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Figure 10.2: Two CPUs With Caches Sharing Memory

The first time a program issues this load, the data resides in main mem-
ory, and thus takes a long time to fetch (perhaps in the tens of nanosec-
onds, or even hundreds). The processor, anticipating that the data may be
reused, puts a copy of the loaded data into the CPU cache. If the program
later fetches this same data item again, the CPU first checks for it in the
cache; if it finds it there, the data is fetched much more quickly (say, just
a few nanoseconds), and thus the program runs faster.

Caches are thus based on the notion of locality, of which there are
two kinds: temporal locality and spatial locality. The idea behind tem-
poral locality is that when a piece of data is accessed, it is likely to be
accessed again in the near future; imagine variables or even instructions
themselves being accessed over and over again in a loop. The idea be-
hind spatial locality is that if a program accesses a data item at address
x, it is likely to access data items near x as well; here, think of a program
streaming through an array, or instructions being executed one after the
other. Because locality of these types exist in many programs, hardware
systems can make good guesses about which data to put in a cache and
thus work well.

Now for the tricky part: what happens when you have multiple pro-
cessors in a single system, with a single shared main memory, as we see
in Figure 10.2?

As it turns out, caching with multiple CPUs is much more compli-
cated. Imagine, for example, that a program running on CPU 1 reads
a data item (with value D) at address A; because the data is not in the
cache on CPU 1, the system fetches it from main memory, and gets the
value D. The program then modifies the value at address A, just updat-
ing its cache with the new value D

′; writing the data through all the way
to main memory is slow, so the system will (usually) do that later. Then
assume the OS decides to stop running the program and move it to CPU
2. The program then re-reads the value at address A; there is no such data

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Cache (processor) affinity

A process builds up some state in the caches (and 
TLBs, which we will discuss later in the course) of 
the CPU

The next time the process runs, it is a good idea to 
run it on the same CPU
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Single-Queue Multiprocessor Scheduling
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However, SQMS has obvious shortcomings. The first problem is a lack
of scalability. To ensure the scheduler works correctly on multiple CPUs,
the developers will have inserted some form of locking into the code, as
described above. Locks ensure that when SQMS code accesses the single
queue (say, to find the next job to run), the proper outcome arises.

Locks, unfortunately, can greatly reduce performance, particularly as
the number of CPUs in the systems grows [A91]. As contention for such
a single lock increases, the system spends more and more time in lock
overhead and less time doing the work the system should be doing (note:
it would be great to include a real measurement of this in here someday).

The second main problem with SQMS is cache affinity. For example,
let us assume we have five jobs to run (A, B, C, D, E) and four processors.
Our scheduling queue thus looks like this:

Queue A B C D E NULL

Over time, assuming each job runs for a time slice and then another
job is chosen, here is a possible job schedule across CPUs:

CPU 3

CPU 2

CPU 1

CPU 0

D C B A E

C B A E D

B A E D C

A E D C B

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

Because each CPU simply picks the next job to run from the globally-
shared queue, each job ends up bouncing around from CPU to CPU, thus
doing exactly the opposite of what would make sense from the stand-
point of cache affinity.

To handle this problem, most SQMS schedulers include some kind of
affinity mechanism to try to make it more likely that process will continue
to run on the same CPU if possible. Specifically, one might provide affin-
ity for some jobs, but move others around to balance load. For example,
imagine the same five jobs scheduled as follows:

CPU 3

CPU 2

CPU 1

CPU 0

D D D D E

C C C E C

B B E B B

A E A A A

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...
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Cache Affinity with Single-Queue Scheduling
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In this arrangement, jobs A through D are not moved across proces-
sors, with only job E migrating from CPU to CPU, thus preserving affin-
ity for most. You could then decide to migrate a different job the next
time through, thus achieving some kind of affinity fairness as well. Im-
plementing such a scheme, however, can be complex.

Thus, we can see the SQMS approach has its strengths and weak-
nesses. It is straightforward to implement given an existing single-CPU
scheduler, which by definition has only a single queue. However, it does
not scale well (due to synchronization overheads), and it does not readily
preserve cache affinity.

10.5 Multi-Queue Scheduling

Because of the problems caused in single-queue schedulers, some sys-
tems opt for multiple queues, e.g., one per CPU. We call this approach
multi-queue multiprocessor scheduling (or MQMS).

In MQMS, our basic scheduling framework consists of multiple schedul-
ing queues. Each queue will likely follow a particular scheduling disci-
pline, such as round robin, though of course any algorithm can be used.
When a job enters the system, it is placed on exactly one scheduling
queue, according to some heuristic (e.g., random, or picking one with
fewer jobs than others). Then it is scheduled essentially independently,
thus avoiding the problems of information sharing and synchronization
found in the single-queue approach.

