
Course Project:

User-Level Processes


Due date: Last day of the term.


Objectives

In this course project, you will explore user-level processes.  You will create a single process, running in 
its own address space.  When this user-level process executes, the CPU will be in user mode.


The user-level process will make system calls to the kernel, which will cause the CPU to switch into 
system mode.  Upon completion, the CPU will switch back to user mode before resuming execution of 
the user-level process.


The user-level process will execute in its own virtual address space.  Its address space will be broken 
into a number of “pages,” and each page will be stored in a frame in memory.  The pages will be 
resident (i.e., stored in frames in physical memory) at all times and will not be swapped out to disk in 
this course project.


The kernel will be entirely protected from the user-level program: nothing the user-level program does 
can crash the kernel.


Setting up


Even though some of the files have the same names, do not reuse files from Labs 1 – 4 as they are 
considered out of date.   The same set of files are also available in the Docker image that you can 
download from the link provided in the course website.  Useful commands on using Docker containers 
have been introduced previously in the handouts in Labs 1 – 4.


For this course project, you should get the following files:


Switch.s
Runtime.s
System.h
System.c
List.h
List.c
BitMap.h
BitMap.c
makefile
FileStuff.h
FileStuff.c
Main.h
Main.c
DISK
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UserRuntime.s
UserSystem.h
UserSystem.c
MyProgram.h
MyProgram.c
TestProgram1.h
TestProgram1.c
TestProgram2.h
TestProgram2.c

The following files are unchanged from Lab 4 and you should not modify them:


	 Switch.s
Runtime.s
System.h
System.c  — except HEAP_SIZE has been modified


	 List.h
List.c
BitMap.h
BitMap.c

The following files are not provided; instead, you will modify what you created in Lab 4.  Copy 
these files to your own project directory, so that you keep the previous lab4 versions in your lab4 
directory, and modify the new copies.


Kernel.h
Kernel.c

Merging New “File Stuff” Code

For this course project, we are distributing additional code which you should add to the Kernel 
package.  Please add the material in FileStuff.c to the end of file Kernel.c.  It should be inserted 
directly before the final endCode keyword.


Also, please add the material in FileStuff.h to the end of file Kernel.h.  It should be inserted directly 
before the final endHeader keyword.


This code adds the following classes:


	 DiskDriver

	 FileManager

	 FileControlBlock

	 OpenFile


You will use these classes, but you should not modify them.
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There will be a single DiskDriver object (called diskDriver) which is created and initialized at start-up 
time.  There will also be a single FileManager object (called fileManager) which is created and 
initialized at start-up time.  The new main function contains statements to create and initialize the 
diskDriver and the fileManager objects.


FileControlBlock and OpenFile objects will be handled much like Threads and ProcessControl-
Blocks.  They are a limited resource.  A limited supply is created at start-up time and then they are 
managed by the fileManager.  There is a free list of FileControlBlock objects and a free list of 
OpenFile objects.   The fileManager oversees both of these free lists.  Threads may make requests 
and may return resources, by invoking methods in the fileManager.


The diskDriver object encapsulates all the hardware specific details of the disk.  It provides a method 
that allows a thread to read a sector from disk into a memory frame and it provides a method that 
writes a frame from memory to a sector on disk.


Other Changes To Your Kernel Code

Please make the following changes to your copy of Kernel.h:


Change

NUMBER_OF_PHYSICAL_PAGE_FRAMES = 27               -- for testing only

to:

NUMBER_OF_PHYSICAL_PAGE_FRAMES = 100              -- for testing only

Change

--diskDriver: DiskDriver
--fileManager: FileManager

to:

diskDriver: DiskDriver
fileManager: FileManager

Add a function prototype for the function InitFirstProcess.  You can add it after the other function 
prototypes:


Change

    ProcessFinish (exitStatus: int)
to:

    ProcessFinish (exitStatus: int)
    InitFirstProcess ()

Please make the following changes to your copy of Kernel.c:


Change the DiskInterruptHandler function from:

FatalError ("DISK INTERRUPTS NOT EXPECTED IN PROJECT 4")

to:

currentInterruptStatus = DISABLED
-- print ("DiskInterruptHandler invoked!\n")
if diskDriver.semToSignalOnCompletion
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  diskDriver.semToSignalOnCompletion.Up()
endIf

In this course project, you are required to complete three tasks.  Please first read the following outlines 
of these tasks, and then read the remainder of this document.  After that, come back and complete 
these tasks.


Task 1

Your first task is to load and execute the user-level program called MyProgram.  Since the user-level 
program must be read from a file on the BLITZ disk, you will first need to understand how the BLITZ 
disk works, how files are stored on the disk, and how the FileManager code works.


MyProgram invokes the Shutdown syscall, which you will also need to implement.


Task 2

Modify all the syscall handlers so they print the arguments that are passed to them.  In the case of 
integer arguments, this should be straightforward, but the following syscalls take a pointer to an array 
of char as one of their arguments.


	 Exec

	 Create

	 Open


This pointer is in the user program’s logical (virtual) address space.  You must first move the string 
from user-space to a buffer in kernel space.  Only then can it be safely printed.


Also, some of the syscalls return a result.  You must modify the handlers for these syscalls so that the 
following syscalls return these values.  (These are just arbitrary values, to make sure you can return 
something.)


	 Fork	 1000

	 Join	 2000

	 Exec	 3000

	 Create	 4000

	 Open	 5000

	 Read	 6000

	 Write	 7000

	 Seek	 8000


For this task, you should modify only the handler methods (e.g., Handle_Sys_Fork, 
Handle_Sys_Join, etc.)  You should not modify SyscallTrapHandler or the wrapper functions in 
UserSystem.
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Task 3

Implement the Exec syscall.  The Exec syscall will read a new executable program from disk and copy 
it into the address space of the process which invoked the Exec.  It will then begin execution of the 
new program.  Unless there are errors, there will not be a return from the Exec syscall.


The User-Level View

First, let us look at our operating system from the users’ point of view.  User-level programs will be able 
to invoke the following kernel routines:


	 Exit

	 Shutdown

	 Yield

	 Fork

	 Join

	 Exec

	 Create

	 Open

	 Read

	 Write

	 Seek

	 Close


(This is the grand plan for our OS; not all of these system calls will be implemented in this course 
project.)


These syscalls are quite similar to kernel syscalls of the same names in Unix.  We will describe their 
precise functionality later.


A user-level program will be written in KPL and linked with the following files:


	 UserSystem.h
UserSystem.c
UserRuntime.s

We are providing a sample user-level program in MyProgram.h and MyProgram.c.


The UserSystem package includes a wrapper (or “jacket”) function for each of the system calls.  Here 
are the names of the wrapper functions.  There is a one-to-one correspondence between the system 
calls and the wrapper functions.


	 System call	 Wrapper function name

	 Exit	 Sys_Exit

	 Shutdown	 Sys_Shutdown

	 Yield	 Sys_Yield

	 Fork	 Sys_Fork
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	 Join	 Sys_Join

	 Exec	 Sys_Exec

	 Create	 Sys_Create

	 Open	 Sys_Open

	 Read	 Sys_Read

	 Write	 Sys_Write

	 Seek	 Sys_Seek

	 Close	 Sys_Close


(In Unix, the wrapper function often has the same name as the syscall.  In BLITZ, all wrapper functions 
have names beginning with Sys_  just to help make the distinction between a wrapper and a syscall.)


