Threads: An Instant Primer

ECE 353S: Systems Software
Baochun Li
University of Toronto

The Process Model Revisited

The process model is based on two concepts —

grouping of resources
program text and data sections
open files

execution — a “thread” of control
program counter, stack pointer, and registers

They can (and should) be treated separately

Analogy: spouses share the same house, mortgage, and
bank account, but they can enjoy different lives every
day

Now we have threads

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 2

Single-threaded vs. multithreaded processes

code

data

files

registers

stack

thread —» ;

single-threaded process

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

— thread

code data files
registers ||| registers ||| registers
stack stack stack
(—
multithreaded process

Threads in a virtual address space

OKB OKB
the code segment:
Program Code Whare hstriations lve Program Code
1KB 1KB
the heap segment:
Heap contains malloc’d data Heap
KB dynamic data structures oKB

(it grows downward)

Stack size per thread is SMB (free)
by default in macOS (ulimit -s)
(free)
Stack (2)
(it grows upward) (free)
the stack segment:
15KB contains local variables 15KB
ts to routines,
Stack " etum values, efc. Stack (1)
16KB 16KB

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4

Why Do We Need Threads — Intuition

Sometimes a program needs to do multiple
tasks concurrently

Consider a word processor that needs to do
automated backup while you are typing

You cannot achieve this with multiple processes,
since the backup and typing are on the same
document (address space)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Thread Scheduling States

The thread scheduler multiplexes threads on
physical CPUs

The scheduler decides which thread to run based on
the thread state

Thread states

Running — thread is using processor

Blocked — thread is waiting for input

Ready — thread is ready to run

Exited — thread has exited but not been destroyed

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6
-

Thread scheduling primitives

vield() — Current thread yields the CPU
State change: Running -> Ready

sleep() — Current thread blocks for some reason

State change: Running -> Blocked (e.g., sending to full buffer)

wakeup() — Another thread wakes up a thread

State change: Blocked -> Ready (e.g., buffer space becomes

available)
thread_exit
thread destroy

yield

Running

sleep

The Thread Scheduler

Chooses another ready thread to run based on a scheduling
policy

Runs as a result of scheduling primitives yield() and sleep()

— thread_exit

Running ><ExiteD—> thread_destroy
sleep /%Id
run
@ock@ wakeup’}?eadDﬁ thread allocate

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8

What we've covered so far

Three Easy Pieces: Chapter 26.1 and 26.2
(Concurrency: An Introduction)

If you think debugging is hard, think twice
before using threads —

Next up: race conditions

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

