more complicated than the corresponding

equation for the motion of the bouncing spring studied in Section 5.1, as it

involves θ(t) composed with the sine function. In order to simplify, we rely

on the basic principle that differentiability means that in sufficiently small

neighborhoods of a point P the graph of a function is very well approxi-

mated by the tangent line at P . Applied to the function sin θ at θ = 0,

whose tangent at that point is given by l(θ) = θ, this principle implies that

sin θ(t) ≈ θ(t), and that the approximation improves the smaller θ gets.

Similarly, physical principles suggest that if relevant quantities in a pro-

cess are changed just by small amounts, the corresponding motion will also
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change by appropriately small amounts. Altogether, if we approximate the

tangential component FT of the gravitational force by

FT = −mg · sin θ(t) ≈ −mg · θ(t)

the solutions of the resulting differential equation

θ′′(t) +
g

L
θ(t) = 0

will provide an approximation for the actual motion of the pendulum pro-

vided the angle θ is sufficiently small.

With ω =
√

g/L, it then follows from Section 5.2 that

θ(t) = A sinωt+B cosωt.

If we assume that the initial position satisfies θ(0) = 0, it follows that

B = 0, so that

θ(t) = A sinωt = A sin(
√

g/L t).

The amplitude A measures the maximal size of the angle in the motion of

the pendulum. As indicated above, we need to assume that A is rather small

to be assured that this solution gives a good approximation of the motion

of the pendulum. Since s(t) = Lθ(t) and θ′(t) = Aω cosωt, the amplitude

is related to the initial velocity v0 = s′(0), that is, to the velocity of the

pendulum right when the weight is at the bottom, by the equation A =

θ′(0)/ω = (s′(0)/L)
√

L/g, or

A = v0
√

1/Lg.

Just as in the case of the bouncing spring, the period T of the pendulum

is determined by ωT = 2π, so that

T = 2π/ω = 2π/
√

g/L = 2π
√

L/g.

What is perhaps surprising is that—in contrast to the bouncing spring—

the mass m of the weight attached to the pendulum does not appear in this

formula for the period. In other words, changing the weight of a pendulum

does not affect its period. On the other hand, the above formula for T

clearly shows the effect of the length L of the pendulum, that is, of the

distance of the weight from the hinge at the top. By increasing that length,

the period increases, i.e., the motion of the pendulum is slowed down.

This is a phenomenon familiar to anyone who ever attempted to adjust the

accuracy of a wall clock.
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III.5.4 Exercises

1. Consider the spring model discussed in the text. Suppose the displace-

ment c0 from the equilibrium level is doubled, i.e., c0 is replaced by 2c0.

Determine the effect on i) the velocity v(t) of the ball, ii) the average

velocity of the ball between a low point and the following high point,

and iii) the frequency of the motion.

2. A weight of 5 kg is attached to a spring, which causes the spring to

stretch by 15 cm. Determine the period of the motion that results after

the weight has been given an initial push.

3. This problem completes the proof of Proposition 5.2 in the case 0 /∈ I.

Let f(t) be a solution of y′′ + ω2y = 0 on the interval I, and choose any

point t0 ∈ I.

a) Show that h(t) = f(t)− f ′(t0)
ω sinω(t−t0)−f(t0) cosω(t−t0) satisfies

the equation y′′ + ω2y = 0.

b) Use Lemma 5.1 to show that h(t) = 0 for all t ∈ I.

c) Show that f(t) = A sin(ωt) +B cos(ωt) for suitable constants A and

B. (Hint: Use a) and b), expand sinω(t − t0) and cosω(t − t0) by

means of trigonometric addition formulas, and rearrange.)

4. Use the result of problem 3 to describe the function f that satisfies

the equation f ′′ + 9f = 0 and the initial conditions f(π/6) = 0 and

f ′(π/6) = 4.

5. In order for a large wall clock to give accurate time the frequency of

its pendulum needs to be exactly 1/2 cycles per second. Determine the

distance in cm from the hinge at which the weight needs to be placed in

order for the clock to be accurate.

III.6 Geometric Properties of Graphs

III.6.1 Increasing and Decreasing Functions

A function f whose values are getting larger as the input gets larger is said

to be increasing. Geometrically, a function is increasing if its graph moves

higher as one moves to the right. More precisely, f is increasing on the

interval I if

f(x1) ≤ f(x2) for all x1, x2 ∈ I with x1 < x2.

f is said to be strictly increasing on I if

f(x1) < f(x2) for all x1, x2 ∈ I with x1 < x2.
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Correspondingly, one has the concepts of decreasing and strictly decreasing

function, as follows. f is decreasing (strictly decreasing) on the interval I if

f(x1) ≥ f(x2) (f(x1) > f(x2)) for all x1, x2 ∈ I with x1 < x2.

Figure III.6 visualizes these concepts.

Fig. III.6 Increasing Strictly Increasing Decreasing

Note: Common usage does not distinguish between increasing and

strictly increasing, so one must be careful with the more precise language

used here. For example, a constant function, whose graph is a horizontal

line, is both increasing and decreasing according to the definition given

here, although it clearly is not strictly increasing or strictly decreasing.3

Examples.

i) The functions f(x) = 2x and g(x) = x3 are strictly increasing on R.

ii) f(x) = e−x is strictly decreasing on R.

iii) p(x) = x2 is strictly decreasing on (−∞, 0] and strictly increasing

on [0,∞).

iv) cosx is strictly decreasing on the interval [0, π].

All these properties are immediately verified from the familiar graphs

of these functions. (See Figure III.7.)

III.6.2 Relationship with Derivatives

The derivative of a function allows us to readily characterize the geometric

properties illustrated above. From the preceding figures it is clear that an

increasing function on I that is differentiable must have derivative ≥ 0.

3An alternative terminology refers to “increasing”, as defined here, as nondecreasing,
and it uses the term increasing for what is called “strictly increasing” here. Correspond-
ingly, one then uses the terms nonincreasing and decreasing in place of decreasing and
strictly decreasing. In this terminology a constant function is both nondecreasing and
nonincreasing, which may sound more reasonable than to say that such a function is
both increasing and decreasing.
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The analytic argument is just as simple. Fix a point a ∈ I. Consider the

basic factorization formula

f(x)− f(a) = q(x)(x − a) (III.3)

at x = a. If f is increasing on I, then x − a > 0 implies that the left side

in (III.3) is ≥ 0, which implies that q(x) ≥ 0 as well. By continuity of q at

x = a it follows that f ′(a) = q(a) = limx→a+ q(x) ≥ 0 as expected.

But one should NOT jump to the conclusion that if f is strictly increas-

ing, then f ′(a) > 0. While it is true that in this case (III.3) implies that

q(x) > 0 for all x > a, the limit as x → a+ may very well turn out to be

zero. For example, f(x) = x3 is strictly increasing, yet f ′(x) = 3x2 has a

zero for x = 0.

Similarly, if f is decreasing on I, it follows that f ′(a) ≤ 0 for all a ∈ I.

The converse of the above conclusion holds as well.

Lemma 6.1. If the function f is differentiable on the interval I and sat-

isfies f ′(x) ≥ 0 (or f ′(x) ≤ 0) for all x ∈ I, then f is increasing (resp.

decreasing) on I.

Proof. Pick any two points x1, x2 ∈ I with x1 < x2. By the Mean Value

Inequality (Theorem 2.1) there exists xlow ∈ [x1, x2] with

f ′(xlow) ≤ ∆(f, [x1, x2]) =
f(x2)− f(x1)

x2 − x1
.

Since by assumption f ′(xlow) ≥ 0, it follows that f(x2) − f(x1) ≥ 0, i.e.,

f(x1) ≤ f(x2) as required. The proof for the corresponding result when

f ′(x) ≤ 0 uses the existence of xhigh with ∆(f, [x1, x2]) ≤ f(xhigh) ≤ 0. �
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To summarize:

A differentiable function f on an interval I is increasing on I if and

only if f ′(x) ≥ 0 for all x ∈ I.

By replacing ≥ with > in the Lemma and its proof one also obtains the

following result.

If f satisfies f ′(x) > 0 on I, then f is strictly increasing on I.

As noted earlier, the converse of this last statement is not correct in

general.

By completely analogous arguments one sees that decreasing functions

on I are characterized by f ′(x) ≤ 0 on I, and that in the case f ′(x) < 0

for all x ∈ I, one gets the stronger conclusion that f is strictly decreasing

on I.

Example. Determine intervals where the function p(x) = x3 + 3
2x

2 −
18x+ 5 is strictly increasing or decreasing.

Solution. This is easily done by visual inspection of the graph of p

obtained with the aid of a graphing calculator. If no graphing calculator

is available, we apply the principles we just discussed and consider the

derivative p′(x) = 3x2 + 3x − 18. The set of points where p′(x) 6= 0 is the

complement of the zeroes of p′, i.e., of the solutions of

p′(x) = 3x2 + 3x− 18 = 0.

These solutions are −3 and 2. (Use the formula for solving quadratic equa-

tions.) The real line is thus separated into the intervals (−∞,−3), (−3, 2),

and (2,∞), on each of which p′ has no zero. Furthermore, on each of these

intervals p′ is either always positive or always negative, since a change of

sign would result in an additional zero by the Intermediate Value Theorem

(Theorem II.4.4). Note that for large |x| the polynomial p′(x) is positive;

also, p′(0) = −18 < 0. It follows that p is strictly increasing on the intervals

(−∞,−3) and (2,∞), and strictly decreasing on (−3, 2). (See Figure III.8.)

III.6.3 Local Extrema

Continuing with the last example, note that the points where p′(x) = 0

have a special geometric significance. The tangent line at these places is

horizontal. As seen from Figure III.8, the function has a high point where

x = −3 and a low point at x = 2. These are examples of local (or relative)

extrema, which are defined as follows.
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Fig. III.8 Regions where p is increasing or decreasing.

Definition 6.2. The function y = f(x) has a local maximum (or a local

minimum) at the point a if there exists a neighborhood U of a, such that

f(x) ≤ f(a) (or f(x) ≥ f(a) ) for all x ∈ U .

Geometrically, at a local maximum the graph of the function changes

from increasing to decreasing, while at a local minimum the opposite change

occurs.

The following result is geometrically evident.

Theorem 6.3. Suppose f has a local extremum at a. If f is differentiable

at a, then f ′(a) = 0.

Proof. For completeness’ sake we also present the simple analytic proof.

It is enough to consider the case that f has a local maximum at x = a.

The other case follows by an analogous argument. We again consider the

factorization

f(x)− f(a) = q(x)(x − a).

Given that f has a local maximum at a implies that the left side is ≤ 0 for

all x near a. If x < a the factorization implies that q(x) ≥ 0, while for x > a

one must have q(x) ≤ 0. The differentiability of f at a, i.e., the continuity of

q at a, implies that q(a) = limx→a q(x). Hence both one-sided limits exist

as well and must be equal. Since limx→a− q(x) ≥ 0 and limx→a+ q(x) ≤ 0

by the preceding observations, it follows that q(a) = limx→a q(x) = 0.

Therefore f ′(a) = q(a) = 0. �

A function may have a relative extremum at a point a and not be

differentiable at a. For example, g(x) = |x| clearly has a local minimum at

0, and g is not differentiable at that point.
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One says that a is a critical point of the function f if either f fails to

be differentiable at a or else f ′(a) = 0. So the results we just discussed can

be summarized by saying that local extrema are found among the critical

points. Note, however, that not every critical point is necessarily a point

at which there is a local extremum.

Example. f(x) = x3 has derivative f ′(x) = 3x2 for all x. So 0 is the

(only) critical point of f . But clearly f takes on values that are less than

f(0) = 0, as well as values that are greater than f(0) in any neighborhood

of 0. So f does not have an extremum at 0. For the inverse function

g(x) = x1/3 of f one sees that g fails to be differentiable at 0, while g′(x) =
1
3x

−2/3 6= 0 for all x 6= 0. So 0 is the only critical point of g, yet g has no

extremum at 0.

Usually a function of one variable has only finitely many critical points

on any given finite interval, and these can be determined readily in many

cases. However, in general, to find the solutions of the equation f ′(x) =

0 may require numerical approximations. In Section 7 we will discuss a

numerical method for solving equations that involves another application

of derivatives.

III.6.4 Convexity

Identification of the critical points of a function f as well as of the intervals

on which f is either (strictly) increasing or decreasing gives pretty good

information about the graph of f . We shall now examine an additional

geometric property of the graphs of functions.

For example, recall the discussion of the polynomial p in the previ-

ous section, the results of which are summarized in Figure III.8. Notice

that somewhere in the interval (−3, 2) the general shape of the graph must

change. As one moves along the graph from left to right, at first the tan-

gents turn clockwise (the slopes are decreasing, corresponding to a right

turn), but eventually they must turn counterclockwise, corresponding to

increasing slopes, i.e., to a left turn. This property is clearly related to

changes in the slope, that is, to the derivative D(p′) of p′, which is the

second derivative p′′ of p.
Let us examine that polynomial p with p′(x) = 3x2 + 3x− 18, more in

detail. To determine where p′ is increasing (left turn) or decreasing (right

turn), we carry out the same sort of analysis we did earlier, but now for
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the function p′. Its derivative

D(p′)(x) = 6x+ 3,

i.e., the second derivative p′′ = D2(p) of p, has a zero precisely at − 1
2 .

Furthermore, p′′(x) < 0 for x < −1/2, so that p′ is strictly decreasing

there. Thus the slopes of the tangents get smaller, i.e., the tangents turn

to the right, as x moves to the right while staying less than −1/2. Also,

p′′(x) > 0 for x > −1/2, so that here the slopes increase, i.e., the tangents

turn to the left. So we have identified the special point (− 1
2 , p(− 1

2 )) where

the graph changes from a right turn to a left turn. Such a point is called a

point of inflection of the function. A more accurate graph of p, as shown

in Figure III.9, identifies this point of inflection precisely.

50

−3 −2 −1 2
2 x

Fig. III.9 Graph of p with inflection point.

The following terminology is used to describe these geometric properties.

Definition 6.4. The graph of the differentiable function f is said to be

concave up (or convex) on the interval I, if its derivative f ′ is increasing

on I. Correspondingly, the graph of f is said to be concave down (or simply

concave) if f ′ is decreasing on I.

It then follows from the results discussed earlier that in the case where f

is two times differentiable on the interval I, the graph of f is convex (resp.

concave) if and only if f ′′(x) ≥ 0 (resp. f ′′(x) ≤ 0) for all x ∈ I.

III.6.5 Points of Inflection

As already mentioned while discussing the earlier example, points at which

the concavity changes are called points of inflection. Assuming that f has

a second derivative f ′′ that is continuous on the interval I, if f has a point
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of inflection at x = a, then it follows from the Intermediate Value Theorem

applied to f ′′ that necessarily f ′′(a) = 0. This condition allows us to identify

points of inflection by solving an equation. Note however that NOT every

point a at which f ′′(a) = 0 is necessarily a point of inflection. For example,

for the function g(x) = x4 one has g′′(x) = 12x2, which is always ≥ 0. The

graph of g is always convex. (See Figure III.10.) So there is no point of

inflection, even though g′′(0) = 0.

1

0.8 y = x4

0.6

0.4

0.2

−0.2 0.2
0

0.4 0.6 0.8 1
x

−0.4−0.6−0.8−1

Fig. III.10 Graph of g(x) = x4.

Example. We illustrate these new concepts by analyzing the familiar

function y = sinx. Here y′ = cosx, which has zeroes at the points xk =
π
2 + kπ for any integer k. Since sinx is periodic, we shall focus on the

interval I = [0, 2π]. The only critical points in I are x0 = π
2 and x1 = 3

2π.

Note that y′ = cosx > 0 on the intervals (0, π
2 ) and (32π, 2π), and that

cosx < 0 on the interval (π2 ,
3
2π). It follows that y = sinx has a local

maximum at π
2 and a local minimum at 3

2π.

Next we consider y′′ = − sinx, which has zeroes at 0, π and 2π. Since

− sinx < 0 on (0, π) and − sinx > 0 on (π, 2π), it follows that the graph

is concave down on (0, π) and concave up on (π, 2π). Therefore there is

indeed a point of inflection at x = π. Using periodicity to add copies of the

graph on [−2π, 0] and [2π, 4π], one sees that there are points of inflection

also at 0 and 2π. Based on the analysis of the first and second derivative

one obtains a pretty accurate picture of the graph of the sine function. The

results are visualized in Figure III.11.
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Fig. III.11 Graph of y = sinx with extrema and inflection points.

III.6.6 Graphing with Derivatives

We discuss a few more examples to illustrate how derivatives can be used

to identify significant properties of the graph of a function.

Example. Identify relevant geometric features of the graph of f(x) =

x3 − 3x+ 4.

Solution. We start by looking at the derivative f ′(x) = 3x2 − 3, which

has zeroes at −1 and 1. Notice that f ′(x) > 0 (and hence f is increasing) on

(−∞,−1) and (1,∞), while f ′(x) < 0 (f decreasing) on (−1, 1). Therefore

f has a relative maximum at −1, with value f(−1) = 6, and f has a relative

minimum at 1, with value f(1) = 2. To determine the concavity, we note

that f ′′(x) = 6x, which has a zero at 0. Since f ′′(x) < 0 for x < 0, f is

concave down to the left of 0, and similarly, f is concave up to the right of

0. So f has a point of inflection at 0, with f(0) = 4. The information so

obtained is shown in Figure III.12. No other significant features appear

−5

−1 1 2
x

−2

15

10

5

0

Fig. III.12 Important features of the graph of f .
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on the graph of f . On the interval (1,∞) both f ′ and f ′′ are positive, so

the graph will remain increasing and concave up for all x > 1. Similarly,

the graph is everywhere increasing and concave down for x < −1.

Example. Identify relevant features of the graph of g(x) = xe−x.

Solution. We evaluate

g′(x) = 1e−x + xe−x(−1) = e−x(1− x).

Hence g′(x) = 0 at 1, and since e−x > 0 for all x one sees that g′(x) > 0

for x < 1 and g′(x) < 0 for x > 1. It follows that g has a local maximum

at the point 1, with value g(1) = e−1 ≈ .37. Next we analyze

g′′(x) = −e−x(1 − x) + e−x(−1) = e−x(x− 2).

Clearly g′′(x) = 0 precisely for x = 2, and g′′(x) < 0 for x < 2 and

g′′(x) > 0 for x > 2, so that g has a point of inflection at x = 2. Note that

g(2) = 2e−2 ≈ .27. We also observe that g(0) = 0, and that g(x) < 0 for

x < 0 and g(x) > 0 for x > 0. All this information leads to the graph of g

shown in Figure III.13.

0.3

0.2

0.1

1 2 3
x

y = xe−x

4 5 6
−0.1

−0.2

Fig. III.13 The graph of y = xe−x.

Example. Identify relevant features of the graph of q(x) = x4 − 6x3.

Here q′(x) = 4x3−18x2 = 2x2(2x−9) and q′′(x) = 12x2−36x = 12x(x−3).

We see that q has critical points at 0 and 4.5, and that q′(x) ≤ 0 for x < 4.5

and q′(x) > 0 for x > 4.5. This shows that there is a local minimum at 4.5.

However, even though q′(0) = 0, there is no local extremum at 0 since the

function is decreasing for all x < 4.5. Furthermore, q′′(x) = 0 for x = 0

and x = 3, and

q′′(x) is







> 0 for x < 0

< 0 for 0 < x < 3

> 0 for x > 3

.
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This shows the concavity properties of q. In particular, one sees that the

concavity changes at x = 0 and x = 3, so that q has points of inflection at

these points. In order to sketch the special points so identified, we evaluate

q(0) = 0, q(3) = −81, and q(4.5) ≈ −137. The results of this analysis are

shown in Figure III.14. Again, no significant changes in the behavior of the

graph occur outside the interval shown.

−2 2
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Fig. III.14 The graph of q(x) = x4 − 6x3.

Of course, all the features that we have identified in the preceding ex-

amples are readily visible once the graph of the function is plotted with the

help of a graphing calculator. The point of the present discussion is to show

how geometric properties of the graphs of functions relate to derivatives,

and to understand how these tools allow us to find special points on the

graph, such as local extrema and points of inflection. In the days before

graphing calculators became widely available—say 30 to 35 years ago—the

kind of analysis we discussed in this section was the principal technique

used to understand basic features of functions and to plot their graphs.

Typically, in order to obtain a reasonably accurate graph of a function

other properties needed to be investigated as well, such as its zeroes, its

behavior near points where the function fails to be defined, or the behavior

for very large or very small values of x. However, these latter properties

do not directly relate to the derivatives of a function, so that there is no

point in discussing the details in a text that focuses on calculus. Today,

the graphs of functions are predominantly investigated by using graphing

calculators or more powerful computational technology. Yet the tools we

discussed here are still relevant. For example, without any guidance, the

viewing window that is displayed may miss important features of the graph



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 229

Some Applications of Derivatives 229

of a function. So it is important to use tools of calculus as in the preced-

ing examples, in order to first identify the approximate location of special

points on the graph.

III.6.7 Exercises

Do not use the graphing functions of your calculator to work on

these problems.

1. Suppose g satisfies g′(x) < 0 for 1 < x < 3, g ′(3) = 0, and g′(x) > 0

for 3 < x < 4.

a) Does g have a local extremum at 3? If so, is it a local maximum or

minimum?

b) Assume g(3) = −1. Sketch a possible graph of a function g that

satisfies all the given properties.

2. Verify that p(x) = x5 satisfies p′(0) = 0. Does p have a local extremum

at 0? If so, is it a local maximum or minimum? Explain!

3. Make a sketch of the graph of a function F that satisfies the following

conditions:

F (0) = −2, F (2) = +2, F ′(x) > 0 for 0 < x < 2, and F (x) > 0 and

F ′(x) < 0 for all x > 2.

4. Figure III.15 shows the graph of the derivative D(g) = g′ of a function

g. Suppose that g(0) = 0. Make a sketch of a possible graph of g that

matches the properties of the derivative shown in Figure III.15.

−1 1

2

1

x

y

y = g ′(x )

Fig. III.15 Graph of derivative of g.
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5. Let f(x) = x · 4−x.

a) Where is f decreasing, where is it increasing?

b) Does f have any local extrema? If yes, find them and describe their

type.

6. Answer the same questions as in problem 5 for the function f(x) =

x2 · ex. (Hint: Factor f ′ as much as possible, and analyze the sign of

the various factors.)

7. a) Where is G(x) = x− 4
√
x increasing, where is it decreasing?

b) Explain why G′(x) is close to 1 when x is getting very large.

c) Use the information in a) and b) to sketch the graph of G.

8. Does y = x+ sinx have any local extrema? Explain.

9. Use the first derivative to determine the intervals where the function

f(x) = 3x4− 4x3− 12x2+5 is strictly increasing or strictly decreasing.

10. In the graphs shown in Figure III.16, identify the intervals where the

graphs are concave up, and where the graphs are concave down. Iden-

tify any points of inflection.

1 1

(a) (b)

Fig. III.16 Graphs for Problem 10.

11. Find all points of inflection of the function f(x) = x4(x − 1)3. (Hint:

Do not expand the products... use the product rule for derivatives!)

12. Sketch a possible graph of a function f that satisfies f(2) = 1, f ′(2) =
−1, and f ′′(2) > 0.

13. Consider a function f that is differentiable at all points x 6= 0, and

that satisfies f(0) = 1, f ′(x) > 0 for x < 0, f ′(x) < 0 for x > 0 and

f ′′(x) > 0 for all x 6= 0.

a) Could such a function have an inflection point at 0? Explain!

b) Make a possible sketch of the graph of such a function.

c) Could a function with the properties stated above also be differen-

tiable at 0? (Hint: What would f ′(0) be?)
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14. Explain why a function g whose second derivative is continuous near

the point 1, and which satisfies g′(1) = 0 and g′′(1) = −1, must have a

local maximum at 1.

15. Explain why a polynomial of degree 3 has exactly one inflection

point.

16. For the two functions f and g whose second derivatives f ′′ and g′′ are
given below, find the intervals where the graphs are concave up and

concave down, and find all points of inflection.

a) f ′′(x) = (x− 2)(x+ 1)2x3;

b) g′′(x) = x cos2 x sinx.

17. a) Plot the function N(x) = e−x2

with a graphing calculator.

b) How many points of inflection can be identified from the graph?

Estimate their x coordinate(s).

c) Find the precise coordinates of the inflection points (Use the

calculator!)

18. Use a graphing calculator to plot the graph of P (x) = 1000x3 −
3051x2 + 3102x.

a) Can you see any local extrema? If so, find their coordinates.

b) Find all points of inflection of P (x).

c) Graph the function in a small window centered at the point of

inflection of P. What do you see now?

III.7 An Algorithm for Solving Equations

III.7.1 Newton’s Method

Given a function g, it is often necessary to find the solutions of the equa-

tion g(x) = 0. For example, local extrema of functions are found among the

solutions of f ′(x) = 0. Algebraic techniques allow us to find the solutions

in the case where g is a linear function, or a polynomial of degree 2. In

the latter case, solutions are obtained by the familiar formula for solving

quadratic equations. But as soon as one deals with a polynomial of degree

larger than two, there is no analogous elementary formula. Simple equa-

tions involving transcendental functions, such as 2x + x = 0, present other

problems and can typically not be solved exactly. It is therefore of interest

to develop numerical techniques that allow us to find at least approximate

solutions. Computers handle such problems very efficiently. We shall now
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describe such a technique that is based on an application of tangent lines,

i.e., differentiation, and which usually produces good approximations quite

rapidly.

