
Scheduling Policies:
Introduction

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

CPU scheduling: Revisiting our motivation

An OS scheduler decides when a thread should be run
Threads alternate between computation and I/O, called CPU
and I/O bursts

A CPU-bound thread has infrequent I/O bursts
A I/O-bound thread has infrequent CPU bursts

When a thread performs I/O, CPU is not needed
It is the job of the scheduler to run another thread when a
thread is waiting for I/O

To keep the processor busy and improve its utilization

2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Assumptions (to be relaxed later)

Each job runs for the same amount of time
All jobs arrive at the same time
Once started, each job runs to completion
All jobs only use the CPU (no I/O)
The run-time of each job is known

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Design objectives of scheduling policies

Turnaround time: total time needed to complete a
job — Tcompletion - Tarrival
Fairness: give each thread its fair share
Response Time: the time from when the job
arrives to the first time it is scheduled — Tfirstrun -
Tarrival

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

First-Come First-Served

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

First-Come-First-Served (FCFS) example

6

SCHEDULING: INTRODUCTION 3

FIFO has a number of positive properties: it is clearly simple and thus
easy to implement. And, given our assumptions, it works pretty well.

Let’s do a quick example together. Imagine three jobs arrive in the
system, A, B, and C, at roughly the same time (Tarrival = 0). Because
FIFO has to put some job first, let’s assume that while they all arrived
simultaneously, A arrived just a hair before B which arrived just a hair
before C. Assume also that each job runs for 10 seconds. What will the
average turnaround time be for these jobs?

0 20 40 60 80 100 120

Time

A B C

Figure 7.1: FIFO Simple Example

From Figure 7.1, you can see that A finished at 10, B at 20, and C at 30.
Thus, the average turnaround time for the three jobs is simply 10+20+30

3 =

20. Computing turnaround time is as easy as that.
Now let’s relax one of our assumptions. In particular, let’s relax as-

sumption 1, and thus no longer assume that each job runs for the same
amount of time. How does FIFO perform now? What kind of workload
could you construct to make FIFO perform poorly?

(think about this before reading on ... keep thinking ... got it?!)
Presumably you’ve figured this out by now, but just in case, let’s do

an example to show how jobs of different lengths can lead to trouble for
FIFO scheduling. In particular, let’s again assume three jobs (A, B, and
C), but this time A runs for 100 seconds while B and C run for 10 each.

0 20 40 60 80 100 120

Time

A B C

Figure 7.2: Why FIFO Is Not That Great

As you can see in Figure 7.2, Job A runs first for the full 100 seconds
before B or C even get a chance to run. Thus, the average turnaround
time for the system is high: a painful 110 seconds (100+110+120

3 = 110).
This problem is generally referred to as the convoy effect [B+79], where

a number of relatively-short potential consumers of a resource get queued
behind a heavyweight resource consumer. This scheduling scenario might
remind you of a single line at a grocery store and what you feel like when

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

What’s the average turnaround time?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Relax assumption 1:
jobs take the same

amount of time

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

FCFS: The convoy effect

8

SCHEDULING: INTRODUCTION 3

FIFO has a number of positive properties: it is clearly simple and thus
easy to implement. And, given our assumptions, it works pretty well.

Let’s do a quick example together. Imagine three jobs arrive in the
system, A, B, and C, at roughly the same time (Tarrival = 0). Because
FIFO has to put some job first, let’s assume that while they all arrived
simultaneously, A arrived just a hair before B which arrived just a hair
before C. Assume also that each job runs for 10 seconds. What will the
average turnaround time be for these jobs?

0 20 40 60 80 100 120

Time

A B C

Figure 7.1: FIFO Simple Example

From Figure 7.1, you can see that A finished at 10, B at 20, and C at 30.
Thus, the average turnaround time for the three jobs is simply 10+20+30

3 =

20. Computing turnaround time is as easy as that.
Now let’s relax one of our assumptions. In particular, let’s relax as-

sumption 1, and thus no longer assume that each job runs for the same
amount of time. How does FIFO perform now? What kind of workload
could you construct to make FIFO perform poorly?

