Security: An Introduction

Operating Systems

Baochun Li
Department of
Jniversity of To

—lectrical and Computer

‘onto

—ngineering



What Is the overall objective
when designing secure
orotocols?



Restrict access to Information
and resources to just those
principals that are
authorized to have access



Cryptographic algorithms

» Provides the basis and foundation ftor all
security protocols

» For the purpose of this lecture, we need
to understand two things about these
algorithms



Cryptographic algorithms: our goals

» Understand the basic ideas Iin the design
of cryptographic algorithms

» [reat these cryptographic algorithms as
“blackboxes,” and understand how they
are used to build secure protocols



What i1s a secure channel?



What can an adversary do”/



The adversary (or the “enemy’)
may gain access to the
communication channel
between authorized principals.



What can the enemy do?

o ©

E




Read and copy messages
(eavesdropping)

o

)



Inject arbitrary messages
(tampering and replaying)

o ©




send or recelve messages using

the identity of another principal
(masquerading, man-in-the-middle
attacks)

(——&




Can it prevent messages
from getting through

o ©

E




Denial of Service attacks

(flooding a channel in order to
deny access of resources to others,
challenges availability of the resources)



Even though they may be able to, it
IS Not very interesting to assume this,
as there are no countermeasures
(with lbasic cryptographic tools)!



Objective: to implement a
secure channel between two
orincipals, A and B



Requirements of a secure channel

» We need to be able to pass data from A to
subject to a selection of the following const

» Secrecy: the data can not be read by
unintended recipients

3

ralnts:

» Integrity: the data can not be altered without

detection

» Authentication: the data Is attributed to the

correct originator



lo achieve secrecy, we wish to
design a tool to —

encode a message to hide its
contents from access without a
secret key



Secret key algorithms

» Secret key algorithms are also called symmetric
cryptographic algorithms

» the sender and recipient share the knowledge
of a secret key, K



Using secret key algorithms



Required property #1: secret key
algorithms — Correctness

» If E(K, M) and D(K, M) are the encryption and
decryption algorithms, respectively, then:




Required property #2: secret key
algorithms — Security

» In the albbsence of knowledge of K, it must be
very awkward (computationally infeasible) to
recover M from E(K, M).



Modern symmetric cryptographic
algorithms (block ciphers)

» Qutdated:

Data

Cncryption Standard (

bit blocks, 56-bit keys

» Since 1997: Advanced

=S) — 64-

—ncryption Standard (AES)

— 128-bit blocks, 128, 192, or 256 bit keys



HOw dO we use symmetric
cryptographic algorithms to
establish a secure channel”



Review of our objective: to
mplement a secure channel
pbetween two principals, A
and B



Establishing a secure channel using
symmetric cryptographic algorithms

One iIdea —

If we assume A a

can use sy

ﬂ

NMetr

encrypt and decrypt the message. A e
the message M with E(K, M), send it to B, and B
computes: D(K, E(K, M)) = M.

nd B share a secret key K, we
IC cryptographic algori

thms to

NCrypts



Does it satisfy the requirements
of a secure channel?




Does It satisty the requirements of a
secure channel?

» Secrecy: Yes, due to the properties of
the symmetric cryptographic algorithm
(our “blacklbox”).

» Authentication: Yes, If we may assume
that only A and B shares knowledge of
the secret key K.



How about integrity”/



It See

SUffiC

except that the assumpiti

e

1]

Nt 10 establish a sec

s that the shared secret key Is

Jre channel,

on that only the

two principals A and B share the secret key
IS strong, as it may need a separate
protocol to achieve this.

How do we securely share keys
between A and B?



Establisning a secure channel using
asymmetric crypto algorithms



=stablishing a secure channel using

asymmetric crypto algorithms

It we let

S keep K B,priv St

oublish & s,pub O the entl

send E(Kj . M) to B, and

ictly 1o

e syste

itself, a

gl

M, then A can

D(KB,privv E(KB,pub’ M))

and then obtain M.

S can perform



Asymmetric cryptographic algorithms

» Public key algorithms (asymmetric cryptographic algorithms)

» The sender, Alice, uses a public key of the recipient
(oublished by the recipient to everyone in the system) to
encrypt the message

» The recipient, Bob, then uses his own private key to
decrypt the message

» If E(-) and D(-) are used to denote the encryption and
decryption algorithms using public key algorithms, then we
have

D(KpriV,E(Kpub,M)) = M and

D (K, B(K

pI‘iV’M)) — M as well.



