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Major Challenge: External Fragmentation
Compaction requires high copying overhead

Basic assumption until now: memory is allocated 
contiguously in variable sizes

Why not allocate memory in non-contiguous and fixed-
size units?


no external fragmentation!

internal fragmentation < 1 unit


How big should the units be?

Smaller: better for internal fragmentation

Larger: less management overhead
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Paging: Non-contiguous fixed-size allocation
Each fixed size unit in physical memory is called a 
physical frame (or “frame”)


Physical frame size = 2n bytes of physical memory

Each fixed size unit in the virtual address space of 
a program is called a virtual page (or “page”)


Each page has the same size as a frame

Pages are contiguous, but frames allocated to the 
address space are non-contiguous
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Paging: Dynamic Address Translation

But how do we associate physical frames with processes?

Specifically, need to map virtual address space to non-
contiguous physical frames at run time 


Recall: MMU performs dynamic address translation

Processes use virtual addresses

CPU puts physical addresses on the shared bus

Hardware support for virtual to physical address translation

A simple base and bounds MMU adds an offset to a virtual 
address to produce a physical address

Can we make the MMU “smarter” than base and bounds?
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Recall: Memory Management Unit (MMU)

Processor MMU Bus
Virtual address Physical address

Data

The MMU provides a layer of indirection between the 
processor and the physical memory


More flexibility!
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Virtual Addresses

Consist of (Page number, byte offset in page)

Low order n bits are the byte offset

Remaining high order bits are the page number

bit 0bit n-1bit 31

20 bits 12 bits

offsetpage number

Example: 32 bit virtual address

Page size = 212 = 4KB


Address space size = 232 bytes = 4GB
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Physical Addresses

Consist of (Frame number, byte offset in page)

Low order n bits are the byte offset

Remaining high order bits are the Frame number

bit 0bit n-1bit 24

12 bits 12 bits

offsetframe number

Example: 24 bit physical address

Frame size = 212 = 4KB (same as page size)

Address space size = 224 bytes = 16MB
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Dynamic Address Translation
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Dynamic Address Translation

MMU translates virtual to 
physical address

Virtual address space
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Translating Virtual to Physical Addresses

MMU needs to map page numbers to frame 
numbers on each memory reference


Conceptually, MMU has a separate register for each 
page number

The register for each page contains the frame 
number 

Similar to a base register, except register value is 
substituted for (rather than added to) the page 
number 

Why don’t we need a bounds register for each page? 


Where is all this translation information stored?
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Page Table: Where the Page Map is Stored

Virtual to physical address mappings are 
stored in a page table in the main memory


Typically we have one page table per process

A page table contains a number of page table 
entries


Each entry contains a mapping from a page to a 
frame

Each entry also contains various useful bits

Example: The Valid bit says whether the mapping is valid 
or not
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A Linear Page Table
Virtual address size: 16 bits 

Page size: 12 bits 

# of pages: 16 (4 bits) 

Physical address size: 15 bits 

# of frames: 8 (3 bits) 

Page table entry size: 4 bits 


Example translation —


vaddr = 0x2004

offset = vaddr & 0x0fff = 0x4

page = vaddr & 0xf000 >> 12 
= 0x2

fr = page_table[page].addr = 6

paddr = (fr << 12) | offset = 
0x6004
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valid bit

0x2004

0x6004
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Page Table Entries

Each entry contains a mapping from a page 
to a frame, it contains —


Frame number that the page is mapped to

The valid bit

The dirty bit: has the content of frame been 
changed?


Intuitively, why do we need the dirty bit?

Protection bits: read/write/execute

Other bits that we will discuss later
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What we’ve covered so far

Three Easy Pieces: Chapter 18 (Paging: 
Introduction)