The idea is quite natural. Based on rough geometric information about

the graph of g pick any (reasonable) first “guess” x0 for a solution of the

equation g(x) = 0. Unless you are very lucky, g(x0) 6= 0. Assuming g

is differentiable, replace g by its linearization Lx0
(x), i.e., by its tangent

line at the point (x0, g(x0)). If that tangent is not horizontal, it will cross

the x−axis somewhere, i.e., the linear equation Lx0
(x) = 0 will have a

solution x1 that can easily be found, and that will (hopefully) be a better

approximate solution to the original equation. Figure III.17 illustrates the

matter in a typical situation. Then repeat the process with x1 in place of

x0, to obtain an even better approximation x2, and so on.

y = Lx1
(x )

y = g (x )

y

y = Lx0
(x )

g = 0

xx1x2 x0

Fig. III.17 Two successive approximations for the solution of g(x) = 0.

Let us carry out the details. Recall that the equation for the tangent

line is given by Lx0
(x) = g(x0) + g′(x0)(x − x0). Therefore, if g

′(x0) 6= 0,

one readily sees that the equation

Lx0
(x) = g(x0) + g′(x0)(x− x0) = 0

has the solution

x1 = x0 −
g(x0)

g′(x0)
.

After repeating this step, the next approximation is then given by

x2 = x1 −
g(x1)

g′(x1)
,

and in general, if we have found xn, then

xn+1 = xn − g(xn)

g′(xn)
.
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The values x1, x2, ..., xn can be calculated quickly with a calculator, and

if one recognizes that xn → L, then L will be a solution of g(x) = 0, i.e.,

g(L) = 0.This procedure is widely known as Newton’s Approximation

Method.

III.7.2 Numerical Examples

Let us now check the effectiveness of the method with some numerical

examples. We start with the simple equation g(x) = x2 − 2 = 0, whose

solutions are
√
2 and −

√
2. In order to find the positive solution by the

process we just described, let us begin with x0 = 1. Since g′(x) = 2x, we

obtain

x1 = 1− 1− 2

2 · 1 = 1 +
1

2
= 1.5.

Repeat the process to obtain

x2 = 1.5− g(1.5)

g′(1.5)
= 1.5− .25

3
= 1.41666666...

Note that

g(x2) = (x2)
2 − 2 = 0.006944444...,

so already the second step takes us quite close to a solution. In fact,

since the exact solution L =
√
2 = 1.414213562..., the error is x2 − L =

0.00245... < 3 · 10−3. With the help of a programmable calculator one

readily continues the process to obtain the numbers shown in Table III.1.

x3 = 1.414215686,

x4 = 1.414213562,

x5 = 1.414213562,

x6 = 1.414213562,

x7 = 1.414213562.

Table III.1. Approximations to
√
2.

We see that already the 4th iteration matches all first 10 digits of the

exact solution.

By applying this procedure to the function g(x) = x2 − A one obtains

an efficient algorithm for calculating the square root of any positive number
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A as follows. Start with x0 = 1, or, to speed up the process, take x0 any

integer whose square x2
0 is reasonably close to A. For example, if A = 30,

x0 = 5 would be a reasonable start. Then evaluate the sequence x1, x2, x3, ...

by successively applying the rule

xn+1 = xn − x2
n −A

2xn
for n = 0, 1, 2, 3, ... .

Usually it will then follow that

xn →
√
A

as n gets larger and larger. Let us check one more example. Take A = 100,

and start with x0 = 9. With the help of a calculator one obtains the values

x1 = 9− 92 − 100

2 · 9 = 10.05555556,

x2 = 10.05555556− 10.055555562 − 100

2 · 10.05555556 = 10.00015347,

x3 = 10.00015347− 10.000153472 − 100

2 · 10.00015347 = 10.00000000.

So already x3 gives the exact result up to 8 digits past the decimal point!

Next, let us check A = 110, starting again with x0 = 9. The process

gives the numbers shown in Table III.2.

x1 = 10.61111111,

x2 = 10.48880163,

x3 = 10.48808851,

x4 = 10.48808848,

x5 = 10.48808848,

x6 = 10.48808848.

Table III.2. Approximations to
√
110.

This time the iterations remain stable after x4, so we conclude that√
110 = x4 ±10−8. In fact, checking with a calculator gives

√
110 =

10.48808848..., confirming the accuracy of the algorithm.

Finally, we apply the algorithm to solve the transcendental equation

cosx = x. Such a solution x is also called a fixed point of the cosine

function. We try to find the solution of the equation f(x) = cosx − x =

0, with f ′(x) = − sinx − 1, and we use x0 = 0 as our starting point.
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The successive approximations are defined recursively by the formula xn =

xn−1 − f(xn−1)/f
′(xn−1). One obtains

x1 = 0− cos 0− 0

− sin 0− 1
= 1, and

x2 = 0.7503638679,

x3 = 0.7391028909,

x4 = 0.7390851334,

x5 = 0.7390851332,

x6 = 0.7390851332.

Therefore the desired solution is x5 = 0.7390851332... .

III.7.3 “Chaotic” Behavior

There are certain unusual situations that may occur. For example, the

equation g(x) = x2−2 = 0 we considered earlier has two solutions, and the

initial “guess” has to be chosen reasonably close to the particular solution

one wants to evaluate more precisely. Starting with x0 = 1, we had ap-

proximated the solution +
√
2. In order to approximate the other solution

−
√
2, one needs to start with a negative “guess”, such as x0 = −1. Note

that x0 = 0 is not admissible, since g′(0) = 0, and a horizontal tangent will

not intersect the x−axis. On the other hand, x0 = 0 separates the regions

where the approximations lead to
√
2, respectively −

√
2. Inspection of the

graph of g confirms that any very small negative initial value will produce

a sequence that eventually approximates the negative solution, while start-

ing with any small positive initial value will lead to an approximation of

the other solution. This very simple construction thus exhibits the phe-

nomenon that arbitrarily small changes from the initial starting point 0

lead to large consequences. Corresponding phenomena occur in general in

the application of Newton’s method, whenever there are more than one so-

lution. In fact, the situation can become extremely complicated, leading to

what has been called “chaotic” behavior. Even more startling phenomena

occur when one considers analogous processes allowing complex numbers

as inputs.4

Another problem that may arise is that the sequence xn that is obtained

by the process we described fails to converge to a fixed value L. For example,

4The reader may consult H. O. Peitgen and P. H. Richter, The Beauty of Fractals,
Springer Verlag, Berlin 1986, for more details and stunning pictures.
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let us consider g(x) = x1/3; here the only solution of g(x) = 0 is L = 0.

Let us examine the process graphically, starting with x0 = 1, as illustrated

in Figure III.18.

−8 −6 −4 −2

−2

−1

2

1

2

3

x1

x2

x3

x0 4 6 8
0

Fig. III.18 An example where the method does not converge.

It is clearly visible that in this case the process does not converge at all,

since the sequence of approximations x1 = −2, x2 = 4, x3 = −8, ... steadily

moves away from zero. Let us analyze the process numerically. Recall that

by the power rule one has g′(x) = 1
3x

−2/3 for x 6= 0. Hence

xn+1 = xn − g(xn)

g′(xn)

= xn − x
1/3
n

1/3 x
−2/3
n

= xn − x
1/3
n x

2/3
n

1/3

= xn − 3xn = −2xn.

This formula shows that no matter which initial value x0 6= 0 is chosen,

the resulting sequence will never converge. In fact, |xn| = 2n |x0| → ∞ as

n → ∞. Hence Newton’s method fails completely in this case.

III.7.4 Exercises

You should use a calculator to work out these problems. However, DO

NOT use the solve command or any similar command or procedure built

into your calculator.
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1. Use Newton’s method as in the text to approximate
√
200 within an

error less than 10−8.

2. Set up Newton’s method to approximate the fifth root 5
√
200 within an

error less than 10−8.

3. Find the solution of x+ 2x = 0 within an error less than 10−6.

4. a) Use the intermediate value theorem to show that the equation

g(x) = x7 + x− 1 = 0 has one solution in the interval [0, 1].

b) Show that g′(x) > 0 for all x, and explain why this implies that

g(x) = 0 does not have any other solutions in R.

c) Use Newton’s method to approximate the solution in a) within an

error less than 10−8.

5. Find an approximation to the non-zero solution of cosx− ex = 0 within

an error less than 10−5.

6. a) Explain why e is the only solution of the equation lnx = 1.

b) Use Newton’s method in the equation in a) to determine the first

10 digits of e.

III.8 Applications to Optimization

III.8.1 Basic Principles

We discuss a few examples to illustrate how the tools of calculus can be

used in practical problems to identify (local) extrema at which relevant

quantities either have a maximum or a minimum value.

In order to understand the mathematical process, let us consider a sim-

ple function, such as f(x) = −3x2 + 12x − 4. We are familiar with the

general shape of its graph. It is a parabola that opens to the bottom. The

maximal value of f clearly occurs at the vertex. This is the only place

where f has a horizontal tangent. To find this point, we need to solve the

equation f ′(x) = 0, i.e., f ′(x) = −6x+ 12 = 0. The solution is x = 2. The

value of f at this point is f(2) = −12 + 24− 4 = 8.

What about a minimal value of f? From the graph (see Figure III.19) we

see that there is no minimum. The problem is different when one restricts

the function f to a closed bounded interval. For example, suppose that

we want to find the minimal value of f(x) for x ∈ [−4, 4]. Since f has no

other critical points except x = 2, the only place where the minimum can
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occur is at the boundary of the interval. So we evaluate f(−4) = −100 and

f(4) = −4. Clearly the minimal value is taken at the point x = −4. Of

course, the graph shown in Figure III.19 readily confirms this.

−120

−100

−80

−60

−40

−20

−2 2 4
x

−4

0

−140

Fig. III.19 Graph of f(x) = −3x2 + 12x− 4.

Let us summarize the concepts and results that are relevant to this type

of question. First of all, let us recall the basic existence Theorem II.4.6 we

proved in Chapter II.

Theorem 8.1. Let f be a continuous function on a closed and bounded

interval [a, b]. Then f takes on a maximal and a minimal value on [a, b],

i.e., there are points xmin, xmax ∈ [a, b], such that

f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ [a, b].

We note that this theoretical result is really very important. It gives

specific criteria that make it meaningful to search for maximal and minimal

values of a function. The hypotheses listed in the theorem are all neces-

sary, that is, if one of them fails, then there may not be any maximum or

minimum, and hence it would be futile to start searching for such values.

For example, the function f(x) = 1/x is continuous on (0, 1) (no endpoints

here!), yet there obviously is no maximal value, since limx→0+ f(x) = ∞ .

In fact there also is no minimal value on (0, 1)! This fact is more subtle,

since one may jump to the conclusion that 1 is such a minimal value. While

it is true that f(x) ≥ 1 for all x ∈ (0, 1), and that limx→1− f(x) = 1, there

is no point xmin in (0, 1) for which f(xmin) = 1; x = 1 is the only number

on the real axis for which f(x) = 1, but 1 /∈ (0, 1). This example clearly
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shows the importance of including the boundary points for the theorem to

be correct. Of course, it is true in this case that f has a minimal value on

the half open interval (0, 1]. Similar examples show that one cannot drop

any of the other hypotheses in the theorem.

The preceding discussion shows that the precise verification of this result

is not an obvious matter. In fact, the proof given in Chapter II makes

essential use of the completeness of the real numbers.

How do we find maximal and minimal values? Recall from Section 6.3.

that if there is a (local) maximum or minimum for the function f at the

interior point a in the domain of f , then a must be a critical point of f ,

i.e., either f fails to be differentiable at a, or else f ′(a) = 0. The tools of

calculus can then be used to identify such critical points. The only other

points left for a (possible) extremal value are the boundary points of the

domain. One can then check systematically the values of the function at

its (interior) critical points and at the boundary points, and determine

maximal and minimal values by direct comparison.

Example. Determine the maximal and minimal values of f(x) = x4 −
4x3 on the interval [−1, 5].

Solution. Since f ′(x) = 4x3−12x2 = 4x2(x−3) for all x, the only critical

points are x = 0 and x = 3. We then evaluate f(0) = 0 and f(3) = −27.

At the boundary points one has f(−1) = 5 and f(5) = 125. We can now

readily conclude that the minimal value of f on [−1, 5] is f(3) = −27, while

the maximal value f(5) = 125 occurs on the boundary.

III.8.2 Some Applications

Optimization problems occur in numerous applications. In order to apply

the techniques of calculus we just discussed one must first translate the par-

ticular question into a precise mathematical statement. The next step then

involves finding maximal and/or minimal values of a function according to

the techniques discussed above. We discuss two such examples.

Example. A farmer has bought 750 feet of fencing. He wants to enclose

a rectangular area and divide it up into 4 pens with fencing parallel to one

side of the rectangle. What is the largest area that he can enclose, and

what are the dimensions?

Solution. It is helpful to sketch a graph of the situation. (See Figure

III.20.) We denote the length (in feet) of the sides of the rectangle by x
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and w. Then the area is given by A = x · w. Clearly no fencing material

x x x

w

x x

Fig. III.20 Dividing the rectangular garden into 4 pieces.

should be left over. Therefore one also has the equation 750 = 5x + 2w.

Solving for w gives w = (750−5x)/2 = 375− 5
2x. It follows that for a given

x, 0 ≤ x ≤ 750, the area A is given by A(x) = x(375− 5
2x) = 375x− 5

2x
2.

The (only) critical point of A(x) satisfies

A′(x) = 375− 5x = 0,

i.e., x = 375/5 = 75. Since A(x) has no minimum, this critical point

therefore is the value where the maximum occurs. The other side w = w(x)

is then given by w = 375− 5·75
2 = 187.5. The maximal area enclosed then

is A = 75 · 187.5 = 14, 062.5 sqft.

Example. A textile mill determines that the total cost in dollars of

producing x yards of a particular fabric is closely modeled by the function

C(x) = 1200 + 12x− 0.1 · x2 + 0.0005 · x3.

Marketing analysis shows that the price p(x) per yard in dollars at which x

yards of that fabric can be sold per month is given by p(x) = 29−0.00021·x.
What should be the monthly production level in order to maximize the

profits?

Solution. Profit equals revenue minus cost. Selling x yards of

fabric per month results in the revenue R(x) = x · p(x) = 29x −
0.00021 x2. Consequently, the profit when x yards are produced and sold

in a month is given by

P (x) = R(x)− C(x) = −1200 + 17x+ 0.09979 x2 − 0.0005 x3.

We need to find the maximal value P (x) on the interval (0,∞). Since

limx→∞ P (x) = −∞ and P (1000) is negative, it clearly is enough to find the
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maximum on the closed and bounded interval [0, 1000]. Since P (0) < 0, the

(positive) maximum will occur at a critical point in the interior of [0, 1000].

We calculate P ′(x) = 17+0.19958 x−0.0015x2. The solutions of P ′(x) = 0

are given by

0.0015±
√

(0.19958)2 + 4 · 0.0015 · 17
−2 · 0.0015 ≈ −59 or 192

Since x = 192 is the only critical point of P (x) in [0, 1000], the value

P (192) ≈ 2203 is the maximal profit that can be achieved in a month. The

monthly production level should be set at or near 192 yards per month.

III.8.3 Exercises

1. Find the maximum and minimum values of the function f(x) = x3 −
9x2 + 24x on the interval [0, 4].

2. A home owner wants to build a rectangular flower bed with one side

along his garage, and he wants to border it on the remaining 3 sides

with a low brick wall. He has enough bricks to build a wall at most 50

feet long. How should he choose the dimensions in order to maximize

the area of the flower bed?

3. Show that among all rectangles with the same perimeter the square is the

one which has the largest area. (Hint: Let L be the fixed perimeter. If

x is the length of one side, what is the length u of the side perpendicular

to it?)

4. In an effort to lower its costs after the latest increase in aluminum price,

a brewery wants to redesign its standard 12 ounce beer can. In order to

maintain minimal strength, the thickness of the aluminum sheet cannot

be reduced. On the other hand, by changing the radius and height of

the can, different amounts of aluminum are needed. How should the

dimensions be chosen in order to minimize the amount of aluminum

required to make one 12 ounce can? (1 US fluid ounce is about 1.8 cubic

inches. The volume of a can equals the product of the area of the bottom

multiplied with the height.)

5. Work out a more general version of Problem 4, as follows. Determine the

relationship between radius r and height h that minimizes the surface

area among all cylindrical cans with the same volume V = πr2h.

6. Cylindrical mailing tubes for posters come in different sizes, depending

on the length l and the circumference c. The sum g = l + c is called

the girth. The post office does not accept tubes for mailing whose girth
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exceeds 108 inches. Find the dimensions of the tube of largest volume

that can be mailed through the postal system.

7. Based on data collected over several years, the manager of a movie

theater found that the number of tickets N(x) sold for the showing of

popular movies if the price per ticket is x dollars, is approximated by

N(x) = x2 − 40x+ 300 for 0 ≤ x ≤ 10. How should he price the tickets,

so as to maximize the total revenue R(x) = xN(x)? (Note that in this

example the cost is essentially fixed, that is, it does not depend on the

number of people seated. Thus profits are maximized at the price level

that maximizes revenue.)

III.9 Higher Order Approximations and Taylor Polynomials

III.9.1 Quadratic Approximations

Recall from Section II.3.4 the geometric interpretation of the statement

that the function f is differentiable at the point x = a: it means that near

the point (a, f(a)) the graph of f is approximated very closely by a line,

i.e., by its tangent line, whose equation is given by

La(x) = f(a) + f ′(a)(x− a).

Clearly the “bending” of the graph of f affects the precision of the approx-

imation. (See Figure III.21.) As we saw in Section 6.4, this bending (or

concavity) of the graph is measured by the second derivative f ′′ of f. In
fact, we shall see later that the difference f(x)−La(x) between the function

and the tangent line can be expressed precisely in terms of f ′′.

Fig. III.21 Less bending gives better linear approximation.
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The bending of the graph of f suggests that a better approximation

might be obtained by replacing the tangent line by a parabola, i.e., by

the graph of a quadratic function that is carefully chosen to match the

geometric properties of f at the point (a, f(a)). Suppose the quadratic

function is described by

P2(x) = b0 + b1x+ b2x
2.

What properties would determine the unknown coefficients? Clearly we

would like P2 and f to have the same tangent line at x = a, so we need

P2(a) = f(a) and P ′
2(a) = f ′(a). The final condition we impose is that

the “bending” of the graph of P2 at x = a agrees with the “bending” of

the graph of f. The simplest way to enforce this is to require that P ′′
2 (a) =

f ′′(a). As we shall see shortly, these three conditions uniquely determine

the coefficients of the quadratic function P2.

In order to simplify the algebra, it is convenient to rearrange the terms

of P2 so as to highlight the point a, that is, we write

P2(x) = c0 + c1(x− a) + c2(x− a)2.

We need to determine the coefficients c0, c1, and c2, so that the conditions

we had identified are satisfied. In detail, since P2(a) = c0, the first condition

implies that we must choose c0 = f(a). Next, we calculate (use the chain

rule)

P ′
2(x) = c1 + 2c2(x − a).

This shows that P ′
2(a) = c1, and therefore we must choose c1 = f ′(a).

Lastly, we note that P ′′
2 (x) = 2c2, so that the third condition implies that

2c2 = f ′′(a), i.e., we must choose

c2 =
1

2
f ′′(a).

We have thus determined that the unique quadratic function P2 that

matches the requirements is given by

P2(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x − a)2.

Notice that the linear part of P2 is precisely the linear part (i.e., the tangent

line) of f . Also, for the quadratic function P2 the difference

P2(x) − [f(a) + f ′(a)(x − a)] =
1

2
f ′′(a)(x − a)2

between P2 and its linear approximation is given by a term that involves

the second derivative P ′′
2 (a) = f ′′(a) of P2.
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Fig. III.22 Quadratic approximation of y = 2x near (2, 4).

Figure III.22 shows the graph of y = 2́x and its quadratic approximation

P2 at the point (2, 4)̇. A simple calculation shows that

P2(x) = 4 + ln 2 · 4 (x− 2) +
1

2
(ln 2)24(x− 2)2,

that is, P2(x) = 4 + 2.772 (x− 2) + .961(x− 2)2.

Figure III.23 shows the graph of y = sinx together with its quadratic

approximation at the point (π/2, 1). Here

P2(x) = sin(π/2) + cos(π/2)(x− π/2) +
1

2
(− sin(π/2))(x− π/2)2,

that is,

P2(x) = 1− 1/2(x− π/2)2.

III.9.2 Higher Order Taylor Polynomials

Once one has moved beyond the approximation by the tangent line, there

is really no reason to stop with approximations by quadratic polynomials.

The process clearly can be extended to higher order. Specifically, given the

function f , a point a in its domain, and a positive integer n, one looks for

a polynomial Pn of degree n that satisfies the conditions

P (j)(a) = f (j)(a) for j = 0, 1, 2, ..., n.

By arguments completely analogous to those that we have used in the

case n = 2, one verifies that there is exactly one such polynomial Pn that



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 245

Some Applications of Derivatives 245

−2

−2

−4

−6

−8

−10

2

0

4

x

6

Fig. III.23 Quadratic approximation of y = sinx near x = π/2.

satisfies these conditions, and that it is given by the formula

Pn(x) = f(a) + f ′(a)(x − a) +
1

2
f ′′(a)(x− a)2

+
1

2 · 3f
′′′(a)(x − a)3 + ...+

1

2 · 3 · ... · nf
(n)(a)(x − a)n,

or, more briefly (recall that 0! = 1), by

Pn(x) =
n
∑

j=0

1

j!
f (j)(a)(x − a)j .

The polynomial Pn defined above is called the Taylor polynomial of degree

n for the function f centered at the point a. If one wants to explicitly

indicate the point a where the approximation is taken, one may write Pn,a.

It should not come as a surprise that as n increases, for most functions

f the Taylor polynomials give increasingly better approximations. This

approximation technique is particularly useful for transcendental functions

such as exponential functions and trigonometric functions, for which there

is no direct and effective procedure for calculating values at specific points.

In contrast, note that the Taylor polynomials can easily be evaluated at

any point x by simple algebraic operations (at least for special choices of

the point a).
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III.9.3 Taylor Approximations for the sine Function

To illustrate the effectiveness of the approximation property, we consider

the Taylor polynomials of f(x) = sinx. Here the simplest choice for the

center is a = 0, since all derivatives of sinx can easily be evaluated at 0, as

follows. Note that

f(x) = sinx, so that f(0) = 0,

f ′(x) = cosx, so that f ′(0) = 1,

f ′′(x) = − sinx, so that f ′′(0) = 0,

f ′′′(x) = − cosx, so that f ′′′(0) = −1,

f (4)(x) = sinx, so that f (4)(0) = 0.

Since f (4)(x) = sinx = f(x), the pattern repeats, and no further calcula-

tions are needed. We notice that all terms in the Taylor polynomials with

even power of x will have coefficient zero, so only odd powers occur. Con-

sequently, if n = 2m − 1 is odd, there is no difference between P2m and

P2m−1. Let us now evaluate a few of the Taylor polynomials explicitly.

P1(x) = x,

P2(x) = x+
1

2
· 0 · x2 = x = P1(x),

P3(x) = P4(x) = x− 1

3!
x3,

P5(x) = P6(x) = x− 1

3!
x3 +

1

5!
x5,

P7(x) = P8(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7,

P9(x) = P10(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 +

1

9!
x9.

Figure III.24 shows the graph of sinx together with several of the Tay-

lor polynomials. It is remarkable how the approximation improves as the

degree of the Taylor polynomial increases.

For comparison, in Figure III.25 we show the graphs of sinx and P29(x).

The graphical evidence suggests very strongly that for any value x ∈ R

one has

sinx = lim
n→∞

P2n+1(x) = lim
n→∞

n
∑

j=0

(−1)j−1 x2j+1

(2j + 1)!
.

We will see in Section IV.9 that this result is indeed correct.
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Fig. III.24 Graph of y = sinx and some Taylor polynomials.
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Fig. III.25 Graph of y = sinx with Taylor polynomial of degree 29.

III.9.4 The Natural Exponential Function

Next we consider the function E(x) = ex. Because of the complicated nu-

merical value of the base e, there is no direct way to determine even values

as simple as e2 or e3, not to mention e1/2 =
√
e, and so on. So the approx-

imation by Taylor polynomials is an important theoretical and practical

tool. Differentiation is as easy as it gets, since E(k)(x) = E(x) for all

k = 1, 2, 3, .... Choosing the center for the approximation again as 0, one
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obtains E(k)(0) = 1 for all k. Consequently,

P1(x) = 1 + x,

P2(x) = 1 + x+
1

2
x2,

P3(x) = 1 + x+
1

2
x2 +

1

3!
x3,

...

