
Input/Output Devices

Operating Systems 
Baochun Li 

University of Toronto



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Traditional I/O: hierarchical architecture
2 I/O DEVICES

Graphics

MemoryCPU

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Figure 36.1: Prototypical System Architecture

formance components are further away. The benefits of placing disks and
other slow devices on a peripheral bus are manifold; in particular, you
can place a large number of devices on it.

36.2 A Canonical Device

Let us now look at a canonical device (not a real one), and use this
device to drive our understanding of some of the machinery required
to make device interaction efficient. From Figure 36.2, we can see that a
device has two important components. The first is the hardware interface
it presents to the rest of the system. Just like a piece of software, hardware
must also present some kind of interface that allows the system software
to control its operation. Thus, all devices have some specified interface
and protocol for typical interaction.

The second part of any device is its internal structure. This part of
the device is implementation specific and is responsible for implement-
ing the abstraction the device presents to the system. Very simple devices
will have one or a few hardware chips to implement their functionality;
more complex devices will include a simple CPU, some general purpose
memory, and other device-specific chips to get their job done. For exam-
ple, modern RAID controllers might consist of hundreds of thousands of
lines of firmware (i.e., software within a hardware device) to implement
its functionality.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Modern I/O system architecture
I/O DEVICES 3

PCIe
Graphics

Memory
Interconnect

Graphics CPU Memory

D
M

I

I/O Chip

eSATA

Disk
Disk

Disk
Disk

U
S

B

K
e

yb
o

a
rd

M
o

u
se

PCIe

Network

Figure 36.2: Modern System Architecture

Finally, on the left, other higher performance devices can be connected
to the system via PCIe (Peripheral Component Interconnect Express). In
this diagram, a network interface is attached to the system here; higher
performance storage devices (such as NVMe persistent storage devices)
are often connected here.

36.2 A Canonical Device

Let us now look at a canonical device (not a real one), and use this
device to drive our understanding of some of the machinery required to
make device interaction efficient. From Figure 36.3 (page 4), we can see
that a device has two important components. The first is the hardware
interface it presents to the rest of the system. Just like a piece of software,
hardware must also present some kind of interface that allows the system
software to control its operation. Thus, all devices have some specified
interface and protocol for typical interaction.

The second part of any device is its internal structure. This part of
the device is implementation specific and is responsible for implement-
ing the abstraction the device presents to the system. Very simple devices
will have one or a few hardware chips to implement their functionality;
more complex devices will include a simple CPU, some general purpose
memory, and other device-specific chips to get their job done. For exam-
ple, modern RAID controllers might consist of hundreds of thousands of
lines of firmware (i.e., software within a hardware device) to implement
its functionality.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A canonical I/O device
Device — actual hardware 

includes a hardware interface 
example: status, command and data registers 

serves as an interface between CPU and device 
Device driver — software in the OS kernel 

device-specific code for controlling each I/O device 
I/O DEVICES 3

Other Hardware-specific Chips
Memory (DRAM or SRAM or both)
Micro-controller (CPU)

Registers Status Command Data Interface

Internals

Figure 36.2: A Canonical Device

36.3 The Canonical Protocol

In the picture above, the (simplified) device interface is comprised of
three registers: a status register, which can be read to see the current sta-
tus of the device; a command register, to tell the device to perform a cer-
tain task; and a data register to pass data to the device, or get data from
the device. By reading and writing these registers, the operating system
can control device behavior.

Let us now describe a typical interaction that the OS might have with
the device in order to get the device to do something on its behalf. The
protocol is as follows:

While (STATUS == BUSY)
; // wait until device is not busy

Write data to DATA register
Write command to COMMAND register

(Doing so starts the device and executes the command)
While (STATUS == BUSY)

; // wait until device is done with your request

The protocol has four steps. In the first, the OS waits until the device is
ready to receive a command by repeatedly reading the status register; we
call this polling the device (basically, just asking it what is going on). Sec-
ond, the OS sends some data down to the data register; one can imagine
that if this were a disk, for example, that multiple writes would need to
take place to transfer a disk block (say 4KB) to the device. When the main
CPU is involved with the data movement (as in this example protocol),
we refer to it as programmed I/O (PIO). Third, the OS writes a command
to the command register; doing so implicitly lets the device know that
both the data is present and that it should begin working on the com-
mand. Finally, the OS waits for the device to finish by again polling it
in a loop, waiting to see if it is finished (it may then get an error code to
indicate success or failure).

