
Monitors & Condition Variables

Operating Systems

Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Producer-consumer using semaphores

2

semaphore mutex = 1, empty = N, full = 0

send(message msg)

	 down(empty)

	 down(mutex)

	 buffer[in modulo N] = msg

	 in = in + 1

	 up(mutex)

	 up(full)

message receive()

	 down(full)

	 down(mutex)

	 msg = buffer[out modulo N]

	 out = out + 1

	 up(mutex)

	 up(empty)

	 return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 3

Monitors: the motivation

It is difficult to produce correct programs using
semaphores

correct ordering of down is tricky

avoiding race conditions and deadlocks is tricky

Is it possible to ask a compiler to generate the
correct semaphore code for us?

If so, what are the suitable higher level abstraction?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4

Monitors: one thread at a time
Monitors are like objects in object-oriented programs

Compiler enforces encapsulation and mutual exclusion

Encapsulation

Local data variables are accessible only via the monitor’s entry
methods

Mutual exclusion

Each monitor has an associated mutex lock

Threads must acquire the lock when invoking any of the entry
methods

Automatically, only one thread can be active in a monitor at
any time

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A monitor illustrated

5

entry methods

exit

threads

the thread in
the monitor

Monitor

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How BLITZ implements a monitor

6

class AMonitor

 fields

 monitorLock: Mutex

method MyEntryMethod

 monitorLock.Lock()

 ...

 if ...

 monitorLock.Unlock()

 return

 endIf

 ...

 monitorLock.Unlock()

endMethod

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing producer-consumer with monitors

7

monitor ProducerConsumer

 send(message msg)

 while in - out == N do

 sleep()

 buffer[in modulo N] = msg

 if in == out then

 in = in + 1

 wakeup(receiverThread)

 else

 in = in + 1

 message receive()

 while in == out do

 sleep()

 msg = buffer[out modulo N]

 if in - out == N then

 out = out + 1

 wakeup(senderThread)

 else

 out = out + 1

	 return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Problems with using a monitor

When the sender thread sleeps and blocks itself
when it finds the buffer full, no one else will be able
to wake it up

Why?

The sender thread goes to sleep inside a monitor

No other threads are able to enter the monitor to wake it
up!

8

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9

The root of the problem

We have two concurrency problems to solve

The need for mutual exclusion

Only one at a time in the critical section

Handled by the definition of a monitor: one thread in the
monitor at any time

The need for synchronization

Wait (sleep) until a certain condition holds

Signal (wake up) waiting threads when the condition
holds

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting a previous idea without monitors
send(message msg)

 acquire(buffer_lock)

 while in - out == N do

 release(buffer_lock)

 sleep()

 acquire(buffer_lock)

 buffer[in modulo N] = msg

 if in == out then

 in = in + 1

 wakeup(receiverThread)

 else in = in + 1

 release(buffer_lock)

10

message receive()

 acquire(buffer_lock)

 while in == out do

 release(buffer_lock)

 sleep()

 acquire(buffer_lock)

 msg = buffer[out modulo N]

 if in - out == N then

 out = out + 1

 wakeup(senderThread)

 else out = out + 1

 release(buffer_lock)

 return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The problem in this idea

In the first try of solving the problem of
synchronization in producer-consumer, the solution
suffers from the lost wakeup problem

while in == out do

release(buffer_lock)

sleep()

acquire(buffer_lock)

11

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting the lost wakeup problem

12

consumer (receiver)
in == out? Yes release lock

place a message in buffer

and wakeup receiver

sleeps forever

waiting for wakeup

producer (sender)
time

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving this in the context of monitors

It will be good to make the release()/sleep()/acquire()
trio before-or-after atomic

In the context of a monitor, the thread exits the monitor,
blocks itself to wait for an event to occur, and enter the
monitor when it wakes up

No interruption between it exits the monitor and blocks
itself

No interruption between it wakes up and re-enters the
monitor

13

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Condition variables
A condition variable represents a condition that a thread is
waiting for and signaling

