
Virtualizing Memory: 

Introduction

Operating Systems

Baochun Li


University of Toronto



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

OS: managing shared resources

2

Sharing resources over time: Physical processors

The main topic of past lectures


Sharing resources over space: Memory

The main topic of upcoming lectures

There is never enough memory


“640 KB ought to be enough for anyone.”



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Memory in early operating systems

3

13

The Abstraction: Address Spaces

In the early days, building computer systems was easy. Why, you ask?
Because users didn’t expect much. It is those darned users with their
expectations of “ease of use”, “high performance”, “reliability”, etc., that
really have led to all these headaches. Next time you meet one of those
computer users, thank them for all the problems they have caused.

13.1 Early Systems
From the perspective of memory, early machines didn’t provide much

of an abstraction to users. Basically, the physical memory of the machine
looked something like what you see in Figure 13.1.

The OS was a set of routines (a library, really) that sat in memory (start-
ing at physical address 0 in this example), and there would be one run-
ning program (a process) that currently sat in physical memory (starting
at physical address 64k in this example) and used the rest of memory.
There were few illusions here, and the user didn’t expect much from the
OS. Life was sure easy for OS developers in those days, wasn’t it?

max

64KB

0KB

Current Program
(code, data, etc.)

Operating System
(code, data, etc.)

Figure 13.1: Operating Systems: The Early Days

1



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Multiprogramming and time sharing

We need to accommodate multiple processes

Multiprogramming: multiple batch jobs run at the 
same time

Time sharing: Multiple users using interactive 
processes at the same time


The important question is how?

4



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5

Stack

Gap

Data

Text

Maximum

Address 0

Address space in a process: revisited

Heap



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Address space: an abstraction

The user process uses virtual addresses in its own 
address space

The virtual memory system in the OS is responsible 
for virtualizing physical memory and provides the 
abstraction of address spaces to user processes

But how can the OS build this abstraction of a private, 
potentially large address space for multiple processes 
on top of a single, physical memory?

6



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Before we introduce 
more ideas, let’s first 
think about our goals



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Goals of virtualizing memory

Transparency

Efficiency

Protection

8



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Address Translation



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Translating addresses at run time

Transforms each memory address (instruction fetch, 
load, store)


From the virtual address provided by the instruction to 
its corresponding physical address 

This is to be performed at every memory reference since 
we need transparency

But we also need efficiency!

10



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hardware Support: 
Memory Management 
Unit (MMU) — as part of 

the CPU



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What does the MMU do?

12

Memory Management Unit

(MMU)

Virtual memory addresses in an address space

Physical memory addresses in the physical memory

Address translation

performed on the fly


during program execution



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The OS has to get 
involved to set up the 

hardware



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Three assumptions to get started

A user process’s address space must be placed 
contiguously in physical memory

The size of the address space is less than the size 
of the physical memory

Each address space is exactly the same size

14



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Dynamic Relocation

MMU has one base and one bounds (or limit) 
register

Base register converts each virtual address to 
a physical address by adding an offset — 
relocation

Bounds (limit) register keeps memory 
references within bounds — protection

OS assigns each process a separate base and 
limit register value when a process is started



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Dynamic relocation: Base and bounds registers

16

<

Virtual memory address in a virtual address space

Physical memory addresses in the physical address space

Bounds register

for process i

No

Yes
+

Address Exception

Base register

for process i

Address translation

performed on the fly


during program execution



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Base and Bounds Register MMUs

Used in these systems —

The first supercomputer: CDC 6600 (1964)

Intel 8088, original IBM PC (1980) (but with no 
Bounds Register)

17



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

When a process is created, 
how can the OS find space 
in the physical memory for 
its new address space?

Given our assumptions: 

fixed size and less than physical memory



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Simple idea: maintain a free list

19

2 THE ABSTRACTION: ADDRESS SPACES

512KB

448KB

384KB

320KB

256KB

192KB

128KB

64KB

0KB

(free)

(free)

(free)

(free)

Operating System
(code, data, etc.)

