Documenting APIs

A guide for technical =
writers and engineers /3
working with developer
docs IS

</>

Application

By Tom Johnson
idratherbewriting.com

PDF last generated: August 27, 2023

Copyright 2023. All rights reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or other electronic or
mechanical methods, without the prior written permission of the publisher, except in the case of brief
quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.
For permission requests, contact Tom Johnson at tomjoht@gmail.com.

Documenting REST APIs ii

PDF last generated: August 27, 2023

Table of Contents

Chapter 1: Introduction to REST APlIscccciimeccirececeeeees 1
COUSE OVEIVIBW.....eiiiiieiieitt ettt ettt ettt et e s b e st e e ae e b e e e e e e b e e s neeenee e 2
WHEE'S NMEW .. e e e e e n e e s e e e e s e e e e ane e e e nnn e e nnneean 9
\WWeTa & 1ale] o Vile [STo W c=ToTo] o [1o Ve TSRO 11
DOWNIOAA PDFS ...ttt e 12
Workshop agenda, Slides, aCtiVItIEScooiiireieiieiiee e 13
Why | developed thiS COUISEcoii it 18
ADOUL The QULNOT ... e e 20
Introduction to REST APl dOCUMENtatioN.......cccueiiiieiee ittt 22
What iS @ REST API? ...ttt st st sae e st aeeene e 36
Activity: |[dentify YOUr QOISoooi i 43
Developer Documentation Trends: Survey RESUIScooviiiiiiiiiiieeeee e 44
(1[0 TSI T oY RS 55

Chapter 2: Using an API like a developer..........ccccc.cceuu..........64

Scenario for using @ Weather APooo i 65
Get aUThONZAtION KEYScoiiiiiiceee e e 69
Submit requests through POStMaNcccueiiiiiiiiiec e 71
curl intro and INStallatioN ... 78
MaKE @ CUIT Gl e e e e e e e e e e ean 80
UNAerstand CUI MOKEuuiiiiiii et 83
Activity: Use methods With CUI ... 88
ANalyze the JSON rESPONSEeiiiiiii ittt e st e et e e st e e saee e e s beeeeans 94
Inspect the JSON from the response payloadccceeeeiiieiieeiiiee e 98
Access and print a specific JSON ValUE..........oeiiiiiiiiiie e 103
Dive into dot NOTALION. ... e e 109

A new endpoint t0 AOCUMENTcuiiiiiiii e 115
API reference tutorial OVEIVIEWcceoiiiiiiiiiie e 118
Step 1: ReSoUrce deSCriPTON ...ttt 120
Step 2: Endpoints and MEhOASouiiiiiiiiiii e 126
= o JRC T = =T 01 (= ¢RI 132
Step 4: ReqQUEST €XAMPIEeeiiiii e s 141

Documenting REST APIs iii

PDF last generated: August 27, 2023

Step 5: Response example and SChEM Acccooiuiiiiiee i e 154
Putting it @ll 10gEtNer......cooeeeeee s 169
Activity: What's wrong with this API reference topiC........ccccvvveiieiiiieeii e 173
Activity: Evaluate API reference docs for core elements...........cooooiiiiiiiiniiiiieneicieee. 177

Chapter 4: OpenAPI spec and generated reference docs..179

Overview of REST API specification formats...........cooooiiieiiiiiie e 180
Introduction to the OpenAPI SpeCification.........ccuuiiei i 181
Stoplight: Visual modeling tools for creating your SPECcccevveeieeiieerienee e 195

Getting started tutorial: Using Stoplight Studio to create an OpenAPI specification

Lo o ToTU o 01T o | PP 201
SWaGGEr Ul TULOMIAL ...t 218
SwaggerHub introduction and tutorial..........ccceoveeiiiiee i 230
SWAGGET Ul DEMO ...ttt e e e e e s e e s e e e e nn e e e 240
Integrating Swagger Ul with the rest of your dOCSccceiviieiiiiiiiiiee e 241
Redocly tutorial -- authoring and publishing API docs with Redocly's command-line

BOONS et e e e 249
Redoc Community Edition BasiC DEMOcooiiiiiiiiiiiiec e 268

Chapter 5: Step-by-step OpenAPI code tutorial..................271

OpenAPI tutorial using Swagger Editor and Swagger Ul: Overviewcccccceeeeevnneeee. 272
WOIKING 1N YAML ..ttt e e e e e e e e e e s e e e e e e s nnnneeeeeenns 276
Step 1: The OpeNa@Pi ODJECT. ..o e 282
Step 2: The INO ODJECT...cc i e 285
Step 3: The SErvers ODJECT ... oo e 288
Step 4: The Paths ODJECT.......uiiiii e 291
Step 5: The cOMPONENES ODJECTeeieiiiieieeiie e 302
StEP 6: SECUIILY ODJECTeiiiiiieeiii e 327
Step 7: The tagS ODJECT...cei i e 334
Step 8: The externalDOCS ODJECTooiiiuiiiiiie e 337
Activity: Create an OpenAPI specification document..........ccceeeeiiiiieiiniee e 340
Chapter 6: Testing APl dOCS......cimeeeeeiiiiiimmmcessssnnnnsmsssssnennns 342
Overview Of tEStING YOUI JOCSciiiuiiiiiiiie ettt nee e e nes 343
Set up a test eNVIFONMENT......coo e 345
Test all INSTrUCLIONS YOUISEIT ...cviiiiiieieiee e aeaanrees 348
TeSt YOUr @SSUMPTIONS.ueeeiiteee e e e s e s nn e e e s 353
Activity: Test your project's documentation ... 357

Documenting REST APIs iv

PDF last generated: August 27, 2023

Chapter 7: Conceptual topics in APl docscccccceeeeeeee.. 358

API conceptual tOPICS OVEINVIEW ...cccceeiiiiieie it ennnnnnnnes 359
APL DrOAUCT OVEIVIEWSeeiiitiee ettt e ettt e e sse e e s s e e e e ne e e smne e e snneeesanneenan 360
API getting started tULOrIalSooiiiieee e 379
APl authentication and authorization............cooiiiriee e 393
API status and error COUES ..o e 402
APl rate limiting and thresSholds..........cceiiiiie e 408
F W 0o S =) (=T = o= T U RERPRRR 412
F Y o Wo | (o 1T 1R 418
o o I 0TS A o =T 1 o= OSSPSR 426
Activity: Complete the SendGrid Getting Started tutorial.............ccoooeiiiiiiieniicieeeeee, 429
Activity: Assess the conceptual content in your Project...........ooccveeiiiiiiieeeeincceeeee e 430

Chapter 8: Code tutorials.....cccccccoimmriiiimciiiieccrrec 0. 432

Common characteristics of code tUtOrialS..........ceeiiiiiiieiii e 433
Why documenting code is SO diffiCUl........cc.ueeiiiiii e 434
What research tells us about documenting COdeueeiiiiiiiiiiiiiieeeee e 438
Five strategies for documenting COAEcouii i 451
(O o [SIST= T 0] o] [T TR P TR 464
S T= T 0] o1 [=T= T o] o1 PRSPPI 476
SDKs (software development KitS).........cceeiiriiiiie e 480
APl design and USabilityooiiiiiiii e 488
Developer experience (DevX) USability........ccueiieeeriiirieiiee e 497

Chapter 9: The writing process....ccccccccceerrmmeceessrerrrneccssssnenn. 501

Overview oOf the WItING PrOCESSveeiiiiieierie e 502
B =T T T PPN 504
2. Information gathering....... e e 507
LG T4 1 1T T PSPPI 513
L R L 1Y o o TP PPPPOUPPRRRR 519
B PUDBIISNING e 527

Chapter 10: Publishing APl dOCS......c.cccummmmmmmmsnnnrnnnnsesssnnnnnnn s 530

Overview for publiShing API AOCS........cuiiiiiiiie e 531
SUNVEY Of API AOC SIEES...eeiiiiiiiiii ittt st e e st e e e 536
Design patterns with APl dOC SItEScuviiiiiiee e e 540
DOCS-aS-COAE tOOISoeiiiiiiiiii 551

Documenting REST APIs v

PDF last generated: August 27, 2023

More about MarkAOWNcoccuiiiiiiiiii s 556
Version control systems (€.9., Git) .vooureiiirieiiei e 562
Activity: Manage content in @ GitHUD WiKi.......oooiiiiiiiiiiiii e 569
Activity: Use the GitHub Desktop Client........coociiiieiiee e 577
Activity: Pull request workflows through GitHUDooiiiiiiiiii e 586
StatiC Site GENEIALOrS ...t 591
Hosting and deployment OPLIONS.cuiiiiiei e 602
Hybrid documentation SYStEMIScoii i 607
Using Oxygen XML with docs-as-code WOrKfIOWS..........ccoiiieiiiiiiiiiiee e 612
Blobr: An API portal that arranges your API's use cases as individual products............. 626
Which tool to choose for APl docs — my recommendations..........cccoeeveereieenieeeeseeennns 633
Jekyll and CloudCannon continuous deployment tutorial...........ccccceeeeieiiieeiee i 637
Case study: Switching tools t0 dOCS-as-COe........cccoiiiiiiiiiiieee e 645
TOOIS FAQ ...ttt 657

Chapter 11: Thriving in the API doc space............................659

The job market for APl teChniCal WIterS.......cccuuviieiieiiiiie e 660
How much code do you NEed t0 KNOW?........oiiiuiiiiiiiieeiee et 664
Best locations for APl documentation JODSocoiiiiiiiieiiiieeeiee e 674
Activity: Find an Open-SoUrCe ProjECtcuiiiiiieiieiiiieeeeieee ettt 686
Activity: Create or fix an API reference documentation topicC.........ccccoviiiiiiiiiiecceen, 690

Chapter 12: Native library APIs.....cccccccivivirmmmmensinnnnnnsssssnnennn. 691

Overview of Native IBrary APIS ... e 692
Get the sample Java ProJECT ... e 695
JAVA Crash COUISE.......uiiiiiiii ittt e e s e e sane e e e aneeenan 701
Activity: Generate a Javadoc from a sample project........cccccveeieiiiieeeicciiieeee e 707
N 1V = T Lo T =T 1 PP PP R PRRROPRR 712
Explore the JavadoC OULPUL......cuiiiiiiiiiieii e s e anrnane 720
Make edits t0 JAVAAOC TaGS......uriiireee e e 722
Doxygen, a document generator mainly fOr CH+ ...oeuiieiiiiieeieiciiiiee e 723
Create non-ref docs with native library APIScocoiiiiiiiiiiceee e 726

Chapter 13: Processes and methodologycccoemeeeneennn. 727

DX content strategy with developer portalsccoo e 728
Following agile scrum with documentation projectsccccoveciieiiiieiiiee e 733
Managing large documentation ProjECTSooiueeiiii i 737

Documenting REST APIs Vi

PDF last generated: August 27, 2023

Managing small documentation reqUESTS.........cc.ueiiei i 750
Managing SDK relEaSES.ccocueiiiieie e 755
Documentation kickoff meetings and product demosccccceeeeiiiiiiieeeecccieeee e 760
Processes for reviewing documentationcc.eeoei oo 764
Maintaining existing documentationcooo i 770
Collecting feedback POSt-relEaSEccueieiiiiiiieeee e 775
Managing content from external contributorscooceviiiiiiie e 782
Changing internal dOC CURUIE.............eiiiiee it 785
Sending doc status reports -- a tool for visibility and relationship building 789
Broadcasting your meeting notes to influence a wider audience...........cccccoeeieeeeiincnnnen. 794
Ensuring documentation coverage with each software releasecccccceeeeieeeinnneen. 798

Chapter 14: Metrics and measurement.............ccesveeeeninennn. 800

Measuring documentation quality through user feedbackccoccovviieiiiiiiincec e, 801
Different approaches for assessing information qualitycccccceeieiiiieee e, 804
Quality checklist for APl documentation...........ooceeeeiiieieiiie e 814
QUANTITYING YOUF PrOGIESS . .ueiiiiieiiiiiiee et ee ettt ettt et e et se e e s e e e et esns e e e st e e e e nneesnnes 825

Chapter 15: Al and APl documentationccccevreeiireenreeee.... 826

First look at the Oxygen XML Al Positron Assistant.........ccccoevciieiieiieiiiieee e 827
Al document engineering with pattern-based prompts..........cccceeeiiiiiiee e 842
Using Al tools to build, stage, and publish API reference docCsccccceeveeeiieeeeecicnnnen. 851
USIiNG Al 10 1€arN COTINGvviiiiiiiiieie et 856
Using Al fOr 1anguage aVICEcueeieiiieriieee it e e s 860
Using Al to create doc updates based on bugSoooeiiiiiiiiiiiiie e 864
Using Al FOr thematiC @nalySiSeeeiiieiiiiiee et 870
Using Al for comparison tasks with APl reSPONSES.........cceiiiiiiiiieieiieiie e 879
Chapter 16: Additional resources........cccccceermmemnirrmmcnssernnessnns 892
Documenting GraphQL APIScoeiiiei e 893
More REST AP @CHVITIESveeiieei et 900
Activity: Get event information using the Eventbrite APlccccooiiiiiiiiiieeeeieee 901
Activity: Retrieve a gallery using the FIickr API..........oooiii e 908
Activity: Get wind speed using the Aeris Weather APlccoooiiiieii i 918
YN | (U (o = SR USS 924
APL BIUEPINT TUTOFIAL ...t e e 938
AP JE0oPardy GNSWEL KEY ...ceiiiiiiiiiiieeeeieiee e ettt ettt e et e e e st e e e e s e s nne e e e e e e ennneeeeean 951

Documenting REST APIs vii

PDF last generated: August 27, 2023

What's wrong with this topic answer KeY ... 952
Menlo Park APl workshop video reCordingcocueeriireeiieeeenie e 953
Denver APl workshop Video reCOrdingoevieieieiiiiiiiiiriiieeee e e e e e 954
API doc presentation VIdeo reCOrdingsoocuiieeiiiiiiiieie et 955

Documenting REST APIs viii

Chapter 1: Introduction to REST APIs PDF last generated: August 27, 2023

Chapter 1: Introduction to REST APIs

REST APIs are flourishing in the marketplace, and the web is becoming a mashup of interconnected APIs.
REST APIs consist of requests to and responses from a web server. Job prospects are hot for technical
writers who can write developer documentation. This course will help you break into APl documentation,
especially if you complete the many portfolio-building activities.

Chapter sections:

COUISE OVEIVIBW ...ttt ettt ettt a e et eae e e bt e s he e eas e e eh e e e s e e eae e e beeeaneeneeeneeneeaa 2
L AL E= L= T OO PRR SRR PPRR 9
NV g 1T ale] o IAViTe Yo W c=ToTo] o [T Vo 3N PP PPPR RPN 11
[To3 Vg1 [o =T N o I = TP 12
Workshop agenda, Slides, aCtVItIES.........ueeiiiiiie e 13
Why | developed thiS COUISEuuiiiiiiiieiie ettt e e e e e e e e e e e e e enneeeeeean 18
ADOUL The @ULNOL ... et e e e e e e e e e e e e e e e e e e e s e s s nannnsnrnnees 20
Introduction to REST APl doCUMENTAtIONeiiiiiiiiiii e e 22
LT o A SR B e I 36
Activity: [dentify YOUF QOAIScoooeeiiei e 43
Developer Documentation Trends: SUrvey RESUIScoeeiiiiiiiiiiiiieeeeee e 44
(1[0 XSIST= oY RPN 55

Documenting REST APIs Page 1

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Documenting APls: A guide for
technical writers and engineers

In this course on writing documentation for APIs, instead of just talking about abstract concepits, |
contextualize APIs with a direct, hands-on approach. You'll first learn about APl documentation by using a
simple weather API to put a weather forecast on your site.

As you use the API, you'll learn about endpoints, parameters, data types, authentication, curl, JSON, the
command line, Chrome’s Developer Console, JavaScript, and more. The idea is that rather than learning
about these concepts independent of any context, you learn them by immersing yourself in a real scenario
while using an API. Immersion in real scenarios makes these tools and technologies more meaningful.

We’ll then transition into standards, tools, and specifications for REST APIs. You’ll learn about the required
sections in APl documentation, analyze examples of REST API documentation from various companies,
learn how to join an open-source project to get experience, and more.

About REST APIs

In a nutshell, REST APIs (which are a type of web API) involve requests and responses, not too unlike
visiting a web page. You make a request to a resource stored on a server, and the server responds with the
requested information. The protocol used to transport the data is HTTP. “REST” stands for
Representational State Transfer.

a

o /4

.-~ _. RESTAPI

web application

REST APIs involve requests and responses over HTTP protocol

Documenting REST APIs Page 2

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

| dive more into the principles of REST in What is a REST API? (p. 36) In REST API documentation, you
describe the various endpoints available, their methods, parameters, and other details, and you also
document sample responses from the endpoints.

From practice to documentation

In this course, after you practice using an API like a developer (p. 64), you’ll then shift perspectives and
“become a technical writer” tasked with documenting a new endpoint (p. 114) that engineers added to an
API. As a technical writer, you'll tackle each element of a reference topic in REST API documentation:

Resource descriptions (p. 120)
Endpoints and methods (p. 126)
Parameters (p. 132)

Request example (p. 141)
Response example (p. 154)

ok wh=

Exploring each of these sections will give you a solid understanding of how to document REST APIs. You'll
also learn how to document the conceptual sections for an API (p. 358), such as the getting started tutorial
(p. 379), product overview (p. 360), status and error codes (p. 402), request authorization (p. 393), and
more.

You’'ll also dive into different ways to publish REST API documentation (p. 530), exploring tools and
specifications such as GitHub (p. 569), static site generators like Jekyll (p. 637), and other docs-as-code

approaches (p. 551). You’ll learn how to leverage templates, build interactive API consoles so users can try
out requests and see responses, and learn how to manage your content through version control (p. 562).

We’ll also dive into specifications such as the OpenAPI specification (p. 272) and Swagger Ul (p. 181)
(which provides tooling for the OpenAPI specification). Additionally, you’ll learn how to document native
library APIs (p. 691) and generate Javadoc (p. 707).

methodologies (p. 727) in depth, explaining how to manage both large (p. 737) and small (p. 750)
documentation projects, how to collect documentation feedback (p. 775), how to keep stakeholders happy
and updated (p. 789), and more.

I’'ve also included a section on metrics and measurement (p. 801), which lists a comprehensive quality

against industry best practices.

Throughout this course, | put these concepts in real, applicable contexts with hands-on activities and
demos.

Who the course is for
The course primarily serves the following audiences:

+ Professional technical writers looking to transition from traditional documentation into more API-
focused documentation for developers.

« Students learning how to prepare themselves technically to succeed in the tech comm field,
which is becoming more focused on developer documentation.

« Developers who are documenting their own APIs and want to know best practices for structure,
terminology, and style with tech docs.

+ Educators who are training technical writing students about APl documentation practices and
technologies.

Documenting REST APIs Page 3

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Course organization
The course consists of the following sections:

« I Introduction to REST APIs (p. 1)

+ ll: Using an API like a developer (p. 64)

+ lll: Documenting API endpoints (p. 114)

+ IV: OpenAPI spec and generated reference docs (p. 179)
+ V: Step-by-step OpenAPI code tutorial (p. 271)
« VI: Testing API docs (p. 342)

+ VII: Conceptual topics in API docs (p. 358)

+ VIII: Code tutorials (p. 432)

+ IX: The writing process (p. 501)

+ X: Publishing API docs (p. 530)

+ Xl: Thriving in the API doc space (p. 659)

+ XllI: Native library APIs (p. 691)

« XllI: Processes and methodology (p. 727)

+ XIV: Metrics and measurement (p. 800)

« XV: Additional resources (p. 892)

Sequence and activities

You don’t have to read the sections in order — feel free to skip around as you prefer. Some of the earlier
sections (such as the section on Using a REST API like a developer (p. 64) and Documenting endpoints (p.
114) follow a somewhat sequential order with the same weather API scenario (p. 65), but by and large you

can jump around as desired.

Because the purpose of the course is to help you learn, there are many activities that require hands-on
coding and other exercises. Along with the learning activities, there are also conceptual deep dives, but the
focus is always on learning by doing. Where there are hands-on activities, | typically include this icon in the
section title: . Other topics have the word “Activity” in the title. The activities are integrated into various
sections, but you can also see many of the activities in the Workshop Activities (p. 13). These are the
activities we do during live workshops.

| refer to the content here as a “course” instead of a book or a website, primarily because | include a lot of
exercises throughout in each section, and | find that people who want to learn APl documentation prefer a
more hands-on “course” experience. Below each topic is a progress indicator that reminds you to keep
moving through the course.

How long will it take to finish the course?

Don’t be daunted if you never make it entirely through the course. If printed to PDF, the content is about
900 pages. And | keep adding to the content, refining it, rearranging and adjusting it as | see fit and as |
grow my experience and awareness. It's a living document. Aimost no one really finishes the course from
beginning to end because by the time they do, I'll have added new content.

Also, you should only focus on those sections that you need to learn. See this Reddit post, Has anyone
here completed the idratherbewriting API writing course by Tom Johnson? (7. For someone already familiar
with many concepts, they can breeze through the course in less than a week. For someone new to API
documentation, they might spend many months making their way through the course. If you keep finding

value in the content, take as long as you want. If you don’t find yourself learning anything, skip forward.

Documenting REST APIs Page 4

https://www.reddit.com/r/technicalwriting/comments/ropvtx/has_anyone_here_completed_the_idratherbewriting/
https://www.reddit.com/r/technicalwriting/comments/ropvtx/has_anyone_here_completed_the_idratherbewriting/

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

Will this course help you get a job in APl documentation?

The most common reason people take this course is to transition into APl documentation. This course will
help you make that transition, but you can’t just passively read through the content. You need to do the
activities outlined in each section, especially those topics that involve working with content from an open-
source project (p. 686) (or something similar). These activities are crucial to building experience and
credibility with a portfolio. | provide more details in Getting an APl documentation job and thriving (p. 659).
Without a strong portfolio to demonstrate your writing expertise, almost no manager will hire you, even if

you have an extensive tech background.

No programming skills required

As for the needed technical background for the course, you don’t need any programming background or
other prerequisites, but it will help to know some basic HTML, CSS, and JavaScript.

If you do have some familiarity with programming concepts, you might speed through some of the sections
and jump ahead to the topics you want to learn more about. This course assumes you’re a beginner,
though.

Some of the code samples in this course use JavaScript. JavaScript may or may not be a language that
you actually use when you document REST APlIs, but most likely there will be some programming language
or platform that becomes important to know.

JavaScript is one of the most useful and easy languages to become familiar with, so it works well in code
samples for this introduction to REST API documentation. JavaScript allows you to test code by merely
opening it in your browser (rather than compiling it in an IDE). (I have a quick crash-course in JavaScript
here [if you need it.)

What you’ll need
Here are a few tools you’ll need to do the activities in this course:

+ Computer. You need a computer (if attending the live workshop, a laptop and charging cord), as
there are many activities to work through.

+ Text editor. If you don’t already have a favorite text editor, download Sublime Text [, as it
works well on both Mac and Windows and is free. If you have another text editor you prefer (e.g.,
Visual Studio Code 4, Atom [4, or even Notepad++ (), that will work too. Just make sure you
can write code in plain text.

*+ Chrome browser. Chrome [4 provides a Javascript Console that works well for inspecting
JSON, so we’ll be using Chrome. Also, in order to read JSON responses more easily in the
browser, install the JSON Formatter 4 Chrome extension.

+ Postman. Postman [Z is an app that allows you to make requests and see responses through a
visual client. Make sure you download the app and not the Chrome extension.

* curl. curl 4 is essential for making requests to endpoints from the command line. Mac already
has curl built-in, but it might not be available by default on Windows. (Some Windows 10 builds
already have it in Powershell.) On Windows, open a Command Prompt and type curl -V . Ifit’s
not installed, go to confusedbycode.com/curl 4 and install a version (usually “With Administrator
Privileges (free), 64-bit”). Close and re-open your Command Prompt and try typing curl -V
again.

+ Git. Git 4 is a version control tool developers often use to collaborate on code. For Windows,
see https://gitforwindows.org/ 4 to set up Git and the Git BASH terminal emulator. For Mac, see
Downloading Git 4.

« GitHub account. GitHub (2 will be used for various activities, sometimes to demonstrate the Git

workflow and other times as an authentication service for developer tools. If you don’t already

Documenting REST APIs Page 5

https://idratherbewriting.com/javascript/
https://idratherbewriting.com/javascript/
http://www.sublimetext.com/
https://code.visualstudio.com/
https://atom.io/
https://notepad-plus-plus.org/
https://www.google.com/chrome/browser/desktop/index.html
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
http://www.getpostman.com/
http://curl.haxx.se/
http://confusedbycode.com/curl
https://git-scm.com/
https://gitforwindows.org/
https://git-scm.com/download/mac
https://github.com/

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

have a GitHub account, sign up for one.

« Stoplight Studio Editor. When working with the OpenAPI specification, we’ll use the Stoplight
Studio Editor. Stoplight Studio provides visual modeling tools for working with the OpenAPI
specification. Stoplight offers both a web browser and standalone app versions of the editor.
We'll be using the web browser version because it provides more complete functionality (such as
trying out requests). Go to https://stoplight.io/studio ¢ and log in with GitHub.

+ OpenWeatherMap API key. We’ll be using the OpenWeatherMap API for some exercises. It
takes a couple of hours for the OpenWeatherMap API key to become active, so it’s best if you
get the APl key ahead of time — then when you get to the OpenWeatherMap API activities, you’ll
be all set. To get your (free) OpenWeatherMap API key, go to https://openweathermap.org/ 4.
Click Sign Up in the top nav bar and create an account. After you sign up, OpenWeatherMap
sends you an API key to your email. you can also find it when you log in and click the API Keys
tab from the dashboard. Copy the key into a place you can easily find it.

Testing Your Setup
In the past, people have asked for some tests to check whether their laptops are correctly set up.

+ If you want to test whether Postman works, open up the Postman app and paste this into the
GET box: https://api.openweathermap.org/data/2.5/
weather?zip=95050&units=imperial&appid=126cacla482f51de@f1287b45ae2bf9a . Then
click Send. If you get a response, it’'s working correctly. (In rare cases, sometimes people have
security restrictions on their computers that block all network access.)

« If you want to test whether curl is installed, open Terminal (on Mac) or Command Prompt (on
Windows) and paste in curl —--get "https://api.openweathermap.org/data/2.5/
weather?zip=95050&units=imperial&appid=126cacla482f51de@f1287b45ae2bf9a" . If you
get a JSON response, you’re good.

« To check whether Git is installed, open up Terminal (on Mac) or Command Prompt (on Windows)
and type git —-version . Ifit’s installed, you’ll see the version.

Video recordings

For video recordings of this course, see the Video recordings of APl doc workshops (p. 11). The page lists
the most recent video recordings available. The video doesn’t go into the same level of detail as the written
material, but it would be a good start.

See my Upcoming Presentations 4 on my blog for details about future workshops and presentations.

Course slides

For the live workshops, | have various slides that cover different sections of this course. See Course Slides

images are single-sourced between the site and the slides, so they’ll more likely stay in sync.

Copyright and re-use of materials

Some people have asked whether they can use materials from this course to give their own API
documentation workshops. | only allow the material to be used for non-profit workshops where the
workshop leader isn’t charging participants for the instruction. Of course, many of the ideas and concepts
in this course aren’t specific or unique to me, and you’re entitled to fair use. However, please don’t just
hijack my site’s materials, activities, and other information for your own commercial endeavors.