Each wrapper function works the same way.  It invokes an assembly language routine called 
DoSyscall, which executes a “syscall” machine instruction.  When the kernel call finishes, the 
DoSyscall function simply returns to the wrapper function, which returns to the user’s code.


Arguments may be passed to and from the kernel call.  In general, these are integers and pointers to 
memory.  The wrapper function works with DoSyscall to pass the arguments.  When the wrapper 
function calls DoSyscall, it will push the arguments onto the stack.  The DoSyscall will take the 
arguments off the stack and move them into registers.  Since it runs as a user-level function, it places 
them in the user registers.  (Recall that the BLITZ machine has a set of 16 system registers and a set 
of 16 user registers.)


Each wrapper function also uses an integer code to indicate which kernel function is involved.  Here is 
the enum giving the different codes.  For example, the code for “Fork” is 4.


  enum SYSCALL_EXIT = 1,
       SYSCALL_SHUTDOWN,
       SYSCALL_YIELD,
       SYSCALL_FORK,
       SYSCALL_JOIN,
       SYSCALL_EXEC,
       SYSCALL_CREATE,
       SYSCALL_OPEN,
       SYSCALL_READ,
       SYSCALL_WRITE,
       SYSCALL_SEEK,
       SYSCALL_CLOSE

These code numbers are used both by the user-level program and by the kernel.  Consequently, there 
is an identical copy of this enum in both Kernel.h and UserSystem.h.  (You should not change the 
system call interface, but if one were to change these code numbers, it would be critical that both 
enums were changed identically.)


As an example, here is the code for the wrapper function for “Read.”  It simply invokes DoSyscall and 
returns whatever DoSyscall returns.


    function Sys_Read (fileDesc: int,
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                       buffer: ptr to char,
                       sizeInBytes: int) returns int
        return DoSyscall (SYSCALL_READ,
                          fileDesc,
                          buffer asInteger,
                          sizeInBytes,
                          0)
      endFunction

Here is the function prototype for DoSyscall:


    external DoSyscall (funCode, arg1, arg2, arg3, arg4: int) returns int 

The DoSyscall routine is set up to deal with up to 4 arguments.  Since the Read syscall only needs 3 
arguments, the wrapper function must supply an extra zero for the fourth argument.


DoSyscall treats all of its arguments as untyped words (i.e., as int), so the wrapper functions must 
coerce the types of the arguments if they are not int.  Whatever DoSyscall returns, the wrapper 
function will return.


DoSyscall is in UserRuntime.s, which will be linked with all user programs.  The code is given next.


It moves each of the 4 arguments into registers r1, r2, r3, and r4.  It then moves the function code into 
register r5 and executes the syscall instruction.  It assumes the kernel will place the result (if any) in r1, 
so after the syscall instruction, it moves the return value from r1 to the stack, so that the wrapper 
function can retrieve it.

DoSyscall:
load [r15+8],r1 ! Move arg1 into r1
load [r15+12],r2 ! Move arg2 into r2
load [r15+16],r3 ! Move arg3 into r3
load [r15+20],r4 ! Move arg4 into r4
load [r15+4],r5 ! Move funcCode into r5
syscall r5 ! Do the syscall
store r1,[r15+4] ! Move result from r1 onto stack
ret ! Return

Some of the kernel routines require no arguments and/or return no result.  As an example, consider the 
wrapper function for Yield.  The compiler knows that DoSyscall returns a result, so it insists that we 
do something with this value.  The wrapper function simply moves it into a variable and ignores it.


    function Sys_Yield ()
        var ignore: int
        ignore = DoSyscall (SYSCALL_YIELD, 0, 0, 0, 0)
      endFunction

Here is a list of all the wrapper functions, including their arguments and return types. 


Sys_Exit (returnStatus: int)
Sys_Shutdown ()
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Sys_Yield ()
Sys_Fork () returns int
Sys_Join (processID: int) returns int
Sys_Exec (filename: String) returns int
Sys_Create (filename: String) returns int
Sys_Open (filename: String) returns int
Sys_Read (fileDesc: int, buffer: ptr to char, sizeInBytes: int)

returns int
Sys_Write (fileDesc: int, buffer: ptr to char, sizeInBytes: int)

returns int
Sys_Seek (fileDesc: int, newCurrentPos: int) returns int
Sys_Close (fileDesc: int)

In addition to the wrapper functions, the UserSystem package contains a few other routines that 
support the KPL language.  These are more-or-less duplicates of the same routines in the System 
package.  Likewise, some of the material from Runtime.s is duplicated in UserRuntime.s.  This 
duplication is necessary because user-level programs cannot invoke any of the routines that are part 
of the kernel.


For example the functions print, printInt, nl, etc. have been duplicated at the user level so the user-
level program has the ability to print.


Note that, at this point, all printing is done by cheating, using a “trapdoor” in the emulator.  Normally, a 
user-level program would need to invoke syscalls (such as Sys_Write) to perform any output, since 
user-level programs can’t access the I/O devices directly.  However, since we are not yet ready to 
address questions about output to the serial device, we are including these cheater print functions, 
which rely on a trapdoor in the emulator.


Every user-level program needs to “use” the UserSystem package and be linked with the 
UserRuntime.s code.  For example:


	 MyProgram.h:
header MyProgram
  uses UserSystem
  functions
    main ()
endHeader

	 MyProgram.c:

code MyProgram
  function main ()
      print ("My user-level program is running!\n")
      Sys_Shutdown ()
    endFunction
endCode

Here are the commands to prepare a user-level program for execution.  The makefile has been 
modified to include these commands.
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asm UserRuntime.s
kpl UserSystem -unsafe
asm UserSystem.s
kpl MyProgram -unsafe
asm MyProgram.s
lddd UserRuntime.o UserSystem.o MyProgram.o -o MyProgram

Note that there is no connection with the kernel.  The user-level programs are compiled and linked 
independently.  All communication with the kernel will be through the syscall interface, via the wrapper 
functions.


This is exactly the way Unix works.  For user-level programs, library functions and wrapper functions 
are brought into the a.out file at link time, as needed.  This explains why a seemingly small C program 
can produce a rather large a.out executable.  One small use of printf in a program might pull in, at link 
time, more output formatting and buffering routines than you can possibly imagine.  When an OS 
wants to execute a user-level program, it will go to a file on the disk to find the executable.  Then it will 
read that executable into memory and start up the new process.


In order to execute MyProgram, we need to introduce the BLITZ “disk.”  The disk is simulated with a 
Unix file called “DISK.”  After the user-level program is compiled, it must be placed on the BLITZ disk 
with the following Unix commands:


diskUtil -i
diskUtil -a MyProgram MyProgram

The first command creates an empty file system on the disk.  The second command copies a file from 
the Unix file system to the BLITZ disk.  It creates a directory entry and moves the data to the proper 
place on the simulated BLITZ disk.  Commands to initialize the BLITZ disk have also been added to 
the makefile.


Once the kernel is running, it will read the file from the simulated BLITZ disk and copy it into memory.


The Syscall Interface

In our OS, each process will have exactly one thread.  A process may also have several open files and 
can do I/O via the Read and Write syscalls.  The I/O will go to the BLITZ disk.  For now, there is no 
serial (i.e., terminal) device.


