
Proportional-Share 
Scheduling

Operating Systems

Baochun Li


University of Toronto



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting our design objectives

Turnaround time: total time needed to complete a 
job

Response Time: the time from when the job 
arrives to the first time it is scheduled

Fairness: give each job its fair share — a certain 
percentage of CPU time


2



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Focusing on Fairness

How can we design a scheduler to share the CPU 
in a proportional manner?

What are the key mechanisms?


Lottery scheduling

Stride scheduling

3



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Lottery Scheduling



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5

Design principle: Randomization

Use tickets to represent the CPU share

Hold a lottery every time slice

If job A holds 75% of the tickets, B holds 25% —

2 SCHEDULING: PROPORTIONAL SHARE

TIP: USE RANDOMNESS

One of the most beautiful aspects of lottery scheduling is its use of ran-
domness. When you have to make a decision, using such a randomized
approach is often a robust and simple way of doing so.

Random approaches has at least three advantages over more traditional
decisions. First, random often avoids strange corner-case behaviors that a
more traditional algorithm may have trouble handling. For example, con-
sider the LRU replacement policy (studied in more detail in a future chap-
ter on virtual memory); while often a good replacement algorithm, LRU
performs pessimally for some cyclic-sequential workloads. Random, on
the other hand, has no such worst case.

Second, random also is lightweight, requiring little state to track alter-
natives. In a traditional fair-share scheduling algorithm, tracking how
much CPU each process has received requires per-process accounting,
which must be updated after running each process. Doing so randomly
necessitates only the most minimal of per-process state (e.g., the number
of tickets each has).

Finally, random can be quite fast. As long as generating a random num-
ber is quick, making the decision is also, and thus random can be used
in a number of places where speed is required. Of course, the faster the
need, the more random tends towards pseudo-random.

a winning ticket, which is a number from 0 to 991. Assuming A holds
tickets 0 through 74 and B 75 through 99, the winning ticket simply de-
termines whether A or B runs. The scheduler then loads the state of that
winning process and runs it.

Here is an example output of a lottery scheduler’s winning tickets:

63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 62 43 0 49 49

Here is the resulting schedule:

A A A A A A A A A A A A A A A A
B B B B

As you can see from the example, the use of randomness in lottery
scheduling leads to a probabilistic correctness in meeting the desired pro-
portion, but no guarantee. In our example above, B only gets to run 4 out
of 20 time slices (20%), instead of the desired 25% allocation. However,
the longer these two jobs compete, the more likely they are to achieve the
desired percentages.

1Computer Scientists always start counting at 0. It is so odd to non-computer-types that
famous people have felt obliged to write about why we do it this way [D82].

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

2 SCHEDULING: PROPORTIONAL SHARE

TIP: USE RANDOMNESS

One of the most beautiful aspects of lottery scheduling is its use of ran-
domness. When you have to make a decision, using such a randomized
approach is often a robust and simple way of doing so.

Random approaches has at least three advantages over more traditional
decisions. First, random often avoids strange corner-case behaviors that a
more traditional algorithm may have trouble handling. For example, con-
sider the LRU replacement policy (studied in more detail in a future chap-
ter on virtual memory); while often a good replacement algorithm, LRU
performs pessimally for some cyclic-sequential workloads. Random, on
the other hand, has no such worst case.

Second, random also is lightweight, requiring little state to track alter-
natives. In a traditional fair-share scheduling algorithm, tracking how
much CPU each process has received requires per-process accounting,
which must be updated after running each process. Doing so randomly
necessitates only the most minimal of per-process state (e.g., the number
of tickets each has).

Finally, random can be quite fast. As long as generating a random num-
ber is quick, making the decision is also, and thus random can be used
in a number of places where speed is required. Of course, the faster the
need, the more random tends towards pseudo-random.

a winning ticket, which is a number from 0 to 991. Assuming A holds
tickets 0 through 74 and B 75 through 99, the winning ticket simply de-
termines whether A or B runs. The scheduler then loads the state of that
winning process and runs it.

Here is an example output of a lottery scheduler’s winning tickets:

63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 62 43 0 49 49

Here is the resulting schedule:

A A A A A A A A A A A A A A A A
B B B B

As you can see from the example, the use of randomness in lottery
scheduling leads to a probabilistic correctness in meeting the desired pro-
portion, but no guarantee. In our example above, B only gets to run 4 out
of 20 time slices (20%), instead of the desired 25% allocation. However,
the longer these two jobs compete, the more likely they are to achieve the
desired percentages.

1Computer Scientists always start counting at 0. It is so odd to non-computer-types that
famous people have felt obliged to write about why we do it this way [D82].

