
Journaling File Systems

Operating Systems 
Baochun Li 

University of Toronto



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Review: File System Implementation

2

4 FILE SYSTEM IMPLEMENTATION

simple structure: each bit is used to indicate whether the corresponding
object/block is free (0) or in-use (1). And thus our new on-disk layout,
with an inode bitmap (i) and a data bitmap (d):

0
i d I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

You may notice that it is a bit of overkill to use an entire 4-KB block for
these bitmaps; such a bitmap can track whether 32K objects are allocated,
and yet we only have 80 inodes and 56 data blocks. However, we just use
an entire 4-KB block for each of these bitmaps for simplicity.

The careful reader (i.e., the reader who is still awake) may have no-
ticed there is one block left in the design of the on-disk structure of our
very simple file system. We reserve this for the superblock, denoted by
an S in the diagram below. The superblock contains information about
this particular file system, including, for example, how many inodes and
data blocks are in the file system (80 and 56, respectively in this instance),
where the inode table begins (block 3), and so forth. It will likely also
include a magic number of some kind to identify the file system type (in
this case, vsfs).

S
0

i d I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

Thus, when mounting a file system, the operating system will read
the superblock first, to initialize various parameters, and then attach the
volume to the file-system tree. When files within the volume are accessed,
the system will thus know exactly where to look for the needed on-disk
structures.

40.3 File Organization: The Inode

One of the most important on-disk structures of a file system is the
inode; virtually all file systems have a structure similar to this. The name
inode is short for index node, the historical name given to it in UNIX

[RT74] and possibly earlier systems, used because these nodes were orig-
inally arranged in an array, and the array indexed into when accessing a
particular inode.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

FILE SYSTEM IMPLEMENTATION 5

ASIDE: DATA STRUCTURE — THE INODE

The inode is the generic name that is used in many file systems to de-
scribe the structure that holds the metadata for a given file, such as its
length, permissions, and the location of its constituent blocks. The name
goes back at least as far as UNIX (and probably further back to Multics
if not earlier systems); it is short for index node, as the inode number is
used to index into an array of on-disk inodes in order to find the inode
of that number. As we’ll see, design of the inode is one key part of file
system design. Most modern systems have some kind of structure like
this for every file they track, but perhaps call them different things (such
as dnodes, fnodes, etc.).

Each inode is implicitly referred to by a number (called the i-number),
which we’ve earlier called the low-level name of the file. In vsfs (and
other simple file systems), given an i-number, you should directly be able
to calculate where on the disk the corresponding inode is located. For ex-
ample, take the inode table of vsfs as above: 20-KB in size (5 4-KB blocks)
and thus consisting of 80 inodes (assuming each inode is 256 bytes); fur-
ther assume that the inode region starts at 12KB (i.e, the superblock starts
at 0KB, the inode bitmap is at address 4KB, the data bitmap at 8KB, and
thus the inode table comes right after). In vsfs, we thus have the following
layout for the beginning of the file system partition (in closeup view):

Super i-bmap d-bmap

0KB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

The Inode Table (Closeup)

0 1 2 3
4 5 6 7
8 9 1011

12131415

16171819
20212223
24252627
28293031

32333435
36373839
40414243
44454647

48495051
52535455
56575859
60616263

64656667
68697071
72737475
76777879

iblock 0 iblock 1 iblock 2 iblock 3 iblock 4

To read inode number 32, the file system would first calculate the off-
set into the inode region (32 · sizeof(inode) or 8192), add it to the start
address of the inode table on disk (inodeStartAddr = 12KB), and thus
arrive upon the correct byte address of the desired block of inodes: 20KB.
Recall that disks are not byte addressable, but rather consist of a large
number of addressable sectors, usually 512 bytes. Thus, to fetch the block
of inodes that contains inode 32, the file system would issue a read to sec-
tor 20×1024

512
, or 40, to fetch the desired inode block. More generally, the

sector address sector of the inode block can be calculated as follows:

blk = (inumber * sizeof(inode_t)) / blockSize;
sector = ((blk * blockSize) + inodeStartAddr) / sectorSize;

Inside each inode is virtually all of the information you need about a
file: its type (e.g., regular file, directory, etc.), its size, the number of blocks
allocated to it, protection information (such as who owns the file, as well

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

File Read Timeline

3

FILE SYSTEM IMPLEMENTATION 11

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data data data

[0] [1] [2]
read

read
open(bar) read

read
read
read

read() read
write
read

read() read
write
read

read() read
write

Figure 40.3: File Read Timeline (Time Increasing Downward)

Reading A File From Disk

In this simple example, let us first assume that you want to simply open
a file (e.g., /foo/bar), read it, and then close it. For this simple example,
let’s assume the file is just 12KB in size (i.e., 3 blocks).

When you issue an open("/foo/bar", O RDONLY) call, the file sys-
tem first needs to find the inode for the file bar, to obtain some basic in-
formation about the file (permissions information, file size, etc.). To do so,
the file system must be able to find the inode, but all it has right now is
the full pathname. The file system must traverse the pathname and thus
locate the desired inode.

All traversals begin at the root of the file system, in the root directory
which is simply called /. Thus, the first thing the FS will read from disk
is the inode of the root directory. But where is this inode? To find an
inode, we must know its i-number. Usually, we find the i-number of a file
or directory in its parent directory; the root has no parent (by definition).
Thus, the root inode number must be “well known”; the FS must know
what it is when the file system is mounted. In most UNIX file systems,
the root inode number is 2. Thus, to begin the process, the FS reads in the
block that contains inode number 2 (the first inode block).

