
Segmentation

Operating Systems

Baochun Li


University of Toronto



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Any problems with base-and-bounds virtualization?

2

2 THE ABSTRACTION: ADDRESS SPACES

512KB

448KB

384KB

320KB

256KB

192KB

128KB

64KB

0KB

(free)

(free)

(free)

(free)

Operating System
(code, data, etc.)

Process A
(code, data, etc.)

Process B
(code, data, etc.)

Process C
(code, data, etc.)

Figure 13.2: Three Processes: Sharing Memory

13.2 Multiprogramming and Time Sharing

After a time, because machines were expensive, people began to share
machines more effectively. Thus the era of multiprogramming was born
[DV66], in which multiple processes were ready to run at a given time,
and the OS would switch between them, for example when one decided
to perform an I/O. Doing so increased the effective utilization of the
CPU. Such increases in efficiency were particularly important in those
days where each machine cost hundreds of thousands or even millions of
dollars (and you thought your Mac was expensive!).

Soon enough, however, people began demanding more of machines,
and the era of time sharing was born [S59, L60, M62, M83]. Specifically,
many realized the limitations of batch computing, particularly on pro-
grammers themselves [CV65], who were tired of long (and hence ineffec-
tive) program-debug cycles. The notion of interactivity became impor-
tant, as many users might be concurrently using a machine, each waiting
for (or hoping for) a timely response from their currently-executing tasks.

One way to implement time sharing would be to run one process for a
short while, giving it full access to all memory (Figure 13.1, page 1), then
stop it, save all of its state to some kind of disk (including all of physical
memory), load some other process’s state, run it for a while, and thus
implement some kind of crude sharing of the machine [M+63].

Unfortunately, this approach has a big problem: it is way too slow,
particularly as memory grows. While saving and restoring register-level
state (the PC, general-purpose registers, etc.) is relatively fast, saving the
entire contents of memory to disk is brutally non-performant. Thus, what
we’d rather do is leave processes in memory while switching between
them, allowing the OS to implement time sharing efficiently (Figure 13.2).

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Problems with base-and-bounds virtualization

Internal fragmentation: wasted space between 
the heap and the stack

The address space is assumed to fit into the 
physical memory

3



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Segmentation

Basic idea: a pair of base and bounds register values 
for each logical segment in the address space

Accommodates sparse address spaces, with large 
amounts of unused address space between the heap 
and the stack

4



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example

5

SEGMENTATION 3

64KB

48KB

32KB

16KB

0KB

(not in use)

(not in use)

(not in use)

Operating System

Stack

Code
Heap

Figure 16.2: Placing Segments In Physical Memory

As you can see in the diagram, only used memory is allocated space
in physical memory, and thus large address spaces with large amounts of
unused address space (which we sometimes call sparse address spaces)
can be accommodated.

The hardware structure in our MMU required to support segmenta-
tion is just what you’d expect: in this case, a set of three base and bounds
register pairs. Figure 16.3 below shows the register values for the exam-
ple above; each bounds register holds the size of a segment.

Segment Base Size
Code 32K 2K
Heap 34K 2K
Stack 28K 2K

Figure 16.3: Segment Register Values

You can see from the figure that the code segment is placed at physical
address 32KB and has a size of 2KB and the heap segment is placed at
34KB and also has a size of 2KB.

Let’s do an example translation, using the address space in Figure 16.1.
Assume a reference is made to virtual address 100 (which is in the code
segment). When the reference takes place (say, on an instruction fetch),
the hardware will add the base value to the offset into this segment (100 in
this case) to arrive at the desired physical address: 100 + 32KB, or 32868.
It will then check that the address is within bounds (100 is less than 2KB),
find that it is, and issue the reference to physical memory address 32868.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

SEGMENTATION 3

64KB

48KB

32KB

16KB

0KB

(not in use)

(not in use)

(not in use)

Operating System

Stack

Code
Heap

Figure 16.2: Placing Segments In Physical Memory

As you can see in the diagram, only used memory is allocated space
in physical memory, and thus large address spaces with large amounts of
unused address space (which we sometimes call sparse address spaces)
can be accommodated.

The hardware structure in our MMU required to support segmenta-
tion is just what you’d expect: in this case, a set of three base and bounds
register pairs. Figure 16.3 below shows the register values for the exam-
ple above; each bounds register holds the size of a segment.

Segment Base Size
Code 32K 2K
Heap 34K 2K
Stack 28K 2K

Figure 16.3: Segment Register Values

You can see from the figure that the code segment is placed at physical
address 32KB and has a size of 2KB and the heap segment is placed at
34KB and also has a size of 2KB.

