Journaling File Systems

Operating Systems
Baochun Li
University of Toronto




Review: File System Implementation

, Inodes | Data Region
|D|D|D|D|D|D|D|D| [DID]D]D|DID]DID] |D|D|D|D|D|D|D|D|
15 16 23 24
Data Region
IDH)[HDHNEHDHNIDHDHHDH)MHDHNIDHDHHDH)MHDHNIDH)HNDH)MMDHM
39 40 47 48 55 56

The Inode Table (Closeup)
' iblock 0 ' iblock 1 ' iblock 2 ' iblock 3  iblock 4

0111213 [Te[17[18[19323334]35/48495051/64]65/66/6 7
" 4b 4[5 (6|7 [2012112223/36/37/3839525354/55/68/69[70[7 1
BSLLE SRS O ' 10 [10[11[24]25[26]27[40/41]42/43(56/57[58/59(72[73(7475
12[13[14/15/28/29/30[31/44145/46/4 71606 1162/63[76(77|78]79

OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

Super

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 2



File Read Timeline

data inode | root foo bar |root foo bar bar Dbar
bitmap bitmap |inode inode inode|data data data data data
0] [1] [2]
read
read
open(bar) read
read
read
read
read() read
write
read
read() read
write
read
read() read
write
Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 3



File Creation Timeline

data inode | root foo bar |root foo bar bar  Dbar
bitmap bitmap |inode inode inode|data data data data data
0] [1] [2]
read
read
read
read
create read
(/foo/bar) write
write
read
write
write
read
read
write() write
write
write
read
read
write() write
write
write
read
read
write() write
write
write
Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4



The Crash Consistency Problem

What happens if power is lost
when updating on-disk data
structures?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-



Crash consistency

Imagine that you need to update two on-disk data
structures, A and B, to complete an operation

One of these will reach the disk first

If the system crashes after one write completes, the
on-disk structure will be left in an inconsistent state

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6



An example

Append 4KB to the end of afile

Open the file, seek to the end, issue a single 4KB write

'E;‘rz:‘; ;r:z) Inodes Data Blocks
_____ i on

owner : remzil
permissions : read-write
slze . 1
polnter : 4
polnter : null
polnter : null
polnter : null

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto



Append needs three operations

'E;‘:]ZZ ;r:; Inodes Data Blocks
[v2]

----------------- Da | Db
owner : remzi
permissions : read-write
size 2 2
polnter !
polnter : 5
pointer : null
pointer : null

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8



Crash scenarios: one write succeeded

Just the data block is written to the disk

Not a problem, the file system is still consistent

Just the updated inode is written to the disk

If we trust the inode, we will read garbage data from the data
block

We also have file-system inconsistency, since the on-disk
bitmap is saying that the block is not used, but the inode

disagrees
Just the updated bitmap is written to the disk

File-system inconsistency — “space leak” in the file system

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto




Crash scenarios: two writes succeeded

The inode and bitmap are written, not the data block

Consistent, but garbage data

The inode and the data block are written, not the
bitmap

Inode pointing to the correct data, but the bitmap is not
consistent

The bitmap and the data block are written, not the
inode

Inconsistency between the bitmap and the inode
No idea which file the data block belongs to

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 10




Objective of crash consistency

Move the file system from one
consistent state to another,
atomically

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-



Solution #1: The File System Checker

Idea: let inconsistencies happen, and fix them later
when rebooting

In UNIX: fsck

Scans the superblock: sanity checks

Scans the inodes to build a correct version of the data
bitmap, and check if it is consistent with the one in the file
system — trust the inodes

Check the reference count in each inode, and see if it is
consistent with the directory structure — if a file is not in any
directory, add to lost+found

Major problem: too slow

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 12




Solution #2: Journaling

Idea: write-ahead logging, similar to databases

Famous examples: Linux ext3, ext4, ReiserFS, IBM's JFS, SGl's XFS
(ported to Linux), Windows NTFS

Before overwriting the structures (bitmap, inode, data block), first write
down a little note somewhere else in a well-known location

Write what you are about to do in alog

Example: Linux ext3

Super |Journal Group O Group 1 . Group N

TxB| I[v2] | B[v2] | Db [TxE >

Journal

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 13



What if a crash happens when journaling?

