
The Sleeping Barber

Operating Systems
Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9

The Sleeping Barber Problem

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Sleeping Barber Problem

The sleeping (sleepy?) barber —
While there are customers sitting in a waiting chair, move
one customer to the barber chair, and start the haircut
When done, move to the next customer
If there are no customers, go to sleep

The customers —
If the barber is asleep, wake him up for a haircut
If someone is getting a haircut, wait for the barber to
become free by sitting in a waiting chair
If all N waiting chairs are occupied, leave the barber shop

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Basic ideas towards a solution

Model the barber and customers as threads
Model the number of waiting customers as a semaphore (0 or
more)

semaphore customers = 0 // number of customers waiting
for service
Since there is no way to read the current value of this semaphore, we
also need an integer variable, say occupied_chairs, to keep track of
the number of waiting customers
To protect access to occupied_chairs, we need a mutual exclusion
lock — lock access_lock = UNLOCKED

Model the state of the barber as a semaphore
semaphore barber = 0 // Is the barber ready to start?

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving the Sleeping Barber Problem
semaphore barber = 0 // Is the barber ready to start?
semaphore customers = 0 // number of waiting customers
lock access_lock = UNLOCKED
int occupied_chairs = 0
barber()

while true do
 customers.down() // wait for (or get) a customer
 acquire(access_lock)
 occupied_chairs = occupied_chairs - 1
 release(access_lock)

 barber.up() // the barber is now ready to start
 cut_hair()

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving the Sleeping Barber Problem
customer()

acquire(access_lock)
if (occupied_chairs < N) then
occupied_chairs = occupied_chairs + 1
release(access_lock)
customers.up() // one more customer has taken a chair
barber.down() // waiting for barber to get ready
get_haircut()

else
 release(access_lock) // leave the barber shop

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Subtleties in Lab 3, Task 2

In Task 2 of Lab 3, you are asked to print the state of the
customers —

Enter, Sit in a waiting chair, Begin haircut, Finish haircut, Leave

For a successful haircut, from the desired output, the
customer and the barber go through 7 states sequentially —

Enter, Sit in a waiting chair, Start, Begin haircut, Finish haircut, End,
Leave

Correctly producing this sequence requires —
The barber prints Start before the customer prints B
The customer prints F before the barber prints End
The barber prints End before the customer prints L

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

But How? — use semaphores for ordering
semaphore barber_done = 0 // Is the barber done?
barber()
 while true do
 customers.down() // wait for (or get) a customer
 acquire(access_lock)
 occupied_chairs = occupied_chairs - 1
 release(access_lock)
 barber.up() // the barber is now ready to start
 cut_hair()
 barber_done.up() // the barber is now done with the haircut
customer()

acquire(access_lock)
if (occupied_chairs < N) then

occupied_chairs = occupied_chairs + 1
release(access_lock)
customers.up() // one more customer has taken a chair
barber.down() // waiting for barber to get ready
get_haircut()
barber_done.down() // waiting for barber to be done

else
 release(access_lock) // leave the barber shop

8

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 31.3 (Semaphores For
Ordering)
Lab 3: SleepingBarberProblem.pdf

9

