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Preface

Calculus is one of the great creations of the human mind. The mathemat-
ical ideas, concepts, and tools of calculus have played a major role in the
physical sciences since the 17th century, when Isaac Newton (1642-1727)
and Gottfried Wilhelm Leibniz (1646-1716) laid the foundations. Among
the early successes of calculus was a thorough understanding of the mo-
tion of planets and stars, a complicated phenomenon that had intrigued
mankind for thousands of years, and still continues to fascinate anyone
who ever looks up into a star studded sky. In modern times, these applica-
tions evolved, for example, into one of the pillars that support the launching
and tracking of communication satellites and that provide the theoretical
foundation for space travel. The basic ideas of calculus have branched out
and matured into Analysis, which for centuries has been viewed—mnext to
Algebra and Geometry—as one of the three major areas of mathematics.
In essence, calculus allows a precise formulation of rates of change in
very general and abstract settings, and it provides the tools to reconstruct,
analyze, and make predictions about the process under consideration from
information about the relevant rates of change. Historically, the develop-
ment of calculus has been intimately intertwined with the physical sciences.
However, in the last few decades the concepts and tools of calculus have
been applied successfully in many other areas of human endeavor, reaching
well beyond the classical applications. As areas such as biology, chemistry,
economics, finance, and psychology, to name just a few, have become more
quantitative, calculus has featured prominently among the mathematical
tools used in these disciplines. Consequently numerous academic programs
beyond mathematics, physics, and engineering encourage or require their
students to learn the fundamentals of calculus, and many high schools, too,
are offering introductions to calculus. Clearly there is much interest in

XV
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calculus today.

Unfortunately, the transition from high school mathematics to calculus
is not easy. Students are usually exposed to deep new concepts right at the
beginning. In particular, important central applications such as variable
velocity, slopes of tangents, and more general rates of change and deriva-
tives are introduced by an approximation process that involves “limits” of
certain expressions that formally approach the meaningless quotient 0/0.
Therefore it becomes necessary to investigate and understand such “limits”
in order to proceed. Algebraic examples involving polynomials, rational
functions, roots, and so on, often tend to confuse matters: The limit as the
input x approaches the value a, where z must be assumed # a, is ultimately
found—after algebraic manipulations to remove the troublesome zero from
the denominator—by what is de facto evaluation of an algebraic expres-
sion by setting = a. Thus limits tend to get mixed up with evaluation,
often leaving one wondering about what seem unnecessary complications.
The confusing relationship between limits and evaluation had surfaced al-
ready at the origins of calculus in the 17th century, but that did not stop
the pioneers from moving forward. The difficulties were only resolved in
the 19th century, when mathematicians introduced precise—and necessar-
ily complicated—technical descriptions of limits. Since then, these new
abstract concepts—in varying degrees of technical detail—have become a
major component of any introduction to calculus. Even when discussed in
intuitive non-technical language, they present quite a challenge right at the
beginning for anyone who wants to learn and understand calculus.

In this book we present a more elementary approach to derivatives for
algebraic functions that completely avoids limits. More advanced concepts
are only introduced later, when algebraic methods no longer work, for ex-
ample while studying exponential functions. The heart of the matter is an
up-to-date version of a fundamental idea that goes back to René Descartes
(1596—1650), one of the intellectual giants of his time, and that has re-
mained on the sidelines for centuries.

In more detail, we begin with a Prelude to Calculus, in which the an-
cient tangent problem and some of its variations are introduced and solved
for polynomials and other algebraic functions—which are built up by finite
processes—Dby using only elementary concepts familiar from high school al-
gebra and geometry. In particular, no mysterious quotients 0/0 appear,
and no limits whatsoever are needed at this stage. Basic rules and for-
mulas are established in a direct and most natural way. The reader thus
begins to learn about tangents, derivatives, and all the mechanical rules
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of calculus in a familiar setting, without getting burdened by investiga-
tions of more advanced concepts based on limits and infinite processes. At
the end of the Prelude we turn our attention to the concrete exponential
function f(x) = 2%, perhaps the simplest and most familiar type of non-
algebraic function. Such functions arise naturally in important applications
involving, for example, compound interest, population growth, or radioac-
tive decay. It quickly becomes clear that the algebraic tools and finite
processes used up to this moment are no longer sufficient. In particular,
no elementary techniques allow us to reduce the calculation of the slope
of the tangent to simple evaluation. Instead, building upon the algebraic
approach, we recognize that as a consequence of an elementary estimate the
explicit algebraic derivative introduced earlier can also be captured by an
approzimation process. This new non-algebraic idea opens the door to solv-
ing the tangent problem for the exponential function. Proceeding along this
way, numerical evidence reveals surprising new phenomena, and it becomes
apparent that new and more advanced tools are needed.

We are thus ready to move on to the main topic of this book, that is,
the “analysis” part of calculus. In Chapter I we review some necessary
background material, with particular emphasis on those aspects that are
important for our purposes. Much of this should be familiar to the reader
from high school mathematics. The one exception is most likely the “com-
pleteness” of the real numbers, that is, that fundamental property that
ensures the ezistence of those numbers that arise as “limits” in the study
of non-algebraic functions. Motivated by results in the Prelude, in Chapter
II we begin to develop the concepts of limits and tangents, i.e., derivatives,
in the setting of exponential functions, so as to keep the discussion of the
new and more complicated ideas as concrete as possible. Once this case is
understood, it is then an easy step to extend the new concepts, as well as
all the rules of differentiation already discovered in the Prelude in the alge-
braic setting, to the level of generality usually considered in calculus and in
mathematical analysis. Other concrete examples studied in detail include
logarithms (the inverses of exponential functions) and the trigonometric
functions. The latter ones are essential for modeling periodic phenomena
such as sound waves, or the motion of the planets around the sun. In Chap-
ter IIT we discuss some important applications, focusing on simple models
involving the basic transcendental functions, so as not to distract the reader
with complications that would obscure the simplicity of the basic ideas.
Finally, in Chapter IV, we consider the fundamental process of reversing
differentiation that arises, for example, when one tries to solve the concrete
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problem of reconstructing a motion from its known velocity and/or acceler-
ation. This requires a new type of approximation procedure that leads us to
the definite integral, the other central concept in calculus, whose roots, in
fact, go back to Archimedes (287 - 212 B.C.) and other Greek mathemati-
cians over 2000 years ago. It is easily seen that integrals are closely related
to the geometric notion of area, but their importance goes far beyond that
aspect. To further motivate this fundamental idea, we discuss several other
applications to concepts such as length of curves, income streams, proba-
bility distributions, and work of variable forces. The connection between
definite integrals and the reversal of the differentiation process is captured
by the so-called Fundamental Theorem of Calculus. Beyond its central role,
this result also provides an important computational technique to evaluate
integrals. We conclude with some significant applications of these results.
For example, we use the fundamental theorem to show that another type
of limit process, known as the Taylor series, provides an approximation of
elementary transcendental functions such as exponential and trigonometric
functions to any desired level of accuracy by certain explicit polynomials
(the Taylor polynomials) of sufficiently high degree. Aside from its theo-
retical importance, this latter result has great practical applications, as it
allows us to find explicit numerical approximations for the values of these
functions that in most cases cannot be obtained by finite procedures. The
highlight of the discussion of Taylor series reveals a deep and surprising
connection between exponential functions and trigonometric functions, i.e.,
between growth and periodicity, that only becomes visible as we expand
our horizon to include so-called complex numbers, an amazing extension of
the familiar (real) numbers.

This introduction to calculus aims to carefully motivate the new ideas
that are central to the subject and to discuss them in the proper context,
so that the reader will be able to understand them better and also rec-
ognize why they are necessary. The topics are developed in a well-ordered
sequence that progresses from familiar elementary algebra to the important
new concepts that distinguish calculus, culminating with some remarkable
deep results in analysis. Rather than developing a large number of formulas
and computational techniques—which too often are quickly forgotten—our
main goal is to deepen and enhance the understanding of the fundamental
concepts and ideas of calculus. We hope that this may be of more lasting
value for the reader when she/he applies these ideas and tools in the chosen
discipline. Altogether, this book should give the reader a solid foundation
in the ideas, main techniques, and classical applications of calculus with-
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out getting overwhelmed by distracting technical details. Beyond that, we
hope that the reader will also gain some lasting appreciation for the amazing
ideas and concepts that have become indispensable for an understanding of
the physical world around us.

Suggestions for the Reader

This book has been written for a reader who wants to learn about calculus
and understand why and how deep new mathematical concepts arise nat-
urally as we study the world around us. The presentation is broad enough
to suit readers at different levels and with different backgrounds. Many
will have been exposed to calculus, either at the level of a first introduc-
tion, or perhaps by completion of standard college calculus courses. Others
still may never have had the opportunity to explore mathematics beyond
high school material, but are interested in learning about a central and
historically significant part of mathematics. The Prelude should be studied
carefully—with help from sections in Chapter I, as needed—Dbefore proceed-
ing with the main part of the book. This applies, in particular, to readers
who have already been introduced to calculus. They may be tempted to
ignore this part (why do it differently?) and jump ahead to Chapter I, or
even to Chapter II. They would thus miss out on much of the motivation
for the need for limits and the fundamental property of completeness of the
real numbers. Also, in later sections we often refer back to the Prelude for
context and motivation. I therefore urge such readers to try to put aside
what they learned in an earlier introduction to calculus and to approach
the Prelude with an open mind. When moving on to the main part of the
book, some material may appear quite difficult on first reading. This is to
be expected. The new concepts are not easy, and precise mathematical no-
tation and technical language cannot be completely avoided, even though
we try to minimize these formal aspects. The reader should feel free to skip
some of the technical details and explanations; one can always come back
later to fill some gaps as needed. While moving forward, the reader should
at least try to understand the context and the question that is considered
at that moment, and keep track of the “big picture”. If one feels lost, it
might help to go back to the beginning of a section or chapter in order to
gain a better perspective.

As for prerequisites, there are two basic requirements. For one, the
reader should have the mathematical skills that are usually acquired
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through completion of high school algebra and geometry courses, includ-
ing quadratic equations, polynomials, and the algebraic operations such
as multiplication and factoring performed with them, and basic geometric
concepts such as lines and circles in the plane, and their representations
by algebraic equations in a coordinate system. While the essentials will be
reviewed at appropriate places, it will help if the reader is already familiar
with these topics. On the other hand, no prior knowledge of trigonometry
is needed. While derivatives and applications of sine and cosine functions
are studied thoroughly, the necessary background is carefully reviewed in
the text. The other requirement is more general: the reader should be able
to think clearly and be willing to put forth the effort required to learn and
understand some deep and at times abstract concepts that are at the heart
of important and central mathematical topics that are widely used in many
disciplines.

As for classroom use, this book could be used as a text for an honors
calculus class with well motivated students, where the instructor has quite
a bit more flexibility in adjusting the course content. Most of the material
could be covered in one semester; students would acquire a solid foundation
and would then be ready to proceed with multivariable calculus. It could
also be used as a text for a first course in “Analysis”, to be followed by
an “Advanced Calculus” course that would cover in detail the technical
aspects and move on to analysis in several variables. More broadly, this
book should be of interest and helpful as supplementary reading for students
as well as instructors of calculus and/or analysis. Perhaps one or the other
of the novel ideas found in this book (see the Notes for Instructors for more
details) might eventually be adopted by some instructors and authors.

Finally, the material in the Prelude should be of interest to high school
teachers. Polynomials and their zeroes and multiplicities are standard top-
ics in high school algebra and/or precalculus courses. Consequently, the ap-
proach to finding tangents for polynomials discussed in the Prelude should
fit right in. If desired, it could easily be extended to other functions, such
as rational or root functions, as well as to all the standard rules for differ-
entiation. In any case, this material would provide a highly non-trivial, yet
simple application of standard algebra tools to the solution of a historically
central problem.

To assist the reader, key formulas are numbered in sequence within each
chapter, for example (I.1), (I.2), ..., (IL.1), ... . Similarly, statements such
as definitions, theorems, lemmas, etc., are numbered in a single sequence
within each section. Theorem 2.3 thus identifies the third such statement
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within Section 2 of the current chapter, and could be followed by Definition
2.4, and so on. A reference such as Section 2.5 identifies subsection 5 in
Section 2 in the current chapter. A reference to an item in a different
chapter is augmented by the appropriate Roman numeral, e.g., Theorem
II1.2.3, or Section I1.2.5. Exercises are found in the last subsection of each
section.
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Notes for Instructors

As outlined in the Preface, this book differs significantly from most of
the existing calculus and/or analysis texts either designed for the typical
calculus sequence with a standard syllabus, or targeted at more special au-
diences, such as business, biology, or more advanced mathematics students.
Its main goals are described in the Preface. The emphasis is on motivating
and explaining the relevant concepts so that the reader will be able to un-
derstand how the various pieces fit together and recognize the need for the
new and at times abstract fundamental ideas that distinguish calculus from
high school algebra. The majority of the exercises are chosen so as to rein-
force such understanding. The focus on fundamental concepts emphasized
in this book should be valuable for all students in disciplines that require
a knowledge of calculus, whether or not such students will take any more
advanced courses in analysis or mathematics. This applies, in particular,
also to students in the mathematical and physical sciences. I believe such
students, too, would benefit from an introduction to calculus following the
approach developed in this book. It would equip them with a solid foun-
dation and understanding, so that they may then profitably pursue more
advanced and technical courses as appropriate.

