
MLFQ Scheduling

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Assumptions revised

Each job runs for the same amount of time (relaxed)
All jobs arrive at the same time (relaxed)
Once started, each job runs to completion (relaxed)
All jobs only use the CPU (no I/O)
The run-time of each job is known

2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Relaxing the assumption to allow I/O

3

SCHEDULING: INTRODUCTION 9

TIP: OVERLAP ENABLES HIGHER UTILIZATION

When possible, overlap operations to maximize the utilization of sys-
tems. Overlap is useful in many different domains, including when per-
forming disk I/O or sending messages to remote machines; in either case,
starting the operation and then switching to other work is a good idea,
and improves the overall utilization and efficiency of the system.

7.8 Incorporating I/O

First we will relax assumption 4 — of course all programs perform
I/O. Imagine a program that didn’t take any input: it would produce the
same output each time. Imagine one without output: it is the proverbial
tree falling in the forest, with no one to see it; it doesn’t matter that it ran.

A scheduler clearly has a decision to make when a job initiates an I/O
request, because the currently-running job won’t be using the CPU dur-
ing the I/O; it is blocked waiting for I/O completion. If the I/O is sent to
a hard disk drive, the process might be blocked for a few milliseconds or
longer, depending on the current I/O load of the drive. Thus, the sched-
uler should probably schedule another job on the CPU at that time.

The scheduler also has to make a decision when the I/O completes.
When that occurs, an interrupt is raised, and the OS runs and moves
the process that issued the I/O from blocked back to the ready state. Of
course, it could even decide to run the job at that point. How should the
OS treat each job?

To understand this issue better, let us assume we have two jobs, A and
B, which each need 50 ms of CPU time. However, there is one obvious
difference: A runs for 10 ms and then issues an I/O request (assume here
that I/Os each take 10 ms), whereas B simply uses the CPU for 50 ms and
performs no I/O. The scheduler runs A first, then B after (Figure 7.8).

0 20 40 60 80 100 120 140

Time

A A A A A B B B B B

CPU

Disk

Figure 7.8: Poor Use Of Resources

Assume we are trying to build a STCF scheduler. How should such a
scheduler account for the fact that A is broken up into 5 10-ms sub-jobs,
whereas B is just a single 50-ms CPU demand? Clearly, just running one
job and then the other without considering how to take I/O into account
makes little sense.

A common approach is to treat each 10-ms sub-job of A as an indepen-
dent job. Thus, when the system starts, its choice is whether to schedule

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

Scheduling result with STCF

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solution: treat each sub-job as an independent one

4

10 SCHEDULING: INTRODUCTION

0 20 40 60 80 100 120 140

Time

A A A A AB B B B B

CPU

Disk

Figure 7.9: Overlap Allows Better Use Of Resources

a 10-ms A or a 50-ms B. With STCF, the choice is clear: choose the shorter
one, in this case A. Then, when the first sub-job of A has completed, only
B is left, and it begins running. Then a new sub-job of A is submitted,
and it preempts B and runs for 10 ms. Doing so allows for overlap, with
the CPU being used by one process while waiting for the I/O of another
process to complete; the system is thus better utilized (see Figure 7.9).

And thus we see how a scheduler might incorporate I/O. By treating
each CPU burst as a job, the scheduler makes sure processes that are “in-
teractive” get run frequently. While those interactive jobs are performing
I/O, other CPU-intensive jobs run, thus better utilizing the processor.

7.9 No More Oracle

With a basic approach to I/O in place, we come to our final assump-
tion: that the scheduler knows the length of each job. As we said before,
this is likely the worst assumption we could make. In fact, in a general-
purpose OS (like the ones we care about), the OS usually knows very little
about the length of each job. Thus, how can we build an approach that be-
haves like SJF/STCF without such a priori knowledge? Further, how can
we incorporate some of the ideas we have seen with the RR scheduler so
that response time is also quite good?

