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What is the overall objective 
when designing secure 
protocols?
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Restrict access to information 
and resources to just those 
principals that are 
authorized to have access



Cryptographic algorithms
‣ Provides the basis and foundation for all 

security protocols 

‣ For the purpose of this lecture, we need 
to understand two things about these 
algorithms



Cryptographic algorithms: our goals 
‣Understand the basic ideas in the design 

of cryptographic algorithms 

‣ Treat these cryptographic algorithms as 
“blackboxes,” and understand how they 
are used to build secure protocols



What is a secure channel?



What can an adversary do?



The adversary (or the “enemy”) 
may gain access to the 
communication channel 
between authorized principals.



What can the enemy do?

A B
E



Read and copy messages 
(eavesdropping)

A B
E



Inject arbitrary messages 
(tampering and replaying)

A B
E



send or receive messages using 
the identity of another principal 
(masquerading, man-in-the-middle 
attacks)

A B
E



Can it prevent messages 
from getting through?

A B
E



Denial of Service attacks 

(flooding a channel in order to  
deny access of resources to others, 
challenges availability of the resources)



Even though they may be able to, it 
is not very interesting to assume this, 
as there are no countermeasures 
(with basic cryptographic tools)!



Objective: to implement a 
secure channel between two 
principals, A and B



Requirements of a secure channel
‣We need to be able to pass data from A to B 

subject to a selection of the following constraints: 

‣ Secrecy: the data can not be read by 
unintended recipients 

‣ Integrity: the data can not be altered without 
detection 

‣Authentication: the data is attributed to the 
correct originator



To achieve secrecy, we wish to 
design a tool to — 

encode a message to hide its 
contents from access without a 
secret key



Secret key algorithms

‣ Secret key algorithms are also called symmetric 
cryptographic algorithms 

‣ the sender and recipient share the knowledge 
of a secret key, K



Using secret key algorithms



Required property #1: secret key 
algorithms — Correctness
‣ If E(K, M) and D(K, M) are the encryption and 

decryption algorithms, respectively, then:



Required property #2: secret key 
algorithms — Security
‣ In the absence of knowledge of K, it must be 

very awkward (computationally infeasible) to 
recover M from E(K, M).



Modern symmetric cryptographic 
algorithms (block ciphers)
‣ Outdated: Data Encryption Standard (DES) — 64-

bit blocks, 56-bit keys 

‣ Since 1997: Advanced Encryption Standard (AES) 
— 128-bit blocks, 128, 192, or 256 bit keys
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How do we use symmetric 
cryptographic algorithms to 
establish a secure channel?
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Review of our objective: to 
implement a secure channel 
between two principals, A 
and B



Establishing a secure channel using 
symmetric cryptographic algorithms
One idea — 

If we assume A and B share a secret key K, we 
can use symmetric cryptographic algorithms to 
encrypt and decrypt the message.  A encrypts 
the message M with E(K, M), send it to B, and B 
computes: D(K, E(K, M)) = M.



Does it satisfy the requirements 
of a secure channel?
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Does it satisfy the requirements of a 
secure channel?

‣ Secrecy: Yes, due to the properties of 
the symmetric cryptographic algorithm 
(our “blackbox”). 

‣Authentication: Yes, if we may assume 
that only A and B shares knowledge of 
the secret key K.



How about integrity?
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It seems that the shared secret key is 
sufficient to establish a secure channel, 
except that the assumption that only the 
two principals A and B share the secret key 
is strong, as it may need a separate 
protocol to achieve this.   

How do we securely share keys 
between A and B?



Establishing a secure channel using 
asymmetric crypto algorithms



If we let B keep            strictly to itself, and 
publish            to the entire system, then A can 
send                     to B, and B can perform                          

Establishing a secure channel using 
asymmetric crypto algorithms

– Authentication: Yes, if we may assume that only A and B shares knowledge of the secret key K.

It seems that the shared secret key is sufficient to establish a secure channel, except that the assumption
that only the two principals A and B share the secret key is strong, as it may need a separate channel
between the parties (such as the postal mail system) to achieve this. Can we relax this assumption?

2.2 Establishing the Secure Channel using Public Key Algorithms
If we let B keep KB,priv strictly to itself, and publish K

B,pub to the entire system, then A can send
E(K

B,pub,M) to B, and B can perform D(KB,priv, E(K
B,pub,M)) and obtain M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the asymmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

– Authentication: No, as any one can send the message M to B, knowing B’s public key.

