
Security: An Introduction
Operating Systems

Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

What is the overall objective
when designing secure
protocols?

2

Restrict access to information
and resources to just those
principals that are
authorized to have access

Cryptographic algorithms
‣ Provides the basis and foundation for all

security protocols

‣ For the purpose of this lecture, we need
to understand two things about these
algorithms

Cryptographic algorithms: our goals
‣Understand the basic ideas in the design

of cryptographic algorithms

‣ Treat these cryptographic algorithms as
“blackboxes,” and understand how they
are used to build secure protocols

What is a secure channel?

What can an adversary do?

The adversary (or the “enemy”)
may gain access to the
communication channel
between authorized principals.

What can the enemy do?

A B
E

Read and copy messages
(eavesdropping)

A B
E

Inject arbitrary messages
(tampering and replaying)

A B
E

send or receive messages using
the identity of another principal
(masquerading, man-in-the-middle
attacks)

A B
E

Can it prevent messages
from getting through?

A B
E

Denial of Service attacks

(flooding a channel in order to
deny access of resources to others,
challenges availability of the resources)

Even though they may be able to, it
is not very interesting to assume this,
as there are no countermeasures
(with basic cryptographic tools)!

Objective: to implement a
secure channel between two
principals, A and B

Requirements of a secure channel
‣We need to be able to pass data from A to B

subject to a selection of the following constraints:

‣ Secrecy: the data can not be read by
unintended recipients

‣ Integrity: the data can not be altered without
detection

‣Authentication: the data is attributed to the
correct originator

To achieve secrecy, we wish to
design a tool to —

encode a message to hide its
contents from access without a
secret key

Secret key algorithms

‣ Secret key algorithms are also called symmetric
cryptographic algorithms

‣ the sender and recipient share the knowledge
of a secret key, K

Using secret key algorithms

Required property #1: secret key
algorithms — Correctness
‣ If E(K, M) and D(K, M) are the encryption and

decryption algorithms, respectively, then:

Required property #2: secret key
algorithms — Security
‣ In the absence of knowledge of K, it must be

very awkward (computationally infeasible) to
recover M from E(K, M).

Modern symmetric cryptographic
algorithms (block ciphers)
‣ Outdated: Data Encryption Standard (DES) — 64-

bit blocks, 56-bit keys

‣ Since 1997: Advanced Encryption Standard (AES)
— 128-bit blocks, 128, 192, or 256 bit keys

23

How do we use symmetric
cryptographic algorithms to
establish a secure channel?

24

Review of our objective: to
implement a secure channel
between two principals, A
and B

Establishing a secure channel using
symmetric cryptographic algorithms
One idea —

If we assume A and B share a secret key K, we
can use symmetric cryptographic algorithms to
encrypt and decrypt the message. A encrypts
the message M with E(K, M), send it to B, and B
computes: D(K, E(K, M)) = M.

Does it satisfy the requirements
of a secure channel?

27

Does it satisfy the requirements of a
secure channel?

‣ Secrecy: Yes, due to the properties of
the symmetric cryptographic algorithm
(our “blackbox”).

‣Authentication: Yes, if we may assume
that only A and B shares knowledge of
the secret key K.

How about integrity?

29

It seems that the shared secret key is
sufficient to establish a secure channel,
except that the assumption that only the
two principals A and B share the secret key
is strong, as it may need a separate
protocol to achieve this.

How do we securely share keys
between A and B?

Establishing a secure channel using
asymmetric crypto algorithms

If we let B keep strictly to itself, and
publish to the entire system, then A can
send to B, and B can perform

Establishing a secure channel using
asymmetric crypto algorithms

– Authentication: Yes, if we may assume that only A and B shares knowledge of the secret key K.

It seems that the shared secret key is sufficient to establish a secure channel, except that the assumption
that only the two principals A and B share the secret key is strong, as it may need a separate channel
between the parties (such as the postal mail system) to achieve this. Can we relax this assumption?

2.2 Establishing the Secure Channel using Public Key Algorithms
If we let B keep KB,priv strictly to itself, and publish K

B,pub to the entire system, then A can send
E(K

B,pub,M) to B, and B can perform D(KB,priv, E(K
B,pub,M)) and obtain M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the asymmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

– Authentication: No, as any one can send the message M to B, knowing B’s public key.

How do we change the protocol to satisfy the requirement of authentication?

2.3 Digital Signatures
A encrypts the message M by using its own private key KA,priv — E(KA,priv,M) — referred to as a

digital signature, or A signs M . Given a signed message (and presumably a hint that it may have been from
A), an attempt to decrypt it using K

A,pub will yield M , and thus the decrypter, B, can infer that A carried
out the encryption (the signature) originally.

