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Recall: communicating across threads
The Producer-Consumer Problem 
Race Condition: solved using mutual exclusion locks
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Synchronization between Producer/Consumer

Mutual exclusion only solves part of the 
concurrency problem  
Synchronization: With two or more 
communicating threads, one thread needs to wait 
for another thread until some condition is true
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Our previous implementation: producer

send(message msg) 
acquire(buffer_lock) 
while in - out == N do  
release(buffer_lock) 
acquire(buffer_lock) 

buffer[in modulo N] = msg 
in = in + 1 
release(buffer_lock) 
return
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Our previous implementation: polling

Our previous implementation uses a loop 
(polling) on buffer conditions, in both send() 
and receive() — not desirable 
Intuitively, it will be nice to have something like 
— 

sleep(): suspends a thread by changing its state 
to BLOCKED, until another wakes it up 
wakeup(thread_id): wake up another thread, by 
changing its state to READY
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Solving the problem: first try — receive()
message receive() 
 acquire(buffer_lock) 
 while in == out do 

     release(buffer_lock) 
     sleep() 
     acquire(buffer_lock) 
 msg = buffer[out modulo N] 
 if in - out == N then  
    out = out + 1 
    wakeup(senderThread) 
 else  
    out = out + 1 
 release(buffer_lock) 
 return msg
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Solving the problem: first try — send()
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send(message msg) 
 acquire(buffer_lock) 
 while in - out == N do 
     release(buffer_lock) 
     sleep() 
     acquire(buffer_lock) 
 buffer[in modulo N] = msg 
 if in == out then 
    in = in + 1 
    wakeup(receiverThread) 
 else 
    in = in + 1 
 release(buffer_lock)
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The Lost Wakeup Problem
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consumer (receiver)
in == out? Yes release lock

place a message in buffer 
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sleeps forever 
waiting for wakeup
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time

What’s causing the problem?
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What causes the problem?
The problem is we need to make two actions 
before-or-after atomic: 

Releases the lock 
Calls sleep(), which changes the thread state from 
RUNNING to BLOCKED
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We need better synchronization primitives

Intuitively, we need to design a better set of 
thread synchronization primitives 

sleep() and wakeup(thread_id) does not work well 
since they do not maintain a “state” or “memory” 
about past wakeups
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Semaphores: maintaining a “table count”
Analogy: the person at the entrance of a restaurant 
who oversees table assignments 

She needs to maintain a count of unoccupied tables 
When guests arrive, she decrements the table count 
for each table taken 
When there is no table left, guests will have to wait in 
a queue 
As tables are freed up, waiting guests are allowed 
into the restaurant
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Semaphores: maintaining a “table count”
Edsger Dijkstra, a 1972 Turing Award winner, proposed 
Semaphore primitives, down() and up(), in 1965 
Defining semaphores: the first alternative 

A semaphore is a non-negative integer that remembers past wakeups 
down(semaphore): if semaphore > 0, decrement semaphore.  
Otherwise, wait until another thread increments semaphore, then try to 
decrement again 
up(semaphore): increment semaphore, and wake up all threads 
waiting on semaphore 

A binary semaphore: takes on only values of 0 and 1 
a binary semaphore can be used as a mutex lock without the need 
for polling: down() corresponds to acquire(), up() corresponds to 
release()
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Defining semaphores: second alternative
The previous definition does not allow a negative count 
We can instead allow the count to go negative 

A positive value: it is the number of resources available 
A negative value: its absolute value is the number of threads 
waiting on available resources 
Just like in a restaurant! 

Semantics of Down() and Up() 
down(semaphore): decrement semaphore, then add itself to the 
waiting queue and change the thread state to BLOCKED, if its 
value is negative 
up(semaphore): increment semaphore, and wake up one of the 
threads waiting on semaphore
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BLITZ semaphores use the second alternative
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class semaphore 
 int count 
 waitingThreads: List [Thread] 
up() 
 disable interrupts 
 count = count + 1 
 if count <= 0 
   t = waitingThreads.Remove() 
   t.status = READY 
   readyList.addToEnd(t) 
 endIf 
 enable interrupts 
down() 
 disable interrupts 
 count = count – 1 
 if count < 0 
    waitingThreads.AddToEnd(currentThread) 
    currentThread.Sleep() 
 endIf 
 enable interrupts 
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Binary semaphores

A binary semaphore: takes on only values of 0 and 1 
a binary semaphore can be used as a mutex lock without 
the need for polling (“spin lock”): down() corresponds to 
acquire(), up() corresponds to release()
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Solving the P-C problem with semaphores
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full: counting the number of slots that are occupied 
initialized to 0 

empty: counting the number of slots that are empty 
initialized to the size of the buffer 

mutex: make sure the sending and receiving threads do not 
access the shared buffer at the same time 

initialized to 1 
a binary semaphore 

Thread synchronization and mutual exclusion 
mutex used to solve the mutual exclusion problem 
full and empty used for thread synchronization
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Solving the problem with binary semaphores
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semaphore mutex = 1, empty = N, full = 0 
send(message msg) 
 down(mutex) 
 down(empty) 
 buffer[in modulo N] = msg 
 in = in + 1 
 up(full) 
 up(mutex) 
message receive() 
 down(mutex) 
 down(full) 
 msg = buffer[out modulo N] 
 out = out + 1 
 up(empty) 
 up(mutex) 
 return msg

First try
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Potential for deadlocks

mutex was decremented before empty instead of after 
it 
If the buffer were completely full, the sender thread 
will block on empty, with mutex set to 0 already 
The next time the receiver thread tried to access the 
buffer, it would do a down on mutex 
mutex is now 0, so the receiver thread will block, too 
Both threads will be blocked forever
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Solving the problem with binary semaphores
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semaphore mutex = 1, empty = N, full = 0 
send(message msg) 
 down(empty) 
 down(mutex) 
 buffer[in modulo N] = msg 
 in = in + 1 
 up(mutex) 
 up(full) 
message receive() 
 down(full) 
 down(mutex) 
 msg = buffer[out modulo N] 
 out = out + 1 
 up(mutex) 
 up(empty) 
 return msg
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Improving acquire() and release()

acquire() have been implemented using a TSL instruction in a 
spin loop 
Spin loops consume processor cycles and should be avoided 
If acquire() finds that the lock is LOCKED, a better idea is to 
put the thread itself to BLOCKED, waiting for another thread to 
release the lock 
You were asked to implement this improvement in Lab 2 in 
BLITZ 

waitingThreads: a list of threads suspended and waiting on the lock 
heldBy: the current state of the lock — which thread is holding the lock 
Think about race conditions and correctness carefully
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What We’ve Covered So Far

Three Easy Pieces 
Chapter 31: “Semaphores”, 31.1-31.4, 31.7 

Principles of Computer Systems Design 
Section 5.6.1: The Lost Notification Problem 
Sidebar 5.7 

BLITZ Documentation: “The Thread Scheduler and 
Concurrency Control Primitives,” pages 31-35
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