Required properties: public key
algorithms

» Knowing t
(computat
key

ne public key, it is very awkward

ionally infeasible) to compute the private

» In the absence of knowledge of “priv , it must be
very awkward (computationally infeasible) to recover
M from E(K ., M)

» Given M and E(K

tO recover

Cpubs M ), it should be very awkward
the private key £priv.



The world’s first and most
widely used asymmetric
cryptographic algorithm:

RSA (1977)

(Rivest, Shamir, Adleman)






Does It satisty the requirements of

a secure channel?
Secrecy?



Does It satisty the requirements of

a secure channel?
Secrecy: Yes, due to the properties of
the asymmetric cryptographic algorithm
(our “blackbox”).



Does It satisty the requirements of

a secure channel?
Integrity?



Does It satisty the requirements of
a secure channel?

Integrity: To ensure integrity, we may add a
checksum C(M) to the message M being sent
by A, we can let A send E(Ks pup, {M, C(M)}),
and after B decrypts the message, it obtains
(M, C(M)}, then computes C(M) using M
(@assuming the checksum function is known to
both principals), and finally compare the
computed result with the received C(M). If the
two are identical, the message M Is received

iINntact.




How about authentication?



No. Anyone can send a message
M to B, knowing B’s public key.



How do we change the protocol
to satisty the requirement of
authentication?



Digital signatures



Digital signatures

A encrypts the message M by using its own
private key K, priv — E(K priv, M) — called a
digital signature, or A signs M. Given a signed

message (and presumably a

nint that it may have

been from A), an attempt to decrypt it using £ 4 pub
will yield M, and thus the recipient, B, can infer
that A carried out the encryption (the signature)

originally.




The problem:

digital signatures do not satisfy the
secrecy reguirement, in that any

principal can decrypt the message
and obtain M.




How do we solve this problem??



Combined with the use of
checksum C(M), this protocol
satisfies all the requirements
for a secure channel.



But there are two remaining
oroblems



Remaining problem #1: [he
porotocol requires applying
asymmetric cryptographic
algorithms on the entire message,
which Is not computationally
efficient.



1o solve this problem: use the
idea of message digests



Message digests

» [t turns out that it Is possible to devise functions
from the original messages to quantities of a fixed
size, kKnown as message digests or secure
hashes

» Good examples include SHA (160 bits) and MD5
(128 bits)



Properties of message digests

» |

|_

(M), are as follows:

ne properties of a message digest function,

» Given M, it should be easy to compute H(M);

» Given H(M), it should be hard to obtain M;

» Collision resistance: Given M and

S

N

nould be exceedingly awkwa

d (co

(M), it

mputationally

feasible) to find another message M’, such that

(M’) = HM).



With H(M), the sender can
then sign the digest, not the
entire message



Solution with secure hash functions



With the use of H(M) as the
checksum, this protocol
satisfies all requirements for a
secure channel.



Sharing the Secret Key with Public Key
Algorithms



Sharing the Secret Key with Public Key
Algorithms

» An natural idea at this point is to send the secret

key K, generated by A, to

of 3, KB,pub

» ONnce
establ

53 obtains K, It sho

Jld be ab

ISh a secure chann

el for later

3, using the pubic key

e to use K 1o
use

» As K Is usually short, it Is computationally efficient

» In general, SSL (TLS) and SHTT

P use this Idea



Remaining problem #2:
How does A know that Kg puo
s really the public key of B”



A possible solution



A possible solution

» We can try to solve this problem by asking A to
access a trusted key distribution entity S to

obtain the public key of

3, KB.pub

» How does A know that Kg,pub Originates from S
We can solve this problem by asking S to sign
using the private key of itself: Ks priv

» S will send E(KS,priV, {KB,pub}) to A, which is

called a certificate.

» When A decrypts the received message using

the public key of S —

Ks,pub, It authenticates it



But how does A know that
Ks.pub IS really the public key
of S



How does A know It's from S?



Apparently, A can access another
trusted entity for a certificate to

certify S, which creates a chain
of certificates. [his chain,

however, has to stop somewnhere.



The chain of certificates stops
N your operating system.



Root certificate authorities

» We trust o
list of publ

Ur operating system, which s

Ores d

ic keys of well-known authorr
such as verisign.com, in the form of

certificates

1ES,

» These authorities are called root certificate
authorities

66



Hierarchical certificate system

» Root, regional and local certificate authorities (CA)

» Called the X.509 Digital Certificate Framework: a standard

67



Security: an introduction

» The adversary
» Cryptographic algorithms
» [he secure channel

» Establishing the secure channel
» Using secret key algorithms
» Using public key algorithms
» Digital signatures
» Message digests (secure hash functions)
» Sharing the secret key with public key algorithms