Documenting REST APIs Page 6

https://stoplight.io/studio
https://openweathermap.org/
https://idratherbewriting.com/presentations/
https://github.com/hakimel/reveal.js/

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

If you're a teacher at a college or university (or high school) and are trying to teach APIs and developer
docs to your students, feel free to use this site as part of your instructional materials. | appreciate links
back to the site and attribution as needed (links pointing to my site boost search engine rankings). My
larger goal for this site is to help educate and empower tech writers with developer documentation
strategies, workflows, and best practices. If you’d like to share your APl documentation course syllabus,
contact me 4 and I’ll add a link here.

Is this course really free?

Yes, this course is entirely free. Advertising helps make this content free, so you will see little text snippets
and other ads on the course pages promoting links to API service providers. Sometimes | also include
sponsored pages as well to highlight a vendor’s particular offerings. Whenever content is sponsored, | note
that on the page. | also wouldn’t include any content in the course that didn’t meet my standards or which |
wouldn’t recommend.

If you’d like to give back, feel free to buy me coffee by clicking the Buy me a coffee (4 button on the
bottom of each page or by buying the PDF of the course (4. I’'m grateful to see many people who find
enough value in the course to contribute back. Seeing contributions helps me feel in a more immediate way
how much the content helps people.

PDF and Kindle/eBook formats

To read the same content in PDF or Kindle/eBook formats, see PDF and eBook formats (p. 12). You can
print out the section you want, or load it into a PDF reader to highlight/annotate content. Or if you prefer
Kindle or another eReader, download the content in ebook format and load it onto your device.

Let me know if any content is out of date

One of the challenges in any technical course is ensuring the content stays up to date. Technology
changes rapidly, and given the many hands-on activities in the course, it’s easy for some steps to become
out of date as time passes. I've tried to maintain a healthy balance between general and specific details in
the content here. If you find something is out of date, either add a comment on that page or let me know (4

Stay updated

If you’re following this course, you most likely want to learn more about APIs. | publish regular articles that
talk about APIs and strategies for documenting them. You can stay updated about these posts by
subscribing to my free newsletter through the form below. My newsletter, branded as the I’d Rather Be
Writing newsletter, helps you stay updated about everything going on in the techcomm world, with a
special emphasis on APl documentation, docs-as-code tools, and lately Al.

Other resources

If you’ve looking for additional resources to learn APl documentation as well as tech writing best practices,
check out the following:

+ Cherryleaf’s APl documentation training course 4, by Ellis Pratt. (See a preview here (4.)

has multiple Udemy courses on API docs, Swagger, Git, and more.)

« Docs Like Code [4, by Anne Gentle

Documenting REST APIs Page 7

https://idratherbewriting.com/contact/
https://www.buymeacoffee.com/learnapidoc
https://www.buymeacoffee.com/learnapidoc/e/146076
https://idratherbewriting.com/contact/
https://www.cherryleaf.com/training-courses/documenting-apis-training-course/
https://cherryleaf.teachable.com/courses/advanced-technical-communication/lectures/37419185
https://www.udemy.com/user/petergruenbaum/
https://sdkbridge.com/
https://www.amazon.com/Docs-Like-Code-Anne-Gentle/dp/1365816079

Documenting APIs: A guide for technical writers and engineers PDF last generated: August 27, 2023

The Design of Web APIs (4, by Arnaud Lauret

Docs for Developers: An Engineer’s Field Guide to Technical Writing %, Authors: Bhatti, J.,
Corleissen, Z.S., Lambourne, J., Nunez, D., Waterhouse, H.

Standards and Guidelines for APl Documentation: For Technical Writers, Software Developers,
Information and Software Architects (4, by Anne Tarnoruder

These resources aren’t API-specific but are still relevant:

Modern Technical Writing: An Introduction to Software Documentation (4, by Andrew Etter

Documentation Guide — Write the Docs Community (4

Every Page Is Page One: Topic-Based Writing for Technical Communication and the Web [, by
Mark Baker

The Product is Docs: Writing technical documentation in a product development group 4, by
Christopher Gales and Splunk Documentation Team

The Good Docs Project: Best practice templates and writing instructions for documenting open
source software 4

Google’s technical writing courses for engineers (4

For even more books, see Relevant Books [from the Write the Docs site.

Documenting REST APIs Page 8

https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://www.apress.com/gp/book/9781484272169
https://www.google.com/books/edition/Standards_and_Guidelines_for_API_Documen/B7LDzQEACAAJ?hl=en
https://www.google.com/books/edition/Standards_and_Guidelines_for_API_Documen/B7LDzQEACAAJ?hl=en
https://www.amazon.com/Modern-Technical-Writing-Introduction-Documentation-ebook/dp/B01A2QL9SS
https://www.writethedocs.org/guide/index.html
https://www.amazon.com/Every-Page-One-Topic-Based-Communication/dp/1937434281
https://www.amazon.com/Product-Docs-technical-documentation-development/dp/1973589400
https://thegooddocsproject.dev/
https://thegooddocsproject.dev/
https://developers.google.com/tech-writing
https://www.writethedocs.org/books/

What's new PDF last generated: August 27, 2023

What's new

If you’re looking to see what’s new in the API doc site/course, you can browse new content in several
ways.

Most recent updates

See the api-doc-site-updates category 4 on my blog. | describe the updates I’'m making here, often with
commentary about why | made the update.

Seeing what content has been updated

To see the history of page, click the GitHub button next to the timestamp on the page:

I'd Rather Be Writing Learn APl Doc OpenAP| spec and generated reference docs

Create an OpenAPI specification ¢
Stoplight Studio's visual editor

g to
500+ Last updated: Apr 06, 2021 C) o=
2)

You can create an OpenAP| specification document in several ways: (a) yc
from annotations in your source code, (b) you can code it by hand in an ec
Swagger Editor, and (c) you can use a GUI editor such as Stoplight Studio
through the third approach: using Stoplight Studio, a GUI editor for model

This takes you to the file in GitHub. In GitHub, click the History link:

Search Sign in

Q Notifications Y7 Star 50 % Fork 28

/ |~ Insights

guickstart_stoplight.md Go to file

Latest commit 6dab2ac 3 minutes ago) History

Raw Blame |;| f fl-

Then click the commit IDs to browse file diffs for the commits that include the file:

Documenting REST APIs Page 9

https://idratherbewriting.com/category-apidoc-site-updates/

What's new PDF last generated: August 27, 2023

15 Gdab2ac <
15 @759%ec3 <
B 5c74549 <O

You can see the stream of commits in GitHub here .

Documenting REST APIs Page 10

https://github.com/tomjoht/tomjoht.github.io/commits/main

Video recordings of APl doc workshops PDF last generated: August 27, 2023

Video recordings of API doc
workshops

I’ve given numerous presentations and workshops on APl documentation, and I've recorded some of them.
The most recent recordings are available below. | divided this all-day workshop into multiple separate
videos. Keep in mind that my API content evolves, so some older presentations might no longer match the
course content.

Note: This content doesn’t embed well in print because it contains YouTube videos. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_course_videos.html] to view the content.

Documenting REST APIs Page 11

Download PDFs PDF last generated: August 27, 2023

Download PDFs

In addition to reading on the web, you can also can read this content in PDF format. The PDF version (total

pages are 900+) is current with the web version.

Documenting APIs: A guide for technical writers and engineers writing API documentation (5

Documenting APIs

A guide for technical 7
writers and engineers /\D
working with developer
docs o

Application

By Tom Johnson
idratherbewriting.com

The date the pages were last generated appears in the header of the PDF. Payment is handled through the

buymeacoffee.com platform.

Documenting REST APIs Page 12

https://www.buymeacoffee.com/learnapidoc/e/146076
https://www.buymeacoffee.com/learnapidoc/e/146076
https://www.buymeacoffee.com/learnapidoc/e/146076

Workshop -- agenda, slides, activities PDF last generated: August 27, 2023

Workshop -- agenda, slides, activities

The workshop agenda, slides, and activities correspond to full-day APl workshop. The slides and activities
mirror similar sections in the course.

Note that for APl workshops, it helps to consolidate activities into a single page with brief instructions. The
content for the activities below is the same content that appears in other parts of the course — it’s just
pulled in here (single-sourced) for convenience. Workshops require a healthy amount of hands-on activities
to be engaging. If you have feedback about how to improve the activities, or places where you keep getting
stuck, let me know (4.

Not all activities in this course are consolidated here, since participants can only do so much during a
workshop. The following activities are those I've selected for workshops.

8:00 - 9:00am: Registration + breakfast

Doors open at 8:00am. Check your name off at the registration table and get a name tag. Light breakfast
(coffee and pastries) will be available. Find a table and get situated and acquainted with others. If you didn’t
finish all the pre-workshop tasks as described in What You’ll Need (p. 5), do that now.

9:00 - 9:30am: Intro to APl documentation

Section: Introduction to APl documentation (p. 1)

INTRO TO API
DOCUMENTATION

By Tom Johnson / @tomjohnson
idratherbewriting.com

Slides available at
bewriting.com/lear Jslides/intro-api-doc

Activity 1: Identify your goals (p. 43)

9:30 - 10:15am: Using an API like a Developer

Section: Using an API like a developer (p. 64)

Documenting REST APIs Page 13

https://idratherbewriting.com/contact/
/slides/intro_api_documentation.html
/slides/intro_api_documentation.html

Workshop -- agenda, slides, activities

USING AN API LIKE A
DEVELOPER

By Tom Johnson / @tomjohnson
idratherbewriting.com

Slides available at
idratherbewriting.com/learnapidoc/slides/

Activity: Explore OpenWeatherMap API (p. 66)

Activity: Get an OpenWeatherMap API key (p. 69)

Activity: Make requests with Postman (p. 71)

Activity: Make the OpenWeatherAPI request using curl (p. 80)

Activity: Make an API request on a web page (p. 98)

10:15 - 10:30am: Break

Break time

10:30 - 11:30pm: API endpoints

Section: Documenting API endpoints (p. 114)

DOCUMENTING APl
ENDPOINTS

By Tom Johnson / @tomjohnson
idratherbewriting.com

Slides available at
idratherbewriting.com/lear /

Activity: What’s wrong with this API reference topic (p. 173)

Activity: Evaluate API ref docs to identify core elements (p. 177)

11:30 - 12:30: OpenAPI and Swagger
Section: OpenAPI and Swagger (p. 179)

Documenting REST APIs

PDF last generated: August 27, 2023

Page 14

/slides/using_api_like_developer.html
/slides/using_api_like_developer.html
/slides/documenting_api_endpoints.html
/slides/documenting_api_endpoints.html

Workshop -- agenda, slides, activities PDF last generated: August 27, 2023

OPENAPI AND
SWAGGER

By Tom Johnson / @tomjohnson
idratherbewriting.com

Slides available at
i

idratherbews

Activity: Explore Swagger Ul through the Petstore Demo (p. 188)

Activity: Create an OpenAPI specification using Stoplight Studio (p. 201)

12:30 - 1:30pm: Lunch

Lunch provided through catering.

1:30 - 2:00pm: OpenAPI and Swagger (continued)

Activity: Use Redoc Community Edition to render OpenAPI spec (p. 268)

Activity: Create a Swagger Ul display with an OpenAPI spec document (p. 222)

2:00 - 2:30pm: Conceptual topics

Section: Conceptual topics (p. 358)

CONCEPTUAL CONTENT
IN API DOCS

By Tom Johns
idratherbe

Slides available at

ptual_content_api_docs html

Activity: Complete the SendGrid Getting Started tutorial (p. 429)

Activity: Judge conceptual content and decide which is best (p. 430)

2:30 - 2:45pm: Break

Break. Snacks provided.

2:45 - 3:30pm: Code tutorials

Section: Code tutorials (p. 432)

Documenting REST APIs Page 15

/slides/openapi_and_swagger.html
/slides/openapi_and_swagger.html
/slides/conceptual_content_api_docs.html
/slides/conceptual_content_api_docs.html

Workshop -- agenda, slides, activities PDF last generated: August 27, 2023

CODE TUTORIALS

By Tom Johnson/ @
idrathe

idratherbewritin

Activity: Analyze two code tutorials (p. 433)

3:30 - 4:15pm: Publishing API docs

Section: Publishing APl Documentation (p. 530)

PUBLISHING API
DOCUMENTATION

By Tom Johnson / @tomjohnson
idratherbewriting.com

Slides available at
idratherbewriting.com/publishing-api-docs

Activity: Create a GitHub wiki and publish content on a sample page (p. 571)

Activity: Clone your GitHub repo locally (p. 572)

Activity: Push local changes to the remote (p. 574)

4:00 - 4:30: Participant’s challenges surfaced and discussed

During this time, I’d like to have participants surface specific challenges that they are facing and address
them as a whole.

4:30 - 5:00pm: Thriving in the APl doc space

Section: Thriving in the APl doc space (p. 659)

Documenting REST APIs Page 16

/slides/code_tutorials.html
/slides/code_tutorials.html
/slides/publishing_api_docs.html
/slides/publishing_api_docs.html

Workshop -- agenda, slides, activities PDF last generated: August 27, 2023

THRIVING IN THE API
DOC SPACE

By Tom Johnson / @tomjohnson
idratherbewriting.com

Slides available at
idratherbewriting.com/learnapidoc/slides/thriving.in_api_docs

Conclusion

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/workshop.html] to view the content.

5:00 - 5:30pm: Individual consulting

The general workshop ends and we transition into any individual consulting as desired. If you have specific
questions not addressed during the workshop, let’s chat specifically about them. For all those interested,
I’ll write your name on then board and then just meet with you individually for about 5 minutes each until

everyone’s questions are answered.

Documenting REST APIs

Page 17

/slides/thriving_in_api_docs.html
/slides/thriving_in_api_docs.html

Why | developed this course PDF last generated: August 27, 2023

Why | developed this course

| initially compiled this material to teach a series of workshops to a local tech writing firm in the San
Francisco Bay area. They felt they either needed to train their existing technical writers on how to
document APlIs, or they would need to let some of their writers go. | taught a series of three workshops
delivered in the evenings, spread over several weeks.

These workshops were fast-paced and introduced the writers to a host of new tools, technologies, and
workflows. Even for writers who had been working in the tech comm field for 20 years, APl documentation
presented new challenges and concepts. The tech landscape is so vast, even for writers who had detailed
knowledge of one technology, their tech background didn’t always carry over into REST API
documentation.

After the workshops, | put the material on my site, idratherbewriting.com, and opened it up to the broader
world of technical writers. | did this for several reasons. First, | felt the information would be useful to the
tech writing community. There are very few books or courses that dive into APl documentation strategies
for technical writers.

Second, | knew that through feedback, | could refine the information and make it better. Almost no content
hits the mark on its first release. Instead, content needs to iterate a while through user testing and
feedback. Just as this iterative review helps refine user documentation, the same principle applies to
course material as well. I've given dozens of presentations and workshops on API documentation for
several years now, and each time I've used the feedback to improve this content.

Finally, the content would help drive traffic to my site. In fact, visits to the APl documentation course pages
outperform visits to my blog. | reflected on this traffic source in a blog post — see If writing is no longer a
marketable skill, what is? 4 How would people discover the material if they couldn’t find it online? If the
material were only trapped in a print book or behind a firewall, it would be difficult to discover. Content is a
rich information asset that draws traffic to any site. It’s what people primarily search for online.

After putting the API doc on my site for some months, the feedback was positive. One person said:

Tom, this course is great. I’'m only part way through it, but it already helped me get a
job by appearing fluent in APIs during an interview. Thanks for doing this. | can’t
imagine how many volunteer hours you’ve put into helping the technical
communication community here.

Another person commented:

Hi Tom, | went through the whole course. Its highly valuable and | learned a bunch of
things that | am already applying to real world documentation projects. ... | think for
sure the most valuable thing about your course is the clear step by step procedural
stuff that gives the reader hands-on examples to follow (its so great to follow a
course by an actual tech. writer!)

And another:

Documenting REST APIs Page 18

https://idratherbewriting.com/2018/08/09/writing-no-longer-a-skill/
https://idratherbewriting.com/2018/08/09/writing-no-longer-a-skill/

Why | developed this course PDF last generated: August 27, 2023

I love this course (I may have already posted that)—it’s the best resource | have
come across, explained in terms | understand. I’ve used it as a basis for my style
guide and my API documentation....

These comments inspired me to continue adding to the course, building out more tutorials, sections, and
refinements. What began as a simple three-session course transformed into a larger endeavor, and |
aspired to convert the content into a full-fledged book and multi-week course. | continue to receive emails
from technical writers, many of whom are trying to transition into developer documentation. The other week
someone wrote to me:

Just an email to thank you for the wonderful API course on your site. | am a long-
time tech writer for online help that was recently assigned a task to document a
public API. | had no experience in the subject, but had to complete a plan within a
single sprint. Luckily | remembered from your blog posts over the years that you had
posted material about this.

Your course on YouTube gave me enough information and understanding to be able
to speak intelligently on the subject with developers in a short timeframe, and to dive
into tools and publishing solutions.

And another:

| am nearly in tears after finding this site! | think | stumbled upon it some time ago,
but | must not have been ready for what you have to say. NOW | am ready! As a
former technical writer now knowledge manager, | stumbled upon API writing and
have learned a lot simply by being curious and observant...

Of course, not all comments or emails are praiseworthy. Some people note problems on pages, such as
broken links or broken code, unclear areas or missing information. As much as possible, after receiving this
feedback, | go back and clarify or strengthen those areas.

One question | faced in preparing the content is whether | should stick with text, or combine the text with
video. While video can be helpful at times, it’s too cumbersome to update. Given the fast-paced, rapidly
evolving nature of the technical content, videos get out of date quickly.

Additionally, videos force the user to go at the pace of the narrator. If your skill level matches the narrator,
that’s great. But in my experience, videos often go too slow or too fast. In contrast, text lets you more
easily skip ahead when you already know the material, or slow down when you need more time to absorb
concepts.

Despite the constant changes in the technology landscape, | want to keep this course current and up to
date. As such, I'll continue to add and edit and refine it as needed. | want this content to become a vital
learning resource for all technical writers, both now and in the years to come as technologies evolve. If you
have general feedback about this course, feel free to drop me aline 4.

Documenting REST APIs Page 19

https://idratherbewriting.com/contact/

About the author PDF last generated: August 27, 2023

About the author

In case you’d like to know a little bit about me, I’'m currently based in Seattle, Washington, working for
Google. (Previously, | was at Amazon and a couple of startups in the Bay area.)

Most people know me through my blog, I’'d Rather

for tech comm for the past decade.

Like most technical writers, | stumbled into
technical writing after working in other fields. | first
earned a BA in English and an MFA in Literary
Nonfiction, and then started my career as a writing
teacher. After a stint in teaching, | transitioned into
marketing copywriting and then turned to technical
writing (mainly for financial reasons).

Despite my initial resistance to the idea of technical
writing (I thought it would be boring), | found that |
actually liked technical writing — a lot more than
copywriting. Technical writing combines my love
for writing and my fascination with technology. |
get to play with tools and handle all aspects of
content production, from design to styles to
publishing workflows.

| worked as a traditional technical writer for some
years, mostly documenting applications with user
interfaces. One day, my organization decided to lay
off the tech writing team (. After that, and based
on my proclivity for tinkering with tools, | decided
to steer my career into a tech writing market that
was more in demand: developer documentation, particularly APl documentation. | also moved to Silicon

Valley to be at the center of tech.

| started documenting my first API at a gamification startup and then transitioned to another semi-startup
to continue with more API documentation. | was no longer working with applications that had user
interfaces, and the audiences for my docs were primarily developers. Developer doc was a new landscape
to navigate, with different tools, expectations, goals, and deliverables.

If you want to read more personal details, see My life story, or reflections on what shaped my life’s career
trajectory 4.

Although | didn’t have a programming background, I’'ve always been somewhat technical. As a teacher, |
created my own interactive website. As a traditional technical writer, | often set up or hacked the authoring
tools and outputs. | like learning and experimenting with new technologies. The developer documentation
landscape suits me well, and | enjoy it.

Still, ’'m by no means a programmer. As a technical writer, in-depth technical knowledge is helpful but not
always essential, as it tends to be too specialized and comes at the expense of other skills and knowledge.
What matters most is the ability to learn something new, across a lot of different domains and products,
even if it’s challenging at first. And then to articulate the knowledge in easy-to-consume ways. The writing
process (p. 502) is still just as relevant when writing APl docs as other forms of docs.

Documenting REST APIs Page 20

https://idratherbewriting.com/
https://idratherbewriting.com/
https://idratherbewriting.com/blog/reflecting-seven-years-later-about-layoff-intro/
https://idratherbewriting.com/blog/reflecting-seven-years-later-about-layoff-intro/
https://idratherbewriting.com/blog/life-story-what-shapes-your-lifes-trajectory/
https://idratherbewriting.com/blog/life-story-what-shapes-your-lifes-trajectory/

About the author PDF last generated: August 27, 2023

You’re probably taking this course because you want to develop your skills and knowledge to increase
your capabilities at work, to enhance your skillset’s marketability, or maybe figure out how to document the
new API| your company is rolling out.

You're in the right place. By the time you finish this course, you’ll have a solid understanding of how to
document APIs. You'll be familiar with the right tools, approaches, and other techniques you need to be
successful with developer documentation projects.

By the way, | keep adding to this course in a Winchester Mystery House [way, which means | keep
adding rooms and extra hallways and doors, etc. If you were to print it out, the course would be more than
500 pages long. Few people get through the whole of it, and by the time they do, I’'ve usually added a new
section. So jump in and read through the topics you find most relevant and interesting. Don’t feel
compelled to get through it all.

If you have a question for me, or just want to drop me a line, you can contact me through my Contact page

Documenting REST APIs Page 21

https://www.winchestermysteryhouse.com/sarahs-story/
https://idratherbewriting.com/contact/
https://idratherbewriting.com/contact/
https://www.writethedocs.org/slack/
https://www.writethedocs.org/slack/
https://writethedocs.slack.com/team/tomjohnson

Introduction to REST API documentation PDF last generated: August 27, 2023

Introduction to REST API
documentation

Before we dive into the technical aspects of APIs, let’s explore the market, general landscape, and trends
with APl documentation.

Different types of APIs

The API landscape is diverse, with many different types of APIs. Although this course focuses on REST
APIs, there are many other types of APIs as well. Often when people start browsing GitHub looking for API
projects to join, or when they peruse the various APIs in their own company, they are surprised that the
APIs look unfamiliar from the APIs covered in this course. There are many types of APIs you will likely
encounter.

One way to sort the different types of APIs is to categorize them into two general buckets: web service
APIs versus native library APIs. Web service APIs send and receive messages across the web using HTTP
to transport the request and response; web service APIs are language agnostic. Native library APIs, on the
other hand, involve incorporating code directly into your project for the desired functionality; native library
APlIs are language-specific.

The following list describes the most common types of APIs you will encounter:

+ Native library APIs: Native library APIs, also called “library-based APIs,” refer to code libraries
(for example, JAR files) that developers add directly to their projects to provide additional
functionality through classes or other functions that can be called locally. These APIs are specific
to a programming language — e.g., Java, C++, Python, Ruby, .NET, and so on. With native
library APIs, the functions are incorporated locally within the code to expand the operations you
can perform within your project, usually without requiring you to access resources in the cloud.
Native library APIs require you to be familiar with the programming language and tend to be the
most challenging type of API to document for technical writers. See Native Library APIs (p. 692)
in this course for more information into Java APIs.

+ SOAP APIs: SOAP (Simple Object Access Protocol) APIs are web services that rely on a strict
XML protocol to define the message exchange format for requests and responses. SOAP is
common with financial APIs and regulated industries, though it has largely been replaced by
REST in popularity. As a standardized protocol, SOAP’s XML message format is usually defined
through a WSDL (Web Services Description Language) file that specifies the allowed elements
and attributes in the message exchange. The WSDL file is machine-readable and used by the
servers interacting with each other to facilitate the communication. See SOAP [4 for introductory
details. More detail about SOAP is also provided in What is a REST API? (p. 36)

+ RPC-based APIs: RPC stands for Remote Procedure Call. RPC-based APIs are web services
that call a method on a remote server by delivering an encoded message through HTTP. The
encoded message format might be XML for XML-RPC APIs (Z or JSON for JSON-RPC APIs [,
but in both cases, the message travels to the remote server via HTTP like other web services.
The methods on the remote servers can be in any language. For example, an XML-RPC API can
call a Java or Python or C++ method.

+ gRPC APIs: gRPC APIs are web services similar to RPC-based APlIs in that the web service calls
a function or runs a procedure on a remote server; however, gRPC uses protocol buffers 4
(specified in .proto files) rather than XML or JSON as the message exchange format. The protocol
buffer lets you define the structure for your data and the way to convert (serialize) the data to be
consumed by the receiving server. Protocol buffers are lighter and more efficient than XML.

Documenting REST APIs Page 22

https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/XML-RPC
https://en.wikipedia.org/wiki/JSON-RPC
https://developers.google.com/protocol-buffers/docs/overview#what-are-protocol-buffers

Introduction to REST API documentation PDF last generated: August 27, 2023

gRPC APIs were developed by Google and published as an open-source platform. See gRPC
APIs [Z for details.

+ REST APIs: REST (Representational State Transfer) are web services that let you make requests
for resources through URL paths. You also supply the operation to be performed with the path
(e.g., GET, CREATE, DELETE). As with other web service APIs, the requests and responses travel
via HTTP across the web, and the servers receiving the requests are language agnostic about the
request (not required to be a specific programming language). Responses are typically returned
in JSON or XML formats. REST APIs have many different paths (endpoints) with various
parameters you can configure to determine the results you want. This course mainly focuses on
REST APIs. See What is a REST API? (p. 36) for details.

+ GraphQL APIs: GraphQL APIs are web services developed by Facebook that let users
dynamically query for results they need through a single path (endpoint). GraphQL eliminates the
need for multiple request URLs or other post-filtering on the returned results to get what you
need. Your query retrieves only the needed data, allowing the request and response to be fast
and specific. See graphqgl.org (4 for more detail. Also see If | am learning to write developer
documentation, should GraphQL be on my radar? (4.

+ Voice Assistant APIs: Voice Assistant APIs are used with voice assistants such as Alexa. These
APIs originate from the cloud and call an endpoint based on natural language processing of voice
commands spoken by users. This is a case where APIs operate behind the scenes in the cloud,
and developers create code, such as in a Lambda function (cloud computing), that handles
incoming requests sent from the voice assistant API.

+ Internet of Things (1oT) APlIs: lIoT APIs are used by physical devices (such as sensors or
wearables) that transmit or receive data to connect the device to an online network. For example,
a thermostat sensor in a room might transmit the temperature to a central controller (such as with
Nest) via an loT API. For more detail, see App nirvana: When the Internet of Things meets the API

economy [4. See also APls in the world of IoT (2.

object-remoting APIs, web socket APIs, OS functions and routines, and more.

Despite the variety of APIs, the defining characteristic of nearly all developer documentation is that it
involves documenting some type of API. This is why “APl documentation” and “developer documentation”
are used somewhat synonymously. APls make life easier for developers (who are consuming the API)
because the APIs perform functions or other tasks in more efficient ways.

Most companies make their information and services available through APIs to help third-parties adopt and
implement the company’s information/services. (This is the whole idea of the information economy.)
Additionally, many APIs are available only internally to help developers within the same company
implement various services. For example, a team handling payment controller operations might provide an
API that another team developing the company’s app can implement to handle payment transactions.

Which type of APl is most common?

