

Copyright 2023. All rights reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or other electronic or
mechanical methods, without the prior written permission of the publisher, except in the case of brief
quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.
For permission requests, contact Tom Johnson at tomjoht@gmail.com.

PDF last generated: August 27, 2023

Documenting REST APIs ii

Table of Contents
Chapter 1: Introduction to REST APIs1

Course Overview... 2

What's new ... 9

Workshop video recordings.. 11

Download PDFs .. 12

Workshop agenda, slides, activities ... 13

Why I developed this course .. 18

About the author ... 20

Introduction to REST API documentation... 22

What is a REST API? .. 36

Activity: Identify your goals... 43

Developer Documentation Trends: Survey Results .. 44

Glossary .. 55

Chapter 2: Using an API like a developer64
Scenario for using a weather API ... 65

Get authorization keys .. 69

Submit requests through Postman... 71

curl intro and installation... 78

Make a curl call ... 80

Understand curl more ... 83

Activity: Use methods with curl .. 88

Analyze the JSON response ... 94

Inspect the JSON from the response payload ... 98

Access and print a specific JSON value... 103

Dive into dot notation.. 109

Chapter 3: Documenting API endpoints114
A new endpoint to document ... 115

API reference tutorial overview ... 118

Step 1: Resource description ... 120

Step 2: Endpoints and methods ... 126

Step 3: Parameters ... 132

Step 4: Request example ... 141

PDF last generated: August 27, 2023

Documenting REST APIs iii

Step 5: Response example and schema .. 154

Putting it all together... 169

Activity: What's wrong with this API reference topic.. 173

Activity: Evaluate API reference docs for core elements.. 177

Chapter 4: OpenAPI spec and generated reference docs ..179
Overview of REST API specification formats.. 180

Introduction to the OpenAPI specification.. 181

Stoplight: Visual modeling tools for creating your spec ... 195

Getting started tutorial: Using Stoplight Studio to create an OpenAPI specification
document.. 201

Swagger UI tutorial ... 218

SwaggerHub introduction and tutorial.. 230

Swagger UI Demo... 240

Integrating Swagger UI with the rest of your docs ... 241

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools .. 249

Redoc Community Edition Basic Demo ... 268

Chapter 5: Step-by-step OpenAPI code tutorial271
OpenAPI tutorial using Swagger Editor and Swagger UI: Overview 272

Working in YAML .. 276

Step 1: The openapi object... 282

Step 2: The info object.. 285

Step 3: The servers object.. 288

Step 4: The paths object... 291

Step 5: The components object ... 302

Step 6: security object .. 327

Step 7: The tags object... 334

Step 8: The externalDocs object .. 337

Activity: Create an OpenAPI specification document... 340

Chapter 6: Testing API docs ..342
Overview of testing your docs .. 343

Set up a test environment... 345

Test all instructions yourself ... 348

Test your assumptions.. 353

Activity: Test your project's documentation ... 357

PDF last generated: August 27, 2023

Documenting REST APIs iv

Chapter 7: Conceptual topics in API docs358
API conceptual topics overview ... 359

API product overviews.. 360

API getting started tutorials .. 379

API authentication and authorization.. 393

API status and error codes ... 402

API rate limiting and thresholds.. 408

API quick reference... 412

API glossary .. 418

API best practices... 426

Activity: Complete the SendGrid Getting Started tutorial... 429

Activity: Assess the conceptual content in your project... 430

Chapter 8: Code tutorials...432
Common characteristics of code tutorials.. 433

Why documenting code is so difficult... 434

What research tells us about documenting code ... 438

Five strategies for documenting code .. 451

Code samples... 464

Sample apps... 476

SDKs (software development kits).. 480

API design and usability ... 488

Developer experience (DevX) usability.. 497

Chapter 9: The writing process ...501
Overview of the writing process ... 502

1. Planning .. 504

2. Information gathering.. 507

3. Writing... 513

4. Reviewing.. 519

5. Publishing ... 527

Chapter 10: Publishing API docs...530
Overview for publishing API docs... 531

Survey of API doc sites... 536

Design patterns with API doc sites... 540

Docs-as-code tools .. 551

PDF last generated: August 27, 2023

Documenting REST APIs v

More about Markdown ... 556

Version control systems (e.g., Git) .. 562

Activity: Manage content in a GitHub wiki.. 569

Activity: Use the GitHub Desktop Client... 577

Activity: Pull request workflows through GitHub .. 586

Static site generators.. 591

Hosting and deployment options.. 602

Hybrid documentation systems.. 607

Using Oxygen XML with docs-as-code workflows... 612

Blobr: An API portal that arranges your API's use cases as individual products 626

Which tool to choose for API docs — my recommendations... 633

Jekyll and CloudCannon continuous deployment tutorial .. 637

Case study: Switching tools to docs-as-code.. 645

Tools FAQ ... 657

Chapter 11: Thriving in the API doc space659
The job market for API technical writers... 660

How much code do you need to know?... 664

Best locations for API documentation jobs .. 674

Activity: Find an Open-Source Project ... 686

Activity: Create or fix an API reference documentation topic... 690

Chapter 12: Native library APIs..691
Overview of native library APIs ... 692

Get the sample Java project... 695

Java crash course... 701

Activity: Generate a Javadoc from a sample project.. 707

Javadoc tags .. 712

Explore the Javadoc output.. 720

Make edits to Javadoc tags.. 722

Doxygen, a document generator mainly for C++ ... 723

Create non-ref docs with native library APIs .. 726

Chapter 13: Processes and methodology727
DX content strategy with developer portals ... 728

Following agile scrum with documentation projects .. 733

Managing large documentation projects .. 737

PDF last generated: August 27, 2023

Documenting REST APIs vi

Managing small documentation requests... 750

Managing SDK releases.. 755

Documentation kickoff meetings and product demos ... 760

Processes for reviewing documentation .. 764

Maintaining existing documentation... 770

Collecting feedback post-release ... 775

Managing content from external contributors .. 782

Changing internal doc culture... 785

Sending doc status reports -- a tool for visibility and relationship building 789

Broadcasting your meeting notes to influence a wider audience..................................... 794

Ensuring documentation coverage with each software release 798

Chapter 14: Metrics and measurement800
Measuring documentation quality through user feedback ... 801

Different approaches for assessing information quality ... 804

Quality checklist for API documentation... 814

Quantifying your progress .. 825

Chapter 15: AI and API documentation826
First look at the Oxygen XML AI Positron Assistant ... 827

AI document engineering with pattern-based prompts.. 842

Using AI tools to build, stage, and publish API reference docs 851

Using AI to learn coding ... 856

Using AI for language advice .. 860

Using AI to create doc updates based on bugs ... 864

Using AI For thematic analysis ... 870

Using AI for comparison tasks with API responses.. 879

Chapter 16: Additional resources..892
Documenting GraphQL APIs .. 893

More REST API activities .. 900

Activity: Get event information using the Eventbrite API .. 901

Activity: Retrieve a gallery using the Flickr API... 908

Activity: Get wind speed using the Aeris Weather API ... 918

RAML tutorial .. 924

API Blueprint tutorial ... 938

API jeopardy answer key .. 951

PDF last generated: August 27, 2023

Documenting REST APIs vii

What's wrong with this topic answer key ... 952

Menlo Park API workshop video recording .. 953

Denver API workshop video recording ... 954

API doc presentation video recordings .. 955

PDF last generated: August 27, 2023

Documenting REST APIs viii

Chapter 1: Introduction to REST APIs
REST APIs are flourishing in the marketplace, and the web is becoming a mashup of interconnected APIs.
REST APIs consist of requests to and responses from a web server. Job prospects are hot for technical
writers who can write developer documentation. This course will help you break into API documentation,
especially if you complete the many portfolio-building activities.

Chapter sections:

Course Overview .. 2

What's new... 9

Workshop video recordings ... 11

Download PDFs.. 12

Workshop agenda, slides, activities... 13

Why I developed this course .. 18

About the author .. 20

Introduction to REST API documentation .. 22

What is a REST API? .. 36

Activity: Identify your goals .. 43

Developer Documentation Trends: Survey Results ... 44

Glossary ... 55

Chapter 1: Introduction to REST APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 1

Documenting APIs: A guide for
technical writers and engineers
In this course on writing documentation for APIs, instead of just talking about abstract concepts, I
contextualize APIs with a direct, hands-on approach. You’ll first learn about API documentation by using a
simple weather API to put a weather forecast on your site.

As you use the API, you’ll learn about endpoints, parameters, data types, authentication, curl, JSON, the
command line, Chrome’s Developer Console, JavaScript, and more. The idea is that rather than learning
about these concepts independent of any context, you learn them by immersing yourself in a real scenario
while using an API. Immersion in real scenarios makes these tools and technologies more meaningful.

We’ll then transition into standards, tools, and specifications for REST APIs. You’ll learn about the required
sections in API documentation, analyze examples of REST API documentation from various companies,
learn how to join an open-source project to get experience, and more.

About REST APIs
In a nutshell, REST APIs (which are a type of web API) involve requests and responses, not too unlike
visiting a web page. You make a request to a resource stored on a server, and the server responds with the
requested information. The protocol used to transport the data is HTTP. “REST” stands for
Representational State Transfer.

REST APIs involve requests and responses over HTTP protocol

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Documenting REST APIs Page 2

I dive more into the principles of REST in What is a REST API? (p. 36) In REST API documentation, you
describe the various endpoints available, their methods, parameters, and other details, and you also
document sample responses from the endpoints.

From practice to documentation
In this course, after you practice using an API like a developer (p. 64), you’ll then shift perspectives and
“become a technical writer” tasked with documenting a new endpoint (p. 114) that engineers added to an
API. As a technical writer, you’ll tackle each element of a reference topic in REST API documentation:

1. Resource descriptions (p. 120)
2. Endpoints and methods (p. 126)
3. Parameters (p. 132)
4. Request example (p. 141)
5. Response example (p. 154)

Exploring each of these sections will give you a solid understanding of how to document REST APIs. You’ll
also learn how to document the conceptual sections for an API (p. 358), such as the getting started tutorial
(p. 379), product overview (p. 360), status and error codes (p. 402), request authorization (p. 393), and
more.

You’ll also dive into different ways to publish REST API documentation (p. 530), exploring tools and
specifications such as GitHub (p. 569), static site generators like Jekyll (p. 637), and other docs-as-code
approaches (p. 551). You’ll learn how to leverage templates, build interactive API consoles so users can try
out requests and see responses, and learn how to manage your content through version control (p. 562).

We’ll also dive into specifications such as the OpenAPI specification (p. 272) and Swagger UI (p. 181)
(which provides tooling for the OpenAPI specification). Additionally, you’ll learn how to document native
library APIs (p. 691) and generate Javadoc (p. 707).

Tech writing is about more than tools and technology, though. As such, I even explore processes and
methodologies (p. 727) in depth, explaining how to manage both large (p. 737) and small (p. 750)
documentation projects, how to collect documentation feedback (p. 775), how to keep stakeholders happy
and updated (p. 789), and more.

I’ve also included a section on metrics and measurement (p. 801), which lists a comprehensive quality
checklist (p. 814). The criteria described can help you evaluate your own developer portal in myriad ways
against industry best practices.

Throughout this course, I put these concepts in real, applicable contexts with hands-on activities and
demos.

Who the course is for
The course primarily serves the following audiences:

• Professional technical writers looking to transition from traditional documentation into more API-
focused documentation for developers.

• Students learning how to prepare themselves technically to succeed in the tech comm field,
which is becoming more focused on developer documentation.

• Developers who are documenting their own APIs and want to know best practices for structure,
terminology, and style with tech docs.

• Educators who are training technical writing students about API documentation practices and
technologies.

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Documenting REST APIs Page 3

Course organization
The course consists of the following sections:

• I: Introduction to REST APIs (p. 1)
• II: Using an API like a developer (p. 64)
• III: Documenting API endpoints (p. 114)
• IV: OpenAPI spec and generated reference docs (p. 179)
• V: Step-by-step OpenAPI code tutorial (p. 271)
• VI: Testing API docs (p. 342)
• VII: Conceptual topics in API docs (p. 358)
• VIII: Code tutorials (p. 432)
• IX: The writing process (p. 501)
• X: Publishing API docs (p. 530)
• XI: Thriving in the API doc space (p. 659)
• XII: Native library APIs (p. 691)
• XIII: Processes and methodology (p. 727)
• XIV: Metrics and measurement (p. 800)
• XV: Additional resources (p. 892)

Sequence and activities
You don’t have to read the sections in order — feel free to skip around as you prefer. Some of the earlier
sections (such as the section on Using a REST API like a developer (p. 64) and Documenting endpoints (p.
114) follow a somewhat sequential order with the same weather API scenario (p. 65), but by and large you
can jump around as desired.

Because the purpose of the course is to help you learn, there are many activities that require hands-on
coding and other exercises. Along with the learning activities, there are also conceptual deep dives, but the
focus is always on learning by doing. Where there are hands-on activities, I typically include this icon in the
section title: . Other topics have the word “Activity” in the title. The activities are integrated into various
sections, but you can also see many of the activities in the Workshop Activities (p. 13). These are the
activities we do during live workshops.

I refer to the content here as a “course” instead of a book or a website, primarily because I include a lot of
exercises throughout in each section, and I find that people who want to learn API documentation prefer a
more hands-on “course” experience. Below each topic is a progress indicator that reminds you to keep
moving through the course.

How long will it take to finish the course?
Don’t be daunted if you never make it entirely through the course. If printed to PDF, the content is about
900 pages. And I keep adding to the content, refining it, rearranging and adjusting it as I see fit and as I
grow my experience and awareness. It’s a living document. Almost no one really finishes the course from
beginning to end because by the time they do, I’ll have added new content.

Also, you should only focus on those sections that you need to learn. See this Reddit post, Has anyone
here completed the idratherbewriting API writing course by Tom Johnson? . For someone already familiar
with many concepts, they can breeze through the course in less than a week. For someone new to API
documentation, they might spend many months making their way through the course. If you keep finding
value in the content, take as long as you want. If you don’t find yourself learning anything, skip forward.

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Documenting REST APIs Page 4

https://www.reddit.com/r/technicalwriting/comments/ropvtx/has_anyone_here_completed_the_idratherbewriting/
https://www.reddit.com/r/technicalwriting/comments/ropvtx/has_anyone_here_completed_the_idratherbewriting/

Will this course help you get a job in API documentation?
The most common reason people take this course is to transition into API documentation. This course will
help you make that transition, but you can’t just passively read through the content. You need to do the
activities outlined in each section, especially those topics that involve working with content from an open-
source project (p. 686) (or something similar). These activities are crucial to building experience and
credibility with a portfolio. I provide more details in Getting an API documentation job and thriving (p. 659).
Without a strong portfolio to demonstrate your writing expertise, almost no manager will hire you, even if
you have an extensive tech background.

No programming skills required
As for the needed technical background for the course, you don’t need any programming background or
other prerequisites, but it will help to know some basic HTML, CSS, and JavaScript.

If you do have some familiarity with programming concepts, you might speed through some of the sections
and jump ahead to the topics you want to learn more about. This course assumes you’re a beginner,
though.

Some of the code samples in this course use JavaScript. JavaScript may or may not be a language that
you actually use when you document REST APIs, but most likely there will be some programming language
or platform that becomes important to know.

JavaScript is one of the most useful and easy languages to become familiar with, so it works well in code
samples for this introduction to REST API documentation. JavaScript allows you to test code by merely
opening it in your browser (rather than compiling it in an IDE). (I have a quick crash-course in JavaScript
here if you need it.)

What you’ll need
Here are a few tools you’ll need to do the activities in this course:

• Computer. You need a computer (if attending the live workshop, a laptop and charging cord), as
there are many activities to work through.

• Text editor. If you don’t already have a favorite text editor, download Sublime Text , as it
works well on both Mac and Windows and is free. If you have another text editor you prefer (e.g.,
Visual Studio Code , Atom , or even Notepad++), that will work too. Just make sure you
can write code in plain text.

• Chrome browser. Chrome provides a Javascript Console that works well for inspecting
JSON, so we’ll be using Chrome. Also, in order to read JSON responses more easily in the
browser, install the JSON Formatter Chrome extension.

• Postman. Postman is an app that allows you to make requests and see responses through a
visual client. Make sure you download the app and not the Chrome extension.

• curl. curl is essential for making requests to endpoints from the command line. Mac already
has curl built-in, but it might not be available by default on Windows. (Some Windows 10 builds
already have it in Powershell.) On Windows, open a Command Prompt and type curl -V . If it’s
not installed, go to confusedbycode.com/curl and install a version (usually “With Administrator
Privileges (free), 64-bit”). Close and re-open your Command Prompt and try typing curl -V

again.
• Git. Git is a version control tool developers often use to collaborate on code. For Windows,

see https://gitforwindows.org/ to set up Git and the Git BASH terminal emulator. For Mac, see
Downloading Git .

• GitHub account. GitHub will be used for various activities, sometimes to demonstrate the Git
workflow and other times as an authentication service for developer tools. If you don’t already

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Documenting REST APIs Page 5

https://idratherbewriting.com/javascript/
https://idratherbewriting.com/javascript/
http://www.sublimetext.com/
https://code.visualstudio.com/
https://atom.io/
https://notepad-plus-plus.org/
https://www.google.com/chrome/browser/desktop/index.html
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
http://www.getpostman.com/
http://curl.haxx.se/
http://confusedbycode.com/curl
https://git-scm.com/
https://gitforwindows.org/
https://git-scm.com/download/mac
https://github.com/

have a GitHub account, sign up for one.
• Stoplight Studio Editor. When working with the OpenAPI specification, we’ll use the Stoplight

Studio Editor. Stoplight Studio provides visual modeling tools for working with the OpenAPI
specification. Stoplight offers both a web browser and standalone app versions of the editor.
We’ll be using the web browser version because it provides more complete functionality (such as
trying out requests). Go to https://stoplight.io/studio and log in with GitHub.

• OpenWeatherMap API key. We’ll be using the OpenWeatherMap API for some exercises. It
takes a couple of hours for the OpenWeatherMap API key to become active, so it’s best if you
get the API key ahead of time — then when you get to the OpenWeatherMap API activities, you’ll
be all set. To get your (free) OpenWeatherMap API key, go to https://openweathermap.org/ .
Click Sign Up in the top nav bar and create an account. After you sign up, OpenWeatherMap
sends you an API key to your email. you can also find it when you log in and click the API Keys
tab from the dashboard. Copy the key into a place you can easily find it.

Testing Your Setup
In the past, people have asked for some tests to check whether their laptops are correctly set up.

• If you want to test whether Postman works, open up the Postman app and paste this into the
GET box: https://api.openweathermap.org/data/2.5/

weather?zip=95050&units=imperial&appid=126cac1a482f51de0f1287b45ae2bf9a . Then
click Send. If you get a response, it’s working correctly. (In rare cases, sometimes people have
security restrictions on their computers that block all network access.)

• If you want to test whether curl is installed, open Terminal (on Mac) or Command Prompt (on
Windows) and paste in curl --get "https://api.openweathermap.org/data/2.5/

weather?zip=95050&units=imperial&appid=126cac1a482f51de0f1287b45ae2bf9a" . If you
get a JSON response, you’re good.

• To check whether Git is installed, open up Terminal (on Mac) or Command Prompt (on Windows)
and type git --version . If it’s installed, you’ll see the version.

Video recordings
For video recordings of this course, see the Video recordings of API doc workshops (p. 11). The page lists
the most recent video recordings available. The video doesn’t go into the same level of detail as the written
material, but it would be a good start.

See my Upcoming Presentations on my blog for details about future workshops and presentations.

Course slides
For the live workshops, I have various slides that cover different sections of this course. See Course Slides
(p. 13) for the links. The slides use RevealJS , which is an HTML/CSS/JS framework for slides. The
images are single-sourced between the site and the slides, so they’ll more likely stay in sync.

Copyright and re-use of materials
Some people have asked whether they can use materials from this course to give their own API
documentation workshops. I only allow the material to be used for non-profit workshops where the
workshop leader isn’t charging participants for the instruction. Of course, many of the ideas and concepts
in this course aren’t specific or unique to me, and you’re entitled to fair use. However, please don’t just
hijack my site’s materials, activities, and other information for your own commercial endeavors.

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Documenting REST APIs Page 6

https://stoplight.io/studio
https://openweathermap.org/
https://idratherbewriting.com/presentations/
https://github.com/hakimel/reveal.js/

If you’re a teacher at a college or university (or high school) and are trying to teach APIs and developer
docs to your students, feel free to use this site as part of your instructional materials. I appreciate links
back to the site and attribution as needed (links pointing to my site boost search engine rankings). My
larger goal for this site is to help educate and empower tech writers with developer documentation
strategies, workflows, and best practices. If you’d like to share your API documentation course syllabus,
contact me and I’ll add a link here.

Is this course really free?
Yes, this course is entirely free. Advertising helps make this content free, so you will see little text snippets
and other ads on the course pages promoting links to API service providers. Sometimes I also include
sponsored pages as well to highlight a vendor’s particular offerings. Whenever content is sponsored, I note
that on the page. I also wouldn’t include any content in the course that didn’t meet my standards or which I
wouldn’t recommend.

If you’d like to give back, feel free to buy me coffee by clicking the Buy me a coffee button on the
bottom of each page or by buying the PDF of the course . I’m grateful to see many people who find
enough value in the course to contribute back. Seeing contributions helps me feel in a more immediate way
how much the content helps people.

PDF and Kindle/eBook formats
To read the same content in PDF or Kindle/eBook formats, see PDF and eBook formats (p. 12). You can
print out the section you want, or load it into a PDF reader to highlight/annotate content. Or if you prefer
Kindle or another eReader, download the content in ebook format and load it onto your device.

Let me know if any content is out of date
One of the challenges in any technical course is ensuring the content stays up to date. Technology
changes rapidly, and given the many hands-on activities in the course, it’s easy for some steps to become
out of date as time passes. I’ve tried to maintain a healthy balance between general and specific details in
the content here. If you find something is out of date, either add a comment on that page or let me know
.

Stay updated
If you’re following this course, you most likely want to learn more about APIs. I publish regular articles that
talk about APIs and strategies for documenting them. You can stay updated about these posts by
subscribing to my free newsletter through the form below. My newsletter, branded as the I’d Rather Be
Writing newsletter, helps you stay updated about everything going on in the techcomm world, with a
special emphasis on API documentation, docs-as-code tools, and lately AI.

Other resources
If you’ve looking for additional resources to learn API documentation as well as tech writing best practices,
check out the following:

• Cherryleaf’s API documentation training course , by Ellis Pratt. (See a preview here .)

• Peter Gruenbaum’s API doc courses on Udemy , by Peter Gruenbaum of SDK Bridge . (He
has multiple Udemy courses on API docs, Swagger, Git, and more.)

• Docs Like Code , by Anne Gentle

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Documenting REST APIs Page 7

https://idratherbewriting.com/contact/
https://www.buymeacoffee.com/learnapidoc
https://www.buymeacoffee.com/learnapidoc/e/146076
https://idratherbewriting.com/contact/
https://www.cherryleaf.com/training-courses/documenting-apis-training-course/
https://cherryleaf.teachable.com/courses/advanced-technical-communication/lectures/37419185
https://www.udemy.com/user/petergruenbaum/
https://sdkbridge.com/
https://www.amazon.com/Docs-Like-Code-Anne-Gentle/dp/1365816079

• The Design of Web APIs , by Arnaud Lauret

• Docs for Developers: An Engineer’s Field Guide to Technical Writing , Authors: Bhatti, J.,
Corleissen, Z.S., Lambourne, J., Nunez, D., Waterhouse, H.

• Standards and Guidelines for API Documentation: For Technical Writers, Software Developers,
Information and Software Architects , by Anne Tarnoruder

These resources aren’t API-specific but are still relevant:

• Modern Technical Writing: An Introduction to Software Documentation , by Andrew Etter

• Documentation Guide – Write the Docs Community

• Every Page Is Page One: Topic-Based Writing for Technical Communication and the Web , by
Mark Baker

• The Product is Docs: Writing technical documentation in a product development group , by
Christopher Gales and Splunk Documentation Team

• The Good Docs Project: Best practice templates and writing instructions for documenting open
source software

• Google’s technical writing courses for engineers

For even more books, see Relevant Books from the Write the Docs site.

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Documenting REST APIs Page 8

https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://www.apress.com/gp/book/9781484272169
https://www.google.com/books/edition/Standards_and_Guidelines_for_API_Documen/B7LDzQEACAAJ?hl=en
https://www.google.com/books/edition/Standards_and_Guidelines_for_API_Documen/B7LDzQEACAAJ?hl=en
https://www.amazon.com/Modern-Technical-Writing-Introduction-Documentation-ebook/dp/B01A2QL9SS
https://www.writethedocs.org/guide/index.html
https://www.amazon.com/Every-Page-One-Topic-Based-Communication/dp/1937434281
https://www.amazon.com/Product-Docs-technical-documentation-development/dp/1973589400
https://thegooddocsproject.dev/
https://thegooddocsproject.dev/
https://developers.google.com/tech-writing
https://www.writethedocs.org/books/

What's new
If you’re looking to see what’s new in the API doc site/course, you can browse new content in several
ways.

Most recent updates
See the api-doc-site-updates category on my blog. I describe the updates I’m making here, often with
commentary about why I made the update.

Seeing what content has been updated
To see the history of page, click the GitHub button next to the timestamp on the page:

This takes you to the file in GitHub. In GitHub, click the History link:

Then click the commit IDs to browse file diffs for the commits that include the file:

What's new PDF last generated: August 27, 2023

Documenting REST APIs Page 9

https://idratherbewriting.com/category-apidoc-site-updates/

You can see the stream of commits in GitHub here .

What's new PDF last generated: August 27, 2023

Documenting REST APIs Page 10

https://github.com/tomjoht/tomjoht.github.io/commits/main

Video recordings of API doc
workshops
I’ve given numerous presentations and workshops on API documentation, and I’ve recorded some of them.
The most recent recordings are available below. I divided this all-day workshop into multiple separate
videos. Keep in mind that my API content evolves, so some older presentations might no longer match the
course content.

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_course_videos.html] to view the content.

Video recordings of API doc workshops PDF last generated: August 27, 2023

Documenting REST APIs Page 11

Download PDFs
In addition to reading on the web, you can also can read this content in PDF format. The PDF version (total
pages are 900+) is current with the web version.

Documenting APIs: A guide for technical writers and engineers writing API documentation

The date the pages were last generated appears in the header of the PDF. Payment is handled through the
buymeacoffee.com platform.

Download PDFs PDF last generated: August 27, 2023

Documenting REST APIs Page 12

https://www.buymeacoffee.com/learnapidoc/e/146076
https://www.buymeacoffee.com/learnapidoc/e/146076
https://www.buymeacoffee.com/learnapidoc/e/146076

Workshop -- agenda, slides, activities
The workshop agenda, slides, and activities correspond to full-day API workshop. The slides and activities
mirror similar sections in the course.

Note that for API workshops, it helps to consolidate activities into a single page with brief instructions. The
content for the activities below is the same content that appears in other parts of the course — it’s just
pulled in here (single-sourced) for convenience. Workshops require a healthy amount of hands-on activities
to be engaging. If you have feedback about how to improve the activities, or places where you keep getting
stuck, let me know .

Not all activities in this course are consolidated here, since participants can only do so much during a
workshop. The following activities are those I’ve selected for workshops.

8:00 - 9:00am: Registration + breakfast
Doors open at 8:00am. Check your name off at the registration table and get a name tag. Light breakfast
(coffee and pastries) will be available. Find a table and get situated and acquainted with others. If you didn’t
finish all the pre-workshop tasks as described in What You’ll Need (p. 5), do that now.

9:00 - 9:30am: Intro to API documentation
Section: Introduction to API documentation (p. 1)

Activity 1: Identify your goals (p. 43)

9:30 - 10:15am: Using an API like a Developer
Section: Using an API like a developer (p. 64)

Workshop -- agenda, slides, activities PDF last generated: August 27, 2023

Documenting REST APIs Page 13

https://idratherbewriting.com/contact/
/slides/intro_api_documentation.html
/slides/intro_api_documentation.html

Activity: Explore OpenWeatherMap API (p. 66)

Activity: Get an OpenWeatherMap API key (p. 69)

Activity: Make requests with Postman (p. 71)

Activity: Make the OpenWeatherAPI request using curl (p. 80)

Activity: Make an API request on a web page (p. 98)

10:15 - 10:30am: Break
Break time

10:30 - 11:30pm: API endpoints
Section: Documenting API endpoints (p. 114)

Activity: What’s wrong with this API reference topic (p. 173)

Activity: Evaluate API ref docs to identify core elements (p. 177)

11:30 - 12:30: OpenAPI and Swagger
Section: OpenAPI and Swagger (p. 179)

Workshop -- agenda, slides, activities PDF last generated: August 27, 2023

Documenting REST APIs Page 14

/slides/using_api_like_developer.html
/slides/using_api_like_developer.html
/slides/documenting_api_endpoints.html
/slides/documenting_api_endpoints.html

Activity: Explore Swagger UI through the Petstore Demo (p. 188)

Activity: Create an OpenAPI specification using Stoplight Studio (p. 201)

12:30 - 1:30pm: Lunch
Lunch provided through catering.

1:30 - 2:00pm: OpenAPI and Swagger (continued)
Activity: Use Redoc Community Edition to render OpenAPI spec (p. 268)

Activity: Create a Swagger UI display with an OpenAPI spec document (p. 222)

2:00 - 2:30pm: Conceptual topics
Section: Conceptual topics (p. 358)

Activity: Complete the SendGrid Getting Started tutorial (p. 429)

Activity: Judge conceptual content and decide which is best (p. 430)

2:30 - 2:45pm: Break
Break. Snacks provided.

2:45 - 3:30pm: Code tutorials
Section: Code tutorials (p. 432)

Workshop -- agenda, slides, activities PDF last generated: August 27, 2023

Documenting REST APIs Page 15

/slides/openapi_and_swagger.html
/slides/openapi_and_swagger.html
/slides/conceptual_content_api_docs.html
/slides/conceptual_content_api_docs.html

Activity: Analyze two code tutorials (p. 433)

3:30 - 4:15pm: Publishing API docs
Section: Publishing API Documentation (p. 530)

Activity: Create a GitHub wiki and publish content on a sample page (p. 571)

Activity: Clone your GitHub repo locally (p. 572)

Activity: Push local changes to the remote (p. 574)

4:00 - 4:30: Participant’s challenges surfaced and discussed
During this time, I’d like to have participants surface specific challenges that they are facing and address
them as a whole.

4:30 - 5:00pm: Thriving in the API doc space
Section: Thriving in the API doc space (p. 659)

Workshop -- agenda, slides, activities PDF last generated: August 27, 2023

Documenting REST APIs Page 16

/slides/code_tutorials.html
/slides/code_tutorials.html
/slides/publishing_api_docs.html
/slides/publishing_api_docs.html

Conclusion
Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/workshop.html] to view the content.

5:00 - 5:30pm: Individual consulting
The general workshop ends and we transition into any individual consulting as desired. If you have specific
questions not addressed during the workshop, let’s chat specifically about them. For all those interested,
I’ll write your name on then board and then just meet with you individually for about 5 minutes each until
everyone’s questions are answered.

Workshop -- agenda, slides, activities PDF last generated: August 27, 2023

Documenting REST APIs Page 17

/slides/thriving_in_api_docs.html
/slides/thriving_in_api_docs.html

Why I developed this course
I initially compiled this material to teach a series of workshops to a local tech writing firm in the San
Francisco Bay area. They felt they either needed to train their existing technical writers on how to
document APIs, or they would need to let some of their writers go. I taught a series of three workshops
delivered in the evenings, spread over several weeks.

These workshops were fast-paced and introduced the writers to a host of new tools, technologies, and
workflows. Even for writers who had been working in the tech comm field for 20 years, API documentation
presented new challenges and concepts. The tech landscape is so vast, even for writers who had detailed
knowledge of one technology, their tech background didn’t always carry over into REST API
documentation.

After the workshops, I put the material on my site, idratherbewriting.com, and opened it up to the broader
world of technical writers. I did this for several reasons. First, I felt the information would be useful to the
tech writing community. There are very few books or courses that dive into API documentation strategies
for technical writers.

Second, I knew that through feedback, I could refine the information and make it better. Almost no content
hits the mark on its first release. Instead, content needs to iterate a while through user testing and
feedback. Just as this iterative review helps refine user documentation, the same principle applies to
course material as well. I’ve given dozens of presentations and workshops on API documentation for
several years now, and each time I’ve used the feedback to improve this content.

Finally, the content would help drive traffic to my site. In fact, visits to the API documentation course pages
outperform visits to my blog. I reflected on this traffic source in a blog post — see If writing is no longer a
marketable skill, what is? How would people discover the material if they couldn’t find it online? If the
material were only trapped in a print book or behind a firewall, it would be difficult to discover. Content is a
rich information asset that draws traffic to any site. It’s what people primarily search for online.

After putting the API doc on my site for some months, the feedback was positive. One person said:

Tom, this course is great. I’m only part way through it, but it already helped me get a
job by appearing fluent in APIs during an interview. Thanks for doing this. I can’t
imagine how many volunteer hours you’ve put into helping the technical
communication community here.

Another person commented:

Hi Tom, I went through the whole course. Its highly valuable and I learned a bunch of
things that I am already applying to real world documentation projects. … I think for
sure the most valuable thing about your course is the clear step by step procedural
stuff that gives the reader hands-on examples to follow (its so great to follow a
course by an actual tech. writer!)

And another:

Why I developed this course PDF last generated: August 27, 2023

Documenting REST APIs Page 18

https://idratherbewriting.com/2018/08/09/writing-no-longer-a-skill/
https://idratherbewriting.com/2018/08/09/writing-no-longer-a-skill/

I love this course (I may have already posted that)—it’s the best resource I have
come across, explained in terms I understand. I’ve used it as a basis for my style
guide and my API documentation….

These comments inspired me to continue adding to the course, building out more tutorials, sections, and
refinements. What began as a simple three-session course transformed into a larger endeavor, and I
aspired to convert the content into a full-fledged book and multi-week course. I continue to receive emails
from technical writers, many of whom are trying to transition into developer documentation. The other week
someone wrote to me:

Just an email to thank you for the wonderful API course on your site. I am a long-
time tech writer for online help that was recently assigned a task to document a
public API. I had no experience in the subject, but had to complete a plan within a
single sprint. Luckily I remembered from your blog posts over the years that you had
posted material about this.

Your course on YouTube gave me enough information and understanding to be able
to speak intelligently on the subject with developers in a short timeframe, and to dive
into tools and publishing solutions.

And another:

I am nearly in tears after finding this site! I think I stumbled upon it some time ago,
but I must not have been ready for what you have to say. NOW I am ready! As a
former technical writer now knowledge manager, I stumbled upon API writing and
have learned a lot simply by being curious and observant…

Of course, not all comments or emails are praiseworthy. Some people note problems on pages, such as
broken links or broken code, unclear areas or missing information. As much as possible, after receiving this
feedback, I go back and clarify or strengthen those areas.

One question I faced in preparing the content is whether I should stick with text, or combine the text with
video. While video can be helpful at times, it’s too cumbersome to update. Given the fast-paced, rapidly
evolving nature of the technical content, videos get out of date quickly.

Additionally, videos force the user to go at the pace of the narrator. If your skill level matches the narrator,
that’s great. But in my experience, videos often go too slow or too fast. In contrast, text lets you more
easily skip ahead when you already know the material, or slow down when you need more time to absorb
concepts.

Despite the constant changes in the technology landscape, I want to keep this course current and up to
date. As such, I’ll continue to add and edit and refine it as needed. I want this content to become a vital
learning resource for all technical writers, both now and in the years to come as technologies evolve. If you
have general feedback about this course, feel free to drop me a line .

Why I developed this course PDF last generated: August 27, 2023

Documenting REST APIs Page 19

https://idratherbewriting.com/contact/

About the author
In case you’d like to know a little bit about me, I’m currently based in Seattle, Washington, working for
Google. (Previously, I was at Amazon and a couple of startups in the Bay area.)

Most people know me through my blog, I’d Rather
Be Writing , which has been an active online blog
for tech comm for the past decade.

Like most technical writers, I stumbled into
technical writing after working in other fields. I first
earned a BA in English and an MFA in Literary
Nonfiction, and then started my career as a writing
teacher. After a stint in teaching, I transitioned into
marketing copywriting and then turned to technical
writing (mainly for financial reasons).

Despite my initial resistance to the idea of technical
writing (I thought it would be boring), I found that I
actually liked technical writing — a lot more than
copywriting. Technical writing combines my love
for writing and my fascination with technology. I
get to play with tools and handle all aspects of
content production, from design to styles to
publishing workflows.

I worked as a traditional technical writer for some
years, mostly documenting applications with user
interfaces. One day, my organization decided to lay
off the tech writing team . After that, and based
on my proclivity for tinkering with tools, I decided
to steer my career into a tech writing market that
was more in demand: developer documentation, particularly API documentation. I also moved to Silicon
Valley to be at the center of tech.

I started documenting my first API at a gamification startup and then transitioned to another semi-startup
to continue with more API documentation. I was no longer working with applications that had user
interfaces, and the audiences for my docs were primarily developers. Developer doc was a new landscape
to navigate, with different tools, expectations, goals, and deliverables.

If you want to read more personal details, see My life story, or reflections on what shaped my life’s career
trajectory .

Although I didn’t have a programming background, I’ve always been somewhat technical. As a teacher, I
created my own interactive website. As a traditional technical writer, I often set up or hacked the authoring
tools and outputs. I like learning and experimenting with new technologies. The developer documentation
landscape suits me well, and I enjoy it.

Still, I’m by no means a programmer. As a technical writer, in-depth technical knowledge is helpful but not
always essential, as it tends to be too specialized and comes at the expense of other skills and knowledge.
What matters most is the ability to learn something new, across a lot of different domains and products,
even if it’s challenging at first. And then to articulate the knowledge in easy-to-consume ways. The writing
process (p. 502) is still just as relevant when writing API docs as other forms of docs.

About the author PDF last generated: August 27, 2023

Documenting REST APIs Page 20

https://idratherbewriting.com/
https://idratherbewriting.com/
https://idratherbewriting.com/blog/reflecting-seven-years-later-about-layoff-intro/
https://idratherbewriting.com/blog/reflecting-seven-years-later-about-layoff-intro/
https://idratherbewriting.com/blog/life-story-what-shapes-your-lifes-trajectory/
https://idratherbewriting.com/blog/life-story-what-shapes-your-lifes-trajectory/

You’re probably taking this course because you want to develop your skills and knowledge to increase
your capabilities at work, to enhance your skillset’s marketability, or maybe figure out how to document the
new API your company is rolling out.

You’re in the right place. By the time you finish this course, you’ll have a solid understanding of how to
document APIs. You’ll be familiar with the right tools, approaches, and other techniques you need to be
successful with developer documentation projects.

By the way, I keep adding to this course in a Winchester Mystery House way, which means I keep
adding rooms and extra hallways and doors, etc. If you were to print it out, the course would be more than
500 pages long. Few people get through the whole of it, and by the time they do, I’ve usually added a new
section. So jump in and read through the topics you find most relevant and interesting. Don’t feel
compelled to get through it all.

If you have a question for me, or just want to drop me a line, you can contact me through my Contact page
. However, for most questions, you’ll get a much better response by asking them in the Write the Docs

Slack . I’m also on Write the Docs Slack @tomjohnson , so feel free to ask me questions there.

About the author PDF last generated: August 27, 2023

Documenting REST APIs Page 21

https://www.winchestermysteryhouse.com/sarahs-story/
https://idratherbewriting.com/contact/
https://idratherbewriting.com/contact/
https://www.writethedocs.org/slack/
https://www.writethedocs.org/slack/
https://writethedocs.slack.com/team/tomjohnson

Introduction to REST API
documentation
Before we dive into the technical aspects of APIs, let’s explore the market, general landscape, and trends
with API documentation.

Different types of APIs
The API landscape is diverse, with many different types of APIs. Although this course focuses on REST
APIs, there are many other types of APIs as well. Often when people start browsing GitHub looking for API
projects to join, or when they peruse the various APIs in their own company, they are surprised that the
APIs look unfamiliar from the APIs covered in this course. There are many types of APIs you will likely
encounter.

One way to sort the different types of APIs is to categorize them into two general buckets: web service
APIs versus native library APIs. Web service APIs send and receive messages across the web using HTTP
to transport the request and response; web service APIs are language agnostic. Native library APIs, on the
other hand, involve incorporating code directly into your project for the desired functionality; native library
APIs are language-specific.

The following list describes the most common types of APIs you will encounter:

• Native library APIs: Native library APIs, also called “library-based APIs,” refer to code libraries
(for example, JAR files) that developers add directly to their projects to provide additional
functionality through classes or other functions that can be called locally. These APIs are specific
to a programming language — e.g., Java, C++, Python, Ruby, .NET, and so on. With native
library APIs, the functions are incorporated locally within the code to expand the operations you
can perform within your project, usually without requiring you to access resources in the cloud.
Native library APIs require you to be familiar with the programming language and tend to be the
most challenging type of API to document for technical writers. See Native Library APIs (p. 692)
in this course for more information into Java APIs.

• SOAP APIs: SOAP (Simple Object Access Protocol) APIs are web services that rely on a strict
XML protocol to define the message exchange format for requests and responses. SOAP is
common with financial APIs and regulated industries, though it has largely been replaced by
REST in popularity. As a standardized protocol, SOAP’s XML message format is usually defined
through a WSDL (Web Services Description Language) file that specifies the allowed elements
and attributes in the message exchange. The WSDL file is machine-readable and used by the
servers interacting with each other to facilitate the communication. See SOAP for introductory
details. More detail about SOAP is also provided in What is a REST API? (p. 36)

• RPC-based APIs: RPC stands for Remote Procedure Call. RPC-based APIs are web services
that call a method on a remote server by delivering an encoded message through HTTP. The
encoded message format might be XML for XML-RPC APIs or JSON for JSON-RPC APIs ,
but in both cases, the message travels to the remote server via HTTP like other web services.
The methods on the remote servers can be in any language. For example, an XML-RPC API can
call a Java or Python or C++ method.

• gRPC APIs: gRPC APIs are web services similar to RPC-based APIs in that the web service calls
a function or runs a procedure on a remote server; however, gRPC uses protocol buffers
(specified in .proto files) rather than XML or JSON as the message exchange format. The protocol
buffer lets you define the structure for your data and the way to convert (serialize) the data to be
consumed by the receiving server. Protocol buffers are lighter and more efficient than XML.

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 22

https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/XML-RPC
https://en.wikipedia.org/wiki/JSON-RPC
https://developers.google.com/protocol-buffers/docs/overview#what-are-protocol-buffers

gRPC APIs were developed by Google and published as an open-source platform. See gRPC
APIs for details.

• REST APIs: REST (Representational State Transfer) are web services that let you make requests
for resources through URL paths. You also supply the operation to be performed with the path
(e.g., GET, CREATE, DELETE). As with other web service APIs, the requests and responses travel
via HTTP across the web, and the servers receiving the requests are language agnostic about the
request (not required to be a specific programming language). Responses are typically returned
in JSON or XML formats. REST APIs have many different paths (endpoints) with various
parameters you can configure to determine the results you want. This course mainly focuses on
REST APIs. See What is a REST API? (p. 36) for details.

• GraphQL APIs: GraphQL APIs are web services developed by Facebook that let users
dynamically query for results they need through a single path (endpoint). GraphQL eliminates the
need for multiple request URLs or other post-filtering on the returned results to get what you
need. Your query retrieves only the needed data, allowing the request and response to be fast
and specific. See graphql.org for more detail. Also see If I am learning to write developer
documentation, should GraphQL be on my radar? .

• Voice Assistant APIs: Voice Assistant APIs are used with voice assistants such as Alexa. These
APIs originate from the cloud and call an endpoint based on natural language processing of voice
commands spoken by users. This is a case where APIs operate behind the scenes in the cloud,
and developers create code, such as in a Lambda function (cloud computing), that handles
incoming requests sent from the voice assistant API.

• Internet of Things (IoT) APIs: IoT APIs are used by physical devices (such as sensors or
wearables) that transmit or receive data to connect the device to an online network. For example,
a thermostat sensor in a room might transmit the temperature to a central controller (such as with
Nest) via an IoT API. For more detail, see App nirvana: When the Internet of Things meets the API
economy . See also APIs in the world of IoT .

For more reading, see API types by Sarah Maddox. Sarah notes that there are also hardware APIs,
object-remoting APIs, web socket APIs, OS functions and routines, and more.

Despite the variety of APIs, the defining characteristic of nearly all developer documentation is that it
involves documenting some type of API. This is why “API documentation” and “developer documentation”
are used somewhat synonymously. APIs make life easier for developers (who are consuming the API)
because the APIs perform functions or other tasks in more efficient ways.

Most companies make their information and services available through APIs to help third-parties adopt and
implement the company’s information/services. (This is the whole idea of the information economy.)
Additionally, many APIs are available only internally to help developers within the same company
implement various services. For example, a team handling payment controller operations might provide an
API that another team developing the company’s app can implement to handle payment transactions.

Which type of API is most common?
As you browse APIs, you might be wondering which type of API is most common? Which types of APIs
should you focus on? Among the web service APIs, The State of API 2019 report from Smartbear
surveyed more than 3,000 technology professionals and found that REST-OAS / Swagger was the most
common web service used:

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 23

https://grpc.io/docs/guides/
https://grpc.io/docs/guides/
https://graphql.org/
https://idratherbewriting.com/blog/graphql-relevance-and-documentation-strategies/
https://idratherbewriting.com/blog/graphql-relevance-and-documentation-strategies/
https://techbeacon.com/app-dev-testing/app-nirvana-when-internet-things-meets-api-economy
https://techbeacon.com/app-dev-testing/app-nirvana-when-internet-things-meets-api-economy
https://apifriends.com/api-management/iot-api/
https://ffeathers.wordpress.com/2014/02/16/api-types/
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://smartbear.com/

Popularity of web service APIs (The State of API 2019, p.20)

OAS stands for OpenAPI Specification, which is something I explore in-depth in Introduction to the
OpenAPI specification (p. 181). The report even mentions some APIs not covered above — JMS APIs ,
which are used with Java to send messages.

As you can see, when it comes to APIs, one size/type does not fit all. Developers will implement the type of
API that best aligns with their scenario and requirements, just as there are different types of cars (sports
cars, trucks, semi-trucks, sedans, hearses, etc.) for different trips, drivers, passengers, and roads.

In this course, we’ll be diving into REST APIs in depth. Remember that with REST APIs, you don’t deliver a
library of files to users. Instead, the users make requests for the resources on a web server, and the server
returns responses containing the information. Both the system initiating the request and the system
providing the response can be in any programming language, so long as they transmit the message via
HTTP.

REST APIs follow the same protocol as the web. When you open a browser and type a website URL (such
as https://idratherbewriting.com), you’re actually making a GET request for a resource on a server.
The server responds with the content and the browser makes the content visible.

This course not only focuses on REST APIs because they are more popular and in-demand but because
they’re also more accessible to technical writers. You don’t need to know a specific programming language
to document REST APIs. And REST is becoming the most common type of API anyway.

Many companies are new to API development
According to The State of API 2019 report, more and more companies are starting to develop APIs:

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 24

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf

While modern APIs have been used in software development for more than two
decades, the last 10 years have been marked by a growth in API adoption. Our
survey found that 59% of organizations began developing APIs in the last five years.
Furthermore, 28% only began developing APIs in the last two years. The 2019 State
of API Report saw a higher percentage of early adopters than the 2016 State of API
Report, with twice as many respondents saying that they only began developing
APIs in the last year.

The accompanying graph is as follows:

Most companies are new to API development

It’s astonishing that API development is so nascent in companies — “59% of organizations began
developing APIs in the last five years.” If you look at Smartbear’s The State of API 2016 report , which
surveyed 2,300 professionals, you find similar growth rates:

42.1% of API providers have been providing/developing APIs for six years or more,
while 51.5% began developing APIs in the last five years.

API development is clearly an area that is somewhat new for many companies, and the directions,
methods, and other paths through this new territory aren’t clear. In fact, The State of API 2019 report notes
that companies are resoundingly asking for more standardization in this space.

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 25

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf

Programmableweb.com was a site that charted and tracked the number of web APIs added to their
directory. Programmableweb said, “Since January of 2014, an average of more than 2,000 APIs have been
added per year” (Note: Programmableweb.com has since shut down.)

The phenomenal growth in web APIs

eBay’s API in 2005 was one of the first web APIs — the API allowed sellers to manage their products in
their eBay stores. Since then, there has been tremendous growth in web APIs. Given the importance of
clear and accurate API documentation, this presents a perfect market opportunity for technical writers.
Technical writers can apply their communication skills to fill a gap in a market that is rapidly expanding.

Reasons for API growth?
Why are APIs growing in popularity, so much that you can pretty much search for any company name
followed by “API” and land on developer docs for that company? One reason is that the web itself is
evolving into a conglomeration of APIs. Instead of massive, do-it-all systems, websites are pulling in the
services they need through APIs.

For example, rather than building your own search to power your website, you might use Algolia instead
and leverage their service through the Algolia Search API . Rather than building your own payment
gateway, you might integrate the Stripe API . Rather than building your own login system, you might use
the UserApp API . Rather than building your own e-commerce system, you might use the Snipcart API
. And so on.

Practically every service provides its information and tools through an API that you use. Jekyll, a popular
static site generator, doesn’t have all the components you need to run a site. There’s no newsletter
integration, analytics, search, commenting systems, forms, chat e-commerce, surveys, or other systems.
Instead, you leverage the services you need into your static Jekyll site. (CloudCannon has put together a
long list of services that you can integrate into your static site.)

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 26

https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23
https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23
https://www.algolia.com/doc/rest-api/search/
https://stripe.com/docs/api
https://app.userapp.io/#/docs/
https://docs.snipcart.com/api-reference/introduction
http://cloudcannon.com/tips/2014/12/12/the-ultimate-list-of-services-for-static-websites.html

Many sites pull in all the services they need through external APIs

This cafeteria-style model is replacing the massive, swiss-army-site model that tries to do anything and
everything. It’s better to rely on specialized companies to create powerful, robust tools (such as search)
and leverage their service rather than trying to build all of these services yourself.

The way each site leverages its service is usually through a REST API of some kind. Overall, the web is
becoming an interwoven mashup of many different services and APIs interacting with each other.

The need for API documentation
We’ve established that APIs are on the rise, following the model of the web, and that REST APIs are
leading the pack as the most common type of API. But what about documentation for these APIs?

When asked “What are the top three most important characteristics you need in an API?”, The State of API
2019 report found that “Accurate and detailed documentation” ranks third in importance:

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 27

http://jekyll.tips/services/
http://jekyll.tips/services/
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf

Top characteristics needed in an API (The State of API 2019, p.25)

This rank is three higher than noted in the The State of API 2016 report , which put “Accurate and
detailed documentation” sixth in importance:

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 28

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf

In The State of API 2016 report, documentation ranked sixth in importance, p.19

An even earlier survey conducted by Programmableweb in 2013 (which included 250 respondents) found
that “Complete and accurate documentation” actually ranked as the most important factor in an API (see
API Consumers Want Reliability, Documentation and Community).

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 29

https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
http://www.programmableweb.com/news/api-consumers-want-reliability-documentation-and-community/2013/01/07

Programmableweb survey showing that complete and accurate documentation is the most important factor
for developers

John Musser, one of the founders of Programmableweb.com (a site that’s now retired), emphasizes the
importance of documentation in his presentations. In 10 reasons why developers hate your API , he says
the number one reason developers hate your API is because “Your documentation sucks.”

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 30

http://www.programmableweb.com/news/api-consumers-want-reliability-documentation-and-community/2013/01/07
http://www.programmableweb.com/news/api-consumers-want-reliability-documentation-and-community/2013/01/07
https://www.infoq.com/presentations/API-design-mistakes

APIs often fail because the doc fails the developers

Despite what might seem like a clear mandate for excellent API docs, technical writers aren’t always
leveraged for these doc efforts. The 2019 State of API report found the following:

Automation is playing a major role in how organizations document their APIs. 43% of
respondents said they leverage an API standard, like the OpenAPI Specification, to
generate API docs. One quarter of respondents are using a “code-first” approach,
where developers are responsible for adding annotations to the API code to generate
docs. Only 15% of participants are investing in technical writers to help with
documenting APIs.

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 31

http://www.slideshare.net/jmusser/ten-reasons-developershateyourapi
http://www.slideshare.net/jmusser/ten-reasons-developershateyourapi
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf

How teams are handling docs, The State of API 2019, p.42

Of course, the finding that “Only 15% of participants are investing in technical writers…” will upset
technical writers. Fortunately, this question is poorly worded and might account for the disheartening
answers. The wording suggests that employing technical writers to create docs is an alternative to
generating docs through the OpenAPI specification (OAS). In reality, technical writers should be
collaborating with engineers to generate reference documentation through OAS. Reference docs account
for only part of the needed documentation (maybe half, if that). In this course, I heavily recommend that
technical writers generate reference documentation through the OAS. This is covered in the OpenAPI spec
and Swagger section (p. 180).

Thus, the connotation with this survey question misunderstands and distorts the role that technical writers
play. Technical writers aren’t old-school grammarians using feather and quill to etch out documentation in
a tediously manual way (rather than auto-generating it via the OAS). Instead, many technical writers
promote and champion OAS as a standard for creating the reference docs.

The State of API 2016 report words the question a bit differently — “Does your organization have a
formal API developer documentation process?” The 2016 report found that docs are a priority for about
half of the respondents:

Nearly 75% of API providers have a formal API developer documentation process,
but only 45.6% say that it is a priority for their team. A quarter of API providers
(25.3%) say they either do not have, or are unaware of their team’s API developer
documentation process.

Again, the question here is a bit vague. Exactly what is a “formal documentation process”? Given that one
of Smartbear’s key products is SwaggerHub (p. 230), which auto-generates reference documentation from
the OpenAPI spec, a “formal documentation process” might mean generating docs from the OpenAPI
spec.

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 32

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf

Why the increased focus on documentation?
Why does documentation for REST APIs merit so much attention? Why is it ranking so high in these
surveys? In short, documentation for REST APIs is important because REST follows an architectural style
rather than an exact protocol standard.

To understand the importance of documentation for REST APIs, it helps to compare REST with SOAP.
REST APIs are a bit different from the SOAP APIs that were popular some years ago. SOAP APIs enforce a
specific message format for sending requests and returning responses. As an XML message format, SOAP
is very specific and has a WSDL (Web Service Description Language) file that describes how to interact
with the API.

REST APIs, however, do not follow a standard message format. Instead, REST is an architectural style, a
set of recommended practices for submitting requests and returning responses. To understand the request
and response format for REST APIs, you don’t consult the SOAP message specification or look at the
WSDL file. Instead, you have to consult the REST API’s documentation.

Each REST API functions a bit differently. There isn’t a single way of doing things, and this flexibility and
variety fuel the need for accurate and clear documentation. (I’ll explain more about REST APIs in the What
is a REST API? (p. 36)) As long as REST APIs vary from one to another, there will be a strong need for
technical writers to provide documentation.

Job market is hot for API technical writers
Many employers are looking to hire technical writers who can create not only complete and accurate
documentation but who can also create stylish outputs for their documentation. Here’s a job posting from a
recruiter looking for someone who can emulate Dropbox’s documentation:

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 33

Job description asking for someone with skills to create doc site like Dropbox

As you can see, the client wants to find “someone who’ll emulate Dropbox’s documentation.”

Why does the look and feel of the documentation matter so much? With API documentation, there is no
GUI interface for users to browse. Instead, the documentation is the interface. Employers know this, so
they want to make sure they have the right resources to make their API docs stand out as much as
possible.

Here’s what the Dropbox API doc site looks like:

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 34

Dropbox API's developer site has a simple but clean UI

It’s not a sophisticated design. But its simplicity and brevity are what make it appealing. When you
consider that the API documentation is more or less the product interface, building a sharp, modern-
looking doc site is paramount for credibility and traction in the market. (I dive into the job market for API
documentation later (p. 660).) Basically, if you have strong technical skills and experience writing for
developers, you can have nearly any job you want in Silicon Valley and command a base salary of
$100-$150k or more.

API doc is a new world for most tech writers
API documentation is often a new world for technical writers. Many of the components may differ from
traditional GUI documentation. For example, all of these aspects with developer documentation differ from
traditional documentation:

• Authoring tools
• Audience
• Programming languages
• Reference topics
• User tasks

When you try to navigate the world of API documentation, you may be initially overwhelmed by the
differences and intimidated by the tools and code. Additionally, the documentation content itself is often
complex and requires familiarity with development concepts and processes.

Overall, technical writers are hungry to learn more about APIs. This course will help you build the
foundation of what you need to know to get a job in API documentation and excel in this field. As a skilled
API technical writer, you will be in high demand and will fulfill a critical role in companies that distribute
their services through APIs.

Introduction to REST API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 35

https://www.dropbox.com/developers
https://www.dropbox.com/developers

What is a REST API?
This course is all about learning by doing, but while doing various activities, I’ll periodically pause and dive
into some more abstract concepts to fill in more detail. This topic is one of those deep-dive moments into
concepts. Here we’ll explore what a REST API is, comparing it to other types of APIs like SOAP. REST APIs
have common characteristics but no definitive protocols like its SOAP predecessor.

What is an API?
In general, an API (or Application Programming Interface) provides an interface between two systems. It’s
like a cog that allows two systems to interact with each other. In this case, the two systems are computers
that interact programmatically through the API.

An API is like a cog that allows two different systems to interact. (Image from Brent 2.0 , spinning gears
, CC BY-ND 2.0 .)

APIs are often pulling and pushing data underneath user interfaces. Consider the example of a flight
booking site like kayak.com or orbitz.com . When you search for flights, the site reaches out to many
other airline services to retrieve information about flights matching your query. kayak.com itself doesn’t
have all of this information. Instead, it gathers this data through APIs.

What is a REST API? PDF last generated: August 27, 2023

Documenting REST APIs Page 36

http://bit.ly/1DexWM0
http://bit.ly/1DexWM0
https://www.flickr.com/photos/brentinoz/
http://bit.ly/1DexWM0
https://creativecommons.org/licenses/by-nd/2.0/legalcode
https://kayak.com/
https://orbitz.com/

Or consider other similar services. When you see a YouTube video embedded on a site, the site itself
doesn’t host the video. Instead, the embed code contains API requests that get the video from YouTube’s
hosting centers. When you embed a Twitter widget on your site, the widget’s APIs pull in tweets from a
Twitter server onto your site.

Consider another example from Fire TV. Suppose you want to view a pay-per-view event that requires
payment. A pop-up dialog might appear letting you enter your credit card details. Your payment gets
processed and you receive confirmation about the purchase’s success. This payment processing doesn’t
occur within the app. Instead, the app makes API calls out to payment servers with the needed information,
and all that payment processing happens in the cloud. When the processing finishes, the API returns a
confirmation response.

The next time you push a button in some interface, think about what’s going on underneath. Most likely,
the button is internally wired to make calls to an external service for the information needed. That call is
made through an API that performs a request and receives a response.

APIs that use HTTP protocol are “web services”
A “web service” is a web-based application that provides resources in a format consumable by other
computers. Web services include various types of APIs, including both REST and SOAP APIs. Web
services are basically request-and-response interactions between clients and servers (a computer requests
a resource, and the web service responds to the request).

All APIs that use HTTP protocol as the transport format for requests and responses are considered “web
services.” With web services, the client making the request for the resource and the API server providing
the response can use any programming language or platform — it doesn’t matter because the message
request and response are made through a common HTTP web protocol.

The web protocol is part of the beauty of web services: they are language agnostic and therefore
interoperable across different platforms and systems. When documenting a REST API, it doesn’t matter
whether engineers build the API with Java, Ruby, Python, or some other language. The requests are made
over HTTP, and the responses are returned through HTTP.

The following diagram shows the general model of a REST API:

What is a REST API? PDF last generated: August 27, 2023

Documenting REST APIs Page 37

General model of a REST API

As you can see, there’s a request and a response between a client to the API server. The client and server
can be based in any language, but HTTP is the protocol used to transport the message. This request-and-
response pattern is fundamentally how REST APIs work.

Each programming language that makes the request will have a different way of submitting a web request
and parsing the response in its language. These language-specific functions for making requests and
parsing responses aren’t part of the REST API (though they might be provided in an accompanying SDK (p.
480)). The REST API is language agnostic and handles incoming and outgoing information across HTTP,
just like the web.

SOAP APIs are the predecessor to REST APIs
Before REST became the most popular web service, SOAP (Simple Object Access Protocol) was much
more common. To understand REST a little better, it helps to have some context with SOAP. This way you
can see what makes REST different.

SOAP is a standardized protocol that requires XML as the message format for requests and responses. As
a standardized protocol, the message format is usually defined through something called a WSDL (Web
Services Description Language) file.

The WSDL file defines the allowed elements and attributes in the message exchanges. The WSDL file is
machine readable and used by the servers interacting with each other to facilitate the communication.

SOAP messages are enclosed in an “envelope” that includes a header and body, using a specific XML
schema and namespace. For an example of a SOAP request and response format, see SOAP vs REST 101:
Understand The Differences .

What is a REST API? PDF last generated: August 27, 2023

Documenting REST APIs Page 38

http://www.soapui.org/testing-dojo/world-of-api-testing/soap-vs--rest-challenges.html
http://www.soapui.org/testing-dojo/world-of-api-testing/soap-vs--rest-challenges.html

The main problem with SOAP is that the XML message format is too verbose and heavy. It is particularly
problematic with mobile scenarios where file size and bandwidth are critical. The verbose message format
slows processing times, which makes SOAP interactions lethargic.

SOAP is still used in enterprise application scenarios (especially with financial institutions) with server-to-
server communication, but in the past five years, SOAP has mostly been replaced by REST, especially for
APIs on the open web.

REST is a style, not a standard
Like SOAP, REST (Representational State Transfer) uses HTTP as the transport protocol for the message
requests and responses. However, unlike SOAP, REST is an architectural style, not a standard protocol.
This is why REST APIs are sometimes called RESTful APIs — REST is a general style that the API follows.

A RESTful API might not follow all of the official characteristics of REST as outlined by Dr. Roy Fielding ,
who first described the model. Hence these APIs are “RESTful” or “REST-like.” (Some developers insist on
using the term “RESTful” when the API doesn’t fulfill all the characteristics of REST, but most people just
refer to them as “REST APIs” regardless.)

As an architectural style, you aren’t limited to XML as the message format. REST APIs can use any
message format the API developers want to use, including XML, JSON, Atom, RSS, CSV, HTML, and more.

Despite the variety of message format options, most REST APIs use JSON (JavaScript Object Notation) as
the default message format. They use JSON because it provides a lightweight, simple, and more flexible
message format that increases the speed of communication. The lightweight nature of JSON also allows
for mobile processing scenarios and is easy to parse on the web using JavaScript.

In contrast, with XML, XSLT is used more for presenting or rather “transforming” (the “T” in XSLT) the
content stored in an XML language. XSLT enables the human readability (rather than processing data
stored in an XML format).

REST focuses on resources accessed through URLs

Another unique aspect of REST is that REST APIs focus on resources (that is, things, rather than actions)
and ways to access the resources. Resources are typically different types of information. You access the
resources through URLs (Uniform Resource Locators), just like going to a URL in your browser retrieves an
information resource. The URLs are accompanied by a method that specifies how you want to interact with
the resource.

Common methods include GET (read), POST (create), PUT (update), and DELETE (remove). The endpoint
usually includes query parameters that specify more details about the representation of the resource you
want to see. For example, you might specify (in a query parameter) that you want to limit the display to 5
instances of the resource.

Here’s what a sample endpoint might look like:

http://apiserver.com/homes?limit=5&format=json

The endpoint shows the whole path to the resource. However, in documentation, you usually separate this
URL into more specific parts:

• The base path (or base URL or host) refers to the common path for the API. In the example
above, the base path is http://apiserver.com .

• The endpoint refers to the end path of the endpoint. In the example above, /homes .
• The ?limit=5&format=json part of the endpoint contains query string parameters for the

What is a REST API? PDF last generated: August 27, 2023

Documenting REST APIs Page 39

https://en.wikipedia.org/wiki/Roy_Fielding

endpoint.

In the example above, this endpoint would get the “homes” resource and limit the result to 5 homes. It
would return the response in JSON format.

You can have multiple endpoints that refer to the same resource. Here’s one variation:

http://apiserver.com/homes/{home id}

The above URL might be an endpoint that retrieves a home resource that contains a particular ID. What is
transferred back from the server to the client is the “representation” of the resource. The resource may
have many different representations (showing all homes, homes that match certain criteria, homes in a
specific format, and so on), but here we want to see a home with a particular ID.

The relationship between resources and methods is often described in terms of “nouns” and “verbs.” The
resource is the noun because it is an object or thing. The verb is what you’re doing with that noun.
Combining nouns with verbs is how you form the language in REST.

We’ll explore endpoints in much more depth in the sections to come (for example, in the API reference
tutorial (p. 118) we go through each property in a resource). But I wanted to provide a brief overview here.

The web itself follows REST

The terminology of “GET requests” and “message responses” transported over “HTTP protocol” might
seem unfamiliar, but this is just the official REST terminology to describe what’s happening. Because
you’ve used the web, you’re already familiar with how REST APIs work — the web itself essentially follows
a RESTful style.

If you open a browser and go to https://idratherbewriting.com , you’re really using HTTP protocol
(https://) to submit a GET request to the resource available on a web server. The response from the
server sends the content at this resource back to you using HTTP. Your browser is just a client that makes
the message response look pretty.

What is a REST API? PDF last generated: August 27, 2023

Documenting REST APIs Page 40

https://idratherbewriting.com/

Web as REST API

You can see this response in curl (p. 78) if you open a terminal prompt and type curl

https://idratherbewriting.com . (This assumes you have curl installed (p. 78).)

Because the web itself is an example of RESTful style architecture, the way REST APIs work will likely
become second nature to you.

REST APIs are stateless and cacheable

REST APIs are also stateless and cacheable. Stateless means that each time you access a resource
through an endpoint, the API provides the same response. It doesn’t remember your last request and take
that into account when providing the new response. In other words, there aren’t any previously
remembered states that the API takes into account with each request.

The responses can also be cached to increase the performance. If the browser’s cache already contains
the information asked for in the request, the browser can just return the information from the cache instead
of getting the resource from the server again.

Caching with REST APIs is similar to caching of web pages. The browser uses the last-modified-time value
in the HTTP headers to determine if it needs to get the resource again. If the content hasn’t been modified
since the last time it was retrieved, the cached copy can be used instead. Caching increases the speed of
the response.

REST APIs have other characteristics, which you can dive more deeply into on this REST API Tutorial .
One of these characteristics includes links in the responses to allow users to page through to additional
items. This feature is called HATEOAS, or Hypermedia As The Engine of Application State.

What is a REST API? PDF last generated: August 27, 2023

Documenting REST APIs Page 41

http://www.restapitutorial.com/lessons/whatisrest.html

Understanding REST at a higher, more theoretical level isn’t my goal here, nor is this knowledge necessary
to document a REST API. However, there are many technical books, courses, and websites that explore
REST API concepts, constraints, and architecture in more depth that you can consult if you want to. For
example, check out Foundations of Programming: Web Services by David Gassner on lynda.com.

REST APIs don’t use WSDL files, but some specs exist

An important aspect of REST APIs, especially in the context of documentation, is that they don’t use a
WSDL file to describe the elements and parameters allowed in the requests and responses.

Although there is a possible WADL (Web Application Description Language) file that can be used to
describe REST APIs, WADL files are rarely used because they don’t adequately describe all the resources,
parameters, message formats, and other attributes of the REST API. (Remember that the REST API is an
architectural style, not a standardized protocol.)

To understand how to interact with a REST API, you have to read the documentation for the API. The need
to read the docs makes the technical writer’s role extremely important with REST APIs.

Some formal specifications — for example, OpenAPI (p. 181) and RAML (p. 924) — have been developed
to describe REST APIs. When you describe your API using the OpenAPI or RAML specification, tools that
can read those specifications (such as Swagger UI (p. 218) or the RAML API Console (p. 936)) will generate
an interactive documentation output.

The OpenAPI specification document can take the place of the WSDL file that was more common with
SOAP. Tools like Swagger UI (p. 218) that read the specification documents usually produce interactive
documentation (featuring API Consoles or API Explorers) and allow you to try out REST calls and see
responses directly in the browser.

But don’t expect the Swagger UI or RAML API Console documentation outputs to include all the details
users would need to work with your API. For example, these outputs won’t include info about authorization
keys (p. 393), details about workflows and interdependencies between endpoints, and so on. The Swagger
or RAML output usually contains reference documentation only, which typically accounts for only a third or
half of the total needed documentation (depending on the API).

Overall, REST APIs are more varied and flexible than SOAP APIs, and you almost always need to read the
documentation to understand how to interact with a REST API. As you explore REST APIs, you will find that
they differ significantly from one to another (especially the format and display of their documentation sites,
which we’ll look at in Survey of API doc sites (p. 536)), but they all share the common patterns outlined
here. At the core of any REST API is a request and response transmitted over the web.

Additional reading
• REST: a FAQ , by Diogo Lucas
• Learn REST: A RESTful Tutorial , by Todd Fredrich
• Understanding RPC Vs REST For HTTP APIs , by Phil Sturgeon

What is a REST API? PDF last generated: August 27, 2023

Documenting REST APIs Page 42

https://www.lynda.com/Software-Development-tutorials/Foundations-Programming-Web-Services/126131-2.html
https://medium.com/@diogo.lucas/rest-a-faq-b3cd7ed62828
http://www.restapitutorial.com/
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/

Activity 1a: Identify your goals
Ramping up on API documentation, developing a portfolio of API documentation writing samples, and
completing all the activities in this course will require a lot of time and effort. In this activity, you’ll identify
your goals and reasons for taking this course. Reflecting on your motivation will help you develop the right
mindset and stamina to devote the necessary time for the course.

Activity: Identify your goals with API documentation
Identify your goals here and make sure they align with this course. Think about the following questions:

• Why are you taking this course?
• What are your career ambitions related to API documentation?
• Are you in a place where developer documentation jobs are plentiful?
• What would you consider to be a success metric for this course?
• Do you have the technical mindset needed to excel in developer documentation fields?

For live workshops, we typically share responses in a get-to-know-everyone format. But if you’re taking this
course online, consider jotting down some thoughts in a journal or blog entry.

Activity 1a: Identify your goals PDF last generated: August 27, 2023

Documenting REST APIs Page 43

Developer documentation trends —
survey results
I recently conducted a survey about trends for those creating documentation for developers and
engineers. You can view the content in several formats: slides, webinar, or article.

Slides
You can view the slides here :

Webinar
You can also view a recorded webinar where I talk through the results here:

Note: This content doesn’t embed well in print because it contains a YouTube video. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_course_videos.html] to view the content.

Article
I wrote an article for the Institute of Scientific Technical Communicators (ISTC) magazine (Autumn 2020).

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 44

https://idratherbewriting.com/blog/developer-documentation-survey-2020/
https://idratherbewriting.com/slides/devdoctrends_results.html
https://idratherbewriting.com/slides/devdoctrends_results.html
https://idratherbewriting.com/slides/devdoctrends_results.html
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/istc2020_devdoctrends.pdf
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/istc2020_devdoctrends.pdf

The same content from the PDF is available in HTML below:

Developer documentation trends: How developer documentation
trends differ from general technical communication trends

Introduction

Despite excellent research on trends in the technical communication space, so far no survey has focused
exclusively on trends within developer documentation only. By developer docs, I mean documentation
written primarily for developers and engineers. Two recent surveys on the general tech comm space
include Saul Carliner’s Tech Comm Census results (published in Dec 2018 STC Intercom) and Scott
Abel’s Benchmarking Survey (summarized in the same issue).

Reading the results of these surveys, one would assume that most technical writers use Microsoft Word,
Adobe FrameMaker, help authoring tools, CCMSs, and DITA. However, these surveys miss out on an
important and sweeping tool change, often referred to as “docs-as-code,” that is taking place on the web.
They also don’t explore many other trends within the developer doc space.

Scott’s survey does include some API-related information. He found that “Fifty-eight percent of technical
communication teams surveyed say they currently document APIs; 10 percent plan to in the future.” One
challenge tech writers face in documenting APIs is “using software tools not optimized for ease-of-use or
writing efficiency, and lack of experience.” Scott’s survey also found that 21% of technical communicators
use Markdown to create docs.

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 45

https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/istc2020_devdoctrends.pdf
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/istc2020_devdoctrends.pdf
https://www.stc.org/intercom/download/2018/
http://public2.brighttalk.com/resource/core/217857/the-state-of-technical-communication_474463.pdf
http://public2.brighttalk.com/resource/core/217857/the-state-of-technical-communication_474463.pdf

These responses about APIs are more relevant to developer docs, but they don’t go far enough. More
developer-oriented topics are left out, such as how writers integrate with engineering Scrum teams, how
writers interact with engineers on documentation, how writers handle the OpenAPI spec and other
reference docs, and more.

Don’t get me wrong. I highly value these general surveys and the information they provide. But I was
perplexed to see Adobe FrameMaker and Microsoft Word used so prominently. Admittedly, the tools usage
reported by these surveys wasn’t too far off from previous WritersUA Tools surveys. For example, in 2014,
WritersUA found that 52% of writers (199 out of 382 respondents) used FrameMaker (2014 WritersUA
Tools Survey).

Reading these surveys made me wonder — is it really the case that so many tech writers are still using
FrameMaker and Word? That didn’t match what I was seeing around me in Silicon Valley. But was I living in
a bubble, an anomaly to the rest of the tech comm world? Were trends toward docs-as-code tools much
more widespread and common in developer docs? The general tech comm surveys left me with more
questions than answers.

A survey focusing on developer docs

To gather data about trends in developer docs, I decided to create my own survey. In the first developer
documentation survey of its kind, I created a list of 50 questions, mostly multiple choice. I limited the
audience to people writing docs for developers/engineers only. I promoted the survey on my blog,
LinkedIn, and Twitter, and left the survey open for about two months, from January to March 2020.

A total of 405 people completed the entire survey. Completing the survey means that after the 50th
question, they clicked Submit. However, 855 started the survey, and 337 dropped out somewhere along
the way. I allowed partial responses even if users dropped out along the way. So the actual number of
respondents varied between 405 and 855, with some questions receiving more answers than others. About
37% of the respondents were in the US, about 15% in India, 5% in Germany, 5% in the UK, and smaller
percentages from other countries.

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 46

http://www.welinske.com/2014-writersua-tools-survey/
http://www.welinske.com/2014-writersua-tools-survey/
https://www.questionpro.com/t/PGhS9ZgCFE
https://www.questionpro.com/t/PGhS9ZgCFE

You can browse the results of the survey directly at https://www.questionpro.com/t/PGhS9ZgCFE .

Survey question categories

After the survey, to make better sense of the responses, I divided the 50 questions into five categories:

1. Tool responses (p. 47)
2. Formats and outputs responses (p. 49)
3. Process and workflow responses (p. 50)
4. API responses (p. 51)
5. Profile responses (p. 52)

In the sections that follow, I’ll go through each section and provide summaries, highlights, and analyses.
Percentages are rounded up or down. For more granular details, feel free to browse the survey results
directly.

1. Tool responses

Survey summary:

• Primary authoring tool: 22% static site generators (such as Jekyll, Hugo, Gatsby, Sphinx),
14% wikis, 11% XML tools, 8% HATs, 3% FrameMaker

• Text editor 25% Visual Studio Code, 19% Notepad++, 14% Atom
• Source format: 37% Markdown, 15% HTML, 15% XML
• Follow docs-as-code approach: 56% yes, 22% somewhat, 20% no
• Platform for publishing docs: 31% company’s own web servers or infrastructure, 15%

GitHub Pages, 10% Gitlab
• Computer type: 54% Windows, 40% Mac
• How you manage content: 67% Git, 8% CMS, 5% CCMS

Summary and analysis:

In the dev doc space, tech writers don’t use a single tool for authoring, review, and publishing. Writers use
different tools for different scenarios and purposes. For example, writers might use Confluence, Word, or
Google Docs for early content development. When they transition the content into their authoring/
publishing system, they work in Visual Studio Code or Atom as the text editor. Within these text editors,
they usually write in Markdown formats with some YAML frontmatter.

Writers build the site output using a static site generator, such as Hugo, Jekyll, Sphinx, or MkDocs. To
manage the content (for feature branches or to pull in work from others), they use Git. When it comes time
to deploy the site build on a web server, they often have a continuous integration / continuous deployment
(CI/CD) model that pushes the content onto GitHub, GitLab, or their company’s own infrastructure through
a few keystrokes on the command line. This workflow is known as a “docs-as-code” approach because it
treats documentation similar to how software developers treat code (to an extent).

Given this workflow, which would you say is the author’s “tool”? It’s unclear. The days when writers used
an all-in-one purpose tool (for example, a single help authoring tool) for authoring, review, collaboration,
and publishing are gone.

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 47

https://www.questionpro.com/t/PGhS9ZgCFE

Complicating the tool question even more are writers who don’t have any tools outside their IDE, or
integrated development environment (for example, IntelliJ IDEA). Some writers, usually engineers who are
also writing docs, work only in code annotations and OpenAPI specifications. There is no “authoring tool.”
For these writers, Markdown is their tool, as they might format annotations with Markdown and use scripts
to export the Markdown into different systems. Many systems can import or export Markdown, making it a
somewhat standard source format in this space (despite the many variants of Markdown flavors).

For examples of how multiple tools are used together in different combinations and solutions, see
Jamstack examples . Jamstack refers to serverless websites built with JavaScript, APIs, and Markup and
reflects modern web development trends. Jamstack excludes tools such as WordPress or other web apps
that would require a heavy backend component on a server to run.

Overall, the survey results confirmed the predominance of the docs-as-code approach in the dev docs
space. If you’re working with developer docs, this approach is trending. However, there’s also a decent
amount of wikis, Oxygen XML, and MadCap Flare use, probably among those groups that have more
robust localization and PDF requirements.

To read more thoughts about how source formats affect not just how we write but what we write, see my
blog post, How you write influences what you write — interpreting trends through movements from PDF to
web, DITA, wikis, CCMSs, and docs-as-code .

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 48

https://jamstack.org/examples/
https://jamstack.org/examples/
https://jamstack.org/examples/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/

2. Formats and output responses

Survey summary:

• Primary output: 72% HTML, 23% PDF
• Create video tutorials: 28% yes, 57% no, 14% plan to
• Docs plug into dev portal: 56% yes, 41% no
• Localize your docs: 73% no, 14% 1-3 languages, 10% 4+ languages
• Generate PDFs & distribute to audience: 57% no, 30% yes, 9% internal review only
• Significant role in developing publishing solution: 53% yes, 19% no

Summary and analysis:

Writers primarily create web content that fits into a larger developer portal. A developer portal is a
centralized hub that serves as the home for many different sets of documentation. The developer portal
might have a federated search, a login where developers can get API keys or make other configurations,
and navigation to browse the different doc sets and products.

Writers often help shape and build the developer portal. They might help design the site, workflows,
strategies for content re-use, stylesheets, etc. For example, a common task might be to brand the static-
site-generated documentation to fit seamlessly into a React-based developer portal, as well as to define
the Git workflows around content collaboration and publishing.

Localization, video tutorials, and PDF aren’t overwhelmingly produced in developer docs but do constitute
about 25% of the output. The low amount localization eases up some pressure on the tools. If you don’t
have to push your content into translation management systems, you aren’t as constrained with compatible
format types and roundtrip workflows. (It’s still possible to localize with static site generators, just not as
easy.)

I asked questions about video in the survey because I had heard negative comments about video formats
from some developers. Additionally, a lot of developer docs consist of code, which might be tough to
demonstrate in a video (you basically watch someone code in real time, which can be tedious and feel
either too slow or fast for the audience). However, the survey found that most writers aren’t opposed to
creating video content. The main reason for not creating video is due to lack of bandwidth, constantly
changing technology, or because no one has asked for video — not necessarily because of an aversion for
video.

Finally, the number of writers generating PDFs surprised me. It’s not so easy to generate PDFs from docs-
as-code tools, especially for more long-form content with cross-references and other book-style
formatting. However, PDF continues to be an important output, probably because there isn’t a good
alternative for distributing content to beta partners prior to release. With docs-as-code tools, you don’t
often have an authentication layer to gate the login. In these scenarios, sending partners a pre-release PDF
is usually the easiest way to share content.

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 49

3. Process and workflow responses

Survey summary:

• How do you interact with Scrum teams: 33% participate in limited capacity, 27%
participate as full-fledged member, 19% have their own documentation Scrum

• How do you review docs: 25% code review tools, 19% in-person meetings, 14%
collaborative annotation tools

• How do engineers contribute to docs: 31% pull requests, 31% wikis or similar, 22%
direct repo rights

• Do you outsource docs offshore: 93% yes, 4% no
• Do you publish docs with CI/CD: 48% yes, 33% no, 15% plan to
• Do you have a style guide: 77% yes, 20% no

Summary and analysis:

Most writers participate on Scrum teams, sometimes in limited capacity; other times they have their own
documentation Scrum teams. Scrum is the standard operating approach for most engineering groups (for
better or worse), and technical writers plug into this rhythm for documentation as well.

Writers review docs often using the same tools engineers use to review code (e.g, code review tools that
show diffs between commits). They also review docs through in-person meetings or through collaborative
annotation tools like Google Docs.

The review process for docs has always been multi-pathed, and what works at one company might not
work with another. Engineers often prefer to review content through code tools because it fits into how
they’re reviewing code, so they’re accustomed to this approach. However, I find these tools exclude non-
engineers, which weakens the review process — see my extended thoughts on this in Treat code like code
and prose like prose .

Engineers contribute content either through pull requests to the doc source or by putting the content on a
wiki or equivalent (for example, Google Docs, Quip). Other times engineers have direct rights in the repo to
work with the content.

Note that the survey did not filter out documentation-writing engineers from dedicated technical writers.
Many companies don’t have the luxury of technical writers, so engineers often play roles as
documentarians. In these cases, it would be natural for engineers to have rights in documentation repos, or
to store documentation in the same repos as the code. (See Integration documentation into engineering
code and workflows for a summary of an engaging presentation about how Google’s internal doc team
transformed their documentation by moving Markdown files directly inside of code repos.)

Outsourcing developer docs with an offshore authoring agency is rare. I did not ask for reasons why
outsourcing isn’t more common, but there might not be many outsourcing agencies that can handle highly
technical developer content. Or perhaps there are IP concerns about documenting the internal workings of
APIs, or maybe the doc shops are so small that no one would manage an outsourced resource.

The publishing process for developer docs is streamlined through continuous integration and continuous
deployment (CI/CD). This means writers can kick off builds and deployments with a few keystrokes on a
command line. For example, if you set up a service on a specific branch, when you push changes to the
branch, the service can start a build process on the server and then deploy the build onto a server. (For

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 50

https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose/
https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose/
https://idratherbewriting.com/2015/05/26/integrating-documentation-into-engineering-code-and-workflows/
https://idratherbewriting.com/2015/05/26/integrating-documentation-into-engineering-code-and-workflows/

example, GitHub Pages offers automatic builds of Jekyll projects on any GitHub repository. You could also
do this through Travis CI.) You can also run other verification scripts, such as link checkers, in an
automated way.

Some hosting and deployment solutions like Netlify let you push out multiple builds, allowing you to create
different environments for your content (alpha, beta, prod), with different conditions exposing different
content in each environment. The automated publishing model is one of the biggest advantages of the
docs-as-code approach. It allows you to constantly iterate on your content because the bandwidth for
republishing requires such little effort.

Finally, most tech writers working with developer docs follow a style guide. It’s worth noting here that style
guides for dev docs often take into consideration many elements of API design. Enforcing API styles (such
as parameter casing or endpoint names) isn’t too different from doc style guides (where you enforce rules
about title casing and verb forms). Arnaud Lauret’s The Design of Web APIs goes into this topic in detail
— see API design and usability (p. 488) for a summary of key points.

4. API responses

Survey summary:

• Documentation usually involves an API: 81% yes, 14% no
• Most common type of API: 56% REST APIs, 17% native library APIs (for example, Java,

C++), 7% GraphQL, 7% SOAP
• Use OpenAPI docs for REST APIs 47% yes, 17% no, 16% sometimes
• Who generates the OpenAPI spec: 36% engineers, 26% both engineers and tech writers,

6% tech writers
• Who generates native library API docs: 32% engineers, 27% both engineers and tech

writers, 6% tech writers
• Create OpenAPI spec manually or auto-generate it: 23% auto-generated, 22%

manually, 22% both
• How to render OpenAPI spec into documentation: 27% Swagger UI, 17% internally built

tools, 8% ReDoc
• Most common programming languages to know: 24% JavaScript, 17% Java, 16%

Python
• Trending technologies you’re documenting: 13% machine learning, 11% artificial

intelligence, 11% big data, 9% Internet of Things (IoT)

Summary and analysis:

Although the survey focused on developer documentation, not specifically API documentation, most
developer docs involve some kind of API. As such, it’s fair to use developer documentation and API
documentation somewhat synonymously, even if the latter is a subset of the former.

What kind of APIs are writers mostly working with? REST APIs, but only about half the time. Other times,
writers work with native library APIs (such as Java or C++ APIs), GraphQL, or SOAP.

When documenting REST APIs, most teams use the OpenAPI specification. This is a detailed description of
the API that follows a highly structured YAML or JSON format. Usually, either engineers create this spec, or
engineers collaborate with tech writers on it. The same goes with reference documentation for native library
APIs.

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 51

https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108

Reference docs have traditionally been written by engineers, so I imagine the collaboration here is usually
one where writers edit the material rather than provide the annotations in source code. While engineers will
often lead the charge with reference documentation, they rarely expand beyond this scope to tackle other
elements of documentation, such as conceptual overviews, getting started guides, tutorials, how-to
content, glossaries, troubleshooting, and FAQs.

In terms of processes for creating the OpenAPI spec, there’s a split between manually creating the spec
and auto-generating it from annotations in the source code. The former approach embraces the spec as a
blueprint or contract that engineers code against; the latter is used more by engineering documentarians
who might be wary of documentation drift, or who find it more convenient to keep documentation together
with code.

The OpenAPI spec alone isn’t readable documentation, but many tools can generate out documentation
from the OpenAPI spec. The most common tools for this are Swagger UI (p. 218), custom-built tools, or
ReDoc (p. 249).

REST APIs are language agnostic, but there are usually accompanying software development kits (SDKs)
that are language-specific (companies provide them to help developers implement the API). The most
important languages to know (likely because of the SDKs that accompany APIs) are JavaScript, Java, and
Python. Outside of programming languages, trending technologies include machine learning, artificial
intelligence, big data, and Internet of Things (IoT).

5. Profile information

Survey summary:

• Age range: 17% ages 36-40, 16% ages 31-35, 14% ages 26-30, 12% ages 41-45, 11%
ages 56-50, 11% ages 56-60, 8% ages 51-55, 4% 61-65 ages

• Gender: 52% male, 46% female
• Company: 200+ different companies listed
• College degree: 31% humanities, 28% engineering, 15% tech comm
• Satisfied with job: 38% agree, 37% strongly agree
• Team size: 34% lone writer, 31% team size 2-4 writers, 16% team size 8+ writers, 12%

team size 5-7 writers
• Organizational model for tech comm: 40% centralized, 21% decentralized, 19% hybrid/

distributed
• Employment type: 86% full-time, 10% contractor/vendor/temp
• Community you have most affinity towards: 39% WTD, 31% none, 14% STC
• Time spent learning to keep up: 28% 30 min/day, 27% 20 min, 14% 60 min
• Biggest challenges: technical know-how, time/bandwidth, getting reviews, addressing

both novice and advanced users

Summary and analysis:

This final section covers profile and demographics data about the survey respondents. First to note is that
the age range for writers in developer docs is fairly evenly distributed. This is reassuring given that ageism
is a valid concern for senior workers in the technology industry. (Apparently, there are even resorts where
aging tech workers in Silicon Valley go , some still in their 30s, to cope with anxiety about their increasing
age.)

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 52

https://www.nytimes.com/2019/03/04/technology/modern-elder-resort-silicon-valley-ageism.html
https://www.nytimes.com/2019/03/04/technology/modern-elder-resort-silicon-valley-ageism.html

It seems the tech writer’s age is much less relevant, perhaps because this role is seen as supportive to
engineers rather than a role where risk-taking is essential (as might be required for young tech
entrepreneurs trying to disrupt larger companies). For an age comparison with developers, the 2020 Stack
Overflow Developer Survey reports that the average age of developers (using Stack Overflow) is about
33.7 years.

The gender balance among dev doc writers is also reassuring. The Stack Overflow Developer survey found
that 91.5% of their respondents were men, 8.0% women. Tech has a bad reputation for its “brogrammer
culture.” In contrast, my survey found that the ratio for tech writers is 52% male / 46% female, which is
much more balanced.

Another reassuring finding is that not everyone in this space is a former engineer. Instead, 31% have
humanities degrees, 15% have technical communication degrees, and only 28% have engineering degrees.
There’s often a presumption that to excel in developer docs, you need to be a former developer. Or if you
are a former developer, you’re can automatically step to the front of the line. That doesn’t seem to be the
case.

Job satisfaction is also strong, with 75% of people agreeing or strongly agreeing that they are satisfied with
their jobs. Compare this with the 70% job satisfaction rate reported in Saul Carliner’s Tech Comm Census.
Developer docs can be an intimidating space, where you’re frequently documenting code that’s hard to
understand, where doc tools operate similar to software development tools, and where engineers have little
patience to explain concepts to less technical people. Perhaps the job satisfaction is high because the
salaries tend to be higher, the job market more abundant, and you’re in a space where you’re constantly
learning.

Team sizes for writers in dev docs are small. A third are lone writers, and another third are on teams of 2-4
writers. Large teams of 8+ writers are less common, accounting for only 16% of respondents. Despite the
small team sizes, 40% are centralized on a tech comm team within their company, while others are either
decentralized (embedded and reporting directly within a product team), and others are in a hybrid model
somewhere between centralized and decentralized.

As far as professional groups, more writers in this space have an affinity for Write the Docs, but many don’t
have an affinity for any professional group.

Finally, the biggest challenges writers in dev docs face is having enough technical know-how to write docs
and enough time/bandwidth to write it. Getting engineers to review docs is also challenging, as is creating
content that addresses both novice and advanced groups.

Conclusion

The survey didn’t present any major surprises to the trends that I’ve already observed in this space.
However, the answers provided more definitive data that confirms how different and unique developer docs
are from other types of documentation. Technical writers transitioning into this space face a whirlwind of
different tools, practices, and challenges. With this data, we can identify trends and see what standard
practices are emerging. These trends can serve as a guide and reference as writers make their way in this
space.

But also note that this space changes quickly. As JavaScript frameworks come and go, static site
generators tend to follow suit, and what’s trending one year might fade the next. This is a plastic space
where new technologies and experimentation can lead to overnight change.

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 53

https://insights.stackoverflow.com/survey/2020#developer-profile-age-and-experience-by-country-average-age
https://insights.stackoverflow.com/survey/2020#developer-profile-age-and-experience-by-country-average-age

About the author

Tom Johnson is a senior technical writer for Amazon in Sunnyvale, California. He is best known for his blog,
I’d Rather Be Writing , where he posts regularly on technical communication topics. The blog has one of
the largest followings of technical communicators online. Additionally, he has created an extensive web API
documentation course at [https://idratherbewriting.com/learnapidoc/] that has helped hundreds of
technical writers transition into API documentation.

Sources

• 2020 Developer Survey . Stack Overflow.
• Abel, Scott. Slides: The State of Technical Communication: 2019 . The Content Wrangler.
• Abel, Scott. Survey Reveals Top Tools, Trends, and Technologies in Use in Technical

Communication Teams . STC Intercom. Dec 2018.
• Abel, Scott. Webinar: The State of Technical Communication: 2019 . The Content Wrangler.

BrightTALK. Dec 13, 2018.
• Bowles, Nellie. A New Luxury Retreat Caters to Elderly Workers in Tech (Ages 30 and Up) .

New York Times. Mar 4, 2019.
• Carliner, Saul and Chen, Yuan. Job and Career Satisfaction Among Technical Communicators .

STC Intercom. Dec 2018.
• Carliner, Saul and Chen, Yuan. Professional Development of Technical Communicators . STC

Intercom. Dec 2018.
• Carliner, Saul and Chen, Yuan. What Technical Communicators Do . Carliner, Saul and Chen,

Yuan. STC Intercom. Jan 2019. STC Intercom. Dec 2018.
• Carliner, Saul and Chen, Yuan. Who Technical Communicators Are: A Summary of

Demographics, Backgrounds, and Employment . STC Intercom. Dec 2018.
• Johnson, Tom. API the Docs recording: How Trends in API Documentation Differ from other Tech

Comm Trends
• Johnson, Tom. 2020 Developer documentation survey . Idratherbewriting.com. Dec 31, 2019.
• Johnson, Tom. Developer Documentation Trends — Survey Results (p. 44)
• Johnson, Tom. How you write influences what you write — interpreting trends through

movements from PDF to web, DITA, wikis, CCMSs, and docs-as-code . Idratherbewriting.com.
Feb 20, 2020.

• Johnson, Tom. Integrating documentation into engineering code and workflows .
Idratherbewriting.com. May 26, 2015.

• Johnson, Tom. Treat code like code and prose like prose . Idratherbewriting.com. Jun 16,
2020.

• Johnson, Tom. API design and usability (p. 488). Idratherbewriting.com.
• Lauret, Arnaud. The Design of Web APIs . Manning Publications. 2019.
• Welinske, Joe. 2014 WritersUA Tools Survey . WritersUA. Aug 20, 2015.

Developer documentation trends — survey results PDF last generated: August 27, 2023

Documenting REST APIs Page 54

https://idratherbewriting.com/
https://insights.stackoverflow.com/survey/2020
http://public2.brighttalk.com/resource/core/217857/the-state-of-technical-communication_474463.pdf
https://www.stc.org/intercom/2019/01/survey-reveals-top-tools-trends-and-technologies-in-use-in-technical-communication-teams/
https://www.stc.org/intercom/2019/01/survey-reveals-top-tools-trends-and-technologies-in-use-in-technical-communication-teams/
https://www.brighttalk.com/webcast/9273/338293/the-state-of-technical-communication-2019
https://www.nytimes.com/2019/03/04/technology/modern-elder-resort-silicon-valley-ageism.html
https://www.stc.org/intercom/2019/01/job-and-career-satisfaction-among-technical-communicators/
https://www.stc.org/intercom/2019/01/professional-development-of-technical-communicators/
https://www.stc.org/intercom/2019/01/what-technical-communicators-do/
https://www.stc.org/intercom/2019/01/who-technical-communicators-are-a-summary-of-demographics-backgrounds-and-employment/
https://www.stc.org/intercom/2019/01/who-technical-communicators-are-a-summary-of-demographics-backgrounds-and-employment/
https://idratherbewriting.com/blog/api-the-docs-virtual-series-fifth-edition-api-doc-trends-design/
https://idratherbewriting.com/blog/api-the-docs-virtual-series-fifth-edition-api-doc-trends-design/
https://idratherbewriting.com/blog/developer-documentation-survey-2020
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/2015/05/26/integrating-documentation-into-engineering-code-and-workflows/
https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose/
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
http://www.welinske.com/2014-writersua-tools-survey/

Glossary
The API documentation landscape is full of jargon, acronyms, and many new terms. This glossary provides
a list of terms and definitions.

A (p. 55) | B (p. 56) | C (p. 56) | E (p. 56) | G (p. 57) | H (p. 57) | J (p. 58) | M (p. 58) |
O (p. 58) | P (p. 59) | Q (p. 60) | R (p. 60) | S (p. 61) | V (p. 62) | Y (p. 63) |

A
API

Application Programming Interface. Enables different systems to interact with each other
programmatically. Two types of APIs are REST APIs (web APIs) and native-library APIs. See What is a
REST API? (p. 36)

API Console

Renders an interactive display for the RAML spec. Similar to Swagger UI, but for RAML (p. 936). See
github.com/mulesoft/api-console .

APIMATIC

Supports most REST API description formats (OpenAPI, RAML, API Blueprint, etc.) and provides SDK
code generation, conversions from one spec format to another, and many more services. APIMATIC
“lets you define APIs and generate SDKs for more than 10 languages.” For example, you can
automatically convert Swagger 2.0 to 3.0 using the API Transformer service on this site. See
https://apimatic.io/ and read their documentation .

API Transformer

A cross-platform service provided by APIMATIC that will automatically convert your specification
document from one format or version to another. See apimatic.io/transformer .

Apiary

Platform that supports the full life-cycle of API design, development, and deployment. For interactive
documentation, Apiary supports the API Blueprint specification, which similar to OpenAPI or RAML
but includes more Markdown elements. It also supports the OpenAPI specification now too. See
apiary.io .

API Blueprint

The API Blueprint spec is an alternative specification to OpenAPI or RAML. API Blueprint is written in
a Markdown-flavored syntax. See API Blueprint (p. 938) in this course, or go to API Blueprint's
homepage to learn more.

Apigee

Similar to Apiary, Apigee provides services for you to manage the whole lifecycle of your API.
Specifically, Apigee lets you “manage API complexity and risk in a multi- and hybrid-cloud world by
ensuring security, visibility, and performance across the entire API landscape.” Supports the OpenAPI
spec. See apigee.com .

Glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 55

https://github.com/mulesoft/apiconsole
https://apimatic.io/transformer
https://apimatic.io/
https://docs.apimatic.io/
https://apimatic.io/transformer
https://apiary.io/
https://apiblueprint.org/
https://apiblueprint.org/
https://apigee.com/api-management/

Asciidoc

A lightweight text format that provides more semantic features than Markdown. Used in some static
site generators, such as Asciidoctor or Nanoc . See http://asciidoc.org/ .

B
branch

In Git, a branch is a copy of the repository that is often used for developing new features. Usually, you
work in branches and then merge the branch into the master branch when you’re ready to publish. If
you’re editing documentation in a code repository, developers will probably have you work in a
branch to make your edits. The developers will then either merge your branch into the master when
ready, or you might submit a pull request to merge your branch into the master. See git-branch .

C
clone

In Git, clone is the command used to copy a repository in a way that keeps it linked to the original.
The first step in working with any repository is to clone the repo locally. Git is a distributed version
control system, so everyone working in it has a local copy (clone) on their machines. The central
repository is referred to as the origin. Each user can pull updates from origin and push updates to
origin. See git-clone .

commit

In Git, a commit is when you take a snapshot of your changes to the repo. Git saves the commit as a
snapshot in time that you can revert to later if needed. You commit your changes before pulling from
origin or before merging your branch within another branch. See git-commit .

CRUD

Create, Read, Update, Delete. These four programming operations are often compared to POST,
GET, PUT, and DELETE with REST API operations.

curl

A command line utility often used to interact with REST API endpoints. Used in documentation for
request code samples. curl is usually the default format used to display requests in API
documentation. See curl . Also written as cURL. See Make a curl call (p. 80) and Understand curl
more (p. 83).

E
endpoints and methods

The endpoints indicate how you access the resource, while the method indicates the allowed
interactions (such as GET, POST, or DELETE) with the resource.

The same resource usually has a variety of related endpoints, each with different paths and methods
but returning different information about the same resource. Endpoints usually have brief descriptions
similar to the overall resource description but shorter. Also, the endpoint shows the end path of a

Glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 56

http://asciidoctor.org/
https://nanoc.ws/
http://asciidoc.org/
https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-commit
https://curl.haxx.se/

resource URL only, not the base path common to all endpoints. See Endpoints and methods (p. 126).

G
Git

Distributed version control system commonly used when interacting with code. GitHub uses Git, as
does BitBucket and other version control platforms. Learning Git is essential for working with
developer documentation, since this is the most common way developers share, review, collaborate,
and distribute code. See https://git-scm.com/ .

GitHub

A platform for managing Git repositories. Used for most open-source projects. You can also publish
documentation using GitHub, either by simply uploading your non-binary text files to the repo, or by
auto-building your Jekyll site with GitHub Pages, or by using the built-in GitHub wiki. See GitHub
wikis (p. 569) in this course as well as on pages.github.com/ .

Git repo

In Git, a repo (short for repository) stores your project’s code. Usually, you only store non-binary
(human-readable) text files in a repo, because Git can run diffs on text files and show you what has
changed.

H
HAT

Help Authoring Tool. Refers to the traditional help authoring tools (RoboHelp, Flare, Author-it, etc.)
used by technical writers for documentation. Tooling for API docs tends to use docs-as-code tools (p.
551) more than HATs (p. 533).

HATEOS

Stands for Hypermedia as the Engine of Application State. Hypermedia is one of the characteristics of
REST that is often overlooked or missing from REST APIs. In API responses, responses that span
multiple pages should provide links for users to page to the other items. See HATEOS .

Header parameters

Parameters that are included in the request header, usually related to authorization.

Hugo

A static site generator that uses the Go programming language as its base. Along with Jekyll, Hugo is
among the top 5 most popular static site generators. Hugo is probably the fastest site generator
available. Speed matters as you scale the number of documents in your project beyond several
hundred. See https://gohugo.io/ . For more about static site generators, see Static site generators
(p. 591).

Glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 57

https://git-scm.com/
https://pages.github.com/
https://en.wikipedia.org/wiki/HATEOAS
https://gohugo.io/

J
JSON

JavaScript Object Notation. A lightweight syntax containing objects and arrays, usually used (instead
of XML) to return information from a REST API. See Analyze the JSON response (p. 94) in this course
and http://www.json.org/ .

M
Mercurial

A distributed revision control system, similar to Git but not as popular. See https://www.mercurial-
scm.org/ .

method

The allowed operation with a resource in terms of GET, POST, PUT, DELETE, and so on. These
operations determine whether you’re reading information, creating new information, updating existing
information, or deleting information. See Endpoints and methods (p. 126).

Mulesoft

Similar to Apiary or Apigee, Mulesoft provides an end-to-end platform for designing, developing, and
distributing your APIs. For documentation, Mulesoft supports RAML (p. 924). See
https://www.mulesoft.com/ .

O
OAS

Abbreviation for OpenAPI specification.

OpenAPI

The official name for the OpenAPI specification. The OpenAPI specification provides a set of
properties that can be used to describe your REST API. When valid, the specification document can
be used to create interactive documentation, generate client SDKs, run unit tests, and more. You can
read the specification details on GitHub at https://github.com/OAI/OpenAPI-Specification . Under
the Open API Initiative with the Linux Foundation, the OpenAPI specification aims to be vendor
neutral (many companies steer its development , not just one). See Introduction to the OpenAPI
specification (p. 181).

OpenAPI contract

Synonym for OpenAPI specification document.

OpenAPI specification document

The file (either in YAML or JSON syntax) that describes your REST API. Follows the OpenAPI
specification format. See https://www.openapis.org/ . See also OpenAPI 3.0 tutorial (p. 272).

Glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 58

http://www.json.org/
https://www.mercurial-scm.org/
https://www.mercurial-scm.org/
https://www.mulesoft.com/
https://github.com/OAI/OpenAPI-Specification
https://www.openapis.org/membership/members
https://www.openapis.org/

OpenAPI Initiative

The governing body that directs the OpenAPI specification. Backed by the Linux Foundation. See
https://www.openapis.org/ .

P
parameters

Parameters are options you can pass with the endpoint (such as specifying the response format or
the amount returned) to influence the response. There are several types of parameters: header
parameters, path parameters, and query string parameters. Request bodies are closely similar to
parameters but are not technically a parameter.

The different types of parameters are often documented in separate groups on the same page. Not all
endpoints contain each type of parameter. See Parameters (p. 132) for more details.

Path parameters

Parameters that appear within the path of the endpoint, before the query string (?). Path parameters
are usually set off within curly braces. See Parameters (p. 132) for more details.

Pelican

A static site generator based on Python. See https://github.com/getpelican/pelican . For more
about static site generators, see Static site generators (p. 591).

Perforce

Revision control system often used before Git became popular. Often configured as a centralized
repository instead of a distributed repository. See Perforce .

pull

In Git, when you pull from origin (the master location where you cloned the repo), you get the latest
updates from origin onto your local system. When you run git pull , Git tries to automatically
merge the updates from origin into your copy. If the merge cannot happen automatically, you might
see merge conflicts. See git-pull .

Pull Request

A request from an outside contributor to merge a cloned branch back into the master branch. The pull
request workflow is commonly used with open-source projects because developers outside the team
will not usually have contributor rights to merge updates into the repository. GitHub provides a user-
friendly interface for making and processing pull requests. See Pull Requests .

push

In Git, when you want to update the origin with the latest updates from your local copy, you run git

push . Your updates will bring origin back into sync with your local copy. See https://git-scm.com/
docs/git-push .

Glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 59

https://www.openapis.org/
https://github.com/getpelican/pelican
https://en.wikipedia.org/wiki/Perforce_Helix
https://git-scm.com/docs/git-pull
https://www.atlassian.com/git/tutorials/making-a-pull-request
https://git-scm.com/docs/git-push
https://git-scm.com/docs/git-push

Q
Query string parameters

Parameters that appear in the query string of the endpoint, after the ? . See Parameters (p. 132) for
more details.

R
RAML

Stands for REST API Modeling Language and is similar to OpenAPI specifications. RAML is backed
by Mulesoft, a commercial API company, and uses a more YAML-based syntax in the specification.
See RAML tutorial (p. 924) in this course or RAML .

RAML Console

In Mulesoft, the RAML Console is where you design your RAML spec. Similar to the Swagger Editor
for the OpenAPI spec.

Repo

A tool for consolidating and managing many smaller repos with one system. See git-repo . For the
definition of a Git repository, see Git repo (p. 57).

request

The way information is returned from an API. In a request, the client provides a resource URL with the
proper authorization to an API server. The API returns a response with the information requested. See
Request example (p. 141) for more details.

request body

A block of information, usually JSON, included in the request body, often used with CREATE and PUT
methods. See Parameters (p. 132) for more details.

response example and schema

The response example shows a sample response from the request example; the response schema
defines all possible elements in the response. The response example is not comprehensive of all
parameter configurations or operations, but it should correspond with the parameters passed in the
request example. The response lets developers know if the resource contains the information they
want, the format, and how that information is structured and labeled.

The description of the response is known as the response schema. The response schema documents
the response in a more comprehensive, general way, listing each property that could possibly be
returned, what each property contains, the data format of the values, the structure, and other details.
See Response example and schema (p. 154) for details.

resource description

“Resources” refers to the information returned by an API. Most APIs have various categories of
information, or various resources, that can be returned.

Glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 60

https://raml.org/
https://code.google.com/archive/p/git-repo/

The resource description is brief (1-3 sentences) and usually starts with a verb. Resources usually
have various endpoints to access the resource and multiple methods for each endpoint. On the same
page, you usually have a general resource described along with a number of endpoints for accessing
the resource, also described. See Resource description (p. 120) for more details.

response

The information returned by an API after a request is made. Responses are usually in either JSON or
XML format. See Response example and schema (p. 154) for details.

response example and schema

The response example shows a sample response from the request example; the response schema
defines all possible elements in the response. The response example is not comprehensive of all
parameter configurations or operations, but it should correspond with the parameters passed in the
request example. The response lets developers know if the resource contains the information they
want, the format, and how that information is structured and labeled.

The description of the response is known as the response schema. The response schema documents
the response in a more comprehensive, general way, listing each property that could possibly be
returned, what each property contains, the data format of the values, the structure, and other details.
See Response example and schema (p. 154) for details.

REST API

Stands for Representational State Transfer. Uses web protocols (HTTP) to make requests and provide
responses in a language agnostic way, meaning that users can choose whatever programming
language they want to make the calls. See What is a REST API? (p. 36) for more details.

S
SDK

Software development kit. Developers often create an SDK to accompany a REST API. The SDK
helps developers implement the API using a specific language, such as Java or PHP. See SDKs (p.
480) for more details.

Smartbear

The company that maintains and develops the Swagger tooling — Swagger Editor , Swagger UI ,
Swagger Codegen , SwaggerHub , and others . See Smartbear .

Sphinx

A static site generator developed for managing documentation for Python. Sphinx is the most
documentation-oriented static site generator available and includes many robust features – such as
search, sidebar navigation, semantic markup, managed links – that other static site generators lack.
Based on Python. See staticgen.com/sphinx for high-level details. For more about static site
generators, see Static site generators (p. 596).

Static site generator

A breed of website compilers that package up a group of files (usually written in Markdown) and make
them into a website. There are more than 350 different static site generators. See Jekyll (p. 637) in

Glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 61

https://swagger.io/swagger-editor/
https://swagger.io/swagger-ui/
https://swagger.io/swagger-codegen/
https://app.swaggerhub.com/home
https://swagger.io/tools/
https://smartbear.com/
https://www.staticgen.com/sphinx

this course for a deep-dive into the most popular static site generator, or Staticgen for a list of all
static site generators. See Static site generators (p. 591) for a deep-dive into this topic.

Stoplight

Provides a platform with visual modeling tools to create an OpenAPI document for your API —
without requiring you to know the OpenAPI spec details or code the spec line by line. See
http://stoplight.io/ for more information. See Stoplight — visual modeling tools for creating your
OpenAPI spec (p. 195) for more information.

Swagger

Refers to API tooling related to the OpenAPI spec. Some of these tools include Swagger Editor ,
Swagger UI , Swagger Codegen , SwaggerHub , and others . These tools are managed by
Smartbear . For more tools, see Swagger Tools . “Swagger” was the original name of the
OpenAPI spec, but the name was later changed to OpenAPI to reinforce the open, non-proprietary
nature of the standard. People sometimes refer to both names interchangeably (especially on older
web pages), but “OpenAPI” is how the spec should be referred to. For more on naming conventions
between OpenAPI and Swagger, see What Is the Difference Between Swagger and OpenAPI? .

Swagger Codegen

Generates client SDK code for a lot of different platforms (such as Java, JavaScript, Scala, Python,
PHP, Ruby, Scala, and more). The client SDK code helps developers integrate your API on a specific
platform and provides for more robust implementations that might include more scaling, threading,
and other necessary code. In general, SDKs are toolkits for implementing the requests made with an
API. Swagger Codegen generates the client SDKs in nearly every programming language. See
Swagger Codegen for more information. See also SDKs (p. 480).

Swagger Editor

An online editor that validates your OpenAPI document against the rules of the OpenAPI
specification. The Swagger Editor will flag errors and give you formatting tips. See Swagger Editor .

Swagger UI

An open-source web framework (on GitHub) that parses an OpenAPI specification document and
generates an interactive documentation website. Swagger UI is the tool that transforms your spec
into the Petstore-like site .

SwaggerHub

A site developed by Smartbear to help teams collaborate around the OpenAPI spec. In addition to
generating interactive documentation from SwaggerHub, you can generate many client and server
SDKs and other services. See Manage Swagger Projects with SwaggerHub (p. 230).

V
VCS

Stands for version control system. Git and Mercurial are examples.

Glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 62

https://www.staticgen.com/
http://stoplight.io/
https://swagger.io/swagger-editor/
https://swagger.io/swagger-ui/
https://swagger.io/swagger-codegen/
https://app.swaggerhub.com/home
https://swagger.io/tools/
https://smartbear.com/
https://swagger.io/tools/
https://github.com/OAI/OpenAPI-Specification/
https://swagger.io/difference-between-swagger-and-openapi/
https://swagger.io/swagger-codegen/
http://editor.swagger.io/#/
https://github.com/swagger-api/swagger-ui
http://petstore.swagger.io/

version control system

A system for managing code that relies on snapshots that store content at specific states. Enables
you to revert to previous states, branch the code into different versions, and more. See About Version
Control in Git. See Version Control Systems (p. 562) for more information.

Y
YAML

Recursive acronym for “YAML Ain’t No Markup Language.” A human-readable, space-sensitive
syntax used in the OpenAPI specification document. See More About YAML (p. 276).

Glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 63

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Chapter 2: Using an API like a
developer
Playing a brief role as a developer will help you understand developer needs better, as well as what
developers typically look for in API documentation. Developers often use tools such as Postman or curl to
make calls. They look at the structure of the response, and they dynamically integrate the needed
information into web pages and other applications.

Chapter sections:

Scenario for using a weather API ... 65

Get authorization keys.. 69

Submit requests through Postman .. 71

curl intro and installation .. 78

Make a curl call .. 80

Understand curl more .. 83

Activity: Use methods with curl.. 88

Analyze the JSON response... 94

Inspect the JSON from the response payload ... 98

Access and print a specific JSON value .. 103

Dive into dot notation ... 109

Chapter 2: Using an API like a developer PDF last generated: August 27, 2023

Documenting REST APIs Page 64

Scenario for using a weather API
Let’s start using an actual REST API to get more familiar with how they work. In the upcoming sections,
you’ll explore some weather APIs in the context of a specific use case: retrieving a weather forecast. By
first playing the role of a developer using an API, you’ll gain a greater understanding of how your audience
will use APIs, the type of information they’ll need, and what they might do with the information.

Sample scenario: How windy is it?
Let’s say that you’re a web developer and you want to add weather information to your site. Your site is for
cyclists. You want to allow users who come to your site to see the current wind and temperature
conditions. You want something like this:

Wind meter conditions for website

You don’t have your own meteorological service, so you’ll need to make some calls out to a weather
service to get this information. Then you will present that information to users.

Get an idea of the end goal
To give you an idea of the end goal, here’s a sample: idratherbewriting.com/assets/files/wind-
openweathermap.html . It’s not necessarily styled the same as the mockup, but it answers the question,
“What’s the current wind and temperature?”

Click the Check wind conditions button to see wind and temperature details. When you request this data,
a call is made to the OpenWeatherMap API . The API retrieves the information, and some JavaScript
code prints the information on the page.

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_scenario_for_using_weather_api.html] to view the
content.

The above example is extremely simple. You could also build an attractive interface like this:

Scenario for using a weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 65

https://idratherbewriting.com/assets/files/wind-openweathermap.html
https://idratherbewriting.com/assets/files/wind-openweathermap.html
https://openweathermap.org/api

The concept and general techniques are more or less the same. Behind the scenes, the code makes
requests to a weather service API and then displays the returned information in a stylized user interface.

Activity: Explore the OpenWeatherMap API
Although there are many good weather API options for developers , I decided to use the
OpenWeatherMap API in this course because the service is easy to use, free, and stable.

Let’s explore the basic sections in the OpenWeatherMap API :

1. Go to the openweathermap.org .
2. Click API in the top navigation bar.
3. In the Current weather data section, click the API doc button.
4. Click some of the links in the Examples of API calls sections.

Get a sense of the information this Current Weather Data API provides. The API calls provide
developers with ways to pull information into their applications. In other words, the APIs will
provide the data plumbing for the applications that developers build.

5. Answer the following questions about the Current Weather Data API endpoint:

• Does the API provide the information we need about temperature, wind speed, wind
direction, and current conditions?

• How many different ways can you specify the location for the weather information?
• What does a sample request look like?
• How many endpoints does the API have?
• What authorization credentials are required to get a response?

Scenario for using a weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 66

https://weather.yahoo.com/united-states/california/santa-clara-2488836/
https://weather.yahoo.com/united-states/california/santa-clara-2488836/
https://superdevresources.com/weather-forecast-api-for-developing-apps/
https://openweathermap.org/
https://openweathermap.org/api/
https://openweathermap.org/

Explore the Aeris Weather API
Before diving too far down in the OpenWeatherMap API, let’s look at another weather API for contrast. In
contrast to the OpenWeatherMap API, the Aeris Weather API is a bit more robust and extensive. Explore
the Aeris Weather API by doing the following:

1. Go to www.aerisweather.com .
2. Click Documentation on the top navigation bar. Then click API Documentation.
3. In the left sidebar, under Reference, click Endpoints. Select the All tab to show all endpoints,

and then scroll down a bit and click observations .

4. Browse the type of information that is available through this endpoint. Does this endpoint provide
information about wind and temperature that would work for our sample development scenario?

Here’s the Aeris weather forecast API in action making mostly the same calls as I showed earlier with
OpenWeatherMap: idratherbewriting.com/assets/files/wind-aeris.html . (Note: If this returns
[Object][Object] , it’s because my API key expired. You can view the page source to see how the call is

constructed.)

For our development scenario (showing weather on a website), there are dozens of different weather APIs
we could use. As you create your API documentation, think about how your users might have to make the
same decisions in choosing APIs. Are there several APIs that provide similar information? What will make
your API stand out more? Although you probably can’t pick and choose what information your API returns,
you might at least argue that the docs for your API will be superior!

More weather APIs
APIs differ considerably in their design, presentation, responses, and other detail. For more comparison,
check out some of the following weather APIs:

• Accuweather API
• Weatherbit API
• ClimaCell’s Weather API

Scenario for using a weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 67

http://www.aerisweather.com/
http://www.aerisweather.com/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://idratherbewriting.com/assets/files/wind-aeris.html
https://developer.accuweather.com/
https://www.weatherbit.io/api
https://www.climacell.co/weather-api/

Each weather API has an entirely different approach to documentation. As you’ll see going through this
course, the variety and uniqueness of each API doc site (even when approaching the same topic — a
weather forecast) presents a lot of challenges to tech writing teams. Not only do website styles vary but
also API terminology and other vocabulary to describe similar concepts.

As I mentioned earlier, REST APIs are an architectural style that follows common characteristics and
principles; they don’t all follow the same standard or specification. Users have to read the documentation
to understand how to use the API. (See “REST is a style, not a standard.” (p. 39))

Spend a little time exploring the features and information that these weather APIs provide. Try to answer
these basic questions:

• What does each API do?
• How many endpoints does each API have?
• What information do the endpoints provide?
• What kind of parameters does each endpoint take?
• What kind of response does the endpoint provide?

Sometimes people use the term "API" to refer to a whole collection of endpoints, functions, or classes.
Other times they use API to refer to a single endpoint. For example, a developer might say, "We need you
to document a new API." They mean they added a new endpoint or class to the API, not that they launched
an entirely new API service.

Scenario for using a weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 68

Get authorization keys
Almost every API has a method in place to authenticate requests. You usually have to provide an API key in
your requests to get a response. Although we’ll dive into authentication and authorization (p. 393) later, we
need to get some API keys now to make requests to our weather API.

Why requests need authorization
Requiring authorization allows API publishers to do the following:

• License access to the API
• Rate limit the number of requests
• Control availability of certain features within the API, and more

To run the code samples in this course, you will need to use your own API keys, since these keys are
usually treated like passwords and not given out or published openly on a web page.

Activity: Get an OpenWeatherMap API key
To get an API key for the OpenWeatherMap API:

1. Go to openweathermap.org .
2. Click Sign Up in the top navigation bar and create an account.
3. After you sign up, your API key is sent to the email address you provide.

You can also find your API key on the site’s Developer Dashboard. (To find your API key on the
site, return to the OpenWeatherMap homepage and click Sign in. After signing in, you’ll see the
developer dashboard. Click the API Keys tab (highlighted in the screenshot below).

API Keys tab on OpenWeatherMap Developer Dashboard

4. Copy the key to a place you can easily find it.

Get authorization keys PDF last generated: August 27, 2023

Documenting REST APIs Page 69

https://openweathermap.org/

(Note: It can take an hour or so for a new OpenWeatherMap API key to activate.)

Get the Aeris Weather API secret and ID
Now for contrast, let’s get the keys for the Aeris Weather API, using a free developer account. The Aeris
Weather API requires both a secret and ID to make requests.

1. Go to https://www.aerisweather.com/develop/api/ and click Free Trial.
2. Click Sign Up for Developer. (The free developer version limits the number of requests you can

make and expires in 30 days.)
3. Complete the required fields to sign in. Click the activation email as well.
4. After you sign up for an account, sign in and go to your Dashboard .
5. Click Apps, and then click New Application.
6. In the Add a New Application dialog box, enter the following:

• Application Name: My biking app (or something)
• Application Namespace: localhost

7. Click Save App.

After registering your app, you should see an ID, secret, and namespace for the app. Copy this information
into a place you can easily access since you’ll need it to make requests.

Keep in mind how users authorize calls with an API — this is something you usually cover in API
documentation. Later in the course, we will dive into authorization methods (p. 393) in more detail.

Make sure you have a text editor
In the upcoming activities, you’ll work with code in a text file. When you’re working with code, you use a
text editor (to work in plain text) instead of a rich text editor (which would provide a WYSIWYG interface).
Here are a few choices for text editors:

• Visual Studio Code (Mac or PC). (I recommend this editor the most.)
• Sublime Text (Mac or PC)
• TextWrangler or BBEdit (Mac)
• WebStorm (Mac or PC)
• Notepad++ (PC)
• Atom (Mac or Windows)
• Komodo Edit (Mac or PC)
• Coda (Mac)

These editors provide features that let you better manage the text. Choose the one you want. (My
preference is to use Sublime Text when I’m working with independent code samples, and Atom when I’m
working with Jekyll projects.) Avoid using TextEdit since it adds some formatting behind the scenes that
can corrupt your content.

Get authorization keys PDF last generated: August 27, 2023

Documenting REST APIs Page 70

http://www.aerisweather.com/
https://account.aerisweather.com/account/member
https://code.visualstudio.com/
http://www.sublimetext.com/
http://www.barebones.com/products/textwrangler/
http://www.barebones.com/products/bbedit/
https://www.jetbrains.com/webstorm/
https://notepad-plus-plus.org/
https://atom.io/
http://komodoide.com/komodo-edit/
https://panic.com/coda/

Submit requests through Postman
When you’re testing endpoints with different parameters, you can use one of the many GUI REST clients
available to make the requests. (By “GUI,” I mean there’s a graphical user interface with boxes and buttons
for you to click.) You can also use curl (p. 78) (which we’ll cover soon), but GUI clients tend to simplify
testing with REST APIs.

Why use a GUI client
With a GUI REST client, you can:

• Save your requests (and numerous variations) in a way that’s easy to run again
• More easily enter information in the right format
• See the response in a prettified JSON view or a raw format
• Easily include header information

With a GUI REST client, you won’t have to worry about getting curl syntax right and analyzing requests and
responses from the command line.

Popular GUI clients
Some popular GUI clients include the following:

• Postman
• Insomnia
• Paw
• Advanced REST Client (Chrome browser extension)

Of the various GUI clients available, Postman is probably the best option, since it allows you to save both
calls and responses, is free, works on both Mac and PC, and is easy to configure.

A lot of times, abstract concepts don’t make sense until you can contextualize them with an action. In this
course, I’m following more of an “experience-first” methodology. After you do an activity, we’ll explore the
concepts in more depth. So if it seems like I’m glossing over concepts now, such as what a GET method is
or an endpoint, hang in there. When we deep dive into these points in Documenting API endpoints (p. 114),
these concepts will be a lot clearer.

Activity: Make requests with Postman
In this exercise, you’ll use Postman to make a request using OpenWeatherMap’s current weather data API
endpoint . To make the request:

1. If you haven’t already done so, download and install the Postman app at
https://www.getpostman.com/downloads/ . (Make sure you download the app and not the
deprecated Chrome extension.)

2. Start the Postman app and sign in when prompted. Close any welcome screens so you can make
a request.

3. Insert the following endpoint into the box next to GET: https://api.openweathermap.org/

data/2.5/weather

4. Click the Params tab (below the box where you inserted the endpoint) and then add the following
three parameters in the key and value rows:

• key: zip / value: 95050

Submit requests through Postman PDF last generated: August 27, 2023

Documenting REST APIs Page 71

http://www.getpostman.com/
https://insomnia.rest/
https://luckymarmot.com/paw
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://openweathermap.org/current
https://openweathermap.org/current
https://www.getpostman.com/downloads/

• key: units / value: imperial

• key: appid / value: <insert your own API key>

For the value for appid , use your own API key. Your Postman UI should look like this:

When you add these parameters, they appear as a query string to the endpoint URL in the GET
box. For example, your endpoint will now look like this: https://api.openweathermap.org/

data/2.5/weather?zip=95050&units=imperial&appid=APIKEY (but with different query string
values and with your own API key instead of APIKEY). Query string parameters appear after the
question mark ? symbol and are separated by ampersands & . The order of query string
parameters doesn’t matter.

Note that many APIs pass the API key in the header rather than as a query string parameter in the
request URL. (If that were the case, you would click the Headers tab and insert the required key-
value pairs in the header. But OpenWeatherMap passes the API key as a query string parameter.)

5. Click Send.

The response appears in the lower pane. For example:

Submit requests through Postman PDF last generated: August 27, 2023

Documenting REST APIs Page 72

Save the request

1. In Postman, click the Save button (above Send). The Save Request dialog box appears.
2. In the Request name box, type a friendly name for the request, such as “OpenWeatherMap

Current API.”
3. In the Request description (Optional) field, type a description such as “gets the current weather

for 95050 in imperial units.”
4. Scroll down a bit and click New Collection to create a folder to save the request in. Name your

new collection (e.g., “OpenWeatherMap”) and click the orange check mark. Then select the new
collection you just created.

After you create the collection, the Save button will be enabled. Your Postman collection should
look something like this:

Submit requests through Postman PDF last generated: August 27, 2023

Documenting REST APIs Page 73

Collection dialog box

5. Click Save.

Saved requests appear in the left side pane on the Collections tab. (If you don’t see the

Collections pane, click the Show Sidebar button in the lower-left corner to expand it.

(Optional) Make a request for the OpenWeatherMap 5 day forecast

Now instead of getting the current weather, let’s use another OpenWeatherMap endpoint to get the
forecast. Enter details into Postman for the 5 day forecast request . In Postman, you can click a new tab,
or click the arrow next to Save and choose Save As. Then choose your collection and request name.

A sample endpoint for the 5 day forecast, which specifies location by zip code, looks like this:

https://api.openweathermap.org/data/2.5/forecast?zip=95050,us

Add in the query parameters for the API key and units:

https://api.openweathermap.org/data/2.5/forecast?zip=95050&appid=APIKEY&unit
s=imperial

(In the above code, replace APIKEY with your own API key.)

Observe how the response contains a list that provides the forecast details for five days.

Submit requests through Postman PDF last generated: August 27, 2023

Documenting REST APIs Page 74

https://openweathermap.org/forecast5

(Optional) Make one more OpenWeatherMap API request

Make one more OpenWeatherMap API request, this time changing the way you specify the location.
Instead of specifying the location by zip code, specify the location using lat and lon geocoordinates
instead. For example:

https://api.openweathermap.org/data/2.5/weather?lat=37.3565982&lon=-121.9689
848&units=imperial&appid=APIKEY

(In the above code, replace APIKEY with your actual API key.)

Postman has a lot of other functionality you can use. We’ll revisit Postman later in the course for some
other activities.

Same request but in Paw instead of Postman
Although Postman is a popular REST client, you can also use others, such as Paw. The following image
shows the same current weather API request made in Paw (for Mac) :

Like Postman, Paw also allows you to easily see the request headers, response headers, URL parameters,
and other data. I like that Paw shows the response in an expandable/collapsible way. The expand/collapse
feature can make it easier to explore the response. Note that Paw is specific to Mac only, and like most
products for Mac users, costs money.

Enter several requests for the Aeris API into Postman
Now let’s switch APIs a bit and see some weather information from the Aeris Weather API , which you
explored a bit in Scenarios for using a weather API (p. 67). Constructing the endpoints for the Aeris
Weather API is a bit more complicated since there are many different queries, filters, and other parameters
you can use to configure the endpoint.

Submit requests through Postman PDF last generated: August 27, 2023

Documenting REST APIs Page 75

https://paw.cloud/
https://www.aerisweather.com/

Here are a few pre-configured requests to configure for Aeris. You can paste the requests directly into the
URL request box in Postman (after customizing the CLIENTID AND CLIENTSECRET values), and the
parameters will auto-populate in the parameter fields.

As with the OpenWeather Map API, the Aeris API doesn’t use a Header field to pass the API keys — the
key and secret are passed directly in the request URL as part of the query string.

When you make the following requests, insert your own values for the CLIENTID and CLIENTSECRET

(assuming you retrieved them in Get the authorization keys (p. 70)).

Get the weather forecast for your area using the observations endpoint :

http://api.aerisapi.com/observations/Santa+Clara,CA?client_id=CLIENTID&clien
t_secret=CLIENTSECRET&limit=1

Get the weather from a city on the equator — Chimborazo, Ecuador using the same observations endpoint
:

http://api.aerisapi.com/observations/Chimborazo,Ecuador?client_id=CLIENTID&c
lient_secret=CLIENTSECRET&limit=1

Find out if all the country music in Knoxville, Tennessee is giving people migraines using the indices
endpoint :

http://api.aerisapi.com/indices/migraine/Knoxville,TN?client_id=CLIENTID&cli
ent_secret=CLIENTSECRET

You’re thinking of moving to Arizona, but you want to find a place that’s cool. Use the normals endpoint :

http://api.aerisapi.com/normals/flagstaff,az?client_id=CLIENTID&client_secre
t=CLIENTSECRET&limit=5&filter=hassnow

With both the OpenWeatherMap and Aeris Weather API, you can also make these requests by simply going
to the URL in your address bar (because the API keys are passed in the query string rather than the
header). If so, use the JSON Formatter extension for Chrome to automatically format the JSON response
in the browser view.

By looking at these two different weather APIs, you can see some differences in the way the information is
called and returned. However, fundamentally both APIs have endpoints that you can configure with
parameters. When you make requests with the endpoints, you get responses that contain information,
often in JSON format. This is the core of how REST APIs work — you send a request and get a response.

Automatically import the Postman collections
Postman has a nifty import feature that will automatically pull in the same requests you’ve been entering.
You can click the Run in Postman buttons below to automatically import these two collections into your
own instance of Postman.

To view these buttons, go to the web page for this content at https://idratherbewriting.com/learnapidoc/
docapis_postman.html (p. 71).

Submit requests through Postman PDF last generated: August 27, 2023

Documenting REST APIs Page 76

https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/indices/
https://www.aerisweather.com/support/docs/api/reference/endpoints/indices/
https://www.aerisweather.com/support/docs/api/reference/endpoints/normals/
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en

Clicking the Run in Postman buttons should automatically prompt you to import the collections into
Postman. If it doesn’t work, copy the import link address and, in Postman, click Import in the upper-left
corner. Then click the Import From Link tab, paste in the address and click Import.

If you’d like to learn more about Postman, listen to this interview with the Postman founder . We
recorded this as part of the Write the Docs podcast and focused on the documentation features within
Postman. For more information on creating the Run in Postman buttons, see the Run in Postman button (p.
382) section in the Getting started tutorial (p. 379).

Submit requests through Postman PDF last generated: August 27, 2023

Documenting REST APIs Page 77

https://idratherbewriting.com18/01/22/postman-for-docs-podcast/
http://podcast.writethedocs.org/

curl intro and installation
While Postman (p. 71) is convenient, it’s hard to use it to represent how to make calls with it in your
documentation. Additionally, different users probably use different GUI clients, or none at all (preferring the
command line instead).

Instead of describing how to make REST calls using a GUI client like Postman, the most conventional
method for documenting request syntax is to use curl.

About curl
curl is a command-line utility that lets you execute HTTP requests with different parameters and methods.
Instead of going to web resources in a browser’s address bar, you can use the command line to get these
same resources, retrieved as text.

Sometimes curl is written as cURL. It stands for Client URL. “curl” is the more common convention for its
spelling, but both refer to the same thing.

Installing curl
curl is usually available by default on Macs but requires some installation on Windows. Follow these
instructions for installing curl:

Install curl on Mac

If you have a Mac, by default, curl is probably already installed. To check:

1. Open Terminal (press Cmd + spacebar to open Finder, and then type “Terminal”).
2. In Terminal type curl -V . The response should look something like this:

curl 7.54.0 (x86_64-apple-darwin16.0) libcurl/7.54.0 SecureTransport
zlib/1.2.8
Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps
pop3 pop3s rtsp smb smbs smtp smtps telnet tftp Features: AsynchDNS I
Pv6 Largefile GSS-API Kerberos SPNEGO NTLM NTLM_WB SSL libz UnixSocke
ts

If you don’t see this, you need to download and install curl .

Install curl on Windows

Installing curl on Windows involves a few more steps. First, determine whether you have 32-bit or 64-bit
Windows by right-clicking Computer and selecting Properties. Then follow the instructions in this
Confused by Code page . Most likely, you’ll want to choose the With Administrator Privileges (free)
installer.

After you install curl, test your version of curl by doing the following:

1. Open a command prompt by clicking the Start button and typing cmd.
2. Type curl -V .

The response should be as follows:

curl intro and installation PDF last generated: August 27, 2023

Documenting REST APIs Page 78

http://curl.haxx.se/
http://www.confusedbycode.com/curl/#downloads

curl 7.54.0 (x86_64-apple-darwin14.0) libcurl/7.37.1 SecureTransport zlib/
1.2.5
Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps pop3 p
op3s rtsp smtp smtps telnet tftp
Features: AsynchDNS GSS-Negotiate IPv6 Largefile NTLM NTLM_WB SSL libz

Make a test API call
After you have curl installed, make a test API call:

curl -X GET "https://api.openweathermap.org/data/2.5/weather?zip=95050&appi
d=APIKEY&units=imperial"

(In the above code, replace APIKEY with your actual API key.)

You should get minified JSON response back like this:

{"coord":{"lon":-121.96,"lat":37.35},"weather":[{"id":701,"main":"Mist","des
cription":"mist","icon":"50d"}],"base":"stations","main":{"temp":66.92,"pres
sure":1017,"humidity":50,"temp_min":53.6,"temp_max":75.2},"visibility":1609
3,"wind":{"speed":10.29,"deg":300},"clouds":{"all":75},"dt":1522526400,"sy
s":{"type":1,"id":479,"message":0.0051,"country":"US","sunrise":152250440
4,"sunset":1522549829},"id":420006397,"name":"Santa Clara","cod":200}

In Windows, Ctrl+ V doesn’t work; instead, you right-click and then select Paste.

Notes about using curl with Windows

If you’re using Windows, note the following formatting requirements when using curl:

• Use double quotes in the Windows command line. (Windows doesn’t support single quotes.)
• Don’t use backslashes (\) to separate lines. (This is for readability only and doesn’t affect the

call on Macs.)
• By adding -k in the curl command, you can bypass curl’s security certificate, which may or may

not be necessary.

curl intro and installation PDF last generated: August 27, 2023

Documenting REST APIs Page 79

Make a curl call
In this section, you’ll use curl to make the same weather API requests you made previously with Postman.
If you haven’t installed curl, see curl intro and installation (p. 78) first.

Activity: Make the OpenWeatherAPI request using curl
This activity assumes you have curl installed. curl is available on Mac and some Windows 10 versions by
default. If you’re on an older Windows machine that doesn’t have curl, see installing curl here for details.
(Most likely, choose “With Administrator Privileges (free)” 64-bit version.) Close and restart your Command
Prompt after installing curl.

To make a request with curl:

1. Assuming you completed the exercises in the Postman tutorial (p. 71), go back into Postman.
2. On any request you’ve configured, below the Save button in Postman, click the Code link. (If you

don’t see the link, scroll up.)
3. In the Generate Code Snippets dialog box, select cURL from the drop-down list, and then click

Copy to Clipboard.

curl request in Postman

The Postman code for the OpenWeatherMap weather request in curl looks as follows:

curl --location --request GET 'https://api.openweathermap.org/data/
2.5/weather?zip=95050&units=imperial&appid=APIKEY'

(In the above code, replace APIKEY with your actual API key.)

Make a curl call PDF last generated: August 27, 2023

Documenting REST APIs Page 80

http://www.confusedbycode.com/curl/#downloads

The --location parameter will prompt curl to submit a new request if the URL is a redirect.
The --request parameter specifies the operation for the request.

(Note that previously, Postman would include its own header information, designated with -H . If
you see these parameters, delete them since they cause issues when submitted outside of
Postman.)

In general, the code snippets can be copied and pasted directly into your terminal on a Mac.
However, for Windows, you must change the single quotation marks to double quotation marks.

Also, on Windows, if your curl has any backslashes, (\) remove them and put all content onto
the same line. (Backslashes are just added for readability). You can make these adjustments in a
text editor before pasting the curl command into the Command Prompt.

4. Go to your Terminal (Mac) or Command Prompt (Windows).

You can open your Terminal / Command Prompt by doing the following:

• If you’re on Windows, go to Start and search for cmd to open up the Command Prompt.
Paste in the curl request and then press Enter. (If you can’t paste it in, look for paste
options on the right-click menu.)

• If you’re on a Mac, open Terminal by pressing Cmd + spacebar and typing Terminal. (Or
go to Applications > Utilities > Terminal). (You could also use iTerm .) Paste in the curl
request and then press Enter.

The response from the OpenWeatherMap weather request should look as follows:

{"coord":{"lon":-121.95,"lat":37.35},"weather":[{"id":802,"main":"Clo
uds","description":"scattered clouds","icon":"03d"}],"base":"station
s","main":{"temp":68.34,"pressure":1014,"humidity":73,"temp_min":6
3,"temp_max":72},"visibility":16093,"wind":{"speed":3.36},"cloud
s":{"all":40},"dt":1566664878,"sys":{"type":1,"id":5122,"message":0.0
106,"country":"US","sunrise":1566653501,"sunset":1566701346},"timezon
e":-25200,"id":0,"name":"Santa Clara","cod":200}

This response is minified. You can un-minify it by going to a site such as JSON pretty print , or
if you have Python installed , you can add | python -m json.tool at the end of your cURL
request to un-minify the JSON in the response (see this Stack Overflow thread for details).

Note about single and double quotes with Windows curl requests
If you’re using Windows to submit a lot of curl requests, and the curl requests require you to submit JSON
in the request body (p. 137), you might run into issues with single versus double quotes. The problem is
that request body content is often formatted in JSON, which requires double quotes.

Since you can’t use double quotes inside of other double quotes, you’ll run into issues in submitting curl
requests in these scenarios.

Here’s the workaround. If you have to submit body content in JSON, you can store the content in a JSON
file. Then you reference the file with an @ symbol, like this:

curl -H "Content-Type: application/json" -H "Authorization: 123" -X POST -d
@mypostbody.json http://endpointurl.com/example

Make a curl call PDF last generated: August 27, 2023

Documenting REST APIs Page 81

https://curl.haxx.se/docs/manpage.html#-L
https://curl.haxx.se/docs/manpage.html#-L
https://curl.haxx.se/docs/manpage.html#-X
https://curl.haxx.se/docs/manpage.html#-X
https://www.iterm2.com/
http://jsonprettyprint.com/
https://www.python.org/downloads/
https://stackoverflow.com/questions/352098/how-can-i-pretty-print-json-in-a-unix-shell-script

Here curl will look in the existing directory for the mypostbody.json file. (You can also reference the
complete path to the JSON file on your machine.)

Make a curl call PDF last generated: August 27, 2023

Documenting REST APIs Page 82

Understand curl more
Almost every API shows how to interact with the API using curl. So before moving on, let’s pause a bit and
learn more about curl.

Why curl?
One of the advantages of REST APIs is that you can use almost any programming language to call the
endpoint. The endpoint is simply a resource located on a web server at a specific path.

Each programming language has a different way of making web calls. Rather than exhausting your energies
trying to show how to make web calls in Java, Python, C++, JavaScript, Ruby, and so on, you can just
show the call using curl.

curl provides a generic, language-agnostic way to demonstrate HTTP requests and responses. Users can
see the format of the request, including any headers and other parameters. Your users can translate this
into the specific format for the language they’re using.

Try using curl to GET a web page
As mentioned earlier, one reason REST APIs are so familiar is that REST follows the same model as the
web (see What is a REST API? (p. 40)). When you type an http address into a browser address bar,
you’re telling the browser to make an HTTP request to a resource on a server. The server returns a
response, and your browser converts the response to a more visual display. But you can also see the raw
code.

To see an example of how curl retrieves a web resource, open a terminal and type the following:

curl http://example.com

Curl will retrieve the HTML code for the site example.com . The browser’s job is to make that code
visually readable. curl shows you what you’re actually retrieving.

Requests and responses include headers too
When you type an address into a website, you see only the body of the response. But actually, there’s
more going on behind the scenes. When you make the request, you’re sending a request header that
contains information about the request. The response also contains a response header.

1. To see the response header in a curl request, include -i in the curl request:

curl http://example.com -i

The header will be included above the body in the response:

Understand curl more PDF last generated: August 27, 2023

Documenting REST APIs Page 83

http://example.com/

~/projects $ curl http://example.com -I
HTTP/1.1 200 OK
Content-Encoding: gzip
Accept-Ranges: bytes
Cache-Control: max-age=604800
Content-Type: text/html; charset=UTF-8
Date: Tue, 04 Dec 2018 04:35:43 GMT
Etag: "1541025663+gzip"
Expires: Tue, 11 Dec 2018 04:35:43 GMT
Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
Server: ECS (sjc/4F91)
X-Cache: HIT
Content-Length: 606

2. To limit the response to just the header, use -I :

curl http://example.com -I

The header contains the metadata about the response. All of this information is transferred to the
browser when you make a request to a URL in your browser (for example, when you surf to a
web page online), but the browser doesn’t show you this information. You can see the header
information using the Chrome Developer Tools console by looking on the Network tab.

3. Now let’s specify the method. The GET method (read) is implied by default when no other
method is specified, but we’ll make it explicit here with the -X parameter:

curl -X GET http://example.com -I

When you go to a website, you submit the request using the GET HTTP method. There are other
HTTP methods you can use when interacting with REST APIs. Here are the common methods
used when working with REST endpoints:

HTTP Method Description

POST Create a resource

GET Read a resource

PUT Update a resource

DELETE Delete a resource

GET is used by default with curl requests. If you use curl to make HTTP requests other than GET,
you need to specify the HTTP method.

Understand curl more PDF last generated: August 27, 2023

Documenting REST APIs Page 84

https://developers.google.com/web/tools/chrome-devtools/console/

Unpacking the weather API curl request
Let’s look more closely at the request you submitted for the weather in the previous topic (Make a curl call
(p. 80)):

curl -X GET -H "Cache-Control: no-cache" -H "Postman-Token: 930d08d6-7b2a-6e
a2-0725-27324755c684" "https://api.openweathermap.org/data/2.5/weather?zip=9
5050&appid=APIKEY&units=imperial"

(In the above code, replace APIKEY with your actual API key.)

curl has shorthand names for the various options that you include with your request.

Here’s what the commands mean:

• -X GET . The -X signifies the method used for the request. Common options are GET , POST ,
DELETE , PUT . (You might also see --get used instead. Most curl commands have a couple of

different representations. -X GET can also be written as --get .)

• -H . Submits a custom header. Include an additional -H for each header key-value pair you’re
submitting.

Query strings and parameters
The zip code (zip), app ID (appid), and units (units) parameters were passed to the endpoint using
“query strings.” The ? appended to the URL indicates the start of the query string. The query string
parameters are the parameters that appear after the ? :

?zip=95050&appid=APIKEY&units=imperial

(In the above code, replace APIKEY with your actual API key.)

After the query string, each parameter is separated from other parameters by the ampersand & symbol.
The order of the query string parameters doesn’t matter. The order only matters if the parameters are on
the left of the query string (and thus part of the URL itself). Any configurable parts of the endpoint that
appear before the query string are called path parameters (p. 136) (we’ll dive into these later).

Common curl commands related to REST
curl has a lot of possible commands, but the following are the most common when working with REST
APIs.

curl command Description Example

-i or --

include

Includes the response headers in the
response.

curl -i

http://www.example.com

-d or --

data

Includes data to post to the URL. The data
needs to be url encoded . Data can also be
passed in the request body.

curl -d "data-to-post"

http://www.example.com

Understand curl more PDF last generated: August 27, 2023

Documenting REST APIs Page 85

http://www.w3schools.com/tags/ref_urlencode.asp

curl command Description Example

-H or --

header

Submits the request header to the resource.
Headers are common with REST API requests
because the authorization is usually included
in the header.

curl -H "key:12345"

http://www.example.com

-X POST

Specifies the HTTP method to use with the
request (in this example, POST). If you use
-d in the request, curl automatically specifies

a POST method. With GET requests, including
the HTTP method is optional, because GET is
the default method used.

curl -X POST -d

"resource-to-update"

http://www.example.com

@filename Loads content from a file.
curl -X POST -d

@mypet.json

http://www.example.com

See the curl documentation for a comprehensive list of curl commands you can use.

Example curl command
Here’s an example curl request that combines some of these commands:

curl -i -H "Accept: application/json" -X POST -d "{status:MIA}" http://perso
nsreport.com/status/person123

The request could also be formatted with line breaks to make it more readable:

curl -i \
-H "Accept: application/json" \
-X POST \
-d "{status:MIA}" \
http://personsreport.com/status/person123 \

(Line breaks are problematic on Windows, so I don’t recommend formatting curl requests like this.)

The Accept header tells the server that the only format we will accept in the response is JSON.

Quiz yourself
Quiz yourself to see how much you remember. What do the following parameters mean?

• -i

• -H

• -X POST

• -d

Understand curl more PDF last generated: August 27, 2023

Documenting REST APIs Page 86

http://curl.haxx.se/docs/manpage.html

When you use curl, the Terminal and iTerm on the Mac provide a much easier experience than using the
command prompt in Windows. If you’re going to get serious about API documentation, but you’re still on a
PC, consider switching. There are a lot of utilities that you install through a terminal that just work on a Mac.
Also, if you’re in Silicon Valley, using a PC instead of a Mac might make you look old-fashioned (see Why
do most startups purchase MacBooks for their employees?). Alternatively, you can run Linux on
Windows, and you’ll get the same terminal experience (Bash shell). See this example tutorial on how to
install Bash on Windows .”

Understand curl more PDF last generated: August 27, 2023

Documenting REST APIs Page 87

https://www.iterm2.com/
https://www.quora.com/Why-do-most-startups-purchase-MacBooks-for-their-employees
https://www.quora.com/Why-do-most-startups-purchase-MacBooks-for-their-employees
https://itsfoss.com/install-bash-on-windows/

Activity: Use methods with curl
Our sample weather API (p. 65) doesn’t allow you to use anything but a GET method, so for this exercise,
to use other methods with curl, we’ll use the petstore API from Swagger . However, we won’t actually
use the Swagger UI (which is something we’ll explore later (p. 181)). For now, we just need an API with
which we can use to create, update, and delete content.

In this example, using the Petstore API, you’ll create a new pet, update the pet, get the pet’s ID, delete the
pet, and then try to get the deleted pet.

Create a new pet
To create a pet, you have to pass a JSON message in the request body. Rather than trying to encode the
JSON and pass it in the URL, you’ll store the JSON in a file and reference the file.

A lot of APIs require you to post requests containing JSON messages in the body. Request bodies are
often how you configure a service. The list of JSON key-value pairs that the API accepts is called the
“Model” in the Swagger UI display.

1. Insert the following into a text file. This information will be passed in the -d parameter of the curl
request:

{
"id": 123,
"category": {

"id": 123,
"name": "test"

},
"name": "fluffy",
"photoUrls": [

"string"
],
"tags": [

{
"id": 0,
"name": "string"

}
],
"status": "available"

}

2. Change the first id value to another integer (a whole number in this case). Also, change the
pet’s name of fluffy to something else.

Use a unique ID and name that others aren’t likely to also use. Also, don’t begin your ID with the
number 0.

3. Save the file in a directory that you can conveniently access from your terminal, such as your
user directory (on a Mac, Users/YOURUSERNAME — replace YOURUSERNAME with your actual
user name on your computer).

4. In your terminal, browse to the directory where you saved the mypet.json file. (Usually, the
default directory is Users/YOURUSERNAME — hence the previous step.)

Activity: Use methods with curl PDF last generated: August 27, 2023

Documenting REST APIs Page 88

http://petstore.swagger.io/

If you’ve never browsed directories using the command line, here’s how you do it:

• On a Mac, find your present working directory by typing pwd . Then move up a level by
typing change directory: cd ../ . Move down a level by typing cd pets , where pets

is the name of the directory you want to move into. Type ls to list the contents of the
directory.

• On Windows, look at the prompt path to see your current directory. Then move up a level
by typing cd ../ . Move down a level by typing cd pets , where pets is the name of
the directory you want to move into. Type dir to list the contents of the current
directory.

5. After your terminal or command prompt is in the same directory as your JSON file, create the
new pet with the following curl request:

curl -X POST --header "Content-Type: application/json" --header "Acce
pt: application/json" -d @mypet.json "https://petstore.swagger.io/v2/
pet"

The Content-Type indicates the type of content submitted in the request body. The Accept

indicates the type of content we will accept in the response.

The response should look something like this:

{"id":51231236,"category":{"id":4,"name":"testexecution"},"name":"flu
ffernutter","photoUrls":["string"],"tags":[{"id":0,"name":"strin
g"}],"status":"available"}

In the response, check to see that your pet’s name was returned.

Update your pet
Guess what, your pet hates its name! Change your pet’s name to something more formal using the update
pet method.

1. In the mypet.json file, change the pet’s name.
2. Use the PUT method instead of POST to update the pet’s name (keep the same curl content

otherwise):

curl -X PUT --header "Content-Type: application/json" --header "Accep
t: application/json" -d @mypet.json "https://petstore.swagger.io/v2/p
et"

Get your pet’s name by ID
Find your pet’s name by passing the ID into the /pet/{petID} endpoint:

1. In your mypet.json file, copy the first id value.
2. Use this curl command to get information about that pet ID, replacing 51231236 with your pet

ID.

Activity: Use methods with curl PDF last generated: August 27, 2023

Documenting REST APIs Page 89

curl -X GET --header "Accept: application/json" "https://petstore.swa
gger.io/v2/pet/51231236"

The response contains your pet’s name and other information:

{"id":51231236,"category":{"id":4,"name":"test"},"name":"mr. fluffern
utter","photoUrls":["string"],"tags":[{"id":0,"name":"string"}],"stat
us":"available"}

You can format the JSON by pasting it into a JSON formatting tool :

{
"id": 51231236,
"category": {

"id": 4,
"name": "test"

},
"name": "mr. fluffernutter",
"photoUrls": [

"string"
],
"tags": [

{
"id": 0,
"name": "string"

}
],
"status": "available"

}

Delete your pet
Unfortunately, your pet has died. It’s time to delete your pet from the pet registry.

1. Use the DELETE method to remove your pet. Replace 5123123 with your pet ID:

curl -X DELETE --header "Accept: application/json" "https://petstor
e.swagger.io/v2/pet/5123123"

2. Now check to make sure your pet is removed. Use a GET request to look for your pet with that
ID:

curl -X GET --header "Accept: application/json" "https://petstore.swa
gger.io/v2/pet/5123123"

You should see this error message:

{"code":1,"type":"error","message":"Pet not found"}

Activity: Use methods with curl PDF last generated: August 27, 2023

Documenting REST APIs Page 90

http://jsonprettyprint.com/

This example allowed you to see how you can work with curl to create, read, update, and delete resources.
These four operations are referred to as CRUD and are common to almost every programming language.

Although Postman is probably easier to use, curl lends itself to power-level usage. Quality assurance teams
often construct advanced test scenarios that iterate through a lot of curl requests.

Understanding idempotent methods
One concept important to understand with HTTP methods is “idempotency.” Roy Fielding defines
idempotency as follows:

A request method is considered “idempotent” if the intended effect on the server of
multiple identical requests with that method is the same as the effect for a single
such request. Of the request methods defined by this specification, PUT, DELETE,
and safe request methods are idempotent” (RFC 7231, 4.2.2 .

In other words, with idempotent methods, you can run them multiple times without multiplying the results.
Idempotent methods include GET, PUT, and DELETE, while POST is not (see 8.1.3 for a more detailed
list).

Todd Fredrich explains idempotency by comparing it to a pregnant cow . Let’s say you bring over a bull
to get a cow pregnant. Even if the bull and cow mate multiple times, the result will be just one pregnancy,
not a pregnancy for each mating session.

Import curl into Postman
You can import curl commands into Postman by doing the following:

1. Open a new tab in Postman and click the Import button in the upper-left corner.
2. Select Paste Raw Text and insert your curl command:

curl -X GET --header "Accept: application/json" "https://petstore.swa
gger.io/v2/pet/5123123"

Make sure you don’t have any extra spaces at the beginning.

Activity: Use methods with curl PDF last generated: August 27, 2023

Documenting REST APIs Page 91

https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc7231#section-8.1.3
http://www.restapitutorial.com/lessons/idempotency.html

3. Click Import.
4. Close the dialog box.
5. Click Send. (If you deleted your pet, you will see the same “Pet not found” error message as

before.)

Export Postman to curl
You can also export Postman to curl by doing the following:

1. If desired, select one of your OpenWeatherMap API requests in Postman.
2. Click the Code button (it’s right below Save).

Activity: Use methods with curl PDF last generated: August 27, 2023

Documenting REST APIs Page 92

3. Select curl from the drop-down menu.
4. Copy the code snippet.

curl -X GET \
'https://api.openweathermap.org/data/2.5/weather?lat=37.3565982&lo

n=-121.9689848&units=imperial&appid=APIKEY'

In place of APIKEY you should see your actual API key.

5. Remove the backslashes and line breaks. If you’re on Windows, change the single quotes to
double quotes.

6. Insert the curl command into your terminal and observe the result.

curl -X GET "https://api.openweathermap.org/data/2.5/weather?lat=37.3
565982&lon=-121.9689848&units=imperial&appid=APIKEY"

Through Postman’s Import and Code functionality, you can easily switch between Postman and
curl.

Activity: Use methods with curl PDF last generated: August 27, 2023

Documenting REST APIs Page 93

Analyze the JSON response
JSON is the most common format for responses from REST APIs. Let’s look at the JSON response for the
OpenWeatherMap weather endpoint in more depth, distinguishing between arrays and objects in JSON.

JSON response from OpenWeatherMap weather endpoint
JSON stands for JavaScript Object Notation. It’s the most common way REST APIs return information.
Although some APIs return information in both JSON and XML, if you’re trying to parse through the
response and render it on a web page, JSON fits much better into the existing JavaScript + HTML + CSS
technology that powers most web pages. With JavaScript, you can easily parse through the JSON and
integrate it into your web content.

The unminified response from the OpenWeatherMap weather endpoint looks like this:

Analyze the JSON response PDF last generated: August 27, 2023

Documenting REST APIs Page 94

{
"coord": {

"lon": -121.96,
"lat": 37.35

},
"weather": [

{
"id": 801,
"main": "Clouds",
"description": "few clouds",
"icon": "02d"

}
],
"base": "stations",
"main": {

"temp": 70.14,
"pressure": 1012,
"humidity": 33,
"temp_min": 62.6,
"temp_max": 75.2

},
"visibility": 16093,
"wind": {

"speed": 14.99,
"deg": 330

},
"clouds": {

"all": 20
},
"dt": 1522619760,
"sys": {

"type": 1,
"id": 479,
"message": 0.0058,
"country": "US",
"sunrise": 1522590707,
"sunset": 1522636288

},
"id": 420006397,
"name": "Santa Clara",
"cod": 200

}

We’ll analyze the information structures within JSON responses in the following sections.

JSON objects are key-value pairs
JSON has two types of basic structures: objects and arrays. An object is a collection of key-value pairs,
surrounded by curly braces:

Analyze the JSON response PDF last generated: August 27, 2023

Documenting REST APIs Page 95

{
"key1": "value1",
"key2": "value2"

}

The key-value pairs are each put into double quotation marks when both are strings. If the value is an
integer (a whole number) or Boolean (true or false value), omit the quotation marks around the value. Each
key-value pair is separated from the next by a comma.

JSON arrays are lists of items
An array is a list of items, surrounded by brackets:

["first", "second", "third"]

The list of items can contain strings, numbers, booleans, arrays, or other objects. With integers or
booleans, you don’t use quotation marks.

Integers:

[1, 2, 3]

Booleans:

[true, false, true]

Including objects in arrays, and arrays in objects
JSON can mix up objects and arrays inside each other. You can have an array of objects:

[
object,
object,
object

]

Here’s an example with values:

[
{

"name":"Tom",
"age":39

},
{

"name":"Shannon",
"age":37

}
]

Analyze the JSON response PDF last generated: August 27, 2023

Documenting REST APIs Page 96

And objects can contain arrays in the value part of the key-value pair:

{
"children": ["Avery","Callie","lucy","Molly"],
"hobbies": ["swimming","biking","drawing","horseplaying"]
}

Just remember, objects are enclosed by curly braces { } and contain key-value pairs. Sometimes those
values are arrays. Arrays are lists and are enclosed by square brackets [] . It’s common for arrays to
contain lists of objects, and for objects to contain arrays.

It’s important to understand the difference between objects and arrays because it determines how you
access and display the information. Later exercises with dot notation will require you to understand this
difference.

Examine the weather response
Look at the response from the weather endpoint of the OpenWeatherMap weather API. Where are the
objects? Where are the arrays? Which objects are nested? Which values are booleans versus strings?

More information
For more information on understanding the structure of JSON, see json.com .

Analyze the JSON response PDF last generated: August 27, 2023

Documenting REST APIs Page 97

https://www.json.com/

Inspect the JSON from the response
payload
Seeing the response from curl or Postman is cool, but how do you make use of the JSON data? With most
API documentation, you don’t need to show how to make use of JSON data. You assume that developers
will use their front-end development skills to parse through the data and display it appropriately in their
apps. However, to better understand how developers will access the data, we’ll go through a brief tutorial
to display the REST response on a web page.

Activity: Make an API request on a web page
For this activity, you’ll use JavaScript to display the API response on a web page. Specifically, you’ll use
some auto-generated jQuery code from Postman to create the AJAX request. You’ll get the wind speed
from the response and print it to the page.

1. In an editor such as Sublime Text, create a new HTML file called weather.html and insert the
following boilerplate code:

<html>
<meta charset="UTF-8">
<head>

<title>Sample page</title>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.1

1.1/jquery.min.js"></script>
<script>
POSTMAN CODE GOES HERE
</script>

</head>
<body>

<h1>Sample Page</h1>
wind speed:

</body>
</html>

2. Assuming you completed the exercises in the Postman tutorial (p. 71) to configure a request, go
back into Postman.

3. In Postman, click the Code link (below the Save button) and go to JavaScript - jQuery:

Inspect the JSON from the response payload PDF last generated: August 27, 2023

Documenting REST APIs Page 98

Copying JavaScript code from Postman

4. Copy the Postman code above and insert it into the POSTMAN CODE GOES HERE place in your
weather.html file.

5. Directly below console.log(response); , add these two lines:

var content = response.wind.speed;
$("#windSpeed").append(content);

6. Your final code should look as follows:

Inspect the JSON from the response payload PDF last generated: August 27, 2023

Documenting REST APIs Page 99

<html>
<meta charset="UTF-8">
<head>

<title>Sample page</title>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.1

1.1/jquery.min.js"></script>
<script>
var settings = {

"url": "https://api.openweathermap.org/data/2.5/weather?zip=9
5050&units=imperial&appid=APIKEY",

"method": "GET",
"timeout": 0,

};

$.ajax(settings).done(function (response) {
console.log(response);
var content = response.wind.speed;
$("#windSpeed").append(content);

});

</script>
</head>
<body>

<h1>Sample Page</h1>
wind speed:

</body>
</html>

(In the above code, replace APIKEY with your actual API key.)

What is this code doing? In a nutshell, when ajax (a jQuery function) retrieves the response
from the API, it assigns the response to response . A variable called content is created and
set it equal to response.wind.speed (dot notation (p. 109) is used to access this value).
jQuery’s append method inserts content after an element called #windSpeed on the page. (I
realize this is an extremely abbreviated explanation, but explaining JavaScript is beyond the
scope of this course. In general, you can learn more by reading about the jQuery.ajax()
function.)

7. Start Chrome and open the JavaScript Console.

To open the JavaScript Console, on Chrome on a Mac, go to View > Developer > Javascript
Console; on Windows, click the menu button (vertical ellipses) and go to More tools >
Developer tools. Then click the Console tab.

8. In Chrome, press Cmd+O (Mac) or Ctrl + O (Windows) and select your weather.html file.

The weather response should be logged to the JavaScript Console (due to the
console.log(response) code in the request). If you expand the object returned to the console,

it will look as follows:

Inspect the JSON from the response payload PDF last generated: August 27, 2023

Documenting REST APIs Page 100

https://api.jquery.com/jquery.ajax/

You can view the file here: weather-plain.html .

The AJAX method from jQuery
In this section, I’ll explain a bit more about the ajax function you used earlier. This information probably
isn’t essential for documenting REST APIs, but it’s good to understand. In the code, here’s the ajax

script:

<script>
var settings = {

"async": true,
"crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zip=95050&appi

d=APIKEY&units=imperial",
"method": "GET"

}

$.ajax(settings).done(function (response) {
console.log(response);

});
</script>

(In the above code, replace APIKEY with your actual API key.)

If you’re working with JavaScript and APIs, the ajax method from jQuery can be helpful with code
samples. This ajax method takes one argument: settings .

$.ajax(settings)

The settings argument is an object that contains a variety of key-value pairs.

var settings = {
}

Inspect the JSON from the response payload PDF last generated: August 27, 2023

Documenting REST APIs Page 101

https://idratherbewriting.com/assets/files/weather-plain.html
https://idratherbewriting.com/assets/files/weather-plain.html
https://idratherbewriting.com/assets/files/weather-plain.html
https://api.jquery.com/jquery.ajax/
https://api.jquery.com/jquery.ajax/

Each of the allowed key-value pairs is defined in jQuery’s ajax documentation .

Some important values are the url , which is the URI or endpoint you are submitting the request to.
Another value is headers , which allows you to include custom headers in the request.

Look at the code sample you created. The settings variable is passed in as the argument to the ajax

method. jQuery makes the request to the HTTP URL asynchronously, which means it won’t hang up your
computer while you wait for the response. You can continue using your application while the request
executes.

You get the response by calling the method done .

$.ajax(settings).done(function (response) {
})

In the earlier code sample, done contains an anonymous function (a function without a name) that
executes when done is called. The response object from the ajax call is assigned to the done

method’s argument, which in this case is response . (You can name the argument whatever you want.)

You can then access the values from the response object using object notation. In this example, the
response is just logged to the console.

If you’re new to JavaScript, this is likely a bit fuzzy right now. If so, don’t worry — code becomes clearer
the more you use it.

Notice how difficult it is to explain code? This is one of the challenges of developer documentation.
Fortunately, you wouldn’t need to explain much from standard programming languages like JavaScript. But
you might need to explain how to work with your API in different languages. I cover this topic in more depth
in Code samples and tutorials (p. 464).

Logging responses to the console
The line of code that logged the response to the console was simply this:

console.log(response);

Logging responses to the console can be a useful way to test whether an API response is working (it’s also
helpful for debugging or troubleshooting your code). The console collapses each object inside an
expandable section. You can inspect the payload in the console to see if contains the values you expect
(without printing values to the page).

Inspect the payload
Inspect the payload by expanding each of the sections returned in the JSON console object . Based on
the information here, what’s the forecast for today?

I realize the page is blank and unexciting. In the next section, Access and print a specific JSON value (p.
103), we’ll pull out some values and print them to the page.

Inspect the JSON from the response payload PDF last generated: August 27, 2023

Documenting REST APIs Page 102

http://api.jquery.com/jquery.ajax/#jQuery-ajax-settings
https://idratherbewriting.com/assets/files/weather-plain.html

Access and print a specific JSON
value
This tutorial continues from the previous topic, Inspect the JSON from the response payload (p. 98). In the
sample page where you logged the weather response to the JS Console, the REST response
information didn’t appear on the page. It only appeared in the JS Console. You need to use dot notation
and JavaScript to access the JSON values you want. In this tutorial, you’ll use JavaScript to print some of
the response to the page.

Note that this section will use a little bit of JavaScript. Depending on your role, you might not use this code
much in your documentation, but it’s important to know anyway.

Getting a specific property from a JSON response object
JSON wouldn’t be very useful if you always had to print out the entire response. Instead, you select the
exact property you want and pull that out through dot notation. The dot (.) after response (the name of
the JSON payload, as defined arbitrarily in the jQuery AJAX function) is how you access the values you
want from the JSON object.

As an example, this is the full response from the request made previously (p. 94):

Access and print a specific JSON value PDF last generated: August 27, 2023

Documenting REST APIs Page 103

https://idratherbewriting.com/assets/files/weather-plain.html

{
"coord": {

"lon": -121.95,
"lat": 37.35

},
"weather": [

{
"id": 802,
"main": "Clouds",
"description": "scattered clouds",
"icon": "03d"

}
],
"base": "stations",
"main": {

"temp": 68.34,
"pressure": 1014,
"humidity": 73,
"temp_min": 63,
"temp_max": 72

},
"visibility": 16093,
"wind": {

"speed": 3.36
},
"clouds": {

"all": 40
},
"dt": 1566664878,
"sys": {

"type": 1,
"id": 5122,
"message": 0.0106,
"country": "US",
"sunrise": 1566653501,
"sunset": 1566701346

},
"timezone": -25200,
"id": 0,
"name": "Santa Clara",
"cod": 200

}

In our scenario (p. 65) (creating a biking app), we want to pull out the wind speed part of the JSON
response. Here’s the dot notation you use:

response.wind.speed

To pull out the wind speed element from the JSON response and print it to the JavaScript Console, add
this to your code sample (which you created in the previous tutorial (p. 94)), right below the
console.log(response) line:

Access and print a specific JSON value PDF last generated: August 27, 2023

Documenting REST APIs Page 104

console.log("wind speed: " + response.wind.speed);

Your code should look like this:

$.ajax(settings).done(function (response) {
console.log(response);
console.log("wind speed: " + response.wind.speed);

});

Refresh your Chrome browser and see the information that appears in the console:

wind speed: 13.87

Printing a JSON value to the page
Let’s say you wanted to print part of the JSON (the wind speed data) to the page, not just the console. (By
“print,” I mean make the value appear on the page, not send it to a printer.) Printing the value involves a
little bit of JavaScript (or jQuery to make it easier).

I’m assuming you’re starting with the same code from the previous tutorial (p. 98). That code looks like
this:

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquer

y.min.js"></script>
<title>Sample Page</title>
<script>

var settings = {
"async": true,
"crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zip=9505

0&appid=APIKEY&units=imperial",
"method": "GET"

}

$.ajax(settings).done(function (response) {
console.log(response);

});
</script>

</head>
<body>

<h1>Sample Page</h1>
</body>

</html>

(In the above code, replace APIKEY with your actual API key.)

Access and print a specific JSON value PDF last generated: August 27, 2023

Documenting REST APIs Page 105

https://idratherbewriting.com/assets/files/weather-plain.html

To print a specific property from the response to the page,

1. Add the following inside the ajax function:

$.ajax(settings).done(function (response) {
console.log(response);

var content = response.wind.speed;
$("#windSpeed").append(content);

});

Your code should look as follows:

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.1

1.1/jquery.min.js"></script>
<title>Sample Page</title>
<script>

var settings = {
"async": true,
"crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zi

p=95050&appid=APIKEY&units=imperial",
"method": "GET"

}

$.ajax(settings).done(function (response) {
console.log(response);

var content = response.wind.speed;
$("#windSpeed").append(content);

});
</script>

</head>
<body>

<h1>Sample Page</h1>
<div id="windSpeed">Wind speed: </div>

</body>
</html>

(In the above code, replace APIKEY with your actual API key.)

2. Refresh the page and you will see the wind speed printed to the page. Here’s an example with
both wind speed and weather conditions.

Here’s what we changed:

Inside the tags of the AJAX done method, we pulled out the value we wanted into a variable, like this:

Access and print a specific JSON value PDF last generated: August 27, 2023

Documenting REST APIs Page 106

https://idratherbewriting.com/assets/files/weather-windspeed.html

var content = response.wind.speed;

Then we added a named element to the body of the page, like this:

<div id="windSpeed">Wind speed: </div>

We used the jQuery append method to append the content variable to the element with the
windSpeed ID on the page:

$("#windSpeed").append(content);

This code says to find the element with the ID windSpeed and add the content variable after it.

Get the value from an array
In the previous section, you retrieved a value from a JSON object. Now let’s get a value from an array. Let’s
get the main property from the weather array in the response. Here’s what the JSON array looks like:

{
"weather": [

{
"id": 801,
"main": "Clouds",
"description": "few clouds",
"icon": "02d"

}
]

]
}

Remember that brackets signify an array. Inside the weather array is an unnamed object. To get the
main element from this array, you would use the following dot notation:

response.weather[0].main

Then you would follow the same pattern as before to print it to the page. While objects allow you to get a
specific property, arrays require you to select the position in the list that you want.

Here’s the code from the sample page :

Access and print a specific JSON value PDF last generated: August 27, 2023

Documenting REST APIs Page 107

http://api.jquery.com/append/
http://api.jquery.com/append/
https://idratherbewriting.com/assets/files/weather-windspeed.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.mi
n.js"></script>
<title>Sample Page</title>

<script>
var settings = {

"async": true,
"crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zip=95050&appid=AP

IKEY&units=imperial",
"method": "GET"

}

$.ajax(settings).done(function (response) {
console.log(response);

var content = response.wind.speed;
$("#windSpeed").append(content);

var currentWeather = response.weather[0].main;
$("#currentWeather").append(currentWeather);

});
</script>
</head>
<body>
<h1>Sample Page</h1>

<div id="windSpeed">Wind speed: </div>
<div id="currentWeather">Current weather conditions: </div>

</body>
</html>

(In the above code, replace APIKEY with your actual API key.)

More exercises
If you’d like to follow some more exercises that involve calling REST APIs, accessing specific values, and
printing the values to the page, see the following topics in the Glossary and resources (p. 892) section:

• Get event information using the Eventbrite API (p. 901)
• Flickr example: Retrieve a Flickr gallery (p. 908)
• Get wind speed using the Aeris Weather API (p. 918)

Access and print a specific JSON value PDF last generated: August 27, 2023

Documenting REST APIs Page 108

Dive into dot notation
In the previous topic, Access and print a specific JSON value (p. 103), you accessed and printed a specific
JSON value to the page. Let’s dive into dot notation a little more since understanding how to access the
right JSON value you want is necessary to make use of the response.

Dot notation
You use a dot after the object name to access its properties. For example, suppose you have an object
called data :

"data": {
"name": "Tom"
}

To access Tom , you would use data.name .

Note the different levels of nesting so you can trace back the appropriate objects and access the
information you want. You access each level down through the object name followed by a dot.

Use square brackets to access the values in an array
To access a value in an array, you use square brackets followed by the position number. For example,
suppose you have the following array:

"data" : {
"items": ["ball", "bat", "glove"]

}

To access glove, you would use data.items[2] .

glove is the third item in the array. You can’t access an item directly in an array by the item’s name —
only by its position. Usually, programmers loop through an array and pull out values that match.

With most programming languages, you usually start counting at 0 , not 1 .

Exercise with dot notation
In this activity, you’ll practice accessing different values through dot notation.

1. Create a new file in your text editor and insert the following into it:

Dive into dot notation PDF last generated: August 27, 2023

Documenting REST APIs Page 109

<!DOCTYPE html>
<html>

<head>
<script src="https://code.jquery.com/jquery-2.1.1.min.js"></scr

ipt>
<meta charset="utf-8">
<title>JSON dot notation practice</title>
<script>

$(document).ready(function() {

var john = {
"hair": "brown",
"eyes": "green",
"shoes": {

"brand": "nike",
"type": "basketball"

},
"favcolors": [

"azure",
"goldenrod"

],
"children": [

{
"child1": "Sarah",
"age": 2

},
{

"child2": "Jimmy",
"age": 5

}
]

}

var sarahjson = john.children[0].child1;
var greenjson = john.children[0].child1;
var nikejson = john.children[0].child1;
var goldenrodjson = john.children[0].child1;
var jimmyjson = john.children[0].child1;

$("#sarah").append(sarahjson);
$("#green").append(greenjson);
$("#nike").append(nikejson);
$("#goldenrod").append(goldenrodjson);
$("#jimmy").append(jimmyjson);
});

</script>
</head>
<body>

<div id="sarah">Sarah: </div>
<div id="green">green: </div>
<div id="nike">nike: </div>

Dive into dot notation PDF last generated: August 27, 2023

Documenting REST APIs Page 110

<div id="goldenrod">goldenrod: </div>
<div id="jimmy">Jimmy: </div>

</body>
</html>

Here we have a JSON object defined as a variable named john . (Usually, APIs retrieve the
response through a URL request, but for practice here, we’re just defining the object locally.)

If you view the page in your browser, you’ll see the page says “Sarah” for each item because
we’re accessing this value: john.children[0].child1 for each item.

var sarahjson = john.children[0].child1;
var greenjson = john.children[0].child1;
var nikejson = john.children[0].child1;
var goldenrodjson = john.children[0].child1;
var jimmyjson = john.children[0].child1;

2. Change john.children[0].child1 to display the correct values for each item. For example,
the word green should appear at the ID tag called green .

You can view the correct page here: https://idratherbewriting.com/assets/files/dot-notation-practice.html
. This page also shows the answers printed.

Showing wind conditions on the page
At the beginning of the section on Using an API like a developer (p. 65), I showed an example of
embedding the wind speed and other details on a website. Now let’s revisit this code example and see
how it’s put together.

Copy the following code into a basic HTML file:

Dive into dot notation PDF last generated: August 27, 2023

Documenting REST APIs Page 111

https://idratherbewriting.com/assets/files/dot-notation-practice.html
https://idratherbewriting.com/assets/files/dot-notation-practice.html

<!DOCTYPE html>
<html>

<head>
<script src="https://code.jquery.com/jquery-2.1.1.min.js"></script>
<meta charset="utf-8">
<link rel="stylesheet" href='https://maxcdn.bootstrapcdn.com/bootstra

p/3.3.4/css/bootstrap.min.css' rel='stylesheet' type='text/css'>
<title>OpenWeatherMap Integration</title>
<style>

#wind_direction, #wind_speed, #wind_speed_unit, #wind_degree_unit,
#weather_conditions, #main_temp_unit, #main_temp {color: red; font-weight: b
old;}

body {margin:20px;}
</style>

</head>
<body>

<script>
function checkWind() {

var settings = {
"async": true,
"crossDomain": true,
"dataType": "json",
"url": "https://api.openweathermap.org/data/2.5/weather?zip=950

50,us&appid=APIKEY&units=imperial",
"method": "GET"

}

$.ajax(settings)

.done(function (response) {
console.log(response);

$("#wind_speed").append (response.wind.speed);
$("#wind_direction").append (response.wind.deg);
$("#main_temp").append (response.main.temp);
$("#weather_conditions").append (response.weather[0].main);
$("#wind_speed_unit").append (" MPH");
$("#wind_degree_unit").append (" degrees");
$("#main_temp_unit").append (" F");
});
}

</script>
<button type="button" onclick="checkWind()" class="btn btn-danger weat

herbutton">Check wind conditions</button>
<h2>Wind conditions for Santa Clara</h2>
Temperature: <span i

d="main_temp_unit">

Wind speed: <span i

d="wind_speed_unit">

Wind direction: </spa

n>

Dive into dot notation PDF last generated: August 27, 2023

Documenting REST APIs Page 112

Current conditions: <span id="weather_condition
s">

</body>
</html>

(In the above code, replace APIKEY with your actual API key.)

A few things are different here, but it’s essentially the same code as you created in the Access and print a
specific JSON value (p. 103). Here’s what’s different:

• Rather than running the ajax method on page load, the ajax method is wrapped inside a
function called checkWind . When the web page’s button is clicked, the onclick method fires
the checkWind() function.

• When the checkWind function runs, the values for temperature, wind speed, wind direction, and
current conditions are written to several ID tags on the page.

When you load the page and click the button, the following should appear:

You can view the file idratherbewriting.com/assets/files/wind-openweathermap.html .

Next section
As you’ve progressed through the exercises for using an API like a developer, you’ve gained a high-level
understanding of how REST APIs work, what information developers need, how they might use an API,
how they make requests, evaluate responses, and other details.

With this background, it’s time to switch gears and put on your technical writing hat. In the next section,
Documenting endpoints (p. 114), you’ll assume the task of documenting a new endpoint (p. 115) that was
added to a weather API. You’ll learn the essential sections in endpoint reference documentation, the
terminology to use, and formatting conventions for API reference information.

Dive into dot notation PDF last generated: August 27, 2023

Documenting REST APIs Page 113

https://idratherbewriting.com/assets/files/wind-openweathermap.html
https://idratherbewriting.com/assets/files/wind-openweathermap.html
https://idratherbewriting.com/assets/files/wind-openweathermap.html

Chapter 3: Documenting API
endpoints
Reference documentation for API endpoints consists of five general sections: resource descriptions,
endpoints and methods, parameters, sample requests, and sample responses and schemas. To document
the reference endpoints of an API, provide detailed information for each of these sections.

Chapter sections:

A new endpoint to document... 115

API reference tutorial overview .. 118

Step 1: Resource description... 120

Step 2: Endpoints and methods... 126

Step 3: Parameters... 132

Step 4: Request example ... 141

Step 5: Response example and schema ... 154

Putting it all together .. 169

Activity: What's wrong with this API reference topic ... 173

Activity: Evaluate API reference docs for core elements ... 177

Chapter 3: Documenting API endpoints PDF last generated: August 27, 2023

Documenting REST APIs Page 114

A new endpoint to document
Until this point, you’ve been acting as a developer (p. 64) with the task of integrating the weather data into
your site. The point was to help you understand the type of information developers need and how they use
APIs.

Now let’s shift perspectives. Now suppose you’re a technical writer working with the OpenWeatherMap
team. The team is asking you to document a new endpoint. What do you cover, and how do you approach
it?

You have a new endpoint to document
The project manager calls you over and says the team has a new endpoint for you to document for the next
release. (Sometimes teams will also refer to each endpoint as an “API” as well.)

“Here’s the wiki page that contains info about the new API,” the manager says. The information is scattered
and random on the wiki page.

Most technical writers don’t start from scratch with documentation projects. Engineers usually dump
essential information onto an internal wiki page (or they communicate the info during meetings). However,
the information on the wiki page will likely be incomplete and unnecessarily technical in places (like
describing the database schema or high-level architectural workflows). The info might also include internal-
only information (for example, test logins, access protocols, or code names) or have sections that are out-
of-date.

Ultimately, the information will be oriented towards other engineers on the same knowledge level as the
team’s engineers. Your job as a technical writer will be to take this information and turn it into complete,
accurate, usable information that communicates with your audience.

Wiki page with information about the new endpoint
It’s now your task to sort through the information on this mock wiki page and create documentation from it.
You can read through the mock wiki page below to get a sense of the information. In the upcoming topics,
we will proceed section by section through an API reference topic.

Here’s the mock internal wiki page:

The wiki page: "Surf Report API"
The new endpoint is /surfreport/{beachId} . This endpoint is for surfers who want to check things like
tide and wave conditions to determine whether they should head out to the beach to surf. {beachId} is
retrieved from a list of beaches on our site.

Optional parameters:

• Number of days: Max is 7. Default is 3. Optional.
• Units: imperial or metric. With imperial, you get feet and knots. With metric, you get centimeters

and kilometers per hour. Optional.
• Time: time of the day corresponding to time zone of the beach you're inquiring about. Format is

unix time, aka epoch. Unix time is the milliseconds since 1970. Time zone is GMT or UTC.
Optional.

If you include the hour, then you only get back the surf condition for the hour you specified. Otherwise, you
get back 3 days, with conditions listed out by hour for each day.

A new endpoint to document PDF last generated: August 27, 2023

Documenting REST APIs Page 115

The response will include the surf height, the wind, temp, the tide, and overall recommendation.

Sample endpoint with parameters:

https://api.openweathermap.org/com/surfreport/123?&days=2&units=metrics&hou
r=1400

The response contains these elements:

surfreport:

• surfheight (units: feet)
• wind (units: kts)
• tide (units: feet)
• water temperature (units: F degrees)
• recommendation - string ("Go surfing!", "Surfing conditions okay, not great", "Not today -- try

some other activity.")

The recommendation is based on an algorithm that takes optimal surfing conditions, scores them in a
rubric, and includes one of three responses.

Sample format:

{
"surfreport": [

{
"beach": "Santa Cruz",
"monday": {

"1pm": {
"tide": 5,
"wind": 15,
"watertemp": 60,
"surfheight": 5,
"recommendation": "Go surfing!"

},
"2pm": {

"tide": -1,
"wind": 1,
"watertemp": 50,
"surfheight": 3,
"recommendation": "Surfing conditions are okay, not grea

t"
}
...

}
}

]
}

Negative numbers in the tide represent incoming tide.

The report won't include any details about riptide conditions.

A new endpoint to document PDF last generated: August 27, 2023

Documenting REST APIs Page 116

Although users can enter beach names, there are only certain beaches included in the report. Users can
look to see which beaches are available from our website at https://example.com/surfreport/

beaches_available (not a real URL). The beach names must be url encoded when passed in the endpoint
as query strings.

To switch from feet to metrics, users can add a query string of &units=metrics . Default is
&units=imperial .

Here's an example of how developers might integrate this information. This site shows the height of the
surf coupled with a cam.

If the query is malformed, you get error code 400 and an indication of the error.

You can see that the information here is unstructured and hard to scan. By structuring the API reference
information into five standard sections, the information will take more shape and be more readable.

Next steps
Let’s jump into the API reference tutorial overview (p. 118) for an overview of the five steps we’ll cover in
creating the API reference topic for this new endpoint.

A new endpoint to document PDF last generated: August 27, 2023

Documenting REST APIs Page 117

https://www.surfline.com/surf-report/south-beach-ca-northern-california_5088/

API reference tutorial overview
In this API reference tutorial, we’ll work on creating five common sections in REST API reference
documentation: resource description, endpoints and methods, parameters, request example, and response
example and schema. To provide some context (and to continue with our sample documentation scenario),
we’ll structure the information from the new endpoint to document (p. 115) into these five sections.

Five common sections in REST API docs
Almost all API reference topics include these five sections:

1. Resource description (p. 120)

“Resources” refers to the information returned by an API.

2. Endpoints and methods (p. 126)

The endpoints indicate how you access the resource, while the method indicates the allowed
interactions (such as GET, POST, or DELETE) with the resource.

3. Parameters (p. 132)

Parameters are options you can pass with the endpoint (such as specifying the response format or
the amount returned) to influence the response.

4. Request example (p. 141)

The request example includes a sample request using the endpoint, showing some parameters
configured.

5. Response example and schema (p. 154)

The response example shows a sample response from the request example; the response schema
defines all possible elements in the response.

Tutorial workflow map
The tutorial here includes a workflow map to help guide and orient you each step of the way.

API reference tutorial overview PDF last generated: August 27, 2023

Documenting REST APIs Page 118

After the tutorial
When we’re finished, the end result will look like a real API help topic (see the finished result in Putting it all
together (p. 169)). In the associated activities, you’ll have an opportunity to edit or create an API reference
topic (p. 177) with your own open-source API project (p. 686).

Although there are automated ways to publish API docs, we’re focusing on content rather than tools in this
section. In the next section, OpenAPI spec and generated reference docs (p. 179), we’ll look at how to
describe these same reference components using the OpenAPI specification. In the Publishing your API
documentation section (p. 530), we’ll look at ways to publish the information.

Next steps
Now that you have an idea of the tutorial, let’s get started with the first section: Step 1: Resource
description (p. 120).

API reference tutorial overview PDF last generated: August 27, 2023

Documenting REST APIs Page 119

Step 1: Resource description (API
reference tutorial)

“Resources” refers to the information returned by an API. Most APIs have various categories of information,
or various resources, that can be returned.

The resource description is brief (1-3 sentences) and usually starts with a verb. Resources usually have
various endpoints to access the resource and multiple methods for each endpoint. On the same page, you
usually have a general resource described along with a number of endpoints for accessing the resource,
also described.

Examples of resource descriptions
Here’s an example of a resource description from the Mailchimp API’s Campaigns resource :

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 120

http://developer.mailchimp.com/documentation/mailchimp/reference/campaigns/

Typically, an API will have a number of endpoints grouped under the same resource. In this case, you
describe both the general resource and the individual endpoints. For example, the Campaigns resource has
various endpoints that are also described:

• POST /campaigns

• GET /campaigns

• GET /campaigns/{campaign_id}

• PATCH /campaigns/{campaign_id}

• DELETE /campaigns/{campaign_id}

• POST /campaigns/{campaign_id}/actions/cancel-send

• POST /campaigns/{campaign_id}/actions/pause

• POST /campaigns/{campaign_id}/actions/replicate

• POST /campaigns/{campaign_id}/actions/resume

• POST /campaigns/{campaign_id}/actions/schedule

• POST /campaigns/{campaign_id}/actions/send

• POST /campaigns/{campaign_id}/actions/test

• POST /campaigns/{campaign_id}/actions/unschedule

Here’s a resource description for the Membership resource in the Box API :

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 121

http://developer.mailchimp.com/documentation/mailchimp/reference/campaigns/
http://developer.mailchimp.com/documentation/mailchimp/reference/campaigns/
https://developer.box.com/reference/resources/group-membership/

For the Membership resource (or “object,” as they call it), there are 7 different endpoints or methods you
can call. The Box API describes the Membership resource and each of the endpoints that lets you access
the resource.

Sometimes the general resource isn’t described; instead, it just groups the endpoints. The bulk of the
description appears in each endpoint. For example, in the Eventbrite API, here’s the Events resource:

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 122

https://developer.box.com/reference/resources/group-membership/
https://developer.box.com/reference/resources/group-membership/
https://www.eventbrite.com/platform/api#/reference/event
https://www.eventbrite.com/platform/api#/reference/event

Although the Events resource isn’t described here, descriptions are added for each of the Events
endpoints. The Events resource contains all of these endpoints:

• /events/search/

• /events/

• /events/:id/

• /events/:id/

• /events/:id/publish/

• /events/:id/cancel/

• /events/:id/

• /events/:id/display_settings/

• /events/:id/display_settings/

• /events/:id/ticket_classes/

• /events/:id/ticket_classes/:ticket_class_id/

• /events/:id/canned_questions/

• /events/:id/questions/

• /events/:id/attendees/

• /events/:id/discounts

And so on.

When developers create APIs, they have a design question to consider: Use many variants of endpoints (as
with Eventbrite’s API), or provide lots of parameters to configure the same endpoint. Often there’s a
balance between the two. The trend seems to be toward providing separate endpoints rather than
supplying a host of potentially confusing parameters within the same endpoint. On the other hand,
GraphQL APIs (which I don’t cover in this course) provide one endpoint with different ways to query the
information the endpoint contains. See GraphQL And REST Differences Explained With Burgers for a
good explanation about GraphQL versus REST.

As another example, the previous version of the Instagram API depicted a Relationships resource as
follows:

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 123

http://apievangelist.com/2018/06/29/graphql-and-rest-differences-explained-with-burgers/

The Relationships resource isn’t described but rather acts as a container for relationship endpoints.
Descriptions are added for each of the resources grouped within the Relationships resource:

• GET /users/self/followsGet

• GET /users/self/followed-byGet

• GET /users/self/requested-byList

• GET /users/user-id/relationshipGet

• POST /users/user-id/relationshipModify

(Instagram has since shifted to a Graph API .)

For another example of an API with resources and endpoints, check out the Trello API .

The description of the resource is likely something you’ll re-use in different places — product overviews,
tutorials, code samples, quick references, etc. As a result, put a lot of effort into crafting it. Consider storing
the description in a re-usable snippet in your authoring tool so that you can list it without resorting to copy/
paste methods in your quick start guide (p. 412).

Terminology for describing the resource
The exact terminology for referring to resources varies. The “things” that you access using a URL can be
referred to in a variety of ways, but “resource” is the most common term because you access them through
a URL, or uniform resource locator. Other than “resources,” you might see terms such as API calls,
endpoints, API methods, calls, objects, services, and requests. Some docs get around the situation by not
calling them anything explicitly except “Reference.”

Despite the variety with terminology, generally an API has various “resources” that you access through
“endpoints.” The endpoints give you access to the resource. (But terminology isn’t standard, so expect
variety.)

For more on how API terminology varies, see The difference between resources, endpoints, objects, and
items in the bunq API documentation .

Recognize the difference between reference docs versus user guides
Resource descriptions (as well as endpoint descriptions) are typically short, usually 1-3 sentences. What if
you have a lot more detail to add? In these situations, keep in mind the difference between reference
documentation and user guides/tutorials:

• Reference documentation: Concise, bare-bones information that developers can quickly
reference.

• User guides/tutorials: More elaborate detail about how to use the API, including step-by-step
instructions, code samples, concepts, and procedures. I go into much more detail about this
content in Documenting concepts sections (p. 358).

Although the description in an API reference topic provides a 1-3 sentence summary of the information that
the resource contains, you might expand on this with much greater detail in the user guide. (You could link
the reference description to the places in the guide where you provide more detail.)

Resource description for the surfreport endpoint
Let’s review the surf report wiki page (p. 115) (which contains the information about the resource) and try to
describe the resource in 1-3 sentences. Here’s my approach:

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 124

https://developers.facebook.com/docs/instagram-api/
https://developers.trello.com/v1.0/reference#introduction
https://medium.com/bunq-developers-corner/the-difference-between-resources-endpoints-objects-and-items-in-the-bunq-api-documentation-6b774473542
https://medium.com/bunq-developers-corner/the-difference-between-resources-endpoints-objects-and-items-in-the-bunq-api-documentation-6b774473542

Surfreport
Contains information about surfing conditions, including the surf height, water temperature, wind, and tide.
Also provides an overall recommendation about whether to go surfing.

Next steps
Now it’s time to list out the endpoints and methods (p. 126) for the resource.

Surfreport PDF last generated: August 27, 2023

Documenting REST APIs Page 125

Step 2: Endpoints and methods (API
reference tutorial)

The endpoints indicate how you access the resource, while the method indicates the allowed interactions
(such as GET, POST, or DELETE) with the resource.

The same resource usually has a variety of related endpoints, each with different paths and methods but
returning different information about the same resource. Endpoints usually have brief descriptions similar to
the overall resource description but shorter. Also, the endpoint shows the end path of a resource URL only,
not the base path common to all endpoints.

Examples of endpoints
Here’s an example of the endpoints for the Relationships resource in the Instagram API:

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 126

The endpoint is usually set off in a stylized way that gives it more visual attention. Much of the
documentation is built around the endpoint, so it might make sense to give each endpoint more visual
weight in your documentation.

The endpoint is arguably the most important aspect of API documentation because this is what developers
will implement to make their requests.

Represent path parameters with curly braces
If you have path parameters (p. 136) in your endpoint, represent them through curly braces. For example,
here’s an example from Mailchimp’s API:

/campaigns/{campaign_id}/actions/send

If you can, put the path parameter in another color to set it off:

/campaigns/{campaign_id}/actions/send

Curly braces for path parameters are a convention that users will understand. In the above example, almost
no endpoint uses curly braces in the actual path syntax, so the {campaign_id} is an obvious placeholder.

Here’s an example from the Facebook API that colors the path parameter in an easily identifiable way:

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 127

https://www.instagram.com/developer/endpoints/relationships/
https://www.instagram.com/developer/endpoints/relationships/

When the parameters are described in Facebook’s docs, the same green color is used to set off the
parameters, which helps users recognize their meaning.

Path parameters aren’t always set off with a unique color (for example, some precede it with a colon), but
whatever the convention, make sure the path parameter is easily identifiable.

You can list the method next to the endpoint
It’s common to list the method (GET, POST, and so on) next to the endpoint. The method defines the
operation with the resource. Briefly, each method is as follows:

• GET: Retrieves a resource
• POST: Creates a resource
• PUT: Updates or creates within an existing resource
• PATCH: Partially modifies an existing resource
• DELETE: Removes the resource

See Request methods in Wikipedia’s article on HTTP for more details. (There are some additional
methods, but they’re rarely used.)

Since there’s not much to say about the method itself, it makes sense to group the method with the
endpoint. Here’s an example from the Box API:

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 128

https://developers.facebook.com/docs/graph-api/reference/v2.11/achievement/
https://developers.facebook.com/docs/graph-api/reference/v2.11/achievement/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

And here’s an example from the Linkedin API:

Sometimes the method is referred to as the “verb.” GET, PUT, POST, PATCH, and DELETE are all verbs or
actions.

The endpoint shows the end path only
When you describe the endpoint, you list the end path only (hence the term “end point”). The full path that
contains both the base path and the endpoint is often called a resource URL.

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 129

https://developer.box.com/reference/post-comments/
https://developer.box.com/reference/post-comments/
https://developer.linkedin.com/docs/rest-api
https://developer.linkedin.com/docs/rest-api

In our sample API scenario, the endpoint is just /surfreport/{beachId} . You don’t have to list the full
resource URL every time (which would be https://api.openweathermap.org/surfreport/{beachId}).
Including the full resource URL would distract users from focusing on the path that matters. In your user
guide, you usually explain the full resource URL, along with the required authorization (p. 393), in an
introductory section (such as the Getting started tutorial (p. 379)).

How to group multiple endpoints for the same resource
Another consideration in documenting endpoints and methods is how to group and list the endpoints,
particularly if you have a lot of endpoints for the same resource. In Examples of resource descriptions (p.
120), we looked at a variety of APIs. Many doc sites provide different designs for grouping or listing each
endpoint for the resource, so I won’t revisit all the same examples. Group the endpoints in some way that
makes sense, such as by method or by the type of information returned.

For example, suppose you have three GET endpoints and one POST endpoint, all of which relate to the
same resource. Some doc sites might list all the endpoints for the same resource on the same page.
Others might break them into separate pages. Others might create one group for the GET endpoints and
another for the POST endpoints. It depends how much you have to say about each endpoint.

If the endpoints are mostly the same, consolidating them on a single page could make sense. But if they’re
substantially unique (with different responses, parameters, and error messages), separating them onto
different pages is probably better (and easier to manage). Then again, with a more sophisticated website
design, you can make lengthy information navigable on the same page.

In a later section on design patterns (p. 540), I explain that long pages (p. 546) are common pattern with
developer docs, in part because they make content easily findable for developers using Ctrl + F.

How to refer to endpoints in tutorials
In tutorials and other conceptual content, how do you refer to the endpoints within an API reference topic?
Referring to the “ /aqi endpoint” or to the “ /weatherdata ” endpoint doesn’t make a huge difference.
But with more complex APIs, using the endpoint to talk about the resource can be tricky.

