
March 25, 2009 Page 1

The Thread Scheduler

and

Concurrency Control Primitives

Harry H. Porter III, Ph. D.

Department of Computer Science

Portland State University

September 26, 2007

Revised: August 19, 2008

The BLITZ Thread Scheduler

This document examines the design of a specific kernel scheduler, the BLITZ Thread Scheduler. We’ll

look at data structures, at algorithms, and even at code fragments in an attempt to explain exactly how a

real thread scheduler works.

The BLITZ thread scheduler is part of the BLITZ System, which is a collection of software designed to

support a university-level course on Operating Systems. Over the course of one or two terms, students

will implement a small, but complete, operating system kernel. The BLITZ software provides the

framework for these student projects.

Who this Document is Written For

This document is written primarily for students using the BLITZ system in an Operating Systems

course, but familiarity with the BLITZ system is not assumed. Although this document is basically a

code walk-through of the BLITZ thread scheduler code, it can be read by anyone interested in thread

schedulers.

Familiarity with the BLITZ system is not assumed and is not needed in order to read this.

 Thread Scheduler

March 25, 2009 Page 2

This document will be of greatest help to students working on “project 2” in the BLITZ build-your-own-

kernel project. Students do not need to read this document in order to do project 2. Nevertheless, this

document goes into much greater depth and will provide deeper insights into the concepts of thread

scheduling in general and the BLITZ scheduler in particular.

This document may also be of interest to instructors who are using the BLITZ system in their courses.

A Quick Introduction to Multithreading Concepts

At the core of an operating system kernel lies the thread scheduler. The scheduler provides the illusion

that many CPUs are available, operating in parallel, when only one CPU exists. The scheduler

implements multithreading by rapidly switching the CPU from one program to the next, so that each

program can make progress over time.

In other words, the CPU executes one program for a short time, then switches to another program and

executes it for a while. Each individual program is executed for a while and then suspended while other

programs are executed. After each program has been given a turn, the process is repeated. And each

program is given another turn to execute.

The term multithreading should be contrasted with multiprocessing, which refers to a computer system

composed of more than one CPU. In a multiprocessing system, two or more programs can truly execute

in parallel, since each program can be executing on a different CPU at the same moment.

With multithreading, the switching between one program and the next is done by the scheduler and is

done in such a way that each individual program is unaware that the switching is being done. From the

perspective of an individual program, it appears that a single CPU is dedicated to its execution. From

the program’s point of view, it is impossible to determine or distinguish whether every program is

executing on its own private CPU or whether a single CPU is being shared by all programs.

When the programmer writes code to be executed in a multithreaded environment, he or she doesn’t do

anything special. In particular, the programmer doesn’t need to think about when the switching will

occur or whether the program will be executed in a multithreaded environment or in a multiprocessing

environment.

Multithreading is sometimes called multitasking or multiprogramming; for our purposes, these terms all

mean the same thing and we will avoid them in this document. Another term for multithreading is time-

slicing, which refers to the idea that time is broken into many sequential intervals. Each program is

allowed to use the CPU for one of “slice of time” before the program is suspended and the CPU is put to

work on another program.

Multithreading and multiprocessing are often combined. It may be the case that the computer is a

multiprocessor system which has, say, 10 CPUs. A thread scheduler designed for a multiprocessor

system could utilize these 10 real CPUs to execute, say, 50 programs at once. Each of the programs

would be suspended for part of the time and each CPU would be time-sliced to execute, on average, 5

 Thread Scheduler

March 25, 2009 Page 3

programs. In such a scheduler, many complexities must be addressed, such as whether each program

will always be executed on the same CPU or whether its time-slices of execution may occur on different

CPUs.

The BLITZ Hardware

The scheduler described here runs on the BLITZ computer, which has a single CPU. The architecture of

the BLITZ machine is similar to modern architectures, such as the SPARC, but is somewhat simplified.

At all times, the BLITZ CPU is either running in System Mode or in User Mode. Certain instructions,

called privileged instructions, can only be executed when the CPU is in System Mode.

The CPU has 16 general purpose integer registers (called r0 through r15) with 32 bits each. In addition,

there are 16 floating point registers (called f0 through f15) which can each hold a double precision

floating point value.

There are 2 sets of the general purpose integer registers, one for System Mode and one for User Mode.

There is only one set of the floating point registers.

Additional registers include a program counter (PC); a status registers (SR), and two registers related to

the page table.

The BLITZ machine has an interrupt mechanism. Interrupts can be signaled from the following

hardware and external sources:

 Timer

 Disk

 Serial Terminal

 Power-on Reset

 Hardware Fault

The interrupt mechanism also processes program exceptions arising from the following causes:

 Address Exception

 Alignment Exception

 Arithmetic Exception

 Privileged Instruction

 Illegal Instruction

 Page Fault (invalid page)

 Page Fault (update to read-only page)

 Syscall Trap Instruction

The timer interrupt is generated by the hardware regularly at a fixed periodic rate, providing the

necessary “clock tick” needed for a time-slicing scheduler.

 Thread Scheduler

March 25, 2009 Page 4

The CPU includes a MMU (Memory Management Unit) to support paging and virtual memory. The I/O

devices include a disk for storing files and a terminal for communication with the user.

The scheduler is programmed mostly in a high level language called KPL (Kernel Programming

Language), but some critical routines are coded in assembly code. [By the way, KPL should not be

confused with something called Kid’s Programming Language. This KPL is definitely not for kids!]

The BLITZ computer is emulated using a virtual machine. The BLITZ architecture was carefully

designed to be realistic and complete enough to execute an operating system kernel. The thread

scheduler discussed in this document forms the core of a functional Unix-like kernel, which is elaborate

enough to execute a simple shell program.

The BLITZ architecture was designed with this single goal in mind: to facilitate the teaching of

operating systems. Consequently, much of the complexity of modern CPU cores was avoided. For

example, the BLITZ CPU was designed with the expectation that it would be emulated. Several

hardware optimizations—such as pipelined execution, out-of-order execution and instruction/data

caching—were not included, since these have little relevance to this goal.

The following documents contain more information about the BLITZ system:

An Overview of the BLITZ System (7 pages)

An Overview of the BLITZ Computer Hardware (8 pages)

The BLITZ Architecture (71 pages)

An Overview of KPL, A Kernel Programming Language (66 pages)

 All of these documents and many more may be accessed through the BLITZ webpage:

http://web.cecs.pdx.edu/~harry/Blitz

The Thread Concept

Previously, we used the term “program” loosely in the discussion of multithreading, but technically a

program is a static thing, a bunch of code. At a given moment in time, it might not even be loaded into a

computer. But once the program is loaded into the computer’s memory and execution begins, it

becomes a process. In other words, a process is a program in execution.

A process is sometimes called a task.

A process consists of two things: a memory region containing the code and a thread of execution. In the

simplest scenario, with no operating system, the program would be loaded into the computer’s memory

 Thread Scheduler

March 25, 2009 Page 5

directly and the CPU would execute the instructions of the program, one after the other. In this simple

scenario, the CPU itself provides the thread.

The thread breathes life into a program as it executes instructions; without a thread, a program is nothing

more than a bunch of bytes stored in memory. Without instruction execution, the code will never be

executed, memory will never change, and nothing will ever happen. The thread brings activity to the

instructions stored in the bytes of memory.

Next, imagine a computer with several CPUs, all sharing the same memory. Assume we got a

symmetrical system. There is only one block of memory and each CPU can freely access all of this

memory. Each CPU is identical and any CPU can read or update any byte. Any update will be visible

to every other CPU.

If some program has been designed to be executed on such a system with multiple CPUs, it is said to be

a multithreaded program. Each CPU will implement a single thread; with 10 CPUs we’ll have 10

threads. (We’re still assuming there is no operating system yet.)

In general, each CPU will be executing at different places in the program, although it is certainly

possible that each of the CPUs is executing the same instruction at the same moment. It is even possible

that all CPUs are marching in lockstep, doing exactly the same thing. This synchrony of CPUs is

possible but would be unusual and occur mostly in fault-tolerant systems with “hot” backup CPUs.

In a more common scenario, each CPU is doing something different. All CPUs are executing

instructions from the same program, but each CPU is at a different point in that program. In a typical

multithreaded program, the CPUs are all working on some coordinated, shared task, but each is doing

something different to contribute to the common goal. There is one program—one set of instructions

and one set of shared, global variables stored in the shared memory—and these are shared by all CPUs.

Of course, in order to complete the task correctly, each of the CPUs will need to communicate and

coordinate with the others. This is the problem of concurrency control. There must be mechanisms

whereby each CPU can interact with the others. For example, one CPU may provide some piece of data

that another CPU will need. If the second CPU becomes ready for the data before the first CPU has

produced it, the CPU will have to wait.

We will discuss concurrency control mechanisms in depth later in this paper.

Now let us return to a single CPU system. In order to execute a multithreaded program with only a

single CPU, we need a scheduler. The scheduler implements threads. The scheduler provides the

illusion that there are many CPUs available. In particular, the scheduler creates a new thread whenever

the process asks for one, providing the illusion that the computer has as many CPUs as the process

needs. It is as if there are an infinite number of idle CPUs standing by, available to be called into action

whenever the process wants a new thread. Each CPU will have access to the same memory, so each

CPU can access the variables and the instructions stored in memory.

In a sense, a thread is nothing more than a virtual CPU.

 Thread Scheduler

March 25, 2009 Page 6

As a starting example, let’s look at the small code fragment shown next. This code is written in the

BLITZ assembly language:

 mov 300,r1
 jmp MyLabel
 mul r1,500,r3
 ...
MyLabel: add r1,200,r3
 ...

The code first moves the number 300 into register r1 and then jumps to the instruction labeled

MyLabel. Then the add instruction will add 200 to the value in r1 and store the result (i.e., 500) into

register r3. The instruction following the jump is mul (multiply); apparently it will never be executed.

