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Another solution: use
better algorithms to find
available memory space
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With variable-sized
segments, what are the
most suitable algorithms
to manage free space?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto




The problem of free-space management

When using segmentation with variable-sized
segments

When allocating memory on the heap in user space
malloc(size) and free(ptr)

When allocating kernel memory

Objective: minimize external fragmentation
may introduce internal fragmentation

Basic idea: Use a linked list to manage free chunks
of memory
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Low-level mechanism: Splitting

free used free
0 10 20 30
addr:0 addr:20
head —» len:10 —> len:10 — NULL

Request: one byte of memory

addr:0 . addr:21

head len:10 len:9

—» NULL
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Low-level mechanism: Coalescing

free used free
0 10 20 30

addr:0 ; addr:20

head len:10 len:10

—» NULL

Free(10)

addr:10 addr:0 addr:20

head = o040 ™ leni0 > len:10

—» NULL

addr:0

head —» |o..30

—» NULL
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Heap allocator uses a header to store the length

size: 20

magic: 1234567

ptr —»

The 20 bytes returned to caller
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The free list is embedded in the free space

head > [virtual address: 16KB]
size: 4088 header: size field
next: 0 header: next field (NULL is 0)

the rest of the 4KB chunk

[virtual address: 16KB]

size: 100
magic: 1234567
ptr -
The 100 bytes now allocated
head >
size: 3980
next: 0
The free 3980 byte chunk
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Free(): From three chunks down to two

[virtual address: 16KB] _ [virtual address: 16KB]
size: 100 size: 100
magic: 1234567 magic: 1234567
= = 100 bytes still allocated = = 100 bytes still allocated
- head > -
size: 100 size: 100
magic: 1234567 next: 16708
sptr > - sptr >
LI - 100 bytes still allocated T (now a free chunk of memory)
(but about to be freed)
size: 100 - size: 100
magic: 1234567 magic: 1234567
- - 100-bytes still allocated S - 100-bytes still allocated
h > - _ -
ead size: 3764 size: 3764 | <
next: 0 next: 0
- The free 3764-byte chunk "t - The free 3764-byte chunk
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Basic strategies

Search the free list for a hole with size >= requested size

First Fit and Next Fit: Start from the beginning of the list or
the current node

Stop searching as soon as we find a free hole that's big enough
Best Fit: Find the smallest hole that will fit by searching the
entire list

Produces the smallest leftover hole — reduced wasted space

Worst Fit: Find the largest hole by searching the entire list

Simulations have shown: First Fit and Best Fit are better, but
First Fit is simpler and faster
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A new idea: Buddy Allocation

Buddy Memory Allocation: allocates sizes in
powers of 2 (4 KB, 8 KB, 16 KB, etc.)

requests in odd sizes are satisfied by rounding up
to the next power of 2

every time a request comes in, existing memory will
be recursively divided into two “buddies” till the
requested size is satisfied with the smallest
"buddy”
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Example: Request for 21 KB from 256 KB

contiguous physical memory partition
256 KB

128 KB 128 KB

64 KB 64 KB

32 KB||32 KB

selected to satisfy
the request of 21 KB
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Advantage of Buddy Memory Allocation

Coalescing —

When an allocated partition of memory is released, it
can be easily coalesced (recursively, if needed) with
adjacent free partitions to a partition doubling in size

In the example, ultimately we end up with the original
256 KB partition
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Drawbacks of Buddy Memory Allocation

If we are unfortunate, there will be a large
amount of space wasted within the partition

This unused space within a partition is internal
fragmentation

A 33 KB request will need to be satisfied using a 64
KB partition
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Any ideas that are even better?

Linux 2.0: Buddy memory allocation
Solaris 2.4 and Linux 2.2: Slab allocation

Designed by Jeff Bonwick (“100x" engineer)
Uses slabs to store kernel objects of precise sizes
An object in a slab can be marked as free or used

The slab allocator first attempts to satisfy the request
with a free object in a partial slab

If none exist, a free object is assigned from an empty slab

If no empty slabs are available, a new slab is allocated
from physical memory by a general allocator
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Another problem with
segmentation: a
segment needs to fit into
the physical memory
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What we've covered so far

Three Easy Pieces

17 (Free Space Management)
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