Let’s do an example translation, using the address space in Figure 16.1.
Assume a reference is made to virtual address 100 (which is in the code
segment). When the reference takes place (say, on an instruction fetch),
the hardware will add the base value to the offset into this segment (100 in
this case) to arrive at the desired physical address: 100 + 32KB, or 32868.
It will then check that the address is within bounds (100 is less than 2KB),
find that it is, and issue the reference to physical memory address 32868.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

2 SEGMENTATION

16KB

15KB

14KB

6KB

5KB

4KB

3KB

2KB

1KB

0KB

Program Code

Heap

(free)

Stack

Figure 16.1: An Address Space (Again)

address space, we have three logically-different segments: code, stack,
and heap. What segmentation allows the OS to do is to place each one
of those segments in different parts of physical memory, and thus avoid
filling physical memory with unused virtual address space.

Let’s look at an example. Assume we want to place the address space
from Figure 16.1 into physical memory. With a base and bounds pair
per segment, we can place each segment independently in physical mem-
ory. For example, see Figure 16.2 (page 3); there you see a 64KB physical
memory with those three segments in it (and 16KB reserved for the OS).

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Which segment are we referring to?

The hardware needs to know which segment an address 
belongs to, in order to compute the offset

An explicit approach: use the top several bits in the virtual 
address

6

4 SEGMENTATION

ASIDE: THE SEGMENTATION FAULT

The term segmentation fault or violation arises from a memory access
on a segmented machine to an illegal address. Humorously, the term
persists, even on machines with no support for segmentation at all. Or
not so humorously, if you can’t figure why your code keeps faulting.

Now let’s look at an address in the heap, virtual address 4200 (again
refer to Figure 16.1). If we just add the virtual address 4200 to the base
of the heap (34KB), we get a physical address of 39016, which is not the
correct physical address. What we need to first do is extract the offset into
the heap, i.e., which byte(s) in this segment the address refers to. Because
the heap starts at virtual address 4KB (4096), the offset of 4200 is actually
4200 minus 4096, or 104. We then take this offset (104) and add it to the
base register physical address (34K) to get the desired result: 34920.

What if we tried to refer to an illegal address, such as 7KB which is be-
yond the end of the heap? You can imagine what will happen: the hard-
ware detects that the address is out of bounds, traps into the OS, likely
leading to the termination of the offending process. And now you know
the origin of the famous term that all C programmers learn to dread: the
segmentation violation or segmentation fault.

16.2 Which Segment Are We Referring To?

The hardware uses segment registers during translation. How does it
know the offset into a segment, and to which segment an address refers?

One common approach, sometimes referred to as an explicit approach,
is to chop up the address space into segments based on the top few bits
of the virtual address; this technique was used in the VAX/VMS system
[LL82]. In our example above, we have three segments; thus we need two
bits to accomplish our task. If we use the top two bits of our 14-bit virtual
address to select the segment, our virtual address looks like this:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment Offset

In our example, then, if the top two bits are 00, the hardware knows
the virtual address is in the code segment, and thus uses the code base
and bounds pair to relocate the address to the correct physical location.
If the top two bits are 01, the hardware knows the address is in the heap,
and thus uses the heap base and bounds. Let’s take our example heap
virtual address from above (4200) and translate it, just to make sure this
is clear. The virtual address 4200, in binary form, can be seen here:

13

0
12

1
11

0
10

0
9

0
8

0
7

0
6

1
5

1
4

0
3

1
2

0
1

0
0

0

Segment Offset

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example translation

Segment = (Virtual Address & SEG_MASK) >> SEG_SHIFT

Offset = Virtual Address & OFFSET_MASK

if (Offset >= Bounds[Segment])


RaiseException(SEGMENTATION_FAULT)

else


PhysicalAddr = Base[Segment] + Offset

7



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What about the stack segment?

The stack grows backwards to lower addresses

In addition to base and bounds values, the hardware also 
needs to know which way the segment grows

8

6 SEGMENTATION

Segment Base Size Grows Positive?
Code 32K 2K 1
Heap 34K 2K 1
Stack 28K 2K 0

Figure 16.4: Segment Registers (With Negative-Growth Support)

With the hardware understanding that segments can grow in the neg-
ative direction, the hardware must now translate such virtual addresses
slightly differently. Let’s take an example stack virtual address and trans-
late it to understand the process.

