
Processes

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Running multiple programs

Why do we need to run multiple programs
concurrently?

Called “multiprogramming”
Because it increases CPU utilization

I/O intensive programs are waiting for I/O most
of the time, it would be good to keep the CPU
busy with other tasks

2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Multiprogramming and time sharing

Multiprogramming: accommodating multiple processes in
one physical address space

Each process can be I/O bound or CPU bound
It would be good to have a mix of I/O bound and CPU bound
processes
The goal is to increase CPU utilization
A scheduler decides which process to execute

Time sharing (or “multitasking”): switching back-and-
forth across processes very quickly — called “context
switch”

The goal is to reduce latency when a user interacts with the
computer

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The process abstraction

Program is a passive entity
Usually stored in an executable file in a file system
Contains instructions and static data values

Process is a program in execution (or a “running
program”)

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

But what constitutes a process?

We need to understand its execution context
(environment)

What a program can read or update when it’s running
One obvious component: Memory

The memory that a process can address is called its
address space

What else?
Registers, Program Counter (PC), Stack Pointer (SP)
I/O information: a list of files that are currently open

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Address Space in a Process

A set of memory sections accessible to a
process is called the process’ address space

Text — the program code (usually read only)
Stack — each frame contains parameters, local
variables, and the return address of a function
Data — global variables and constants
Heap — dynamically allocated memory (malloc() in
C)

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

7

Stack

Gap

Data

Text

Maximum

Address 0

The (virtual) address space of a process

Heap

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Why Use the Process Abstraction?

Allows the execution of multiple programs in
the same physical address space
Virtualizing the CPU: multiple independent
processes running on a physical machine at the
same time

But in reality, at most one process can be active
at any instant on each CPU

8

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Process States

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Process states

10

6 THE ABSTRACTION: THE PROCESS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/O operation), the OS will keep it as such until some event occurs (e.g.,
I/O completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

Let’s look at an example of how two processes might transition through
some of these states. First, imagine two processes running, each of which
only use the CPU (they do no I/O). In this case, a trace of the state of each
process might look like this (Figure 4.3).

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready
4 Running Ready Process0 now done
5 – Running
6 – Running
7 – Running
8 – Running Process1 now done

Figure 4.3: Tracing Process State: CPU Only

In this next example, the first process issues an I/O after running for
some time. At that point, the process is blocked, giving the other process
a chance to run. Figure 4.4 shows a trace of this scenario.

More specifically, Process0 initiates an I/O and becomes blocked wait-
ing for it to complete; processes become blocked, for example, when read-

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Tracing Process State: CPU Only

11

6 THE ABSTRACTION: THE PROCESS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/O operation), the OS will keep it as such until some event occurs (e.g.,
I/O completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

Let’s look at an example of how two processes might transition through
some of these states. First, imagine two processes running, each of which
only use the CPU (they do no I/O). In this case, a trace of the state of each
process might look like this (Figure 4.3).

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready
4 Running Ready Process0 now done
5 – Running
6 – Running
7 – Running
8 – Running Process1 now done

Figure 4.3: Tracing Process State: CPU Only

In this next example, the first process issues an I/O after running for
some time. At that point, the process is blocked, giving the other process
a chance to run. Figure 4.4 shows a trace of this scenario.

More specifically, Process0 initiates an I/O and becomes blocked wait-
ing for it to complete; processes become blocked, for example, when read-

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Tracing Process State: CPU and I/O

12

THE ABSTRACTION: THE PROCESS 7

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready Process0 initiates I/O
4 Blocked Running Process0 is blocked,
5 Blocked Running so Process1 runs
6 Blocked Running
7 Ready Running I/O done
8 Ready Running Process1 now done
9 Running –
10 Running – Process0 now done

Figure 4.4: Tracing Process State: CPU and I/O

ing from a disk or waiting for a packet from a network. The OS recog-
nizes Process0 is not using the CPU and starts running Process1. While
Process1 is running, the I/O completes, moving Process0 back to ready.
Finally, Process1 finishes, and Process0 runs and then is done.

Note that there are many decisions the OS must make, even in this
simple example. First, the system had to decide to run Process1 while
Process0 issued an I/O; doing so improves resource utilization by keep-
ing the CPU busy. Second, the system decided not to switch back to
Process0 when its I/O completed; it is not clear if this is a good deci-
sion or not. What do you think? These types of decisions are made by the
OS scheduler, a topic we will discuss a few chapters in the future.

4.5 Data Structures

The OS is a program, and like any program, it has some key data struc-
tures that track various relevant pieces of information. To track the state
of each process, for example, the OS likely will keep some kind of process
list for all processes that are ready, as well as some additional informa-
tion to track which process is currently running. The OS must also track,
in some way, blocked processes; when an I/O event completes, the OS
should make sure to wake the correct process and ready it to run again.