How do we change the protocol to satisfy the requirement of authentication?

2.3 Digital Signatures
A encrypts the message M by using its own private key KA,priv — E(KA,priv,M) — referred to as a

digital signature, or A signs M . Given a signed message (and presumably a hint that it may have been from
A), an attempt to decrypt it using K

A,pub will yield M , and thus the decrypter, B, can infer that A carried
out the encryption (the signature) originally.

The problem: digital signatures do not satisfy the secrecy requirement, in that any principal can decrypt
the message and obtain M .

We may solve the problem by using both digital signatures and public key encryption. If this is done,
the proper order of encryption is as follows:

1. On A : Use A’s private key KA,priv to sign the message M ;

2. On A : Use B’s public key K
B,pub to encrypt the result from the previous step, and then send it to B;

3. On B : Use B’s private key KB,priv to decrypt the received message;

4. On B : Use A’s public key K
A,pub to authenticate the message M .

Note: One should always sign the message first, and then encrypt the signed message.

Combined with the use of checksum C(M), this protocol satisfies all requirements for a secure channel.

Two problems with this protocol:

– The protocol requires applying asymmetric cryptographic algorithms on the entire message, which is
not computationally efficient;

– How does A know that the public key of B is really the public key of B, an not that of some other
principal?
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and then obtain M.



‣ Public key algorithms (asymmetric cryptographic algorithms) 
‣ The sender, Alice, uses a public key of the recipient 

(published by the recipient to everyone in the system) to 
encrypt the message 

‣ The recipient, Bob, then uses his own private key to 
decrypt the message 

‣ If           and           are used to denote the encryption and 
decryption algorithms using public key algorithms, then we 
have  
                                                             and 
                                                             as well.

Asymmetric cryptographic algorithms
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(published by the recipient to everyone in the distributed system) to encrypt the message, the recipi-
ent then uses its private key to decrypt the message. Note: public key algorithms are much more com-
putationally expensive than secret key algorithms. If E(·) and D(·) are used to denote the encryption
and decryption algorithms using public key algorithms, then we have D(Kpub, E(Kpriv,M)) = M ,
and D(Kpriv, E(Kpub,M)) = M as well.

For secret key algorithms, the required properties when designing these the cryptographic algorithms
(“blackboxes” for the purpose of this course):

– In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover
M from E(K, M).

– Given M and E(K, M), it should be very awkward to recover the secret key K.

For public key algorithms, the requirements are as follows:

– Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to
compute the other;

– In the absence of knowledge of Kpriv, it must be very awkward (computationally infeasible) to re-
cover M from E(Kpub,M).

– Given M and E(Kpub,M), it should be very awkward to recover the private key Kpriv.

2 Establishing the Secure Channel
Objective: To implement secure channels between two principals, A and B, in a distributed system.
Requirements of a secure channel: We need to be able to pass data from A to B subject to a selection of the

following constraints:

– Secrecy: the data can not be read by unintended recipients;

– Integrity: the data can not be altered without detection;

– Authentication: the data is attributed to the correct originator.

2.1 Establishing the Secure Channel using Secret Key Algorithms
If we assume A and B share a secret key K, we can use symmetric cryptographic algorithms to en-

crypt and decrypt the message. A encrypts the message M with E(K, M), send it to B, and B computes
D(K, E(K, M)) = M .

Does it satisfy the requirements of a secure channel?
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compare the computed result with the received C(M). If the two are identical, the message M is
received intact.
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Required properties: public key 
algorithms



The world’s first and most 
widely used asymmetric 
cryptographic algorithm: 

RSA (1977) 
(Rivest, Shamir, Adleman)
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Secrecy?

Does it satisfy the requirements of 
a secure channel?



Secrecy: Yes, due to the properties of 
the asymmetric cryptographic algorithm 
(our “blackbox”).

Does it satisfy the requirements of 
a secure channel?



Integrity?

Does it satisfy the requirements of 
a secure channel?



Integrity: To ensure integrity, we may add a 
checksum C(M) to the message M being sent 
by A, we can let A send E(KB,pub, {M, C(M)}), 
and after B decrypts the message, it obtains 
{M, C(M)}, then computes C(M) using M 
(assuming the checksum function is known to 
both principals), and finally compare the 
computed result with the received C(M).  If the 
two are identical, the message M is received 
intact.