At one company I worked at, our URLs for the Rewards endpoints looked like this:

/rewards

/rewards/{rewardId}

/users/{userId}/rewards

/users/{userId}/rewards/{rewardId}

And rewards in context of Missions looked like this:

/users/{userId}/rewards/{missionId}

/missions/{missionid}/rewards

To say that you could use the rewards resource wasn’t always specific enough, because there were
multiple rewards and missions endpoints.

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 130

It can get awkward referring to the endpoint. For example, you might have a sentence like this: “When you
call /users/{userId}/rewards/ , you get a list of all rewards. To get a specific reward for a specific
mission for a specific user, the /users/{userId}/rewards/{missionId} endpoint takes several
parameters…”

The longer the endpoint, the more cumbersome the reference becomes. These kinds of descriptions are
more common in the conceptual sections (p. 358) of your documentation. Generally, there’s not a clear
convention about how to refer to cumbersome endpoints. Adopt an approach that makes the most sense
for your API.

Endpoint for surfreport API
Let’s create the Endpoints and methods section for our fictitious surfreport API (p. 115). Here’s my
approach:

Endpoints
GET surfreport/{beachId}

Gets the surf conditions for a specific beach ID.

Next steps
Now that we’ve described the resource and listed the endpoints and methods, it’s time to tackle one of the
most important parts of an API reference topic: the parameters section (p. 132).

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 131

Step 3: Parameters (API reference
tutorial)

Parameters are options you can pass with the endpoint (such as specifying the response format or the
amount returned) to influence the response. There are several types of parameters: header parameters,
path parameters, and query string parameters. Request bodies are closely similar to parameters but are not
technically a parameter.

The different types of parameters are often documented in separate groups on the same page. Not all
endpoints contain each type of parameter.

Examples of parameters
The following screenshot shows a sample parameters section with the Box API:

Step 3: Parameters (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 132

Sample parameters from Box API

In this example, the parameters are grouped by type: path parameters, query parameters, and body
parameters. The endpoint also sets off the path parameter (comment_id) in a recognizable way in the
endpoint definition.

Many times parameters are simply listed in a table or definition list like this:

Parameter Required/Optional Data Type

format Optional String

Here’s an example from Yelp’s documentation:

Step 3: Parameters (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 133

https://developer.box.com/reference/put-comments-id/#request
https://developer.box.com/reference/put-comments-id/#request

You can format the values in a variety of ways (aside from a table). If you’re using a definition list or other
non-table format, be sure to develop styles that make the values easily readable.

Several types of parameters
REST APIs have several types of parameters:

• Header parameters (p. 135): Parameters included in the request header, usually related to
authorization.

• Path parameters (p. 136): Parameters within the path of the endpoint, before the query string
(?). These are usually set off within curly braces.

• Query string parameters (p. 136): Parameters in the query string of the endpoint, after the ? .

Another property closely related to parameters, and which used to be referred to as a parameter in
OpenAPI v2.0 , is the request body, or requestBody in OpenAPI code form. The request body is
usually only used with CREATE or PUT methods and often includes a JSON object included in the body of
the request. More details are provided in Request bodies (p. 137).

The terms for each of these parameter types comes from the OpenAPI specification (p. 272), which defines
a formal specification that includes descriptions of each parameter type (see the Path object tutorial (p.
291)). Using industry standard terminology helps you develop a vocabulary to describe different elements
of an API.

What to note in parameter documentation
Regardless of the parameter type, define the following with each parameter:

• Data type (p. 135)
• Max and min value (p. 135)

Step 3: Parameters (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 134

https://www.yelp.com/developers/documentation/v2/search_api
https://www.yelp.com/developers/documentation/v2/search_api
https://swagger.io/docs/specification/2-0/describing-request-body/
https://swagger.io/docs/specification/2-0/describing-request-body/
https://swagger.io/docs/specification/describing-request-body/
https://swagger.io/docs/specification/describing-request-body/

Data types for parameters

APIs may not process the parameter correctly if it’s the wrong data type or wrong format. Listing the data
type is usually a good idea with all parameter types but is especially true for request bodies, since these
are typically formatted in JSON.

These data types are the most common with REST APIs:

• string: An alphanumeric sequence of letters and/or numbers
• integer: A whole number — can be positive or negative
• boolean: True or false value
• object: Key-value pairs in JSON format
• array: A list of values

There are more data types in programming, and if you have more specific data types that are important to
note, be sure to document them. In Java, for example, it’s important to note the data type allowed because
Java allocates memory space based on the size of the data. As such, Java gets much more specific about
the size of the numbers. You have a byte, short, int, double, long, float, char, boolean, and so on. However,
you usually don’t have to specify this level of detail with a REST API.

Max and min values for parameters

In addition to specifying the data type, the parameters should indicate the maximum, minimum, and
allowed values if appropriate. For example, if the weather API allows only longitude and latitude
coordinates of specific countries, these limits should be described in the parameters documentation.
Omitting information about max/min values or other prohibited values (when applicable) is a common pitfall
in docs.

Not every parameter needs max and min values, however. Note these exceptions:

• Booleans: With Booleans, the only options are true or false, so there’s no need for max/min
values.

• Strings that use enums: If a string restricts possible values to enums (an enumerated list), the
max/min values wouldn’t be appropriate. For example, a geo-related enum might allow only
these values: north, south, east, west. There is no max/min value in this case.

In general, as you document parameters, if the parameters allow more freeform values (outside of Booleans
and enums), consider ways that developers might break the API. For example, if the API provides an ID
field, try entering an ID that is 300 characters long. If you can submit a file attachment, try submitting an 80
MB file.

Your developer audience needs to know the limits applicable to fields. Many times your product team
might not even know what limitations exist. (Your QA team should know, though, since it’s their job to try to
push the system to its limits and break it.)

When you test an API, try running an endpoint without the required parameters, or with the wrong
parameters, or with values that exceed the max or min amounts. See what kind of error response comes
back. Include that response in your status and error codes section (p. 402). I talk more about the
importance of testing in Testing your docs (p. 342).

Header parameters
Header parameters are included in the request header. Usually, the header just includes authorization
parameters that are common across all endpoints; as a result, the header parameters aren’t usually
documented with each endpoint. Instead, the authorization details in header parameters are documented in
the authorization requirements section (p. 393).

Step 3: Parameters (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 135

However, if your endpoint requires unique parameters to be passed in the header, you would document
them in the parameters documentation within each endpoint.

Path parameters
Path parameters are part of the endpoint itself and are not optional. For example, in the following endpoint,
{user} and {bicycleId} are required path parameters:

/service/myresource/user/{user}/bicycles/{bicycleId}

Path parameters are usually set off with curly braces, but some API doc styles precede the value with a
colon or use a different syntax. When you document path parameters, indicate the default values, the
allowed values, and other details.

Color coding the path parameters

When you list the path parameters in your endpoint, it can help to color code the parameters to make them
more easily identifiable. Color coding the parameters makes it clear what’s a path parameter and what’s
not. Through color, you create an immediate connection between the endpoint and the parameter
definitions.

For example, you could color code your parameters like this:

/service/myresource/user/{user}/bicycles/{bicycleId}

You could then use the same color for these parameters in later descriptions:

URL Parameter Description

user Here's my description of the user parameter.

bicycleId Here's my description of the bicycles parameter.

By color coding the parameters, it’s easy to see the parameter being defined and how it relates to the
endpoint definition.

Query string parameters
Query string parameters appear after a question mark (?) in the endpoint. The question mark followed by
the parameters and their values is referred to as the “query string.” In the query string, each parameter is
listed one right after the other with an ampersand (&) separating them. The order of the query string
parameters does not matter.

For example:

/surfreport/{beachId}?days=3&units=metric&time=1400

and

Step 3: Parameters (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 136

/surfreport/{beachId}?time=1400&units=metric&days=3

would return the same result.

However, with path parameters, the order does matter. If the parameter is part of the actual endpoint (not
added after the query string), you usually describe this value in the description of the endpoint itself.

Request bodies
Frequently, with POST requests (where you’re creating something), you submit a JSON object in the
request body. This is known as a request body, and the format is usually JSON. This JSON object may be
a lengthy list of key-value pairs with multiple levels of nesting.

For example, the endpoint may be something simple, such as /surfreport/{beachId} . But in the body
of the request, you might include a JSON object with many key-value pairs, like this:

{
"days": 2,
"units": "imperial",
"time": 1433524597
}

In OpenAPI v2.0, request bodies were classified as a type of parameter, but in v3.0, they are not
considered a parameter but rather a path property. Given that the request body functions like a parameter,
I’ve decided to leave them classified as a parameter for now. However, note that in the OpenAPI spec,
request bodies are technically not a parameter.

Documenting complex request bodies

Documenting JSON data (both in request bodies and responses) is one of the trickier parts of API
documentation. Documenting a JSON object is easy if the object is simple, with just a few key-value pairs
at the same level. But if you have a JSON object with multiple objects inside objects, numerous levels of
nesting, and lengthy conditional data, it can be tricky. And if the JSON object spans more than 100 lines, or
1,000, you’ll need to think carefully about how you present the information.

Tables work all right for documenting JSON, but in a table, it can be hard to distinguish between top-level
and sub-level items. The object that contains an object that also contains an object, and another object,
etc., can be confusing to represent.

By all means, if the JSON object is relatively small, a table is probably your best option. But there are other
approaches that designers have taken as well.

Take a look at eBay’s findItemsByProduct resource. Here’s the request body (in this case, the format is
XML):

Step 3: Parameters (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 137

http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html

Below the request body is a table that describes each parameter:

But the sample request also contains links to each of the parameters. When you click a parameter value in
the sample request, you go to a page that provides more details about that parameter value, such as the
ItemFilter . The separate page with more detail is likely because the parameter values are more

complex and require detailed explanation.

The same parameter values might be used in other requests as well, so eBay’s approach likely facilitates
re-use. Even so, I dislike jumping around to other pages for the information I need.

Step 3: Parameters (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 138

http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html
http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html
http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html
http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html
http://developer.ebay.com/DevZone/finding/CallRef/types/ItemFilter.html
http://developer.ebay.com/DevZone/finding/CallRef/types/ItemFilter.html

Swagger UI’s approach to request bodies

Swagger UI (p. 218), which we explore later and also demo (p. 240), provides another approach to
documenting the request bodies. Swagger UI shows the request bodies in the format that you see below.
Swagger UI lets you toggle between an “Example Value” and a “Model” view for both responses and
request bodies.

See the Swagger Petstore to explore the demo here. The Example Value shows a sample of the syntax
along with examples. When you click the Model link, you see a sample request body and any descriptions
of each element.

The Model includes expand/collapse toggles with the values. (The Petstore demo doesn’t include many
parameter descriptions in the Model, but if you include descriptions, they would appear here in the Model
rather than in the Example Value.)

We’ll get into Swagger in much more detail in Introduction to the OpenAPI specification (p. 181). For now,
focus on these core elements of API reference documentation. You will see these same sections appear in
the OpenAPI specification.

You can see that there’s a lot of variety in documenting JSON and XML in request bodies. There’s no right
way to document the information. As always, choose the method that depicts your API’s parameters in the
clearest, easiest-to-read way.

If you have relatively simple parameters, your choice won’t matter that much. But if you have complex,
unwieldy parameters, you may have to resort to custom styling and templates to present them more
clearly. I explore this topic in more depth in the Response example and schema section (p. 154).

Step 3: Parameters (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 139

http://petstore.swagger.io/#/operations/pet/addPet
http://petstore.swagger.io/#/operations/pet/addPet
http://petstore.swagger.io/
http://petstore.swagger.io/

Parameters for the surfreport endpoint
For our new surfreport resource, let’s look through the parameters available and create a table describing
the parameters. Here’s what my parameter information looks like:

Parameters

Path parameters

Path parameter Description

{beachId}
The value for the beach you want to look up. Valid beachId values
are available from our site at sampleurl.com.

Query string parameters

Query
string
parameter

Required / optional Description Type

days Optional
The number of days to include in the
response. Default is 3.

Integer

time Optional
If you include the time, then only the
current hour will be returned in the
response.

Integer. Unix
format (ms
since 1970) in
UTC.

Even if you use Markdown for docs, you might consider using HTML syntax with tables. You usually want
the control over column widths to make some columns wider or narrower. Markdown doesn’t allow that
granular level of control. With HTML, you can use a colgroup property to specify the col width for
each column.

Next steps
Now that we’ve documented the parameters, it’s time to show a sample request (p. 141) for the resource.

Step 3: Parameters (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 140

Step 4: Request example (API
reference tutorial)

The request example includes a sample request using the endpoint, showing some parameters configured.
The request example usually doesn’t show all possible parameter configurations, but it should be as rich as
possible with parameters.

Sample requests sometimes include code snippets that show the same request in a variety of languages
(besides curl). Requests shown in other programming languages are optional and not always included in
the reference topics (but when available, users welcome them).

Examples of requests
The following example shows a sample request from the Callfire API :

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 141

https://developers.callfire.com/docs.html#pagination

Sample request from Callfire

The design of this API doc site arranges the sample requests and responses in the right column of a three-
column layout. The request is formatted in curl, which we explored earlier in Make a curl call (p. 80).

curl -u "username:password" -H "Content-Type:application/json" -X GET "http
s://api.callfire.com/v2/texts?limit=50&offset=200"

curl is a common format to show requests for several reasons:

• curl is language agnostic, so it’s not specific to one particular programming language.
• curl shows the header information required in the request.
• curl shows the method used with the request.

In general, use curl to show your sample request. Here’s another example of a curl request in the Parse
API:

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 142

https://developers.callfire.com/docs.html#pagination
https://developers.callfire.com/docs.html#pagination

You can add backslashes in curl to separate each parameter onto its own line (though, as I pointed out in
the curl tutorial (p. 81), Windows has trouble with backslashes).

Other API doc sites might use the full resource URL, such as this plain example from Twitter:

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 143

http://docs.parseplatform.org/rest/guide/#updating-objects
http://docs.parseplatform.org/rest/guide/#updating-objects
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-list
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-list

The resource URL includes both the base path and the endpoint. One problem with showing the full
resource URL is that it doesn’t indicate if any header information needs to be passed to authorize the
request. (If your API consists of GET requests only and doesn’t require authorization, great, but few APIs
are set up this way.) curl requests can easily show any header parameters.

Multiple request examples
If you have a lot of parameters, consider including several request examples. In the CityGrid Places API,
the where endpoint is as follows:

https://api.citygridmedia.com/content/places/v2/search/where

However, there are literally 17 possible query string parameters you can use with this endpoint. As a
result, the documentation includes several sample requests that show various parameter combinations:

Adding multiple request examples makes sense when the parameters wouldn’t usually be used together.
For example, there are few cases where you might actually include all 17 parameters in the same request,
so any sample will be limited in what it can show.

This example shows how to “Find hotels in Boston, viewing results 1-5 in alphabetical order”:

https://api.citygridmedia.com/content/places/v2/search/where?what=hotels&whe
re=boston,ma&page=1&rpp=5&sort=alpha&publisher=test&format=json

If you click the link , you can see the response directly. In the responses topic (p. 164), I get into more
detail about dynamically showing the response when users click a request.

How many different requests and responses should you show? There’s probably no easy answer, but
probably no more than a few. You decide what makes sense for your API. Users will usually understand the
pattern after a few examples.

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 144

http://docs.citygridmedia.com/display/citygridv2/Places+API#PlacesAPI-WhereSearchHTTPSEndpoint
http://docs.citygridmedia.com/display/citygridv2/Places+API#PlacesAPI-WhereSearchHTTPSEndpoint
http://docs.citygridmedia.com/display/citygridv2/Places+API#PlacesAPI-WhereSearchRequest
http://docs.citygridmedia.com/display/citygridv2/Places+API
http://docs.citygridmedia.com/display/citygridv2/Places+API
https://api.citygridmedia.com/content/places/v2/search/where?what=hotels&where=boston,ma&page=1&rpp=5&sort=alpha&publisher=test&format=json

Requests in various languages
As noted earlier, in What is a REST API? (p. 36), REST APIs are language agnostic. The universal protocol
helps facilitate widespread adoption across programming languages. Developers can code their
applications in any language, from Java to Ruby to JavaScript, Python, C#, Node JS, or something else. As
long as developers can make an HTTP web request in that language, they can use the API. The response
from the web request will contain the data in either JSON or XML.

Because you can’t entirely know which language your end users will be developing in, it’s kind of fruitless
to try to provide code samples in every language. Many APIs just show the format for submitting requests
and a sample response, and the authors will assume that developers will know how to submit HTTP
requests in their particular programming language.

However, some APIs do show simple requests in a variety of languages. Here’s an example from Twilio:

You can select which language you want for the sample request: C#, curl, Java, Node.js, PHP, Python, or
Ruby.

Here’s another example from the Clearbit API:

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 145

https://www.twilio.com/docs/api/rest/making-calls
https://www.twilio.com/docs/api/rest/making-calls

You can see the request in Shell (curl), Ruby, Node, or Python. Developers can easily copy the needed
code into their applications, rather than figuring out how to translate the curl request into a particular
programming language.

Providing a variety of requests like this, often displayed through tabs , helps make your API easier to
implement. It’s even better if you can automatically populate the API keys with the actual user’s API keys
based on their logged-in profile.

However, don’t feel so intimidated by this smorgasbord of code samples. Some API doc tools (such as
Readme.com or SwaggerHub (p. 230)) can automatically generate these code samples because the
patterns for making REST requests in different programming languages follow a common template.

Many times, product managers know which programming languages the target users develop applications
with. If you know the target audience’s preferred programming language, you can focus your code samples
on that language only.

Auto-generating code samples
If you’re not using an authoring tool that auto-generates code examples, and you want to provide these
code snippets, you can auto-generate code samples from both Postman and Paw, if desired.

Paw (for Mac) lets you export your request into nearly every conceivable language:

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 146

https://clearbit.com/docs?javascript#enrichment-api-combined-api
https://clearbit.com/docs?javascript#enrichment-api-combined-api
https://getbootstrap.com/docs/3.3/javascript/#tabs
https://readme.com/
https://paw.cloud/

After you have a request configured (a process similar to Postman (p. 71)), you can generate a code
snippet by going to File > Export Request.

The Postman app can also generate code snippets in a similar way. I covered this process in an earlier
tutorial on Inspect the JSON from the response payload (p. 98). In Postman, after you configure your
request, click the Code link (which appears below the Save button in the upper-right area).

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 147

https://luckymarmot.com/paw/extensions/
https://luckymarmot.com/paw/extensions/

Then select the language you want, such as JavaScript > Jquery AJAX:

Although these code generators are probably helpful, they may or may not work for your API. Always
review code samples with developers. In most cases, developers supply the code samples for the
documentation, and technical writers briefly comment on the code samples.

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 148

(For an activity that involves using the generated jQuery code from Postman, see Inspect the JSON from
the response payload (p. 98) and Access and print a specific JSON value (p. 103).)

SDKs provide tooling for APIs
A lot of times, developers will create an SDK (software development kit) (p. 480) that accompanies a REST
API. The SDK helps developers implement the API using specific tooling. While APIs are language agnostic,
SDKs are language specific.

For example, at one company I worked at, we had both a REST API and a JavaScript SDK. Because
JavaScript was the target language developers were working in, the company developed a JavaScript SDK
to make it easier to work with REST using JavaScript. You could submit REST calls through the JavaScript
SDK, passing a number of parameters relevant to web designers.

An SDK is any kind of tooling that makes it easier to work with your API. It’s extremely common for a
company to provide a language-agnostic REST API and then to develop an SDK that makes it easy to
implement the API in the primary language they expect users to implement the API in. As such, peppering
your sample requests with these small request snippets in other languages isn’t that important, since the
SDK provides an easier implementation. If you have an SDK, you’ll want to make more detailed code
samples (p. 464) showing how to use the SDK.

API explorers provide interactivity with your own data
Many APIs have an API explorer feature that lets users make actual requests directly from the
documentation. For example, here’s a typical reference page for Spotify’s API docs:

Flickr’s API docs also have a built-in API Explorer:

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 149

https://developer.spotify.com/web-api/console/get-album/
https://developer.spotify.com/web-api/console/get-album/

As does the New York Times API:

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 150

https://www.flickr.com/services/api/explore/flickr.photos.search
https://www.flickr.com/services/api/explore/flickr.photos.search

The API Explorer lets you insert your own values, your own API key, and other parameters into a request so
you can see the responses directly in the API Explorer. Being able to see your own data makes the
response more real and immediate.

However, if you don’t have the right data in your system, using your own API key may not show you the full
response that’s possible. It works best when the resources involve public information and the requests are
GET requests.

API Explorers can be dangerous in the hands of users
Although interactivity is powerful, API Explorers can be a dangerous addition to your site. What if a novice
user who is trying out a DELETE method accidentally removes data? How do you later remove the test data
added by POST or PUT methods?

It’s one thing to allow GET methods, but if you include other methods, users could inadvertently corrupt
their data. In Sendgrid’s API, they include a warning message to users before testing out calls with their API
Explorer:

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 151

http://developer.nytimes.com/article_search_v2.json#/Console/GET/articlesearch.json
http://developer.nytimes.com/article_search_v2.json#/Console/GET/articlesearch.json

Foursquare’s API docs used to have a built-in API explorer in the previous version of their docs (shown
below), but they have since removed it. I’m not sure why — maybe they ran into some of these issues.

As far as integrating custom API Explorer tooling, this is a task that should be relatively easy for
developers. All the API Explorer does is map values from a field to an API call and return the response to
the same interface. In other words, the API plumbing is all there — you just need a little JavaScript and
front-end skills to make it happen.

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 152

https://sendgrid.com/docs/API_Reference/Web_API/blocks.html
https://sendgrid.com/docs/API_Reference/Web_API/blocks.html
https://developer.foursquare.com/docs
https://developer.foursquare.com/docs

However, you don’t have to build your own tooling. Existing tools such as Swagger UI (which parses an
OpenAPI specification document (p. 272)) and Readme.com (which allows you to enter the details
manually or from an OpenAPI specification) can integrate API Explorer functionality directly into your
documentation.

For a tutorial on how to create your own API explorer functionality, see the Swagger UI tutorial (p. 218).

Request example for the surfreport endpoint
Let’s return to the surfreport/{beachId} endpoint in our sample scenario (p. 115) and create a request
example for it. Here’s my approach:

Sample request

curl -I -X GET "https://api.openweathermap.org/data/2.5/surfreport?zip=9505
0&appid=APIKEY&units=imperial&days=2"

(In the above code, replace `APIKEY` with your actual API key.)

Next steps
Now that we’ve created a sample request, the next steps naturally follow — include a sample response that
corresponds with the same request. We’ll also document the model or schema of the response in general.
Go to Step 5: Response example and schema (API reference tutorial) (p. 154).

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 153

http://swagger.io/swagger-ui/
http://readme.com/

Step 5: Response example and
schema (API reference tutorial)

The response example shows a sample response from the request example; the response schema defines
all possible elements in the response. The response example is not comprehensive of all parameter
configurations or operations, but it should correspond with the parameters passed in the request example.
The response lets developers know if the resource contains the information they want, the format, and how
that information is structured and labeled.

The description of the response is known as the response schema. The response schema documents the
response in a more comprehensive, general way, listing each property that could possibly be returned,
what each property contains, the data format of the values, the structure, and other details.

Examples of response examples and schemas
The following is a sample response from the SendGrid API. Their documentation provides a tabbed display
with an Example on one tab:

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 154

And the response Schema on another tab:

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 155

https://sendgrid.com/docs/api-reference/
https://sendgrid.com/docs/api-reference/

The definition of the response is called the schema or model (the terms are used synonymously) and aligns
with the JSON schema language and descriptions . What works particularly well with the SendGrid
example is the use of expand/collapse tags to mirror the same structure as the example, with objects at
different levels.

Swagger UI also provides both an example value and a schema or model. For example, in the sample
Sunrise and Sunset Times API doc that I used for the SwaggerUI activity (which comes later in the
course), you can see a distinction between the response example and the response schema. Here’s the
Example Value:

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 156

https://sendgrid.com/docs/api-reference/
https://sendgrid.com/docs/api-reference/
http://json-schema.org/
https://idratherbewriting.com/assets/files/swagger-sunrise-sunset/index.html#/default/getSunriseSunset

The example response should correspond with the example request. Just as the request example might
only include a subset of all possible parameters, the response example might also be a subset of all
possible returned information.

However, the response schema is comprehensive of all possible properties returned in the response. This
is why you need both a response example and a response schema. Here’s the response schema for the
Sunrise and Sunset Times API:

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 157

https://idratherbewriting.com/assets/files/swagger-sunrise-sunset/index.html#/default/getSunriseSunset
https://idratherbewriting.com/assets/files/swagger-sunrise-sunset/index.html#/default/getSunriseSunset

The schema or model provides the following:

• Description of each property
• Definition of the data type for each property
• Whether each property is required or optional

If the header information is important to include in the response example (because it provides unique
information other than standard status codes (p. 402)), you can include it as well.

Do you need to define the response?
Some API documentation omits the response schema because the responses might seem self-evident or
intuitive. In Twitter’s API, the responses aren’t explained (you can see an example here).

However, most documentation would be better off with the response described, especially if the properties
are abbreviated or cryptic. Developers sometimes abbreviate the responses to increase performance by
reducing the amount of text sent. In one endpoint I documented, the response included about 20 different
two-letter abbreviations. I spent days tracking down what each abbreviation meant, and found that many
developers who worked on the API didn’t even know what many of the responses meant.

Use realistic values in the example response
In the example response, the values should be realistic without being real. If developers give you a sample
response, make sure the values are reasonable and not so fake they’re distracting (such as users
consisting of comic book character names).

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 158

https://idratherbewriting.com/assets/files/swagger-sunrise-sunset/index.html#/default/getSunriseSunset
https://idratherbewriting.com/assets/files/swagger-sunrise-sunset/index.html#/default/getSunriseSunset
https://developer.twitter.com/en/docs/accounts-and-users/manage-account-settings/api-reference/get-account-settings

Also, the sample response should not contain real customer data. If you get a sample response from an
engineer, and the data looks real, make sure it’s not just from a cloned production database, which is
commonly done. Developers may not realize that the data needs to be fictitious but representative, and
scraping a production database may be the easiest approach for them.

Format the JSON and use code syntax highlighting
Use proper JSON formatting for the response. A tool such as JSON Formatter and Validator can make
sure the spacing is correct.

If you can add syntax highlighting as well, definitely do it. If you’re using a static site generator such as
Jekyll (p. 637) or markdown syntax with GitHub (p. 569), you can probably use the Rouge built-in syntax
highlighter. Other static site generators might use Pygments or similar extensions.

Rouge and Pygments rely on “lexers” to indicate how the code should be highlighted. For example, some
common lexers are java , json , html , xml , cpp , dotnet , and javascript .

If you don’t have any syntax highlighters to integrate directly into your authoring tool, you can use an online
syntax highlighter such as tohtml.com/jScript/ . However, manually pasting code into these editors will
be tedious and probably unsustainable.

Strategies for documenting nested objects
Many times, the response contains nested objects (objects within objects) or has repeating elements.
Formatting the documentation for the response schema is one of the more challenging aspects of API
reference documentation.

Tables are most commonly used. In Peter Gruenbaum’s API tech writing course on Udemy , Gruenbaum
represents the nested objects using tables with various columns:

Gruenbaum’s use of tables is mostly to reduce the emphasis on tools and place it more on the content.

The Dropbox API represents the nesting with a slash. For example, name_details/ , team/ , and
quota_info indicate the multiple object levels.

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 159

http://jsonformatter.curiousconcept.com/
https://github.com/jneen/rouge
http://pygments.org/
https://tohtml.com/jScript/
https://www.udemy.com/api-documentation-1-json-and-xml/
https://idratherbewriting.com/2015/05/22/api-technical-writing-course-on-udemy/
https://idratherbewriting.com/2015/05/22/api-technical-writing-course-on-udemy/

Other APIs will nest the response definitions to imitate the JSON structure. Here’s an example from bit.ly’s
API:

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 160

https://www.dropbox.com/developers/core/docs#disable-token
https://www.dropbox.com/developers/core/docs#disable-token

Multiple levels of bullets is usually an eyesore, but here it serves a purpose that works well without
requiring sophisticated styling.

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 161

http://dev.bitly.com/user_info.html
http://dev.bitly.com/user_info.html

eBay’s approach is a little more unique. In this case, MinimumAdvertisedPrice is nested inside
DiscountPriceInfo , which is nested in Item , which is nested in ItemArray . (Note also that this

response is in XML instead of JSON.)

Here’s the response documentation:

It’s also interesting how much detail eBay includes for each item. Whereas the Twitter writers appear to
omit descriptions, the eBay authors write small novels describing each item in the response.

Three-column designs
Some APIs put the response in a right column so you can see it while also looking at the resource
description and parameters. Stripe’s API made this three-column design popular:

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 162

http://developer.ebay.com/Devzone/shopping/docs/CallRef/FindPopularItems.html
http://developer.ebay.com/Devzone/shopping/docs/CallRef/FindPopularItems.html
http://developer.ebay.com/Devzone/shopping/docs/CallRef/FindPopularItems.html
http://developer.ebay.com/Devzone/shopping/docs/CallRef/FindPopularItems.html

Stripe’s design juxtaposes the sample response in a right side pane with the response schema in the main
window. The idea is that you can see both at the same time. The description won’t always line up with the
response, which might be confusing. Still, separating the response example from the response schema in
separate columns helps differentiate the two.

A lot of APIs have modeled their design after Stripe’s. For example, see Slate or Spectacle . Should
you use a three-column layout with your API documentation? Maybe. But if the response example and
description don’t line up, the viewer’s focus is somewhat split, and the user must resort to more up-and-
down scrolling. Additionally, if your layout uses three columns, your middle column will have some narrow
constraints that don’t leave much room for screenshots and code examples.

The MYOB Developer Center takes an interesting approach in documenting the JSON in their APIs. They
list the JSON structure in a table-like way, with different levels of indentation. You can move your mouse
over a field for a tooltip description, or you can click it to have a description expand below. The use of
tooltips enables the rows containing the example and the description to align perfectly.

To the right of the JSON definitions is a code sample with real values. When you select a value, both the
element in the table and the element in the code sample highlight at the same time.

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 163

https://stripe.com/docs/api#charge_object
https://stripe.com/docs/api#charge_object
https://github.com/tripit/slate
https://github.com/sourcey/spectacle

This approach facilitates scanning, and the popover + collapsible approach allows you to compress the
table so you can jump to the parts that interest you. However, this approach requires more manual work
from a documentation point of view. Still, if you have long JSON objects, it might be worth it.

Embedding dynamic responses
Sometimes responses are generated dynamically based on API calls to a test system. Or if not generated
dynamically, they appear to be dynamic. For example, look at OpenWeatherMap API (which we used in
earlier activities). When you click a link in the “Examples of API calls” section, such as
http://samples.openweathermap.org/data/2.5/weather?q=London , you see the response returned in the
browser.

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 164

http://developer.myob.com/api/accountright/v2/generalledger/account/#GET
http://developer.myob.com/api/accountright/v2/generalledger/account/#GET
https://openweathermap.org/current
http://samples.openweathermap.org/data/2.5/weather?q=London,uk&appid=b1b15e88fa797225412429c1c50c122a1

Actually, the OpenWeatherMap response isn’t generated dynamically — it just looks that way.

This dynamic approach works well for GET requests that return public information. However, it probably
wouldn’t scale for other methods (such as POST or DELETE) or which request authorization.

What about status codes?
The responses section sometimes briefly lists the possible status and error codes returned with the
responses. However, because these codes are usually shared across all endpoints in the API, status and
error codes are often documented in their own section, apart from a specific endpoint’s documentation.
For this reason, I cover this topic in Documenting status and error codes (p. 402).

Response example and schema for the surfreport endpoint
For the surfreport/{beachId} endpoint that we’ve been exploring in our sample API scenario (p. 115),
let’s create a section that shows the response example and schema. Here’s my approach to these
sections:

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 165

http://samples.openweathermap.org/data/2.5/weather?q=London,uk&appid=b1b15e88fa797225412429c1c50c122a1
http://samples.openweathermap.org/data/2.5/weather?q=London,uk&appid=b1b15e88fa797225412429c1c50c122a1

Sample response
The following is a sample response from the surfreport/{beachId} endpoint:

{
"surfreport": [

{
"beach": "Santa Cruz",
"monday": {

"1pm": {
"tide": 5,
"wind": 15,
"watertemp": 80,
"surfheight": 5,
"recommendation": "Go surfing!"

},
"2pm": {

"tide": -1,
"wind": 1,
"watertemp": 50,
"surfheight": 3,
"recommendation": "Surfing conditions are okay, not grea

t."
},
"3pm": {

"tide": -1,
"wind": 10,
"watertemp": 65,
"surfheight": 1,
"recommendation": "Not a good day for surfing."

}
...

}
}

]
}

Response definitions

The following table describes each item in the response.

Response item Description
Data
type

beach

The beach you selected based on the beach ID
in the request. The beach name is the official
name as described in the National Park Service
Geodatabase.

String

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 166

Response item Description
Data
type

{day}
The day of the week selected. A maximum of 3
days gets returned in the response.

Object

{time}
The time for the conditions. This item is included
only if you include a time parameter in the
request.

String

{day}/{time}/tide

The level of tide at the beach for a specific day
and time. Tide is the distance inland that the
water rises to, and can be a positive or negative
number. When the tide is out, the number is
negative. When the tide is in, the number is
positive. The 0 point reflects the line when the
tide is neither going in nor out but is in transition
between the two states.

Integer

{day}/{time}/wind

The wind speed at the beach, measured in knots
(nautical miles per hour). Wind affects the surf
height and general wave conditions. Wind
speeds of more than 15 knots make surf
conditions undesirable because the wind creates
white caps and choppy waters.

Integer

{day}/{time}/watertemp

The temperature of the water, returned in
Fahrenheit or Celsius depending upon the units
you specify. Water temperatures below 70 F
usually require you to wear a wetsuit. With
temperatures below 60, you will need at least a
3mm wetsuit and preferably booties to stay
warm.

Integer

{day}/{time}/surfheight

The height of the waves, returned in either feet or
centimeters depending on the units you specify.
A surf height of 3 feet is the minimum size
needed for surfing. If the surf height exceeds 10
feet, it is not safe to surf.

Integer

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 167

Response item Description
Data
type

{day}/{time}/recommendation

An overall recommendation based on a
combination of the various factors (wind,
watertemp, surfheight). Three responses are
possible: (1) "Go surfing!", (2) "Surfing conditions
are okay, not great", and (3) "Not a good day for
surfing." Each of the three factors is scored with
a maximum of 33.33 points, depending on the
ideal for each element. The three elements are
combined to form a percentage. 0% to 59%
yields response 3, 60% - 80% and below yields
response 2, and 81% to 100% yields response
1.

String

Next steps
Now that you’ve completed each of the sections, take a look at all the sections together: Putting it all
together (p. 169).

Step 5: Response example and schema (API reference tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 168

Putting it all together
Let’s pull together the various parts we’ve worked on and bring them together to showcase the full
example.

Surfreport
Contains information about surfing conditions, including the surf height, water temperature, wind, and tide.
Also provides an overall recommendation about whether to go surfing.

Endpoints
GET surfreport/{beachId}

Gets the surf conditions for a specific beach ID.

Parameters

Path parameters

Path parameter Description

{beachId}
The value for the beach you want to look up. Valid beachId values
are available from our site at sampleurl.com.

Query string parameters

Query
string
parameter

Required / optional Description Type

days Optional
The number of days to include in the
response. Default is 3.

Integer

time Optional
If you include the time, then only the
current hour will be returned in the
response.

Integer. Unix
format (ms
since 1970) in
UTC.

Putting it all together PDF last generated: August 27, 2023

Documenting REST APIs Page 169

Sample request

curl -I -X GET "https://api.openweathermap.org/data/2.5/surfreport?zip=9505
0&appid=APIKEY&units=imperial&days=2"

(In the above code, replace `APIKEY` with your actual API key.)

Sample response
The following is a sample response from the surfreport/{beachId} endpoint:

{
"surfreport": [

{
"beach": "Santa Cruz",
"monday": {

"1pm": {
"tide": 5,
"wind": 15,
"watertemp": 80,
"surfheight": 5,
"recommendation": "Go surfing!"

},
"2pm": {

"tide": -1,
"wind": 1,
"watertemp": 50,
"surfheight": 3,
"recommendation": "Surfing conditions are okay, not grea

t."
},
"3pm": {

"tide": -1,
"wind": 10,
"watertemp": 65,
"surfheight": 1,
"recommendation": "Not a good day for surfing."

}
...

}
}

]
}

Response definitions

The following table describes each item in the response.

Surfreport PDF last generated: August 27, 2023

Documenting REST APIs Page 170

Response item Description
Data
type

beach

The beach you selected based on the beach ID
in the request. The beach name is the official
name as described in the National Park Service
Geodatabase.

String

{day}
The day of the week selected. A maximum of 3
days gets returned in the response.

Object

{time}
The time for the conditions. This item is included
only if you include a time parameter in the
request.

String

{day}/{time}/tide

The level of tide at the beach for a specific day
and time. Tide is the distance inland that the
water rises to, and can be a positive or negative
number. When the tide is out, the number is
negative. When the tide is in, the number is
positive. The 0 point reflects the line when the
tide is neither going in nor out but is in transition
between the two states.

Integer

{day}/{time}/wind

The wind speed at the beach, measured in knots
(nautical miles per hour). Wind affects the surf
height and general wave conditions. Wind
speeds of more than 15 knots make surf
conditions undesirable because the wind creates
white caps and choppy waters.

Integer

{day}/{time}/watertemp

The temperature of the water, returned in
Fahrenheit or Celsius depending upon the units
you specify. Water temperatures below 70 F
usually require you to wear a wetsuit. With
temperatures below 60, you will need at least a
3mm wetsuit and preferably booties to stay
warm.

Integer

{day}/{time}/surfheight

The height of the waves, returned in either feet or
centimeters depending on the units you specify.
A surf height of 3 feet is the minimum size
needed for surfing. If the surf height exceeds 10
feet, it is not safe to surf.

Integer

Surfreport PDF last generated: August 27, 2023

Documenting REST APIs Page 171

Response item Description
Data
type

{day}/{time}/recommendation

An overall recommendation based on a
combination of the various factors (wind,
watertemp, surfheight). Three responses are
possible: (1) "Go surfing!", (2) "Surfing conditions
are okay, not great", and (3) "Not a good day for
surfing." Each of the three factors is scored with
a maximum of 33.33 points, depending on the
ideal for each element. The three elements are
combined to form a percentage. 0% to 59%
yields response 3, 60% - 80% and below yields
response 2, and 81% to 100% yields response
1.

String

And that’s it. If you have a lot of endpoints to document, you’ll probably want to create templates that
follow a common structure. Better yet, when you push your reference documentation into the OpenAPI
specification, it makes publishing your content even easier. We’ll dive more into the OpenAPI specification
in the next section, OpenAPI spec and generated reference docs (p. 179).

Next steps
Now that you’ve completed the API reference tutorial (p. 118), you’re ready to do some activities.

There are two activities in this section:

• Activity: What’s wrong with this API reference topic (p. 173)
• Activity: Evaluate API reference docs (p. 177)

Surfreport PDF last generated: August 27, 2023

Documenting REST APIs Page 172

Activity: What's wrong with this API
reference topic
In this activity, you’ll critique an existing API reference topic to identify what’s wrong with it.

Activity: What’s wrong with this API reference topic
The following is a sample API reference topic for an endpoint called surfreport . There are about 25
things wrong in the topic. A copy of this same content is available in a read-only Google Doc here . In
Google Docs, go to File > Make a Copy to create your own instance. Then make comments in Google
docs to note as many errors as you can find.

Make a copy of this Google doc and make comments on it.

Here’s the same doc (with problems) displayed on the web:

Surfreport
Knowing whether the conditions are optimal for surfing is a necessary detail in every surfer’s life. This
endpoint includes information about surfing conditions, including the surf height, water temperature, wind,
and tide. Also provides an overall recommendation about whether to go surfing. As an added touch,
recommendations are expressed in surfer lingo. Surf’s up!

Endpoints
GET/POST surfreport/{:beachId}

Gets the surf conditions for a specific beach ID.

Activity: What's wrong with this API reference topic PDF last generated: August 27, 2023

Documenting REST APIs Page 173

https://docs.google.com/document/d/1LU0QJTDHHKFu9FIC24ZrF1I5HC7mzX86fH0YZ1SUHyo/edit?usp=sharing
https://docs.google.com/document/d/1LU0QJTDHHKFu9FIC24ZrF1I5HC7mzX86fH0YZ1SUHyo/edit?usp=sharing
https://docs.google.com/document/d/1LU0QJTDHHKFu9FIC24ZrF1I5HC7mzX86fH0YZ1SUHyo/edit?usp=sharing

Parameters

Parameter Use Description Type of data

{beachId} Required
Refers to the ID for the beach
you want to look up.

Number

days Optional
The number of days to include in
the response. Default is 3. Max
10.

Integer

time Optional The time you want the report for.
Integer. ISO 8601 format.
Example:
20180915T155300+0500

Sample request

https://api.openweathermap.org/data/2.5/surfreport/12345?zip=95050&appid=API
KEY&days=1

(In the above code, replace APIKEY with your actual API key.)

Surfreport PDF last generated: August 27, 2023

Documenting REST APIs Page 174

Sample response

{
"surfreport": [

{
"beach": "Santa Cruz",
"monday": {

"1pm": {
"tide": 5,
"wind": 15,
"watertemp": 80,
"surf_height": 5,

"riptide": "moderate",
"recommendation": "Carve it up, brah! The waves are cran

kin' wild out there."
},
"2pm": {

"tide": -1,
"wind": 1,
"watertemp": 50,
"surf_height": 3,

"riptide": extreme
"recommendation": "Waves are foam and frothy but rideabl

e in places. Gravitate to the impact zone, due, and hang loose."
},
"3pm": {

"tide": -1,
"wind": 10,
"watertemp": 65,
"surf_height": 1,
"recommendation": "Scene is blown out. Bail inland and c

hill on the beach instead or you’ll the one who’ll be shredded, due."
}
...

}
}

]
}

Response definitions
The following table describes each item in the response.

Response item Description Data type

beach

The beach you selected based on the beach ID in the
request. The beach name is the official name as
described in the National Park Service Geodatabase.

String

Surfreport PDF last generated: August 27, 2023

Documenting REST APIs Page 175

{day} The day(s) of the week requested. object

{time} The time for the conditions. string

tide

The level of tide at the beach for a specific day and
time. Tide is the distance inland that the water rises to,
and can be a positive or negative number. When the
tide is out, the number is negative. When the tide is in,
the number is positive. The 0 point reflects the line when
the tide is neither going in nor out but is in transition
between the two states.

String

wind

The wind speed at the beach. Wind affects the surf
height and general wave conditions. Wind speeds of
more than 15 make surf conditions undesirable because
the wind creates white caps and choppy waters.

Int

watertemp

The temperature of the water. Water temperatures
below 70 usually require you to wear a wetsuit. With
temperatures below 60, you will need at least a 3mm
wetsuit and preferably booties to stay warm.

String

surfheight

The height of the waves, returned in either feet or
centimeters depending on the units you specify. A surf
height of 3 feet is the minimum size needed for surfing.
If the surf height exceeds 10 feet, it is not safe to surf.

Map

recommendation
An overall recommendation based on a combination of
the various factors (wind, watertemp, surfheight), etc.

String

Answers
You can view the answer key here: What’s wrong with this topic answer key .

Surfreport PDF last generated: August 27, 2023

Documenting REST APIs Page 176

https://docs.google.com/document/d/1ogj99YHhFMkXb-HMMMko-G9Hq9Rg6cztdT06-oUZm4E/edit

Activity: Evaluate API reference docs
After completing the API reference tutorial (p. 118), you’re ready to start an activity that gives you more
experience in creating and editing API reference documentation.

In this activity, you’ll evaluate some API reference topics to identify issues.

Activity: Evaluate API reference docs for core elements
In this activity, you’ll review API reference documentation and identify the common elements. To evaluate
the API reference docs:

1. Choose three of the following sites. In the three you choose, analyze the API reference sections
(where the endpoints are listed):

• Nexmo API reference
• Twitter API reference
• Stripe API reference
• Azure API reference
• Flickr API reference
• YouTube API reference
• Splunk API reference
• Paypal API reference
• Basecamp API reference
• OpenSecrets API reference
• Dropbox API reference
• DBS Developers API
• Adyen Docs
• NBG Technology Hub

2. In the reference documentation, identify each of the following sections (if they exist):

• Resource description (p. 120)
• Endpoints and methods (p. 126)
• Parameters (p. 132)
• Request example (p. 141)
• Response example and schema (p. 154)

The sections might be named differently in the API doc sites you browse, but they’re usually
recognizable to some degree (if included). If you’re finding it somewhat difficult to locate them,
this is part of the wild west of terminology and organization when it comes to API documentation.

3. Assess the API reference documentation by answering the following questions for each section:

Resource description:

• Is the description action-oriented?
• Is it a brief 1-3 sentence summary?

Endpoints and methods:

• How are the endpoints grouped? (Are they listed all on the same page, or on different
pages? Are they grouped by method, or by resource?)

• How are the methods specified for each endpoint?

Activity: Evaluate API reference docs PDF last generated: August 27, 2023

Documenting REST APIs Page 177

https://developer.nexmo.com/api
https://developer.twitter.com/en/docs/api-reference-index
https://stripe.com/docs/api
https://docs.microsoft.com/en-us/rest/api/advisor/
https://www.flickr.com/services/api/
https://developers.google.com/youtube/v3/docs
https://docs.splunk.com/Documentation/Splunk/8.0.0/RESTREF/RESTlist
https://developer.paypal.com/docs/api/overview/
https://github.com/basecamp/bc3-api
http://www.opensecrets.org/open-data/api-documentation
https://www.dropbox.com/developers/documentation/http/documentation
https://www.dbs.com/dbsdevelopers/discover/deposit.html
https://docs.adyen.com/
https://developer.nbg.gr/apiProducts

Parameters:

• How many types of parameters are there (header, path, query string) or request body for
the endpoints?

• Are the data types (string, boolean, etc.) defined for each parameter? Are required/
optional values noted?

Request example:

• In what format or language is the request shown (e.g. curl, specific languages, other)?
• How many parameters does the sample request include?

Response example:

• Is there both a sample response and a response schema? (And is each element in the
response actually described?)

• How does the doc site handle nested hierarchies in the response definitions?

Next steps
Now that you understand the essential sections to cover in documenting API endpoints, let’s look at
standardized approaches for describing these sections, primarily with the Overview of REST API
specification formats (p. 180).

The OpenAPI standard will help make sure you cover all the necessary details in these sections, and it will
present the information to users in a way that users have become accustomed to.

Activity: Evaluate API reference docs PDF last generated: August 27, 2023

Documenting REST APIs Page 178

Chapter 4: OpenAPI spec and
generated reference docs
The OpenAPI specification provides a formal way of describing your REST API and includes all the
reference sections mentioned in the previous section, Documenting API endpoints. Display frameworks
such as Swagger UI can parse the OpenAPI specification and generate interactive documentation that lets
users try out endpoints while learning about the API.

Chapter sections:

Overview of REST API specification formats ... 180

Introduction to the OpenAPI specification ... 181

Stoplight: Visual modeling tools for creating your spec... 195

Getting started tutorial: Using Stoplight Studio to create an OpenAPI specification document . 201

Swagger UI tutorial... 218

SwaggerHub introduction and tutorial ... 230

Swagger UI Demo .. 240

Integrating Swagger UI with the rest of your docs... 241

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line tools....... 249

Redoc Community Edition Basic Demo... 268

Chapter 4: OpenAPI spec and generated reference docs PDF last generated: August 27, 2023

Documenting REST APIs Page 179

Overview of REST API specification
formats
When I introduced REST APIs (p. 36), I mentioned that REST APIs follow an architectural style, not a
specific standard. Several REST specifications were initially developed to provide standards in the way that
REST APIs are described. The initial three specs were OpenAPI (formerly called Swagger) , RAML , and
API Blueprint .

In the early years of specifications, there was healthy competition between the formats. But now the
OpenAPI specification is the most popular, with the largest community, momentum, and tooling. Because
of this, I spend the most time on OpenAPI in this course. In fact, this entire section focuses on the OpenAPI
specification. (I moved RAML (p. 924) and API Blueprint (p. 938) into the Additional resources section at the
end.)

“OpenAPI” refers to the specification, while “Swagger” refers to the API tooling that reads and displays the
information in the specification. The OpenAPI specification is a vendor-neutral format led by a steering
committee comprised of many companies. I’ll dive into both OpenAPI and Swagger in much more depth in
the pages to come.

Overall, specifications for REST APIs lead to better reference documentation for your API. Keep in mind
that these REST API specifications mostly describe the reference endpoints (p. 114) in an API. While the
reference topics are important, you will likely have a lot more documentation to write. (This is why I created
an entire section of conceptual topics (p. 358).)

Nevertheless, the reference documentation that the specification covers often constitutes the core value of
your API, since it addresses the endpoints and what they return.

Writing to a specification introduces a new dimension to documentation that makes API documentation
substantially unique. By mastering the OpenAPI specification format, you can distinguish yourself in
significant ways from other technical writers.

Overview of REST API specification formats PDF last generated: August 27, 2023

Documenting REST APIs Page 180

https://github.com/OAI/OpenAPI-Specification
https://raml.org/
https://apiblueprint.org/

Introduction to the OpenAPI
specification
OpenAPI is a specification for describing REST APIs. If you’re familiar with tech comm specifications,
you can think of the OpenAPI specification like the DITA specification . With DITA, there are specific XML
elements used to define help components, and a required order and hierarchy to those elements. Different
tools can read DITA and build out a documentation website from the elements.

With OpenAPI, instead of XML elements, you have a set of JSON objects, with a specific schema that
defines their naming, order, and contents. This JSON file (often expressed in YAML instead of JSON)
describes each part of your API. By describing your API in a standard format, publishing tools can
programmatically parse the information about your API and display each component in a stylized,
interactive display.

If you want to jump straight into a step-by-step tutorial for creating the OpenAPI specification document,
see Getting started tutorial: Using Stoplight Studio to create an OpenAPI specification document (p. 201),
or to code it manually, see the OpenAPI tutorial using Swagger Editor and Swagger UI – overview (p. 272).

Glancing at the OpenAPI specification
To get a better sense of the OpenAPI specification, let’s take a glance at some specification excerpts. We’ll
dive deeper into each element in an upcoming tutorial.

The official description of the OpenAPI specification is available in a Github repository here . Some of the
OpenAPI elements are paths , parameters , responses , and security . Each of these elements is a
JSON object that holds some properties and arrays.

In the OpenAPI specification, your endpoints are paths . If you had an endpoint called “pets”, your
OpenAPI specification for this endpoint might look as follows:

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 181

https://www.openapis.org/
https://www.xml.com/articles/2017/01/19/what-dita/
https://github.com/OAI/OpenAPI-Specification

paths:
/pets:

get:
summary: List all pets
operationId: listPets
tags:

- pets
parameters:

- name: limit
in: query
description: How many items to return at one time (max 100)
required: false
schema:

type: integer
format: int32

responses:
'200':

description: An paged array of pets
headers:

x-next:
description: A link to the next page of responses
schema:

type: string
content:

application/json:
schema:

$ref: "#/components/schemas/Pets"
default:

description: unexpected error
content:

application/json:
schema:

$ref: "#/components/schemas/Error"

This YAML code comes from the Swagger Petstore demo .

Here’s what these objects mean:

• /pets is the endpoint path.
• get is the HTTP method.
• parameters lists the parameters for the endpoint.
• responses lists the response from the request.
• 200 is the HTTP status code.
• $ref is a reference to another part of your implementation where the response is defined (in

components). OpenAPI has a lot of $ref markers like this to keep your code clean and to
facilitate re-use.

Learning the OpenAPI spec and constructing the YAML or JSON code by hand the first time, when you’re
also trying to sort out what the values should be, can be daunting. It might be easier to start in a visual
editor like Stoplight and then, if desired, transition into more of a direct code-based approach. For this
reason I have arranged the sequence of this course to start out first in the visual editor, with Create an

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 182

https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml
http://petstore.swagger.io/

OpenAPI document using a visual editor (Stoplight Studio) (p. 195), and then later in the course provide an
OpenAPI tutorial overview using Swagger Editor and Swagger UI (p. 272). However, you can probably do
most everything from within the visual editor.

Auto-generation options for creating the OpenAPI spec
Before we dive into ways to manually create the OpenAPI specification document, it’s worth noting some
other approaches to the task, beyond choosing whether to use a visual editor or manually write the code.
You can also choose to auto-generate the OpenAPI spec from annotations in your programming code. This
developer-centric approach may make sense if you have a large number of APIs or if it’s not practical for
technical writers to create this documentation. In my 2020 Developer Documentation Trends survey (p. 44),
approaches for auto-generating the spec versus manually generating it were split:

Percentage of auto-generation versus manual creation

If you want to go the code-generation route, Swagger offers a variety of libraries that you can add to your
programming code to generate the specification document. These Swagger libraries then parse the
annotations that developers add and generate the OpenAPI specification document. These libraries are
considered part of the “Swagger Codegen” project. The annotation methods vary based on the
programming language. For example, here’s a tutorial on annotating code with Swagger for Scalatra .

See There’s No Reason to Write OpenAPI By Hand by Phil Sturgeon for some more discussion. For
example, Phil provides this sample of code annotations in Java:

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 183

https://idratherbewriting.com/learnapidoc/docapis_trends.html
https://idratherbewriting.com/learnapidoc/docapis_trends.html
https://swagger.io/swagger-codegen/
http://www.infoq.com/articles/swagger-scalatra
https://apisyouwonthate.com/blog/theres-no-reason-to-write-openapi-by-hand

class UserController {
@OpenApi(

path = "/users",
method = HttpMethod.POST,
// ...

)
public static void createUser(Context ctx) {

// ...
}

}

And the approach in JavaScript:

/**
* @swagger
* /users:
* get:
* description: Returns users
* produces:
* - application/json
* responses:
* 200:
* description: users
* schema:
* type: array
* items:
* $ref: '#/definitions/User'
*/

app.get('/users', (req, res) => {
// implementation logic ...

});

You can see that the annotations differ by language, mostly following the allowed annotations and
traditional syntax for that language. So if you want to go this route, first find out what Swagger Codegen
libraries are available for that language. For more information on Codegen, see Comparison of Automatic
API Code Generation Tools For Swagger by Kin Lane, aka the API Evangelist. For additional tools and
libraries, see Swagger services and tools and Open Source Integrations . Note that currently, most of
the Codegen libraries only work with version 2.0 of the OpenAPI. Codegen tool have been slow to transition
to version 3.0.

Although this code-generation approach “automates” the spec’s generation, someone still has to know
what annotations to add and how to add them (the process isn’t too unlike Javadoc’s comments and
annotations). Then someone has to write content for each of the annotation’s values (describing the
endpoint, the parameters, and so on).

In short, this process isn’t without effort — the automated part is having the Codegen libraries generate the
model definitions and the valid specification document that conforms to the OpenAPI schema. The end
result is an OpenAPI specification document that you’ll then need to feed into another tool such as
Swagger UI (p. 218), Redocly (p. 249), or another tool to generate out the documentation.

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 184

https://apievangelist.com/2015/06/06/comparison-of-automatic-api-code-generation-tools-for-swagger/
https://apievangelist.com/2015/06/06/comparison-of-automatic-api-code-generation-tools-for-swagger/
http://swagger.io/open-source-integrations/
https://swagger.io/open-source-integrations/

Still, many developers get excited about this approach because it offers a way to generate documentation
from code annotations, which is what developers have been doing for years with other programming
languages such as Java (using Javadoc) or C++ (using Doxygen). They usually feel that generating
documentation from the code results in less documentation drift. Docs are likely to remain up to date if the
doc is tightly coupled with the code.

It’s common that engineers generate the OpenAPI spec, so you wouldn’t be out of place to simply ask
developers to generate out this file from their code, writing and maintaining their own reference
documentation. In my 2020 Developer Documentation Trends survey (p. 44), I asked respondents who
typically generates the OpenAPI spec. Their answers trends towards either engineers or engineers + tech
writers in collaboration:

Who generates the OpenAPI spec

If engineers are generating the OpenAPI spec and they want to auto-generate it from annotations in their
code, you might want to follow their preference. If you go the auto-generation route, make sure you get
access to the source code to make edits to the annotations and ramp up on Git. Otherwise, your
developers will be writing your reference docs.

In this course, however, I will not be covering code annotations and ways to auto-generate the spec. I
focus exclusively on manually creating the code, since this follows a best practice in the industry. The main
weakness of generating your OpenAPI spec from code is that the spec can no longer serve as the blueprint
for creating the API, and instead becomes an afterthought. I’ll explain this in more depth in the next
section, Spec-first development of the OpenAPI spec (p. 185).

Spec-first development of the OpenAPI spec
Now let’s talk about the spec-first approach. Many feel that auto-generation, described in the previous
section, is not the best approach. In Undisturbed REST: A Guide to Designing the Perfect API , Michael
Stowe recommends that teams implement the OpenAPI specification by hand and then treat the
specification document as a contract that developers use when doing the actual coding. This approach is
often referred to as “spec-first development.”

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 185

http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.stack.nl/~dimitri/doxygen/
https://idratherbewriting.com/learnapidoc/docapis_trends.html
https://idratherbewriting.com/learnapidoc/docapis_trends.html
https://www.mulesoft.com/lp/ebook/api/restbook
https://www.mulesoft.com/lp/ebook/api/restbook
https://twitter.com/mikegstowe
https://twitter.com/mikegstowe

Spec-first development is a philosophy about how to develop APIs more efficiently. If you follow a spec-first
philosophy, you write the spec first and use it as a contract that developers code to.

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 186

https://www.amazon.com/gp/product/B0125TOLNU?keywords=undisturbed%20rest%20michael%20stowe&qid=1444665700
https://www.amazon.com/gp/product/B0125TOLNU?keywords=undisturbed%20rest%20michael%20stowe&qid=1444665700

In other words, developers consult the OpenAPI specification document to see what the parameter names
should be called, what the responses should be, and so on. After this “contract” or “blueprint” has been
established, Stowe says you can then put the annotations in your code (if you want) to generate the
specification document in a more automated way. But don’t code without first having a spec.

Too often, development teams quickly jump to coding the API endpoints, parameters, and responses
without doing much user testing or research into whether the API aligns with what users want. Since
versioning APIs is extremely difficult (you have to support each new version going forward with full
backward-compatibility to previous versions), you want to avoid the “fail fast” approach that agile
enthusiasts so commonly celebrate. There’s nothing worse than releasing a new version of your API that
invalidates endpoints or parameters used in previous releases. Constant versioning in APIs can become a
documentation nightmare.

Even before the API has been coded, your spec can generate a mock response (p. 236) by adding
response definitions in your spec. The mock server generates a response that looks like it’s coming from a
real server, but in reality it’s just a pre-defined response in your code and appears to be dynamic to the
user.

If the OpenAPI spec isn’t used as the blueprint for the API, what is? Most likely, the descriptions about the
endpoints and what they return will be stored on a wiki page or Word document, often incomplete in terms
of all the details (e.g., casing of the responses, the structure and what’s included), so developers will make
these decisions on the fly while coding.

Rendering Your OpenAPI specification with Swagger UI
After you have a valid OpenAPI specification document that describes your API, you can then feed this
specification to different tools to parse it and generate the interactive documentation similar to the Petstore
demo .

Probably the most common tool used to parse the OpenAPI specification is Swagger UI . (Remember,
“Swagger” refers to API tooling, whereas “OpenAPI” refers to the vendor-neutral, tool agnostic
specification.) After you download Swagger UI, it’s pretty easy to configure it with your own specification
file. I provide a Swagger UI tutorial (p. 218) in an upcoming section.

The Swagger UI code generates a display that looks like this:

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 187

http://petstore.swagger.io/
http://petstore.swagger.io/
https://github.com/swagger-api/swagger-ui

The Swagger Petstore demo shows how Swagger UI renders the OpenAPI spec

You can also check out the sample Swagger UI integration with a simple weather API used as a course
example.

Some designers criticize Swagger UI’s expandable/collapsible output as being dated. At the same time,
developers find the one-page model attractive and like the ability to zoom out or in for details. By
consolidating all endpoints on the same page in one view, users can take in the whole API at a glance. This
display gives users a glimpse of the whole, which helps reduce complexity and enables them to get
started. In many ways, the Swagger UI display is a quick-reference guide (p. 412) for your API.

Activity: Explore Swagger UI through the Petstore Demo
Let’s get some hands-on experience with Swagger UI using the Petstore demo. The Petstore demo
provides a good example of how the OpenAPI specification can be rendered visually.

1. Go to the Swagger Pet Store Demo .

As with most Swagger-based outputs, Swagger UI provides a “Try it out” button. To make it
work, you must first authorize Swagger by clicking Authorize and entering your API key in the
Authorization modal. However, the Petstore authorization modal is just for demo purposes. There
isn’t any real code authorizing those requests, so you can close the Authorization modal or skip it
altogether.

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 188

http://petstore.swagger.io/
http://petstore.swagger.io/
https://idratherbewriting.com/assets/files/swagger/
https://petstore.swagger.io/

Authorization modal in Swagger UI

2. Expand the POST /pet endpoint.

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 189

http://petstore.swagger.io/
http://petstore.swagger.io/

POST /pet endpoint and Try it out button in Swagger UI

3. Click Try it out.

After you click Try it out, the example value in the Request Body field becomes editable.

4. In the example value, change the first id value to a unique (and unlikely to be repeated) whole
number (such as 24329). Change the name doggie to a pet name you can remember (e.g.,
Bentley).

5. Click Execute.

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 190

http://petstore.swagger.io/
http://petstore.swagger.io/

Executing a sample Petstore request

Swagger UI submits the request and shows the curl (p. 80) that was submitted. For example,
here’s the curl Swagger UI sent:

curl -X POST "https://petstore.swagger.io/v2/pet" -H "accept: applica
tion/xml" -H "Content-Type: application/json" -d "{ \"id\": 1000, \"c
ategory\": { \"id\": 0, \"name\": \"string\" }, \"name\": \"Bentle
y\", \"photoUrls\": [\"string\"], \"tags\": [{ \"id\": 0, \"nam
e\": \"string\" }], \"status\": \"available\"}"

Notice that, with the -d (data) parameter, the request body is escaped and added directly into
the curl command rather than being loaded from a file (as explained in Common curl commands
related to REST (p. 85)).

The Responses section in Swagger UI shows the response from the server. By default, the
response returns JSON:

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 191

http://petstore.swagger.io/
http://petstore.swagger.io/

{
"id": 1000,
"category": {

"id": 0,
"name": "string"

},
"name": "Bentley",
"photoUrls": [

"string"
],
"tags": [

{
"id": 0,
"name": "string"

}
],
"status": "available"
}

6. The Petstore is a functioning API, and you have actually created a pet. For fun, expand the
GET /pet/{petId} endpoint, click Try it out, enter the pet id you used in the previous operation,
and then execute the request. You should see your pet’s name returned.

There are other tools besides Swagger UI that can parse your OpenAPI specification document. Some of
these tools include Apiary , Apigee , Lucybot , Gelato , Readme.com , swagger2postman ,
swagger-ui responsive theme , and more.

Some web designers have created integrations of OpenAPI with static site generators such as Jekyll (see
Carte and Readme). You can also embed Swagger UI into web pages as well. More tools roll out
regularly for parsing and displaying content from an OpenAPI specification document.

In fact, once you have a valid OpenAPI specification, using a tool called API Transformer , you can even
transform it into other API specification formats, such as RAML or API Blueprint . These additional
formats allow you to expand your tool horizons even wider.

The tech writer’s role with the OpenAPI spec
In many of my projects, developers haven’t been that familiar with OpenAPI, so I usually create the
OpenAPI specification document manually. Additionally, I don’t always have access to the programming
source code, and our developers speak English as a second or third language only. They aren’t eager to be
in the documentation business.

You will most likely find that engineers in your company aren’t familiar with OpenAPI but are interested in
using it as an approach to API documentation. (I think the spec’s schema-based approach fits the
engineering mindset, so it’s not hard to get buy-in for the approach.) But you’ll probably need to take the
lead to guide engineers in the needed information, approach, and other details that align with best
practices toward creating the spec.

In this regard, tech writers can play a key role in collaborating with the API team in producing the spec. If
you’re following a spec-first development philosophy, this leading role can help you shape the API before it
gets coded and locked down. This means you might have the opportunity to influence the names of the

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 192

https://apiary.io/
http://apigee.com/about/
https://lucybot.com/
https://gelato.io/
http://readme.com/
https://github.com/josephpconley/swagger2postman
https://github.com/jensoleg/swagger-ui
https://github.com/Wiredcraft/carte
https://readme.com/
https://apitransformer.com/
http://raml.org/
https://apiblueprint.org/

endpoints, the consistency and patterns, simplicity, and other factors that go into the design of an API
(which tech writers are usually absent from). See API design and usability (p. 488) for details on how to
influence good API design.

Should I even use the OpenAPI spec? What if I just created the
reference content manually in my own format and tool?
One of the main reasons for tech writers to use the OpenAPI spec is to auto-generate out the reference
documentation in a neat display that lets users try out requests. There are a host of tools that will read an
OpenAPI spec and then generate out docs. I’ll go into more depth with these approaches in later sections
(such as the Stoplight tutorial (p. 201), Swagger UI tutorial (p. 218), and Redoc tutorial (p. 249)).

However, up front you should be aware that there are tradeoffs to using the OpenAPI approach. If you write
your reference docs using the OpenAPI spec and then settle on your preferred way of generating out the
interactive docs, you’re probably going to run into these challenges:

• Tutorial/how-to docs and reference docs become fragmented: The OpenAPI specification
and the rendering tool typically cover only reference documentation (p. 114). The OpenAPI
provides the basics of each endpoint, including a description, the parameters, a sample request,
and a response. It doesn’t provide space for a getting started tutorial (p. 379), information about
how to get API keys (p. 393), how to download and configure a sample app (p. 480), information
about rate limits (p. 408), or the hundred other details that go into the conceptual topics for
developers (p. 358). So even though you have this cool, interactive tool for users to explore and
learn about your API, you still have to provide a user guide. Your docs will likely have a
standalone reference output that acts as a companion to the tutorial content. Some platforms let
you mix the two (e.g., Stoplight, Readme.com, and others), but then you’ll be paying for a hosted
documentation service. I talk more about this issue in Integrating Swagger UI with the rest of your
docs (p. 241).

• Redundancy/duplication of information: With OpenAPI in the mix, you potentially have two
places where you’re describing your endpoints and parameters (both the reference output and
your user guide), and you have to either keep the two in sync, embed one in the other, or
otherwise link between the two. The OpenAPI lets you re-use parameter and response
information through the components object, but you couldn’t easily re-use the information
outside the reference material.

• Complexity of API workflows: The complexity of your API can also be a factor to consider in
your approach. Peter Gruenbaum , who has published several tutorials on writing API
documentation on Udemy, says that automated tools work best when the APIs are simple. When
you have endpoints that have complex interdependencies and require special setup workflows or
other unintuitive treatment, the straightforward nature of a Try-it-out interface (by this I mean the
generated output from tools such as Swagger UI (p. 218) or Redoc (p. 249)) may likely leave
users scratching their heads. For example, if you must first configure an API service before an
endpoint returns anything, and then use one endpoint to get a certain object that you pass into
the parameters of another endpoint, and so on, the Try-it-out features in the output won’t make a
lot of sense to users without a detailed tutorial to follow.

• Executing requests against real data: Some users may not realize that clicking “Try it out”
makes actual calls against their own accounts based on the API keys they’re using. Mixing an
invitation to use an exploratory sandbox with real data can create some headaches later on when
users ask how they can remove all of the test data, or why their actual data is now messed up.
For these scenarios, it’s best to either remove the Try-it-out options or set up a sandbox or test
account for users. But this is easier said than done. You might find that your company doesn’t
provide a sandbox for testing out the API. All API calls execute against real data.

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 193

https://www.udemy.com/user/petergruenbaum/

• Extensive request bodies problematic: Finally, I found that endpoints with lengthy request
bodies tend to be problematic. One API I had to document included requests with request bodies
that were hundreds of lines long (the request body was used to configure an API server). With this
sort of request body, many of these tools that create docs from the OpenAPI spec fall short of
being usable. You might have an unwieldy list of parameters or some other custom/complex
setup and might want more control over your docs.

Despite these shortcomings, OpenAPI is quickly becoming a way for more and more tools (from Postman
Run buttons (p. 382) to nearly every API platform) to quickly ingest the information about your API and
make it discoverable and interactive with robust, instructive tooling. Through your OpenAPI specification,
you can port your API onto many platforms and systems as well as automatically set up unit testing and
prototyping. Your OpenAPI spec is machine-readable and will give much more life and flexibility to your API
docs.

Additionally, the generated docs from the OpenAPI provide a nice visual shape for an API. You can easily
see all the endpoints and their parameters ‐ it acts like a quick-reference guide (p. 412). Based on
this framework, you can help users grasp the basics of your API at a glance.

I’ve also found that learning the OpenAPI specification and describing my API with these objects and
properties helped inform my own API vocabulary. For example, I realized that there were four main types of
parameters (p. 132): “path” parameters, “header” parameters, “query” parameters, and “request body”
parameters. I learned that parameter data types with REST were a “Boolean,” “number,” “integer,” or
“string.” I learned that responses (p. 154) provided “objects” containing “strings” or “arrays.” In short,
implementing the specification gave me an education about API terminology, which in turn helped me
describe the various components of my API in credible ways.

OpenAPI may not be the right approach for every API, but it’s an industry standard and can be a powerful
complement to your API documentation. You can give users the ability to try out requests and responses
for themselves. With this interactive element, your documentation becomes more than just information.
Through OpenAPI and the interactive docs you generate from it, you create a space for users to both read
your documentation and experiment with your API at the same time. That combination tends to provide a
powerful learning experience for users.

Introduction to the OpenAPI specification PDF last generated: August 27, 2023

Documenting REST APIs Page 194

Stoplight: visual modeling tools for
creating your OpenAPI spec
Before jumping into the tutorial for creating an OpenAPI spec using Stoplight (p. 201), let me introduce
Stoplight a bit more conceptually. As a GUI editor for creating an OpenAPI, Stoplight Studio simplifies the
authoring of a highly technical syntax that is often challenging to make valid.

Among other services, Stoplight provides visual modeling tools to create an OpenAPI document for your
API — without requiring you to know the OpenAPI spec details or code the spec line by line. This API
specification document can act as a single source of truth that empowers the whole API lifecycle, from UX
prototyping to testing, development, documentation, sales, and more.

Note that Stoplight is one of the sponsors of my site.

Limits to line-by-line spec coding
Before jumping into details, let me provide some background about why I think Stoplight is a valuable tool,
and why I’ve both listed it in this course and created an activity for using Stoplight (p. 201). At the 2018 TC
Camp conference in Santa Clara, the camp organizers put on a full-day API workshop focused on
OpenAPI and Swagger. I was excited to see this topic addressed in a workshop because I think coding the
spec is both the most complicated and most important part of API documentation.

I didn’t attend the workshop myself, but I was chatting with a few who did. One attendee was a little
frustrated that they spent so much time in YAML (p. 276) working on different parts of the OpenAPI spec
definition (p. 272). He said they spent most of the day in YAML, and it was frustrating, tedious, and boring.
For this participant, this isn’t what he imagined when he signed up to learn how to create interactive API
docs.

In the instructor’s defense, I told my friend that describing an API using the OpenAPI spec does pretty
much involve living in YAML all day, and it is tedious, highly prone to error, and technical. One of my
favorite API bloggers, API evangelist Kin Lane, explains that “hand crafting even the base API definition for
any API is time-consuming.” It is an activity “that swells quickly to being hours when you consider the finish
work that’s required” (Automated Mapping Of The API Universe …).

Lane says he was exploring ways to automate the API definition using different tools such as Charles
Proxy. During this time, he started exploring Stoplight.io , a platform for modeling APIs and more, and he
became engrossed in the workflow and design tools. He says,

I stayed up way too late playing with some of the new features in Stoplight.io. If you
aren’t familiar with what the Stoplight team has been cooking up — they have been
hard at work crafting a pretty slick set of API modeling tools. I feel the platform
provides me with a new way to look at the API life cycle — a perspective that spans
multiple dimensions, including design, definition, virtualization, documentation,
testing, discovery, orchestration, and client. … I am curious to see what API
designers and architects do with Stoplight — I feel like it has the potential to shift the
landscape pretty significantly, something I haven’t seen any API service provider do
in a while. (Automagically Defining Your API Infrastructure As You Work Using
Stoplight.io)

Stoplight: visual modeling tools for creating your OpenAPI spec PDF last generated: August 27, 2023

Documenting REST APIs Page 195

http://www.tccamp.org/
http://www.tccamp.org/
http://apievangelist.com/2016/02/05/automated-mapping-of-the-api-universe-with-charles-proxy-dropbox-openapi-spec-and-some-custom-apis/
http://stoplight.io/
https://apievangelist.com/2016/02/16/automagically-defining-your-api-infrastructure-as-you-work-using-stoplightio
https://apievangelist.com/2016/02/16/automagically-defining-your-api-infrastructure-as-you-work-using-stoplightio

I also started playing around with Stoplight. I was curious to see whether the visual modeling tools for
describing an API could take the tedium out of working in YAML on a line-by-line level with the spec. While
using Stoplight to create an OpenAPI description for a recent web API at my work, I found Stoplight to be
useful. It made it much easier to create the OpenAPI specification document.

Stoplight’s visual modeling tools eliminate the need to be familiar with the format of the OpenAPI
specification. You don’t have to know the data type for each property, whether the property needs to be
nested or defined directly and so forth. That level of complexity has been abstracted away in a GUI for
designing your API.

Stoplight provides visual modeling tools to describe your API. The screenshot above shows the UI for
documenting parameters. Stoplight's UI produces a valid OpenAPI specification document, which is then
used to drive other API services and activities on their site.

As part of the visual modeling tools, Stoplight’s interface for describing JSON schemas (used in request
bodies or responses) is especially welcome. Details about how to document JSON schemas aren’t fully
described in the OpenAPI spec, so they can be particularly tricky. What’s especially neat about Stoplight is
that you can paste in a chunk of JSON and it will automatically describe the JSON in the right syntax for
you. You do this using the Generate from JSON button. For more details, see this section in the Stoplight
getting started tutorial: Step 5: Enter the responses and response schema information (p. 213). Here’s a
short video clip showing this auto-generation:

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/pubapis_stoplight.html] to view the content.

Additionally, you can toggle between the visual tools (the Form view) and the specification code (the Code
view) easily. If you want to work in the code, your changes will update the content in the UI as well. The two
sync perfectly when you make updates in either mode. Here’s a short video I made showing this
bidirectional synchronization:

Stoplight: visual modeling tools for creating your OpenAPI spec PDF last generated: August 27, 2023

Documenting REST APIs Page 196

https://stoplight.io/studio/
https://stoplight.io/studio/

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/pubapis_stoplight.html] to view the content.

Not just simpler tools, but a design-first philosophy
After playing around with Stoplight, I had the opportunity to chat with Marc Macleod , founder of
Stoplight, about how Stoplight differs from SwaggerHub (p. 230) and Readme (p. 609). Marc said when the
spec was first introduced, he saw value in having a standard specification for APIs, but at the time, all the
tooling required users to write the specification line by line. This hand coding was error-prone, slow, and
tedious.

Marc and his team designed Stoplight with visual modeling tools that don’t require teams to know the
details of the OpenAPI spec. This simplification of tooling opens up the spec’s development to a broader
number of team players — to product managers, developers, UX designers, technical writers, and more.
The barrier to entry in the design and prototyping of the API grows beyond the scope of just engineers.

Building the specification document is probably the most important activity in API development because
once you have this API description, you have a single source of truth. This single source of truth can then
inform and empower a variety of other roles: developers, testers, user experience designers, technical
writers, sales, and more. Marc’s core philosophy is that the OpenAPI specification document is central to
API development. After you have this specification document, you can build tools around it to empower
these other teams. For example:

• UX designers can prototype the API using a mock server to let users execute requests and see
sample responses — before developers even write one line of code.

• Developers can write code by following a specific contract, like a construction team following a
blueprint. All the decisions and questions have been put into the specification document to make
it actionable.

• QA can automate unit testing from the API description to speed up endpoint testing across a
variety of parameters and scenarios.

• Technical writers can add descriptions and other examples to the specification description, and
then generate interactive documentation without worrying about developing templates, styles, or
other formatting and organization.

If the OpenAPI specification really powers all of these other activities, doesn’t it make sense to build your
platform around the specification? And from a larger view, to build your business around the specification?
That’s what Stoplight is doing. It’s what makes them fundamentally different from other API platforms. I
think it’s what Kin Lane meant when he said Stoplight provides “new way to look at the API life cycle — a
perspective that spans multiple dimensions, including design, definition, virtualization, documentation,
testing, discovery, orchestration, and client.” From a technical writer’s perspective, this puts
documentation as the center of API development activities.

Not a post-design artifact to generate documentation
The OpenAPI specification isn’t just an artifact that describes what the developers already coded. Nor is it
just a way to create interactive docs featuring a built-in API explorer, or even to make your API machine
readable for other systems to consume. The OpenAPI specification is a way to design and model your API.
Given this purpose, the tools for designing and modeling your API need to be more flexible, easier to
manipulate, and accessible to designers and product managers.

Consider this analogy. When I write blog posts, I often write in an editor like Google Docs or Bear or
Ulysses or even Word, because these tools make it easy to express myself. I can edit and move content
around, or insert notes and half-formed thoughts. Only after I’ve finished the content do I move it into
Markdown or HTML and then populate the structured YAML in my post’s frontmatter. It’s the same with the

Stoplight: visual modeling tools for creating your OpenAPI spec PDF last generated: August 27, 2023

Documenting REST APIs Page 197

https://www.linkedin.com/in/marcmacleod/

API specification. When you’re designing and modeling your API, you don’t want to be worrying about
whether your YAML syntax is valid or be constantly consulting the reference documentation to remember
what properties are required at each level of the specification.

If we’re ever going to embrace modeling and designing APIs in a collaborative way, we can’t do it using a
YAML editor writing in the spec’s rigid syntax. If we don’t have tools to design and model collaboratively,
the spec gets designed and developed elsewhere (such as in the pages of Confluence or a Word document
on a product manager’s computer). The specification document becomes an afterthought to design,
something that a techie (such as a developer or technical writer) comes along later to create post-
development.

Spec-last development has, unfortunately, been the approach in most of the APIs I’ve worked on — I
create the spec after the API has already been designed and coded. The spec becomes just a way to
generate reference documentation for the existing API, rather than as a single source of truth that
empowers the whole API lifecycle from beginning to end. Invariably, as soon as user testing begins, the
project team discovers shortcomings in the API’s design they don’t have time to fix.

This practice of putting the spec last (rather than first) in the API’s development limits the scope of what the
OpenAPI specification can do. Lane explains:

Many developers still see OpenAPI (fka Swagger) about generating API
documentation, not as the central contract that is used across every stop along the
API life cycle. Most do not understand that you can mock instead of deploying, and
even provide mock data, errors, and other scenarios, allowing you to prototype
applications on top of API designs. (Code Generation Of OpenAPI (fka Swagger) Still
The Prevailing Approach)

To counter poor practices with spec-last development, Lane says more and more platforms are pushing
code development further down in the API lifecycle. In other words, design and testing are done first, code
development is done later.

In a design-first model, technical writers can also insert themselves early in on the API design process,
providing input about the shape and model of the API at a time when their input might get traction. Once
the API gets coded by developers, it’s hard enough to change a parameter name, much less the parameter
itself.

Documentation hosting features on Stoplight
In addition to putting the OpenAPI specification at the center of the API lifecycle process, Stoplight has
some other features of particular interest to technical writers. Stoplight offers a hosted docs solution,
where you can integrate your conceptual content (the tutorials, guides, and other how-to’s) with the
reference API docs. Here’s a sample page from Stoplight for a product called Shopgate .

Note that you can integrate your reference documentation (p. 114) and conceptual documentation (p. 358)
in Stoplight’s hosted doc solution. Integrating these two content types has been a longtime challenge for
tech writers in the API doc space. (For more on integration challenges with API documentation, see
Integrating Swagger UI with the rest of your docs (p. 241).)

Although I generally like working directly in the code, I’ve found that Stoplight lets me focus more on the
content and less on the details of the spec’s format. Ideally, you can probably get developers and other
project team members to populate reference content in Stoplight themselves since this is an activity that
needs to happen much earlier in the API design process anyway.

Stoplight: visual modeling tools for creating your OpenAPI spec PDF last generated: August 27, 2023

Documenting REST APIs Page 198

http://apievangelist.com/2018/02/14/code-generating-openapi-still-prevailing-approach
http://apievangelist.com/2018/02/14/code-generating-openapi-still-prevailing-approach
https://developer.shopgate.com/

If you’re documenting an API, Stoplight and their hosted doc solution are worth checking out. But
don’t think of Stoplight as just a documentation platform or an easy way to generate the OpenAPI
description. Consider Stoplight a way to design the single source of truth that will empower all other teams
in a more efficient toward a successful API.

Stoplight demos
Here’s a short demo of how Stoplight renders the OpenAPIWeatherMap OpenAPI specification. This
Stoplight output uses the same API explored earlier in this course. Here’s what the weather endpoint looks
like in Stoplight:

Here are a few noteworthy callouts about the output:

• The conceptual information can live seamlessly alongside the reference content. You don’t have
a fragmented output with your documentation.

• The Try It Out pane is visually prominent and easy for users to access. This helps encourage
more of exploratory, hands-on learning with your API. It is simple to work and try out a call.

• In the Responses section, the Schema and Example are placed on separate tabs that make it
easy to toggle between. The schema presents the content in expand/collapse sections, allowing
you to visually consume the whole structure at a glance.

• The output feels clean, with ample breathing space and an easy-to-read design. The UI isn’t
cluttered or busy. There’s a good visual hierarchy with the design elements, encouraging focus in
the middle pane where the main content lives.

This sample API doesn’t include many endpoints, so it might be more instructive to see some other
samples of Stoplight listed on their Case Studies page . For direct links to the documentation mentioned
in case studies, explore the following:

• Zoom API docs
• Nutanix API docs
• MediaMath API docs
• AppointmentPlus API docs

Stoplight: visual modeling tools for creating your OpenAPI spec PDF last generated: August 27, 2023

Documenting REST APIs Page 199

https://stoplight.io/
https://stoplight.io/documentation/
https://idratherbewriting.stoplight.io/docs/openweathermap3/reference/openweathermap.v1.yaml/paths/~1weather/get
https://idratherbewriting.stoplight.io/docs/openweathermap3/reference/openweathermap.v1.yaml/paths/~1weather/get
https://stoplight.io/case-studies/
https://marketplace.zoom.us/docs/api-reference/zoom-api
https://www.nutanix.dev/api-reference/
https://apidocs.mediamath.com/
https://appointmentplus.api-docs.io/v1/overview

• BigCommerce API docs
• Namely API docs

You can learn more about hosting your documentation with Stoplight here: Create Hosted API
Documentation Online With Our API Docs Generator Tool .

Stoplight tutorial
For an in-depth tutorial for using Stoplight to create an OpenAPI specification, including sample content
and values, see Getting started tutorial: Using Stoplight Studio to create an OpenAPI specification
document (p. 201).

Stoplight: visual modeling tools for creating your OpenAPI spec PDF last generated: August 27, 2023

Documenting REST APIs Page 200

https://developer.bigcommerce.com/api-docs
https://developers.namely.com/1.0/getting-started/introduction
https://stoplight.io/documentation/
https://stoplight.io/documentation/

Getting started tutorial: Using
Stoplight Studio to create an OpenAPI
specification document
You can create an OpenAPI specification document in several ways: (a) you can auto-generate it from
annotations in your source code, (b) you can code it by hand in an editor such as the Swagger Editor, and
(c) you can use a GUI editor such as Stoplight Studio. In this tutorial, we will walk through the third
approach: using Stoplight Studio, a GUI editor for modeling your API. We will create a valid OpenAPI
specification, using the OpenWeatherMap as the sample API.

For a higher-level introduction to the OpenAPI specification, see Introduction to the OpenAPI specification
(p. 181). For a more conceptual introduction to Stoplight Studio, see Stoplight — visual modeling tools for
creating your OpenAPI spec (p. 195).

Using a visual editor
Before we get started, let’s address an initial question about the approach we’re taking. When creating
your OpenAPI specification document, why should you use a visual/GUI editor, which hides the code
(unless you toggle the view open) instead of coding every detail of the spec by hand?

All approaches have their merits. But if you don’t work with the OpenAPI specification enough to remember
all the fields and syntax for each property, or if you’re learning it for the first time, trying to get the syntax
valid in the raw code can be challenging. Coding by hand leads to many errors and forces you to spend a
lot of time troubleshooting invalid syntax.

Using an editor helps you avoid these errors and focus instead on the content. The less time you spend
fiddling with syntax and more time working on content, the better the outcome of the documentation. For
more on the philosophy of not getting lost in the syntactical details of the spec, but instead focusing on
content, read this post by Phil Sturgeon, who says Stoplight Studio is “an absolute game changer for API
Design, and something I’ve been waiting for since I found out about it somewhere in 2018” (Reinventing
API Design with Stoplight Studio).

As a technical writer who likes working in Markdown and other raw formats, I can see the appeal of
working directly in the code. But the OpenAPI syntax is quite complex, and YAML is fussy. I’d rather be
worrying more about the content than addressing syntax issues. But even so, Stoplight lets you switch into
the code view to work in that mode when you want, and switch back into the visual view when you want.
Changes you make in one mode sync to the other. This gives you the best of both worlds.

Before we begin
Before we begin the tutorial, note the following:

• Stoplight Studio isn’t the only GUI editor for creating OpenAPI specifications. You can also use
OpenAPI-GUI , Apibldr , SwaggerHub’s visual editor , and others. However, I think
Stoplight’s editor is one of the most mature and user-friendly.

• Although Stoplight has a commercial offering, their editor and documentation publishing are free
(the free tier includes 1 project and 3 authors). But in general, just because you’re using the
Stoplight Studio editor here, it doesn’t mean you’re wed to their documentation output. You can

Getting started tutorial: Using Stoplight Studio to create an OpenAPI specification
document

PDF last generated: August 27,
2023

Documenting REST APIs Page 201

https://phil.tech/2019/08/22/reinventing-api-design-stoplight-studio/
https://phil.tech/2019/08/22/reinventing-api-design-stoplight-studio/
https://mermade.github.io/openapi-gui/
https://apibldr.com/
https://app.swaggerhub.com/help/ui/visual-editor
https://stoplight.io/pricing/

use the Stoplight Studio editor to create a valid specification, export it, and then choose the tool
you want to use to render it (for example, Stoplight, Redoc, Spectacle, Swagger UI, or some
other display framework).

• Stoplight’s platform gives you a nice path toward more comprehensive documentation, including
not only API reference content but also conceptual documentation (p. 358) and tutorial content
(p. 432). In short, you can create Markdown files similar to Stoplight Studio’s documentation .
Their platform lets you create a more seamless documentation experience for your readers
across many different types of content, providing you with a complete publishing solution — not
just a way to create reference content. (This tutorial will only cover creating API reference
content, though.)

• This tutorial should take about 30 minutes to an hour. No special technical knowledge is required.

Disclaimer: Stoplight is one of the sponsors of my site. I would still recommend this approach regardless
of any site sponsorship. It makes sense to use a visual editor when your content must conform to a highly
technical syntax.

What you’ll build
In this tutorial, we’ll use sample information from the OpenWeatherMap API (more specifically, the
Current weather data endpoint), which is the same API we’ve been using in other tutorials, such as the
OpenAPI tutorial (p. 272).

Here’s the documentation output that you’ll build in this tutorial:

The tutorial has the following steps:

• Step 1: Set up a project in Stoplight Studio (p. 203)

What you’ll build PDF last generated: August 27, 2023

Documenting REST APIs Page 202

https://meta.stoplight.io/docs/studio/README.md
https://openweathermap.org/api
https://openweathermap.org/current
https://idratherbewriting.stoplight.io/docs/openweathermap4/YXBpOjExMTIxODY3-open-weather-map-api
https://idratherbewriting.stoplight.io/docs/openweathermap4/YXBpOjExMTIxODY3-open-weather-map-api
https://idratherbewriting.stoplight.io/docs/openweathermap4/YXBpOjExMTIxODY3-open-weather-map-api

• Step 2: Enter the API overview information (p. 206)
• Step 3: Enter the path and parameter information (p. 208)
• Step 4: Learn how to re-use parameters (p. 211)
• Step 5: Enter the responses and response schema information (p. 213)
• Step 6: Preview, test, and publish the output (p. 215)

Stoplight provides a variety of options for working with projects — desktop editor versus web editor, and
syncing from GitHub or saving directly to a Stoplight workspace. In this tutorial, I take the simplest path:
using the web editor and saving to the Stoplight workspace. But recognize that you have more options for
how you approach projects. See Working with Projects for more details.

Step 1: Set up a project in Stoplight
Studio

1. Go to https://stoplight.io/studio/ and click On the Web.
2. Follow the on-screen instruction to sign in, create a workspace, and then log in to the workspace.

3. Click the + button at the top to add a new project. Give the project a name, and then click

Create API Project.

The Stoplight Studio editor opens. The left pane says, “You do not have any APIs or models.”

Step 1: Set up a project in Stoplight Studio PDF last generated: August 27, 2023

Documenting REST APIs Page 203

https://meta.stoplight.io/docs/studio/docs/Basics/01-working-with-projects.md
https://stoplight.io/studio/

4. Click the API button in the sidebar.

5. In the New API dialog box, name your API (e.g., “openweathermap”). By default, the editor will
use OpenAPI v3.1 and YAML — leave the defaults as is. Click Create.

Stoplight Studio creates an OpenAPI (OAS) specification file called openweathermap.yml and
loads it as follows:

Step 1: Set up a project in Stoplight Studio PDF last generated: August 27, 2023

Documenting REST APIs Page 204

6. Stoplight lets you toggle between a form and code editor. The above screenshot shows the Form
view. Click the Code button in the upper-right corner to see the code automatically created.

The sample code includes some content for some fictitious user endpoints called
/users/{userid} and /user .

You could simply paste in a valid OpenAPI spec into the Code view, and it would populate the
Form view. But presumably you don’t already have an OpenAPI spec to paste into the code —
this is why you’re using the editor, to build out the specification document.

7. You can seamlessly switch between Form and Code views. Try adding a word in the Form view,
switch to the Code view and find it, then remove it from the Code view and see how it updates in
the Form view. Here’s a short video clip showing this:

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/pubapis_openapis_quickstart_stoplight.html] to view the content.

<frame width="560" height="315" src="https://www.youtube.com/embed/ngTq3aGZF
VA" title="YouTube video player" frameborder="0" allow="accelerometer; autop
lay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowf
ullscreen></iframe>

1. Select users/{userId} under the Paths folder, and then click the Preview button in the upper-
right corner to see what the content would look like when published:

Step 1: Set up a project in Stoplight Studio PDF last generated: August 27, 2023

Documenting REST APIs Page 205

The ability to switch views between Form, Code, and Preview gives you a lot of authoring power.

2. Click the Form button to switch back to the Form view.

Step 2: Enter the API overview
information
In this section, you will populate the fields in the API Overview section, which include the version, name,
description, security, contact, license, and other general details. For this tutorial, I’ve prepared sample
information for you to easily insert into the Stoplight Editor. (Note: In the sample information in the orange
expandable buttons, for fields that don’t have names, I put the assumed titles of these fields in brackets.)

To populate the API overview:

1. In the Stoplight Studio sidebar, click API Overview.
2. Enter information in each of the form fields using information provided in the orange button

below:

This content contains JavaScript. Go to https://idratherbewriting.com/learnapidoc/
pubapis_openapis_quickstart_stoplight.html to see it.

Note: The Markdown source formatting in the sample text is intentional. When you copy and
paste in the source, Stoplight will convert the Markdown into HTML when displaying the
published page. Also note that Stoplight allows you to use Stoplight-flavored Markdown ,
which allows all the same tags as CommonMark but also includes some special tags for
callouts, alerts, and other formatting.

When finished, the form should look as follows:

Step 2: Enter the API overview information PDF last generated: August 27, 2023

Documenting REST APIs Page 206

https://github.com/stoplightio/studio-demo/blob/master/docs/markdown/stoplight-flavored-markdown.md
https://commonmark.org/

3. Now that you entered information for the first section, check out how it looks. Click the Preview
button in the upper-right corner. It should look as follows:

Step 2: Enter the API overview information PDF last generated: August 27, 2023

Documenting REST APIs Page 207

If you are seeing the Preview window side-by-side with the Form or Code view, you can make
your browser window smaller so you can view the Preview window in full size.

4. Return to the Form view by clicking the Form button again.

Step 3: Enter the path and parameter
information
Now enter the path and parameter information:

1. In the sidebar, right-click the Paths folder and select New Path.

Step 3: Enter the path and parameter information PDF last generated: August 27, 2023

Documenting REST APIs Page 208

2. Type weather and press enter.

By default Stoplight creates a GET operation for the weather endpoint. In our case, this works out
great because this endpoint has a GET endpoint. But if not, you could just click the other
operations available to create details for those operations.

You can remove the default /users/{userid} and /user and endpoints. Right-click each
endpoint and select Delete Path.

3. In the main window (not sidebar), change the path’s title from “Your GET endpoint” to “weather.”

4. Click the Tags button in the upper-left corner and add a tag called “Weather endpoints.”

Step 3: Enter the path and parameter information PDF last generated: August 27, 2023

Documenting REST APIs Page 209

This tag will group the endpoints in the sidebar by this tag into a collapsed section called
“Weather endpoints.” This is how you build navigation hierarchy for your endpoints. You won’t
see this grouping until you publish your API, though. Here’s a screenshot of what that grouping
will look like:

5. In the Description field, add the description for this endpoint. Expand the orange button below to
get a description to paste here.

This content contains JavaScript. Go to https://idratherbewriting.com/learnapidoc/
pubapis_openapis_quickstart_stoplight.html to see it.

6. In Stoplight Studio, click the + Query Param button to expand the query parameters options.
(Note that our sample API has query parameters only, no path parameters.) Expand the orange
button below for sample query parameter information. Then populate all the query parameter
information into the Stoplight Studio editor.

This content contains JavaScript. Go to https://idratherbewriting.com/learnapidoc/
pubapis_openapis_quickstart_stoplight.html to see it.

When you’re finished entering the parameters, Stoplight should look like this:

Step 3: Enter the path and parameter information PDF last generated: August 27, 2023

Documenting REST APIs Page 210

You don’t need to add security for this endpoint because you already configured global security
in the previous section. However, if this endpoint had a unique security method, you could
override the global security here by clicking the + Security button.

Step 4: Learn how to re-use
parameters
The OpenAPI spec allows to re-use parameters by storing the information in the components (p. 302)
property. In the Stoplight Studio editor, you reuse parameters by entering the parameter information in the
Parameters section in the sidebar. (In the code behind the scenes, this information gets stored in
components .)

To understand how this works, let’s re-use one of the query parameters.

To re-use a parameter:

1. Right-click the Parameters folder in the lower-left corner of the sidebar and select New Query
Parameter.

A parameter section similar to the query parameter sections you just populated appears.

2. Type lon and press enter.
3. Populate the lon parameter here using the same information as before.
4. Return to the previous query parameters section in the weather GET endpoint where you entered

the lon parameter, and click the Reference button for this parameter.

5. Search for “lon” and select it.

Step 4: Learn how to re-use parameters PDF last generated: August 27, 2023

Documenting REST APIs Page 211

6. When you link the parameter to the reference like this, the icon turns red:

7. Switch to the Code editor and search for lon . You’ll now see a reference to a component:

- $ref: '#/components/parameters/lon'

You don’t need to do anything in the code here — I’m just pointing out what changed behind the
scenes. You can use this same technique to re-use other parameters as well as other types of
content, such as responses.

8. Preview your updates by clicking the Preview button. If you select the /weather endpoint in the
sidebar, the preview should look like this:

Step 4: Learn how to re-use parameters PDF last generated: August 27, 2023

Documenting REST APIs Page 212

This endpoint in the OpenWeatherMap API doesn’t have any path, header, or body parameters,
so you can skip those elements.

Step 5: Enter the responses and
response schema information
As a final step for this endpoint, you need to enter the response information. The response includes not
only an example response but also the schema describing the response. The schema describes all
possible values in the response, their data types, and whether the values are required.

To enter the response information in Stoplight Studio:

1. Below the parameter section for the endpoint, click the + Response button. Then click the + Add
Body button that appears within this expanded Response section.

Step 5: Enter the responses and response schema information PDF last generated: August 27, 2023

Documenting REST APIs Page 213

2. On the Schema tab, click Generate from JSON.

Here you’ll experience one of the coolest features in the Stoplight Studio editor, and one reason
why I like this editor so much. The editor will automatically build out the response schema from a
sample JSON response.

3. Expand the orange button below and copy the sample response.

This content contains JavaScript. Go to https://idratherbewriting.com/learnapidoc/
pubapis_openapis_quickstart_stoplight.html to see it.

4. Paste the JSON you copied into the gray area where it says “Paste or write a JSON example
below…” (Remove the empty curly braces {} first, and then paste in your sample.)

5. Click Generate. Stoplight builds the schema for you! Here’s a short video clip showing this:

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/pubapis_openapis_quickstart_stoplight.html] to view the content.

1. Add some more detail about the response elements:

• Click the Description button next to each property and add a description.

• Click the Other Properties button and add an example in the example field.

For the description and examples, expand the orange button below and copy over the
information.

Step 5: Enter the responses and response schema information PDF last generated: August 27, 2023

Documenting REST APIs Page 214

This content contains JavaScript. Go to https://idratherbewriting.com/learnapidoc/
pubapis_openapis_quickstart_stoplight.html to see it.

To view the responses output, you’ll need to click Preview in Stoplight and view the rendered output. See
my example here .

Step 6: Preview, test, and publish the
output
You’ve finished creating your OpenAPI spec, so let’s preview, test, and publish test the documentation:

1. Click the Preview button in the upper-right corner.
2. In the sidebar, select the /weather endpoint.
3. Click the Try It tab near the top of the screen. (See note below — this feature won’t work now

due to CORS restrictions with the API.)
4. Enter your API key for the appid parameter. For details on getting the OpenWeatherMap API

key, see Get an OpenWeatherMap API Key (p. 69). (You can also type out the API key pictured in
the image below. It’s not text because any API keys printed in text get exploited and then
disabled by the vendor.)

5. Enter your zip code for the zip parameter (for example, 98058). You might have to scroll to find
the zip parameter as they are sorted alphabetically. The screen should look like this:

Step 6: Preview, test, and publish the output PDF last generated: August 27, 2023

Documenting REST APIs Page 215

https://idratherbewriting.stoplight.io/docs/openweathermap4/YXBpOjExMTIxODY3-open-weather-map-api

6. If you try to click Send API Request, you will get an error that says “Network Error occurred.”

You get this error because of CORS issues (restrictions from the API and browser with making
requests on a non-authorized domain). This will unfortunately prevent you from getting a
response from the API request. You can, however, copy and paste the cURL request sample to
your terminal and run it, and that should give you a response from the OpenWeatherMap API.
(This assumes you have curl installed. On a Mac, it’s usually available by default.)

7. At this point, you can either publish or export your API documentation. To publish, click the
Publish button.

8. To set the visibility:
• Click on Back to workspace on the top-left to exit Stoplight Studio.
• From your workspace, look at the admin sidebar on the left. Click the Share button and

choose the visibility settings for your documentation (it is set to Public by default). You
can also invite other team members from the share dialog.

Step 6: Preview, test, and publish the output PDF last generated: August 27, 2023

Documenting REST APIs Page 216

https://docs.stoplight.io/docs/platform/d499dc1dd2217-try-it

9. If you don’t want to publish docs through Stoplight, you can export your OpenAPI spec file from
Stoplight. From the workspace home, click the Export button and choose the type of code you
want:

The Bundled References will resolve any $ref code and place them in the components section
so there’s no duplication. The Original will export any $ref code, but not resolve them. The
option you choose depends on what’s supported in the editor you’re bringing it to.

For publishing options outside of Stoplight, you can use your OpenAPI definition with Redoc ,
Swagger UI (p. 218), Spectacle , Docsy , and other tools. See Openapi.tools for a list of
possibilities. You can find a Redoc tutorial in this course here (p. 249).

You can view my OpenWeatherMap API documentation on Stoplight here . If you got stuck in the tutorial
somewhere along the way, you can click Export to download my code and paste it into your code. For
various demos of Stoplight with different API docs, see Stoplight demos (p. 199).

Stoplight has several pricing tiers . The free version supports up to 3 users and 1 project, while the next
level up, Starter, supports up to 3 users and 10 projects.

Step 6: Preview, test, and publish the output PDF last generated: August 27, 2023

Documenting REST APIs Page 217

https://github.com/Redocly/redoc
https://github.com/sourcey/spectacle
https://github.com/google/docsy
https://openapi.tools/#documentation
https://idratherbewriting.stoplight.io/docs/openweathermap4/YXBpOjExMTIxODY3-open-weather-map-api
https://stoplight.io/pricing/

Swagger UI tutorial
Swagger UI provides a display framework that reads an OpenAPI specification document and
generates an interactive documentation website. The following tutorial shows you how to integrate an
OpenAPI specification document into Swagger UI.

For a more conceptual overview of OpenAPI and Swagger, see Introduction to the OpenAPI specification
(p. 181), or see this article I wrote for ISTC a few years ago: Implementing Swagger with API docs (PDF).
For a step-by-step tutorial on creating an OpenAPI specification document, see the OpenAPI tutorial (p.
272). Or for an easier approach using a visual editor to create the OpenAPI spec, see Getting started
tutorial: Using Stoplight Studio to create an OpenAPI specification document (p. 201).

Swagger UI overview
Swagger UI is one of the most popular tools for generating interactive documentation from your OpenAPI
document. Swagger UI generates an interactive API console for users to quickly learn about your API and
experiment with requests. Additionally, Swagger UI (which is an actively managed project with an
Apache 2.0 license) supports the latest version of the OpenAPI spec (3.x) and integrates with other
Swagger tooling.

For definitions of common terms, see Key terms (p. 228) at the end of this article.

Get familiar with Swagger UI through the Petstore demo
To get a better understanding of Swagger UI, let’s explore the Swagger Petstore example . In the
Petstore example, the site is generated using Swagger UI .

The endpoints are grouped as follows:

• pet

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 218

https://github.com/swagger-api/swagger-ui
https://github.com/OAI/OpenAPI-Specification
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/ISTC_Comm1609Web_TJ.pdf
https://github.com/swagger-api/swagger-ui
http://petstore.swagger.io/
https://github.com/swagger-api/swagger-ui
http://petstore.swagger.io/
http://petstore.swagger.io/
http://petstore.swagger.io/#/pet

• store
• user .

Authorize your requests

Before making any requests, you would normally authorize your session by clicking the Authorize button
and completing the information required in the Authorization modal pictured below:

The Petstore example has an OAuth 2.0 security model. However, the authorization code is just for
demonstration purposes. There isn’t any real logic authorizing those requests, so you can simply close the
Authorization modal.

Make a request

Now let’s make a request:

1. Expand the POST Pet endpoint .
2. Click Try it out.

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 219

http://petstore.swagger.io/#/store
http://petstore.swagger.io/#/user
http://petstore.swagger.io/
http://petstore.swagger.io/
http://petstore.swagger.io/#/pet/addPet
http://petstore.swagger.io/#/pet/addPet

After you click Try it out, the example value in the Request Body field becomes editable.

3. In the Example Value field, change the first id value to a random integer, such as 193844 .
Change the second name value to something you’d recognize (your pet’s name).

4. Click Execute.

Executing a sample Petstore request

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 220

http://petstore.swagger.io/
http://petstore.swagger.io/
http://petstore.swagger.io/
http://petstore.swagger.io/

Swagger UI submits the request and shows the curl (p. 80) that was submitted. The Responses
section shows the response (p. 154). (If you select JSON rather than XML in the “Response
content type” drop-down box, the response’s format will be shown in JSON.)

Important: The Petstore is a functioning API, and you have actually created a pet. You now
need to take responsibility for your pet and begin feeding and caring for it! All joking aside,
most users don’t realize they’re playing with real data when they execute responses in an
API (especially when using their own API key). This test data may be something you have to
wipe clean when you transition from exploring and learning about the API to eventually
using the API for production use.

Verify that your pet was created

1. Expand the GET /pet/{petId} endpoint .
2. Click Try it out.
3. Enter the pet ID you used in the previous operation. (If you forgot it, look back in the POST Pet

endpoint to check the value.)
4. Click Execute. You should see your pet’s name returned in the Response section.

Some sample Swagger UI doc sites
Before we get into this Swagger tutorial with another API (other than the Petstore demo), check out a few
Swagger implementations:

• Reverb
• VocaDB
• IBM Watson IoT Admin REST APIs
• The Movie Database API

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 221

http://petstore.swagger.io/
http://petstore.swagger.io/
http://petstore.swagger.io/#/pet/getPetById
http://petstore.swagger.io/#/pet/getPetById
https://reverb.com/swagger#/articles
https://vocadb.net/swagger/index.html
https://docs.internetofthings.ibmcloud.com/apis/swagger/v0002/org-admin.html
https://developers.themoviedb.org/3/account

Some of these sites look the same, but others, such as The Movie Database API and Zomato, have been
integrated seamlessly into the rest of their documentation website.

Looking at the examples, you’ll notice the documentation is short and sweet in a Swagger implementation.
This brevity is because the Swagger display is meant to be an interactive experience where you can try out
calls and see responses — using your own API key to see your own data. It’s the learn-by-doing-and-
seeing-it approach. Also, Swagger UI only covers the reference topics (p. 114) of your documentation. The
conceptual topics (p. 358) are usually covered in a separate guide.

Activity: Create a Swagger UI display with an OpenAPI spec
document
In this activity, you’ll create a Swagger UI display for an OpenAPI specification document. If you’re using
one of the pre-built OpenAPI files, you can see a demo of what we’ll build here: OpenWeatherMap
Swagger UI .

Demo of Swagger UI rendering an OpenWeatherMap OpenAPI specification document

First, you’ll make sure you can view Swagger locally. Then you’ll switch the Petstore OpenAPI document
URL with an OpenWeatherMap OpenAPI document URL.

1. Go to the Swagger UI GitHub project .
2. Click Code, and then click Download ZIP. Download the files to a convenient location on your

computer and extract the files.

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 222

https://idratherbewriting.com/assets/files/swagger/
https://idratherbewriting.com/assets/files/swagger/
https://idratherbewriting.com/assets/files/swagger/index.html
https://idratherbewriting.com/assets/files/swagger/index.html
https://github.com/swagger-api/swagger-ui

The only folder you’ll be working with in the downloaded zip is the dist folder (short for
distribution). Everything else is used only if you’re recompiling the Swagger files, which is beyond
the scope of this tutorial. (If desired, you can drag the dist folder out of the swagger-ui-

master folder so that it stands alone.)

3. In your Chrome browser, press Cmd+O (Mac) or Ctrl+O (Windows), browse to the dist folder,
and select the swagger-initializer.js file,

You should see the Petstore Swagger content. Now you’ll customize the OpenAPI spec file with
another file.

4. Inside your dist folder, open swagger-initializer.js in a text editor such as Sublime Text
.

5. Look for the following code:

url: "https://petstore.swagger.io/v2/swagger.json",

6. Change the url value to an online web URL to your Swagger file. For example:
https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/

openapi_openweathermap.yml . Then save the file.

If the url reference isn’t to an online URL (but rather to a local file), Swagger UI will create an
CORS (cross-origin resource sharing) error. To view Swagger UI with a local OpenAPI file, you
can run a simple Python server locally to simulate a web server (this requires you to install
Python).

7. Refresh the index.html file in your Chrome browser. The content should show the
OpenWeatherMap API content instead of Swagger Petstore content.

When you’re ready to publish your Swagger UI file, you just upload the dist folder (or whatever
you want to call it) to a web server and go to the index.html file. For example, if you called
your directory dist (leaving it unchanged), you would go to http://myserver.com/dist/ .

For more instructions in working with Swagger UI, see the Swagger.io docs .

Activity: View local OpenAPI file in Swagger UI
In order to view a local OpenAPI file (rather than an OpenAPI file hosted on a web server), you’ll need to run
an HTTP server on your computer. This is because CORS (cross-origin resource sharing) security
restrictions in Chrome will block Swagger UI from running. Swagger UI needs to load on a web server to
fulfill the security requirements.

You can create a local web server running on your computer through Python’s SimpleHTTPServer module
. Mac has a system version of Python installed by default, but Windows computers will need to install

Python.

Windows: Run the Python simple HTTP server

1. Download and install Python 3x .

When you install Python, be sure to select the check box that says “Add Python 3.7 to PATH.”
This check box isn’t selected by default. If you don’t select it, your command prompt won’t
recognize the word “python”.

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 223

https://www.sublimetext.com/
https://www.sublimetext.com/
https://docs.python.org/2/library/simplehttpserver.html
https://swagger.io/docs/open-source-tools/swagger-ui/usage/installation/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://www.python.org/downloads/

Add Python 3.7 to PATH

2. After installing Python, close your command prompt and reopen it.
3. In your command prompt, browse to the Swagger UI dist directory.

To browse in the Windows command prompt, type cd <folder name> to move into the folder.
Type cd .. to move up a directory. Type dir to see a list of the current directory’s contents.

If you’re having trouble locating the dist directory in the command prompt, try this trick: type
cd , press the spacebar, and then drag the dist folder directly into the command prompt. The

path will be printed automatically.

4. After you’ve navigated into the dist folder, launch the server:

python3 -m http.server

If this command doesn’t work, try it without the 3:

python -m http.server

The server starts:

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

(If your Command Prompt doesn’t recognize python , then you probably need to add Python to
your PATH. Instructions for doing that are outside the scope of this tutorial.)

5. Go to http://localhost:8000/ in your address bar. This address lets you view the local web
server.

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 224

By default, web servers default to the index.html file in the directory, so it will show the
Swagger UI file automatically. If the browser doesn’t direct to index.html , add it manually:
http://localhost:8000/index.html .

To stop the server, press Ctrl+C in your command prompt. If you closed your Command Prompt
before stopping the service, type ps , find the process ID, then type kill -9 <process ID> .

Mac: Run the Python simple HTTP server

1. In your terminal, browse to the Swagger UI dist directory.

To browse in your terminal, type cd <folder name> to move into the folder. Type cd .. to
move up a directory. Type ls to see a list of the current directory’s contents.

If you’re having trouble locating the dist directory in the command prompt, try this trick: type
cd , press the spacebar, and then drag the dist folder directly into the command prompt. The

path will be printed automatically.

2. Since Mac already has Python, you can just run the following in your terminal to launch simple
server:

python -m http.server

If this command doesn’t work, try it with the 3 in case you already have Python3 installed:

python3 -m http.server

The server starts:

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

3. Go to http://localhost:8000/ in your address bar. This address lets you view the local web
server.

By default, web servers default to the index.html file in the directory, so it will show the
Swagger UI file automatically. If the browser doesn’t direct to index.html , add it manually:
http://localhost:8000/index.html .

To stop the server, press Ctrl+C in your command prompt. If you closed your Command Prompt
before stopping the service, type ps , find the process ID, then type kill -9 <process ID> .

For more details on using the Python simple server, see How do you set up a local testing server? for
more details.

Customize the OpenAPI file

By default, SwaggerUI has the Petstore OpenAPI document configured in the url parameter in the
index.html file. You need to swap in your local file instead.

1. Download the this OpenAPI document (right-click the link and save the YAML file to your
desktop.).

2. Drag your OpenAPI specification file, openapi_openweathermap.yml , into the dist folder.
Your file structure should look as follows:

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 225

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml

├── dist
│ ├── favicon-16x16.png
│ ├── favicon-32x32.png
│ ├── index.html
│ ├── oauth2-redirect.html
│ ├── swagger-ui-bundle.js
│ ├── swagger-ui-bundle.js.map
│ ├── swagger-ui-standalone-preset.js
│ ├── swagger-ui-standalone-preset.js.map
│ ├── swagger-ui.css
│ ├── swagger-ui.css.map
│ ├── swagger-ui.js
│ ├── swagger-ui.js.map
│ ├── swagger30.yml
│ └── openapi_openweathermap.yml

3. Inside your dist folder, open swagger-initializer.js in a text editor such as Sublime Text
.

4. Look for the following code:

url: "http://petstore.swagger.io/v2/swagger.json",

5. Change the url value from http://petstore.swagger.io/v2/swagger.json to a relative
path to your YAML file, and then save the file. For example:

url: "openapi_openweathermap.yml",

6. View the index.html file locally in your browser using the Python simple server. For example,
go to http://0.0.0.0:8000/ or http://0.0.0.0:8000/index.html .

If you go to the file path, such as file:///Users/tomjoht/Downloads/dist/index.html , you
might see a message that says “Failed to load API definition” note in the JavaScript Console that
says “URL scheme must be “http” or “https” for CORS request.” The SimpleServer simulates this
http or https.

7. To stop the Python simpler server, press Ctrl+C in your terminal or command prompt.

Configuring Swagger UI parameters
Swagger UI provides various configuration parameters (unrelated to the OpenAPI parameters (p. 293))
that you can use to customize the interactive display. For example, you can set whether each endpoint is
expanded or collapsed, how tags and operations are sorted, whether to show request headers in the
response, whether to include the Models section after the list of endpoints, and more.

We won’t get too much into the details of these configuration parameters in the tutorial. I just want to call
attention to these parameters here for awareness.

If you look at the source of my Swagger UI demo (go to View > Source), you’ll see the parameters listed
in the // Build a system section:

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 226

https://www.sublimetext.com/
https://www.sublimetext.com/
https://github.com/swagger-api/swagger-ui/blob/master/docs/usage/configuration.md
https://idratherbewriting.com/assets/files/swagger/

// Build a system
const ui = SwaggerUIBundle({

url: "openapi_openweathermap.yml",
dom_id: '#swagger-ui',
defaultModelsExpandDepth: -1,
deepLinking: true,
presets: [

SwaggerUIBundle.presets.apis,
SwaggerUIStandalonePreset

],
plugins: [

SwaggerUIBundle.plugins.DownloadUrl
],
layout: "StandaloneLayout"

})

The parameters there (e.g., deepLinking , dom_id , etc.) are defaults. However, I’ve added
defaultModelsExpandDepth: -1 to hide the “Models” section at the bottom of the Swagger UI display

(because I think that section is unnecessary).

You can also learn about the Swagger UI configuration parameters in the Swagger documentation .

Challenges with Swagger UI
As you explore Swagger UI, you may notice a few limitations:

• There’s not much room to describe in detail the workings of the endpoints. If you have several
paragraphs of details and gotchas about a parameter, it’s best to link out from the description to
another page in your docs. The OpenAPI spec provides a way to link to external documentation
in both the paths object (p. 291), the info object (p. 285), and the externalDocs object (p. 337)

• The Swagger UI looks mostly the same for each API. You can customize Swagger UI with your
own branding, but it will require some more in-depth UX skills. It is, however, relatively easy to
change the color and image in the top navigation bar.

• The Swagger UI might be a separate site from your other documentation. This separate output
means that in your regular docs, you’ll probably need to link to Swagger as the reference for your
endpoints. You don’t want to duplicate your parameter descriptions and other details in two
different sites. See Integrating Swagger UI with the rest of your docs (p. 241) for strategies on
unifying your reference docs and user guide.

Troubleshooting issues with Swagger UI
When you’re setting up Swagger UI, you might run into some issues. The following issues are the most
common:

CORS issues:

If you have security correctly configured, but the requests are rejected, it could be due to a CORS (cross-
origin resource sharing) issue. CORS is a security measure that websites implement to make sure other
scripts and processes cannot take their content through requests from remote servers. See CORS Support

in Swagger UI’s documentation for details.

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 227

https://swagger.io/docs/open-source-tools/swagger-ui/usage/configuration/
https://swagger.io/docs/swagger-tools/#customization-36
https://github.com/swagger-api/swagger-ui#cors-support
https://github.com/swagger-api/swagger-ui#cors-support

If the requests aren’t working, open your browser’s JavaScript console when you make the request and
see if the error relates to cross-origin requests. If this is the error, ask your developers to enable CORS on
the endpoints. (To open the JavaScript Console, on Chrome on a Mac, go to View > Developer >
Javascript Console; on Windows, click the menu button (vertical ellipses) and go to More tools >
Developer tools. Then click the Console tab.)

Host URL issues:

The host for your test server might be another reason that requests are rejected. Some APIs (like Aeris
Weather) require you to create an App ID that is based on the host URL where you’ll be executing requests.
If the host URL you registered is http://mysite.com , but you’re submitting the test from
https://editor.swagger.io/ , the API server will reject the requests.

If you need help, the Swagger Google Group is a helpful resource for troubleshooting.

Embedding Swagger UI within an existing site
In addition to publishing your Swagger UI output as a standalone site, you can also embed the Swagger file
within an existing site. See the following:

• Standalone Swagger UI Demo
• Embedded Swagger UI Demo (p. 240)

Since the Swagger UI site is responsive, it resizes well to fit into most any space. Even so, embedding
Swagger into an existing site still looks like a website within a website.

Key terms
Swagger

Refers to API tooling related to the OpenAPI spec. Some of these tools include Swagger Editor ,
Swagger UI , Swagger Codegen , SwaggerHub , and others . These tools are managed by
Smartbear . For more tools, see Swagger Tools . “Swagger” was the original name of the
OpenAPI spec, but the name was later changed to OpenAPI to reinforce the open, non-proprietary
nature of the standard. People sometimes refer to both names interchangeably (especially on older
web pages), but “OpenAPI” is how the spec should be referred to. For more on naming conventions
between OpenAPI and Swagger, see What Is the Difference Between Swagger and OpenAPI? .

OpenAPI

The official name for the OpenAPI specification. The OpenAPI specification provides a set of
properties that can be used to describe your REST API. When valid, the specification document can
be used to create interactive documentation, generate client SDKs, run unit tests, and more. You can
read the specification details on GitHub at https://github.com/OAI/OpenAPI-Specification . Under
the Open API Initiative with the Linux Foundation, the OpenAPI specification aims to be vendor
neutral (many companies steer its development , not just one).

Swagger Editor

An online editor that validates your OpenAPI document against the rules of the OpenAPI
specification. The Swagger Editor will flag errors and give you formatting tips. See Swagger Editor .

Swagger UI

An open-source web framework (on GitHub) that parses an OpenAPI specification document and

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 228

https://groups.google.com/forum/#!forum/swagger-swaggersocket
https://idratherbewriting.com/assets/files/swagger/
https://swagger.io/swagger-editor/
https://swagger.io/swagger-ui/
https://swagger.io/swagger-codegen/
https://app.swaggerhub.com/home
https://swagger.io/tools/
https://smartbear.com/
https://swagger.io/tools/
https://github.com/OAI/OpenAPI-Specification/
https://swagger.io/difference-between-swagger-and-openapi/
https://github.com/OAI/OpenAPI-Specification
https://www.openapis.org/membership/members
http://editor.swagger.io/#/
https://github.com/swagger-api/swagger-ui

generates an interactive documentation website. Swagger UI is the tool that transforms your spec
into the Petstore-like site .

Swagger Codegen

Generates client SDK code for a lot of different platforms (such as Java, JavaScript, Scala, Python,
PHP, Ruby, Scala, and more). The client SDK code helps developers integrate your API on a specific
platform and provides for more robust implementations that might include more scaling, threading,
and other necessary code. In general, SDKs are toolkits for implementing the requests made with an
API. Swagger Codegen generates the client SDKs in nearly every programming language. See
Swagger Codegen for more information. See also SDKs (p. 480).

For more terms, see the Glossary (p. 55).

Swagger UI tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 229

http://petstore.swagger.io/
https://swagger.io/swagger-codegen/

SwaggerHub introduction and tutorial
Previously, I explored using the open-source Swagger UI project (p. 218) as a way to render your OpenAPI
specification document (p. 272). The same company that offers the free, open-source version of Swagger
Editor and Swagger UI (Smartbear) also offers a premium version with more robust features. This premium
version of Swagger Editor is called SwaggerHub . You can see a comparison of features between the
open source and premium versions here .

You can see a demo of the sample OpenWeatherMap API on SwaggerHub here .

Note that Smartbear is one of the sponsors of my site.

Advantages of SwaggerHub
While the open-source Swagger Editor coupled with Swagger UI works, you’ll run into several problems:

• It’s challenging to collaborate with other project members on the spec.
• It’s difficult to gather feedback from reviewers about specific parts of the spec.
• You can’t automatically provide the API in the myriad code frameworks your users might want it

in.

When you’re working on REST API documentation, you need tools specifically designed for REST APIs —
tools that allow you to create, share, collaborate, version, test, and publish the documentation in ways that
don’t require extensive customization or time.

There’s a point at which experimenting with the free Swagger UI tooling hits a wall, and you’ll need to find
another way to move to the next level. This next level is where SwaggerHub from Smartbear comes
in. SwaggerHub provides a complete solution for designing, managing, and publishing documentation for
your API in ways that will simplify your life as an API technical writer.

More than 15,000 software teams across the globe use SwaggerHub. As the OpenAPI spec becomes more
of an industry standard for API documentation, SwaggerHub’s swagger-specific tooling can be essential.

SwaggerHub Intro and Dashboard
Smartbear is the company that maintains and develops the open source Swagger tooling (Swagger
Editor , Swagger UI , Swagger Codegen , and others.) They also formed the OpenAPI Initiative ,
which leads the evolution of the Swagger (OpenAPI) specification .

Smartbear developed SwaggerHub as a way to help teams collaborate around the OpenAPI spec. Many of
the client and server SDKs can be auto-generated from SwaggerHub, and there are a host of additional
features you can leverage as you design, test, and publish your API.

To get started with SwaggerHub, go to swaggerhub.com and create an account or sign in with your
GitHub credentials. After signing in, you see the SwaggerHub dashboard.

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 230

https://app.swaggerhub.com/
https://swaggerhub.com/swagger-open-source-comparison/
https://app.swaggerhub.com/apis-docs/IdRatherBeWriting/open-weather_map_api/
https://swaggerhub.com/
https://smartbear.com/
https://smartbear.com/
https://swagger.io/swagger-editor/
https://swagger.io/swagger-editor/
https://swagger.io/swagger-ui/
https://swagger.io/swagger-codegen/
https://www.openapis.org/
https://github.com/OAI/OpenAPI-Specification/
https://swaggerhub.com/

The dashboard shows a list of the APIs you’ve created. In this example, you see the OpenWeatherMap API
(p. 65) that I’ve been using throughout this course.

SwaggerHub Editor
SwaggerHub contains the same Swagger Editor that you can access online. This editor provides you
with real-time validation as you work on your API spec. However, unlike the standalone Swagger Editor,
with SwaggerHub’s Swagger Editor, you can toggle between several modes:

• Hide Navigation
• Hide Editor and Navigation
• Hide UI Docs

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 231

https://app.swaggerhub.com/home
https://app.swaggerhub.com/home
https://swagger.io/swagger-editor/

SwaggerHub's editor gives you more flexible viewing options

Most importantly, as you’re working in the Editor, SwaggerHub allows you to save your work. With the free
Swagger Editor, your content is kept in the browser cache, with no ability to save the file in the cloud.
When you clear your cache, your content is gone. As a result, if you use the standalone Swagger Editor,
you have to regularly copy the content from the Swagger Editor into a file on your own computer each time
you finish.

With SwaggerHub, you can save your specification document directly on SwaggerHub’s servers, or you
can reference and store it in an external source such as GitHub.

Versions
SwaggerHub not only allows you to save your OpenAPI spec but also save different versions of your spec.
As a result, you can experiment with new content by adding a new version. You can return to any version
you want, and you can also publish or unpublish any version.

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 232

Versioning options for your OpenAPI file

When you publish a version, the published version becomes Read Only. If you want to make changes to a
published version (rather than creating a new version), you can unpublish the version and make edits to it.

You can link to specific versions of your documentation, or you can use a more general link path that will
automatically forward to the latest version. Here’s a link to the OpenWeatherMap API published on
SwaggerHub that uses version 2.5.1 of the documentation: https://app.swaggerhub.com/apis/
IdRatherBeWriting/open-weather_map_api/2.5.1/ . To link to a specific version, include the version
number in the URL. In contrast, this more general link (which omits a version number) automatically
forwards to the latest version (which is 2.5.2): https://app.swaggerhub.com/apis/IdRatherBeWriting/open-
weather_map_api/ .

Versioning is helpful when you’re collaborating on the spec with other team members. For example,
suppose the original version was drafted by an engineer, and you want to make major edits. Rather than
directly overwriting the content (or making a backup copy of an offline file), you can create a new version
and then take more ownership to overhaul that version with your own updates, without fear that the
engineer will react negatively about overwritten/lost content.

When you publish your Swagger documentation on SwaggerHub, Swagger’s base URL
(app.swaggerhub.com) remains in the URL. Although this base URL isn’t customizable, you can add your
company logo and visual branding as desired.

Inline commenting/review
Key to the review process is the ability for team members to comment on the spec inline, similar to Google
Docs and its margin annotations. When you’re working in SwaggerHub’s editor, a small plus sign appears
to the left of every line. Click the plus button to add a comment inline at that point.

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 233

https://app.swaggerhub.com/apis/IdRatherBeWriting/open-weather_map_api/2.5.1/
https://app.swaggerhub.com/apis/IdRatherBeWriting/open-weather_map_api/2.5.1/
https://app.swaggerhub.com/apis/IdRatherBeWriting/open-weather_map_api/
https://app.swaggerhub.com/apis/IdRatherBeWriting/open-weather_map_api/

Inline commenting and reply features on SwaggerHub

When you click the plus sign, a comment pane appears on the right where you can elaborate on
comments, and where others can reply. Users can edit, delete, or resolve the comments. This commenting
feature helps facilitate the review process in a way that tightly integrates with your content. You can also
collapse or show the comments pane as desired.

Few tech comm tools support inline annotations like this, and it wouldn’t be possible without a database to
store the comments, along with profiles associated with the reviewers. This feature would be tedious to
implement on your own, as it would require both a database and an authentication mechanism. This is all
included in SwaggerHub.

Auto-Generate Client SDKs
Another benefit to SwaggerHub is the ability to auto-generate the needed client or server code from your
specification. Client SDKs provide the tooling needed to make API requests in specific programming
languages (like Java or Ruby).

In the upper-right corner, click the down-arrow and select Client or Server. Users have access to generate
client and server SDKs (p. 480) in more than 30 formats.

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 234

Client and server SDK export capabilities

For example, suppose a user is implementing your REST API in a Java application. The user can choose to
download the Java client SDK for extensive code that shows a Java implementation of your API. Other
options include Ruby, Android, Go, CSharp, JavaScript, Python, Scala, PHP, Swift, and many more.

Some API documentation sites look impressive for showing implementations in various programming
languages. SwaggerHub takes those programming languages and multiplies them tenfold to provide every
possible output a user could want.

The output includes more than a simple code sample showing how to call a REST endpoint in that
language. The output includes a whole SDK that includes the various nuts and bolts of an implementation
in that language. (For more information on SDKs, see SDKs (p. 480).)

Providing this code speeds implementation for developers and helps you scale your language-agnostic
REST API to a greater variety of platforms and users, reducing the friction in adoption.

Export to HTML
Among SwaggerHub’s many options for generating client and SDK files is an HTML option. You can export
your OpenAPI spec as a static HTML file in one of two styles: HTML or HTML2.

You can see a demo export of the OpenWeatherAPI API here: HTML or HTML2 . Both exports
generate all the content into an index.html file.

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 235

https://idratherbewriting.com/assets/files/swaggerhub_htmloutput/index.html
https://idratherbewriting.com/assets/files/swaggerhub_html2output/index.html

The HTML export is a more basic output than HTML2. You could potentially incorporate the HTML output
into your other documentation, such as what Cherryleaf did in importing Swagger into Flare . (You might
have to strip away some of the code and provide styles for the various documentation elements, and there
wouldn’t be any interactivity for users to try it out, but it could be done.) In another part of the course, I
expand on ways to integrate Swagger UI’s output with the rest of your docs (p. 241).

The HTML2 export is more intended to stand on its own, as it has a fixed left sidebar to navigate the
endpoints and navtabs showing six different code samples:

You can see a demo export of the OpenWeatherAPI API here: HTML or HTML2 . Both exports
generate all the content into an index.html file.

Both outputs would need a healthy dose of custom styling to be usable.

Mocking Servers
Another cool feature of SwaggerHub is the ability to create mock API servers . Suppose you have an API
in which you don’t want users to generate real requests. (Maybe it’s an ordering system where users might
be ordering products through the API, or you don’t have test accounts/systems). Even so, you can still
simulate responses that let users get a sense of how your API works.

Assuming you have example responses in your API spec, you can set your API to “auto-mock.” When a
user tries out a request, SwaggerHub will return the example response from your spec. The response won’t
contain the custom parameters the user entered in the UI but will instead return the example responses
coded into your spec as if returned from a server.

Providing an auto-mock for your API solves the problem of potentially complicating user data by having
users interact with their real API keys and data. In many cases, you don’t want users junking up their data
with tests and other experiments. At the same time, you also want to simulate the API response.

Simulating the API can be especially useful for testing your API with beta users. One reason many people
code their API with the spec before writing any lines of code (following a spec-first philosophy such as that
described by Michael Stowe (p. 185)) is to avoid coding an API with endpoints and responses that users
don’t want.

Using the mock server approach, SwaggerHub not only provides documentation but also acts as a beta-
testing tool to get the design of your API right before sinking thousands of hours of time into actual coding.
You can enable auto-mocking for different versions of your API, creating variants and testing each of the
variants.

To set up a mocking server in SwaggerHub, click the plug icon and select to add a new integration. Select
the API Auto Mocking service and complete the configuration details. Make sure you have examples for
each of the endpoint responses in your spec. See API Auto Mocking for more details.

Content Re-use (Domains)
Another feature exclusively available in SwaggerHub is the concept of domains. Domains are re-useable
code snippets that you can leverage to avoid duplication in your spec.

When you create definitions for your requests and responses, you may find yourself re-using the same
code over and over. Rather than duplicating this code, you can save it as a domain. When you want to re-
use the code, you select this domain.

Using the domain minimizes duplicate content and enables you to be more consistent and efficient. You
can read more in Domains .

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 236

https://www.cherryleaf.com/blog/2017/07/example-project-api-documentation-portal-using-madcap-flare/
https://idratherbewriting.com/assets/files/swaggerhub_htmloutput/index.html
https://idratherbewriting.com/assets/files/swaggerhub_html2output/index.html
https://app.swaggerhub.com/help/integrations/api-auto-mocking
https://app.swaggerhub.com/help/integrations/api-auto-mocking
https://app.swaggerhub.com/help/domains/about-domains

Organizations and projects
The collaborative aspect of SwaggerHub is the most common reason people move from the open source
tools to SwaggerHub. You might have a lot of different engineers working on a variety of APIs in
SwaggerHub. To organize the work, you can group APIs into organizations , and then assign members to
the appropriate organization. When that member logs in to SwaggerHub, he or she will see only the
organizations to which he or she has access.

Additionally, within an organization, you can further group APIs into different projects. This way teams
working in the same organization but on different projects can have visibility into other APIs.

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 237

https://app.swaggerhub.com/help/organizations/index

Organization of projects by team

This aspect of organizations and projects may not seem essential if you have just one or two APIs, but
consider how you’ll scale and grow as you have dozens of APIs and multiple teams. In these more robust
scenarios, the organization and project features become essential.

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 238

Expanding the tech writer’s role with APIs
Tech writers are positioned to be power players in the spec-first philosophy with OpenAPI design. By
becoming adept at coding the OpenAPI spec and familiar with robust collaborative tools like SwaggerHub,
tech writers can lead engineering teams not only through the creation and refinement of the API
documentation but also pave the way for beta testing, spec review, client/server SDK generation, and
more.

Designing a fully-featured, highly functioning OpenAPI spec is at the heart of this endeavor. Few engineers
are familiar with creating these specs, and technical writers who are skilled at both creating the spec and
setting up Swagger tooling can fill critical roles on API teams.

Great tools aren’t free. SwaggerHub does cost money , but this is a good thing since free tools are
frequently abandoned, poorly maintained, and lack documentation and support. By using a paid tool from a
robust API company (the same company that maintains the Swagger tools and sponsors the OpenAPI
specification), you can plug into the infrastructure you need to scale your API documentation efforts.

To read more about SwaggerHub, check out my blog post SwaggerHub: A collaborative platform for
working on OpenAPI/Swagger specification files, and more .

Related resources
• Getting Started With SwaggerHub

SwaggerHub introduction and tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 239

https://swaggerhub.com/pricing/
https://idratherbewriting.com17/10/05/swaggerhub-collaborative-platform-for-swagger-openapi-projects
https://idratherbewriting.com17/10/05/swaggerhub-collaborative-platform-for-swagger-openapi-projects
https://app.swaggerhub.com/help/tutorials/getting-started?_ga=2.107820612.739591889.1574123176-421060100.1574123176

Swagger UI Demo
When you use Swagger UI, it's not necessary for the Swagger UI output to be a standalone site . You
can also embed Swagger into an existing web page. The following is an embedded instance of the
Swagger UI showing the OpenAPI file for the OpenWeatherMapAPI .

This page can only be viewed online through a browser on your computer. Go to
https://idratherbewriting.com/learnapidoc/pubapis_swagger_demo.html to view it.

While the Swagger UI display is designed to be responsive, the collapse/expand sections in the Model
views still have overflow issues in responsive views, so you might run into issues with embedding. For
more discussion on how to integrate Swagger with the rest of your docs, see Integrating Swagger UI with
the rest of your docs (p. 241).

Swagger UI Demo PDF last generated: August 27, 2023

Documenting REST APIs Page 240

https://idratherbewriting.com/assets/files/swagger
https://github.com/swagger-api/swagger-ui
https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml

Integrating Swagger UI with the rest of
your docs
Whenever discussions about Swagger and other REST API specifications take place, technical writers
invariably ask how they can integrate the Swagger output with the rest of their documentation. This
question dominates tech writer discussions perhaps more than any other when it comes to Swagger.

Background to the single source of truth idea
One of the core principles of tech writing is to generate content from a single source rather than copying
and pasting duplicate information. When you start pushing your API documentation into another source file
— in this case, a YAML or JSON file that is included in a Swagger UI file set, you end up splitting your
single source of truth into multiple sources.

For example, you might have defined your endpoints and parameters in your regular documentation, and
now the OpenAPI spec asks you to provide the same endpoints and descriptions in the spec. Do you copy
and paste the same parameters and other information across both sites? Do you somehow generate the
descriptions from the same source? In this topic, I tackle this conundrum.

Option 1: Put all the info into your spec through expand/collapse
sections
You can try to squeeze all your documentation into the specification document itself. This only works if you
have a relatively small amount of conceptual information to accompany your API (p. 358). You may be
surprised about how much information you can actually include in the spec. Any description element
(not just the description property in the info object) allows you to use Markdown and HTML.

For example, here’s the info object in the OpenAPI spec where a description appears. (If desired, you
can type a pipe > to break the content onto the next line and then indent two spaces. You can actually
add a lot of content in description elements.)

info:
title: OpenWeatherMap API
description: 'Get the current weather, daily forecast for 16 days, and a t

hree-hour-interval forecast for 5 days for your city. Helpful stats, graphic
s, and this day in history charts are available for your reference. Interact
ive maps show precipitation, clouds, pressure, wind around your location. Da
ta is available in JSON, XML, or HTML format. **Note**: This sample Swagger
file covers the `weather` endpoint only from the OpenWeatherMap API.
<b
r/> **Tip**: We recommend that you call the API by city ID (using the `id` p
arameter) to get unambiguous results for your city.'

version: '2.5'

With one Swagger API project I worked on, I referenced Bootstrap CSS and JS in the header of the
index.html of the Swagger UI project, and then incorporated Bootstrap alerts and expand/collapse

buttons in this description element. Here’s an example:

Integrating Swagger UI with the rest of your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 241

info:
description: >

ACME offers a lot of configuration options...
<div class="alert alert-success" role="alert"><i class="fa fa-info-circl

e"></i> Tip: See the resources available in the portal for more detai
l.</div>

<div class="alert alert-warning" role="alert"><i class="fa fa-info-circl
e"></i> Note: The network includes a firewall that protects your acc
ess to the resources...</div>

<div class="container">
<div class="apiConfigDetails">
<button type="button" class="btn btn-warning" data-toggle="collapse" dat

a-target="#demo">
 See API Configur

ation Details
</button>
<div id="demo" class="collapse">

<h2>Identifiers Allowed</h2>

<p>Based on this configuration, ACME will accept any of the following id
entifiers in requests.</p>

<table class="table">
<thead>
<tr>
<th>Request Codes</th>
<th>Data Type</th>
<th>Comparison Method</th>
</tr>
</thead>
<tbody>
<tr>
...

(Unfortunately, I can’t point to the output as this project was behind a firewall.)

The result was to compress much of the information into a single button that, when clicked, expanded with
more details. By incorporating expand/collapse sections from Bootstrap, you can add a ton of information
in this description object. (For the JavaScript you need, add script references in the header or footer
of the same index.html file where you referenced your openapi.yaml file.)

Additionally, you can include modals that appear when clicked. Modals are dialog windows that dim the
background outside the dialog window. Again, you can include all the JavaScript you want in the
index.html file of the Swagger UI project.

If you incorporate Bootstrap, you will likely need to restrict the namespace so that it doesn’t affect other
elements in the Swagger UI display. (See How to Isolate Bootstrap CSS to Avoid Conflicts for details on
how to do this.)

Integrating Swagger UI with the rest of your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 242

https://formden.com/blog/isolate-bootstrap

Overall, if your API docs are relatively small, you can try putting all your information in the spec first. If you
have a complex API or just an API that has a lot of extra information not relevant to the spec, look for
alternative approaches. But try to fit it into the spec first. This keeps your information in one space.

There are many benefits to using a spec that you will miss out on if you choose another approach. When
you store your information in a spec, many other tools can parse the spec and generate interactive
displays. Putting your content in the OpenAPI spec format allows you to separate your content from the
presentation layer, instantly taking advantage of any new API tooling or platform that can parse the spec.

Option 2: Embed Swagger UI in your docs
Another solution is to embed Swagger UI in your regular docs. You can see an example of this here:
Swagger UI Demo (p. 240). It’s pretty easy to embed Swagger into an HTML page — just copy the code
from the index.html file from the dist folder into your doc page (more or less). The latest version of
Swagger has a more responsive, liquid design. It almost looks designed to be embedded into another site.

However, the effect is still kind of clunky and is obvious that the content is embedded from some other
document generator. It’s not a seamlessly branded experience. Here an example where Swagger is
embedded directly in the docs: App Submission API

Embedding Swagger into your existing doc site

Another example of the same embedding technique is here: Moments Developer Guide

Notice that I’ve included a “Nav” toggle at the top of the embedded Swagger content. This little JS trick
will collapse your sidebar, giving your embedded Swagger display full width (which is usually needed for
readability). This Nav toggle isn’t part of the Swagger UI display but is something that’s easy to add.

To include a Nav toggle, first make sure you’re including Font Awesome and jQuery in your site. Then
add the Nav icon with this class at the top of your page:

Integrating Swagger UI with the rest of your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 243

https://developer.amazon.com/docs/app-submission-api/appsubapi-endpoints.html
https://developer.amazon.com/docs/app-submission-api/appsubapi-endpoints.html
https://developer.amazon.com/docs/app-submission-api/appsubapi-endpoints.html
https://developer.amazon.com/docs/moments/rewards-api-endpoints.html
https://fontawesome.com/
https://jquery.com/

<p><i id="tg-sb-icon" class="fa fa-toggle-o
n"></i> Nav</p>

Now add a toggleClass script that will toggle your sidebar. You’ll need to customize this a bit with the
classes used in your own site. My script looks like this:

<script>
$(document).ready(function() {

$("#tg-sb-link").click(function() {
$("#sidebar").toggleClass('navToggle');
$(".container").toggleClass('expand');
$("#tg-sb-icon").toggleClass('fa-toggle-on');
$("#tg-sb-icon").toggleClass('fa-toggle-off');

});
});

</script>

Then embed this style:

<style>
.navToggle {

display: none !important;
}
.expand {

width: 100%;
margin-left: 10%;
margin-right: 10%;

}
#tg-sb-link:hover, #tg-sb-link:active, #tg-sb-link {

text-decoration: none !important;
}
</style>

Here’s how this script works. When users click the element ID tg-sb-link , the anonymous function fires
above. The toggleClass looks for the sidebar element and injects a class called navToggle into it.
The embedded styles define navToggle with a display: none property. This makes your sidebar

element disappear. (If your sidebar has some other class, customize sidebar with the name of your
website’s sidebar element.)

Continuing on with the script, the toggleClass function looks for the container class and injects an
element called expand . The embedded styles for this element expand the main container to a larger
width. (Again, you’ll need to customize container to use the main container element for your website.)
Hopefully you get the gist of how this toggleClass jQuery function is working. When you click the Nav
button again, the same function removes the injected classes. For more details, check out the source code
of the Swagger UI Demo (p. 240) on GitHub here .

Besides the clunkiness of the “site-within-a-site” look, an additional problem with embedding is that some
of the Models aren’t constrained within their container, so they expand beyond their limits. Try expanding
the Model section in the demo (p. 240) — you’ll see what I’m talking about.

Integrating Swagger UI with the rest of your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 244

https://api.jquery.com/toggleClass/
https://api.jquery.com/toggleClass/
https://github.com/tomjoht/tomjoht.github.io/blob/main/_docs/openapi_spec_and_generated_ref_docs/pubapis_swagger_demo.md

Expanding Models -- if you have multiple levels of hierarchy, this section will not expand well when
constrained within a fixed space

I’m not sure if some ninja styling prowess could simply overcome this uncontained behavior. Probably, but
I’m not a CSS ninja, and I haven’t fiddled around with this enough to say that it can actually be done. I did
end up adding some custom styles to make some adjustments to Swagger UI in various places. If you view
the source of the demo page (p. 240) and check out the second <style> block, you can see the styles I
added.

With the embedded option, you can still use the official Swagger UI tooling to read the spec, and you can
include the Swagger UI output in your main documentation. Swagger UI reads the latest version of the
OpenAPI specification (p. 272), which is something many tools don’t yet support. Additionally, Swagger UI
has the familiar interface that API developers are probably already familiar with. However, if the styling
overflows in ugly ways in your Model sections, you might want to avoid the embedded approach.

Option 3: Parse the OpenAPI specification document
If you’re using a tool such as Jekyll, which incorporates a scripting language called Liquid, you can use
Jekyll’s instance of Liquid to read the OpenAPI specification document (which is, after all, just YAML
syntax). For example, you could use a for loop to iterate through the OpenAPI spec values. Here’s a
code sample. In this example, the swagger.yml file is stored inside Jekyll’s _data directory.

Integrating Swagger UI with the rest of your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 245

https://learn.cloudcannon.com/jekyll/looping-in-liquid/
https://learn.cloudcannon.com/jekyll/looping-in-liquid/

<table>
<thead>
<tr><th>Name</th><th>Type</th><th>Description</th><th>Required?</th></t

r>
</thead>
{% for parameter in site.data.swagger.paths.get.parameters %}

{% if parameter.in == "query" %}
<tr>

<td><code>{{ parameter.name }}</code></td>
<td><code>{{ parameter.type }}</code></td>
<td>
{% assign found = false %}
{% for param in site.data.swagger.paths.get.parameters %}

{% if parameter.name == param.name %}
{{ param.description }}
{% assign found = true %}

{% endif %}
{% endfor %}
{% if found == false %}

** New parameter **
{% endif %}
</td>
<td><code>{{ parameter.required }}</code></td>

</tr>
{% endif %}

{% endfor %}
</table>

Special thanks to Peter Henderson for sharing this technique and the code. With this approach, you may
have to figure out the right Liquid syntax to iterate through your OpenAPI spec, and it may take a while. But
this might work if you’re looking for tight integration into your authoring tool. (Note that many static site
generators (p. 591) can parse YAML, not just Jekyll.)

For more information on this approach, see Peter’s write-up at Integrating Autogenerated Content Into
Your Documentation Site Using Swagger and Jekyll and this sample GitHub code .

Option 4: Store content in YAML files that are sourced to both
outputs
Another approach to integrating Swagger’s output with your other docs might be to store your descriptions
and other info in YAML data files in your project, and then include the data references in your specification
document. I’m most familiar with Jekyll, so I’ll describe the process using Jekyll (but similar techniques
exist for other static site generators).

In Jekyll, you can store content in YAML files in your _data folder. For example, suppose you have a file
called parameters.yml inside _data with the following content:

acme_parameter: >
This is a description of my parameter ...

You can then include that reference using tags like this:

Integrating Swagger UI with the rest of your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 246

https://www.enigma.com/blog/integrating-autogenerated-content-into-your-documentation-site-using-swagger-and-jekyll
https://www.enigma.com/blog/integrating-autogenerated-content-into-your-documentation-site-using-swagger-and-jekyll
https://github.com/peterhend/documentation-theme-jekyll

{{site.data.parameters.acme_parameter}}

In your Jekyll project, you would include this reference your spec like this:

info:
description: >

{{site.data.parameters.acme_parameter}}

You would then take the output from Jekyll that contains the content pushed into each spec property. In
this model, you’re generating the OpenAPI spec from your Jekyll project.

I’ve tried this approach. It’s not a bad way to go, but it’s hard to ensure that your OpenAPI spec remains
valid as you write content. When you have references like this in your spec content
({{site.data.parameters.acme_parameter}}), you can’t benefit from the real-time spec validation that
you get when using the Swagger Editor .

Most likely, you’d need to include the entire Swagger UI project in your Jekyll site. At the top of your
Swagger.yml file, add frontmatter dashes with layout: null to ensure Jekyll processes the file:

layout: null

In your jekyll serve command, configure the destination to build your output into an htdocs

folder where you have a simple local HTTP server running. With each build, check the display to see
whether it’s valid or not.

By storing the values in data files, you can then include them elsewhere in your doc as well. For example,
you might have a parameters section in your doc where you would also include the
{{site.data.parameters.acme_parameter}} description.

Again, although I experimented with this approach, I grew frustrated at not being able to validate my spec
immediately. It was more challenging to track down the exact culprits behind my validation errors, and I
eventually gave up.

Option 5: Use a tool that imports Swagger and allows additional
docs
Another approach is to use a tool like Readme.com or Stoplight that allows you to both import your
OpenAPI spec and also add your own separate documentation pages. Readme provides one of the most
attractive outputs and is fully inclusive of almost every documentation feature you could want or need. I
explore Readme with more depth in Hybrid documentation systems (p. 609). Readme.com requires third-
party hosting, but some other doc tools allow you to incorporate Swagger as well. I explored Stoplight in
depth in a previous topic: Stoplight — visual modeling tools for creating your OpenAPI spec (p. 195).

Sites like Apiary and Mulesoft also let you import your OpenAPI spec while also adding custom
documentation pages. These sites offer full-service management for APIs, so if your engineers are already
using one of these platforms, it could make sense to store your docs there too.

Cherryleaf has an interesting post called Example of API documentation portal using MadCap Flare . In
the post, Ellis Pratt shows a proof of concept with a Flare project that reads an OpenAPI spec and
generates static HTML content from it. If you’re using Flare, it might be worth exploring.

Integrating Swagger UI with the rest of your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 247

http://swagger.io/swagger-editor/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
http://readme.com/
https://stoplight.io/
https://apiary.io/
https://www.mulesoft.com/
https://www.cherryleaf.com/blog/2017/06/example-api-documentation-portal-using-madcap-flare/

Option 6: Change perspectives — Having two sites isn’t so bad
Finally, ask yourself, what’s so bad about having two different sites? One site for your reference
information, and another for your conceptual documentation (p. 358). Programmers might find the
Swagger-based reference information convenient because it distills and simplifies the body of information.
Rather than having a massive site to navigate, the Swagger output provides the core reference information
they need. When they want conceptual information, they can consult the accompanying guide. Think of the
Swagger UI output as your API’s quick reference guide (p. 412).

The truth is that programmers have been operating this way for years with Javadocs (p. 707), Doxygen (p.
723), and other document-generator tools that generate documentation from Java, C++, C#, Python,
Ruby, and other programming sources. Auto-generating the reference information from source code into a
standalone output is extremely common and wouldn’t be viewed as a fragmented information experience
by programmers.

So in the end, instead of feeling that having two outputs is fragmented or disjointed, reframe your
perspective. Your Swagger output provides a clear go-to source for reference information about the
endpoints, parameters, requests, and responses. The rest of your docs provide tutorials and other
conceptual information. Your two outputs just became an organizational strategy for your documentation.

Next steps
Now that you’ve had your head buried in API reference documentation, it’s time to dive into testing. As you
work with API endpoints and other code, you’ll need to test these endpoints yourself, both to gather and
verify the information in your documentation. Testing isn’t always straightforward, so I devote an entire
section to this topic. Continue to Overview of testing your docs (p. 343).

Integrating Swagger UI with the rest of your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 248

https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

Redocly tutorial -- authoring and
publishing API docs with Redocly's
command-line tools
Redocly provides a variety of tools for working with API docs. Using Redocly’s command-line tools, you
can split the OpenAPI definition into many sub-files, and then later bundle up the discrete files into a single
file during the publishing stage. You can generate your docs into one of the most attractive outputs
available for REST API docs, including integration with conceptual topics as well. Redocly also offers more
robust developer portals and SaaS offerings that cover the full authoring and publishing lifecycle.

Note that Redocly is one of the sponsors of my site.

Background about Redocly’s approach to simplifying the author
experience with OpenAPI
Before Redocly became Redocly, the team worked on a product called Rebilly that included a 22,000
line OpenAPI definition file. Working in such a long file and authoring in YAML or JSON was especially
challenging. Not only was maneuvering in a single massive file difficult, one small indentation error would
require them to constantly troubleshoot syntax issues. (The single YAML file for all OpenAPI definition
elements was analogous to software developers storing all code for an application in a single file — an
unthinkable way of working with code.)

When Redocly innovated on their approach to simplifying OpenAPI spec development, instead of putting a
graphical user interface (GUI) on top of the OpenAPI code and requiring users to write the OpenAPI
definition in forms, menus, and other widgets, Redocly decided on a more docs-as-code approach that
aligns with the developer audience.

Redocly developed command-line tools to split the OpenAPI definition into smaller files to make it easier to
work with. Files are stored as separate files and referenced through JSON reference tag ($ref) in the main
OpenAPI file. Working in smaller files reduces the likelihood of syntax issues and other formatting errors. It
also makes it easier to focus on the content.

The CLI tools also let you check your OpenAPI definition against a ruleset to ensure you’re following best
practices. You can configure the ruleset with different levels of strictness, either including or ignoring
optional best practices in the OpenAPI specification. This linting lets you identify issues in your OpenAPI
definition that might not technically be errors, but would better if included.

When you’re ready to publish your OpenAPI definition, you can also use a command line tool to bundle the
small files up into a single file again. You can then feed your OpenAPI definition file into any OpenAPI
documentation tool, including Redoc’s documentation output: Redocly API Reference (premium
version), or the community edition of Redoc (free version). There’s also a Developer Portal option, or a
more cloud-based Workflows integration . Some of these tools (especially the command-line tools) will
come into focus through the tutorial below.

Overview of Redocly products
Redocly has a variety of products, so let’s first clarify these tools before diving more deeply into the the
tutorial.

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 249

https://redoc.ly/
https://www.rebilly.com/docs/developer-docs/api/overview/
https://redoc.ly/reference-docs
https://redoc.ly/redoc
https://redoc.ly/developer-portal
https://redoc.ly/workflows

Tool Description Cost

Redoc

The API reference documentation output generated
from the OpenAPI definition. Compare Redoc with
Swagger UI (p. 240) or other document generators that
parse through an OpenAPI file and render
documentation. The free version has limited
functionality.

Free

API Docs

The premium version of Redoc – the API docs output
from the OpenAPI definition file. This premium version
includes Try-it functionality, enhanced search, fast
loading, special tags, and other features. You can also
compare the difference between Redoc and Redocly
here .

Premium

create-openapi-repo
CLI tool for splitting a single OpenAPI definition file into
multiple files. You can also use this CLI tool to start a
new API definition.

Free

redocly-cli

CLI tool that provides linting against a customizable
ruleset, as well as bundling of the OpenAPI files into a
single file. You can also preview the output of your
docs with the Redocly API Reference through this tool.

Free

Developer Portal

A sample starter developer portal, built on top of
Gatsby. Intended for more robust documentation
scenarios. See Developer portal: Introduction for the
Redocly documentation, and developer-portal-

starter for some of the code.

Premium

Workflows

An online Redocly app that provides the full authoring
and publishing toolset in the cloud, with GitHub
integration and docs-as-code workflows. See
https://app.redoc.ly

Premium

This article will focus mostly on the authoring experience working with the OpenAPI definition (using
create-openapi-repo and redocly-cli), as well as publishing using Redoc . For more details

about Redocly’s Developer Portal and Workflows product, see the Products menu on Redocly’s site .

Redocly CLI Walkthrough tutorial
This tutorial will give you a sense of how the Redocly CLI tools work and how to publish the OpenAPI using
Redoc. You’ll break up an OpenAPI file, make some changes, bundle it back up, and then publish it with
Redoc. The tutorial has the following sections:

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 250

https://redoc.ly/redoc
https://redocly.com/reference/
https://redocly.com/redoc-vs-reference/
https://redocly.com/redoc-vs-reference/
https://github.com/Redocly/create-openapi-repo
https://github.com/Redocly/create-openapi-repo
https://github.com/Redocly/create-openapi-repo
https://redocly.com/redocly-cli/
https://redocly.com/redocly-cli/
https://redocly.com/portals/
https://redoc.ly/docs/developer-portal/introduction/
https://github.com/Redocly/developer-portal-starter
https://github.com/Redocly/developer-portal-starter
https://github.com/Redocly/developer-portal-starter
https://github.com/Redocly/developer-portal-starter
https://redoc.ly/workflows
https://app.redoc.ly/
https://github.com/Redocly/create-openapi-repo
https://github.com/Redocly/create-openapi-repo
https://redocly.com/redocly-cli/
https://redocly.com/redocly-cli/
https://redoc.ly/redoc
https://redoc.ly/

• 1. Install the prerequisites (p. 251)
• 2. Break up an OpenAPI file (p. 251)
• 3. Check your OpenAPI definition against rules (p. 254)
• 4. Preview the Redoc output (p. 256)
• 5. Bundle up the OpenAPI definition into a single file (p. 258)
• 6. Combine conceptual docs with reference docs (p. 259)
• 7. Explore the premium version: Redocly API Reference (p. 262)
• 8. Publish the reference output (p. 266))

The sections aren’t necessarily sequential, but they proceed through Redocly’s tools in a logical way to
become familiar with different aspects of the products. Also, the tutorial uses a sample OpenAPI definition
related to the OpenWeatherMap API (used elsewhere in the course). Also, the instructions were written
using a Mac. There might not be any differences with Windows, but note that Windows wasn’t used here.

This tutorial is a brief exposure to Redocly’s tools only. For more comprehensive documentation, see
Redocly’s documentation .

1. Install the prerequisites

Before you can work with the Redocly CLI tools, you need to install them. node.js is a prerequisite to
installing both Redocly CLI tools.

1. Install create-openapi-repo following the instructions in How to generate your repository
.

“npx” is the npm package runner and is the recommended way of running packages that you
would run occasionally (see Downloading and installing packages globally). Redocly
recommends using npx when installing the create-openapi-repo because it’s typically used
only once.

2. Install openapi-cli following the instructions here: Installation .
3. After you finish installing these CLI tools, restart your terminal.
4. Check that your terminal recognizes the create-openapi-repo and openapi-cli commands.

2. Break up an OpenAPI file

In this step, you’ll break up an existing OpenAPI file into smaller files. We’ll use a sample OpenAPI file that
we’ve been using in other places in this course.

1. Download the openapi_openweathermap.yml file.

Right-click the file and choose Save Link As. Save it in a folder called redocly_project in a
convenient location. This OpenAPI definition is a small OpenAPI 3.0 file for one API in the
OpenWeatherMap API . Note that you can use another OpenAPI definition in this tutorial if you
prefer. There’s nothing special about this file — it just gives us an OpenAPI definition to work
with.

2. Open a terminal, browse to your redocly_project directory, and type the following:

create-openapi-repo

The CLI asks, “Do you already have an OpenAPI/Swagger 3.0 definition for your API? (y/N)”

3. Type y and press return.

The CLI asks, “Please specify the path to the OpenAPI definition (local file):”

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 251

https://redoc.ly/docs/
https://nodejs.org/en/
https://github.com/Redocly/create-openapi-repo
https://github.com/Redocly/create-openapi-repo
https://github.com/Redocly/create-openapi-repo#how-to-generate-your-repository
https://docs.npmjs.com/downloading-and-installing-packages-globally
https://github.com/Redocly/openapi-cli
https://github.com/Redocly/openapi-cli
https://redoc.ly/docs/cli/#installation
https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml
https://openweathermap.org/api

4. Type openapi_openweathermap.yml and press return.

The CLI asks, “API Name: (OpenWeatherMap API).”

5. Press return.

The CLI asks, “The following folders will be created: openapi and docs. You can change them by
running create-openapi-repo <openapiDir> <docsDir> Proceed? (Y/n)”

6. Type Y and press return.

The CLI breaks up your OpenAPI file into smaller files inside an openapi file. Redocly also
installs adds some node_modules folders and initializes a git repository.

7. In a text editor (such as VS Code, Atom, or Sublime Text), open the redocly_project folder
and browse the contents.

The folder structure looks like this:

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 252

└── redocly_project
├── .git ...
├── .redocly
├── LICENSE
├── node_modules ...
├── README.md
├── docs
│ ├── favicon.png
│ └── index.html
├── openapi
│ ├── README.md
│ ├── components
│ │ ├── README.md
│ │ ├── parameters
│ │ │ ├── id.yaml
│ │ │ ├── lang.yaml
│ │ │ ├── lat.yaml
│ │ │ ├── lon.yaml
│ │ │ ├── mode.yaml
│ │ │ ├── q.yaml
│ │ │ ├── units.yaml
│ │ │ └── zip.yaml
│ │ ├── schemas
│ │ │ ├── 200.yaml
│ │ │ ├── Clouds.yaml
│ │ │ ├── Coord.yaml
│ │ │ ├── Main.yaml
│ │ │ ├── Rain.yaml
│ │ │ ├── Snow.yaml
│ │ │ ├── Sys.yaml
│ │ │ ├── Weather.yaml
│ │ │ └── Wind.yaml
│ │ └── securitySchemes
│ │ └── app_id.yaml
│ ├── openapi.yaml
│ └── paths
│ ├── README.md
│ └── weather.yaml
├── openapi_openweathermap.yml
├── package-lock.json
└── package.json

The original OpenAPI definition remains the same: openapi_openweathermap.yml . Redocly has
extracted each of the paths, parameters, components, and other elements into individual files
inside the openapi folder.

Redocly creates a new OpenAPI definition file at openapi/openapi.yaml . This OpenAPI
definition contains references to all of the files that it extracted as external files. If you view this
openapi.yaml file, you’ll see that Redocly has separated out paths with external JSON

references ($ref), such as the following:

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 253

paths:
/weather:

$ref: paths/weather.yaml

The weather path is now stored in openapi/paths/weather.yaml . When you open this
weather.yaml file, you’ll see that its parameters are also stored in external files:

parameters:
- $ref: ../components/parameters/q.yaml
- $ref: ../components/parameters/id.yaml
- $ref: ../components/parameters/lat.yaml
- $ref: ../components/parameters/lon.yaml
- $ref: ../components/parameters/zip.yaml
- $ref: ../components/parameters/units.yaml
- $ref: ../components/parameters/lang.yaml
- $ref: ../components/parameters/mode.yaml

The OpenAPI definition allows for breaking up files like this and referencing the external files with
$ref .

Note that ../ refers to another file, whereas #/ refers to another section on the same page
(such as with references to components).

Although the $ref syntax is standard, most tools don’t work well with OpenAPI files separated
out. Usually, when you want to generate API documentation, you’ll need to feed the preferred API
documentation generator a single OpenAPI YAML or JSON file, not a folder of separate files. But
when your working on the API definition, it’s helpful to separate files to more easily work with the
content.

In this OpenAPI scenario, there’s just one simple path: weather . However, suppose you had a
slash, such as weather/surfing or something similar. In that case, because / is an illegal
character in file names, Redocly would store this as weather@surfing under the paths folder.
Forward slashes (/) become @ symbols.

Additionally, if you had a path parameter, such as weather/{beach_id} , Redocly uses curly
braces {} to denote path parameters (rather than a colon : which is sometimes used).

See the README.md in the openapi folder for more details on these conventions. These
conventions are recommendations only. You can decide how you reference the paths from
openapi.yaml .

3. Check your OpenAPI definition against rules

Redocly lets you run a linter against your OpenAPI definition to check for best practices. In this step, you’ll
break some rules, run the linter, and see the warnings displayed.

1. Open the .redocly.yaml file (inside the root directory) to see Redocly’s configuration details,
including the linting rulesets, themes, and OpenAPI file used:

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 254

apiDefinitions:
main: openapi/openapi.yaml

lint:
extends:

- recommended
rules:

no-unused-components: warning
referenceDocs:

htmlTemplate: ./docs/index.html
theme:

colors:
primary:

main: "#32329f"

See Configuration file for details about each of these fields. Notice that main references the
OpenAPI definition file. You could list multiple OpenAPI definitions here. Under lint , the
recommended ruleset is specified.

You can customize how strict the linting rules are, whether to ignore some rules, and make other
configurations. For example, the recommended rules check that you follow best practices for
completing the information (even if it’s optional in the spec) because this information leads to a
better output when you generate the Redoc output. You will see warnings if you’re missing a
contact object under info , if you’re missing a description for tags , if you’re missing
description properties for each parameter , and so on. You can learn more about the linting

rules here: Rules .

2. In a terminal prompt, cd to your redocly_project folder.

3. Run the linter:

redocly lint

By default, all OpenAPI files listed in your .redocly.yaml file’s apiDefinitions object will be
used. These are the command’s entrypoints . For example, although you just typed openapi

lint , the command fills in the implied defaults as follows:

redocly lint main openapi/openapi.yaml

Here’s the response when the linter finds that your OpenAPI definition is valid:

validating /Users/tomjoht/projects/redocly_project/openapi/openapi.ya
ml...

/Users/tomjoht/projects/redocly_project/openapi/openapi.yaml: validat
ed in in 35ms

Woohoo! Your OpenAPI definition is valid.

4. To see a generated warning, let’s violate some best practices. Open your openapi/

openapi.yaml file and remove the license object:

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 255

https://redoc.ly/docs/cli/configuration/
https://redoc.ly/docs/cli/built-in-rules/

license:
name: CC Attribution-ShareAlike 4.0 (CC BY-SA 4.0)
url: 'https://openweathermap.org/price'

Then save the file.

5. Now run the openapi lint command again, and this time you’ll see that Redocly identifies a
missing license and provides recommendations:

validating /Users/tomjoht/projects/redocly_project/openapi/openapi.ya
ml...
[1] openapi/openapi.yaml:3:3 at #/info

Info object should contain `license` field.

1 | openapi: 3.0.2
2 | info:
3 | title: OpenWeatherMap API
4 | description: >-
… | < 14 more lines >

19 | email: some_email@gmail.com
20 | servers:
21 | - url: 'https://api.openweathermap.org/data/2.5'

Warning was generated by the info-license rule.

/Users/tomjoht/projects/redocly_project/openapi/openapi.yaml: validat
ed in in 126ms

Woohoo! Your OpenAPI definition is valid. 🎉
You have 1 warning.

As your OpenAPI file gets larger and more complex, having a linter to check the definitions against a ruleset
can be highly valuable.

(Before continuing on, restore the license object in the openapi.yaml file that you previously removed.)

4. Preview the Redoc output

The CLI contains a Redoc documentation preview server that listens for changes and rebuilds when it
detects a change. To run the preview server:

1. Type the following command:

redocly preview-docs

The response is as follows:

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 256

Using Redoc community edition.
Login with openapi-cli login or use an enterprise license key to prev
iew with the premium docs.

🔎 Preview server running at http://127.0.0.1:8080

Bundling...

👀 Watching /Users/tomjoht/projects/redocly_project/openapi/openap
i.yaml and all related resources for changes

Created a bundle for /Users/tomjoht/projects/redocly_project/openapi/
openapi.yaml successfully
GET /: 43.289ms
GET /hot.js: 22.313ms
GET /simplewebsocket.min.js: 34.003ms
GET /openapi.json: 0.507ms
GET /favicon.png: 1.720ms

Redoc bundles up your individual files into a single OpenAPI definition and passes it into the
Redoc documentation generator. By default, you’re using the community edition of Redoc, which
lacks some of the features of the pro version. (The differences are explained in more detail later in
this section and also in 7. Explore the premium version: Redocly API Reference (p. 262).)

2. Go to http://127.0.0.1:8080 in your browser to see a preview of the output:

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 257

3. To see the auto-regeneration, go into one of your files in openapi and make a change. For
example go to openapi/components/parameters/lat.yaml and change a line in the
description, and then save the file.

The preview server rebuilds the output and reloads the page.

4. Press Ctrl+C to stop the preview server.

Note that we’re currently using the Community Edition of Redoc. We’ll explore more features in
the Pro version in 7. Explore the premium version: Redocly API Reference (p. 262).

5. Bundle up the OpenAPI definition into a single file

Let’s bundle the separate files into a single OpenAPI definition file. You might want to do this if you’re done
working with your file and want to generate out the output to feed into another tool to render the
documentation. To bundle up the OpenAPI files:

1. Run the following command:

redocly bundle main -o dist.json

main refers to the OpenAPI definition you want bundled, as specified in your .redocly.yaml

file’s apiDefinitions object. The -o dist.json specifies the output file. After running the
command, you see the following:

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 258

bundling openapi/openapi.yaml...
📦 Created a bundle for openapi/openapi.yaml at dist.json in 38ms.

2. Open dist.json to see that it contains all the references packaged into a single file.

Now let’s dive into some more features related to the authoring experience: how to integrate conceptual
docs with reference docs.

6. Combine conceptual docs with reference docs

One common question in writing API tech docs is how to combine conceptual docs (e.g., getting started
tutorials, information about authorization, troubleshooting, etc.) with the reference docs. Most API
documentation generators generate reference docs only.

Redocly has some unique offerings when it comes to organizing and working with conceptual content. One
integration strategy is to put all of your conceptual information into the description field of your info

object, and then store that description content in an external file. Any heading 1 and 2 tags (# and
) in your description will become separate entries in the sidebar. Let’s walk through this.

1. In our sample redocly project, open openapi.yaml and change the description to a $ref

pointing to a separate Markdown file. Specifically, identify this section:

openapi: 3.0.2
info:

title: OpenWeatherMap API
description: >-

Get the current weather, daily forecast for 16 days, and a
three-hour-interval forecast for 5 days for your city. Helpful st

ats,
graphics, and this day in history charts are available for your r

eference.
Interactive maps show precipitation, clouds, pressure, wind aroun

d your
location stations. Data is available in JSON, XML, or HTML forma

t. **Note**:
This sample Swagger file covers the `current` endpoint only from

the
OpenWeatherMap API.

 Note: All parameters are optio

nal, but
you must select at least one parameter. Calling the API by city I

D (using
the `id` parameter) will provide the most precise location result

s.

And change it to this:

openapi: 3.0.2
info:

title: OpenWeatherMap API
description:
$ref: description.md

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 259

Note that $ref: description.md is technically incorrect with the OpenAPI spec, but the
Redocly bundle process places that Markdown inline to correct it.

For more detail on using $ref , see Using JSON references ($refs) .

2. Create a file called description.md under the openapi folder and paste the description
content there.

3. Run the preview server:

redocly preview-docs

4. Go to http://127.0.0.1:8080 . The description appears the same as before, but it’s now a bit
easier to work with because it’s in a standalone file. You don’t have worry about maintaining
proper indentation in YAML. You can write more freely. As with the OpenAPI spec, the Markdown
flavor supported is Commonmark Markdown .

5. In your description.md file, add some heading tags, like this:

Overview

Get the current weather, daily forecast for 16 days, and a
three-hour-interval forecast for 5 days for your city.

Graphics and charts

Helpful stats, graphics, and this day in history charts are available
for your reference.

Interactive maps

Interactive maps show precipitation, clouds, pressure, wind around yo
ur location stations. Data is available in JSON, XML, or HTML format.

Note: This sample Swagger file covers the `current` endpoint only
from the OpenWeatherMap API.

 Note: All parameters are
optional, but you must select at least one parameter. Calling the API
by city ID (using the `id` parameter) will provide the most precise l
ocation results.

6. Save the file and check the reload in the preview server.

In the preview server, notice how the heading levels are reflected in the sidebar.

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 260

https://redoc.ly/docs/resources/ref-guide/
http://127.0.0.1:8080/
https://spec.commonmark.org/0.29/

First-level headings become parent-level sidebar entries. Second-level headings become child-
level sidebar entries to the parents. (Deeper levels aren’t supported.)

7. You can also re-use some content from your OpenAPI definition. In your description file, add this
tag:

<SecurityDefinitions />

8. Save the file and check the reload in the preview server.

The security object from your OpenAPI definition appears directly in your description content.

The pro version lets you embed other tags and also push content into the right menu. We’ll
explore that in the next section.

For an example of fairly robust API documentation that uses the sidebar for a lot of conceptual
documentation, see the Checkr documentation .

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 261

https://docs.checkr.com/

If integrating your conceptual content like this doesn’t work for your doc needs, Redocly offers a more
robust option: Redocly Developer Portals . The Redocly Developer Portals use Gatsby as a static site
generator to give you more complete control and customization for non-reference content. Gatsby also
provides many pre-built React components, which makes building out other features of a developer portal,
such as marketing landing pages and other UI elements in a console, much easier.

7. Explore the premium version: Redocly API Reference

The lack of the Try-it explorer in the Redoc community edition is a major reason to upgrade to the premium
version (Redocly API Reference). As I’ve argued elsewhere in this course, the try-it functionality makes API
documentation both interactive and interesting. In this tutorial, we’ve been using the community edition of
Redoc. The premium version, called Redocly API Reference , provides several key benefits:

• The Try-it-out explorer. You can execute calls in the browser. This interactivity is what makes
REST API docs so powerful and instructive.

• Optimized loading. The output is split into multiple files to render loading more quickly (up to
10x faster).

• Special tags. You can use special tags to pull in content from your reference content (such as
your security definition or a response).

• Right pane. You can push code into the right pane so that it appears juxtaposed with the
conceptual info in the main column.

• Enhanced search. Search is more comprehensive and detailed, including results for request and
response parameters, among other enhancements.

Here’s a short video explaining the top 3 reasons why people choose the pro version:

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 262

https://docs.checkr.com/
https://docs.checkr.com/
https://redoc.ly/developer-portal/
https://redoc.ly/reference-docs

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/pubapis_redocly_tutorial.html] to view the content.

If you have a license for the pro version, you would generate an API key and then use the openapi

login command to unlock the pro features. (The openapi logout command clears the API key,
reverting you to the community edition.) Pricing for different versions of Redocly is available on their Pricing

page.

Let’s enable the premium version features and see how they work. (You won’t have to purchase anything to
explore the features locally.)

1. Sign in to Redocly .
2. Go to your Redocly profile at https://app.redoc.ly/profile and create a Personal API key. Copy

the key.
3. Type the following:

redocly login

4. When prompted for a password, paste the password into the terminal and press Enter. Then,
authorization begins. [Q: Are you prompted for your API key at this point?]

5. In your description.md file, add some PullRight tags with some sample code, such as the
following:

<PullRight>
Examples of API calls:

JSON api.openweathermap.org/data/2.5/weather?q=London

XML api.openweathermap.org/data/2.5/weather?q=London&mode=xml

HTML api.openweathermap.org/data/2.5/weather?q=London&mode=html
</PullRight>

6. View the preview server (http://127.0.0.1:8080/) and see the code populate in the right column.

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 263

https://redoc.ly/docs/workflows/personal-access-token.md
https://redoc.ly/docs/cli/commands/#login
https://redoc.ly/docs/cli/commands/#login
https://redoc.ly/docs/cli/commands/#login
https://redoc.ly/docs/cli/commands/#login
https://redoc.ly/docs/cli/commands/#logout
https://redoc.ly/docs/cli/commands/#logout
https://redoc.ly/pricing
https://redoc.ly/pricing
https://redoc.ly/
https://app.redoc.ly/profile
http://127.0.0.1:8080/

7. In your description.md file, re-use a parameter description from your reference:

<RedocResponse pointer={"#/components/parameters/lat"} />

8. View the preview server and see the lat parameter appear (highlighted below).

9. Open .redocly.yaml and add showConsole: true under referenceDocs :

referenceDocs:
htmlTemplate: ./docs/index.html
showConsole: true

10. View the preview server and look for the blue “TRY IT” tab next to the weather path:

11. Click the TRY IT tab. An API explorer replaces the right pane with options to configure a request.
12. For the zip parameter, enter 95050 (or another zip code).

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 264

13. Click the Auth (app_id) tab in the upper-right and enter your OpenWeatherMap API key . (If
you don’t have one, use 126cac1a482f51de0f1287b45ae2bf9a .)

14. Click Send.

A successful response returns JSON such as the following:

{
"coord": {

"lon": -121.98,
"lat": 37.35

},
"weather": [

{
"id": 711,
"main": "Smoke",
"description": "smoke",
"icon": "50n"

}
],
"base": "stations",
"main": {

"temp": 65.48,
"feels_like": 62.38,
"temp_min": 63,
"temp_max": 68,
"pressure": 1016,
"humidity": 68

},
"visibility": 10000,
"wind": {

"speed": 8.05,
"deg": 10

},
"clouds": {

"all": 40
},
"dt": 1596517361,
"sys": {

"type": 1,
"id": 5845,
"country": "US",
"sunrise": 1596460471,
"sunset": 1596510811

},
"timezone": -25200,
"id": 0,
"name": "Santa Clara",
"cod": 200

}

You can learn more about the Try it feature here: The try it API console .

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 265

https://home.openweathermap.org/api_keys
https://redoc.ly/docs/api-reference-docs/console-overview/

8. Publish the reference output

So far we’ve been exploring the API reference output from within the preview server. Now let’s publish the
reference output outside of the preview server:

1. Bundle the OpenAPI definition.

redocly bundle main -o dist.json

2. Inside a folder called redoc , create an HTML file called index.html .
3. In your index.html file, insert the following template for rendering the OpenAPI definition using

Redoc JS delivered through a CDN.

<!DOCTYPE html>
<html>

<head>
<title>ReDoc</title>
<!-- needed for adaptive design -->
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width, initial-scal

e=1">
<link href="https://fonts.googleapis.com/css?family=Montserrat:30

0,400,700|Roboto:300,400,700" rel="stylesheet">

<!--
ReDoc doesn't change outer page styles
-->
<style>

body {
margin: 0;
padding: 0;

}
</style>

</head>
<body>

<redoc spec-url='http://petstore.swagger.io/v2/swagger.json'></re
doc>

<script src="https://cdn.jsdelivr.net/npm/redoc@next/bundles/redo
c.standalone.js"> </script>

</body>
</html>

If you have a license for the premium version (the Redocly API Reference) and you want the Try-it
console enabled, you would use the code described here: Example with “Try It” console enabled

in the JavaScript CDN usage (self-hosted) page. However, because we’re just publishing with
the community edition version of Redoc, we’ll use the code described in the Redoc GitHub page

.

4. Replace http://petstore.swagger.io/v2/swagger.json with a reference to dist.json .

<redoc spec-url='dist.json'></redoc>

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 266

https://redoc.ly/docs/api-reference-docs/on-premise/js-cdn/#example-with-try-it-console-enabled
https://redoc.ly/docs/api-reference-docs/on-premise/js-cdn/#example-with-try-it-console-enabled
https://github.com/Redocly/redoc#tldr
https://github.com/Redocly/redoc#tldr

5. Drag the dist.json file generated in step 1 into your redoc folder so that the reference is
valid.

6. To view the output, you can either upload the files onto a web server, or you can simulate an
HTTP server locally. To simulate an HTTP server locally, you can use Python Simple HTTP
Server. You can view detailed steps for running this server here: Activity: View local OpenAPI file
in Swagger UI (p. 223). In short, if you already have Python3 installed, cd to your redoc

folder and run this command: python3 -m http.server . Then browse to port
http://localhost:8000/ and view the Redoc output.

Redoc provides a lot of options to configure the output. Options to configure the community edition of
Redoc are here: <redoc> options object . Options to configure the Redocly API Reference version
are here: Customization .

For sample API reference docs built with Redoc, see Some Real-life usages on the Redoc GitHub page.

Conclusion
Redoc provides one of the most attractive outputs for REST API docs. In a recent survey about trends in
developer documentation (p. 44), I asked developers “How do you render the OpenAPI specification into
documentation?” Although Swagger UI (p. 218) was the most common (used 27% of the time), this is likely
because it’s free. The premium version of Swagger (called SwaggerHub (p. 230)) was used only 4% of the
time. In contrast, Redoc was used 8% of the time.

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/pubapis_redocly_tutorial.html] to view the content.

Overall, the output from Redoc does seem more polished and user-friendly than other API reference doc
outputs. For the interactivity feature alone I would definitely recommend using the premium version
(Redocly API Reference) rather than the community edition. Redocly’s CLI-based toolset provides a way
to work more efficiently in the code, supporting a docs-as-code workflow (p. 551). If this command-line-
based toolset and three-column output appeal to you, Redoc might be the way to go. You can start a free
trial here or learn more here: Redocly .

Redocly tutorial -- authoring and publishing API docs with Redocly's command-line
tools

PDF last generated: August 27,
2023

Documenting REST APIs Page 267

https://www.python.org/downloads/
https://redoc.ly/redoc
https://redoc.ly/redoc
https://github.com/Redocly/redoc#redoc-options-object
https://github.com/Redocly/redoc#redoc-options-object
https://redoc.ly/reference-docs
https://redoc.ly/docs/api-reference-docs/on-premise/customization/
https://github.com/Redocly/redoc#some-real-life-usages
https://redoc.ly/reference-docs/
https://app.redoc.ly/org/idratherbewriting/start-trial
https://app.redoc.ly/org/idratherbewriting/start-trial
https://redoc.ly/

Redoc Community Edition Basic Demo
Redocly offers robust tools for authoring and publishing API docs using the command-line and docs-as-
code workflows. For a full tutorial, see Redocly tutorial – authoring and publishing API docs with Redocly’s
command-line tools (p. 249). The tutorial that follows here is a simple way to use the community/free
edition of Redoc .

Redoc is a popular display framework for the OpenAPI as well and is a favorite by many API gurus.
Redoc started out as a API doc site for Rebilly docs but with many customizations evolved into its own
unique framework. Redoc provides a three-panel layout made popular by companies such as Stripe.

The makers of Redoc spun off into their own company (Redocly) and developed a more robust hosted
solution offering (see From ReDoc to Redoc.ly). As with both Stoplight and Swagger UI, Redoc offers
both free and pro versions to adjust to your needs. And you can add topics beyond just reference docs.

Activity: Use Redoc Community Edition to render OpenAPI spec
In this activity, you’ll render your OpenAPI spec with Redoc .

1. Copy the following code into an empty text file (in a text editor such as Sublime Text) and save
the file as redoc.html. (Note: This code comes from Redoc’s “TL;DR” readme instructions on
GitHub .)

Redoc Community Edition Basic Demo PDF last generated: August 27, 2023

Documenting REST APIs Page 268

https://redoc.ly/
https://github.com/Redocly/redoc
https://github.com/Redocly/redoc
https://github.com/Redocly/redoc
http://rebilly.github.io/RebillyAPI
https://redoc.ly/
https://redoc.ly/blog/from-redoc-to-redocly
https://github.com/Redocly/redoc
https://github.com/Redocly/redoc#tldr
https://github.com/Redocly/redoc#tldr

<!DOCTYPE html>
<html>

<head>
<title>ReDoc</title>
<!-- needed for adaptive design -->
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width, initial-scal

e=1">
<link href="https://fonts.googleapis.com/css?family=Montserrat:30

0,400,700|Roboto:300,400,700" rel="stylesheet">

<!--
ReDoc doesn't change outer page styles
-->
<style>

body {
margin: 0;
padding: 0;

}
</style>

</head>
<body>

<redoc spec-url='https://idratherbewriting.com/docs/openapi_spe
c_and_generated_ref_docs/openapi_openweathermap.yml'></redoc>

<script src="https://cdn.jsdelivr.net/npm/redoc@next/bundles/redo
c.standalone.js"> </script>

</body>
</html>

Make sure you save the file with a .html extension so that your browser will render it as HTML.

2. Change the value for redoc spec-url to a valid OpenAPI spec that is available at an online
URL.

If you were following the previous tutorial on creating an OpenAPI spec through Stoplight Studio
(Getting started tutorial: Using Stoplight Studio to create an OpenAPI specification document (p.
201)), you can use the OpenAPI URL that Stoplight provides. From your Stoplight Studio display,
go to the Overview topic and click Export OpenAPI. Choose either original or dereferenced.
Copy the URL. Here’s an example URL .

Redoc Community Edition Basic Demo PDF last generated: August 27, 2023

Documenting REST APIs Page 269

https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml

Exporting an OpenAPI URL

3. In your web browser, click Cmd + O (Mac) or Ctrl + O (Windows), locate your redoc.html file,
and select it.

The display should look as follows:

Sample Redoc display

Redoc Community Edition Basic Demo PDF last generated: August 27, 2023

Documenting REST APIs Page 270

https://idratherbewriting.com/assets/files/redoc.html
https://idratherbewriting.com/assets/files/redoc.html

Chapter 5: Step-by-step OpenAPI
code tutorial
If you want to build the OpenAPI spec by hand in a text editor, this tutorial will help you get started. Even
though documentation isn’t necessarily linear, I break down the various sections in the OpenAPI YAML file
and go through them line by line. Approaching the OpenAPI file manually requires a more advanced
understanding of the spec, YAML or JSON syntax, and how to approach strategies specific to your API. If
you’re a beginner or want a visual editor, check out the Getting started tutorial: Using Stoplight Studio to
create an OpenAPI specification document (p. 201) instead.

Chapter sections:

OpenAPI tutorial using Swagger Editor and Swagger UI: Overview.. 272

Working in YAML.. 276

Step 1: The openapi object .. 282

Step 2: The info object ... 285

Step 3: The servers object ... 288

Step 4: The paths object .. 291

Step 5: The components object... 302

Step 6: security object ... 327

Step 7: The tags object .. 334

Step 8: The externalDocs object .. 337

Activity: Create an OpenAPI specification document .. 340

Chapter 5: Step-by-step OpenAPI code tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 271

OpenAPI tutorial using Swagger Editor
and Swagger UI: Overview
In the previous section, I explained how to create the OpenAPI spec using a visual editor with Stoplight
Studio (p. 201). In this tutorial, I’ll explain how to work in a text editor such as Swagger Editor to write
the OpenAPI code by hand. For a higher-level introduction to the OpenAPI spec, see Introduction to the
OpenAPI specification (p. 181).

In this tutorial, we’ll dive deeply into the OpenAPI specification. We’ll use the same OpenWeatherMap API
that we’ve been using throughout other parts of this course as the content for our OpenAPI document.

Using this API, we’ll create a valid OpenAPI specification document and then render it using Swagger UI.

To see a presentation that covers the same concepts in this article, see https://goo.gl/n4Hvtq .

Swagger Editor
When choosing an editor to write OpenAPI code by hand, the most common is the Swagger Editor
because it dynamically validates your content as you write. It lets you determine whether the specification
document you’re creating is valid. The Swagger Editor looks like this, with the left pane showing the code
and the right pane showing the output:

The Swagger Editor validates your specification content dynamically and shows you the display on the right

While you’re coding in the Swagger Editor, if you make an error, you can quickly fix it before continuing
rather than waiting until a later time to run a build and sort out errors.

OpenAPI tutorial using Swagger Editor and Swagger UI: Overview PDF last generated: August 27, 2023

Documenting REST APIs Page 272

http://editor.swagger.io/
https://openweathermap.org/current
https://openweathermap.org/current
https://goo.gl/n4Hvtq
http://editor.swagger.io/
http://editor.swagger.io/
http://editor.swagger.io/

JSON or YAML format
For your specification document’s format, you have the choice of working in either JSON or YAML. The
code sample is in the previous screenshot shows YAML . YAML refers to “YAML Ain’t Markup
Language,” meaning YAML doesn’t have any markup tags (< >), as would be common with other markup
languages such as XML.

YAML depends on spacing and colons to establish the object syntax. This space-sensitive formatting
makes the code more human-readable, but it’s also sometimes trickier to get the spacing right.

You can also write in JSON, if you prefer that. There are more curly braces to deal with, but it isn’t a space-
sensitive format. The OpenAPI specification documentation on GitHub shows code samples in both YAML
and JSON in nearly every example. I’ll go into more detail about YAML in the next step, Working with YAML
(p. 276).

General resources for learning the OpenAPI specification
Learning the OpenAPI specification will take some time. As an estimate, if you’re coding it manually,
plan about two weeks of immersion, working with a specific API in the context of the specification before
you become comfortable with it. Remember that the OpenAPI specification is general enough to describe
nearly every REST API, so some parts may be more applicable to your API than others.

As you learn the OpenAPI specification, use the following resources:

• Sample OpenAPI specification documents . These sample specification documents provide a
good starting point as a basis for your specification document. They give you a big picture of the
general shape of a specification document.

• Swagger user guide . The Swagger user guide is more friendly, conceptual, and easy to follow.
It doesn’t have the detail and exactness of the specification documentation on GitHub, but in
many ways, it’s clearer and contains more examples.

• OpenAPI specification documentation . The specification documentation is technical and takes
a little getting used to, but you’ll no doubt consult it frequently when describing your API. It’s a
long, single page document to facilitate findability through Ctrl+F.

There are other Swagger/OpenAPI tutorials online, but make sure you follow tutorials for the 3.0 version of
the API rather than 2.0 . Version 3.0 was released in July 2017 . 3.0 is substantially different from
2.0. (Version 3.0.2 was released in December 2017 and makes minor improvements to 3.0. Note that
whenever I refer to 3.0, I’m referring to 3.x, meaning any incremental dot release from the 3.0 line.)

How my OpenAPI/Swagger tutorial is different
You can find many Swagger tutorials online. What makes mine different? Besides the end-to-end
walkthrough using the OpenAPI 3.0 (rather than 2.0) version of the spec, and using an actual API for
context, I also show how OpenAPI fields map to Swagger UI. Specifically, I demonstrate how and where
each of the OpenAPI fields gets displayed.

Many other display frameworks besides Swagger UI can parse and display information in an OpenAPI
specification document, and you can even create your own custom parsing tools.

Swagger UI is sponsored by Smartbear , the same company that is heavily invested in the OpenAPI
initiative and which develops SwaggerHub (p. 230) (the premium version of Swagger UI) and drives other
Swagger tooling (including Swagger Editor, Swagger UI, Swagger Codegen, and others). Note that
SmartBear does not own the OpenAPI specification , as the Linux Foundation drives this initiative . The
OpenAPI spec’s development is driven by many companies and organizations .

OpenAPI tutorial using Swagger Editor and Swagger UI: Overview PDF last generated: August 27, 2023

Documenting REST APIs Page 273

http://yaml.org/
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification/tree/master/examples/v3.0
https://swagger.io/docs/specification/about/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#appendix-a-revision-history
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui
https://smartbear.com/
https://www.openapis.org/
https://www.openapis.org/
https://github.com/OAI/OpenAPI-Specification/
https://www.openapis.org/
https://www.openapis.org/membership/members

By showing you how the fields in the spec appear in the Swagger UI output, I hope the specification
objects and properties will take on more relevance and meaning.

Note that SmartBear is one of the sponsors of this site.

Terminology for Swagger and OpenAPI
Before continuing, I want to clarify the difference between “Swagger” and “OpenAPI” terms for those who
may be unfamiliar with this landscape. “Swagger” was the original name of the OpenAPI specification,
but the specification was later changed to “OpenAPI” to reinforce the open, non-proprietary nature of
this standard. Now, “Swagger” refers to API tooling that supports the OpenAPI spec, not the spec itself.

People still often refer to both names interchangeably, but “OpenAPI” is how the spec should be referred
to. The “OpenAPI specification document” or “OpenAPI document” is the Swagger YAML file that you
create to describe your API. For other terms, see the API Glossary (p. 55). See also What Is the Difference
Between Swagger and OpenAPI? .

Customizing Swagger UI
You might be concerned that Swagger UI outputs look similar. First, note that you can render the OpenAPI
spec using many different tools outside of Swagger UI (e.g., using Stoplight (p. 201) or Redoc (p. 249)).
However, Swagger UI tends to be popular because it’s free and was one of the first in this space.

With my OpenAPI projects, I usually customize the Swagger UI’s colors a bit, add a custom logo and a few
other custom styles. With one project, I integrated Bootstrap so that I could have modals where users
could generate their authorization codes. You can even add collapse-and-expand features in the
description element to provide more information to users.

Beyond these simple modifications, however, it takes a bit of web-developer prowess to significantly alter
the Swagger UI display. It’s possible, but you need web development skills.

Start by looking at the big picture
If you would like to get a big picture of the specification document, take a look at the 3.0 examples here ,
specifically the Petstore OpenAPI specification document . It probably won’t mean much at first, but try
to get a sense of the whole before we dive into the details. Look at some of the other samples in the v.3.0
folder as well.

Follow the OpenAPI tutorial
The OpenAPI tutorial has a brief into to YAML followed by eight steps. Each step corresponds with one of
the root-level objects in the OpenAPI document.

• Working in YAML (p. 276)
• Step 1: The openapi object (p. 282)
• Step 2: The info object (p. 285)
• Step 3: The servers object (p. 288)
• Step 4: The paths object (p. 291)
• Step 5: The components object (p. 302)
• Step 6: security object (p. 327)
• Step 7: The tags object (p. 334)
• Step 8: The externalDocs object (p. 337)

You don’t have to create the specification document in this order; I’ve merely chosen this order to provide
more of a specific path and series of steps to the process.

OpenAPI tutorial using Swagger Editor and Swagger UI: Overview PDF last generated: August 27, 2023

Documenting REST APIs Page 274

https://swagger.io/
https://github.com/OAI/OpenAPI-Specification/
https://blog.smartbear.com/open-source/what-is-the-difference-between-swagger-and-openapi/
https://blog.smartbear.com/open-source/what-is-the-difference-between-swagger-and-openapi/
https://getbootstrap.com/
https://getbootstrap.com/docs/4.1/components/modal/
https://getbootstrap.com/docs/4.1/components/collapse/
https://github.com/OAI/OpenAPI-Specification/tree/master/examples/v3.0
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml

In the following sections, we’ll proceed through each of these objects one by one and document the
OpenWeatherMap current API . Tackling each root-level object individually (rather than documenting
everything at once) helps reduce the complexity of the spec.

components is more of a storage object for schemas defined in other objects, but to avoid introducing too
much at once, I’ll wait until the components tutorial (p. 302) to fully explain how to reference a schema in
one object (using $ref) that points to the full definition in components .

With each step, you’ll paste the object you’re working on into the Swagger Editor. The right pane of the
Swagger Editor will show the Swagger UI display. (Remember that the specification document alone does
nothing with your content. Other tools are required to read and display the spec document.)

Later, when I talk more about publishing, I’ll explain how to configure Swagger UI with your specification
document as a standalone output. For our sample OpenWeatherMap API, you can see the OpenAPI spec
(openapi_openweathermap.yml) rendered by the Swagger UI at the following links:

• Standalone Swagger UI with OpenWeatherMap API
• Embedded Swagger with OpenWeatherMap API (p. 240)

Migrating from OpenAPI 2.0 to 3.0
If you have an existing specification document that validates against version OpenAPI 2.0 and you want to
convert it to OpenAPI 3.0 (or vice versa), you can use APIMATIC’s Transformer to convert it
automatically. (You can also use APIMATIC to transform your specification document into many other
outputs, such as RAML (p. 924), API Blueprint (p. 938), or Postman (p. 71).)

To see the difference between the 2.0 and the 3.0 code, you can copy these code samples to separate files
and then use an application like Diffmerge to highlight the differences. The Readme.com blog has a nice
post that provides A Visual Guide to What’s New in Swagger 3.0 .

Helpful resources
As you embark on creating an OpenAPI specification file, you might find the recording of Peter
Gruenbaum’s Swagger/OpenAPI presentation to the STC Puget Sound chapter helpful, as well as his
Udemy course .

Brace yourself — this is where you’ll find out if you’re cut out for API technical writing.

OpenAPI tutorial using Swagger Editor and Swagger UI: Overview PDF last generated: August 27, 2023

Documenting REST APIs Page 275

https://openweathermap.org/current
https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml
https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml
https://idratherbewriting.com/assets/files/swagger/
https://apimatic.io/transformer
https://sourcegear.com/diffmerge/
https://blog.readme.com/an-example-filled-guide-to-swagger-3-2/
http://www.stc-psc.org/event/documenting-web-apis-with-swagger-free-webinar/
http://www.stc-psc.org/event/documenting-web-apis-with-swagger-free-webinar/
https://www.udemy.com/learn-swagger-and-the-open-api-specification/

Working in YAML (OpenAPI tutorial)
Before we dive into the steps of the OpenAPI Tutorial (p. 272), it will help to have a better grounding in
YAML, since this is the most common syntax for the OpenAPI specification document. (You can also use
JSON (p. 94), but the prevailing trend with the OpenAPI document format is YAML.)

