
Semaphores: A First Cut

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Recall: communicating across threads
The Producer-Consumer Problem
Race Condition: solved using mutual exclusion locks

2

Thread 1 Thread 2

shared, bounded buffer

send receive

shared address space

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Synchronization between Producer/Consumer

Mutual exclusion only solves part of the
concurrency problem
Synchronization: With two or more
communicating threads, one thread needs to wait
for another thread until some condition is true

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Our previous implementation: producer

send(message msg)
acquire(buffer_lock)
while in - out == N do
release(buffer_lock)
acquire(buffer_lock)

buffer[in modulo N] = msg
in = in + 1
release(buffer_lock)
return

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Our previous implementation: polling

Our previous implementation uses a loop
(polling) on buffer conditions, in both send()
and receive() — not desirable
Intuitively, it will be nice to have something like
—

sleep(): suspends a thread by changing its state
to BLOCKED, until another wakes it up
wakeup(thread_id): wake up another thread, by
changing its state to READY

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving the problem: first try — receive()
message receive()
 acquire(buffer_lock)
 while in == out do

 release(buffer_lock)
 sleep()
 acquire(buffer_lock)
 msg = buffer[out modulo N]
 if in - out == N then
 out = out + 1
 wakeup(senderThread)
 else
 out = out + 1
 release(buffer_lock)
 return msg

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving the problem: first try — send()

7

send(message msg)
 acquire(buffer_lock)
 while in - out == N do
 release(buffer_lock)
 sleep()
 acquire(buffer_lock)
 buffer[in modulo N] = msg
 if in == out then
 in = in + 1
 wakeup(receiverThread)
 else
 in = in + 1
 release(buffer_lock)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Lost Wakeup Problem

8

consumer (receiver)
in == out? Yes release lock

place a message in buffer
and wakeup receiver

sleeps forever
waiting for wakeup

producer (sender)
time

What’s causing the problem?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What causes the problem?
The problem is we need to make two actions
before-or-after atomic:

Releases the lock
Calls sleep(), which changes the thread state from
RUNNING to BLOCKED

9

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

We need better synchronization primitives

Intuitively, we need to design a better set of
thread synchronization primitives

sleep() and wakeup(thread_id) does not work well
since they do not maintain a “state” or “memory”
about past wakeups

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Semaphores: maintaining a “table count”
Analogy: the person at the entrance of a restaurant
who oversees table assignments

She needs to maintain a count of unoccupied tables
When guests arrive, she decrements the table count
for each table taken
When there is no table left, guests will have to wait in
a queue
As tables are freed up, waiting guests are allowed
into the restaurant

11

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Semaphores: maintaining a “table count”
Edsger Dijkstra, a 1972 Turing Award winner, proposed
Semaphore primitives, down() and up(), in 1965
Defining semaphores: the first alternative

A semaphore is a non-negative integer that remembers past wakeups
down(semaphore): if semaphore > 0, decrement semaphore.
Otherwise, wait until another thread increments semaphore, then try to
decrement again
up(semaphore): increment semaphore, and wake up all threads
waiting on semaphore

A binary semaphore: takes on only values of 0 and 1
a binary semaphore can be used as a mutex lock without the need
for polling: down() corresponds to acquire(), up() corresponds to
release()

12

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Defining semaphores: second alternative
The previous definition does not allow a negative count
We can instead allow the count to go negative

A positive value: it is the number of resources available
A negative value: its absolute value is the number of threads
waiting on available resources
Just like in a restaurant!

Semantics of Down() and Up()
down(semaphore): decrement semaphore, then add itself to the
waiting queue and change the thread state to BLOCKED, if its
value is negative
up(semaphore): increment semaphore, and wake up one of the
threads waiting on semaphore

13

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

BLITZ semaphores use the second alternative

14

class semaphore
 int count
 waitingThreads: List [Thread]
up()
 disable interrupts
 count = count + 1
 if count <= 0
 t = waitingThreads.Remove()
 t.status = READY
 readyList.addToEnd(t)
 endIf
 enable interrupts
down()
 disable interrupts
 count = count – 1
 if count < 0
 waitingThreads.AddToEnd(currentThread)
 currentThread.Sleep()
 endIf
 enable interrupts

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Binary semaphores

A binary semaphore: takes on only values of 0 and 1
a binary semaphore can be used as a mutex lock without
the need for polling (“spin lock”): down() corresponds to
acquire(), up() corresponds to release()

15

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving the P-C problem with semaphores

16

full: counting the number of slots that are occupied
initialized to 0

empty: counting the number of slots that are empty
initialized to the size of the buffer

mutex: make sure the sending and receiving threads do not
access the shared buffer at the same time

initialized to 1
a binary semaphore

Thread synchronization and mutual exclusion
mutex used to solve the mutual exclusion problem
full and empty used for thread synchronization

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving the problem with binary semaphores

17

semaphore mutex = 1, empty = N, full = 0
send(message msg)
 down(mutex)
 down(empty)
 buffer[in modulo N] = msg
 in = in + 1
 up(full)
 up(mutex)
message receive()
 down(mutex)
 down(full)
 msg = buffer[out modulo N]
 out = out + 1
 up(empty)
 up(mutex)
 return msg

First try

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Potential for deadlocks

mutex was decremented before empty instead of after
it
If the buffer were completely full, the sender thread
will block on empty, with mutex set to 0 already
The next time the receiver thread tried to access the
buffer, it would do a down on mutex
mutex is now 0, so the receiver thread will block, too
Both threads will be blocked forever

18

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving the problem with binary semaphores

19

semaphore mutex = 1, empty = N, full = 0
send(message msg)
 down(empty)
 down(mutex)
 buffer[in modulo N] = msg
 in = in + 1
 up(mutex)
 up(full)
message receive()
 down(full)
 down(mutex)
 msg = buffer[out modulo N]
 out = out + 1
 up(mutex)
 up(empty)
 return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Improving acquire() and release()

acquire() have been implemented using a TSL instruction in a
spin loop
Spin loops consume processor cycles and should be avoided
If acquire() finds that the lock is LOCKED, a better idea is to
put the thread itself to BLOCKED, waiting for another thread to
release the lock
You were asked to implement this improvement in Lab 2 in
BLITZ

waitingThreads: a list of threads suspended and waiting on the lock
heldBy: the current state of the lock — which thread is holding the lock
Think about race conditions and correctness carefully

20

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What We’ve Covered So Far

Three Easy Pieces
Chapter 31: “Semaphores”, 31.1-31.4, 31.7

Principles of Computer Systems Design
Section 5.6.1: The Lost Notification Problem
Sidebar 5.7

BLITZ Documentation: “The Thread Scheduler and
Concurrency Control Primitives,” pages 31-35

21

