
File System Implementation

Operating Systems

Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The file system provides the
mechanism for on-line storage
and access to file contents, and
resides permanently on
nonvolatile secondary storage.

Objective: Virtualizing Persistent Storage

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hard Disk Drives

Organized as an array of sectors, each 512 bytes

Address space: the sector number, from 0 to n - 1

Writing a single sector is guaranteed to be atomic

File systems usually combine multiple sectors into a
single block — say, 4KB in size

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hard Disk Drives

4

Disks have multiple platters

Each platter has an arm and a head

Different heads can access data in parallel

Each platter has multiple concentric tracks

Same set of tracks across all platters is a cylinder

Each track has multiple sectors

!

!"#$%&'()'*+,

! "#$%$&'()*&+,-.#/-*&/-(..*0$

1

2(3'&/-(..*0&'($&(4&(0+&(45&(&'*(5

1

6'*&5#77*0*4.&'*(5$&3(4&(33*$$&5(.(&/(0(--*-&

! 2(3'&/-(..*0&'($&+,-.#/-*&3143*4.0#3&.0(3%$

1

8(+*&$*.&17&.0(3%$&(301$$&(--&/-(..*0$&#$&(&39-#45*0

! 2(3'&.0(3%&'($&+,-.#/-*&$*3.10$

-,."/0'+

1+23$

4'3*(+

5.2**'+#

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Rotational delay and seek time

5

4 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

Seek

R
em

ai
ni

ng
 ro

ta
tio

n

3

2

1
0

11

10

9

8

7
6

5

4

15

14

13
12

23

22

21

20

19
18

17

16

27

26

25
24

35

34

33

32

31
30

29

28

Spindle

Rotates this way

Figure 37.3: Three Tracks Plus A Head (Right: With Seek)

To understand how the drive might access a given sector, we now trace
what would happen on a request to a distant sector, e.g., a read to sector
11. To service this read, the drive has to first move the disk arm to the cor-
rect track (in this case, the outermost one), in a process known as a seek.
Seeks, along with rotations, are one of the most costly disk operations.

The seek, it should be noted, has many phases: first an acceleration
phase as the disk arm gets moving; then coasting as the arm is moving
at full speed, then deceleration as the arm slows down; finally settling as
the head is carefully positioned over the correct track. The settling time
is often quite significant, e.g., 0.5 to 2 ms, as the drive must be certain to
find the right track (imagine if it just got close instead!).

After the seek, the disk arm has positioned the head over the right
track. A depiction of the seek is found in Figure 37.3 (right).

As we can see, during the seek, the arm has been moved to the desired
track, and the platter of course has rotated, in this case about 3 sectors.
Thus, sector 9 is just about to pass under the disk head, and we must
only endure a short rotational delay to complete the transfer.

When sector 11 passes under the disk head, the final phase of I/O
will take place, known as the transfer, where data is either read from or
written to the surface. And thus, we have a complete picture of I/O time:
first a seek, then waiting for the rotational delay, and finally the transfer.

Some Other Details

Though we won’t spend too much time on it, there are some other inter-
esting details about how hard drives operate. Many drives employ some
kind of track skew to make sure that sequential reads can be properly
serviced even when crossing track boundaries. In our simple example
disk, this might appear as seen in Figure 37.4.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

File Storage on Disk
Sector 0: “Master Boot Record” (MBR): contains the
partition map

Rest of disk divided into “partitions”

Partition: sequence of consecutive sectors

Each partition can be “raw” (e.g., swap partition), or
“cooked,” containing its own file system

A bootable partition starts with a “boot block”

Contains a small program

Called a bootloader, this “boot program” reads in an OS
from the file system in that partition

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Booting the system

OS Boot — the legacy way

BIOS (Basic Input Output System) reads MBR, then reads & execs a boot
block in the bootable partition

OS Boot — the modern way

UEFI (Unified Extensible Firmware Interface) instead of BIOS

Active partition is no longer needed

Uses the GPT (GUID Partition Table) partitioning scheme, rather than
MBR, which only works with drives up to 2TB and is no longer needed

Can boot from drives 2.2TB or larger

Developed in C, rather than assembly

64-bit support and faster boot times

Supports secure boot

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

An Example Disk

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A “cooked” partition with a file system

9

Active and bootable partition

boot block volume control block

UFS: boot block

NTFS: partition boot sector

UFS: superblock

NTFS: master file table

of blocks, size of data blocks, free-block count, free-FCB count

directories FCBs

UFS only, NTFS: stored in
master file table

data blocks

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

“Files” — bytes vs. disk sectors

Files are sequences of bytes

Granularity of file I/O is bytes

Disks are arrays of sectors (512 bytes)

Granularity of disk I/O is sectors

File data must be stored in sectors

A file system defines a block size

block size = 2n * sector size

Contiguous sectors are allocated to a block

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

File systems’ view of the disk partition

File systems view the disk partition as an array of
blocks

It needs to allocate blocks to file

It also needs to manage free space on disk

But how?