YAML stands for “YAML Ain’t Markup Language.” This means that the YAML syntax doesn’t have markup
tags such as < or > . Instead, it uses colons to denote an object’s properties and hyphens to denote an
array.

Working with YAML
YAML is easier to work with because it removes the brackets, curly braces, and commas that get in the
way of reading content.

The YAML site itself is written using YAML, which you can immediately see is not intended for coding web
pages.

YAML is an attempt to create a more human-readable data exchange format. It’s similar to JSON (which is
actually a subset of YAML) but uses spaces, colons, and hyphens to indicate the structure.

Many computers ingest data in a YAML or JSON format. It’s a syntax commonly used in configuration files
and an increasing number of platforms (like Jekyll), so it’s a good idea to become familiar with it.

Working in YAML (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 276

http://yaml.org/
http://yaml.org/

YAML is a superset of JSON
For the most part, YAML and JSON are different ways of structuring the same data. Dot notation accesses
the values the same way. For example, the Swagger UI can read the openapi.json or openapi.yaml

files equivalently. Pretty much any parser that reads JSON will also read YAML. However, some JSON
parsers might not read YAML because there are a few features YAML has that JSON lacks (more on that
below (p. 279)).

YAML syntax
With a YAML file, spacing is significant. Each two-space indent represents a new level:

level1:
level2:

level3:

Each new level is an object. In this example, the level1 object contains the level2 object, which
contains the level3 object.

With YAML, you generally don’t use tabs (since tab spacing is non-standard). Instead, you space twice.

Each level can contain either a single key-value pair (also referred to as a dictionary in YAML lingo) or a
sequence (a list of hyphens):

level3:
-

itema: "one"
itemameta: "two"

-
itemb: "three"
itembmeta: "four"

The values for each key can optionally be enclosed in quotation marks. If your value has a colon or
quotation mark in it, enclose it in quotation marks.

Comparing JSON to YAML
Earlier in the course, we looked at various JSON structures involving objects and arrays (p. 94). So let’s
look at the equivalent YAML syntax for each of these same JSON objects.

You can use Unserialize.me to make the conversion from JSON to YAML or YAML to JSON.

Here are some key-value pairs in JSON:

{
"key1":"value1",
"key2":"value2"
}

Here’s the same structure expressed in YAML syntax:

Working in YAML (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 277

http://www.unserialize.me/

key1: value1
key2: value2

Here’s an array (list of items) in JSON:

["first", "second", "third"]

In YAML, the array is formatted as a list with hyphens:

- first
- second
- third

Here’s an object containing an array in JSON:

{
"children": ["Avery","Callie","lucy","Molly"],
"hobbies": ["swimming","biking","drawing","horseplaying"]
}

Here’s the same object with an array in YAML:

children:
- Avery
- Callie
- lucy
- Molly

hobbies:
- swimming
- biking
- drawing
- horseplaying

Here’s an array containing objects in JSON:

[
{

"name":"Tom",
"age":43

},
{

"name":"Shannon",
"age":41

}
]

Here’s the same array containing objects converted to YAML:

Working in YAML (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 278

-
name: Tom
age: 42

-
name: Shannon
age: 41

Hopefully, by seeing the syntax side by side, it will begin to make more sense. Is the YAML syntax more
readable? It might be difficult to see in these simple examples, but generally it is.

JavaScript uses the same dot notation techniques to access the values in YAML as it does in JSON.
(They’re pretty much interchangeable formats.) The benefit to using YAML, however, is that it’s more
readable than JSON.

However, YAML might be more tricky because it depends on getting the spacing just right. Sometimes that
spacing is hard to see (especially with a complex structure), and that’s where JSON (while maybe more
cumbersome) is perhaps easier to troubleshoot.

Some features of YAML not present in JSON
YAML has some features that JSON lacks. You can add comments in YAML files using the # sign. YAML
also allows you to use something called “anchors.” For example, suppose you have two definitions that are
similar. You could write the definition once and use a pointer to refer to both:

api: &apidef Application programming interface
application_programming_interface: *apidef

If you access the value, the same definition will be used for both. The *apidef acts as an anchor or
pointer to the definition established at &apidef .

You won’t use these unique YAML features in the OpenAPI tutorial, but they’re worth noting because JSON
and YAML aren’t entirely equivalent. For details on other differences between JSON and YAML, see Learn
YAML in Minutes . To learn more about YAML, see this YAML tutorial .

YAML is also used with Jekyll (p. 637). See my YAML tutorial in the context of Jekyll for more details.

JSON versus YAML for the spec format
Let’s clear up some additional descriptors around JSON and YAML as well. The specification document in
my OpenAPI tutorial uses YAML (which I introduced briefly here (p. 276)), but it could also be expressed in
JSON. JSON is a subset of YAML, so the two are practically interchangeable formats (for the data
structures we’re using). Ultimately, though, the OpenAPI spec is a JSON object. The specification notes:

An OpenAPI document that conforms to the OpenAPI Specification is itself a JSON
object, which may be represented either in JSON or YAML format. (See Format)

In other words, the OpenAPI document you create is a JSON object, but you have the option of expressing
the JSON using either JSON or YAML syntax. YAML is more readable and is a more common format (see
API Handyman’s take on JSON vs YAML for more discussion), so I’ve used YAML exclusively in code

Working in YAML (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 279

http://learnxinyminutes.com/docs/yaml/
http://learnxinyminutes.com/docs/yaml/
http://rhnh.net/2011/01/31/yaml-tutorial
https://idratherbewriting.com/documentation-theme-jekyll/mydoc_yaml_tutorial
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#format
https://apihandyman.io/writing-openapi-swagger-specification-tutorial-part-1-introduction/#json-vs-yaml

samples here. You will see that the OpenAPI specification documentation on GitHub always shows both
the JSON and YAML syntax when showing specification formats. (For a more detailed comparison of
YAML versus JSON, see “Relation to JSON” in the YAML spec .)

YAML refers to data structures with three main terms: “mappings (hashes/dictionaries), sequences (arrays/
lists) and scalars (strings/numbers)” (see “Introduction” in YAML 1.2). However, because the OpenAPI
spec is a JSON object, it uses JSON terminology — such as “objects,” “arrays,” “properties,” “fields,” and
so forth. As such, I’ll be showing YAML-formatted content but describing it using JSON terminology.

Review and summary
So that we’re on the same page with terms in the upcoming tutorial, let’s briefly review. Each level in YAML
(defined by a two-space indent) is an object. In the following code, california is an object. animal ,
flower , and bird are properties of the california object.

california:
animal: Grizzly Bear
flower: Poppy
bird: Quail

Here’s what this looks like in JSON:

{
"california": {

"animal": "Grizzly Bear",
"flower": "Poppy",
"bird": "Quail"

}
}

The specification often uses the term “field” in the titles and table column names when listing the
properties for a specific object. (Further, it identifies two types of fields — “fixed” fields are declared,
unique names while “patterned” fields are regex expressions.) Fields and properties are used
synonymously in the OpenAPI spec.

In the following code, countries contains an object called united_states , which contains an object
called california , which contains several properties with string values:

countries:
united_states:

california:
animal: Grizzly Bear
flower: Poppy
bird: Quail

In the following code, demographics is an object that contains an array:

demographics:
- population
- land
- rivers

Working in YAML (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 280

http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html

Here’s what the above code looks like in JSON:

{
"demographics": [

"population",
"land",
"rivers"

]
}

Hopefully, those brief examples will help align us with the terminology used in the tutorial.

Let’s get started
With that information about YAML, hopefully the upcoming step-by-step sections that walk through each
section in the OpenAPI spec, using YAML as the primary format, will make more sense. Let’s get started
with Step 1: The openapi object (OpenAPI tutorial) (p. 282).

Working in YAML (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 281

Step 1: The openapi object (OpenAPI
tutorial)

Before diving into the first step of the OpenAPI tutorial here, read the OpenAPI tutorial overview (p. 272) (if
you haven’t already) to get a sense of the scope of this tutorial. In brief, this OpenAPI tutorial is unique in
the following ways:

• This OpenAPI tutorial shows the spec in context of a simple weather API introduced earlier (p. 65)
in this course.

• This OpenAPI tutorial shows how the spec information gets populated in two different tools and
display frameworks: Stoplight and Swagger UI .

• This OpenAPI tutorial is a subset of the information in both the OpenAPI specification and the
OpenAPI specification commentary . In other words, it’s not comprehensive of all the possible
information in the spec.

• This OpenAPI tutorial covers the 3.0 version of the OpenAPI spec, which is the latest version.
(Surprisingly, many tools still support only the 2.0 version.)

The root-level objects in OpenAPI spec
The OpenAPI 3.0 spec has eight objects at the root level. These eight objects have many nested objects
inside them, but at the root level, there are just these parent objects:

• openapi

• info

• servers

• paths

• components

• security

• tags

• externalDocs

Step 1: The openapi object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 282

https://stoplight.io/studio/
https://github.com/swagger-api/swagger-ui
https://github.com/OAI/OpenAPI-Specification
https://swagger.io/docs/specification/about/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#oasObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#oasObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#infoObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#infoObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#serverObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#serverObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#pathsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#pathsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#componentsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#componentsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#tagObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#tagObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#externalDocumentationObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#externalDocumentationObject

By “root level,” I mean the first level in the OpenAPI document. This level is also referred to as the global
level because some object properties declared here (namely servers and security) are applied to each
of the operation objects unless overridden at a lower level.

The whole document (the object that contains these eight root-level objects) is called an OpenAPI
document . The convention is to name the document openapi.yml.

“OpenAPI” refers to the specification; “Swagger” refers to the tooling (at least from SmartBear) that
supports the OpenAPI specification.

Although one could approach the assembly of an OpenAPI document in many ways, I’ve decided to
structure each step in this tutorial based on each of these root-level objects. You’ll see two approaches:
one using Swagger working at a code-level, and another using Stoplight Studio working in a user interface.

Swagger
Before we jump into coding, let’s first talk about where you’ll write the code and what your options are.

Where to write your spec code

The easiest option is to use the online Swagger Editor . The Swagger Editor provides a split view: on the
left where you write your spec code, and on the right, you see a fully functional Swagger UI display. You
can even submit requests from the Swagger UI display in this editor.

The Swagger Editor will validate your content in real-time, and you will see validation errors until you finish
coding the specification document. Don’t worry about the errors unless you see X marks in the code you’re
working on.

I usually keep a local text file (using a text editor such as Atom or Sublime Text) where I keep the
specification document offline, but I work with the document’s content in the online Swagger Editor .
When I’m done working for the day, I copy and save the content back to my local file. Even so, the
Swagger Editor caches the content quite well (just don’t clear your browser’s cache), so you probably
won’t need your local file as a backup.

If you want to purchase a subscription to SwaggerHub (p. 230), you could keep your spec content in the
cloud (SwaggerHub has an editor almost identical to Swagger UI) associated with your personal login.
SwaggerHub is the premium tooling for the open-source and free Swagger Editor.

Another option to work locally is to use Visual Studio Code with two extensions: openapi-lint and
Swagger Viewer . These extensions let you work locally and preview a live version of Swagger. You can
also download and run the Swagger Editor locally .

For the sake of simplicity, for the Swagger sections in this tutorial, we’ll just use the online Swagger Editor
.

Add the openapi object

From the Swagger Editor and go to File > Clear editor. Keep this tab open throughout the OpenAPI
tutorial, as you’ll be adding to your specification document with each step.

Add the first root-level property for the specification document: openapi . In the openapi object,
indicate the version of the OpenAPI spec to validate against. The latest version is 3.0.2 .

openapi: "3.0.2"

Step 1: The openapi object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 283

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#oasDocument
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#oasDocument
https://swagger.io/swagger-editor/
https://swagger.io/swagger-editor/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=mermade.openapi-lint
https://marketplace.visualstudio.com/items?itemName=Arjun.swagger-viewer
https://swagger.io/tools/swagger-editor/
https://swagger.io/swagger-editor/
https://swagger.io/swagger-editor/
https://editor.swagger.io/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#oasObject

Until you add more information in here, you’ll see error messages and notes such as “No operations
defined in spec!” To avoid these errors, add some placeholder info here like this:

openapi: '3.0.2'
info:

title: OpenWeatherMap
version: '1.0'

paths: {}

The editor renders the display as follows.

openapi object

If you get stuck, see the sample OpenAPI spec here for the fully working sample. This will help you spot
and troubleshoot indentation or other errors.

On the backend, Swagger UI uses the 3.0.2 version of the spec to validate your content. In the above
screenshot, the gray “1.0” version refers to the version of the API here, not the version of the OpenAPI
spec.

There’s not much to the openapi object except to elaborate on the versions. OAS 3.0 was released on
2017-07-26, and OAS 3.0.2 was released on 10-08-2018 (see Version History). Much of the information
and examples online, as well as supporting tools, often focus only on 2.0. Even if you’re locked into
publishing in a 2.0 tool or platform, you can code the spec in 3.0 and then use a tool such as APIMATIC
Transformer to convert the 3.0 spec to 2.0. You can also convert a spec from 2.0 to 3.0.

Step 1: The openapi object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 284

https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#appendix-a-revision-history
https://apimatic.io/transformer
https://apimatic.io/transformer

Step 2: The info object (OpenAPI
tutorial)

The info object contains basic information about your API, including the title, a description, version, link
to the license, link to the terms of service, and contact information. Many of the properties are optional.

Sample info object
Here’s an example of the info object and its properties. (The openapi object and the empty paths

object are commented out to maintain the focus on the info object.)

Step 2: The info object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 285

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#infoObject

openapi: 3.0.2
info:

title: "OpenWeatherMap API"
description: "Get the current weather, daily forecast for 16 days, and a t

hree-hour-interval forecast for 5 days for your city. Helpful stats, graphic
s, and this day in history charts are available for your reference. Interact
ive maps show precipitation, clouds, pressure, wind around your location sta
tions. Data is available in JSON, XML, or HTML format. **Note**: This sampl
e Swagger file covers the `current` endpoint only from the OpenWeatherMap AP
I.

 Note: All parameters are optional, but you must select at
least one parameter. Calling the API by city ID (using the `id` parameter) w
ill provide the most precise location results."

version: "2.5"
termsOfService: "https://openweathermap.org/terms"
contact:

name: "OpenWeatherMap API"
url: "https://openweathermap.org/api"
email: "some_email@gmail.com"

license:
name: "CC Attribution-ShareAlike 4.0 (CC BY-SA 4.0)"
url: "https://openweathermap.org/price"

paths: {}

If you get stuck, see the sample OpenAPI spec here for the fully working sample. This will help you spot
and troubleshoot indentation or other errors.

Description properties and Markdown
Note that in any description property, you can use CommonMark Markdown , which is much more
precise, unambiguous, and robust than the original Markdown.

For example, CommonMark markdown offers some backslash escapes , and it specifies exactly how
many spaces you need in lists and other punctuation. You can also break to new lines with \n and escape
problematic characters like quotation marks or colons with a backslash.

As you write content in description properties, note that colons are problematic in YAML because they
signify new levels. Either enclose the description value in quotation marks or escape colons with a
backslash. (If you enclose the values in quotation marks, syntax highlighters in text editors can display
better color coding between the properties and values.)

Update your file in Swagger Editor
To update the spec file in Swagger Editor:

1. Paste the code from the preceding section (“Sample info object”) containing the info object
into the Swagger Editor.

2. Uncomment the openapi and paths objects (remove the “ # ”). The display looks as follows:

Step 2: The info object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 286

https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml
http://spec.commonmark.org/0.27/
http://spec.commonmark.org/0.27/#backslash-escapes

openapi, info, and empty paths object in Swagger Editor

In the Swagger UI display, the info object’s information appears below the title.

In the description property, in addition to describing your overall API, you might want to provide some
basic instructions to users on how to use Swagger UI. If there’s a test account they should use, you can
provide the information they need in this space.

Step 2: The info object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 287

Step 3: The servers object (OpenAPI
tutorial)

In the servers object , you specify the basepath used in your API requests. The basepath is the part of
the URL that appears before the endpoint.

Sample servers object
The following is a sample servers object:

servers:
- url: https://api.openweathermap.org/data/2.5/

Each of your endpoints (called “paths” in the spec) will be appended to the server URL when users make
“Try it out” requests. For example, if one of the paths is /weather , when Swagger UI submits the request,
it will submit the path to {server URL}{path} or https://api.openweathermap.org/data/2.5/

weather .

Options with the server URL
You have some flexibility and configuration options for your server URL. You can specify multiple server
URLs that might relate to different environments (test, beta, production). If you have multiple server URLs,
users can select the environment from a servers drop-down box. For example, you can specify multiple
server URLs like this:

Step 3: The servers object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 288

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#serverObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#serverObject

servers:
- url: https://api.openweathermap.org/data/2.5/

description: Production server
- url: http://beta.api.openweathermap.org/data/2.5/

description: Beta server
- url: http://some-other.api.openweathermap.org/data/2.5/

description: Some other server

If you get stuck, see the sample OpenAPI spec here for the fully working sample. This will help you spot
and troubleshoot indentation or other errors.

In Swagger UI, the multiple servers appear as options users can select in a drop-down list:

If you have just one URL, you still see a drop-down box but with just one option.

You can also incorporate variables into the server URL that can be populated at runtime by your server.
Additionally, if different paths (endpoints) require different server URLs, you can add the servers object
as a property in the path (p. 291) object’s operation object. The locally declared servers URL will override
the global servers URL.

See “Overriding Servers” in “API Server and Base URL” (Swagger’s docs) for more details.

Step 3: The servers object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 289

https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml
https://idratherbewriting.com/assets/files/swagger/index.html
https://idratherbewriting.com/assets/files/swagger/index.html
https://swagger.io/docs/specification/api-host-and-base-path/

Swagger
Paste the servers object (the first code sample above (p. 288) showing just one url) into your Swagger
Editor, adding to the code you already have there. Swagger UI will look as follows.

Swagger UI with the servers object

Notice the drop-down menu that appears in the lower-right. (Even if you have just one URL, it still appears
in a drop-down menu.)

Step 3: The servers object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 290

Step 4: The paths object (OpenAPI
tutorial)

The paths object contains the meat of your API information. The paths object has several sub-
objects: a path items object , an operations object , and more.

We’ve been moving along at about 5 mph in the previous steps but are going to speed up to 60 mph here
quickly. It’s okay if the content that follows doesn’t entirely sink in. You can paste the example code that
follows into Swagger UI for now and later go back to study it in more detail.

Paths objects
My preferred term is “endpoint” rather than “path,” but to be consistent with the terminology of the
OpenAPI spec, I use the term “paths” here.

Each item in the path object contains an operation object . (Operations are the GET, POST, PUT, and
DELETE methods we explored in the Endpoints section (p. 126) of the API reference tutorial.)

Start by listing the paths (endpoints) and their allowed operations (methods). For the weather endpoint in
the OpenWeatherMap API, there is just one path (/weather) and one operation (get) for that path:

paths:
/weather:

get:

Operation Objects

The operation object (get in the code above) contains various properties and objects:

• tags : A group name to organize paths in the Swagger UI. Swagger UI will group endpoints
under tag headings.

• summary : A brief overview of the path. Swagger UI shows the summary next to the path name.
Limit the summary to 5-10 words only. The display appears even when this section is collapsed.

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 291

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#pathsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#pathsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#pathItemObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#operationObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#operation-object

• description : A full description of the path. Include as much detail as you want. There’s a lot of
space in the Swagger UI for these details. CommonMark Markdown is allowed.

• externalDocs (object): Links to documentation for more information about the path.
• operationId : A unique identifier for the path.
• parameters (object): Parameters accepted by the path. Does not include request bodies,

which are instead detailed in the requestBody object (p. 291). The parameters object can
also include a reference object that contains a pointer to the description in the components

object (this is explained in Step 5: The components object (p. 302)).
• requestBody (object): The request body details for this path. The requestBody object can

also include a reference object that contains a pointer to the description in the components

object (explained in step 5 (p. 302)). (You can find an example of a requestBody parameter in
the Swagger Petstore demo . The /pet endpoint submits a request body when adding a pet.
Check out the requestBody YAML syntax in petstore-expanded.yml — look at post under
/pets . Also see Describing Request Body .)

• responses (object): Responses provided from requests with this path. The responses

object can also include a reference object that contains a pointer to the description in the
components object. Responses use standard status codes .

• callbacks (object): Callback details to be initiated by the server if desired. Callbacks are
operations performed after a function finishes executing. The callbacks object can also
include a reference object that contains a pointer to the description in the components

object.
• deprecated : Whether the path is deprecated. Omit unless you want to indicate a deprecated

field. Boolean.
• security (object): Security authorization method used with the operation. Include this object

at the path level only if you want to overwrite the security object at the root level. The name is
defined by the securitySchemes object in the components object. More details about this are
provided in the security object (p. 327).

• servers (object): A servers object that might differ from the global servers object (p. 288)
for this path.

Each of the above hyperlinked properties that say “(object)” contain additional levels. Their values aren’t
just simple data types like strings but are rather objects that contain their own properties.

You’ll undoubtedly need to consult the OpenAPI spec to see what details are required for each of the
values and objects here. I can’t replicate all the details you need, nor would I want to. I’m just trying to
introduce you to the OpenAPI properties at a surface level.

Let’s add a skeleton of the operation object details to our existing code:

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 292

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#externalDocumentationObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#externalDocumentationObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#parameterObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#parameterObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#requestBodyObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#requestBodyObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#requestBodyObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#referenceObject
https://petstore.swagger.io/#/pet/addPet
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore-expanded.yaml
https://swagger.io/docs/specification/describing-request-body/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#responsesObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#responsesObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#referenceObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#http-status-codes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#callbackObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#callbackObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#referenceObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#serverObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#serverObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md

paths:
/weather:

get:
tags:
summary:
description:
operationId:
externalDocs:
parameters:
responses:
deprecated:
security:
servers:
requestBody:
callbacks:

At this point, if you paste this content into the Swagger Editor, you will get errors until some additional
properties are added.

Now we can remove a few unnecessary fields that we don’t need for our OpenWeatherMap API
documentation:

• There’s no need to include requestBody object because none of the OpenWeatherMap API
paths contain request bodies.

• There’s no need to include the servers object because the paths use the same global
servers URL that we defined globally (p. 288) at the root level.

• There’s no need to include security because all the paths use the same security object,
which we will define globally at the root level later (see Step 6: The security object (p. 327)).

• There’s no need to include deprecated because none of the paths are deprecated.
• There’s no need to include callbacks because none of the paths use callbacks.

As a result, we can reduce the number of relevant fields to the following:

paths:
/weather:

get:
tags:
summary:
description:
operationId:
externalDocs:
parameters:
responses:

Most of the properties for the operation object either require simple strings or include relatively simple
objects. The most detailed object here is the parameters object (p. 293) and the responses object (p.
296).

Parameters object

The parameters object contains an array with these properties:

• name : Parameter name.

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 293

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#requestBodyObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#requestBodyObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#serverObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#serverObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#parameterObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#parameterObject

• in : Where the parameter appears. Possible values are header , path , query , or cookie .
(Request bodies are not described here.)

• description : Description of the parameter.
• required : Whether the parameter is required.
• deprecated : Whether the parameter is deprecated.
• allowEmptyValue : Whether the parameter allows an empty value to be submitted.
• style : How the parameter’s data is serialized (converted to bytes during data transfer).
• explode : Advanced parameter related to arrays.
• allowReserved : Whether reserved characters are allowed.
• schema (object): The schema or model for the parameter. The schema defines the input or

output data structure. Note that the schema can also contain an example object.
• example : An example of the media type. If your examples object contains examples, those

examples appear in Swagger UI rather than the content in the example object.
• examples (object): An example of the media type, including the schema.

Here’s the paths object that includes the parameters details:

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 294

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#exampleObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#exampleObject

paths:
/weather:

get:
tags:
- Current Weather Data
summary: "Call current weather data for one location."
description: "Access current weather data for any location on Earth in

cluding over 200,000 cities! Current weather is frequently updated based on
global models and data from more than 40,000 weather stations."

operationId: CurrentWeatherData
parameters:
- name: q

in: query
description: "**City name**. *Example: London*. You can call by cit

y name, or by city name and country code. The API responds with a list of re
sults that match a searching word. For the query value, type the city name a
nd optionally the country code divided by a comma; use ISO 3166 country code
s."

schema:
type: string

- name: id
in: query
description: "**City ID**. *Example: `2172797`*. You can call by cit

y ID. The API responds with the exact result. The List of city IDs can be do
wnloaded [here](http://bulk.openweathermap.org/sample/). You can include mul
tiple cities in this parameter — just separate them by commas. The lim
it of locations is 20. *Note: A single ID counts as a one API call. So, if y
ou have 3 city IDs, it’s treated as 3 API calls.*"

schema:
type: string

- name: lat
in: query
description: "**Latitude**. *Example: 35*. The latitude coordinate o

f the location of your interest. Must use with `lon`."
schema:

type: string

- name: lon
in: query
description: "**Longitude**. *Example: 139*. Longitude coordinate o

f the location of your interest. Must use with `lat`."
schema:

type: string

- name: zip
in: query
description: "**Zip code**. Search by zip code. *Example: 95050,u

s*. Please note that if the country is not specified, the search uses USA a
s a default."

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 295

schema:
type: string

- name: units
in: query
description: '**Units**. *Example: imperial*. Possible values: `stan

dard`, `metric`, and `imperial`. When you do not use the `units` parameter,
the format is `standard` by default.'

schema:
type: string
enum: [standard, metric, imperial]
default: "imperial"

- name: lang
in: query
description: '**Language**. *Example: en*. You can use lang paramete

r to get the output in your language. We support the following languages tha
t you can use with the corresponded lang values: Arabic - `ar`, Bulgarian -
`bg`, Catalan - `ca`, Czech - `cz`, German - `de`, Greek - `el`, English -
`en`, Persian (Farsi) - `fa`, Finnish - `fi`, French - `fr`, Galician - `g
l`, Croatian - `hr`, Hungarian - `hu`, Italian - `it`, Japanese - `ja`, Kore
an - `kr`, Latvian - `la`, Lithuanian - `lt`, Macedonian - `mk`, Dutch - `n
l`, Polish - `pl`, Portuguese - `pt`, Romanian - `ro`, Russian - `ru`, Swedi
sh - `se`, Slovak - `sk`, Slovenian - `sl`, Spanish - `es`, Turkish - `tr`,
Ukrainian - `ua`, Vietnamese - `vi`, Chinese Simplified - `zh_cn`, Chinese T
raditional - `zh_tw`.'

schema:
type: string
enum: [ar, bg, ca, cz, de, el, en, fa, fi, fr, gl, hr, hu, it, j

a, kr, la, lt, mk, nl, pl, pt, ro, ru, se, sk, sl, es, tr, ua, vi, zh_cn, z
h_tw]

default: "en"

- name: mode
in: query
description: "**Mode**. *Example: html*. Determines the format of th

e response. Possible values are `xml` and `html`. If the mode parameter is e
mpty, the format is `json` by default."

schema:
type: string
enum: [json, xml, html]
default: "json"

If you get stuck, see the sample OpenAPI spec here for the fully working sample. This will help you spot
and troubleshoot indentation or other errors.

Responses object

The other substantial property in the operations object is the responses object . For the responses

property, you typically reference a full definition in the components object, so I’ll cover the responses

object in the next section — Step 5: The components object (p. 302). (There’s already too much detail in
this step as is.)

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 296

https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#responsesObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#responsesObject

For now, so that the Swagger Editor will validate and show our path, let’s just add some placeholder
content for responses :

responses:
200:

description: Successful response
content:

application/json:
schema:

title: Sample
type: object
properties:

placeholder:
type: string
description: Placeholder description

404:
description: Not found response
content:

text/plain:
schema:

title: Weather not found
type: string
example: Not found

See Describing Parameters in Swagger’s OpenAPI documentation for more details.

Paths object code
Now let’s combine the above two code blocks (both parameters and responses) for our paths object.
You can paste the following code into the Swagger Editor — add this paths object below the openapi ,
info , and servers code you added in the previous tutorials.

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 297

https://swagger.io/docs/specification/describing-parameters/

paths:
/weather:

get:
tags:
- Current Weather Data
summary: "Call current weather data for one location."
description: "Access current weather data for any location on Earth in

cluding over 200,000 cities! Current weather is frequently updated based on
global models and data from more than 40,000 weather stations."

operationId: CurrentWeatherData
parameters:
- name: q

in: query
description: "**City name**. *Example: London*. You can call by cit

y name, or by city name and country code. The API responds with a list of re
sults that match a searching word. For the query value, type the city name a
nd optionally the country code divided by a comma; use ISO 3166 country code
s."

schema:
type: string

- name: id
in: query
description: "**City ID**. *Example: `2172797`*. You can call by cit

y ID. The API responds with the exact result. The List of city IDs can be do
wnloaded [here](http://bulk.openweathermap.org/sample/). You can include mul
tiple cities in this parameter — just separate them by commas. The lim
it of locations is 20. *Note: A single ID counts as a one API call. So, if y
ou have 3 city IDs, it’s treated as 3 API calls.*"

schema:
type: string

- name: lat
in: query
description: "**Latitude**. *Example: 35*. The latitude coordinate o

f the location of your interest. Must use with `lon`."
schema:

type: string

- name: lon
in: query
description: "**Longitude**. *Example: 139*. Longitude coordinate o

f the location of your interest. Must use with `lat`."
schema:

type: string

- name: zip
in: query
description: "**Zip code**. Search by zip code. *Example: 95050,u

s*. Please note that if the country is not specified, the search uses USA a
s a default."

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 298

schema:
type: string

- name: units
in: query
description: '**Units**. *Example: imperial*. Possible values: `stan

dard`, `metric`, and `imperial`. When you do not use the `units` parameter,
the format is `standard` by default.'

schema:
type: string
enum: [standard, metric, imperial]
default: "imperial"

- name: lang
in: query
description: '**Language**. *Example: en*. You can use lang paramete

r to get the output in your language. We support the following languages tha
t you can use with the corresponded lang values: Arabic - `ar`, Bulgarian -
`bg`, Catalan - `ca`, Czech - `cz`, German - `de`, Greek - `el`, English -
`en`, Persian (Farsi) - `fa`, Finnish - `fi`, French - `fr`, Galician - `g
l`, Croatian - `hr`, Hungarian - `hu`, Italian - `it`, Japanese - `ja`, Kore
an - `kr`, Latvian - `la`, Lithuanian - `lt`, Macedonian - `mk`, Dutch - `n
l`, Polish - `pl`, Portuguese - `pt`, Romanian - `ro`, Russian - `ru`, Swedi
sh - `se`, Slovak - `sk`, Slovenian - `sl`, Spanish - `es`, Turkish - `tr`,
Ukrainian - `ua`, Vietnamese - `vi`, Chinese Simplified - `zh_cn`, Chinese T
raditional - `zh_tw`.'

schema:
type: string
enum: [ar, bg, ca, cz, de, el, en, fa, fi, fr, gl, hr, hu, it, j

a, kr, la, lt, mk, nl, pl, pt, ro, ru, se, sk, sl, es, tr, ua, vi, zh_cn, z
h_tw]

default: "en"

- name: mode
in: query
description: "**Mode**. *Example: html*. Determines the format of th

e response. Possible values are `xml` and `html`. If the mode parameter is e
mpty, the format is `json` by default."

schema:
type: string
enum: [json, xml, html]
default: "json"

responses:
200:

description: Successful response
content:

application/json:
schema:

title: Sample
type: object

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 299

properties:
placeholder:

type: string
description: Placeholder description

404:
description: Not found response
content:

text/plain:
schema:

title: Weather not found
type: string
example: Not found

View the Appearance in Swagger UI
Swagger UI displays the paths object like this:

Expand the Current Weather Data section to see the details. When you click Try it out, you’ll notice that
the field populates with the description. If you want the field to populate with a value, add a default

property under schema (as shown with the mode parameter in the code above).

However, with this API, the parameters can’t all be passed with the same request — you use only the
parameters you want for the request you’re making. (For example, you can’t pass zip code and city name
and lat/long, etc. in the same request.) As a result, it wouldn’t make sense to use defaults for each
parameter because the user would then need to remove most of them.

Swagger’s UI collapses each path by default. You can set whether the initial display is collapsed or open
using the docExpansion parameter in Swagger UI . This docExpansion parameter is for Swagger UI
and not part of the OpenAPI spec. Swagger UI has more than 20 different parameters of its own that
control the display. For example, if you don’t want the Models section to appear, add the parameter
defaultModelsExpandDepth: -1 in your Swagger UI file.

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 300

https://idratherbewriting.com/assets/files/swagger/index.html
https://idratherbewriting.com/assets/files/swagger/index.html
https://github.com/swagger-api/swagger-ui#parameters
https://github.com/swagger-api/swagger-ui#parameters
https://github.com/swagger-api/swagger-ui#parameters

Note about parameter dependencies
The OpenAPI specification doesn’t allow you to declare dependencies with parameters, or mutually
exclusive parameters. According to the Swagger OpenAPI documentation,

OpenAPI 3.0 does not support parameter dependencies and mutually exclusive
parameters. There is an open feature request at https://github.com/OAI/OpenAPI-
Specification/issues/256 . What you can do is document the restrictions in the
parameter description and define the logic in the 400 Bad Request response.
(Parameter Dependencies)

In the case of the weather endpoint with the OpenWeatherMap, most of the parameters are mutually
exclusive. You can’t search by City ID and zip code simultaneously. Although the parameters are optional,
you must use at least one parameter. Also, if you use the lat parameter, you must also use the lon

parameter because they’re a pair. The OpenAPI spec can’t programmatically reflect that structured logic,
so you have to explain it in the description property or in other more conceptual documentation.

Step 4: The paths object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 301

https://github.com/OAI/OpenAPI-Specification/issues/256
https://github.com/OAI/OpenAPI-Specification/issues/256
https://swagger.io/docs/specification/describing-parameters/#parameter-dependencies-19

Step 5: The components object
(OpenAPI tutorial)

The components object is unique from the other objects in the OpenAPI specification. In components ,
you store re-usable definitions that might appear in multiple places in your specification document. In our
API documentation scenario, we’ll store details for both the parameters and responses object in
components .

Reasons to use the components object
Describing the details of your parameters and describing the schema of complex responses can be the
most challenging aspects of the OpenAPI spec. Although you can define the parameters and responses
directly in the parameters and responses objects, you typically don’t list them there for two reasons:

• You might want to re-use parts of these definitions in other requests or responses. It’s common
to have the same parameter or response used in multiple places in an API. Through the
components object, OpenAPI allows you to re-use these same definitions in multiple places.

• You might not want to clutter up your paths object with too many parameter and response
details, since the paths object is already somewhat complex with several levels of objects.

Instead of listing the schema for your requests and responses in the paths object, for more complex
schemas (or for schemas that are re-used in multiple operations or paths), you typically use a reference
object (referenced with $ref) that points to a specific definition in the components object . (For
more details on $ref , see Using $ref .)

Think of the components object like a document appendix where the re-usable details are provided. If
multiple parts of your spec have the same schema, you point each of these references to the same object
in your components object, and in so doing you single source the content. The components object can
even be stored in a separate file if you have a large API and want to organize the information that way.
(However, with multiple files, you wouldn’t be able to use the online Swagger Editor to validate the
content.)

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 302

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#referenceObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#referenceObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#componentsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#componentsObject
https://swagger.io/docs/specification/using-ref/
http://apihandyman.io/writing-openapi-swagger-specification-tutorial-part-8-splitting-specification-file/

Objects in components
You can store a lot of different re-usable objects in the components object. The components object
can contain these objects:

• schemas

• responses

• parameters

• examples

• requestBody

• headers

• securitySchemes

• links

• callbacks

The properties for each object inside components are the same as they are when used in other parts of
the OpenAPI spec. You use a reference pointer ($ref) to point to more details in the components object.
$ref stands for reference object and is part of JSON.

Re-using parameters across multiple paths
For the parameters in the previous step, we listed all the details directly in the parameters object. To
facilitate re-use of the same parameters in other paths, let’s store the parameters content in
components . The code below shows how to make these references:

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 303

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#componentsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#componentsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#responses-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#responses-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#parameterObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#parameterObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#examples-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#examples-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#requestBodyObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#requestBodyObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#headerObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#headerObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securitySchemeObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securitySchemeObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#linkObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#linkObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#callbackObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#callbackObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#referenceObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#referenceObject

paths:
/weather:

get:
tags:
- Current Weather Data
summary: "Call current weather data for one location"
description: "Access current weather data for any location on Earth in

cluding over 200,000 cities! Current weather is frequently updated based on
global models and data from more than 40,000 weather stations."

operationId: CurrentWeatherData
parameters:

- $ref: '#/components/parameters/q'
- $ref: '#/components/parameters/id'
- $ref: '#/components/parameters/lat'
- $ref: '#/components/parameters/lon'
- $ref: '#/components/parameters/zip'
- $ref: '#/components/parameters/units'
- $ref: '#/components/parameters/lang'
- $ref: '#/components/parameters/mode'

responses:
200:

description: Successful response
content:

application/json:
schema:

title: Sample
type: object
properties:

placeholder:
type: string
description: Placeholder description

404:
description: Not found response
content:

text/plain:
schema:

title: Weather not found
type: string
example: Not found

components:

parameters:
q:

name: q
in: query
description: "**City name**. *Example: London*. You can call by city n

ame, or by city name and country code. The API responds with a list of resul
ts that match a searching word. For the query value, type the city name and

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 304

optionally the country code divided by a comma; use ISO 3166 country codes."
schema:

type: string
id:

name: id
in: query
description: "**City ID**. *Example: `2172797`*. You can call by city

ID. The API responds with the exact result. The List of city IDs can be down
loaded [here](http://bulk.openweathermap.org/sample/). You can include multi
ple cities in this parameter — just separate them by commas. The limi
t of locations is 20. *Note: A single ID counts as a one API call. So, if yo
u have 3 city IDs, it’s treated as 3 API calls.*"

schema:
type: string

lat:
name: lat
in: query
description: "**Latitude**. *Example: 35*. The latitude coordinate of

the location of your interest. Must use with `lon`."
schema:

type: string

lon:
name: lon
in: query
description: "**Longitude**. *Example: 139*. Longitude coordinate of t

he location of your interest. Must use with `lat`."
schema:

type: string

zip:
name: zip
in: query
description: "**Zip code**. Search by zip code. *Example: 95050,us*. P

lease note that if the country is not specified, the search uses USA as a de
fault."

schema:
type: string

units:
name: units
in: query
description: '**Units**. *Example: imperial*. Possible values: `standa

rd`, `metric`, and `imperial`. When you do not use the `units` parameter, th
e format is `standard` by default.'

schema:
type: string
enum: [standard, metric, imperial]
default: "imperial"

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 305

lang:
name: lang
in: query
description: '**Language**. *Example: en*. You can use lang parameter

to get the output in your language. We support the following languages that
you can use with the corresponded lang values: Arabic - `ar`, Bulgarian - `b
g`, Catalan - `ca`, Czech - `cz`, German - `de`, Greek - `el`, English - `e
n`, Persian (Farsi) - `fa`, Finnish - `fi`, French - `fr`, Galician - `gl`,
Croatian - `hr`, Hungarian - `hu`, Italian - `it`, Japanese - `ja`, Korean
- `kr`, Latvian - `la`, Lithuanian - `lt`, Macedonian - `mk`, Dutch - `nl`,
Polish - `pl`, Portuguese - `pt`, Romanian - `ro`, Russian - `ru`, Swedish
- `se`, Slovak - `sk`, Slovenian - `sl`, Spanish - `es`, Turkish - `tr`, Ukr
ainian - `ua`, Vietnamese - `vi`, Chinese Simplified - `zh_cn`, Chinese Trad
itional - `zh_tw`.'

schema:
type: string
enum: [ar, bg, ca, cz, de, el, en, fa, fi, fr, gl, hr, hu, it, ja, k

r, la, lt, mk, nl, pl, pt, ro, ru, se, sk, sl, es, tr, ua, vi, zh_cn, zh_tw]
default: "en"

mode:
name: mode
in: query
description: "**Mode**. *Example: html*. Determines the format of the

response. Possible values are `xml` and `html`. If the mode parameter is emp
ty, the format is `json` by default."

schema:
type: string
enum: [json, xml, html]
default: "json"

Replace the existing paths object in the Swagger Editor with the above code sample, include the new
components object, and observe that the rendered display still looks the same.

If you get stuck, see the sample OpenAPI spec here for the fully working sample. This will help you spot
and troubleshoot indentation or other errors.

Re-using response objects
In Step 4: The paths object (p. 291), when we described the responses object in the paths object,
even with just a simple placeholder, we used a schema object to describe the model for the request or
response. The schema refers to the data structure (the fields, values, and hierarchy of the various objects
and properties of a JSON or YAML object — see What is a schema?).

Let’s dive deeply into how to use the schema properties to document the responses object. We will also
store this content in components so that it can be re-used in other parts of the specification document. If
you recall in the previous step (OpenAPI tutorial Step 4: The paths object (p. 291)), the responses object
for the weather endpoint looked like this:

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 306

https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#responsesObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#responsesObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#schemaObject
https://spacetelescope.github.io/understanding-json-schema/about.html#what-is-a-schema

paths:
/current:

get:
parameters:

...

responses:
200:

description: Successful response
content:

application/json:
schema:

title: Sample
type: object
properties:

placeholder:
type: string
description: Placeholder description

404:
description: Not found response
content:

text/plain:
schema:

title: Weather not found
type: string
example: Not found

Now let’s move the schema description for the 200 response into the components object:

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 307

paths:
/weather:

get:
tags:
- Current Weather Data
summary: "Call current weather data for one location"
description: "Access current weather data for any location on Earth in

cluding over 200,000 cities! Current weather is frequently updated based on
global models and data from more than 40,000 weather stations."

operationId: CurrentWeatherData
parameters:

- $ref: '#/components/parameters/q'
- $ref: '#/components/parameters/id'
- $ref: '#/components/parameters/lat'
- $ref: '#/components/parameters/lon'
- $ref: '#/components/parameters/zip'
- $ref: '#/components/parameters/units'
- $ref: '#/components/parameters/lang'
- $ref: '#/components/parameters/mode'

responses:
200:

description: Successful response
content:

application/json:
schema:

$ref: '#/components/schemas/200'
404:

description: Not found response
content:

text/plain:
schema:

title: Weather not found
type: string
example: Not found

Then in components/schemas , we’ll define the 200 schema.

Before we describe the response in the components object, it might be helpful to review what the
weather response from the OpenWeatherMap API looks like. The JSON response contains multiple

nested objects at various levels.

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 308

{
"coord": {

"lon": 145.77,
"lat": -16.92

},
"weather": [

{
"id": 803,
"main": "Clouds",
"description": "broken clouds",
"icon": "04n"

}
],
"base": "cmc stations",
"main": {

"temp": 293.25,
"pressure": 1019,
"humidity": 83,
"temp_min": 289.82,
"temp_max": 295.37,
"sea_level": 984,
"grnd_level": 990

},
"wind": {

"speed": 5.1,
"deg": 150

},
"clouds": {

"all": 75
},
"rain": {

"3h": 3
},
"snow": {

"3h": 6
},
"dt": 1435658272,
"sys": {

"type": 1,
"id": 8166,
"message": 0.0166,
"country": "AU",
"sunrise": 1435610796,
"sunset": 1435650870

},
"id": 2172797,
"name": "Cairns",
"cod": 200

}

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 309

There are a couple of ways to go about describing this response. You could create a long description that
contains all the hierarchy reflected. One challenge with this approach, however, is that it’s difficult to keep
all the levels straight. With so many nested objects, it’s dizzying and confusing. Additionally, it’s easy to
make mistakes. Worst of all, you can’t re-use the individual objects. This undercuts one of the main
reasons for storing this object in components in the first place.

Another approach is to make each object its own entity in the components . Whenever an object contains
an object, add a $ref value that points to the new object. This way, the objects remain shallow (rather
than having multiple levels of nesting), and you won’t get lost in a sea of confusing sublevels. (If there’s no
sub-object, just provide the description directly, without using $ref .

Here’s the description of the 200 response for the weather endpoint. I included the paths tag to
maintain some context:

Responses object with components documentation:

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 310

paths:
/weather:

get:
tags:
- Current Weather Data
summary: "Call current weather data for one location"
description: "Access current weather data for any location on Earth in

cluding over 200,000 cities! Current weather is frequently updated based on
global models and data from more than 40,000 weather stations."

operationId: CurrentWeatherData
parameters:

- $ref: '#/components/parameters/q'
- $ref: '#/components/parameters/id'
- $ref: '#/components/parameters/lat'
- $ref: '#/components/parameters/lon'
- $ref: '#/components/parameters/zip'
- $ref: '#/components/parameters/units'
- $ref: '#/components/parameters/lang'
- $ref: '#/components/parameters/mode'

responses:
200:

description: Successful response
content:

application/json:
schema:

$ref: '#/components/schemas/200'
404:

description: Not found response
content:

text/plain:
schema:

title: Weather not found
type: string
example: Not found

components:

parameters:
not shown for the sake of brevity -- see the earlier code block for de

tails
...

schemas:
200:

title: Successful response
type: object
properties:

coord:
$ref: '#/components/schemas/Coord'

weather:

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 311

type: array
items:

$ref: '#/components/schemas/Weather'
description: (more info Weather condition codes)

base:
type: string
description: Internal parameter
example: cmc stations

main:
$ref: '#/components/schemas/Main'

visibility:
type: integer
description: Visibility, meter
example: 16093

wind:
$ref: '#/components/schemas/Wind'

clouds:
$ref: '#/components/schemas/Clouds'

rain:
$ref: '#/components/schemas/Rain'

snow:
$ref: '#/components/schemas/Snow'

dt:
type: integer
description: Time of data calculation, unix, UTC
format: int32
example: 1435658272

sys:
$ref: '#/components/schemas/Sys'

id:
type: integer
description: City ID
format: int32
example: 2172797

name:
type: string
example: Cairns

cod:
type: integer
description: Internal parameter
format: int32
example: 200

Coord:
title: Coord
type: object
properties:

lon:
type: number
description: City geo location, longitude
example: 145.77000000000001

lat:

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 312

type: number
description: City geo location, latitude
example: -16.920000000000002

Weather:
title: Weather
type: object
properties:

id:
type: integer
description: Weather condition id
format: int32
example: 803

main:
type: string
description: Group of weather parameters (Rain, Snow, Extreme et

c.)
example: Clouds

description:
type: string
description: Weather condition within the group
example: broken clouds

icon:
type: string
description: Weather icon id
example: 04n

Main:
title: Main
type: object
properties:

temp:
type: number
description: 'Temperature. Unit Default: Kelvin, Metric: Celsius,

Imperial: Fahrenheit.'
example: 293.25

pressure:
type: integer
description: Atmospheric pressure (on the sea level, if there is n

o sea_level or grnd_level data), hPa
format: int32
example: 1019

humidity:
type: integer
description: Humidity, %
format: int32
example: 83

temp_min:
type: number
description: 'Minimum temperature at the moment. This is deviatio

n from current temp that is possible for large cities and megalopolises geog
raphically expanded (use these parameter optionally). Unit Default: Kelvin,
Metric: Celsius, Imperial: Fahrenheit.'

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 313

example: 289.81999999999999
temp_max:

type: number
description: 'Maximum temperature at the moment. This is deviatio

n from current temp that is possible for large cities and megalopolises geog
raphically expanded (use these parameter optionally). Unit Default: Kelvin,
Metric: Celsius, Imperial: Fahrenheit.'

example: 295.37
sea_level:

type: number
description: Atmospheric pressure on the sea level, hPa
example: 984

grnd_level:
type: number
description: Atmospheric pressure on the ground level, hPa
example: 990

Wind:
title: Wind
type: object
properties:

speed:
type: number
description: 'Wind speed. Unit Default: meter/sec, Metric: meter/s

ec, Imperial: miles/hour.'
example: 5.0999999999999996

deg:
type: integer
description: Wind direction, degrees (meteorological)
format: int32
example: 150

Clouds:
title: Clouds
type: object
properties:

all:
type: integer
description: Cloudiness, %
format: int32
example: 75

Rain:
title: Rain
type: object
properties:

3h:
type: integer
description: Rain volume for the last 3 hours
format: int32
example: 3

Snow:
title: Snow
type: object

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 314

properties:
3h:

type: number
description: Snow volume for the last 3 hours
example: 6

Sys:
title: Sys
type: object
properties:

type:
type: integer
description: Internal parameter
format: int32
example: 1

id:
type: integer
description: Internal parameter
format: int32
example: 8166

message:
type: number
description: Internal parameter
example: 0.0166

country:
type: string
description: Country code (GB, JP etc.)
example: AU

sunrise:
type: integer
description: Sunrise time, unix, UTC
format: int32
example: 1435610796

sunset:
type: integer
description: Sunset time, unix, UTC
format: int32
example: 1435650870

I’ll explain a bit more in the next sections how to describe the response. In looking at the above code, you
may have noticed that not only can you use $ref properties in other parts of your spec but also within
components too.

Notice how the schema definition includes an example property for each element? Swagger UI will take
this example and use it to dynamically build a full code sample in the Responses section in the Swagger
UI output. Thus, you don’t need big chunks of code for the sample responses in your spec. Instead, these
sample responses get built automatically from the schema. It’s one of the neat things about Swagger UI.
This way, your schema documentation and sample response remain consistent.

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 315

Describing a schema
For most of the sections in components , you follow the same object descriptions as detailed in the rest of
the spec. However, when describing a schema object, you use standard keywords and terms from the
JSON Schema , specifically from the JSON Schema Specification Wright Draft 00 .

In other words, you aren’t merely using terms defined by the OpenAPI spec to describe the models for your
JSON. As you describe your JSON models (the data structures for input and output objects), the
terminology in the OpenAPI spec feeds into the larger JSON definitions and description language for
modeling JSON. The OpenAPI’s usage of the JSON Schema is just a subset of the full JSON Schema.

The OpenAPI specification doesn’t attempt to document how to model JSON schemas. This would be
redundant with what’s already documented in the JSON Schema site and outside of the scope of the
OpenAPI spec. Therefore you might need to consult JSON Schema for more details. (One other helpful
tutorial is Advanced Data from API Handyman.)

To describe your JSON objects, you might use the following identifiers:

• title

• multipleOf

• maximum

• exclusiveMaximum

• minimum

• exclusiveMinimum

• maxLength

• minLength

• pattern

• maxItems

• minItems

• uniqueItems

• maxProperties

• minProperties

• required

• enum

• type

• allOf

• oneOf

• anyOf

• not

• items

• properties

• additionalProperties

• description

• format

• default

These data types are also available:

• integer

• long

• float

• double

• string

• byte

• binary

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 316

http://json-schema.org/
https://tools.ietf.org/html/draft-wright-json-schema-00
http://json-schema.org/
http://json-schema.org/
http://apihandyman.io/writing-openapi-swagger-specification-tutorial-part-4-advanced-data-modeling/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#data-types

• boolean

• date

• dateTime

• password

When you start documenting your own schema, start by looking in the OpenAPI’s schema object , and
then consult the JSON Schema if something isn’t covered.

Additionally, look at some example schemas. You can view 3.0 examples here . I usually find a spec that
resembles what I’m trying to represent and mimic the same properties and structure.

The schema object in 3.0 differs slightly from the schema object in 2.0 — see this post on Nordic APIs
for some details on what’s new. However, example schemas from 2.0 specs (which are a lot more
abundant online) would probably also be helpful as long as you just look at the schema definitions and not
the rest of the spec.

A way to cheat – automatically generate the schema from JSON
using Stoplight
Describing a JSON response can be complicated and confusing. Fortunately, there’s a somewhat easy
workaround. To be honest, this is the approach I use when I’m documenting JSON responses. With the
Stoplight Studio Editor, you can automatically generate the specification schema syntax from a sample
response. See this section in the Stoplight getting started tutorial: Step 5: Enter the responses and
response schema information (p. 213).

Using GUI editors to work with the specification code
At this point, you’re probably thinking how impractical and error-prone it’s going to be as you work directly
in the YAML code like this. For this reason, several companies have developed GUI editors to make it
easier to work with the specification code. In particular, check out Stoplight (p. 195), which provides an
editor that lets you toggle between code and a GUI display. Smartbear also offers SwaggerHub (p. 230),
which doesn’t necessarily provide a GUI but which gives you inline commenting and versioning tools. (Note
that both Stoplight and Smartbear are sponsors of the site, but I would mention them here anyway.)

View the Appearance in Swagger UI
Copy the following code and paste it into the Swagger Editor below your openapi , info and servers

objects:

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 317

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#schemaObject
https://tools.ietf.org/html/draft-wright-json-schema-00
https://github.com/OAI/OpenAPI-Specification/tree/master/examples/v3.0
https://nordicapis.com/whats-new-in-openapi-3-0/#jsonandotherschema
https://github.com/OAI/OpenAPI-Specification/tree/master/examples/v2.0

paths:
/weather:

get:
tags:
- Current Weather Data
summary: "Call current weather data for one location"
description: "Access current weather data for any location on Earth in

cluding over 200,000 cities! Current weather is frequently updated based on
global models and data from more than 40,000 weather stations."

operationId: CurrentWeatherData
parameters:

- $ref: '#/components/parameters/q'
- $ref: '#/components/parameters/id'
- $ref: '#/components/parameters/lat'
- $ref: '#/components/parameters/lon'
- $ref: '#/components/parameters/zip'
- $ref: '#/components/parameters/units'
- $ref: '#/components/parameters/lang'
- $ref: '#/components/parameters/mode'

responses:
200:

description: Successful response
content:

application/json:
schema:

$ref: '#/components/schemas/200'
404:

description: Not found response
content:

text/plain:
schema:

title: Weather not found
type: string
example: Not found

components:

parameters:
q:

name: q
in: query
description: "**City name**. *Example: London*. You can call by city n

ame, or by city name and country code. The API responds with a list of resul
ts that match a searching word. For the query value, type the city name and
optionally the country code divided by a comma; use ISO 3166 country codes."

schema:
type: string

id:
name: id
in: query

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 318

description: "**City ID**. *Example: `2172797`*. You can call by city
ID. The API responds with the exact result. The List of city IDs can be down
loaded [here](http://bulk.openweathermap.org/sample/). You can include multi
ple cities in this parameter — just separate them by commas. The limi
t of locations is 20. *Note: A single ID counts as a one API call. So, if yo
u have 3 city IDs, it’s treated as 3 API calls.*"

schema:
type: string

lat:
name: lat
in: query
description: "**Latitude**. *Example: 35*. The latitude coordinate of

the location of your interest. Must use with `lon`."
schema:

type: string

lon:
name: lon
in: query
description: "**Longitude**. *Example: 139*. Longitude coordinate of t

he location of your interest. Must use with `lat`."
schema:

type: string

zip:
name: zip
in: query
description: "**Zip code**. Search by zip code. *Example: 95050,us*. P

lease note that if the country is not specified, the search uses USA as a de
fault."

schema:
type: string

units:
name: units
in: query
description: '**Units**. *Example: imperial*. Possible values: `standa

rd`, `metric`, and `imperial`. When you do not use the `units` parameter, th
e format is `standard` by default.'

schema:
type: string
enum: [standard, metric, imperial]
default: "imperial"

lang:
name: lang
in: query
description: '**Language**. *Example: en*. You can use lang parameter

to get the output in your language. We support the following languages that
you can use with the corresponded lang values: Arabic - `ar`, Bulgarian - `b

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 319

g`, Catalan - `ca`, Czech - `cz`, German - `de`, Greek - `el`, English - `e
n`, Persian (Farsi) - `fa`, Finnish - `fi`, French - `fr`, Galician - `gl`,
Croatian - `hr`, Hungarian - `hu`, Italian - `it`, Japanese - `ja`, Korean
- `kr`, Latvian - `la`, Lithuanian - `lt`, Macedonian - `mk`, Dutch - `nl`,
Polish - `pl`, Portuguese - `pt`, Romanian - `ro`, Russian - `ru`, Swedish
- `se`, Slovak - `sk`, Slovenian - `sl`, Spanish - `es`, Turkish - `tr`, Ukr
ainian - `ua`, Vietnamese - `vi`, Chinese Simplified - `zh_cn`, Chinese Trad
itional - `zh_tw`.'

schema:
type: string
enum: [ar, bg, ca, cz, de, el, en, fa, fi, fr, gl, hr, hu, it, ja, k

r, la, lt, mk, nl, pl, pt, ro, ru, se, sk, sl, es, tr, ua, vi, zh_cn, zh_tw]
default: "en"

mode:
name: mode
in: query
description: "**Mode**. *Example: html*. Determines the format of the

response. Possible values are `xml` and `html`. If the mode parameter is emp
ty, the format is `json` by default."

schema:
type: string
enum: [json, xml, html]
default: "json"

schemas:
200:

title: Successful response
type: object
properties:

coord:
$ref: '#/components/schemas/Coord'

weather:
type: array
items:

$ref: '#/components/schemas/Weather'
description: (more info Weather condition codes)

base:
type: string
description: Internal parameter
example: cmc stations

main:
$ref: '#/components/schemas/Main'

visibility:
type: integer
description: Visibility, meter
example: 16093

wind:
$ref: '#/components/schemas/Wind'

clouds:
$ref: '#/components/schemas/Clouds'

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 320

rain:
$ref: '#/components/schemas/Rain'

snow:
$ref: '#/components/schemas/Snow'

dt:
type: integer
description: Time of data calculation, unix, UTC
format: int32
example: 1435658272

sys:
$ref: '#/components/schemas/Sys'

id:
type: integer
description: City ID
format: int32
example: 2172797

name:
type: string
example: Cairns

cod:
type: integer
description: Internal parameter
format: int32
example: 200

Coord:
title: Coord
type: object
properties:

lon:
type: number
description: City geo location, longitude
example: 145.77000000000001

lat:
type: number
description: City geo location, latitude
example: -16.920000000000002

Weather:
title: Weather
type: object
properties:

id:
type: integer
description: Weather condition id
format: int32
example: 803

main:
type: string
description: Group of weather parameters (Rain, Snow, Extreme et

c.)
example: Clouds

description:

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 321

type: string
description: Weather condition within the group
example: broken clouds

icon:
type: string
description: Weather icon id
example: 04n

Main:
title: Main
type: object
properties:

temp:
type: number
description: 'Temperature. Unit Default: Kelvin, Metric: Celsius,

Imperial: Fahrenheit.'
example: 293.25

pressure:
type: integer
description: Atmospheric pressure (on the sea level, if there is n

o sea_level or grnd_level data), hPa
format: int32
example: 1019

humidity:
type: integer
description: Humidity, %
format: int32
example: 83

temp_min:
type: number
description: 'Minimum temperature at the moment. This is deviatio

n from current temp that is possible for large cities and megalopolises geog
raphically expanded (use these parameter optionally). Unit Default: Kelvin,
Metric: Celsius, Imperial: Fahrenheit.'

example: 289.81999999999999
temp_max:

type: number
description: 'Maximum temperature at the moment. This is deviatio

n from current temp that is possible for large cities and megalopolises geog
raphically expanded (use these parameter optionally). Unit Default: Kelvin,
Metric: Celsius, Imperial: Fahrenheit.'

example: 295.37
sea_level:

type: number
description: Atmospheric pressure on the sea level, hPa
example: 984

grnd_level:
type: number
description: Atmospheric pressure on the ground level, hPa
example: 990

Wind:
title: Wind

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 322

type: object
properties:

speed:
type: number
description: 'Wind speed. Unit Default: meter/sec, Metric: meter/s

ec, Imperial: miles/hour.'
example: 5.0999999999999996

deg:
type: integer
description: Wind direction, degrees (meteorological)
format: int32
example: 150

Clouds:
title: Clouds
type: object
properties:

all:
type: integer
description: Cloudiness, %
format: int32
example: 75

Rain:
title: Rain
type: object
properties:

3h:
type: integer
description: Rain volume for the last 3 hours
format: int32
example: 3

Snow:
title: Snow
type: object
properties:

3h:
type: number
description: Snow volume for the last 3 hours
example: 6

Sys:
title: Sys
type: object
properties:

type:
type: integer
description: Internal parameter
format: int32
example: 1

id:
type: integer
description: Internal parameter
format: int32

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 323

example: 8166
message:

type: number
description: Internal parameter
example: 0.0166

country:
type: string
description: Country code (GB, JP etc.)
example: AU

sunrise:
type: integer
description: Sunrise time, unix, UTC
format: int32
example: 1435610796

sunset:
type: integer
description: Sunset time, unix, UTC
format: int32
example: 1435650870

securitySchemes:
app_id:

type: apiKey
description: API key to authorize requests.
name: appid
in: query

You should see the following populate in the Swagger UI display:

Responses object defined in components

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 324

In the Response section, observe how the Example Value code has been dynamically built from the
example values in the schema to show a sample response.

Also, click the Model link to see how the descriptions of each element appear in an expandable/collapsible
way:

Descriptions appear in the Model

The Models section – why it exists, how to hide it
You’ll also notice another “Models” section below all the other paths:

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 325

By default, Swagger UI displays each object in components in a section called “Models” at the end of
your Swagger UI display. If you consolidate all schemas into a single object, without using the $ref

property to point to new objects, you will see just one object in Models. If you split out the objects, then
you see each object listed separately, including the object that contains all the references.

Because I want to re-use objects, I’m going to define each object in components separately. As a result,
the Models section looks like this:

Why is there a Models section here? Apparently, it was added by popular request because the online
Swagger Editor showed the display, and many users asked for it to be incorporated into Swagger UI.

You don’t need this Models section in Swagger UI because both the request and response sections of
Swagger UI provide a “Model” link that lets the user toggle to this view.

To hide the Models section, you can add the parameter defaultModelsExpandDepth: -1 parameter in
your Swagger UI project. I provide a Swagger UI tutorial (p. 222) in an upcoming section in this course, with
details about the Swagger UI parameters where you could configure this parameter.

Security definitions
The components object also contains a securitySchemes object that defines the authorization
method used with each path . Rather than dive into the security configuration details here, I explore
security in Step 6: The security object (p. 327).

Step 5: The components object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 326

https://idratherbewriting.com/assets/files/swagger/index.html
https://idratherbewriting.com/assets/files/swagger/index.html
https://github.com/swagger-api/swagger-ui/blob/master/docs/usage/configuration.md#parameters
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securitySchemeObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securitySchemeObject

Step 6: The security object (OpenAPI
tutorial)

Swagger UI provides a “Try it out” feature that lets users submit actual requests. To submit requests that
are authorized by your API server, the spec must contain security information that will authorize the
request. The security object specifies the security or authorization protocol used when submitting
requests.

Which security scheme?
REST APIs can use different security approaches to authorize requests. I explored the most common
authorization methods in Authentication and authorization requirements (p. 393). Swagger UI supports four
authorization schemes:

• API key
• HTTP
• OAuth 2.0
• Open ID Connect

In this step of the OpenAPI tutorial, we’ll use the API key approach, since this is what the
OpenWeatherMap API uses. If your API uses OAuth 2.0 (p. 397) or another method, you’ll need to read the
Security Scheme information for details on how to configure it. However, all the security methods mostly
follow the same pattern.

API key authorization
The sample OpenWeatherMap API we’re using in this course uses an API key passed in the URL’s query
string (rather than in the header). If you submit a request without the API key in the query string (or without
a valid API key), the server denies the request. For details on the OpenWeatherMap’s authorization model,
see How to start .

Step 6: The security object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 327

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#security-scheme-object
https://openweathermap.org/appid#use

Security object
At the root level of your OpenAPI document, add a security object that defines the global method for the
API’s security:

security:
- app_id: []

app_id is the arbitrary name we gave to this security scheme in our securitySchemes object. We could
have named it anything. We’ll define app_id in components .

All paths will use the app_id security method by default unless it’s overridden by a value at the path

object level (p. 291). For example, at the path level, we could overwrite the global security method as
follows:

/current:
get:

...
security:
- some_other_key: []

Then the weather path would use the some_other_key security method, while all other paths would use
the globally declared security, app_id .

If you get stuck, see the sample OpenAPI spec here for the fully working sample. This will help you spot
and troubleshoot indentation or other errors.

Referencing the security scheme in components
In the components object (p. 302), add a securitySchemes object that defines details about the
security scheme the API uses:

components:
...

securitySchemes:
app_id:

type: apiKey
description: API key to authorize requests.
name: appid
in: query

Properties you can use for each item in the securitySchemes object include the following:

• type : The authorization protocol — apiKey , http , oauth2 , or openIdConnect .
• description : A description of your security method. In Swagger UI, this description appears in

the Authorization modal (see the screenshot below). CommonMark Markdown is allowed.
• name : The name of the header value submitted in the request. Used only for apiKey type

security.
• in : Specifies where the security key is applied. Options are query , header or cookie . Used

only for apiKey type security.
• scheme . Used with http type authorization.

Step 6: The security object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 328

https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securitySchemeObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#securitySchemeObject

• bearerFormat . Used with http type authorization.
• flows (object): Used with oauth2 type authorization.
• openIdConnectUrl : Used with openIdConnect type authorization.

View the Appearance in Swagger UI
In Swagger Editor, if you haven’t already done so, insert the security object at the root level:

security:
- app_id: []

And insert the securitySchemes object into components (indented at the same level as parameters

and responses):

components:
parameters:
...
responses:
...

securitySchemes:
app_id:

type: apiKey
description: API key to authorize requests.
name: appid
in: query

Then check out the Swagger UI display. You’ll see an “Authorize” button appear.

Adding security information into the spec

When you click Authorize, the description and other security details appear:

Step 6: The security object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 329

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#oauthFlowsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#oauthFlowsObject

After users enter an API key and click Authorize, the authorization method is set for as many requests as
they want to make. The authorization session expires only when users refresh the page.

Test out how authorization works
Now that we’ve added authorization, let’s try making an actual API request. In the Swagger Editor (the right
pane), click the Authorize button, paste the sample API key shown in the description into the Value field
(or use your own OpenWeatherMap API key (p. 69)), and click Authorize. Then click Close to close the
authorization modal.

In the Current Weather Data section, expand the GET weather endpoint and click Try it out. In the zip
field, enter your zip code and country abbreviation (such as 95050,us), and then click Execute.

When you execute the request, Swagger UI shows you the curl request (p. 80) submitted. For example,
after executing a weather request, the curl is as follows:

curl -X GET "https://api.openweathermap.org/data/2.5/weather?zip=95050%2Cu
s&units=imperial&lang=en&mode=json&appid=APIKEY" -H "accept: application/jso
n"

(Replace APIKEY with your actual API key.)

The &appid=APIKEY" indicates that the API key is being included in the query string, so the request will
be authorized. If you copy the curl submitted, customize the API key, and paste it into the command line,
you’ll see a successful response:

Step 6: The security object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 330

https://idratherbewriting.com/assets/files/swagger/index.html
https://idratherbewriting.com/assets/files/swagger/index.html

Successful curl response

The server response also appears directly in the Swagger UI display, with a link to download it:

Step 6: The security object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 331

{
"coord": {

"lon": -121.96,
"lat": 37.35

},
"weather": [

{
"id": 500,
"main": "Rain",
"description": "light rain",
"icon": "10d"

},
{

"id": 701,
"main": "Mist",
"description": "mist",
"icon": "50d"

}
],
"base": "stations",
"main": {

"temp": 55.24,
"pressure": 1012,
"humidity": 77,
"temp_min": 51.08,
"temp_max": 59

},
"visibility": 16093,
"wind": {

"speed": 5.82,
"deg": 320

},
"rain": {

"1h": 0.25
},
"clouds": {

"all": 40
},
"dt": 1544039760,
"sys": {

"type": 1,
"id": 5122,
"message": 0.0052,
"country": "US",
"sunrise": 1544022470,
"sunset": 1544057391

},
"id": 420006397,
"name": "Santa Clara",
"cod": 200

}

Step 6: The security object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 332

Note that when you implement Swagger UI, if you find that the curl request works but the response doesn’t
appear in Swagger UI, there might be a CORS issue with your API blocking requests from web applications
like Swagger. See Troubleshooting issues with Swagger UI (p. 227) for details.

Step 6: The security object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 333

Step 7: The tags object (OpenAPI
tutorial)

The tags object allows you to arrange the paths (endpoints) into named groups in the Swagger UI
display.

Defining tags at the root level
At the root level, the tags object lists all the tags that are used in the operation objects (which
appear within the paths object, as explained in Step 4: The paths object (p. 291)). Here’s an example of
the tags object for our OpenWeatherMap API:

tags:
- name: Current Weather Data

description: "Get current weather details"

We have just one tag, but you could have as many as you want (if you have a lot of endpoints, it would
make sense to create multiple tags to group them). You can list both the name and a description for
each tag. The description appears as a subtitle for the tag name in the Swagger UI display.

If you get stuck, see the sample OpenAPI spec here for the fully working sample. This will help you spot
and troubleshoot indentation or other errors.

Tags at the path object level
The tags object at the root level should list all tags (groups) that you want in your API. Then in each path
object under paths , you list the tag you want that path grouped under.

By “root level,” I mean the first level in the OpenAPI document. This level is also referred to as the global
level because some object properties declared here (namely servers and security) are applied to each of
the operation objects unless overridden at a lower level.

For example, in the operations object for the /current path, we used the tag Current Weather Data :

Step 7: The tags object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 334

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#tagObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#tagObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#operationObject
https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml

paths:
/weather:

get:
tags:
- Current Weather Data

This tag is defined at the global level, so the /weather path will be grouped here.

View the Appearance in Swagger UI
Add the following to the root level of your OpenAPI document in Swagger Editor:

tags:
- name: Current Weather Data

description: "Get current weather details"

Observe how the description appears next to the collapsed Current Weather Data section.

Tags defined at the root level

All paths that have the same tag are grouped together in the display. For example, paths that have the
Current Weather Data tag will be grouped together under the title Current Weather Data . Each

group title is a collapsible/expandable toggle.

Step 7: The tags object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 335

The order of the tags in the tags object at the root level determines their order in Swagger UI.
Additionally, the descriptions appear to the right of the tag name.

In our sample OpenAPI spec, tags don’t seem all that necessary since we’re just documenting one path/
endpoint. (Additionally, I configured the Swagger UI demo (p. 240) to expand the section by default.) But
imagine if you had a robust API with 30+ paths to describe. You would certainly want to organize the paths
into logical groups for users to navigate.

Step 7: The tags object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 336

https://idratherbewriting.com/assets/files/swagger/index.html
https://idratherbewriting.com/assets/files/swagger/index.html

Step 8: The externalDocs object
(OpenAPI tutorial)

The externalDocs object lets you link to external documentation. You can also provide links to
external docs in the paths object.

Example externalDocs object
Here’s an example of an externalDocs object:

externalDocs:
description: API Documentation
url: https://openweathermap.org/api

Note that this documentation should relate to the API as a whole. To link a specific parameter to more
documentation, you can add an externalDocs object to the operation object, as noted in Operation
objects (p. 291) section in Step 4: The paths object.

If you get stuck, see the sample OpenAPI spec here for the fully working sample. This will help you spot
and troubleshoot indentation or other errors.

View the Appearance in Swagger UI
Add the above code to the root level of your OpenAPI document in Swagger UI.

When you do, in the Swagger UI, a link appears after the API description along with other info about the
API:

Step 8: The externalDocs object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 337

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#external-documentation-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md#external-documentation-object
https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml

External documentation link

At this point, you can probably anticipate some challenges with integrating Swagger UI with the rest of your
documentation. It seems that you will likely have two outputs and a semi-fragmented user experience. The
externalDocs object at least gives you a predictable place to link back to your other conceptual topics

(p. 358). See Integrating Swagger UI with the rest of your docs (p. 241) for more information on integration
strategies.

Seeing the finished result
Now that we’ve completed all the steps in the tutorial, we’re finished building our OpenAPI specification
document.

You can see the complete specification document here: openapi_openweathermap.yml .

Here’s the specification document rendered by Swagger UI:

Step 8: The externalDocs object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 338

https://idratherbewriting.com/docs/openapi_spec_and_generated_ref_docs/openapi_openweathermap.yml

Try executing a request in the version above and look at the result. In the result, locate the temp value in
the main object. Then take a break by going outside and evaluate whether the temperature outside
matches the response.

You can insert any valid path to an OpenAPI specification document in the “Explore” box in Swagger UI
(assuming the version of Swagger UI supports your OpenAPI version), and it will display the API
documentation. For example, you could insert https://petstore.swagger.io/v2/swagger.json (then
click Explore) and it would show the Petstore API.

Step 8: The externalDocs object (OpenAPI tutorial) PDF last generated: August 27, 2023

Documenting REST APIs Page 339

https://idratherbewriting.com/assets/files/swagger/index.html
https://idratherbewriting.com/assets/files/swagger/index.html

Activity: Create an OpenAPI
specification document
The OpenAPI tutorial (p. 272) walked you through 8 steps in building the OpenAPI specification document.
Now it’s your turn to practice first editing and then creating an OpenAPI specification document.

Activity: Edit an existing OpenAPI specification document
Use this simple Sunrise and sunset times API to get more familiar with the process of creating an
OpenAPI specification file. This Sunrise and sunset times API doesn’t require authentication with requests,
so it removes some of the more complicated authentication workflows (the spec file doesn’t require the
security object (p. 327)). In this activity, you’ll edit some of the existing values in an OpenAPI specification
document that’s already written.

To edit the OpenAPI specification file:

1. Copy the code from this pre-built OpenAPI specification .
2. Paste the YAML content into the Swagger Editor .
3. Identify each of the root-level objects of the OpenAPI spec:

• Step 1: The openapi object (p. 282)
• Step 2: The info object (p. 285)
• Step 3: The servers object (p. 288)
• Step 4: The paths object (p. 291)
• Step 5: The components object (p. 302)
• Step 8: The externalDocs object (p. 337)

4. In the info object (near the top), make some changes to the description property and see
how the visual display in the right column gets updated.

5. In the parameters object, make some changes to one of the description properties and see
how the visual editor gets updated.

6. Look for the $ref pointer in the responses object. Identify what it points to in components .
7. Change some spacing in a way that makes the spec invalid (such as inserting a space before

info), and look at the error that appears. Then revert the invalid space.
8. Expand the Get section and click Try it out. Then click Execute and look at the response.

Create the OpenAPI specification document for an API of your
choosing
In an earlier activity, you found an open-source API project (p. 686) with some documentation needs. Try
creating an OpenAPI specification for this API. Depending on the API you choose to work with, you could
potentially use this specification document as part of your portfolio.

If your open-source project doesn’t have an API, or if it’s API already has an OpenAPI specification, find
another API (perhaps from this list of 100+ APIs (p. 536)) and create the OpenAPI specification.

Go through each step of the OpenAPI specification tutorial to build out the specification document:

• Step 1: The openapi object (p. 282)
• Step 2: The info object (p. 285)
• Step 3: The servers object (p. 288)
• Step 4: The paths object (p. 291)

Activity: Create an OpenAPI specification document PDF last generated: August 27, 2023

Documenting REST APIs Page 340

https://sunrise-sunset.org/api
https://idratherbewriting.com/assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml
https://editor.swagger.io/

• Step 5: The components object (p. 302)
• Step 6: security object (p. 327)
• Step 7: The tags object (p. 334)
• Step 8: The externalDocs object (p. 337)

Validate your specification document in the Swagger Editor . Execute a request to make sure it’s working
correctly.

Activity: Create an OpenAPI specification document PDF last generated: August 27, 2023

Documenting REST APIs Page 341

https://swagger.io/swagger-editor/

Chapter 6: Testing API documentation
Testing your documentation is critical to providing accurate, thorough information. With API and developer
docs, due to the high level of complexity and engineering requirements, technical writers might be inclined
to simply take information that engineers give them and incorporate it wholesale, without personally testing
it. Merely playing an editorial/publishing function, however, can reduce your role to that of an engineer’s
secretary.

Chapter sections:

Overview of testing your docs.. 343

Set up a test environment .. 345

Test all instructions yourself... 348

Test your assumptions ... 353

Activity: Test your project's documentation... 357

Chapter 6: Testing API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 342

Overview of testing your docs
Up until now, you’ve been focused intensely on API documentation. In this section, I’ll talk about an aspect
of API documentation that is perhaps more applicable to all types of documentation but which is especially
relevant to developer docs, where testing and experimenting with the products and services is not always
straightforward.

Walking through all the steps in documentation yourself is critical to producing high-quality, accurate
instructions. The more complex setup you have, the more difficult it can be to test all of the steps. Still, if
you want to move beyond merely editing and publishing engineer-written documentation, you’ll need to
build sample apps or set up the systems necessary to test the API docs. These tests should mirror what
actual users will do as closely as possible.

Leveraging test cases from QA
When you start setting up tests for your documentation, you typically interact with the quality assurance
(QA) team. Developers might be helpful too, but the quality assurance team already has, presumably, a test
system in place, usually a test server, and test cases. “Test cases” are the various scenarios that the
product needs to be tested against.

You’ll want to make friends with the quality assurance team and find out best practices for testing
scenarios relevant to your documentation. They can usually help you get started in an efficient way, and
they’ll be excited to have more eyes on the system. If you find bugs, you can either forward them to QA or
log them yourself in the team’s issue tracker.

If you can hook into a set of test cases that QA teams use to run tests, you can often get a jump start on
the tasks you’re documenting. Good test cases usually list the steps required to produce a result, and the
scripts can inform the documentation you write.

Ways to test content
Testing your API doc content is so critical, I’ve created an entire section devoted to this topic. This section
includes three topics:

• Set up a test environment (p. 345)
• Test all instructions yourself (p. 348)
• Test your assumptions (p. 353)

Overview of testing your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 343

Photo from Flickr , CC BY 2.0 — City water testing laboratory, 1948. When I think about testing docs, I
like to think of myself as a scientist in a laboratory, carefully setting up tests to measure reactions and
outcomes.

Overview of testing your docs PDF last generated: August 27, 2023

Documenting REST APIs Page 344

https://flic.kr/p/6Grete
https://flic.kr/p/6Grete
https://flic.kr/p/6Grete
https://creativecommons.org/licenses/by/2.0/legalcode

Set up a test environment
The first step to testing your instructions is to set up a test environment. Without this test environment, it
will be difficult to make any progress in testing your instructions.

Kinds of test environments
The kind of test environment you set up depends on your product and company. In the following sections, I
explain testing setup details for different scenarios:

• Testing on a test server (p. 345)
• Testing local builds (p. 345)
• Testing sample apps in specific programming languages (p. 346)
• Testing hardware products (p. 346)

Testing on a test server
The easiest way to test an API is by making requests to a test server where the API service is configured.
QA can usually help you with access to the test server. With the test server, you’ll need to get the
appropriate URLs, login IDs, roles, etc. Ask QA if there’s anything you shouldn’t alter or delete because
sometimes the same testing environment is shared among groups.

Additionally, make sure your logins correspond with the permissions users will have. If you have an admin
login, you might not experience the same responses as a regular user.

You may also need to construct certain files necessary to configure a server with the settings you want to
test. Understanding exactly how to create the files, the directories to upload them to, the services to stop
and restart, and so on, can require a lot of initial investigation.

Exactly what you have to do depends on your product, the environment, the company, and security
restrictions, etc. No two companies are alike. Sometimes it’s a pain to set up your test system, and other
times it’s a breeze.

At one company, to gain access to the test system, we had to jump over a series of security hurdles. For
example, connections to the web services from internal systems required developers to go through an
intermediary server. To connect to the web server test instance, you had to SSL to the intermediary server,
and then connect from the intermediary to the web server. (This wasn’t something users would need to do,
just internal engineers.)

The first time I attempted this, I asked a developer to help me set this up. I carefully observed the
commands and steps he went through on my computer. I later documented it for future knowledge
purposes, and other engineers used my doc to set up the same access.

Testing local builds
Many times, developers work on a local instance of the system before pushing it to a test server. In other
words, they build the app or web server entirely on their own machines and run through test code there,
long before pushing it to a test server. If you’re plugged into the project this early, great — you might have
more influence on the API’s design and can influence changes as needed. To build code locally, you may
need to install special utilities or frameworks, become familiar with various command line operations to
build the code, and more.

Set up a test environment PDF last generated: August 27, 2023

Documenting REST APIs Page 345

If you can get the local builds running on your own machine, it’s usually worthwhile because it can
empower you to document content ahead of time, long before the release.

If it’s too complicated to set up a local environment, you can ask an engineer to install the local system on
your machine. Sometimes developers like to just sit down at your computer and take over the task of
installing and setting up a system. They can work quickly on the command terminal and troubleshoot
systems or quickly proceed through installation commands that would otherwise be tedious to walk you
through.

Many times, developers aren’t too motivated to set up your system, so they may give you a quick
explanation about installing this and that tool. But never let a developer say “Oh, you just do a, b, and c.”
Then you go back to your desk and nothing works, or it’s much more complicated than he or she said it
would be. It can take persistence to get everything set up and working the first time.

If a developer is knee-deep in sprint tasks and heavily backlogged, he or she may not have time to help you
properly get set up. Be patient and ask the developer to indicate a good time to go over the setup.

With local builds, setting up a functional system is much more challenging than using a test server. Still, if
you want to write good documentation, setting up a test system is essential. Good developers know and
recognize this need, and so they’re usually accommodating (to an extent) in helping set up a test
environment to get you started.

Testing sample apps
Depending on the product, you might also have a sample app (p. 464) or SDK (p. 480) in your code
deliverables. You often include a sample app or SDK (or multiple apps and SDKs in various programming
languages) with a product to demonstrate how to integrate and call the API. If you have a test app that
integrates the API, you’ll probably need to install some programs or frameworks on your own machine to
get the sample app working.

For example, you might have to build a sample Java app to interact with the system — so you’d likely need
to have the Java Development Kit and a Java IDE installed on your computer to make it work. If the app is
in PHP, you probably need to install PHP. Or if it’s an Android app, you will probably need to download
Android Studio and connect it to virtual (or actual) device.

There are usually fewer instructions about how to run a sample app because developers assume users will
already have these environments set up on their machines. (It wouldn’t make sense for a user to choose
the Java app if they didn’t already have a Java environment, for example.)

The sample app is among the most helpful pieces of documentation. As you set up the sample app and get
it working, look for opportunities to add documentation in the code comments. At the very least, get the
sample app working on your own computer and include the setup steps in your documentation.

Testing hardware products
If you’re documenting a hardware product, you’ll want to secure a device that has the right build installed
on it. Big companies often have prototype devices available. At some companies, there may be kiosks
where you can “flash” (quickly install) a specific build number on the device. Or you may send your device’s
serial number to someone who manages a pool of devices that receive beta-version updates from the
cloud.

Set up a test environment PDF last generated: August 27, 2023

Documenting REST APIs Page 346

With some hardware products, it may be difficult to get a test instance of the product to play with. I once
worked at a government facility documenting a million-dollar storage array. The only time I was allowed to
see the storage array was by signing into a special data server room environment, accompanied by an
engineer, who wouldn’t dream of letting me actually touch the array, much less swap out a storage disk,
run commands in the terminal, replace a RAID, or do some other task (for which I was writing instructions).

I learned early on to steer my career towards jobs where I could actually get my hands on the product,
usually software code, and play around with it. When I was working at Amazon, I had a drawer full of Fire
TV devices and prototypes. I happened to work in the Amazon devices section, so I had almost every
model of Fire TV, Echo Dot, Echo Spot, Echo Show, TVs with Fire OS, and more. Through Android Studio
and Android Debug Bridge (ADB), I would run an app on one of these physical devices to test how it works.
It’s a lot of fun to play around with different devices.

If you’re documenting hardware, you need access to the hardware to provide reliable documentation on
how to use it. You’ll need to understand how to run apps on the device and how to interface with it.
Hopefully, the product is one that you can access to play around with in a direct, hands-on way.

Working at Google, the product I was documenting included Google services, such as Google Maps, Play
Store, and Assistant, embedded directly in the car’s infotainment system. These services are built on the
Android operating system. The group I was in maintained a fleet of vehicles, mostly Volvo Polestars and
XC-90s, with test installs of Android and these Google services. One day I decided to check a fleet car out
and drove it around for a couple of weeks. The experience gave me a much better understanding of the
product, one that I didn’t entirely possess before when I was just writing about the features. I could
experience first-hand in many real situations what the user experience was with the product, and while in
some cases I was underwhelmed, in others I was kind of like, wow, this is cool. I logged about 25 bugs
while I had the car during this time.

If you encounter developer resistance …
Many times developers don’t expect that a technical writer will be doing anything more than just
transcribing and relaying the information given to him or her by engineers. With this mindset, a developer
might not immediately think that you need or want a sample app to test out the calls or other code. You
might need to ask (or even petition) the developers for it.

I’ve found that most of the time, developers respect technical writers much more if the technical writers can
test out the code themselves. Engineers also appreciate any feedback you may have as you run through
the system. Technical writers, along with QA, are usually the first users of the developer’s code.

If a developer or QA person can’t give you access to any such test server or sample code, be suspicious.
How can a development and QA team create and test their code without a sample system where they
expect it to be implemented? And if there’s a sample system, why can’t you also have access so you can
write accurate, thorough documentation on how to use it?

Sometimes developers don’t want to go through the effort of getting something working on your machine,
so you may have to explain more about your purpose and goals in testing. If you run into friction, be
persistent. It might take one or more days to get your test environment set up. For example, it took me
several days to get an app framework to build successfully on my Fire TV device. But once you have a test
system set up, it makes it much easier to create documentation because you can start to answer your own
questions.

Next steps
After you get the test environment set up, it’s time to test your instructions (p. 348).

Set up a test environment PDF last generated: August 27, 2023

Documenting REST APIs Page 347

Test all instructions yourself
After setting up your test environment (p. 345), the next step is to test your instructions. This will likely
involve testing API endpoints with various parameters along with other configurations. Testing all your docs
can be challenging, but it’s where you’ll get the most useful insights when creating documentation.

Benefits of testing your instructions
One benefit of testing your instructions is that you can start to answer your own questions. Rather than
taking the engineer’s word for it, you can run a call, see the response, and learn for yourself. (This assumes
the application is behaving correctly, though, which may not be the case.)

A lot of times, when you discover a discrepancy in what’s supposed to happen, you can confront an
engineer and tell him or her that something isn’t working correctly. Or you can make suggestions for
improving workflows, terms, responses, error messages, etc. You can’t do this if you’re just taking notes
about what engineers say, or if you’re just copying information from wiki specs or engineer-written pages.

When things don’t work, you can identify and log bugs in issue tracking systems such as JIRA. Logging
bugs is helpful to the team overall and increases your credibility with the engineers. It’s also immensely fun
to log a bug against an engineer’s code because it shows that you’ve discovered flaws and errors in what
the “gods of code” have created.

Other times, the bugs are within your documentation. For example, on one project, through testing API
calls I realized I had one of my parameters wrong. Instead of verboseMode , the parameter was simply
verbose . This subtle discrepancy is one of those details you don’t discover unless you test something,

find it doesn’t work, and then set about figuring out what’s wrong.

If you’re testing a REST API, you can submit the test calls using curl (p. 80), Postman (p. 71), or another
REST client. Save the calls so that you can quickly run a variety of scenarios.

When you start to run tests and experiments, you’ll begin to discover what does and does not work. For
example, at one company, after setting up a test system and running some calls, I learned that part of my
documentation was unnecessary. I thought that field engineers would need to configure a database with a
particular code themselves, when it turned out that IT operations would actually be doing this
configuration.

I didn’t realize this until I started to ask how to configure the database, and an engineer said that my
audience wouldn’t be able to do that configuration, so it shouldn’t be in the documentation.

It’s little things like that, which you learn as you’re going through the process yourself, that reinforce the
importance of testing your docs. Testing is vital to writing good developer documentation. Never just take
an engineer’s word for how something works. If you follow this advice and test all your docs, you’ll be
successful in the API doc field. But if you just transcribe what engineers tell you, you’ll basically end up
being an engineer’s secretary. (For more, see my blog post How to avoid being a secretary for engineers
.)

Going through the whole process
In addition to testing individual endpoints and other features, it’s also important to go through the whole
user workflow from beginning to end.

Test all instructions yourself PDF last generated: August 27, 2023

Documenting REST APIs Page 348

https://idratherbewriting.com18/11/19/avoid-being-secretary-for-engineers/

While working at one company, it wasn’t until I built my own app and submitted it to the Appstore that I
discovered some bugs. I was documenting an app template designed for third-party Android developers
building streaming media apps for the Amazon Appstore. To get a better understanding of the developer’s
tasks and process, I needed to be familiar with the steps I was asking developers to do. For me, that meant
building an app and submitting my app to the Appstore — the whole workflow from beginning to end.

To build my sample app, first I had to figure out how to get content for my app. I decided to take the video
recordings of podcasts that we had through the Write the Docs podcast and use that media for the app.

Since the app template didn’t support YouTube as a web host, I downloaded the MP4s from YouTube and
uploaded them directly to my web host. Then I needed to construct the media feed that I would use to
integrate with the app template. The app template could read all the media from a feed by targeting it with
Jayway Jsonpath or XPath expression syntax.

I used Jekyll to build my feed. (You can view my JSON-based feed at podcast.writethedocs.org/fab.json
.) The most challenging part in setting up this feed was configuring the recommendations object. Each
video has some tags . The recommendations object needed to show other videos that have the same
tag. Getting the JSON valid there was challenging, and I relied on some support from the Jekyll forum.

After I had the media and the feed, integrating it into Fire App Builder was easy because, after all, I had
written the documentation for that.

Submitting the app into the Appstore was fun and illuminated parts of the developer’s workflow that I
hadn’t previously understood. You can view the Write the Docs podcast app in the Amazon Appstore
website here .

Here’s what the app screens look like on your Fire TV:

Test all instructions yourself PDF last generated: August 27, 2023

Documenting REST APIs Page 349

http://podcast.writethedocs.org/
http://podcast.writethedocs.org/fab.json
https://www.amazon.com/Id-Rather-Be-Writing-Podcast/dp/B06Y23TNC4/ref=sr_1_1?s=mobile-apps&ie=UTF8&qid=1491708630&sr=1-1&keywords=write+the+docs
https://www.amazon.com/Id-Rather-Be-Writing-Podcast/dp/B06Y23TNC4/ref=sr_1_1?s=mobile-apps&ie=UTF8&qid=1491708630&sr=1-1&keywords=write+the+docs
https://www.amazon.com/Id-Rather-Be-Writing-Podcast/dp/B06Y23TNC4/ref=sr_1_1?s=mobile-apps&ie=UTF8&qid=1491708630&sr=1-1&keywords=write+the+docs

When you select a video, you see a video preview screen:

All seemed to go well, but then I discovered some bugs that I would not have discovered had I not actually
submitted the app into the Appstore. First, I found that device targeting (listing certain features in your
Android manifest to identify which Fire devices your app supports) didn’t work correctly for Fire TV apps.
(This issue wasn’t directly related to the app template, though.)

Test all instructions yourself PDF last generated: August 27, 2023

Documenting REST APIs Page 350

I also discovered other issues. Although developers had tested the app template for many months, they
hadn’t tested pushing apps into the Appstore with the app template. It turns out the template’s in-app
purchases component (not active or configured by default) automatically triggered the Appstore to add a
tag indicating that the app contained in-app purchases.

This in-app-purchasing tag surprised the dev team, and it would have caused a lot of issues if all apps that
third-party developers were building showed this tag.

The developers said users could simply deregister the component from the app. So I modified the doc to
indicate this. Then I tried deregistering the component from the app and submitted a new version, but the
in-app-purchases tag issue persisted.

This experience reinforced to me how vital it is to get your hands on the code you’re documenting and run
it through as real of a situation as you can. It blew my mind that the engineering team did not actually have
an app in the Appstore that they published with this template. I was the only one.

It’s not always possible to run code through real situations, and there are times when I might limit my role
to editing and publishing only, but that’s not the scenario I prefer to work in. I love getting my hands on the
code, trying to make it work in the scenario it was designed for. Really, how else can you write good
documentation?

The team also asserted that the same app could be submitted into the Google Play Appstore. However,
this was an untested assumption. When I submitted my app into the Play Store, Google rejected it due to
missing banner assets declared in the manifest. It also triggered “dangerous permission” warnings. I
relayed the information to engineers, who created JIRA tickets to address the issues. More than just
creating better documentation, this testing allowed me to improve the products I was documenting. (It also
improved my credibility with the engineers.)

This same type of scenario repeats itself frequently with other projects as well. Another engineering team I
was supporting also developed an app template (web instead of Android) for publishing apps in the
Appstore. This tool was designed for non-technical end users and was supposed to be easy. The project
team hadn’t even planned any documentation except for a brief FAQ.

I tested the tool from beginning to end by creating and submitting an app with it. By the time I finished, I
had more than 30 questions along with several significant issues that I had discovered. I uncovered many
previously unknown bugs, called attention to a problematic synchronization issue, brought together teams
from across organizations to troubleshoot some issues, and generally raised my value from mere
documentation writer to more of a power player on multiple teams.

Empowered to test additional features
Testing documentation for developers is difficult because we often just provide reference APIs for users to
integrate into their own apps. We assume that developers already have apps, and so all they need is the
API integration information. But many times you can’t know what issues the API has until you integrate it
into a sample app and use the API in a full scenario from beginning to end.

For example, for general Fire TV users who weren’t using the app template, I also wrote documentation on
how to integrate and send recommendations. But since I didn’t have my own general Fire TV app (not one
built with Fire App Builder) to test this with, I didn’t play around with the code to send recommendations. I
had to take on faith much of my information based on the engineer’s instructions and the feedback we
were getting from beta users.

As you can imagine, I later discovered gaps in the documentation that I needed to address. It turns out
when you, in fact, send recommendations to the Fire TV home screen, Fire TV uses only some of the
recommendations information that you submit. But in my original docs, I didn’t indicate which fields

Test all instructions yourself PDF last generated: August 27, 2023

Documenting REST APIs Page 351

actually get used. This lack of information left developers wondering if they integrated the
recommendations correctly. Unsurprisingly, in our forums, a third-party developer soon asked what he was
doing wrong because a field he was passing seemed to be ignored in the display.

Putting together an app from scratch that leverages all the recommendation API calls requires more effort,
for sure. But to write better documentation, it’s the step I needed to take to ferret out all the potential
issues users would face. If creating the sample app is beyond your skill level, ask the engineers for a demo
app or to schedule a meeting where they will demonstrate the feature in a live way.

Overall, make sure to test the code you’re documenting in as real of a situation as you can. You’ll be
surprised what you discover. Reporting back the issues to your team will make your product stronger and
increase your value to the team.

The pleasures of testing
Testing your instructions makes the tech writing career a lot more engaging. I’d even say that testing all the
docs is what converts tech writing from a dull, semi-isolated career to an engaging, interactive role with
your team and users.

There’s nothing worse than ending up as a secretary for engineers, where your main task is to record what
engineers say, write up notes, send it to them for review, and then listen to their every word as if they’re
emperors who give you a thumbs up or thumbs down. That’s not the kind of technical writing work that
motivates me.

Instead, when I can walk through the instructions myself, and confirm whether they work or not, adjusting
them with more clarity or detail as needed, that’s when things become interesting. (And actually, the more I
learn about the knowledge domain itself — the technology, product landscape, business, and industry, etc.
— the appeal of technical writing increases dramatically.)

In contrast, if you just stick to technical editing, formatting, publishing, and curating, these activities will
likely not fulfill you in your technical writing career (even though these activities are still worthwhile). Only
when you get your synapses firing in the knowledge domain you’re writing in, as well as get your hands
dirty testing and trying out all the steps and processes, does the work of technical writing come alive.

Accounting for the necessary time
Note that it takes time to try out the instructions yourself and with users. It probably doubles or triples the
documentation time. Writing thorough, accurate instructions that address users with different setups,
computers, and goals is tedious. You don’t always have this time before release.

But don’t assume that once your product is released, all documentation is done. You can always go back
over your existing, already-published documentation and improve it. Consider the first release a kind of
“Day 1” for your documentation. It’s the first iteration. Your documentation will get better with each
iteration. If you couldn’t get your test system up and running before the first release, that’s okay. Build the
test system for the upcoming release.

With the first release, if you can capture feedback as your documentation get used (feedback from forums,
contact email, logs, and other means), you can improve your documentation and see gaps that you likely
missed. In some ways, each time users consult the documentation to perform a task, they are testing your
documentation. (For more on capturing feedback, see my post on Reconstructing the absent user .)

Beyond just testing documentation yourself, you also need to test it against users (p. 353).

Test all instructions yourself PDF last generated: August 27, 2023

Documenting REST APIs Page 352

https://idratherbewriting.com/simplifying-complexity/reconstructing-the-absent-user.html

Test your assumptions against users
The previous two sections talked about testing from the perspective of the tech writer merely running
through the steps. However, remember that you, the tech writer, are not the user. Almost all documentation
builds on assumptions (about capabilities, setup, previous knowledge) that may or may not be shared with
your audience. While testing your documentation (p. 348), recognize that what may seem clear to you may
be confusing to your users. And what might be confusing to you might be clear to users. Learn to identify
assumptions that can interfere with your audience’s ability to follow the instructions in your documentation.

Assumptions about terminology
You might assume that your audience already knows how to SSH onto a server, create authorizations in
REST headers (p. 393), use curl to submit calls (p. 80), and so on. Usually documentation doesn’t hold a
user’s hand from beginning to end, but rather jumps into a specific task that depends on concepts and
techniques that you assume the user already knows. However, making assumptions about concepts and
techniques your audience knows can be dangerous. These assumptions are exactly why so many people
get frustrated by instructions.

For example, my 10-year-old daughter is starting to cook. She feels confident that if the cookbook’s
instructions are clear, she can follow almost anything (assuming we have the ingredients to make it).
However, she says sometimes the instructions tell her to do something that she doesn’t know how to do —
such as sauté something.

To sauté an onion, you cook onions in butter until they turn soft and translucent. To julienne a carrot, you
cut them in the shape of little fingers. To grease a pan, you spray it with Pam or smear it with butter. To add
an egg white only, you use the shell to separate out the yolk. To dice a pepper, you chop it into little tiny
pieces.

The terms can all be confusing if you haven’t done much cooking. Sometimes you must knead bread, or
cut butter, or fold in flour, or add a pinch of salt, or add a cup of packed brown sugar, or add some
confectioners sugar, or bring liquid to a roiling boil, and so on.

Sure, these terms are cooking 101, but if you’re 10-years-old and baking for the first time, this is a world of
new terminology. Even measuring a cup of flour is difficult — does it have to be exact, and if so, how do
you get it exact? You could use the flat edge of a knife to knock off the top peaks, but someone has to
teach you how to do that. When my 10-year-old first started measuring flour, she went to great lengths to
get it exactly 1 cup, as if the success of the entire recipe depended on it.

The world of software instruction is full of similarly confusing terminology. For the most part, you have to
know your audience’s general level so that you can assess whether something will be clear. Does a user
know how to clear their cache, or update Flash, or ensure the JDK is installed, or clone or fork a git
repository? Do the users know how to open a terminal, deploy a web app, import a package, cd on the
command line, submit a PR, or chmod file permissions?

This is why checking over your own instructions by walking through the steps yourself becomes
problematic. The first rule of usability is to know the user, and also to recognize that you aren’t the user.

With developer documentation, usually the audience’s skill level is beyond my own, so adding little notes
that clarify obvious instruction (such as saying that the $ in code samples signals a command prompt and
shouldn’t be typed in the actual command, or that ellipses ... in code blocks indicates truncated code
and shouldn’t be copied and pasted) isn’t essential. But adding these notes can’t hurt, especially when
some users of the documentation are product marketers rather than developers.

Test your assumptions against users PDF last generated: August 27, 2023

Documenting REST APIs Page 353

We must also remember that users may have deep knowledge in another technical area outside of the
domain we’re writing in. For example, the user may be a Java expert but a novice when it comes to
JavaScript, and vice versa.

To read more about how specialized language makes technical documentation difficult to understand, see
Reducing the complexity of technical language in my series on Simplifying Complexity.

Solutions for addressing different audiences
The solution to addressing different audiences doesn’t involve writing entirely different sets of
documentation (although conceptually, that might be a good strategy in some situations). You can link
potentially unfamiliar terms to a glossary (p. 418) or getting started tutorial (p. 379) where beginners can
ramp up on the basics.

You can likewise provide links to separate, advanced topics for those scenarios when you want to give
some power-level instruction but don’t want to hold a user’s hand through the whole process. You don’t
have to offer just one path through the doc set.

The problem, though, is learning to see the blind spots. If you’re the only one testing your instructions, the
instructions might seem perfectly clear to you. (I think most developers also feel this way after they write
something; they usually take the approach of rendering the instruction in the most concise way possible,
assuming their audience knows exactly what they do.) But the audience doesn’t know exactly what you
know, and although you might feel like what you’ve written is crystal clear, because c’mon, everyone
knows how to clear their cache, in reality you won’t know until you test your instructions against an
audience.

Testing your docs against an audience
Almost no developer can push out their code without running it through QA, but for some reason technical
writers usually don’t follow the same QA processes with their documentation. There are some cases where
tech docs are “tested” by QA, but in my experience, when I do get feedback from QA, the reviewers rarely
assess aspects of clarity, organization, or communication. They just highlight any errors they find (which is
still helpful on some level).

In general, QA people don’t test whether a user would understand the instructions or whether concepts are
clear. They just look for accuracy. QA team members are also poor testers because they already know the
system too well in the first place.

Before publishing, it’s ideal to submit your documentation through a testing process of some kind, that is, a
“quality assurance” process. Companies wouldn’t dream of setting up an IT shop without a quality
assurance group for developers — why should docs be any different?

When there are editors for a team, the editors usually play a style-only role, checking to make sure the
content conforms to a consistent voice, grammar, and diction in line with the company’s official style guide.

While conforming to the same style guide is important, it’s not as important as having someone actually
test the instructions. Users can overlook poor speech and grammar — blogs and YouTube are proof of
that. But users can’t overlook instructions that don’t work, that don’t accurately describe the real steps and
challenges the user faces.

I haven’t had an editor for years. In fact, the only time I’ve ever had an editor was at my first tech writing
job, where we had a dozen writers. The editor focused mostly on style.

Test your assumptions against users PDF last generated: August 27, 2023

Documenting REST APIs Page 354

https://idratherbewriting.com/simplifying-complexity/reducing-the-complexity-of-technical-language.html

I remember one time our editor was on vacation, and I was asked to fill in as editor during her absence. As
interim editor, I tried testing out the instructions and found that about a quarter of the time, I got lost. The
instructions either missed a step, needed a screenshot, built on assumptions I didn’t know, or had other
issues.

The response, when you give instructions back to the writer, is usually, “Oh, users will know that.” The
problem is that we’re usually so disconnected with the actual user experience (since we rarely see users
trying out docs), we can’t recognize the “users-will-know” statement for the fallacy that it is.

Using your colleagues as test subjects
If you have access to real users who can test your docs, great. Take advantage of this situation. But if you
don’t, how do you test instructions without a dedicated editor, without a group of users, and without any
formal structure in place? At the very least, you can ask a colleague or product team member to try out the
instructions.

Other technical writers are usually both curious and helpful when you ask them to try out your instructions.
And when other technical writers start to walk through your steps, they recognize discrepancies in style
that are worthy of discussion in themselves.

Although other technical writers don’t always have time to go through your instructions, and they usually
share your same level of technical expertise, having someone test your instructions is better than no one.

Tech writers are good testing candidates precisely because they are writers instead of developers. As
writers, they usually lack the technical assumptions that a lot of developers have (assumptions that can
cripple documentation). Also, developers may feel embarrassed if they don’t already understand a concept
or process referenced in the docs.

Tech writers who test your instructions know exactly the kind of feedback you’re looking for. They won’t
feel ashamed and dumb if they get stuck and can’t follow your instructions. They’ll usually let you know
where your instructions are poor. They might say, I got confused right here because I couldn’t find the X
function, and I didn’t know what Y meant. They know what you need to hear.

In general, it’s always good to have a non-expert test something rather than an expert. Experts can often
compensate for shortcomings in documentation by relying on their own expertise. In fact, experts may
pride themselves in being able to complete a task despite the poor instruction. Novices can’t compensate.

Also, when you have other technical writers test your docs, the activity fosters good team building and
knowledge sharing. At a previous job, I worked in a large department that had, at one time, about 30 UX
engineers. The UX team held periodic meetings during which they submitted a design for general feedback
and discussion. The camaraderie and team-building during the design reviews was immediately apparent
to me, and I wished we had something similar with our tech pubs team.

By giving other technical writers the opportunity to test your documentation, you create the same kind of
sharing and review of content. You build a community rather than having each technical writer always work
on independent projects.

The outcomes from having colleagues test your docs might include more than just feedback about the
shortcomings in a specific doc set. You might bring up matters of style, or you might foster great team
discussions about innovative approaches to your help. Maybe you’ve integrated a glossary tooltip that is
simply cool, or a button for an embedded series. When other writers test your instructions, they not only
see your demo, they understand how helpful a feature is in a real context, and they can incorporate similar
techniques.

Test your assumptions against users PDF last generated: August 27, 2023

Documenting REST APIs Page 355

Observing users as they test your docs
One question in testing docs with your users is whether you should watch them in test mode. Undeniably,
when you watch users, you put some pressure on them. Users don’t want to look incompetent or dumb
when they’re following what should be clear instructions.

But if you don’t watch users, the whole testing process is much more nebulous. Exactly when is a user
trying out the instructions? How much time are they spending on the tasks? Are they asking others for
help, googling terms, and going through a process of trial and error to arrive at the right answer?

If you watch a user, you can see exactly where they’re getting stuck. Usability experts prefer to have users
actually share their thoughts in a running monologue. They tell users to let them know what’s running
through their head every now and then.

In other usability setups, you can turn on a web cam to capture the user’s expression while you view the
screen in an online meeting screenshare. This can allow you to give the user some privacy while also
watching him or her directly.

Agile testing
In my documentation projects, I admit that I don’t do nearly as much user testing as I should. At some
point in my career, someone talked me into the idea of “agile testing.” When you release your
documentation, you’re basically submitting it for testing. Each time you get a question from users, or a
support incident gets logged, or someone sends an email about the doc, you can consider that feedback
about the documentation. (And if you don’t hear anything, then the doc must be great, right? Hmmm.)

Agile testing methods are okay. You should definitely act on this feedback. But hopefully you can catch
errors before they get to users. The whole point of a quality assurance process is to ensure users get a
quality product prior to release.

Additionally, the later that errors are identified in the software development process, the more costly they
are. For example, suppose you discover that a button or label or error message is really confusing. It’s
much harder to change it post-release rather than pre-release. Changing a button might require the app to
undergo retesting, error messages to be adjusted, retraining, UI modifications, and more. Changes to APIs
are even worse, because presumably third-party developers have already integrated the calls into their
apps. If you change the endpoint or parameters, the team might have to support both the old and new API,
which then doubles the testing efforts.

Conclusion
No matter how extensively or minimally you do it, look for opportunities to test your instructions against an
actual audience. You don’t need to do a lot of tests (even the usability pros say 4-5 test subjects is usually
enough to identify 80% of the problems), but try to do some user testing. When you treat docs like code (p.
551), it naturally follows that just as we should test code, we should also test docs.

Test your assumptions against users PDF last generated: August 27, 2023

Documenting REST APIs Page 356

Activity: Test the docs in your open-
source project
Now that you’ve read about testing, it’s time to get some more hands-on practice. In this activity, you’ll do
some doc testing with an open-source project (or another project you identified).

Test a topic
1. With the open-source API project you’re working with (p. 686), find the following:

• Getting started tutorial (or similar tutorial)
• API endpoint

2. Now test the documentation by walking through the documentation details. More specifically:

• For the Getting started tutorial, proceed through all the steps in the tutorial. Make a note
of any assumptions that you found confusing, new terms or acronyms that were
unfamiliar, or other questions you had. How long did it take to complete the getting
started tutorial?

• For the API endpoint, make a request and examine the response. Does the response
match what’s in the documentation? Try different variations of parameters in the endpoint
and see if the responses are what you expect. Identify any incorrect or missing or
inaccurate information.

3. If you found information that was incorrect, either log an issue or reach out to the QA lead with
the feedback.

Find out test details
Identify who performs the testing on the project. Reach out and interact with the QA lead for the project to
gather as much information as you can about how testing is done.

Find answers to the following questions:

• Are there test cases used to run through various scenarios in the project?
• Where are the test cases stored?
• How are the tests executed? Automatically? Manually?
• What kind of testing does the team do before a release?
• If you encounter a bug while testing, how should you report it?

Activity: Test the docs in your open-source project PDF last generated: August 27, 2023

Documenting REST APIs Page 357

Chapter 7: Conceptual topics in API
docs
While reference topics in APIs generally receive the most attention, the conceptual topics, such as getting
started tutorials, information about authorization, rate limiting, status and error codes, quick reference
guides, and other topics constitute about half of the documentation. These topics are usually handled by
technical writers more than engineers. You can evaluate the quality of API documentation in part by looking
to see whether it includes these conceptual topics.

Chapter sections:

API conceptual topics overview... 359

API product overviews ... 360

API getting started tutorials.. 379

API authentication and authorization ... 393

API status and error codes... 402

API rate limiting and thresholds ... 408

API quick reference .. 412

API glossary ... 418

API best practices .. 426

Activity: Complete the SendGrid Getting Started tutorial .. 429

Activity: Assess the conceptual content in your project .. 430

Chapter 7: Conceptual topics in API docs PDF last generated: August 27, 2023

Documenting REST APIs Page 358

Conceptual topics overview
Up until this point, we’ve mostly been focusing on the reference aspects of API documentation (p. 114) (the
endpoints). The reference documentation is only one aspect of API documentation.

In this section, I’ll cover the main conceptual topics that are commonly found in API documentation. Rather
than “conceptual topics,” you might consider this type of information the “user guide.”

The following are common conceptual topics commonly found in API documentation:

• API product overview (p. 360)
• Getting started (p. 379)
• Authentication and authorization requirements (p. 393)
• Status and error codes (p. 402)
• Rate limiting and thresholds (p. 408)
• Quick reference guide (p. 412)
• API glossary (p. 418)
• API best practices (p. 426)

Beyond the sections outlined above, you might want to include other tasks and tutorials specific to your
API, based on what you expect your users to do and the business scenarios for which they’ll use your API.

In each concept topic, I’ll provide general descriptions and overviews of what these sections contain,
followed by examples from actual API documentation sites.

With each topic, there’s an activity for you to go into your open-source project (p. 686) and evaluate the
conceptual topic at hand. Although many of the conceptual topics are straightforward, when you look at
the information in context, that is, when you look to see how the information is actually implemented, it
gets a lot more interesting.

Conceptual topics overview PDF last generated: August 27, 2023

Documenting REST APIs Page 359

API product overviews
The product overview tells your product’s story at a high level, including what you can do with the product,
the market needs or pain points it solves, requirements to use it, who the product or other features are for,
and other introductory information. A company with multiple products will have distinct product overview
pages for each product, with a more general umbrella overview for them all. In contrast, smaller companies
with fewer products might have a single, consolidated product overview page for everything the company
offers.

Although a seemingly simple page, the product overview page can overlap into marketing domains, create
redundancies with README’s, and pose challenges in connecting with a more diverse audience (both
engineers and bizdev people) than the rest of your technical docs. Overall, the product overview is an area
where documentation and marketing intersect in interesting ways. The product overview is one of the
hardest topics to write, but it’s also likely the most important.

Key questions a product overview should answer
Too often with developer documentation, the documentation gets quickly mired in technical details without
ever explaining clearly what the product is used for. It’s easy for writers to lose sight of the overall purpose
and business goals of the API by getting lost in the endpoints and other technical details. Unfortunately,
many documentation sites never seem to explain the story of their product, thus missing out on a
foundational aspect of the documentation. The product overview should let users get a good
understanding of the following:

• What does the product do?
• what are some examples where you’d use it?
• Who is it for?
• What problem does the product solve?
• How do you get started?

These are essentially who/what/when/where/why/how questions — not rocket science here, just the basic
fundamentals of expository writing.

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 360

API Overview
What is it?
What does it do?
Who is it for?
Why would I use this?

The product overview provides high-level detail about the purpose, audience, and market need for your API.

Keep in mind that there are thousands of APIs. If people are browsing your API, their first and most
pressing question is, what information does it provide? Is this information relevant and useful to my needs?
How does it differ from other products in this same space? The user’s first question is usually not “How do
I configure this endpoint.”

Because the product overview is really one of the few places where you can tell a story, the product
overview space should appeal to tech writers and be one of the content areas where we excel.

Presentation on product overviews
I recently gave a presentation on getting started tutorials (p. 379) and product overviews. You can watch
the presentation here:

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 361

Telling your product’s story
To tell your product’s story, consider identifying a market need that your product solves. This is the basics
of storytelling — there is some conflict that a protagonist (in this case, your product) addresses and solves.
In The Top 20 Reasons Startups Fail , one of the main reasons startups fail is their inability to solve a
market problem. The authors explain:

Startups fail when they are not solving a market problem. We were not solving a
large enough problem that we could universally serve with a scalable solution. We
had great technology, great data on shopping behavior, great reputation as a
thought leader, great expertise, great advisors, etc, but what we didn’t have was
technology or business model that solved a pain point in a scalable way. (CB
Insights)

To encapsulate this overarching story, the product overview focuses on the market problem that the
product solves. If the product doesn’t solve a market problem, that could be a red flag about the product
itself. So the first step in the product overview is to describe the pain point your product solves.

Common use cases
To make the product’s market-solving characteristics more concrete, list some common use cases or
business scenarios in which the product and API are relevant. These scenarios will give users the context
they need to evaluate whether the API is relevant to their needs. Too often, product descriptions are
general and high-level (e.g., “X product helps companies collaborate more effectively…”). These higher-
level abstract descriptions fail to resonate with users.

Use cases are concrete examples of how the product might be used. Continuing with the above example, a
use case might be “X product allows writers to work on the same document simultaneously through a
remote browser interface,” or something. Usually, a product manager has already defined a list of key use
cases for a product and would have these available.

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 362

https://www.cbinsights.com/research/startup-failure-reasons-top/

Product overview vs overviews (plural)
A developer portal usually has documentation for many different products, not just one. Each product will
have its own product overview page. In fact, the homepage of the developer portal rarely has a product
overview. Instead, the developer portal’s homepage often serves as a routing board to the product
overviews and other developer journeys.

Even a single product might have multiple overviews for each of the features. The overview is just a term
for the opening page of a product, the landing page or starting page. Whenever you need a high-level
description of your product, you need an overview page.

Audience includes decision-makers
One important dimension to keep in mind with product overviews is the expanded audience. Product
overviews aren’t just read by your target documentation users, i.e., usually engineers. Product overviews
are frequently read by product managers, executives, and other decision-makers who are trying to decide
whether to purchase or move forward with the product. These decision-makers might be trying to size up
the complexity of integration, how many person-hours the effort will consume, and whether the product will
solve the problem they have. Only documentation can truly answer this question, not marketing material.

For example, a high-level executive might be trying to decide if implementing your product will require one-
week integration effort by a single developer or a team of 50 developers working heads-down for six
months. The product overview should give some indication of the development effort. Even if you don’t call
out the estimated development time, by browsing through the tasks in the docs, it should become clear
what level of effort is involved in implementing the product.

In the overview, the high-level executive will be less interested in the technical details and more interested
in conceptual and bigger picture content. List out the main components involved in the system, followed by
an architectural diagram and an explanation. Save the excruciating technical details for the inner pages of
the documentation.

Overlap with marketing
Another facet of product overviews is their frequent overlap with marketing content. In many organizations,
there is a developer marketing group that handles higher-level product content, creating some overlap with
documentation-based product overviews. For example, if you browse the AWS Lambda documentation,
you’ll find that a higher-level product overview appears before the actual documentation. Here’s the
marketing layer to the product:

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 363

https://aws.amazon.com/lambda/

This marketing layer covers these topics: Overview, Features, Pricing, Getting Started, Resources, FAQs,
and Partners. The actual Lambda documentation is presented on another layer of the site:

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 364

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

If you read the first paragraph from each screenshot, you’ll see how similar yet different the two
descriptions are. They repeat many of the same points but in different ways. The documentation product
overview addresses these questions:

• When should I use AWS Lambda?
• Are you a first-time user of AWS Lambda?

Beyond the product description, in this Lambda example, the marketing content even has its own Getting
Started page with tutorials, parallel to the documentation’s Getting started section , which is more
robust.

Typically, developer marketing teams write the marketing product overview, while developer
documentation teams write the documentation product overview. But as you can see, this is an area where
content overlaps and where some coordination across teams becomes essential. Suppose the doc team
for Lambda wanted to emphasize certain points that the marketing team did not — it would create a
confusing transition between the two sets of content.

But even with differences, the idea is that business decision-makers read the marketing content, while
engineers read the documentation content. Marketers are primarily writing for these decision-makers while
tech writers are primarily addressing the implementers (engineers).

Your organization might have multiple teams writing content like this, or you might be tasked with creating
both the higher-level marketing layer and the documentation yourself (especially in startups). In some ways,
having a single team or writer handle both types of content might lead to a more streamlined, unified

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 365

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/lambda/getting-started/
https://aws.amazon.com/lambda/getting-started/
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

content experience. When you’re the sole writer, you’re less likely to repeat yourself in different places in
contradictory ways. You can simply devote a section of your documentation to the marketing content
rather than housing it on another site.

If you are stuck with the two-site model (marketing on one site, documentation on another), you could try to
share content between these two sites, but usually marketing has a different system for managing and
publishing content than the documentation teams. Marketers don’t usually adopt docs-as-code systems
but rather prefer more CMS-driven systems. These systems rarely share content with each other, and even
if they did, the marketing versions might be written using another style, perspective, or approach that
contrasts with your docs, making it difficult to single-source the content. For example, I once tried to re-
use marketing content (a product brief) that was written entirely in third-person point of view (“the partner
does X”) rather than the traditional second-person point of view in docs (“you do X”). It didn’t work out well.

Strategies for the documentation’s product overview
What strategies should you implement when you’re faced with writing a product overview for docs,
especially when a product marketing team has their own product overview on a separate site? Consider
the following:

• Find out who the marketing group is and what messaging they are focusing on for the product.
• If marketing content already exists and you want to leverage it (rather than just link to it), consider

creating a condensed/streamlined version of the marketing overview content, and point users to
the marketing overview for more details. You don’t want to duplicate all the content because
invariably, docs will go out of date as the other content evolves (not to mention the confusion of
presenting two sets of overviews to users).

• Avoid copying any overblown promises about simplicity or ease of installation from marketing
copy.

Differences between marketing and documentation content
Here it’s worth diving into some differences between documentation copy and marketing copy. While both
genres might appear to share similar purposes in the product overview, avoid falling into marketing style in
docs. For example, suppose you find a few pages of product descriptions that the marketing team already
wrote, and you want to just copy it into the docs for the documentation product overview. Should you?

If you do this, strip out mention of the word “easy” or “just,” as in “the implementation is so easy, you just
have to do X….” To sell a product, marketing often gravitates toward promises about ease of
implementation. This is perhaps the hallmark of marketing content (from a tech writer’s perspective
anyway). And many bizdevs or execs are trying to scope the difficulty of the implementation, so
marketing’s message about ease of implementation makes sense.

But as a technical writer, you not only have an obligation to be honest about implementation complexity,
you must also recognize that what is easy for one user might be insurmountable to another. (If you’ve ever
done DIY projects at home, you know what I’m talking about.)

Never say something is “easy” — instead, you might qualify the degree of development effort based on the
role. For example, you could say that for a seasoned engineer familiar with Java and who has been
developing cloud-based apps for years, implementing this product will likely not require more than a week
of integration effort. But for someone new to cloud-based app development or less familiar with Java, there
will be a much steeper learning curve and might require several months or more of preparation and learning
to implement.

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 366

If you can qualify the level of development effort based on different audience types, this will provide more
realistic information. You can still answer the exec’s question — how difficult is this product to implement
— without falling prey to promises of implementation ease.

By the way, it’s worth noting that most marketers have a superficial technical understanding of a product,
so they usually cannot make judgments about the implementation difficulty anyway. They might be going
off of an internal engineer’s observation that it’s “straightforward” or that it “should be easy to implement”
or that “most engineers should find this familiar.” What the marketer might not realize is that engineers
usually make these estimations by assuming the audience has the same knowledge level and background
as the engineer. Unfortunately, most marketers remain within the pre-sales context and so rarely see the
post-sales realities, where many support cases and threads spring up with confused and frustrated users.

Beyond adjectives about easiness, in the previous Lambda examples, the marketing copy uses terms like
“virtually any,” “automatically,” “precisely,” and “favorite.” These superlatives aren’t usually used in
documentation, which tends to be more factual and plain-speaking. Marketing tries to get users excited
about a product by embracing these extreme adjectives, while documentation isn’t overtly trying to sell or
hype anything.

Key differentiators in product overviews
As I’ve been arguing, the product overview space places you into murky territory where marketing and
documentation blend. If you were to put on a marketing hat for a moment, what angle would you take in
your writing (beyond language)?

Although it would be awesome to compare your product against competitor products, most likely your
legal group will not allow it (mentioning competitors is usually taboo). And you might not have a deep
understanding of other products to make a fair comparison. Or you might feel that readers will assume
you’re too biased and wouldn’t trust your comparison anyway.

But what you can do is focus on your product’s key differentiators. These are features your product has
that make it unique in the market. For example, maybe users can access your app from the browser rather
than installing it locally. You don’t need to create a comparison chart showing how products X, Y, and Z
lack online browser access. But by emphasizing this differentiating feature, you help establish a selling
point and a potential reason for buying the product.

Remember that the product overview, unlike other documentation, often addresses a pre-sales scenario.
As such, the reader is likely wondering how your product compares with other products in the same
category. Why should they go with your product rather than another? What advantage does your product
provide? Unless you know the competitive advantage of your product, you’ll have a difficult time writing
marketing-esque content in your product overview.

Then again, you might want to leave that topic alone entirely and just point users to marketing material. You
will need to make a judgment call about where marketing ends and where documentation begins. If you do
try to veer into the marketing domain, however, reading through competitive analysis docs from marketers
could help inform your writing.

Overlap with README’s
Another challenge with product overviews is the overlap with README content. A README is an
introductory overview file (a homepage) placed in a code repository such as GitHub. The README often
has many elements of an overview similar to a product overview in documentation site. If your
documentation references a code repo, that code repo needs a README. But do you duplicate the same
information in the README that you do in the documentation overview?

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 367

Hopefully not. The README might have a high-level summary and information about installation,
configuration, and usage. But this information should be much more condensed/abbreviated than more
detailed documentation.

Many guides about writing README content assume that the README is the only documentation for the
code in the repo. As a professional technical writer, I rarely work on projects that are so small that the
documentation can be handled by a single page that lives in a code repo. If that’s all you need for your
product, great. However, chances are the README is only a glimpse of many more pages of configuration,
installation, and usage detail that live in a more robust documentation site separate from the repo. If that’s
the case, you might want to just link to your docs in the README.

Although the README and product overview overlap a bit, the README has some elements that don’t
necessarily belong in regular documentation. Content elements specific to the README in the code repo
might be the following:

• Code of conduct
• Contributor how-to protocol
• Filing issues
• Pull requests
• License information
• Team details/contributors

See The Essential Sections for Better Documentation of Your README Project by Thomas Parisot for a
good guide about writing README content.

I admit that my preferences for the README might deviate from general recommendations from developers
in this space. I am not a fan of duplicating the same information from the documentation into a README.
Instead, I prefer to provide brief summaries only in the README and then point users to the main
documentation for more details. For example, you could provide 1-2 sentences for each of the main
sections and then point users back to your main docs for details. As a rule of thumb, a README might be
the length of a poem while your docs are the length of a novel.

README’s have the additional complication of being difficult to maintain. Unless you have rights to publish
to the code repository, it might be cumbersome to update the README content. If you’re an engineer who
is writing the code and docs at the same time, this likely isn’t an issue. But in many organizations, technical
writers are separate from engineering teams, and technical writers usually don’t publish code to GitHub
repos. I’ve published to GitHub repos in the past (in an effort to speed along the publication of a sample
app, I jumped through the hoops of the company’s approval process and pushed out the content into the
repo), but later I regretted doing so. I learned that the person who pushes content into a repo owns that
content and all the filed issues, pull requests, and other responsibilities that come with repo management. I
didn’t want to be in that position — I wanted the engineers to own and maintain the code and control
pushes to this space.

Overall, README files shouldn’t contain so many doc details that the information begins to conflict or
become outdated with your main documentation. As long as you have only brief, condensed information in
your README, it likely won’t go out of date with each release.

Good Docs project template
If you’re looking for more inspiration and guidance about product overviews, see the API overview template
from the Good Docs project . They recommend similar sections as those I’ve been recommending here
— establish who the docs are for, what problems the product solves, what market/industry the product is
intended for, and so on. In the body of the overview, the Good Docs team recommends covering the
following questions:

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 368

https://www.welcometothejungle.com/en/articles/btc-readme-documentation-best-practices
https://github.com/thegooddocsproject/templates/blob/master/api-overview/about-overview.md
https://github.com/thegooddocsproject/templates/blob/master/api-overview/about-overview.md

• What is it supposed to do? (What problem does it solve, and for whom?)
• What exact capabilities are available to the user? What services does it

offer?
• What does it not do that developers should know about?
• What are the typical use cases?
• How does it work? (What do users need to know about architecture and

internal components?)
• What dependencies does the developer need to know about before

installing?
• What technical requirements do readers need? Include development

environment and licensing requirements.
• What knowledge prerequisites does the developer need to know about

before using the API?

(See The overview)

This is all good information to include. Consider auditing your overview by asking each of these questions.
Does your product overview provide answers? If not, add a section that answers the question.

Sample structure of a product overview
Product overviews vary from product to product, but here’s the general flow that I like to follow:

• Description of the product
• Intended audience and assumptions about knowledge
• Sample use cases
• Requirements to use the product
• List of components
• High-level architectural diagram of components + explanation
• Development effort/scope
• How to get support/help
• Link to getting started tutorial

These topics don’t need to be standalone sections but can be interwoven into similar sections as you see
fit.

At the end of the product overview, be sure to transition into the next logical step: getting started! Here’s
where your getting started tutorial (p. 379) gets handed off to the user. It’s your call to action, so to speak.

Sample product overviews
Here are a few sample product overviews.

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 369

https://github.com/thegooddocsproject/templates/blob/master/api-overview/about-overview.md

IBM Watson Assistant

IBM Watson Assistant overview

IBM Watson Assistant starts off with a brief summary of the service, followed by a high-level diagram of the
system and a summary about how to implement it. Including a diagram of your API gives users a good
grounding about what to expect, such as the level of complexity and time it will take to incorporate the API.

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 370

https://cloud.ibm.com/docs/services/assistant?topic=assistant-index#index
https://cloud.ibm.com/docs/services/assistant?topic=assistant-index#index

Video Skills Kit for Fire TV

VSK for Video Skills Kit for Fire TV

This is an overview I wrote for a product called “Video Skills Kit for Fire TV.” The product overview stays at
a high level by describing the capabilities the product provides, general implementation options, sample
apps available, requirements to complete the implementation, supported countries, and next steps. There’s
a parallel product overview page called Video Skills Kit for Echo Show .

Both of these product overviews are like product landing pages within a larger developer portal that covers
many different products. In fact, if you go to the developer portal homepage , the page just routes you to
different product overview areas.

Activity with product overviews
With the open-source project you identified (p. 686), identify the API overview. Then answer the following
questions:

1. Does the documentation have a product overview?
2. Does the overview clarify who the API is for?
3. Does the overview indicate the market need or business problem the API solves?
4. What questions do you still have about the API after reading the overview?
5. How does the overview transition into a getting started tutorial or other first steps with the API?

Summary of best practices for product overviews
As a summary, consider including these general sections in a product overview:

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 371

https://developer.amazon.com/docs/video-skills-fire-tv-apps/introduction.html
https://developer.amazon.com/docs/video-skills-fire-tv-apps/introduction.html
https://developer.amazon.com/docs/video-skills-multimodal-devices/introduction.html
https://developer.amazon.com/

• Description of the product
• Sample use cases
• Intended audience and technical level
• Requirements for use (system requirements, geo-requirements)
• List of components involved
• High-level architectural diagram of components, workflow
• Development effort and scope
• How to get support
• Most popular topics
• Known limitations, release notes
• Link to getting started tutorial

Every product seems to elicit its own unique sections on the overview, but these sections will give you a
good starting point. Now let’s explore the reasons why product overviews frequently fail.

Reasons why product overviews are often minimal or nonexistent
Have you ever found yourself reading documentation for a product and wondered, what exactly is the
product? What does it do? Who is this for? Why isn’t it more clear? You look for the big picture and higher-
level understanding, but every topic seems to assume that you already know more than you actually do.
The nature and use of the tool remains muddy.

In general, a product overview should allow users to get a good sense of what the product does, who it’s
for, why they might use it, the pain point the product solves, requirements and availability, how to get
started, how to get help when needed, and other foundational concepts. Ideally, the product overview
should give you a solid understanding of the product and what it’s used for.

Yet in so many cases, when I start reading through documentation for a product, I’m often left confused
and without a clear sense of what it’s for or how I might actually use it, let alone how to get started. Why
are some product overviews so unfulfilling, so brief, disappointing, and weak? In this section, I’ll explore
several reasons for anemic product overviews.

Cause 1: The reader isn’t the intended audience, so the overview fails for the reader

Perhaps the main reason that product overviews fail is because the reader (for example, a tech writer
reading a product overview about some API for developers) isn’t the intended audience for the product. As
such, the overview might fail for that particular reader but actually be fine for the intended audience. This
mismatch of actual reader versus intended reader makes it difficult to make judgments about product
overviews.

As an example, take a look at some of the product overviews in Microsoft’s Azure docs , which look
exemplary to me. You could use any product as an example, but let’s start with the first product, the
Anomaly Detector . The starting topic is What is the Anomaly Detector API? . (In fact, all docs seem to
start out with “What is … [product]?” This frequent pattern creates a nice sense of predictability to the
various doc sets in their portal.) The first two paragraphs start as follows:

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 372

https://docs.microsoft.com/en-us/azure/?product=all
https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/
https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/overview

The Anomaly Detector API enables you to monitor and detect abnormalities in your
time series data without having to know machine learning. The Anomaly Detector
API’s algorithms adapt by automatically identifying and applying the best-fitting
models to your data, regardless of industry, scenario, or data volume. Using your
time series data, the API determines boundaries for anomaly detection, expected
values, and which data points are anomalies.

Using the Anomaly Detector doesn’t require any prior experience in machine
learning, and the RESTful API enables you to easily integrate the service into your
applications and processes.

Although the sentences seem clear, and there are screenshots, interactive demos, descriptions of features,
getting started topics, and more, I’m still lost because I’m not the intended audience for the product. What
is “time series data”? What kind of data is appropriate to analyze here? Why would I want to look for
abnormalities in my data? What kind of application or process would I integrate this anomaly detection
service into? I dunno…

As good as this product overview is written, it doesn’t make sense to me because I’m not the intended
audience. I’m not a developer working with large data sets, nor am I involved in machine learning
algorithms. I can’t even understand what scenario would make sense where I’d have “time series data”
with anomalies that I need to detect as part of a machine learning model that I’m building, even though this
scenario is apparently applicable across industries.

It’s not the writer’s responsibility to bring non-target users up from ground zero here, holding my hand
through this knowledge domain and assuming I know nothing. But it would help to perhaps explicitly
identify the audience here. Even without identifying the audience, though, it’s pretty clear reading this
overview that I’m not the user envisioned for this product.

So how do you, as a technical writer, a person who is most likely an outsider to the domain you’re working
in, know if the overview makes sense to the intended audience? This is the whole crux of writing
documentation: most of the time, you’re an outsider to the knowledge domain, so it’s hard to know what
the audience already knows or does not know, and what to explain or assume.

As technical writers, we usually spin our lack of domain awareness as a positive, because we don’t end up
assuming our audience knows so much already. We aren’t hampered by the curse of knowledge, numb to
the jargon and concepts our audience also isn’t familiar with. So we explain the basics, we define terms,
we start a few rungs lower on the knowledge ladder than people expect. And users often appreciate it.

But without closer interaction with users, we can only guess what users might know or need to know.
Typically, we end up relying on feedback from those who do interact closely with users (such as devrel
groups). Through them, we try to better understand the user’s knowledge level, but even so, many times
these groups can only speak from their own limited interactions. Most of us have experienced situations
where engineers tell us that users will know this or that concept, only to learn later that users don’t and the
assumptions confused them. At the end of the day, we find ourselves staring at a product overview and,
even if it fails for us, we hope it works for the right audience.

As we read through product overviews, we have to remember that we’re usually not the intended audience.
It might fail to orient us, but does it fail for the intended audience? At the very least, try to be clear about
the intended audience in the overview, as this will set expectations for knowledge levels. You can also add
a “Background Knowledge and Assumptions” section. This section could link out to some preparatory
documentation (perhaps on other websites) that users should consult if they get lost.

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 373

Cause 2: UX’s influence on intuitiveness implies that long overviews indicate bad design

Another reason why product overviews are anemic is due to UX’s influence with intuitiveness. (This cause
is related to the previous point but a separate facet.) The idea is that products should be intuitive and
naturally address mental models that customers have, without the need for extensive explanations. Why
would you need to explain a product in depth to the users who you built it for? If something needs a deep
explanation, it probably isn’t well-designed and intuitive for that audience.

Achieving intuitiveness in your product is a common goal of UX design. In What makes intuitive products
intuitive? , Scott Kitchell argues that a product is intuitive when it matches the mental model of the user.
Scott says, “Intuitiveness can be created by designing every part of a product in reference to a mental
model, and then promoting the mental model through the UI and marketing.”

Mental models are the logic and theories in our heads that make sense of the world around us. For
example, in mountain biking, a common product for seats is a “dropper post,” which lets bikers
dynamically raise or lower the seat post height by pressing a button on their handlebars. Why would one
need such a button and the ability to quickly raise or lower the seat height while riding? If you’re into
mountain biking, you know that climbing dirt/gravel hills requires you to sit low while keeping weight on the
back tire for traction, so you might need to lower the seat quickly on the climb, but then revert to regular
height for other scenarios.

In short, if you’re part of the intended audience, you already have a rationale for the feature and don’t need
extensive conceptual docs explaining the scenario and reason for the product. You won’t see extensive
conceptual docs for dropper posts on product detail pages. The need is already felt by the intended
audience.

The problem in tech comm is that tech writers are usually outsiders to the domain, looking in at the
product. We don’t share the same mental model as our users. As a result, many details don’t immediately
make sense. Kitchell says:

Mental models are literally the logic within our heads, so if it’s in there, you’ll see the
logic in it. From the outside however, others will not. Unintuitive mental models are
like irregular looking blocks — They don’t fit well with other mental models which
makes them harder to remember, and problem-solve with.

Ideally, the product should just make sense for users, without a need for in-depth explanation. If you don’t
share the same mental model as your users, it’s difficult to assess how much users will actually need the
who, what, and why of the product. It might just make sense to them based on their mental model and
problem set, like a jigsaw piece that fits perfectly into the space for which the piece was created. To
evaluate whether a product needs an overview, you have to evaluate it not from an outsider’s mental
model, but from the mental model of users.

In some cases, your product might require some new learning even for the target user. Mark Baker says,
“… learning is about rearranging our own mental furniture, finding our way through the thickets of our own
minds. The expert can help us enormously at certain key junctures in that process, but most of it we simply
have to do for ourselves” (Chatbots are not the future of Technical Communication). It’s not always the
case that users will intuitively understand the product. Some learning frequently needs to take place, and
that learning often involves some mental strain (the learning of a new model), even for the target audience.

For more on mental models, see the Schemas and learning section in Principle 5: Conform to the
patterns and expectations of the genre and schemas Schemas are a more scientific term referring to the
mental models in our heads that make sense of the world. See also Script theory in the same article.
Script theory argues that if designers create experiences that match the schemas by which users operate,

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 374

https://uxdesign.cc/what-makes-intuitive-products-intuitive-52f52f12c3b5
https://uxdesign.cc/what-makes-intuitive-products-intuitive-52f52f12c3b5
https://everypageispageone.com/2018/01/30/chatbots-are-not-the-future-of-technical-communication/
https://idratherbewriting.com/simplifying-complexity/reducing-complexity-by-shaping-into-schemas-esp-story.html#schemas-and-learning
https://idratherbewriting.com/simplifying-complexity/reducing-complexity-by-shaping-into-schemas-esp-story.html
https://idratherbewriting.com/simplifying-complexity/reducing-complexity-by-shaping-into-schemas-esp-story.html
https://idratherbewriting.com/simplifying-complexity/reducing-complexity-by-shaping-into-schemas-esp-story.html#script-theory

users will naturally know what to do and act in an almost scripted way. For example, Kirk St. Amant says if
you design your hospital waiting room in an archetypical, expected way, then users will naturally know
what to do when entering the space.

Define the stories that your audience uses to think about the scenario your product addresses. What
mental model or schema organizes their thinking about the problem? If your product overview already
naturally fits into this mental model, then you might not need to make the details more explicit in an
overview — it might already make sense for the user.

Cause 3: Overview pages are hard to write, so they’re often neglected

Another reason product overviews often fail for users is because, put simply, product overviews are hard to
write, and so they are often poorly executed. The product overview requires you to be thoroughly familiar
with the product, comfortable enough to summarize the product at a high level, describe the overall
architecture, use cases, how to get started, requirements and limitations, and more.

As technical writers, we’re often incrementing our understanding of a complex product little by little —
we’re piecing together what it’s about, how it works, how to perform various tasks, the reference material
about the APIs, and so on. We’re slowly identifying puzzle pieces and trying to fit them together into the
right picture. At any given time, there are likely many unidentified and unused puzzle pieces, making our
current picture incomplete. It might not be until several weeks or months that we have a light bulb moment
and glimpse the full puzzle picture.

To use another metaphor, I often like to think of projects as a monster that I battle and slay . That
moment when I slay the monster is when I unlock its secret and suddenly grasp how it ticks, how to unlock
its data and have it returned to me. It’s at that point, near the end, that I can properly write the overview
page. In general, I usually can’t finish the first page of documentation until I write the last page of
documentation.

And when am I writing that last page of documentation? Sometimes right near crunch-time, about two
weeks before release.

If you’re working more as an editor and publisher rather than an author, the overview might be even more
challenging. You might be reliant on general product descriptions from internal documents, without the
additional context and detail that you get by struggling with the product for months with hands-on
exploration and experimentation.

Recognize that you typically acquire the full knowledge to write the overview only after you’ve written all the
other documentation. To avoid last-minute efforts, keep running notes on an overview draft that you add to
as you work through the other documentation. Place section holders on the page, and then fill them in as
you go.

Cause 4: Agile’s co-development influence makes it difficult to surface higher-level content
needs

Another cause for poor product overviews is agile’s co-development influence with products. Agile
software development prescribes close interactions with users as software teams develop and build out
the product. When users are so intimately involved in product development, essentially co-collaborators
with each iteration, they don’t need the higher level overview, story, and purpose of the product. They need
only the technical details for implementing it.

In Agile Principle 1: Active User Involvement Is Imperative , Kelly Waters lists out 10 principles of agile
and says “active user involvement is the first principle of agile development.” Why is active user
involvement so fundamental to agile development? User involvement is essential because software teams

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 375

https://idratherbewriting.com/blog/every-project-is-a-monster-you-battle/
https://www.101ways.com/2007/02/24/agile-principle-1-active-user-involvement-is-imperative/

want to build the product in a way that matches users needs, and you can’t do that without closely working
with users, checking in regularly with each build to see if it matches their expectations, and course
correcting to fine-tune the alignment needed to build the right product.

But just as product team members become somewhat numb to product jargon and the reasons behind
decisions, the docs follow somewhat the same suit. There’s no need to explain why the product is needed
because, with active user involvement, these needs are communicated from the user from day one and
throughout in regular meetings and other interactions. As such, there isn’t a strong need for this higher-
level overview and understanding. The conceptual basis for the feature is already understood by users
because the product team iterated with users to develop the feature.

Once the feature is complete, some brief technical docs get added that explain how to use the feature. But
the feature itself, the reason it was created, the problem it solves, the high-level overview and description
of the feature, etc., is not documented because the initial user didn’t need that high-level. The
documentation likely follows a similar trend elsewhere, and soon you end up with lots of little building
blocks and technical how-to’s but no higher-level descriptions and glue between all of these tasks. New
users who didn’t participate in the feature’s development have to try to derive back what the feature is and
why/what/who the product is for.

Product overview anemia is a byproduct of the agile development process itself. This is where a technical
writer’s perspective as an outsider becomes so important. If you’re an outsider to both the product and
domain, you won’t have this co-development history and won’t have seen the product evolve from a sketch
on a napkin to a fully released product. You’ll see the lack of connecting glue between topics, the absence
of a larger story that connects with your needs, and more. The problem is, without an audience asking for
this higher-level information, you might be facing an uphill battle to generate the content. You might be
writing an overview for an imagined future audience that hasn’t yet materialized.

If the users were co-developers of the product and features (or frequent sounding boards during the design
phase), don’t use that group as a barometer for assessing content needs. Find someone who is new to the
product.

Cause 5: Higher-level content is already handled by developer marketing content, making it
redundant in docs

Another reason for anemic product overviews is because many of these higher-level questions are usually
handled in the developer marketing layer, and tech writers don’t usually operate in that pre-sales space. In
many doc portals, there’s a marketing layer that sits on top of the documentation. This marketing layer is
supposed to articulate the larger story of the product — the problem the product solves, the target
audience, use cases, case studies, and more — to a pre-sales audience.

As an example, see the example with AWS Lambda that I explained in the product overviews (p. 363) topic.
In fact, the product overviews in the marketing layer pose challenges for overviews in technical
documentation because tech writers usually try to avoid redundancy. Since many tech writers assume the
marketing layer handles this larger story and overview about the product, this type of content is often
absent or minimized in the documentation’s product overview.

Additionally, the higher-level overview often gets more into pre-sales territory than many technical writers
are comfortable with. In this space, you’re trying to tell the who, what, and how of the product in a way that
resonates with user pain points. In The importance of “how” in developer messaging , Matthew Revell
argues that developer messaging needs to start with the what and how before the why. He touches on the
need to build confidence with your audience, to align your goals with theirs. Revell says:

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 376

https://developerrelations.com/developer-marketing/the-importance-of-how-in-developer-messaging

The origin myth of a product provides a framework that enables people to form their
own feelings and thoughts about it. Without ‘why’ there’s no developer community,
no champions, no advocacy.

Origin myths are not typical content that technical writers create. For example, you will not find a tutorial on
origin myths in any technical writing handbook.

Developer messaging focuses on building trust with users, finding an emotional connection with them,
addressing the developer journey, and telling the product story. Most tech writers don’t think about this
type of content in docs — this is the land of content marketing. For example, suppose you worked as a
technical writer for Red Bull. Your primary task would be to describe the product’s ingredients, not to
construct a story about Red Bull being the drink of extreme sports enthusiasts, for as helicopter skiers and
daredevil mountain bikers.

As such, if there is not a marketing layer for the product, tech writers are unlikely to create one because
this space entails writing that tech writers might not want to dabble in. Or the marketing layer might fully
address questions, so they don’t need to be redundantly handled in docs.

However, any good content strategy should have alignment with each content touchpoint, from pre-sales
to post-sales. In Principle 8: Align the product story with the user story , a series on how to simplify
complexity, I argued that products often fail because the story the company tells doesn’t align with the
story the user tells. Developer docs have the added complexity of having three stories: a company story, an
end-user story, and a developer story. If all three groups are playing off different stories, the product likely
won’t succeed.

Even if a technical writer’s job is to focus on the how and what, more than the why behind the product,
technical writers should have a larger sense of product story that helps structure and direct the technical
content. Ideally, the shape of documentation should be constructed around the developer journey, and that
journey should connect with the product story.

Look to see if marketing content covers the higher-level content needs in the documentation overview. If
so, you could simply link to the marketing content, or alternatively, put a more technical, matter-of-fact spin
on the same content. Either way, think about the developer’s journey and story they tell themselves, and
consider using this journey/story to shape your documentation.

Cause 6: Tech comm buys in to the “reading to do” paradigm for docs, minimizing the need
for longer conceptual docs

Another reason for lack of product overviews, even when outsiders like tech writers create the product
docs, is due to tech comm’s strategy preference for task-oriented docs. There’s a strong belief among
most tech writers that users turn to docs only when they have a task-related problem they’re trying to
solve.

As a result, docs are usually problem-oriented, focused on what users want to do and achieve. Conceptual
docs are often seen as a sideshow to the task-oriented docs. This idea is so pervasive, it hardly needs
explaining. The hallmark of good technical docs, most tech writers believe, is a list of numbered steps that
takes users through a complex task.

This more action-oriented, experiential approach to learning has its roots in a movement called
“minimalism” that John Carroll, author of the Nurnberg Funnel identified in the 1980s. Describing John
Carroll’s minimalism approach, scholars David Farkas and Thomas Williams write:

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 377

https://idratherbewriting.com/simplifying-complexity/articulate-invisible-stories-that-influence-action.html
https://www.amazon.com/The-Nurnberg-Funnel-Instruction-Communication/dp/0262031639,
https://www.amazon.com/The-Nurnberg-Funnel-Instruction-Communication/dp/0262031639,

The premise behind minimalism is that people learning to use computer software are
impatient, mentally active, and curious. They want to begin right away getting their
work done; they want to exercise their problem-solving abilities; and they are apt to
utterly reject or diverge from highly constraining instruction such as tutorials. Training
material, therefore, must not impede the natural impulses of computer users, as
systems approach documentation does. It should be as brief as possible, support
the accomplishment of real work, help leaners recognize and recover from errors,
and, when possible, permit non-sequential reading. Such documentation cannot be
generated mechanically from a theory of instruction but requires careful attention to
the needs and behavior of the intended users of the software and reiterative testing
of the design. (See John Carroll’s The Nurnberg Funnel and Minimalist
Documentation . IEEE Transactions on Professional Communication, Vol. 33, Nov.
4, Dec 1990.)

If people are always anxious to do tasks, not read conceptual overviews, then why spend time on these
conceptual overviews? What purpose do they solve when users just want a list of steps for the task they’re
trying to perform? With this mindset, the product overview gets shortchanged.

Don’t get me wrong — I support task-oriented docs and agree that it’s generally the right approach.
There’s merit behind experiential, action-oriented learning (which is explored more in the Reasons why
getting started tutorials fail or don’t exist (p. 390)). Explanation docs without a hands-on sense of the
product often fall flat. We need context and experience with a product to better understand it. If you try to
learn something without first tinkering with the product, it’s hard because names don’t mean much unless
you have something to hang them on. I learn best by mixing the two experiences — tinkering and reading,
back and forth.

But task-oriented docs often swing too far toward tasks, resulting in minimal or anemic overview
information. When that happens, you often end up confusing users with various tasks and no higher-level
content that helps their decision-making about which tasks to follow and why.

In research about how developers use APIs (p. 438), researchers have identified “opportunistic behaviors”
(try-first), “systematic behaviors” (read-first), and hybrids of the two. When users are observed, there’s
much hybrid behavior than solely opportunistic or systematic. Just because you might be an opportunistic
user, it doesn’t mean you always skip conceptual explanations — it’s just that you might not start with
concepts. A hybrid reader might start with code, trying it out on their own, and circle back to the
introductory conceptual information when the code doesn’t work as expected.

Deciding to cater to one type of behavior at the expense of the other might not be practical, since the
learning behaviors and approaches seem to be in constant flux.

Remember that user behavior isn’t night and day when it comes to opportunistic versus systematic
behavior. Users flip back and forth between these two modes as needed. As such, try to link between the
task-based topic and concepts where relevant to accommodate this fluctuating behavior.

API product overviews PDF last generated: August 27, 2023

Documenting REST APIs Page 378

https://www.hcde.washington.edu/files/people/docs/farkaswilliamsonnurnbergfunnel.pdf
https://www.hcde.washington.edu/files/people/docs/farkaswilliamsonnurnbergfunnel.pdf
https://www.hcde.washington.edu/files/people/docs/farkaswilliamsonnurnbergfunnel.pdf

API getting started tutorials
Following the product overview section (p. 360), you usually have a “Getting started” section that details
the first steps users need to start using the API. This section often includes an end-to-end process of some
starter task, complete in itself, to help users get started with your product.

Purpose of the getting started tutorial
The Getting Started tutorial is somewhat like the typical Hello World tutorial in developer documentation,
but with an API. Your goal is to hold a user’s hand from start to finish in producing the simplest possible
output with the system. For Hello World tutorials, the simplest output might just be a message that says
“Hello World.” For an API, it might be a successful response from the most basic request.

Think of getting started tutorials as a kind of Hello World tutorial with the API. How long would it take for a
developer to get the simplest possible response using your API?

Both hello-world tutorials and getting-started tutorials share the same goal: to show a user how to use a
framework, API, or some other system to get the simplest and easiest result, so they get a end-to-end
sense of how it works.

As an example, you could take a common, basic use case for your API and show how to construct a
request, as well as what response returns. If developers can make that call successfully, they can probably
be successful with the other calls too.

The Getting Started tutorial might involve the following:

• Signing up for an account
• Getting API keys
• Making a request
• Evaluating the response

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 379

1 32

Get started here

The Getting started tutorial usually walks users through the process from beginning to end but in a
compressed, simple way

Put a link to your Getting Started tutorial on your documentation homepage. Make it as easy as possible
for developers to use the API to get some result. This might mean using pre-provisioned accounts or setup
configurations.

Presentation on getting started tutorials
I recently gave a presentation on product overviews (p. 360) and getting started tutorials. You can watch
the presentation here:

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 380

Philosophic foundations for getting started tutorials
A getting started tutorial is more than just another type of content to include. Prioritizing a getting started
tutorial in your documentation supports an action-oriented approach to learning that aligns with the
preferences of many users, especially engineering-oriented developers.

In general, consider how people prefer to learn a new system. Do they prefer to sit passively while reading
a manual? Or do they want to jump in, write some code, run it, see what it does, tweak a few buttons, and
learn through some trial and error, experimentation and feedback?

While user learning types can fall all along this spectrum, from “systematic” (read first) to “opportunistic”
(try first), as some researchers call it, the engineering mindset tends to favor the opportunistic (hands-on,
experiential) approach. For more on different learning behaviors, see How Developers Use API
Documentation: An Observation Study (p. 444).

The more action-oriented, experiential approach to learning has its roots in a movement called
“minimalism” that John Carroll identified long ago. Describing John Carroll’s minimalism approach, David
Farkas and Thomas Williams write:

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 381

The premise behind minimalism is that people learning to use computer software are
impatient, mentally active, and curious. They want to begin right away getting their
work done; they want to exercise their problem-solving abilities; and they are apt to
utterly reject or diverge from highly constraining instruction such as tutorials. Training
material, therefore, must not impede the natural impulses of computer users, as
systems approach documentation does. It should be as brief as possible, support
the accomplishment of real work, help leaners recognize and recover from errors,
and, when possible, permit non-sequential reading. Such documentation cannot be
generated mechanically from a theory of instruction but requires careful attention to
the needs and behavior of the intended users of the software and reiterative testing
of the design. (See John Carroll’s The Nurnberg Funnel and Minimalist
Documentation . IEEE Transactions on Professional Communication, Vol. 33, Nov.
4, Dec 1990.)

In other words, minimize the amount of explanatory text that you require readers to wade through before
getting to a more hands-on activity. Instead of constructing long walls of text, provide activities that get
users interacting with the system in a direct way, learning as they go. Integrate some of your instruction
within the tutorial. Make the learning action-oriented.

When users can experiment with your system and see the result, and learn by doing, something magical
happens. Not only do users start to understand the product, they feel confidence with it. There’s nothing
more exhilarating than learning something new and getting it to work. This inspired confidence can add the
motivation users need to continue learning and using your product.

Run in Postman button
The quicker you can get users started, the better. One way to jumpstart the configuration of an API is by
using Run in Postman buttons. This can reduce more lengthy and tedious explanations about parameters
and other configurations for an API.

Postman is a REST API GUI client that we explored earlier in Submit requests through Postman (p. 71). If
you have your API endpoints integrated with Postman, you can either create a workspace that contains
your API endpoints, or you can export your Postman collections as a widget to embed in an HTML page.
When users click the Run in Postman button, they will fork your collection into their own workspace.

To see how these Run in Postman buttons work, click this button:

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_doc_getting_started_section.html] to view the content.

When prompted, click Fork Collection. You’ll then be prompted to sign into Postman first (create an
account if you don’t have one). Then you’ll see the Postman web interface like this:

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 382

https://www.hcde.washington.edu/files/people/docs/farkaswilliamsonnurnbergfunnel.pdf
https://www.hcde.washington.edu/files/people/docs/farkaswilliamsonnurnbergfunnel.pdf
https://www.hcde.washington.edu/files/people/docs/farkaswilliamsonnurnbergfunnel.pdf

Postman web interface

Expand the collection to view the endpoints, and click Send. You’ll see the response generated.

Now change the zip code parameter to your own zip code and click Send again. In the response, look
for temp and see if it matches the weather outside your home right now.

You can see the many demos of Run in Postman here . Many of these demos are listed in Postman’s API
Network .

Postman API network

For details on how to share your Postman collections like this, see Creating Run in Postman buttons in
the Postman documentation. To try out Run in Postman, you can either import an OpenAPI spec into
Postman or enter your API information manually.

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 383

https://www.postman.com/tomjoht/workspace/openweathermap-demo/request/3578416-84eb6497-c2f8-4d83-8922-a0330dd50694?ctx=code
https://www.postman.com/tomjoht/workspace/openweathermap-demo/request/3578416-84eb6497-c2f8-4d83-8922-a0330dd50694?ctx=code
https://www.getpostman.com/integrations/run-button
https://www.getpostman.com/api-network/
https://www.getpostman.com/api-network/
https://www.getpostman.com/api-network/
https://www.getpostman.com/api-network/
https://learning.postman.com/docs/publishing-your-api/run-in-postman/creating-run-button/
https://www.getpostman.com/docs/postman/collections/data_formats#importing-postman-data
https://www.getpostman.com/docs/postman/collections/data_formats#importing-postman-data

What’s especially good about Postman is that it allows users to customize the API key and parameters and
save those values. You can also safely share an API key. Although Postman doesn’t provide same direct,
in-documentation experience as Swagger UI (p. 240), in many ways the Postman client is more useful
because it lets users configure and save the calls they make. They can easily save many different variations
of the same endpoint, with different configurations. Postman is what internal developers often use to save
and store API calls as they test and explore the functionality.

Postman also allows users to easily generate the needed code to make requests in practically any
language. In the same Postman workspace, click the </> (Code) button on the right side (highlighted in
yellow) to expand the Code pane.

You can see the many options for running this same code in other languages. This gives users a jumping
off point where they can build on your information to create more detailed and customized calls.

If you don’t already have a “Try it out” feature in your docs, the Run in Postman button gives you this
interactivity in an easy way, without requiring you to sacrifice the single source of truth for your docs.

Samples of getting started topics
Here are a few sample Getting Started topics in APIs. If you compare the various Getting Started sections,
you’ll see that some are detailed and some are high-level and brief. In general, the more you can hold the
developer’s hand, the better. However, the tutorial should still be brief and not simply redundant with the
other documentation. The key is that you show the user the beginning-to-end, full process for working with
the API.

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 384

https://www.postman.com/tomjoht/workspace/openweathermap-demo/request/3578416-84eb6497-c2f8-4d83-8922-a0330dd50694?ctx=code
https://www.postman.com/tomjoht/workspace/openweathermap-demo/request/3578416-84eb6497-c2f8-4d83-8922-a0330dd50694?ctx=code

SendGrid

SendGrid getting started tutorial

This getting started tutorial from SendGrid is one of my favorites and one that I’ve had workshop
participants try to complete in about 10 minutes. Interestingly, although it seems rather simple, only few
participants could successfully send the email.

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 385

https://docs.sendgrid.com/for-developers/sending-email/api-getting-started
https://docs.sendgrid.com/for-developers/sending-email/api-getting-started

Paypal

Paypal getting started tutorial

Paypal’s getting started tutorial contains quite a bit of detail, starting with authorization, requests, and other
details before making the first call. Although not so brief, this level of details helps orient users with the
information they need. The format is clean and easy to follow.

Twitter

Twitter getting started

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 386

https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/api/overview/
https://developer.twitter.com/en/docs/basics/getting-started
https://developer.twitter.com/en/docs/basics/getting-started

Twitter’s getting started page has several getting started sections for different development goals. The text
is concise and easy to follow. The tutorial links frequently to other documentation for more details. In the
need for brevity, you might need to follow this same strategy — being brief and linking out to other pages
that have more detail.

Parse Server

Parse Server getting started

The Parse Server tutorial provides a fair amount of detail and handholding through the various steps. For
the more detailed steps on connecting your app and running the server elsewhere, the tutorial links out to
more information.

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 387

http://docs.parseplatform.org/parse-server/guide/#getting-started
http://docs.parseplatform.org/parse-server/guide/#getting-started

Adsense

Adsense getting started

The Adsense tutorial separates out some foundational prerequisites for getting started on the platform.
After you get set up, it then provides a “quick start tutorial.” The tutorial walks users through a simple
scenario from end to end, helping them get a sense of the product and its capabilities.

Aeris

Aeris getting started tutorial

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 388

https://developers.google.com/adsense/management/getting_started
https://developers.google.com/adsense/management/getting_started
http://www.aerisweather.com/support/docs/api/getting-started/
http://www.aerisweather.com/support/docs/api/getting-started/

The Aeris weather getting started provides information for setting up an application and then making a
request in one of several popular languages. While showing code in specific languages is undoubtedly
more helpful for programmers coding in those languages, the code samples might be irrelevant to other
users (e.g., Java devs might find the Python code irrelevant and vice versa). Focusing in a specific
language is often a tradeoff.

Watson and IBM Cloud

Watson and IBM Cloud getting started tutorial

The Watson and IBM Cloud getting started tutorial lists three steps. It’s not an end-to-end getting started
tutorial, though. It just gets the user started in selecting a service for your project. At the end, you start to
code using the Watson Dashboard. Ideally, a getting started tutorial should help a user see some tangible
output, but whether that’s possible or not depends on your API.

Other getting started tutorials

For other inspiration with getting started tutorials, explore the links below. Most of these samples come
from the Pronovix Dev Portal awards in the Best Onboarding category . Pronovix lists the nominees
here .

• Onfido: Getting started integrating
• Deutsche Bank: Getting Started Guide
• Yolt Technology Services: Getting started
• PlatformOS: Get Started
• Getting Started with Hazelcast Cloud
• Seon: Getting started
• Fedex: Getting started
• Vonage Developer: Getting Started
• Shopify: Getting started building payments apps
• Amadeus: Self-Service APIs
• Tapix
• Thingworx: Getting Started

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 389

https://console.bluemix.net/docs/services/watson/index.html#about
https://console.bluemix.net/docs/services/watson/index.html#about
https://devportalawards.org/
https://devportalawards.org/categories/developer-experience/best-onboarding
https://devportalawards.org/nominees?filter=8&filtertext=Best-Onboarding
https://devportalawards.org/nominees?filter=8&filtertext=Best-Onboarding
https://developers.onfido.com/guide/get-started-integrating
https://developer.db.com/apidocumentation/apigettingstartedguide/introduction
https://developer.yolt.com/docs/getting-started
https://documentation.platformos.com/get-started
https://docs.hazelcast.com/cloud/getting-started
https://docs.seon.io/getting-started
https://developer.fedex.com/api/en-us/get-started.html
https://developer.nexmo.com/getting-started/overview
https://shopify.dev/apps/payments/getting-started
https://developers.amadeus.com/get-started/get-started-with-self-service-apis-335
https://developers.tapix.io/sandbox/findByCardTransaction/All
https://developer.thingworx.com/en/resources/getting-started

• Codat: Getting Started

Summary of best practices for getting started tutorials
As a recap, include following characteristics in your getting started tutorial:

• Allow a new user to have some success with your product, even if the success is small, like
getting a one-line value back from an API call.

• Remove the burden about setup requirements as much as possible through sandbox accounts,
pre-configured data that users can load, Postman workspaces, sample apps, or more.

• Take a user from beginning to end through the tutorial, including registration, authorization,
making a call with the API, inspecting the result, and more. As much as possible, the tutorial
shouldn’t just link out to longer docs but rather provide a compressed and condensed path with
the product.

• Make sure the tutorial actually works and provides the advertised result, with as high of a
success rate as possible.

• During the tutorial, take the opportunity to teach users about concepts, linking out to other parts
of the docs. Include teaching moments and asides, assuming that the user is in a learning mode.

• Include a troubleshooting section that covers common issues users might see (e.g., 403
authorization errors).

Activity with getting started tutorials
With the open-source project you identified (p. 686), identify the getting started tutorial. Then answer the
following questions:

1. Does the API have a getting started tutorial?
2. Does the getting-started tutorial walk you through an end-to-end scenario?
3. Can you follow all the steps in the getting started tutorial successfully?
4. How long does the getting started tutorial take to complete?
5. In an attempt to simplify the instruction and keep it brief, does the documentation make

assumptions about your technical level and familiarity with the domain?

Reasons why getting started tutorials fail or don’t exist
So far I’ve covered best practices for getting started tutorials. Now let’s explore some reasons why getting
started tutorials are often poor or non-existent. In other words, why do getting started tutorials fail? Why
are they sometimes hard to follow?

Cause 1: Getting started tutorials are seen as an optional extra, and few writers have time
for optional work at release crunch times

One reason getting started tutorials are often absent is because they’re seen as going the extra mile,
delivering content that exceeds normal expectations. Given time constraints and bandwidth, creating a
getting started tutorial might not make the cut against the pressure for more pressing documentation
needs. For example, if you’re still working on reference documentation for your API, that’s probably more
important than a getting started tutorial. If you haven’t even explained what information gets returned in an
API call, that is likely more important.

Without question, there’s a hierarchy of needs with docs, and a getting started tutorial sits more towards
the top (meaning, it isn’t essential). If you’re still working on the core docs, the getting started tutorial might
not be achievable within the release timeframe.

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 390

https://docs.codat.io/docs/get-started

If writing a getting started tutorial isn’t possible within the release timeframe, plan for it in the next iteration.
You can usually continue improving and adding to docs after a release.

Cause 2: The product setup might be too involved or impractical for a getting started
tutorial

Your product might require more setup than is practical for a getting started tutorial. For example, the user
might need to be officially authorized or credentialed, which might be possible only after signing a contract.
Some requirements such as creating a database, setting up a server, or other configuring a service might
be necessary before the user can call an API. And you might not have this infrastructure readily available
for the user, especially not in a sandbox/temporary way.

One of the products I documented at Amazon was developer docs for Fire TV. Getting things setup for
Alexa integration literally took 3-4 hours, with no simple shortcuts to speed things up. Developers had to
set up AWS accounts, identity access management credentials, configure permissions for buckets, set up
other services, add code in various files, and more. There really wasn’t any quick shortcut even with a
sample app (though the sample app made the tutorial possible in an afternoon rather than a week). In short,
your product might not facilitate getting started in an easy way.

If your product doesn’t allow users to get started in an easy way, consider scaling back the result. Maybe
the user can’t call the API easily. Maybe all you can do is teach a user how to register for API keys, or show
them how to issue a command in a terminal that brings up the help information. Either scale the
expectations down a bit, or go the other route and lengthen the tutorial so that it actually does provide
value but might require more time and effort to get through.

Cause 3: There’s no sample app to demonstrate how to call the API

Another obstacle to getting started tutorials occurs with native APIs, such as Java APIs, that require users
to have an app already set up. If you don’t have a sample app for the user, it will likely be difficult to show
how to make a call to the API. Most native API documentation involves various classes and other app
configuration across various files. In short, you need the context of an app to run the code in the tutorial.

But getting engineers to make a sample app (p. 476) available is a tall order with many risks involved. Even
though most QA teams have a simple sample app to facilitate testing, product teams don’t usually like to
give external developers these sample apps for fear that they’ll use them for real scenarios. The sample
apps are usually so primitive that they are in no way production scalable.

In scenarios where you lack a sample app, you could still provide code snippets and instruct users to make
the code configurations in their own apps. Assume that your target users will actually have apps and be
familiar with the programming language; tell them to add a class and instantiate it with certain parameters
in their app, etc. If you find that the instructions go beyond your audience’s skill level, double down on
those efforts to make a sample app available. (You can always add detailed notes to the sample app that
state the app is not intended for production use and is a simplified form of an app to demonstrate API calls
only.)

Cause 4: The getting started tutorial omits details for the sake of brevity that might lead to
confusion

Another obstacle to creating the getting started tutorial is the basic task of writing this content, as it
requires more writing skill. Ideally, the getting started tutorial condenses longer, more detailed information
into a succinct one-page tutorial. Yet this tutorial is supposed to take a user through registration, setup,
authorization, execution, viewing results, interpretation, and more. It’s like being asked to create a poem
out of a novel, with the requirement that the same general story gets told.

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 391

Being brief at the expense of creating a short tutorial might lead to a confusing user experience. Leaving
out more specifics, notes, and other more explicit instructions for the sake of brevity goes against our tech-
writing principles of clear, explicit documentation.

The ability to reduce and distill information down to short, crisp summaries for a getting started tutorial is a
higher-level writing skill. It also requires more effort and subject mastery. For more information on distilling
information, see Principle 4: Reduce and distill vast information down to its essence .

In places where you choose to be succinct and omit detail, link out to your regular docs for more
information. In these cases, consider the approach to be a progressive information disclosure strategy. If a
user needs more information, he or she can click the link and get it. But if not, the concise version suffices.

Cause 5: The tech might be too complicated for tech writers to walk through themselves

Another reason why getting started tutorials might be absent from docs is because the tech itself might be
beyond the tech writer’s reach. Suppose you have an advanced product that requires senior-engineering-
level knowledge to use. In this scenario, the tech writer might mainly be acting as an editor, curator, and
publisher — facilitating content mostly written by engineers. Since getting started tutorials are mostly
hands-on, experience-driven deliverables, it might be too advanced for the tech writer. This is the nature of
working in developer docs, especially without an engineering background. The tools are really designed for
engineers who have a lot more training, experience, and knowledge in areas that we lack.

For example, suppose the integration assumes access to a vehicle’s hardware abstraction layer, as well as
knowledge about the way this layer connects to the vehicle’s custom infotainment system in the head unit.
In this case, the system environment might be too complex to wrangle into a simple getting started tutorial.
It can be hard to walk through all of these same tasks in an end-to-end way.

Or putting it more optimistically, the tasks might be within the tech writers reach at some point, but not
immediately. The tech writer might need more time to set up environments and walk through all of the tasks
— time that’s not available at present.

Consider asking an engineer to write the getting started tutorial. If you can’t follow it, this could form the
basis of homework or other learning that you chip away at little by little in your path of continual learning.

Cause 6: The content isn’t tested against real users

Another reason for poor getting started tutorials is that they are rarely tested against actual users. (This
could explain why a lot of documentation is poor, not just getting started tutorials.) During one of my API
workshops, I had participants go through this 5 minute Sendgrid tutorial . Out of about 20 workshop
participants, only 1 managed to do the tutorial successfully. It seemed simple on the surface, but in
practice, users got hung up many details. (Granted, this was a room full of tech writers, not engineers, but
still.)

Testing docs against users isn’t usually something tech writers do, though most admit it would be a good
idea. User testing usually comes in the form of feedback to product teams, support cases, or through
training sessions where users provide feedback in real-time.

If you want to make getting started tutorials a better experience, ask a few engineers (preferably not on the
product team) to spend an hour or so going through the getting started tutorial. Unlike other content in
docs that might require more setup and context, the getting started tutorial is supposed to be self-
contained, short, and accessible to a new user. It’s the perfect type of documentation to test.

API getting started tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 392

https://idratherbewriting.com/simplifying-complexity/reduction-layering-distillation.html
https://docs.sendgrid.com/for-developers/sending-email/api-getting-started

API authentication and authorization
Before users can make requests with your API, they’ll usually need to register for an API key or learn other
ways to authenticate the requests. APIs vary in the way they authenticate users. Some APIs require you to
include an API key in the request header, while other APIs require elaborate security due to the need to
protect sensitive data, prove identity, and ensure the requests aren’t tampered with. In this section, you’ll
learn more about authentication and authorization and what you should focus on in documentation.

Defining terms
First, let’s define some key terms:

• Authentication: Refers to proving correct identity
• Authorization: Refers to allowing a certain action

An API might authenticate you but not authorize you to make a certain request.

Authentication Authorization

Privileges

are you who you say you are? are you allowed to do this action?

Identity

Authentication and authorization

Consequences if an API lacks security
Why do APIs even need authentication? For read-only APIs, sometimes users don’t need keys. But most
commercial APIs do require authorization in the form of API keys or other methods. If you didn’t have any
security with your API, users could make unlimited amounts of API calls without any kind of registration.
Allowing unrestricted requests would make a revenue model for your API difficult.

API authentication and authorization PDF last generated: August 27, 2023

Documenting REST APIs Page 393

Additionally, without authentication, there wouldn’t be an easy way to associate requests with specific user
data. And there wouldn’t be a way to protect against requests from malicious users that might delete
another user’s data (such as by making DELETE requests on another’s account).

Finally, you couldn’t track who is using your API, or what endpoints are most used. Clearly, API developers
must think about ways to authenticate and authorize requests made to their API.

Overall, authentication and authorization with APIs serves the following purposes:

• Authenticate calls to the API to registered users only
• Track who is making the requests
• Track usage of the API
• Block or throttle any requester who exceeds the rate limits (p. 408)
• Apply different permission levels to different users

Different types of authorization
There are several methods for authorization. The following are various types of API authorization you might
encounter:

• API keys (p. 394)
• Basic Auth (p. 395)
• HMAC (p. 396)
• OAuth (p. 397)

API keys

Most APIs require you to sign up for an API key in order to use the API. The API key is a long string that you
usually include either in the request URL or request header. The API key mainly functions as a way to
identify the person making the API call (authenticating you to use the API). The API key might also be
associated with a specific app that you register.

API authentication and authorization PDF last generated: August 27, 2023

Documenting REST APIs Page 394

REST API

Application

Reques t

Request Header

{ “api-key”: “9038-20380-9340-98”}

API Key

APK keys use a string in a header property to authorize requests

APIs might give you both a public and private key. The public key is usually included in the request, while
the private key is treated more like a password and used only in server-to-server communication. For some
API documentation sites, when you’re logged into the site, your API key automatically gets populated into
the sample code and API Explorer.

Basic Auth

Another type of authorization is called Basic Auth. With this method, the sender places a
username:password into the request header. The username and password are encoded with Base64,

which is an encoding technique that converts the username and password into a set of 64 characters to
ensure safe transmission. Here’s an example of a Basic Auth in a request header:

Authorization: Basic bG9sOnNlY3VyZQ==

APIs that use Basic Auth will also use HTTPS, which means the message content will be encrypted within
the HTTP transport protocol. (Without HTTPS, it would be easy for people to decode the username and
password.)

When the API server receives the message, it decrypts the message and examines the header. After
decoding the string and analyzing the username and password, it then decides whether to accept or reject
the request.

In Postman, you can configure Basic Authorization by clicking the Authorization tab, selecting Basic Auth
from the drop-down selector, and then typing the username and password on the right of the colon on
each row. The Headers tab will show a key-value pair that looks like this:

API authentication and authorization PDF last generated: August 27, 2023

Documenting REST APIs Page 395

Authorization: Basic RnJlZDpteXBhc3N3b3Jk

Postman handles the Base64 encoding for you automatically when you enter a username and password
with Basic Auth selected.

HMAC (Hash-based message authorization code)

HMAC stands for Hash-based message authorization code and is a stronger type of authentication, more
common in financial APIs. With HMAC, both the sender and receiver know a secret key that no one else
does. The sender creates a message based on some system properties (for example, the request
timestamp plus account ID).

The message is then encoded by the secret key and passed through a secure hashing algorithm (SHA). (A
hash is a scramble of a string based on an algorithm.) The resulting value, referred to as a signature, is
placed in the request header.

When the receiver (the API server) receives the request, it takes the same system properties (the request
timestamp plus account ID) and uses the secret key (which only the requester and API server know) and
SHA to generate the same string. If the string matches the signature in the request header, it accepts the
request. If the strings don’t match, then the request is rejected.

Here’s a diagram depicting this workflow:

HMAC workflow

API authentication and authorization PDF last generated: August 27, 2023

Documenting REST APIs Page 396

The important point is that the secret key (critical to reconstructing the hash) is known only to the sender
and receiver. The secret key is not included in the request. HMAC security is used when you want to
ensure the request is both authentic and hasn’t been tampered with.

OAuth 2.0

One popular method for authenticating and authorizing users is OAuth 2.0. This approach relies on an
authentication server to communicate with the API server to grant access. You often see OAuth 2.0 when
you’re using a site and are prompted to log in using a service like Twitter, Google, or Facebook.

OAuth login window

There are a few varieties of OAuth — namely, “one-legged OAuth” and “three-legged OAuth.” One-legged
OAuth is used when you don’t have sensitive data to secure. This might be the case if you’re just retrieving
general, read-only information.

In contrast, three-legged OAuth is used when you need to protect sensitive data. Three groups are
interacting in this scenario:

• The authentication server
• The resource server (API server)
• The user or app

Here’s the basic workflow of OAuth 2.0:

API authentication and authorization PDF last generated: August 27, 2023

Documenting REST APIs Page 397

OAuth authentication

First, the consumer application sends over an application key and secret to a login page at the
authentication server. If authenticated, the authentication server responds to the user with an access token.

The access token is packaged into a query parameter in a response redirect (302) to the request. The
redirect points the user’s request back to the resource server (the API server).

The user then makes a request to the resource server (API server). The access token gets added to the
header of the API request with the word Bearer followed by the token string. The API server checks the
access token in the user’s request and decides whether to authenticate the user.

Access tokens not only provide authentication for the requester but also define the permissions of how the
user can use the API. Additionally, access tokens usually expire after a period of time and require the user
to log in again. For more information about OAuth 2.0, see these resources:

• Learn API Technical Writing 2: REST for Writers (Udemy) , by Peter Gruenbaum
• OAuth simplified , by Aaron Parecki

What to document with authentication
In API documentation, you don’t need to explain how your authentication works in detail to outside users.
In fact, not explaining the internal details of your authentication process is probably a best practice as it
would make it harder for hackers to abuse the API.

However, you do need to explain some necessary information such as:

• How to get API keys
• How to authenticate requests

API authentication and authorization PDF last generated: August 27, 2023

Documenting REST APIs Page 398

https://www.udemy.com/learn-api-technical-writing-2-rest-for-writers/
https://aaronparecki.com/articles/2012/07/29/1/oauth2-simplified

• Error messages related to invalid authentication
• Sensitivity around authentication information
• Token expiration times

If you have public and private keys, you should explain where each key should be used, and note that
private keys should not be shared. If different license tiers provide different access to the API calls, these
licensing tiers should be explicit in your authorization section or elsewhere.

Since the API keys section is usually essential before developers can start using the API, this section needs
to appear at the beginning of your help.

Samples of authorization sections
The following are a few samples of authorization sections in API documentation.

SendGrid

SendGrid API keys

SendGrid offers a detailed explanation of API keys, starting with the basics by explaining, “What are API
keys?” Contextually, the topic on API keys appears with other account management topics.

API authentication and authorization PDF last generated: August 27, 2023

Documenting REST APIs Page 399

https://sendgrid.com/docs/User_Guide/Settings/api_keys.html
https://sendgrid.com/docs/User_Guide/Settings/api_keys.html

Twitter

Twitter authorization

With Twitter, because the OAuth 2.0 authorization requirements are a bit more involved, a detailed example
is warranted and provided.

Amazon Web Services

Amazon authorization

The Amazon example uses HMAC. The process is complex enough that a full-fledged diagram is included
to show the steps users need to perform.

API authentication and authorization PDF last generated: August 27, 2023

Documenting REST APIs Page 400

https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://docs.aws.amazon.com/AWSECommerceService/latest/DG/HMACSignatures.html
https://docs.aws.amazon.com/AWSECommerceService/latest/DG/HMACSignatures.html

Dropbox

Dropbox authorization

Like Twitter, Dropbox also uses OAuth 2.0. Their documentation includes not just one but two diagrams
and an extended explanation of the process.

Activity with authorization
With the open-source project you identified (p. 686), identify the information about authorization for
requests to the API. Answer the following questions:

1. What kind of authorization is required to make requests to the API?
2. Are there different access levels within the authorization (for example, free versus pro tiers) that

determine how many requests you can make or the types of information you can access?
3. Are you able to get an API key or whatever authorization method is required to make test calls to

the API?
4. How is the information about authorization integrated into the getting started tutorial?

API authentication and authorization PDF last generated: August 27, 2023

Documenting REST APIs Page 401

https://www.dropbox.com/developers/reference/oauth-guide
https://www.dropbox.com/developers/reference/oauth-guide

API status and error codes
Status and error codes refer to a code number in the response header that indicates the general
classification of the response — for example, whether the request was successful (200), resulted in a server
error (500), had authorization issues (403), and so on. Standard status codes don’t usually need much
documentation, but custom status and error codes specific to your API do. Error codes in particular help in
troubleshooting bad requests.

Sample status code in curl header
Status codes don’t appear in the response body. They appear in the response header, which you might not
see by default.

Remember when you submitted the curl call back in Make a curl call (p. 80)? To get the response header,
you add --include or -i to the curl request. If you want only the response header returned in the
response (and nothing else), capitalize the -I , like this:

curl -I -X GET "https://api.openweathermap.org/data/2.5/weather?zip=95050&ap
pid=APIKEY&units=imperial"

Replace APIKEY with your actual API key.

The response header looks as follows:

HTTP/1.1 200 OK
Server: openresty
Date: Thu, 06 Dec 2018 22:58:41 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 446
Connection: keep-alive
X-Cache-Key: /data/2.5/weather?units=imperial&zip=95050
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: GET, POST

The first line, HTTP/1.1 200 OK , tells us the status of the request (200). Most REST APIs follow a
standard protocol for response headers. For example, 200 isn’t just an arbitrary code decided upon by
the OpenWeatherMap API developers. 200 is a universally accepted code for a successful HTTP request.
(If you change the method, you’ll get back a different status code.)

With a GET request, it’s pretty easy to tell if the request is successful because you get back the expected
response. But suppose you’re making a POST, PUT, or DELETE call, where you’re changing data
contained in the resource. How do you know if the request was successfully processed and received by
the API? HTTP response codes in the header of the response will indicate whether the operation was
successful. The HTTP status codes are just abbreviations for longer messages.

API status and error codes PDF last generated: August 27, 2023

Documenting REST APIs Page 402

500 server error

200 ok

400 bad request

404 not found

403 forbidden

Error codes/messages should
help users recover from failure.

Status codes are pretty subtle, but when a developer is working with an API, these codes may be the only
"interface" the developer has. If you can control the messages the developer sees, it can be a huge win for
usability.

All too often, status codes are uninformative, poorly written, and communicate little or no helpful
information to the user to overcome the error. Ultimately, status codes should assist users in recovering
from errors.

You can see a list of common REST API status codes here and a general list of HTTP status codes here
. Although it’s probably good to include a few standard status codes, comprehensively documenting all

standard status codes, especially if rarely triggered by your API, is unnecessary.

Where to list the HTTP response and error codes
Most APIs should have a general page listing response and error codes across the entire API. A standalone
page listing the status codes (rather than including these status codes with each endpoint) allows you to
expand on each code with more detail without crowding the other documentation. It also reduces
redundancy and the sense of information overload.

On the other hand, if some endpoints are prone to triggering certain status and error codes more than
others, it makes sense to highlight those status and error codes on same API reference pages. One
strategy might be to call attention to any particularly relevant status or error codes for a specific endpoint,
and then link to the centralized “Response and Status Codes” page for full information.

API status and error codes PDF last generated: August 27, 2023

Documenting REST APIs Page 403

http://www.restapitutorial.com/httpstatuscodes.html
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Where to get status and error codes
Status and error codes may not be readily apparent when you’re documenting your API. You’ll probably
need to ask developers for a list of all the status and error codes that are unique to your API. Sometimes
developers hard-code these status and error codes directly in the programming code and don’t have easy
ways to hand you a comprehensive list (this makes localization problematic as well).

As a result, you may need to experiment a bit to ferret out all the codes. Specifically, you might need to try
to break the API (p. 348) to see all the potential error codes. For example, if you exceed the rate limit (p.
408) for a specific call, the API might return a special error or status code. You would especially need to
document this custom code. A troubleshooting section in your API might make special use of the error
codes.

How to list status codes
You can list your status and error codes in a basic table or definition list, somewhat like this:

Status code Meaning

200 Successful request and response.

400 Malformed parameters or other bad request.

Status/error codes can assist in troubleshooting
Status and error codes can be particularly helpful when it comes to troubleshooting. As such, you can think
of these error codes as complementary to a section on troubleshooting.

Almost every set of documentation could benefit from a section on troubleshooting. In a troubleshooting
topic, you document what happens when users get off the happy path and stumble around in the dark
forest. Status codes are like the poorly illuminated trail signs that will help users get back onto the right
path.

A section on troubleshooting could list error messages related to the following situations:

• The wrong API keys are used
• Invalid API keys are used
• The parameters don’t fit the data types
• The API throws an exception
• There’s no data for the resource to return
• The rate limits have been exceeded
• The parameters are outside the max and min boundaries of what’s acceptable
• A required parameter is absent from the endpoint

Where possible, document the exact text of the error in the documentation so that it easily surfaces in
searches.

Example of status and error codes
The following are some sample status and error code pages in API documentation.

API status and error codes PDF last generated: August 27, 2023

Documenting REST APIs Page 404

Context.io

Context.io status and error codes

Clearbit not only documents the standard status codes but also describes the unique parameters returned
by their API. Most developers will probably be familiar with 200, 400, and 500 codes, so these codes don’t
need a lot of explanatory detail. But if your API has unique codes, make sure to describe these adequately.

Twitter

Twitter status and error codes

API status and error codes PDF last generated: August 27, 2023

Documenting REST APIs Page 405

https://clearbit.com/docs?python#errors-error-types
https://clearbit.com/docs?python#errors-error-types
https://developer.twitter.com/en/docs/basics/response-codes
https://developer.twitter.com/en/docs/basics/response-codes

With Twitter’s status code documentation, they not only describe the code and status but also provide
helpful troubleshooting information, potentially assisting with error recovery. For example, with the 500

error, the authors don’t just say the status refers to a broken service, they explain, “This is usually a
temporary error, for example in a high load situation or if an endpoint is temporarily having issues. Check in
the developer forums in case others are having similar issues, or try again later.”

This kind of helpful message is what tech writers should aim for with status codes (at least for those codes
that indicate problems).

Mailchimp

Mailchimp status and error codes

Mailchimp provides readable and friendly descriptions of the error message. For example, with the 403

errors, instead of just writing “Forbidden,” Mailchimp explains reasons why you might receive the
Forbidden code. With Mailchimp, there are several types of 403 errors. Your request might be forbidden
due to a disabled user account or request made to the wrong data center. For the “WrongDataCenter”
error, Mailchimp notes that “It’s often associated with misconfigured libraries” and they link to more
information on data centers. This is the type of error code documentation that is helpful to users.

API status and error codes PDF last generated: August 27, 2023

Documenting REST APIs Page 406

https://twittercommunity.com/
http://developer.mailchimp.com/documentation/mailchimp/guides/error-glossary/
http://developer.mailchimp.com/documentation/mailchimp/guides/error-glossary/

Flickr

Flickr's status and error codes

With Flickr, the Response Codes section is embedded within each API reference topic. As such, the
descriptions are short. While embedding the Response Codes in each topic makes the error codes more
visible, in some ways it’s less helpful. Because it’s embedded within each API topic, the descriptions about
the error codes must be brief, or the content would overwhelm the endpoint request information.

In contrast, a standalone page listing error codes allows you to expand on each code with more detail
without crowding out the other documentation. The standalone page also reduces redundancy and the
appearance of a heavy amount of information (information which is just repeated).

If some endpoints are prone to triggering certain status and error codes more than others, it makes sense
to highlight those status and error codes on their relevant API reference pages. I recommend calling
attention to any particularly relevant status or error codes on an endpoint’s page and then linking to the
centralized page for full information.

Activity with status and error codes
With the open-source project you identified (p. 686), identify the status and error code information. Answer
the following questions:

• Does the project describe status and error codes?
• Where is the status and error code information located within the context of the documentation?

As a standalone topic? Below each endpoint? Somewhere else?
• Does the API have any unique status and error codes?
• Do the error codes help users recover from errors?
• Make a request to one of the endpoints. Then purposefully change a parameter so that it

invalidates the call. What status code gets returned in the response? Is this status code
documented?

API status and error codes PDF last generated: August 27, 2023

Documenting REST APIs Page 407

https://www.flickr.com/services/api/upload.api.html
https://www.flickr.com/services/api/upload.api.html

API rate limiting and thresholds
Rate limits determine how frequently you can call a particular endpoint. Usually, companies have different
tiers (for example, free versus pro) and licenses (open-source, business, commercial) corresponding to
different capabilities or rate limits with the API.

What to cover with rate limiting
Companies with APIs make money by charging for access to the API, but they usually distinguish between
low usage and high usage, often making the low usage options free so that developers can explore and
experiment with the API. With the sample OpenWeatherMap Weather API that we’ve been using in this
course, you can see where the pricing tier begins:

Pricing tiers for OpenWeatherMap API. Each call is a request to the API. If your page makes just one call for
weather, and you get more than 60 visitors per second, you'll need to move past the free tier.

If your site has hundreds of thousands of visitors a day, and with each page reload calls an API endpoint,
you want to be sure the API can support that kind of traffic.

Pricing related to rate limiting is probably information that’s within the marketing domain rather than
documentation domain. However, developers will still want to know a few key behaviors around the rate-
limiting thresholds. For example:

• When you exceed the threshold, do your calls get throttled with slower responses?
• Do you get overcharges for every extra call?
• If you exceed the limit, do the responses return a particular status code (if so, which one)?

API rate limiting and thresholds PDF last generated: August 27, 2023

Documenting REST APIs Page 408

https://openweathermap.org/price
https://openweathermap.org/price
https://openweathermap.org/price

Also, when developers implement the code into their applications, how are they handling situations where
the API doesn’t respond due to rate limit violations? Are there conditions and checks to handle these
throttled scenarios? Does the widget (or whatever might be implementing the API) freeze or hang, display
empty or crash?

threshold

Limits to Pro plan: 10,000 calls/day

Rate limiting might seem like a marketing topic, but the rate limiting policies and how they affect API calls
can have a significant impact on development.

Examples rate limiting sections
Here are a few examples of rate limiting sections in API documentation.

API rate limiting and thresholds PDF last generated: August 27, 2023

Documenting REST APIs Page 409

GitHub

GitHub rate limiting

GitHub’s documentation explains rate limits for authenticated versus unauthenticated requests, the header
returned, the meaning of the rate-limiting titles (X-RateLimit-Limit , X-RateLimit-Remaining , and X-

RateLimit-Reset), how to check your current usage, how to increase rate limits for a specific application,
what happens when rate limits are abused, and more.

Linkedin

Linkedin rate throttling section

API rate limiting and thresholds PDF last generated: August 27, 2023

Documenting REST APIs Page 410

https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.linkedin.com/docs/rest-api?u=0
https://developer.linkedin.com/docs/rest-api?u=0

Linkedin’s rate limiting documentation explains that different API endpoints have different limits. There are
three different types of throttling: Application throttling, User throttling, and Developer throttling. Their
documentation also explains the time zone used to track the day’s beginning and end.

Bitly

Bitly's rate limiting

Bitly provides basic information on the page above but also links to best practices for avoiding rate-limiting
issues . These best practices include tips such as caching, security issues, long page loads, batch
processing, high-volume requests, URL encoding, and more.

By looking at these examples, you can see that while rate limiting might seem like a straightforward topic,
there are layers of depth and complexity to cover. The relevance of the topic depends on your API and the
rate-limiting policies your company sets, but this information cannot be entirely offloaded to Marketing to
handle. So much of the information around rate limiting directly affects development.

Activity with rate limits
With the open-source project you identified (p. 686), identify the information about rate limits with the API.
Answer the following questions:

1. Does the API have rate limits?
2. What happens if users exceed the rate limits?
3. What status codes are sent if rate limits are exceeded?
4. What kind of rate limits exist with the free (or development) tiers of the API?

API rate limiting and thresholds PDF last generated: August 27, 2023

Documenting REST APIs Page 411

http://dev.bitly.com/rate_limiting.html
http://dev.bitly.com/rate_limiting.html
http://dev.bitly.com/best_practices.html
http://dev.bitly.com/best_practices.html

API quick reference
Quick reference guides serve a different function than getting started tutorials (p. 379). While the getting
started tutorial helps beginners get oriented by providing an end-to-end instruction to make a simple API
request, the quick reference guide helps users get a glimpse of the system as a whole, often by providing a
list of the API’s endpoints.

The need for quick reference guides
Whether for end-user documentation or developer documentation, the quick reference guide provides a
1-2-page guide that provides a brief summary of the core tasks and features in the system.

One-line descriptions
of each endpoint or
function

quick reference

Remind me again
what that endpoint
was called and what
it does?

Quick reference guides compress the key information into a brief format for easy consumption

The quick reference guide should provide the user with just enough information to get the gist of what the
system is about, including the key endpoints and tasks. Often with APIs, the endpoints have relationships
with each other that you can depict visually. Here’s an API diagram I created at a previous company:

API quick reference PDF last generated: August 27, 2023

Documenting REST APIs Page 412

A quick reference guide format

The text is Latin filler for privacy reasons, so the logic may not be entirely apparent. But with this API, the
endpoints could be organized into different groups. Some of the groups had multiple levels within the
endpoint, and multiple include options for each endpoint. I created this diagram in Adobe Illustrator and
distributed it as a PDF. Developers found it useful because it tried to make sense of the API as a whole,
showing how all the endpoints fit together in logical harmony. Most commonly with API documentation, the
quick reference guide lists abbreviated descriptions of the endpoints. For this reason, the Swagger UI
output (p. 240) can often function as a quick reference guide.

Outside of API documentation, quick reference guides tend to focus more on tasks. If you have a service to
set up or configure, a more narrative rather than visual format might make sense. Here’s a sample layout
for such a guide:

API quick reference PDF last generated: August 27, 2023

Documenting REST APIs Page 413

https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/sample_api_diagram.pdf
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/sample_api_diagram.pdf

This quick reference guide format focuses more on tasks than API endpoints

However, with API documentation, usually the quick reference guide focuses on some visual grouping or
display of the endpoints since this is what constitutes the core functionality in an API.

Advantages of distilled information for learning
The information in the quick reference usually can’t be single sourced, since it’s not just an excerpt from
the docs but rather a more briefly written summary or depiction of the entire system. As a result, many
times it seems like yet another deliverable technical writers don’t have time to write. But for the best user
experience, the quick reference guide shouldn’t be skipped because it provides incalculable value to users.

When you create the quick reference guide, try to condense the most important information into one or two
pages that users can print and pin up on their wall. By “condense” I don’t mean shrink the font to 6-point,
decrease the leading, and eliminate all white space. With the quick reference guide, you take something
that’s robust and complex, and distill it down to its essence in a way that still maintains clarity to users.

Through this distillation, quick reference guides provide a unique advantage for users to understand the
material. Providing a high-level overview of a system helps users get a sense of the whole before drilling
into the details.

For a deep dive into the importance of distilling information for users, see Reduction, layering, and
distillation as a strategy for simplicity in my series on Simplifying Complexity. Reading overviews,
summaries, and other high-level information to see the whole at a glance can help users understand a
complex system in significant ways. Too often, users get thrown into the technical details without more
grounding and orientation about the whole.

API quick reference PDF last generated: August 27, 2023

Documenting REST APIs Page 414

https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/sample_api_diagram.pdf
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/sample_api_diagram.pdf
https://idratherbewriting.com/simplifying-complexity/reduction-layering-distillation.html
https://idratherbewriting.com/simplifying-complexity/reduction-layering-distillation.html

Distilling large amounts of information into concisely worded titles, summaries, headings, mini-TOCs, and
topic sentences can facilitate information consumption and comprehension. Quick reference guides take
the principle of distillation to another level by compressing the whole system into a bite-sized information
deliverable.

Quick reference guides are like the poetry of technical writing . The goal is not just to be brief or concise.
With poetry, the poet attempts to evoke a mood or paint a moment, and in that brief moment, capture the
essence of the whole. Writing a quick reference guide involves much the same effort. It’s not that you
merely cut words to make the documentation shorter, or restrict the output to a few topics, but that you try
to compress the documentation as a whole and express its minimalist equivalent.

I’ll grant that the task is probably impossible for technical material. Still, the attempt is worthwhile and the
philosophy remains the same. Quick reference guides teach each us how to use the system in 5 minutes
rather than 5 hours. It’s a philosophy of simplification and linguistic efficiency.

Don’t be deceived by the brevity and scope of the quick reference guide. In wrangling with layout, scope,
and concision to create this guide, you might spend several days writing just one page. But when you’re
done, you can practically frame the result.

Sample quick reference guides
The following are sample quick reference guides from various API documentation sites.

Eventful

Eventful quick reference guide

Eventful provides a one-page quick list of all the endpoints in the API, organized by resource group. Each
endpoint is described in about half a line, so you can get a gist of them all quickly. For example, the
description for the /events/get in their quick reference is “Get an event record.” But if you click for more
details, the more detailed definition is “Given an event ID, returns the event data associated with that event.
See http://eventful.com/events/E0-001-000278174-6 for an example interface.”

API quick reference PDF last generated: August 27, 2023

Documenting REST APIs Page 415

https://idratherbewriting.com08/07/06/quick-reference-guides-the-poetry-of-technical-writing/
http://api.eventful.com/docs
http://api.eventful.com/docs
http://eventful.com/events/E0-001-000278174-6

There’s a certain understanding you get from seeing all the endpoints at a glance. By looking from high-
above at the forest, you can see the shape of the forest as a whole. You may not know what kinds of trees
the forest contains, but you can comprehend other details that aren’t apparent when you’re looking at a
single tree.