Next, we describe each syscall in more detail.


function Sys_Exit (returnStatus: int)


This function causes the current process and its thread to terminate.  The returnStatus will be 
saved so that it can be passed to a Sys_Join executed by the parent process.  This function 
never returns.


function Sys_Shutdown ()
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This function will cause an immediate shutdown of the kernel.  It will not return.


function Sys_Yield ()


This function yields the CPU to another process on the ready list.  Once this process is 
scheduled again, this function will return.  From the caller’s perspective, this routine is similar to 
a “nop” (no operation).


function Sys_Fork () returns int


This function creates a new process which is a copy of the current process.  The new process 
will have a copy of the logical address space, and all files open in the original process will also 
be open in the new process.  Both processes will then return from this function.  In the parent 
process, the pid of the child will be returned; in the child, zero will be returned.


function Sys_Join (processID: int) returns int


This function causes the caller to wait until the process with the given pid has terminated, by 
executing a call to Sys_Exit.  The returnStatus passed by that process to Sys_Exit will be 
returned from this function.  If the other process invokes Sys_Exit first, this returnStatus will 
be saved until either its parent executes a Sys_Join naming that process’s pid or until its 
parent terminates.


function Sys_Exec (filename: String) returns int


This function is passed the name of a file.  That file is assumed to be an executable file.  It is 
read in to memory, overwriting the entire address space of the current process.  Then the OS 
will begin executing the new process.  Any open files in the current process will remain open 
and unchanged in the new process. Normally, this function will not return.  If there are 
problems, this function will return -1.


function Sys_Create (filename: String) returns int


This function creates a new file on the disk.  If all is fine, it returns 0, otherwise it returns a non-
zero error code.  This function does not open the file; so the caller must use Sys_Open before 
attempting any I/O.


function Sys_Open (filename: String) returns int


This function opens a file.  The file must already exist.  If all is fine, this function returns a file 
descriptor, which is a small, non-negative integer.  It errors occur, this function returns -1.


function Sys_Read (fileDesc: int, buffer: ptr to char, sizeInBytes: int) returns int


This function is passed the fileDescriptor of a file (which is assumed to have been 
successfully opened), a pointer to an area of memory, and a count of the number of bytes to 
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transfer.  This function reads that many bytes from the current position in the file and places 
them in memory.  If there are not enough bytes between the current position and the end of the 
file, then a lesser number of bytes are transferred.  The current file position will be advanced by 
the number of bytes transferred.


If the input is coming from the serial device (the terminal), this function will wait for at least one 
character to be typed before returning, and then will return as many characters as have been 
typed and buffered since the previous call to this function.


This function will return the  number of characters moved.  If there are errors, it will return -1.


function Sys_Write (fileDesc: int, buffer: ptr to char, sizeInBytes: int) returns int


This function is passed the fileDescriptor of a file (which is assumed to have been 
successfully opened), a pointer to an area of memory, and a count of the number of bytes to 
transfer.  This function writes that many bytes from the memory to the current position in the 
file.


If the end of the file is reached, the file’s size will be increased.


The current file position will be advanced by the number of bytes transferred, so that future 
writes will follow the data transferred in this invocation.


The output may also be directed to the serial output, i.e., to the terminal.


This function will return the  number of characters moved.  If there are errors, it will return -1.

function Sys_Seek (fileDesc: int, newCurrentPosition: int) returns int


This function is passed the fileDescriptor of a file (which is assumed to have been 
successfully opened), and a new current position.  This function sets the current position in the 
file to the given value and returns the new current position.


Setting the current position to zero causes the next read or write to refer to the very first byte in 
the file.  If the file size is N bytes, setting the position to N will cause the next write to append 
data to the end of the file.


The current position is always between 0 and N, where N is the file's size in bytes.


If -1 is supplied as the new current position, the current position will be set to N (the file size in 
bytes) and N will be returned.


It is an error to supply a newCurrentPosition that is less than -1 or greater than N.  If so, -1 will 
be returned.


function Sys_Close (fileDesc: int)
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This function is passed the fileDescriptor of a file, which is assumed to be open.  It closes the 
file, which includes writing out any data buffered by the kernel.


Asynchronous Interrupts

From time to time an asynchronous interrupt will occur.  Consider a DiskInterrupt as an example.  
When this happens, an assembly routine called DiskInterruptHandler in Runtime.s will be jumped to.  
It begins by saving the system registers (after all, a Disk Interrupt might occur while a kernel routine is 
executing and we’ll need to return to it).  Then DiskInterruptHandler performs an “upcall” to the 
function named DiskInterruptHandler in Kernel.c (Perhaps it is a little confusing to have an assembly 
routine and a KPL routine with the same name.)


The high-level DiskInterruptHandler routine simply signals a semaphore and returns to the assembly 
DiskInterruptHandler routine, which restores the system registers and returns to whatever code was 
interrupted.  All the time while these routines are running, interrupts are disabled and no other 
interrupts can occur.


Also note that the interrupt handler uses space on the system stack of whichever thread was 
interrupted.  It might be that some unsuspecting user-level code was running.  Although the interrupt 
handler will use the system stack of that thread, the thread will be none-the-wiser.  While the interrupt 
handler is running, it is running as part of some more-or-less randomly selected thread.  The interrupt 
handler is not a thread on its own.


Error Exception Handling

When a runtime error is detected by the CPU, the CPU performs exception processing, which is 
similar to the way it processes an interrupt.  Here are the sorts of runtime errors that can occur in the 
BLITZ architecture:


	 Illegal Instruction

	 Arithmetic Exception

	 Address Exception

	 Page Invalid Exception

	 Page Read-only Exception

	 Privileged Instruction

	 Alignment Exception


As an example, consider what happens when an Alignment Exception occurs.  The others are 
handled the same way.


The CPU will consult the interrupt vector in low memory (see Runtime.s) and will jump to an assembly 
language routine called AlignmentExceptionHandler.  The assembly routine first checks to see if the 
interrupted code was executing in system mode or not.  If it was in system mode, then the assumption 
is that there is a bug in the kernel, so the assembly routine prints a message and halts execution.
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However, if the CPU was in user mode, the assumption is that the user-level program has a bug.  The 
OS wi l l need to handle that bug without i tse l f stopping.  So the assembly 
AlignmentExceptionHandler routine makes an upcall to a KPL routine with the same name.


The high-level AlignmentExceptionHandler routine simply prints a message and terminates the 
process.  Process termination is performed in a routine called ProcessFinish, which is not yet written.  
For now, we will assume that user-level programs do not have any bugs. Finally, ProcessFinish will call 
ThreadFinish and will not return.


Note that a Thread object cannot be added back to the free thread pool by the thread that is running.  
Instead, in ThreadFinish the thread is added to a list called threadsToBeDestroyed.  Later, after 
another thread begins executing (in Run) the first thing it will do is add any threads on that list back to 
the free pool by calling threadManager.FreeThread.


Syscalls

When a user-level thread executes a syscall instruction, the assembly routine SyscallTrapHandler in 
Runtime.s will be invoked.  The assembly routine will then call a KPL routine with the same name.


The assembly routine does not need to save registers because the interrupted code was executing in 
user mode and the handler will be executed in system mode.


