Virtual Machine Monitors

Operating Systems
Baochun Li
University of Toronto

The role of virtualization

Virtualization of a physical object refers to simulating the
interface of the physical object, while allowing

Multiplexing of one physical object across many virtual objects
Aggregation of multiple physical objects into one virtual object

Virtualization aims to preserve physical object interface

Virtual object behaves the same as the physical object
Virtual || Virtual || Virtual Virtual
object || object || object object

Physical object_> >l£ . l Ny <fhysical object

ntertace | physical Physical || Physical || Physical | ™erace
object object object object

Multiplexing Aggregation

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 2

Virtual Machines — Intuitive idea

The Operating System provides two functions —

Multiplexing: managing multiple programs sharing a
common pool of resources (processor, memory, disk
space)

Convenient interface to hardware: a common AP| —
called system calls — to all applications

What if these two functions can be cleanly
separated?

So that a bug in a device driver will not affect the entire
OS

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 3

Virtual Machine Monitors (VMMSs)

VMMs are software, similar to operating systems

Provide an interface that is an exact replica of the underlying
physical machine, called virtual machine (VM)

Each VM has CPU, memory, disk and network like a physical
machine, runs its own OS

OS thinks it is running directly on hardware!

Benefits

VMM software is simpler than OS, is bug-free software (we
hope), only provides multiplexing, and protects VMs from
each other

Bug in an OS affects applications running on one VM only

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4

Motivation: Why Virtual Machine Monitors?

Servers — consolidate multiple OSes onto fewer
hardware platforms

Easier to manage and lower hardware costs
Each of these virtual machines are lightly utilized

Desktops — Convenience of running Windows
applications on a Mac

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5

VMMs are also called "Hypervisors”

Type 1 hypervisor: VMM software runs in kernel mode on the
physical machine

Type 2 hypervisor: VMM is a just a user-level program
running on another OS (called the host OS)

Guest OS process

Excel Word Mplayer Apollon Host OS
O O process

Guest OS
Windows Type 2 hypervisor O

Type 1 hypervisor Host operating system

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6

Requirements for Virtualization

A sensitive instruction can only be executed in kernel mode

A privileged instruction causes a trap if executed in user
mode

An architecture is virtualizable when all sensitive instructions
are privileged instructions

Cause traps when executed at lower privilege levels
Essentially, allows running an OS in user mode

Non-sensitive instructions do not reveal or modify privilege
level and can be run directly on physical machine at full speed

Much faster than full emulation (e.g., BLITZ)

However, virtualized program, i.e., OS, must use the same instruction set
as physical machine

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 7

Bad nhews about Intel x86

Traditionally, Intel x86 does not meet
virtualizability requirements

Certain sensitive instructions do not cause trap when
executed in the user mode

Only rectified since December 2005

Virtualization Technology (V T-x) was introduced with
Intel Pentium 4 CPUs 662/672 and later architectures

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8

Implementing Type 1 Hypervisors

Limited direct execution

Sensitive instructions will be handled by VMM on behalf of
the OS inside each VM

VM executes sensitive instruction
Causes trap, transfers control to VMM
VMM determines whether trap was issued by one of

Guest OS: Implements the OS request

Program running on Guest OS: emulates behaviour of
sensitive instruction executing in user mode — jump to guest

OS

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Virtualizing the CPU

Without virtualization: OS will perform context switch
between user processes

With virtualization: VMM will perform “machine switch”
across VMs (each with its own OS)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 10
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

Implementing System Calls

System calls without virtualization —

Process Operating System

1. System call:
Trap to OS

2. OS trap handler:

Decode trap and execute
appropriate syscall routine;
When done: return from trap

3. Resume execution
(@PC after trap)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 11

Implementing System Calls

System calls with virtualization —

Process Operating System

VMM

1. System call:
Trap to OS

3. OS trap handler:
Decode trap and
execute syscall;
When done: issue
return-from-trap

5. Resume execution
(@PC after trap)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

2. Process trapped:
Call OS trap handler
(at reduced privilege)

4. OS tried return from trap:
Do real return from trap

12

Virtualizing Memory

OS Page Table VMM Page Table
VPN 0 to PFN 10 PFN 03 to MFN 06
VPN 2 to PFN 03 PFN 08 to MFN 10
VPN 3 to PFN 08 PFN 10 to MFN 05
Virtual Address Space "Physical Memory" Machine Memory

0 0 0

1 1 1

2 2 2

3 3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16

17

18

19

20

21

22

23

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 13

TLB Miss without Virtualization

Process Operating System

1. Load from memory:
TLB miss: Trap

2. OS TLB miss handler:
Extract VPN from VA;
Do page table lookup;
If present and valid:
get PFN, update TLB;
Return from trap

3. Resume execution

(@PC of trapping instruction);

Instruction is retried;
Results in TLB hit

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 14

TLB Miss with Virtualization

Process Operating System Virtual Machine Monitor

1. Load from memory
TLB miss: Trap
2. VMM TLB miss handler:
Call into OS TLB handler
(reducing privilege)
3. OS TLB miss handler:
Extract VPN from VA;
Do page table lookup;
If present and valid,
get PEN, update TLB
4. Trap handler:
Unprivileged code trying to
update the TLB;
OS is trying to install
VPN-to-PFN mapping;
Update TLB instead with
VPN-to-MEN (privileged);
Jump back to OS
(reducing privilege)
5. Return from trap
6. Trap handler:
Unprivileged code trying
to return from a trap;
Return from trap
7. Resume execution
(@PC of instruction);
Instruction is retried;
Results in TLB hit

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 15
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

What we've covered so far

Three Easy Pieces: Appendix B (Virtual Machine
Monitors)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

