Multiprocessor Scheduling

Operating Systems
Baochun Li
University of Toronto

Multiprocessor architecture

CPU CPU

Cache Cache

Memory

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 2

Cache (processor) affinity

A process builds up some state in the caches (and
TLBs, which we will discuss later in the course) of

the CPU

The next time the process runs, it is a good idea to
run it on the same CPU

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 3

Single-Queue Multiprocessor Scheduling

Queue—» A —& B —& C — D — E —NULL

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4
-

Cache Affinity with Single-Queue Scheduling

Queue—» A —& B —& C — D — E —NULL

CPU 0 m CPU 0 Z-A Al A
m CPU2 | C|C CF
o

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5

Multi-Queue Multiprocessor Scheduling

QO —> A — C Q1 — B — D

cPUO AIA|CI{C|A|A|IC|IC|A|A|C|C

CPU 1

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6
-

Load Imbalance

Q0 — A Q1 — B — D

CPUO AJAIAIAIAAIAIAIAAA|A

CPU 1

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 7
-

Load Imbalance can get even worse

CPUO

CPU 1

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8
-

Possible fix: keep switching jobs across CPUs

CPUO A A|A|A A A

CPU 1 D.DDDDDDD

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9
-

The Linux O(1) and CFS schedulers use multi-queue
scheduling: one “runqueue” per processor

There is a "conflict of interest” —

Migrating jobs from one CPU to another requires a cost of
Invalidating and repopulating caches — so we don't wish to do this
often

On the other hand, we don't wish to leave a CPU idle while another
CPU is too busy with all its jobs

Cache affinity: try to avoid migration of jobs from one CPU
to another

Load balancing: try to keep the workload evenly
distributed

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 10

What we've covered so far

Three Easy Pieces, Chapter 10 (Multiprocessor
Scheduling)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto "
-