Recall that just before the syscall, the DoSyscall routine placed the arguments in the (user) registers 
r1, r2, r3, and r4, with an integer indicating which kernel function is wanted in register r5.  The 
SyscallTrapHandler assembly routine takes the values from the user registers.  Since it is running in 
system mode, it must use a special instruction called readu to get values from the user registers.  It 
pushes them on to the system stack so that the high-level routine can access them.  Then it calls the 
high-level SyscallTrapHandler routine.  When the high-level routine returns, it takes the returned 
value from the stack and moves it into user register r1, using an instruction called writeu, and then 
executes a reti instruction to return to the interrupted user-level process.  Execution will resume back 
in DoSyscall directly after the syscall instruction.


The high-level routine called SyscallTrapHandler simply takes a look at the function code and calls 
the appropriate routine to finish the work.  For every kind of syscall, there is a corresponding “handler 
routine” in the OS.


	 System call	 Handler function in the kernel

	 Exit	 Handle_Sys_Exit

	 Shutdown	 Handle_Sys_Shutdown

	 Yield	 Handle_Sys_Yield

	 Fork	 Handle_Sys_Fork

	 Join	 Handle_Sys_Join

	 Exec	 Handle_Sys_Exec

	 Create	 Handle_Sys_Create

	 Open	 Handle_Sys_Open

	 Read	 Handle_Sys_Read
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	 Write	 Handle_Sys_Write

	 Seek	 Handle_Sys_Seek

	 Close	 Handle_Sys_Close


You will need to provide the full implementation for the routines marked in semibold red in this course 
project.  For the rest of them, simply implement the minimum required functionality as shown in Task 2 
on page 4-5.


Note that interrupts will be disabled when the SyscallTrapHandler routine begins.  The first thing the 
high-level routine does is set the global variable currentInterruptStatus to DISABLED so that it is 
accurate.  In fact, all the interrupt and exception handlers begin by setting currentInterruptStatus to 
DISABLED for this reason.


Also note that after the handler routines return to the interrupted routine, interrupts will be re-enabled.  
Why?  Because the Status Register in the CPU will be restored as part of the operation of the reti 
instruction, restoring the interrupt (as well as paging and system mode) status bits to what they were 
when the interrupt occurred.  (Note that we do not bother to change currentInterruptStatus to 
ENABLED before returning to user-level code, because any re-entry to the kernel code must be 
through SyscallTrapHandler, or an interrupt or exception handler, and each of these begins by setting 
currentInterruptStatus.)


Implementing the Shutdown syscall is straightforward.  The handler should call FatalError with the 
following message:


Syscall 'Shutdown' was invoked by a user thread

The BLITZ Disk

The BLITZ computer includes a disk, which is emulated using a file called DISK on the host computer.  
In other words, a write to the BLITZ disk will cause data to be written to a Unix file and a read from the 
BLITZ disk will cause a read from the Unix file.  The emulator will simulate the delays involved in 
reading, by taking account of the current (simulated) disk head position.  When the I/O is complete—
that is, the simulated time when the emulator has calculated the disk I/O will have completed—the 
emulator causes a DiskInterrupt to occur.


To interface with the BLITZ disk, we have supplied a class called DiskDriver, which makes it 
unnecessary for you to write the code that actually reads and writes disk sectors.  You can just use the 
code in the class DiskDriver.  There is only one DiskDriver object; it is created and initialized at 
startup time.


  class DiskDriver
    superclass Object
    fields
      ...
      semToSignalOnCompletion: ptr to Semaphore
      semUsedInSynchMethods: Semaphore
      diskBusy: Mutex
    methods
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      Init ()
      SynchReadSector  (sectorAddr, numberOfSectors, memoryAddr: int)
      StartReadSector  (sectorAddr, numberOfSectors, memoryAddr: int,
                        whoCares: ptr to Semaphore)
      SynchWriteSector (sectorAddr, numberOfSectors, memoryAddr: int)
      StartWriteSector (sectorAddr, numberOfSectors, memoryAddr: int,
                        whoCares: ptr to Semaphore)
  endClass

This class provides a way to read and write sectors synchronously as well as a way to read and write 
sectors asynchronously.


To perform a disk operation without blocking the calling thread, you can call StartReadSector or 
StartWriteSector.  These methods are passed the number of the sector on the disk at which to begin 
the transfer, the number of sectors to transfer and the location in memory to transfer the data to or 
from.  These methods are also passed a pointer to a Semaphore; upon completion of the operation 
(possibly in error!) this semaphore will be signaled with an Up() operation.  This is exactly the 
semaphore that is signaled whenever a DiskInterrupt occurs.  So to perform asynchronous I/O, the 
caller will invoke StartReadSector (or StartWriteSector) giving it a Semaphore.  Then the caller can 
either do other stuff, or wait on the Semaphore.


Since it may be a little tricky to manage asynchronous I/O correctly, the DiskDriver class also provides 
a couple of methods to make it easy to do I/O synchronously.


When you call SynchReadSector or SynchWriteSector, the caller will be suspended and will be 
returned to only after a successful completion of the I/O.  These routines will deal with transient errors 
by retrying the operation until it works.  Other errors (such as a bad sectorAddr or bad memoryAddr) 
will be dealt with by a call to FatalError.


In order to implement these methods, the DiskDriver contains a mutex called diskBusy and a 
semaphore called SemUsedInSynchMethods.  Each synch method makes sure the disk is not busy 
with I/O from some other thread and, if so, waits until it is completed.  This is the purpose of the 
diskBusy mutex.  After acquiring the lock, each synch method will call StartReadSector (or 
StartWriteSector) supplying the semaphore.  The synch method will then wait until the disk 
operation is complete.  The calling thread will remain blocked for the duration.


The “Stub” File System

In this course project, you are supplied with a very minimal file system, called the “stub” file system.  In 
Unix, directories are structured in a tree shape and there are lots of complexities concerning how files 
are stored on the disk.


In the stub file system, the disk will contain only one directory, and several files.  The directory is limited 
in size to one sector and is kept in sector 0 of the disk.  The exact number of files that can be 
accommodated depends on how long the file names are.


Each file has a name and a file length (in bytes).  Each file is stored on disk in a sequence of 
consecutive sectors.  Once a file is placed on the disk, and more files are added after it, it is impossible 
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to increase the size of the file.  Each file is allocated an integral number of sectors.  (Since the last 
sector in each file may be only partially full, it would be possible to increase the size of a file up to the 
next sector boundary.  However, it is not worth the effort.  Instead, the solution is to design a better file 
system.)


For now, the directory is read-only, so files may not be created and the size of files may not be 
changed.


The classes FileManager, FileControlBlock, and OpenFile are provided for you, to make it easier to 
use the file system from within the kernel.


The “diskUtil” Tool

The BLITZ tool called diskUtil can be used to create a file system on the BLITZ disk, to add files to the 
disk, to remove files, and to print out the directory.


The BLITZ DISK is organized as follows.  The disk contains a single directory and this is kept in sector 
0.  The files are placed sequentially on the disk, one after the other.  Each file will take up an integral 
number of sectors.  Each file has an entry in the directory.  Each entry contains


	 (1)	 The starting sector

	 (2)	 The file length, in bytes (possibly zero)

	 (3)	 The number of characters in the file name

	 (4)	 The file name


The directory begins with three numbers:


	 (1)	 Magic Number (0x73747562 = “stub”)

	 (2)	 Number of files (possibly zero)

	 (3)	 Number of the next free sector


These are followed by the entries for each file.