Parse

Parse quick reference guide

The quick reference for Parse is similar to Eventful in that it’s a long list of endpoints, this time grouped in
tables. Notice that this quick reference page is just a section within one long, single page of docs. In their
approach, all documentation is on the same page, but as you scroll down, different entries in the sidebar
highlight.

Sometimes developers like the one-page approach because it reduces information fragmentation and lets
them use Ctrl+F to find all instances of a keyword. I explored the tradeoffs in this one-page approach in
Single-page docs versus “Click Insanity.”

If you use the OpenAPI reference docs on GitHub , you’ll notice the docs are also contained on a single
page. Developers might like to use Ctrl+F to quickly see all instances of a topic. However, I’m not a fan of
single-page documentation like this because it provides a lot of visual complexity for users to sort out.

API quick reference PDF last generated: August 27, 2023

Documenting REST APIs Page 416

http://docs.parseplatform.org/rest/guide/#quick-reference
http://docs.parseplatform.org/rest/guide/#quick-reference
https://idratherbewriting.com14/01/12/single-page-docs-versus-click-insanity/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md

Shopify

Shopify quick reference guide

The Shopify quick reference guide isn’t for an API, but it does show the filters, variables, and other
functions available in Liquid, which is a scripting language for developers. Here Shopify takes advantage of
collapse-and-expand functionality to compress the information.

This quick reference guide is handy because it lets you browse all the available functionality in Liquid at
once, so you can know what to dive into for more information. It’s like a map of the Liquid terrain. The map
lets you know all the functions that exist.

Activity with quick reference guides
With the open-source project you identified (p. 686), identify the information about quick reference guides
for the API. Answer the following questions:

1. Is there a quick reference guide for the API? Perhaps a quick list of the API endpoints?
2. Is there a Swagger UI output that acts as a quick reference for the API?
3. If there isn’t a quick reference guide, would the API benefit from one? Why or why not?
4. Besides listing abbreviated descriptions of the endpoints, what else would you put in the API’s

quick reference guide? Common tasks?
5. Are there several essential tasks users need to perform with the API? Are these core tasks also

communicated in the getting started tutorial?

API quick reference PDF last generated: August 27, 2023

Documenting REST APIs Page 417

http://cheat.markdunkley.com/
http://cheat.markdunkley.com/

API glossary
The glossary defines all the terms that might be helpful for users to know — and especially all terms unique
to your company or product. Glossaries are often overlooked or skipped, but their importance should not
be understated since much of the user’s understanding of API documentation depends on the clarity and
alignment of specific terms. A glossary will help you, as a writer, be more precise about terminology.
Additionally, sourcing definitions from a central glossary file can make authoring more efficient and
consistent.

Defining specialized terms
Unlike most other professional writing disciplines, tech docs are notorious for the number of specialized
terms in their content. We have unique terms specific to our company as well as industry and business
domain jargon.

API evangelist Kin Lane noted his frustration with an API’s language when he encountered an undefined
acronym in some API docs he was browsing. Lane explains,

I came across a set of API resources for managing a DEG the other day. You could
add, updated, delete and get DEGs. You can also pull analytics, history, and other
elements of a DEG. I spent about 10-15 minutes looking around their developer
portal, documentation, and even Googling, but never could figure out what a DEG
was. Nowhere in their documentation did they ever tell consumers what a DEG was,
you just had to be in the know I guess. The API designer (if that occurred) and
developer had never stopped to consider that maybe someone would stumble
across their very public API and not know what a DEG was. (Using Plain Language In
Your API Paths)

In this case, DEG must have been an acronym specific to the developer’s API. In these cases, there’s no
excuse for not defining your own pet acronyms and unique vocabulary.

But many times, acronyms and unfamiliar terms are an unavoidable part of a specialized domain. As a
technical writer, using the correct terms for your knowledge domain and your product is necessary, and
those terms are often appropriate for that particular knowledge domain.

To simplify the language, you can’t just omit the necessary terminology for the domain and substitute in
more friendly names. You have to teach the user the right language so they can participate in the
conversation. One approach for teaching users how to speak this language involves defining unfamiliar
words for the user by way of a glossary.

API glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 418

https://apievangelist.com/2018/07/09/use-plain-language-in-api-paths/
https://apievangelist.com/2018/07/09/use-plain-language-in-api-paths/

Term 1

Term 2

Term 3

Term 4

Term 5

Term 6

Glossaries not only provide clarity about terms for users but also help the writers think more clearly and
consistently about the topic.

I provide an API glossary here (p. 55) that defines many terms related to API documentation. If you run into
unfamiliar jargon that I don’t define in the topic, you can always consult the glossary.

Should you provide a glossary?
Usually, providing a glossary in your documentation seems like going above and beyond the call of duty.
However, defining these terms has tremendous benefit for the writer too, not just for the users.

Defining terms helps you recognize the specialized terminology that might be used with your API — terms
that you may have become immune to by hearing them so frequently in project meetings. By defining the
terms, you ensure that you’re using these terms more precisely and accurately (rather than switching
around with synonyms for variety).

Localization requirements and glossaries
If you’re planning to localize your API documentation, most translators will require a glossary. Especially
with API documentation, there are many technical terms that translators need to to be aware of so they can
decide whether the terms should be translated.

For example, suppose in your sample Android app, you have terms like PlaybackState and “media
session” and “callback” and BroadcastReceiver . Translators need to be technical enough to know
whether these terms should be translated or left as is. Terms set off in code tags normally wouldn’t be
translated, but many other terms referring to technical elements might also best be left untranslated. It can
be a tricky judgment call when the technical term isn’t set off as code but refers to a technical concept or
class (such as “MediaSession”).

API glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 419

After translators finish translating the content, the translation needs to be checked over by a subject matter
expert in that language — usually by a field engineer who works with clients in that locale. The glossary will
also assist the subject matter experts who review the translation.

Specialized versus non-specialized terms
One challenge in coming up with a glossary is distinguishing between specialized terms unique to your API
and terms that are common within the industry or knowledge domain. You don’t need to define terms that
are common within the knowledge domain you’re working in. For example, with a sample Android app, you
wouldn’t need to define adb (Android Debug Bridge) in your glossary because most anyone who develops
on Android would presumably already be familiar with adb.

However, if you think listing some industry terms in the glossary would be helpful for users, who might
need a little more information, you can do so. Glossaries can easily accommodate dozens or even
hundreds of terms. In your definitions, you can also include links to external sites where more information is
available.

Separating your API’s terminology from the general knowledge domain gets at the heart of why developer
documentation can be so challenging for technical writers (who often aren’t experts in the knowledge
domain). You’ll likely need to rely on engineers to help identify terms that need to be defined.

I explored glossaries in depth in Reducing the complexity of technical language . As a best practice, you
can get a good sense as to whether you’re using the right terms in a standard way by reading your
competitor’s documentation.

Integration of the glossary with documentation
One question to consider is how and where to integrate the glossary definition within your technical
content. For example, suppose you have the terms “near field” and “far field” in your content, referring to
voice interactions with a device. You might use these terms in a number of sections and different pages.
Sure, you could define these terms the first instance in your docs when you use them, but what if they
appear on half a dozen pages? Users might not start on the initial page where they’re defined.

You could incorporate tooltips (such as these tooltips from Bootstrap) over the term in places where you
don’t define it in-context. You could also link to the glossary definition rather than continually incorporating
tooltips.

One principle to consider with connecting terms to glossary definitions is Fitt’s Law, which asserts that “the
distance between a user’s task/attention area and the task-related button should be kept as short as
possible” (What is Fitts’ Law?). In other words, the more distance between your glossary definition and
the term, the harder it is for users to locate the definition. Users have to leave their context to go hunting for
the definition, and then return. This context switching is often skipped by users because it’s a drag on their
efficiency.

In the worst case scenario, the term might not have a tooltip or link, and the glossary page link might not
be visible at all in the page’s context. In this case, it becomes even harder for a user to locate the definition,
requiring more time out of context. In the best case scenario, the term is defined within the context and
flow of the sentence; or it has a tooltip that, on mouseover, shows the definition. The tradeoff of the latter
scenario, however, is that making too many words styled into tooltip links distracts the user. Each link the
user sees presents the user with the question of whether to click the link, which provides more cognitive
load on the reading experience. If you do use tooltips, style them in a way that distinguishes them from
regular hyperlinks.

API glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 420

https://idratherbewriting.com/simplifying-complexity/reducing-the-complexity-of-technical-language.html
https://getbootstrap.com/docs/4.1/components/tooltips/
https://www.interaction-design.org/literature/topics/fitts-law

Reusing glossary definitions
To reuse glossary definitions, consider storing glossary terms and definitions in a structured file that acts
like a database for glossary terms. For example, on my glossary page (p. 55), the data source is a YAML file
here: _data/glossary.yml . Each definition follows a structure like this:

api:
term: API
def: "Application Programming Interface. Enables different systems to inte

ract with each other programmatically. Two types of APIs are REST APIs (web
APIs) and native-library APIs."

link: See What is a REST AP
I?

By storing the data in a structured way like this, I can get the data out and re-use it in different ways. For
example, to show all terms in the glossary, I created some for loops here to get the info and format it in the
display you see on the glossary page: _includes/glossary_full.html . The logic here is specific to Jekyll,
but other docs-as-code solutions have similar templating options available. A lot of these templating
languages operate in similar ways.

You could also get the same definition and insert it into a Bootstrap tooltip . To do this, first initialize the
Bootstrap code:

<script>
$(function () {

$('[data-toggle="tooltip"]').tooltip()
})
</script>

Then populate the tooltip like this to get info from the glossary YAML file:

Learning how to document <a href="#" data-toggle="tooltip" title="{{site.dat
a.glossary.api.def}}">APIs is essential in a tech landscape that has shi
fted to an information economy, with the buying and selling of information m
ore than physical goods.

The result:

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_glossary_section.html] to view the content.

Tooltips appear when you mouse over a link and disappear when you move your mouse off the link.
Because of this behavior, don’t include any links in tooltip text. If you want to link to text, use a Bootstrap
popover . Just like with tooltips, popovers must also be initialized:

<script>
$(document).ready(function(){

$('[data-toggle="popover"]').popover();
});
</script>

You can then populate the popover with info from the glossary YAML file:

API glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 421

https://github.com/tomjoht/learnapidoc/blob/main/_data/glossary.yml
https://github.com/tomjoht/learnapidoc/blob/main/_includes/glossary_full.html
https://getbootstrap.com/docs/4.0/components/tooltips/
https://getbootstrap.com/docs/4.0/components/popovers/
https://getbootstrap.com/docs/4.0/components/popovers/

Learning how to document <a data-html="true" href="javascript://" title="{{s
ite.data.glossary.api.term}}" data-toggle="popover" data-placement="top" dat
a-content="{{site.data.glossary.api.def}} {{site.data.glossary.api.link}}">A
PIs is essential in a tech landscape that has shifted to an information
economy, with the buying and selling of information more than physical good
s.

The result:

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_glossary_section.html] to view the content.

Notice that I separated out the link into its own property in _data/glossary.yml . I did this to provide
flexibility as to whether I wanted the link included. Including the link would be problematic if the link pointed
to the same page where the popover appears. Also, since tooltips don’t support links, I didn’t want to
always include the links there. If you’re using popovers, note the following:

• The Bootstrap popover code has an attribute required to enable html: data-html="true"

• In YAML, it’s easier to code links in HTML rather than Markdown. Converting the Markdown link
to HTML using the markdownify filter will include <p> tags around the content (which are
problematic in popover formatting).

• If clicking the popover link makes the page focus jump to the top, use javascript:// instead
of # for the link target.

Finally, to style the link in a distinct way from normal HTML links, add some CSS to links with the tooltip

and popover data attributes:

a[data-toggle=tooltip], a[data-toggle=popover] {
color: cadetblue;
border-bottom: dashed;
border-bottom-color: darkgray;
border-bottom-width: thin;
font-style: italic;

}

a[data-toggle=tooltip]:hover, a[data-toggle=popover]:hover {
border-bottom: solid;
border-bottom-color: darkgray;
border-bottom-width: thin;

}

Glossary style
As you’re preparing your glossary source, note a few common stylistic conventions:

• Definition length. Definitions should be short enough to appear conveniently in a tooltip (hence
should be about the length of a tweet).

• Definition tense. Definitions should not repeat the word being defined at the beginning of the
definition but should follow a dictionary-style definition.

• Capitalization. Capitalization should be consistent. Decide whether to capitalize the first letter of
the word. Also note that although acronyms are fully capitalized, the same word spelled out is not
always capitalized.

API glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 422

https://github.com/tomjoht/learnapidoc/blob/main/_data/glossary.yml

Benefits to writers
I mentioned earlier that one main benefit of a glossary is the heightened precision and awareness around
language for the writers. As you write documentation, you’ll be more attuned to the language that appears
in the articles, and unfamiliar words will stand out more prominently. Add these words to your glossary, and
then use them consistently. Word usage might prompt more discussions about whether you’re using these
unfamiliar terms consistently. For example, people may be using HAL and VHAL interchangeably, but as
you add the term to the glossary, it forces you to clarify the difference. In clarifying the difference, you then
become more aware as to the correctness of your usage.

Sample glossary pages
The following are sample glossary pages in various APIs.

Lyft

Lyft glossary

Lyft’s glossary doesn’t have a ton of terms (there are about 10), but they’re specific to the Lyft API world.
You see terms such as “Lyft Line,” “Lyft Lux,” “Lyft Plus,” and so on. I like that the developer
documentation takes pains to define terms that might frequently be used on Marketing and Sales spaces.
Whenever a company includes a glossary, it demonstrates a sensitivity the company has toward users. The
company doesn’t assume that their users understand all the company’s specialized terms and vocabulary.

API glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 423

https://developer.lyft.com/docs/glossary
https://developer.lyft.com/docs/glossary

Apigee

Apigee glossary

The Apigee glossary provides another good model to follow. One interesting decision with Apigee’s
glossary is to format the entries as a table. The format probably doesn’t matter much, but given that there
are official definition list elements in HTML, it seems a bit odd to reject definition lists and use tables
instead. Definition lists usually display better on mobile devices such as phones and tablets, and definition
lists are easier to work with in general.

Regardless of the format, I’m usually thrilled to see a glossary. All too often, glossaries are neglected in
documentation (not just in API documentation). They shouldn’t be. Much of the complexity of technical
content is due to the high number of specialized terms — terms that product teams often assume their
audiences know (but in reality do not).

Other glossaries
• Squiz
• AWS glossary
• RapidAPI
• Microsoft Teams

Activity with glossaries
With the open-source project you identified (p. 686), identify the glossary (or lack of one). Then answer the
following questions:

1. Does the API include a glossary?
2. If the API lacks a glossary, what terms would you suggest including in a glossary?
3. If the API includes a glossary, do term definitions link to any documentation topics for more

information?
4. Are unfamiliar terms defined in the context of topics themselves?
5. Are the terms in the glossary consistent with the same terms used in competitor’s

API glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 424

https://docs.apigee.com/api-platform/reference/glossary
https://docs.apigee.com/api-platform/reference/glossary
https://docs.squiz.net/matrix/version/latest/glossary/index.html
https://docs.aws.amazon.com/general/latest/gr/glos-chap.html
https://rapidapi.com/blog/api-glossary/
https://docs.microsoft.com/en-us/microsoftteams/platform/get-started/glossary

documentation?

More reading on glossaries
For more articles on glossaries, see the following:

• Chapter 13. Glossary Guidelines . Read Me First! A Style Guide for the Computer Industry,
Second Edition. Sun Technical Publications. May 2003.

• Defining Glossaries , Michelle Kidd Tackabery. Technical Communication. Volume 52, Number
4, November 2005.

• Techniques for Introducing Unfamiliar Terms , David K. Farkas. Technical Communication.
Volume 67, Number 1, February 2020.

• The ABCs of Writing a Technical Glossary , Evie Gray, William Ingram, and Dennis Bodson.
Technical Communication. Volume 45, Number 1, February 1998.

• Principle 7: Reduce the complexity of technical language , Tom Johnson. Simplifying
complexity series. Idratherbewriting.com.

API glossary PDF last generated: August 27, 2023

Documenting REST APIs Page 425

https://learning.oreilly.com/library/view/read-me-first/0131428993/ch13.html
https://www.ingentaconnect.com/content/stc/tc/2005/00000052/00000004/art00003
https://www.ingentaconnect.com/content/stc/tc/2020/00000067/00000001/art00006
https://www.ingentaconnect.com/contentone/stc/tc/1998/00000045/00000001/art00003
https://idratherbewriting.com/simplifying-complexity/reducing-the-complexity-of-technical-language.html

API best practices
API best practices can refer to any general advice your product team wants to communicate to developers
about working with the API. There aren’t any set number of topics typically covered in API best practices.
Instead, the best practices can be a catch-all title for content that doesn’t fit anywhere else.

What topics to include in best practices
Although many of the topics in API documentation are standard, there will usually be a laundry list of things
to know about working with the API. You can only probably get this information by asking the developers.

The list of topics might include topics such as the following: pagination, time ranges, fault tolerance, cache
values, connectivity, timeouts, downtime, SSL, versions, testing and validation, exports, languages,
number handling, expanding resources, notifications, CORS, localization, and more.

Best practices cover a range of topics usually unique to your API

Sample API best practices
The following are API best practices from several API documentation sites.

API best practices PDF last generated: August 27, 2023

Documenting REST APIs Page 426

Mailchimp

Mailchimp best practices

Mailchimp’s API best practices include tips about fault tolerance, using specific requests, authentication,
cache values, connectivity, and registration. With fault tolerance, Mailchimp reminds developers that
outages sometimes happen, so they should plan to handle scenarios accordingly if the API doesn’t
respond. With specific requests, Mailchimp warns users about the time it can take if the request is too
general and hence returns too much information.

Coinbase

API best practices PDF last generated: August 27, 2023

Documenting REST APIs Page 427

http://developer.mailchimp.com/documentation/mailchimp/guides/mailchimp-api-best-practices/
http://developer.mailchimp.com/documentation/mailchimp/guides/mailchimp-api-best-practices/
https://developers.coinbase.com/api/v2#pagination
https://developers.coinbase.com/api/v2#pagination

Mailchimp best practices

Coinbase doesn’t specifically refer to these topics as best practices; instead, the navigation shows a
laundry list of topics. Pagination is one of these topics worth expanding on here. How does pagination
relate to APIs? Suppose your API endpoint returns all items in a user account. There could be thousands of
items, and if all items were returned in the same response, it might take a long time for the API to gather
and return the large amount of data. As a result, just like with searches on Google, the response returns a
limited set, such as the first ten items, and then includes a URL that you can use to go to the next set of
responses. Pagination refers to advancing to the next page of responses.

Earlier, when defining the characteristics of REST, I mentioned HATEOS (p. 41), or “Hypermedia as the
Engine of Application State.” Links in responses that return more results is one example of HATEOS.

Programmatically handling the URL to get more responses can be kind of tricky. If you want to get all items
returned and then filter and sort the items, looking for specific values to pull out, how would you do this
using the URL returned in the response? Your team might have some advice for developers handling these
scenarios. Most likely, the endpoint would offer filters as parameters to apply to the endpoint, so that the
initial response would contain the item set you wanted. This kind of advice might be appropriate in API best
practices.

Activity with best practices
With the open-source project you identified (p. 686), identify any API best practices type of content. Then
answer the following questions:

1. Are there best practices for working with the API that don’t fit in any other typical API topics?
2. How are best practices organized in the existing documentation? Are they randomly listed in an

FAQ?
3. What actual topics are covered in the best practices?
4. Are there issues logged against the project that should be covered in the API best practices?

API best practices PDF last generated: August 27, 2023

Documenting REST APIs Page 428

Activity: Complete the SendGrid
Getting Started tutorial
In this section, you explored Getting started tutorials (p. 379). To get better empathy for these tutorials as a
user, try to complete the following tutorial from SendGrid: Getting Started with the SendGrid API .

There are no supplementary instructions or tips for working through the content, as that would be a crutch
to the experience. Ideally, you should be able to complete all the steps in about 5 minutes. After you finish,
answer the following questions:

• Were you successful?
• If you were successful, how does this make you feel towards the documentation?
• Would you improve any part of this getting started tutorial?
• How could you implement a similar tutorial with your own product?

Activity: Complete the SendGrid Getting Started tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 429

https://sendgrid.com/docs/for-developers/sending-email/api-getting-started/

Activity: Judge conceptual content
and decide which is best
With each of the conceptual topics in this section, you’ve been analyzing the topic in the context of the
open-source project you identified (p. 686).

Now broaden your analysis to see how these conceptual topics appear in other API documentation sites.

Remember that sometimes the best way to learn how to create API documentation is to carefully observe
how it’s done on sites you admire. Following standard practices in the industry helps you create more
predictable, easy-to-follow patterns in your own documentation.

Activity: Judge conceptual content and decide which is best
The following are 7 common conceptual topics in API documentation. For each topic, examine the three
examples and decide which one is best. This is an activity we’ll do together as a group.

Product overview

• Spotify
• Hootsuite
• Watson Assistant

API getting started

• Mailchimp
• Paypal
• Google

API authentication and authorization

• Sendgrid
• Twitter
• AWS

API status and error codes

• Clearbit
• Twitter
• Mailchimp

API rate limiting and thresholds

• GitHub
• Linkedin
• Bitly

API quick reference

• Eventful
• Parse
• Veracode

SDKs

• SAP

Activity: Judge conceptual content and decide which is best PDF last generated: August 27, 2023

Documenting REST APIs Page 430

https://developer.spotify.com/documentation/web-api/
https://developer.hootsuite.com/docs/the-hootsuite-platform
https://cloud.ibm.com/docs/services/assistant?topic=assistant-index#index
https://mailchimp.com/developer/guides/get-started-with-mailchimp-api-3/
https://developer.paypal.com/docs/api/overview/
https://developers.google.com/adsense/management/getting_started
https://sendgrid.com/docs/User_Guide/Settings/api_keys.html
https://developer.twitter.com/en/docs/basics/authentication/guides/access-tokens.html
https://docs.aws.amazon.com/AWSECommerceService/latest/DG/HMACSignatures.html
https://clearbit.com/docs?python#errors-error-types
https://developer.twitter.com/en/docs/basics/response-codes
http://developer.mailchimp.com/documentation/mailchimp/guides/error-glossary/
https://developer.github.com/v3/rate_limit/
https://docs.microsoft.com/en-us/linkedin/shared/api-guide/concepts/rate-limits?context=linkedin/consumer/context
http://dev.bitly.com/rate_limiting.html
http://api.eventful.com/docs
http://docs.parseplatform.org/rest/guide/#quick-reference
https://help.veracode.com/reader/LMv_dtSHyb7iIxAQznC~9w/FhxRdiWf5qejrtajmjGtpw
https://developers.gigya.com/display/GD/APIs+and+SDKs

• PayPal
• Facebook

Activity: Judge conceptual content and decide which is best PDF last generated: August 27, 2023

Documenting REST APIs Page 431

https://developer.paypal.com/docs/api/quickstart/
https://developers.facebook.com/docs/apis-and-sdks

Chapter 8: Code tutorials
Documenting code poses one of the most challenging tasks for technical writers, especially if the writers
don’t have an engineering background or familiarity with the code. Even without deeper engineering
expertise, you can still document code — everything from code snippets to full-fledged sample apps. This
section explores techniques and strategies for documenting code.

Chapter sections:

Common characteristics of code tutorials ... 433

Why documenting code is so difficult .. 434

What research tells us about documenting code .. 438

Five strategies for documenting code.. 451

Code samples .. 464

Sample apps .. 476

SDKs (software development kits) ... 480

API design and usability ... 488

Developer experience (DevX) usability ... 497

Chapter 8: Code tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 432

Common characteristics of code
tutorials
Code tutorials describe how developers will use your APIs and other services to achieve some end. These
tutorials often involve healthy chunks of code and configuration of various services. These are the “tasks”
that would be more common in end-user docs.

Code tutorials have common sections or characteristics (whether explicitly called out as such or not).

Starting with a template that lists these sections can help you gather the right information when you’re
developing your own tutorials.

Activity: Analyze two code tutorials
Code tutorials often have the following sections or characteristics:

• Scenario description - the “why” behind the tutorial
• Tutorial outcomes - objectives or a demo of solution
• Solution overview - a birds-eye view of the solution
• Intended audience - assumptions about who the tutorial is for, skill level, point in journey
• Prerequisites - expectations about required items, configurations, or utilities for the tutorial (e.g.,

hardware devices, services set up, API keys, software, etc.).
• Steps - the tasks involved in the solution, often formatted as sections. The steps show an

assembly order working up to final solution, building the code piece by piece as needed (like
Legos).

• Examples to make it real - examples or personalized info included in the steps to make the
steps more meaningful and understandable.

• Teaching moments - conceptual explanations peppered in along the way as asides or
footnotes.

• Inline code comments - explanations inside the code about what’s going on.
• Conclusion, next steps - wrap-up, showing fully assembled code, pointing out next logical

steps, linking to related tutorials.

The following are sample tutorials. Pick two tutorials and analyze them to see how many of the above
common sections and characteristics you can find.

1. Twilio - How to build a chatbot
2. GitHub - Building a CI server
3. Message Buttons with Node.js
4. Dropbox - Quickly integrate file upload in your web app using the Chooser
5. Maps JavaScript API Overview
6. Searching By Seller: Reviewing Information About A Seller
7. Using the Marketing API with the Facebook Pixel
8. Create a Custom Map URL
9. Training Course: How to Build a Multimodal Alexa Skill

10. Introduction to Populating a Website with API Data
11. Video Skills Kit for Fire TV

Common characteristics of code tutorials PDF last generated: August 27, 2023

Documenting REST APIs Page 433

https://www.twilio.com/docs/autopilot/guides/how-to-build-a-chatbot
https://developer.github.com/v3/guides/building-a-ci-server/
https://api.slack.com/tutorials/intro-to-message-buttons
https://blogs.dropbox.com/developers/2019/05/quickly-integrate-file-upload-in-your-web-app-using-the-chooser/
https://developers.google.com/maps/documentation/javascript/tutorial
https://developer.ebay.com/DevZone/shopping/docs/HowTo/PHP_Shopping/PHP_FIA_GUP_Interm_NV_XML/PHP_FIA_GUP_Interm_NV_XML.html
https://developers.facebook.com/docs/marketing-api/audiences-api/pixel
https://docs.microsoft.com/en-us/bingmaps/articles/create-a-custom-map-url
https://developer.amazon.com/en-US/alexa/alexa-skills-kit/resources/training-resources/intro-multimodal
https://programminghistorian.org/en/lessons/introduction-to-populating-a-website-with-api-data
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integration-overview.html#integration_steps

Why documenting code is so difficult
Software code, often written in Java, C++, or any other language, is challenging to document in part
because technical writers often aren’t already fluent in the programming language. But even for writers or
developers who are fluent in the language, code is hard to document. There isn’t a step-by-step process to
follow. Code is often arranged in non-linear order, so you can’t simply proceed line-by-line through it.
There’s also the question of how much to document, what to cover, and where to include the
documentation. Overall, best practices for documenting code are somewhat fuzzy and undefined, which
makes documenting code one of the most challenging and difficult tasks technical writers face.

In a previous topic, Documenting code (p. 464), I briefly touched on the need to document code. But given
the importance of this topic, I’ve expanded this section in more depth with its own dedicated topics here.

Starting with a recent experience documenting code
I like to start abstract topics by grounding them an actual experience. A recent documentation project I
worked on involved creating video skills for Fire TV apps — developing the backend logic to make your
streaming media apps voice interactive, so users could say “Play Interstellar,” (or some other movie) and
the video would play in your app.

When users say these Alexa commands, Alexa interprets the commands and packages up the info into a
structured JSON request that it sends a partner’s Lambda code. Lambda, an AWS service, provides
serverless computing. Partners are supposed to listen for the incoming requests and then develop their
own code to respond appropriately to the requests, presumably retrieving the media identifier for Instellar
(in this example) and sending this media identifier to their Fire TV app to play.

The implementation involves coding a Lambda function. To help developers, engineers provided a sample
Lambda function (in Node JS), but without explanation. As I was working on the documentation for this, I
felt a need to explain the logic of the Lambda code.

The Lambda code was only about 450 lines long, and not really complicated. But I wasn’t that familiar with
Lambda or Node JS, so I learned enough about both to get a sense of what was going on in each line. In
my approach to documenting the code, I explained the conditions that triggered the Lambda code to be
invoked in the first place. Then I presented the Lambda code in its entirety so the user would have context.
Then I split the code into four discrete logical sections. Below the full code sample, I presented each
section (labeling them as Section 1 Explanation, Section 2 Explanation, etc.) until I proceeded through the
whole code sample.

This approach wasn’t particularly great, but I didn’t have a better method. I wanted room to elaborate in
detail about each of these sections rather than just making brief inline comments. You can see the
documentation here: Step 3: Understand the Alexa Directives and Lambda Responses (Multimodal
Devices) . No doubt this documentation will soon change, so I’m hesitant to give any more detail beyond
the approach I described. But I relate it here as an intro to the challenge of documenting code.

Overall, documenting code is perhaps the most challenging aspect of technical writing, especially for non-
engineers. The following sections explain a few reasons why documenting code presents so many
challenges.

Challenge 1: Code doesn’t follow a step-by-step paradigm
Code itself is non-linear. What appears at the top (e.g., variables) might not be implemented until functions
at the bottom. Functions defined at the bottom might be run inside other code blocks in the middle, and so
on. When you’re given a chunk of code to document, its assembly order isn’t apparent at all.

Why documenting code is so difficult PDF last generated: August 27, 2023

Documenting REST APIs Page 434

https://developer.amazon.com/docs/video-skills-multimodal-devices/understand-directives-and-responses.html
https://developer.amazon.com/docs/video-skills-multimodal-devices/understand-directives-and-responses.html

The central paradigm most technical writers follow is a task-based model where you begin with step 1, 2,
3, and so on until you reach the end of the task. This isn’t the case with code documentation. Code is non-
linear by nature. You can’t simply start from the top and proceed to the bottom. Although I attempted a
somewhat section-by-section explanation in my code explanation, I had to skip over some lines or note
that they were part of logic explained in later sections.

zebra

Overall, this non-linearity is very different from the procedural approach usually followed in tech docs.

Challenge 2: Audience has a high variance of technical levels
Another challenge I faced was deciding what to explain and what to skip over. Would developers already
be versed in handlers in Lambda and Node JS? Or would this be new to them, as it was to me?

In documenting code, you have to write to your audience’s awareness and knowledge needs, even when
their technical levels vary dramatically. But when the audience awareness and needs vary dramatically, we
either overwrite for the advanced developers by explaining the obvious, or we alienate less experienced
developers by assuming too much.

Implementing progressive information disclosure models (where you reveal a little bit of info and then let
them expand for more details) can be tricky. Even if audiences are technical, there’s no guarantee that they
have expertise in the particular technology you’re documenting. As a result of all this haziness, we often
end up imagining ourselves as the audience.

Challenge 3: Code requires an understanding of a specific
programming language
Related to the above point about audience variation is the fact that we technical writers often lack the
familiarity with the programming language to begin with. Or if we do have some familiarity with
programming, it’s not always the right language for the project. So right away we’re at a disadvantage and
have to ramp on tutorials just to understand the basics of what’s going on in the code.

Additionally, we’re not documenting basics — we’re documenting how to implement code in a particular
context, often at an advanced level. Knowledge about how the code works is simply assumed. We pretty
much have to walk into an Advanced Calculus course and explain Legrange Multipliers without having
taken anything more than beginning Algebra.

Challenge 4: Making sure code samples work from release to release
requires a lot of maintenance
Another challenge is making sure the code samples work from release to release. I pasted in the full
Lambda code to provide context, but within a couple of weeks, I tweaked the code sample a bit. I then had
to update the Lambda code as well as my section-by-section explanations. If you have dozens of code
samples spread throughout your docs, maintaining this code from release to release will be arduous. How
do you ensure it works? Do you separate the code from narrative context so that it can be more regularly
tested?

Separating the code to enable testing sounds like a good idea, but as soon as you separate code from the
conceptual explanation, you risk the possibility that someone will update the code in such a way that it no
longer matches the explanation.

Why documenting code is so difficult PDF last generated: August 27, 2023

Documenting REST APIs Page 435

Challenge 5: Engineers have a much more trained eye for good
versus bad code
Finally, I should note that when I document code, I feel a bit like an outsider writing about a culture or
country that I don’t belong to. Technical writers are often outsiders to engineering domains. Not being a
developer, I might not even realize that the code is bad. Engineers live and breathe code, and many feel
that code is poetry.

An efficient technique in code (e.g., recursive loops that expand resources as needed) can be beautiful,
evoking an aesthetic in the engineer’s mind. In my perspective as a technical writer, it’s unlikely that I’ll
approach code with the same reverence and awe. My more mundane approach to code might make it
difficult to resonate with developer users.

The importance of code documentation
Despite the difficulties of documenting code, this area of documentation shouldn’t be overlooked. Ask
developers what the most important element of API docs is, and the answer you’re bound to hear time and
again is code samples. Include working code samples that developers can easily copy and paste into their
documentation. Code samples that demonstrate how to incorporate abstracts into an actual
implementation. Code samples, sample apps — whatever the form, just give us more code, code, code.

Check out the following video clip from engineer Ruthie Ben Dor during a Write the Docs conference.
Responding to the question, “What are the three most important elements of producing API
documentation?” Ruthie emphasizes the need to include code samples.

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_code_difficulty.html] to view the content.

Around the 4:15 mark, Ruthie says,

I think that if you’re going to produce API documentation, there are 3 things that
should either be included in it or that you should do in the course of making it. The
most important thing, I think, if you just want people to just start using it is code
examples. There are many API documentation generators that will generate code
samples for you. Sometimes they’re not great, so having someone actually go
through and vet those code samples to make sure that they actually work correctly –
that’s huge. It’s one thing to be given a method and how it’s called, but for the
developer to have to take that and figure out how to make working code, hitting that
endpoint, it’s just a little bit more of a barrier. As opposed to if they can just copy and
paste in their browser console to prove that it works to themselves, that’s a really
nice way to lower the barrier to entry. Code samples are huge, and code samples in
a variety of languages that people are likely to use with your API. (Ruthie Ben Dor:
API documentation and developer portals 2/3 - YouTube)

Why do engineers so frequently say they want code? Code examples show how to implement an abstract,
narrative explanation in an actual way. Code shows how to use reference APIs toward some actionable and
tangible end. In that sense, code is an extremely powerful tool to help users understand how to use your
API.

Why documenting code is so difficult PDF last generated: August 27, 2023

Documenting REST APIs Page 436

https://www.youtube.com/watch?v=oItYMZHJv3g
https://www.youtube.com/watch?v=oItYMZHJv3g

In fact, in the 2021 State of API report by SmartBear , “examples” are the most desired form of
documentation, topping all other documentation types by a wide margin.

Despite the importance of code samples, they’re often neglected or missing from API docs. After all, it’s
much easier to just cover reference material and let developers figure out how to actually use it
constructively. In this section of my API course, I’ll provide concrete strategies for successfully
incorporating code samples into your documentation.

What to do if you don’t understand the code
As you’re documenting code examples, you’ll probably run into situations where the code is beyond your
understanding. For example, the engineer might call out various classes and methods in a Java API and
have some fragmented, incomplete code comments on how to use it. In these situations, one strategy is to
ask the engineer to talk through the code from beginning to end. Important: Record the meeting where the
engineer explains the code. After the meeting, add notes from the engineer’s explanation about different
aspects of the code. Pepper in your explanations both in regular copy and in code comments.

After reviewing your writeup with the engineer, present the content to other engineers or devrel-type roles,
and ask them to review it. Basically, gather enough feedback from other people to get a sense of whether
the code and your explanations are clear enough in places or still confusing. Act as a kind of mediator
between the author and users. It doesn’t take a deep understanding to play this mediator role, and as long
as you record the meetings where explanations are flying around, you can go back at a snails pace and
listen/re-listen to the comments and convert them into a semi-intelligible writeup.

Of course, the ideal is that you would also be comprehending what’s going on in the code to a deeper
extent, but this isn’t always possible in the timeframes given. Consider using the project as a starting point
for deepening your understanding of a programming language or framework. Start taking a course on the
programming language on Udemy, for example, and highlight the various concepts in the tutorial that you
want to learn more about.

Next topic
Go on to the next topic in this series: What research tells us about documenting code (p. 438).

Why documenting code is so difficult PDF last generated: August 27, 2023

Documenting REST APIs Page 437

https://smartbear.com/state-of-software-quality/api/documentation/

What research tells us about
documenting code
Before diving in to how to document code, let’s first explore some research that has been done on best
practices for documenting code, as this can inform our direction and approach. A couple of academic
articles stand out as noteworthy for this effort:

• “When Not to Comment: Questions and Tradeoffs with API Documentation for C++
Projects” by Head et al. This article explores how developers at Google find and use
documentation for code. The researchers found that for simple code, sometimes developers
prefer to examine the code directly. However, for more complex code, developers consult the
code’s documentation, often by looking in the formal class declarations for information they
need; other times they look at comments in the implementation code. Besides providing
guidance on the best location for documentation, the researchers also identify what type of
answers and guidance developers want for the content of the documentation.

• “How Developers Use API Documentation: An Observation Study” by Meng et al. In this
article, the researchers look at how developers interact with API documentation and found a mix
of both systematic (read-first, explore-later) and opportunistic (explore-first, read-later) learning
styles. While we often write with systematic developers in mind, focusing on opportunistic
behaviors might be more beneficial, and will cause us to look more closely at improving search,
navigation, interactive components, troubleshooting, error messages, and other action-oriented
features.

Both of these articles come from academic journals. It’s actually rare to find research about API
documentation in academic journals (not sure why), and when you do find them, they’re often in
engineering or computer science journals (rather than tech comm journals). Later I’ll dive into some articles
outside of academic journals.

When Not to Comment: Questions and Tradeoffs with API
Documentation for C++ Projects
First, let’s explore “When Not to Comment: Questions and Tradeoffs with API Documentation for C++
Projects,” by Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight. This article was
published in the 2018 ACM/IEEE 40th International Conference on Software Engineering. (To read the
article, see this ResearchGate link or go here .)

This research coordinates efforts among academic researchers, engineers, usability specialists, and
members from Google’s Engineering Productivity Research team. Given how important documentation is
for understanding code, the researchers want to know the best location for documentation as well as what
information engineers want in docs. Specifically, they focused on C++ APIs and asked whether engineers
are more inclined to consult the header files (where classes are defined) or the implementation files (where
classes are implemented) for the information they need. The following screenshot (from their article) shows
the difference between header and implementation files:

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 438

https://www.researchgate.net/publication/325732077_When_not_to_comment_questions_and_tradeoffs_with_API_documentation_for_C_projects
https://people.eecs.berkeley.edu/~andrewhead/pdf/comment.pdf

Basically, in C++, the header files (.h) contain the classes and the main documentation. The
implementation files (.cc) instantiate and implement the classes from the header files. In short, the header
files contain more formal documentation that follows specific annotation conventions, while the
implementation files contain the guts of the logic about how the class has been implemented.
Implementation files have comments peppered inline with the code, without formally structured doc
annotations. A central question the researchers wanted to know is whether users gravitate toward the inline
code comments in implementation files or the official documentation in the header files.

The researchers used tracking tools to identify when developers would switch from one type of file to
another, and they also interviewed the developers as a follow-up. Google has about a billion lines of code
stored in a central code repository that can be used across the company, so thousands of developers
might find and discover code in this monorepo to use in their projects. The team that uses an API might not
know the team that developed the API, and vice versa.

Even if you don’t document C++, this study is helpful because it raises this central question: should you put
the bulk of your documentation in formal descriptions about the code, or should the bulk of your
documentation appear within the context of the code, peppered in as inline comments.

After gathering information from more than 600 participants in their study, the researchers found that not all
code is equal. Complex code needs more formal documentation, but simple code might not need
documentation at all.

What type of code actually needs documentation

First, the researchers found that most developers actually looked in the header files for documentation:

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 439

Survey respondents reported it would be most convenient to find answers to many
of these questions in header files, though interviewees indicated code could be
accurate and quick enough to read in many cases.

But the researchers also found that for simpler APIs, many developers read the code directly (rather than
consulting the docs) to see if they can quickly understand the API. In other words, they see if they can
figure out what’s going on by looking solely at the code.

Some developers actually have philosophical views about distrusting the accuracy and currency of
documentation and prefer to view the code as the primary source of information, like reading a primary
source instead of secondary or tertiary sources of information. As many developers who distrust docs
know, documentation for code can easily become outdated and neglected, so why trust it? Why even
bother to read it?

In fact, some developers feel that documentation for simple code becomes a liability and a hindrance for
development. The doc gets in the way of the developer’s path to simply reading the code and
understanding it on its own terms.

Besides skipping docs when the code is simple enough to understand on its own, the researchers also
recommend avoiding writing docs while development is in constant flux (because it makes documentation
a constantly evolving target). The researchers say you might also consider skipping writing docs when
there aren’t sufficient resources to keep the documentation updated. When maintainers can’t keep the
documentation up to date, it “rots” and becomes more of a liability.

In short, there are valid arguments for not even writing documentation, particularly for simple code. The
following chart shows when documentation might not be necessary with code:

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 440

However, for more complex code, especially where multiple files and generated code might be involved,
developers still relied on the formal documentation to understand it. The researchers explain:

When isn’t code enough to be self-documenting? Sometimes, developers had no
problem reading code, and in fact preferred it for finding more accurate information.
However, there are some cases where self-documentation isn’t feasible, like code
with overly complex method signatures and generated code. Other details, like
recommended usage, just can’t be conveyed by source code.

In short, when the source code isn’t intuitive to understand on its own, developers turned to more lengthy
and formal documentation about it. This makes sense and aligns with best practices for GUI
documentation as well — one should always focus on the complicated parts of a system, not the obvious
elements that no one needs help with.

Granted, recognizing what code is simple versus complex is the challenge because the technical writer is
likely not a developer and will likely only have a rudimentary idea about the complexity of the code. Just
because the code is short or long does not give a clear indication about its complexity. A short snippet out
of context might be confusing, while a lengthier sample that contains a fully functioning sample might be
more understandable.

As an analogy, an outsider visiting a city in a faraway country. The outsider wouldn’t know whether some
observed event is normal or out of the ordinary — you have to be more familiar with the place to gauge
whether an event is strange or commonplace. Same with code.

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 441

https://idratherbewriting.com13/09/04/sticking-with-obvious-information/
https://idratherbewriting.com13/09/04/sticking-with-obvious-information/

You could ask the developers about the level of complexity of the code, but this assumes that you can
trust the judgment of the engineers who designed and created the code (unless you’re asking engineers on
other teams). Developers almost always overestimate the level of intuitiveness of the code they wrote and
assume more capability in their audience than the audience actually has. How many times have you heard
engineers say, “Users will understand this — and if they don’t, they shouldn’t be using the API.” But are the
risks of omitting docs greater than the risk of including them?

More advanced developers can probably extrapolate the API’s usage from code, while beginning
developers might need more handholding. Do comments interfere with readability for advanced developers
but aid readability for new developers? Are we doomed to frustrate one audience in order to help another?
And is there a greater risk in omitting documentation than in overburdening docs with too much
explanation?

When to document code

Let’s set aside questions about whether to document or not and focus instead on timing for writing docs.
The researchers found that there’s an ideal time for writing and updating documentation:

The ideal time to propose changes to documentation is during code authoring and
review, possibly through a surrogate like a code reviewer. Documentation can get
updated only infrequently after it is initially written, as future updates may raise
questions of whether the information adds clutter or redundancy.

In other words, write the docs when the code development is still fresh in the developer’s mind. If you wait
too long after active development finishes, the documentation will likely be neglected and forgotten, as
developers move on to other projects.

Of course, timing is not always easy to plan. Your availability might not match up with the developer’s
coding sprints. You’re probably juggling several other projects with more pressing timelines, and so you
might have to postpone this documentation until one or two months post development. But by that time,
the developer may have long ago finished coding and forgotten many details. The nature of complexity is
that we hold a plethora of details in our heads (in our short-term memory) while we’re elbow-deep in the
task, but once we move on, our brains dump the information from short-term memory so that we can load
up our brain’s RAM with another project.

If you try to prod developers to articulate details no longer at the forefront of their minds, they might not
have forgotten it, but their motivation and enthusiasm to explain it and review your docs will likely be poor.
They have already moved on. Strike while the iron is hot.

With a recent project I documented, the documentation was mostly written post-release of the product.
The initial version had been written by a product manager, and later, after many complaints about the poor
quality of the docs, tech writers had been called in to fix it. But months after the product had been
released, the team was no longer meeting in regular sprints, engineers were focused on other matters, and
it seemed no one had interest in explaining things to tech writers nor reviewing documentation.

There is a right moment to jump into a documentation project — that time is usually pre-release. But just as
one can jump in too late and miss out on enthusiasm and availability, jumping in too early can also prove
inefficient. You might find that plans are high-level; nothing has actually been coded yet, or ideas are
scrapped from one sprint to the next. It might be like trying to document a recipe while cooks are still
deciding on the ingredients.

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 442

Regardless of whether you can actually do anything about the timing, you should have in mind that timing
is a noteworthy element in documenting code. Code is not a standalone artifact independent of time. Time
is a relevant factor that determines your ability to document code.

What questions to address in code documentation

So far we’ve looked at where code documentation should appear and when code documentation should
be written. Now let’s look at code documentation from another angle: what types of answers and guidance
should be in the documentation. This is a more difficult, broad question, and the researchers’ answer is
“API usage.” They write,

Most searchers and maintainers we interviewed had opinions about what did belong
in documentation, at both the level of headers and in-line comments. Maintainers
and searchers mentioned the importance of describing how a file relates to other
files in the project (S17), the state of the world when a method is called (S8),
executable examples (M5, M8), implementation comments for future maintainers of
an API (M5), explicit links to external documentation (M5), semantics of a function
(M8), main concepts that someone should understand and know to use the API (M8),
“what” the code is doing and “why” at a statement level (M6), and even a proof of
correctness (M6). It is unsurprising that not all of this information was available for all
of the APIs we saw during this study.

The researchers arrange this information into a chart for readability:

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 443

Nothing particularly stands out here, except that “input values” are read the most. Input values refers to
parameters or other arguments that developers often consult to understand data types, casing, or other
details. As such, take pains to document your parameters in great detail. I describe the various categories
to cover at length with parameters in Step 3: Parameters (p. 132). With REST APIs, some details to note
about parameters might include the following:

• For REST API endpoints, the type of parameter: header, query string, and path. Also consider
request bodies.

• Default values
• Min or max values
• Data types (boolean, integer, string, etc.)
• Sample values

Other callouts about content include “How do I?…” questions. In other words, rather than just reading
reference information, developers want instruction that explains how to implement the reference topics
toward a business goal or end. Just as with end-user (GUI) documentation, focusing on tasks rather than
simply defining reference information remains an important element of code documentation. Most technical
writers already orient their mindset around task-based documentation, so this focus needs no expansion
here.

Finally, “Recommended Use” is also an interesting element to surface. “Recommended” paths aren’t that
common in GUI documentation — users usually have a task, and there’s a preferred way to achieve it. But
with developer docs, there are often a dozen ways to go about a goal, and just because code compiles
does not mean it is good. Code needs to scale, be efficient, and cover a multitude of use cases. Therefore,
recommendations are in order to help guide a developer down many potential paths of documentation.

In fact, this might be a defining characteristic that separates GUI documentation from developer
documentation. GUI documentation typically has a single path to achieve a result. Developer
documentation, on the other hand, is more like providing a cabinet of baking goods to put at the
developer’s disposal — salt, flour, baking powder, eggs, vanilla, baking soda, spices, and so on. The
developer might choose to use one API here, another there, some in combination with each other, all to
achieve a particular end. That particular end is more open and flexible depending on what the developer is
building/baking. (One difference here is that developers don’t typically eat their code.)

Conclusion

Overall, this research has many insights and conclusions. The article addresses many concerns around
code documentation and presents a complex view about each of these facets — when/if to document
code, where to put this documentation, when to write the documentation, what questions to address, and
more. There’s not always a clear path to follow (it’s messy), and many environmental, product, and
audience details must factor into the documentation strategy. Still, this article provides solid research and
probes the topic in illuminating ways.

How Developers Use API Documentation: An Observation Study
Now let’s move into another meaty academic article that addresses best practices for documenting code.
The January 2019 issue of Communication Design Quarterly , a publication of SIGDOC (the Special
Interest Group for Design of Communication), features an article called How Developers Use API
Documentation: An Observation Study . Several researchers from Merseburg University in Germany —
Michael Meng, Stephanie Steinhardt, and Andreas Shubert — set out to “understand how developers use
documentation when starting to work with a new API.”

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 444

https://sigdoc.acm.org/publication/
https://sigdoc.acm.org/publication/
https://sigdoc.acm.org/cdq/how-developers-use-api-documentation-an-observation-study/
https://sigdoc.acm.org/cdq/how-developers-use-api-documentation-an-observation-study/

For their research, they “asked software developers to solve a set of pre-defined tasks using a public API
unfamiliar to them on the basis of the documentation published by the API provider” — and then observed
their behavior. Basically, these users had to figure out how to construct REST API requests with the right
parameters and other configurations in order to send requests that would return the needed information.
The researchers then observed how the developers used the API documentation to figure out the tasks.

There are a lot of great observations and conclusions in this article. I’m just summarizing and highlighting
the information here. I recommend that you read the article for the full details.

Systematic versus opportunistic behaviors

The authors present some previous research about systematic and opportunistic learning behaviors. These
terms are typically how previous researchers describe the contrasting user behaviors.

You’re undoubtedly familiar with these two types of behaviors. Sometimes when you get a new device, you
just start pushing the buttons and exploring how it works based on inputs and responses, trial and error,
etc.. — this is called “opportunistic” behavior. Other times you might crack open the user guide and start
reading from page one before pushing buttons on the device — this is called “systematic” behavior). Other
times you blend the two modes (“pragmatic” behavior). Same with developers using an API.

The authors describe the opportunistic behavior patterns in their study as follows:

… [opportunistic] developers worked in a more intuitive manner and seemed to
deliberately risk errors. They often tried solutions without double-checking in the
documentation whether the solutions were correct. For example, P10 [person 10]
changed parameter values to values that seemed to match based on experience with
similar problems, but he did not check in the documentation whether the values were
actually correct or even existing. P2 [person 2] inserted parameters that he had
noticed at some point in the documentation before, but did not attempt to re-consult
the relevant section of the documentation to make sure that the parameters were
spelled correctly. …

We found that opportunistic developers in our test started the first task with some
example code from the documentation which they then modified and extended.
Once a task was completed, the piece of code that solved the task was used as
starting point for the next task, which again was a potential source of error.
Developers in this group worked in a highly task-driven manner, but also tried things
that were not related to the task, but possibly helped them to build a broader
understanding of the API in passing. For example, P9 [person 9] submitted a request
for a UPS service (United Parcel Service) which was not required by any of the tasks,
simply in order to see what would happen.

We noted that developers which we assigned to the opportunistic group did not take
time to get a general overview of the API before starting with the first task. They
scrolled briefly through some pages of the documentation, checked the tools
available and then started with the first task. Developers from the opportunistic
group wanted fast and direct access to information. They did not systematically read
larger sections of the documentation, but typically searched for a specific piece of
information and then scanned the documentation.

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 445

https://sigdoc.acm.org/cdq/how-developers-use-api-documentation-an-observation-study/

In short, opportunistic developers learn by doing. They look at a piece of code, try it out, experiment with
parameters, see what gets returned in the response, and more. They learn through experimentation, trial
and error.

In contrast, the systematic developers approached tasks by reading first:

In our test, we note that these [systematic] developers took some time to explore the
API and to prepare the development environment before starting with the first task.
Moreover, they took some time to get a general orientation. For example, P7 and P8
[persons 7 and 8] studied some sections in the documentation, then sent a GET
request to the API and analyzed the response to check whether the request-
response process worked as expected.

In short, systematic developers follow a “read-first, try-later” approach (while opportunistic developers
follow a “try-first, read-later” approach). Pragmatic developers mix the two: “try-read / read-try.”

Although it might seem convenient to divide learning styles out by systematic, opportunistic, and pragmatic
behaviors, researchers also found that the same developers did not always exercise the same behavior.
Whether one approaches a task opportunistically versus systematically versus pragmatically might very
well depend on the nature of the problem. For simple API requests, carefully reading the documentation
probably isn’t warranted. But for complex API requests, where the developer might be totally stumped from
the start, reading the documentation systematically might make sense.

The researchers explain that “the strategy a developer follows does not seem to predict a tendency
towards using information from the Concepts page in our test.” In other words, just because you’re an
opportunistic user, it doesn’t mean you always skip conceptual explanations — it’s just that you might not
start with concepts. A non-linear reader might start with code, trying it out on their own, and circle back to
the introductory conceptual information when the code doesn’t work as expected.

Deciding to cater to one type of behavior at the expense of the other might not be practical, since the
learning behaviors and approaches seem to be in much greater flux than it seems.

When I’m writing docs and structuring my help system, I admit that I often have the more systematic
developer in mind — the one that will read the material from start to end, the one who begins at step one,
reads conceptual introductions, and then proceeds to the code examples and such. But that learning
preference doesn’t describe a huge percentage of learners. It’s probably better to design for the
opportunistic behavior, since this behavior pattern tends to go against our natural inclinations for linear and
top-down information design. The linear/systematic behavior might be accommodated by default (since we
tend to write linearly), while the non-linear/opportunistic behavior pattern is more likely to be neglected.

Designing for opportunistic behavior

How do you design for opportunistic behavior? If you recognize that users learn through experimentation
and action, you’ll put more emphasis in code comments and code samples, error messages,
troubleshooting, interactive experiences (such as Swagger UI) so developers can try out requests, clear
navigation, and search to facilitate the user jumping around for specific information.

The authors call out some of these design patterns in their recommendations. The second half of the article
provides recommendations such as:

• “Provide transparent navigation and a powerful search function”
• “Provide clean and working code samples”
• “Enable fast use of the API”

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 446

• “Provide important information redundantly”
• “Organize the content according to API functionality”

Note that “opportunistic” isn’t the author’s own terminology choice (it’s a term previous researchers used).
The authors say that opportunistic behavior “bears many similarities with the exploratory and active
approach described by John Carroll …”, referring to Carroll’s seminal work in The Nurnberg Funnel, which
ties in with Mark Baker’s “Every Page Is Page One” and other nonlinear reading behaviors. Readers jump
around, gathering information after exploring the system with trial and error.

Instead of “opportunistic” (which has a somewhat negative connotation), others have also characterized
this behavior as “exploratory” or “active” or “bottom-up” learning. See How to design documentation for
non-linear reading behavior and Principle 2: Make information discoverable as the user needs it for
more information.

Where users spend the most time

If developers jump around from code to concepts and other places, where are they spending most of their
time in the docs? If we can measure the time in one type of documentation more than another, we can give
more attention to that kind of documentation. The authors measured the time users spent in various parts
of the documentation as follows:

Similar to the previous research from Head et al., ““When Not to Comment,” developers spent most of the
time looking at API reference information (e.g., parameters). But here the researchers make an interesting
observation that breaks other assumptions: they say developers looked for topics rather than categories of
information — in other words, they didn’t necessarily distinguish between concepts versus recipes versus
reference information types as they searched for information. They had a problem to solve, and they looked
for information related to that problem, regardless of whether that information might be classified as a
concept, task, reference, troubleshooting, recipe, or other topic type. As a result, the researchers
recommend a more topic-based organization strategy:

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 447

https://idratherbewriting.com15/05/15/writing-for-users-who-read-non-sequentially/
https://idratherbewriting.com15/05/15/writing-for-users-who-read-non-sequentially/
https://idratherbewriting.com/simplifying-complexity/discoverability-through-metadata.html

Organize the content according to API functionality. A first aspect concerns the
high-level organization of the API documentation. From the results of our study, we
conclude that API documentation should be structured according to categories that
reflect the functionality or content domain of the API rather than using categories that
signal the type of information provided. Instead of dividing documentation into
“Samples,” “Concepts,” “API reference” and “Recipes,” the API used in our study
should be reorganized using categories such as “Shipment Handling,” “Address
Handling” and so on. If developers experience a problem while working with the API
and turn to the API documentation to find information that solves the problem, they
are likely to know the content domain of their problem (such as shipments or address
handling), but it is more difficult for them to predict whether the information they are
looking for is presented in the API reference, in a section dedicated to presenting
code examples, or in a section discussing concepts. Note that this guideline can be
viewed as an application of the principle of minimalist documentation according to
which the components of the documentation should reflect task structure (van der
Meij & Carroll, 1995).

This is a somewhat radical recommendation because almost all API docs clearly separate out the reference
information and label it as such. But perhaps the conceptual and recipe-based information can more easily
integrate and re-use information from the reference section in seamless, unified ways. That way, if you’re
looking for information on Shipping Handling (the example in their study), you might see the relevant
Shipping Handling endpoints and parameters as well as Shipping Handling introductions and tutorials right
in the same place (instead of jumping over to Reference for the Shipping Handling endpoint, then back to
Recipes for how it might be used, and then over to Concepts for other Shipping Handling information).

It makes sense to have a Reference section where all endpoints are listed, but if this is the only place where
these endpoints are described, this pattern might not be most convenient for users.

The authors also recommend that you integrate concepts with their related tasks:

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 448

Present conceptual information integrated with related tasks. Another aspect
relevant in this respect concerns the integration of conceptual information that
developers need in order to use the API successfully. Confirming results reported in
Meng et al. (2018), our study supports the conclusion that developers vary with
respect to whether they use conceptual overviews that introduce important API
concepts in a systematic way. While some developers use such offerings, others
tend to ignore them. To reach both groups of developers, conceptual information
should not be aggregated in a dedicated section or document that signals to focus
on conceptual information. We recommend presenting conceptual information
integrated with the description of tasks or usage scenarios where knowledge of
these concepts is needed. To give an example from the API used in our test,
information regarding the representation of a shipment should be introduced in the
section describing how to create a new shipment, and specific features of a return
shipment should be provided in the section describing how return shipments are
handled.

As much as tech writers might like to separate out information into different topic types (following patterns
like Information Mapping or DITA), creating topics that clearly separate out concept from task from
reference and troubleshooting topics constitutes a big fail in terms of usability, since developers need all of
this information as they explore the problems they attempt to solve. If you are separating out this
information, hopefully you’ve structured your help system in a way such that the information is closely
linked or integrated with each other.

Conclusion

While the learning styles discussed in this article might seem more applicable to overall documentation
(rather than our specific focus on code documentation), the takeaway with code documentation is pretty
clear: when you document code, the code should be easy to experiment with. Can users copy and paste it
into their own IDEs and make it run? Can they copy and paste requests into Postman and get immediate
responses that they can learn from?

More than any other type of API documentation, when you document code you find yourself with a direct
opportunity to target the opportunistic learning style with experiment-and-try opportunities.

Takeaways from the Research
To summarize the takeaways from the research presented here, here are some key points:

• Omit documentation when the code is simple and understandable on its own.
• Write code documentation while the project is fresh and active in developer’s minds.
• Make sure the reference documentation (e.g., parameters) is complete and accurate, since this

documentation is where developers spend most of their time.
• Include documentation both in regularly expected locations as well as peppered in the code itself

with inline comments.
• To accommodate non-linear, opportunistic behaviors, design your help system with healthy

doses of code, interactive API explorers, search features, troubleshooting information, and cross-
references.

• Organize information by the function it provides rather than by its information type (task, concept,
reference, etc.).

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 449

• Make code easy to experiment with so that people can learn directly through these experiences.

These strategies provide a foundation for best practices that we will explore in more detail with more
concrete, tangible techniques in the sections that follows.

What research tells us about documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 450

Five strategies for documenting code
In this section, we’ll dive into approaches for actually documenting code. There are a number of
approaches writers and engineers take here, and I’ve covered five of them with examples and commentary.

Approach 1: Separate the “how” into inline comments, the “why” into
external docs
After reading the intro to this section (When code is too complex to understand (p. 432)), one reader shared
her approach to documenting code. Morgan Craft said ,

I tend to split my documentation up into the ‘how’ (inline comments) and the ‘why’
(external markdown docs).

I think this general division and arrangement of code comments makes sense. Separate your explanations
into two general categories: how and why. Then insert the how comments inline with the code (every 5-10
lines or so). In contrast, put the why comments into external sections before or after the code. Granted,
explanations of how might prompt details about why, and vice versa, so separating the two might not be so
easy in practice. But this general pattern likely holds true.

Additionally, I like this approach because it prompts you to specifically consider the why. As technical
writers documenting code (that others write), we might fail to consider the “why” behind the choices made.
It might be difficult to even see what “why” questions exist. Why use this class instead of another? Why
approach it like this instead of like that? There are often many different ways to accomplish a similar end,
so why go down this path rather than some other?

When you interview developers about the code samples, include a few “why” questions:

• Are there other approaches that you rejected here? Why?
• Are users free to implement some other approach, or do we specifically want them to follow this

method? Why?
• Why use this language/tool/framework/library rather than some other?

As for inserting inline comments regarding how, a best practice is to insert short comments for every 5-10
lines of code — not so many comments that you make the code unreadable, but not so few that you omit
explanation of what’s going on.

Also, note that inline code comments can be somewhat controversial. If you’re just explaining what the
code is doing, it can be redundant to someone who reads the language. As discussed in What research
tells us about documenting code (p. 438), some developers feel that simple code documents itself — its
meaning is clear to those who read the language, without the need for explanation. However, this
statement tends to cater to advanced users and doesn’t extend to cases where code is complex.

Approach 2: Juxtaposed commentary in a third column
Best practices for documentation in general (not just code documentation) involve placing helpful
instruction next to the area of confusion, and within the context of code documentation, this might mean
adding inline comments peppered throughout code. But suppose you want a longer running commentary
about what’s going on in the code (because the level of complexity can’t be relayed in a short informal
comment). How do you juxtapose your lengthy conceptual/explanatory information next to the code?

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 451

https://www.linkedin.com/feed/update/urn:li:activity:6561978466751913985?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A6561978466751913985%2C6562329276002127872%29

If your commentary dwarfs the code, you risk making the code unreadable. If you arrange the commentary
in sections that come long before or after the code, you risk creating a chasm between the explanation and
the code, such that readers won’t know what parts of the code your explanation refers to.

One solution to this location problem for code docs is to create an additional, third column in your layout.
You devote the middle column to your conceptual explanation and your right column to the code. This way
the code and the narration are juxtaposed in a way that readers can glance at the code while reading your
conceptual explanations — in other words, the third column maintains the needed context between the
code and explanations. Here’s an example from Twilio showing this juxtaposed approach:

Twilio documentation juxtaposed with the code through a third column

In this example, the conceptual content and steps appear in the middle column, the code on the right, with
a dark background behind the code to create visual contrast.

Some of Twilio’s screens actually blur out the irrelevant code, allowing you to focus your attention on the
lines articulated in the conceptual area, like this:

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 452

https://www.twilio.com/docs/authy/tutorials/account-verification-java-servlets?code-language=Java&code-sample=code-verify-an-authy-code-7&code-sdk-version=default#sending-a-token-on-account-creation
https://www.twilio.com/docs/authy/tutorials/account-verification-java-servlets?code-language=Java&code-sample=code-verify-an-authy-code-7&code-sdk-version=default#sending-a-token-on-account-creation

Blurring out irrelevant code

One challenge with this juxtaposed approach is screen space. To pull off a third-column design, you need
to occupy the whole screen, without margins. (I’m surprised Twilio doesn’t include a switch to collapse the
left-side navigation, which would give more space for the code.)

As is, the code is only partially visible (on my 13” Macbook Pro screen). The code extends horizontally with
an option to scroll right, but surely the designers must have cringed in developing a UI that involves a
healthy dose of back-and-forth horizontal scrolling.

Additionally, implementing blur and focus views based on the line the user is at in the tutorial must be
technically challenging and somewhat cumbersome to keep track of.

Another challenge is that the code and explanations of the code rarely line up all the way down. Suppose
you have one method in the code that occupies just a single line, but describing this method occupies
three long paragraphs of conceptual explanation. By the time the user reaches the bottom of the
conceptual explanation, the referenced code is no longer juxtaposed. Now the user not only has to scroll
horizontally to see the code but the user also has to scroll up and down the column to locate the relevant
code. Designing a UI to accommodate all of these moving parts not only seems challenging, but also puts
more burden on the user as well.

Another challenge with this juxtaposed design is that code is often spread out across multiple files. The
view on the design column doesn’t indicate whether all the code appears in the same Java file, for
example, or whether we’re seeing code from multiple Java files. Introducing tabs in your code column
requires an even more complex documentation format. I doubt you can accomplish all this with Markdown
syntax.

Approach 3: The Lego approach
Another approach is to build the code from the ground up level by level, which I’m calling the Lego
approach. For an example of the Lego approach, take a look at this example from the eBay Shopping API:
Searching By Seller: Reviewing Information About A Seller .

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 453

https://www.twilio.com/docs/authy/tutorials/account-verification-java-servlets?code-language=Java&code-sample=code-verify-an-authy-code-7&code-sdk-version=default#configuring-authy
https://www.twilio.com/docs/authy/tutorials/account-verification-java-servlets?code-language=Java&code-sample=code-verify-an-authy-code-7&code-sdk-version=default#configuring-authy
https://developer.ebay.com/DevZone/shopping/docs/HowTo/PHP_Shopping/PHP_FIA_GUP_Interm_NV_XML/PHP_FIA_GUP_Interm_NV_XML.html#step1

Lego approach shown through eBay Shopping API

Their tutorial contains five steps:

• Step 1: Set up basic files and folders
• Step 2: Add code for making the GetUserProfile call and displaying the

results
• Step 3: Add code for making the FindItemsAdvanced call and displaying the

results
• Step 4: Add HTML and Javascript for the user interface
• Step 5: Run the code

With the Lego approach, you might start with a blank file. Then with each step, you add more and more
code until you have a fully working example. Similar to building with Legos — you start with a base and
then start bolting on piece after piece until you finish the design you intended to build.

The problem with this Lego approach is that as a technical writer, you likely won’t have the build-up logic
that the developer followed. Developers will more likely just send you the finished piece of code to
document, and then you might end up approaching it as I described in the intro to this section (p. 434),
where I divided my explanations of the code section by section.

Tackling code explanations section by section won’t necessarily match the Lego build order of the code,
since code is non-linear. The code that appears at the top might have been like the icing on the cake for
the developer — e.g., abstracting more complicated lines into variables that he or she uses to reduce the
code’s working complexity. Finished code often has logic that is abstracted away into variables or other

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 454

https://developer.ebay.com/DevZone/shopping/docs/HowTo/PHP_Shopping/PHP_FIA_GUP_Interm_NV_XML/PHP_FIA_GUP_Interm_NV_XML.html#step1
https://developer.ebay.com/DevZone/shopping/docs/HowTo/PHP_Shopping/PHP_FIA_GUP_Interm_NV_XML/PHP_FIA_GUP_Interm_NV_XML.html#step1

referenced functions so that certain parts of the final code remain cleaner and more concise, but other
parts become more opaque. Finished code is often too messy and confusing to document in any teachable
way.

Despite the challenges with the Lego approach, if you want to teach someone how to understand code,
you have to start simple and work your way up. The next technique explains this simple-to-complex
approach through the metaphor of the nautilus.

Approach 4: The Nautilus approach
The Nautilus approach is similar to the Lego approach, but rather than describing chunks of work that are
tackled one by one in an assembly order, you describe the core, simple patterns that users need to know.
You start with the simplest code and then let the user’s project grow larger and larger as needed, like the
growing spiral pattern of the nautilus’ shell.

Paul Gustafson, who manages a technical writing staffing company in the Bay area called Expert Support
, presents us with the metaphor of the nautilus in the approach described here. Paul says that the

nautilus provides a good metaphor for technical communication because the nautilus follows a spiral
pattern (Fibonacci sequence) that allows it to start small and gradually grow larger and larger as needed:

Nautilus

Paul writes:

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 455

http://expertsupport.com/
http://expertsupport.com/
https://commons.wikimedia.org/wiki/File:NautilusCutawayLogarithmicSpiral.jpg
https://commons.wikimedia.org/wiki/File:NautilusCutawayLogarithmicSpiral.jpg

Fostering understanding, which is what technical communications is all about,
happens most efficiently by following a similar pattern….

When your understanding is small, you learn best when the first lesson imparts
information for a small, simple task with traits importantly akin to the first nautilus
chambers.

… The good news for the nautilus is that the small chambers follow the same basic
plan as the bigger chambers. If the first tasks a learner masters are fundamentally
similar to more complex tasks farther down the syllabus, the student begins to
understand and apply those patterns. The sooner newbies learn to “think about
things the right way,” the sooner they “get it,” which is exactly what both the
instructor and the student want. (Lessons from a cephalopod)

Following the nautilus approach, you start with the simple, core patterns and then build up more and more
code around it gradually as needed. You don’t start by describing the complex finished work from the start.
That finished work likely involves all kinds of code abstractions and rearrangements for a clean, finished
product.

I like the Nautilus approach. The problem is that we often want to explain how the finished code works,
taking a user through it all from start to end. We might have 500 lines of code that we want to articulate,
but the Nautilus approach would have us explain just several small pieces of that code (at least to begin
with). Hence there’s an A-versus-Z type of problem: We describe A (the simplest core pattern), but the end
product is Z. How exactly do you get from A to Z? How do you get from the simple patterns that maybe
occupy 20 lines of code to the monstrously complex, finished code that spans 500 lines?

To the technical writer looking at the finalized code, there’s no clear sense of how the developer got there.
We often can’t decouple the nautilus-like logic that the developer started with, which led him or her toward
this more complex end. All we see is this complex end. How do you decompile the code to reconstruct the
logic that the developer started with? How do you know what these initial nautilus patterns were that
started the whole process? If you didn’t develop the code, nor are you a developer, it will be nearly
impossible to reconstruct the nautilus pattern behind the code in your explanations.

As another analogy, consider teaching others how to paint. Suppose your task is to describe a finished
painting to a would-be painter. You need to describe how to paint the Mona Lisa:

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 456

http://expertsupport.com/2018/09/lessons-from-a-cephalopod/

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 457

https://en.wikipedia.org/wiki/Painting#/media/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg
https://en.wikipedia.org/wiki/Painting#/media/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg

How would you document the process of producing a painting?

To document the process of producing this painting, would you start at the top and work your way to the
bottom? No, that would be ludicrous. Most likely you would start by creating ovals for the head. Then
maybe some general sketches for the eyes, and so on. Maybe you sketch our perspective lines and other
basic structure lines first. You wouldn’t get to the colors and lighting and shadows until later, right? Same
with code. You start with the foundation and then work your way towards more of the finishing detail.

However, if you’re not a painter, how would you know how to describe the process of creating a painting?
You would need to know the painter’s logic — where to start, and how to proceed toward the end. If you
instead just started at the end and tried to work your way backward, the tutorial would likely be insanely
complex.

To illustrate this point more clearly, let me provide a code example. Although I’m not an engineer, I’m
handy with Jekyll and theming, and the other day I set about creating a template that would take a content
export from a ticketing tool (like JIRA) and render it as a documentation report on a web page.

My finished template looks like this:

<div class="sprintDuration">{{page.duration}}</div>

{% assign sprintYamlFile = page.sprint_yaml_file %}

<div class="metaReportInfo" markdown="span">
Tech writers: {% for member in page.team_members %}<a href="https://somesit
e.company.com/users/{{member}}">{{member}}{% unless forloop.last %}, {%
endunless %}{% endfor %}

Team: DevComm

Sprint: Link
</div>

<div id="top"></div>
<div class="all-items">

<h2 id="high-level-summary">High-level Summary</h2>

{{page.high_level_summary}}

{% include sprintdisplaylogic.html %}

{% assign sprintYamlFileOpen = page.sprint_yaml_file_open %}

<h2>Open Issues</h2>
<p>ACME project has {{page.open_items_acme}} open issues. Beta projec
t has has {{page.open_items_beta}} open issues.</p>

{% include sprintdisplaylogic_open.html %}

{% include sprintstylesandscripts.html %}

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 458

This code looks kind of like gibberish, really. I have some “include” files where I’ve abstracted away the
logic because I’ll be repeating it from report to report. I don’t want the scripts and styles showing here, as
they’ll clutter up the code, so I’ve abstracted them away into include files as well.

Imagine trying to document this code. If you started from the top and worked your way to the bottom, it
would be a real mess. The lengthy explanation would also be hard to read and understand for users. It’s
just a confusing ball of yarn. It doesn’t help that I put this together in haste, without much thought for a
clean, elegant solution. I needed to get this report out fast, so I hacked together the template as quickly as
I could. Developers building applications often implement similar hacks and other quick-fixes using “duct
tape and WD-40” , as Joel Spolsky says, to get a working solution shipped to meet a deadline.

This kind of finalized code, with all of its quick hacks and inelegant implementations, is not instructive to
someone looking to build their own report template. Instead, it would be more useful if I started from
scratch with the core pattern. That pattern involves looping through a JSON file (the ticketing export) and
pulling out the key values that I want to display. This key logic is available in the
sprintdisplaylogic.html include above. Here’s the contents of that include:

{% assign shortIdList = page.short_ids %}
{% for item in shortIdList %}
{% assign sprintItems = site.data.sprints[sprintYamlFile] | where_exp:"entr
y",
"entry.ShortId contains item" %}

<h2 id="{{item}}">{{item}} Resolved Doc Issues</h2>
{% for entry in sprintItems %}
<div class="entryTitle">{{entry.Title}}</div>
<div class="entryIssueUrl">{{entry.ShortI
d}}</div>
<blockquote>{{entry.Description | markdownify }}</blockquote>
{% endfor %}
<small>↑ Back to top</small>
{% endfor %}

Even this is confusing, as I have some weird stuff going on here with variables inserted as brackets in
YAML file references.

To really pare this down into the core logic, this is what developers would start with:

{% assign sprintItems = site.data.sprints.someyamlfile %}
{% for entry in sprintItems %}
* {{entry.Title}}
* {{entry.Description }}
* {{entry.IssueUrl}}
{% endfor %}

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 459

https://www.joelonsoftware.com/2009/09/23/the-duct-tape-programmer/
https://www.joelonsoftware.com/2009/09/23/the-duct-tape-programmer/

This is the core logic of the report. It uses a for loop to look through items in a data file (accessed
through site.data.sprints.someyamlfile), and then Jekyll prints these values out through tags like ``.
Once users learn these core patterns, they can extend them into creating more complex solutions, such as
inserting variables into the loop so that you can repeat the logic without duplicating the loop for every
report category.

But if you didn’t develop the code, it would be extremely difficult to pinpoint the core, simple logic that is
the basic pattern of the code. Where did the developer start? What is the essential pattern to learn?

To gather this information, you need to interview the developer. And when you interview the developer, you
need to understand the language and explanations he or she communicates. Alternatively, you can try to
steer the developer towards describing the logic of his or her own code through guidance with the right
questions. For example, you might ask, What’s the fundamental core logic that the user needs to know
here? What’s the really important line to focus on in all this code? Can you walk me through that specific
part in detail?

Just a caution here — chances are if you ask developers these questions, they will quickly slip into
advanced explanations and jargon and become impatient if you’re unable to follow the logic. If basic
concepts are totally unfamiliar, it is unrealistic for a beginning to simply soak in the explanation. Plus, it can
be hard to explain code. I even forgot many details about how my Jekyll code works about a hour after I
wrote it. These explanations require a lot of mental work for developers to perform (their reluctance
reinforces why they’re often not writing the documentation in the first place).

In these conversations, I highly recommend recording your interviews with developers. This will allow you
to go back and listen to the explanations in slow motion, hitting stop and rewind as much as you want. If
the engineer mentions an unfamiliar concept, you can use that as a springboard for your own study. This
will give you a relevant list of topics to learn (rather than following some generic course that might never get
around to addressing the specific code you actually need to know). At the very least, you could simply
parrot out what the developer said from the recording — you’ll have all the lingo and phrasings ready to
pull from.

As you decompile the logic of the code to the simplest pattern, you will face another challenge: where to
draw the line about what to explain and what not to explain. This again is nearly impossible to answer
without a more thorough understanding of your audience, and chances are the engineer won’t have any
more sense of the audience than you, so the engineer will likely make the same assumption that technical
writers often do — imagining a user not too unlike ourselves.

Approach 5: Interactive browser experiences
Teaching core patterns shifts the documentation more into the domain of a tutorial. Related to this type of
learning are interactive browser experiences that combine action with learning. These browser-executable
interfaces have as their goal the aim to help users better understand the results of inputs and outputs so
that users can see for themselves how the code works through a more hands-on, try-it-for-yourself
approach.

The most common example of interactive documentation for APIs is with Swagger UI, which I have already
covered at length in OpenAPI tutorial using Swagger Editor and Swagger UI: Overview (p. 272) and showed
in the Swagger UI Demo (p. 240):

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 460

Try it out button in Swagger's interactive REST API interface

Swagger provides an ingenious blending of documentation and try-it-out interactions that help users learn
your API (by both reading and doing). But making requests with REST API endpoints tends to be somewhat
simple. More extensive code tutorials will be harder to make interactive in the browser. Even so, some
“Notebooks” (as they’re often called) allow you to run code, specifically Jupyter Notebooks . Jupyter
explains:

The Jupyter Notebook is an open-source web application that allows you to create
and share documents that contain live code, equations, visualizations and narrative
text. Uses include: data cleaning and transformation, numerical simulation, statistical
modeling, data visualization, machine learning, and much more.

Google has some collaborative notebook options with TensorFlow documentation, which has operations
that you can execute on web pages. In the following screenshot, you can see an option to “Run code now”:

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 461

https://idratherbewriting.com/learnapidoc/pubapis_swagger_demo.html
https://idratherbewriting.com/learnapidoc/pubapis_swagger_demo.html
https://jupyter.org/

Interactive code examples from TensorFlow

Clicking “Run code now” takes you to Google’s interactive notebooks that actually run the code in the
browser:

Google's interactive notebooks let you run the code in the browser

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 462

https://www.tensorflow.org/tutorials
https://www.tensorflow.org/tutorials
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb

Although interactive notebooks look cool, they seem like a lot of work for something that could more easily
be accomplished with a sample app. Instead of figuring out how you can compile Python code or some
other language in the browser, why not just provide a sample app that users can download and then
proceed through locally, using their own compiling tools and setup?

Sure, users might need to have some utilities and frameworks installed on their computer to make the
sample apps run, as well as an IDE, but making code run in the browser might not fully inform users about
all the required setup and preparation that will eventually be necessarily for them to make the code run
locally. Browsers tend to be somewhat stiff and formal in what they can do — users might have more
freedom to experiment (and learn from those experiments) with a sample app.

Conclusion
In this section, we looked at five approaches to documenting code:

• Approach 1: Separate the “how” into inline comments, the “why” into external docs
• Approach 2: Juxtaposed commentary in a third column
• Approach 3: The Lego approach
• Approach 4: The Nautilus approach
• Approach 5: Interactive browser experiences

Overall, use the approach that helps empower users with the knowledge for creating their own code.

Activity: Classify code documentation into one of the five types
Find a code tutorial within one of the API documentation sites you’ve been exploring. Or look at one of the
API doc sites in this post by Nordic APIs on 5 Examples of Excellent API Documentation (and Why We
Think So) . This post lists five API doc sets: Stripe , Twilio , Dropbox , GitHub , and Twitter .

Find a code tutorial in the documentation. Figure out which approach the code documentation best aligns
with.

Five strategies for documenting code PDF last generated: August 27, 2023

Documenting REST APIs Page 463

https://nordicapis.com/5-examples-of-excellent-api-documentation/
https://nordicapis.com/5-examples-of-excellent-api-documentation/
https://stripe.com/docs/api
https://www.twilio.com/docs/usage/api
https://www.dropbox.com/developers/documentation
https://developer.github.com/v3/guides/getting-started/
https://developer.twitter.com/en/docs/tweets/search/overview

Code samples
Developer documentation tends to include a lot of code samples. These code samples might not be
included with the endpoints you document, but as you create tasks and more sophisticated workflows
about how to use the API to accomplish a variety of goals, you’ll end up leveraging different endpoints and
showing how to address different scenarios. Code tutorials are a crucial part of your user guide.

Code samples are like candy for developers
Code samples play an essential role in helping developers use an API. Code is literally another language,
and when users who speak that language see it, the code communicates with them in powerful ways that
non-code text (however descriptive it is) can’t achieve.

Step 2. Construct the request

Step 3. Capture the response

Step 4. Pass the response into

this other endpoint

Step 5. Display the code on

the page through ajax

Step 1. Configure the service

Code Tutorial

Code is in another language, so as much as you might try to describe the communication in this other
language through text, it often falls short. When developers see code, they can often read the code and
understand it natively.

In user testing that Twilio did with their documentation, they found that pages that started more quickly
with code samples performed better with users.

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 464

Twilio found that when pages had fewer sentences before code samples, the pages engaged users more.

Specifically, pages with less than 4 sentences before code samples performed twice as well as pages with
11 sentences before code samples. Jarod Reyes explains:

It’s a mental block more than it is not being able to see code. It tells a developer that
this page has a lot to say, and that they have a lot to do. They don’t want to
necessarily want to spend the time to read what you want to say. We saw this across
section length; we saw this across page depth. Any time that there is a lot of prose
on a page and not a lot of code, that page didn’t perform well. (How Twilio Writes
Documentation)

In other words, when developers see code, it’s the equivalent of seeing a task-based topic with a user
guide — the code indicates a concrete action for the developer to take. This attracts the developer’s
attention.

Don’t just provide reference docs
Sometimes engineers want to avoid including code samples in API docs because they feel the endpoint
reference documentation contains all the information developers need and stands on its own. However,
this view is often shortsighted. In an article on the Programmable Web called “The Six Pillars of Complete
Developer Documentation,” the authors explain:

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 465

https://eventil.com/presentations/pOszD6
https://eventil.com/presentations/pOszD6
https://eventil.com/presentations/pOszD6
https://eventil.com/presentations/pOszD6

While a developer’s guide should walk a developer through the basic usage of an API
and its functionality, it can’t cover every possible use of that API in a coherent way.
That is where articles and tutorials come in, to teach developers tangential or
specialized uses of an API, like combining it with another service, framework, or API.
(Note: Programmable Web has since shut down.)

In other words, the articles and tutorials complement the reference documentation to provide complete
instruction. Code samples that show how to use the various endpoints to achieve a goal occupy an
important space in your user guide.

Additionally, even if including code samples, the level of detail and explanation is also somewhat
debatable. Many developers assume that the developer audience has a skill set similar to their own,
without recognizing different developer specializations. And so they will add a code sample but not give
any explanation about it. Internal developers will often say, “If the user doesn’t understand this code, he or
she shouldn’t be using our API.”

If you encounter this attitude, remind developers that users often have technical talent in different areas.
For example, a user might be an expert in Java but only mildly familiar with JavaScript. Someone who is a
database programmer will have a different skill set than someone who is a Python programmer, who will
have a different skill set from a front-end web development engineer, and so on. Given these differences
and the likely possibility that you will have many novice (or unfamiliar) users, more extensive code tutorials
and explanations are warranted.

Focus on the why, not the what
Once you have code samples in your documentation, the next question is how to document them. User
interfaces have clear tasks — buttons to click, linear workflows, etc. But documenting code can be more of
a conundrum. Remember this basic principle: In any code sample, focus your explanation on the why, not
the what. Explain why you’re doing what you’re doing, not the detailed play-by-play of what’s going on,
especially when the what refers more to standard programming mechanics that aren’t unique to your API.

Here’s an example of the difference:

• what: “In this code, several arguments are passed to jQuery’s ajax method. The response is
assigned to the data argument of the callback function, which in this case is success .”

• why: “Use the ajax method from jQuery because it allows for asynchronous responses that
won’t block the loading of your page.

Developers unfamiliar with common code not related to your company (for example, the .ajax() method
from jQuery) should consult outside sources for tutorials about that code. Don’t write your own version of
documentation for another programming language or service. Instead, focus on the parts of the code
unique to your company. Let the developer rely on other sources for the rest (feel free to link to other sites).

Add both code comments and before-and-after explanations
Your documentation regarding the code should mix code comments with some explanation either before or
after the code sample. Different languages have different conventions for comments, but generally brief
code comments are set off with forward slashes // in the code; longer comments are set off between
slashes and asterisks, like this: /* */ .

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 466

Comments within the code are usually short one-line notes that appear after every 5-10 lines of code. You
can follow up this code with more robust explanations in your documentation, but it’s ideal to pepper code
samples with comments because it puts the explanation next to the code doing the action. This approach
of adding brief comments within the code, followed by more robust explanations after the code, aligns with
principles of progressive information disclosure that help align with both advanced and novice user
types. In this case, progressive information disclosure means you provide some detail in the context of an
activity, and then add links or references for more information if the user needs it.

If you have comments interspersed in code as well as in conceptual sections before or after the code,
won’t that be somewhat redundant? Not really. Some research about how developers use documentation
found that there are two common behaviors: developers who start in code and read higher-level
conceptual documentation only as needed (called “opportunistic” behavior). And developers who start in
higher-level conceptual documentation before working their way down to code (called “systematic”
behavior). Michael Meng, Stephanie Steinhardt, and Andreas Schubert explain:

Once a high-level understanding of the API purpose and features has been formed,
two different pathways seem to emerge that closely resemble the “systematic” and
the “opportunistic” developer personas described by Clarke (2007) (see also Stylos,
2009). According to Clarke (2007), developers represented by the systematic
developer persona work top down in the sense that they try to get a deeper
understanding of the system as a whole before turning to individual components. On
the other hand, the learning goals of opportunistic developers are more narrowly
focussed on solving a particular problem and dependent on the specific issues and
blockers they encounter while working toward a solution (“Application Programming
Interface Documentation: What Do Software Developers Want?” Journal of Technical
Writing and Communication. 2018, Vol. 48(3) 295–330. ResearchGate)

For the opportunistic developer that first starts in the code, comments in the code can provide helpful
documentation to get the developer oriented quickly. But not everyone starts in the code. Some prefer to
read the conceptual overviews first.

For more research on how to document code, see “When Not to Comment: Questions and Tradeoffs with
API Documentation for C++ Projects” by Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and
Andrea Knight (2018 ACM/IEEE 40th International Conference on Software Engineering. ResearchGate).
The researchers explore whether developers are more apt to look in header files (where more formal
descriptions of the class and methods appear) or implementation code for documentation (they focused on
C++). In some cases, reading the implementation code directly provides a clearer path to understanding for
developers. Additionally, some developers distrust that documentation is up to date and so prefer to look
at the code directly. For more complex code, however, learning from more elaborate documentation in
header files was helpful.

Overall, not every programmer reads code the same way. But based on the research, it’s a good idea to
include comments directly in the code as well as more formal explanations outside the code. If developers
give you a chunk of code that has comments peppered throughout, don’t assume that the code comments
are somehow separate from documentation or outside your stewardship as a technical writer. Think of
comments in code as the equivalent of context-sensitive help in a user interface — in many ways, this
might be the most read content of all.

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 467

https://idratherbewriting.com12/08/09/applying-progressive-information-disclosure-to-online-help-navigation/
https://www.researchgate.net/publication/318733467_Application_Programming_Interface_Documentation_What_Do_Software_Developers_Want
https://www.researchgate.net/publication/325732077_When_not_to_comment_questions_and_tradeoffs_with_API_documentation_for_C_projects

Keep code samples simple
Code samples should usually be stripped down to their simplest possible form. Providing code for an entire
HTML page is probably unnecessary. But including some surrounding code doesn’t hurt anyone, and for
newbies, it can help them see the big picture. (It’s also easier to copy and paste.)

Additionally, avoid including a lot of styling or other details in the code that will potentially distract the
audience from the main point. The more minimalist the code sample, the better. For example, if you’re
showing a simple JavaScript function, you might be tempted to support it with elaborate CSS styling so
that the demo looks sharp. However, all the extra CSS will only introduce more complexity and confusion
that competes with the original principle you’re trying to show with the code sample.

When developers take the code and integrate it into a production environment, they’ll probably make a lot
of changes to account for scaling, threading, and efficiency, and other production-level factors. But don’t
start out this way just to have a polished and professional looking demo.

Make code samples copy-and-paste friendly
Many times developers will copy and paste code directly from the documentation into their application.
Then they will usually tweak it a little bit for their specific parameters or methods.

If you intend for users to copy and paste the code, make sure it works. When I first used some sample
ajax code from a code tutorial on an API site, the dataType parameter was spelled datatype . As a

result, the code didn’t work (it returned the response as text, not JSON). It took me about 30 minutes of
troubleshooting before I consulted the ajax method and realized that it should be dataType with a
capital T .

Ideally, test out all the code samples yourself (or implement a more robust process for testing code).
Testing allows you to spot errors, understand whether all the parameters are complete and valid, and more.
In the earlier video from Twilio, the authors say they wanted to treat code samples in documentation like
their other engineering code, so they stored their code in a separate container (also pushed to GitHub) to
run regular tests on the code. They pulled the code into their documentation where appropriate. For
lengthy code samples, consider storing the code on GitHub. This way engineers can more easily test it as
part of their test cases for each release. Sometimes when code blocks are buried in documentation, they’re
overlooked with new releases.

Provide a sample in your target language
With REST APIs, developers can use pretty much any programming language to make the request. One
question will inevitably arise: Should you show code samples that span across several languages? If so,
how many languages?

Providing code samples is almost always a good thing, so if you have the bandwidth to show code
samples in various languages, go for it. However, providing just one code example in your audience’s
target language is probably enough. If there isn’t a standard language for most users, you could also just
provide the curl examples in your docs, and then provide users with a Postman collection (p. 71) or an
OpenAPI specification file (p. 181) — both of these approaches will allow developers to generate code
samples in many different languages.

Remember that each code sample you provide needs to be tested and maintained. When you make
updates to your API, you’ll need to update each of the code samples across all the different languages.
When your API pushes out a new release, you’ll need to check all the code samples to make sure the code
doesn’t break with the changes in the new release (this is called “regression testing” in QA lingo).

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 468

http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/

Including a lot of code samples increases the amount of testing and maintenance, but this is the most
helpful type of content for users. Take an approach that you can support and maintain.

Sample code tutorials
The following are a few samples of code tutorials in API documentation.

Weather Underground

Weather Underground code samples

In this Weather Underground example, there are various code samples across half a dozen languages, but
no explanation about what the code sample returns. In this case, the code is probably simple enough that
developers can look at it and understand from the code itself what’s going on. Still, some explanation is
usually warranted, especially if there are multiple ways to make the call.

Sometimes developers will tell you that code is “self-documenting,” meaning it’s evident from the code
itself what’s going on. Without a knowledge of the programming language, it’s hard to evaluate this
statement. If you encounter this question, consider checking this assertion with some other engineers,
especially outside the product team (or with users, if you have access to them).

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 469

http://www.wunderground.com/weather/api/d/docs?d=resources/code-samples&MR=1
http://www.wunderground.com/weather/api/d/docs?d=resources/code-samples&MR=1

Eventful

Eventful code samples

You won’t see chunks of code here, but the Eventful docs include various examples about query string
parameters for the endpoints. Although these parameters are also defined in their reference documentation
for the search endpoint , the tutorial here expands on how to use the parameters in a more friendly,
detailed way.

I like the Eventful tutorial because it shows how documentation that is usually contained in reference
material can be pulled out and explained more narratively with examples. It shows more of the difference
between reference and tutorial information.

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 470

http://api.eventful.com/tools/tutorials/search
http://api.eventful.com/tools/tutorials/search
http://api.eventful.com/docs/events/search
http://api.eventful.com/docs/events/search

Twilio

Twilio code samples

Twilio’s tutorials are probably the most impressive and fully detailed tutorials in the examples here. Not only
do they walk users through a task from beginning to end, they do so in half a dozen languages. The
specific code examples have been extracted out into the right-column, while the narrative of the tutorial
occupies in the middle column. All the steps in the tutorial aren’t shown at once. When you reach the end
of one step, you click a button to show the next step. This progressive disclosure of information might
reduce any sense of intimidation users might feel when beginning the tutorial.

Although the middle column is narrow and the right-column larger, actually this middle column just
contains narrative text to annotate and explain the code. When you click a button in the tutorial, it brings
the code on the right in focus and blurs the other code. Their implementation is a technical feat that I
haven’t seen anywhere else.

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 471

https://www.twilio.com/docs/quickstart
https://www.twilio.com/docs/quickstart

Mailchimp

Mailchimp code samples

As usual, Mailchimp provides solid tutorials for their products. The “Before You Start” section lists any
necessary prerequisites before starting the tutorial. Each part of the tutorial is set off with section headings.

The section heading style (rather than numbered steps) is worth considering. Most technical writers have
numbered steps as a habit for tech docs, so when they start writing a code tutorial, the first inclination is to
begin a sequence of steps. But with a code tutorial, you might have lengthy code samples that are followed
by detailed explanations, and so on. Maintaining the list numbers across steps can become onerous. The
section headings provide less problematic formatting, and you can still preface each section heading with
“Step 1”, “Step 2”, and so on.

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 472

http://developer.mailchimp.com/documentation/mailchimp/guides/manage-subscribers-with-the-mailchimp-api/
http://developer.mailchimp.com/documentation/mailchimp/guides/manage-subscribers-with-the-mailchimp-api/

IBM Watson

IBM Watson code samples

The IBM Watson tutorial does an excellent job breaking up the tutorial steps into different sections, with
easy-to-follow steps in each section. Up front, it lists the learning objectives, duration, and prerequisites.
There’s nothing particularly challenging about the formatting or the display — the emphasis focuses on the
content.

Code samples for sample weather API
Earlier in the course, we walked through each element of reference documentation (p. 115) for a fictitious
new endpoint called surfreport in the weather API we were working with. Let’s return briefly to that
scenario and assume that we also want to add a code tutorial for showing the surfreport on a web page.
What might that tutorial look like? Here’s an example:

Code tutorial for surfreport endpoint
The following code samples show how to use the surfreport endpoint to get the surf height for a
specific beach.

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 473

https://console.bluemix.net/docs/services/conversation/tutorial.html#tutorial
https://console.bluemix.net/docs/services/conversation/tutorial.html#tutorial

<!DOCTYPE html>
<head>
<script src="https://code.jquery.com/jquery-2.1.1.min.js"></script>
<script>
// limit the result through days parameter to keep the returned data set lig
ht
var settings = {

"async": true,
"crossDomain": true,
"url": "https://api.openweathermap.org/surfreport/25&days=1",
"method": "GET"

}

// use ajax method to allow for asynchronous calls that won't block page loa
ding
$.ajax(settings).done(function (response) {

console.log(response);
$("#surfheight").append(response.surfreport.conditions);

});
</script>
</head>
<body>
<h2>Surf Height</h2>
<div id="surfheight"></div>
</body>
</html>

In this example, the ajax method from jQuery is used because it allows us to load a remote resource
asynchronously.

In the request, you submit the authorization through a query string URL. The endpoint limits the days
returned to 1 to increase the download speed.

For demonstration purposes, the response is assigned to the response argument of the done method,
and then written out to the surfheight tag on the page.

We're just getting the surf height, but there's a lot of other data you could choose to display.

One could go into a lot more detail with the explanation, even going line by line through the code, but here
the commentary is already about half the length of the code. And there are some comments interspersed in
the code. The comments address more the question of “why” rather than “what.”

Documenting code can be one of the most challenging aspects of developer documentation. Part of the
challenge is that code isn’t organized such that a line-by-line (or block-by-block) description makes sense.
Variables are often defined first, functions are called that are defined elsewhere, and other aspects are non-
linear as well. As you explain the logic, you might find that you’re jumping around to different places in the
code, not necessarily moving from top to bottom.

For a deeper dive into how to document code samples, see my presentation on Creating code samples for
API/SDK documentation .

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 474

https://idratherbewriting.com14/05/30/creating-code-samples-webinar-recording-slides-and-audio/
https://idratherbewriting.com14/05/30/creating-code-samples-webinar-recording-slides-and-audio/

Activity with code samples
With the open-source project you identified (p. 686), identify code samples in the API documentation.
Answer the following questions:

1. Are there code samples provided? In which languages?
2. How many code samples are there? Lots? Just a few? None?
3. Are there comments within the blocks of code?
4. How do the conceptual explanations point to specific lines of code? Is the explanation given

before, during, or after the blocks of code?
5. Do the code explanations focus more on the “why” (the decisions behind the code) or the “what”

(the mechanics of the code)?

Code samples PDF last generated: August 27, 2023

Documenting REST APIs Page 475

Sample apps
Sample apps aren’t just a convenience for developers, nor even an illuminating demonstration of abstract
concepts in code. Sample apps are critical for technical writers to write good documentation. Without the
ability to test content (p. 343) through a sample app, it’s nearly impossible to know if your code instructions
in your docs work.

Whether a sample app is relevant and available depends on the nature of the product, but in general you
need sample apps or sample code to make sure the steps in the documentation work correctly.
Additionally, sample apps tend to be powerful learning tools for developers because they allow them to
experiment and see code in context from end to end.

Sample apps are critical to writing good docs
Let me start the discussion by sharing an experience related to sample apps. At one company, I was
working on documentation for a project called Video Skills for Fire TV Apps . This product involves
implementing Alexa video skills into Fire TV apps so that customers can say phrases like “Play Bosch” and
the app will automatically play the content, without the need to use a remote control.

The implementation process was pretty involved and required a series of steps listed here . I inherited an
initial set of docs (written by a PM + engineers) and sample app. I spent a month just getting the steps to
work with the sample app. Then I spent another month fixing and updating the documentation. Using a
sample app was critical for determining which steps in the initial docs were missing or incomplete. After I
was confident that the steps worked well (because by following said steps, the sample app actually
worked), I published the sample app as a companion to the docs .

Without testing the docs through this sample app, I wouldn’t have had any idea if they actually worked, and
I’d basically be an engineer’s secretary . What I love most about sample apps is that they provide an
end-to-end sample of working code. If you’re working in any particular language, a simple code snippet
might not run on its own (unless it’s a standalone web call to an endpoint). But a chunk of Java or PHP or
C++ code will usually require a sample app to run, or an IDE to compile and run the code.

Having little disconnected pieces of code that aren’t associated within a sample app often isn’t a testable
scenario. And if you have a bunch of code that you can’t easily test, how do you even know that it works?
If you don’t know whether the code you’re documenting works, how can you feel good about the technical
documentation you’re writing? This is why sample apps are critical — they let you know that your
instructions probably work.

Getting approval to publish sample apps
I’ve discussed the importance of sample apps in writing documentation and testing that documentation.
Should you also seek to publish the sample app as a companion to the documentation? For example, with
each disconnected code snippet, you could point the user to the code in the sample app for context and
more details.

Unfortunately, publishing a sample app alongside the docs is not an easy task. Most sample apps are
distributed via GitHub, so you might need to get a company-approved GitHub repo for your sample app.
To do that, there’s usually an approval process that involves Legal and other stakeholders. You’ll have to
figure out the right license for the code, make sure you have approval to even use the libraries and other
third-party components in the code, and more. You’ll also need to tag the code with the license in the
proper way, remove any confidential files or information, and follow other security protocols for releasing
the code. You’re kind of in engineering territory at this point.

Sample apps PDF last generated: August 27, 2023

Documenting REST APIs Page 476

https://developer.amazon.com/docs/video-skills-fire-tv-apps/introduction.html
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integration-overview.html
https://developer.amazon.com/docs/video-skills-fire-tv-apps/set-up-sample-app.html
https://idratherbewriting.com18/11/19/avoid-being-secretary-for-engineers

Code simplicity versus more robust functionality
Another hurdle in releasing a sample app is code quality. Assuming you get approval to put the sample app
in a GitHub repo, is the code even worth making available to engineers? Will the code provide a clarifying
example of how to implement a technique in an app, or will the code just muddle the waters even more?

Ideally, you want to make the sample app as simple as possible, elucidating the technique you are trying to
demonstrate in the docs and nothing more. But isolating the code at that level of simplicity is tough
because most apps usually require some other code to load and run.

With one project I worked on, developers didn’t want to provide a sample app because they felt that any
app that implemented Technique A but not Techniques B, C, D, E, and F would mislead developers.
Developers implementing the feature might use the sample app as a starting point (copying the code
wholesale, or using the sample app as a starting point for their app) and not realize that Techniques B, C,
D, E, and F were also required.

But coding Techniques B, C, D, and E were beyond the scope of this sample app and accompanying
documentation, and they made everything much more complex. Was it better to not provide any sample
app at all rather than provide one that was either overly complex or which was rudimentary/incomplete?

With the video skills project I referenced earlier, the sample app was originally a fork of another Android
streaming media template called Fire App Builder that had a lot of interchangeable modules. All of these
modules added a lot of confusion and bulk to what should otherwise be much simpler code. But the app
looked and functioned like a real TV app, with a landing page and video thumbnails. Project teams often
want to demonstrate code that yields an attractive output, but they also want to keep everything as simple
as possible. Later on, the team replaced the sample app with a much simpler one that didn’t have as
many polished features as the original Fire App Builder app.

Overall, figuring out the right balance in a sample app is a tradeoff. A simpler Fire TV app might not even
include a landing page or thumbnail view of videos, but it might be more illustrative from a code
perspective. Users wouldn’t be distracted by all the other code that isn’t essential to implement for the
feature you’re describing.

Functional but poorly written code
Sometimes the only sample app you can get your hands on is too embarrassing for engineers to feel
comfortable sharing, so you might have to pitch hard for its value in the docs. Getting engineers to build
beautiful, illustrative sample apps to accompany the docs can be a tall order, especially if these same
engineers are struggling to complete their bi-weekly sprint tasks. In a best case scenario, you might be
able to leverage a sample app from the QA team. Almost invariably, the QA team is vetting a list of features
through some kind of test code, which is likely packaged into a simple sample app.

Whether that sample app can be extrapolated into a companion piece for the documentation is another
matter. Usually, test apps are rudimentary and not necessarily best practice showcases for code. For
example, maybe the code works/compiles, but there are many other aspects that engineers look for in
code. In The Best Code is No Code At All , Jeff Atwood (quoting another author) explains what amounts
to good code:

Sample apps PDF last generated: August 27, 2023

Documenting REST APIs Page 477

https://developer.amazon.com/docs/fire-app-builder/overview.html
https://github.com/amzn/sample-fire-tv-app-video-skill
https://blog.codinghorror.com/the-best-code-is-no-code-at-all/

• Brevity of code
• Featurefulness
• Speed of execution
• Time spent coding
• Robustness
• Flexibility

Atwood then explains:

It’s painful for most software developers to acknowledge this, because they love
code so much, but the best code is no code at all. Every new line of code you
willingly bring into the world is code that has to be debugged, code that has to be
read and understood, code that has to be supported. Every time you write new code,
you should do so reluctantly, under duress, because you completely exhausted all
your other options. Code is only our enemy because there are so many of us
programmers writing so damn much of it. If you can’t get away with no code, the
next best thing is to start with brevity.

In other words, all code that works is not the same. Code should be as brief and efficient as possible. Just
because the code in a sample app used by QA executes the feature, it doesn’t mean the technique used in
the code runs efficiently (executes with speed), uses a low amount of memory (reduces space), is elegant
(implements re-use), and so on. It might be like an old car that putters along the road — it will get you to
your destination, eventually. But you wouldn’t want other car builders to pattern their cars after it.

As such, internal engineers are usually a lot more cautious about sharing shoddy code. There is a danger of
potentially doing more harm than good, especially if the code in the demo implements poor practices that
developers then copy and duplicate in their own apps. Getting devs to create exemplary code is usually an
effort beyond their initial mandate in building the feature.

Is it better to require third-party developers to work out the implementation code on their own (probably
misinterpreting and also implementing it incorrectly) rather than potentially leading them astray with bad
sample code? I think most developers would say yes. If you push for sample apps as companion pieces to
documentation, you might have to find a compromise here between simple, half-baked but functional code
and more robust, “showcase” code that would scale in a production environment. Even if you can’t release
the sample app, you can probably use the sample app for your own testing and validation of the
documentation.

Who owns and maintains the sample app?
If you do manage to publish the sample app, questions about ownership will need to be clarified. Who
owns the sample app, especially as a companion piece for the documentation? If the apps are integrated
into the documentation and intended to highlight the docs, then wouldn’t it make sense for the doc team to
have some stake in the code’s ownership? At the same time, who will respond to the issues logged on
GitHub, the pull requests, and other comments around the code there? Ownership and responsibility
matter.

Sample apps PDF last generated: August 27, 2023

Documenting REST APIs Page 478

I’ve seen repos abandoned by engineering teams who simply move on to other projects. Engineers
transition to other teams/projects/initiatives and don’t want to be supporting the same GitHub repos for the
rest of their lives. Other times, projects get de-prioritized or sunset, but the GitHub repo stays in the public
space, and the initial docs remain, still supported by the doc team. In these cases, you might end up with a
sample app that is seemingly inactive or unsupported (with issues piling up), and docs that you still
continue support in a “keep the lights on” kind of way. You might have to keep tabs on the GitHub issues
logs and champion internal sources to provide support.

Sample apps PDF last generated: August 27, 2023

Documenting REST APIs Page 479

SDKs (software development kits)
SDKs (software development kits) and sample apps are similar to code samples and tutorials (p. 464) but
are much more extensive and usually involve a whole collection of files that work together as a package or
sample app. The SDK might include libraries that you download and incorporate into your application, and
can consist of tools, sample apps, and other code.

What is an SDK?
The terms API and SDK are often used together, but they aren’t synonyms. SDKs implement the language-
agnostic REST API in a specific language, such as Java or C++. REST APIs by themselves aren’t tied to
any particular language; usually, you demonstrate the APIs by making calls using cURL (p. 80), a
command-line tool for submitting web requests and getting responses. But developers won’t use cURL
requests when they implement your API. Instead, they will implement the API requests using the language
their application is coded in.

For example, Python, C++, or Node applications make API requests in different ways. Each language has
its own way of constructing requests to a web API. You can use Postman or Paw to auto-generate a simple
request in a specific language (see Auto-generating code samples (p. 146)). However, the SDK takes the
implementation to another level. SDKs might involve many more files or libraries as part of the
implementation.

In What is the Difference Between an API and an SDK? , Kristopher Sandoval explains an SDK as
follows:

SDK stands for “Software Development Kit”, which is a great way to think about it —
a kit. Think about putting together a model car or plane. When constructing this
model, a whole kit of items is needed, including the kit pieces themselves, the tools
needed to put them together, assembly instructions, and so forth.

An SDK or devkit functions in much the same way, providing a set of tools, libraries,
relevant documentation, code samples, processes, and or guides that allow
developers to create software applications on a specific platform. If an API is a set of
building blocks that allows for the creation of something, an SDK is a full-fledged
workshop, facilitating creation far outside the scopes of what an API would allow.

Sandoval compares examples from both Facebook APIs and SDKs to clarify the difference. He sums up
the difference as follows: “The SDK is the building blocks of the application, whereas the API is the
language of its requests.” In other words, the SDK provides all the necessary code you would need to build
an application that uses the API.

What is your role in documenting the SDK and sample app
In the SwaggerHub tutorial, I showed how to auto-generate client SDKs (p. 234) through SwaggerHub’s
interface. But usually rather than relying on auto-generated SDKs, if your development team offers a client
SDK, it will be code that the development team prepares and tests. The development team often provides
the SDK in a few target languages based on their user’s main language, making it easier for users to
implement the API.

SDKs (software development kits) PDF last generated: August 27, 2023

Documenting REST APIs Page 480

https://nordicapis.com/what-is-the-difference-between-an-api-and-an-sdk/

As an API technical writer, documenting SDKs and sample apps presents a tough challenge because SDKs
require you to be familiar with one or more programming languages. I explore the question of how much
code you need to know (p. 664) in the Jobs section (p. 659), so I won’t get into too much detail here.
Usually, engineers don’t expect you to know multiple programming languages in depth, but some
familiarity with them will be required in order to both write and review the documentation. When deciding
whether to call a block of code a function, class, method, or another name, you need to have a basic
understanding of the terms used in that language.

Android SDK Java SDK Node.js app

uh, do we need
to document these?

tech writer

SDKs and sample apps

If you’re unfamiliar with the language, you can just take what engineers write, clean it up a bit, try to walk
through the steps to get any sample apps working and see what feedback you get from users. Usually, if
you can get a sample app installed and working, and make sure that the basic documentation for running
the app works, as well as what the app does, that might be sufficient. But of course, making any significant
contributions to SDK documentation will require you to be familiar with that programming language.

As I mentioned in the Code samples and tutorials (p. 464), you don’t need to document how a particular
language works, just how your own company’s SDK works. Presumably, if an engineer downloads the Java
SDK for an API, it’s because the engineer is already familiar with Java. However, if your API was
implemented in a particular way in Java, you should explain why that approach was taken. (Granted,
understanding the difference between documenting Java and documenting a particular approach in the
Java implementation also requires you to understand Java (p. 701).)

SDKs (software development kits) PDF last generated: August 27, 2023

Documenting REST APIs Page 481

Releasing your SDK
When you release the SDK, although engineers might handle the release, they will probably look to you for
input on SDK readiness, including preparation of the Readme, documentation, licensing, and other details.
See Processes for managing SDK release processes (p. 755) for more information about these details.

Sample SDKs and sample apps
The following examples show documentation for some sample SDKs and sample apps.

OpenWeatherMap API

Code samples for OpenWeatherMap API

The example integrations for the OpenWeatherMap API aren’t just short code snippets that show how to
call an endpoint. Instead, they are full-fledged, sophisticated integrations across a variety of platforms. As
such, many of the code samples are stored in GitHub. Each scenario has a detailed explanation.

If you can put your sample apps and SDKs on GitHub, it’s usually a good idea to do so. Storing code on
GitHub accomplishes two purposes: First, it usually puts the burden on engineering to maintain and test
the code samples as well as respond to issues users might log against the project. Second, it makes it
easier to provide fully functional code, since users can clone the project and start working with it
immediately. The development team can also push out updates easily.

SDKs (software development kits) PDF last generated: August 27, 2023

Documenting REST APIs Page 482

https://openweathermap.org/examples
https://openweathermap.org/examples

Paypal REST SDK

Paypal REST SDKs

The SDKs in the Paypal’s Additional information section include Node JS, PHP, Python, Ruby, Java, and
.NET SDKs. Each implementation has its own GitHub site, with its own wiki, sample code, source docs,
and more. If you browse some of these GitHub pages (such as the site for PHP), you can see the whole
collection of language-specific files for this SDK. These sites show how SDKs include a variety of file types.

SDKs (software development kits) PDF last generated: August 27, 2023

Documenting REST APIs Page 483

https://developer.paypal.com/docs/api/quickstart/
https://developer.paypal.com/docs/api/quickstart/
https://developer.paypal.com/docs/api/quickstart/#additional-information
https://paypal.github.io/PayPal-PHP-SDK/

Paypal PHP SDK

SDKs (software development kits) PDF last generated: August 27, 2023

Documenting REST APIs Page 484

https://paypal.github.io/PayPal-PHP-SDK/
https://paypal.github.io/PayPal-PHP-SDK/

Heroku SDK

Heroku SDK

The Heroku SDK is actually operated by PubNub and includes a Ruby, Java, Node JS, Python, and PHP
SDK. If you look at, for example, the Python SDK documentation , you see links to Getting Started,
Tutorials, and API reference.

As I mentioned earlier, it’s unlikely that you’ll be able to contribute significantly to either writing or reviewing
the SDK documentation unless you’re somewhat familiar with the language. Development groups usually
don’t expect technical writers to be conversant in half a dozen languages. More likely, you’ll be reliant on
engineers who are conversant in these languages and frameworks to author this content. But doing so will
require you to interact skillfully with engineers and be somewhat familiar with programming jargon and
concepts.

If engineers tell you that users should know X, don’t just submit to their judgment out of ignorance with the
language. Instead, find some developers in that language (even internal engineers in other groups) to test
the documentation against. If those users push back and say they need more detail, you can interface with
the engineering team to provide it.

Without more familiarity with the language of the SDK, technical writers act more as mediators between the
engineering authors and the engineering users. Technical writers identify and fill gaps in the
documentation, and they often manage the publishing and distribution of the docs. But the content itself
might be too technical for most technical writers to play a content authoring role. (I explored this topic in
depth in an essay in my Simplifying Complexity series called Be both a generalist and specialist through
your technical acuity .)

SDKs (software development kits) PDF last generated: August 27, 2023

Documenting REST APIs Page 485

https://devcenter.heroku.com/articles/pubnub
https://devcenter.heroku.com/articles/pubnub
https://devcenter.heroku.com/articles/pubnub#python-sdk-documentation
https://idratherbewriting.com/simplifying-complexity/both-a-generalist-and-specialist-through-technical-acuity.html
https://idratherbewriting.com/simplifying-complexity/both-a-generalist-and-specialist-through-technical-acuity.html

Amazon SDK

Amazon AWS SDKs

One notable characteristic of the AWS docs is their consistency from doc set to doc set. The consistency
leads to predictability and hence usability. However, in the SDK docs, you can see that different document
generators are used to generate the docs for the various libraries. If you look at the API references for each
of these SDK libraries, you’ll see a C++ document generator for C++ SDK docs , a Ruby document
generator for Ruby SDK docs , a PHP document generator for PHP SDK , a .NET document generator
for .NET SDK docs , a Java document generator for Java SDK docs and so on.

Each programming language typically has its own unique annotation syntax and document generation
tools. The annotation syntax (which programmers use directly in the code — see Javadoc tags (p. 712) for
an example of Javadoc tags) differs by language and tool but is mostly similar. Because the documentation
is generated from annotations in the code, engineers usually write and maintain this documentation.
(Having engineers write and maintain it also reduces documentation drift.)

Even so, there is probably quite a bit of variability from one library to the next. How do engineers ensure
they use the same description for a class in Java that they do for Ruby and PHP? These document
generator tools aren’t usually smart enough to leverage snippets or includes stored in a shared online
repository. You also can’t usually use variables or other single-sourcing techniques. As a result, there might
be a lot of variation from one SDK’s documentation to another for mostly the same concepts.

SDKs (software development kits) PDF last generated: August 27, 2023

Documenting REST APIs Page 486

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#sdk
http://sdk.amazonaws.com/cpp/api/LATEST/index.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/index.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/Index.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html

Google Cloud SDK

Google Cloud SDK documentation

The Google Cloud SDK provides quickstart guides for Linux, Debian, Ubuntu, and other operating systems.
The guides explain how to install, set up, and manage the SDK commands. An API reference for the
commands is also included.

Looking at the Google Cloud SDK versus the Amazon SDK shows some of the breadth and variety of
technologies you might have to document in SDK territory. These SDKs are specific to a particular
programming language, operating system, or another framework, and as such, it can be daunting to try to
ramp up to document this category of tools. For SDK documentation, you’ll need to work closely with
engineers and listen to feedback from users.

Activity with SDKs
With the open-source project you identified (p. 686), identify the information about any SDKs for the API.
Answer the following questions:

1. Does the API project include any SDKs?
2. In what languages are the SDKs provided?
3. Why did the developers choose to make the SDK available in that particular language?
4. How extensive are the instructions for working with that SDK?
5. Where is the code for the SDK stored and delivered? In GitHub? In a separate downloadable zip

file?

SDKs (software development kits) PDF last generated: August 27, 2023

Documenting REST APIs Page 487

https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/

API design and usability
Technical writing intersects closely with usability like no other domain on technical projects. This close
connection with usability especially surfaces as you’re writing tutorials on how to use the API in a step-by-
step way. Because of this, in this section I’ve decided to add some more tips and insights about how to
assess the usability and design of an API.

Documenting APIs tests the API design
In The Design of Web APIs , Arnaud Lauret, aka the API Handyman , says,

Exhaustively documenting APIs has a nice side effect—it is testing the design. If you
are unable to document how to use the API or how to implement it, it can be a sign
of improper design.

In other words, as you write out the specific steps users need to follow to perform their goals, you are
making your way through the user’s footsteps and workflows. If you find these paths to be fuzzy and full of
treacherous pits and gotchas, inconsistent parameters or unintelligible responses, chances are the API’s
usability is poor.

Bob Watson has a post that echoes similar sentiments. In the post “If your API is hard to document, be
warned” , Bob explains that one of the first signs that your API is in trouble is when the technical writers
find it difficult to write the documentation. Bob compares technical writers to the canaries that coal miners
once brought with them to detect poisonous gases.

Bob says, “If your API is hard to document, it could be a sign of more fundamental problems.” If technical
writers find it “difficult to articulate market needs and pain points” (because the market needs don’t exist), if
technical writers find themselves “adding the verbal duct tape to make the product ready to ship,” your API
is in trouble. The first signs of an API’s failure are likely signposted right there in the documentation.

Since technical writers are uniquely suited to provide feedback on usability, especially as we step through
the user tasks in detail, it makes sense to expand here on what usability means, how to evaluate the
usability of an API, and other details to look for. In presenting this information, I’ll rely extensively on Arnaud
Lauret’s The Design of Web APIs since it provides an in-depth treatment of APIs and design/usability.

What is usability
Usability has the same meaning whether you’re referring to end-user applications with graphical user
interfaces or developer code with an API. Usability refers to how easy it is for users to accomplish their
desired tasks with the tool.

To evaluate usability, you must first understand what tasks users want to perform with the API. Since the
API user’s guide that technical writers create covers these tasks in detail, technical writers are perfectly
situated to provide feedback on an API’s usability.

Challenges in evaluating developer experience usability
Despite the seemingly perfect fit between tech comm and usability, it’s a lot more challenging than it might
seem for tech writers to provide usability feedback.

API design and usability PDF last generated: August 27, 2023

Documenting REST APIs Page 488

https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://apihandyman.io/
https://docsbydesign.com/2018/02/18/if-your-api-is-hard-to-document-be-warned/
https://docsbydesign.com/2018/02/18/if-your-api-is-hard-to-document-be-warned/
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108

The first issue is that tech writers are often too far downstream to have any actionable feedback on the
design, so the motivation to influence design might not be strong. Questions about the API’s design have
likely been decided on long before the documentation task usually arrives in the tech writer’s inbox. Unless
you’re extremely proactive in identifying APIs at their inception point, you probably don’t even hear about
the API until it’s been approved by leadership and half-way coded. At this point, if you raise your hand and
say, this endpoint doesn’t make any sense to me, the feedback is too radical. Developers aren’t going to
drop everything and go back to the drawing board.

But supposing that the developers are listening intently for your feedback — the design is often above the
heads of technical writers. On one project I worked on, the team was finalizing their security design and
solicited feedback on the authentication workflows. I dug into these security workflows with good
intentions, but honestly I didn’t have the engineering knowledge to evaluate whether the security
mechanism and workflow they had chosen was the right one for the audience, or whether the process for
authorizing requests was appropriate and secure, especially in context of the larger company policies
around privacy and authorization.

Much of developer docs have the same knowledge weight. As technical writers, we are often straining to
keep our heads above water, learning as we go. We aren’t often in a position to critique an approach taken.
And even when we create an end-to-end tutorial for using the API toward some business goal, it might be
hard to decide whether the workflow is easy or hard for a developer to implement — this is where lack of
an engineering background can be challenging. Much of the code might seem difficult to implement. And
assessing whether it’s the norm for the space is hard to determine without working with other APIs across
the industry.

Despite these challenges, with a little understanding of what to look for, you can learn how to critique an
API’s usability just as with any other tool. All you need is to understand what to look for. So let’s jump into
Arnaud’s book for a more focused discussion of these points.

Evaluating API usability
Arnaud says that “an inconsistent design introduces variations or contradictions that make an interface
harder to understand and use.” In other words, an API should be consistent in ways that developers can
predict without always consulting the documentation. The following sections cover a few questions to ask
related to consistency.

Straightforward endpoints

Are endpoints intuitive in what they return? Or do you look at an endpoint and not have any idea what it
returns? Keep in mind the list of tasks that users want to accomplish with the API, along with the terms
they use to describe those tasks. Could you draw lines between the users’ tasks and the endpoints they
might need to use to accomplish such tasks? If so, then your endpoints are probably straightforward. If the
two don’t have any resemblance to each other, users will likely be stumped as well.

Consistent endpoint patterns

Do the endpoints follow consistent patterns? A common pattern is to use plurals in the paths. Arnaud
explains:

API design and usability PDF last generated: August 27, 2023

Documenting REST APIs Page 489

Although there are no official REST rules regarding resource path design (apart from
uniqueness), the most widely adopted format is /{plural name reflecting

collection’s item type}/{item id} . Using resource paths exposing resource
hierarchy and using plural names for collections to show the collection’s item type
has become a de facto REST standard. In our example, a catalog should therefore
be identified by /products and a product by /products/{productId} .

… Once consumers are familiar with the use of plural names for collections, they
expect to see all collections with plural names. You can use a singular for collections
if you want, but whatever your choice, stick to it! And this doesn’t only apply to
URLs: it concerns every single name and value you choose…

Look at the collection of endpoints in your API. Do they follow consistent formats as Arnaud explains? Or
are the endpoints a hodgepodge of different formats and tenses (e.g., /products/{productId} and
/transfer/{transferId})? Does it seem like different teams worked independently on different parts of

the API, without communicating with each other? Technical writers can usually spot parallelism quite easily
in lists. So list out your endpoints and see if they follow a consistent pattern, preferably with a plural for the
collection and a singular for the specific item.

When you get into the nuts and bolts of an API (as you’re likely to do by documenting the API), you’ll start
to spot inconsistencies. One API I worked on had a different implementation for two different device types.
Unfortunately, the APIs used for one device type didn’t work similarly for the other device type. Names
followed different conventions, and it was obvious that the designs originated from different teams. One
reason for slow adoption from users was due to the inconsistency between APIs. Pointing out this
inconsistency didn’t create any “Aha” moments for the project team, as they were already aware of the
embarrassing inconsistency for many months, but it was good to have some validation for my feedback
anyway.

Nouns in endpoints, verbs in operations

Another common pattern with endpoints is to use nouns with the resources, and to let the operations/
methods supply the verb. Arnaud covers this in his book, but other sites such as Stoplight also recommend
the practice. Stoplight.io says:

Use nouns for resources and avoid anything that looks like procedure calls. There’s
no need for endpoints like /getContacts when we’re using HTTP methods.
Instead, your resource would be named /contacts and you could perform the GET

action (and any others that are relevant) against that resource. (Basic API Design
Guide & Best Practices)

At the most basic level, REST API endpoints and their supported operations have a noun + verb grammar
(e.g., contacts with a READ operation). If the endpoint name blends the resource with the operation, as
in getContacts , it can both be redundant as well as misleading. Separate nouns from verbs when it
comes to endpoint names.

API design and usability PDF last generated: August 27, 2023

Documenting REST APIs Page 490

https://stoplight.io/api-design-guide/basics/
https://stoplight.io/api-design-guide/basics/

Note that this same convention might not be the case with native library APIs (p. 692), such as a Java API.
With native library APIs, the same resource might not have different operations that you can apply to it;
instead, the APIs are often functions that perform specific actions, so a getContacts function might make
sense.

Data formats in responses

Another point to consider is the data formats returned in responses. Just how usable is the data format for
the audience? Are you returning JSON or XML? Do you give users the ability to specify the type of units
they want? Arnaud writes,

Data is at the core of APIs—resources, parameters, responses, and their properties
shape an API. And all of their meanings, names, types, formats, and organization
must be consistent in order to help consumers understand these easily.

For example, will developers prefer to work in metric or imperial systems? Celsius or Fahrenheit? I’ve seen
some APIs fail to even indicate what units are used. What time format are you returning, and is this format
consistent across all your endpoints? For example, if you return Unix Epoch time for one endpoint but ISO
8601 for another endpoint, that’s inconsistent and potentially confusing.

Arnaud explains,

People seek global uniformity in design. Once consumers have seen one date and
time property represented by an ISO 8601 string, they expect all date and time
properties to be ISO 8601 strings. Once a data format has been chosen for a type of
data, it should be used for all representations of the same data type.

As you define the parameters (p. 132) in your requests, as well as the responses in your models or
schemas (p. 154), you will be describing the data types for each element. As such, you’ll be pretty familiar
with common patterns for data types. Sometimes developers will mistakenly identify numbers as strings, or
specify much more specific numbers (e.g., floats, doubles) than is usually done in REST API docs, or they
might have other inconsistencies. Look closely at these data types and see if they conform to consistent
patterns across all endpoints. Again, inconsistency is easy to spot and hard to argue against when
providing usability feedback.

Casing with parameter names

Another area of high inconsistency is the casing of parameter names. Do all parameter names follow similar
casing, or are there variations among upper camel case (ResourceId), lower camel case (resourceId),
underscores (resource_id), or other conventions?

Enums (a list of allowed values) are often written in full caps (RESOURCEID), so they might differ from the
lower camel case convention, which is most commonly used. But generally, parameter names should have
similar casing conventions. Identify which conventions are used in your API. Then locate any
inconsistencies.

For example, in the Microsoft API Guidelines , the guide notes that “JSON property names SHOULD be
camelCased.” Additionally, “Services SHOULD provide JSON as the default encoding.”

API design and usability PDF last generated: August 27, 2023

Documenting REST APIs Page 491

https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md#710-response-formats

Note that it might not always be feasible to implement changes you recommend if your API is already live. If
developers push out endpoints with inconsistent parameter names, and developers adopt and implement
these APIs, changing the parameter names can cause breaking changes for the implementations.

For example, if someone has already implemented code that looks for the ResourceId , and a later update
changes this to resourceId , code that parses JSON won’t recognize this value because JSON is case
sensitive. As such, if developers are reluctant to fix inconsistent code because making it consistent would
introduce breaking changes, it might be a good argument for keeping it as is.

Industry conventions

Beyond consistency within your own API’s world, how do your conventions align with the API industry in
general? Once after I gave an API workshop, a participant asked me to look over her company’s API doc
site and provide some feedback. The doc site was a list of a seemingly infinite collapsed sections on a
single page, without any other sidebar navigation. Though the site was perhaps novel, I found it hard to
navigate and recommended that they align more with industry conventions — by adding a sidebar with
navigation.

Awareness and alignment with industry conventions is why I so frequently include activities in this course
that involve reviewing approaches on other API doc sites. Following common industry conventions leads to
predictability when new users navigate your site. If you organize your endpoints under a section called “API
Reference,” most users will intuitively understand what that section contains because so many other sites
likewise call it “API Reference.” Arnaud also emphasizes the importance of aligning with industry
conventions:

… APIs have to be consistent with the rest of the world. There are common
practices—standards, if you will—that you can use. Not only does following these
make your APIs predictable for people who have never used any of your APIs before,
thereby enhancing your APIs interoperability with the rest of the world, but it also
makes your API designer’s job easier.

Look for top APIs from the big tech companies for examples. Stripe, Twilio, Twitter, GitHub, Microsoft,
Facebook, Google, and other sites provide good examples of how to approach and organize API docs.
Compare your company’s approach to that in several of these common API doc sites.

Consult Your API style guide

Just as there are style guides for tech docs and marketing material, companies often have API design style
guides as well. Consider the scenario of a large company with many different engineering teams each
building APIs. To ensure consistency across the APIs they build, these companies usually have an API style
guide they adhere to. Arnaud says that best practices for API development usually involve “formally
defin[ing] your design with rules in a document called the ‘API Design Guidelines’ or the ‘API Design Style
Guide.’”

In fact, Arnaud has collected more than 15 of these style guides in a site called API Stylebook . In the
site, he pulls from each of these style guides to show their guidance for common sections. You can also
click links directly into the style guide sites. For example, check out the Cisco API Design Guide and
Microsoft REST API Guidelines .

API design and usability PDF last generated: August 27, 2023

Documenting REST APIs Page 492

http://apistylebook.com/design/guidelines/
https://github.com/CiscoDevNet/api-design-guide
https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md

Just as documentation style guides go in-depth about more minutia than most people care about, API
design style guides do the same about every aspect of an API. Before providing feedback about the API
you’re documenting, find out if your company has an API style guide. If they do, you’ll have direct support
to back your claims about potential inconsistencies or lack of adherence to standards. If your company
doesn’t have a design style guide, you could compare the approach in other design style guides.

Style guides for APIs are just as helpful with API design as they are with documentation. With
documentation, style guides make it much easier to write. You no longer have to decide what to make bold
and what to italicize, what to call certain terms, whether to use hyphens in “drop-down” or how to refer to
required/optional items, and so on. Becoming familiar with your API design style guide can have similar
effects as you work with an API. When you encounter multiple-word parameters, you won’t have to guess
which case to use, what convention to follow for endpoint paths, what to call common properties in
responses, and so on.

Workflows
Now let’s look at another aspect of API usability: workflows. Presumably, this is where the technical writer’s
moment shines. Developers might write the reference documentation, but the use cases and other tutorials
in the user guide are usually handled by technical writers.

As you describe the workflows required to use the API, you are uniquely suited to critique the usability.
Start by assessing how many APIs you have to chain together to arrive at your result. For example, in my
Flickr API gallery activity (p. 908), I walk through a use case of getting photos from a specific gallery.
Presumably, one would use the getPhotos endpoint for this, but this task requires you to chain endpoints
together. In the activity I explain:

One of the arguments we need for the getPhotos endpoint is the gallery_id .
Before we can get the gallery_id , however, we have to use another endpoint to
retrieve it. Somewhat unintuitively, the gallery_id is not the ID that appears in the
URL of the gallery. Instead, we use the flickr.urls.lookupGallery endpoint
listed in the URLs resource section to get the gallery_id from a gallery URL

In your API, do users have to use one API to retrieve a specific value that they then plug into the
parameters of another API? How many endpoints does a user need to use together before they can
achieve their objective? Arnaud explains that “usability heavily depends on the simplicity of this flow of
interactions.”

The Illusion of Explanatory Depth
As developers are designing an API, presumably they think through each scenario and design the list of
endpoints required. However, despite the forethought and planning that goes into the design of an API,
despite all the upfront discussions and ideation before coding even begins, there is often a gap of detail
that gets overlooked. When you get down to describing all the steps that users must really perform, the
nitty-gritty detail, another reality often surfaces: implementation is much more complex than anyone
realized.

There is a phenomenon to describe the gap between how users think something works and how it actually
works. It’s called The Illusion of Explanatory Depth and refers to the idea that people often don’t realize
the complexity of things they think they understand. Psychologist Adam Waytz explains,

API design and usability PDF last generated: August 27, 2023

Documenting REST APIs Page 493

https://www.edge.org/response-detail/27117

If you asked one hundred people on the street if they understand how a refrigerator
works, most would respond, yes, they do. But ask them to then produce a detailed,
step-by-step explanation of how exactly a refrigerator works and you would likely
hear silence or stammering. This powerful but inaccurate feeling of knowing is what
Leonid Rozenblit and Frank Keil in 2002 termed, the illusion of explanatory depth
(IOED), stating, “Most people feel they understand the world with far greater detail,
coherence, and depth than they really do.”

When you write an end-to-end tutorial about how to use an API for a user goal, you expose all of the detail
in a meticulously granular fashion required to achieve the end. As Waytz says, you “produce a detailed,
step-by-step explanation of exactly how” this goal is achieved using the system. In so doing, you surface
many steps “with far greater detail, coherence, and depth” than people who have been thinking
conceptually about design in perhaps a philosophical level have thought out. This is why Arnaud says that
writing the documentation tests the design. The very act of writing the documentation reduces the illusion
in the The Illusion of Explanatory Depth phenomenon.

This is why writing the tutorial is one of the best ways to assess the usability of the API. Unfortunately, by
the time you’re actually writing this tutorial, the API’s design is often finalized (at least for the upcoming
release, but maybe not for the next release).

Error Messages
As you’re writing tutorials, testing the API as you go, you will no doubt run into error messages (p. 402).
These little messages pop up here and there in often subtle, hard-to-catch ways. Always note error
messages that you see, as error messages are a key factor in usability.

Ideally, error messages should be descriptive enough to let users know what’s wrong and to help them
correct the issue. Arnaud explains,

Error feedback must explain what the problem is and should help the consumers to
solve it themselves.

If you simply give users errors that say, 500 Internal Server error, this isn’t very helpful. Not only
should the documentation seek to clarify the conditions that trigger errors but the error messages
themselves should contain the helpful information.

One could say a lot about error messages beyond the general guidance here. Take a look at the section
titled Error condition responses in Microsoft’s REST API Guidelines to get a sense of the potential level
of detail around error messages:

API design and usability PDF last generated: August 27, 2023

Documenting REST APIs Page 494

https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md#7102-error-condition-responses

For nonsuccess conditions, developers SHOULD be able to write one piece of code
that handles errors consistently across different Microsoft REST API Guidelines
services. This allows the building of simple and reliable infrastructure to handle
exceptions as a separate flow from successful responses. …

The error response MUST be a single JSON object. This object MUST have a name/
value pair named “error.” The value MUST be a JSON object.

This object MUST contain name/value pairs with the names “code” and “message,”
and it MAY contain name/value pairs with the names “target,” “details” and
“innererror.”

The value for the “code” name/value pair is a language-independent string. Its value
is a service-defined error code that SHOULD be human-readable. This code serves
as a more specific indicator of the error than the HTTP error code specified in the
response. Services SHOULD have a relatively small number (about 20) of possible
values for “code,” and all clients MUST be capable of handling all of them….

And on it goes. In other words, there’s a lot to consider even with something like error messages.

Other usability matters
If you’d like to dive deeper into API design and usability, there are plenty of other aspects to cover.
Arnaud’s book The Design of Web APIs goes into depth here. For example, he mentions some other
aspects to consider:

• Pagination, filtering, sorting. When you return a large number of items in the response, how
easy is it for users to page to the next item, to reduce the scope through filtering, or to apply
other sorting options to determine their ordering?

• Response groupings. In the responses provided, how is the information grouped and
structured? Does this structure clarify the meaning of the elements? Is there too much nesting?

• Grouping and arrangement of endpoints. How are the endpoints tagged and sorted in the API?
Do the grouping make sense?

• Right-sizing of endpoints. Are the endpoints scoped appropriately to return the right
information the user needs, or do the endpoints return truckloads of data that might not all be
meaningful or useful to users?

Conclusion and additional resources
There’s a lot to say about the design and usability of a REST API. The intent here is not to be
comprehensive but to touch on those aspects most relevant and accessible to technical writers. Hopefully,
the sections covered here will get you started in assessing and evaluating the design of the API you
document.

For a podcast I recorded with Arnaud Lauret on usability, see Podcast: API Design and Usability with
Arnaud Lauret (API Handyman) .

For an additional resource, see Andrew Johnston’s presentation The Trials and Tribulations of the API Style
Guide at API the Docs London 2018.

API design and usability PDF last generated: August 27, 2023

Documenting REST APIs Page 495

https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://idratherbewriting.com/blog/api-design-usability-arnaud-lauret-podcast/
https://idratherbewriting.com/blog/api-design-usability-arnaud-lauret-podcast/
https://www.youtube.com/watch?v=iBBOWNXVapI
https://www.youtube.com/watch?v=iBBOWNXVapI

For more on developer usability, be sure to see the next article in this course: Developer Experience (DevX)
Usability (p. 497).

API design and usability PDF last generated: August 27, 2023

Documenting REST APIs Page 496

Developer experience (DevX) usability
In API design and usability (p. 488), I covered different aspects of usability related to API design. In this
topic, I’ll explore usability related to developer processes and technologies in general, independent of API
design.

Three types of usability
Usability can be roughly divided into at least three different areas:

• Usability with physical products (p. 497)
• Usability with code products (p. 498)
• Usability with documentation (p. 499)

(Many other divisions could likely be made, for but the discussion here, this division is enough.)

Usability with physical products
Usability with physical products or graphical user interfaces (GUIs) is what people traditionally think of with
usability. When you have a physical product to use, assessing its usability is more straightforward.

For example, suppose you’re testing the usability of a new headphone design. A usability researcher might
bring in a group of beta testers to try the headphones on, ask them to adjust the headphone controls, use
the headphones in their daily workflows, and so on. Users might evaluate the headphones based on
comfort, familiarity of buttons, how easy they might be to pair to bluetooth, the placement of the
microphone, and so on.

Usually, technical writers are too far down the development line to influence product design. By the time
the product arrives at your door, most product teams just ask technical writers to provide documentation
for the product, not to provide input on design itself. Usually, it would not be expected for you to push back
on the design and try to get the product to team to reconsider fundamental aspects such as the placement
of the microphone or the fit over your ears. (Of course, you can always try, and different scenarios might be
more appropriate for rethinking product design.) You might be able to influence button names at this point,
and maybe catch glitches in the software (e.g., maybe the bluetooth pairing is wonky), but don’t expect too
much. Changing product design is usually required before the specs are sent to the factory. After factory
lockdown, it’s hard to change a product. And documentation is usually something that begins after factory
lockdown.

That’s not to say that you shouldn’t venture forth to comment and critique product design. Just don’t get
your hopes up if the timeline doesn’t allow for drastic changes. By the way, some technical writers get tired
of documenting poorly designed products, so they move into usability and product design instead. Once
you make this move, you’re usually operating outside the standard tech writer domain. For more on playing
a product design role, see Playing a product design role as a content designer – podcast with Jonathon
Colman .

Product design has a rich history of research and best practices. See this book for many good ideas on
how to assess the usability of a product: Universal Principles of Design: 125 Ways to Enhance Usability,
Influence Perception, Increase Appeal, Make Better Design Decisions, and Teach through Design .

Developer experience (DevX) usability PDF last generated: August 27, 2023

Documenting REST APIs Page 497

https://idratherbewriting.com/blog/podcast-colman-playing-product-design-roles-as-a-content-designer/
https://idratherbewriting.com/blog/podcast-colman-playing-product-design-roles-as-a-content-designer/
https://www.amazon.com/Universal-Principles-Design-Revised-Updated/dp/1592535879
https://www.amazon.com/Universal-Principles-Design-Revised-Updated/dp/1592535879
https://www.amazon.com/Universal-Principles-Design-Revised-Updated/dp/1592535879
https://www.amazon.com/Universal-Principles-Design-Revised-Updated/dp/1592535879

Usability with code products
In the developer documentation domain, usability with code products is more common. Few usability
researchers venture into the code domain because it’s much less clear how to assess the usability of code.
But make no mistake, usability is just as much in play with code products for developers as with physical
products or products with GUIs.

Code usability asks questions such as the following: How easy is it for developers to use the code? Do the
APIs provide the information that developers need? How long does it take developers to figure the code
out and implement it? Are you using a language or framework that will be familiar to your developers? Are
you following general patterns in the industry for tackling common problems?

Let me illustrate with an example. One product I recently documented was the Video Skills Kit for Fire TV
. The original design involved a cloudside implementation that had about a dozen different technologies
and steps. The implementation required devs to use several AWS services (Identity Access Management,
CloudWatch, Lambda), several Appstore services (Login with Amazon and security profiles, Alexa console,
Amazon Device Messaging, Live App Testing), a client library (JAR), Fire TV device, Alexa app, and ADB.
These services were on top of Android services that developers were expected to know. (Altogether, this is
about a dozen different services or tools.)

Unsurprisingly, users were unfamiliar with all of these services, so not only was there an initial learning
curve, when they did run into problems, the problems were hard to troubleshoot. Additionally,
troubleshooting was also complex not just due to the unfamiliar toolset, but because there were so many
different places where something might be misconfigured. For example, after integrating everything, you
could say, “Alexa, watch Interstellar,” and your app would play a video. But if it didn’t work, you had to
figure out where the problem was. The logs could provide a clue, but if you had some invalid formatting in
your Lambda function, Alexa might just respond, “Something went wrong,” with no other logs. Alexa might
respond similarly for a lot of different issues, as there were many backend services as well (invisible to the
user) that processed the information. For example, one issue might be with the natural language
processing logic occurring behind the scenes.

The cloudside implementation took a long time to complete (multiple months, usually). We had a sample
app, and each time I would go through the steps to set up the services around the app, it would take the
entire afternoon or more. So many pieces had to be in place, and many times it felt like a house of cards —
if one little piece was misconfigured (e.g., signing your app with the wrong key), the whole thing didn’t
work.

Fast-forward two years later. The product team released a new implementation design to the Video Skills
Kit called app-only integrations . The app-only integration grounded most of the configuration within
Android itself. Developers didn’t have to bother with configuring any AWS services, no Lambda functions,
no authorization through ADM. Developers instead would need only configure a security profile, capability
reporter, and BroadcastReceiver in their Android app to handle incoming messages sent from an on-device
routing agent built into Fire TV.

Partners welcomed this approach much more wholeheartedly. Not only did the implementation stay within
the technology realm they were familiar with (Android), it didn’t cobble together a dozen different services
that all had to be working in harmony for success. Troubleshooting was also simplified because most
issues were contained within the same Android platform. The new design shortened the implementation
time from a couple of months to a couple of weeks.

Finally, the new design also improved the speed of communication among the different services. With the
first solution (cloudside), messages had to travel from one service to another (Alexa in the cloud to a
Lambda function in AWS, then to the partner’s app on Fire TV). With the app-only integration, most of the

Developer experience (DevX) usability PDF last generated: August 27, 2023

Documenting REST APIs Page 498

https://developer.amazon.com/docs/video-skills-fire-tv-apps/introduction.html
https://developer.amazon.com/docs//video-skills-fire-tv-apps/integration-overview-cloudside.html
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integration-overview-app-only.html

communication took place on the device itself. Alexa sent a message to an on-device routing agent that
communicated with the app (also installed on the device). The communication between components had
much less latency.

In general, when evaluating code usability, consider these questions:

• Does the implementation use a technology that your developers are familiar with?
• Does the implementation rely on a small number of core services/components rather than a

dozen separate services cobbled together?
• How easy will it be to troubleshoot errors when things go wrong?
• How long will it take developers to complete the implementation?
• How much latency exists for communication among the different components?

Evaluating developer usability can be hard because many times, there are technology constraints that
make more streamlined approaches problematic. No one sets out to build a house of cards, but as you
encounter one issue after another, with fast deadlines to finish the code, you might adopt solutions that
work in the short term but which require a lot of hacks. String together too many hacks and accrue too
much technical debt (shortcuts that provide fixes while leaving larger problems unaddressed), and you
head down the path to a house-of-cards solution.

In general, product teams building developer tools strive to provide APIs or other tools that simplify the
third-party developer’s implementation. You want to abstract complexity behind an API, so that the
developer need only provide the specified inputs to get the desired outputs in a response. The developer
probably doesn’t care (or need to know) how the sausage is made on the backend to transform the inputs
into outputs. If you can abstract more of this complexity behind the scenes, it will result in a better
developer experience.

Assessing the architectural design of a developer solution isn’t easy for most technical writers. Unless you
have an engineering background and can assess the feasibility of a code solution, you might not have a lot
of input. A lot of factors go into an engineering solution, including security, memory usage, infrastructure,
efficiency, latency, databases, and more. In most scenarios, tech writers struggle just to understand the
workflow and describe it. Going the extra mile to suggest a more efficient and streamlined architectural
design is often something that would be “next-level” for tech writers.

However, if you keep an eye out for the questions I mentioned above, this can provide you with a starting
point for evaluation and feedback. You’re often the first user of the code (outside the product team), so
teams value your feedback, even if you’re not an engineer.

Usability withy documentation products
You can also incorporate usability with documentation products. How easy is the documentation to
understand and follow? Are the topics something that users can search for and find in the documentation?
Does the documentation assume that users have deep background knowledge about all the services, or
does it help even novice users complete complicated tasks?

As an example, consider the car manual in your glovebox. Suppose your headlight goes out and you want
to replace it. Or suppose a light flashes (“LDW”) on your dashboard and you need to look up what it means.
Does the user manual make it easy to find this information, such as through a search or index? Are the
terms used in the manual similar to the terms you would use to describe the features? When you do locate
the right section, are the steps easy to follow? Are there visuals that help clarify the information? Can the
documentation help even someone who isn’t mechanically inclined follow a sequence of steps
successfully?

Developer experience (DevX) usability PDF last generated: August 27, 2023

Documenting REST APIs Page 499

The main usability task of technical writing is to simplify complexity. I wrote an entire series on simplifying
complexity . One strategy is to provide users with a map to guide them through a complex number of
steps spanning multiple topics. See Principle 1: Let users switch between macro and micro views .

How do you know if your documentation is easy to follow? Just as you can observe users interact with
products or interfaces in a usability lab, you can also observe users with documentation. Ask users to do a
task they’re unfamiliar with, and see how they interact in your help system to locate the information. I
outlined some notes from my observations in a usability lab some years ago. See A Few Notes from
Usability Testing: Video Tutorials Get Watched, Text Gets Skipped . I observed two basic patterns.
Novice users welcomed video tutorials and read the documentation carefully, sometimes multiple times. In
contrast, advanced users skimmed and scanned, not reading carefully but rather trying to find a specific
piece of information.

In the usability lab, time and time again we observed how something that looks simple usually turns out to
be much more complex and difficult for users. Remember this and make your instructions as simple as
possible, assuming that users will be reading while looking elsewhere, dealing with interruptions, pausing
and resuming the task, and more. Although this documentation scenario was for a GUI-based product, you
could do the same with code.

Few of us get opportunities to regularly observe users, so probably most of the feedback will come through
asynchronous channels (e.g., email, Slack, tickets.) That’s fine, and you will probably get more feedback
than you can handle anyway.

Many of the same principles in Universal Principles of Design: 125 Ways to Enhance Usability, Influence
Perception, Increase Appeal, Make Better Design Decisions, and Teach through Design can also be used
in documentation. See Introduction to User-Centered Documentation for some ideas.

Video
I recently participated in a short interview about usability for a class on Usability & User Experience . The
presentation doesn’t cover all the details from above, but it does touch upon usability in different scenarios
(e.g., professional writing versus a blog, academic contexts, and other). Kirk St.Amant , a distinguished
professor in the tech comm field, conducted the interview with me. You can see his usability course online
at https://usability-ux.weebly.com/ . Here’s the video:

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/devx-usability-examples.html] to view the content.

You can view other interviews Kirk has done with usability professionals here:

• Interview with Dr. Katie Panciera of the Milwaukee School of Engineering
• Interview with Dr. Joy Robinson of University of Alabama in Huntsville and Northrop Grumman
• Interview with Maiken Blok-Wahlgreen of TimeLog
• Interview with Dr. Quan Zhou of Metro State University
• Interview with Joe Welinske of WritersUA/ Welinske & Associates
• Featured Lecture with Eva Snee of Google

For more, see Kirk’s Guest Lectures .

Developer experience (DevX) usability PDF last generated: August 27, 2023

Documenting REST APIs Page 500

https://idratherbewriting.com/simplifying-complexity
https://idratherbewriting.com/simplifying-complexity
https://idratherbewriting.com/simplifying-complexity/macro-micro.html
https://idratherbewriting.com11/07/22/a-few-notes-from-usability-testing-video-tutorials-get-watched-text-gets-skipped/
https://idratherbewriting.com11/07/22/a-few-notes-from-usability-testing-video-tutorials-get-watched-text-gets-skipped/
https://www.amazon.com/Universal-Principles-Design-Revised-Updated/dp/1592535879
https://www.amazon.com/Universal-Principles-Design-Revised-Updated/dp/1592535879
https://www.amazon.com/Universal-Principles-Design-Revised-Updated/dp/1592535879
https://www.amazon.com/Universal-Principles-Design-Revised-Updated/dp/1592535879
https://idratherbewriting.com/ucd-introduction/
https://usability-ux.weebly.com/
https://www.linkedin.com/in/kirk-st-amant-614a272/
https://usability-ux.weebly.com/
https://www.youtube.com/watch?v=uPUJq4w4xNU
https://www.youtube.com/watch?v=f_rMFwee9KI
https://www.youtube.com/watch?v=V5A19tiMfo4
https://www.youtube.com/watch?v=L23Y8ooX-a0
https://www.youtube.com/watch?v=78c10I35QyI&t=2s
https://www.youtube.com/watch?v=g1_wILJCuFY
https://usability-ux.weebly.com/guest-lectures.html

Chapter 9: The writing process
The writing process refers to the way you write and develop content. There are five main steps to the
writing process: planning, information gathering, writing, reviewing, and publishing. Although these aspects
of the writing process are general to almost every type of writing, in this section I tailor the information to
be specific to writing technical documentation.

Chapter sections:

Overview of the writing process... 502

1. Planning.. 504

2. Information gathering ... 507

3. Writing .. 513

4. Reviewing ... 519

5. Publishing... 527

Chapter 9: The writing process PDF last generated: August 27, 2023

Documenting REST APIs Page 501

Overview of the writing process
If there’s one topic in this course that is glossed over, it’s the writing process itself. This is ironic because,
more than anything else, it’s the content that matters. And this content is likely your primary stewardship.

If you’re an engineer, the task of writing might be unfamiliar territory and the blank page intimidating.
You’re likely burdened by the curse of knowledge, unaware of what jargon might be familiar or unfamiliar,
unsure of the assumptions about the user’s setup and knowledge. The blank page might give you writer’s
block.

On the flip side, if you’re coming from a humanities background, you might be intimidated by all the
programming-specific terminology and concepts, unaware of the technical level and familiarity of the users,
unsure of how things work on a code level, confused about what to call various elements, and more.

So whether you’re an engineer or a professional writer, writing API documentation can be tough. It is
extremely challenging, and most of the how-to texts on writing give you very plain, bare-bones writing
instruction.

For example, most texts will explain that you first need to understand your audience’s needs, gather your
sources, write an outline, draft some content, review and edit the content, and finally publish. These are the
phases of the writing process, but these general descriptions don’t tailor the tasks specifically to the tech
writer’s scenario nor give you insider tips on how to succeed.

Rather than rehash the same writing steps and phases, I’ll instead paint more of an inside, hands-on guide
to the documentation writing process, with the most practical tips I can give, specifically tailored to
technical writers creating documentation.

The writing process involves these five general steps:

1. Planning (p. 504)
2. Information gathering (p. 507)
3. Writing (p. 513)
4. Reviewing (p. 519)
5. Publishing (p. 527)

Entire books could be written about each of these phases. I tried to pick out a few salient tips and practical
advice for each section. But by no means is my advice comprehensive. If you’re a seasoned pro, I invite
you to add your own tips and insights in the comments for each page.

The writing scenario
Before we jump into this process, let’s start by presenting a writing scenario. A product team (consisting of
a handful of engineers plus a product manager and QA) is creating a new API. In contrast to the more
language-agnostic territory of REST APIs, this happens to be a Java API (p. 691). Your target audience
involves engineers who know Java and, for the sake of having a concrete use case, they are implementing
the API to pull location data about coffee shops. They’re using the API to allow coffee vendors to build
map-based Android apps that identify which coffee shops in the city sell their brand of coffee.

The API is slated for release next month, so even though engineers have been cracking away at this API for
half a year, they’re mostly done and ready for you to create the documentation. You have about three
weeks to learn the product, write the docs, get the docs reviewed, and publish the docs in time for release.

Overview of the writing process PDF last generated: August 27, 2023

Documenting REST APIs Page 502

This is a very typical scenario and timeline, by the way — being brought at the last minute, often unaware
of the product’s development cycles that have been going on for months previously. Product teams are
long past the stage where they debated the best implementation, the feature set, how the API matches use
cases, and so on. By the time you’re brought in, they’ve already entered QA testing stages and just need to
put a bow on the product with some docs before shipping it.

Next steps
Continue on to 1. Planning (p. 504).

Overview of the writing process PDF last generated: August 27, 2023

Documenting REST APIs Page 503

1. Planning (the writing process)
First things first — you need to figure out what the writing project involves by doing some basic planning. In
this step, you’ll create a doc plan, establish roles, gather source material, and view a demo.

1.1. Create a doc plan
Create a documentation plan (p. 740), even if it’s brief or incomplete. The doc plan will help you get
organized and set some expectations about the deliverables and timelines. Answer some basic questions,
such as these:

• When is the release for the new API (and hence when is the documentation deadline)?
• What content resources are already available? Any drafts? Product design documents? QA

testing documents?
• Where will we publish the docs? Most likely the developer portal where the other docs live, but

are there special pre-release needs for early access partners? Is there a need for PDFs or gated
access?

• What outputs and formats will we need? Tutorials, API reference, other how-to docs?
Documentation for a sample app? GitHub readme’s?

• Who are my contacts? Who needs to review and sign off on the content? Identify the product
manager, tech lead, engineers, QA, and other stakeholders.

There are a host of other details you could gather, but these are the basics. All writing moves into action
when you establish a deadline, so this date should set your wheels into motion.

1.2 Establish who’s going to write the docs
The next step to ask is who will do the writing. Although you might think that being a technical writer means
you should do the writing, this might not be the best approach. This Java API (part of our fictitious writing
scenario (p. 502)) might be complicated. Are you really going to articulate how to use the API in a series of
detailed steps, with code examples and other observations, if you don’t really know Java beyond the one-
week course you took two years ago?

You will find that with extremely technical topics, writing might not come as easily as with topics you know
well. Some technology can be a tough nut to crack, and if you think you can pull some writing prowess out
of your pocket and just hack it out, let me warn you, get ready for engineers to pick the heck out of each
phrase and term used in your content as they explain that what you’ve written is wrong. Engineers aren’t
shy at all about telling tech writers each nitty-gritty detail of incorrectness.

Depending on your workload and expectations, think about starting with this approach: ask the engineers
to write a first draft, even if it’s just a brain dump (maybe this content already exists on an internal wiki
somewhere). If they want more guidance, you could give them a template with a lot of fill-in-the-blank type
sections. See if they can write some initial content.

Many tech writers are spread so thin, they act more like editors, curators, and writing coaches more than
actual writers developing content from scratch. It just depends on how your organization has resourced
tech writers and what their expectations are. In some ways, it’s kind of crazy that the very people who
possess all the knowledge about the product aren’t the same ones writing the documentation (at least the
first draft). So try your hand to push engineers toward this route first.

1. Planning (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 504

If you do get engineers to write, you might find that they write crap (like a one-hour stream-of-
consciousness style that has never been edited or reviewed after they typed it out). Then you have to
spend more time fixing the content and trying to understand whether it’s even coherent for the audience,
filling in the gaps, and so on. It might be uncomfortable to rework their writing, especially if you’re making
changes to terminology and processes you’re unfamiliar with.

At any rate, just because engineers have “written” content, it doesn’t mean you somehow escaped a lot of
work — it just gives you a different starting point. Rewriting content can take just as long as writing from
scratch. So maybe you won’t want to go the path of having engineers write anyway. Either way, whether
you have the first “draft” to begin with or need to author it yourself, you still have a lot of work to do.

I’m going to assume that, in this scenario, engineers aren’t inclined to write the docs. They do, however,
have a lot of source material they’ve been holding out on.

1.3 Scrounge up all the source material
For any writing tasks, gathering source material is key, but for tech docs, there are a few important
documents you should track down. These documents often exist, but unless you ask for them by name,
product teams might never mention them or send them to you.

To provide some background first, here’s how most software development groups work. Before engineers
started working on the feature, someone had to pitch the feature to a program management office (and
executive) to green-light the effort. This means they had to write a description of the feature at a high level.
There might be a short document (nicknamed something like a “two-pager”) that acts as the product pitch,
describing the problem and the need for this API. Or there could be a pitch slide deck used to persuade an
executive to fund the project. Locate this two-pager or pitch deck. If you can identify the nomenclature
for this company document, all the better.

Once a product is green-lit, the feature gets planned for a specific timeframe (for example, 2021 Quarter 4),
and the team who will develop the feature gets identified. The product team then sizes up the feature and
writes a product design document that acts as the blueprint for the feature’s design. The engineers will
debate the proposed design long before any actual code development begins.

During the code development phase, some names used in the product design document will probably
change, and some other details as well. The first release is usually a “minimum viable product,” or MVP, so
it will lack some features described in the document.

Even so, the product design document is usually a goldmine of information for documentation, and you
should be able to leverage some information here, such as the product description and a high-level
description of the API, the data it provides, important elements, and how to work with it. So make sure you
locate this product design document.

The engineers usually populate the reference documentation themselves, building Javadoc from
annotations in the source code. They may want you to review the reference content, but most comments
you’ll have will come later in the writing process, after you’ve written some documentation and become
familiar with the product/API.

At any rate, the Javadoc output will give you a good sense of what classes and methods are available in
the API. It will communicate the scope and the possible use cases. Ask the engineers to generate a
Javadoc output for you to review.

Besides the pitch materials, product design, and Javadoc, there might be other documents as well to
gather. Each company tends to call its documents by unique names. Understand what the key documents
are for projects in your company, and this will usually unlock people finding and giving them to you. Gather

1. Planning (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 505

up as many documents as you can find, list them in your doc plan in a resources section, and then browse
through these documents to (a) learn about the product, and (b) see what material you can use either
directly or indirectly in your docs.

1.4 Ask for a demo of the product
The next step is to ask the product team for a demo of some kind. Perhaps one of the engineers has
written a sample app that demonstrates how to call the API in some scenario and what to do with the
response. The response might simply be to log data to the console, or to see it rendered in the terminal.
That’s fine, and this simplicity is actually what you want at this point. You don’t want an enterprise-scale
application that has so many different dimensions and files that the API is obscured. You want a simple
sample app that shows how to call the API and what data comes back.

If you can, try to play around with the demo yourself. Try to get the product to work in some way, even if
it’s just superficial. For example, you could ask this same engineer who created the sample app to share
the sample app with you and provide details on how to run it. Get it working and play around with it a little
bit so you get a better sense of what you’re documenting. (See Set up a test environment (p. 345) for more
details.)

Almost no engineer develops an API without also developing a sample app that calls the API and gets
some data back, though frequently the sample app is just a bare-bones type of code project that logs data.
Having some initial familiarity with the product will pay dividends later as you start writing about the feature.

Most engineers, by the way, are usually happy to demo the product they’ve built. This is a point of pride for
them, and it’s what they do best. Later, you will be asking these same engineers to review the
documentation you’ve written, and then you will see another side to these engineers. They will likely hate
reading and reviewing written content. You will have to constantly pull them back on track to avoid sliding
into discussions about bugs and future plans rather than continue their document review. But to show off
their product and talk through what it’s doing in a demo, they love it.

Next steps
Continue on to 2. Information gathering (p. 507).

1. Planning (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 506

2. Information gathering (the writing
process)
Now that you’ve created a doc plan (p. 504), gathered up source material (and presumably read it as well),
and observed a demo, you’re ready to move on to phase two of the writing process: information gathering
through interviews.

How you see yourself: writer versus journalist
As you gather information, a paradigm shift about the tech writing role would help out during this phase.
Rather than thinking of yourself as a technical writer, think of yourself as a technical journalist. As a
journalist, you gather information for your story by interviewing people. There are several different groups of
people to gather information from:

• Engineering — the group that coded the feature
• Product management — the group that oversees the feature’s planning and strategy
• Partner engineers — the group that helps users implement the feature
• Quality assurance — the group that tests the feature

These groups will each provide a different input on the feature. Note that groups and titles will vary
(especially the term for “partner engineers”), but the four domains represented here are common across
companies.

General tips for interviews
The following are several tips for interviews that apply across all groups.

Prepare lists of questions

With each interview, it’s good to give the person a list of questions ahead of time. This not only keeps you
on track but also reassures the interviewees that the meeting will have a focus and purpose. Some people
despise meetings that consume time they could have otherwise been spent coding. A simple list of
questions sends the message that the meeting will be worthwhile. For more on this technique, see A tip for
doc reviews — bring a list of questions .

Be aware of your role as a product aligner

There’s another reason for reaching out to these four distinct groups: any group alone might present a
skewed perspective, and without more variety, it’s easy to mistake their perspective as the Truth. When
you write documentation, you often raise awareness about differing points of view that need to be
addressed. You might find disagreements between engineering and product management, or between
product management and business development, and so on.

For example, in our scenario of creating an API for coffee shops, perhaps the product management group
envisions partners being able to add their own coffee shops and supplementary data, including ratings and
reviews — essentially enabling partners to both read and write to the API. In contrast, Engineering might
have more conservative views about what’s possible with the data and might want to promote a more
simplified model of updates only going one way — read-only. Writing documentation raises awareness of
these differences and will force these groups to align as they review the documentation.

2. Information gathering (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 507

https://idratherbewriting.com/blog/tip-for-doc-reviews-bring-list-of-questions/
https://idratherbewriting.com/blog/tip-for-doc-reviews-bring-list-of-questions/

When these differences of opinion surface, don’t be surprised. You will occasionally run into a product
manager who freaks out about potential content almost going out to partners before it can be edited/
tweaked in a certain way, which actually changes the direction provided by some other group. In these
scenarios, your role pivots from tech writer to something entirely different: product aligner. During these
moments, your role is to help define and shape the product’s story and messaging.

Rather than inserting yourself into any disputes between groups, let the different groups do their own
sparring and other hand-to-hand combat. Your job is mostly just to bring them into the ring together and
see who’s left standing at the end.

Be aware of engineering myopia

A strategic advantage to the tech writer role is your broad perspective across products. As you interview
different groups, you might find that, surprisingly, they lack awareness of other products. Some aspects of
the product you’re documenting might actually duplicate other products or have other redundancy and
conflict. This phenomenon happens most frequently in large tech companies, where many teams work
independently across different org lines.

Be aware of your cross-product perspective and recognize that it’s a unique advantage you bring to the
table. When a PM or engineer is unaware of how the API they’re building differs from one that a
neighboring team built, don’t be shocked, and don’t belittle the PM or engineers. These groups are often
so specialized, they know only their sliver of the technology. Part of the value you bring to the table is your
awareness of other products. Don’t be afraid to surface the issues you observe and bring other groups into
the conversation.

2.1 Interview the engineers
Now let’s get into some strategies for interviews, starting with the engineers. Most likely the engineering
team has already designated someone to be your contact point — the main engineer who coded the
feature. (If you don’t have a contact point, start with the tech lead or team lead for the API; they might
designate someone else down the line.)

Set up time with this engineer and prepare a list of questions (the technique I described earlier). Now, this
is extremely important: Record your interview with the engineer. Even if you’re meeting in person, create a
conference session in the room on your computer and record the meeting. The engineer is going to dive
into gobbledygook and other technical speak, and you’ll want to go back and re-listen to this again, even if
it’s just to get the terminology and phrasing correct. You won’t be able to take enough notes in real-time to
keep up (unless you’re part-engineer already), and you might be too busy taking notes to catch all the
details of the conversation.

Some questions to ask the engineer might be as follows:

• Are there any requirements to use this API?
• How do you set it up?
• How do you initialize it?
• Can you talk through the code in the sample app?
• How do you use this API for some common use cases?
• Are there limitations that partners will want to know about?

Pitfall warning: The engineer might give you a Javadoc and say that all the details are contained within the
Javadoc, and it’s self-explanatory to any Java engineer — as such, there’s not much more to say. All a user
needs is a Javadoc to understand the API and implementation details. For tech writers without an
engineering background, this attitude can be difficult to counter because the Javadoc is challenging to
read without a background in Java. In fact, just navigating the Javadoc output can be confusing, and you
might feel up against a technology barrier, unsure if your lack of understanding will make it impossible to

2. Information gathering (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 508

write intelligently about the feature. What does the user know or not know? What is common knowledge in
the programming domain and what isn’t? Are engineers even using industry standard terms here? You’re at
a real disadvantage in this situation, but press the engineer to provide some details.

Recognize this attitude (“All the developer needs is this Javadoc!”) as a red flag to push back on. You can
later get more ammunition for a counter argument when you meet with partner engineers, but for now,
press on.

One strategy to get the engineer to unravel more detail is to have him or her talk through the code in the
sample app, which was presumably used in the demo. The demo provides an instance in which the API
was implemented toward some end. The engineer might have all kinds of disclaimers and notes about how
the demo doesn’t represent a true implementation, or how it’s likely not how users will actually implement
the API, but at least it’s something to go on. You could also loop in the partner engineers to better gauge
the knowledge levels and needs that users will have.

As you talk with the engineer, you’ll find that a lot of times, the engineer who codes the feature doesn’t
know how the feature should be messaged or pitched, and doesn’t have the larger picture about workflows
and product implementation. Just as you might be unfamiliar with how to actually work with the API, the
engineers who created it might not know how partners/developers will implement the API in their particular
business domain and use cases. Your project engineers know software, but they often don’t know the
domain or industry where the partners will be implementing the API.

This is a key point and one that throws a monkey wrench in the writing process. Ideally, you might think the
engineers who created the feature could walk you through how third-party developers will use it. After all,
the API was designed to support various business use cases. Companies don’t create APIs without a
strong knowledge of who they’re for and what scenarios they envision the APIs being used. They’re
providing a stream of data for a specific business use case. The company using the API will pay large
amounts of money for this data.

And yet, does the engineer creating the API actually know how to implement the API in such business
scenarios? Not always. As such, the information you get from the engineer will be somewhat general and
not specifically tailored to how the APIs are used for key business tasks.

Think of the API and its various methods or endpoints like providing a cupboard of ingredients to a chef.
Project teams don’t know exactly how the chef (partner) will use the eggs, flour, sugar, butter, molasses,
paprika, and cornmeal — because the ingredients could be used in a variety of recipes and intents. From
the engineer’s perspective, the requirements doc only specified that they create the molasses and paprika,
not how they concoct these ingredients together toward some coherent recipe.

Engineers are so specialized, their view of the system often is much narrower than you assume. They might
have specialized technical knowledge while lacking a broader understanding of the technology in the
context of business domains. As a result, your interview with this development engineer will only take you
so far. To gather the other information you need, you need to set up time with several other people.

2.2 Interview the product manager
The product manager (PM) might not be as technical as the engineers, but he or she will have a better
handle on product messaging, use cases, audience analysis, and concepts related to the product. The
product manager also likes to have input on the docs because the docs are part of the product experience.

Some topics will absolutely require the PM’s input. If you start listing known limitations and issues with the
feature, the PM will want to have input. If you drop hints about future, related features on the roadmap,
you’ll need to clear this with the PM as well.

Some questions to ask the PM might be as follows:

2. Information gathering (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 509

• Who is the audience for this API?
• What are some use cases for this API?
• What are some important concepts to know when working with this API?
• When is the release date for the feature?

The PM is sometimes easier to speak with because PMs aren’t as steeped in the technology as the
engineers, and so you might find this interview more comfortable. However, while the PM is your friend, the
PM often has an agenda: to present the product in an extremely positive light, reflecting the successes of
the product team (led by the PM). The PM will squirm against listing any warts, limitations, and issues with
the product. PMs generally dislike transparency.

Whereas the engineers might note some important issues/limitations, the PM might want you to spin these
issues in a positive way. Or the PM might try to persuade you that the omission of limitations is an indirect
way of addressing them. For example, the PM might say, We don’t need to say that you can’t do [X] with
the feature; we just don’t mention [X] at all. So by not saying it, we don’t have to note this limitation about
our product.

While this might be reasonable in many situations, if X is a feature most users will want or expect to do, the
documentation should mention it. Tech writers are supposed to be user champions, not product
champions. For example, in our coffee API scenario, suppose the coffee API works only for coffee
produced in the U.S., not coffee imported from Columbia, Guatemala, or elsewhere. It would be a pretty
big gap not to mention this limitation explicitly in the documentation.

For more on the topic of transparency, see Transparency in documentation: dealing with limits about what
you can and cannot say .

Keep the PM in the loop of the doc review even if they have little input on the technical aspects of the
product. The PM is aware of all the stakeholders that you might not know about, and they can easily pull
people into conversations to answer questions. For example, the PM likely connects the dots up the
executive chain and can include others in the doc review several levels above you, or across teams that
you didn’t even know existed. The PM can be your connection point to all the other teams and interested
parties related to the feature.

2.3 Interview the partner engineers
Another group to interview is the partner engineers. The title might differ by company — for example,
“solutions engineers” or “developer relations.” This is the group that interfaces with partners/users to help
them implement the company’s products. This group is one of the most important to have frequent
communication with because they give you the closest feedback from users.

Roles and companies vary of course, but in my experience, I rarely have direct interactions with the users.
Instead, the partner engineers are the contact points with the users, and most feedback about users comes
from the partner engineers. The partner engineers’ familiarity with the partner’s experience, friction points,
and feature needs/requests gives them their primary value.

Partner engineers appreciate being in the loop about feature development and the documentation efforts,
though they might not have much input on the documentation until you show them a draft. Partner
engineers tend to work with existing documentation more than future documentation. They might be
reactive (responding to current partner issues) rather than proactive (planning for future features and
roadmaps, as PMs do).

Whether you choose to interview the partner engineers now or later depends on how much they know
about the feature/API and the partner needs. Ideally, meet with the partner engineer who specializes in this
feature ahead of time and get a better understanding of the target users and their use cases.

2. Information gathering (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 510

https://idratherbewriting.com17/07/13/transparency-in-documentation/
https://idratherbewriting.com17/07/13/transparency-in-documentation/

This information might be redundant with the use cases that the PM describes, but maybe not. The partner
engineer can describe the business cases, implementation workflows, and other partner details in more
depth. You could, at the very least, check the information you gathered from the PM against the partner
engineer’s knowledge.

Some sample questions to ask the partner engineer include the following:

• Which partners are we developing this feature for/with?
• How is this target partner planning to use the API?
• How does this partner implement the feature within their company? What’s their workflow and

setup?
• What issues or questions do you anticipate partners will have related to this API?

Usually, when companies develop a new feature, they select a target partner to develop the feature for, and
this target partner becomes the beta partner that product teams work closely with. The partner provides
constant input about features of the product and helps steer the product’s development, feature set, and
roadmap against their own needs and requirements. Partner engineers will often be the contact points with
this development partner (more so than the PM), so it’s key that you plug into this partner relationship —
your access to the partner/user often comes directly through the partner engineer.

Most partner engineers are strong champions of documentation because documentation provides a tool
that partner engineers need to do their jobs. At some point, partner engineers will be handing partners a
link to the docs. As such, partner engineers are invested in having great docs because it makes their job
easier. If the docs are poor, the partner engineers will have to hold the partner’s hand in the implementation
and answer a lot of questions, troubleshoot issues, and more. In contrast, good docs might free them up
from many partner meetings and bug threads.

Building rapport with your partner engineers is one of the main strategies you can implement for success
with your doc group. Touch base with a partner engineer now to gather more information. Later you’ll loop
back around with them for documentation reviews.

2.4 Interview the Quality Assurance (QA) group
Another group to interview is the QA group. This group won’t have much information about the users and
use cases. Instead, QA should have a group of test cases that they are testing the feature against. This list
of test cases might help flesh out common tasks with the API. For example, the QA group might verify that
the API returns the correct data for a variety of use cases. If you can get a hold of these test cases, they
could inform the various how-tos and other technical details that are described in your documentation.

QA teams aren’t used to working with tech writers, so you’ll need to steer this conversation towards the
paths you want. Some questions to ask QA include the following:

• Do you have a list of test cases that you’re testing the API against?
• How are you testing the API? Is there a specific test environment you’re using?
• Are there any test devices or setup I can use?
• Is there a sample app you’re using to do the testing? How do you use this sample app?
• Do you have any documents that describe testing steps?
• Are there any bugs or limitations to be aware of? Where are the bugs tracked?
• Do you have a list of exactly what data the API should return in various scenarios?
• Are there any resources related to this API that might be helpful?

2. Information gathering (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 511

You can later involve QA in the review of the docs, but they tend to have minimal input on the
documentation quality. They only seem to be interested in two questions: what do we promise, and does
the feature return what we promised? For example, if your docs say that the API provides data for a
specific use case, QA might chime in to say that the API doesn’t actually provide that data. They rarely
comment on clarity, organization, or style of the documentation.

The main benefit from QA will be information about how to test the API. They often have sample apps, test
environments, streamlined procedures, and other resources set up to test an API. This can help facilitate
how you can explore the API yourself because, as I mentioned earlier, playing around with the API is
essential to better understand the product and inform your ability to write. I don’t know about you, but I find
it hard to write about something that I can’t experience and explore for myself. If QA can help unlock that
hands-on exploration, it’s a huge win.

Next steps
Continue on to 3. Writing (p. 513).

2. Information gathering (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 512

3. Writing (the writing process)
In this section, I’ll dive into practical tips and strategies for writing the content. Before you get to this point,
I assume you’ve already done some planning (p. 504) and information gathering (p. 507).

3.1 Separate content into similar groups
Now that you’ve gathered information and interviewed a handful of people related to the feature, you
probably have a large pile of content. For example, you might have a single doc where you’ve been
collecting all of this information (copying and pasting nuggets of information from various docs). That doc
might be 20+ pages long.

You must now begin organizing the information. I think of this task like sorting laundry. Start by sorting the
content into different piles — put the socks together, the shirts together, the pants together, etc. (See
Writing is like sorting laundry — practical advice for tackling documentation projects for a full elaboration
of this analogy.) Just group like information together. Each pile will probably become a separate page in
your final content output (but maybe not).

3.2 Create an outline for each group
Now that you have different groups of content, create outlines for each group. I described the general
shape of different documentation types in the Conceptual topics section (p. 358). For more documentation
projects, you’ll need several sections:

• Product overview (p. 360) — high-level description of the feature, requirements, prerequisites,
geographic availability, components involved, workflow implementation, how to get help, etc.

• Concepts (p. 359) — foundational concepts related to using the feature. These topics might
include diagrams or other visuals to assist with understanding.

• Reference (p. 114) — the Javadoc or other reference documentation.
• How-tos — descriptions of how to implement the API and handle various scenarios.

An outline is a list of section headings and bullet points to cover in each section. Creating an outline
precedes the actual writing of content. A good outline can reduce the fear of the blank page.

For inspiration about the right sections to include in different content types, check out the Good Docs
Project for templates.

You can even review the outline with other groups you interviewed before you begin writing, if you want. It
depends on how confident you are and how extensive the documentation is. The outline is basically your
content plan.

It might be worth calling out some other fundamentals to tech writing here. In a creative writing project, you
might have only a general sense of how you’ll get from your starting point to the conflict to the resolution.
As creative writers start writing, they get into a flow state, and sometimes the story takes them in directions
they didn’t intend.

Some novelists talk about how the characters dictate the shape of the story, and a kind of muse takes over
and they just start describing the story that the characters themselves write. The story takes them in
directions they can’t anticipate or don’t expect. This flow state might last hours and take them along
unfamiliar paths and directions.

3. Writing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 513

https://idratherbewriting.com15/01/29/writing-is-like-sorting-laundry-practical-advice-for-tackling-documentation-projects/
https://thegooddocsproject.dev/
https://thegooddocsproject.dev/

Writing documentation is a much different experience. You’re operating in an explanatory mode, not a
discovery mode. It’s unlikely that your content will deviate much from the outline. Sure, to some degree, as
you begin writing, the flow of concepts and sentences might veer from the outline or list of bullet points,
but not like a creative writing flow.

(Despite all the differences from creative writing, at the heart of most types of writing is conflict. Story is the
path taken to overcome conflict. So at this foundational level, there is still some parallel between creative
writing and technical writing, but not a ton.)

No matter the type of writing, an outline is your friend. In an outline, the initial bullet points don’t need to be
polished or have strong coherence. You’re just sketching out the plan, and you can rearrange sections and
bullet points as much as you want. If the documentation is extensive and you’re unsure about the
approach, you can set up meetings with the same people previously described to talk them through the
outline.

Your outline should call out major sections. Note that unlike other forms of writing, documentation uses a
lot of section headings. An academic essay might not have any subheadings, but documentation uses
section headings every few paragraphs. The idea is that users skim and jump around rather than reading
linearly, so this section-dominant style fits the user behavior about how people read documentation.

Section headings also reduce the need for a more formal order and flow to the content, so in some ways
writing documentation is easier than other forms of writing. You can always just tack on information in
another section heading.

3.3 Set up meetings with reviewers far in advance
Before you start writing, take a few minutes to set up some review meetings. Get on the calendars of your
reviewers now. Most reviewers like to have a few others reviewing the document at the same time, and if
you wait until you actually have a draft ready, chances are there won’t be any open time slots when those
reviewers are all free. But if you schedule it 2-3 weeks in advance, you can ensure their availability and a
room if necessary. Scheduling a review meeting also gives you a deadline.

In the review meeting details, indicate that you’ll later update the event with a link to the draft. However, as
I’ll explain in Reviewing (p. 519), most reviewers won’t read anything until the actual meeting anyway.

3.4 Write the first draft
Now that you have an outline, you’re ready to start writing. This is one area that’s difficult to give instruction
for, but I’ll do my best, sharing what works for me.

When I have writing to do, I often find myself looking around for anything else to do — check email, Twitter,
Slack, browse Amazon, and so on. It’s easy to suddenly think of all the other things I have to do and to
focus my energy there because the task of writing requires a lot of mental energy. Writing isn’t something I
can sustain for long periods of time, especially if I’m already fatigued. As a result, to find the time and
energy for writing, I maximize the part of my day when I have the most energy for this task: mornings.

After I wake up and have some coffee and breakfast, check email and news, I devote this time to writing.
As the day wears on, my energy gets lower and lower, and by evening, I’m usually spent. Most people have
an optimal time where their energy is at max productivity. When I was in college and didn’t have kids or a
full-time job, my writing energy peaked from about 8 to 11 pm. But now, during those same evening hours,
I’m usually cruising in escape mode. Figure out when your mental energy is at full capacity, and then plan
to write during that time.

3. Writing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 514

The second strategy I use is to set a four-hour timer using a Focus app . This is just an app that keeps
track of time on task, following the strategy of the Pomodoro technique . I find that four hours of writing
is the most that I can squeeze out during a day. I set 4 one-hour sessions, and if I find myself getting off
task during the session, I pause the timer. (For more on this technique, see Writing productivity tip: Focus
sessions .)

With the timer set, I look at the outline, and then I just dive right into it. Even if the words don’t flow at first, I
just start typing and usually after a few paragraphs, I’m in a rhythm. (If you really struggle to start, just
follow a stream-of-consciousness approach until your brain gets in gear.)

I allow myself to veer from the specific outline if the flow of the content dictates it. As a best practice, I try
to connect the ideas from one sentence to another in a flow-like way. The general pattern is that a
sentence ends on an idea that the next one begins on. If you keep that flow, from old-to-new information, it
will provide more of a coherence and readability to your sentences.

I also keep my paragraphs relatively short, usually several sentences each and focusing on a single main
idea. After several paragraphs, I start a new subheading that encapsulates the focus of the next
paragraphs.

I like to listen to music while I write because it reduces my sense of hyper-correctness and allows me to
access the part of my brain that is more focused on creating than on grammar and accuracy.

It’s good to get the first draft of content on the page. After that, I can begin shaping it and refining it in a
much less demanding way.

Even though I’ve been a professional writer for many years, I don’t have a lot of writing stamina. After I get
several hours of writing in, I often tap out. Writing is somewhat like exercising — after a couple of good
hours max, I’m done. I can’t just sit down for hours on end writing documentation. Very few can, especially
given how much preparation is required to get the knowledge to write technical documentation. Instead of
spending long hours writing, I try to chip away at larger content projects a little bit each day over a series of
weeks. This approach (writing a little each day) usually ends up being more successful.

3.5. Make a running list of questions you have
While I’m writing, I usually have plenty of questions regarding things I’m unsure about or which are unclear.
I make a list of these questions and use them later as I proceed through the review process. It’s painful for
reviewers to read docs from beginning to end, and reviewers will much prefer to be asked questions, as it’s
much easier. This also lets me zero in on those gray areas that I’m unsure about, maximizing the review
time.

But for now, as I write, I just throw the questions into the questions doc. (I also sometimes put them in
brackets directly in the documentation draft, though I find this clutters things up more than I like.) Later,
when I’m done with the draft and ready to tackle the questions, I sort and organize the questions into
logical groups.

3.6 Editing
Once I have a first draft of content (no matter how bad), I’m ready to start editing. I try to space out my
edits across multiple days. Prior to writing new content, I spend time reading over and revising the previous
chunk of content I wrote. I find this helps reorient me about the content I’ve already written and allows me
to fix or polish it with semi-fresh eyes.

3. Writing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 515

https://apps.apple.com/us/app/focus-time-management/id777233759?mt=12
https://francescocirillo.com/pages/pomodoro-technique
https://idratherbewriting.com/blog/writing-productivity-through-focus-sessions/
https://idratherbewriting.com/blog/writing-productivity-through-focus-sessions/

Additionally, many days I don’t feel like writing, but if I rev up my brain by reading and editing the previous
chunk of content I wrote (for 30 minutes to an hour), I’m usually ready to push forward and write new
content. This time for editing also helps reconstruct the context of what I was previously writing, bringing
many of the details into focus so they’re accessible when I begin writing again. (Writing is easier when you
have this context fresh in your mind.)

Editing requires a fresh perspective, so I allow myself some space between edits — usually about a day. If I
just keep editing the same content over and over all day long, especially content that I’ve only recently
written, I become blind to so many aspects of it. I can’t see all the problems. Somehow, allowing myself 24
hours focusing on other things enlivens my ability to see issues and fix errors in the content.

Ideally, if I can space out edits each day over the course of a week, that gives me 5 separate editing
sessions. I’m usually amazed at how much I can fix and polish during this time period. It’s really the secret
to good writing. In contrast, if I crank out the content the day before and release it, the content isn’t nearly
as good as putting it through a cycle of edits spaced out like this. Think of it like bread that you have to let
rise, followed by a session of kneading. When you make bread from scratch, you might need to let it rise a
few times and punch it down to get it into the right shape.

3.7 Supplement confusing concepts with visuals and code examples
The nature of writing technical documentation is to simplify and communicate complex concepts and
techniques. You might find that words alone fall short of this task. To simplify complexity, leverage these
two tools:

• Visuals (p. 516)
• Code examples (p. 517)

Visuals

Simple conceptual diagrams are easy to create. You don’t need to be a graphic artist to draw boxes and
arrows in a simple diagram to illustrate a concept. Download a program like Sketch and create some
basic visuals to illustrate technical concepts. Keep the diagrams simple, focusing on the aspect you’re
trying to explain.

If you keep the graphics simple, you’ll maintain control over the graphic assets and be empowered to
create them as needed. In contrast, if you ask a graphic designer to create the graphics, you might find that
it’s impossible for you to create more graphics matching their same style and brand. I highly recommend
reading The Back of the Napkin by Dan Roam (and my related post Drawing as a Tool for Thinking: The
Back of the Napkin . See also Creating professional looking graphics in the easiest, simplest way
possible .

Overall, Roam argues that you should get rid of the idea that graphics can only be rendered by professional
artists. Use graphics as a tool for thinking and for articulating complex ideas. The hard part about creating
the graphic is coming up with an idea for depicting a concept. When that’s your focus, simple diagrams are
okay. Little boxes with text below them and some arrows to other boxes showing relationships between the
boxes might be all you need to get your point across. If the graphic accomplishes its purpose — to help
bring a confusing concept into focus — then it succeeds.

Here are some general techniques to follow when creating visuals:

• To show a difference between two things, consider showing graphics side by side with a slight
difference between them.

• To keep the minimalist focus, try to communicate your ideas by showing as few lines as possible.
Check out Jean-luc Doumont’s Trees, maps, and theorems for inspiration. Or read about how
Edward Tufte despises chart junk .

3. Writing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 516

https://www.sketch.com/
https://idratherbewriting.com09/05/19/drawing-as-a-tool-for-thinking/
https://idratherbewriting.com09/05/19/drawing-as-a-tool-for-thinking/
https://idratherbewriting.com09/05/19/drawing-as-a-tool-for-thinking/
https://idratherbewriting.com16/05/05/visualcommunication_noun_project/
https://idratherbewriting.com16/05/05/visualcommunication_noun_project/
https://idratherbewriting.com09/06/25/page-layout-and-design-tips-from-jean-luc-doumonts-trees-maps-and-theorems/
https://idratherbewriting.com10/11/01/what-is-chartjunk-visual-imagination-2/

• Use a change in color to draw attention to something; one subtle color change in an element can
bring the reader’s focus to what you’re trying to highlight. (This is a tip from Doumont’s book.)

Overall, creating visuals might be a welcome change from writing. You’re still working but not taxing the
same part of the brain.

Code examples

Code examples are another way that confusing concepts take on more clarity. I explored code samples
more fully in Code samples (p. 464), so I won’t repeat everything there except to summarize the main
reasons why code helps clarify details. You can write a ton of content trying to describe technical concepts
and techniques, but sometimes a simple code sample can speak for itself because it’s in a language that
the reader understands.

For example, suppose you’re trying to explain a technique for getting certain data using a combination of
APIs. You could list a few bullets explaining the overall process, but users might get a lot more out of
viewing a code sample showing the technique. Code presents the idea in ways that natural language (e.g.,
English) simply can’t do, no matter how you describe it. Code brings with it a story in itself with classes,
methods, and other logic. Code examples take a lot of pressure off of you to explain concepts. It’s a win-
win — easier for you, and better for the reader.

In fact, in nearly every survey about APIs from SmartBear , “examples” ranks number one in terms of the
type of docs users want. So don’t be shy. Ask engineers for code samples demonstrating how to approach
various tasks. This might be something QA already has, and you just need to request it. I’ve found that
engineers are usually more than happy to supply code samples here and there. They sometimes
underestimate the power of code examples in conceptual documentation, so let them know you want
them. As you’re writing, include little placeholders here and there for code examples.

I chose to highlight the top two techniques for clarifying complex information: visuals and code samples.
My larger point is to not rely entirely on writing to do the work. Use these other tools to help simplify
complexity.

Don’t try to eat an elephant in one day

As you write content, don’t get frustrated if you tap out long before the task is done. As I’m writing the
content for this section, I’ve written it little by little over the course of two to three weeks. I try to squeeze in
some writing time at the beginning and end of my day. I might spend one day writing a new section,
another day reviewing a different section, another day adding new details to the previous section, another
day sketching out section headings for an unwritten section, and so on.

I don’t try to write everything at once. In fact, as I explained above, I don’t think I really could. Writing is
kind of like a nitro boost — it requires massive amounts of energy, and I can only tap into this energy
periodically for short bursts of time.

If I get exhausted, I take a break. I watch Netflix for a while or walk around a bit. When my energy rebuilds, I
start writing again. Getting that first draft is the hard part. If I absolutely can’t get going, I just spend 15
minutes typing anything. Eventually, my writing brain usually resolves into focus and the words will take
shape. (I might have to delete the first page, but that’s okay.) If after 15 minutes I’m still not feeling it, then I
bag the effort for the day and try again in the morning.

Once you get that first draft, you can iterate endlessly afterward as you edit and review the content for
weeks following. But without some starting point, you won’t have anything to shape. NaNoWriMo
(National Novel Writing Month) is a good model for getting the first draft out. The goal of NaNoWriMo is to
generate an initial draft of a novel in one month. It might be crap, but you can then spend the next year
editing and fixing it. You at least have a starting point, a draft to read and evaluate.

3. Writing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 517

https://smartbear.com/state-of-software-quality/api/documentation/
https://nanowrimo.org/

Run content through a spell checker

At some point when the content is more or less finalized, run it through a spell checker. You might prefer to
do this later, after the reviews, but using a spellchecker now can help eliminate superficial errors so that
reviewers aren’t distracted by the typos and misspellings but can instead focus on substance.

My favorite spell checker is Grammarly , though this service tends to be blocked in most companies due
to the way Grammarly stores data on its servers. See Is Premium Grammarly worth it for identifying style
and grammar issues in tech docs? for more details.

Other options could be the spell checker in Microsoft Word, Google Docs, HyperSTE plugin (to check for
simplified technical English), or Acrolinx (if your company has it).

You might be amazed by how many errors these services catch, especially in lengthy content. I personally
prefer to leverage as many of these services as possible. I almost always use Grammarly to check new
blog posts and articles on my site. One writing teacher explained that a small grammar or spelling error
calls attention to itself and can be like having your fly down while you’re wearing a tuxedo. Imagine
finishing writing 2,000 words of content, sending it to your entire department, and getting feedback from a
higher-up executive that you misspelled a word. That kind of superficial feedback can be deflating.

Next steps
Continue on to 4. Reviewing (p. 519).

3. Writing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 518

https://app.grammarly.com/
https://idratherbewriting.com18/12/28/evaluating-grammarly-as-a-style-checker/
https://idratherbewriting.com18/12/28/evaluating-grammarly-as-a-style-checker/
https://idratherbewriting.com17/01/25/hyperste-simplified-technical-english-asd-ste100/

4. Reviewing (the writing process)
Now that you’ve written a draft (p. 513) and have edited the content a few times, you’re ready to begin the
review process. Unlike other forms of writing, reviews are essential for documentation because you’re
usually writing about a technical domain that you’re not an expert in.

General strategies for reviewing content
This section lists general strategies for the review process. Before we jump into this, hopefully you’ve
already set up some review session times with various stakeholders. If not, try to get time on their
calendars now rather than later. It doesn’t matter whether you have a draft to review or not. Book the
reviews to reserve a spot on the reviewers’ calendars.

Review strategies that don’t work

I’ve tried different processes for reviewing content, and I have more or less realized what works and
doesn’t. Here’s what doesn’t work:

• Sending a general email to a group of people asking them to review content.
• Asking people to review large amounts of content at once.
• Asking people to come to a review meeting having read the content beforehand.
• Scheduling meetings with all the necessary reviewers together at the same time.
• Sending a link to docs and hoping that others will review it without being forced to do so in a

scheduled meeting.

Unfortunately, the review process isn’t as easy as sending out links and getting detailed feedback soon
after. The process I’ll suggest below works, based on years of experience. This process would not be how
you’d expect to review a sample chapter or essay in a creative writing workshop. In a creative writing
workshop, usually you send out about 10-20 pages of material a week ahead of time to the group. They
read it during the week, prepare comments, and then share their comments in a round-robin format during
the workshop. When I was getting my MFA in literary nonfiction, this was the pattern for how we reviewed
content.

So when I began my career as a technical writer, I more or less expected the same workflow. It took years
of disappointment and frustration with the review process to realize that this isn’t how the corporate world
works, and it’s not how documentation reviews work.

In some ways, you don’t even need to have much technical depth or familiarity with the content you’re
reviewing. You’re facilitating a process, bringing people together to collect their feedback, making changes,
and aligning different parties. You’re arbitrating, aligning, clarifying, etc. By facilitating the review among
different groups, you are moving content through this phase of its development.

Giving time during the meeting for reviewers to read the content

What works best is to carve out time during the actual meeting for reviewers to read the content. If you
have a 45-minute meeting (an ideal length for review meetings), allow reviewers to either spend the first 20
minutes reading the content before launching into a discussion, or allow them to give feedback in real-time
while they’re reading. The former technique (giving time to read for 20 minutes) is the basic modus
operandi of meetings at Amazon , and it works great elsewhere too. It’s a little odd to have this quiet time
during the meeting, but it’s also somewhat reassuring for the reviewers to know that you’ve given them the
necessary time to read the docs during the meeting.

4. Reviewing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 519

https://idratherbewriting.com/blog/a-place-for-exploratory-writing-in-the-workplace/
https://idratherbewriting.com/blog/a-place-for-exploratory-writing-in-the-workplace/
https://idratherbewriting.com/blog/a-place-for-exploratory-writing-in-the-workplace/
https://idratherbewriting.com/blog/a-place-for-exploratory-writing-in-the-workplace/

You might think, oh, we’ll just ask everyone to read the doc beforehand and come to the meeting prepared
with comments. When you do this, usually one person has read the content and others haven’t. This
frustrates the person who did read (he or she now just has to sit there waiting for others), and makes others
feel irresponsible for not having done the preparation. The others end up skimming the content quickly so
they can get started with the review. Then when they share their feedback, they make suggestions about
adding content that’s already there (because they didn’t read it carefully enough).

So in general, bake time into the review meeting to allow people to read the content during the meeting.
While you’ll occasionally encounter reviewers who can do the reviews outside of meetings, these types are
rare. Also, I’ve found that the more executive the reviewer, the more they expect you to present them with
content to read on the spot and then take notes as they provide feedback.

Keep the meetings 45 minutes or less

A second technique is to keep the review session somewhat short and painless. Reading, analyzing, and
providing feedback on content takes a lot of analytical bandwidth, and most people tap out after about 45
minutes. I’ve rarely seen any review session stay on track for a full hour. As such, don’t try to review more
than a handful of pages at a time. The rule of thumb is this: don’t review more than the reviewer can read in
20 minutes. That works out to about 6 pages, no more.

People don’t have time to review more than this, and you’ll observe that after about a half-hour, their
attention span wanes. It’s at this point that the reviewers try to steer the discussion into easier waters,
talking about the feature roadmap or current bugs rather than the documentation. To ensure you stay on
track, keep the meeting short and focused.

This means you might need to set up multiple doc review sessions if you have a lot of content to review.
That’s all right. You could set up several 30-minute review sessions with people, if that’s what it takes. It’s
also a lot easier to book 30 minutes on someone’s calendar rather than a full hour, especially if you’re
including multiple reviewers.

If you have 12 pages for people to read, and only 30 minutes for the review session, consider setting up
three review sessions. Give people the first 10 minutes to read about 4 pages and then provide a response.
It might seem like you’re filling their calendar with lots of doc reviews, but it might be the only way to finish
the reviews.

Stagger the review process

Another strategy is to layer the review process. It doesn’t make sense to have all reviewers analyze the
content at the same time. Ideally, you want to incorporate the edits from each review before the next
reviewer sees the content. This way you can iteratively improve the content each time and get a fresh
review of the newly edited content.

Without staggering the reviews, if you have five reviewers all look at the content at the same time, they
might all point out the same issues. After you fix the issues, you won’t have any more reviewers to look at
the revised copy because you’ve already consumed all their reviewing time.

Reviewers do actually have a finite amount of time they’re willing to meet with you to review content,
especially people in higher-level roles. For example, if you’re pulling in a Level 8 or 9 person, don’t expect
to get more than 30 minutes of their review time total for the entire project. You basically get one shot with
them and that’s it. Because of this, you want to stagger your reviews so that the higher-ups review content
only after the lower-levels have ironed out all of the issues.