This basic protocol has the positive aspect of being simple and work-
ing. However, there are some inefficiencies and inconveniences involved.
The first problem you might notice in the protocol is that polling seems
inefficient; specifically, it wastes a great deal of CPU time just waiting for
the (potentially slow) device to complete its activity, instead of switching
to another ready process and thus better utilizing the CPU.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Canonical Protocol: Polling

I/O DEVICES 3

Other Hardware-specific Chips
Memory (DRAM or SRAM or both)
Micro-controller (CPU)

Registers Status Command Data Interface

Internals

Figure 36.2: A Canonical Device

36.3 The Canonical Protocol

In the picture above, the (simplified) device interface is comprised of
three registers: a status register, which can be read to see the current sta-
tus of the device; a command register, to tell the device to perform a cer-
tain task; and a data register to pass data to the device, or get data from
the device. By reading and writing these registers, the operating system
can control device behavior.

Let us now describe a typical interaction that the OS might have with
the device in order to get the device to do something on its behalf. The
protocol is as follows:

While (STATUS == BUSY)
; // wait until device is not busy

Write data to DATA register
Write command to COMMAND register

(Doing so starts the device and executes the command)
While (STATUS == BUSY)

; // wait until device is done with your request

The protocol has four steps. In the first, the OS waits until the device is
ready to receive a command by repeatedly reading the status register; we
call this polling the device (basically, just asking it what is going on). Sec-
ond, the OS sends some data down to the data register; one can imagine
that if this were a disk, for example, that multiple writes would need to
take place to transfer a disk block (say 4KB) to the device. When the main
CPU is involved with the data movement (as in this example protocol),
we refer to it as programmed I/O (PIO). Third, the OS writes a command
to the command register; doing so implicitly lets the device know that
both the data is present and that it should begin working on the com-
mand. Finally, the OS waits for the device to finish by again polling it
in a loop, waiting to see if it is finished (it may then get an error code to
indicate success or failure).

This basic protocol has the positive aspect of being simple and work-
ing. However, there are some inefficiencies and inconveniences involved.
The first problem you might notice in the protocol is that polling seems
inefficient; specifically, it wastes a great deal of CPU time just waiting for
the (potentially slow) device to complete its activity, instead of switching
to another ready process and thus better utilizing the CPU.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

CPU is doing the work by polling the device: 
“Programmed I/O”



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Disadvantages with Polling

Polling is inefficient: wasting CPU time waiting for 
a slow device to complete its work 

Solution: Interrupts 

4 I/O DEVICES

THE CRUX: HOW TO AVOID THE COSTS OF POLLING

How can the OS check device status without frequent polling, and
thus lower the CPU overhead required to manage the device?

36.4 Lowering CPU Overhead With Interrupts

The invention that many engineers came upon years ago to improve
this interaction is something we’ve seen already: the interrupt. Instead
of polling the device repeatedly, the OS can issue a request, put the call-
ing process to sleep, and context switch to another task. When the device
is finally finished with the operation, it will raise a hardware interrupt,
causing the CPU to jump into the OS at a pre-determined interrupt ser-
vice routine (ISR) or more simply an interrupt handler. The handler is
just a piece of operating system code that will finish the request (for ex-
ample, by reading data and perhaps an error code from the device) and
wake the process waiting for the I/O, which can then proceed as desired.

