Security: An Introduction

Operating Systems

Baochun Li

Department of Electrical and Computer Engineering University of Toronto

What is the overall objective when designing secure protocols?

Restrict access to information and resources to just those principals that are authorized to have access

Cryptographic algorithms

- ‣ Provides the basis and foundation for all security protocols
- ‣ For the purpose of this lecture, we need to understand two things about these algorithms

Cryptographic algorithms: our goals

- ‣ Understand the basic ideas in the design of cryptographic algorithms
- ‣ Treat these cryptographic algorithms as "blackboxes," and understand how they are used to build secure protocols

What is a secure channel?

What can an adversary do?

The adversary (or the "enemy") may gain access to the communication channel between authorized principals.

What can the enemy do?

Read and copy messages (eavesdropping)

Inject arbitrary messages (tampering and replaying)

send or receive messages using the identity of another principal (masquerading, man-in-the-middle attacks)

Can it prevent messages from getting through?

Denial of Service attacks

(flooding a channel in order to deny access of resources to others, challenges availability of the resources)

Even though they may be able to, it is not very interesting to assume this, as there are no countermeasures (with basic cryptographic tools)!

Objective: to implement a secure channel between two principals, A and B

Requirements of a secure channel

- ‣ We need to be able to pass data from A to B subject to a selection of the following constraints:
	- ▶ Secrecy: the data can not be read by unintended recipients
	- Integrity: the data can not be altered without detection
	- ‣ Authentication: the data is attributed to the correct originator

To achieve secrecy, we wish to design a tool to $-$

encode a message to hide its contents from access without a secret key

Secret key algorithms

- ▶ Secret key algorithms are also called symmetric cryptographic algorithms
	- ‣ the sender and recipient share the knowledge of a secret key, K

Using secret key algorithms

Required property #1: secret key algorithms — Correctness

 \triangleright If E(K, M) and D(K, M) are the encryption and decryption algorithms, respectively, then:

Required property #2: secret key algorithms — Security

‣ In the absence of knowledge of K, it must be very awkward (computationally infeasible) to recover M from E(K, M).

Modern symmetric cryptographic algorithms (block ciphers)

- ‣ Outdated: Data Encryption Standard (DES) 64 bit blocks, 56-bit keys
- ‣ Since 1997: Advanced Encryption Standard (AES) — 128-bit blocks, 128, 192, or 256 bit keys

How do we use symmetric cryptographic algorithms to establish a secure channel?

Review of our objective: to implement a secure channel between two principals, A and B

Establishing a secure channel using symmetric cryptographic algorithms

One idea —

If we assume A and B share a secret key K , we can use symmetric cryptographic algorithms to encrypt and decrypt the message. A encrypts the message M with $E(K, M)$, send it to B , and B computes: $D(K, E(K, M)) = M$.

Does it satisfy the requirements of a secure channel?

Does it satisfy the requirements of a secure channel?

- ‣ Secrecy: Yes, due to the properties of the symmetric cryptographic algorithm (our "blackbox").
- ‣ Authentication: Yes, if we may assume that only A and B shares knowledge of the secret key K.

How about integrity?

It seems that the shared secret key is sufficient to establish a secure channel, except that the assumption that only the two principals A and B share the secret key is strong, as it may need a separate protocol to achieve this.

How do we securely share keys between A and B?

Establishing a secure channel using asymmetric crypto algorithms

Establishing a secure channel using asymmetric crypto algorithms Establishing a secure channel using **2.2 Establishing the Secure Channel using Public Key Algorithms** \bullet It seems that the secret with secret key is sufficient to establish a security of assumption that the assumption of σ asymmetric crypto algorithms between the parties (such as the postal mail system) to achieve this. Can we relax this assumption? The postal
This assumption? Can we relax this assumption? Can we relax this assumption? Can we relax this assumption? Can

If we let B keep $K_{B, \text{priv}}$ strictly to itself, and publish $K_{B,\mathbf{pub}}$ to the entire system, then A can send $E(K_{B,\mathrm{pub}},M)$ to B, and B can perform $\mathsf{C}\cap \mathsf{G} \longrightarrow B, \mathsf{pub} \longrightarrow \mathsf{CC} \longrightarrow \mathsf{C}\cap \mathsf{C}\longrightarrow \mathsf{C}\cap \mathsf{C$ If $M \cap R$ koon K , otrictly to ite of and send $E(K_{B,\mathsf{pub}},M)$ to B, and B can perform If we let *B* keep *KB,*priv strictly to itself, and publish *KB,*pub to the entire system, then *A* can send

$$
D(K_{B,\mathbf{priv}}, E(K_{B,\mathbf{pub}},M))
$$

and then obtain **M**. – *Secrecy:* Yes, due to the properties of the asymmetric cryptographic algorithm (our "blackbox"). – *Secrecy:* Yes, due to the properties of the asymmetric cryptographic algorithm (our "blackbox"). Does it satisfy the requirements of a secure channel?

