
Lab 3: Concurrency Problems

Due date: May 24, 2022, Tuesday.

Overview and Goal

In this lab, you will gain additional familiarity writing programs involving concurrency control. You will
implement a couple of classical thread synchronization problems to become more comfortable with
semaphores, mutex locks, monitors, and condition variables.

Setting up

In the Docker container image provided to you, the files needed for Lab 3 can be found in /lab3.
You should get the following files:

	 makefile
DISK
System.h
System.c
Runtime.s
Switch.s
List.h
List.c
Thread.h
Thread.c
Synch.h
Synch.c
Task1.h
Task1.c
Task2.h
Task2.c
Task3.h
Task3.c

For your reference, the file Synch.c contains two versions of our solution for mutual exclusion locks
in Lab 2: Mutex and Mutex2 (which implements mutex locks using binary semaphores). Please use
Mutex in Lab 3.

In this lab, you will need to modify and submit the following files:

Task1.h
Task1.c
Task2.h
Task2.c

1

Task3.h
Task3.c

Do not reuse any of the files from Lab 1 or Lab 2, as they are considered out of date.

Working in your Docker container image

If you prefer to use your own computer and work locally, you will need to install Docker, as shown in
Lab 1. After you have successfully installed Docker on your own computer, download the Docker
image we provided to you for this lab from the course website (under the section heading “Lab 3”),
called blitz-docker.tar.gz.
Load the Docker image as you did in Lab 1 and Lab 2:

docker load -i blitz-docker.tar.gz

Finally, run the Docker image as a Docker container by using the following command:

docker run -it blitz

After the container is running, you will see a command prompt from within the Linux container. The
BLITZ tools have been preinstalled for you in /usr/local/blitz/bin, and files needed for Lab 3
can be found in /lab3. The source code for building BLITZ tools can be found in /blitz. Within
the container, the search path environment variable has already been set up for you to use BLITZ
command-line tools directly.

As you may have already tried in Lab 2, there are many other commands that may be useful for you to
work with Docker containers. For example, to remove all the Docker containers, you can use the
command:

docker rm $(docker ps -a -q)

To remove all the Docker images (so that you can have a clean slate to start working with something
else), you may use the command:

docker rmi $(docker images -q)

To copy files from the Docker container to your host computer, use the command:

docker cp <containerId>:/file/path/within/container /host/path/target

The container ID can be found in the command prompt while you are running the container.

The command-line editor vi has been pre-installed for you in the Docker container. To install other
editor alternatives or any other packages, you can use the following command within the container:

apt-get install -y <package_name>

To re-enter the docker container after you type exit at the command line inside the container, first
obtain the container ID by using the docker ps -a command:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

2

a27382779765 blitz "/bin/bash" 19 minutes ago Exited (0) 5 seconds
ago nifty_spence

Then use the docker start and the docker exec command to run it again:

$ docker start a27382779765

a27382779765

$ docker exec -it a27382779765 /bin/bash

root@a27382779765:~#

You will see that changes you have previously made within that container have not been lost.

Before you load the docker image provided for this lab, it is a good idea to first remove all the
containers and their images related to the previous labs:

To remove all the containers:

docker rm $(docker ps -a -q)

To remove all the images:

docker rmi $(docker images -q)

To learn more about Docker containers and images, refer to the Docker documentation.

Task 1: Implement the Dining Philosopher’s Solution using a Monitor

In the first task of this lab, you are required to implement a solution to the Dining Philosopher’s
problem in BLITZ, using a monitor.

Each philosopher is simulated with a thread. Each philosopher thinks for a while, and then wants to
eat. Before eating, he must pick up both of his forks. After eating, he puts down his forks. Each fork is
shared between two philosophers and there are 5 philosophers and 5 forks arranged in a circle.

The forks are not modelled explicitly. A fork is only picked up by a philosopher if he can pick up both
forks at the same time and begin eating. To know whether a fork is available, it is sufficient to simply
look at the status of the two adjacent philosophers. Another way to state the problem is to forget
about the forks altogether and stipulate that a philosopher may only eat when his two neighbours are
not eating. Please feel free to refer to the Three Easy Pieces textbook, Chapter 31.6, for a more
detailed description of this problem, as well as some ideas for solutions.

