
Paging: Introduction

Operating Systems

Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Major Challenge: External Fragmentation
Compaction requires high copying overhead

Basic assumption until now: memory is allocated
contiguously in variable sizes

Why not allocate memory in non-contiguous and fixed-
size units?

no external fragmentation!

internal fragmentation < 1 unit

How big should the units be?

Smaller: better for internal fragmentation

Larger: less management overhead

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Paging: Non-contiguous fixed-size allocation
Each fixed size unit in physical memory is called a
physical frame (or “frame”)

Physical frame size = 2n bytes of physical memory

Each fixed size unit in the virtual address space of
a program is called a virtual page (or “page”)

Each page has the same size as a frame

Pages are contiguous, but frames allocated to the
address space are non-contiguous

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Paging: Dynamic Address Translation

But how do we associate physical frames with processes?

Specifically, need to map virtual address space to non-
contiguous physical frames at run time

Recall: MMU performs dynamic address translation

Processes use virtual addresses

CPU puts physical addresses on the shared bus

Hardware support for virtual to physical address translation

A simple base and bounds MMU adds an offset to a virtual
address to produce a physical address

Can we make the MMU “smarter” than base and bounds?

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Recall: Memory Management Unit (MMU)

Processor MMU Bus
Virtual address Physical address

Data

The MMU provides a layer of indirection between the
processor and the physical memory

More flexibility!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Virtual Addresses

Consist of (Page number, byte offset in page)

Low order n bits are the byte offset

Remaining high order bits are the page number

bit 0bit n-1bit 31

20 bits 12 bits

offsetpage number

Example: 32 bit virtual address

Page size = 212 = 4KB

Address space size = 232 bytes = 4GB

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Physical Addresses

Consist of (Frame number, byte offset in page)

Low order n bits are the byte offset

Remaining high order bits are the Frame number

bit 0bit n-1bit 24

12 bits 12 bits

offsetframe number

Example: 24 bit physical address

Frame size = 212 = 4KB (same as page size)

Address space size = 224 bytes = 16MB

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Dynamic Address Translation

11

Dynamic Address Translation

MMU translates virtual to
physical address

Virtual address space

Page 1
Page 0

Un
al
lo
ca
te
d

pa
ge
s

Page 2^20 - 1

Physical memory

Frame 1
Frame 0

Unused frame

frame for another
address space

Frame 2^12 - 1

Notice that growing or shrinking a partition does not require copying or relocation

Stack

Text

Data
Heap

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Translating Virtual to Physical Addresses

MMU needs to map page numbers to frame
numbers on each memory reference

Conceptually, MMU has a separate register for each
page number

The register for each page contains the frame
number

Similar to a base register, except register value is
substituted for (rather than added to) the page
number

Why don’t we need a bounds register for each page?

Where is all this translation information stored?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Page Table: Where the Page Map is Stored

Virtual to physical address mappings are
stored in a page table in the main memory

Typically we have one page table per process

A page table contains a number of page table
entries

Each entry contains a mapping from a page to a
frame

Each entry also contains various useful bits

Example: The Valid bit says whether the mapping is valid
or not

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
!"

!"#$%&'(")'*&"+',-&

! #$%&'()*(++%,--*-$.,

/

!0*1$&-

! 2(3,*-$.,

/

!4*1$&-

! 5*/6*7(3,-

/

!0*89*1$&-:

! 2;<-$=()*(++%,--*-$.,

/

!>*1$&-

! 5*/6*6%(?,-

/

"*8@*1$&-:

! 2(3,*&(1),*,A&%<*-$.,

/

9*1$&-

! 2(3,*&(1),*-$.,B

A Linear Page Table
Virtual address size: 16 bits

Page size: 12 bits

of pages: 16 (4 bits)

Physical address size: 15 bits

of frames: 8 (3 bits)

Page table entry size: 4 bits

Example translation —

vaddr = 0x2004

offset = vaddr & 0x0fff = 0x4

page = vaddr & 0xf000 >> 12
= 0x2

fr = page_table[page].addr = 6

paddr = (fr << 12) | offset =
0x6004

11

valid bit

0x2004

0x6004

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Page Table Entries

Each entry contains a mapping from a page
to a frame, it contains —

Frame number that the page is mapped to

The valid bit

The dirty bit: has the content of frame been
changed?

Intuitively, why do we need the dirty bit?

Protection bits: read/write/execute

Other bits that we will discuss later

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 18 (Paging:
Introduction)

