
OS: a bird’s-eye view

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A brief history of
operating systems

Last time

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Operating system: a
layer of software

between applications
and hardware

Last time

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The OS provides an API
to the applications

above, and manages
shared resources

Last time

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Reading

Required: Three Easy Pieces
Chapter 2: Introduction to Operating Systems

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What is an operating system?
The application developer’s (or user’s) view: “top-
down”

OS designed to provide an Application Programming
Interface (API) to make using hardware resources easier
(called system calls, or syscalls)
Hides details via good abstractions

The system’s view: resource manager (“bottom-
up”)

OS manages possibly conflicting requests for resources,
such as CPU cycles, memory, and storage
It virtualizes physical resources

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

OS as an API (a standard library)
Why is such an abstraction important?
Otherwise, application writers must program all
device accesses directly

Load device command codes into device registers
Handle initialization and timing for physical devices
Interpret return codes

Hard to maintain and upgrade code

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Providing an API via system calls

8

Operating
System

GPU
CPU

Monitor PrinterDisk

Memory
Network

Application

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Providing an API via system calls

9

Operating System

GPU
CPU

Monitor PrinterDisk

Memory
Network

Application

System Calls (typically a few hundred of them): read(), open(), write(), mkdir(), kill() ...

Device
Management

File
System

Network
Communications

Process
Management

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

OS as a resource manager

Shares resources across applications
Sharing a resource (CPU) over time
Sharing a resource (disk, memory) over space

Makes efficient use of a limited resource
Improves utilization and performance
Minimizes overhead

Protects applications from each other
Enforces boundaries

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The OS virtualizes resources
— the OS takes a physical

resource (CPU, memory, or a
disk) and makes it easier to

use.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Three “easy” pieces
(main themes) in this
course: virtualization,

concurrency, and
persistence

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Virtualization: The OS takes
a physical resource (CPU

and memory) and
transforms it into an easy-
to-use virtual form of itself

Theme #1

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

To the applications, the OS
is a virtual machine

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The big question: how
does the OS virtualize

resources? —
mechanisms and

policies

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Demo: Virtualizing the CPU

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Concurrency: The host of
problems that must be

solved when working on
many things concurrently in

the same program

Theme #2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Demo: Concurrency with
threads (functions that run in

the same memory space as
other functions)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Persistence: Storing data
persistently using a file

system

Theme #3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Demo: I/O system calls

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Virtualizing CPU
Concurrency

Virtualizing Memory
Persistence

Ordering in this course

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

We start with a bird’s eye
view of what problems will

arise and how they are
solved when the OS
virtualizes the CPU

Up next

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Virtualizing the CPU

23

The OS needs to somehow share the
physical CPU among many programs
running seemingly at the same time
Basic idea: run one program for a little
while, then switch to run another one, and
so forth
Time-sharing the CPU — virtualization is
achieved!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

But we have to care about performance

24

To minimize the overhead of running a
program, we use a technique called limited
direct execution

Just run the program directly on the CPU!
Sounds quite simple
What may be a potential problem?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Two problems

If the OS directly runs the user program on
the CPU, how can it make sure that the
program doesn’t do something it shouldn’t
be doing?
When a user program is running, how can the
OS run? (It’s just a software program itself!)

25

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The OS needs to be in
control, yet we don’t want to
compromise performance!

What we really need

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Let’s start with a brief
review of how programs are

executed on the CPU

Getting started

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A CPU’s instruction set

Different for different CPU architectures
All have load and store instructions for moving items
between memory and registers

Load a word located at an address in memory into a register
Store the contents of a register to a word located at an
address in memory

Many instructions for comparing and combining
values in registers and putting result into a register

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Basic anatomy on a CPU

Program Counter (PC)
Holds the memory address of the next instruction

Instruction Register (IR)
holds the instruction currently being executed

General Registers (R1 ... Rn)
hold the environment of execution: temporary
results

Arithmetic Logic Unit (ALU)
performs arithmetic functions and logic operations

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Basic anatomy on a CPU

The Stack Pointer (SP)
holds the memory address of a stack, with a frame
for each active function’s parameters and local
variables

The Program Status Word (PSW)
contains a few important control bits

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Program execution

All the CPU does is Fetch/Decode/Execute
fetch next instruction pointed to by PC
decode it to find its type and operands
execute it
repeat

PC = <start address>
while (halt_flag not set)
 IR = memory[PC]
 decode_and_execute(IR)
 PC = PC + 1

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The BLITZ architecture

The emulated CPU is a 32-bit architecture
16 general purpose integer registers with one
word each

r0 -> r15
16 floating point registers with a double-
precision floating point number each (64 bits)

f0 -> f15
69 different instructions

32

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Stack Pointer in BLITZ

Register r15 points to the top of the
execution stack
The stack grows downwards from higher
towards lower memory addresses

33

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Two problems, revisited

If the OS directly runs the program on the
CPU, how can it make sure that the program
doesn’t do something it shouldn’t be doing?
When a program is running, how can the OS
run? (It’s just a software program itself!)

