Virtualizing Memory:
Introduction

Operating Systems
Baochun Li
University of Toronto

OS: managing shared resources

Sharing resources over time: Physical processors

The main topic of past lectures

Sharing resources over space: Memory

The main topic of upcoming lectures

There is never enough memory
"640 KB ought to be enough for anyone."

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 2
-

Memory In early operating systems

OKB
Operating System
(code, data, etc.)

64KB
Current Program
(code, data, etc.)

max

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 3

Multiprogramming and time sharing

We need to accommodate multiple processes

Multiprogramming: multiple batch jobs run at the
same time

Time sharing: Multiple users using interactive
processes at the same time

The important question is how?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Address space In a process: revisited

Maximum
Stack

Address O

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

—

Address space: an abstraction

The user process uses virtual addresses in its own
address space

The virtual memory system in the OS is responsible
for virtualizing physical memory and provides the
abstraction of address spaces to user processes

But how can the OS build this abstraction of a private,
potentially large address space for multiple processes
on top of a single, physical memory?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6

Before we introduce
more ideas, let's first
think about our goals

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Goals of virtualizing memory

Transparency
Efficiency
Protection

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8
-

Address Translation

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Translating addresses at run time

Transforms each memory address (instruction fetch,
load, store)

From the virtual address provided by the instruction to
its corresponding physical address

This is to be performed at every memory reference since
we need transparency

But we also need efficiency!

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Hardware Support:
Memory Management
Unit (MMU) — as part of

the CPU

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What does the MMU do?

Virtual memory addresses in an address space

Address translation
performed on the fly
during program execution

Memory Management Unit
(MMU)

Physical memory addresses in the physical memory

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 12

The OS has to get
iInvolved to set up the
hardware

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Three assumptions to get started

A user process's address space must be placed
contiguously in physical memory

The size of the address space is less than the size
of the physical memory

Each address space is exactly the same size

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 14
-

Dynamic Relocation

MMU has one base and one bounds (or limit)
register

Base register converts each virtual address to
a physical address by adding an offset —
relocation

Bounds (limit) register keeps memory
references within bounds — protection

OS assigns each process a separate base and
limit register value when a process is started

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Dynamic relocation: Base and bounds registers

Virtual memory address in a virtual address space

No i
Address Exception| €| <

Bounds register
for process i

Base register
for process i

+
Address translation
performed on the fly

during program execution

Physical memory addresses in the physical address space

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 16

Base and Bounds Register MMUs

Used in these systems —

The first supercomputer: CDC 6600 (1964)

Intel 8088, original IBM PC (1980) (but with no
Bounds Register)

! - .
b- * = N L}
y E . mav
—— ' \ 3
l' . : . 4 o T = - Dow
L AR BN e =
y - - - » I8 : -~
4 S o) } s o [| .o
S I ek STy ‘ - Y
\ \ | 9 N, f -
] - -
G b - 2
7 } « .
" 7 * :

. =2D8088-2
- Ml4280432

©INTEL 78’83

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 17

When a process is created,

how can the OS find space

In the physical memory for
Iits new address space?

Given our assumptions:
fixed size and less than physical memory

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Simple idea: maintain a free list

OKB
Operating System
(code, data, etc.)
64KB
(free)
128KB
Process C
(code, data, etc.)
192KB
Process B
(code, data, etc.)
256KB
(free)
320KB
Process A
(code, data, etc.)
384KB
(free)
448KB
(free)
512KB
Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 19

The work that the OS must do

When a process is created
Find a free entry in the free list and mark it as used

When a process is terminated (killed or exits
gracefully)

Returns its memory back to the free list
During a context switch

Save and restore the base-and-bounds registers in the
Process Control Block (PCB)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 20

Any problems with base-and-bounds virtualization?

OKB
Operating System
(code, data, etc.)
64KB
(free)
128KB
Process C
(code, data, etc.)
192KB
Process B
(code, data, etc.)
256KB
(free)
320KB
Process A
(code, data, etc.)
384KB
(free)
448KB
(free)
512KB
Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 21

What we've covered so far

Three Easy Pieces

Chapter 13 (The Abstraction: Address Spaces), 15
(Mechanism: Address Translation)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