Objective:

Disk space utilized efficiently

Files can be accessed quickly

11

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Try 1: Contiguous Allocation
Idea:

All blocks in a file are contiguous on the disk

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Contiguous Allocation
Advantages —

Simple to implement (only needs starting block & length of file)

Good performance (for sequential reading)

Disadvantages —

After deletions, disk becomes fragmented — external
fragmentation

Will need periodic compaction — time-consuming

If new file is placed at end of disk

No problem

If new file is placed into a “hole”

Must know a file’s maximum possible size, at the time it is created!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Contiguous Allocation
What is it good for, then?

Good for CD-ROMs and DVDs

All file sizes are known in advance

Files are never deleted

UDF (Universal Disk Format)

Uses 30 bits to represent the length of a file

Accommodates up to 1GB

For DVD movies, 4 1-GB files may be necessary

Called extents

A good idea to use extents for file systems? — Veritas FS

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Try 2: Linked List Allocation
Each file is a sequence of blocks

First word in each block contains a pointer to the next block

Random access into
the file is slow!

pointerblock =

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Linked List Allocation
Advantages —

No external fragmentation

The size of the file need not be declared when the file is
created

Disadvantages —

Can only be used for sequential access: random access is
slow

Space required by pointers: overhead and creates
inconvenience of peculiar sizes per block

mitigated by using clusters of blocks as unit

but the use of clusters increases internal fragmentation

Reliability: a damaged block leads to a bad pointer
16

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Variation: File Allocation Table (FAT)
Keep a table at the beginning of disk volume and in
memory

One entry per block on the disk

Each entry contains the address of the “next”
block

“End of file” marker is -1

A special value (0) indicates that the block is free

Used in MS-DOS and IBM OS/2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

File Allocation Table (FAT)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

File Allocation Table (FAT)
Random access

Search the linked list (but all in memory)

Directory entry needs only one number

The starting block number

Disadvantage —

Entire table must be in memory all at once!

Example:

20 GB = disk size

1 KB = block size

4 bytes = FAT entry size

80 MB of memory used just to store the FAT!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What should we do now?

The file system designer’s dilemma

If we don’t cache the file allocation table, random access is slow

If we do cache it, we don’t have enough memory!

But why do we need to cache the entire file allocation
table?

Can we cache only parts of the file allocation table,
corresponding to the files that are declared “open” by
the user programs?

We need to add “open” and “close” to the system-call interface
for the applications to “open” a file

Then we can work only with “open” files!

20

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Try 3: Indexed Allocation

Idea: Bring all the pointers together into one
location: the index block

Each file has its own index block: an array of disk-
block addresses

The ith entry points to the ith block of the file

The directory contains the address of the index block of
the file

21

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Indexed allocation

22

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

inodes in UNIX is the index block
Each inode (“index-node”) contains

file attributes (permissions, timestamps, owner)

the index block

Enough space

for 10 pointers

File

attributes

Blocks

on disk

inode

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

inodes in UNIX is the index block
But what if we have a large file?

If we increase the size of the index block, all files
(including small files) will use the new size for theirs

Solution: multi-level indexing

Enough space

for 12 pointers

File

attributes

Blocks

on disk

inode

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example inode in the Linux ext2 file system6 FILE SYSTEM IMPLEMENTATION

Size Name What is this inode field for?
2 mode can this file be read/written/executed?
2 uid who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links count how many hard links are there to this file?
4 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osd1 an OS-dependent field

60 block a set of disk pointers (15 total)
4 generation file version (used by NFS)
4 file acl a new permissions model beyond mode bits
4 dir acl called access control lists

Figure 40.1: Simplified Ext2 Inode

as who can access it), some time information, including when the file was
created, modified, or last accessed, as well as information about where its
data blocks reside on disk (e.g., pointers of some kind). We refer to all
such information about a file as metadata; in fact, any information inside
the file system that isn’t pure user data is often referred to as such. An
example inode from ext2 [P09] is shown in Figure 40.11.

