
Page Replacement

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Introduction

We have seen that the OS allocates memory
frames to programs on demand (i.e., page fault)

If no frame is available, then OS needs to evict another
page to free a frame
Which page should be evicted?

A page “cache” miss is similar to a TLB miss or a
memory cache miss

However, a miss may require accessing the disk
So miss handling can be very expensive
Disk access times are at least 1000x memory access times

2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

When will paging work well?
Paging can only work well if page replacement occurs
rarely
Paging schemes depend on the locality of reference
Spatial locality

Programs tend to use a small fraction of their memory, or
Memory accesses are close to memory accessed recently

Temporal locality
Programs use same memory over short periods of time, or
Memory accessed recently will be accessed again

Programs normally have both kinds of locality, and the
overall cost of paging is not very high

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Why not just evict a random page?

If a page evicted is used again in the near future, it
needs to be brought back into memory
Challenge: How to find a page that is least used to
evict?

Same problem applies to other cache systems (such as
memory cache and web cache)

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

!

!"#$%&'()*+$,*-#$.#&+*/#)#0'$1+-23('")

! "#$#%&'()*#'&+)&',-$$'./&'0#'.##1#1'2/3'$/.*#4&'
&-5#

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a

b b b b

c c c c

d d d d

X

a a a a a

b b b b b

c c c c c

e e e e e

X X

The Optimal Page Replacement Algorithm

The page that is not needed for the longest
time in the future should be evicted

Assuming that the future can be perfectly predicted

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Optimal Page Replacement Algorithm
Problem

We cannot accurately predict the future
So we do not know when a given page will be next needed
The optimal algorithm is not realizable

However it can be used in simulation studies
Run the program once
Generate a log of all page references
Use the log in the second run to simulate optimal algorithm
Use the “optimal” algorithm as a control case for evaluating
other algorithms

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

!

!"#$%&'(&!"#$%&)*%&+!'!),

! "#$%&'#()*#($&+#()*&)(*&,(-##.(/.(0#0123(412()*#(
%1.+#,)()/0#(51%6#,)($&+#7

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c a

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a

b

c c c c

d d

X

a a a a

b b b b

e e e e

d d d d

X X

c

b

e

d

X X

c

b

e

a

X

First In First Out (FIFO)

Replace the page that has been in memory
for the longest time (oldest page)

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

First In First Out (FIFO)
Implementation for replacing the oldest page

Maintain a linked list of all pages in memory
Keep the list in order of when pages came into memory
Add the new page to the end of list

On a page fault
Choose page at the front of the list (oldest page)

Problem
The oldest page may be needed again soon

Some page may be important throughout execution
When it gets old, replacing it may cause immediate page fault

8

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Bélády’s anomaly —
Increasing the number of page frames results in an increase in
the number of page faults
This is very bad!

FIFO suffers from Bélády’s anomaly

9

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Can We Do Better than FIFO?

Need to predict page access pattern in the
future

But we can only learn from the past
One idea — pages used in the recent past
should not be evicted

Assumption: pages used recently are likely to be
used in the near future
Need a way to track past page references
Requires hardware support!

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Page Table Bits Revisited

Each page table entry has:
Referenced bit

Set by CPU when the page is read or written
Cleared by OS software (never cleared by hardware)

Modified (dirty) bit
Set by CPU when the page is written
Cleared by OS software (never cleared by hardware)

TLB may have the most recent copy of them
Hardware/OS must synchronize it with page table entry bits

Can we use page table bits to estimate the page
access pattern in the past?

11

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Second Chance
FIFO, but give a second chance to referenced pages
Maintain a linked list of all pages in memory

New pages are added to the end of list

On a page fault
Look at the first page in the list (oldest page)
If its referenced bit is 0, select it for replacement
Else, clear referenced bit, move page to end as if it is a new
page, repeat

If every page was referenced, then second chance
reverts back to FIFO

12

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Clock Algorithm
An implementation of second chance
Maintain a circular list of pages in memory
On a page fault

The “hand of the clock” sweeps over circular list
Looks for a page that does not have the referenced bit set (instead
of moving pages in FIFO list)

13

!"

