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We are going to discuss two problems

These are classic thread synchronization problems 
They are examples to show how semaphores and 
monitors can be used to achieve synchronization — 

The Dining Philosophers Problem (Textbook 31.6) 
The Sleeping Barber Problem (not in the textbook, but in 
Lab 3) 
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The Dining Philosophers



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Dining Philosophers Problem
Five philosophers sit at a table 
One fork between two neighbouring philosophers 
Philosophers think, grab both forks, eat, put down both forks 
Models exclusive access to a limited number of resources 
(such as I/O devices)
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while true do 
  think() 
  Pickup left fork 
  Pickup right fork 
  eat() 
  Put down left fork 
  Put down right fork

Each philosopher is 
modelled as a thread
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Is this a valid solution?

philosopher(int i) 
 while true do 
 think() 
 pickup_forks(i) 
 eat() 
 putdown_forks(i) 

pickup_forks(int i) 
 pickup_fork(i) 
 pickup_fork((i+1) modulo 5) 

putdown_forks(int i) 
 putdown_fork(i) 
 putdown_fork((i+1) modulo 5)
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The Problem

It may happen that all five philosophers take their 
left fork at the same time, and then try to take 
their right fork, which is taken by a neighbouring 
philosopher! 
No one is able to progress — a deadlock 
How do we solve this problem?
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Intuition: taking the left and 
right forks needs to be made 
into one atomic action
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Second Try: the Dining Philosophers Problem

semaphore mutex = 1 // binary semaphore 
philosopher(int i) 
  while true do 
    think() 
    mutex.down() 
    pickup_forks(i) 
    eat() 
    putdown_forks(i) 
    mutex.up()
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The Problem Now

Only one philosopher can be eating at a given 
time 
But we should be able to allow two 
philosophers eating at the same time!
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How do we solve this problem?

First intuition: define a smaller critical 
section by moving the binary semaphore 
operations into pickup_forks() and 
putdown_forks()
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Now the solution looks like this — correct?
philosopher(int i) 
 while true do 
  think() 
  pickup_forks(i) 
  eat() 
  putdown_forks(i) 

pickup_forks(int i) 
mutex.down() 
pickup_fork(i) 
pickup_fork((i+1) modulo 5) 
mutex.up() 

putdown_forks(int i) 
    mutex.down() 
    putdown_fork(i) 
    putdown_fork((i+1) modulo 5) 
    mutex.up()
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Looks fine so far—but what about pickup_fork()?

The solution looks fine for now, but we haven’t 
implemented pickup_fork() and putdown_fork() 
yet! 
How do we implement pickup_fork() and 
putdown_fork()? 

We do not need to maintain any additional states to know 
if a fork is available 
Just look at the status of two adjacent philosophers
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The status of two adjacent philosophers

They can be in one of the three states: eating, thinking, 
or “hungry” (waiting for forks to become available) 
A philosopher may only eat if both of his neighbours 
are not eating 
What if a philosopher tries to pickup a fork, but it is not 
available? 

It needs to wait for it to become available — thread 
synchronization 
His neighbour, once finished eating, will have to wake 
him up
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First try: synchronization with semaphores
semaphore sem[5]= {5 of 0} 
int status[5] = {5 of THINKING} 
pickup_forks(int i) 

mutex.down() 
status[i] = HUNGRY 
int left = (i+4) modulo 5, right = (i+1) modulo 5 
if status[left] == EATING or  
   status[right] == EATING then 
  sem[i].down() 
status[i] = EATING 
mutex.up()
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First try: synchronization with semaphores
putdown_forks(int i) 
  mutex.down() 
  status[i] = THINKING 
  int left = (i+4) modulo 5, right = (i+1) modulo 5 
  if status[left] == HUNGRY then 
    sem[left].up() 
  if status[right] == HUNGRY then 
    sem[right].up() 
  mutex.up()
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Problem with the first try

In pickup_forks(), if a philosopher i has failed to pick 
up both forks, it calls sem[i].down(),  which blocks 
itself, before calling mutex.up() to leave the critical 
section 
No other thread is able to enter the critical section — 
deadlock! 
So how do we solve this problem?
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How about this solution?
pickup_forks(int i) 
  mutex.down() 
  status[i] = HUNGRY 
  int left = (i+4) modulo 5, right = (i+1) modulo 5 
  if status[left] == EATING or  
     status[right] == EATING then 
  mutex.up() 
  sem[i].down() 
  status[i] = EATING 

  else 
  status[i] = EATING 
  mutex.up()
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Still another problem