One of the most important decisions in the design of the inode is how
it refers to where data blocks are. One simple approach would be to
have one or more direct pointers (disk addresses) inside the inode; each
pointer refers to one disk block that belongs to the file. Such an approach
is limited: for example, if you want to have a file that is really big (e.g.,
bigger than the block size multiplied by the number of direct pointers in
the inode), you are out of luck.

The Multi-Level Index

To support bigger files, file system designers have had to introduce dif-
ferent structures within inodes. One common idea is to have a special
pointer known as an indirect pointer. Instead of pointing to a block that
contains user data, it points to a block that contains more pointers, each
of which point to user data. Thus, an inode may have some fixed number
of direct pointers (e.g., 12), and a single indirect pointer. If a file grows
large enough, an indirect block is allocated (from the data-block region of
the disk), and the inode’s slot for an indirect pointer is set to point to it.
Assuming 4-KB blocks and 4-byte disk addresses, that adds another 1024
pointers; the file can grow to be (12 + 1024) · 4K or 4144KB.

1Type info is kept in the directory entry, and thus is not found in the inode itself.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing Directories with Linear List

“Kernel.h”
“Kernel.c”
“Main.c”
“Proj7.pdf”
“blitz”
“os”

inode

inode

inode

inode

inode

inode•
•
•
•
•
•

But finding a file requires a linear search — expensive!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Searching for a File with a Path

We wish to search for a file /usr/bin/blitz

Locates the root directory (inode 2)

Looks up the string “usr” in the root directory for the inode
number of the /usr directory

The inode of the /usr directory is fetched, string “bin”
searched

The inode of the /usr/bin directory is used to look up “blitz”
for its inode number

How do we improve its performance?

Caching all results of previous searches

Try to find a match for subsequent searches

27

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Sharing Files
One file appears in several directories

Tree → DAG (Directed Acyclic Graph)

/

ED

CBA

F

G H

i j

m

n o

k l

p q

What if the file changes?

New disk blocks are used.

Better not store this info

in the directories!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hard Links and Symbolic Links

In Unix —

Hard links

Both directory entries point to the same inode

Symbolic links

One directory entry points to the file’s inode

Other directory entries contains the “path”

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hard Links
Assume inode number of “n” is 45

/

ED

CBA

F

G H

i j

m

n o

k l

p q

“m”
“n”

123
45

•
•
•
•
•
•

“n”
“o”

45
87

•
•
•
•
•
•

Directory “D”

Directory “G”

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hard Links
Assume inode number of “n” is 45

/

ED

CBA

F

G H

i j

m

n o

k l

p q

“m”
“n1”

123
45

•
•
•
•
•
•

“n2”
“o”

45
87

•
•
•
•
•
•

Directory “D”

Directory “G”

The file may have a

different name in

each directory

/B/D/n1

/C/F/G/n2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Symbolic Links
Assume inode number of “n” is 45

/

ED

CBA

F

G H

i j

m n

o

k l

p q

“m”
“n”

123
45

•
•
•
•
•
•

“n”
“o”

91
87

•
•
•
•
•
•

Directory “D”

Directory “G”

Symbolic Link“/B/D/n”
Separate file

inode = 91

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Deleting a File
Directory entry is removed from directory

All blocks in file are returned to the free list

What about sharing?

Multiple links to one file (in Unix)

Hard Links

Put a “reference count” field in each inode

Counts the number of directories that point to the file

When removing file from directory, decrement the count

When count goes to zero, reclaim all blocks in the file

Symbolic Link

Remove the actual file (normal file deletion)

Symbolic link becomes “broken”

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Opening a file using the open() system call

The open() call passes a file name to the file system

It first searches the system-wide open-file table to see if the file
is already in use by another process

If it is, a per-process open-file table entry is created, pointing to
the existing system-wide open-file table

If not, the directory structure is searched for the given file name

Parts of the directory structure are cached in memory to improve
performance

Once found, the File Control Block (inode in UNIX) is copied into
a system-wide open-file table in memory

This table not only stores the FCB, but also tracks the number of processes
that have the file open

34

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Opening a file (continued)

