
Systems Security
Operating Systems

Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

Real-world protocols
using the ideas so far

2

Message
Authentication Code

(MAC)

3

Message Authentication Code

4

‣ MAC — Message Authentication Code

‣ Designed for checking integrity and
authentication

‣ Based on the assumption that a shared secret
key has already been established

MAC: the basic idea

5

HMAC — Hash based MAC
‣ Using two padding sequences — outer

padding is 5C5C5C... (in hexadecimal) and
inner padding is 363636...

‣ Use the XOR operation to add padding before
applying the secure hash function (SHA)

‣ Apply the secure hash function twice

6

7

8

HMAC: pseudocode
function hmac (key, message)
 if (length(key) > blocksize) then
 key = hash(key) // keys too long are
shortened
 if (length(key) < blocksize) then
 key = key || [0x00 * (blocksize -
length(key))] // keys too short are zero-padded
 o_key_pad = [0x5c * blocksize] XOR key
 i_key_pad = [0x36 * blocksize] XOR key
 return hash(o_key_pad || hash(i_key_pad
|| message))
end function

Transport Layer Security
(TLS)

9

Transport Layer Security (TLS)
‣ The older generations of the protocol are called the

Secure Socket Layer (SSL)

‣ The foundation of the secure HTTP protocol, secure
electronic mail, and most secure protocols in the
Internet — the foundation of e-commerce!

‣ The most up-to-date is TLS 1.2, used in most modern
web browsers

‣ Considered secure against all known attacks
10

The TLS Handshake Protocol
‣ A client sends ClientHello

‣ Highest protocol version of TLS
supported

‣ A random number

11

The TLS Handshake Protocol
‣ The server sends ServerHello

‣ Chosen protocol version

‣ A random number

12

The TLS Handshake Protocol
‣ The server sends Certificate

‣ The server sends ServerHelloDone

‣ The client sends ClientKeyExchange

‣ with a PreMasterSecret, encrypted using the
public key within the server certificate

‣ Both server and client generate the secret key
13

TLS Handshake Protocol
‣ The client sends ChangeCipherSpec

‣ “Everything I tell you from now on will
be authenticated and encrypted.”

‣ The client sends Finished, which is
authenticated and encrypted

14

TLS Handshake Protocol
‣ The server sends ChangeCipherSpec

‣ “Everything I tell you from now on will
be authenticated and encrypted”

‣ The server sends Finished, which is
authenticated and encrypted

15

The choice of MAC
‣ After the session is established using

the TLS handshake protocol, HMAC
with SHA-256 is used for MAC

16

User authentication in OS

17

Authentication with passwords
‣ Something that a user knows — extremely common

‣ Problems are plenty —

‣ More passwords are better, but a user won’t like it

‣ How easy it is to guess a password?

‣ How easy it is to obtain a password without guessing?

‣ sniffing and phishing are common techniques

18

Guessing passwords

19

Storing passwords
‣ The system must store passwords in order to perform

authentication

‣ How can passwords be protected?

‣ Rely on file protection and store them in protected files

‣ compare typed password with stored password

‣ Rely on encryption

‣ store them encrypted — in readable files?

‣ use one way function (cryptographic hash)
20

Example: PHP website
‣ A website must store sensitive information, such as user

passwords, in encrypted form

21

function get_password_hash($password)
{
 global $dbc;

 return mysqli_real_escape_string
 ($dbc, hash_hmac('sha256', $password,
 'c#haRl891', true));
}

Storing passwords in Unix
‣ Password file: /etc/passwd

‣ It’s a world readable file!

‣ /etc/passwd entries

‣ User name, password (encrypted), user id, group id,
home directory, shell preference, name

22

Dictionary attacks
‣ If encrypted passwords are stored in world readable files

and you see that another user’s encrypted password is
the same as yours

‣ Their password is also the same!

‣ If the encryption method is well known, attackers can —

‣ Encrypt an entire dictionary

‣ Compare encrypted dictionary words with encrypted
passwords until they find a match

23

Salting passwords (Morris and Thompson,
1979)
‣ The salt is a random number combined with the

password prior to encryption

‣ It changes when the password is changed

‣ The salt is stored with the encrypted password

‣ Different user’s with the same password see different
encrypted values in /etc/passwd

‣ Dictionary attack requires time-consuming re-encoding of
entire dictionary for every salt value

24

Challenge-Response Authentication
‣ Simple: Ask a list of questions that only the authentic user

knows the answers to

‣ More complex — used by SSH

‣ The user generates a public-private key pair

‣ The public key is stored on the remote server

‣ The private key is stored in main memory, or generated
on-the-fly when the user is prompted a “passphrase”

‣ The private key is used to authenticate the user with the
public key on the server

25

Best practice: two-factor
authentication

26

Common attacks

27

Buffer overflow attacks

28

Example C program

29

int main(int argc, char *argv[])
{
 char buffer[256];
 if (argc < 2) return -1;
 else {
 // correct version is
 // strncpy(buffer, argv[1], 255);
 strcpy(buffer, argv[1]);
 return 0;
 }
}

Defeating Buffer Overflow Attacks
‣ Fixing buffer overflow bugs one at a time

‣ Hardware solutions

‣ CPU includes the ability to mark a page non-executable

‣ NX feature in AMD and Intel x86 CPUs

‣ Linux and Windows XP SP2 support the feature

30

That’s it for this course

31

Thank you

32