As you browse APIs, you might be wondering which type of APl is most common? Which types of APIs
should you focus on? Among the web service APIls, The State of AP/ 2019 report 4 from Smartbear (4
surveyed more than 3,000 technology professionals and found that REST-OAS / Swagger was the most
common web service used:

Documenting REST APIs Page 23

https://grpc.io/docs/guides/
https://grpc.io/docs/guides/
https://graphql.org/
https://idratherbewriting.com/blog/graphql-relevance-and-documentation-strategies/
https://idratherbewriting.com/blog/graphql-relevance-and-documentation-strategies/
https://techbeacon.com/app-dev-testing/app-nirvana-when-internet-things-meets-api-economy
https://techbeacon.com/app-dev-testing/app-nirvana-when-internet-things-meets-api-economy
https://apifriends.com/api-management/iot-api/
https://ffeathers.wordpress.com/2014/02/16/api-types/
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://smartbear.com/

Introduction to REST API documentation PDF last generated: August 27, 2023

Which of the following APl / Web Services formats
do you use?

REST - OAS / Swagger 79%
SOAP 54%
REST - Not OAS / Swagger 39%
XML-RPC 15%
JMS 14%
graphQL 12%
loT (MQTT/CoAP/Others) 10%
gRPC | 4%
Other (please specify) 3%

Popularity of web service APIs (The State of APl 2019, p.20)

OAS stands for OpenAPI Specification, which is something | explore in-depth in Introduction to the
OpenAPI specification (p. 181). The report even mentions some APIs not covered above — JMS APIs (7,
which are used with Java to send messages.

As you can see, when it comes to APIs, one size/type does not fit all. Developers will implement the type of
API that best aligns with their scenario and requirements, just as there are different types of cars (sports
cars, trucks, semi-trucks, sedans, hearses, etc.) for different trips, drivers, passengers, and roads.

In this course, we’ll be diving into REST APIs in depth. Remember that with REST APIs, you don’t deliver a
library of files to users. Instead, the users make requests for the resources on a web server, and the server
returns responses containing the information. Both the system initiating the request and the system
providing the response can be in any programming language, so long as they transmit the message via
HTTP.

REST APIs follow the same protocol as the web. When you open a browser and type a website URL (such
as https://idratherbewriting.com), you’re actually making a GET request for a resource on a server.
The server responds with the content and the browser makes the content visible.

This course not only focuses on REST APIs because they are more popular and in-demand but because
they’re also more accessible to technical writers. You don’t need to know a specific programming language
to document REST APIs. And REST is becoming the most common type of APl anyway.

Many companies are new to API development

According to The State of APl 2019 [4 report, more and more companies are starting to develop APIs:

Documenting REST APIs Page 24

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf

Introduction to REST API documentation PDF last generated: August 27, 2023

While modern APIs have been used in software development for more than two
decades, the last 10 years have been marked by a growth in APl adoption. Our
survey found that 59% of organizations began developing APIs in the last five years.
Furthermore, 28% only began developing APIs in the last two years. The 2019 State
of API Report saw a higher percentage of early adopters than the 2016 State of API
Report, with twice as many respondents saying that they only began developing
APIs in the last year.

The accompanying graph is as follows:

How long has your organization been providing/developing APIs?

® 2019 2016

31% 31%
27%
20%
19%
18% 19%
14%
8%
5%
4% 3% .
Less than a year 1-2 years 3-5years 6-10 years 10+ years | am not sure

Most companies are new to API development

It’s astonishing that API development is so nascent in companies — “59% of organizations began
developing APlIs in the last five years.” If you look at Smartbear’s The State of API 2016 report (4, which
surveyed 2,300 professionals, you find similar growth rates:

42.1% of API providers have been providing/developing APIs for six years or more,
while 51.5% began developing APIs in the last five years.

API development is clearly an area that is somewhat new for many companies, and the directions,
methods, and other paths through this new territory aren’t clear. In fact, The State of APl 2019 report notes
that companies are resoundingly asking for more standardization in this space.

Documenting REST APIs Page 25

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf

Introduction to REST API documentation PDF last generated: August 27, 2023

Programmableweb.com was a site that charted and tracked the number of web APIs added to their
directory. Programmableweb said, “Since January of 2014, an average of more than 2,000 APIs have been
added per year” (Note: Programmableweb.com has since shut down.)

GROWTH IN WEB APIS SINCE 2005
20000

18000 — & ProgrammableWeb
16000
14000
12000
10000
8000
6000
4000
2000

TOTAL API COUNT

JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY
2006 2008 2010 2012 2014 2016 2018

MONTH

The growth over time of the ProgrammableWeb API directory to more than 19,000 entries

The phenomenal growth in web APIls

eBay’s APl in 2005 was one of the first web APIs — the API allowed sellers to manage their products in
their eBay stores. Since then, there has been tremendous growth in web APlIs. Given the importance of
clear and accurate API documentation, this presents a perfect market opportunity for technical writers.
Technical writers can apply their communication skills to fill a gap in a market that is rapidly expanding.

Reasons for API growth?

Why are APIs growing in popularity, so much that you can pretty much search for any company name
followed by “API” and land on developer docs for that company? One reason is that the web itself is
evolving into a conglomeration of APIs. Instead of massive, do-it-all systems, websites are pulling in the
services they need through APlIs.

For example, rather than building your own search to power your website, you might use Algolia instead
and leverage their service through the Algolia Search API 4. Rather than building your own payment
gateway, you might integrate the Stripe API (4. Rather than building your own login system, you might use

. And so on.

Practically every service provides its information and tools through an API that you use. Jekyll, a popular
static site generator, doesn’t have all the components you need to run a site. There’s no newsletter
integration, analytics, search, commenting systems, forms, chat e-commerce, surveys, or other systems.
Instead, you leverage the services you need into your static Jekyll site. (CloudCannon has put together a
long list of services [4 that you can integrate into your static site.)

Documenting REST APIs Page 26

https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23
https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23
https://www.algolia.com/doc/rest-api/search/
https://stripe.com/docs/api
https://app.userapp.io/#/docs/
https://docs.snipcart.com/api-reference/introduction
http://cloudcannon.com/tips/2014/12/12/the-ultimate-list-of-services-for-static-websites.html

Introduction to REST API documentation PDF last generated: August 27, 2023

Services

Third-party services for Jekyll websites.

Newsletters

Capture email addresses and send periodic newsletters.

(C EIC4 B9 &S

AWeber Campaign MailChimp MailerLite Sendicate
Monitor

Analytics

Many sites pull in all the services they need through external APIs

This cafeteria-style model is replacing the massive, swiss-army-site model that tries to do anything and
everything. It’s better to rely on specialized companies to create powerful, robust tools (such as search)
and leverage their service rather than trying to build all of these services yourself.

The way each site leverages its service is usually through a REST API of some kind. Overall, the web is
becoming an interwoven mashup of many different services and APlIs interacting with each other.

The need for APl documentation

We’ve established that APIs are on the rise, following the model of the web, and that REST APlIs are
leading the pack as the most common type of API. But what about documentation for these APIs?

When asked “What are the top three most important characteristics you need in an API?”, The State of API

Documenting REST APIs Page 27

http://jekyll.tips/services/
http://jekyll.tips/services/
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf

Introduction to REST API documentation PDF last generated: August 27, 2023

In your opinion, what are the top three most important
characteristics you need in an API? (Select all that apply)

Ease of use

Responsiveness/performance

@te and detailed documentation

Service reliability

Uptime/availability

Easy to maintain code

Scalability of underlying architecture
Satisfactory security model

Changes & bugs are well documented
Pricing model satisfies requirements
Support/customer service

Service Level Agreements

Backed by a trustworthy organization
Active community/forums
Unigueness in the marketplace

® 2019 #2016
Other (please specify)

0% 20% 40% 60%

Top characteristics needed in an API (The State of APl 2019, p.25)

This rank is three higher than noted in the The State of API 2016 report 7, which put “Accurate and
detailed documentation” sixth in importance:

Documenting REST APIs

Page 28

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf

Introduction to REST API documentation PDF last generated: August 27, 2023

API consumers value ease of use, performance, and service reliability
when choosing an API

In your opinion, what are the top three most important n=1898
characteristics you need in an API?

Ease of use
Responsiveness/performance
Service reliability, uptime/availability
Scalability of underlying architecture
Easy to maintain code

Accurate and detailed documentation
Satisfactory security model
Support/customer service

Changes & bugs are well documented
Service Level Agreements

Pricing model satisfies requirements
Active community/forums

Backed by a trustworthy organization

Uniqueness in the marketplace

Other

In The State of APl 2016 report, documentation ranked sixth in importance, p.19

An even earlier survey conducted by Programmableweb in 2013 (which included 250 respondents) found
that “Complete and accurate documentation” actually ranked as the most important factor in an API (see
API Consumers Want Reliability, Documentation and Community (4).

Documenting REST APIs Page 29

https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
http://www.programmableweb.com/news/api-consumers-want-reliability-documentation-and-community/2013/01/07

Introduction to REST API documentation PDF last generated: August 27, 2023

Important factors (rated 1-4)

rmance
API or Documentation change log

Active developer community

Customer service responsiveness

Price

Language-specific code examples
Service-level agreements

Language-specific SDKs/helper libraries/
Service status dashboard

API console or explorer

Customer service options (email, phone, etc.)
User forums

Service-specific blog

Service-specific Twitter account

0.00 0.50 1.00 150 2.00 2.50 3.00 3.50 4.00

Programmableweb survey showing that complete and accurate documentation is the most important factor
for developers

John Musser, one of the founders of Programmableweb.com (a site that’s now retired), emphasizes the
importance of documentation in his presentations. In 10 reasons why developers hate your API (5, he says
the number one reason developers hate your APl is because “Your documentation sucks.”

Documenting REST APIs Page 30

http://www.programmableweb.com/news/api-consumers-want-reliability-documentation-and-community/2013/01/07
http://www.programmableweb.com/news/api-consumers-want-reliability-documentation-and-community/2013/01/07
https://www.infoq.com/presentations/API-design-mistakes

Introduction to REST API documentation PDF last generated: August 27, 2023

ASON #1
Your
documentation
sucks

RE

APIs often fail because the doc fails the developers

Despite what might seem like a clear mandate for excellent API docs, technical writers aren’t always
leveraged for these doc efforts. The 2019 State of API (4 report found the following:

Automation is playing a major role in how organizations document their APIs. 43% of
respondents said they leverage an API standard, like the OpenAPI Specification, to
generate APl docs. One quarter of respondents are using a “code-first” approach,
where developers are responsible for adding annotations to the APl code to generate
docs. Only 15% of participants are investing in technical writers to help with
documenting APlIs.

Documenting REST APIs Page 31

http://www.slideshare.net/jmusser/ten-reasons-developershateyourapi
http://www.slideshare.net/jmusser/ten-reasons-developershateyourapi
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf

Introduction to REST API documentation PDF last generated: August 27, 2023

Which best describes how your team handles APl documentation?

We use an API definition like OAS/Swagger 43%
to automate API doc creation

Developers document APIs using code annotations 25%

We don't have a process for APl documentation 15%

We have technical writers who are

responsible for writing API docs 5%

Other (please specify) 2%

How teams are handling docs, The State of APl 2019, p.42

Of course, the finding that “Only 15% of participants are investing in technical writers...” will upset
technical writers. Fortunately, this question is poorly worded and might account for the disheartening
answers. The wording suggests that employing technical writers to create docs is an alternative to
generating docs through the OpenAPI specification (OAS). In reality, technical writers should be
collaborating with engineers to generate reference documentation through OAS. Reference docs account
for only part of the needed documentation (maybe half, if that). In this course, | heavily recommend that
technical writers generate reference documentation through the OAS. This is covered in the OpenAPI spec
and Swagger section (p. 180).

Thus, the connotation with this survey question misunderstands and distorts the role that technical writers
play. Technical writers aren’t old-school grammarians using feather and quill to etch out documentation in
a tediously manual way (rather than auto-generating it via the OAS). Instead, many technical writers
promote and champion OAS as a standard for creating the reference docs.

The State of APl 2016 report 4 words the question a bit differently — “Does your organization have a
formal API developer documentation process?” The 2016 report found that docs are a priority for about
half of the respondents:

Nearly 75% of API providers have a formal API developer documentation process,
but only 45.6% say that it is a priority for their team. A quarter of API providers
(25.3%) say they either do not have, or are unaware of their team’s API developer
documentation process.

Again, the question here is a bit vague. Exactly what is a “formal documentation process”? Given that one
of Smartbear’s key products is SwaggerHub (p. 230), which auto-generates reference documentation from
the OpenAPI spec, a “formal documentation process” might mean generating docs from the OpenAPI
spec.

Documenting REST APIs Page 32

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf
https://static1.smartbear.co/smartbear/media/ebooks/state-of-api-report-2016.pdf

Introduction to REST API documentation PDF last generated: August 27, 2023

Why the increased focus on documentation?

Why does documentation for REST APIs merit so much attention? Why is it ranking so high in these
surveys? In short, documentation for REST APlIs is important because REST follows an architectural style
rather than an exact protocol standard.

To understand the importance of documentation for REST APIs, it helps to compare REST with SOAP.
REST APIs are a bit different from the SOAP APIs that were popular some years ago. SOAP APIs enforce a
specific message format for sending requests and returning responses. As an XML message format, SOAP
is very specific and has a WSDL (Web Service Description Language) file that describes how to interact
with the API.

REST APIs, however, do not follow a standard message format. Instead, REST is an architectural style, a
set of recommended practices for submitting requests and returning responses. To understand the request
and response format for REST APIs, you don’t consult the SOAP message specification or look at the
WSDL file. Instead, you have to consult the REST API’s documentation.

Each REST API functions a bit differently. There isn’t a single way of doing things, and this flexibility and
variety fuel the need for accurate and clear documentation. (I'll explain more about REST APIs in the What

is a REST API? (p. 36)) As long as REST APIs vary from one to another, there will be a strong need for
technical writers to provide documentation.

Job market is hot for APl technical writers

Many employers are looking to hire technical writers who can create not only complete and accurate
documentation but who can also create stylish outputs for their documentation. Here’s a job posting from a
recruiter looking for someone who can emulate Dropbox’s documentation:

Documenting REST APIs Page 33

Introduction to REST API documentation PDF last generated: August 27, 2023

Find Jobs Find Resumes Employers / Post Job

/fndeed what: where:

one search. all jobs.

Contract APl Tech Writer, Palo Alto
Synergistech - Palo Alto, CA

Principals only, please

This stealth-mode software startup needs a Contract Technical Writer with strong software
development skills to create conceptual and reference content - including working code samples
- for their persistent cloud storage system.

Youll need enough software industry and engineering experience to help define and improve the
products, and the ability to write modern copy-paste-tweak-and-run code examples to support
APIs in Objective C, Java, REST, and C. The client wants to find someone who'll emulate
Dropbox's developer documentation (for example,
https://www.dropbox.com/developers/sync/start/android) or similar.

If youve participated actively in APl development cycles, providing feedback on the APlIs
themselves, and can show samples of developer tutorials and, ideally, dynamic websites, this
company wants to meet you.

In this role, youll need to work onsite in Palo Alto at least a couple days/week throughout the
project. You can work corp-to-corp, as a 1099-based independent contractor, or as a W2
temporary employee for as long as mutually agreed. The project has no fixed term, and is
renewable in three (3) month increments.

Required : Strong code reading and sample-code writing skills in one or more of these
languages (Objective C, Java, C) or the REST protocol

Experience providing feedback on APIs during development cycles
.th:\mhla r}nrh'nlin samnles that include ciit-and-nasteahle rnde samples

Job description asking for someone with skills to create doc site like Dropbox

As you can see, the client wants to find “someone who’ll emulate Dropbox’s documentation.”

Why does the look and feel of the documentation matter so much? With APl documentation, there is no
GUI interface for users to browse. Instead, the documentation is the interface. Employers know this, so
they want to make sure they have the right resources to make their APl docs stand out as much as
possible.

Here’s what the Dropbox API doc site looks like:

Documenting REST APIs Page 34

Introduction to REST API documentation PDF last generated: August 27, 2023

Q g Tom Johnson

$
APIv2 .
* Build your app on the Dropbox platform
My apps
API Explorer A powerful API for apps that work with files.
Documentation
HTTP @
NET v)\ L _,-m,\
Java e !)\/__ e
JavaScript I R
Python {:9:% @/) RS ?
Swift { o 78 /j , y\ &
Objective-C [— N kt](\ e E—
Community SDKs
Read our docs Create your app Test your ideas

References
Docs are organized by language, from Getting started is simple and quick from | It's easy to prototype and test examples

Authenticati
uthentication types NET to Swift. the App Console. with our API Explorer.

Branding guide
Content hash

Data ingress guide
Dropbox API's developer site has a simple but clean Ul

It’s not a sophisticated design. But its simplicity and brevity are what make it appealing. When you
consider that the API documentation is more or less the product interface, building a sharp, modern-
looking doc site is paramount for credibility and traction in the market. (I dive into the job market for API
documentation later (p. 660).) Basically, if you have strong technical skills and experience writing for
developers, you can have nearly any job you want in Silicon Valley and command a base salary of
$100-$150k or more.

API doc is a new world for most tech writers

API documentation is often a new world for technical writers. Many of the components may differ from
traditional GUI documentation. For example, all of these aspects with developer documentation differ from
traditional documentation:

+ Authoring tools

+ Audience

+ Programming languages
» Reference topics

+ User tasks

When you try to navigate the world of APl documentation, you may be initially overwhelmed by the
differences and intimidated by the tools and code. Additionally, the documentation content itself is often
complex and requires familiarity with development concepts and processes.

Overall, technical writers are hungry to learn more about APIs. This course will help you build the
foundation of what you need to know to get a job in APl documentation and excel in this field. As a skilled
API technical writer, you will be in high demand and will fulfill a critical role in companies that distribute
their services through APIs.

Documenting REST APIs Page 35

https://www.dropbox.com/developers
https://www.dropbox.com/developers

What is a REST API? PDF last generated: August 27, 2023

What is a REST API?

This course is all about learning by doing, but while doing various activities, I’ll periodically pause and dive
into some more abstract concepts to fill in more detail. This topic is one of those deep-dive moments into
concepts. Here we’ll explore what a REST APl is, comparing it to other types of APIs like SOAP. REST APIs
have common characteristics but no definitive protocols like its SOAP predecessor.

What is an API?

In general, an API (or Application Programming Interface) provides an interface between two systems. It’s
like a cog that allows two systems to interact with each other. In this case, the two systems are computers
that interact programmatically through the API.

An APl is like a cog that allows two different systems to interact. (Image from Brent 2.0 4, spinning gears 4
,CCBY-ND20([.)

APIs are often pulling and pushing data underneath user interfaces. Consider the example of a flight
booking site like kayak.com [4 or orbitz.com 4. When you search for flights, the site reaches out to many
other airline services to retrieve information about flights matching your query. kayak.com itself doesn’t
have all of this information. Instead, it gathers this data through APIs.

Documenting REST APIs Page 36

http://bit.ly/1DexWM0
http://bit.ly/1DexWM0
https://www.flickr.com/photos/brentinoz/
http://bit.ly/1DexWM0
https://creativecommons.org/licenses/by-nd/2.0/legalcode
https://kayak.com/
https://orbitz.com/

What is a REST API? PDF last generated: August 27, 2023

Or consider other similar services. When you see a YouTube video embedded on a site, the site itself
doesn’t host the video. Instead, the embed code contains API requests that get the video from YouTube’s
hosting centers. When you embed a Twitter widget on your site, the widget’s APIs pull in tweets from a
Twitter server onto your site.

Consider another example from Fire TV. Suppose you want to view a pay-per-view event that requires
payment. A pop-up dialog might appear letting you enter your credit card details. Your payment gets
processed and you receive confirmation about the purchase’s success. This payment processing doesn’t
occur within the app. Instead, the app makes API calls out to payment servers with the needed information,
and all that payment processing happens in the cloud. When the processing finishes, the API returns a
confirmation response.

The next time you push a button in some interface, think about what’s going on underneath. Most likely,
the button is internally wired to make calls to an external service for the information needed. That call is
made through an API that performs a request and receives a response.

APIs that use HTTP protocol are “web services”

A “web service” is a web-based application that provides resources in a format consumable by other
computers. Web services include various types of APIs, including both REST and SOAP APIs. Web
services are basically request-and-response interactions between clients and servers (a computer requests
a resource, and the web service responds to the request).

All APIs that use HTTP protocol as the transport format for requests and responses are considered “web
services.” With web services, the client making the request for the resource and the API server providing
the response can use any programming language or platform — it doesn’t matter because the message

request and response are made through a common HTTP web protocol.

The web protocol is part of the beauty of web services: they are language agnostic and therefore
interoperable across different platforms and systems. When documenting a REST API, it doesn’t matter
whether engineers build the API with Java, Ruby, Python, or some other language. The requests are made
over HTTP, and the responses are returned through HTTP.

The following diagram shows the general model of a REST API:

Documenting REST APIs Page 37

What is a REST API? PDF last generated: August 27, 2023

REST API model

[—]
[—]
Request
REST API v\ URI: ht.tp://coolhomes.api.com/homes?limit=5
(Java) ~,\ ~,\ Method: GET
s .. X s e . QGQ
Response (JSON) "GS,O
[e . S N '?//
'?@%Os~~~ \\/7'77;0/

"home": "123" ’7@@/ e N
"location":"AZ" /7'7}/0‘ R Se .
"price":"200k" 7. S.,

}1 N ~ ~

{ D=
"home":"456",
"location": "CA"
"price": "800K" J ¥

} Application
] (Ruby)

General model of a REST API

As you can see, there’s a request and a response between a client to the API server. The client and server
can be based in any language, but HTTP is the protocol used to transport the message. This request-and-
response pattern is fundamentally how REST APIs work.

Each programming language that makes the request will have a different way of submitting a web request
and parsing the response in its language. These language-specific functions for making requests and
parsing responses aren’t part of the REST API (though they might be provided in an accompanying SDK (p.
480)). The REST API is language agnostic and handles incoming and outgoing information across HTTP,

just like the web.

SOAP APIs are the predecessor to REST APIs

Before REST became the most popular web service, SOAP (Simple Object Access Protocol) was much
more common. To understand REST a little better, it helps to have some context with SOAP. This way you
can see what makes REST different.

SOAP is a standardized protocol that requires XML as the message format for requests and responses. As
a standardized protocol, the message format is usually defined through something called a WSDL (Web
Services Description Language) file.

The WSDL file defines the allowed elements and attributes in the message exchanges. The WSDL file is
machine readable and used by the servers interacting with each other to facilitate the communication.

SOAP messages are enclosed in an “envelope” that includes a header and body, using a specific XML
schema and namespace. For an example of a SOAP request and response format, see SOAP vs REST 101:
Understand The Differences (5.

Documenting REST APIs Page 38

http://www.soapui.org/testing-dojo/world-of-api-testing/soap-vs--rest-challenges.html
http://www.soapui.org/testing-dojo/world-of-api-testing/soap-vs--rest-challenges.html

What is a REST API? PDF last generated: August 27, 2023

The main problem with SOAP is that the XML message format is too verbose and heavy. It is particularly
problematic with mobile scenarios where file size and bandwidth are critical. The verbose message format
slows processing times, which makes SOAP interactions lethargic.

SOARP is still used in enterprise application scenarios (especially with financial institutions) with server-to-
server communication, but in the past five years, SOAP has mostly been replaced by REST, especially for
APIs on the open web.

REST is a style, not a standard

Like SOAP, REST (Representational State Transfer) uses HTTP as the transport protocol for the message
requests and responses. However, unlike SOAP, REST is an architectural style, not a standard protocol.
This is why REST APIs are sometimes called RESTful APls — REST is a general style that the API follows.

A RESTful API might not follow all of the official characteristics of REST as outlined by Dr. Roy Fielding (4,
who first described the model. Hence these APIs are “RESTful” or “REST-like.” (Some developers insist on
using the term “RESTful” when the API doesn’t fulfill all the characteristics of REST, but most people just
refer to them as “REST APIs” regardless.)

As an architectural style, you aren’t limited to XML as the message format. REST APIs can use any
message format the API developers want to use, including XML, JSON, Atom, RSS, CSV, HTML, and more.

Despite the variety of message format options, most REST APIs use JSON (JavaScript Object Notation) as
the default message format. They use JSON because it provides a lightweight, simple, and more flexible
message format that increases the speed of communication. The lightweight nature of JSON also allows
for mobile processing scenarios and is easy to parse on the web using JavaScript.

In contrast, with XML, XSLT is used more for presenting or rather “transforming” (the “T” in XSLT) the
content stored in an XML language. XSLT enables the human readability (rather than processing data
stored in an XML format).

REST focuses on resources accessed through URLs

Another unique aspect of REST is that REST APlIs focus on resources (that is, things, rather than actions)
and ways to access the resources. Resources are typically different types of information. You access the
resources through URLs (Uniform Resource Locators), just like going to a URL in your browser retrieves an
information resource. The URLs are accompanied by a method that specifies how you want to interact with
the resource.

Common methods include GET (read), POST (create), PUT (update), and DELETE (remove). The endpoint
usually includes query parameters that specify more details about the representation of the resource you
want to see. For example, you might specify (in a query parameter) that you want to limit the display to 5
instances of the resource.

Here’s what a sample endpoint might look like:
http://apiserver.com/homes?limit=5&format=json
The endpoint shows the whole path to the resource. However, in documentation, you usually separate this

URL into more specific parts:

« The base path (or base URL or host) refers to the common path for the API. In the example
above, the base path is http://apiserver.com .

+ The endpoint refers to the end path of the endpoint. In the example above, /homes .

+ The ?limit=5&format=json part of the endpoint contains query string parameters for the

Documenting REST APIs Page 39

https://en.wikipedia.org/wiki/Roy_Fielding

What is a REST API? PDF last generated: August 27, 2023

endpoint.

In the example above, this endpoint would get the “homes” resource and limit the result to 5 homes. It
would return the response in JSON format.

You can have multiple endpoints that refer to the same resource. Here’s one variation:

http://apiserver.com/homes/{home id}

The above URL might be an endpoint that retrieves a home resource that contains a particular ID. What is
transferred back from the server to the client is the “representation” of the resource. The resource may
have many different representations (showing all homes, homes that match certain criteria, homes in a
specific format, and so on), but here we want to see a home with a particular ID.

The relationship between resources and methods is often described in terms of “nouns” and “verbs.” The
resource is the noun because it is an object or thing. The verb is what you're doing with that noun.
Combining nouns with verbs is how you form the language in REST.

We’ll explore endpoints in much more depth in the sections to come (for example, in the API reference

The web itself follows REST

The terminology of “GET requests” and “message responses” transported over “HTTP protocol” might
seem unfamiliar, but this is just the official REST terminology to describe what’s happening. Because
you've used the web, you’re already familiar with how REST APIs work — the web itself essentially follows
a RESTful style.

If you open a browser and go to https://idratherbewriting.com [, you're really using HTTP protocol
(https://) to submit a GET request to the resource available on a web server. The response from the
server sends the content at this resource back to you using HTTP. Your browser is just a client that makes
the message response look pretty.

Documenting REST APIs Page 40

https://idratherbewriting.com/

What is a REST API? PDF last generated: August 27, 2023

The web itself follows REST

[—]
=n Request
. . URI: http://idratherbewriting.com
idratherbewriting.com Method: GET
~ - . . ~ - . N &
hES . hES ~GQ(/@‘S\
Response (HTML) N ‘\f(/,?/
'?G\S‘ e N ﬂs,
0, .. T
<html> 8@[/7 .. \/
<head> 7‘7;0 S.. Sel
<title>I'd Rather Be N
Writing</title> A
</head> A =
<body>Latest =
posts</body>
</html> K
Browser
Web as REST API

You can see this response in curl (p. 78) if you open a terminal prompt and type curl

https://idratherbewriting.com . (This assumes you have curl installed (p. 78).)