Once the inode is read in, the FS can look inside of it to find pointers to
data blocks, which contain the contents of the root directory. The FS will
thus use these on-disk pointers to read through the directory, in this case
looking for an entry for foo. By reading in one or more directory data
blocks, it will find the entry for foo; once found, the FS will also have
found the inode number of foo (say it is 44) which it will need next.

The next step is to recursively traverse the pathname until the desired
inode is found. In this example, the FS reads the block containing the

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

File Creation Timeline

4

FILE SYSTEM IMPLEMENTATION 13

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data data data

[0] [1] [2]
read

read
read

read
create read

(/foo/bar) write
write

read
write

write
read

read
write() write

write
write
read

read
write() write

write
write
read

read
write() write

write
write

Figure 40.4: File Creation Timeline (Time Increasing Downward)

which block to allocate to the file and thus update other structures of the
disk accordingly (e.g., the data bitmap and inode). Thus, each write to a
file logically generates five I/Os: one to read the data bitmap (which is
then updated to mark the newly-allocated block as used), one to write the
bitmap (to reflect its new state to disk), two more to read and then write
the inode (which is updated with the new block’s location), and finally
one to write the actual block itself.

The amount of write traffic is even worse when one considers a sim-
ple and common operation such as file creation. To create a file, the file
system must not only allocate an inode, but also allocate space within
the directory containing the new file. The total amount of I/O traffic to
do so is quite high: one read to the inode bitmap (to find a free inode),
one write to the inode bitmap (to mark it allocated), one write to the new
inode itself (to initialize it), one to the data of the directory (to link the
high-level name of the file to its inode number), and one read and write
to the directory inode to update it. If the directory needs to grow to ac-
commodate the new entry, additional I/Os (i.e., to the data bitmap, and
the new directory block) will be needed too. All that just to create a file!

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What happens if power is lost 
when updating on-disk data 
structures?

The Crash Consistency Problem



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Crash consistency

Imagine that you need to update two on-disk data 
structures, A and B, to complete an operation 
One of these will reach the disk first 
If the system crashes after one write completes, the 
on-disk structure will be left in an inconsistent state

6



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

An example

Append 4KB to the end of a file 
Open the file, seek to the end, issue a single 4KB write 

7

2 CRASH CONSISTENCY: FSCK AND JOURNALING

In this chapter, we’ll describe this problem in more detail, and look
at some methods file systems have used to overcome it. We’ll begin by
examining the approach taken by older file systems, known as fsck or the
file system checker. We’ll then turn our attention to another approach,
known as journaling (also known as write-ahead logging), a technique
which adds a little bit of overhead to each write but recovers more quickly
from crashes or power losses. We will discuss the basic machinery of
journaling, including a few different flavors of journaling that Linux ext3
[T98,PAA05] (a relatively modern journaling file system) implements.

42.1 A Detailed Example

To kick off our investigation of journaling, let’s look at an example.
We’ll need to use a workload that updates on-disk structures in some
way. Assume here that the workload is simple: the append of a single
data block to an existing file. The append is accomplished by opening the
file, calling lseek() to move the file offset to the end of the file, and then
issuing a single 4KB write to the file before closing it.

Let’s also assume we are using standard simple file system structures
on the disk, similar to file systems we have seen before. This tiny example
includes an inode bitmap (with just 8 bits, one per inode), a data bitmap
(also 8 bits, one per data block), inodes (8 total, numbered 0 to 7, and
spread across four blocks), and data blocks (8 total, numbered 0 to 7).
Here is a diagram of this file system:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v1]
Da

If you look at the structures in the picture, you can see that a single inode
is allocated (inode number 2), which is marked in the inode bitmap, and a
single allocated data block (data block 4), also marked in the data bitmap.
The inode is denoted I[v1], as it is the first version of this inode; it will
soon be updated (due to the workload described above).

Let’s peek inside this simplified inode too. Inside of I[v1], we see:

owner : remzi

permissions : read-write

size : 1

pointer : 4

pointer : null

pointer : null

pointer : null

In this simplified inode, the size of the file is 1 (it has one block al-
located), the first direct pointer points to block 4 (the first data block of
the file, Da), and all three other direct pointers are set to null (indicating

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

2 CRASH CONSISTENCY: FSCK AND JOURNALING

In this chapter, we’ll describe this problem in more detail, and look
at some methods file systems have used to overcome it. We’ll begin by
examining the approach taken by older file systems, known as fsck or the
file system checker. We’ll then turn our attention to another approach,
known as journaling (also known as write-ahead logging), a technique
which adds a little bit of overhead to each write but recovers more quickly
from crashes or power losses. We will discuss the basic machinery of
journaling, including a few different flavors of journaling that Linux ext3
[T98,PAA05] (a relatively modern journaling file system) implements.

42.1 A Detailed Example

To kick off our investigation of journaling, let’s look at an example.
We’ll need to use a workload that updates on-disk structures in some
way. Assume here that the workload is simple: the append of a single
data block to an existing file. The append is accomplished by opening the
file, calling lseek() to move the file offset to the end of the file, and then
issuing a single 4KB write to the file before closing it.

