
Race Conditions

Operating Systems

Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Communication Across Threads

2

Thread 1 Thread 2

shared, bounded buffer

send receive

shared address space

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Communication Across Threads: Primitives

The OS may provide the following interface for
send and receive with bounded buffers:

send(message): if there is room in the bounded buffer,
insert message in the buffer. If not, stop the calling
thread and wait until there is room.

receive(): if there is a message in the bounded buffer,
return the message to the calling thread. If not, stop the
calling thread and wait until another thread sends a
message to buffer.

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

First assumption: one CPU per thread
For now, let’s first assume that there is an available
physical CPU for each thread, so we don’t need to worry
about multiplexing threads on the same CPU

4

Processor 1 Processor 2

101 102

Clock

109

Bus

Disk
controller

Memory 1 Memory 2
Keyboard
controller

Network
controller

Display
controller

1061073072-40951024-2047104, 105

send thread receive thread

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Producer-Consumer Problem

The problem of sharing a bounded buffer between two
threads is an instance of the producer-consumer
problem

The producer needs to first add a message to the shared
buffer before the consumer can remove it

The producer needs to wait for the consumer to catch up
when the buffer fills up

Let’s try to implement send() and receive()

We can alternatively call them producer() and consumer()

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

First implementation of send() and receive()

message buffer[N]

int in = 0, out = 0 // an ‘infinite’ int type

send(message msg)

while in - out == N do nothing

buffer[in modulo N] = msg

in = in + 1

return

message receive()

while in == out do nothing

msg = buffer[out modulo N]

out = out + 1

return msg

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Assumptions revisited

There is only one sending thread and one
receiving thread

Only one thread updates each shared variable

Only the receiving thread updates out

Only the sending thread updates in

One writer principle:

If each variable has only one writer, coordination
becomes easier.

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What if we allow several senders?

Each sender has its own CPU, but progresses at
different paces

8

A

B

buffer is empty

buffer is empty fill entry 0

fill entry 0 in = 1

in = 2

This is called a race condition, since it
depends on the exact timing of two threads

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Another race condition

in = in + 1

1 LOAD in, R0

2 ADD R0, 1

3 STORE R0, in

9

A

B

read 0

read 0 1

1 in = 1

in = 1

2 3

2 3

Very difficult to debug, as it may rarely
occur, and hard to reproduce

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How do we fix race conditions?

We have race conditions whenever the output
depends on the precise execution order of
threads

How do we systematically avoid race
conditions?

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How do we fix race conditions?

Intuitively, we need to make threads
coordinate with each other to ensure mutual
exclusion in accessing critical sections of
code

In this case, a critical section defines a multi-step
operation in the code that needs to become
“before-or-after” atomic actions

We need a lock!

11

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Shared locks to achieve mutual exclusion

A lock is a shared variable that acts as a flag to coordinate
usage of other shared variables

We introduce two new primitives to be able to work with locks

acquire() and release()

Now a thread can acquire a lock, hold it for a while, and then release it

When a thread is holding a lock, other threads that attempt to acquire
that same lock will wait until the first thread releases the lock

By surrounding multi-step operations involving shared
variables with acquire() and release(), we make sure a multi-
step operation behaves like a single-step operation

alternatively called lock() and unlock() (in BLITZ)

12

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Second implementation of send() and receive()
message buffer[N]

int in = 0, out = 0 // an ideal int type

lock buffer_lock = UNLOCKED

send(message msg)

acquire(buffer_lock)

while in - out == N do nothing

buffer[in modulo N] = msg

in = in + 1

release(buffer_lock)

return

message receive()

acquire(buffer_lock)

while in == out do nothing

msg = buffer[out modulo N]

out = out + 1

release(buffer_lock)

return msg

13

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Third implementation of send() and receive()
message buffer[N]

int in = 0, out = 0

lock buffer_lock = UNLOCKED

send(message msg)

acquire(buffer_lock)

while in - out == N do

release(buffer_lock)

acquire(buffer_lock)

buffer[in modulo N] = msg

in = in + 1

release(buffer_lock)

return

message receive()

acquire(buffer_lock)

while in == out do

release(buffer_lock)

acquire(buffer_lock)

msg = buffer[out modulo N]

out = out + 1

release(buffer_lock)

return msg

14

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing acquire() and release()

A correct implementation must enforce the
“single-acquire” protocol

Several threads may attempt to acquire the lock at the
same time, but only one should succeed

Consider the following implementation —

15

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing acquire() and release()

struct lock

int state

acquire(lock L)

while L.state == LOCKED do nothing

L.state = LOCKED

release(lock L)

L.state = UNLOCKED

16

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Race condition

17

A

B

L.state is UNLOCKED

L.state is UNLOCKED

L.state = LOCKED

L.state = LOCKED

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Why the race condition?

The faulty acquire() has a multi-step operation on a shared
variable (the lock), and we must ensure in some way that
acquire() itself is a before-or-after atomic action

Once acquire() is a before-or-after atomic action, we can
use it to turn arbitrary multi-step operations on shared
variables into before-or-after atomic actions

Did we just go back to the very beginning?

No, we have actual made progress!

We reduced a more general problem (making multi-step
operations on shared variables before-or-after actions) to a
narrower problem (making an operation on a single shared lock a
before-or-after action)!

18

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Disabling interrupts?

Timer interrupts are disabled

The thread scheduler is not able to run

No other thread can run on this CPU

19

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Disabling interrupts?

Problems

If we have multiple CPUs, threads running on the
other processors can enter the critical section
even with interrupts disabled

Is it fine to trust the user threads for disabling
interrupts?

If so, what if they never re-enable the interrupts?

20

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hardware support: we
need it again

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hardware support: the TSL instruction
Test and Set Lock (TSL) instruction (or sometimes called
Test and Set) from the hardware —

TSL(LOCK)

do atomic

1 RX = LOCK

2 LOCK = LOCKED

RETURN RX

The bus arbiter in hardware that controls the bus
connecting processors to the memory must guarantee —

the LOAD (line 1) and STORE (line 2) instructions must execute
as before-or-after atomic actions

By allowing both to be done in a single clock cycle

22

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing acquire() and release() with TSL

acquire(lock L)

R1 = TSL(L.state)

while R1 == LOCKED do

R1 = TSL(L.state)

release(lock L)

L.state = UNLOCKED

23

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Correctness of the solution
To see that the implementation is correct, we assume L is
UNLOCKED

If some thread calls acquire(L), then after TSL, L is
LOCKED and R1 contains UNLOCKED, so the thread
acquired the lock

The next thread that calls acquire(L) sees LOCKED in R1
after TSL, showing that some other thread holds the lock

The thread that tried to acquire L will spin until R1
contains UNLOCKED

When releasing a lock, no test is needed, an ordinary
STORE instruction can do the job without creating a race
condition

24

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A summary so far

Mutual exclusion from a critical section using shared locks

No concurrent threads simultaneously in the critical section at the
same time

Shared locks are usually called mutex locks (mutual exclusion locks)

Two operations to protect the critical section

acquire(L): alternatively called lock(L)

release(L): alternatively called unlock(L)

Implementation

Using the Test-and-Set-Lock (TSL) instruction: an atomic action

With mutex locks, the producer-consumer problem is solved

allowing multiple senders and receivers to access a shared buffer

25

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 26.3, 26.4, 26.5, 26.6,
26.7, 28.1 – 28.8, 28.13 – 28.14

Principles of Computer System Design: Chapter
5.2.1 – 5.2.6

26

