
Virtual Machine Monitors

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The role of virtualization

Virtualization of a physical object refers to simulating the
interface of the physical object, while allowing

Multiplexing of one physical object across many virtual objects
Aggregation of multiple physical objects into one virtual object

Virtualization aims to preserve physical object interface
Virtual object behaves the same as the physical object

2

Introduction

� Virtualization of a physical object refers to simulating the
interface of the physical object, while allowing

o Multiplexing of one physical object across many virtual objects
o Aggregation of multiple physical objects into one virtual object

� Virtualization aims to preserve physical object interface
o Virtual object behaves the same as the physical object

Multiplexing

Physical
object

Virtual
object

Virtual
object

Virtual
object

Physical object
interface

Aggregation

Physical object
interfacePhysical

object
Physical
object

Physical
object

Virtual
object

Multiplexing Aggregation

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Virtual Machines — Intuitive idea

The Operating System provides two functions —
Multiplexing: managing multiple programs sharing a
common pool of resources (processor, memory, disk
space)
Convenient interface to hardware: a common API —
called system calls — to all applications

What if these two functions can be cleanly
separated?

So that a bug in a device driver will not affect the entire
OS

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Virtual Machine Monitors (VMMs)

VMMs are software, similar to operating systems
Provide an interface that is an exact replica of the underlying
physical machine, called virtual machine (VM)
Each VM has CPU, memory, disk and network like a physical
machine, runs its own OS
OS thinks it is running directly on hardware!

Benefits
VMM software is simpler than OS, is bug-free software (we
hope), only provides multiplexing, and protects VMs from
each other
Bug in an OS affects applications running on one VM only

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Motivation: Why Virtual Machine Monitors?

Servers — consolidate multiple OSes onto fewer
hardware platforms

Easier to manage and lower hardware costs
Each of these virtual machines are lightly utilized

Desktops — Convenience of running Windows
applications on a Mac

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

VMMs are also called “Hypervisors”

Type 1 hypervisor: VMM software runs in kernel mode on the
physical machine
Type 2 hypervisor: VMM is a just a user-level program
running on another OS (called the host OS)

6

VMMs and Hypervisors

� VMMs are also called hypervisors

� Two types
o Type 1: VMM software runs on physical machine
o Type 2: VMM is a program running on another OS

� Both VMMs act like real hardware

VMware ESX Server VMware Workstation

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Requirements for Virtualization

A sensitive instruction can only be executed in kernel mode
A privileged instruction causes a trap if executed in user
mode
An architecture is virtualizable when all sensitive instructions
are privileged instructions

Cause traps when executed at lower privilege levels
Essentially, allows running an OS in user mode

Non-sensitive instructions do not reveal or modify privilege
level and can be run directly on physical machine at full speed

Much faster than full emulation (e.g., BLITZ)
However, virtualized program, i.e., OS, must use the same instruction set
as physical machine

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Bad news about Intel x86

Traditionally, Intel x86 does not meet
virtualizability requirements

Certain sensitive instructions do not cause trap when
executed in the user mode

Only rectified since December 2005
Virtualization Technology (VT-x) was introduced with
Intel Pentium 4 CPUs 662/672 and later architectures

8

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing Type 1 Hypervisors

Limited direct execution
Sensitive instructions will be handled by VMM on behalf of
the OS inside each VM

VM executes sensitive instruction
Causes trap, transfers control to VMM

VMM determines whether trap was issued by one of
Guest OS: Implements the OS request
Program running on Guest OS: emulates behaviour of
sensitive instruction executing in user mode — jump to guest
OS

9

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Virtualizing the CPU

Without virtualization: OS will perform context switch
between user processes
With virtualization: VMM will perform “machine switch”
across VMs (each with its own OS)

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing System Calls

System calls without virtualization —

11

VIRTUAL MACHINE MONITORS 5

Process Operating System
1. System call:
Trap to OS

2. OS trap handler:
Decode trap and execute
appropriate syscall routine;
When done: return from trap

3. Resume execution
(@PC after trap)

Table B.2: System Call Flow Without Virtualization

Process Operating System VMM
1. System call:
Trap to OS

2. Process trapped:
Call OS trap handler
(at reduced privilege)

3. OS trap handler:
Decode trap and
execute syscall;
When done: issue
return-from-trap

4. OS tried return from trap:
Do real return from trap

5. Resume execution
(@PC after trap)

Table B.3: System Call Flow with Virtualization

As you can see from the figures, a lot more has to take place when
virtualization is going on. Certainly, because of the extra jumping around,
virtualization might indeed slow down system calls and thus could hurt
performance.

