Processes

Operating Systems
Baochun Li
University of Toronto

Running multiple programs

Why do we need to run multiple programs concurrently?

Called "multiprogramming"

Because it increases CPU utilization

I/O intensive programs are waiting for I/O most of the time, it would be good to keep the CPU busy with other tasks

Multiprogramming and time sharing

Multiprogramming: accommodating multiple processes in one physical address space

Each process can be I/O bound or CPU bound

It would be good to have a mix of I/O bound and CPU bound processes

The goal is to increase CPU utilization

A scheduler decides which process to execute

Time sharing (or "multitasking"): switching back-andforth across processes very quickly — called "context switch"

The goal is to reduce latency when a user interacts with the computer

The process abstraction

Program is a passive entity

Usually stored in an executable file in a file system

Contains instructions and static data values

Process is a program in execution (or a "running program")

But what constitutes a process?

We need to understand its execution context (environment)

What a program can read or update when it's running

One obvious component: Memory

The memory that a process can address is called its address space

What else?

Registers, Program Counter (PC), Stack Pointer (SP)

I/O information: a list of files that are currently open

Address Space in a Process

A set of memory sections accessible to a process is called the process' address space

Text — the program code (usually read only)

Stack — each frame contains parameters, local variables, and the return address of a function

Data — global variables and constants

Heap — dynamically allocated memory (malloc() in C)

The (virtual) address space of a process

Maximum

Address 0

Why Use the Process Abstraction?

Allows the execution of multiple programs in the same physical address space

Virtualizing the CPU: multiple independent processes running on a physical machine at the same time

But in reality, at most one process can be active at any instant on each CPU

Process States

Process states

Tracing Process State: CPU Only

Time	$\mathbf{Process}_0$	$\mathbf{Process}_1$	Notes
1	Running	Ready	
2	Running	Ready	
3	Running	Ready	
4	Running	Ready	Process ₀ now done
5	_	Running	
6	_	Running	
7	_	Running	
8	_	Running	Process ₁ now done

Tracing Process State: CPU and I/O

Time	Process ₀	$\mathbf{Process}_1$	Notes
1	Running	Ready	
2	Running	Ready	
3	Running	Ready	Process ₀ initiates I/O
4	Blocked	Running	Process ₀ is blocked,
5	Blocked	Running	so Process ₁ runs
6	Blocked	Running	
7	Ready	Running	I/O done
8	Ready	Running	Process ₁ now done
9	Running		
10	Running	_	Process ₀ now done

Process Control Block (PCB)

Information that an OS needs to track about each process:

The process state: blocked, ready, running, zombie

Program counter

CPU registers (for a process that is not running)

CPU scheduling information: process priority

Memory management information: to be discussed later

Accounting information: amount of CPU and real time used, process ID

I/O status information: a list of open files

PCB is used for saving states in a context

An expensive mechanism: context switch

Saving all the states of a process allows a process to be temporarily suspended and later resumed from the same point

Then another process can be resumed by restoring its saved state

The time it takes to perform a context switch is overhead that we wish to minimize

System calls related to the process abstraction

Process Creation: loading from the disk

Process creation and termination in UNIX

All processes have a unique process ID

getpid() system call retrieves this ID

Process creation

fork() system call creates a copy of a process and returns in both processes (parent and child), but with a different return value (0 in child)

exec() replaces an address space with a new program

Process termination

exit() or kill() system calls

```
csh (pid = 22)
```

```
pid = fork();
if (pid == 0) {
    // child
    exec(...);
}
else {
    // parent
    wait(NULL);
}
```

```
csh (pid = 22)
```

```
pid = fork();
if (pid == 0) {
    // child
    exec(...);
}
else {
    // parent
    wait(NULL);
}
```

csh (pid = 24)

```
pid = fork();
if (pid == 0) {
    // child
    exec(...);
}
else {
    // parent
    wait(NULL);
}
```

```
csh (pid = 22)
```

```
pid = fork();
if (pid == 0) {
    // child
    exec(...);
}
else {
    // parent
    wait(NULL);
}
```

```
csh (pid = 24)
```

```
pid = fork();
if (pid == 0) {
    // child
    exec(...);
}
else {
    // parent
    wait(NULL);
}
```

```
csh (pid = 22)
```

```
pid = fork();
if (pid == 0) {
    // child
    exec(...);
}
else {
    // parent
    wait(NULL);
}
```

```
csh (pid = 24)
```

```
pid = fork();
if (pid == 0) {
    // child
    exec(...);
}
else {
    // parent
    wait(NULL);
}
```

```
csh (pid = 22)
```

```
pid = fork();
if (pid == 0) {
    // child
    exec(...);
}
else {
    // parent
    wait(NULL);
}
```

ls (pid = 24)

```
// ls program
int main()
{
    // look up
    // directories
    ...
    return 0;
}
```

Live Demo

Process creation with fork(): a summary

fork() creates a new process by copying the content of the calling process' address space

The new process has its own

address space (content is copied from parent)

Process control block in the OS

What we have covered so far

Three Easy Pieces

Chapter 4: The Abstraction: The Process

Chapter 5: Interlude: Process API