The Table of Contents provides a detailed outline of the topics covered
in this book. In this section I explain the main differences to the more
traditional approaches and highlight a few other distinguishing features.

As stated in the Preface, a major new feature is a “Prelude to Calculus”.
Tangents and derivatives for polynomials and other algebraic functions are
introduced by a purely algebraic elementary process based on factorization
and double points. The basic idea goes back to René Descartes (1596—
1650), who used double points to construct normals (and hence also tan-
gents) for the ellipse and some other special algebraic curves. The imple-

xxiii
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mentation of this idea for general algebraic curves ran into major difficul-
ties, and Descartes’ method was eventually forgotten once the more analytic
methods of Leibniz and Newton proved so enormously successful. It was
discovered only recently that Descartes’ ideas—properly reformulated—can
be implemented in an elementary, transparent, and mathematically correct
way. (See R. M. Range: Where are Limits Needed in Calculus? Amer.
Math. Monthly 118 (2011), 404 - 417.) To summarize the method in the
simplest case, the tangent to the graph of a polynomial P at the point
(a, P(a)) is a line through (a, P(a)) that intersects the graph of P with
“multiplicity greater than or equal to 2”. It is then easily shown that there
exists a unique line that satisfies this condition, and that its slope is given
by ¢(a), where ¢ is the polynomial determined by the standard factorization
P(z) — P(a) = g(x)(xz — a). Motivated by the simple polynomial case, the
factorization result is easily extended to rational functions and their com-
positions, leading to the chain rule for derivatives. With just a bit more
work this algebraic method is extended to inverse functions, products, and
quotients, thereby obtaining all the familiar rules of differentiation. Most
of this material could easily be presented in a high school algebra course,
where it would provide a simple application of basic results about polyno-
mials and their zeroes and multiplicities to the solution of a central and
historically significant problem.

Most importantly, the simple factorization that is the heart of the
method discussed in the Prelude is used to establish an estimate that ex-
hibits in explicit form the continuity of an algebraic function f, that is,
|f(z) = f(a)] < K |x — a| for all 2 near a, where K is a suitable constant.
Continuity is thus recognized as a fundamental property of all algebraic
functions before there is any need to introduce the concept of a limit. As
presented in the main part of this book, it is this estimate that motivates the
concept of continuity and—most significantly for calculus—leads to the con-
cept of derivative based on approximations and limits. In fact, when applied
to the factor ¢ in P(x) — P(a) = q(z)(xz —a), whose value ¢(a) is the deriva-
tive D(P) at the point a, the estimate |¢(z) — ¢(a)| < K |x — a| reveals the
fundamental new idea that the value g(a)—that is, the derivative—can also
be captured by ¢(x) for & # a—that is, by the average rate of change—via
an approximation process. This is the critical insight that opens the door
to determining tangents and derivatives for non-algebraic functions.

The Prelude culminates with a preliminary investigation of the tangent
problem for the simple exponential function f(z) = 2%, where algebraic
tools and evaluation no longer work. Motivated by the approzimation pro-
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cedure discovered for the algebraic case, one thus attempts to follow this
alternate route. Numerical evidence quickly reveals that the slope of the
tangent at the point (0, 1) is approximated by numbers whose decimal ex-
pansions begins with 0.69314... . This unexpected and puzzling result makes
it clear that new and more intricate phenomena occur as soon as one con-
siders even the simplest non-algebraic functions. The stage is thus set for
the main part of the book, that is, an introduction to the analytic version of
calculus based on limits and continuity. Furthermore, since algebraic func-
tions are already taken care of in the Prelude by simple algebraic methods,
one can focus from the very beginning on the principal new ideas in their
natural context, where they truly are indispensable.

From this perspective calculus, as part of analysis rather than algebra,
begins with the simplest non-algebraic functions, such as exponential and
trigonometric functions. These are the functions that occur most often in
interesting applications involving growth or decay, or periodic phenomena,
and their derivatives are given by simple differentiation formulas that how-
ever hide intriguing and deep phenomena, as evidenced by the surprising
appearance of mysterious numbers such as 0.69314..., 3.14159..., 2.71828...,
and so on. The importance of transcendental functions in calculus has of
course been recognized for quite a while by many authors. Newer editions
of classic textbooks are often offered in so-called “early transcendental” ver-
sions. Similarly, most texts designed for biology and/or business students
also emphasize the elementary transcendental functions early on. Yet this
emphasis typically just involves rearranging the order of sections, rather
than a real shift in point of view. In contrast, in this book elementary tran-
scendental functions are used systematically from the very beginning, i.e.,
after the Prelude, to develop the central new concepts of calculus.! Indeed,
it is the author’s view that the traditional introduction of derivatives of
algebraic functions via limits, and the somewhat prominent role given the
complicated product and quotient rules, lead to unnecessary detours and
complications that delay and hinder the understanding of the main ideas.

Given the introductory nature of this book and its intended broad au-
dience, the technical e — ¢ definition of limits that features prominently in
most analysis texts is not emphasized at all in this book. After all, calculus
developed and flourished very well for over 200 years just based on a naive

INeedless to say, a scientific calculator with graphing capabilities should be standard
equipment for today’s calculus students, just as decades ago slide rules and extensive
tables were the standard tools used to find numerical values of the elementary transcen-
dental functions.



XxVi What is Calculus? From Simple Algebra to Deep Analysis

understanding of limits and continuity. An intuitive understanding of con-
tinuity captured by the statement that f(z) — f(a) as © — a, supported
by the stronger explicit estimates available for all algebraic functions, is
quite sufficient. For completeness’ sake we introduce the standard precise
definition of limit in one of the exercises and apply it in a couple of simple
situations, but we do not dwell further on it. More advanced mathematics
students, who will eventually have to learn this technical language, will
have to consult any of the numerous texts in analysis. In that same spirit,
proofs are often just discussed in a non-technical, though mathematically
correct, outline. On the other hand, the completeness of the real num-
bers R—a concept barely mentioned and/or relegated to an appendix in
most introductory texts—is central for an understanding of limits and for
analysis. Without it, there would be no assurance that the natural approx-
imation processes that appear in calculus would have a limit that is part
of our number system. Furthermore, in contrast to v/2, for example, limits
such as those denoted by In2, e, m, and so on, are not even solutions of
algebraic equations. For these reasons the author believes that complete-
ness should not just be mentioned in passing and then ignored. Instead,
it is at the core of our understanding of numbers as we use them in cal-
culus once we go beyond algebraic functions. In particular, completeness
is needed to identify limits with specific points on the number line, i.e.,
with some precise real numbers. Consequently, completeness is introduced
early in Chapter I and formalized explicitly by the “Least Upper Bound
Property”. This geometric version appears as a natural property (i.e., an
axiom) of the (number) line that is our standard model for R. Given the
importance of this property for analysis, the reader is often reminded of
it along the way, especially when the correctness of certain intuitive argu-
ments critically relies on the completeness of R. Occasionally we also use
completeness explicitly in the justification of statements when it might help
to understand important principles.

Another significant difference to most calculus or analysis texts is the
way “differentiability” is defined. Motivated by the central role of the
factorization in the Prelude, one defines:

A function f defined in a neighborhood of a point a € R is differen-
tiable at a if there exists a factorization

f(x) — f(a) = q(z)(x — a), where q is continuous at x = a. *)

The value q(a) is called the derivative of f at a, and it is denoted by
D(f)(a) or f'(a).
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It follows directly from this definition that if f is differentiable at a,
then its derivative f’(a) = g(a) is well approximated by the values ¢(z) for
x # aasx — a, that is, by the average rates of change [f(z)— f(a)]/(z—a)
for x # a. In particular, one sees that this definition is equivalent to the
standard one in terms of limits of difference quotients.

The above definition has been known and used occasionally for many
years, but it still is not widely known, especially in the English language
literature. To the author’s knowledge it was first introduced by Con-
stantin Carathéodory (1873—1950) in his classic text Funktionentheorie
(Birkhduser Verlag, Basel, 1950), and it has been used in a number of
other German texts since the mid 1960s, both in real and in complex anal-
ysis. (See R. M. Range, op. cit.) Aside from the translation into English of
Carathéodory’s text (Chelsea Publishing Company, New York, 1956), the
earliest English text known to the author that uses this formulation was
published only in 1996. (A. Browder, Mathematical Analysis, Springer,
New York, 1996.) A few years later it appeared also in the 3rd edition of
the text by R. G. Bartle and D. R. Sherbert (Introduction to Real Analysis,
3rd. ed., John Wiley, New York 2000), and in the book by S. R. Ghorpade
and B. V. Limaye (A Course in Calculus and Real Analysis, Springer, New
York, 2006); these latter books make reference to Carathéodory. Still, dif-
ferentiability continues to be defined via difference quotients, and it is then
proved that this definition is equivalent to the formulation stated above.
This latter version is then used in the proof of the chain rule and other
results.

I believe that Carathéodory’s definition has several advantages over the
standard one, as follows.

e It is the natural generalization of the algebraic formulation.

e It avoids quotients with denominators that approach zero. We
know that we cannot divide by 0, so—if at all possible—we should
avoid anything that comes even close to it.

e It provides an easy and most natural proof of the chain rule by
direct substitution, and of the inverse function rule (assuming the
inverse of f is continuous at f(a)).

e It reduces technical details to simple standard properties of contin-
uous functions.

e It naturally generalizes to the case of differentiable functions and
mappings of several variables, thereby allowing a seamless transi-
tion from single to multivariable calculus.
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e Last but not least it is a simple variation of the fundamental char-
acterization of differentiability in terms of approximation by linear
functions.

Regarding this last item, just rewrite the factorization (*) in the form

f(x) = [f(a) + g(a)(z — a)] + g(z)(x — a),

where g(z) = q(z) — g(a). Clearly the continuity of ¢ at @ = a is equiv-
alent to lim,_,, g(x) = 0, that is, to the familiar property that charac-
terizes the error term g(z)(z — a) in the linear approximation for differ-
entiable functions. This approximation property captures the critical geo-
metric information that graphs of differentiable functions are, at the local
level, essentially indistinguishable from their tangent lines. Rather than
appearing—as in many standard calculus texts—as an after-thought that
is mainly used to introduce “differentials” as a technique to approximate
values such as v/4 + 0.01 or sin(0.1), or to prove the chain rule, this ap-
proximation by linear functions is presented as the easy way to think of
differentiability geometrically. Not only is this the property that is typi-
cally used as the defining one for functions of several variables, but it also
very much enhances the understanding of some basic results. For example,
it makes it clear that compositions and inverses of functions are the nat-
ural and more elementary operations to consider in calculus, rather than
products and quotients. In fact, since the collection of linear functions is
closed under composition and taking inverses, and since the verifications of
the relevant differentiation rules are completely elementary for such func-
tions, the extension of these properties to differentiable functions, which
locally are essentially linear, hardly needs any further justification, at least
at the conceptual level.? In contrast, the structures of product and quo-
tient rules are necessarily quite a bit more complicated, since products and
reciprocals of the approximating linear functions are no longer linear, so
do not give potential linear approximations. Incidentally, the central role
of the chain rule becomes even more evident if one observes that product
and quotient rules can be viewed as simple special cases of the chain rule
in several variables.

Let us mention a few other features of this book that are usually not
found in standard calculus texts. For example, we follow the well-known
practice to introduce the number e = 2.7182... while searching for the base

2In fact, the definition of differentiability adopted here allows us to turn these intutitive
arguments into precise proofs in a most elementary way.
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for an exponential function y = b* with derivative 1 at © = 0. However,
instead of using a common trial and error technique, we show that the
value of the desired base is given by the exact formula e = 2'/¢, where ¢ is
the derivative of y = 2% at 0, whose existence is firmly motivated first by
geometric and numerical evidence, and later verified exactly by explicitly
using the completeness of the real numbers. Once e and the natural loga-
rithm function are available, the number ¢ is of course identified with In 2.
Next, the derivatives of the sine and cosine functions are introduced via
elementary geometric arguments based directly on the definition of these
functions on the unit circle, rather than by the standard arguments that
involve trigonometric addition formulas. Last but not least, the central fact
that a function with derivative 0 at every point of an interval I is neces-
sarily constant on I, is obtained by a direct intuitive (and mathematically
correct) argument. (See R. M. Range, On Antiderivatives of the Zero Func-
tion, Math. Magazine 80 (2007), 387-390.) This avoids the unmotivated
standard proof that involves a lengthy detour via existence of extrema,
Rolle’s Theorem, and the Mean Value Theorem, and it makes the critical
role of completeness clearly visible. The basic intuitive argument is distilled
into a formal Mean Value Inequality, which is all that is needed in order to
discuss the relationship between properties of the derivative and geometric
properties of the graph. Furthermore, this inequality readily implies the
standard Mean Value Theorem for functions with continuous derivatives, a
mild restriction that is insignificant for the purposes of this book.

As for applications of derivatives, we give priority to examples involving
exponential growth models, simple initial value problems, and elementary
periodic phenomena. Applications of calculus to graphing techniques are
discussed thereafter, in a form that is much shorter than in traditional
texts. Given today’s highly sophisticated graphing calculators and com-
puter algebra programs, it seems that these techniques are no longer as
central as they used to be 30 years ago or so. A more significant difference
involves the early introduction of higher order approximations by Taylor
polynomials as a natural generalization of the linear approximation by the
tangent line. This leads directly to Taylor series (i.e., power series), without
the need for a separate detailed discussion of infinite series and all the con-
vergence criteria that typically go with it. A formula for the remainder in
the Taylor approximation and the related estimates are obtained later by a
simple application of the Fundamental Theorem of Calculus and successive
integrations by parts.