Writes may occur out of order due to the extensive use of
caches in the disk itself

If TxB, I[v2], B[v2], and TXE are written, but not the data
block:

Journal
—
P4
Wy

I[v2] B[v2] ?? |TxE >
id=1 id=1

When replaying the journal, garbage data will be written

Bad for a data block, but if it is the superblock that is written, the file
system may not be mountable!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 14
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————



Fixing the problem: Idea #1

First write all blocks except the TxE block to the journal:

TxB| I[v2] | B[v2] | Db
id=1

Journal

>

When all these writes complete, write the TxE block (using
the "write barrier” mechanism supported by the disk):

Journal
_|
X
w

v2] | B[v2] | Db [TXE
id=1 id=1

To make sure TXE is written atomically, make it 512 bytes.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

15




Fixing the problem: Idea #2

When writing a transaction to a journal, include a
checksum in the TxB and TxE blocks

If there is a mismatch between the stored checksum and the
computed one, a crash has occurred

ACM SOSP 2005 paper, eventually used in Linux ext4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 16
-



Recovery

If a crash happens before the transaction is logged, do
nothing and skip the pending update

For those transactions that committed (TxE block written)
successfully

Redo the log by replaying all committed transactions

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 17



Performance and conserving space for logs

To improve performance, buffer all the updates in the
memory cache as a global transaction, and avoid
excessive writes to the disk

Some time after the on-disk structures are updated
(called “checkpoint”), mark the transaction free in the
journal by updating a journaling superblock

I
Journal

Super

Tx1 Tx2 Tx3 Tx4 Tx5 >

Journal

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 18



Data journaling: a timeline

Journal File System
TxB Contents TxE Metadata  Data
(metadata) (data)
issue issue issue
complete
complete
complete
________________ issue |
complete
| issue  issue
complete
complete

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 19
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————



But we are still writing
each data block to the
disk twice!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto




Metadata journaling

Writing each data block to the disk twice is a heavy cost to
pay for rare crashes!

Idea: the user data is not written to the journal at all

TxB| I[v2] | B[v2] [TxE >

Journal

If we wish to make sure that the inode will not point to
garbage data blocks, simply write data blocks first before
writing the metadata to the journal

Both Windows NTFS and SGl's XFS (ported to Linux) use metadata
journaling — my two favourites!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 21




Metadata journaling: a timeline

Journal File System
TxB Contents TxE Metadata  Data
(metadata)
issue issue issue
complete
complete
complete
) issue )
complete
) issue )
complete

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 22




Tricky case: block reuse with deletion

The user adds an entry to a directory, foo, by creating a file

The content of this directory (say, data block 1000) will be
written to the log (metadata journaling)

I[foO] D[foo] TxE >
iId=1| ptr:1000 [final addr:1000] Id=1

Journal
_|
P4
Wy

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 23
-



Tricky case: block reuse with deletion

The user then deletes everything in the directory as well as
the directory itself, freeing up the data block 1000 for reuse

Then the user creates a new file, foobar, which reuses
block 1000

foobar's inode and data are committed to the disk, but only
its inode is committed to the journal

During recovery, the replay overwrites foobar’'s data with
the old directory!

TxB| I[foo] D[foo] TXE|TxB|I[foobar]| TXE >
iId=1{ ptr:1000 [final addr:1000] Id=1{id=2| ptr:1000 |id=2

Journal

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 24
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————



Potential solutions

Idea #1: Never reuse blocks until the deletion of these
blocks is checkpointed out of the journal

ldea #2: (Linux ext3) add a new type of record to the journal,
known as a revoke record

Deleting a directory will cause a revoke record to be written to the
journal

When replaying the journal, the system first scans for such revoke
records — any such revoked data is never replayed

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 25



Alternative approach to journaling: Copy-on-Write

Used by Sun ZFS (Jeff Bonwick, who also designhed slab
allocation) and Apple APFS (used since MacOS 10.11
High Sierra, 10S 11)

Idea: never overwrites files or directories in place; rather,
it places new updates to previously unused locations on
disk

After a number of updates are completed, copy-on-write
file systems flip the root structure of the file system to
include pointers to the newly updated structures

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 26




What we've covered so far

Three Easy Pieces: Chapter 42 (Crash Consistency)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 27
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————



