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The problem of free-space management

When using segmentation with variable-sized 
segments

When allocating memory on the heap in user space


malloc(size) and free(ptr)

When allocating kernel memory

Objective: minimize external fragmentation


may introduce internal fragmentation

Basic idea: Use a linked list to manage free chunks 
of memory
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Low-level mechanism: Splitting
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would be useful to combat fragmentation2. Compaction could, however,
be used in the OS to deal with fragmentation when implementing seg-
mentation (as discussed in said chapter on segmentation).

Finally, we’ll assume that the allocator manages a contiguous region
of bytes. In some cases, an allocator could ask for that region to grow;
for example, a user-level memory-allocation library might call into the
kernel to grow the heap (via a system call such as sbrk) when it runs out
of space. However, for simplicity, we’ll just assume that the region is a
single fixed size throughout its life.

17.2 Low-level Mechanisms

Before delving into some policy details, we’ll first cover some com-
mon mechanisms used in most allocators. First, we’ll discuss the basics of
splitting and coalescing, common techniques in most any allocator. Sec-
ond, we’ll show how one can track the size of allocated regions quickly
and with relative ease. Finally, we’ll discuss how to build a simple list
inside the free space to keep track of what is free and what isn’t.

Splitting and Coalescing

A free list contains a set of elements that describe the free space still re-
maining in the heap. Thus, assume the following 30-byte heap:

free used free
0 10 20 30

The free list for this heap would have two elements on it. One entry de-
scribes the first 10-byte free segment (bytes 0-9), and one entry describes
the other free segment (bytes 20-29):

head
addr:0
len:10

addr:20
len:10

NULL

As described above, a request for anything greater than 10 bytes will
fail (returning NULL); there just isn’t a single contiguous chunk of mem-
ory of that size available. A request for exactly that size (10 bytes) could
be satisfied easily by either of the free chunks. But what happens if the
request is for something smaller than 10 bytes?

Assume we have a request for just a single byte of memory. In this
case, the allocator will perform an action known as splitting: it will find

2Once you hand a pointer to a chunk of memory to a C program, it is generally difficult
to determine all references (pointers) to that region, which may be stored in other variables
or even in registers at a given point in execution. This may not be the case in more strongly-
typed, garbage-collected languages, which would thus enable compaction as a technique to
combat fragmentation.
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a free chunk of memory that can satisfy the request and split it into two.
The first chunk it will return to the caller; the second chunk will remain
on the list. Thus, in our example above, if a request for 1 byte were made,
and the allocator decided to use the second of the two elements on the list
to satisfy the request, the call to malloc() would return 20 (the address of
the 1-byte allocated region) and the list would end up looking like this:

head
addr:0
len:10

addr:21
len:9

NULL

In the picture, you can see the list basically stays intact; the only change
is that the free region now starts at 21 instead of 20, and the length of that
free region is now just 93. Thus, the split is commonly used in allocators
when requests are smaller than the size of any particular free chunk.

A corollary mechanism found in many allocators is known as coalesc-
ing of free space. Take our example from above once more (free 10 bytes,
used 10 bytes, and another free 10 bytes).

Given this (tiny) heap, what happens when an application calls free(10),
thus returning the space in the middle of the heap? If we simply add this
free space back into our list without too much thinking, we might end up
with a list that looks like this:

head
addr:10
len:10

addr:0
len:10

addr:20
len:10

NULL

Note the problem: while the entire heap is now free, it is seemingly
divided into three chunks of 10 bytes each. Thus, if a user requests 20
bytes, a simple list traversal will not find such a free chunk, and return
failure.

What allocators do in order to avoid this problem is coalesce free space
when a chunk of memory is freed. The idea is simple: when returning a
free chunk in memory, look carefully at the addresses of the chunk you
are returning as well as the nearby chunks of free space; if the newly-
freed space sits right next to one (or two, as in this example) existing free
chunks, merge them into a single larger free chunk. Thus, with coalesc-
ing, our final list should look like this:

head
addr:0
len:30

NULL

Indeed, this is what the heap list looked like at first, before any allo-
cations were made. With coalescing, an allocator can better ensure that
large free extents are available for the application.