Another change from standard texts concerns the introduction and mo-
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tivation of definite integrals. Rather then starting off with the new problem
of calculating areas, which—taken by itself—is seemingly quite unrelated
to derivatives, we consider the natural question of reversing the process
of differentiation, i.e., how to recover the function if all one knows is its
derivative.® This is first worked out in the context of motion, where the ve-
locity is the known quantity, and hence the existence of an antiderivative,
i.e., the distance function, is known a priori. The proof, of course, ap-
plies verbatim to the derivative D(F') of any appropriate function F. Our
presentation here has been inspired by the ideas of Qun Lin (Calculus for
High School, People’s Education Press (www.pep.com.cn), Beijing 2010).
A precise version of the necessary uniformity condition is easily obtained
for integrands D(F') that have a bounded derivative. The process is then
suitably modified to apply to functions f without any a priori knowledge
of an antiderivative. By starting with an initial value and moving along
short line segments with slopes given by the values of the function f at suc-
cessive points, one readily obtains an explicit approximation procedure for
constructing the values of a (potential) antiderivative of f. In essence, this
is just the classical Euler method for solving differential equations, applied
to the special case y' = f(z). The approximating expressions are particu-
lar concrete realizations of Riemann sums, so that the limit that produces
an antiderivative turns into a definite integral. In the case f > 0, these
approximating expressions are readily interpreted geometrically as sums of
areas of rectangles, thereby leading to the familiar approximation of the
area under the graph of y = f(«). This approach has the advantage that it
directly ties antiderivatives to definite integrals, i.e., the heart of the matter
is visible from the very beginning.

The proof of the integrability of continuous functions is quite subtle and
technical, as it relies on the wniform continuity of a continuous function
on a closed and bounded (i.e., compact) interval, a sophisticated concept
that is difficult to formulate correctly without resorting to some version
of the ¢ — § machinery. Consequently many introductory calculus texts
omit the proof or place it in an appendix or among the exercises. We
bypass this difficulty by including a more elementary proof under the ad-
ditional assumption that the integrand has a bounded derivative over the
interval.? Note that all algebraic functions, as well as most combinations

3This approach is indeed much closer to the historical roots, as developed by Newton
and Leibniz, than the emphasis on calculation of areas.

4Via the Mean Value Inequality this condition readily implies the Lipschitz continuity
of the function, which is all that is needed. Rather than introduce a new definition, we
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of elementary transcendental functions, satisfy this condition, so that for
introductory purposes this restriction is not serious at all. Related simpli-
fying techniques have also been investigated by H. Karcher (Analysis mit
gleichen Fehlerschranken, Univ. Bonn, 2002) and M. Livshits (You Could
Simplify Calculus, arXiv:0905.3611v1).

We conclude with some suggestions for instructors who want to use this
book for a non-traditional one-semester (honors) calculus course, or for a
first analysis course. The Prelude should be covered fairly quickly, say in
at most three weeks, so as to leave ample time for the main topics. Besides
the classical examples of tangents and their discussion for polynomials, one
should definitely include early on the chain rule and inverse function rule
(for rational functions) to highlight their elementary nature and emphasize
their importance. On the other hand, the discussion of more general alge-
braic functions could be postponed until Section 6 in Chapter I. Similarly,
product and quotient rules could also be deferred until they are taken up
at the end of Chapter II in full generality, so as to avoid distracting compli-
cated formulas in the early stages. However, the final section of the Prelude
should be covered carefully, as it provides essential motivation for the main
topics of the book. Among the basic concepts introduced and/or reviewed
in Chapter I, completeness and the exponential functions are the most im-
portant ones. The latter functions are the primary examples used in the
exploration of differentiability in Chapter II, which should be covered care-
fully. Section 2 in Chapter III includes fundamental results that are used
in the remainder of the book, and the discussion on Taylor approximations
in last section will be completed at the end of Chapter IV. The remaining
sections in this chapter are pretty much independent of each other, and the
instructor may choose to skip a few of them according to preference or if
running short of time. In Chapter IV, Section 6 is somewhat theoretical
and could be skipped. Section 7 includes, among others, the important
example of a trigonometric substitution to find the antiderivative of the
function given by /1 — 22 that arises in the calculation of the area of a
disc. These results are not used thereafter, so this section could be left
out. Integration by parts, however, is critical for completing the discussion
of the convergence of the Taylor series in Section 9. The book concludes
with a brief introduction to complex numbers and the application of Taylor
series to the Euler Identity. This is a fitting grand finale for an introductory
calculus course that should be included if at all possible.

prefer to formulate a sufficient condition in terms of known concepts.



This page intentionally left blank



Prelude to Calculus

1 Introduction

Differential calculus was developed in the 17th century in order to solve fun-
damental problems involving motion with variable velocity and the equiv-
alent geometric problem of finding tangents to general curves. Tangents to
simple special curves were already considered in antiquity, but their con-
struction for general curves became possible only after the introduction of
coordinates opened the door to using algebraic and analytic tools in the
description of geometric properties. Similarly, motion subject to forces and
acceleration could only be fully understood once the most creative minds
of the 17th century were able to apply the new mathematical methods to
real world phenomena, and expand their reach to new levels.

In this Prelude to Calculus we discuss tangents, their relationship to
motion with variable speed, and all the standard rules of “differentiation”
by means of elementary algebraic techniques familiar from high school al-
gebra, without ever mentioning limits or other more advanced concepts.
While the discussion is limited to the familiar algebraic functions (i.e., poly-
nomial, rational, and root functions, and standard combinations of them),
the simple proofs are presented in a form that will later readily general-
ize to exponential, trigonometric, and other more general functions that
will be considered in the main part of this book. In the final section of
this Prelude we attempt to use analogous methods for a simple exponential
function, and we quickly recognize that some deeper new ideas are needed
in order to deal with surprising new phenomena. This prepares the stage
for the main topic of this book, that is, an introduction to the analytic
version of calculus based on limits, and it will allow us to focus from the
very beginning on the principal new ideas in their natural context, where
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they truly are indispensable.

We shall freely use standard concepts and formulas familiar from typical
high school geometry and algebra courses, including, for example, the slope
of a line. The most important background material will be thoroughly
reviewed in Chapter I, in a form that will include and highlight the critical
concepts that are necessary to understand the new central ideas related to
limits. The reader is encouraged to refer to appropriate sections in Chapter
I as needed in order to follow the discussion in the Prelude.

2 Tangents to Circles

The construction of tangent lines to circles, parabolas, and similar classical
curves has a long history, going back to Euclid (4th century B.C.), Apol-
lonius (3rd century B.C.), and other Greek geometers over 2300 years ago.
In antiquity a tangent was defined as “a line which touches a curve but does
not cut it” [Vietor J. Katz, A History of Mathematics, 3rd. ed., Addison-
Wesley, New York 2009, p. 120]. The tangent appears to fit the curve near
the point of contact in an optimal way. The situation is particularly simple
for a circle C, where the tangent at a point P on C' is that unique line that
is perpendicular to the radial line connecting P to the center of the circle.

Fig. 1 Circle with tangent at point P.

In general, the line that is perpendicular to a tangent at a point P on a
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curve is called the normal to the curve at P. Circles are special, since all
normals go through the center and consequently are easy to draw for any
point P on the circle. However, when one considers more general curves,
there is no obvious way to construct normals and/or tangents. Finding
either one immediately determines the other." The main problem then is to
turn the intuitive but vague ancient idea of “tangent” recalled above into
a precise definition that can be used to identify tangents and determine
their slopes for arbitrary curves. Intuitively, we recognize that (in a small
neighborhood) a tangent intersects the curve under consideration only at
one point P—the point of tangency—while most small perturbations (i.e.,
changes) of the tangent will intersect the curve at two distinct points close
to P. (See Figure 2.)

NN

Fig. 2 Perturbation of a tangent reveals two points of intersection.

So the tangent intersects the curve at the single point P, which however
covers two (or more) overlapping points that separate when the tangent is
rotated just so slightly. The point P of tangency really accounts for two
points of intersection that just happen to coincide in the special case of a
tangent. We call such a point a “double point”, or a point of “multiplicity
two”. Note that for any other line through P that “cuts” the curve—and
hence does not fit our intuitive idea of a tangent— the point of intersection
really gets counted only once. In Figure 3, the dashed lines are perturba-
tions of such a line through P; they still intersect the curve only at one

1Typically, over the centuries, geometers have focused on tangents, although René
Descartes (1596 - 1650), perhaps the best known mathematician and philosopher of the
first half of the 17th century, preferred studying the normal to a curve. [V. Katz, op.
cit., pp. 511-512]
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point (at least in a neighborhood of P).

Fig. 3 Perturbations of a line that is not a tangent.

In certain situations the point of tangency may hide more than two
points. In Figure 4 the horizontal line is tangent to the curve at P. Turn-
ing the tangent just so slightly counterclockwise will reveal two additional
distinct points of intersection, for a total of three points. Such a point P is
said to have “multiplicity three”.

Fig. 4 A point of tangency of multiplicity three.

Based on these considerations we make the following geometric defini-
tion of a tangent.
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Definition 2.1. A tangent to a curve at the point P is a line that intersects
the curve at that point with multiplicity two or higher, that is, a suitable
arbitrarily small rotation of the line around P will separate P into two or
more points of intersection.

Now that we have a more precise definition of a tangent we can look
for appropriate tools to identify such tangents, i.e., to find lines that inter-
sect the curve with multiplicity two or higher. The introduction of coordi-
nates by René Descartes in the 17th century was a major turning point, as
it allowed mathematicians to translate geometric properties into algebraic
properties involving numbers and equations, thereby making available alge-
braic methods for solving geometric problems. In particular, for a quadratic
equation

22+ 2 +c=0

we are well familiar with the notion of a double zero, or zero of multiplicity
two. This means that the two solutions z; = —b + Vb2 —c and 29 =
—b — v/b% — ¢ coincide; this occurs exactly when b? — ¢ = 0. In this case,
the equation takes the form

(z +b)? =0,

which shows that the zero = —b has multiplicity 2, as the factor (z + b)
appears twice. Note that exactly in this case the x—axis is the tangent to
the graph of f(x) = (z +b)?. (See Figure 5.)  Already at the dawn of

%

Fig. 5 Left: double zero; right: two distinct zeroes.




6 What is Calculus? From Simple Algebra to Deep Analysis

calculus Descartes used this insight to construct the normals to an ellipse.?

Let us apply this algebraic process to identify the tangents for a circle.
To keep matters simple we place the center of the circle at the point (0, 0),
i.e., at the center of the coordinate system, and we choose the radius to be
1, so that the equation of the circle is 22 + % = 1. Any (non-vertical) line
through a fixed point (a,b) has an equation of the form y — b = m(z — a),
where m is the so-called slope of the line, which measures the inclination or
direction of the line. This particular equation is known as the point-slope
form of the line. (Note that b is not the “y-intercept” in this setting. Lines
and their slopes are reviewed in detail in Section 1.2.) Let us now choose
(a,b) on the circle, so that a? + b? = 1, and consider lines through (a,b).
(See Figure 6 below.)

AY

P=(a, b)

><V

Fig. 6 Circle of radius 1 with lines through the point P.

We need to determine the slope m so that the line intersects the circle in
a double point. This can be done by using simple familiar algebraic tools,
as follows. The points of intersection (z,y) of the circle with such a line

2More precisely, Descartes constructed a circle which intersects the ellipse at a point
P with multiplicity 2. The normal to that circle at P then coincides with the normal
to the ellipse.
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must satisfy the two equations
2 +y*=1landy —b=m(z — a). (P.1)

While the straightforward substitution of y = b + m(z — a) into the first
equation in (P.1) leads to a quadratic equation for x that can readily be
solved by standard techniques, it is easier to take advantage of the fact that
x = a is one of the two solutions, i.e., the resulting equation must have a
factor (z — a). We use the equation a? 4+ b* = 1 (the point (a, b) lies on the
circle!) and subtract it from the left equation in (P.1). One obtains

x2—a2+y2—b220,
which can be factored into
(x4+a)(z—a)+ (y+b)(y—0)=0.

Now substitute m(x —a) for y —b and rearrange, so that the equation turns
into the form

[(z +a) + (y + b)m| (z — a) = 0.

This clearly shows—as expected—that x = a is one of the solutions, and
that the other point of intersection (x,y) must satisfy

[(x+a)+ (y+b)m] =0.

Since we are looking for the slope m for which the point (a,b) is a double
point of intersection, the second point (z,y) must be (a,b) as well, i.e.,
x = a and y = b. Substituting these values into the last equation shows
that m must satisfy

2a + 2bm = 0.

If b # 0, that is, if (a,b) # (1,0) or (—1,0), it follows that m = —a/b is
the slope of the unique line for which the point (a,b) of intersection with
the circle is a double point. So m = —a/b is the slope of the tangent line
at the point (a, b). Note that this result confirms the classical construction:
if we also assume that a # 0, the slope my of the normal, i.e., the radius
line from the center (0,0) to (a,b), is b/a, and since (—a/b)(b/a) = —1, the
tangent we determined algebraically is indeed perpendicular to the normal.?

3We use the fact that if m; and msa are the (non-zero) slopes of two lines, then the
lines are perpendicular if and only if mimg = —1. This result is discussed in Section
1.2.3.
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2.1 Exercises

1. Consider the curve given by y = 2.

a) Find the points of intersection of this curve with the line of slope m
through (0,0) given by y = ma.
b) For which m is the point of intersection (0,0) a double point?

