Scheduling Policies: Introduction

Operating Systems Baochun Li University of Toronto

CPU scheduling: Revisiting our motivation

An OS scheduler decides when a thread should be run

- Threads alternate between computation and I/O, called CPU and I/O bursts
 - A CPU-bound thread has infrequent I/O bursts
 - A I/O-bound thread has infrequent CPU bursts

When a thread performs I/O, CPU is not needed

It is the job of the scheduler to run another thread when a thread is waiting for I/O

To keep the processor busy and improve its utilization

Assumptions (to be relaxed later)

- Each job runs for the same amount of time
- All jobs arrive at the same time
- Once started, each job runs to completion
- All jobs only use the CPU (no I/O)
- The run-time of each job is known

Design objectives of scheduling policies

- **Turnaround time: total time needed to complete a job — T**_{completion} - T_{arrival}
- Fairness: give each thread its fair share
- **Response Time:** the time from when the job arrives to the first time it is scheduled — T_{firstrun} -T_{arrival}

First-Come First-Served

First-Come-First-Served (FCFS) example

What's the average turnaround time?

Relax assumption 1: jobs take the same amount of time

FCFS: The convoy effect

What's the average turnaround time?

Shortest Job First

SJF: an optimal scheduling policy

What's the average turnaround time?

Relax assumption 2: jobs can now arrive at any time

What's the average turnaround time?

Shortest Time-to-Completion First (or Preemptive Shortest Job First)

STCF: optimal policy with different job arrival times

Round-Robin Scheduling

Enable interactivity by limiting the amount of time a thread can run at a time

Time slice: amount of time the scheduler gives a thread before choosing another thread

Requires timer interrupts

The number of jobs

More jobs -> slower response times

The length of the time slice (scheduling quantum)

- Longer time slice -> slower response times
- Shorter time slice -> more overhead
- 10 ms to 100 ms is often a reasonable compromise

Round-Robin: Example

What we've covered so far

Three Easy Pieces, Chapter 7 (Scheduling: Introduction)