Next, imagine that our computer also has a “fork” machine instruction to implement multithreading on a

machine with multiple CPUs. (In reality, the BLITZ computer has only one CPU and does not have any

such “fork” instruction.)

Now let’s change the jmp instruction to this hypothetical fork instruction:

 mov 300,r1
 fork MyLabel
 mul r1,500,r3
 ...
MyLabel: add r1,200,r3
 ...

This hypothetical fork instruction is a little like a jmp (or branch or goto) instruction, but with an

important difference: a new thread will be created each time the fork instruction is executed.

When the fork instruction is executed, it will call into service a second CPU, which we can assume

was standing idle waiting to be needed. The original CPU will continue instruction execution just after

the fork, and the multiply instruction will in fact be executed next by that CPU. However, the second

CPU will begin executing instructions, starting at MyLabel, with the add instruction.

So the mul and the add instructions will both be executed, but on different CPUs.

Notice that the newly activated CPU, when it executes the add instruction will be starting in the middle

of a program. Its very first instruction will be the add instruction, which makes use of the value

previously stored in register r1. In order for the newly activated CPU to begin executing in the middle

of this program, we must assume that its registers are preloaded with exactly the values the registers had

at the moment of the fork instruction.

Also note that register r3 will be immediately changed by both CPUs and, moreover, r3 will be given

different values by each CPU. Since each CPU has its own set of registers, this is fine.

 Thread Scheduler

March 25, 2009 Page 7

More generally, notice that whenever we start a new thread, it must be started as a “fork” to an existing

thread and that the entire state of the previous thread must be copied to create a starting state for the new

thread. A copy must be made—it cannot be shared—because the moment the new thread begins

executing, its state will change and diverge from the other thread’s state.

The OS Kernel

The scheduler to be described here runs on a single CPU. It provides the illusion of multiple CPUs by

implementing threads and time-slicing.

We’ll discuss the fork operation in detail later, but in short, the fork operation will create a new thread,

making a copy of the previous thread’s state, and will initiate the execution of the new thread. After the

fork operation, there will be one more thread than before. Conceptually, both threads will begin

executing simultaneously, in parallel. But since there is only a single CPU, only one of the threads at a

time can be given a time-slice while the other thread will have to wait for its turn to run.

The thread scheduler we are about to describe here will go on to be used as the core of an operating

system kernel in the BLITZ project. However, this document will concern itself only with the thread

scheduler, which can be understood and used in isolation. While this thread scheduler will be embedded

within a kernel later, we will describe it here as a stand-alone program. We will not discuss any of the

other functions of an operating system, such as user-level processes, virtual memory and paging, or

device I/O.

You can have a thread scheduler without any other parts of the operating system, but you really can’t

have an operating system without a thread scheduler. The code we describe here consists of only the

thread scheduler and some concurrency control operations. We’ll show how to write multithreaded code

using the functionality provided by the scheduler. Later, the other functions of the operating system can

be added to the code body discussed here.

An operating system kernel is, in some sense, just another program. However, unlike other programs,

the kernel is loaded directly into the computer’s memory during the booting process. All other programs

are loaded into memory by the operating system and are tightly controlled by the operating system. All

other programs assume the presence of an OS. In order to communicate with the outside world—for

example, to talk to users or access files on the disk—programs must interact with the OS. On the other

hand, the OS will interact directly with the hardware devices, such as the terminal console and the disk.

The scheduler code we’ll discuss here, which is meant to form the core of an OS kernel, is a standalone

program which will be loaded directly into physical memory, during a sort of “boot” process. The code

discussed here will not be run on top of an operating system. In fact, there will be no other code in

memory but the program discussed here.

Since there is no operating system below it, this scheduling program will have to include all the

functionality it needs. It can’t invoke the operating system to do anything. As a consequence, any

subroutine or function that might be needed must be included directly and linked into the executable.

 Thread Scheduler

March 25, 2009 Page 8

The Thread Scheduler

The BLITZ thread scheduler uses the simplest possible scheduling algorithm. It maintains a collection

of all the threads—called the ready list—and runs them in round-robin fashion. There are no priority

levels nor are there multiple ready queues.

Each time the scheduler is invoked, the first thread on the ready list is selected and executed on the

CPU. The thread is executed until the next timer interrupt, at which time the thread is placed at the tail

end of the ready list. Then, the next thread is taken from the front of the ready list and executed. Each

thread will get roughly a full slice of time; only the scheduling overhead at the beginning of the time-

slice is lost.

Each thread is represented by a data structure called a Thread. The KPL language supports classes and

object-oriented programming and there is a class called Thread. Each instance (or object) in this class

represents an individual thread.

For reference, here is the definition of the class called Thread:

class Thread
 superclass Listable
 fields
 regs: array [13] of int -- Space for r2..r14
 stackTop: ptr to void -- Space for r15 (system stack top ptr)
 name: ptr to array of char
 status: int -- JUST_CREATED,READY,RUNNING,BLOCKED,UNUSED
 initialFunction: ptr to function (int) -- The thread's "main" function
 initialArgument: int -- The argument to that function
 systemStack: array [SYSTEM_STACK_SIZE] of int
 methods
 Init (n: ptr to array of char)
 Fork (fun: ptr to function (int), arg: int)
 Yield ()
 Sleep ()
 CheckOverflow ()
 Print ()
endClass

First, some remarks about the KPL language: In this document, the keywords of the language are

underlined. Comments begin with two hyphens (--).

The data types in KPL should be familiar to anyone who knows C++ or Java. Basic types include int,

char, double, and bool. KPL also allows pointers and arrays. Some more complicated types from

the above example are given below.

int -- A 32-bit signed integer
array [13] of int -- An array of 13 ints

 Thread Scheduler

March 25, 2009 Page 9

array of char -- An array of chars, with unspecified size
ptr to array of char -- A pointer to an array of chars
ptr to void -- A pointer to anything
function (int) -- A function taking a single int argument
ptr to function (int) -- A pointer to such a function

In KPL, each class is defined with two things: a class specification and a class implementation.

The code given above is an example of a class specification.

A class specification tells which fields (i.e., data members) are in the class, after the fields keyword).

It also tells which methods (i.e., member functions) are implemented in the class, after the methods

keyword. A class specification also shows where, in the hierarchy of classes and superclasses, the class

lives, after the superclass keyword.

This specification indicates that Thread is a subclass of a class called Listable, i.e., the superclass of

Thread is Listable. (We’ll discuss Listable later.)

A class implementation gives the method bodies (i.e., the code of the methods). The class

implementation for Thread is not shown here, but we’ll look at the code of several of the methods

below, as we discuss how the scheduler works.

Let us comment here about each field in a Thread object.

The CPU contains 16 general purpose registers, called r0 through r15. Register r0 always has a value

of zero, which provides handy access to a commonly needed constant, namely zero. Instructions may

also use r0 when a result should be discarded. Consequently, we’ll never need to save r0.

In the BLITZ architecture, register r15 has a unique and important role: it is the stack pointer. During

call instructions, a return address is pushed onto the stack, using r15. During a return (ret)

instruction, the return address is popped using r15.

When a thread is running, the CPU registers will contain values that change as instructions are executed.

But when a thread is suspended (e.g., stopped to let another thread use the CPU), we’ll need to save the

state of the CPU. In particular, we need to put the contents of the registers (as used by the suspended

thread) somewhere while other threads use the registers.

The first field in Thread is named regs. It is an array with enough space to store registers r2 through

r14. Later, we’ll see why we never need to store register r1. By the way, arrays in KPL are numbered

from zero, just like in Java or “C”. Thus register r2 will be stored in regs[0], and so on, up to r14 in

regs[12].

The next field stackTop will hold the value of register r15.

The next field is called name. It holds a pointer to a string which, in KPL, is an array of characters.

Each thread is given a name, which is useful when printing certain error messages. Conceptually,

 Thread Scheduler

March 25, 2009 Page 10

threads don’t need to have names and in some operating systems threads are referred to by numbers or

by the addresses in memory of their Thread objects.

The next field is called status, which contains an integer code number.

KPL includes an ability to equate a sequence of numbers with names, via a construct called an enum.

The following KPL code assigns the numbers 1, 2, 3, and so on, to constants named JUST_CREATED,

READY, RUNNING, BLOCKED, and UNUSED:

enum JUST_CREATED, READY, RUNNING, BLOCKED, UNUSED

The next field is called initialFunction, which contains a pointer to a function. This function is the

thread’s “main” function and is the function that will be executed when the thread begins execution. It

takes a single integer as an argument and returns nothing.

The next field is called initialArgument. It contains an integer, which will be passed to the initial

function when the thread is first started. The initialFunction and initialArgument fields are only used

when starting a thread and are not used after that.

The last field is called systemStack and is an array of 4000 bytes. The size of an integer is 4 bytes and

the size of the array is determined by the following constant definition:

const
 SYSTEM_STACK_SIZE = 1000

By the way, all of the material discussed so far is in the file named Thread.h. The following files will

be discussed in this document:

Thread.h

Thread.c

Runtime.s

Switch.s

System.h

System.c

Synch.h

Synch.c

List.h

List.c

These files can be found at:

http://web.cecs.pdx.edu/~harry/Blitz/OSProject/p2/

Linked Lists

 Thread Scheduler

March 25, 2009 Page 11

Class Thread is a subclass of class Listable and consequently Thread objects may be placed on linked

lists. The Listable superclass essentially provides a field called next, which points to the next Thread

object. Therefore, every Thread object inherits a next field from Listable. Since each object has only

one next pointer, a Thread object cannot be placed on more than one linked list.

Linked lists are “singly linked”, which means that each element in the list has a “next” pointer but no

“prev” pointer.