!"#$%&'"(#)*+,-

! #$%&'()*'*$+,+&-$%-.%/*0-$1%02,$0*

! 3,&$+,&$%,%0&405),4%)&/+%-.%(,6*/%&$%'*'-47

! 8$%,%(,6*%.,5)+

-

9)-0:%/;**(/%-<*4%0&405),4%)&/+%

-

=--:/%.-4%,%(,6*%+2,+%1-*/%$-+%2,<*%+2*%4*.*4*$0*1%
>&+%/*+%?&$/+*,1%-.%'-<&$6%(,6*/%&$%@A@8%)&/+B

41

50

20

11

00

30

frame #

referenced bit

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Enhanced Second Chance

Also called Not Recently Used (NRU)
Replace the page that is not recently used
Initially, all pages have

Referenced bit = 0
Dirty bit = 0

Periodically (e.g., every timer interrupt) clear
the referenced bit of all pages

Then, the referenced bit indicates that a page was
recently accessed

14

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Enhanced Second Chance
On a page fault, pages are in 4 classes

Choose a random page from the lowest non-empty
class to evict

1513

Not Recently Used (NRU)

� Pages are in 4 classes

� On a page fault
o Choose a page from a class if no pages available from

previous classes
� E.g., choose from 3, if there are no pages in classes 1 and 2

o Why?

114

013

102

001

DirtyReferencedClass

How is this
class possible?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto !"

!"#$%&'"(")%*+&,$"-&.!',/

! #$%&'()&*&)+$,'$-./$+01+$%&2314&5$+0&$216&$+01+$
015$7&&)$85&9$3&15+ %&4&)+3:

,

-&&95$+,$+%14;$0,<$%&4&)+3:$1$216&$<15$85&9

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a

b b b b

c c c c

d d d d

X

a a a a

b b b b

e e e e

d d d d

X X

a

b

e

c

X X

a

b

d

c

X

Least Recently Used (LRU)

A refinement of NRU that replaces the page
that has not been used for the longest period
of time

Needs to track how recently a page was used

16

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

LRU Implementation — Option 1

Keep a stack of all pages
On each memory reference

Move corresponding page to the top of the stack
Best implemented as a doubly linked list

On a page fault
Choose page at the bottom of the stack (least
recently used)

17

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
!"

!"#$%&'()&)*+,+-.*$/

0'+-.*$1

! #$%&'(&)&(&*+&,'-./&'0$'1&.,'$)'2340

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a

b b b b

c c c c

d d d d

X

a a a a

b b b b

e e e e

d d d d

X X

a

b

e

c

X X

a

b

d

c

X

c

a

b

d

a

c

b

d

d

a

c

b

b

d

a

c

e

b

d

a

b

e

d

a

a

b

e

d

b

a

e

d

c

b

a

e

d

c

b

a

LRU Implementation — Option 1
Move referenced page to the top of the stack

18

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

LRU Implementation — Option 1

Problems
Requires moving list elements on each memory
access
Each memory access becomes several accesses!
Not implementable with hardware

19

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

LRU Implementation — Option 2
MMU (hardware) maintains a counter that is
incremented for every memory reference
Every time a page table entry is used

MMU writes the value of the counter to the page table entry
This timestamp value is the ”time of last use”

On a page fault
OS software looks through the page table, and identifies the
entry with the oldest timestamp

Problem
Updating of the timestamps must be done for every memory
reference

20

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

LRU Implementation — Option 3
Additional-Reference-Bits Algorithm
Maintain an 8-bit counter for each page in software

initially zero

At each timer interrupt (or any regular interval) —
The referenced bit is shifted into the high-order bit of the
counter
The other bits are shifted to the right
The low-order bit is discarded
The referenced bit is then cleared

On a page fault, evict the page with the lowest counter
arbitrarily evict one if more than one candidate

21

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Additional-Reference-Bits algorithm

22

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Problems with Additional-Reference-Bits

Granularity of record-keeping is limited by the
frequency of the timer interrupts

Records only one bit per interval
Lost the ability to distinguish references early in the
clock interval from those occurring later

Counters have a finite number of bits
Limits its past time horizon
All we can do is to pick one of them at random

23

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Comparison of Page Replacement Algorithms

24

Optimal Not implementable, useful as a benchmark

FIFO May evict important pages

Enhanced SC Simple, but crude approximation of LRU

Second
Chance/Clock Major improvements over FIFO, Clock is realistic

LRU Excellent, but difficult to implement exactly

ARB Efficient algorithm that approximates LRU well

Working Set Good, if an appropriate time horizon T is used

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Working Set Model
Locality of reference revisited

Spatial locality: processes tend to use small a fraction of their
memory
Temporal locality: processes tend to use the same memory over
short periods of time

Working Set
The set of pages a process needs currently
If working set is in memory, no page faults occur

What if you can’t get the working set into memory?
Thrashing — not enough frames to accommodate the WS
Page faults occur every few instructions
The user-level program makes little progress

25

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Working Set: Examples

26

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Demand Paging vs. Prefetching

Demand paging: loading pages on demand initially
when a process starts to run
Prefetching: load the working set of the process
before letting it run, minimizes page faults
But how does the OS determine the working set?