2. This example illustrates a point of tangency of multiplicity 3. Consider
the curve given by y = 23. The line y = 0, i.e., the x-axis, is tangential
to the curve and intersects the curve only at the point (0, 0).

a) Set up the equation to determine the z-coordinates of all points of
intersection of the curve with the line y = max with slope m.

b) How many solutions are there in the case m = 07

¢) How many solutions are there in the case m < 07

d) Find all points of intersection of the curve and the line in the case
m > 0 (no matter how small). Are they all different? How many
such points are there?

3. The (vertical) line given by x = 1 is the tangent to the circle 22 +y? = 1
at the point (1,0). Explain why any small perturbation of that line
through (1,0) is given by an equation z = 1+ my for m close to 0. Find
all points of intersection of the line x = 1 + my with the circle C.

4. Modify the argument given in the text for the unit circle to find the

equation of the tangent line to the ellipse given by the equation

2?42
ST A |
9 * 16

at the arbitrary point (a,b) on the ellipse.

5. Generalize problem 4 to the case of an arbitrary ellipse given by

2 2
:C_+y_:17
A2 B?

where A, B > 0 are the axis of the ellipse.

3 Tangents to Parabolas

Another classical curve studied extensively by Greek geometers is the
parabola, which has the remarkable physical property that light rays that
enter the parabola parallel to the axis of the parabola are reflected on the
parabola so that they all go through one single point F' on the axis, the
so-called focus. (See Figure 7 below.) This property has important applica-
tions in optics; for example, the 3-dimensional version obtained by rotating
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the parabola around its axis provides the theoretical foundation for today’s
parabolic telescopes.

P
Q V/FEL
« d >0\ d B

Fig. 7 Reflecting properties of the tangent of the parabola.

Parabolas arose in antiquity as special cases of so-called conic sections,
that is, those curves that are obtained by intersecting a circular cone with
a plane. Depending on the angle between the plane and the axis of the
cone, these curves are either ellipses, parabolas, or hyperbolas. In par-
ticular, parabolas arise when the plane is parallel to the mantle of the
cone. The great geometer Apollonius (3rd century B.C.) is credited with
systematically recording the geometric definitions and known properties of
the conic sections, and with discovering many additional properties. In
particular, Apollonius discovered—in geometric language—a description of
the parabola that is equivalent to the familiar algebraic formulation in
Cartesian coordinates that we shall recall below. Most important for our
discussion, based on this characterization, Apollonius deduced the follow-
ing geometric construction of the tangent to a parabola at a point P. As
shown in Figure 7, the (perpendicular) projection of P onto the axis of the
parabola identifies a point at distance d from the vertex V. Consider the
point @ on the extended axis that is at the same distance d from V on the
opposite side. The tangent to the parabola at P is then that line through
P that goes through the point Q.
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Let us now translate geometry into algebra and apply the double point
method—which was so successful for a circle—to determine the tangents
to a parabola. We place the vertex V at the center (0,0) of a Cartesian
coordinate system and choose the axis of the parabola along the positive
y-axis. The equation of the parabola is then y = Az? for some A > 0 that
depends on the distance between the vertex and the focus. Let us fix a
point (a,b) on the parabola. As before, any (non-vertical) line through
(a,b) has an equation y = b+ m(z — a). Its points of intersection with the
parabola are the solutions of

A2 —b—m(z —a) = 0.

After replacing b = Aa? (the point (a,b) is on the parabola), this equation
factors into

Mz +a)(r—a) —m(x —a) =Mz +a) —m](z —a) =0.

The two solutions are a and m/\ — a. Consequently (a, b) is a double point
of intersection of the line with slope m precisely when a = m/\ — a, or
m = 2\a.

Example. At the point (—1,1) the slope of the tangent to the graph
of f(z) = 2% equals 2(—1) = —2. Hence the equation of the tangent line at
that point is y = 1+ (=2)(z — (=1)),or y =1 —2(x + 1).

To complete the discussion, let us compare the algebraic result with the
classical geometric construction of Apollonius. The projection of (a, Aa?)
onto the axis of the parabola gives the point (0, \a?) that is at distance
d = Aa? from the vertex V = (0,0). According to Apollonius, the tangent
at (a, Aa?) goes through the point (0, —A\a?), and consequently that tangent
has slope m = [Aa? — (=Xa?)]/(a — 0) = 2Xa?/a = 2\a. As expected, this
agrees with result obtained by the double point method.

3.1 Ezxercises

1. Find the equation of the tangent line to the parabola given by y = %xQ
at the point (2, 6).
2. Consider the point (3,9) on the parabola given by y = x2.

a) Determine the equation of the line through (3,9) with slope m.

b) Substitute the equation in a) into the equation y = 2 to obtain
a quadratic equation in z of the form z? 4+ bz + ¢ = 0 for the -
coordinates of the points of intersection of the line with the parabola,
where the coefficients b, ¢ depend on m.
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c¢) Determine m so that the discriminant b — 4c = 0. Determine the
solution(s) of the equation for this value m.

3. Consider the parabola y = ?/4. Use the construction of Apollonius
to find the points of tangency on the parabola for the tangents to the
parabola through the point (0, —6).

4. Find the equations of each of the tangents to y = 2 that go through
the point (3,0). (Hint: Make a sketch of the situation before starting
any computations.)

4 Motion with Variable Speed

Before continuing with the study of tangents for other curves we first want
to discuss the relationship of the tangent problem with a fundamental prob-
lem of motion. In fact, the search for a deeper understanding of motion and
related phenomena in the physical world in the 17th century was arguably
the major driving force that led to the development of calculus by Newton
and Leibniz.

Experience shows that a stone that is dropped from the top of a building
falls towards the ground at an increasing speed. The higher the building,
the faster the stone will be falling just before impact. It was Galileo Galilei
(1564 — 1642) who first analyzed the situation precisely in order to discover
the underlying laws of motion. Rather than trying to explain the causes
of phenomena by hidden actions of some mysterious higher being, Galileo
thought to simply describe basic observations and use his analytical mind
to distill the information into mathematical relationships. This shift from
seeking to understand the causes of phenomena to the more modest goal
to describe them quantitatively, turned out to be the breakthrough that—
empowered by new mathematical tools—led to the amazing progress in
mankind’s understanding of the physical world since Galileo’s days.

Based on numerous observations of falling stones* and balls rolling down
inclined planes, and trusting that the observed motion is governed by sim-
ple principles, Galileo recognized in 1604 that the motion of a freely falling
body is uniformly accelerated, i.e., the increase in speed over a time interval
from t1 to to is a fixed multiple of the length ¢t5 — ¢; of that interval. In
particular, if at time ¢ = 0 the speed is zero, then at later times ¢t > 0 the
speed v(t) equals a-t for a certain fixed number a, the so-called acceleration.

41t is often reported that Galileo carried out such experiments by dropping stones from
the Leaning Tower of Pisa.
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Another relevant quantity—more easily measurable than speed—is the dis-
tance that an object has moved in a given time interval.> Indeed, Galileo
proved by geometric arguments that in the case of uniformly accelerated
motion starting from rest, the ratio of the distances d; and dy traveled in
corresponding times t; and ts equals the ratio of the squares of the times,
ie., dy : dy = t3 : t3. This translates into the formula d(t) = ct? for the
distance d(t) traveled in time ¢, where ¢ is another constant. Galileo was
able to confirm the validity of this latter formula in numerous experiments,
thereby also obtaining a numerical value—which depends on the particu-
lar units chosen to measure distance and time—for the constant c¢. In the
case of a freely falling object, and using today’s standard units meters for
distance and seconds for time, ¢ is approximately 4.9 m/sec?.®

Incidentally, Galileo’s formula for a freely falling stone provides a prac-
tical technique to estimate the height of buildings or rock walls, as follows.

Example. Suppose a stone is dropped from the top of a building of
unknown height H meters. Its height h(¢) above ground after ¢ seconds is
then given by the formula

h(t) = H — 4.9t* m,

where the minus sign accounts for the fact that the distance d(t) traveled
by the stone needs to be subtracted from the initial height H in order to
get the height after ¢ seconds. The rock hits the ground when h(t) = 0.
Suppose this happens after to seconds. Then H — 4.9t2 = 0 implies that
H = 4.9t m. This formula is sometimes applied by rock climbers who need
to estimate the height above a ledge in order to judge whether their rope is
long enough to rappel down. Suppose a climber drops a stone, and by using
a watch (a stop watch would be nice) she determines that the stone hits
the ground after 3.5 seconds. By the preceding formula, the height above
ground thus is approximately 5 - (3.5)%2 ~ 61 m, which is quite a bit more
than her 50 m long rope. The climber thus decides not to rappel down at
that location.

Returning to Galileo’s result, the basic question that arises is how to
derive a formula for the welocity v(t) 7 of the falling stone at time t from

5For example, one could envision a long ruler placed vertically on the side of the build-
ing, with its initial point O placed at the top. A stop watch is started at the moment
the stone is dropped, and one reads off the position of the falling stone against the ruler
after 1,2, ..., seconds.

6The unit m/sec2 for the constant ¢ is a consequence of the relationship distance =
¢ x (time)?. Tf feet is used instead of meters, the numerical value for c is approximately
16 ft/sec?.

" Velocity is the term generally used in science for what common language calls speed;
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the formula for the distance d(t) = ct?. In particular, one needs to give
precise meaning to the concept of velocity at a single moment in time. As
commonly understood, velocity is a measure of the rate of change of position
over time, that is
) distance
velocity = ———
time

More precisely, for two distinct moments in time t; and to, the average
velocity over the time interval T = [t1, 2] (assume t; < t3) is

vy = M7 (P.2)
to —t1

where d(t) is the distance traveled from the starting point ¢ = 0, so that
d(0) = 0. If the average velocity of a motion is independent of the time
interval I, we say that the motion has constant velocity v = v;. In the
case of constant velocity, the velocity v(t) at any moment ¢ is always this
same number v that equals the average velocity over any interval I, and it
then follows easily that the distance d(t) equals vt. However, in the case
of the falling stone the velocity is not constant, so how do we define the
velocity v(t) at any particular moment? Intuitively, we agree that at any
moment the falling stone is moving with a certain velocity, which increases
with time until the stone hits the ground. Similarly in modern times, when
traveling in a car, we do experience the (variable) velocity (or speed) at
any moment, and the speedometer even gives us a number that measures
this speed. If we apply the brakes, the speedometer indicates a decreasing
speed. So what exactly is the speedometer measuring?

Notice that for a fixed moment ¢, while we agree that there is a velocity
v(tp), surely we cannot compute the average velocity over the interval [to, to]
by formula (P.2), since this formula now gives the meaningless expression
%. However, if we rewrite the equation that defines velocity as the product
distance = welocity x time, then the problem becomes more manageable.
In fact, let us consider the simple case considered by Galileo, i.e., d(t) = ct>.
If we fix a particular time to, then d(t) — d(to) = ct* — ct?, which factors

into

d(t) — d(to) = c(t + to)(t — to). (P.3)
Note that if ¢ > to the factor ¢(t + to) in this last formula obviously equals
the average velocity over the time interval from ¢ to t. (Just divide both

velocity is allowed to be both positive and negative (or zero), with the sign accounting for
the direction of motion along a line. More generally, when the motion is not constrained
to a line, the velocity is represented by a so-called wvector, a more complicated quantity
that encodes, for example, the direction of the motion in space.
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sides of (P.3) by t — tg # 0.) This also holds if ¢ < tg, where the time
interval now goes from ¢ to tg. (See Problem 2 of Exercise 4.1.) Therefore,
trusting in the consistency of the formula (P.3), we are led to define the
velocity at ¢y by taking the value of this factor at t = t¢, i.e., we define

’U(to) = C(to + to) = 2Ct0.

Perhaps you have some doubts about the validity of this definition. After
all, the basic formula distance = velocity X time reduces, in the case t = t,
to the equation 0 = ¢(tg+to) - 0, which surely is correct, but then any other
number k also satisfies the equation 0 = k- 0. So you may ask why do
we single out the particular number ¢(tg + to) among all the other possible
numbers k that satisfy the equation?

One justification surely comes from the fact that c(tp + to) is exactly
that number that arises when ¢ is replaced by ¢y in the algebraic formula
d(t)—d(to) = c(t+to)(t—to). Since this formula does represent a “universal
truth”, the value of ¢(t + t9) at t = to should have an interpretation that
is analogous to that for all other values ¢, that is, it should represent a
velocity. And since only one moment in time tq is involved, it is reasonable
to think of ¢(tg + to) as the velocity at to.

Another justification is based on the geometric interpretation involving
tangents to parabolas that we discussed earlier in Section 3. As we showed
then (just replace z = t and y = d(t) = ct?), the line through the point
(to, ct?) with slope 2cty is the tangent to the graph of the function d(t) = ct?,
i.e., it is that line that fits the graph in an “optimal” way. Rephrasing this
in the context of motion we thus can say that at the moment ¢ = tg, the
constant speed motion I(t) = ct? + 2cto(t — to) with velocity 2ctq (i.e., the
equation that defines the tangent) provides an optimal description of the
motion given by d(t) = ct? at that moment. More precisely, this constant
speed motion matches the given motion described by d(t) at the moment
tp “with multiplicity two”, that is, at two points in time that just happen
to coincide. Alternatively, think of a vehicle starting from rest at t = 0
under the same uniform acceleration as a falling stone, so that—according
to Galileo—the distance traveled at time t > 0 equals d(t) = ct?. At
time to the driver takes off his foot from the accelerator. Neglecting minor
factors such as friction, air resistance, and so on, the car would continue
rolling with constant velocity equal to 2ct.