You might also notice that we have one remaining question: what
mode should the OS run in? It can’t run in kernel mode, because then
it would have unrestricted access to the hardware. Thus, it must run in
some less privileged mode than before, be able to access its own data
structures, and simultaneously prevent access to its data structures from
user processes.

In the Disco work, Rosenblum and colleagues handled this problem
quite neatly by taking advantage of a special mode provided by the MIPS
hardware known as supervisor mode. When running in this mode, one
still doesn’t have access to privileged instructions, but one can access a
little more memory than when in user mode; the OS can use this extra
memory for its data structures and all is well. On hardware that doesn’t
have such a mode, one has to run the OS in user mode and use memory
protection (page tables and TLBs) to protect OS data structures appro-
priately. In other words, when switching into the OS, the monitor would
have to make the memory of the OS data structures available to the OS via
page-table protections; when switching back to the running application,
the ability to read and write the kernel would have to be removed.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing System Calls

System calls with virtualization —

12

VIRTUAL MACHINE MONITORS 5

Process Operating System
1. System call:
Trap to OS

2. OS trap handler:
Decode trap and execute
appropriate syscall routine;
When done: return from trap

3. Resume execution
(@PC after trap)

Table B.2: System Call Flow Without Virtualization

Process Operating System VMM
1. System call:
Trap to OS

2. Process trapped:
Call OS trap handler
(at reduced privilege)

3. OS trap handler:
Decode trap and
execute syscall;
When done: issue
return-from-trap

4. OS tried return from trap:
Do real return from trap

5. Resume execution
(@PC after trap)

Table B.3: System Call Flow with Virtualization

As you can see from the figures, a lot more has to take place when
virtualization is going on. Certainly, because of the extra jumping around,
virtualization might indeed slow down system calls and thus could hurt
performance.

You might also notice that we have one remaining question: what
mode should the OS run in? It can’t run in kernel mode, because then
it would have unrestricted access to the hardware. Thus, it must run in
some less privileged mode than before, be able to access its own data
structures, and simultaneously prevent access to its data structures from
user processes.

In the Disco work, Rosenblum and colleagues handled this problem
quite neatly by taking advantage of a special mode provided by the MIPS
hardware known as supervisor mode. When running in this mode, one
still doesn’t have access to privileged instructions, but one can access a
little more memory than when in user mode; the OS can use this extra
memory for its data structures and all is well. On hardware that doesn’t
have such a mode, one has to run the OS in user mode and use memory
protection (page tables and TLBs) to protect OS data structures appro-
priately. In other words, when switching into the OS, the monitor would
have to make the memory of the OS data structures available to the OS via
page-table protections; when switching back to the running application,
the ability to read and write the kernel would have to be removed.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Virtualizing Memory

13

6 VIRTUAL MACHINE MONITORS

Virtual Address Space "Physical Memory" Machine Memory

0
1
2
3

OS Page Table

VPN 0 to PFN 10
VPN 2 to PFN 03
VPN 3 to PFN 08

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

VMM Page Table

PFN 03 to MFN 06
PFN 08 to MFN 10
PFN 10 to MFN 05

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Figure B.1: VMM Memory Virtualization

B.4 Virtualizing Memory

You should now have a basic idea of how the processor is virtualized:
the VMM acts like an OS and schedules different virtual machines to run,
and some interesting interactions occur when privilege levels change. But
we have left out a big part of the equation: how does the VMM virtualize
memory?

Each OS normally thinks of physical memory as a linear array of pages,
and assigns each page to itself or user processes. The OS itself, of course,
already virtualizes memory for its running processes, such that each pro-
cess has the illusion of its own private address space. Now we must add
another layer of virtualization, so that multiple OSes can share the actual
physical memory of the machine, and we must do so transparently.

This extra layer of virtualization makes “physical” memory a virtual-
ization on top of what the VMM refers to as machine memory, which is
the real physical memory of the system. Thus, we now have an additional
layer of indirection: each OS maps virtual-to-physical addresses via its
per-process page tables; the VMM maps the resulting physical mappings
to underlying machine addresses via its per-OS page tables. Figure B.1
depicts this extra level of indirection.