There is also another class named List[]. An instance of this class will represent the list as a whole. A

List[] object contains two fields called first and last, which point to the elements at each end of the list.

By maintaining pointers to both first and last elements, adding an element to either the front end or the

tail end of the list is efficient. However, since the elements do not contain “prev” pointers, removal of

any element besides the first element is not supported by the class.

The class List[] is an example of a parameterized class in the KPL language. To define a variable of

type List[], the programmer must specify a type, such as Thread.

Below is a collection of important variable definitions. These variables are global variables, which

means that they are accessible from all methods and functions.

var
 readyList: List [Thread]
 currentThread: ptr to Thread
 mainThread: Thread
 idleThread: Thread
 threadsToBeDestroyed: List [Thread]
 currentInterruptStatus: int

We’ll describe these variables more later, but notice that both readyList and threadsToBeDestroyed

are lists of Thread objects. The type-checking system of KPL is strong and safe enough to assure that

only Thread objects are placed on these two lists.

Here is the specification of List[] and Listable, with some simplifications that can safely be ignored.

class List [T: Listable]
 superclass Object
 fields
 first: ptr to T
 last: ptr to T
 methods
 AddToFront (p: ptr to T)
 AddToEnd (p: ptr to T)
 IsEmpty () returns bool
 Remove () returns ptr to T
 ApplyToEach (f: ptr to function (ptr to T))
endClass

class Listable

 Thread Scheduler

March 25, 2009 Page 12

 superclass Object
 fields
 next: ptr to Listable
endClass

Note that we have operations to add a Thread to the head of a list (AddToFront), to add a Thread to

the tail of a list (AddToEnd), to test whether a list is empty (IsEmpty) and to remove and return a

Thread from the front of the list (Remove). These methods work with pointers to Thread objects.

There is also a method called ApplyToEach which is passed a function—or more precisely, a pointer to

a function. ApplyToEach will invoke that function once for each element of the list, supplying that

element to the function. For example, there is a function called ThreadPrint which will print the

contents of a Thread object in human-readable form. To print the entire readyList, use this code:

readyList.ApplyToEach (ThreadPrint)

The code for the classes List[] and Listable is in the files List.h and List.c.

We should note that this approach to handling lists, while adequate for our purposes, is somewhat less

complex than what other OS kernels do. For example, in Linux, a single object might participate in

several kinds of list and might in fact be on two, unrelated lists simultaneously; our single next field is

inadequate to allow a Thread object to be placed on more than one list. Fortunately, in our system, a

Thread will never be on more than one list at a time. Also, in Linux, lists are kept doubly linked, with

both “next” and “prev” pointers, which allows elements to be removed efficiently from any place in the

list, not just the front.

Variable Initialization

In KPL, all global variables, like the ones shown above, will be initialized to zero values, unless a

specific initial value is given. For example, the variable named currentInterruptStatus—an integer—

will be initialized to zero.

The variable named currentThread is a pointer; even with no explicit initialization, KPL guarantees

that it will be initialized to the “null” value. In KPL it is common to rely on this initialization when a

zero or null initial value is desired, so it is common to see code where variables are not explicitly

initialized.

The remaining variables (readyList, mainThread, idleThread, currentInterruptStatus) will contain

objects. Note that these four variables do not contain pointers to objects (like currentThread does), but

have enough bytes allocated to hold the entire object.

Variables containing objects must always be initialized properly before use. This is because each object

contains a hidden field pointing to its class. This hidden “class” pointer is used during method lookup to

dynamically select the correct methods, just as in other object-oriented languages.

 Thread Scheduler

March 25, 2009 Page 13

In the case of the variables named mainThread and idleThread, we see no explicit initialization, so

these variables are not usable until initialized. These variables are initialized with this code in the

function called InitializeScheduler:

mainThread = new Thread
idleThread = new Thread

In KPL, the “new” expression creates a new object—of class Thread in this case—with all fields

initialized to zero values. That object is then copied into the variable and the variable is ready to go.

The variables readyList and threadsToBeDestroyed also require initialization before use. They are

initialized with this code in the same function:

readyList = new List [Thread]
threadsToBeDestroyed = new List [Thread]

Any attempt to use a variable which contains an object before it is initialized is an error. The runtime

system will check for this error and will print the error message “Attempt to use an uninitialized object!”

if it occurs.

A similar initialization of arrays is required in KPL. Each array carries its size with it in KPL, unlike in

the “C” language. When an array is initialized, the size is changed from zero to the number of elements

in the array. After that, the array size cannot be changed.

For example, each Thread object contains an field called systemStack, defined as:

systemStack: array [SYSTEM_STACK_SIZE] of int

This array could be initialized with this code:

systemStack = new array of int {SYSTEM_STACK_SIZE of -1}

This will initialize the size and will initialize each element to -1.

For every array access, the KPL compiler produces code that will perform index bounds checking, so if

an attempt is made to access an element that is beyond the end of the array, the system will print

something like “This array index is out-of-range!”

In fact, to avoid repetitively copying in the initial values, the actual code—shown below—does

something rather tricky: it simply stores an integer into the (normally hidden) array size field. In order

to do this, the programmer must explicitly go around the strong, static type-checking done by the KPL

compiler. The following code is “type unsafe” and a bit risky; a mistake here could lead to a system

crash.

*((& systemStack) asPtrTo int) = SYSTEM_STACK_SIZE

 Thread Scheduler

March 25, 2009 Page 14

The States of a Thread

The status field in a Thread object tells what state the thread is in. A thread that has possession of the

CPU and is executing will have a status of RUNNING. At any time, only one thread will have a status

of RUNNING.

At some point, a timer interrupt will occur and the current thread’s time-slice will end. At that point, the

scheduler will suspend that thread and begin executing some other thread. The previously running

thread will be given a status of READY and the next thread to be scheduled will have its status changed

to RUNNING. Nothing prevents a thread with a READY status from running, other than the fact that

the CPU is busy running some other thread.

Sometimes a thread will be forced to wait for some event. For example, a thread may be waiting for

some data that will be produced in the future by another thread. Such a waiting thread cannot be run,

even if the CPU becomes available. This thread will have a status of BLOCKED. A blocked thread

will not become READY until some other thread takes action to un-block it. BLOCKED threads are in

some sense frozen and suspended from making progress.

During the process of creating a new thread, the Thread object will first be initialized and will then be

scheduled to run. As part of the initialization process, before the thread becomes READY, it will be

given a status of JUST_CREATED.

Each Thread object normally represents an active thread. But after a thread terminates, it will never run

again and its Thread object no longer represents a valid, runnable thread. At this point, the status field

in the object will be changed to UNUSED, indicating that the thread has terminated.

Thread objects are a limited resource and must be managed carefully by any kernel. In particular,

rather than simply freeing the associated Thread object, the BLITZ kernel will maintain a pool of free,

unused Thread objects. Technically, the UNUSED status is redundant and unnecessary; the presence of

a Thread object on this free list is sufficient to indicate that a Thread object is unused. Nevertheless,

the UNUSED status will help guard against programming errors.

Allocating and Freeing Objects

The KPL language has a facility for creating new objects on a “heap”. For example:

var p: ptr to Thread
...
p = alloc Thread
...
free p

 Thread Scheduler

March 25, 2009 Page 15

Several aspects of traditional heap allocation and management make heap usage unacceptable for kernel

code. First, the heap may be too small and may fill up, causing the kernel itself to fail. But any extra

space allocated to a kernel heap to prevent it from filling up results in permanently lost physical memory

and a kernel should optimize its use of memory, in order to make more available to user-level programs.

Second, an automatic garbage collector can introduce unpredictable and unacceptable pauses in the

kernel. Finally, the heap and the objects in the heap are generally accessed by many different threads,

further complicating any automatic garbage collection or heap management.

Instead, the approach taken in systems like Linux involves a complex memory management scheme.

Linux has something called the “slab allocator”. You can request allocations of memory and, when

done with the memory, it can be returned to the slab allocator. Linux’s slab allocator is quite complex.

For each allocation, you must include many flags to specify things like how to handle the situation when

memory is limited. (For example, the allocator could wait, or it could free non-essential objects, or it

could just return with failure.)

The BLITZ approach is simpler.

We will restrict ourselves to allocating objects on the heap only during initialization and startup.

However, after startup, no new objects will be allocated on the heap. By following this convention, an

“out of memory” condition cannot occur after startup.

Since there is no risk of overflowing the heap after startup, objects allocated on the heap never need to

be freed. KPL has a free statement, but we will never use it.

But how shall we deal with the problem of memory resource allocation after startup?

For example, after startup and the BLITZ kernel is running, there will occasionally be a demand for new

Thread objects as new threads are forked. And as those threads terminate, their Thread objects will

become free and available for re-use.

The kernel will maintain a free list (or free pool) of Thread objects. When a Thread object is no longer

needed, it will be returned to this free list. The kernel will startup with a fixed, predetermined number of

Thread objects in the free list and this number can not be increased. This fixed supply of Thread

objects will limit the number of active threads our kernel can accommodate at any one time. If an

attempt is made by some thread to create a new thread when there are already a lot of threads, it will be

forced to wait if there are no Thread objects on the free list.

With many threads running and each able to create a new thread at any time, the management of the

Thread free list will require concurrency control. The free list is an object which is shared among many

threads and, as such, it cannot be programmed without careful consideration of synchronization and

concurrency control.

The thread scheduler discussed here does not include the free list of Thread objects. In this document,

we are describing only the scheduler, not the rest of the kernel. This document will describe several

 Thread Scheduler

March 25, 2009 Page 16

concurrency control structures which may be used to implement control over the free list, but the

management of Thread objects is outside the scope of the scheduler and is part of the kernel at large.

In KPL, objects may be allocated dynamically (on the heap) or allocated statically (using variables).

