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1 Introduction

1.1 Paper Overview

Linux kernel development is relatively fast-paced given the size and complex-
ity of the code base. This is because of its widespread adoption by hobbyists,
home users, businesses (including many Fortune 500 companies), and educa-
tional institutions. The Linux kernel mailing list (LKML, a mailing list for
kernel developers), as of summer 2004, averages about 300 messages per day
from between 50 and 100 different developers. These numbers do not include
most architecture-specific discussions, which happen on separate lists. In the
year before August 1st, 2004, over 16,000 patches of widely varying sizes were
committed to the official Linux kernel [7]. This pace of development has led
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to a situation where very few of the kernel’s major components are adequately
documented at the implementation level.

This lack of documentation makes it more difficult for new contributors,
students, researchers, and even veteran contributors to understand the Linux
kernel’s implementation. For all of these people, implementation-level docu-
mentation of the Linux kernel provides many benefits. Obviously, those who
wish to contribute to the Linux kernel must have a fairly good understanding of
its actual implementation. But why is it valuable for students and researchers
to understand the Linux kernel at the implementation level? Isn’t the the-
ory behind it or a general idea of what is going on enough? Since the Linux
kernel is ”developed with a strong practical emphasis more than a theoretical
one” [6], many decisions are made in reaction to Linux’s real-world performance.
This means that it is quite common for Linux’s implementation to diverge from
theoretical foundations; when this happens, it is usually for a good reason. Un-
derstanding deployed algorithms, the reasoning behind divergences from theory,
and the weaknesses in theories that real-world applications bring to light is
essential for the development of future algorithms.

For the reasons listed above, Linux needs documentation specific to its im-
plementation, not just the theory that may or may not have at one time been
the basis for the design choices made by its developers. This paper on the
Linux 2.6.8.1 scheduler was inspired by Mel Gorman’s thesis on the Linux vir-
tual memory (VM) system [6], which current Linux VM developers probably
reference and value more than any other piece of documentation on the subject.

The goal of this paper is to provide in-depth documentation of the Linux
2.6.8.1 CPU scheduler. This documentation will hopefully be of use to kernel
developers who must work with the code, as well as students and researchers who
wish to understand the implementation of a real, working scheduler. Hopefully
this paper will greatly reduce the amount of time required to gain a detailed
understanding of how the Linux 2.6.8.1 scheduler works. In the same way that
Mr. Gorman’s documentation of the Linux 2.4.20 VM system is still very helpful
in understanding the VM system in the Linux 2.6.x series of kernels, it is hoped
that this paper will remain relevant for many versions of the Linux kernel beyond
2.6.8.1.

1.2 Linux Kernel Literature

While the Linux kernel lacks up-to-date code-level documentation, there is a
reasonable amount of higher-level and introductory documentation available.
Any of the following literature is highly recommended reading for those who
wish to gain a basic knowledge of kernel internals.

Linux Kernel Development by Robert Love (a highly respected Linux kernel
hacker) was released in 2004 [4]. It covers the Linux 2.6.x kernel series, and as
of fall 2004 it is perhaps the only book to do so (most others cover Linux 2.4.x
and earlier). At 332 pages, it is quite manageable as a book to read page-by-
page and to use as a reference. It gives a general overview of each of the Linux
kernel’s components, and helps to illustrate how they fit together. It contains a
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well-written overview of the Linux 2.6.x scheduler.
Robert Love’s Linux Kernel Development may be the only book available

that covers the Linux 2.6.x kernel, but there are several books available about
the Linux 2.4.x kernel that may be helpful in understanding many components of
the Linux 2.6.x kernels (some component have not changed drastically). Books
providing such coverage include:

• Understand The Linux Kernel by Daniel Bovet and Marco Cesati. O’Reilly,
2003.

• Linux Device Drivers by Alessandro Rubini and Jonathan Corbet. O’Reilly,
2001.

• IA-64 Linux Kernel by David Mosberger and Stephane Eranian. Prentice
Hall PTR, 2002.

• Understanding The Linux Virtual Memory Manager by Mel Gorman.
2004.
(http://www.skynet.ie/˜mel/projects/vm/ )

The Linux Documentation Project (http://www.tldp.org/ ) is another good source
of documentation. It contains documents covering many different aspects of
Linux distributions and the Linux kernel.

Archives of all past conversation on the official Linux kernel development
mailing list (LKML) are available on many web sites. Simply search for “LKML
archive”using a search engine such as Google (http://www.google.com/). LKML
should be read liberally and posted to conservatively.

Last but not least, the documentation distributed with the kernel source
itself is quite helpful. It can be found in the Documentation/ directory.

Unfortunately, Linux documentation covering kernels prior to the 2.6.x series
will be of minimal use in understanding the scheduler described in this paper
because the scheduler was heavily modified between the 2.4.x and 2.6.x kernel
series.

1.3 Typographic Conventions

New concepts and URLs are italicized. Binaries, commands, and package names
are in bold. Code, macros, and file paths are in a constant-width font. Paths
to included files will be written with brackets around them (e.g. <linux/sched.h>);
these files can be found in the include/ directory of the Linux kernel source
code. All paths are rooted in the Linux kernel source code unless otherwise
noted. Fields in a structure are referred to with an arrow pointing from the
structure to the field (e.g. structure->field).

1.4 About this Document

This document was written in LATEX using the LYX editor on SuSE Linux 9.x and
Mac OS X 10.3.x. It is made available in HTML, PDF, and LATEX form. It can be
downloaded from the author’s web site (http://josh.trancesoftware.com/linux/).
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1.5 Companion CD

The companion disc included with this document includes the full source code
of the Linux 2.6.8.1 kernel, a patch to add in-depth comments to the scheduler
code, and a digital copy of this document. The disc is an ISO-9660 formatted
CD that should work in any modern operating system. To apply the scheduler
comments patch, move it to the directory kernel/ in your Linux source code,
cd into that directory, and run the following command:

patch -p0 < sched comments.patch

2 Linux Kernel Source Code

2.1 Getting the Source

The Linux kernel source code is an essential resource for learning about the
kernel. In attempting to gain a detailed understanding of the kernel, no paper
can entirely replace reading the code itself. This paper will refer to it heav-
ily. The Linux kernel source code is available at The Linux Kernel Archives
(http://www.kernel.org). The main page of the kernel archive lists the latest re-
lease from each kernel series, including complete source code, upgrade patches,
and change logs. All released versions of the Linux kernel are available on the
archive’s FTP site (ftp://ftp.kernel.org/ ).

2.2 Kernel Versioning

Linux kernels have version numbers in the form W.X.Y.Z. The W position is
rarely incremented - only when an extremely significant change has been made
to the kernel, such that a considerable amount of software that works on one
version won’t work on another. This has only happened once in the history of
Linux (thus the ”2” at the beginning of the kernel version this paper focuses on,
2.6.8.1).

The X position denotes the kernel series. An even series indicates a stable re-
lease series, and an odd series denotes a development release series. Historically,
the series number is incremented every couple of years. Development of older
series’ continues as long as there is interest. For example - though Linux 2.0 was
originally released in June of 1996, version 2.0.40 was released in February of
2004 (largely by/for people who want to continue to support older hardware).

The Y position is the version number, which is normally incremented for
every release. Often it is the last position in a kernel version (e.g. 2.6.7), but
occasionally there is a need to fix something critical in a release. In such cases
the Z position is incremented. The first instance of this happening was the
release of the 2.6.8.1 kernel. The 2.6.8 kernel contains a very serious bug in
its Network File System (NFS) implementation. This was discovered very soon
after its release, and thus 2.6.8.1 was released containing little more than a fix
for that specific bug.
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2.3 Code Organization

There are quite a few subdirectories within each Linux source code package.
Subdirectories that it would be most helpful to know about while reading this
paper are:

Documentation a directory containing lots of good documentation on kernel
internals and the development process

arch a directory containing architecture-specific code; it contains one subdirec-
tory for each supported architecture (e.g. i386, ia64, ppc64...)

include a directory containing header files

kernel a directory containing the main kernel code

mm a directory containing the kernel’s memory management code

3 Overview of Processes and Threads

It is important to have a decent understanding of both processes and threads
before learning about schedulers. Explaining processes and threads in depth
is outside of the scope of this document, thus only a summary of the things
that one must know about them is provided here. Readers of this document are
strongly encouraged to gain an in-depth understanding of processes and threads
from another source. Excellent sources are listed in the bibliography[2, 3, 4, 5].

3.1 Programs and Processes

A program is a combination of instructions and data put together to perform a
task when executed. A process is an instance of a program (what one might call
a “running” program). An analogy is that programs are like classes in languages
like C++ and Java, and processes are like objects (instantiated instances of
classes). Processes are an abstraction created to embody the state of a program
during its execution. This means keeping track of the data that is associated
with a thread or threads of execution, which includes variables, hardware state
(e.g. registers and the program counter, etc...), and the contents of an address
space1 [1].

3.2 Threads

A process can have multiple threads of execution that work together to accom-
plish its goals. These threads of execution are aptly named threads. A kernel
must keep track of each thread’s stack and hardware state, or whatever is neces-
sary to track a single flow of execution within a process. Usually threads share

1An address space is the set of memory addresses that a process is allowed to read and/or
write to.
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address spaces, but they do not have to (often they merely overlap). It is impor-
tant to remember that only one thread may be executing on a CPU at any given
time, which is basically the reason kernels have CPU schedulers. An example of
multiple threads within a process can be found in most web browsers. Usually
at least one thread exists to handle user interface events (like stopping a page
load), one thread exists to handle network transactions, and one thread exists
to render web pages.