Finally we can also consider a dynamic point of view, which perhaps
reflects most closely the crux of motion with variable speed, as follows.
As we saw, for t # to the value ¢(t) = ¢(t + to) gives the average velocity
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during the time interval [to, t] (or [t,to] if t < tp). Surely we expect that the
velocity at tg, no matter how defined, should be very close to the average
velocity over very short time intervals, i.e., when t is very close to ty, and
furthermore, this approximation should improve as the time interval gets
shorter, i.e., the closer t gets to ty. The chosen value v(tg) = q(to) fulfills
this expectation perfectly, since

lq(t) —q(to)| = |c(t + to) — 2cto| = [c| |t —to] . (P.4)

Evidently formula (P.4) shows that when ¢ is “very close” to ¢, then the
average velocity ¢(t) from ¢y to t is “very close” to ¢(ty) as well. For
example, let us use meters and seconds, so that ¢ ~ 4.9 m/sec?. Suppose
to = 5 sec and t = tp + 1/1000 = 5.001 sec; then the average velocity ¢(t)
during the interval [to, t] equals 4.9 x 10.001 m/sec, which differs from the
velocity ¢(5) = v(5) =2 x 4.9 x 5 m/sec by 4.9 x 1/1000 = 0.0049 m/sec.
Stated differently, formula (P.4) gives a precise meaning to the intuitive
statement that as ¢ approximates to (we write ¢ — to), then ¢(t) — ¢(to)
as well. As we shall see later, the property we just discussed and that we
encode in the statement

if t — to, then ¢(t) — ¢(to),

is an elementary example of a fundamental abstract property that is known
as continuity.

Our discussion shows that the concept of instantaneous velocity, i.e.,
velocity at a particular moment, is really just another version of the tangent
problem. The techniques one develops in order to find the slope of tangents
also allow us to define and calculate the velocity at a single moment in time.
In particular, returning to Galileo’s investigations of freely falling bodies,
where d(t) = ct?, we have determined that the velocity after ¢ seconds is
given by v(t) = 2c¢t. This confirms that the motion indeed is uniformly
accelerated, with the acceleration a given by 2c ~ 9.8 m/sec?. Thus the
distance formula under uniform acceleration takes the more informative
form

1
d(t) = 3 X acceleration x t2.

4.1 FExercises

1. Suppose a stone is pushed off a tower which is 60 m high. After how
many seconds will the stone hit the ground?
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2. Explain why the formula (P.2) gives the same value regardless of whether
t1 <ty ority <ty.

3. A coin dropped into a deep well hits water after 2.5 seconds. How deep
is the well?

4. Let f(x) = 22 + 4a.
a) Establish an estimate |f(z) — f(a)| < ¢|z —a| for |z —a| < 1 and

some constant ¢ > 0. (Hint: Factor f(z) — f(a).)

b) Explain why this implies that f(z) — f(a) as x — a.

5 Tangents to Graphs of Polynomials

Before continuing with the tangent problem, let us review an important
fundamental fact about zeroes of polynomials. Recall that a polynomial
P is a function whose value at the real number z is given by a formula
P(x) = cpz™ 4+ cp12" L+ ...+ c1x + co, where the coefficients cy, ..., ¢, are
certain fixed numbers. If ¢, # 0, the polynomial P is said to have degree
n.

Proposition 5.1. If the polynomial P of degree n > 1 has a zero at the
point x = a, then (x — a) is a factor of P, i.e., there exists a unique
polynomial q of degree n — 1 such that

P(z) = q(z)(z — a).

Proof 1. This is a well known simple consequence of the division al-
gorithm for polynomials, as follows. By that algorithm, P(z)/(x —a) =
q(z) + R(x)/(z — a) for some polynomial ¢, where the remainder R is a
polynomial of degree less than the degree of x — a, which is one. So R has
degree 0 and hence must be a constant Ry. Thus P(z) = ¢(x)(x —a) + Ro,
and evaluation at a shows that 0 = ¢(a) - 0 + Ry, so that Ry = 0. This
completes the proof of the proposition. |

Because this result is so important for our discussion, we shall also verify
it by a different argument that does not rely on the division algorithm. The
reader eager to proceed may surely skip this alternate verification.

Proof 2. We rewrite x as (x — a) + a and note that

=[x —a)+a?®=(x—a)+2x—a)a+ad.
More generally, for k = 3,4, 5, ... one similarly has

" =[(z—a)+a]" = (z—a)* +bpp_1(z—a) o' +...+ b1 (z—a)a" T +a”
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for some numbers by 1, ..., bg k—1. (The numbers by ; can be described ex-
plicitly in terms of binomial coefficients: by ; = (I;) .) All summands on the

right side, except the last term a*

, contain the factor (x —a). Consequently,
[(z —a)+a]* = qu(2)(z — a) + a*, where gy, is a polynomial of degree k — 1.

Therefore

P(x) =cp[(z —a)+a]" + co1[(x —a) +a]" ' +.. + a1[(x —a) +a]' + o
= calgn(@)(z — a) + @™ + cpoi[gn—1(2)(z —a) +a" " + .
ot allx—a)+al+co
= [engn () + Cn1gn-1(2) + ... + a1 (x — a)+
.+ [cna” +ep1a™ o+ ca+ co]
=q(z)(x —a) + P(a),

where ¢(x) = [cagn(z) + cno1¢n-1(x) + ...+ ¢1]. Since P(a) = 0, the
proposition is proved. |

Given the factorization P(z) = ¢(x)(x—a), if ¢ has a zero at some point
a#, which means that P has zeroes both at a and a#, the proposition gives
a factorization ¢(z) = ¢ (x)(z—a™) for some other polynomial ¢ of degree
n — 2, and consequently P(x) = ¢¥ (z)(x — a”)(z — a). This result remains
correct if the two points a and a” happen to coincide, so that the zero at
a = a” is counted twice, that is, it has multiplicity 2 (or higher). One is
thus led to the following definition.

Definition 5.2. The polynomial P of degree n has a zero of multiplicity
> m at a for some m between 1 and n, if there exists a factorization

P(z) = gm(z)(z —a)™
with some polynomial q,, of degree n —m.

We say that the zero at a has multiplicity equal to m if the multiplicity
is > m but not > m + 1; clearly this occurs precisely when in the above
factorization one has g, (a) # 0.

We are now ready to apply the double point method to an arbitrary
polynomial P, which we might as well assume to have degree > 2. We fix
a point (a, P(a)) on its graph. A non-vertical line through this point has
equation y = P(a) 4+ m(x — a), and its points of intersection with the graph
of P are the solutions of the equation

P(z) — [P(a) + m(z —a)] = 0. (P.5)
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We need to find the slope m so that this equation has a zero of multi-
plicity at least 2 at @ = a. Since P(z) — P(a) has a zero at a, Proposition
5.1 implies that P(z) — P(a) = ¢(z)(z — a), and similarly it then follows
that ¢(x) — ¢(a) = k(z)(x — a), where ¢ and k are polynomials of appro-
priate degrees. We want to emphasize that the polynomials ¢ and k that
are determined by these factorizations depend also on the point a that has
been fixed. By combining the two factorizations one obtains

P(x) = [P(a) + m(z — a)] = q(x)(z — a) —m(z — a) = [¢(z) —m](z —a)
Q(a) m|(z —a) +[q(z) — q(a)](z — a)
(a) = m](z — a) + k(2)(z — a)*.

This representation shows that the equation (P.5) has a zero of multiplicity
at least 2 at a if and only if m = ¢(a).

We are thus justified in making the following definition that is just an
algebraic version of the earlier geometric Definition 2.1.

Definition 5.3. The tangent line to the graph of a polynomial P at
the point (a, P(a)) is the (unique) line through (a, P(a)) that intersects the
graph at that point with multiplicity at least 2. The slope of the tangent is
called the derivative of P at a, and it is denoted by D(P)(a), or also by
P'(a).

This definition also applies if the graph of P is a line L, i.e., if P has
degree < 1. Note that in this case another line can intersect L with multi-
plicity greater than one only if the two lines coincide.

The preceding calculation proves the following elementary, but most
important result.

Theorem 5.4. The slope of the tangent line to the graph of P at the
point (a, P(a)) is given by q(a), where q is the polynomial factor in the
representation P(x) — P(a) = q(z)(x — a), that is, D(P)(a) = q(a).

We shall say that a function f is algebraically differentiable at the point
a if the graph of f has a tangent line at (a, f(a)) according to the definition
above, where the meaning of “multiplicity at least two” will have to be
suitably modified according to the properties of f. Using this language,
the result we just proved means that every polynomial is algebraically dif-
ferentiable at every point. The process of finding the derivative (i.e., the
slope) is also called differentiation.
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Remarks on Notation. The symbol D refers to Derivative, and it is
used to indicate that it is an operation applied to the polynomial P that
results in a new function D(P), the derivative of P. The symbol P’ is
often used for the sake of brevity. Historically, the derivative has also
been denoted by the “differential quotient” dP/dxz, a formal quotient of
“differentials” dP and dx that were used to denote the vague concept of
infinitesimals, or infinitely small quantities. This latter notation reminds us
of the relationship of the derivative to the average rates of change AP/Ax
that we encountered, for example, in the context of average velocity in the
previous section. Since the approach chosen in this book emphasizes the
factorization formula as a product, and since we avoid quotients that lead
to 0/0, we shall limit the use of the notation dP/dx mainly to applications,
when we want to highlight the relevant variables under consideration and
the interpretation of derivatives as rates of change.

As we just noted, the derivative D(P) = P’ of a polynomial P defines a
new function given by y = P’ (x). By the rules established in Section 6, P’
is again a polynomial. Consequently P’ is also algebraically differentiable;
its derivative (P’)’ is written as P (or D(D(P)) = D?(P)) and it is called
the second derivative of P, or the derivative of order two. Similarly one
can define derivatives of order three or higher, with analogous notations
P" =P or D3(P), etc.

The factor g, whose value at a provides the critical piece of information
to describe the tangent at the point (a, P(a)), can be computed by the
division algorithm for polynomials, although that may not be the most
practical approach for calculating the derivative. As we shall see in the next
section, once we have developed some basic general rules, finding derivatives
will turn out to be a quick and rather simple mechanical process. Let us
discuss one such basic rule that is at the core of the differentiation rule for
polynomials.

Example. For a positive integer n the derivative of f(x) = z™ is
obtained as follows. Fix a and factor 2" — o™ = ¢q(x)(x — a), where

n—1
q(x) = Z "1l (P.6)
j=0
Then

D(f)(a) = q(a) =na""".
Consequently, the derivative of f(x) = 2™ at an arbitrary value z is given
by f'(z) = nz"~t, or D(z™) = na™ L. Alternatively, we may simply write
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(z™) = naz"~!. This formula is called the power rule for differentiation.
Note that in the case n = 0, i.e., if f is the constant function with value 1,
one has f(z) — f(a) = 0, so that the factor ¢ equals 0; this implies that f
has derivative 0 at every point. Thus the power rule holds in this case as
well.

Remark. The validity of formula (P.6) for ¢ can readily be checked by
multiplication. Another technique to find the value ¢(a), i.e., the deriva-
tive, is based on replacing x = a + h, where h = = — a, and observing
that

2" —a" = (a+h)" —a"
=a" +nha"" " + h*k(h) —a"
= [na" ' + h - k(h)]h,

where k is a polynomial in h of degree n — 2 that also depends on the fixed
number a. After substituting back h = = — a in the last expression, one
obtains

" —a" = [na"" '+ (x — a)k(z — a)](z — a).

This shows that the factor ¢ is given by ¢(z) = na”~* + (x — a)k(z — a).
While this does not give the full explicit expression for ¢ stated in (P.6), it
does however imply the critical information that

D(x™)(a) = q(a) = na™"* + 0k(0) = na" .

The algebraic differentiation process that we just discussed for polyno-
mials extends immediately to rational functions R = P/Q (i.e., quotients of
polynomials) at any point a where R is defined, that is, where the denomi-
nator @ is non-zero. Given that Q(a) # 0, if R(a) = 0, then one must have
P(a) =0 as well, and hence P(z) = qp(x)(z — a) for some polynomial gp.
Consequently R(z) = g(z)(x — a), where ¢ = ¢p/Q is a rational function
defined at a. If R(a) # 0, one obtains a corresponding factorization

R(z) — R(a) = qr(z)(z — a) (P.7)

with another rational function qr defined at a. In analogy to the case of
polynomials we say that a rational function R has a zero at a of multiplicity
> m, where m is a positive integer, if R(z) = kp,(z)(x — a)™ for some
rational function k,,(x) defined at a. By an argument analogous to the
one used earlier for polynomials, it follows that a rational function R is
algebraically differentiable at every point a where it is defined, i.e., its graph
has a (unique) tangent line at the point (a, R(a)) defined by the property
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that it intersects the graph of R at (a, R(a)) with multiplicity at least two.
The slope of the tangent (i.e., the derivative D(R)(a) of R) equals the
value ggr(a), where g is the factor in equation (P.7), just as in the case of
polynomials.

5.1 Exercises

1. Verify the following generalization of the power rule for differentiation.
If ¢ is a constant, then D(ca™) = cna™ ! for n = 1,2, ... .