Let’s also assume we are using standard simple file system structures
on the disk, similar to file systems we have seen before. This tiny example
includes an inode bitmap (with just 8 bits, one per inode), a data bitmap
(also 8 bits, one per data block), inodes (8 total, numbered 0 to 7, and
spread across four blocks), and data blocks (8 total, numbered 0 to 7).
Here is a diagram of this file system:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v1]
Da

If you look at the structures in the picture, you can see that a single inode
is allocated (inode number 2), which is marked in the inode bitmap, and a
single allocated data block (data block 4), also marked in the data bitmap.
The inode is denoted I[v1], as it is the first version of this inode; it will
soon be updated (due to the workload described above).

Let’s peek inside this simplified inode too. Inside of I[v1], we see:

owner : remzi

permissions : read-write

size : 1

pointer : 4

pointer : null

pointer : null

pointer : null

In this simplified inode, the size of the file is 1 (it has one block al-
located), the first direct pointer points to block 4 (the first data block of
the file, Da), and all three other direct pointers are set to null (indicating

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Append needs three operations

8

CRASH CONSISTENCY: FSCK AND JOURNALING 3

that they are not used). Of course, real inodes have many more fields; see
previous chapters for more information.

When we append to the file, we are adding a new data block to it, and
thus must update three on-disk structures: the inode (which must point
to the new block as well as have a bigger size due to the append), the
new data block Db, and a new version of the data bitmap (call it B[v2]) to
indicate that the new data block has been allocated.

Thus, in the memory of the system, we have three blocks which we
must write to disk. The updated inode (inode version 2, or I[v2] for short)
now looks like this:

owner : remzi

permissions : read-write

size : 2

pointer : 4

pointer : 5

pointer : null

pointer : null

The updated data bitmap (B[v2]) now looks like this: 00001100. Finally,
there is the data block (Db), which is just filled with whatever it is users
put into files. Stolen music perhaps?

What we would like is for the final on-disk image of the file system to
look like this:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v2]
Da Db

To achieve this transition, the file system must perform three sepa-
rate writes to the disk, one each for the inode (I[v2]), bitmap (B[v2]), and
data block (Db). Note that these writes usually don’t happen immedi-
ately when the user issues a write() system call; rather, the dirty in-
ode, bitmap, and new data will sit in main memory (in the page cache
or buffer cache) for some time first; then, when the file system finally
decides to write them to disk (after say 5 seconds or 30 seconds), the file
system will issue the requisite write requests to the disk. Unfortunately,
a crash may occur and thus interfere with these updates to the disk. In
particular, if a crash happens after one or two of these writes have taken
place, but not all three, the file system could be left in a funny state.

Crash Scenarios

To understand the problem better, let’s look at some example crash sce-
narios. Imagine only a single write succeeds; there are thus three possible
outcomes, which we list here:

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

CRASH CONSISTENCY: FSCK AND JOURNALING 3

that they are not used). Of course, real inodes have many more fields; see
previous chapters for more information.

When we append to the file, we are adding a new data block to it, and
thus must update three on-disk structures: the inode (which must point
to the new block as well as have a bigger size due to the append), the
new data block Db, and a new version of the data bitmap (call it B[v2]) to
indicate that the new data block has been allocated.

Thus, in the memory of the system, we have three blocks which we
must write to disk. The updated inode (inode version 2, or I[v2] for short)
now looks like this:

owner : remzi

permissions : read-write

size : 2

pointer : 4

pointer : 5

pointer : null

pointer : null

The updated data bitmap (B[v2]) now looks like this: 00001100. Finally,
there is the data block (Db), which is just filled with whatever it is users
put into files. Stolen music perhaps?

What we would like is for the final on-disk image of the file system to
look like this:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v2]
Da Db

To achieve this transition, the file system must perform three sepa-
rate writes to the disk, one each for the inode (I[v2]), bitmap (B[v2]), and
data block (Db). Note that these writes usually don’t happen immedi-
ately when the user issues a write() system call; rather, the dirty in-
ode, bitmap, and new data will sit in main memory (in the page cache
or buffer cache) for some time first; then, when the file system finally
decides to write them to disk (after say 5 seconds or 30 seconds), the file
system will issue the requisite write requests to the disk. Unfortunately,
a crash may occur and thus interfere with these updates to the disk. In
particular, if a crash happens after one or two of these writes have taken
place, but not all three, the file system could be left in a funny state.

Crash Scenarios

To understand the problem better, let’s look at some example crash sce-
narios. Imagine only a single write succeeds; there are thus three possible
outcomes, which we list here:

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Crash scenarios: one write succeeded

Just the data block is written to the disk 
Not a problem, the file system is still consistent 

Just the updated inode is written to the disk 
If we trust the inode, we will read garbage data from the data 
block 
We also have file-system inconsistency, since the on-disk 
bitmap is saying that the block is not used, but the inode 
disagrees 

Just the updated bitmap is written to the disk 
File-system inconsistency — “space leak” in the file system

9



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Crash scenarios: two writes succeeded

The inode and bitmap are written, not the data block 
Consistent, but garbage data 

The inode and the data block are written, not the 
bitmap 

inode pointing to the correct data, but the bitmap is not 
consistent 

The bitmap and the data block are written, not the 
inode 

Inconsistency between the bitmap and the inode 
No idea which file the data block belongs to

10



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Move the file system from one 
consistent state to another, 
atomically

Objective of crash consistency



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solution #1: The File System Checker

Idea: let inconsistencies happen, and fix them later 
when rebooting 
In UNIX: fsck 