The problem: digital signatures do not satisfy the secrecy requirement, in that any principal can decrypt
the message and obtain M .

We may solve the problem by using both digital signatures and public key encryption. If this is done,
the proper order of encryption is as follows:

1. On A : Use A’s private key KA,priv to sign the message M ;

2. On A : Use B’s public key K
B,pub to encrypt the result from the previous step, and then send it to B;

3. On B : Use B’s private key KB,priv to decrypt the received message;

4. On B : Use A’s public key K
A,pub to authenticate the message M .

Note: One should always sign the message first, and then encrypt the signed message.

Combined with the use of checksum C(M), this protocol satisfies all requirements for a secure channel.

Two problems with this protocol:

– The protocol requires applying asymmetric cryptographic algorithms on the entire message, which is
not computationally efficient;

– How does A know that the public key of B is really the public key of B, an not that of some other
principal?

3

– Authentication: Yes, if we may assume that only A and B shares knowledge of the secret key K.

It seems that the shared secret key is sufficient to establish a secure channel, except that the assumption
that only the two principals A and B share the secret key is strong, as it may need a separate channel
between the parties (such as the postal mail system) to achieve this. Can we relax this assumption?

2.2 Establishing the Secure Channel using Public Key Algorithms
If we let B keep KB,priv strictly to itself, and publish K

B,pub to the entire system, then A can send
E(K

B,pub,M) to B, and B can perform D(KB,priv, E(K
B,pub,M)) and obtain M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the asymmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

– Authentication: No, as any one can send the message M to B, knowing B’s public key.

How do we change the protocol to satisfy the requirement of authentication?

2.3 Digital Signatures
A encrypts the message M by using its own private key KA,priv — E(KA,priv,M) — referred to as a

digital signature, or A signs M . Given a signed message (and presumably a hint that it may have been from
A), an attempt to decrypt it using K

A,pub will yield M , and thus the decrypter, B, can infer that A carried
out the encryption (the signature) originally.

The problem: digital signatures do not satisfy the secrecy requirement, in that any principal can decrypt
the message and obtain M .

We may solve the problem by using both digital signatures and public key encryption. If this is done,
the proper order of encryption is as follows:

1. On A : Use A’s private key KA,priv to sign the message M ;

2. On A : Use B’s public key K
B,pub to encrypt the result from the previous step, and then send it to B;

3. On B : Use B’s private key KB,priv to decrypt the received message;

4. On B : Use A’s public key K
A,pub to authenticate the message M .

Note: One should always sign the message first, and then encrypt the signed message.

Combined with the use of checksum C(M), this protocol satisfies all requirements for a secure channel.

Two problems with this protocol:

– The protocol requires applying asymmetric cryptographic algorithms on the entire message, which is
not computationally efficient;

– How does A know that the public key of B is really the public key of B, an not that of some other
principal?

3

– Authentication: Yes, if we may assume that only A and B shares knowledge of the secret key K.

It seems that the shared secret key is sufficient to establish a secure channel, except that the assumption
that only the two principals A and B share the secret key is strong, as it may need a separate channel
between the parties (such as the postal mail system) to achieve this. Can we relax this assumption?

2.2 Establishing the Secure Channel using Public Key Algorithms
If we let B keep KB,priv strictly to itself, and publish K

B,pub to the entire system, then A can send
E(K

B,pub,M) to B, and B can perform D(KB,priv, E(K
B,pub,M)) and obtain M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the asymmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

– Authentication: No, as any one can send the message M to B, knowing B’s public key.

How do we change the protocol to satisfy the requirement of authentication?

2.3 Digital Signatures
A encrypts the message M by using its own private key KA,priv — E(KA,priv,M) — referred to as a

digital signature, or A signs M . Given a signed message (and presumably a hint that it may have been from
A), an attempt to decrypt it using K

A,pub will yield M , and thus the decrypter, B, can infer that A carried
out the encryption (the signature) originally.

The problem: digital signatures do not satisfy the secrecy requirement, in that any principal can decrypt
the message and obtain M .

We may solve the problem by using both digital signatures and public key encryption. If this is done,
the proper order of encryption is as follows:

1. On A : Use A’s private key KA,priv to sign the message M ;

2. On A : Use B’s public key K
B,pub to encrypt the result from the previous step, and then send it to B;

3. On B : Use B’s private key KB,priv to decrypt the received message;

4. On B : Use A’s public key K
A,pub to authenticate the message M .

Note: One should always sign the message first, and then encrypt the signed message.

Combined with the use of checksum C(M), this protocol satisfies all requirements for a secure channel.

Two problems with this protocol:

– The protocol requires applying asymmetric cryptographic algorithms on the entire message, which is
not computationally efficient;

– How does A know that the public key of B is really the public key of B, an not that of some other
principal?

