File System Implementation

Operating Systems
Baochun Li
University of Toronto

Objective: Virtualizing Persistent Storage

The file system provides the
mechanism for on-line storage
and access to file contents, and
resides permanently on
nonvolatile secondary storage.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hard Disk Drives

Organized as an array of sectors, each 512 bytes

Address space: the sector number, fromOton -1
Writing a single sector is guaranteed to be atomic

File systems usually combine multiple sectors into a
single block — say, 4KB in size

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 3

Hard Disk Drives

Disks have multiple platters

Each platter has an arm and a head
Different heads can access data in parallel

Each platter has multiple concentric tracks

Same set of tracks across all platters is a cylinder
Each track has multiple sectors

Track Platters _
< Cylinder

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4

Rotational delay and seek time

Rgtates this way Rgtates this way

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5

File Storage on Disk

Sector O: "“Master Boot Record” (MBR): contains the
partition map

Rest of disk divided into “partitions”
Partition: sequence of consecutive sectors

Each partition can be "“raw” (e.g., swap partition), or
“cooked,” containing its own file system

A bootable partition starts with a "boot block”

Contains a small program

Called a bootloader, this "boot program” reads in an OS
from the file system in that partition

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Booting the system

OS Boot — the legacy way

BIOS (Basic Input Output System) reads MBR, then reads & execs a boot
block in the bootable partition

OS Boot — the modern way

UEFI (Unified Extensible Firmware Interface) instead of BIOS
Active partition is no longer needed

Uses the GPT (GUID Partition Table) partitioning scheme, rather than
MBR, which only works with drives up to 2TB and is no longer needed

Can boot from drives 2.2TB or larger
Developed in C, rather than assembly
64-bit support and faster boot times

Supports secure boot

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 7

An Example Disk

-~" | Dboot
MBR code
N\
partition 1 \ e
\\\ table
partition 2
partition 3 boot partition
I oootpartiion |
partition 4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

A “"cooked"” partition with a file system

Active and bootable partition

UFS only, NTFS: stored in
master file table

/" UFS: boot block UFS: superblock
NTFS: partition boot sector|| NTFS: master file table

| |

boot block| volume control block | directories EFCBS data blocks

¥
of blocks, size of data blocks, free-block count, free-FCB count

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9

“Files” — bytes vs. disk sectors

Files are sequences of bytes
Granularity of file |/O is bytes
Disks are arrays of sectors (512 bytes)

Granularity of disk I/O is sectors
File data must be stored in sectors

A file system defines a block size

block size = 2n * sector size
Contiguous sectors are allocated to a block

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

File systems’ view of the disk partition

File systems view the disk partition as an array of
blocks

It needs to allocate blocks to file
It also needs to manage free space on disk

But how?
Objective:

Disk space utilized efficiently
Files can be accessed quickly

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 11

Try 1: Contiguous Allocation

All blocks in a file are contiguous on the disk

directory

file
count
tr
mail
list
f

start length

0
14
19
28

6

2

3
6
4
2

Idea:
_ AH#,//
count
0 1 2 3
f
4 5 6 7/
8 oL 1011
tr
121 |13 =B
16 (1718119
maill
201 251 224 23
24| |25 126 127
list
28129 _130[_131

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Contiguous Allocation

Advantages —

Simple to implement (only needs starting block & length of file)
Good performance (for sequential reading)

Disadvantages —

After deletions, disk becomes fragmented — external
fragmentation

Will need periodic compaction — time-consuming

If new file is placed at end of disk
No problem

If new file is placed into a "hole”

Must know a file's maximum possible size, at the time it is created!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Contiguous Allocation

What is it good for, then?
Good for CD-ROMs and DVDs

All file sizes are known in advance
Files are never deleted

UDF (Universal Disk Format)

Uses 30 bits to represent the length of a file

Accommodates up to 1GB
For DVD movies, 4 1-GB files may be necessary

Called extents
A good idea to use extents for file systems? — Veritas FS

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Try 2: Linked List Allocation

Each file is a sequence of blocks

First word in each block contains a pointer to the next block

block = pointer

Random access into
the file is slow!

4

8

12

16

20

24

28

\

/
\
0

1
5
13
117/

2]

25

29

2

1
1

/

?42

5

6

N
A
3
7/

directory

file
jeep

start
9

end
25

10

18

N

/

2

11

1S

U

23

26

30

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

27/

31

4

Linked List Allocation

Advantages —

No external fragmentation

The size of the file need not be declared when the file is
created

Disadvantages —

Can only be used for sequential access: random access is
slow

Space required by pointers: overhead and creates
iInconvenience of peculiar sizes per block

mitigated by using clusters of blocks as unit
but the use of clusters increases internal fragmentation
Reliability: a damaged block leads to a bad pointer

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 16
-

Variation: File Allocation Table (FAT)

Keep a table at the beginning of disk volume and in
memory

One entry per block on the disk

Each entry contains the address of the “next”
block

“End of file" marker is -1

A special value (0) indicates that the block is free
Used in MS-DOS and IBM 0S/2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

File Allocation Table (FAT)

Filg A starts here

Physical
block
0
1

2 10

/ 11

7
5

— 3 /

9

10 12

115_— 14

12 -1
13

1 -1
15

B starts here

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

-—— Unused block

File Allocation Table (FAT)

Random access

Search the linked list (but all in memory)
Directory entry needs only one number

The starting block number
Disadvantage —

Entire table must be in memory all at once!