3This discussion assumes that there are no headers, an unrealistic but simplifying assump-
tion we make for now.
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A free list contains a set of elements that describe the free space still re-
maining in the heap. Thus, assume the following 30-byte heap:
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The free list for this heap would have two elements on it. One entry de-
scribes the first 10-byte free segment (bytes 0-9), and one entry describes
the other free segment (bytes 20-29):

head
addr:0
len:10

addr:20
len:10

NULL

As described above, a request for anything greater than 10 bytes will
fail (returning NULL); there just isn’t a single contiguous chunk of mem-
ory of that size available. A request for exactly that size (10 bytes) could
be satisfied easily by either of the free chunks. But what happens if the
request is for something smaller than 10 bytes?

Assume we have a request for just a single byte of memory. In this
case, the allocator will perform an action known as splitting: it will find

2Once you hand a pointer to a chunk of memory to a C program, it is generally difficult
to determine all references (pointers) to that region, which may be stored in other variables
or even in registers at a given point in execution. This may not be the case in more strongly-
typed, garbage-collected languages, which would thus enable compaction as a technique to
combat fragmentation.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

FREE-SPACE MANAGEMENT 3

would be useful to combat fragmentation2. Compaction could, however,
be used in the OS to deal with fragmentation when implementing seg-
mentation (as discussed in said chapter on segmentation).

Finally, we’ll assume that the allocator manages a contiguous region
of bytes. In some cases, an allocator could ask for that region to grow;
for example, a user-level memory-allocation library might call into the
kernel to grow the heap (via a system call such as sbrk) when it runs out
of space. However, for simplicity, we’ll just assume that the region is a
single fixed size throughout its life.

17.2 Low-level Mechanisms

Before delving into some policy details, we’ll first cover some com-
mon mechanisms used in most allocators. First, we’ll discuss the basics of
splitting and coalescing, common techniques in most any allocator. Sec-
ond, we’ll show how one can track the size of allocated regions quickly
and with relative ease. Finally, we’ll discuss how to build a simple list
inside the free space to keep track of what is free and what isn’t.

Splitting and Coalescing

A free list contains a set of elements that describe the free space still re-
maining in the heap. Thus, assume the following 30-byte heap:

free used free
0 10 20 30

The free list for this heap would have two elements on it. One entry de-
scribes the first 10-byte free segment (bytes 0-9), and one entry describes
the other free segment (bytes 20-29):

head
addr:0
len:10

addr:20
len:10

NULL

As described above, a request for anything greater than 10 bytes will
fail (returning NULL); there just isn’t a single contiguous chunk of mem-
ory of that size available. A request for exactly that size (10 bytes) could
be satisfied easily by either of the free chunks. But what happens if the
request is for something smaller than 10 bytes?

Assume we have a request for just a single byte of memory. In this
case, the allocator will perform an action known as splitting: it will find

2Once you hand a pointer to a chunk of memory to a C program, it is generally difficult
to determine all references (pointers) to that region, which may be stored in other variables
or even in registers at a given point in execution. This may not be the case in more strongly-
typed, garbage-collected languages, which would thus enable compaction as a technique to
combat fragmentation.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Free(10)

4 FREE-SPACE MANAGEMENT

a free chunk of memory that can satisfy the request and split it into two.
The first chunk it will return to the caller; the second chunk will remain
on the list. Thus, in our example above, if a request for 1 byte were made,
and the allocator decided to use the second of the two elements on the list
to satisfy the request, the call to malloc() would return 20 (the address of
the 1-byte allocated region) and the list would end up looking like this:

head
addr:0
len:10

addr:21
len:9

NULL

In the picture, you can see the list basically stays intact; the only change
is that the free region now starts at 21 instead of 20, and the length of that
free region is now just 93. Thus, the split is commonly used in allocators
when requests are smaller than the size of any particular free chunk.