7.10 Summary

We have introduced the basic ideas behind scheduling and developed
two families of approaches. The first runs the shortest job remaining and
thus optimizes turnaround time; the second alternates between all jobs
and thus optimizes response time. Both are bad where the other is good,
alas, an inherent trade-off common in systems. We have also seen how we
might incorporate I/O into the picture, but have still not solved the prob-
lem of the fundamental inability of the OS to see into the future. Shortly,
we will see how to overcome this problem, by building a scheduler that
uses the recent past to predict the future. This scheduler is known as the
multi-level feedback queue, and it is the topic of the next chapter.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

Scheduling result with STCF

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Assumptions revised

Each job runs for the same amount of time (relaxed)
All jobs arrive at the same time (relaxed)
Once started, each job runs to completion (relaxed)
All jobs only use the CPU (no I/O) (relaxed)
The run-time of each job is known

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

How can we design a scheduler that
minimizes response time for
interactive jobs while also
minimizing turnaround time without
knowledge of job run-time?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

MLFQ: Design objective

Relax the assumption that the length of each
job is predictable
Achieve good response times for interactive
jobs (I/O bound jobs), and good turnaround
times for CPU-bound jobs
Multi-Level Feedback Queue: a general class
of scheduling policies

First proposed by Corbato et al. in 1962 — who
later won the ACM Turing Award

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Static Priority
Scheduling

Our starting point

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Preemptive Static Priority Scheduling
Assign a static priority to
each job when it is started
Always chooses to run the
highest priority job

Rule 1: If Priority(A) >
Priority(B), A runs.

Equal-priority job are
scheduled in round-robin as
they arrive

Rule 2: If Priority(A) =
Priority(B), A & B run in RR.

9

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 3

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B

Figure 8.1: MLFQ Example

stand how job priority changes over time. And that, in a surprise only
to those who are reading a chapter from this book for the first time, is
exactly what we will do next.

8.2 Attempt #1: How To Change Priority

We now must decide how MLFQ is going to change the priority level
of a job (and thus which queue it is on) over the lifetime of a job. To do
this, we must keep in mind our workload: a mix of interactive jobs that
are short-running (and may frequently relinquish the CPU), and some
longer-running “CPU-bound” jobs that need a lot of CPU time but where
response time isn’t important. Here is our first attempt at a priority-
adjustment algorithm:

• Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

• Rule 4a: If a job uses up an entire time slice while running, its pri-
ority is reduced (i.e., it moves down one queue).

• Rule 4b: If a job gives up the CPU before the time slice is up, it stays
at the same priority level.

Example 1: A Single Long-Running Job

Let’s look at some examples. First, we’ll look at what happens when there
has been a long running job in the system. Figure 8.2 shows what happens
to this job over time in a three-queue scheduler.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Setting priorities: I/O bound
(interactive) jobs need higher
priorities, and the priorities for
CPU bound jobs should be lower.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Here’s a potential
problem with static
priority scheduling

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Priority Inversion Problem

Let us assume that spin loops around the TSL instruction
are used to wait for mutual exclusion locks
The Priority Inversion Problem —

A high-priority thread H becomes ready to run when a low-
priority thread L is in the critical section
With preemptive static priority scheduling, H always runs
first if it is ready
H begins busy waiting
L is never scheduled when H begins running, and never
leaves the critical section
H waits forever — deadlock occurs!

12

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

One possible intuitive solution

A thread should block, not spin, when waiting to
enter the critical section — problem solved?

13

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Priority Inversion Problem Remains

High priority thread blocks, waiting for the low
priority thread to exit the critical section
A medium priority thread runs
The low priority thread never gets to run and to exit
the critical section
The medium priority thread now takes priority over
the high priority thread!

14

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Real-world example: the Mars Pathfinder

Access to a shared “information bus” — mutual exclusion
locks

shared by a high-priority bus management thread, and a low-
priority meteorological data thread

Very rarely, a medium-priority communications thread is
scheduled when the low-priority thread uses the shared bus

Since the high-priority is blocked waiting to access the shared
bus
Neither the high-priority nor the low-priority threads get to
execute again

Watchdog timer goes off when priority inversion occurs —
panic — total system reset

15

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The solution

Solution: priority inheritance — low-priority thread
inherits the priority of the high-priority thread when it
has the lock

A research paper in 1990, titled “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization,” in IEEE Transactions on
Computers

The operating system used was VxWorks, a real-time OS
It has a global variable to enable priority inheritance
The variable was set remotely while the Pathfinder was on Mars!
And the problem was solved successfully
QNX, VxWorks’ competitor, was acquired by Blackberry and was
later used as the foundation for Blackberry 10

16

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Multi-Level Feedback
Queue

Now let’s get back to

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Priorities cannot be static!