Scans the superblock: sanity checks 
Scans the inodes to build a correct version of the data 
bitmap, and check if it is consistent with the one in the file 
system — trust the inodes 
Check the reference count in each inode, and see if it is 
consistent with the directory structure — if a file is not in any 
directory, add to lost+found 

Major problem: too slow
12



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solution #2: Journaling

Idea: write-ahead logging, similar to databases 
Famous examples: Linux ext3, ext4, ReiserFS, IBM’s JFS, SGI’s XFS 
(ported to Linux), Windows NTFS 
Before overwriting the structures (bitmap, inode, data block), first write 
down a little note somewhere else in a well-known location 
Write what you are about to do in a log 

Example: Linux ext3 

13

CRASH CONSISTENCY: FSCK AND JOURNALING 7

mencing a search-the-entire-house-for-keys recovery algorithm, starting in
the basement and working your way through every room. It works but is
wasteful. Thus, as disks (and RAIDs) grew, researchers and practitioners
started to look for other solutions.

42.3 Solution #2: Journaling (or Write-Ahead Logging)

Probably the most popular solution to the consistent update problem
is to steal an idea from the world of database management systems. That
idea, known as write-ahead logging, was invented to address exactly this
type of problem. In file systems, we usually call write-ahead logging jour-
naling for historical reasons. The first file system to do this was Cedar
[H87], though many modern file systems use the idea, including Linux
ext3 and ext4, reiserfs, IBM’s JFS, SGI’s XFS, and Windows NTFS.

The basic idea is as follows. When updating the disk, before over-
writing the structures in place, first write down a little note (somewhere
else on the disk, in a well-known location) describing what you are about
to do. Writing this note is the “write ahead” part, and we write it to a
structure that we organize as a “log”; hence, write-ahead logging.

By writing the note to disk, you are guaranteeing that if a crash takes
places during the update (overwrite) of the structures you are updating,
you can go back and look at the note you made and try again; thus, you
will know exactly what to fix (and how to fix it) after a crash, instead
of having to scan the entire disk. By design, journaling thus adds a bit
of work during updates to greatly reduce the amount of work required
during recovery.

We’ll now describe how Linux ext3, a popular journaling file system,
incorporates journaling into the file system. Most of the on-disk struc-
tures are identical to Linux ext2, e.g., the disk is divided into block groups,
and each block group has an inode and data bitmap as well as inodes and
data blocks. The new key structure is the journal itself, which occupies
some small amount of space within the partition or on another device.
Thus, an ext2 file system (without journaling) looks like this:

Super Group 0 Group 1 . . . Group N

Assuming the journal is placed within the same file system image
(though sometimes it is placed on a separate device, or as a file within
the file system), an ext3 file system with a journal looks like this:

Super Journal Group 0 Group 1 . . . Group N

The real difference is just the presence of the journal, and of course,
how it is used.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

8 CRASH CONSISTENCY: FSCK AND JOURNALING

Data Journaling

Let’s look at a simple example to understand how data journaling works.
Data journaling is available as a mode with the Linux ext3 file system,
from which much of this discussion is based.

Say we have our canonical update again, where we wish to write the
inode (I[v2]), bitmap (B[v2]), and data block (Db) to disk again. Before
writing them to their final disk locations, we are now first going to write
them to the log (a.k.a. journal). This is what this will look like in the log:

Jo
u
rn

a
l

TxB I[v2] B[v2] Db TxE

You can see we have written five blocks here. The transaction begin
(TxB) tells us about this update, including information about the pend-
ing update to the file system (e.g., the final addresses of the blocks I[v2],
B[v2], and Db), as well as some kind of transaction identifier (TID). The
middle three blocks just contain the exact contents of the blocks them-
selves; this is known as physical logging as we are putting the exact
physical contents of the update in the journal (an alternate idea, logi-
cal logging, puts a more compact logical representation of the update in
the journal, e.g., “this update wishes to append data block Db to file X”,
which is a little more complex but can save space in the log and perhaps
improve performance). The final block (TxE) is a marker of the end of this
transaction, and will also contain the TID.

Once this transaction is safely on disk, we are ready to overwrite the
old structures in the file system; this process is called checkpointing.
Thus, to checkpoint the file system (i.e., bring it up to date with the pend-
ing update in the journal), we issue the writes I[v2], B[v2], and Db to
their disk locations as seen above; if these writes complete successfully,
we have successfully checkpointed the file system and are basically done.
Thus, our initial sequence of operations:

1. Journal write: Write the transaction, including a transaction-begin
block, all pending data and metadata updates, and a transaction-
end block, to the log; wait for these writes to complete.

2. Checkpoint: Write the pending metadata and data updates to their
final locations in the file system.

In our example, we would write TxB, I[v2], B[v2], Db, and TxE to the
journal first. When these writes complete, we would complete the update
by checkpointing I[v2], B[v2], and Db, to their final locations on disk.

Things get a little trickier when a crash occurs during the writes to
the journal. Here, we are trying to write the set of blocks in the transac-
tion (e.g., TxB, I[v2], B[v2], Db, TxE) to disk. One simple way to do this
would be to issue each one at a time, waiting for each to complete, and
then issuing the next. However, this is slow. Ideally, we’d like to issue

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What if a crash happens when journaling?

Writes may occur out of order due to the extensive use of 
caches in the disk itself 
If TxB, I[v2], B[v2], and TxE are written, but not the data 
block: 

When replaying the journal, garbage data will be written 
Bad for a data block, but if it is the superblock that is written, the file 
system may not be mountable!

