
Context Switching: A Deep Dive

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Context switching: revisited

In our producer-consumer problem, we assumed
a separate processor was available to run each
thread
But there are usually not enough processors to
go around
We need to share a limited number of processors
among a large number of threads

To make things simple, we first assume that no
thread hogs the processor, either accidentally or
intentionally

2

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Recall: the abstraction of threads
A thread is an abstraction that encapsulates the state of
execution

The execution environment captures everything needed for a thread
scheduler to stop a thread and then resume it later

The ability to stop a thread and then resume it later can be
used to multiplex many threads over a limited number of
physical processors

3

ID, SP, PC

Thread 1
ID, SP, PC

Thread 2
ID, SP, PC

Thread N
... ...

Thread
layer

Processor
layer ID, SP, PC

Processor 1
ID, SP, PC

Processor M
... ...

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Creating a new thread with the thread scheduler

thread_id = thread_allocate(starting_function,
 address_space_id)

To implement this, the thread scheduler:
allocates a range of memory in address_space_id to be used as the
stack for function calls
selects a processor, and sets the processor’s PC to the address
starting_function
sets the processor’s SP to the bottom of the allocated stack

How does the thread scheduler share a limited number of
processors among potentially many threads?

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting the producer-consuming problem

5

message buffer[N]
int in = 0, out = 0
mutex buffer_lock = UNLOCKED
send(message msg)

acquire(buffer_lock)
while in - out == N do

release(buffer_lock)
acquire(buffer_lock)

buffer[in modulo N] = msg
in = in + 1
release(buffer_lock)

message receive()
acquire(buffer_lock)
while in == out do

release(buffer_lock)
acquire(buffer_lock)

msg = buffer[out modulo N]
out = out + 1
release(buffer_lock)
return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting the producer-consumer problem

Previously, we assume having one processor per thread, so
the spin-loop implementation of send() and receive() is
appropriate at the time
but they are now inappropriate since we have fewer
processors than threads

If there is just one processor and if the receiver started before the
sender, we have a major problem
The receiver thread executes its spinning loop, and the sender never
gets a chance to run (to add an item to the buffer)

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Adding yield() to the implementation

7

message buffer[N]
int in = 0, out = 0
mutex buffer_lock = UNLOCKED
send(message msg)

acquire(buffer_lock)
while in - out == N do

release(buffer_lock)
yield()
acquire(buffer_lock)

buffer[in modulo N] = msg
in = in + 1
release(buffer_lock)

message receive()
acquire(buffer_lock)
while in == out do

release(buffer_lock)
yield()
acquire(buffer_lock)

msg = buffer[out modulo N]
out = out + 1
release(buffer_lock)
return msg

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The job of yield(): context switching

yield() switches a processor from one thread to
another

Save this thread’s state so that it can be resumed later
Schedule another thread to run on this processor
Dispatch this processor to that thread

But there is a problem!
A thread in the thread layer calls yield()
The job of yield(), however, needs to be done by the thread
scheduler
The thread scheduler is in the processor layer
This sounds simple, but it can be the most mysterious part in an
OS kernel!

8

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Towards an implementation of yield()

Step 1. A simple implementation of the thread
scheduler
Step 2. Extending Step 1 to support creating and
terminating threads
Step 3. Relax the assumption that threads cannot
hog the processor

9

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Towards an implementation of yield()

Step 1. A simple implementation of the thread
scheduler
Step 2. Extending Step 1 to support creation and
termination of threads
Step 3. Relax the assumption that threads cannot
hog the processor

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Simple implementation of yield(): assumptions

To simplify, we assume the following:
There are a fix number of threads, N, and there are
fewer than N processors
All threads run in the same address space

so that we do not need to worry about switching to a
different address space, a topic in memory
management

All threads are already runnable (in either RUNNING
or READY state)

11

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Two tables

processor_table: an array that records information
for each processor, such as the ID of the thread that
the processor is currently running
thread_table: each entry holds the stack pointer,
and the state of the thread (RUNNING or READY)

in a system with M processors, M threads can be in the
RUNNING state at the same time
For simplicity, we do not show additional code to save (or
restore) the registers or other states in an entry of
thread_table, and assume that they will be saved (or
restored) when the stack pointer is saved (or restored)