Pn(x) = 1 + x+
1

2
x2 +

1

3!
x3 + ...+

1

(n− 1)!
xn−1 +

1

n!
xn,

or, by using the summation notation,

Pn(x) =

n
∑

j=0

1

j!
xj .

Figure III.26 shows the graphs of E(x) = ex and of several of its Tay-

lor polynomials. Again, the approximation is striking. Over the interval

[−4, 4] the graphs of ex and of the Taylor polynomial P10 of degree 10 are

indistinguishable. Figure III.26 provides strong evidence for the statement

E(x) = ex = lim
n→∞

Pn(x) = lim
n→∞

n
∑

j=0

1

j!
xj for all x ∈ R.

We shall see in Section IV.9 that this result is indeed correct.

2
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Fig. III.26 Graph of y = ex with some Taylor polynomials at x = 0.

In particular, for x = 1 one obtains the following remarkable expression

for e

e = e1 = lim
n→∞

Pn(1) = lim
n→∞

n
∑

j=0

1

j!
.
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Let us check this numerically. In Table III.3 we list the values of Pn(1)

(obtained with a computer) for n = 2, 3, ..., 11.

P2(1) = 2.500000000

P3(1) = 2.666666667

P4(1) = 2.708333334

P4(1) = 2.716666667

P6(1) = 2.718055556

P7(1) = 2.718253969

P8(1) = 2.718278771

P9(1) = 2.718281527

P10(1) = 2.718281803

P11(1) = 2.718281828.

Table III.3. Approximations of e by Taylor polynomials.

For comparison, we note that the first 10 digits of e are given by

e = 2.718281828...,

so that the approximation by Taylor polynomials is really quite efficient.

The numerical evidence thus confirms the existence of limn→∞ Pn(1). Such

a converging “infinite sum” is an example of what mathematicians call an

“infinite series”; the shorthand notation is

e =

∞
∑

j=0

1

j!
.

In concluding, let us collect the formulas for e that we have obtained so far

into one equation

e = 21/ ln 2 = lim
n→∞

(1 +
1

n
)n =

∞
∑

j=0

1

j!
.

Furthermore, recall that e is also identified as that number that satisfies

lim
h→0

eh − 1

h
= 1.
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III.9.5 Exercises

1. Let f(x) = x3 − 2x2 + 3x− 1.

a) Determine the Taylor polynomial P2,1 of degree 2 for f centered

at 1.

b) Determine the Taylor polynomial P3,1 for f .

c) Note that f itself is a polynomial of degree 3, which surely gives the

best possible approximation of f . How do P3,1 and f differ? Explain!

2. a) Sketch the graph of the function q(x) = 1
1−x for −2 ≤ x ≤ 2, x 6= 1.

(Use a graphing calculator.)

b) Find the derivatives q(n)(x) of order n = 1, 2, 3, 4. Can you see the

pattern? What is q(n)(x) for arbitrary positive integer n? (Hint: It

is easier if you write q(x) = (1− x)−1.)

c) Use b) to find the Taylor polynomials P3,0 and P4,0 centered at 0 for

the function q(x). What is the corresponding expression for Pn,0 for

n arbitrary?

d) Use a graphing calculator to plot q, P3,0, and P4,0 in one window.

Over what interval does P4,0 give a fairly good approximation to

q(x)?

e) By plotting Taylor polynomials Pn,0 for larger n, say n = 10 and 11,

try to recognize for which x the approximation of q(x) by Pn,0(x)

will be hopeless, no matter how large n is chosen.

3. a) Determine the Taylor polynomials Pn(x) centered at 0 for the function

f(x) = cosx. (Hint. Modify the procedure discussed in the text in

the case of sinx.)

b) Explain why Pn+1 = Pn in the case where n = 2m is an even number.

c) Use a graphing calculator to plot cosx, P4, and P8 in one window.
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Chapter IV

The Definite Integral

IV.1 The Inverse Problem: Construction of Antiderivatives

IV.1.1 Antiderivatives and New Functions

In Section III.2 we had already considered the problem of finding all an-

tiderivatives
∫

f(x) dx of a given function f. We had seen that the main

difficulty is to find at least one function F that satisfies F ′ = f, since any

other antiderivative is then of the form F + c for some constant c ∈ R.

In many cases an antiderivative is readily found by just reversing a

particular differentiation formula. For example, the formula (sinx)′ =

cosx can be read to say that sinx is an antiderivative of cosx, or the

formula (xn)′ = nxn−1 translates into the statement that xn/n is an

antiderivative of xn−1 as long as n 6= 0. Sums of functions are easily

handled by working with each summand individually, since if F and

G are antiderivatives of f and g, respectively, the differentiation rule

(F +G)′ = F ′ + G′ = f + g readily translates into the formula
∫

(f + g )dx = F + G =

∫

f dx +

∫

g dx

for antiderivatives. Similarly one sees that
∫

af(x)dx = a
∫

f(x)dx if a

is a constant. Unfortunately, the chain rule, the inverse function rule,

and the product/quotient rules for differentiation, which are fundamental

tools for finding derivatives of more complicated functions, do not have

simple reverse versions that allow us to find antiderivatives of compositions

or products if one knows the antiderivatives of the individual ingredients.

Only in selected cases is it possible to use these rules in reverse, and it takes

much practice and experience to recognize the many special situations that

may arise. For example, as we will see later, by reversing the chain rule

one obtains
∫

2xex
2

dx = ex
2

+ c, a formula that can readily be verified by

251
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differentiation. However, no one has been able to find a formula for
∫

ex
2

dx

that only involves familiar elementary functions. In fact, it has been proven

that such an explicit formula does not exist. Similarly, careful application

of the product rule in reverse allows us to find antiderivatives of x sinx or

2x sinx, but such methods fail, for example, for lnx · sinx.
Does that mean that some functions have antiderivatives, while others

that may look even simpler, do not? Note that just because we cannot

readily find an antiderivative by using familiar functions and techniques,

that does not mean that an antiderivative does not exist. For example, if

all one knew were power functions, then
∫

xndx =
1

n+ 1
xn+1

is easily verified, provided n 6= −1. But this leaves open the case n = −1,

i.e., find
∫

1
xdx . As we have seen, the answer here involves another type of

function, namely the natural logarithm. This phenomenon is quite typical:

the search for antiderivatives will often involve the discovery of completely

new functions.

As we shall discuss in this chapter, attempts to construct an antideriva-

tive of a given function lead to a new kind of limit process, the so-called

definite integral. It turns out that this new limit arises in many other

contexts as well, independent of the search for antiderivatives. In fact, defi-

nite integrals have numerous important applications of their own, involving

concepts such as areas and volumes, probability distribution functions, the

work done by a force, or the value of an income stream, to name just a

few. The underlying connection between definite integrals and derivatives

(or rather antiderivatives) is so central to the ideas of calculus that it is

referred to as the Fundamental Theorem of Calculus. We shall formulate

explicit versions of this result after we have thoroughly discussed the new

limit process that appears in the construction of antiderivatives.

IV.1.2 Finding Distance from Velocity

Let us begin by considering the problem in the context of motion, that is, we

assume that the given function is the (instantaneous) velocity v of a vehicle

moving along a road over a time interval [0,M ]. To be specific, let us assume

that v(t) ≥ 0, and that time t is measured in minutes. Fix an initial position

s0 = s(0) indicated by a highway marker along the road. If s(t) denotes the

position of the vehicle at time t, measured in kilometers, then s(t) − s(0)

measures the distance the vehicle has traveled in t minutes. We know
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that the velocity v is the derivative of the function s, in other words, the

distance function s is an antiderivative of the velocity function v, or s(t) =
∫

v (t) dt. Our task thus is to determine the values s(t) from the known

(varying) instantaneous velocity v(t), that is, to develop a mathematical

odometer that determines the position s(t) from the information shown by

the speedometer.

Note that in the case where the velocity is constant, say v(t) = v0 for

all t ∈ [0,M ], then the average velocity s(t)−s(0)
t over the interval [0, t] is

equal to this constant v0 for all t. This implies that s(t) − s(0) = v0t, or

s(t) = s(0) + v0t, and the problem is solved. The general case is based on

the principle that for t very close to a point t0, the (instantaneous) velocity

v(t0) is very close to the average velocity over the small interval [t0, t]. This

means that

s(t)− s(t0)

t− t0
≈ v(t0) for t sufficiently close to t0,

or

s(t)− s(t0) ≈ v(t0) (t− t0) for t sufficiently close to t0.

In order to apply this local approximation, we fix T ∈ [0,M ] and de-

compose the interval [0, T ] into a succession of very short time intervals,

to each of which one applies the corresponding approximation. Precisely,

for a given positive integer n, we decompose [0, T ] into n time intervals

[tj−1, tj ], j = 1, ..., n, of equal length T/n, where t0 = 0 and tn = T.

Then s(tj)− s(tj−1) measures the distance traveled during the time inter-

val [tj−1, tj ], so that the total distance s(T ) − s(0) traveled in the time

interval [0, T ] surely equals the sum

[s(t1)− s(t0)]+ [s(t2)− s(t1)]+ ...+ [s(tj+1)− s(tj)]+ ...+ [s(tn)− s(tn−1)],

that is,

s(T )− s(0) =

n−1
∑

j=0

[s(tj+1)− s(tj)] .

If the time intervals [tj , tj+1] are very short—as will be the case if n is

chosen quite large—then one has s(tj+1) − s(tj) ≈ v(tj)(tj+1 − tj), so it

appears reasonable that

s(T )− s(0) ≈
n−1
∑

j=0

v(tj)(tj+1 − tj),
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with all approximations improving as T/n → 0, i.e., as n is chosen larger

and larger. The situation is distilled into the (symbolic) limit statement

s(T )− s(0) = lim
n→∞

n−1
∑

j=0

v(tj)(tj+1 − tj) . (IV.1)

This limit process solves our problem. We have found a way to recover the

distance s(T ) − s(0) traveled in T minutes from the velocity v(t) at each

moment t in the time interval [0, T ]. This procedure could be programmed

into a computer chip which is then built into the odometer.

More significantly, we see that the search for a process to reverse differ-

entiation naturally leads us to the approximating sums in formula (IV.1)

and to the corresponding limit. Hence it becomes important to investigate

these concepts carefully and thoroughly. Looking ahead, let us introduce

the notation
∫ T

0

v(t)dt = lim
n→∞

n−1
∑

j=0

v(tj)(tj+1 − tj),

which captures the essential structure of the approximating sums, with the

finite sum symbol
∑

on the right replaced by the symbol
∫

to indicate

that a limit process has occurred. This new quantity
∫ T

0
v(t)dt is called

the definite integral of the function v from 0 to T. Since the velocity v is

the derivative D(s) of the distance function, the result obtained is then

summarized by the formula

s(T )− s(0) =

∫ T

0

D(s)(t)dt.

IV.1.3 Control of the Approximation

While it indeed appears quite plausible that the limit process introduced

in the preceding section is meaningful and leads to a correct result, it does

require a careful justification. In fact, the matter is quite subtle, because

the n “small” errors made in each of the local approximations could add up

to something that possibly may no longer be small at all as n → ∞. That

they do not, follows from the fact that each of the errors made in the local

approximations is “much smaller” than the length |tj+1 − tj | = T/n of the

corresponding short time intervals.

In order to understand this more precisely, recall the basic principle

that differentiability means that locally the function is well approximated

by the linear function that describes the tangent line. The critical local
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approximation s(tj+1)− s(tj) ≈ v(tj)(tj+1 − tj) is based on this principle.

As we saw in Section II.3.4, the error

Etj (t) = s(t)− [s(tj) + v(tj)(t− tj)]

between the function and its tangent is of the form Etj (t) = gj(t)(t − tj),

where limt→tj gj(t) = 0.

Figure IV.1 illustrates the relevant estimation of
∣

∣

∣

∣

∣

∣

s(T )− s(0)−
n−1
∑

j=0

v(tj)(tj+1 − tj)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

{[s(tj+1)− s(tj)]− v(tj)(tj+1 − tj)}

∣

∣

∣

∣

∣

∣

≤
n−1
∑

j=0

∣

∣Etj (tj+1)
∣

∣ .

very clearly in the case n = 6.

0

s (T )–s (0)

t1 t2 t3 t4 t5 t6 =T

∆s

∆ t

v (t
3)∆t

t

Fig. IV.1 Approximation of total distance s(T )− s(0).

The total change s(T )−s(0) is approximated by the sum of the increases

v(tj)∆t along the tangent lines, with the total error estimated by the sum

of the lengths of the heavy short line segments. The reader should firmly

record this picture in her mind.

As tj+1 → tj when n → ∞, gj(tj+1) will indeed be quite small when n is

large. Since in the limit process not only do the points tj change, but they
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also increase in number, in the end one has to deal with infinitely many

different error terms Etj (t). It is therefore critically important to measure

the size of Etj (t), and in particular of |gj(tj+1)|, in a manner that is uniform

for all the small intervals and points tj , and that is also independent of the

number n of these intervals. As we shall verify in detail below, for suitable

functions s one has such an estimate in the precise form
∣

∣Etj (tj+1)
∣

∣ ≤ K |tj+1 − tj |2 (IV.2)

with a constant K that does not depend on n and on the particular points

tj , j = 0, ..., n. Recalling that |tj+1 − tj | = T/n, it then follows that
∣

∣

∣

∣

∣

∣

n−1
∑

j=0

[s(tj+1)− s(tj)] −
n−1
∑

j=0

v(tj)(tj+1 − tj)

∣

∣

∣

∣

∣

∣

≤
n−1
∑

j=0

∣

∣Etj (tj+1)
∣

∣

≤ K

n−1
∑

j=0

|tj+1 − tj |2

= nK(
T

n
)2 = (KT 2)

1

n
.

One therefore obtains the estimate
∣

∣

∣

∣

∣

∣

[s(T )− s(0)] −
n−1
∑

j=0

v(tj)(tj+1 − tj)

∣

∣

∣

∣

∣

∣

≤ KT 2/n.

Since KT 2/n → 0 as n gets larger and larger, this estimate surely proves

that

n−1
∑

j=0

v(tj)(tj+1 − tj) → s(T )− s(0) as n → ∞

as expected.

In order to prove the estimate (IV.2) we shall consider first the case

that the distance function s = s(t) is an algebraic function in the class A.

We will then recognize what particular hypotheses need to be made so that

the arguments work for more general functions as well. As the relevant

arguments are somewhat technical, the reader should feel free to skip these

details on first reading.

Recall the factorization s(t)− s(tj) = qj(t)(t − tj), where the factor qj
is also in the class A, and qj(tj) = D(s)(tj) = v(tj). One therefore obtains

Etj (t) = s(t)− s(tj)− v(tj)(t− tj)] = [qj(t)− qj(tj)](t− tj). (IV.3)



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 257

The Definite Integral 257

The factor gj in the error term Etj (t) = gj(t)(t − t0) is thus given by

gj(t) = qj(t) − qj(tj). Let us fix t > tj . Since qj(t) equals the average

velocity over the interval [tj , t], the Mean Value Theorem (Corollary III.2.5)

produces a number cj ∈ [tj , t] such that

v(cj) = qj(t).

Since the derivative D(v) of v ∈ A is again in the class A, by Theorem

I.6.5 there exists a constant K such that |D(v)(t)| ≤ K for all t in [0,M ].

Therefore Corollary III.2.4 gives the estimate

|qj(t)− qj(tj)| = |v(cj)− v(tj)| ≤ K |cj − tj | ≤ K |t− tj | . (IV.4)

By introducing this estimate into (IV.3), we obtain the desired uniform

approximation

s(tj+1)− s(tj) ≈ v(tj)(tj+1 − tj)

in the precise form

|[s(tj+1)− s(tj)]− v(tj)(tj+1 − tj)| =
∣

∣Etj (tj+1)
∣

∣

≤ |qj(tj+1)− qj(tj)| |tj+1 − tj |
≤ K |tj+1 − tj |2 ,

i.e., we have proved the estimate (IV.2).

Finally, in the case where s is a more general non-algebraic function, the

arguments in the preceding discussion remain correct provided one assumes

that the velocity v = D(s) has a derivative D(v) = D2(s) that is bounded

over the interval [0,M ]. The preceding arguments therefore provide a com-

plete proof of the following important preliminary version of the so-called

Fundamental Theorem of Calculus.

Theorem 1.1. Suppose F is a two times differentiable function on the

interval I, and that its second derivative D(D(F )) is bounded over the

interval [a, b] ⊂ I. Then
∫ b

a

D(F )(t)dt = F (b)− F (a).

IV.1.4 A Geometric Construction of Antiderivatives

The preceding discussion resulted in a process to recover the distance func-

tion s (i.e., an antiderivative of the velocity) from the known velocity func-

tion v. This is very useful indeed, but the proof explicitly made use of
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the concrete and familiar distance function, i.e., it used knowledge of the

antiderivative to begin with. Therefore it is not readily apparent how

this process would help to actually construct an antiderivative in general,

especially when such an antiderivative is unknown at the very beginning.

The situation may be loosely compared to finding square roots of numbers.

This is quite simple if the given number is already of the form r2 for some

rational number. But when presented with a number which is not known to

be of that form, say the number 2 for example, finding
√
2 is considerably

more difficult. Not only does one need some approximation scheme, but

more significantly, one needs to go beyond the rational numbers.

We shall now introduce a slight variation of the process that we consid-

ered for velocities. It is a geometric version of the former process that—most

significantly— does not require a priori knowledge of an antiderivative. We

will see that the proof of the existence of the corresponding limit is—as

expected—somewhat more complicated than when the value of the limit

is known explicitly from the beginning in terms of an antiderivative—such

as the distance function in the case where one starts with velocity. How-

ever, this version of the process has the advantage that it ultimately will

allow us to “construct” an antiderivative for any reasonable function, and

thereby prove, in particular, that any such function does indeed have an

antiderivative.

Given a function f on an interval I, as we look for an antiderivative F

of f , the essential (and only) information available to us is that the slope of

the graph of F at a point (c, F (c)) for some c ∈ I is precisely f(c). By the

general geometric interpretation of differentiability, in a small neighborhood

of that point the graph of F essentially coincides with its tangent line which

has slope f(c). Given x ∈ I we shall use this information to build successive

approximations for the value F (x) starting with some initial point (a, F (a)).

More in detail, in order to find an antiderivative F of f , we shall begin

by constructing “approximate antiderivatives” Fn for f by piecing together

n short line segments whose slopes are determined by the values of f at

successive points, i.e., by the known derivative of the function we are trying

to find. Figures IV.2 and IV.3 illustrate this construction in the case of 5

short pieces of the relevant tangents.

We choose the approximations to all satisfy the same initial value con-

dition Fn(a) = 0. The goal then is to produce the value F (x) of an exact

antiderivative F at the fixed point x by taking the limit of these approxi-

mations, that is, by setting F (x) = limn→∞ Fn(x).

We now carry out the procedure in a systematic way. We fix a point
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t2

t1 t4t0 = a t5 = x

t3

t

2

y

1

y = f (t )

−1

Fig. IV.2 The given function y = f(t).

slope
f (a )

slope
f (t1)

slope
f (t2)

slope
f (t3)

slope
f (t4)

t5 = xt4t3t2t1a

Fig. IV.3 Approximation of an antiderivative of f (Figure IV.2) by lines with slopes
f(tj ).

x ∈ I, x > a, and for each n = 1, 2, 3, ... we construct an approximation

Fn(x) to the (still unknown) value F (x) by using n line segments. The first

approximation to the graph of F beginning at the point (a, 0) is just given

by its tangent line at that point; since it is required that F ′(a) = f(a), that

tangent line is the graph of the function

F1(t) = f(a)(t− a).

Its value F1(x) = f(a)(x− a) at x is the desired first approximation of the

unknown value F (x). (See Figure IV.4.) Of course, F1(x) will typically be a
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poor approximation—after all, the tangent provides a good approximation

to the graph of F only close to the point a.

1 a

y = f (t )

y = F1(t )

F1(x )

x

y

1

t

Fig. IV.4 y = f(t) and its first approximation F1(t).

For the second approximation with n = 2, we take the midpoint t1 =

a + (x − a)/2 of [a, x] to divide the interval [a, x] into two equal pieces of

length ∆2t = (x− a)/2, and we use the line with slope f(a) (≈ 0.5) on the

first half [a, t1], while for the second half [t1, x] we use the line at (t1, F1(t1))

with slope f(t1) (≈ 0.3). (See Figure IV.5.) The formula for F2 on the

1 a = t0 t1

y = f (t )

y = F2(t )

F2(x )

x = t2

y

1

t

Fig. IV.5 Graph of the approximation F2(t).
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interval [a, x] is given by

F2(t) =

{

f(a)(t− a) for a ≤ t ≤ t1,

f(a)(t1 − a) + f(t1)(t− t1) for t1 ≤ t ≤ x.

It follows that

F2(x) = f(a)(t1 − a) + f(t1)(x − t1)

= f(a)∆2t+ f(t1)∆2t.

It is now clear how to proceed. We set t0 = a, and for any n ≥ 2 we divide

the interval [a, x] = [t0, x] into n equal pieces [t0, t1], [t1, t2], ..., [tn−1, tn] of

equal length tj+1 − tj = ∆nt = (x− a)/n. One has

t0 = a, t1 = a+∆nt, t2 = a+2∆nt, ..., tj = a+j∆nt, ..., tn = a+n∆nt = x.

Starting at (a, 0), we move along the polygon consisting of n line seg-

ments with successive slopes f(t0), f(t1), ..., f(tn−1), ending up at the point

(x, Fn(x)), where

Fn(x) = f(t0)∆nt+ f(t1)∆nt + ...+ f(tn−1)∆nt

=
n−1
∑

j=0

f(tj)∆nt.

By construction, each Fn also satisfies Fn(a) = 0 for all n. Figure IV.6

shows the graph of f and the approximation Fn(x) for the value F (x) of

the antiderivative for n = 5.

1 t1 t2 t3 t4

y = f (t )

y = F5(t )

F5(x)

y

1

t
a = t0 x = t5

Fig. IV.6 The approximation F5(t) and the value F5(x).

It seems reasonable that the values Fn(x) should approximate the corre-

sponding value F (x) for the (still unknown) antiderivative F of the original
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function f . After all, near each point (tj , F (tj)) the graph of the presumed

antiderivative would be very closely approximated by a short piece of the

tangent line at that point—remember, locally the graph of a differentiable

function is nearly indistinguishable from its tangent line. At (tj , F (tj)) this

tangent has slope F ′(tj) = f(tj).By construction, the approximating poly-

gon Fn has exactly that same slope f(tj) at the point (tj , Fn(tj)). So this

polygon closely matches the tangents of the graph of the antiderivative F

that we try to determine.

Note that the expression

Fn(x) =

n−1
∑

j=0

f(tj)∆nt

that approximates F (x) is, except for a change in notation, identical to the

expression
n−1
∑

j=0

v(tj)(tj+1 − tj)

that appeared earlier in the approximation of the total distance s(T )−s(0).

This structural match reinforces the importance of these sums and the need

to thoroughly study their limits. Clearly these limits are central to the

process of constructing antiderivatives.

IV.1.5 A Simple Example

Let us explicitly work out this approximation process for the simple function

f(x) = x2. We fix a value x > 0 and carry out the details of the procedure

just discussed on the interval [0, x]. Thus ∆nt = x/n, and tj = j ·∆nt =

j · x/n for j = 0, 1, 2, ..., n, so that

Fn(x) =

n−1
∑

j=0

f(tj)∆nt =

n−1
∑

j=0

(j · x/n)2(x/n)

=

n−1
∑

j=0

x2 j
2

n2

x

n
= x3

∑n−1
j=0 j2

n3

= x3 R(n),

where we have denoted the expression
∑n−1

j=0 j2/n3 by R(n). It is remarkable

that the same factor R(n) works independently of the choice of x. This

reduces the problem to just determining limn→∞ R(n). With the help of a

calculator one obtains
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R(102) = .3283500000

R(103) = .3328335000

R(104) = .3332833350

R(105) = .3333283333

R(106) = .3333328333

R(107) = .3333332833

R(108) = .3333333283

This numerical evidence strongly suggests that

R(n) → 0.33333... =
1

3
as n → ∞.

It is possible to confirm the correctness of this statement by a formal argu-

ment that does not rely on numerical evidence. (See Problems 5 and 6 of

Exercise IV.1.7.) We therefore are justified to conclude that

F (x) = lim
n→∞

Fn(x) = x3 lim
n→∞

R(n) = x3 1

3
.

As we observed, this process works for any positive x ∈ R, without any new

computations. Of course F (0) = lim Fn(0) = 0. If x < 0, the same for-

mulas apply, with the only difference that ∆nt = x/n is now negative, and

consequently the polygons that begin at a = 0 are now built up by moving

towards the left side. Once x3 has been factored out from the approximat-

ing sums, the same formula for R(n) remains. We thus have constructed

the function F (x) = limn→∞ Fn(x) = x3/3 for every real number x. We

notice that F is indeed an antiderivative of f(x) = x2, as expected. In fact,

since antiderivatives with a specific initial value are determined uniquely, F

is the unique antiderivative of f(x) = x2 that satisfies the initial condition

F (0) = 0.