Once created, a BLITZ file may not have its size increased.  When a file is removed, the free sectors 
become unusable; there is no compaction or any attempt to reclaim the lost space.


Each time the diskUtil program is run, it performs one of the following functions:


      Initialize	 set up a new file system on the BLITZ disk

      List 	 list the directory on the BLITZ disk

      Create	 create a new file of a given size

      Remove	 remove a file

      Add	 copy a file from Unix to BLITZ

      Extract	 copy a file from BLITZ to Unix

      Write	 write sectors from a Unix file to the BLITZ disk
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The following command line options tell which function is to be performed by diskUtil:


  -h

Print help info.


  -d  DiskFileName

The file used to emulate the BLITZ disk.  If missing, “DISK” will be used.


  -i

Initialize the file system on the BLITZ “DISK” file.  This will effectively remove all files on the BLITZ 
disk and reclaim all available space.


  -l

List the directory on the BLITZ disk.


  -c  BlitzFileName  SizeInBytes

Create a file of the given size on the BLITZ disk.  The BLITZ disk must not already contain a file 
with this name.  Only the directory will be modified; the actual data in the file will be whatever bytes 
happened to be on the disk already.


  -r  BlitzFileName

Remove the file with the given name from the directory on the BLITZ disk.


  -a  UnixFilename  BlitzFileName

Copy a file from Unix to the BLITZ disk.  If BlitzFileName already exists, it must be large enough to 
accommodate the new data.


  -e  BlitzFileName  UnixFileName

Extract a file from the BLITZ disk to Unix.  This command will copy the data from the BLITZ disk to 
a Unix file.  The Unix file may or may not already exist; its size will be shortened or lengthened as 
necessary.


  -w  UnixFileName  SectorNumber

The UnixFileName must be an existing Unix file. The SectorNumber is an integer.  The Unix file 
data will be written to the BLITZ disk, starting at sector SectorNumber.  The directory will not be 
modified.


We are providing a DISK file which should be large enough, but if you want, you may create a new 
BLITZ disk file of a different size.  The new disk file must also be initialized properly; it can be created 
and initialized with the format command in the BLITZ emulator.  For example:


% blitz
...
> format
...
The name of the disk file is "DISK".
The file "DISK" did not previously exist.  (It could not
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                                         be opened for reading.)
Enter the number of tracks (e.g., 1000; type 0 to abort):
3
...
Initializing sectors 0 through 47...
Successful completion.

Next, we use diskUtil to create a file system, add several files, and print the directory, by typing these 
commands at the Unix prompt:


% diskUtil –i
% diskUtil -a temp1 MyFileA
% diskUtil -a temp2 MyFileB
% diskUtil -a MyProgram MyProgram
% diskUtil –l
   StartingSector   SizeInSectors    SizeInBytes        FileName
   ==============   =============    ===========    =====================
        0               1               8192            < directory >
        1               1               8192            MyFileA
        2               3               17000           MyFileB
        5               8               60264           MyProgram

The FileManager

There is only one fileManager object of the FileManager class; it is created and initialized at startup 
time.


We are supplying several methods to help you access files on the “stub” file system; these methods 
are located in this class.  You will need to know how to access files in order to create the first user-level 
process.  You’ll need to open the executable file, read the bytes from disk, then close the file.  You’ll 
also need to use the fileManager when you implement the Exec syscall.


Associated with the FileManager class, there are two other classes called FileControlBlock and 
OpenFile.  These two classes contain fields, but do not contain many methods of their own (besides 
Init() and Print() methods).  Instead, most of the work associated with the file system is done by the 
FileManager methods.


The FileControlBlock (FCB) objects and the OpenFile objects are limited resources.  The 
FileManager maintains a free list for each of these, as well as code to allocate new FCB objects and 
new OpenFile objects and maintain the free lists.


The FileManager also deals with opening files.  This involves finding the file in the file system, that is, 
determining the file’s location on disk.  In the “stub” file system this is pretty simple since there is only 
one directory and it fits into a single sector.  The FileManager—as programmed now—reads the 
directory sector (sector 0) into a frame as part of the FileManager.Init method.  Subsequent attempts 
to open a file require no disk accesses.  (Of course, for a real file system, things won’t be so simple.)
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FileControlBlock (FCB) and OpenFile

The semantics of files in the kernel you are building will be similar to the semantics of files in Unix.


Consider the case where one process has opened a file and does a kernel call to read, say, 10 bytes.  
The kernel must read the appropriate sector, extract the 10 bytes out of that sector, and finally copy 
those 10 bytes into the process’s virtual address space.  This requires the kernel to maintain a frame of 
memory to use as a buffer; the sector will be read into this buffer by the OS.


If the 10 bytes happen to span the boundary between sectors, the kernel must read both sectors in 
order to complete the Read syscall.  And of course, during the I/O operations other threads must be 
allowed to run.


Now consider what happens when a process wants to write, say, 20 bytes to a file.  The kernel will 
need to bring in the appropriate sector and copy the 20 bytes from the process’s virtual address 
space to the buffer.  Should the kernel write the buffer back to disk immediately?  No; it is likely that 
the process will want to write some more bytes to that very same sector, so it is more efficient to leave 
the sector in memory.


When should the kernel write the sector back to disk?  When the process closes the file, the kernel 
must write it back.  Also, other I/O operations on the file may need different sectors, so the kernel 
should write the sector back to disk when the buffer is needed for another sector.  However, if the 
buffer has not been modified, then there is no need to write it back to the disk.  Therefore, we 
associate a Boolean called bufferIsDirty with each buffer frame.  When a buffer is first read in from 
disk, it is considered to be “clean,” but after any operation modifies the buffer, it should be marked as 
“dirty.”


Next consider the case in which two processes have both opened the same file.  (Let’s call them 
processes “A” and “B.”)  Any update by process A must be immediately visible to process B.  If process 
A writes to a file and B reads from that same file, even before A has closed the file, then B should see 
the new data.  Since the kernel may not actually write to the disk for a long time after process A does 
the write, it means that processes A and B must share the buffer.


Also, when one process finally closes a file, the buffer must be written back to the disk.  The guarantee 
the kernel makes is that once we return from a call to Sys_Close, the disk has been updated.  The 
program can stop worrying about failures, etc., and can tell the user that it has completed its task.  Any 
changes the program has made—even if the system crashes in the next instance—will be permanent 
and will not be lost.  After a Sys_Close, the kernel must not return to the user-level program until the 
buffer (or all buffers, if there are more than one) is written to the disk successfully.


The purpose of a FileControlBlock (FCB) is to record all the data associated with a single file.  This 
includes the buffer and the bufferIsDirty bit.  Here is the definition of FCB:


class FileControlBlock
    superclass Listable
    fields
      fcbID: int
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      numberOfUsers: int             -- count of OpenFiles pointing here
      startingSectorOfFile: int      -- or -1 if FCB not in use
      sizeOfFileInBytes: int
      bufferPtr: int                 -- addr of a page frame
      relativeSectorInBuffer: int    -- or -1 if none
      bufferIsDirty: bool            -- Set to true when buffer is modified
    methods
      Init ()
      Print ()
    endClass

A small number FCBs are preallocated and kept in a table called fcbTable, which is maintained by the 
FileManager.  The FileManager is responsible for allocating new FileControlBlock objects and for 
returning unused FileControlBlock objects to a free pool called fcbFreeList.


