
The Sleeping Barber

Operating Systems

Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto 9

The Sleeping Barber Problem

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

The Sleeping Barber Problem

The sleeping (sleepy?) barber —

While there are customers sitting in a waiting chair, move
one customer to the barber chair, and start the haircut

When done, move to the next customer

If there are no customers, go to sleep

The customers —

If the barber is asleep, wake him up for a haircut

If someone is getting a haircut, wait for the barber to
become free by sitting in a waiting chair

If all N waiting chairs are occupied, leave the barber shop

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Basic ideas towards a solution

Model the barber and customers as threads

Model the number of waiting customers as a semaphore (0 or
more)

semaphore customers = 0 // number of customers waiting
for service

Since there is no way to read the current value of this semaphore, we
also need an integer variable, say occupied_chairs, to keep track of
the number of waiting customers

To protect access to occupied_chairs, we need a mutual exclusion
lock — lock access_lock = UNLOCKED

Model the state of the barber as a semaphore

semaphore barber = 0 // Is the barber ready to start?

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving the Sleeping Barber Problem
semaphore barber = 0 // Is the barber ready to start?

semaphore customers = 0 // number of waiting customers

lock access_lock = UNLOCKED

int occupied_chairs = 0

barber()

while true do

	 	 customers.down() // wait for (or get) a customer

	 	 acquire(access_lock)

	 	 occupied_chairs = occupied_chairs - 1

	 release(access_lock)

 barber.up() // the barber is now ready to start

	 cut_hair()

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Solving the Sleeping Barber Problem
customer()

acquire(access_lock)

if (occupied_chairs < N) then

occupied_chairs = occupied_chairs + 1

release(access_lock)

customers.up() // one more customer has taken a chair

barber.down() // waiting for barber to get ready

get_haircut()

else

	 release(access_lock) // leave the barber shop

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Subtleties in Lab 3, Task 2

In Task 2 of Lab 3, you are asked to print the state of the
customers —

Enter, Sit in a waiting chair, Begin haircut, Finish haircut, Leave

For a successful haircut, from the desired output, the
customer and the barber go through 7 states sequentially —

Enter, Sit in a waiting chair, Start, Begin haircut, Finish haircut, End,
Leave

Correctly producing this sequence requires —

The barber prints Start before the customer prints B

The customer prints F before the barber prints End

The barber prints End before the customer prints L

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

But How? — use semaphores for ordering
semaphore barber_done = 0 // Is the barber done?

barber()

 while true do

 customers.down() // wait for (or get) a customer

 acquire(access_lock)

 occupied_chairs = occupied_chairs - 1

 release(access_lock)

 barber.up() // the barber is now ready to start

 cut_hair()

 barber_done.up() // the barber is now done with the haircut

customer()

acquire(access_lock)

if (occupied_chairs < N) then

occupied_chairs = occupied_chairs + 1

release(access_lock)

customers.up() // one more customer has taken a chair

barber.down() // waiting for barber to get ready

get_haircut()

barber_done.down() // waiting for barber to be done

else

	 release(access_lock) // leave the barber shop

8

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What we’ve covered so far

Three Easy Pieces: Chapter 31.3 (Semaphores For
Ordering)

Lab 3: SleepingBarberProblem.pdf

9