IV.1.6 The Definite Integral

What we have done for this specific example can—in principle—be car-

ried out for more general functions. However, no “exact” evaluation of

the limits, as was done in the example above, will be possible in general.

More complicated arguments based on the completeness of R and involving

careful estimations are required to prove the main result, as follows.

Theorem 1.2. Suppose the function f is continuous on the interval I, and

fix a point a ∈ I. Then for each x ∈ I the expressions

Fn(x) =

n−1
∑

j=0

f(tj)∆nt,
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where ∆nt = (x− a)/n, and tj = a+ j∆nt, have a limit F (x) as n → ∞.

Remark. The result is valid also for x < a. In that case the quantity

∆nt will be negative.

Consistent with the terminology introduced in Section 1.2 in the case of

the velocity function, we shall call this limit the definite integral of f from

a to x and write
∫ x

a

f(t)dt = lim
n→∞

n−1
∑

j=0

f(tj)∆nt.

The proof of the theorem in the case of an arbitrary continuous function

requires technical concepts and arguments that go beyond this introductory

discussion, and hence will be omitted.1 However, if one assumes that f is

differentiable on I and that its derivative D(f) is bounded over any closed

bounded interval [a, b] ∈ I, the proof is much more elementary than in

the general case and will be discussed later on in Section 6. Note that all

algebraic functions, the elementary transcendental functions, most other

“natural” functions, and standard combinations of these, and so on, enjoy

this additional good property, so that for all practical purposes this restric-

tion is not at all significant. The general case of continuous functions is

mainly of interest for abstract theoretical investigations.

Of course, if the function f has a bounded derivative D(f), and if it

is also known that f does have an antiderivative G, i.e., D(G) = f , then

the discussion in the preceding section already gives a simple proof of the

existence of the limit that defines the definite integral
∫ x

a f(t)dt. In fact, it

even gives a precise formula for its value, namely
∫ x

a

D(G)(t)dt = G(x)−G(a). (IV.5)

The key novelty therefore is that the present theorem does not require

any such assumption about the existence of an antiderivative. Instead, it is

the principal ingredient to prove the existence of an antiderivative.

In order to better understand the meaning of formula (IV.5), let us

denote by Ia(f) the function defined by Ia(f)(x) =
∫ x

a
f(t) dt for x ∈ I.

Both Ia and D are operations that may be applied to a suitable function

to produce new functions. Formula (IV.5) then takes the form

Ia(D(G)) = G for all reasonable functions G with G(a) = 0.

1In particular, the proof requires the fact that continuous functions on closed bounded
intervals have an additional special property known as uniform continuity.
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This formula summarizes that taking integrals reverses the process of dif-

ferentiation. The main question left therefore is whether the order of the

operations can be interchanged, that is, whether differentiation reverses the

process of integration. Alternatively, is D(Ia(f)) = f valid for all reason-

able functions f? In particular, this would confirm that the limit process

that defines definite integrals indeed produces an antiderivative for f .

It turns out that given Theorem 1.2 above and a few other natural and

useful properties of definite integrals, it will be quite easy to answer this

question, as follows.

Theorem 1.3. Suppose f is continuous on the interval I. Then the

function F = Ia(f) defined on the interval I by F (x) =
∫ x

a
f(t) dt is dif-

ferentiable and satisfies D(F )(x) = f(x) for all x ∈ I.

Corollary 1.4. Every continuous function on an interval I has an an-

tiderivative on I.

This “inverse relationship” between differentiation and definite

integrals—which are defined as limits of certain sums—is the central result

that is known as the Fundamental Theorem of Calculus. We shall postpone

the proofs of these results until we have gained more familiarity with defi-

nite integrals and have explored some of their important applications that

reach well beyond the construction of antiderivatives. In particular, in the

next section we will discuss an extremely useful geometric interpretation of

the approximating sums Fn that involves the concept of area. This will help

us to understand the limit process better, and it will allow us to identify a

concrete geometric interpretation of the relevant limit, that is, of definite

integrals.

IV.1.7 Exercises

1. Find explicit formulas for the following antiderivatives:

a)
∫

etdt; b)
∫

2tdt; c)
∫

(sin t+ 4t2) dt;

d)
∫

1
x2 dx; e)

∫

x100 dx.

2. a) Show that for p(x) = x3 the corresponding approximating functions

Fn satisfy

Fn(x) = x4 R4(n),

where R4(n) is an expression that depends on n, but does not in-

volve x. (Hint. Carefully modify the procedure discussed in the
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text for the function f(x) = x2 so that it applies to the function

p(x) = x3. )

b) Use a calculator (a programmable one would be very helpful) to

estimate R4(n) numerically as n gets larger. Can you recognize

limn→∞ R4(n)? What do you think is the correct value for this

limit?

3. a) Make a reasonably accurate graph of y = cosx on the interval [0, π].

(Use a graphing calculator.)

b) Starting at the point (0, 0), insert into the graph in a) a sketch of

the polygon whose endpoint gives the value F6(π), by dividing the

interval [0, π] into 6 equal pieces, and using the graph of y = cosx

to estimate the slopes cos tj of the individual line segments for j =

0, 1, 2, ..., 5. (See also Figure IV.6.)

c) Estimate the value of F6(π) based on your construction in b). Use

a calculator to evaluate F6(π) precisely. What do you think should

be the value of limn→∞ Fn(π). Explain!

4. Let S(2)(n) = 12 + 22 + ...+ n2 =
∑n

j=1 j2.

a) Show that S(2)(n) = 1 +
∑n

j=1 (j + 1)2 − (n+ 1)2.

b) Show that
∑n

j=1 (j + 1)2 = S(2)(n) + 2
∑n

j=1 j + n.

c) Use a) and b) to conclude that 2
∑n

j=1 j = (n+ 1)2 − n− 1.

d) Use c) to show that S(n) =
∑n

j=1 j = n(n+1)
2 .

(The process outlined above can be adapted to prove other identities

of this type. See Problem 5.)

5. Show that S(2)(n) =
∑n

j=1 j2 = n(n+1)(2n+1)
6 by suitably modifying

the procedure in Problem 4, as follows.

a) Verify that
∑n

j=1 j
3 = 1 +

∑n
j=1(j + 1)3 − (n+ 1)3.

b) Verify that
∑n

j=1(j+1)3 =
∑n

j=1 j
3+3S(2)(n)+3

∑n
j=1 j+n. (Hint:

Use (j + 1)3 = j3 + 3j2 + 3j + 1.)

c) Substitute b) into a) on the right side, simplify, and solve for S(2)(n),

making use of the formula S(n) =
∑n

j=1 j = n(n+1)/2 obtained in

Problem 4 d).

6. Use the result obtained in Problem 5 to show that

lim
n→∞

∑n
j=1 j

2

n3
=

1

3
.
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IV.2 The Area Problem

IV.2.1 Approximation by Sums of Areas of Rectangles

We shall now discuss a geometric interpretation of the approximating sums

Fn(x) =
∑n−1

j=0 f(tj)∆n for an antiderivative of the function f that we con-

structed in the preceding section. This will provide a “visual justification”

for the convergence of Fn(x) as n → ∞, as well as a corresponding inter-

pretation of the limit. For simplicity, we assume that f(t) ≥ 0 for all t in

the interval I. For b > a, we can visualize Fn(b) as follows. Let us plot the

graph of f as usual in a coordinate system and divide the interval [a, b] into

n equal pieces determined by the points a = t0 < t1 < ... < tn = b. Then

f(tj) represents the length of the vertical line segment from the point tj on

the t-axis to the curve described by f . Since ∆nt is the length (b− a)/n of

the interval [tj−1, tj ] along the t-axis, the product f(tj) ·∆nt represents the

area of the thin rectangle with base [tj−1, tj ] of width ∆nt and of height

f(tj). It follows that Fn(b) is the sum of the areas of these rectangles for

j = 0, 1, ..., n− 1. (See Figure IV.7.)

y = f (t )

a t1 t2 t3 t4 t5 b

f (a)

Fig. IV.7 Approximating sum represents the sum of areas of rectangles.

These rectangles approximate the region above the t-axis that lies below

the graph of f between the points a and b. We thus interpret the sum Fn(b)

as an approximation of the area of that region. It is now apparent—given

suitable hypothesis on f—that as n gets larger, the difference between the

rectangles and the region under the graph gets smaller, i.e., the errors made

in the approximation get smaller. This fact suggests very strongly that the
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limit

F (b) =

∫ b

a

f(t) dt = lim
n→∞

n−1
∑

j=0

f(tj)∆n

indeed exists and that it provides a measure for the area under the graph

of f identified above.

Note that the area of regions in the plane whose sides are line segments,

such as triangles, rectangles, parallelograms, etc., is an elementary concept

for which simple formulas exist. On the other hand, to measure areas

of regions with curved boundary is much more complicated. Recall, for

example, that the area of a disc involves the mysterious transcendental

number π. The procedure we just developed provides a systematic technique

(or algorithm) to find areas of a very large number of regions described by

graphs of functions, and it reveals that the area problem is closely connected

with the problem of finding antiderivatives.

IV.2.2 Rectangles and Triangles

In order to feel comfortable with this new procedure to calculate areas, we

shall examine a couple of familiar regions for which the area is well known,

and verify that the (more complicated) limit process we just introduced

leads indeed to the familiar correct answers.

Let us first consider a rectangle. In order to implement the limit process,

we place the rectangle R as shown in Figure IV.8, so that the rectangle is

the area under the graph of the constant function f(x) = h over the interval

[a, b].

R h

ba

Fig. IV.8 Area of rectangle decomposed into smaller rectangles.

The area of R is then equal to (b− a) · h. Let us now evaluate this area

as the definite integral
∫ b

a
f(t)dt =

∫ b

a
h dt. According to the procedure we
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developed, we fix a positive integer n, set ∆nt = (b− a)/n, and consider

A(n) =

n−1
∑

j=0

f(tj)∆nt =

n−1
∑

j=0

h ∆nt

= h ·
n−1
∑

j=0

b− a

n
= h · n · b− a

n

= h · (b− a).

So A(n) does not depend on n, and clearly
∫ b

a

f(t)dt = lim
n→∞

A(n) = h · (b − a),

which is exactly the expected result.

Next, we consider the triangle shown in Figure IV.9 that is the area

under the graph of f(x) = h
b x over the interval [0, b].

b

h

y = x

0

h
b

Fig. IV.9 Area of triangle approximated by rectangles.

By the standard formula Area = base × height /2, the area of this

triangle equals bh/2.According to the procedure based on definite integrals,

this area should be given by
∫ b

0

f(t)dt = lim
n→∞

n−1
∑

j=0

f(tj)∆nt ,

where for each n = 1, 2, ... one has ∆nt = b/n and tj = j · b/n for j =

0, 1, ..., n. If we represent
∑n−1

j=0 f(tj)∆nt as the sum of areas of rectangles

(see Figure IV.9 in the case n = 6), it is obvious that—in contrast to the

preceding case of a rectangle—this sum is NOT equal to the area of the
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triangle. On the other hand, it does look reasonable that the sum of all

the thin rectangles will cover the whole triangle more and more closely as

n gets larger and larger.

In order to examine this precisely, we note that in the present situation

n−1
∑

j=0

f(tj)∆nt =

n−1
∑

j=0

(
h

b
tj)

b

n

=

n−1
∑

j=0

(
h

b
· j b

n
)
b

n
= bh

∑n−1
0 j

n2
,

so that
∫ b

0

f(t)dt = bh lim
n→∞

∑n−1
0 j

n2
.

The value of limn→∞(
∑n−1

0 j)/n2, while not immediately obvious, is still

simple enough that we can work it out precisely. The answer turns out to

be 1/2 (see below), and therefore

∫ b

0

f(t)dt =
bh

2
,

as expected.

In order to verify the limit statement, we shall use a clever argument

to find a useful formula for S(n) =
∑n

0 j = 1 + 2 + ...+ n.2 Note that by

reversing the order we of course also have S(n) = n+(n−1)+ ...+3+2+1.

We evaluate

S(n) + S(n) = 1 + 2 + ... + ... + (n− 1) + n

+n + (n− 1) + (n− 2) + ... + 2 + 1

= (n+ 1) + (n+ 1) + ... + ... + (n+ 1) + (n+ 1)

= (n+ 1)n.

From 2S(n) = (n+ 1)n one obtains

S(n) = 1 + 2 + ...+ n =
1

2
(n+ 1)n.

(A different proof for this formula was outlined in Problem 4 of Exercise

IV.1.7. The proof there is somewhat more complicated, but it can be

2It is reported that C. F. Gauss (1777 - 1855), the most eminent mathematician of the
19th century, came up with this argument while in school at age 10. His teacher was so
impressed that he took immediate steps to ensure that his remarkable pupil would get
the best mathematical training available.
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adapted to handle more general cases.) By replacing n with n − 1, it

follows that
∑n−1

0 j

n2
=

S(n− 1)

n2
=

1

2

(n− 1)n

n2

=
1

2

(n− 1)

n
=

1

2
− 1

2n
.

Since evidently 1
2n → 0 as n → ∞, we have indeed verified that

lim
n→∞

∑n−1
0 j

n2
=

1

2
.

IV.2.3 Area under a Parabola

A somewhat more complicated example involves the area under a parabola.

Here the answer is no longer given by elementary geometric techniques.

However, it was already determined by Archimedes over 2000 years ago,

by a procedure remarkably close to the one we developed here, that the

parabola splits off one third of the area of the rectangle that encloses it, as

shown in Figure IV.10.

2/3

b2

1/3

b

Fig. IV.10 The area under the parabola is 1/3 of the area of the rectangle.

In order to obtain this result by means of definite integrals, we describe
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the parabola as the graph of f(x) = x2 between 0 and b. (See Figure IV.10.)

The enclosing rectangle is also shown; it has area b · b2 = b3. Recall that

in Section 1.5 we had already examined the relevant limit process for this

function f . According to the procedure developed there, the area under

the parabola between 0 and b equals

∫ b

0

f(t) dt = lim
n→∞

n−1
∑

j=0

f(tj)∆nt

= b3 lim
n→∞

∑n−1
j=0 j2

n3
.

Based on numerical evidence, we had determined in Section 1.5 that the

value of the latter limit equals 1/3. This conclusion can indeed be confirmed

by a precise theoretical argument, just as we were able to evaluate the

corresponding limit in the earlier example concerning the area of a triangle.

(See Problems 5 and 6 of Exercise IV.1.7 for an outline.) Thus the area

under the parabola is indeed 1/3 of the area b3 of the rectangle.

IV.2.4 Area of a Disc

Finally we consider the intriguing case of the area of a disc of radius r > 0.

Here, too, the answer Area = A(r) = πr2 has been known for over 2000

years. The appearance of the irrational number π makes it evident that

this formula is far from elementary, and that it must be the result of a limit

process. Since the full circle—the boundary of a disc—is not the graph

of a function, we consider the area of the part of the disc that lies in the

first quadrant, which is exactly one fourth of the full disc. (See Figure

IV.11.) The boundary circle satisfies the equation x2 + y2 = r2; the portion

in the first quadrant is the graph of y =
√
r2 − x2 for 0 ≤ x ≤ r. Hence

A(r) = 4× area of part in first quadrant

= 4×
∫ r

0

√

r2 − t2 dt.

For n = 1, 2, ... we set ∆nt = r/n and then tj = j · r/n for j = 1, ..., n. The

corresponding approximating sum Sn that represents the sum of the areas
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0 r

Fig. IV.11 Approximation to the area of a disc.

of the rectangles is given by

Sn =

n−1
∑

j=0

√

r2 − (j
r

n
)2 · r

n

=
n−1
∑

j=0

√

r2

n2
(n2 − j2) · r

n

= r2
n−1
∑

j=0

√

n2 − j2 · 1

n2
.

Thus

∫ r

0

√

r2 − t2 dt = r2 lim
n→∞

n−1
∑

j=0

√

n2 − j2 · 1

n2
.

The critical expression

∑

(n) =

∑n−1
j=0

√

n2 − j2

n2
,

whose limit we must find, is even more complicated than in previous cases—

this should not be a surprise—and there is no elementary technique to de-

termine the limit exactly. We therefore resort to numerical approximations.

With the help of a programmable calculator, one readily obtains the values

shown in Table IV.1.
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n
∑

(n) 4×∑(n)

n = 10 .8261295815 3.304518326

n = 20 .8071162199 3.228464880

n = 30 .8002774553 3.201109821

n = 40 .7967369335 3.186947734

n = 50 .7945671277 3.178268511

n = 60 .7930992417 3.172396967

n = 70 .7920392518 3.168157007

n = 80 .7912374493 3.164949797

n = 90 .7906095043 3.162438017

n = 100 .7901042581 3.160417032

Table IV.1. Riemann sum approximations for area of disc.

We expect that 4 × limn→∞
∑

(n) = π = 3.14159 27...; notice that the

evidence points in that direction, although we are still off by about 2/100.

Let us consider a few larger values for n; the results are shown in Table

IV.2.

n
∑

(n) 4×∑(n)

n = 1000 .7858888662 3.143555465

n = 10000 .7854478701 3.141791480

Table IV.2. More approximations for area of disc.

We are getting closer, but clearly this process is not particularly efficient

for approximating π. Still, we recognize that the approximation of the

relevant definite integral indeed seems to converge to the expected answer

A(r) = 4 ·
∫ r

0

√

r2 − t2 dt = r2 4 · lim
n→∞

Σ(n) = r2π.

Taking r = 1 and turning matters around, one obtains the following limit

statement for π :

π = 4 ·
∫ 1

0

√

1− t2 dt = 4 · lim
n→∞

∑n−1
j=0

√

n2 − j2

n2
.

We see from these examples that the very general procedure developed

here indeed gives results that are consistent with familiar formulas for areas.

This confirms that definite integrals are a useful tool for determining areas
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of very general classes of regions in the plane. Usually, evaluation has to

be handled by numerical methods. However, based on Theorem 1.1, in the

case where the function f is the derivative D(F ) = f of a known function

F , the value of the definite integral can be found exactly by means of the

antiderivative F .

Remark. Recall that according to Theorem 1.3 definite integrals pro-

duce antiderivatives of functions. In particular, using r = 1 in the formula

above, that result implies that the function

F (x) =

∫ x

0

√

1− t2 dt

is the unique antiderivative of
√
1− x2 that satisfies F (0) = 0; further-

more, based on the geometric interpretation we observed that it satisfies

F (1) = π
4 . Unfortunately, F cannot be found explicitly in terms of al-

gebraic functions alone, so this information still does not give any simple

means for evaluating π exactly. We will see in Section 7.3 that the explicit

formula for this antiderivative F involves the inverse of the sine function

on the interval [0, π2 ].

IV.2.5 Exercises

1. a) Use the procedure discussed in the text with n = 6 to estimate the

area under the graph of y = sinx between x = 0 and x = π. (Hint:

Add up the areas of the appropriate rectangles.)

b) Identify the definite integral whose value is exactly the area consid-

ered in a).

2. a) Make a sketch of the area whose value is given by
∫ 3

1
1
t dt.

b) Approximate the area in a) by using approximating sums of rectan-

gles. Use n = 10.

3. Explain by geometric arguments why

a)
∫ 2

0
2t dt <

∫ 2

0
3t dt, and

b)
∫ 1

0
2t dt+

∫ 3

1
2t dt =

∫ 3

0
2t dt.
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IV.3 More Applications of Definite Integrals

IV.3.1 Riemann Sums

According to the discussion in Section 1.6, the definite integral
∫ b

a f(t) dt

is a well defined quantity that arises in the construction of antiderivatives

of a continuous function f . We then recognized that in the case f ≥ 0

the definite integral can be interpreted as a certain area. The important

fact to remember is that the definite integral arises as a limit of certain

approximating sums that are built up according to a rather simple precise

process from the given function f . Similar sums arise in numerous other

situations, and consequently these sums and their limits, that is, definite

integrals, have many significant applications.

Before looking at some more examples, let us first review the structure

of the approximating sums that one considers. In fact, it is convenient to

allow a bit more flexibility in these sums than what we had used earlier.

Instead of partitions of the interval [a, b] into equal pieces, one may choose

an arbitrary partition Pn given by a = t0 < t1 < ... < tn−1 < tn = b,

where the points t0, t1, ..., tn are not necessarily evenly spaced. In order

to control the differing sizes of the intervals [tj−1, tj ], one introduces the

“norm” ‖Pn‖ = max{|tj+1 − tj | , j = 0, ..., n − 1} of a partition Pn. The

approximation will then involve a sequence {Pn, n = 1, 2, 3, ...} of partitions
with ‖Pn‖ → 0 as n → ∞. Next, one chooses “sampling” points t∗j ∈
[tj , tj+1] for j = 0, ..., n − 1. For a function f : [a, b] → R one can then

consider the sum

Sn = Sn(f,Pn, {t∗j}) =
n−1
∑

j=0

f(t∗j )(tj+1 − tj).

Such a sum is called a Riemann sum for the function f over the interval

[a, b]. Note that the approximating functions Fn that we considered in Sec-

tion 1 involve special sums of this type, where all the intervals [tj , tj+1]

have equal length ∆nt = (b − a)/n, and the sampling points t∗j were cho-

sen to be the left endpoint tj of the interval. In the case f ≥ 0 one can

again interpret a Riemann sum as the sum of the areas of (thin) rectangles

whose union approximates the area under the graph of f ; in contrast to the

earlier case, the rectangles may have varying widths, and their heights do

not necessarily match the value of the function at the left endpoint of the

corresponding interval. (See Figure IV.12.)

Based on this geometric interpretation it thus appears plausible that

these more general Riemann sums will still approach the definite integral
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a = t0 t1

t0

t5
∗ t7 = 6t3 t4 t5

= t6= t2

∗ t2
∗

t1
∗

t3
∗

t4
∗

t6
∗

Fig. IV.12 Geometric interpretation of a Riemann sum.

of f over the interval [a, b] as ‖Pn‖ → 0, i.e., as the maximal width of all

the thin rectangles goes to zero. In the next section we shall formulate the

relevant precise limit theorem and discuss the formal properties of definite

integrals. In the remainder of this section we will discuss several examples

to illustrate how these approximating sums and definite integrals arise in a

variety of situations.

IV.3.2 Areas Bounded by Graphs

We begin by considering some geometric problems.

Example. Determine the area enclosed by the x− axis and the graph

of sinx between x = 0 and π. (See Figure IV.13.)

The relevant area is given by
∫ π

0 sin t dt. Since the sine function has the

antiderivative F (t) = − cos t, and since its derivative D(sin)(t) = cos t is

bounded, Theorem 1.1 applies. Hence
∫ π

0

sin t dt = − cos(π)− [− cos(0)] = 1 + 1 = 2.

Example. Determine the area of the shaded region in Figure IV.14.

The area of interest is given by the area of the rectangle with vertices

at (−2, 0), (2, 0), (2, 4), (−2, 4) minus the area bounded by the x−axis and

the graph of y = x2 between x = −2 and x = 2. Hence

Area (R) = 4 · 4−
∫ 2

−2

x2 dx.
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0.6
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1

0
1 2

y = sin x

x

3 π

Fig. IV.13 Area under the graph of y = sinx.

4

3

2

1

−1 1 2

(2,4)(−2,4)

−2
0

y = x2

Fig. IV.14 Area inside a parabola.

By the result in Section 2.3 the area under the parabola, i.e.,
∫ 2

0 x2 dx,

equals 1
3 ×Area rectangle = 1

3 (2 · 4) = 8
3 . By symmetry,

∫ 0

−2
x2 dx = 8

3 as

well, so that
∫ 2

−2

x2 dx =

∫ 0

−2

x2 dx+

∫ 2

0

x2 dx =
8

3
+

8

3
=

16

3
.

It follows that Area (R) = 16− 16
3 = 2

3 × 16 = 32
3 .
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IV.3.3 Volume of a Sphere

Consider a solid ball of radius R, say R = 10 cm, and cut it in half. Next,

cut one of the halves into 100 very thin slices each 1 mm thick, with all cuts

being parallel to the first cut. Place the stack of slices flat on the table.

(See Figure IV.15.)

12 slices

Fig. IV.15 Half sphere approximated by a stack of slices.

Each slice looks like a thin disc of a certain radius r and thickness 1/10

cm, so its volume is approximately 0.1πr2 cm3. The volume of half the ball

is approximately equal to the sum of the volumes of these 100 slices. In

order to keep track of the varying radius, we number the slices, starting

with 0 from the bottom. The jth slice is at height tj = j × 10/100 =

j/10, so its radius rj satisfies t2j + r2j = 102, i.e., r2j = 100 − t2j , for j =

0, 1, 2, ..., 99.Adding up these volumes, we obtain an estimate for the volume

V1/2 of half the ball, that is,

V1/2 ≈
99
∑

j=0

π(100− t2j)
1

10
=

99
∑

j=0

π(100− t2j)∆nt.

We recognize that this sum is a Riemann sum for the integral
∫ 10

0

π(100− t2)dt.

In order to determine its value, note that the function f(t) = π(100− t2) is

a polynomial with antiderivative F (t) = π(100t− t3/3). We therefore can

apply Theorem 1.1 to obtain

V1/2 =

∫ 10

0

π(100− t2)dt = F (10)− F (0) = π
2

3
103.
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The volume V of the whole ball therefore is 2×V1/2 = 4
3π10

3.All this works

just as well in the case of arbitrary radius R, in which case the result is

V =
4

3
πR3.