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

It’s a great idea to randomize!

Simple, lightweight, and fast!

Just need to generate random numbers


Requires little state to be tracked

A deterministic scheduling algorithm may need to 
how much CPU each thread has received so far

Lottery scheduling only needs to know the total 
number of tickets


6



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing lottery scheduling

Randomly generate a value “winner”

Walks the list of jobs

Adds each ticket value to “counter” until its value exceeds 
“winner”


To make it more efficient, sort the list in decreasing order

7

4 SCHEDULING: PROPORTIONAL SHARE

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3

4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7

8 // current: use this to walk through the list of jobs
9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

Figure 9.1: Lottery Scheduling Decision Code

9.3 Implementation

Probably the most amazing thing about lottery scheduling is the sim-
plicity of its implementation. All you need is a good random number
generator to pick the winning ticket, a data structure to track the pro-
cesses of the system (e.g., a list), and the total number of tickets.

Let’s assume we keep the processes in a list. Here is an example com-
prised of three processes, A, B, and C, each with some number of tickets.

head
Job:A

Tix:100
Job:B
Tix:50

Job:C
Tix:250

NULL

To make a scheduling decision, we first have to pick a random number
(the winner) from the total number of tickets (400)2 Let’s say we pick the
number 300. Then, we simply traverse the list, with a simple counter
used to help us find the winner (Figure 9.1).

The code walks the list of processes, adding each ticket value to counter
until the value exceeds winner. Once that is the case, the current list el-
ement is the winner. With our example of the winning ticket being 300,
the following takes place. First, counter is incremented to 100 to ac-
count for A’s tickets; because 100 is less than 300, the loop continues.
Then counter would be updated to 150 (B’s tickets), still less than 300
and thus again we continue. Finally, counter is updated to 400 (clearly
greater than 300), and thus we break out of the loop with current point-
ing at C (the winner).

To make this process most efficient, it might generally be best to or-
ganize the list in sorted order, from the highest number of tickets to the

2Surprisingly, as pointed out by Björn Lindberg, this can be challenging to do
correctly; for more details, see http://stackoverflow.com/questions/2509679/
how-to-generate-a-random-number-from-within-a-range.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Unfairness

8

SCHEDULING: PROPORTIONAL SHARE 5

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Job Length

U
n

fa
ir
n

e
ss

 (
A

ve
ra

g
e

)

Figure 9.2: Lottery Fairness Study

lowest. The ordering does not affect the correctness of the algorithm;
however, it does ensure in general that the fewest number of list itera-
tions are taken, especially if there are a few processes that possess most
of the tickets.

9.4 An Example

To make the dynamics of lottery scheduling more understandable, we
now perform a brief study of the completion time of two jobs competing
against one another, each with the same number of tickets (100) and same
run time (R, which we will vary).

In this scenario, we’d like for each job to finish at roughly the same
time, but due to the randomness of lottery scheduling, sometimes one
job finishes before the other. To quantify this difference, we define a
simple unfairness metric, U which is simply the time the first job com-
pletes divided by the time that the second job completes. For example,
if R = 10, and the first job finishes at time 10 (and the second job at 20),
U =

10

20
= 0.5. When both jobs finish at nearly the same time, U will be

quite close to 1. In this scenario, that is our goal: a perfectly fair scheduler
would achieve U = 1.

Figure 9.2 plots the average unfairness as the length of the two jobs
(R) is varied from 1 to 1000 over thirty trials (results are generated via the
simulator provided at the end of the chapter). As you can see from the
graph, when the job length is not very long, average unfairness can be
quite severe. Only as the jobs run for a significant number of time slices
does the lottery scheduler approach the desired outcome.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Stride Scheduling

Each job has a stride, which is inversely proportional to the 
number of tickets it has


With jobs A, B, and C, with 100, 50, and 250 tickets, their stride values 
can be 100, 200, and 40


Every time a job runs, increment a counter, called its pass 
value, by its stride

Select the job that has the lowest pass value to run

9

6 SCHEDULING: PROPORTIONAL SHARE

9.5 How To Assign Tickets?

One problem we have not addressed with lottery scheduling is: how
to assign tickets to jobs? This problem is a tough one, because of course
how the system behaves is strongly dependent on how tickets are allo-
cated. One approach is to assume that the users know best; in such a
case, each user is handed some number of tickets, and a user can allocate
tickets to any jobs they run as desired. However, this solution is a non-
solution: it really doesn’t tell you what to do. Thus, given a set of jobs,
the “ticket-assignment problem” remains open.