Does it satisfy the requirements of 
a secure channel?



How about authentication?



No.  Anyone can send a message 
M to B, knowing B’s public key.



How do we change the protocol 
to satisfy the requirement of 
authentication?



Digital signatures
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A encrypts the message M by using its own 
private key                                          called a 
digital signature, or A signs M.  Given a signed 
message (and presumably a hint that it may have 
been from A), an attempt to decrypt it using      
will yield M, and thus the recipient, B, can infer 
that A carried out the encryption (the signature) 
originally.

Digital signatures

– Authentication: Yes, if we may assume that only A and B shares knowledge of the secret key K.

It seems that the shared secret key is sufficient to establish a secure channel, except that the assumption
that only the two principals A and B share the secret key is strong, as it may need a separate channel
between the parties (such as the postal mail system) to achieve this. Can we relax this assumption?

2.2 Establishing the Secure Channel using Public Key Algorithms
If we let B keep KB,priv strictly to itself, and publish K

B,pub to the entire system, then A can send
E(K

B,pub,M) to B, and B can perform D(KB,priv, E(K
B,pub,M)) and obtain M .

Does it satisfy the requirements of a secure channel?

– Secrecy: Yes, due to the properties of the asymmetric cryptographic algorithm (our “blackbox”).

– Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A,
we can let A send E(K, {M,C(M)}, and after B decrypts the message, it obtains {M,C(M)}, then
computes C(M) using M (assuming the checksum function is known to both principals), and finally
compare the computed result with the received C(M). If the two are identical, the message M is
received intact.

– Authentication: No, as any one can send the message M to B, knowing B’s public key.

How do we change the protocol to satisfy the requirement of authentication?

2.3 Digital Signatures
A encrypts the message M by using its own private key KA,priv — E(KA,priv,M) — referred to as a

digital signature, or A signs M . Given a signed message (and presumably a hint that it may have been from
A), an attempt to decrypt it using K

A,pub will yield M , and thus the decrypter, B, can infer that A carried
out the encryption (the signature) originally.

The problem: digital signatures do not satisfy the secrecy requirement, in that any principal can decrypt
the message and obtain M .

We may solve the problem by using both digital signatures and public key encryption. If this is done,
the proper order of encryption is as follows:

1. On A : Use A’s private key KA,priv to sign the message M ;

2. On A : Use B’s public key K
B,pub to encrypt the result from the previous step, and then send it to B;

3. On B : Use B’s private key KB,priv to decrypt the received message;

4. On B : Use A’s public key K
A,pub to authenticate the message M .

Note: One should always sign the message first, and then encrypt the signed message.

Combined with the use of checksum C(M), this protocol satisfies all requirements for a secure channel.

Two problems with this protocol:

– The protocol requires applying asymmetric cryptographic algorithms on the entire message, which is
not computationally efficient;

– How does A know that the public key of B is really the public key of B, an not that of some other
principal?
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The problem: 
digital signatures do not satisfy the 
secrecy requirement, in that any 
principal can decrypt the message 
and obtain M.



How do we solve this problem?
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Combined with the use of 
checksum C(M), this protocol 
satisfies all the requirements 
for a secure channel.



But there are two remaining 
problems
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Remaining problem #1: The 
protocol requires applying 
asymmetric cryptographic 
algorithms on the entire message, 
which is not computationally 
efficient.
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To solve this problem: use the 
idea of message digests



Message digests
‣ It turns out that it is possible to devise functions 

from the original messages to quantities of a fixed 
size, known as message digests or secure 
hashes 

‣Good examples include SHA (160 bits) and MD5 
(128 bits)



Properties of message digests
‣ The properties of a message digest function, 

H(M), are as follows: 

‣Given M, it should be easy to compute H(M); 

‣Given H(M), it should be hard to obtain M; 

‣Collision resistance: Given M and H(M), it 
should be exceedingly awkward (computationally 
infeasible) to find another message M’, such that 
H(M’) = H(M).



With H(M), the sender can 
then sign the digest, not the 
entire message



Solution with secure hash functions



With the use of H(M) as the 
checksum, this protocol 
satisfies all requirements for a 
secure channel.