Process A
(code, data, etc.)

Process B
(code, data, etc.)

Process C
(code, data, etc.)

Figure 13.2: Three Processes: Sharing Memory

13.2 Multiprogramming and Time Sharing

After a time, because machines were expensive, people began to share
machines more effectively. Thus the era of multiprogramming was born
[DV66], in which multiple processes were ready to run at a given time,
and the OS would switch between them, for example when one decided
to perform an I/O. Doing so increased the effective utilization of the
CPU. Such increases in efficiency were particularly important in those
days where each machine cost hundreds of thousands or even millions of
dollars (and you thought your Mac was expensive!).

Soon enough, however, people began demanding more of machines,
and the era of time sharing was born [S59, L60, M62, M83]. Specifically,
many realized the limitations of batch computing, particularly on pro-
grammers themselves [CV65], who were tired of long (and hence ineffec-
tive) program-debug cycles. The notion of interactivity became impor-
tant, as many users might be concurrently using a machine, each waiting
for (or hoping for) a timely response from their currently-executing tasks.

One way to implement time sharing would be to run one process for a
short while, giving it full access to all memory (Figure 13.1, page 1), then
stop it, save all of its state to some kind of disk (including all of physical
memory), load some other process’s state, run it for a while, and thus
implement some kind of crude sharing of the machine [M+63].

Unfortunately, this approach has a big problem: it is way too slow,
particularly as memory grows. While saving and restoring register-level
state (the PC, general-purpose registers, etc.) is relatively fast, saving the
entire contents of memory to disk is brutally non-performant. Thus, what
we’d rather do is leave processes in memory while switching between
them, allowing the OS to implement time sharing efficiently (Figure 13.2).

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The work that the OS must do

When a process is created

Find a free entry in the free list and mark it as used


When a process is terminated (killed or exits 
gracefully)


Returns its memory back to the free list

During a context switch


Save and restore the base-and-bounds registers in the 
Process Control Block (PCB)

20



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Any problems with base-and-bounds virtualization?

21

2 THE ABSTRACTION: ADDRESS SPACES

512KB

448KB

384KB

320KB

256KB

192KB

128KB

64KB

0KB

(free)

(free)

(free)

(free)

Operating System
(code, data, etc.)

Process A
(code, data, etc.)

Process B
(code, data, etc.)

Process C
(code, data, etc.)

Figure 13.2: Three Processes: Sharing Memory

13.2 Multiprogramming and Time Sharing

After a time, because machines were expensive, people began to share
machines more effectively. Thus the era of multiprogramming was born
[DV66], in which multiple processes were ready to run at a given time,
and the OS would switch between them, for example when one decided
to perform an I/O. Doing so increased the effective utilization of the
CPU. Such increases in efficiency were particularly important in those
days where each machine cost hundreds of thousands or even millions of
dollars (and you thought your Mac was expensive!).

Soon enough, however, people began demanding more of machines,
and the era of time sharing was born [S59, L60, M62, M83]. Specifically,
many realized the limitations of batch computing, particularly on pro-
grammers themselves [CV65], who were tired of long (and hence ineffec-
tive) program-debug cycles. The notion of interactivity became impor-
tant, as many users might be concurrently using a machine, each waiting
for (or hoping for) a timely response from their currently-executing tasks.

One way to implement time sharing would be to run one process for a
short while, giving it full access to all memory (Figure 13.1, page 1), then
stop it, save all of its state to some kind of disk (including all of physical
memory), load some other process’s state, run it for a while, and thus
implement some kind of crude sharing of the machine [M+63].

Unfortunately, this approach has a big problem: it is way too slow,
particularly as memory grows. While saving and restoring register-level
state (the PC, general-purpose registers, etc.) is relatively fast, saving the
entire contents of memory to disk is brutally non-performant. Thus, what
we’d rather do is leave processes in memory while switching between
them, allowing the OS to implement time sharing efficiently (Figure 13.2).

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces

Chapter 13 (The Abstraction: Address Spaces), 15 
(Mechanism: Address Translation)


