
Threads and Context Switching

in BLITZ

Operating Systems

Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Recall: The BLITZ Architecture

BLITZ has only one CPU, which simplifies the situation

It has two groups of 16 general-purpose integer
registers, r0 to r15 — one for user mode and one for
kernel mode

so that there is no need to save registers when switching to
kernel mode

r0 will never need to be saved, as it is always zero

r15 is the stack pointer, used when calling (call instruction) and
returning from (ret instruction) a function

2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The BLITZ thread scheduler: an overview
The thread manager is called “thread scheduler” in BLITZ

BLITZ uses kernel threads: the thread scheduler runs in the
kernel

The thread scheduler maintains single linked lists of thread
objects

A ready list is used to select threads to run in a round-robin fashion

A thread is executed till the next timer interrupt, at which time it is
placed at the tail of the ready list

A list of threads to be destroyed is also maintained

A list of unused Thread objects is maintained

It is way simpler than the Linux kernel

which uses doubly-linked lists and a thread object can be on multiple lists!
3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Thread data structure (in KPL)

4

class Thread

superclass Listable

fields

	 regs: array [13] of int		 // space for r2 to r14

	 stackTop: ptr to void		 	 // space for r15

	 		 	 	 	 	 	 	 	 	 	 	 // (top of system stack)

	 name: ptr to array of char

	 status: int	 	 	 	 	 	 	 // JUST_CREATED, READY,

	 		 	 	 	 	 	 	 	 	 	 	 // RUNNING, BLOCKED, UNUSED

	 initialFunction: ptr to function (int)		

	 		 	 	 	 	 	 	 	 	 	 	 // starting function

	 initialArgument: int	 	 	 // arguments to function

	 systemStack: array [SYSTEM_STACK_SIZE] of int

	 		 	 	 	 	 	 	 	 	 	 	 // SYSTEM_STACK_SIZE = 1000

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

On a timer interrupt (Runtime.s)

5

TimerInterrupt:

	 	jmp TimerInterruptHandler

TimerInterruptHandler:

	 	save all int registers on the interrupted thread’s

	 	system stack (r1 to r12)

	 	call _P_Thread_TimerInterruptHandler // KPL routine

 restore all int registers

 reti // restores Status Register and PC

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The KPL TimerInterruptHandler routine

6

TimerInterruptHandler()

	 	// interrupts are disabled by the processor

	 	// as part of the interrupt processing sequence

	 	currentInterruptStatus = DISABLED

	 	currentThread.Yield()

	 	currentInterruptStatus = ENABLED

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BLITZ Implementation of Yield()

7

Yield()

		disable interrupts

		nextThread = readyList.remove()

		if nextThread

			 status = READY

			 readyList.AddToEnd(self)

			 Run(nextThread)

		endIf

		restore interrupts

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BLITZ Implementation of Run()

8

Run(nextThread: ptr to Thread)

		prevThread = currentThread

		currentThread = nextThread

		nextThread.status = RUNNING

		Switch(prevThread, nextThread)

		while !threadsToBeDestroyed.IsEmpty()

		th = threadsToBeDestroyed.Remove()

		th.status = UNUSED

	endWhile

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BLITZ Implementation of Switch() (Switch.s)

9

Switch:

		save r2 to r14 in prevThread.regs

		save r15 in prevThread.stackTop

		restore r2 to r14 from nextThread.regs

		restore r15 from nextThread.stackTop

		ret

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BLITZ Implementation of Switch()

Switch() changes the stack pointer (r15) to the one
in nextThread

When it returns, it returns to a different invocation of
Run(), in the next thread

Switch() is only called within Run() in BLITZ

Run() returns to Yield()

Yield() restores interrupts

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Creating a new thread in BLITZ: Fork()

11

Fork(func: ptr to function(int), arg: int)

	 	disable interrupts

	 	initialFunction = func

	 	initialArgument = arg

	 	stackTop = stackTop - 4

	 	*(stackTop asPtrTo int) = ThreadStartUp asInteger

	 	status = READY

	 	readyList.AddToEnd(self)

	 	restore interrupts

ThreadStartUp:

	 	call _P_Thread_ThreadStartMain

ThreadStartMain()

	 	enable interrupts

	 	mainFunc = currentThread.initialFunction

	 	mainFunc(currentThread.initialArgument)

	 	ThreadFinish()

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Terminating a Thread in BLITZ

12

ThreadFinish()

	 	disable interrupts

	 	threadsToBeDestroyed.AddToEnd(currentThread)

	 	currentThread.Sleep()	

Sleep()

	 	status = BLOCKED

	 	nextThread = readyList.Remove()

	 	Run(nextThread)

What if the readyList is empty?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Idle Thread

13

IdleFunction()

		while true

			 disable interrupts

			 if readyList.empty()

			 	 // reenable and wait for interrupts

			 	 wait

			 else

			 	 currentThread.Yield()

			 endIf

		endWhile

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The flow of calls related to context switching

Sleep ()

Yield ()

Run () Switch ()

ret
next

thread

current
thread

Semaphore.down ()

Mutex.Lock ()

Condition.Wait ()

In Synch.c (Lab 3) — Always put the
current thread on a waiting list before

calling Sleep ()

Any thread can
call Yield()

TimerInterruptHandler () IdleFunction ()
(in the Idle thread)

Only Sleep () and
Yield () will call Run ()

disable interrupts

restore interrupts

Sleep () should be called
with interrupts disabled

ThreadFinish ()

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

BLITZ Documentation: “The Thread Scheduler and
Concurrency Control Primitives,” pages 1-31 on the
Thread Scheduler

Lab 2 source code:

Synch.[c, h]

Thread.[c, h]

Runtime.s

Switch.s

15