Asymmetric cryptographic algorithms

- **Public key** algorithms (asymmetric cryptographic algorithms): **Public key** algorithms
- ▶ The sender, Alice, uses a public key of the recipient (published by the recipient to everyone in the system) to encrypt the message *secretary* $\frac{1}{2}$ and $\frac{1}{2}$ are used to denote the encryption and decryption and decryp – *Secret key algorithms (symmetric cryptographic algorithms)*: sender and recipient share the knowledge of **A i** The sender, Alice, uses a **public key** of the recipio **Figureh** *F* The sender, Alice, uses a **public key** of the recipient – *Public key algorithms (asymmetric cryptographic algorithms)*: sender uses a public key of the recipient
- ▶ The recipient, Bob, then uses his own private key to decrypt the message decrypt the message – *Public key algorithms (asymmetric cryptographic algorithms)*: sender uses a public key of the recipient I he recipient, Bob, then uses his own **private key** to the message, then uses his own **private key** to ent then uses its private key to decrypt the message. **Note:** public key algorithms are much more coment the message. We have the message. **Note:** $\frac{1}{2}$ algorithms are much more comthen *D*(*K, E*(*K, M*)) = *M*. **•** Ine recipient, Bob, then uses his ow
- If $E(\cdot)$ and $D(\cdot)$ are used to denote the encryption and decryption algorithms using public key algorithms, then we
have have $(1 - 2 \cdot 1)$ are used to depete the eperwotion and ent then uses the message. It was to decrypt the message of the message of the message of the message of the more com-– *Public key algorithms (asymmetric cryptographic algorithms)*: sender uses a public key of the recipient have the recipient to everyone in the message, the message, the message, the message, the message, the message, the recipient of \mathbb{R}^n

$$
D(K_{\text{priv}}, E(K_{\text{pub}}, M)) = M \text{ and}
$$

$$
D(K_{\text{pub}}, E(K_{\text{priv}}, M)) = M \text{ as well.}
$$

– In the absence of knowledge of *K*, it must be very awkward (computationally infeasible) to recover *A <i>K* and *E*(*C*) *E*(*C*). – Given *M* and *E*(*K, M*), it should be very awkward to recover the secret key *K*. – In the absence of knowledge of *K*, it must be very awkward (computationally infeasible) to recover *M* from *E*(*K, M*). – Given *M* and *E*(*K, M*), it should be very awkward to recover the secret key *K*. – In the absence of knowledge of *K*, it must be very awkward (computationally infeasible) to recover Required properties: public key – Given *M* and *E*(*K, M*), it should be very awkward to recover the secret key *K*. algorithms– In the absence of knowledge of *K*, it must be very awkward (computationally infeasible) to recover

- Knowing the public key, it is very awkward (computationally infeasible) to compute the private key **F** NIOWING LIC PUDIC KCY, IL IS VCIY AWNWAIU K ey of the public-private key pair, it is very awkward (computationally infeasible) to K If Knowing the public key, it is very awkward – Knowing one key of the public-private key pair, it is very awkward (computationally infeasible) to rcy compute the other; For public key algorithms, the requirements are as follows:
- \blacktriangleright In the absence of knowledge of K_{priv} , it must be very awkward (computationally infeasible) to recover M from $E(K_{\text{min}}, M)$. $\mathsf{U}^{[1]}$ $\mathcal{L}^{(1)}$ pub^{, *M*}). \mathcal{L} and the public-private key pair, it is very awkward (computationally infeasible) to the public-private key pair, it is very awkward (computationally infeasible) to the public-private key pair, it is very absolute M from $E(K_{\text{pub}}, M)$. – In the absence of knowledge of *K*priv, it must be very awkward (computationally infeasible) to re- M from $E(K_{\text{min}}, M)$.
- \blacktriangleright Given M and $E(K_{\text{min}}, M)$, it should be very awkward to recover the private key K_{priv} . **2 Decover the private key** Λ **priv.** \mathcal{F} Given ivi and $E(\mathbf{A}_{pub},M)$, it should be very awnward to recover the private key $K_{\mathbf{m}xx}$ \blacktriangleright Given M and $E(K_{\text{pub}}, M)$, it should be very awkward to recover the private key K_{priv} .

The world's first and most widely used asymmetric cryptographic algorithm: RSA (1977) (Rivest, Shamir, Adleman)

Secrecy? Does it satisfy the requirements of a secure channel?

Does it satisfy the requirements of a secure channel?

Secrecy: Yes, due to the properties of the asymmetric cryptographic algorithm (our "blackbox").

Integrity? Does it satisfy the requirements of a secure channel?