Figure 4.5 shows what type of information an OS needs to track about
each process in the xv6 kernel [CK+08]. Similar process structures exist
in “real” operating systems such as Linux, Mac OS X, or Windows; look
them up and see how much more complex they are.

From the figure, you can see a couple of important pieces of informa-
tion the OS tracks about a process. The register context will hold, for a
stopped process, the contents of its registers. When a process is stopped,
its registers will be saved to this memory location; by restoring these reg-
isters (i.e., placing their values back into the actual physical registers), the
OS can resume running the process. We’ll learn more about this technique
known as a context switch in future chapters.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Process Control Block (PCB)

Information that an OS needs to track about each
process:

The process state: blocked, ready, running, zombie
Program counter
CPU registers (for a process that is not running)
CPU scheduling information: process priority
Memory management information: to be discussed later
Accounting information: amount of CPU and real time used,
process ID
I/O status information: a list of open files

13

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

PCB is used for saving states in a context

14

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

An expensive mechanism: context switch

Saving all the states of a process allows a process to
be temporarily suspended and later resumed from
the same point
Then another process can be resumed by restoring
its saved state
The time it takes to perform a context switch is
overhead that we wish to minimize

15

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

System calls related to
the process abstraction

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Process Creation: loading from the disk

17

4 THE ABSTRACTION: THE PROCESS

MemoryCPU

Disk

code
static data

heap

stack

Process

code
static data

Program Loading:
Takes on-disk program

and reads it into the
address space of process

Figure 4.1: Loading: From Program To Process

4.3 Process Creation: A Little More Detail

One mystery that we should unmask a bit is how programs are trans-
formed into processes. Specifically, how does the OS get a program up
and running? How does process creation actually work?

The first thing that the OS must do to run a program is to load its code
and any static data (e.g., initialized variables) into memory, into the ad-
dress space of the process. Programs initially reside on disk (or, in some
modern systems, flash-based SSDs) in some kind of executable format;
thus, the process of loading a program and static data into memory re-
quires the OS to read those bytes from disk and place them in memory
somewhere (as shown in Figure 4.1).

In early (or simple) operating systems, the loading process is done ea-
gerly, i.e., all at once before running the program; modern OSes perform
the process lazily, i.e., by loading pieces of code or data only as they are
needed during program execution. To truly understand how lazy loading
of pieces of code and data works, you’ll have to understand more about
the machinery of paging and swapping, topics we’ll cover in the future
when we discuss the virtualization of memory. For now, just remember
that before running anything, the OS clearly must do some work to get
the important program bits from disk into memory.

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Process creation and termination in UNIX

All processes have a unique process ID
getpid() system call retrieves this ID

Process creation
fork() system call creates a copy of a process and returns
in both processes (parent and child), but with a different
return value (0 in child)
exec() replaces an address space with a new program

Process termination
exit() or kill() system calls

18

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example: Process creation in UNIX

19

pid = fork();

if (pid == 0) {
 // child
 exec(...);
}
else {
 // parent
 wait(NULL);
}

csh (pid = 22)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example: Process creation in UNIX

20

pid = fork();

if (pid == 0) {
 // child
 exec(...);
}
else {
 // parent
 wait(NULL);
}

csh (pid = 22)
pid = fork();

if (pid == 0) {
 // child
 exec(...);
}
else {
 // parent
 wait(NULL);
}

csh (pid = 24)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example: Process creation in UNIX

21

pid = fork();

if (pid == 0) {
 // child
 exec(...);
}
else {
 // parent
 wait(NULL);
}

csh (pid = 22)
pid = fork();

if (pid == 0) {
 // child
 exec(...);
}
else {
 // parent
 wait(NULL);
}

csh (pid = 24)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example: Process creation in UNIX

22

pid = fork();

if (pid == 0) {
 // child
 exec(...);
}
else {
 // parent
 wait(NULL);
}

csh (pid = 22)
pid = fork();

if (pid == 0) {
 // child
 exec(...);
}
else {
 // parent
 wait(NULL);
}

csh (pid = 24)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example: Process creation in UNIX

23

pid = fork();

if (pid == 0) {
 // child
 exec(...);
}
else {
 // parent
 wait(NULL);
}

csh (pid = 22)
// ls program
int main()
{
 // look up
 // directories
 ...
 return 0;
}

ls (pid = 24)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Live Demo

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Process creation with fork(): a summary

fork() creates a new process by copying the
content of the calling process’ address space
The new process has its own

address space (content is copied from parent)
Process control block in the OS

25

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we have covered so far

Three Easy Pieces
Chapter 4: The Abstraction: The Process
Chapter 5: Interlude: Process API

26