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Adjusting priorities

Rule 3: When a job enters, it
has the highest priority.
Rule 4a: If a job uses up an
entire time slice, reduce its
priority by one.
Rule 4b: If a job gives up the
CPU before the time slice is
up, keep it at the same level.

19

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 3

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B

Figure 8.1: MLFQ Example

stand how job priority changes over time. And that, in a surprise only
to those who are reading a chapter from this book for the first time, is
exactly what we will do next.

8.2 Attempt #1: How To Change Priority

We now must decide how MLFQ is going to change the priority level
of a job (and thus which queue it is on) over the lifetime of a job. To do
this, we must keep in mind our workload: a mix of interactive jobs that
are short-running (and may frequently relinquish the CPU), and some
longer-running “CPU-bound” jobs that need a lot of CPU time but where
response time isn’t important. Here is our first attempt at a priority-
adjustment algorithm:

• Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

• Rule 4a: If a job uses up an entire time slice while running, its pri-
ority is reduced (i.e., it moves down one queue).

• Rule 4b: If a job gives up the CPU before the time slice is up, it stays
at the same priority level.

Example 1: A Single Long-Running Job

Let’s look at some examples. First, we’ll look at what happens when there
has been a long running job in the system. Figure 8.2 shows what happens
to this job over time in a three-queue scheduler.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Interactive vs. CPU-bound jobs

20

4
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Figure 8.2: Long-running Job Over Time

As you can see in the example, the job enters at the highest priority
(Q2). After a single time-slice of 10 ms, the scheduler reduces the job’s
priority by one, and thus the job is on Q1. After running at Q1 for a time
slice, the job is finally lowered to the lowest priority in the system (Q0),
where it remains. Pretty simple, no?

Example 2: Along Came A Short Job

Now let’s look at a more complicated example, and hopefully see how
MLFQ tries to approximate SJF. In this example, there are two jobs: A,
which is a long-running CPU-intensive job, and B, which is a short-running
interactive job. Assume A has been running for some time, and then B ar-
rives. What will happen? Will MLFQ approximate SJF for B?

Figure 8.3 plots the results of this scenario. A (shown in black) is run-
ning along in the lowest-priority queue (as would any long-running CPU-
intensive jobs); B (shown in gray) arrives at time T = 100, and thus is

Q2

Q1

Q0

0 50 100 150 200

Figure 8.3: Along Came An Interactive Job

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

4
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Figure 8.2: Long-running Job Over Time

As you can see in the example, the job enters at the highest priority
(Q2). After a single time-slice of 10 ms, the scheduler reduces the job’s
priority by one, and thus the job is on Q1. After running at Q1 for a time
slice, the job is finally lowered to the lowest priority in the system (Q0),
where it remains. Pretty simple, no?

Example 2: Along Came A Short Job

Now let’s look at a more complicated example, and hopefully see how
MLFQ tries to approximate SJF. In this example, there are two jobs: A,
which is a long-running CPU-intensive job, and B, which is a short-running
interactive job. Assume A has been running for some time, and then B ar-
rives. What will happen? Will MLFQ approximate SJF for B?

Figure 8.3 plots the results of this scenario. A (shown in black) is run-
ning along in the lowest-priority queue (as would any long-running CPU-
intensive jobs); B (shown in gray) arrives at time T = 100, and thus is

Q2

Q1

Q0

0 50 100 150 200

Figure 8.3: Along Came An Interactive Job

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 5

Q2

Q1

Q0

0 50 100 150 200

Figure 8.4: A Mixed I/O-intensive and CPU-intensive Workload

inserted into the highest queue; as its run-time is short (only 20 ms), B
completes before reaching the bottom queue, in two time slices; then A
resumes running (at low priority).