4. Reviewing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 520

To layer this review process, start the review at the product team and expand out from there. After you get
the engineers to review the content, review it with the PM, then the partner engineers, then any other
stakeholders (e.g, support groups), then business development, and finally any executives if the content
requires it. You might not need to include all these groups, but include at least several as appropriate. The
review process should look somewhat like this:

Review 1 (Engineering)

Review 2 (Product Mgmt)

Review 3 (Partner Engineering)

Revision 1

Revision 2

Revision 3

Review 4 (Other stakeholders) Revision 4

The review process is iterative. After each review, incorporate the edits before the next review.

I expand more on this staggered approach in Processes for reviewing documentation (p. 764).

Bring a list of questions

During each review, bring a list of questions that you can ask the reviewer. At first, you can let the
reviewers read the content and provide open feedback on any aspect, but as they run out of comments,
bring up the questions in your list. You might find the reviewer has more thoughts about topics from your

4. Reviewing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 521

question list than they originally led on. During later reviews, such as follow-up reviews, the list of questions
can be instrumental in providing purpose and structure to the review meetings. You can even link the
questions to the calendar meeting invite.

During any review session, don’t worry about asking dumb questions. One thing I’ve observed as I get
older is that younger people are anxious about asking dumb questions, while older people simply don’t
care about what others think. Back when I was in grad school and teaching writing composition 101, I
observed this difference between young students and returning adult students. The returning adults
weren’t afraid to stop me mid-sentence and have me re-explain something that they didn’t get, even if it
seemed somewhat basic. The same adult student could ask five questions in a row without thinking twice
about it. Bring that same attitude to doc reviews.

Everyone doesn’t need to review all the content

Another principle to remember is that everyone doesn’t need to review all the content. You’ll have a mix of
technical and conceptual material in the docs. A product manager might not have any feedback on the
code samples but could have a lot to say about the product overview, messaging, and concepts. In
contrast, engineers might not have much to say about the product overview and messaging, but they could
have a lot of comments on the code samples.

If you can highlight different parts of the content and ask reviewers to specifically look at those sections,
your review meetings will be shorter and more focused. You’ll have better results and won’t waste your
time having people read content that they will have little input on. This suits the idea of shorter, more
targeted review meetings.

Best days and times to review content

It might look like you have a full week to schedule people for reviews, but there are optimal days and times
to review content. At all costs, avoid Monday mornings. During this time, people are still recovering from
the weekend and are inundated with email from people working in other time zones. People in other time
zones (India, Australia, Europe) have already been operating for a full day (sending emails, raising issues,
and generally working), so if you’re meeting with someone in the Pacific time zone, on Monday morning
they’re slogging through email, issues, and other tasks surfaced by these other groups. Also, people are
generally grumpy on Monday mornings (still not in the rhythms of work), and if they already dislike reading
and reviewing documentation, by combining the Monday morning with this doc review meeting, they might
come across as cold and disinterested.

Another time to avoid is Friday afternoon. By this time, people are usually checked out mentally for the
week. From about 2 pm onward on Fridays, it gets quiet at companies. Some people have already
completed the week (especially people in time zones that are a day ahead). Additionally, some people leave
early for weekend trips or other engagements, or they’re just tired from a week of work. The absolute worst
thing you can do is schedule a 4 pm Friday meeting for an hour. People will hate you for it.

Another time to avoid is lunchtime. Scheduling a meeting from 12-1 pm is considered somewhat rude,
even if people don’t eat lunch with anyone. Many people do have lunch engagements and prefer to spend
this time interacting socially, but even for loners or workaholics who prefer to eat at their desks, they
usually want a little personal time to relax and be idle. By booking their lunchtime, you incur their
displeasure (which you’ll sense from their tone and attitude during the review).

That leaves you Monday afternoons to Friday mornings. I’ve found that engineers typically prefer to review
docs in the afternoons rather than the mornings. During the mornings, engineers tend to be more focused
on coding and have more energy for work; they don’t want to be sidetracked with doc reviews during their
most optimal coding time. Instead, the early afternoon works much better, when they’ve accomplished
some coding work and are ready to decompress a bit.

4. Reviewing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 522

Also, be considerate of people in other time zones. If someone is in Australia, you might only have a three-
hour window of overlap to catch both you and the reviewer during business hours. Avoid the temptation to
conduct a meeting after hours. You might think that to get time on a person’s schedule in India, you’ll need
to join a 7 pm meeting. After you do this several times, wait for burnout to set in. I’ve seen it happen
multiple times. A writer starts accommodating India time zones for doc reviews (because it seems to be the
only way to make progress in the doc reviews), and a few months later, this same writer transitions to
another team.

Likewise, if someone is in another time zone, don’t schedule them outside of their regular business hours.
People rarely shift their schedules to review documentation. In a worst-case scenario, the only overlap
might be one hour during the early morning, from 8 am to 9 am. If so, this is better than meeting outside of
work. However, if this is the only window of time, rest assured that every other team who wants to meet
with this person will also be scheduling meetings during that window. In short, if you have to review docs
across problematic time zones, plan far ahead for this.

For impossibly busy schedules, ask the reviewer to indicate the time

Another challenge is dealing with reviewers who have impossibly busy schedules (especially common for
higher-level people). If the reviewers don’t have any gaps in their schedule, ask them when a good time
would be. A lot of people fill their schedules with recurring meetings that make them appear to be much
busier than they are. They might have meetings on their schedule that they never attend. Some will carve
out big chunks of time and label them DNS (for “Do Not Schedule”) because they need to have some time
to actually work. Politely ask someone when a good time would be to review a doc, letting them know your
publishing deadlines and timeframes. They might allocate time during their DNS block.

4.1 Schedule the reviews in a staggered timeframe
Now that you’re familiar with the general strategies for reviewing docs, it’s time to act. See if you can set up
all meetings at once, building toward your deadline. For example, suppose the deadline to publish is in two
weeks, and you want to get input from four groups: Engineering, Product Management, Partner
Engineering, and other stakeholders. This means you need to schedule 4 meetings. Give yourself time in
between to make the edits. Set up meetings like this:

• Monday afternoon - Engineering doc review
• [incorporate edits]
• Thursday - Product Mgmt doc review
• Monday afternoon - Partner Engineering doc review
• [incorporate edits]
• Thursday - Other stakeholders doc review
• [incorporate edits]
• Publish docs!!!

Let them know that they’ll have time to read the doc during the meeting.

How to conduct the review session

During the review session, start by telling everyone that you’ll give them 20 minutes to review the doc. Then
after 20 minutes, ask for general feedback. For example, ask, “Does anyone have any general feedback?”
Usually, a few people will start out. Don’t steer the discussion just yet. Take notes and allow the reviewers
to direct the focus and flow of their feedback. You don’t want to bias their perspective or fill them with
ideas that they didn’t have.

4. Reviewing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 523

As reviewers list out some issues, don’t attempt to defend or counter any of their points (at least not at
first). You are in listening mode. Nod your head, periodically summarize what they’re saying to show that
you understand, and take notes. If you have multiple reviewers, they can check each other’s assertions and
provide pushback if they disagree.

If reviewers do disagree with each other, you don’t need to enter the fray unless they’re missing some key
piece of background information or detail. For example, maybe you included a certain perspective because
the business development (BD) group wanted to pitch the product that way. You could point this out so
that reviewers better understand why you took the approach you did. But overall, adopt an attitude of
listening. You asked for their feedback. You’re not defending a dissertation.

During the meetings, keep on the lookout for quiet people, and ask them questions to give them an
opportunity to share their perspectives. Oftentimes, meetings are dominated by more extroverted, vocal
types who have a lot of opinions. Introverts might stay quiet because that’s just how they roll, even if they
have more insightful things to say than the extroverts filling the air with their sound waves.

When you spot a quiet person, ask them politely for their input. For example, “Sam, what’s your opinion on
this?” You’ll find that either (1) they’re quiet because they actually don’t have an opinion, in which case
they’ll usually just agree with what everyone else is saying. Or (2) they may start to express some feedback
that they were holding back, for whatever reason, and it’s actually refreshing and insightful. Look to
balance out the voices in the room.

(By the way, this tip about balancing out the voices in a room applies for all types of meetings, not just doc
review meetings. See Quiet: The Power of Introverts in a World That Can’t Stop Talking for more on
introverts in the workplace.)

If the reviewers run out of questions, bring out your list of questions and start asking your questions one by
one. It’s at this point that you start to control the focus and flow of the meeting. You know the weak spots
and gray areas of your docs better than most reviewers do. Spend time addressing these gray areas, but
only after all reviewers have given their feedback on issues that jumped out to them.

4.2 Incorporate edits
After the meeting, incorporate edits into the documentation. Make a tally of all the changes you made, and
list these changes in the revision so that others can see that their voices were heard and their feedback
was incorporated. When people see that their feedback has been incorporated into the next revision, it
helps them feel that their input and participation in the doc review was worthwhile, and they will be more
likely to provide feedback in the future. If you don’t incorporate their feedback, consider indicating reasons
why in your revision notes. You could always lay the blame at another group. For example, “re combining
the two topics, the partner engineering group said they needed them separate due to access control
issues.”

It’s worth noting that not all feedback is worth incorporating. Sometimes reviewers are wrong, or the notion
they describe during the meeting might have sounded all right when vocalized in the air (and without more
context), but it really doesn’t work when you try to incorporate it. Or you might simply disagree because
you have more product information and a better understanding of partners and use cases than the reviewer
does. You are, after all, the writer. Trust your writer’s instincts.

Tech writers as product aligners

Occasionally you will find that different groups have conflicting perspectives about what the documentation
should say. For example, Engineering might want to be much more hesitant about supporting a feature that
Product Management wants to advertise in a more visible way. Or BD might want you to avoid including

4. Reviewing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 524

https://www.amazon.com/Quiet-Power-Introverts-World-Talking/dp/0307352153

too many technical details, instead of focusing more on a decision-maker audience than an engineering
integrator audience. In contrast, your partner engineers might want you to include more technical details,
even including min and max values that no one knows and which BD doesn’t care about.

Realizations about misalignment between groups is expected during the review process. Reviewing
documentation serves two hidden purposes: (1) it raises awareness about conflicting perspectives on
products, and (2) it forces people to come to an agreement. As a writer, because you’re the one defining
and describing the product, you’re the driving force to create the alignment. Just don’t be surprised when
your doc suddenly spawns a sense of controversy and heated exchange between groups. Sometimes,
that’s what it’s supposed to do. This disagreement has been hiding in the shadows, and now by putting
ideas into writing, you’ve forced the disagreement into the sun — people will have to deal with it.

If you’re really caught in a pickle, don’t try to take sides or promote your own view. Instead, bring the two
parties together in a meeting to hash it out. You might have your own thoughts about the right direction,
and since you control the docs, you can choose the direction you want to go. But it usually doesn’t go well
when tech writers face off against PMs or Engineering in battles like these. You might need to function as a
broker between the two sides, trying to find a compromise that appeases both parties.

Tracking down information

During the reviews, some reviewers might ask you for information that neither you nor the reviewers have.
For example, they might ask you for min/max values of a certain parameter. Part of your job is to track
down this information. If you can’t find it, try this blunt force tactic. Identify a wiki page or code file related
to the question. Then look for the last 5 authors to work on this content (as noted in the version history for
the file). Send an email blast to all five of these people with the question.

They might not have the answer either, but they might suggest where you should go to find the answer.
Perhaps there’s a special group or email list that supports the technology, and you can ask your question
there. This technique works pretty well. As a tech writer, you work across many different groups and roles,
so you should be good at navigating the org chart and using different groups, email lists, office hours, or
other tools to find information.

Reviewing docs is fun and social

Finally, I want to point out that reviewing docs can be one of the more fun and interesting aspects of the
tech writer’s job. You might have been working alone on this doc for weeks, but the review period allows
you to dip your toes into more social waters. You get to meet people, interact, engage in discussions, and
they get to know you and read your work.

It can be exhilarating if they like the docs, and also exhausting. You might get feedback that discourages
you because you’ll need to track down information, rework sections you thought were fine, or address
other large gaps that will require more time and effort than you wanted to spend. Even so, it’s worth it.
Other times, reviewers might have very little to say except praise for a job well done.

When does the review cycle end

The review cycle ends when you release the product, basically. If there’s no release timeframe, it ends
when your number of edits approach zero with each revision. With each review session, there should be
fewer edits to make from subsequent reviewers. At some point, as you’re reading and rereading the docs,
you’ll end up changing only minor cosmetic style and grammar details. When you hit this point
(accompanied by doc nausea), recognize that your changes are no longer moving the needle anymore.
You’ve addressed content accuracy, information about user journeys, and other higher-level concerns.

4. Reviewing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 525

If you ever find yourself changing a period to a semicolon and then back to a period, stop. You’ve hit the
editing wall. No one cares at this point. Also, if your readers are engineers, they probably won’t appreciate
the fine stylistic details you might be tweaking anyway. To move the content to the next level, you need
partner feedback from the actual people using the product.

Next steps
Continue on to 5. Publishing (p. 527), the final step in the writing process.

4. Reviewing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 526

5. Publishing (the writing process)
After you’ve finished the reviews (p. 519) and your deadline is imminent, it’s time to make plans to publish
your docs. Hitting that publish button will fill you with a rush of exhilaration, but before that moment arrives,
you have a few final considerations.

5.1 Understand the larger context where you’re publishing
Hopefully, you already know exactly where the content should be published, as this is something you
planned for when writing the content. But in case not, make sure you don’t just throw another article over
the wall onto your developer portal without integrating the content into the larger context.

Notice that I used integrate instead of add — the former implies more work to make the new content fit
seamlessly into existing content, whereas the latter implies just tacking on the new content without looking
closely at how it fits into the existing content.

Where is the most logical context to integrate the content? Make sure you’re well-read enough in your
content landscape to see the whole and understand the big picture of your docs. One mistake many writers
and engineers make when contributing docs is to focus only on their contribution, without reading more
broadly to understand if their contribution conflicts, repeats, or otherwise clashes with what’s already
published.

If you have a humanities background, you’re probably used to reading long, difficult texts and performing
critical analyses on the content. Don’t abandon those college reading skills in your corporate job. Instead,
use your reading superpower to read through the docs on your developer portal that have a similar theme
to what you’re publishing. For more on this, see Principle 3: Ensure information harmony in the larger
landscape .

5.2 Cross-reference the new content
As you read through the larger context on your developer portal, take note of good places to insert cross-
references to the new content. If there are similar topics, consider adding cross-references in places where
themes overlap. Many times, users search for information and don’t always land on the right topic. They
might have land close to the needed information, based on the keywords they’re searching for, but not on
the right page. (This idea aligns with the whole information scent theory that is part of information
foraging.) Include links to help point them to your new content. Conversely, insert cross-references in your
new content to other pages.

Some systems have tags that define how related articles surface. If you have a system of tags (defined
through a larger taxonomy), make sure your new content has the right taxonomy tags so that it’s visible
and discoverable in the larger system.

5.3 Include a link in your release notes and what’s new
Most developer portals have two sections new content is publicized:

• Release notes. The release notes highlight new features in the APIs and other products that
have been released, often with a link to the accompanying documentation for the feature.

• What’s new in docs. The What’s new in docs section indicates new articles or updates in the
documentation. This list usually covers doc updates only, as these updates can happen
independently of feature releases.

5. Publishing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 527

https://idratherbewriting.com/simplifying-complexity/ensuring-information-harmony-in-the-larger-documentation-landscape.html
https://idratherbewriting.com/simplifying-complexity/ensuring-information-harmony-in-the-larger-documentation-landscape.html
https://www.nngroup.com/articles/information-scent/

Make sure you list and describe your new content using whatever patterns make sense for your developer
portal. Many times, program managers literally copy and paste the content from release notes and what’s
new pages into newsletters that they send out to partners.

Alternatively, you might have a developer relations group or developer marketing that actually has a
newsletter. If so, reach out to the group and let them know you have content they could include in their
next newsletter.

5.4 Add metadata to pages about authors and last-updated
Another task before publishing your new content is to add metadata to the pages about authorship and
date last updated. How you do this depends on your authoring system, but hopefully your authoring/
publishing system supports two essential fields: author and last-updated. These fields might be in YAML
frontmatter if you’re using a static site generator (p. 591), or they could be in more structured fields if using
a CCMS .

Don’t skip adding metadata. Recognize that right now, at the point of release, everyone is excited about
the new content. But it will only be a matter of time before most people forget about this page, before you
move on, before the teams that support the content transition to other projects and parts of the org, or
before the feature itself is sunset, then deprecated.

Others who follow you will need to know who wrote the content and when it was last updated. (There’s
nothing worse than arriving at a new job and not having any history about the content’s accuracy,
freshness, or authorship.) Sometimes the content metadata is automatically tracked through version control
— if so, great. But the version control metadata often supplements more explicit metadata tagging within
the content itself.

5.5 Coordinate the timing of the release
One final consideration is timing. When should you hit that publish button? Usually, you want to coordinate
your timing with the release. After your release goes out, then you publish the documentation. Don’t push
your new documentation out before the release. It sounds like common sense, but this might be harder to
coordinate than it seems.

When I worked at Amazon, for large releases (such as the launch of a new product), there was an elaborate
release schedule and a “war room” set up. The release schedule involved a long series of steps required to
release the feature, such as turning on services, dialing up the visibility of new features in the UI, launching
a general press release and announcement, and more. These release meetings would often start at about 5
am and continue until 9 am. Somewhere in the list of release events was a line item for publishing the
documentation. At that planned time, the release manager would say, “Go ahead and publish the docs
now.”

Our doc publishing process took about 15 minutes to complete, so one time I anticipated my slot a bit early
and jumped the gun by publishing about a half-hour early. Due to some other hiccup, the release manager
actually wanted me to pull back the docs until some other items had been released. I explained that rolling
back the doc release would create all kinds of hassle and havoc, and it wasn’t worth it. But after this
experience, I was careful to wait my turn to publish and to respect the timing and sequence, even if the
publishing task took a long time of just waiting around.

Most doc releases aren’t so formal or coordinated, but you should plug into the release process,
understand the timing and the expectations about when the docs should go live, and follow it.

5. Publishing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 528

https://idratherbewriting.com/blog/what-is-a-dita-content-management-system-ccms/

5.6 Celebrate the exhilaration of publishing
When you actually hit the publish button (or type git push and then press Enter), it can be exhilarating.
After months of work, you execute the final step that makes it live. There’s a rush in publishing. If you’re an
engineer and have not published before, this rush of adrenaline might be a new experience. I feel it every
time I publish a new blog post or article as well. There’s a high associated with sending something out into
the world, contributing to a body of knowledge in a new way. Take time to appreciate this moment. Go
celebrate in some way. Maybe this means getting a fancy caramel latte at a nearby coffee shop or taking a
leisurely stroll around the city at lunch.

After you publish, spend the rest of the afternoon doing something you find rewarding. You’ll be giddy and
feel like the world is full of rainbows and ponies. It’s a natural high not only to publish but to fling that
albatross from your neck. No more review cycles and edits for that content — it’s done and live. You can
move on to other tasks now. You might have been postponing a host of smaller tasks or errands while
focusing on this larger writing project. Now you can take care of those little tasks, or focus on frivolous
ones. Go chat with someone in the breakroom for a while, or post a few tweets on Twitter. Celebrate the
doc release. At most, this high lasts a day or two. Then you return to earth.

5.7 Publicize what you published
After the content is live, you have one more step: publicize what you published. In a documentation
newsletter or report, describe what you’ve recently published or updated in your developer portal, and
send this email to the relevant internal email lists who might be interested.

A good cadence for sending this report is monthly, but you could also send it right after publishing if it’s a
huge release. In a monthly newsletter, I also recommend including some other sections, such as
discussions of doc strategies, roadmap, and metrics. For more information on what to include, see Sending
doc status reports — a tool for visibility and relationship building (p. 792).

If there’s one mistake most tech writers commit, it’s being too quiet about the documentation they work on.
If others don’t know you wrote and published the new content, they might not understand your role, your
contribution to the product release, or your value. Being overlooked leads tech writers to feeling that
they’re second-class citizens, that their contributions are marginal, and other negative attitudes.

The fix is simple: publicize what you publish. Really, you’re a writer. Just write, only instead of docs, write
the meta-docs that explain the details about what you just published. Share your meta-docs in the form of
newsletters, doc reports, meeting notes, or other emails. Repeat this process regularly, and soon everyone
will know you and your contributions.

Next steps
This section covered the writing process, including considerations when publishing. The next section,
Publishing API Docs (p. 530), will go into publishing tools and workflows, focusing less on writing and more
on publishing technology.

5. Publishing (the writing process) PDF last generated: August 27, 2023

Documenting REST APIs Page 529

Chapter 10: Publishing your API
documentation
API documentation often follows a docs-as-code workflow, where the tools to author and publish
documentation align closely with the same tools developers use to write, manage, build, and deploy code.
Docs-as-code involves using lightweight formats such as Markdown, collaborating through Git or other
version control, building your doc site with a static site generator, and deploying it through a continuous
build model, where the build happens on the server when you push commits to a particular branch.

Chapter sections:

Overview for publishing API docs .. 531

Survey of API doc sites .. 536

Design patterns with API doc sites .. 540

Docs-as-code tools.. 551

More about Markdown... 556

Version control systems (e.g., Git) ... 562

Activity: Manage content in a GitHub wiki ... 569

Activity: Use the GitHub Desktop Client .. 577

Activity: Pull request workflows through GitHub.. 586

Static site generators ... 591

Hosting and deployment options ... 602

Hybrid documentation systems ... 607

Using Oxygen XML with docs-as-code workflows .. 612

Blobr: An API portal that arranges your API's use cases as individual products......................... 626

Which tool to choose for API docs — my recommendations .. 633

Jekyll and CloudCannon continuous deployment tutorial ... 637

Case study: Switching tools to docs-as-code ... 645

Tools FAQ... 657

Chapter 10: Publishing your API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 530

Chapter X: Overview for publishing API
docs
As you look for ways to provide value as a technical writer in a highly technical organization, you might find
that you do less direct authoring of technical content and more editing/publishing. You might be guiding
and directing the publishing of technical content that engineers mainly develop. For this reason, I have a
lengthy focus on publishing in this course about documenting APIs.

Why focus on publishing API docs?
The first question about a focus on publishing API documentation might be, why? What makes publishing
API documentation so different from publishing other kinds of documentation such that it would merit its
own section? How and why does the approach with publishing API docs need to differ from the approach
for publishing regular documentation?

With API documentation, you’re no longer in the realm of GUI (graphical user interface) documentation,
usually intended for mainstream end users. A lot of the content for developers is complex and requires a
background not just in programming, but in a specific programming language or framework.

As such, you may find that as a technical writer, you’re in over your head in complexity and as such, you’re
reliant on engineers to write more of the content. You end up playing of a doc tooling and workflow role.

In How API Documentation Fails (published in IEEE Software), Martin Robillard and Gias Uddin
surveyed developers to find out why API docs failed for them. They found that most of the shortcomings
were related to content, whether it was incomplete, inaccurate, missing, ambiguous, fragmented, etc. They
summarized their findings here:

Chapter X: Overview for publishing API docs PDF last generated: August 27, 2023

Documenting REST APIs Page 531

https://ieeexplore.ieee.org/document/7140676/
https://ieeexplore.ieee.org/
https://ieeexplore.ieee.org/

Reasons why docs fail for developers

The problem is that the very people who can fix this content are usually fully engaged in development work.
Robillard and Uddin write,

Perhaps unsurprisingly, the biggest problems with API documentation were also the
ones requiring the most technical expertise to solve. Completing, clarifying, and
correcting documentation require deep, authoritative knowledge of the API’s
implementation. This makes accomplishing these tasks difficult for non-developers
or recent contributors to a project.

So, how can we improve API documentation if the only people who can accomplish
this task are too busy to do it or are working on tasks that have been given a higher
priority? One potential way forward is to develop recommendation systems that can
reduce as much of the administrative overhead of documentation writing as possible,
letting experts focus exclusively on the value-producing part of the task. As
Barthélemy Dagenais and Martin Robillard discovered, a main challenge for evolving
API documentation is identifying where a document needs to be updated.

For example, suppose you identify a high point of developer friction related to poor documentation. Fixing
it might not just be a matter of converting the content into plain language or adding some details about
missing parameters. The required fixes might involve explaining how the parameters interact in the code,

Chapter X: Overview for publishing API docs PDF last generated: August 27, 2023

Documenting REST APIs Page 532

https://ieeexplore.ieee.org/document/7140676/
https://ieeexplore.ieee.org/document/7140676/

how one value gets used by another and how they get mapped into variables that the code iterates
through, etc. Maybe the only person who truly understands the crazy syntax users have to write is the lead
developer.

But guess what? What lead developer is going to have time to figure out docs? He or she is usually heads-
down deep in a complex programming scenario. So the very person who has the knowledge to decompile
and excogitate the needed concepts in the documentation usually isn’t available to do so. But if the
content is beyond the comprehension of generalists, at some point, these SMEs will need to devote some
time to docs. In these scenarios, Robillard and Uddin say the best help would be to reduce the overhead of
the documentation process.

As an editor/publisher, you can help the SME author by accurately identifying the point of confusion, the
area of the doc that needs updating, and provide easy tools for the SME to make the updates. The
engineers can’t be bothered to figure out static site generators or publishing workflows, PDFs, or other doc
publishing tools. By playing a role as an editor/publisher, you can be a valuable contributor to the product
team. This publishing role is why being a doc tools expert is particularly relevant in API documentation
contexts.

Using tools your SME authors want to use to collaborate
If engineers and SMEs will be collaborating on some of the doc content, consider using engineering-centric
tools rather than writing-centric tools. When I first transitioned to API documentation, I had my mind set on
using DITA, and I converted a large portion of my content over to it.

However, as I started looking more at API documentation sites, I didn’t find many DITA-based API doc
sites. It turns out that almost none of the API doc sites listed on Programmable Web even use traditional
tech comm authoring tools.

Despite many advances with single sourcing, content re-use, conditional filtering, and other features in help
authoring tools and content management systems, almost no API documentation sites use them. Why is
that? Why has the development community implicitly rejected tech comm tools and their many years of
evolution?

Granted, there is the occasional HAT, but they’re rare. And it’s even rarer to find an API doc site that
structures the content in DITA.

The short answer is that in API documentation scenarios, more engineers are writing. The content is so
technical, they’re the only ones who understand it. And when engineers write, they’ll naturally gravitate
towards tools and workflows they’re familiar with.

Andrew Davis , a recruiter who specializes in API documentation jobs in the Bay area, told me that
specializing in docs-as-code tools is 100% more advantageous than becoming adept with DITA or some
other traditionally technical-writer-oriented tooling.

Davis knows the market, especially the Silicon Valley market, extremely well. Without hesitation, he urged
me to pursue the static site generator route (instead of DITA). He said many small companies, especially
startups, are looking for writers who can publish documentation that looks beautiful, like the many modern
web outputs.

His response, and my subsequent emphasis on static site generators, led me to understand why traditional
help authoring tools aren’t used often in the API doc space. To make the case even stronger, let me dive
into five main reasons why tech writers use docs-as-code tools in developer documentation spaces:

Chapter X: Overview for publishing API docs PDF last generated: August 27, 2023

Documenting REST APIs Page 533

http://www.synergistech.com/contact_us.html

1. The HAT tooling doesn’t match developer workflows and environments

If devs are going to contribute to docs (or write docs entirely themselves), the tools need to fit their own
processes and workflows. Their tooling is to treat doc as code (p. 551), committing it to version control (p.
562), building outputs from the server, etc. They want to package the documentation in with their other
code, checking it into their repos, and automating it as part of their build process. If you’re hoping for
developers to contribute to the documentation, it’s going to be hard to get buy-in if you’re using a HAT.

Additionally, almost no HAT runs on a Mac. Many developers and designers prefer Macs because they
have a much better development platform (the command line is much friendlier and functional, for
example). If you’re using a PC, you might struggle to install developer tools or to follow internal tutorials to
get set up and test out content.

Even if you could get developers to use a HAT, you’d likely need to buy a license for each contributing
developer. In contrast, docs-as-code tools are often open source and can, therefore, scale across the
company without budgetary funding and approval.

2. HATs won’t generate docs from source

Ideally, engineers want to add annotations in their code and then generate the doc from those annotations.
They’ve been doing this with Java and C++ code through Javadoc (p. 707) and Doxygen (p. 723) for the
past 25+ years (for a comprehensive list of these tools, see Comparison of document generators in
Wikipedia).

Even for REST APIs, there are tools/libraries that will auto-generate documentation from source code
annotations (such as from Java to an OpenAPI spec through Swagger Codegen), but it’s not something
that HATs can do. For more on auto-generating from source, see Auto-generating the OpenAPI file from
code annotations (p. 183).

3. API doc follows a specific structure and pattern not modeled in any HAT

Engineers often want to push the reference documentation for APIs into well-defined templates that
accommodate sections such as endpoint parameters, sample requests, sample responses, and so forth. (I
discuss these reference sections in Documenting API endpoints (p. 114).)

If you have a lot of endpoints, you need a system for pushing the content into standard templates. Ideally,
you should separate the various sections (description, parameters, responses, etc.) and then compile the
information through your template when you build your site. Or you can use a specification such as
OpenAPI (p. 181) to populate the information into a template. You can also incorporate custom scripts.
However, you don’t often have these options in HATs, since you’re mostly limited to what workflows and
templates are supported out of the box.

4. Many APIs have interactive API consoles, allowing you to try out the calls

You won’t find an interactive API console (p. 549) in a HAT. By interactive API console, I mean you enter
your own API key and values and then run the call directly from the web pages in the documentation.
(Flickr’s API explorer provides one such example of this interactivity, as does Swagger UI (p. 218).) The
response you see from this explorers is from your own data in the API.

5. With APIs, the doc is the product’s interface, so it has to be attractive enough to sell the
product.

Most outputs from HATs look dated and old. They look like a relic of the pre-2000 Internet era. (For more
on the dated display, see Tripane help and PDF files: past their prime? from Robert Desprez.)

Chapter X: Overview for publishing API docs PDF last generated: August 27, 2023

Documenting REST APIs Page 534

https://en.wikipedia.org/wiki/Comparison_of_documentation_generators
https://en.wikipedia.org/wiki/Comparison_of_documentation_generators
https://swagger.io/swagger-codegen/
https://www.flickr.com/services/api/explore/?method=flickr.photos.search
http://www.robertdesprez.com/2013/01/18/tripane-help-and-pdfs-time-to-move-on/

With API documentation, often the documentation is the product’s interface — there isn’t a separate
product GUI (graphical user interface) that clients interact with. Because the product’s GUI is the
documentation, it has to be sexy and attractive.

Most tripane help doesn’t make that cut. If the help looks old and frame-based, it doesn’t instill much
confidence with developers evaluating it.

In Flare’s latest release, you can customize the display in pretty significant ways, so maybe it will help end
the dated tripane output’s appearance. Even so, the effort and process of skinning a HAT’s output is
usually drastically different from customizing the output from a static site generator. Web developers will be
much more comfortable with the latter.

A new direction: Static site generators
Based on all of these factors, I decided to put DITA authoring on pause and try a new tool with my
documentation: Jekyll (p. 637). I’ve come to love using Jekyll, which allows you to work primarily in
Markdown, leverage Liquid for conditional logic, and initiate builds directly from a repository.

I realize that not everyone has the luxury of switching authoring tools, but when I made the switch, my
company was a startup, and we had only three authors and a minimal amount of legacy content. I wasn’t
burdened by a ton of documentation debt or cumbersome processes, so I could innovate.

Jekyll is just one documentation publishing option in the API doc space. I enjoy working with Jekyll’s code-
based approach (p. 551), but there are many different tools (p. 591) and publishing options (p. 602) to
explore. That’s what we’ll dive into in this section.

Now that I’ve hopefully established that traditional HATs aren’t the go-to tools with API docs, let’s explore
various ways to publish API documentation. Most of these routes will take you away from traditional tech
comm tools more toward more developer-centric tools.

Video about publishing tools for API docs
If you’d like to view a presentation I gave to the Write the Docs South Bay chapter on this topic, you can
view it here:

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_course_videos.html] to view the content.

Chapter X: Overview for publishing API docs PDF last generated: August 27, 2023

Documenting REST APIs Page 535

https://idratherbewriting.com18/01/19/wtd-south-bay-publish-api-documentation-presentation/

Survey of API doc sites
Rather than approach the topic of publishing prescriptively, let’s begin with some concrete examples and
move towards the formulation of general principles. The following are more than 100 openly accessible
REST APIs that you can browse as a way to look at patterns and examples.

100+ API doc sites
Browse a few of these documentation sites to get a sense of the variety, but also try to identify common
patterns. In this list, I include not only impressively designed docs but also docs that look like they were
created by a department intern just learning HTML. The variety in the list demonstrates the many options
for publishing tools and approaches, as well as terminology. It seems that almost everyone does their API
docs their own way, with their own site, branding, organization, and style.

1. Shopgate API docs
2. Google Places API docs
3. Twitter API docs
4. Flickr API docs
5. Facebook’s Graph API docs
6. Youtube API docs
7. eBay API docs
8. Amazon EC2 API docs
9. Twilio API docs

10. Last.fm API docs
11. Bing Maps docs
12. gpodder.net Web Service docs
13. Google Cloud API docs
14. Foursquare Places API docs
15. Walmart API docs
16. Dropbox API docs
17. Splunk API docs
18. Revit API docs
19. Docusign API docs
20. Geonames docs
21. Adsense API docs
22. Box API docs
23. Amazon API docs
24. Linkedin REST API docs
25. Instagram API docs
26. Google Analytics Management API docs
27. Yelp API docs
28. Lyft API docs
29. Facebook API docs
30. Eventful API docs
31. Concur API docs
32. Paypal API docs
33. Bitly API docs
34. Callfire API docs
35. Reddit API docs
36. Netvibes API docs

Survey of API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 536

https://developer.shopgate.com/
https://developers.google.com/maps/documentation/places/web-service/overview
https://dev.twitter.com/rest/public
https://www.flickr.com/services/api/
https://developers.facebook.com/docs/graph-api/overview
https://developers.google.com/youtube/v3/
https://go.developer.ebay.com/api-documentation
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
https://www.twilio.com/docs/api
https://www.last.fm/api
https://www.microsoft.com/en-us/maps/documentation
http://gpoddernet.readthedocs.io/en/latest/api/
https://cloud.google.com/appengine/docs
https://developer.foursquare.com/places-api
https://developer.walmartlabs.com/
https://www.dropbox.com/developers/documentation
http://dev.splunk.com/restapi
http://www.revitapidocs.com/
https://www.docusign.com/developer-center/documentation
http://www.geonames.org/export/web-services.html
https://developers.google.com/adsense/management/
https://developer.box.com/
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
https://docs.microsoft.com/en-us/linkedin/
https://instagram.com/developer/
https://developers.google.com/analytics/devguides/config/
https://www.yelp.com/developers/documentation
https://developer.lyft.com/docs/overview
https://developers.facebook.com/docs/graph-api
http://api.eventful.com/docs
https://developer.concur.com/docs-and-resources/documentation
https://developer.paypal.com/docs/api/
http://dev.bitly.com/
https://developers.callfire.com/docs.html
http://www.reddit.com/dev/api
https://uwa.netvibes.com/docs/Uwa/html/index.html

37. Rhapsody API docs
38. Donors Choose docs
39. Sendgrid API docs
40. Mailchimp docs
41. Basecamp API docs
42. Smugmug API docs
43. NYTimes API docs
44. USPS API docs
45. NWS API docs
46. Evernote API docs
47. Stripe API docs
48. Parse API docs
49. Opensecrets API docs
50. News API docs
51. CTA Train Tracker API
52. Amazon API docs
53. Revit API docs
54. Citygrid API docs
55. Mapbox API docs
56. Groupon API docs
57. AddThis Data API docs
58. Yahoo Weather API docs
59. Glassdoor Jobs API docs
60. Crunchbase API docs
61. Zendesk API docs
62. Validic API docs
63. Ninja Blocks API docs
64. Pushover API docs
65. Pusher Client API docs
66. Pingdom API docs
67. Daily Mile API docs
68. Jive docs
69. IBM Watson docs
70. HipChat API docs
71. Stores API docs
72. Alchemy API docs
73. Indivo API 2.0 docs
74. Socrata API docs
75. Github API docs
76. Mailgun API docs
77. RiotGames API docs
78. Basecamp API docs
79. ESPN API docs
80. Snap API docs
81. SwiftType API docs
82. Snipcart API docs
83. VHX API docs
84. Polldaddy API docs
85. Gumroad API docs
86. Formstack API docs
87. Livefyre API docs
88. Salesforce Chatter RESt API docs

Survey of API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 537

https://developer.rhapsody.com/
http://data.donorschoose.org/docs/overview/
https://docs.sendgrid.com/
http://kb.mailchimp.com/api/
https://github.com/basecamp/bcx-api/
https://smugmug.atlassian.net/wiki/display/API/Home
http://developer.nytimes.com/docs/read/article_search_api_v2
https://www.usps.com/business/web-tools-apis/track-and-confirm-api.htm
http://www.nws.noaa.gov/mdl/survey/pgb_survey/dev/rest.php
https://dev.evernote.com/doc/
https://stripe.com/docs/api
http://docs.parseplatform.org/rest/guide/
https://www.opensecrets.org/resources/create/apis.php
https://newsapi.org/docs
http://www.transitchicago.com/developers/ttdocs/default.aspx
http://docs.aws.amazon.com/AlexaWebInfoService/latest/
https://docs.synapsepay.com/
http://docs.citygridmedia.com/display/citygridv2/CityGrid+APIs
https://www.mapbox.com/developers/api/
http://partner-api.groupon.com/help/
http://www.addthis.com/academy/addthis-data-api/
https://developer.yahoo.com/weather/
https://www.glassdoor.com/developer/jobsApiActions.htm
http://data.crunchbase.com/
https://developer.zendesk.com/documentation/
https://docs.validic.com/
http://docs.ninja.is/rest/user.html
https://pushover.net/api
https://pusher.com/docs/client_api_guide
https://www.pingdom.com/resources/api
https://www.dailymile.com/api/documentation
https://developers.jivesoftware.com/api/v3/cloud/rest/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/apis/
https://www.hipchat.com/docs/apiv2
https://developer.bigcommerce.com/api/
https://www.ibm.com/watson/alchemy-api.html
http://docs.indivohealth.org/en/2.0/api.html
http://dev.socrata.com/
https://developer.github.com/v3/
https://documentation.mailgun.com/en/latest/index.html
https://developer.riotgames.com/api-methods/
https://github.com/basecamp/bcx-api
http://www.espn.com/apis/devcenter/docs/
https://github.com/mgp25/SC-API/wiki/Snap-API-Documentation
https://swiftype.com/documentation/
http://docs.snipcart.com/api-reference/introduction
http://dev.vhx.tv/docs/api/
http://support.polldaddy.com/api/
https://gumroad.com/api
http://developers.formstack.com/
http://answers.livefyre.com/developers/api-reference/
https://developer.salesforce.com/docs/atlas.en-us.chatterapi.meta/chatterapi/

89. The Movie Database API docs
90. SoundCloud API docs
91. Context.io docs
92. CouchDB docs
93. Smart Home API (Amazon Alexa) docs
94. Coinbase docs
95. Shopify API docs
96. Authorize.net docs
97. Trip Advisor docs
98. Pinterest docs
99. Uber docs

100. Spotify API
101. Trello API
102. Yext API
103. Threat Stack API docs
104. Strava API
105. Plaid API
106. Paymill API
107. Rundown API
108. Zype API
109. Yummyly API
110. Edamam Food APIs
111. Veracode API
112. SAP
113. Sunbird API
114. Dwolla API

Tip: If any of the links fail, just type {product} + api docs into Google’s search, you will likely find the
company’s developer doc site. Most commonly, the API docs are at developer.{company}.com.

Activity: Look for common patterns in API doc sites
In this activity, identify common patterns in API documentation sites.

1. Go the list of 100+ API documentation sites (p. 536).
2. Select about three different APIs (choose any of those listed on the page).
3. Look for several patterns or commonalities among the API doc sites. For example, you might

look for any of the following patterns:

• Structure and templates
• Seamless branding (between docs and the marketing site)
• Abundant code samples and syntax highlighting
• Lengthy pages
• API Interactivity (such as an API Explorer)
• Docs as code tooling

4. Note any non-patterns, such as the following:

• PDF
• Translation
• Video tutorials
• Commenting features

Survey of API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 538

https://developers.themoviedb.org/3/getting-started
https://developers.soundcloud.com/docs
https://docs.context.io/#getting-started
http://docs.couchdb.org/
https://developer.amazon.com/docs/device-apis/alexa-interface.html
https://developers.coinbase.com/api/v2
https://help.shopify.com/api/reference
http://developer.authorize.net/api/reference/index.html
https://developer-tripadvisor.com/content-api/documentation/
https://developers.pinterest.com/docs/getting-started/introduction/
https://developer.uber.com/docs/
https://developer.spotify.com/web-api/
https://developers.trello.com/
http://developer.yext.com/docs/
https://apidocs.threatstack.com/v2/
https://developers.strava.com/
https://plaid.com/docs/
https://developers.paymill.com/API/index
https://rapidapi.com/therundown/api/therundown?endpoint=5ace93eae4b04378c0ca27ba
https://docs.zype.com/reference
https://developer.yummly.com/
https://developer.edamam.com/
https://help.veracode.com/reader/LMv_dtSHyb7iIxAQznC~9w/HmF8Z4cz70Rb2y1p39tWDw
https://help.sap.com/viewer/58f583a7643e48cf944cf554eb961f5b/4.2/en-US
http://docs.sunbird.org/latest/apis/
https://docs.dwolla.com/#introduction

• Multiple outputs by role

5. Make some notes in an API log or journal (or share them in the comments below).

In the next section, we’ll look at Design patterns with API doc sites (p. 540). From your notes, look to see if
the patterns I highlight match the ones you observed in the API doc sites you analyzed.

Survey of API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 539

Design patterns with API doc sites
In the previous topic, we browsed through a long survey of API doc sites (p. 536) and looked for similar
patterns in their designs. “Design patterns” are common approaches or techniques in the way something is
designed. Although one could probably identify many more patterns, the following design patterns are
common with API doc sites: structure and templates, single seamless website, abundant code examples,
lengthy pages, and interactive API explorers. I explore each of these elements in the following sections.

Pattern 1: Structure and templates
One overriding commonality with API documentation is that they share a common structure, particularly
with the reference documentation around the endpoints. In an earlier section, we explored the common
sections in API endpoint documentation (p. 114).

From a tool perspective, if you have common sections to cover with each endpoint, it makes sense to
formalize a template to accommodate the publishing of that content. The template can provide
consistency, automate publishing and styles, and allow you to more easily change the design without
manually reformatting each section. (Without a template, you could just remember to add the same
sections on each page, but this requires more effort to be consistent.) With a template, you can insert
various values (descriptions, methods, parameters, etc.) into a highly stylized output, complete with
sophisticated styling.

Different authoring tools have different ways of processing templates. With Jekyll (p. 637), a static site
generator, you can create values in a YAML file (p. 276) and loop through them using Liquid to access the
values.

Here’s how you might go about it. In the frontmatter of a page (for example, endpoints.yml), you could list
out the key-value pairs for each section.

resource_name: surfreport
resource_description: Gets the surf conditions for a specific beach.
endpoint: /surfreport

And so on.

You could then use a for loop to cycle through each of the items and insert them into your template:

{% for p in site.endpoints %}
<div class="resName">{{p.resource_name}}</div>
<div class="resDesc">{{p.resource_description}}</div>
<div class="endpointDef">{{p.endpoint}}</div>
{% endfor %}

This approach makes it easy to change your template without reformatting all of your pages. If you decide
to change the order of the elements on the page, or if you want to add new classes or some other value,
you just alter the template. The values remain the same, since they can be processed in any order.

For a more full-fledged example of API templating, see the Aviator theme from CloudCannon . The
sample endpoint for adding books in the Aviator theme looks as follows:

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 540

https://help.shopify.com/themes/liquid/objects/for-loops
https://help.shopify.com/themes/liquid/objects/for-loops
https://github.com/CloudCannon/aviator-jekyll-template

title: /books
position: 1.1
type: post
description: Create Book
right_code: |

~~~ json
{

"id": 3,
"title": "The Book Thief",
"score": 4.3,
"dateAdded": "5/1/2015"

}
~~~
{: title="Response" }

~~~ json
{

"error": true,
"message": "Invalid score"

}
~~~
{: title="Error" }

title
: The title for the book

score
: The book's score between 0 and 5

The book will automatically be added to your reading list
{: .success }

Adds a book to your collection.

~~~ javascript
$.post("http://api.myapp.com/books/", {

"token": "YOUR_APP_KEY",
"title": "The Book Thief",
"score": 4.3

}, function(data) {
alert(data);

});
~~~
{: title="jQuery" }

(The ~~~ are alternate markup for backticks ``` . The notation {: .success } is kramdown syntax
for custom classes.) The theme author created a layout that iterates through these values and pushes the
content into HTML formatting. If you look in the Aviator’s index.html file , you’ll see this code:

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 541

https://kramdown.gettalong.org/
https://github.com/CloudCannon/aviator-jekyll-template/blob/master/index.html

{% assign sorted_collections = site.collections | sort: "position" %}
{% for collection in sorted_collections %}

{% assign sorted_docs = collection.docs | sort: "position" %}
{% for doc in sorted_docs %}

<section class="doc-content">
<section class="left-docs">

<h3>

{{ doc.title }}
{% if doc.type %}

{% endif %}

</h3>
{% if doc.description %}
<p class="description">{{doc.description}}</p>
{% endif %}
{{ doc.content | replace: "<dl>", "<h6>Parameters</h6><dl>" }}
</section>
{% if doc.right_code %}
<section class="right-code">

{{ doc.right_code | markdownify }}
</section>
{% endif %}

</section>
{% endfor %}

{% endfor %}

This code uses for loops in Liquid scripting to iterate through the items in the docs collection and
pushes the content into the HTML styles of the template. The result looks like this:

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 542

https://help.shopify.com/themes/liquid/basics
https://tangerine-lemon.cloudvent.net/
https://tangerine-lemon.cloudvent.net/

Note that this kind of structure is really only necessary if you have a lot of different endpoints. If you only
have a handful, there’s no need to automate the template process.

I provided details with Jekyll only as an example. Many of the web platforms and technologies used for API
documentation implement a similar templating approach.

When I worked at Badgeville, a gamification startup, we published using Drupal. We had a design agency
construct a highly designed template in Drupal. To publish the API reference documentation, engineers
wrote a custom script that generated the content from a database into a JSON file that we then imported
into Drupal. The import process populated various fields in the Drupal template.

The resulting output was an eye-popping, visually appealing design. To achieve that kind of style in the UX,
it would have certainly required a lot of custom div tags to apply classes and other scripts on the page. By
separating the content from the template format, we could work with the content without worrying about
the right style tags and other formatting. As you look for documentation tools, keep in mind the need to
templatize your API reference documentation.

Although it can be fun to create your own templates (if you like to tinker with doc tools), you can probably
already see problems related to custom templates. The templates are entirely arbitrary, with terms and
structure based on the designer’s perceived needs and styles. If you write documentation to fit a specific
template, what happens when you want to switch themes or products? You’d have to create new
templates that parse through the same custom frontmatter. It’s a lot of custom coding.

Given that REST APIs follow similar characteristics and sections, wouldn’t it make sense to create a
standard in the way APIs are described, and then leverage tools that parse through these standard
descriptions? Yes! That’s what the OpenAPI specification is all about. Earlier in this course, I explained
several REST API description formats (p. 180) and then launched into an extensive tutorial for the OpenAPI
specification (p. 272). I provided a tutorial for reading the OpenAPI specification using Swagger UI (p. 218),
along with an activity to create your own Swagger UI (p. 222).

My point here is that you shouldn’t be overwhelmed by the coding challenges around creating your own
API templates. The Aviator theme shows one custom approach, and I highlight it here with code samples to
demonstrate the complexity and custom-nature of defining your own templates. But this isn’t the only
approach nor is it even the recommended approach.

Pattern 2: A single seamless website
Many API doc sites provide one integrated website to present all of the information. You usually aren’t
opening help in a new window, separate from the other content. The website is branded with the same look
and feel as the product. Here’s an example from Yelp:

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 543

I hinted at this earlier (in Introduction to REST API documentation (p. 22)), but with API documentation,
there usually isn’t a GUI (graphical user interface) that the documentation complements. In most cases, the
API documentation itself is the interface that users navigate to use your product. As such, users will expect
more from it.

One of the challenges in using documentation generated from OpenAPI and Swagger (p. 181) or some
other document generation process is figuring out how to integrate it with the rest of the site. Ideally, you
want users to have a seamless experience across the entire website. If your endpoints are rendered into
their own separate view, how do you integrate the endpoint reference into the rest of the documentation?

If you can integrate the branding and search, users may not care. But if it feels like users are navigating
several sites that are poorly cobbled together, the UX experience will be somewhat fragmented.

Think about other content that users will interact with, such as marketing content, terms of service,
support, and so on. How do you pull together all of this information into a single site experience without
resorting to an overbloated CMS or some other web framework?

The reality is that most API documentation sites are custom-designed websites that blend seamlessly with
the other marketing content on the site because your API doc must sell your API. As a website platform
(rather than a tripane help output), you can leverage all the HTML, CSS, and JS techniques available in
building websites. You aren’t limited to a small subset of available tools that are allowed by a particular
help authoring tool; instead, you have the whole web landscape and toolset at your disposal.

This open invitation to use the tools of the web to construct your API doc site is both a benefit and a
challenge. A benefit because, for the most part, there’s nothing you can’t do with your docs. You’re only
limited by your lack of knowledge about front-end coding. But it’s also a challenge because many of the
needs you may have with docs (single sourcing, PDF, variables, and more) might not be readily available
with most website tooling.

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 544

https://www.yelp.com/developers/documentation
https://www.yelp.com/developers/documentation

Pattern 3: Abundant code samples
More than anything else, developers love code examples (p. 464), and the abundance of syntax-
highlighted, properly formatted code samples on API doc sites constitutes a design pattern. Usually, the
more code you can add to your documentation, the better. Here’s an example from Evernote’s API:

James Yu at Parse gives the following advice:

Liberally sprinkle real world examples throughout your documentation. No developer
will ever complain that there are too many examples. They dramatically reduce the
time for developers to understand your product. In fact, we even have example code
right on our homepage. (Designing Great API Docs)

For code samples, you’ll want to incorporate syntax highlighting. The syntax highlighter colors different
elements of the code sample appropriately based on the programming language. There are many syntax
highlighters that you can usually incorporate into your platform. For example, Jekyll uses rouge by
default. Another common highlighter is pygments . These highlighters have stylesheets prepared to
highlight languages based on specific syntax.

Usually, tools that you use for authoring will incorporate highlighting utilities (based on Ruby or Python) into
their HTML generation process. You don’t normally implement the syntax highlighter as a standalone tool.
If you don’t have access to a syntax highlighter for your platform, you can manually add a highlighting
using syntax highlighter library .

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 545

https://dev.evernote.com/doc/articles/note-sharing.php
https://dev.evernote.com/doc/articles/note-sharing.php
https://www.pixelstech.net/article/1331352900-Designing-Great-API-Docs
https://github.com/jneen/rouge
http://pygments.org/
http://code.tutsplus.com/tutorials/quick-tip-how-to-add-syntax-highlighting-to-any-project--net-21099
http://code.tutsplus.com/tutorials/quick-tip-how-to-add-syntax-highlighting-to-any-project--net-21099

Another important element in code samples is to use consistent white space. Use a tool to format the code
with the appropriate spacing and line breaks. You’ll need to format the code based on the conventions of
the programming language. Fortunately, there are many code beautifier tools online to automate that (such
as Code Beautify).

Sometimes development shops have an official style guide for formatting code samples. This style guide
for code might prescribe details such as the following:

• Spaces inside of parentheses
• Line breaks
• Inline code comment styles

For example, here’s the Google JavaScript Style Guide . If developers don’t have an official style guide,
ask them to recommend one online, and then compare the code samples against the guidelines in it. I dive
more into code samples in Code samples and tutorials (p. 464).

Pattern 4: Lengthy pages
One of the starkest differences between regular end-user documentation and developer documentation is
that developer doc pages tend to be much longer. Why are the pages longer? In How API Documentation
Fails (published in IEEE Software , Martin Robillard and Gias Uddin looked at common reasons why
developers had severe problems with API documentation. In addition to incompleteness, ambiguity, and
other reasons, the researchers also found that “fragmentation” was cited as a common issue (which is
more related to the presentation of content than the content itself).

Robillard and Udin explain:

When the respondents had to click through multiple pages of an API document to
learn the functionality and use of an API element, they found the separation of the
descriptions at such a micro level to be unnecessary.

Developers in their survey said they “had difficulty navigating through the myriad pages in an API document
to find information,” with one respondent explaining:

Fragmented documentation I find really difficult to use, where you have to have 10s
of clicks through links to find the information you need, and page after page to read.

If you’re using an information model in your documentation that chunks information, make sure your
presentation to the user doesn’t fragment the content into too many discrete pieces (as I wrote about in
Does DITA Encourage Authors to Fragment Information into a Million Little Pieces?).

James Yu at Parse also echoes similar feedback about fragmentation. He says,

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 546

https://codebeautify.org/javaviewer
http://google.github.io/styleguide/javascriptguide.xml
https://ieeexplore.ieee.org/document/7140676/
https://ieeexplore.ieee.org/document/7140676/
https://ieeexplore.ieee.org/
https://ieeexplore.ieee.org/
https://idratherbewriting.com13/04/22/does-dita-encourage-authors-to-fragment-information-into-a-million-little-pieces/

It’s no secret that developers hate to click. Don’t spread your documentation onto a
million different pages. Keep related topics close to each other on the same page.

We’re big fans of long single page guides that let users see the big picture with the
ability to easily zoom into the details with a persistent navigation bar. This has the
great side effect that users can search all the content with an in-page browser
search.

A great example of this is the Backbone.js documentation, which has everything at
your fingertips. (Designing Great API Docs)

The Backbone.js documentation takes this length to an extreme, publishing everything on one page:

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 547

https://www.pixelstech.net/article/1331352900-Designing-Great-API-Docs
http://backbonejs.org/
http://backbonejs.org/

For another example of a long page, see the Reddit API:

Why do API doc sites tend to have such lengthy pages? Here are a few reasons:

• Provides the big picture: As Yu indicates, single-page docs allow users to zoom out or in
depending on the information they need. A new developer might zoom out to get the big picture,
learning the base REST path and how to submit calls. But a more advanced developer already
familiar with the API might need only to check the parameters allowed for a specific endpoint.
The single-page doc model allows developers to jump to the right page and use Ctrl+F to locate
the information.

• Many platforms lack search: A lot of the API doc sites don’t have good search engines. Many
lack built-in search features altogether. This is partly because Google does such a better job at
search, the in-site search feature of any website is often meager by comparison. Also, some of
the other document generator and static site generator tools don’t have search (neither did
Javadoc). Without search, you can find information by creating long pages and using Ctrl+F.

• Everything is at your fingertips: If the information is chunked up into little pieces here and there,
requiring users to click around constantly to find anything (as is often the case with DITA’s
information model), the experience can be like playing information pinball. As a general
strategy, you want to include complete information on a page. If an API resource has several
different methods, splitting them out into separate pages can create findability issues. See Single
Page Docs: Stop the Click Insanity by Brandon Philips for more. Sometimes it makes sense to
keep all related information in one place, with “everything at your fingertips.” This is the approach
the authors of the OpenAPI spec on GitHub took — one endless page, with the ability to use
Ctrl+F to jump around easily.

• Today’s navigation controls are sophisticated: Today there are better navigation controls
today for moving around on long pages than there were in the past. For example, Bootstrap’s
Scrollspy feature dynamically highlights your place in the sidebar as you’re scrolling down the
page. Other solutions allow collapsing or expanding of sections to show content only if users
need it.

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 548

https://www.reddit.com/dev/api
https://www.reddit.com/dev/api
https://idratherbewriting.com13/04/22/does-dita-encourage-authors-to-fragment-information-into-a-million-little-pieces/
https://idratherbewriting.com13/04/22/does-dita-encourage-authors-to-fragment-information-into-a-million-little-pieces/
https://www.youtube.com/watch?v=rXcdTYuxwys
https://www.youtube.com/watch?v=rXcdTYuxwys
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md
http://getbootstrap.com/docs/4.0/components/scrollspy/
http://getbootstrap.com/docs/4.0/components/scrollspy/

Usually the long pages on a site are the reference pages. Personally, I’m not a fan of listing every endpoint
on the same long page. Long pages also present challenges with linking as well. However, I do tend to
create lengthier pages in API doc sites than I typically see in other types of documentation.

Pattern 5: API Interactivity
A recurring feature in many API doc publishing sites is interactivity with API calls. Swagger UI ,
Readme.com , Apiary , and many other platforms allow you to try out calls and see responses directly
in the browser.

For APIs not on these platforms, wiring up an API Explorer is often done by engineers. Since you already
have the API functionality to make calls and receive responses, creating an API Explorer is not usually a
difficult task for a UI developer. You’re just creating a form to populate the endpoint’s parameters and
printing the response to the page.

Here’s a sample API explorer from Watson’s AlchemyLanguage API that uses Swagger or OpenAPI (p.
181) to provide the interactivity.

Are API explorers novel, or instructive? If you’re going to be making a lot of calls, there’s no reason why
you couldn’t just use curl (p. 80) or Postman (p. 71) (particularly the Postman Run Button (p. 382)) to quickly
make the request and see the response. However, the API Explorer embedded directly in your
documentation provides more of a graphical user interface that makes the endpoints accessible to more
people. You don’t have to worry about entering the right syntax in your call — you just have to fill in the
blanks.

However, API Explorers tend to work better with simpler APIs. If your API requires you to retrieve data
before you can use a certain endpoint, or if the data you submit is a JSON object in the body of the post, or
you have some other complicated interdependency with the endpoints, the API Explorer might not be as
helpful. Nevertheless, it is a design pattern to provide this kind of interactivity in API documentation.

If your users log in, you can store their API keys and dynamically populate the calls and code samples with
API keys. The API key can most likely be a variable that stores the user’s API key. This API-key feature is
provided with sites like Readme.com .

However, if you store customer API keys on your site, this might create authentication and login
requirements that make your site more complex to create. If you’re creating this experience in a custom
way, you’ll probably need the help of a front-end designer and web developer.

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 549

https://swagger.io/tools/swagger-ui/
https://readme.com/
https://apiary.io/
https://watson-api-explorer.mybluemix.net/apis/alchemy-language-v1#!/Authors/get_html_HTMLGetAuthors
https://watson-api-explorer.mybluemix.net/apis/alchemy-language-v1#!/Authors/get_html_HTMLGetAuthors
https://watson-api-explorer.mybluemix.net/apis/alchemy-language-v1#!/Authors/get_html_HTMLGetAuthors
https://readme.com/

Some non-patterns in API doc sites
Finally, I’d like to briefly mention some non-patterns in API documentation. With many API documentation
sites, you rarely see any of the following:

• Video tutorials
• PDFs
• Commenting features
• Localization
• Single sourced outputs for different roles

These might even be considered “non-patterns” in API doc sites. By non-patterns, I’m not saying these
elements aren’t a good idea, but generally they aren’t emphasized as primary requirements in API
documentation. If you get pressure to provide these outputs as part of your documentation requirements,
look around to see how other API doc sites deliver it. Their frequent omission might inform your own
decision and provide some support to make a case for or against the requirement.

Design patterns with API doc sites PDF last generated: August 27, 2023

Documenting REST APIs Page 550

Docs-as-code tools
One of the first considerations to make when you think about API doc tooling is who will be doing the
writing. If technical writers will create all the documentation, the choice of tools may not matter as much.
But if developers will be contributing to the docs, it’s generally advantageous to integrate your authoring
and publishing tools into the developer’s toolchain and workflow. Developer-centric tools for
documentation are often referred to as docs-as-code tools. Docs-as-code tools are much more common
than traditional help authoring tools (HATs) with API documentation.

Integrating into engineering tools and workflows
Riona Macnamara, a technical writer at Google, says that several years ago, internal documentation at
Google was scattered across wikis, Google Sites, Google Docs, and other places. In internal surveys at
Google, many employees said the inability to find accurate, up-to-date documentation was one of their
most significant pain points. Despite Google’s excellence in organizing the world’s external information
online, organizing it internally proved to be difficult.

Riona says they helped solve the problem by integrating documentation into the engineer’s workflow.
Rather than trying to force-fit writer-centric tools onto engineers, they fit the documentation into developer-
centric tools. Developers now write documentation in Markdown files in the same repository as their code.
The developers also have a script to display these Markdown files in a browser directly from the code
repository.

The method quickly gained traction, with hundreds of developer projects adopting the new method. Now
instead of authoring documentation in a separate system (using writer-centric tools), developers simply add
the doc in the same repository as the code. This location ensures that anyone who is using the code can
also find the documentation. Engineers can either read the documentation directly in the Markdown source,
or they can read it displayed in a browser.

If you plan to have developers write, definitely check out Riona Macnamara’s Write the Docs 2015
presentation: Documentation, Disrupted: How two technical writers changed Google engineering culture
.

What docs-as-code tools means
Having developers write or contribute to documentation should inform your tool choice with API
documentation. If you plan to involve developers in writing and editing, you’ll naturally choose more of a
docs-as-code tools approach. Docs-as-code means to treat docs just like developers treat code. To treat
docs like code generally means doing some of the following:

• Working in plain text files (rather than binary file formats like Adobe FrameMaker or Microsoft
Word).

• Using an open-source static site generator like Sphinx (p. 596), Jekyll (p. 592), or Hugo (p.
594) to build the files locally through the command line (rather than using a commercial program
such as FrameMaker or Word).

• Working with files through a text editor such as Atom or Sublime Text (rather than relying on
commercial tools with proprietary, closed systems that function like black boxes).

• Storing docs in a version control repository (usually a Git repo) similar to how programming
code is stored (rather than keeping docs in another space like SharePoint or a shared drive); also
if appropriate, potentially storing the docs in the same repository as the code itself.

• Collaborating with other writers using version control such as Git to branch, merge, push,
and pull updates (rather than collaborating through large content management systems or

Docs-as-code tools PDF last generated: August 27, 2023

Documenting REST APIs Page 551

https://www.youtube.com/embed/EnB8GtPuauw

SharePoint-like check-in/check-out sites).
• Automating the site build process with continuous delivery to build the web output from the

server when you update a particular branch (rather than manually publishing and transferring files
from one place to another).

• Running validation checks using custom scripts to check for broken links, improper terms/
styles, and formatting errors (rather than spot checking the content manually).

• Managing docs using processes similar to engineers (e.g., agile scrum), such as chunking
out doc work in an issue manager (such as JIRA), assigning the issues to bi-weekly sprints, and
reporting to stakeholders on the doc work completed (showing demos). (For more on this point,
see Following agile scrum with documentation projects (p. 733).)

In short, treating docs like code means to use the same systems, processes, and workflows with docs as
you do with programming code.

Treating docs like code

Advantages to docs-as-code approaches for docs
Just because you can manage docs like code, should you? What exactly are the advantages of treating
docs like code? Here are a few reasons to embrace docs-as-code tools for documentation.

Collaboration with developers

If you work with developer documentation, chances are you’ll be working on a wide variety of deeply
technical topics and will be reliant on engineers to contribute and review the docs. Many times developer
documentation is so complex, only developers can really write and review it. Unless you have a
background in engineering, understanding all the details in programming, server configuration, or other
technical platforms may be beyond your ability to document (without a lot of research, interviewing, and
careful note taking).

Docs-as-code tools PDF last generated: August 27, 2023

Documenting REST APIs Page 552

See my post What technical writing trends will we see in 2018? for a description of how specialization is
forcing technical writers to play more of a generalist role with content.

Additionally, some developers prefer just to write the doc themselves. If a developer is the audience, and
another developer is the writer, chances are they can cut through some of the guesswork about
assumptions, prerequisite knowledge, and accuracy. In short, in some API documentation contexts,
developers write the content. This fact alone is enough to make the case for adopting a docs-as-code
approach.

Most developers are comfortable with Markdown, enjoy being able to work in their existing text editor or
IDE (integrated development environment) to edit content, prefer to collaborate in a Git repo using
branching, merging, and code review tools, and are generally comfortable with the whole code-based
process and environment. By using tooling that is familiar to them, you empower them to contribute and
participate more fully with the documentation authoring and publishing.

Granted, engineers who write documentation often fall prey to the curse of knowledge . That is, the more
they know about a topic, the more assumptions and background information they have getting in the way
of clear communication. Even so, technical writers may not always have the time to write documentation
for engineering topics. In many cases, a development group that has an API might not even have a
technical writer available. Developers might handle everything, from coding to docs.

If tech writers are available, API documentation is usually a collaborative effort between developers and
technical writers. Developers tend to focus more on writing the reference documentation (p. 114), while
technical writers focus more on the conceptual documentation (p. 358). Regardless of the division of labor,
both technical writers and developers tend to work with each other in a close way. As such, docs-as-code
tools become essential.

Continuous delivery

Continuous delivery with docs means rebuilding your output by simply committing and pushing content
into a Git repository, which then detects and change and triggers a build and publishing job. Continuous
delivery greatly simplifies the act of publishing. You can make edits across dozens of pages and commit
your code into your doc repo. When you merge your branch into a gamma or production environment, a
server process automatically starts building and deploying the content to your server. You don’t have to
FTP files to a server or follow some other manual deployment process.

At first, learning the right Git commands might take some time. But after working this way for a few weeks,
these commands become second-nature and almost built into your typing memory. Eliminating the hassle
of publishing and deploying docs allows you to focus more on content, and you can push out updates
quickly and easily. Publishing and deploying the output is no longer a step you have to devote time
towards. Continuous delivery is the killer feature that makes docs-as-code so much more effortless (when
it comes to publishing) compared to other solutions.

Increased collaboration with other contributors

When your tech writing team collaborates in the same Git repository on content, you’ll find a much greater
awareness around what your teammates are doing. Before committing your updates into the repo, you run
a git pull to get any updates from the remote repository. You see the files your teammates are working
on, the changes they’ve made, and you can also more easily work on each other’s content. You can also
use the diffs and commits for metrics.

By working out of the same repository, you aren’t siloed in separate projects that exist in different spaces.
Docs-as-code tools encourage collaboration.

Docs-as-code tools PDF last generated: August 27, 2023

Documenting REST APIs Page 553

https://idratherbewriting.com18/01/02/technical-writing-trends-2018-and-2017-review/
https://idratherbewriting.com07/01/24/the-curse-of-knowledge-the-more-you-know-the-worse-communicator-you-become/

Flexibility and control

Docs-as-code tools give you incredible flexibility and control to adjust to your particular environment or
company’s infrastructure. For example, suppose the localized version of your website requires you to
output the content with a particular URL pattern, or you want to deliver the content with a special layout in
some environments, or you want to include custom metadata to process your files in a particular way with
your company’s authentication or whitelisting mechanisms. With docs-as-code tools, the files are open and
can be customized to incorporate the logic you want. This openness and flexibility can be especially
important if you’re integrating your docs into a website rather than generating a standalone output (see
Pattern 2: A single seamless website (p. 543)).

The docs-as-code tools are as robust as your coding skills allow. At a base level, almost all docs-as-code
tools use HTML, CSS, and JavaScript. So if you are a master with these web technologies, there’s almost
nothing you can’t do.

Further, many static site generators allow you to use scripting logic such as Liquid that simplifies
JavaScript and makes it easier to perform complex operations (like iterating through files and inserting
particular fields into templates). The scripting logic gives you the ability to handle complex scenarios. You
can use variables, re-use content, abstract away complex code through templates, and more.

To read details about switching to docs as code tools, see Case study: Switching tools to docs-as-code (p.
645).

Not just tools, but processes too
Historically, discussions about docs-as-code have centered on tools rather than processes. But I think a
good case can be made for expanding the definition of docs-as-code to involve implementing engineering
processes for managing docs as well. By far the most common approach for software development is agile
scrum. I expand on this topic at length in Following agile scrum with documentation projects (p. 733).

Dealing with more challenging factors
A lot of the docs-as-code solutions aren’t built with robust technical documentation needs in mind.
Suppose you have some of the following requirements:

• Localization
• Content re-use
• Versioning
• Authentication
• PDF

You can often find ways to handle these challenges with non-traditional tools, but it’s not going to be a
push-button experience. It might require some creativity or a higher degree of technical skill and coding.

At one company where I used Jekyll, we had requirements around both PDF output and versioning. We
singled sourced the content into about 8 different outputs (for different product lines and programming
languages). It was double that number if you included PDF output for the same content.

Jekyll provides a templating language called Liquid that allows you to do conditional filtering, content re-
use, variables, and more, so you can fill these more robust requirements. I used this advanced logic to
single source the output without duplicating the content. Other static site generators (like Hugo or Sphinx)
have similar templating and scripting logic that lets you accomplish advanced tasks.

Docs-as-code tools PDF last generated: August 27, 2023

Documenting REST APIs Page 554

To handle PDF with Jekyll, I integrated a tool called Prince , which converts a list of HTML pages into a
PDF document, complete with running headers and footers, page numbering, and other print styling (it
even uses CSS for the styling) You could also use Pandoc to fill simpler PDF requirements. PDF is
possible, just not usually an out-of-the-box feature (except with Sphinx).

You can handle these more challenging factors with non-traditional tools, but it might require more
expertise and creativity.

Conclusion
In the developer documentation space, static site generators dominate the authoring and publishing
landscape. HATs and other traditional technical writing tools aren’t used nearly as much. This focus on
unique, non-traditional publishing tools is why I’ve dedicated an entire section to publishing in this
documentation course.

Docs-as-code tools PDF last generated: August 27, 2023

Documenting REST APIs Page 555

http://www.princexml.com/
https://pandoc.org/
http://www.sphinx-doc.org/en/master/

More about Markdown
Most of the docs-as-code solutions use lightweight markup syntax, often Markdown. So let’s learn a bit
more about Markdown. Markdown is a shorthand syntax for HTML. Instead of using ul and li tags, for
example, you use asterisks (*). Instead of using h2 tags, you use hashes (##). There’s a Markdown tag
for most of the commonly used HTML elements, but not all of them.

Sample Markdown syntax
To get a sense of the Markdown syntax, look at this sample:

Heading 2

This is a bulleted list:

* fireStructuredText item
* second item
* third item

This is a numbered list:

1. Click this **button**.
2. Go to [this site](http://www.example.com).
3. See this image:

![My alt tag](myimagefile.png)

Markdown is meant to be kept simple, so there isn’t a comprehensive Markdown tag for each HTML tag.
For example, if you need figure elements and figcaption elements, you’ll need to use HTML. What’s
nice about Markdown is that if the Markdown syntax doesn’t provide the tag you need, you can just use
HTML.

Development by popular demand versus by committee
John Gruber, a blogger, created Markdown as a way to simplify HTML (see his Markdown documentation
here). Others adopted it, and many made modifications to include the syntax they needed. As a result,
there are various “flavors” of Markdown, such as Github-flavored Markdown , Multimarkdown ,
kramdown , CommonMark , and more.

In contrast, DITA is a committee-based XML architecture derived from a committee. There aren’t lots of
different flavors and spinoffs of DITA based on how people customized the tags. There’s an official DITA
spec that is agreed upon by the DITA OASIS committee. Markdown doesn’t have that kind of committee,
so it evolves on its own as people choose to implement it.

Why developers love Markdown
In many development tools (particularly static site generators) that you use for publishing
documentation, many of them will use Markdown. For example, Github uses Markdown. If you upload files
containing Markdown and use an md file extension, Github will automatically render the Markdown into
HTML.

More about Markdown PDF last generated: August 27, 2023

Documenting REST APIs Page 556

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
https://help.github.com/articles/github-flavored-markdown/
http://fletcherpenney.net/multimarkdown/
https://kramdown.gettalong.org/
https://commonmark.org/
https://www.staticgen.com/

Markdown has appeal (especially with developers) for various reasons:

• You can work in text-file formats using your favorite code editor.
• You can treat the Markdown files with the same workflow and routing as code.
• Markdown is easy to learn, so you can focus on the content instead of the formatting.

Why not use a more semantically rich markup?
Why not use a more semantically rich markup language like DITA? Although you can also work with DITA in
a text editor, it’s a lot harder to read the code with all the XML tag syntax. For example, look at the tags
required by DITA for a simple instruction about printing a page:

<task id="task_mhs_zjk_pp">
<title>Printing a page</title>
<taskbody>

<steps>
<stepsection>To print a page:</stepsection>

<step>
<cmd>Go to <menucascade>

<uicontrol>File</uicontrol><uicontrol>Print</uicontrol>
</menucascade></cmd>

</step>
<step>

<cmd>Click the <uicontrol>Print</uicontrol> button.</cmd>
</step>

</steps>
</taskbody>

</task>

Now compare the same syntax with Markdown:

Print a page

1. Go to **File > Print**.
2. Click the **Print** button.

I wrote about this difference in Why developers will never adopt DITA . Granted, the XML example has a
lot more semantic information packed into it, which the Markdown version lacks. So, in theory, the two
don’t have the same content, even though the output is the same. However, unless you’re taking
advantage of the additional semantic information DITA includes, the result is the same.

Although you can read the XML and get used to it, most people who write in XML use specialized XML
editors (like OxygenXML) that make the raw text more readable. Simply by working in XML all day, you get
used to working with all the tags.

But if you send a developer an XML file, they probably won’t be familiar with all the tags, nor the nesting
schema of the tags. Developers tend to be allergic to XML for at least these reasons:

• Most developers usually don’t want to expend energy learning an XML documentation format.
Their brains already hurt from all the programming they have to figure out, so with docs, they
don’t want to add to this technical burden.

• Most developers don’t want to spend a lot of time in documentation in the first place, so when
they do review content, the simpler the format, the better.

More about Markdown PDF last generated: August 27, 2023

Documenting REST APIs Page 557

https://idratherbewriting.com14/09/30/why-developers-will-never-adopt-dita/

In contrast, Markdown allows you to easily read it and work with it in a text editor.

Most text editors (for example, Sublime Text or Webstorm or Atom) have Markdown plugins/extensions
that will create syntax highlighting based on Markdown tags.

Another benefit to Markdown (as opposed to binary tools like Word or Framemaker) is that you can
package up the Markdown files and run them through the same workflow as code. You can run diffs to see
what changed, insert comments, and exert the same control as you do with regular code files. Working
with Markdown files comes naturally to developers. (Granted, you can also work with DITA in plain text files
and manage the content in Git repositories.)

Drawbacks of Markdown
Markdown does have a few drawbacks:

• Limited to HTML tags: You’re pretty much limited to HTML tags. For the times when Markdown
doesn’t offer a shortcut for the HTML, you just use HTML directly. XML advocates like to
emphasize how XML offers semantic tagging (and avoids the div soup that HTML can become).
However, HTML5 offers many semantic tags (such as section , header , footer , etc.), and
even for those times in which there aren’t any unique HTML elements, all XML structures that
transform into HTML become bound by the limits of HTML anyway.

• Non-standard: Because Markdown is non-standard, it can be a bit of a guessing game as to
what is supported by the Markdown processor you may be using. By and large, the Github flavor
of Markdown is the most common dialect used, as it allows you to add syntax classes to code
samples and use tables. Whatever system you adopt, if it uses Markdown, make sure you
understand what type of Markdown it supports.

• White space sensitivity: Markdown is white-space sensitive, which can be frustrating at times. If
you have spaces where there shouldn’t be, the extra spaces can cause formatting issues. For
example, if you don’t indent blank spaces in a list, it will restart the list. As a result, with
Markdown formatting, it’s easy to make errors. Documents usually still render broken Markdown
as valid when they convert it to HTML, making it hard to catch formatting errors.

Markdown and complexity
If you need more complexity than what Markdown or HTML offers, a lot of tools will leverage other
templating languages, such as Liquid or CoffeeScript . Many times these other processing languages
(often like a lightweight JavaScript) will fill in the gaps for Markdown and provide you with the ability to
create includes, conditional attributes, conditional text, and more.

For example, if you’re using Jekyll, you have access to a lot of advanced scripting functionality. You can
use variables, for loops, sorting, and a host of other functionality. For a detailed comparison of how to
achieve the same DITA functionality within Jekyll, see my series Jekyll versus DITA . In this series, I cover
the following:

• Variables and conditional processing
• Creating re-usable chunks (conref)
• Building a table of contents
• Reviewing content
• Producing PDFs
• Creating links

More about Markdown PDF last generated: August 27, 2023

Documenting REST APIs Page 558

https://docs.shopify.com/themes/liquid-documentation/basics
http://coffeescript.org/
https://idratherbewriting.com15/03/23/new-series-jekyll-versus-dita/
https://idratherbewriting.com15/03/26/variables-and-conditional-processing-jekyll-versus-dita/
https://idratherbewriting.com15/04/01/creating-re-usable-chunks-conref-in-jekyll-versus-dita/
https://idratherbewriting.com15/04/02/building-a-table-of-contents-with-dita-versus-jekyll/
https://idratherbewriting.com15/04/13/reviewing-markdown-content/
https://idratherbewriting.com15/04/14/producing-pdfs-in-dita-versus-jekyll/
https://idratherbewriting.com15/04/06/creating-links-in-dita-versus-jekyll/

Activity: Get practice with Markdown
To get a sense of how Markdown works, let’s practice a bit with Markdown.

1. Go to an online Markdown editor (such as Dillinger.io).
2. Create the following:

• Numbered list
• Bulleted list
• Word with bold formatting
• Code sample
• Level 2 heading
• code formatted text

3. If desired, copy over the Markdown content from this surfreportendpoint.md file and look at
the various Markdown tags.

Markdown handles most of the syntax I normally use, but for tables, I recommend simply using HTML
syntax. HTML syntax gives you more control over column widths, which can be important when
customizing tables, especially if the tables have code tags.

Markdown and static site generators
If you’re using a static site generator, see the specific Markdown syntax used. With Jekyll, the default
Markdown is kramdown .

kramdown gives you more capabilities than the basic Markdown. For example, in kramdown, you can add
a class to an element like this:

{: .note}
This is a note.

The HTML will be rendered like this:

<p class="note">This is a note.</p>

kramdown also lets you use Markdown inside of HTML elements (which is usually not allowed). If you add
markdown="span" or markdown="block" attribute to an HTML element, the Markdown content will be

processed as either an inline span or a block div element. For example:

<p markdown="span">This is a **bold** tag</p>.

Normally, the Markdown tags ** wouldn’t be processed because they appear inside of HTML tags. But
through the markdown="span" attribute, kramdown will process the Markdown. The content is processed
as a span , which means no line breaks will appear. If you want to process the content as a div , you
could also do that. For example:

<ul markdown="span">
first section

second section

More about Markdown PDF last generated: August 27, 2023

Documenting REST APIs Page 559

https://dillinger.io/
https://idratherbewriting.com/assets/files/surfreportendpointdoc.md
https://kramdown.gettalong.org/

The content will be processed as two paragraphs rather than one line. See Syntax in the kramdown
documentation for more details.

What about reStructuredText and Asciidoc?
If you’re using lightweight markup, you might also be interested in exploring reStructured Text (rST) or
Asciidoc . reStructuredText is similar to Markdown, in that it offers lightweight wiki-like syntax for more
complex HTML. However, reStructuredText is more semantically rich than Markdown (for example, there’s
a syntax for notes or warnings, and Python classes).

reStructuredText can be extended, follows a standard (rather than having many variants), and gives you
more features specific to writing technical documentation, such as cross-references. See reStructuredText
vs Markdown for documentation for a more detailed comparison. If you’re using Sphinx , you’ll want
to use reStructuredText.

Asciidoc also offers more semantic richness and standardization. Asciidoc provides syntax for tables,
footnotes, cross-references, videos, and more. In fact, Asciidoc “was initially designed as a plain-text
alternative to the DocBook XML schema” (asciidoc-vs-markdown.adoc). As with reStructuredText, you
don’t have the variety of flavors with Markdown, so you can process it more consistently. Asciidoctor is
one static site generator that uses Asciidoc as the syntax. Both reStructuredText and Asciidoc (and other
syntaxes) are supported on GitHub .

Objections to Markdown
Some people object to Markdown due to the inconsistency across Markdown flavors. Given that there are
so many varieties of Markdown (CommonMark , kramdown , Gruber’s original Markdown , Github-
flavored Markdown , Multimarkdown , and more), it’s hard to create a tool to process Markdown
consistently.

Eric Holscher, co-founder of Write the Docs and the Read the Docs platform , argues that Markdown
creates lock-in to a specific tool. He says many authors think Markdown is a good choice because many
tools support it, and they think they can always migrate their Markdown content to another tool later.
However, the differing Markdown flavors make this migration problematic. Eric writes:

The explosion of flavors and lack of semantic meaning leads to lock in. Once you’ve
built out a large set of Markdown documents, it’s quite hard to migrate them to
another tool, even if that tool claims to support Markdown! You have a large set of
custom HTML classes and weird flavor extensions that won’t work anywhere but the
current set of tools and designs.

You also can’t migrate Markdown easily to another markup language (Asciidoc or
reStructuredText), because Pandoc and other conversion tools won’t support your
flavor’s extensions. (Why You Shouldn’t Use “Markdown” for Documentation)

There’s merit to the argument, for sure. You might be able to switch Markdown flavors using a tool such as
Pandoc , or by converting the Markdown to HTML, and then converting the HTML to another Markdown
flavor. However, switching tools will likely lead to a headache in updating the syntax in your content.

Here’s an example. For many years, Jekyll used redcarpet and pygments to process Markdown and
apply code syntax highlighting. However, to increase Windows support, Jekyll switched to kramdown
and rouge at version 3.0. It was supposed to be a seamless backend switch that wouldn’t require any

More about Markdown PDF last generated: August 27, 2023

Documenting REST APIs Page 560

https://kramdown.gettalong.org/syntax.html
http://docutils.sourceforge.net/reStructuredText.html
http://asciidoc.org/
http://zverovich.net/2016/06/16/reStructuredText-vs-markdown.html
http://zverovich.net/2016/06/16/reStructuredText-vs-markdown.html
http://www.sphinx-doc.org/en/stable/
http://asciidoc.org/
https://github.com/asciidoctor/asciidoctor.org/blob/master/docs/_includes/asciidoc-vs-markdown.adoc
http://asciidoctor.org/
https://github.com/github/markup#markups
http://commonmark.org/
https://kramdown.gettalong.org/
https://daringfireball.net/projects/markdown/syntax
https://github.github.com/gfm/
https://github.github.com/gfm/
http://fletcherpenney.net/multimarkdown/
http://www.writethedocs.org/
https://readthedocs.org/
http://ericholscher.com/blog/2016/mar/15/dont-use-markdown-for-technical-docs/
https://pandoc.org/
https://github.com/vmg/redcarpet
http://pygments.org/
https://kramdown.gettalong.org/
https://github.com/jneen/rouge

adjustment to your existing Markdown. However, I found that kramdown imposed different requirements
around spacing that broke a lot of my content, particularly with lists. I wrote about this issue here: Updating
from redcarpet and Pygments to Kramdown and Rouge on Github Pages .

Despite the variations within Markdown, I’m reluctant to switch to a more semantic lightweight syntax
because tool support for Markdown in general, following GitHub-flavored Markdown, is still much more
widespread than support for reStructuredText or Asciidoc. kramdown is largely compatible with GitHub-
flavored Markdown — it wouldn’t be that difficult to migrate.

Additionally, developers tend to be familiar with Markdown but not reStructuredText or Asciidoc. If you
want to encourage collaboration with developers, you might encounter more resistance by forcing them to
write in reStructuredText or Asciidoc. Simplicity tends to win out in the end, and Markdown has clear
momentum in the lightweight syntax arena. I imagine that in 10 years, reStructuredText and Asciidoc will be
dwarfed in the same way that RAML (p. 924) and API Blueprint (p. 938) were dwarfed by the OpenAPI spec
(p. 181).

Further, the OpenAPI spec lets you use CommonMark Markdown in description elements, which
might make Markdown a better choice for API documentation. As long as you use the Markdown elements
that are common across most flavors, migration (should it be required at some point) might not be as
painful.

Overall, debates between Markdown, reStructuredText, and Asciidoc are pretty heated. You will find many
for-and-against arguments for each lightweight syntax, as well as debates between XML and lightweight
syntax.

One problem with lightweight syntax is its incompatibility with larger content management systems.
Component content management systems (CCMSs) typically require more structured content such as
DITA. The DITA committee recently approved Lightweight DITA , which will allow you to use GitHub-
flavored Markdown and HTML in your DITA projects (assuming tool vendors support it). So we may see
more convergence of XML tools and Markdown in the years to come. For more details about Lightweight
DITA (LwDITA), see the interview with Carlos Evia on my blog. Carlos is co-chair of the OASIS
committee for LwDITA.

More about Markdown PDF last generated: August 27, 2023

Documenting REST APIs Page 561

https://idratherbewriting.com16/02/21/bug-with-kramdown-and-rouge-with-github-pages/
https://idratherbewriting.com16/02/21/bug-with-kramdown-and-rouge-with-github-pages/
https://commonmark.org/
http://docs.oasis-open.org/dita/LwDITA/v1.0/cnprd01/LwDITA-v1.0-cnprd01.html
https://idratherbewriting.com18/07/23/adventures-of-techie-academic-conversation-with-carlos-evia/

Version control systems (such as Git)
Almost every IT shop uses some form of version control as they develop software code. Version control is
how developers collaborate and manage their work. When you use docs-as-code tools, you’ll probably
also use version control such as Git. Because version control is such an essential element to learn, we’ll
dive more deeply into it here and in upcoming activities. In many ways, mastering Git is more challenging
than learning a particular static site generator such as Jekyll or Hugo.

Plugging into version control
If you’re working in API documentation, you’ll most likely need to plug into your developer’s version control
system to get code. Or you may be creating branches and adding or editing documentation there.

Many developers are extremely familiar with version control, but typically these systems aren’t used much
by technical writers because technical writers have traditionally worked with binary file formats, such as
Microsoft Word and Adobe Framemaker. Binary file formats are readable only by computers, and version
control systems do a poor job in managing binary files because you can’t easily see changes from one
version to the next.

If you’re working in a text file format, you can integrate your doc authoring and workflow into a version
control system. When you do, a whole new world will open up.

Different types of version control systems
There are different types of version control systems. A centralized version control system requires everyone
to check out or synchronize files with a central repository when editing them. This setup isn’t so typical
anymore because working with files on a central server tends to be slow.

More commonly, software shops use distributed version control systems. The most common system is Git
(probably because GitHub provides Git repositories for free on the web) so we’ll be focusing on it here.
Other version control systems include Mercurial, Subversion (SVN), and Perforce. Due to Git’s popularity,
we’ll focus on it exclusively here.

Note that Git is different from GitHub. GitHub provides online repositories and tools for Git. GitHub is a
platform for managing Git projects, with a nice GUI for performing some Git tasks such as pull requests.

Version control systems (such as Git) PDF last generated: August 27, 2023

Documenting REST APIs Page 562

Github is a site that built tooling around Git.

Bitbucket is Altassian’s version of GitHub. Bitbucket lets you use either Git or Mercurial, but most of the
Bitbucket projects use Git. Bitbucket tends to only be used by companies already heavily using Atlassian.

The idea of version control
When you install version control software such as Git and initialize a repository in a folder, an invisible
folder gets added to the repository. This invisible folder handles the versioning of the content in that folder.
(If you want to move the Git tracking to another folder, you can move the invisible git folder to that other
folder.)

When you add files to Git and commit them, Git takes a snapshot of the committed files at that point in
time. When you commit another change, Git creates another snapshot. If you decide to revert to an earlier
version of the file, you just revert to the particular snapshot. These snapshots are the basic idea behind
versioning content.

Basic workflow with version control
There are many excellent tutorials on version control on the web, so I’ll defer to those tutorials for more
details (for example, see Peter Gruenbaum’s Git and GitHub for Writers course on Udemy, with coupon
code IDRATHER for a discount). In short, Git provides several stages for your files.

Here’s the general workflow:

1. You must first add any files that you want Git to track. Just because the files are in the initialized
Git repository doesn’t mean that Git is actually tracking and versioning their changes. Only when
you officially “add” files to your Git project does Git start tracking changes to that file.

2. Any modified files that Git is tracking are said to be in a “staging” area.
3. When you “commit” your files, Git creates a snapshot of the file at that point in time. You can

always revert to this snapshot.

Version control systems (such as Git) PDF last generated: August 27, 2023

Documenting REST APIs Page 563

http://github.com/
http://github.com/
https://bitbucket.org/
https://www.udemy.com/git-and-github-for-writers/?couponCode=IDRATHER

4. After you commit your changes, you can “push” your changes to the master. Once you push your
changes to the master, your own working copy and the master branch are back in sync.

Branching
Git’s default repository is the master branch. When collaborating with others on the same project, usually
people branch the master, make edits in the branch, and then merge the branch back into the master.

If you’re editing doc annotations in code files, you’ll probably follow this same workflow — making edits in
a particular doc branch. When you’re done, you’ll create a pull request to have developers merge the doc
branch back into the master.

Can you collaborate on doc projects in Git with other writers?
My discussion with Git here has been introductory and mostly directed as if you’ll be interfacing with
developers for all your Git interactions. However, if you’re working in a docs-as-code environment, most
likely your entire doc team (e.g., 5-10 writers) might be using a tool such as Jekyll, Hugo, Sphinx, or some
other static site generator, and you’ll be collaborating in the same repo on docs using Git.

Collaborating on docs in Git can be a lot more challenging than it initially seems, especially if you’re
working on the same files. Exactly how much you use Git when collaborating with docs, and in which
scenarios tends to be somewhat fuzzy. For example, I recently received a question from a former colleague
that hints at some of the challenges in collaborating with Git. My colleague writes,

Hi Tom, do you have a recommended article for how a team of writers collaborate in
git? We’ve made the big switch to our new docs pipeline and the biggest challenge
is that we are unable to collaborate in git. A lot of changes and suggestion to
technical documentation is hard to resolve in the git workflow. We are now talking
about keeping the doc in Google docs and then porting to git after approval from the
team and stakeholders. Does that make sense?

It seems that in their switch to Git, they tried to manage all aspects of content development and
collaboration through Git. Note that even if you’re using Git, there is a good reason for initially developing
content in some other platform such as Google Docs or Salesforce Quip . If you’re working together in
a wiki-like way on the initial version of the content, making edits back and forth while the content is in a
high degree of flux, then yes you need a more fluid and flexible platform that won’t involve playing tennis
with Git with various commits and merges. I consider this wiki stage more of a sandbox platform for early
content development, when you’re making radical edits in a highly collaborative way. If you try to do this
purely in Git, you’ll find it stiff and awkward.

When working with developers on content, the developers often prefer to draft it on a wiki (“wiki” tends to
be the universal name for any collaborative platform, such as Google Docs, Quip, Workdocs, or any other
non-published web page platform, regardless of whether it’s actually a wiki). These platforms are much
faster when you want to develop content with comments and replies, and lots of other back and forth.
Developers really aren’t accustomed to managing documentation in Git anyway, and will find dumping and
editing knowledge on a wiki the most common method.

Version control systems (such as Git) PDF last generated: August 27, 2023

Documenting REST APIs Page 564

https://www.google.com/docs/about/
https://www.salesforce.com/form/quip/quip-demo-video/

But as soon as the content is finalized (for a first draft) and ready to be published as a web page with the
rest of the documentation, you can migrate it from the wiki into your doc system. At this point in the
process, the writer takes full control of the content. When you want to gather input from others to make
changes, you might render the page as a PDF and put it into something like Workdocs for easy
annotations (comments and replies and replies to comments, etc.).

As the review finishes and the content is merged in with the other sea of documentation topics, you’ll
probably make your edits directly in the repo, without always pushing the content out for review. At this
point, your doc team will need to decide on the right Git workflow for your team.

Note that there are various workflows that teams might adopt (see 5 types of Git workflow that will help you
deliver better code for some examples). Different teams adopt processes that fit their needs, which is
what’s great about Git. Git is flexible enough that it can be used in a dozen different ways all to achieve a
similar end.

For example, some teams are strong proponents of following a “rebasing” workflow. Rebasing changes the
way Git stores the history of commits by (fictionally) representing the commits as if in chronological order
(rather than merged in from various timelines). This makes it easy to roll back catastrophes. (I’m not a fan of
rebasing, though, as I think it introduces too much complexity and has some problematic scenarios.)

My personal approach is to leave content in the master branch as much as possible. I don’t like
branching every time I have an update. If I’m working on a new page, I’ll set the page as unpublished. If I’m
adding a new section, I might surround the new section with comment tags until ready to publish it.

Only if I’m developing an extensive edit to existing content do I create a branch for the new content. I store
the content in the branch so that I can switch back to master and continue making other updates until I’m
ready to go live with the branch content. Otherwise, if I start overhauling a topic (e.g., Topic A) in
preparation for an upcoming release two weeks away, but then someone says I need to fix some typos in
Topic B immediately, I wouldn’t be able to push Topic B’s edits live without also pushing the unfinished
overhaul of Topic A live as well. To accommodate these scenarios, I store the edits to Topic A in a branch.

With most doc teams, we split the work into different stewardships. For example, John owns Project A,
Sally owns Project B, and Kim owns Project C. It’s rare that we’re each making updates on content that the
other owns. When everyone works on different files, merge conflicts rarely happen. In these scenarios of
divided stewardship, it’s fairly easy to collaborate on docs with your team in Git.

But suppose that you are in fact collaborating with others on the same topics. If John and Sally start
making edits to the same topics in Project A on their local machines, as soon as they push their local
versions to the remote, one of them (the later one) is bound to receive merge conflicts. Merge conflicts are
Git’s way of raising a red flag about the merge — you’re asking Git to make contradictory merges. Two
writers made conflicting updates to the same lines between commits, and now Git wants you to tell it
which changes it should use. You might need to reach out to the other writer to see which updates should
be committed.

When merge conflicts happen, Git removes the conflicted files from the staging area and inserts conflict
markers (<<<<<<< HEAD and >>>>>>> local commit msg) in the problematic places in the files. In
addition to the conflict markers, Atom editor will also highlight these blocks in visibly distinct ways (blue
and purple).

If you run git pull and get a merge conflict, the message from Git looks like this:

CONFLICT (content): Merge conflict in somefile.md
Automatic merge failed; fix conflicts and then commit the result.

Version control systems (such as Git) PDF last generated: August 27, 2023

Documenting REST APIs Page 565

https://aws.amazon.com/workdocs/
https://buddy.works/blog/5-types-of-git-workflows
https://buddy.works/blog/5-types-of-git-workflows

(If you want to get familiar with merge conflicts and scenarios, it’s easy to simulate merge conflicts. Make
edits in the GitHub browser while logged in as one user, and make different edits locally with Git configured
as another user. Then push the local to origin and observe the conflicts.)

When you get a merge conflict, the conflicted files are removed from the merge process and taken out of
the staging area. To see which files have conflicts, run the following:

git status

At this point you have two options for addressing the merge conflicts.

Option 1: Ask the responsible author to resolve the merge conflicts (recommended)

The first option is to identify the author responsible for the merge conflicts and ask him or her to fix them.
Use this method if you didn’t make changes to any of the problematic files and aren’t sure why they are
being flagged as having merge conflicts.

You can look at the change history of the file using a utility called gitk . After you run git status to
identify the files with conflicts, right-click one of the files with conflicts in Atom’s side menu and choose
Copy Project Path. Then run a command such as this:

gitk some-path/myfile.md

In the gitk window that opens up, look to see who made the most recent changes to the file. Ping the
author and ask them to address the conflicts and then push the updates out to the remote. Here’s an
example of the gitk window:

Gitk example window. The commit history of the file is shown in the upper-left corner, along with the author

Version control systems (such as Git) PDF last generated: August 27, 2023

Documenting REST APIs Page 566

https://git-scm.com/docs/gitk

for each commit. The main window shows the changes made for each commit (green is content added; red
is content removed).

While waiting for the author to fix the merge conflict, you can abort your attempted merge with this
command:

git merge --abort

This rolls back the merge. After the author fixes the merge conflict, push in your updates.

Option 2: Resolve the merge conflicts yourself

You can also resolve the merge conflict yourself. Choose this method if you’re implicated in the file’s
history and might be the one responsible for the conflicts. Open up the conflicted files (cmd + T in Atom)
that have the conflict and look for the blue and purple highlighted blocks:

How Atom highlights conflicting commit messages

On the right, Atom notes the blue block that is “their changes” and the purple block that is “our changes.”
In this case, the text “The Pelicans play tonight” is from a commit that someone else made (it’s the commit
made via the GUI). It’s a change we’re pulling into our local version; hence, Atom flags it as “HEAD.” The
“HEAD” is the last commit on the branch that is currently checked out. In contrast, the purple “our
changes” block is our local commit. It’s the change we made in our commit.

If you own the file’s content, simply select which “Use me” block you want to keep (probably “our
changes”). If this isn’t a file you own, choose the “Use me” that relates to “their changes” (the HEAD). You
might also reach out to the author to confirm that you’re selecting the right commit. (You can use gitk to
easily see commits on the file.)

When merge conflicts occur, Git takes the files out of the staging index and requires you to fix the conflict
and re-add the file to the staging area. Then you will need to commit the file:

Version control systems (such as Git) PDF last generated: August 27, 2023

Documenting REST APIs Page 567

add specific files with conflicts that you resolved
git add somefile.html

or add all files
git add .

commit the change
git commit -m 'commit the change'

push your changes
git push

For more information on resolving merge conflicts, see Resolving a merge conflict using the command line
.

Also, note that sometimes Git throws merge conflicts for no apparent reason. For example, change a file
from title case to lower case, and you might throw Git into a bit of confusion. Other times you might see
merge conflicts for reasons no one can figure out — maybe you didn’t make any changes to the files that
it’s flagging as having conflicts. In Git scenarios, there are lots of actors making different commands in
different environments. It can be hard to track down the reasons for conflicts. Just resolve them and move
on.

For more info learning Git overall, see Learning Git . See also this online course on Udemy: Git Learning
Journey - Guide to Learn Git (Version Control) , created by Anna Skoulikari, who you can also find on
Write the Docs Slack .

Activities
With that brief introduction to docs-as-code and version control, let’s move on to two activities that use
Git:

• Activity: Manage content in a GitHub wiki (p. 569)
• Activity: Use the GitHub Desktop client (p. 577)

Version control systems (such as Git) PDF last generated: August 27, 2023

Documenting REST APIs Page 568

https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud
https://www.udemy.com/course/git-learning-journey/
https://www.udemy.com/course/git-learning-journey/
https://www.writethedocs.org/slack/

Activity: Manage content in a GitHub
wiki
In this tutorial, we’ll walk through a publishing workflow with one of the most common developer platforms:
GitHub. When you create a repository on GitHub, the repository comes with a wiki that you can add pages
to. This wiki can be convenient if your source code is stored on GitHub. Although GitHub might not be a
platform where you publish your docs, understanding how to interact with it can be important for
understanding version control (p. 562).

Learning GitHub will allow you to become familiar with the version control workflows that are common with
many docs-as-code tools (p. 551). For this reason, I have a detailed tutorial for using GitHub in this course.
Regardless of whether you use GitHub as a publishing tool, this tutorial will introduce you to Git workflows
with content.

About GitHub Wikis
You could actually use the default GitHub wiki as your doc site. Here’s an example of the Basecamp API,
which is housed on GitHub.

Basecamp API

Unlike other wikis, the GitHub wiki you create is its own repository that you can clone and work on locally.
(If you look at the “Clone this wiki locally” link, you’ll see that it’s a separate repo from your main code
repository.) You can work on files locally and then commit them to the wiki repository when you’re ready to
publish. You can also arrange the wiki pages into a sidebar.

Activity: Manage content in a GitHub wiki PDF last generated: August 27, 2023

Documenting REST APIs Page 569

https://github.com/basecamp/bc3-api
https://github.com/basecamp/bc3-api

With GitHub, you write wiki pages in Markdown syntax. There’s a special flavor of Markdown syntax for
GitHub wikis called Github-flavored Markdown , or GFM. The GitHub Flavored Markdown allows you to
create tables, add classes to code blocks (for proper syntax highlighting), and more.

Because you can work with the wiki files locally, you can leverage other tools (such as static site
generators, or even DITA) to generate the Markdown files if desired. Working locally, you can handle all the
re-use, conditional filtering, and other logic outside of the GitHub wiki. You can then output your content as
Markdown files and commit them to your GitHub repository.

Use Git only to track text files. Don’t start tracking large binary files, such as audio files, video files,
Microsoft Word files, or Adobe PDF files. Version control systems really can’t handle that kind of format
well, and your repo size will increase exponentially. If you use Git to manage your documentation, exclude
these files through your .gitignore file . You might also consider excluding images, as they bloat your
repo size as well.

Limitations with GitHub wikis
GitHub wikis have some limitations:

• Limited branding. All GitHub wikis pretty much look the same.
• Open access on the web. If your docs need to be private, GitHub probably isn’t the place to

store them (private repos, however, are an option).
• No structure. The GitHub wiki pages give you a blank page and allow you to add sections. You

won’t be able to do any advanced styling or more attractive-looking interactive features.

I’m specifically talking about the built-in wiki feature with GitHub, not GitHub Pages . You can use tools
such as Jekyll to brand and auto-build your content with whatever look and feel you want. I explore GitHub
Pages with more depth in the tutorial on Jekyll (p. 637).

Install Git
Before you start working with GitHub, you need to set up Git and install any necessary tools and
credentials to work with GitHub (especially if you’re on Windows).

Mac:

To install Git on a Mac, see Installing on Mac . Once installed, you can use Git in several ways:

• Open the default Terminal application by doing to Applications > Utilities > Terminal.
• Install iTerm , a separate terminal app.
• Use PlatformIO IDE Terminal in Atom (this is my preferred method when working with

projects).

Windows:

On Windows, install Git using the installer here: Git for Windows .

This installer includes a Git BASH terminal emulator that will allow you to use Git and Unix commands from
the terminal.

You can check to see if you have Git already installed by opening a terminal and typing the following:

git --version

Activity: Manage content in a GitHub wiki PDF last generated: August 27, 2023

Documenting REST APIs Page 570

https://help.github.com/articles/github-flavored-markdown/
https://git-scm.com/docs/gitignore
https://pages.github.com/
https://git-scm.com/download/mac
https://www.iterm2.com/
https://atom.io/packages/platformio-ide-terminal
https://atom.io/
https://gitforwindows.org/

Set up automatic GitHub authentication
You can configure Git so that when you push changes to GitHub, you won’t need to type your username
and password each time. See the following topics to set this up:

• Set up Git .
• Generating a new SSH key and adding it to the ssh-agent
• Adding a new SSH key to your GitHub account
• Associating text editors with Git

After you make these configurations, close and re-open your terminal.

GitHub and Git are not the same. Git provides distributed version control (p. 562). GitHub is a platform that
helps you manage Git projects. GitHub also provides a GUI interface that allows you to execute a lot of Git
commands, such as pull requests.

Activity: Create a GitHub wiki and publish content on a sample page
In this section, you will create a new GitHub repo and publish a sample file there.

1. Create a GitHub account at GitHub.com .
2. Go to GitHub and sign in. After you’re signed in, click the + button in the upper-right corner

and select New repository.

Creating a new GitHub repository

3. Give the repo a Repository name, a short Description, select Public, select Initialize the repo
with a README, and then click Create repository. (Don’t worry about selecting the license or
gitignore settings for this activity.)

4. Click the Wiki tab on the top navigation bar of your new repository.
5. Click Create the first page.
6. In the default page (“Home”), insert your own sample documentation content, preferably using

Markdown syntax. Or grab the sample Markdown page of a fake endpoint called surfreport here

Activity: Manage content in a GitHub wiki PDF last generated: August 27, 2023

Documenting REST APIs Page 571

https://help.github.com/articles/set-up-git/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/
https://help.github.com/articles/associating-text-editors-with-git/
http://github.com/
https://github.com/
https://github.com/new
https://github.com/new
https://idratherbewriting.com/assets/files/surfreportendpointdoc.md

and insert it into the page.
7. In the Edit message box, type a description of what you updated (your commit message).
8. Click Save Page.

Notice how GitHub automatically converts the Markdown syntax into HTML and styles it in a readable way.
You could work with this GitHub wiki entirely in the browser as a way for multiple people to collaborate and
edit content. However, unlike other wikis, with GitHub you can also take all the content offline and edit
locally, and then commit your changes and push the changes back online.

Activity: Clone your GitHub repo locally
So far you’ve been working with GitHub in the browser. Now we’ll take the same content and work with it
locally. This is what makes the GitHub wiki unique from other wikis — it’s a Git repo, so you can manipulate
the content the same way as any other Git repo (working locally, pushing, pulling, merging, branching, etc.).

To clone the GitHub repo locally:

1. If you don’t already have Git installed, set it up on your computer. (You can check whether Git is
installed by typing git --version in your terminal or command prompt. See Install Git (p. 570)
for more information on installation.)

2. While viewing your the GitHub wiki in your browser, look for the section that says Clone this wiki
locally (highlighted below). Click the clipboard button. (This copies the clone URL to your
clipboard.)

Clone this wiki locally

The wiki is a separate clone URL than the project’s repository. Make sure you’re viewing your
wiki and not your project. The clone URL will include .wiki .

Activity: Manage content in a GitHub wiki PDF last generated: August 27, 2023

Documenting REST APIs Page 572

https://idratherbewriting.com/assets/files/surfreportendpointdoc.md

In contrast to the “Clone this wiki locally” section, the “Clone in Desktop” button launches the
GitHub Desktop client and allows you to manage the repository and your modified files,
commits, pushes, and pull through the GitHub Desktop client. If you’re interested in using the
GitHub Client of the command line, see this other activity: Activity: Use the GitHub Desktop client
(p. 577).

3. Open your terminal emulator:

• If you’re a Windows user, open the Git BASH terminal emulator, which was installed when
you installed Git .

• If you’re a Mac user, go to Applications > Utilities > Terminal (or launch iTerm , if you
installed it instead).

4. In your terminal, either use the default directory or browse (cd) to a directory where you want to
download your repository.

5. Type the following, but replace the git URL with your own git URL that you copied earlier (it
should be on your clipboard). The command should look something like this:

git clone https://github.com/tomjoht/weatherapi.wiki.git

When you clone a repo, Git will show something like the following:

Cloning into 'weatherapi.wiki'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 9 (delta 0), reused 0 (delta 0), pack-reused 6
Unpacking objects: 100% (9/9), done.

The folder Git creates in the above example is called weatherapi.wiki .

Cloning the wiki gives you a copy of the content on your local machine. Git is distributed version
control software, so everyone has their own copy. When you clone the repo, you create a copy
on your local machine; the version in the cloud on GitHub is referred to as “origin.” Thus, you
have two instances of the content.

More than just copying the files, though, when you clone a repo, you initialize Git in the folder
where you clone the repo. Initializing Git means Git will create an invisible Git folder in that
directory, and Git can start tracking your edits to the files, providing version control. With Git
initialized, you can run pull commands to get updates from the online repository (origin) pulled
down to your local copy. You can also commit your changes and then push your changes
back up to origin.

6. Navigate to the directory where you cloned the repo (either using standard ways of browsing for
files on your computer or via the terminal with cd) to see the files you downloaded. For example,
type cd weatherapi.wiki and then ls (Mac) or dir (Windows) to see the files.

You don’t need to type the full directory name. Just start typing the first few letters and then
press your Tab key to autocomplete the rest.

You might also want to browse to this folder via Finder (Mac) or Explorer (Windows). The folder
also continas an invisible folder called .git . For instructions on making hidden files visible, see
one of the following: Windows or Mac).

Activity: Manage content in a GitHub wiki PDF last generated: August 27, 2023

Documenting REST APIs Page 573

https://desktop.github.com/
https://gitforwindows.org/
https://iterm2.com/
https://support.microsoft.com/en-us/help/14201/windows-show-hidden-files
https://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/

Activity: Push local changes to the remote
1. In a text editor, open the Markdown file you downloaded in the GitHub repository.
2. Make a small change to the content and save it. For example, type your name below the page

title.
3. In your terminal, make sure you’re in the directory where you downloaded the GitHub project.

To look at the directories under your current path, type ls (Mac) or dir (Windows). Then use
cd {directory name} to drill into the folder, or cd ../ to move up a level.

4. See what files have changed:

git status

Git shows the files it’s tracking but which haven’t been added to the commit’s staging area:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working direct
ory)
modified: Home.md

5. Type git add . to add all the files to your staging area. The staging area contains all files that
you want added to your next commit:

git add .

Git doesn’t automatically track all files in the same folder where Git has been initialized. Git tracks
modifications only for the files that have been “added” to Git. By typing git add . or git add

--all , you’re telling Git to start tracking modifications to all files in this directory. You could also
type a specific file name here instead, such as git add Home.md , to just add a specific file
(rather than all files changed) to Git’s tracking.

After you run the git add command, Git adds the files into what’s called the staging area.
These files will be committed when you run git commit .

6. See the changes set in your staging area:

git status

Git responds with a message indicating which files are on-deck to be committed.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: Home.md

The staging area lists all the files that have been added to Git that you have modified in some
way. It’s a good practice to always type git status before committing files because you might
realize that you accidentally added some files you didn’t intend to track (such as large binary
files). If you want to remove this file from the staging area, you can type git reset HEAD

Home.md to unstage it.

Activity: Manage content in a GitHub wiki PDF last generated: August 27, 2023

Documenting REST APIs Page 574

7. Commit the changes:

git commit -m "updated some content"

When you commit the changes, you’re creating a snapshot of the files at a specific point in time
for versioning.

The git commit -m command is a shortcut for committing and typing a commit message in the
same step. It’s much easier to commit updates this way.

If you type git commit only, you’ll be prompted with another window to describe the change.
On Windows, this new window will probably be a Notepad window. Describe the change on the
top line, and then save and close the Windows file.

On a Mac, a new window doesn’t open. Instead, the Vim editor mode opens up within the
terminal. (“vi” stands for visual and “m” for mode, but it’s not a very visual editor.) I don’t
recommend using Vim. If you get stuck in this mode and need to escape, press your Escape key.
Then type q to quit. (See Vim commands here.) Normally, you want an external editor such as
Sublime Text to open from your terminal. See Associating text editors with Git for details.

8. Push the changes to your repository:

git push

Unless you set up automatic GitHub authentication (p. 571), you will be prompted for your GitHub
username and password. (Note that your username is your GitHub login ID, such as “jdoe,” not
your friendly name, such as “John Doe.”)

When you type git push or git pull and don’t specify the branch, GitHub uses the default
branch from origin. The default branch on GitHub is called main . Thus the command actually
passed is git push origin main (which means “push these changes to the remote origin[al]
repository, in the main branch”). Some developers prefer to specify the repository and branch
to ensure they are interacting with the right repositories and branches.

Your terminal window probably looks something like this:

Activity: Manage content in a GitHub wiki PDF last generated: August 27, 2023

Documenting REST APIs Page 575

https://en.wikipedia.org/wiki/Vi
http://www.cs.rit.edu/~cslab/vi.html
https://help.github.com/articles/associating-text-editors-with-git/

Terminal window with git commands

9. Now verify that your changes took effect. Browse to your GitHub wiki repository, refresh the
page, and look to see the changes.

Although there are many options for authoring and publishing tools with developer docs (see staticgen.com
for common docs-as-code tools), at the core of these tools is usually a Git workflow. The Git workflow

can be more powerful and complex than any authoring tool. Interacting with Git might also be key for
interacting with engineering repos to make edits to documentation that appears inside code.

Avoiding merge conflicts when editing online and locally
The visual editor on GitHub.com might be an easy way for subject matter experts to contribute, whereas
tech writers will probably want to clone the repo and work locally. If some people make edits in the browser
while others edit locally, you might encounter merge conflicts. To avoid merge conflicts, always run git

pull before running git push . If two people edit the same content simultaneously between commits,
you will likely need to resolve merge conflicts .

Activity: Manage content in a GitHub wiki PDF last generated: August 27, 2023

Documenting REST APIs Page 576

https://www.staticgen.com/
https://www.staticgen.com/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/

Activity: Use the GitHub Desktop client
Although most developers use the command line when working with version control systems, there are
many GUI clients available that can potentially simplify the process. GUI clients might be especially helpful
when you’re trying to see what has changed in a file since the GUI can quickly highlight and indicate the
changes taking place.

Follow a typical workflow with a GitHub project using GitHub
Desktop
In this tutorial, you’ll use GitHub Desktop to manage the Git workflow.

Rather than working in a GitHub wiki (as you did in the previous GitHub tutorial (p. 569)), you’ll work in a
regular Git repository. This is because GitHub wikis have some limitations when it comes to making pull
requests.

To set up your Git repo using the GitHub Desktop client:

1. First, download and install GitHub Desktop . Launch the app and sign in. (You should already
have a GitHub account from previous tutorials (p. 569), but if not, create one.)

2. Go to Github.com and browse to the repository you created in the GitHub tutorial (p. 569), but
not the wiki. Just go to the main repo. (If you didn’t do the previous activity, just create a new
repository.)

3. While viewing your GitHub repo in the browser, click Clone or download and select Open in
Desktop.

Open in GitHub Desktop

4. Open GitHub Desktop client and go to File > Clone Repository.

Activity: Use the GitHub Desktop client PDF last generated: August 27, 2023

Documenting REST APIs Page 577

https://desktop.github.com/
http://github.com/

5. In the confirmation dialog, select Open GitHub Desktop.app. GitHub Desktop should launch
with a “Clone a Repository” dialog box about where to clone the repository. If desired, you can
change the Local Path.

6. Click the URL tab, and then paste in the clone URL. In the Local Path field, select where you
want the repo cloned. For example:

Selecting paths for the repo in GitHub Desktop

7. Click Clone.
8. Go into the repository where GitHub Desktop cloned the repo (use your Finder or browse the

folders with Finder or Explorer) and either add a simple text file with some content or make a
change to an existing file.

9. Go back to GitHub Desktop. You’ll see the new file you added in the list of uncommitted changes
on the left.

Activity: Use the GitHub Desktop client PDF last generated: August 27, 2023

Documenting REST APIs Page 578

Uncommitted changes shown

In the list of changed files, the green + means you’ve added a new file. A yellow circle means
you’ve modified an existing file.

10. In the lower-left corner of the GitHub Desktop client (where it says “Summary” and
“Description”), type a commit message, and then click Commit to master.

When you commit the changes, the left pane no longer shows the list of uncommitted changes.
However, you’ve committed the changes only locally. You still have to push the commit to the
remote (origin) repository. (“origin” is the alias name that refers to the remote repository.)

11. Click Push origin at the top.

You’ll see GitHub Desktop show that it’s “Pushing to origin.”

If you view your repository online, you’ll see that the change you made has been pushed to the master
branch on origin. You can also click the History tab in the GitHub Desktop client (instead of the Changes
tab), or go to View > Show History to see the changes you previously committed.

Although I prefer to use the terminal instead of the GitHub Desktop GUI, the GUI gives you an easier visual
experience to see the changes made to a repository. You can use both the command line and Desktop
client in combination, if you want.

Activity: Use the GitHub Desktop client PDF last generated: August 27, 2023

Documenting REST APIs Page 579

Create a branch
Now let’s create a branch, make some changes, and see how the changes are specific to that branch.

1. In the GitHub Desktop client, go to Branch > New Branch and create a new branch. Call it
“development” branch, and click Create Branch.

Creating a new branch

When you create the branch, you’ll see the Current branch drop-down menu indicate that you’re
working in that branch. Creating a branch copies the existing content (from the branch you’re
currently in, master) into the new branch (development).

Activity: Use the GitHub Desktop client PDF last generated: August 27, 2023

Documenting REST APIs Page 580

Working in a branch

2. Using Finder or Explorer, browse to the file you created earlier and make a change to it, such as
adding a new line with some text. Save the changes.

3. Return to GitHub Desktop and notice that on the Changes tab, you have new modified files.

New files modified

The file changes show deleted lines in red and new lines in green. The colors help you see what
changed.

4. Commit the changes using the options in the lower-left corner, and click Commit to
development.

5. Click Publish branch (on the top of the GitHub Desktop window) to make the local branch also
available on origin (GitHub). (Remember, there are usually two versions of a branch — the local
version and the remote version.)

6. Switch back to your master branch (using the Branch drop-down option at the top of the GitHub
Desktop client). Then look at your file (in your text editor, such as Sublime text). Note how the file
changes you made while editing in the development branch don’t appear in your master branch.

You usually create a new branch when you’re making extensive changes to your content. For example,
suppose you want to revamp a section (“Section X”) in your docs. However, you might want to publish
other updates before publishing the extensive changes in Section X. If you were working in the same
branch, it would be difficult to selectively push updates on a few files outside of Section X without pushing
updates you’ve made to files in Section X as well.

Through branching, you can confine your changes to a specific version that you don’t push live until you’re
ready to merge the changes into your master branch.

Activity: Use the GitHub Desktop client PDF last generated: August 27, 2023

Documenting REST APIs Page 581

Merge the development branch into master
Now let’s merge the development branch into the master branch.

1. In the GitHub Desktop client, switch to the branch you want to merge the development branch
into. From the branch selector, select the master branch.

2. Go to Branch > Merge into Current Branch.
3. In the merge window, select the development branch, and then click Merge development into

master.

Merging into master

If you look at your changed file, you should see the changes in the master branch.

4. Then click Push origin to push the changes to origin.

You will now see the changes reflected on the file on GitHub.

Activity: Use the GitHub Desktop client PDF last generated: August 27, 2023

Documenting REST APIs Page 582

Merge the branch through a pull request
Now let’s merge the development branch into the master using a pull request workflow. We’ll pretend that
we’ve cloned a repo managed by engineers, and we want to have the engineers merge in the development
branch. (In other words, we might not have rights to merge branches into the master.) To do this, we’ll
create a pull request.

1. Just as you did in the previous section, switch to the development branch, make some updates
to the content in a file, and then save and commit the changes. After committing the changes,
click Push origin to push your changes to the remote version of the development branch on
GitHub.

2. In the GitHub Desktop client, while you have development branch selected, go to Branch >
Create Pull Request.

GitHub opens in the browser with the Pull Request form opened.

Pull request

The left-facing arrow (pointing from the development branch towards the master) indicates that
the pull request (“PR”) wants to merge the development branch into the master branch.

3. Describe the pull request, and then click Create pull request.

4. At this point, engineers would get an email request asking for them to merge in the edits. Play the
part of the engineer by going to the Pull requests tab (on GitHub) to examine and confirm the
merge request. As long as the merge request doesn’t pose any conflicts, you’ll see a Merge pull
request button.

Activity: Use the GitHub Desktop client PDF last generated: August 27, 2023

Documenting REST APIs Page 583

Confirm merge request

5. To see what changes you’re merging into master, you can click the Files changed tab (which
appears on the secondary navigation bar near the top). Then click Merge pull request to merge
in the branch, and click Confirm merge to complete the merge.

6. Now let’s get the updates you merged into the master branch online into your local copy. In
your GitHub Desktop GUI client, select the master branch, and then click the Fetch origin
button. Fetch gets the latest updates from origin but doesn’t update your local working copy with
the changes.

After you click Fetch origin, the button changes to Pull Origin.

7. Click Pull Origin to update your local working copy with the fetched updates.

Now check your files and notice that the updates that were originally in the development branch
now appear in master.

For a more detailed tutorial in making pull requests using the GitHub interface, see Pull request workflows
through GitHub (p. 586). I include an extensive tutorial with pull requests because it will likely be a common
workflow if you are contributing to an open-source project (p. 686).

Managing merge conflicts
Suppose you make a change on your local copy of a file in the repository, and someone else changes the
same file using the online GitHub.com browser interface. The changes conflict with each other. What
happens?

When you click Push origin from the GitHub Desktop client, you’ll see a message saying that the
repository has been updated since you last pulled:

“The repository has been updated since you last pulled. Try pulling before pushing.”

Activity: Use the GitHub Desktop client PDF last generated: August 27, 2023

Documenting REST APIs Page 584

The button that previously said “Push origin” now says “Pull origin.” Click Pull origin. You now get another
error message that says,

“We found some conflicts while trying to merge. Please resolve the conflicts and
commit the changes.”

If you decide to commit your changes, you’ll see a message that says:

“Please resolve all conflicted files, commit, and then try syncing again.”

The GitHub Desktop client displays an exclamation mark next to files with merge conflicts. Open up a
conflict file and look for the conflict markers (<<<<<<< and >>>>>>>). For example, you might see this:

<<<<<<< HEAD
This is an edit I made locally.
=======
This is an edit I made from the browser.
>>>>>>> c163ead57f6793678dd41b5efeef372d9bd81035

(From the command line, you can also run git status to see which files have conflicts.) The content in
HEAD shows your local changes. The content below the ======= shows changes made by elsewhere.

Fix all the conflicts by adjusting the content between the content markers and then deleting the content
markers. For example, update the content to this:

This is an edit I made locally.

Now you need to re-add the file to Git again. In the GitHub Desktop client, commit your changes to the
updated files. Then click Push origin. The updates on your local get pushed to the remote without any
more conflicts.

Conclusion
The more you use GitHub, the more familiar you’ll become with the workflows you need. Git is a robust,
powerful collaboration platform, and there are many commands and workflows and features that you could
adopt for a variety of scenarios. Despite Git’s variety of commands and workflows, most likely the
scenarios you’ll actually use are somewhat limited in scope and learnable without too much effort. Pretty
soon, these workflows will become automatic.

Although we’ve been using the GitHub Desktop client for this exercise, you can do all of this through the
command line, and you’ll probably find it preferable that way. However, the GitHub Desktop client can be a
good starting point as you transition into becoming more of a Git power user.

Activity: Use the GitHub Desktop client PDF last generated: August 27, 2023

Documenting REST APIs Page 585

Pull request workflows through GitHub
In the previous step, Activity: Use the GitHub Desktop Client (p. 577), you used Github Desktop to manage
the workflow of committing files, branching, and merging. In this tutorial, you’ll do a similar activity but
using the browser-based interface that Github provides rather than using a terminal or Github Desktop.

Understanding the pull request workflow is essential for reviewing changes in a collaborative project, such
as an open-source project with many contributors. Using GitHub’s interface is also handy if you have non-
technical reviewers.

Make edits in a separate branch
By default, your new repository has one branch called “Master.” Usually, when you’re making changes or
reviews/edits, you create a new branch and make all the changes in the branch. Then when finished, the
repo owner merges edits from the branch into the master through a “pull request.”

Although you can perform these operations using Git commands from your terminal, you can also perform
the actions through the browser interface. The browser interface might be helpful if you have less technical
people making edits to your content.

To make edits in a separate branch on GitHub:

1. Pretend you’re a SME reviewer. Go to the same GitHub repo you created in an earlier tutorial (p.
577) (or create a new repo). Create a new branch by selecting the branch drop-down menu and
typing a new branch name, such as “sme-review.” Then press your Enter key.

Creating a new branch

When you create a new branch, the content from the master (or whatever branch you’re currently
viewing) is copied over into the new branch. The branch is like doing a “Save as” with an existing
document.

Pull request workflows through GitHub PDF last generated: August 27, 2023

Documenting REST APIs Page 586

2. Click a file, and then click the pencil icon (“Edit this file”) to edit the file.

Making an edit

3. Make some changes to the content, and then scroll down to the Commit changes area. Explain
the reason for the changes and commit the changes to your sme-review branch by clicking
Commit changes.

Reviewers could continue making edits this way until they have finished reviewing all of the
documentation. All of the changes are made on a branch, not the master.

Create a pull request
Now let’s suppose that the review process is complete, and it’s time to merge the branch into the master.
You merge the branch into the master through a pull request. Any “collaborator” on the team with write
access can initiate and complete the pull request (you can add collaborators through Settings >
Collaborators).

To create a pull request:

1. View the repository and click the Pull requests tab.
2. Click the New pull request button.

Pull request workflows through GitHub PDF last generated: August 27, 2023

Documenting REST APIs Page 587

New Pull Request

3. Select the branch (“sme-review”) that you want to compare against the master.

Compare to option looks to see if the branches can be merged

When you compare the branch against the master, you can see a list of all the changes. You can
view the changes through two viewing modes: Unified or Split (these are tabs shown on the right
of the content). Unified shows the edits together in the same content area, whereas split shows
the two files side by side.

4. Click Create pull request.
5. Describe the pull request, and then click Create pull request.

Pull request workflows through GitHub PDF last generated: August 27, 2023

Documenting REST APIs Page 588

The maintainers will then see the Pull Request and can take action to merge it.

Process the pull request
Now pretend you are the project owner, and you see that you received a new pull request. You want to
process the pull request and merge the sme-review branch into the master.

1. Click the Pull requests tab to see the pending pull requests.
2. Click the pull request and view the changes by clicking the Files changed tab.

Github files changed

If you only want to implement some of the edits, go into the sme-review branch and make the
updates before processing the pull request. The pull request doesn’t give you a line-by-line
option about which changes you want to accept or reject (like in Microsoft Word’s Track
Changes). Merging pull requests is an all-or-nothing process. You can also click Review
changes, add some comments, and then select the Request changes radio button, asking the
reviewer to make the changes.

Note also that if the pull request is made against an older version of the master, such that the
master’s original content no longer exists or has moved elsewhere, the merges will be more
difficult to make.

3. Click the Conversation tab, and then click the Merge pull request button.
4. Click Confirm merge.

The sme-review branch gets merged into the master. Now the master and the sme-review branch
are the same.

5. Click the Delete branch button to delete the sme-review branch.

If you don’t want to delete the branch here, you can always remove old branches by clicking the
branches link while viewing your Github repository, and then click the Delete (trash can) button
next to the branch.

If you look at your list of branches, you’ll see that the deleted branch no longer appears.

Pull request workflows through GitHub PDF last generated: August 27, 2023

Documenting REST APIs Page 589

Add collaborators to your project
You might need to add collaborators to your Github project so they can commit edits to a branch. If other
project members aren’t collaborators and they want to make edits, they will receive an error. (See Inviting
collaborators to a personal repository .)

If people don’t have write access, they can fork the repo instead of making edits on a branch on the
same project. Forking a project clones the entire repository, though, rather than creating a branch within
the same repository. The fork (copy) then exists in the user’s personal GitHub account. You can merge a
forked repository (this is the typical model for open-source projects with many outside contributors), but
this scenario probably is less common for technical writers working with developers on the same projects.

To add collaborators to your Github project:

1. While viewing your Github repository, click the Settings tab.
2. Click the Collaborators tab on the left.
3. Type the Github usernames of those you want to have access in the Collaborator area.
4. Click Add collaborator.

Pull request workflows through GitHub PDF last generated: August 27, 2023

Documenting REST APIs Page 590

https://help.github.com/articles/inviting-collaborators-to-a-personal-repository/
https://help.github.com/articles/inviting-collaborators-to-a-personal-repository/
https://help.github.com/articles/fork-a-repo/

Static site generators
Static site generators, such as Jekyll, Hugo, and Sphinx, are one of the most common authoring and
publishing tools used in docs-as-code scenarios (p. 551). Static site generators build all the files for your
website, pushing Markdown files into the layouts you define, running scripts to automate logic you need
and more as they generate out HTML files. This section focuses exclusively on static site generators. In
upcoming topics, I’ll also explore hosting and deployment options (p. 602) and hybrid documentation
systems (p. 607).

What are static site generators
Static site generators are applications that you can run on the command line (or potentially through some
other UI) to compile a website from simpler source files. For example, you might have various files defining
a layout, some “include” files (containing re-usable content), a configuration file, and your Markdown
content files.

The static site generator reads your configuration file and pushes your content into the layout files, adds
whatever includes are referenced (such as a sidebar or footer or re-used snippets), and writes out the
HTML pages from the Markdown sources. Each page usually has the sidebar and other navigation included
directly into the page (pre-built), as well as all the other layout code you’ve defined, ready for viewing
online.

Additionally, static site generators can be used programmatically in build scripts that are run as part of a
process on a server. This allows them to be leveraged in continuous delivery processes that are triggered
by a particular event, such as a commit to a particular branch in a version control repository, or as part of a
script.

With a regular content management system (CMS) like WordPress, content is stored in a separate
database and dynamically pulled from the database to the web page on each user visit. Static site
generators don’t have databases — all the content is on the page already, and nothing is dynamically
assembled on the fly through PHP or other server-side scripting. All the pages on a static site were built
prior to the browser’s request, enabling an instantaneous response; nothing changes dynamically based on
the user’s profile (unless done with client-side JS).

Freedom from the database model makes static site generators much more portable and platform
independent. You simply have a collection of text files. In contrast, moving from one CMS to another
usually involves database migration, and the many database fields from one CMS don’t usually map
cleanly to other databases, not to mention the unique server configurations and other infrastructure
required for each solution. Static site generators remove that database and infrastructure complexity,
making the text files lighter, more portable, and less prone to error from database and server issues.

Before I had my blog idratherbewriting.com in Jekyll, I used WordPress (and was even a WordPress
consultant for five years as a side job). I can’t count how many times my WordPress blog went down or
had other issues. I routinely had to contact Bluehost (my web host) to find out why my site was suddenly
down. I religiously made backups of the database, applied security patches and hardening techniques,
optimized the database through other tools, and more. And with all of this maintenance hassle, the site was
extremely slow, delivering pages in 2+ seconds instead of 0.5 seconds with Jekyll. For my many
WordPress clients, I often had to troubleshoot hacked databases.

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 591

https://idratherbewriting.com/

With static site generators, when you’re developing content on your local machine, you usually have web
server preview (such as http://127.0.0.1:4000/) provided through the static site generator. Many
static site generators rebuild your site continuously in the preview server each time you make a change.
The time to rebuild your site could take less than a second, or if you have thousands of pages, several
minutes.

Because everything is compiled locally from text files, you don’t need to worry about security hacks into a
database. Everything is a human-readable plain text file, from the content files you write to the application
code. It’s also incredibly easy to work with custom code, such as special JavaScript libraries, advanced
HTML, or other complex code you want to use on a page. You can author your content in Markdown or
HTML, add code samples inside code blocks that are processed with a code-syntax highlighter, and more.
The openness and flexibility of static site generators let you do what you want with them.

Most static site generators allow you to use a templating and scripting languages, such as Liquid or Go,
inside your content. You can use if-else statements, run loops, insert variables, and do a lot more
sophisticated processing of your content through this templating language.

Because you’re working with text files, you usually store your project files (but not the built site output) in a
code repository such as GitHub. You treat your content files with the same workflow as programming code
— committing to the repository, pushing and pulling for updates, branching and merging, and more.

When you’re ready to publish your site, you can usually build the site directly from your Git repository,
rather than building it locally and then uploading the files to a web server. This means your code repository
becomes the starting point for your publishing and deployment pipeline. “Continuous delivery,” as it’s
called, eliminates the need to manually build your site and deploy the build. Instead, you just push a
commit to your repository, and the continuous delivery mechanism builds and deploys it for you.

Although there are hundreds of static site generators (you can view a comprehensive list at Staticgen.com
), only a handful of are probably relevant for documentation. I’ll consider these several here:

• Jekyll (p. 592)
• Hugo (p. 594)
• Sphinx (p. 596)
• MkDocs (p. 599)
• Docusaurus (p. 600)

One could discuss many more — Hexo, Vue, Middleman, Gitbook, Pelican, and so on. But the reality is that
only a handful of static site generators are commonly used for documentation projects.

Jekyll
I devote an entire topic to Jekyll (p. 637) in this course, complete with example Git workflows, so I won’t go
as deep in detail here. Jekyll is a Ruby-based static site generator originally built by the co-founder of
GitHub. Jekyll builds your website by converting Markdown to HTML, inserting pages into layouts you
define, running any Liquid scripting and logic, compressing styles, and writing the output to a site folder
that you can deploy on a web server.

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 592

https://www.staticgen.com/
https://www.staticgen.com/

There are several compelling reasons to use Jekyll:

• Large community. The Jekyll community, arguably the largest and longest-running among static
site generator communities, includes web developers, not just documentation-oriented groups.
This broader focus attracts more developer attention and helps propel greater usage.

• Control. Jekyll provides a lot of powerful features (often through Liquid , a scripting language)
that allow you to do almost anything with the platform. This scripting capability gives you an
incredible amount of control to abstract complex code from users through simple templates and
layouts. Because of this, you probably won’t outgrow Jekyll. Jekyll will match whatever web
development skills or other JS, HTML, or CSS frameworks you want to throw at it. Even without a
development background, it’s fairly easy to figure out and code the scripts you need. (See my
series Jekyll versus DITA for details on how to do in Jekyll what you’re probably used to doing
in DITA.)

• Integration with GitHub and AWS S3. Tightly coupling Jekyll with the most popular version
control repository on the planet (GitHub) almost guarantees its success. The more GitHub is
used, the more Jekyll is also used, and vice versa. GitHub Pages (p. 602) will auto-build your
Jekyll site (continuous delivery), allowing you to automate the publishing workflow without effort.
If GitHub isn’t appropriate for your project, you can also publish to AWS S3 bucket using the
s3_website plugin , which syncs your Jekyll output with an S3 bucket by only adding or
removing the files that changed.

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 593

https://jekyllrb.com/
https://jekyllrb.com/
http://shopify.github.io/liquid/
https://idratherbewriting.com15/03/23/new-series-jekyll-versus-dita/
https://github.com/laurilehmijoki/s3_website

For theming , Jekyll offers the ability to package your theme as a Rubygem and distribute the gem
across multiple Jekyll projects. Rubygems is a package manager, which means it’s a repository for plugins.
You pull the latest gems (plugins) you need from Rubygems through the command line, often using
Bundler. Distributing your theme as a Rubygem is one approach you could use for breaking up your project
into smaller projects to ensure faster build times.

Although Jekyll was one of the first major static site generators, its popularity has waned, in part due to the
lack of leadership and contributors in the open-source project (see Jared White’s controversial post, Jekyll
and the Genesis of the Jamstack). Additionally, Jekyll’s Ruby architecture gives us slow build times
(compared to Hugo). Finally, even though Jekyll is supported by GitHub, GitHub is slow to roll in version
updates, so even though Jekyll is up to version 4.x+, GitHub supports only version 3.9.0 .

Although I use Jekyll for all my sites, if starting out today, I probably wouldn’t choose Jekyll, as I think it’s
on the way out. That said, GitHub could up their support game, and Jekyll could continue for many years
forward. The platform, especially Liquid syntax, is one of the easier ones to learn and work with.

Hugo
Hugo is a static site generator that is rapidly growing in popularity. Based on the Go language, Hugo
builds your site significantly faster than most other static site generators, especially Jekyll. There’s an
impressive number of themes , including some designed for documentation . Specifically, see the
Docsy theme , the Learn theme and this Multilingual API documentation theme .

As with Jekyll, Hugo allows you to write in Markdown, add frontmatter content in YAML (or TOML or
JSON) at the top of your Markdown pages, and more. In this sense, Hugo shares a lot of similarity with
Jekyll and other static site generators.

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 594

https://jekyllrb.com/docs/themes/
https://www.bridgetownrb.com/future/rip-jekyll/
https://www.bridgetownrb.com/future/rip-jekyll/
https://pages.github.com/versions/
https://gohugo.io/
https://themes.gohugo.io/
https://themes.gohugo.io/tags/documentation/
https://www.docsy.dev/
https://themes.gohugo.io/theme/hugo-theme-learn/en
https://github.com/bep/docuapi
https://gohugo.io/
https://gohugo.io/
https://github.com/toml-lang/toml

Hugo has a robust and flexible templating language (Golang) that makes it appealing to designers, who can
build more sophisticated websites based on the depth of the platform (see Hugo’s docs here). Go
templating has more of a learning curve than templating with Liquid in Jekyll, and the docs might assume
more technical familiarity than many users have. Still, the main selling point behind Hugo is that it builds
your site quickly. This speed factor might be enough to compensate for the steeper learning curve.

It’s also worth noting that Go is a language developed and supported by Google, and the Docsy theme
theme also has a group of enthusiastic supporters, many of whom are Googlers who needed a publishing
framework for many of the open-source tools like Kubernetes , Kube Flow , and gRPC . Because of
this support from Google, Hugo might have more longevity than other static site generators that seem to be
hobby projects from solo developers.

Comparing speed with Hugo with Jekyll
Build times may not be immediately apparent when you first start evaluating static site generators (often
using small projects as tests). You probably won’t realize how important speed is until you have thousands
of pages in your site and are waiting for it to build.

Speed here refers to the time to compile your web output, not the time your site takes to load when visitors
view the content in a browser. Most static site generators load the pre-built pages quickly (less than 0.5
seconds), but the time it takes for the files to compile into a website before they’re deployed depends on
the platform, the number of pages, and the complexity of the code on the pages.

Although it depends on how you’ve coded your site (e.g., the number of for loops that iterate through
pages), in general, I’ve noticed that with Jekyll projects, if you have, say, 1,000 pages in your project, it
might take about a minute or two to build the site. Thus, if you have 5,000 pages, you could be waiting 5
minutes or more for the site to build. The whole automatic re-building feature becomes almost irrelevant,
and it can be challenging to identify formatting or other errors until the build finishes. (There are
workarounds, though, and I’ll discuss them later on.)

If Hugo can build a site much faster, it offers an advantage in the choice of static site generators. Smashing
Magazine recently chose Hugo and built a variety of complementary tools for managing their site.

For a detailed comparison of Hugo versus Jekyll, see Hugo vs. Jekyll: Comparing the leading static website
generators . In one of the comments, a reader makes some interesting comments about speed:

Our documentation is about 2700 pages…. Generating the whole site takes about 90
seconds. That’s kind of annoying when you’re iterating over small changes. I did a
basic test in Hugo, it does it in about 500ms.

This build time is a serious speed advantage that will allow you to scale your documentation site in robust
ways. The author (whose docs are at https://docs.mendix.com) made the switch from Jekyll to Hugo
(see the doc overview in GitHub). His switch suggests that speed is perhaps a primary characteristic to
evaluate in static site generators.

The deliberation between Hugo and Jekyll will require you to think about project size — how big should
your project be? Should you have one giant project, with content for all documentation/products stored in
the same repo? Or should you have multiple smaller repos? These are some of the considerations I
wrestled with when implementing docs-as-code tooling (p. 645). I concluded that having a single, massive
project is preferable because it allows easier content re-use, onboarding, validation, and error checking,
deployment management, and more.

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 595

https://gohugo.io/documentation/
https://www.docsy.dev/
https://kubernetes.io/
https://www.kubeflow.org/
https://www.grpc.io/
https://next.smashingmagazine.com/2017/03/a-little-surprise-is-waiting-for-you-here/
https://opensource.com/article/17/5/hugo-vs-jekyll
https://opensource.com/article/17/5/hugo-vs-jekyll
https://docs.mendix.com/
https://github.com/mendix/docs

Regarding build speed, there are workarounds in Jekyll to enabling faster builds. In your build commands,
you can limit the builds to one particular doc directory. For example, you can have one configuration file
(e.g., _config.yml, the default) that sets all content as publish: true , and another configuration file (e.g.,
config-acme.yml) that sets all content as publish: false except for a particular doc directory (the one
you’re working with, e.g., acme). When you’re working with that acme doc directory, you can build Jekyll
like this:

jekyll serve --config _config.yml,config-acme.yml

The config-acme.yml will overwrite the default _config.yml to enable one specific doc directory as
publish: true while disabling all others. Using this method, Jekyll builds lightning fast. This method

tends to work quite well and is used by others with large Jekyll projects as well. Writers usually focus on
one documentation directory at a time. If you have continuous delivery configured with the server, when it’s
time to push out the full build (where publish: true is applied to all directories and no config-acme.yml
file is used), the full build process takes place on the server, not the local machine. (The server might have
other pipeline logic that validates, ingests, and deploys files as well, adding to the time.)

Although static site generators seem to change quickly, it’s harder for one tool, like Hugo, to overtake
another, like Jekyll, because of the custom coding developers usually do with the platform. If you’re just
using someone’s theme with general Markdown pages, great, switching will be easy. But if you’ve built
custom layouts and frontmatter in your Markdown pages that gets processed in unique ways, as well as
other custom scripts or code that you created in your theme specifically for your content, changing
platforms will be more challenging. You’ll have to change all your custom Liquid scripting to Go. Or if
working with another platform, you might need to change your Go scripts to Jinja templating, and so forth.

For this reason, unless you’re using themes built by others, you don’t often jump from one platform to the
next as you might do with DITA projects, where all content usually conforms to the same specification.

Sphinx
Sphinx is a popular static site generator based on Python. It was originally developed by the Python
community to document the Python programming language (and it has some direct capability to document
Python classes), but Sphinx is now commonly used for many documentation projects unrelated to Python.
Part of Sphinx’s popularity is due to its Python foundation since Python works well for many
documentation-related scripting scenarios.

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 596

http://www.sphinx-doc.org/en/stable/

Because Sphinx was designed from the ground up as a documentation tool, not just as a tool for building
websites (like Jekyll and Hugo), Sphinx has more documentation-specific functionality that is often absent
from other static site generator tools. Some of these documentation-specific features include robust
search, more advanced linking (linking to sections, automating titles based on links, cross-references, and
more), and use of reStructuredText (rST), which is more semantically rich, standard, and extensible than
Markdown. (See What about reStructuredText and Asciidoc? (p. 560) for more details around rST
compared to Markdown.)

For continuous deployment with your hosting, Sphinx can be used with the readthedocs.com platform.
Overall, Sphinx has a passionate fan base among those who use it, especially among the Python
community. However, because Sphinx was specifically designed as a documentation tool, the community
might not be as large as some of the other static site generator communities (which use the static site
generators for building general websites, not just documentation sites).

As of October 2021, Staticgen.com shows the number of stars, forks, and issues as follows:

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 597

http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
https://readthedocs.com/
https://www.staticgen.com/

Top static site generators

On the Staticgen.com site, the star icon represents the number of users who have “starred” the project
(basically followed its activity). The forked icon represents the number of repo clones that exist registered
on their platform (GitHub, etc.). The bug icon represents the number of open issues logged against the
project. To gauge how active the project is, browse the GitHub source and look to see how regular the
commits are.

Next, Hugo, and Gatsby are the most common static site generators. If you look at Staticgen.com , you’ll
see that between Hugo and Sphinx, there are many other more popular static site generators. But I called
out Sphinx here because of its popularity among documentation groups and for its integration with Read
the Docs (p. 603). That’s what you have to keep in mind with static site generators — a particular option
might be more popular, but for what purpose? Building general websites, or building documentation
websites? Documentation websites tend to have unique needs and requirements (like a robust sidebar), so
don’t be tricked by merely choosing the most popular options listed in staticgen.com.

Gatsby
Gatsby is a popular static site generator, and even offers a cloud-hosted version . However, Gatsby is
more of an application static site generator than a pure static site generator that lets you write in Markdown
and publish HTML. Gatsby appeals to React developers who are building more extensive web applications;
the architecture and code in Gatsby tend to be more complex and confusing than the other simpler static
site generators. I’ve met a number of people who experimented with Gatsby and then abandoned it (even
though tech docs are still a primary use case for Gatsby). Other application static site generators similar
to Gatsby include Next.js and Nuxt.js.

In selecting a static site generator, I don’t recommend using an application-based static site generator.
You’re writing docs and primarily working in Markdown and HTML. You’re probably not building more
extensive web app logic. You mainly want a tool that will take your Markdown and publish the HTML. Your
company might want to create custom pipelines that push the published HTML into some other framework
or system, and having a simpler static site generator will be advantageous in these scenarios. In general,
stick with simple.

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 598

https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.gatsbyjs.com/
https://www.gatsbyjs.com/products/cloud/
https://www.gatsbyjs.com/use-cases/technical-documentation

However, if your larger goal is to build a developer portal, with all the internal application logic (for example,
API keys and developer profiles) that goes along with a portal, Gatsby might be the system your UX team
chooses to use. Leveraging React components can speed development time, and some tools such as
Redoc (p. 249) offer developer portals build on Gatsby . If the rest of your developer portal is built on
Gatsby, it might be a sound choice for your docs as well.

MkDocs
MkDocs is a static site generator based on Python and designed for documentation projects. Similar to
Jekyll, with MkDocs you write in Markdown and store page navigation in YAML files. You can adjust the
CSS and other code (or create your own theme). Notably, the MkDocs provides some themes that are
more specific to documentation, such as the Material theme . MkDocs also offers a theme
(“ReadtheDocs”) that resembles the Read the Docs platform.

Some other themes are also available. MkDocs uses Jinja templating , provides template variables
for custom theming, and more.

Although there are many static site generators with similar features, MkDocs is one more specifically
oriented towards documentation. For example, it does include search. (You can incorporate Algolia search
into any of these platforms, though, so built-in search — unless it’s really phenomenal — probably
shouldn’t be a distinguishing factor.)

While it seems like orienting the platform towards documentation would be advantageous for tech writers,
this approach might actually backfire, because it shrinks the community. The number of general web
designers versus documentation designers is probably a ratio of 100:1. As such, MkDocs remains a small,
niche platform that probably won’t see much growth and long-term development beyond the original
designer’s needs.

This is the constant tradeoff with tools — the tools and platforms with the most community and usage
aren’t usually the doc tools. The doc tools have more features designed for tech writers, but they lack the
momentum and depth of the more popular website building tools.

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 599

https://redoc.ly/developer-portal/
http://www.mkdocs.org/
https://squidfunk.github.io/mkdocs-material/
http://www.mkdocs.org/
http://www.mkdocs.org/
https://github.com/mkdocs/mkdocs/wiki/MkDocs-Themes
http://jinja.pocoo.org/
http://www.mkdocs.org/user-guide/custom-themes/#template-variables

Docusaurus
Docusaurus , built by Facebook, is also a popular static site generator oriented towards documentation
needs. Docusaurus includes integration with Algolia for search, supports document versioning, translation,
and more. The React foundation will also make it popular if you have front-end developers who prefer to
work with React.

With support from Facebook, Docusaurus looks like a great option for a documentation website, and
although I haven’t experimented with it myself, feedback from others has been positive. You can see how
Docusaurus compares with other tools as well as look over their showcase . The showcase, which
includes many doc sites such as Algolia , GraphQL , Redis , can give you an idea of how your doc
site will look. Most themes have an attractive left sticky sidebar with collapse/expand toggles along with a
right sidebar showing a floating table of contents.

What about this or that tool?
Right now there are probably many readers who are clenching their first and lowering their eyebrows in
anger at the omission of their tool. What about … Docpad!!??? What about Nikola??!! What about Slate!!
And Docsify?

Hey, there are a lot of tool options out there, and you might have found the perfect match between your
content needs and the tool. Additionally, the tools landscape for developer docs is robust, complex, and
seemingly endless. Most people don’t have deep exposure to that many tools. If you start with one and
become familiar with it, changing course becomes harder. There often isn’t a killer feature that prompts you
to refactor and recode your entire website.

And the winds seem to change from year to year. What may be relevant one day might be passé the next.
Docs-as-code tooling is a difficult space to navigate, and selecting the right tool for your needs is a tough
question. I offer more specific advice and recommendations in Which tool to choose for API docs — my
recommendations (p. 633). The tool you choose will affect both your productivity and capability, so it tends
to be an important choice.

For more doc tools, see the Generating Docs list in Beautiful Docs. Additionally, DocBuilds tries to
index some of more popular documentation-specific static site generators.

If you want to explore different API doc sites (p. 536) and analyze what tools they use, check out a Chrome
extension called Wappalyzer . With this extension, you can easily see the underlying technologies for a
site. It can help you detect trends and patterns with API tooling.

One pattern you’ll observe, as I noted in the overview (p. 531) to this section, is that few API documentation
sites tend to use traditional help authoring tools. Yes, common documentation generators like Swagger (p.
218), Redoc (p. 249), and Stoplight (p. 201) are used, but for the bulk of the conceptual documentation,
you’ll find a variety of tools used, with no dominant static site generator or architecture.

Tools for generating the OpenAPI reference
In this discussion on tools, I have purposely avoided diving deeper into tools that auto-generate out
reference documentation from the OpenAPI specification (p. 181). I cover these tools more in the OpenAPI
spec and generated reference docs (p. 179) section. These tools include Stoplight (p. 195), SwaggerHub (p.
230), Redoc (p. 249) (all site sponsors, by the way), as well as Readme.com and DeveloperHub.io . For
more of these tools, see Ultimate Guide to 30+ API Documentation Solutions from Nordic APIs and
Tools and Integrations from Smartbear.

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 600

https://docusaurus.io/
https://docusaurus.io/docs#comparison-with-other-tools
https://docusaurus.io/showcase
https://docsearch.algolia.com/
https://www.graphql-code-generator.com/
https://developer.redis.com/
https://github.com/PharkMillups/beautiful-docs#generating-docs
http://www.docbuilds.com/
https://chrome.google.com/webstore/detail/wappalyzer/gppongmhjkpfnbhagpmjfkannfbllamg?hl=en
https://readme.com/
https://developerhub.io/
https://nordicapis.com/ultimate-guide-to-30-api-documentation-solutions/
https://swagger.io/tools/open-source/open-source-integrations/

One drawback with tools that auto-generate out the OpenAPI reference is that their support for more
conceptual documentation will likely be limited. Tech writers tend to spend the bulk of their time writing
more conceptual docs; reference docs are often written and generated by engineering teams themselves.
Even so, you will likely run into challenges with integrating the conceptual and reference docs into a
seamless experience (p. 241).

Static site generators PDF last generated: August 27, 2023

Documenting REST APIs Page 601

Hosting and deployment options
Static site generators (p. 591) handle content development, but not hosting and deployment. For this, you
need another category of tools. I call this category of tools “hosting and deployment options.”

Theoretically, you could publish a static website on any web server (e.g., AWS S3, Bluehost, and more).
But continuous delivery hosting platforms do something more: They automatically build your output when
you commit a change to a repo. The whole build process takes place entirely on the server.

Hosting and deployment platforms usually offer a number of additional features beyond simple web
hosting, such as SSL, CDNs, minification, authentication, backup/redundancy, and more. These platforms
often integrate with specific static site generators as well (which is one reason I limited my earlier
discussions to Jekyll, Hugo, and Sphinx).

GitHub Pages
GitHub Pages provides a free hosting and deployment option for Jekyll projects. If you upload a Jekyll
project to a GitHub repository, you can indicate that it’s a Jekyll project in your GitHub repo’s Settings, and
GitHub will automatically build it when you commit to your repo. This feature — building Jekyll projects
directly from your GitHub repo — is referred to as GitHub Pages.

In your GitHub repo, click Settings and scroll down to GitHub Pages. This section is where you activate
GitHub Pages for your project.

Every GitHub repository is potentially a Jekyll project that you can auto-build when you commit to it.

Hosting and deployment options PDF last generated: August 27, 2023

Documenting REST APIs Page 602

https://pages.github.com/
https://pages.github.com/
https://pages.github.com/

The tight integration of Jekyll with GitHub makes for a compelling argument to use a Jekyll-GitHub solution.
For the most part, GitHub is the dominant platform for open-source projects. If you’re already using
GitHub, it makes sense to choose a static site generator that integrates into the same platform to build your
docs.

GitHub Pages is free but does have some limitations in scope:

• GitHub Pages source repositories have a recommended limit of 1GB.
• Published GitHub Pages sites may be no larger than 1 GB.
• GitHub Pages sites have a soft bandwidth limit of 100GB per month.
• GitHub Pages sites have a soft limit of 10 builds per hour. (See Usage Limits

)

Unlike with other hosting and deployment platforms, GitHub Pages doesn’t offer a commercial version that
expands these limits. You can learn more about GitHub Pages here .

I build this site and my blog using Jekyll and GitHub Pages. They are actually separate Jekyll projects
and repos. My blog is in a GitHub repo called tomjoht.github.io , named after my GitHub username
but published using a custom domain idratherbewriting.com . (Without the custom domain, it would be
available at http://tomjoht.github.com .) The API doc site is in a repo called learnapidoc . It’s
available by default at https://idratherbewriting.com/learnapidoc . They seem like the same site,
but they are really separate projects in separate repos. The fact that each repo in addition to the primary
repository (tomjoht.github.io) appears as a subdirectory to the primary domain
(idratherbewriting.com) is pretty cool.

CloudCannon
Suppose you want to use Jekyll and GitHub, but you’re frustrated by GitHub’s limitations and you need a
more robust platform for your Jekyll project. If so, CloudCannon is your solution. CloudCannon gives
you a host of additional features that GitHub lacks, such as:

• Authentication of users
• Multiple environments for different branches
• Visual online interface for editing
• Jekyll plugins
• SSL for custom domains
• Automatic minification, and more

The founders of CloudCannon are experts with Jekyll and have designed the platform specifically for Jekyll
projects. They also created a host of Jekyll tutorials to enrich developer knowledge.

For a tutorial on setting up Jekyll on CloudCannon, see Jekyll and CloudCannon continuous deployment
tutorial (p. 637).

Read the Docs
Read the Docs is an online hosting and deployment platform that can read Sphinx projects (from a public
repository such as GitHub or Bitbucket) and automatically build the web output. In other words, it is a
“continuous documentation platform for Sphinx” (see An introduction to Sphinx and Read the Docs for
Technical Writers).

The introduction on the Read the Docs homepage describes the platform as follows:

Hosting and deployment options PDF last generated: August 27, 2023

Documenting REST APIs Page 603

https://help.github.com/articles/what-is-github-pages/
https://help.github.com/articles/what-is-github-pages/
https://help.github.com/categories/github-pages-basics/
https://idratherbewriting.com/
https://github.com/tomjoht/tomjoht.github.io
https://github.com/tomjoht/tomjoht.github.io
https://github.com/tomjoht/learnapidoc
https://cloudcannon.com/
https://cloudcannon.com/features/
https://learn.cloudcannon.com/
http://ericholscher.com/blog/2016/jul/1/sphinx-and-rtd-for-writers/
http://ericholscher.com/blog/2016/jul/1/sphinx-and-rtd-for-writers/
https://readthedocs.org/

We will host your documentation for free forever. There are no tricks. We help 94,898
open-source projects share their docs. … Whenever you push code to your favorite
version control system, whether that is Git, Mercurial, Bazaar, or Subversion, we will
automatically build your docs so your code and documentation are never out of
sync.

Read the Docs provides both an open-source, free version (readthedocs.org) and a commercial version
(readthedocs.com). These tiers allow you to level-up your project when your needs mature but also don’t
lock you into a paid solution when you’re not ready for it.

Read the Docs provides themes specific for documentation websites, and also lets you author in
reStructuredText (or Markdown, if you prefer that instead). reStructuredText provides more documentation-
specific features and semantics — see my discussion in What about reStructuredText and Asciidoc? (p.
560) for more details, or see Why You Shouldn’t Use “Markdown” for Documentation for a more
passionate argument for rST.

The Read the Docs documentation shows a sample output.

Some key features include a robust sidebar with expand/collapse functionality, search, versioning, output
to PDF and ePub, and more.

To learn more about the platform, read through the Read the Docs guide . Read the Docs includes most
of the features technical writers would expect, especially related to single-source publishing. Some of
these features, noted in An introduction to Sphinx and Read the Docs for Technical Writers , include the
following:

Hosting and deployment options PDF last generated: August 27, 2023

Documenting REST APIs Page 604

https://readthedocs.org/
https://readthedocs.com/
http://ericholscher.com/blog/2016/mar/15/dont-use-markdown-for-technical-docs/
https://docs.readthedocs.io/en/latest/getting_started.html
https://docs.readthedocs.io/en/latest/getting_started.html
https://docs.readthedocs.io/en/latest/getting_started.html
https://docs.readthedocs.io/en/latest/
http://ericholscher.com/blog/2016/jul/1/sphinx-and-rtd-for-writers/

• Output HTML, PDF, ePub, and more
• Content reuse through includes
• Conditional includes based on content type and tags
• Multiple mature HTML themes that provide great user experience on mobile

and desktop
• Referencing across pages, documents, and projects
• Index and Glossary support
• Internationalization support.

The Read the Docs platform was co-founded by Eric Holscher , the same co-founder of Write the Docs
. Write the Docs was originally intended as a conference for the Read the Docs community but evolved

into a more general conference focused on technical communication for software projects. If you go to a
Write the Docs conference, you’ll find that sessions focus more on best practices for documentation rather
than discussions about tools. (You can read my post, Impressions from the Write the Docs Conference
or listen to this Write the Docs podcast with the co-founders for more details.)

Read the Docs has an impressive number of users. The platform has thousands of projects and receives
millions of page views a month across these projects. In 2016, Read the Docs had more than 77,000
projects and received 338 million page views and 75 million unique visitors). You can view their 2017 stats
here . Read the Docs is one of the most visited sites on the web and continues to grow at an impressive
rate.

Netlify
Netlify is a popular hosting and deployment service for static site projects. Unlike with other hosting
platforms, Netlify works with almost any static site generator, not just with Jekyll or Sphinx.

Netlify offers continuous delivery for your project. You can store your content on GitHub, GitLab, or
Bitbucket, then link it to Netlify, and Netlify will build whenever you push changes.

Netlify not only offers a free plan with features similar to GitHub Pages but also lets you scale up to Pro,
Business, or Enterprise plans for more robust needs. With Netlify, you can get deploy previews, rollbacks,
form handling, distributed content delivery network (CDN), infinite scalability, SSL, a programmable API,
CLI, and more.

The most impressive example of a Netlify-hosted site is Smashing Magazine . Previously hosted on
WordPress, Smashing Magazine made the switch to Netlify, with Hugo as the static site generator engine.
See Smashing Magazine just got 10x faster for details.

Other notable doc sites using Netlify include Docker , Kubernetes , React , Yarn , Lodash ,
Gatsby , and Hugo .

Complementing Netlify is Netlify CMS (p. 608), a headless CMS for your content (which I discuss in more
detail in Hybrid documentation platforms (p. 607)).

Aerobatic
Aerobatic is similar to Netlify in that it builds and publishes your static site. Aerobatic gives you a robust
publishing engine that includes a CDN, SSL, continuous delivery, a deployment CLI, password protection,
and more. Aerobatic can build your site using various static site generators, including Jekyll, Hugo, Hexo,
and more. Aerobatic says,

Hosting and deployment options PDF last generated: August 27, 2023

Documenting REST APIs Page 605

http://ericholscher.com/
http://www.writethedocs.org/
http://www.writethedocs.org/
https://idratherbewriting.com17/05/23/write-the-docs-and-the-battle-against-vendor-evil/
https://idratherbewriting.com17/12/14/write-the-docs-founding-ideas-and-principles-podcast/
http://blog.readthedocs.com/read-the-docs-2017-stats/
http://blog.readthedocs.com/read-the-docs-2017-stats/
https://www.netlify.com/
https://www.smashingmagazine.com/
https://www.netlify.com/blog/2017/03/16/smashing-magazine-just-got-10x-faster/
https://docs.docker.com/
https://kubernetes.io/docs/home/
https://reactjs.org/docs/hello-world.html
https://yarnpkg.com/lang/en/docs/
https://lodash.com/docs/
https://www.gatsbyjs.org/docs/
https://gohugo.io/documentation/
https://www.aerobatic.com/

Aerobatic is a specialized platform for efficient delivery of static webpages and
website assets. We take care of the configuration details for you that provide the
best balance of performance and maintainability. Stop fiddling with CDNs and web
server configs and focus on coding great front-end experiences. — Static website
serving

Overall, there are many options for hosting and deploying your site. GitHub Pages, CloudCannon, Read the
Docs, Netlify, and Aerobatic are just a few. You can also probably explore custom-built hosting and
deployment options available through your company’s existing infrastructure.

There’s another category of tools that I’m calling Hybrid documentation platforms (p. 607). Some of these
solutions combine the authoring and deployment solutions together in different ways. These solutions
might offer a “headless” authoring interface with a body that is stores content in another place, such as
GitHub.

Hosting and deployment options PDF last generated: August 27, 2023

Documenting REST APIs Page 606

https://www.aerobatic.com/docs/static-serving/
https://www.aerobatic.com/docs/static-serving/

Hybrid documentation systems
Rounding out the publishing tool options, there is a class of developer doc tools that provide online GUIs
for authoring and publishing, but they still store your content as flat files in repositories such as GitHub and
Bitbucket. In other words, they provide a WordPress.com-like experience for your content (giving you a
user interface to browse your posts, pages, layouts, and other content) but allow your content to live in
plain text files in version control repositories.

Headless CMS solutions
Just as we have staticgen.com that lists common static site generators, there’s a similar index of
headless content management systems , this one arranged in alphabetical order (rather than ranked by
popularity).

For an in-depth introdution to headless CMSs, see Headless CMS vs Decoupled CMS: The Ultimate Guide
. There are nuances here that I won’t go into, but the basic metaphor is that the head refers to the

authoring interface, and the body refers to the storage database or file system. If a CMS is headless, it
means the authoring interface is connected to the data storage through an API, and the data storage can
live in a completely different system, such as GitHub.

Hybrid documentation systems PDF last generated: August 27, 2023

Documenting REST APIs Page 607

https://www.staticgen.com/
https://headlesscms.org/
https://headlesscms.org/
https://headlesscms.org/
https://www.coredna.com/blogs/headless-vs-decoupled-cms
https://www.coredna.com/blogs/headless-vs-decoupled-cms

Not all tools listed here are headless CMSs, so I have called them more generally “hybrid” solutions, since
many of these doc tools don’t fit into neat categories.

Forestry.io
Forestry.io is similar to CloudCannon in that it offers online hosting for Jekyll projects, but it also
provides hosting for Hugo and Git. Forestry’s emphasis is on providing an online CMS interface for static
site generators. The CMS interface gives you a WordPress-like GUI for seeing and managing your content.

The idea behind the CMS interface is that most static site generators ostracize less technical users by
forcing them into the code. (For example, when I write a post in Jekyll, usually others who look over my
shoulder think I’m actually programming, even though I’m just writing posts in Markdown.) The CMS
removes this by making the experience much more user-friendly to non-technical people while also still
leveraging the openness and flexibility of the static site generator platform.

Forestry.io (unlike CloudCannon) also offers an on-premise enterprise installation so you can host and
manage the entire platform behind your company’s firewall.

Netlify CMS
Netlify CMS is similar to Forestry in its offering of a content management system for static site
generators. But rather than limiting the static site generators you can use, it provides a more open platform
wrapper (built with React but using Git to manage the content) that integrates with any static site generator.

One of Netlify CMS’s key advantages is in simplifying the content development experience for less
technical users. But you can also standardize your authoring through the interface. Netlify CMS lets you
map the custom fields in your theme to a GUI template, as shown in the image below. These custom fields
reduce the chance that authors might use the wrong frontmatter tag in their pages (for example,
intro_blurb or IntroBlurb or introBlurb). Here’s a sample interface:

Hybrid documentation systems PDF last generated: August 27, 2023

Documenting REST APIs Page 608

https://forestry.io/
https://gohugo.io/
https://forestry.io/
https://forestry.io/
https://www.netlifycms.org/

Netlify lets you create a user interface for your custom fields.

Your content source can be stored in GitHub, GitLab, or BitBucket. Netlify CMS also integrates with Netlify
(p. 605), which is a popular hosting and deployment service for static site projects.

For a tutorial on integrating Jekyll with Netlify CMS, see Adding a CMS to Your Static Site With Netlify CMS
. Or just start with the Netlify CMS documentation .

Readme.com
Readme.com is an online CMS for docs that offers one of the most robust, full-featured interfaces for
developer docs available. Readme.com isn’t a headless CMS, meaning you don’t just point to your GitHub
repo to pull in the content. Instead, I believe Readme.com stores content in a database (though this detail
isn’t mentioned on their site). So strictly speaking, I probably shouldn’t include Readme.com here, but I
didn’t know where else to describe it, and the CMS-like GUI makes it the most similar to the headless
CMS.

Readme.com’s emphasis is on providing an interface that helps you more easily write documentation
based on best practices and designs. Readme.com provides various wizard-like screens to move you
through documentation processes, prompting you with forms to complete. For example:

Hybrid documentation systems PDF last generated: August 27, 2023

Documenting REST APIs Page 609

https://www.netlifycms.org/
https://www.netlifycms.org/
https://dzone.com/articles/adding-a-cms-to-your-static-site-with-netlify-cms
https://dzone.com/articles/adding-a-cms-to-your-static-site-with-netlify-cms
https://www.netlifycms.org/docs/
http://readme.com/

Readme.com

Most importantly, Readme.com includes specific features for displaying API documentation content, which
puts it into a class of its own. Although you can add your API information manually, you can also import an
OpenAPI specification file (p. 181). You can experiment by choosing one from the OpenAPI examples ,
such as this one . Readme.com’s integration of OpenAPI along with other doc content helps integrate
outputs that are often separated. (This fragmentation is a problem I explore later in Integrating Swagger UI
with the rest of your docs (p. 241).)

Overall, Readme.com provides a robust GUI for creating API documentation in a way that is more extensive
and well-designed than virtually any other platform available. The output includes an interactive, try-it-out
experience with endpoints:

Hybrid documentation systems PDF last generated: August 27, 2023

Documenting REST APIs Page 610

https://github.com/OAI/OpenAPI-Specification/tree/master/examples/v2.0/yaml
https://raw.githubusercontent.com/OAI/OpenAPI-Specification/master/examples/v2.0/json/petstore-expanded.json

The experience is similar to Swagger in that the response appears directly in the documentation. This API
Explorer gives you a sense of the data returned by the API.

There are some challenges with Readme.com. It isn’t free, so you’ll need licenses per author. Additionally,
there isn’t any content re-use functionality (currently), so if you have multiple outputs for your
documentation that you’re single sourcing, Readme.com may not be for you. Finally, if you want to
customize your own design or implement a feature not supported, you can’t just hack the code (though you
can adjust the stylesheet). Overall, with a hosted solution like Readme.com, you’re stuck within the
platform’s constraints.

Even so, the output is sharp, and the talent behind this site is top-notch. The platform is continuously
growing with new features, and there are many high-profile companies with their docs on Readme. If you
consider how much time it takes to build and deploy your own doc solution, going with a site like
Readme.com will save you a lot of time. It will let you focus on your content while also adhering to best
practices with site design.

Here are a few sample API doc sites built with Readme.com:

• Validic
• Box API
• Coinbase API
• Farmbase Software

Which tool should you use? I provide some more concrete recommendations in Which tool to choose for
API docs – my recommendations (p. 633).

Hybrid documentation systems PDF last generated: August 27, 2023

Documenting REST APIs Page 611

https://docs.validic.com/docs/getting-started
https://developer.box.com/
https://developers.coinbase.com/api/v2#introduction
https://farmbot-software.readme.com/docs

Using Oxygen XML with docs-as-code
workflows
Oxygen XML is a robust authoring and publishing tool for technical content that allows you to author in
multiple formats (Markdown, HTML, or XML) as well as publish to multiple outputs (HTML-based webhelp,
PDF, and more). Although traditionally used for XML authoring and publishing, Oxygen XML has expanded
its support with Markdown files, especially with the DITA’s recent support for Lightweight Markdown. In
this tutorial, you’ll learn more about Oxygen XML, different workflows you can use to publish in a docs-as-
code model, Git integration with Oxygen XML, supported Markdown formats, how to get started, and
more.

Note: Oxygen XML is one of the sponsors of my site.

Publishing workflows with DITA and Markdown in Oxygen XML
Although Oxygen XML is most well-known for XML authoring and publishing, Oxygen XML also supports
Markdown authoring and publishing. Some of the Markdown support in Oxygen XML is entirely unique
among Markdown tools. You can use at least three distinct authoring and publishing workflows with
Oxygen XML:

• Workflow #1: Combine DITA and Markdown in the same project (p. 612)
• Workflow #2: Convert Markdown to DITA and publish (p. 612)
• Workflow #3: Convert DITA to Markdown and publish with a static site generator (p. 613)

Workflow #1: Combine DITA and Markdown in the same project

With Oxygen XML, you can reference Markdown files alongside DITA files in your DITA maps . (A DITA
map lists the files included in your output and defines the sidebar navigation.) This means you can use
Markdown for some content, and DITA for other content, all within the same project. For example, the DITA
map might include these references to topics:

<topicref href="files/topic1.dita"/>
<topicref href="files/topic2.md" format="markdown"/>

Why would you want to mix and match format types within the same project? You might have engineers
write in Markdown and technical writers write in DITA. Technical writers often have to handle more complex
publishing challenges (for which DITA might be more suitable), while external contributors might want
simpler needs that can be handled with Markdown alone.

Workflow #2: Convert Markdown to DITA and publish

Another workflow would be to convert Markdown files to DITA syntax . With this workflow, contributors
could submit content in Markdown, and tech writers could convert the content into DITA as they pull the
content into their projects and then use more advanced reuse features.

This workflow would require tech writers to convert the Markdown files to DITA each time. If the contributor
has a later edit and wants to work in Markdown, tech writers could convert the DITA file back to Markdown
for the contributor.

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 612

https://www.oxygenxml.com/
https://www.oxygenxml.com/
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/markdown-dita-2.html?hl=markdown#markdown-dita__working_with_markdown_documents_in_the_dita_maps_
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/markdown-dita-2.html?hl=markdown#markdown-dita__converting_multiple_markdown_documents_to_dita

Workflow #3: Convert DITA to Markdown and publish with a static site generator

Another workflow could be to publish DITA to Markdown using the DITA Open Toolkit . After obtaining
Markdown, you would publish the files using a static site generator (e.g., Hugo, Jekyll, Elevanty,
Docusaurus, Gatsby) as the publishing engine.

This publishing engine might be preferable if you have a UX team who wants an extremely customized doc
website to match other branding, or perhaps if you have customized templates and Swagger integration for
your API reference documentation. Some static site generators like Gatsby offer a robust React-based
framework that some UX front-end engineers might prefer to work in, rather than customizing the Oxygen
XML webhelp output . Then again, if you don’t have UX and engineering support, creating your own
custom doc-themed website might not be appealing to you.

Even within XML projects, many teams use OxygenXML as their editor only (not to also publish). They use
the editor to author and edit content, but then connect with another system to handle the publishing.

Markdown support
Because Markdown is the most common format for docs-as-code tools, let’s look in depth at the
Markdown authoring experience with Oxygen XML.

Markdown formats supported in Oxygen XML

Oxygen XML provides support for CommonMark Markdown (the same Markdown standard used by the
OpenAPI spec) as well MDITA files (Markdown DITA) from the Lightweight DITA (LwDITA) spec . The
MDITA format follows GitHub-Flavored Markdown (for example, fenced code blocks with a language
identifier) and also incorporates some re-use features from DITA (primarily keyrefs and conrefs) — see
the supported MDITA syntax here . The keyref element allows you to use variables in your content,
and conref allows for content re-use (also called transcludes, where you can insert the content from one
file into another).

Markdown preview in Oxygen XML’s editor

As you’re writing Markdown in Oxygen XML, a preview pane appears to the right of the code showing how
the content will appear in HTML, including image rendering. The preview allows you to view the content
you’re working on without rebuilding your entire project to check format rendering. This preview also
provides real-time validation checking to make sure your Markdown syntax is correct. Here’s what the
Oxygen XML editor looks like:

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 613

https://www.dita-ot.org/3.6/topics/dita2markdown.html
https://jamstack.org/generators/
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/wh_webhelp_output.html
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/wh_webhelp_output.html
http://docs.oasis-open.org/dita/LwDITA/v1.0/cnprd01/LwDITA-v1.0-cnprd01.html
http://docs.oasis-open.org/dita/LwDITA/v1.0/cnprd01/LwDITA-v1.0-cnprd01.html#what-is-mdita
https://www.oxygenxml.com/xml_editor/markdown_editor.html#integration-of-popular-markdown-rules
https://github.com/jelovirt/org.lwdita/wiki/Syntax-reference

Figure 1. The left pane shows your Project files. The middle pane shows the text editor. The right pane
shows the Markdown preview.

If you want, you can turn off the HTML preview by right-clicking the preview pane and choosing Hide
preview. (You toggle it back on by right-clicking the main window and choosing Show Preview.) You might
disable the preview to give you more space to work in the editor, and also to speed up file loading times.
Oxygen XML’s editor has a lot of panels that you can undock and rearrange as desired.

In the code view, syntax highlighting colors different parts of the Markdown text to make it more readable.
Even some code languages have syntax highlighting directly in the Markdown editor. (The output has full
syntax highlighting across code languages.)

In the Project pane on the left, you can also switch to the DITA Map Manager to visually arrange your DITA
map, which determines your sidebar navigation. The following screenshot shows how you can either work
directly with the DITA map using XML tags or by dragging and dropping the topics in the hierarchical
arrangement using the DITA Maps Manager. The Manager gives you a more visual tool to see how topics
are nested.

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 614

Figure 2. The DITA Maps Manager on the left lets you more easily arrange your topics into the sidebar
hierarchy you want.

The ability to visually arrange the topics in the DITA Maps Manager is a huge convenience because you can
see at a glance how the sidebar navigation will appear, without building your output. Some other docs-as-
code tools rely on YAML frontmatter tags or a YAML file itself to manage sidebar navigation, which can be
prone to error and extremely fussy with syntax, especially when you have hundreds of topics in your
project. (For example, one extra space in a YAML file can cause the required indentation to be malformed.)

Overall, Oxygen XML lets you choose either a direct text editing experience (working in the code) or a
visual editor experience, depending on your preference. You can switch back and forth between modes
seamlessly, saving a file to see the updates populate into the other view.

Git client integration
Because the Oxygen XML files are all text files, you can manage the content in Git. (In contrast, binary files
that are machine-readable can’t be managed in Git.) Although you could manage your Oxygen XML files
with Git using your external terminal, Oxygen XML also provides integration with Git directly in the Oxygen
XML editor through the Git Client Add-on .

Staging and committing files

When you add the Git Client Add-on, a new Git Staging panel appears in the left pane:

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 615

https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/git-addon.html?hl=branch%2Cmanager

Figure 3. A Git client add-on directly integrates into Oxygen XML so you can more easily manage your files
with Git.

The “Unstaged files” section shows changes you’ve made to files that haven’t been added to the staging

area in Git. After selecting the files to stage, click the Stage selected arrow to move it into your staging

directory. (Moving these files into the staging area is the equivalent of running git add <filename> in
the terminal.) The file then appears under Staged files and will be pushed to your Git repository on the next
commit.

To commit the files, type a commit message and click Commit. (This is the equivalent of typing git

commit -m 'some message' in the terminal.)

Viewing Git history

Oxygen XML also has additional views for seeing Git history, managing Git branches, and more. For
example, to look at the history of commits, go to Window > Show View > Git History. A list of commits then
appears in a commit log in the bottom panel:

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 616

Figure 4. Git history shown in the bottom panel. Here you can see the commits that have been made to the
project. For example, if something looks unfamiliar in the content, look back through the commits to see
who made the change.

Managing Git branches

There’s also a Git Branch Manager view that lets you see all the branches and check out a specific branch.
Note that the Git functionality within the Git add-on client in Oxygen XML isn’t comprehensive, especially
with branch management. For example, while you can create and delete branches, to push these local
branches upstream to your remote repository, you’d need to run a command from a terminal (for example,
git push --set-upstream origin branchname). Also, Oxygen XML doesn’t open a terminal directly in

the editor. But for the most common Git tasks, the integration is convenient and easy to understand.

Overall, the Git functionality within Oxygen XML brings the most common Git workflows right into your
editor, making the authoring experience more seamless and integrated.

More docs-as-code features with Oxygen XML
We’ve covered only a few aspects of docs-as-code tools, namely, Markdown format with text files, and
content management with Git. For more details about using Oxygen XML as a docs-as-code tool, see this
webinar: Docs as Code - Documentation Management Inspired by Software Development” presented by
Alex Jitianu .

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 617

https://www.youtube.com/watch?v=MWsqi4Nb0fI
https://www.youtube.com/watch?v=MWsqi4Nb0fI

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/pubapis_oxygenxml.html] to view the content.

The webinar covers ways to store and manage issues with GitHub, how to automate quality checks, how to
set up continuous delivery and publishing with Travis CI, ways to collaborate with editing and reviews, and
more.

If you’ve never heard the phrase “docs as code,” see Doc-as-code tools (p. 551) for a full description of
what this entails. In short, you use the same general tools and workflows to author, manage, and publish
documentation as developers use to write code.

Other reasons to explore Oxygen XML
Beyond the docs-as-code features described above, there are other reasons to explore Oxygen XML.
Some of these reasons I selected because of my experience in implementing Jekyll while at Amazon (p.
645). Some features didn’t seem like a big deal at the time (I told myself, we’ll figure it out later) but they
proved to be extremely challenging. These features include customizing the theme, generating PDFs,
round-tripping translation workflows, and avoiding the temptation to script everything.

Responsive HTML5 webhelp

One advantage in using Oxygen XML is the many readily available outputs for your content, especially the
webhelp output and PDF. If you select a ditamap file in your project and then click the Apply

Transformation Scenario(s) button , you can see the available outputs:

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 618

Figure 5.Outputs available from Oxygen XML include virtually every type of output you can think of,
including webhelp, PDF, Kindle, Word, and more. The two most common outputs are webhelp and PDF.

The default webhelp output for Oxygen looks pretty good, and you can see an example with Oxygen XML’s
own documentation.

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 619

https://www.oxygenxml.com/doc/versions/23.1/ug-editor/index.html
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/index.html

Figure 6.Oxygen's HTML5 responsive webhelp output. This view shows the landing page, which can
showcase different sections of your documentation.

You can click into a topic area to see its own navigation. Breadcrumbs are included, and if you resize the
browser smaller, you can see the responsive elements kick in.

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 620

https://www.oxygenxml.com/doc/versions/23.1/ug-editor/index.html
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/index.html

Figure 7. The webhelp output has a robust sidebar with expand/collapse functionality, breadcrumbs, and
more.

In contrast, if you go with another static site generator, you’ll likely have to do a lot of custom UX theming
on your own to make the output more documentation-oriented rather than a general website. This
customization will require you to be familiar not only with front-end technologies like JavaScript, CSS, and
HTML, but the specific templating language of the static site generator. Usually, for companies that decide
to create a custom theme, an engineering team and UX designer create this output. (If tech writers do it,
their productivity with writing docs tends to plummet.)

Search

Search can also be a huge challenge with docs-as-code tools. Most static site generators don’t include
search by default but rather require you to integrate Algolia, Swiftype, or another third-party search service.
Some free search engines like Lunr are available, but they are often problematic and don’t scale.

With Oxygen XML, you get robust search right out of the box. The search results even include
breadcrumbs below topic titles so you can see the context. For example, suppose you search for “get
started,” and the results show half a dozen getting started tutorials in your dev portal. In this case, you’d
want to see more context about the getting started topics so you can select the right tutorial.

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 621

https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/introduction.html
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/introduction.html

Figure 8.Sample search results page from Oxygen XML's search engine. The search results include
breadcrumbs for context.

If you want to swap in your own search engine, you can replace the default search with a custom search
engine.

PDF output

Although it might seem like PDF is an outdated mode for delivering docs, PDF is still needed in many
documentation scenarios, especially for providing docs to early access partners. Many times when you’re
writing docs, you need to send the topic to an early access partner, excluding the topic from the rest of
your docs until the feature is ready. Other times, PDFs are needed to send to partners who haven’t signed
contracts yet (and hence can’t get access to your developer portal) but who want to preview the docs to
gauge the level of integration complexity.

Integrating PDF output in other docs-as-code tools typically involves using external tools such as Prince or
open-source PDF generators (which require their own styling and configuration). This can be a huge
headache and hassle to deal with. With Oxygen XML, the PDF is included already and attractively styled.

If you want to customize the PDF, you can do so using CSS, which is more accessible and familiar, rather
than XSLT. The Oxygen Styles Basket allows you to build your own CSS skin used for both PDF and
webhelp output.

Translation support

Finally, one often overlooked but significant feature is translation. If you anticipate the need to translate
your content, consider how you will handle this workflow long before you decide on your authoring tool. A
cumbersome translation workflow can be a huge time drain, especially if you have goals to keep your
translated content in sync with your primary language. Translation is usually where static site generators hit
their first major stumbling block.

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 622

https://www.oxygenxml.com/doc/versions/23.1/ug-editor/search.html?searchQuery=get+started
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/search.html?searchQuery=get+started
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/wh-configure-custom-search-engine.html
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/wh-configure-custom-search-engine.html
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/dcpp_oxygen_styles_basket.html

Translation processes and requirements vary depending on the content and vendor, but the general
process for translating content involves bundling up the files you want translated (either XML, HTML, or
Markdown format), sending them off to the vendor, and then getting these same files back, but with
translated content. You then need to reimport the translated content back into your project. With Oxygen
XML, you can manage translation tasks using the DITA Translation Package Builder Add-on .

Figure 9. Translation Manager contextual menu in Oxygen XML

When you install the add-on in Oxygen XML, you can create “milestones” that are snapshots in time for
your project that future changes are compared against. After creating a milestone, you can package up
only the files changed after that milestone, or you can package up all files. Most translation vendors have
translation memory in their databases that will only detect changes. (However, practices and support for
translation memory vary, and you might want to just send the changed files.)

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 623

https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/dita-translating.html?hl=translation%2Cworkflow
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/translation-package-builder-addon.html

If you make use of the conref (content reuse) and keyref (naming variables) in your content, you might
reduce translation costs. But also, because Oxygen XML enforces the language standards, when you
submit the content to the vendor, they won’t require handholding with custom code. The ability to quickly
package up all content files can streamline your translation workflows.

Standard Markdown and HTML formats

Many static site generators (p. 591) (Jekyll, Hugo, Vuepress, Eleventy, Gatsby, Docusaurus, and more) use
a scripting language (for example, Liquid, Jinja) that you can also use in your Markdown or HTML pages to
create custom functions or templates. For example, with Jekyll, you can store data in YAML files and then
build Liquid functions to parse through the data.

Using custom functions in your docs might seem attractive at first, as this gives you more flexibility to build
custom solutions around your content. However, with time, these projects become filled with custom code
by many different writers, with convoluted logic that becomes forgotten, and pretty soon you’re locked into
that tool and theme. For example, when I left Amazon after 5 years, I had to make more than a dozen
videos where I attempted to explain what this or that script was doing, why I created it, how to use it, etc.

In contrast, Oxygen XML is more standards-based. (This is part of the whole selling point of XML, in fact.)
You write in Markdown, DITA, HTML, or some other standard. And then Oxygen XML validates your
content before publishing.

With Oxygen XML, you can do some additional validation on the Markdown formatting through
Schematron . Schematron allows you to check your docs against a list of formatting patterns and rules.
Oxygen XML includes some basic Schematron rules out of the box (see /samples/markdown/

schematron-validation/ in the sample project), and you can add more as well.

But the larger point here is that your Oxygen XML projects will stick more closely to the standards of the
language you’re writing in. This can keep your content more consistent and structured, and if you ever
decide to use another tool or theme, your standards-based content can easily migrate.

First steps with Oxygen XML
To get started with Oxygen XML , download a 30-day trial. When you open Oxygen XML for the first time,
a sample project will load. Explore the files in the Markdown folders. Click the .ditamap file and then click

the Apply Transformation Scenarios button and build the output. Explore editing topics within the text

editor and previewing the Markdown. If you need help, there are Oxygen XML forums that are actively
monitored.

Conclusion
Oxygen XML provides robust support for nearly every documentation scenario and is built from the ground
up for technical writers and others creating documentation. Because of that design, you’ll feel at home with
many of the features and functionality.

The ability to scale and connect into larger systems for managing content is one of the reasons tech pubs
groups choose Oxygen XML. Now with the support for Markdown, integration with Git, and other docs-as-
code features, Oxygen XML can be a great choice for writing developer docs as well.

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 624

https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/markdown-validation.html?hl=validate%2Cmarkdown%2Ccustom
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/editing-schematron.html
https://www.oxygenxml.com/
https://www.oxygenxml.com/forum/

Additional resources
Here are some additional resources that might be useful, especially if you’re new to content re-use with
Oxygen XML and DITA:

• Getting Started with Oxygen and DITA
• Basic DITA Profiling and Reuse
• Advanced DITA Profiling and Reuse

See also the Oxygen Content Fusion add-on , which allows writers using Oxygen XML Author to create
review tasks. The content can be reviewed by subject matter experts directly from a web browser (see a
video here).

Using Oxygen XML with docs-as-code workflows PDF last generated: August 27, 2023

Documenting REST APIs Page 625

https://www.oxygenxml.com/events/2020/webinar_getting_started_with_dita_using_oxygen_xml_editor.html
https://www.oxygenxml.com/events/2020/webinar_working_with_dita_in_oxygen.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://www.oxygenxml.com/doc/versions/23.1/ug-editor/topics/content-fusion-addon.html
https://www.oxygenxml.com/content_fusion/take_a_tour.html

Blobr: An API portal that arranges your
API's use cases as individual products
With Blobr , you can create an API store to launch and grow an API business with different monetization
models. In the same Blobr portal, you can also include documentation that describes the precise workflow
for each use case, helping API consumers easily onboard with your API. You can also customize your
portal’s name, logo, colors, domain name, add support chat integration, and more.

Note: Blobr is one of the sponsors of my site.

Blobr example
Let’s walk through a Blobr example. Here’s a product catalog for a Petstore API on Blobr :

Figure 1. Product catalog overview on the Blobr API portal. Developers can browse the various ways the
API can be used ("products") and then preview or purchase the product they want.

In this example, the use cases for the Petstore API have been packaged into seven different “products”:

• Get info from a user

Blobr: An API portal that arranges your API's use cases as individual products PDF last generated: August 27, 2023

Documenting REST APIs Page 626

https://www.blobr.io/
https://y18r6fxgtelv8ls5.developer.blobr.app/
https://y18r6fxgtelv8ls5.developer.blobr.app/
https://y18r6fxgtelv8ls5.developer.blobr.app/

• Buy a pet in a store
• Buy a pet online
• A recent pet buy changes his/her mind
• Attach a picture to a pet
• Retrieve user email information
• Update user personal details

This is what’s ingenious about Blobr — it allows you to take each use case for your API and package it as
an individual product, which can then be monetized or made available for free. Each product usually
involves using several different API endpoints in a specific workflow.

API consumers (developers or other integrators) choose the products they want to consume, and then they
become authorized to use the workflow’s endpoints. For example, a typical authorization might allow
developers to make a certain number of calls per month.

Blobr’s new approach to organizing, presenting, and monetizing APIs not only simplifies API consumption
for developers, it helps API providers better communicate to consumers how to use the API.

Product and workflow in detail
Let’s look at a product and its workflow in more detail. Suppose you want to implement the use case “Buy
a Pet in a Store.” You would click this product to see details on the implementation. The product landing
page shows an overview of the product, the cost, and the workflow.

Blobr: An API portal that arranges your API's use cases as individual products PDF last generated: August 27, 2023

Documenting REST APIs Page 627

Figure 2. Product detail page.This view describes the product and the workflow to implement it. The details
also lists the endpoints used for the product.

In this example, the product description is brief, but a more detailed product could include screenshots and
other formatting (see an example).

In addition to a product overview page, documentation appears as workflow steps. The first step in this
workflow is to “Retrieve all the pets with the status ‘available’.” Clicking this workflow step reveals more
detail, as shown below:

Blobr: An API portal that arranges your API's use cases as individual products PDF last generated: August 27, 2023

Documenting REST APIs Page 628

https://y18r6fxgtelv8ls5.developer.blobr.app/catalog/prd_7osv1snb1ehsu91m
https://y18r6fxgtelv8ls5.developer.blobr.app/catalog/prd_7osv1snb1ehsu91m
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/product_description_alt_blobr.png

Figure 3. Workflow step detail page in Blobr. This view describes a workflow step, including the endpoint
used, its parameters, and example response.

The workflow steps usually reference an API endpoint. How do you get your API reference details in there?
Although you can enter your API details manually, a more common approach is to upload an OpenAPI
document (p. 181). After uploading your OpenAPI document, you can select the endpoints that apply to the
workflow step. (The same endpoint might apply across multiple products in an API, and this approach
allows you to single-source your reference documentation.)

For each workflow step, Blobr also includes a “Try it out” explorer so that developers can execute the
endpoint directly on the page and see the result.

API tracking and monitoring
With Blobr, endpoint usage is tracked in a granular way. API providers can price each product as desired,
such as 1,000 calls for $5. As calls get made to the endpoint, a counter shows how many calls remain in
the purchased plan.

This granular call tracking allows API providers and consumers to measure API usage. Further, if the
workflow involves calling multiple endpoints, you can see how far along the users get in the workflow
funnel. In this example, users will most likely make a lot of calls to see the available pets in the petstore and
fewer calls to actually buy the pets.

Blobr: An API portal that arranges your API's use cases as individual products PDF last generated: August 27, 2023

Documenting REST APIs Page 629

https://y18r6fxgtelv8ls5.developer.blobr.app/catalog/prd_7osv1snb1ehsu91m/workflow/v37tKPbAXi6FnHrQInyMO
https://y18r6fxgtelv8ls5.developer.blobr.app/catalog/prd_7osv1snb1ehsu91m/workflow/v37tKPbAXi6FnHrQInyMO

Blobr also allows you to monitor API activity through API logs. Monitoring helps both API providers and
consumers to debug, access, and filter call errors, as well as troubleshoot issues in real time. API
consumers can also replay their calls directly from the portal.

Monetization models
With Blobr, you can choose from different monetization models: subscription based, tiered, or metered
models. For each model, the monetization is either based on the number of API calls made or, with custom
units, defined by the API provider. The custom units can include the number of users, the amount of data
processed, or other options. Flexibility with custom units provides a way to bring the price and value to the
user closer together.

If your API isn’t monetized at all, you can use Blobr for free with all the features needed to replace your
documentation solution or create your own store.

API changelogs and personalized release notes
When there are changes to the API, rather than broadcasting all changes to a general release notes page,
the changelogs are delivered on a product-by-product basis so that changes only go to the relevant
consumers who have purchased those products. The following screens demonstrate how Blobr shows
changes to users:

Figure 4. Product update — differences. This screen shows the differences to API providers when
changing the version of an API in a product. Note the tags that read "New," "Modified," and "Deleted." API
providers can review everything that has changed from version to version.

The following screenshot shows the changelog that API consumers see.

Blobr: An API portal that arranges your API's use cases as individual products PDF last generated: August 27, 2023

Documenting REST APIs Page 630

Figure 5. Product changelog. Those who consuming the product (and who will be impacted by the API
changes) can see what's new, modified, or deleted through these changelogs.

If desired, Blobr can automatically send personalized changelogs to API consumers. These personalized
changelogs avoid broader communications in which only a small subset of information is actually relevant
to the API consumer.

Reasons for Blobr’s unique approach to API portals
What’s the story behind Blobr’s unique approach to API portals? Alexander Airvault, co-founder and CEO
of Blobr, said that previously, when he worked with API customers, they often struggled to understand how
to implement the APIs. The APIs were usually more technical than the customers could follow.

Compounding the difficulty, the traditional model of API portals mostly provides a long list of endpoints for
the user to figure out on their own. To reduce some of the complexity, Alexandre started creating
“subscriptions” to different parts of the API for customers. That’s how he got the idea of Blobr.

Blobr’s approach productizes the use cases of your API, making it clear how to use your API to achieve
various goals. There’s no ambiguity about what you can do with the API or which endpoints you need to
accomplish each goal. This granularity also allows API consumers to focus only on the use cases of the API
they actually need.

Dividing the API into distinctly packaged products not only eliminates complexity but avoids information
overload for API consumers. The consumers see only the endpoints and workflows related to their product
use cases.

One platform that brings it all together
Although we’ve talked about various pieces of the Blobr API portal, let’s step back and consider the
platform as a whole. Blobr provides multiple elements that are critical to distribute and monetize APIs. For
example, Blobr combines building blocks that include API authentication, limits, monitoring,

Blobr: An API portal that arranges your API's use cases as individual products PDF last generated: August 27, 2023

Documenting REST APIs Page 631

documentation, monetization, and analytics all in the same platform. Blobr gives you workflow API
documentation and testing, API monetization linked to real-time usage and authentication, personalized
changelogs with each API update, API logs and error replay, and more.

The combination of all of these necessary elements, working together on the same platform, provides a
seamless experience for both API providers and consumers through the whole API lifecycle — from pre-
sales to implementation, post-sales, and beyond. It’s a case where the overall platform is more valuable
than the sum of each of the parts.

The story behind Blobr
Blobr is named after the blob — a unicellular organism best described as slime mold. Neither plant,
animal, or fungus, the blob has some unique properties. If you cut a blob in half, each part continues to
grow as a discrete organism. Conversely, if you push two blobs together, they merge into a single blob.
The blob’s division or unification provides a living example of how APIs can be chunked into separate
products, or how the same API endpoint can be merged into multiple products. (Blob’s have other unique
properties that also make them an appealing metaphor.)

Blobr is in the startup phase. Based in France, Blobr received VC funding and began commercializing
operations in January of 2022. As of May 2022, the company already has more than 100 paying customers.
To learn more about Blobr, see https://www.blobr.io/ .

Blobr: An API portal that arranges your API's use cases as individual products PDF last generated: August 27, 2023

Documenting REST APIs Page 632

https://en.wikipedia.org/wiki/Physarum_polycephalum
https://www.blobr.io/

Which tool to choose for API docs —
my recommendations
I described a smattering of tools in static site generators (p. 591), hosting and deployment options (p. 602),
and hybrid solutions (p. 607). Which solution should you choose? It’s a complicated decision that will
invariably involve tradeoffs. The decision depends on your skill set, product, environment, and
requirements. But here’s my general recommendation. First, identify what authoring requirements you
have. Then decide on a static site generator, and then consider a hosting and deployment platform.

Also, note that I don’t have total familiarity with all of these tools and solutions. My core experience with
docs-as-code tools involves Jekyll, GitHub Pages, and internally developed publishing pipelines. I have
only dabbled or experimented with a lot of these other tools and platforms, so I can’t speak authoritatively
about them.