34

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

An intuitive solution

35

PC = <start address>
while (halt_flag not set)
 IR = memory[PC]
 if IR != special_instruction
 decode_and_execute(IR)
 else
 switch_to_the_OS_kernel()
 PC = PC + 1

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The OS needs help from
hardware to accomplish

these tasks!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Processor Modes
CPUs have a mode bit in the PSW that defines
the execution capability of a program

Kernel mode (mode bit set)
Executes any instruction
called “System mode” in the BLITZ
documentation

 User mode (mode bit cleared)
Executes a subset of instructions

Instructions that execute only in the kernel
mode are called Privileged Instructions

37

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What is an example of a
privileged instruction?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

I/O operations to the disk

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The operation that sets
the mode bit to 1!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Processor modes: a summary

OS operates in kernel mode
has all privileges to access devices and memory
Modules that run in kernel mode are called “the
kernel”

Applications operate in user mode
Have limited privileges: limited access to memory, no
access to I/O devices

Now the OS is in control
When applications need to run privileged
instructions, they must enter the OS kernel

41

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How can applications
(user programs) enter
the OS kernel?

Can an application just set the
PC to the address of an OS

instruction, and jump to that
address?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How do we enforce that
only the OS operates in

the kernel mode?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How can applications enter the OS kernel?

Applications, running in user mode, need
to perform a system call
To perform a system call, a user program
needs to execute an instruction called a
trap

44

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The trap instruction

All it does is to jump into the kernel while
simultaneously raising the privilege level to kernel
mode

the application calls a library procedure (in the
standard C library) that includes the appropriate trap
instruction
fetch/decode/execute cycle then begins at a pre-
specified OS kernel entry point for a system call
CPU is now running in kernel mode

45

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

When the system call returns

We will need to return to the program making the
system call

But at the same time, the mode bit will need to be
cleared (reducing the privilege level back to user
mode)

Again, the OS depends on some help from the CPU,
by using another instruction, let’s call it return-
from-trap

46

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What the hardware must do

When executing a trap, the hardware will need to
make sure to save the caller’s registers, the PC, and
flags in the PSW

Because the hardware is responsible for returning
correctly when the return-from-trap instruction is
issued by the OS

One way to do this (Intel x86) is to save them onto
a kernel stack
The return-from-trap instruction will pop these
values off the stack and resume the execution of
the program in the user mode

47

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

But there’s one more
important problem: How
does the trap instruction
know which code to run?
(there are, after all,
hundreds of system calls.)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Which code to run?
Can the calling program
specify an address to jump
to?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

No.
The kernel must carefully
control what code executes
upon a trap.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solution: The kernel sets up
a trap table at boot time in
kernel mode, and then let the
hardware know where it is.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The trap table is also called
the interrupt table, because it

has entries for hardware
interrupts and exceptions too!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

It turns out that trap is
only one of the entries

in the trap table.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The actual type of the system
call is called the syscall number,
and it can be stored at a well-
known location in the kernel
stack.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Interrupts

Interrupts are asynchronous (comes in at
any arbitrary time)

Caused by hardware events
Timer interrupts
I/O (such as keyboard or disk) interrupts

55

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Exceptions

Caused by programming errors in a user-mode
program
Examples

an arithmetic exception (divide by zero)
attempts to access memory that the program does not
control
attempts to execute a privileged instruction

56

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

!!

!"#$%%&'#()*+,$

Privileged mode

User mode

Trap

Device Controllers

Interrupt

Interrupt Table

Interrupt

handler

Trap call

Next inst.

Prev inst.

…

…

return

from

interrupt

Why use

this

complex

scheme?

The trap (interrupt) table: an illustration

57

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Interrupt and Trap
Processing in BLITZ

(“The BLITZ Architecture,”
pages 22-25, 54)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Program Status Word in BLITZ

Called the Status Register in BLITZ documentation
A special 32-bit register, but only 6 bits are used
Three condition codes (Z = Zero, V = Overflow, N =
Negative) are set during certain arithmetic operations
Privileged bits (can only be changed by the kernel in
the System Mode)
“I” bit: Interrupt Enabled (1) or Disabled (0)
“S” bit: System Mode (1) vs. User Mode (0)
“P” bit: Paging Enabled (1) or Disabled (0)

59

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Interrupt Types in BLITZ

Asynchronous interrupts (hardware)
Timer Interrupt
Disk Interrupt

Synchronous interrupts (during execution)
Exceptions

Privileged Instruction
Arithmetic

Trap
Syscall

60

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

More about BLITZ registers

Two sets of integer registers: “system” (kernel) r0-r15
and “user” r0-r15

When running in user mode, the user r0-r15 is used
When running in kernel mode, the system r0-r15 is used
In kernel mode, the kernel can read/write user registers