3.3 Scheduling

Multitasking kernels (like Linux) allow more than one process to exist at any
given time, and furthermore each process is allowed to run as if it were the
only process on the system. Processes do not need to be aware of any other
processes unless they are explicitly designed to be. This makes programs easier
to develop, maintain, and port [1]. Though each CPU in a system can execute
only one thread within a process at a time, many threads from many processes
appear to be executing at the same time. This is because threads are scheduled
to run for very short periods of time and then other threads are given a chance
to run. A kernel’s scheduler enforces a thread scheduling policy, including when,
for how long, and in some cases where (on Symmetric Multiprocessing (SMP)
systems) threads can execute. Normally the scheduler runs in its own thread,
which is woken up by a timer interrupt. Otherwise it is invoked via a system
call or another kernel thread that wishes to yield the CPU. A thread will be
allowed to execute for a certain amount of time, then a context switch to the
scheduler thread will occur, followed by another context switch to a thread of
the scheduler’s choice. This cycle continues, and in this way a certain policy for
CPU usage is carried out.

3.4 CPU and I/O-bound Threads

Threads of execution tend to be either CPU-bound or I/O-bound (Input/Output
bound). That is, some threads spend a lot of time using the CPU to do compu-
tations, and others spend a lot of time waiting for relatively slow I/O operations
to complete. For example - a thread that is sequencing DNA will be CPU bound.
A thread taking input for a word processing program will be I/O-bound as it
spends most of its time waiting for a human to type. It is not always clear
whether a thread should be considered CPU or I/O bound. The best a sched-
uler can do is guess, if it cares at all. Many schedulers do care about whether
or not a thread should be considered CPU or I/O bound, and thus techniques
for classifying threads as one or the other are important parts of schedulers.

Schedulers tend to give I/O-bound threads priority access to CPUs. Pro-
grams that accept human input tend to be I/O-bound - even the fastest typist
has a considerable amount of time between each keystroke during which the
program he or she is interacting with is simply waiting. It is important to give
programs that interact with humans priority since a lack of speed and respon-
siveness is more likely to be perceived when a human is expecting an immediate
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response than when a human is waiting for some large job to finish.
It is also beneficial to the system as a whole to give priority to programs

that are I/O-bound but not because of human input2. Because I/O operations
usually take a long time it is good to get them started as early as possible.
For example, a program that needs a piece of data from a hard disk has a
long wait ahead before it gets its data. Kicking off the data request as quickly
as possible frees up the CPU to work on something else during the request
and helps the program that submitted the data request to be able to move
on as quickly as possible. Essentially, this comes down to parallelizing system
resources as efficiently as possible. A hard drive can seek data while a CPU
works on something else, so having both resources working as early and often
as possible is beneficial. Many CPU operations can be performed in the time it
takes to get data from a hard drive.

3.5 Context Switching

Context switching is the process of switching from one thread of execution to
another. This involves saving the state of the CPU’s registers and loading
a new state, flushing caches, and changing the current virtual memory map.
Context switches on most architectures are a relatively expensive operation
and as such they are avoided as much as possible. Quite a bit of actual work
can be done during the time it takes to perform a context switch. How con-
text switching is handled is highly architecture-dependent and is not really
part of a kernel’s scheduler, though the way it is done can greatly influence
a scheduler’s design. Context switching code in the Linux kernel is defined in
the files include/asm-[arch]/mmu_context.h (change current virtual memory
mapping) and include/asm-[arch]/system.h (perform CPU context switch,
e.g. PC and general registers).

3.6 Linux Processes/Threads

Linux takes a unique approach to implementing the process and thread abstrac-
tions. In Linux, all threads are simply processes that might share certain re-
sources. Instead of being something different than a thread or a group of threads,
a process in Linux is simply a group of threads that share something called a
thread group ID (TGID) and whatever resources are necessary. In order to
reconcile Linux’s treatment of processes and threads with the terms themselves,
the term “task” will be used from here on to mean a Linux thread - it does
not mean thread in the POSIX sense. “Process” or “thread” will be used only
when the difference really matters. In the Linux task structure task_struct
(one of which exists for each thread), the TGID that is a process’s POSIX
PID is stored as [task_struct]->tgid. Linux assigns unique “PID”s to every

2It is fortunate that both human-interactive and non-human-interactive I/O activity should
be awarded a higher priority since there is really no way to tell at the scheduler level what
I/O was human-initiated and what was not. The scheduler does not know whether a program
is blocked waiting for keyboard input or it is blocked waiting for data from a hard drive.
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thread ([task_struct]->pid), but the (POSIX) PID that most people think of
is really a task’s TGID. It is worth mentioning that this model, combined with
certain tricks like a COW (Copy On Write) forking algorithm3 causes process
and thread spawning to be very fast and efficient in Linux, whereas spawn-
ing a process is much more expensive than spawning threads4 on many other
operating systems (e.g. BSD UNIX r© and Microsoft r© Windows r©).

Unfortunately, further details about Linux’s process and thread implemen-
tation would be out of the scope of this paper. It is only important to know
that Linux considers processes to be merely groups of threads and does not
differentiate between the two. Because of this, Linux schedules threads only,
essentially ignoring what POSIX processes they belong to.

4 Linux Scheduling Goals

4.1 Linux’s Target Market(s) And Their Effects on its
Scheduler

An operating system’s scheduling algorithm is largely determined by its target
market, and vice-versa. Understanding an operating system’s target market
helps to explain its scheduling goals, and thus its scheduling algorithm.

Linux was originally created by Linus Torvalds for use on his personal com-
puter. However, despite its origins, Linux has become known as a server op-
erating system. There are many reasons for this, not the least of which is the
fact that most software designed to run on top of the Linux kernel is meant for
users with a relatively high skill level or inherits design qualities targeting more
skilled users. This led to Linux’s notoriously complex and unrefined graphical
user interface options (compared to Apple r© and Microsoft r© operating systems)
and subsequent relegation to the server room. Linux’s exposure in the server
market guided its development along the lines of the one market that it initially
succeeded in. Linux’s prowess as a server operating system is nowadays perhaps
matched only by a few operating systems such as Sun’s Solaris and IBM’s AIX.
However, cost and legal advantages are causing many companies to replace both
of those operating systems with Linux as well.

While Linux has made a name for itself in the server operating systems
arena, many users and developers believe that it can also be a success on the
desktop. In the last several years, there has been a push to optimize the Linux
kernel for the desktop market. Perhaps the biggest step in that direction was the

3Normally a call to fork() causes a copy of the caller’s resources to be created and labeled
as a child. Copy On Write means that the resources are not actually copied until the child’s
resources differ from the parent’s (i.e. the child or parent tries to write to some shared data).
Even then, only the differing resources are copied and thus no longer shared. This saves time
in the usual case where fork()is immediately followed by a call to exec() because if fork()
did not use COW, a copy of the parent’s executable data (text section) would be created only
to be overwritten by new data taken in during the exec() call.

4Operating systems that differentiate between process and thread spawning often referred
to threads as lightweight processes (LWPs).
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scheduler written by Ingo Molnar for the 2.6.x kernel series. Molnar designed
his scheduler with the desktop and the server market in mind, and as a result
desktop performance is much improved in Linux distributions based on 2.6.x
kernels. Targeting both the server and the desktop market imposes particularly
heavy demands on the kernel’s scheduler, and thus the Linux kernel’s scheduler
is an interesting case study in how to please two very different markets at the
same time.

4.2 Efficiency

An important goal for the Linux scheduler is efficiency. This means that it
must try to allow as much real work as possible to be done while staying within
the restraints of other requirements. For example - since context switching is
expensive, allowing tasks to run for longer periods of time increases efficiency.
Also, since the scheduler’s code is run quite often, its own speed is an important
factor in scheduling efficiency. The code making scheduling decisions should
run as quickly and efficiently as possible. Efficiency suffers for the sake of other
goals such as interactivity, because interactivity essentially means having more
frequent context switches. However, once all other requirements have been met,
overall efficiency is the most important goal for the scheduler.

4.3 Interactivity

Interactivity is an important goal for the Linux scheduler, especially given the
growing effort to optimize Linux for desktop environments. Interactivity often
flies in the face of efficiency, but it is very important nonetheless. An example of
interactivity might be a keystroke or mouse click. Such events usually require a
quick response (i.e. the thread handling them should be allowed to execute very
soon) because users will probably notice and be annoyed if they do not see some
result from their action almost immediately. Users don’t expect a quick response
when, for example, they are compiling programs or rendering high-resolution
images. They are unlikely to notice if something like compiling the Linux kernel
takes an extra twenty seconds. Schedulers used for interactive computing should
be designed in such a way that they respond to user interaction within a certain
time period. Ideally, this should be a time period that is imperceptible to users
and thus gives the impression of an immediate response.