3

– Authentication: Yes, if we may assume that only A and B shares knowledge of the secret key K.

It seems that the shared secret key is sufficient to establish a secure channel, except that the assumption
that only the two principals A and B share the secret key is strong, as it may need a separate channel
between the parties (such as the postal mail system) to achieve this. Can we relax this assumption?

2.2 Establishing the Secure Channel using Public Key Algorithms

If we let B keep KB,priv strictly to itself, and publish K
B,pub to the entire system, then A can send

E(K
B,pub,M) to B, and B can perform D(KB,priv, E(K

B,pub,M)) and obtain M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the asymmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

– Authentication: No, as any one can send the message M to B, knowing B’s public key.

How do we change the protocol to satisfy the requirement of authentication?

2.3 Digital Signatures

A encrypts the message M by using its own private key KA,priv — E(KA,priv,M) — referred to as a
digital signature, or A signs M . Given a signed message (and presumably a hint that it may have been from
A), an attempt to decrypt it using K

A,pub will yield M , and thus the decrypter, B, can infer that A carried
out the encryption (the signature) originally.

The problem: digital signatures do not satisfy the secrecy requirement, in that any principal can decrypt
the message and obtain M .

We may solve the problem by using both digital signatures and public key encryption. If this is done,
the proper order of encryption is as follows:

1. On A : Use A’s private key KA,priv to sign the message M ;

2. On A : Use B’s public key K
B,pub to encrypt the result from the previous step, and then send it to B;

3. On B : Use B’s private key KB,priv to decrypt the received message;

4. On B : Use A’s public key K
A,pub to authenticate the message M .

Combined with the use of checksum C(M), this protocol satisfies all requirements for a secure channel.

Two problems with this protocol:

– The protocol requires applying asymmetric cryptographic algorithms on the entire message, which is
not computationally efficient;

– How does A know that the public key of B is really the public key of B, an not that of some other
principal?

3

and then obtain M.

‣ Public key algorithms (asymmetric cryptographic algorithms)
‣ The sender, Alice, uses a public key of the recipient

(published by the recipient to everyone in the system) to
encrypt the message

‣ The recipient, Bob, then uses his own private key to
decrypt the message

‣ If and are used to denote the encryption and
decryption algorithms using public key algorithms, then we
have
 and
 as well.

Asymmetric cryptographic algorithms

– Secret key algorithms (symmetric cryptographic algorithms): sender and recipient share the knowledge of
a secret key. If E(K, M) and D(K, M) are used to denote the encryption and decryption algorithms,
then D(K, E(K, M)) = M .

– Public key algorithms (asymmetric cryptographic algorithms): sender uses a public key of the recipient
(published by the recipient to everyone in the distributed system) to encrypt the message, the recipi-
ent then uses its private key to decrypt the message. Note: public key algorithms are much more com-
putationally expensive than secret key algorithms. If E(·) and D(·) are used to denote the encryption
and decryption algorithms using public key algorithms, then we have D(Kpub, E(Kpriv,M)) = M ,
and D(Kpriv, E(Kpub,M)) = M as well.

For secret key algorithms, the required properties when designing these the cryptographic algorithms
(“blackboxes” for the purpose of this course):

– In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover
M from E(K, M).

– Given M and E(K, M), it should be very awkward to recover the secret key K.

For public key algorithms, the requirements are as follows:

– Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to
compute the other;

– In the absence of knowledge of Kpriv, it must be very awkward (computationally infeasible) to re-
cover M from E(Kpub,M).

– Given M and E(Kpub,M), it should be very awkward to recover the private key Kpriv.

2 Establishing the Secure Channel
Objective: To implement secure channels between two principals, A and B, in a distributed system.
Requirements of a secure channel: We need to be able to pass data from A to B subject to a selection of the

following constraints:

– Secrecy: the data can not be read by unintended recipients;

– Integrity: the data can not be altered without detection;

– Authentication: the data is attributed to the correct originator.

2.1 Establishing the Secure Channel using Secret Key Algorithms
If we assume A and B share a secret key K, we can use symmetric cryptographic algorithms to en-

crypt and decrypt the message. A encrypts the message M with E(K, M), send it to B, and B computes
D(K, E(K, M)) = M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the symmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

2

– Secret key algorithms (symmetric cryptographic algorithms): sender and recipient share the knowledge of
a secret key. If E(K, M) and D(K, M) are used to denote the encryption and decryption algorithms,
then D(K, E(K, M)) = M .

– Public key algorithms (asymmetric cryptographic algorithms): sender uses a public key of the recipient
(published by the recipient to everyone in the distributed system) to encrypt the message, the recipi-
ent then uses its private key to decrypt the message. Note: public key algorithms are much more com-
putationally expensive than secret key algorithms. If E(·) and D(·) are used to denote the encryption
and decryption algorithms using public key algorithms, then we have D(Kpub, E(Kpriv,M)) = M ,
and D(Kpriv, E(Kpub,M)) = M as well.