14

CRASH CONSISTENCY: FSCK AND JOURNALING 9

ASIDE: FORCING WRITES TO DISK

To enforce ordering between two disk writes, modern file systems have
to take a few extra precautions. In olden times, forcing ordering between
two writes, A and B, was easy: just issue the write of A to the disk, wait
for the disk to interrupt the OS when the write is complete, and then issue
the write of B.
Things got slightly more complex due to the increased use of write caches
within disks. With write buffering enabled (sometimes called immediate
reporting), a disk will inform the OS the write is complete when it simply
has been placed in the disk’s memory cache, and has not yet reached
disk. If the OS then issues a subsequent write, it is not guaranteed to
reach the disk after previous writes; thus ordering between writes is not
preserved. One solution is to disable write buffering. However, more
modern systems take extra precautions and issue explicit write barriers;
such a barrier, when it completes, guarantees that all writes issued before
the barrier will reach disk before any writes issued after the barrier.
All of this machinery requires a great deal of trust in the correct oper-
ation of the disk. Unfortunately, recent research shows that some disk
manufacturers, in an effort to deliver “higher performing” disks, explic-
itly ignore write-barrier requests, thus making the disks seemingly run
faster but at the risk of incorrect operation [C+13, R+11]. As Kahan said,
the fast almost always beats out the slow, even if the fast is wrong.

all five block writes at once, as this would turn five writes into a single
sequential write and thus be faster. However, this is unsafe, for the fol-
lowing reason: given such a big write, the disk internally may perform
scheduling and complete small pieces of the big write in any order. Thus,
the disk internally may (1) write TxB, I[v2], B[v2], and TxE and only later
(2) write Db. Unfortunately, if the disk loses power between (1) and (2),
this is what ends up on disk:

Jo
u
rn

a
l

TxB
id=1

I[v2] B[v2] ?? TxE
id=1

Why is this a problem? Well, the transaction looks like a valid trans-
action (it has a begin and an end with matching sequence numbers). Fur-
ther, the file system can’t look at that fourth block and know it is wrong;
after all, it is arbitrary user data. Thus, if the system now reboots and
runs recovery, it will replay this transaction, and ignorantly copy the con-
tents of the garbage block ’??’ to the location where Db is supposed to
live. This is bad for arbitrary user data in a file; it is much worse if it hap-
pens to a critical piece of file system, such as the superblock, which could
render the file system unmountable.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Fixing the problem: Idea #1

First write all blocks except the TxE block to the journal: 

When all these writes complete, write the TxE block (using 
the “write barrier” mechanism supported by the disk): 

To make sure TxE is written atomically, make it 512 bytes. 

15

10 CRASH CONSISTENCY: FSCK AND JOURNALING

ASIDE: OPTIMIZING LOG WRITES

You may have noticed a particular inefficiency of writing to the log.
Namely, the file system first has to write out the transaction-begin block
and contents of the transaction; only after these writes complete can the
file system send the transaction-end block to disk. The performance im-
pact is clear, if you think about how a disk works: usually an extra rota-
tion is incurred (think about why).
One of our former graduate students, Vijayan Prabhakaran, had a simple
idea to fix this problem [P+05]. When writing a transaction to the journal,
include a checksum of the contents of the journal in the begin and end
blocks. Doing so enables the file system to write the entire transaction at
once, without incurring a wait; if, during recovery, the file system sees
a mismatch in the computed checksum versus the stored checksum in
the transaction, it can conclude that a crash occurred during the write
of the transaction and thus discard the file-system update. Thus, with a
small tweak in the write protocol and recovery system, a file system can
achieve faster common-case performance; on top of that, the system is
slightly more reliable, as any reads from the journal are now protected by
a checksum.
This simple fix was attractive enough to gain the notice of Linux file sys-
tem developers, who then incorporated it into the next generation Linux
file system, called (you guessed it!) Linux ext4. It now ships on mil-
lions of machines worldwide, including the Android handheld platform.
Thus, every time you write to disk on many Linux-based systems, a little
code developed at Wisconsin makes your system a little faster and more
reliable.

To avoid this problem, the file system issues the transactional write in
two steps. First, it writes all blocks except the TxE block to the journal,
issuing these writes all at once. When these writes complete, the journal
will look something like this (assuming our append workload again):

Jo
u
rn

a
l

TxB
id=1

I[v2] B[v2] Db

When those writes complete, the file system issues the write of the TxE
block, thus leaving the journal in this final, safe state:

Jo
u
rn

a
l

TxB
id=1

I[v2] B[v2] Db TxE
id=1

An important aspect of this process is the atomicity guarantee pro-
vided by the disk. It turns out that the disk guarantees that any 512-byte

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

10 CRASH CONSISTENCY: FSCK AND JOURNALING

ASIDE: OPTIMIZING LOG WRITES

You may have noticed a particular inefficiency of writing to the log.
Namely, the file system first has to write out the transaction-begin block
and contents of the transaction; only after these writes complete can the
file system send the transaction-end block to disk. The performance im-
pact is clear, if you think about how a disk works: usually an extra rota-
tion is incurred (think about why).
One of our former graduate students, Vijayan Prabhakaran, had a simple
idea to fix this problem [P+05]. When writing a transaction to the journal,
include a checksum of the contents of the journal in the begin and end
blocks. Doing so enables the file system to write the entire transaction at
once, without incurring a wait; if, during recovery, the file system sees
a mismatch in the computed checksum versus the stored checksum in
the transaction, it can conclude that a crash occurred during the write
of the transaction and thus discard the file-system update. Thus, with a
small tweak in the write protocol and recovery system, a file system can
achieve faster common-case performance; on top of that, the system is
slightly more reliable, as any reads from the journal are now protected by
a checksum.
This simple fix was attractive enough to gain the notice of Linux file sys-
tem developers, who then incorporated it into the next generation Linux
file system, called (you guessed it!) Linux ext4. It now ships on mil-
lions of machines worldwide, including the Android handheld platform.
Thus, every time you write to disk on many Linux-based systems, a little
code developed at Wisconsin makes your system a little faster and more
reliable.