It supports three operations —

condition.wait(): a thread exits the monitor, waits for the condition
variable condition to hold, and enters the monitor again when it does

condition.signal(): signals (wakes up) a waiting thread on the
condition variable condition, so that it can try to enter the monitor

condition.broadcast(): signals (wakes up) all waiting threads on the
condition variable condition, so that they can all try to enter the
monitor

wait(), signal(), and broadcast() are made before-or-after
atomic actions in order to avoid the lost wakeup problem

14

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting the producer-consumer problem

15

monitor ProducerConsumer

	 Condition full	 	 // Sender threads wait when buffer is full

	 Condition empty		 // Receiver threads wait when buffer is empty

	 send(message msg)

	 if in - out == N then

	 full.wait()	 // buffer is full, let me wait outside monitor

	 buffer[in modulo N] = msg

	 if in == out then

 in = in + 1

 empty.signal() // wake up a receiver waiting outside

	 else in = in + 1

	 message receive()

	 if in == out then

	 empty.wait()	// buffer is empty, let me wait outside monitor

	 msg = buffer[out modulo N]

	 if in - out == N then

 out = out + 1

 full.signal() // wake up a sender waiting outside

	 else out = out + 1

	 return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How BLITZ implements condition variables

16

class Condition

 fields

 waitingThreads: List [Thread]

method Init()

 waitingThreads = new List [Thread]

endMethod

method Wait(mutex: ptr to Mutex)

 disable interrupts

 mutex.Unlock()

 waitingThreads.AddToEnd(currentThread)

 currentThread.Sleep()

 mutex.Lock()

 restore interrupts

endMethod

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How BLITZ implements condition variables

17

method Signal(mutex: ptr to Mutex)

 disable interrupts

 t = waitingThreads.Remove()

 if t

 t.status = READY

 readyList.AddToEnd(t)

 endIf

 restore interrupts

endMethod

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How BLITZ implements condition variables

18

method Broadcast(mutex: ptr to Mutex)

 disable interrupts

 while true

 t = waitingThreads.Remove()

 if t == null

 break

 endIf

 t.status = READY

 readyList.AddToEnd(t)

 endWhile

 restore interrupts

endMethod

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting the producer-consumer problem

19

monitor ProducerConsumer

	 Condition full	 	 // Sender threads wait when buffer is full

	 Condition empty		 // Receiver threads wait when buffer is empty

	 send(message msg)

	 if in - out == N then

	 full.wait()	 // buffer is full, let me wait outside monitor

	 buffer[in modulo N] = msg

	 if in == out then

	 	 in = in + 1

	 	 empty.signal() // wake up a receiver waiting outside

	 else in = in + 1

	 message receive()

	 if in == out then

	 empty.wait()	// buffer is empty, let me wait outside monitor

	 msg = buffer[out modulo N]

	 if in - out == N then

	 	 out = out + 1

	 	 full.signal() // wake up a sender waiting outside

	 else out = out + 1

	 return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

One more (last) problem

The sender thread is running in the monitor

It adds a message to an empty shared buffer

It signals a waiting receiver thread, waking it
up

At this time, the sender and receiver thread
cannot both run inside the monitor

Which one runs (in the monitor), and which
one blocks (outside of the monitor)?

20

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting the producer-consumer problem

21

monitor ProducerConsumer

	 Condition full	 	 // Sender threads wait when buffer is full

	 Condition empty		 // Receiver threads wait when buffer is empty

	 send(message msg)

	 if in - out == N then

	 full.wait()	 // buffer is full, let me wait outside monitor

	 buffer[in modulo N] = msg

	 if in == out then

	 	 in = in + 1

	 	 empty.signal() // wake up a receiver waiting outside

	 else in = in + 1

	 message receive()

	 if in == out then

	 empty.wait()	// buffer is empty, let me wait outside monitor

	 msg = buffer[out modulo N]

	 if in - out == N then

	 	 out = out + 1

	 	 full.signal() // wake up a sender waiting outside

	 else out = out + 1

	 return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 22

Design choices of monitors

Only one thread is active in the monitor at a time,
so what do we do when a thread is unblocked on
signal?