An entry is then made in the per-process open-file
table, with a pointer to the entry in the system-wide
open-file table, and some other fields

A pointer to the current location in the file — for next read() or
write()

the access mode in which the file is open (read-only or
writable)

35

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The File Descriptor

The open() call returns an index to the corresponding
entry in the per-process open-file table

called a file descriptor in UNIX and BLITZ

called a file handle in Windows

This index will be used for subsequent read(), write(),
seek(), and close() system calls

User-level processes must not be allowed to use
pointers into kernel memory and cannot be allowed to
touch kernel data structures

36

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The File Manager in BLITZ
class FileManager

 superclass Object

 fields

 fileManagerLock: Mutex

 fcbTable: array [MAX_NUMBER_OF_FILE_CONTROL_BLOCKS]

 of FileControlBlock

 anFCBBecameFree: Condition

 fcbFreeList: List [FileControlBlock]

 openFileTable: array [MAX_NUMBER_OF_OPEN_FILES]

 of OpenFile

 anOpenFileBecameFree: Condition

 openFileFreeList: List [OpenFile]

 ...

37

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The File Control Block in BLITZ

38

class FileControlBlock superclass Listable

 fields

 fcbID: int

 numberOfUsers: int -- count of OpenFiles pointing

 startingSectorOfFile: int

 sizeOfFileInBytes: int

 bufferPtr: int

 relativeSectorInBuffer: int

 bufferIsDirty: bool

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The OpenFile structure in BLITZ: Current position

39

class OpenFile superclass Listable

 fields

 kind: int

 currentPos: int

 fcb: ptr to FileControlBlock

 numberOfUsers: int -- count of Processes pointing

class ProcessControlBlock superclass Listable

 fields

 ...

 fileDescriptor: array [MAX_FILES_PER_PROCESS] of

 ptr to OpenFile

Why do we need to allow multiple PCBs to point to the same
OpenFile?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Parent and child processes share an OpenFile

When a process is cloned with the fork() system call,
all open files in the parent process must be shared
with the child process, with the current position also
shared

We now needs reference counting in OpenFile,
similar to FCB

When the reference count goes to zero, return the OpenFile
to the free pool, and decrement the reference count in the
corresponding FCB

40

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Managing free blocks
A bitmap: 1 = used, 0 = free

1.3 GB disk partition, 512-byte blocks: over 332 KB to
contain the bitmap — performance is only satisfactory if it
is cached

1 TB disk with 4-KB blocks: 32 MB required!

A linked list of disk block numbers

Use a disk block to contain all the free block numbers

Use one block number in the disk block to point to the next
disk block

1 KB block size, 32 bit block numbers: 255 free blocks

500 GB disk partition: 488 million blocks in total, 1.9 million
blocks required to contain free block numbers!

41

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Keeping Track of Free Blocks

42

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Counting

Usually, several contiguous blocks may be allocated
or freed simultaneously

Idea: rather than keeping a list of n free disk
addresses, we can keep the address of the first free
block, and the number (n) of free contiguous blocks
that follow the first block

Each entry in the free-space list consists of a disk
address and a count

Used in Sun’s ZFS

43

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Creating and Deleting Files
Only needs to maintain one block of bitmaps in the
main memory (if bitmap is used)

A natural advantage is to be able to allocate free blocks
contiguously when a file is created

Only needs to maintain one block of free disk
blocks in the main memory (if linked list is used)

When a file is created, needed blocks are taken from the in-
memory block of free disk blocks

When it runs out, a new block of pointers is read in from the
disk

When a file is deleted, its blocks are added to the block, and
later written to disk when it is full

44

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Improving File System Performance

Problem: Disk operations are slow!

Solution: The buffer cache

Upon a read() system call, first check if the needed
block is in the cache

If not, it is first read into the cache, and then copied to
wherever it is needed

Subsequent requests to the same block can be
satisfied without disk access

Needs a cache replacement algorithm when
the buffer cache is full: LRU is a good choice

45

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Synchronous vs. asynchronous write

46

Write back (asynchronous write)

data are stored in the buffer cache and written back to
the disk at a later time asynchronously

Unix: update daemon uses the sync system call forces
all modified blocks to the disk every 30 seconds

Write through (synchronous write)

writes are not buffered (only reads are buffered)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 37.1-37.3 (Hard Disk
Drives), Chapter 39 (Files and Directories), 40 (File
System Implementation)

47