The startingSectorOfFile tells where the file is located on the disk.  Since all the sectors in a file are 
contiguous, the starting address and the length are all we need.  The meaning of sizeOfFileInBytes 
is... well, obvious.  (Descriptive variable names like we tend to use are a HUGE help in understanding 
and reading code!)  A single memory frame is allocated for each FCB at kernel startup time and 
bufferPtr is set to point to that memory region.  relativeSectorInBuffer tells which sector of the file is 
currently in the buffer and is –1 if there is no valid data in the buffer.


Next consider a process “A” that has opened a file.  All of the “read” and “write” operations that the 
user-level process executes are relative to a “current position” in the file.  Several processes may have 
the same file open.  All processes that have file “F” open will share a single FCB.  However, they will 
each have a different “current position” in the file.


To handle the current position, we have the class OpenFile, which is defined as:


  class OpenFile
    superclass Listable
    fields
      kind: int                      -- FILE, TERMINAL, or PIPE
      currentPos: int                -- 0 = first byte of file
      fcb: ptr to FileControlBlock   -- null = not open
      numberOfUsers: int             -- count of Processes pointing here
    methods
      Print ()
      ReadBytes (targetAddr, numBytes: int) returns bool        -- true = All Okay
      ReadInt () returns int
      LoadExecutable (addrSpace: ptr to AddrSpace) returns int  -- -1 = problems
  endClass

Like the FCBs, there is a preallocated pool of OpenFile objects, which are created at system startup 
time.  The FileManager is responsible for allocating new OpenFile objects and for returning unused 
OpenFile objects to a free pool called openFileFreeList.
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When process “A” opens a file, a new OpenFile object must be allocated and made to point to an FCB 
describing the file.  If there is already an FCB for that file, then the OpenFile should be made to point to 
it; otherwise, we’ll have to get a new FCB, check the directory, and set up the FCB.


When do we return an FCB to the free pool?  When there are no more OpenFiles using it.  This is the 
reason we have a field called numberOfUsers in the FCB.  This field is a “reference counter.”  It tells 
the number of OpenFile objects that point to the FCB.  When a new OpenFile is allocated and made 
to point to an FCB, the count must be incremented.  When an OpenFile is closed, the count should be 
decremented.  When the count becomes zero, the FCB must be returned to the free pool.


When a process is terminated, for example due to an error such as an AlignmentException, the kernel 
must close any and all OpenFiles the process is using.  The process may explicitly close an OpenFile 
with the Close syscall.  Once a file is closed, the process should attempt no further I/O on the file and 
if the process does, the kernel should catch it and treat it as an error (by returning an error code from 
the Sys_Read or Sys_Write kernel call).


Our file I/O will follow the semantics of Unix.  When a process is cloned with the Fork syscall, all open 
files in the parent process must be shared with the child process.  Consider what happens when a 
parent and a child are both writing to the same file, which was originally opened in the parent.  Since 
both processes share the OpenFile object, they will share the current position.  If the child writes 5 
bytes, the current position will be incremented by 5.  Then, if the parent writes 13 bytes, these 13 bytes 
will follow the 5 bytes written by the child.


In order to implement these semantics, it will be possible for several ProcessControlBlocks (PCBs) to 
point to the same OpenFile object.  This implies that we need to maintain a reference count for the 
OpenFiles, just like the reference count for the FCBs.  Whenever a process opens a file, we need to 
allocate a new OpenFile object and set its count to 1.  Whenever a process forks, we will need to 
increment the count.  When a process closes a file (either by invoking the Close syscall or by dying), 
we will need to decrement the count.  If the count goes to zero, we will need to return the OpenFile to 
the free pool and decrement the count associated with the FCB.


User-level processes must not be allowed to use pointers into kernel memory and cannot be allowed 
to touch kernel data structures such as OpenFiles and FCBs.  So how does a user process refer to an 
OpenFile object?  Indirectly, through an integer.  Here is how it works.


Each process will have a small array of pointers to OpenFiles called fileDescriptor.


  class ProcessControlBlock
    ...
    fields
      ...
      fileDescriptor: array [MAX_FILES_PER_PROCESS] of ptr to OpenFile
    methods
      ...
  endClass
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When a process invokes the Open syscall, a new OpenFile will be set up.  Then the kernel will select 
an unused position in this array and make it point to the OpenFile.  For example, positions 0, 1, and 2 
might be in use, so the kernel may assign a file descriptor of 3 for the newly opened file.  The kernel 
must make fileDescriptor[3] point to the OpenFile and should return “3” as the fileDescriptor to the 
user-level process.


When the user-level process wants to do an I/O operation, such as Read, Write, Seek, or Close, it 
must supply the fileDescriptor.  The kernel must check that (1) this number is a valid index into the 
array, and (2) the array element points to a valid OpenFile.  When closing the file, the kernel will need 
to decrement the reference count for the OpenFile object and also set fileDescriptor[3] to null.  Then, 
if the user process attempts any future I/O operations with file descriptor 3, the kernel can detect that 
it is an error.


Since user-level file I/O will not be implemented in this course project, you will not need to worry about 
fileDescriptors.  However, it is important to understand how this mechanism works in BLITZ.


When a user-level program does a Read or Write syscall—in Unix or in the BLITZ OS—the data may 
be transferred from/to either:


	 a file on the disk

	 an I/O device such as a keyboard or display (these are called “special files” in Unix)

	 another process, via a “pipe”


In all three cases, an OpenFile object will be used.  The field called kind tells whether the object 
corresponds to a FILE, the TERMINAL, or a PIPE.  In this course project, we will only use OpenFiles to 
perform the Exec syscall, so the kind will be only FILE (and not TERMINAL or PIPE).


To Read in an Executable File

To read in an executable file from disk, your code will need to:


Open the file

Invoke LoadExecutable to do the work

Close the file


Read through the code for FileManager.Open:


method Open (filename: String) returns ptr to OpenFile

Open is passed a ptr to array of char; this is the name of the file on the BLITZ disk that you want to 
read from.  It will allocate a new OpenFile object and a new FCB object and set them up.  Then it will 
return a pointer to the OpenFile object, which you will use when calling LoadExecutable.  If anything 
goes wrong, Open returns null.  The only real danger is getting the filename wrong.


In BLITZ, like Unix, executable files have a rather complex format.  For details, you can read through 
the document titled “The Format of BLITZ Object and Executable Files.”  So that you do not have to 
write all this code, we have provided a method called OpenFile.LoadExecutable to you:
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method LoadExecutable (addrSpace: ptr to AddrSpace) returns int

Read through LoadExecutable in the class OpenFile.  It will:


• Create a new address space (by calling frameManager.GetNewFrames);

• Read the executable program into the new address space;

• Determine the starting address (the initial program counter, also called the “entry point”);

• Return the entry point.


If there are any problems with the executable file, this method will return –1.  Otherwise it will return the 
entry point of the executable.  This is the address (in the virtual address space) at which execution 
should begin.  Normally, this will be 0x00000000.


User-Level Processes

Each user-level process will have a single thread which will normally execute in User mode, with 
“paging” turned on and interrupts enabled.