Choices when thread A signals a condition
unblocking thread B —

1. B enters the monitor, A waits for B to exit the
monitor

2. A remains in the monitor, B waits for A to exit the
monitor

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 23

Option 1: Hoare Semantics

Tony Hoare, who invented the monitor, proposed
Hoare Semantics

The signaling thread, A, always leaves and waits

The signaled thread, B, enters the monitor
immediately

No other threads can enter the monitor between the
execution of the signal operation by the signaling
thread A, and the acquisition of the lock by the
signaled thread B

Now the signaled thread B can have a guarantee
that the condition holds when it enters the monitor

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Option 1: Hoare Semantics

24

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 25

Option 2: MESA Semantics
MESA Semantics is more relaxed

The only guarantee: the signaled thread is awakened

It will have to compete against all other threads for the
monitor lock

The signaling thread is allowed to continue its execution

When it leaves the monitor, the awakened thread, and
perhaps other threads, will try to acquire the monitor lock

The signaled thread will eventually enter the monitor

but there are no guarantee that the condition still holds!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 26

Option 2: MESA Semantics

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How BLITZ implements condition variables

27

method Wait(mutex: ptr to Mutex)

 disable interrupts

 mutex.Unlock()

 waitingThreads.AddToEnd(currentThread)

 currentThread.Sleep()

 mutex.Lock()

 enable interrupts

endMethod

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What semantics does BLITZ implement?

28

method Signal(mutex: ptr to Mutex)

 disable interrupts

 t = waitingThreads.Remove()

 if t

 t.status = READY

 readyList.AddToEnd(t)

 endIf

 enable interrupts

endMethod

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What semantics does BLITZ implement?

29

MESA Semantics

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting the producer-consumer problem

30

monitor ProducerConsumer

	 Condition full	 	 // Sender threads wait when buffer is full

	 Condition empty		 // Receiver threads wait when buffer is empty

	 send(message msg)

	 if in - out == N then

	 full.wait()	 // buffer is full, let me wait outside monitor

	 buffer[in modulo N] = msg

	 if in == out then

 in = in + 1

 empty.signal() // wake up a receiver waiting outside

	 else in = in + 1

	 message receive()

	 if in == out then

	 empty.wait()	// buffer is empty, let me wait outside monitor

	 msg = buffer[out modulo N]

	 if in - out == N then

 out = out + 1

 full.signal() // wake up a sender waiting outside

	 else out = out + 1

	 return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Producer-consumer with MESA Semantics

31

monitor ProducerConsumer

	 Condition full	 	 // Sender threads wait when buffer is full

	 Condition empty		 // Receiver threads wait when buffer is empty

	 send(message msg)

	 while in - out == N do

	 full.wait()	 // buffer is full, let me wait outside monitor

	 buffer[in modulo N] = msg

	 if in == out then

	 	 in = in + 1

	 	 empty.signal() // wake up a receiver waiting outside

	 else in = in + 1

	 message receive()

	 while in == out do

	 empty.wait()	// buffer is empty, let me wait outside monitor

	 msg = buffer[out modulo N]

	 if in - out == N then

	 	 out = out + 1

	 	 full.signal() // wake up a sender waiting outside

	 else out = out + 1

	 return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A simplified monitor in Java

Each object may be used as a monitor

Entry methods requiring mutual exclusion must be
explicitly marked as synchronized

Rather than having explicit condition variables, each
monitor (i.e., object) is equipped with a single wait queue, in
addition to its entrance queue

All waiting is done on this single wait queue, by calling
wait()

All notify() and notifyAll() operations apply to this queue

32

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A Java-style monitor

33

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces

Chapter 30: Condition Variables

BLITZ Documentation: “The Thread Scheduler and
Concurrency Control Primitives,” pages 35-41

34

