
The Dining Philosophers

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

We are going to discuss two problems

These are classic thread synchronization problems
They are examples to show how semaphores and
monitors can be used to achieve synchronization —

The Dining Philosophers Problem (Textbook 31.6)
The Sleeping Barber Problem (not in the textbook, but in
Lab 3)

2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Dining Philosophers

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Dining Philosophers Problem
Five philosophers sit at a table
One fork between two neighbouring philosophers
Philosophers think, grab both forks, eat, put down both forks
Models exclusive access to a limited number of resources
(such as I/O devices)

4

while true do
 think()
 Pickup left fork
 Pickup right fork
 eat()
 Put down left fork
 Put down right fork

Each philosopher is
modelled as a thread

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Is this a valid solution?

philosopher(int i)
 while true do
 think()
 pickup_forks(i)
 eat()
 putdown_forks(i)

pickup_forks(int i)
 pickup_fork(i)
 pickup_fork((i+1) modulo 5)

putdown_forks(int i)
 putdown_fork(i)
 putdown_fork((i+1) modulo 5)

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Problem

It may happen that all five philosophers take their
left fork at the same time, and then try to take
their right fork, which is taken by a neighbouring
philosopher!
No one is able to progress — a deadlock
How do we solve this problem?

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Intuition: taking the left and
right forks needs to be made
into one atomic action

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Second Try: the Dining Philosophers Problem

semaphore mutex = 1 // binary semaphore
philosopher(int i)
 while true do
 think()
 mutex.down()
 pickup_forks(i)
 eat()
 putdown_forks(i)
 mutex.up()

8

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Problem Now

Only one philosopher can be eating at a given
time
But we should be able to allow two
philosophers eating at the same time!

9

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How do we solve this problem?

First intuition: define a smaller critical
section by moving the binary semaphore
operations into pickup_forks() and
putdown_forks()

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Now the solution looks like this — correct?
philosopher(int i)
 while true do
 think()
 pickup_forks(i)
 eat()
 putdown_forks(i)

pickup_forks(int i)
mutex.down()
pickup_fork(i)
pickup_fork((i+1) modulo 5)
mutex.up()

putdown_forks(int i)
 mutex.down()
 putdown_fork(i)
 putdown_fork((i+1) modulo 5)
 mutex.up()

11

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Looks fine so far—but what about pickup_fork()?

The solution looks fine for now, but we haven’t
implemented pickup_fork() and putdown_fork()
yet!
How do we implement pickup_fork() and
putdown_fork()?

We do not need to maintain any additional states to know
if a fork is available
Just look at the status of two adjacent philosophers

12

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The status of two adjacent philosophers

They can be in one of the three states: eating, thinking,
or “hungry” (waiting for forks to become available)
A philosopher may only eat if both of his neighbours
are not eating
What if a philosopher tries to pickup a fork, but it is not
available?

It needs to wait for it to become available — thread
synchronization
His neighbour, once finished eating, will have to wake
him up

13

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

First try: synchronization with semaphores
semaphore sem[5]= {5 of 0}
int status[5] = {5 of THINKING}
pickup_forks(int i)

mutex.down()
status[i] = HUNGRY
int left = (i+4) modulo 5, right = (i+1) modulo 5
if status[left] == EATING or
 status[right] == EATING then
 sem[i].down()
status[i] = EATING
mutex.up()

14

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

First try: synchronization with semaphores
putdown_forks(int i)
 mutex.down()
 status[i] = THINKING
 int left = (i+4) modulo 5, right = (i+1) modulo 5
 if status[left] == HUNGRY then
 sem[left].up()
 if status[right] == HUNGRY then
 sem[right].up()
 mutex.up()

15

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Problem with the first try

In pickup_forks(), if a philosopher i has failed to pick
up both forks, it calls sem[i].down(), which blocks
itself, before calling mutex.up() to leave the critical
section
No other thread is able to enter the critical section —
deadlock!
So how do we solve this problem?

