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Communication Across Threads
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Communication Across Threads: Primitives

The OS may provide the following interface for 
send and receive with bounded buffers:


send(message): if there is room in the bounded buffer, 
insert message in the buffer.  If not, stop the calling 
thread and wait until there is room.

receive(): if there is a message in the bounded buffer, 
return the message to the calling thread.  If not, stop the 
calling thread and wait until another thread sends a 
message to buffer.
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First assumption: one CPU per thread
For now, let’s first assume that there is an available 
physical CPU for each thread, so we don’t need to worry 
about multiplexing threads on the same CPU
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The Producer-Consumer Problem

The problem of sharing a bounded buffer between two 
threads is an instance of the producer-consumer 
problem


The producer needs to first add a message to the shared 
buffer before the consumer can remove it

The producer needs to wait for the consumer to catch up 
when the buffer fills up


Let’s try to implement send() and receive()

We can alternatively call them producer() and consumer()
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First implementation of send() and receive()

message buffer[N]

int in = 0, out = 0 // an ‘infinite’ int type

send(message msg)


while in - out == N do nothing

buffer[in modulo N] = msg

in = in + 1

return


message receive()

while in == out do nothing

msg = buffer[out modulo N]

out = out + 1

return msg

6



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Assumptions revisited

There is only one sending thread and one 
receiving thread


Only one thread updates each shared variable

Only the receiving thread updates out

Only the sending thread updates in


One writer principle:

If each variable has only one writer, coordination 
becomes easier.

7



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What if we allow several senders?

Each sender has its own CPU, but progresses at 
different paces
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This is called a race condition, since it 
depends on the exact timing of two threads
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Another race condition

in = in + 1

1  LOAD in, R0

2  ADD R0, 1

3  STORE R0, in
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Very difficult to debug, as it may rarely 
occur, and hard to reproduce
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How do we fix race conditions?

We have race conditions whenever the output 
depends on the precise execution order of 
threads

How do we systematically avoid race 
conditions?
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How do we fix race conditions?

Intuitively, we need to make threads 
coordinate with each other to ensure mutual 
exclusion in accessing critical sections of 
code


In this case, a critical section defines a multi-step 
operation in the code that needs to become 
“before-or-after” atomic actions


We need a lock!
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Shared locks to achieve mutual exclusion

A lock is a shared variable that acts as a flag to coordinate 
usage of other shared variables

We introduce two new primitives to be able to work with locks


acquire() and release()

Now a thread can acquire a lock, hold it for a while, and then release it

When a thread is holding a lock, other threads that attempt to acquire 
that same lock will wait until the first thread releases the lock


By surrounding multi-step operations involving shared 
variables with acquire() and release(), we make sure a multi-
step operation behaves like a single-step operation


alternatively called lock() and unlock() (in BLITZ)
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Second implementation of send() and receive()
message buffer[N]

int in = 0, out = 0 // an ideal int type

lock buffer_lock = UNLOCKED


send(message msg)


acquire(buffer_lock)

while in - out == N do nothing

buffer[in modulo N] = msg

in = in + 1

release(buffer_lock)

return


message receive()


acquire(buffer_lock)

while in == out do nothing

msg = buffer[out modulo N]

out = out + 1

release(buffer_lock)

return msg
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Third implementation of send() and receive()
message buffer[N]

int in = 0, out = 0

lock buffer_lock = UNLOCKED

send(message msg)


acquire(buffer_lock)

while in - out == N do 


release(buffer_lock)

acquire(buffer_lock)


buffer[in modulo N] = msg

in = in + 1

release(buffer_lock)

return


message receive()

acquire(buffer_lock)

while in == out do


release(buffer_lock)

acquire(buffer_lock)


msg = buffer[out modulo N]

out = out + 1

release(buffer_lock)

return msg
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Implementing acquire() and release()

A correct implementation must enforce the 
“single-acquire” protocol


Several threads may attempt to acquire the lock at the 
same time, but only one should succeed


Consider the following implementation —
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Implementing acquire() and release()

struct lock

int state


acquire(lock L)

while L.state == LOCKED do nothing 

L.state = LOCKED


release(lock L)

L.state = UNLOCKED
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Race condition
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Why the race condition?

The faulty acquire() has a multi-step operation on a shared 
variable (the lock), and we must ensure in some way that 
acquire() itself is a before-or-after atomic action

Once acquire() is a before-or-after atomic action, we can 
use it to turn arbitrary multi-step operations on shared 
variables into before-or-after atomic actions 

Did we just go back to the very beginning?


No, we have actual made progress!

We reduced a more general problem (making multi-step 
operations on shared variables before-or-after actions) to a 
narrower problem (making an operation on a single shared lock a 
before-or-after action)!
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Disabling interrupts?

Timer interrupts are disabled

The thread scheduler is not able to run

No other thread can run on this CPU
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Disabling interrupts?

Problems

If we have multiple CPUs, threads running on the 
other processors can enter the critical section 
even with interrupts disabled

Is it fine to trust the user threads for disabling 
interrupts?

If so, what if they never re-enable the interrupts?
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Hardware support: we 
need it again
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Hardware support: the TSL instruction
Test and Set Lock (TSL) instruction (or sometimes called 
Test and Set) from the hardware —

TSL(LOCK)


do atomic

1   RX = LOCK

2   LOCK = LOCKED


RETURN RX


The bus arbiter in hardware that controls the bus 
connecting processors to the memory must guarantee —


the LOAD (line 1) and STORE (line 2) instructions must execute 
as before-or-after atomic actions

By allowing both to be done in a single clock cycle
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Implementing acquire() and release() with TSL

acquire(lock L)

R1 = TSL(L.state)

while R1 == LOCKED do

R1 = TSL(L.state)


release(lock L)

L.state = UNLOCKED
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Correctness of the solution
To see that the implementation is correct, we assume L is 
UNLOCKED

If some thread calls acquire(L), then after TSL, L is 
LOCKED and R1 contains UNLOCKED, so the thread 
acquired the lock

The next thread that calls acquire(L) sees LOCKED in R1 
after TSL, showing that some other thread holds the lock

The thread that tried to acquire L will spin until R1 
contains UNLOCKED

When releasing a lock, no test is needed, an ordinary 
STORE instruction can do the job without creating a race 
condition
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A summary so far

Mutual exclusion from a critical section using shared locks

No concurrent threads simultaneously in the critical section at the 
same time

Shared locks are usually called mutex locks (mutual exclusion locks)


Two operations to protect the critical section

acquire(L): alternatively called lock(L)

release(L): alternatively called unlock(L)


Implementation

Using the Test-and-Set-Lock (TSL) instruction: an atomic action


With mutex locks, the producer-consumer problem is solved

allowing multiple senders and receivers to access a shared buffer
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What we’ve covered so far

Three Easy Pieces: Chapter 26.3, 26.4, 26.5, 26.6, 
26.7, 28.1 – 28.8, 28.13 – 28.14

Principles of Computer System Design: Chapter 
5.2.1 – 5.2.6

26