Define your requirements
The first step to selecting a tool is to define your authoring requirements. Start by answering the following
questions:

• Will engineers be heavily authoring and collaborating on the content?
• Does your security group restrict you from using third-party platforms to host documentation,

such as GitHub?
• Do you have existing internal infrastructure that you want to hook into for storing and

automatically building your site?
• Do you have engineering resources available to implement your own continuous delivery

publishing workflow?
• Do you have a strong familiarity with a particular programming language?
• Approximately how many documentation pages do you have in your project?
• Do you have some web development skills (or access to UX resources) to design or modify your

theme?
• Do you have an available budget to pay for a third-party hosting and deployment option?
• How many authors will be authoring directly as contributors in the system?
• Do you need to authenticate documentation for specific users? Is there an existing authentication

system already in place at your company?
• Do you need to integrate your docs directly into your larger company site, with the same

branding and appearance?
• Do you need to localize the content? If so, how many other languages? Are there formatting

requirements imposed by your translation vendor and system?
• Do you need to create PDF deliverables for the content (in addition to web output)?
• How will you review the content with SMEs?
• Do you want a lot of control and flexibility to extend or customize the solution with your specific

doc’s needs, which might involve time-intensive custom scripting or integration with another
system?

• Can you use an external search service such as Swiftype, Algolia, or Google Custom Search?
• To what extent do you need to re-use the same content in multiple instances or outputs?
• Do you have to version your content with each new release?

Now that you’ve gathered some data about requirements, understand that you’re probably not going to
find a single system that does all of what you need. There are tradeoffs with every tool choice. The
question is which features you want to prioritize.

Which tool to choose for API docs — my recommendations PDF last generated: August 27, 2023

Documenting REST APIs Page 633

For example, maybe it’s more important to reduce the time spent with tools than it is to have custom
branding and output. Or perhaps a modern web output is more important than the ability to build PDFs. Or
perhaps you must have authentication for your docs, but you also don’t have a budget. There are going to
be some hard decisions to make.

1. Select a static site generator
If you want power and control to create the complex features you need (maybe you want to build a custom
theme or build your doc site with unique branding), then use a static site generator such as Hugo (p. 594),
Sphinx (p. 596), or Jekyll (p. 592). If you have serious doc needs (maybe you migrated from the world of
DITA and are used to more robust tooling), you’re going to want a platform that can go as deep as you
want to take it. Jekyll, Sphinx, and Hugo offer this depth in the platform.

Granted, this power and control will require a more complex platform and learning curve, but you can start
out easy with a ready-made theme and later work your way into custom development as desired.

If you don’t have web development skills and don’t want to tinker with the theme or other code
development, choose a solution such as Readme.com (p. 609) or Netlify CMS (p. 608) (though, with Netlify
CMS, you’d still have to select a theme). Readme provides a ready-made design for your API doc site,
removing the need for both designing a theme and figuring out hosting/deployment. That can save you a
lot of time and effort.

Realize that when implementing a solution, you might spend a quarter of your time (over a period of months
between time on projects) customizing your theme and working on doc tooling. If you don’t want to devote
that much time to your tooling, Readme is a good option. However, I personally want more control and
flexibility over the information design and theme. I like to experiment, and I want the power to code
whatever feature I want, such as an embedded navigation map , JS features to collapse/expand
elements , custom metadata , or whatever. I think many tech writers and developers want similar
flexibility and control. What is important to you? Are flexibility and control so crucial that you’re willing to
sink weeks/months of time into the solution?

Additionally, if you have a large number of contributing authors who will need direct access to the system,
consider whether you have the budget for a hosted solution like Readme that charges per author.

If you want to use a static site generator, which should you choose — Jekyll, Hugo, Sphinx, or some other?
Sphinx has the most documentation-oriented features, such as search, PDF, cross-reference linking, and
semantic markup. If those features are important, consider Sphinx.

However, choosing Jekyll or Hugo rather than Sphinx does have rationale because their communities
extend beyond documentation groups. Sphinx was designed as a documentation platform, so its audience
tends to be more niche. Documentation tools almost never have the community size that more general web
development tools have. So the tradeoff with Jekyll or Hugo is that although they lack some better
documentation features (cross-references, search, PDF, semantic markup), they might have more
community and momentum in the long-term. Still, this may leave you in a tight spot if you have to figure out
a solution for search, PDF, and translation (which are do-able, just not out-of-the-box).

Markup is also a consideration. If you’ve narrowed the choice down to Sphinx with reStructuredText or
Jekyll/Hugo with Markdown, then one question to ask is whether engineers at your company will write in
reStructuredText (assuming engineers will write at all). If they’ll write in reStructuredText, great, Sphinx is
probably superior for documentation projects due to the semantic advantages of reStructuredText (p. 560).
But if engineers insist on Markdown, then maybe Jekyll or Hugo will be a better choice.

Also recognize that there’s flexibility even within the static site generator you choose. You can also use
Markdown with Sphinx, but when you do, some other Sphinx features become limited. Also, you can use
Asciidoc with Jekyll through the jekyll-asciidoc plugin .

Which tool to choose for API docs — my recommendations PDF last generated: August 27, 2023

Documenting REST APIs Page 634

https://idratherbewriting.com/simplifying-complexity/macro-micro.html
https://idratherbewriting.com/simplifying-complexity/hiding-complexity.html
https://idratherbewriting.com/simplifying-complexity/hiding-complexity.html
https://idratherbewriting.com/simplifying-complexity/discoverability-through-metadata.html
https://github.com/asciidoctor/jekyll-asciidoc

If deciding between Jekyll and Hugo, consider your project size. Do you have thousands of pages, all in the
same project? Will each author be building the project locally? If so, how much does speed (how fast the
project compiles the output) matter? If speed is an important consideration, Hugo will probably be better.
But if you prefer a community and a platform that integrates tightly with GitHub, then Jekyll might be better.
Coding your own Liquid scripts in Jekyll is also easier than with Go in Hugo.

2. Select a hosting and deployment platform
After you’ve narrowed down which static site generator you want to use, next think about hosting and
deployment options (which offer continuous delivery). If you’ve decided on Sphinx, consider using Read the
Docs (p. 603). If you’ve decided on Jekyll, then explore GitHub Pages (p. 602), CloudCannon (p. 603),
Netlify (p. 605), or Aerobatic (p. 605). If you’ve decided on Hugo, then explore Netlify (p. 605) or Aerobatic
(p. 605). By using one of these platforms, you offload a tremendous burden in maintaining a server and
deploying your site.

Usually, within a company, engineering groups manage and control the server infrastructure. Setting up
and maintaining your own server for documentation using internal resources only can be a considerable
expense and headache. It can take months (if not years) to get engineering to give you space on a server,
and even if they do, it likely will not provide half of the features you need (like continuous delivery and a
CLI). That’s why I recommend these third-party hosting and deployment options if at all possible.

Maintaining your own server is not the business you want to be in, and these third-party platforms enable
you to be much more efficient. Removing the hassle of publishing through continuous delivery from the
server will simplify your life. On the other hand, if you have an engineering tools support group, and they
have bandwidth and interest in supporting tech docs, using internal tools can facilitate integration into the
other tools (such as validation testing) available at your work.

If your company prefers to build its own publishing pipeline, before you go down this road, find out what
features the internal solution will provide. Explore some of the benefits of these third-party host and
deployment options and examine whether the internal solution will have enough parity and long-term
support. If you have strong engineering backing, then great, you’re probably in a good spot. But if
engineers will barely give you the time of day, consider a third-party solution. See Case study: Switching
tools to docs-as-code (p. 645) for my experience going down this route.

If you don’t have the budget for a third-party host and deployment option, nor do you have internal
engineering resources, consider deploying to an AWS S3 bucket . Jekyll has a plugin called S3_website

that easily deploys to S3. It’s not a continuous delivery model, but neither does it involve uploading your
entire site output every time you want to publish. The S3_website plugin looks at what changed in your
output and synchronizes those changes with the files on S3. (However, I admit that once you get used to
continuous delivery publishing by simply committing to your repo, it’s hard to consider publishing any other
way.)

Also, note that even if you’re not using Jekyll, you can use GitHub Pages as a free publishing host for
any static site generator output. You simply build your files locally and then push your built files into the
GitHub-Pages-enabled repository. With this approach, you wouldn’t have the server perform the build
process, but you can still handle the process through the command line. Free hosting for your docs on
GitHub, regardless of the tool, can be especially convenient.

3. Decide how you’ll parse the OpenAPI specification
The OpenAPI specification (p. 181) could also be an important factor in your consideration of tools. How
will you display all the endpoint reference documentation (p. 114)? Rather than creating your own template
(p. 540) or manually defining these reference sections, I recommend using a tool that can read and parse
the OpenAPI for your reference documentation. Not many standalone doc tools easily incorporate and

Which tool to choose for API docs — my recommendations PDF last generated: August 27, 2023

Documenting REST APIs Page 635

https://aws.amazon.com/s3/
https://github.com/laurilehmijoki/s3_website
https://github.com/laurilehmijoki/s3_website
https://pages.github.com/

display the OpenAPI specification (p. 241) (yet), so perhaps the best alternative might be to either link to or
embed Swagger UI (p. 218) with your docs (assuming you don’t have UX resources for a deeper
integration).

I’ve seen some deeper integrations of Swagger UI into existing websites, and someday I hope to do this
with a Jekyll theme, but I haven’t yet. You could also create a theme using the Swagger UI theme itself.
Static site generators can convert any HTML website into a theme where content is powered by the static
site generator — see Convert an HTML site to Jekyll (a tutorial I wrote).

Tools versus content
Although this section has focused heavily on tools, I want to emphasize that content always trumps tooling.
The content should be your primary focus, not the tools you use to publish the content. After you get the
tooling infrastructure in place, it should mostly take a back seat to the daily tasks of content development.

For a great article on the importance of content over tools, see Good API Documentation Is Not About
Choosing the Right Tool from the Algolia blog. The author explains that “a quality README.md stored
on GitHub can be far more efficient than over-engineered documentation that is well displayed but has
issues with content.”

In some ways, tools are the basketball player’s shoes. They matter, for sure. But Michael Jordan wasn’t a
great basketball player because he wore Nikes, nor was Kobe Bryant great due to his Adidas. You can
probably write incredible documentation despite your tooling and platform. Don’t let tooling derail your
focus on what really matters in your role: the content.

I’ve changed my doc platforms numerous times, and rarely does anyone seem to care or notice. As long as
it looks decent, most project managers and users will focus on the content much more than the design or
platform. In some ways, the design should be invisible and unobtrusive, not foregrounding the focus on the
content. The user shouldn’t be distracted by the tooling.

Also, users and reviewers won’t notice (or appreciate) all the effort behind the tools. Even when you’ve
managed to single source content, loop through a custom collection to generate out a special display,
incorporate language switchers to jump from platform to platform, etc., the feedback you’ll get is “There’s a
typo here.” Or “What’s the data type for this parameter?”

On the other hand, the tools you choose do make a huge difference in your productivity, capabilities, and
general happiness as a technical writer. Choosing the wrong tool can set back your ability to deliver
documentation that your users need.

Which tool to choose for API docs — my recommendations PDF last generated: August 27, 2023

Documenting REST APIs Page 636

https://jekyllrb.com/tutorials/convert-site-to-jekyll/
https://blog.algolia.com/api-documentation-choosing-right-tool/
https://blog.algolia.com/api-documentation-choosing-right-tool/

Jekyll and CloudCannon continuous
deployment
Static site generators (p. 591) are a breed of website compilers that package up a group of files (usually
written in Markdown (p. 556)) and make them into a fully deployable website. One of the most popular
static site generators (based on the number of downloads, usage, and community) is Jekyll , and it’s the
one I have the most experience with, so I’ll be focusing on Jekyll here, particularly how you can integrate
Jekyll with CloudCannon for a continuous delivery publishing solution.

About Jekyll
Jekyll is a Ruby-based static site generator (p. 592), meaning it uses Ruby as the underlying programming
language to compile the website. This site and my blog use Jekyll, and I used Jekyll for the
documentation at my past two jobs. For example, all the docs here use Jekyll. With Jekyll, you can
publish a fully functional tech comm website that includes content re-use, conditional filtering, variables,
PDF output, and everything else you might need as a technical writer.

Here’s a documentation theme that I developed for Jekyll:

There isn’t any kind of special API reference endpoint formatting here, but the platform is so flexible, you
can do anything with it as long as you know HTML, CSS, and JavaScript (the fundamental language of the
web). With a static site generator, you have a tool for building a full-fledged website using pretty much any
style or JavaScript framework you want. With the Jekyll website, you can include complex navigation,
content re-use, variables, and more.

Static site generators give you a lot of flexibility. They’re a good choice if you need a lot of control and
customization with your site. You’re not locked into rigid templates or styles. You define your own
templates and structure things however you want. For example, with static site generators, you can do the
following:

Jekyll and CloudCannon continuous deployment PDF last generated: August 27, 2023

Documenting REST APIs Page 637

https://jekyllrb.com/
https://idratherbewriting.com/
https://developer.amazon.com/appstore/documentation
https://idratherbewriting.com/documentation-theme-jekyll/
https://idratherbewriting.com/documentation-theme-jekyll/
https://idratherbewriting.com/documentation-theme-jekyll/

• Write in a text editor working with Markdown
• Create custom templates for documentation
• Use a revision control repository workflow
• Customize the look and feel of the output
• Insert JavaScript and other code directly on the page

Developing content in Jekyll
One of the questions people ask about authoring content with static site generators is how you see the
output and formatting given that you’re working strictly in text. For example, how do you see images, links,
lists, or other formatting if you’re authoring in text?

Here’s what the current view of my Jekyll project in Atom editor looks like:

Atom text editor view while working in Jekyll

When you’re authoring a Jekyll site, you first generate a local preview by running this command:

bundle exec jekyll serve

The response looks something like this:

Jekyll and CloudCannon continuous deployment PDF last generated: August 27, 2023

Documenting REST APIs Page 638

https://atom.io/

~/projects/learnapidoc [master] $ bundle exec jekyll serve
Configuration file: /Users/tomjoht/projects/learnapidoc/_config.yml

Source: /Users/tomjoht/projects/learnapidoc
Destination: _site

Incremental build: disabled. Enable with --incremental
Generating...

done in 6.457 seconds.
Auto-regeneration: enabled for '/Users/tomjoht/projects/learnapidoc'

Server address: http://127.0.0.1:4000/learnapidoc/
Server running... press ctrl-c to stop.

If you use Atom editor, you can use a terminal built directly into Atom (I use the PlatformIO IDE Terminal
package).

You then copy the preview server address (in this case, http://127.0.0.1:4000/learnapidoc/) and
paste it into your browser. This preview server continuously builds your site with each file change you save.
I usually view this browser preview side by side with my Atom editor to make sure the formatting and
images look right:

Jekyll preview server

This setup works reasonably well. Granted, I do have a large monitor, so it gives me more real estate. On a
small screen, you might have to switch back and forth between screens to see the output.

Admittedly, the Markdown format is easy to use but also susceptible to error, especially if you have
complicated list formatting. But the majority of the time, writing in Markdown is a joy. You can focus on the
content without getting wrapped up in tags. If you do need complex tags, anything you can write in HTML
or JavaScript you can include on your page.

Jekyll and CloudCannon continuous deployment PDF last generated: August 27, 2023

Documenting REST APIs Page 639

https://atom.io/packages/platformio-ide-terminal

Automating builds from Github
You can integrate Jekyll into platforms such as GitHub Pages or CloudCannon to create continuous
delivery publishing. Continuous delivery means that when you commit a change to your Git repo, the server
automatically rebuilds your Jekyll site.

GitHub Pages (p. 602) is free and is what I use for my blog and this API docs site. But CloudCannon
provides more features that might be needed by the enterprise. So let’s follow an example in publishing in
CloudCannon , which describes itself as the “The Cloud CMS for Jekyll.”

In this activity, we’ll publish to CloudCanon using the Documentation Theme for Jekyll (the theme I built).
You don’t need to have a Windows machine to facilitate the building and publishing — you’ll do that via
CloudCannon and Github. (Of course, being able to build locally is important if you’re developing with
Jekyll, but I want to avoid Jekyll installation issues here and just demonstrate the continuous
deployment features that a host like CloudCannon provides.) This tutorial will show you how to plug into a
robust hosting platform that reads content stored and managed on GitHub.

Set up your doc theme on Github
1. Go to the Github page for the Documentation theme for Jekyll and click Fork in the upper-

right corner.

When you fork a project, a copy of the project (using the same name) gets added to your own
Github repository. You’ll see the project at https://github.com/{your github

username}/documentation-theme-jekyll .

Sometimes people fork repositories to make changes and then propose pull requests of the fork
to the original repo. Other times people fork repositories to create a starting point for a splinter
project from the original. Github is all about social coding — one person’s ending point is another
person’s starting point, and multiple projects can be merged into each other. You can learn more
about forking here .

2. Sign up for a free account at CloudCannon ; sign in using your GitHub credentials.
3. Once you sign in, click Create Site and then give the new site a name. Then press Enter to

create the site.
4. Click the GitHub Repository box.

Jekyll and CloudCannon continuous deployment PDF last generated: August 27, 2023

Documenting REST APIs Page 640

https://cloudcannon.com/
https://idratherbewriting.com/documentation-theme-jekyll
https://jekyllrb.com/docs/installation/
https://github.com/tomjoht/documentation-theme-jekyll
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://cloudcannon.com/

Sync with GitHub

5. Choose the GitHub repo that you forked — documentation-theme-jekyll. Select the gh-pages
branch.

6. CloudCannon pulls the files from the synced repo over to CloudCannon. When the sync finishes,
click Start Site Build to have CloudCannon build Jekyll from the server.

When it finishes building, you see a green check mark in the upper-right corner.

7. Go to the Dashboard.
8. From the Dashboard, click the URL that appears below your site image:

Jekyll and CloudCannon continuous deployment PDF last generated: August 27, 2023

Documenting REST APIs Page 641

Viewing your live site

The preview URL will be something random, such as https://balmy-

sunglasses.cloudvent.net/ . You’ll need to click Continue to sample site because you’re on
the free plan. When you visit the URL, the theme should look just like the Documentation theme
for Jekyll here .

Using the CloudCannon user interface, you can make updates to files, and the updates will sync back to
GitHub. Likewise, if you push updates to GitHub, CloudCannon will be notified, pull the changes, and
rebuild the output.

The integration between CloudCannon and GitHub is pretty mind-blowing. Through CloudCannon, you can
offload all the hassle of hosting and maintaining your website, but you aren’t locked into the system in a
proprietary way. Your content lives in a custom Jekyll theme on GitHub.

CloudCannon automatically builds the site when you commit new updates to your GitHub repo, entirely
removing the publishing and deployment step with a website. CloudCannon also provides additional
features for authentication, metrics, suggested improvements, and more.

The only drawback with CloudCannon is that your company must allow you to host documentation content
on GitHub. Also, CloudCannon charges a monthly fee (see their pricing). If you need to make a case for
third-party hosting, I recommend doing so by analyzing the costs of internal hosting and maintenance.

If cost is an issue and you don’t have any privacy restrictions around your docs, consider using GitHub
Pages instead. GitHub Pages also gives you continuous integration delivery for GitHub projects, and it’s
free.

Make an update to your Github repo
When you connect a GitHub repo with CloudCannon, the two sites sync the files. Let’s see that workflow in
action.

Jekyll and CloudCannon continuous deployment PDF last generated: August 27, 2023

Documenting REST APIs Page 642

https://idratherbewriting.com/documentation-theme-jekyll
https://idratherbewriting.com/documentation-theme-jekyll
https://cloudcannon.com/pricing/
https://pages.github.com/
https://pages.github.com/

1. In your browser, on GitHub, go to your Github repository that you forked and make a change to a
file.

For example, browse to the index.md file, click the pencil icon (“Edit this file”), make an update,
and then commit the update.

2. Return to CloudCannon and observe that your site automatically starts rebuilding.

CloudCannon detects the change and automatically rebuilds Jekyll

Wait until the build finishes (the blue circling arrows change into a green check mark), and then look for the
change at the preview URL. The change should be reflected.

You’ve now got a workflow that involves Github as the storage provider syncing to a Jekyll theme hosted
on CloudCannon. You’re publishing on the fly, based on commits to a repo. This continuous publishing
based on Git commits is the essential characteristic of a docs-as-code publishing workflow (p. 551).

The Jekyll Aviator theme
My Jekyll documentation theme is just one possibility for a Jekyll site. (Most people who use it end up
heavily customizing it for their needs.) You could also use this Aviator API documentation theme , which
has some API templating built-in, or you could choose from many other Jekyll themes. I also wrote a
tutorial for creating your own Jekyll theme , likely using your company’s site as the template.

Jekyll and CloudCannon continuous deployment PDF last generated: August 27, 2023

Documenting REST APIs Page 643

https://github.com/CloudCannon/Aviator-Jekyll-Theme
https://jekyllrb.com/tutorials/convert-site-to-jekyll/

CloudCannon Aviator theme

For inspiration, here are some websites using Jekyll:

• Bootstrap
• Stack Overflow blog
• RethinkDB
• Github docs
• Basekit
• Jekyllrb docs
• SendGrid docs
• Atlassian Design
• CloudCannon docs
• Wistia help center
• Liquid (Shopify)
• devo.ps documentation
• healthcare.gov

Jekyll and CloudCannon continuous deployment PDF last generated: August 27, 2023

Documenting REST APIs Page 644

https://github.com/CloudCannon/Aviator-Jekyll-Theme
https://github.com/CloudCannon/Aviator-Jekyll-Theme
http://getbootstrap.com/
https://blog.stackoverflow.com/
http://rethinkdb.com/docs/
https://help.github.com/
http://docs.basekit.com/
http://jekyllrb.com/docs/home/
https://sendgrid.com/docs
https://design.atlassian.com/
https://docs.cloudcannon.com/
http://wistia.com/support
https://help.shopify.com/themes/liquid/basics
http://docs.devo.ps/
http://www.healthcare.gov/

Case study: Switching tools to docs-
as-code
Changing any documentation tooling at a company can be a massive undertaking. Depending on the
amount of legacy content to convert, the number of writers to train, the restrictions and processes you
have to work against in your corporate environment and more, it can require an immense amount of time
and effort to switch tools from the status quo to docs-as-code.

Additionally, you will likely need to make this change outside your regular documentation work, and you’ll
probably need to develop the new system while still updating and publishing content in the old system.
Essentially, this means you’ll be laying down a new highway while simultaneously driving down it.

For an overview of the docs-as-code approach, see Docs-as-code tools (p. 551). In this article, I describe
the challenges we faced in implementing a docs-as-code approach within a tech writing group at a large
company.

Previous processes
Previously, our team published content through a content management system called Hippo (by
Bloomreach). Hippo is similar to WordPress or Drupal but is Java-based rather than PHP-based (which
made it attractive to a Java-centric enterprise that restricted PHP but still needed a CMS solution for
publishing).

To publish a page of documentation, tech writers had to create a new page in the Hippo CMS and then
paste in the HTML for the page (or try to use the WYSIWYG editor in the Hippo CMS). If you had 50 pages
of documentation to publish, you would need to paste the HTML into each CMS page one by one.
Originally, many writers would use tools such as Pandoc to convert their content to HTML and then
paste it into the Hippo CMS. This copy-and-paste approach was tedious, prone to error, and primitive.

When I started, I championed using Jekyll to generate and manage the HTML, and I started storing the
Jekyll projects in internal Git repositories. I also created a layout in Jekyll that was explicitly designed for
Hippo publishing. The layout included a documentation-specific sidebar (previously absent in Hippo on a
granular level) to navigate all the content in a particular set of documentation. This Jekyll layout included
several styles and scripts to override settings in the CMS.

Despite this innovation, our publishing process still involved pasting the generated HTML (after building
Jekyll) page by page into the CMS. Thus, we were only partially using docs-as-code and still had a long
way to go. One of the tenets of docs-as-code is to build your output directly from the server (called
“continuous deployment”). In other words, you incorporate the publishing logic on the server rather than
running the publishing process from your local computer.

This last step, publishing directly from the server, was difficult because another engineering group was
responsible for the website and server, and we couldn’t just rip Hippo out and start uploading the Jekyll-
generated files onto a web server ourselves. It would take another year or more before the engineering
team had the bandwidth for the project. Once it started, the project was a wild ride of mismatched
expectations and assumptions. But in the end, we succeeded.

Most of the lessons learned here are about this process, specifically how we transitioned to building Jekyll
directly from an internal Git repo, the decisions we made and the reasoning behind those decisions, the
compromises and other changes of direction, and so on. My purpose here is to share lessons learned so
that other writers embarking on similar endeavors can benefit from understanding what might be on the
road ahead.

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 645

https://www.bloomreach.com/en/products/experience/hippo-cms
https://pandoc.org/

Advantages of integrating into a larger system
Why did we want to move to docs as code in the first place? At most large companies, there are plenty of
robust, internally developed tools that tech writers can take advantage of. The docs-as-code approach
would allow us to integrate into this robust enterprise infrastructure that developers had already created.

Documentation tools are often independent, standalone tools that offer complete functionality (such as
version control, search, and deployment) within their own system. But these systems are often a black box,
meaning, you can’t really open them up and integrate them into another process or system. With the docs-
as-code approach, we had the flexibility to adapt our process to fully integrate within the company’s
infrastructure and website deployment process. Some of this infrastructure we wanted to hook into
included the following:

• Internal test environments (a gamma environment separate from production)
• Authentication for specific pages based on account profiles
• Search and indexing
• Website templating (primarily a complex header and footer)
• Robust analytics
• Secure servers to satisfy Information Security policies with the corporate domain
• Media CDN for distributing images
• Git repositories and GUI for managing code
• Build pipelines and a build management system

All we really needed to do was to generate out the body HTML along with the sidebar and make it available
for the existing infrastructure to consume. The engineering team that supported the website already had a
process in place for managing and deploying content on the site. We wanted to use similar processes
rather than coming up with an entirely different approach.

End solution
In the end, here’s the solution we implemented. We stored our Jekyll project in an internal Git repository —
the same farm of Git repositories other engineers used for nearly every software project, and which
connected into a build management system. After we pushed our Jekyll doc content to the master branch
of the Git repository, a build pipeline would kick off and build the Jekyll project directly from the server
(similar to GitHub Pages).

Our Jekyll layout omitted any header or footer in the theme. The built HTML pages were then pulled into an
S3 bucket in AWS through an ingestion tool (which would check for titles, descriptions, and unique
permalinks in the HTML). This bucket acted as a flat-file database for storing content. Our website would
make calls to the content in S3 based on permalink values in the HTML to pull the content into another
website template that included the header and footer.

The build process from the Git repo to the deployed website took about 10 minutes, but tech writers didn’t
need to do anything during that time. After you typed a few commands in your terminal (merging with the
gamma or production branch locally and then pushing out the update to origin), the deployment process

kicked off and ran all by itself.

The first day in launching our new system, a team had to publish 40 new pages of documentation. Had we
still been in Hippo, this would have taken several hours to publish. Even more painful, their release
timeframe was an early morning, pre-dawn hour, so the team would have had to publish 40 pages in Hippo
CMS at around 4 am to 6 am, copying and pasting the HTML frantically to meet the release push and
hoping they didn’t screw anything up.

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 646

https://pages.github.com/

Instead, with the new process, the writer just merged her development branch into the production

branch and pushed the update to the repo. Ten minutes later, all 40 pages were live on the site. She was
floored! We knew this was the beginning of a new chapter in the team’s processes. We all felt like a
considerable publishing burden had been lifted off our shoulders.

Challenges we faced
I’ve summarized the success and overall approach, but there were a lot of questions and hurdles in
developing the process. I’ll detail these main challenges in the following sections.

Inability to do it ourselves

The biggest challenge, ironically, was probably with myself — dealing with my own perfectionist, controlling
tendencies to do everything on my own, just how I wanted. (This is probably both my biggest weakness
and strength as a technical writer.) It’s hard for me to relinquish control and have another team do the
work. We had to wait about a year for the overworked engineering team’s schedule to clear up so they
would have the bandwidth to do the project.

During this wait time, we refined our Jekyll theme and process, ramped up on our Git skills, and migrated
all of the content out of the old CMS into kramdown Markdown . Even so, as project timelines kept
getting delayed and pushed out, we weren’t sure if the engineering team’s bandwidth would ever lighten
up. I wanted to jump ship and just deploy everything myself through the S3_website plugin on AWS S3

.

But as I researched domain policies, server requirements, and other corporate standards and workflows, I
realized that a do-it-myself approach wouldn’t work (unless I possessed a lot more engineering knowledge
than I currently did). Given our corporate domain, security policies required us to host the content on an
internal tier 1 server, which had to pass security requirements and other standards. It became clear that
this would involve a lot more engineering and server knowledge and time than I had, as well as
maintenance time if I managed the server post-release. So we had to wait.

We wanted to get this right because we probably wouldn’t get bandwidth from the engineering team again
for a few years. In the end, waiting turned out to be the right approach.

Understanding each other

When we did finally begin the project and start working with the engineering team, another challenge was
in understanding each other. The engineering team (the ones implementing the server build pipeline and
workflow) didn’t understand our Jekyll authoring process and needs.

Conversely, we didn’t understand the engineer’s world well either. To me, it seemed all they needed to do
was upload HTML files to a web server, which seemed a simple task. I felt they were overcomplicating the
process with unnecessary workflows and layouts. And what was the deal with storing content in S3 and
doing dynamic lookups based on matching permalinks? But they already had a process for publishing
content to the existing site, so they were more or less following the same build flow.

Despite the common goal, we lived in seemingly different worlds, and we had to continually communicate
about what each other needed. It didn’t help that we were located in different states and had to interact
virtually, often through chat and email.

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 647

https://kramdown.gettalong.org/
https://github.com/laurilehmijoki/s3_website
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

Figuring out repo size

Probably the primary challenge was to figure out the correct size for the documentation repos. Across our
teams, we had 30 different products, each with their doc navigation and content. Was it better to store
each product in its own repo, or to store all products in one giant repo? I flipped my thinking on this several
times.

Storing content in multiple repos led to quick build times, reduced visual clutter, resulted in fewer merge
conflicts, didn’t introduce warnings about repo sizes, and had other benefits with autonomy.

On the other hand, storing all content in one repo simplified content re-use, made link management and
validation easier, reduced maintenance efforts, and more. Most of all, it made it easier to update the theme
in a single place rather than duplicating theme file updates across multiple repos.

Originally, our team started out storing content in separate repos. When I had updates to the Jekyll theme, I
thought I could simply explain what files needed to be modified, and each tech writer would make the
update to their theme’s files. This turned out not to work — tech writers didn’t like making updates to
theme files. The Jekyll projects became out of date, and then when someone experienced an issue, I had
no idea what version of the theme they were on.

I then championed consolidating all content in the same repo. We migrated all of these separate,
autonomous repos into one master repo. This worked well for making theme updates. But soon the long
build times (1-2 minutes for each build) became painful. We also ran into size warnings in our repo (images
and other binary files such as Word docs were included in the repos). Sometimes merge conflicts
happened.

The long build times were so annoying, we decided to switch back to individual repos. There’s nothing
worse than waiting 2 minutes for your project to build, and I didn’t want the other tech writers to hate Jekyll
like they did Hippo. The lightning-fast auto-regenerating build time with Jekyll is part of its magic.

Creative solutions for theme distribution across repos
I came up with several creative ways to push the theme files out to multiple small repos in a semi-
automated way. My first solution was to distribute the theme through RubyGems , which is Jekyll’s
official solution for theming . I created a theme gem, open-sourced it and the theme (see Jekyll Doc
Project), and practiced the workflow to push out updates to the theme gem and pull them into each
repo.

It worked well (just as designed). However, it turns out our build management system (an engineering
system used to build outputs or other artifacts from code repositories) couldn’t build Jekyll from the server
using Bundler , which is what RubyGems required. (Bundler is a tool that automatically gets the right
gems for your Jekyll project based on the Jekyll version you are using. Without Bundler, each writer installs
the jekyll gem locally and builds the Jekyll project based on that gem version.)

My understanding of the build management system was limited, so I had to rely on engineers for their
assessment. Ultimately, we had to scrap using Bundler and just build using jekyll serve because the
engineers couldn’t make Bundler work with the build system. So I still had the problem of distributing the
same theme across multiple repos.

My second attempt was to distribute the theme through Git submodules . This approach involved storing
the theme in its own Git repo that other Git repos would pull in. However, our build management system
couldn’t support Git submodules either, it turned out.

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 648

https://rubygems.org/
https://jekyllrb.com/docs/themes/
https://github.com/amzn/jekyll-doc-project
https://github.com/amzn/jekyll-doc-project
http://bundler.io/
https://rubygems.org/gems/jekyll/versions/3.3.1
https://git-scm.com/book/en/v2/Git-Tools-Submodules

I then came up with a way to distribute the theme through Git subtrees . Git subtrees worked in our build
system (although the commands were strange), and it preserved the short build times. However, when the
engineering team started counting up all the separate build pipelines they’d have to create and maintain for
each of these separate repos (around 30), they said this wasn’t a good idea from a maintenance point of
view.

Not understanding all the work involved around building publishing pipelines for each Git repo, there was
quite a bit of frustration here. It seemed like I was going out of my way to accommodate engineering
limitations, and I wasn’t sure if they were modifying any of their processes to accommodate us. But
eventually, we settled on two Git repos and two pipelines. We had to reconsolidate all of our separate
repos back into two repos. You can probably guess that moving around all of this content, splitting it out
into separate repos and then re-integrating it back into consolidated repos, etc., wasn’t a task that the
writers welcomed.

There was a lot of content and repo adjustment, but in the end, an architecture consisting of two large
repos was the right decision. In fact, in retrospect, I wouldn’t have minded just having one repo for
everything.

Each repo had its own Jekyll project. If I had an update to any theme files (e.g., layouts or includes), I
copied the update manually into both repos. Copying the files was easier than trying to devise an
automated method. It also allowed me to test updates in one repo before rolling them out to the other repo.
To reduce the slow build times, I created project-specific config files that would cascade with the default
configuration file and build only one directory rather than all of them. This project-specific config technique
reduced the build time to the normal lightning-fast times of less than 5 seconds.

Let me provide a little more details here on how we shortened the build times, because this is a reason
many adopt Hugo instead of Jekyll. To reduce the build times, we created a project-specific configuration
file (e.g., acme-config.yml) that sets, through the defaults , all the directories to publish: false but
lists one particular directory (the one with content you’re working on) as publish: true . Then to build
Jekyll, you cascade the config files like this:

jekyll serve --config _config.yml,acme-config.yml

The config files on the right overwrite the config files on the left. It works quite well.

Also, although at the time I grumbled about having to consolidate all content into two repos, as the
engineers required, I eventually came to agree with the engineers’ decision. Recognizing this, my respect
and trust in the engineering team’s judgment grew considerably. In the future, I started to treat the
engineers’ recommendations and advice about various processes with much more respect. I didn’t assume
they misunderstood our authoring needs and requirements so much, and instead followed their direction
more readily.

Ensuring everyone builds with the same version of Jekyll
Another challenge was ensuring everyone built the project using the same version of Jekyll. Normally, you
include a Gemfile in your Jekyll project that specifies the version of Jekyll you’re using, and then everyone
who builds the project with this Gemfile runs Bundler to make sure the project executes with this version of
Jekyll. However, since our build pipeline had trouble running Bundler, we couldn’t ensure that everyone
was running the same version of Jekyll.

Ideally, you want everyone on the team using the same version of Jekyll to build their projects, and you
want this version to match the version of Jekyll used on the server. Otherwise, Jekyll might not build the
same way. You don’t want to later discover that some lists don’t render correctly or that some code
samples don’t highlight correctly because of a mismatch of gems. Without Bundler, everyone’s version of

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 649

https://www.atlassian.com/blog/git/alternatives-to-git-submodule-git-subtree

Jekyll probably differed. Additionally, the latest supported version of Jekyll in the build management system
was an older version of Jekyll (at the time, it was 3.4.3, which had a dependency on an earlier version of
Liquid that was considerably slower in building out the Jekyll site).

The engineers finally upgraded to Jekyll 3.5.2, which allowed us to leverage Liquid 4.0. This version
upgrade reduced the build time from about 5 minutes to 1.5 minutes. Still, Jekyll 3.5.2 had a dependency
on an older version of the rouge gem , which was giving us issues with some code syntax highlighting for
JSON. The process of updating the gem within the build management system was foreign territory to me,
and it was also a new process for the engineers.

To keep everyone in sync, we asked that each writer check their version of Jekyll and manually upgrade to
the latest version. This request (which some ignored) turned out not to be much of an issue since there
wasn’t much of a difference from one Jekyll gem version to the next (at least not for the features we were
using).

Ultimately, I learned that it’s one thing to update all the Jekyll gems and other dependencies on your own
machine, but it’s an entirely different effort to update these gems within a build management server in an
engineering environment you don’t own. We relied on the engineering team to make these updates (but
often had to plead and beg them to do it).

Figuring out translation workflows
Figuring out the right process for translation was also tricky. We started out translating the Markdown
source. Our translation vendor affirmed that their ingestion process could handle Markdown as a source
format, and we did tests to confirm it. However, after a few translation projects, it turned out that they
couldn’t handle content that mixed Markdown with HTML, such as a Markdown document with an HTML
table (and we almost always used HTML tables in Markdown). The vendors would count each HTML
element as a Markdown entity, which would balloon the cost estimates.

Further, the number of translation vendors that could handle Markdown was limited, which created risks
around the vendors that we could use. For example, our localization managers often wanted to work with
translation agencies in their own time zones. But if we were reliant on a particular vendor for their ability to
process Markdown, we restricted our flexibility with vendors. If we wanted to scale across engineering, we
couldn’t force every team to use the same translation vendors, which might not be available in the right
time zones. Eventually, we decided to revert to sending only HTML to vendors.

However, if we sent only the HTML output from Jekyll to vendors, it made it difficult to apply updates. With
Jekyll (and most static site generators), your sidebar and layout are packaged into each of your doc pages.
Assuming that you’re just working with the HTML output (not the Markdown source), if you have to add a
new page to your sidebar, or update any aspect of your layout, you would need to edit each individual
HTML file instance to make those updates across the documentation. That wasn’t something we wanted to
do.

In the end, the process we developed for handling translation content involved manually inserting the
translated HTML into pages in the Jekyll project and then having these pages build into the output like the
other Markdown pages. We later evolved the process to create container files that provided the needed
frontmatter metadata but which used includes to pull the body content from the returned HTML file
supplied by the translation vendors. It was a bit of manual labor, but acceptable given that we didn’t route
content through translation all that often.

The URLs for translated content also needed to have a different baseurl . Rather than outputting content
in the /docs/ folder, translated content needed to be output into /ja/docs/ (for Japanese) or /de/

docs/ (for German). However, a single Jekyll project can have only one baseurl value as defined in the
default _config.yml file. I had this baseurl value automated in a number of places in the theme.

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 650

https://rubygems.org/gems/rouge

To account for the new baseurl , I had to incorporate a number of hacks to prepend language prefixes
into this path and adjust the permalink settings in each translated sidebar to build the file into the right ja

or de directory in the output. It was confusing, and if something breaks in the future, it will take me a while
to unravel the logic I implemented.

Overall, translation remains one of the trickier aspects to handle with static site generators, as these tools
are rarely designed with translation in mind. But we made it work. (Another challenge with translation was
how to handle partially translated doc sets — I won’t even get into this here.)

Overall, given the extreme flexibility and open nature of static site generators, we were able to adapt to the
translation requirements and needs on the site.

Other challenges
There were a handful of other challenges worth mentioning (but not worth full development as in the
previous sections). I’ll briefly list them here so you know what you might be getting into when adopting a
docs-as-code approach.

Moving content out of the legacy CMS

We probably had about 1,500 pages of documentation between our 10 writers. Moving all of this content
out of the old CMS was challenging. Additionally, we decided to leave some deprecated content in the
CMS, as it wasn’t worth migrating. Creating redirect scripts that would correctly re-route all the content to
the new URLs (especially with changed file names) while not routing away from the deprecated CMS pages
was challenging. Engineers wanted to handle these redirects at the server level, but they needed a list of
old URLs and new URLs.

To programmatically create redirect entries for all the pages, I created a script that iterated throughout
each doc sidebar and generated out a list of old and new URLs in a JSON format that the engineering team
could incorporate into their redirect tool. It worked pretty well, but migrating the URLs through
comprehensive redirects required more analysis and work.

Implementing new processes while still supporting the old

While our new process was in development (and not yet rolled out), we had to continue supporting the
ability for writers to generate outputs for the old system (pasting content page by page into the legacy
Hippo CMS). Any change we made had to also include the older logic and layouts to support the older
system. Accommodating multiple templates and scripts was particularly difficult with translation content
since it required such a different workflow. Being able to migrate our content into a new system while
continuing to publish in the older system, without making updates in both places, was a testament to the
flexibility of Jekyll. We created separate layouts and configuration files in Jekyll to facilitate these needs.

One of the biggest hacks was with links. Hippo CMS required links to be absolute links if pasting HTML
directly into the code view rather than using the WYSIWYG editor (insane as this sounds, it’s true). We
created a script in our Jekyll project to populate links with either absolute or relative URLs based on the
publishing targets. It was a non-standard way of doing links (essentially we treated them as variables
whose values we defined through properties in the config file). It worked. Again, Jekyll’s flexibility allowed
us to engineer the needed solution.

Constantly changing the processes for documentation

We had to constantly change the processes for documentation to fit what did or did not work with the
engineering processes and environment. For example, git submodules, subtrees, small repos, large repos,
frontmatter, file names, translation processes, etc., all fluctuated as we finalized the process and worked
around issues or incompatibilities.

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 651

Each change created some frustration and stress for the tech writers, who felt that processes were
changing too much and didn’t like to hear about updates they would need to make or learn. And yet, it was
hard to know the end from the beginning, especially when working with unknowns around engineering
constraints and requirements. Knowing that the processes we were laying down now would likely be
cemented into the pipeline build and workflow for long into the distant future was stressful.

I wanted to make sure we got things right, which might mean adjusting our process, but I didn’t want to
make too many adjustments because each time there was a change, it weakened the confidence among
the other tech writers about our direction and expertise about what we were doing.

During one meeting, I somewhat whimsically mentioned that updating our permalink path wouldn’t be a
bad idea (to have hierarchy in the URLs). One of the tech writers noted that she was already under the gun
to meet deadlines for four separate projects and wasn’t inclined to update all the permalinks for each page
in these projects. After that, I was cautious about introducing any change without having an extremely
compelling reason for it.

The experience made me realize that the majority of tech writers don’t like to tinker around with tools or
experiment with new authoring approaches. They’ve learned a way to write and publish content, and they
resent it when you modify that process. It creates an extreme amount of stress in their lives. And yet, I kind
of like to try new approaches and techniques. How do you know, without experimenting, if there isn’t a
better way of doing something?

In the engineering camp, I also took some flak for changing directions too frequently, particularly with the
repo sizes. But from my perspective, I had to change directions to try to match the obscure engineering
requirements. In retrospect, it would have helped if I had visited the engineers for a week to learn their
workflow and infrastructure in depth.

Styling the tech docs within a larger site

Another challenge was with tech doc styles. The engineering team didn’t have resources to handle our tech
doc styling, so I ended up creating a stylesheet (3,000 lines long) with all CSS namespaced to a class of
docs (for example, .docs p, .docs ul , etc.). I implemented namespacing to ensure the styles wouldn’t

alter other components of the site. Much of this CSS I simply copied from Bootstrap . The engineers
pretty much incorporated this stylesheet into their other styles for the website.

With JavaScript, however, we ran into namespace collisions and had to wrap our jQuery functions in a
unique name to avoid conflicts (the conflicts would end up breaking the initialization of some jQuery
scripts). These namespace collisions with the scripts weren’t apparent locally and were only visible after
deploying on the server, so the test environment constantly flipped between breaking or not breaking the
sidebar (which used jQuery). As a result, seeing broken components created a sense of panic from the
engineers and dread among the tech writers.

The engineers weren’t happy that we had the ability to break the display of content with our layout code in
Jekyll. At the same time, we wanted the ability to push out content that relied on jQuery or other scripts. In
the end, we got it to work, and the returned stability calmed down the writers.

Transitioning to a Git-based workflow

While it may seem like Jekyll was the authoring tool to learn, the more taxing challenge was becoming
familiar with Git-based workflows for doc content. Git required some learning and familiarity with the
command line and version control workflows.

Some writers already had a background with Git, while others had to learn it. Although we all ended up
learning the Git commands, I’m not sure everyone actually used the same processes for pulling, pushing,
and merging content (there’s a lot of ways to do similar tasks).

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 652

https://getbootstrap.com/

There were plenty of times where someone accidentally merged a development branch into the master or
found that two branches wouldn’t merge, or they had to remove content from the master and put it back
into development, etc. Figuring out the right process in Git is not a trivial undertaking. Even now, I’ll
occasionally find a formatting error because Git’s conflict markers >>>>>>> and <<<<<<< find their way
into the content, presumably from a merge gone wrong. We don’t have any validation scripts (yet) that look
for marker stubs like this, so it’s a bit disheartening to suddenly come across them.

Striking a balance between simplicity and robustness in doc tooling

Overall, we had to support a nearly impossible requirement in accommodating less technical contributors
(such as project managers or administrators outside our team) as well as advanced authors. The
requirement was to keep doc processes simple enough for non-technical people to make updates (similar
to how they did in the old CMS), while also providing enough robustness in the doc tooling to satisfy the
needs of tech writers, who often need to single-source content, implement variables, re-use snippets,
output to PDF, and more.

In the end, given that our primary audience and contributors were developers, we favored tools and
workflows that developers would be familiar with. To contribute substantially in the docs, we decided that
you would have to understand, to some extent, Git, Markdown, and Jekyll. For non-technical users, we
directed them to a GUI (similar to GitHub’s GUI) they could interact with to make edits in the repository.
Then we would merge in and deploy their changes.

However, even the less technical users eventually learned to clone the project and push their updates into
a development branch using the command line. It seems that editing via the GUI is rarely workable as a
long-term solution.

Building a system that scales

Although we were using open source tools, our solution scaled for the enterprise. Because the content
used Markdown as the format, anyone could quickly learn it. And because we used standard Git processes
and tooling, engineers can more easily plug into the system.

We already had some engineering teams interacting in the repo. Our goal was to empower lots of
engineering teams with the ability to plug into this system and begin authoring. Ideally, we could have
dozens of different engineering groups owning and contributing content, with the tech writers acting more
like facilitators and editors.

No licenses or seats were required to scale out the authoring. A writer just used Atom editor (or another
IDE). The writer would open up the project and work with the text, treating docs like code.

Within the first few weeks of launching our system, we found that engineers liked to contribute updates
using the same code review tools they used with software projects. This use of code review tools simplified
the editing workflow. But it also created more learning on our part, because it meant we would need to
learn these code review tools, how to push to the code review system, how to merge updates from the
reviews, and so forth. Trying to evaluate a doc contribution by looking at a diff file in a code review tool is
more annoying than helpful. I prefer to see the content in its whole context, but engineers typically just
want to focus in on what has changed.

Additionally, empowering these other groups to author required us to create extensive instructions, which
was an entire documentation project in itself. I created around 30+ topics in our guide that explained
everything from setting up a new project to publishing from the command line using Git to creating PDFs,
navtabs, inserting tooltips and more. Given that this documentation was used internally only and wasn’t
documentation consumed externally, business executives didn’t see a high value in creating it, nor did they
want us devoting much bandwidth to it. Yet it consumed a lot of time. Making good documentation is hard,

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 653

and given the questions and onboarding challenges, I realized just how much the content needed to be
simplified and fine-tuned. (If writers couldn’t follow it, they pinged me for help, draining even more of my
time.)

Unfortunately, when we began the project, we didn’t secure resourcing and funding for its ongoing
maintenance and support. In many ways, working on the project was like working on an open-source
project. Although much work still needed to be done in documenting our toolset and workflows, our official
priorities always focused on externally facing documentation content. Almost no one wanted to
acknowledge the time and energy required to support internal tooling process and documentation. While
much of this hassle could have been eliminated through third-party hosting and deployment solutions (like
CloudCannon), the company preferred to build its own tools but not fully dedicate resourcing for tool
maintenance and documentation.

Conclusion
Almost everyone on the team was happy about the way our doc solution turned out. Of course, there are
always areas for improvement, but the existing solution was head and shoulders above the previous
processes. Perhaps most importantly, Jekyll gave us an incredible degree of flexibility to create and adapt
to our needs. It was a solution we could build on and make fit our infrastructure and requirements.

I outlined the challenges here to reinforce the fact that implementing docs-as-code is no small undertaking.
It doesn’t have to be an endeavor that takes months, but at a large company, if you’re integrating with
engineering infrastructure and building out a process that will scale and grow, it can require a decent
amount of engineering expertise and effort.

If you’re implementing docs-as-code at a small company, you can simplify processes and use a system
that meets your needs. For example, you could use GitHub Pages , or use the S3_website plugin to
publish on AWS S3, or better yet, use a continuous deployment platform like CloudCannon or Netlify .
(I explore these tools in more depth in Hosting and deployment options (p. 602).) I might have opted for
either of these approaches if allowed and if we didn’t have an engineering support team to implement the
workflow I described.

Also, tools implementation is somewhat of a mixed experience for me. Intimate knowledge of doc tools is
critical when you’re implementing your solution. After you’re finished, you no longer need that depth of
knowledge, and I find it somewhat fading from my awareness. The ephemeral need for tool knowledge is
probably why so many consultants specialize in tools — they ride into town, set things up, and then drive
their wagons to the next town to repeat the show. But if you’re a full-time employee, and your primary job
is developing content, not tools, then how do you find the time and support to develop the needed tool
knowledge for the temporary period when you’re implementing a system, only to abandon the knowledge
later, after everything is implemented and running smoothly?

I enjoy getting my hands in the code of docs-as-code tools, but I’m pretty sure both the other tech writers
and engineering teams are happy to see the sense of stability and normalcy return. They don’t like it when I
continually experiment and develop on the platform because it inevitably means change. It means
occasionally things break. Or I discover that a particular approach wasn’t optimal. In some way, it causes a
bit of stress.

And yet, platforms and tools are rarely static for any duration of time. Even Jekyll continually releases new
versions, responding to changes in the Internet landscape and trending technology needs. So maybe in a
few years, we’ll go through this whole process again. Even so, I have a propensity and facility with doc
tools, and I like getting my hands dirty in the code.

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 654

https://pages.github.com/
https://github.com/laurilehmijoki/s3_website
https://cloudcannon.com/
https://www.netlify.com/

Slides and links to republished content
For a slide presentation that covers the topics listed in this article, see the following:

.

Additionally, note that this content was also republished in the Developer Portals e-Magazine Winter 2018
, by Pronovix:

It was also republished in Anne Gentle’s Docs Like Code: Case Studies :

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 655

https://github.com/tomjoht/docs-as-code-tools-and-workflows
https://github.com/tomjoht/docs-as-code-tools-and-workflows
https://pronovix.com/e-books/developer-portals-e-magazine-winter-2018
https://pronovix.com/e-books/developer-portals-e-magazine-winter-2018
https://pronovix.com/e-books/developer-portals-e-magazine-winter-2018
https://pronovix.com/e-books/developer-portals-e-magazine-winter-2018
https://www.docslikecode.com/articles/change-case-study/

I also gave a presentation on Docs-as-code tools and workflows to the STC Rocky Mountain and WTD
Denver group.

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/pubapis_overview.html] to view the content.

To read some other docs-as-code posts on my blog, see the following:

• Discoveries and realizations while walking down the Docs-as-Code path
• Limits to the idea of treating docs as code
• Will the docs-as-code approach scale? Responding to comments on my Review of Modern

Technical Writing

To Learn more about docs as code in general, see Anne Gentle’s book Docs Like Code .

Case study: Switching tools to docs-as-code PDF last generated: August 27, 2023

Documenting REST APIs Page 656

https://www.docslikecode.com/articles/change-case-study/
https://www.docslikecode.com/articles/change-case-study/
https://idratherbewriting.com18/03/09/docs-as-code-tools-and-workflows-denver-presentation/
https://idratherbewriting.com17/08/23/content-architecture-and-repo-sizes/
https://idratherbewriting.com17/06/02/when-docs-are-not-like-code/
https://idratherbewriting.com16/08/01/responding-to-feedback-on-modern-tech-writing-review/
https://idratherbewriting.com16/08/01/responding-to-feedback-on-modern-tech-writing-review/
https://www.amazon.com/Docs-Like-Code-Anne-Gentle/dp/1365816079/ref=sr_1_1?ie=UTF8&qid=1508090523&sr=8-1&keywords=docs+like+code

Tools FAQ
Q: Is it possible to author API documentation using DITA/XML or an XML editor (like Oxygen)? I saw
your recommended list of tools in the Publishing API docs (p. 530) section, but it would be great if
we could leverage existing tools.

Sure, you can use OxygenXML or similar tools and write your dev docs in DITA. However, for the
reference content, if you’re working with REST APIs, I recommend documenting the endpoints using
the OpenAPI spec (p. 181). If documenting class-based libraries (p. 691), then use in-code
annotations (p. 712) for that language.

In the dev doc survey I conducted (p. 44) about dev doc trends, about 11% of people writing docs for
devs use XML-based solutions, so you wouldn’t be alone. However, if you’re intending to solicit
contributions from engineers, and you have a lively and engaged developer community who will
actually be contributing to docs, then I do not recommend XML solutions. Use Markdown (p. 556)
instead.

Q: We use Madcap Flare but document our APIs in Swagger. We’re considering dropping Flare and
using Readme.com instead, which can import Swagger, but should we be looking at other tools? We
also don’t document just APIs, but have protocols we document outside of the APIs too.

MadCap Flare is a much more robust tool for handling documentation than Readme.com . For
example, last time I checked, Readme.com doesn’t let you store content for re-use. There was a
recent discussion in the #documenting-apis channel in WTD Slack about Readme.com. More
people seem to be abandoning Readme.com to pursue a more flexible platform. I asked for more
details. One person said, “Outages, organizing content. I didn’t use it much myself. … After your
reference specs and examples are in readme.com, you’re limited in what you can get out. If nothing
else, that’s a mark against them.” In short, sure Readme.com can import and display reference API
content well (if you like the design), but if you’re stuck using a simple editor for everything else and
can’t leverage more powerful tools for other doc management, life might get more challenging. That
said, many top companies use Readme.com and the output looks professional and industry-aligned.

Personally, I recommend going with a static site generator (SSG) for dev docs instead of a third-
party online hosted platform. SSGs are the trend for a reason — they’re way more fun, flexible, and
engineering-oriented. If you aren’t into developing your own site, though, you can also look at some
alternatives in this same hosted doc category – Developerhub.io , Readthedocs.com . If you’re
doing heavy localization and generating lots of PDF, probably stick with your existing tool. Generate
out your reference using Redoc (p. 249), Swagger (p. 218), or other specialized generators.

Q: We’re considering using GitHub as our documentation CMS, but we’re unsure what it can
support. Does it provide a documentation portal? HTML generation? An editor to add/update
content? Themes? bi-directional sync with Git? What is the process flow if it allows documentation?

GitHub is a solid platform for storing content, especially for open-source projects. It’s not a CMS, and
it will require you to work out your Git workflows (p. 562) for development, branching, and
collaboration. Most people use GitHub as a storage source, not for the final presentation of the docs.
GitHub will render Markdown into HTML, but most don’t use the default HTML rendered display from
GitHub wikis, as the display isn’t customizable. However, note that you can store your branded

Tools FAQ PDF last generated: August 27, 2023

Documenting REST APIs Page 657

https://www.madcapsoftware.com/products/flare/
https://readme.com/
https://www.writethedocs.org/slack/
https://www.staticgen.com/
https://developerhub.io/
https://readthedocs.com/

content and higly customized theme for any static site generator in GitHub, as well as for any XML
project. The only requirement is that your content be text files rather than binary files (e.g., Word,
FrameMaker).

If your project is a Jekyll project, GitHub Pages (p. 602) will auto-build your project when you commit
to a branch you tell it to watch. If it’s not a Jekyll project (for example, maybe it’s a Hugo or Gatsby
project), you can use Netlify to get your content from GitHub and build out other outputs.
Forestry.io can also pull out your GitHub content (into more of a headless CMS client) and build
out Jekyll and Hugo outputs. CloudCannon , which is also CMS-like, can do so for Jekyll with
GitHub. Readthedocs.com uses Sphinx but stores content in GitHub. There are many ways to use
GitHub, including GitHub wikis (p. 569), but most people just use GitHub to store content that gets
pulled into other platforms.

Tools FAQ PDF last generated: August 27, 2023

Documenting REST APIs Page 658

https://staticgen.com/
https://www.netlify.com/
https://forestry.io/
https://cloudcannon.com/
https://readthedocs.com/

Chapter 11: Thriving in the API doc
space
Getting an API documentation job and thriving requires you to demonstrate your technical aptitude through
a writing portfolio. The portfolio should include samples of documentation written for developers. One way
to build this portfolio is by working on an open-source project. You also need to live in a tech hub where
API documentation jobs are available, such as California, Texas, New York, or Virginia. Overall, thriving in
the developer documentation space requires you to continually learn a healthy dose of code, which can be
challenging.

Chapter sections:

The job market for API technical writers .. 660

How much code do you need to know? .. 664

Best locations for API documentation jobs.. 674

Activity: Find an Open-Source Project... 686

Activity: Create or fix an API reference documentation topic .. 690

Chapter 11: Thriving in the API doc space PDF last generated: August 27, 2023

Documenting REST APIs Page 659

The job market for API technical
writers
Technical writers who can write developer documentation are in high demand, especially in the Silicon
Valley area. There are plenty of technical writers who can write documentation for graphical user interfaces
but not many who can navigate the developer landscape to provide highly technical documentation for
developers working in code.

Although I briefly mentioned jobs in Introduction to REST API documentation (p. 22), in this section of my
API documentation course, I’ll dive deeper into the job market for API documentation.

Basic qualifications you must have
Breaking into your first API documentation role can be challenging. Employers will usually have three
requirements to hire you:

1. Familiarity with 1-2 programming languages or other technical foundations
2. Experience writing docs for a developer audience
3. A portfolio with writing samples demonstrating the above two points

These requirements are why I’ve focused this course on activities that will help you break into the field.
Although I could create more quizzes in this course, and at the end, you could earn a “certificate” (which
wouldn’t be a bad idea, actually) it would be virtually meaningless in your job search and larger goals.
There’s no way around it: if you’re serious about breaking into API documentation, you need to fulfill the
above requirements. Completing the activities in this course will help you do that.

Why employers look for candidates who can read programming
languages
In nearly every job description for technical writers in developer documentation, you’ll see requirements like
this:

Ability to read code in one or more programming languages, such as Java, C++, or
Python.

You may wonder what the motivation is behind these requirements, especially if the core APIs are RESTful.
After all, they can’t expect you to do a programmer’s job. No, but here’s the most common scenario. The
company has a REST API for interacting with their services. To make it easy for developers, the company
provides SDKs and client implementations (p. 480) in various languages for the REST API.

For an example, take a look at Algolia’s API. You can view the documentation for their REST API here .
However, when you implement Algolia (which provides a search feature for your site), you’ll probably follow
the documentation for your specific platform or language.

The job market for API technical writers PDF last generated: August 27, 2023

Documenting REST APIs Page 660

https://www.algolia.com/doc/rest

Although users could construct their own code when using the REST endpoints, most developers would
rather leverage existing code and copy and paste what they need.

When I worked at Badgeville, we developed a collection of JavaScript widgets that developers could easily
copy and paste into their web pages, making a few adjustments as needed. Developers could also create
their own JavaScript widget code (from scratch) based on calls to the REST endpoints, but sometimes it
can be tricky to know how to retrieve all the right information and then manipulate it in the right way in your
chosen language. It’s easier to use the pre-built JavaScript widgets.

Remember that developers are typically using a REST API as a third-party service. The developers’ primary
focus is their own company’s code; they’re just leveraging your REST API as an additional, extra service.
As such, developers want to just get in, get the code, and get out. This get-in-and-get-out mentality is why
companies need to provide multiple client SDKs in as many languages as possible — these client
implementations allow developers to implement the API quickly and efficiently.

If you were recruiting for a technical writer to document Algolia, how would you word the job requirements?
Can you now see why even though the core work involves documenting the REST API, it would also be
good to have an “ability to read code in one or more programming languages, such as Java, C++, or
Python.”

The number of SDKs a company distributes can vary considerably. You might not have six SDKs in multiple
languages and frameworks for your API. You might be in a C++ only shop where all you need to know is
C++ and nothing more. If that’s the case, you’ll need to develop a deeper knowledge of C++ so you can
provide more value in your writing role.

Although the proliferation of code and platforms creates pressure on the multi-lingual capabilities of
technical writers, if you can understand what’s going on in one programming language, your description of
the reference implementations in other programming languages will follow highly similar patterns.

The job market for API technical writers PDF last generated: August 27, 2023

Documenting REST APIs Page 661

https://www.algolia.com/doc
https://www.algolia.com/doc

What mainly changes across languages are the code snippets and some of the terms. You might refer to
“functions” instead of “classes,” and so on. Even so, getting all the language right can be a challenge,
which is why it’s so hard to find technical writers who have skills for producing developer documentation,
especially for the SDKs and sample apps.

Providing value without in-depth technical knowledge
The degree to which you can provide value in your role as a technical writer is often directly proportional to
your level of technical knowledge. For example, if you land (or inherit) a job that involves working with
several API projects involving languages you don’t know, you can still facilitate the documentation for the
projects. However, you’ll play more of an editing/publishing role rather than an authoring role.

In many highly technical shops, this editor/publisher role is becoming increasingly common. Engineers will
write the technical material, especially the reference documentation, and technical writers will focus more
on making sure the content checks all the boxes — that it has an overview, release notes, addresses user
tasks, follows the style guide, integrates with the other docs, and so on. You can shape and organize the
content, and identify areas where it’s deficient or needs expansion, but the ability to add deeper value
requires a deeper knowledge of the subject matter.

A lack of more technical knowledge will likely remove some of the value from your role. In How API
Documentation Fails , Martin Robillard and Gias Uddin explain:

Perhaps unsurprisingly, the biggest problems with API documentation were also the
ones requiring the most technical expertise to solve. Completing, clarifying, and
correcting documentation require deep, authoritative knowledge of the API’s
implementation. This makes accomplishing these tasks difficult for non-developers
or recent contributors to a project.

Without in-depth, authoritative knowledge of the API, it will be challenging to complete, clarify, and correct
errors in the content.

The balance between generalist and specialist roles is an ongoing challenge that I’ll explore more in the
next topic: How much code do you need to know? (p. 664) In short, if you want to solve the biggest
problem with API documentation, you’ll need to develop more technical expertise in the subject domain.

Consolations for technical writers
As a consolation to this stress of having to navigate multiple programming domains, you can take comfort
in the fact that REST APIs (which remember are language agnostic) are becoming more common and are
replacing native-library APIs (p. 692). The advantages of providing a universally accessible API using any
language platform usually outweigh the specifics you get from a native library API.

For example, when I worked at 41st Parameter (a startup acquired by Experian), the company had a Java,
.NET, and C++ API — each implementation did the same thing but in different languages. We also had an
SDK for Android and iOS.

Maintaining the same functionality across three separate API platforms was a serious challenge for the
company’s developers. Not only was it difficult to find skill sets for developers across these three
platforms, having multiple code bases made it harder to test and maintain the code. It was three times the
amount of work, not to mention three times the amount of documentation.

The job market for API technical writers PDF last generated: August 27, 2023

Documenting REST APIs Page 662

https://ieeexplore.ieee.org/document/7140676/
https://ieeexplore.ieee.org/document/7140676/

Additionally, since native library APIs are implemented locally in the developer’s code, it was almost
impossible to get users to upgrade to the latest version of the API. We had to send out new library files and
explain how to upgrade versions, licenses, and other deployment code. If you’ve ever tried to get a big
company with a lengthy deployment process on board with making updates every couple of months to the
code they’ve deployed, you realize how impractical it is. Rolling out a simple update could take 6-12
months or more. During that time, the company is often struggling with a load of bugs and other issues that
are setting them back.

It’s much more feasible for API development shops to move to a SaaS model using REST, and then create
various client implementations that briefly demonstrate how to call the REST API using the different
languages. With a REST API, you can update it at any time (hopefully maintaining backward compatibility),
and developers can continue using their same deployment code.

As such, you won’t be hopelessly lost if you can’t navigate these other domains in the programming
languages. Your core function will hopefully involve documenting the REST API, with brief docs on the
client SDKs mostly authored by the engineers.

That said, one area where REST APIs can be problematic is with devices (for example, smartphones and
tablets, devices in cars, streaming media devices). In these cases, calls to REST APIs tend to be slow, so a
native library API (such as Android) is used instead.

In the next topic, How much code do you need to know? (p. 664), I’ll explore the topic of how much code
you need to know and strategies for learning it.

The job market for API technical writers PDF last generated: August 27, 2023

Documenting REST APIs Page 663

https://developer.android.com/

How much code do you need to
know?
With developer documentation roles, some level of coding is required. But you don’t need to know as
much as developers, and acquiring that deep technical knowledge will usually cost you expertise in other
areas.

The ideal hybrid: programmer + writer
When faced with these multi-language documentation challenges, hiring managers often search for
technical writers who are former programmers to do the tasks. There are a good number of technical
writers who were once programmers, and they can command more respect and competition for these
developer documentation jobs.

But even developers will not know more than a few languages. Finding a technical writer who commands a
high degree of English language fluency in addition to possessing in-depth technical knowledge of Java,
Python, C++, .NET, Ruby, in addition to mastering docs tools (p. 551) to facilitate the authoring/publishing
process from beginning to end is like finding a unicorn. (In other words, these technical writers don’t really
exist.)

If you find one of these technical writers, the person is likely making a small fortune in contracting rates and
has a near limitless choice of jobs. Companies often list knowledge of multiple programming languages as
a requirement, but they realize they’ll never find a candidate who is both a William Shakespeare and a
Steve Wozniak.

Why does this hybrid individual not exist? In part, it’s because the more a person enters into the worldview
of computer programming, the more they begin thinking in computer terms and processes. Computers by
definition are non-human. The more you develop code, the more your brain’s language starts thinking and
expressing itself with these non-human, computer-driven gears. Ultimately, you begin communicating less
and less to humans using natural speech and fall more into the non-human, mechanical lingo. (I explored
this concept more in Reducing the complexity of technical language .)

This mental transformation is both good and bad — good because other engineers in the same computer
mindset may better understand you, but bad because anyone who doesn’t inhabit that perspective and
terminology will already be somewhat lost.

Writers who learned to program
When looking for candidates, would you rather hire a writer who learned programming, or a programmer
who learned writing? There are pros and cons to each approach. Let’s first examine writers who learn
programming, and then in the next section look at the reverse: programmers who learned writing.

In Enough to Be Dangerous: The Joy of Bad Python , Adam Wood argues that tech writers don’t need to
be expert coders, on par with developers. Learning to code badly (such as is usually the case with writers
who learn to code) is often enough to perform the tasks needed for documentation. As such, Wood aligns
more with the camp of writers who learned programming. Wood writes:

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 664

https://idratherbewriting.com/simplifying-complexity/reducing-the-complexity-of-technical-language.html
http://hackwrite.com/posts/enough-to-be-dangerous/

You already know how hard it is to go from zero (or even 1) to actually-qualified
developer. And you’ve met too many not-actually-qualified developers to have any
interest in that path.

So how do you get started?

By deciding you are not ever going to write any application code. You are not going
to be a developer. You are not even going to be a “coder.”

You are going to be a technical writer with bad coding skills. (Enough to Be
Dangerous: The Joy of Bad Python)

Wood says tech writers who are learning to code frequently underestimate the degree of difficulty in
learning code. To reach developer proficiency with production-ready code, tech writers will need to sink
much more time than they feasibly can. As such, tech writers shouldn’t aspire to the same level as a
developer. Instead, they should be content to develop minimal coding ability, or “enough to be dangerous.”

James Rhea, in response to my post on Generalist versus Specialist , also says that “adequate” technical
knowledge is usually enough to get the job done, and acquiring deeper technical knowledge has somewhat
diminishing returns since it means other aspects of documentation will likely be neglected. Rhea writes:

I wouldn’t aim for deep technical knowledge. I would aim for adequate technical
knowledge, recognizing that what constitutes adequacy may vary by project, and
that technical knowledge ought to grow over time due to immersion in the
documentation and exposure to the technology and the industry.

I speculate that the need for writers to have deep technical knowledge diminishes as
Tech Comm teams grow in size and as other skills become more important than they
are for smaller Tech Comm teams. I’m not claiming that deep technical knowledge is
useless. I’m suggesting that (to frame it negatively) neglecting deep technical
knowledge has less severe consequences than neglecting content curation, doc tool
set, or workflow considerations. (Adding Value as a Technical Writer)

In other words, if you spend excessive amounts of time learning to code, at the expense of tending to other
documentation tasks such as shaping information architecture, analyzing user metrics, overseeing
translation workflows, developing user personas, ensuring clear navigation, and more, your doc’s technical
content might improve a bit, but the overall doc site will go downhill.

Additionally, while engineers can fill in the deep technical knowledge needed, no one will provide the tech
comm tasks in place of a tech writer. As evidence, look at any corporate wiki. Corporate wikis are prime
examples of what happens when engineers (or other non-tech writers) write and publish documentation.
Some pages might be rich with technical detail, but the degree of ROT (redundant, outdated, trivial content)
gets compounded, navigation suffers, clarity gets muddled, and almost no one can find anything.

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 665

http://hackwrite.com/posts/enough-to-be-dangerous/
http://hackwrite.com/posts/enough-to-be-dangerous/
https://idratherbewriting.com16/12/20/changing-roles-of-technical-writers/
https://withintheordinary.wordpress.com/2016/12/21/adding-value-as-a-technical-writer/

Programmers who learned to write
Now let’s flip to the other side of the argument. What are the advantages of hiring programmers who
learned writing? In contrast to Wood and Rhea, James Neiman , an experienced API technical writer,
says that tech writers need engineering backgrounds, such as a computer science degree or previous
experience as an engineer, to excel in API documentation roles.

Neiman says tech writers often need to look over a developer’s shoulder, watching the developer code, or
listen to an engineer’s brief 15-minute explanation, and then return to their desks to create the
documentation. You might need to take the code examples in Java and produce equivalent samples in
another language, such as C++, all on your own. In Neiman’s view, API technical writers need significant
technical depth to excel in this role.

Neiman and Andrew Davis (a recruiter for API tech writers in the Bay area) recently gave a presentation
titled Finding the right API Technical Writer at an API conference in London. Their presentation format
includes a Q&A exchange between the two. Scrub to around the 22-minute mark for the relevant part:

James Neiman on the required technical baseline for API docs" caption="James Neiman on the required
technical baseline for API docs

Here’s a transcript of two questions in their exchange (cleaned up a bit for readability):

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 666

http://drjamesneiman.com/
http://www.synergistech.com/
https://youtu.be/lmNHBg20ql0?t=1314
https://www.youtube.com/embed/lmNHBg20ql0?t=1314
https://www.youtube.com/embed/lmNHBg20ql0?t=1314

Andrew: What is essential to your relationship with each new client?

James: Being part of the product team, what’s essential is communication within the
team. Communication is essential to keep up with what is changing (and I expect
things to change very rapidly, especially in a disordered environment where people
are trying to stand up a product). I also need to earn and retain trust.

Why should I say that? If I’m going to be sitting with an engineering team, I’ll need
them to let me into their source code so I can modify their source code comments.
I’ll need to be able to pick an engineer’s brain for fifteen minutes and fifteen minutes
only — and get meaningful information out of that interview so that I can go and
produce the documentation they need and get it right the first time. If I don’t get it
right the first time, I’ve wasted the engineer’s time, and I’ve wasted the company’s
money.

Andrew: Can a tech writer without a development background write great API
documentation?

James: Absolutely not. There is no way that a busy engineering team has time to
train a person without a computer science degree. That’s just the reality of it.
Engineers at best can speak to you in some version of English, which may or may
not be their native language. They don’t have a lot of time, and they expect you to
finish their thoughts for them. That means that you need to be able to sit next to
them and look at how they’re coding, and then be able to replicate that and extend it
and even create examples.

They may say, “Here’s an example. You can extend it, add on these other APIs, work
out this use case for us. We haven’t had time to finish this.” They can say, “Well, let
me show you how this works in Objective C; we also support this on Java. Can you
create something similar on Java?”

If you don’t have that kind of development background, it’s unrealistic that you could
expect to train, for example, somebody with a masters degree in English (and who is
a very intelligent person but otherwise not technical) to do such a thing.

Keep in mind that Davis and Neiman are trying to persuade more European countries to use Synergistech
as their recruiting agency to find and hire API tech writers, so they’re presenting the need for engineering-
savvy tech writers. These super tech-savvy writers are harder to find — hence the need for expert
recruiters. Regardless of the agenda, Neiman and Davis argue for a higher level of coding proficiency than
Wood or Rhea.

The level of coding knowledge required no doubt depends on the position, environment, and expectations
at your company. Perhaps if the tech writer doesn’t have more of an engineering background, engineers
will just send the tech writer code snippets (p. 464) to paste into the docs. But without the technical
acumen to fully understand, test, and integrate the code in meaningful ways, the tech writer will be at the
mercy of engineers and their terse explanations or cryptic inline comments. The tech writer’s role will be
reduced to being an editor/publisher instead of a writer.

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 667

In my experience, Neiman’s explanation about developers instructing tech writers to create similar code in
other languages (based on a 15-minute over-the-shoulder conversation at the engineer’s desk) goes too
far. Although I’ve created simple JavaScript code samples (based on a pattern the engineers showed me),
I’ve never been asked to create code samples across other languages. I could auto-generate code
snippets for web API requests (using Postman), but to develop code across multiple languages tends to be
more of the programmer’s responsibility, not the tech writer’s.

Neiman goes on to say that in one company, he tested out the code from engineers and found that much
of it relied on programs, utilities, or other configurations already set up on the developers’ computers. As
such, the engineers were blind to the initial setup requirements that users would need to run the code
properly. Neiman says this is one danger of simply copying and pasting the code from engineers into
documentation. While it may work on the developer’s machine, it will often fail for users.

This comment from Neiman does ring more true to me. As I argued for extensively in Testing your API
documentation (p. 342), you have to be able to test the endpoints, code samples, and SDKs in order to
write and evaluate the documentation. It is usually true that programmers (who set up their machines
months ago) have long forgotten or can’t even identify all the frameworks, configurations, and other utilities
they installed to get something working. The more technical you are, the more powerful of a role you can
play in shaping the information.

Neiman is a former engineer and says that during his career, he has probably worked with 20-25 different
programming languages. Being able to learn a new language quickly and get up to speed is a key
characteristic of his tech comm consulting success, he says.

But in this celebration of technical knowledge, companies make a mistake and assume that these
programmers-turned-technical writers can easily handle writing tasks, because c’mon, everyone can write

, right? However, without a stronger writing background, these programmers who are now writing might
be a lot less proficient in areas where it really matters.

For example, recently I was working with an engineering team on a new voice feature for our product. The
engineering team was partly based in India and other places, and they frequently met (during India
business hours) to shape a document about the new voice feature. This documentation and the feature
were in constant flux, so the team kept iterating on the content over the course of about two weeks after
meetings with stakeholders, solutions architects, and other reviewers. After each review, the team sent me
the document to edit and publish it for stakeholder reviews.

I wasn’t directly embedded with the team, nor was I a dedicated resource for the team. In this role, I simply
acted as editor and publisher. But I had to turn around the gibberish they wrote at a rapid rate, usually in
1-2 hours. As this project was one of many I was juggling, I had to quickly restructure and rewrite the
content (sometimes touching every sentence) to make it read like a native speaker had written it rather than
engineers in another country. During this same time, I was working on rewriting our team website and other
writing projects.

I have a tech writing colleague who is a former engineer, and I often wonder if he has the same writing skills
to edit this content with the same speed and efficiency that I do. Of course, I shouldn’t make judgments,
but I’m pretty good at both writing and editing. After all, look at the output on my blog. In just a couple of
hours during the evening, I can write a post that is worth reading in the morning. Can engineers who lack
writing backgrounds do this? If tech writers are increasingly playing publishing/editing roles instead of
developing content directly (because the content is so highly technical that only specialists can create it),
then shouldn’t companies prioritize writing abilities over technical abilities (to an extent)?

Further, companies who assume that “everyone can write” fail to distinguish the different levels of writing.
It’s one thing to write coherent sentences in a paragraph or even a single topic, but can the writer read over
20 pages in a documentation system and ensure consistency across all the topics? Can the writer weave
together workflows and journeys across these larger systems? Can the writer distill information from a long,

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 668

https://idratherbewriting.com18/08/09/writing-no-longer-a-skill/
https://idratherbewriting.com18/08/09/writing-no-longer-a-skill/

complicated process into an intelligible quick reference guide? Writing skills fall along a spectrum, and
while most professionals appear somewhere on the spectrum, their skills might not be enough to excel in
ways that provide deeper value for documentation.

Overall, technical writers of all stripes are playing generalist roles in increasing ways, and in these generalist
roles, strong writing skills rather than specialized knowledge might be more important. For sure, a
combination of the two skills — writing and technical expertise — tends to be a knockout punch in the job
market.

For an in-depth analysis of the dilemma between being a generalist or specialist, see my essay Be both a
generalist and specialist through your technical acuity in my Simplifying Complexity series.

Wide, not deep understanding of programming
Let’s settle the question about the best candidate to hire by finding some middle ground between the two
extremes. Clearly, tech writers need to understand code, but they probably don’t need to be engineers to
the extent that Neiman argues (writing their own code in other languages).

Although you might have client implementations in a variety of programming languages at your company,
the implementations will be brief. The core documentation needed will most likely be for the REST API, and
you will have a variety of reference implementations or demo apps in these other languages.

You don’t need to have deep technical knowledge of each of the platforms to provide documentation.
You’re probably just scratching the surface with each of these client SDKs. As such, your knowledge of
programming languages has to be more wide than deep. It will probably be helpful to have a grounding in
fundamental programming concepts and familiarity across a smattering of languages instead of in-depth
technical knowledge of just one language.

Having broad technical knowledge of multiple programming languages isn’t easy to pull off. As soon as you
throw yourself into learning one language, the concepts will likely start blending together.

And unless you’re immersed in the language on a regular basis, the details may never fully sink in. You’ll be
like Sisyphus, forever rolling a boulder up a hill (learning a programming language), only to have the boulder
roll back down (forgetting what you learned) the following month.

Full immersion is the only way to become fluent in a language, whether referring to programming languages
or spoken languages. As such, technical writers are at a disadvantage when it comes to learning
programming. To get fully immersed, you might consider focusing on one core programming language (like
Java) and only briefly playing around in other languages (like Python, C++, .NET, Ruby, Objective C, and
JavaScript).

Of course, you’ll need to find a lot of time for this as well. Don’t expect to have much time on the job for
actually learning a programming language. It’s best if you can make learning programming one of your
“hobbies.”

Strategies to get by in deeply technical situations
Suppose you find yourself deep in APIs that require you to know a lot more technical detail than you
currently do (despite your programs of study to learn more)? How can you get by without a deeper
knowledge of programming?

Keep in mind that your level of involvement with editing, publishing, and authoring depends on your level of
tech knowledge. If you have a strong knowledge of the tech, you can author, edit, and publish. If you have
weak tech knowledge, your role might involve publishing only. The following spectrum diagram illustrates
this range of involvement:

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 669

https://idratherbewriting.com/simplifying-complexity/both-a-generalist-and-specialist-through-technical-acuity.html
https://idratherbewriting.com/simplifying-complexity/both-a-generalist-and-specialist-through-technical-acuity.html

Authoring,
publishing,
editing

Editing
publishing

Publishing

strong tech knowledge +++ weak tech knowledge- - -

The degree to which you can publish, edit, and author depends on your level of tech knowledge.

If you’re stuck in the publishing/editing area, you can interview engineers at length about what’s going on in
the code (record these discussions — Evernote has a nifty recording feature built-in that I’ve used multiple
times for just this purpose), and then try your best to describe the actions in as clear speech as possible.
You can always fall back on the idea that for those users who need Python, the Python code should look
somewhat familiar to them. Well-written code should be, in some sense, self-descriptive in what it’s doing.
Unless there’s something odd or non-standard in the approach, engineers fluent in code should be able to
get a sense of how the code works.

In your documentation, you’ll need to focus on the higher-level information, the “why” behind the approach,
highlighting of any non-standard techniques, and the general strategies behind the code. You can get this
why by asking developers for the information in informational interviews. The details of what will either be
apparent in the code or can be minimized. (See Code samples and tutorials (p. 464) for details.)

As you decide how much detail to include, remember that even though your audience consists of
developers, it doesn’t mean they’re all experts with every language. For example, the developer may be a
Java programmer who knows just enough iOS to implement something on iOS, but for more detailed
knowledge, the developer may be depending on code samples in the documentation. Conversely, a
developer who has real expertise in iOS might be winging it in Java-land and relying on your
documentation to pull off a basic implementation.

More detail in the documentation is always welcome, but you can use a progressive-disclosure approach
so that expert users aren’t bogged down with novice-level detail. Expandable sections, additional

pages, or other ways of grouping the more basic detail (if you can provide it) might be a good approach.

There’s a reason developer documentation jobs pay more — the job involves a lot more difficulty and
challenges, in addition to technical expertise. At the same time, it’s just these challenges that make the job
more interesting and rewarding.

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 670

https://idratherbewriting.com12/08/09/applying-progressive-information-disclosure-to-online-help-navigation/
https://idratherbewriting.com12/08/09/applying-progressive-information-disclosure-to-online-help-navigation/

Techniques for learning code
The diversity and complexity of programming languages is not an easy problem to solve. To be a
successful API technical writer, you’ll need to incorporate a regular regiment of technical study. You always
have to be learning to survive in this field.

Fortunately, there are many helpful resources (my favorite being O’Reilly’s Safari Books Online). If you
can work in a couple of hours a day, you’ll be surprised at the progress you can make.

The difficulty of learning programming is probably the most strenuous aspect of API documentation. How
much programming do you need to know? How much time do you spend learning to code? How much
priority should you spend on learning technology?

For example, do you dedicate two hours a day to learning to code in the particular language of the product
you’re documenting? Should you carve this time out of your employer’s time, or your own, or both? How
do you get other doc work done, given that meetings and miscellaneous tasks usually eat up another 2
hours of work time? What strategies should you implement to learn code in a way that sticks? What if what
your learning has little connection or relevance with the code you’re documenting?

In a post called Strategies for learning technology – podcast recommendation and a poll , I linked to a
10-minute Tech Comm podcast with Amruta Ranade on Learning New Technology and then polled
readers to learn a little about their tech learning habits. In the reader responses , most indicated that they
should spend 30-60 minutes each day learning technology, but most spend between 0-20 min actually
doing so. To learn, they use general Google searches. They mostly devote this time to learning tech at
work, though some split the time between work at home.

Personally, I think spending 20 minutes a day isn’t enough to keep up with the knowledge needs. Sixty
minutes is more appropriate, but really, if you want to make progress, you’ll need to devote about twice
that time. Finding 1-2 hours of time (and motivation) at work to learn it is unlikely. I always feel like I’m not
getting enough done as is during work hours — learning technology often feels like a side activity taking
me away from my real duties.

Also, the information I need to document in the present moment is usually too advanced to simply learn
from watching tutorials on Safari Books or other sources. But I can’t just start out consuming advanced
material. I have to ramp up through the foundational topics first, and that slow ramp-up feels like a tangent
to the real work that needs to get done.

For example, you might need to document the equivalent of Advanced Calculus concepts. But to ramp up
on Advanced Calculus, you need to build a foundation with Trigonometry and Algebra. When you spend
time studying Trigonometry and Algebra instead of the Advanced Calculus concepts that you need to
document, it can feel like you’re not making any progress on your documentation.

One strategy I’ve found to work well is to divide the learning into “pomodoros” (a technique named after
tomato kitchen timers). With the Pomodoro Technique , you set a timer for 20 minutes and focus on your
learning task for that chunk of time. You can set a goal to complete as many pomodoros a day as you
want. After about 1-2 months of these regular pomodoros, you’ll be surprised at your progress. I use the
Focus app for my pomodoro timer:

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 671

http://www.safaribooksonline.com/
https://idratherbewriting.com18/08/10/how-much-time-devoted-to-learning-tech-is-needed/
https://www.stitcher.com/podcast/uah-technical-writing/10minute-tech-comm/e/supersized-holiday-spectacular-41636141
https://www.questionpro.com/t/PEGKEZcj57
https://francescocirillo.com/pages/pomodoro-technique

The Focus app lets you define and track pomodoros

Additionally, I recommend keeping a list of notes about technical details you struggle with while you’re
trying to document something, and then during your pomodoros, focus on what’s listed in your technical
notes.

Even so, this pomodoro technique for focus doesn’t solve the problem. It’s still hard to squeeze time in for
the pomodoros. Whenever I squeeze these into my life, I end up squeezing other activities out.

There are a lot of questions about just how to learn code, and I don’t have all the answers. But here’s what
I know:

• Developer documentation requires familiarity with code, though exactly how much expertise you
need is debatable.

• You have to understand explanations from engineers, including the terms used (p. 418). The
explanations in your documentation should focus on the why more than the how.

• You should be able to test code (p. 343) from engineers so that you can identify assumptions that
engineers are often blind to.

• To thrive in an API documentation career, you have to incorporate a regiment of continual
learning.

• Completing several pomodoros a day over the course of weeks and months can result in
significant progress in building your technical understanding.

Is being a generalist a career disappointment?
Technical writers will likely be generalists with the code, not good at developing it themselves but knowing
enough to get by, often getting code samples from engineers and explaining the basic functions of the
code at a high level.

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 672

https://itunes.apple.com/us/app/focus-time-manager/id777233759?mt=12
https://itunes.apple.com/us/app/focus-time-manager/id777233759?mt=12

Some might consider the tech writer’s bad coding ability and superficial technical knowledge somewhat
disappointing. After all, if you want to excel in your career, usually this means mastering something
thoroughly, right? You want to be an expert in your field.

It might seem depressing to realize that your coding knowledge will usually be kindergartner-like in
comparison to developers. This disparity positions tech writers more like second-class citizens in the
corporation. In a university setting, it’s the equivalent of having an associates degree where others have
PhDs.

However, take consolation in the fact that your job is not to code but rather to create helpful
documentation. Creating helpful documentation isn’t just about knowing code. There are a hundred other
details that factor into the creation of good documentation. As long as you set your goals on creating great
documentation, not just on learning to code, you won’t feel entirely disappointed in being a bad coder. This
perspective doesn’t address all the issues, but it does provide some consolation at the end of the day.

For more information about working with code, see these two topics:

• SDKs (p. 480)
• Code samples and tutorials (p. 464)

Let’s look at one more topic in this jobs section: Locations for API doc writer jobs (p. 674).

How much code do you need to know? PDF last generated: August 27, 2023

Documenting REST APIs Page 673

Best locations for API documentation
jobs
You’re taking this course most likely because you want to break into API documentation. However, if you
live in a place where there aren’t many API documentation jobs, it will be difficult to find work. In this topic,
I’ll explain where the API documentation jobs are.

Where are the API jobs
Where are the best locations for API documentation jobs? The 2017-2018 STC Salary Database (which
is based on Bureau of Labor Statistics data) provides a lot of research about technical writer
employment in different parts of the U.S., but nothing that breaks down the numbers by API documentation
opportunities.

As such, we’ll have to triangulate a bit and make some best guesses about where the API documentation
jobs are. The STC Salary Database information gives us a starting point. Here are the “Ten Largest MSAs
[Metropolitan Statistical Areas] by Number of Technical Writers” (based on 2017 data, which is the latest
data set available):

Metropolitan Statistical Area (MSA) Technical writers employed

New York-Newark-Jersey City, NY-NJ-PA 3,390

Los Angeles-Long Beach-Anaheim, CA 1,730

San Jose-Sunnyvale-Santa Clara, CA 1,560

Chicago-Naperville-Elgin, IL-IN-WI 1,220

Houston-The Woodlands-Sugar Land, TX 1,040

San Diego-Carlsbad, CA 970

Atlanta-Sandy Springs-Roswell, GA 930

Baltimore-Columbia-Towson, MD 910

Minneapolis-St. Paul-Bloomington, MN-WI 810

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 674

https://www.stc.org/salary-database/
https://www.bls.gov/

Metropolitan Statistical Area (MSA) Technical writers employed

Austin-Round Rock, TX / Columbus, OH 740

“MSA” stands for “metropolitan statistical area.” Most of the research in the STC Salary Database focuses
on MSAs rather than states. Why look at MSAs rather than states as a whole? While California might rank
high in technical writer employment, you would have a tough time finding employment in some remote
areas, such as Lone Pine or Corning. Employment measurements are more accurate when they’re focused
on a specific metropolitan area rather than the state as a whole.

However, it’s hard to filter API data by MSAs, so I’ll use states anyway. The top 10 states (rather than
MSAs) for technical writer employment (again, according to the STC Salary Database) are as follows:

State Number of Employed Technical Writers

California 6,340

Texas 4,360

Virginia 2,840

Massachusetts 2,450

New York 2,390

Florida 2,360

Maryland 2,180

New Jersey 1,980

Ohio 1,770

Pennsylvania 1,540

They aren’t too different from the list of MSAs — California, New York, Texas, New Jersey, Maryland, and
Ohio still feature prominently on both lists, so focusing on states probably reflects the MSAs within that
state as well.

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 675

To try to determine which states have the most density for API-specific documentation jobs, I searched
Indeed.com for the term “API” and filtered by state (it wasn’t possible to filter by MSA). I performed
one set of searches on August 12, 2018, and another on December 26, 2018. Then I averaged the two.

I didn’t meticulously examine each hit in the Indeed results for “API” to see if the hit actually related to
documentation jobs with APIs, or even that it related to APIs (though I did spot check). I assume that the
number of documentation jobs will be a relative percentage of the API-related jobs overall. For example,
suppose a state has 1,000 hits for “API.” If we were to examine each job and filter the results down to
“technical writer” jobs that mention APIs, we would probably see a relative percentage (e.g., 5 percent) of
jobs related to technical writing. Error rates will probably be the same overall as well.

Admittedly, I’m by no means versed in statistics, and I admit that this method has many flaws for our
overall question (where are the best locations for API documentation jobs?). For example, a high number of
jobs doesn’t necessarily mean more jobs will be available if there are just more technical writers competing
for those jobs.

To illustrate some of these issues, suppose the state is small and has only about 500 technical writers in
the area, but the technical writer growth rate in the area is high as well as the number of “API” hits on
Indeed. Is that a better area in which to find a job? Maybe. It depends on how many writers are competing
for the jobs — that information would be even harder to gather.

On the other hand, living in a larger tech hub with more variation in the job opportunities and required
technical skills might provide more selection and fit for your particular skills. API doc hiring managers
usually want candidates familiar with the languages they’re targeting, so with more jobs available, you
might have a better shot at matching up with one of the roles.

Additionally, just because states have a high employment rate of technical writers doesn’t mean it’s the
best location to find a job. Job growth rates might be a better factor to consider, as it means more new
jobs will be available in the area. In the STC Salary Database, high-growth-rate areas are listed in the
“Fastest-Growing States for Technical Writers and Export and GDP Performance in 2017” table.

Alternatively, we could have examined the top areas based on industry sectors. The Computer Systems
Design and Related Services Industries employs the most technical writers, but if you’re focused on
another industry, such as medical, different locations might be more optimal for these other industry
sectors. California has a high density of computer-focused companies, while New Jersey has more
pharmaceutical companies.

Thus, it’s hard to say for sure where the best locations are for API doc jobs, especially as they fit your
unique profile. At most, in this topic I indicate where some promising areas appear to be, based on the
technical writer employment in the area and the prevalence of “API” as a keyword in job postings in the
area.

API keyword density by state
Here’s the data from my search for the keyword “API” in job searches on Indeed.com, contextualized with
the technical writer employment for the state. I sorted by most API hits (because API frequency is what
we’re optimizing for). In measuring hits, I took the average of two searches for “API” spread out over about
six months. Also, I divided the API hits by the employment to give a percentage hinting at the density of API
documentation jobs.

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 676

https://indeed.com/
https://www.indeed.com/jobs?q=API&l=California
https://collegegrad.com/industries/computer-systems-design
https://collegegrad.com/industries/computer-systems-design

State (U.S.
only)

Technical
writers
employed
in the
state

API
average
(Aug hits
+ Dec hits
÷ 2)

of "API"
hits on
Indeed
(Aug
2018)

of "API"
hits on
Indeed
(Dec
2018)

% of API
hits ÷
employment

California 6,340 5,262 4,983 5540 83%

Texas 4,360 2,569 2,450 2688 59%

New York 2,390 1,864 1,735 1992 78%

Washington
State

1,240 1,257 1,283 1230 101%

Virginia 2,840 1,216 1,092 1340 43%

Massachusetts 2,450 1,128 1,080 1176 46%

Illinois 1,520 1047 949 1145 69%

Georgia 1,180 897 879 915 76%

New Jersey 1,980 846.5 800 893 43%

Pennsylvania 1,540 842.5 800 885 55%

Florida 2,360 750.5 722 779 32%

North Carolina 1,480 704 631 777 48%

Colorado 1,220 673 635 711 55%

Ohio 1,770 512.5 466 559 29%

Maryland 2,180 491.5 567 416 23%

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 677

State (U.S.
only)

Technical
writers
employed
in the
state

API
average
(Aug hits
+ Dec hits
÷ 2)

of "API"
hits on
Indeed
(Aug
2018)

of "API"
hits on
Indeed
(Dec
2018)

% of API
hits ÷
employment

Arizona 820 446 404 488 54%

Minnesota 1,030 407.5 389 426 40%

Michigan 1,280 367 351 383 29%

District of
Columbia

700 355 355 355 51%

Missouri 1,120 313.5 322 305 28%

Utah 740 287 275 299 39%

Oregon 530 280.5 271 290 53%

Tennessee 480 255.5 212 299 53%

Connecticut 690 248 229 267 36%

Wisconsin 850 245 225 265 29%

Indiana 740 199.5 204 195 27%

Louisiana 180 182.5 167 198 101%

Oklahoma 790 159.5 169 150 20%

Iowa 470 138 130 146 29%

South Carolina 530 133.5 110 157 25%

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 678

State (U.S.
only)

Technical
writers
employed
in the
state

API
average
(Aug hits
+ Dec hits
÷ 2)

of "API"
hits on
Indeed
(Aug
2018)

of "API"
hits on
Indeed
(Dec
2018)

% of API
hits ÷
employment

Alabama 700 109.5 115 104 16%

Nebraska 300 103.5 102 105 35%

Kentucky 250 100 95 105 40%

Kansas 550 99.5 101 98 18%

Delaware 90 83 65 101 92%

Nevada 250 76.5 69 84 31%

Arkansas 180 69.5 56 83 39%

New Hampshire 180 64.5 51 78 36%

Rhode Island 210 62.5 73 52 30%

North Dakota 100 50 46 54 50%

Idaho 250 39.5 35 44 16%

New Mexico 370 38 36 40 10%

West Virginia 90 30 37 22 33%

Maine 70 29 20 38 41%

Alaska 70 27 31 23 39%

South Dakota 100 19 25 13 19%

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 679

State (U.S.
only)

Technical
writers
employed
in the
state

API
average
(Aug hits
+ Dec hits
÷ 2)

of "API"
hits on
Indeed
(Aug
2018)

of "API"
hits on
Indeed
(Dec
2018)

% of API
hits ÷
employment

Montana 60 18 17 19 30%

Mississippi 120 17.5 7 28 15%

Wyoming 30 15 12 17 50%

Vermont 160 13.5 8 19 8%

Hawaii 70 10.5 15 6 15%

Puerto Rico 110 7 4 10 6%

If “API” is a more common term for the area, I assume more technical writer jobs will involve working with
APIs in those areas. Based on this assumption, California, Texas, Virginia, Massachusetts, New York,
Florida, Maryland, New Jersey, Ohio, and Pennsylvania are promising areas for API documentation jobs for
technical writers.

This superficial query doesn’t indicate whether there are more tech comm jobs overall for these states. For
example, Michigan might have a lot more general tech writing jobs than API doc jobs, even though it ranks
far down in the above table.

To get more granular with details, such as job losses or gains, the hottest MSAs for each state, the best
industry sectors, the highest salaries, etc., consult the STC Salary Database and mine the data you want.

I want to note some issues. In my initial searches for District of Columbia, I failed to specify “exact location”
and as a result, the original hits (which allow a 25-mile radius by default) included many surrounding states
such as Virginia, Maryland, and others. I revised the search in January 2019.

Also, I’m not sure why Washington State, Louisiana, and Delaware are getting so many hits for APIs. I think
“API” might have another meaning in some of these states (e.g., “API CNC Machinist,” “Familiar with
OSHA, API, NFPA and other regulations and standards,” “Basic knowledge of API RP 53 and 30 CFR Part
250,” etc.). Like I said, I didn’t sort through hundreds of results to make sure API referred to “Application
Programming Interface” in every counted hit.

At any rate, the top 10 states with the highest percentages (dividing API hits by employment) are
Washington State, Louisiana, Delaware, California, New York, Georgia, Illinois, Texas, Colorado, and
Arizona.

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 680

Should you move to California?
Since I’m currently in California (the “San Jose-Sunnyvale-Santa Clara” MSA), and California frequently
appears at the top of these employment and API lists, I’ll comment a bit on API jobs in this location.
California (specifically Silicon Valley, which roughly spans from San Francisco to San Jose) continues to be
a hub (if not the hub) for API technical writer jobs.

The number of tech writers in the area fluctuates quite a bit. Here’s the data from the last several Salary
Database for San Jose-Sunnyvale-Santa Clara, CA, starting in 2007 (the first year the STC started
publishing the report):

Year Tech writers employed

2006 1,370

2007 1,350

2008 1,350

2009 1,510

2010 1,340

2011 1,340

2012 1,200

2013 no data

2014 1,360

2015 1,360

2016 1,160

2017 1,560

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 681

Overall, San Jose-Sunnyvale-Santa Clara is a hot area for tech writer jobs. The employment levels have
been relatively flat for the past decade but jumped up 34% this past year. I can certainly see the effects of
the job growth in this area. I get emails from recruiters pinging me several times a week, trying to fill
positions. At my own company, I’ve seen how difficult it is to find qualified candidates for developer doc
positions. At times, it seems like the candidates just aren’t here.

Should you move to California (or stay here if you're already in California)?

However, California has some drawbacks, mainly with housing and traffic. To live in Silicon Valley, you
likely need the dual income of two working professionals to survive financially. Alternatively, you probably
need to be single and willing to share a house with roommates. Or just be willing to live in an older, smaller
house in an ugly part of town. Traffic along the 101 can also crawl at a snail’s pace during rush hour.

That said, given the increased exodus of tech professionals in the Silicon Valley area (some estimate that
46% are leaving because housing is so unaffordable), the need and opportunity for tech writers will be
even greater in Silicon Valley.

So if you’re willing to sacrifice a few comforts related to housing — like being willing to live in a 1,000
square-foot house for $3k/month rent instead of owning a $3,000 square-foot house for $1,500/month
mortgage — your future could be bright in California. California has many other perks as well — beautiful
beaches, mountains with awe-inspiring Sequoias and Redwoods, free city-wide wifi, bike-friendly paths,
abundant parks and good schools, year-round good weather, laid-back attitudes, and more.

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 682

https://www.sfgate.com/realestate/article/Google-facebook-can-t-afford-Silicon-Valley-13132157.php

But living here is a tradeoff. In Tech Comm and The State of Urbanization , Danielle Villegas, frustrated by
the lack of tech writer jobs in the New Jersey area but not ready to give up her nice home and garden for
the urban life, writes:

Why would I want to try to get a studio apartment in San Francisco or Silicon Valley
or New York City for USD $1-2 million when I can get a three-to-four bedroom house
in a nice neighborhood, have some green space/a garden, a good school district for
my child, for a fraction of that? Why should I have to sacrifice my time with my family
and other obligations I have to my community by commuting four hours round trip
every day, and sacrificing my physical and mental well-being at the same time?

It’s a tradeoff that might not make sense for the lifestyle you want. For me, I moved to California (from
Utah) after our tech writing team at a Utah company was laid off. I received a generous severance package
and decided to move to Silicon Valley to be in an environment that has an abundance of jobs. I have four
daughters and am the primary breadwinner in my family, so it was important to be located in a place where
jobs were more abundant, stable, and where salaries were more lucrative. I was willing to trade my
spacious Utah house and the green garden (okay, I actually hate gardening) for the chance to work in a
thriving tech space.

Having been here for five years, I honestly love it. For starters, there are a plethora of tech writing jobs here
if you’re qualified. If you have a few years of experience writing developer docs and are familiar with some
technical languages or frameworks, many companies will gladly open their doors. Startups offer
opportunities to build doc departments and tool workflows from the ground up as well. It might be tough to
land your first tech writing job here, but once you get some experience, doors open.

Working in large companies like Amazon, Google, Facebook, Linkedin, Microsoft, and more can be
invigorating. I love working with mainstream commercial products like Fire TV — literally, it seems like every
day I see an article talking about Amazon products or the company in some way. It’s interesting to be
working in a space that has influence, which is frequently in the news (for good or bad), and which is at the
forefront of technology.

These companies are shaping culture and so many other details of our lives. For example, even Fire TV
may seem like a simple device, but it’s one of the technology products fueling the cord-cutter revolution
that is disrupting the cable industry. Amazon is now taking TV to another category of experience by
integrating Alexa into the experience (providing more of a hands-free interaction using natural language).

Alternatives to California
Before I moved to Santa Clara, I considered two alternatives besides the Bay area: Austin and Seattle.
Texas offers a much more affordable housing market and many tech jobs. For 2017, the “Austin-Round
Rock, TX” MSA employment numbers jumped up 34.5% (for a total of 740 tech writers) and in “Houston-
The Woodlands-Sugar Land, TX,” the employment jumped up 9.5% (for a total of 1,040 tech writers).

Seattle (specifically “Seattle-Bellevue-Everett, WA”) also has an abundance of jobs (an employment
increase of 5.8%, for a total of 910 tech writers). And the real estate market is slightly better than the Bay
area but still expensive (food seems to cost more Seattle too).

Traffic in all of these cities is pretty horrible, but you might be able to avoid this by becoming a bicycle
commuter (as I have). In the end, I chose California because it seemed like the Ivy League of technology
spaces, so I wanted to experience it for myself.

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 683

https://techcommgeekmom.com/2018/04/12/tech-comm-and-the-state-of-urbanization/

Will I stay here forever? Probably not. I’ll probably never be able to afford a home here, but for the time
being, accruing experience at some well-known companies seems like a worthwhile investment.

Overall, tech companies will continue to grow and expand outside of Silicon Valley. There’s not enough
space in Silicon Valley, and the number of engineers becomes fewer and fewer as companies grow and
expand. Many say that Silicon Valley’s days are over because it’s no longer practical for a startup to launch
in the conditions here. So if you want to come to California to work as a technical writer, great. But many
other locations might be more ideal.

For ideas on alternative areas, see the “Fastest-Growing States for Technical Writers and Export and GDP
Performance in 2017” section of the Salary Database. Michigan had a 28.0% increase in tech writer
employment. Georgia had a 19.2% increase. New Mexico had a 23.3% increase.

Without looking at averages over several years, it’s hard to know whether these boosts are temporary
anomalies or indicative of a continuous upward trajectory. To give better context to any growth
percentages, the Salary Database says to look at the state’s overall economic growth, not just their tech
comm job market. The report notes, “State employment gains are often correlated with the state’s
economy. A growing economy will typically prompt new hires in nearly all industries.”

Overall, if you’re serious about choosing locations for jobs, consider these factors:

• Number of tech writers employed
• Abundance of API doc opportunities
• The industry
• Cost of living
• Health of the state’s economy
• Companies in the area you want to work for

How to conduct a simple test
To spot-check the job opportunities in an area, select a few cities where you might like to live, set up some
job alerts on Indeed.com for those areas, and then monitor the frequency of jobs there over the next few
months.

Indeed will send you a daily job alert whenever there are new jobs in that area. Over a period of time, you
can consistently see how many new tech writing jobs are popping up in a city. I did this when I was initially
considering where to live, and without question, there were about 3-4 times more technical writing jobs
appearing in San Jose than Portland, and 2-3 times more than in Seattle.

In these searches, I didn’t run comparisons for more cities, nor did I add “API” into the job title. But you can
set up multiple searches and assess the results.

If you’re relocating, let companies know when you’ll be in the area. Set up as many interviews as you can
during the same week. When companies see you arrive on site in person, it can allay fears about hiring
someone out of state.

Conclusion
Much more could be written about where to live for API tech jobs. Overall, if you want to find a job in API
documentation, target these popular areas: California, Texas, Virginia, Massachusetts, New York, Florida,
Maryland, New Jersey, Ohio, and Pennsylvania. On the other hand, if you want to start a farm or ranch,
move to Wyoming.

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 684

http://indeed.com/

Activity: Look at API documentation jobs and requirements
In this activity, you’ll get a sense of the skills needed for the jobs in your location, and then draw up a plan.

1. Go to indeed.com .
2. In the Where field, type your desired location.
3. Search for “API technical writer” or some combination of API + technical writer + developer

documentation jobs.
4. Read the descriptions of 5 jobs.
5. Note a few of the salient requirements for these jobs.
6. Assess where you’re currently at with the following:

• Portfolio with writing samples that include developer documentation
• Technical knowledge related to developer domain
• Experience writing developer documentation

7. Make a plan for how you’ll match up your portfolio, tech knowledge, and experience related to
what these job descriptions are asking for. You might need to dedicate more time to an open-
source documentation project (p. 686) to build up the needed skills.

Best locations for API documentation jobs PDF last generated: August 27, 2023

Documenting REST APIs Page 685

https://www.indeed.com/

Activity: Find an open-source project
To break into API documentation, you need to start thinking about API documentation samples in your
portfolio. Your portfolio is key to Getting an API documentation job and thriving (p. 659). Without a portfolio
that contains compelling API documentation samples, it will be tough to get a job in API documentation.

Avoiding a catch-22
Let’s assume you don’t have any experience in API documentation, but you’re trying to get an API
documentation job. Employers will be willing to overlook experience if you can demonstrate API
documentation writing samples. But how will you get API doc writing samples without an API doc job? And
without API doc samples, how can you get an API doc job? This can seem like an impossible situation.

Getting around this catch-22 is simple: you create these API doc samples through open-source projects
that you contribute to. This is where the activities in this course become essential.

Rather than merely completing modules and tracking your progress toward the course’s completion, the
activities you do will help build up your portfolio with API documentation samples, helping you progress to
the goal of either obtaining an API documentation job or hitting a home run on an API doc project in your
current role.

Finding an open-source API project
If you’ve already got an API project through your work, or if you’re an engineer working on an API project,
great, just select your existing API for the course activities. However, if you’re breaking into API doc or
building your API doc skills from the ground up, you’ll need to find an open-source API documentation
project to contribute to.

Finding the right project can be challenging, but it is critical to your portfolio and your success in breaking
into API documentation. Fortunately, almost all open-source projects use GitHub, and GitHub provides
various tags for documentation and “help wanted” in order to attract volunteers. (The task is so common,
GitHub provides advice for finding open-source projects .)

The ideal open-source API project should meet the following criteria. The project should:

• Involve a REST API (not a library-based API (p. 692) or some other developer tool that isn’t an
API).

• Have some documentation needs.
• Not be so technical that it’s beyond your ability to learn it. (If you already have familiarity with a

programming language, you might target projects that focus on that language.)
• Be active, with a somewhat recent commit.

Activity: Find an open-source project with API doc needs
To find an open-source project with API doc needs:

1. Go to the GitHub Advanced Search .
2. Under the Issues Options section, in the With the labels row, type help wanted . This is a

standard tag that teams use to attract volunteers to their project (but some teams that need help
might not use it).

Scroll to the top and notice that label: "help wanted" automatically populates in the field.

Activity: Find an open-source project PDF last generated: August 27, 2023

Documenting REST APIs Page 686

https://help.github.com/articles/finding-open-source-projects-on-github/
https://github.com/search/advanced

3. In this Advanced Search box at the top, add some additional keywords (such as API

documentation) as well:

4. Click Search and browse the results .

In the results, you might want to look for a REST API project (rather than a native-library API (p.
692) such as a Java API). Developers don’t often distinguish between the two with requests
related to API documentation. If you see doc requests related to Java, C++, JavaScript, or some
other programming-specific framework (with no identifiable endpoints), it’s probably not a REST
API. However, working on such a project could be equally fulfilling as a learning opportunity. It
depends on what you’re interested in.

As you browse the results, are there any projects that look interesting or promising? If so, great. If
not, adjust some of the keywords and keep looking.

5. If searching GitHub doesn’t yield any appropriate projects, try the following resources:

• Trending GitHub projects
• Crowdforge
• Up for Grabs
• Bus Factor
• Code Triage
• Changelog
• 24-hour Pull Requests

Note: You could spend a long time evaluating and deciding on open-source projects. For
this activity, it’s okay if you focus on a project that looks only mildly interesting. You don’t
need to commit to it. You can always change it later.

6. After selecting a project, make notes on the following:

Activity: Find an open-source project PDF last generated: August 27, 2023

Documenting REST APIs Page 687

https://github.com/search?utf8=%E2%9C%93&q=documentation+api+label%3A%22help+wanted%22&type=Issues&ref=advsearch&l=&l=
https://github.com/search?utf8=%E2%9C%93&q=documentation+api+label%3A%22help+wanted%22&type=Issues&ref=advsearch&l=&l=
https://github.com/search?q=api+documentation+label%3A%22help+wanted%22&type=Issues
https://github.com/trending
https://crowdforge.io/
http://up-for-grabs.net/#/
https://libraries.io/experiments/bus-factor
https://www.codetriage.com/
https://changelog.com/
https://24pullrequests.com/

• Does the project involve a REST API?
• How does the project tag documentation-related issues? For example, does it use the

“documentation” label?
• Identify the current state of the project’s documentation. Are the docs robust, skimpy,

nonexistent, extensive?
• How active is the project? (What is the frequency of commits?)
• How many contributors does the project have?

You don’t have to actually reach out or interact with the team yet. You’re just gathering
information and analyzing documentation needs here.

Recognizing the type of API used in the project
When you look for API projects, recognize that there are many different types of APIs. Many of the APIs you
run across might be native library APIs (p. 692), which don’t use web protocols to make requests and
responses (as REST APIs do) but rather involve incorporating a language-specific library into the project. If
the API seems to focus on a particular language, and the API documentation looks auto-generated, it’s
probably a native-library API.

On the other hand, if the project’s documentation contains these core reference sections for their
endpoints, it’s probably a REST API.

Contributing will require Git skills
When you later contribute to the open-source project, you will need to understand the basic Pull request
Git workflow (p. 586). Understanding the Git workflow might require you to ramp up on Git tutorials a bit
first, but there’s no better way to learn Git than by actively using it in a real project scenario.

Don’t worry so much about Git now. You can learn these skills later when you have content you’re ready to
contribute. For now, just find a project.

Don’t undervalue your doc skills
You may think that it’s too early to even think about joining let alone contributing to an API documentation
project, especially when you’re learning. When you interact with the open-source team, you might feel
intimidated that you don’t have any programming skills.

However, don’t undervalue your role as a contributor to documentation (regardless of the contribution).
Open-source projects suffer greatly from lousy documentation. In GitHub Survey: Open Source Is Popular,
Plagued by Poor Docs and Rude People , David Ramel summarizes findings from the 2017 GitHub
Survey :

Incomplete or outdated documentation is a pervasive problem, observed by 93
percent of respondents, yet 60 percent of contributors say they rarely or never
contribute to documentation.

Also check out Open source documentation is bad, but proprietary software is worse by Matt Asay as
well. Asay highlights the documentation results from the same GitHub survey:

Activity: Find an open-source project PDF last generated: August 27, 2023

Documenting REST APIs Page 688

https://www.atlassian.com/git/tutorials
https://adtmag.com/articles/2017/06/05/open-source-survey.aspx
https://adtmag.com/articles/2017/06/05/open-source-survey.aspx
http://opensourcesurvey.org/2017/
http://opensourcesurvey.org/2017/
https://www.techrepublic.com/article/open-source-documentation-is-bad-but-proprietary-software-is-worse/

93% of respondents gnashed their teeth over shoddy documentation but also
admitted to doing virtually nothing to improve the situation. … If you think this deeply
felt need for documentation would motivate more developers to pitch in and help,
you’d be wrong: 60% of developers can’t be bothered to contribute documentation.

So yeah, as a technical writer, you may not be fixing bugs in the code or developing new features, but your
documentation role is still highly needed and valued. You are a rare bird in the forest here.

I know the value of the doc role intimately from my own experience in contributing to open source doc
projects. At one point, before focusing my energy on this API doc course, I contributed several tutorials to
the Jekyll docs . I added instructions that included a lot of new content and even added a Tutorials
section .

I thought other developers would continue creating new tutorials in a steady stream, but they didn’t.
Developers tend to add little snippets of documentation to pages — a sentence here, a paragraph there, an
update here, a correction there. You will rarely find someone who writes a new article or tutorial from
scratch. When there’s a new release, there often aren’t release notes — there are merely links to (cryptic)
GitHub issue logs.

As such, you should feel confident about the value you can bring to an open-source project. You’re
creating much-needed documentation for the project.

More reading
See the following for more information on finding an open-source project:

• How to choose (and contribute to) your first open-source project
• Contribute to open-source projects through documentation

For a tutorial on pull requests workflows with GitHub projects, see Pull request workflows through GitHub
(p. 586).

Next steps
After you find an open-source project, go to the next activity: Evaluate API reference docs for core
elements (p. 177).

Activity: Find an open-source project PDF last generated: August 27, 2023

Documenting REST APIs Page 689

https://jekyllrb.com/docs/home/
https://jekyllrb.com/tutorials/home/
https://jekyllrb.com/tutorials/home/
https://github.com/collections/choosing-projects
https://mapzen.com/blog/open-source-docs/

Activity: Create or fix an API reference
documentation topic
This part of the activity might be challenging, but here is where you’ll start building some examples for your
portfolio.

1. In the same project as before, identify one of the API reference topics that needs help. (If the API
has a new reference endpoint to document, focus on this endpoint.)

2. Edit the topic to improve it. (If it’s a new endpoint, write the documentation for it.)
3. Create a pull request (p. 586) and contribute your edits to the project.

Activity: Create or fix an API reference documentation topic PDF last generated: August 27, 2023

Documenting REST APIs Page 690

Chapter 12: Native library APIs
Native library APIs refer to Java, C++, or other programming-specific APIs. In this model, rather than
making requests across the web for the information, you download a library of code and integrate it into
your project. The library is compiled directly into your application’s build (rather than accessed through
web protocols as with REST APIs). Although this type of API is less common, I include it here in part to
clarify what makes REST APIs so different from native library APIs.

Chapter sections:

Overview of native library APIs... 692

Get the sample Java project .. 695

Java crash course .. 701

Activity: Generate a Javadoc from a sample project ... 707

Javadoc tags .. 712

Explore the Javadoc output ... 720

Make edits to Javadoc tags ... 722

Doxygen, a document generator mainly for C++ ... 723

Create non-ref docs with native library APIs.. 726

Chapter 12: Native library APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 691

Overview of native library APIs
In most of this course, we focused on REST APIs (p. 36). In this section, we’ll explore native library APIs,
which are more common when building native apps that you install on devices (such as Android or iOS
devices). Understanding native library APIs will also help clarify what makes REST APIs so different.

Characteristics of native library APIs
Native library APIs (also called class-based APIs or just APIs) are notably different in the following ways:

• Installed locally. Native library APIs are installed locally, compiled into the programmer’s code
as an additional library. The programmer can then use the classes, methods, or other functions
available in the library. (The API part refers to the public classes the developers use to access the
functions in the library. There are probably lots of helper and utility classes in the Java library that
aren’t public, but users will only interact with the public classes.)

• No requests and responses. The classes in native library APIs don’t use HTTP protocol, nor are
there requests and responses sent across the web. Native library APIs consist of a collection of
classes or functions that enhance your existing project with more capabilities. The APIs are
entirely local, with no web communication.

• Language specific. Native library APIs are language specific. There are as many different types
of APIs as there are programming languages, more or less. You can have a Java API, Python API,
C++ API, C# or .NET API, JavaScript API, and so on.

• Requires some programming knowledge to document. To understand how the API works,
you need to have a general understanding of the programming language of the API. You don’t
need to be a programmer, but you should be familiar with the nuts and bolts of the programming
language, the correct terms, how the different parts fit together, and how developers will use the
API.

We will focus this section on Java APIs because they’re probably one of the most common. However,
many of the concepts and code conventions mentioned here will apply to the other languages, with minor
differences.

Do you have to be a programmer to document native library APIs?
Because native library APIs are so dependent on a specific programming language, the documentation is
usually written or driven by engineers rather than generalist technical writers. Native library APIs are one
area where it helps to be a former software engineer when writing documentation.

Even so, you don’t need to be a programmer. You just need a minimal understanding of the language.
Technical writers can contribute a lot here concerning style, consistency, clarity, tagging, and overall
professionalism.

My approach to teaching native library API doc
There are many books and online resources you can consult to learn a specific programming language.
This section of the course will not try to teach you Java (p. 701) in any comprehensive way. However, to
understand a bit about Java API documentation (which uses a document generator called Javadoc), you
will need some understanding of Java.

To keep the focus on API documentation, we’ll take a documentation-centric approach as we explore Java.
You’ll learn the various parts of Java by looking at a specific Javadoc file and sorting through the main
components.

Overview of native library APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 692

http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html

What you need to install
For this part of the course, you need to install the Java Development Kit (JDK) (p. 693) and the Eclipse IDE
for Java Developers (p. 693).

Java Development Kit (JDK)

To check whether you have the Java Development Kit installed, do the following:

• On Mac: Open Terminal and type java -version .
• On Windows: Open a Command Prompt and type where java .

If it’s installed, you should see a message somewhat like this:

java version "1.8.0_181"
Java(TM) SE Runtime Environment (build 1.8.0_181-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)

If it’s not installed, you can download the JDK here . Click the Java button and then select the
appropriate download for your machine.

Eclipse IDE for Java Developers

Download and install the Eclipse IDE for Java Developers .

Eclipse installer

Start Eclipse. When prompted to select a workspace, select the default location and click Launch. Close
the welcome tab.

To make sure Eclipse is configured to use version 1.8, go to Eclipse > Preferences and then Java >
Installed JREs.

Overview of native library APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 693

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/packages/
https://eclipse.org/downloads/
https://eclipse.org/downloads/

Installed JRE settings

If 1.8 isn’t selected, browse to your install directory (on Mac, it’s /Library/Java/JavaVirtualMachines/

jdk1.8.0_171.jdk/Contents/Home) and select it.

(Since we’ll just be using Java within the context of Eclipse, Windows users don’t need to add Java to their
classpath. But if you want to be able to compile Java from the command line, you would also need to do
this.)

Overview of native library APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 694

Get the sample Java project
To understand the documentation for Java APIs, it helps to see the context of what the documentation
describes. As such, I created a simple little Java application (called sample-java-project) to demonstrate
how the various tags get rendered into the Javadoc.

Sample Java Project
The sample Java project (available at github.com/tomjoht/sample-java-project) is a little Java application
about different tools that a coyote will use to capture a roadrunner. There are two classes
(ACMESmartphone and Dynamite) and another class file called App that references the classes.

This program only prints little messages to the console, but it’s simple enough to be instructive in its
purpose. The purpose of the app is to demonstrate different doc tags, their placement, and how they get
rendered in the Javadoc.

Download and open the project in Eclipse
One of your immediate challenges to editing Javadoc will be to get the source code into your IDE and open
the project.

1. Go to the sample-java-project and clone the project using version control.

git clone https://github.com/tomjoht/sample-java-project

(If you need to review version control basics, see Version control systems (such as Git) (p. 562).)

2. If you haven’t already downloaded and installed Eclipse (p. 693), do so.
3. Open Eclipse and go to File > New > Java Project.
4. Clear the Use default location check box, and then click Browse and select the folder where

you cloned the Github project. Click Open.

Get the sample Java project PDF last generated: August 27, 2023

Documenting REST APIs Page 695

https://github.com/tomjoht/sample-java-project
https://github.com/tomjoht/sample-java-project
https://github.com/tomjoht/sample-java-project

Import existing Java project

5. Click Finish to close the New Java Project dialog box.

The Java files should be visible in the left pane (Package Explorer) within your Eclipse IDE.

Get the sample Java project PDF last generated: August 27, 2023

Documenting REST APIs Page 696

Eclipse File View

Play with the sample Java project
This Java app doesn’t do much. Its only purpose is to create some classes that demonstrate some
Javadoc annotations. But for fun, run the app.

1. In the Package Explorer, expand javadoc_tags.
2. Double-click the App.java file to open it.
3. Click the Run App button :

Get the sample Java project PDF last generated: August 27, 2023

Documenting REST APIs Page 697

Running the app in Eclipse

The main method (public static void main(String[] args) throws IOException), which
appears in the App.java file, runs the functions defined in the other package’s files
(ACMESmartphone.java and Dynamite.java).

public static void main(String[] args) throws IOException {

// First initialize your smartphone using the model number and lice
nse key.

ACMESmartphone myACMESmartphone = new ACMESmartphone(2.0, "398978fd
skj");

// Locate the roadrunner.
myACMESmartphone.findRoadRunner("Santa Clara","California");

// Zap the roadrunner with the amount of voltage you want.
myACMESmartphone.zapRoadRunner(40);

}

You can view the details of each function by clicking the ACMESmartphone.java and
Dynamite.java class files.

Then app prints this text to the console:

Get the sample Java project PDF last generated: August 27, 2023

Documenting REST APIs Page 698

model2.0 now initialized for license 398978fdskj
location: Santa Clara, California
getting geocoordinates of roadrunner....
roadrunner located at Longitude = 39.2334, Latitude = 41.4899
Backfire!!! zapping coyote with 1,000,000 volts!!!!

Running the program

Side Note about Maven projects
Before leaving this intro topic on getting started with a Java project, I’d like to make a note about Maven.
Java projects often have a lot of dependencies on packages that are third-party libraries or at least non-
standard Java utilities. Rather than requiring users to download these additional packages and add them to
their class manually, developers frequently use Maven to manage the packages. (Maven is to Java as
Gradle is to Android.)

Maven projects use a pom.xml file that defines the dependencies. Eclipse ships with Maven already
installed, so when you import a Maven project and install it, the Eclipse Maven plugin will retrieve all of the
project dependencies and add them to your project.

The sample project doesn’t use Maven, but chances are if you’re getting a Java project from developers,
you won’t import it in the way I previously described. Instead, you’ll import it as an existing Maven project.

(To import a Maven project into Eclipse, you would go to File > Import > Maven > Existing Maven
Projects and click Next. In the Root Directory field, you would click Browse and browse to the Java
project folder (which contains the Maven pom.xml file) and then click Open. Then you would click Finish in
the dialog box. In the Project Explorer pane in Eclipse, you would right-click the Java folder and select Run

Get the sample Java project PDF last generated: August 27, 2023

Documenting REST APIs Page 699

as Maven Install. Maven retrieves the necessary packages and builds the project. If the build is
successful, you will see a “BUILD SUCCESS” message in the console. You would then use the source
code in the built project.)

Get the sample Java project PDF last generated: August 27, 2023

Documenting REST APIs Page 700

Java crash course
To understand the different components of a Javadoc, first you have to understand a bit about Java.
Becoming familiar with the names of the different components of Java will allow you to enter conversations
and understand the code at a high level. When you describe various aspects of sample code, knowing
when to call something a class, method, parameter, or enum can be critical to your documentation’s
credibility.

I’ll run you through a brief crash course in the basics. Don’t worry if this seems like a blur. For more detail
about learning Java, I recommend consulting lynda.com and safaribooksonline . Below I’ll focus on
some basic concepts in Java that will be important in understanding the Javadoc tags and elements (p.
712).

About Java
Java’s flexibility and widespread use make it one of the best programming languages to learn for technical
writers. Java isn’t tied to a specific language platform. Instead, Java code compiles into byte code. The
platform you deploy your code on contains a Java Virtual Machine (JVM) that interprets the byte code.
Hence through JVMs, different platforms can interpret and run Java code — this gives Java more flexibility
with different platforms.

Classes
Classes are templates or blueprints that drive pretty much everything in Java. It’s easiest to understand
classes through an example. Think of a class like a general blueprint of a “bicycle.” There are many
different types of bicycles (Trek bikes, Specialized bikes, Giant bikes, Raleigh bikes, etc.). But they’re all
just different instances of the general class of a bicycle.

In Java, you start by defining classes. Each class is its own file and begins with a capital letter. The file
name matches the class name, which means you have just one class per file.

Each class can contain some fields (variables for the class) and methods (subroutines the class can do).

Before the class name, an access modifier indicates how the class can be accessed. Several options for
access modifiers are as follows:

• public : Anyone can access
• private : Only other packages can access
• static : No one can change the class
• abstract : The class can’t be instantiated, only sub-classed.

Here’s an example of a class:

public class Bicycle{

//code...

}

You mostly need to focus on public classes, since these are the classes that will be used by external
developers. The public classes are the API of the library.

Java crash course PDF last generated: August 27, 2023

Documenting REST APIs Page 701

http://lynda.com/
http://safaribooksonline.com/

Methods
Methods are subroutines or actions that the class can do. For example, with a bicycle you can pedal,
brake, and turn. A class can have as many methods as it needs.

Methods can take arguments, so there are parentheses () after the method name. The arguments are
variables that are used within the code for that method. For example:

add(a, b) {
sum = a + b;

}

Methods can return values. When a method finishes, the value can be returned to the caller of the method.

Before the method name, the method indicates what type of data it returns. If the method doesn’t return
anything, void is listed. Other options are String or int .

Here’s an example of some methods for our Bicycle class:

class Bicycle {

void turn() {
// code ...
}
void pedal(int rotations) {

System.out.println("Your speed is " + rotations + " per minut
e".);

}

int brake(int force, int weight) {
torque == force * weight;
return torque;

}
}

See how the brake method accepts two arguments — force and weight . These arguments are
integers, so Java expects whole numbers here. (You must specify the data type before the parameters in
the method.) The arguments passed into this method are used to calculate the torque . The torque is
then returned to the caller.

Java has different types of methods. Instance methods can only be used from objects instantiated from the
class. Static methods can be used directly from the class without instantiating an object first. Abstract
methods can only be used through subclasses.

Somewhere in your Java application, users will have something called a main method that looks like this:

public static void main(String[] args) {
}

Inside the main method is where you add your code to make your program run. As a result, the code
inside the main method references other objects (instantiated from classes). The Java Virtual Machine will
look inside the main method to run the application code.

Java crash course PDF last generated: August 27, 2023

Documenting REST APIs Page 702

Fields
Fields are variables available within the class. A variable is a placeholder that is populated with a different
value depending on what the user wants.

Fields indicate their data types because all data in Java is “statically typed” (meaning, its format/length is
defined) so that the data doesn’t take up more space than it needs. Some data types include byte ,
short , long , int , float , or double . These are numbers or decimals of different sizes. You can also

specify a char , string , or boolean .

Here’s an example of some fields in class:

class Bicycle {
String brand;
int size;

}

Many times fields are “encapsulated” with getter-setter methods, which means their values are set in a
protected way. Users call one method to set the field’s value, and another method to get the field’s value.
This way you can avoid having users set improper values or incorrect data types for the fields.

Fields that are constant throughout the Java project are called ENUMS. Alternatively, the fields are given
public static final modifiers.

Objects
Objects are instances of classes. They are the Treks, Raleighs, Specialized, etc., of the Bicycle class.

If I wanted to use the Bicycle class, I would create an instance of the class. The instance of the class is
called an object. Here’s what it looks like when you “instantiate” the class:

Bicycle myBicycle = new Bicycle();

You write the class name followed by the object name for the class. Then assign the object to be a new
instance of the class. Now you’ve got myBicycle to work with.

The object inherits all of the fields and methods available to the class.

You can access fields and methods for the object using dot notation, like this:

myBicycle Bicycle = new Bicycle();

myBicycle.brand = "Trek";
myBicycle.pedal();

You probably won’t see many objects in the native library. Instead, the developers who implement the API
will create objects. However, if you have a reference implementation or sample code on how to implement
the API, you will see a lot of objects.

Constructors
Constructors are methods used to create new instances (objects) of the class. The default constructor for
the class looks like the one above, with new Bicycle() .

Java crash course PDF last generated: August 27, 2023

Documenting REST APIs Page 703

The constructor uses the same name as the class and is followed by parentheses (because constructors
are methods).

Often classes have constructors that initialize the object with specific values passed in to the constructor.

For example, suppose we had a constructor that initialized the object with the brand and size:

public class Bicycle{

public Bicycle(String brand, int size) {
this.brand = model;
this.size = size;

}

}

Now you can use this constructor when creating a new Bicycle object:

Bicycle myBicycle = new Bicycle ("Trek", 22);

It’s a best practice to include a constructor even if it’s just the default.

Packages
Classes are organized into different packages in Java projects. Packages are like folders or directories
where the classes are stored. Putting classes into packages helps avoid naming conflicts.

When you create your class, if it’s in a package called vehicles , you list this package at the top of the
class:

package vehicles

public class Bicycle {
//
}

Classes also set boundaries on access based on the package. If the access modifier does not say
public , the class would only be accessible to members of the same package. If the access modifier is
protected , the class is only accessible to the class, package, and subclasses.

When you want to instantiate the class (and your file is outside the package), you need to import the
package into your class, like this:

import vehicles

public static void main(String[] args) {

}

When packages are contained inside other packages, you access the inner packages with a dot, like this:

Java crash course PDF last generated: August 27, 2023

Documenting REST APIs Page 704

import transportation.motorless.vehicles

Here you would have a transportation package containing a package called motorless containing a
package called vehicles. Package naming conventions are like URLs in reverse (com > yoursite >
subdomain).

Maven handles package management for Java projects. Maven will automatically go out and get all the
package dependencies for a project when you install a Maven project.

Exceptions
To avoid broken code, developers anticipate potential problems through exception handling. Exceptions
say, if there’s an issue here, flag the error with this exception and then continue through the code.

Different types of errors throw different exceptions. By identifying the type of exception thrown, you can
more easily troubleshoot problems when code breaks because you know the specific error that’s
happening.

You can identify a specific exception the class throws in the class name after the keyword throws :

public class Bicycle throws IOException {

}

When you indicate the exception here, you list the type of exception using a specific Javadoc tag.

Inheritance
Some classes can extend other classes. Extending a class means a class inherits the properties of another
class. When one class extends another class, you’ll see a note like this:

public class Bicycle extends Vehicle {

}

This code means that Bicycle inherits all of the properties of Vehicle and then can add to them.

Interfaces
An interface is a class that has methods with no code inside the method. Interfaces are intended to be
implemented by another class that will insert their own values for the methods. Interfaces are a way of
formalizing a class that will have a lot of subclasses. Interfaces force the subclasses to standardize on
common strings and methods.

JAR files and WAR files
The file extension for a class is .java , but when compiled by the Java Development Kit into the Java
program, the file becomes .class . The .class file is binary code, which means only computers (in this
case, the Java Virtual Machine, or JVM) can read it.

Java crash course PDF last generated: August 27, 2023

Documenting REST APIs Page 705

Developers often package up java files into a JAR file, which is like a zip file for Java projects. When you
distribute your Java files, you’ll likely provide a JAR file that the developer audience will add to their Java
projects.

Developers will add their JAR to their class path to make the classes available to their project. To do this,
they right-click their project and select Properties. In the dialog box, they select Java Build Path and then
click the Libraries tab. They then click Add JARs and browse to the JAR.

When you deliver a JAR file, developers can use the classes and methods available in the JAR. However,
the JAR will not show them the source code, that is, the raw Java files. For this, users will consult the
Javadoc.

If you’re distributing a reference implementation that consists of a collection of Java source files (so that
developers can see how to integrate your product in Java), you’ll probably just send them a zip file
containing the project.

A WAR file is a web application archive. A WAR is a compiled application that developers deploy on a
server to run an application. Whereas the JAR is integrated into a Java project while the developers are
actively building the application, the WAR is the deployed program that you run from your server.

That’s probably enough Java to understand the different components of a Javadoc.

Summary
Here’s a quick summary of the concepts we talked about:

• Class: Blueprints for something
• Object: An instance of a class
• Methods: What the object/class can do
• Fields: Variables in the object/class
• Constructor: A method to create an object for a class
• Package: A folder that groups classes
• Access modifier (e.g., public): The scope at which a thing can be accessed
• Interface: A skeleton class with empty methods (used for standardizing)
• Enum: A data type offering predefined constants
• Subclass: A class that inherits the fields + methods of another class
• JAR file: A zip-like file containing Java classes
• WAR file: A compiled Java web application to be deployed on a server

The point is that now you can use these terms intelligently in documentation and have at least a sense of
what’s going on.

Comparing native library APIs to REST
Now that you see the specific programming language and elements in Java, you can probably get a sense
of how different native library APIs are from REST APIs. To document a native library API, you need to
become familiar with the programming language. In contrast, REST APIs are language agnostic, so they
tend to be more accessible to generalists.

Java crash course PDF last generated: August 27, 2023

Documenting REST APIs Page 706

Activity: Generate a Javadoc from a
sample project
Javadoc is the standard output for Java APIs, and it’s somewhat effortless to build a Javadoc. The
Javadoc is generated through something called a “doclet.” Different doclets can parse the Java
annotations in different ways and produce different outputs. But by and large, almost every Java
documentation uses the standard doclet. The Javadoc output will be familiar and welcome to Java
developers.

Javadoc is supported by Oracle. Developers can integrate the Javadoc output directly into their IDE, which
makes the documentation convenient and easily accessible. In fact, Javadoc is often delivered this way
rather than deployed and uploaded to a server. Javadoc contains reference documentation only. You can’t
add any conceptual help files into the output, nor change the layout.

Generate a Javadoc
In this activity, you’ll generate a Javadoc from the sample java project (p. 695) you downloaded earlier. If
you want to preview the Javadoc that you’re going to build, you can view the output here .

1. In Eclipse, go to File > Export.
2. Expand Java and select Javadoc. Then click Next.
3. Select your project and package. Then in the right pane, select the classes you want to be

included in the Javadoc — in this case, Dynamite.java and ACMESmartphone.java.

Activity: Generate a Javadoc from a sample project PDF last generated: August 27, 2023

Documenting REST APIs Page 707

https://idratherbewriting.com/assets/files/javadoc/index.html

Generating a Javadoc

Don’t select the App.java class that contains your main method because you don’t need to
provide Java documentation for your program; your Javadoc will provide documentation for the
classes that developers might choose to use in their programs. In this sample project, the main

method is included in App.java , but it could have been included in a file named otherwise.

4. Select which visibility option you want: Private, Package, Protected, or Public. Generally, you
select Public.

Your API probably has a lot of helper or utility classes used on the backend, but only a select
number of classes will be used by your developer audience. These classes are made public. It’s
the public classes that your developer audience will use that form the API aspect of the class
library.

5. Make sure the Use standard doclet radio button is selected. (It’s selected by default.)
6. Click the Browse button and select the output location where you want the Javadoc generated.

By default, it will be generated in the same project folder as your code, but in a subfolder called
doc . This way you can browse the Javadoc directly within your Eclipse IDE.

For this activity, choose a different output location (such as a folder on your desktop or in your
documents) other than the default. Reason being, the project already has the generated Javadoc
in a docs folder, so you might not even realize that you’ve generated a Javadoc file because your
new output will just overwrite the existing doc files.

Activity: Generate a Javadoc from a sample project PDF last generated: August 27, 2023

Documenting REST APIs Page 708

When developers deliver Java libraries, they often include the doc directly in a distributed zip file
that contains that JAR. Users are accustomed to looking in the doc folder for documentation.

7. Click Next and see additional configuration options.

Javadoc next screen

Here you can select if you want to omit some tags, such as @author and @deprecated. Generally,
you don’t include the @author tag, since it may only be important internally, not externally. You
can also select different options in the Javadoc frame. If you have a custom stylesheet, you can
select it here. Most likely you would only make superficial style changes such as with colors.

8. Click Next.

Activity: Generate a Javadoc from a sample project PDF last generated: August 27, 2023

Documenting REST APIs Page 709

Overview page

Here you can select an HTML page that you want to be your overview page in the Javadoc .
You can select any HTML page, and it will be included in the index.

9. Click Finish.

If the Finish button isn’t available, it might be because Eclipse can’t find the right Javadoc
executable. You can click Configure and browse to the file manually. On a MacBook Pro, the
Javadoc file is at /Library/Java/JavaVirtualMachines/jdk1.8.0_171.jdk/Contents/Home/

bin/javadoc .

If prompted to update the Javadoc location (which likely differs from your Eclipse workspace
location), do so by clicking Yes to all.

Browse to the destination location and open the index.html file in your browser to view the
files.

If you had trouble building your Javadoc, you could view the output here .

Javadoc and error checking
Javadoc also checks your tags against the actual code. If you have parameters, exceptions, or returns that
don’t match up with the parameters, exceptions, or returns in your actual code, then Javadoc will show
some warnings.

Activity: Generate a Javadoc from a sample project PDF last generated: August 27, 2023

Documenting REST APIs Page 710

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#overviewcomment
https://idratherbewriting.com/assets/files/javadoc/index.html

Javadoc error checking

Play with Javadoc parameters
Try removing a parameter from a method and generate the Javadoc again. Make sure the console window
is open so you can see the error warnings.

Auto-building the Javadoc
In most development shops, you’ll never manually create a Javadoc file as I’ve explained here. Javadoc
allows you to build it from the command line by feeding it a configuration file. Most developers have a build
management tool where they can configure outputs from their code, including Javadoc. If developers ask
you to build the Javadoc, chances are their build management system might be somewhat primitive.
However, it can be helpful to build the Javadoc output yourself (as I’ve explained here) to test and review
the output before generating it through the build management tool.

Activity: Generate a Javadoc from a sample project PDF last generated: August 27, 2023

Documenting REST APIs Page 711

Javadoc tags
Javadoc (p. 707) is a document generator that looks through your Java source files for specific annotations.
It parses out the annotations into the Javadoc output. Knowing the annotations is essential because this is
how the Javadoc gets created.

Comments versus Javadoc tags
A general comment in Java code is signaled like this:

// sample comment...

/*
sample comment
*/

Javadoc does nothing with these comments.

To include content in Javadoc, you add two asterisks at the start, before the class or method:

/**
*
*
*
*
*/

(In Eclipse, if you type /** and hit return, it autofills the rest of the syntax automatically.)

The format for adding the various elements is like this:

/**
* [short description]
* <p>
* [long description]
*
* [author, version, params, returns, throws, see, other tags]
* [see also]
*/

Here’s a real example of Javadoc comments for a method.

Javadoc tags PDF last generated: August 27, 2023

Documenting REST APIs Page 712

/**
* Zaps the roadrunner with the number of volts you specify.
* <p>
* Do not exceed more than 30 volts or the zap function will backfire.
* For another way to kill a roadrunner, see the {@link Dynamite#blowDynamit
e()} method.
*
* @exception IOException if you don't enter a data type amount for the volta
ge
* @param voltage the number of volts you want to send into the roadrunner's
body
* @see #findRoadRunner
* @see Dynamite#blowDynamite
*/
public void zapRoadRunner(int voltage) throws IOException {

if (voltage < 31) {
System.out.println("Zapping roadrunner with " + voltage + " volt

s!!!!");
}
else {
System.out.println("Backfire!!! zapping coyote with 1,000,000 volt

s!!!!");
}

}

You put the Javadoc description and tags before the class or method (no need for any space between the
description and class or method).

Common Javadoc tags
The following are the most common tags used in Javadoc. Each tag has a word that follows it. For
example, @param latitude means the parameter is “latitude.”

To view a lengthy example of Javadoc tags, see this example from Oracle .</div>

The following are some common Javadoc tags:

• @author A person who made significant contributions to the code. Applied only at the class,
package, or overview level. Not included in the Javadoc output. It’s not recommended to include
this tag since authorship changes often.

• @param A parameter that the method or constructor accepts.
• @deprecated Lets users know the class or method is no longer used. This tag will be positioned

prominently in the Javadoc. Accompany it with a @see or {@link} tag as well.
• @return What the method returns.
• @see Creates a “see also” list. Use {@link} for the content to be linked.
• {@link} Used to create links to other classes or methods. Example: {@link Foo#bar} links

to the method bar that belongs to the class Foo . To link to the method in the same class, just
include #bar .

• @since 2.0 The version since the feature was added.
• @throws The kind of exception the method throws. Note that your code must indicate an

exception thrown in order for this tag to validate. Otherwise, Javadoc will produce an error.
@exception is an alternative tag.

Javadoc tags PDF last generated: August 27, 2023

Documenting REST APIs Page 713

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#examples

• @Override Used with interfaces and abstract classes. Performs a check to see if the method is
an override.

What elements you add Javadoc tags to
You add Javadoc tags to classes, methods, and fields.

• For the @author and @version , add these tags only to classes and interfaces.
• The @param tags get added only to methods and constructors.
• The @return tag gets added only to methods.
• The @throws tag can be added to classes or methods.

Public versus private modifiers and Javadoc
Javadoc includes only classes, methods, etc., marked as public . Elements marked as private are not
included in Javadoc unless you specifically select private when generating the Javadoc. If you omit
public from your source code, the default is that the class or method is available to the package only. In

this case, it is not included in Javadoc.

The description
Javadoc provides both a short and long description. Here’s an example showing how the description part
is formatted:

/**
* Short one line description.
* <p>
* Longer description. If there were any, it would be
* here.
* <p>
* And even more explanations to follow in consecutive
* paragraphs separated by HTML paragraph breaks.
*
* @param variable Description text text text.
* @return Description text text text.
*/
public int methodName (...) {
// method body with a return statement
}

(This example comes from Wikipedia entry .)

The short description is the first sentence and gets shortened as a summary for the class or method in the
Javadoc. After a period, the parser moves the rest of the description into a long description. Use <p> to
signal the start of a new paragraph. You don’t need to surround the paragraphs with opening and closing
<p> tags because the Javadoc compiler automatically adds them. Also, you can use HTML in your

descriptions, such as an unordered list, code tags, bold tags, or others.

After the descriptions, enter a blank line (for readability) and then start the tags. You can’t add any more
description content below the tags. Note that only methods and classes can have tags, not fields. Fields
(variables) have descriptions only.

Javadoc tags PDF last generated: August 27, 2023

Documenting REST APIs Page 714

http://en.wikipedia.org/wiki/Javadoc

Note that the first sentence is much like the shortdesc element in DITA. This first sentence is supposed
to be a summary of the entire class or method. If one of your words has a period in it (like Dr. Jones),
then you must remove the space following the period by adding Dr. Jones to connect it.

Avoid using links in the first sentence. After the period, the next sentence shifts to the long paragraph, so
you have to load up that first sentence to be descriptive. The verb tense should be present tense, such as
gets, puts, displays, calculates…

What if the method is so obvious (for example, printPage) that your description (“prints a page”) becomes
redundant and looks useless? Oracle says in these cases, you can omit saying “prints a page” and instead
try to offer some other insight. Oracle suggests:

Add description beyond the API name. The best API names are “self-documenting”,
meaning they tell you basically what the API does. If the doc comment merely
repeats the API name in sentence form, it is not providing more information. For
example, if method description uses only the words that appear in the method name,
then it is adding nothing at all to what you could infer. The ideal comment goes
beyond those words and should always reward you with some bit of information that
was not immediately obvious from the API name. – How to write javadoc comments

Avoid @author

Commenting on Javadoc best practices, some people recommend using @author because the author
value easily slips out of date, and the source control provides better indication of the last author. (See
Javadoc coding standards for more detail.)

Order of tags
Oracle says the order of the tags should be as follows:

@author (classes and interfaces)
@version (classes and interfaces)
@param (methods and constructors)
@return (methods)
@throws (@exception is an older synonym)
@see
@since
@serial
@deprecated

@param tags
@param tags apply only to methods and constructors, both of which take parameters. After the @param
tag, add the parameter name, and then a description of the parameter, in lowercase, with no period, like
this:

@param url the web address of the site

Javadoc tags PDF last generated: August 27, 2023

Documenting REST APIs Page 715

http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://blog.joda.org/2012/11/javadoc-coding-standards.html

The parameter description is a phrase, not a full sentence. The order of multiple @param tags should mirror
their order in the method or constructor.

Stephen Colebourne recommends adding an extra space after the parameter name to increase
readability (and I agree).

As far as including the data type in the parameter description, Oracle says:

By convention, the first noun in the description is the data type of the parameter.
(Articles like “a”, “an”, and “the” can precede the noun.) An exception is made for the
primitive int, where the data type is usually omitted. (See How to write doc
comments using Javadoc .)

The example Oracle gives is as follows:

@param ch the character to be tested

However, the data type is visible from the parameters in the method. So even if you don’t include the data
types, it will be easy for users to see what they are.

Note that you can have multiple spaces after the parameter name so that your parameter definitions all line
up.

@param tags must be provided for every parameter in a method or constructor. Failure to do so will create
an error and warning when you render Javadoc.

Note that usually, classes don’t have parameters. There is one exception: Generics. Generic classes are
classes that work with different type of objects. The object is specified as a parameter in the class in
diamond brackets: <> . Although the Javadoc guidance from Oracle doesn’t mention them, you can add a
@param tag for a generic class to note the parameters for the generic class. See this StackOverflow post

for details. Here’s an example from that page:

/**
* @param <T> This describes my type parameter

*/
class MyClass<T>{

}

@return tags
Only methods return values, so only methods would receive a @return tag. If a method has void as a
modifier, it doesn’t return anything. If it doesn’t say void , then you must include a @return tag to avoid
an error when you compile Javadoc.

@throws tags
You add @throws tags to methods or classes only if the method or class throws a particular kind of error.
Here’s an example:

Javadoc tags PDF last generated: August 27, 2023

Documenting REST APIs Page 716

http://blog.joda.org/2012/11/javadoc-coding-standards.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#tag
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#tag
http://stackoverflow.com/questions/2015972/is-there-a-javadoc-tag-for-documentating-generic-type-parameters
http://stackoverflow.com/questions/2015972/is-there-a-javadoc-tag-for-documentating-generic-type-parameters

@throws IOException if your input format is invalid

Stephen Colebourne recommends starting the description of the throws tag with an “if” clause for
readability. He says,

The @throws feature should normally be followed by if ... and the rest of the
phrase describing the condition. For example, @throws if the file could not

be found . This aids readability in source code and when generated.

If you have multiple throws tag, arrange them alphabetically.

Doc comments for constructors
It’s a best practice to include a constructor in a class. However, if the constructor is omitted, Javadoc
automatically creates a constructor in the Javadoc but omits any description of the constructor.

Constructors have @param tags but not @return tags. Everything else is similar to methods.

Doc comments for fields
Fields have descriptions only. You would only add doc comments to a field if the field were something a
user would use.

Cases where you don’t need to add doc comments
Oracle says there are three scenarios where the doc comments get inherited, so you don’t need to include
comments in these scenarios:

• When a method in a class overrides a method in a superclass
• When a method in an interface overrides a method in a superinterface
• When a method in a class implements a method in an interface

(See How to write Javadoc comments .)

@see tags
The @see tag provides a see also reference. There are various ways to denote what you’re linking to in
order to create the link. If you’re linking to a field, constructor, or method within the same field, use # .

If you’re linking to another class, put that class name first followed by the # and the constructor, method,
or field name.

If you’re linking to a class in another package, put the package name first, then the class, and so on. See
this sample from Oracle:

Javadoc tags PDF last generated: August 27, 2023

Documenting REST APIs Page 717

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#tag

@see #field
@see #Constructor(Type, Type...)
@see #Constructor(Type id, Type id...)
@see #method(Type, Type,...)
@see #method(Type id, Type, id...)
@see Class
@see Class#field
@see Class#Constructor(Type, Type...)
@see Class#Constructor(Type id, Type id)
@see Class#method(Type, Type,...)
@see Class#method(Type id, Type id,...)
@see package.Class
@see package.Class#field
@see package.Class#Constructor(Type, Type...)
@see package.Class#Constructor(Type id, Type id)
@see package.Class#method(Type, Type,...)
@see package.Class#method(Type id, Type, id)

For more information, see How to write Javadoc comments .

Links
You can create links to other classes and methods using the {@link} tag.

Here’s an example from Javadoc coding standards on making links:

/**
* First paragraph.
* <p>
* Link to a class named 'Foo': {@link Foo}.
* Link to a method 'bar' on a class named 'Foo': {@link Foo#bar}.
* Link to a method 'baz' on this class: {@link #baz}.
* Link specifying text of the hyperlink after a space: {@link Foo the Foo cl
ass}.
* Link to a method handling method overload {@link Foo#bar(String,int)}.
*/
public ...

To link to another method within the same class, use this format: {@link #baz} . To link to a method in
another class, use this format: {@link Foo#baz} . However, don’t over hyperlink. When referring to other
classes, you can use <code> tags.

To change the linked text, put a word after #baz like this: @see #baz Baz method .

Previewing Javadoc comments
In Eclipse, you can use the Javadoc tab at the bottom of the screen to preview the Javadoc information
included for the class you’re viewing.

Javadoc tags PDF last generated: August 27, 2023

Documenting REST APIs Page 718

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#tag
http://blog.joda.org/2012/11/javadoc-coding-standards.html

Javadoc pane

Why all the detail about Javadoc tags?
I’ve added a lot of specific detail and style guidelines about Javadoc tags here. Why? I wanted you to
realize that annotations for the Javadoc follow a lot of style conventions and best practices. These
conventions and best practices might not always be apparent or followed in Java files that you might be
working on. You can add a lot of value just by making sure the content aligns with these style conventions.

More information about Javadoc
• Oracle’s explanation of Javadoc tags
• Javadoc

Javadoc tags PDF last generated: August 27, 2023

Documenting REST APIs Page 719

http://www.oracle.com/technetwork/articles/java/index-137868.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html

Explore the Javadoc output
The Javadoc output hasn’t changed much in the past 20 years, so in some sense, it’s predictable and
familiar. On the other hand, the output is dated and lacks some critical features, like search, or the ability to
add more pages. In this topic, we’ll explore how the Javadoc is organized.

Class summary
Open the index.html file in the Javadoc folder you generated in Activity: Generate a Javadoc from a sample
project (p. 707).

The class summary page shows a short version of each of the classes. The description you write for each
class (up to the period) appears here. It’s kind of like a quick reference guide for the API.

Class summary

You click a class name (in this case, ACMESmartphone or Dynamite) to dive into the details.

Class details
When you view a class page, you’re presented with a summary of the fields, constructors, and methods for
the class. Again, this is just an overview. When you scroll down, you can see the full details about each of
these elements.

Explore the Javadoc output PDF last generated: August 27, 2023

Documenting REST APIs Page 720

Full class details

Other navigation
If you click Package at the top, you can also browse the classes by package. Or you can go to the classes
by clicking the class name in the left column. You can also browse everything by clicking the Index link.

All the ways to browse the classes

For more information about how the Javadoc is organized, click the Help button in the Javadoc top
navigation bar.

Explore the Javadoc output PDF last generated: August 27, 2023

Documenting REST APIs Page 721

http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/

Make edits to Javadoc tags
It’s pretty common for developers to add Javadoc tags and brief comments as they’re creating Java code.
In fact, if they don’t add some annotations, the IDE will usually produce a warning error.

However, the comments that developers add might be poor, incomplete, or incomprehensible. A tech
writer’s job with Javadoc is often to edit the content that’s already there, providing more clarity, structure,
inserting the right tags, and more.

What to look for when editing Javadoc content
When you make edits to Javadoc content, look for the following:

• Missing doc. Lots of Javadoc is incomplete. Look for missing documentation.
• Consistent style. See if the existing tags follow Java’s style conventions with annotations (p.

712).
• Clarity. Some descriptions are unintelligible due to the curse of knowledge (it might be hard to

tell without a stronger grasp of Java)

Make some edits to the Javadoc
Make some edits to a class and method. Then regenerate the Javadoc and find your changes. See how
they get rendered in the output.

Tip: If you need to review how to export to Javadoc, see Activity: Generate a Javadoc from a sample
project (p. 707). Each time you export to Javadoc, you need to select the classes you want to be
included.

Make edits to Javadoc tags PDF last generated: August 27, 2023

Documenting REST APIs Page 722

Doxygen, a document generator
mainly for C++
An alternative to Javadoc is Doxygen. Doxygen works highly similarly to Javadoc, except that it can
process more languages (Java, C++, C#, and more). Doxygen is most commonly used with C++.
Additionally, there’s a GUI tool called Doxywizard that makes it easy to generate the file.

Download Doxywizard
The Doxygen download also includes Doxywizard. See the Doxygen Downloads page for more
download links.

Here’s the Doxywizard front-end GUI generator:

Doxygen front-end GUI generator

Here’s the Doxygen output:

Doxygen, a document generator mainly for C++ PDF last generated: August 27, 2023

Documenting REST APIs Page 723

http://www.doxygen.nl/download.html

Doxygen Sample

You don’t need to use the wizard. You can also generate Doxygen through a configuration file, which is
typically how developers run Doxygen builds from a server.

In contrast to Javadoc, Doxygen also allows you to incorporate external files written in Markdown. And
Doxygen provides a search feature. These are two features that Javadoc lacks.

Doxygen is maintained by a single developer and, like Javadoc, hasn’t changed much over the years. In my
opinion, the interface is highly dated and somewhat confusing. But C++ developers will be accustomed to
it.

Integrating builds automatically
In a lot of developer shops, document generators are integrated into the software build process
automatically. Doxygen allows you to create a configuration file that can be run from the command line
(rather than using the frontend GUI). This means when developers build the software, the reference
documentation is automatically built and included in the output.

Other document generators
You don’t need to limit yourself to either Javadoc or Doxygen. There are dozens of different document
generators for a variety of languages. Just search for “document generator + {programming language}” and
you’ll find plenty. However, don’t get very excited about this genre of tools. Document generators are
somewhat old, produce static front-ends that look dated, are often written by engineers for other
engineers, and not very flexible.

Perhaps the biggest frustration of document generators is that you can’t integrate the rest of your
documentation with them. You’re mostly stuck with the reference doc output. You’ll also need to generate
your how-to guides and other tutorials, and then link to the reference doc output. As such, you won’t end

Doxygen, a document generator mainly for C++ PDF last generated: August 27, 2023

Documenting REST APIs Page 724

up with a single integrated experience of documentation. Additionally, it will be hard to create links inline
within topics between the two outputs. Fragmentation of outputs is a topic I explore with more detail in
Integrating Swagger UI with the rest of your docs (p. 241).

Doxygen, a document generator mainly for C++ PDF last generated: August 27, 2023

Documenting REST APIs Page 725

Create non-ref docs with native library
APIs
Although much attention tends to be given to the reference documentation with APIs, the bulk of
documentation that technical writers work on (as opposed to developers) is conceptual documentation (p.
358). Developers rarely write more conceptual or tutorial-based documentation.

Engineers will throw a quick description of a class in a file and generate a Javadoc (p. 707), and they’ll give
that Javadoc to the user as if it represents a complete set of documentation — but reference docs don’t tell
even half the story.

Reference docs can be an illusion for real doc
Jacob Kaplan Moss says that reference docs can be an illusion:

… auto-generated documentation is worse than useless: it lets maintainers fool
themselves into thinking they have documentation, thus putting off actually writing
good reference by hand. If you don’t have documentation just admit to it. Maybe a
volunteer will offer to write some! But don’t lie and give me that auto-documentation
crap. – Jacob Kaplan Moss

Other people seem to have similar opinions. In general, document generators don’t tell you a whole lot
more than you would discover by browsing the source code itself. Some people even refer to auto-
generated docs as a glorified source-code browser.

Reference docs are feature-based, not task-based
One of the main problems with reference documentation is that it is feature-based rather than task-based.
It’s the equivalent of going tab-by-tab through an interface and describing what’s on each tab, what’s in
each menu, and so on. We know that’s an ineffective way to approach documentation since users often
organize their mental model by the tasks they want to perform.

When you write API documentation, consider the tasks that users will want to do, and then organize your
information that way. Reference the endpoints as you explain how to accomplish the tasks. Users will refer
to the reference docs as they look for the right parameters, data types, and other class details. But the
reference docs won’t guide them through tasks alone.

Create non-ref docs with native library APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 726

http://jacobian.org/writing/what-to-write/

Chapter 8: Documentation processes
and methodology
The process for managing developer portal documentation includes a number of different tasks outside of
content development. The role of a DX (developer experience) content strategist plays a key role in defining
workflows, standards, user flows, processes, and other aspects of the site. workflows for different types of
documentation. In this section, I cover details for how to manage the doc work, including processes for
fixing doc bugs versus tackling larger doc projects. I also explain processes for releasing SDKs, managing
external contributions, and more.

Chapter sections:

DX content strategy with developer portals ... 728

Following agile scrum with documentation projects.. 733

Managing large documentation projects ... 737

Managing small documentation requests .. 750

Managing SDK releases ... 755

Documentation kickoff meetings and product demos... 760

Processes for reviewing documentation .. 764

Maintaining existing documentation .. 770

Collecting feedback post-release .. 775

Managing content from external contributors.. 782

Changing internal doc culture .. 785

Sending doc status reports -- a tool for visibility and relationship building................................. 789

Broadcasting your meeting notes to influence a wider audience .. 794

Ensuring documentation coverage with each software release... 798

Chapter 8: Documentation processes and methodology PDF last generated: August 27, 2023

Documenting REST APIs Page 727

DX content strategy with developer
portals
As the content grows on a developer portal, there’s an increasing need for some technical writers to
expand their documentation roles from individual contributors creating and publishing new content to
dedicated content strategists. These dedicated content strategists manage the processes, standards,
tools, governance, and workflows for the content that is primarily authored by contributing writer and
engineering teams.

The general common industry term for this activity might be content strategy, but in the context of
developer documentation, I’m calling this activity “DX content strategy.” (DX refers developer experience,
similar to how CX refers to customer experience.) Anyone who engages in DX content strategy would be
considered a DX content strategist to some degree. An organization can have multiple people filling DX
content strategist roles.

Risks of developer portals with no DX content strategy
If organizations don’t have any DX content strategists dedicated to their growing developer portals and
enhancing the developer experience, the resulting trajectory of a developer portal will follow the same path
more or less as an internal wiki. Internal wikis tend to be content dumping grounds that are a wild west of
standards and styles, and where you never know if content is current, outdated, accurate, deprecated, or
under construction.

Finding the right content on an internal wiki is a constant challenge, and there’s no consistency from one
page to the next. In the wiki model, teams create docs during their times of need and abandon them when
their teams or priorities change. The result is a mishmash of fragmented, often unowned content.

Because documentation for external developers is a high priority, it shouldn’t befall the same fate as
content on internal wikis. In the State of API 2019 report , Smartbear found that “accurate and detailed
documentation” ranked third in priority (just below “ease of use” and “responsiveness/performance”) from
15 ranking factors in an API experience. You can’t achieve a high level of content quality without playing a
more strategic role with the content and expanding beyond the individual contributor model. Individual
contributors are usually focused on docs for a current project only and rarely have bandwidth to expand
their concerns at a broader, more encompassing level across the developer portal.

Additionally, the individual contributor model doesn’t scale for the typical engineer-to-writer ratio in most
organizations — a ratio where engineers and other tech roles vastly outnumber writers. You might have just
a handful of tech writers to support thousands of engineers. Tech writers often work with different product
teams on a continually shifting basis, covering as much ground as possible but not having capacity to meet
all needs. In this “itinerant” tech writer model, you can’t always play individual contributor roles to write the
content that each product team needs. Instead, writers have to shift to playing more content strategy roles
around content that others develop.

To elevate contributor contributions to any standard, you have to equip contributors with easy tools, simple
markup, fill-in-the-blank templates, clear standards, careful feedback, immediate tools support, and other
information and tooling for their effort. You can’t do this if you’re an individual contributor fully dedicated to
three or more full-time projects — often without enough time to finish, let alone teaching and helping other
contributors.

DX content strategy with developer portals PDF last generated: August 27, 2023

Documenting REST APIs Page 728

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf

Overall, the DX content strategist provides the mechanism to elevate the content in ways that improve the
developer experience on the portal. As a strategist, this elevation of content doesn’t come from creating
better content yourself but rather from all the meta-activities you do around content development and
publishing. At a high level, these meta content-development activities might include the following:

• Onboarding and training contributors (and providing materials to facilitate self-service
onboarding)

• Providing standard templates and guidelines for content creation
• Defining processes and standards (such as for releasing SDKs or writing release notes)
• Making tools available that will automate content checks and workflows
• Defining authoring and publishing workflows and content reviews

These tasks don’t involve creating new documentation. Instead, the DX content strategist focuses on the
many activities required outside of content development to ensure the content quality meets a high bar.

Tasks for a developer portal content strategist
The following sections expand in more specific ways on the roles, tasks, and needs that DX content
strategists play with a developer portal. I’ve divided the tasks into general groupings related to tools,
contributors, processes and standards, and information architecture. Depending on the size of your doc
team (e.g., 5 writers versus 150 writers), you might have specialized teams focusing on each of these
areas.

Tools

• Set up, maintain, and enhance the authoring and publishing toolchain

• Troubleshoot the build when it breaks, and then train contributors about proper usage of the
system to avoid future breaks

• Understand how the doc toolchain builds and publishes content from end to end (from static site
generator outputs to build pipelines, CI/CD server deployments, and more)

• Reduce the risk of Git catastrophes and broken builds in the system (such as due to
misunderstandings with Git or insufficient safeguards with permissions)

• Develop and enhance the doc theme’s design and style as well as the available components
(e.g., navtabs, accordions, or menus) to use for different scenarios

• Implement style/grammar checkers (e.g., Acrolinx) either with in-tool plugins or perhaps at the
platform level

• Build out and verify scripts (e.g., Travis CI scripts, GitHub Actions) to perform automated
checking, such as looking for broken links or style inconsistencies

• Integrate and configure the search experience (e.g., Algolia, Swiftype, other), including SEO and
discoverability of content in search engine results

• Define the metadata that feeds into the search experience to provide navigable facets or other
structured data for search; also monitor the documentation to ensure contributors are using the
right metadata

• Address security tickets related to the developer portal (e.g., reverse tabnabbing, linking to
external JavaScript sources, errant permissions)

• Configure scripts for PDF generation and output (e.g., Prince scripts) to distribute content to pre-
release partners

DX content strategy with developer portals PDF last generated: August 27, 2023

Documenting REST APIs Page 729

• Manage the assets for your developer portal and permissions through the web console related to
your website host

Contributors

• Develop training and guides for contributors to onboard with the toolchain and authoring/
publishing processes

• Create templates for how-to content and other format types (release notes, getting started, first-
time setup, CLI docs, schemas) to help guide authors as well as maintain consistency across
docs

• Define Git workflows and manage Git permissions for contributors, including pull request
workflows and code review workflows

• Create reports to assess each doc set to identify stale content (which hasn’t been updated for a
long time), missing metadata, outdated localization, and other problem areas

• Define a process for regularly auditing content to avoid stale, abandoned, or outdated content.
Include timelines, requirements, and automated notifications to send out when content owners
haven’t reviewed their docs for a long period of time (e.g., one year)

• Create and maintain a list of contacts for every doc set, listing current owners and roles

• Review and monitor Git commits from contributors to identify problems or other issues with
contributor content

• Analyze trending support tickets and hot topics (even when not filed against the doc team) and
sync with engineering teams on resolutions

• Identify support paths and escalation processes for the different products on the developer portal

Processes and standards

• Define the process for managing large doc projects (p. 737), including processes for releases that
have impact across field engineers, marketing, and support, etc, not just docs.

• Define a process for assessing incoming small doc requests (p. 750) and decide how to
approach and prioritize them. Regularly groom the backlog so that you don’t have a sea of stale
tickets.

• Define and enforce the release process for SDKs (p. 755), sample apps (p. 476), and other code
artifacts on the developer portal

• Set up and define localization processes, priorities, and workflows with regards to doc tools

• Define processes for granting access to docs prior to release for early access partners, such as
during beta periods

• Define and set up on-call workflows and rotations to handle incoming feedback, emergency
tickets, or other daily doc emergencies

• Define and enforce the doc review process prior to release, including any required sign-offs

• Define processes for deprecating documentation, including outreach and notification workflows
as well as migration/upgrade paths

DX content strategy with developer portals PDF last generated: August 27, 2023

Documenting REST APIs Page 730

• Define strategies for versioning content, including approaches for incremental versions versus
non-incremental versions, deprecated versions versus active versions, small version variants
versus entire doc sets

• Promote awareness of Legal red flags and danger zones (p. 756) (e.g., forbidden terms or IP
violations), as well as the Legal review process

• Define, implement, and enforce a docs style guide for the site. Also, define and contribute to an
API design style guide and understand how it relates to documentation

• Ensure that all docs (especially from contributing authors but also from other technical writers)
meet common standards, including release notes for changes published, getting started tutorials,
proper syntax highlighting for code samples, etc.

• Define policies for when PDFs are delivered, how they are styled, what legal boilerplate appears
on them, and how they are stored and distributed

• Define and promote standards for API reference content, such as using OpenAPI with REST APIs

• Define and review standards for tagging in auto-generated reference docs (p. 712) from library-
based APIs (e.g., Javadoc, Doxygen)

• Define process and standards for developer product naming and branding, and then enforce this
against individual teams that might launch new feature names in unapproved ways

Strategic alignment

• Align the team’s efforts and priorities with larger org’s priorities.

• Coordinate and partner with other documentation teams, aligning or sharing similar assets,
workflows, tools, or processes

• Champion the doc team’s correct fit in the organizational chart (e.g., Engineering, Product,
Marketing) and understand the reporting chain

• Report upwards with weekly, monthly, and yearly metrics or other data that resonates with the
priorities of the leadership chain

• Identify and cultivate documentation sponsors at the executive level

• Review analytics and regularly investigate trending pages, then prioritize updates based on
analytics

• Identify the 20% of pages that receive 80% of the traffic so you can identify and prioritize content
for those pages

• Develop strategies for funneling information from users (e.g., external devs) back to internal
product teams

• Review incoming doc feedback as well as developer satisfaction surveys and then take action on
the results

• Build rapport with key documentation owners by providing regular updates about the analytics
and performance of their docs, etc.

• Publicize updates to stakeholder mailing lists to communicate changes to all relevant parties

• Ensure the homepage and other marketing pages on the site properly match messaging in the
documentation, including language, links, high-level processes, terms, etc.

DX content strategy with developer portals PDF last generated: August 27, 2023

Documenting REST APIs Page 731

• Contribute to regular communication that is sent to developers (e.g., a newsletter) to build their
trust and awareness with the company and dev portal

• Guide contributing bloggers to address doc needs, and capture blog information that might be
worthwhile to incorporate into documentation

User flows

• Define user journeys from marketing landing pages and other incoming sources to the docs

• Arrange multiple doc sets into a master index or starting point that makes sense for the
organization

• Integrate a support path from the docs to support channels or contact us pages so that users
know how to get help when they need it

• Define and promote flows from any admin or console pages to the docs through contextual help
links

• Research and understand developer journeys on competitor sites

• Understand how every product fits together as a whole across the developer portal (rather than
only understanding the docs you work on)

• Build in mechanisms for collecting feedback, including design of a feedback form and questions,
the automated triggers when feedback is received, and the workflow for handling feedback

• Develop awareness and review of activity outside the docs on social channels such as Stack
Overflow, GitHub, Twitter, etc., and assess whether the docs align with the terms, hot issues, and
priorities of the external activities

• Drive developers to sign up to newsletters and other forms of outreach from the docs

• Build funnel metrics in multi-page tutorials to analyze where developers drop out of tutorials

• Build user profiles that provide authors and contributors with a better understanding of the
audience, such as their technical level, companies, purposes, and other needs

Bandwidth for all of these tasks
Reading through these tasks is probably overwhelming, but my purpose is to demonstrate the need for
these activities outside of content development. All too often, people assume that technical writers merely
“write docs” and don’t understand that there’s a large body of work involved in managing a developing
portal that doesn’t include writing content. These tasks try to answer the question, “what else do technical
writers do besides write docs?” When you allocate resources for DX content strategists, they can help
build a healthy developer portal so that users can easily find and consume accurate, relevant content that
addresses their needs.

It’s not always feasible to have a dedicated person fill the DX content strategist role. Many times different
technical writers and managers will play the role in varying degrees. However, it’s good to have these tasks
be part of an official role rather than an add-on to individual contributor role whose primary job is creating
docs. Unless these tasks fall under someone’s official title, they are likely to be overlooked. This creates
more burden on writers to figure out their own tools, processes, and other details.

DX content strategy with developer portals PDF last generated: August 27, 2023

Documenting REST APIs Page 732

Following Scrum with documentation
projects
Just as doc-as-code tools (p. 551) mirror tools used by software implementation teams, work processes
that tech writers follow can also mirror processes used by software implementation teams. The most
common software development methodology today is probably Scrum , which is a form of agile
development methodology.

For a longer, more detailed version of this workflow, see the Managing large documentation projects (p.
737) and Managing small documentation requests (p. 750).

Although Scrum is both loved and hated by engineers, and nearly everyone modifies their implementation
of it, this methodology has resonance with engineers because so many engineering groups loosely follow
the same Scrum process. Scrum is an extremely common approach within the software development
industry. When tech writers adopt a similar methodology, engineers they’re working with better understand
the tech writer’s processes and workflows.

Scrum isn’t the only software development methodology engineers follow. Your engineers might follow a
Kanban, Waterfall, DevOps, Rapid Application, or other approach. In fact, even if they’re following Scrum, it
will likely be adapted/customized/altered. The general principle here is to adopt a methodology that syncs
with the way your company develops software. I’ve chosen to focus on Scrum here because it’s the most
common approach.

Introduction
If you’re unfamiliar with Scrum, consider becoming familiar with the methodology first before reading my
adaptation of it below. Start by reading The Scrum Guide . If you prefer an earlier book version, see
Scrum: The art of doing twice the work in half the time . This is the manual for the approach (it’s a short
book.).

Plugging into an engineering scrum versus creating your own doc
scrum
The first question is whether to join an existing engineering scrum versus creating your own documentation
scrum. When it makes sense, such as for large, ongoing engineering projects where you’ll be a regular
contributor for a number of months or so, prioritize joining an engineering scrum rather than creating your
own documentation scrum.

There are several advantages of joining an engineering scrum:

• You’ll have better rapport with engineers. They’ll know you and you’ll know them (often through
the daily standups and other meetings). This will simplify working together and getting the
information and doc reviews you’ll need.

• You’ll be in touch with the needs and priorities of the project. There won’t be a huge gulf between
you and the engineering team where you’ll wonder what they’re doing and vice versa.

• You’ll be much more accountable to keep on track as you report into a daily scrum to let others
know what you accomplished the day before and what you’re working on today. More than
anything else, this helps you stay committed to the project.

Despite the advantages of integrating with engineering scrums, there are a few disadvantages as well:

• If you’re a temporary resource on the project, with a work duration of a month or so only, then it

Following Scrum with documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 733

https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html
https://www.audible.com/pd/Scrum-Audiobook/B00NJ3WS9G?qid=1445953702&sr=1-1&ref=a_search_c4_1_1_srTtl

probably doesn’t make sense to join the engineering scrum. There’s too much onboarding,
familiarization with their process, and more.

• If the scrum is run poorly, such that daily standups last 30+ minutes, and you have multiple
scrum teams you’re integrated with, this can be a real time killer that will drain your bandwidth
while giving very little in return.

• Most likely you’ll have several projects going on at once. If you have to modify your approach to
each with a different flavor of Scrum, then your own workflow and methodology can get to feel a
bit disjointed. For example, if each scrum calculates points differently, has different sprint
durations, and has other variations, this inconsistency with your methodology can be tiring.

• If the engineering team wants you to attend all their scrum meetings but won’t treat you as a full-
fledged member of the scrum (e.g., no tasks, no points, no demos, etc.), then consider creating
your own documentation scrum instead.

Adapting scrum for documentation projects
If it doesn’t make sense to join an engineering scrum, you can create your own scrum process. My adapted
process for managing docs following an Scrum methodology involves the following steps:

1. Identify upcoming projects and other work (sprint planning). Before each sprint, review
upcoming projects and other work, such as by reviewing launch calendars, intake buckets,
support forums, planning roadmaps, and more. Get a sense of the work and priorities. The point
is not to be surprised by work that shows up on your door two weeks before the deliverables are
needed.

2. Create a documentation plan for larger projects. My documentation plan typically follows this
documentation plan template and is adapted for the project at hand. This plan provides a host
of details that I need to keep straight about the project. It isn’t a waterfall approach or a doc
outline but rather a list of notes about the project, such as who’s who, where QA test scripts are,
expected deliverables, when release dates are planned, where key product documents are, and
so on. This doc plan functions as a kind of run book for the project, with a section that lists
running notes.

3. Chunk doc work into tickets. From the doc plan, create tickets (e.g., JIRA issues) related to the
work. The tickets should roughly outline the major tasks for each project. The tickets don’t need
to be comprehensive from the start, but they should give a sense of the work required. Also, you
don’t have to log all the tickets from the beginning, as they will likely sit in a backlog and become
outdated before you even start working on them. The basic idea is to simplify complex tasks by
chunking up the work into small tasks.

Since larger projects might have numerous tickets, you can create a master ticket that functions
as an umbrella for all tasks related to that master ticket. This umbrella doc ticket can simply point
to a folder or label that aggregates all the other tickets for that project.

4. Estimate the point weighting for each ticket. Points communicate the complexity of the
project. Every team seems to vary a bit in how they weight their tickets, but this is the approach I
follow. A full day of work is 2 points; a half day or less is 1 point. I like to chunk my tickets at no
more than 5 points because I want to show progress and feel like I’m completing work. Even if
it’s a short fix that takes me 10 minutes, I still log a point for it. (More granular point weighting is
typically discouraged in agile methodology.) Points are important because outsiders to
documentation often don’t understand if a task is complicated or easy.

5. Assign tickets to bi-weekly sprints. Tickets should be assigned to sprints. Each sprint is
usually two weeks (but can be a different duration, if you want). For each sprint, the total effort
per writer should add up to the number of points you can burn (complete) during that two-week

Following Scrum with documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 734

https://idratherbewriting.com/blog/documentation-project-plan-template/#documentation-plan-template

period. This point completion rate is called your “velocity.” This number is based on previous
velocity calculations, so you won’t know your velocity at first. You’ll only know after several
sprints. My velocity is about 10 points per week. Calculating and communicating your velocity is
important so that you know if you’re staffed appropriately for the work given the release
deadlines.

6. Stakeholders should be aware of the work assigned to tech doc sprints so they can see the
progress of their projects (and have realistic expectations for when their docs will be worked
on). Sprints shouldn’t change up their assigned items unless a doc has higher priority.
Accommodating doc emergencies and crises needs should be something to avoid by following
this process.

Maintaining the plan of the sprint is extremely difficult in a documentation scrum. Different teams
might have immediate needs for quick updates. These quick updates might involve a half a day
of work or less, or might even involve just fixing a typo. For these quick tasks, I add them in an
ongoing, dynamic way to the sprint as needed. However, if someone approaches me with a
significant doc project, I tell them that I’ll assign it to the next doc sprint (which will likely be two
weeks away). People can’t really expect me to drop everything and work on a large doc project
immediately, without some leeway, so telling them that I’ll assign it to an upcoming sprint usually
appeases them and gives them some reassurance knowing that their work is scheduled, even if
nothing is done currently.

More than anything, this is why the scrum process is important — it protects your current
workload from becoming too frantic/heavy/scattered. You shouldn’t have to exceed your current
velocity because of the documentation tasks that are pending — you just push the work out into
the future. I realize that releases and high severity tickets might require you to reprioritize on the
fly, but this shouldn’t be the norm as it is an approach that will likely exhaust you in the long run.

7. Post bi-weekly reports at the end of each sprint. At the close of each sprint, share details of
what you completed with all stakeholders interested in their work. This typically involves sending
updates to email distribution lists. The reports show the tickets completed from the closed sprint
and the tickets planned for the next sprint. This same report might be repurposed into other
monthly reports from your team to upper management.

The sprint report is one of the most important tasks you can do. First, it lets people know what
you’ve been working on. It also provides a record of your work in a way that you can show off.
Others are usually fascinated to see the doc work you’re doing and will be excited to see the
details. Sending regular reports like this might be one of the most influential activities you can do
inside the enterprise to promote your team.

8. Follow the review process prior to publishing docs. Prior to publishing docs, try to follow a
stringent review process to ensure the docs meet your quality bar. This review process is similar
to the sprint demo with software development, where you check in with customers to see if what
you’ve developed is meeting their needs. Typically, I try to review documentation chunks related
to the tickets completed. If I try to review too much content at once, people often lack the
bandwidth to review it. My review process includes six quality checkpoints:

• Review with the doc team. The doc team refers to the tech writers creating the content.
Test all the instructions end-to-end yourself, walking through each step. This might
involve developing a test app or other sample code.

• Review with the product team. The product team includes the engineers who coded the
product and the PMs involved. They should sign off on the accuracy and completeness of
the docs.

Following Scrum with documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 735

• Review with field engineerings, business development, and support. Expand the review
circle to include additional groups and stakeholders with interest in the docs. Send docs
to these groups for review and then meet with them to gather their feedback.

Some groups refer to read the documentation for the first 20 minutes of a meeting and
then provide their review, completing the whole read and review task during the meeting
itself.

• Review with Legal. If the doc has any red flags that might cause concern with Legal,
interface with your Legal group for review.

• Review with early release partners. For larger projects, you might release your docs to
beta partners first prior to general availability. Generally, field engineers funnel back
feedback from early release partners.

If documentation doesn’t go through this review to some degree, avoid publishing it. Otherwise, if
you skip some of these steps, you risk pushing out poorly written docs. Again, the review
process aligns with agile methodology in that it provides the check-in with your customers to
make sure you’re on the right track. This review process is where your customers are inspecting
your work and providing course corrections as needed.

• Collect feedback post-release. After you publish the documentation, embed a Feedback
button directly in your docs to collect additional feedback from customers in an ongoing
way. This incoming feedback trickles in and might not contain significant or actionable
information, but customers should have some way of relaying their feedback. As a tech
writer, I want to know if there is some major issue with docs so that I can fix them.

Conclusion
Without a process for managing tech docs, projects might arrive from seemingly anywhere at random
times, assigned to the doc team, with little info or scope or resource allocation. As a result, tech writers can
end up in crisis mode, or product owners might have unrealistic expectations about deliverables, etc. Tech
writers might get exhausted or feel like they don’t have the time or resources to produce the needed quality
with docs.

By implementing a more formal process and methodology for managing tech doc projects (specifically, an
adaptation of Scrum), you can avoid this scenario. Additionally, managing and tracking projects this way
gives each team member greater visibility and accountability towards the work of documentation.

Additional resources
See these posts on my site for more reading about Scrum and tech docs:

• Increase efficiency 24 times faster when fixing errors — implications for technical writers on agile
teams

• Tech docs and Agile: Problems with integrating tech writers into engineering scrums (Part 1)
• Tech docs and Agile: Alternatives to integrating into engineering scrums (Part 2)
• How can technical writers thrive in agile environments? Event recording and details
• How to apply agile processes to manage your life’s projects

Following Scrum with documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 736

https://idratherbewriting.com15/10/27/fix-errors-fast-scrum-agile/
https://idratherbewriting.com15/10/27/fix-errors-fast-scrum-agile/
https://idratherbewriting.com17/08/04/part1_when-agile-doesnt-work-technical-writers/
https://idratherbewriting.com17/08/04/part2_alternatives-to-agile-scrum-for-tech-writers/#what-about-lean
https://idratherbewriting.com16/09/20/thriving-in-agile-environments-as-technical-writers
https://idratherbewriting.com16/01/21/apply-agile-principles-to-personal-projects/

Managing large documentation
projects
When you’re managing larger documentation projects, you need to incorporate project management skills
to break the large work into smaller chunks. You can pick and choose from Scrum and other agile
methodologies (like Kanban) to create a workflow that works for you. The following sections describe a
process for working with large documentation projects.

I also wrote about some of these processes in Following Scrum with documentation projects (p. 733). This
section expands on that initial framework with more process details and commentary.

Definition of a documentation project
A “documentation project” is a larger effort tied to some new feature or product launching, whereas a small
documentation request (p. 750) might be a minor update or fix to an existing doc. In both cases, you can
manage documentation work by loosely following the same adapted Scrum processes used in many
engineering workflows. This is because documentation processes are closely coupled with software
engineering in terms of its cadence and workflow. In both cases, you’re building something complex.

However, because tech writers are often allocated to multiple Scrum teams, and because tech writers are
often resourced under a different group organizationally (e.g., tech comm), implementing Scrum in the
strict, traditional way usually doesn’t work without some adaptations. In the sections that follow, I’ll
elaborate on what I think works in a practical sense.

Process overview
The following sections outline a process for managing doc projects.

1. Identify the documentation projects
First, try to identify all documentation projects by reviewing different project lists for the teams you’re
working with. The whole need to identify the projects might seem unintuitive — shouldn’t product
managers reach out to technical writers to let them know what doc needs they have? Yes, in an ideal world
that would be the case. But we all know the reality in corporate settings. About two weeks before release,
the product manager suddenly starts thinking about docs, and an email winds around to your inbox with
the request. If you were to start from the time you received the email heads down until the release, working
on that project and only that project, you might be able to finish it — meanwhile postponing/re-prioritizing
everything else you’re working on as you enter crisis mode. Most people dislike working for extended
periods in crisis modes.

To get out of crisis mode, you have to scan the project landscape like a scout looking across a plain for
emerging wildlife and identify the projects early on. Identifying projects early on also gives you more
opportunity to engage more deeply in the project, such as providing input on the API design and usability
(p. 488).

So this first step is one of identifying the work — what projects are out there, what’s on each team’s
roadmap, when are new features and products going to be released, which of these projects will require
documentation, and so on. Gather up a list of these projects and put them onto a documentation planning
spreadsheet.

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 737

While this project identification task might seem common to any documentation team, this work is
magnified in scenarios where you’re publishing on a developer portal. A developer portal tends to be a
publishing hub for many different teams, often working independently. A thriving developer portal might
have documentation input from dozens of different teams, many of whom might be unfortunately siloed
from each other but publishing through a common documentation team steward/gatekeeper.

As you’re scouring for this project information, look for roadmap trackers maintained by all the teams you
support. For example, you might track about half a dozen different roadmaps from teams. Some projects
might be listed on multiple roadmaps because different teams might play different roles with the projects.
For example, visual designers might only have UX mocks on their roadmap, while engineering teams might
have engineering tasks related to the project, and so on.

Sometimes a large project can have lots of sub-teams that are working on different dimensions — an API
team working on handling databases to store information, a UX team working on the admin console,
another team developing a CLI to handle input or other commands, other teams working on other features,
and so on. Usually as a technical writer, you see this larger picture and support all the teams, even if these
teams only have awareness of their own projects.

In this stage, you’re looking only for “projects.” What is the definition of a project versus a small
documentation request? Here we get into a semi-gray area, but it’s essential to separate the two types of
work because they have different workflows and needs.

A documentation project is any work that typically has associated business documents, design documents,
or other requirements documents with it, along with a product manager who is defining a large scope of
work and a team implementing some feature or product. Projects usually have a release as part of their
timeline.

Sometimes smaller efforts can be grouped under larger projects. For example, a project might include a lot
of sub-projects released at different timelines, but the larger effort overall is managed by a PM. (Later on in
the process, I’ll describe why it’s essential to break these larger projects down into smaller tasks.)

Doc work that isn’t associated with a project can be referred to as a “small documentation request.” Small
requests can usually be made in a few days or less. Some examples of small requests would be to remove
an outdated paragraph, update availability information for a product, review a contributor’s updates,
publish an SDK minor version with release notes, etc. These small tasks aren’t listed on your
documentation project planning spreadsheet. (I go into detail about managing small documentation
requests here (p. 750).)

What about extensive doc efforts that might take 1-2 weeks but which aren’t part of any larger project? In
these cases, you’re essentially managing the project yourself, and I would recommend adding it to your
documentation project spreadsheet. If you need a more definitive separation between projects and small
doc requests, maybe consider defining a project as any effort requiring more than a week of work.

The converse scenario might also apply: documentation needed as part of a project but which only takes
1-2 days. In that case, I would still list the effort as a project because projects have different rhythms and
workflows — there are often multiple phases (internal, beta, general availability, fast-follows), as well as
multiple iterations as teams evolve product designs based on customer feedback. You might have to
rewrite the topics three or four different times as part of the development churn. As a result, what might
initially begin as a small amount of work can turn into a much larger work.

When do you sit down and identify all the projects? Who reaches out and contacts the different teams and
finds their roadmaps and tracks what’s coming and so on? You could designate a doc lead for this.
However, it might be better to designate different writers who are specialized in different areas to do the
information collection work. For example, suppose a documentation team has 5 writers, each of whom is
embedded with 2-3 teams in different areas of the org. Writer 1 might be assigned to projects in Group A,
Writer 2 might be assigned to projects in Group B, and so on.

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 738

This specialization not only lets tech writers become SMEs in these areas of the business but builds
rapport with the leaders in that group. As such, it makes sense for these embedded writers to interface with
the leaders in the group around roadmaps. If a doc lead instead performs this function, the analogy
becomes more like a waiter (doc lead) interfacing with the customers at tables and then handing orders to
cooks (tech writers), who remain isolated from the customers at tables. Instead, if each writer interfaces
with customers to gather up the orders, chances are this interaction will build a stronger rapport and
relationship with the teams, which will serve the documentation efforts more in the long run (such as when
you ask for doc reviews or other information). In short, all writers should be scouts to identify the projects in
their respective domains.

To enforce these efforts on a regular basis, doc teams should gather bi-weekly for a “Documentation
Planning” meeting where they specifically review the various roadmaps of the teams they support. If
multiple people are invited to the meeting, you’re more likely to keep it going. During the project planning,
list out projects onto a documentation planning spreadsheet.

If you’re not part of a doc team but are fully embedded with a product team as a solo writer, you can still
perform the same function but might need to drive the whole process yourself. Solo writers often support
many different disconnected teams within an organization as well.

2. Assess the identified work against strategic priorities
The next step is to assess the identified work against your department’s strategic priorities and decide
which projects and tasks should be given more importance. This prioritization is probably only needed in
situations where the tech writers have more work than they can feasibly handle. However, this is almost
always the case, not an anomaly to the norm.

Even in cases where each tech writer has a healthy allocation of projects, you will still probably have a lot
of latitude/flexibility about which projects you devote most of your energy. It’s worth understanding which
projects are considered a strategic priority.

Track down your organization’s strategic goals from your C-suite execs or other senior leaders as a way to
figure out these priorities. If you’re so far down the org hierarchy that you’ve never seen such a document
nor are allowed to access it, find out from your manager what the goals are. Your manager should be
aware of his or her manager’s goals, who should be aware of his or her manager’s goals, and so on up the
line. If there’s a disconnect somewhere, it represents a broken line of communication and potentially an
organization that isn’t aligned.

Decide which projects should receive your most thorough attention (based on the projects that your senior
leaders are prioritizing). This alignment is key for boosting your value to the organization, as I described in
Part V: On being strategic, interpersonal, and sponsored . After you get a sense of your organization’s
strategic priorities, assign each project on your doc planning spreadsheet one of the following priorities:
low, medium, or high.

Keep in mind that strategic priorities differ by group. What might be a strategic priority for one group might
not be a strategic priority for another group. This prioritization can be especially problematic if your group is
cross-functional, meaning you support many organizations with different services (e.g., documentation,
marketing, support, dev relations, and so on). In these cases, you’ll have to figure out which priorities your
own group wants to embrace.

The review of strategic priorities and the assessment of projects should ideally take place at a regular
cadence, and although filling up your calendar with meetings isn’t ideal, this meeting (especially when it
involves multiple people) can be a forcing function for this task. You might call this meeting “Project
Prioritization” and even include field engineers in the meeting (especially if the field engineers have a close
ear to important business partners).

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 739

https://idratherbewriting.com/blog/reflecting-seven-years-later-about-layoff-clarke-being-strategic/

3. Assign the projects to different tech writers
At this point, you have a documentation project spreadsheet with dozens of projects from different areas of
the organization. You need to group the projects into buckets that make sense and which can be
correlated with different tech writers into areas of specialization.

For example, suppose you have 25 different projects, and you have about 5 different tech writers. You
might divide 25 by 5 to come up with 5 different groupings of the project (or create some other logic that
makes sense here based on the project size, scope, and complexity).

These different buckets become areas of specialization for the writers. For example, “Bob” takes on all
projects originating from the ACME group and which deal with Widgets. Bob becomes immersed in
ACME’s widgets and teams, and builds rapport with that group the more he embeds with them.
Meanwhile, “Cassandra” takes on all projects originating from the Globex group or which deal with
Components. Cassandra immerses herself as much as possible in Globex teams, attending their standups
and other meetings and such. In this way, everyone in Globex gets to know who Cassandra is and learns
the process for docs.

It’s important that each tech writer is assigned an area of specialization so that they can accrue the
necessary knowledge and rapport with teams in those areas. Each project on your doc planning
spreadsheet should be categorized into an area of specialization correlating to a tech writer’s
specialization.

What happens if the groups don’t balance out evenly? Suppose Globex pushes out tons of features while
ACME is much smaller and only has 1-2 releases a year? In that case, you might have to make adjustments
so that the work is more balanced. These adjustments can only be decided based on the number of writers
at your disposal, your org structures, and other factors. But if you have a list of strategic priorities for your
org, these strategic priorities can serve as the guiding core for balancing the work. Ideally, balance writers
based on strategic priorities rather than simply the number of projects.

4. Create project plans for the documentation projects
Now that you have a list of projects and priorities, along with different specialization categories and
assigned writers, you’re ready to move on to the next phase: creating project plans for these projects. Each
tech writer will need to sync with the different product managers needing information for these plans.

Each tech writer should reach out to the respective product manager (PM) to find out what docs are
needed for their project. PMs might reach out proactively as well, which is great when they do.

After some back and forth over email or other channels, the tech writer would then ask the PM to create a
project-intake ticket for the needed documentation. The project-intake ticket should require the PM to
complete a comprehensive, in-depth set of fields related to the project. Here’s an example of what this
project-intake ticket might consist of:

Documentation project plan

This project plan defines the scope and details for a larger doc project. Complete as much information as
you can, as this will help us get better oriented and familiar with the doc needs.

Project overview

Tell us about the project:

• Product name:
• Product code name:
• Brief product description: [3-4 lines]
• Project status page:

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 740

• Business requirements doc:
• Design documents:
• Functional analysis documents:

Business group

Which business does this project fall under:

• Organization:
• Business group:
• Team:

Product team

Who’s who on the project team:

• Product manager:
• Project manager:
• Software developers:
• Quality assurance:
• Marketing:
• Developer outreach:
• Legal:
• Field engineer:
• Evangelist:
• Security:

Priority

Is this documentation a strategic priority:

• Does this project roll up under a strategic leadership goal? If so, which one?

Target users

Who is the documentation for:

• Developers
• Internal engineers
• Business decision-makers

Issue tracking

Where can the tech writer track work related to the project:

• Ticketing system:
• Wiki:
• Code repository:

Release timelines

• Beta partner release date:
• General availability (GA) launch date:
• Date docs must be ready to distribute:

Information sources

How does information flow within your team:

• Key team meetings:

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 741

• Team sprints:
• Scrum leader:
• Email lists:
• Slack channels:

Code repositories

Where the code is stored:

• Build system:
• Other storage:

Testing

How is the product tested:

• Test environment:
• Test scripts:

Localization needs

Is localization needed:

• Localization required: y/n
• Date localization needs to be complete: [mm/dd/yyyy]
• Localized languages:

Restricted access

Will this documentation be public or protected:

• Protected behind a login: y/n
• Public to everyone: y/n

Documentation size estimate

How much documentation do you anticipate for this project:

• 0-5 pages: y/n
• 6-9 pages: y/n
• 10-19 pages: y/n
• 21+ pages: y/n

Scope of content requests

What type of content do you need:

• Documentation: y/n
• UX microcopy: y/n
• Screencasts: y/n
• Email campaign content: y/n
• Blog articles: y/n
• Other: y/n

Reviewers for content

Who will review the docs and other content:

• Person 1:
• Person 2:

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 742

Support post-launch

Who will support the product post-launch:

• Support team:
• Is the support aware of this project: y/n
• Long-term owner post-launch:

Internal product wiki/resource pages

What wiki pages are important to be aware of for this project:

• page:
• page:
• page:

Marketing support

What marketing support do you need for this project:

• Marketing landing page: y/n
• Email to general devs: y/n
• Email to a targeted subset of devs: y/n
• Paid advertising efforts: y/n
• Have you reached out to anyone in Marketing? y/n

Other

List any other details not requested above that might be important to know.

(Note that you can usually populate tickets based on a template like this. For example, JIRA lets you do
this.)

To instill a sense of ownership and commitment, it’s important that the PM complete the project-intake
ticket, populating the necessary fields. This information helps the tech writers more appropriately scope
and assess the work, as well as get oriented on the tasks.

This information collection reduces email churn and the need for tech writers to figure out the answers
themselves through meetings and other email threads. If the PM leaves the fields blank, consider setting up
a meeting with the PM and go over the needed fields in the meeting. You would be extremely lucky to find
all information completely filled out from the start. Most of the time, PMs fill out about a third of these forms
because they themselves lack more details (e.g., test scripts, code repositories, etc). You might want to
loop in the Engineering manager to complete the other details.

Note that the time required to collect this information can either be absorbed upfront through the requester
or later through the tech writer. Placing the responsibility on the requester helps tech writers be more
efficient. It also gives you a filter to decide just how desperately product teams want documentation for
their projects. If a PM can’t be bothered to complete the intake ticket, why should tech writers be bothered
to create the documentation?

However, just because a PM or other requester is slow to make the request, don’t rush to judgment about
their interest in the docs, especially if you’re making the requests over email. For many people, email is just
noise, especially if they don’t know you well. Sometimes I’ve followed up with PMs about emails I’ve sent,
and they were oblivious to the context or purpose of the email (if they even read it). PMs might not
understand what you’re asking them to do unless you explain it to them through a meeting. Unfortunately,
meetings are often the only language PMs understand.