Because the web itself is an example of RESTful style architecture, the way REST APIs work will likely
become second nature to you.

REST APIs are stateless and cacheable

REST APIs are also stateless and cacheable. Stateless means that each time you access a resource
through an endpoint, the API provides the same response. It doesn’t remember your last request and take
that into account when providing the new response. In other words, there aren’t any previously
remembered states that the API takes into account with each request.

The responses can also be cached to increase the performance. If the browser’s cache already contains
the information asked for in the request, the browser can just return the information from the cache instead
of getting the resource from the server again.

Caching with REST APIs is similar to caching of web pages. The browser uses the last-modified-time value
in the HTTP headers to determine if it needs to get the resource again. If the content hasn’t been modified
since the last time it was retrieved, the cached copy can be used instead. Caching increases the speed of
the response.

REST APIs have other characteristics, which you can dive more deeply into on this REST API Tutorial (5.
One of these characteristics includes links in the responses to allow users to page through to additional
items. This feature is called HATEOAS, or Hypermedia As The Engine of Application State.

Documenting REST APIs Page 41

http://www.restapitutorial.com/lessons/whatisrest.html

What is a REST API? PDF last generated: August 27, 2023

Understanding REST at a higher, more theoretical level isn’t my goal here, nor is this knowledge necessary
to document a REST API. However, there are many technical books, courses, and websites that explore
REST API concepts, constraints, and architecture in more depth that you can consult if you want to. For
example, check out Foundations of Programming: Web Services by David Gassner 4 on lynda.com.

REST APIs don’t use WSDL files, but some specs exist

An important aspect of REST APIs, especially in the context of documentation, is that they don’t use a
WSDL file to describe the elements and parameters allowed in the requests and responses.

Although there is a possible WADL (Web Application Description Language) file that can be used to
describe REST APIs, WADL files are rarely used because they don’t adequately describe all the resources,
parameters, message formats, and other attributes of the REST API. (Remember that the REST APl is an
architectural style, not a standardized protocol.)

To understand how to interact with a REST API, you have to read the documentation for the API. The need
to read the docs makes the technical writer’s role extremely important with REST APIs.

Some formal specifications — for example, OpenAPI (p. 181) and RAML (p. 924) — have been developed
to describe REST APIs. When you describe your API using the OpenAPI or RAML specification, tools that
can read those specifications (such as Swagger Ul (p. 218) or the RAML API Console (p. 936)) will generate
an interactive documentation output.

The OpenAPI specification document can take the place of the WSDL file that was more common with
SOAP. Tools like Swagger Ul (p. 218) that read the specification documents usually produce interactive
documentation (featuring API Consoles or API Explorers) and allow you to try out REST calls and see
responses directly in the browser.

But don’t expect the Swagger Ul or RAML API Console documentation outputs to include all the details
users would need to work with your API. For example, these outputs won’t include info about authorization

or RAML output usually contains reference documentation only, which typically accounts for only a third or
half of the total needed documentation (depending on the API).

Overall, REST APIs are more varied and flexible than SOAP APIs, and you almost always need to read the
documentation to understand how to interact with a REST API. As you explore REST APIs, you will find that
they differ significantly from one to another (especially the format and display of their documentation sites,
which we’ll look at in Survey of API doc sites (p. 536)), but they all share the common patterns outlined
here. At the core of any REST APl is a request and response transmitted over the web.

Additional reading
+ REST: a FAQ [, by Diogo Lucas

« Learn REST: A RESTful Tutorial (5, by Todd Fredrich
+ Understanding RPC Vs REST For HTTP APIs [, by Phil Sturgeon

Documenting REST APIs Page 42

https://www.lynda.com/Software-Development-tutorials/Foundations-Programming-Web-Services/126131-2.html
https://medium.com/@diogo.lucas/rest-a-faq-b3cd7ed62828
http://www.restapitutorial.com/
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/

Activity 1a: Identify your goals PDF last generated: August 27, 2023

Activity 1a: Identify your goals

Ramping up on APl documentation, developing a portfolio of APl documentation writing samples, and
completing all the activities in this course will require a lot of time and effort. In this activity, you’ll identify
your goals and reasons for taking this course. Reflecting on your motivation will help you develop the right
mindset and stamina to devote the necessary time for the course.

Activity: ldentify your goals with APl documentation
Identify your goals here and make sure they align with this course. Think about the following questions:

+ Why are you taking this course?

« What are your career ambitions related to APl documentation?

+ Are you in a place where developer documentation jobs are plentiful?

+ What would you consider to be a success metric for this course?

+ Do you have the technical mindset needed to excel in developer documentation fields?

For live workshops, we typically share responses in a get-to-know-everyone format. But if you're taking this
course online, consider jotting down some thoughts in a journal or blog entry.

Documenting REST APIs Page 43

Developer documentation trends — survey results PDF last generated: August 27, 2023

Developer documentation trends —
survey results

| recently conducted a survey [4 about trends for those creating documentation for developers and
engineers. You can view the content in several formats: slides, webinar, or article.

Slides

You can view the slides here (4:

DEVELOPER DOCUMENTATION TRENDS

WTATR 406 310 BS5 i 9 mins
- - o L

Eesgonye Diairtntesn s ——

o

Tom Johnson / @tomjohnson
idratherbewriting.com

Webinar
You can also view a recorded webinar where | talk through the results here:

Note: This content doesn’t embed well in print because it contains a YouTube video. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_course_videos.html] to view the content.

Article

| wrote an article for the Institute of Scientific Technical Communicators (ISTC) magazine 4 (Autumn 2020).

Documenting REST APIs Page 44

https://idratherbewriting.com/blog/developer-documentation-survey-2020/
https://idratherbewriting.com/slides/devdoctrends_results.html
https://idratherbewriting.com/slides/devdoctrends_results.html
https://idratherbewriting.com/slides/devdoctrends_results.html
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/istc2020_devdoctrends.pdf
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/istc2020_devdoctrends.pdf

Developer documentation trends — survey results PDF last generated: August 27, 2023

Focus on eLearning and Training é.

Read multiple artbches focusing on different aspects of
elearming and trsining

Communicator

The insiiuie ol Brienithc u1mm

.-"\ll—-‘-h ‘-"I-i" -—-ﬂ-ﬂ-Hl—

W

The same content from the PDF is available in HTML below:

Developer documentation trends: How developer documentation
trends differ from general technical communication trends

Introduction

Despite excellent research on trends in the technical communication space, so far no survey has focused
exclusively on trends within developer documentation only. By developer docs, | mean documentation
written primarily for developers and engineers. Two recent surveys on the general tech comm space
include Saul Carliner’s Tech Comm Census results 4 (published in Dec 2018 STC Intercom) and Scott
Abel’s Benchmarking Survey [(summarized in the same issue).

Reading the results of these surveys, one would assume that most technical writers use Microsoft Word,
Adobe FrameMaker, help authoring tools, CCMSs, and DITA. However, these surveys miss out on an
important and sweeping tool change, often referred to as “docs-as-code,” that is taking place on the web.
They also don’t explore many other trends within the developer doc space.

Scott’s survey does include some APl-related information. He found that “Fifty-eight percent of technical
communication teams surveyed say they currently document APIs; 10 percent plan to in the future.” One
challenge tech writers face in documenting APls is “using software tools not optimized for ease-of-use or
writing efficiency, and lack of experience.” Scott’s survey also found that 21% of technical communicators
use Markdown to create docs.

Documenting REST APIs Page 45

https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/istc2020_devdoctrends.pdf
https://s3.us-west-1.wasabisys.com/idbwmedia.com/images/api/istc2020_devdoctrends.pdf
https://www.stc.org/intercom/download/2018/
http://public2.brighttalk.com/resource/core/217857/the-state-of-technical-communication_474463.pdf
http://public2.brighttalk.com/resource/core/217857/the-state-of-technical-communication_474463.pdf

Developer documentation trends — survey results PDF last generated: August 27, 2023

These responses about APIs are more relevant to developer docs, but they don’t go far enough. More
developer-oriented topics are left out, such as how writers integrate with engineering Scrum teams, how
writers interact with engineers on documentation, how writers handle the OpenAPI spec and other
reference docs, and more.

Don’t get me wrong. | highly value these general surveys and the information they provide. But | was
perplexed to see Adobe FrameMaker and Microsoft Word used so prominently. Admittedly, the tools usage
reported by these surveys wasn’t too far off from previous WritersUA Tools surveys. For example, in 2014,
WritersUA found that 52% of writers (199 out of 382 respondents) used FrameMaker (2014 WritersUA
Tools Survey (4).

Reading these surveys made me wonder — is it really the case that so many tech writers are still using
FrameMaker and Word? That didn’t match what | was seeing around me in Silicon Valley. But was | living in
a bubble, an anomaly to the rest of the tech comm world? Were trends toward docs-as-code tools much
more widespread and common in developer docs? The general tech comm surveys left me with more
questions than answers.

A survey focusing on developer docs

To gather data about trends in developer docs, | decided to create my own survey. In the first developer
documentation survey of its kind, | created a list of 50 questions, mostly multiple choice. | limited the
audience to people writing docs for developers/engineers only. | promoted the survey on my blog,
LinkedIn, and Twitter, and left the survey open for about two months, from January to March 2020.

A total of 405 people completed the entire survey. Completing the survey means that after the 50th
question, they clicked Submit. However, 855 started the survey, and 337 dropped out somewhere along
the way. | allowed partial responses even if users dropped out along the way. So the actual number of
respondents varied between 405 and 855, with some questions receiving more answers than others. About
37% of the respondents were in the US, about 15% in India, 5% in Germany, 5% in the UK, and smaller
percentages from other countries.

47.49% 406 3,110 855 337 9 mins
@ Completion Rate F Completed @ Viewed @ Started Q Dropouts ® Average Time
m Response Distribution Countries Responses

us 36.61%

IN 14.50%

DE 515%

GB 4.68%

CA 4.33%

RU 3.74%

AU 2.57%

PL 1.99%

UA 1.99%

World | US | Canada | Europe

FR 1.64%

Documenting REST APIs Page 46

http://www.welinske.com/2014-writersua-tools-survey/
http://www.welinske.com/2014-writersua-tools-survey/
https://www.questionpro.com/t/PGhS9ZgCFE
https://www.questionpro.com/t/PGhS9ZgCFE

Developer documentation trends — survey results PDF last generated: August 27, 2023

You can browse the results of the survey directly at https://www.questionpro.com/t/PGhS9ZgCFE [.

Survey question categories
After the survey, to make better sense of the responses, | divided the 50 questions into five categories:

Tool responses (p. 47)

Formats and outputs responses (p. 49)
Process and workflow responses (p. 50)
API responses (p. 51)

Profile responses (p. 52)

ok wh=

In the sections that follow, I’ll go through each section and provide summaries, highlights, and analyses.
Percentages are rounded up or down. For more granular details, feel free to browse the survey results
directly.

1. Tool responses

Survey summary:

+ Primary authoring tool: 22% static site generators (such as Jekyll, Hugo, Gatsby, Sphinx),
14% wikis, 11% XML tools, 8% HATs, 3% FrameMaker

+ Text editor 25% Visual Studio Code, 19% Notepad++, 14% Atom

+ Source format: 37% Markdown, 15% HTML, 15% XML

+ Follow docs-as-code approach: 56% yes, 22% somewhat, 20% no

+ Platform for publishing docs: 31% company’s own web servers or infrastructure, 15%
GitHub Pages, 10% Gitlab

« Computer type: 54% Windows, 40% Mac

+ How you manage content: 67% Git, 8% CMS, 5% CCMS

Summary and analysis:

In the dev doc space, tech writers don’t use a single tool for authoring, review, and publishing. Writers use
different tools for different scenarios and purposes. For example, writers might use Confluence, Word, or
Google Docs for early content development. When they transition the content into their authoring/
publishing system, they work in Visual Studio Code or Atom as the text editor. Within these text editors,
they usually write in Markdown formats with some YAML frontmatter.

Writers build the site output using a static site generator, such as Hugo, Jekyll, Sphinx, or MkDocs. To
manage the content (for feature branches or to pull in work from others), they use Git. When it comes time
to deploy the site build on a web server, they often have a continuous integration / continuous deployment
(CI/CD) model that pushes the content onto GitHub, GitLab, or their company’s own infrastructure through
a few keystrokes on the command line. This workflow is known as a “docs-as-code” approach because it
treats documentation similar to how software developers treat code (to an extent).

Given this workflow, which would you say is the author’s “tool”? It’s unclear. The days when writers used
an all-in-one purpose tool (for example, a single help authoring tool) for authoring, review, collaboration,
and publishing are gone.

Documenting REST APIs Page 47

https://www.questionpro.com/t/PGhS9ZgCFE

Developer documentation trends — survey results PDF last generated: August 27, 2023

Complicating the tool question even more are writers who don’t have any tools outside their IDE, or
integrated development environment (for example, IntelliJ IDEA). Some writers, usually engineers who are
also writing docs, work only in code annotations and OpenAPI specifications. There is no “authoring tool.”
For these writers, Markdown is their tool, as they might format annotations with Markdown and use scripts
to export the Markdown into different systems. Many systems can import or export Markdown, making it a
somewhat standard source format in this space (despite the many variants of Markdown flavors).

For examples of how multiple tools are used together in different combinations and solutions, see
Jamstack examples [4. Jamstack refers to serverless websites built with JavaScript, APIs, and Markup and
reflects modern web development trends. Jamstack excludes tools such as WordPress or other web apps
that would require a heavy backend component on a server to run.

I
™~) i i
Best Practices Examples Resources Community Code of Conduct
JAMSTACK v y
If you can use it on the web, you can probably build it with the Jamstack. Want to get your site listed here?

Millions already do. Check out the Jamstacks of these examples below: Submit a Pull Request with your Jamstack project's information here.

1 of Design System

Setup Catugaries
=Y

we
m it bl' ew ‘Soogie Anskyics Suppert
I -
o o = a pps Syneen ighlighear
—) Welcome to Chargelog
H Tty Sem——— = o
Design Systems Repo Appristas Changelog
- Netlify - Netlify CMS - Firehase Hosting - Gitlab - Netlify - Disqus
- Gridsome . Markdown C React App . Sass < Jekyll - Bootstrap
- GraphQL « Github - React Snap « Custom API - Netlify CMS - Sass
- Webpack
; Ii > - —
e Your design. Gur markup. =a :.
E mimill

Overall, the survey results confirmed the predominance of the docs-as-code approach in the dev docs
space. If you’re working with developer docs, this approach is trending. However, there’s also a decent
amount of wikis, Oxygen XML, and MadCap Flare use, probably among those groups that have more
robust localization and PDF requirements.

To read more thoughts about how source formats affect not just how we write but what we write, see my
blog post, How you write influences what you write — interpreting trends through movements from PDF to
web, DITA, wikis, CCMSs, and docs-as-code [4.

Documenting REST APIs Page 48

https://jamstack.org/examples/
https://jamstack.org/examples/
https://jamstack.org/examples/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/

Developer documentation trends — survey results PDF last generated: August 27, 2023

2. Formats and output responses

Survey summary:

+ Primary output: 72% HTML, 23% PDF

+ Create video tutorials: 28% yes, 57% no, 14% plan to

+ Docs plug into dev portal: 56% yes, 41% no

* Localize your docs: 73% no, 14% 1-3 languages, 10% 4+ languages

+ Generate PDFs & distribute to audience: 57% no, 30% yes, 9% internal review only
+ Significant role in developing publishing solution: 53% yes, 19% no

Summary and analysis:

Writers primarily create web content that fits into a larger developer portal. A developer portal is a
centralized hub that serves as the home for many different sets of documentation. The developer portal
might have a federated search, a login where developers can get API keys or make other configurations,
and navigation to browse the different doc sets and products.

Writers often help shape and build the developer portal. They might help design the site, workflows,
strategies for content re-use, stylesheets, etc. For example, a common task might be to brand the static-
site-generated documentation to fit seamlessly into a React-based developer portal, as well as to define
the Git workflows around content collaboration and publishing.

Localization, video tutorials, and PDF aren’t overwhelmingly produced in developer docs but do constitute
about 25% of the output. The low amount localization eases up some pressure on the tools. If you don’t
have to push your content into translation management systems, you aren’t as constrained with compatible
format types and roundtrip workflows. (It’s still possible to localize with static site generators, just not as
easy.)

| asked questions about video in the survey because | had heard negative comments about video formats
from some developers. Additionally, a lot of developer docs consist of code, which might be tough to
demonstrate in a video (you basically watch someone code in real time, which can be tedious and feel
either too slow or fast for the audience). However, the survey found that most writers aren’t opposed to
creating video content. The main reason for not creating video is due to lack of bandwidth, constantly
changing technology, or because no one has asked for video — not necessarily because of an aversion for
video.

Finally, the number of writers generating PDFs surprised me. It's not so easy to generate PDFs from docs-
as-code tools, especially for more long-form content with cross-references and other book-style
formatting. However, PDF continues to be an important output, probably because there isn’t a good
alternative for distributing content to beta partners prior to release. With docs-as-code tools, you don’t
often have an authentication layer to gate the login. In these scenarios, sending partners a pre-release PDF
is usually the easiest way to share content.

Documenting REST APIs Page 49

Developer documentation trends — survey results PDF last generated: August 27, 2023

3. Process and workflow responses

Survey summary:

+ How do you interact with Scrum teams: 33% participate in limited capacity, 27 %
participate as full-fledged member, 19% have their own documentation Scrum

+ How do you review docs: 25% code review tools, 19% in-person meetings, 14%
collaborative annotation tools

+ How do engineers contribute to docs: 31% pull requests, 31% wikis or similar, 22%
direct repo rights

+ Do you outsource docs offshore: 93% yes, 4% no

+ Do you publish docs with CI/CD: 48% yes, 33% no, 15% plan to

+ Do you have a style guide: 77% yes, 20% no

Summary and analysis:

Most writers participate on Scrum teams, sometimes in limited capacity; other times they have their own
documentation Scrum teams. Scrum is the standard operating approach for most engineering groups (for
better or worse), and technical writers plug into this rhythm for documentation as well.

Writers review docs often using the same tools engineers use to review code (e.g, code review tools that
show diffs between commits). They also review docs through in-person meetings or through collaborative
annotation tools like Google Docs.

The review process for docs has always been multi-pathed, and what works at one company might not
work with another. Engineers often prefer to review content through code tools because it fits into how
they’re reviewing code, so they’re accustomed to this approach. However, | find these tools exclude non-
engineers, which weakens the review process — see my extended thoughts on this in Treat code like code
and prose like prose (.

Engineers contribute content either through pull requests to the doc source or by putting the content on a
wiki or equivalent (for example, Google Docs, Quip). Other times engineers have direct rights in the repo to
work with the content.

Note that the survey did not filter out documentation-writing engineers from dedicated technical writers.
Many companies don’t have the luxury of technical writers, so engineers often play roles as
documentarians. In these cases, it would be natural for engineers to have rights in documentation repos, or
to store documentation in the same repos as the code. (See Integration documentation into engineering
code and workflows (4 for a summary of an engaging presentation about how Google’s internal doc team
transformed their documentation by moving Markdown files directly inside of code repos.)

Outsourcing developer docs with an offshore authoring agency is rare. | did not ask for reasons why
outsourcing isn’t more common, but there might not be many outsourcing agencies that can handle highly
technical developer content. Or perhaps there are IP concerns about documenting the internal workings of
APlIs, or maybe the doc shops are so small that no one would manage an outsourced resource.

The publishing process for developer docs is streamlined through continuous integration and continuous
deployment (CI/CD). This means writers can kick off builds and deployments with a few keystrokes on a
command line. For example, if you set up a service on a specific branch, when you push changes to the
branch, the service can start a build process on the server and then deploy the build onto a server. (For

Documenting REST APIs Page 50

https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose/
https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose/
https://idratherbewriting.com/2015/05/26/integrating-documentation-into-engineering-code-and-workflows/
https://idratherbewriting.com/2015/05/26/integrating-documentation-into-engineering-code-and-workflows/

Developer documentation trends — survey results PDF last generated: August 27, 2023

example, GitHub Pages offers automatic builds of Jekyll projects on any GitHub repository. You could also
do this through Travis Cl.) You can also run other verification scripts, such as link checkers, in an
automated way.

Some hosting and deployment solutions like Netlify let you push out multiple builds, allowing you to create
different environments for your content (alpha, beta, prod), with different conditions exposing different
content in each environment. The automated publishing model is one of the biggest advantages of the
docs-as-code approach. It allows you to constantly iterate on your content because the bandwidth for
republishing requires such little effort.

Finally, most tech writers working with developer docs follow a style guide. It’s worth noting here that style
guides for dev docs often take into consideration many elements of API design. Enforcing API styles (such
as parameter casing or endpoint names) isn’t too different from doc style guides (where you enforce rules
about title casing and verb forms). Arnaud Lauret’s The Design of Web APIs [goes into this topic in detail
— see API design and usability (p. 488) for a summary of key points.

4. API responses

Survey summary:

« Documentation usually involves an API: 81% yes, 14% no

+ Most common type of API: 56% REST APlIs, 17% native library APIs (for example, Java,
C++), 7% GraphQL, 7% SOAP

+ Use OpenAPI docs for REST APIs 47% yes, 17% no, 16% sometimes

+ Who generates the OpenAPI spec: 36% engineers, 26% both engineers and tech writers,
6% tech writers

+ Who generates native library API docs: 32% engineers, 27% both engineers and tech
writers, 6% tech writers

+ Create OpenAPI spec manually or auto-generate it: 23% auto-generated, 22%
manually, 22% both

+ How to render OpenAPI spec into documentation: 27% Swagger Ul, 17% internally built
tools, 8% ReDoc

+ Most common programming languages to know: 24% JavaScript, 17% Java, 16%
Python

+ Trending technologies you’re documenting: 13% machine learning, 11% artificial
intelligence, 11% big data, 9% Internet of Things (loT)

Summary and analysis:

Although the survey focused on developer documentation, not specifically APl documentation, most
developer docs involve some kind of API. As such, it’s fair to use developer documentation and AP/
documentation somewhat synonymously, even if the latter is a subset of the former.

What kind of APIs are writers mostly working with? REST APlIs, but only about half the time. Other times,
writers work with native library APIs (such as Java or C++ APls), GraphQL, or SOAP.

When documenting REST APls, most teams use the OpenAPI specification. This is a detailed description of
the API that follows a highly structured YAML or JSON format. Usually, either engineers create this spec, or
engineers collaborate with tech writers on it. The same goes with reference documentation for native library
APls.

Documenting REST APIs Page 51

https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108

Developer documentation trends — survey results PDF last generated: August 27, 2023

Reference docs have traditionally been written by engineers, so | imagine the collaboration here is usually
one where writers edit the material rather than provide the annotations in source code. While engineers will
often lead the charge with reference documentation, they rarely expand beyond this scope to tackle other
elements of documentation, such as conceptual overviews, getting started guides, tutorials, how-to
content, glossaries, troubleshooting, and FAQs.

In terms of processes for creating the OpenAPI spec, there’s a split between manually creating the spec
and auto-generating it from annotations in the source code. The former approach embraces the spec as a
blueprint or contract that engineers code against; the latter is used more by engineering documentarians
who might be wary of documentation drift, or who find it more convenient to keep documentation together
with code.

The OpenAPI spec alone isn’t readable documentation, but many tools can generate out documentation
from the OpenAPI spec. The most common tools for this are Swagger Ul (p. 218), custom-built tools, or
ReDoc (p. 249).

REST APIs are language agnostic, but there are usually accompanying software development kits (SDKs)
that are language-specific (companies provide them to help developers implement the API). The most
important languages to know (likely because of the SDKs that accompany APIs) are JavaScript, Java, and
Python. Outside of programming languages, trending technologies include machine learning, artificial
intelligence, big data, and Internet of Things (loT).

5. Profile information

Survey summary:

+ Age range: 17% ages 36-40, 16% ages 31-35, 14% ages 26-30, 12% ages 41-45, 11%
ages 56-50, 11% ages 56-60, 8% ages 51-55, 4% 61-65 ages

+ Gender: 52% male, 46% female

+ Company: 200+ different companies listed

+ College degree: 31% humanities, 28% engineering, 15% tech comm

- Satisfied with job: 38% agree, 37% strongly agree

+ Team size: 34% lone writer, 31% team size 2-4 writers, 16% team size 8+ writers, 12%
team size 5-7 writers

+ Organizational model for tech comm: 40% centralized, 21% decentralized, 19% hybrid/
distributed

+ Employment type: 86% full-time, 10% contractor/vendor/temp

+ Community you have most affinity towards: 39% WTD, 31% none, 14% STC

+ Time spent learning to keep up: 28% 30 min/day, 27% 20 min, 14% 60 min

+ Biggest challenges: technical know-how, time/bandwidth, getting reviews, addressing
both novice and advanced users

Summary and analysis:

This final section covers profile and demographics data about the survey respondents. First to note is that
the age range for writers in developer docs is fairly evenly distributed. This is reassuring given that ageism
is a valid concern for senior workers in the technology industry. (Apparently, there are even resorts where

aging tech workers in Silicon Valley go [4, some still in their 30s, to cope with anxiety about their increasing
age.)

Documenting REST APIs Page 52

https://www.nytimes.com/2019/03/04/technology/modern-elder-resort-silicon-valley-ageism.html
https://www.nytimes.com/2019/03/04/technology/modern-elder-resort-silicon-valley-ageism.html

Developer documentation trends — survey results PDF last generated: August 27, 2023

It seems the tech writer’s age is much less relevant, perhaps because this role is seen as supportive to
engineers rather than a role where risk-taking is essential (as might be required for young tech
entrepreneurs trying to disrupt larger companies). For an age comparison with developers, the 2020 Stack

Overflow Developer Survey [4 reports that the average age of developers (using Stack Overflow) is about
33.7 years.

The gender balance among dev doc writers is also reassuring. The Stack Overflow Developer survey found
that 91.5% of their respondents were men, 8.0% women. Tech has a bad reputation for its “brogrammer
culture.” In contrast, my survey found that the ratio for tech writers is 52% male / 46% female, which is
much more balanced.

Another reassuring finding is that not everyone in this space is a former engineer. Instead, 31% have
humanities degrees, 15% have technical communication degrees, and only 28% have engineering degrees.
There’s often a presumption that to excel in developer docs, you need to be a former developer. Or if you
are a former developer, you’re can automatically step to the front of the line. That doesn’t seem to be the
case.

Job satisfaction is also strong, with 75% of people agreeing or strongly agreeing that they are satisfied with
their jobs. Compare this with the 70% job satisfaction rate reported in Saul Carliner’s Tech Comm Census.
Developer docs can be an intimidating space, where you're frequently documenting code that’s hard to
understand, where doc tools operate similar to software development tools, and where engineers have little
patience to explain concepts to less technical people. Perhaps the job satisfaction is high because the
salaries tend to be higher, the job market more abundant, and you’re in a space where you’re constantly
learning.

Team sizes for writers in dev docs are small. A third are lone writers, and another third are on teams of 2-4
writers. Large teams of 8+ writers are less common, accounting for only 16% of respondents. Despite the
small team sizes, 40% are centralized on a tech comm team within their company, while others are either
decentralized (embedded and reporting directly within a product team), and others are in a hybrid model
somewhere between centralized and decentralized.

As far as professional groups, more writers in this space have an affinity for Write the Docs, but many don’t
have an affinity for any professional group.

Finally, the biggest challenges writers in dev docs face is having enough technical know-how to write docs
and enough time/bandwidth to write it. Getting engineers to review docs is also challenging, as is creating
content that addresses both novice and advanced groups.

