Processes

Operating Systems
Baochun Li
University of Toronto

Running multiple programs

Why do we need to run multiple programs
concurrently?

Called "multiprogramming”
Because it increases CPU utilization

/O intensive programs are waiting for |/O most
of the time, it would be good to keep the CPU
busy with other tasks

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Multiprogramming and time sharing

Multiprogramming: accommodating multiple processes in
one physical address space
Each process can be 1/O bound or CPU bound

It would be good to have a mix of 1O bound and CPU bound
processes

The goal is to increase CPU utilization
A scheduler decides which process to execute

Time sharing (or “multitasking”): switching back-and-
forth across processes very quickly — called “context
switch”

The goal is to reduce latency when a user interacts with the
computer

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The process abstraction

Program is a passive entity

Usually stored in an executable file in a file system
Contains instructions and static data values

Process is a program in execution (or a “running
program”)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4
-

But what constitutes a process?

We need to understand its execution context
(environment)

What a program can read or update when it's running
One obvious component: Memory

The memory that a process can address is called its
address space

What else?

Registers, Program Counter (PC), Stack Pointer (SP)
|/O information: a list of files that are currently open

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Address Space in a Process

A set of memory sections accessible to a
process Is called the process’ address space
Text — the program code (usually read only)

Stack — each frame contains parameters, local
variables, and the return address of a function

Data — global variables and constants

Heap — dynamically allocated memory (malloc() in
C)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6

The (virtual) address space of a process

Maximum
Stack

Address O

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Why Use the Process Abstraction?

Allows the execution of multiple programs in
the same physical address space

Virtualizing the CPU: multiple independent
processes running on a physical machine at the
same time

But in reality, at most one process can be active
at any instant on each CPU

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8

Process States

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Process states

Descheduled
— Ready
Scheduled

/O initiatx /O: done

Blocked

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 10

Tracing Process State: CPU Only

Time Processy Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready
. Running Ready Processp now done
5 — Running
6 — Running
/ — Running
8

Running

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Process1 now done

N

Tracing Process State: CPU and 1/O

Time Processg Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready Processg initiates I/0
A Blocked @ Running Processg is blocked,
5 Blocked Running so Process; runs
6 Blocked Running
7 Ready Running I/0 done
8 Ready Running Process1 now done
9 Running —
10 Running — Processp now done

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

12

Process Control Block (PCB)

Information that an OS needs to track about each
Process:
The process state: blocked, ready, running, zombie
Program counter
CPU registers (for a process that is not running)
CPU scheduling information: process priority
Memory management information: to be discussed later

Accounting information: amount of CPU and real time used,
process ID

|/O status information: a list of open files

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 13

PCB is used for saving states in a context

process P, operating system process P,

interrupt or system call

executing / l

A save state into PCB,
> idle
reload state from PCB,]
-idle interrupt or system call executing
l' \ .
save state into PCB;
> idle
) reload state from PCB,)

executing \

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 14

An expensive mechanism: context switch

Saving all the states of a process allows a process to
be temporarily suspended and later resumed from
the same point

Then another process can be resumed by restoring
its saved state

The time it takes to perform a context switch is
overhead that we wish to minimize

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 15
-

System calls related to
the process abstraction

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Process Creation: loading from the disk

CPU Memory

' code ;
, staticdata
heap

Process

Program Loading:
J Takes on-disk program

/x and reads it into the
v address space of process

Disk

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 17

Process creation and termination in UNIX

All processes have a unique process ID

getpid() system call retrieves this ID
Process creation

fork() system call creates a copy of a process and returns

In both processes (parent and child), but with a different
return value (O in child)

exec() replaces an address space with a new program
Process termination

exit() or kill() system calls

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 18

Example: Process creation in UNIX

..

if (pid == 0) {
. // child

. exec(...);
'}

else {

// parent
wait (NULL);

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 19
-

Example: Process creation in UNIX

..

if (pid == 0) {
. // child

. exec(...);
'}

else {

// parent
wait (NULL);

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

pid = fork();

1f (pid == 0) {
. // child

. exeC(...);
1

else {

// parent
walt (NULL);

20

Example: Process creation in UNIX

pid = fork(); § Epid = fork();

if (pid == 0) { § if (pid == 0) {
" // child ; " // child

E} exec(...); ; ;} exec(...):
%else { 5 else {

// parent E . // parent
wait(NULL); ; wait(NULL);

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 21
-

Example: Process creation in UNIX

pid = fork(); § Epid = fork();

if (pid == 0) { § if (pid == 0) {
" // child ; " // child

E} exec(...); ; ;} exec(...):
%else { 5 else {

// parent E . // parent
wait(NULL); ; wait(NULL);

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 22
-

Example: Process creation in UNIX

..

pid = fork(); ; // ls program
; ; 1nt main()
if (pid == 0) { E 1
E // child ; ; // look up
§} exec(...); § ~// directories
else { E E return 0;

// parent ; 1

wait (NULL); ; ;

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 23
-

Live Demo

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Process creation with fork(): a summary

fork() creates a new process by copying the
content of the calling process' address space

The new process has its own

address space (content is copied from parent)
Process control block in the OS

parent O\ resumes
walit »

exit()

exec()/

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 25

What we have covered so far

Three Easy Pieces

Chapter 4: The Abstraction: The Process
Chapter 5: Interlude: Process API

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 26
-