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 743

5. Convene a documentation kickoff meeting
After the project-intake ticket has been completed, the tech writer schedules a documentation kickoff
meeting with the PM and other interested stakeholders. The tech writer reviews the information in the
project-intake ticket and asks questions and gathers other details during the meeting.

During this meeting, the tech writer should set expectations about what will be delivered, clarify timelines,
push for demos or sample apps, describe the process for working together on the project, understand who
the reviewers are, describe the review process, what’s in scope or out of scope, and more. If the requester
left fields blank, the tech writer should push on reasons why or who might have the information. It’s better
to collect the information upfront while you’re in information-collecting mode rather than later, when you’re
already supposed to be writing the documentation.

The tech writer might decide to copy this information into a note-taking wiki and store it with other doc
plans. After the kickoff, the personal wiki can become a place for the tech writer to store running notes,
questions, or other details specific to the project. This wiki can become a log of important information for
the project, perhaps where the tech writer organizes all the information needed for the project.

In cases where one tech writer leaves or transitions to another project, a new tech writer can review this
wiki and get a sense of the project’s status, contacts, and other details.

6. Chunk project work into tickets
The incoming project request acts as the parent ticket. Your next task is to chunk this large documentation
project ticket into smaller tickets (still grouped under the parent). (Any project management methodology
will have you break up large work into smaller chunks.)

Each child ticket represents a chunk of work for the larger project. Each chunk of work typically represents
1-2 days of work, no more. This chunking helps keep tasks manageable and provides a sense of progress
on the project. Also, if you’re able to identify all the sub-pieces of work, it will help you more accurately
represent the scope of the work.

Tech writers can create the smaller tickets themselves, rather than requiring the PM to create each
individual ticket. This is because the PM often doesn’t know how to break down the work of a larger
project, or because the requester might not know all the details of what is needed.

Compare this to an engineering team where a PM might ask for a certain feature — a mobile app for
Android, or something. The engineering team analyzes the goal and then breaks the request into multiple
sub-tasks (e.g., set up the mobile templates, create databases to store input, define layouts for the pages,
and such) that are beyond the PM’s original understanding of what is needed to bring about the end goal.
Even though the tech writer creates these tickets, the requester should always be added as a watcher and
the child ticket should be linked to the parent ticket.

All child tickets don’t need to be created from the start, since it’s not always possible to know the end from
the beginning. And sometimes you only begin to see the work required as you get into the tasks. Part of the
philosophy of agile is to plan your work in short sprints (usually two weeks) rather than six-month +
intervals. As such, you need only sketch out the tickets for the next month or so. Also, avoid creating too
many tickets that you drown in tickets. You can only see so far into the future.

Each tech writer does this chunking for his or her own projects. Exactly how you chunk up the tasks
depends on the nature of the project. You might identify a list of expected tasks the user would need to
perform and make the doc for each task a separate ticket. Or the chunking could involve identifying
common doc types (e.g., Overview, Getting Started tutorial, Configuration, Sample App, Testing) and
devoting each ticket to a different doc type. See Conceptual Topics in Docs (p. 358) for some ideas here
beyond the Reference material (p. 118).

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 744

These chunked tickets should originally appear in the backlog of your ticketing system (to be later assigned
to a sprint — described in the next step).

7. Assign tickets to a sprint board
With projects chunked into tickets, the next task is to next decide what tasks to promote from the backlog
to a sprint. Sprints are typically two-week work cycles in which the team attempts to complete a defined
set of work. (Sometimes sprints are one week, other times three weeks — try to align with the general
approach engineering teams take in your organization, as it will breed better understanding of your
processes when you have discussions with engineers.)

Each sprint has a capacity. For example, the sprint capacity might be 10 points per writer. For a team of 5
writers, the sprint would allow for 50 points. This number represents the team’s velocity, or how fast your
team can get work done. Theoretically, this velocity can be used to estimate how fast teams can get work
done.

Suppose your project has a backlog of items totaling 1,000 points, and a stakeholder wants to know when
the project will be completed. The team could say that, based on the current team’s velocity (which is
driven by the team’s resources), the team can complete the backlog in 20 sprints, or 40 weeks.

But agile teams don’t usually define all the needed tasks upfront in an endless backlog. The whole idea is
to constantly course-correct by demonstrating the output of your sprint to the owners, and then make
adjustments for the next sprint.

During sprint planning, writers assign points to the tickets. Each ticket might be weighted as follows:

• 1 point = 0.5 days work or less
• 2 points = 1 day of work
• 3 points = 1.5 days of work
• 4 points = 2 days of work

Larger weightings are discouraged. For example, if the task would take 5 days, as a best practice, break
this up into smaller chunks to feel a greater sense of progress and so that you more accurately identify the
work that needs to be done. However, avoid chunking tasks too granularly. If the task takes 10 minutes,
see if you can group these smaller tasks into a single ticket.

Although I’ve used points here, many times teams will use non-point sizing, such as using T-shirt sizes or
dog breeds (is it a Great Dane type task or a Chihuahua). Psychologically, it’s easier to identify an XL task
versus a small task rather than equate them with time. However, these non-number sizings ultimately
resolve back down to points in the ticketing systems.

Typically, each writer usually doesn’t take on more than 10-20 points per sprint. This provides a more
practical sense of timelines and forces you to decide on priorities. When you realize that you can’t do
everything at once, you’re forced to decide what you should work on first, and this is where prioritization
comes into play.

During the bi-weekly Sprint Planning meeting, each writer weights their items and assigns the highest
priority items from the backlog into the sprint.

8. Start creating content
As tech writers begin developing content, there are two primary ways to go about it. For new content that
involves a significant amount of new material, which will require review, comments, iterations, and other
discussions, I recommend starting the content in a collaborative wiki platform (e.g., Google Docs, Quip,

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 745

Confluence). Use the platform that your team already uses for collaboration, as it will probably a familiar
place for interaction. These platforms allow you to easily ask questions, let reviewers provide input, and
collaboratively shape the material in a more interactive way.

There’s no point in focusing on your authoring tool’s syntax (e.g., Markdown, DITA, XML) or struggling with
build issues at this point if you’re not even sure if the pages you’ve written will make it into the published
documentation. I wrote about this scenario extensively in Treat code like code and prose like prose .
While it might be tempting to drive everything from a docs-as-code tooling perspective here, asking
engineers to review content using code review tools, this workflow typically excludes non-engineers from
the documentation review process.

Although engineers might like providing comments through GitHub or other code review tools, usually
product managers, field engineers, QA, or others will find these tools much less familiar and might forego
participating in reviews altogether. This scenario is bad news for docs because you end up with the
reviewers being the same people who created the systems you’re documenting. You need more of an
outside perspective to avoid problems related to the curse of knowledge.

Note that I’m only recommending writing in Google Docs, Quip, or Confluence as you’re working on totally
new pages with substantial amounts of content that needs to be heavily reviewed. If you’re working on
small tasks, it might make sense to make the changes directly in your authoring system from the start.
Also, at some point, you’ll need to migrate the content from the collaborative wiki into your authoring
system as well, with some iterations thereafter. A good time to port it into your authoring system is after the
content is no longer being actively reviewed and shaped in the wiki.

As you’re creating content, you don’t need to start from a blank page. You can use common templates to
help get started and shape the material. You can find templates in the following places:

• Conceptual topics in API docs (p. 358)
• API reference tutorial (p. 118)
• The Good Docs Project

Engineers and other product team members almost invariably have some product information on a wiki,
but this information often needs to be reworked, sometimes from scratch. Avoid just lightly editing content
that someone gives you, without assessing it on a deeper level.

One of your first steps is usually to get the product or code working (to some extent) yourself. This testing
will usually help you understand the product and identify information gaps in the existing material. See
Testing your docs (p. 343) for more details here.

Push for sample apps (p. 476) or sample code (p. 464) (often from a QA team) in order to test the code.
Also, recognize that clarifying these information gaps is a primary value we add as technical
communicators to the information process. If you don’t understand something on a wiki that engineers
wrote, find out whether your audience will understand it (often by asking field engineers or support teams
to represent the customer’s point of view).

9. Follow a review process for your docs
It can be tempting to prematurely consider docs done when an engineer gives you his or her stamp of
approval. However, engineering approval is only part of the review. In general, as you develop content,
follow these five stages of review:

1. Review with the doc team (e.g., yourself)
2. Review with the product team (e.g., engineers, PMs)
3. Review with field engineers and support group (e.g., solutions architects, evangelists, field

engineers, support engineers)
4. Review with your Legal group (e.g., lawyers)

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 746

https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose/
https://thegooddocsproject.dev/

5. Review with early release partners (e.g., beta partners)

The general pattern is to increase the circle of reviewers wider and wider with each iteration. It doesn’t
make sense to blast everyone with the first draft. Instead, before you invite a larger number of reviewers
(field engineers, support, other stakeholders), you want the draft to have at least been vetted by you and
the product team first. Also, before you push content through your legal process, make sure it’s not still
changing.

For more details, see Processes for reviewing documentation (p. 764).

10. Create a code review for your changes
Let’s say you’ve finished the content development in your collaborative platform, everyone has reviewed it
(to the extent needed at this stage), and you are ready to integrate the content into your authoring system
(e.g., Jekyll, Sphinx, Gatsby, Hugo).

When you’re creating content in your authoring tool, if it’s a docs-as-code system that uses Git, follow a Git
workflow that makes sense for your team. For example, you might choose to align with a standard
branching workflow when working with docs.

Usually, you create a feature branch from your production branch and then make changes in the feature
branch. Consider following the general workflow described here: Git Feature Branch Workflow .

When you’re ready to review this version with reviewers, merge your feature branch into a beta
environment, push out the build, and provide a link where reviewers can see the output.

If you’re working in a docs-as-code environment, you should also create code reviews for the changes
you’re making. The code review can be especially helpful for writers or others who haven’t been working
with you closely in other spaces on the content.

For example, another writer might want to know what you’re committing into the repository, or a software
development manager might want to see the docs written for a feature. These people might not have been
reviewing the docs in Google Docs, Quip, or Confluence earlier — maybe they only want to be looped in at
the end. Code reviews provide diffs that show file changes at a granular level. They help everyone know
specifically what you’re changing.

Even if no one looks at your code reviews, I still recommend creating code reviews for docs for the sole
purpose that they build visibility with engineering teams for the work you’re doing. Each code review you
create usually sends a notification (via some chatbot) to the engineering channel indicating that a new code
review has been posted. This code review makes you more part of the team, more visible, and your tech
credibility also increases.

You will also become more familiar with how engineering code review tools work, how to use and interpret
the file diffs, the workflows of code review, and such. You can then begin to monitor changes that your
engineering teams are making. By staying aware of code reviews, you can more easily track what’s going
on in your team. With most engineering teams, almost nothing gets pushed to production unless engineers
push code into a code review system and others approve it. If you become intimately familiar with doing
code reviews yourself for your docs, you will be more familiar with them when interfacing with code reviews
for engineering changes.

You could ask other engineers to review and approve code reviews for docs, but if you’ve already gone
through the review process elsewhere, there’s not much point in asking for reviews again. The code review
is mostly a notification that you’ve transitioned the content into your authoring system and published it.

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 747

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow

11. Close the sprint
At the close of the sprint, the doc team re-groups and closes the doc sprint. For your sprint closure
meeting, consider doing the following activities:

• Demo the work completed, perhaps talking through it at a high-level
• Engage in a retrospective discussion about what went well and what needs improvement

This meeting is a chance to re-evaluate the work and make any adjustments, course correct, get feedback,
and more. During the demos, consider giving each writer 5-10 minutes to actually read through the
completed work.

Items not completed during the sprint can either be reverted to the backlog or left as uncompleted in the
sprint. (A single ticket can usually have more than one sprint label.)

Typically, writers embedded with product teams should also attend the Scrum meetings, demos, and
retrospectives of that team. (And of course, if you’re a lone writer, that product meeting would be your only
sprint closure meeting.) If you want to show off your docs as part of the list of product team’s demo, great.
I find that it only makes sense to showcase the docs every so often when I’ve added something significant
or noteworthy and want to call attention to it in a more visible way.

In many cases, engineers are specialized and often unaware of additions to the documentation. By
occasionally providing a demo of the docs, you build awareness with engineers that you’re writing and
contributing docs, and they start to understand your role and what you do. (Yes, some engineers might not
fully understand what your role as a technical writer is on the project!)

12. Share monthly reports
At a monthly cadence, the doc team shares details of what they completed with all stakeholders interested
in their work (outside the engineering teams). This typically involves sending updates to an email
distribution list and might include your own senior leadership, field engineers, support teams, and so on.

The monthly report contains a high-level summary of the latest doc updates as well as a list of completed
tickets. For significant updates (e.g., launches), you can send info immediately to the list (or relevant
stakeholders) rather than waiting for the end of the month.

Meetings summary
Here’s an overview of the meetings that drive the process for managing documentation projects.

Meeting Cadence

Doc Project Planning Biweekly

Doc Project Prioritization Biweekly

Doc Project Kickoff After a project intake ticket is completed

Sprint Planning Biweekly

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 748

Meeting Cadence

Sprint Closure Biweekly

Related topics
See the Process for managing small documentation requests (p. 750).

Managing large documentation projects PDF last generated: August 27, 2023

Documenting REST APIs Page 749

Managing small documentation
requests
With any developer portal, you’ll receive not only incoming documentation projects (p. 737) but also a
healthy dose of small documentation requests too. These small requests can be managed in a similar way
as documentation projects but can also be scaled down with a simpler workflow. Even so, small requests
have unique challenges when it comes to prioritization, weighting, and cadence.

Definition of small documentation requests
Small requests by definition are tasks that exist outside of a more formal documentation project. Some
examples of small requests might be to update an existing page, correct some misinformation, expand
existing content with more details, review a contributor’s updates, document a new option on a screen,
publish an SDK minor version with release notes, and so on.

Small doc requests can usually be made in a few days or less. These tasks are submitted by requesters
from various groups and usually relate to products that have already been released. These small tasks
typically wouldn’t be included in a list of documentation projects.

Assignment of small requests
Who handles these small doc requests? If the request originates in one of the general groups related to a
tech writer’s specialization, then typically that writer would automatically take on the request. For incoming
requests outside of projects and divisions, the item can be assigned to an on-call writer assigned for the
rotation that week, or to whomever has the most available bandwidth. This can be determined during your
sprint planning.

With engineering teams, there are often engineers who have available bandwidth and will voluntarily take
on additional requests. Sometimes with writing teams, fewer people willingly step up to take on requests. In
that case, the on-call might be more appropriate.

Assigning the request to a sprint
During the sprint planning meeting, you review all the small documentation requests that have been
submitted through your intake process and assign the items into the sprint as appropriate. In general, try to
include a few of these items each week in addition to the project work. The small items can help provide
balance with larger projects (like a break from some longer, more in-depth task you might be working on),
and should be handled with some regularity even if not a major priority. For example, fixing a broken link
might not align with a strategic priority for your organization, but it doesn’t mean the task should be moved
last on your to-do list.

Small doc requests can be prioritized and weighted similar to other projects (e.g., low, medium, or high
priority). As described in documentation projects (p. 737), the weighting can be as follows:

• 1 point = 0.5 days work or less
• 2 points = 1 day of work
• 3 points = 1.5 days of work
• 4 points = 2 days of work

Managing small documentation requests PDF last generated: August 27, 2023

Documenting REST APIs Page 750

If there are a lot of small tickets that each takes 10 minutes, and you can’t logically group them together,
you can choose how you weight them. This where a more exact weighting system breaks down — it
probably makes sense for disparate tasks to remain in separate tickets, but since many ticketing systems
usually require whole number weightings, how do you represent a 10-minute task? You don’t want to use 0
because the task requires some work, but if you use 1 point, wouldn’t this distort the actual effort? Ten
minutes of work is hardly the same as another task that takes half a day.

It depends on the purpose of the weighting. If the purpose of weighting is to evaluate the team’s
productivity, recognize that there can be a danger in using these rough point estimates to assess the
amount of work completed. The way you chunk up tasks and weight them can easily be distorted. For
example, suppose a writer breaks down tasks for a project in an extremely granular way, and then weights
each task as 1 point. The writer might appear to be finishing a ton of work when in reality the writer just
manipulated the tracking system to appear to be doing more work than was actually done. If your velocity
and weighting can so easily be distorted, it might not mean a whole lot to others.

At the same time, best practices for chunking work and providing time estimates usually don’t recommend
such granular, hourly chunks of time. Perhaps one solution might be to attach a code review to every ticket
so that others can see exactly how much text was changed. However, this could also short-sell the work.
Suppose the edit required tracking down a SME who had more knowledge about a particular value or
setting that needed clarification. Maybe the file diff is minimal but the effort to get the information was
large. Conversely, suppose a writer receives a large chunk of code or other content from an engineer that is
production-ready, and all the writer needs to do is paste it into an existing page.

I don’t have a good solution for this situation. I think at the end of the day, if managers evaluate writers
based on the points they tackle each week, writers will trend towards more granular chunking and points to
show more work. As such, weighting and work assessments probably shouldn’t be used to assess writer
productivity. But if the weighting doesn’t factor into any productivity metric, it probably won’t be abused.

Intake template for small requests
As with the required fields in the documentation project intake, the intake for small requests should include
required fields that the requester must populate. Here’s a sample intake form for small documentation
requests:

General details

• Page that needs to be updated:
• Section on the page that requires updates:
• Product owner:
• Business group:
• Related project:
• Team:
• Date update needs to be published:
• Related project:
• Category for this product:

Update details

Describe the update that needs to be made. Be as specific as possible:

Existing resources

• Does draft documentation already exist?
• Are there wiki pages related to the update?
• Any related design, business docs, or other information?
• Who should review the content?

Managing small documentation requests PDF last generated: August 27, 2023

Documenting REST APIs Page 751

You can see that these fields also ask for existing business documents, informational wiki pages, or related
projects. This is because sometimes releases might have a lot of complexity on the backend but might not
require much documentation work. It’s not always easy to draw the line between documentation projects
and small documentation requests based on whether the update originates from a larger project or not.
This isn’t an exact science. Requesters will probably use the intake form that makes more sense to them.

Think about the different kinds of doc requests you receive, and then customize an intake form for each
type of document. For example, suppose you receive requests for these doc types:

• Legal documents
• Blog posts
• UX microcopy
• Screencasts
• Announcements

Create a custom intake form that solicits the information you need for each of these different doc types.
Advertise your intake process on your team wiki page and point users to it when they ask for docs.

It’s important that small doc request tickets be completed by the requester. This ensures that the tech
writer isn’t stuck digging around for the information needed to complete the task. It also ensures
commitment and allows the requester to receive updates on the status of the ticket. The ticket provides a
channel for communication not only for the requester but for anyone else following the ticket, and also
provides a record of the work.

It’s easy for someone to request an update via email or chat, and perhaps asking the requester to formalize
the request by submitting a ticket might be extra overhead — wouldn’t it be easier for you to just copy/
paste the email thread into the ticket, rather than making a request to the person to locate your intake
page, create a ticket, and then populate the right information in the right way?

Here is where the intake fields can do some work. Email threads have scattered information. As part of the
formalization of the work, you usually organize the information in a more structured, logical way. Rather
than doing the work of restructuring this information to specify what page needs to be updated, what
updates need to be made, who should review the updates, when they should be published, etc., you can
ask the requester to do this. This can reduce your own workload. When the task is made more formal and
structured in a ticket, it will be easier for other writers who aren’t part of the email thread to work on it. In
fact, if you can specialize different intake forms for different types of requests, you can more acutely focus
your questions around the information needed for that task.

Requests should come through product teams
In your small intake process, avoid allowing anyone to make a doc request. Instead, the ones making
requests should be product managers (or those who own the products related to the docs).

To understand why, consider this scenario. Suppose your DevRel engineers (the ones who work closely
with partners on implementations) make a doc request for more information about some feature. They
don’t have the information themselves, but they they’ve noticed that the lack of information is a partner
friction, so they file a doc request. It sounds like a good idea, right, because you want to drive your doc
priorities based on partner-facing groups? However, the problem is that DevRel groups (or others) usually
don’t have the information needed to make the request actionable.

If anyone can make a request for information they wish would be included in the docs, this can leave
technical writers trying to chase down the information, knocking on the doors of different groups without
getting much traction. This puts all the burden on technical writers for information collection and SME
identification, and none on the requester. This is the wrong approach.

Managing small documentation requests PDF last generated: August 27, 2023

Documenting REST APIs Page 752

It’s much better to direct DevRel groups to make documentation requests to product teams. Then product
teams should formally go through your intake process. This might seem like an extra hop, but it results in a
world of difference. When the product team files a request for documentation help, you’ve got them at your
disposal. They can provide the information that you actually need to write the documentation. The PM can
allocate bandwidth to the collection and sharing of this information so you can complete the request. They
will also review the docs.

Without this backing of the product team, the DevRel request places all the pressure on the technical writer
to figure out who has the info, what the details of the info are, and more. In most organizations, the DevRel
groups are much stronger than the documentation groups because DevRel groups work closely with key
partners. Hence DevRel can place much greater pressure on product teams to act, while product teams
might simply disregard requests from technical writers.

Indicating progress on the ticket
As tech writers work on the ticket and make progress, they communicate the status, questions, or other
information in the ticket thread. This allows others who might not be part of email threads to see the
ticket’s history and work.

In contrast, if you manage communication through email threads, you’re bound to lose track of key
information, and those not included on the thread might not have all the context if added later. Email
threads expand and contract based on the Cc list someone decides to use — sometimes adding people, or
removing them, etc.

Suppose a thread goes a dozen rounds and multiple Cc lists. By the time the thread settles down, it’s
much harder to trace back through an email thread’s history than a ticket’s history. In contrast, a ticket
history shows details about dates for each response, profile information that lets readers quickly click
names to see who’s who, and status information about the ticket.

Starting work
Most small doc requests can be made directly within your authoring system rather than starting out in a
collaborative platform like Google Docs or Quip. When you’re creating content in your authoring system,
you might choose to follow a standard branching workflow (or whatever Git workflow you’ve decided to
implement in your group). Usually, create a branch from production and make your changes in the branch.

When you’re ready to review this version with reviewers, merge your feature branch into beta, push the
build into a beta environment of some kind, and provide a link to reviewers. Also, create a code review so
the requester can see specifically what you changed. I find that code reviews provide more granular detail if
people want it, though I’m somewhat mixed about whether code reviews are useful for more extensive
updates. I personally like that code reviews objectively demonstrate the changes made so that readers get
a sense of the effort involved.

Closing the ticket
When you’re finished with the work, ask the requester to resolve the ticket. This indicates their acceptance
of the work. Then make the change live by merging your feature branch into production. Afterward, delete
the feature branch.

If the ticket doesn’t require any review (e.g., fixing a broken link), you can just push the content to prod and
let the reviewer know.

Managing small documentation requests PDF last generated: August 27, 2023

Documenting REST APIs Page 753

Reporting on progress
In your monthly report listing doc work completed, consider listing all closed tickets. You might decide to
put the small doc requests into a section at the end (e.g., “Small Doc Requests Resolved”) so that readers
can focus on the important changes. If you simply list all tickets in order of resolution, it might juxtapose
trivial changes alongside more substantial efforts and dilute your communication.

In the Small Doc Requests Resolved section, you might also provide a link to your intake form for these
types of requests. This helps others know your process for managing small doc requests. The next time
they have a request, they’ll know what the process is and what to expect.

Managing small documentation requests PDF last generated: August 27, 2023

Documenting REST APIs Page 754

Managing SDK releases
So far we’ve talked about processes for managing developer documentation projects (p. 737) and small
doc requests (p. 750). When you’re working in a developer portal, you might also be responsible for
managing and distributing SDKs and other sample code.

Even if someone else distributes the SDKs, they might look to you for guidance and input on the Readme,
the distribution process, and other aspects. The process here describes a few callouts that you should look
for before publishing SDKs and other code artifacts.

Definition of an SDK
A software developer kit might include a language-specific library for your API (for example, a Java JAR
library file or an Android AAR file that developers would integrate into their projects) along with a sample
app, debugging tools, and other tools necessary for building software. I explored SDKs (software developer
kits) in depth earlier in SDKs (software development kits) (p. 480) but covered the topic from a
documentation perspective — what do you need to document when it comes to SDKs, what level of
instruction is required, etc. The section here covers details about distributing and publishing the SDK.

Sample scenario with tech writers and SDK distribution
Let’s assume that you’ve written the documentation for the SDK, and now the developers are ready to
publish it. They’ve got binary assets, such as a JAR file, AAR file, or C++ libraries, along with sample apps
and other code that they need to push out to users.

Since you’re controlling the distribution mechanisms on the developer portal, they might send you the SDK
zip file to publish along with other documentation assets you’re already publishing. Or they might ask you
to review or sign off on the SDK, including the release notes, readme, implementation instructions, license,
and other details.

Your role with the SDK’s release and distribution will differ by company, for sure, as well as how you’re
distributing it (S3 bucket, JCenter, Maven, GitHub, or other online repository). How do you review these
code artifacts to make sure they’re publish-ready?

The intake process
First, as with other requests, consider pointing developers to a specialized intake form for their SDK
request. This request can require developers to provide information that will let you know if the SDK is
ready to be published. The SDK intake ticket might have fields like this:

SDK release request

• Name of the SDK:
• Legal signoff: y/n | name
• Security signoff: y/n | name
• QA signoff: y/n | name
• Javadoc or Doxygen Reference Docs: y/n
• How-to documentation: y/n | link:
• Version information: y/n
• Release notes: y/n | link:
• Contents description: y/n | link:
• README file: y/n

Managing SDK releases PDF last generated: August 27, 2023

Documenting REST APIs Page 755

Does the README contain the following:

• Overview of the SDK’s functionality, at least several sentences long: y/n
• Link back to documentation on the developer portal: y/n
• Links to tutorials for implementing the SDK and any other important tasks: y/n
• Information about where to find support: y/n
• Details about the version: y/n
• Release notes or link to release notes: y/n

Is your binary available on JCenter or Maven? y/n

Requirements
Let’s go into more detail about each of these requirements. Each of the following sections will expand on
the points listed in the intake form.

Legal Signoff

In cases where your company has a Legal team, the Legal team’s approval should be required to release
any SDK, sample app, and any other code artifact. The Legal team can ensure that you are using the
correct licenses for the software and that each page appropriately displays the license information and
other details. They will assess whether the SDK includes any third-party libraries, including open-source
libraries, and whether you have the rights to publish and distribute the SDK with these other libraries.

Legal might also look at trademark usage and names. For example, the sample code shouldn’t reference
other companies or trademarked names (e.g., Mickey Mouse) in examples or text, and your product’s
name should align with your company’s branding guidelines and not conflict with other company product
names. Legal might also check to ensure that you’re not using any prohibited words, image assets, or
copyrighted material (such as sample videos or thumbnails).

Security signoff

The SDK should also receive approval from security before it can be distributed. Security review can
ensure that the SDK doesn’t create any vulnerabilities, that it doesn’t expose risks that can be exploited,
and so on.

For example, your security group might have restrictions about using implicit grant authorizations or some
other method for authorizing requests. They might review how the code handles usernames, passwords,
and API keys. They might ensure that manifest files request the correct permissions from users before
functions can be called in apps. They might look at how you’re managing and storing customer
information, and so on.

Security isn’t an area you need to be familiar with yourself beyond a high-level — rather, the requirement
here is to get signoff from a security expert before distributing an engineering team’s SDK.

QA Signoff

The SDK should be tested through a formal QA process. Usually, before you receive a request to release
an SDK, it’s assumed that QA has signed off on the code. However, this isn’t always the case, and if you’re
managing incoming assets for many different teams, inside and outside your immediate business unit, you
might be working with different development teams with different standards. Asking to confirm QA signoff
shouldn’t pose any challenges to the request unless they don’t have a QA process.

Managing SDK releases PDF last generated: August 27, 2023

Documenting REST APIs Page 756

It’s still a good idea to ensure QA signs off, though. Think about how many version updates SDKs often
have in which the update addresses some bug or issue with the SDK. By asking for QA signoff, you can
better identify QA groups and their processes.

If you want to take an extra step here, you can ask the QA team for a list of their validation tests (which
they probably store in a QA test system like Rally), and then review the documentation against the test
cases. Does the documentation cover the main features and tasks that QA is testing against? By reviewing
the requirements against the documentation, you can assess whether the documentation is complete.

Javadoc or Doxygen Reference Docs

SDKs should include reference documentation in the form of a Javadoc (p. 707), Doxygen (p. 723), or other
auto-generated reference documentation appropriate to the library. The reference documentation can be
included in the download and can also be made available online as a link in the documentation. Delivering
this is a standard and is usually added inside of a folder called “docs.” Check to make sure that the
reference documentation is correctly generated.

If you want to go a step further, you could verify that the annotations and tags in the source are correct. I
covered Javadoc tags (p. 712) in the Java section of the course. You might look over the Javadoc and
Doxygen files to evaluate whether all the elements have descriptions and other details.

How-to Documentation

Reference documentation alone is insufficient. The SDK should also have sufficient how-to documentation
or other tutorials so that developers can implement the SDK or other code. In particular, the documentation
should include the following:

• Implementation guidelines that explain how to incorporate the SDK into a project
• Explanations about how to perform common tasks that involve the SDK

Presumably, the main documentation covers this in detail. However, suppose you’re playing a publisher
role for a team and not working specifically with their documentation. Check the documentation to make
sure you can identify the implementation tutorial. See if other tutorials address some of the classes/
functions in the reference documentation. If the reference file has a lot of classes and other details not
mentioned at all in the documentation, investigate whether the documentation is sufficient.

Readme file

The SDK needs to include a README file (typically named README.md) that provides the following:

• Overview of the SDK’s functionality
• Link back to SDK’s documentation on your developer portal (unless the documentation is entirely

included with the SDK itself)
• Links to important SDK tutorials (such as implementation or configuration)
• Information about where to find support
• Version details
• Release notes link

There’s a lot more one could say about Readme files. For example, browse this curated list of Readme files
in the Awesome Readme repo. Also see Write the Readable README by Daniel Beck at the WTD

2016 conference.

In general, some Readme files might compress a lot of documentation into the Readme. The Readme
might provide brief summaries and descriptions but mostly link to the main documentation for this
information (e.g, installation, implementation, configuration, etc.).

Managing SDK releases PDF last generated: August 27, 2023

Documenting REST APIs Page 757

https://github.com/matiassingers/awesome-readme
https://github.com/matiassingers/awesome-readme
https://www.writethedocs.org/videos/na/2016/write-the-readable-readme-daniel-beck/

Preparing this Readme might actually be the main request from the engineering team to technical writers.

Most developers expect the Readme to have detailed information, and it might make sense to pack your
Readme with condensed versions of information that is also available in your docs, especially so that the
repository has the right keywords for searches and other visibility on whatever site/platform you’re
distributing your code.

But to avoid duplicating information in multiple places online (between the Readme and your main
documentation), as long as you provide summaries plus links of the expected information, this should
satisfy developer needs. Keeping the bulk of your information in your main documentation (rather than
duplicating it in the Readme) also makes it easier to update your docs (since presumably you can update
your documentation pages dynamically but might require engineering involvement to update the Readme).

Version Information

The SDK should include the version number for the release. This version number lets users know whether
their existing file is outdated, and lets you establish guidelines about compatibility based on different
versions. The version number might be indicated both in the Readme file and code.

Version numbering should follow a consistent pattern for the organization (or at least for the project). As a
general rule, minor releases are indicated by a dot version (e.g., 2.1); major releases by a whole number
(e.g., 3.0). Sometimes teams will have internal releases that increment the version, so the actual released
versions might skip a few versions. If so, you can note that the skipped versions were internal releases.

Release Notes

The release of any SDK should include release notes indicating what has changed. Release notes can
indicate whether the release is backwards compatible or the extent of support/compatibility for intended
devices for each version. For example, if the latest version creates breaking changes with previous
versions, this needs to be called out in the release notes. If the latest version is compatible with all previous
versions (a best practice), you might note this as well.

What exactly does backwards compatibility mean? Suppose version 2.1 of an SDK has a class called
ACME that developers have implemented in their projects. Version 3 presumably wouldn’t change ACME in
a way that would break the code that developers implemented with version 2.1. If Version 3 does break
previous implementations, this is sometimes called a “breaking change.” Breaking changes should be
called out prominently in release notes. The release notes should indicate how to handle the upgrade (for
example, maybe you’ll need to flush the cache of existing implementations).

Release notes usually indicate both a version number and a date. Exactly how version numbers and dates
are highlighted in release notes varies from product to product. Follow a consistent and readable pattern.
For example, consider putting the release version as a heading 2 tag with the date as a subtitle below the
heading.

Contents description

The documentation for the SDK should provide a description of contents in the SDK. For example, if the
SDK includes a library, sample app, debugging tools, and other files, these should be itemized and
described in the documentation so that users know what is included in this kit of software development
tools. This practice is similar to purchasing any product that you assemble — the first page of
documentation usually has a list of parts included in the product.

If you’re receiving the SDK from an engineering team and not actively working on their documentation,
review their documentation to identify where they itemize the contents of the SDK.

Managing SDK releases PDF last generated: August 27, 2023

Documenting REST APIs Page 758

Hosting Java and Android on JCenter, Maven Central
Now that we’ve covered requirements about the SDK content itself, the next question concerns hosting.
Where do you host your SDK files so that developers can download them?

Your organization might already have a file storage and distribution in place (such as storing the files on S3
or some other web server). However, SDKs tend to have some common distribution sites that you should
be aware of.

For Java, the SDK will usually include a JAR file; for Android, the SDK often includes an AAR file. C++
might include a DLL. These are binaries that developers will download and incorporate into their projects.
Rather than manually downloading the files, developers can automatically pull from online repositories to
dynamically include the files when they build their projects.

Two common distribution sites for Java-related projects are JCenter and Maven Central . JCenter is
an online repository for Java and Android libraries. JCenter has everything that Maven Central has and
more.

Code for other libraries will have different online repositories. For example, with Jekyll , the jekyll gem
is distributed through RubyGems , a gem hosting service.

When developers build their projects, they usually have a build tool that retrieves needed resources from
online repositories and pulls them directly into the project. Android uses Gradle to manage dependencies.
For example, with Android, to declare a dependency on an Android library in JCenter, you list jcenter()

in your list of project dependencies, and then include the package name and version you want to pull. Now
Gradle will handle getting that dependency automatically into your project, without requiring developers to
download it. You can read more here: Dependency management in Gradle .

Jekyll projects use Bundler (a package and dependency manager) to automatically retrieve the right gem
versions as declared by the projects. When you run bundle install on a Jekyll project, Bundle ensures
that your project has the gems listed in your project’s Gemfile.

GitHub
Many SDKs have a sample app (p. 476) that demonstrates integration with the SDK and the provided
functionality, even if the sample app is just bare-bones simple and only includes some basic buttons in the
UI to initiate events. Many times, sample apps are included with the SDK. If the sample app is more
extensive and stands alone, consider distributing the sample app through GitHub as open-source project
instead.

Releasing your project on GitHub doesn’t require the code to be open source, but the project source must
be viewable. (You can’t just upload a compiled binary onto GitHub.) You probably can’t freely create a new
GitHub repo on your own in your organization, but you can instruct engineering teams to do so following
any outlined corporate processes. Many times engineering groups have organizations and teams already
set up in GitHub and standard processes for pushing out code.

Keep in mind that distributing code on GitHub entails some support for the code. For example, if users log
issues about bugs, who will respond? Will it be important to track the number of stars and follows for the
repo? Who will be the one who actually pushes the code into the repo? You want engineering teams to
own this process not because it’s technically difficult to push code to GitHub, but because you want them
to feel a sense of ownership and commitment for the code there. If the tech writers handle all aspects of
the GitHub repo, tech writers end up playing support roles in responding to issues and handling other
administrative details. The flip side of managing the GitHub repo, though, is that engineering teams are less
likely to push out changes without going through you.

Managing SDK releases PDF last generated: August 27, 2023

Documenting REST APIs Page 759

https://bintray.com/bintray/jcenter
https://search.maven.org/
https://jekyllrb.com/
https://rubygems.org/gems/jekyll
https://rubygems.org/
https://docs.gradle.org/current/userguide/dependency_management.html#dependency_management_in_gradle
https://bundler.io/

Documentation kickoff meetings and
product demos
At some point after receiving a new documentation project, the first step in the project is to hold a
documentation kickoff meeting and product demo. These meetings are mostly about gathering information
so you can create the documentation. The following are some initial questions and topics for these
meetings.

Meeting agendas
The general purpose of this documentation kickoff meeting is to review the intake ticket, which should
include a host of detail about the project. (See Create project plans for the documentation projects (p. 740)
in Managing documentation projects for a list of fields.) Chances are, a product manager has completed
half or fewer of the intake fields, as they just don’t know all the possible information. No worries, though, as
you’ll be going through this information in more detail here.

After reviewing the ticket, you want to go over the product or features that you’ll be documenting. If this is
a large project, you might have a separate meeting for the product demo. If it’s smaller, you can combine
them. Obviously, adjust the advice here for the nature of the product, product teams, and company. During
the demo, consider the following questions as a way to gather more information about the product or
feature.

Project overview
First, get some basic information. At a high-level, what’s the project here? What’s the scope? Complexity?
Timelines? Is it a new product, or are you just adding a feature to an existing product? What doc set are
you modifying? What team will you be working with? Is this external or internal documentation? What
format will the documentation be in, and how will you deliver it?

Product overview
After gathering some high-level project details, dive into more detail about the product.

Product overview

• What does this product do?
• What problem does it solve?
• Is this an API? Is there reference documentation?

Use cases

• When would you use this?
• Larger picture scenario?
• Common use cases?

Target users

• Who are the intended users?
• How do you know they actually want this feature?
• Do you have any voice-of-the-developer type feedback from users about this feature?
• What roles do users have? Are they engineers? What type of engineers are they?
• What’s the user’s technical level?

Documentation kickoff meetings and product demos PDF last generated: August 27, 2023

Documenting REST APIs Page 760

• Are users familiar with certain programming languages or systems?

Technical prerequisites

• What do you need to install or set up before you can run this product?
• Do you assume they already have an app? Is there a starter app or toolkit?
• Are there any required permission groups?
• Are there language prerequisites (e.g., familiarity with Android)? What language is this? For

example, is this for Java apps? Is this an agnostic REST API? Are there SDKs for any specific
languages?

• Are there device prerequisites? 32-bit? 64-bit? Mac/PC/Linux? Android/iOS?

Background knowledge prerequisites

• What do you expect the user to know? For example, do you assume proficiency with any
systems or frameworks? What framework? What specific areas?

• Do you assume they understand any existing tools or processes?

Development effort

• How long do you anticipate that the implementation will be?
• From a developer’s perspective, what’s the scope and complexity of the integration?
• How hard is this going to be for devs? On a scale of 1 to 10, what’s the difficulty level here? And

how do you know?

Components involved

• What are all the components involved in this situation?
• What are the relationships between each of the components?
• How do each of the components influence each other? What actions exist between the

components?

Tasks Overview
• What’s the larger workflow of how to use the various classes in an end-to-end workflow

(initialization, termination, etc.)
• What is the overall user journey here?
• What are the main tasks or core functions (e.g., classes) people will be using?
• What fields, methods, and returns does each class have?

Setup and initialization tasks

• Do you have to declare certain permissions or initialize something, or add a library to your
project?

• Do you need to declare dependencies? Does the project include dependencies? How are they
retrieved?

• Does the user need to request permissions? What does a manifest look like for the project?
• Is there an initialization process?

Sample usage

• Can you show the usage for one API call so that users can extrapolate how to work with other
APIs?

• Can you talk through a code sample of how it works – e.g., a representative example from the
API?

• Are there constructors to initialize a class or other ways to initiate processes?

Documentation kickoff meetings and product demos PDF last generated: August 27, 2023

Documenting REST APIs Page 761

Common tasks

• What are some common tasks users would perform?
• Can you provide a walkthrough of some common tasks in an end-to-end way?

Reference docs
The essence of an API is inputs and outputs. Something goes in, and something comes out. Is this input
and output already described in reference documentation? No matter the language, always focus on inputs
and outputs to understand an API.

Overview

• In general, what does this code do?
• What are the inputs and outputs?

Inputs

• What parameters does this take in?
• What are the data types for each of the parameters?
• What max/min values do the parameters have?
• What are sample values for the parameters?
• Are each of the parameters required?
• Are there callbacks?
• How often can developers call the functions?

Outputs

• What does the object do with the inputs? Is there an algorithm that does something?
• Does the speed of the function’s algorithm increase as the size of the input increases? (Big O

notation)
• What gets returned to the caller?
• How do you access the output?
• Do you have to page through the results?

Best practices
• Any general best practices to be aware of?
• What are some best practices for efficient inputs? Does processing time increase as size of

parameter inputs increase? Would some inputs cause this function to run slowly? How can a
developer make this run as fast as possible?

• What are some best practices for reducing memory? Are there best practices for making this run
as efficient as possible? Do you have to release resources, destroy objects, remove heaps, or do
some other memory freeing of resources?

• How frequently can you call the API? Are there access limits?
• What gotchas or quirks should developers be aware of?

Error messages and handling
• What error messages might users see?
• Are there error scenarios to be aware of?
• What happens if you input invalid data?
• What happens if you exceed your rate or number of allowed calls? throttled?

Documentation kickoff meetings and product demos PDF last generated: August 27, 2023

Documenting REST APIs Page 762

Testing
• Are there any test classes or tests you can do to make sure that it works?
• Can they test out their code before submitting their app or something?

Sample app
• What is QA using to test this code? Can you use this as a sample app?
• What would you need to run this yourself? Can you test it in a sample app?
• Is there a demo of a sample app?

Release notes
Details of release

• What’s being released?
• What are the version numbers, dates etc., of the release?

Known limitations

• What known limitations or issues exist?

Documentation kickoff meetings and product demos PDF last generated: August 27, 2023

Documenting REST APIs Page 763

Processes for reviewing
documentation
Conducting a successful documentation review is challenging, especially with developer docs because the
content is often highly technical and requires a lot of engineering input and review. At the same time,
getting this engineering input and review doesn’t come easy. In this topic, I’ll outline a tactical approach to
conducting doc reviews for large amounts of content.

How to get reviewers to read long content
Getting people to review short amounts of content (one topic or less) isn’t so challenging. What’s
challenging is getting engineering types to review dozens of pages. A recent project I worked on had 75
new pages. How exactly do you get engineers, PMs, and others to read and review that many pages,
especially in a short amount of time (a few weeks before release)? Long-form reading of tech docs is not
usually a characteristic of many people in tech. After 20 minutes, most people want to get back to work.
Few will spend all afternoon going through your docs to provide a detailed review.

This puts technical writers in a bind. You end up in a situation where you’re highly dependent on the review
and input of others (because the content is so technical or complex), but getting this input is increasingly
hard because so few have the patience to read in a careful, meticulous way.

In Processes for managing large documentation projects (p. 737), I already outlined five general stages of
document review:

1. Review with doc team
2. Review with product team
3. Review with field engineers
4. Review with legal, support, and other stakeholders
5. Review with beta partners

Previously, I didn’t go into detail about more granular processes or the tactical how-to detailing ways to
approach these groups, what feedback tools to use, how to prompt action, and so on. In this topic, I’ll dive
into these details in a practical, tried-and-true way. Remember that these are tips from a practitioner,
based on actual experiences working as a technical writer in the real world doing doc reviews. This
approach has worked for me, but also note that each company has a different culture and rhythm, so
decide what might work for you in your situation.

Meeting 1: Outline review
In most writing classes, you learn to distinguish between higher-order concerns (e.g., organization, story)
before lower-order concerns (e.g., grammar, word choice). The review process uses the same tiered
approach. With long content, you want to first be sure that you have the big pieces in place. Draw up an
outline of the steps and get the product team to agree on these large pieces and their order.

For example, suppose you identify about 12 steps for implementing a product, and the bulk of the docs are
related to this implementation. Get buy-in and approval from the product team for the steps. If you have
mini-outlines for each step, even better. In this outline review, the product team doesn’t need to actually
read the content. You can talk through the steps and explain the outline at a high level. Once you’ve nailed
down these large pieces, start drafting out the details in each topic.

Processes for reviewing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 764

In this phase of the document review, you’re drawing a map of the instructions. You’re not yet blazing the
trail (writing the content). For tips about creating workflow maps in docs and why they’re important, see
Principle 1: Let users switch between macro and micro views .

Meeting 2: Questions review
As you start drafting the content, no doubt you’ll have many questions about areas you’re unsure about.
Especially if you’ve been trying to make the product work for yourself, you should have many questions
about issues, unclear points, and other details that you need clarity about. List out about 20 of these
questions in a collaborative document (such as Salesforce Quip or Google Docs), and then set up a
meeting to ask these questions to the product team. People love to be asked questions, and having a list
focuses the meeting on a specific agenda. Again, at this point, you haven’t asked the product team to
review any documentation. You’re just asking them to answer questions.

See my article and video titled A tip for doc reviews – bring a list of questions for more details here.

Create a Slack channel
Batching up your questions for a meeting is great, but you will likely have many questions over the life of
the project after the meeting. Also, you’ll find that during the meeting, reviewers will have some of the
answers, but not all. Maybe questions you asked the product manager and engineering lead during the
meeting drew blanks and shrugged shoulders for responses, while they indicated that some other person
(e.g., “Sam” or “Sally”) might know. Any sizable project probably has 20+ people working on it, each with
different perspectives and specialities. You can’t round them all up each time you have a question.

If your organization has Slack, use it. Create a Slack channel specific to documentation for the project (e.g.,
acme-tech-docs) and invite people to it. If you ask someone a question they don’t have the answer to, it’s
easy for the person to tag another person for the answer, adding them to the channel. Having a dynamic
channel like this to ask questions can be incredibly helpful and keep everyone informed about the
documentation status.

Also, note that Slack is trending as a way for teams to communicate. The SmartBear 2020 API survey
found that JIRA and Slack (not email and meetings) are how engineering teams prefer to communicate
feedback:

Processes for reviewing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 765

https://idratherbewriting.com/simplifying-complexity/macro-micro.html
https://idratherbewriting.com/blog/tip-for-doc-reviews-bring-list-of-questions/
https://idratherbewriting.com/blog/smartBear-2020-state-of-api-docs-review/
https://smartbear.com/resources/ebooks/the-state-of-api-2020-report/
https://smartbear.com/resources/ebooks/the-state-of-api-2020-report/

You can read more insights about SmartBear’s 2020 trends in this post: SmartBear’s 2020 API report finds
‘Accurate and detailed documentation’ to be second-most important characteristic of APIs .

Meeting 3: Doc review with the product team
At some point during the content development process, you will have finished a first draft of the
documentation. Reaching this point is a huge milestone, so pat yourself on the back. When you finish this
first draft, it’s time to formally review the material with the product team to make sure it’s accurate at a
foundational level. You’re essentially walking them down the trail you blazed.

The documentation might not be entirely usable or understandable for outsiders to the team (the trail might
have many rough spots), but at this point you want to ensure it’s accurate and complete from the product
team’s perspective.

It’s helpful to set up a meeting to review this first draft. One technique I’ve learned at Amazon is to dedicate
part of the meeting to actually reading through the doc. At Amazon, it’s normal to start meetings by
distributing a document that everyone reads for 20 minutes. In Jeff Bezos: This is the ‘smartest thing we
ever did’ at Amazon , the author explains:

Jeff Bezos has a nontraditional management style at Amazon, and he says Amazon’s
unique twist on meeting structure is the “smartest thing we ever did.”

“Many, many years ago, we outlawed PowerPoint presentations at Amazon,” Bezos
said at the Bush Center’s Forum on Leadership in 2018. “And it’s probably the
smartest thing we ever did.”

To replace the PowerPoint presentations, Bezos created a new way to hold
meetings: Meetings start with each attendee sitting and silently reading a “six-page,
narratively-structured memo” for about the first 30 minutes of the meeting.

“[The memo is] supposed to create the context for what will then be a good
discussion,” Bezos said.

Although this passage describes business documents (“six-pagers” as they’re called), the same document
review culture exists for technical documentation as well. People don’t often feel expected to read
documents outside of meetings. It’s not the corporate culture. If you want someone to review something,
you set up a meeting and give them time to read the document.

Part of me dislikes this approach because it suggests that people are too lazy/busy to read anything on
their own time, and you’re limited to what people can read in 20 minutes (6-10 pages, more or less). But if
you’re struggling to get people to read something, this approach works (for about 6 pages). If you have 75
pages to review, you could break up the document review into a series of meetings.

After people finish 20 or so minutes of reading, devote the rest of the meeting to collecting their feedback.
You can start with any overall comments and then proceed page by page.

The more executive the reviewer, the more they tend to want to control the meeting and discussion. If I
notice this alpha behavior, I usually let the person lead out the discussion rather than forcing them down a
predefined path of review topics — assuming the discussion stays focused on documentation.

Processes for reviewing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 766

https://idratherbewriting.com/blog/smartBear-2020-state-of-api-docs-review/
https://idratherbewriting.com/blog/smartBear-2020-state-of-api-docs-review/
https://www.cnbc.com/2019/10/14/jeff-bezos-this-is-the-smartest-thing-we-ever-did-at-amazon.html
https://www.cnbc.com/2019/10/14/jeff-bezos-this-is-the-smartest-thing-we-ever-did-at-amazon.html

If you have so many reviewers in different time zones and with different schedules that a focused meeting
for the doc review isn’t feasible, or if the documentation is too long to review in one sitting, and you dread
setting up 5 meetings to review it, you can encourage the review outside of a meeting. However, you need
to set a deadline for collecting feedback. There must be a due date to kick people into action. About the
worst thing you can do is send a blanket email to a group asking them to review a lengthy document,
without any due dates or commitments to follow up. In Outlook, create an artificial meeting that simply has
a due date associated with it as a reminder.

Meeting 4: Review with field engineers
After the product team has reviewed and approved the documentation, incorporate the changes and widen
the circle to the next level of reviewers: the field engineers. The “field engineer” role varies from company to
company, but if you’re working in developer docs, you probably know which role interfaces with the
partners or third-party developers. Who can represent the partner/customer? Who works with partners/
customers on a regular basis to implement the company’s products? Maybe it’s an evangelist, a sales
engineer, solutions architect, customer experience, technical integrator, etc. Find these people (you should
probably already be working with them) and set up a doc review meeting.

In the doc review, you can start by talking through the documentation at a high-level. Then follow the same
pattern as before with dedicated meetings to read and review the documentation. Or if it’s not feasible to
read the documentation during the meeting, assign them the review as homework with a follow-up due
date for feedback. If these field engineers will be guiding partners with this documentation, they are
intrinsically motivated to make sure the docs are accurate, clear, and complete. Otherwise, customers/
partners will ping them with questions and issues.

To collect feedback from field engineers, try putting your docs on the same collaborative platform for
collecting feedback that your company has already established. For example, in many companies, teams
use Salesforce Quip or Google Docs as collaboration tools. Both are highly similar, as these tools allow you
to annotate text and make comments in the margins, and then reply to the comments. Commenters get
notified about replies, and so on. Collaborative tools invite more of a discussion around content, not just a
static reading experience. If you can write and edit your docs in a collaborative space, this is ideal.

However, suppose your docs aren’t already in a collaborative space (e.g., maybe they’re already in your
authoring system because the project involves a high degree of integration that isn’t feasible to do last
minute by copying and pasting from Quip or Google Docs). In this case, you could create a blank page in
Quip or Google Docs and invite people to list out questions and issues there, with their initials before their
comment. This works well because many times comments apply to the documentation as a whole, or are
topics not answered in the documentation.

When a reviewer adds a question, if you follow up with a response, the reviewer will likely add more
questions — they learn that you’re listening to their feedback. The reverse is also true. If you don’t respond
to questions or comments, reviewers stop leaving them.

If your workplace has another common practice for review, follow it. For example, maybe it’s common that
people use track changes in Microsoft Word documents, passing them from one team member to another
in a baton-like way. Or maybe everyone uses code review tools to handle comments and doc reviews.
Identify the common doc review culture and toolset at your company and plug into it. You’ll have the most
success that way. Many documentation systems might have special reviewing features, but if you require
people to learn new tools, or worse, to log in to unfamiliar third-party systems, you might not get many
people reviewing your docs.

See my post A simple way to write, edit, and publish documentation online using Google Docs and
Markdown for stories about the success I had using Google Docs to review content at a former
company. See also Matching documentation review practices to company culture .

Processes for reviewing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 767

https://idratherbewriting.com14/02/25/a-simple-way-to-write-edit-and-publish-documentation-online-using-google-docs-and-markdown/
https://idratherbewriting.com14/02/25/a-simple-way-to-write-edit-and-publish-documentation-online-using-google-docs-and-markdown/
https://idratherbewriting.com/blog/matching-doc-review-practices-to-company-culture/

Review with support and legal
After incorporating the edits from the field engineering review, widen the circle even further to include your
support teams, legal team, and any other stakeholders interested in the doc. At this level, the reviewers
might not have substantial insights here or technical expertise with the product, but they might need to be
aware of it (especially if support will be handling cases about it), and your legal team might need to be
involved with any code distribution (sample apps, SDKs, client libraries, etc.). Legal mostly gets involved
with your SDK releases (p. 755). You don’t need to create a meeting for this review, usually. Instead, you
can just send these groups a link to the docs and request feedback asynchronously.

At this point, one challenge you might run into is how to deal with all the questions and issues people bring
up during the review process. Suppose you end up with dozens and dozens of questions about every
possible scenario and fringe case. Adding them into the documentation might make the docs long and
verbose. You don’t want to balloon your docs with information that applies to only a small number of cases
or partners. Every extra sentence you add dilutes the other sentences.

In these cases, if the question and answer doesn’t logically fit in with the core flow of documentation,
consider adding an “Additional Questions” topic (or “FAQ,” if you want to erroneously call it that). Or you
can add a section called “Additional information” at the end of the relevant topic. This can be a place
where you at least address a question, even if you don’t give more space to it in the regular documentation.

Final signoff
By this time, you should have amassed a significant amount reviewer feedback, and your doc should have
gone through multiple iterations and edits. Hopefully, your documentation is nearly ready for release. Now
you’re ready for the signoff stage. Identify about five key people who you want to formally sign off on the
docs. This might be the product manager, the engineering lead, the manager of field engineers, your legal
representative, and the support director. Create a document (maybe a Quip or Google Doc) with their
names and an option to select Approve. Send them an email asking for their formal signoff prior to
publishing the docs.

This is important: Do not publish the docs until you get their signoff. As a technical writer, you don’t have
much leverage to force people to review docs (nevertheless, you’ll be held responsible for any errors or
inaccurate information). Your one piece of leverage is to not click the publish button. Especially if you’re
working on a new release, many teams are eagerly looking forward to release day. By requiring signoff
before you publish the docs, you can force teams to review the content and assume some responsibility.
After you click publish, if you failed to get a comprehensive review from key people, they will not likely be
incentivized to review documentation post-release. Lack of documentation might not hold up a software
release at many companies, but most product teams require documentation as part of their product
release. Use your leverage as needed.

Post-release doc reviews
After release, you’re still not done with the documentation. You might have entered a beta period, where
beta partners are trying out the docs. Or maybe the docs are entirely public and generally available. Pay
attention to the first users and other external feedback. Incorporate a feedback button that allows users to
reach out with comments. Also, monitor support channels and forums for feedback.

However, at this stage, you will likely have identified the most significant questions and issues already and
addressed them. I’ve found that the best doc reviews happen prior to release, not after. If users have
issues, it’s usually with the actual product rather than the documentation. You can’t fix a poorly designed
product with great docs — this is why some tech writers tend to gravitate toward product design. (For
more on that direction, see Playing a product design role as a content designer – podcast with Jonathon
Colman .)

Processes for reviewing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 768

https://idratherbewriting.com/blog/podcast-colman-playing-product-design-roles-as-a-content-designer/
https://idratherbewriting.com/blog/podcast-colman-playing-product-design-roles-as-a-content-designer/

If you have tips for doc reviews, feel free to add them in the comments below.

Processes for reviewing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 769

Maintaining existing documentation
As soon as new docs are published, docs begin a trajectory of decay. The natural progression of
technology makes documentation outdated within a matter of months or years. New versions of web
browsers, operating systems, supporting utilities and tools, etc., are released, and the whole technology
landscape keeps moving forward, evolving, improving, and adjusting — all while documentation remains
static. The more your documentation relies on third-party components, the faster it goes out of date.

Most documentation efforts focus on creating new documentation, but what happens to all the existing
documentation that is decaying? In this section, I cover ways to maintain existing documentation and
prevent it from rotting.

Working on new docs versus maintaining existing docs
If documentation isn’t actively maintained, it rots (becomes Redundant, Outdated, Trivial), loses ownership,
and turns into “legacy documentation.” The tech writers who created the initial content transition
elsewhere, and the product team members move on to other areas of the org or leave. Soon no one knows
the history of the content — it was just there when writers arrived. As such, tech writers new to the team
might prefer to avoid and neglect it, being unfamiliar with the docs. The neglected docs begin a downward
spiral of decay as no one actively looks after the docs anymore. The docs are like orphaned children,
without a caregiving parent.

As more time passes, the amount of legacy documentation becomes more and more abundant. The rate of
new documentation that tech writers create versus the amount of documentation the tech writers retire
tends to be an uneven ratio: you create more than you retire. Most documentation requests that come in
from product teams relate to new documentation, as everyone is focused on the shiny and new, the
possibilities of a new feature, the excitement of a release, and so forth. Few want to take responsibility for
documentation related to products or features that fizzled but are still used.

It’s easy to get caught up in constantly creating new content. After all, this is what requests to the
documentation team usually consist of — product managers say, We’re releasing a new product/feature,
and we need docs! Product teams rarely reach out to you to review two-year-old docs, or to update docs
against support cases to see if better docs could have prevented the support efforts. Once you publish
your docs, major content updates or overhauls are rare except with major product updates.

Updating and maintaining existing content isn’t sexy or exciting, but it’s essential if you want to stay on top
of your docs. When you look at your documentation repository and see hundreds of docs that look
unfamiliar to you, that you can’t vouch for (identifying owners, the last time it was reviewed, who worked on
it, how accurate it is, etc.), this is unsettling.

Rather than stay heads down in always creating new content, doc teams should regularly cycle in a few
maintenance tickets with each sprint — even though no product teams request the maintenance. Regular
maintenance should be part of any content strategy to maintain a healthy set of documentation. But with
hundreds of pages in your repository, where do you begin? How do you approach maintenance in any sane
way, especially when you can barely keep ahead of the incoming requests for new content? The following
sections list possible maintenance activities you can do with docs. (Although I numbered the sections, they
are in no particular order.)

Maintaining existing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 770

1. Define priority docs
First, identify which docs are a priority. If some products have been sunset or abandoned internally, don’t
waste too much time improving those docs. Just establishing which docs are a priority can help you with
planning. You can identify which docs are a priority by looking at page views in your analytics. Additionally,
you should have a sense of your organization’s priorities that are independent of site traffic. When you
know which docs are a priority, you can weight them higher in the maintenance tasks. Try to identify your
top 5 documentation sets. This way, if other efforts have to be triaged, you can at least focus your attention
where it matters.

2. Identify broken links
Identifying broken links is a time-honored tradition in the doc community, and it’s an easy place to start.
Fixing broken links is a straightforward, concrete task that doesn’t require outreach to other teams. Put on
your favorite Netflix show in the background, and slip into a mind-numbing afternoon of fixing links. There
are different tools and scripts for identifying broken links. For example, you could use linking-checking
tools (like Dr. Link Checker), custom scripts, or even Chrome extensions (like Broken Link Checker) to
identify broken links.

We often look within our own documentation repositories for errors, but what about content outside of the
documentation? How about all the marketing pages, blog posts, support threads, and other content that
link to your documentation? If your documentation portal has a lot of other pages, consider running link
checkers across those pages to identify broken links. Fortunately, you might not have to fix broken links on
these pages. You could simply print the report and hand it off to the content owners in these areas.

3. Identify broken or outdated images
As with broken links, identifying broken images is another task that you can tackle by running scripts or
other validators. Broken images are much less common than broken links. More often, the issue is that
existing images become outdated. If you’re familiar with all the interfaces, you can glance through screens
and identify older designs. Alternatively, you can revisit workflows, retracing your steps through tasks to
see if the screens have changed. This would give you a chance to check the accuracy of the steps as well.
There’s nothing that signals “this documentation is old” than having outdated screenshots.

4. Delete unused branches
How often have you looked at your list of branches in origin and found half a dozen or more old branches
or branches you no longer recognize? Long-lived branches outside of your production environment are
rarely a good thing, as the branch usually becomes more and more divergent. If you’ve already merged the
branch, get rid of it. If the content is unpublished, consider merging it anyway (assuming it’s a new page
and doesn’t update existing pages), and then use other techniques to enforce access control. You could
even set the page as unpublished.

There might be other maintenance tasks to perform on your Git repository as well, such as pruning large
files to reduce the repo’s size, verifying permissions, or running other maintenance tasks.

5. Identify unpublished files
In our documentation repo, there are quite a few files that I’ve started and then abandoned. Sometimes I
started working on a file only to have the product team ghost me before launch. Other times I might have
set about an idea that I eventually forgot about. In many cases, I set the page as unpublished and move on.
However, when I do searches in the repository to look for phrases or instances of something, those

Maintaining existing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 771

https://www.drlinkcheck.com/
https://chrome.google.com/webstore/detail/broken-link-checker/nibppfobembgfmejpjaaeocbogeonhch?hl=en

unpublished files get included and slow me down. Look through your repo and identify all the unpublished
content. Assess whether it still needs to remain. If you don’t anticipate actually working on the content,
delete it. Or copy it into a ticket and archive it. Someone can always find and retrieve it.

6. Identify files or doc sets ready for deletion
You might have some files in your repo that you can just delete. For example, suppose you deprecated a
product two years ago, and all the remaining files just have a banner indicating the deprecation. At some
point, you can just delete the files. Or maybe you have files and doc sets related to products that never
launched. Maybe docs were written for a feature that was canned at the last moment and the product team
long since disbanded. Or maybe you have leftover files from a previous migration, or old scripts that are no
longer used, and such. At a regular cadence, look through your docs and ask what you can remove.

Note that I’m not recommending that you delete actively used content. Almost always, when you deprecate
documentation, you add a banner announcing the deprecation and include a migration path. I’m instead
encouraging you to think about the “deletion” part of the content life cycle. In Kristina Halvorson’s definition
of content strategy, Halvorson says, “Content strategy guides decisions about content throughout its
lifecycle, from discovery to deletion.” Think about that last stage in the content life cycle: deletion.

Deleting content can be scary — what if people complain about broken links? What if it turns out we need
that content? Before removing it, shouldn’t we get approval from all the product team members (who are no
longer there)?

You know what? The great thing about managing content in Git is that it’s nearly always retrievable. You
can usually resurrect content that you’ve deleted. If you delete something and no one complains about its
absence, you probably made a good choice.

7. Identify content owners for each doc set
Understanding who owns all the documentation content, especially legacy documentation, is a huge task.
In the moment that you’re creating new documentation, this kind of content ownership metadata hardly
seems necessary. But as soon as the docs are published, teams evolve, people leave, and before too long,
support might reach out to you with questions about a specific doc, and you won’t have any idea who to
contact about it. Content ownership usually doesn’t need to be granular at the page-level, but the general
doc sets should have some metadata about which team owns the product. Team ownership of products
doesn’t change so often as the team members. (The average lifespan of an employee at many companies
is less than 2 years .) The engineers and PMs that seem so present and thriving one month might vanish
the next.

8. Identify last-reviewed dates
Probably the most significant metadata for your docs is the last-reviewed date. Although Git timestamps
your edits, Git won’t distinguish between a single-character update and a major doc overhaul that was
carefully reviewed by SMEs. In your page metadata, consider maintaining two fields: “last modified” and
“last reviewed.” Last modified is helpful to quickly see who recently worked on the file. You can implement
a Git hook to print the Git user email into a value on the page, as well as the last modified date. The “last
reviewed” metadata can’t easily be automated, but even if you have a general date like Q1 2020, Q2 2020,
and so on, it will probably be fine.

After you add this last reviewed date to your docs, consider taking the bold step of printing the timestamp
on each page (perhaps in the footer). If users see that the page hasn’t been updated since 2016, it can be a
red flag to users that perhaps the content is old. You can create scripts and reports and automate other
processes as long as you have these dates on your files.

Maintaining existing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 772

https://www.businessinsider.com/employee-retention-rate-top-tech-companies-2017-8

9. Require content owners to periodically review docs
Probably the most powerhouse technique you can do to keep docs updated is identify docs that haven’t
been reviewed for a long time and submit a ticket to the product team to review the content. As long as
your “last reviewed” dates are accurate, you could create scripts to identify these pages at a regular
cadence (e.g., yearly) and then automate notifications or tickets to content owners to complete reviews.
This regular “baselining” is common with security teams and permission settings.

However, it would be easy for engineers or other reviewers, no doubt busy with other projects, to half-
heartedly click through automated review notifications to confirm that the content is up-to-date. In contrast,
it’s much harder to ignore a human. A genuine outreach to a team to review their docs, followed by a
meeting where you actually step page by page through content that the team owns, might be the only way
to get attention from engineers.

I admit that, although I’ve had intentions of doing this for years, it’s never been something I’ve actually
implemented. I’m usually too busy creating new content, and why bother to spend time fixing content that
no one is complaining about? Aren’t there more efficient starting points for identifying friction points, such
as looking at support logs? Sure, there’s validity to this argument, but I don’t think these doc reviews need
to be extensive. Product owners can quickly glance through doc headings and flag whether features are
still valid, even if they don’t read through each individual step. Also, this meeting will help establish
contacts with product teams so they know who to reach out to when they do have updates. You could
consider this a training and awareness campaign (assuming you want teams to reach out to you).

10. Identify docs that are missing metadata
Another maintenance activity is to look through all the metadata in your pages to make sure each page is
properly tagged. Your metadata might require fields like this:

• Title
• Description
• Keywords
• Last modified
• Last reviewed
• Content owner

Unless you’re working with a tool that enforces structured metadata, I find that maintaining a long list of
custom fields in the header is a real challenge. (At some point, I plan to implement a wrapper like Netlify
CMS on my docs so that I’m forced to choose metadata from a structured list, but I haven’t yet.)

If you’re working in a static site generator, you can easily generate a list of all the metadata for each page in
your docs. Although keywords might not be important for Google’s search, many times your site search
uses keywords. Audit this metadata as a way of performing routine doc repository maintenance.

11. Identify top articles in knowledge bases that aren’t in the
documentation
Unless you work closely with your support team, the support agents might create KB articles related to
trending topics without informing the doc team about these trends. (I find this lack of communication kind
of mind-blowing, but silos seem to be the norm in most places.) Glance through the top KB articles in your
support site or system and see if some of the information should be added to your documentation. This
analysis might highlight content gaps that you previously missed.

Maintaining existing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 773

https://www.netlifycms.org/
https://www.netlifycms.org/

12. Identify docs with the highest bounce rate and shortest visit time
Bounce rate refers to the number of visitors that land on a page and then bounce off your site domain to
some other site, without visiting any other pages on your site. If users land on a page and then immediately
bounce off, it could indicate that the content has an SEO-optimized title but lacks the answer users are
looking for. Look at your top 10 pages with the highest bounce rate to see if the information looks right.
Maybe some of these pages need to be re-titled, or maybe the information needs more development. Or
maybe the page is actually working well and allowing users to zero-in on exactly what they’re looking for.

13. Review doc commit logs to check commits from people you
don’t recognize
If you share permissions to your doc repo with a large number of people, you might want to periodically
review your commit logs to see what people are committing. Especially if you have many engineers or
people in other roles writing and publishing docs, they might not be familiar with your documentation
conventions or writing styles. This is an easy way for poor content to slip into your repo undetected. Unless
someone is actively monitoring commit logs for repos, it can be easy for people to submit content with
incorrect formatting or other issues. While you’re at it, revisit your repo’s permissions to make sure they’re
current and don’t include people you added long ago for temporary purposes.

14. Check engineering commit dates against release notes
If you’re tracking different engineering repositories for various projects, you might want to look at the latest
commits to see if they track with your latest release notes. This might let you identify changes to the code
that you’ve missed. Not every engineer knows how to contact tech writers for changes, and many
engineers might be unaware of the impact of code changes on docs. Granted, keeping aware of which
repositories correspond to which docs sets is a feat in itself, but if the code repo details are available, they
can be helpful. Just look at the commit logs and glance at the titles to see if anything looks recent or
relevant.

15. Look for broken documentation formatting
If you write docs in Markdown, I guarantee that somewhere, on some page, your Markdown is broken.
There are many Markdown linters that will look for broken Markdown syntax. You could also look for
common error patterns in full-text searches.

One easy formatting issue to check for is Git conflict markers in your content. Few things are as
embarrassing having these markers exposed in your content, as this makes you look like a Git novice and
also leads to interesting formatting in Markdown files. You can easily catch Git conflict markers from
commits by adding a pre-commit hook into your Git files that looks for the markers. See this sample
code from Patrick Vacek (just drop the code into your pre-commit file inside .git > hooks). This can
help prevent these conflict markers from polluting your repo going forward.

Conclusion
The above items might seem daunting to tackle all at once, but if you can cycle in at least one maintenance
ticket during each sprint, you can make maintenance a more strategic activity and make progress over a
period of time.

Maintaining existing documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 774

https://pre-commit.com/hooks.html
https://github.com/patrickvacek/git-reject-binaries-and-large-files/blob/master/pre-commit
https://github.com/patrickvacek/git-reject-binaries-and-large-files/blob/master/pre-commit

Collecting feedback post-release
Although you already reviewed some of your docs (p. 764) prior to release with internal stakeholders, after
you publish the content you now need to pivot to collecting feedback from external users post-release
across your entire landscape of docs. Collecting feedback post-release involves a host of new challenges
and processes that I haven’t yet covered, such as how to optimize your feedback form, how to account for
random externally driven requests across your dev portal, how to process the feedback from incoming
requests, and so on.

What’s different about collecting feedback post-release
When you’re working on documentation prior to release, you have the full attention of the product team for
reviewing and approving the docs. You have a group of product managers, engineers, and others at your
present disposal. But when you receive feedback on docs post-release, that same group of people might
no longer be present, or they might be hard to locate, especially if you’re updating docs you didn’t work on.
You might have to assess feedback on products you know next to nothing about and reach out to people
you’ve never interacted with before.

When working with post-release feedback, you also have the challenge of sifting through feedback from
people who might not even be your target audience. The feedback might be from customers rather than
developers, for example. Or the feedback might be from people looking for a support lifeline when other
channels fail them. Or it might just be spam.

Finally, there’s no built-in bandwidth to handle tasks like this, so you’ll likely have to deal with these
random requests on top of a full project load. Because of all these factors, handling feedback post-release
presents many new challenges.

Location/placement of the feedback form
Let’s start by talking about the feedback form’s design — after all, without a good feedback form, you
won’t have any comments to deal with at all (which might be a strategy). There are many different
approaches to designing your form, some better than others. In general, most web articles typically have a
comment form below the content, particularly with web content. Readers are used to scrolling to the
bottom of a web page and finding a feedback form. You’ll have the most success with your feedback form
if you follow this general web pattern for providing feedback.

You might be tempted to put your feedback form as a floating button on the side of your docs. Here’s a
sample with the feedback button on the side:

Collecting feedback post-release PDF last generated: August 27, 2023

Documenting REST APIs Page 775

Although this side position is becoming more common, in tests that I’ve done, most people don’t see the
feedback button on the side. The feedback form at the bottom was used much more than the feedback
button on the side (a ratio of 100:1 or so).

Collecting feedback post-release PDF last generated: August 27, 2023

Documenting REST APIs Page 776

https://developer.amazon.com/docs/fire-tv/toolkits-for-building-fire-tv-apps.html
https://developer.amazon.com/docs/fire-tv/toolkits-for-building-fire-tv-apps.html

Again, follow standard web practices for placement of common elements.

Requirements to submit text
In addition to putting your feedback form in a highly visible place, if you can lower the friction required for
users to enter and submit feedback, you’ll get more feedback. If your feedback form requires developers to
log in, or to proceed through a series of authentication screens, or do anything else requiring more than
5-10 seconds of their time, your engagement rate will go down.

The problem with reducing friction, however, is that the easier you make it to enter comments, the more
spam you get. Without any spam prevention controls, you’ll be overrun with spam comments in a short
time. Try to find a good balance between controls that prevent spam but which don’t challenge users too
much. For example, you could implement reCAPTCHA or require some form of login (e.g., login with
Google, GitHub, or Twitter), or require users to complete some special task to weed out bots. (Whatever
you do, spam will usually find a way to slip through.)

Finally, in order for feedback to be actionable, it needs to be detailed. Consider adding minimum character
requirements to the form and encourage users to be as specific and detailed as possible with their
feedback. Users rarely want to sink energy into completing a feedback form with no guarantee that the
form will go to a human and be read, but a quick one-liner from a user is rarely helpful enough to take any
intelligent action on. You might require that the form has at least 100 characters of content to be valid.

Collecting feedback post-release PDF last generated: August 27, 2023

Documenting REST APIs Page 777

https://developer.amazon.com/docs/fire-tv/toolkits-for-building-fire-tv-apps.html
https://developer.amazon.com/docs/fire-tv/toolkits-for-building-fire-tv-apps.html

You can also choose to show the comments submitted on the article (rather than just collecting the
feedback). If you show the comments, and then actually respond to them, it can increase the sense of trust
from users to enter their feedback (knowing that the comment will be publicly visible and responded to).
However, managing comments places more of a support drain on your team and potentially redirects users
away from better support forums and tools, so most doc teams avoid engaging in interactive comments
like this. I agree with routing users to support for help.

Workarounds for obfuscated http referrer values in Chrome
One new challenge to collecting feedback in 2020 is getting around the http referrer obfuscation . When
you collect feedback, you typically want to know the page that users were on when they clicked the
feedback form so that you can make sense of the comments. For example, if the only text users write is
“This page needs more examples” or “There’s an error in the code sample here,” unless you know the
specific page, it will be difficult to take any action on the feedback. Especially given how brief the
comments usually are, you need more context to make sense of the incoming information.

Unfortunately, more restrictive data privacy rules in Chrome now obfuscate the path from the http referrer,
showing only the domain. For example, if you submitted feedback from this page, Chrome would show the
referrer only as https://idratherbewriting.com , not https://idratherbewriting.com/

learnapidoc/docapis_collecting_feedback_post_release.html . This new policy went into effect in
October 2020, so if you’re analyzing your feedback metrics and wondering why http referrer shows only the
domain, recognize that it’s not due to VPN or incognito modes in browsers but rather due to the new
Chrome data privacy policies in place. (Other browsers haven’t necessarily followed suit yet here.)

Depending on your feedback tool, you might need to implement a creative workaround. For example, in
Qualtrics (which is a survey tool rather than a proper website feedback tool), you can add custom
JavaScript to your form. For example, you could use this script from Stack Overflow that gets the query
string from the URL using JavaScript and include that in the form submission. The logic looks like this:

Collecting feedback post-release PDF last generated: August 27, 2023

Documenting REST APIs Page 778

https://developers.google.com/web/updates/2020/07/referrer-policy-new-chrome-default
https://stackoverflow.com/questions/19491336/how-to-get-url-parameter-using-jquery-or-plain-javascript
https://stackoverflow.com/questions/19491336/how-to-get-url-parameter-using-jquery-or-plain-javascript

Qualtrics.SurveyEngine.addOnload(function()
{

var getUrlParameter = function getUrlParameter(sParam) {
var sPageURL = window.location.search.substring(1),

sURLVariables = sPageURL.split('&'),
sParameterName,
i;

for (i = 0; i < sURLVariables.length; i++) {
sParameterName = sURLVariables[i].split('=');

if (sParameterName[0] === sParam) {
return sParameterName[1] === undefined ? true : decodeURICompone

nt(sParameterName[1]);
}

}
};

var docPage = getUrlParameter('page');
var formLocation = getUrlParameter('location');

jQuery('#page').val(docPage);
jQuery('#feedbackLocation').val(docPage);

});

This script assumes that the feedback URL has query strings added, such as
https://idratherbewriting.com/learnapidoc/

docapis_collecting_feedback_post_release.html?page=docapis_collecting_feedback_post_release&location=bottom .
The script parses the query strings from the url and then sets variables docPage and formLocation for
each query string. Then jQuery is used to assign those values to unique form elements on the page. You
could also add CSS that hides these element where the values get assigned.

(Yes, this is a hack, but if you need to workaround the http referrer restrictions, a technique like this might
be necessary.)

Qualitative versus quantitative feedback
Another aspect of the feedback form is whether to solicit qualitative or quantitative feedback, or both.
Qualitative feedback refers to free-form, descriptive text whereas quantitative refers to multiple choice
options (or similar). Although the idea of multiple choice options seems appealing, as it would allow you to
create metrics around the content (e.g., rate the docs based on clarity, accuracy, relevance), quantitative
data is actually rarely helpful. If a user ranks the doc low on clarity or relevance but doesn’t add clarifying
information, this makes the feedback hard to decipher and take any action on. Additionally, you’ll have to
sift through spam bot submitted forms versus forms from actual humans. Every time I’ve incorporated
quantitative options into feedback forms, the results have been useless.

What questions to ask
Your feedback form can be as simple as asking one qualitative question:

Collecting feedback post-release PDF last generated: August 27, 2023

Documenting REST APIs Page 779

How can we improve the documentation?

Remember, people usually give 30 seconds or less of time in providing feedback. If you try to add a lot of
questions, they should be specific to the information on the page, not general task-analysis questions.

I also recommend adding some placeholder text that encourages users to be descriptive, such as “Enter
your feedback here. Try to be as specific and detailed as possible. At least 100 characters (several
sentences) are required.” For example, like the following screenshot:

If you need metrics around feedback, you could quantify the number of comments received for each doc
set, and then indicate what actions were taken. What percentage of the feedback was actionable, and how
many tickets did you close related to doc feedback, etc.? How many tickets were from humans versus
bots?

Process for handling feedback
Just collecting feedback is only the first step. The next step is to implement a process for sorting,
assessing, and taking action on the feedback that comes in. This might sound easy but can be especially
challenging if no one is asking you to take action on this feedback. Product teams usually submit requests
to doc teams for upcoming features and releases; they are often quiet when it comes to documentation for
existing features. Taking action on incoming feedback is almost like an extracurricular task.

A process for handling incoming feedback could look like this:

1. Every time you do sprint planning (p. 737) (e.g., every two weeks), look through the feedback
you’ve received and identify any feedback that is detailed and actionable. Create tickets for each
of these actionable items.

Collecting feedback post-release PDF last generated: August 27, 2023

Documenting REST APIs Page 780

2. Decide which tickets you want to work on for the sprint (e.g., due to priority, ease of handling, or
other reasons) and assign the tickets to the sprint during your sprint planning.

Given that these tickets will rarely be a priority, to avoid neglecting and forgetting them, consider
making it a requirement that each team member takes on at least one documentation feedback
ticket per sprint.

3. Reach out to product teams to keep them aware of the incoming tickets. The product owner
should be Cc’d as a watcher on the ticket so they are aware of what’s going on with the user
experience of their product.

Product teams rely on various teams (documentation, support, field engineers, developer
advocates, etc.) to gather feedback about their product. Especially if you see trending issues
related to specific pages, try to identify what might be driving the issue and escalate this to the
product owner.

To allow contact for docs across your portal, it’s a good idea to maintain a list of contact points
that identify at least one product owner per doc set. It’s even better if you can identify the team
that owns the product and any ticket assignment categories for the team.

Conclusion
Although collecting doc feedback post release is important, most feedback I’ve seen in comments rarely
goes beyond identifying simple issues. Most users submit feedback to let you know about broken links,
typos, broken code samples, or other obvious issues. You won’t get the detailed, substantive feedback
from doc reviews that you do as part of pre-release review process (p. 764) from internal product teams
and stakeholders. The best time to review your docs is before release, not after. The feedback you collect
post-release can help catch errors and other problems, though, and so shouldn’t be avoided. This
feedback can also help you funnel insights from customers back to product teams, which helps increase
your value to the organization.

Collecting feedback post-release PDF last generated: August 27, 2023

Documenting REST APIs Page 781

Managing content from external
contributors
One of the main advantages of a version-control-based system, especially using open-source
technologies, is the promise of collaboration. Not just collaboration with your immediate team, but scaling
beyond your team to also include other contributors within your organization and even contributors from
the community. The idea of crowdsourcing documentation like this, removing the burden from a small
number of gate-keeping writers, has been appealing since the emergence of wikis and continues as a
driving force behind docs-as-code implementations.

Many people embrace docs as code with the hope and expectation that many engineers will contribute to
the docs. This is, after all, why so many embrace an engineer’s tools and workflow in the first place. In this
section, I cover processes to consider when external contributors (external to your team, not necessarily
external to the company) write content.

The complexity factor is Git
When I started at Amazon and we were discussing authoring and publishing tools, we adopted a docs-as-
code approach using Jekyll and Markdown for several reasons. Not only was this tooling free and fit
seamlessly within the engineering build systems, in adopting Markdown and a static site generator, we
rationalized that we could scale the solution to allow other teams to author and publish content without
having to go through us. We envisioned lots of small, autonomous engineering/product teams writing and
publishing content within the doc system, without necessarily involving us. We would set up the system,
and they would use it.

For the first couple of years, when a team approached us and we lacked bandwidth to write their docs, or
when the team fell outside our department’s stewardship, we gave them permissions in our doc repo, set
them up with some basic training, and invited them to own their own authoring and publishing tasks. We
gave them full permissions to merge in content, build the project, and push out the updates to the live site.

Admittedly, we didn’t have nearly as many teams as we envisioned writing content. Maybe about 10 teams
over the years, with off-and-on spurts of writing. But as I’ve observed this process play out, I’ve noticed
one thing: Git is the complexity factor that trips everyone up. Engineers understand Git because they live
and breathe its commands in their own software team workflows, but do they follow your team’s specific
Git workflows, which might differ from theirs?

You might have multiple branches corresponding to different environments (beta, prod, etc.) and different
workflows uniquely designed for a documentation repo. But each engineering team might have their own
preferred Git workflow. Git is flexible and robust enough to allow for many different processes and
workflows — this flexibility is part of why Git has survived and thrived so long as a way to collaborate. Will
those same engineers bother to follow your own team’s defined Git workflows? If not, get ready to deal
with merge conflicts and scenarios where you try to understand why certain files keep getting flagged as
problematic.

Besides engineering contributors, consider also the non-engineering contributors. Not every contributor
understands Git. Many marketers and product managers might want to contribute to docs but not
understand Git well enough to use it correctly. They might type enough commands to get something to
commit but then actually create massive conflicts and other issues for everyone else. You’ll have to sort all
this out. Alternatively, you might end up just taking input requests that they describe in tickets.

Managing content from external contributors PDF last generated: August 27, 2023

Documenting REST APIs Page 782

Also note if you give external contributors permissions to author and publish content, you allow them to
introduce new content into your document repository that hasn’t been vetted and reviewed by your team. If
you review the content, you might find that these contributors are much more sloppy about writing than
you are, committing broken links, incorrectly cased product names, bad grammar, broken formatting,
eternal paragraphs, and other embarrassing issues. Will others understand that commits from these
external contributors weren’t actually written by your team?

Some groups might not want to join in the same doc repo as your team’s repo but instead create their own
repo based on the theme and other tools setup you created. Different static site generator tools handle
theming better than others, but a separate repo might end up duplicating many theme files that these
contributing teams actually don’t want to maintain and update. You might help set up a team with a new
instance of the theme, only to find that they never update the theme files as the original theme evolves.

After dealing with so many support cases, broken builds, and poor content committed by external teams,
we decided to pivot to more of a GitHub-pull-request model. In this model, rather than giving contributors
permissions as full-fledged authors in a repository, we required them to submit pull requests (aka “code
reviews” in some build systems) for their contributions.

With pull requests, the contributor clones the repository, makes a change, and then submits the change to
a system that lets the repository owner evaluate the file difference that the contributor is proposing. You (as
a repo owner) review the contribution, adding line-by-line comments as desired, and then either accept or
reject the pull request. You can go through multiple iterations with this proposed change until the
contribution meets your standard. After you approve the pull request, you then merge the changes into
your repository and push it out.

This pull request model is the standard contribution model for most groups (especially on GitHub). With this
model, contributors don’t need to understand the details of your Git workflow (beyond the pull request
workflow) or other specifics about your environment’s branches (except which branch to start from). They
just need to interact with the code review tool to submit their pull requests. This is the model I recommend
implementing.

Community contributors
So far I’ve talked about external contributors within your company, but what about community
contributors? You could apply a similar pull request model as with community contributors outside your
company, but there are added complexities with community contributors:

• You’ll need to expose your Git repository to an external site like GitHub. This might be
problematic if you aren’t allowed to be transparent about content prior to release. For example,
you’ll need to find a way to hide content for upcoming releases. Of course, you could keep it on a
local branch, but then it wouldn’t be backed up. If you add the GitHub repo as a remote, this
could work easily enough, but will you also expose your commit messages (which might
reference internal tickets) and other workflows?

• Extensive contributions might require rights-usage signoff from your Legal group. Fixing typos
and broken links probably wouldn’t require signoff, but if someone is contributing new pages of
content or substantial sections, this will probably prompt Legal to require the contributor to sign
an agreement. You might find yourself constantly doing paperwork for contributions.

• You might get contributions that don’t align with your organization’s strategic objectives, and
then you’ll have to spend time editing and publishing that content. Suppose someone wants to
add a new article; you’ll now need to vet the content, get it reviewed and approved by the
appropriate internal SME, make stylistic edits, and do other shepherding (for which you might not
have bandwidth). If the content doesn’t line up with anything you’re currently working on, this
sudden request might be a disrupting detour from your regular work. Additionally, you might not
like the approach or style the person wants to contribute; rejecting the contribution might make

Managing content from external contributors PDF last generated: August 27, 2023

Documenting REST APIs Page 783

for an awkward conversation.

I’ve tried leveraging community contributions in the past and found that the efforts aren’t usually
worthwhile (at least for the products I was documenting.) Community members rarely have the internal
knowledge needed to create documentation. More importantly, they lack the incentive to do so, as this task
doesn’t usually benefit them. I wrote about this problem when I abandoned wikis a decade ago — see My
Journey To and From Wikis: Why I Adopted Wikis, Why I Veered Away, and a New Model . The hassle
required to make docs public and available for pull-request workflows in GitHub rarely pays off with
community edits.

I wouldn’t recommend trying to orchestrate community contributions unless you already have some heavy
community contributors who are itching to write and publish content. It also might make sense for some
products more than others (such as company products that are integrations into third-party platforms —
e.g., here’s an article how you integrate your product with my product). You might be better off adding a
note in your docs inviting contributors to reach out to you with documentation ideas/requests, and then
work with them individually through some tool like Google Docs or Microsoft Word.

If you do allow contributions from external contributors or community members, be explicit about the
processes they should follow. GitHub projects often have common templates and guidelines (often in a the
readme) about how community members can contribute.

The content abandonment problem
One pitfall to watch out for with external contributors is the content abandonment problem. It’s common for
external contributors to get involved in adding documentation in a time of need, and then abandon the
content when their product fizzles or when they switch teams. Then you’re stuck with content that you
don’t know much about, with no clear owner, reviewer, or maintainer. Essentially, these scenarios are like
adopting an orphan child that you now you have to watch and care for. This is often how teams end up
with a lot of legacy content.

To avoid this content abandonment scenario, make sure you have a clear policy around the review and
ownership of the content from contributors. Track who owns the content, the contact points for questions
related to the content, and expectations for regular review of the content. It takes a lot of proactivity to
track and enforce this, though, because again, no one will be knocking on your door to regularly review and
look over existing content. As I wrote in Processes for maintaining existing documentation (p. 770), tech
writers are mostly focused on new content, not maintaining old content. Almost every tech writer I know
has more work than they can currently handle, and reviewing old docs that no one is complaining about or
requesting rarely climbs up the priority list.

Conclusion
In a docs-as-code model, contributions from external people in your company are expected. You need to
define specific workflows that make sense for your organization. In general, you’ll have the most success if
you stick to standard, simple workflows (I’m mostly referring to Git and pull requests or code reviews) that
align with common practices the engineers are already using within your company, or industry patterns.
There’s no need to reinvent the wheel when it comes to Git workflows. Pick a model such as the GitHub
pull request workflow (see this GitHub tutorial or this Atlassian tutorial) and provide code examples to
help people easily understand and follow the right commands.

Managing content from external contributors PDF last generated: August 27, 2023

Documenting REST APIs Page 784

https://idratherbewriting.com12/06/11/essay-my-journey-to-and-from-wikis-why-i-adopted-wikis-why-i-veered-away-from-them-and-a-new-model-for-collaboration/
https://idratherbewriting.com12/06/11/essay-my-journey-to-and-from-wikis-why-i-adopted-wikis-why-i-veered-away-from-them-and-a-new-model-for-collaboration/
https://guides.github.com/introduction/flow/
https://www.atlassian.com/git/tutorials/making-a-pull-request

Changing internal doc culture
One of the most influential aspects that will determine your experience as a technical writer at a company is
the company’s documentation culture and environment. If you find yourself in an organization with a poor
documentation culture, it can be difficult if not impossible to change it. A poor documentation culture/
environment leads to a high turnover on doc teams, loss of motivation for existing writers (especially as
their colleagues constantly leave, which increases the workload), and contributes to a downward spiral of
tasks you can never quite get a handle on. In this topic, I outline six strategies you can implement to
influence change in your company’s documentation culture, bringing about a more positive and healthy
environment.

Characteristics of a poor documentation environment
Poor documentation environments can be characterized by the following:

• Lack of executive sponsorship or support. In these companies, no one at the executive level is
a strong believer in docs. They might give lip service to the importance of docs but then fail to
adequately staff resources, not only resources for writers but also for the tools infrastructure and
any supporting engineers. Docs rarely bubble up to their radar, and tech writers are invisible to
them. These leaders give the impression that they don’t care about docs, and the attitude tends
to flow downward through leadership chains.

• Lack of integration in formal processes. Engineering processes that don’t require
documentation as part of the “definition of done,” or which don’t include documentation as any
requirement for product development and release, can also devalue the tech writer role.
Documentation requests might come in at the last minute, when the features are fully coded and
ready for release in a few days. In these companies, there’s no formal way documentation is
integrated into development and release processes. It’s all ad hoc and last minute.

• Lack of enough resources for the required work. In a company with poor documentation
culture, you might always feel short-handed and unable to ramp up on the needed work. You
might move from project to project in a cursory way, never able to adequately learn the
technology or become a SME before you have to start on the next project, which might be a
completely different technical realm. The lack of resources goes hand in hand with high turnover
rates. As soon as someone arrives, another leaves, and you end up doing more work than your
role alone, which also motivates more turnover because people are overworked.

• Check-box mentality is common. If product and department leaders see documentation as
simply a box to check box to select and nothing more, this can also trivialize your experience at
that company, especially if that check box has no standards or minimum bar associated with it.
This “check-box mentality” can be characteristic of people who show little interest in the actual
user experience. As soon as the docs are done, they’re crossed off the list and rarely revisited.

• Support for tooling is underfunded for the requirements. You might need robust tools to
provide the kind of experience people require (PDF, localization, gated docs, etc.), but the
company might not want to fund any tooling resources, insisting that you use open-source tools
instead, or not providing enough time to build out tooling you need.

Most tech writers are familiar with some of these aspects. I’ve written about these topics multiple times on
my blog, especially in these two series:

• Reflecting seven years later about why we were laid off
• Value arguments for docs and tech comm

Changing internal doc culture PDF last generated: August 27, 2023

Documenting REST APIs Page 785

https://idratherbewriting.com/blog/reflecting-seven-years-later-about-layoff-intro/
https://idratherbewriting.com17/12/28/value-of-tech-comm-in-company-part1/

In the following sections, I’ll explore processes you can implement to change your documentation culture.

One question is whether a company’s documentation culture can actually be changed through efforts from
the tech comm group. I believe change is possible, to an extent. You might not convert your CEO into a
doc champion, but you can influence your environment and culture if you work hard at doing so. Especially
if your company has a business reason that heavily depends on the customer experience, you have a shot
at influencing upward. These efforts should be factored into your team’s regular processes and goals.

Among all processes described in this section, changing culture is the most difficult because it requires
changing the attitudes and minds of others for which you have little control. It also requires a lot of
marketing work that you might not have the bandwidth for. I also can’t say that I’ve had a ton of success in
this area, but I will share the strategies that have worked for me.

Six ways to change documentation culture
The following are six ways to change documentation culture at a company.

1. Attend engineering Scrum/Kanban meetings with engineers

My best experiences have been when I’m integrated closely with engineering teams, attending their daily
standups, sprint demos, and other scrum/kanban meetings. Organizational setups don’t always allow for
this type of embedded engineering-team integration, but hands-down, whenever I’ve done this, it has
absolutely changed my experience with the product team in extremely positive ways. Integrating with
engineering teams builds relationships with these groups, and they see your value, and you can anticipate
their doc needs.

The constant problem is that tech writers usually support multiple teams, so integrating fully would drain
the tech writer’s time too much. It doesn’t really work to attend regular standups for more than a couple of
engineering teams, but consider maybe attending 1-2 standups a day, rotating to different engineering
teams depending on how many teams you support. Even if you just drop in once a week to a different team
each day, this will dramatically change your visibility and rapport with the teams. Usually, teams don’t have
so much doc work that they need you there daily (and if you do attend the same team’s standup on a daily
basis, you might actually feel it’s a waste of time), so occasional attendance might be ideal and build the
needed rapport just fine.

2. Become visible by letting people know what you’ve written or updated

A critical step to influencing change is to make your influence visible. As one of the most visible tech comm
bloggers in this space, I know how to make myself known to those around me. The recipe for visibility on
the web is simple: write relevant content and share it with those around you — over and over and over.

In the context of documentation teams, you don’t need to write blog posts. Instead, make a list of all your
recent updates each month, and then send it out to as many relevant stakeholders as you can. This will
help them see on a regular basis what your team is creating. They’ll come to understand your role, what
kind of content you create, and what’s being changed. When the topic of documentation comes up, you’ll
be first on their mind.

3. Relay customer insights back to product teams

One of the most valuable assets at a company is customer knowledge. If you can communicate customer
insights to internal product teams, this raises your value and relevance in a major way. Add a feedback
form (p. 775) at the bottom of each of your doc pages. On a monthly basis, review all the feedback, analyze
it, and send it out to product teams and other stakeholders. Include other metrics about the most popular
pages and trending search results. People love this kind of customer insight, especially business leaders
trying to understand market trends.

Changing internal doc culture PDF last generated: August 27, 2023

Documenting REST APIs Page 786

If you want to take it a step further, undertake a competitive analysis highlighting how the developer’s
experience on your company’s products compares with the developer experience on competitor products.

4. Move the needle in a noticeable way with doc quality

Doc champions are converted to a pro-docs mentality through close experiences with documentation. I
remember hearing a developer petition and advocate for product teams to have technical writers work on a
specific product’s documentation because of the way we turned around documentation for another
product. If you can turn docs around in impressive ways, translating engineering-speak into real English,
making the steps easy to follow and concrete, people will notice. You can’t just fix grammar and
punctuation — you have to actually move the quality needle in noticeable ways. For example, implement a
workflow map to visualize a complex process.

When you do improve docs in significant ways, others will start to ask for tech writers to play closer roles in
creating the documentation, not just editing and publishing docs that product teams write. If you insist on
high standards in docs, such as requiring teams to provide a sample app, testing out all the steps yourself
and ensuring they work, adding troubleshooting topics, glossaries, search, etc., people will sense the value
you’re providing and start to champion the inclusion of docs as a requirement for each product release. I’ve
had many experiences where product teams wrote some documentation, floated it to developer advocates,
and the developer advocates told the product team to send it to the doc group to “polish.” But by polish,
they really meant fix the organization, structure, clarity, readability, and more. These developer advocates
had learned what we could do with content and started insisting on it as a standard.

5. Be in the right group organizationally

Okay, this last point is controversial and opinionated, but it can’t be left out. Where you are in the
organization matters. Are you grouped in Product, Marketing, Engineering, Support, or some other
department? I’ve been in nearly every organizational discipline, and my best experiences are when I’m in
Engineering. This is because engineers are heavily involved in the product development phase, and this is
where you want to be as a technical writer. Marketers are too involved in the release phase, support in the
post-release phase, and product in the pre-development phase. But engineers are in the development
phase. As a technical writer, you’re developing content, and you need the sprint cadence of weekly
development and workflows. Engineering understands this flow, and documentation groups fit well into it.
(Many of these other groups don’t even follow Scrum/Kanban workflows.)

If you’re not in the right group now, don’t worry. In my 5 years at Amazon, I had 5 different managers and
experienced about the same number of re-orgs. I’m sure I could have influenced where the doc group was
moved during different re-org periods, but I rarely had any foreknowledge of upcoming re-orgs; they just
happened without warning.

6. Apply your energy to the right projects

Most organizations have key strategies or goals they’re focusing on. For example, your organization might
have a goal to get 30 partners to integrate a particular technology. If you align your documentation efforts
in this same technology direction, helping fulfill the executive’s key objective, it will raise your importance to
the executive leaders in the organization and make documentation a more important function. I wrote about
this in more detail in 2. Assess the identified work against strategic priorities (p. 739) in “Processes for
managing large documentation projects.” In short, don’t assume all documentation is equal. It isn’t. If you
spend a lot of time and effort on docs that no one uses or cares about, you’ll have misused your energy.

Changing internal doc culture PDF last generated: August 27, 2023

Documenting REST APIs Page 787

https://idratherbewriting.com/simplifying-complexity/macro-micro.html

Conclusion
Company culture towards documentation isn’t easy to change, and just like people don’t change overnight,
company culture doesn’t transform overnight either. Many perceptions people have around documentation
have been hardened by years of disappointment or frustration with documentation. You might be facing an
uphill battle that began when the previous tech writers in your role failed to deliver anything of substantial
value, or you might be battling against people who believe no one reads docs and so docs are a formality
only, not actually something that is used. Changing people’s minds about the importance of documentation
might be a gradual process that you influence over several years. But if you follow the six strategies I
outlined here (in greater degrees if you want faster change), you will eventually have success.

Changing internal doc culture PDF last generated: August 27, 2023

Documenting REST APIs Page 788

Sending doc status reports -- a tool
for visibility and relationship building
Sending documentation status reports can help foster trust and awareness with your business
stakeholders. These stakeholders might be the core leadership within your organization or simply your
management chain the next level up. Besides building visibility and relationships with these stakeholders,
creating these status reports each month gives you a regular cadence for doc assessment and analysis,
which is also helpful.

In my post Some good decisions and minor mistakes , I said one of my good decisions at Amazon was
sending regular doc reports to our business leadership. Here’s a passage from the post: “Broadcasting all
the recent doc updates made during the past month or so did an amazing job at increasing the visibility of
our team. This had more impact than any doc-related metrics.” In the post’s comments, a lot of people
asked me to expand on this point with more details. This article provides a follow-up about that point.

Sample status report
A sample status report has sections such as these:

• Purpose and intro
• About your team
• Recently published docs
• Upcoming doc work
• Support deflection efforts
• Doc metrics
• Strategic initiatives

Here’s a bit more about each of these sections.

Purpose and intro

This section provides a few lines about the report and its purpose, and might start out like this: “This
documentation report covers such and such time period and includes information about newly published
docs, metrics, support deflection efforts, a review of strategic initiatives, and more. The purpose is to keep
others updated about doc efforts and strategies to ensure alignment across groups, etc.” Hopefully, you
can make your intro more exciting than this, but you get the point.

About your team and where you publish docs

This section explains a bit about your team, such as “The documentation team consists of X number of
writers supporting external documentation on X site. The team works with engineers across A, B, C
product teams to provide documentation for such and such products. We also help edit and publish
contributions written by engineers directly.”

Although these details might seem obvious to you, in any large organization, there are usually many groups
that aren’t aware of each other, despite working under the same organizational umbrella. In my experiences
in big tech companies, only about half of the engineers have ever worked with technical writers, and of
those, many have only a vague idea of what we do or even where the docs are published. They also don’t
know the process for requesting doc work, so you could include a line about that workflow too.

Sending doc status reports -- a tool for visibility and relationship building PDF last generated: August 27, 2023

Documenting REST APIs Page 789

https://idratherbewriting.com/blog/good-decisions-and-mistakes/

Recently published docs

List out what your team has recently published. Ideally, you should be able to copy and paste this content
from your release notes. In the list of published docs, include the article titles, short descriptions, and when
they were published. The docs should link to the actual content so that people can read more.

If you don’t have many recently published docs, you could link to some drafts in progress. However, I find
that this section helps keep me accountable. I know that if it comes time to write this report and our team
didn’t publish anything for the month, it’s going to look bad. I want to have a handful of articles to show
each month. It makes me feel like I’m earning my keep.

Upcoming doc work

List a few high-priority projects you’re currently or soon-to-be working on, so that people know where
you’re headed. Describe your roadmap more or less, focusing at a high level. Sometimes readers want to
know if such and such project is on your radar, and this section provides describes that horizon.

Support deflection efforts

Through an analysis of ticket logs, explain how documentation is reducing the drain on your support team,
whether that support team consists of support engineers, partner engineers, or some other contact point
when users/partners/developers have issues.

This activity forces you to regularly review the ticket log and see what frictions the users/partners/
developers are having. For example, you might have an issue tracking system with hundreds of bugs
logged each month. Look through the bugs and pick out bugs that could potentially have been averted had
the information been available in the documentation.

For example, suppose a partner says they are confused about some data element and its availability within
an API. That ticket should likely never have been filed; the partner should have been able to find the
information within the documentation directly.

In my experience, support groups and product teams are blind at identifying tickets that are preventable
through better documentation. Extrapolating potential doc work from the ticket log (as tedious as it may be)
is something tech writers excel at. Others are typically blind about how a ticket might relate to
documentation additions.

In this section of the report, comment on trends you see for the tickets filed. Create doc tickets related to
the bug tickets. Then you can report on your progress against those tickets. This activity — looking through
bugs at a monthly cadence — is one of the best ways to stay connected to user pain points and frictions.
This section also presents an implicit argument about the value of tech comm — reducing the workload of
engineers and support groups.

Doc metrics

Report on some aspect of your site’s traffic and analytics. For example, you could report on your core
metrics: pageviews, users, sessions, pageviews per session, time on page, and bounce rate. You could
also describe user profile characteristics (if available), such as location, age, gender, operating system, and
browser. The location can be particularly useful in deciding about localization.

You could also list the most popular pages in your documentation and explore reasons why. Especially if
the pages have unexpectedly high traffic, it could be good fodder for analysis.

If you have an aptitude for metrics analysis, you could also provide insights about these numbers. For
example, analyze why there are spikes or dips. Look at trends about user growth or shrinkage over time
and probe why. Look at search keyword hits and analyze whether the searches connect with docs. Look at

Sending doc status reports -- a tool for visibility and relationship building PDF last generated: August 27, 2023

Documenting REST APIs Page 790

your average time on page and assess whether it’s too long or short. Look at flows that users take within
your site, and why users might be going to the pages they navigate to (for example, why are users going to
Requirements after the Overview instead of the Getting Started tutorial?), and more. Showcase your ability
to crunch and interpret data.

Warning: Analytics can be a rabbit hole that can consume a lot of time without leading to actionable
results. For example, whether the average time on page is 3 minutes or 5 minutes, is that going to dictate
your information architecture strategy? Probably not. The most valuable metrics are usually your top 10
pages, which can give you a sense of where to prioritize your content development efforts. Dive into
metrics, but come up for air soon after.

Even if analytics aren’t always actionable, it’s worth periodically reviewing the numbers to try glean as
many insights as possible. Every year, I regularly review analytics on my blog. See the section Posts
analyzing site analytics .

The biggest action item to come from these blog analytics assessments has been to see the large traffic
going to this API doc site, which prompted me to focus more efforts in this direction. At Amazon, when I
looked at analytics, I realized that device specifications regularly trended as the most popular pages, so I
put a lot of effort in into Fire TV device specifications . In short, your most popular pages can indicate
where you should prioritize your time.

Strategic initiatives

Discuss a few points of your doc strategy at a high level. Remember, many people might not realize that
technical writers even have a strategy or what it could possibly be for docs. You can comment on a few
high-level goals, such as making sure each product has a well-developed overview and getting started
tutorial. Or your strategy might be to allow for more hands-on testing of content by technical writers in an
effort to improve documentation quality. Or your strategy might be to fill in some content gaps according to
your critical user journeys. Or maybe you’re trying to align better across product areas with other teams
with more consistent structure and naming. Whatever your strategic goals, comment briefly on your
progress against them. This reinforces the idea that tech writers are strategic thinkers, not just content
creators.

Other sections you could include
For other ideas about doc report content, see the suggestions from Saul Carliner in Eight Tips Healthy
Contractor for with Clients Relationships . Saul addresses status reports from contractors to clients, so
it’s a bit different from full-time employees and stakeholders, but not so much. Saul writes:

… provide reports anyway to address the natural concern of clients that you will
complete their work on time and within budget. Take the initiative to send reports.
The reports should identify:

• Most recently completed milestone and whether that occurred on time,
early, or late (and if late, why).

• Next milestone, who has responsibility for meeting it, and whether it is likely
to occur on schedule, early, or late (and if late, once again, explain why).

• Major issues that need to be resolved. (March/April 2018, Intercom)

Sending doc status reports -- a tool for visibility and relationship building PDF last generated: August 27, 2023

Documenting REST APIs Page 791

https://idratherbewriting.com/analytics/
https://idratherbewriting.com/analytics/
https://developer.amazon.com/docs/fire-tv/device-specifications.html
https://www.stc.org/intercom/2018/04/eight-tips-for-healthy-contractor-relationships-with-clients/
https://www.stc.org/intercom/2018/04/eight-tips-for-healthy-contractor-relationships-with-clients/

Saul says that these reports build confidence with the employer that you, as a contractor, will be able to
meet the project’s documentation goals on time and on budget. Business stakeholders also want to know
that you’ll finish the docs by the expected release schedules.

Saul also notes that the initial reports might take a while, but once you’ve created a few, you’ll have an
established format and routine, and the effort will be less time intensive. With each report you send, you
can fine tune your structure, language, and style in these reports.

Finally, as Saul notes in his last point, you could also add a section on issues and obstacles. Be careful of
throwing other teams under the bus in a public way here, though. For example, if your biggest obstacle is
that engineers don’t review docs, or that you’re understaffed for the amount of work, or that your
company’s culture is anti-collaborative when it comes to docs (“docs aren’t my job!”), you could call this
out in the report, but do it tactfully, without laying blame with any particular group or person.

Frequency, format, audience
Now that you have a sense of what the status update involves, you have some other decisions to make:

• Frequency: I recommend sending out a status report on a monthly basis. Biweekly is too
frequent for all the sections noted above, and quarterly is too long for people to remember
anything from the previous report.

• Format: You could package the content up into a snazzy newsletter format, but a simple text
email is fine. I start the doc report in Google Docs and then just paste it into an email when I’m
ready to send it. I think people respond better to raw email rather than shiny newsletter
templates.

• Audience: Send the report to your business leadership groups, your team’s alias, other adjacent
writing teams working in the same general space, and more. You don’t want to spam everyone,
of course, but within an enterprise setting, people more or less expect to receive these reports
unsolicited. Look at other reports being sent by other groups, and perhaps copy the same
groups listed in their “To” list. The risk of not informing others is worse than inappropriately
including them. A frequent complaint in most tech orgs is poor communication. People prefer to
be informed.

Addressing the discomfort factor
Sending these emails (which might go to hundreds of people depending on the email lists) is usually
something that makes writers feel uncomfortable. You might feel like you’re tooting your own horn, and
most writers, often somewhat introverted, tend to prefer not to call attention to themselves. Many writers
like to stay in the shadows.

Staying in the shadows is an approach to avoid if you want to get ahead at work. As a blogger, I often feel
uncomfortable sharing posts on Twitter, Linkedin, and in a newsletter. Every couple of weeks, I’m basically
saying “Hey, look at what I wrote here! Read my thoughts! See what I have to say.” This isn’t my nature. I’m
not overtly charismatic, extroverted, social, or prone to transparency. At a party, I don’t naturally introduce
myself to strangers or jump into the middle of conversations. But if you fail to promote your team in reports
like this at work, your team will suffer from invisibility, reduced status, and marginalization (to a degree,
anyway).

I’ve written previously about this topic, as these themes have characterized the tech writing profession for
years. See these posts for elaboration on this topic:

• Guest post: Why are technical writers often treated as such an unimportant part of a company?

Sending doc status reports -- a tool for visibility and relationship building PDF last generated: August 27, 2023

Documenting REST APIs Page 792

https://idratherbewriting.com/blog/why-technical-writers-treated-as-unimportant/
https://idratherbewriting.com/blog/why-technical-writers-treated-as-unimportant/

• Value arguments for docs and tech comm
• Reflecting seven years later about why we were laid off

Can sending monthly doc reports fix the devaluation of the tech writer role? Maybe not, but this is certainly
a way to help address visibility. The formula for visibility and recognition on the web with blogging is more
or less the same as within an enterprise: write and promote, write and promote, write and promote, and so
on.

Also, know that business leaders like to read these reports because they usually try to gather input and
data from many different groups under their leadership to inform their decision-making. Especially if your
upper leaders don’t understand documentation (because they’re in another business role), these reports
can help educate and inform them. It’s a way to influence up.

A time for self-reflection on your docs
Another important aspect of writing these reports is the time and space they give you for reflection,
planning, strategizing, course correction, and more. Without the report, when do you review these things?
When do you look at metrics? When do you take stock of what everyone on the team is publishing, and
how your work aligns with the upcoming roadmap? When do you look to see if the doc-related tickets are
increasing or decreasing? When do you assess how you’re doing with your doc strategies? Creating the
report benefits you as much as anyone else. (Same as with writing blog posts — these posts help me refine
my thoughts and perspectives more than they might help anyone else.)

So even if you create a lengthy report that few read, that’s okay. The report is for you as much as anyone
else.

Outcomes of regularly sending status reports
What are the outcomes of regularly sending status reports? If you send regular status reports, and the
content is insightful and well-presented, you can expect the following to happen:

• People who you didn’t know previously will suddenly reach out to you.
• Your manager’s manager will love it and will reply to the report with praise.
• You’ll become more visible to the people around you, especially if you’re the one sending the

report on behalf of your team.
• People will reach out to ask if certain docs or projects are on your radar.
• You get better at planning and anticipating long-term doc work and needs.
• When it comes time to write your annual review, you’ll already have a body of content to draw

from.

See also Broadcasting your meeting notes to influence a wider audience (p. 794) for another approach to
influencing those around you by sharing documentation topics and issues you face.

Sending doc status reports -- a tool for visibility and relationship building PDF last generated: August 27, 2023

Documenting REST APIs Page 793

https://idratherbewriting.com17/12/28/value-of-tech-comm-in-company-part1/
https://idratherbewriting.com/blog/reflecting-seven-years-later-about-layoff-intro/

Broadcasting your meeting notes to
influence a wider audience
In a previous topic, Sending doc status reports – a tool for visibility and relationship building (p. 789), I
explained how to create and distribute documentation reports. Another tool for accomplishing a similar
purpose — that of making others in your company aware of documentation processes, newly published
articles, how to work with your team, etc. — is to broadcast your meeting notes after each meeting.
Although sharing meeting notes with meeting participants after the meeting isn’t anything new, with a few
small adjustments, especially broadening your distribution list to those outside the meeting, your notes can
be a powerful way to influence those around you.

The basic process
The basic process of sharing meeting notes hardly needs explanation. It’s mostly just a bit time-consuming
and might put you out of your comfort zone. First, you need to determine which meetings you’ll generate
notes from. Usually, you have some meetings with partner engineers, meetings with other teams publishing
in your dev portal, meetings with your own team, and meetings with some teams for high priority projects.
Decide which meetings you’ll distribute notes for. Select the meetings where you focus on docs and topics
others might care about.

Each meeting should have an associated meeting doc. You or someone else takes notes during the
meeting. (Hopefully, in this same doc, you have an agenda to prime the meeting’s focus and discussion.)
Afterward, you type up the meeting notes and send them via email to all relevant groups. The relevant
groups are usually broader than the meeting attendees, and that’s part of the strategy. That’s really all
there is to it, though I’ve expanded on some more aspects of the process below.

Meeting notes are often more interesting to read
Meeting notes provide a natural story foundation to build around. Usually, meetings involve discussions of
issues. In writers’ terms, issues are really conflicts. And as all writers know, conflict drives story, and story
engages readers. This is why you might find that typing up meeting notes is more fun than writing
documentation reports. You can describe real issues you’re running up against, strategies you took to
solve the issues, outcomes, and more.

With each meeting, you’ve got the foundation for interesting content. Now you can shape and leverage this
content to provide other themes and messages that you want to get across.

What if sensitive topics are discussed during the meeting?
As with any real issues, the matters discussed might be sensitive. If people are complaining about what a
pain it is to work with Frank (who wasn’t in the meeting), you probably don’t want to highlight that in the
notes broadcast. You’ll have to incorporate some euphemisms around sensitive topics. For example, don’t
write, “Some writers said Frank is impossible and should not be leading the publishing tools project,” but
rather “Some writers noted some challenges in collaboration in the beta process with the new publishing
system.”

As you get into a rhythm of sharing meeting notes after the meeting, people might begin to recognize that
anything they say might be shared with others outside the meeting. This fear can be a detractor for people
opening up during the meeting, so make sure you don’t expose anyone in a way that would be
inflammatory or embarrassing. For example, don’t write, “John said he can’t stand working with the ACME

Broadcasting your meeting notes to influence a wider audience PDF last generated: August 27, 2023

Documenting REST APIs Page 794

engineering team because they never review his docs, so he seems to have deprioritized their project.”
Instead, tone it down: “Some members noted challenges in getting timely doc reviews; getting ignored until
the last day before release can be demotivating and create unnecessary crisis situations.”

On the flip side, sometimes surfacing issues is a good thing, as it forces the issues into open daylight
where some action can be taken. It doesn’t make sense to hold everything inside all the time, fuming in
silence. One of the purposes of sharing notes is to effect change. If you have an ugly issue to deal with,
sometimes writing about it with transparency and honesty is a good approach, even if it ruffles some
feathers or induces pain. For example, “Writers were unable to get timely reviews from the ACME
engineers, which caused us to shift priorities to groups that value our time and energy more.” A sentence
like that might send shock waves into the ACME group, but hey, you wanted change, right?

The structure of meeting notes
The meeting notes tend to have the following basic components:

• Meeting title
• Meeting date
• Meeting attendees
• Meeting description
• Meeting topics and discussions
• Action items

In the list of attendees, use company aliases so that others can get more context. If you just list first names
(Dave, Sue, Ashwin), others might not know who you’re referring to. If you have aliases in the attendee list,
you can simply refer to people by their first names within the notes.

You might also provide a brief description of the meeting’s purpose. Write this from the mindset that others
who don’t know your team, who you are or what you do, etc., will be reading it. Don’t just write “Doc sync”
but rather “Doc sync with partner engineers for the ACME project to identify doc needs and issues as well
as coordinate review and publishing.”

How long should the meeting notes be?
Remember that others will lack the context of those in the meeting. Even those in the meeting might not
have been fully following the discussion and details. Take the time to fill in the blanks. This might mean the
meeting notes consist of longer, more narrative summaries. Make the content skimmable with lots of
subheadings and short paragraphs. As a tech writer, you know how to structure content so that it’s
readable. Use a subheading for every 1-2 paragraphs of content.

Sometimes people provide stenographic-like notes of a meeting, noting what everyone said in a play-by-
play fashion. Avoid this approach and instead prefer more concise summaries of the issues and discussion.
In short, make it readable.

How do you find the time for this?
If you grabbed time from half a dozen peoples’ calendars, you can probably spend 30 minutes post-
meeting doing the write-up by yourself. If you’re busy, you can postpone the task 1-2 days later. The write-
up doesn’t need to be a masterpiece, but you’ll probably polish and refine the content more than a non-
writer would. Just don’t obsess. Keep it simple and recognize that meeting notes reflect the discussion of
the meeting, and that meeting might have been somewhat disjointed and scatterbrained, touching a lot of
different topics and points. A write-up that reflects the meeting might need a bit of re-organization and
artificial structure to be readable.

Broadcasting your meeting notes to influence a wider audience PDF last generated: August 27, 2023

Documenting REST APIs Page 795

Also, recognize that the first few write-ups are the most time-consuming (as with any activity). Once you
get into a rhythm and style, the write-up becomes fairly easy. One way to find time is to recognize the value
of doing the write-up in the first place. The write-up is a great way to take a closer examination of the
meeting and make sure you’ve accounted for all action items and other loose ends. The write-up reinforces
that you take the meeting seriously, and that it’s worth everyone’s time to attend.

Overall, strike a balance between context and concision that makes sense time-wise. Expect that readers
will likely glance through the notes and see if anything merits a closer read.

How do you decide on who to include in the broadcast?
Who you include in the notes broadcast is how you “manage up,” as they say. This is where broadcasting
meeting notes becomes strategic. For example, suppose you have a channel where many groups post their
meeting notes and the business stakeholders read them to stay updated across these groups. This means
you’ll have some readers who are 2-3 levels above your team. What do you want them to know about your
team? About documentation? Raise issues and help them get a better sense of your challenges,
successes, and other matters.

For example, suppose you faced challenges in figuring out the context for a new documentation topic.
Maybe the documentation covers a new API that doesn’t fit into any specific product’s docs. This product
ambiguity is causing confusion in the organization of docs. Maybe a senior leader can share some insights
that would help clarify the product direction and fit with other content. And if a senior leader starts chiming
in with insights, they’ll suddenly become aware of the docs, what they contain, and that you’ve been
working on components relevant to the user experience for the API.

Besides influencing up, you can also include parallel teams (especially those outside your immediate
organization) to influence across. Other writer groups might have more insight into processes and
techniques that could help you with the issues you face. The challenges your group encounters are likely
similar to issues that other writer groups have faced (and maybe solved). Others might have been around
much longer and have solutions, so loop them in if appropriate.

How can you leverage post-meeting participation from non-meeting
participants?
Ideally, you want to allow those who didn’t attend the meeting to add their thoughts. This is how sharing
meeting notes can create a boomerang of information coming back to you and allow you to leverage the
wisdom of others. If you keep your meeting notes in Google Docs or other documents that others can
comment on, it makes it easy for them to jump in with some comments. Add a short note in the email that
invites others to comment on the issues, explicitly inviting them to participate. Sometimes those who didn’t
attend might feel they shouldn’t “butt in” to comment on a meeting they weren’t a part of, but if you make
the invite to participate more explicit, they might be more inclined.

Are there downsides to sharing issues, frustrations, or problems with
others? Won’t that make us look bad/incompetent?
You might think that sharing issues, frustrations, or problems you’re running into isn’t a strategic way to
communicate your expertise at authoring and publishing. Suppose you have a laundry list of technical
challenges, behavioral hurdles, and organizational culture issues that you’re dealing with. It can be hard to
be transparent about these issues and to share them with others. We often want to communicate a facade
of expertise.

Broadcasting your meeting notes to influence a wider audience PDF last generated: August 27, 2023

Documenting REST APIs Page 796

However, I’ve learned that as a blogger, readers value transparency. We like to see what issues others are
facing and how they’re approaching those issues. Reading a blog of someone who always knows how to
handle every situation, who always knows the right answers for every problem, etc., isn’t a very interesting
read. Dare to be human. That humanity endears readers to your side. In this light, think of your meeting
notes almost as a sort of blog entry, detailing your forays against your enemies (that enemy might be
processes, technologies, etc.).

What do you do with all of this visibility?
One consequence of sharing your meeting notes is that you become visible. It takes guts to share a
meeting write-up with 50 people. Do that repeatedly, and pretty soon they come to know you. This is what
happened with my blog, idratherbewriting.com. I rarely go to any tech comm event without running into
people who know me (even if I don’t know them). Blogging has made me super visible. Is visibility a good
thing? Why would you want to be visible, and what do you do with that visibility?

Visibility for the sake of visibility alone is vanity. Almost no introverted writer wants to be this visible, with
everyone carefully seeing your every move and thought. I never wanted to be a “famous” technical writer, if
such a description is warranted. However, with visibility comes influence. Your visibility gives you a
platform to influence others in ways that those without the platform lack. This is why NBA players often talk
about issues outside of basketball — because they recognize that their visibility gives them more influence
with people. Their spotlight on national television gives them a platform that many have used to highlight
racial injustices.

What will you use your influence for? You’ve earned the influence through your hard work, writing up
meeting notes and daring to share them with broad groups. At some point, you’ll need to recognize that
you’ve become an influencer and ponder what that means. With my blog, I’ve tried to influence the tech
comm community to see API documentation as more than just generating reference material, and to move
toward docs-as-code tooling. I’ve also tried to show the many interesting facets and angles of a “boring”
tech comm career. But I admit, I don’t actively sit around thinking about influence. I just write articles or
record podcasts about issues that matter to me, without thinking of the wider impact. Consequences
related to influence naturally follow, which is what I suspect will happen when you broadcast your meeting
notes over the course of a year or more.

At any rate, whether you’re conscious of influence or not, consider focusing on your strategic initiatives and
other plans. Focus on the issues that truly matter to you, and let the stars align in whatever pattern naturally
follows from that. Don’t sit around thinking like a rhetorician, carefully calculating what buttons to push to
achieve the desired results. That assumes too much control over influence. But as you develop strategies
that matter to your team and pursue them, these topics will naturally surface in your notes and others will
become more aware of them. Just making your strategies more visible will help portray your tech comm
group as more than just documentarians. You’ll be seen as analytic and strategic thinkers, engaged in
important projects to improve the user experience.

Conclusion
As you think about influence, typing up your meeting notes becomes more than just a secretarial task. It
becomes a content problem, with a user audience and potential opportunities to influence those around
you.

Broadcasting your meeting notes to influence a wider audience PDF last generated: August 27, 2023

Documenting REST APIs Page 797

Ensuring documentation coverage
with each software release
Getting a good handle on your release process — such as understanding the cadence of releases, how
features are tracked and tagged in different phases, and other checkpoints prior to the release signoff — is
central to thriving in any documentation role. Providing doc coverage for each release ensures you don’t
accrue documentation debt, and it boosts user satisfaction for the new features being released.

Key details to understand about your release process
To integrate into your release process, try to get a better understanding of the following:

• How to view the release roadmap. The roadmap allows you to anticipate what’s coming 6+
months down the line. Look for those big tickets that will require more than a few paragraphs of
content. You want to avoid being ambushed one week before release with a last-minute request
that puts you into crisis mode. Some tickets might require an afternoon of work, while others
require integration into a team’s meetings over the course of several weeks.

• Understand the definition of done. How do product teams qualify their feature for release?
Surely QA must sign off on the feature, but is there a docs requirement prior to release as well?
First, look for any definition of done embraced by your product group. Is documentation
included? If not, look for ways to insert docs into the process, even if informally.

• Where to see dashboards and tracking mechanisms. What sites, tools, or documents are
used to track what’s planned for upcoming releases, and how do you adjust the toggles on these
dashboards to look at the next few releases? Each company has its own tools for this, and they
aren’t always obvious to those outside of product management. Features might start as idea
pitches before being moved to another tracking mechanism, each with their own statuses and
workflows, timelines, checkpoints, and other details.

Checking for doc coverage
When you see the release items surface on the horizon, look through each item included in the release and
assess whether you have doc coverage. If you have a goal for 100% doc coverage for each release, you
could score the doc coverage against all items in the release. For example, suppose you have six new
features being released in the next version. Can you indicate a changelist or other commit that covers each
of the features being released? When you start tracking doc coverage meticulously like this, it forces you to
account for each necessary update.

What needs docs?
What items in the release actually need docs? Basically, if there’s a release, it means something changed.
These changes usually need documentation. However, sometimes the changes are backend fixes and
optimizations that don’t affect users. Maybe the dev team spent a month fixing technical debt around
spaghetti code, and there’s no need to document anything for external users. If so, great, you can avoid
doc coverage for that release item.

Another scenario that might not need docs are bug fixes that don’t change any existing functionality.
Release notes often include a list of bug fixes, and if the fixes simply address glitches in the code, they
might not need docs either.

Ensuring documentation coverage with each software release PDF last generated: August 27, 2023

Documenting REST APIs Page 798

https://www.productplan.com/learn/agile-definition-of-done/

But by and large, most items in the release should point to some page in the documentation. Release notes
are meant to be short teasers for content that is elaborated upon in the pages of your documentation. For
example, release notes for a feature might have a one paragraph summary with a link to a documentation
page that expands in more detail. A good-looking release notes page will have a lot of paragraphs with
“For more information, see …” links.

Teaching others about the need for docs
As you ensure doc coverage with each release, you’ll be reaching out to product teams and others to ask
questions about docs. Each time you reach out, you reinforce the need for docs, teaching others about
how the doc process works. This helps product teams understand your role and anticipate the need for
docs in the future in advance.

In short, you build visibility, rapport, and awareness of your role (almost like marketing for your group). This
is partly why inserting yourself in the release process as a checkpoint, even if informally, helps your tech
comm group become more integrated with product teams.

Expanding the doc coverage with a doc quality measure
When analyzing whether you have adequate docs for the release, another question to consider is how
much doc coverage for a feature is actually needed. What if a new feature only has a few inline comments
in a code file? Does that count as documentation? In the scope of documentation, a feature might merit
anything from a brief description to a full-fledged tutorial, sample app, walk-through code, extensive step-
by-step tasks, and more.

Here’s where you have some options for a doc coverage goal. You could expand the doc coverage with an
additional category of doc quality. For each feature covered by docs, you could score the documentation
with a quality rating. As a tech writer, you typically know when docs are good or not. For example, did you
personally test the docs, or just copy and paste content an engineer gave you? Does the documentation
describe the request and response in a complete way? Are the step-by-step tasks described with enough
detail for users to make their way through the docs?

I know that the features I personally test usually end up with much better documentation. While it might
seem like a given that tech writers test all the features they document (p. 342), that’s hardly the case. The
setup and execution of the features often requires extensive engineering knowledge and expertise. If you’re
working in dev docs, testing each feature is a feat unto itself.

Conclusion
Integrating into the release process helps build the foundation for a healthy, aware documentation group
that is plugged into product team releases and roadmaps. It helps you avoid documentation debt as well
as stay looped in early for larger features requiring more advanced planning. The more you ensure doc
coverage for each release, the more others become aware of your role with documentation and the need
for docs in the future.

Ensuring documentation coverage with each software release PDF last generated: August 27, 2023

Documenting REST APIs Page 799

Chapter 13: Metrics and measurement
Metrics and measurement addresses ways to measure API documentation quality and how to track your
progress on improvement. You can use the quality checklist here to review essential components of
documentation and decide how your API docs measure up. The checklist can be a way to investigate,
analyze, and interrogate your documentation from another perspective and discover ways to improve it.

Chapter sections:

Measuring documentation quality through user feedback... 801

Different approaches for assessing information quality... 804

Quality checklist for API documentation .. 814

Quantifying your progress .. 825

Chapter 13: Metrics and measurement PDF last generated: August 27, 2023

Documenting REST APIs Page 800

Measuring documentation quality
through user feedback
As you set goals for your role or team, you might want to measure your impact on documentation quality in
some way. The main reason for measuring your impact should be to evaluate your progress against
documentation improvement goals. If you don’t have any data to provide feedback on your efforts, it’s hard
to know if you’re making a difference.

Also, metrics are essential for business reasons: upper management will invariably ask you for metrics of
some kind (because what you can’t measure, you can’t manage). Metrics will also be key if you’re making
the case for a promotion (leveling up) or defending your performance during annual review time. Ultimately,
though, you need metrics to answer this question: Is what I’m doing making a difference?

Despite the importance of metrics about documentation quality, they are an elusive, holy-grail type task
that almost no one in the industry has nailed down. How do you know if your docs are any good? The first
response people usually give is that you measure documentation quality through user feedback. In this
section, I’ll explain why trying to measure documentation by collecting user feedback is problematic.

The problem with doc surveys
The first inclination many have when measuring documentation quality (how good your docs are) is to
conduct surveys with users. After all, it doesn’t matter what the technical writer thinks of the
documentation; it’s what the user thinks, and how successful the documentation was in helping the user in
some task, right?

To a degree, yes, you can only really evaluate the usefulness of documentation from the perspective of a
user going through the documentation with some tasks in mind. However, surveys are a difficult, inefficient
way to go about measuring documentation quality for several reasons:

• Survey responses aren’t usually actionable
• Users aren’t regularly available for surveys
• Survey questions are difficult to formulate
• Users are sometimes unreliable

Survey responses aren’t usually actionable
First, feedback from users about documentation is often too general and unactionable to be helpful. If you
do a satisfaction survey and find that only 30% of users would recommend the documentation to a friend,
what can you do with that information? If surveys indicate that your docs are poor and need improvement,
can you act on that? Which docs? Which parts need improvement? Are they “confusing and useless”?
What’s confusing or unhelpful about them? All of the docs, or just parts? Is the feedback a general
impression overall, or focused on a specific user scenario from a single documentation topic?

Without more specifics, the information falls flat and doesn’t lead to any actionable follow-up. If you can’t
identify the friction points and areas that need to be fixed, what good are the survey results? They might
only serve to depress the technical writers.

In looking into ways to measure information quality, I found Yoel Strimling’s article Beyond Accuracy: What
Documentation Quality Means to Readers to be spot on in identifying the issues with surveys. Strimling
says that questions in all types of feedback (whether asked in surveys, focus groups, face-to-face
interactions, or other) need to be specific to be actionable. Echoing the conclusions of other researchers,
Yoel explains:

Measuring documentation quality through user feedback PDF last generated: August 27, 2023

Documenting REST APIs Page 801

https://www.researchgate.net/publication/331088095_Beyond_Accuracy_What_Documentation_Quality_Means_to_Readers
https://www.researchgate.net/publication/331088095_Beyond_Accuracy_What_Documentation_Quality_Means_to_Readers

… it is not enough for us to collect meaningful feedback about our documentation
from our readers. We also need to be able to use the information we collect to take
actions that will help us directly address and prioritize the issues that are important
to them.

In other words, surveys alone, without actionable feedback, aren’t enough. A user might provide general
feedback, saying that the docs felt like they needed polish, or that they had trouble understanding/
following them, or that they seemed incomplete. But without more specifics, this feedback isn’t all that
actionable.

Users aren’t available for surveys
Another problem with surveys is that most technical writers don’t have direct and continued access to
users to survey them on a regular basis. I wrote about the challenge of reconstructing the absent user in
my series on Simplifying Complexity. It’s unfortunate but the norm that technical writers have very little
contact with their target users — not just access to users for surveys, but access to users through support
interactions, training, presales, onboarding, or other situations. If users aren’t available to survey, collecting
their feedback becomes difficult.

Unbiased survey questions are difficult to formulate
Let’s say you do have access to users, another challenge with surveys is how to formulate the questions.
You have to be skilled in the way you pose survey questions to avoid bias in the responses. Strimling dives
into research about survey formulation and lists the characteristics of a good survey. For example,
questions must be “long enough to be useful, and short enough to encourage participation” (quoting
Barnum). They need to be unambiguous, non-threatening, easily answerable, clear, unassuming, etc.
Overall, survey questions are hard to formulate.

If you’re a regular reader of my blog, you’ve probably seen a lot of small surveys I include with each article.
I’ve learned that formulating survey questions is an art, and questions need to be simple, unambiguous,
and easy to answer. At the same time, you have to consider what the actual goals of the survey are and
what you plan to do with the feedback. Surveys are hard to do right.

Users are sometimes unreliable
Another problem with surveys is audience unreliability. We base the value of our docs around the user’s
perspective, but what if users are unreliable or unhelpful? There’s a lot of variation, subjectivity, and
unreliability with survey responses. Sometimes people use docs as a scapegoat for other issues related to
poor product design, company dissatisfaction, or other frustrations. Often when I’m taking a survey, I base
my responses on one part of the product or docs that I’ve been using, not on the whole. One bad topic can
taint the user’s response about the entire docs, distorting the quality measure.

Additionally, people who respond negatively in satisfaction surveys might not be your target audience. You
might have been writing for an audience already familiar with a certain framework, but your survey might
include someone new to the framework who found the docs worthless because they don’t have the needed
background. Other times, users might respond so hastily that their responses are cryptic and vague.

Measuring documentation quality through user feedback PDF last generated: August 27, 2023

Documenting REST APIs Page 802

https://idratherbewriting.com/simplifying-complexity/reconstructing-the-absent-user.html

What can replace surveys?
I’m not entirely dismissive of surveys — I’m only being realistic. They have rarely worked for me. If the
survey’s purpose is to highlight the importance of documentation in general, e.g., how critical it is for
complete and accurate documentation to help users complete tasks, great. But that’s a different purpose
than measuring documentation quality. A metric about the importance of docs would support resourcing
for doc efforts or other goals for establishing tech comm’s importance. But to make improvements with
quality, you need information that is much more specific and actionable, and that’s where general surveys
tend to fall short.

Rather than sink too much time and energy into surveys as the only way to measure doc effectiveness, I
propose a much more concrete and realistic approach to measuring doc quality: assessing the
documentation against a detailed quality checklist. The checklist can take the general qualities of
measurement (e.g., clarity, accuracy, relevance, findability, etc.) and make concrete what these abstract
qualities mean and how they can be implemented.

Also, while many scholars have defined characteristics for information quality, I’ve yet to see a checklist
specifically focused on developer documentation. In the sections that follow, I’ll go into specific detail for
describing information quality with developer docs, moving beyond high-level abstract definitions of quality
to focus on more tangible, concrete ideas.

Continue on to the next section, Assessing information quality (p. 804).

Measuring documentation quality through user feedback PDF last generated: August 27, 2023

Documenting REST APIs Page 803

Different approaches for assessing
information quality
In the previous topic, Measuring documentation quality through user feedback (p. 801), I explained the
challenges of getting feedback from user surveys as a way to measure documentation quality. In this
section, I’ll survey the landscape on criteria and rubrics for assessing documentation quality.

Common categories for information quality
Documentation quality is generally assessed against the following criteria:

• Readability
• Clarity
• Context
• Accuracy
• Organization
• Succinctness
• Completeness
• Findability

In Beyond Accuracy: What Documentation Quality Means to Readers , Yoel Strimling looks at previous
research on the attempt to define information quality and finds a wide range of different quality definitions:

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 804

https://www.researchgate.net/publication/331088095_Beyond_Accuracy_What_Documentation_Quality_Means_to_Readers

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 805

https://www.researchgate.net/publication/331088095_Beyond_Accuracy_What_Documentation_Quality_Means_to_Readers
https://www.researchgate.net/publication/331088095_Beyond_Accuracy_What_Documentation_Quality_Means_to_Readers

As you can see, defining information quality is a constant theme in tech comm research. While the
characteristics are somewhat similar, they aren’t described in the same way, and they are mostly general
and abstract. Troubled by the lack of a unified approach to documentation quality, and by the slipperiness
of terms and lack of consistency, Strimling asks, which of these qualities matter most to users?

Strimling aligns with researchers Richard Wang and Diane Strong (1996) because of the way their research
aligns with the “voice of the data customer” and because of the soundness of their framework and
research. Wang and Strong’s research is the foundation for many other articles here as well. After
describing 118 information quality dimensions, Wang and Strong boil them down to four main criteria. Yoel
explains:

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 806

https://www.researchgate.net/publication/331088095_Beyond_Accuracy_What_Documentation_Quality_Means_to_Readers
https://www.researchgate.net/publication/331088095_Beyond_Accuracy_What_Documentation_Quality_Means_to_Readers

Based on their categories, Wang and Strong (1996) concluded that high-quality data
must be:

• Intrinsically good
• Contextually appropriate for the task
• Clearly represented
• Accessible to the consumer

You can read the original article by Wang and Strong in the Journal of Management Information Systems if
you have access to it, or online here . These researchers made a pivot in how they measured data quality
— rather than considering the accuracy of the information on its own, they looked to see what aspects
were important to users, and factored that user perspective into the quality assessment. They explain:

The salient feature of this research study is that quality attributes of data are
collected from data consumers instead of being defined theoretically or based on
researchers’ experience.

In other words, you can’t measure data quality (DQ) without analyzing what quality dimensions are
important to users. In their research, they settled on the four criteria that Strimling summarized:

1. [Intrinsic DQ] The extent to which data values are in conformance with the
actual or true values;

2. [Contextual DQ] The extent to which data are applicable (pertinent) to the
task of the data user;

3. [Representational DQ] The extent to which data are presented in an
intelligible and clear manner and

4. [Accessibility DQ] The extent to which data are available or obtainable.

Wang and Strong’s emphasis is on data quality, not necessarily documentation. Building on Wang and
Strong, Strimling identifies 15 different dimensions to documentation quality and then asks users to rate
them by importance. He concluded that these four categories are most important to users: accurate,
relevant, easy to understand, accessible. These criteria are based on the level of importance assigned to
them by the readers who participated in his study. He proposes that you can measure quality by asking
users these four questions:

• Could you find the information you needed in the document?
• Was the information in the document accurate?
• Was the information in the document relevant?
• Was the information in the document easy to understand?

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 807

http://mitiq.mit.edu/Documents/Publications/TDQMpub/14_Beyond_Accuracy.pdf

Strimling says you can ask users these questions during various interaction points (doc surveys, training
situations, support interactions, onboarding, and more). The questions aren’t simply yes/no questions but
would include follow-up questions asking for more details if problems are noted (you can see a sample
survey here). Similar to Wang and Strong’s user-based DQ framework, these criteria aren’t priorities
from writers but rather from users. (Note: In later research, Yoel found that “completeness” might be more
important than “relevance.”)

The problem with abstract definitions
These four criteria seem like a solid way to evaluate documentation if you have a way to frequently interact
with your users. But even if you could regularly survey your users, these abstract categories don’t provide
details about how you might go about making the information more clear, relevant, accurate, and findable.

In other words, these categories are too high-level and general to be more actionable. For example, what
does it mean for something to be clear when you consider different audiences and varying technical
backgrounds? Is well-written code clear even if doesn’t have comments? The categories fail to specify
tactics and tools for executing clarity, relevancy, accuracy, and findability. How do you make something
more clear and relevant? What specific steps do you take? So even if you were to get feedback from a user
who says that the documentation is not clear, is not relevant, and isn’t easy to understand, it would be
difficult to take any specific actions based on this feedback without the user unpacking the detailed
reasons for which he or she felt this way.

If you’re not a user (but rather a technical writer) trying to assess documentation through these four
questions, the questions are also not helpful. They can’t be fully answered by a non-user. For example,
“Could you find the information you needed in the document?” Only the reader can answer this. “Was the
information in the document relevant?” Again, only the reader can answer this, not the writer. “Was the
information easy to understand?” Again, only the reader can answer this. So while these questions seem
like a good approach, I’m not sure how useful they are.

How can we break away from the dependence on user surveys but still develop a method for quality based
on the user’s perspective? This is my central question in this section.

Fortunately, if we take the starting categories here (accessibility, accuracy, relevance, clarity), and we are
confident that these attributes align with user priorities, then we only need to define how these attributes
can be implemented in documentation in specific, concrete, and actionable ways. This is a point Strimling
starts to make in So You Think You Know What Your Readers Want? . He says, “In lieu of feedback,
what we need is a proven model of how readers actually define documentation quality (DQ), which we can
then use to ensure that what we produce is useful to our audience.” The checklist that I’ll define in the next
section is a model that identifies specifics from these general qualities.

Other research
Before jumping into the rubric, let’s survey the information quality landscape a bit more, as there are a few
other sources worth mentioning. First, Pronovix, a company that specializes in creating developer portals,
holds regular Developer Portal Awards . As such, they provide general reasons why they rate some
developer portals higher than others. For example, in What is the MVP for a Developer Portal? they
write:

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 808

https://www.surveymonkey.com/r/VJL6QHD
https://www.surveymonkey.com/r/VJL6QHD
https://www.researchgate.net/publication/331088225
https://pronovix.com/blog/best-developer-portals-2020
https://pronovix.com/blog/what-mvp-developer-portal

We compiled a first list of questions that provides users with the information they
might need while working with your API product:

• What is this API?
• How do I get started with this API?
• What do I need to understand about this API?
• How do I get X done with this API?
• Do I know all the details of this API?
• How do I use your API in Y?
• Is somebody still working on this API?
• Where do I go when I have a problem with this API?
• How do I get access to this API?
• Can I afford this API?
• Can I trust this API?

When a user says the documentation is “unclear” or lacks “relevance,” it’s probably because the
documentation does not address some of these questions. This is what I mean by being specific about
how to make documentation clear without solely relying on survey feedback.

These bullet points are all good questions that one would expect documentation (or a developer portal) to
cover. See these articles from Pronovix describing more best practices for documentation and developer
portals:

• What goes into an award winning developer portal?
• How to Improve Developer Adoption and Onboarding
• The Best Developer Portals of 2020

Keep in mind that Pronovix’s focus is on developer portals, not standalone API documentation sites (they
explain the difference here). As such, they place more emphasis on how users interact both inside and
outside the documentation, such as getting API keys from an admin portal, checking service status pages,
participating in a community, and more. Since most companies have multiple documentation sites, often
aggregated in a portal, I think the emphasis on developer portals is actually more relevant than on
documentation alone.

Also, unlike scholarly research, Pronovix looks for best practices and successful patterns in the field,
without trying to justify their criteria based on research or from studies that objectively verify and rank these
characteristics. Some standards they recommend include API explorers for interactivity, mechanisms to
scan and locate reference material, site designs that inspires trust, clear use cases for the API, code
samples available in multiple languages, frictionless onboarding, community integration, and more.

Another great resource is Nordic APIs . In 5 Examples of Excellent API Documentation (and Why We
Think So) , Thomas Bush evaluates 5 documentation sites based on these criteria:

• Authentication guide
• Quickstart guide
• Endpoint definitions
• Code snippets
• Example responses

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 809

https://pronovix.com/blog/what-goes-award-winning-developer-portal
https://pronovix.com/blog/how-improve-developer-adoption-and-onboarding
https://pronovix.com/blog/best-developer-portals-2020
https://pronovix.com/blog/what-difference-between-api-documentation-and-developer-portal
https://nordicapis.com/
https://nordicapis.com/5-examples-of-excellent-api-documentation/
https://nordicapis.com/5-examples-of-excellent-api-documentation/

Bush highlights reasons for admiring certain sites, noting that the lesson with Stripe is “don’t overdo it.” For
Twilio, it’s “be beginner-friendly.” For Dropbox, it’s “cater to unique dev backgrounds.” For GitHub, it’s
“save developer time wherever you can.” And for Twitter, it’s “be flexible with how you present
information.”

Another Nordic API article, 7 Items No API Documentation Can Live Without , discusses 7 essential
components in API docs:

1. An Authentication Scheme
2. HTTP Call Type Definitions
3. Endpoint Definitions
4. URI Structures, Methods, and Parameters
5. Human Readable Method Descriptions
6. Requests and Examples
7. Expected Responses

In my quality checklist (p. 814), I’ve listed each of these items but only briefly and generally. Sites like
Nordic APIs and Pronovix provide more detailed guidance about how to optimize your documentation
in each of these areas.

Technical writing handbooks
Another place to find quality checklists and guidance for implementing general characteristics like clarity,
relevance, accuracy, etc., is in technical writing handbooks. In Developing Quality Technical Information: A
Handbook for Writers and Editors , the authors provide a mountain of detail for best practices. They
divide their guidelines into these categories and subcategories:

• Easy to use
• Task orientation
• Accuracy
• Completeness

• Easy to understand
• Clarity
• Concreteness
• Style

• Easy to find
• Organization
• Retrievability
• Visual effectiveness

In this model, you might score docs from 1 to 5 depending on how well the docs fulfill each characteristic.
The textbook has a lot of examples and detail about how to go about each of these characteristics. There’s
even treatment of code samples. Here’s the comprehensive quality checklist provided in the Appendix:

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 810

https://nordicapis.com/7-items-no-api-documentation-can-live-without/
https://nordicapis.com/
https://pronovix.com/
https://learning.oreilly.com/library/view/developing-quality-technical/9780133119046/app01.html
https://learning.oreilly.com/library/view/developing-quality-technical/9780133119046/app01.html
https://learning.oreilly.com/library/view/developing-quality-technical/9780133119046/app01.html
https://learning.oreilly.com/library/view/developing-quality-technical/9780133119046/app01.html

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 811

https://learning.oreilly.com/library/view/developing-quality-technical/9780133119046/app01.html
https://learning.oreilly.com/library/view/developing-quality-technical/9780133119046/app01.html

Overall, there are 60 specific characteristics within the various categories. Why not simply adopt this quality
checklist? It wouldn’t be a bad approach, for sure. And the principles are so widely held that few would
object to them. But I wanted something even more concrete, actionable, and focused on API
documentation and developer portals.

Standards specifications
Another place to look at information quality would be standards such as the ASD-STE100 . The ASD-
STE100 standard was developed by the Aerospace and Defense Industries Association (ASD) to encourage
Simplified Technical English (STE). STE consists of a dictionary of about 900 allowed words and a set of 65
writing rules intended to encourage more simplified English.

Another standard is ISO/IEC 26514:2008 - Systems and software engineering — Requirements for
designers and developers of user documentation , which is a standard that “specifies the structure,
content, and format for user documentation, and also provides informative guidance for user
documentation style.”

In the realm of documentation standards, there’s also IEC/IEEE 82079-1 - Preparation Of Information For
Use (Instructions For Use) Of Products - Part 1: Principles And General Requirements . Referencing an
ISO standard might make your embrace of the standard more defensible. Embracing standards defined
here would allow you to benefit from principles already debated, vetted, and finalized. If only the ISO
publications were more accessible (e.g., without paywalls), these information resources could be much
more valuable.

Another resource developed by SAP and later generalized and adopted by tekom is Standards and
Guidelines for API Documentation , by Anne Tarnoruder. You can read a summary of the 68-page book
in a tcworld article here: Standardizing API documentation . Tarnoruder emphasizes clear naming
guidelines for APIs, noting:

Names are the user interface of APIs. Meaningful, clear, and self-explanatory naming
is a key factor in API’s usability and adoption.

Technical writers might work with developers on names to ensure best practices with API design,
especially regarding names. I covered some of these principles in my summary of Arnaud Lauret’s book,
The Design of Web APIs (p. 488). However, my focus here is more on documenting an API that has already
been finalized rather than providing input on best practices for API design.

Tarnoruder’s book provides comprehensive guidelines for writing the descriptions of API elements in the
OpenAPI definition files, illustrated by examples. Tarnoruder also provides templates for REST and OData
APIs, if you’re not already using something like OpenAPI. And she provides detailed guidelines for
documenting APIs such as Java with Javadoc.

For developer guides, Tarnoruder provides guidelines such as including “conceptual, setup, quick start and
how-to information” and avoiding “implementation details irrelevant to users.” This advice is fairly
commonplace. However, more interesting, she also encourages writers to address both a code-first
learning style and a concepts-first learning style. She writes:

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 812

http://www.asd-ste100.org/
https://www.iso.org/standard/43073.html
https://www.iso.org/standard/43073.html
https://webstore.ansi.org/Standards/ISO/IECIEEE820792019?gclid=Cj0KCQiA6Or_BRC_ARIsAPzuer-sndUAjuadJ-nhVGSbZeUX-MfS_jFuZj3mSC_-eyEcRiP-LFyTuMMaAmpKEALw_wcB
https://webstore.ansi.org/Standards/ISO/IECIEEE820792019?gclid=Cj0KCQiA6Or_BRC_ARIsAPzuer-sndUAjuadJ-nhVGSbZeUX-MfS_jFuZj3mSC_-eyEcRiP-LFyTuMMaAmpKEALw_wcB
https://www.technical-communication.org/tekom/publications/specialist-books/detail/standards-and-guidelines-for-api-documentation
https://www.technical-communication.org/tekom/publications/specialist-books/detail/standards-and-guidelines-for-api-documentation
https://www.tcworld.info/e-magazine/technical-writing/standardizing-api-documentation-949/

Various usability studies show that API documentation users differ in their learning
preferences:

Those with a top-bottom approach would first read all the conceptual topics, and
only then start trying the API calls. Those who prefer a bottom-up approach would
delve right into code samples to get a quick hands-on experience with the APIs.
(Standardizing API documentation)

This is a pattern I described in How Developers Use API Documentation: An Observation Study (p. 444)
and is based on research by Michael Meng, Stephanie Steinhardt, and Andreas Schubert in How
Developers Use API Documentation: An Observation Study . The authors describe “opportunistic”
behavior (people who learn by immediately trying out code and learning by trial and error) versus
“systematic” behavior (people who start by carefully reading the manual before acting) as two common
patterns of observed usage for developers using documentation. They encourage documentation to
accommodate both learning styles.

Other sources for quality
Many other sources can inform documentation quality. For example, the Good Docs project aims to
create templates that incorporate best practices. For example, by using the Overview template , you’ll
automatically address the various questions and topics needed here. The project has templates for an
overviews, quickstarts, reference material, discussions, how-to tasks, logging, tutorials, and more.

Another place to look for information quality is perhaps with information typing models (Information
Mapping, DITA, and more). But I’ve already surveyed the landscape sufficiently here. My intent is not to
exhaustively survey research on information quality. As Strimling’s earlier research pointed out, most
people generally agree on the high-level categories. I want to instead provide specifics on implementation,
especially for developer docs.

Continue on to the next section, Quality checklist for API documentation (p. 814), where I’ll list the details of
my information quality checklist for developer docs.

Different approaches for assessing information quality PDF last generated: August 27, 2023

Documenting REST APIs Page 813

https://www.tcworld.info/e-magazine/technical-writing/standardizing-api-documentation-949/
https://sigdoc.acm.org/cdq/how-developers-use-api-documentation-an-observation-study/
https://sigdoc.acm.org/cdq/how-developers-use-api-documentation-an-observation-study/
https://thegooddocsproject.dev/
https://github.com/thegooddocsproject/templates/blob/v0.1/api-overview/about-overview.md

Quality checklist for API
documentation
This section continues from the previous page, Different approaches for assessing information quality (p.
804).

As indicated earlier, my goal is to create a practical guide for measuring quality. Instead of looking at docs
against a list of general, abstract criteria, I recommend another approach: assessing docs against a list of
characteristics that, if fulfilled, should lead to a high-quality user experience automatically. Each of the
characteristics must be specific, actionable, and unambiguous in how it would be implemented in your
docs. In this section, I’ll present a comprehensive quality checklist for API docs and developer portals.

API documentation quality checklist
The following checklist is a checklist that involves a deep look at your docs. The checklist’s criteria are in
no particular order Also, the list shouldn’t be seen as definitive or as a foolproof recipe for perfect
documentation. Some points might apply more than others, depending on your product, domain, and
audience. But overall, these are criteria/characteristics that will likely lead to a better experience with
developer docs.

API documentation quality checklist
(comprehensive version)

Findability

Findable in search. The content is indexed in a general search engine and findable when
you create searches with the product name and some key tasks.

Release notes present. Release notes track changes to the product and documentation.

Site-specific search available. The doc site has a site-specific search that lets users
search within the documentation site itself.

Developer portal hub context. If you have lots of documentation relevant to users, the
documentation is organized in a developer portal of some kind.

UI pages link to docs. If there’s a UI (such as with an administrative console), links within
the UI connect users to the relevant documentation.

Main organization isn’t an FAQ. The content doesn’t have an endless FAQ with
information that should have been integrated into more logical places in the document.

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 814

Version selection is available. If content has multiple versions, the versions are called out
visibly in the topic and might have a selector or link allows users to navigate to the
other versions.

Easy path to top 5 pages. There’s an easy path for users to find the top 5 most-visited
pages on the site. This requires you to look at metrics to determine these pages, and
then assess the flow to those pages.

Topics have article-like length. Each topic consolidates much of the necessary
information about the subject in a standalone, modular way. The topics don’t fragment
the subject into too many small topics that require the user to bounce around, losing
context. At the same time, entire guides aren’t shoved into single topics, making them
eternally long. The length of topics should be about like a web article (for example,
500-3,000 words long).

Content follows task-based organization. Content is organized primarily by task and from
a user’s perspective rather than solely by doc type. The exception is that reference
content is often consolidated on its own in an auto-generated output.

Developer portal has IA flow. The information architecture (IA) in the developer portal
organizes content within a larger context or story, even if it’s just a list of links under
various categories.

Accuracy

Steps are accurate. The steps in the tasks accurately lead to the results promised by the
task, without missing any details. For example, if the instructions say to click a button
name, the button is named the same way in the interface. If the instructions say to use
a class, the class is spelled as it appears in the code library, etc.

Code samples work. Code samples that can be copy and pasted actually work.

Content reviewed within past year. Content has been reviewed by a subject matter expert
within the past year. Ideally, each topic should include metadata such as the last-
reviewed timestamp, last author, and the group that owns the content.

Timestamps are visible. The documentation provides a visible timestamp of the last time it
was edited so that users can gauge how current the documentation is.

No broken links. Links point to correct pages or are appropriately handled by redirects to
equivalent pages.

Instructions are consistent. Information isn’t repeated in confusing, redundant, or
inconsistent ways. For example, the documentation doesn’t explain how to do a task
one way in Topic A but then a different way in Topic B. If content is re-used, the re-use
is usually single-sourced to reduce inconsistency.

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 815

Screenshots are up to date. Screenshots and other visuals are up to date with the state of
the interface (if there is one).

Deprecated features are noted. Features that are no longer supported (or which have
been deprecated) are clearly noted as such in the documentation. Preferably, if a
feature has been deprecated, a migration path to an alternative solution is provided.

App code matches doc code. Code in sample apps matches the code described in the
documentation. The sample app hasn’t evolved in ways that no longer match the
documentation.

Relevance

Key use cases are documented. The documentation doesn’t just provide reference
information (e.g., auto-generated API documentation) but also explains how to use the
API with tutorials guiding users through common use cases and journeys. The content
should address the most common use cases intended for the product.

Code samples exist. Code samples showing sample ways to use the API (or similar
tools) are provided. Ideally, the code samples are available in the user’s target
language. This might mean providing multiple code samples.

Support options noted. Options for contact or support are provided, even if the support
merely involves posting to a peer-monitored forum.

Reference material is interactive. The docs allow users to interact with the functions, API
calls, or other commands often using their custom data. Typically, with REST APIs, an
API explorer allows users to try out requests using their own data. Other sites might
use Jupyter Notebooks to run code that can be customized. Seeing responses with
your own data can make the API seem more relevant.

Feedback options available. A feedback option is included in the docs so readers can
relay feedback about their experience. When users provide feedback, they get the
sense that someone is listening. This helps users feel more relevant.

Docs are published when features released. Documentation is available at the same time
the feature is released and made available to users, not after the fact.

GitHub is actively monitored. If the product has a code repository on GitHub (or similar),
this repository is actively monitored when users log issues or submit pull requests.
Users aren’t simply ignored.

Clarity

Product overview page answers “wh” questions. The overview explains the big picture
and describes the problem that the tool or service addresses. Common who/what/

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 816

https://idratherbewriting.com/learnapidoc/docapis_codesamples_bestpractices.html
https://idratherbewriting.com/learnapidoc/docapis_doc_overview.html

where/why questions are answered here.

Access and authorization explained. Details about how to get access, permissions, and
authorization to use the API are provided. For example, this topic might cover how to
authorize an API call with API keys.

Overview addresses use cases. The overview provides a high-level description of the
main use cases or business objectives of the product. This allows users to get a sense
of what the API is all about.

Overview has architectural diagram and explanation. The overview has a diagram of
the main components and how they interact. This provides users with a glimpse of the
whole.

Overview has index of assets that the product offers. If there’s an SDK or developer kit
that users can download, the contents of this download are described. This is similar
to product instructions that start by identifying all parts that should have arrived in a
package.

Subsystems have their own overview pages. For larger systems that might have multiple
subsystems (e.g., groups of APIs for different scenarios), these subsystems have their
own landing pages that resemble the higher-level overview (with use cases, diagrams,
getting started links) but scoped to that specific subsystem.

Getting started tutorial exists. A getting started tutorial is provided for users to get
started in an end-to-end way with the product, producing a sample output that builds
their confidence. This topic might provide info on how to sign up, register, get API keys
or permissions, and start using the API. (This topic might link to the authorization topic
but is more comprehensive in scope. The purpose of this topic is frictionless
onboarding.)

Sandbox environment available. A sandbox environment is available for users to try out
the tool/system/API on their own and get a better understanding of how it works.

README file exists in code repo. If the product has a code repository, the repository
contains a README file that provides information similar to the overview (but
abbreviated), including information on how to contribute if applicable. (The README
might simply link to the documentation overview but also include unique sections such
as how to contribute in the repo.)

Tasks have prerequisites sections. Each task has a “Prerequisites” section that explains
knowledge requirements, tool requirements, essential concepts, etc., necessary for
completing the task.

Tasks have numbered steps or sections. Tasks are articulated through a series of

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 817

https://idratherbewriting.com/learnapidoc/docapis_doc_overview.html
https://idratherbewriting.com/learnapidoc/docapis_doc_overview.html
https://idratherbewriting.com/learnapidoc/docapis_doc_getting_started_section.html

specific, usually numbered steps or sections that reduce the complexity of the task.
More complex tasks might require more granular and numerous steps or sections so
as to reduce the complexity. (This is the primary way that technical writers simplify
complexity.)

Sample app available. In more robust docs, a sample app might serve as a reference
implementation for users.

Code sample has inline comments. Code samples are appropriately commented, either
with inline comments, comments that preface or follow the sample, or both. Long code
samples with no explanation aren’t just dropped in.

Any role-based permissions are noted. If there are different roles and permission levels
that correspond to varying capabilities, these roles are noted in all places they apply,
such as within the individual API reference. For example, if only admin roles can use a
certain endpoint, this is noted in the endpoint’s reference and in any places that use
the endpoint.

Steps are detailed rather than general. Specific steps for completing tasks are described
in detail rather than glossed over in general ways — unless the task is something the
audience is already familiar with. Overall, the documentation strikes a balance between
providing enough detail for users to get the job done but not including too much detail
that the reader is inundated with extraneous information.

Workflow maps connect topics in larger flows. Larger tasks that span multiple topics
have a workflow map (or similar mechanism) that connects the topics together.

Visuals aid in areas of confusion. In places that are particularly confusing, appropriate
visuals or additional examples have been added to reduce confusion.

Support cases are minimal for the product. Users can follow the documentation by
themselves without relying on peer or customer support. A large number of support
cases or forum threads containing questions that could have been answered in the
documentation would indicate that the users aren’t self-sufficient through the docs.

Technical level is appropriate to audience. The documentation’s technical level is
appropriate to the target audience but might not serve every possible audience (for
example, total newbies to a programming language might struggle with documentation
intended for developers already experienced in that language). Usually, general
concepts in a programming language that you assume the audience knows are not
explained in the documentation. Instead, your company’s product, configuration, and
usage are covered in the context of the programming language. One exception is when
the implementation requires a non-standard process or workflow that merits some
explanation.

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 818

https://idratherbewriting.com/learnapidoc/docapis_sample_apps.html
https://idratherbewriting.com/learnapidoc/docapis_codesamples_bestpractices.html
https://idratherbewriting.com/learnapidoc/simplifying-complexity/macro-micro.html

Experiential learning paths are available. The documentation provides opportunities for
experiential/opportunistic users to start learning immediately through code and trial/
error, and for more systematic users to learn by reading concepts first.

Doc recommend the simplest path when multiple options exist. If there are multiple
paths to a solution, the documentation focuses on the simplest path (though other
possibilities might be briefly mentioned).

Docs call out relevant sections in a sample app. In cases where a sample app
complements the documentation as a reference implementation, the documentation
should refer to different aspects of the sample app.

Completeness

Reference docs follow industry standards. For native library APIs (or other API types),
reference docs (auto-generated from source code comments) are available. This might
mean Javadoc , Doxygen , OpenAPI outputs like Swagger or other reference
docs specific to the library. The reference docs should be populated and generally
follow tagging standards.

Parameter docs have complete info. Parameter documentation typically includes a
description, data type, min/max values, sample values, and optional/required usage.

Reference content has consistent structure. Reference material such as APIs follow a
common structure within each topic , mostly following a request-response type
structure. Typical sections include descriptions, parameters, sample requests or
usage, and sample responses.

Error messages are documented. Error messages that users can encounter are
documented and discoverable through search. This supports the opportunistic/
experiential user behavior .

Responses includes both sample and schema (REST APIs). The response
documentation for REST APIs provides both a sample response and schema. The
response provides an example of what might be returned, while the schema defines all
possible elements that might be returned and describes attributes such as data types
and whether the elements are required or optional in the response.

Troubleshooting section exists. The documentation has a troubleshooting section (either
standalone or included within the section/topic it relates to) that provides information
on how to solve common problems. The troubleshooting information indicates where
things might go wrong and how to fix them. In other words, the documentation doesn’t
just describe the happy path.

Limitations/thresholds documented. If there are limitations and thresholds (for
example, max number of API calls, max file sizes, max string lengths, max/min

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 819

https://idratherbewriting.com/learnapidoc/nativelibraryapis_exploring_javadoc_output.html
https://idratherbewriting.com/learnapidoc/nativelibraryapis_doxygen.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_intro.html
https://idratherbewriting.com/learnapidoc/pubapis_swagger.html
https://idratherbewriting.com/learnapidoc/docapis_doc_parameters.html
https://idratherbewriting.com/learnapidoc/docapis_api_reference_tutorial_overview.html
https://idratherbewriting.com/learnapidoc/docapis_doc_status_codes.html
https://idratherbewriting.com/learnapidoc/docapiscode_research_on_documenting_code.html#systematic_vs_opportunistic
https://idratherbewriting.com/learnapidoc/docapiscode_research_on_documenting_code.html#systematic_vs_opportunistic
https://idratherbewriting.com/learnapidoc/docapis_doc_sample_responses_and_schema.html
https://idratherbewriting.com/learnapidoc/docapis_doc_sample_responses_and_schema.html
https://idratherbewriting.com/learnapidoc/docapis_rate_limiting_and_thresholds.html

parameter values, max server load), these limitations are called out in the docs.

Locale limitations noted. If a feature is available only in certain contexts (locales,
languages, platforms, roles, versions), that information is noted clearly in the feature.
For example, an API that is only available for enterprise versions might have a label
that says “Enterprise Version Only,” or if only available for a particular platform, might
say “Linux Only” or the equivalent.

Unhappy paths are documented. If there are pitfalls or other traps, gaps, and gotchas to
avoid, these are noted in the documentation rather than hidden from the user. A
section called Known Limitations often contains this information. The
documentation doesn’t lie or mislead the user but rather is transparent, honest, and
helpful even if it means exposing the product’s warts and revealing problems users
will like encounter.

Readability

Grammar isn’t distracting. Sentences are grammatically correct and read well, without
distracting the user or calling attention to the language.

Placeholder text in code is visually apparent. In code samples, placeholder text that
needs to be customized is clearly indicated to the user. It’s not confusing what is code
and what needs to be changed, like APIKEY .

Sidebar nav has consumable organization at a glance. The sidebar navigation lets users
take in a sense of the whole while also allowing users to expand more details as
desired. The sidebar isn’t a massive list of seemingly endless scrolling and expansion +
expansion + expansion but rather divides up doc sets into logical groups, like chapters
in a book. For systems with large numbers of topics, progressive disclose techniques
might be implemented across primary, secondary, and tertiary levels of information.

Sidebar nav highlights the current topic. As the user navigates each topic, the sidebar
navigation makes it clear where the user is in the navigation (for example, the topic
highlights clearly and the navigation sticks open at that level). Breadcrumbs might also
help establish site context.

Context remains consistent when navigating. When a user clicks topics in the navigation,
the UI doesn’t shift context in jarring ways, such as unexpectedly taking the user to
another doc set or changing stable navigation areas like the sidebar and header (which
should be consistent for every page). This jarring navigation often happens when
sidebar entries point to topics in other doc sites. If this is the case, the external links
have an icon indicating the link takes them to another site.

Doc types have consistent names across product docs. Common topics have similar
names across doc sets in the developer portal. For example, the Overview, Getting
Started, Troubleshooting, Glossary, Release Notes, and Reference are named

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 820

https://idratherbewriting.com/learnapidoc/2010/12/16/known-limitations/
https://idratherbewriting.com/learnapidoc/2017/07/13/transparency-in-documentation/
https://idratherbewriting.com/learnapidoc/2017/07/13/transparency-in-documentation/

consistently to help users understand how to navigate the site. One doc set shouldn’t
call a topic “Latest updates” and “First steps” while another uses “What’s new” and
“Quickstart.”

Subheadings are descriptive. The subheadings are descriptive enough to allow users to
get a gist of the topic by merely reading the subheadings. The subheadings also follow
a parallel structure so they can be more easily scanned and read.

Topics start with summaries. Each topic usually has a short summary below the title
that encapsulates the main purpose of the topic. This helps users get a sense of the
topic at a glance.

Glossary exists. Unfamiliar words and jargon are defined in a glossary . At times, the
glossary terms are linked to their glossary definitions.

Glossary entries match the actual terms used in the content. Glossary terms (as defined
in the glossary) are actually used consistently across the documentation. For example,
one doc set doesn’t use a certain term while another uses a synonym of the term, with
the admin UI using yet another term. If the glossary lists a term for a particular concept,
the documentation content consistently uses that term.

Code samples have proper formatting and highlighting. The formatting in code samples
follows standard white spacing, line breaks, and other syntax for the language. Code
syntax highlighting appropriate to the language has been applied to increase the
code’s readability.

Responsive view presents content in a readable way. The content can be read on a
mobile device (e.g., iPhone) in a usable way. For example, the responsive view allows
users to navigate the sidebar links and view code samples.

Navigation mechanisms are consistent across docs. Navigation mechanisms work
consistently across all docs in the developer portal. For example, in one set of docs, if
top-level folders expand to show child items rather than opening to their own page, the
same behavior is found in other docs.

Sentences and paragraphs are somewhat short. Sentences are somewhat short,
paragraphs are relatively small, and subheadings are frequent. A readability score will
place the content at the high-school level, not college.

Language uses active voice. The language uses active voice (where warranted) with clear
subjects and verbs positioned closely together.

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 821

https://idratherbewriting.com/2018/09/15/pages-at-a-glance-feature/#enforcing-best-practices-with-structure
https://idratherbewriting.com/learnapidoc/docapis_glossary_section.html

For a version of this checklist that is easy to copy and paste, see Quality checklist for API docs (simplified
html) – comprehensive version (p. 0). This output strips away most formatting and just list the various
criteria in a basic HTML file. Copy and paste the content into Google Docs or Microsoft Word. Then as you
go through the content, make your notes in the “Assessment” area.

Is this list complete? No
The checklist has about 75 different characteristics that I’ve described. Did I miss anything? Sure, you
could probably expand this list with 100 more characteristics.

However, there’s also something to be said for a practical list of key points. The more criteria you add, the
more laborious it becomes to evaluate docs. The most popular style guides (e.g., Strunk and White) are
those that briefly cover the main points you need rather than providing an exhaustive list, especially if many
guidelines are already followed.

Considerations as you evaluate your docs
As you evaluate your docs, consider the following:

• Doc scope: If you’re working on a developer portal, chances are you don’t own the entire portal.
You might just own one little section of the portal. That’s okay. You can limit your review to just
the scope that you own. Granted, the user journeys might extend beyond this scope, but start
with your stewardship first. The last thing you want to do is start a war with other authors by
identifying all kinds of issues with their content (at least not before you address your own issues
first).

• Levels of assessment: Another consideration is just how much you can assess without more
familiarity with docs. You can’t know if the steps are accurate unless you go through the steps.
You can’t know if the docs are consistent unless you’ve read all the documentation. You can’t
know if the code works unless you can run it in a test environment. It might take more than a year
working with the docs to be able to make these kinds of assessments. So pick and choose the
criteria that are appropriate for your level of familiarity with the docs.

• Good docs can’t fix bad design: Poor API design will make even good docs problematic, no
matter how well-written your content is. If the API has inconsistent naming, incomplete
parameters, doesn’t map to user journeys, and is cumbersome to use, then documentation also
becomes more cumbersome to follow and implement. Good docs can’t fix bad API design,
though docs can try to salvage the user experience.

Short version of the API documentation quality checklist
Feedback I’ve received about the checklist is that it’s too long — isn’t there a lightweight version? Based
on this feedback, I selected what I think are the highest priority criteria in each section. But again, as I’ve
said elsewhere, my selections here are somewhat arbitrary and might depend on your particular product,
user, and domain.

API documentation quality checklist (short version)

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 822

/Users/tomjoht/projects/idratherbewriting/_site/learnapidoc/docapis_quality_checklist_html.html
/Users/tomjoht/projects/idratherbewriting/_site/learnapidoc/docapis_quality_checklist_html.html

Findability

Findable in search. The content is indexed in a general search engine and findable when
you create searches with the product name and some key tasks.

Release notes present. Release notes track changes to the product and documentation.

Accuracy

Steps are accurate. The steps in the tasks accurately lead to the results promised by the
task, without missing any details. For example, if the instructions say to click a button
name, the button is named the same way in the interface. If the instructions say to use
a class, the class is spelled as it appears in the code library, etc.

Code samples work. Code samples that can be copy and pasted actually work.

Relevance

Key use cases are documented. The documentation doesn’t just provide reference
information (e.g., auto-generated API documentation) but also explains how to use the
API with tutorials guiding users through common use cases and journeys. The content
should address the most common use cases intended for the product.

Code samples exist. Code samples showing sample ways to use the API (or similar
tools) are provided. Ideally, the code samples are available in the user’s target
language. This might mean providing multiple code samples.

Clarity

Product overview page answers “wh” questions. The overview explains the big picture
and describes the problem that the tool or service addresses. Common who/what/
where/why questions are answered here.

Access and authorization explained. Details about how to get access, permissions, and
authorization to use the API are provided. For example, this topic might cover how to
authorize an API call with API keys.

Completeness

Reference docs follow industry standards. For native library APIs (or other API types),
reference docs (auto-generated from source code comments) are available. This might
mean Javadoc , Doxygen , OpenAPI outputs like Swagger or other reference
docs specific to the library. The reference docs should be populated and generally
follow tagging standards.

Parameter docs have complete info. Parameter documentation typically includes a
description, data type, min/max values, sample values, and optional/required usage.

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 823

https://idratherbewriting.com/learnapidoc/docapis_codesamples_bestpractices.html
https://idratherbewriting.com/learnapidoc/docapis_doc_overview.html
https://idratherbewriting.com/learnapidoc/nativelibraryapis_exploring_javadoc_output.html
https://idratherbewriting.com/learnapidoc/nativelibraryapis_doxygen.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_intro.html
https://idratherbewriting.com/learnapidoc/pubapis_swagger.html
https://idratherbewriting.com/learnapidoc/docapis_doc_parameters.html

Readability

Grammar isn’t distracting. Sentences are grammatically correct and read well, without
distracting the user or calling attention to the language.

Placeholder text in code is visually apparent. In code samples, placeholder text that
needs to be customized is clearly indicated to the user. It’s not confusing what is code
and what needs to be changed, like APIKEY .

For the copy/paste version of this checklist, see Quality checklist for API docs (simplified html) — short
version . Similar to the simplified form of the comprehensive version, this output strips away most
formatting and just list the various criteria in a basic HTML file.

Quality checklist for API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 824

https://idratherbewriting.com/docapis_quality_checklist_html_short.html
https://idratherbewriting.com/docapis_quality_checklist_html_short.html

Quantifying your progress
This section continues from the previous page, Quality checklist for API documentation (p. 814).

Analysis and quantitative metrics
It’s hard to imagine that documentation that checks all of the boxes in the quality checklist (p. 814)
wouldn’t also score highly with user satisfaction surveys. Can you honestly see any documentation that
legitimately satisfies all of these criteria as falling short with users?

And yet, to achieve the level of information quality, we didn’t have to rely on constant user surveys to
gather feedback. By identifying best practices for content design (specifically for API/developer
documentation), we’re able to increase the documentation quality in more self-sufficient, self-directed
ways.

Moving towards quantification
In my initial go-around with the quality checklist, I tried to move towards quantification by including scores
and weights for each criteria, and then dividing the achieved number of points by the total points. From this
scoring, I tried to move from qualitative to quantitative measurement.

However, in practice, I found that assigning scores for each section felt arbitrary and subject to personal
whims. I don’t think others found the scores meaningful either. Instead, just having a checklist of criteria to
consider was valuable enough. That’s why i stripped out the section on quantification in later revisions to
the content — because I want the advice I give here to be helpful in practice, not just theory.

I’m not saying that some approach to quantifying documentation wouldn’t work, just that my approach did
not. Also, recognize that the quality checklist has no official data to support it — instead, these best
practices come from experience in the industry and from best practices that I and others have observed
within the realm of developer documentation.

This is likely the problem with my approach: who’s to say that documentation needs each of these criteria
to succeed? It’s possible that documentation might still be findable, accurate, relevant, and clear without
many of these more concrete components. I don’t have any user-based research to say that docs should
be this way, that they should have an overview, that reference material should follow a consistent structure,
that tasks should be detailed in steps, or that error messages should be documented, etc. And honestly, I
doubt any checklist can prove its objective value.

Remember that user surveys (p. 801), which I criticized earlier as problematic, should both complement
and confirm the criteria in the checklist. User surveys specifically for docs that rate highly with the quality
checklist should also rate higher in satisfaction surveys than surveys for docs that score more poorly. But
again, to establish a kind of correlation through surveys relies on a host of factors (objective, unbiased,
unambiguous survey questions from a large sample of a representative audience across domains), which is
likely difficult to pull off on a regular basis.

Overall, I am confident that few would object to most of the criteria in the checklist (p. 814). Most of the
checklist’s criteria would be agreed upon by both readers and writers with enough common ground as to
be a practical guide for improving documentation quality. Also, the criteria should be seen as a first draft, a
starting point that can be refined and improved, checked against industry standards, confirmed against
docs that are loved by users, refined through constant feedback, and more.

Quantifying your progress PDF last generated: August 27, 2023

Documenting REST APIs Page 825

Chapter 15: AI tools and API
documentation
AI tools can help speed up authoring, demystifying code, automating publishing tasks, populating
templates, and more. This section will look at how to use AI tools within the context of API documentation.

This section is under construction, as I’m working on the content right now. Expect for the content to be
complete probably by end of year. Currently, the PDF contains only the available sections.

Chapter sections:

First look at the Oxygen XML AI Positron Assistant .. 827

AI document engineering with pattern-based prompts ... 842

Using AI tools to build, stage, and publish API reference docs... 851

Using AI to learn coding ... 856

Using AI for language advice ... 860

Using AI to create doc updates based on bugs... 864

Using AI For thematic analysis ... 870

Using AI for comparison tasks with API responses ... 879

Chapter 15: AI tools and API documentation PDF last generated: August 27, 2023

Documenting REST APIs Page 826

First look at the Oxygen XML AI
Positron Assistant
The Oxygen XML Positron Assistant lets you use AI tools inside Oxygen XML to help with a variety of
writing tasks, such as writing short description elements, correcting grammar, improving readability, adding
index terms, and more. Positron hooks into an AI provider (currently ChatGPT 3.5) to pass your topic
content to the AI with a specific instruction. It then returns the content and allows you to preview the diff,
seeing what has changed and inserting the modified text in place. By integrating directly with your project,
Positron helps you use AI when and where you need it, without switching contexts or resorting to external
tools.

In this post, I’ll explain what Positron can do, how it works, and include my thoughts and analysis along the
way. Although this is a sponsored post, I’ll still include my own perspective about the uses of Positron and,
more generally, AI. For Positron documentation, see Oxygen AI Positron Assistant Add-on .

Note: This is a sponsored post.

Level-setting expectations
When ChatGPT first launched, many thought roles like technical writer would soon be extinct because
ChatGPT could simply write the documentation. What strengthened this perception was the lack of
sources for ChatGPT responses. It seemed like ChatGPT was an uber-intelligent machine that had learned
all human knowledge and could render it in an infinite variety of ways.

The enthusiasm around AI-generated content has cooled off as some realizations have settled in. If
ChatGPT doesn’t have good sources, its responses are poor. For websites that have trained AI on pages
within their site only, if those sites lack strong content, the bots routinely come up empty handed. AI tools
don’t invent content from thin air. If you try to use ChatGPT to write your documentation for you, without
feeding it informative, accurate content, you end up with made-up, cliche, pseudo-explanatory content.

The more I work with AI, the more I think that raw content generation isn’t the best use of these tools.
Instead, AI tools work better when you feed it some content and ask it to perform a specific task, such as
correcting grammar, extracting index terms, or structuring the content into a specific pattern/format. For
example, instead of generating entire sections from scratch, ask AI to rewrite a few confusing sentences.

Positron gives you tools for this more surgical approach to content development. While Positron is already
built with the most common prompts for ChatGPT, you can also extend it with your own. What I like best
about Positron is that it provides a diff of the response, letting you see what ChatGPT changed. You can
accept the response entirely or pick and choose what you want to accept. The diff tool is actually my
favorite feature in Positron!

Get started
To get started with Positron, see the Manual Installation section in the Positron documentation. Note
that Positron is supported only in versions 25.1 and later of Oxygen XML. After activating the extension, an
AI menu appears at the top. From the AI menu, select Show Positron Assistant.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 827

https://blog.oxygenxml.com/topics/ai_positron.html
https://blog.oxygenxml.com/topics/ai_positron.html#ai_positron__section_kgh_fzg_rsb

The AI menu appears after you activate the AI Positron Assistant

An “AI Positron Assistant” pane appears on the left with buttons for quick actions. On the right, an “AI
Positron Chat” pane shows ChatGPT’s responses.

Sample workflow
The general workflow with Positron involves selecting text, then clicking an action button in the AI Positron
Assistant pane. For example, suppose you’re trying to explain a confusing concept. In this scenario,
pretend you’re a tech writer for OpenAI explaining the concept of “embeddings.” You asked engineers
what an embedding is, but their response was confusing. They wrote,

An embedding is a vector representation of a piece of data (e.g. some text) that is
meant to preserve aspects of its content and/or its meaning. Chunks of data that are
similar in some way will tend to have embeddings that are closer together than
unrelated data. OpenAI offers text embedding models that take as input a text string
and produce as output an embedding vector, classification, and more.

(Note: I just pulled this paragraph randomly from the OpenAI documentation here .)

Dissatisfied with the definition’s clarity, you select the text and click Improve Readability in the AI Positron
Assistant pane:

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 828

https://platform.openai.com/docs/introduction/key-concepts

The general workflow with Positron is to select text, then choose an action in the left AI Positron Assistant
pane

The AI-generated response appears in the right pane. In this example, there don’t seem to be many
changes. To see a diff of what changed, click the Preview link below the modified text. This launches the
diff editor, showing the changes:

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 829

The diff editor lets you preview what changed in the text Positron modified

The diff shows all the language changes. You can see the AI adjusted more text than it initially seemed. I
LOVE the diff preview!

But this AI modified text isn’t that helpful. You still don’t have a clear sense of what an “embedding” is. The
problem wasn’t with poor wording but rather inadequate explanation. You could go back to the engineers
for more details, but you don’t want to look slow.

You decide to further refine the AI prompt. In the right pane, you add this instruction: “provide a couple of
concrete examples to clarify the concept.”

Refining the AI prompt

In fact, you like this “provide examples” trick so much that you want to save it for future prompts. You click
the blue-outlined star icon below this panel and add this modification to your favorites. Now you can easily
insert this refinement without retyping it.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 830

You can add your own prompts to a list of favorites

After adding and saving your favorite, click Send.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 831

Adding custom prompts to your Favorites

The examples offer more clarity! As a tech writer, you know that providing examples is a secret to clarifying
complex concepts, and you’ve been using this technique for years. Now you know how to tease clarity out
of AI as well. That’s why you’re a technical writer.

If you like the response, you can click Replace to insert the response in place of text you initially
highlighted. In this case, because you’re expanding on the concept with examples (not replacing the
original), click Copy and manually insert it in the Text view (because the response already has DITA tags
already).

This scenario provides you an idea of the workflow for using Positron. You haven’t left your documentation
project context, and you surgically selected parts of your existing documentation to improve. Of course,
you’ll want to review the AI-generated additions with the engineers, but even if they adjust the examples,
you’ve already improved the document.

Available action buttons
“Improving Readability” is just one action button. The Positron Assistant offers many more actions:

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 832

Positron includes more than a dozen quick actions

Each button indicates its function when sending the prompt. For convenience, I copied the button prompts
below and also included my own thoughts about their usefulness. Keep in mind, I’ve only briefly explored
these buttons. They might be more useful for different scenarios.

Content Generation buttons

Action Description Tom's thoughts on usefulness

New DITA
Topic

Generate a new DITA XML
topic based on a text
description entered in the
popup dialog box.

Very useful. Suppose you're pasting content from
Google Docs into your project. This prompt
automatically structures the content with the right
DITA XML tags.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 833

Continue
Writing

Generate additional text
based on the content
preceding the text cursor
position.

Not useful for me. This prompt puts the AI into
content creation mode, so it will only predict what
might come next. I haven't found a way to use this
productively. ChatGPT isn't a fortune teller. Expect
hallucination and creativity here. Might be useful if
you have writer's block or something.

Short
Description

Generate a DITA XML
<shortdesc> element
based on a summary of
the selected text or on the
entire document content
and insert it in the
document.

Moderately useful. By providing the existing
context, the AI is less likely to fabricate. If a
request exceeds the 4k token limit, Positron
automatically switches to a model that supports
16k tokens. (100 tokens is about 75 words. Keep
in mind that the token limit includes both the input
and response.)

Index
Terms

Generate a DITA XML
<keywords> element that
contains index terms
based on the selected text
or on the entire document
content and insert it in a
<prolog> element.

Moderately useful. Indexing is one of those
mundane publishing tasks no one likes to do, but
we all know good search depends on index terms.

Rewrite buttons

Action Description Tom's thoughts on usefulness

Correct
Grammar

Correct the
grammar
and spelling
of the
selected
content.

Very useful. We all want to avoid grammar mistakes and typos,
right? This tool can potentially replace other grammar checkers.
Especially when combined with the diff tool, you can see exactly
what grammar changes Positron suggests. Again, the diff tool is
worth its weight in gold. Otherwise, you have to compare the AI
responses line by line or by copying/pasting the original and
modified versions into external diff tools.

Improve
Readability

Generate
additional
text based
on the
content
preceding
the text
cursor
position.

Moderately useful. Beyond the default responses, I improve
readability by asking for clarifying examples and requesting an
explanation that a second grader can understand.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 834

Use Active
Voice

Convert the
selected
text into
active
voice.

Moderately useful. I'm not sure why this grammar principle is
singled out from Correct Grammar, but tech docs are easier to
understand when there's a clear actor performing an action
(active voice). Passive voice obfuscates meaning.

Itemize

Convert the
selected
content into
a summary
and a list of
items.

Not useful for me. This command reformats a paragraph into a
list, which makes it more scannable. I'm not sure how much I
need AI for this. It might be more useful for SMEs writing
documentation (who are often unfamiliar with list conventions in
technical writing style).

Join Items

Convert the
selected list
of items
into a
paragraph.

Not useful for me. This converts a list into a paragraph (the
opposite of the previous command). Perhaps if you write by
making an outline first, this command could speed up the
narrativization of content. It's often easier to create a bulleted list
instead of fully formed sentences. So this prompt might help you
move from an outline to a first draft.

Overview buttons

Action Description Tom's thoughts on usefulness

Readability

Generate
suggestions
for
changing
the selected
content or
the entire
document
to improve
its
readability.

Could be useful. Rather than providing suggestions for improving
readability, the AI response often just rewrites the text, making
this somewhat redundant with Improve Readability. (I think the
point of this action is to teach you to recognize readability
patterns in your content.)

Summarize

Generate a
summary of
the selected
content or
of the entire
document.

Useful. AI tools excel at summarizing content. AI's default
explanatory style fits well with the style of short description
elements.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 835

Generate
Questions

Generate
questions
that are
answered
by reading
the selected
text or the
entire
document
content.

Not useful for me. If you want to see what questions your content
answers, great. I can't imagine actually using this. I'm too lazy to
test how my content might appear in chat or search engines. I'm
more focused on making sure the content is accurate and
complete. Then again, suppose you want to restructure your
content into a Q&A format because that format might surface
better in AI chat responses. This prompt can help you do that.

Answer
Questions

Generate
answers to
questions
you ask
based on
the selected
text or on
the entire
document
content.

Moderately useful. This turns Positron into a wise person whom
you can ask questions. You can use this prompt to get a better
understanding about different parts of your documentation (e.g.,
what is this code doing, why would someone use X, what is an
embedding). Given that we often struggle to understand deeply
technical content, having an AI assistant help explain the
confusing parts, even if sometimes wrong, is a welcome tool.

Translation buttons

Action Description Tom's thoughts on usefulness

English

Translate the
selected
content to
English while
preserving its
original DITA
XML markup.

Not useful for me. These buttons aren't intended to push your
content through translation workflows. Instead, they're more
useful for a non English-native writer (or for content received
from a SME who does not know English well) to quickly get a
correct version as close as possible to the original.

French

Translate the
selected
content to
French while
preserving its
original DITA
XML markup.

(same as above)

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 836

German

Translate the
selected
content to
German while
preserving its
original DITA
XML markup.

(same as above)

Japanese

Translate the
selected
content to
Japanese while
preserving its
original DITA
XML markup.

(same as above)

Keep in mind that Positron only reveals summaries to the authors, not the full prompts that it sends to
ChatGPT. A significant part of mastering AI interaction lies in the art of prompt engineering. If you’re skilled
at eliciting the desired response from an AI bot, a practice akin to magical incantations, your answers will
far surpass those of others. In fact, you can actually purchase prompts for a variety of scenarios, so I can
see why Oxygen XML keeps their full prompts hidden. The skill of creating the perfect prompt for each tech
comm situation is the pivotal factor in a high-quality AI integration.

Error correction
Positron is also integrated into the Results pane to perform error correction. If you have an error with the
DITA code, underlined in yellow, you can right click the error message and select AI Positron Fix. This will
prompt Positron to send the error to ChatGPT to suggest a fix for the error. This will result in speedier fixing
and debugging of issues.

Button prompts
You can also configure Oxygen XML to include buttons in areas where elements are missing content. For
example, if the shortdesc element is missing or empty in a topic, you can configure Oxygen XML to show
a button that will prompt Positron to send a query to ChatGPT to populate that missing content.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 837

You can configure Oxygen XML with buttons to generate AI content in places that are missing content

To configure this, first you define a custom action using an XSL rule. These rules use XPath, an expression
language used for Schematron, XQuery, and more. You would configure the rule to look for a root element
and shortdesc element; if empty, then invoke an action that sends a query to Positron. Here’s a sample
configuration of the custom action.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 838

Configuring custom actions based on XSL rules

After creating the action, you create a style rule in action.css to add a button for an empty shortdesc

element. This button will invoke the shortdesc action. Here’s a sample configuration:

Sample configuration of css action

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 839

For more details on configuring buttons, see the following:

• Webinar: Improving the Oxygen Authoring Experience Through Custom Actions
• Button Form Control
• Form Controls

Limitations
Now that we’ve covered Positron’s functionality, I’ll comment on a few limitations.

ChatGPT 3.5 instead of 4.0

Positron connects with ChatGPT 3.5 instead of 4.0. For simple tasks, there might not be a huge difference,
but I prefer 4.0 quite a bit and think it’s several levels better. That said, I don’t think APIs can interact with
4.0 yet except by waitlist. Also, 4.0 is literally 30x more expensive per query. Additionally, with 4.0, the
response time is slower, you’re limited to fewer requests per minute, and 4.0 doesn’t provide the 16k token
limit model (as with 3.5). For all those reasons, 4.0 is problematic. However, Oxygen XML plans to allow for
more flexibility in choosing models in the future. If someone wants to pay for a ChatGPT 4.0 upgrade, it will
probably become an option.

Choosing other language models

Another limitation is extensibility. Right now, you can connect only to ChatGPT. Future releases will give
you options to connect to other AI providers. (This seems to be the most frequent request in the comments
on the Positron documentation .) Imagine if your company has its own internal AI models. If so, you’d
definitely want to connect to them.

Token limits

In playing around with Positron for an afternoon, I used 62 of the 250 requests. (You can check usage by
clicking the drop-down menu for your email under the “AI Positron Assistant” pane.) My guess is that a
professional technical writer working on documentation for 4 hours a day will exhaust the monthly request
limit within a week. This is because a lot of the tasks require greater amounts of context passed in. When
you want to create a shortdesc of a topic, you pass in your entire document. If it’s 1,000 words, that’s
about 750 tokens right there. Do that for 20 topics in your documentation, and you start using a lot of
requests.

Note that in the first release, Oxygen XML measures usage in “requests,” but future releases will switch to
tokens.

Keep in mind that the Positron Assistant is a free extension. Most other API integrations charge a high
amount and cap the usage at a certain number of queries. (For comparison, the Madbot plugin costs
$129/month.)

Confidential data

Using Positron means sending your content through APIs to OpenAI services to be parsed, transformed,
and returned. If your company doesn’t allow its content to be sent to third-party servers due to the
confidentiality of the data, this extension may be off-limits to you. You can’t connect Positron to a language
model that runs from your local computer only.

For more details about how your content passed into Positron might be used, see OpenAI’s Terms of Use
, specifically section 3c, “Use of Content to Improve Services.” This section says OpenAI won’t use the

content you send through the API to train their model, but they might scrape your public website to train its
model.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 840

https://www.oxygenxml.com/events/2020/webinar_improving_the_oxygen_authoring_experience_through_custom_actions.html
https://www.oxygenxml.com/doc/versions/25.1/ug-editor/topics/button-editor.html
https://www.oxygenxml.com/doc/versions/25.1/ug-editor/topics/form-controls.html
https://blog.oxygenxml.com/topics/ai_positron.html
https://www.improvementsoft.com/Content/Plugins/plugins-madbot.htm
https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use

The confidentiality of data is what’s slowing down big tech companies from using tools like ChatGPT, Bard,
or others. Many companies are afraid of their confidential code and information suddenly appearing in
publicly available language models.

Conclusion
Oxygen’s AI Positron assistant provides a practical approach to using AI when writing documentation. The
integrated experience allows you to stay focused on your documentation in Oxygen XML, and the pre-
made prompt actions help you quickly achieve the desired results.

One detail I haven’t yet addressed is the name: Positron. The name was inspired by Isaac Asimov’s
“positronic brain,” which is a fictional device that provides robots with a sense of consciousness,
reasoning, and simulated emotion. The character Data on Star Trek is an example of a robot with a
positronic brain.

In Oxygen XML, the Positron Assistant isn’t conscious, nor is it about to start simulating emotions. But you
can think of the Positron integration as having a character like Data on your bridge, available to ask it
questions, improve language, suggest fixes, and more. Who wouldn’t want that?

Also, keep in mind that this is the first round of AI integration. We’re at the beginning of what will no doubt
be many more iterations and enhancements with AI integration. We’re getting better at prompt engineering,
understanding strategic ways to integrate AI, and reducing hallucination by passing in documentation
context. It’s an exciting time to be a tech writer. Explore and experiment with these new AI tools and see
what works for you. Then share your experiences with the larger community.

First look at the Oxygen XML AI Positron Assistant PDF last generated: August 27, 2023

Documenting REST APIs Page 841

AI document engineering with pattern-
based prompts
Using patterns in prompts
Pattern prompting involves teaching the AI a specific structure or template, then having it populate
information into that template. Pattern prompts are similar to few-shot prompts, but in this case, rather
than having the language model populate the template with its own information, we’ll have it sort and
structure a mess of information into the template, thus reducing hallucination and error.

Pattern prompts are among the most interesting strategies for making requests with language models; this
is really where the “engineering” aspect of prompting comes into play. In this case, it’s the practice of AI
document engineering. By constructing prompts into patterns for the AI to complete, or templates to
populate, you’ll see the true power of language models emerge. Change your prompt into rules and a
template for language models to populate, and the responses will be much better than open-ended
questions.

The following sections describe a four step process for AI document engineering. These process involves
the following steps: 1. Gather the information, 2. Create rules, 3. Create templates, and 4. Assemble the
information into a prompt.

To use a pattern prompt, follow these sections.

1. Gather the information

First, gather a lot of information about the API you’re documenting. This information will provide the
unstructured information that will be shaped by the template. Usually, when you’re writing documentation,
this information exists in myriad internal documents, scattered across internal sites, written by engineers
and program managers, stuffed into engineering designs, project plans, analysis documents, and more.
Gather up as much of the information as you can and make a list of the documents.

As you read through the documents, sort the relevant information into different buckets based on topic
types. For example, group the information into the following different buckets:

• Product overview
• Troubleshooting
• Authorization
• Best practices
• Reference
• Installation
• Architecture
• Workflows
• Tasks
• Quick start tutorial
• Conceptual explanation
• Release notes
• Rate limiting
• Status and error codes
• Glossary

AI document engineering with pattern-based prompts PDF last generated: August 27, 2023

Documenting REST APIs Page 842

Consider this task the equivalent of sorting laundry. Put each type of clothing into its own pile—socks,
underwear, pants, shirts, etc. For now, just throw everything into distinct buckets, unstructured and
chaotic.

Because of token limits, each bucket should be relatively short. If you’re working with ChatGPT 4.0,
consider a max of about 700 words or so. For ChatGPT 3.5, you can use the higher token limit, but the
response might not be as good.

Admittedly, if you don’t have any of this information, the auto-generation of content isn’t going to work. I
mean, you could still try, but without providing more context to the language model, chances are the model
will end up hallucinating or predicting what it thinks the content should/could/might be. You might need to
spend a lot of time gathering and reading through this information.

2. Create rules for the topic type

Now we need to create some rules for the AI language model to follow. To create the rules, you can
leverage information resources such as the Template Suite from the Good Docs project, or information
from my API course, or from DITA. Create a list of brief rules for each topic type, and then a template.