Sharing the Secret Key with Public Key 
Algorithms



Sharing the Secret Key with Public Key 
Algorithms
‣ An natural idea at this point is to send the secret 

key K, generated by A, to B, using the pubic key 
of B, KB,pub  

‣Once B obtains K, it should be able to use K to 
establish a secure channel for later use 

‣ As K is usually short, it is computationally efficient 

‣ In general, SSL (TLS) and SHTTP use this idea



Remaining problem #2: 
How does A know that KB,pub 
is really the public key of B?



A possible solution



‣We can try to solve this problem by asking A to 
access a trusted key distribution entity S to 
obtain the public key of B, KB,pub 
‣How does A know that KB,pub originates from S?  

We can solve this problem by asking S to sign                
using the private key of itself: KS,priv 
‣ S will send                               to A, which is 

called a certificate. 
‣When A decrypts the received message using 

the public key of S — KS,pub, it authenticates it

A possible solution

2.4 Message Digests
It turns out that it is possible to devise functions from the original messages to quantities of a fixed size,

known as message digests or secure hashes. Good examples include SHA (160 bits) and MD5 (128 bits).
The property of a message digest function, H(M), is as follows:

– Given M , it should be easy to compute H(M);

– Given H(M), it should be hard to obtain M ;

– Given M and H(M), it should be exceedingly awkward (computationally infeasible) to find another
message M �, such that H(M �) = H(M).

Note: The requirements of a checksum C(M) is different from those of H(M), in that the requirements
of C(M) is weaker. It is a requirement of C(M) that the messages that lead to the same C(M) are sufficiently
different from M . In contrast, the requirement for H(M) is that you can not find messages leading to the
same digest value.

The sender can then sign the digest, not the entire message.

2.5 Sharing the Secret Key with Public Key Algorithms
An natural idea at this point is to send the secret key K, generated by A, to B, using the pubic key of B,

K
B,pub. Once B obtains K by decrypting the received message using KB,priv, it should be able to use K

to establish a secure channel. As K is usually short, it is computationally efficient.

The only problem here, however, hinges on the question of “How does A know that K
B,pub is really the

public key of B?”

We can try to solve this problem by asking A to access a trusted key distribution entity S to obtain the
public key of B, K

B,pub.

How does A know that K
B,pub originates from S? We can solve this problem by asking S to sign

K
B,pub using the private key of itself KS,priv: S will send E(KS,priv, {K

B,pub}) to A, which is called a
certificate. When A decrypts the received message using the public key of S — K

S,pub, it authenticates the
message.

But how does A know that K
S,pub is really the public key of S?

Apparently, A can access another trusted entity for a certificate to certify S, which creates a chain of
certificates. This chain, however, has to stop somewhere.

2.6 Authentication with a Trusted Server: the Needham and Schroeder Protocol
Question: As the use of public key algorithms involve the use of certificates in most cases, can we

eliminate the use of public key algorithms altogether, but still solve the problem of sharing a secret key
between A and B?

If we make the critical assumption that there exists a trusted authentication server S that is securely
managed, it is possible. In the solution, referred to as the Needham and Schroeder Protocol (1978), we
require S to share a separate secret key with each node in the distributed system. For A and B, S maintains
KSA and KSB , which are the secret keys shared between S and A, and between S and B, respectively.

A ticket: an encrypted item issued by S to A, containing the identity of A and a shared secret key between
A and B, that may only be decrypted by B. i.e. E(KBS , {KAB , A}).

Protocol:
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But how does A know that 
KS,pub is really the public key 
of S?



How does A know it’s from S?
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Apparently, A can access another 
trusted entity for a certificate to 
certify S, which creates a chain 
of certificates.  This chain, 
however, has to stop somewhere.
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The chain of certificates stops 
in your operating system.



Root certificate authorities
‣ We trust our operating system, which stores a 

list of public keys of well-known authorities, 
such as verisign.com, in the form of 
certificates 

‣ These authorities are called root certificate 
authorities
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Hierarchical certificate system
‣ Root, regional and local certificate authorities (CA) 

‣ Called the X.509 Digital Certificate Framework: a standard
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Security: an introduction
‣ The adversary 
‣Cryptographic algorithms 
‣ The secure channel 
‣ Establishing the secure channel 
‣Using secret key algorithms 
‣Using public key algorithms 
‣Digital signatures 
‣Message digests (secure hash functions) 
‣ Sharing the secret key with public key algorithms