A corollary mechanism found in many allocators is known as coalesc-
ing of free space. Take our example from above once more (free 10 bytes,
used 10 bytes, and another free 10 bytes).

Given this (tiny) heap, what happens when an application calls free(10),
thus returning the space in the middle of the heap? If we simply add this
free space back into our list without too much thinking, we might end up
with a list that looks like this:

head
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len:10

addr:0
len:10

addr:20
len:10

NULL

Note the problem: while the entire heap is now free, it is seemingly
divided into three chunks of 10 bytes each. Thus, if a user requests 20
bytes, a simple list traversal will not find such a free chunk, and return
failure.

What allocators do in order to avoid this problem is coalesce free space
when a chunk of memory is freed. The idea is simple: when returning a
free chunk in memory, look carefully at the addresses of the chunk you
are returning as well as the nearby chunks of free space; if the newly-
freed space sits right next to one (or two, as in this example) existing free
chunks, merge them into a single larger free chunk. Thus, with coalesc-
ing, our final list should look like this:

head
addr:0
len:30

NULL

Indeed, this is what the heap list looked like at first, before any allo-
cations were made. With coalescing, an allocator can better ensure that
large free extents are available for the application.

3This discussion assumes that there are no headers, an unrealistic but simplifying assump-
tion we make for now.
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ptr

The header used by malloc library

The 20 bytes returned to caller

Figure 17.1: An Allocated Region Plus Header

size: 20

magic: 1234567

hptr

ptr

The 20 bytes returned to caller

Figure 17.2: Specific Contents Of The Header

Tracking The Size Of Allocated Regions

You might have noticed that the interface to free(void *ptr) does
not take a size parameter; thus it is assumed that given a pointer, the
malloc library can quickly determine the size of the region of memory
being freed and thus incorporate the space back into the free list.

To accomplish this task, most allocators store a little bit of extra infor-
mation in a header block which is kept in memory, usually just before
the handed-out chunk of memory. Let’s look at an example again (Fig-
ure 17.1). In this example, we are examining an allocated block of size 20
bytes, pointed to by ptr; imagine the user called malloc() and stored
the results in ptr, e.g., ptr = malloc(20);.

The header minimally contains the size of the allocated region (in this
case, 20); it may also contain additional pointers to speed up dealloca-
tion, a magic number to provide additional integrity checking, and other
information. Let’s assume a simple header which contains the size of the
region and a magic number, like this:

typedef struct __header_t {
int size;
int magic;

} header_t;

The example above would look like what you see in Figure 17.2. When
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The free list is embedded in the free space
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size: 4088

next: 0

...

head [virtual address: 16KB]
header: size field

header: next field (NULL is 0)

the rest of the 4KB chunk

Figure 17.3: A Heap With One Free Chunk

size: 100

magic: 1234567

. . .

size: 3980

next: 0

. . .

ptr

[virtual address: 16KB]

head

The 100 bytes now allocated

The free 3980 byte chunk

Figure 17.4: A Heap: After One Allocation

here. The head pointer contains the beginning address of this range; let’s
assume it is 16KB (though any virtual address would be fine). Visually,
the heap thus looks like what you see in Figure 17.3.

Now, let’s imagine that a chunk of memory is requested, say of size
100 bytes. To service this request, the library will first find a chunk that is
large enough to accommodate the request; because there is only one free
chunk (size: 4088), this chunk will be chosen. Then, the chunk will be
split into two: one chunk big enough to service the request (and header,
as described above), and the remaining free chunk. Assuming an 8-byte
header (an integer size and an integer magic number), the space in the
heap now looks like what you see in Figure 17.4.