For secret key algorithms, the required properties when designing these the cryptographic algorithms
(“blackboxes” for the purpose of this course):

– In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover
M from E(K, M).

– Given M and E(K, M), it should be very awkward to recover the secret key K.

For public key algorithms, the requirements are as follows:

– Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to
compute the other;

– In the absence of knowledge of Kpriv, it must be very awkward (computationally infeasible) to re-
cover M from E(Kpub,M).

– Given M and E(Kpub,M), it should be very awkward to recover the private key Kpriv.

2 Establishing the Secure Channel
Objective: To implement secure channels between two principals, A and B, in a distributed system.
Requirements of a secure channel: We need to be able to pass data from A to B subject to a selection of the

following constraints:

– Secrecy: the data can not be read by unintended recipients;

– Integrity: the data can not be altered without detection;

– Authentication: the data is attributed to the correct originator.

2.1 Establishing the Secure Channel using Secret Key Algorithms
If we assume A and B share a secret key K, we can use symmetric cryptographic algorithms to en-

crypt and decrypt the message. A encrypts the message M with E(K, M), send it to B, and B computes
D(K, E(K, M)) = M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the symmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

2

– Secret key algorithms (symmetric cryptographic algorithms): sender and recipient share the knowledge of
a secret key. If E(K, M) and D(K, M) are used to denote the encryption and decryption algorithms,
then D(K, E(K, M)) = M .

– Public key algorithms (asymmetric cryptographic algorithms): sender uses a public key of the recipient
(published by the recipient to everyone in the distributed system) to encrypt the message, the recipi-
ent then uses its private key to decrypt the message. Note: public key algorithms are much more com-
putationally expensive than secret key algorithms. If E(·) and D(·) are used to denote the encryption
and decryption algorithms using public key algorithms, then we have D(Kpub, E(Kpriv,M)) = M ,
and D(Kpriv, E(Kpub,M)) = M as well.

For secret key algorithms, the required properties when designing these the cryptographic algorithms
(“blackboxes” for the purpose of this course):

– In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover
M from E(K, M).

– Given M and E(K, M), it should be very awkward to recover the secret key K.

For public key algorithms, the requirements are as follows:

– Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to
compute the other;

– In the absence of knowledge of Kpriv, it must be very awkward (computationally infeasible) to re-
cover M from E(Kpub,M).

– Given M and E(Kpub,M), it should be very awkward to recover the private key Kpriv.

2 Establishing the Secure Channel
Objective: To implement secure channels between two principals, A and B, in a distributed system.
Requirements of a secure channel: We need to be able to pass data from A to B subject to a selection of the

following constraints:

– Secrecy: the data can not be read by unintended recipients;

– Integrity: the data can not be altered without detection;

– Authentication: the data is attributed to the correct originator.

2.1 Establishing the Secure Channel using Secret Key Algorithms
If we assume A and B share a secret key K, we can use symmetric cryptographic algorithms to en-

crypt and decrypt the message. A encrypts the message M with E(K, M), send it to B, and B computes
D(K, E(K, M)) = M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the symmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

2

– Secret key algorithms (symmetric cryptographic algorithms): sender and recipient share the knowledge of
a secret key. If E(K, M) and D(K, M) are used to denote the encryption and decryption algorithms,
then D(K, E(K, M)) = M .

– Public key algorithms (asymmetric cryptographic algorithms): sender uses a public key of the recipient
(published by the recipient to everyone in the distributed system) to encrypt the message, the recipi-
ent then uses its private key to decrypt the message. Note: public key algorithms are much more com-
putationally expensive than secret key algorithms. If E(·) and D(·) are used to denote the encryption
and decryption algorithms using public key algorithms, then we have D(Kpub, E(Kpriv,M)) = M ,
and D(Kpriv, E(Kpub,M)) = M as well.

For secret key algorithms, the required properties when designing these the cryptographic algorithms
(“blackboxes” for the purpose of this course):

– In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover
M from E(K, M).

– Given M and E(K, M), it should be very awkward to recover the secret key K.

For public key algorithms, the requirements are as follows:

– Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to
compute the other;

– In the absence of knowledge of Kpriv, it must be very awkward (computationally infeasible) to re-
cover M from E(Kpub,M).

– Given M and E(Kpub,M), it should be very awkward to recover the private key Kpriv.

2 Establishing the Secure Channel
Objective: To implement secure channels between two principals, A and B, in a distributed system.
Requirements of a secure channel: We need to be able to pass data from A to B subject to a selection of the

following constraints:

– Secrecy: the data can not be read by unintended recipients;

– Integrity: the data can not be altered without detection;

– Authentication: the data is attributed to the correct originator.