Each user-level process will have a virtual address space, which will consist of:


	 A Page for “environment” data

	 Pages for the text segment

	 Pages for the data segment

	 Pages for the BSS segment

	 Pages for the user’s stack


These are shown in order, with the stack pages in the highest addresses of the virtual address space.  
The text segment will contain the instructions in the program and any constant values, the data 
segment will contain all static (global) variables that are not initialized to zeros, and the BSS (“Block 
Started by Symbol”) segment will contain all static (global) variables that are not initialized explicitly in 
the program (such as large arrays as global variables), and therefore should be initialized to zeros.  
OpenFile.LoadExecutable will initialize the entire BSS segment to all zeros.  Most KPL programs 
do not use a BSS segment, so there will usually be zero BSS pages.


The environment pages, if any, will reside at address 0 and will contain information that the OS wishes 
to pass to a new user-level process.  This includes userID, working directory, etc.  We will not use an 
environment page, so the text pages will begin at address 0.


Kernel.h contains this:


const
  NUMBER_OF_ENVIRONMENT_PAGES = 0
  USER_STACK_SIZE_IN_PAGES = 1
  MAX_PAGES_PER_VIRT_SPACE = 20
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The user-level program will have a stack, which will grow downward.  Each virtual address space will 
have a predetermined small number of pages (in our case, this is one page) set aside for its stack.  In 
Unix, if a user process’s stack grows beyond its initial allocation, more stack pages would be added.  In 
the BLITZ OS, if a user process’s stack grows beyond this, it will begin overwriting the BSS and data 
pages, and the program will probably get an error of some sort soon thereafter.


As an example, a program might use:


	 0 environment pages

	 2 text pages

	 1 data page

	 0 BSS pages

	 1 stack page


This process’s virtual address space will have 4 pages.  Each page has PAGE_SIZE bytes (8 Kbytes), 
so the entire address space will be 32 Kbytes.  Any address between 0x00000000 and 0x00007FFF 
(which is 32K-1 in hex) would be legal for this program.  If the program tries to use any other address, a 
PageInvalid Exception will occur.


In Unix, the environment and text pages would be marked read-only and any attempt to update bytes 
in those pages would cause an exception.  In this course project, all pages of the virtual address space 
will be read-write, so our OS will not be able to catch that sort of error in the user-level program.


Each page in the virtual address space will be stored in one frame in memory.  The frames do not have 
to be contiguous and the pages may be stored in pretty much any order.  However, all pages will be in 
memory throughout the process’s lifetime.


The page table will keep track of where each page is kept.  While the process is executing, “paging” 
will be turned on so that the memory management unit (MMU) will translate all virtual addresses into 
physical addresses.  Our example program will not be able to read or write anything outside of its 4 
pages.


There may be several processes in the system at any time.  Each ProcessControlBlock contains an 
AddrSpace, which tells how many pages the process’s address space has and which frame in the 
physical memory holds each page.


When some process (call it “P”) is ready to be scheduled and given a time slice, the MMU will be need 
to be set up so that it points to the page table for process P.  You can do this with the method:


AddrSpace.SetToThisPageTable ()

which calls an assembly routine to load the MMU registers.  This method must be invoked before 
paging is turned on.  When paging is turned off (i.e., whenever kernel code is being executed), the 
MMU registers are ignored.
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Note that each thread will have two stacks: a user stack and a system stack.  We have already seen 
the system stack; it is used when one kernel function calls another kernel function.  The user stack will 
be used when the thread is running in user mode.  The system stack, which is fairly small, normally 
contains nothing while the user-level program is running.  In other words, the system stack is 
completely empty.  


After the user-level program begins executing, execution can re-enter the kernel only through 
exception processing.  That is, the only ways to get back into the kernel are:


an interrupt,

a program exception, or

a syscall


In each of these cases, the exact same thing happens: some information is pushed onto the system 
stack, the mode is changed to system mode, paging is turned off, and a jump is made to a kernel 
“handler” routine.


The BLITZ computer has two sets of registers: one for user-mode code and one for system-mode 
code.  Thus, the user registers do not need to be saved, unless the kernel will switch to another thread.  
This is done in the Run method, which contains this code:


      if prevThread.isUserThread
        SaveUserRegs (&prevThread.userRegs[0])
      endIf
      ...
      Switch (prevThread, nextThread)
      ...
      if currentThread.isUserThread
        RestoreUserRegs (&currentThread.userRegs[0])
        currentThread.myProcess.addrSpace.SetToThisPageTable ()
      endIf

If the kernel handler code wishes to return to the same user-level code that was interrupted, it can 
merely return to the assembly language handler routine, which will perform a reti instruction.  The user 
registers and the MMU registers will (presumably) be unchanged, so when the mode reverts to “user 
mode” and the paging reverts to “paging enabled,” the user-level program will resume execution with 
the same values in the user registers and the same virtual address space.


Creating a User-Level Process

The main function calls function InitFirstProcess, which you must implement.  The first thing you will 
need to do is get a new thread object by invoking GetANewThread.  Since the InitFirstProcess 
function should return, you cannot use the current thread.  Next you will need to initialize the thread 
and invoke Fork to start it running.  (You can name this new thread something like “UserProgram,” but 
the name is only used in the debugging printouts.)
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The new thread should execute the StartUserProcess function, which will do the remainder of the 
work in starting up a user-level process.  InitFirstProcess can supply a zero as an argument to 
StartUserProcess and can return after forking the new thread.


The first thing you will need to do in StartUserProcess is allocate a new PCB (with 
GetANewProcess) and connect it with the thread.  So initialize the myThread field in the PCB and the 
myProcess field in the current thread.


Next, you will need to open the executable file.  It is acceptable to “hardcode” the filename (e.g., 
“TestProgram1”) into the call to Open, although changing the name of the initial process will require a 
recompile of the kernel.  If there are problems with the Open, this is a fatal, unrecoverable error and the 
kernel startup process will fail.


Next, you will need to create the virtual address space and read the executable into it.  The method 
OpenFile.LoadExecutable will take care of both tasks.  If this fails, the kernel cannot start up.  
LoadExecutable returns the entry point, which you might call initUserPC.


Do not forget to close the executable file you opened earlier, or else a system resource will be 
permanently locked up.


Next, you will need to compute the initial value for the user-level stack, which you might call 
InitUserStackTop.  It should be set to the virtual address just past the end of the virtual address 
space, since the initial push onto the user stack will first decrement the top pointer.  The virtual 
address space starts at zero.  The virtual address space contains addrSpace.numberOfPages 
pages.  Each page has size PAGE_SIZE bytes.


The StartUserProcess function will end by jumping into the user-level program.  This is a one way 
jump; execution will never return.  (Instead, if the user-level program needs to re-enter the kernel, it will 
execute a syscall).  As such, nothing on the system stack will ever be needed again.  We want to have 
a full-sized system stack available for processing any syscalls or interrupts that happen later, so you 
need to reset the system stack top pointer, effectively clearing the system stack.


You might call the new value initSystemStackTop.  You’ll need to set it to:


& currentThread.systemStack[SYSTEM_STACK_SIZE-1]

Next, you will need to turn this thread into a user-level thread.  This involves these actions:


	 1.	 Disable interrupts;

	 2.	 Initialize the page table registers for this virtual address space;

	 3.	 Set the isUserThread variable in the current thread to true;

	 4.	 Set system register r15, the system stack top;

	 5.	 Set user register r15, the user stack top;

	 6.	 Clear the System mode bit in the condition code register to switch into user mode;

	 7.	 Set the Paging bit in the status register, causing the MMU to do virtual memory mapping;

	 8.	 Set the Interrupts Enabled bit in the status register, so that future interrupts will be handled;
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	 9.	 Jump to the initial entry point in the program.