Interrupts thus allow for overlap of computation and I/O, which is
key for improved utilization. This timeline shows the problem:

CPU

Disk 1 1 1 1 1

1 1 1 1 1 p p p p p 1 1 1 1 1

In the diagram, Process 1 runs on the CPU for some time (indicated by
a repeated 1 on the CPU line), and then issues an I/O request to the disk
to read some data. Without interrupts, the system simply spins, polling
the status of the device repeatedly until the I/O is complete (indicated by
a p). The disk services the request and finally Process 1 can run again.

If instead we utilize interrupts and allow for overlap, the OS can do
something else while waiting for the disk:

CPU

Disk 1 1 1 1 1

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1

In this example, the OS runs Process 2 on the CPU while the disk ser-
vices Process 1’s request. When the disk request is finished, an interrupt
occurs, and the OS wakes up Process 1 and runs it again. Thus, both the
CPU and the disk are properly utilized during the middle stretch of time.

Note that using interrupts is not always the best solution. For example,
imagine a device that performs its tasks very quickly: the first poll usually
finds the device to be done with task. Using an interrupt in this case will
actually slow down the system: switching to another process, handling the
interrupt, and switching back to the issuing process is expensive. Thus, if
a device is fast, it may be best to poll; if it is slow, interrupts, which allow

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

4 I/O DEVICES

THE CRUX: HOW TO AVOID THE COSTS OF POLLING

How can the OS check device status without frequent polling, and
thus lower the CPU overhead required to manage the device?

36.4 Lowering CPU Overhead With Interrupts

The invention that many engineers came upon years ago to improve
this interaction is something we’ve seen already: the interrupt. Instead
of polling the device repeatedly, the OS can issue a request, put the call-
ing process to sleep, and context switch to another task. When the device
is finally finished with the operation, it will raise a hardware interrupt,
causing the CPU to jump into the OS at a pre-determined interrupt ser-
vice routine (ISR) or more simply an interrupt handler. The handler is
just a piece of operating system code that will finish the request (for ex-
ample, by reading data and perhaps an error code from the device) and
wake the process waiting for the I/O, which can then proceed as desired.

Interrupts thus allow for overlap of computation and I/O, which is
key for improved utilization. This timeline shows the problem:

CPU

Disk 1 1 1 1 1

1 1 1 1 1 p p p p p 1 1 1 1 1

In the diagram, Process 1 runs on the CPU for some time (indicated by
a repeated 1 on the CPU line), and then issues an I/O request to the disk
to read some data. Without interrupts, the system simply spins, polling
the status of the device repeatedly until the I/O is complete (indicated by
a p). The disk services the request and finally Process 1 can run again.

If instead we utilize interrupts and allow for overlap, the OS can do
something else while waiting for the disk:

CPU

Disk 1 1 1 1 1

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1

In this example, the OS runs Process 2 on the CPU while the disk ser-
vices Process 1’s request. When the disk request is finished, an interrupt
occurs, and the OS wakes up Process 1 and runs it again. Thus, both the
CPU and the disk are properly utilized during the middle stretch of time.

Note that using interrupts is not always the best solution. For example,
imagine a device that performs its tasks very quickly: the first poll usually
finds the device to be done with task. Using an interrupt in this case will
actually slow down the system: switching to another process, handling the
interrupt, and switching back to the issuing process is expensive. Thus, if
a device is fast, it may be best to poll; if it is slow, interrupts, which allow

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Interrupts revisited
Benefits 

Allows for overlap of computation and I/O 
Improves CPU utilization 

Problem 1: Livelock 
Example: when a huge number of packets arrive at a web 
server, each generating an interrupt, the OS may be servicing 
interrupts at all times, never allowing a user-level process to 
run 

Problem 2: slows down the system if a device is very fast 
Perhaps try a hybrid approach: poll for a while, and if not done, 
use interrupts



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

More efficient data movement with DMA

Even with interrupts, the CPU still needs to copy the data 
from memory to the device explicitly, one word at a time 

How do we offload the work and allow the CPU to be more 
effectively utilized?

