
Threads: A Deep Dive

Operating Systems

Baochun Li


University of Toronto



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Threads in a virtual address space

2

2 CONCURRENCY: AN INTRODUCTION

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code
the code segment:

where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines, 

return values, etc.

16KB

15KB

2KB

1KB

0KB

Stack (1)

Stack (2)

(free)

(free)

Heap

Program Code

Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces

However, in a multi-threaded process, each thread runs independently
and of course may call into various routines to do whatever work it is do-
ing. Instead of a single stack in the address space, there will be one per
thread. Let’s say we have a multi-threaded process that has two threads
in it; the resulting address space looks different (Figure 26.1, right).

In this figure, you can see two stacks spread throughout the address
space of the process. Thus, any stack-allocated variables, parameters, re-
turn values, and other things that we put on the stack will be placed in
what is sometimes called thread-local storage, i.e., the stack of the rele-
vant thread.

You might also notice how this ruins our beautiful address space lay-
out. Before, the stack and heap could grow independently and trouble
only arose when you ran out of room in the address space. Here, we
no longer have such a nice situation. Fortunately, this is usually OK, as
stacks do not generally have to be very large (the exception being in pro-
grams that make heavy use of recursion).

26.1 An Example: Thread Creation

Let’s say we wanted to run a program that created two threads, each
of which was doing some independent work, in this case printing “A” or
“B”. The code is shown in Figure 26.2.

The main program creates two threads, each of which will run the
function mythread(), though with different arguments (the string A or
B). Once a thread is created, it may start running right away (depending
on the whims of the scheduler); alternately, it may be put in a “ready” but
not “running” state and thus not run yet. After creating the two threads
(T1 and T2), the main thread calls pthread join(), which waits for a
particular thread to complete.

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

Stack size per thread is 8MB 

by default in UNIX (ulimit -s)



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 3

An Example of Processes vs. Threads
Consider a web server with a single-threaded 
process

Why is this not a good web server design?


GET / HTTP/1.1 disk

HTTPD



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 4

An Example of Processes vs. Threads

Consider a web server with multiple processes

Is there a problem with this web server design?


GET / HTTP/1.1 disk

HTTPD



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Why Do We Need Threads — Advantages
Low cost communication via shared address space

Lightweight in thread creation, termination and 
switching


Faster than processes by at least an order of magnitude

Context switching with processes is expensive!


Overlap computation and blocking (due to I/O) on a 
single CPU


A simple model for handling asynchronous events

Meets the need of multi-processor (-core) systems 
well

5



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 6

Back to our example

Consider a web server with multiple threads

Should we use one thread per client or per 
request?

GET / HTTP/1.1 disk

HTTPD



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A thread per client or a thread per request?

Thread-per-client: A new thread for each client

What if a client has many concurrent requests?


Thread-per-request: Create a new thread for each 
incoming connection request


Drawback: When demand surges, too many threads 
lead to performance degradation

7



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8

A Thread Pool Design of the Web Server

Now consider a multi-threaded web server 
using a thread pool

Is there a problem with this web server design?

GET / HTTP/1.1 disk

HTTPD

Dispatcher
Worker thread 1

Worker thread 2



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

User Threads (N:1) — the Many-to-One Model

9

Thread scheduler manages thread contexts in 
the user space 


Each process needs its own private thread table to 
keep track of threads

keeps track of PC, SP, registers, state (ready, blocked, 
running)


OS sees only a traditional process 

No need to modify OS kernels if they do not support 
threads initially



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

User Threads (N:1) — the Many-to-One Model

10



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

User Threads (N:1): Advantages

Context switching among threads in the same 
process is cheap 


No context switch to kernel and back to user level 

Can be done in time closer to procedure call 

Scales better to a very large number of threads


Allows each process to have its own customized 
scheduling algorithm

Example: GNU Portable Threads (Pth)

11



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

User Threads (N:1): Disadvantages
What happens with blocking system calls? 


Letting one of the thread to block on the system call is not acceptable, 
as it will stop all the threads

All the system calls can be changed to non-blocking, but that requires 
changes to the OS, which defeats the purpose of using user threads

It may be possible to first check to see if blocking is necessary (using 
select()), before making the system calls


What if a thread does not give up the CPU?

the user thread scheduler cannot use timer interrupts — it is non-
preemptive


What if we have multi-core CPUs?

User threads in the same process can only run one at a time

12



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Kernel Threads (1:1) — The One-to-One Model

13



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Kernel Threads (1:1) — The One-to-One Model

14

Advantage: Allows another thread to run when a 
thread makes a blocking system call


No need to change blocking system calls to 
nonblocking


Disadvantage: The cost of a system call is substantial 
— much more overhead to create or switch across 
threads

All major operating systems: Windows, Linux (with 
the Native POSIX Thread Library), macOS



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Hybrid Threads (M:N)

15

M user threads mapped onto N kernel entities (or 
virtual processors)

Advantage: Avoid expensive context switching 
among user threads that involve few system calls

Disadvantage: More complexity

Example: Windows user-mode scheduling



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Disadvantage with the use of threads in general

The implementation must be thread-safe, and avoid all 
race conditions

If we use the N:1 or M:N model, we must implement a 
user-level thread scheduler (typically in a thread 
library)

16



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

It may be simpler to just 
use multiple processes! 
Remember the Apache 

web server?



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

An Alternative Design Without Threads?

If non-blocking system calls are available, we 
can design an asynchronous model in our 
example


When a request comes in, the one and only thread 
(per CPU core) responds

If needed, a nonblocking I/O operation is started

The thread records the state of the current request, 
and then gets the next event

The next event may either be a new request, or a reply 
from the I/O subsystem about the completion of a 
previous operation

18



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Asynchronous Model

The sequential nature in previous designs is lost

The state of computation must be saved at every 
switch from one request to another

It is a finite-state machine, as events trigger 
transitions across different states

It has an event-driven nature

Main advantage: no need to use more than one 
thread per CPU

19



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Asynchronous Model: Disadvantages
Requires event notification support from OS 
kernel


Some kind of a “callback” mechanism

Used to design modern web servers: node.js


Windows: overlapped I/O with completion ports 
(IOCP)


The earliest OS that supports this model

Linux (2.6 kernel): the epoll interface

macOS: the kqueue interface

20



Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 26.1 and 26.2 
(Concurrency: An Introduction)

21