A starting framework for your solution is provided in Task1.c. We have provided some code in
Task1.c to set up a thread for each philosopher. The synchronization will be controlled by a
monitor, called ForkMonitor.

The code for each thread (philosopher) is provided for you. Please read the PhilosphizeAndEat
method in Task1.c, and you should not need to change this code.

The monitor to control synchronization between the threads is implemented with a class called
ForkMonitor. The following class specification of ForkMonitor is provided:

3

 class ForkMonitor
 superclass Object
 fields
 status: array [5] of int -- For each philosopher: HUNGRY,
 -- EATING, or THINKING
 methods
 Init ()
 PickupForks (p: int)
 PutDownForks (p: int)
 PrintAllStatus ()
 endClass

You will need to provide the code for the Init, PickupForks and PutDownForks methods. Please feel
free to add additional fields or methods as needed. The code for PrintAllStatus has been provided.
You should call this method whenever you change the status of any philosopher. This method will
print a line of output, so you can see what is happening.

How can you proceed from this starting point? You will need a mutex lock to protect the monitor itself.
There are two main methods (PickupForks and PutDownForks), which are called by the philosopher
threads. As each of these methods begins, the first thing you should do is to lock the mutex of the
monitor. This will ensure that only one thread at a time is executing within the monitor. Just before
each of these methods returns, it must unlock the monitor (by unlocking the monitor’s mutex) so that
other threads can enter the monitor code.

To add proper synchronization, you will also need to use the provided implementation of condition
variables in the Condition class, which is provided in the Synch package. Read the Condition
class in Synch.c, and try to understand how condition variables are implemented.

The BLITZ emulator has a number of parameters, and one of these is how often a timer interrupt
occurs. The default value — every 5000 instructions — does not produce quite as much concurrency
among the philosophers as a smaller number like 2000 or 3000. Try changing this parameter to see
how it affects your programs behaviour. To change the simulation parameters, type the sim command
into the emulator. This command will give you the option to create a file called .blitzrc. After
creating this file, you can edit it by hand. The next time you run the emulator, it will use this new value.
Also note that too small a value — like 1000 — will cause the program to hang.

We have provided an example of a correct output in DesiredOutput1.txt (provided to you in /
share/copy/ece353s/lab3 or in the Docker image), please examine this file and try to ensure
that your output is similar.

4

Task 2: Solving the Sleeping Barber Problem using Semaphores and Mutex
Locks

Starting from the provided Task2.c and Task2.h (by creating your own KPL class from scratch),
solve the following problem — called the Sleeping Barber problem — with semaphores and mutex
locks. You will also need to create some code to print out what happens when you run the program.

The Sleeping Barber problem is a classical thread synchronization problem. Imagine a hypothetical
barber shop with one barber, one barber chair, and a number of chairs for waiting customers. When
there are no customers, the barber sits in his chair and sleeps. As soon as a customer arrives, he
either wakes up the barber or, if the barber is cutting someone else's hair, sits down in one of the
vacant chairs. If all of the chairs are occupied, the newly arrived customer simply leaves.

The problem arises with attempting to coordinate this activity without any race conditions or
deadlocks. For example, if a solution is incorrect, the barber could end up waiting for a customer and a
customer waiting for the barber, resulting in a deadlock. Your solution should have no race conditions
or deadlocks.

To simulate the time it takes for the barber to finish the haircut, you may simply call the Yield()
method.

We have provided the following functions in the Task2.h and Task2.c:

printExample(): This function shows an example on how the next three functions are run.

printBarberStatus(): This function prints out the status of the barber, which would be

	 	 	 	 start or end.

printCustomerStatus(customer: int): This function prints out the status of the customer,
which would be E, S, B, F, or L.

printChairs(): This function prints out the status of the chairs.

We have provided an example of a correct output in DesiredOutput2.txt, which contains
additional instructions on how your output should be formatted. Please examine this file and try to
ensure that your output is similar. Please note that when start is printed, the waiting line (which is the
number of empty chairs) decreases. When S (sit) is printed, the waiting line increases.

More background about the Sleeping Barber Problem itself has been provided in a separate file in
your source code archive: SleepingBarberProblem.pdf.