Here is some example code which allocates a Thread object on the heap (i.e., dynamically) and then

calls a function to print it:

var
 p: ptr to Thread
...
p = alloc Thread
...
ThreadPrint (p)

Here is a second, similar example which uses a statically allocated Thread object stored in a variable

named t.

var
 p: ptr to Thread
 t: Thread = new Thread
...
p = &t
...
ThreadPrint (p)

In the last statement, the programmer would probably avoid the variable p altogether and simply write:

ThreadPrint (&t)

The variable t could be a global variable (which is allocated outside any function) or a local variable

(which is allocated on the call stack). However, if you are working with pointers to local objects, you

must be careful to remember that the object’s memory will be reclaimed when the relevant function

returns!

In using the scheduler code described here, Thread objects may either be allocated on the heap, as in the

first example above, or stored directly in variables, as in the second example. Whenever a thread

terminates, the scheduler will give the Thread object a status of UNUSED. The scheduler will do

nothing further; in particular, a Thread objects that as allocated on the heap will not be freed and the

object will continue to exist.

Later, when you build a kernel on top of this scheduler, you’ll add code to recycle unused Thread

objects by managing a free list of Thread objects.

 Thread Scheduler

March 25, 2009 Page 17

The State of the CPU

At all times, the BLITZ processor is running in one of two different modes, called System Mode and

User Mode. All code discussed in this document will be running in System Mode, including both the

code of the scheduler and the code of all the threads. Since all threads will run in System Mode, we

might call them kernel threads—as opposed to user threads which run in User Mode—but we are

discussing the scheduler in isolation, not the kernel, so the concept of user threads is not really even

meaningful here.

At any time, the CPU either has interrupts enabled or disabled. When interrupts are enabled and an

interrupt occurs—for example, a timer interrupt—the execution of the current code will be interrupted

and a jump will be made to an interrupt handler routine. When an interrupt occurs while interrupts are

disabled, this jump will not occur and instruction execution will continue normally. Later, when

interrupts are once again enabled, the interrupt (which remained pending the whole time) will occur and

the jump to the handler code will occur.

The BLITZ CPU also contains page table hardware and, at any moment, paging is either turned on or

off. The page table hardware is used to implement virtual memory in the kernel, but for all code

discussed here, paging is always turned off. When paging is turned on, we can make a distinction

between virtual addresses and physical addresses. We must also distinguish between virtual address

spaces and the installed memory physically present on the machine. Since paging will always be off in

the code discussed here, all addresses will refer in a simple and straightforward way to the bytes of

memory.

The CPU contains a special register, called the Status Register, which contains three bits telling (1)

whether the CPU is in System Mode or User Mode, (2) whether interrupts are enabled or disabled, and

(3) whether paging is off or on. The Status Register also contains three other bits telling the result of

previous comparison instructions.

The entire state of the CPU consists of:

15 general purpose (integer) registers – System Registers

15 general purpose (integer) registers – User Registers

16 floating point registers

Status Register

Program Counter (PC)

Page Table Registers

When we change from one thread to another, we’ll need to save the state of the previous thread and re-

load the CPU with the saved state of the next thread.

In this code, we will ignore the floating point registers entirely. In other words, we will not save the

floating point registers when we switch from thread to thread. Therefore, any threads that use the

double type will not function correctly.

 Thread Scheduler

March 25, 2009 Page 18

Also, since paging is always turned off, we can ignore the Page Table Registers. There are two registers

(called PTBR and PTLR) but we will not bother to save them whenever we switch from thread to

thread.

The BLITZ CPU contains two copies of the general purpose integer registers. One copy is used when

the CPU is running in System Mode and one copy is used when the CPU is in User Mode. Since all the

code discussed here runs in System Mode, we will ignore the User Registers.

Therefore, whenever we switch from one thread to another we’ll need to save and restore:

15 general purpose (integer) registers – System Registers

Status Register

Program Counter (PC)

Context Switching

Next, let’s look at what happens when a timer interrupt occurs.

For clarity, let’s call the currently running thread the “previous” thread. The timer interrupt will cause a

switch to a new thread, which we will call the “next” thread. The previous thread will be changed to

status READY and will be placed at the tail of the ready list. The thread at the front of the ready list—

the next thread—will be removed from the ready list and will becoming the RUNNING thread.

Assume that interrupts are enabled and a timer interrupt occurs.

Whenever an interrupt of any kind occurs, the CPU will complete the current instruction and will then

push three words onto the stack. Next, the Status Register will be changed to disable interrupts. Also

the mode will be changed to System Mode and Paging will be disabled, but these two changes have no

effect since the CPU was already in System Mode with Paging disabled. Disabling interrupts means that

the processing to be described next will be able to run to completion without a second interrupt

occurring and messing things up before it is ready for them.

After the Status Register bits are modified, the CPU will force a branch to a specific address in low

memory, by loading the program counter (PC) with a fixed number that depends on the type of interrupt.

For a timer interrupt, this address happens to be 0x00000004. Since there are 14 types of interrupts,

the first 14 words—called the interrupt vector—are reserved for this purpose.

The three words pushed onto the stack are (1) a word of all zeros, (2) the current status register, and (3)

the program counter. For some other interrupt types, the first word will contain relevant information

instead of all zeros.

The scheduler includes some assembly code, which is located in the file named Runtime.s. In

particular, this assembly file places 14 jump instructions in the interrupt vector in low memory. For

 Thread Scheduler

March 25, 2009 Page 19

example, at address 0x00000004 there is a jump to the first instruction of an assembly routine called

TimerInterruptHandler.

Here is the code for TimerInterruptHandler:

TimerInterruptHandler:
 push r1 ! Save all int registers on the
 push r2 ! . interrupted thread's system stack
 push r3 ! .
 push r4 ! .
 push r5 ! .
 push r6 ! .
 push r7 ! .
 push r8 ! .
 push r9 ! .
 push r10 ! .
 push r11 ! .
 push r12 ! .
 call _P_Thread_TimerInterruptHandler ! Perform up-call
 pop r12 ! Restore int registers
 pop r11 ! .
 pop r10 ! .
 pop r9 ! .
 pop r8 ! .
 pop r7 ! .
 pop r6 ! .
 pop r5 ! .
 pop r4 ! .
 pop r3 ! .
 pop r2 ! .
 pop r1 ! .
 reti ! Return from interrupt

This code starts by saving registers r1 through r12 by pushing them onto the stack. (Recall that register

r15 points to the stack top.)

Register r13 is used by all KPL programs and will contain the line number of the statement being

executed. This number is used solely to be included in error messages. Register r14 contains a pointer

to the current stack frame, which contains the local variables of a KPL routine. Both registers r13 and

r14 will be saved whenever we enter another KPL routine and will be restored before we return, so it is

not necessary to push them here; they’ll be saved as the first actions of the routine called next.

After saving the registers, this routine calls a KPL routine called TimerInterruptHandler. (Note that

the assembler routine and the KPL routine happen to have the same name, which is certainly a poor

choice. Oh well…)

 Thread Scheduler

March 25, 2009 Page 20

The KPL compiler adds a prefix to the name of each routine to avoid naming clashes and to make the

KPL namespace and scoping conventions work. The name given to the KPL function

TimerInterruptHandler in the compiler output is _P_Thread_TimerInterruptHandler, which is

what must be used in the above assembly code. [The compiler always prepends “_P_xxxxx_”, where

xxxxx is the name of the package containing the routine.]

Here is the KPL routine named TimerInterruptHandler:

function TimerInterruptHandler ()
 currentInterruptStatus = DISABLED
 currentThread.Yield ()
 currentInterruptStatus = ENABLED
endFunction

The variable currentInterruptStatus can take either of two values, DISABLED or ENABLED. The

idea is that the value of this variable will always mirror the status of the interrupt-enabled bit in the

CPU, since it is difficult to query this bit directly.

Since the interrupt-enabled bit was changed from enabled to disabled by the CPU as part of the interrupt

processing sequence, this statement is necessary to ensure that the variable currentInterruptStatus has

a correct up-to-date value.

The next statement invokes the Yield method. Notice that if the call to Yield were to be ignored and

execution were to continue, the process described so far would be reversed; the registers would be

restored and, at the end of the assembly language routine, a reti machine instruction would be

executed.

The reti instruction pops three words off the stack. (Recall that during interrupt processing, three

words were pushed.) The reti will discard the zero word, and it will restore the Status Register and

the Program Counter. At this point, the entire state of the interrupted thread will be restored and

instruction execution will resume with the next instruction from the interrupted code sequence. The

interrupted thread will be none-the-wiser and will behave exactly the same as if no interrupt had

occurred.

But the call to Yield cannot be ignored. Here is the Yield method in class Thread.

method Yield ()
 var
 nextTh: ptr to Thread
 oldIntStat, junk: int
 oldIntStat = SetInterruptsTo (DISABLED)
 nextTh = readyList.Remove ()
 if nextTh
 status = READY
 readyList.AddToEnd (self)
 Run (nextTh)

 Thread Scheduler

March 25, 2009 Page 21

 endIf
 junk = SetInterruptsTo (oldIntStat)
endMethod

(In the code fragments given in this document, some simplifications have been made. For example,

there are a number of self-check tests that have been removed. Also, the comments have been reduced

or eliminated. Nevertheless, the core functionality is unchanged.)

This method includes three local variables, named nextTh, oldIntStat, and junk.

In the KPL language, within a method, the self keyword refers to the receiving object, just like this

in Java or C++. Since this method was invoked on the currentThread, self points to the Thread

object representing the thread being interrupted.

The first action in this method is to disable interrupts, which in this case, happen to already be disabled.

The SetInterruptsTo function will change the interrupt status to whatever it is passed—DISABLED in

this case—and will return the previous value of currentInterruptStatus. This call is necessary, since

the Yield method may also be called in other circumstances in which interrupts are enabled.