Note that the sphere is obtained by rotating a semi circle, i.e., the graph

of y =
√
R2 − x2, around its diameter. A completely analogous process by

“slicing” can be applied to the “solid of revolution” obtained by revolving

the graph of any function y = f(x) ≥ 0, as follows. (See Figure IV.16.)

y

a
xb

∆x

y = f (x )

Fig. IV.16 A solid of revolution with one thin slice.

The volume of a thin slice at the point xj is approximately π[f(xj)]
2 ·∆x.

Adding up all the volumes of the thin slices gives a Riemann sum

S(π[f(x)]2,P) =
∑

j

π[f(xj)]
2 ∆x

which approximates the definite integral

V =

∫ b

a

π(f(x))2 dx.

This formula thus gives the volume of such a solid of revolution.

IV.3.4 Work of a Spring

Next we discuss an application that arises in the physical sciences. The

concept of “work” has a precise technical meaning in physics. In the sim-

plest setting, suppose you want to lift a box weighing p lbs to a height of
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d feet above ground.This requires some “work”, since you must overcome

the force of gravity. The weight in pounds is a measure of that force. In

this case the total work done in the lifting is measured by

W = p× d = force× distance foot-pounds.

This formula assumes that the force is constant along the path of motion.

Near the surface of the earth the gravitational force can be assumed con-

stant, but in the case where one considers the motion of a space ship, one

needs to take into consideration that the force changes in dependence of

the distance from the earth.

A variable force arises with a spring. According to Hooke’s law (see

also Section III.5.1), the force F (s) generated by a spring that has been

compressed (or stretched) by an amount s is proportional to s, at least for

small values of s. So F (s) = −ks, where the constant k > 0 depends on

the particular spring. (k is called the spring constant.) Small values of k

suggest a soft spring, while large values of k correspond to stiffer springs.

The minus sign reflects the fact that the force generated by the spring

points in the direction that is opposite to the direction of the displacement

of the spring.

In order to determine the work done by the force generated by the

spring as it is compressed by an amount d, we notice that for very short

displacements ∆s the force is close to constant. So we divide the interval d

into a large number n of small segments [0, s1], [s1, s2], ..., [sn−1, sn], each of

length ∆ns = d/n. For j = 1, ..., n, along the jth segment [sj−1, sj ] the force

is approximately F (sj), so the work done on that segment is approximately

Wj ≈ F (sj)(sj − sj−1).

The total work is then

W = W1 +W2 + ...+Wn ≈
j=n
∑

j=1

F (sj)∆ns.

Again, the last sum is recognized as a Riemann sum (with sampling points

given by the right endpoints of each small interval) which approximates a

particular definite integral. We thus define the work done by the variable

force F (s) from s = 0 to s = d by

W =

∫ d

0

F (s)ds.

In the simple case of a spring one has F (s) = −ks, so one obtains

W =

∫ d

0

−k s ds = −k
d2

2
,

where in the last equation we again have used Theorem 1.1.
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IV.3.5 Length of a Curve

Suppose a curve is described as the graph of the differentiable function f

defined on the interval [a, b]. In order to measure its length, we observe that

locally the graph is well approximated by short line segments, for example

pieces of the tangents. We use this fact to estimate the length of the curve

by considering the length of suitable approximating polygons that result

from a partition Pn of [a, b] into n equal pieces [t0, t1], [t1, t2], ..., [tn−1, tn],

each of length ∆nt = (b − a)/n, as shown in Figure IV.17.

L1 L2

L3

L4

a = t0 t1 t2 t3 t4 t5 t6 b = t7

L5

L6
L7

∆f

∆t

Fig. IV.17 Approximation of a curve by a polygon.

The length of the polygon shown in Figure IV.17 is given by the sum

of the lengths L0, ..., Ln−1 of the segments of the polygon. By Pythagoras

Theorem, it follows from Figure IV.17 that

L2
j = (∆t)2 + (∆f)2 = (tj+1 − tj)

2 + (f(tj+1)− f(tj))
2.

We now introduce the factorizations f(tj+1)− f(tj) = qj(tj+1)(tj+1 − tj),

so that

L2
j = [1 + (qj(tj+1))

2](∆nt)
2.

Since f is differentiable, qj is continuous at tj , so that qj(tj+1) ≈ qj(tj) =

D(f)(tj), for j = 0, 1, 2, ..., n − 1, with the approximations improving as

n → ∞, since then ∆nt = (b − a)/n → 0. It therefore seems reasonable

that

L2
j ≈ [1 + (f ′(tj))

2](∆nt)
2.

In fact, assuming that both |D(f)| and the second derivative
∣

∣D2(f)
∣

∣ of

f are bounded by a constant K over the interval [a, b], variations of the
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arguments used in Section 1 and estimates for the linear approximation for√
u can be used to prove that

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Lj −
n−1
∑

j=0

√

1 + (f ′(tj))2∆nt

∣

∣

∣

∣

∣

∣

≤ K∗ ‖Pn‖

for some other constant K∗. This shows that as n gets larger (i.e., Pn → 0),

the difference between the lengths
∑n−1

j=0 Lj of the approximating polygons

and the corresponding Riemann sums for the function
√

1 +D(f)2 goes to

zero. Since the polygons approximate the curve more and more closely, we

are led to define

L = Length of curve = lim
n→∞

n−1
∑

j=0

Lj

= lim
n→∞

n−1
∑

j=0

√

1 + (f ′(tj))2∆nt =

∫ b

a

√

1 + [f ′(t)]2 dt.

In simple cases, for example if the curve is a line segment (i.e. the graph

of a linear function), one can check that this formula indeed leads to the

familiar answer.

IV.3.6 Income Streams

The lottery agency announces that the jackpot is $100 million. Are you

really going to receive that amount if you hold the only winning ticket?

Probably not. For one, you will have to pay taxes, but let us ignore that

aspect. Reading the fine print reveals that the amount is going to be

paid out in 20 equal payments of $5 million each over the next 20 years.

Experience suggests that money today is more valuable than money a year

from now, so the value today of this sequence of payments is going to be less

than the full $100 million today. We shall now express the “present value”

of this income stream as a certain Riemann sum that in turn approximates

a corresponding definite integral.

Let us assume that interest is calculated by continuous compounding

at an annual rate r. In order to receive $5 millions k years from now, one

would need to invest today an initial amount of A(k) millions that satisfies

the relationship A(k)erk = 5. We can solve for

A(k) = 5e−rk.
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This formula gives today’s value A(k) (in millions) of $5 million k years

from now. In general, the value today of A dollars at some future time t

years from now is

A(t) = Ae−rt.

So today’s value of the lottery winning (assuming that the first $5 million

is paid out at the end of the first year), is given by

V20 = A(1) +A(2) + ...+A(20) =
20
∑

k=1

5e−rk.

The lottery agency may pay out the winnings in monthly installments

of 5/12 millions per month. Now there are 12 × 20 = 240 months, and

the monthly interest rate is r/12. Hence today’s value of $5/12 millions

k months from now is given by $5/12 e−
r
12

k. Today’s total value of the

monthly income stream therefore equals

V240 =

240
∑

k=1

5

12
e−

r
12

k.

This looks similar to an approximating Riemann sum. To identify the cor-

responding definite integral, note that the interval [0, 20] has been divided

into 240 intervals of equal length ∆t = 1/12. The right endpoint of the kth

subinterval is given by the point tk = k 1
12 . Hence we can rewrite the above

sum as

V240 =

240
∑

k=1

5e−r·tk∆t.

We now recognize that this expression is as a Riemann sum for the function

f(t) = 5 e−rt over the interval [0, 20]. By shortening the payout period even

more, say to one day, one would get another Riemann sum, and so on. In

the limit, one gets a “continuous” income stream, in which money is paid

out each moment. Today’s value Vc of the latter income stream is given by

the definite integral

Vc =

∫ 20

0

5e−rtdt.

With the help of a calculator one can explicitly evaluate the Riemann sums

to obtain approximations for Vc. On the other hand, Theorem 1.1 again

provides the exact answer more easily. In fact, the function f(t) = 5e−rt
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has the antiderivative F (t) = 5e−rt/(−r), whose second derivative F ′′(t) =
(−r)5e−rt is bounded over any bounded interval. Consequently

Vc =

∫ 20

0

5e−rtdt = F (20)− F (0)

= 5
1

−r
[e−r20 − 1] =

5

r
(1− e−r20).

In order to get a numerical answer, let us assume that the interest rate is

4%, i.e., r = 0.04. One then obtains Vc = 5(1−e−0.8)/0.04 ≈ 68.8. By using

this value for Vc one can estimate today’s value V20 of the annual payout

stream to be approximately $69 millions, assuming a constant interest rate

of 4% over the next 20 years. So the advertised jackpot of $100 million

really is worth—today—only about 2/3 of that amount.

IV.3.7 Probability Distributions

In probability theory one studies how a particular numerical quantity (e.g.,

the height of individuals in centimeters) is distributed over a given popula-

tion. A common graphical presentation of the data is given by a so-called

“histogram”, as shown in Figure IV.18.

110

1

2.5

%

120 130 140 150 160 170 180 190 200 210

Fig. IV.18 Distribution of height among a population.

The area of each vertical box indicates the percentage of the total pop-

ulation whose height in cm falls within the interval given by the base of the

box. For example, the vertical box over the interval [150, 160] has height

2.5, so its area is 2.5 · 10 = 25. This means that 25% of the population

under consideration has height between 150 cm and 160 cm. On the other

hand, we see that only 9% of the population has height between 180 cm and

190 cm. The length of the intervals may be shortened to refine the details
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about the distribution of height.

The upper boundary of the histogram approximates a curve which is

the graph of a function p that is known as the probability density function

for the distribution. (See Figure IV.19.)

y 
= 

p(
x )

Fig. IV.19 The histogram approximates the probability density function.

The density function p is defined by the property that the area under its

graph between two points a and bmeasures the percentage of the population

whose height h lies between a and b. Since that area is given by a definite

integral, one obtains that

percentage of population with a ≤ h ≤ b =

∫ b

a

p(x) dx.

We note that a histogram is just a graphical representation of a particular

Riemann sum for the integral
∫M

0
p(x) dx, where M is the maximal height

observed in the population. Since the whole population has height between

0 and M, one clearly must have
∫ M

0

p(x) dx = 100% (= 1 as numerical value).

An important probability density function is the normal density function

N(x) =
1√
2π

e−x2/2,

whose graph is the “bell shaped” curve shown below in Figure IV.20 that

describes the standard normal distribution with mean 0 and standard de-

viation 1. One can show that for M large (say M = 5) the integral
∫ M

−M

N(x) dx

is very close to 1. In fact, the limit as M → ∞ equals 1 exactly. This means

that essentially for the whole population the characteristic measured by x

falls within the interval [−M,M ] when M is large.
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Fig. IV.20 Graph of the standard normal distribution function.

Those familiar with normal distributions may recall the rule of thumb

that about 68% of the population falls within one standard deviation of the

mean, and that about 95% falls within two standard deviations. Since the

standard normal distribution has standard deviation 1 and mean 0, these

statements are equivalent to
∫ 1

−1

1√
2π

e−x2/2 dx ≈ 0.68 and

∫ 2

−2

1√
2π

e−x2/2 dx ≈ 0.95 .

IV.3.8 Exercises

1. For each part below, make a sketch of the area that is described and

identify a definite integral whose value equals that area. Do not attempt

to determine the value.

a) The area bounded by the x−axis, the graph of f(x) =
√
x, and the

line x = 4.

b) The area under the graph of y = lnx between x = 1 and x = 5.

c) The area that is enclosed by the graph of g(x) = x2 − x− 2 and the

x-axis.

d) The area bounded by the line x = −3, the coordinate axes, and the

graph of f(x) = 2−x.

2. By rotating the segment of the line y = 1
2x between x = 0 and x = 4

around the x-axis one generates a circular cone C.

a) Make a sketch that illustrates the cone that is generated.

b) Determine a definite integral whose value equals the volume of the

cone.

c) Evaluate the definite integral in b) (Hint: Use the results obtained

in Section 2.3. concerning the area under a parabola.)
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d) Generalize the procedure in parts a) - c) to determine the formula for

the volume of a circular cone of height h and whose base is a circle

of radius r.

3. A weight of 10 lbs is attached to a spring suspended from a hook. As a

consequence, the spring stretches by 9 inches. Assume that Hooke’s law

holds.

a) Determine the value of the spring constant k in lbs/ft.

b) Determine a definite integral whose value equals the work (in ft-lbs)

that has been done by the weight.

c) Evaluate the definite integral in b).

4. a) Use the formula given in the text for the length of the graph of a

function in order to find the length of the line segment from the

point (0, 1) to the point (5, 2). (Hint: What is the function whose

graph contains the line segment?)

b) Identify an explicit definite integral whose value gives the length of

the parabola y = x2 between 0 and s. (Do NOT try to evaluate!)

5. Identify a definite integral whose value equals the length of the upper

half of the circle of radius 10 centered at the origin. (Hint: Find a

function whose graph is the given curve.)

6. Consider the lottery income stream discussed in the text. Assume an

annual interest rate of 6%. Use a calculator to evaluate today’s value

of the income stream if $5 million is paid out at the end of each of the

next 20 years by adding up the appropriate sum. Compare your answer

with the estimate given via definite integrals according to the process

discussed in the text.

IV.4 Properties of Definite Integrals

IV.4.1 Riemann Integrable Functions

In the preceding section we considered several applications where definite

integrals arise naturally. Let us now discuss the relevant concept more

precisely. We consider a bounded function f on an interval [a, b]. As was

mentioned in the preceding section, a partition Pn, described by a = t0 <

t1 < ... < tn = b, and a choice of sampling points t∗j ∈ [tj−1, tj ], determine
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a Riemann sum

S(f,Pn, {t∗j}) =
n−1
∑

j=0

f(t∗j )(tj+1 − tj)

for the function f , which is an approximation for a definite integral. The

type of limit that needs to be considered in this more general setting is

somewhat more complicated than in the case when all small intervals in the

partition have equal length. We must ensure that even when the lengths

differ among the intervals, in the limit the intervals have to shrink down to

a point in a “uniform” way. This is made precise by using the norm ‖Pn‖
of the partition Pn, defined as the maximum of the length of the intervals

[tj , tj+1] in the partition, i.e.,

‖Pn‖ = max{|tj+1 − tj | , j = 0, 1, ..., n− 1̇}.

Definition 4.1. The function f is said to be Riemann integrable3 over the

interval [a, b] if

lim
‖P‖→0

S(f,P , {t∗j})

exists, independently of the particular choice of partitions and sampling

points.

Note that as ‖P‖ → 0, the number n of intervals in the partition must

necessarily get larger and larger, i.e., n → ∞. More precisely, the above

limit statement means that there exists a number L, so that all Riemann

sums will be within an arbitrarily small prescribed distance from L for all

partitions P whose norm ‖P‖ is sufficiently small, independently of the

choice of sampling points. We write symbolically that S(f,P , {t∗j}) → L as

‖P‖ → 0. As in other situations involving limits, the limit L is determined

uniquely in this case as well. (See Problem 1 of Exercise IV.4.4.)

As in Section 1, whenever the limit exists, its value L is called the

definite integral of f over [a, b], and it is denoted by

∫ b

a

f(t)dt = lim
‖P‖→0

S(f,P , {t∗j}).

3The name Riemann (B. Riemann, 1826 - 1866) distinguishes the particular notion
of integrable considered here from other more general notions of “integrable” used in
advanced mathematics.
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Once it is known that a function f is integrable over [a, b], then its definite

integral
∫ b

a
f(t)dt may be evaluated by choosing special sequences of con-

venient Riemann sums, for example, by the procedure discussed in Section

1 involving partitions into pieces of equal length, with the left endpoints

chosen as sampling points.

The following result identifies a large class of functions that are Riemann

integrable.

Theorem 4.2. Every function f that is monotonic (either increasing or

decreasing) over the interval [a, b] is Riemann integrable over that interval.

We shall prove this theorem in Section 6. Note that this result covers

most functions that we have encountered, as long as one restricts them to

appropriate intervals on which they are monotonic. For example, f(x) = xn

is monotonic on [0,∞), and consequently, by the theorem, f is Riemann

integrable over each interval [a, b] if 0 ≤ a < b. f is also monotonic on

(−∞, 0], so that f is integrable on [c, d] if c < d ≤ 0. By general proper-

ties discussed in the following section, it then follows that f is integrable

over each interval [c, b]; furthermore, by taking linear combinations it then

follows also that every polynomial is integrable over any closed bounded

interval.

More generally, one has the following theorem that extends Theorem 1.2

from the special partitions considered in that section to the more general

ones introduced here.

Theorem 4.3. If f is continuous on the closed and bounded interval [a, b],

then f is Riemann integrable over [a, b].

We shall prove this theorem in Section 6 under the additional hypothesis

that f is differentiable and its derivative D(f) is bounded on [a, b].

Remark. It is not necessary for a function to be continuous at all points

of the interval in order for it to be integrable. For example, an increasing

function (integrable by Theorem 4.2) may have jumps (i.e., simple discon-

tinuities) at many points. Also, the function f defined by f(x) = sin(1/x)

for x 6= 0 and f(0) = 0, is Riemann integrable over [0, 1], even though its

graph is pretty wild near x = 0 (take a look at it with a graphing calcula-

tor!). More generally, based on Theorem 4.3, it is quite easy to verify that

a bounded function g that is continuous on [a, b] except for finitely many

points, is integrable over [a, b]. In advanced mathematics one introduces

the technical concept of (Lebesgue) measure that generalizes the concept

of length of intervals to more general sets. For example, the measure of an
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interval [a, b] ⊂ R is equal to its length b − a, while the (infinite) set of all

rational numbers in R has measure zero! (Just another way of reminding

us that the rational numbers, although everywhere dense, are a negligibly

small subset of the real numbers.) One can then prove the following com-

plete characterization. A bounded function f is Riemann integrable over

[a, b] if and only if the set of points E ⊂ [a, b] where f is NOT continuous is

a set of “measure 0”.

IV.4.2 Basic Rules for Integrals

We now list some general rules that are very useful when working with

definite integrals. The relevant statements formalize several quite natural

properties, and they can be verified by routine, though somewhat tedious

and uninspiring, arguments. Typically, one verifies such a statement for

Riemann sums, and then one passes to the limit. In all statements we

assume that the given functions are integrable over the relevant intervals.

More precisely, in Rule i) we assume that the functions on the right side are

integrable over the relevant interval, and it then follows that the integral

on the left exists as well.

Rule 0) Constant function integral: If k ∈ R, then
∫ b

a k dt = k(b−a).

Rule i) Linearity:
∫ b

a
(cf(t)+dg(t))dt = c

∫ b

a
f(t) dt+d

∫ b

a
g (t) dt, where

c, d ∈ R are constants.

Rule ii) Monotonicity: If f(x) ≤ g(x) for all x ∈ [a, b], then

∫ b

a

f(t)dt ≤
∫ b

a

g(t)dt.

Rule iii) Additivity: If a < c < b, then
∫ b

a f dt =
∫ c

a f dt +
∫ b

c f dt.

More precisely, if the integral(s) on one side exist, so do the integral(s) on

the other side, and the equality holds.

Remarks. 1) It is convenient to define the definite integral
∫ b

a f(t) dt

also in the case b < a in such a way that Rule iii) continues to hold for

any three numbers a, b, c, regardless of their order. In particular, if one

wants Rule iii) to hold in all cases, taking a = b in Rule iii) leads to

0 =
∫ a

a
fdt =

∫ c

a
f(t)dt+

∫ a

c
f(t) dt. This suggests that one should define

∫ c

a

f(t) dt = −
∫ a

c

f(t) dt whenever c < a.
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One then checks that with this definition the Rule iii) holds for any three

numbers a, b, c. For example
∫ 1

4

x3dx =

∫ 0

4

x3dx +

∫ 1

0

x3dx.

2) Monotonicity implies the following “standard” estimates:

i) If f ≥ 0 on [a, b], then
∫ b

a f dt ≥ 0;

ii)

−
∫ b

a

|f | dt ≤
∫ b

a

f dt ≤
∫ b

a

|f | dt, and hence

∣

∣

∣

∣

∣

∫ b

a

f dt

∣

∣

∣

∣

∣

≤
∫ b

a

|f | dt ;

iii) If |f (x)| ≤ M on [a, b], then
∣

∣

∣

∣

∣

∫ b

a

f dt

∣

∣

∣

∣

∣

≤ M · (length of [a, b]).

IV.4.3 Examples

We consider a few examples.

a) Estimate
∫ 2

1
et

2

dt. Since e = e1 ≤ et
2 ≤ e4 for 1 ≤ t ≤ 2 one obtains

∫ 2

1

et
2

dt ≤ e4(2− 1) = e4.

Similarly, one also obtains e ≤
∫ 2

1
et

2

dt.

b) 0 ≤
∫ π/2

0 sin t dt ≤ 1 · π
2 .

c)
∫ π/2

−π/2 sin t dt =
∫ 0

−π/2 sin t dt +
∫ π/2

0 sin t dt

= −
∫ 0

−π/2

sin(−t) dt +

∫ π/2

0

sin t dt,

since sin t is an odd function, i.e., sin(−t) = − sin(t). By writing down

approximating Riemann sums and rearranging the order of the summands,

or by looking at the areas (see Figure IV.21) one readily sees that
∫ 0

−π/2

sin(−t) dt =

∫ π/2

0

sin t dt.

Consequently
∫ π/2

−π/2

sin t dt = 0.4

4Of course this follows more directly by applying Theorem 1.1.
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1

0.8

0.6

y = sin(−t ) y = sin t

0.4

0.2

−0.5 0.5 1 1.5−1−1.5

Fig. IV.21 The area on the left obtained by reflection equals the area on the right.

d) Determine
∫ 5

0 4f(t) dt if
∫ 6

0 f(t) dt = 5 and
∫ 6

5 f(t) dt = 2. By

additivity,

5 =

∫ 6

0

f(t) dt =

∫ 5

0

f(t) dt+

∫ 6

5

f(t) dt =

∫ 5

0

f(t) dt+ 2;

hence
∫ 5

0
f(t) dt = 5− 2 = 3, and by linearity it then follows that

∫ 5

0

4f(t) dt = 4

∫ 5

0

f(t) dt = 4 · 3 = 12.

IV.4.4 Exercises

1. Show that if a function f is Riemann integrable over [a, b], then the limit

L that appears in the definition is determined uniquely. Complete the

following steps.

a) Suppose L1 and L2 are two limits of S(f,P , t∗) as ‖P‖ → 0. Show

that for each n ∈ N, there is Pn with sufficiently small norm, so that

|S(f,Pn, t
∗)− Lj| < 1/2n for j = 1 and 2.

b) Use a) and the triangle inequality to conclude that |L1 − L2| < 1/n

for each n.

c) Explain why b) implies that L1 = L2.

2. a) Find lower and upper bounds for the definite integrals
∫ 2

1
1
t dt and

∫ 3

2
1
t dt.

b) Use the estimates in a) and the additivity of the integral to verify

that

1

2
+

1

3
≤
∫ 3

1

1

t
dt ≤ 1 +

1

2
.
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c) Use the process used in a) and b) to obtain lower and upper bounds

for
∫ n

1
1
t dt, where n is a positive integer.

3. Suppose
∫ 6

1 f(t)dt = 4 and
∫ 6

3 f(t)dt = 6. What is
∫ 3

1 f(t)dt?

4. a) Which of the integrals
∫ 1

0
(1 − t)dt and

∫ 1

0
e−tdt is the larger one?

b) Compare
∫ 0

−1
(1− t)dt and

∫ 0

−1
e−tdt. Which one is larger?

c) Make a sketch that shows appropriate areas in order to illustrate the

answers in a) and b).

5. Explain why
∫ 2π

0 sin t dt = 0 by using properties of definite integrals.

(Hint: Use sin(π + t) = − sin t for t ∈ [0, π].

6. Explain why
∫ 1

0 x3dx >
∫ 1

0 x4dx.

7. a) Estimate
∫ 3

1
ln t dt by using the standard estimate for integrals.

b) Improve your estimate in a) by using
∫ 3

1
ln t dt =

∫ 2

1
ln t dt+

∫ 3

2
ln t dt.

c) Repeat the process used in b) to obtain lower and upper bounds for
∫ n

1 ln t dt, where n is a positive integer.

IV.5 The Fundamental Theorem of Calculus

The essential features of the inverse relationship between differentiation and

integration were already described in Section 1. Here we summarize these

results and provide relevant proofs.

IV.5.1 The Derivative of an Integral

Recall from Section 1 that definite integrals came up naturally in the con-

struction of antiderivatives. More precisely, the procedure developed in

that section suggested that—under suitable hypothesis—the function F

defined by F (x) =
∫ x

a
f(t) dt should be an antiderivative of f . Assuming

the existence of the definite integral, we shall now see how the basic rules

for definite integrals listed in the previous section allow us to justify quite

easily this most important result that provided the motivation for introduc-

ing the approximating sums that eventually led to the concept of definite

integral.