2. Show that if the rational function R is defined at the point = a, then
D(cR)(a) = ¢D(R)(a) for any constant c.

3. Consider the rational function R defined by R(z) = 1/x for all x # 0.
a) If a # 0, show that - — 1 = =L(z —qa).

a

b) Use the result in a) to find the derivative of R at the point a.

4. Find the equation of the tangent line to the graph of f(z) = 3z* at
the point (1,3). (Hint: Use Problem 1 above to find the slope of the
tangent. )

5. Find the equation of the tangent line to the hyperbola described by
1 = xy at the arbitrary point (a,1/a) on the graph, where a # 0, by the
following two methods.

a) Write the equation of an arbitrary line through (a,1/a) with slope
m. Substitute this into 1 = zy and determine m, so that the point of
intersection (a, 1/a) of the line with the hyperbola is a double point.

b) Write the equation as y = 1/2 and use Problem 3 above to find the
slope of the tangent directly.

6 Rules for Differentiation

In this section all functions will be assumed to be rational. As we shall see
in the next section, the rules we develop in this section, as well as their
proofs, will apply verbatim if rational functions are replaced by functions
that are algebraically differentiable, which we defined earlier. Later, in
the main part of this book, we will see that these rules also remain valid
for arbitrary differentiable functions. In fact, except for a minor—though
most critical—additional argument, the same proofs will work in that most
general case.



22 What is Calculus? From Simple Algebra to Deep Analysis

6.1 FElementary Rules
We begin with the simplest rules, whose verification is straightforward.

Rule 0 (Power Rule). If n > 0 is an integer, then (z")" = nz"~!.
This is the rule we established already at the end of Section 5.

Rule I (Linearity).

(1) D(cf) =c D(f) for any constant c.
(2) D(f £g) = D(f) £ D(g)-

Rules 0 and I allow us to easily find the derivative of any polynomial P.
Examples.

i) (423) =4 - (23) = 4- 327 = 1227
i) (322 — 52%) = (322) — (52*) =3z — 5 - 4a®.

iii) (527 — 32% + 22* — 5% + 7w — 4)" = 352°% — 182° + 82® — 102 + 7.
In general, if P(z) = c,2™ + cp_12™ ' + ...+ c12 + ¢o, then
D(P)(z) = P'(z) = nepz™ ' 4 (n— Dep12™ 2 + . 4 e

is a polynomial of degree one less than the degree of P.
The verification of Rule I is straightforward. We prove Rule 1.2, and
leave Rule 1.1 to the reader. Consider the factorizations f(z) — f(a) =

gf(x)(x —a) and g(z) — g(a) = g4(z)(z — a). Then
(f +9)(x) = (f + 9)a) = f(z) — f(a) + g(x) — g(a)
= la7 (@) + g4 (2)](z — a).
It follows that (f +¢)'(a) = [¢5 + gol(a) = qr(a) + gg(a) = f'(a) + ¢'(a).

The proof with — instead of 4+ works exactly the same way.

Rule II (Chain Rule). Recall that for two functions f and g, the
composition fog of f and g is defined by evaluating first g and then inserting
the output into f, i.e., (fog)(x) = f(g(x)). Since we allow the functions
to be rational, one must limit the input x to values a for which ¢ is defined
and so that f is defined at b = g(a). (If both f and g are polynomials, there
is no restriction on x.) The chain rule then states that

D(f o g)(a) = D(f)(b) - D(g)(a), where b= g(a), or
(fog9)(a) = f'(9(a)) - ¢'(a).
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By using functional notation, the chain rule can be written D(f o g) =
(D(f) o g) - D(g). The crux of the matter is that the derivative of a
composition is the product of the derivatives. — The proof is very sim-
ple and natural. As before, we write f(y) — f(b) = ¢;(y)(y — b) and
g(x) — gla) = q4(x)(z — a), where ¢y and ¢, are the appropriate ratio-
nal factors, and substitute y = g(z) and b = g(a) to obtain

(fog)(x)—(fog)la) = flg9(x)) — fg(a))
= qs(9(x))(g9(x) — g(a))
= qs(9(x))qq () (x — a).

Since gr(g(x))gq(x) is a rational function defined at a, it follows that
(fo9)'(a) = gs(g(a))ge(a) = f'(g(a))d (a),

as claimed.

Examples. i) Suppose F(z) = (32° — 522 + 2)19. We could expand
F into standard polynomial form by the binomial theorem and apply rules
0 and I to find the derivative. However, this involves a messy algebraic
computation, and the simple structure of F' and of its derivative would be
lost. Instead, we note that F' is the composition F' = f o g of the simpler
functions f(y) = y'° and g(z) = 323 — 522 + 2. By the chain rule it then
follows that

F'(z) = [(32° — 5% +2)%)" = f'(g(2))g' (z)
= 10g(2)°¢' ()
= 10(32® — 52 4 2)°(92% — 10x).

ii) Let m and n be two positive integers. Then (z™)" = z™" by a
standard rule for exponents. We calculate the derivative on the left by the
chain rule, obtaining

(@) = n(em) mam )

m(n—1),.m—1

= nmx €T

= mna™" !,
where in the final step we have used another standard rule for exponents,
ie., 2t = 2°Tt. Note that the answer agrees with the direct application

of the power rule to the right side ™"
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6.2 Inverse Function Rule

Suppose the rational function R is one-to-one on the interval I, that is, if
21 and x4 are any two points in [ with R(z1) = R(x2), then 21 = 2. Tt
then follows that R has an inverse function z = S(y) defined on the set

J=R(I)={y:y= R(x) for some x € I},

which satisfies S(R(z)) = « for x € I and R(S(y)) = y for y € J. The
following rule for the derivative of the inverse S is most natural, although
its precise verification requires a little bit more work than the preceding
rules.

Rule III. If @ € I and R/(a) # 0, then S is algebraically differentiable
at b = R(a), and

(P.8)

Remark. In explicit examples, such as the ones discussed below,
one can typically check directly whether a function is one-to-one on a given
interval (for example, one could apply the so-called “horizontal line test”).®
It is noteworthy that one can show that the condition R’'(a) # 0 is already
sufficient for R to be one-to-one on a suitably small interval that contains
a. This will be discussed in greater generality in Chapter III.

Example. Consider the function R(x) = 2? on the interval I = {x :
x> 0}. R is one-to-one on I, and R'(x) =2z > 0 for € I. So R has an
inverse S given by S(y) = /y that is defined on J = {y : y > 0}. Note
that we can avoid any difficulties involving irrational numbers such as /2
if we limit x to just positive rational numbers, so that

J ={y:y = a? for x rational and 2 > 0}.
Rule IIT then implies that S is algebraically differentiable at any point
b = a? with a > 0, and that, by (P.8),
1 1 1
VOO = D@ "2 T o

Note that in exponential notation (/g = y*/2, so that the preceding result
translates into
(yl/Q)/ _ 11 _ J —r _ lyl/Zfl
2412 " 2 2 '

8The “test” states that a function y = f(x) is one-to-one on the interval I if every
horizontal line intersects the graph {(z, f(z)) : « € I} in at most one point.
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This shows that the power rule 0 holds also for the exponent 1/2. More
generally, by applying the inverse function rule to y = 2™ with a positive
integer n, one can check that the power rule remains valid for any exponent
of the form 1/n, that is,

1
D (yl/n) - ﬁyl/" ! for all y > 0. (P.9)

(See Problem 5 in Exercise 6.5.)
The proof of the Inverse Function Rule III follows the familiar pattern.
Proof. Fix a € I. By hypothesis,

R(x) = R(a) = q(x)(z — a),
where ¢ is a rational function defined at = a, and ¢(a) = D(R)(a) # 0. It
follows that there exists an interval I, C I centered at a such that ¢(x) # 0
for x € I,. Therefore the rational function 1/q is defined on I, as well, and

it follows that

1 1
r—a= m(R(ac) — R(a)) = m(y—b) for x € I,. (P.10)
)

By substituting @ = S(y) and a = S(b), one obtains

S(y) - S(b) = @@—b) - m@

If S were rational, the proof would be complete. However, since the inverse

—b). (P.11)

function S is not rational in general (i.e., it cannot be written as the quotient
of two polynomials), some additional arguments are needed to show that
S is algebraically differentiable. We note that for the rational function 1/q
one has a factorization (1/q)(z)—(1/q)(a) = k(z)(x—a), where k is rational
as well. Hence

(1/@)(x) = (1/9)(a) + k(z)(z — a).

By substituting this into formula (P.11) and rearranging, one obtains

—)<y—b>=[ () — a)](y — b)
= M2, b>2:[<§>os1<y><y—b>2,

where in the second equation we replaced (x — a) by using formula (P.10).
Since [(k/q) o S]—while not rational in general—is a well-defined compo-
sition of a rational function with S, this final formula shows that the line
given by
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does indeed intersect the graph of S at y = b with “multiplicity at least
2”.  Indeed, this procedure naturally leads to the appropriate general-
ization of “multiplicity” from the known rational case to functions of a
more general type. So S is algebraically differentiable at b with derivative
S’'(b) =1/q(a) = 1/R(a), as claimed. |

In particular, we see that just as in the case of rational functions, the
derivative 1/q(a) = 1/q(S(b)) of S at b is precisely the value at b of the
factor 1/¢(S(y)) in the relevant factorization (P.11).

Note that the inverse function rule becomes a special case of the chain
rule once the latter has been extended to more general functions. In fact,
if R and S are inverses of each other and algebraically differentiable at
a and b = R(a), respectively, the chain rule applied to the composition
S o R—which satisfies (S o R)(x) = x—implies that

§'(R(a)) - R'(a) = (S o RY(a) = (x'(a) = L.

It follows that both R'(a) and S’'(b) = S’(R(a)) must be # 0, and the
inverse function rule follows by dividing by R/(a).

6.3 Product Rule

From the perspective of algebra, the product f - g of two functions defined
by (f - ¢)(z) = f(z)g(x) might appear more natural and simpler than the
composition fog. However, for derivatives, the opposite is the case. Since
by the chain rule the derivative of a composition is the product of the
derivatives, we cannot expect the simple formula D(f-g) = D(f)-D(g) for
the product of two functions, because the right side is already “reserved”.
In fact, the rule for finding the derivative of a product is more complicated,
as follows.

Rule IV (Product Rule).

D(f-g)=D(f) g+ f D(g).

Proof. Notice that rule I.1 is a special case of the product rule: (c¢f)’ =
cf+cf =cf’, since ¢ =0. For the proof of the product rule we suppose,
as usual, that the two rational functions f and g are defined at the point
r = a, and we rewrite the standard factorizations in the form

f(x) = f(a) + qs(x)(z — a) and g(z) = g(a) + q4(z)(x — a).
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f@)g(x) = fa)g(a)+g(a)as () (z—a)+f(a)gy(z)(z—a)+qs (z)gq(x) (2—a)®.

It follows that the relevant factorization for f - g is given by

(f9)(x) = (f9)(a) = [g(a)gs (z) + f(a)ge(x) + q5(2)qq(2) (2 — @)](x — a)

q(z)(x — a),
where ¢ denotes the rational function in the edged bracket [...]. Therefore
(f9)'(a) = q(a) = g(a)gs(a) + f(a)ge(a) = g(a)f'(a) + f(a)g'(a). u

Example. Let us take f(z) = g(z) = x. Then (fg)(z) = 2%, and
hence (fg)'(z) = 2z. Since f'(z) = ¢'(z) = 1, clearly f (z)¢'(z) = 1 #
(fg)'(x). On the other hand, the product rule

(f9) (z) =1g(z) + f(x)l =l + 21 = 22

gives the correct derivative of fg. More generally, if f(x) = 2™ and g(z) =
™ for two positive integers n and m, then, by the product and power rules,

(f9)'(z) = (&) 2™ + 2" (&™)’
=nz" g™ 4 2" ma™"

= (n 4+ m)z"Tm L

1

The answer agrees, as it should, with the direct application of the power
rule to "t = " a™.

Example. Use the product rule to find the derivative of
f(z) = (2 — 4o + 1)(42® + 22" — 2® + 20z).
Solution.

D(f)(x) = [D(2® — 4z + 1)](42® + 22" — 23 4 202)
+(2® — 4z + 1) D(42° + 22" — 23 4 20z)

= (322 — 4)(42° + 22* — 2® + 202)
+ (2 — 4z + 1)(202* + 823 — 322 + 20).

Do not simplify the answer any further.
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6.4 Quotient Rule

The rule for differentiating the quotient of two functions is even more com-
plicated then the product rule. Let us first consider the simpler case of
the reciprocal 1/f of a rational function f with f(a) # 0. With ¢ the
appropriate rational factor that satisfies f(z) — f(a) = ¢(x)(z — a), so that
q(a) = f'(a), it follows that
L1 @ f@) _ —@)—a)
f@)  fla)  f2)f(a) f(@)f(a)
_alx)
= (z —a).
@) f(a)
This factorization leads to the reciprocal rule

L () S i (0)
(f) @ ==TF@r =~ )

o(3)- 4

Examples. i) Let us apply the reciprocal rule to find the derivative of
y=1/x at x # 0. It follows that

" 21
x)  x2 a?

ii) More generally, let m be any positive integer. Then

1 /7 mxmfli 1
) T =

By the definition of powers with negative exponents, this translates into

or

7m]/ 7m71.

[ = (—m)x

In this form the formula matches exactly the power rule 0 with exponent
n = —m, i.e., for n a negative integer. By combining this last result with
rule 0 one thus obtains the power rule

(x”)’ =nz" ! for any integer n and all = # 0.