The use of two sets of integer registers allows kernel
traps (such as system calls) to be executed quickly

No registers need to be saved when trapping to the kernel
But only one set of floating-point registers that are shared

61

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

When an interrupt occurs and is serviced

The current executing instruction is finished
PC points to the next instruction for hardware interrupts
PC points to the offending instruction for exceptions
PC points to the instruction following the “syscall” trap for system
calls

An “Exception Info Word” is pushed onto the system
stack (system register r15 used)

Syscall trap: system call number
All zeros for most other types of interrupts

Status Register (PSW) is pushed onto the system stack
Program Counter (PC) is pushed onto the system stack

62

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

When a trap, interrupt, or exception occurs
Status Register changed

Switch to System Mode
Disable subsequent interrupts
Disable paging (address translation via the page table)

PC is loaded with the corresponding address of one of
the interrupt vector entries

The entry contains a jmp instruction
which transfers control (again) to the interrupt handler
14 entries in the interrupt vector, in low memory
56 bytes in total
Some interrupts can be masked, some cannot

63

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Don’t believe me?
Read blitz.c, singleStep()
function, line 4997-6728

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Returning from a trap (interrupt) handler

The “Return from Interrupt” reti instruction in BLITZ
First, restore the PC by popping the top value from the system
stack and move it into the PC
Second, restore the Status Register to the old value, by popping
the next value from the system stack into the Status Register
Third, pop and discard the next value from the system stack (the
“Exception Info Word”)

Instruction execution resumes in the interrupted
program, as if nothing happened

None of the user registers are affected in an interrupted user
program

65

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The trap table (called Interrupt Vector in BLITZ)

Interrupt Vector in Low Memory
 Address Description
==================================
 000000 Power On Reset
 000004 Timer Interrupt
 000008 Disk Interrupt
 00000C Serial Interrupt
 000010 Hardware Fault
 000014 Illegal Instruction
 000018 Arithmetic Exception
 00001C Address Exception
 000020 Page Invalid Exception
 000024 Page Readonly Exception
 000028 Privileged Instruction
 00002C Alignment Exception
 000030 Exception During Interrupt
 000034 Syscall Trap

66

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Runtime.s in Lab 1
PowerOnReset:
 jmp RuntimeStartup
TimerInterrupt:
 jmp TimerInterruptHandler
DiskInterrupt:
 jmp DiskInterruptHandler
SerialInterrupt:
 jmp SerialInterruptHandler
HardwareFault:
 jmp HardwareFaultHandler
IllegalInstruction:...
 jmp IllegalInstructionHandler
ArithmeticException:
 jmp ArithmeticExceptionHandler
AddressException:
 jmp AddressExceptionHandler
PageInvalidException:
 jmp PageInvalidExceptionHandler
PageReadonlyException:
 jmp PageReadonlyExceptionHandler
PrivilegedInstruction:
 jmp PrivilegedInstructionHandler
AlignmentException:
 jmp AlignmentExceptionHandler
ExceptionDuringInterrupt:
 jmp ExceptionDuringInterruptHandler
SyscallTrap:
 jmp SyscallTrapHandler

67

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

With all these mechanisms,
we still haven’t solved the
second problem yet.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

When a program is running,
how can the OS run? (It’s
just a software program
itself!)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Can we trust the programs
to behave reasonably, and
just wait for a “yield” system
call?

yield(): transfer control to the OS

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

We call this a
“cooperative” approach
— used by the original
MacOS and Windows.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

This is, obviously, not
ideal — a malicious or
buggy program can take
over the CPU indefinitely.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How does the OS gain
control of the CPU
without cooperation?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Again, the OS depends on
help from the hardware.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The solution:
timer interrupts

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What We’ve Covered So Far

Required reading in the textbook: Chapter 6:
(Mechanism: Limited Direct Execution) 6.1, 6.2, 6.3
(before “Saving and Restoring Context”)
Required reading in BLITZ:

An Overview of the BLITZ System (7 pages)
An Overview of the BLITZ Computer Hardware (8 pages)
The BLITZ Architecture (Page 1-9, 22-25, 54)

Optional reading:
Chapter 1 and 2 in Operating Systems Concepts
The remaining pages of “The BLITZ Architecture”

76

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What We’ve Covered So Far

Required reading in the textbook: Chapter 6:
(Mechanism: Limited Direct Execution) 6.1, 6.2, 6.3
(before “Saving and Restoring Context”)
Required reading in BLITZ:

An Overview of the BLITZ System (7 pages)
An Overview of the BLITZ Computer Hardware (8 pages)
The BLITZ Architecture (Page 1-9, 22-25, 54)

Optional reading:
Chapter 1 and 2 in Operating Systems Concepts
The remaining pages of “The BLITZ Architecture”

77