4.4 Fairness and Preventing Starvation

It is important for tasks to be treated with a certain degree of fairness, in-
cluding the stipulation that no thread ever starves. Starvation happens when
a thread is not allowed to run for an unacceptably long period of time due to
the prioritization of other threads over it. Starvation must not be allowed to
happen, though certain threads should be allowed to have a considerably higher
priority level than others based on user-defined values and/or heuristic indica-
tors. Somehow, threads that are approaching the starvation threshold (which is
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generally defined by a scheduler’s implementors) must get a significant priority
boost or one-time immediate preemption before they starve. Fairness does not
mean that every thread should have the same degree of access to CPU time with
the same priority, but it means that no thread should ever starve or be able to
trick the scheduler into giving it a higher priority or more CPU time than it
ought to have.

4.5 SMP Scheduling

Since the Linux kernel supports multiprocessing, its scheduler must work (and
work well for that matter) when scheduling tasks across more than one CPU on
the same motherboard. This means keeping track of which tasks are running
on which CPUs, making sure any given task is not executing on more than one
CPU at a time, and in general doing all of the accounting necessary to efficiently
schedule tasks across multiple CPUs. Since all CPUs generally access the same
memory and system resources, the scheduler is primarily concerned with making
the best use of processor time. There is little reason to prefer one CPU over
another in terms of choosing where to schedule a task. The most conspicuous
consideration is caching - by scheduling a given task on the same CPU as often
as possible, the likelihood of that CPU’s cache being hot increases.

4.6 SMT Scheduling

The Linux kernel supports scheduling multiple threads on a single Symmetric
Multi-Threading (SMT) chip. While the concept of SMT has been around for
some time, Intel’s Hyper-Threading (HT) technology made SMT technology
mainstream. Essentially, each physical SMT chip can have more than one virtual
processor with the caveat that the virtual processors share certain resources (e.g.
some types of cache). Because certain resources are shared, virtual processors
should not be treated in the same way that regular processors are.

4.7 NUMA Scheduling

The Linux kernel supports Non-Uniform Memory Access (NUMA), which means
it can run a single system image across more than one node if such hardware is
present (essentially a node is defined as a motherboard). At a hardware level,
a node is something like a traditional uniprocessor or multiprocessor machine
in that it has its own CPU(s) and memory. However, NUMA systems treat
multiple nodes as parts of a single system running a single system image (i.e.
one instance of the Linux kernel). This is usually accomplished through some
sort of high-speed interconnect (such as SGI’s NUMAlink technology), which
connects nodes at a more of a motherboard level than at a networking level.
This means that all CPUs are capable of executing any thread, and all of the
memory across nodes is accessible via the same address space (i.e. any CPU
can allocate memory on any node on the system). NUMA support involves
being aware of cache issues similar to those in SMP scheduling, but can also

12



include issues of memory locality (i.e. if a CPU is executing a thread which is
allocating memory from a local memory bank, it would be inefficient to move
the thread across the system as memory requests would take longer to fulfill).
Perhaps the biggest issue that a scheduler supporting NUMA needs to tackle is
the possibility of having far more CPUs to schedule on than most SMP systems.
Common SMP systems might have anywhere from 2-8 processors, but NUMA
systems might have hundreds of processors. At the time of this writing, SGI is
shipping NUMA systems containing 512 processors. This is the largest number
of processors any company has been able to run under a single Linux system
image, and the limit to which the Linux 2.6.8.1 scheduler has been stretched.

4.8 Soft Real-Time Scheduling

The Linux scheduler supports soft real-time (RT) scheduling. This means that
it can effectively schedule tasks that have strict timing requirements. However,
while the Linux 2.6.x kernel is usually capable of meeting very strict RT schedul-
ing deadlines, it does not guarantee that deadlines will be met. RT tasks are
assigned special scheduling modes and the scheduler gives them priority over
any other task on the system. RT scheduling modes include a first-in-first-out
(FIFO) mode which allows RT tasks to run to completion on a first-come-first-
serve basis, and a round-robin scheduling mode that schedules RT tasks in a
round-robin fashion while essentially ignoring non-RT tasks on the system.

4.9 Scheduling Performance Perspectives

In terms of schedulers, there is no single definition of performance that fits
everyone’s needs; that is, there is not a single performance goal for the Linux
scheduler to strive for. The many definitions of good scheduling performance
often lead to a give-and-take situation, such that improving performance in one
sense hurts performance in another. Some improvements to the Linux scheduler
help performance all-around, but such improvements are getting more and more
hard to come by. A good example of a give-and-take performance issue is desktop
vs. server vs. high performance computing (HPC) performance.

The most important performance metric for desktop users is perceived per-
formance - that is, how fast does a machine seem to respond to requests such as
mouse clicks and key presses. If a user is compiling a kernel in the background
and typing in a word processor in the foreground, he or she is unlikely to notice
if the kernel compile takes an extra minute because it is constantly interrupted
by the word processor responding to keystrokes. What matters most to the
users is that when he or she presses a key, the word processor inserts and dis-
plays the desired character as quickly as possible. This entails a CPU making a
context switch to the word processor’s thread as soon as possible after the user
presses a key. In order for this to happen, the currently running thread must
either give up the processor before its timeslice is up, or its timeslice must be
short enough that the delay between the time the keystroke happens and the
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timeslice ends is imperceptible to the user. Since context switching is expen-
sive, context switches must be minimized while happening frequently enough to
provide good perceived performance to interactive users (e.g. word processors).
Fewer context switches means better real efficiency, since more time is spent do-
ing actual work and less is spent switching tasks. More context switches means
the system is more responsive to user input. On interactive desktop systems,
the desired behavior is to have context switching happen often enough that user
input seems to get an immediate response without happening so often that the
machine becomes very inefficient.

Server systems generally focus less on perceived performance than desktop
systems. They are relatively more concerned with actual performance; that is,
reducing the overall amount of time it takes to complete a set of tasks. Since
users are normally willing to put up with a longer response delay (e.g. they are
willing to wait longer for a web page to be transmitted over the network than
they are for a keystroke to cause a character to appear in a word processing
document), more of an emphasis is placed on overall efficiency via fewer context
switches. If three complex database queries on a database loaded into mem-
ory happen at the same time, it is most likely better to get them done faster
overall than it is to do them inefficiently for the sake of returning results at the
same time and thus lowering the average response time. People and applica-
tions submitting complex database queries generally have much lower response
time expectations than people who are typing characters into a word processor.
However, if, for example, two massive files are requested from an FTP server,
it would be unacceptable for the server to completely finish sending one file
before beginning to send the other (the most extreme but perhaps overall most
efficient case, potential I/O concerns aside). Thus server systems, while having
lower response time requirements than desktop systems, are still expected to
operate within some responsiveness expectations.

HPC systems generally require the least immediate response times as they
tackle very large problems that can take days to solve. Given a set of tasks,
overall efficiency is the imperative and this means that context switches for the
sake of responsiveness must be minimized (or perhaps all but done away with?).
Response time expectations are generally the lowest for HPC applications, and
thus they represent the true opposite of desktop computing performance ideals.
Servers tend to be somewhere in the middle.

This comparison illustrates the point that there is no universal ideal for
scheduler performance. A scheduler that seems superb to a desktop user might
be a nightmare for someone running HPC applications. The Linux scheduler
strives to perform as well as possible in all types of situations, though it is
impossible for it to perform ideally for everyone. Desktop users are constantly
crying out for more tuning for their needs while at the same time HPC users
are pushing for optimization towards their performance ideal.
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5 The Linux 2.6.8.1 Scheduler

5.1 Origins and the Significance of an O(1) Scheduling
Algorithm

5.1.1 Origins of the Linux 2.6.8.1 Scheduler

During the Linux 2.5.x development period, a new scheduling algorithm was one
of the most significant changes to the kernel. The Linux 2.4.x scheduler, while
widely used, reliable, and in general pretty good, had several very undesirable
characteristics (see section 6). The undesirable characteristics were quite em-
bedded in its design, and thus when Ingo Molnar rose to the challenge of fixing
it he produced an entirely new scheduler instead of making modifications to the
old one. The fact that the Linux 2.4.x scheduling algorithm contained O(n)
algorithms was perhaps its greatest flaw, and subsequently the new scheduler’s
use of only O(1) algorithms was its most welcome improvement.

5.1.2 What is an O(1) Algorithm

An algorithm operates on input, and the size of that input usually determines its
running time. Big-O notation is used to denote the growth rate of an algorithm’s
execution time based on the amount of input. For example - the running time of
an O(n) algorithm increases linearly as the input size n grows. The running time
of an O(nˆ2) grows quadratically. If it is possible to establish a constant upper
bound on the running time of an algorithm, it is considered to be O(1) (one
might say it runs in “constant time”). That is, an O(1) algorithm is guaranteed
to complete in a certain amount of time regardless of the size of the input.

5.1.3 What Makes the Linux 2.6.8.1 Scheduler Perform in O(1) Time

The Linux 2.6.8.1 scheduler does not contain any algorithms that run in worse
than O(1) time. That is, every part of the scheduler is guaranteed to execute
within a certain constant amount of time regardless of how many tasks are on
the system. This allows the Linux kernel to efficiently handle massive numbers
of tasks without increasing overhead costs as the number of tasks grows. There
are two key data structures in the Linux 2.6.8.1 scheduler that allow for it to
perform its duties in O(1) time, and its design revolves around them - runqueues
and priority arrays.

