The Sleeping Barber

Operating Systems
Baochun Li
University of Toronto




The Sleeping Barber Problem

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto




The Sleeping Barber Problem

The sleeping (sleepy?) barber —

While there are customers sitting in a waiting chair, move
one customer to the barber chair, and start the haircut

When done, move to the next customer
If there are no customers, go to sleep

The customers —

If the barber is asleep, wake him up for a haircut

If someone is getting a haircut, wait for the barber to
become free by sitting in a waiting chair

If all N waiting chairs are occupied, leave the barber shop

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 3




Basic ideas towards a solution

Model the barber and customers as threads

Model the number of waiting customers as a semaphore (O or
more)

semaphore customers = 0 // number of customers waiting
for service

Since there is no way to read the current value of this semaphore, we
also need an integer variable, say occupied_chairs, to keep track of
the number of waiting customers

To protect access to occupied_chairs, we need a mutual exclusion
lock — lock access lock = UNLOCKED

Model the state of the barber as a semaphore

semaphore barber = 0 // Is the barber ready to start?

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto




Solving the Sleeping Barber Problem

semaphore barber = 0 // Is the barber ready to start?
semaphore customers = 0 // number of waiting customers
lock access lock = UNLOCKED

int occupied _chairs = 0

barber()
while true do

customers.down() // wait for (or get) a customer
acquire(access_lock)
occupled_chairs = occupied_chairs - 1
release(access_ lock)
barber.up() // the barber is now ready to start
cut_hair()

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 5
-



Solving the Sleeping Barber Problem

customer()

acquire(access_lock)

if (occupied_chairs < N) then
occupied_chairs = occupied_chairs + 1
release(access_lock)
customers.up() // one more customer has taken a chair
barber.down() // waiting for barber to get ready
get_haircut()

else
release(access_lock) // leave the barber shop

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto



Subtleties in Lab 3, Task 2

In Task 2 of Lab 3, you are asked to print the state of the
customers —

Enter, Sit in a waiting chair, Begin haircut, Finish haircut, Leave

For a successful haircut, from the desired output, the
customer and the barber go through 7 states sequentially —

Enter, Sit in a waiting chair, Start, Begin haircut, Finish haircut, End,
Leave

Correctly producing this sequence requires —

The barber prints Start before the customer prints B
The customer prints F before the barber prints End
The barber prints End before the customer prints L

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto




But How? — use semaphores for ordering

semaphore barber_done = 0 // Is the barber done?
barber()

while true do
customers.down() // wait for (or get) a customer
acquire(access_lock)
occupled_chairs = occupied_chairs -1
release(access_lock)
barber.up() // the barber is now ready to start
cut_hair()
barber_done.up() // the barber is now done with the haircut
customer()
acquire(access_lock)
if (occupied _chairs < N) then
occupied_chairs = occupied_chairs + 1
release(access_lock)
customers.up() // one more customer has taken a chair
barber.down() // waiting for barber to get ready
get_haircut()
barber_done.down() // waiting for barber to be done
else
release(access_lock) // leave the barber shop

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 8



What we've covered so far

Three Easy Pieces: Chapter 31.3 (Semaphores For
Ordering)

Lab 3: SleepingBarberProblem.pdf

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9