For example, assume we have a system where there are just two CPUs
(labeled CPU 0 and CPU 1), and some number of jobs enter the system:
A, B, C, and D for example. Given that each CPU has a scheduling queue
now, the OS has to decide into which queue to place each job. It might do
something like this:

Q0 A C Q1 B D

Depending on the queue scheduling policy, each CPU now has two
jobs to choose from when deciding what should run. For example, with
round robin, the system might produce a schedule that looks like this:

CPU 1

CPU 0 A A C C A A C C A A C C

B B D D B B D D B B D D  ... 

 ... 

MQMS has a distinct advantage of SQMS in that it should be inher-
ently more scalable. As the number of CPUs grows, so too does the num-
ber of queues, and thus lock and cache contention should not become a
central problem. In addition, MQMS intrinsically provides cache affinity;
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jobs stay on the same CPU and thus reap the advantage of reusing cached
contents therein.

But, if you’ve been paying attention, you might see that we have a new
problem, which is fundamental in the multi-queue based approach: load
imbalance. Let’s assume we have the same set up as above (four jobs,
two CPUs), but then one of the jobs (say C) finishes. We now have the
following scheduling queues:

Q0 A Q1 B D

If we then run our round-robin policy on each queue of the system, we
will see this resulting schedule:

CPU 1

CPU 0 A A A A A A A A A A A A

B B D D B B D D B B D D  ... 

 ... 

As you can see from this diagram, A gets twice as much CPU as B and
D, which is not the desired outcome. Even worse, let’s imagine that both
A and C finish, leaving just jobs B and D in the system. The scheduling
queues will look like this:

Q0 Q1 B D

As a result, CPU 0 will be left idle! (insert dramatic and sinister music here)
And hence our CPU usage timeline looks sad:

CPU 0

CPU 1 B B D D B B D D B B D D  ... 

So what should a poor multi-queue multiprocessor scheduler do? How
can we overcome the insidious problem of load imbalance and defeat the
evil forces of ... the Decepticons1? How do we stop asking questions that
are hardly relevant to this otherwise wonderful book?

1Little known fact is that the home planet of Cybertron was destroyed by bad CPU
scheduling decisions. And now let that be the first and last reference to Transformers in this
book, for which we sincerely apologize.
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Possible fix: keep switching jobs across CPUs
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CRUX: HOW TO DEAL WITH LOAD IMBALANCE

How should a multi-queue multiprocessor scheduler handle load im-
balance, so as to better achieve its desired scheduling goals?

The obvious answer to this query is to move jobs around, a technique
which we (once again) refer to as migration. By migrating a job from one
CPU to another, true load balance can be achieved.

Let’s look at a couple of examples to add some clarity. Once again, we
have a situation where one CPU is idle and the other has some jobs.

Q0 Q1 B D

In this case, the desired migration is easy to understand: the OS should
simply move one of B or D to CPU 0. The result of this single job migra-
tion is evenly balanced load and everyone is happy.

A more tricky case arises in our earlier example, where A was left
alone on CPU 0 and B and D were alternating on CPU 1:

Q0 A Q1 B D

In this case, a single migration does not solve the problem. What
would you do in this case? The answer, alas, is continuous migration
of one or more jobs. One possible solution is to keep switching jobs, as
we see in the following timeline. In the figure, first A is alone on CPU 0,
and B and D alternate on CPU 1. After a few time slices, B is moved to
compete with A on CPU 0, while D enjoys a few time slices alone on CPU
1. And thus load is balanced:

CPU 0

CPU 1

A A A A B A B A B B B B

B D B D D D D D A D A D  ... 

 ... 

Of course, many other possible migration patterns exist. But now for
the tricky part: how should the system decide to enact such a migration?

One basic approach is to use a technique known as work stealing
[FLR98]. With a work-stealing approach, a (source) queue that is low
on jobs will occasionally peek at another (target) queue, to see how full
it is. If the target queue is (notably) more full than the source queue, the
source will “steal” one or more jobs from the target to help balance load.

Of course, there is a natural tension in such an approach. If you look
around at other queues too often, you will suffer from high overhead
and have trouble scaling, which was the entire purpose of implementing
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Summary

The Linux O(1) and CFS schedulers use multi-queue 
scheduling: one “runqueue” per processor

There is a “conflict of interest” —


Migrating jobs from one CPU to another requires a cost of 
invalidating and repopulating caches — so we don’t wish to do this 
often

On the other hand, we don’t wish to leave a CPU idle while another 
CPU is too busy with all its jobs


Cache affinity: try to avoid migration of jobs from one CPU 
to another

Load balancing: try to keep the workload evenly 
distributed
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What we’ve covered so far

Three Easy Pieces, Chapter 10 (Multiprocessor 
Scheduling)
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