5.2 Runqueues

5.2.1 Overview

The runqueue data structure is the most basic structure in the Linux 2.6.8.1
scheduler; it is the foundation upon which the whole algorithm is built. Es-
sentially, a runqueue keeps track of all runnable tasks assigned to a particular
CPU. As such, one runqueue is created and maintained for each CPU in a sys-
tem. Each runqueue contains two priority arrays, discussed in section 5.3. All
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tasks on a CPU begin in one priority array, the active one, and as they run
out of their timeslices they are moved to the expired priority array. During the
move, a new timeslice is calculated. When there are no more runnable tasks in
the active priority arrays, it is simply swapped with the expired priority array
(which entails simply updating two pointers). The job of the runqueue is to keep
track of a CPU’s special thread information (idle thread, migration thread) and
to handle its two priority arrays.

5.2.2 Data Structure

The runqueue data structure is defined as a struct in kernel/sched.c. It is not
defined in kernel/sched.h because abstracting the scheduler’s inner workings
from its public interface is an important architectural goal. The runqueue struct
contains the following variables:

• spinlock_t lock

This is the lock that protects the runqueue. Only one task can modify a partic-
ular runqueue at any given time.

• unsigned long nr_running

The number of runnable tasks on the runqueue.

• unsigned long cpu_load

The load of the CPU that the runqueue represents. The load is recalculated
whenever rebalance_tick() is called, and is the average of the old load and the
current (nr_running * SCHED_LOAD_SCALE). The latter macro simply increases
the resolution of the load average.

• unsigned long long nr_switches

The number of context switches that have occurred on a runqueue since its
creation. This value isn’t actually used for anything useful in the kernel itself -
it is simply exposed in the proc filesystem as a statistic.

• unsigned long expired_timestamp

Time since last priority array swap (active <–> expired).

• unsigned long nr_uninterruptible

Number of uninterruptible tasks on the runqueue.

• unsigned long long timestamp_last_tick

Timestamp of last scheduler tick. Primarily used in the task hot macro, which
decides whether a task should be considered cache hot or not (i.e. is some of
the task’s data likely to still be in CPU caches).
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• task_t *curr

Pointer to the currently running task.

• task_t *idle

Pointer to a CPU’s idle task (i.e. the task that runs when nothing else is
running).

• struct mm_struct *prev_mm

Pointer to the virtual memory mapping of the previously running task. This is
used in efficiently handling virtual memory mappings in terms of cache hotness.

• prio_array_t *active

The active priority array. This priority array contains tasks that have time
remaining from their timeslices.

• prio_array_t *expired

The expired priority array. This priority array contains tasks that have used up
their timeslices.

• prio_array_t arrays[2]

The actual two priority arrays. Active and expired array pointers switch between
these.

• int best_expired_prio

The highest priority of any expired task. Used in the EXPIRED STARVING
macro to determine whether or not a task with a higher priority than the cur-
rently running task has expired.

• atomic_t nr_iowait

The number of tasks on a runqueue waiting on I/O. Used for kernel stats (i.e.
is a CPU waiting on I/O or is it just idle?).

• struct sched_domain *sd

The scheduler domain that a runqueue belongs to. Essentially this is a group of
CPUs that can share tasks between them. See section 5.8.2 for more information.

• int active_balance

Flag used by the migration thread to determine whether or not a runqueue
needs to be balanced (i.e. whether or not it is considerably busier than others).

17



• int push_cpu

The CPU that a runqueue should be pushing tasks to when being balanced.

• task_t *migration_thread

A CPU’s migration thread. The migration thread is the thread that looks after
task migration concerns (i.e. does this CPU need to be balanced).

• struct list_head migration_queue

List of tasks that need to be migrated to other CPUs.

5.2.3 Locking

Only one task may modify a CPU’s runqueue at any given time, and as such
any task that wishes to modify a runqueue must obtain its lock first. Ob-
taining multiple runqueue locks must be done by order of ascending runqueue
address in order to avoid deadlocks. A convenient function for obtaining two
runqueue locks is double_rq_lock(rq1, rq2), which handles lock ordering it-
self. Its opposite, double_rq_unlock(rq1, rq2), does the same but unlocks
instead of locks. Locking a runqueue that a certain task is in can be done with
task_rq_lock(task, &flags).

5.3 Priority Arrays

5.3.1 Overview

This data structure is the basis for most of the Linux 2.6.8.1 scheduler’s ad-
vantageous behavior, in particular its O(1) (constant) time performance. The
Linux 2.6.8.1 scheduler always schedules the highest priority task on a system,
and if multiple tasks exist at the same priority level, they are scheduled round-
robin with each other. Priority arrays make finding the highest priority task in a
system a constant-time operation, and also makes round-robin behavior within
priority levels possible in constant-time. Furthermore, using two priority arrays
in unison (the active and expired priority arrays) makes transitions between
timeslice epochs a constant-time operation. An epoch is the time between when
all runnable tasks begin with a fresh timeslice and when all runnable tasks have
used up their timeslices.

5.3.2 Data Structure

• unsigned int nr_active

The number of active tasks in the priority array.

• unsigned long bitmap[BITMAP_SIZE]
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The bitmap representing the priorities for which active tasks exist in the priority
array. For example - if there are three active tasks, two at priority 0 and one at
priority 5, then bits 0 and 5 should be set in this bitmap. This makes searching
for the highest priority level in the priority array with a runnable task as simple
as a constant-time call to __ffs(), a highly optimized function for finding the
highest order bit in a word (sched_find_first_bit() is essentially a wrapper
for __ffs()).

• struct list_head queue[MAX_PRIO]

An array of linked lists. There is one list in the array for each priority level
(MAX_PRIO). The lists contain tasks, and whenever a list’s size becomes > 0, the
bit for that priority level in the priority array bitmap is set. When a task is
added to a priority array, it is added to the list within the array for its priority
level. The highest priority task in a priority array is always scheduled first, and
tasks within a certain priority level are scheduled round-robin.

5.3.3 How Priority Arrays Are Used

Among tasks with timeslice remaining, the Linux 2.6.8.1 scheduler always sched-
ules the task with the highest priority (timeslice is essentially the period of time
a task is allowed to execute before other tasks are given a chance - see section
5.4). Priority arrays allow the scheduler’s algorithm to find the task with the
highest priority in constant time.

Priority arrays are an array of linked lists, one for each priority level (in
Linux 2.6.8.1 there are 140 priority levels). When a task is added to a priority
array, it is added to the list for its priority level. A bitmap of size MAX_PRIO +
1 (actually it might be a bit larger since it must be implemented in word-sized
chunks) has bits set for each priority level that contains active tasks. In order
to find the highest priority task in a priority array, one only has to find the
first bit set in the bitmap. Multiple tasks of the same priority are scheduled
round-robin; after running, tasks are put at the bottom of their priority level’s
list. Because finding the first bit in a finite-length bitmap and finding the first
element in a list are both operations with a finite upper bound on how long the
operation can take, this part of the scheduling algorithm performs in constant,
O(1) time.

When a task runs out of timeslice, it is removed from the active priority
array and put into the expired priority array. During this move, a new timeslice
is calculated. When there are no more runnable tasks in the active priority
array, the pointers to the active and expired priority arrays are simply swapped.
Because timeslices are recalculated when they run out, there is no point at
which all tasks need new timeslices calculated for them; that is, many small
constant-time operations are performed instead of iterating over however many
tasks there happens to be and calculating timeslices for them (which would be
an undesirable O(n) time algorithm). Swapping the active and expired priority
array pointers is a constant time operation, which avoids the O(n) time operation
of moving n tasks from one array or queue to another.
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Since all operations involved in the maintenance of a system of active and
expired priority arrays occur constant O(1) time, the Linux 2.6.8.1 scheduler
performs quite well. The Linux 2.6.8.1 scheduler will perform its duties in the
same small amount of time no matter how many tasks are on a system.

5.4 Calculating Priority and Timeslice

5.4.1 Static Task Prioritization and the nice() System Call

All tasks have a static priority, often called a nice value. On Linux, nice values
range from -20 to 19, with higher values being lower priority (tasks with high
nice values are nicer to other tasks). By default, tasks start with a static priority
of 0, but that priority can be changed via the nice() system call. Apart from its
initial value and modifications via the nice() system call, the scheduler never
changes a task’s static priority. Static priority is the mechanism through which
users can modify task’s priority, and the scheduler will respect the user’s input
(in an albeit relative way).

A task’s static priority is stored in its static_prio variable. Where p is a
task, p->static_prio is its static priority.

5.4.2 Dynamic Task Prioritization

The Linux 2.6.8.1 scheduler rewards I/O-bound tasks and punishes CPU-bound
tasks by adding or subtracting from a task’s static priority. The adjusted pri-
ority is called a task’s dynamic priority, and is accessible via the task’s prio
variable (e.g. p->prio where p is a task). If a task is interactive (the sched-
uler’s term for I/O bound), its priority is boosted. If it is a CPU hog, it will
get a penalty. In the Linux 2.6.8.1 scheduler, the maximum priority bonus is 5
and the maximum priority penalty is 5. Since the scheduler uses bonuses and
penalties, adjustments to a task’s static priority are respected. A mild CPU hog
with a nice value of -2 might have a dynamic priority of 0, the same as a task
that is neither a CPU nor an I/O hog. If a user changes either’s static priority
via the nice() system call, a relative adjustment will be made between the two
tasks.