(think about this before reading on ... keep thinking ... got it?!)
Presumably you’ve figured this out by now, but just in case, let’s do

an example to show how jobs of different lengths can lead to trouble for
FIFO scheduling. In particular, let’s again assume three jobs (A, B, and
C), but this time A runs for 100 seconds while B and C run for 10 each.

0 20 40 60 80 100 120

Time

A B C

Figure 7.2: Why FIFO Is Not That Great

As you can see in Figure 7.2, Job A runs first for the full 100 seconds
before B or C even get a chance to run. Thus, the average turnaround
time for the system is high: a painful 110 seconds (100+110+120

3 = 110).
This problem is generally referred to as the convoy effect [B+79], where

a number of relatively-short potential consumers of a resource get queued
behind a heavyweight resource consumer. This scheduling scenario might
remind you of a single line at a grocery store and what you feel like when

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

What’s the average turnaround time?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Shortest Job First

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

SJF: an optimal scheduling policy

10

4 SCHEDULING: INTRODUCTION

TIP: THE PRINCIPLE OF SJF
Shortest Job First represents a general scheduling principle that can be
applied to any system where the perceived turnaround time per customer
(or, in our case, a job) matters. Think of any line you have waited in: if
the establishment in question cares about customer satisfaction, it is likely
they have taken SJF into account. For example, grocery stores commonly
have a “ten-items-or-less” line to ensure that shoppers with only a few
things to purchase don’t get stuck behind the family preparing for some
upcoming nuclear winter.

you see the person in front of you with three carts full of provisions and
a checkbook out; it’s going to be a while2.

So what should we do? How can we develop a better algorithm to
deal with our new reality of jobs that run for different amounts of time?
Think about it first; then read on.

7.4 Shortest Job First (SJF)
It turns out that a very simple approach solves this problem; in fact

it is an idea stolen from operations research [C54,PV56] and applied to
scheduling of jobs in computer systems. This new scheduling discipline
is known as Shortest Job First (SJF), and the name should be easy to
remember because it describes the policy quite completely: it runs the
shortest job first, then the next shortest, and so on.

0 20 40 60 80 100 120

Time

B C A

Figure 7.3: SJF Simple Example

Let’s take our example above but with SJF as our scheduling policy.
Figure 7.3 shows the results of running A, B, and C. Hopefully the dia-
gram makes it clear why SJF performs much better with regards to aver-
age turnaround time. Simply by running B and C before A, SJF reduces
average turnaround from 110 seconds to 50 (10+20+120

3 = 50), more than
a factor of two improvement.

In fact, given our assumptions about jobs all arriving at the same time,
we could prove that SJF is indeed an optimal scheduling algorithm. How-
ever, you are in a systems class, not theory or operations research; no
proofs are allowed.

2Recommended action in this case: either quickly switch to a different line, or take a long,
deep, and relaxing breath. That’s right, breathe in, breathe out. It will be OK, don’t worry.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

What’s the average turnaround time?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Relax assumption 2: jobs
can now arrive at any time

SCHEDULING: INTRODUCTION 5

ASIDE: PREEMPTIVE SCHEDULERS

In the old days of batch computing, a number of non-preemptive sched-
ulers were developed; such systems would run each job to completion
before considering whether to run a new job. Virtually all modern sched-
ulers are preemptive, and quite willing to stop one process from run-
ning in order to run another. This implies that the scheduler employs the
mechanisms we learned about previously; in particular, the scheduler can
perform a context switch, stopping one running process temporarily and
resuming (or starting) another.

Thus we arrive upon a good approach to scheduling with SJF, but our
assumptions are still fairly unrealistic. Let’s relax another. In particular,
we can target assumption 2, and now assume that jobs can arrive at any
time instead of all at once. What problems does this lead to?