12

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Simple implementation of yield()

13

struct processor_table[M]
int thread_id

struct thread_table[N]
int top_of_stack, state // thread states: RUNNING or READY

yield()

enter_processor_layer(processor_table[CPUID].thread_id)

return
enter_processor_layer(int this_thread)

thread_table[this_thread].state = READY // switch state to READY
thread_table[this_thread].top_of_stack = SP // store yielding thread’s SP
scheduler()
return

scheduler()
j = processor_table[CPUID].thread_id
do j = (j + 1) modulo N while thread_table[j].state != READY // schedule a READY j
thread_table[j].state = RUNNING // set state to RUNNING
processor_table[CPUID].thread_id = j // this processor now runs j
exit_processor_layer(j) // dispatch this processor to j
return

exit_processor_layer(int new_thread)
SP = thread_table[new_thread].top_of_stack // load SP of new thread
return

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Problem: Race condition

When we have more than one processor, different
threads running on separate processors may try to
invoke yield() at the same time!
As usual, we solve the problem using mutex locks

14

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Simple implementation of yield()

15

struct processor_table[M]
int thread_id

struct thread_table[N]
int top_of_stack, state // thread states: RUNNING or READY

mutex thread_table_lock
yield()

acquire(thread_table_lock)
enter_processor_layer(processor_table[CPUID].thread_id)
release(thread_table_lock)
return

enter_processor_layer(int this_thread)
thread_table[this_thread].state = READY // switch state to READY
thread_table[this_thread].top_of_stack = SP // store yielding thread’s SP
scheduler()
return

scheduler()
j = processor_table[CPUID].thread_id
do j = (j + 1) modulo N while thread_table[j].state != READY // schedule a READY j
thread_table[j].state = RUNNING // set state to RUNNING
processor_table[CPUID].thread_id = j // record that processor runs j
exit_processor_layer(j) // dispatch this processor to j
return

exit_processor_layer(int new_thread)
SP = thread_table[new_thread].top_of_stack // load SP of new thread
return

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Important observations

The thread scheduler selects the next thread in a round-
robin fashion
The thread that releases the lock is most likely a different
thread from the one that acquired the lock!

The scheduler is likely to choose a different thread to run

It is unnecessary to save and restore the program counter —
why?

16

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Our simple implementation: an in-depth look

The return statement: pops the return address off the top of
the stack, and move that address to the PC
If we are switching from thread 1 to thread 2 on processor A
—

Thread 1 calls yield()
yield() acquires thread_table_lock, calls enter_processor_layer()
enter_processor_layer() saves states, calls scheduler(), still in thread 1
scheduler() calls exit_processor_layer()
exit_processor_layer() changes SP to the top_of_stack in thread 2
The return statement in exit_processor_layer() pops the return
address off the top of the stack in thread 2
Where does it return to?

17

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Where does return in exit_processor_layer()

It depends on what is on the top of the stack in
thread 2!
The top of the stack in thread 2 is saved in
enter_processor_layer() before it calls
scheduler()
When exit_processor_layer() returns, it is as if
enter_processor_layer() returns
The return statement will take PC back to yield()
Thread 2 will now release the thread_table_lock,
and return from yield()

18

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Towards an implementation of yield()

Step 1. A simple implementation in the thread
scheduler
Step 2. Extending Step 1 to support creating and
terminating threads
Step 3. Relax the assumption that threads cannot
hog the processor

19

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Relaxing previous assumptions

To progress to a more complete thread scheduler, we no
longer assume that —

There exists a fixed number of threads
There are more threads than physical processors

This implies that we need two more functions in addition
to thread_allocate()

thread_exit(): destroy and clean up the calling thread. When a
thread is done with its work, it invokes this function to release its
state
thread_destroy(id): destroy the thread identified by id. In some
cases, one thread may need to terminate another thread (e.g., one
in an endless loop)

20

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Subtle issues that need to be solved

If a thread terminates itself with thread_exit(), how can it
deallocate its own stack?

