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The Process Model Revisited
The process model is based on two concepts — 

grouping of resources 
program text and data sections 
open files 

execution — a “thread” of control 
program counter, stack pointer, and registers 

They can (and should) be treated separately 
Analogy: spouses share the same house, mortgage, and 
bank account, but they can enjoy different lives every 
day 

Now we have threads
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Single-threaded vs. multithreaded processes

3



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Threads in a virtual address space
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2 CONCURRENCY: AN INTRODUCTION
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Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces

However, in a multi-threaded process, each thread runs independently
and of course may call into various routines to do whatever work it is do-
ing. Instead of a single stack in the address space, there will be one per
thread. Let’s say we have a multi-threaded process that has two threads
in it; the resulting address space looks different (Figure 26.1, right).

In this figure, you can see two stacks spread throughout the address
space of the process. Thus, any stack-allocated variables, parameters, re-
turn values, and other things that we put on the stack will be placed in
what is sometimes called thread-local storage, i.e., the stack of the rele-
vant thread.

You might also notice how this ruins our beautiful address space lay-
out. Before, the stack and heap could grow independently and trouble
only arose when you ran out of room in the address space. Here, we
no longer have such a nice situation. Fortunately, this is usually OK, as
stacks do not generally have to be very large (the exception being in pro-
grams that make heavy use of recursion).

26.1 An Example: Thread Creation

Let’s say we wanted to run a program that created two threads, each
of which was doing some independent work, in this case printing “A” or
“B”. The code is shown in Figure 26.2.

The main program creates two threads, each of which will run the
function mythread(), though with different arguments (the string A or
B). Once a thread is created, it may start running right away (depending
on the whims of the scheduler); alternately, it may be put in a “ready” but
not “running” state and thus not run yet. After creating the two threads
(T1 and T2), the main thread calls pthread join(), which waits for a
particular thread to complete.

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

Stack size per thread is 8MB  
by default in macOS (ulimit -s)
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Why Do We Need Threads — Intuition

Sometimes a program needs to do multiple 
tasks concurrently 

Consider a word processor that needs to do 
automated backup while you are typing 
You cannot achieve this with multiple processes, 
since the backup and typing are on the same 
document (address space)

5



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Thread Scheduling States

The thread scheduler multiplexes threads on 
physical CPUs 
The scheduler decides which thread to run based on 
the thread state 
Thread states 

Running — thread is using processor 
Blocked — thread is waiting for input 
Ready — thread is ready to run 
Exited — thread has exited but not been destroyed
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Thread scheduling primitives
yield() — Current thread yields the CPU 

State change: Running -> Ready 

sleep() — Current thread blocks for some reason 
State change: Running -> Blocked (e.g., sending to full buffer) 

wakeup() — Another thread wakes up a thread 
State change: Blocked -> Ready (e.g., buffer space becomes 
available)
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Thread Scheduling Primitives

! Yield - Current thread yields processor

o

 

State change: Running ! Ready, e.g., ?

! Sleep - Current thread blocks for some reason

o

 

State change:  Running ! Blocked, e.g., send to full buffer

! Wakeup – Another thread wakes up a thread

o

 

State change: Blocked ! Ready, e.g., receive from full buffer

wakeup

sleep yield

Running

ReadyBlocked

Exited
thread_exit

thread_destroy

thread_allocate
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The Thread Scheduler

Chooses another ready thread to run based on a scheduling 
policy 
Runs as a result of scheduling primitives yield() and sleep()
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Scheduler Operation

� Scheduler chooses a ready thread to run based on 
various scheduling policies (discussed later)

� Scheduler runs as a result of the previous three 
scheduling primitives, i.e., yield, sleep, wakeup

wakeup

sleep yield

Running

ReadyBlocked

Exited
thread_exit

thread_destroy

thread_allocate

run
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What we’ve covered so far

Three Easy Pieces: Chapter 26.1 and 26.2 
(Concurrency: An Introduction) 
If you think debugging is hard, think twice 
before using threads — 

Next up: race conditions
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