5.4.3 I/O-bound vs. CPU-bound Heuristics

Dynamic priority bonuses and penalties are based on interactivity heuristics.
This heuristic is implemented by keeping track of how much time tasks spend
sleeping (presumably blocked on I/O) as opposed to running. Tasks that are
I/O-bound tend to sleep quite a bit as they block on I/O, whereas CPU-bound
task rarely sleep as they rarely block on I/O. Quite often, tasks are in the middle,
and are not entirely CPU-bound or I/O-bound so the heuristic produces some
sort of scale instead of a simple binary label (I/O-bound or CPU-bound). In the
Linux 2.6.8.1 scheduler, when a task is woken up from sleep, its total sleep time
is added to its sleep_avg variable (though a task’s sleep_avg is not allowed to
exceed MAX_SLEEP_AVG for the sake of mapping sleep avg onto possible bonus
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values). When a task gives up the CPU, voluntarily or involuntarily, the time
the current task spent running is subtracted from its sleep_avg. The higher
a task’s sleep_avg is, the higher its dynamic priority will be. This heuristic
is quite accurate since it keeps track of both how much time is spent sleeping
as well as how much time is spent running. Since it is possible for a task to
sleep quite a while and still use up its timeslice, tasks that sleep for a long time
and then hog a CPU must be prevented from getting a huge interactivity bonus.
The Linux 2.6.8.1 scheduler’s interactivity heuristics prevent this because a long
running time will offset the long sleep time.

5.4.4 The effective_prio() Function

The effective_prio() function calculates a task’s dynamic priority. It is called
by recalc_task_prio(), the thread and process wakeup calls, and sched-
uler_tick(). In all cases, it is called after a task’s sleep_avg has been modi-
fied, since sleep_avg is the primary heuristic for a task’s dynamic priority.

The first thing effective prio does is return a task’s current priority if it is
a RT task. The function does not give bonuses or penalties to RT tasks. The
next two lines are key:
bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
prio = p->static_prio - bonus;
CURRENT_BONUS is defined as follows:
#define CURRENT_BONUS(p) \
NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / MAX_SLEEP_AVG)
Essentially, CURRENT_BONUSmaps a task’s sleep average onto the range 0-MAX_BONUS,
which is 0-10. If a task has a high sleep_avg, the value returned by CUR-
RENT_BONUS will be high, and vice-versa. Since MAX_BONUS is twice as large
as a task’s priority is allowed to rise or fall (MAX_BONUS of 10 means that the
priority adjustment can be from +5 to -5), it is divided by two and that value
is subtracted from CURRENT_BONUS(p). If a task has a high sleep_avg and
CURRENT_BONUS(p) returns 10, then the bonus variable would be set to 5. Sub-
sequently, the task’s static priority would get 5 subtracted from it, which is
the maximum bonus that a task can get. If a task had a sleep_avg of 0, its
CURRENT BONUS(p) value might be 0. In that case, the bonus value would
get set to -5 and the task’s static priority would get -5 subtracted from it, which
is the same as adding 5. Adding five is the maximum penalty a task’s priority
can get, which is the desired behavior for a CPU hog that never sleeps.

Once a new dynamic priority has been calculated, the last thing that ef-
fective_prio() does is within the non-RT priority range. For example - if a
highly interactive task has a static priority of -20, it cannot be given a 5 point
bonus since it already has the maximum non-RT priority.

5.4.5 Calculating Timeslice

Timeslice is calculated by simply scaling a task’s static priority onto the possi-
ble timeslice range and making sure a certain minimum and maximum times-
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lice is enforced5. The higher the task’s static priority (the lower the task’s
static_prio value) the larger the timeslice it gets. The task_timeslice()
function is simply a call to the BASE_TIMESLICE macro which is defined as:
#define BASE_TIMESLICE(p) (MIN_TIMESLICE + \
((MAX_TIMESLICE - MIN_TIMESLICE) * \
(MAX_PRIO-1 - (p)->static_prio) / (MAX_USER_PRIO-1)))
Essentially, this is the minimum timeslice plus the the task’s static priority
scaled onto the possible timeslice range, (MAX_TIMESLICE - MIN_TIMESLICE).

It is important to remember that an interactive task’s timeslice may be bro-
ken up into chunks, based on the TIMESLICE_GRANULARITY value in the sched-
uler. The function scheduler_tick() checks to see if the currently running
task has been taking the CPU from other tasks of the same dynamic priority
for too long (TIMESLICE_GRANULARITY). If a task has been running for TIMES-
LICE_GRANULARITY and task of the same dynamic priority exists a round-robin
switch between other tasks of the same dynamic priority is made.

5.4.6 Fairness When Forking New Tasks

When new tasks (threads or processes) are forked, the functions wake_up_forked_thread()
and wake_up_forked_process() decrease the sleep avg of both parents and
children. This prevents highly interactive tasks from spawning other highly in-
teractive tasks. Without this check, highly interactive tasks could keep spawning
new tasks in order to hog the CPU. With this check, sleep_avg and subse-
quently priority are decreased, increasing the likelihood that both parent and
child will be preempted by a higher priority task. Note that timeslice does not
decrease for parent or child since timeslice is based only on static priority and
not the dynamic priority that is influenced by sleep_avg.

5.4.7 Interactive Task Reinsertion

Every 1ms, a timer interrupt calls scheduler_tick(). If a task has run out of
timeslice, it is normally given a new timeslice and put on the expired priority
array for its runqueue. However, scheduler_tick() will reinsert interactive
tasks into the active priority array with their new timeslice so long as nothing
is starving in the expired priority array. This helps interactive performance by
not letting interactive tasks sit in the expired array while non-interactive tasks
use up their timeslices (which might be a long time since non-interactive tasks
tend to be CPU hogs).

5In Robert Love’s“Linux Kernel Development,”he incorrectly states that timeslice is calcu-
lated based on dynamic priority. While his statement is fundamentally incorrect, Con Kolivas
pointed out in an IRC conversation with the author that a loose enough interpretation (too
loose, however) can argue that dynamic priority does affect timeslices. This is because if
dynamic priority is high enough (a task is interactive enough), timeslices maybe be broken
into chunks based on TIMESLICE_GRANULARITY so that a tasks cannot hog the CPU from other
tasks of the same dynamic priority (see the scheduler_tick() function). However, the total
timeslice is calculated only with a task’s static priority, and breaking the timeslice up during
an epoch is another issue.
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5.4.8 Interactivity Credits

Interactive credits help to control the rise and fall rate of the interactive status
of tasks. Essentially, tasks get an interactive credit when they sleep for a long
time, and lose an interactive credit when they run for a long time. A task’s
interactive credit value is stored in its interactive_credit variable. If a task
has more than 100 interactivity credits it is considered to have high interactivity
credit. If a task has less then -100 interactivity credits it is considered to have
low interactivity credit. Interactive credits matter in the following situations:

1. Low interactivity credit tasks waking from uninterruptible sleep are lim-
ited in their sleep avg rise since they are probably CPU hogs waiting on
I/O. A CPU hog that only occasionally waits on I/O should not gain an
interactive sleep avg level just because it waits for a long time once.

2. High interactivity credit tasks get less run time subtracted from their
sleep avg in order to prevent them from losing interactive status too
quickly. If a task got high credit, it must have slept quite a bit at least 100
times recently and thus it should not lose interactive status just because
it used up a lot of CPU time once.

3. Low interactivity credit tasks can only get one timeslice worth of sleep avg
bonus during dynamic priority recalculation (recalc_task_prio()). They
must not have been sleeping too much recently in order to have low inter-
activity credit and thus they should not get too much of a bonus as they
will probably hog the CPU.

5.5 Sleeping and Waking Tasks

5.5.1 Why Sleep?

Tasks do not always want to run, and when this is the case they go to sleep (or
“block”). Tasks sleep for many reasons; in all cases they are waiting for some
event to occur. Sometimes tasks sleep while they wait for data from a device
(e.g. a keyboard, a hard drive, an ethernet card), sometimes they sleep while
waiting for a signal from another piece of software, and sometimes they sleep
for a certain amount of time (e.g. waiting while trying to obtain a lock).

Sleeping is a special state in which tasks cannot be scheduled or run, which
is important since if they could get scheduled or run execution would proceed
when it shouldn’t and sleeping would have to be implemented as a busy loop.
For example - if a task could be run after requesting data from a hard drive but
before it was sure the data had arrived, it would have to constantly check (via
a loop) to see whether or not the data had arrived.

5.5.2 Interruptible and Uninterruptible States

When a task goes to sleep, it is usually in one of two states - interruptible or
uninterruptible. A task in the interruptible state can wake up prematurely to
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respond to signals while tasks in the uninterruptible state cannot. For example
- if a user uses the kill command on a task, the kill command will attempt
to do its job by sending a SIGTERM signal to the task. If the task is in the
uninterruptible state, it will ignore the signal until the event it was originally
waiting for occurs. Tasks in the interruptible state would respond to the sig-
nal immediately (though their response won’t necessarily be to die as the user
probably wants).