One possible idea: Let the next thread being scheduled to deallocate
the stack of a terminated thread?
What if a processor sits idle, with no thread scheduled next?
(Remember we no longer assume more threads than processors)

Even if no processor sits idle, how can a target thread
running on one of the processors be destroyed by another
(calling) thread?

The calling thread cannot just deallocate the target thread’s stack!
The processor running the target thread must do that

Solution: Add a processor-layer thread for each processor!
21

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

yield() using processor-layer threads

22

struct processor_table[M]
int top_of_stack
int reference stack // pre-allocated stack for this processor th
int thread_id // id of thread running on this processor

struct thread_table[N]
int top_of_stack, state // thread states: RUNNING, READY,
 // UNUSED, EXITED or DESTROYED
int reference stack // stack for this thread

mutex thread_table_lock
yield()

acquire(thread_table_lock)
enter_processor_layer(processor_table[CPUID].thread_id, CPUID)
release(thread_table_lock)
return

run_processors()
for each processor do

allocate stack and set up a processor thread
shutdown = FALSE
scheduler()
deallocate stack
halt processor

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

yield() using processor-layer threads

23

enter_processor_layer(int this_thread, int processor_id)
if thread_table[this_thread].state == RUNNING // if not yet destroyed

thread_table[this_thread].state = READY // switch state to READY
thread_table[this_thread].top_of_stack = SP // store yielding thread’s SP
SP = processor_table[processor_id].top_of_stack // dispatch: load SP of
 // processor thread
return

scheduler()
while shutdown == FALSE do

acquire(thread_table_lock)
for i = 0 to N - 1 do

if thread_table[i].state == READY then
thread_table[i].state = RUNNING
processor_table[CPUID].thread_id = i
exit_processor_layer(i, CPUID)
if thread_table[i].state == EXITED or DESTROYED then

thread_table[i].state = UNUSED
deallocate(thread_table[i].stack)

 release(thread_table_lock)
return // go shut down this processor

exit_processor_layer(int new_thread, int processor_id)
processor_table[processor_id].top_of_stack = SP // store SP of processor thread
SP = thread_table[new_thread].top_of_stack // dispatch: load SP of new thread
return

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The way that control flows across threads

24

enter_processor_
layer

enter_processor_layer

yield
enter_processor_

layer

load SP

Thread layer: thread 1

yield

main

enter_processor_layer

returnProcessor layer thread

scheduler

run_processors()

exit_processor_
layer

exit_processor_layer

load SP

returnThread layer: thread 2

load SP

yield

return

main

yield

scheduler

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing thread_allocate()

25

thread_allocate()
allocate memory for a new stack

push an empty frame onto the new stack, with just a
return address
initialize that return address with the address of
thread_exit()

push a second empty frame, with just a return address
initialize that return address with the address of
starting_function()

find an entry in the thread table that is UNUSED
store the top of the stack in that entry
set the state of the new thread in that entry to
READY

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing thread_allocate()

26

starting_function

thread_exit300

296

292

memory
address

top of stack

With the initial setup of the new stack, it appears that
thread_exit() called starting_function(), and the thread is
about to return to this function
When scheduler() selects this thread, its return will go to the
function starting_function

starting_function will release thread_table_lock, and the new thread is
running

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing thread_exit()

When a thread finishes with starting_function, it returns using
the standard procedure return convention
Since thread_allocate has pushed the address of thread_exit
on the stack, this return transfers control to thread_exit

27

thread_exit()
acquire(thread_table_lock)
thread_table[get_thread_id()].state = EXITED
enter_processor_layer(get_thread_id(), CPUID)

get_thread_id()
return processor_table[CPUID].thread_id

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing thread_destroy()

Recall that the calling thread cannot just deallocate the
target thread’s stack

The processor running the target thread must do that

Instead, thread_destroy() simply sets the state of the thread
to DESTROYED, and returns
When the target thread invokes yield(), the processor-layer
thread’s scheduler() will check the state and release the
thread’s resources
But how do we ensure that each thread running on a
processor will call yield() occasionally?

