
Threads: An Instant Primer

ECE 353S: Systems Software
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 2

The Process Model Revisited
The process model is based on two concepts —

grouping of resources
program text and data sections
open files

execution — a “thread” of control
program counter, stack pointer, and registers

They can (and should) be treated separately
Analogy: spouses share the same house, mortgage, and
bank account, but they can enjoy different lives every
day

Now we have threads

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Single-threaded vs. multithreaded processes

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Threads in a virtual address space

4

2 CONCURRENCY: AN INTRODUCTION

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code
the code segment:

where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

16KB

15KB

2KB

1KB

0KB

Stack (1)

Stack (2)

(free)

(free)

Heap

Program Code

Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces

However, in a multi-threaded process, each thread runs independently
and of course may call into various routines to do whatever work it is do-
ing. Instead of a single stack in the address space, there will be one per
thread. Let’s say we have a multi-threaded process that has two threads
in it; the resulting address space looks different (Figure 26.1, right).

In this figure, you can see two stacks spread throughout the address
space of the process. Thus, any stack-allocated variables, parameters, re-
turn values, and other things that we put on the stack will be placed in
what is sometimes called thread-local storage, i.e., the stack of the rele-
vant thread.

You might also notice how this ruins our beautiful address space lay-
out. Before, the stack and heap could grow independently and trouble
only arose when you ran out of room in the address space. Here, we
no longer have such a nice situation. Fortunately, this is usually OK, as
stacks do not generally have to be very large (the exception being in pro-
grams that make heavy use of recursion).

26.1 An Example: Thread Creation

Let’s say we wanted to run a program that created two threads, each
of which was doing some independent work, in this case printing “A” or
“B”. The code is shown in Figure 26.2.

The main program creates two threads, each of which will run the
function mythread(), though with different arguments (the string A or
B). Once a thread is created, it may start running right away (depending
on the whims of the scheduler); alternately, it may be put in a “ready” but
not “running” state and thus not run yet. After creating the two threads
(T1 and T2), the main thread calls pthread join(), which waits for a
particular thread to complete.

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

Stack size per thread is 8MB
by default in macOS (ulimit -s)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Why Do We Need Threads — Intuition

Sometimes a program needs to do multiple
tasks concurrently

Consider a word processor that needs to do
automated backup while you are typing
You cannot achieve this with multiple processes,
since the backup and typing are on the same
document (address space)

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Thread Scheduling States

The thread scheduler multiplexes threads on
physical CPUs
The scheduler decides which thread to run based on
the thread state
Thread states

Running — thread is using processor
Blocked — thread is waiting for input
Ready — thread is ready to run
Exited — thread has exited but not been destroyed

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Thread scheduling primitives
yield() — Current thread yields the CPU

State change: Running -> Ready

sleep() — Current thread blocks for some reason
State change: Running -> Blocked (e.g., sending to full buffer)

wakeup() — Another thread wakes up a thread
State change: Blocked -> Ready (e.g., buffer space becomes
available)

7

18

Thread Scheduling Primitives

! Yield - Current thread yields processor

o

State change: Running ! Ready, e.g., ?

! Sleep - Current thread blocks for some reason

o

State change: Running ! Blocked, e.g., send to full buffer

! Wakeup – Another thread wakes up a thread

o

State change: Blocked ! Ready, e.g., receive from full buffer

wakeup

sleep yield

Running

ReadyBlocked

Exited
thread_exit

thread_destroy

thread_allocate

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Thread Scheduler

Chooses another ready thread to run based on a scheduling
policy
Runs as a result of scheduling primitives yield() and sleep()

8

19

Scheduler Operation

� Scheduler chooses a ready thread to run based on
various scheduling policies (discussed later)

� Scheduler runs as a result of the previous three
scheduling primitives, i.e., yield, sleep, wakeup

wakeup

sleep yield

Running

ReadyBlocked

Exited
thread_exit

thread_destroy

thread_allocate

run

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 26.1 and 26.2
(Concurrency: An Introduction)
If you think debugging is hard, think twice
before using threads —

Next up: race conditions

9