Of course the result holds also for x = 0 in the case n > 0. By combining
this result with the formula (P.9) for D(x'/™) for x > 0, and with the chain
rule II, one verifies that the power rule

D" =rz" " forxz >0
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holds for any rational exponent r. (See Problems 7 and 8 of Exercise 6.5.)
iii) By the reciprocal rule, one obtains

1 322
D S
(,7:3—1-1) (3 +1)2

Remark. The reciprocal rule can also be obtained directly from the

for all x # —1.

product rule. (See Problem 3 in Exercise 6.5.)
Finally, the general case of a quotient g/f of rational functions follows
by combining the product rule IV with the reciprocal rule, as follows.

D (4) (@) = Dlg- (3 )1(@) = Dlg)(a) 5= + 9(a)D (5 ) (a)
f f f(a) f

= Dlga) 77 +ola) (-2

Adding the two fractions gives the following formula.

Rule V (Quotient Rule).

D (2) (a) _ D(g)(a) f(a) - g(a’) D(f)(a)
f f(a)?

The expression in the numerator is very similar to the result of the product
rule, except for the minus sign. It is thus very important to keep the order
straight, i.e., to remember that differentiation begins with the numerator.

Symbolically, if Num is the Numerator and Den is the Denominator, then

Num]’ _ Num/ Den — Num Den’
Den | Den? '

Quotient Rule: [

Example.

23— 422+ 3217
2 -9

(23 —42® + 3z — 1)/ (2% = 9) — (2® — 42% + 3z — 1)(2® — 9)

(2 —9)?
2 2 (3 2 —
(32— 8a 4 3)(a (92) éﬂ)ﬁQ da” 430 = )0 ol £ 43,
o

It is best to leave the answer in this last form which reflects the structure
of the quotient rule, rather than to attempt any algebraic “simplification”.

Remark. The quotient rule implies that the derivative R'(x) of a ratio-
nal function R(x) is again a rational function that is defined wherever R(z)
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is defined. Therefore R’ is algebraically differentiable, and one can define
its derivative R, i.e., the second order derivative, as well as derivatives of
higher order. All derivatives R = D"(R) are again rational with the
same domain as R.

We conclude with an example that combines several rules of differenti-
ation. It is best to proceed with one rule at a time, as appropriate, until
all differentiations have been carried out. Moreover, do not attempt any
simplifications neither during the calculations nor at the end.

4xr+5

((x3 +22)%Vx2 + 1>/ _

D[(x® + 22)5va2 + 1] - (4x +5) — [(23 + 22)%V22 + 1] - D(4x + 5)
4z +5)

= (1)
by Rule V. Next,

[D((z? + 22)%)Va? + 1+ (2% + 22)° D(Va? 4+ 1)] - (4x +5)
(4z +5)2

—[(2® + 22)5v/22 4 1] - D(4a + 5)
(4 +5)2
where we have used the Product Rule IV. Finally, by using Rules 0-III, one
obtains

(1) =

— (11)

(1) = [6( +22)° (32 + 2)Va® +1 + (2% + 22)%(3 o4 20)] (4 + 5)
(4dx + 5)?

—[(2® + 22)5va2 + 1] 4
(4z + 5)? '

6.5 FExzercises

1. Find the derivatives of the following functions:
a) P(z) =4a° — 62" — 223 + 322 + 2.
b) f(z) = 5a® + 7x/? — 3(x? +1)7 for 2 > 0.
c) g(z) = 1/(3x + 722 4+ 2)5. (Hint: Use 1/(b°%) =b75.)
) k
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e) h(z) =4/z* +52/° — 2y/x1 +2 for x # 0.

2. Find the derivative of G(x) = (2% — 222 + 42)V/322 + 1.

3. a) Derive the reciprocal rule for differentiation directly from the product
rule by differentiating both sides of the equation f - (1/f) = 1. Note
that the reciprocal 1/f of a rational function f is rational as well,
and therefore it is algebraically differentiable.

b) Apply the analogous method to f - (g/f) = ¢ to find the derivative
of g/f.

4. Note that the reciprocal 1/ f of a function f with f(a) # 0 can be written
as the composition 1/f = g o f, where g(y) = 1/y for y # 0. Use the
chain rule and power rule to prove the reciprocal rule for the derivative
D(1/f)(a).

5. Let n be a positive integer. The function y = R(xz) = 2™ is one-to-one on
the interval I = {x > 0}, with R(I) = I. Use the inverse function rule

Un on I. Verify

IIT to find the derivative of the inverse x = S(y) = y
that D(y'/") = %yl/” -1

6. This problem illustrates that root functions (i.e., the inverse function
rule) can be presented just by using rational numbers, as follows. Re-
strict the domain of the function R(z) = z™ in Problem 5 to the set
Qt = {r € Q:r > 0} of positive rational numbers. Let S be the inverse
of R restricted to the set J = R(QT). Find the derivative D(S)(r") at
the point ™ = R(r). Note that the graph {(r,r™) : r € QT} is, for all
practical purposes, indistinguishable from the familiar graph of R over
the positive real numbers.

7. Prove that the power rule holds for arbitrary rational exponents r =
m/n, n > 0. (Hint: Note that f(z) = 2™/™ = (#'/")™ and apply the
chain rule and the power rule for exponents m € Z and 1/n.)

8. Do Problem 7 by reversing the order in the composition, i.e., write

fla) = (@m)Hm.

7 More General Algebraic Functions

Notice that once one takes inverses of rational functions one ends up with
functions that usually are no longer rational, but that are of a more general
type. It is then natural to try to apply the differentiation rules we consid-
ered for rational functions to these new functions. More generally, let us
consider the collection of functions A that are obtained from the rational
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functions by applying compositions and inverses, as well as the standard
algebraic operations, a finite number of times, where the relevant functions
are restricted to appropriate domains consisting of finite unions of open
intervals, so that relevant quotients, compositions, and inverses are defined
and algebraically differentiable on these intervals. For example, the sum of
two functions f1, fo € A with domains ©; and €25 is defined on the domain
Q = 01N Qy provided €2 is not empty. Similar conventions need to be ap-
plied when one considers other algebraic operations involving functions in
A. Functions in A are also called algebraic.

The most important fact is that the familiar factorization result for
polynomials generalizes to functions f € A, as follows.

Lemma 7.1. (Factorization Lemma.) If f € A and a is in the domain
of f, then there exists q € A defined on the domain of f such that

f(@) = fla) = q(z)(x — a). (P.12)

The proof of this statement basically involves checking through the
proofs of the rules we discussed in the preceding section, where in each
instance we were able to conclude that, given the factorization for the ini-
tial functions, one ends up with an appropriate factorization of the function
that results by application of one or several of the admissible operations.

Based on the factorization result, it is clear how to generalize the notion
of multiplicity of a zero a to the case of a function f € A.

In analogy to the case of polynomial and rational functions, successive
application of the factorization lemma then implies the following result.

Corollary 7.2. Given f € A and the factorization (P.12), then

f@) = [f(a) + m(z — a)] = (a(a) — m)(z — a) + k(z)(z — a)”
for some other k € A that is defined on the domain of f.

Geometrically, this means that the line described by the linear function
y = f(a) + m(z — a) intersects the graph of y = f(z) at (a, f(a)) with
multiplicity at least two if and only if m = ¢(a). Consequently, the line
given by y = f(a)+q(a)(z—a) is the tangent to the graph of f at (a, f(a)).
This shows that the function f € A is algebraically differentiable at a, with
derivative D(f)(a) = f '(a) = q(a), where ¢ is defined by (P.12).

Furthermore, note that the differentiation rules I - V, including their ver-
ifications, only used the relevant factorizations and appropriate (algebraic)
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combinations of the functions and factors that arise. If the given functions
are in A, these combinations result in functions that remain within the
class of functions A. We thus obtain the following result.

All the rules for differentiation established in Section 6 remain valid
for functions in the class A at all points in the domains of the respective
functions.

It then follows that if f € A is defined on the interval I, its derivative
D(f) defines a function on I that is again a member of the collection
A. Consequently one can define derivatives of higher order D(D(f)) =
7" L f0 ) All derivatives f(™) are in the class A and have the
same domain as the original function f.

Example. Let f(y) = \/y be the inverse of y = 22 on = > 0. We already
saw that f is (algebraically) differentiable on I = (0, c0), with

1 1
’ _ - )
Let g(z) = 2® — 32. Since g(z) > 0 on J = (—o0,0) U (3,00), the compo-
sition (f o g)(x) = V22 — 3z is defined on J, is in A, and is (algebraically)
differentiable on its domain .J, with
(feg)(x) =[(f"o9) ()
1

One can then apply the rules from Section 6 to calculate (fog)” = D[(fog)’]
at points x € J as follows.

1 1
2Vx? — 3x 2vVx? — 3z

- [_i (22 — 32)"V/* (2 — 3)] (22 — 3) +

DI(f o9))(a) =D | o=+ D(2s —3)
_
2V 22 — 3z
= (22— 3)? n 1
4(vVa? = 3x)3 a3z
The structure of the formula for D[(f o ¢)’] is summarized by
D[(fog)]=DI(f' cg)-4
=[(f"o9)- 919+ (f og)-g"
As is well visible from this example, the calculation of successive derivatives
of functions in A, while based on repeated applications of the same basic
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differentiation rules, will very quickly result in more and more complicated
functions in A.

We conclude the discussion of algebraic functions with another impor-
tant consequence of the factorization (P.12).

Theorem 7.3. Given f € A and a point a in the domain of f, there exist
numbers § > 0 and K, such that one has the estimate

[f(x) = fla)| < K|z —al forall x with |x —a] < 4. (P.13)

We had seen the significance of this kind of estimate already in Section
4, where it was used to recognize that the instantaneous velocity v(tp)
is well approximated by average velocities over shorter and shorter time
intervals around to. The crucial property expressed by the estimate (P.13)
is that the values f(z) approach f(a) as  — a, since clearly the left side of
(P.13) becomes increasingly smaller as |z — a] — 0. This is the essence of
what is known as the continuity of the function f, a fundamental property
that will be discussed more in detail in Chapter II. As we shall see in the
next section, this approximation property is the critical ingredient that will
allow us to study the tangent problem for more general functions that are
not of algebraic type.

Proof. The proof of the theorem easily follows from the fact that func-
tions ¢ € A are locally bounded, as follows: given a in the domain of ¢,
there exist numbers § > 0 and K that depend on ¢ and a, so that

lg(z)| < K for all x with |z — a] < §. (P.14)

In order to prove the estimate (P.13), recall that by (P.12) one has
f(z) — f(a) = q(z)(x — a), where ¢ € A as well. Now use the above local
bound (P.14) for the factor ¢ to obtain

|f (@) = fla)| = lg(@)] |+ — a < K |x —a
for all x with |z — a|] < 4. [ |
To verify the existence of a local bound for functions in A is particularly
simple for polynomials. Let q(z) = c,2™ + 12"~ + ... + 12t + ¢ and
choose any positive number 4. Standard estimations then imply that

lq(x)| < |en| 6™ + |en1] 6™ 4 ...+ |c1| 01 + |co| for all 2 with || < 4,

that is, |¢(z)| < K, with K equal to the constant on the right side of the
preceding inequality. Things are a little bit more delicate in general. For
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example, note that the function ¢ defined by ¢(x) = 1/z is NOT bounded
on the interval (0,1). However, if a is any point in the domain of ¢, then
a # 0. Suppose a > 0, and take § = a/2 > 0. Then for all z that satisfy
|z —al < ¢ one has x > a — § = a/2, and therefore |¢(x)] = 1/z < 2/a.
The same sort of argument, choosing § = |a| /2, handles the case when
a < 0. We shall discuss the proof of the estimate (P.14) in the general case
in Chapter L.6.

7.1 Exercises

1. a) At which points is f(z) = Va2 — 4 algebraically differentiable?

b) Calculate D(f) and D?(f). (Do not try any algebraic simplifications
in the resulting formulas.)

2. Note that g(z) = 2'/3 is defined for all € R. Show that g is alge-
braically differentiable at all x # 0 and find first and second derivative
of g at such points.

3. Show that the function ¢ in Problem 2 is NOT (algebraically) differen-
tiable at = 0. Reconcile this result with the (obvious) fact that the
line x = 0 (the y-axis) is the tangent to the graph of g at (0, 0).

4. Determine where

4o —1

F N Yo P—
(‘T) xz ($3+3)5

is (algebraically) differentiable and find D(F)(x) at those points.

8 Beyond Algebraic Functions

The discussion in the preceding sections has covered the differential calculus
of algebraic functions. Only elementary algebraic tools were used, begin-
ning with the basic factorization lemma for polynomials and the related
concept of multiplicity of zeroes. These tools were then generalized in a
natural and systematic way to all functions built up from polynomials by
applying standard algebraic operations, including compositions and taking
inverses, a finite number of times. No new results and concepts needed to
be introduced beyond what is learned in typical high school algebra and
geometry courses. In particular, we did not require any advanced concepts
such as “limits” or “continuity”, and no subtle properties of numbers were
used beyond the basic arithmetic properties of the rational numbers, i.e.,
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the quotients of integers. You may further have noticed that the formulas
and other technical aspects really remained quite simple and natural until
we got to the product and quotient rules. While the operations of taking
products and quotients of functions are of course natural and useful, the
complicated algebraic structure of the corresponding differentiation rules
is quite surprising indeed, but it is important not to let these “unnatural”
rules obscure the simplicity of the fundamental ideas.

