Proportional-Share
Scheduling

Operating Systems
Baochun Li
University of Toronto




Revisiting our design objectives

Turnaround time: total time needed to complete a
job

Response Time: the time from when the job
arrives to the first time it is scheduled

Fairness: give each job its fair share — a certain
percentage of CPU time

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto



Focusing on Fairness

How can we design a scheduler to share the CPU
in a proportional manner?

What are the key mechanisms?

Lottery scheduling
Stride scheduling

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto



Lottery Scheduling

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-



Design principle: Randomization

Use tickets to represent the CPU share
Hold a lottery every time slice
If job A holds 75% of the tickets, B holds 25% —

63 35 70 39 70 17 29 41 36 39 10 99 638 383 63 62 43 0 49 49

A A A A A A A A A A A A A A A A

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5
-



It's a great idea to randomize!

Simple, lightweight, and fast!
Just need to generate random numbers
Requires little state to be tracked

A deterministic scheduling algorithm may need to
how much CPU each thread has received so far

Lottery scheduling only needs to know the total
number of tickets

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto




Implementing lottery scheduling

Randomly generate a value “winner”

Walks the list of jobs

Adds each ticket value to “counter” until its value exceeds
"winner"

To make it more efficient, sort the list in decreasing order

Job:A I Job:B Job:C > NULL

head — i 100 Tix50 — > Tix:250

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto



Unfairness (Average)

0.8

0.6

0.4 -

0.2 -

0.0

10

100
Job Length

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

1000



Stride Scheduling

Each job has a stride, which is inversely proportional to the
humber of tickets it has

With jobs A, B, and C, with 100, 50, and 250 tickets, their stride values
can be 100, 200, and 40

Every time a job runs, increment a counter, called its pass
value, by its stride

Select the job that has the lowest pass value to run

current = remove_min (queue) ;
schedule (current) ;

current—->pass += current—->stride;
insert (queue, current),;

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9



Example of Stride Scheduling

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Pass(A) Pass(B) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200

10




Why use lottery scheduling at all?

Stride scheduling is more precise, as lottery
scheduling achieves the proportions
probabilistically

But lottery scheduling has no global state!

Imagine a new job enters in the middle of our
example

What should its pass value be? 07

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

N




Completely Fair Scheduler: Linux 2.6.23

wait_runtime is maintained for each thread, in
nanoseconds: the amount of time the thread should
now run on the CPU for it to become completely fair

when the thread finishes running, its runtime is deducted from
wait_runtime

walit_runtime accumulates when a thread sleeps

fair_clock is maintained as the CPU time a thread
would have fairly received

(fair_clock - wait_runtime) is used to sort threads in
a tree

O(log n) insertion, O(1) to retrieve thread with (roughly) the
lowest value to be scheduled

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 12




What we've covered so far

Three Easy Pieces, Chapter 9 (Scheduling:
Proportional Share)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 13
-