Theorem 5.1. (Fundamental Theorem of Calculus, Part I) If f is

continuous on the interval I and a ∈ I, then the function F defined by

F (x) =

∫ x

a

f(t) dt
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is an antiderivative of f on the interval I, i.e., F is differentiable and

D(F )(x) = f(x) for x ∈ I.

Proof. In order to prove this result, recall from Section II.3.3 that F is

differentiable at the point c if there exists a factorization

F (x) − F (c) = qc(x)(x − c), (IV.6)

where qc is continuous at c, or, equivalently, if limx→c qc(x) exists. One

then has D(F )(c) = qc(c) = limx→c qc(x).

From the definition of F and the additivity of the integral it follows that

F (x)− F (c) =

∫ x

a

f(t) dt−
∫ c

a

f(t) dt

=

∫ x

c

f(t) dt.

If we assume f(t) ≥ 0 and x > c, and set h = x − c > 0, the last integral

can be visualized by the darker shaded area shown in Figure IV.22. This

f (t∗)

y = f (t )

F(c)

a c x t

h

t∗

Fig. IV.22 Geometric representation of F (x)− F (c) and f(t∗)(x − c).

suggests that this shaded area is equal to the area f(t∗)(x−c) of a rectangle

with base (x−c) and height f(t∗) for an appropriate value t∗ in the interval

[c, x]. So the factor qc(x) is given by f(t∗), and since f is continuous at c,
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it follows that limx→c qc(x) = limt∗→c f(t
∗) = f(c). This simple geometric

argument captures the main idea of the proof of the theorem.

For completeness, let us turn this intuitive geometric argument into a

precise proof. We introduce f(t) = f(c)+ [f(t)−f(c)] into the integral and

use linearity to obtain
∫ x

c

f(t) dt =

∫ x

c

f(c)dt+

∫ x

c

[f(t)− f(c)] dt

= f(c)(x− c) + g(x)(x − c)

= [f(c) + g(x)](x− c),

where for x 6= c the function g is given by g(x) =
∫ x

c
[f(t)− f(c)] dt/(x− c).

Therefore the factor qc in equation (IV.6) is given by qc(x) = f(c) + g(x).

By the basic estimate,
∣

∣

∣

∣

∫ x

c

[f(t)− f(c)]dt

∣

∣

∣

∣

≤ sup{|f(t)− f(c)| : |t− c| ≤ |x− c|} · |x− c| .

After dividing by (x− c) 6= 0 one obtains the estimate

|g(x)| ≤ sup{|f(t)− f(c)| : |t− c| ≤ |x− c|}.
Since f is continuous at c, this supremum goes to 0 as x → c. It follows

that limx→c qc(x) = f(c), and we are done. �

IV.5.2 The Integral of a Derivative

The Theorem we just proved solves the problem of constructing antideriva-

tives in the “abstract”, although it does not provide a practical tool for

finding explicit antiderivatives in concrete situations. On the other hand,

whenever one can find an explicit antiderivative of f by some other means,

say by inspection or by reversing the rules of differentiation, this informa-

tion can be used to evaluate definite integrals, as follows.

Theorem 5.2. (Fundamental Theorem of Calculus, Part II) Let f

be continuous on [a, b], and let G be any antiderivative of f. Then
∫ b

a

f(t) dt = G(b)−G(a).

Since f = D(G), this theorem says that
∫ b

a D(G)(t) dt = G(b) − G(a).

We had already proved this version in Sections 1.2 and 1.3 under some

additional restriction on D(G).

Proof. Since F (x) =
∫ x

a
f(t) dt and G are both antiderivatives of the

same function f, they differ by a constant C, i.e., F (x) = G(x) + C for
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all x ∈ [a, b]. (Recall Corollary III.2.3.) Since F (a) = 0, it follows that

G(a) + C = 0, i.e., C = −G(a). Therefore

∫ b

a

f(t) dt = F (b) = G(b) + C = G(b)−G(a).

�

IV.5.3 Some Examples

In Section 3 we had already used a version of Theorem 5.2 to evaluate

definite integrals in special cases. For example, the area enclosed by the

x−axis and the graph of y = sinx between 0 and π is given by
∫ π

0 sinx dx.

Since − cosx is an antiderivative of sinx, the answer is given by
∫ π

0

sinx dx = − cos(π)− (− cos 0) = 1 + 1 = 2.

Remark on notation. If G is a function defined on the interval [a, b],

we introduce the notation

[G]ba = G
∣

∣

b
a = G(b)−G(a).

Evaluation of definite integrals via antiderivatives is then written compactly

as in the following examples.

∫ π/2

0

cos t dt = sin t
∣

∣

∣

π/2
0 = sin

π

2
− sin 0 = 1, and

∫ 2

1

(4x3 − 3x)dx = [x4 − 3

2
x2]21 = (16− 3

2
4)− (1− 3

2
) = 10

1

2
.

Warning. Here, as well as in most analogous evaluations of definite

integrals, one must be very careful with the signs. It is safest to use brackets

to enclose all terms that need to be subtracted.

By using this notation, the evaluation of the volume of a sphere of radius

R (see Section 3.3) is obtained in compact form as follows:

V = 2 ·
∫ R

0

π(R2 − t2) dt

= 2π[R2t− t3/3]R0 = 2π[(R3 −R3/3)− 0]

= 2π(
2

3
R3) =

4

3
πR3.
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Example. We had also seen that the area of a disc of radius R is given

by

A = 4

∫ R

0

√

R2 − t2dt.

In this case we encounter a major difficulty, since there is no simple way

to identify an antiderivative of
√
R2 − t2. In particular, it is not at all

evident from this formula how the number π makes its appearance in the

(known) answer A = πR2. We will determine an appropriate antiderivative

in Section 7.3.

Further examples are found in the exercises.

IV.5.4 Exercises

1. Find the derivative of the following functions.

a) F (x) =
∫ x

1 cos(t2 + 1)dt; b)G(x) =
∫ x3

1 cos(t2 + 1)dt;

c) L(s) =
∫ s

1
dt
t . (Hint: In b), write G as the composition of two

functions.)

2. a) Find the derivative of q(x) =
∫ 0

x

√
t4 + 1dt;

b) Find the derivative of G(x) =
∫ 0

−x f(t) dt;

c) Find the derivative of S(x) =
∫ x

−x
f(t) dt.(Hint: Begin by writing the

integral as a sum of two simpler integrals.)

(Assume f continuous in b) and c).)

3. Evaluate the definite integrals

a)
∫ 3

1 2t dt; b)
∫ 1

−1 x
6 dx; c)

∫ π/2

−π/2 cos t dt; d)
∫ 4

0

√
xdx.

4. Find the area bounded by the graph of y = 1/x and the x−axis between

x = 1 and x = e.

5. The graph of f(x) = x2 between 0 and 2 is rotated around the x−axis.

a) Make a sketch of the solid that is enclosed by this process.

b) Find the volume of the solid.

6. Consider the same graph as in Problem 5, but rotate it around the

y−axis. The solid obtained is called a paraboloid. Find its volume.

(Hint: Replace the variables x and y to transform the problem into the

setting of solids of revolution considered in Section 3.3.

7. The continuity of f is necessary in Part I of the Fundamental Theorem

of Calculus. Consider the function defined by

f(t) = −1 for t < 0, f(0) = 0, f(t) = +1 for t > 0.
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a) Sketch the graph of f. Where is f continuous? Where not?

b) Define H(x) =
∫ x

0
f(t) dt. Explain why H(x) = |x| for all x.

c) Note that H is not differentiable at 0. (Why?) Show that H ′(x) =

f(x) for all x 6= 0.

8. Find a simple formula for
∫ x

0
df
dt dt in terms of the function f. (Assume

f ′ is continuous.)

IV.6 Existence of Definite Integrals

In this section we shall prove the basic existence theorems for definite in-

tegrals that we had announced in Section 4. The proofs are a little bit

technical, and the reader who is eager to proceed may very well skip this

section.

IV.6.1 Monotonic Functions

We first prove Theorem 4.2, which states that monotonic functions (ei-

ther increasing or decreasing) are Riemann integrable. The main point

of the proof is surprisingly simple. Let us assume that f is increasing

over [a, b]. (The case when f is decreasing is handled by a simple mod-

ification of the following arguments.) Suppose P = (t0, t1, ..., tn), where

t0 = a and tn = b, is an arbitrary partition of [a, b]. By using the

right endpoints as sampling points, we obtain the upper sum S(f,P) =
∑n−1

j=0 f(tj+1)(tj+1 − tj). Similarly, we introduce the corresponding lower

sum S(f,P) =
∑n−1

j=0 f(tj)(tj+1 − tj) by using the left endpoints. Given an

arbitrary choice {t∗j} of sampling points, since f is increasing, one clearly

has f(tj) ≤ f(t∗j ) ≤ f(tj+1), and consequently

S(f,P) ≤S(f,P , {t∗j}) ≤ S(f,P). (IV.7)

We then observe that S(f,P)−S(f,P) =
∑n−1

j=0 [f(tj+1)− f(tj)](tj+1 − tj).

Since f(tj+1)− f(tj) ≥ 0 for each j (f is increasing!), it follows that

0 ≤ S(f,P)−S(f,P) ≤





n−1
∑

j=0

[f(tj+1)− f(tj)]



 ‖P‖

where we have used that |tj+1 − tj | ≤ ‖P‖ . Finally notice that

n−1
∑

j=0

[f(tj+1)− f(tj)] = f(tn)− f(t0) = f(b)− f(a),
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since all other terms cancel. Therefore

0 ≤ S(f,P)−S(f,P) ≤ [f(b)− f(a)] ‖P‖ . (IV.8)

The estimates (IV.7) and (IV.8) establish the critical ingredients that follow

from the monotonicity of f. To complete the proof we need to find a number

L that is contained in each interval [S(f,P) , S(f,P)]

As we just saw, S(f,P) ≤S(f,P) for any partition P . We will show

below that, more generally, S(f,P) ≤S(f,Q) for any two partitions P and

Q of [a, b], that is, every lower sum is less than or equal to any upper sum.

It then follows that

sup{S(f,P) : P} ≤ inf{S(f,Q) : Q}.

By chosing partitions P with ‖P‖ → 0, the estimate (IV.8) shows that we

must have equality in the preceding inequality. In fact, given an arbitrary

positive integer n, choose a partition Pn with ‖Pn‖ < 1
n[f(b)−f(a)] . Estimate

(IV.8) then implies that 0 ≤ S(f,Pn)−S(f,Pn) < 1/n, and hence

0 ≤ inf{S(f,Q) : Q}− sup{S(f,P) : P} ≤ S(f,Pn)−S(f,Pn) < 1/n.

Since n is arbitrary, the desired equality follows.

Let L denote this common value

L = sup{S(f,P) : P} = inf{S(f,Q) : Q}.

Then S(f,P) ≤L≤S(f,P) for any partition P . By using estimates (IV.7)

and (IV.8) one then obtains

∣

∣S(f,P , {t∗j})− L
∣

∣ ≤ S(f,P)−S(f,P)

≤ [f(b)− f(a)] ‖P‖ .

Since the term on the right clearly goes to 0 as ‖P‖ → 0 we have es-

tablished that lim‖P‖→0 S(f,P , {t∗j}) = L. So f is indeed integrable, with
∫ b

a f(t)dt = L.

In order to prove the estimate S(f,P) ≤S(f,Q) for any two partitions

P and Q, we first prove the following lemma.

Lemma 6.1. Suppose P# is obtained from the partition P by adding a

single point t# to P. Then

S(f,P) ≤ S(f,P#) ≤ S(f,P#) ≤ S(f,P).
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Proof. We shall prove the inequality on the right. The one on the left

follows by an analogous argument. If t# = tj for some j, then P# = P and

there is nothing to prove. So we may assume that there is an index j with

tj < t# < tj+1, so that the interval [tj , tj+1] decomposes into the intervals

[tj , t
#] and [t#, tj+1] in P#. We estimate the corresponding sum of the two

terms in the upper sum S(f,P#) as follows. Since f is increasing,

f(t#)(t# − tj) + f(tj+1)(tj+1 − t#)

≤ f(tj+1)(t
# − tj) + f(tj+1)(tj+1 − t#) = f(tj+1)[(t

# − tj) + (tj+1 − t#)]

= f(tj+1)(tj+1 − tj).

Since all other terms in S(f,P#) are identical to those in S(f,P), this

estimate implies the desired inequality in the Lemma.

Now suppose P and Q are any two partitions of [a, b]. We denote by

P ∪ Q the partition obtained by combining the points in P and Q. Note

that P∪Q is obtained from either P or Q by successive additions of finitely

many points one point at a time. Every time a point is added one can apply

the Lemma. It follows that

S(f,P) ≤S(f,P ∪ Q) ≤S(f,P ∪ Q) ≤S(f,Q) ,

which implies the desired estimate S(f,P) ≤S(f,Q). �

IV.6.2 Functions with Bounded Derivatives

Finally we prove Theorem 4.3 in the following slightly weaker form.

Theorem 6.2. Suppose f is differentiable on the interval I and that its

derivative D(f) is bounded over the interval [a, b] ⊂ I. Then f is Riemann

integrable over [a, b].

While this version of Theorem 4.3 does not cover all continuous func-

tions, it is quite sufficient for most applications. Recall, for example, that

all algebraic functions defined on an interval I satisfy the above hypoth-

esis. Furthermore, all elementary transcendental functions that we have

encountered, as well as any standard combinations of them, will also sat-

isfy this hypothesis. Continuous functions that are not differentiable, or

whose derivatives are not bounded on closed bounded intervals, are indeed

quite rare. Furthermore, simple examples such as f(x) = |x| can be han-

dled, for example, by splitting up an interval [−2, 3] into [−2, 0] ∪ [0, 3],

so that the hypotheses of the Theorem are now satisfied on each subinter-

val. Also, this function is monotonic on each of these subintervals, so its

integrability also follows from Theorem 4.2.



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 302

302 What is Calculus? From Simple Algebra to Deep Analysis

Proof. As we saw in the proof of the integrability of monotonic functions,

a key step is to introduce appropriate upper and lower sums S and S

corresponding to a partition P , so that the difference S − S can be readily

estimated by ‖P‖. Since f is in particular continuous on [a, b], and hence

also on each subinterval [tj , tj+1] of the partition P , we can use the fact

that f takes on both a maximum and a minimum on each such interval

(Theorem II.4.6 ). Therefore, for each j = 0, 1, ..., n− 1 there are numbers

mj and Mj ∈ [tj , tj+1] so that

f(mj) ≤ f(t) ≤ f(Mj) for all t ∈ [tj , tj+1].

We then define the lower sum S(f,P) =
∑n−1

j=0 f(mj)(tj+1 − tj) and the

upper sum S(f,P) =
∑n−1

j=0 f(Mj)(tj+1 − tj). Note that this naturally

generalizes upper and lower sums for monotonic functions, in which case

the maxima and minima occurred at appropriate endpoints of the intervals.

Clearly one has, as in the monotonic case, that

S(f,P) ≤S(f,P , {t∗j}) ≤ S(f,P).

for any choice of sampling points {t∗j}. Furthermore, a simple modification

of the proof of Lemma 6.1 yields the conclusion that S(f,P) ≤S(f,Q) for

any two partitions P , Q in this case as well. (See Problem 1 of Exercise

IV.6.3.)

The crux of the matter is then an estimation of S(f,P) − S(f,P), as

follows. Clearly one has

0 ≤ S(f,P)− S(f,P) ≤
n−1
∑

j=0

|f(Mj)− f(mj)| (tj+1 − tj). (IV.9)

Given a bound |D(f)(x)| ≤ K for all x ∈ [a, b] for the derivative of f ,

the Mean Value Inequality (Theorem III.2.1) implies that

|f(Mj)− f(mj)| ≤ K |Mj −mj | ≤ K |tj+1 − tj | ≤ K ‖P‖ . (IV.10)

Inserting (IV.10) into (IV.9) shows that

S(f,P)− S(f,P) ≤K ‖P‖
n−1
∑

j=0

(tj+1 − tj) = K ‖P‖ (b − a).

One therefore has all the essential ingredients to complete the proof as in

the case of monotonic functions. �
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IV.6.3 Exercises

1. Suppose the partition P# is obtained from P by adding a single point.

By suitably modifying the proof of Lemma 6.1 verify that S(f,P) ≤
S(f,P#) and S(f,P#) ≤ S(f,P) for any continuous function f .

2. Carefully complete the proof of Theorem 6.2 by using the estimates

obtained in the text.

IV.7 Reversing the Chain Rule: Substitution

In Section III.2.3 we had already collected a few formulas for antiderivatives

that were obtained by simply reversing basic rules for differentiation. The

reader should review those formulas at this point.

IV.7.1 Integrals that Fit the Chain Rule

We now turn to the chain rule, one of the most important formulas for

differentiation. Unfortunately, there is no simple way to invert the chain

rule in all cases, that is, even if we know antiderivatives of f and g, in

general there is no way to express
∫

(f ◦ g)(t) dt =
∫

f(g(t)) dt in terms of

F =
∫

f and G =
∫

g. Instead, in order to invert the chain rule, one must

start with a function that has a special structure. With F =
∫

f , recall

that the chain rule states that

D(F ◦ g)(t) = D(F )(g(t)) ·D(g)(t) = f(g(t)) · g′(t).

To gain greater clarity, we introduce the variable u for the input into the

function F, and we note that D(F )(u) = f(u).The formula above can be

read to state that F ◦ g is an antiderivative of the function F ′(g(t)) · g′(t) =
[(f ◦ g) · g′](t), i.e.,

∫

f(g(t) ) · g′(t) dt = F (g(t)), where F (u) =

∫

f(u) du. (IV.11)

There is a very useful notational device that helps to remember this relation-

ship, and that provides a straightforward mechanism for implementation.

Formally, the notation g′(t) = dg
dt can be rewritten in the form dg = g′(t)dt,

which states that the “differential” dg of the function g is given by multi-

plying the differential dt of the variable t by g′(t). Therefore the integral on
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the right side in (IV.11) is transformed into the one on the left by simply

substituting u = g(t) and du = g′(t)dt, i.e.,

F (u) =

∫

f(u) du =

∫

f(g(t) ) · g′(t) dt = F (g(t)), where u = g(t).

(IV.12)

This “inverse” of the chain rule is also known as “integration by substitu-

tion”, or simply as “substitution formula”. The name refers to the fact that

formal substitution of u = g(t) transforms the expression on the left side of

(IV.12) into the expression on the right side. It is important to remember

that the substitution must occur not only in F (u) and f(u), but also in

the term du, which accounts for the extra factor g′(t). So, when looking for

antiderivatives of functions that involve a composition f ◦ g, the additional

factor g′ must be present in order to apply the formula above.

IV.7.2 Examples

1. The antiderivative
∫

cos(t2) dt, involves the composition of cosu with

u = g(t) = t2, but there is no factor g′(t) = 2t. So the above formula

cannot be applied, at least not in an obvious way. On the other hand,

cos(t2)(2t) has the appropriate structure, and therefore
∫

cos(t2)(2t) dt =

∫

cos(g(t)) g′(t) dt =

∫

cosu du

= sinu = sin(g(t)) = sin(t2).

2.
∫

(x4 + 3)5 dx also does not fit the structure. In this case one could

proceed differently: simply expand (x4+3)5 algebraically into a polynomial,

whose antiderivative is then easy to find.

In contrast,
∫

(x4 +3)5(4x3) dx is of the form
∫

f(g(x)) · g′(x) dx, where
u = g(x) = x4 + 3, f(u) = u5. It follows that

∫

(x4 + 3)5(4x3) dx =

∫

u5du =
u6

6
=

1

6
(x4 + 3)6.

Sometimes the given function differs from the appropriate structure

only by a constant factor. This situation can easily be corrected because
∫

c f(x) dx = c
∫

f(x) dx for c ∈ R.

Example.
∫

ek tdt =
∫

f(g(t)) dt, with f(u) = eu and u = g(t) =

kt.The missing factor g′(t) = k is constant, so we note that if k 6= 0, then
∫

ekt dt =

∫

1

k
(kekt) dt =

1

k

∫

ektk dt

=
1

k

∫

eudu =
1

k
eu =

1

k
ekt.
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Similarly
∫

et
2

t dt =
1

2

∫

et
2

2t dt =
1

2

∫

eg(t) g′(t) dt,

where u = g(t) = t2.Hence
∫

et
2

t dt =
1

2

∫

eudu =
1

2
eu =

1

2
et

2

.

One also shows by substitution that if F (x) =
∫

f(x) dx, then for any

constant c 6= 0 one has
∫

f(cx)dx =
1

c
F (cx).

We emphasize once again that the technique used in the preceding ex-

amples only works for constant factors. If the “missing” factor explicitly

involves the variable of integration, there is usually no procedure to correct

the matter.

IV.7.3 Changing Integrals by Substitution

So far we have used the substitution formula to find antiderivatives of ex-

pressions that fit the left side of equation (IV.11), thereby reducing to the—

hopefully—simpler antiderivative on the right side. But if presented with

the problem of finding an explicit formula for an antiderivative
∫

F (u)du

in the case where there is no obvious known formula that gives the answer,

we can start on the left side in (IV.12), introduce a substitution with an

appropriate function u = g(t) of our choice, and then work with the re-

sulting integral on the right side of (IV.12). While this might appear to

complicate matters, we could in fact be lucky and obtain an expression on

the right side for which we can find an explicit antiderivative.

We illustrate the successful implementation of this method by working

through an important example that came up earlier. Recall from Section

2.4 that the area of a quarter of a disc of radius R is given by
∫ R

0

√

R2 − t2 dt.

In order to apply the Fundamental Theorem of Calculus to evaluate the

definite integral exactly, one needs to find an antiderivative of
√
R2 − t2.

This function, with g(t) = R2 − t2, does not fit into the left side of the

substitution formula (IV.11); furthermore, the missing term g′(t) = −2t is

not constant, and therefore it cannot just be introduced out of nowhere as
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in some of the examples we just considered. So we try the alternative and

view the given integral as the left side in the substitution formula (IV.12).

In order to be consistent with the earlier notation we replace t by u, and

we simplify by assuming R = 1 first. So we consider
∫

√

1− u2du.

The trigonometric identity 1− sin2 t = cos2 t suggests the substitution u =

sin t in order to eliminate the square root. We may restrict to 0 ≤ u ≤ 1,

and hence 0 ≤ t ≤ π/2. On this interval cos t ≥ 0, so that this substitution

gives
√

1− u2 =
√
cos2 t = cos t.

Since du = cos t dt, the substitution u = sin t leads to
∫

√

1− u2du =

∫

cos t · cos t dt =
∫

cos2 t dt.

The antiderivative on the right side is still not immediately visible in ex-

plicit form. Still, we managed to get rid of the square root. Armed with

trigonometric formulas, we can look for further modifications. One basic

trigonometric identity states cos(2t) = cos2 t − sin2 t. (This is a special

case of the addition formula for the cosine function.) Add the identity

1 = cos2 t+ sin2 t to the preceding equation to obtain 1 + cos 2t = 2 cos2 t,

that is

cos2 t =
1

2
(1 + cos(2t)).

We have thus eliminated the exponent 2 on cos2 t, ending up with a much

simpler function that we can easily handle. In fact, since
∫

cos(2t)dt =

1/2
∫

cos(2t)2dt = 1/2 sin(2t), it readily follows that

1

2

∫

[1 + cos(2t))]dt =
1

2
[t+

1

2
sin(2t)].

After using the trigonometric formula sin(2t) = 2 sin t cos t , we end up with
∫

√

1− u2du =
1

2
(t+ sin t cos t), where u = sin t.

In order to get the final answer in terms of u, we must reverse the sub-

stitution, that is, we must replace t on the right side by appropriate ex-

pressions in u. This is trivial for sin t = u, and we had already seen that

cos t =
√
1− u2. For t itself we need to introduce the inverse of the sine

function, i.e., t = arcsinu, which is defined for 0 ≤ u ≤ 1. (Recall Section
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I.5.4.). After expressing the right side above in terms of u, we get the

somewhat complicated and surprising formula
∫

√

1− u2du = F (u) =
1

2
(arcsinu+ u

√

1− u2).

The reader may wonder at this point whether what looks like “magic” in-

deed ends up with a correct result. However, one can verify the correctness

of the result by carefully applying the various rules of differentiation from

Sections II.6 and II.7. (See Problem 6 of Exercise IV.7.4 for more details.)

We can now evaluate the original definite integral exactly. Since

arcsin 0 = 0 and arcsin 1 = π
2 (think sinπ/2 = 1), it follows that

∫ 1

0

√

1− u2du = F (1)− F (0) =
1

2

π

2
− 0 =

π

4
,

which is indeed the expected value.

Finally, in the case of a disc of arbitrary radius R, we reduce
∫ √

R2 − u2du on the interval −R ≤ u ≤ R to the previous case by substi-

tuting u = Rs, du = Rds, resulting in
∫

√

R2 − u2du =

∫

√

R2 −R2s2Rds = R2

∫

√

1− s2 ds

= R2 1

2
(arcsin s+ s

√

1− s2) (substitute s =
u

R
)

= R2 1

2
(arcsin

u

R
+

u

R

√

1− u2

R2
).