Note that we see this pattern in several places:

oldIntStat = SetInterruptsTo (DISABLE)
... some critical region of code ...
junk = SetInterruptsTo (oldIntStat)

The idea is to disable interrupts while we do something that should not be interrupted and then to restore

interrupts to whatever they were previously. (The variable junk is needed because KPL does not allow

a returned value to be ignored. The variable is named junk because we don’t need the value.)

The next action is to remove a thread from the front of the ready list. The goal is to switch to this

thread. The variable nextTh is set to point to this Thread object. The Remove function will return null

if the ready list was empty, so the next test is to see whether there is a “next” thread to switch to. If not,

the Yield method will return and, subsequently, we’ll make a return back to the thread that was

interrupted.

If there truly is a “next” thread, we change the status of the receiver object (the current thread) to

READY and place it at the end of the ready list. Then we call the Run function, which is shown next.

function Run (nextThread: ptr to Thread)
 var
 prevThread, th: ptr to Thread
 prevThread = currentThread
 prevThread.CheckOverflow ()
 currentThread = nextThread
 nextThread.status = RUNNING
 Switch (prevThread, nextThread)

 Thread Scheduler

March 25, 2009 Page 22

 while ! threadsToBeDestroyed.IsEmpty ()
 th = threadsToBeDestroyed.Remove()
 th.status = UNUSED
 endWhile
endFunction

Each thread has a fixed sized stack which we hope is large enough. If a thread recurses deeply, it may

use up a lot of stack space. The call to CheckOverflow is an attempt to catch situations when the

previously executing thread has overflowed its stack.

Recall that each Thread object contains an array of 1000 words, which is used for its stack. In other

words, register r15 will be pointing somewhere in this array and, as things are pushed onto the thread’s

stack, they will go into memory locations which lie somewhere in this array.

When the systemStack array is first initialized, we store a special word in location 0, at the very bottom

of the stack. This value is called a sentinel. If the stack grows too much, that location will be

overwritten. CheckOverflow will check to see if the sentinel value is still unchanged. This would

signal a catastrophic failure since arbitrary locations may have been overwritten. Although KPL checks

array accesses, the systemStack simply provides an area for the stack, which is accessed via r15 by

machine instructions like call and ret, which do not check for overflow.

The next action in Run is to update currentThread to point to the next thread and to change its status

from READY to RUNNING.

Then we see a call to an assembly routine called Switch, which is from the file Switch.s:

Switch:
 load [r15+4],r1 ! Move the prevThread into r1
 add r1,16,r1 ! Make r1 point to r1.regs
 store r2,[r1+0] ! Save r2..r14 in r1.regs
 store r3,[r1+4] ! .
 store r4,[r1+8] ! .
 store r5,[r1+12] ! .
 store r6,[r1+16] ! .
 store r7,[r1+20] ! .
 store r8,[r1+24] ! .
 store r9,[r1+28] ! .
 store r10,[r1+32] ! .
 store r11,[r1+36] ! .
 store r12,[r1+40] ! .
 store r13,[r1+44] ! .
 store r14,[r1+48] ! .
 store r15,[r1+52] ! Save r15 in r1.stackTop
 load [r15+8],r1 ! Move the nextThread into r1
 add r1,16,r1 ! Make r1 point to r1.regs
 load [r1+0],r2 ! Restore r2..r14 from r1.regs
 load [r1+4],r3 ! .

 Thread Scheduler

March 25, 2009 Page 23

 load [r1+8],r4 ! .
 load [r1+12],r5 ! .
 load [r1+16],r6 ! .
 load [r1+20],r7 ! .
 load [r1+24],r8 ! .
 load [r1+28],r9 ! .
 load [r1+32],r10 ! .
 load [r1+36],r11 ! .
 load [r1+40],r12 ! .
 load [r1+44],r13 ! .
 load [r1+48],r14 ! .
 load [r1+52],r15 ! Restore r15 from r1.stackTop
 ret

Switch is passed two arguments, pointers to the previous and next Thread objects, which were called

prevThread and nextThread in the calling routine.

To access arguments passed to an assembly routine, the programmer needs to know how KPL routines

pass arguments, i.e., the calling conventions of the language’s implementation. The KPL compiler

generates code to pass arguments on the stack and, to access these arguments, the programmer needs to

know exactly where, relative to the stack top r15 these arguments will be placed. Fortunately, students

using the BLITZ system will only need to read (never to write) assembly code like this.

The first load instruction copies the prevThread pointer argument from the stack into a register. The

add instruction changes to r1 to point to the first element in the regs array in that Thread object. This

routine uses explicit knowledge about how KPL will lay out the fields of an object. If a field is added to

or removed from the Thread class, then reg[0] will no longer be located at offset 16 in the object and

this routine will break.

Next, Switch stores the contents of all registers into the prevThread object using 14 store

instructions.

Next, Switch gets a pointer to the nextThread object. In very similar code, it copies the saved register

values from this object into the registers. Notice that this includes r15, the stack top, itself! Therefore,

after the last load instruction is executed, all pushes and pops will now go to or from the next thread’s

stack.

Note that everything involving the stack so far, including the initial state saving of the interrupted

thread, was done on the system stack of the “previous” thread. From here on, we have switched to a

new stack. At the moment the stack pointer r15 is loaded, we might say that we have officially switched

from the “previous” thread to the “next” thread.

Finally, Switch executes a return statement. But notice that, since r15 has been changed, this is not

returning to the invocation of Run that called Switch!

If you search through all the code of the scheduler, you’ll see that the routine Switch is only called from

one place: the Run routine. However, Switch will be called many times from many different

 Thread Scheduler

March 25, 2009 Page 24

invocations of Run. At this point in execution, this invocation of Switch return to a different invocation

of Run than the invocation that called it!

In all “normal” programs, every routine always returns to the routine that called it. But what you’re

seeing here is something that is very unusual and may take some thinking about.

Notice that we have saved the entire state of the previous thread. The Program Counter and Status

Register were saved on that thread’s stack as part of the interrupt processing. Then we pushed registers

r1 through r12 onto its stack. Then, we entered some KPL routines (TimerInterruptHandler, Yield,

and Run) which saved r13, r14, and r15 as part of the KPL calling sequence. Then, in Switch, we

again saved all registers (except r1). (Register r1 is a “work register” and all KPL routines assume that

every routine will trash it. In particular, there is no need to save r1 since Run, which called Switch, will

assume that r1 has been trashed.)

The variable currentThread has been updated to point to some new Thread object, which has been

removed from the ready list and had its status changed to RUNNING.

So assume that the “next” thread, which is now about to start running, was suspended at some earlier

time in the very same way as the “previous” thread was suspended just now. In other words, assume

that some earlier timer interrupt caused the exact same sequence of actions to occur for the “next” thread

that we’ve just described for the “previous” thread.

So now, with the “next” thread’s registers restored, we will work back and finish executing the routines

we’ve just discussed until the reti instruction is executed. The state of the CPU will be restored to

what it was just before some earlier interrupt occurred, and at that point the interrupted instruction

sequence in the “next” thread will be returned to. We will resume executing the code in some thread

that was interrupted long ago. Many threads may have had a chance to run since then and there may

have been many timer interrupts and thread switches since then, but it is finally time to return to this

particular thread and give it another time-slice of execution.

In other words, the next few actions will be to complete the routines that have been called and to return

from each, in turn, unwinding the calling stack. Although this is now occurring in a new and different

thread with a different stack, it may be easier for you to imagine that we are still in the same with the

same stack, i.e., that the “previous” thread and the “next” thread are the same. It doesn’t really matter,

since the actions are the same in either case. Whenever a thread is interrupted, the exact same sequence

of events occurs and its state is pushed onto its stack in the exact same way. The only difference is that

we are returning from invocations that were suspended a long time ago, not from the invocations that

were just entered.

After Switch returns, we’re back in Run. After doing something with threadsToBeDestroyed, which

we’ll discuss in a second, we return to Yield. The routine Yield will restore interrupts to what they were

when Yield was first entered. (Recall that whenever Yield is called from TimerInterruptHandler, it

starts by disabling interrupts which were already disabled, i.e., doing nothing, so the action of restoring

the interrupt-enabled bit to its previous status also has no effect. This code is here since Yield can be

called from other places, when interrupts may in fact be enabled.)

 Thread Scheduler

March 25, 2009 Page 25

Then Yield returns to the KPL routine TimerInterruptHandler, which will then set the variable

currentInterruptStatus to ENABLED. This is appropriate, because interrupts will become enabled

within the next few instructions.

Then the KPL routine TimerInterruptHandler returns to the assembly routine

TimerInterruptHandler, which will restore the interrupted code’s registers and execute the RETI

(return-from-interrupt) instruction.

The RETI instruction will restore the Status Register, thereby re-enabling interrupts, and restore the

Program Counter, which will cause a return to the instruction stream that was interrupted.

Now take a look at the code in Run just after the call to Switch.

Here, we see that a list called threadsToBeDestroyed is checked. This is a list of Thread objects

which is almost always empty. However, in the case that a thread wishes to terminate itself, it will add

its own Thread object to that list before calling Run. This check in Run will be executed as the first

thing any “next” thread does. It performs any final cleanup required on the Thread object that can only

be done after the thread has really finished. Here all we do is change the status to UNUSED, but in a

complete kernel in which the Thread objects are recycled, this is the point where you would need to add

this Thread object back to the free pool. Actions like this must be done by some other thread, and the

obvious candidate to do the work is the very next thread that runs.

Creating a New Thread

To create a new thread, you must have a Thread object to work with. You’ll need to initialize the

object and then invoke the Fork method to add it to the ready list.

var
 aThread: Thread = new Thread
...
aThread.Init ("My Example")
aThread.Fork (Foo, 123)

The Init method is not too interesting. It simply fills in the fields in the Thread object. It fills in the

name field from the argument. It sets status to JUST_CREATED. It initializes the systemStack array

and writes the sentinel value (used to watch for stack overflow) into the array. Finally, it initializes the

regs array and returns.

