
Paging: Faster Translations

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Paging: Challenges

Two major challenges —
1. The mapping from virtual to physical address
must be fast
2. If the virtual address space is large, the linear
page table will be large

Solved with multi-level page tables

2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Challenge: Performance

Remember that dynamic address translation
occurs on the fly at run-time
Too slow, each memory access requires at least
two — and up to six!
Solution?

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solution: Basic Idea

MMU caches page table entries and knows how to
handle cache misses
This cache is called the Translation Lookaside Buffer
(TLB)

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Translation Lookaside
Buffer

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

TLB Entries

Each entry contains
Page number (why do we need the page number here?)
Frame number
Valid bit
Other status bits from a page table entry in the physical
memory

6

01220
19 bits 1 bit or more

status bitsframe number

2131
11 bits

page number

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

TLB Operations
Similar to operations on any cache
Page lookup

Returns the frame number
Fully associative memory, indexed by page number
Performed in hardware, requires just a single cycle!

Handling TLB misses
Lookup the page table for correct entry, fill TLB cache

Invalidating stale TLB entries
If a page table entry is changed, the cached TLB entry must
be invalidated or updated

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Page Lookup with a TLB

8

34

TLB Lookup

CPU p o

Physical
memory

page nr
frame nr

TLB

TLB hit

Page
Table

f o

TLB miss

p f

f

p

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

TLB Control Flow

9

2 PAGING: FASTER TRANSLATIONS (TLBS)

1 VPN = (VirtualAddress & VPN_MASK) >> SHIFT
2 (Success, TlbEntry) = TLB_Lookup(VPN)
3 if (Success == True) // TLB Hit
4 if (CanAccess(TlbEntry.ProtectBits) == True)
5 Offset = VirtualAddress & OFFSET_MASK
6 PhysAddr = (TlbEntry.PFN << SHIFT) | Offset
7 Register = AccessMemory(PhysAddr)
8 else
9 RaiseException(PROTECTION_FAULT)

10 else // TLB Miss
11 PTEAddr = PTBR + (VPN * sizeof(PTE))
12 PTE = AccessMemory(PTEAddr)
13 if (PTE.Valid == False)
14 RaiseException(SEGMENTATION_FAULT)
15 else if (CanAccess(PTE.ProtectBits) == False)
16 RaiseException(PROTECTION_FAULT)
17 else
18 TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)
19 RetryInstruction()

Figure 19.1: TLB Control Flow Algorithm

19.1 TLB Basic Algorithm

Figure 19.1 shows a rough sketch of how hardware might handle a
virtual address translation, assuming a simple linear page table (i.e., the
page table is an array) and a hardware-managed TLB (i.e., the hardware
handles much of the responsibility of page table accesses; we’ll explain
more about this below).

The algorithm the hardware follows works like this: first, extract the
virtual page number (VPN) from the virtual address (Line 1 in Figure 19.1),
and check if the TLB holds the translation for this VPN (Line 2). If it does,
we have a TLB hit, which means the TLB holds the translation. Success!
We can now extract the page frame number (PFN) from the relevant TLB
entry, concatenate that onto the offset from the original virtual address,
and form the desired physical address (PA), and access memory (Lines
5–7), assuming protection checks do not fail (Line 4).

If the CPU does not find the translation in the TLB (a TLB miss), we
have some more work to do. In this example, the hardware accesses the
page table to find the translation (Lines 11–12), and, assuming that the
virtual memory reference generated by the process is valid and accessi-
ble (Lines 13, 15), updates the TLB with the translation (Line 18). These
set of actions are costly, primarily because of the extra memory reference
needed to access the page table (Line 12). Finally, once the TLB is up-
dated, the hardware retries the instruction; this time, the translation is
found in the TLB, and the memory reference is processed quickly.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Handling TLB Misses

TLB misses — What if the entry is not in the
TLB?
Look in the page table in memory

Find the right entry
Move it into the TLB
Which TLB entry should be replaced?
This is called the TLB replacement policy

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Handling TLB Misses
Hardware Managed TLB (x86 CPUs)

TLB misses are handled in hardware
Hardware defines page table format, and uses the page table
base register to locate the page table in physical memory
TLB replacement policy fixed by hardware

Software Managed TLB (typical RISC CPUs: SPARC,
MIPS)

Hardware generates an exception called TLB miss fault
OS handles TLB miss, similar to interrupt handling
The exception handler retrieves the correct page table entry,
and adds it to the TLB
Replacement policy managed in software

11

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Invalidating TLB Entries
When should a TLB entry be invalidated?

On a context switch to another thread in a different address space
Why?
Prevents use of mapping in the previous address space

Option 1
Empty the TLB, by clearing the valid bit of all entries
New thread will generate misses until its caches enough of its own
entries into the TLB

Option 2
Hardware maintains an “address-space ID” tag in each TLB entry
Hardware compares this tag to the current address space identifier,
held in a specific register, on every translation
Enables space multiplexing, no need to invalidate all entries

12

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Enforcing Page-Level Protection

We mentioned that page-level protection can be
enforced during dynamic address translation with
protection bits
Option 1

Check the page table on each memory access — Slow

Option 2
Cache page-level protection bits in the TLB
Check TLB on each memory access — Fast

13

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Using TLB to Enforce Protection

TLB checks whether memory accesses are valid
when performing translation
If the memory access is of an invalid type (e.g., a
page in the text segment is being modified),
generate a protection fault

14

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What We’ve Covered So Far

Three Easy Pieces: Chapter 19 (Paging: Faster
Translations)