5.5.3 Waitqueues

A waitqueue is essentially a list of tasks waiting for some event or condition
to occur. When that event occurs, code controlling that event will tell the
waitqueue to wake up all of the tasks in it. It is a centralized place for event
notifications to be“posted.” Sleeping tasks are added to waitqueues before going
to sleep in order to be woken up when the event they are waiting for occurs.

5.5.4 Going to Sleep

Tasks put themselves to sleep by making system calls, and those system calls
usually take something like the following steps to ensure a safe and successful
sleep period[4]:

1. Create a wait queue via DECLARE_WAITQUEUE().

2. Add task to the wait queue via add_wait_queue(). The wait queue will
wake up any added tasks when the condition they are waiting for happens.
Whatever code is making that condition true will need to call wake_up()
on the waitqueue when appropriate.

3. Mark task as sleeping, either TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE.

4. Begin a loop that calls schedule() with a test to see if the condition is
true or not. If it is true initially then schedule() will not be called because
sleeping is unnecessary. Otherwise, call schedule() to give up the CPU.
Since the task has been marked as sleeping, it will not be scheduled again
(until it wakes up).

5. When the task wakes up, the loop’s condition check will be executed again.
This will prevent spurious wakeups, which can happen. If the condition has
occurred, the loop will exit. Otherwise it will repeat and call schedule()
again.

6. Once the condition is true, mark task as TASK_RUNNING and remove it
from the wait queue via remove_wait_queue().
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5.5.5 Waking Up

The try_to_wake_up() function is responsible for trying to wake up tasks.
When a waitqueue is told to wake up, try_to_wake_up() is called on each task
in the waitqueue, and then tasks are removed from the waitqueue. The task is
marked TASK_RUNNING, and then it is added back to the appropriate runqueue
to be scheduled again.

5.6 The Main Scheduling Function

5.6.1 Overview

The schedule() function is the main scheduler function. Its job is to pick a
new task to run and switch to it. It is called whenever a task wishes to give
up the CPU voluntarily (often through the sys_sched_yield() system call),
and if scheduler_tick() sets the TIF_NEED_RESCHED flag on a task because
it has run out of timeslice, then schedule() will get called when preempts are
re-enabled[8]. scheduler_tick() is a function called during every system time
tick, via a clock interrupt. It checks the state of the currently running task
and other tasks in a CPU’s runqueue to see if scheduling and load balancing is
necessary (and will invoke them if so).

5.6.2 The schedule() Function

The first thing that schedule does is check to make sure it’s not being called when
it shouldn’t be (during an atomic period). After that, it disables preemption
and determines the length of time that the task to be scheduled out has been
running. That time is then reduced if a task has high interactivity credit since
it would be undesirable for a task that usually waits on I/O to lose interactivity
status due to a single long period of CPU usage. Next, if the function is entered
off of a kernel preemption interruptible tasks with a signal pending get a state of
TASK_RUNNING and uninterruptible tasks get removed from the runqueue. This
is because if a task can be interrupted and it has a signal pending, it needs
to handle that signal. Tasks that are not interruptible should not be on the
runqueue.

At this point, it is time to look for the next task to run. If there are no
runnable tasks in the runqueue, an attempt at load balancing is made. If bal-
ancing does not bring any runnable tasks, then a switch to the idle task is made.
If there are runnable tasks in the runqueue but not in the active priority array,
then the active and retired priority arrays are swapped.

At this point there is a runnable task in the active priority array. Next, the
active priority array’s bitmap is checked to find the highest priority level with a
runnable task. After that, dependent sleeping tasks on virtual SMT CPU’s are
given a chance to run. If there is a dependent sleeper (which might only happen
on an SMT system), the current CPU (which is a virtual CPU sharing physical
CPU resources with the virtual CPU that has a dependent sleeper) switches to
idle so the dependent sleeper can wake up and do what it needs to do.
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If there has not been a switch to the idle task for one reason or another at
this point, a check is performed to see if the task chosen to run next is not RT
and has been woken up. If it is not an RT task and was woken up, it is given
a slightly higher sleep_avg and its dynamic priority is recalculated. This is a
way to give another small bonus to sleeping tasks. Once this check has been
performed and a bonus possible awarded, the wakeup flag is cleared.

Now schedule() is ready to make an actual task switch. This point in
the algorithm is a goto target, and whatever task is pointed to by the next
variable is switched to. Earlier decisions to schedule the idle task had simply
set next to the idle task and skipped to this point. Here, the previous task
has its TIF_NEED_RESCHED flag cleared, context switch statistical variables are
updated, and the previous task gets its run time deducted from its sleep avg.
Also, an interactive credit is deducted from the previous task if its sleep_avg
dropped below 0 and its credit is neither too high nor too low. This is because if
its sleep_avg is less than 0 it must not have been sleeping very much. With this
setup complete, the actual context switch is made so long as the previous task
and the new task are not the same task. After the context switch, preemption is
reenabled since it was disabled during the scheduling algorithm. The final part
of the schedule() function checks to see if preemption was requested during
the time in which preemption was disabled, and reschedules if it was.

5.7 Load Balancing

5.7.1 Why do load balancing?

Tasks stay on particular CPUs for the most part. This is for cache hotness and
memory bank proximity reasons. However, sometimes a CPU has more tasks on
it than other CPUs in a system. For instance, on a dual processor system, it is
entirely possible that all tasks could be assigned to one CPU and the other CPU
would sit idle. Obviously, this is a less-than-optimal situation. The solution is
to move some tasks from one CPU to another CPU in order to balance the
system. Load balancing is a very important part of any kernel in charge of more
than one CPU.

5.7.2 Scheduler Domains

Each node in a system has a scheduler domain that points to its parent scheduler
domain. A node might be a uniprocessor system, an SMP system, or a node
within a NUMA system. In the case of a NUMA system, the parent scheduler
domain of a node’s domain would contain all CPUs in the system.

Each scheduler domain divides its CPUs into groups. On a uniprocessor or
SMP system, each physical CPU would be a group. The top level scheduler
domain containing all CPUs in a NUMA system would have one group for
each node, and the groups would contain all CPUs in the node. Groups are
maintained as a circular linked list, and the union of all groups is equivalent to
the domain. No CPU can be in multiple groups.
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A domain’s load is balanced only within that domain. Tasks are moved
between groups in a domain only when groups within a domain become unbal-
anced. The load of a group is the sum of the loads of its CPUs.

5.7.3 CPU Load

Since there is one runqueue per active CPU in a system, it makes sense for
that data structure to keep track of each CPU’s load. Each runqueue maintains
a variable called cpu_load, which stores a value representing the CPU’s load.
When runqueues are initialized, their cpu_load is set to zero, and the variable
is updated every time rebalance_tick() is called. rebalance_tick() is called
at the end of scheduler_tick() and also earlier in scheduler_tick() if the
current CPU is idle (if the current CPU is idle then load balancing is prob-
ably desirable before trying to schedule). In rebalance_tick(), the current
runqueue’s cpu load variable is set to the average of the current load and the
old load. The current load is determined by multiplying the runqueue’s cur-
rent number of active tasks by SCHED_LOAD_SCALE. The latter macro is a large
number (it’s actually 128) and is simply used to increase the resolution of load
calculations.

5.7.4 Balancing Logic

Load balancing is invoked via the rebalance_tick() function, which is called
by scheduler_tick(). rebalance_tick() first updates the current CPU’s
load variable, then goes up the CPU’s scheduler domain hierarchy attempting
to rebalance. It only attempts to balance a scheduler domain for a CPU if the
scheduler domain has not been balanced for longer than its balance interval.
This is very important - since all CPUs share a top level scheduler domain, it
would be undesirable to balance that domain every time a CPU has a timer tick.
Imagine how often the top level domain would get balanced on a 512 processor
NUMA system if that were the case.

If rebalance_tick() determines that a scheduler domain needs to be bal-
anced, it calls load_balance() on that domain. load_balance() looks for the
busiest group in the domain, and if there is no busiest group it exits. If there is
a busiest group, it checks to see if the busiest group contains the current CPU
- if so, it exits. load_balance() pulls tasks to less loaded groups instead of
pushing them from overloaded groups. Once the busiest group has been iden-
tified, load_balance() attempts to move tasks from the busiest group’s bus-
iest runqueue to the current CPU’s runqueue via move_tasks(). The rest of
load_balance() is largely devoted to updating heuristics according to whether
or not load balancing succeeded and cleaning up locks.

move_tasks() attempts to move up to a certain number of tasks from the
busiest group to the current group. move_tasks() attempts to take tasks
from the target runqueue’s expired priority array first, and within that array it
takes the lowest priority tasks first. Tasks are moved by calling pull_task().
pull_task() moves tasks by dequeuing them from their current runqueue, and
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enqueuing them on their destination runqueue. The operation is quite short and
simple, a testament to the scheduler’s clean design.

5.7.5 Migration Threads

Every CPU has a migration thread, which is a kernel thread that runs at a high
priority and makes sure that runqueues are balanced. The thread executes the
loop in the function migration_thread() until it is told to stop for some reason
(i.e. the CPU goes down for one reason or another). If task migration has been
requested (e.g. via migrate_task() for CPU assignment or active balancing
reasons), the migration thread will see the request and carry it out.

5.8 Soft RT Scheduling

The Linux 2.6.8.1 scheduler provides soft RT scheduling support. The “soft”
adjective comes from the fact that while it does a good job of meeting scheduling
deadlines, it does not guarantee that deadlines will be met.

