
Threads and Context Switching
in BLITZ

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Recall: The BLITZ Architecture

BLITZ has only one CPU, which simplifies the situation
It has two groups of 16 general-purpose integer
registers, r0 to r15 — one for user mode and one for
kernel mode

so that there is no need to save registers when switching to
kernel mode
r0 will never need to be saved, as it is always zero
r15 is the stack pointer, used when calling (call instruction) and
returning from (ret instruction) a function

2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The BLITZ thread scheduler: an overview
The thread manager is called “thread scheduler” in BLITZ
BLITZ uses kernel threads: the thread scheduler runs in the
kernel
The thread scheduler maintains single linked lists of thread
objects

A ready list is used to select threads to run in a round-robin fashion
A thread is executed till the next timer interrupt, at which time it is
placed at the tail of the ready list
A list of threads to be destroyed is also maintained
A list of unused Thread objects is maintained
It is way simpler than the Linux kernel

which uses doubly-linked lists and a thread object can be on multiple lists!
3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Thread data structure (in KPL)

4

class Thread
superclass Listable
fields
 regs: array [13] of int // space for r2 to r14
 stackTop: ptr to void // space for r15
 // (top of system stack)
 name: ptr to array of char
 status: int // JUST_CREATED, READY,
 // RUNNING, BLOCKED, UNUSED
 initialFunction: ptr to function (int)
 // starting function
 initialArgument: int // arguments to function
 systemStack: array [SYSTEM_STACK_SIZE] of int
 // SYSTEM_STACK_SIZE = 1000

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

On a timer interrupt (Runtime.s)

5

TimerInterrupt:
 jmp TimerInterruptHandler

TimerInterruptHandler:
 save all int registers on the interrupted thread’s
 system stack (r1 to r12)
 call _P_Thread_TimerInterruptHandler // KPL routine
 restore all int registers
 reti // restores Status Register and PC

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The KPL TimerInterruptHandler routine

6

TimerInterruptHandler()
 // interrupts are disabled by the processor
 // as part of the interrupt processing sequence
 currentInterruptStatus = DISABLED
 currentThread.Yield()
 currentInterruptStatus = ENABLED

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BLITZ Implementation of Yield()

7

Yield()
 disable interrupts
 nextThread = readyList.remove()
 if nextThread
 status = READY
 readyList.AddToEnd(self)
 Run(nextThread)
 endIf
 restore interrupts

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BLITZ Implementation of Run()

8

Run(nextThread: ptr to Thread)
 prevThread = currentThread
 currentThread = nextThread
 nextThread.status = RUNNING
 Switch(prevThread, nextThread)
 while !threadsToBeDestroyed.IsEmpty()
 th = threadsToBeDestroyed.Remove()
 th.status = UNUSED
 endWhile

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BLITZ Implementation of Switch() (Switch.s)

9

Switch:
 save r2 to r14 in prevThread.regs
 save r15 in prevThread.stackTop
 restore r2 to r14 from nextThread.regs
 restore r15 from nextThread.stackTop
 ret

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BLITZ Implementation of Switch()

Switch() changes the stack pointer (r15) to the one
in nextThread
When it returns, it returns to a different invocation of
Run(), in the next thread

Switch() is only called within Run() in BLITZ

Run() returns to Yield()
Yield() restores interrupts

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Creating a new thread in BLITZ: Fork()

11

Fork(func: ptr to function(int), arg: int)
 disable interrupts
 initialFunction = func
 initialArgument = arg
 stackTop = stackTop - 4
 *(stackTop asPtrTo int) = ThreadStartUp asInteger
 status = READY
 readyList.AddToEnd(self)
 restore interrupts
ThreadStartUp:
 call _P_Thread_ThreadStartMain
ThreadStartMain()
 enable interrupts
 mainFunc = currentThread.initialFunction
 mainFunc(currentThread.initialArgument)
 ThreadFinish()

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Terminating a Thread in BLITZ

12

ThreadFinish()
 disable interrupts
 threadsToBeDestroyed.AddToEnd(currentThread)
 currentThread.Sleep()
Sleep()
 status = BLOCKED
 nextThread = readyList.Remove()
 Run(nextThread)

What if the readyList is empty?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Idle Thread

13

IdleFunction()
 while true
 disable interrupts
 if readyList.empty()
 // reenable and wait for interrupts
 wait
 else
 currentThread.Yield()
 endIf
 endWhile

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The flow of calls related to context switching

Sleep ()

Yield ()

Run () Switch ()

ret
next

thread

current
thread

Semaphore.down ()

Mutex.Lock ()

Condition.Wait ()

In Synch.c (Lab 3) — Always put the
current thread on a waiting list before

calling Sleep ()

Any thread can
call Yield()

TimerInterruptHandler () IdleFunction ()
(in the Idle thread)

Only Sleep () and
Yield () will call Run ()

disable interrupts

restore interrupts

Sleep () should be called
with interrupts disabled

ThreadFinish ()

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

BLITZ Documentation: “The Thread Scheduler and
Concurrency Control Primitives,” pages 1-31 on the
Thread Scheduler
Lab 2 source code:
Synch.[c, h]
Thread.[c, h]
Runtime.s
Switch.s

15