In summary, the central ideas appear already at the very beginning, in
the setting of the familiar polynomial functions. All subsequent work is
just a variation of that theme, namely an enlargement by finite standard
algebraic operations of the class of functions under consideration. The crux
of the matter is the (algebraic) factorization

f(@) = fla) = q(2)(z - a),

where the factor ¢ is just another function of the same type as the original
function f, which in principle can be computed explicitly, and that—most
importantly—is well defined also at the point a by a unified algebraic for-
mula. (See Lemma 7.1.) The value g(a) is then the derivative D(f)(a) of
f at the point a. Depending on the setting, g(a) = D(f)(a) gives the slope
of the tangent line at the point (a, f(a)), the instantaneous velocity at time
a, or, more generally, it can be viewed as an appropriate instantaneous rate
of change at the input value a. From this point of view, the instantaneous
velocity and other rates of change “at a single point” are captured by the
derivative of the relevant functions. In particular, we do want to emphasize
that many applications to classical topics in the physical sciences, such as
velocity and acceleration, as well as to other areas, can be handled by the
algebraic methods we have discussed so far, as long as the functions that
are used to model the underlying phenomena are of algebraic type.

Unfortunately, the algebraic functions and the algebraic techniques we
have discussed in this Prelude to Calculus are much too simple and limited
in order to describe many of the fundamental phenomena of the real world.
In response to this limitation the human mind, in its quest for deeper
understanding, has created amazing new functions and abstract concepts
that go well beyond the algebraic tools we have considered so far, and that—
at its roots—require a sophisticated extension of the concept of number,
resulting in the creation of the so-called real numbers that generalize the
familiar fractions or rational numbers. As we shall see, the real story of
differential calculus—in contrast to the elementary side discussed in this
Prelude—begins when we reach beyond the algebraic functions and enter
new uncharted territory.
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Among the familiar phenomena that transcend algebraic methods are
periodic events, such as the revolution of planets around the sun, waves
in various media (e.g. sound waves or electromagnetic waves), or the fine
structure of electrons circling the nucleus of an atom, and problems related
to growth and decay, as they arise, for example, in the areas of biology
(growth of populations), finance (compound interest), or physics (radioac-
tive decay). The relevant simplest mathematical functions that need to be
considered—such as trigonometric, exponential, and logarithm functions—
have long been known, but they cannot be captured by finite algebraic
formulas, concepts, and techniques. To highlight this fact, these func-
tions and their close “relatives” are usually referred to as the elementary
transcendental functions.

The more complex nature of these transcendental functions shows up
clearly as soon as one investigates the tangent problem for these functions.
To be specific, let us consider the simple exponential function f(x) = 2%
that is used to describe a process in which the output doubles whenever
the input is increased by one unit. In fact, by one of the basic rules of
exponents, f satisfies

flz4+1) =2t = 2721 = 2f(z) for any .

It follows that if n is a positive integer, then f(z + n) = 2" f(z). Let us
recall the definition of 2% in the case where the exponent z is a rational
number. (This was already used in Section 6 in the discussion of the power
rule for differentiation in the case of rational exponents.) If m and n are
integers, with n > 0, then f(m/n) = 2™/™ = {/2m ie., v = 2™/™ is that
(unique) positive number v that satisfies v = 2™. It follows that v can
also be written as v = (2'/")™. We must emphasize that—even though
the same operation of “exponentiation” is used—the exponential function

2 or more generally, y = z™/" are

f(z) =27 and the power function y = x
very different. The latter y = 2”/™ is of algebraic type, and its derivative
was handled by finite algebraic methods in Section 6, while the exponential
function f(z) = 2%, as we shall see, forces us to come to grips with amazing
new phenomena.

The graph of y = 2% for x € QQ, which is easily produced with a graphing
calculator (see Figure 8), looks just like an unbroken line that has been
gently bent in the same direction across its total length according to some
hidden rule.

Compared to the graphs of polynomials or rational functions, things
could not get any simpler, short of just considering lines. And yet, this
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Fig. 8 Graph of the exponential function y = 2% with a tangent.

simplicity hides remarkable new phenomena that come to light as soon as
one attempts to determine the tangent line at some point P on the graph.
Figure 8 certainly suggests that there indeed is a line that fits our intuitive
concept of tangent line—a line that touches the graph but does not cut it.
Again, as we had seen in Section 2, this geometric feature is made precise
by observing that small rotations of the tangent reveal that the point of
tangency P is indeed a double point. In order to investigate the slope of
the tangent more in detail, we simplify by choosing P = (0,1). Proceeding
along the familiar path that was so successful in the case of polynomials
and other algebraic functions, we look for a factorization

f(x) = f(0) = q(z)(x —0), ie., 27 — 1 = g(z)z.
Unfortunately, there is no obvious explicitly known factor ¢ defined at z = 0
that fits this factorization. In particular, there is no algebraic function g(x)
that does the job. Furthermore, searching for some explicit expression for
q built up from 2% that would provide an unambiguous natural definition
for ¢(0) turns out to be futile. Of course, as long as x # 0, the value ¢(z)
is completely determined by the formula

27 —1

q(x) for x # 0,
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but this is useless for x = 0, since the formula would result in the mean-
ingless expression 0/0. Hence there is no way to evaluate ¢(0), which—by
analogy to the case of algebraic functions—would produce the value of the
slope of the tangent, i.e., the derivative of f(z) = 2% at x = 0. However, the
discussion of instantaneous velocity in Section 4 provides an important clue
about how we might proceed. Recall the insight—based on an intuitive un-
derstanding of instantaneous velocity consistent with our experience—that
the velocity v(tg) at a single moment tg should be approximated as closely
as desired by the average velocity over smaller and smaller time intervals
[to,t]. As we had seen, this important approximation property was made
precise by a suitable simple estimate. In fact, at the end of the last section
we generalized this estimate to all algebraic functions in the class A. (See
Theorem 7.3.)

If ¢ were algebraic, the estimate |¢(x) — ¢(0)| < K |x — 0| (see equation
(P.13)) would imply that ¢(z) — ¢(0) as @ — 0. In the case at hand ¢
is of course not algebraic, and furthermore, we do not even have any clue
for the value ¢(0). The geometric version of this idea in the present setting
suggests that the missing value ¢(0) for the slope of the tangent should
be approximated by the slope of lines through (0,1) and a second distinct
nearby point (z,2%) on the graph as & # 0 approaches 0. (See Figure 9.)
In fact, for x # 0, the slope of such a line is given precisely by the quotient
q(z).

It certainly looks very plausible that the unknown slope m of the tangent
can be approximated by ¢(x) as the non-zero value of x gets closer and
closer to 0. In Figure 9, as x > 0 moves closer and closer to 0, the point
(x,2%) glides towards (0,1) along the curve that is the graph of f(z) =
27 so that the line through (0,1) and (z,2%) slowly turns in clockwise
direction. In contrast to the situation in Section 4, where the value v(ty) of
the instantaneous velocity was known to us by algebra, the present situation
is more complicated, as we do not know a value m for the slope of the
tangent, nor do we even have any obvious guess for it. We are literally
shooting in the dark. Lacking a value for m, there is no way to estimate
|g(z) — m| as in the case of the velocity in Section 4. The best we can do is
to analyze the behavior of the average rate of change ¢(z) as the non-zero
value x approaches 0.

Modern technology has created powerful tools that make this analysis
easy and quick. A good programmable calculator would serve the purpose;
a computer that runs one of the powerful computer algebra programs such
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Fig. 9 Secant to y = 2% of slope q(z) = (2* — 1)/x for > 0.

as Maple or Mathematica would be even better. Equipped with such tools,
we can readily evaluate ¢ for very small non-zero points z, and thereby
obtain numerical approximations for the elusive slope m. Table P.1 shows
the values q(zx) for 2, = 107%, k = 1,2,...,10, evaluated to ten decimal
places.

e q(rr) = (2% = 1)/zp

10-! 0.7177346253
1072 0.6955550056
1073 0.6933874625
10~* 0.6931712037
107° 0.6931495828
10-6 0.6931474207
1077 0.6931472045
10-8 0.6931471829
107? 0.6931471808
10-10 0.6931471805

Table P.1. Approximation of slope of tangent to 10 digits.
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It appears that the values ¢(xj) approach a number whose decimal
expansion begins with 0.69314... . Who could have guessed this by just
looking at Figure 97 Let us increase the precision by evaluating ¢(xy) to
30 digits for k = 11, ...,20. The result is shown in Table P.2.

Ty q(zr) = (2% — 1) /2y,

1071 0.693147180562347574486828678992
10712 0.693147180560185535924191277674
10~ 0.693147180559969332067928032084
10~ 0.693147180559947711682301712470
1071 0.693147180559945549643739080558
10716 0.693147180559945333439882817368
10717 0.693147180559945311819497191049
10~ 0.693147180559945309657458628417
1071 0.693147180559945309441254772154
10720 0.693147180559945309419634386527

Table P.2. Approximation of slope of tangent to 30 digits.

Consistent with the geometric interpretation, the numerical data does
provide evidence that the values g(x) approximate some “number” mq as
x — 0 that lies between 0.6931471 and 0.6931472, or—more precisely—
between 0.69314718055994530 and 0.69314718055994531. However, even
though we could narrow the interval that contains ms as far as we wish, lim-
ited only by the available computing technology, no precise familiar value
seems to emerge from this process. For example, no periodicity appears in
the decimal expansions displayed above, so it is not clear at all whether mo
is a rational number.? And if ms is not rational, what type of “number” is
it? Is it some “irrational” number that is the root of a polynomial equation
with integer coefficients, analogous to the positive number \ that satisfies
A2 — 2 = 0 and which is denoted by V2?7 Or does ms even transcend such
“algebraic” numbers? We really cannot answer these questions at this
time.

What is clear, however, is that the tangent problem for the simple nat-
ural function f(z) = 2% leads us into new, unknown territory. At the
most fundamental level we are not even sure whether our basic concept

9Recall that a number is rational if and only if its decimal expansion is finite or periodic.
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of number—which includes “irrationals” such as v/2 beyond the familiar
rational numbers—is sufficient to describe the truly complex phenomena
that have come to light, and ultimately capture the “correct” value of the
slope.

In order to answer some of these questions that are central for an under-
standing of basic growth phenomena, we need to take a few steps back and
first build an appropriate foundation. This foundation should include, in
particular, an understanding of the critical properties of the number system
that we are using, of the basic concept of function, and of the approximation
process that has emerged, first in an elementary and post-facto version in
the study of tangents and of instantaneous velocity in the algebraic setting,
and now in the far more intriguing form that arises in the study of tangents
to the graph of a simple exponential function. We will therefore begin the
main part of this book with an exploration of these foundations. We will
try to focus on the principal ideas without getting entangled in technical-
ities. However, the reader needs to be willing to think carefully and not
be deterred by some mathematical abstractions, as we try to describe one
of the amazing creations of the human mind that has developed into an
indispensable fundamental tool for understanding the world around us.

8.1 FEzxercises

1. Let m = mso denote the elusive number that measures the slope of the
tangent to f(x) = 2% at (0, 1). Show that if the analogous approximation
process is worked out at the arbitrary point (a,2%) on the graph of f, it
leads to the apparent result that the slope of the tangent at this arbitrary
point is given by m»2?. (Hint: Consider a second point (a + h,297")
with h > 0 and use 241" = 292" by a basic property of exponentials.

2. Use a scientific calculator or appropriate computing software to inves-
tigate, as in the preceding discussion, numerical approximations to the
slope of the tangent to the graph of g(x) = 10* at the point (0,1). Try
to estimate the first 4 digits of that slope.



Chapter 1

The Cast: Functions of a Real
Variable

In this chapter we introduce and discuss in some detail the basic objects
of study in calculus. Some of this material may be familiar to the reader,
but other parts will be new, and particular attention should be given to the
latter. As we realized at the end of the Prelude, the required foundations
will include some material that is not part of typical high school courses.
Consistent with the goals of this book, rather than aiming for technical
completeness, we shall focus on the key concepts and ideas, and we will
emphasize those aspects that are most important for an understanding of
calculus.

I.1 Real Numbers

I.1.1 Rational Numbers

As we stated in the Preface, Calculus provides the mathematical ideas,
tools and techniques to analyze rates of change in very general settings.
These concepts have proved extremely useful for modeling phenomena in
the natural sciences, including physics, chemistry, biology, as well as many
areas of the social sciences. The quantities involved, such as time, distance,
velocity, population size, blood pressure, profits, rate of inflation, invento-
ries, etc., are usually described and measured by numbers. Relationships
between different quantities are then expressed by functions of one or sev-
eral variables, where each of the input variables, as well as the output of
the function takes on numerical values.

Thus numbers are an important ingredient, and we need to have a solid
understanding of their basic properties. While most people typically only

43
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have to deal with rational numbers, that is, with fractions, we recognized at
the end of the Prelude that investigations of tangents for simple exponential
functions require us to consider a number concept that is sufficiently broad
to include the “limits” of certain natural approximation processes. This
leads us to consider the intriguing and elusive property known as “complete-
ness” that is usually not part of high school algebra. Completeness, while
not always mentioned explicitly, is the critical ingredient without which the
fundamental concept of limit—so central for the ideas of calculus—would
more often than not lead nowhere and hence be meaningless.

Before getting to that new deep idea, let us first quickly review the basics
of the rational number system. We are all familiar with the collection of
counting numbers 1,2,3, ..., also known as the set of natural numbers N,
and with the basic arithmetic