2.1 Establishing the Secure Channel using Secret Key Algorithms
If we assume A and B share a secret key K, we can use symmetric cryptographic algorithms to en-

crypt and decrypt the message. A encrypts the message M with E(K, M), send it to B, and B computes
D(K, E(K, M)) = M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the symmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

2

‣ Knowing the public key, it is very awkward
(computationally infeasible) to compute the private
key
‣ In the absence of knowledge of , it must be

very awkward (computationally infeasible) to recover
M from .
‣Given M and , it should be very awkward

to recover the private key .

– Secret key algorithms (symmetric cryptographic algorithms): sender and recipient share the knowledge of
a secret key. If E(K, M) and D(K, M) are used to denote the encryption and decryption algorithms,
then D(K, E(K, M)) = M .

– Public key algorithms (asymmetric cryptographic algorithms): sender uses a public key of the recipient
(published by the recipient to everyone in the distributed system) to encrypt the message, the recipi-
ent then uses its private key to decrypt the message. Note: public key algorithms are much more com-
putationally expensive than secret key algorithms. If E(·) and D(·) are used to denote the encryption
and decryption algorithms using public key algorithms, then we have D(Kpub, E(Kpriv,M)) = M ,
and D(Kpriv, E(Kpub,M)) = M as well.

For secret key algorithms, the required properties when designing these the cryptographic algorithms
(“blackboxes” for the purpose of this course):

– In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover
M from E(K, M).

– Given M and E(K, M), it should be very awkward to recover the secret key K.

For public key algorithms, the requirements are as follows:

– Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to
compute the other;

– In the absence of knowledge of Kpriv, it must be very awkward (computationally infeasible) to re-
cover M from E(Kpub,M).

– Given M and E(Kpub,M), it should be very awkward to recover the private key Kpriv.

2 Establishing the Secure Channel
Objective: To implement secure channels between two principals, A and B, in a distributed system.
Requirements of a secure channel: We need to be able to pass data from A to B subject to a selection of the

following constraints:

– Secrecy: the data can not be read by unintended recipients;

– Integrity: the data can not be altered without detection;

– Authentication: the data is attributed to the correct originator.

2.1 Establishing the Secure Channel using Secret Key Algorithms
If we assume A and B share a secret key K, we can use symmetric cryptographic algorithms to en-

crypt and decrypt the message. A encrypts the message M with E(K, M), send it to B, and B computes
D(K, E(K, M)) = M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the symmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

2

– Secret key algorithms (symmetric cryptographic algorithms): sender and recipient share the knowledge of
a secret key. If E(K, M) and D(K, M) are used to denote the encryption and decryption algorithms,
then D(K, E(K, M)) = M .

– Public key algorithms (asymmetric cryptographic algorithms): sender uses a public key of the recipient
(published by the recipient to everyone in the distributed system) to encrypt the message, the recipi-
ent then uses its private key to decrypt the message. Note: public key algorithms are much more com-
putationally expensive than secret key algorithms. If E(·) and D(·) are used to denote the encryption
and decryption algorithms using public key algorithms, then we have D(Kpub, E(Kpriv,M)) = M ,
and D(Kpriv, E(Kpub,M)) = M as well.

For secret key algorithms, the required properties when designing these the cryptographic algorithms
(“blackboxes” for the purpose of this course):

– In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover
M from E(K, M).

– Given M and E(K, M), it should be very awkward to recover the secret key K.

For public key algorithms, the requirements are as follows:

– Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to
compute the other;

– In the absence of knowledge of Kpriv, it must be very awkward (computationally infeasible) to re-
cover M from E(Kpub,M).

– Given M and E(Kpub,M), it should be very awkward to recover the private key Kpriv.

2 Establishing the Secure Channel
Objective: To implement secure channels between two principals, A and B, in a distributed system.
Requirements of a secure channel: We need to be able to pass data from A to B subject to a selection of the

following constraints:

– Secrecy: the data can not be read by unintended recipients;

– Integrity: the data can not be altered without detection;

– Authentication: the data is attributed to the correct originator.

2.1 Establishing the Secure Channel using Secret Key Algorithms
If we assume A and B share a secret key K, we can use symmetric cryptographic algorithms to en-

crypt and decrypt the message. A encrypts the message M with E(K, M), send it to B, and B computes
D(K, E(K, M)) = M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the symmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

2

– Secret key algorithms (symmetric cryptographic algorithms): sender and recipient share the knowledge of
a secret key. If E(K, M) and D(K, M) are used to denote the encryption and decryption algorithms,
then D(K, E(K, M)) = M .