Conclusion

The survey didn’t present any major surprises to the trends that I’ve already observed in this space.
However, the answers provided more definitive data that confirms how different and unique developer docs
are from other types of documentation. Technical writers transitioning into this space face a whirlwind of
different tools, practices, and challenges. With this data, we can identify trends and see what standard
practices are emerging. These trends can serve as a guide and reference as writers make their way in this
space.

But also note that this space changes quickly. As JavaScript frameworks come and go, static site
generators tend to follow suit, and what’s trending one year might fade the next. This is a plastic space
where new technologies and experimentation can lead to overnight change.

Documenting REST APIs Page 53

https://insights.stackoverflow.com/survey/2020#developer-profile-age-and-experience-by-country-average-age
https://insights.stackoverflow.com/survey/2020#developer-profile-age-and-experience-by-country-average-age

Developer documentation trends — survey results PDF last generated: August 27, 2023

About the author

Tom Johnson is a senior technical writer for Amazon in Sunnyvale, California. He is best known for his blog,
I’d Rather Be Writing 4, where he posts regularly on technical communication topics. The blog has one of
the largest followings of technical communicators online. Additionally, he has created an extensive web API
documentation course at [https://idratherbewriting.com/learnapidoc/] that has helped hundreds of
technical writers transition into APl documentation.

Sources

2020 Developer Survey (4. Stack Overflow.
Abel, Scott. Slides: The State of Technical Communication: 2019 [(&. The Content Wrangler.
Abel, Scott. Survey Reveals Top Tools, Trends, and Technologies in Use in Technical
Communication Teams . STC Intercom. Dec 2018.
Abel, Scott. Webinar: The State of Technical Communication: 2019 (4. The Content Wrangler.
BrightTALK. Dec 13, 2018.
Bowles, Nellie. A New Luxury Retreat Caters to Elderly Workers in Tech (Ages 30 and Up) & .
New York Times. Mar 4, 2019.
Carliner, Saul and Chen, Yuan. Job and Career Satisfaction Among Technical Communicators (5.
STC Intercom. Dec 2018.
Carliner, Saul and Chen, Yuan. Professional Development of Technical Communicators 4. STC
Intercom. Dec 2018.
Carliner, Saul and Chen, Yuan. What Technical Communicators Do [4. Carliner, Saul and Chen,
Yuan. STC Intercom. Jan 2019. STC Intercom. Dec 2018.
Carliner, Saul and Chen, Yuan. Who Technical Communicators Are: A Summary of
Demographics, Backgrounds, and Employment 4. STC Intercom. Dec 2018.
Johnson, Tom. API the Docs recording: How Trends in APl Documentation Differ from other Tech
Comm Trends &
Johnson, Tom. 2020 Developer documentation survey (7 . Idratherbewriting.com. Dec 31, 2019.
Johnson, Tom. Developer Documentation Trends — Survey Results (p. 44)
Johnson, Tom. How you write influences what you write — interpreting trends through
movements from PDF to web, DITA, wikis, CCMSs, and docs-as-code [. Idratherbewriting.com.
Feb 20, 2020.

+ Johnson, Tom. Integrating documentation into engineering code and workflows [.
Idratherbewriting.com. May 26, 2015.
Johnson, Tom. Treat code like code and prose like prose (4 . Idratherbewriting.com. Jun 16,
2020.
Johnson, Tom. API design and usability (p. 488). Idratherbewriting.com.
Lauret, Arnaud. The Design of Web APIs (4. Manning Publications. 2019.
Welinske, Joe. 2014 WritersUA Tools Survey 4. WritersUA. Aug 20, 2015.

Documenting REST APIs Page 54

https://idratherbewriting.com/
https://insights.stackoverflow.com/survey/2020
http://public2.brighttalk.com/resource/core/217857/the-state-of-technical-communication_474463.pdf
https://www.stc.org/intercom/2019/01/survey-reveals-top-tools-trends-and-technologies-in-use-in-technical-communication-teams/
https://www.stc.org/intercom/2019/01/survey-reveals-top-tools-trends-and-technologies-in-use-in-technical-communication-teams/
https://www.brighttalk.com/webcast/9273/338293/the-state-of-technical-communication-2019
https://www.nytimes.com/2019/03/04/technology/modern-elder-resort-silicon-valley-ageism.html
https://www.stc.org/intercom/2019/01/job-and-career-satisfaction-among-technical-communicators/
https://www.stc.org/intercom/2019/01/professional-development-of-technical-communicators/
https://www.stc.org/intercom/2019/01/what-technical-communicators-do/
https://www.stc.org/intercom/2019/01/who-technical-communicators-are-a-summary-of-demographics-backgrounds-and-employment/
https://www.stc.org/intercom/2019/01/who-technical-communicators-are-a-summary-of-demographics-backgrounds-and-employment/
https://idratherbewriting.com/blog/api-the-docs-virtual-series-fifth-edition-api-doc-trends-design/
https://idratherbewriting.com/blog/api-the-docs-virtual-series-fifth-edition-api-doc-trends-design/
https://idratherbewriting.com/blog/developer-documentation-survey-2020
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write/
https://idratherbewriting.com/2015/05/26/integrating-documentation-into-engineering-code-and-workflows/
https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose/
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
https://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
http://www.welinske.com/2014-writersua-tools-survey/

Glossary PDF last generated: August 27, 2023

Glossary

The API documentation landscape is full of jargon, acronyms, and many new terms. This glossary provides
a list of terms and definitions.

A (p. 55) B (p. 56) C (p. 56) E (p. 56) G (p. 57) H (p. 57) J (p. 58) M (p. 58)
O (p. 58) P (p. 59) Q (p. 60) R (p. 60) S (p. 61) V (p. 62) Y (p. 63)

A
API

Application Programming Interface. Enables different systems to interact with each other
programmatically. Two types of APIs are REST APIs (web APIs) and native-library APIs. See What is a
REST API? (p. 36)

API Console

Renders an interactive display for the RAML spec. Similar to Swagger Ul, but for RAML (p. 936). See
github.com/mulesoft/api-console (4 .

APIMATIC

Supports most REST API description formats (OpenAPI, RAML, API Blueprint, etc.) and provides SDK
code generation, conversions from one spec format to another, and many more services. APIMATIC
“lets you define APIs and generate SDKs for more than 10 languages.” For example, you can
automatically convert Swagger 2.0 to 3.0 using the API Transformer (4 service on this site. See
https://apimatic.io/ 4 and read their documentation [.

API Transformer

A cross-platform service provided by APIMATIC that will automatically convert your specification
document from one format or version to another. See apimatic.io/transformer (5.

Apiary

Platform that supports the full life-cycle of API design, development, and deployment. For interactive
documentation, Apiary supports the API Blueprint specification, which similar to OpenAPI or RAML
but includes more Markdown elements. It also supports the OpenAPI specification now too. See
apiary.io#.

API Blueprint

The API Blueprint spec is an alternative specification to OpenAPl or RAML. API Blueprint is written in
a Markdown-flavored syntax. See API Blueprint (p. 938) in this course, or go to API Blueprint's
homepage [Z to learn more.

Apigee

Similar to Apiary, Apigee provides services for you to manage the whole lifecycle of your API.
Specifically, Apigee lets you “manage API complexity and risk in a multi- and hybrid-cloud world by
ensuring security, visibility, and performance across the entire API landscape.” Supports the OpenAPI
spec. See apigee.com .

Documenting REST APIs Page 55

https://github.com/mulesoft/apiconsole
https://apimatic.io/transformer
https://apimatic.io/
https://docs.apimatic.io/
https://apimatic.io/transformer
https://apiary.io/
https://apiblueprint.org/
https://apiblueprint.org/
https://apigee.com/api-management/

Glossary PDF last generated: August 27, 2023

Asciidoc

A lightweight text format that provides more semantic features than Markdown. Used in some static
site generators, such as Asciidoctor (4 or Nanoc (4. See http://asciidoc.org/ .

B

branch

In Git, a branch is a copy of the repository that is often used for developing new features. Usually, you
work in branches and then merge the branch into the master branch when you’re ready to publish. If
you’re editing documentation in a code repository, developers will probably have you work in a
branch to make your edits. The developers will then either merge your branch into the master when
ready, or you might submit a pull request to merge your branch into the master. See git-branch (.

C

clone

In Git, clone is the command used to copy a repository in a way that keeps it linked to the original.
The first step in working with any repository is to clone the repo locally. Git is a distributed version
control system, so everyone working in it has a local copy (clone) on their machines. The central
repository is referred to as the origin. Each user can pull updates from origin and push updates to
origin. See git-clone 4.

commit

In Git, a commit is when you take a snapshot of your changes to the repo. Git saves the commit as a
snapshot in time that you can revert to later if needed. You commit your changes before pulling from
origin or before merging your branch within another branch. See git-commit (5.

CRUD

Create, Read, Update, Delete. These four programming operations are often compared to POST,
GET, PUT, and DELETE with REST API operations.

curl
A command line utility often used to interact with REST API endpoints. Used in documentation for
request code samples. curl is usually the default format used to display requests in API
documentation. See curl & . Also written as cURL. See Make a curl call (p. 80) and Understand curl
more (p. 83).

E

endpoints and methods

The endpoints indicate how you access the resource, while the method indicates the allowed
interactions (such as GET, POST, or DELETE) with the resource.

The same resource usually has a variety of related endpoints, each with different paths and methods

but returning different information about the same resource. Endpoints usually have brief descriptions
similar to the overall resource description but shorter. Also, the endpoint shows the end path of a

Documenting REST APIs Page 56

http://asciidoctor.org/
https://nanoc.ws/
http://asciidoc.org/
https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-commit
https://curl.haxx.se/

Glossary PDF last generated: August 27, 2023

resource URL only, not the base path common to all endpoints. See Endpoints and methods (p. 126).

Git

Distributed version control system commonly used when interacting with code. GitHub uses Git, as
does BitBucket and other version control platforms. Learning Git is essential for working with
developer documentation, since this is the most common way developers share, review, collaborate,
and distribute code. See https://git-scm.com/ .

GitHub

A platform for managing Git repositories. Used for most open-source projects. You can also publish
documentation using GitHub, either by simply uploading your non-binary text files to the repo, or by
auto-building your Jekyll site with GitHub Pages, or by using the built-in GitHub wiki. See GitHub
wikis (p. 569) in this course as well as on pages.github.com/ 4.

Git repo

In Git, a repo (short for repository) stores your project’s code. Usually, you only store non-binary
(human-readable) text files in a repo, because Git can run diffs on text files and show you what has
changed.

HAT

Help Authoring Tool. Refers to the traditional help authoring tools (RoboHelp, Flare, Author-it, etc.)
used by technical writers for documentation. Tooling for API docs tends to use docs-as-code tools (p.
551) more than HATSs (p. 533).

HATEOS

Stands for Hypermedia as the Engine of Application State. Hypermedia is one of the characteristics of
REST that is often overlooked or missing from REST APIs. In API responses, responses that span
multiple pages should provide links for users to page to the other items. See HATEOS (4.

Header parameters

Parameters that are included in the request header, usually related to authorization.

Hugo

A static site generator that uses the Go programming language as its base. Along with Jekyll, Hugo is
among the top 5 most popular static site generators. Hugo is probably the fastest site generator
available. Speed matters as you scale the number of documents in your project beyond several
hundred. See https://gohugo.io/ 4. For more about static site generators, see Static site generators

Documenting REST APIs Page 57

https://git-scm.com/
https://pages.github.com/
https://en.wikipedia.org/wiki/HATEOAS
https://gohugo.io/

Glossary PDF last generated: August 27, 2023

J

JSON
JavaScript Object Notation. A lightweight syntax containing objects and arrays, usually used (instead
of XML) to return information from a REST API. See Analyze the JSON response (p. 94) in this course
and http://www.json.org/ (4.

M

Mercurial
A distributed revision control system, similar to Git but not as popular. See https://www.mercurial-
scm.org/ (4.

method
The allowed operation with a resource in terms of GET, POST, PUT, DELETE, and so on. These
operations determine whether you’re reading information, creating new information, updating existing
information, or deleting information. See Endpoints and methods (p. 126).

Mulesoft

Similar to Apiary or Apigee, Mulesoft provides an end-to-end platform for designing, developing, and
distributing your APIs. For documentation, Mulesoft supports RAML (p. 924). See
https://www.mulesoft.com/ 4.

OAS

Abbreviation for OpenAPI specification.

OpenAPI

The official name for the OpenAPI specification. The OpenAPI specification provides a set of
properties that can be used to describe your REST API. When valid, the specification document can
be used to create interactive documentation, generate client SDKs, run unit tests, and more. You can
read the specification details on GitHub at https://github.com/OAI/OpenAPI-Specification 4 . Under
the Open API Initiative with the Linux Foundation, the OpenAPI specification aims to be vendor
neutral (many companies steer its development (4, not just one). See Introduction to the OpenAPI
specification (p. 181).

OpenAPI contract

Synonym for OpenAPI specification document.

OpenAPI specification document

The file (either in YAML or JSON syntax) that describes your REST API. Follows the OpenAPI
specification format. See https://www.openapis.org/ 4. See also OpenAPI 3.0 tutorial (p. 272).

Documenting REST APIs Page 58

http://www.json.org/
https://www.mercurial-scm.org/
https://www.mercurial-scm.org/
https://www.mulesoft.com/
https://github.com/OAI/OpenAPI-Specification
https://www.openapis.org/membership/members
https://www.openapis.org/

Glossary PDF last generated: August 27, 2023

OpenAPI Initiative

The governing body that directs the OpenAPI specification. Backed by the Linux Foundation. See
https://www.openapis.org/ 4.

P

parameters

Parameters are options you can pass with the endpoint (such as specifying the response format or
the amount returned) to influence the response. There are several types of parameters: header
parameters, path parameters, and query string parameters. Request bodies are closely similar to
parameters but are not technically a parameter.

The different types of parameters are often documented in separate groups on the same page. Not all
endpoints contain each type of parameter. See Parameters (p. 132) for more details.

Path parameters

Parameters that appear within the path of the endpoint, before the query string (?). Path parameters
are usually set off within curly braces. See Parameters (p. 132) for more details.

Pelican

A static site generator based on Python. See https://github.com/getpelican/pelican (4 . For more
about static site generators, see Static site generators (p. 591).

Perforce

Revision control system often used before Git became popular. Often configured as a centralized
repository instead of a distributed repository. See Perforce & .

pull

In Git, when you pull from origin (the master location where you cloned the repo), you get the latest
updates from origin onto your local system. When you run git pull, Git tries to automatically
merge the updates from origin into your copy. If the merge cannot happen automatically, you might
see merge conflicts. See git-pull 4.

Pull Request

A request from an outside contributor to merge a cloned branch back into the master branch. The pull
request workflow is commonly used with open-source projects because developers outside the team
will not usually have contributor rights to merge updates into the repository. GitHub provides a user-
friendly interface for making and processing pull requests. See Pull Requests [4.

push

In Git, when you want to update the origin with the latest updates from your local copy, you run git
push . Your updates will bring origin back into sync with your local copy. See https://git-scm.com/
docs/git-push & .

Documenting REST APIs Page 59

https://www.openapis.org/
https://github.com/getpelican/pelican
https://en.wikipedia.org/wiki/Perforce_Helix
https://git-scm.com/docs/git-pull
https://www.atlassian.com/git/tutorials/making-a-pull-request
https://git-scm.com/docs/git-push
https://git-scm.com/docs/git-push

Glossary PDF last generated: August 27, 2023

Q

Query string parameters

Parameters that appear in the query string of the endpoint, after the ? . See Parameters (p. 132) for

more details.

R

RAML
Stands for REST APl Modeling Language and is similar to OpenAPI specifications. RAML is backed
by Mulesoft, a commercial APl company, and uses a more YAML-based syntax in the specification.
See RAML tutorial (p. 924) in this course or RAML (2.

RAML Console
In Mulesoft, the RAML Console is where you design your RAML spec. Similar to the Swagger Editor
for the OpenAPI spec.

Repo
A tool for consolidating and managing many smaller repos with one system. See git-repo (4. For the
definition of a Git repository, see Git repo (p. 57).

request

The way information is returned from an API. In a request, the client provides a resource URL with the
proper authorization to an API server. The API returns a response with the information requested. See
Request example (p. 141) for more details.

request body

A block of information, usually JSON, included in the request body, often used with CREATE and PUT
methods. See Parameters (p. 132) for more details.

response example and schema

The response example shows a sample response from the request example; the response schema
defines all possible elements in the response. The response example is not comprehensive of all
parameter configurations or operations, but it should correspond with the parameters passed in the
request example. The response lets developers know if the resource contains the information they
want, the format, and how that information is structured and labeled.

The description of the response is known as the response schema. The response schema documents
the response in a more comprehensive, general way, listing each property that could possibly be
returned, what each property contains, the data format of the values, the structure, and other details.
See Response example and schema (p. 154) for details.

resource description

“Resources” refers to the information returned by an API. Most APIs have various categories of
information, or various resources, that can be returned.

Documenting REST APIs Page 60

https://raml.org/
https://code.google.com/archive/p/git-repo/

Glossary PDF last generated: August 27, 2023

The resource description is brief (1-3 sentences) and usually starts with a verb. Resources usually
have various endpoints to access the resource and multiple methods for each endpoint. On the same
page, you usually have a general resource described along with a number of endpoints for accessing
the resource, also described. See Resource description (p. 120) for more details.

response

The information returned by an API after a request is made. Responses are usually in either JSON or
XML format. See Response example and schema (p. 154) for details.

response example and schema

The response example shows a sample response from the request example; the response schema
defines all possible elements in the response. The response example is not comprehensive of all
parameter configurations or operations, but it should correspond with the parameters passed in the
request example. The response lets developers know if the resource contains the information they
want, the format, and how that information is structured and labeled.

The description of the response is known as the response schema. The response schema documents
the response in a more comprehensive, general way, listing each property that could possibly be
returned, what each property contains, the data format of the values, the structure, and other details.
See Response example and schema (p. 154) for details.

REST API

Stands for Representational State Transfer. Uses web protocols (HTTP) to make requests and provide
responses in a language agnostic way, meaning that users can choose whatever programming
language they want to make the calls. See What is a REST API? (p. 36) for more details.

SDK

Software development kit. Developers often create an SDK to accompany a REST API. The SDK
helps developers implement the API using a specific language, such as Java or PHP. See SDKs (p.
480) for more details.

Smartbear

The company that maintains and develops the Swagger tooling — Swagger Editor &, Swagger Ul (4,
Swagger Codegen 4, SwaggerHub [4, and others [4. See Smartbear 4.

Sphinx

A static site generator developed for managing documentation for Python. Sphinx is the most
documentation-oriented static site generator available and includes many robust features — such as
search, sidebar navigation, semantic markup, managed links — that other static site generators lack.
Based on Python. See staticgen.com/sphinx (4 for high-level details. For more about static site
generators, see Static site generators (p. 596).

Static site generator

A breed of website compilers that package up a group of files (usually written in Markdown) and make
them into a website. There are more than 350 different static site generators. See Jekyll (p. 637) in

Documenting REST APIs Page 61

https://swagger.io/swagger-editor/
https://swagger.io/swagger-ui/
https://swagger.io/swagger-codegen/
https://app.swaggerhub.com/home
https://swagger.io/tools/
https://smartbear.com/
https://www.staticgen.com/sphinx

Glossary PDF last generated: August 27, 2023

this course for a deep-dive into the most popular static site generator, or Staticgen [4 for a list of all

static site generators. See Static site generators (p. 591) for a deep-dive into this topic.

Stoplight

Provides a platform with visual modeling tools to create an OpenAPIl document for your APl —
without requiring you to know the OpenAPI spec details or code the spec line by line. See
http://stoplight.io/ 4 for more information. See Stoplight — visual modeling tools for creating your
OpenAPI spec (p. 195) for more information.

Swagger

Refers to API tooling related to the OpenAPI spec. Some of these tools include Swagger Editor 4,
Swagger Ul 4, Swagger Codegen [4, SwaggerHub [, and others [Z. These tools are managed by
Smartbear 4. For more tools, see Swagger Tools [4 . “Swagger” was the original name of the

nature of the standard. People sometimes refer to both names interchangeably (especially on older
web pages), but “OpenAPI” is how the spec should be referred to. For more on nhaming conventions
between OpenAPI and Swagger, see What Is the Difference Between Swagger and OpenAPI? (5.

Swagger Codegen

Generates client SDK code for a lot of different platforms (such as Java, JavaScript, Scala, Python,
PHP, Ruby, Scala, and more). The client SDK code helps developers integrate your API on a specific
platform and provides for more robust implementations that might include more scaling, threading,
and other necessary code. In general, SDKs are toolkits for implementing the requests made with an
API. Swagger Codegen generates the client SDKs in nearly every programming language. See
Swagger Codegen [for more information. See also SDKs (p. 480).

Swagger Editor

An online editor that validates your OpenAPI document against the rules of the OpenAPI
specification. The Swagger Editor will flag errors and give you formatting tips. See Swagger Editor (1 .

Swagger Ul

An open-source web framework (on GitHub (%) that parses an OpenAPI specification document and

generates an interactive documentation website. Swagger Ul is the tool that transforms your spec
into the Petstore-like site (4.

SwaggerHub

A site developed by Smartbear to help teams collaborate around the OpenAPI spec. In addition to
generating interactive documentation from SwaggerHub, you can generate many client and server
SDKs and other services. See Manage Swagger Projects with SwaggerHub (p. 230).

VCsS

Stands for version control system. Git and Mercurial are examples.

Documenting REST APIs Page 62

https://www.staticgen.com/
http://stoplight.io/
https://swagger.io/swagger-editor/
https://swagger.io/swagger-ui/
https://swagger.io/swagger-codegen/
https://app.swaggerhub.com/home
https://swagger.io/tools/
https://smartbear.com/
https://swagger.io/tools/
https://github.com/OAI/OpenAPI-Specification/
https://swagger.io/difference-between-swagger-and-openapi/
https://swagger.io/swagger-codegen/
http://editor.swagger.io/#/
https://github.com/swagger-api/swagger-ui
http://petstore.swagger.io/

Glossary PDF last generated: August 27, 2023

version control system

A system for managing code that relies on snapshots that store content at specific states. Enables
you to revert to previous states, branch the code into different versions, and more. See About Version
Control # in Git. See Version Control Systems (p. 562) for more information.

YAML

Recursive acronym for “YAML Ain’t No Markup Language.” A human-readable, space-sensitive
syntax used in the OpenAPI specification document. See More About YAML (p. 276).

Documenting REST APIs Page 63

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Chapter 2: Using an AP like a developer PDF last generated: August 27, 2023

Chapter 2: Using an API like a
developer

Playing a brief role as a developer will help you understand developer needs better, as well as what
developers typically look for in APl documentation. Developers often use tools such as Postman or curl to
make calls. They look at the structure of the response, and they dynamically integrate the needed
information into web pages and other applications.

Chapter sections:

Scenario for USiNg @ WEALNET APeiiiiiiie ettt st e s ae e e e neeeeans 65
Get QUTNOMIZATION KEYS..... et e e e e r e snn e e e e nne e e nnneenans 69
Submit requests through POSEMaNooiiiiiiiii e e e 71
curl intro and INSTAIlALIONeeii e e 78
MAKE @ CUI Gl ...t e e e e e e e e s e e e e e e ann e e e e e e annneeas 80
UNAErstand CUI MOIEooiiiiiiiie et e s e n e s e e snr e e s e nn e nnnes 83
Activity: Use Methods With CUII.......cooi e 88
ANAlYZE the JSON FESPONSE. ... eiiieie ettt ettt e ettt e et e e e e s e et e e e e e seee e e e e e aanbeeeeeeeannneeeeaan 94
Inspect the JSON from the response Payloadcceeiiiieieiiieiiiee e 98
Access and print a SPeCific JSON VAIUEcccociiiiiiie e 103
Dive into dOt NOTATIONeeiiii e s 109

Documenting REST APIs Page 64

Scenario for using a weather API PDF last generated: August 27, 2023

Scenario for using a weather API

Let’s start using an actual REST API to get more familiar with how they work. In the upcoming sections,
you’ll explore some weather APIs in the context of a specific use case: retrieving a weather forecast. By
first playing the role of a developer using an API, you’ll gain a greater understanding of how your audience
will use APls, the type of information they’ll need, and what they might do with the information.

Sample scenario: How windy is it?

Let’s say that you’re a web developer and you want to add weather information to your site. Your site is for
cyclists. You want to allow users who come to your site to see the current wind and temperature
conditions. You want something like this:

Biking weather check

F

63 29 | 320

degrees

temp wind direction

Current conditions: Rain

Wind meter conditions for website

You don’t have your own meteorological service, so you’ll need to make some calls out to a weather
service to get this information. Then you will present that information to users.

Get an idea of the end goal

To give you an idea of the end goal, here’s a sample: idratherbewriting.com/assets/files/wind-
openweathermap.html (4. It’s not necessarily styled the same as the mockup, but it answers the question,
“What'’s the current wind and temperature?”

Click the Check wind conditions button to see wind and temperature details. When you request this data,
a call is made to the OpenWeatherMap API . The API retrieves the information, and some JavaScript
code prints the information on the page.

Note: This content doesn’t embed well in print because it contains JavaScript. Please go to
[https://idratherbewriting.com/learnapidoc/docapis_scenario_for_using_weather_api.html] to view the
content.

The above example is extremely simple. You could also build an attractive interface like this:

Documenting REST APIs Page 65

https://idratherbewriting.com/assets/files/wind-openweathermap.html
https://idratherbewriting.com/assets/files/wind-openweathermap.html
https://openweathermap.org/api

Scenario for using a weather API PDF last generated: August 27, 2023

¢\ Cloudy
+ 62° § 48°

ek

Forecast Details

Temperature v Feels like 61°

9PM 10PM 11PM 12 AM 1AM 2 AM 3 AM 4 ANV

O8N AN . i A R Q

58° 57° 57° 56° 558 53° 53° 52

Humidity 65%
Visibility 10.00 miles
UV Index 0 (Low)

Sunday

Tonight - Partly cloudy. Winds variable. The overnight
low will be 52 °F (11.1 °C).

Today - Partly cloudy with a high of 63 °F (17.2 °C).
Winds variable at 4 to 16 mph (6.4 to 25.7 kph).

Monday ‘"&

Tuesday

The concept and general techniques are more or less the same. Behind the scenes, the code makes
requests to a weather service API and then displays the returned information in a stylized user interface.

Activity: Explore the OpenWeatherMap API

Although there are many good weather API options for developers (4, | decided to use the
OpenWeatherMap API (7 in this course because the service is easy to use, free, and stable.

Let’s explore the basic sections in the OpenWeatherMap API (4 :

Go to the openweathermap.org [.

Click API in the top navigation bar.

In the Current weather data section, click the API doc button.
Click some of the links in the Examples of API calls sections.

pobd =

Get a sense of the information this Current Weather Data API provides. The API calls provide
developers with ways to pull information into their applications. In other words, the APIs will
provide the data plumbing for the applications that developers build.

5. Answer the following questions about the Current Weather Data API endpoint:

+ Does the API provide the information we need about temperature, wind speed, wind
direction, and current conditions?

+ How many different ways can you specify the location for the weather information?

« What does a sample request look like?

+ How many endpoints does the API have?

« What authorization credentials are required to get a response?