The Fork method is more complex. It is passed a pointer to a function—Foo in this case—and an

integer. This is the function that will be executed by the new thread. In some sense, this is the “main”

function of the new thread. Foo is a made-up name. In an actual program, the programmer will

probably give it a more descriptive name.

 Thread Scheduler

March 25, 2009 Page 26

This function must take a single integer as an argument and the value provided to Fork will be passed to

this function. The idea is that many threads may be executing the same code and the integer argument

allows each thread to differentiate itself from other threads executing the same code.

function Foo (arg: int)
...do some stuff...
endFunction

If the thread function ever returns, the thread will terminate. However, Foo might legitimately consist

of an infinite loop and the thread may never terminate.

Here is the code for Fork:

method Fork (fun: ptr to function (int), arg: int)
 var
 oldIntStat, junk: int
 oldIntStat = SetInterruptsTo (DISABLED)
 initialFunction = fun
 initialArgument = arg
 stackTop = stackTop - 4
 *(stackTop asPtrTo int) = ThreadStartUp asInteger
 status = READY
 readyList.AddToEnd (self)
 junk = SetInterruptsTo (oldIntStat)
endMethod

First, interrupts are disabled, if they are not already disabled, since we will be updating the ready list.

The ready list is shared by all threads and a timer interrupt during Fork might allow some other thread

to access the ready list while we are in the middle of updating it, leading to catastrophe. After updating

the ready list, interrupts are restored to whatever they were when Fork was entered, and Fork returns.

When the new thread reaches the front of the ready list at some later time and finally gets a chance to

run, it will be started up by the code we looked at earlier in Switch. Recall that Switch will restore the

registers and blindly execute a return statement. Switch executes the same instructions, regardless of

whether the thread was previously interrupted or is a brand new thread, so we need to set things up here

in Fork so that the RET instruction in Switch will branch to the starting code of this thread.

In other words, the new thread will be started up in exactly the same way (namely by the code in

Switch) that resumes threads that already underway but which were suspended by timer interrupts and

calls to Yield.

Next, look at the way Fork manipulates stackTop. First, stackTop is decremented and then something

is stored at the top of the stack. So, Fork is simply pushing something onto the new thread’s stack. And

the thing that Fork is pushing is the address of a routine called ThreadStartUp.

In KPL, the name of a function can be used as the address of that function. The expression

 Thread Scheduler

March 25, 2009 Page 27

ThreadStartUp asInteger

converts this from a pointer to a function to an integer so that it can be stored in the stack, which is an

array on integers.

ThreadStartUp is an assembly routine located in the file Switch.s. At some point in the future, when

Switch is called and the thread is finally allowed to begin execution, what will happen?

First, Switch will “restore” the thread’s registers. Since the register array regs has been initialized to

zeros, the registers will be “restored” to zero. Then Switch will “return” to the code that was executing.

To do this, Switch ends with a RET instruction, which pops a return address off the stack and branches

to it.

Since Fork has pushed the starting address of the ThreadStartUp routine, Switch will effectively just

jump to this routine. ThreadStartUp will take it from there, and we’ll look at that code soon.

Notice that the RET instruction in Switch will cause a jump—not really a “call”—to the routine named

ThreadStartUp. ThreadStartUp will never return. Isn’t this interesting: a “return” instruction is

executed to “call” a routine!

The Fork function also stores into the fields initialFunction and initialArgument, the address of the

thread’s “main” function and an argument to pass to it. Later, we’ll see how this function gets invoked.

Finally, Fork changes the thread’s status to READY and places it on the ready list. After re-enabling

interrupts, Fork will return and the current thread will continue executing.

At some time in the future, there will be a timer interrupt and Switch will be invoked to switch to a new

thread. Other threads may be in front of the readyList, but eventually the newly created thread will

come to the front of the readyList. When this happens, Switch will act as we just described. After

setting the registers (to zero), Switch will “return” to the ThreadStartUp routine.

Thread Start Up

At some later time, a context switch will occur and Switch will be invoked. Switch will save the

previous thread’s registers, load the registers of this newly forked thread, and execute a return

instruction which will branch to the first instruction of the routine called ThreadStartUp.

ThreadStartUp is given next.

ThreadStartUp:
 mov r0,r14 ! Clear the FP register
 mov r0,r12 ! Clear the Catch Stack pointer
 call _P_Thread_ThreadStartMain ! Call ThreadStartMain
ThreadHang:
 debug ! Should never reach this point

 Thread Scheduler

March 25, 2009 Page 28

 jmp ThreadHang ! .

All running KPL programs assume that register r15 points to the top of the stack. They also assume that

register r14 points to the activation stack frame of the currently executing routine. This register is also

called the frame pointer (FP). Finally, register r12 is assumed to point to the catch stack.

This routine begins by setting r14 and r12 to zero. (This is redundant—perhaps unnecessarily

cautious—since the method Thread.Init initialized the regs array to all zeros.)

[The KPL language contains a try-throw-catch mechanism, similar to what’s in Java. The try-throw-

catch mechanism does not need to be used in any of the BLITZ code and the mechanism can be ignored

safely. The catch stack is a linked list of <error-id, catch-code-entry-point> pairs that will used

whenever an error is thrown. Although the mechanism is not used, it’s a good idea to initialize the stack

properly. By setting the catch stack to null, we set it up so that no try/catch statements are active in

this thread. If any error should be thrown with no try statement to catch the error, the mechanism will

work properly and an error message will be issued.]

By setting the current frame pointer (i.e., r14) to zero, we will initialize the stack of activation frames

properly. As new routines are invoked, a linked list of activation frames will be built. Starting with FP

equal to null is necessary so that this list is properly terminated.

Next ThreadStartUp will call the KPL routine ThreadStartMain, which is shown next:

function ThreadStartMain ()
 var
 junk: int
 mainFun: ptr to function (int)
 junk = SetInterruptsTo (ENABLED)
 mainFun = currentThread.initialFunction
 mainFun (currentThread.initialArgument)
 ThreadFinish ()
 FatalError ("ThreadFinish should never return")
endFunction

ThreadStart calls SetInterruptsTo to enable interrupts (and set currentInterruptStatus) so that the

new thread begins execution with interrupts enabled.

Recall that the initialFunction field of the thread object contains a pointer to the thread’s “main”

function. The KPL language does not permit this function to be called with the obvious syntax

currentThread.initialFunction (...)

since that syntax is used for method invocation. To work around this, we copy the pointer to a

temporary variable called mainFun and then call it, passing the initialArgument.

 Thread Scheduler

March 25, 2009 Page 29

The thread’s main function may never return, but if it does, ThreadStartMain will call the KPL routine

ThreadFinish to terminate the thread. ThreadFinish will not return. Of course the thread’s main

function may call ThreadFinish itself directly.

Thread Termination

Whenever a thread wishes to terminate itself, it can call the function ThreadFinish, which is shown

next:

function ThreadFinish ()
 var
 junk: int
 junk = SetInterruptsTo (DISABLED)
 threadsToBeDestroyed.AddToEnd (currentThread)
 currentThread.Sleep ()
endFunction

This function will add the currently running thread to the threadsToBeDestroyed list and then invoke

the method Sleep. It first disables interrupts because this list is shared among all threads and because

Sleep expects interrupts to be disabled on entry. Recall that when the Run function is invoked next and

a new thread is scheduled, Run will check the threadsToBeDestroyed list. If there is anything on the

list, then Run can perform any finalization—such as recycling the Thread object—that must be done

after the thread has terminated.

The method Thread.Sleep, which is shown next, can be called from several places. It can be called by a

thread that is about to terminate, as above, but it can also be called by a thread that needs to go to sleep

for a while, until some other thread takes some action to wake it up. For example, when we discuss

semaphores, we’ll see that the method Semaphore.Down may put the current thread to sleep.

method Sleep ()
 var
 nextTh: ptr to Thread
 status = BLOCKED
 nextTh = readyList.Remove ()
 Run (nextTh)
endMethod

The Sleep method will always be invoked on the current thread and will always be called with interrupts

disabled. It will change the current thread’s status to BLOCKED. Then, it will remove the next thread

from the ready list and call Run to switch to it. The Sleep method does not put the current thread on

any list; the assumption is that the caller will have done that, if necessary.

 Thread Scheduler

March 25, 2009 Page 30

Note that the ready list will never be empty since the idle thread will always be present and ready to run,

so the called to Remove will never fail.

The Idle Thread

As part of the initialization of the scheduler, a thread called the idle thread is created and added to the

ready list with this code:

idleThread.Init ("idle-thread")
idleThread.Fork (IdleFunction, 0)

The main purpose of the idle thread is to make sure that the ready list is never empty. If the ready list

were empty, what would the scheduler do if the currently running thread wanted to sleep?

The code of the idle thread, shown next, essentially contains an infinite loop that calls Yield. Whenever

the idle thread gets scheduled, it immediately gives up the CPU to the next thread in the ready list.

However, the idle thread first checks to see if there are any threads in the ready list. If the ready list is

empty then, instead of calling Yield, it calls a function named Wait.

function IdleFunction (arg: int)
 var
 junk: int
 while true
 junk = SetInterruptsTo (DISABLED)
 if readyList.IsEmpty ()
 Wait ()
 else
 currentThread.Yield ()
 endIf
 endWhile
endFunction

The function Wait is an assembly language routine that simply invokes the wait machine instruction

and returns. The wait instruction will enable interrupts and halt the CPU execution, putting the

machine into a low-power wait state. The CPU will stay in this state of suspended animation until the

next interrupt occurs. Then the CPU will wake up and resume instruction execution. Of course the first

thing that will happen is that the interrupt will be serviced.