I/O DEVICES 5

TIP: INTERRUPTS NOT ALWAYS BETTER THAN PIO
Although interrupts allow for overlap of computation and I/O, they only
really make sense for slow devices. Otherwise, the cost of interrupt han-
dling and context switching may outweigh the benefits interrupts pro-
vide. There are also cases where a flood of interrupts may overload a sys-
tem and lead it to livelock [MR96]; in such cases, polling provides more
control to the OS in its scheduling and thus is again useful.

overlap, are best. If the speed of the device is not known, or sometimes
fast and sometimes slow, it may be best to use a hybrid that polls for a
little while and then, if the device is not yet finished, uses interrupts. This
two-phased approach may achieve the best of both worlds.

Another reason not to use interrupts arises in networks [MR96]. When
a huge stream of incoming packets each generate an interrupt, it is pos-
sible for the OS to livelock, that is, find itself only processing interrupts
and never allowing a user-level process to run and actually service the
requests. For example, imagine a web server that suddenly experiences
a high load due to the “slashdot effect”. In this case, it is better to occa-
sionally use polling to better control what is happening in the system and
allow the web server to service some requests before going back to the
device to check for more packet arrivals.

Another interrupt-based optimization is coalescing. In such a setup, a
device which needs to raise an interrupt first waits for a bit before deliv-
ering the interrupt to the CPU. While waiting, other requests may soon
complete, and thus multiple interrupts can be coalesced into a single in-
terrupt delivery, thus lowering the overhead of interrupt processing. Of
course, waiting too long will increase the latency of a request, a common
trade-off in systems. See Ahmad et al. [A+11] for an excellent summary.

36.5 More Efficient Data Movement With DMA

Unfortunately, there is one other aspect of our canonical protocol that
requires our attention. In particular, when using programmed I/O (PIO)
to transfer a large chunk of data to a device, the CPU is once again over-
burdened with a rather trivial task, and thus wastes a lot of time and
effort that could better be spent running other processes. This timeline
illustrates the problem:

CPU

Disk 1 1 1 1 1

1 1 1 1 1 c c c 2 2 2 2 2 1 1

In the timeline, Process 1 is running and then wishes to write some data to
the disk. It then initiates the I/O, which must copy the data from memory
to the device explicitly, one word at a time (marked c in the diagram).
When the copy is complete, the I/O begins on the disk and the CPU can
finally be used for something else.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Direct Memory Access (DMA)

The OS programs the DMA, a special device, telling it where 
the data lives, how many bytes to copy, and which device to 
send it to 
When the DMA is complete, the DMA controller raises an 
interrupt 

6 I/O DEVICES

THE CRUX: HOW TO LOWER PIO OVERHEADS

With PIO, the CPU spends too much time moving data to and from
devices by hand. How can we offload this work and thus allow the CPU
to be more effectively utilized?

The solution to this problem is something we refer to as Direct Mem-
ory Access (DMA). A DMA engine is essentially a very specific device
within a system that can orchestrate transfers between devices and main
memory without much CPU intervention.

DMA works as follows. To transfer data to the device, for example, the
OS would program the DMA engine by telling it where the data lives in
memory, how much data to copy, and which device to send it to. At that
point, the OS is done with the transfer and can proceed with other work.
When the DMA is complete, the DMA controller raises an interrupt, and
the OS thus knows the transfer is complete. The revised timeline:

CPU

DMA

Disk 1 1 1 1 1

1 1 1 1 1 2 2 2 2 2 2 2 2 1 1

c c c

From the timeline, you can see that the copying of data is now handled
by the DMA controller. Because the CPU is free during that time, the OS
can do something else, here choosing to run Process 2. Process 2 thus gets
to use more CPU before Process 1 runs again.

36.6 Methods Of Device Interaction

Now that we have some sense of the efficiency issues involved with
performing I/O, there are a few other problems we need to handle to
incorporate devices into modern systems. One problem you may have
noticed thus far: we have not really said anything about how the OS ac-
tually communicates with the device! Thus, the problem:

THE CRUX: HOW TO COMMUNICATE WITH DEVICES

How should the hardware communicate with a device? Should there
be explicit instructions? Or are there other ways to do it?