(Another pause to think ... are you thinking? Come on, you can do it)
Here we can illustrate the problem again with an example. This time,

assume A arrives at t = 0 and needs to run for 100 seconds, whereas B
and C arrive at t = 10 and each need to run for 10 seconds. With pure
SJF, we’d get the schedule seen in Figure 7.4.

0 20 40 60 80 100 120

Time

A B C
[B,C arrive]

Figure 7.4: SJF With Late Arrivals From B and C

As you can see from the figure, even though B and C arrived shortly
after A, they still are forced to wait until A has completed, and thus suffer
the same convoy problem. Average turnaround time for these three jobs

is 103.33 seconds (100+(110−10)+(120−10)
3). What can a scheduler do?

7.5 Shortest Time-to-Completion First (STCF)

To address this concern, we need to relax assumption 3 (that jobs must
run to completion), so let’s do that. We also need some machinery within
the scheduler itself. As you might have guessed, given our previous dis-
cussion about timer interrupts and context switching, the scheduler can
certainly do something else when B and C arrive: it can preempt job A
and decide to run another job, perhaps continuing A later. SJF by our defi-
nition is a non-preemptive scheduler, and thus suffers from the problems
described above.

Fortunately, there is a scheduler which does exactly that: add preemp-
tion to SJF, known as the Shortest Time-to-Completion First (STCF) or
Preemptive Shortest Job First (PSJF) scheduler [CK68]. Any time a new

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

What’s the average turnaround time?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Shortest Time-to-
Completion First (or
Preemptive Shortest

Job First)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

STCF: optimal policy with different job arrival times

13

6 SCHEDULING: INTRODUCTION

0 20 40 60 80 100 120

Time

A B C A
[B,C arrive]

Figure 7.5: STCF Simple Example

job enters the system, the STCF scheduler determines which of the re-
maining jobs (including the new job) has the least time left, and schedules
that one. Thus, in our example, STCF would preempt A and run B and C
to completion; only when they are finished would A’s remaining time be
scheduled. Figure 7.5 shows an example.

The result is a much-improved average turnaround time: 50 seconds

((120−0)+(20−10)+(30−10)
3). And as before, given our new assumptions,

STCF is provably optimal; given that SJF is optimal if all jobs arrive at
the same time, you should probably be able to see the intuition behind
the optimality of STCF.

7.6 A New Metric: Response Time

Thus, if we knew job lengths, and that jobs only used the CPU, and our
only metric was turnaround time, STCF would be a great policy. In fact,
for a number of early batch computing systems, these types of scheduling
algorithms made some sense. However, the introduction of time-shared
machines changed all that. Now users would sit at a terminal and de-
mand interactive performance from the system as well. And thus, a new
metric was born: response time.

We define response time as the time from when the job arrives in a
system to the first time it is scheduled3. More formally:

Tresponse = Tfirstrun − Tarrival (7.2)

For example, if we had the schedule above (with A arriving at time 0,
and B and C at time 10), the response time of each job is as follows: 0 for
job A, 0 for B, and 10 for C (average: 3.33).

As you might be thinking, STCF and related disciplines are not par-
ticularly good for response time. If three jobs arrive at the same time,
for example, the third job has to wait for the previous two jobs to run in
their entirety before being scheduled just once. While great for turnaround
time, this approach is quite bad for response time and interactivity. In-
deed, imagine sitting at a terminal, typing, and having to wait 10 seconds

3Some define it slightly differently, e.g., to also include the time until the job produces
some kind of “response”; our definition is the best-case version of this, essentially assuming
that the job produces a response instantaneously.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Round-Robin
Scheduling

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Round-Robin Scheduling

Enable interactivity by limiting the amount of time a
thread can run at a time
Time slice: amount of time the scheduler gives a
thread before choosing another thread

Requires timer interrupts

15

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Effectiveness of Round-Robin Scheduling

The number of jobs
More jobs -> slower response times

The length of the time slice (scheduling
quantum)

Longer time slice -> slower response times
Shorter time slice -> more overhead
10 ms to 100 ms is often a reasonable compromise

16

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Round-Robin: Example

17

SCHEDULING: INTRODUCTION 7

0 5 10 15 20 25 30

Time

A B C

Figure 7.6: SJF Again (Bad for Response Time)

0 5 10 15 20 25 30

Time

ABCABCABCABCABC

Figure 7.7: Round Robin (Good For Response Time)

to see a response from the system just because some other job got sched-
uled in front of yours: not too pleasant.