From this example, you can hopefully understand one of the major
goals of the algorithm: because it doesn’t know whether a job will be a
short job or a long-running job, it first assumes it might be a short job, thus
giving the job high priority. If it actually is a short job, it will run quickly
and complete; if it is not a short job, it will slowly move down the queues,
and thus soon prove itself to be a long-running more batch-like process.
In this manner, MLFQ approximates SJF.

Example 3: What About I/O?

Let’s now look at an example with some I/O. As Rule 4b states above, if a
process gives up the processor before using up its time slice, we keep it at
the same priority level. The intent of this rule is simple: if an interactive
job, for example, is doing a lot of I/O (say by waiting for user input from
the keyboard or mouse), it will relinquish the CPU before its time slice is
complete; in such case, we don’t wish to penalize the job and thus simply
keep it at the same level.

Figure 8.4 shows an example of how this works, with an interactive job
B (shown in gray) that needs the CPU only for 1 ms before performing an
I/O competing for the CPU with a long-running batch job A (shown in
black). The MLFQ approach keeps B at the highest priority because B
keeps releasing the CPU; if B is an interactive job, MLFQ further achieves
its goal of running interactive jobs quickly.

Problems With Our Current MLFQ

We thus have a basic MLFQ. It seems to do a fairly good job, sharing the
CPU fairly between long-running jobs, and letting short or I/O-intensive
interactive jobs run quickly. Unfortunately, the approach we have devel-
oped thus far contains serious flaws. Can you think of any?

(This is where you pause and think as deviously as you can)

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

A long-running job A short job arrives A mix of both interactive &
CPU bound job

Assumption: when a job arrives, it is assumed to be interactive (I/O-bound).
MLFQ approximates preemptive SJF.

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What problems does it have?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Starvation: CPU-bound jobs may never run

22

6
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q0

Q1

Q2

0 50 100 150 200

Q0

Q1

Q2

0 50 100 150 200

B
o
o
st

B
o
o
st

B
o
o
st

B
o
o
st

Figure 8.5: Without (Left) and With (Right) Priority Boost

First, there is the problem of starvation: if there are “too many” in-
teractive jobs in the system, they will combine to consume all CPU time,
and thus long-running jobs will never receive any CPU time (they starve).
We’d like to make some progress on these jobs even in this scenario.

Second, a smart user could rewrite their program to game the sched-
uler. Gaming the scheduler generally refers to the idea of doing some-
thing sneaky to trick the scheduler into giving you more than your fair
share of the resource. The algorithm we have described is susceptible to
the following attack: before the time slice is over, issue an I/O operation
(to some file you don’t care about) and thus relinquish the CPU; doing so
allows you to remain in the same queue, and thus gain a higher percent-
age of CPU time. When done right (e.g., by running for 99% of a time slice
before relinquishing the CPU), a job could nearly monopolize the CPU.

Finally, a program may change its behavior over time; what was CPU-
bound may transition to a phase of interactivity. With our current ap-
proach, such a job would be out of luck and not be treated like the other
interactive jobs in the system.

8.3 Attempt #2: The Priority Boost

Let’s try to change the rules and see if we can avoid the problem of
starvation. What could we do in order to guarantee that CPU-bound jobs
will make some progress (even if it is not much?).

The simple idea here is to periodically boost the priority of all the jobs
in system. There are many ways to achieve this, but let’s just do some-
thing simple: throw them all in the topmost queue; hence, a new rule:

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

Our new rule solves two problems at once. First, processes are guar-
anteed not to starve: by sitting in the top queue, a job will share the CPU

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

One possible fix: priority boost

Rule 5: After some time period, move all the jobs in the
system to the topmost queue.

23

6
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q0

Q1

Q2

0 50 100 150 200

Q0

Q1

Q2

0 50 100 150 200

B
o
o
st

B
o
o
st

B
o
o
st

B
o
o
st

Figure 8.5: Without (Left) and With (Right) Priority Boost

First, there is the problem of starvation: if there are “too many” in-
teractive jobs in the system, they will combine to consume all CPU time,
and thus long-running jobs will never receive any CPU time (they starve).
We’d like to make some progress on these jobs even in this scenario.