– Public key algorithms (asymmetric cryptographic algorithms): sender uses a public key of the recipient
(published by the recipient to everyone in the distributed system) to encrypt the message, the recipi-
ent then uses its private key to decrypt the message. Note: public key algorithms are much more com-
putationally expensive than secret key algorithms. If E(·) and D(·) are used to denote the encryption
and decryption algorithms using public key algorithms, then we have D(Kpub, E(Kpriv,M)) = M ,
and D(Kpriv, E(Kpub,M)) = M as well.

For secret key algorithms, the required properties when designing these the cryptographic algorithms
(“blackboxes” for the purpose of this course):

– In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover
M from E(K, M).

– Given M and E(K, M), it should be very awkward to recover the secret key K.

For public key algorithms, the requirements are as follows:

– Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to
compute the other;

– In the absence of knowledge of Kpriv, it must be very awkward (computationally infeasible) to re-
cover M from E(Kpub,M).

– Given M and E(Kpub,M), it should be very awkward to recover the private key Kpriv.

2 Establishing the Secure Channel
Objective: To implement secure channels between two principals, A and B, in a distributed system.
Requirements of a secure channel: We need to be able to pass data from A to B subject to a selection of the

following constraints:

– Secrecy: the data can not be read by unintended recipients;

– Integrity: the data can not be altered without detection;

– Authentication: the data is attributed to the correct originator.

2.1 Establishing the Secure Channel using Secret Key Algorithms
If we assume A and B share a secret key K, we can use symmetric cryptographic algorithms to en-

crypt and decrypt the message. A encrypts the message M with E(K, M), send it to B, and B computes
D(K, E(K, M)) = M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the symmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

2

– Secret key algorithms (symmetric cryptographic algorithms): sender and recipient share the knowledge of
a secret key. If E(K, M) and D(K, M) are used to denote the encryption and decryption algorithms,
then D(K, E(K, M)) = M .

– Public key algorithms (asymmetric cryptographic algorithms): sender uses a public key of the recipient
(published by the recipient to everyone in the distributed system) to encrypt the message, the recipi-
ent then uses its private key to decrypt the message. Note: public key algorithms are much more com-
putationally expensive than secret key algorithms. If E(·) and D(·) are used to denote the encryption
and decryption algorithms using public key algorithms, then we have D(Kpub, E(Kpriv,M)) = M ,
and D(Kpriv, E(Kpub,M)) = M as well.

For secret key algorithms, the required properties when designing these the cryptographic algorithms
(“blackboxes” for the purpose of this course):

– In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover
M from E(K, M).

– Given M and E(K, M), it should be very awkward to recover the secret key K.

For public key algorithms, the requirements are as follows:

– Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to
compute the other;

– In the absence of knowledge of Kpriv, it must be very awkward (computationally infeasible) to re-
cover M from E(Kpub,M).

– Given M and E(Kpub,M), it should be very awkward to recover the private key Kpriv.

2 Establishing the Secure Channel
Objective: To implement secure channels between two principals, A and B, in a distributed system.
Requirements of a secure channel: We need to be able to pass data from A to B subject to a selection of the

following constraints:

– Secrecy: the data can not be read by unintended recipients;

– Integrity: the data can not be altered without detection;

– Authentication: the data is attributed to the correct originator.

2.1 Establishing the Secure Channel using Secret Key Algorithms
If we assume A and B share a secret key K, we can use symmetric cryptographic algorithms to en-

crypt and decrypt the message. A encrypts the message M with E(K, M), send it to B, and B computes
D(K, E(K, M)) = M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the symmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

2

Required properties: public key
algorithms

The world’s first and most
widely used asymmetric
cryptographic algorithm:

RSA (1977)
(Rivest, Shamir, Adleman)

35

36

Secrecy?

Does it satisfy the requirements of
a secure channel?

Secrecy: Yes, due to the properties of
the asymmetric cryptographic algorithm
(our “blackbox”).

Does it satisfy the requirements of
a secure channel?

Integrity?

Does it satisfy the requirements of
a secure channel?

Integrity: To ensure integrity, we may add a
checksum C(M) to the message M being sent
by A, we can let A send E(KB,pub, {M, C(M)}),
and after B decrypts the message, it obtains
{M, C(M)}, then computes C(M) using M
(assuming the checksum function is known to
both principals), and finally compare the
computed result with the received C(M). If the
two are identical, the message M is received
intact.

Does it satisfy the requirements of
a secure channel?

How about authentication?

No. Anyone can send a message
M to B, knowing B’s public key.

How do we change the protocol
to satisfy the requirement of
authentication?

Digital signatures

44

A encrypts the message M by using its own
private key called a
digital signature, or A signs M. Given a signed
message (and presumably a hint that it may have
been from A), an attempt to decrypt it using
will yield M, and thus the recipient, B, can infer
that A carried out the encryption (the signature)
originally.