Example:
20 GB =disk size
1 KB = block size
4 bytes = FAT entry size
80 MB of memory used just to store the FAT!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What should we do now?

The file system designer’s dilemma

If we don't cache the file allocation table, random access is slow

If we do cache it, we don't have enough memory!

But why do we need to cache the entire file allocation
table?

Can we cache only parts of the file allocation table,
corresponding to the files that are declared "open” by
the user programs?

We need to add “open” and “close” to the system-call interface
for the applications to “open” a file

Then we can work only with “open” files!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 20

Try 3: Indexed Allocation

Idea: Bring all the pointers together into one
location: the index block

Each file has its own index block: an array of disk-
block addresses
The ith entry points to the ith block of the file

The directory contains the address of the index block of
the file

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 21
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE————

Indexed allocation

P TN directory
S - file index block
o[] 1 Rz 3 leep 19
4[] 5 7

12 1131 |14 \[1

16 14z 118

20 121 122|123

24| |25 |26 |27

28 129 |30 31

A e

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 22

inodes in UNIX is the index block

Each inode (“index-node") contains

file attributes (permissions, timestamps, owner)
the index block

, A
File .
attributes ; —
- | Blocks
Enough space y on disk
for 10 pointers . -
\\y
L

inode _/

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

inodes in UNIX is the index block

But what if we have a large file?

If we increase the size of the index block, all files
(including small files) will use the new size for theirs

Solution: multi-level indexing

, A

File .

attributes p P

on disk

Enough space
for 12 pointers

iInode

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example inode in the Linux ext2 file system

Size Name What is this inode field for?
2 mode can this file be read /written/executed?
2 uid who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links_count how many hard links are there to this file?
4 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osdl an OS-dependent field
60 block a set of disk pointers (15 total)
4 generation file version (used by NFS)
4 file_acl a new permissions model beyond mode bits
4 dir_acl called access control lists

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing Directories with Linear List

"Kernel.h” — - inode
"Kernel.c” - J inode
"Main.c”

“Proj7.pdf” ”| inode
P - 5[Tinode
0S ~_

\ inode

But finding a file requires a linear search — expensive!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Searching for a File with a Path

We wish to search for a file fusr/bin/blitz

Locates the root directory (inode 2)

Looks up the string “usr” in the root directory for the inode
number of the [usr directory

The inode of the Jusr directory is fetched, string “bin”
searched

The inode of the [usr/bin directory is used to look up “blitz"
for its inode number

How do we improve its performance?

Caching all results of previous searches
Try to find a match for subsequent searches

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

27

Sharing Files

One file appears in several directories
Tree — DAG (Directed Acyclic Graph)

What if the file changes?
New disk blocks are used.
Better not store this info
In the directories!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hard Links and Symbolic Links

In Unix —

Hard links
Both directory entries point to the same inode
Symbolic links

One directory entry points to the file's inode
Other directory entries contains the “path”

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Hard Links

Assume inode number of "n" is 45

Directory “D"

1 n 1 2;5
lln" [-5

Directory “"G"
lln" [-5
IIQII 87

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hard Links

Assume inode number of “n" is 45
‘The file may have a
different name in /B/D/n

each director [CIF/G/n2

Directory “D"

Symbolic Links

Assume inode number of "n" is 45

Directory “D"

1 n 1 2;5
lln" [-5

Directory “"G"
lln" 91

IIQ" 87
. Separate file /\
; " inode = 91 - Cﬁ/D/n" Symbolic LinEI

N
Baochun Li, Department of Electrical and Computer Engineerin

Deleting a File

Directory entry is removed from directory
All blocks in file are returned to the free list
What about sharing?