In this example, assume we wish to access virtual address 15KB, which
should map to physical address 27KB. Our virtual address, in binary
form, thus looks like this: 11 1100 0000 0000 (hex 0x3C00). The hard-
ware uses the top two bits (11) to designate the segment, but then we are
left with an offset of 3KB. To obtain the correct negative offset, we must
subtract the maximum segment size from 3KB: in this example, a seg-
ment can be 4KB, and thus the correct negative offset is 3KB minus 4KB
which equals -1KB. We simply add the negative offset (-1KB) to the base
(28KB) to arrive at the correct physical address: 27KB. The bounds check
can be calculated by ensuring the absolute value of the negative offset is
less than the segment’s size.

16.4 Support for Sharing

As support for segmentation grew, system designers soon realized that
they could realize new types of efficiencies with a little more hardware
support. Specifically, to save memory, sometimes it is useful to share
certain memory segments between address spaces. In particular, code
sharing is common and still in use in systems today.

To support sharing, we need a little extra support from the hardware,
in the form of protection bits. Basic support adds a few bits per segment,
indicating whether or not a program can read or write a segment, or per-
haps execute code that lies within the segment. By setting a code segment
to read-only, the same code can be shared across multiple processes, with-
out worry of harming isolation; while each process still thinks that it is ac-
cessing its own private memory, the OS is secretly sharing memory which
cannot be modified by the process, and thus the illusion is preserved.

An example of the additional information tracked by the hardware
(and OS) is shown in Figure 16.5. As you can see, the code segment is
set to read and execute, and thus the same physical segment in memory
could be mapped into multiple virtual address spaces.

Segment Base Size Grows Positive? Protection
Code 32K 2K 1 Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

Figure 16.5: Segment Register Values (with Protection)

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Support for sharing

To conserve physical memory, sometimes it is useful to 
share certain memory segments between address spaces 


Example: code sharing


To support sharing, add a few protection bits

9

SEGMENTATION 7

16.4 Support for Sharing

As support for segmentation grew, system designers soon realized that
they could realize new types of efficiencies with a little more hardware
support. Specifically, to save memory, sometimes it is useful to share
certain memory segments between address spaces. In particular, code
sharing is common and still in use in systems today.

To support sharing, we need a little extra support from the hardware,
in the form of protection bits. Basic support adds a few bits per segment,
indicating whether or not a program can read or write a segment, or per-
haps execute code that lies within the segment. By setting a code segment
to read-only, the same code can be shared across multiple processes, with-
out worry of harming isolation; while each process still thinks that it is ac-
cessing its own private memory, the OS is secretly sharing memory which
cannot be modified by the process, and thus the illusion is preserved.

An example of the additional information tracked by the hardware
(and OS) is shown in Figure 16.5. As you can see, the code segment is
set to read and execute, and thus the same physical segment in memory
could be mapped into multiple virtual address spaces.

Segment Base Size (max 4K) Grows Positive? Protection
Code00 32K 2K 1 Read-Execute
Heap01 34K 3K 1 Read-Write
Stack11 28K 2K 0 Read-Write

Figure 16.5: Segment Register Values (with Protection)

With protection bits, the hardware algorithm described earlier would
also have to change. In addition to checking whether a virtual address is
within bounds, the hardware also has to check whether a particular access
is permissible. If a user process tries to write to a read-only segment, or
execute from a non-executable segment, the hardware should raise an
exception, and thus let the OS deal with the offending process.

16.5 Fine-grained vs. Coarse-grained Segmentation

Most of our examples thus far have focused on systems with just a
few segments (i.e., code, stack, heap); we can think of this segmentation
as coarse-grained, as it chops up the address space into relatively large,
coarse chunks. However, some early systems (e.g., Multics [CV65,DD68])
were more flexible and allowed for address spaces to consist of a large
number of smaller segments, referred to as fine-grained segmentation.

Supporting many segments requires even further hardware support,
with a segment table of some kind stored in memory. Such segment ta-
bles usually support the creation of a very large number of segments, and
thus enable a system to use segments in more flexible ways than we have
thus far discussed. For example, early machines like the Burroughs B5000
had support for thousands of segments, and expected a compiler to chop

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

OS Support

On a context switch, save and restore segment 
registers

What happens when a user process calls malloc() to 
allocate an object on the heap?


The heap segment may need to grow, by performing a system 
call — sbrk()


How do we manage free space in the physical 
memory?