Thus, upon the request for 100 bytes, the library allocated 108 bytes
out of the existing one free chunk, returns a pointer (marked ptr in the
figure above) to it, stashes the header information immediately before the
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Free(): From three chunks down to two
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size: 100

magic: 1234567

. . .

size: 100

magic: 1234567

. . .

size: 100

magic: 1234567

. . .

size: 3764

next: 0

. . .

sptr

[virtual address: 16KB]

head

100 bytes still allocated

100 bytes still allocated
 (but about to be freed)

100-bytes still allocated

The free 3764-byte chunk

Figure 17.5: Free Space With Three Chunks Allocated

allocated space for later use upon free(), and shrinks the one free node
in the list to 3980 bytes (4088 minus 108).

Now let’s look at the heap when there are three allocated regions, each
of 100 bytes (or 108 including the header). A visualization of this heap is
shown in Figure 17.5.

As you can see therein, the first 324 bytes of the heap are now allo-
cated, and thus we see three headers in that space as well as three 100-
byte regions being used by the calling program. The free list remains
uninteresting: just a single node (pointed to by head), but now only 3764
bytes in size after the three splits. But what happens when the calling
program returns some memory via free()?
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size: 100

magic: 1234567

. . .

size: 100

next: 16708

. . .

size: 100

magic: 1234567

. . .

size: 3764

next: 0

. . .

[virtual address: 16KB]

head

sptr

100 bytes still allocated

(now a free chunk of memory)

100-bytes still allocated

The free 3764-byte chunk

Figure 17.6: Free Space With Two Chunks Allocated

In this example, the application returns the middle chunk of allocated
memory, by calling free(16500) (the value 16500 is arrived upon by
adding the start of the memory region, 16384, to the 108 of the previous
chunk and the 8 bytes of the header for this chunk). This value is shown
in the previous diagram by the pointer sptr.

The library immediately figures out the size of the free region, and
then adds the free chunk back onto the free list. Assuming we insert at
the head of the free list, the space now looks like this (Figure 17.6).

And now we have a list that starts with a small free chunk (100 bytes,
pointed to by the head of the list) and a large free chunk (3764 bytes).
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Basic strategies
Search the free list for a hole with size >= requested size


First Fit and Next Fit: Start from the beginning of the list or 
the current node


Stop searching as soon as we find a free hole that’s big enough 


Best Fit: Find the smallest hole that will fit by searching the 
entire list


Produces the smallest leftover hole — reduced wasted space


Worst Fit: Find the largest hole by searching the entire list


Simulations have shown: First Fit and Best Fit are better, but 
First Fit is simpler and faster
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Buddy Memory Allocation: allocates sizes in 
powers of 2 (4 KB, 8 KB, 16 KB, etc.)


requests in odd sizes are satisfied by rounding up 
to the next power of 2

every time a request comes in, existing memory will 
be recursively divided into two “buddies” till the 
requested size is satisfied with the smallest 
“buddy”
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Example: Request for 21 KB from 256 KB
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32 KB 32 KB
selected to satisfy 

the request of 21 KB

256 KB

128 KB 128 KB

64 KB 64 KB

contiguous physical memory partition
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Advantage of Buddy Memory Allocation

Coalescing —

When an allocated partition of memory is released, it 
can be easily coalesced (recursively, if needed) with 
adjacent free partitions to a partition doubling in size

In the example, ultimately we end up with the original 
256 KB partition
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Drawbacks of Buddy Memory Allocation

If we are unfortunate, there will be a large 
amount of space wasted within the partition


This unused space within a partition is internal 
fragmentation 

A 33 KB request will need to be satisfied using a 64 
KB partition
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Any ideas that are even better?

Linux 2.0: Buddy memory allocation

Solaris 2.4 and Linux 2.2: Slab allocation


Designed by Jeff Bonwick (“100x” engineer)

Uses slabs to store kernel objects of precise sizes

An object in a slab can be marked as free or used

The slab allocator first attempts to satisfy the request 
with a free object in a partial slab

If none exist, a free object is assigned from an empty slab

If no empty slabs are available, a new slab is allocated 
from physical memory by a general allocator
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Another problem with 
segmentation: a 

segment needs to fit into 
the physical memory
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What we’ve covered so far

Three Easy Pieces

17 (Free Space Management)


