MLFQ Scheduling

Operating Systems
Baochun Li
University of Toronto

Assumptions revised

Each job runs for the same amount of time (relaxed)
All jobs arrive at the same time (relaxed)

Once started, each job runs to completion (relaxed)
All jobs only use the CPU (nho |/O)

The run-time of each job is known

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 2

Relaxing the assumption to allow 1/O

80 100 120 140
Time

Scheduling result with STCF

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 3

Solution: treat each sub-job as an independent one

80 100 120 140

Time

Scheduling result with STCF

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4

Assumptions revised

Each job runs for the same amount of time (relaxed)
All jobs arrive at the same time (relaxed)

Once started, each job runs to completion (relaxed)
All jobs only use the CPU (no |/O) (relaxed)

The run-time of each job is known

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5

How can we design a scheduler that
minimizes response time for
Interactive jobs while also
minimizing turnaround time without
knowledge of job run-time?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

MLFQ: Design objective

Relax the assumption that the length of each
job is predictable

Achieve good response times for interactive

jobs (1/O bound jobs), and good turnaround
times for CPU-bound jobs

Multi-Level Feedback Queue: a general class
of scheduling policies

First proposed by Corbato et al. in 1962 — who
later won the ACM Turing Award

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Static Priority
Scheduling

Our starting point

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Preemptive Static Priority Scheduling

Assign a static priority to
each job when it is started

Always chooses torunthe [High Priority] Q8 _>® _.
highest priority job Q7

Rule 1: If Priority(A) > Q6
Priority(B), A runs. a5
Equal-priority job are Q4 _,@
scheduled in round-robin as
they arrive Q3

Rule 2: If Priority(A) =
Priority(B), A&Brunin RR. [Low Prioriyl Q1 —»@

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9

Setting priorities: |/O bound
(interactive) jobs need higher

priorities, and the priorities for
CPU bound jobs should be lower.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Here's a potential
problem with static
priority scheduling

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Priority Inversion Problem

Let us assume that spin loops around the TSL instruction
are used to wait for mutual exclusion locks

The Priority Inversion Problem —

A high-priority thread H becomes ready to run when a low-
priority thread L is in the critical section

With preemptive static priority scheduling, H always runs
firstif it is ready

H begins busy waiting

L is never scheduled when H begins running, and never
leaves the critical section

H waits forever — deadlock occurs!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 12

One possible intuitive solution

A thread should block, not spin, when waiting to
enter the critical section — problem solved?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 13
-

The Priority Inversion Problem Remains

High priority thread blocks, waiting for the low
priority thread to exit the critical section

A medium priority thread runs

The low priority thread never gets to run and to exit
the critical section

The medium priority thread now takes priority over
the high priority thread!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Real-world example: the Mars Pathfinder

Access to a shared "information bus” — mutual exclusion
locks

shared by a high-priority bus management thread, and a low-
priority meteorological data thread

Very rarely, a medium-priority communications thread is
scheduled when the low-priority thread uses the shared bus

Since the high-priority is blocked waiting to access the shared
bus

Neither the high-priority nor the low-priority threads get to
execute again

Watchdog timer goes off when priority inversion occurs —
panic — total system reset

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 15

The solution

Solution: priority inheritance — low-priority thread
inherits the priority of the high-priority thread when it
has the lock

A research paper in 1990, titled "Priority Inheritance Protocols: An
Approach to Real-Time Synchronization,” in IEEE Transactions on
Computers

The operating system used was VxWorks, a real-time OS

It has a global variable to enable priority inheritance
The variable was set remotely while the Pathfinder was on Mars!
And the problem was solved successfully

QNX, VxWorks' competitor, was acquired by Blackberry and was
later used as the foundation for Blackberry 10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 16

Now let's get back to

Multi-Level Feedback
Queue

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Priorities cannot be static!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Adjusting priorities

Rule 3: When a job enters, it

has the highest priority. [High Priority] Q8 —>® —>
Rule 4a: If ajob uses up an Q7
entire time slice, reduce its Q6
priority by one. .
Rule 4b: If a job gives up the
CPU before the time slice is Q4 _'@
up, keep it at the same level. Q3
Q2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 19

Interactive vs. CPU-bound jobs

Q2 Q2 Q2

Q1 Q1 Q1

; " T
0w 100 150 200 0 50 0 150 200 g 50 100 150 200
A long-running job A short job arrives A mix of both interactive &

CPU bound job

Assumption: when a job arrives, it is assumed to be interactive (I/O-bound).
MLFQ approximates preemptive SJF.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 20

What problems does it have?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto
-

Starvation: CPU-bound jobs may never run

0 50 100 150 200

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 22

One possible fix: priority boost

Rule 5: After some time period, move all the jobs in the
system to the topmost queue.

0 50 100 150 200

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 23

A user may game the scheduler

0 50 100 150 200

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 24

One possible fix: better accounting

Rule 4: Once a job used up its time allotment at a given level,
reduce its priority by one.

Q2

R e T T R e e e e T R

— e e mm = mm o — E Em R W Em e CE Em o W mm mm W mm mm 1 mm O mm mm —— — wm m— — —

0 50 100 150 200

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 25

Tuning the parameters

How many priorities?
Default is 60 in Solaris

Q2
Time slice lengths? I

From 20 ms (highest o
priority) to a few hundred l
ms (lowest priority) in
Solaris

Frequency of priority
boosts?

About 1 second in Solaris

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 26

The O(1) Scheduler In
Linux

A case study

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

O(1) Scheduler: Linux 2.6.8.1 (2004) — 2.6.23

One “runqueue” per processor

Two priority arrays: active and expired

140 priorities in total, 200 ms (highest priority) to 10 ms time slice
each element in the array is a linked list of threads

Scheduler selects a task from the highest-priority active
array

O(1) operation
threads in a certain priority: round-robin fashion

when a thread's time slice expires, it Is moved to the expired array,
with an adjustment to its priority level

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 28

Priorities and time slices in the O(1) Scheduler

numeric relative
priority priority
0 highest
99
100
140 lowest

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

time

quantum

real-time
tasks

other
tasks

200 ms

10 ms

29

The runqueue data structure

active expired
array array
priority task lists priority task lists
0 0—O 0] O0—0O—=0C
1 O—0—70 1] O
[140] O [140] o—O

When the time slice expires, an active
thread is added to the expired array,
possibly with an adjusted priority level

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 30

O(1) Scheduler: Linux 2.6.8.1 (2004) — 2.6.23

Different priority levels has different time slices
200 ms at priority O, 10 ms at priority 139
Static priority set by “nice”: initial priority

nice values range from -20 to 19 (mapped to
100 to 139 in the runqueue)

higher value -> lower priority

default priority: O (mapped to 120)

can be changed via the nice() system call

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

O(1) Scheduler: Linux 2.6.8.1 (2004) — 2.6.23

The active and expired priority arrays will be swapped
when there are no threads in the active array

When a thread is moved from the active to the expired
array, its priority will be adjusted based on a dynamic
adjustment scheme —

sleep avg: added after sleep, deducted after running
bonus = CURRENT_BONUS(p) — MAX_BONUS / 2;
prio = p—>static_prio - bonus;

CURRENT_BONUS (p) is defined as follows:
(p—>sleep_avg) * MAX_BONUS / MAX_SLEEP_AVG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 32

What we've covered so far

Three Easy Pieces, Chapter 8 (Scheduling: MLFQ)

The "Linux CPU Scheduler” document, Sections
511—5.4.4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 33
-