Documenting REST APIs Page 66

https://weather.yahoo.com/united-states/california/santa-clara-2488836/
https://weather.yahoo.com/united-states/california/santa-clara-2488836/
https://superdevresources.com/weather-forecast-api-for-developing-apps/
https://openweathermap.org/
https://openweathermap.org/api/
https://openweathermap.org/

Scenario for using a weather AP PDF last generated: August 27, 2023

Explore the Aeris Weather API

Before diving too far down in the OpenWeatherMap API, let’s look at another weather API for contrast. In
contrast to the OpenWeatherMap API, the Aeris Weather API (7 is a bit more robust and extensive. Explore
the Aeris Weather API by doing the following:

1. Go to www.aerisweather.com 7.

2. Click Documentation on the top navigation bar. Then click APl Documentation.

3. In the left sidebar, under Reference, click Endpoints. Select the All tab to show all endpoints,
and then scroll down a bit and click observations [4 .

PRODUCTS DOCUMENTATION INDUSTRIES RESOURCES CONTACT PRICING

HELP CENTER / DOCUMENTATION / DOCUMENTATION / REFERENCE / ENDPOINTS Search docs

AerisWeather API Endpoint: observations

o Wizard
The observations data set provides access to current and archived weather observations from a variety of reporting

stations. The primary source for observation data comes from METARs located at airports or permanent weather

° Data Endpoints

stations. METAR reparts are generated once an hour, but if conditions change significantly, then additional special

.» Free Trial reports may be issued. Other sources, such as personal weather stations (PWS), may update more frequently but are not

official stations used by NOAA.
Getting Started

Reference | USE OUR WIZARD TO TRY OUT THIS ENDPOINT =

Common API Queries
https://api.aerisapi.com/observations/

Downloads m Global
DT AP Flex

[TEEOETET Airports - 60 minutes, Other - 1-15 minutes

Getting Started
Authentication

Responses

Advanced Queries ACTIONS PARAMETERS FILTERS QUERIES SORTING EXAMPLES RESPONSE PROPERTIES

4. Browse the type of information that is available through this endpoint. Does this endpoint provide
information about wind and temperature that would work for our sample development scenario?

Here’s the Aeris weather forecast API in action making mostly the same calls as | showed earlier with
OpenWeatherMap: idratherbewriting.com/assets/files/wind-aeris.html (5. (Note: If this returns

[Object] [Object] , it's because my API key expired. You can view the page source to see how the call is
constructed.)

For our development scenario (showing weather on a website), there are dozens of different weather APIs
we could use. As you create your APl documentation, think about how your users might have to make the
same decisions in choosing APIs. Are there several APIs that provide similar information? What will make
your API stand out more? Although you probably can’t pick and choose what information your API returns,
you might at least argue that the docs for your API will be superior!

More weather APIs

APIs differ considerably in their design, presentation, responses, and other detail. For more comparison,
check out some of the following weather APIs:

* Accuweather API 4
« Weatherbit API 4

« ClimaCell’s Weather API 5

Documenting REST APIs Page 67

http://www.aerisweather.com/
http://www.aerisweather.com/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://idratherbewriting.com/assets/files/wind-aeris.html
https://developer.accuweather.com/
https://www.weatherbit.io/api
https://www.climacell.co/weather-api/

Scenario for using a weather AP PDF last generated: August 27, 2023

Each weather API has an entirely different approach to documentation. As you’ll see going through this
course, the variety and uniqueness of each API doc site (even when approaching the same topic — a
weather forecast) presents a lot of challenges to tech writing teams. Not only do website styles vary but
also API terminology and other vocabulary to describe similar concepts.

As | mentioned earlier, REST APIs are an architectural style that follows common characteristics and
principles; they don’t all follow the same standard or specification. Users have to read the documentation
to understand how to use the API. (See “REST is a style, not a standard.” (p. 39))

Spend a little time exploring the features and information that these weather APIs provide. Try to answer
these basic questions:

+ What does each API do?

+ How many endpoints does each API have?

« What information do the endpoints provide?

+ What kind of parameters does each endpoint take?
« What kind of response does the endpoint provide?

Sometimes people use the term "API" to refer to a whole collection of endpoints, functions, or classes.
Other times they use API to refer to a single endpoint. For example, a developer might say, "We need you
to document a new APL." They mean they added a new endpoint or class to the API, not that they launched
an entirely new API service.

Documenting REST APIs Page 68

Get authorization keys PDF last generated: August 27, 2023

Get authorization keys

Almost every API has a method in place to authenticate requests. You usually have to provide an API key in
your requests to get a response. Although we’ll dive into authentication and authorization (p. 393) later, we
need to get some API keys now to make requests to our weather API.

Why requests need authorization
Requiring authorization allows API publishers to do the following:

+ License access to the API
+ Rate limit the number of requests
« Control availability of certain features within the API, and more

To run the code samples in this course, you will need to use your own API keys, since these keys are
usually treated like passwords and not given out or published openly on a web page.

Activity: Get an OpenWeatherMap API key
To get an API key for the OpenWeatherMap API:

1. Go to openweathermap.org (4.
2. Click Sign Up in the top navigation bar and create an account.
3. After you sign up, your API key is sent to the email address you provide.

You can also find your API key on the site’s Developer Dashboard. (To find your API key on the
site, return to the OpenWeatherMap homepage and click Sign in. After signing in, you’ll see the
developer dashboard. Click the APl Keys tab (highlighted in the screenshot below).

= Support Center Q Weather inyour city @ Hello tomjoht

Weather Maps ~ API Price Partners Stations Widgets News About ~

OpenWeather

New Products Setup API keys Services Payments Billing plans Block logs History bulk Logout

~

API for Agricultural on agromonitoring.com
Try our simple and fast APIs to satellite imagery, weather data and other products such as:

= Satellite imagery archive (True & False color, NDVI & EVI indices)
« Weather (current data, forecast and history)

« Accumulated temperature and precipitation

« Soil temperature and moisture

All information and AP| documentation is on agromonitoring.com. Read more in ckr Blog.

How to start

U (1.daied Wankhar manes 3 0

API Keys tab on OpenWeatherMap Developer Dashboard

4. Copy the key to a place you can easily find it.

Documenting REST APIs Page 69

https://openweathermap.org/

Get authorization keys PDF last generated: August 27, 2023

(Note: It can take an hour or so for a new OpenWeatherMap API key to activate.)

Get the Aeris Weather API secret and ID

Now for contrast, let’s get the keys for the Aeris Weather API, using a free developer account. The Aeris
Weather API requires both a secret and ID to make requests.

1. Go to https://www.aerisweather.com/develop/api/ 4 and click Free Trial.
2. Click Sign Up for Developer. (The free developer version limits the number of requests you can
make and expires in 30 days.)
Complete the required fields to sign in. Click the activation email as well.
After you sign up for an account, sign in and go to your Dashboard 7.
Click Apps, and then click New Application.
In the Add a New Application dialog box, enter the following:
Application Name: My biking app (or something)
Application Namespace: localhost

ook

7. Click Save App.

After registering your app, you should see an ID, secret, and namespace for the app. Copy this information
into a place you can easily access since you’ll need it to make requests.

Keep in mind how users authorize calls with an APl — this is something you usually cover in API
documentation. Later in the course, we will dive into authorization methods (p. 393) in more detail.

Make sure you have a text editor

In the upcoming activities, you’ll work with code in a text file. When you’re working with code, you use a
text editor (to work in plain text) instead of a rich text editor (which would provide a WYSIWYG interface).
Here are a few choices for text editors:

Visual Studio Code 4 (Mac or PC). (I recommend this editor the most.)
Sublime Text & (Mac or PC)

+ TextWrangler 4 or BBEdit 4 (Mac)
WebStorm 4 (Mac or PC)

These editors provide features that let you better manage the text. Choose the one you want. (My
preference is to use Sublime Text when I’'m working with independent code samples, and Atom when I’'m
working with Jekyll projects.) Avoid using TextEdit since it adds some formatting behind the scenes that
can corrupt your content.

Documenting REST APIs Page 70

http://www.aerisweather.com/
https://account.aerisweather.com/account/member
https://code.visualstudio.com/
http://www.sublimetext.com/
http://www.barebones.com/products/textwrangler/
http://www.barebones.com/products/bbedit/
https://www.jetbrains.com/webstorm/
https://notepad-plus-plus.org/
https://atom.io/
http://komodoide.com/komodo-edit/
https://panic.com/coda/

Submit requests through Postman PDF last generated: August 27, 2023

Submit requests through Postman

When you're testing endpoints with different parameters, you can use one of the many GUI REST clients
available to make the requests. (By “GUI,” | mean there’s a graphical user interface with boxes and buttons
for you to click.) You can also use curl (p. 78) (which we’ll cover soon), but GUI clients tend to simplify
testing with REST APlIs.

Why use a GUI client
With a GUI REST client, you can:

+ Save your requests (and numerous variations) in a way that’s easy to run again
* More easily enter information in the right format

+ See the response in a prettified JSON view or a raw format

+ Easily include header information

With a GUI REST client, you won’t have to worry about getting curl syntax right and analyzing requests and
responses from the command line.

Popular GUI clients
Some popular GUI clients include the following:

* Postman &

+ Insomnia &

+ Advanced REST Client @ (Chrome browser extension)

Of the various GUI clients available, Postman is probably the best option, since it allows you to save both
calls and responses, is free, works on both Mac and PC, and is easy to configure.

A lot of times, abstract concepts don’t make sense until you can contextualize them with an action. In this
course, I’'m following more of an “experience-first” methodology. After you do an activity, we’ll explore the
concepts in more depth. So if it seems like I’'m glossing over concepts now, such as what a GET method is
or an endpoint, hang in there. When we deep dive into these points in Documenting APl endpoints (p. 114),
these concepts will be a lot clearer.

Activity: Make requests with Postman

In this exercise, you’ll use Postman to make a request using OpenWeatherMap’s current weather data API
endpoint 4. To make the request:

1. If you haven’t already done so, download and install the Postman app at
https://www.getpostman.com/downloads/ [4 . (Make sure you download the app and not the
deprecated Chrome extension.)

2. Start the Postman app and sign in when prompted. Close any welcome screens so you can make
a request.

3. Insert the following endpoint into the box next to GET: https://api.openweathermap.org/
data/2.5/weather

4. Click the Params tab (below the box where you inserted the endpoint) and then add the following
three parameters in the key and value rows:

« key: zip /value: 95050

Documenting REST APIs Page 71

http://www.getpostman.com/
https://insomnia.rest/
https://luckymarmot.com/paw
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://openweathermap.org/current
https://openweathermap.org/current
https://www.getpostman.com/downloads/

Submit requests through Postman

« key: units /value: imperial
+ key: appid / value: <insert your own API| key>

PDF last generated: August 27, 2023

For the value for appid , use your own API key. Your Postman Ul should look like this:

£7 https:/fapiopenw.. @ +

Mo Environment v @

https://api.op hermap.org/data/2.5/weather?zip=95050&imperial=imperial&appid=971830421580... [E) Save <S>

GET ~ https:/fapi.openweathermap.org/data/2.5/weather?zip=95050&imperial=imperial&appid=971830421580a0d¢ @

Params @ Authorization Headers (6) Body Pre-request Script Tests

Query Params

KEY VALUE
zip 95050
imperial imperial
appid 971830421580a0d9204b57cd85842d16

Click Send to get a response

DESCRIPTION see Bulk Edit

Cookies

When you add these parameters, they appear as a query string to the endpoint URL in the GET
box. For example, your endpoint will now look like this: https://api.openweathermap.org/
data/2.5/weather?zip=95050&units=imperial&ppid=APIKEY (but with different query string
values and with your own API key instead of APIKEY). Query string parameters appear after the
question mark ? symbol and are separated by ampersands & . The order of query string

parameters doesn’t matter.

Note that many APIs pass the API key in the header rather than as a query string parameter in the
request URL. (If that were the case, you would click the Headers tab and insert the required key-
value pairs in the header. But OpenWeatherMap passes the API key as a query string parameter.)

5. Click Send.

The response appears in the lower pane. For example:

Documenting REST APIs

Page 72

Submit requests through Postman PDF last generated: August 27, 2023

GET https://api.openw... ® + oee No Environment v @
https://api.openweathermap.org/data/2.5/weather?zip=95050&imperial=imperial&appid=9718304...) save v 7 B <>
GET v https://api.openweathermap.org/data/2.5/weather?zip=95050&imperial=imperial&appid=97183042158 ;@:’
Params @ Authorization Headers (6) Body Pre-request Script Tests Settings Cookies
Query Params

KEY VALUE DESCRIPTION 000 Bulk Edit
zip 95050
imperial imperial
appid 971830421580a0d9204b57cd85842d16

Key Value Description

Body Cookies Headers (9) Test Results @ 2000k 705ms 818B Save Response “

Pretty Raw Preview Visualize JSON v = O Q
1 ff "
2 "coord": §

3 "lon": -121.953,

4 "lat": 37.3492

5 i,

6 "weathex": [

7 {

8 "id": 802,

9 "main": "Clouds",

10 "description": "scattered clouds",

11 "icon": "03n"

12 1
13 i
14 "base": "stations",

© Bootcamp [Runner {ij Trash [f @

Save the request

1. In Postman, click the Save button (above Send). The Save Request dialog box appears.

2. In the Request name box, type a friendly name for the request, such as “OpenWeatherMap
Current APL.”

3. Inthe Request description (Optional) field, type a description such as “gets the current weather
for 95050 in imperial units.”

4. Scroll down a bit and click New Collection to create a folder to save the request in. Name your
new collection (e.g., “OpenWeatherMap”) and click the orange check mark. Then select the new
collection you just created.

After you create the collection, the Save button will be enabled. Your Postman collection should
look something like this:

Documenting REST APIs Page 73

Submit requests through Postman PDF last generated: August 27, 2023

SAVE REQUEST

Request name

OpenWeatherMapAPI

Description

ets the current weather for 95050 in imperial units

space | OpenvgatherMap

Save to My Wo

Mew Folder Cancel m

Collection dialog box

5. Click Save.

Saved requests appear in the left side pane on the Collections tab. (If you don’t see the

Collections pane, click the Show Sidebar button in the lower-left corner to expand it.

(Optional) Make a request for the OpenWeatherMap 5 day forecast

Now instead of getting the current weather, let’s use another OpenWeatherMap endpoint to get the
forecast. Enter details into Postman for the 5 day forecast request [4 . In Postman, you can click a new tab,
or click the arrow next to Save and choose Save As. Then choose your collection and request name.

A sample endpoint for the 5 day forecast, which specifies location by zip code, looks like this:
https://api.openweathermap.org/data/2.5/forecast?zip=95050, us
Add in the query parameters for the API key and units:

https://api.openweathermap.org/data/2.5/forecast?zip=95050&appid=APIKEY&unit
s=imperial

(In the above code, replace APIKEY with your own API key.)

Observe how the response contains a list that provides the forecast details for five days.

Documenting REST APIs Page 74

https://openweathermap.org/forecast5

Submit requests through Postman PDF last generated: August 27, 2023

(Optional) Make one more OpenWeatherMap API request

Make one more OpenWeatherMap API request, this time changing the way you specify the location.
Instead of specifying the location by zip code, specify the location using lat and lon geocoordinates
instead. For example:

https://api.openweathermap.org/data/2.5/weather?lat=37.3565982&lon=-121.9689
848&units=imperial&appid=APIKEY

(In the above code, replace APIKEY with your actual API key.)

Postman has a lot of other functionality you can use. We’ll revisit Postman later in the course for some
other activities.

Same request but in Paw instead of Postman

Although Postman is a popular REST client, you can also use others, such as Paw. The following image
shows the same current weather API request made in Paw (for Mac) (4 :

[] @ [untitled Paw Document 3 — Edited Sent Request =P M 0=

GET /data/2.5/weather 232 ms =

‘D Sessions 43 Environments

Request $GET http://api.openweathermap.org/data/2.5/weather ¢ GET ...d1da602a70ac34f0b1478units=imperial | | 200 OK |

Description ~ Headers ~ URL Params ~ Body Auth Options 0] Info Request Response i}
URL Parameter Value Headers ~ JSONvV Raw
B z = =0
@ zp 95050,us = 3¢ Key or Index Type Value
v i = =
: appid fd4698c940c6d1da602a70ac34f0... = © v Root = 12 items
4 ji =i i = ® P
units imperial - v coord = 2items
duU arametel d Value
Add URL Parameter Add Valu lon 22 -121.96
lat 42/ 37.35
Vv weather = 1litem
v Index O = 4items
id 42| 701
main Al Mist
description Al mist
icon A 50d
base Al stations
¥ main =| 5items
temp 42| 66.38
pressure 42/ 1018
humidity 42| 87
i 42
= b HITP & [f'l a temp_min 53.6
temp_max a2/ 77
1 GET /data/2.5/weather? P 42
2ip=95050, us&appid=Td4698c940c6d1dac02a70ac34ob1476units=imper visibility 9656
ial HTTP/1.1 v wind z=| 2items
2 Host: api.openweathermap.org
3 Connection: close speed 42/ 10.29
4 User-Agent: Paw/3.1.5 (Macintosh; 0S X/10.12.6) GCDHTTPRequest
5 deg 42/ 320
6
7
8

¥ clouds =/ 1item

+
[
\!'
®

(@ Filter by KeyPath

Like Postman, Paw also allows you to easily see the request headers, response headers, URL parameters,
and other data. | like that Paw shows the response in an expandable/collapsible way. The expand/collapse
feature can make it easier to explore the response. Note that Paw is specific to Mac only, and like most
products for Mac users, costs money.

Enter several requests for the Aeris API into Postman

Now let’s switch APIs a bit and see some weather information from the Aeris Weather API (4, which you
explored a bit in Scenarios for using a weather API (p. 67). Constructing the endpoints for the Aeris
Weather APl is a bit more complicated since there are many different queries, filters, and other parameters
you can use to configure the endpoint.

Documenting REST APIs Page 75

https://paw.cloud/
https://www.aerisweather.com/

Submit requests through Postman PDF last generated: August 27, 2023

Here are a few pre-configured requests to configure for Aeris. You can paste the requests directly into the
URL request box in Postman (after customizing the CLIENTID AND CLIENTSECRET values), and the
parameters will auto-populate in the parameter fields.

As with the OpenWeather Map API, the Aeris APl doesn’t use a Header field to pass the API keys — the
key and secret are passed directly in the request URL as part of the query string.

When you make the following requests, insert your own values for the CLIENTID and CLIENTSECRET
(assuming you retrieved them in Get the authorization keys (p. 70)).

Get the weather forecast for your area using the observations endpoint & :

http://api.aerisapi.com/observations/Santa+Clara,CA?client_id=CLIENTID&clien
t_secret=CLIENTSECRET&limit=1

Get the weather from a city on the equator — Chimborazo, Ecuador using the same observations endpoint

http://api.aerisapi.com/observations/Chimborazo,Ecuador?client_id=CLIENTID&C
lient_secret=CLIENTSECRET&limit=1

Find out if all the country music in Knoxville, Tennessee is giving people migraines using the indices
endpoint (4 :

http://api.aerisapi.com/indices/migraine/Knoxville,TN?client_id=CLIENTID&cli
ent_secret=CLIENTSECRET

You’re thinking of moving to Arizona, but you want to find a place that’s cool. Use the normals endpoint (4 :

http://api.aerisapi.com/normals/flagstaff,az?client_id=CLIENTID&client_secre
t=CLIENTSECRET&limit=5&filter=hassnow

With both the OpenWeatherMap and Aeris Weather API, you can also make these requests by simply going
to the URL in your address bar (because the API keys are passed in the query string rather than the
header). If so, use the JSON Formatter extension for Chrome [to automatically format the JSON response
in the browser view.

By looking at these two different weather APIs, you can see some differences in the way the information is
called and returned. However, fundamentally both APIs have endpoints that you can configure with
parameters. When you make requests with the endpoints, you get responses that contain information,
often in JSON format. This is the core of how REST APIs work — you send a request and get a response.

Automatically import the Postman collections

Postman has a nifty import feature that will automatically pull in the same requests you’ve been entering.
You can click the Run in Postman buttons below to automatically import these two collections into your
own instance of Postman.

To view these buttons, go to the web page for this content at https://idratherbewriting.com/learnapidoc/
docapis_postman.html (p. 71).

Documenting REST APIs Page 76

https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/observations/
https://www.aerisweather.com/support/docs/api/reference/endpoints/indices/
https://www.aerisweather.com/support/docs/api/reference/endpoints/indices/
https://www.aerisweather.com/support/docs/api/reference/endpoints/normals/
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en

Submit requests through Postman PDF last generated: August 27, 2023

Clicking the Run in Postman buttons should automatically prompt you to import the collections into
Postman. If it doesn’t work, copy the import link address and, in Postman, click Import in the upper-left
corner. Then click the Import From Link tab, paste in the address and click Import.

If you’d like to learn more about Postman, listen to this interview with the Postman founder 4. We
recorded this as part of the Write the Docs podcast @ and focused on the documentation features within
Postman. For more information on creating the Run in Postman buttons, see the Run in Postman button (p.
382) section in the Getting started tutorial (p. 379).

Documenting REST APIs Page 77

https://idratherbewriting.com18/01/22/postman-for-docs-podcast/
http://podcast.writethedocs.org/

curl intro and installation PDF last generated: August 27, 2023

curl intro and installation

While Postman (p. 71) is convenient, it’s hard to use it to represent how to make calls with it in your

documentation. Additionally, different users probably use different GUI clients, or none at all (preferring the
command line instead).

Instead of describing how to make REST calls using a GUI client like Postman, the most conventional
method for documenting request syntax is to use curl.

About curl

curl is a command-line utility that lets you execute HTTP requests with different parameters and methods.
Instead of going to web resources in a browser’s address bar, you can use the command line to get these
same resources, retrieved as text.

Sometimes curl is written as cURL. It stands for Client URL. “curl” is the more common convention for its
spelling, but both refer to the same thing.

Installing curl

curl is usually available by default on Macs but requires some installation on Windows. Follow these
instructions for installing curl:

Install curl on Mac
If you have a Mac, by default, curl is probably already installed. To check:

1. Open Terminal (press Cmd + spacebar to open Finder, and then type “Terminal”).
2. InTerminal type curl -V . The response should look something like this:

curl 7.54.0 (x86_64-apple-darwinl6.0) libcurl/7.54.0 SecureTransport
zlib/1.2.8

Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps
pop3 pop3s rtsp smb smbs smtp smtps telnet tftp Features: AsynchDNS I
Pve Largefile GSS—-API Kerberos SPNEGO NTLM NTLM_WB SSL libz UnixSocke
ts

If you don’t see this, you need to download and install curl (4.

Install curl on Windows

Installing curl on Windows involves a few more steps. First, determine whether you have 32-bit or 64-bit
Windows by right-clicking Computer and selecting Properties. Then follow the instructions in this
Confused by Code page [4 . Most likely, you’ll want to choose the With Administrator Privileges (free)
installer.

After you install curl, test your version of curl by doing the following:

1. Open a command prompt by clicking the Start button and typing cmd.
2. Type curl -V.

The response should be as follows:

Documenting REST APIs Page 78

http://curl.haxx.se/
http://www.confusedbycode.com/curl/#downloads

curl intro and installation PDF last generated: August 27, 2023

curl 7.54.0 (x86_64-apple-darwinl4.0) libcurl/7.37.1 SecureTransport zlib/
1.2.5

Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps pop3 p
op3s rtsp smtp smtps telnet tftp

Features: AsynchDNS GSS-Negotiate IPv6 Largefile NTLM NTLM_WB SSL libz

Make a test API call

After you have curl installed, make a test API call:

curl -X GET "https://api.openweathermap.org/data/2.5/weather?zip=95050&appi
d=APIKEY&units=imperial"

(In the above code, replace APIKEY with your actual API key.)

You should get minified JSON response back like this:

{"coord":{"lon":-121.96,"1lat":37.35}, "weather": [{"id":701,"main":"Mist", "des
cription":"mist","icon":"50d"}],"base":"stations","main":{"temp":66.92,"pres
sure":1017,"humidity":50,"temp_min":53.6,"temp_max":75.2},"visibility":1609
3,"wind":{"speed":10.29,"deg":300},"clouds":{"all":75},"dt":1522526400,"sy
s":{"type":1,"id":479,"message":0.0051, " country":"US","sunrise":152250440
4,"sunset":1522549829},"id" :420006397, ' name" :"Santa Clara",'cod":200}

In Windows, Ctrl+ V doesn’t work; instead, you right-click and then select Paste.

Notes about using curl with Windows
If you’re using Windows, note the following formatting requirements when using curl:

Use double quotes in the Windows command line. (Windows doesn’t support single quotes.)
Don’t use backslashes (\) to separate lines. (This is for readability only and doesn’t affect the
call on Macs.)

+ By adding -k inthe curl command, you can bypass curl’s security certificate, which may or may
not be necessary.

Documenting REST APIs Page 79

Make a curl call PDF last generated: August 27, 2023

Make a curl call

In this section, you’ll use curl to make the same weather API requests you made previously with Postman.
If you haven’t installed curl, see curl intro and installation (p. 78) first.

Activity: Make the OpenWeatherAPI request using curl

This activity assumes you have curl installed. curl is available on Mac and some Windows 10 versions by
default. If you're on an older Windows machine that doesn’t have curl, see installing curl here [4 for details.
(Most likely, choose “With Administrator Privileges (free)” 64-bit version.) Close and restart your Command
Prompt after installing curl.

To make a request with curl:

1. Assuming you completed the exercises in the Postman tutorial (p. 71), go back into Postman.

2. On any request you’ve configured, below the Save button in Postman, click the Code link. (If you
don’t see the link, scroll up.)

3. Inthe Generate Code Snippets dialog box, select cURL from the drop-down list, and then click

Copy to Clipboard.

GENERATE CODE SNIPPETS

Generated code for cURL Contribute on GitHub

1 curl --location --request GET 'https://api.openweathermap.org
C - libcurl /data/2.5/weather?zip=95050&units=imperial&appid
=fd4698c940c6d1da602a70ac34f0b147"
C# - RestSharp

cURL

Go - Native

HTTP

Java - OkHttp

Java - Unirest
JavaScript - Fetch
JavaScript - jQuery
JavaScript - XHR
NodeJs - Native

Node]s - Request

curl request in Postman
The Postman code for the OpenWeatherMap weather request in curl looks as follows:

curl ——location —--request GET 'https://api.openweathermap.org/data/
2.5/weather?zip=95050&units=imperial&appid=APIKEY"

(In the above code, replace APIKEY with your actual API key.)

Documenting REST APIs Page 80

http://www.confusedbycode.com/curl/#downloads

Make a curl call PDF last generated: August 27, 2023

(Note that previously, Postman would include its own header information, designated with -H . If
you see these parameters, delete them since they cause issues when submitted outside of
Postman.)

In general, the code snippets can be copied and pasted directly into your terminal on a Mac.
However, for Windows, you must change the single quotation marks to double quotation marks.

Also, on Windows, if your curl has any backslashes, (\) remove them and put all content onto
the same line. (Backslashes are just added for readability). You can make these adjustments in a
text editor before pasting the curl command into the Command Prompt.

4. Go to your Terminal (Mac) or Command Prompt (Windows).
You can open your Terminal / Command Prompt by doing the following:

If you’re on Windows, go to Start and search for cmd to open up the Command Prompt.
Paste in the curl request and then press Enter. (If you can’t paste it in, look for paste
options on the right-click menu.)

If you’re on a Mac, open Terminal by pressing Cmd + spacebar and typing Terminal. (Or
go to Applications > Utilities > Terminal). (You could also use iTerm (£ .) Paste in the curl
request and then press Enter.

