Paging: Faster Translations

Operating Systems
Baochun Li
University of Toronto

Paging: Challenges

Two major challenges —

1. The mapping from virtual to physical address
must be fast

2. If the virtual address space is large, the linear
page table will be large

Solved with multi-level page tables

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 2
-

Challenge: Performance

Remember that dynamic address translation
occurs on the fly at run-time

Too slow, each memory access requires at least
two — and up to six!

Solution?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solution: Basic Idea

MMU caches page table entries and knows how to
handle cache misses

This cache is called the Translation Lookaside Buffer
(TLB)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4
-

Translation Lookaside
Buffer

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

TLB Entries

Each entry contains

Page number (why do we need the page number here?)
Frame number

Valid bit
Other status bits from a page table entry in the physical
memory
31 21 20 2 0
11 bits 19 bits 1 bit or more
_ _ AN J
Y Y Y
page number frame number status bits

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6

TLB Operations

Similar to operations on any cache

Page lookup

Returns the frame number
Fully associative memory, indexed by page number
Performed in hardware, requires just a single cycle!

Handling TLB misses
Lookup the page table for correct entry, fill TLB cache

Invalidating stale TLB entries

If a page table entry is changed, the cached TLB entry must
be invalidated or updated

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 7

Page Lookup with a TLB

CPU | p o

_>
| TLB hit
page nr > p f
e frame nr l
—>> y
g £ o
e T \\\\Physical
TLB (\\.\ memory
< TS

TLB miss ©

> £

-—
-—
-—
-—
-—
-—
-—
-—
-—

Page
Table

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8
-

TLB Control Flow

1 VPN = (VirtualAddress & VPN _MASK) >> SHIFT

2 (Success, TlbEntry) = TLB_Lookup (VPN)

3 1f (Success == True) // TLB Hit

4 1f (CanAccess (TlbEntry.ProtectBits) == True)

5 Offset = VirtualAddress & OFFSET MASK

6 PhysAddr = (TlbEntry.PFN << SHIFT) | Offset
7 Register = AccessMemory (PhysAddr)

8 else

9 RaliseException (PROTECTION_FAULT)

0 else // TLB Miss

—
—

PTEAddr = PTBR + (VPN % sizeof (PTE))

PTE = AccessMemory (PTEAddr)

1f (PTE.Valid == False)
RalseException (SEGMENTATION_FAULT)

else 1f (CanAccess (PTE.ProtectBits) == False)
RaliseException (PROTECTION_FAULT)

else
TLB Insert (VPN, PTE.PFN, PTE.ProtectBits)
RetryInstruction ()

G G
O 0 N o O k= W N

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9
-

Handling TLB Misses

TLB misses — What if the entry is not in the
TLB?
Look in the page table in memory

Find the right entry

Move it into the TLB

Which TLB entry should be replaced?
This is called the TLB replacement policy

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Handling TLB Misses

Hardware Managed TLB (x86 CPUs)

TLB misses are handled in hardware

Hardware defines page table format, and uses the page table
base register to locate the page table in physical memory

TLB replacement policy fixed by hardware

Software Managed TLB (typical RISC CPUs: SPARC,
MIPS)

Hardware generates an exception called TLB miss fault

OS handles TLB miss, similar to interrupt handling

The exception handler retrieves the correct page table entry,
and adds itto the TLB

Replacement policy managed in software

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

1

Invalidating TLB Entries
When should a TLB entry be invalidated?

On a context switch to another thread in a different address space
Why?
Prevents use of mapping in the previous address space

Option 1

Empty the TLB, by clearing the valid bit of all entries

New thread will generate misses until its caches enough of its own
entries intothe TLB

Option 2

Hardware maintains an "address-space |ID" tag in each TLB entry

Hardware compares this tag to the current address space identifier,
neld in a specific register, on every translation

Enables space multiplexing, no need to invalidate all entries

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 12

Enforcing Page-Level Protection

We mentioned that page-level protection can be
enforced during dynamic address translation with
protection bits

Option 1
Check the page table on each memory access — Slow
Option 2

Cache page-level protection bits in the TLB
Check TLB on each memory access — Fast

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 13

Using TLB to Enforce Protection

TLB checks whether memory accesses are valid
when performing translation

If the memory access is of an invalid type (e.g., a
page in the text segment is being modified),
generate a protection fault

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 14
-

What We've Covered So Far

Three Easy Pieces: Chapter 19 (Paging: Faster
Translations)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

