
Introduction

Operating Systems

Baochun Li

University of Toronto

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

About me
Career

Assistant Professor (2000)

Associate Professor (2005)

Professor (2008)

IEEE Fellow (2015)

Research

I lead a research group with around 8 grad students

Cloud computing

Networking

Distributed systems

http://iqua.ece.toronto.edu/bli/ (or just google Baochun)
2

http://www.eecg.toronto.edu/~bli/

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Two objectives of the course
Understand basic concepts of operating systems

Fundamental principles

Processes and threads

Thread synchronization

CPU scheduling

Memory management

File and I/O systems

Virtual machines (and time permitting, security)

Gain practical hands-on experience

Using the BLITZ system in our labs

Reinforce what you have learned from lectures

3

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Labs

We use the BLITZ system in our labs

BLITZ includes a CPU emulator, assembler, compiler
for a high-level kernel programming language
(called KPL), and a debugging system

It is simple, yet realistic enough to understand how
things work

You will read, understand, and write real operating
systems code!

4

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

A few words about the labs: BLITZ
BLITZ includes —

A CPU architecture, emulated in software as a virtual
machine

Similar to RISC CPUs, such as MIPS, SPARC and PowerPC

Emulation runs on the host machine (such as Linux)

Basic OS code to be extended in each project

Developing on BLITZ

Edit, compile, link on the host machine

Execute on the virtual machine (emulator)

Debugging tools are provided in the emulator

5

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Why BLITZ?
One extreme: directly work on x86 hardware

Modifications to the Linux kernel

Stanford Univ used an actual x86 virtual machine

Difficult to develop and debug

The other extreme: no hardware exists in OS labs

Example: simulate a CPU scheduling algorithm

Neither extremes are good choices

There is no substitute to learning on a real OS kernel based on
hardware

Best: emulated hardware architectures — Nachos used MIPS

But debugging with C/C++ can be time-consuming

6

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Installing BLITZ on your own computer

We will provide a Docker container image for
each lab

You just need to install Docker to run this
image

It’s like a virtual machine, just faster

It contains a Linux OS and all the required tools
from BLITZ precompiled

We will provide more detailed instructions in
Lab 1

7

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Grading

Labs: 60% (20% each)

Lab 1 will not be marked

Course Project: 40%

8

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Textbooks and lecture notes
Required: Operating Systems: Three Easy Pieces, by
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

Free! (but paper copies are also available for purchase
online)

Available for download at http://www.ostep.org

Chapters and sections covered will be available in the
lecture notes

Lecture notes are made available in PDFs

9

http://www.cs.wisc.edu/~remzi
http://www.cs.wisc.edu/~dusseau

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Other reference textbooks

Operating System Concepts, A. Silberschatz, P.
Galvin, G. Gagne, 10th Ed., Wiley, 2018 (or 8th Ed.,
2008; 9th Ed., 2012).

Principles of Computer System Design, An
Introduction, J. H. Saltzer, M. F. Kaashoek, Morgan
Kaufmann, 2009.

10

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Additional required reading

The BLITZ Documentation

PDFs are available for download from the course website
today (as a .zip archive)

Source code for all BLITZ tools are also available for
download

11

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Reading BLITZ documentation

Required reading:

An Overview of the BLITZ System (7 pages)

Overview of the BLITZ Computer Hardware (8 pages)

The BLITZ Architecture (67 pages)

The BLITZ Emulator (46 pages)

Overview of KPL (66 pages)

A lot of pages — but well worth your time!

12

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Course website

Official course website: oscourse.org

All course-related information is available

Course syllabus, BLITZ documentation, labs, lecture notes

WeChat group — online discussions only

13

http://oscourse.org

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Getting started

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

What is an operating system?

Windows?

MacOS

Linux

Smartphone operating systems

iOS

Android

15

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Operating systems: a narrow view

User programs are not considered as part of an
operating system

Examples —

The graphical user interface (GUI)

Productivity applications (such as the Windows Explorer)

Main distinctions

Operating systems live a long time, since they are hard to
write

User programs offer choices to users (e.g., a web browser)

16

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Operating systems are complex

The Linux kernel has a total of 27,852,148 lines of code as of
January 1, 2020

66,492 files (source: https://phoronix.com/misc/linux-eoy2019/index.html)

In 2019 alone, there were 74,754 commits to the Linux
kernel tree, adding 3,386,347 lines of new code and
1,696,620 lines of code were removed

17

https://phoronix.com/misc/linux-eoy2019/index.html

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Operating systems: �
A brief history

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Batch Systems

Example: IBM System/360 and OS/360 (1960s)

Main innovation: Multiprogramming across
“jobs”

Partition the memory into several pieces to fit different
jobs

While one job was waiting for I/O to complete, another
job could be using the CPU

19

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Timesharing Systems
Batch systems do not allow a quick turnaround time
for users

Timesharing systems allocate CPU to provide fast,
interactive service to a number of users, and work
on batch jobs in the background

Example: MULTICS (1965-1974)

The concept of a “computer utility” just like electricity

MIT, Bell Labs, General Electric

Not successful — goals were too ambitious at the time

Similar to “cloud computing” today

20

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Minicomputers and UNIX
DEC PDP-1 (1961): 4K of 18-bit words for $120K

Ken Thompson designed a stripped-down, one
user version of MULTICS, called UNIX, on a
PDP-7

Over five decades, UNIX had many variants

Linux came from Linus Torvalds’ work on MINIX, an
educational UNIX operating system

AT&T System V: led to Sun Solaris, HP/UX, IBM AIX

BSD: led to FreeBSD and Mach

Mach led to MacOS

21

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Personal computers
Gary Kildall: CP/M on Intel 8080 and Zilog Z80
(1974-1980)

Microsoft: MS-DOS on IBM PC (1981)

Apple: macOS (since 1984)

Microsoft: Windows NT (1996)

Windows NT 4.0 -> Windows 2000 -> Windows XP ->
Windows Vista/7/8/10

22

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

But what is an operating system anyway?

At a high level —

A layer of software between applications
and hardware

Implements an application programming
interface (API) so that applications can
access hardware

Manages resources that applications share

23

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Layering

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Layering: a fundamental principle
Layering is a design philosophy that provides a way
to simplify the design of a complex system

The OS, as a software layer, is a good example

With layering, we need to make decisions —

Which function is to be implemented in which layer?

Software vs. hardware implementation?

Concerns: cost, performance, flexibility, convenience, and
usage patterns — a tradeoff must be made

The operating system layer usually allows a layer
bypass

25

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Layer Bypass

Rather than completely hiding the lower,
hardware layer, an operating system usually
hides only a few features of the hardware layer

Particularly dangerous instructions

The remaining features of the hardware layer,
including most of the instruction set, pass
through for use directly by the application layer

For performance reasons

26

Baochun Li, Department of Electrical and Computer Engineering, University of Toronto

Reading

Required: Three Easy Pieces

Chapter 2: Introduction to Operating Systems

Recommended: Operating Systems Concepts

Chapter 1.1: What Operating Systems Do

27