Digital signatures

– Authentication: Yes, if we may assume that only A and B shares knowledge of the secret key K.

It seems that the shared secret key is sufficient to establish a secure channel, except that the assumption
that only the two principals A and B share the secret key is strong, as it may need a separate channel
between the parties (such as the postal mail system) to achieve this. Can we relax this assumption?

2.2 Establishing the Secure Channel using Public Key Algorithms
If we let B keep KB,priv strictly to itself, and publish K

B,pub to the entire system, then A can send
E(K

B,pub,M) to B, and B can perform D(KB,priv, E(K
B,pub,M)) and obtain M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the asymmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

– Authentication: No, as any one can send the message M to B, knowing B’s public key.

How do we change the protocol to satisfy the requirement of authentication?

2.3 Digital Signatures
A encrypts the message M by using its own private key KA,priv — E(KA,priv,M) — referred to as a

digital signature, or A signs M . Given a signed message (and presumably a hint that it may have been from
A), an attempt to decrypt it using K

A,pub will yield M , and thus the decrypter, B, can infer that A carried
out the encryption (the signature) originally.

The problem: digital signatures do not satisfy the secrecy requirement, in that any principal can decrypt
the message and obtain M .

We may solve the problem by using both digital signatures and public key encryption. If this is done,
the proper order of encryption is as follows:

1. On A : Use A’s private key KA,priv to sign the message M ;

2. On A : Use B’s public key K
B,pub to encrypt the result from the previous step, and then send it to B;

3. On B : Use B’s private key KB,priv to decrypt the received message;

4. On B : Use A’s public key K
A,pub to authenticate the message M .

Note: One should always sign the message first, and then encrypt the signed message.

Combined with the use of checksum C(M), this protocol satisfies all requirements for a secure channel.

Two problems with this protocol:

– The protocol requires applying asymmetric cryptographic algorithms on the entire message, which is
not computationally efficient;

– How does A know that the public key of B is really the public key of B, an not that of some other
principal?

3

– Authentication: Yes, if we may assume that only A and B shares knowledge of the secret key K.

It seems that the shared secret key is sufficient to establish a secure channel, except that the assumption
that only the two principals A and B share the secret key is strong, as it may need a separate channel
between the parties (such as the postal mail system) to achieve this. Can we relax this assumption?

2.2 Establishing the Secure Channel using Public Key Algorithms
If we let B keep KB,priv strictly to itself, and publish K

B,pub to the entire system, then A can send
E(K

B,pub,M) to B, and B can perform D(KB,priv, E(K
B,pub,M)) and obtain M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the asymmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

– Authentication: No, as any one can send the message M to B, knowing B’s public key.

How do we change the protocol to satisfy the requirement of authentication?

2.3 Digital Signatures
A encrypts the message M by using its own private key KA,priv — E(KA,priv,M) — referred to as a

digital signature, or A signs M . Given a signed message (and presumably a hint that it may have been from
A), an attempt to decrypt it using K

A,pub will yield M , and thus the decrypter, B, can infer that A carried
out the encryption (the signature) originally.

The problem: digital signatures do not satisfy the secrecy requirement, in that any principal can decrypt
the message and obtain M .

We may solve the problem by using both digital signatures and public key encryption. If this is done,
the proper order of encryption is as follows:

1. On A : Use A’s private key KA,priv to sign the message M ;

2. On A : Use B’s public key K
B,pub to encrypt the result from the previous step, and then send it to B;

3. On B : Use B’s private key KB,priv to decrypt the received message;

4. On B : Use A’s public key K
A,pub to authenticate the message M .

Note: One should always sign the message first, and then encrypt the signed message.

Combined with the use of checksum C(M), this protocol satisfies all requirements for a secure channel.

Two problems with this protocol:

– The protocol requires applying asymmetric cryptographic algorithms on the entire message, which is
not computationally efficient;

– How does A know that the public key of B is really the public key of B, an not that of some other
principal?

3

The problem:
digital signatures do not satisfy the
secrecy requirement, in that any
principal can decrypt the message
and obtain M.

How do we solve this problem?

47

Combined with the use of
checksum C(M), this protocol
satisfies all the requirements
for a secure channel.

But there are two remaining
problems

49

Remaining problem #1: The
protocol requires applying
asymmetric cryptographic
algorithms on the entire message,
which is not computationally
efficient.

50

To solve this problem: use the
idea of message digests

Message digests
‣ It turns out that it is possible to devise functions

from the original messages to quantities of a fixed
size, known as message digests or secure
hashes

‣Good examples include SHA (160 bits) and MD5
(128 bits)

Properties of message digests
‣ The properties of a message digest function,

H(M), are as follows:

‣Given M, it should be easy to compute H(M);

‣Given H(M), it should be hard to obtain M;

‣Collision resistance: Given M and H(M), it
should be exceedingly awkward (computationally
infeasible) to find another message M’, such that
H(M’) = H(M).