Second, a smart user could rewrite their program to game the sched-
uler. Gaming the scheduler generally refers to the idea of doing some-
thing sneaky to trick the scheduler into giving you more than your fair
share of the resource. The algorithm we have described is susceptible to
the following attack: before the time slice is over, issue an I/O operation
(to some file you don’t care about) and thus relinquish the CPU; doing so
allows you to remain in the same queue, and thus gain a higher percent-
age of CPU time. When done right (e.g., by running for 99% of a time slice
before relinquishing the CPU), a job could nearly monopolize the CPU.

Finally, a program may change its behavior over time; what was CPU-
bound may transition to a phase of interactivity. With our current ap-
proach, such a job would be out of luck and not be treated like the other
interactive jobs in the system.

8.3 Attempt #2: The Priority Boost

Let’s try to change the rules and see if we can avoid the problem of
starvation. What could we do in order to guarantee that CPU-bound jobs
will make some progress (even if it is not much?).

The simple idea here is to periodically boost the priority of all the jobs
in system. There are many ways to achieve this, but let’s just do some-
thing simple: throw them all in the topmost queue; hence, a new rule:

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

Our new rule solves two problems at once. First, processes are guar-
anteed not to starve: by sitting in the top queue, a job will share the CPU

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A user may game the scheduler

24

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 7

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

with other high-priority jobs in a round-robin fashion, and thus eventu-
ally receive service. Second, if a CPU-bound job has become interactive,
the scheduler treats it properly once it has received the priority boost.

Let’s see an example. In this scenario, we just show the behavior of
a long-running job when competing for the CPU with two short-running
interactive jobs. Two graphs are shown in Figure 8.5 (page 6). On the left,
there is no priority boost, and thus the long-running job gets starved once
the two short jobs arrive; on the right, there is a priority boost every 50
ms (which is likely too small of a value, but used here for the example),
and thus we at least guarantee that the long-running job will make some
progress, getting boosted to the highest priority every 50 ms and thus
getting to run periodically.

Of course, the addition of the time period S leads to the obvious ques-
tion: what should S be set to? John Ousterhout, a well-regarded systems
researcher [O11], used to call such values in systems voo-doo constants,
because they seemed to require some form of black magic to set them cor-
rectly. Unfortunately, S has that flavor. If it is set too high, long-running
jobs could starve; too low, and interactive jobs may not get a proper share
of the CPU.

8.4 Attempt #3: Better Accounting

We now have one more problem to solve: how to prevent gaming of
our scheduler? The real culprit here, as you might have guessed, are
Rules 4a and 4b, which let a job retain its priority by relinquishing the
CPU before the time slice expires. So what should we do?

The solution here is to perform better accounting of CPU time at each
level of the MLFQ. Instead of forgetting how much of a time slice a pro-
cess used at a given level, the scheduler should keep track; once a process
has used its allotment, it is demoted to the next priority queue. Whether

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

One possible fix: better accounting

Rule 4: Once a job used up its time allotment at a given level,
reduce its priority by one.

25

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 7

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

with other high-priority jobs in a round-robin fashion, and thus eventu-
ally receive service. Second, if a CPU-bound job has become interactive,
the scheduler treats it properly once it has received the priority boost.

Let’s see an example. In this scenario, we just show the behavior of
a long-running job when competing for the CPU with two short-running
interactive jobs. Two graphs are shown in Figure 8.5 (page 6). On the left,
there is no priority boost, and thus the long-running job gets starved once
the two short jobs arrive; on the right, there is a priority boost every 50
ms (which is likely too small of a value, but used here for the example),
and thus we at least guarantee that the long-running job will make some
progress, getting boosted to the highest priority every 50 ms and thus
getting to run periodically.

Of course, the addition of the time period S leads to the obvious ques-
tion: what should S be set to? John Ousterhout, a well-regarded systems
researcher [O11], used to call such values in systems voo-doo constants,
because they seemed to require some form of black magic to set them cor-
rectly. Unfortunately, S has that flavor. If it is set too high, long-running
jobs could starve; too low, and interactive jobs may not get a proper share
of the CPU.