The Template Suite from Good Docs makes this easy. For example, suppose you want to construct a task
template. From the Template Suite, open the “how-to” and see the about-how-to.md topic.

AI document engineering with pattern-based prompts PDF last generated: August 27, 2023

Documenting REST APIs Page 843

https://thegooddocsproject.dev/

Paste it into an AI language model with the following prompt:

The following is a list of guidelines for writing tasks. These guidelines

provide tips and best practices to follow. Condense this information

into a brief, concise set of rules that an AI prompt can follow. Make

the statement of the rules machine friendly and oriented.

AI document engineering with pattern-based prompts PDF last generated: August 27, 2023

Documenting REST APIs Page 844

https://thegooddocsproject.dev/
https://thegooddocsproject.dev/

The result might look like this:

You could also do more or less the same thing from the DITA Task topic . For example, following a
similar process as above, here’s how the AI language model rendered these rules:

<PASTE IN TASK GUIDELINES FROM ABOUT-HOW-TO.MD>

Rules for tasks:

• Single Task Focus: One guide equals one task.

• Advanced Users: Guides cater to advanced users, not

beginners.

• No Concept Teaching: Guides should not explain concepts.

• Clear Step Sequences: Provide ordered, straightforward

steps.

• Unexpected Scenarios Alert: Inform about possible error

scenarios.

• Avoid Over-Documentation: Document the most common or

recommended task completion method only.

• Ensure Accuracy: Test and confirm the technical accuracy of

instructions.

• Simplicity and Brevity: Limit each guide to 8-10 steps.

• Prerequisites: Specify required knowledge, tools, and

setups.

• Regular Updates: Re-test instructions post product updates

for continued accuracy.

Rules for tasks:

• Ensure document type compliance with the latest standards.

• Answer "How do I?" with clear step-by-step instructions.

• Use distinct sections for prerequisites, context, steps,

results, troubleshooting,

• examples, and follow-up tasks.

• Keep prerequisites succinct and clear.

• Provide brief but helpful context for the task.

• Make steps sequential, logical, and easy to follow.

• Detail specific actions for each step and optionally include

additional information.

• Clearly state the expected outcome in the results section.

AI document engineering with pattern-based prompts PDF last generated: August 27, 2023

Documenting REST APIs Page 845

https://www.oxygenxml.com/dita/1.3/specs/archSpec/technicalContent/dita-task-topic.html

If you don’t have a list of rules or template for a particular topic type, find a good example in
documentation and reverse engineer it through the AI model. For example, you might say:

For the documentation sample, pick out a task from good documentation, such as this Update existing
subscriptions task from Stripe . (Copy only part of the task due to token limits.)

The AI response might be too detailed. Trim it down with a prompt such as the following:

Here’s what I ended up with following this reverse-engineering approach:

• Provide solutions in the troubleshooting section when

expected results may not be met.

• Support tasks with relevant examples.

• Guide users to the next steps or tasks after task completion.

Analyze the following software documentation text and identify core

features which will allow further documents to imitate the same style,

consistency, and formatting as the document below:

<INSERT DOCUMENTATION SAMPLE>

Make the list more concise and machine oriented, as it will be fed as

instructions to an AI language model for processing data.

Rules for tasks:

• Headers: Use informative and concise headers for each

section.

• Ordered Steps: Present instructions in a clear, sequential

order.

• Nested Instructions: Include detailed sub-steps within high-

level steps.

• Direct Addressing: Use direct speech, addressing the reader

as "you".

• Definitions: Provide explanations and definitions for key

terms.

• Tabular Data: Use tables for conveying key information.

• Links: Incorporate cross-references and links to related

content.

• Bold Formatting: Highlight important sections or actions

using bold format.

AI document engineering with pattern-based prompts PDF last generated: August 27, 2023

Documenting REST APIs Page 846

https://stripe.com/docs/tax/subscriptions/update
https://stripe.com/docs/tax/subscriptions/update

For fun, I also asked ChatGPT to merge the three lists of rules. Here’s the outcome:

Seems pretty good to me. Note that you don’t want to be too wordy with the rules because you have
limited tokens to pass. The more tokens the rules occupy, the less text you can process. Also, there’s a
balance between providing too little or too much information—both extremes can lead to poorer results.

3. Create a template

The Good Docs Template Suite also has a template that accompanies each topic type (for the how-to, it’s
template-how-to.md). Copy this template into the following prompt to your AI language model:

Here’s a sample response:

• Standardized Phrasing: Maintain consistent phrasing for

similar steps.

• Logical Structure: Arrange content in a logical flow from

introduction, body to conclusion.

Rules for writing tasks:

• Single Task Focus: One guide per task.

• Sequential Steps: Order steps logically with clear actions.

• Headers and Structure: Use concise headers, organize

content logically: introduction, body, conclusion.

• Definitions and Context: Include key term definitions and

task context.

• Prerequisites: Specify necessary knowledge, tools, and

setups concisely.

• Outcome and Troubleshooting: State expected outcome,

provide troubleshooting solutions.

• Formatting and Cross-References: Highlight important

sections, incorporate related links.

• Unexpected Scenarios: Alert about possible error scenarios.

• Accuracy and Updates: Ensure and maintain instruction

accuracy, update post product changes.

• Simplicity and Brevity: Keep guides to 8-10 steps, avoid

over-documenting, focus on common/recommended

methods.

From the following task template, strip this down into a template for

an AI language model to follow as a pattern:

<PASTE IN TASK TEMPLATE>

AI document engineering with pattern-based prompts PDF last generated: August 27, 2023

Documenting REST APIs Page 847

Here’s a similar template rendered from the DITA Task topic . (It took a little more massaging to get rid of
the angle brackets and technical emphasis.)

Task template:

Title: "{Insert Brief Description of Task}"

Overview: "This guide explains how to {insert a brief description of

the task}."

Before you start: (Optional) "Before you {insert brief description of

task}, ensure: Prerequisite 1, Prerequisite 2, Prerequisite 3."

Task: "{Task Name}"

* {Optional description of the task.}

Steps:

1. {Write the first step here. Start with a verb.}

2. {Write the second step here. Start with a verb.}

• {Substep 1}

• {Substep 2}

Sub-task: (Optional, if the task is big and complex)

See also: (Optional) {Include references to other related guides or

information.}

Task ID: {task_id}

Task Title: {task_title}

Task Body:

Context: {context}

Prerequisite: {prerequisite}

Steps:

• Step 1: {step_1}

• Step 2: {step_2}

• Step 3: {step_3}

• Step 4: {step_4}

Result: {result}

Example: {example}

AI document engineering with pattern-based prompts PDF last generated: August 27, 2023

Documenting REST APIs Page 848

https://www.oxygenxml.com/dita/1.3/specs/archSpec/technicalContent/dita-task-topic.html

Coming up with these rules and templates shouldn’t be too hard. The Good Docs Project , DITA OASIS
committees, style guides, and other groups have been meeting for years to come up with the rules and
templates for technical writing. Plus, you have all the best practices listed in my API doc course (for
example, see the Conceptual documentation section (p. 358)). Now all this hard work can be used to teach
machines how to write documentation.

4. Assemble the instruction for the AI

In this step, you’ll pass information into an AI, such as ChatGPT, Bard, Claude, Poe, or another language
model. (If you don’t want to use ChatGPT or Bard, here’s a long list of alternatives .)

If you company prohibits you from pasting internal content into third-party AI models like this, you might
run into a roadblock here.

With your set of rules and template, apply it to the unstructured content in a prompt like this:

And voila! You should have a draft of documentation ready to review and add to your documentation
project. It won’t be perfect, but it will probably be 70% there.

Demo
To demo this process, let’s say you’re creating documentation about how to make a basic call with the
OpenWeatherMap API (an API I’ve used elsewhere in this course). You gathered the info about making a
basic call here in this Google Doc . The information is just pasted in randomly without much shape or
form.

For this task, I used ChatGPT 4.0. You can see the response here . I also pasted it into Bard and
received a similar response (but Bard doesn’t offer an easy way to share the link to the output).

In looking at the output, I can see that the template might need to be modified in some ways. Also, this
how-to task might not be as applicable to API documentation as other types of documentation. That said,
the AI language models do a nice job of taking content and fitting into the shape and feel of
documentation. Overall, this approach feels like the right way to do AI document engineering. The next
steps might be to create rules and templates for all the documentation types listed above, providing them
as a ready-made toolkit for writing documentation.

INPUT:

You are a technical writer creating documentation, specifically a task.

You follow a list of rules and arrange information into a given

template.

Rules: Here are the rules for writing tasks:

<INSERT RULES>

Template: Here is the template for writing tasks:

<INSERT TEMPLATE>

Make the following content fit into the task template above:

<INSERT UNSTRUCTURED CONTENT>

AI document engineering with pattern-based prompts PDF last generated: August 27, 2023

Documenting REST APIs Page 849

https://thegooddocsproject.dev/
https://writesonic.com/blog/chatgpt-alternatives/
https://docs.google.com/document/d/1F8e0U4EUuKoXO2rhjhII5mknnTSVe7_W64dPZJYSsfE/edit
https://chat.openai.com/share/2b317b7e-dc67-4906-9144-dcbc0f10d60e
https://bard.google.com/

Conclusion
For each of the topic types, you can assemble a set of rules and a template that you can easily pass into
your AI language model. You could even store your set of prompts in a prompt manager extension ,
though I imagine storing them in a Google doc would be easier to update and maintain. Using this
approach, your content will follow a more predictable format and structure. Theoretically, you could write
the documentation for your project in half the time.

Of course, due to the high degree of errors from AI models, you should review all the documentation with
subject matter experts. Recognize the language models have an uncanny ability for sounding correct and
authoritative when they are lying.

Like I said in my disclaimer above, this is a method I’m still experimenting with. I won’t know how well it all
works until I’ve been able to run an actual project through the process.

AI document engineering with pattern-based prompts PDF last generated: August 27, 2023

Documenting REST APIs Page 850

https://chrome.google.com/webstore/detail/chatgpt-prompt-manager/fpgdhccnlfjokogfeacdpaepkebekmih

Using AI tools to build, stage, and
publish API reference docs
At the core of API documentation work is building, staging, and publishing of API reference content.
Whether it’s Javadoc , Doxygen , OpenAPI , or other reference output, almost every API has
reference documentation that you build, stage, and publish with each release.

Given the centrality of documentation building and publishing tasks, AI tools can be a great help when it
comes to configuring scripts to perform these tasks. This is one AI area few people are focusing on, but
scripts are an easy way to incorporate AI to improve your productivity and reduce the tediousness of
document production.

In this article, I’ll focus on shell scripts (.sh) because they’re commonly used in Linux environments when
working with files. For docs-as-code systems, shell scripts can do a lot of tasks. You run a shell script from
your terminal like this: ./some-script.sh . The script then performs a process on one or more files.
However, you could just as easily create other types of scripts, such as Python scripts.

Publishing example
One product I support includes Java API documentation, including a Javadoc for the reference docs. To
build the Javadoc, I roughly do the following:

• Get a link to the release build from the build management system
• Configure a build command using the release build link
• Switch into a special branch for the build
• Build the reference output for multiple API variants
• Copy the generated outputs from the build output directory to the documentation directory
• Insert a note into the pre-release builds
• Push the docs to the staging server
• Set up a changelist to review with engineers

Doing this all manually required us to follow a series of steps that took about 10-15 minutes, tediously
following an internal guide through the process. Because the reference documentation is generated from
comments in the source files, if we spotted something we wanted to fix in the comments, we would need
to rebuild the Javadoc output and re-transfer everything to the staging server again.

After doing this a few times per release (for example, trying to get code for links correct, figuring out some
Markdown formatting, or adjusting the language in a comment), it became extremely tedious.

One day I created two shell scripts that automated the entire process down to about a minute, with almost
no cognitive load. You just ran the scripts and waited for them to process. All of the complexity was in the
scripts. We fed the shell script commands a couple of parameters and then watched them work, speeding
through each step of the process with breakneck speed. It almost felt like cheating.

Building a shell script
For a developer familiar with shell scripting, creating a script to automate a build process probably isn’t too
hard. It depends on the complexity of the build process. But I’m a shell scripting novice, and I didn’t feel
like devoting a summer’s worth of time learning shell scripting how-to’s. (Actually, I did read through a
20-page shell scripting guide, but it didn’t get me any closer to the code I needed.)

Using AI tools to build, stage, and publish API reference docs PDF last generated: August 27, 2023

Documenting REST APIs Page 851

https://idratherbewriting.com/learnapidoc/nativelibraryapis_javadoc_tags.html
https://idratherbewriting.com/learnapidoc/nativelibraryapis_doxygen.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_intro.html

Using AI tools, I stepped my way through each piece of logic that I needed until I completed the script in
about two days. Due to confidentiality of data and processes, I generalized my AI queries using pseudo
code like this:

And so on. You get the point. AI would return code that worked (most of the time) and also taught me
about shell scripting along the way.

Writing pseudo code is fairly easy. If the AI tool starts recommending methods not available in your
environment (e.g., configuring Flask or Ruby plugins), steer it back in the direction of shell scripts or other
technology supported in your environment. The key is to write specific instructions as pseudo code.

Granted, you will need some technical familiarity with code to make your through this process. But if you’re
a technical writer, you probably have this technical acumen already. And if not, you can learn.

Reference content is high value–tech writers should be involved
Due to the complexity of building and configuring files in reference generation processes, many technical
writers actually delegate the reference docs to engineers. For example, tech writing teams might say they
don’t have bandwidth to build the reference output and will require engineering teams to do it instead.

However, this puts the reference content in the engineer’s domain, removing technical writers from the
process. If technical writers don’t participate in editing and crafting reference content for an API, they put
themselves outside of the perhaps most valuable aspect of API documentation.

Because reference content is high-value content, I prefer to get my hands dirty with field definitions, cross-
references, identifying incomplete definitions, and so on. Here’s a little-known secret about API technical
writing: you don’t have to be a developer to provide valuable input about language-specific API reference
documentation, such as for Java or any other language. For the most part, a Java API provides various
classes and methods that return data. The developers working with your API are primarily interested in the
data that gets returned. Usually, the data in an API is poorly described. I rarely see developer questions
about how to use the API’s classes and methods; instead, developers ask for more details about the data.

In fact, with the prevalence of AI tools to explain code, general knowledge about working with a
programming language is less needed. What’s essential is the clarity of information about what’s specific to
your API. What’s specific is the data the API returns, not the constructs and mechanics of the programming
language and usage.

Build a shell script that does the following:

• Run the command foo. The output of the foo command is

bar.

• From the bar response, capture the part after path acme.

• Store the part after the path acme into a variable called

barResponse.

• Pass the barResponse variable as a parameter into the beta

command.

• The output is a doc called mydocs.zip. Unzip the mydocs.zip

and copy it over to another directory here ...

• On each page of the output, insert a note after the <body>

element that says ...

Using AI tools to build, stage, and publish API reference docs PDF last generated: August 27, 2023

Documenting REST APIs Page 852

If you want to be a key player with API documentation, you probably need to manage the building and
publishing of the reference content. Maybe your company has a push-button system already in place. If so,
great. Chances are, however, especially if you’re working in a docs-as-code shop, there are probably
custom processes all over the place, and scripts that manage it all. By creating your own shell scripts to
automate part of the building and publishing of reference docs, you can stay involved as a key player with
reference docs without losing bandwidth and energy in library building and publishing tasks.

Another script-building example
I was feeling pretty good about my first advanced shell script, so I started wondering what else I could do. I
have another scenario that involves disambiguating between preview API documentation and current
release documentation. I’d been generating two reference variants, but they were hard to distinguish in the
developer portal. Could I write a script to identify specific pages in the preview (based on a diff of two table
of contents), and then insert custom notes on those specific pages, and other notes for the release variant?

Again, I started proceeding line by line with the logic. It didn’t take more than two afternoons before I’d
finished the script. This one helped disambiguate the various outputs and insert custom notes. Although
I’m sure developers could have done this, they’re usually too involved in writing code to focus on the
documentation. (In my experience, it’s rare for engineers to sink time and energy into anything related to
documentation, even if it involves coding build logic.)

Blog example
Outside of building reference docs, you can use scripts for other tasks. A few months ago I posted a script
about creating a new post on my site that populated the post with the needed frontmatter, tags, and also
made a call to Rebrandly to create a shortlink for a post. See A script that creates a new Jekyll post and
populates it with YAML frontmatter, and also makes a curl call to add a Rebrandly shortlink (p. 0), or view
the code here: post.sh .

I also created some scripts to customize the PDF build process (the output of which I publish here (p. 0)). I
haven’t explained much about that process, but the PDF build logic I’ve created for this site is pretty nifty.
My PDF build command is a script here: pdf_build_docapis_all.sh . This script references a page
prince-list-all.txt that has its own code to gather up all the pages for Prince XML (the PDF

generation tool). After the build, another script, pdf_upload_docapis.sh , uploads the content into
Wasabi, the server where I host binary assets like PDFs and images.

I also have a simple upload script for images as well, upload.sh , that lets me upload images to
Wasabi from the command line and returns the code for easy copy/pasting into a site. Given how common
it is to upload images, this small script has saved me lots of time over the past few years.

Other applications for scripting
Depending on your systems for technical authoring and publishing, you could create scripts for many
aspects of authoring and publishing, especially as you combine the shell scripts with other command line
interfaces available to you. Here are a few example applications, including the ones I’ve already mentioned:

• Build reference docs and copy them into your documentation system.
• Create new pages and populate them with the needed frontmatter and sections based on the

doc type.
• Upload images to your web server, with responses that include copy-and-paste ready HTML

code with figure references and captions.
• Generate and publish PDF versions of your content.
• Configure release processes that kick off builds based on specific events, such as a bug that

gets closed or a code release.

Using AI tools to build, stage, and publish API reference docs PDF last generated: August 27, 2023

Documenting REST APIs Page 853

/blog/create-script-to-auto-create-new-post-jekyll
/blog/create-script-to-auto-create-new-post-jekyll
https://github.com/tomjoht/tomjoht.github.io/blob/main/post.sh
https://github.com/tomjoht/tomjoht.github.io/blob/main/post.sh
/learnapidoc/download.html
https://github.com/tomjoht/tomjoht.github.io/blob/main/pdf_build_docapis_all.sh
https://github.com/tomjoht/tomjoht.github.io/blob/main/prince-list-all.txt
https://github.com/tomjoht/tomjoht.github.io/blob/main/prince-list-all.txt
https://github.com/tomjoht/tomjoht.github.io/blob/main/pdf_upload_docapis.sh
https://github.com/tomjoht/tomjoht.github.io/blob/main/pdf_upload_docapis.sh
https://github.com/tomjoht/tomjoht.github.io/blob/main/upload.sh
https://github.com/tomjoht/tomjoht.github.io/blob/main/upload.sh

• Identify the last time a page was edited, correlated with analytics that list the most viewed pages
of your site.

• Trigger actions that kick off when people create changelists for documentation edits, such as
notification workflows for specific groups or product owners of those groups.

• Create pre-staging checks (linters) on existing content, such as style checking, Markdown
formatting, link validation, alt tags on images, and more.

• Convert file formats using tools such as Pandoc to automate the conversion.
• Version content after a release by archiving content and updating file names and directories.
• Perform post-publishing actions, such as updating a search index, closing bugs, or pinging

groups with links to the new docs.
• Send build notifications to specific groups about the status of docs during build, staging, and

publishing to keep groups informed.
• Script a process that generate bugs for each step of a release.

Look for opportunities to automate processes with scripts.

The downsides of using AI for help with scripting
The picture I’ve painted so far is a positive one. However, there are a few downsides to using AI to help you
with scripting. First is what happens when an engineer who actually knows shell scripting reviews your
code and makes helpful, high-level suggestions to improve the logic, without realizing that you have only a
superficial understanding of how it all works. This actually happened to me.

When this happens, do you openly admit that you used AI to come up with the code? Do you feed the
suggestions to the AI and ask it to incorporate the suggested tweaks? Do you shrug your shoulders and
just say thanks? In my case, I again interfaced with AI to incorporate the suggested script enhancements.

Consider another scenario where your AI reliance becomes extreme and constant. Suppose you’ve started
writing all kinds of scripts and apps that you have no business creating because you don’t understand how
any of the code works, only that it does. At some point, you might end up so reliant on AI for code that you
pass even the simplest of requests to AI, trying out its responses and changing the queries when the code
doesn’t work. You shortcut attempts to actually learn the syntax you’re using and instead just ask AI tools
to help you with every little tweak to the code.

Well, if you’ll doing a lot of shell scripting, it would be a good idea to actually learn how the code works.
Fortunately, the AI code gives you a great starting point to learn, especially because most AI tools explain
the code that they provide. This brings me to another point that I’ll make in later post: Using AI tools to
learn code.

But chances are, right now you’re in a hurry, and you just need this one script for this one task, then you
don’t need to work with that scripting language for anything else … for now. Is it really worth spending a
week or two to learn it, or can you get by with partial understanding? Fortunately, you have the choice to
take either path. AI has given you more options.

Apathy from lack of understanding/expertise
There’s also a sense of hollowness that follows when you let AI write the code, a sense of apathy that
follows machine reliance. When we lose our expertise and self-sufficiency, we become less interested in
the tasks we’re performing. We see ourselves as an intermediary between the code and the machine, a
kind of middle-person who articulates instructions and relays the responses, but who doesn’t create the
information or code anymore. This apathy can lead to boredom in our role. And with boredom, loss of
interest and care.

Using AI tools to build, stage, and publish API reference docs PDF last generated: August 27, 2023

Documenting REST APIs Page 854

However, again, if you see this happening, I would recommend studying the code that AI generates and
using it as a springboard for your own learning and study.

Conclusion
AI tools empower technical writers with scripting capabilities, whether it be shell scripts, Python scripts,
CLIs available at your work, or more. In particular, shell scripting can help you automate parts of your build
process that are tedious, making it easier to push docs through advanced build and publish processes. In a
world of doc ops, where continuous builds and publishing are becoming the norm, tech writers need as
much automation as possible with these processes.

Using AI tools to build, stage, and publish API reference docs PDF last generated: August 27, 2023

Documenting REST APIs Page 855

Using AI to learn coding
The challenge of learning code
One challenge API technical writers face is understanding developer code and tools (p. 664). This is by far
the most intimidating aspect of being an API technical writer. Chances are, you’re working with code from
various programming languages without a deep understanding of them. Yet your job is to explain to a
target audience of developers the purpose of the code and how to use it. At first, this requirement seems
like API technical writers would need to be developers themselves to succeed.

As if documenting code for one project weren’t enough, API technical writers must also support multiple
projects simultaneously, often with different types of code. You might document a Java API for one project,
a REST API for another project, some Go code for an SDK, some C++ code for another project, and so on.
It can be nearly impossible to be fluent in all of these languages. Even keeping the terminology straight (a
“function” in one language, a “class” is another, etc.) can be challenging.

Fortunately, you can use AI tools to learn code. AI tools can act like a friendly programming buddy who is
sitting next to you, ready to explain anything you want, at whatever technical level you need. You can zero
in on a specific question or broaden it out to increase your understanding from ground zero.

An example: Learning Javadoc tags
The other week I was trying to refamiliarize myself with all the Javadoc tags (p. 712) I needed to know to
make sure the Java project I was documenting was properly tagged. One area I specifically wanted to
focus on was the @link tag. I prompted AI for a course on Javadoc tags:

You can see ChatGPT’s response and my thread here . For general topics like this, in which there are
likely abundant sources online to train the model, the responses are pretty good.

If you read my thread, you can see that I got stuck along the way and was able to use ChatGPT to work
through issues. For example, I had a sample Java project (p. 0) that I wanted to use to experiment with
tags, but I’d forgotten how to generate the Javadoc (p. 707). Running the command that AI gave me didn’t
work and resulted in errors, so I asked it for help in sorting through the errors. In a few minutes, I installed
the right VS Code Java extensions and got back on track.

The ability to zoom in on specific issues, work through error messages, and control and pace and direction
of the course makes for a phenomenal learning experience. If you’re not already an AI enthusiast, using AI
to learn a technical topic like this might make you a convert.

During the AI-generated course, I could also ask why my sample code didn’t work. For example, as I
experimented with the @return tag, the Javadoc didn’t show the return comment in the output. Why not?

i'm a technical writer documenting a java api. i want to better

understand how to tag the source with comments that get generated

as javadoc. create a course that i can follow. i want you to teach me

step by step, like a friend.

i added a return tag to the following method, but i don't see a return

Using AI to learn coding PDF last generated: August 27, 2023

Documenting REST APIs Page 856

https://chat.openai.com/share/d1843d8c-df5b-429c-ba8c-1fff659fc7f7
/Users/tomjoht/projects/idratherbewriting/_site/learnapidoc/nativelibraryapis_getting_the_source.htm

Not only did the AI explanations cover the general reasons (the method used a void tag, which meant it
didn’t return anything, so my @return command was ignored), but it used the specific method names and
details from the example in its explanation. There was no need for me to adapt and fit general knowledge
to my specific problem.

In other areas, I wanted to expand my knowledge of specific documentation style around the @param tag.

Again, the AI was able to provide information specific to my documentation-oriented interests. In other
places, I wanted more detail as well, such as how to handle definitions for the fields returned by the
method.

AI explained that field definitions are often encapsulated in another class. Now things were clicking and I
started to understand the structure of the code I was documenting better.

What I appreciated most about the Javadoc course is that I could customize the content specific to my
needs as a technical writer. Almost every book on Java I’ve ever read has been targeted for developers.
There simply aren’t books on Java written for technical writers. There might be a brief section on Javadoc
nested within a gargantuan book that will take weeks to get through. And after making your way through
the thick text or online course, do you ever get the answer to your documentation questions? Often not.
Instead, using AI, I could go right to documentation-specific questions:

The structure of the @link tag can be pretty complex, actually, especially when you’re trying to link to a
section within a class in another package.

Finally, I wanted to focus on the larger question:

parameter in the output. Why?

what should the syntax be with @param? do i start with a lowercased

verb phrase? what happens if there's a period in there? does the

javadoc output put the content after the period in another place?

for the @return tag, in the example above you said "the area of the

rectangle." suppose my method returns a bunch of data, such as

rectangle area, rectangle style, rectangle depth. where would i define

those definitions? in the method? or elsewhere?

tell me more about the {@link} tag. what's the reason for the #? if i

am linking to a method inside a class, how would i do that?

as a tech writer, i need to identify places in the java source files that

are missing the needed tags. how can i do that?

Using AI to learn coding PDF last generated: August 27, 2023

Documenting REST APIs Page 857

Overall, this AI-generated Javadoc course probably took me an hour to get through. Granted, if you spend
10x the time learning Java in a course targeted at developers, you’ll probably have a much greater
understanding. But here’s the problem: I’ve read through multiple books and gone through online courses
for programming languages. The experience is almost always the same:

• The material teaches you the basics, but those basics won’t help much with documentation-
specific questions beyond maybe orienting you to the right terminology.

• The material doesn’t stick long term. After a few months of not using the code, I forget it.
• It takes too long to get to relevant material. It might be hours into a course before I even get to

something that feels relevant.
• I’m a passenger in someone else’s car. I go where the driver takes me, and that driver assumes

I’m a developer learning to code, not a technical writer trying to understand how to document
that code.

The larger challenge: Finding the time
Whether you learn technical topics from AI, online courses, books, or other methods, the larger challenge is
simply finding the time to do it. Chances are, you’re busy as a technical writer, and you have an endless
number of tickets and deadlines. You don’t have time to carve out two hours a day for general tech
learning. It takes a tremendous amount of discipline and long-term commitment to make your way through
any learning endeavor.

The larger skill needed is the long-term, relentless commitment to a learning regiment. If you can set aside
even one hour during the day to learn, and do that consistently over not just weeks but months and years,
that will help you be a successful technical writer. How exactly do you muster this discipline for learning?
What approaches or systems actually work?

Here’s what I’ve found that works best:

• Focus on learning code related to the documentation projects you’re working on. If someone isn’t
relevant, it will get deprioritized easily.

• Recognize what kind of learning is helpful for documentation tasks. You’re a technical writer, not
a programmer.

• Keep plugging away little by little. You’ll be surprised the amount you can learn spending just one
hour a day for a couple of weeks.

I’m confident that using AI tools might lead to more efficient code learning. Instead of taking hours to get to
something relevant, I can go right to those topics and questions. Instead of pretending to be a junior
developer learning to code, I can fashion the course so that it’s tailored to technical writers. Instead of
getting stuck on errors or other unexplained obstacles and going down Stack Overflow rabbit holes, I can
use AI to work through them. Learning to code might be a whole lot easier with AI.

Best of all, AI tools excel at general programming topics and understanding, which might be too superficial
for a programmer working at an advanced level but could be a perfect fit for technical writers. We usually
don’t need an advanced level of understanding, only a grounding in the basics, a familiarity with the right
terms to use, and other beginner-type details for a programming language.

Activity
To put theory to practice, try the following:

1. Choose a technology you want to learn more about.
2. Customize this prompt:

Using AI to learn coding PDF last generated: August 27, 2023

Documenting REST APIs Page 858

3. As you’re learning about the topic, steer it in the direction that would be most helpful and relevant
to you as a technical writer.

More resources
For more resources on this topic, see the following:

• You’re using ChatGPT WRONG: How I would learn to CODE in 2023 with the help of AI

I'm a technical writer documenting a [Java API]. I want to

better understand how to [tag the source with comments that

get generated as Javadoc]. Create a course that I can follow.

Teach me step by step, like a friend.

Using AI to learn coding PDF last generated: August 27, 2023

Documenting REST APIs Page 859

https://www.youtube.com/watch?v=0mSf_2RoWfM

Using AI for language advice
When I first started using AI tools, I tried to get them to write blog posts or other large pieces of content.
These efforts almost always failed. The content sounded flat, unassertive, impersonal, boring, and
voiceless. For more on why AI can’t approximate real human writing, see Lauren Hartenberger’s insightful
essay What AI Teaches Us About Good Writing . Hartenberger says that human writers often
purposefully deviate from convention or rules as they engage with topics in authentic ways; this makes
their writing connect emotionally with readers.

But even if we don’t use AI tools to write content for us, it doesn’t mean we have to abandon the language
capabilities of AI tools. AI tools actually work great for language advice. One common task I do as a
technical writer, on a near daily basis, is review content that others write. When I put on my editor’s hat, I
want to make precise, knowledgeable comments that reference grammar or stylistic rules rather than just
rewriting sentence so they sound better. In particular, I’ve found that engineers want to know specifically
why their sentences are wrong. They frequently reject comments that say “It sounds better this way.”
Sounds better to whom? To you?

Even 20 years ago, when I was in graduate school teaching first-year composition classes, students
wanted precise references to grammar rules. In part this is because writing “awkward construction” or
something similar didn’t help them understand what was wrong. The composition director required all
composition instructors to not only circle every grammar and style error but also to reference rule in a
grammar handbook. By the end of the year, the pages of my grammar handbook looked so used, the book
resembled someone’s favorite novel. (Trust me, it wasn’t my favorite book to read.)

AI tools can do an excellent job at identifying the particular grammar or style rule or reason, and they can
provide guidance about why one phrasing is preferable to another. In asserting a preference, AI will often
make a convincing argument for one style over another, such as noting that a word could be interpreted in
different ways and so is more ambiguous than the other phrasing.

No matter your command of the language, articulating and referencing grammar and style rules can be
helpful when you put on your editor’s hat. Try this initial prompt for language advice:

After using this prompt, you can just paste in multiple similar-sounding sentences and the AI will tell you
which is better and why. If you’re worried about privacy, note that it’s easy to swap in generic terms while
preserving the sentence’s structure. Here are some examples:

As a technical editor for a documentation group, you are an expert in

grammar and plain language. Provide guidance about the following

usage options, indicating which is better and explaining the rule

behind it. Reference grammar and style rules by name in your

reasoning.

You first click the red button, and then you click the blue button.

You first click the red button and then you click the blue button.

You first click the red button, then you click the blue button.

Using AI for language advice PDF last generated: August 27, 2023

Documenting REST APIs Page 860

https://www.noemamag.com/what-ai-teaches-us-about-good-writing/

The system is composed of five modules.

The system is comprised of five modules.

The system is made up of five modules.

The app displays a screen that says...

The app shows a screen that says...

The user must opt into the terms...

The user must opt in to the terms...

The widget allows you to try the feature...

The widget enables you to try the feature...

The widget lets you try the feature...

With the widget, you can do the following:

- Schedule flights

- Manage bookings

With this app, you can:

- Schedule flights

- Manage bookings

One thing to remember — set the initial parameter.

One thing to remember: set the initial parameter.

The function accepts two arguments...

The function accepts two parameters...

Many vehicles drive on this road. For example: trucks and RVs.

Many vehicles drive on this road — for example, trucks and RVs.

Enter your desired input into the form.

Enter the input you want into the form.

Using AI for language advice PDF last generated: August 27, 2023

Documenting REST APIs Page 861

The API only searches for lakes.

The API searches only for lakes.

This is the master view...

This is the main view...

You must be added to the safelist to call the API.

You must be added to the allowlist to call the API.

Enter the input to the widget, for example: "acme" or "beta."

Enter the input to the widget — for example, acme or beta."

Enter the input to the widget; for example, search for acme or beta."

You can perform various actions (configure the widget, initialize the

system, etc.) as an administrator.

You can perform various actions (such as configure the widget or

initialize the system) as an administrator.

You can configure permissions via the app.

You can configure permissions using the app.

You can configure permissions through the app.

Use the library's methods to make your requests.

Use the library methods to make your requests.

To make requests, you must have an API key.

To make requests, you need an API key.

Over the years, the university provided me with a great education

and set me on the right path - which I want to share with you now.

Over the years, the university provided me with a great education

and set me on the right path, which I want to share with you now.

The widget has various buttons, namely, a power button, an off

Using AI for language advice PDF last generated: August 27, 2023

Documenting REST APIs Page 862

You can see ChatGPT’s responses to a lot of these prompts here .

As you can see, a lot of sentences have subtle differences in grammar and style, with no clear answers
about which is right or wrong. Many instances don’t have a clear grammar or style rule that one sentence
abides by while another doesn’t. No matter, AI generally makes a convincing argument about which
sentence is better and why. Or if both are equally acceptable, it lets you know. If they are equally
acceptable, I try not to change text just to align with my own preferences.

Notice that I included the following in my prompt: “Reference grammar and style rules by name in your
reasoning.” As you’re making editorial comments, if the content does relate to a rule, you can call it out by
name. For example:

Do you remember what grammar rule this comma usage relates to? Rather than just adding a comma
there, you can note that in this usage, the adjectives are coordinate adjectives rather than cumulative
adjectives. This gives users terms they can use to better understand the sentence’s mechanics.

By the way, once you provide the initial prompt as I indicated above, your future grammar questions can
simply provide the pairs of similar sounding sentences. AI will understand your intent from the context. You
could even bookmark the thread so that with future questions, you just paste in the two sentences without
having to re-establish the question.

Update: Since I wrote this post, there’s now a grammar check feature soon to be added into Google
Search. The Grammar Check is in Bard now. For any problematic sentence, try typing “grammar check”
and then paste the sentence into Bard . The response explains any grammar issues, related rules, and
suggested changes for the sentence. It’s pretty nifty.

button, and a channel button.

The widget has various buttons, namely: a power button, an off

button, and a channel button.

Click the big blue button in the upper-right corner.

Click the big, blue button in the upper-right corner.

Using AI for language advice PDF last generated: August 27, 2023

Documenting REST APIs Page 863

https://chat.openai.com/share/28bbbc43-3fbc-468c-933d-5a5e8af7befd
https://indianexpress.com/article/technology/artificial-intelligence/google-search-grammar-check-ai-feature-8882140/
https://bard.google.com/

Using AI to create doc updates based
on bugs
As a technical writer, I’m frequently making doc updates based on user-reported bugs. A doc bug is a fix
that needs to be made to documentation that has already been released, rather than documentation for a
new feature.

For example, here’s a common scenario: users provide feedback about one of the confusing fields returned
in an API. The partner files a bug that kicks off a long back-and-forth thread with the engineers. The
engineering team might make a fix or unravel the confusion a bit. As a final step to the fix, the engineers
create a doc bug for the technical writer to update the documentation. Sounds simple, right? It’s usually
anything but simple.

The doc bug process
The total diff you submit might be just a few changed lines, but here’s what the process usually looks like
with a doc bug:

• During a meeting users have with the product team (or other Developer Relations group), the
users bring up an issue with the API. Meeting notes briefly describe the issue, but if you weren’t
there, much of the context is already lost here.

• The meeting notes indicate that an action item is to log a ticket, but the ticket only briefly notes
the discussion. It does not add many details, as it assumes that others involved in the project
have the context of the meeting.

• In addition to the ticket description, there’s usually a dozen or more comments on the ticket, as
the implementation often evolves from the original description of the fix. Some bugs might have
such a lengthy comment thread that reading it requires at least an hour or more. Really gnarly
bugs can have 75+ half-readable comments, with comments linking to other comments. There
could also be associated email threads. Discussions in the threads flip back and forth with
different solutions and views.

• At the end of the ticket and comment thread, it’s not clear what the problem or resolution actually
was, or what docs need to be updated. If you’re lucky, there’s a code change attached to the
ticket, but that code change might not be intelligible or straightforward. Someone just fixed the
bug and closed the ticket. You have to guess which comment, if any, describes what the actual
fix was. The ticket’s resolution might have been privately discussed in a team meeting that the
tech writer wasn’t part of (e.g., all those daily standups engineers attend).

• The product team communicates the fix back to the users through conversations, chat, team
meetings, or other sources.

• After implementing the fix, the developers file a bug for the tech writer to make a doc update.
However, the developers are overstretched already and don’t have the time or interest to add
easy-to-read descriptions in the ticket. They quickly file a doc bug, describing the needed
change in a vague way, and reference the engineering ticket that describes the issue and fix.

• The tech writer sees the ticket in his or her queue. He or she spends a lot of bandwidth parsing
through the ticket trying to figure out exactly what the doc update should be.

• Despite reading through the ticket threads and meeting notes, the tech writer still has questions,
so he or she reaches out to the product team for clarification.

• The engineers are working on the next release and don’t have much time to devote to explaining
the maintenance fixes. Plus, isn’t all the information in the engineering ticket and other notes
already?

• After spending an hour or two deciphering the needed update and interfacing with engineers

Using AI to create doc updates based on bugs PDF last generated: August 27, 2023

Documenting REST APIs Page 864

through chat, the tech writer updates a few lines in the docs and sends the change out for
review.

• There’s a bit of back and forth with the review, with engineers correcting and adding to the tech
writer’s updates before finally approving the updates and publishing the content.

If this sounds familiar, welcome to the club. Making doc updates from an assortment of bugs isn’t at the
top of my favorite activities. I can’t tell you how many times I’ve gathered up a long list of doc fixes needed
based on bugs only to abandon them after a short while. The work is tedious and often doesn’t have hard
deadlines.

Plus, once the engineers have resolved the bug, they’ve moved on to other work. If you ask them
questions, they have to re-familiarize themselves with the bug’s context as well. The user who complained
was usually notified about the fix, and since no one else is making a fuss about the bug, the priority of the
update fizzles. Tech writers also tend to focus most of their energy on documentation for the next release,
not on bug fixes for existing code.

Decomposing excellence into a thousand tiny fixes
I’m just as guilty as focusing on docs for the next release as anyone. However, last week I had an
interesting thought about bugs. One afternoon I wanted to know what our partner engineers focus on, so I
started looking at all the bugs they’ve had in our ticket system. Reading through the tickets, I found that the
partner engineers were mostly loaded with small bugs with the product, investigating causes and fixes. The
extent of their workload seemed to consist of troubleshooting and fixing bugs, and being the interface
between users and the product teams.

And then the larger realization hit me: What if what makes a product excellent isn’t some large feature but
rather the fixing of thousands of tiny bugs surfaced from users? And if a product achieves excellence
through these thousand bug fixes, maybe documentation elevates in the same way? What if
documentation achieves excellence through a tech writer’s attention to a thousand tiny user-reported
bugs? Fix a sentence here, a definition there, a concept on this page, a section on another page, and so
on, accruing 1,000 bug fixes until the docs become truly next level.

If a thousand tiny fixes paves the road to a great user experience, then I need to develop a much better
system for triaging and fixing bugs—not just identifying them, but powering through them on a regular
basis. In short, I need to develop a better system for making updates based on bugs.

Using AI to help with bugs
Can AI help in making doc updates based on bugs? Yes, I think. This is one application I’m particularly
excited about. I’ve only just started trying this out, so keep that in mind. Here’s my general approach to
using AI to help with bugs:

First, copy all the relevant information from the bug, meeting notes, code diffs, and other sources
discussing the bug into a Google Doc.

Then use an AI tool with a high input limit, using the gathered content as an input source. Some tools you
could potentially use for this include Claude.ai , which accepts an extraordinarily high input length, and
NotebookLM , which is still in its experimental phase and so access is limited, but you can join the
waitlist. (See Introducing NotebookLM for more details.) Other AI tools could also be useful as well.
Always consider your company’s data policies when using AI tools. In this case, due to data confidentiality,
I’m using NotebookLM.

After you’ve gathered the source material, ask the AI a question such as the following:

Using AI to create doc updates based on bugs PDF last generated: August 27, 2023

Documenting REST APIs Page 865

http://claude.ai/
https://notebooklm.google/
https://blog.google/technology/ai/notebooklm-google-ai/

If you can supply a pattern based on the output you want (p. 842), great. For example, usually the release
notes describe the fix like this:

A bug related to [X feature] was fixed. Previously, [X feature] was doing [Y]. The [X
feature] was updated to produce [Z]. For more details, see [X feature].

I haven’t quite nailed the prompt here, as I’m still experimenting, but so far this has been helpful. In my
experiences, the AI’s summaries and other explanations give me confidence that I’m interpreting the bug
correctly. I can also ask for simplified explanations if the AI summaries don’t make sense.

Note that even if AI provides a beautiful summary and resolution in the style of a release note or other
format, it will likely need tweaking and adjustment. Plus, you have to figure out where to apply the update
in the docs, and then graft in the update smoothly within the context around it. The AI tool won’t do that for
you. You might need to make updates across the docs on multiple pages. Searching for all the sections
that need to be updated can be time consuming, as well as sharing links to previews to all those updated
pages in a changelist that you review with developers.

So the process is still time-consuming, but hopefully AI has done some of the heavy lifting with the bug
interpretation and reduced the bandwidth required to parse and interpret engineering shorthand and
jargon.

Like I’ve said before, I’m still experimenting with these techniques. But my hope is that using AI to more
quickly fix bugs might lead to a speedier and less painful process related to bug fixes. If I can fix twice as
many bugs in half the time, it will be a huge win.

Experience in fixing a bug and some risks
Recently I was tackling a difficult bug and realized some adjustments I needed to make in my input
sources. The bug I was working on had an associated engineering doc. As is common in the genre, the
engineering doc defined the problem, presented a proposed solution, then presented several alternate
solutions. I had to reach out to engineers to find out which approach was taken, and which sections were
future-facing versus content that had been implemented. Before adding this content as an input to the AI, I
stripped out the alternate approaches and future-facing roadmaps, as this confused the AI’s responses.

The bug I was working on followed all the hallmarks of what I described earlier. The concepts were actually
extremely technical and hard to understand. I found myself asking the AI to define terms, clarify concepts,
and simplify explanations over and again. In reading the responses, I had to check their validity.

To check, I couldn’t rely on the explanations it generated as truth. So I also read through the engineering
tickets, the engineering docs, the email threads, and more. I also had some chats with the product team.
You might think, geez, if you have to do all that, what’s the point of using the AI? The point is that AI made
everything much easier to understand.

Consider an analogy here. Suppose that instead of a technical problem, you’re trying to describe a
Calculus-related bug with some equations and the adjusted approach that the team took. Well, it’s been
25+ years since I took Calculus, and so despite the explanations that the math team might have written up,
it still sounds Greek to me. There’s too much jargon, needed background information, and other detail for
the content to make sense without some serious study.

Based on the input sources, provide a summary of the issue {about

...} and the resolution taken to fix the issue.

Using AI to create doc updates based on bugs PDF last generated: August 27, 2023

Documenting REST APIs Page 866

But what if AI can make that math content more readable, as it defines unfamiliar terms, simplifies
explanations, provides examples, and explains and re-explains things as many times as I want? In this way,
AI becomes a kind of tutor, helping me make my way through the landscape more efficiently.

More and more, this is how I’m using AI. Sure, AI could also probably draft some content, and I could copy
and paste it into an update that I share and review with engineers, without fully understanding what I’m
sending, but that process doesn’t scale well. It might present a short-term gain while compromising long-
term productivity. It’s important for technical writers to have at least a basic understanding of the issues
and solutions for the products they document. That knowledge becomes helpful as you work on other
parts of the documentation.

For example, understanding the issues in the bug might unlock understanding in other documentation
areas, or raise awareness of other content that needs expansion or clarification. All that insight becomes
lost if the tech writer just blindly copies and pastes what AI writes and relies on engineers to review it. That
said, if the technical writer leverages the AI-written content as a kind of Cliffnotes to understanding a longer
Shakespearean work, it can be a practical, efficient way to learn just enough without spending multiple
days fixing a single bug.

Another risk: rubber-stamped LGTM
Relying on engineers and product team members to vet AI-written content also poses another risk: rubber-
stamped LGTMs (looks good to me). By rubber-stamped LGTMs, I mean approvals given without careful
analysis and understanding of the content. This YouTube video How we write/review code in big tech
companies captures the scenario perfectly. In the video, an engineer doesn’t fully understand some
code but makes an attempt at a fix and submits the updated code for review, assuming that the reviewer
will vet the code and examine whether it’s correct. However, the reviewing engineer doesn’t fully
understand the code either and just adds a quick LGTM and approves it. Although this scenario seems
comical, there’s truth to it. A lot of people will LGTM a fix without really understanding it or having
knowledge to know whether it’s right or wrong. They just want to get the pull request or changelist out of
their queue, and they assume the author knows the information is correct.

In the case of AI, suppose the tech writer copies AI-written content that looks and sounds plausible but
isn’t. The reviewer reads it and, not realizing it’s written by AI, gets duped by the believability of the content
(AI tools are great at sounding convincing). Unless the tech writer discloses that the content was written by
AI, chances are the reviewer won’t be extra cautious in the review. At least when humans are writing, tech
writers are much less likely to slip into fiction mode and will press engineers for answers.

Gathering more context
As I described earlier in the typical bug scenario, the main challenge is lack of information and context,
which makes the bug hard to understand and take action on. One step I’ve taken to improve the amount of
context/information available is to require people filing bugs to dig deep in providing needed information.
Here’s a sample bug template that tries to squeeze all the possible information from a requester. I
generalized the info, but reading through it you will see my point.

Using AI to create doc updates based on bugs PDF last generated: August 27, 2023

Documenting REST APIs Page 867

https://www.youtube.com/watch?v=rR4n-0KYeKQ
https://www.youtube.com/watch?v=rR4n-0KYeKQ

Please provide answers to all questions below. Note: Supplying as much info as
possible below avoids the need for a follow-up meeting with you to get more details.
Remember that we have almost no context for the doc update (no partner meetings,
no engineering coding sessions, no post-mortems, etc.), so the information you
provide is critical to making this doc update actionable.

1. What release is this for? By providing the release, we can better prioritize
this work against the other bugs in our queue. If the update is unrelated to a
release, indicate “No Release.”

2. What’s the priority for this update? In your view, is this a P0, a P1, P2, or
P3? (Feel free to explain/justify a P0 request.)

3. Which API are you updating?
4. Did you review this change with the API steering committee? If so, provide

any related bugs and change request documents presented to the council. If
there’s a product launch entry, include the link too.

5. Are there any other source materials (for example, pitch docs, engineering
docs, product review documents) that describe the updates? In the
documents, please note which solution (among several that might be
proposed) was implemented.

6. Is there an engineering bug related to this doc request? For example, an
engineering bug that points to a change request with some code diffs? Are
there other bugs that provide more detail as well? List all related bugs that
might inform needed doc changes.

7. If the changelist with related code changes isn’t included in the related
bugs, please list the changelists here. From the diffs, we can get a better
sense of needed doc updates.

8. Are there any email threads that you can PDF and attach here (or forward)?
Any meeting notes that you can point us to? Anything that provides more
context for us?

9. What proto, class, or other source files are being changed in this update?
(Since docs are generated from source comments in proto and public class
files, identifying the source helps us make any changes to comments.)

10. Write the release note for this update. Be specific about field or class
names. Provide as much detail as is needed for users to understand the
update.

11. Indicate the release status of the feature.
12. Does the field/method, etc. appear in other APIs? Which ones? (We want to

avoid having duplicate and conflicting descriptions of the same fields across
different APIs.)

13. Does this change affect any code samples in the documentation?
14. Who should review and approve this content before we submit the updated

documentation? Include any relevant stakeholders as well.

If you have any questions, reach out through email or chat.

Using AI to create doc updates based on bugs PDF last generated: August 27, 2023

Documenting REST APIs Page 868

As you can see, filing a bug will be time-consuming and somewhat painful for the requester, but ever so
sweet for the tech writer. Imagine having all of this information gathered at the time someone requests an
update. It might actually make the bug actionable!

From this gathered context, you can copy the information into a single Google doc, remove all the parts
that might mislead an AI, and then provide the doc as context. Some parts to remove might include the
following:

• Wrong answers in email threads
• Alternative solutions never implemented
• Future roadmaps not yet relevant
• Unnecessary fluff unrelated to the needed updates

Conclusion
Although there are many potential issues with using AI, fixing doc bugs is one area that seems ripe to
leverage AI tools. I’ll continue exploring different techniques, seeing what works and doesn’t, and sharing
my experiences here.

Using AI to create doc updates based on bugs PDF last generated: August 27, 2023

Documenting REST APIs Page 869

Using AI For thematic analysis
One of the main ways I use AI is with thematic analysis, which involves identifying, analyzing, and reporting
patterns (themes) within qualitative data. After you identify major themes, you can use least-to-most
prompting techniques to go into more detail.

I recently used this technique in preparing notes for a book club and, though I haven’t yet used it for API
documentation, I think it could work well for a number of documentation-related scenarios.

Step 1: Thematic analysis
Let me introduce thematic analysis through an example. I run a book club at work focused on auto and
transportation topics (since I work with geo-related APIs for maps in cars). I haven’t talked about this book
club much on my blog, but it’s something that grew out of my Journey away from smartphones series .

Every month we read a book and then meet to discuss it. As the book club facilitator, I select the book and
prepare notes and discussion for it. Like everyone else, I don’t have a lot of time for this preparation, given
that I squeeze it in among work tasks.

The latest book we read was Paved Paradise: How Parking Explains the World, by Henry Grabar. I like to
annotate pages as I read because it makes the reading experience more active. I usually finish the book a
few days before the book club meeting. In a short amount of time, how do you prepare detailed notes and
discussion from a 280 page book covering a variety of topics?

Here’s my process:

1. Go back through the book and voice type the key passages and ideas into a Google Doc. (I used
to type the notes out; then I discovered voice typing by going to Tools > Voice typing in Google
Docs, and it sped things up.) This part is the most tedious because I put stars next to far too
many passages when I read. However, collecting this material is key to creating the input source
for the AI. I don’t mind if the voice-typed passages have errors because the AI tools are generally
great at correctly interpreting the intent and meaning anyway.

2. Find about 10 book reviews and copy and paste the review content into the same Google Doc.
3. Ask a high-level question to the AI. I chose to use Claude.ai because it accepts a large input,

and also because the book club doesn’t involve confidential data. (If you haven’t tried Claude, it’s
pretty amazing. The large text input allows you to supply more context to the AI, which can
prevent the wacky hallucinations and fictitious responses.) Here’s the prompt I used:

Here’s a screenshot:

The following content contains quotes from Henry Grabar's

book, Paved Paradise: How Parking Explains the World.

There are also book reviews. From this content, pick out the

major themes in the book and the high-level arguments.

Using AI For thematic analysis PDF last generated: August 27, 2023

Documenting REST APIs Page 870

https://idratherbewriting.com/smartphones/overview.html
https://claude.ai/

The result was a list of major themes and high-level arguments in the book. The ability to synthesize
general themes from small pieces of data is a technique used in many domains. For example, when
researchers make sense of feedback, they often code the feedback with terms and then quantify the
instances of the terms.

The following sections list other use cases for thematic analysis, more applicable to tech comm.

Thematic analysis of job ads

I wrote about this technique in Looking at job advertisements to extrapolate the evolution of tech comm .
In “The Evolution of Technical Communication: An Analysis of Industry Job Postings” (Nov 2015 Technical
Communication Journal), Eva Brumberger and Claire Lauer analyze hundreds of job advertisements,
looking for patterns. They want to know what skills employers are looking for so they can prepare their
students to be successful in the job market.

Using AI For thematic analysis PDF last generated: August 27, 2023

Documenting REST APIs Page 871

https://idratherbewriting.com/2018/10/09/tech-comm-trends-more-collaboration-with-engineers/#jobads

After identifying the patterns in the job ads, they quantify them to assess trending patterns. From this
research, they arrive at a list of desired skills. The most sought-after professional competencies for
technical writers/editors include written communication (75%), Editing (51%), Project planning/mgmt
(49%), Visual communication (49%), Subject-matter familiarity (45%), Working with SMEs (41%), and Style
guides/standards (40%).

Thematic analysis of feedback

Affinity diagramming is another common technique used by UX researchers to synthesis user feedback into
more actionable groups and themes. An affinity diagramming session starts with writing hundreds of
qualitative statements on post-it notes; then a dozen or so people group the post-it notes into thematic
groupings. Finally, someone writes a statement that expresses the grouping of items. This technique allows
researchers to go from hundreds of points of data (fragmented, ungrouped, and miscellaneous) into
actionable insights.

Thematic analysis for search analytics

You could also do thematic analysis for search analytics. Previously, I wrote a post called What’s the point
of site search? The problem is that you end up with a lot of little pieces of information that are hard to
analyze. Specifically, see the section The actual searches people are making on my blog . It’s hard to
extrapolate themes by looking at the individual keywords. If I wanted to do it scientifically, I could code
each search result with a keyword, then group all searches that have the same keyword, then analyze that
grouping to identify common themes, and so on. This task is usually too tedious for any technical writer to
undertake.

But if you plug the same long list of keywords into Claude.ai and use a thematic analysis prompt, you
can quickly arrive at thematic analysis:

Prompt:

Response:

The following is a list of keywords that people search for using my

site search. from this list of keywords, synthesize the predominant

themes.

Okay, here is my analysis of the key themes based on the list of

keywords you provided:

• Technical writing skills - There are many keywords related to

core technical writing skills like "technical writing,"

"simplifying complexity," "readme," "instructions,"

"troubleshooting," "getting started," "tutorials," "API

documentation," etc. This indicates visitors are interested in

developing technical writing abilities.

• Tools and technologies - Terms like "AsciiDoc," "DITA,"

"Markdown," "Jekyll," "Hugo," "CMS," "static site

generators," "git," "GitHub," etc point to an audience looking

Using AI For thematic analysis PDF last generated: August 27, 2023

Documenting REST APIs Page 872

https://idratherbewriting.com/blog/pointless-to-implement-site-search/
https://idratherbewriting.com/blog/pointless-to-implement-site-search/
https://idratherbewriting.com/blog/pointless-to-implement-site-search/#the-actual-searches-people-are-making-on-my-blog
https://claude.ai/

Any time you have a thousand pieces of information that you need to analyze for patterns, your first-stop
shop for analysis should probably be an AI tool.

Thematic analysis for tags and related pages

Another use case could be tagging pages. Most technical writers work in developer portals with hundreds
of pages of content. In many cases, it’s a best practice to create a taxonomy describing the content, so
that pages with the same taxonomy terms can be surfaced as related pages. As a user, you’re probably
accustomed to seeing Related pages or Recommended pages.

To power these related pages, writers would need to index the keywords from each page in their content,
and then standardize those index keywords in a structured list of terms (for consistency). From those
keywords, a script could surface other pages that have similar tags.

Again, this sort of task is extremely tedious. There’s a reason many of us became technical writers rather
than professional indexers. AI tools could speed this up considerably.

Thematic analysis for FAQs

Another use case for thematic analysis is with FAQs. Some websites have hundreds of FAQs for their sites.
When I worked at Amazon, we had a giant FAQ document that people kept adding to over the years.
Eventually we divided it into smaller FAQs (see Index of FAQs), but even this index page was
embarrassing. Generally, it’s better to structure the information from FAQs into the topics where the
information belongs, plugging the information into the larger body of information rather than cobbling it
together in a random list. (See The problem with Frequently Asked Questions (FAQs) in documentation .)

Using the techniques here, you could use AI tools to group the FAQs into themes. With this approach, you
might go from 100 randomly ordered FAQs into half a dozen thematic groupings. But then from those
thematic groupings, you could use a prompt like this to match the FAQs with their appropriate pages:

for information on documentation tools and coding/

technology skills.

• Career development - Keywords such as "skills," "interview,"

"salary," "freelance," "laid off," "starting as technical writer,"

and "jobs" suggest visitors want to develop their tech comm

careers, find work, and interview successfully.

• Writing techniques - Queries like "minimalism," "every page

is page one," "simple language," "progressive disclosure,"

and "context-sensitive help" revolve around writing methods

and best practices.

• API documentation - Many keywords focus exclusively on

API documentation, like "API documentation," " OpenAPI,"

"API reference," "endpoint documentation," "Swagger," etc.

Developing API skills is a priority.

• DITA and structured authoring - There is heavy emphasis on

XML, DITA, content types, specialization, etc, pointing to

strong interest in structured authoring.

Using AI For thematic analysis PDF last generated: August 27, 2023

Documenting REST APIs Page 873

https://developer.amazon.com/docs/app-submission/faq-landing.html
https://idratherbewriting.com/2017/06/23/why-tech-writers-hate-faqs/

You get the idea here. There are certain scenarios where we have lots of individual pieces of information.
From these pieces, we can use AI tools to synthesize larger groupings and themes. This is one area that AI
tools perform much more efficiently than humans.

Thematic groupings of glossary items

Another use case for thematic analysis is with glossary items. With glossaries, we have hundreds of small
pieces of information. Usually, the glossary items have a searchable filter at the top, and people come in,
look up one term, and then continue on in their information journey.

But what if you want to help users learn a collection of terms for a specific situation. For example, rather
than listing hundreds of terms in alphabetical order, you could provide thematic groupings of terms to help
people learn specific domains. If you were writing about finance, you might have a “Fixed Income
Securities” glossary group that includes bond, yield, maturity rating, credit rating, and coupon rate. You
could create another grouping titled “Investment Fund Types” that includes the terms mutual fund, index
fund, exchange-traded fund, hedge fund, and money-market fund.

By creating specialized glossaries, you draw attention to related terms and can help people differentiate
between the terms.

Thematic analysis of bugs

In looking for scenarios to apply thematic analysis, who can forget bug lists? Suppose you have 150 bugs
in your team’s ticket management system (e.g., JIRA). You probably want to group them into different
sublists so that you can tackle theme more efficiently. You might want to group all the bugs about the
“ACME API” in one list, all the bugs about the “Omega API” in another, all the bugs about the “service
widget” in another, and so on. Sorting through the bugs is time consuming and tedious.

To leverage AI, you could first use summaries to generate more appropriate titles for each of the bugs.
Then you could export the bugs into a long list. Feed that list into an AI to sort them into thematic
groupings. Then from those groupings, apply group tags to the bugs.

But don’t stop there. What if you were to analyze the bugs of all the software teams you support? Let’s say
you support 5 teams, and each team has their bugs in different components. Export the bugs of a
component, then feed them into an AI to group and classify the bugs. Prompt the AI to identify common
patterns. Using this technique, you could identify problem areas to focus on. In my experience, many
engineering bugs could benefit from some documentation updates (clarifying notes, notes about gotchas
and bugs, etc.), but engineering teams don’t often think of the bugs as documentation-related. Reading
through random bugs tends to be more tedious than tech writers can stand.

Taking this one step further, suppose you’re an internal documentation team that supports hundreds of
engineers. You have limited bandwidth and must identify which projects to support. Where do internal
developers feel the most pain? Which projects have the most usage plus the most tickets?

Here again you could leverage AI for the analysis. You have a list of the most popular pages (based on your
analytics). You also have a long list of keyword queries (from search analytics). Then finally, you have a list
of hundreds of bugs. Plug that data into an AI and see if you can use its analytical engines to arrive at the
most important projects to work on.

The following is a list of FAQs for my site [paste FAQs]. Here also is

a site index listing all the web pages of my site [paste index of web

pages]. For each FAQ, list the most appropriate web page this

information should appear on.

Using AI For thematic analysis PDF last generated: August 27, 2023

Documenting REST APIs Page 874

Thematic analysis of documentation pages

Finally, let’s explore one more area where thematic analysis might apply: organizing documentation. In
every documentation project, you have a long list of individual topics. As part of the organizing task of
documentation, you typically group those topics into different folders. The many folders then form the
sidebar groupings in our help systems. For this API course, there are about 15 different folders, each with
an average of 10 or more topics.

Figuring out the right way to organize topics is not easy task. If you’ve ever flipped the tables and looked at
a help system from the perspective of a user, you know that locating the right topic is anything but intuitive.

As a technical writer, if you want to get your documentation system’s organization right, the best approach
is to have a handful of real users do a card sort with your topics. You could print your topics on little pieces
of paper and have users arrange them into the groups that make the most sense. (Tools like Treejack do
this digitally.) But who has time to actually do this? Most technical writers don’t have users at their
disposal, nor the time.

In this scenario, you could use AI to do two things:

• You could ask an AI to group your topics into the most logical groupings by theme, based on the
topic titles. This would at least give you the benefit of another perspective. You could even prime
the AI with a specific persona to induce a different perspective (e.g., AI by saying, “You are a new
user…”, “You are a business executive rather than a coder….” You are an advanced
developer…”)

• Then you could analyze the AI groupings against your own groupings to identify areas that might
be less intuitive. If the AI tool predicts that a topic about “API errors” would more logically appear
under “Support” than under “API reference,” a move might be worth considering.

Each of these scenarios involves sorting and grouping lots of little pieces of information. This is a common
cognitive task that we perform countless times in our role as technical writers. (Information synthesis is a
topic I wrote about in my series on Simplifying Complexity: Principle 3: Ensure information harmony in the
larger landscape .) We are frequently taking small pieces of information and fitting them into a larger
information landscape.

Step 2: Expansion of detail
Now that we covered thematic analysis in a variety of scenarios, let’s explore the logical follow-up to the
thematic analysis: detail expansion. Specifically, expanding the detail using a prompting technique known
as least-to-most prompts.

In the context of AI prompt engineering strategies, least-to-most prompts involve asking for high-level
information/outlines first, followed by subsequent prompts that dive into each point for greater detail.

In Prompt Engineering for Generative AI, James Phoenix and Mike Taylor describe the least to most prompt
technique as follows:

Using AI For thematic analysis PDF last generated: August 27, 2023

Documenting REST APIs Page 875

https://idratherbewriting.com/simplifying-complexity/ensuring-information-harmony-in-the-larger-documentation-landscape.html
https://idratherbewriting.com/simplifying-complexity/ensuring-information-harmony-in-the-larger-documentation-landscape.html

The Least To Most prompt technique allows you to sequentially create/extract more
knowledge in any topic.

This is often a series of prompt chains, with each prompt input utilizing the generated
information from previous prompt outputs.

This technique can also be applied to code generation, as demonstrated in a Flask
Hello World app example.

…

First, we start by asking the AI to outline the basic architecture for a simple Flask
Hello World application.

…

Next, we request the AI to provide the code snippet for a simple “Hello World” route
in Flask. (See “Chapter 2. Standard Practices for Text Generation”)

In other words, you start by asking for high-level information first; then based on the responses, you zoom
into the detail for each response.

You already asked for high-level information through the thematic analysis prompts. It’s now time to zoom
into the details of those high-level themes.

In many ways the least-to-most technique is just common sense, but it’s worth noting that it mirrors the
same strategies technical writers use when breaking down complex information into usable documentation:
we start with a high-level to paint the big picture, then break it down into detailed sections and granular
steps. This style of documentation helps the user complete the larger, more complex task.

When you’re working with AI tools to help you address a large, complex issue, you can follow the same
strategy: start at the high-level to get a general picture, then zoom into each of the general points with a
more specific section and details.

Book club

With my book club, after I gathered a list of high-level book themes and arguments, I wanted to provide
more detail about each one. So I followed up those thematic analysis prompts with this:

Prompt:

Here’s a screenshot:

Now I want to zoom in on some of these arguments, starting with this

one: "Required parking for housing and other buildings has limited

the creation of affordable housing and driven up costs. Parking can

add tens of thousands of dollars per unit, pricing out lower income

residents." Articulate the logic in as crisp of a way as possible. What

is the assertion, what are the supporting reasons, and what's the

premise? Any faulty assumptions in the reasoning?

Using AI For thematic analysis PDF last generated: August 27, 2023

Documenting REST APIs Page 876

Because I’d read the book, I could easily distinguish whether Claude’s responses were on target. About
80% of the time or more, it was accurate—in part because I’d primed the AI with accurate input sources.
My approach in compiling the discussion notes was to clarify and articulate the author’s main arguments,
and AI’s responses made this easy.

Could I do this same task myself, without relying on AI? Sure, in the same way I could calculate long-
division by hand. It probably would have exercised more critical muscles in my brain to do so, but again,
time is the issue.

Overall, this process allowed me to quickly arrive at a good summary of the book’s main arguments. I
added some more discussion questions (not using AI) at the end of each section, and I was ready to go.
The book club turned out to be one of the best of the year!

Applying least-to-most prompts to thematic groupings

Following up thematic analysis with least-to-most prompts doesn’t always make sense. But for the
scenarios I described earlier, here could be some logical next steps to add more detail:

• Feedback. From the general feedback themes, AI can provide more extended summaries of the

Using AI For thematic analysis PDF last generated: August 27, 2023

Documenting REST APIs Page 877

themes, with some detail. It’s probably not enough to list general categories of feedback; people
will want summaries that describe what each category contains.

• Search analytics. Provide descriptions of the analytics trends. It’s not enough to say that there
are many keywords searches about “Foo.” You want to follow this up with a summary paragraph
that describes the information patterns around Foo keyword searches and why this topic is
important to users.

• Tags and related pages. If you have a list of tags for your pages, like I do here , it would be
more helpful to see descriptions of each tag.

• FAQs. You could use AI to synthesize/integrate the FAQ into the relevant topic. For example, ask
the AI where the best place to add a detail about, says, service widget limitations would fit into
the topic.

• Glossary items. You could use AI to expand definitions of any poorly defined terms.
• Bugs. You could use AI To describe the general bug trends for each high-level grouping, along

with noted patterns for the bugs.

Conclusion
In general, the direction we’ve followed is like this:

• First we synthesized larger themes from smaller pieces of information. In other words, we
develop order from chaos.

• Now that we have larger themes, we can zoom into each theme to provide more detail.

These are flows of information that usually take place unconsciously in our minds as we think through
problems. I’ve simply made them explicit here because AI tends to be good at performing these tasks.

Using AI For thematic analysis PDF last generated: August 27, 2023

Documenting REST APIs Page 878

https://idratherbewriting.com/tags/

Using AI for comparison tasks with API
responses
The best scenarios to implement AI are those tasks that humans perform poorly but robots perform
excellently. One of these task domains is comparative analysis, specifically comparing two sets of
information to identify inconsistencies.

Comparing JSON
The idea for this technique comes from a post by Francis Elliot titled Proofread documented JSON blobs
using LLMs . Elliot uses AI to compare an API’s output with the documentation. Elliot writes:

One of my more annoyingly manual tasks when writing API docs is to compare an
actual returned JSON payload made with a test Postman call to the JSON structure
I’ve documented.

Here’s Elliot’s prompt:

API responses can have a lot of fields returned in the response, and the fields returned depend on the input
parameters and the available data.

For more background on API responses, see Response example and schema (p. 154). In short, an API
responses can be broken down into the following:

• schema - this describes all possible fields returned and the rules for which they’re returned, as
well as definitions of each field

• sample responses - these usually provide a subset of the total fields described by the schema,
often determined by different input parameters. In other words, if you use parameter foo , the
response includes acme objects; but if you use parameter bar , the response includes beta

objects, etc.

It’s this relationship between the schema and the sample responses that makes understanding the API
responses difficult. Is a sample response missing certain fields because the data didn’t include those fields,
because of the input parameters used, or due to error? Are there fields the tech writer documented that
don’t actually align with the API responses? Are there fields present in the response that aren’t listed in the
documentation? And which fields might be confusing to users?

Compare the following JSON blobs. Sort the blobs alphabetically by

their keys, then for the sorted blobs, tell me if the blobs are

structurally identical in terms of key names. If they're different, tell me

specifics of how they're different. Ignore different values for the keys,

ignore repeated array items, and ignore empty arrays in the

comparison.

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 879

https://www.franceselliott.com/2023/08/15/llm-json-docs.html
https://www.franceselliott.com/2023/08/15/llm-json-docs.html

This is exactly the kind of task that robots are better are doing than humans(by robots, I just mean LLMs or
AI). We’re not great at line by line comparison of hundreds of words to identify the diffs between
information objects. But this eye for detail is what we need when we write docs. This kind of
meticulousness can be taxing and straining cognitively.

There can also be some drift between engineering specifications that a tech writer might have used in
creating the documentation (specifications that likely included the fields and their definitions) and the actual
implementation.

To identify drift, the tech writer usually runs some sample tests (p. 342) to confirm that the responses
match the documentation. But unless your API has only a simple number of fields in the response, this can
be a daunting task. The API response might have an array with repeated fields, or it might have deeply
nested fields, or other complexities that make it difficult to evaluate. With Java APIs, the reference
documentation often names the objects, but those names don’t appear in the output.

Overall, this is one area prone to error. Here let’s see if AI tools can help with the comparative analysis.
Using AI tools, we will ask whether the documentation about our API’s responses matches the API’s actual
responses.

Experiment
I wanted to experiment with comparison tasks around responses to see how useful this would be. Due to
confidentiality of data, I used a general public API for this rather than a work project, so my experiment is
superficial and exploratory only. I used Claude.ai for this because it allows for greater input length. As
I’ve mentioned before, expanding the input length is a game-changer with API tools because it allows for
more input to train the LLM, which leads to more accurate responses and less hallucination.

Here is the scenario: as a tech writer, you’re working with some API responses and you want to see if the
responses match the documentation. Are there responses that you forgot to document, or responses that
don’t match the casing or spelling in the docs? Are there missing fields in the response that are mentioned
in the docs, and which should be marked as optional?

In this experiment, we’ll use the Forecast API from OpenWeatherMap, which is an API I’ve used
elsewhere in this course. First, I created a Forecast API response using Postman (p. 71) or curl (p. 80). (I
went over this earlier in the course.) As an alternative to Postman, or if you want to import this command
into Postman, here’s the curl to make a call to OpenWeatherMap’s Forecast endpoint:

curl --location 'https://api.openweathermap.org/data/2.5/forecast?zip=9805
8&YOURAPIKEY'

Swap in your own API key (p. 69) for YOURAPIKEY .

Or literally just paste in this URL into the browser: https://api.openweathermap.org/data/2.5/
forecast?zip=98058&YOURAPIKEY

Here’s the truncated response:

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 880

https://claude.ai/
https://openweathermap.org/forecast16

{
"cod": "200",
"message": 0,
"cnt": 40,
"list": [

{
"dt": 1693072800,
"main": {

"temp": 293.24,
"feels_like": 293.03,
"temp_min": 293.24,
"temp_max": 299.75,
"pressure": 1014,
"sea_level": 1014,
"grnd_level": 998,
"humidity": 66,
"temp_kf": -6.51

},
"weather": [

{
"id": 800,
"main": "Clear",
"description": "clear sky",
"icon": "01d"

}
],
"clouds": {

"all": 0
},
"wind": {

"speed": 2.69,
"deg": 352,
"gust": 3.52

},
"visibility": 10000,
"pop": 0,
"sys": {

"pod": "d"
},
"dt_txt": "2023-08-26 18:00:00"

},
...

To see the full response for the 16 days, go to forecast-response.txt

The Forecast API shows some of the complexity in evaluating responses. In this case, the API returns 16
days of weather forecast, so the list array has 16 objects. (I truncated the sample after the first object.)
Each object has some parent fields like main , weather , clouds , wind , and sys . Then there are
some standalone fields: dt , visibility , pop , and dt_text .

You can see this so much better in Postman, and you can expand/collapse the sections. In the terminal,
the response is compressed and almost unintelligible unless prettified.

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 881

https://idratherbewriting.com/assets/files/forecast-response.txt

I include options to see the full response to convey that actual JSON responses can be lengthy and difficult
to process. Responses are not the greatest task for humans to be constantly analyzing.

Prompts and responses
Here’s my first prompt:

Response:

The documentation for the OpenWeatherMap Forecast API is as

follows: [PASTE OF FORECAST DOCS, SPECIFICALLY JSON

format API response fields]. Based on those descriptions, provide

documentation for every field in this actual JSON response from the

Forecast API: [PASTE OF API RESPONSE ABOVE]

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 882

https://openweathermap.org/forecast16#fields_JSON
https://openweathermap.org/forecast16#fields_JSON

Here is documentation for the fields in the provided JSON response

from the OpenWeatherMap Forecast 16 Days API:

cod - Internal parameter

message - Internal parameter

cnt - Number of forecast days returned, in this case 40

list - Array containing the forecast data for each day

For each day in list:

dt - Forecast date and time in Unix timestamp format

main - Object containing main weather parameters

main.temp - Object containing temperature parameters

main.temp.day - Temperature at 12:00 noon time. Unit default Kelvin,

metric Celsius, imperial Fahrenheit

main.temp.min - Minimum temperature of the day. Unit default Kelvin,

metric Celsius, imperial Fahrenheit

main.temp.max - Maximum temperature of the day. Unit default

Kelvin, metric Celsius, imperial Fahrenheit

main.temp.night - Temperature at 00:00 local time. Unit default

Kelvin, metric Celsius, imperial Fahrenheit

main.temp.eve - Temperature at 18:00 local time. Unit default Kelvin,

metric Celsius, imperial Fahrenheit

main.temp.morn - Temperature at 06:00 local time. Unit default

Kelvin, metric Celsius, imperial Fahrenheit

main.feels_like - Object containing feels like temperatures

main.feels_like.day - Feels like temperature at 12:00 noon time. Unit

default Kelvin, metric Celsius, imperial Fahrenheit

main.feels_like.night - Feels like temperature at 00:00 local time. Unit

default Kelvin, metric Celsius, imperial Fahrenheit

main.feels_like.eve - Feels like temperature at 18:00 local time. Unit

default Kelvin, metric Celsius, imperial Fahrenheit

main.feels_like.morn - Feels like temperature at 06:00 local time. Unit

default Kelvin, metric Celsius, imperial Fahrenheit

main.pressure - Atmospheric pressure at sea level, hPa

main.humidity - Humidity percentage

weather - Array containing weather condition objects

weather.id - Weather condition ID

weather.main - Group of weather parameters e.g. Rain, Snow,

Clouds

weather.description - Weather condition description

weather.icon - Weather icon ID

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 883

This prompt allowed me to see if the fields in the response were documented and to simulate how a user
might find those descriptions.

Prompt:

Response:

clouds.all - Cloudiness percentage

wind.speed - Wind speed. Unit default meters/sec, metric meters/

sec, imperial miles/hour

wind.deg - Wind direction in degrees

wind.gust - Wind gust. Unit default meters/sec, metric meters/sec,

imperial miles/hour

visibility - Visibility distance, meters

pop - Probability of precipitation percentage

rain - Rain volume, mm

snow - Snow volume, mm

dt_txt - Forecast date and time in text format

city - Object containing location information

city.id - City ID

city.name - City name

city.coord - Object containing latitude and longitude

city.country - Country code

city.population - Population

city.timezone - UTC timezone shift in seconds

city.sunrise - Sunrise time

city.sunset - Sunset time

Let me know if you need any clarification on the documentation!

Identify any fields that were present in the documentation but which

are not present in the response

Based on comparing the documentation to the actual JSON

response, here are some fields that are present in the documentation

but not in the response:

- city.coord.lat - Latitude is not present

- city.coord.lon - Longitude is not present

- city.country - Country code is not present

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 884

Prompt:

Response:

- city.population - Population is not present

- city.sunrise - Sunrise time is not present

- city.sunset - Sunset time is not present

The city object only contains id, name and timezone fields in the

actual response.

The documentation also lists some temperature fields under list that

are not present, such as:

- list.temp.eve - Temperature at 18:00 local time

- list.temp.morn - Temperature at 06:00 local time

The feels_like object under main also does not contain the eve and

morn fields.

So in summary, some location specific fields under city and some

daily temperature fields under list are missing from the actual JSON

response when compared to the documentation.

Are these fields optional?

Based on reviewing the OpenWeatherMap documentation more

closely, it seems that some of these fields are optional and may not

be present in the API response depending on the request parameters

and data availability:

• The city.coord.lat and city.coord.lon fields are optional and

require using geographic coordinates in the API request to

be returned. In this case, a city ID was likely used instead.

• The city.country, city.population, city.sunrise and city.sunset

fields are optional and can be omitted from the response.

• The list.temp.eve, list.temp.morn, main.feels_like.eve and

main.feels_like.morn temperature fields are optional and

may not be calculated or available for forecast days.

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 885

Prompt:

Response:

Prompt:

So in summary, the documentation lists all possible fields that could

be returned, but many of them are optional and will not necessarily

be present in the actual API response. The fields missing from this

sample response are likely optional and were not returned based on

the request parameters used.

The OpenWeatherMap documentation could be more explicit about

which fields are required vs optional, but it appears the missing fields

here are optional rather than incorrect documentation. Let me know if

this helps explain why they are present in documentation but missing

in the response!

Are there any fields in the response that were not listed in the

documentation?

Looking closely at the JSON response, I don't see any additional

fields present that are not covered by the OpenWeatherMap

documentation:

• The response contains top-level fields for cod, message, cnt,

list and city, which are all documented.

• Within the list array, each day contains dt, main, weather,

clouds, wind, visibility, pop, rain, snow and dt_txt fields,

which are documented.

• The main, weather, clouds, wind and rain objects contain the

expected nested fields outlined in documentation.

• The city object contains id, name and timezone which are

documented.

So in summary, every field present in the actual JSON response

seems to correspond directly to a field documented in the

OpenWeatherMap Forecast 16 Days API documentation. I don't

notice any additional undocumented fields in the provided sample.

Let me know if you would like me to double check anything else in

the response against the documentation! But it appears to fully match

based on my review.

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 886

Response:

With this response, Claude goes off the rails. The JSON response doesn’t use feelsLike nor
Description with a capital D. Further, the Forecast documentation doesn’t use ground_level .

Weirdly, the day before I was doing a similar experiment with Claude, and I had changed the response to
feelsLike in order to see whether it could spot an inconsistency. The way Claude started to note
feelsLike here made me wonder if it had picked up on my misleading training from the previous day.

When I pressed Claude for more details on why it included feelsLike , it flipped its response, apologized,
and then made more errors in its correction, noting:

are any fields in the response cased differently than they are written

in the documentation? any inconsistencies with capitalization or

spelling?

Good catch! Upon closer inspection, there are a couple slight

inconsistencies between the field names in the documentation and

the actual JSON response:

• The documentation lists "feels_like" but the JSON uses

"feelsLike" (capitalized L and no underscore)

• The documentation shows "ground_level" but the JSON has

"grnd_level"

• The documentation lists "weather.description" but the JSON

has "weather.description" (capital D)

So in summary, here are the casing differences:

Documentation:

• feels_like

• ground_level

• weather.description

JSON response:

• feelsLike

• grnd_level

• weather.Description

Other than these minor naming differences, the field names appear

consistent between the documentation and response. The

capitalization and underscores don't match exactly, but the fields are

clearly intended to be the same. Let me know if you notice any other

inconsistencies with field names between the documentation and

JSON!

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 887

https://openweathermap.org/forecast16

Sorry Claude, the documentation doesn’t have a feelsLike field either. This error reinforces the fact that
we shouldn’t put much confidence in the responses from these systems, nor forgive them when they
apologetically admit errors. Further, it seems there’s a possibility for them to get dumber with more use, as
many have said about ChatGPT. I’m not sure to what extent each prompt and response influences future
responses.

Prompt:

Response:

...my previous explanation was incorrect. The JSON response

contains "feels_like" with an underscore, while the documentation

refers to "feelsLike" with a capital L and no underscore.

To clarify:

• The documentation refers to a "feelsLike" field

• But the actual JSON response contains "feels_like"

The casing is different between the two. I made the mistake of

equating "feels_like" in the response to "feelsLike" in the docs, when

in reality they are cased differently. Thank you for catching my

mistake! The "feels_like" field appears in the response while the

documentation references a "feelsLike" field - so they do not match in

casing. I appreciate you helping me correct my understanding here.

Which fields in the documentation need more descriptive definitions?

Looking at the OpenWeatherMap documentation, here are some

fields that could benefit from more descriptive definitions:

• cod - This is listed as an "Internal parameter" but more info

on what it signifies would be helpful.

• message - Also listed as "Internal parameter" with no further

details.

• cnt - Defined as "A number of days returned in the API

response" but more clarity on what the number represents

would be better.

• temp.eve - Only described as "Temperature at 18:00 local

time". More details like the units and if it's a forecast or

current value would help.

• grnd_level - Spelled out as "ground level" but more context

such as what type of measurement this represents would be

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 888

I agree with Claude’s analysis. I’m not sure why an API returns internal parameters in the first place.

Claude wasn’t finding anything too interesting, but that could be because documentation is accurate. So I
modified the JSON response a bit with some purposeful misspellings and case changes.

Prompt:

Response:

useful.

• weather.description - Currently just says it provides a

"Weather condition within the group" which is vague. Some

examples would make this clearer.

• clouds.all -Defined as just "Cloudiness, %" but details on if

this percentage refers to cloud coverage vs density would be

helpful.

• wind.deg - Described as "Wind direction, degrees

(meteorological)" but more context for how direction is

measured would be useful.

• rain.3h - The 3h is unclear - presumably this is rainfall in the

last 3 hours? Unit details would also help.

So in summary, fields like cod, message, eve, grnd_level,

description, clouds.all, deg, and 3h could benefit from more

descriptive definitions and details in the documentation. Let me know

if any other fields are unclear!

Now take a look at this new response. [PASTE OF NEW MODIFIED

JSON RESPONSE]. Then identify any fields in the response that are

inconsistent with the fields in the documentation. Pay attention to

capitalization, casing, spelling, etc.

After reviewing the new JSON response and comparing it to the

OpenWeatherMap documentation, here are some inconsistencies I

noticed in field names:

• - "feelsLike" is used instead of "feels_like"

• - "weathere" instead of "weather"

• - "feel_like" instead of "feels_like"

• - "system" instead of "sys"

• - "temp_ktf" instead of "temp_kf"

• - "sea_floor" instead of "sea_level"

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 889

Claude did do a good job at identifying the errors I introduced. I did try to gaslight it by changing
feels_like to feelsLike even after going the rounds to interrogate it about the feelsLike error

earlier.

Prompt:

Response:

• - "ground_level" instead of "grnd_level"

• - "bananas" used instead of an actual weather description

• - "temperature" instead of "temp"

• - "Visibility" capitalized incorrectly

• - "POD" instead of "pod"

• - "degrees" instead of "deg"

• - "gusts" instead of "gust"

So in summary, there are inconsistencies in capitalization, casing,

spelling, and some made up fields compared to the documentation.

The fields that stood out to me as incorrect are "feelsLike",

"weathere", "bananas", "Visibility", and "sea_floor". Let me know if

you see any other inconsistencies I missed!

Are there any documentation fields that aren't present in the

response? Which ones?

Comparing the documentation fields to the new JSON response,

there are a few fields from the documentation that are not present:

• city.coord.lat - Latitude coordinate

• city.coord.lon - Longitude coordinate

• city.country - Country code

• city.population - Population

• city.sunrise - Sunrise time

• city.sunset - Sunset time

These location-specific fields under the city object are missing,

similar to the original response provided.

Additionally, some temperature fields are missing:

• main.temp.eve - 18:00 temperature

• main.temp.morn - 06:00 temperature

• main.feels_like.eve - 18:00 feels like temperature

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 890

If this were an actual API I was documenting, I would examine each of these fields to see if they were
marked as optional. If not, users might log bugs against the API for the omission of these fields.

Conclusion
Hopefully you get the point of these sample prompts and responses. Use AI tools to check for
inconsistencies. Just as AI tools are good at summaries, they’re also good at comparing two sets of data
and identifying inconsistencies.

If you have more use cases where you compare two sets of information, I’d love to hear about them.

• main.feels_like.morn - 06:00 feels like temperature

So in summary, the city location details and some of the granular

daily temperature fields listed in the documentation are not present in

this JSON response. The missing fields are the same optional ones

that were absent in the original response as well.

Using AI for comparison tasks with API responses PDF last generated: August 27, 2023

Documenting REST APIs Page 891

Chapter 15: Additional resources
This section contains additional exercises and information, such as more activities for calling APIs, or more
info about alternative specifications. I also archive topics here that don’t seem to fit well anywhere else.

Chapter sections:

Documenting GraphQL APIs.. 893

More REST API activities ... 900

Activity: Get event information using the Eventbrite API.. 901

Activity: Retrieve a gallery using the Flickr API .. 908

Activity: Get wind speed using the Aeris Weather API... 918

RAML tutorial.. 924

API Blueprint tutorial .. 938

API jeopardy answer key.. 951

What's wrong with this topic answer key... 952

Menlo Park API workshop video recording.. 953

Denver API workshop video recording... 954

API doc presentation video recordings.. 955

Chapter 15: Additional resources PDF last generated: August 27, 2023

Documenting REST APIs Page 892

Documenting GraphQL APIs
This article was written by Casey Armstrong on July 1, 2019, and originally titled “If I am learning to write
developer documentation, should GraphQL be on my radar?” Casey Armstrong graduated from the
Masters and Technical Professional Writing program at Portland State University and now works at a VR
company on the East coast. You can follow Casey Armstrong’s blog on Medium at
https://medium.com/@CrowdsourcingKC and on Twitter @CrowdsourcingKC .

Summary: GraphQL, a query language developed by Facebook, is an alternative to REST that is rising in
popularity. Exactly how does GraphQL differ from REST, and what documentation strategies and
conventions should you follow when documenting a GraphQL project? This article explores the GraphQL
query language, its use cases, its tools, what developers need from its docs, and whether GraphQL is worth
learning. Overall, learning GraphQL is a great way to specialize and stand out as a technical writer, but the
technology is not as prevalent as other types of APIs.

Introduction

Should GraphQL be on your radar?

If you are like me, a budding technical writer, and you are just getting started with writing developer
documentation, then you might already feel like you have a full plate in terms of learning new technologies.
Alas, the evolving world of developer tools and API related technology has shown that it has absolutely no
intention of slowing down for us!

Documenting GraphQL APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 893

https://medium.com/@CrowdsourcingKC
https://twitter.com/CrowdsourcingKC
https://unsplash.com/photos/69BTCuFDuDA
https://unsplash.com/photos/69BTCuFDuDA

However, we need not fear this evolution, because behind every new popular technology, there is a crowd-
of-enthusiasts behind it. Furthermore, with that crowd-of-enthusiasts comes a large pile of information, a
pile that we, as technical writers, can pick-through, distill, and use to orient ourselves.

This post aims to guide you through the pile I found for GraphQL, turn it into an introduction to the topic,
and answer the question, “As an API writer, should this be on my radar?”

History
GraphQL was released to the public in 2015 as an open-source project by Facebook (after it had been
used internally for several years as a custom solution for working with the company’s large datasets). Fast-
forward to today, and GraphQL is hosted by the Linux Foundation at GraphQL.org .

Note: The Open API specification is also hosted by the Linux Foundation .

Growth
GraphQL has a growing user-base, and it powers “hundreds of billions of API calls a day.” It is used by
organizations as prominent as The New York Times, PayPal, Walmart, Pinterest, and Airbnb.

Here are some indicators of growth I found:

• In the past 3 years, Programmable Web added at least 46 GraphQL API listings and over 100
articles mentioning the technology; some of them from large companies like Yelp, GitHub, and
some from open-source products like Rocketchat . (Note: Programmable Web has since shut
down its site.)

• Across the US, there are almost 70 groups on Meetup.com that have “GraphQL” in their title.
• Drupal has been collecting GraphQL usage statistics for Drupal-powered sites showing an

upward trend.

And, take a look at Google Trends:

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_graphql.html] to view the content.

What is GraphQL?
The first thing to note is that GraphQL is a set of API technologies that take a different approach than
REST, SOAP, or other software architectural styles .

As far as definitions go, according to the GraphQL Foundation ,

GraphQL is a query language for APIs and a runtime for fulfilling those queries with
your existing data. GraphQL provides a complete and understandable description of
the data in your API, gives clients the power to ask for exactly what they need and
nothing more, makes it easier to evolve APIs over time, and enables powerful
developer tools.

That is a mouthful, so for a good explanation of what this means at the technical level, check out the article
“GraphQL as your Service Layer ” which breaks this definition down step-by-step.

Otherwise, let’s take a look at the basics with a sample query and what comes back with a (pretend) voice
assistant API with Siri as the star:

Documenting GraphQL APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 894

https://graphql.org/
https://www.openapis.org/about
https://rocket.chat/
https://www.drupal.org/project/usage/graphql
https://www.tutorialspoint.com/webservices/web_services_architecture.htm
https://graphql.org/
https://medium.com/@emasuriano/graphql-as-your-service-layer-62ecf95ac74a

1. Query the object “assistant” and return their name.

2. You would get back the name “Siri” as a string.

3. Next, looking at a request for related objects, we can request info about Siri’s colleagues:

4. We get back an array of Siri’s colleagues.

Documenting GraphQL APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 895

(Note: I modeled this after James Scott’s example in this great talk, Is GraphQL Really “Self-
documenting”? .)

Two other topics that play a role in defining GraphQL are mutations and graph theory:

• Mutations: Mutations create, update, and delete data stored in the backend. (Note: They follow
the same syntax as queries.)

• Thinking in Graphs/Graph-Theory: According to Facebook , GraphQL is “hierarchical in
nature,” and it works well with “graph structured data stores.” Furthermore, it is all about the
relationships between objects, which is the focus of graph theory .

GraphQL’s advantage over REST
Apparently, developers like GraphQL for a reason. Let’s take a closer look…

The GraphQL foundation claims that their unique approach allows developers to deliver appropriate data to
apps faster (on slow connections) and in some ways makes life easier for developers by requiring fewer
requests for data and by delivering more predictable and stable results to those requests.

Furthermore, Howtographql.com claims that “REST APIs have shown to be too inflexible to keep up with
the rapidly changing requirements of the clients that access them (and …) GraphQL (…) solves many of the
shortcomings and inefficiencies that developers experience when interacting with REST APIs.” That same
tutorial site features a video showing examples of these points:

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_graphql.html] to view the content.

Here’s a description:

• Overfetching: REST API’s sometimes force you to download more data than needed, whereas
GraphQL can return only what is needed.

• Underfetching: REST API endpoints sometimes don’t offer enough information, forcing the
developer to make several more requests.

• Rapid Product Iterations: REST APIs often have to restructure endpoints according to new
client needs. GraphQL is more flexible in this regard.

• More analytical insight available: With GraphQL queries, the API developer can get a better
look at what data users are directly requesting. Knowing this can help in the API’s evolution and
has implications for overall performance.

Documenting GraphQL APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 896

https://www.youtube.com/watch?v=rKzHc1hozB8&feature=youtu.be&t=579
https://www.youtube.com/watch?v=rKzHc1hozB8&feature=youtu.be&t=579
https://code.fb.com/core-data/graphql-a-data-query-language/
https://en.wikipedia.org/wiki/Graph_theory
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/

Some GraphQL enthusiasts have also claimed that GraphQL APIs require less or no documentation, but
this is a continuing debate which we will look at later in this article.

Tools
Closely associated with GraphQL are the editors and the extensions and packages used in IDE editors
(e.g., VS code , atom , GraphiQL) for structuring GraphQL queries.

For a good article on one of these tools, check out “GraphiQL: GraphQL’s Killer App .”

API examples
It’s not enough to read about GraphQL; it is also worth looking at popular projects, examples, and stories
of who is using it and what it can do:

• Yelp API docs
• Paypal: “GraphQL: A success story for PayPal Checkout”
• Shopify example
• Pokemon (Demonstration Only)
• Dungeons and Dragons Example (Video/Talk)
• A List of Public GraphQL APIs

Wait, this still needs documentation, right?
While GraphQL is a topic that is shrouded behind a wall of developers, a few career technical writers have
also taken a closer look at it. By far, the clearest explanation I could find comes from Chris Ward.

On the Codeship blog, Chris writes :

As a technical writer, I was intrigued by the claim that GraphQL reduces the time you
need to spend on documenting an API and reduces the amount of documentation
your application needs.” He goes on to explain, “The role of documentation with a
REST API is to explain the individual endpoints, what function they perform, and the
parameters a developer can pass to them. With a GraphQL API, you describe the
data types, fields, and the interaction points between them, and a developer can
assemble an appropriate query to get the information they need. With both
technologies, you document components but from different perspectives.

So, we see that this is an interesting point. The different perspectives he is talking about is looking at the
endpoints with REST vs looking at the data itself with GraphQL (i.e., exactly what is requested).

Chris then explains what documentation is needed for GraphQL and why it’s needed:

Documenting GraphQL APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 897

https://www.youtube.com/watch?v=rKzHc1hozB8
https://marketplace.visualstudio.com/items?itemName=Prisma.vscode-graphql
https://atom.io/packages/search?utf8=%E2%9C%93&q=keyword:graphql
https://www.gatsbyjs.org/docs/introducing-graphiql/
https://medium.com/the-graphqlhub/graphiql-graphql-s-killer-app-9896242b2125
https://www.yelp.com/developers/graphql/guides/intro
https://medium.com/paypal-engineering/graphql-a-success-story-for-paypal-checkout-3482f724fb53
https://help.shopify.com/en/api/getting-started/shopify-and-graphql
https://github.com/lucasbento/graphql-pokemon
https://www.youtube.com/watch?v=lyJebJuG_sk
https://github.com/APIs-guru/graphql-apis
https://blog.codeship.com/documenting-graphql/

Documenting API endpoints explains how individual tools work, explaining how to
use those tools together is a whole other area of documentation effort. This means
there is still need for documentation efforts in on-boarding, getting started guides,
tutorials, and conceptual documentation. An application or tool is typically far more
than just an API. (…) From a documentation perspective, GraphQL is in essence, an
API spec, much like other API specs like Swagger or API Blueprint. Granted, it’s
much more tightly coupled to code than these specs, but this (directly) benefits
developers more than writers or readers.

That technical writing is about much more than covering reference information is a good point. There will
always be new users, new developers, users who don’t know what they want, and people who need to
read the docs that are not developers.

This leads to Chris’s conclusion that tech writers are still needed here if only to continue to “bug
(developers) about explaining (their) code.”

James Scott, another technical writer, also sees a role for technical writers in the world of GraphQL. You
can see his concise and very helpful talk here:

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_graphql.html] to view the content.

Nevertheless, It might still be a good idea for technical writers to worry at least a little bit about GraphQL
because several devs are predicting that it will become more popular than REST in the future , and, if
these predictions become true, any kind of change like that won’t come without some adjustments to
workflows, roles, and how writers are viewed by the software development teams they work with, etc.

Are GraphQL documentation skills currently in demand?
I don’t have all of the information, but from what I’ve heard and seen so far, apparently not.

First, I asked one recruiter who focuses on API writers and programming writers, and they had not
encountered any requests for the skillset.

Second, I made the rounds with job search websites, only finding a small number of technical writing jobs
that specifically referenced GraphQL.

My guess is that maybe the movement is driven by developers who decide to use it , and they don’t think
to get a tech writer involved? Or, GraphQL APIs are not being implemented enough to be spotted in job
ads or by recruiters?

However, tech writers that work with it do exist! Here, for example, is a technical writer, Andrew Johnston,
at Shopify talking about their process of documenting a GraphQL API at Shopify:

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_graphql.html] to view the content.

So, maybe the best way to think about it as a tech writer is that learning GraphQL is a way specialize and
stand out, but you might be safe only knowing the basics, for now.

Documenting GraphQL APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 898

https://dev.to/martijnwalraven/why-i-believe-graphql-will-come-to-replace-rest
https://medium.freecodecamp.org/so-whats-this-graphql-thing-i-keep-hearing-about-baf4d36c20cf

Learning resources
While there are a lot of tutorials, blog-posts, and videos out there for GraphQL, I found these three to be
the most helpful for someone new to the concepts involved:

1. This a fun, well-made, interactive course with videos, exercises, quizzes from a GraphQL
community of experts: https://www.howtographql.com/

2. You can also learn from Lynda.com, “GraphQL Essential Training .” This course, however,
does requires some technical knowledge up-front. (Note: Lynda.com is often free with a library
card , if you can find an access point through your library’s website. Here is an example of this
from the Carson City Library in Nevada.)

3. GraphQL’s own documentation is well put together.

Bonus resources
• Learn to Use GraphQL with Postman .
• Techbeacon put together a list of articles and resources worth exploring .

Getting social
• The GraphQL foundation website has a list of different ways to connect with others interested in

the technology as a comprehensive list on their site .
• Be sure to check Meetup.com for a GraphQL meetup near you. (I went to one few weeks ago;

it was great!)
• Follow Graph QL on Twitter .
• Talk about it on Discord .

Documenting GraphQL APIs PDF last generated: August 27, 2023

Documenting REST APIs Page 899

https://www.howtographql.com/
https://www.lynda.com/GraphQL-tutorials/GraphQL-Essential-Training/614315-2.html
https://www.lynda.com/press/pressrelease?id=4063&fbclid=IwAR3wk8unKpqvOA3rapAFQdKCpVmY-RJBcFXboWOxWVagflECeV_RsZPgq1w
https://www.lynda.com/press/pressrelease?id=4063&fbclid=IwAR3wk8unKpqvOA3rapAFQdKCpVmY-RJBcFXboWOxWVagflECeV_RsZPgq1w
https://www.carsoncitylibrary.org/research/lynda-com?A=SearchResult&SearchID=9365794&ObjectID=11972268&ObjectType=35
https://graphql.org/learn/
https://www.codetraveler.io/2019/01/12/how-to-use-postman-with-a-graphql-api/
https://techbeacon.com/app-dev-testing/practical-guide-graphql-future-apis
https://graphql.org/community/
https://www.meetup.com/
https://twitter.com/GraphQL
https://discordapp.com/invite/0ZcbPKXt5bZiQhB5

More REST API activities
To get more practice working with various APIs, I provide several examples in this Resources section.
Working through these activities will give you more exposure to different REST APIs, how they’re
organized, the complexities and interdependency of endpoints, and more.

Available activities
There are several activities with different APIs. A challenge is listed for each activities. First, try to solve the
challenge on your own. Then follow along in the sections below to see how I approached it.

In these examples, I usually just print the code to a web page to visualize the response. The following
activities are available:

• Get event information using the Eventbrite API (p. 901)
• Flickr example: Retrieve a Flickr gallery (p. 908)
• Get wind speed using the Aeris Weather API (p. 918)

Shortcuts for API keys
Each API requires you to use an API key, token, or some other form of authentication. Register for your
own API keys.

Swap out APIKEY in code samples
I never insert API keys in code samples for a few reasons:

• API keys expire
• API keys posted online get abused
• Customizing the code sample is a good thing

When you see APIKEY in a code sample, remember to swap in an API key there. For example, if the API
key were 123 , you would delete APIKEY and use 123 .

More REST API activities PDF last generated: August 27, 2023

Documenting REST APIs Page 900

Get event information using the
Eventbrite API
Use the Eventbrite API to get the event title and description of an event.

About Eventbrite
Eventbrite is an event management tool, and you can interact with it through an API to pull out the event
information you want. In this example, you’ll use the Eventbrite API to print a description of an event to your
page.

1. Get an OAuth token
Eventbrite uses the OAuth method for authorization (p. 397). To make any kind of requests, you’ll need an
OAuth token, which you can learn about in Eventbrite’s Authentication docs .

If you want to sign up for your own token, first sign in to Eventbrite , and then create and register your
app here . After you create your app, click Show Client Secret and OAuth Token and copy the
“Anonymous access OAuth token.”

2. Determine the resource and endpoint you need
The Eventbrite API documentation is available at https://www.eventbrite.com/platform/api/ . Look
through the endpoints available (listed under “Reference” in the sidebar). Which endpoint should we use?

To get event information, we’ll use the event object, which “represents an Eventbrite Event.” (The
Eventbrite API uses the term “objects” instead of resources.”) Specifically, we’ll use Retrieve . The only
parameter we need to pass is the event ID.

3. Construct the request
Although Eventbrite explains how to pass the authorization into requests, it’s easier to use the prebuilt curl
from the documentation code samples, and then use Postman to convert it to JavaScript jQuery AJAX.

Eventbrite’s documentation uses Apiary , which provides a try-it-out feature (or API explorer (p. 549)) in
the right pane. This pane opens up when you click Retrieve an Event:

Get event information using the Eventbrite API PDF last generated: August 27, 2023

Documenting REST APIs Page 901

https://www.eventbrite.com/platform/api
https://www.eventbrite.com/platform/api#/introduction/authentication
https://www.eventbrite.com/
https://www.eventbrite.com/myaccount/apps/
https://www.eventbrite.com/platform/api/
https://www.eventbrite.com/platform/api#/reference/event
https://www.eventbrite.com/platform/api#/reference/event/retrieve-an-event
https://apiary.io/

Retrieving an Eventbrite Event

In the Console pane on the right, click the Try button to enable the ability to call the resource (if the Call
Resource button isn’t already shown).

Before you can call the resource successfully, do the following:

• Click the URI Parameters tab and customize the value for the event ID to 49216045517 . This ID
corresponds to a workshop I recently gave called Documenting REST APIs, which you can view
here . The event ID appears in the URL.

• Click the Headers tab and add your own OAuth token in place of PERSONAL_OAUTH_TOKEN .

Get event information using the Eventbrite API PDF last generated: August 27, 2023

Documenting REST APIs Page 902

https://www.eventbrite.com/platform/api#/reference/event/retrieve-an-event
https://www.eventbrite.com/platform/api#/reference/event/retrieve-an-event
https://www.eventbrite.com/e/documenting-rest-apis-a-jumpstart-workshop-for-technical-writers-tickets-49216045517

Customizing the Parameters and Authorization information the Eventbrite Console

Click the Call Resource button and then scroll down to the Response Body section to observe the
response. It should contain the body text for the Eventbrite page. (If there’s an error with the OAuth token
or event ID, you’ll see an error response instead.)

4. Get the jQuery AJAX code for the request
We retrieved the response. Now for fun let’s print the response to the page (as if we were promoting the
event on our own site).

In the Console pane, below the parameters section, click Show Code Example:

Show code example

In the language drop-down that appears, select the cURL option and copy the value. It should look
something like this:

curl --include \
--header "Authorization: Bearer IO6EB7MM6TSCIL2TIOHC" \
--header "Content-Type: application/json" \

'https://www.eventbriteapi.com/v3/events/49216045517/'

Open up Postman (p. 71). In Postman, go to File > Import and then select the Paste Raw Text tab. Paste
in the cURL code you copied.

Get event information using the Eventbrite API PDF last generated: August 27, 2023

Documenting REST APIs Page 903

Pasting curl into Postman

Then click Import. The information will populate in a new Postman tab. In Postman, if you expand the
Headers tab, you will see the OAuth information. The GET box includes the Eventbrite retrieve endpoint
with the event ID added as a path parameter (p. 136).

In Postman, below the Send button, click Code. In the Generate Code Snippets dialog box, select
JavaScript > Jquery AJAX. Copy the value shown:

Get event information using the Eventbrite API PDF last generated: August 27, 2023

Documenting REST APIs Page 904

jQuery AJAX code in Postman

In the value, remove the cache-control and Postman-Token key-value pairs, so that your code sample
looks like this:

var settings = {
"async": true,
"crossDomain": true,
"url": "https://www.eventbriteapi.com/v3/events/49216045517/",
"method": "GET",
"headers": {

"Authorization": "Bearer IO6EB7MM6TSCIL2TIOHC",
"Content-Type": "application/json"

}
}

$.ajax(settings).done(function (response) {
console.log(response);

});

5. Customize the response on the page
The information returned from the event object has a lot more detail than we need. We just want to display
the event’s title and description on our site. We’ll use the jQuery AJAX code copied from the earlier step to
do this. Note that I won’t go into full detail about this code. I covered this AJAX call in more detail in some
earlier tutorials:

• Inspect the JSON from the response payload (p. 98)

Get event information using the Eventbrite API PDF last generated: August 27, 2023

Documenting REST APIs Page 905

• Access and print a specific JSON value (p. 103)
• Dive into dot notation (p. 109)

To integrate the jQuery AJAX Postman code into your website and print the title and description

fields in the response, use the following code:

<!DOCTYPE html>
<html>
<meta charset="UTF-8">

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.mi
n.js"></script>

<script>
var settings = {

"async": true,
"crossDomain": true,
"url": "https://www.eventbriteapi.com/v3/events/49216045517/",
"method": "GET",
"headers": {

"Authorization": "Bearer IO6EB7MM6TSCIL2TIOHC",
"Content-Type": "application/json"

}
}

$.ajax(settings).done(function (data) {
console.log(data);
var content = "<h2>" + data.name.text + "</h2>" + data.description.html;
$("#eventbrite").append(content);

});
</script>

<div id="eventbrite"></div>

</body>
</html>

Here’s the result :

Get event information using the Eventbrite API PDF last generated: August 27, 2023

Documenting REST APIs Page 906

https://idratherbewriting.com/assets/files/eventbrite-example.html

Eventbrite result printed to the page

Code explanation
The sample implementation is as plain as it can be concerning style. But with API documentation code
examples, you want to keep code examples simple. In fact, you most likely don’t need a demo at all.
Simply showing the payload returned in the browser is sufficient for a UI developer. However, for testing
it’s fun to make content actually appear on the page.

In a nutshell, here’s what’s going on. The ajax method from jQuery gets a payload for an endpoint URL
and then assigns it to the data argument. We optionally log data to the console to more easily inspect
its payload. To pull out the various properties of the object, we use dot notation. data.name.text gets
the text property from the name object, and data.description.html gets the body.

We then rename the content we want with a variable (var content) and use jQuery’s append method to
assign the variable’s contents to a specific tag (eventbrite) on the page.

Get event information using the Eventbrite API PDF last generated: August 27, 2023

Documenting REST APIs Page 907

https://idratherbewriting.com/assets/files/eventbrite-example.html
https://idratherbewriting.com/assets/files/eventbrite-example.html

Retrieve a gallery using the Flickr API
Use the Flickr API to get photo images from this Flickr gallery .

Flickr Overview
In this Flickr API example, we want to get all the photos from a specific Flickr gallery called Color in Nature

and display them on a web page. Here’s the gallery we want:

To achieve our goal, we’ll need to call several endpoints. Hopefully, this activity will demonstrate the
shortcomings of just having reference documentation. When one endpoint requires another endpoint
response as an input, you might have to communicate these workflows through tutorials.

1. Get an API key to make requests
Before you can make a request with the Flickr API, you’ll need an API key, which you can read more about
here . When you register an app, you’re given a key and secret.

2. Determine the resource and endpoint you need
From the list of Flickr’s API methods , the flickr.galleries.getPhotos endpoint, which is listed under the
galleries resource, is the one that will get photos from a gallery.

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 908

https://www.flickr.com/photos/flickr/galleries/72157647277042064/
https://www.flickr.com/photos/flickr/galleries/72157647277042064/
https://www.flickr.com/photos/flickr/galleries/72157647277042064/
https://www.flickr.com/photos/flickr/galleries/72157647277042064/
https://www.flickr.com/photos/flickr/galleries/72157647277042064/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/api/
https://www.flickr.com/services/api/flickr.galleries.getPhotos.html

One of the arguments we need for the getPhotos endpoint is the gallery_id . Before we can get the
gallery_id , however, we have to use another endpoint to retrieve it. Somewhat unintuitively, the
gallery_id is not the ID that appears in the URL of the gallery.

Instead, we use the flickr.urls.lookupGallery endpoint listed in the URLs resource section to get
the gallery_id from a gallery URL:

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 909

https://www.flickr.com/services/api/flickr.galleries.getPhotos.html
https://www.flickr.com/services/api/flickr.galleries.getPhotos.html
https://www.flickr.com/services/api/explore/flickr.urls.lookupGallery
https://www.flickr.com/services/api/explore/flickr.urls.lookupGallery

The gallery_id for Color in Nature is 66911286-72157647277042064 . We now have the arguments
we need for the flickr.galleries.getPhotos endpoint.

3. Construct the request
We can make the request to get the list of photos for this specific gallery_id .

Flickr provides an API Explorer to simplify calls to the endpoints. If we go to the API Explorer for the
galleries.getPhotos endpoint , we can plug in the gallery_id and see the response, as well as

get the URL syntax for the endpoint.

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 910

https://www.flickr.com/services/api/explore/flickr.urls.lookupGallery
https://www.flickr.com/services/api/explore/flickr.urls.lookupGallery
https://www.flickr.com/photos/flickr/galleries/72157647277042064/
https://www.flickr.com/services/api/flickr.galleries.getPhotos.html
https://www.flickr.com/services/api/flickr.galleries.getPhotos.html
https://www.flickr.com/services/api/explore/flickr.galleries.getPhotos
https://www.flickr.com/services/api/explore/flickr.galleries.getPhotos
https://www.flickr.com/services/api/explore/flickr.galleries.getPhotos

Insert the gallery_id , select JSON for the output, select Do not sign call (we’re just testing here, so we
don’t need extra security), and then click Call Method.

Here’s the result:

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 911

https://www.flickr.com/services/api/explore/flickr.galleries.getPhotos
https://www.flickr.com/services/api/explore/flickr.galleries.getPhotos

The URL below the response shows the right syntax for using this method:

https://api.flickr.com/services/rest/?method=flickr.galleries.getPhotos&ap
i_key=APIKEY&gallery_id=66911286-72157647277042064&format=json&nojsoncallbac
k=1

If you submit the request directly in your browser using the given URL, you can see the same response but
in the browser rather than the API Explorer:

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 912

I’m using the JSON Formatting extension for Chrome to make the JSON response more readable.
Without this plugin, the JSON response is compressed.

4. Analyze the response
All the necessary information is included in this response in order to display photos on our site, but it’s not
entirely intuitive how we construct the image source URLs from the response.

In other words, the information a user needs to achieve a goal isn’t explicit in the API reference
documentation. The reference docs explain only what’s returned in the response, not how to actually use
the response.

The Photo Source URLs page in the documentation explains it:

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 913

https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
https://www.flickr.com/services/api/misc.urls.html

You can construct the source URL to a photo once you know its ID, server ID, farm
ID, and secret, as returned by many API methods. The URL takes the following
format:

https://farm{farm-id}.staticflickr.com/{server-id}/{id}_{secret}.jpg
or

https://farm{farm-id}.staticflickr.com/{server-id}/{id}_{secret}_[mstz
b].jpg

or
https://farm{farm-id}.staticflickr.com/{server-id}/{id}_{o-secre
t}_o.(jpg|gif|png)

Here’s what an item in the JSON response looks like:

{
"photos": {

"page": 1,
"pages": 1,
"perpage": 100,
"total": 13,
"photo": [

{
"id": "8432423659",
"owner": "37107167@N07",
"secret": "dd1b834ec5",
"server": "8187",
"farm": 9,
"title": "Color",
"ispublic": 1,
"isfriend": 0,
"isfamily": 0,
"is_primary": 1,
"has_comment": 0
},
...

]
}

}

You access these fields through dot notation. It’s a good idea to log the whole object to the console just to
explore it better.

5. Pull out the information you need
The following code uses jQuery to loop through each of the responses and inserts the necessary
components into an image tag to display each photo.

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 914

<html>
<style>
img {max-height:125px; margin:3px; border:1px solid #dedede;}
</style>
<body>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.mi
n.js"></script>

<script>

var settings = {
"async": true,
"crossDomain": true,
"url": "https://api.flickr.com/services/rest/?method=flickr.galleries.getP

hotos&api_key=APIKEY&gallery_id=66911286-72157647277042064&format=json&nojso
ncallback=1",

"method": "GET",
"headers": {}

}

$.ajax(settings).done(function (data) {
console.log(data);

$("#galleryTitle").append(data.photos.photo[0].title + " Gallery");
$.each(data.photos.photo, function(i, gp) {

var farmId = gp.farm;
var serverId = gp.server;
var id = gp.id;
var secret = gp.secret;

console.log(farmId + ", " + serverId + ", " + id + ", " + secret);

// https://farm{farm-id}.staticflickr.com/{server-id}/{id}_{secret}.jpg

$("#flickr").append('<img src="https://farm' + farmId + '.staticflickr.co
m/' + serverId + '/' + id + '_' + secret + '.jpg"/>');

});
});

</script>

<h2><div id="galleryTitle"></div></h2>
<div style="clear:both;"/>
<div id="flickr"/>

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 915

</body>
</html>

Here’s what the code is doing:

• In this code, the ajax method from jQuery gets the JSON payload. The payload is assigned to
the data argument and then logged to the console.

• The data object contains an object called photos , which contains an array called photo . The
title field is a property in an object in the photo array. The title is accessed through this

dot notation: data.photos.photo[0].title .
• To get each item in the object, jQuery’s each method loops through an object’s properties.

Note that jQuery each method is commonly used for looping through results to get values. For
the first argument (data.photos.photo), you identify the object that you want to access. For
the function(i, gp) arguments, you list an index and value. You can use any names you
want here. gp becomes a variable that refers to the data.photos.photo object you’re looping
through. i refers to the starting point through the object. (You don’t need to refer to i beyond
the instance here unless you want to begin or end the loop at a certain point.)

• To access the properties in the JSON object, we use gp.farm instead of
data.photos.photo[0].farm , because gp is an object reference to
data.photos.photo[i] .

• After the each function iterates through the response, I added some variables to make it easier
to work with these components (using serverId instead of gp.server , etc.). And a
console.log message checks to ensure we’re getting values for each of the elements we need.

• This comment shows where we need to plug in each of the variables:

// https://farm{farm-id}.staticflickr.com/{server-id}/{id}_{secret}.jpg

The final line shows how you insert those variables into the HTML:

$("#flickr").append('<img src="https://farm' + farmId + '.staticflickr.co
m/' + serverId + '/' + id + '_' + secret + '.jpg"/>');

A common pattern in programming is to loop through a response. This code example used the each

method from jQuery to look through all the items in the response and do something with each item.
Sometimes you incorporate logic that loops through items and looks for certain conditions present to
decide whether to take some action. Pay attention to methods for looping, as they are common scenarios
in programming.

For more information, see these topics:

• Inspect the JSON from the response payload[]((p. 908)docapis_json_console.html)
• Access and print a specific JSON value (p. 103)
• Dive into dot notation (p. 109)

Final Result
You can view a demo of the Color Gallery integration here .

The result looks like this:

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 916

http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.each/
https://idratherbewriting.com/assets/files/flickr-gallery-example.html

Color Gallery integrated through the Flickr API

Retrieve a gallery using the Flickr API PDF last generated: August 27, 2023

Documenting REST APIs Page 917

https://idratherbewriting.com/assets/files/flickr-gallery-example.html
https://idratherbewriting.com/assets/files/flickr-gallery-example.html

Get wind speed using the Aeris
Weather API
In this activity, you’ll use the Aeris Weather API to get the wind speed for a specific place (your choice).
You’ll then display the wind speed on a web page based on some conditional logic about the wind speed’s
value.

The Aeris Weather API
In earlier tutorials, you integrated information from the OpenWeatherMap API . It’s probably a good idea
to compare this OpenWeatherMap API with another weather API. The Aeris Weather API is one of the
most interesting, well-documented and powerful weather APIs I’ve encountered.

1. Get the API keys
See the Getting Started page for information on how to register and get API keys. (Get the free version
of the keys available to development projects.) You will need both the ID and secret to make API calls. See
Get the Aeris Weather API secret and ID (p. 70) for more detail.

2. Construct the request
Browse through the available endpoints in the Weather API and look for one that would give you the
wind speed. The observations endpoint provides information about wind speed, as does forecasts

. The response from observations looks a little simpler, so let’s use that endpoint.

To get the forecast details for Santa Clara, California, add santa%20clara,ca after /observations , like
this:

http://api.aerisapi.com/observations/santa%20clara,ca?client_id=CLIENT_ID&cl
ient_secret=CLIENT_SECRET

Get wind speed using the Aeris Weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 918

https://openweathermap.org/api
http://www.aerisweather.com/support/docs/api/
http://www.aerisweather.com/support/docs/api/getting-started/
http://www.aerisweather.com/support/docs/api/reference/endpoints/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
http://www.aerisweather.com/support/docs/api/reference/endpoints/forecasts/
http://www.aerisweather.com/support/docs/api/reference/endpoints/forecasts/
http://www.aerisweather.com/support/docs/api/reference/endpoints/forecasts/
http://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
http://www.aerisweather.com/support/docs/api/reference/endpoints/observations/

You will need to swap in your own client ID and secret in place of CLIENT_ID and CLIENT_SECRET in the
code above.

3. Analyze the response
Here’s the response from the request :

Get wind speed using the Aeris Weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 919

http://api.aerisapi.com/observations/santa%20clara,ca?client_id=ByruDorHEne2JB64BhP1k&client_secret=Jp4xullRcy6DXTPSTKBGXAvGGTaT04iiUQXPj0ob

{
"success": true,
"error": null,
"response": {

"id": "KSJC",
"loc": {

"long": -121.91666666667,
"lat": 37.366666666667

},
"place": {

"name": "san jose",
"state": "ca",
"country": "us"

},
"profile": {

"tz": "America/Los_Angeles",
"elevM": 24,
"elevFT": 79

},
"obTimestamp": 1544806380,
"obDateTime": "2018-12-14T08:53:00-08:00",
"ob": {

"timestamp": 1544806380,
"dateTimeISO": "2018-12-14T08:53:00-08:00",
"tempC": 14.4,
"tempF": 58,
"dewpointC": 6.1,
"dewpointF": 43,
"humidity": 58,
"pressureMB": 1016,
"pressureIN": 30,
"spressureMB": 1014,
"spressureIN": 29.94,
"altimeterMB": 1017,
"altimeterIN": 30.03,
"windKTS": 14,
"windKPH": 26,
"windMPH": 16,
"windSpeedKTS": 14,
"windSpeedKPH": 26,
"windSpeedMPH": 16,
"windDirDEG": 140,
"windDir": "SE",
"windGustKTS": 20,
"windGustKPH": 37,
"windGustMPH": 23,
"flightRule": "VFR",
"visibilityKM": 16.09344,
"visibilityMI": 10,
"weather": "Cloudy",
"weatherShort": "Cloudy",

Get wind speed using the Aeris Weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 920

"weatherCoded": "::OV",
"weatherPrimary": "Cloudy",
"weatherPrimaryCoded": "::OV",
"cloudsCoded": "OV",
"icon": "cloudy.png",
"heatindexC": 14,
"heatindexF": 58,
"windchillC": 14,
"windchillF": 58,
"feelslikeC": 14,
"feelslikeF": 58,
"isDay": true,
"sunrise": 1544800479,
"sunriseISO": "2018-12-14T07:14:39-08:00",
"sunset": 1544835063,
"sunsetISO": "2018-12-14T16:51:03-08:00",
"snowDepthCM": null,
"snowDepthIN": null,
"precipMM": 0,
"precipIN": 0,
"solradWM2": 55,
"solradMethod": "estimated",
"ceilingFT": 7000,
"ceilingM": 2133.6,
"light": 24,
"QC": "O",
"QCcode": 10,
"windGustSpeedKTS": 20,
"windGustSpeedKPH": 37,
"windGustSpeedMPH": 23,
"sky": 100

},
"raw": "KSJC 141653Z 14014G20KT 10SM FEW024 BKN070 OVC110 14/06 A3003 RM

K AO2 SLP168 T01440061",
"relativeTo": {

"lat": 37.35411,
"long": -121.95524,
"bearing": 68,
"bearingENG": "ENE",
"distanceKM": 3.684,
"distanceMI": 2.289

}
}

}

windSpeedMPH is the value we want.

4. Pull out the values from the response
To get the windSpeedMPH , you would access it through dot notation like this:
data.response.ob.windSpeedMPH .

Get wind speed using the Aeris Weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 921

To add a little variety to the code samples, let’s add some conditional logic in the display. The following
code checks to see if data.response.ob.windSpeedMPH is greater than 15 . If so, it prints Yes, it's

too windy. If not, it prints, No, it's not that windy.

<html>
<body>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquer
y.min.js"></script>

<script>

jQuery.ajax({
url: "http://api.aerisapi.com/observations/santa%20clara,ca",
type: "GET",
data: {

"client_id": "CLIENTID",
"client_secret": "CLIENTSECRET",

},
})
.done(function(data, textStatus, jqXHR) {

console.log("HTTP Request Succeeded: " + jqXHR.status);
console.log(data);
if (data.response.ob.windSpeedMPH > 15) {

var windAnswer = "Yes, it's too windy.";
}

else {
var windAnswer = "No, it's not that windy.";

}
$("#windAnswer").append(windAnswer)

})
.fail(function(jqXHR, textStatus, errorThrown) {

console.log("HTTP Request Failed");
})
.always(function() {

/* ... */
});

</script>
<p>Is it too windy to go on a bike ride?</p>
<div id="windAnswer" style="font-size:76px"></div>

</body>
</html>

Here’s the result :

Get wind speed using the Aeris Weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 922

https://idratherbewriting.com/assets/files/aeris-observations.html

Aeris Weather example

For fun, change the value from 15 to 1 in the code and refresh the page. It will probably say “Yes, it’s
too windy.” JavaScript is fun because it’s easy to adjust some parameters and see the results through your
browser. With other programming languages, you would likely need to compile or run the code in an IDE to
see the result. In both cases, always test out the code and make it run yourself.

Get wind speed using the Aeris Weather API PDF last generated: August 27, 2023

Documenting REST APIs Page 923

https://idratherbewriting.com/assets/files/aeris-observations.html
https://idratherbewriting.com/assets/files/aeris-observations.html

RAML tutorial
RAML stands for REST API Modeling Language and is similar to the OpenAPI specification (p. 272). RAML
is backed by Mulesoft , a full-service, end-to-end API company.

Note that unless you’re publishing your docs with Mulesoft or another platform that specifically requires
RAML, I recommend using the OpenAPI specification (p. 272) instead. However, Mulesoft offers enterprise-
grade API design, management, and deployment capabilities. If you’re using Mulesoft for your API, you
probably want to use RAML for your documentation specification.

RAML overview
Similar to OpenAPI, after you create a RAML file that describes your API, it can be consumed by different
platforms to parse and display the information in interactive outputs. The RAML format, which uses YML
syntax, is human-readable, efficient, and simple. Here’s what the RAML output looks like in API Console
(which is similar to Swagger UI):

Sample API Console output with RAML

You can see a demo with the Google Drive API .

Auto-generating client SDK code
It’s important to note that with these REST API specifications (as with the OpenAPI spec), you’re not just
describing an API to generate a nifty doc output with an interactive console. There are tools that can also
generate client SDKs and other code from the spec into a library that you can integrate into your project.
These tools can make it easier for developers to make requests to your API and receive responses.

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 924

https://www.mulesoft.com/
https://mulesoft.github.io/api-console/#/docs/summary

Additionally, the interactive console can provide a way to prototype and beta test your API before
developers even start coding. Mulesoft offers a “mocking service” for your API that simulates calls and
responses. The idea of the mocking service is to design your API the right way from the start, without
iterating with different versions as you try to get the endpoints right.

Sample spec for OpenWeatherMap API
To understand the proper syntax and format for RAML, you need to read the RAML spec and look at
some examples. See this RAML tutorial to get started.

Here’s the OpenWeatherMap API (which we’ve been using in this course (p. 65)) formatted in the RAML
spec. (I actually just used API Transformer to convert my OpenAPI 3.0 spec to RAML.) As you can see,
RAML is highly similar to the OpenAPI spec.

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 925

http://raml.org/spec.html
http://raml.org/docs.html
https://apimatic.io/transformer

#%RAML 1.0
title: OpenWeatherMap API
version: 2.5
baseUri: https://mocksvc.mulesoft.com/mocks/082e051b-e960-48f7-9d75-2f49af8c
cd86/data/2.5/ # baseUri: http://api.openweathermap.org/data/2.5/
baseUriParameters: {}
documentation:
- title: OpenWeatherMap API

content: 'Get the current weather, daily forecast for 16 days, and a thre
e-hour-interval forecast for 5 days for your city. Helpful stats, graphics,
and this day in history charts are available for your reference. Interactiv
e maps show precipitation, clouds, pressure, wind around your location stati
ons. Data is available in JSON, XML, or HTML format. **Note**: This sample S
wagger file covers the `current` endpoint only from the OpenWeatherMap API.

 Note: All parameters are optional, but you must select at lea
st one parameter. Calling the API by city ID (using the `id` parameter) wil
l provide the most precise location results.'
securitySchemes:

auth:
type: Pass Through
describedBy:

queryParameters:
appid:

required: true
displayName: appid
description: API key to authorize requests.
type: string

types:
SuccessfulResponse:

displayName: Successful response
type: object
properties:

coord:
required: false
displayName: coord
type: Coord

weather:
required: false
displayName: weather
description: (more info Weather condition codes)
type: array
items:

type: Weather
base:

required: false
displayName: base
description: Internal parameter
type: string

main:
required: false
displayName: main

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 926

type: Main
visibility:

required: false
displayName: visibility
description: Visibility, meter
type: integer
format: int32

wind:
required: false
displayName: wind
type: Wind

clouds:
required: false
displayName: clouds
type: Clouds

rain:
required: false
displayName: rain
type: Rain

snow:
required: false
displayName: snow
type: Snow

dt:
required: false
displayName: dt
description: Time of data calculation, unix, UTC
type: integer
format: int32

sys:
required: false
displayName: sys
type: Sys

id:
required: false
displayName: id
description: City ID
type: integer
format: int32

name:
required: false
displayName: name
type: string

cod:
required: false
displayName: cod
description: Internal parameter
type: integer
format: int32

Coord:
displayName: Coord

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 927

type: object
properties:

lon:
required: false
displayName: lon
description: City geo location, longitude
type: number
format: double

lat:
required: false
displayName: lat
description: City geo location, latitude
type: number
format: double

Weather:
displayName: Weather
type: object
properties:

id:
required: false
displayName: id
description: Weather condition id
type: integer
format: int32

main:
required: false
displayName: main
description: Group of weather parameters (Rain, Snow, Extreme etc.)
type: string

description:
required: false
displayName: description
description: Weather condition within the group
type: string

icon:
required: false
displayName: icon
description: Weather icon id
type: string

Main:
displayName: Main
type: object
properties:

temp:
required: false
displayName: temp
description: 'Temperature. Unit Default: Kelvin, Metric: Celsius, Im

perial: Fahrenheit.'
type: number
format: double

pressure:

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 928

required: false
displayName: pressure
description: Atmospheric pressure (on the sea level, if there is no

sea_level or grnd_level data), hPa
type: integer
format: int32

humidity:
required: false
displayName: humidity
description: Humidity, %
type: integer
format: int32

temp_min:
required: false
displayName: temp_min
description: 'Minimum temperature at the moment. This is deviation f

rom current temp that is possible for large cities and megalopolises geograp
hically expanded (use these parameter optionally). Unit Default: Kelvin, Met
ric: Celsius, Imperial: Fahrenheit.'

type: number
format: double

temp_max:
required: false
displayName: temp_max
description: 'Maximum temperature at the moment. This is deviation f

rom current temp that is possible for large cities and megalopolises geograp
hically expanded (use these parameter optionally). Unit Default: Kelvin, Met
ric: Celsius, Imperial: Fahrenheit.'

type: number
format: double

sea_level:
required: false
displayName: sea_level
description: Atmospheric pressure on the sea level, hPa
type: number
format: double

grnd_level:
required: false
displayName: grnd_level
description: Atmospheric pressure on the ground level, hPa
type: number
format: double

Wind:
displayName: Wind
type: object
properties:

speed:
required: false
displayName: speed
description: 'Wind speed. Unit Default: meter/sec, Metric: meter/se

c, Imperial: miles/hour.'

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 929

type: number
format: double

deg:
required: false
displayName: deg
description: Wind direction, degrees (meteorological)
type: integer
format: int32

Clouds:
displayName: Clouds
type: object
properties:

all:
required: false
displayName: all
description: Cloudiness, %
type: integer
format: int32

Rain:
displayName: Rain
type: object
properties:

3h:
required: false
displayName: 3h
description: Rain volume for the last 3 hours
type: integer
format: int32

Snow:
displayName: Snow
type: object
properties:

3h:
required: false
displayName: 3h
description: Snow volume for the last 3 hours
type: number
format: double

Sys:
displayName: Sys
type: object
properties:

type:
required: false
displayName: type
description: Internal parameter
type: integer
format: int32

id:
required: false
displayName: id

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 930

description: Internal parameter
type: integer
format: int32

message:
required: false
displayName: message
description: Internal parameter
type: number
format: double

country:
required: false
displayName: country
description: Country code (GB, JP etc.)
type: string

sunrise:
required: false
displayName: sunrise
description: Sunrise time, unix, UTC
type: integer
format: int32

sunset:
required: false
displayName: sunset
description: Sunset time, unix, UTC
type: integer
format: int32

/weather:
get:

displayName: Call current weather data for one location
description: Access current weather data for any location on Earth inclu

ding over 200,000 cities! Current weather is frequently updated based on glo
bal models and data from more than 40,000 weather stations.

securedBy:
- auth
queryParameters:

q:
required: false
displayName: q
description: '**City name**. *Example: London*. You can call by cit

y name, or by city name and country code. The API responds with a list of re
sults that match a searching word. For the query value, type the city name a
nd optionally the country code divided by a comma; use ISO 3166 country code
s.'

type: string
id:

required: false
displayName: id
description: "**City ID**. *Example: `2172797`*. You can call by cit

y ID. The API responds with the exact result. The List of city IDs can be do
wnloaded [here](http://bulk.openweathermap.org/sample/). You can include mul
tiple cities in this parameter — just separate them by commas. The lim

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 931

it of locations is 20. *Note: A single ID counts as a one API call. So, if y
ou have 3 city IDs, it’s treated as 3 API calls.*"

type: string
lat:

required: false
displayName: lat
description: '**Latitude**. *Example: 35*. The latitude coordinate o

f the location of your interest. Must use with `lon`.'
type: string

lon:
required: false
displayName: lon
description: '**Longitude**. *Example: 139*. Longitude coordinate o

f the location of your interest. Must use with `lat`.'
type: string

zip:
required: false
default: 94040,us
example: 94040,us
displayName: zip
description: '**Zip code**. Search by zip code. *Example: 95050,u

s*. Please note that if the country is not specified, the search uses USA a
s a default.'

type: string
units:

required: false
default: standard
example:

value: imperial
displayName: units
description: '**Units**. *Example: imperial*. Possible values: `metr

ic`, `imperial`. When you do not use the `units` parameter, the format is `s
tandard` by default.'

type: string
enum:
- standard
- metric
- imperial

lang:
required: false
default: en
example:

value: en
displayName: lang
description: '**Language**. *Example: en*. You can use lang paramete

r to get the output in your language. We support the following languages tha
t you can use with the corresponded lang values: Arabic - `ar`, Bulgarian -
`bg`, Catalan - `ca`, Czech - `cz`, German - `de`, Greek - `el`, English -
`en`, Persian (Farsi) - `fa`, Finnish - `fi`, French - `fr`, Galician - `g
l`, Croatian - `hr`, Hungarian - `hu`, Italian - `it`, Japanese - `ja`, Kore
an - `kr`, Latvian - `la`, Lithuanian - `lt`, Macedonian - `mk`, Dutch - `n

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 932

l`, Polish - `pl`, Portuguese - `pt`, Romanian - `ro`, Russian - `ru`, Swedi
sh - `se`, Slovak - `sk`, Slovenian - `sl`, Spanish - `es`, Turkish - `tr`,
Ukrainian - `ua`, Vietnamese - `vi`, Chinese Simplified - `zh_cn`, Chinese T
raditional - `zh_tw`.'

type: string
enum:
- ar
- bg
- ca
- cz
- de
- el
- en
- fa
- fi
- fr
- gl
- hr
- hu
- it
- ja
- kr
- la
- lt
- mk
- nl
- pl
- pt
- ro
- ru
- se
- sk
- sl
- es
- tr
- ua
- vi
- zh_cn
- zh_tw

Mode:
required: false
default: json
example:

value: json
displayName: Mode
description: '**Mode**. *Example: html*. Determines the format of th

e response. Possible values are `xml` and `html`. If the mode parameter is e
mpty, the format is `json` by default.'

type: string
enum:
- json

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 933

- xml
- html

responses:
200:

description: Successful response
body:

application/json:
displayName: response
description: Successful response
type: SuccessfulResponse

404:
description: Not found response
body: {}

RAML’s specification format is highly similar to the OpenAPI spec. There’s really not much point in having
multiple specifications for REST APIs in the industry, so my guess is that in five years, RAML will be
obsolete.

Outputs
You can generate outputs using the RAML spec from a variety of platforms. Here are three ways:

• Developer Portal on Anypoint platform (p. 934). Choose this option if you are developing and
delivering your API on Mulesoft’s Anypoint platform.

• API Console output (p. 936). Choose this option if you want a standalone API Console output
delivered on your own server. (Note that this option also allows you to embed the console in an
iframe.)

• RAML2HTML project (p. 936). Choose this option if you want a simple HTML output of your API
documentation. No interactive console is included.

More detail about each of these options is provided in the following sections.

Developer Portal on Anypoint platform
Anypoint is the API development platform on Mulesoft. APIs you develop with Mulesoft can be shared
and viewed on their Anypoint Exchange portal .

The Anypoint console has a dashboard where you can work on your RAML definition, add other
documentation pages (outside the spec), configure mocking services, and more. If your company already
uses Mulesoft for other API development services, it would make sense to use their documentation and
portal features as well. You can also export your RAML definition to OpenAPI through the Anypoint
console.

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 934

https://anypoint.mulesoft.com/apiplatform
https://www.mulesoft.com/exchange/

The UI when working with RAML definitions in the Anypoint platform

Note that you can add additional pages to your documentation in Anypoint. (Kudos to the Mulesoft team
for recognizing that API documentation is more than just a set of reference endpoints.)

Here’s what the sample OpenWeatherMap API looks like in Anypoint Exchange :

OpenWeather API documentation in Mulesoft's Anypoint Exchange

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 935

https://anypoint.mulesoft.com/exchange/18a207fd-59c5-4c64-845f-de1568e92fc5/openweathermap/1.0.0/console/types/Coord/
https://anypoint.mulesoft.com/exchange/18a207fd-59c5-4c64-845f-de1568e92fc5/openweathermap/1.0.0/console/types/Coord/
https://anypoint.mulesoft.com/exchange/18a207fd-59c5-4c64-845f-de1568e92fc5/openweathermap/1.0.0/console/types/Coord/

One of the unique options Mulesoft offers is called API Notebook . This is a unique tool designed by
Mulesoft that allows you to provide interactive code examples that leverage your RAML spec.

API Console output
You can download the same code that generates the output on the Anypoint Platform and create your own
interactive documentation. The standalone project (on GitHub) is called API Console . Here’s a demo .
Instructions for building API Console from a RAML file are available on the api-console project on
GitHub. After you build the output, upload it to a web server and go to the index.html file.

Here’s the OpenWeather API in API Console :

Sample RAML output in API Console

You can also embed the API console as an HTML element .

RAML2HTML project
Finally, you can also use a tool called RAML2HTML project to generate HTML documentation from a
RAML spec. Here’s an example of what the RAML2HTML output looks like. It’s a static HTML output
without any interactivity. See the RAML2HTML documentation for instructions on generating this output.

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 936

https://api-notebook.anypoint.mulesoft.com/
https://github.com/mulesoft/api-console
https://idratherbewriting.com/assets/files/raml/build/index.html
https://github.com/mulesoft/api-console
https://idratherbewriting.com/assets/files/raml/build/index.html
https://idratherbewriting.com/assets/files/raml/build/index.html
https://idratherbewriting.com/assets/files/raml/build/index.html
https://github.com/mulesoft/api-console#embed-as-an-html-element
http://raml2html.leanlabs.io/
http://raml2html.leanlabs.io/github
http://raml2html.leanlabs.io/documentation

Conclusion
Exploring Mulesoft in more depth is beyond the scope of this tutorial, but hopefully I’ve introduced you to
RAML and Mulesoft. Overall, large platforms that process and display your API documentation can only do
so if your documentation aligns with a spec their tools can parse. RAML provides this standard spec for the
Mulesoft ecosystem of tools. Their enterprise-level API tools provide powerful capabilities for your API.

RAML tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 937

API Blueprint tutorial
Just as Swagger defines a spec for describing a REST API, API Blueprint is another specification for
describing REST APIs. If you describe your API with this blueprint, tools that support API Blueprint can
read and display the information.

Note that unless you’re using a platform that specifically requires API Blueprint, I recommend using the
OpenAPI specification (p. 272) instead.

What is API Blueprint
The API Blueprint spec is written in a Markdown-flavored syntax. It’s not regular Markdown, but it has a lot
of the same, familiar Markdown syntax. However, the blueprint is a particular schema that is either valid or
not valid based on the element names, order, spacing, and other details. In this way, it’s not nearly as
flexible or forgiving as Markdown. But it may be preferable to YAML.

Sample blueprint
Here’s a sample blueprint to give you an idea of the syntax:

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 938

https://apiblueprint.org/

FORMAT: 1A
HOST: http://polls.apiblueprint.org/

test

Polls is a simple API allowing consumers to view polls and vote in them.

Polls API Root [/]

This resource does not have any attributes. Instead, it offers the initial
API affordances in the form of the links in the JSON body.

It is recommended to follow the “url" link values,
[Link](https://tools.ietf.org/html/rfc5988), or Location headers where
applicable to retrieve resources. Instead of constructing your own URLs,
to keep your client decoupled from implementation details.

Retrieve the Entry Point [GET]

+ Response 200 (application/json)

{
"questions_url": "/questions"

}

Group Question

Resources related to questions in the API.

Question [/questions/{question_id}]

A Question object has the following attributes:

+ question
+ published_at - An ISO8601 date when the question was published.
+ url
+ choices - An array of Choice objects.

+ Parameters
+ question_id: 1 (required, number) - ID of the Question in form of an i

nteger

View a Questions Detail [GET]

+ Response 200 (application/json)

{
"question": "Favourite programming language?",
"published_at": "2014-11-11T08:40:51.620Z",
"url": "/questions/1",
"choices": [

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 939

{
"choice": "Swift",
"url": "/questions/1/choices/1",
"votes": 2048

}, {
"choice": "Python",
"url": "/questions/1/choices/2",
"votes": 1024

}, {
"choice": "Objective-C",
"url": "/questions/1/choices/3",
"votes": 512

}, {
"choice": "Ruby",
"url": "/questions/1/choices/4",
"votes": 256

}
]

}

Choice [/questions/{question_id}/choices/{choice_id}]

+ Parameters
+ question_id: 1 (required, number) - ID of the Question in form of an i

nteger
+ choice_id: 1 (required, number) - ID of the Choice in form of an integ

er

Vote on a Choice [POST]

This action allows you to vote on a question's choice.

+ Response 201

+ Headers

Location: /questions/1

Questions Collection [/questions{?page}]

+ Parameters
+ page: 1 (optional, number) - The page of questions to return

List All Questions [GET]

+ Response 200 (application/json)

+ Headers

Link: </questions?page=2>; rel="next"

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 940

+ Body

[
{

"question": "Favourite programming language?",
"published_at": "2014-11-11T08:40:51.620Z",
"url": "/questions/1",
"choices": [

{
"choice": "Swift",
"url": "/questions/1/choices/1",
"votes": 2048

}, {
"choice": "Python",
"url": "/questions/1/choices/2",
"votes": 1024

}, {
"choice": "Objective-C",
"url": "/questions/1/choices/3",
"votes": 512

}, {
"choice": "Ruby",
"url": "/questions/1/choices/4",
"votes": 256

}
]

}
]

Create a New Question [POST]

You may create your own question using this action. It takes a JSON
object containing a question and a collection of answers in the
form of choices.

+ question (string) - The question
+ choices (array[string]) - A collection of choices.

+ Request (application/json)

{
"question": "Favourite programming language?",
"choices": [

"Swift",
"Python",
"Objective-C",
"Ruby"

]
}

+ Response 201 (application/json)

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 941

+ Headers

Location: /questions/2

+ Body

{
"question": "Favourite programming language?",
"published_at": "2014-11-11T08:40:51.620Z",
"url": "/questions/2",
"choices": [

{
"choice": "Swift",
"url": "/questions/2/choices/1",
"votes": 0

}, {
"choice": "Python",
"url": "/questions/2/choices/2",
"votes": 0

}, {
"choice": "Objective-C",
"url": "/questions/2/choices/3",
"votes": 0

}, {
"choice": "Ruby",
"url": "/questions/2/choices/4",
"votes": 0

}
]

}

For a tutorial on the blueprint syntax, see these resources:

• API Blueprint tutorial
• Apiary tutorial
• Github API Blueprint tutorial

You can find examples of different blueprints here . The examples can often clarify different aspects of
the spec.

Parsing the blueprint
Many tools can parse an API blueprint. Drafter is one of the main parsers of the Blueprint. Many other
tools build on Drafter and generate static HTML outputs of the blueprint. For example, Aglio can parse a
blueprint and generate static HTML files.

For a more comprehensive list of tools, see the Tooling section on apiblueprint.org. (Some of these tools
require quite a few prerequisites, so I omitted the tutorial steps here for generating the output on your own
machine.)

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 942

https://apiblueprint.org/documentation/tutorial.html
https://help.apiary.io/api_101/api_blueprint_tutorial/
https://github.com/apiaryio/api-blueprint/blob/master/Tutorial.md
https://github.com/apiaryio/api-blueprint/tree/master/examples
https://github.com/apiaryio/drafter
https://github.com/danielgtaylor/aglio
https://apiblueprint.org/tools.html

Create a sample HTML output using API Blueprint and Apiary
For this tutorial, we’ll use a platform called Apiary to read and display the API Blueprint. Apiary is just a
hosted platform that will remove the need for installing local libraries and utilities to generate the output.

a. Create a new Apiary project

1. Go to apiary.io and click Quick start with Github. Sign in with your Github account. (If you
don’t have a Github account, create one first.)

2. Sign up for a free hacker account and create a new project.

You’ll be placed in the API Blueprint editor.

API Blueprint editor on Apiary

By default, the Polls blueprint is loaded so you can see how it looks. This blueprint gives you an
example of the required format for the Apiary tool to parse and display the content. You can also
see the raw file here .

3. At this point, you would start describing your API using the blueprint syntax in the editor. When
you make a mistake, error flags indicate what’s wrong.

You can read the Apiary tutorial and structure your documentation in the blueprint format. The
syntax seems to accommodate different methods applied to the same resources.

For this tutorial, you’ll integrate the OpenWeatherMap weather API information info formatted in
the blueprint format.

4. Copy the following code, which aligns with the API Blueprint spec, and paste it into the Apiary
Blueprint editor.

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 943

https://apiary.io/
https://raw.githubusercontent.com/apiaryio/api-blueprint/master/examples/Polls%20API.md
https://help.apiary.io/api_101/api_blueprint_tutorial/

FORMAT: 1A
HOST: https://api.openweathermap.org/data/2.5/

OpenWeatherMap API
Get the current weather, daily forecast for 16 days, and a three-hou
r-interval forecast for 5 days for your city. Helpful stats, graphic
s, and this day in history charts are available for your reference. I
nteractive maps show precipitation, clouds, pressure, wind around you
r location stations. Data is available in JSON, XML, or HTML format.
Note: This sample Swagger file covers the `current` endpoint only
from the OpenWeatherMap API.

 Note: All parameters are
optional, but you must select at least one parameter. Calling the API
by city ID (using the `id` parameter) will provide the most precise l
ocation results.

Authentication
This API uses Custom Query Parameter for its authentication.

The parameters that are needed to be sent for this type of authentica
tion are as follows:
+ `appid` - API key to authorize requests.

Group Current Weather Data

Weather [/weather{?q,id,lat,lon,zip,units,lang,Mode}]

Call current weather data for one location [GET]
Access current weather data for any location on Earth including over
200,000 cities! Current weather is frequently updated based on global
models and data from more than 40,000 weather stations.
+ Parameters

+ q (string, optional)

City name. *Example: London*. You can call by city name,
or by city name and country code. The API responds with a list of res
ults that match a searching word. For the query value, type the city
name and optionally the country code divided by a comma; use ISO 3166
country codes.

+ id (string, optional)

City ID. *Example: `2172797`*. You can call by city ID. T
he API responds with the exact result. The List of city IDs can be do
wnloaded [here](http://bulk.openweathermap.org/sample/). You can incl
ude multiple cities in this parameter — just separate them by c
ommas. The limit of locations is 20. *Note: A single ID counts as a o
ne API call. So, if you have 3 city IDs, it’s treated as 3 API call
s.*

+ lat (string, optional)

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 944

Latitude. *Example: 35*. The latitude coordinate of the l
ocation of your interest. Must use with `lon`.

+ lon (string, optional)

Longitude. *Example: 139*. Longitude coordinate of the lo
cation of your interest. Must use with `lat`.

+ zip (string, optional) -

Zip code. Search by zip code. *Example: 95050,us*. Please
note that if the country is not specified, the search uses USA as a d
efault.

+ Default: 94040,us
+ Sample: 94040,us

+ units (enum[string], optional)

Units. *Example: imperial*. Possible values: `metric`, `i
mperial`. When you do not use the `units` parameter, the format is `s
tandard` by default.

+ Default: standard
+ Sample: imperial
+ Members

+ `standard`
+ `metric`
+ `imperial`

+ lang (enum[string], optional)

Language. *Example: en*. You can use lang parameter to ge
t the output in your language. We support the following languages tha
t you can use with the corresponded lang values: Arabic - `ar`, Bulga
rian - `bg`, Catalan - `ca`, Czech - `cz`, German - `de`, Greek - `e
l`, English - `en`, Persian (Farsi) - `fa`, Finnish - `fi`, French -
`fr`, Galician - `gl`, Croatian - `hr`, Hungarian - `hu`, Italian -
`it`, Japanese - `ja`, Korean - `kr`, Latvian - `la`, Lithuanian - `l
t`, Macedonian - `mk`, Dutch - `nl`, Polish - `pl`, Portuguese - `p
t`, Romanian - `ro`, Russian - `ru`, Swedish - `se`, Slovak - `sk`, S
lovenian - `sl`, Spanish - `es`, Turkish - `tr`, Ukrainian - `ua`, Vi
etnamese - `vi`, Chinese Simplified - `zh_cn`, Chinese Traditional -
`zh_tw`.

+ Default: en
+ Sample: en
+ Members

+ `ar`
+ `bg`
+ `ca`
+ `cz`

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 945

+ `de`
+ `el`
+ `en`
+ `fa`
+ `fi`
+ `fr`
+ `gl`
+ `hr`
+ `hu`
+ `it`
+ `ja`
+ `kr`
+ `la`
+ `lt`
+ `mk`
+ `nl`
+ `pl`
+ `pt`
+ `ro`
+ `ru`
+ `se`
+ `sk`
+ `sl`
+ `es`
+ `tr`
+ `ua`
+ `vi`
+ `zh_cn`
+ `zh_tw`

+ Mode (enum[string], optional)

Mode. *Example: html*. Determines the format of the respo
nse. Possible values are `xml` and `html`. If the mode parameter is e
mpty, the format is `json` by default.

+ Default: json
+ Sample: json
+ Members

+ `json`
+ `xml`
+ `html`

+ Response 200 (application/json)

Successful response

+ Attributes (Successful response)

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 946

+ Response 404

Not found response

Data Structures

Successful response (object)

Properties
+ `coord` (Coord, optional)
+ `weather` (array[Weather], optional) - (more info Weather condition
codes)
+ `base`: `cmc stations` (string, optional) - Internal parameter
+ `main`: `cmc stations` (Main, optional)
+ `visibility`: `16093` (number, optional) - Visibility, meter
+ `wind`: `16093` (Wind, optional)
+ `clouds`: `16093` (Clouds, optional)
+ `rain`: `16093` (Rain, optional)
+ `snow`: `16093` (Snow, optional)
+ `dt`: `1435658272` (number, optional) - Time of data calculation, u
nix, UTC
+ `sys`: `1435658272` (Sys, optional)
+ `id`: `2172797` (number, optional) - City ID
+ `name`: `Cairns` (string, optional)
+ `cod`: `200` (number, optional) - Internal parameter

Coord (object)

Properties
+ `lon`: `145.77` (number, optional) - City geo location, longitude
+ `lat`: `-16.92` (number, optional) - City geo location, latitude

Weather (object)

Properties
+ `id`: `803` (number, optional) - Weather condition id
+ `main`: `Clouds` (string, optional) - Group of weather parameters
(Rain, Snow, Extreme etc.)
+ `description`: `broken clouds` (string, optional) - Weather conditi
on within the group
+ `icon`: `04n` (string, optional) - Weather icon id

Main (object)

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 947

Properties
+ `temp`: `293.25` (number, optional) - Temperature. Unit Default: Ke
lvin, Metric: Celsius, Imperial: Fahrenheit.
+ `pressure`: `1019` (number, optional) - Atmospheric pressure (on th
e sea level, if there is no sea_level or grnd_level data), hPa
+ `humidity`: `83` (number, optional) - Humidity, %
+ `temp_min`: `289.82` (number, optional) - Minimum temperature at th
e moment. This is a deviation from current temp that is possible for
large cities and megalopolises geographically expanded (use this para
meter optionally). Unit Default: Kelvin, Metric: Celsius, Imperial: F
ahrenheit.
+ `temp_max`: `295.37` (number, optional) - Maximum temperature at th
e moment. This is a deviation from current temp that is possible for
large cities and megalopolises geographically expanded (use this para
meter optionally). Unit Default: Kelvin, Metric: Celsius, Imperial: F
ahrenheit.
+ `sea_level`: `984` (number, optional) - Atmospheric pressure on the
sea level, hPa
+ `grnd_level`: `990` (number, optional) - Atmospheric pressure on th
e ground level, hPa

Wind (object)

Properties
+ `speed`: `5.1` (number, optional) - Wind speed. Unit Default: mete
r/sec, Metric: meter/sec, Imperial: miles/hour.
+ `deg`: `150` (number, optional) - Wind direction, degrees (meteorol
ogical)

Clouds (object)

Properties
+ `all`: `75` (number, optional) - Cloudiness, %

Rain (object)

Properties
+ `3h`: `3` (number, optional) - Rain volume for the last 3 hours

Snow (object)

Properties
+ `3h`: `6` (number, optional) - Snow volume for the last 3 hours

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 948

Sys (object)

Properties
+ `type`: `1` (number, optional) - Internal parameter
+ `id`: `8166` (number, optional) - Internal parameter
+ `message`: `0.0166` (number, optional) - Internal parameter
+ `country`: `AU` (string, optional) - Country code (GB, JP etc.)
+ `sunrise`: `1435610796` (number, optional) - Sunrise time, unix, UT
C
+ `sunset`: `1435650870` (number, optional) - Sunset time, unix, UTC

If the code isn’t easy to copy and paste, you can view and download the file here .

5. Click Save.

Similar to Swagger Editor, the Apiary editor shows you the output in the right pane.

b. Interact with the API on Apiary

In the Apiary’s top navigation, click Documentation. Then interact with the API on Apiary by clicking first
selecting an endpoint and then clicking Switch to Console. Call the resources and view the responses.

Previewing the documentation for the OpenWeatherMap API definition in Apiary

You can switch between an Example and a Console view in the documentation. The Example view shows
pre-built responses. The Console view allows you to enter your own values and generate dynamic
responses based on your own API key. This dual display — both the Example and the Console views —
might align better with user needs:

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 949

https://idratherbewriting.com/assets/files/apiblueprintweatherdata.txt

• For users who might not have good data or might not want to make requests that would affect
their data, they can view the Example.

• For users who want to see how the API specifically returns either their data or specific
parameters, they can use the Console view.

To call the resource successfully, you’ll need to customize the lat and lon values (e.g., 37.3565982

and -121.9689848) and also add an appid parameter whose value is your API key. You can then call
the resource successfully.

Customizing the lat, long, and appid parameters in order to make a successful call

Apiary offers an impressive platform for both designing and publishing API reference docs. You don’t
have to use API Blueprint as your spec’s format. You can also design your specification using OpenAPI
(called “Swagger” in the Apiary UI).

API Blueprint tutorial PDF last generated: August 27, 2023

Documenting REST APIs Page 950

https://apiary.io/

API jeopardy answer key
The API Jeopardy questions are in the Conclusion section of Workshop Activities (p. 17).

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/jeopardy_answer_key.html] to view the content.

API jeopardy answer key PDF last generated: August 27, 2023

Documenting REST APIs Page 951

What's wrong with this topic answer
key
This is the answer key for Activity: What’s wrong with this API reference topic (p. 173).

After you’ve finished commenting on the Google Doc, go to this annotated Google doc .

Annotated Google doc showing answers

Alternatively, expand the answers below to see how many issues you found. If you found additional issues
beyond those noted here, feel free to drop me an email letting me know. You can also add your own
comments on the Google Doc answer key.

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_whats_wrong_answer_key.html] to view the content.

What's wrong with this topic answer key PDF last generated: August 27, 2023

Documenting REST APIs Page 952

https://docs.google.com/document/d/1ogj99YHhFMkXb-HMMMko-G9Hq9Rg6cztdT06-oUZm4E/edit
https://docs.google.com/document/d/1ogj99YHhFMkXb-HMMMko-G9Hq9Rg6cztdT06-oUZm4E/edit
https://docs.google.com/document/d/1ogj99YHhFMkXb-HMMMko-G9Hq9Rg6cztdT06-oUZm4E/edit
https://idratherbewriting.com/contact/

Menlo Park API Workshop Video
Recording
I recorded this full-day API documentation in Menlo Park, California, on November 8, 2018. (For more
details, see this blog post .) This recording closely aligns with the latest content and activities in this
course. I divided this all-day workshop into five separate videos.

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_course_videos.html] to view the content.

Menlo Park API Workshop Video Recording PDF last generated: August 27, 2023

Documenting REST APIs Page 953

https://idratherbewriting.com18/10/31/upcoming-api-doc-workshop/

Denver API Workshop Video
Recording
These videos are from an API documentation workshop that I gave in Denver, Colorado, on March 10,
2018. (For more details, see this blog post . This version of the workshop is slightly different from the
latest version of the course, but the content is still good. I divided the videos into three parts, since the
workshop was slightly shorter than a full-day.

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_course_videos.html] to view the content.

Denver API Workshop Video Recording PDF last generated: August 27, 2023

Documenting REST APIs Page 954

https://idratherbewriting.com18/03/12/api-documentation-workshop-in-denver/

API doc presentation video recordings
The following are other video recordings for API-related presentations.

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_course_videos.html] to view the content.

API doc presentation video recordings PDF last generated: August 27, 2023

Documenting REST APIs Page 955

	Table of Contents
	Chapter 1: Introduction to REST APIs
	Documenting APIs: A guide for technical writers and engineers
	About REST APIs
	From practice to documentation
	Who the course is for
	Course organization
	Sequence and activities
	How long will it take to finish the course?
	Will this course help you get a job in API documentation?
	No programming skills required
	What you’ll need
	Testing Your Setup
	Video recordings
	Course slides
	Copyright and re-use of materials
	Is this course really free?
	PDF and Kindle/eBook formats
	Let me know if any content is out of date
	Stay updated
	Other resources

	What's new
	Most recent updates
	Seeing what content has been updated

	Video recordings of API doc workshops
	Download PDFs
	Workshop -- agenda, slides, activities
	8:00 - 9:00am: Registration + breakfast
	9:00 - 9:30am: Intro to API documentation
	9:30 - 10:15am: Using an API like a Developer
	10:15 - 10:30am: Break
	10:30 - 11:30pm: API endpoints
	11:30 - 12:30: OpenAPI and Swagger
	12:30 - 1:30pm: Lunch
	1:30 - 2:00pm: OpenAPI and Swagger (continued)
	2:00 - 2:30pm: Conceptual topics
	2:30 - 2:45pm: Break
	2:45 - 3:30pm: Code tutorials
	3:30 - 4:15pm: Publishing API docs
	4:00 - 4:30: Participant’s challenges surfaced and discussed
	4:30 - 5:00pm: Thriving in the API doc space
	Conclusion
	5:00 - 5:30pm: Individual consulting

	Why I developed this course
	About the author
	Introduction to REST API documentation
	Different types of APIs
	Which type of API is most common?
	Many companies are new to API development
	Reasons for API growth?
	The need for API documentation
	Why the increased focus on documentation?
	Job market is hot for API technical writers
	API doc is a new world for most tech writers

	What is a REST API?
	What is an API?
	APIs that use HTTP protocol are “web services”
	SOAP APIs are the predecessor to REST APIs
	REST is a style, not a standard
	REST focuses on resources accessed through URLs
	The web itself follows REST
	REST APIs are stateless and cacheable
	REST APIs don’t use WSDL files, but some specs exist

	Additional reading

	Activity 1a: Identify your goals
	Activity: Identify your goals with API documentation

	Developer documentation trends — survey results
	Slides
	Webinar
	Article
	Developer documentation trends: How developer documentation trends differ from general technical communication trends
	Introduction
	A survey focusing on developer docs
	Survey question categories
	1. Tool responses
	2. Formats and output responses
	3. Process and workflow responses
	4. API responses
	5. Profile information
	Conclusion
	About the author
	Sources

	Glossary
	A
	B
	C
	E
	G
	H
	J
	M
	O
	P
	Q
	R
	S
	V
	Y

	Chapter 2: Using an API like a developer
	Scenario for using a weather API
	Sample scenario: How windy is it?
	Get an idea of the end goal
	Activity: Explore the OpenWeatherMap API
	Explore the Aeris Weather API
	More weather APIs

	Get authorization keys
	Why requests need authorization
	Activity: Get an OpenWeatherMap API key
	Get the Aeris Weather API secret and ID
	Make sure you have a text editor

	Submit requests through Postman
	Why use a GUI client
	Popular GUI clients
	Activity: Make requests with Postman
	Save the request
	(Optional) Make a request for the OpenWeatherMap 5 day forecast
	(Optional) Make one more OpenWeatherMap API request

	Same request but in Paw instead of Postman
	Enter several requests for the Aeris API into Postman
	Automatically import the Postman collections

	curl intro and installation
	About curl
	Installing curl
	Install curl on Mac
	Install curl on Windows

	Make a test API call
	Notes about using curl with Windows

	Make a curl call
	Activity: Make the OpenWeatherAPI request using curl
	Note about single and double quotes with Windows curl requests

	Understand curl more
	Why curl?
	Try using curl to GET a web page
	Requests and responses include headers too
	Unpacking the weather API curl request
	Query strings and parameters
	Common curl commands related to REST
	Example curl command
	Quiz yourself

	Activity: Use methods with curl
	Create a new pet
	Update your pet
	Get your pet’s name by ID
	Delete your pet
	Understanding idempotent methods
	Import curl into Postman
	Export Postman to curl

	Analyze the JSON response
	JSON response from OpenWeatherMap weather endpoint
	JSON objects are key-value pairs
	JSON arrays are lists of items
	Including objects in arrays, and arrays in objects
	Examine the weather response
	More information

	Inspect the JSON from the response payload
	Activity: Make an API request on a web page
	The AJAX method from jQuery
	Logging responses to the console
	Inspect the payload

	Access and print a specific JSON value
	Getting a specific property from a JSON response object
	Printing a JSON value to the page
	Get the value from an array
	More exercises

	Dive into dot notation
	Dot notation
	Use square brackets to access the values in an array
	Exercise with dot notation
	Showing wind conditions on the page
	Next section

	Chapter 3: Documenting API endpoints
	A new endpoint to document
	You have a new endpoint to document
	Wiki page with information about the new endpoint
	The wiki page: "Surf Report API"
	Next steps

	API reference tutorial overview
	Five common sections in REST API docs
	Tutorial workflow map
	After the tutorial
	Next steps

	Step 1: Resource description (API reference tutorial)
	Examples of resource descriptions
	Terminology for describing the resource
	Recognize the difference between reference docs versus user guides
	Resource description for the surfreport endpoint

	Surfreport
	Next steps

	Step 2: Endpoints and methods (API reference tutorial)
	Examples of endpoints
	Represent path parameters with curly braces
	You can list the method next to the endpoint
	The endpoint shows the end path only
	How to group multiple endpoints for the same resource
	How to refer to endpoints in tutorials
	Endpoint for surfreport API
	Endpoints
	Next steps

	Step 3: Parameters (API reference tutorial)
	Examples of parameters
	Several types of parameters
	What to note in parameter documentation
	Data types for parameters
	Max and min values for parameters

	Header parameters
	Path parameters
	Color coding the path parameters

	Query string parameters
	Request bodies
	Documenting complex request bodies
	Swagger UI’s approach to request bodies

	Parameters for the surfreport endpoint
	Parameters
	Path parameters
	Query string parameters

	Next steps

	Step 4: Request example (API reference tutorial)
	Examples of requests
	Multiple request examples
	Requests in various languages
	Auto-generating code samples
	SDKs provide tooling for APIs
	API explorers provide interactivity with your own data
	API Explorers can be dangerous in the hands of users
	Request example for the surfreport endpoint
	Sample request
	Next steps

	Step 5: Response example and schema (API reference tutorial)
	Examples of response examples and schemas
	Do you need to define the response?
	Use realistic values in the example response
	Format the JSON and use code syntax highlighting
	Strategies for documenting nested objects
	Three-column designs
	Embedding dynamic responses
	What about status codes?
	Response example and schema for the surfreport endpoint
	Sample response
	Response definitions

	Next steps

	Putting it all together
	Surfreport
	Endpoints
	Parameters
	Path parameters
	Query string parameters

	Sample request
	Sample response
	Response definitions

	Next steps

	Activity: What's wrong with this API reference topic
	Activity: What’s wrong with this API reference topic

	Surfreport
	Endpoints
	Parameters
	Sample request
	Sample response
	Response definitions
	Answers

	Activity: Evaluate API reference docs
	Activity: Evaluate API reference docs for core elements
	Next steps

	Chapter 4: OpenAPI spec and generated reference docs
	Overview of REST API specification formats
	Introduction to the OpenAPI specification
	Glancing at the OpenAPI specification
	Auto-generation options for creating the OpenAPI spec
	Spec-first development of the OpenAPI spec
	Rendering Your OpenAPI specification with Swagger UI
	Activity: Explore Swagger UI through the Petstore Demo
	The tech writer’s role with the OpenAPI spec
	Should I even use the OpenAPI spec? What if I just created the reference content manually in my own format and tool?

	Stoplight: visual modeling tools for creating your OpenAPI spec
	Limits to line-by-line spec coding
	Not just simpler tools, but a design-first philosophy
	Not a post-design artifact to generate documentation
	Documentation hosting features on Stoplight
	Stoplight demos
	Stoplight tutorial

	Getting started tutorial: Using Stoplight Studio to create an OpenAPI specification document
	Using a visual editor
	Before we begin
	What you’ll build
	Step 1: Set up a project in Stoplight Studio
	Step 2: Enter the API overview information
	Step 3: Enter the path and parameter information
	Step 4: Learn how to re-use parameters
	Step 5: Enter the responses and response schema information
	Step 6: Preview, test, and publish the output
	Swagger UI tutorial
	Swagger UI overview
	Get familiar with Swagger UI through the Petstore demo
	Authorize your requests
	Make a request
	Verify that your pet was created

	Some sample Swagger UI doc sites
	Activity: Create a Swagger UI display with an OpenAPI spec document
	Activity: View local OpenAPI file in Swagger UI
	Configuring Swagger UI parameters
	Challenges with Swagger UI
	Troubleshooting issues with Swagger UI
	Embedding Swagger UI within an existing site
	Key terms

	SwaggerHub introduction and tutorial
	Advantages of SwaggerHub
	SwaggerHub Intro and Dashboard
	SwaggerHub Editor
	Versions
	Inline commenting/review
	Auto-Generate Client SDKs
	Export to HTML
	Mocking Servers
	Content Re-use (Domains)
	Organizations and projects
	Expanding the tech writer’s role with APIs
	Related resources

	Swagger UI Demo
	Integrating Swagger UI with the rest of your docs
	Background to the single source of truth idea
	Option 1: Put all the info into your spec through expand/collapse sections
	Option 2: Embed Swagger UI in your docs
	Option 3: Parse the OpenAPI specification document
	Option 4: Store content in YAML files that are sourced to both outputs
	Option 5: Use a tool that imports Swagger and allows additional docs
	Option 6: Change perspectives — Having two sites isn’t so bad
	Next steps

	Redocly tutorial -- authoring and publishing API docs with Redocly's command-line tools
	Background about Redocly’s approach to simplifying the author experience with OpenAPI
	Overview of Redocly products
	Redocly CLI Walkthrough tutorial
	1. Install the prerequisites
	2. Break up an OpenAPI file
	3. Check your OpenAPI definition against rules
	4. Preview the Redoc output
	5. Bundle up the OpenAPI definition into a single file
	6. Combine conceptual docs with reference docs
	7. Explore the premium version: Redocly API Reference
	8. Publish the reference output

	Conclusion

	Redoc Community Edition Basic Demo
	Activity: Use Redoc Community Edition to render OpenAPI spec

	Chapter 5: Step-by-step OpenAPI code tutorial
	OpenAPI tutorial using Swagger Editor and Swagger UI: Overview
	Swagger Editor
	JSON or YAML format
	General resources for learning the OpenAPI specification
	How my OpenAPI/Swagger tutorial is different
	Terminology for Swagger and OpenAPI
	Customizing Swagger UI
	Start by looking at the big picture
	Follow the OpenAPI tutorial
	Migrating from OpenAPI 2.0 to 3.0
	Helpful resources

	Working in YAML (OpenAPI tutorial)
	Working with YAML
	YAML is a superset of JSON
	YAML syntax
	Comparing JSON to YAML
	Some features of YAML not present in JSON
	JSON versus YAML for the spec format
	Review and summary
	Let’s get started

	Step 1: The openapi object (OpenAPI tutorial)
	The root-level objects in OpenAPI spec
	Swagger
	Where to write your spec code
	Add the openapi object

	Step 2: The info object (OpenAPI tutorial)
	Sample info object
	Description properties and Markdown
	Update your file in Swagger Editor

	Step 3: The servers object (OpenAPI tutorial)
	Sample servers object
	Options with the server URL
	Swagger

	Step 4: The paths object (OpenAPI tutorial)
	Paths objects
	Operation Objects
	Parameters object
	Responses object

	Paths object code
	View the Appearance in Swagger UI
	Note about parameter dependencies

	Step 5: The components object (OpenAPI tutorial)
	Reasons to use the components object
	Objects in components
	Re-using parameters across multiple paths
	Re-using response objects
	Describing a schema
	A way to cheat – automatically generate the schema from JSON using Stoplight
	Using GUI editors to work with the specification code
	View the Appearance in Swagger UI
	The Models section – why it exists, how to hide it
	Security definitions

	Step 6: The security object (OpenAPI tutorial)
	Which security scheme?
	API key authorization
	Security object
	Referencing the security scheme in components
	View the Appearance in Swagger UI
	Test out how authorization works

	Step 7: The tags object (OpenAPI tutorial)
	Defining tags at the root level
	Tags at the path object level
	View the Appearance in Swagger UI

	Step 8: The externalDocs object (OpenAPI tutorial)
	Example externalDocs object
	View the Appearance in Swagger UI
	Seeing the finished result

	Activity: Create an OpenAPI specification document
	Activity: Edit an existing OpenAPI specification document
	Create the OpenAPI specification document for an API of your choosing

	Chapter 6: Testing API documentation
	Overview of testing your docs
	Leveraging test cases from QA
	Ways to test content

	Set up a test environment
	Kinds of test environments
	Testing on a test server
	Testing local builds
	Testing sample apps
	Testing hardware products
	If you encounter developer resistance …
	Next steps

	Test all instructions yourself
	Benefits of testing your instructions
	Going through the whole process
	Empowered to test additional features
	The pleasures of testing
	Accounting for the necessary time

	Test your assumptions against users
	Assumptions about terminology
	Solutions for addressing different audiences
	Testing your docs against an audience
	Using your colleagues as test subjects
	Observing users as they test your docs
	Agile testing
	Conclusion

	Activity: Test the docs in your open-source project
	Test a topic
	Find out test details

	Chapter 7: Conceptual topics in API docs
	Conceptual topics overview
	API product overviews
	Key questions a product overview should answer
	Presentation on product overviews
	Telling your product’s story
	Common use cases
	Product overview vs overviews (plural)
	Audience includes decision-makers
	Overlap with marketing
	Strategies for the documentation’s product overview
	Differences between marketing and documentation content
	Key differentiators in product overviews
	Overlap with README’s
	Good Docs project template
	Sample structure of a product overview
	Sample product overviews
	IBM Watson Assistant
	Video Skills Kit for Fire TV

	Activity with product overviews
	Summary of best practices for product overviews
	Reasons why product overviews are often minimal or nonexistent
	Cause 1: The reader isn’t the intended audience, so the overview fails for the reader
	Cause 2: UX’s influence on intuitiveness implies that long overviews indicate bad design
	Cause 3: Overview pages are hard to write, so they’re often neglected
	Cause 4: Agile’s co-development influence makes it difficult to surface higher-level content needs
	Cause 5: Higher-level content is already handled by developer marketing content, making it redundant in docs
	Cause 6: Tech comm buys in to the “reading to do” paradigm for docs, minimizing the need for longer conceptual docs

	API getting started tutorials
	Purpose of the getting started tutorial
	Presentation on getting started tutorials
	Philosophic foundations for getting started tutorials
	Run in Postman button
	Samples of getting started topics
	SendGrid
	Paypal
	Twitter
	Parse Server
	Adsense
	Aeris
	Watson and IBM Cloud
	Other getting started tutorials

	Summary of best practices for getting started tutorials
	Activity with getting started tutorials
	Reasons why getting started tutorials fail or don’t exist
	Cause 1: Getting started tutorials are seen as an optional extra, and few writers have time for optional work at release crunch times
	Cause 2: The product setup might be too involved or impractical for a getting started tutorial
	Cause 3: There’s no sample app to demonstrate how to call the API
	Cause 4: The getting started tutorial omits details for the sake of brevity that might lead to confusion
	Cause 5: The tech might be too complicated for tech writers to walk through themselves
	Cause 6: The content isn’t tested against real users

	API authentication and authorization
	Defining terms
	Consequences if an API lacks security
	Different types of authorization
	API keys
	Basic Auth
	HMAC (Hash-based message authorization code)
	OAuth 2.0

	What to document with authentication
	Samples of authorization sections
	SendGrid
	Twitter
	Amazon Web Services
	Dropbox

	Activity with authorization

	API status and error codes
	Sample status code in curl header
	Where to list the HTTP response and error codes
	Where to get status and error codes
	How to list status codes
	Status/error codes can assist in troubleshooting
	Example of status and error codes
	Context.io
	Twitter
	Mailchimp
	Flickr

	Activity with status and error codes

	API rate limiting and thresholds
	What to cover with rate limiting
	Examples rate limiting sections
	GitHub
	Linkedin
	Bitly

	Activity with rate limits

	API quick reference
	The need for quick reference guides
	Advantages of distilled information for learning
	Sample quick reference guides
	Eventful
	Parse
	Shopify

	Activity with quick reference guides

	API glossary
	Defining specialized terms
	Should you provide a glossary?
	Localization requirements and glossaries
	Specialized versus non-specialized terms
	Integration of the glossary with documentation
	Reusing glossary definitions
	Glossary style
	Benefits to writers
	Sample glossary pages
	Lyft
	Apigee

	Other glossaries
	Activity with glossaries
	More reading on glossaries

	API best practices
	What topics to include in best practices
	Sample API best practices
	Mailchimp
	Coinbase

	Activity with best practices

	Activity: Complete the SendGrid Getting Started tutorial
	Activity: Judge conceptual content and decide which is best
	Activity: Judge conceptual content and decide which is best

	Chapter 8: Code tutorials
	Common characteristics of code tutorials
	Activity: Analyze two code tutorials

	Why documenting code is so difficult
	Starting with a recent experience documenting code
	Challenge 1: Code doesn’t follow a step-by-step paradigm
	Challenge 2: Audience has a high variance of technical levels
	Challenge 3: Code requires an understanding of a specific programming language
	Challenge 4: Making sure code samples work from release to release requires a lot of maintenance
	Challenge 5: Engineers have a much more trained eye for good versus bad code
	The importance of code documentation
	What to do if you don’t understand the code
	Next topic

	What research tells us about documenting code
	When Not to Comment: Questions and Tradeoffs with API Documentation for C++ Projects
	What type of code actually needs documentation
	When to document code
	What questions to address in code documentation
	Conclusion

	How Developers Use API Documentation: An Observation Study
	Systematic versus opportunistic behaviors
	Designing for opportunistic behavior
	Where users spend the most time
	Conclusion

	Takeaways from the Research

	Five strategies for documenting code
	Approach 1: Separate the “how” into inline comments, the “why” into external docs
	Approach 2: Juxtaposed commentary in a third column
	Approach 3: The Lego approach
	Approach 4: The Nautilus approach
	Approach 5: Interactive browser experiences
	Conclusion
	Activity: Classify code documentation into one of the five types

	Code samples
	Code samples are like candy for developers
	Don’t just provide reference docs
	Focus on the why, not the what
	Add both code comments and before-and-after explanations
	Keep code samples simple
	Make code samples copy-and-paste friendly
	Provide a sample in your target language
	Sample code tutorials
	Weather Underground
	Eventful
	Twilio
	Mailchimp
	IBM Watson

	Code samples for sample weather API
	Code tutorial for surfreport endpoint
	Activity with code samples

	Sample apps
	Sample apps are critical to writing good docs
	Getting approval to publish sample apps
	Code simplicity versus more robust functionality
	Functional but poorly written code
	Who owns and maintains the sample app?

	SDKs (software development kits)
	What is an SDK?
	What is your role in documenting the SDK and sample app
	Releasing your SDK
	Sample SDKs and sample apps
	OpenWeatherMap API
	Paypal REST SDK
	Heroku SDK
	Amazon SDK
	Google Cloud SDK

	Activity with SDKs

	API design and usability
	Documenting APIs tests the API design
	What is usability
	Challenges in evaluating developer experience usability
	Evaluating API usability
	Straightforward endpoints
	Consistent endpoint patterns
	Nouns in endpoints, verbs in operations
	Data formats in responses
	Casing with parameter names
	Industry conventions
	Consult Your API style guide

	Workflows
	The Illusion of Explanatory Depth
	Error Messages
	Other usability matters
	Conclusion and additional resources

	Developer experience (DevX) usability
	Three types of usability
	Usability with physical products
	Usability with code products
	Usability withy documentation products
	Video

	Chapter 9: The writing process
	Overview of the writing process
	The writing scenario
	Next steps

	1. Planning (the writing process)
	1.1. Create a doc plan
	1.2 Establish who’s going to write the docs
	1.3 Scrounge up all the source material
	1.4 Ask for a demo of the product
	Next steps

	2. Information gathering (the writing process)
	How you see yourself: writer versus journalist
	General tips for interviews
	Prepare lists of questions
	Be aware of your role as a product aligner
	Be aware of engineering myopia

	2.1 Interview the engineers
	2.2 Interview the product manager
	2.3 Interview the partner engineers
	2.4 Interview the Quality Assurance (QA) group
	Next steps

	3. Writing (the writing process)
	3.1 Separate content into similar groups
	3.2 Create an outline for each group
	3.3 Set up meetings with reviewers far in advance
	3.4 Write the first draft
	3.5. Make a running list of questions you have
	3.6 Editing
	3.7 Supplement confusing concepts with visuals and code examples
	Visuals
	Code examples
	Don’t try to eat an elephant in one day
	Run content through a spell checker

	Next steps

	4. Reviewing (the writing process)
	General strategies for reviewing content
	Review strategies that don’t work
	Giving time during the meeting for reviewers to read the content
	Keep the meetings 45 minutes or less
	Stagger the review process
	Bring a list of questions
	Everyone doesn’t need to review all the content
	Best days and times to review content
	For impossibly busy schedules, ask the reviewer to indicate the time

	4.1 Schedule the reviews in a staggered timeframe
	How to conduct the review session

	4.2 Incorporate edits
	Tech writers as product aligners
	Tracking down information
	Reviewing docs is fun and social
	When does the review cycle end

	Next steps

	5. Publishing (the writing process)
	5.1 Understand the larger context where you’re publishing
	5.2 Cross-reference the new content
	5.3 Include a link in your release notes and what’s new
	5.4 Add metadata to pages about authors and last-updated
	5.5 Coordinate the timing of the release
	5.6 Celebrate the exhilaration of publishing
	5.7 Publicize what you published
	Next steps

	Chapter 10: Publishing your API documentation
	Chapter X: Overview for publishing API docs
	Why focus on publishing API docs?
	Using tools your SME authors want to use to collaborate
	1. The HAT tooling doesn’t match developer workflows and environments
	2. HATs won’t generate docs from source
	3. API doc follows a specific structure and pattern not modeled in any HAT
	4. Many APIs have interactive API consoles, allowing you to try out the calls
	5. With APIs, the doc is the product’s interface, so it has to be attractive enough to sell the product.

	A new direction: Static site generators
	Video about publishing tools for API docs

	Survey of API doc sites
	100+ API doc sites
	Activity: Look for common patterns in API doc sites

	Design patterns with API doc sites
	Pattern 1: Structure and templates
	Pattern 2: A single seamless website
	Pattern 3: Abundant code samples
	Pattern 4: Lengthy pages
	Pattern 5: API Interactivity
	Some non-patterns in API doc sites

	Docs-as-code tools
	Integrating into engineering tools and workflows
	What docs-as-code tools means
	Advantages to docs-as-code approaches for docs
	Collaboration with developers
	Continuous delivery
	Increased collaboration with other contributors
	Flexibility and control

	Not just tools, but processes too
	Dealing with more challenging factors
	Conclusion

	More about Markdown
	Sample Markdown syntax
	Development by popular demand versus by committee
	Why developers love Markdown
	Why not use a more semantically rich markup?
	Drawbacks of Markdown
	Markdown and complexity
	Activity: Get practice with Markdown
	Markdown and static site generators
	What about reStructuredText and Asciidoc?
	Objections to Markdown

	Version control systems (such as Git)
	Plugging into version control
	Different types of version control systems
	The idea of version control
	Basic workflow with version control
	Branching
	Can you collaborate on doc projects in Git with other writers?
	Activities

	Activity: Manage content in a GitHub wiki
	About GitHub Wikis
	Limitations with GitHub wikis
	Install Git
	Set up automatic GitHub authentication
	Activity: Create a GitHub wiki and publish content on a sample page
	Activity: Clone your GitHub repo locally
	Activity: Push local changes to the remote
	Avoiding merge conflicts when editing online and locally

	Activity: Use the GitHub Desktop client
	Follow a typical workflow with a GitHub project using GitHub Desktop
	Create a branch
	Merge the development branch into master
	Merge the branch through a pull request
	Managing merge conflicts
	Conclusion

	Pull request workflows through GitHub
	Make edits in a separate branch
	Create a pull request
	Process the pull request
	Add collaborators to your project

	Static site generators
	What are static site generators
	Jekyll
	Hugo
	Comparing speed with Hugo with Jekyll
	Sphinx
	Gatsby
	MkDocs
	Docusaurus
	What about this or that tool?
	Tools for generating the OpenAPI reference

	Hosting and deployment options
	GitHub Pages
	CloudCannon
	Read the Docs
	Netlify
	Aerobatic

	Hybrid documentation systems
	Headless CMS solutions
	Forestry.io
	Netlify CMS
	Readme.com

	Using Oxygen XML with docs-as-code workflows
	Publishing workflows with DITA and Markdown in Oxygen XML
	Workflow #1: Combine DITA and Markdown in the same project
	Workflow #2: Convert Markdown to DITA and publish
	Workflow #3: Convert DITA to Markdown and publish with a static site generator

	Markdown support
	Markdown formats supported in Oxygen XML
	Markdown preview in Oxygen XML’s editor

	Git client integration
	Staging and committing files
	Viewing Git history
	Managing Git branches

	More docs-as-code features with Oxygen XML
	Other reasons to explore Oxygen XML
	Responsive HTML5 webhelp
	Search
	PDF output
	Translation support
	Standard Markdown and HTML formats

	First steps with Oxygen XML
	Conclusion
	Additional resources

	Blobr: An API portal that arranges your API's use cases as individual products
	Blobr example
	Product and workflow in detail
	API tracking and monitoring
	Monetization models
	API changelogs and personalized release notes
	Reasons for Blobr’s unique approach to API portals
	One platform that brings it all together
	The story behind Blobr

	Which tool to choose for API docs — my recommendations
	Define your requirements
	1. Select a static site generator
	2. Select a hosting and deployment platform
	3. Decide how you’ll parse the OpenAPI specification
	Tools versus content

	Jekyll and CloudCannon continuous deployment
	About Jekyll
	Developing content in Jekyll
	Automating builds from Github
	Set up your doc theme on Github
	Make an update to your Github repo
	The Jekyll Aviator theme

	Case study: Switching tools to docs-as-code
	Previous processes
	Advantages of integrating into a larger system
	End solution
	Challenges we faced
	Inability to do it ourselves
	Understanding each other
	Figuring out repo size

	Creative solutions for theme distribution across repos
	Ensuring everyone builds with the same version of Jekyll
	Figuring out translation workflows
	Other challenges
	Moving content out of the legacy CMS
	Implementing new processes while still supporting the old
	Constantly changing the processes for documentation
	Styling the tech docs within a larger site
	Transitioning to a Git-based workflow
	Striking a balance between simplicity and robustness in doc tooling
	Building a system that scales

	Conclusion
	Slides and links to republished content

	Tools FAQ
	Chapter 11: Thriving in the API doc space
	The job market for API technical writers
	Basic qualifications you must have
	Why employers look for candidates who can read programming languages
	Providing value without in-depth technical knowledge
	Consolations for technical writers

	How much code do you need to know?
	The ideal hybrid: programmer + writer
	Writers who learned to program
	Programmers who learned to write
	Wide, not deep understanding of programming
	Strategies to get by in deeply technical situations
	Techniques for learning code
	Is being a generalist a career disappointment?

	Best locations for API documentation jobs
	Where are the API jobs
	API keyword density by state
	Should you move to California?
	Alternatives to California
	How to conduct a simple test
	Conclusion
	Activity: Look at API documentation jobs and requirements

	Activity: Find an open-source project
	Avoiding a catch-22
	Finding an open-source API project
	Activity: Find an open-source project with API doc needs
	Recognizing the type of API used in the project
	Contributing will require Git skills
	Don’t undervalue your doc skills
	More reading
	Next steps

	Activity: Create or fix an API reference documentation topic
	Chapter 12: Native library APIs
	Overview of native library APIs
	Characteristics of native library APIs
	Do you have to be a programmer to document native library APIs?
	My approach to teaching native library API doc
	What you need to install
	Java Development Kit (JDK)
	Eclipse IDE for Java Developers

	Get the sample Java project
	Sample Java Project
	Download and open the project in Eclipse
	Play with the sample Java project
	Side Note about Maven projects

	Java crash course
	About Java
	Classes
	Methods
	Fields
	Objects
	Constructors
	Packages
	Exceptions
	Inheritance
	Interfaces
	JAR files and WAR files
	Summary
	Comparing native library APIs to REST

	Activity: Generate a Javadoc from a sample project
	Generate a Javadoc
	Javadoc and error checking
	Play with Javadoc parameters
	Auto-building the Javadoc

	Javadoc tags
	Comments versus Javadoc tags
	Common Javadoc tags
	What elements you add Javadoc tags to
	Public versus private modifiers and Javadoc
	The description
	Avoid @author
	Order of tags
	@param tags
	@return tags
	@throws tags
	Doc comments for constructors
	Doc comments for fields
	Cases where you don’t need to add doc comments
	@see tags
	Links
	Previewing Javadoc comments
	Why all the detail about Javadoc tags?
	More information about Javadoc

	Explore the Javadoc output
	Class summary
	Class details
	Other navigation

	Make edits to Javadoc tags
	What to look for when editing Javadoc content
	Make some edits to the Javadoc

	Doxygen, a document generator mainly for C++
	Download Doxywizard
	Integrating builds automatically
	Other document generators

	Create non-ref docs with native library APIs
	Reference docs can be an illusion for real doc
	Reference docs are feature-based, not task-based

	Chapter 8: Documentation processes and methodology
	DX content strategy with developer portals
	Risks of developer portals with no DX content strategy
	Tasks for a developer portal content strategist
	Tools
	Contributors
	Processes and standards
	Strategic alignment
	User flows

	Bandwidth for all of these tasks

	Following Scrum with documentation projects
	Introduction
	Plugging into an engineering scrum versus creating your own doc scrum
	Adapting scrum for documentation projects
	Conclusion
	Additional resources

	Managing large documentation projects
	Definition of a documentation project
	Process overview
	1. Identify the documentation projects
	2. Assess the identified work against strategic priorities
	3. Assign the projects to different tech writers
	4. Create project plans for the documentation projects
	5. Convene a documentation kickoff meeting
	6. Chunk project work into tickets
	7. Assign tickets to a sprint board
	8. Start creating content
	9. Follow a review process for your docs
	10. Create a code review for your changes
	11. Close the sprint
	12. Share monthly reports
	Meetings summary
	Related topics

	Managing small documentation requests
	Definition of small documentation requests
	Assignment of small requests
	Assigning the request to a sprint
	Intake template for small requests
	Requests should come through product teams
	Indicating progress on the ticket
	Starting work
	Closing the ticket
	Reporting on progress

	Managing SDK releases
	Definition of an SDK
	Sample scenario with tech writers and SDK distribution
	The intake process
	Requirements
	Legal Signoff
	Security signoff
	QA Signoff
	Javadoc or Doxygen Reference Docs
	How-to Documentation
	Readme file
	Version Information
	Release Notes
	Contents description

	Hosting Java and Android on JCenter, Maven Central
	GitHub

	Documentation kickoff meetings and product demos
	Meeting agendas
	Project overview
	Product overview
	Tasks Overview
	Reference docs
	Best practices
	Error messages and handling
	Testing
	Sample app
	Release notes

	Processes for reviewing documentation
	How to get reviewers to read long content
	Meeting 1: Outline review
	Meeting 2: Questions review
	Create a Slack channel
	Meeting 3: Doc review with the product team
	Meeting 4: Review with field engineers
	Review with support and legal
	Final signoff
	Post-release doc reviews

	Maintaining existing documentation
	Working on new docs versus maintaining existing docs
	1. Define priority docs
	2. Identify broken links
	3. Identify broken or outdated images
	4. Delete unused branches
	5. Identify unpublished files
	6. Identify files or doc sets ready for deletion
	7. Identify content owners for each doc set
	8. Identify last-reviewed dates
	9. Require content owners to periodically review docs
	10. Identify docs that are missing metadata
	11. Identify top articles in knowledge bases that aren’t in the documentation
	12. Identify docs with the highest bounce rate and shortest visit time
	13. Review doc commit logs to check commits from people you don’t recognize
	14. Check engineering commit dates against release notes
	15. Look for broken documentation formatting
	Conclusion

	Collecting feedback post-release
	What’s different about collecting feedback post-release
	Location/placement of the feedback form
	Requirements to submit text
	Workarounds for obfuscated http referrer values in Chrome
	Qualitative versus quantitative feedback
	What questions to ask
	Process for handling feedback
	Conclusion

	Managing content from external contributors
	The complexity factor is Git
	Community contributors
	The content abandonment problem
	Conclusion

	Changing internal doc culture
	Characteristics of a poor documentation environment
	Six ways to change documentation culture
	1. Attend engineering Scrum/Kanban meetings with engineers
	2. Become visible by letting people know what you’ve written or updated
	3. Relay customer insights back to product teams
	4. Move the needle in a noticeable way with doc quality
	5. Be in the right group organizationally
	6. Apply your energy to the right projects

	Conclusion

	Sending doc status reports -- a tool for visibility and relationship building
	Sample status report
	Purpose and intro
	About your team and where you publish docs
	Recently published docs
	Upcoming doc work
	Support deflection efforts
	Doc metrics
	Strategic initiatives

	Other sections you could include
	Frequency, format, audience
	Addressing the discomfort factor
	A time for self-reflection on your docs
	Outcomes of regularly sending status reports

	Broadcasting your meeting notes to influence a wider audience
	The basic process
	Meeting notes are often more interesting to read
	What if sensitive topics are discussed during the meeting?
	The structure of meeting notes
	How long should the meeting notes be?
	How do you find the time for this?
	How do you decide on who to include in the broadcast?
	How can you leverage post-meeting participation from non-meeting participants?
	Are there downsides to sharing issues, frustrations, or problems with others? Won’t that make us look bad/incompetent?
	What do you do with all of this visibility?
	Conclusion

	Ensuring documentation coverage with each software release
	Key details to understand about your release process
	Checking for doc coverage
	What needs docs?
	Teaching others about the need for docs
	Expanding the doc coverage with a doc quality measure
	Conclusion

	Chapter 13: Metrics and measurement
	Measuring documentation quality through user feedback
	The problem with doc surveys
	Survey responses aren’t usually actionable
	Users aren’t available for surveys
	Unbiased survey questions are difficult to formulate
	Users are sometimes unreliable
	What can replace surveys?

	Different approaches for assessing information quality
	Common categories for information quality
	The problem with abstract definitions
	Other research
	Technical writing handbooks
	Standards specifications
	Other sources for quality

	Quality checklist for API documentation
	API documentation quality checklist
	Findability
	Accuracy
	Relevance
	Clarity
	Completeness
	Readability

	Is this list complete? No
	Considerations as you evaluate your docs
	Short version of the API documentation quality checklist
	Findability
	Accuracy
	Relevance
	Clarity
	Completeness
	Readability

	Quantifying your progress
	Analysis and quantitative metrics
	Moving towards quantification

	Chapter 15: AI tools and API documentation
	First look at the Oxygen XML AI Positron Assistant
	Level-setting expectations
	Get started
	Sample workflow
	Available action buttons
	Content Generation buttons
	Rewrite buttons
	Overview buttons
	Translation buttons

	Error correction
	Button prompts
	Limitations
	ChatGPT 3.5 instead of 4.0
	Choosing other language models
	Token limits
	Confidential data

	Conclusion

	AI document engineering with pattern-based prompts
	Using patterns in prompts
	1. Gather the information
	2. Create rules for the topic type
	3. Create a template
	4. Assemble the instruction for the AI

	Demo
	Conclusion

	Using AI tools to build, stage, and publish API reference docs
	Publishing example
	Building a shell script
	Reference content is high value–tech writers should be involved
	Another script-building example
	Blog example
	Other applications for scripting
	The downsides of using AI for help with scripting
	Apathy from lack of understanding/expertise
	Conclusion

	Using AI to learn coding
	The challenge of learning code
	An example: Learning Javadoc tags
	The larger challenge: Finding the time
	Activity
	More resources

	Using AI for language advice
	Using AI to create doc updates based on bugs
	The doc bug process
	Decomposing excellence into a thousand tiny fixes
	Using AI to help with bugs
	Experience in fixing a bug and some risks
	Another risk: rubber-stamped LGTM
	Gathering more context
	Conclusion

	Using AI For thematic analysis
	Step 1: Thematic analysis
	Thematic analysis of job ads
	Thematic analysis of feedback
	Thematic analysis for search analytics
	Thematic analysis for tags and related pages
	Thematic analysis for FAQs
	Thematic groupings of glossary items
	Thematic analysis of bugs
	Thematic analysis of documentation pages

	Step 2: Expansion of detail
	Book club
	Applying least-to-most prompts to thematic groupings

	Conclusion

	Using AI for comparison tasks with API responses
	Comparing JSON
	Experiment
	Prompts and responses
	Conclusion

	Chapter 15: Additional resources
	Documenting GraphQL APIs
	Introduction
	History
	Growth
	What is GraphQL?
	GraphQL’s advantage over REST
	Tools
	API examples
	Wait, this still needs documentation, right?
	Are GraphQL documentation skills currently in demand?
	Learning resources
	Bonus resources
	Getting social

	More REST API activities
	Available activities
	Shortcuts for API keys
	Swap out APIKEY in code samples

	Get event information using the Eventbrite API
	About Eventbrite
	1. Get an OAuth token
	2. Determine the resource and endpoint you need
	3. Construct the request
	4. Get the jQuery AJAX code for the request
	5. Customize the response on the page
	Code explanation

	Retrieve a gallery using the Flickr API
	Flickr Overview
	1. Get an API key to make requests
	2. Determine the resource and endpoint you need
	3. Construct the request
	4. Analyze the response
	5. Pull out the information you need
	Final Result

	Get wind speed using the Aeris Weather API
	The Aeris Weather API
	1. Get the API keys
	2. Construct the request
	3. Analyze the response
	4. Pull out the values from the response

	RAML tutorial
	RAML overview
	Auto-generating client SDK code
	Sample spec for OpenWeatherMap API
	Outputs
	Developer Portal on Anypoint platform
	API Console output
	RAML2HTML project
	Conclusion

	API Blueprint tutorial
	What is API Blueprint
	Sample blueprint
	Parsing the blueprint
	Create a sample HTML output using API Blueprint and Apiary
	a. Create a new Apiary project
	b. Interact with the API on Apiary

	API jeopardy answer key
	What's wrong with this topic answer key
	Menlo Park API Workshop Video Recording
	Denver API Workshop Video Recording
	API doc presentation video recordings