With H(M), the sender can
then sign the digest, not the
entire message

Solution with secure hash functions

With the use of H(M) as the
checksum, this protocol
satisfies all requirements for a
secure channel.

Sharing the Secret Key with Public Key
Algorithms

Sharing the Secret Key with Public Key
Algorithms
‣ An natural idea at this point is to send the secret

key K, generated by A, to B, using the pubic key
of B, KB,pub

‣Once B obtains K, it should be able to use K to
establish a secure channel for later use

‣ As K is usually short, it is computationally efficient

‣ In general, SSL (TLS) and SHTTP use this idea

Remaining problem #2:
How does A know that KB,pub
is really the public key of B?

A possible solution

‣We can try to solve this problem by asking A to
access a trusted key distribution entity S to
obtain the public key of B, KB,pub
‣How does A know that KB,pub originates from S?

We can solve this problem by asking S to sign
using the private key of itself: KS,priv
‣ S will send to A, which is

called a certificate.
‣When A decrypts the received message using

the public key of S — KS,pub, it authenticates it

A possible solution

2.4 Message Digests
It turns out that it is possible to devise functions from the original messages to quantities of a fixed size,

known as message digests or secure hashes. Good examples include SHA (160 bits) and MD5 (128 bits).
The property of a message digest function, H(M), is as follows:

– Given M , it should be easy to compute H(M);

– Given H(M), it should be hard to obtain M ;

– Given M and H(M), it should be exceedingly awkward (computationally infeasible) to find another
message M �, such that H(M �) = H(M).

Note: The requirements of a checksum C(M) is different from those of H(M), in that the requirements
of C(M) is weaker. It is a requirement of C(M) that the messages that lead to the same C(M) are sufficiently
different from M . In contrast, the requirement for H(M) is that you can not find messages leading to the
same digest value.

The sender can then sign the digest, not the entire message.

2.5 Sharing the Secret Key with Public Key Algorithms
An natural idea at this point is to send the secret key K, generated by A, to B, using the pubic key of B,

K
B,pub. Once B obtains K by decrypting the received message using KB,priv, it should be able to use K

to establish a secure channel. As K is usually short, it is computationally efficient.

The only problem here, however, hinges on the question of “How does A know that K
B,pub is really the

public key of B?”

We can try to solve this problem by asking A to access a trusted key distribution entity S to obtain the
public key of B, K

B,pub.

How does A know that K
B,pub originates from S? We can solve this problem by asking S to sign

K
B,pub using the private key of itself KS,priv: S will send E(KS,priv, {K

B,pub}) to A, which is called a
certificate. When A decrypts the received message using the public key of S — K

S,pub, it authenticates the
message.

But how does A know that K
S,pub is really the public key of S?

Apparently, A can access another trusted entity for a certificate to certify S, which creates a chain of
certificates. This chain, however, has to stop somewhere.

2.6 Authentication with a Trusted Server: the Needham and Schroeder Protocol
Question: As the use of public key algorithms involve the use of certificates in most cases, can we

eliminate the use of public key algorithms altogether, but still solve the problem of sharing a secret key
between A and B?

If we make the critical assumption that there exists a trusted authentication server S that is securely
managed, it is possible. In the solution, referred to as the Needham and Schroeder Protocol (1978), we
require S to share a separate secret key with each node in the distributed system. For A and B, S maintains
KSA and KSB , which are the secret keys shared between S and A, and between S and B, respectively.

A ticket: an encrypted item issued by S to A, containing the identity of A and a shared secret key between
A and B, that may only be decrypted by B. i.e. E(KBS , {KAB , A}).

Protocol:

4

But how does A know that
KS,pub is really the public key
of S?

How does A know it’s from S?

63

Apparently, A can access another
trusted entity for a certificate to
certify S, which creates a chain
of certificates. This chain,
however, has to stop somewhere.

65

The chain of certificates stops
in your operating system.

Root certificate authorities
‣ We trust our operating system, which stores a

list of public keys of well-known authorities,
such as verisign.com, in the form of
certificates

‣ These authorities are called root certificate
authorities

66

Hierarchical certificate system
‣ Root, regional and local certificate authorities (CA)

‣ Called the X.509 Digital Certificate Framework: a standard

67

Security: an introduction
‣ The adversary
‣Cryptographic algorithms
‣ The secure channel
‣ Establishing the secure channel
‣Using secret key algorithms
‣Using public key algorithms
‣Digital signatures
‣Message digests (secure hash functions)
‣ Sharing the secret key with public key algorithms