Philosopher 1 and 4 were both eating at this time 
They finish eating at the same time 
Philosopher 1 wakes up 2, and 4 wakes up 3, since both 2 
and 3 are hungry at the time (2 waiting on sem[2], 3 on 
sem[3]) 
Both sem[2].down() and sem[3].down() are allowed to 
proceed!
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Changing if to while?
Can we solve the problem by changing if to while in 
pickup_forks()? 
 while status[left] == EATING or  
     status[right] == EATING do 
    mutex.up() 
    sem[i].down() 
   
  status[i] = EATING
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Changing if to while?
Can we solve the problem by changing if to while in 
pickup_forks()? 
 while status[left] == EATING or  
     status[right] == EATING do 
    mutex.up() 
    sem[i].down() 
   
  status[i] = EATING 

No — we are testing status[left] and status[right] 
without acquiring mutual exclusion locks!
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Correct implementation of pickup_forks()
pickup_forks(int i) 
    mutex.down() 
 status[i] = HUNGRY 
 int left = (i+4) modulo 5, right = (i+1) modulo 5 
 while status[left] == EATING or  
        status[right] == EATING do 
    mutex.up() 
    sem[i].down() 
    mutex.down() 

    status[i] = EATING 
 mutex.up()
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Alternative solution: revise putdown_forks()

Alternatively, we can leave pickup_forks() as it was 
Instead, we revise putdown_forks() — 

When a philosopher finishes eating, it only wakes up a 
neighbouring philosopher if it is sure that its other 
neighbour is not eating! 
If it does wake up a neighbour, it sets its status to 
EATING
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Alternative solution: revise putdown_forks()
pickup_forks(int i) 
    mutex.down() 
 status[i] = HUNGRY 
 int left = (i+4) modulo 5, right = (i+1) modulo 5 
  
  if status[left] == EATING or  
     status[right] == EATING then 
    mutex.up() 
    sem[i].down() 

 else 
      status[i] = EATING 
    mutex.up()
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Alternative solution: revise putdown_forks()
putdown_forks(int i) 
    mutex.down() 
 status[i] = THINKING 
 int left = (i+4) modulo 5, right = (i+1) modulo 5 

 if status[left] == HUNGRY and 
    status[(left+4) modulo 5] != EATING then 
    status[left] = EATING 
    sem[left].up() 
 if status[right] == HUNGRY and 
     status[(right+1) modulo 5] != EATING then 
    status[right] = EATING 
    sem[right].up() 
 mutex.up()
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Now you see why we need monitors!

Using semaphores, even when solving a simple 
synchronization problem, is a bit too tricky 
Task 1 in Lab 3 asks you to implement the Dining 
Philosophers problem using monitors and condition 
variables 

The monitor implementation in BLITZ follows MESA 
semantics 
Keep this in mind when designing your solution
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But semaphores are more 
powerful primitives — it 

allows us to design a 
simpler solution
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Revisiting our initial solution

philosopher(int i) 
 while true do 
 think() 
 pickup_forks(i) 
 eat() 
 putdown_forks(i) 

pickup_forks(int i) 
 pickup_fork(i) 
 pickup_fork((i+1) modulo 5) 

putdown_forks(int i) 
 putdown_fork(i) 
 putdown_fork((i+1) modulo 5)
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Towards designing a simpler solution
semaphore forks[5]= {5 of 1} 
pickup_fork(int i) 
forks[i].down() 

putdown_fork(int i) 
forks[i].up()
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But what about the deadlock?
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Making the solution deadlock-free

pickup_forks(int i) 
  if i == 4 then 
    pickup_fork((i+1) modulo 5) 
    pickup_fork(i) 
  else 
    pickup_fork(i) 
    pickup_fork((i+1) modulo 5) 

putdown_forks(int i) 
 putdown_fork(i) 
 putdown_fork((i+1) modulo 5)
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What we’ve covered so far

Three Easy Pieces: Chapter 31.6
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