8.4 Attempt #3: Better Accounting

We now have one more problem to solve: how to prevent gaming of
our scheduler? The real culprit here, as you might have guessed, are
Rules 4a and 4b, which let a job retain its priority by relinquishing the
CPU before the time slice expires. So what should we do?

The solution here is to perform better accounting of CPU time at each
level of the MLFQ. Instead of forgetting how much of a time slice a pro-
cess used at a given level, the scheduler should keep track; once a process
has used its allotment, it is demoted to the next priority queue. Whether

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Tuning the parameters

How many priorities?
Default is 60 in Solaris

Time slice lengths?
From 20 ms (highest
priority) to a few hundred
ms (lowest priority) in
Solaris

Frequency of priority
boosts?

About 1 second in Solaris

26

8
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Figure 8.7: Lower Priority, Longer Quanta

it uses the time slice in one long burst or many small ones does not matter.
We thus rewrite Rules 4a and 4b to the following single rule:

• Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU), its priority is
reduced (i.e., it moves down one queue).

Let’s look at an example. Figure 8.6 (page 7) shows what happens
when a workload tries to game the scheduler with the old Rules 4a and 4b
(on the left) as well the new anti-gaming Rule 4. Without any protection
from gaming, a process can issue an I/O just before a time slice ends and
thus dominate CPU time. With such protections in place, regardless of
the I/O behavior of the process, it slowly moves down the queues, and
thus cannot gain an unfair share of the CPU.

8.5 Tuning MLFQ And Other Issues

A few other issues arise with MLFQ scheduling. One big question is
how to parameterize such a scheduler. For example, how many queues
should there be? How big should the time slice be per queue? How often
should priority be boosted in order to avoid starvation and account for
changes in behavior? There are no easy answers to these questions, and
thus only some experience with workloads and subsequent tuning of the
scheduler will lead to a satisfactory balance.

For example, most MLFQ variants allow for varying time-slice length
across different queues. The high-priority queues are usually given short
time slices; they are comprised of interactive jobs, after all, and thus
quickly alternating between them makes sense (e.g., 10 or fewer millisec-
onds). The low-priority queues, in contrast, contain long-running jobs
that are CPU-bound; hence, longer time slices work well (e.g., 100s of
ms). Figure 8.7 shows an example in which two long-running jobs run
for 10 ms at the highest queue, 20 in the middle, and 40 at the lowest.

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The O(1) Scheduler in
Linux

A case study

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

O(1) Scheduler: Linux 2.6.8.1 (2004) — 2.6.23

One “runqueue” per processor
Two priority arrays: active and expired

140 priorities in total, 200 ms (highest priority) to 10 ms time slice
each element in the array is a linked list of threads

Scheduler selects a task from the highest-priority active
array

O(1) operation
threads in a certain priority: round-robin fashion
when a thread’s time slice expires, it is moved to the expired array,
with an adjustment to its priority level

28

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Priorities and time slices in the O(1) Scheduler

29

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The runqueue data structure

30

When the time slice expires, an active
thread is added to the expired array,

possibly with an adjusted priority level

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

O(1) Scheduler: Linux 2.6.8.1 (2004) — 2.6.23

Different priority levels has different time slices
200 ms at priority 0, 10 ms at priority 139

Static priority set by “nice”: initial priority
nice values range from -20 to 19 (mapped to
100 to 139 in the runqueue)
higher value -> lower priority
default priority: 0 (mapped to 120)
can be changed via the nice() system call

31

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

O(1) Scheduler: Linux 2.6.8.1 (2004) — 2.6.23

The active and expired priority arrays will be swapped
when there are no threads in the active array
When a thread is moved from the active to the expired
array, its priority will be adjusted based on a dynamic
adjustment scheme —
sleep_avg: added after sleep, deducted after running

bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
prio = p->static_prio - bonus;

CURRENT_BONUS(p) is defined as follows:
(p->sleep_avg) * MAX_BONUS / MAX_SLEEP_AVG

32

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces, Chapter 8 (Scheduling: MLFQ)
The “Linux CPU Scheduler” document, Sections
5.1.1 — 5.4.4

33