Does it satisfy the requirements of a secure channel?

Integrity: To ensure integrity, we may add a checksum C(M) to the message M being sent by A, we can let A send E(K_{B,pub}, {M, C(M)}), and after B decrypts the message, it obtains {M, C(M)}, then computes C(M) using M (assuming the checksum function is known to both principals), and finally compare the computed result with the received C(M). If the two are identical, the message M is received intact.

How about authentication?

No. Anyone can send a message M to B, knowing B's public key.

How do we change the protocol to satisfy the requirement of authentication?

Digital signatures

Digital signatures

A encrypts the message M by using its own private key $K_{A,\text{priv}} - E(K_{A,\text{priv}}, M)$ — called a digital signature, or A *signs M*. Given a signed message (and presumably a hint that it may have been from A), an attempt to decrypt it using $K_{A,\mathsf{pub}}$ will yield M, and thus the recipient, B, can infer that A carried out the encryption (the signature) originally. *A*), an attempt to decrypt it using *KA,*pub will yield *M*, and thus the decrypter, *B*, can infer that *A* carried *The problem:* digital signatures do not satisfy the *secrecy* requirement, in that any principal can decrypt We have solve the problem by the problem and public the signature μ *How do we change the protocol to satisfy the requirement of authentication? A* encrypts the message *M* by using **its own** private key *KA,*priv — *E*(*KA,*priv*, M*) — referred to as a presumably a nint that it may have of thus the recinient R can infer *The encryption (the signature)* the message and obtain *M*.

The problem:

digital signatures do not satisfy the secrecy requirement, in that any principal can decrypt the message and obtain M.

How do we solve this problem?

Combined with the use of checksum C(M), this protocol satisfies all the requirements for a secure channel.

But there are two remaining problems

Remaining problem #1: The protocol requires applying asymmetric cryptographic algorithms on the entire message, which is not computationally efficient.

To solve this problem: use the idea of message digests

Message digests

- \triangleright It turns out that it is possible to devise functions from the original messages to quantities of a fixed size, known as message digests or secure hashes
- ‣ Good examples include SHA (160 bits) and MD5 (128 bits)

Properties of message digests

- ‣ The properties of a message digest function, H(M), are as follows:
- ‣ Given M, it should be easy to compute H(M);
- ‣ Given H(M), it should be hard to obtain M;
- ‣ Collision resistance: Given M and H(M), it should be exceedingly awkward (computationally infeasible) to find another message M', such that $H(M') = H(M)$.

With H(M), the sender can then sign the digest, not the entire message

Solution with secure hash functions

With the use of H(M) as the checksum, this protocol satisfies all requirements for a secure channel.

Sharing the Secret Key with Public Key Algorithms

Sharing the Secret Key with Public Key Algorithms

- ‣ An natural idea at this point is to send the secret key K, generated by A, to B, using the pubic key of B, K_{B,pub}
- ‣ Once B obtains K, it should be able to use K to establish a secure channel for later use
- ‣ As K is usually short, it is computationally efficient
- ‣ In general, SSL (TLS) and SHTTP use this idea

Remaining problem #2: How does A know that K_{B,pub} is really the public key of B?

A possible solution

A possible solution

*KB,*pub. Once *B* obtains *K* by decrypting the received message using *KB,*priv, it should be able to use *K*

- We can try to solve this problem by asking A to access a trusted key distribution entity S to obtain the public key of B , $K_{B,pub}$
	- \blacktriangleright How does A know that K_{B,pub} originates from S? We can solve this problem by asking S to sign using the private key of itself: K_{S,priv} USING the private key or itself. K_{S, priv}
- S will send $E(K_{S,\text{priv}}, \{K_{B,\text{pub}}\})$ to A, which is *called a certificate.*
	- ‣ When A decrypts the received message using the public key of S – K_{S,pub}, it authenticates it

But how does A know that KS,pub is really the public key of S?

How does A know it's from S?

Apparently, A can access another trusted entity for a certificate to certify S, which creates a chain of certificates. This chain, however, has to stop somewhere.

The chain of certificates stops in your operating system.

Root certificate authorities

- ‣ We trust our operating system, which stores a list of public keys of well-known authorities, such as **verisign.com**, in the form of certificates
	- ‣ These authorities are called root certificate authorities

Hierarchical certificate system

- ‣ Root, regional and local certificate authorities (CA)
- ‣ Called the X.509 Digital Certificate Framework: a standard

Security: an introduction

- The adversary
- ‣ Cryptographic algorithms
- ‣ The secure channel
- ‣ Establishing the secure channel
	- ‣ Using secret key algorithms
	- ‣ Using public key algorithms
	- ‣ Digital signatures
	- ‣ Message digests (secure hash functions)
	- ‣ Sharing the secret key with public key algorithms