27

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How Big Is the Working Set?
Look at the last K memory references

Alternatively, look back over last time T, the working set time interval
As K (or T) gets larger, more pages are needed

Goal: Design a page replacement algorithm that keeps this
working set in memory

28 !"

!"#$%&'$&($)*+$,"-.&/'$0+)1

! #$$%&'(&()*&+',(&- .*.$/0&/*1*/*23*,

$

4+(*/2'(56*+07&+$$%&8'3%&$6*/&+',(&(5.*&9

" 9&5,&()*&:$/%52;&,*(&(5.*&52(*/6'+

$

4,&-&<$/&9=

;*(,&85;;*/7&.$/*&>';*,&'/*&2**?*?

! @$:*6*/7&:$/%52;&,*(&6'/5*,&,+$:+0&'1(*/&'&:)5+*A

! B$'+C&D*,5;2&'&>';*&/*>+'3*.*2(&'+;$/5().&()'(&
%**>,&()5,&:$/%52;&,*(&52&.*.$/0

K memory references (or time T)

S
e
t

o
f

p
a
g
e
s

a
c
c
e
s
s
e
d

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Approximating the working set model

Approximate with interval timer + a reference bit
Example: T = 10,000 time units
Timer interrupts after every 5000 time units
Keep in page table: 2 bits for each page
On a timer interrupt, copy and set the value of the
Referenced bit to 0
If one of the bits is 1 => the page is in the WS

29

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Working Set Algorithm
Hardware sets the R bit when a page is referenced

The virtual time is the time that the process has run on the
CPU

On a timer interrupt —
If R is 1, it is cleared, and the current virtual time is written to
“Time of Last Use”

30

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Working Set Algorithm: On a Page Fault

On a page fault —
If R is 1, the current virtual time is written to “Time of Last
Use”
If R is 0, and the age (current virtual time - time of last use) >
T, evict
If R is 0, and age <= T, record the page with the greatest age

If the entire page table has been scanned
If one or more pages has R = 0, evict the one with the
greatest age
Otherwise, all pages have been referenced, evict one at
random, preferably a clean page (dirty = 0)

31

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Local vs. Global Replacement
Say a process gets a page fault and a page needs to be
replaced
Which process’s page should be replaced?
Policy 1: Local page replacement

Choose a page of the same process

Policy 2: Global page replacement
Choose a page of any process

Some algorithms can be used with either policy
e.g., LRU can be used with both local or global replacement
But not the Working Set algorithms

32

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Local vs. Global Replacement
Example: Process A has a page fault

33

27

Local vs. Global Page Replacement

� Example: Process A has a page fault

Original Local Global

Time last
accessed

Replace
earliest

local page

Replace
earliest

global page

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Problem With Local Page Replacement
Suppose there are 10 processes and 5,000 frames in
memory
Should each process get 500 frames?
No

Small processes do not need all those pages
Large processes may benefit from more frames

Idea
Look at the needs of each process and give each an adequate
number of frames to prevent thrashing
But how?

34

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Page Fault Frequency
Page fault frequency declines as a process is
assigned more pages

35
29

Page Fault Frequency

� Page fault frequency declines as a program is
assigned more pages

Too High: need to give this
program some more frames

Too Low: take some frames away,
give to other programs

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Page Fault Frequency
The page fault frequency provides an estimate of the
working set needs of a process
Goal: Allocate frames so that the page fault frequency is
roughly equal for all processes
How should the page fault frequency be measured?
For each process

On each fault, increment a counter f
f = f + 1

Every second, update Fault Frequency (ff, in faults/second) via aging
ff = (1 - a) * ff + a * f, f = 0 (0 < a < 1, when a -> 1, history is ignored)

This global page allocation algorithm can then be
combined with a local page replacement algorithm

36

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Paging Daemon Revisited

It is expensive to run replacement algorithm on
each page fault
Instead, OS can use a paging daemon to maintain
a pool of free frames

Runs replacement algorithm when pool reaches low
watermark
Writes out dirty pages and frees them
Frees enough pages until pool reaches high watermark

Frames in pool still hold previous contents
Can be rescued if page is referenced before reallocation

37

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example: Windows
Demand paging
Working-set minimum and working-set maximum
(usually 50 and 345 pages)

If page fault occurs for a process below its working-set maximum:
allocates a page from a list of free pages

If at the working-set maximum, select a page for replacement using
a local page replacement policy (variation of the Clock algorithm)

If the amount of free pages falls below a threshold —
Evaluate the number of pages allocated to a process
If it is more than the working-set minimum, evict pages until it
reaches the minimum

38

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 22 (Beyond Physical
Memory: Policies)

