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The Sleeping Barber Problem

The sleeping (sleepy?) barber —

While there are customers sitting in a waiting chair, move
one customer to the barber chair, and start the haircut

When done, move to the next customer
If there are no customers, go to sleep

The customers —

If the barber is asleep, wake him up for a haircut

If someone is getting a haircut, wait for the barber to
become free by sitting in a waiting chair

If all N waiting chairs are occupied, leave the barber shop
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Basic ideas towards a solution

Model the barber and customers as threads

Model the number of waiting customers as a semaphore (O or
more)

semaphore customers = 0 // number of customers waiting
for service

Since there is no way to read the current value of this semaphore, we
also need an integer variable, say occupied_chairs, to keep track of
the number of waiting customers

To protect access to occupied_chairs, we need a mutual exclusion
lock — lock access lock = UNLOCKED

Model the state of the barber as a semaphore

semaphore barber = 0 // Is the barber ready to start?
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Solving the Sleeping Barber Problem

semaphore barber = 0 // Is the barber ready to start?
semaphore customers = 0 // number of waiting customers
lock access lock = UNLOCKED

int occupied _chairs = 0

barber()
while true do

customers.down() // wait for (or get) a customer
acquire(access_lock)
occupled_chairs = occupied_chairs - 1
release(access_ lock)
barber.up() // the barber is now ready to start
cut_hair()
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Solving the Sleeping Barber Problem

customer()

acquire(access_lock)

if (occupied_chairs < N) then
occupied_chairs = occupied_chairs + 1
release(access_lock)
customers.up() // one more customer has taken a chair
barber.down() // waiting for barber to get ready
get_haircut()

else
release(access_lock) // leave the barber shop
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Subtleties in Lab 3, Task 2

In Task 2 of Lab 3, you are asked to print the state of the
customers —

Enter, Sit in a waiting chair, Begin haircut, Finish haircut, Leave

For a successful haircut, from the desired output, the
customer and the barber go through 7 states sequentially —

Enter, Sit in a waiting chair, Start, Begin haircut, Finish haircut, End,
Leave

Correctly producing this sequence requires —

The barber prints Start before the customer prints B
The customer prints F before the barber prints End
The barber prints End before the customer prints L
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But How? — use semaphores for ordering

semaphore barber_done = 0 // Is the barber done?
barber()

while true do
customers.down() // wait for (or get) a customer
acquire(access_lock)
occupled_chairs = occupied_chairs -1
release(access_lock)
barber.up() // the barber is now ready to start
cut_hair()
barber_done.up() // the barber is now done with the haircut
customer()
acquire(access_lock)
if (occupied _chairs < N) then
occupied_chairs = occupied_chairs + 1
release(access_lock)
customers.up() // one more customer has taken a chair
barber.down() // waiting for barber to get ready
get_haircut()
barber_done.down() // waiting for barber to be done
else
release(access_lock) // leave the barber shop
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What we've covered so far

Three Easy Pieces: Chapter 31.3 (Semaphores For
Ordering)

Lab 3: SleepingBarberProblem.pdf
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