It then follows that
∫ R

0

√

R2 − u2du = R2π

4
,

so that the area of the full disc is indeed πR2.

While this example turns out to be fairly complicated, it does illustrate

how the substitution technique may transform an apparently intractable

problem into one that can eventually be solved, although the solution may

involve unexpected new functions, such as the inverse sine function in the

case at hand.

IV.7.4 Exercises

1. Find the antiderivatives

a)
∫

x sin(x2) dx ; b)
∫

sinx 2cosx dx ; c)
∫

x
x2+1dx ;

d)
∫

(t4 + 1)10 t3dt .
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2. Find
∫

t√
t2+1

dt.

3. Evaluate
∫ π

0
cos(13x) dx.

4. a) Find the antiderivative
∫

sinx cos4 x dx.

b) Find the antiderivative
∫

sin3 x cos4 x dx.

(Hint: sin3 x = sinx sin2 x = sinx (1− cos2 x); now use variations of a)).

5. Find
∫

sin2 x cos3 x dx. (Hint: Modify the techniques used in 4.)

6. Verify by differentiation that F (x) = 1
2 (arcsinx + x

√
1− x2) is an an-

tiderivative of f(x) =
√
1− x2 on the interval (−1, 1). (Hint: See Sec-

tion II.6.5 for the derivative of y = arcsinx ; for the other part, use the

product rule from Section II.7.1 and the Chain Rule.)

IV.8 Reversing the Product Rule: Integration by Parts

IV.8.1 Partial Integration

Recall the product rule for differentiation

(f · g)′ = f ′ · g + f · g′

from Section II.7.1. Translating this formula to antiderivatives results in

the equation

f · g =

∫

(f ′g + fg′)dt =

∫

f ′g dt+

∫

fg′ dt.

After solving for the second integral on the right one obtains
∫

fg′ dt = fg −
∫

f ′g dt. (IV.13)

This formula shows how finding the antiderivative of a product can be

transformed into a different antiderivative problem if an antiderivative g =
∫

g′ of just one of the factors (g′ in formula (IV.13)) can be found, i.e.,

if one “integrates just a part”. This technique and the relevant formula

(IV.13) is known as “partial integration”, or also “integration by parts”.

Example. We consider
∫

xex dx. Since
∫

exdx = ex is known, we apply

formula (IV.13) by choosing g′ = ex and f = x, with f ′ = 1. One obtains
∫

xex dx =

∫

x (ex)′dx = xex −
∫

(x)′exdx

= xex −
∫

1exdx = xex − ex.
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One can check the answer by careful application of the known differentiation

rules, as follows.

[xex − ex]′ = (x)′ex + x(ex)′ − (ex)′

= 1ex + xex − ex

= xex.

Since we know the antiderivative
∫

x = x2/2, the partial integration formula

(IV.13) can also be applied by choosing g′ = x and f = ex, with g = x2

2

and f ′ = ex. The result is
∫

xexdx =
x2

2
ex −

∫

x2

2
exdx.

While this formula is indeed correct, it leads us to a more complicated

antiderivative than we started with. This clearly is not useful. Choices

need to be made, with an eye towards appropriate simplifications.

Example. A process similar to the preceding example, based on
∫

sin t = − cos t, leads to
∫

t sin t dt = t(− cos t)−
∫

1(− cos t) dt

= −t cos t+

∫

cos t dt

= −t cos t+ sin t.

Sometimes integration by parts needs to be repeated several times. For

example,
∫

x2ex dx = x2ex −
∫

2xex dx

= x2ex − 2

∫

xexdx

= x2ex − 2[xex −
∫

1exdx]

= x2ex − 2xex + 2ex.

Again, the answer could be checked by differentiation. It is clear that

repetition of this process allows us to determine explicitly
∫

xnexdx or
∫

xn sinx dx for any fixed positive integer n. On the other hand, the reader

should check that integration by parts is not helpful for finding the an-

tiderivative
∫ √

xex dx, no matter how the factors are chosen.
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IV.8.2 Some Other Examples

Another twist arises with
∫

cosx ex dx.Here the choice

g′ = ex , f = cosx, with g = ex and f ′ = − sinx,

leads to
∫

cosx exdx = cosx ex −
∫

(− sinx)ex dx

= cosx ex +

∫

sinx ex dx.

Repeating the process with the choices g′ = ex , f = sinx, with g = ex and

f ′ = cosx, results in

∫

sinx exdx = sinx ex −
∫

cosx ex dx.

Since we end up with the integral we started with, we seem to have gone

around in a circle. But careful attention to the signs shows that

∫

cosx ex dx = cosx ex + sinx ex −
∫

cosx exdx,

so that

2

∫

cosx exdx = cosx ex + sinx ex.

It follows that
∫

cosx exdx =
1

2
ex(cos x+ sinx).

Sometimes the product is not visible right away. For example,
∫

lnx dx

seems to involve only one function. Yet lnx = 1 · lnx, so that integration

by parts with g′ = 1, g = x, and f = lnx, f ′ = 1/x, leads to

∫

lnx dx = x lnx−
∫

x · 1
x
dx

= x lnx−
∫

1dx

= x lnx− x.
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IV.8.3 Partial Integration of Differentials

We had already seen the convenience of using differentials when we studied

integration by substitution. Similarly, the formula for integration by parts

is sometimes also written as a formula for differentials. In fact, this may

provide a useful way to remember the formula. By using the equations

df = f ′dt, and dg = g′dt, the integration by parts formula (IV.13) takes

the form
∫

f dg = fg −
∫

gdf.

This version of integration by parts provides an immediate solution for the

antiderivative of lnx considered earlier, as follows. By the above,
∫

lnx dx = lnx x−
∫

x d lnx,

and one then proceeds with the remaining integral as before by using

d lnx = dx/x.

One must be careful when streamlining the symbolic notation. It is easy

to overlook minor changes that can lead to major differences. For example,

if in the substitution formula
∫

(f ◦ g)dg =

∫

(f ◦ g)g′dt =
∫

f(u)du,with u = g(t),

the expression (f ◦ g)dg is erroneously contracted to fdg, one is led to
∫

f dg, which is the starting point for integration by parts.

IV.8.4 Remarks on Integration Techniques

Let us analyze the effect of applying different techniques to determine the

antiderivative
∫

sin t cos t dt.

i) Integration by parts with f ′ = cos t, f = sin t, g = sin t, g′ = cos t

gives
∫

sin t cos t dt = sin t sin t−
∫

sin t cos t dt.

After rearranging one gets

2

∫

sin t cos t dt = sin2 t,

so that
∫

sin t cos t dt =
1

2
sin2 t = F1.
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ii) Substitution with u = g(t) = cos t, g′(t) = − sin t leads to
∫

cos t sin t dt = −
∫

g(t) g′(t) dt

= −
∫

u du = −1

2
u2

= −1

2
cos2 t = F2.

iii) Using the trigonometric identity sin(2t) = 2 sin t cos t results in
∫

cos t sin t dt =
1

2

∫

sin(2t) dt

=
1

2

∫

(sinu )
1

2
du (substitute u = 2t, du = 2dt)

= −1

4
cosu = −1

4
cos(2t) = F3.

Note that the three answers all look different, yet they are all correct, as is

easily checked by differentiation. This apparent inconsistency is resolved by

recalling that antiderivatives are only determined up to a constant. Let us

therefore verify explicitly that any two of the solutions we obtained indeed

differ only by a constant. First,

F1 − F2 =
1

2
sin2 t− (−1

2
cos2 t)

=
1

2
(sin2 t+ cos2 t) =

1

2
· 1.

Next, by another trigonometric identity, cos(2t) = cos2 t − sin2 t, so that

(careful with the signs!)

F1 − F3 =
1

2
sin2 t− (−1

4
(cos2 t− sin2 t))

=
1

4
(sin2 t+ cos2 t) =

1

4
.

It then follows that F2 − F3 = F1 − F3 − (F1 − F2) is constant as well.

IV.8.5 A Word of Caution

The examples we discussed in the last two sections illustrate that explicit

calculation of antiderivatives is not as straightforward a process as taking

derivatives. Typically, it is not easy to recognize from the given problem

which particular technique should be applied. Also, it is usually not clear
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at the outset whether a chosen technique will indeed lead to some progress,

until one has worked out a fair amount of details. Consequently, finding

explicit antiderivatives requires combining certain general principles with

ingenuity, and it often involves trial and error. Traditional calculus courses

included a detailed and lengthy exploration of many variations of these

techniques in a variety of situations. Today’s powerful symbolic computing

software (such as Maple or Mathematica) can handle such computations

much more efficiently and quickly, allowing the student to focus on un-

derstanding the essential ideas rather than getting lost in a multitude of

special cases and techniques. Experience and practice are helpful, but there

are limits even for the most experienced mathematician, since a particular

problem may not have an explicit answer at all in terms of known functions.

So, no matter how hard one tries to apply known techniques and tricks, it

may all be of no use... .

IV.8.6 Exercises

1. Find explicit formulas for the antiderivatives

a)
∫

x cosx dx ; b)
∫

x2 cosx dx ; c)
∫

x3 exdx ; d)
∫

t 2t dt.

2. Find
∫

sin t et dt.

3. Find
∫

x2 lnx dx. (Hint: Compare with
∫

lnx dx in the text.)

4. Find an antiderivative of y = arcsinx as follows.

a) Apply integration by parts to
∫

arcsinx · 1 dx, with g′ = 1. (See

Section II.6.5 for the derivative of y = arcsinx.)

b) Use the substitution u = 1− x2 in the remaining integral.

IV.9 Higher Order Approximations, Part 2: Taylor’s

Theorem

In Section III.9 we had considered approximations of functions by so-called

Taylor polynomials. The discussion culminated with some remarkable new

representations for the exponential and trigonometric functions. The reader

should briefly review the earlier discussion. At that time we accepted the

main results based on intuitive principles and graphical evidence. We are

now in a position to use integrals to formulate a precise formula for the
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error between a function and its Taylor polynomials. This result is known

as Taylor’s Theorem with Remainder. As an application, we then verify the

convergence statements we had made in Section III.9, and we shall place

these results in a broader context.

IV.9.1 An Application of Integration by Parts

Suppose f is an algebraic function, or more generally, a function whose

derivatives of any order exist on an interval I. The derivatives of f are then

continuous and hence bounded on any closed bounded interval contained

in I. Therefore, by Theorem 6.2, any such derivative is then integrable.

Fix a point a ∈ I. Since f is an antiderivative of D(f), the Fundamental

Theorem of Calculus implies that

f(x)− f(a) =

∫ x

a

D(f)(t)dt =

∫ x

a

f ′(t)dt for any x ∈ I. (IV.14)

We now fix x and apply integration by parts to the integral on the right side,

in the form
∫

f ′dg = f ′ g −
∫

g d(f ′), where we choose g so that dg = 1dt,

that is, so that g′ = 1.Hence g(t) = t+ c, where we are free to choose the

constant c. It follows that
∫

f ′(t)1dt = f ′(t)(t+ c)−
∫

f ′′(t)(t+ c)dt.

The right side is an antiderivative of f ′ on the left. By the Fundamental

Theorem of Calculus (Part 2) one therefore obtains
∫ x

a

f ′(t)dt = [f ′(t)(t+ c)]
x
a −

∫ x

a

f ′′(t)(t+ c)dt

= f ′(x)(x + c)− f ′(a)(a+ c)−
∫ x

a

f ′′(t)(t + c)dt.

In order to simplify this expression, we choose c = −x, so that the first

term vanishes. (Remember: we treat x as constant; differentiation and

integration are with respect to t!) We eliminate the minus signs in the

preceding formula by interchanging the order in the resulting terms (a−x)

and (t− x). We then obtain the formula
∫ x

a

f ′(t)dt = f ′(a)(x − a) +

∫ x

a

f ′′(t)(x − t)dt. (IV.15)

By combining formulas (IV.14) and (IV.15) and rearranging it follows that

f(x) = f(a) +

∫ x

a

f ′(t)dt

= f(a) + f ′(a)(x− a) +

∫ x

a

f ′′(t)(x− t)dt .
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Recall that y = f(a) + f ′(a)(x − a) = P1(x; a) is the equation of the

tangent line to the graph of f at the point where x = a, that is, the Taylor

polynomial of f of order 1 at x = a. So the integral on the right in the

last equation measures exactly the error between the tangent line and the

graph of the function at the point x. Notice that this error is controlled by

the second derivative of f, that is by the convexity of the graph, as we had

anticipated in Section III.9.

It now seems reasonable to repeat the integration by parts in the

remaining integral, with the choice dg = (x − t)dt, and consequently

g(t) =
∫

(x − t) dt = −(x − t)2/2. After evaluating
∫

f ′′dg = f ′′g −
∫

gdf ′′

between the bounds a and x, it follows that

∫ x

a

f ′′(t)(x − t)dt =
f ′′(a)

2
(x− a)2 +

∫ x

a

f ′′′(t)
(x − t)2

2
dt.

The pattern is clearly visible. Because of the hypothesis on f , this process

can be continued as many additional times as desired, resulting in the

following theorem.

Theorem 9.1. Suppose f is infinitely often differentiable on the interval

I, and fix a ∈ I. Then for any positive integer n and x ∈ I one has the

representation

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2
(x− a)2 + ...+

f (n)(a)

1 · 2 · 3 · ... · n (x− a)n

+

∫ x

a

f (n+1)(t)
(x− t)n

1 · 2 · 3 · ... · ndt.

Corollary 9.2. Let Pn(x; a) be the nth order Taylor polynomial of f cen-

tered at the point a ∈ I. Then for all x ∈ I one has

f(x)− Pn(x; a) =

∫ x

a

f (n+1)(t)
(x − t)n

n!
dt,

and hence

|f(x)− Pn(x; a)| ≤ max
t∈[a,x]

∣

∣

∣f (n+1)(t)
∣

∣

∣

|x− a|n+1

n!
.
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Proof. The first part is clear. To prove the estimate, note that for t

between a and x as in the definite integral, one has |x− t| ≤ |x− a|. For

such t one then has
∣

∣

∣f (n+1)(t)(x− t)n
∣

∣

∣ ≤
(

max
t∈[a,x]

∣

∣

∣f (n+1)(t)
∣

∣

∣

)

|x− a|n ,

and the result follows by application of the standard estimate (see Section

4.2), which adds an additional factor |x− a|. �

If |f(x)− Pn(x; a)| → 0 as n → ∞ for all x in some interval I centered

at a, one writes that

f(x) = lim
n→∞

Pn(x; a) =

∞
∑

k=0

f (k)(a)

k!
(x− a)k for x ∈ I, (IV.16)

where the meaning of the “infinite” sum identified by the symbol
∑∞

k=0

is given as the limit of the approximating partial sums Pn. This infinite

sum on the right side of equation (IV.16) is called the Taylor series of f

centered at a.

IV.9.2 Taylor Series of Elementary Transcendental

Functions

We can now consider some examples.

The Exponential Function. The function f(x) = ex is particularly

simple, since f (n)(x) = ex for all n. We choose a = 0. From Corollary 9.2

one then obtains for fixed x ∈ R the estimate
∣

∣

∣

∣

∫ x

0

f (n+1)(t)
(x− t)n

n!
dt

∣

∣

∣

∣

≤ e|x|
|x|n+1

n!
.

The following lemma implies that for any fixed x the expression

e|x| |x|n+1
/n! = (e|x| |x|) |x|n /n! has limit 0 as n → 0. Therefore the

Taylor polynomials

Pn(x; 0) =

n
∑

k=0

1

k!
xk

converge to the function f(x) = ex at all points x, a result which we write

in the form

ex = lim
n→∞

n
∑

k=0

1

k!
xk =

∞
∑

k=0

1

k!
xk

= 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ ... .

The infinite sum that appears in the expression above is the Taylor series

of ex centered at 0. Note that it converges to ex for all real numbers x.
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Lemma 9.3. For any fixed number c > 0 one has

lim
n→∞

cn

n!
= 0.

Proof. The result may appear surprising, since numerical evidence shows

that if c is quite large, say c = 1000, the numbers 1000n/n! do at first grow

quite rapidly as n increases. So one needs to look more carefully. Given c,

we fix an integer N > c. Then rc = c/N < 1, so that limk→∞ rkc = 0. (See

Problem 3 of Exercise IV.9.5.) For n > N one has

cn

n!
=

cN

N !
· c

N + 1
· ... · c

n

≤ cN

N !
·
(

c

N + 1

)n−N

≤ cN

N !
· rn−N

c .

Since k = n − N → ∞ as n → ∞, one has rn−N
c → 0 as n → ∞, and

the result follows. �

The essential message expressed by Lemma 9.3 is that factorials even-

tually grow much faster than powers, no matter how large the base.

We have thus verified the result that we had inferred in Section III.9

from the graphical evidence. In particular, we have verified the following

representation for the base e of the natural exponential function:

e = e1 = lim
n→∞

n
∑

k=0

1

k!
=

∞
∑

k=0

1

k!
.

Trigonometric Functions. For the function f(x) = sinx, any derivative

is ± sinx or ± cosx, so that one always has
∣

∣f (n)(t)
∣

∣ ≤ 1 for all t ∈ R. With

a = 0, it follows (use Lemma 9.3 again!) that
∣

∣

∣

∣

∫ x

0

f (n+1)(t)
(x − t)n

n!
dt

∣

∣

∣

∣

≤ 1 · |x|
n+1

n!
→ 0

as n → ∞. Recalling the expression for the Taylor polynomials of the sine

function from Section III.9. we therefore obtain from Corollary 9.2 that

sinx = lim
m→∞

m
∑

k=0

(−1)k
1

(2k + 1)!
x2k+1 =

∞
∑

k=0

(−1)k
1

(2k + 1)!
x2k+1

= x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− ...

for any x ∈ R.
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Completely analogous arguments show that for x ∈ R one has

cosx = lim
m→∞

m
∑

k=0

(−1)k
1

(2k)!
x2k =

∞
∑

k=0

(−1)k
1

(2k)!
x2k

= 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− ... .

We shall explore the relationship between exponential and trigonometric

functions that is suggested by these formulas in the next section.

The Natural Logarithm. Finally, let us consider the function f(x) =

lnx for x > 0. We choose the point a = 1, since we know the value ln 1 = 0

precisely. Recall that f ′(x) = 1
x , f

′′(x) = −1/x2, f ′′′(x) = 1 · 2/x3, ...,

f (n)(x) = (−1)n−1(n− 1)!/xn. Hence

f (n)(1)/n! = (−1)n−1/n.

It follows that the nth order Taylor polynomial centered at a = 1 equals

Pn(x; 1) = (x − 1)− 1

2
(x − 1)2 +

1

3
(x− 1)3 − ...+ (−1)n−1 1

n
(x− 1)n.

In order to estimate the difference

|lnx− Pn(x; 1)| =
∣

∣

∣

∣

∫ x

1

f (n+1)(t)
(x− t)n

n!
dt

∣

∣

∣

∣

we first consider the case that x ≥ 1 . Then t ≥ 1 as well, so that
∣

∣f (n+1)(t)
∣

∣ = n!/tn+1 ≤ n!. The standard estimate then implies that

|lnx− Pn(x; 1)| ≤
∫ x

1

∣

∣

∣f (n+1)(t)
∣

∣

∣

(x− t)n

n!
dt

≤
∫ x

1

n!
(x− t)n

n!
dt =

∫ x

1

(x− t)ndt

=

[

− 1

n+ 1
(x− t)n+1

]x

0

=
1

n+ 1
(x− 1)n+1.

The latter expression goes to 0 as n → ∞ as long as 0 ≤ (x − 1) ≤ 1. We

have thus shown that lnx = limn→∞ Pn(x; 1) for 1 ≤ x ≤ 2. Note that this

also includes the boundary value x = 2. Furthermore, it follows from the

expression for Pn that there is no convergence if |x− 1| > 1. (See Problem

4 of Exercise IV.9.5.)

In the remaining case 0 < x < 1 we must be more careful with the

estimation. Note that since now 0 < x ≤ t ≤ 1 in the integral, it follows
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that x ≤ x/t, and therefore 1− x/t ≤ 1− x for all t ∈ [x, 1]. Also |x− t| =
(t − x) and 1/t ≤ 1/x for x ≤ t. These remarks imply that for 0 < x < 1

one has

∣

∣

∣

∣

∫ x

1

f (n+1)(t)
(x − t)n

n!
dt

∣

∣

∣

∣

≤
∫ 1

x

∣

∣

∣

∣

f (n+1)(t)
(x − t)n

n!

∣

∣

∣

∣

dt

=

∫ 1

x

n!

tn+1

(t− x)n

n!
dt =

∫ 1

x

1

t

(t− x)n

tn
dt

≤
∫ 1

x

1

x
(1− x

t
)ndt ≤ 1

x

∫ 1

x

(1 − x)ndt

=
1

x
(1− x)n

∫ 1

x

dt =
1

x
(1 − x)n+1.

Since 0 ≤ 1 − x < 1, this last expression converges to 0 as n → ∞. (See

Problem 3 of Exercise IV.9.5.)

To summarize, we have shown that

lnx = lim
n→∞

Pn(x; 1) = lim
n→∞

n
∑

k=1

(−1)k−1 (x− 1)k

k

=

∞
∑

k=1

(−1)k−1 (x− 1)k

k
for all x with 0 < x ≤ 2.

In particular, for x = 2 we get the remarkable representation

ln 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ ... .

Finally, by replacing x with 1 + x one obtains the representation

ln(1 + x) =

∞
∑

k=1

(−1)k−1 x
k

k
.

This is the Taylor series of ln(1 + x) centered at a = 0. Note that it

converges to ln(1 + x) for −1 < x ≤ 1.

IV.9.3 Power Series

The Taylor series we obtained in the previous section are examples of so-

called power series (with center a)

∞
∑

k=0

ck(x − a)k.
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These are to be interpreted as the limit of the partial sums

Sn(x) =

n
∑

k=0

ck(x− a)k

as n → ∞. The limit may or may not exist, depending on the particular

coefficients c0, c1, c2, ... and on the value chosen for x. For example, we had

seen that the Taylor series of ex converges for all values x,while the Taylor

series of lnx centered at 1 converges only for 0 < x ≤ 2. On the other hand,

the power series
∑

k! xk does not converge for any x 6= 0. (See Problem

6 of Exercise IV.9.5.) If the series does not converge at x we say that it

diverges at x. The following result gives information about the set of points

at which a given power series converges.

Theorem 9.4. A power series S =
∑∞

k=0 ck(x−a)k either converges for all

x, or else there exists a number R ≥ 0 so that S converges if |x− a| < R

and diverges if |x− a| > R.

The number R is called the radius of convergence of the power series.

In the case where the power series converges for all x, one also says that

R = ∞. The open interval {x : |x− a| < R} is called the interval of

convergence. A power series always converges at its center a, even when

R = 0. Note that the theorem does not say anything about the endpoints x

with |x− a| = R. Anything can happen here. For example, the Taylor series

for lnx centered at a = 1 has radius of convergence R = 1, it converges at

the boundary point 2, but not at the other boundary point 0 of the interval

of convergence.

A power series
∑∞

k=0 ck(x− a)k with a positive radius of convergence R

defines a function

F (x) =
∞
∑

k=0

ck(x− a)k

on the interval of convergence. Such a function can be viewed as a general-

ization of a polynomial, sort of a polynomial of infinite degree. In fact, the

analogy goes much deeper. For example, one can apply the standard rules

of calculus as if the sum were finite. More precisely, one has the following

result.

Theorem 9.5. The function

F (x) =
∞
∑

k=0

ck(x− a)k
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is differentiable (and hence, in particular, continuous) on the interval of

convergence of radius R, and

D(F )(x) =

∞
∑

k=0

D(ck(x− a)k)

=
∞
∑

k=1

kck(x − a)k−1

for |x− a| < R. An antiderivative of F can be obtained by taking antideriva-

tives of each summand, i.e.,
∫

F (x)dx =

∞
∑

k=0

ck
1

k + 1
(x− a)k+1

on the interval of convergence.

As the intention is to just give a very brief introduction into power

series, we shall skip the proofs of the theorems stated here.

It is clear that Theorem 9.5 can be applied to the power series that

represents the derivative D(F ), thereby showing that D(F ) is differentiable

as well, and so on.

Example. Recall the Taylor series

sinx =

∞
∑

k=0

(−1)k
1

(2k + 1)!
x2k+1.

Taking the derivative according to Theorem 9.5 one obtains

(sinx)′ =
∞
∑

k=0

(−1)k(2k + 1)
1

(2k + 1)!
x2k+1−1

=

∞
∑

k=0

(−1)k
1

(2k)!
x2k,

and we recognize the last power series to be the Taylor series of cosx.

One of the simplest power series is the geometric series

∞
∑

k=0

xk = 1 + x+ x2 + x3 + ... .

It is well known that its partial sums satisfy

n
∑

k=0

xk =
1− xn+1

1− x
for x 6= 1.
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(See Problem 7 of Exercise IV.9.5.) Since xn+1 → 0 as n → ∞ whenever

|x| < 1, while there is no limit if |x| > 1, it follows that the radius of

convergence R is equal to 1, and that

∞
∑

k=0

xk = lim
n→∞

n
∑

k=0

xk =
1

1− x
for |x| < 1.