16

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How about this solution?
pickup_forks(int i)
 mutex.down()
 status[i] = HUNGRY
 int left = (i+4) modulo 5, right = (i+1) modulo 5
 if status[left] == EATING or
 status[right] == EATING then
 mutex.up()
 sem[i].down()
 status[i] = EATING

 else
 status[i] = EATING
 mutex.up()

17

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Still another problem

Philosopher 1 and 4 were both eating at this time
They finish eating at the same time
Philosopher 1 wakes up 2, and 4 wakes up 3, since both 2
and 3 are hungry at the time (2 waiting on sem[2], 3 on
sem[3])
Both sem[2].down() and sem[3].down() are allowed to
proceed!

18

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Changing if to while?
Can we solve the problem by changing if to while in
pickup_forks()?
 while status[left] == EATING or
 status[right] == EATING do
 mutex.up()
 sem[i].down()

 status[i] = EATING

19

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Changing if to while?
Can we solve the problem by changing if to while in
pickup_forks()?
 while status[left] == EATING or
 status[right] == EATING do
 mutex.up()
 sem[i].down()

 status[i] = EATING

No — we are testing status[left] and status[right]
without acquiring mutual exclusion locks!

20

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Correct implementation of pickup_forks()
pickup_forks(int i)
 mutex.down()
 status[i] = HUNGRY
 int left = (i+4) modulo 5, right = (i+1) modulo 5
 while status[left] == EATING or
 status[right] == EATING do
 mutex.up()
 sem[i].down()
 mutex.down()

 status[i] = EATING
 mutex.up()

21

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Alternative solution: revise putdown_forks()

Alternatively, we can leave pickup_forks() as it was
Instead, we revise putdown_forks() —

When a philosopher finishes eating, it only wakes up a
neighbouring philosopher if it is sure that its other
neighbour is not eating!
If it does wake up a neighbour, it sets its status to
EATING

22

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Alternative solution: revise putdown_forks()
pickup_forks(int i)
 mutex.down()
 status[i] = HUNGRY
 int left = (i+4) modulo 5, right = (i+1) modulo 5

 if status[left] == EATING or
 status[right] == EATING then
 mutex.up()
 sem[i].down()

 else
 status[i] = EATING
 mutex.up()

23

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Alternative solution: revise putdown_forks()
putdown_forks(int i)
 mutex.down()
 status[i] = THINKING
 int left = (i+4) modulo 5, right = (i+1) modulo 5

 if status[left] == HUNGRY and
 status[(left+4) modulo 5] != EATING then
 status[left] = EATING
 sem[left].up()
 if status[right] == HUNGRY and
 status[(right+1) modulo 5] != EATING then
 status[right] = EATING
 sem[right].up()
 mutex.up()

24

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Now you see why we need monitors!

Using semaphores, even when solving a simple
synchronization problem, is a bit too tricky
Task 1 in Lab 3 asks you to implement the Dining
Philosophers problem using monitors and condition
variables

The monitor implementation in BLITZ follows MESA
semantics
Keep this in mind when designing your solution

25

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

But semaphores are more
powerful primitives — it

allows us to design a
simpler solution

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting our initial solution

philosopher(int i)
 while true do
 think()
 pickup_forks(i)
 eat()
 putdown_forks(i)

pickup_forks(int i)
 pickup_fork(i)
 pickup_fork((i+1) modulo 5)

putdown_forks(int i)
 putdown_fork(i)
 putdown_fork((i+1) modulo 5)

27

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Towards designing a simpler solution
semaphore forks[5]= {5 of 1}
pickup_fork(int i)
forks[i].down()

putdown_fork(int i)
forks[i].up()

28

But what about the deadlock?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Making the solution deadlock-free

pickup_forks(int i)
 if i == 4 then
 pickup_fork((i+1) modulo 5)
 pickup_fork(i)
 else
 pickup_fork(i)
 pickup_fork((i+1) modulo 5)

putdown_forks(int i)
 putdown_fork(i)
 putdown_fork((i+1) modulo 5)

29

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 31.6

30