In the figure, there is just a single virtual address space with four
pages, three of which are valid (0, 2, and 3). The OS uses its page ta-
ble to map these pages to three underlying physical frames (10, 3, and
8, respectively). Underneath the OS, the VMM performs a further level
of indirection, mapping PFNs 3, 8, and 10 to machine frames 6, 10, and
5 respectively. Of course, this picture simplifies things quite a bit; on a
real system, there would be V operating systems running (with V likely

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

TLB Miss without Virtualization

14

VIRTUAL MACHINE MONITORS 7

Process Operating System
1. Load from memory:
TLB miss: Trap

2. OS TLB miss handler:
Extract VPN from VA;
Do page table lookup;
If present and valid:
get PFN, update TLB;
Return from trap

3. Resume execution
(@PC of trapping instruction);
Instruction is retried;
Results in TLB hit

Table B.4: TLB Miss Flow without Virtualization

greater than one), and thus V VMM page tables; further, on top of each
running operating system OSi, there would be a number of processes Pi

running (Pi likely in the tens or hundreds), and hence Pi (per-process)
page tables within OSi.

To understand how this works a little better, let’s recall how address
translation works in a modern paged system. Specifically, let’s discuss
what happens on a system with a software-managed TLB during address
translation. Assume a user process generates an address (for an instruc-
tion fetch or an explicit load or store); by definition, the process generates
a virtual address, as its address space has been virtualized by the OS. As
you know by now, it is the role of the OS, with help from the hardware,
to turn this into a physical address and thus be able to fetch the desired
contents from physical memory.

Assume we have a 32-bit virtual address space and a 4-KB page size.
Thus, our 32-bit address is chopped into two parts: a 20-bit virtual page
number (VPN), and a 12-bit offset. The role of the OS, with help from the
hardware TLB, is to translate the VPN into a valid physical page frame
number (PFN) and thus produce a fully-formed physical address which
can be sent to physical memory to fetch the proper data. In the common
case, we expect the TLB to handle the translation in hardware, thus mak-
ing the translation fast. When a TLB miss occurs (at least, on a system
with a software-managed TLB), the OS must get involved to service the
miss, as depicted here in Table B.4.

As you can see, a TLB miss causes a trap into the OS, which handles
the fault by looking up the VPN in the page table and installing the trans-
lation in the TLB.

With a virtual machine monitor underneath the OS, however, things
again get a little more interesting. Let’s examine the flow of a TLB miss
again (see Table B.5 for a summary). When a process makes a virtual
memory reference and misses in the TLB, it is not the OS TLB miss han-
dler that runs; rather, it is the VMM TLB miss handler, as the VMM is
the true privileged owner of the machine. However, in the normal case,
the VMM TLB handler doesn’t know how to handle the TLB miss, so it
immediately jumps into the OS TLB miss handler; the VMM knows the

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

TLB Miss with Virtualization

15

8 VIRTUAL MACHINE MONITORS

Process Operating System Virtual Machine Monitor
1. Load from memory
TLB miss: Trap

2. VMM TLB miss handler:
Call into OS TLB handler
(reducing privilege)

3. OS TLB miss handler:
Extract VPN from VA;
Do page table lookup;
If present and valid,
get PFN, update TLB

4. Trap handler:
Unprivileged code trying to
update the TLB;
OS is trying to install
VPN-to-PFN mapping;
Update TLB instead with
VPN-to-MFN (privileged);
Jump back to OS
(reducing privilege)

5. Return from trap
6. Trap handler:
Unprivileged code trying
to return from a trap;
Return from trap

7. Resume execution
(@PC of instruction);
Instruction is retried;
Results in TLB hit

Table B.5: TLB Miss Flow with Virtualization

location of this handler because the OS, during “boot”, tried to install its
own trap handlers. The OS TLB miss handler then runs, does a page ta-
ble lookup for the VPN in question, and tries to install the VPN-to-PFN
mapping in the TLB. However, doing so is a privileged operation, and
thus causes another trap into the VMM (the VMM gets notified when any
non-privileged code tries to do something that is privileged, of course).
At this point, the VMM plays its trick: instead of installing the OS’s VPN-
to-PFN mapping, the VMM installs its desired VPN-to-MFN mapping.
After doing so, the system eventually gets back to the user-level code,
which retries the instruction, and results in a TLB hit, fetching the data
from the machine frame where the data resides.

This set of actions also hints at how a VMM must manage the virtu-
alization of physical memory for each running OS; just like the OS has a
page table for each process, the VMM must track the physical-to-machine
mappings for each virtual machine it is running. These per-machine page
tables need to be consulted in the VMM TLB miss handler in order to de-
termine which machine page a particular “physical” page maps to, and
even, for example, if it is present in machine memory at the current time
(i.e., the VMM could have swapped it to disk).

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Appendix B (Virtual Machine
Monitors)