9.6 Why Not Deterministic?

You might also be wondering: why use randomness at all? As we saw
above, while randomness gets us a simple (and approximately correct)
scheduler, it occasionally will not deliver the exact right proportions, es-
pecially over short time scales. For this reason, Waldspurger invented
stride scheduling, a deterministic fair-share scheduler [W95].

Stride scheduling is also straightforward. Each job in the system has
a stride, which is inverse in proportion to the number of tickets it has. In
our example above, with jobs A, B, and C, with 100, 50, and 250 tickets,
respectively, we can compute the stride of each by dividing some large
number by the number of tickets each process has been assigned. For
example, if we divide 10,000 by each of those ticket values, we obtain
the following stride values for A, B, and C: 100, 200, and 40. We call
this value the stride of each process; every time a process runs, we will
increment a counter for it (called its pass value) by its stride to track its
global progress.

The scheduler then uses the stride and pass to determine which pro-
cess should run next. The basic idea is simple: at any given time, pick
the process to run that has the lowest pass value so far; when you run
a process, increment its pass counter by its stride. A pseudocode imple-
mentation is provided by Waldspurger [W95]:

current = remove_min(queue); // pick client with minimum pass
schedule(current); // use resource for quantum
current->pass += current->stride; // compute next pass using stride
insert(queue, current); // put back into the queue

In our example, we start with three processes (A, B, and C), with stride
values of 100, 200, and 40, and all with pass values initially at 0. Thus, at
first, any of the processes might run, as their pass values are equally low.
Assume we pick A (arbitrarily; any of the processes with equal low pass
values can be chosen). A runs; when finished with the time slice, we
update its pass value to 100. Then we run B, whose pass value is then
set to 200. Finally, we run C, whose pass value is incremented to 40. At
this point, the algorithm will pick the lowest pass value, which is C’s, and
run it, updating its pass to 80 (C’s stride is 40, as you recall). Then C will

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Example of Stride Scheduling

10

SCHEDULING: PROPORTIONAL SHARE 7

Pass(A) Pass(B) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200 ...

Figure 9.3: Stride Scheduling: A Trace

run again (still the lowest pass value), raising its pass to 120. A will run
now, updating its pass to 200 (now equal to B’s). Then C will run twice
more, updating its pass to 160 then 200. At this point, all pass values are
equal again, and the process will repeat, ad infinitum. Figure 9.3 traces
the behavior of the scheduler over time.

As we can see from the figure, C ran five times, A twice, and B just
once, exactly in proportion to their ticket values of 250, 100, and 50. Lot-
tery scheduling achieves the proportions probabilistically over time; stride
scheduling gets them exactly right at the end of each scheduling cycle.

So you might be wondering: given the precision of stride scheduling,
why use lottery scheduling at all? Well, lottery scheduling has one nice
property that stride scheduling does not: no global state. Imagine a new
job enters in the middle of our stride scheduling example above; what
should its pass value be? Should it be set to 0? If so, it will monopolize
the CPU. With lottery scheduling, there is no global state per process;
we simply add a new process with whatever tickets it has, update the
single global variable to track how many total tickets we have, and go
from there. In this way, lottery makes it much easier to incorporate new
processes in a sensible manner.

9.7 Summary

We have introduced the concept of proportional-share scheduling and
briefly discussed two implementations: lottery and stride scheduling.
Lottery uses randomness in a clever way to achieve proportional share;
stride does so deterministically. Although both are conceptually inter-
esting, they have not achieved wide-spread adoption as CPU schedulers
for a variety of reasons. One is that such approaches do not particularly
mesh well with I/O [AC97]; another is that they leave open the hard prob-
lem of ticket assignment, i.e., how do you know how many tickets your
browser should be allocated? General-purpose schedulers (such as the
MLFQ we discussed previously, and other similar Linux schedulers) do
so more gracefully and thus are more widely deployed.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Why use lottery scheduling at all?

Stride scheduling is more precise, as lottery 
scheduling achieves the proportions 
probabilistically

But lottery scheduling has no global state!

Imagine a new job enters in the middle of our 
example


What should its pass value be? 0?

11



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Completely Fair Scheduler: Linux 2.6.23

wait_runtime is maintained for each thread, in 
nanoseconds: the amount of time the thread should 
now run on the CPU for it to become completely fair


when the thread finishes running, its runtime is deducted from 
wait_runtime

wait_runtime accumulates when a thread sleeps


fair_clock is maintained as the CPU time a thread 
would have fairly received

(fair_clock - wait_runtime) is used to sort threads in 
a tree


O(log n) insertion, O(1) to retrieve thread with (roughly) the 
lowest value to be scheduled

12



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces, Chapter 9 (Scheduling: 
Proportional Share)


13