5.8.1 Prioritizing Real-Time Tasks

RT tasks have priorities from 0 to 99 while non-RT task priorities map onto
the internal priority range 100-140. Because RT tasks have lower priorities than
non-RT tasks, they will always preempt non-RT tasks. As long as RT tasks
are runnable, no other tasks can run because RT tasks operate with differ-
ent scheduling schemes, namely SCHED_FIFO and SCHED_RR. Non-RT tasks are
marked SCHED_NORMAL, which is the default scheduling behavior.

5.8.2 SCHED_FIFO Scheduling

SCHED_FIFO tasks schedule in a first-in-first-out manner. If there is a SCHED_FIFO
task on a system it will preempt any other tasks and run for as long as it wants
to. SCHED_FIFO tasks do not have timeslices. Multiple SCHED_FIFO tasks are
scheduled by priority - higher priority SCHED_FIFO tasks will preemt lower pri-
ority SCHED_FIFO tasks.

5.8.3 SCHED_RR Scheduling

SCHED_RR tasks are very similar to SCHED_FIFO tasks, except that they have
timeslices and are always preempted by SCHED_FIFO tasks. SCHED_RR tasks
are scheduled by priority, and within a certain priority they are scheduled in a
round-robin fashion. Each SCHED_RR task within a certain priority runs for its
allotted timeslice, and then returns to the bottom of the list in its priority array
queue.
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5.9 NUMA Scheduling

5.9.1 Scheduler Domain/Group Organization

The scheduler domain system is a critical component of Linux 2.6.8.1’s NUMA
support. NUMA architectures differ from uniprocessor and SMP systems in
that a NUMA system can contain multiple nodes. It is typical for each node
to have a local memory bank and certain other resources that are best used
by CPU’s that are physically nearby. For example - while a CPU in a NUMA
system can usually use memory on any node in the system, it is faster to access
memory on local banks than it is to access memory that may be physically
20 feet and several NUMA links away. In short, since NUMA systems can be
physically very large with less than optimal connections between nodes, resource
proximity becomes an issue. The issue of proximity makes organizing resources
into groups important, and that is exactly what the scheduler domain system
does.

On a NUMA system, the top level scheduler domain contains all CPUs in
the system. The top level domain has one group for each node; that group’s
CPU mask contains all CPUs on the node. The top level domain has one child
scheduler domain for each node, and each child has one group per physical CPU
(the group could have multiple virtual CPUs in the case of SMT processors).
This scheduler domain structure is set up with special domain initialization
functions in the scheduler which are only compiled if CONFIG_NUMA is true.

5.9.2 NUMA Task Migration

When scheduler_tick() runs, it checks to see if groups in the base domain
for the current CPU are balanced. If not, it balances groups within that do-
main. Once that domain is balanced, its parent domain is balanced (and then
its parent and so on). This means that on a NUMA system per-node base
scheduler domains allow for keeping tasks within a node, which is the desired
behavior for resource proximity reasons. Since the scheduler balances between
a scheduler domain’s groups and not necessarily individual CPUs, when the top
level domain is balanced tasks are moved between nodes only if any node is
overburdened. Individual CPUs in a NUMA system are not considered during
top level scheduler domain balancing (unless of course each node has only one
CPU). Once a task becomes part of a new node, it stays within that node until
its new node is an overburdened one. These levels of balancing discourage the
unnecessary movement of tasks between nodes.

5.10 Scheduler Tuning

5.10.1 Reasons for Tuning

Linux users with some basic development skills might want to optimize the CPU
scheduler for a particular type of use. Such people might include desktop users
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that want to sacrifice efficiency for response time, or sysadmins who want to
sacrifice a server’s response time for the sake of efficiency.

5.10.2 Scheduler Tuning Possibilities

Near the top of the file kernel/sched.c, there is a series of macros beginning
with MIN_TIMESLICE, the definitions of which can be tuned in an attempt to
achieve certain goals. These values can be tweaked within reason and the sched-
uler will function in a stable manner. After changing desired macro definitions,
users should simply compile the kernel as they normally would. There is no
sane way to change these values in an already-compiled kernel, and they are not
modifiable on a running system. Some of the more interesting tuneable values
are discussed in sections 5.10.3 - 5.10.6.

It is important to note that there are so many variables in the scheduler code
and workloads that the scheduler can handle that almost nothing is guaranteed
by any tweaking. The best way to approach tuning the scheduler is by trial and
error, using the actual workload the tuned scheduler will work with.

5.10.3 MIN_TIMESLICE and MAX_TIMESLICE

MIN_TIMESLICE is the bare minimum timeslice that a task can receive. MAX_TIMESLICE
is the maximum timeslice that a task can receive. The average timeslice is de-
termined by averaging MIN_TIMESLICE and MAX_TIMESLICE, so increasing the
value of either extreme will increase timeslice lengths in general. Increasing
timeslice lengths will increase overall efficiency because it will lead to fewer con-
text switches, but it will decrease response times. However, since I/O-bound
tasks tend to have higher dynamic priorities than CPU-bound tasks, interactive
tasks are likely to preempt other tasks no matter how long their timeslices are;
this means that ineractivity suffers a bit less from long timeslices. If there are
many tasks on a system, for example on a high-end server, higher timeslices will
cause lower priority tasks to have to wait much longer to run. If most tasks are
at the same dynamic priority, response time will suffer even more since none of
the tasks will be preempting others in an attempt to give better response times.

5.10.4 PRIO_BONUS_RATIO

This is the middle percentage of the total priority range that tasks can receive
as a bonus or a punishment in dynamic priority calculations. By default the
value is 25, so tasks can move up 25% or down 25% from the middle value of 0.
Since there are 20 priority levels above and below 0, by default tasks can receive
bonuses and penalties of 5 priority levels.

Essentially this value controls the degree to which static, user-defined, prior-
ities are effective. When this value is high, setting a task to a high static priority
using the nice() system call has less of an effect since dynamic priority rewards
and punishments will allow for more flexibility in dynamic priority calculatins.
When this value is low static priorities are more effective.
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5.10.5 MAX_SLEEP_AVG

The larger MAX_SLEEP_AVG gets, the longer tasks will need to sleep in order to
be considered active. Increasing the value is likely to hurt interactivity, but for
a non-interactive workload equality among all tasks may be desirable. Overall
efficiency may increase since fewer increases in dynamic priority means fewer
preemptions and context switches.

5.10.6 STARVATION_LIMIT

Interactive tasks are reinserted into the active priority array when they run out
of timeslice, but this may starve other tasks. If another task has not run for
longer than STARVATION_LIMIT specifies, then interactive tasks stop running
in order for the starving tasks to get CPU time. Decreasing this value hurts
interactivity since interactive tasks will more often be forced to give up the CPU
for the sake of starving tasks, but fairness will increase. Increasing this value will
increase interactive performance, but at the expense of non-interactive tasks.

6 The Linux 2.4.x Scheduler

6.1 The Algorithm

A basic understanding of the Linux 2.4.x scheduler is instructive in that it points
out much of the logic behind the improvements made in the 2.6.x kernels.

The Linux 2.4.x scheduling algorithm divides time into “epochs,” which are
periods of time during which every task is allowed to use up its timeslice. Times-
lices are computed for all tasks when epochs begin, which means that the sched-
uler’s algorithm for timeslice calculation runs in O(n) time since it must iterate
over every task.

Every task has a base timeslice, which is determined by its default or user-
assigned nice value. The nice value is scaled to a certain number of scheduler
ticks, with the nice value 0 resolving to a timeslice of about 200ms. When
calculating a task’s actual timeslice, this base timeslice is modified based on
how I/O-bound a task is. Each task has a counter value, which contains the
number of scheduler ticks remaining in its allotted timeslice at any given time.
At the end of an epoch, a task might not have used up all of its timeslice (i.e.
p->counter > 0) because it was not runnable (sleeping), presumably waiting
on I/O. A task’s new timeslice is calculated at the end of an epoch with the
following code:
p->counter = (p->counter > > 1) + NICE_TO_TICKS(p->nice);
The remaining scheduler tick count is shifted to the right one position (divided
by two), and added to the base timeslice. In this way, tasks that do not use
up their timeslices due to being I/O-bound get longer a longer timeslice in the
next epoch. If a task suddenly becomes CPU-bound and uses up its whole
timeslice, it quickly drops back to a base timeslice in the next epoch. However,
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this becomes more and more difficult to do as successive epochs of low timeslice
utilization build up a task’s timeslice (which is a desired effect).

When a task forks a new task, the parent’s timeslice is split between itself
and its child. This prevents tasks from hogging the CPU by spawning children.

The schedule() function selects the task that will run next by iterating over
all runnable tasks and calling the goodness() function6. The task that evokes
the highest return value from the goodness() function is run next. Goodness is
generally determined by adding the process’s counter value to its nice value,
but in the case of RT tasks, 1000 is added to the result (RT tasks: p->policy
!= SCHED_NORMAL) so that they are always selected over non-RT tasks. An
interesting optimization in the goodness() function is that if a task shares the
same address space as the previous task (i.e. p->mm == prev->mm), it will get
a slight boost to its goodness for the sake of taking advantage of cached pages.
The goodness algorithm essentially boils down to the following[5]:
if (p->policy != SCHED NORMAL)
return 1000 + p->rt priority;
if (p->counter == 0)
return 0;
if (p->mm == prev->mm)
return p->counter + p->priority + 1;
return p->counter + p->priority;

6.2 Strengths

The Linux 2.4.x scheduling algorithm performs quite well but is fairly unre-
markable, and as such, its strengths lie in the realm of the mundane.