In the case that a timer interrupt ended the wait instruction, the interrupt handler will invoke Yield,

which will ultimately return to the idle thread, since there are no other threads. But in the case of other

interrupts, such as disk I/O or terminal I/O, the interrupt handler will most likely make another thread

runnable. Back in the idle thread, after the return from Wait, the function will loop and then call Yield

to switch over to the newly ready thread.

 Thread Scheduler

March 25, 2009 Page 31

The Current Interrupt Status

Here is the code for SetInterruptsTo:

function SetInterruptsTo (newStatus: int) returns int
 var
 oldStat: int
 Cleari ()
 oldStat = currentInterruptStatus
 if newStatus == ENABLED
 currentInterruptStatus = ENABLED
 Seti ()
 else
 currentInterruptStatus = DISABLED
 Cleari ()
 endIf
 return oldStat
endFunction

The methods Cleari and Seti are assembly routines that execute the cleari and seti instructions

(respectively) and return. The cleari instruction clears the interrupts-enabled bit in the Status

Register, thereby disabling interrupts. Similarly, the seti instruction sets the bit, which enables

interrupts.

There is a global variable named currentInterruptStatus that attempts to mirror the state of this bit of

the Status Register, so that programs can check to see whether interrupts are, at any point, enabled or

disabled.

Since currentInterruptStatus is a shared variable, the above code must be very careful when

modifying it, in order to prevent other threads from interfering and creating an inconsistent state. So this

routine starts with a call to Cleari to disable interrupts, thereby ensuring that it can complete without

interruption. [The second call to Cleari is redundant and unnecessary, but is included for… uh…

“aesthetic reasons.”]

Semaphores

The BLITZ scheduler includes an implementation of semaphores, which we will discuss next.

Recall that “semaphore” is an abstract data type (ADT), which means that it may only be used by

invoking the operations defined on the type. An instance of an abstract data type may have internal

 Thread Scheduler

March 25, 2009 Page 32

state, but this is an implementation detail. Users of the type should only use the operations and should

never access the internal state directly. The internal state can only be queried or modified by the code

implementing the operations.

In the case of semaphores, there are two key operations, called Up and Down. One way to understand a

semaphore is to think of it as an integer counter which can never go negative. The Up operation will

increment the integer by one, while the Down operation will attempt to decrement the count by one. If

the count is already at zero, a Down operation will freeze the thread until some other thread has invoked

Up and the count is no longer zero. Then Down can safely decrement the counter and resume execution

of the frozen thread.

Semaphores are implemented with a class called Semaphore, which is shown next:

class Semaphore
 superclass Object
 fields
 count: int
 waitingThreads: List [Thread]
 methods
 Init (initialCount: int)
 Down ()
 Up ()
endClass

In general, it is convenient to represent each abstract data type with a KPL class. Fields are used to

represent the internal state of the object and methods are used to implement the abstract data type’s

operations.

KPL—unlike some object-oriented languages—has no mechanism to enforce a barrier between “inside”

the object and “outside” the object. For example, Java and C++ attach attributes like “public” and

“private” to fields and methods. In KPL, there is nothing to prevent the programmer from writing code

that accesses the fields from outside the object, except common sense and self-discipline. KPL is

designed for kernel code authors; the assumption is that a simple, flexible language model is well-suited

for programmers with a high level of skill. Language restrictions certainly have their place, but can

occasionally get in the way in kernel code.

Users of Semaphore should only invoke the Init, Down, and Up methods; users should never access or

even read the fields.

The implementation of Semaphore includes two fields, called count and waitingThreads. The count

roughly corresponds to the hidden “count” we referred to above, but in the code below, notice carefully

that the correspondence is not exact, since the count field can and will go negative!

The field called waitingThreads is a list of Thread objects, namely those threads that are suspended on

this semaphore. When a thread invokes Down and the count would go negative, that thread is

suspended and is added to the list of waitingThreads.

 Thread Scheduler

March 25, 2009 Page 33

Here is the code for the methods of this class:

behavior Semaphore

 method Init (initialCount: int)
 count = initialCount
 waitingThreads = new List [Thread]
 endMethod

 method Down ()
 var
 oldIntStat: int
 oldIntStat = SetInterruptsTo (DISABLED)
 count = count - 1
 if count < 0
 waitingThreads.AddToEnd (currentThread)
 currentThread.Sleep ()
 endIf
 oldIntStat = SetInterruptsTo (oldIntStat)
 endMethod

 method Up ()
 var
 oldIntStat: int
 t: ptr to Thread
 oldIntStat = SetInterruptsTo (DISABLED)
 count = count + 1
 if count <= 0
 t = waitingThreads.Remove ()
 t.status = READY
 readyList.AddToEnd (t)
 endIf
 oldIntStat = SetInterruptsTo (oldIntStat)
 endMethod

endBehavior

Look at the Down method first. It decrements count and, if it went negative, then the thread is

suspended. To do this, the Down method puts the current thread on the list called waitingThreads.

Then it calls Sleep to suspend execution of the current thread. This thread will only be awakened by

some other thread when the count goes non-negative. Since the fields count and waitingThreads are

shared by all threads using this semaphore, this method temporarily disables interrupts while these fields

are accessed.

Next look at the Up method. First, it increments count. Then it checks the count and possibly wakes

up one of the threads waiting on this semaphore.

 Thread Scheduler

March 25, 2009 Page 34

One way to think about the count field is this: If count is positive, its value tells how many more Up

operations have been executed than Down operations. If count is negative, then more Down operations

have occurred. Each thread that called Down, for which there was no corresponding Up operation, was

suspended. The absolute value of count simply tells how many threads are waiting.

So if count is was negative before Up was called, then the Up method will take a thread off the list,

change its status to READY and add it to the ready list. And notice that since count, the

waitingThreads list and the readyList are all shared variables, this method will disable interrupts while

they are being accessed.

Waiting threads are always added to the tail end of the waitingThreads list. When awakened, threads

are always removed from the front of the list. Therefore, the list is a FIFO queue; any thread that waits

will eventually be awakened—i.e., starvation is not a possibility—as long as there are enough calls to

Up.

Semaphore objects must be initialized and an initial count must be supplied. This is usually zero, but it

can be any positive number, which acts as if that many excess Up operations had been performed.

var
 mySem: Semaphore = new Semaphore
mySem.Init (0)
...
mySem.Up ()
...
mySem.Down ()

Mutex Locks

The BLITZ system also includes mutex locks. A mutex lock has two important operations, called Lock

and Unlock. Similarly to semaphores, mutex locks are modeled with an abstract data type. As such,

there is a class called Mutex, with methods called Lock and Unlock.

Here is the class specification:

class Mutex
 superclass Object
 fields
 ...
 methods
 Init ()
 Lock ()
 Unlock ()
endClass

 Thread Scheduler

March 25, 2009 Page 35

As part of the BLITZ operating systems project, the implementation of the Mutex class is left as an

exercise.

There are several ways to implement the Mutex class. One approach is to use a Semaphore object, in

which case the Lock operation is nothing more than Semaphore.Down. The Unlock operation is

implemented with Semaphore.Up.

In the project assignment, students are asked to implement the Mutex class using the same approach

used for class Semaphore.

Without giving too much away, the general idea is that Mutex will need two fields. One will indicate

the state of the lock, either “held” or “free”. The second will be a list of threads suspended and waiting

on the lock, which might be called waitingThreads. If the lock is free, then the list will be empty; if the

lock is held, there may or may not be threads waiting.

The Lock operation will need to check to see if the lock is currently “free”. If so, it will change its state

to “held” and return. Otherwise, it will suspend the current thread on the waitingThreads list. Of

course, the method will need to disable interrupts while the fields are accessed, to prevent concurrency

race conditions.

The Unlock method will need to remove a thread from the waitingThreads list and, if there was a

waiting thread, transfer the lock to that thread.

The Monitor Concept

The monitor concept is a particularly useful concurrency control structuring technique. Like

semaphores and mutex locks, monitors can be used to correctly program multithreaded applications

where several threads must interact and synchronize their access to shared data.

A monitor is a little like a class. A monitor will have hidden state, just as objects have fields. And a

monitor will have entry methods which can be invoked, just as an object’s class provides several

methods which can be invoked on the object. So, as a first approximation, a monitor is much like an

object.

The difference between an object and a monitor lies in what happens when several threads invoke

methods concurrently. With a normal object, if two threads try to invoke a method on the object

simultaneously, the two methods will execute concurrently. Perhaps the two threads invoke the same

method or perhaps they invoke different methods in the class, but the key is that both threads are

invoking methods on the same object. These method will be executed concurrently and, without any

further control, havoc may occur. For example, the threads may each try to access the same field in the

object simultaneously.

 Thread Scheduler

March 25, 2009 Page 36

With a monitor, the following statement is always true: “Only one thread at a time can execute code

within the monitor.” This means that if one thread is executing a method of the monitor and a second

thread attempts to invoke a method of the same monitor, then the second thread will be forced

(somehow!) to wait until the first thread returns and leaves the monitor code.

Some languages provide special support for the monitor concept, but KPL does not. However, monitors

can be conveniently coded in KPL, as long as the programmer follows a few rules and guidelines.

We will implement each monitor with a KPL class. More precisely, for each kind of monitor, the

programmer will create a class. Then, at runtime, when the monitor is needed, the programmer will use

an object of that class. The distinction between an “object” and a “class of objects” is similar to the

distinction between a “monitor” and a “kind of monitor.” In most problems—such as the Dining

Philosophers Problem—only one instance of the monitor is needed. So the programmer would create a

class for the monitor and then allocate a single object of that class. To be more precise, when we say the

monitor class, we’ll mean a class and when we say the monitor, we’ll mean an instance of this class.