To avoid this problem, the file system issues the transactional write in
two steps. First, it writes all blocks except the TxE block to the journal,
issuing these writes all at once. When these writes complete, the journal
will look something like this (assuming our append workload again):

Jo
u
rn

a
l

TxB
id=1

I[v2] B[v2] Db

When those writes complete, the file system issues the write of the TxE
block, thus leaving the journal in this final, safe state:

Jo
u
rn

a
l

TxB
id=1

I[v2] B[v2] Db TxE
id=1

An important aspect of this process is the atomicity guarantee pro-
vided by the disk. It turns out that the disk guarantees that any 512-byte

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Fixing the problem: Idea #2

When writing a transaction to a journal, include a 
checksum in the TxB and TxE blocks 

If there is a mismatch between the stored checksum and the 
computed one, a crash has occurred 
ACM SOSP 2005 paper, eventually used in Linux ext4

16



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Recovery

If a crash happens before the transaction is logged, do 
nothing and skip the pending update 
For those transactions that committed (TxE block written) 
successfully 

Redo the log by replaying all committed transactions

17



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Performance and conserving space for logs

To improve performance, buffer all the updates in the 
memory cache as a global transaction, and avoid 
excessive writes to the disk 
Some time after the on-disk structures are updated 
(called “checkpoint”), mark the transaction free in the 
journal by updating a journaling superblock

18

CRASH CONSISTENCY: FSCK AND JOURNALING 13

oldest and newest non-checkpointed transactions in the log in a journal
superblock; all other space is free. Here is a graphical depiction:

Jo
u
rn

a
l

Journal

Super
Tx1 Tx2 Tx3 Tx4 Tx5 ...

In the journal superblock (not to be confused with the main file system
superblock), the journaling system records enough information to know
which transactions have not yet been checkpointed, and thus reduces re-
covery time as well as enables re-use of the log in a circular fashion. And
thus we add another step to our basic protocol:

1. Journal write: Write the contents of the transaction (containing TxB
and the contents of the update) to the log; wait for these writes to
complete.

2. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction is
now committed.

3. Checkpoint: Write the contents of the update to their final locations
within the file system.

4. Free: Some time later, mark the transaction free in the journal by
updating the journal superblock.

Thus we have our final data journaling protocol. But there is still a
problem: we are writing each data block to the disk twice, which is a
heavy cost to pay, especially for something as rare as a system crash. Can
you figure out a way to retain consistency without writing data twice?

Metadata Journaling

Although recovery is now fast (scanning the journal and replaying a few
transactions as opposed to scanning the entire disk), normal operation
of the file system is slower than we might desire. In particular, for each
write to disk, we are now also writing to the journal first, thus doubling
write traffic; this doubling is especially painful during sequential write
workloads, which now will proceed at half the peak write bandwidth of
the drive. Further, between writes to the journal and writes to the main
file system, there is a costly seek, which adds noticeable overhead for
some workloads.

Because of the high cost of writing every data block to disk twice, peo-
ple have tried a few different things in order to speed up performance.
For example, the mode of journaling we described above is often called
data journaling (as in Linux ext3), as it journals all user data (in addition
to the metadata of the file system). A simpler (and more common) form
of journaling is sometimes called ordered journaling (or just metadata

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Data journaling: a timeline

19

16 CRASH CONSISTENCY: FSCK AND JOURNALING

Journal File System
TxB Contents TxE Metadata Data

(metadata) (data)

issue issue issue
complete

complete
complete

issue
complete

issue issue
complete

complete

Figure 42.1: Data Journaling Timeline

Now assume a crash occurs and all of this information is still in the
log. During replay, the recovery process simply replays everything in
the log, including the write of directory data in block 1000; the replay
thus overwrites the user data of current file foobar with old directory
contents! Clearly this is not a correct recovery action, and certainly it will
be a surprise to the user when reading the file foobar.

There are a number of solutions to this problem. One could, for ex-
ample, never reuse blocks until the delete of said blocks is checkpointed
out of the journal. What Linux ext3 does instead is to add a new type
of record to the journal, known as a revoke record. In the case above,
deleting the directory would cause a revoke record to be written to the
journal. When replaying the journal, the system first scans for such re-
voke records; any such revoked data is never replayed, thus avoiding the
problem mentioned above.

Wrapping Up Journaling: A Timeline

Before ending our discussion of journaling, we summarize the protocols
we have discussed with timelines depicting each of them. Figure 42.1
shows the protocol when journaling data as well as metadata, whereas
Figure 42.2 shows the protocol when journaling only metadata.