Recall that every thread begins life with interrupts enabled, so your StartUserProcess function will be 
executing with interrupts enabled.  The first step is to disable interrupts, since there are possible race 
conditions with steps (2) and (3) above.


[What is the potential race condition problem?  Consider what happens if a context switch (i.e., timer 
interrupt) were to occur between setting the page table registers and setting isUserThread to true.  
Look at the Run method.  The MMU registers would be changed for the other process; then when this 
thread is once again scheduled, the code in Run will see isUserThread == false so it will not restore 
the MMU registers.  Merely swapping the order of steps (2) and (3) results in a similar race condition.]


The first 3 steps can be done in high-level KPL code, but steps (4) through (9) must be done in 
assembly language.  Read through the BecomeUserThread assembly routine provided to you in the 
file Switch.s, which will take care of steps (4) through (9).  In this case, StartUserProcess should end 
with a call to this routine:


      BecomeUserThread (initUserStackTop, initPC, initSystemStackTop)

BecomeUserThread will change the mode bits and perform the jump “atomically.”  This must be done 
atomically since the target jump address is a virtual address space.  The way it does this is a little 
tricky: it pushes a fake exception info word, the new status register (with interrupt and paging 
enabled), and the PC onto the system stack, just as if a syscall or interrupt has occurred, and then 
executes a reti instruction.


BecomeUserThread jumps to the user-level main routine and never returns.


Approach to Implementing the Exec Syscall

The sequence of steps in InitFirstProcess and StartUserProcess is very similar to what you will need 
when implementing the Exec syscall.  You should be able to copy much of this code when 
implementing Sys_Handle_Exec.


One difference is that during an Exec, you already have a process and a thread, so you will not need to 
allocate a new ProcessControlBlock, allocate a new Thread object, or do a fork.  However, you will 
have to work with two virtual address spaces.  The LoadExecutable method requires an empty 
AddrSpace object; it will then allocate as many frames as necessary and initialize the new address 
space.


Unfortunately, LoadExecutable may fail and, if so, your kernel must be able to return to the process 
that invoked Exec (with an error code, of course).  So you better not get rid of the old address space 
until after the new one has been initialized and you can be sure that no more errors can occur.


One approach is to create a local variable of type AddrSpace.  Do not allocate it on the heap, just use 
something like:


var newAddrSpace: AddrSpace = new AddrSpace
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Then, after the new address space has been set up, you can copy it into the ProcessControlBlock, 
e.g.,


currentThread.myProcess.addrSpace = newAddrSpace

Do not forget to free the frames in the previous address space first, or else valuable kernel resources 
will remain forever unavailable and the kernel will eventually freeze up!


Another tricky problem is copying the filename string from a virtual address space into the kernel 
address space where it can be used.  The filename argument is a virtual address, but since the kernel 
is running in Handle_Sys_Exec, paging will be turned off.


You will need to copy the characters into an array variable, not something newly allocated on the heap.  
It is okay to put a maximum size on this array and then check that it is not exceeded.  In fact, there is a 
constant in Kernel.h for this purpose:


const
  MAX_STRING_SIZE = 20

(In a real OS, the maximum string size would be much larger or even nonexistent.  Here, we use a small 
size to make testing the limits easier.)


Note that the filename pointer is virtual address, which must be translated into a physical address; you 
can not just use it as is.  This requires some code to perform the page table lookup in software.  
Furthermore, since the filename string is in virtual space, it may cross page boundaries.  (In fact, the 
test program contains cases where this happens!) 


Dealing with the filename is fairly complex, and for this reason we provide you with a method:


GetStringFromVirtual (kernelAddr: String, virtAddr, maxSize: int) returns int

which will do most of the work.  (GetStringFromVirtual calls CopyBytesFromVirtual to do the 
copying.)  The GetStringFromVirtual method can be used like this:


  var
    strBuffer: array [MAX_STRING_SIZE] of char
  ...
  ret = currentThread.myProcess.addrSpace.GetStringFromVirtual (
             &strBuffer,
             filename asInteger,
             MAX_STRING_SIZE)
  if ret < 0
    ...error...
  endIf

You might think of allocating a temporary buffer on the heap, but remember that we do not want to 
allocate anything on the heap after kernel start-up.
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[Recall that the “alloc” expression in KPL always allocates bytes on the heap.  Once the kernel has 
booted and is running, you must avoid further allocations.  Why?  One problem is automatic garbage 
collection like you see in Java; we can not use automatic garbage collection since it would produce 
unpredictable delays and might cause the kernel to miss interrupts or, in the case of a real-time 
system, miss deadlines.  Also, there is the possibility that the heap might fill up, and dealing with a 
“heap full” error in the kernel is difficult.  Another option might be to try to manage the heap without 
automatic garbage collection, but years of C++ experience has taught everybody that this is very 
difficult to do correctly.  This explains why we have gone through the trouble of creating classes like 
ThreadManager and ProcessManager, instead of simply allocating new Thread and 
ProcessControl-Block objects. ]


AllocateRandomFrames

The main function includes a function named AllocateRandomFrames, which is aimed only at 
catching bugs in the kernel.  This function will allocate every other frame in the physical memory and 
never release them, creating a “checkerboard pattern” in memory.  Henceforth, no two pages will ever 
be allocated to contiguous page frames.


Large, multi-byte chunks of data in the user-level process’s address space will occasionally span page 
boundaries.  Since these pages may not be in adjacent frames, your kernel will have to be careful 
about moving data to and from user space.  What may appear to the user-level program as a string of 
adjacent bytes may in fact be spread all over physical memory.


Some of the user-level syscalls pass pointers to the kernel.  For example, Open passes a pointer to a 
string of characters.  Keep in mind that this pointer is a virtual address, not a physical address.  As 
such, you cannot simply use the pointer as is.  Take a look at these methods in AddrSpace:


CopyBytesFromVirtual (kernelAddr, virtAddr, numBytes: int) returns int
CopyBytesToVirtual (virtAddr, kernelAddr, numBytes: int) returns int
GetStringFromVirtual (kernelAddr: String, virtAddr, maxSize: int) returns int

An invocation of AllocateRandomFrames has been added just after the FrameManager is initialized.  
Please leave this in and do not modify the AllocateRandomFrames routine.

Do not modify any other files except Kernel.h and Kernel.c.  Do not create global variables (except for 
testing purposes).  Do not modify the methods we have provided.


What to Submit

Please submit Kernel.c and Kernel.h by email to the TA.


Please do not modify any files except Kernel.c and Kernel.h.  Do not create global variables (except 
for testing purposes).
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Grading for this Course Project

Your submitted solution will be marked using test cases. The maximum mark for this course project is 
20. Task 1 will account for 4 marks, Task 2 will account for 8 marks, and Task 3 will account for 8 
marks.  The test cases have been provided to you, in the form of TestProgram1.c, which calls 
Sys_Exec to load TestProgram2.c. 


Sample Output from Provided Test Cases

Provided in the file called course-project-example-output.txt, which you can download from the 
course website.
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