The response from the OpenWeatherMap weather request should look as follows:

{"coord":{"lon":-121.95,"lat":37.35},"weather": [{"id":802,"main":"Clo
uds","description":"scattered clouds","icon":"03d"}],"base":"station
s","main":{"temp":68.34,"pressure":1014,"humidity":73,"temp_min":6
3,"temp_max":72},"visibility":16093,"wind": {"speed":3.36},"cloud
s":{"all":40},"dt":1566664878,"sys":{"type":1,"id":5122, " message":0.0
106,"country":"US","sunrise":1566653501,"sunset":1566701346},"timezon
e":-25200,"id":0,"name" :"Santa Clara","cod":200}

This response is minified. You can un-minify it by going to a site such as JSON pretty print (5, or
if you have Python installed (4, you can add | python -m json.tool atthe end of your cURL
request to un-minify the JSON in the response (see this Stack Overflow thread [for detalils).

Note about single and double quotes with Windows curl requests

If you’re using Windows to submit a lot of curl requests, and the curl requests require you to submit JSON
in the request body (p. 137), you might run into issues with single versus double quotes. The problem is
that request body content is often formatted in JSON, which requires double quotes.

Since you can’t use double quotes inside of other double quotes, you’ll run into issues in submitting curl
requests in these scenarios.

Here’s the workaround. If you have to submit body content in JSON, you can store the content in a JSON
file. Then you reference the file with an @ symbol, like this:

curl -H "Content-Type: application/json" -H "Authorization: 123" -X POST -d
@mypostbody.json http://endpointurl.com/example

Documenting REST APIs Page 81

https://curl.haxx.se/docs/manpage.html#-L
https://curl.haxx.se/docs/manpage.html#-L
https://curl.haxx.se/docs/manpage.html#-X
https://curl.haxx.se/docs/manpage.html#-X
https://www.iterm2.com/
http://jsonprettyprint.com/
https://www.python.org/downloads/
https://stackoverflow.com/questions/352098/how-can-i-pretty-print-json-in-a-unix-shell-script

Make a curl call PDF last generated: August 27, 2023

Here curl will look in the existing directory for the mypostbody. json file. (You can also reference the
complete path to the JSON file on your machine.)

Documenting REST APIs Page 82

Understand curl more PDF last generated: August 27, 2023

Understand curl more

Almost every APl shows how to interact with the API using curl. So before moving on, let’s pause a bit and
learn more about curl.

Why curl?

One of the advantages of REST APIs is that you can use almost any programming language to call the
endpoint. The endpoint is simply a resource located on a web server at a specific path.

Each programming language has a different way of making web calls. Rather than exhausting your energies
trying to show how to make web calls in Java, Python, C++, JavaScript, Ruby, and so on, you can just
show the call using curl.

curl provides a generic, language-agnostic way to demonstrate HTTP requests and responses. Users can
see the format of the request, including any headers and other parameters. Your users can translate this
into the specific format for the language they’re using.

Try using curl to GET a web page

As mentioned earlier, one reason REST APlIs are so familiar is that REST follows the same model as the
web (see What is a REST API? (p. 40)). When you type an http address into a browser address bar,
you’re telling the browser to make an HTTP request to a resource on a server. The server returns a
response, and your browser converts the response to a more visual display. But you can also see the raw
code.

To see an example of how curl retrieves a web resource, open a terminal and type the following:
curl http://example.com

Curl will retrieve the HTML code for the site example.com (4. The browser’s job is to make that code

visually readable. curl shows you what you’re actually retrieving.

Requests and responses include headers too

When you type an address into a website, you see only the body of the response. But actually, there’s
more going on behind the scenes. When you make the request, you’re sending a request header that
contains information about the request. The response also contains a response header.

1. To see the response header in a curl request, include -i in the curl request:
curl http://example.com -1i

The header will be included above the body in the response:

Documenting REST APIs Page 83

http://example.com/

Understand curl more PDF last generated: August 27, 2023

~/projects $ curl http://example.com -I
HTTP/1.1 200 OK

Content-Encoding: gzip

Accept-Ranges: bytes

Cache-Control: max—-age=604800
Content-Type: text/html; charset=UTF-8
Date: Tue, 04 Dec 2018 04:35:43 GMT
Etag: "1541025663+gzip"

Expires: Tue, 11 Dec 2018 04:35:43 GMT
Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
Server: ECS (sjc/4F91)

X-Cache: HIT

Content-Length: 606

2. To limit the response to just the header, use -I :

curl http://example.com -I

The header contains the metadata about the response. All of this information is transferred to the
browser when you make a request to a URL in your browser (for example, when you surf to a
web page online), but the browser doesn’t show you this information. You can see the header
information using the Chrome Developer Tools console 4 by looking on the Network tab.

3. Now let’s specify the method. The GET method (read) is implied by default when no other
method is specified, but we’ll make it explicit here with the -X parameter:

curl =X GET http://example.com -I

When you go to a website, you submit the request using the GET HTTP method. There are other
HTTP methods you can use when interacting with REST APIs. Here are the common methods
used when working with REST endpoints:

HTTP Method Description

POST Create a resource
GET Read a resource
PUT Update a resource
DELETE Delete a resource

GET is used by default with curl requests. If you use curl to make HTTP requests other than GET,
you need to specify the HTTP method.

Documenting REST APIs Page 84

https://developers.google.com/web/tools/chrome-devtools/console/

Understand curl more PDF last generated: August 27, 2023

Unpacking the weather API curl request

Let’s look more closely at the request you submitted for the weather in the previous topic (Make a curl call

curl -X GET -H "Cache-Control: no-cache" -H "Postman-Token: 930d08d6-7b2a-6e
a2-0725-27324755c684" "https://api.openweathermap.org/data/2.5/weather?zip=9
5050&appid=APIKEY&units=imperial"

(In the above code, replace APIKEY with your actual API key.)
curl has shorthand names for the various options that you include with your request.

Here’'s what the commands mean:

-X GET . The -X signifies the method used for the request. Common options are GET , POST,
DELETE , PUT . (You might also see —-get used instead. Most curl commands have a couple of
different representations. —-X GET can also be written as —-get .)

—-H . Submits a custom header. Include an additional -H for each header key-value pair you're
submitting.

Query strings and parameters

The zip code (zip), app ID (appid), and units (units) parameters were passed to the endpoint using
“query strings.” The ? appended to the URL indicates the start of the query string. The query string
parameters are the parameters that appear after the 7 :

?721p=95050&appid=APIKEY&units=imperial

(In the above code, replace APIKEY with your actual API key.)

After the query string, each parameter is separated from other parameters by the ampersand & symbol.
The order of the query string parameters doesn’t matter. The order only matters if the parameters are on
the left of the query string (and thus part of the URL itself). Any configurable parts of the endpoint that
appear before the query string are called path parameters (p. 136) (we’ll dive into these later).

Common curl commands related to REST

curl has a lot of possible commands, but the following are the most common when working with REST
APlIs.

Description

-i or — Includes the response headers in the curl -i
include response. http://www.example.com

Includes data to post to the URL. The data

-d or — curl -d "data-to-post"
needs to be url encoded (4. Data can also be

data L http://www.example.com
passed in the request body.

Documenting REST APIs Page 85

http://www.w3schools.com/tags/ref_urlencode.asp

Understand curl more PDF last generated: August 27, 2023

Description

Submits the request header to the resource.
-H or — Headers are common with REST API requests curl -H "key:12345"
header because the authorization is usually included http://www.example.com
in the header.

Specifies the HTTP method to use with the
request (in this example, POST). If you use
. . - curl -X POST -d
X POST —-d in the request, curl automatically specifies " resource—to—undate”
a POST method. With GET requests, including http: / /v exar: le.com
the HTTP method is optional, because GET is P ’ pte.

the default method used.

curl =X POST -d
@filename Loads content from a file. @mypet.json
http://www.example.com

See the curl documentation (4 for a comprehensive list of curl commands you can use.

Example curl command

Here’s an example curl request that combines some of these commands:

curl -i -H "Accept: application/json'" -X POST -d "{status:MIA}" http://perso
nsreport.com/status/personl23

The request could also be formatted with line breaks to make it more readable:

curl —-i \
-H "Accept: application/json" \
-X POST \
—-d "{status:MIA}" \
http://personsreport.com/status/personl23 \

(Line breaks are problematic on Windows, so | don’t recommend formatting curl requests like this.)

The Accept header tells the server that the only format we will accept in the response is JSON.

Quiz yourself

Quiz yourself to see how much you remember. What do the following parameters mean?

-
- -H
- -X POST
-

Documenting REST APIs Page 86

http://curl.haxx.se/docs/manpage.html

Understand curl more PDF last generated: August 27, 2023

When you use curl, the Terminal and iTerm [on the Mac provide a much easier experience than using the
command prompt in Windows. If you’re going to get serious about APl documentation, but you’re still on a
PC, consider switching. There are a lot of utilities that you install through a terminal that just work on a Mac.
Also, if you’re in Silicon Valley, using a PC instead of a Mac might make you look old-fashioned (see Why
do most startups purchase MacBooks for their employees? [4). Alternatively, you can run Linux on
Windows, and you’ll get the same terminal experience (Bash shell). See this example tutorial on how to

install Bash on Windows (4.”

Documenting REST APIs Page 87

https://www.iterm2.com/
https://www.quora.com/Why-do-most-startups-purchase-MacBooks-for-their-employees
https://www.quora.com/Why-do-most-startups-purchase-MacBooks-for-their-employees
https://itsfoss.com/install-bash-on-windows/

Activity: Use methods with curl PDF last generated: August 27, 2023

Activity: Use methods with curl

Our sample weather API (p. 65) doesn’t allow you to use anything but a GET method, so for this exercise,
to use other methods with curl, we’ll use the petstore API from Swagger [4. However, we won’t actually
use the Swagger Ul (which is something we’ll explore later (p. 181)). For now, we just need an API with
which we can use to create, update, and delete content.

In this example, using the Petstore API, you’ll create a new pet, update the pet, get the pet’s ID, delete the
pet, and then try to get the deleted pet.

Create a new pet

To create a pet, you have to pass a JSON message in the request body. Rather than trying to encode the
JSON and pass it in the URL, you’ll store the JSON in a file and reference the file.

A lot of APIs require you to post requests containing JSON messages in the body. Request bodies are
often how you configure a service. The list of JSON key-value pairs that the API accepts is called the
“Model” in the Swagger Ul display.

1. Insert the following into a text file. This information will be passed in the -d parameter of the curl
request:

"id": 123,

"category": {
"id": 123,
"name": "test"

b

"name": "fluffy",

"photoUrls": [

"string"
]l
"tags": [
{
"id": o,
"name": "string"
b
]I
"status'": "available"

2. Change the first id value to another integer (@ whole number in this case). Also, change the
pet’s name of fluffy to something else.

Use a unique ID and name that others aren’t likely to also use. Also, don’t begin your ID with the
number 0.

3. Save the file in a directory that you can conveniently access from your terminal, such as your
user directory (on a Mac, Users/YOURUSERNAME — replace YOURUSERNAME with your actual
user name on your computer).

4. In your terminal, browse to the directory where you saved the mypet.json file. (Usually, the
default directory is Users/YOURUSERNAME — hence the previous step.)

Documenting REST APIs Page 88

http://petstore.swagger.io/

Activity: Use methods with curl PDF last generated: August 27, 2023

If you’ve never browsed directories using the command line, here’s how you do it:

+ On a Mac, find your present working directory by typing pwd . Then move up a level by
typing change directory: cd ../ . Move down a level by typing cd pets , where pets
is the name of the directory you want to move into. Type 1s to list the contents of the
directory.

+ On Windows, look at the prompt path to see your current directory. Then move up a level
by typing cd ../ .Move down a level by typing cd pets , where pets isthe name of
the directory you want to move into. Type dir to list the contents of the current
directory.

5. After your terminal or command prompt is in the same directory as your JSON file, create the

new pet with the following curl request:

curl =X POST —-header "Content-Type: application/json" ——header "Acce
pt: application/json" -d @mypet.json "https://petstore.swagger.io/v2/
pe.tll

The Content-Type indicates the type of content submitted in the request body. The Accept

indicates the type of content we will accept in the response.

The response should look something like this:
{"id":51231236,"category":{"id":4,"name" :"testexecution"}, "name":"flu

ffernutter","photoUrls": ["string"],"tags": [{"id":0,"name":"strin
g"}],"status":"available"}

In the response, check to see that your pet’s name was returned.

Update your pet

Guess what, your pet hates its name! Change your pet’s name to something more formal using the update
pet method.

1. In the mypet.json file, change the pet’s name.
2. Usethe PUT method instead of POST to update the pet’s name (keep the same curl content
otherwise):

curl —=X PUT —--header "Content-Type: application/json" ——header "Accep
t: application/json" -d @mypet.json "https://petstore.swagger.io/v2/p
e.tll

Get your pet’s name by ID
Find your pet’s name by passing the ID into the /pet/{petID} endpoint:

1. In your mypet.json file, copy the first id value.
2. Use this curl command to get information about that pet ID, replacing 51231236 with your pet
ID.

Documenting REST APIs Page 89

Activity: Use methods with curl PDF last generated: August 27, 2023

curl -X GET —--header "Accept: application/json" "https://petstore.swa
gger.io/v2/pet/51231236"

The response contains your pet’s name and other information:

{"id":51231236,"category":{"id":4,"name":"test"}, " name":"mr. fluffern
utter","photoUrls": ["string"],"tags": [{"id":0,"name":"string"}],"stat

us":"available"}

You can format the JSON by pasting it into a JSON formatting tool (5 :

"id": 51231236,
"category": {
"id": 4,
"name'": "test"
}l
"name": "mr. fluffernutter",
"photoUrls": [
"string"
]l
"tags": [
{
"id": 0o,
"name": "string"
¥
]l

"status'": "available"

Delete your pet
Unfortunately, your pet has died. It’s time to delete your pet from the pet registry.

1. Use the DELETE method to remove your pet. Replace 5123123 with your pet ID:

curl —X DELETE —--header "Accept: application/json" "https://petstor
e.swagger.io/v2/pet/5123123"

2. Now check to make sure your pet is removed. Use a GET request to look for your pet with that
ID:

curl -X GET —-header "Accept: application/json" "https://petstore.swa
gger.io/v2/pet/5123123"

You should see this error message:

{"code":1,"type":"error","message":"Pet not found"}

Documenting REST APIs Page 90

http://jsonprettyprint.com/

Activity: Use methods with curl PDF last generated: August 27, 2023

This example allowed you to see how you can work with curl to create, read, update, and delete resources.
These four operations are referred to as CRUD and are common to almost every programming language.

Although Postman is probably easier to use, curl lends itself to power-level usage. Quality assurance teams
often construct advanced test scenarios that iterate through a lot of curl requests.

Understanding idempotent methods

One concept important to understand with HTTP methods is “idempotency.” Roy Fielding defines
idempotency as follows:

A request method is considered “idempotent” if the intended effect on the server of
multiple identical requests with that method is the same as the effect for a single
such request. Of the request methods defined by this specification, PUT, DELETE,
and safe request methods are idempotent” (RFC 7231, 4.2.2 7.

In other words, with idempotent methods, you can run them multiple times without multiplying the results.
Idempotent methods include GET, PUT, and DELETE, while POST is not (see 8.1.3 [4 for a more detailed
list).

Todd Fredrich explains idempotency by comparing it to a pregnant cow [. Let’s say you bring over a bull
to get a cow pregnant. Even if the bull and cow mate multiple times, the result will be just one pregnancy,
not a pregnancy for each mating session.

Import curl into Postman
You can import curl commands into Postman by doing the following:

1. Open a new tab in Postman and click the Import button in the upper-left corner.
2. Select Paste Raw Text and insert your curl command:

curl -X GET --header "Accept: application/json" "https://petstore.swa
gger.io/v2/pet/5123123"

Make sure you don’t have any extra spaces at the beginning.

Documenting REST APIs Page 91

https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc7231#section-8.1.3
http://www.restapitutorial.com/lessons/idempotency.html

Activity: Use methods with curl PDF last generated: August 27, 2023

IMPORT X

Import a Postman Collection, Environment, data dump, curl command, or a RAML /
WADL / Swagger(v1/v2) / Runscope file.

Import File Import Folder Import From Link Paste Raw Text

curl -X GET --header "Accept: application/json"
"http://petstore.swagger.io/v2/pet/5123123"

3. Click Import.

Close the dialog box.

5. Click Send. (If you deleted your pet, you will see the same “Pet not found” error message as
before.)

»

Export Postman to curl
You can also export Postman to curl by doing the following:

1. If desired, select one of your OpenWeatherMap API requests in Postman.
2. Click the Code button (it’s right below Save).

Documenting REST APIs Page 92

Activity: Use methods with curl PDF last generated: August 27, 2023

2% My Workspace ¥ & Invite

Q] No Environment v o %
GET OpenWeatherMap Current APl ® GET hitp://petstore.swagger.ioh2/pe ® = e
Hist Collections
» 0 Map Current APl Examples (0) v
Trash G
GET v https://api.openweathermap.org/data/2.5/weather?lat=37.3565982&lon=-121. 4 i “ Save v
. as OpenWeatherMap
2requests
Params ® Cookies Code
GET OpenWeatherMap Current APl . VALUE DESCRIPTION e
GET 5 Day Forecast Jat 373565982
lon -121.9689848
units imperial
appid fd4698c940c6d1da602a70ac34f0b147
Body © tResU Status: 2000K Time: 173ms Size: 800 B Save Download
Pretty P JSON v mQ
-1
S
3
4
5 B
6~ "weather": [
7o
8 "id": 803,
9 "main": "Clouds",
10 "description”: “broken clouds”,
11 "icon": "04d"
12
13
14 : "stations",
15
QB Build Browse Q M & ®

3. Select curl from the drop-down menu.
4. Copy the code snippet.

curl =X GET \
"https://api.openweathermap.org/data/2.5/weather?lat=37.3565982&10
n=-121,9689848&units=imperial&appid=APIKEY"

In place of APIKEY you should see your actual API key.

5. Remove the backslashes and line breaks. If you’re on Windows, change the single quotes to

double quotes.
6. Insert the curl command into your terminal and observe the result.

curl =X GET "https://api.openweathermap.org/data/2.5/weather?lat=37.3
565982&1on=-121.9689848&units=imperial&appid=APIKEY"

Through Postman’s Import and Code functionality, you can easily switch between Postman and
curl.

Documenting REST APIs Page 93

Analyze the JSON response PDF last generated: August 27, 2023

Analyze the JSON response

JSON is the most common format for responses from REST APIs. Let’s look at the JSON response for the
OpenWeatherMap weather endpoint in more depth, distinguishing between arrays and objects in JSON.

JSON response from OpenWeatherMap weather endpoint

JSON stands for JavaScript Object Notation. It’s the most common way REST APIs return information.
Although some APIs return information in both JSON and XML, if you’re trying to parse through the
response and render it on a web page, JSON fits much better into the existing JavaScript + HTML + CSS
technology that powers most web pages. With JavaScript, you can easily parse through the JSSON and
integrate it into your web content.

The unminified response from the OpenWeatherMap weather endpoint looks like this:

Documenting REST APIs Page 94

Analyze the JSON response PDF last generated: August 27, 2023

"coord": {
"lon": -121.96,
"lat": 37.35
}l
"weather": [
{
"id": 801,
"main": "Clouds",
"description": "few clouds",
"icon": "@2d"
¥
]r
"base": '"stations",
"main": {
“temp": 70.14,
"pressure": 1012,
"humidity": 33,
"temp_min": 62.6,
"temp_max": 75.2
}l
"visibility": 16093,
"wind": {
"speed": 14.99,
""deg": 330
}l
"clouds": {
"all": 20
}I
"dt": 1522619760,
"sys': {
“type': 1,
"id": 479,
"message': 0.0058,
"country": "Us",
"sunrise": 1522590707,
"sunset": 1522636288
}l
"id": 420006397,
""nmame": "Santa Clara",
""cod": 200

We’ll analyze the information structures within JSON responses in the following sections.

JSON objects are key-value pairs

JSON has two types of basic structures: objects and arrays. An object is a collection of key-value pairs,
surrounded by curly braces:

Documenting REST APIs Page 95

Analyze the JSON response PDF last generated: August 27, 2023

"keyl": "valuel",
"key2": "value2"
}

The key-value pairs are each put into double quotation marks when both are strings. If the value is an
integer (a whole number) or Boolean (true or false value), omit the quotation marks around the value. Each
key-value pair is separated from the next by a comma.

JSON arrays are lists of items

An array is a list of items, surrounded by brackets:
["first", "second", "third"]

The list of items can contain strings, numbers, booleans, arrays, or other objects. With integers or
booleans, you don’t use quotation marks.

Integers:
[1, 2, 3]
Booleans:

[true, false, truel

Including objects in arrays, and arrays in objects

JSON can mix up objects and arrays inside each other. You can have an array of objects:

object,

object,

object
]

Here’s an example with values:

{
"name":"Tom",
"age":39

}l

{
"name" :"Shannon",
"age":37

¥

Documenting REST APIs Page 96

Analyze the JSON response PDF last generated: August 27, 2023

And objects can contain arrays in the value part of the key-value pair:

{
"children": ["Avery","Callie","lucy","Molly"],

"hobbies": ["swimming","biking","drawing","horseplaying"]

}

Just remember, objects are enclosed by curly braces { } and contain key-value pairs. Sometimes those
values are arrays. Arrays are lists and are enclosed by square brackets [] . It’'s common for arrays to
contain lists of objects, and for objects to contain arrays.

It's important to understand the difference between objects and arrays because it determines how you
access and display the information. Later exercises with dot notation will require you to understand this
difference.

Examine the weather response

Look at the response from the weather endpoint of the OpenWeatherMap weather APIl. Where are the
objects? Where are the arrays? Which objects are nested? Which values are booleans versus strings?

More information

For more information on understanding the structure of JSON, see json.com (4.

Documenting REST APIs Page 97

https://www.json.com/

Inspect the JSON from the response payload PDF last generated: August 27, 2023

Inspect the JSON from the response
payload

Seeing the response from curl or Postman is cool, but how do you make use of the JSON data? With most
API documentation, you don’t need to show how to make use of JSON data. You assume that developers
will use their front-end development skills to parse through the data and display it appropriately in their
apps. However, to better understand how developers will access the data, we’'ll go through a brief tutorial
to display the REST response on a web page.

Activity: Make an API request on a web page

For this activity, you’ll use JavaScript to display the API response on a web page. Specifically, you’ll use
some auto-generated jQuery code from Postman to create the AJAX request. You'll get the wind speed
from the response and print it to the page.

1. In an editor such as Sublime Text, create a new HTML file called weather.html and insert the
following boilerplate code:

<html>
<meta charset="UTF-8">
<head>
<title>Sample page</title>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.1
1.1/jquery.min.js"></script>
<script>
POSTMAN CODE GOES HERE
</script>
</head>
<body>
<h1>Sample Page</h1l>
wind speed:
</body>
</html>

2. Assuming you completed the exercises in the Postman tutorial (p. 71) to configure a request, go
back into Postman.
3. In Postman, click the Code link (below the Save button) and go to JavaScript - jQuery:

Documenting REST APIs Page 98

Inspect the JSON from the response payload PDF last generated: August 27, 2023

GENERATE CODE SNIPPETS

Generated code for JavaScript - jQuery Contribute on GitHub

1~ Jar settings = {

C - libcurl 2 "url": "https://api.openweathermap.org/data/2.5/weather?zip
=95050&units=imperial&appid
C# - RestSharp =fd4698c940c6d1da602a70ac34f0b147",
3 "method": "GET",
cURL 4 "timeout": 0,
5 1
Go - Native 6
7+ $.ajax(settings).done(function (response) {
HTTP 8 console.log(response);
9 1B

Java - OkHttp

Java - Unirest
JavaScript - Fetch
JavaScript - jQuery
JavaScript - XHR
NodeJs - Native

NodeJs - Request

Copying JavaScript code from Postman

4. Copy the Postman code above and insert it into the POSTMAN CODE GOES HERE place in your
weather.html file.
5. Directly below console.log(response); , add these two lines:

var content = response.wind.speed;
$("#windSpeed") .append(content);

6. Your final code should look as follows:

Documenting REST APIs Page 99

Inspect the JSON from the response payload PDF last generated: August 27, 2023

<html>
<meta charset="UTF-8">
<head>
<title>Sample page</title>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.1
1.1/jquery.min.js"></script>
<script>
var settings = {
"url": "https://api.openweathermap.org/data/2.5/weather?zip=9
5050&units=imperial&appid=APIKEY",
"method": "GET",
"timeout": 0,

};

$.ajax(settings).done(function (response) {
console. log(response);
var content = response.wind.speed;
$("#windSpeed") .append(content);

3

</script>
</head>
<body>
<h1>Sample Page</h1l>
wind speed:
</body>
</html>

(In the above code, replace APIKEY with your actual API key.)

What is this code doing? In a nutshell, when ajax (a jQuery function) retrieves the response
from the API, it assigns the response to response . A variable called content is created and
set it equal to response.wind.speed (dot notation (p. 109) is used to access this value).
jQuery’s append method inserts content after an element called #windSpeed on the page. (I
realize this is an extremely abbreviated explanation, but explaining JavaScript is beyond the
scope of this course. In general, you can learn more by reading about the jQuery.ajax() 3
function.)

7. Start Chrome and open the JavaScript Console.

To open the JavaScript Console, on Chrome on a Mac, go to View > Developer > Javascript
Console; on Windows, click the menu button (vertical ellipses) and go to More tools >
Developer tools. Then click the Console tab.

8. In Chrome, press Cmd+O (Mac) or Ctrl + O (Windows) and select your weather.html file.

The weather response should be logged to the JavaScript Console (due to the
console. log(response) code in the request). If you expand the object returned to the console,
it will look as follows:

Documenting REST APIs Page 100

https://api.jquery.com/jquery.ajax/

Inspect the JSON from the response payload PDF last generated: August 27, 2023

[w ﬂ Elements Console Sources Network Performance Memaory Application Security Audits Adblock Plut
[N ® | top v | @ | Fiter Default levels v

v {coord: {.}, weather: Array(2), base: “stations", main: {.}, visibility: 4828, .}

base: "stations"

b clouds: {all: 1}
cod: 2@@

» coord: {lon: -121.96, lat: 37.35}
dt: 1541526888
id: 422006327

»main: {temp: 59.63, pressure: 1017, humidity: 77, temp_min: 55.04, temp_max: 64.94}
name: "Santa Clara"

b sys: {type: 1, id: 392, message: @.8048, country: "US", sunrise: 1541515114, .}
visibility: 4828

»weather: (2) [{.}, {.}]

»wind: {speed: 3.18, deg: 356}

»__proto__: Object

You can view the file here: weather-plain.htm| (5.

The AJAX method from jQuery

In this section, I'll explain a bit more about the ajax function you used earlier. This information probably
isn’t essential for documenting REST APIs, but it’s good to understand. In the code, here’s the ajax
script:

<script>
var settings = {
"async": true,
""crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zip=95050&appi
d=APIKEY&units=imperial",
"method": "GET"

$.ajax(settings).done(function (response) {
console. log(response);
1)
</script>

(In the above code, replace APIKEY with your actual API key.)

If you’re working with JavaScript and APIs, the ajax method from jQuery @ can be helpful with code
samples. This ajax method takes one argument: settings .

$.ajax(settings)

The settings argument is an object that contains a variety of key-value pairs.

var settings = {

b

Documenting REST APIs Page 101

https://idratherbewriting.com/assets/files/weather-plain.html
https://idratherbewriting.com/assets/files/weather-plain.html
https://idratherbewriting.com/assets/files/weather-plain.html
https://api.jquery.com/jquery.ajax/
https://api.jquery.com/jquery.ajax/

Inspect the JSON from the response payload PDF last generated: August 27, 2023

Each of the allowed key-value pairs is defined in jQuery’s ajax documentation (4.