Task 3: Solving the Gaming Parlor Problem using a Monitor

In the third task of this lab, you will attempt to solve the following problem, called the Gaming Parlor
problem, again using a monitor. Groups of customers come in to a “gaming parlor” to play games.
They go to the front desk to obtain one or more dice, which are used by the group while they are

5

playing their game, and then returned to the front desk. The front desk is in charge of lending out the
dice and collecting them after each game is finished.

The gaming parlor owns only 8 dice, which are available at the front desk before the first group comes
in.

The customers can play the following games. Listed after each game in parentheses is the number of
dice required to play that game.

Backgammon (4)
Risk (5)
Monopoly (2)
Pictionary (1)

You should model the front desk as a monitor with the following entry methods:

Request (name: char, numberOfDice: int)
	 Return (numberOfDice: int)

Model each group of customers as a thread. When a group is ready to play, it must obtain the
necessary number of dice. If the required number of dice is not available, then the group (i.e., the
thread) must wait. You might use a condition variable to signal that “more dice have become
available.”

You should model the following eight different groups. Each group plays one game, as shown below,
but each group plays its game 5 times. Each group must return their dice after each game and then
re-acquire the dice before playing again.

A – Backgammon

	 B – Backgammon

	 C – Risk

	 D – Risk

	 E – Monopoly

	 F – Monopoly

	 G – Pictionary

	 H – Pictionary

	

Similar to the Sleeping Barber problem, to simulate the time taken by each group to play the game,
simply call the Yield() method.

This problem is a generalization of the problem of resource allocation, where (1) there are a number of
resources (dice) but each is identical; (2) every requesting thread needs one or more units of the
resource; (3) each requesting thread knows how many units it will need before requesting any units
and that info is included in the request; (4) all units are returned before any further requests are made.

6

Similar to Task 1, your solution must not be subject to any race conditions. In other words, regardless
of the order in which the groups make their requests and return their dice, each dice must never be
allocated to more than one group at a time. It should never be the case that groups are allowed to
proceed when there are too few dice. Likewise, if a group has returned its dice, other groups which are
waiting must be allowed to proceed once enough dice have become available. In addition, regardless
of the order in which the groups make their requests, your solution should be structured such that
deadlocks can never occur.

To verify that your code is working, please insert print statements to produce output like this:

Initializing Thread Scheduler...
Initializing Idle Process...
A requests 4
------------------------------Number of dice now avail = 8
A proceeds with 4
------------------------------Number of dice now avail = 4
B requests 4
------------------------------Number of dice now avail = 4
B proceeds with 4
------------------------------Number of dice now avail = 0
D requests 5
------------------------------Number of dice now avail = 0
E requests 2
------------------------------Number of dice now avail = 0
A releases and adds back 4
------------------------------Number of dice now avail = 4
B releases and adds back 4
------------------------------Number of dice now avail = 8
C requests 5
------------------------------Number of dice now avail = 8
H requests 1
------------------------------Number of dice now avail = 8
B requests 4
------------------------------Number of dice now avail = 8
D proceeds with 5
------------------------------Number of dice now avail = 3
 etc.

This output makes it fairly easy to see what the program is doing and verify that it is correct.

We have provided four functions in the Task3.h and Task3.c:

PrintExample(): This function shows an example on how the next three functions are run.

Request(): This function will let the customer request the number of dice.

Return(): This function will let the customer return the number of dice.

7

Print(): This function prints the name and the arguments, and the current number of dice available.

The Print() method would be called in several places:

At the beginning of the Request method:

self.Print (name, "requests", numNeeded)

At the end of the Request method:

self.Print (name, "proceeds with", numNeeded)

In the Return method:

self.Print (name, "releases and adds back", numReturned)

We have provided an example of a correct output in DesiredOutput3.txt, please examine this
file and try to ensure that your output is correct.

What to Submit

Complete all three tasks in this handout (or as many tasks as you can), and then submit Task1.h,
Task1.c, Task2.h, Task2.c, Task3.h and Task3.c.

Grading for this Lab

Your submitted solution will be marked using test cases. The maximum possible mark for this lab
assignment is 10.

8