Multiple links to one file (in Unix)
Hard Links

Put a "reference count” field in each inode

Counts the number of directories that point to the file

When removing file from directory, decrement the count

When count goes to zero, reclaim all blocks in the file
Symbolic Link

Remove the actual file (nhormal file deletion)
Symbolic link becomes “broken”

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Opening a file using the open() system call

The open() call passes a file name to the file system

It first searches the system-wide open-file table to see if the file
Is already in use by another process

If it is, a per-process open-file table entry is created, pointing to
the existing system-wide open-file table

If not, the directory structure is searched for the given file name

Parts of the directory structure are cached in memory to improve
performance

Once found, the File Control Block (inode in UNIX) is copied into
a system-wide open-file table in memory

This table not only stores the FCB, but also tracks the number of processes
that have the file open

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 34

Opening a file (continued)

An entry is then made in the per-process open-file
table, with a pointer to the entry in the system-wide
open-file table, and some other fields

A pointer to the current location in the file — for next read() or
write()

the access mode in which the file is open (read-only or
writable)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 35

The File Descriptor

The open() call returns an index to the corresponding
entry in the per-process open-file table

called a file descriptor in UNIX and BLITZ
called a file handle in Windows

This index will be used for subsequent read(), write(),
seek(), and close() system calls

User-level processes must not be allowed to use
pointers into kernel memory and cannot be allowed to
touch kernel data structures

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 36

The File Manager in BLITZ

class FileManager

superclass Object

fields

fileManagerLock: Mutex

fcbTable: array [MAX_NUMBER_OF_FILE_CONTROL_BLOCKS]

of FileControlBlock

anFCBBecameFree: Condition

fcbFreeList: List [FileControlBlock]

openFileTable: array [MAX_NUMBER_OF_OPEN_FILES]
of OpenFile

an0OpenFileBecameFree: Condition

openFileFreelList: List [OpenFile]

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 37

The File Control Block in BLITZ

class FileControlBlock superclass Listable

fields
fcbID: 1int
numberOfUsers: int —— count of OpenFiles pointing

startingSectorOfFile: int
sizeOfFileInBytes: int
bufferPtr: int
relativeSectorInBuffer: 1int
bufferIsDirty: bool

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 38
-

The OpenFile structure in BLITZ: Current position

class OpenFile superclass Listable
fields
kKind: 1int
currentPos: 1int
fcb: ptr to FileControlBlock
numberOfUsers: int —— count of Processes pointing

class ProcessControlBlock superclass Listable
fields

fileDescriptor: array [MAX_FILES_ PER_PROCESS] of
ptr to OpenFile

Why do we need to allow multiple PCBs to point to the same
OpenFile?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 39

Parent and child processes share an OpenFile

When a process is cloned with the fork() system call,

all open files in the parent process must be shared
with the child process, with the current position also
shared

We now needs reference counting in OpenFile,
similar to FCB

When the reference count goes to zero, return the OpenFile
to the free pool, and decrement the reference count in the
corresponding FCB

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

40

Managing free blocks

A bitmap: 1 =used, O = free

1.3 GB disk partition, 512-byte blocks: over 332 KB to
contain the bitmap — performance is only satisfactory if it
Is cached

1 TB disk with 4-KB blocks: 32 MB required!
A linked list of disk block numbers

Use a disk block to contain all the free block numbers

Use one block number in the disk block to point to the next
disk block

1 KB block size, 32 bit block numbers: 255 free blocks

500 GB disk partition: 488 million blocks in total, 1.9 million
blocks required to contain free block numbers!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 41

Keeping Track of Free Blocks
p—
.

free-space list head

N
—
fal

0 1

426 7

8L 1 9L |10 |11

12@}14 15

16| (17818 819

20 (21| |22/ |23

24| |25| _|26] |27

28| |29 |30 |31

..

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 42

Usually, several contiguous blocks may be allocated
or freed simultaneously

Idea: rather than keeping a list of n free disk
addresses, we can keep the address of the first free
block, and the number (n) of free contiguous blocks
that follow the first block

Each entry in the free-space list consists of a disk
address and a count

Used in Sun's ZFS

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 43

Creating and Deleting Files

Only needs to maintain one block of bitmaps in the
main memory (if bitmap is used)

A natural advantage is to be able to allocate free blocks
contiguously when a file is created

Only needs to maintain one block of free disk
blocks in the main memory (if linked list is used)

When a file is created, needed blocks are taken from the in-
memory block of free disk blocks

When it runs out, a new block of pointers is read in from the
disk

When a file is deleted, its blocks are added to the block, and
later written to disk when it is full

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 44

Improving File System Performance

Problem: Disk operations are slow!
Solution: The buffer cache

Upon a read() system call, first check if the needed
block is in the cache

If not, it is first read into the cache, and then copied to
wherever it is needed

Subsequent requests to the same block can be
satisfied without disk access

Needs a cache replacement algorithm when
the buffer cache is full: LRU is a good choice

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 45

Synchronous vs. asynchronous write

Write back (asynchronous write)

data are stored in the buffer cache and written back to
the disk at a later time asynchronously

Unix: update daemon uses the sync system call forces
all modified blocks to the disk every 30 seconds

Write through (synchronous write)

writes are not buffered (only reads are buffered)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 46

What we've covered so far

Three Easy Pieces: Chapter 37.1-37.3 (Hard Disk
Drives), Chapter 39 (Files and Directories), 40 (File
System Implementation)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 47
-