The geometric series is indeed the Taylor series of f(x) = 1/(1 − x)with

center 0; a simple computation shows that f (k)(0) = k!, so that f (k)(0)/k! =

1 for k = 0, 1, 2, ... . This is a special case of the following general result.

Theorem 9.6. If the power series F (x) =
∑∞

k=0 ck(x − a)k has positive

radius of convergence, then

F (n)(a) = n!cn , so that cn =
F (n)(a)

n!
.

Hence the series agrees with the Taylor series of F centered at a.

This result is an immediate consequence of Theorem 9.5. Just compute

successive derivatives of F by taking derivatives of each summand, and

evaluate the result at x = a. (See Problem 8 of Exercise IV.9.5 for more

details.)

The preceding result shows that if a function can be represented by a

power series in a neighborhood of some point, then it can be done so in

precisely one way, namely by its Taylor series.

IV.9.4 Analytic Functions

In the 17th and 18th centuries mathematicians viewed functions as alge-

braic expressions or as polynomials of infinite degree, i.e., as power series.

They operated with these infinite sums in a purely formal way by using

standard results for finite sums, without much concern about questions of

convergence. Only much later in the 19th century was it recognized that

the issue of convergence is quite delicate and cannot just be ignored. Even

worse, it was discovered that the function concept is much broader than

what was considered by the earlier mathematicians, and that it includes

“awful” functions that are continuous on an interval but not differentiable

at any point at all. In contrast, functions represented by convergent power

series, i.e., by their Taylor series, are most “natural” and enjoy many good

properties. But they still form quite a special class of functions. Even if

a function f is infinitely often differentiable, it does not necessarily follow
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that its Taylor polynomials converge to the original function f , in other

words, such a function is not necessarily representable by a power series.

Example. Define the function

G(x) =

{

e−
1
x for x > 0

0 for x ≤ 0
;

the graph of G is shown in Figure IV.23.

0.35

0.3

0.25

0.2

−0.2 0.2 0.4 0.6 0.8 1
x

−0.4−0.6−0.8−1

0.15

0.1

0.5

Fig. IV.23 The graph of the function G(x).

It is clear that G is infinitely often differentiable at all points x 6= 0.

More subtle arguments are required to show that G is also differentiable

at 0, and that G(n)(0) = 0 for all n = 1, 2, ... . For example, for the first

derivative one needs to consider

lim
h→0

G(h) −G(0)

h
= lim

h→0

G(h)

h
.

Since the limit from the left (h → 0−) is surely zero (G(h) ≡ 0 for h < 0),

it is enough to consider the limit from the right side, i.e., for h > 0, so that

G(h)

h
=

e−1/h

h
=

1

h

1

e1/h
.

This suggests to replace t = 1/h and consider

lim
t→∞

t

et

instead. This latter limit exists and equals 0, since the exponential function

grows much faster then any power function. (See Problem 11 of Exercise

IV.9.5. for details.) It follows that G is differentiable at 0, with G′(0) = 0.

Higher order derivatives are handled by similar arguments. The important

fact that needs to be used is that

lim
t→∞

tk

et
= 0 for any positive integer k.
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Since all derivatives of G at 0 are equal to 0, it follows that all Taylor

polynomials of G centered at 0 are identically equal to zero, so they do not

approximate the values of G at any point x > 0.

Approximation by Taylor polynomials is thus a special property that

is, in particular, useful for approximating the values of functions to any

desired degree of accuracy. Functions that satisfy this property are called

real analytic, or simply analytic. As we saw in the case of the logarithm, the

Taylor polynomials centered at a certain point do not necessarily converge

at every point of the domain of the function, so the relevant property is a

local one. More precisely, we make the following definition.

Definition 9.7. A function f is said to be real analytic on the interval

I, if for each a ∈ I the Taylor polynomials centered at a approximate f on

some open interval centered at a, that is, there exists a positive number ra,

so that f is represented by its Taylor series

f(x) =

∞
∑

n=0

f (n)(a)

n!
(x− a)n

for all x with |x− a| < ra.

Fortunately, most “natural” functions that one encounters in calculus

enjoy this property. For example, appropriate variations of the arguments

we used in Section 9.2 to study the Taylor series of ex, sinx, cosx centered

at 0 show that the corresponding Taylor series centered at an arbitrary

point a do indeed converge to the respective functions on the whole real

axis.

Example. We show that the function f(x) = 1/(1− x) is real analytic

on its domain {x : x 6= 1}. We already considered the Taylor series centered

at a = 0. More generally, if a 6= 1, the simple modification

1

1− x
=

1

(1− a)− (x− a)
=

1

(1− a)

1

1− x−a
1−a

=
1

(1− a)

∞
∑

k=0

(

x− a

1− a

)k

(provided

∣

∣

∣

∣

x− a

1− a

∣

∣

∣

∣

< 1)

=
∞
∑

k=0

(

1

1− a

)k+1

(x − a)k for |x− a| < |1− a| = ra,

shows that f(x) = 1/(1 − x) can be represented by a power series, which

must be its Taylor series (why?) in a neighborhood of a. We also note that
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the radius of convergence ra = |1− a| is as large as it could possibly be,

namely the distance from a to 1, the point where f(x) has a singularity.

More generally, it is known that every algebraic function f in the class A
is analytic on its domain. This latter result is significantly deeper than the

results we have discussed in this section. It is usually proved by considering

the extension of such functions to complex numbers and using fundamen-

tal results from “complex analysis”. We shall give a brief introduction to

complex numbers in the next section, where we shall discuss some remark-

able formulas that connect the exponential function and the trigonometric

functions.

IV.9.5 Exercises

1. Suppose f(x) = x3 − 2x2 + 4x + 1. Note that the explicit expression

that defines f is the Taylor polynomial P3(x; 0).

a) Find the Taylor polynomial P3(x; 1) of f centered at the point a = 1.

b) Show that f(x) = P3(x; 1) for all x by using Taylor’s Theorem to

estimate f(x)− P3(x; 1).

c) Verify f(x) = P3(x; 1) directly by algebra.

d) Explain why f(x) = P3(x; a) for any point a.

2. Generalizing Problem 1, show that if f is a polynomial of degree n and

Pn(x; a) is its Taylor polynomial of degree n centered at the point a,

then f(x) = Pn(x; a) for all x ∈ R.

3. Suppose 0 < r < 1. Show that rn → 0 as n → 0. (Hint: Set λ = inf{rn :

n = 1, 2, 3, ...}; then λ ≥ 0. Show that λ > 0 leads to a contradiction.)

4. According to the result proved in Section 9.2,

lnx = lim
n→∞

n
∑

k=1

(−1)k−1 (x− 1)k

k

for all x with 0 < x ≤ 2. Show that if |x− 1| > 1, in particular if

x > 2, then the Taylor polynomials Pn(x; 1) do not have any limit

as n → ∞, and hence this representation for lnx fails. (Hint: Show

that if x = 2 + d, where d > 0, then (x−1)n

n = (1+d)n

n > d for all

n = 1, 2, ... .)

5. Find a positive integer N so that
∣

∣

∣e−
∑N

j=0
1
j!

∣

∣

∣ < 10−10, i.e., so the

approximation of e given by
∑N

j=0
1
j! is accurate to 10 digits past the
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decimal point. (Hint: Let f(x) = ex, and approximate f(1) by Taylor

polynomials centered at a = 0.)

6. Show that
∑∞

k=0 k! x
k does not converge for any x 6= 0. (Hint: Use the

Lemma from Section 9.2, to the effect that ck/k! → 0, and hence the

reciprocal k! / ck → ∞ for any c > 0.)

7. Let r be any number, and consider the finite geometric series Sn(r) =
∑n

k=0 r
n.

a) Show that rSn(r) = Sn(r) − 1 + rn+1.

b) Solve the equation in a) for Sn(r) in the case r 6= 1 to obtain the

summation formula for the geometric series.

8. Let F (x) =
∑∞

k=0 ck(x − a)k have positive radius of convergence R.

a) Show that F (a) = c0.

b) Use the Theorem in the text to find the power series for F ′(x), and
use the result to show F ′(a) = c1.

c) Repeat b) to find F ′′(x) from the series for F ′(x), and show that

F ′′ (a) = 2c2.

d) Show in general that

F (n)(x) =

∞
∑

k=n

ck k · (k − 1) · (k − 2) · ... · (k − n+ 1) (x− a)k−n

on the interval of convergence and that F (n)(a) = cn n(n− 1)...2 · 1.

9. Find the Taylor series of

f(x) =
1

(1− x)2

centered at a = 0. (Hint: Differentiate the geometric series.)

10. The function g(x) = ex−1
x is not defined at x = 0. Still, g(x) is repre-

sented by a power series for x 6= 0. Find that power series!

11. a) Show that for any fixed integer k one has limx→∞
ex

xk = ∞. (Hint:

ex ≥ Pk+1(x) for x > 0. What happens with Pk+1(x)
xk as x → ∞?)

b) Explain why a) implies that limx→∞
xk

ex = 0 for fixed k.

IV.10 Excursion into Complex Numbers and the Euler

Identity

As one compares the Taylor series of the exponential function and those

of the basic trigonometric functions, one cannot help but be struck by the
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similarities. If it were not for the alternating signs, the exponential function

Ex) = ex appears to be the sum of cosx and sinx. The hidden connection

becomes clearly visible if one expands the real numbers to the complex

numbers, and if one allows these more general numbers as inputs for the

exponential function. We shall therefore present a brief introduction into

this important generalization of the real numbers that plays a fundamental

role in analysis and in numerous applications.

IV.10.1 Complex Numbers

Complex numbers arise in the context of finding square roots of negative

numbers. It looks like magic... just create a symbol i (for imaginary) to

represent an object that satisfies the formal multiplication rule i2 = i · i =
−1, so that i is a candidate for

√
−1. By formally applying addition and

multiplication to real numbers and i, one is led to consider the set C of

“complex numbers” defined by

C = {a+ bi : a, b ∈ R}.
One then adds and multiplies such complex numbers according to the stan-

dard rules of arithmetic, keeping in mind to simplify i2 = −1 wherever it

occurs. For example,

(3 + 5i) + (2− 3i) = 3 + 2 + (5i− 3i)

= 5 + (5− 3)i = 5+ 2i,

or

(3 + 5i) · (2 − 3i) = 3 · 2− 3 · 3i+ 5i · 2− 5 · 3i2

= 6− 9i+ 10i− 15(−1)

= 6 + 15 + (10− 9)i

= 21 + i.

By following this process, one obtains the general rules

(a+ bi) + (c+ di) = (a+ c) + (b + d)i

and

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i.

Clearly a + bi = 0 if and only if a = b = 0, and the formula a = a + 0i

shows that the real numbers are a subset of C. One checks that all the

familiar rules of algebra continue to hold in the set of complex numbers
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with the arithmetic operations defined as above. In particular, every non-

zero complex number z = a + bi has a multiplicative inverse z−1 given

by

z−1 =
a

a2 + b2
− b

a2 + b2
i.

(Note that a2 + b2 > 0 if z 6= 0, since at least one of the numbers a, b must

be non-zero!). Just use the rule for multiplying two complex numbers to

calculate

z · z−1 = 1 + 0i = 1.

Much of the mystery surrounding the symbol i is removed by identifying

a complex number a + bi with the point in the plane whose Cartesian

coordinates are (a, b). (See Figure IV.24.) In analogy to the real number

line, this geometric representation of C is called the complex number plane.

−2+ i

a+bi

(a,b)

1 = (1,0)

i = (0,1)

a

(−2,1)

b

−2 −1

Fig. IV.24 The complex number plane.

Addition and multiplication of points in the plane are now defined ac-

cording to the rules we had found earlier, i.e., in particular one has

(a, b) · (c, d) = (ac− bd, ad+ bc). (IV.17)

Real numbers are identified with the points on the horizontal axis, i.e.,

a ↔ (a, 0), and points (0, b) on the vertical axis are identified with the

purely imaginary numbers bi. In particular, the mysterious symbol i is now

identified with the concrete point (0, 1) in the plane, and according to the

multiplication rule (IV.17) one indeed has

i · i ↔ (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0)
= (−1, 0) ↔ −1.
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The coordinate plane is the favorite geometric model for the set C of com-

plex numbers.

The absolute value |z| of a complex number z = a+ ib is defined to be

the (Euclidean) distance from z to 0, that is, |z| =
√
a2 + b2. This gener-

alizes the absolute value |a| =
√
a2 of a real number. While all arithmetic

operations and rules extend from R to C, it is not possible to extend the

order properties of the real numbers to the complex plane. The relation

z > 0 is meaningless for a complex number z. The only meaningful order

relation in C applies to absolute values. In particular, one can show that the

triangle inequality |z + w| ≤ |z|+ |w| holds for arbitrary complex numbers

z and w.

IV.10.2 The Exponential Function for Complex Numbers

To consider functions of complex numbers is particularly simple for polyno-

mials and rational functions, since only algebraic operations are involved.

Just substitute z = x+ iy for x in the explicit expressions of such functions.

For example, p(x) = 3x4 − 2x3 + 4 leads to

p(z) = 3z4 − 2z3 + 4

for any z = x + iy. Hence p(z) can easily be evaluated for any x and y.

However, for a function like f(x) = 2x, the meaning of f(z) = 2z = 2x+iy

is not clear at all. Since for any b > 0 one has bx = ex ln b, it is enough

to concentrate on the natural exponential function E(x) = ex. Here the

Taylor series expansion provides a natural procedure for giving meaning to

E(z) = E(x+ iy). In fact, since for any real number x the function E(x) is

the limit of the appropriate Taylor polynomials Pn(x), one is led to consider

E(z) = lim
n→∞

Pn(z) = lim
n→∞

n
∑

k=0

1

k!
zk

=
∞
∑

k=0

1

k!
zk.

Given the representation of complex numbers as points in the plane, the

concept of limit of a function of complex numbers has an intuitive geometric

meaning. Many details need to be checked, but we can safely assume that

the intuitive meaning can be given a precise interpretation that does indeed

satisfy all the necessary properties that we are familiar with from the real

numbers.
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Given the central role of the functional equation for exponential func-

tions, it is particularly important to verify that the power series representa-

tion for E(z) still satisfies the functional equation for complex inputs, i.e.,

that one has

E(z + w) = E(z)E(w) for all z, w ∈ C.

In order to verify this, we recall the binomial theorem from algebra, which

states that for any natural number n one has

(z + w)n =

n
∑

j=0

(

n

j

)

zjwn−j , (IV.18)

where the binomial coefficient is defined by

(

n

j

)

=
n!

j!(n− j)!
.

By replacing n−j = k, we can rewrite equation (IV.18) in a more symmetric

form

(z + w)n = n!

n
∑

j,k=0
j+k=n

zj

j!

wk

k!
.

By applying the formal rules of algebra and rearranging terms as needed,

and assuming that all operations remain correct for the infinite sums, i.e.,

for the underlying limit statements, it follows that

E(z + w) =

∞
∑

n=0

1

n!
(z + w)n =

∞
∑

n=0

n
∑

j,k=0
j+k=n

zj

j!

wk

k!

=

∞
∑

j=0

∞
∑

k=0

1

j!
zj

1

k!
wk =





∞
∑

j=0

1

j!
zj





( ∞
∑

k=0

1

k!
wk

)

= E(z)E(w).

We thus see that—subject to verification of the appropriate limit statements

for complex numbers—the critical internal law of the exponential function

is preserved as one extends the Taylor series for E(x) to complex numbers.

This confirms that the chosen definition of E(z) for complex numbers re-

tains the fundamental properties of the familiar exponential function for

real numbers.
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IV.10.3 The Euler Identity

We are now ready to look more in detail at the complex number E(iy).

Notice that

E(iy) =

∞
∑

k=0

1

k!
(iy)k =

∞
∑

k=0

1

k!
(i)kyk.

The meaning of ik depends on whether k is even or odd. For even k = 2m

one has

i2m = (i2)m = (−1)m,

while for odd k = 2m+ 1 one has

i2m+1 = i2mi = (i2)m i = (−1)m i.

Therefore, after separating the terms where k = 2m is even from those

where k = 2m+1 is odd in the Taylor polynomial P2l+1, and after factoring

out the common factor i in the latter sum, one obtains

P2l+1(iy) =

2l+1
∑

k=0

1

k!
(i)kyk

=

l
∑

m=0

(−1)m
1

(2m)!
y2m + i

l
∑

m=0

(−1)m
1

(2m+ 1)!
y2m+1.

As we take the limit l → ∞, P2l+1(iy) → E(iy), and hence

E(iy) = lim
l→∞

l
∑

m=0

(−1)m
1

(2m)!
y2m + i lim

l→∞

l
∑

m=0

(−1)m
1

(2m+ 1)!
y2m+1

=

∞
∑

m=0

(−1)m
1

(2m)!
y2m + i

∞
∑

m=0

(−1)m
1

(2m+ 1)!
y2m+1.

Here we recognize the two infinite sums as the Taylor series of cos y and

sin y, respectively. Hence

eiy = E(iy) = cos y + i sin y.

This remarkable formula is known as the Euler Identity.5 It ties together

the basic elementary transcendental functions, and it reveals a deep con-

nection that remains hidden as long as one considers only real numbers.

5The formula is named after its discoverer L. Euler (1707 - 1785), one of the most
prolific mathematicians of all times.
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eπi = −1 

e iy

y

(1,0)

Fig. IV.25 eiy is a point on the circle of radius 1.

While the formula may appear strange at first sight, it does give a concrete

representation of the complex number eiy as that point on the unit circle

with coordinates (cos y, sin y), where y is the length of the arc from (1, 0)

to that point. (See Figure IV.25.).

Note that the function f(y) = eiy is periodic with period 2π. In

particular,

e2πi = e0 = 1.

Since eπi = cosπ + i sinπ = −1, one also obtains

eπi + 1 = 0.

These remarkable formulas tie together some of the most important uni-

versal constants used in mathematics!

Finally, we can also consider the exponential function ez = ex+iy with

an arbitrary complex number as input. We already mentioned that the

functional equation remains valid for complex numbers. Hence

ex+iy = exeiy = ex(cos y + i sin y) .

One evaluates
∣

∣ex+iy
∣

∣ = ex 6= 0, so that the exponential function remains

non-zero when extended to the complex plane. Furthermore, the equation

ez+2πi = eze2πi = ez · 1 = ez for all z ∈ C

shows that the exponential function is periodic, with the purely imaginary

period 2πi. Of course this periodicity is invisible if one only studies the

exponential function along the real number line.
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Euler’s Identity has revealed the advantages of enlarging one’s point of

view from the real numbers to an even larger number system. More gen-

erally, power series, which we briefly discussed in Section 9, are intimately

connected to complex numbers, and many of their properties are revealed

and better understood only in that context. In particular, it turns out that

if a power series
∑

ck(x − a)k has a positive radius of convergence R then

it converges for all complex numbers z with |z − a| < R (the disc of conver-

gence) and it diverges for all z with |z − a| > R. To illustrate this feature,

let us consider the function

g(x) =
1

1 + x2
,

which is a simple rational function without any singularities on the real

axis. Its Taylor series expansion centered at 0 is obtained by using the

geometric series in the form

g(x) =
1

1 + x2
=

1

1− (−x2)

=

∞
∑

k=0

(−x2)k =

∞
∑

k=0

(−1)kx2k.

This power series converges for all x with x2 < 1, and it diverges if x2 > 1.

Hence its radius of convergence 1. As long as one stays within the real

numbers, it is difficult to understand this result, given that g is well behaved

on the real line. However, the reason becomes immediately obvious if one

allows complex numbers: one must then include the singularities at the

complex numbers i and −i, which are not visible in R. Hence the complex

disc of convergence cannot include these two points that have distance 1

from the center 0 of the power series. The radius of convergence must

therefore be 1.

These amazing relationships are just the beginning of what is known as

Complex Analysis—that is, calculus with complex numbers—a fascinating

and central branch of mathematics that has a long history and that is rich

in applications.

IV.10.4 Exercises

1. Evaluate the following complex numbers in the form a+ bi, a, b ∈ R.

a) (5 + 3i) + (2− 2i); b) (3 + 2i)(4− i); c) (2 + 2i)3; d) (4− 3i)−1.
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2. If w = a+bi ∈ C, introduce the complex conjugate w of w by w = a−bi.

Note that in terms of the representation of w = (a, b) as a point in the

plane, w = (a,−b) is just the reflection of w on the x−axis.

a) Show that ww is a real number that satisfies ww ≥ 0, and that

ww = 0 if and only if w = 0.

b) Show that if w 6= 0, then its reciprocal 1
w = w−1 is given by

w−1 =
w

ww
.

3. Continuation of Problem 2. Define the absolute value |w| of the complex

number w by the formula |w| =
√
ww.

a) Show that if w = a ∈ R, then |w| as defined here is exactly the

standard absolute value of the real number a.

b) Show that |w| equals the distance from 0 to the point w in the plane.

c) Show that
∣

∣eit
∣

∣ = 1 for any real number t.

d) Show that |zw| = |z| |w| for all z, w ∈ C.

4. Identify the points in the plane that correspond to the complex numbers

eiπ/4, eiπ/2 and ei3π/2.

5. a) Show that every complex number z can be written in the form z =

|z| eit for some real number t, which may be chosen in the interval

[0, 2π).

b) Give a geometric interpretation of the number t that appears in a).

c) Show that if z 6= 0 and if t1 and t2 are any two real numbers so that

z = |z| eit1 = |z| eit2 , then t2 − t1 = 2kπ for some integer k.

Remark. The representation z = |z| eit is called the polar represen-

tation of the complex number z. Any number t that satisfies the equation

z = |z| eit is called an argument (or polar angle) of z. Part c) shows that

every z 6= 0 has exactly one argument t that lies in the interval (−π, π],

i.e., with −π < t ≤ π.
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Epilogue

The story that began with the ancient problem of finding tangents to famil-

iar curves has led us to some powerful mathematical tools that have found

wide applications. Along the way it has revealed to us some remarkable

phenomena and relationships, such as:

The world of “limits” that forces us to consider a number concept that

goes far beyond the familiar rational numbers...

Different sizes of infinity...

The “natural” base e = 2.7182818... for exponential functions (how can

this number be “natural”?)...

The amazing connection between the tangent problem and the area

problem and its many applied versions...

The representation of simple algebraic and transcendental objects by

computable infinite series...

And finally, a totally unexpected connection between basic exponen-

tial growth and fundamental periodic processes that becomes visible as we

expand our horizon to the world of complex numbers.

While we have reached the end of this book, the story continues... .

I hope that some of our readers have gotten sufficiently intrigued and in-

spired that they may wish to follow later chapters of the story through other

sources. To help such readers, let us finish with a few suggestions. For ex-

ample, the reader who would like to learn more about the precise technical

language that has been developed to capture limits and other approxima-

tion processes, and who wants to learn about further topics in analysis

involving functions of a single variable, could consult S.R. Lay, Analysis,

With an Introduction to Proof, 5th ed., Pearson, 2014, R. G. Bartle and

D. R. Sherbert, Introduction to Real Analysis, 4th ed., John Wiley, 2011,

or W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill,

335



July 21, 2015 10:46 BC: 9448 - What Is Calculus? Calculus˙corrs page 336

336 What is Calculus? From Simple Algebra to Deep Analysis

1976. Multidimensional analysis is covered, for example, in G. B. Folland,

Advanced Calculus, Prentice Hall 2002., although it would be helpful to

first learn about the basics of Linear Algebra. Further applications of the

methods of calculus can be found, for example, in G. F. Simmons, Differen-

tial Equations with Applications and Historical Notes, McGraw-Hill 1972.

Finally, to learn more about the fascinating world of complex analysis, the

reader could consult R. P. Boas, An Invitation to Complex Analysis, 2nd

ed., Math. Assoc. of America, 2010, or J. P. D’Angelo, An Introduction to

Complex Analysis and Geometry, Amer. Math. Society, 2011.
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224
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Descartes, René, xvi, xxiii, 5

differentiability, xxvi

characterization by linear

approximation, 153

classical formulation of, 152

general version, 150

of exponential functions, 152

of power functions with arbitrary

exponents, 178

of sine function, 166

differentiable function, 150

differential equations

explosive growth, 202

exponential models, 189

for a pendulum, 216

motion with constant acceleration,

207

spring models, 211
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factorization
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Folland, G.B., 336
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minimum, 163
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derivative of, 141
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normal, 3
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algebraic construction of tangent,

10
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9
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tangents to, 8

partial integration of differentials, 311

polynomial, 16, 66

degree of, 66

population growth, 142, 189

power functions, 65

power rule, 20

power series, 319

analytic functions, 324
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radian measure of an angle, 74
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method
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for algebraic functions, 32

for exponential function, 38, 128
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Taylor approximations

estimate of error, 315

for natural exponential function,
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for sine function, 246
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Taylor polynomials, see Taylor
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Taylor series

of exponential function, 316

of natural logarithm, 318
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transcendental functions, xxv

transcendental numbers, 50

triangle inequality, 47

trigonometric functions, 72

derivatives of, 169

differential equation of, 173
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by definite integral, 281

of a spring, 281
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