Thus, we are left with another problem: how can we build a scheduler
that is sensitive to response time?

7.7 Round Robin
To solve this problem, we will introduce a new scheduling algorithm,

classically referred to as Round-Robin (RR) scheduling [K64]. The basic
idea is simple: instead of running jobs to completion, RR runs a job for a
time slice (sometimes called a scheduling quantum) and then switches
to the next job in the run queue. It repeatedly does so until the jobs are
finished. For this reason, RR is sometimes called time-slicing. Note that
the length of a time slice must be a multiple of the timer-interrupt period;
thus if the timer interrupts every 10 milliseconds, the time slice could be
10, 20, or any other multiple of 10 ms.

To understand RR in more detail, let’s look at an example. Assume
three jobs A, B, and C arrive at the same time in the system, and that
they each wish to run for 5 seconds. An SJF scheduler runs each job to
completion before running another (Figure 7.6). In contrast, RR with a
time-slice of 1 second would cycle through the jobs quickly (Figure 7.7).

The average response time of RR is: 0+1+2
3 = 1; for SJF, average re-

sponse time is: 0+5+10
3 = 5.

As you can see, the length of the time slice is critical for RR. The shorter
it is, the better the performance of RR under the response-time metric.
However, making the time slice too short is problematic: suddenly the
cost of context switching will dominate overall performance. Thus, de-
ciding on the length of the time slice presents a trade-off to a system de-
signer, making it long enough to amortize the cost of switching without
making it so long that the system is no longer responsive.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

SCHEDULING: INTRODUCTION 7

0 5 10 15 20 25 30

Time

A B C

Figure 7.6: SJF Again (Bad for Response Time)

0 5 10 15 20 25 30

Time

ABCABCABCABCABC

Figure 7.7: Round Robin (Good For Response Time)

to see a response from the system just because some other job got sched-
uled in front of yours: not too pleasant.

Thus, we are left with another problem: how can we build a scheduler
that is sensitive to response time?

7.7 Round Robin
To solve this problem, we will introduce a new scheduling algorithm,

classically referred to as Round-Robin (RR) scheduling [K64]. The basic
idea is simple: instead of running jobs to completion, RR runs a job for a
time slice (sometimes called a scheduling quantum) and then switches
to the next job in the run queue. It repeatedly does so until the jobs are
finished. For this reason, RR is sometimes called time-slicing. Note that
the length of a time slice must be a multiple of the timer-interrupt period;
thus if the timer interrupts every 10 milliseconds, the time slice could be
10, 20, or any other multiple of 10 ms.

To understand RR in more detail, let’s look at an example. Assume
three jobs A, B, and C arrive at the same time in the system, and that
they each wish to run for 5 seconds. An SJF scheduler runs each job to
completion before running another (Figure 7.6). In contrast, RR with a
time-slice of 1 second would cycle through the jobs quickly (Figure 7.7).

The average response time of RR is: 0+1+2
3 = 1; for SJF, average re-

sponse time is: 0+5+10
3 = 5.

As you can see, the length of the time slice is critical for RR. The shorter
it is, the better the performance of RR under the response-time metric.
However, making the time slice too short is problematic: suddenly the
cost of context switching will dominate overall performance. Thus, de-
ciding on the length of the time slice presents a trade-off to a system de-
signer, making it long enough to amortize the cost of switching without
making it so long that the system is no longer responsive.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces, Chapter 7 (Scheduling:
Introduction)

18

