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Multiprocessor architecture
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Cache (processor) affinity

A process builds up some state in the caches (and
TLBs, which we will discuss later in the course) of

the CPU

The next time the process runs, it is a good idea to
run it on the same CPU
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Single-Queue Multiprocessor Scheduling
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Cache Affinity with Single-Queue Scheduling
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Multi-Queue Multiprocessor Scheduling
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Load Imbalance
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Load Imbalance can get even worse
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Possible fix: keep switching jobs across CPUs
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The Linux O(1) and CFS schedulers use multi-queue
scheduling: one “runqueue” per processor

There is a "conflict of interest” —

Migrating jobs from one CPU to another requires a cost of
Invalidating and repopulating caches — so we don't wish to do this
often

On the other hand, we don't wish to leave a CPU idle while another
CPU is too busy with all its jobs

Cache affinity: try to avoid migration of jobs from one CPU
to another

Load balancing: try to keep the workload evenly
distributed
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What we've covered so far

Three Easy Pieces, Chapter 10 (Multiprocessor
Scheduling)
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