Input/Output Devices

Operating Systems
Baochun Li
University of Toronto

Traditional I/O: hierarchical architecture

CPU Memory
Memory Bus
(proprietary)
General I/0 Bus
(e.g., PCI)
Graphics
< » Peripheral 1/0 Bus

(e.g., SCSI, SATA, USB)

i i I

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Modern |/O system architecture

PCle Memory
Graphics Interconnect

Graphics (<> CPU NP \emory

S
a)
PCle eSATA
___r1pisk
/OChip |
N
Network
m h
)
D
O[]
(q¥]
IE
ﬂ =
Va

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A canonical 1/O device

Device — actual hardware

iIncludes a hardware interface
example: status, command and data registers
serves as an interface between CPU and device

Device driver — software in the OS kernel

device-specific code for controlling each |/O device

Registers‘ Status ‘ ‘Command‘ ‘ Data ‘ Interface

Micro-controller (CPU)
Memory (DRAM or SRAM or both) Internals
Other Hardware-specific Chips

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Canonical Protocol: Polling

CPU is doing the work by polling the device:
“Programmed |/O"

While (STATUS == BUSY)
; // wait until device is not busy
Write data to DATA register
Write command to COMMAND register
(Doilng so starts the device and executes the command)
While (STATUS == BUSY)
; // wait until device is done with your request

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Disadvantages with Polling

Polling is inefficient: wasting CPU time waiting for
a slow device to complete its work

cCPU (1|1 |1 1|1 1T (11 1] 1

Disk 1T (11 1] 1

Solution: Interrupts

CPU |1 (1|1]1]1

Disk 1T (111111

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Interrupts revisited

Benefits

Allows for overlap of computation and |/O
Improves CPU utilization

Problem 1: Livelock

Example: when a huge number of packets arrive at a web
server, each generating an interrupt, the OS may be servicing
Interrupts at all times, never allowing a user-level process to
run

Problem 2: slows down the system if a device is very fast

Perhaps try a hybrid approach: poll for a while, and if not done,
use interrupts

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

More efficient data movement with DMA

Even with interrupts, the CPU still needs to copy the data
from memory to the device explicitly, one word at a time

1| 1

CPU 1 (1|11]|1]|c|c]|c

Disk 1T (11 1] 1

How do we offload the work and allow the CPU to be more
effectively utilized?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Direct Memory Access (DMA)

The OS programs the DMA, a special device, telling it where
the data lives, how many bytes to copy, and which device to

send it to

When the DMA is complete, the DMA controller raises an
interrupt

CPU |1 |1 |1 1] 1

DMA c| cCc | C

Disk 1T 11 (1] 1] 1

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Direct Memory Access (DMA): Recap

DMA helps data to be transferred from device
straight to/from memory

CPU is not involved

With the DMA controller —

DMA does the work of moving the data

CPU sets up the DMA controller (“programs it")
CPU continues

The DMA controller moves the bytes

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How does the OS communicate with the device?

1/O Instructions
in and out instructions on x86: privileged instructions
use a port to name the device

Memory-mapped 1/O

Hardware makes device registers available as memory
locations

Just use the load and store instructions to read and
write the address

No new instructions needed

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How to keep the OS
device-neutral?
— Use abstraction!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The file system stack in Linux

Application 2
POSIX API [open, read, write, close, etc.]
File System Raw
Generic Block Interface [block read/write] §
Generic Block Layer FE)
Specific Block Interface [protocol-specific read/write] _aia

Device Driver [SCSI, ATA, etc.]

70% of the code in Linux is found in device drivers —
the main source of kernel crashes

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Disadvantages of using abstraction

Devices with specific capabilities still need to
present a generic interface, and specific capabilities

get unused

Richer error reporting in SCSI than ATA/IDE
Only a generic 1O error will be presented to the file system

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Block Devices

Block devices

Stores information in fixed-size blocks, each with
its own address

Possible to read or write each block independently

Use read(), write(), Iseek() system calls to access
Raw |/O access can also be allowed

raw /O may be needed for file system checkers, disk
defragmenters, and database systems

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Character Devices

Delivers or accepts a stream of characters — like pipes
Unbuffered, direct access

Examples: serial ports, parallel ports, audio devices

Not addressable and does not have any seek operation

Both block and character devices can be accessed by using
the device file in Linux and macQOS, in [dev

Note: device files in [dev do not have to correspond to
actual physical devices (e.g., /[dev/null, /[dev/random)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

What we've covered so far

Three Easy Pieces: Chapter 36.1-36.7 (/O
Devices)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