In each figure, time increases in the downward direction, and each row
in the figure shows the logical time that a write can be issued or might
complete. For example, in the data journaling protocol (Figure 42.1), the
writes of the transaction begin block (TxB) and the contents of the trans-
action can logically be issued at the same time, and thus can be completed
in any order; however, the write to the transaction end block (TxE) must
not be issued until said previous writes complete. Similarly, the check-
pointing writes to data and metadata blocks cannot begin until the trans-
action end block has committed. Horizontal dashed lines show where
write-ordering requirements must be obeyed.

A similar timeline is shown for the metadata journaling protocol. Note
that the data write can logically be issued at the same time as the writes

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

But we are still writing 
each data block to the 

disk twice!



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Metadata journaling

Writing each data block to the disk twice is a heavy cost to 
pay for rare crashes! 
Idea: the user data is not written to the journal at all 

If we wish to make sure that the inode will not point to 
garbage data blocks, simply write data blocks first before 
writing the metadata to the journal 

Both Windows NTFS and SGI’s XFS (ported to Linux) use metadata 
journaling — my two favourites!

21

14 CRASH CONSISTENCY: FSCK AND JOURNALING

journaling), and it is nearly the same, except that user data is not writ-
ten to the journal. Thus, when performing the same update as above, the
following information would be written to the journal:

Jo
u
rn

a
l

TxB I[v2] B[v2] TxE

The data block Db, previously written to the log, would instead be
written to the file system proper, avoiding the extra write; given that most
I/O traffic to the disk is data, not writing data twice substantially reduces
the I/O load of journaling. The modification does raise an interesting
question, though: when should we write data blocks to disk?

Let’s again consider our example append of a file to understand the
problem better. The update consists of three blocks: I[v2], B[v2], and
Db. The first two are both metadata and will be logged and then check-
pointed; the latter will only be written once to the file system. When
should we write Db to disk? Does it matter?

As it turns out, the ordering of the data write does matter for metadata-
only journaling. For example, what if we write Db to disk after the trans-
action (containing I[v2] and B[v2]) completes? Unfortunately, this ap-
proach has a problem: the file system is consistent but I[v2] may end up
pointing to garbage data. Specifically, consider the case where I[v2] and
B[v2] are written but Db did not make it to disk. The file system will then
try to recover. Because Db is not in the log, the file system will replay
writes to I[v2] and B[v2], and produce a consistent file system (from the
perspective of file-system metadata). However, I[v2] will be pointing to
garbage data, i.e., at whatever was in the slot where Db was headed.

To ensure this situation does not arise, some file systems (e.g., Linux
ext3) write data blocks (of regular files) to the disk first, before related
metadata is written to disk. Specifically, the protocol is as follows:

1. Data write: Write data to final location; wait for completion
(the wait is optional; see below for details).

2. Journal metadata write: Write the begin block and metadata to the
log; wait for writes to complete.

3. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction (in-
cluding data) is now committed.

4. Checkpoint metadata: Write the contents of the metadata update
to their final locations within the file system.

5. Free: Later, mark the transaction free in journal superblock.

By forcing the data write first, a file system can guarantee that a pointer
will never point to garbage. Indeed, this rule of “write the pointed to ob-
ject before the object with the pointer to it” is at the core of crash consis-
tency, and is exploited even further by other crash consistency schemes
[GP94] (see below for details).

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Metadata journaling: a timeline

22

CRASH CONSISTENCY: FSCK AND JOURNALING 17

Journal File System
TxB Contents TxE Metadata Data

(metadata)

issue issue issue
complete

complete
complete

issue
complete

issue
complete

Figure 42.2: Metadata Journaling Timeline

to the transaction begin and the contents of the journal; however, it must
be issued and complete before the transaction end has been issued.

Finally, note that the time of completion marked for each write in the
timelines is arbitrary. In a real system, completion time is determined by
the I/O subsystem, which may reorder writes to improve performance.
The only guarantees about ordering that we have are those that must
be enforced for protocol correctness (and are shown via the horizontal
dashed lines in the figures).

42.4 Solution #3: Other Approaches

We’ve thus far described two options in keeping file system metadata
consistent: a lazy approach based on fsck, and a more active approach
known as journaling. However, these are not the only two approaches.
One such approach, known as Soft Updates [GP94], was introduced by
Ganger and Patt. This approach carefully orders all writes to the file sys-
tem to ensure that the on-disk structures are never left in an inconsis-
tent state. For example, by writing a pointed-to data block to disk before
the inode that points to it, we can ensure that the inode never points to
garbage; similar rules can be derived for all the structures of the file sys-
tem. Implementing Soft Updates can be a challenge, however; whereas
the journaling layer described above can be implemented with relatively
little knowledge of the exact file system structures, Soft Updates requires
intricate knowledge of each file system data structure and thus adds a fair
amount of complexity to the system.

Another approach is known as copy-on-write (yes, COW), and is used
in a number of popular file systems, including Sun’s ZFS [B07]. This tech-
nique never overwrites files or directories in place; rather, it places new
updates to previously unused locations on disk. After a number of up-
dates are completed, COW file systems flip the root structure of the file
system to include pointers to the newly updated structures. Doing so
makes keeping the file system consistent straightforward. We’ll be learn-
ing more about this technique when we discuss the log-structured file
system (LFS) in a future chapter; LFS is an early example of a COW.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Tricky case: block reuse with deletion

The user adds an entry to a directory, foo, by creating a file 
The content of this directory (say, data block 1000) will be 
written to the log (metadata journaling) 

23

CRASH CONSISTENCY: FSCK AND JOURNALING 15

In most systems, metadata journaling (akin to ordered journaling of
ext3) is more popular than full data journaling. For example, Windows
NTFS and SGI’s XFS both use some form of metadata journaling. Linux
ext3 gives you the option of choosing either data, ordered, or unordered
modes (in unordered mode, data can be written at any time). All of these
modes keep metadata consistent; they vary in their semantics for data.