Over time, two primary methods of device communication have de-
veloped. The first, oldest method (used by IBM mainframes for many
years) is to have explicit I/O instructions. These instructions specify a
way for the OS to send data to specific device registers and thus allow the
construction of the protocols described above.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Direct Memory Access (DMA): Recap

DMA helps data to be transferred from device 
straight to/from memory 

CPU is not involved 
With the DMA controller — 

DMA does the work of moving the data 
CPU sets up the DMA controller (“programs it”) 
CPU continues 
The DMA controller moves the bytes



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How does the OS communicate with the device?

I/O Instructions 
in and out instructions on x86: privileged instructions 
use a port to name the device 

Memory-mapped I/O 
Hardware makes device registers available as memory 
locations 
Just use the load and store instructions to read and 
write the address 
No new instructions needed



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How to keep the OS 
device-neutral? 

— Use abstraction!



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The file system stack in Linux

70% of the code in Linux is found in device drivers —  
the main source of kernel crashes

I/O DEVICES 9

Application

File System Raw

Generic Block Layer

Device Driver [SCSI, ATA, etc.]

POSIX API [open, read, write, close, etc.]

Generic Block Interface [block read/write]

Specific Block Interface [protocol-specific read/write]

u
se

r
ke

rn
e

l m
o

d
e

Figure 36.4: The File System Stack

The diagram also shows a raw interface to devices, which enables spe-
cial applications (such as a file-system checker, described later [AD14],
or a disk defragmentation tool) to directly read and write blocks without
using the file abstraction. Most systems provide this type of interface to
support these low-level storage management applications.

Note that the encapsulation seen above can have its downside as well.
For example, if there is a device that has many special capabilities, but
has to present a generic interface to the rest of the kernel, those special
capabilities will go unused. This situation arises, for example, in Linux
with SCSI devices, which have very rich error reporting; because other
block devices (e.g., ATA/IDE) have much simpler error handling, all that
higher levels of software ever receive is a generic EIO (generic IO error)
error code; any extra detail that SCSI may have provided is thus lost to
the file system [G08].

Interestingly, because device drivers are needed for any device you
might plug into your system, over time they have come to represent a
huge percentage of kernel code. Studies of the Linux kernel reveal that
over 70% of OS code is found in device drivers [C01]; for Windows-based
systems, it is likely quite high as well. Thus, when people tell you that the
OS has millions of lines of code, what they are really saying is that the OS
has millions of lines of device-driver code. Of course, for any given in-
stallation, most of that code may not be active (i.e., only a few devices are
connected to the system at a time). Perhaps more depressingly, as drivers
are often written by “amateurs” (instead of full-time kernel developers),
they tend to have many more bugs and thus are a primary contributor to
kernel crashes [S03].

36.8 Case Study: A Simple IDE Disk Driver
To dig a little deeper here, let’s take a quick look at an actual device: an

IDE disk drive [L94]. We summarize the protocol as described in this ref-
erence [W10]; we’ll also peek at the xv6 source code for a simple example
of a working IDE driver [CK+08].

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Disadvantages of using abstraction

Devices with specific capabilities still need to 
present a generic interface, and specific capabilities 
get unused 

Richer error reporting in SCSI than ATA/IDE 
Only a generic IO error will be presented to the file system 



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Block Devices
Block devices 

Stores information in fixed-size blocks, each with 
its own address 
Possible to read or write each block independently  
Use read(), write(), lseek() system calls to access 
Raw I/O access can also be allowed 

raw I/O may be needed for file system checkers, disk 
defragmenters, and database systems



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Character Devices

Delivers or accepts a stream of characters — like pipes 
Unbuffered, direct access 
Examples: serial ports, parallel ports, audio devices 
Not addressable and does not have any seek operation 
Both block and character devices can be accessed by using 
the device file in Linux and macOS, in /dev 

Note: device files in /dev do not have to correspond to 
actual physical devices (e.g., /dev/null, /dev/random)



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 36.1 – 36.7 (I/O 
Devices)