6.2.1 It Works

Although it is technically vague, the fact that the Linux 2.4.x scheduler “works”
should not be discounted in terms of the credit it deserves. The demands on
the Linux scheduler are high; Linux 2.4.x runs on many different types of very
important systems, from Fortune 500 servers to NASA supercomputers, and it
runs quite well. The Linux 2.4.x scheduler is robust and efficient enough to
make Linux a major player in the computing world at the 2.4.x stage, which is
more than can be said for many schedulers in the past.

6.2.2 (Relatively) Simple Logic

The Linux 2.4.x file kernel/sched.c is about 1/3 the size of kernel/sched.c
in Linux 2.6.x. The algorithm is fairly straightforward, even if its potential
behavior and effects are somewhat unpredictable. Tweaking scheduler behavior
for specific situations is fairly easy in Linux 2.4.x, while improving it without a
major overhaul is quite difficult.

6Iterating over tasks to find the one with the best goodness() value is another example of
the Linux 2.4.x scheduler using an O(n) algorithm.
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6.3 Weaknesses

In “Understanding the Linux Kernel,” Daniel Bovet and Marco Cesati expound
on four weaknesses in the Linux 2.4.x scheduler: scalability, large average times-
lices, a less-than-optimal I/O-bound task priority boosting strategy, and weak
RT-application support7[5].

6.3.1 Scalability

The Linux 2.4.x scheduler executes in O(n) time, which means that the schedul-
ing overhead on a system with many tasks can be dismal. During each call to
schedule(), every active task must be iterated over at least once in order for the
scheduler to do its job. The obvious implication is that there are potentially
frequent long periods of time when no “real” work is being done. Interactivity
performance perception may suffer greatly from this. This problem has been
solved in the Linux 2.6.x series by using algorithms that perform in O(1) time.
Specifically, the Linux 2.6.x scheduler recalculates timeslices as each task uses
up its timeslice. The Linux 2.4.x scheduler recalculates timeslices for all tasks
at once, when all tasks have run out of their timeslices. Also, priority arrays in
the Linux 2.6.x scheduler make finding the highest priority process (the one that
should run next) as simple as finding the first set bit in a bitmap. The Linux
2.4.x scheduler iterates over processes to find the one with the highest priority.

6.3.2 Large Average Timeslices

The average timeslice assigned by the Linux 2.4.x scheduler is about 210ms [5].
This is quite high (recall that the average timeslice in the Linux 2.6.x scheduler
is 100ms), and according to Bovet and Cesati, “appears to be too large for high-
end machines having a very high expected system load.” This is because such
large timeslices can cause the time between executions of low-priority tasks (or
simply unlucky ones if all priorities are equal) to grow quite large. For example
- with 100 threads using all of their 210ms timeslices without pause, the lowest
priority thread in the group might have to wait more than 20 seconds before
it executes (an unlikely situation, but it illustrates the point). This problem
does not appear to be mitigated by starvation checks or taking system load
into account when calculating timeslices, which might not help anyway. Only
process data fields are used in timeslice recalculation:
p->counter = (p->counter > > 1) + NICE_TO_TICKS(p->nice);
The problem is lessened by the Linux 2.6.8 scheduler’s lower average timeslices,
but it is not entirely done away with. Essentially the system load just needs
to be twice as much to create the same problem. It is important to remember
that even though higher priority tasks can preempt tasks with long timeslices

7Actually, Bovet and Cesati are talking about the Linux 2.2.x scheduler in their book, but
except for some major SMP handling changes, the scheduler did not change much between
the 2.2.x and 2.4.x kernel series. The similarity between the Linux 2.2.x and 2.4.x schedulers
is noted by them.
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and thus maintain acceptable interactivity, that doesn’t help tasks that are non-
interactive and at the end of the line, but cannot wait for extremely long periods
of time to execute. An example might be a web server that has retrieved data
from an I/O source and is waiting to formulate an HTTP reply - a long wait to
formulate the reply could cause timeouts on the client side of the connection.

6.3.3 I/O-Bound Task Priority Boosting

The Linux 2.4.x scheduler’s preference for I/O-bound tasks has some notable
flaws. First, non-interactive tasks that are I/O-bound get a boost even though
they do not need one. The example from Bovet and Tosati is a database appli-
cation that must retrieve data from a disk or a network. Also, tasks that are
interactive but also CPU-bound may appear to be unresponsive since the boost
for interactivity and the penalty for high CPU usage can cancel each other out.
Since the Linux 2.4.x scheduler assigns timeslices based on the time remaining
from the last epoch plus a value based on the user nice value, the former value
will be low for a CPU-bound task and subsequently if it also happens to be
interactive, it will get a very small bonus.

Both problems cannot actually be solved until a better metric than sleep time
is found for measuring interactivity. Since the basic logic is that sleepy tasks are
interactive and non-sleepy tasks are not, pairing up antithetical characteristics is
always going to be a problem. As for the former problem, with a non-interactive
yet I/O-bound task, the Linux 2.6.x scheduler does categorize tasks that sleep
too much as idle, and assigns them an average sleep time of:
if (...sleep_time > INTERACTIVE_SLEEP(p)) {
p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG - AVG_TIMESLICE);
...
}
This avoids giving excessively sleepy tasks huge bonuses. It is not a solution to
the problem, but perhaps limits the extent to which it can manifest itself.

6.3.4 RT Application Support

The Linux 2.4.x kernel is not preemptable, and thus the support for RT ap-
plications is weak. Interrupts and exceptions result in short periods of kernel
mode execution during which runnable RT tasks cannot resume execution im-
mediately. This is unacceptable for RT tasks, which need to meet very strict
deadlines reliably. Kernel preemptability adds a great degree of complication
to kernel code, particularly concerning locking, and thus has been resisted so
far. Linux 2.6.x is a preemptable kernel, and thus RT application support is
considerably better. There are, however, certain points at which the Linux 2.6.x
kernel cannot be preempted, so RT support is not perfect yet. There are other
RT application support issues, such a the prioritization of access to system I/O
resources, but they are beyond the scope of this paper.
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7 The Future of the Linux Scheduler

7.1 Implementation Tuning vs. Algorithmic Changes

The Linux 2.6.8.1 scheduler is quite solid. It is unlikely that any major changes
will be made in the near future because of the fact that further solid perfor-
mance gains are difficult to measure. The massive number of different workload
conditions under which the scheduler is expected to perform well is daunting,
and it means that a tweak that helps under one workload is likely to hurt other
workloads.

While the basic algorithms and data structures in the Linux 2.6.8.1 scheduler
are unlikely to change much, the way things are implemented will continue to be
improved (e.g. more efficient coding practices). This will not effect performance
at an algorithmic level, but it will improve performance all-around (though to
a relatively small extent). Features will be added, but the overall structure of
the scheduler will probably not be modified to a very significant degree.

7.1.1 Scheduler Modes and Swappable Schedulers

Two interesting possibilities for future scheduler development are scheduler
modes or swappable schedulers (the latter being much more likely).

Scheduler modes means breaking scheduler workloads into categories, and
allowing root users to pick the scheduling behavior of a system dynamically.
For example, there might be two modes, server and desktop, that a system
administrator could put a machine into via a system call from a command. The
desktop mode would favor interactivity performance, the server mode efficiency.
Actual scheduler mode breakups are unlikely to be this simple, but even this
simple setup might be beneficial to many people. In fact, the simplicity might
actually be a boon for ease of use and development reasons. Scheduler modes
could be implemented fairly easily by making the tuning macros into variables
changeable during runtime and maintaining two sets of values with an interface
for switching between the sets. While this is an interesting idea, it is unlikely
that it will actually happen.

Swappable schedulers would allow users to specify the scheduler that should
be used for their own tasks. A basic kernel scheduler would round-robin be-
tween users (perhaps favoring root with a longer timeslice?) and allow a user’s
chosen scheduler to pick tasks for a certain period of time. This way, interactive
users could use a scheduler that favors interactive tasks, while non-interactive
users could use a scheduler favoring their type of workload. This is a very sim-
plistic description of swappable schedulers, but it gets the main idea across.
There are a few different examples of kernels with swappable schedulers in one
form or another, perhaps the most conspicuous being the GNU HURD kernel
(http://www.gnu.org/software/hurd/).
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7.1.2 Shared Runqueues

The recent addition of SMT support to the Linux scheduler is not perfect. In an
Ars Technica interview (http://www.arstechnica.com), Robert Love put forward
the example of a dual Pentium 4 HT workstation which would have four virtual
processors. If three virtual processors are idle, and the fourth has two tasks
on it, the scheduler should try to move one of the tasks to a different physical
CPU instead of the other virtual CPU on the same chip. Right now this does
not happen. The solution put forward by Love is shared runqueues for SMT
architectures. If runqueues were shared, load balancing would balance among
physical CPUs before virtual ones. Such a feature will likely be added to the
Linux scheduler.

8 Final Notes
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