Finally, note that forcing the data write to complete (Step 1) before
issuing writes to the journal (Step 2) is not required for correctness, as
indicated in the protocol above. Specifically, it would be fine to issue data
writes as well as the transaction-begin block and metadata to the journal;
the only real requirement is that Steps 1 and 2 complete before the issuing
of the journal commit block (Step 3).

Tricky Case: Block Reuse

There are some interesting corner cases that make journaling more tricky,
and thus are worth discussing. A number of them revolve around block
reuse; as Stephen Tweedie (one of the main forces behind ext3) said:

“What’s the hideous part of the entire system? ... It’s deleting files.
Everything to do with delete is hairy. Everything to do with delete...
you have nightmares around what happens if blocks get deleted and
then reallocated.” [T00]

The particular example Tweedie gives is as follows. Suppose you are
using some form of metadata journaling (and thus data blocks for files
are not journaled). Let’s say you have a directory called foo. The user
adds an entry to foo (say by creating a file), and thus the contents of
foo (because directories are considered metadata) are written to the log;
assume the location of the foo directory data is block 1000. The log thus
contains something like this:

Jo
u

rn
a

l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

At this point, the user deletes everything in the directory as well as the
directory itself, freeing up block 1000 for reuse. Finally, the user creates a
new file (say foobar), which ends up reusing the same block (1000) that
used to belong to foo. The inode of foobar is committed to disk, as is
its data; note, however, because metadata journaling is in use, only the
inode of foobar is committed to the journal; the newly-written data in
block 1000 in the file foobar is not journaled.

Jo
u

rn
a

l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

TxB
id=2

I[foobar]
ptr:1000

TxE
id=2

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Tricky case: block reuse with deletion

The user then deletes everything in the directory as well as 
the directory itself, freeing up the data block 1000 for reuse 
Then the user creates a new file, foobar, which reuses 
block 1000 
foobar’s inode and data are committed to the disk, but only 
its inode is committed to the journal 
During recovery, the replay overwrites foobar’s data with 
the old directory!

24

CRASH CONSISTENCY: FSCK AND JOURNALING 15

In most systems, metadata journaling (akin to ordered journaling of
ext3) is more popular than full data journaling. For example, Windows
NTFS and SGI’s XFS both use some form of metadata journaling. Linux
ext3 gives you the option of choosing either data, ordered, or unordered
modes (in unordered mode, data can be written at any time). All of these
modes keep metadata consistent; they vary in their semantics for data.

Finally, note that forcing the data write to complete (Step 1) before
issuing writes to the journal (Step 2) is not required for correctness, as
indicated in the protocol above. Specifically, it would be fine to issue data
writes as well as the transaction-begin block and metadata to the journal;
the only real requirement is that Steps 1 and 2 complete before the issuing
of the journal commit block (Step 3).

Tricky Case: Block Reuse

There are some interesting corner cases that make journaling more tricky,
and thus are worth discussing. A number of them revolve around block
reuse; as Stephen Tweedie (one of the main forces behind ext3) said:

“What’s the hideous part of the entire system? ... It’s deleting files.
Everything to do with delete is hairy. Everything to do with delete...
you have nightmares around what happens if blocks get deleted and
then reallocated.” [T00]

The particular example Tweedie gives is as follows. Suppose you are
using some form of metadata journaling (and thus data blocks for files
are not journaled). Let’s say you have a directory called foo. The user
adds an entry to foo (say by creating a file), and thus the contents of
foo (because directories are considered metadata) are written to the log;
assume the location of the foo directory data is block 1000. The log thus
contains something like this:

Jo
u

rn
a

l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

At this point, the user deletes everything in the directory as well as the
directory itself, freeing up block 1000 for reuse. Finally, the user creates a
new file (say foobar), which ends up reusing the same block (1000) that
used to belong to foo. The inode of foobar is committed to disk, as is
its data; note, however, because metadata journaling is in use, only the
inode of foobar is committed to the journal; the newly-written data in
block 1000 in the file foobar is not journaled.

Jo
u

rn
a

l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

TxB
id=2

I[foobar]
ptr:1000

TxE
id=2

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Potential solutions

Idea #1: Never reuse blocks until the deletion of these 
blocks is checkpointed out of the journal 
Idea #2: (Linux ext3) add a new type of record to the journal, 
known as a revoke record 

Deleting a directory will cause a revoke record to be written to the 
journal 
When replaying the journal, the system first scans for such revoke 
records — any such revoked data is never replayed

25



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Alternative approach to journaling: Copy-on-Write

Used by Sun ZFS (Jeff Bonwick, who also designed slab 
allocation) and Apple APFS (used since MacOS 10.11 
High Sierra, iOS 11) 
Idea: never overwrites files or directories in place; rather, 
it places new updates to previously unused locations on 
disk 
After a number of updates are completed, copy-on-write 
file systems flip the root structure of the file system to 
include pointers to the newly updated structures

26



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 42 (Crash Consistency)

27