28

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Towards an implementation of yield()

Step 1. A simple implementation in the thread
scheduler
Step 2. Extending Step 1 to support creating and
terminating threads
Step 3. Relax the assumption that threads cannot
hog the processor

29

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Preemptive scheduling

Cooperative scheduling is not good enough as a
programmer may forget to include a yield() call

If there is only one processor, it may appear to freeze, as no other
thread has an opportunity to make progress (example: Windows 3.1)

Preemptive scheduling: the thread scheduler forces a
thread to give up the processor after some time (say, 100
milliseconds)

by using timer interrupts

The timer interrupt is handled in the processor layer
The timer interrupt handler can then invoke yield() in the
thread layer

Any problems here?
30

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Potential deadlock

31

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Potential deadlock

The interrupt handler calls yield()
By chance, the interrupt happens right after the thread on
that processor has acquired thread_table_lock in yield()
Deadlock!

The yield call in the handler will try to acquire thread_table_lock too
but it already has been acquired by the interrupted thread
That thread cannot continue and release the lock, because it has been
interrupted by the timer interrupt handler!

32

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The problem

The problem: we have concurrent activity within the
processor layer: the thread scheduler (i.e., yield) and the
interrupt handler
The concurrent execution within the thread layer is
coordinated with locks
But the processor needs its own mechanism

The processor may stop processing instructions of a thread at any
time and switch to processing interrupt instructions
We lack a mechanism to turn processor instructions and interrupt
instructions into separate before-or-after atomic actions!

33

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The solution: disabling interrupts

Before a thread acquires the thread_table_lock, it also
disables interrupts on its processor
Now the processor will not switch to an interrupt handler
when an interrupt arrives

Interrupts are delayed until they are enabled again

After the thread has released the thread_table_lock, it is
safe to reenable interrupts

34

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Summary: Two alternatives

There are two alternatives to implement the thread
scheduler

in the current thread, appropriate for a user thread scheduler
in a separate thread, one for each physical processor

Need to disable and reenable interrupts to avoid deadlocks
caused by concurrency with timer interrupt handlers
We made implicit assumptions to skip some details —

For kernel threads, we need to use system calls to use the thread
scheduler
The system calls will need to trap into the kernel, and switch to kernel
stacks when running in kernel mode
We did not include the BLOCKED state of threads

35

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Revisiting Semaphores

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Semaphores: maintaining a “table count”
Defining semaphores: the first alternative

A semaphore is a non-negative integer that remembers past wakeups
down(semaphore): if semaphore > 0, decrement semaphore.
Otherwise, wait until another thread increments semaphore, then try to
decrement again
up(semaphore): increment semaphore, and wake up all threads
waiting on semaphore

37

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Implementing semaphores

38

struct semaphore
 int count
up(semaphore reference sem)
 acquire(thread_table_lock)
 sem.count = sem.count + 1
 for i = 0 to N - 1 do // wake up all threads waiting
 if thread_table[i].state == BLOCKED
 and thread_table[i].sem == sem then
 thread_table[i].state = READY
 release(thread_table_lock)
down(semaphore reference sem)
 acquire(thread_table_lock)
 tid = processor_table[CPUID].thread_id
 thread_table[tid].sem = sem // record the semaphore reference
 while sem.count < 1 do // give up the processor when sem<1
 thread_table[tid].state = BLOCKED
 enter_processor_layer(tid, CPUID)
 sem.count = sem.count - 1
 release(thread_table_lock)

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Can we change the while loop to if statement?

In the implementation of down(), we used a while loop to
keep checking the condition (sem.count < 1) after exiting
from the processor layer
Can we change it to an if statement?
 if sem.count < 1 then // give up the processor when sem < 1
 thread_table[i].state == BLOCKED
 enter_processor_layer(tid, CPUID)
 sem.count = sem.count - 1

39

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Can we change the while loop to if statement?

Can we change it to an if statement?
 if sem.count < 1 then // give up the processor when sem < 1
 thread_table[i].state == BLOCKED
 enter_processor_layer(tid, CPUID)
 sem.count = sem.count - 1

Not really!
More than one thread may wake up in an up() call
These threads will all decrement the semaphore in down() if we
do not check the condition (sem.count < 1) again
Only one of these threads should be allowed to proceed with
down() — just like in a restaurant!

40

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Principles of Computer Systems Design, An Introduction
Section 5.5.1 — 5.5.6

41

