Free Space Management

Operating Systems
Baochun Li
University of Toronto

Another solution: use
better algorithms to find
available memory space

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

With variable-sized
segments, what are the
most suitable algorithms
to manage free space?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The problem of free-space management

When using segmentation with variable-sized
segments

When allocating memory on the heap in user space
malloc(size) and free(ptr)

When allocating kernel memory

Objective: minimize external fragmentation
may introduce internal fragmentation

Basic idea: Use a linked list to manage free chunks
of memory

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4

Low-level mechanism: Splitting

free used free
0 10 20 30
addr:0 addr:20
head —» len:10 —> len:10 — NULL

Request: one byte of memory

addr:0 . addr:21

head len:10 len:9

—» NULL

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5
-

Low-level mechanism: Coalescing

free used free
0 10 20 30

addr:0 ; addr:20

head len:10 len:10

—» NULL

Free(10)

addr:10 addr:0 addr:20

head = o040 ™ leni0 > len:10

—» NULL

addr:0

head —» |o..30

—» NULL

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6
-

Heap allocator uses a header to store the length

size: 20

magic: 1234567

ptr —»

The 20 bytes returned to caller

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 7
-

The free list is embedded in the free space

head > [virtual address: 16KB]
size: 4088 header: size field
next: 0 header: next field (NULL is 0)

the rest of the 4KB chunk

[virtual address: 16KB]

size: 100
magic: 1234567
ptr -
The 100 bytes now allocated
head >
size: 3980
next: 0
The free 3980 byte chunk
Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8

Free(): From three chunks down to two

[virtual address: 16KB] _ [virtual address: 16KB]
size: 100 size: 100
magic: 1234567 magic: 1234567
= = 100 bytes still allocated = = 100 bytes still allocated
- head > -
size: 100 size: 100
magic: 1234567 next: 16708
sptr > - sptr >
LI - 100 bytes still allocated T (now a free chunk of memory)
(but about to be freed)
size: 100 - size: 100
magic: 1234567 magic: 1234567
- - 100-bytes still allocated S - 100-bytes still allocated
h > - _ -
ead size: 3764 size: 3764 | <
next: 0 next: 0
- The free 3764-byte chunk "t - The free 3764-byte chunk
Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9

Basic strategies

Search the free list for a hole with size >= requested size

First Fit and Next Fit: Start from the beginning of the list or
the current node

Stop searching as soon as we find a free hole that's big enough
Best Fit: Find the smallest hole that will fit by searching the
entire list

Produces the smallest leftover hole — reduced wasted space

Worst Fit: Find the largest hole by searching the entire list

Simulations have shown: First Fit and Best Fit are better, but
First Fit is simpler and faster

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 10

A new idea: Buddy Allocation

Buddy Memory Allocation: allocates sizes in
powers of 2 (4 KB, 8 KB, 16 KB, etc.)

requests in odd sizes are satisfied by rounding up
to the next power of 2

every time a request comes in, existing memory will
be recursively divided into two “buddies” till the
requested size is satisfied with the smallest
"buddy”

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example: Request for 21 KB from 256 KB

contiguous physical memory partition
256 KB

128 KB 128 KB

64 KB 64 KB

32 KB||32 KB

selected to satisfy
the request of 21 KB

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 12

Advantage of Buddy Memory Allocation

Coalescing —

When an allocated partition of memory is released, it
can be easily coalesced (recursively, if needed) with
adjacent free partitions to a partition doubling in size

In the example, ultimately we end up with the original
256 KB partition

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 13
-

Drawbacks of Buddy Memory Allocation

If we are unfortunate, there will be a large
amount of space wasted within the partition

This unused space within a partition is internal
fragmentation

A 33 KB request will need to be satisfied using a 64
KB partition

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Any ideas that are even better?

Linux 2.0: Buddy memory allocation
Solaris 2.4 and Linux 2.2: Slab allocation

Designed by Jeff Bonwick (“100x" engineer)
Uses slabs to store kernel objects of precise sizes
An object in a slab can be marked as free or used

The slab allocator first attempts to satisfy the request
with a free object in a partial slab

If none exist, a free object is assigned from an empty slab

If no empty slabs are available, a new slab is allocated
from physical memory by a general allocator

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 15

Another problem with
segmentation: a
segment needs to fit into
the physical memory

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we've covered so far

Three Easy Pieces

17 (Free Space Management)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