Segment sizes vary, rather than assuming the same size for 
address spaces

10



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

When a new address space is created

The OS needs to find space in the physical memory 
for its segments

We now have a few segments in each address space, 
but they may have different sizes

As address spaces are created and removed, the 
physical memory quickly becomes full of little holes 
of free space — called external fragmentation

11



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

128KOS

896K



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

128KOS 128KOS

896K

S1

576K

320K



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

128KOS 128KOS

896K

S1

576K

320K

S2

128KOS

S1

352K

320K

224K



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

128KOS 128KOS

896K

S1

576K

320K

S2

S3

128KOS

S1

352K

320K

224K S2

128KOS

S1

288K

320K

224K

64K



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

128KOS 128KOS

896K

S1

576K

320K

S2

S3

128KOS

S1

352K

320K

224K S2

128KOS

S1

288K

320K

224K

64K
S3

128KOS

S1

288K

320K

224K

64K



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

128KOS 128KOS

896K

S1

576K

320K

S2

S3

S4

128KOS

S1

352K

320K

224K S2

128KOS

S1

288K

320K

224K

64K
S3

128KOS

S1

288K

320K

224K

64K

S3

128KOS

S1

288K

320K

128K

64K

96K



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

128KOS 128KOS

896K

S1

576K

320K

S2

S3

S4

128KOS

S1

352K

320K

224K S2

128KOS

S1

288K

320K

224K

64K
S3

128KOS

S1

288K

320K

224K

64K

S3

128KOS

S1

288K

320K

128K

64K

96K
S4

S3

128KOS

288K

320K

128K

64K

96K



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

128KOS 128KOS

896K

S1

576K

320K

S2

S3

S4

S5

128KOS

S1

352K

320K

224K S2

128KOS

S1

288K

320K

224K

64K
S3

128KOS

S1

288K

320K

224K

64K

S3

128KOS

S1

288K

320K

128K

64K

96K
S4

S3

128KOS

288K

320K

128K

64K

96K
S4

S3

128KOS

288K

224K

128K

64K

96K

96K



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

128KOS 128KOS

896K

S1

576K

320K

S2

S6

S3

S4

S5

128KOS

S1

352K

320K

224K S2

128KOS

S1

288K

320K

224K

64K
S3

128KOS

S1

288K

320K

224K

64K

S3

128KOS

S1

288K

320K

128K

64K

96K
S4

S3

128KOS

288K

320K

128K

64K

96K
S4

S3

128KOS

288K

224K

128K

64K

96K

96K
S5

S4

S3

128KOS

288K

224K

128K

64K

96K

96K

???
128K



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solution: Compaction
But copying segments is memory-intensive — heavy 
overhead

21

8 SEGMENTATION

64KB

56KB

48KB

40KB

32KB

24KB

16KB

8KB

0KB

Operating System

Not Compacted

(not in use)

(not in use)

(not in use)

Allocated

Allocated

Allocated

64KB

56KB

48KB

40KB

32KB

24KB

16KB

8KB

0KB

(not in use)

Allocated

Operating System

Compacted

Figure 16.6: Non-compacted and Compacted Memory

The general problem that arises is that physical memory quickly be-
comes full of little holes of free space, making it difficult to allocate new
segments, or to grow existing ones. We call this problem external frag-
mentation [R69]; see Figure 16.6 (left).

In the example, a process comes along and wishes to allocate a 20KB
segment. In that example, there is 24KB free, but not in one contiguous
segment (rather, in three non-contiguous chunks). Thus, the OS cannot
satisfy the 20KB request.

One solution to this problem would be to compact physical memory
by rearranging the existing segments. For example, the OS could stop
whichever processes are running, copy their data to one contiguous re-
gion of memory, change their segment register values to point to the
new physical locations, and thus have a large free extent of memory with
which to work. By doing so, the OS enables the new allocation request
to succeed. However, compaction is expensive, as copying segments is
memory-intensive and generally uses a fair amount of processor time.
See Figure 16.6 (right) for a diagram of compacted physical memory.

A simpler approach is to use a free-list management algorithm that
tries to keep large extents of memory available for allocation. There are
literally hundreds of approaches that people have taken, including clas-
sic algorithms like best-fit (which keeps a list of free spaces and returns
the one closest in size that satisfies the desired allocation to the requester),
worst-fit, first-fit, and more complex schemes like buddy algorithm [K68].
An excellent survey by Wilson et al. is a good place to start if you want to
learn more about such algorithms [W+95], or you can wait until we cover
some of the basics ourselves in a later chapter. Unfortunately, though, no
matter how smart the algorithm, external fragmentation will still exist;
thus, a good algorithm simply attempts to minimize it.

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces

16 (Segmentation)