As an example, let’s say we want to create a monitor for the “Dining Philosophers Problem.” Let’s call

the monitor class ForkMonitor. Each monitor class must have a method called Init, which must be

called when the monitor is created. So to create and initialize a monitor, we’ll see code like this:

var
 myForkMon: ForkMonitor
...
myForkMon = new ForkMonitor
myForkMon.Init ()
...

Of course we can also use pointers to monitor objects, or even arrays of pointers to monitors, etc., but

for this problem, such a complex data structure is unnecessary. A program may have several kinds of

monitors, but it is unusual to see a program with more than one monitor of each kind.

In our implementation of monitors, we need to enforce the invariant about only one thread at a time

executing code in the monitor. [We define “code in the monitor” as the code of any method in the

monitor class and, if other functions or methods are called from this code, we’ll include them, too.]

If the programmer follows some simple conventions consistently, then enforcing the invariant is easy.

First, every monitor class should include a field of type Mutex. When locked, it indicates that some

thread is already executing code within the monitor. When unlocked, there are no threads in the

monitor. For simplicity, let’s always call this field monitorLock.

Next, the programmer needs to make a clear distinction about which methods are “entry methods” and

which are local, private methods. Any method called from outside the monitor is an entry method.

Viewing the monitor as an abstract data type, entry methods are the externally visible operations; they

can be invoked to “get into” the monitor. All other methods in the class are private methods and should

only be invoked by entry methods or other private methods. In other words, code outside the monitor

should never invoke a private method directly.

 Thread Scheduler

March 25, 2009 Page 37

class ForkMonitor
 superclass Object
 fields
 monitorLock: Mutex
 ...
 methods
 Init ()
 MyEntryMethod_1 (...)
 MyEntryMethod_2 (...)
 MyEntryMethod_3 (...)
 ...
 MyPrivateMethod_1 (...)
 MyPrivateMethod_2 (...)
 MyPrivateMethod_3 (...)
 ...
endClass

To enforce the invariant that only one thread at a time is in the monitor, the programmer must remember

to always lock the monitorLock as the first operation of every entry method. Also, the programmer

must remember to unlock the monitorLock before returning from an entry method. The monitorLock

should not be locked or unlocked at any other time.

Of course, if there is a return in the middle of an entry method, the monitor lock must still be

unlocked.

Here is what all entry methods should look like:

method MyEntryMethod
 monitorLock.Lock ()
 ...
 if ...
 monitorLock.Unlock ()
 return
 endIf
 ...
 monitorLock.Unlock ()
endMethod

Condition Variables

The monitor concept also includes a related concept called the condition variable. A condition variable

is similar to a mutex lock or a semaphore, in that a variable is created and there are a couple of

operations that can be performed on the condition variable. The operations are named Signal, Wait, and

Broadcast.

 Thread Scheduler

March 25, 2009 Page 38

However, condition variables are different from mutexes and semaphores in that each condition variable

is linked to a specific monitor. Each condition variable belongs to a monitor and should be defined as a

field of that monitor class.

Some monitors will have only one condition variable, but some monitors—such as the ForkMonitor

from the Dining Philosophers Problem—will naturally contain several condition variables. A monitor

might have no condition variables, but then it becomes an academic question of whether to even call it a

monitor, or just a collection of critical section code.

The operations on the condition variables should only be invoked by code within the monitor. In other

words, whenever an operation, such as Signal or Wait, is performed on a condition, it should be done by

code that has previously acquired a lock on the monitor’s lock.

Each condition variable will be an instance of a class called Condition. Here is the specification of

class Condition:

class Condition
 superclass Object
 fields
 waitingThreads: List [Thread]
 methods
 Init ()
 Wait (mutex: ptr to Mutex)
 Signal (mutex: ptr to Mutex)
 Broadcast (mutex: ptr to Mutex)
endClass

Notice that each of the operations (except Init) requires a pointer to a Mutex lock. When these

operations are invoked, the caller should pass a pointer to the monitorLock of the monitor. Since the

Condition operation is only used by code in the monitor, it is assumed that the monitorLock has

already been locked.

The semantics of condition variables is given next. When code executing in a monitor executes a Wait

operation, that code will be suspended, i.e., the current thread will become blocked, waiting on the

condition. At this point the monitorLock is unlocked and other threads are now free to enter the

monitor. The code executing the Wait operations is suspended and another thread is now allowed to

enter the monitor.

At some future time, another thread executing within the monitor will invoke a Signal operation on the

condition variable. At this point the first thread, which was waiting, is awakened and becomes ready to

run.

But now we have two threads ready to execute code in the monitor. According to our invariant, this is

not allowed. So one thread must be forced to wait until the other thread leaves the monitor. Then the

other thread can continue execution.

 Thread Scheduler

March 25, 2009 Page 39

Which thread is allowed to continue in the monitor? And which thread must now wait for the lock?

Over the years, different authors have proposed different answers. Tony Hoare proposed something

now called Hoare Semantics, which says that the signaling thread always waits and the previous waiting

thread (i.e., the one that called Wait) immediately enters the monitor. Furthermore, no other threads can

enter the monitor between the execution of the Signal operation by one thread and the acquisition of the

lock by the other thread.

In a looser specification of condition variables, called Mesa Semantics, the guarantee is only that the

blocked thread will be awakened. After that it will have to compete against all other threads for the

monitor lock. Generally, the signaling thread will continue executing and, when it leaves the monitor,

the awakened thread, and perhaps others, will try to acquire the monitor lock. There is no guarantee

about which thread will get the lock first, only that the awakened thread will eventually get it.

In either case (either Hoare Semantics or Mesa Semantics), the blocked thread will eventually get the

monitor lock and will resume execution of code in the monitor. In particular, it will begin with a return

from the call to Wait. Also, with both semantics, the guarantee is that each Signal operation will wake

up exactly one thread, if any threads are waiting on the condition. If there are no threads waiting on the

condition, then a Signal operation will have no effect.

The implementation of the Condition class in BLITZ uses the looser Mesa Semantics. The code is

given below.

Note that each Condition variable is implemented with a single field called waitingThreads, which is a

list of the threads that have executed a Wait operation on this condition variable, but which have not yet

been signaled to resume. The Init method simply initializes this list.

Looking at the Wait method, you can see that the thread will first unlock the MonitorLock, allowing

other threads to enter the monitor. Then it will block itself, placing itself on the waitingThreads list.

Once awakened, the code in the Wait method will attempt to relock the monitorLock. Only after it

acquires the lock, will the method return. Interrupts are disabled the entire time; do you see why

interrupts must be disabled between the call to Unlock and putting the thread on the waitingThreads

list?

Looking at the Signal method, you can see that it simply takes a thread off the waitingThreads list—if

there are any threads on the list—changes it back to READY and puts it on the ready list. Since Signal

never unlocks the monitorLock, we can see that in this implementation, the thread executing the Signal

will continue in the monitor, while the newly awakened thread will wait until it leaves the monitor

before competing (possibly with other threads) for the monitorLock before it continues.

behavior Condition

 method Init ()
 waitingThreads = new List [Thread]
 endMethod

 Thread Scheduler

March 25, 2009 Page 40

 method Wait (mutex: ptr to Mutex)
 var
 oldIntStat: int
 oldIntStat = SetInterruptsTo (DISABLED)
 mutex.Unlock ()
 waitingThreads.AddToEnd (currentThread)
 currentThread.Sleep ()
 mutex.Lock ()
 oldIntStat = SetInterruptsTo (oldIntStat)
 endMethod

 method Signal (mutex: ptr to Mutex)
 var
 oldIntStat: int
 t: ptr to Thread
 oldIntStat = SetInterruptsTo (DISABLED)
 t = waitingThreads.Remove ()
 if t
 t.status = READY
 readyList.AddToEnd (t)
 endIf
 oldIntStat = SetInterruptsTo (oldIntStat)
 endMethod

 method Broadcast (mutex: ptr to Mutex)
 var
 oldIntStat: int
 t: ptr to Thread
 oldIntStat = SetInterruptsTo (DISABLED)
 while true
 t = waitingThreads.Remove ()
 if t == null
 break
 endIf
 t.status = READY
 readyList.AddToEnd (t)
 endWhile
 oldIntStat = SetInterruptsTo (oldIntStat)
 endMethod

endBehavior

As an optional exercise (part of project 2, in the BLITZ operating system assignments), you are asked to

consider how you might change the code in the Condition class to implement Hoare semantics.

We might also mention in passing that Per Brinch Hansen suggested another semantic approach to

condition variables. His idea was to make sure the thread executing the Signal immediately leaves the

 Thread Scheduler

March 25, 2009 Page 41

monitor so the monitor lock is always given to the newly awakened thread immediately. However, this

approach has not been adopted since it sometimes places a very awkward constraint on the programmer.

For example, sometimes one thread will need to signal several condition variables or to signal one

condition variable several times.

Sometimes it is convenient for a thread to wake up, not one, but all threads waiting on a condition

variable. To facilitate this, our implementation of Condition includes a method called Broadcast. It

simply executes a while-loop to move every thread on the waitingThreads list to the ready list.

Conclusion

In this document, we looked at the thread scheduler used in the BLITZ operating system kernel project.

The kernel project is broken into 8 individual project assignments. The thread scheduler is introduced at

the beginning (in project 2) because it underpins all other kernel code.

This thread scheduler can run alone and can be understood in isolation from the rest of the kernel. In

fact, the scheduler can be used to implement multi-threaded applications that are independent of any

kernel. For example, the thread scheduler described here can be used to program solutions to classic

concurrency control problems, such as Producer-Consumer, Reader-Writer, Dining Philosophers,

Sleeping Barber, and so on.

Project 2 is all about understanding multithreaded applications, concurrency control primitives, and

time-slicing. If you are a student attempting project 2, we hope this material has put you in a better

position to understand and do the project. And if you have a more general interest in thread scheduling

or in the BLITZ system, we hope this information has been interesting and useful, as well.