Some important values are the url, which is the URI or endpoint you are submitting the request to.
Another value is headers , which allows you to include custom headers in the request.

Look at the code sample you created. The settings variable is passed in as the argument to the ajax
method. jQuery makes the request to the HTTP URL asynchronously, which means it won’t hang up your
computer while you wait for the response. You can continue using your application while the request
executes.

You get the response by calling the method done .

$.ajax(settings).done(function (response) {

}

In the earlier code sample, done contains an anonymous function (a function without a name) that
executes when done is called. The response object from the ajax call is assigned to the done
method’s argument, which in this case is response . (You can name the argument whatever you want.)

You can then access the values from the response object using object notation. In this example, the
response is just logged to the console.

If you’re new to JavaScript, this is likely a bit fuzzy right now. If so, don’t worry — code becomes clearer
the more you use it.

Notice how difficult it is to explain code? This is one of the challenges of developer documentation.
Fortunately, you wouldn’t need to explain much from standard programming languages like JavaScript. But
you might need to explain how to work with your API in different languages. | cover this topic in more depth
in Code samples and tutorials (p. 464).

Logging responses to the console

The line of code that logged the response to the console was simply this:
console. log(response);

Logging responses to the console can be a useful way to test whether an API response is working (it's also
helpful for debugging or troubleshooting your code). The console collapses each object inside an
expandable section. You can inspect the payload in the console to see if contains the values you expect
(without printing values to the page).

Inspect the payload

Inspect the payload by expanding each of the sections returned in the JSON console object (4. Based on
the information here, what'’s the forecast for today?

| realize the page is blank and unexciting. In the next section, Access and print a specific JSON value (p.
103), we’ll pull out some values and print them to the page.

Documenting REST APIs Page 102

http://api.jquery.com/jquery.ajax/#jQuery-ajax-settings
https://idratherbewriting.com/assets/files/weather-plain.html

Access and print a specific JSON value PDF last generated: August 27, 2023

Access and print a specific JSON
value

This tutorial continues from the previous topic, Inspect the JSON from the response payload (p. 98). In the
sample page [4 where you logged the weather response to the JS Console, the REST response
information didn’t appear on the page. It only appeared in the JS Console. You need to use dot notation
and JavaScript to access the JSON values you want. In this tutorial, you’ll use JavaScript to print some of

the response to the page.

Note that this section will use a little bit of JavaScript. Depending on your role, you might not use this code
much in your documentation, but it’s important to know anyway.

Getting a specific property from a JSON response object

JSON wouldn’t be very useful if you always had to print out the entire response. Instead, you select the
exact property you want and pull that out through dot notation. The dot (.) after response (the name of
the JSON payload, as defined arbitrarily in the jQuery AJAX function) is how you access the values you
want from the JSON object.

As an example, this is the full response from the request made previously (p. 94):

Documenting REST APIs Page 103

https://idratherbewriting.com/assets/files/weather-plain.html

Access and print a specific JSON value PDF last generated: August 27, 2023

{
"coord": {
"lon": -121.95,
"lat": 37.35
}l
"weather": [
{
"id": 802,
"main": "Clouds",
"description": "scattered clouds",
"icon": "@3d"
¥
]r
"base": "stations",
"main": {
"temp": 68.34,
"pressure": 1014,
"humidity": 73,
"temp_min": 63,
"temp_max": 72
}l
"visibility": 16093,
"wind": {
"speed": 3.36
}I
"clouds": {
"all": 40
}l
"dt": 1566664878,
"sys": {
"type": 1,
"id": 5122,
""message'": 0.0106,
"country": "US",
"sunrise": 1566653501,
"sunset": 1566701346
}l
""timezone'": -25200,
"id": o,
""nmame": "Santa Clara",
""cod": 200
}

In our scenario (p. 65) (creating a biking app), we want to pull out the wind speed part of the JSON

response. Here’s the dot notation you use:

response.wind.speed

To pull out the wind speed element from the JSON response and print it to the JavaScript Console, add
this to your code sample (which you created in the previous tutorial (p. 94)), right below the
console. log(response) line:

Documenting REST APIs Page 104

Access and print a specific JSON value PDF last generated: August 27, 2023

console. log("wind speed: " + response.wind.speed);
Your code should look like this:

$.ajax(settings).done(function (response) {
console. log(response);
console. log("wind speed: " + response.wind.speed);

3
Refresh your Chrome browser and see the information that appears in the console:

wind speed: 13.87

Printing a JSON value to the page

Let’s say you wanted to print part of the JSON (the wind speed data) to the page, not just the console. (By
“print,” | mean make the value appear on the page, not send it to a printer.) Printing the value involves a
little bit of JavaScript (or jQuery to make it easier).

I’m assuming you’re starting with the same code (4 from the previous tutorial (p. 98). That code looks like
this:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquer
y.min.js"></script>
<title>Sample Page</title>
<script>
var settings = {
"async": true,
"crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zip=9505
0&appid=APIKEY&units=imperial",
"method": "GET"
b

$.ajax(settings).done(function (response) {
console. log(response);
});
</script>
</head>
<body>
<h1>Sample Page</h1l>
</body>
</html>

(In the above code, replace APIKEY with your actual API key.)

Documenting REST APIs Page 105

https://idratherbewriting.com/assets/files/weather-plain.html

Access and print a specific JSON value PDF last generated: August 27, 2023

To print a specific property from the response to the page,

1. Add the following inside the ajax function:

$.ajax(settings).done(function (response) {
console. log(response);

var content = response.wind.speed;
$("#windSpeed").append(content);

1)
Your code should look as follows:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8'">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.1
1.1/jquery.min.js"></script>
<title>Sample Page</title>
<script>
var settings = {
"async": true,
""crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zi
p=950508&appid=APIKEY&units=imperial",
"method": "GET"
b

$.ajax(settings).done(function (response) {
console. log(response);

var content = response.wind.speed;
$("#windSpeed") .append(content);

1

</script>
</head>
<body>

<h1>Sample Page</h1l>

<div id="windSpeed">Wind speed: </div>
</body>

</html>

(In the above code, replace APIKEY with your actual API key.)

2. Refresh the page and you will see the wind speed printed to the page. Here’s an example [4 with
both wind speed and weather conditions.

Here’s what we changed:

Inside the tags of the AJAX done method, we pulled out the value we wanted into a variable, like this:

Documenting REST APIs Page 106

https://idratherbewriting.com/assets/files/weather-windspeed.html

Access and print a specific JSON value PDF last generated: August 27, 2023

var content = response.wind.speed;
Then we added a named element to the body of the page, like this:
<div id="windSpeed">Wind speed: </div>

We used the jQuery append method & to append the content variable to the element with the

windSpeed ID on the page:
$("#windSpeed") .append(content);

This code says to find the element with the ID windSpeed and add the content variable after it.

Get the value from an array

In the previous section, you retrieved a value from a JSON object. Now let’s get a value from an array. Let’s
get the main property from the weather array in the response. Here’s what the JSON array looks like:

{
"weather": [
{
"id": 801,
"main": "Clouds",
"description": "few clouds",
"icon": "@2d"
¥
]
1
}

Remember that brackets signify an array. Inside the weather array is an unnamed object. To get the
main element from this array, you would use the following dot notation:

response.weather[0].main

Then you would follow the same pattern as before to print it to the page. While objects allow you to get a
specific property, arrays require you to select the position in the list that you want.

Here’s the code from the sample page (4 :

Documenting REST APIs Page 107

http://api.jquery.com/append/
http://api.jquery.com/append/
https://idratherbewriting.com/assets/files/weather-windspeed.html

Access and print a specific JSON value PDF last generated: August 27, 2023

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.mi
n.js"></script>

<title>Sample Page</title>

<script>
var settings = {
"async": true,
""crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zip=95050&appid=AP
IKEY&units=imperial",
"method": "GET"
¥

$.ajax(settings).done(function (response) {
console. log(response);

var content = response.wind.speed;
$("#windSpeed").append(content);

var currentWeather = response.weather[0].main;
$("#currentWeather").append(currentWeather);

1

</script>

</head>

<body>

<h1>Sample Page</h1l>

<div id="windSpeed">Wind speed: </div>
<div id="currentWeather">Current weather conditions: </div>

</body>
</html>

(In the above code, replace APIKEY with your actual API key.)

More exercises

If you’d like to follow some more exercises that involve calling REST APIs, accessing specific values, and
printing the values to the page, see the following topics in the Glossary and resources (p. 892) section:

Get event information using the Eventbrite API (p. 901)
Flickr example: Retrieve a Flickr gallery (p. 908)
Get wind speed using the Aeris Weather API (p. 918)

Documenting REST APIs Page 108

Dive into dot notation PDF last generated: August 27, 2023

Dive into dot notation

In the previous topic, Access and print a specific JSON value (p. 103), you accessed and printed a specific
JSON value to the page. Let’s dive into dot notation a little more since understanding how to access the
right JSON value you want is necessary to make use of the response.

Dot notation
You use a dot after the object name to access its properties. For example, suppose you have an object

called data:

"data": {
"name": "Tom"
¥

To access Tom, you would use data.name .

Note the different levels of nesting so you can trace back the appropriate objects and access the
information you want. You access each level down through the object name followed by a dot.

Use square brackets to access the values in an array
To access a value in an array, you use square brackets followed by the position number. For example,

suppose you have the following array:

"data" : {
"items": ["ball", "bat", "glove"l

To access glove, you would use data.items[2] .

glove is the third item in the array. You can’t access an item directly in an array by the item’s name —
only by its position. Usually, programmers loop through an array and pull out values that match.

With most programming languages, you usually start countingat @ ,not 1.

Exercise with dot notation
In this activity, you’ll practice accessing different values through dot notation.

1. Create a new file in your text editor and insert the following into it:

Documenting REST APIs Page 109

Dive into dot notation PDF last generated: August 27, 2023

<!DOCTYPE html>
<html>
<head>
<script src="https://code.jquery.com/jquery-2.1.1.min.js"></scr
ipt>
<meta charset="utf-8">
<title>JSON dot notation practice</title>
<script>
$(document).ready(function() {

var john = {
"hair": "brown",
"eyes": "green",
"shoes": {
"brand": "nike",
"type": '"basketball"
}l
"favcolors": [
"azure",
"goldenrod"
]l
"children": [

{
"child1": "Sarah",
"age": 2

}l

{
"child2": "Jimmy",
"age": 5

}

var sarahjson = john.children[@].childl;
var greenjson = john.children[0].childl;
var nikejson = john.children[0].childl;
var goldenrodjson = john.children[0].child1;
var jimmyjson = john.children[0].childl;

$("#sarah").append(sarahjson);
$("#green").append(greenjson);
$("#nike").append(nikejson);
$("#goldenrod").append(goldenrodjson);
$("#jimmy").append(jimmyjson);
1
</script>
</head>
<body>
<div id="sarah">Sarah: </div>
<div id="green'">green: </div>
<div id="nike">nike: </div>

Documenting REST APIs Page 110

Dive into dot notation PDF last generated: August 27, 2023

<div id="goldenrod">goldenrod: </div>
<div id="jimmy">Jimmy: </div>
</body>
</html>

Here we have a JSON object defined as a variable named john . (Usually, APIs retrieve the
response through a URL request, but for practice here, we’re just defining the object locally.)

If you view the page in your browser, you’ll see the page says “Sarah” for each item because
we’re accessing this value: john.children[@].childl for each item.

var sarahjson = john.children[0].child1l;
var greenjson = john.children[0].childl;
var nikejson = john.children[@].child1l;
var goldenrodjson = john.children[0].child1;
var jimmyjson = john.children[0].child1;

2. Change john.children[0].child1l to display the correct values for each item. For example,
the word green should appear at the ID tag called green .

You can view the correct page here: https://idratherbewriting.com/assets/files/dot-notation-practice.html
(4. This page also shows the answers printed.

Showing wind conditions on the page

At the beginning of the section on Using an API like a developer (p. 65), | showed an example of
embedding the wind speed and other details on a website. Now let’s revisit this code example and see

how it’s put together.

Copy the following code into a basic HTML file:

Documenting REST APIs Page 111

https://idratherbewriting.com/assets/files/dot-notation-practice.html
https://idratherbewriting.com/assets/files/dot-notation-practice.html

Dive into dot notation PDF last generated: August 27, 2023

<!DOCTYPE html>
<html>
<head>
<script src="https://code.jquery.com/jquery-2.1.1.min.js"></script>
<meta charset="utf-8">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstra
p/3.3.4/css/bootstrap.min.css' rel='stylesheet' type='text/css'>
<title>0OpenWeatherMap Integration</title>
<style>
#wind_direction, #wind_speed, #wind_speed_unit, #wind_degree_unit,
#weather_conditions, #main_temp_unit, #main_temp {color: red; font-weight: b
old;}
body {margin:20px;}
</style>
</head>
<body>
<script>
function checkWind() {
var settings = {
"async": true,
"crossDomain": true,
"dataType": "json",
"url": "https://api.openweathermap.org/data/2.5/weather?zip=950
50,us&appid=APIKEY&units=imperial",
"method": "GET"
¥

$.ajax(settings)

.done(function (response) {
console. log(response);

$("#wind_speed").append (response.wind.speed);
$("#wind_direction").append (response.wind.deg);
$("#main_temp").append (response.main.temp);
$("#weather_conditions").append (response.weather[0].main);
$("#wind_speed_unit").append (" MPH");
$("#wind_degree_unit").append (" degrees");
$("#main_temp_unit").append (" F");
1)

¥

</script>

<button type="button" onclick="checkWind()" class="btn btn-danger weat
herbutton">Check wind conditions</button>

<h2>Wind conditions for Santa Clara</h2>

Temperature: <span i
d="main_temp_unit">

Wind speed: <span i
d="wind_speed_unit">

Wind direction: </spa
n>

Documenting REST APIs Page 112

Dive into dot notation PDF last generated: August 27, 2023

Current conditions: <span id="weather_condition
s'">
</body>
</html>

(In the above code, replace APIKEY with your actual API key.)

A few things are different here, but it’s essentially the same code as you created in the Access and print a
specific JSON value (p. 103). Here’s what’s different:

+ Rather than running the ajax method on page load, the ajax method is wrapped inside a
function called checkWind . When the web page’s button is clicked, the onclick method fires
the checkwWind() function.

+ When the checkWind function runs, the values for temperature, wind speed, wind direction, and
current conditions are written to several ID tags on the page.

When you load the page and click the button, the following should appear:

Check wind conditions

Wind conditions for Santa Clara

Temperature: 49.28 F

Wind speed: 3.36 MPH
Wind direction: 120 degrees
Current conditions: Clouds

You can view the file idratherbewriting.com/assets/files/wind-openweathermap.html (4.

Next section

As you’ve progressed through the exercises for using an API like a developer, you’ve gained a high-level
understanding of how REST APIs work, what information developers need, how they might use an API,
how they make requests, evaluate responses, and other details.

With this background, it’s time to switch gears and put on your technical writing hat. In the next section,
Documenting endpoints (p. 114), you’ll assume the task of documenting a new endpoint (p. 115) that was
added to a weather API. You’ll learn the essential sections in endpoint reference documentation, the
terminology to use, and formatting conventions for API reference information.

Documenting REST APIs Page 113

https://idratherbewriting.com/assets/files/wind-openweathermap.html
https://idratherbewriting.com/assets/files/wind-openweathermap.html
https://idratherbewriting.com/assets/files/wind-openweathermap.html

Chapter 3: Documenting API endpoints PDF last generated: August 27, 2023

Chapter 3: Documenting API
endpoints

Reference documentation for APl endpoints consists of five general sections: resource descriptions,
endpoints and methods, parameters, sample requests, and sample responses and schemas. To document

the reference endpoints of an API, provide detailed information for each of these sections.

Chapter sections:

A new endpoint t0 AOCUMENTeiiiii it e et e e e e e e e e
APl reference tutorial OVEIVIEWocceiiiiiiiiiiii s
Step 1: ReSOUrce deSCriPTION........iii it e e e
Step 2: Endpoints and MethOdS.......coouiiiiiiie i
StEP 3: Parameters. ———————
Step 4: ReQUEST EXAMPIEcoiueiiiiiiiee e e
Step 5: Response example and SChEMAeeieviieiiiiiec e
Putting it @ll tOGeTNEr ... e e
Activity: What's wrong with this API reference topicccooviiiiiiiiiii e

Activity: Evaluate API reference docs for core elementscccoeeeiiiiiiiiiiiiieeeee

Documenting REST APIs

Page 114

A new endpoint to document PDF last generated: August 27, 2023

A new endpoint to document

Until this point, you’ve been acting as a developer (p. 64) with the task of integrating the weather data into
your site. The point was to help you understand the type of information developers need and how they use
APls.

Now let’s shift perspectives. Now suppose you’re a technical writer working with the OpenWeatherMap

team. The team is asking you to document a new endpoint. What do you cover, and how do you approach
it?

You have a new endpoint to document

The project manager calls you over and says the team has a new endpoint for you to document for the next
release. (Sometimes teams will also refer to each endpoint as an “API” as well.)

“Here’s the wiki page that contains info about the new API,” the manager says. The information is scattered
and random on the wiki page.

Most technical writers don’t start from scratch with documentation projects. Engineers usually dump
essential information onto an internal wiki page (or they communicate the info during meetings). However,
the information on the wiki page will likely be incomplete and unnecessarily technical in places (like
describing the database schema or high-level architectural workflows). The info might also include internal-
only information (for example, test logins, access protocols, or code names) or have sections that are out-
of-date.

Ultimately, the information will be oriented towards other engineers on the same knowledge level as the
team’s engineers. Your job as a technical writer will be to take this information and turn it into complete,
accurate, usable information that communicates with your audience.

Wiki page with information about the new endpoint

It's now your task to sort through the information on this mock wiki page and create documentation from it.
You can read through the mock wiki page below to get a sense of the information. In the upcoming topics,
we will proceed section by section through an API reference topic.

Here’s the mock internal wiki page:

The wiki page: "Surf Report API"

The new endpointis /surfreport/{beachId} . This endpoint is for surfers who want to check things like
tide and wave conditions to determine whether they should head out to the beach to surf. {beachId} is
retrieved from a list of beaches on our site.

Optional parameters:

« Number of days: Max is 7. Default is 3. Optional.

+ Units: imperial or metric. With imperial, you get feet and knots. With metric, you get centimeters
and kilometers per hour. Optional.

+ Time: time of the day corresponding to time zone of the beach you're inquiring about. Format is
unix time, aka epoch. Unix time is the milliseconds since 1970. Time zone is GMT or UTC.
Optional.

If you include the hour, then you only get back the surf condition for the hour you specified. Otherwise, you
get back 3 days, with conditions listed out by hour for each day.

Documenting REST APIs Page 115

A new endpoint to document

PDF last generated: August 27, 2023

The response will include the surf height, the wind, temp, the tide, and overall recommendation.

Sample endpoint with parameters:

https://api.openweathermap.org/com/surfreport/123?&days=2&units=metrics&hou

r=1400

The response contains these elements:
surfreport:

+ surfheight (units: feet)

« wind (units: kts)

+ tide (units: feet)

+ water temperature (units: F degrees)

+ recommendation - string ("Go surfing!", "Surfing conditions okay, not great", "Not today -- try

some other activity.")

The recommendation is based on an algorithm that takes optimal surfing conditions, scores them in a

rubric, and includes one of three responses.

Sample format:

{
"surfreport": [
{
"beach": "Santa Cruz",
"monday": {
"1pm": {
"tide": 5,
"wind": 15,
"watertemp": 60,
"surfheight": 5,
"recommendation":
}l
"2pm": {
"tide": -1,
"wind": 1,
"watertemp": 50,
"surfheight": 3,
"recommendation":
ot
}
b
}
1
}

"Go surfing!"

"Surfing conditions are okay,

Negative numbers in the tide represent incoming tide.

The report won't include any details about riptide conditions.

Documenting REST APIs

not grea

Page 116

A new endpoint to document PDF last generated: August 27, 2023

Although users can enter beach names, there are only certain beaches included in the report. Users can
look to see which beaches are available from our website at https://example.com/surfreport/
beaches_available (not areal URL). The beach names must be url encoded when passed in the endpoint
as query strings.

To switch from feet to metrics, users can add a query string of &units=metrics . Default is
&units=imperial.

Here's an example 4 of how developers might integrate this information. This site shows the height of the

surf coupled with a cam.

If the query is malformed, you get error code 400 and an indication of the error.

You can see that the information here is unstructured and hard to scan. By structuring the API reference
information into five standard sections, the information will take more shape and be more readable.

Next steps

Let’s jump into the API reference tutorial overview (p. 118) for an overview of the five steps we’ll cover in
creating the API reference topic for this new endpoint.

Documenting REST APIs Page 117

https://www.surfline.com/surf-report/south-beach-ca-northern-california_5088/

API reference tutorial overview PDF last generated: August 27, 2023

API reference tutorial overview

In this API reference tutorial, we’ll work on creating five common sections in REST API reference
documentation: resource description, endpoints and methods, parameters, request example, and response
example and schema. To provide some context (and to continue with our sample documentation scenario),
we’ll structure the information from the new endpoint to document (p. 115) into these five sections.

Five common sections in REST API docs
Almost all API reference topics include these five sections:

1. Resource description (p. 120)

“Resources” refers to the information returned by an API.

2. Endpoints and methods (p. 126)

The endpoints indicate how you access the resource, while the method indicates the allowed
interactions (such as GET, POST, or DELETE) with the resource.

3. Parameters (p. 132)

Parameters are options you can pass with the endpoint (such as specifying the response format or
the amount returned) to influence the response.

4. Request example (p. 141)

The request example includes a sample request using the endpoint, showing some parameters
configured.

5. Response example and schema (p. 154)

The response example shows a sample response from the request example; the response schema
defines all possible elements in the response.

Tutorial workflow map

The tutorial here includes a workflow map to help guide and orient you each step of the way.

Documenting REST APIs Page 118

API reference tutorial overview PDF last generated: August 27, 2023

STEF 1: STEP 2: STEP 3: STEP 4:
o N :)))
penapi N info object N servers object — paths object —
object
STEP &: STEP 6: STEP T: STEP &:
components security tags object externalDocs
object object object
After the tutorial

When we’re finished, the end result will look like a real API help topic (see the finished result in Putting it all

Although there are automated ways to publish API docs, we’re focusing on content rather than tools in this
section. In the next section, OpenAPI spec and generated reference docs (p. 179), we’ll look at how to
describe these same reference components using the OpenAPI specification. In the Publishing your API
documentation section (p. 530), we’ll look at ways to publish the information.

Next steps

Now that you have an idea of the tutorial, let’s get started with the first section: Step 1: Resource
description (p. 120).

Documenting REST APIs Page 119

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

Step 1: Resource description (API
reference tutorial)

STEP 1: STEP 2: STEP 3: STEP 4:

Resource Resource Parameters Request

description URLs and - example -
methods

STEP 5:

Response ex-

ample and

schema

“Resources” refers to the information returned by an API. Most APIs have various categories of information,
or various resources, that can be returned.

The resource description is brief (1-3 sentences) and usually starts with a verb. Resources usually have
various endpoints to access the resource and multiple methods for each endpoint. On the same page, you
usually have a general resource described along with a number of endpoints for accessing the resource,
also described.

Examples of resource descriptions

Here’s an example of a resource description from the Mailchimp API’s Campaigns resource [4:

Documenting REST APIs Page 120

http://developer.mailchimp.com/documentation/mailchimp/reference/campaigns/

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

@ Developer Documentation Playground API Status
Reference: Ca m pa IgnS
Overview
Campaigns are how you send emails to your MailChimp list. Use the Campaigns API calls to manage
API| Root campaigns in your MailChimp account.
Authorized Apps
Automations Subresources
Batch Operations Content Feedback Send Checklist
Batch Webhooks

Campaign Folders

Campaigns .
Available methods

Content

Feedback Create Read Edit Delete Action

Send Checklist .

/campaigns Get all campaigns
Conversations
30 /campaigns/{campaign_id} Get information about a specific campaign

E-commerce Stores

Typically, an API will have a number of endpoints grouped under the same resource. In this case, you
describe both the general resource and the individual endpoints. For example, the Campaigns resource has
various endpoints that are also described:

« POST /campaigns

+ GET /campaigns

+ GET /campaigns/{campaign_id}

+ PATCH /campaigns/{campaign_id}

+ DELETE /campaigns/{campaign_id}

« POST /campaigns/{campaign_id}/actions/cancel-send
« POST /campaigns/{campaign_id}/actions/pause

« POST /campaigns/{campaign_id}/actions/replicate
+ POST /campaigns/{campaign_id}/actions/resume

+ POST /campaigns/{campaign_id}/actions/schedule

+ POST /campaigns/{campaign_id}/actions/send

* POST /campaigns/{campaign_id}/actions/test

« POST /campaigns/{campaign_id}/actions/unschedule

Here’s a resource description for the Membership resource in the Box API (4:

Documenting REST APIs Page 121

http://developer.mailchimp.com/documentation/mailchimp/reference/campaigns/
http://developer.mailchimp.com/documentation/mailchimp/reference/campaigns/
https://developer.box.com/reference/resources/group-membership/

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

boxDEV Quick Start Guides API Reference SDKs/Tools Support @ -
33 Declete folder
Group memberships Group membership
Group membership
. X Response E
Membership is used to signify that a user is part of a group.
created_at string/date-time

B Add user to group
a Update grou

xample 2012-12-12T10:53:43-08:00

m Remove user from group he time this membership was created.

group Cro

p (Mini) object

Groups
Group The group that the membership applies to
Groups

=3 List groups for enterprise id string

ﬂ Get group

Create eroup T i
m Create group he unique identifier for this object

m Update group

ple 11446498

For the Membership resource (or “object,” as they call it), there are 7 different endpoints or methods you
can call. The Box API describes the Membership resource and each of the endpoints that lets you access
the resource.

Sometimes the general resource isn’t described; instead, it just groups the endpoints. The bulk of the
description appears in each endpoint. For example, in the Eventbrite API, here’s the Events resource:

eventbrite

Download

APl Blueprint Event

Introduction

About our API Event Object

Authentication The Event object represents an Eventbrite Event. An Event is owned by one Organization.

Best practices Public Fields
Errors Use these fields to specify information about an Event. For publicly listed Events, this information can be retrieved b|
applications.
Paginated Responses
Expansions
Field Type Description
Batched Requests
name multipart-text Event name.
API Switches
Basic Types summary string (Optional) Event summary. Short summary describing the event
description multipart—text (Optional) Event description. Description can be lengthy and ha
Reference url string URL of the Event's Listing page on eventbrite.com.
Attendee start datetime-tz Event start date and time.

Documenting REST APIs Page 122

https://developer.box.com/reference/resources/group-membership/
https://developer.box.com/reference/resources/group-membership/
https://www.eventbrite.com/platform/api#/reference/event
https://www.eventbrite.com/platform/api#/reference/event

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

Although the Events resource isn’t described here, descriptions are added for each of the Events
endpoints. The Events resource contains all of these endpoints:

+ /events/search/

 /events/

*+ /events/:id/

*+ /events/:id/

*+ /events/:id/publish/

*+ /events/:id/cancel/

*+ /events/:id/

+ /events/:id/display_settings/
*+ /events/:id/display_settings/
+ /events/:id/ticket_classes/

« /Jevents/:id/ticket_classes/:ticket_class_id/
*+ /events/:id/canned_questions/
*+ /events/:id/questions/

*+ /events/:id/attendees/

+ /events/:id/discounts

And so on.

When developers create APls, they have a design question to consider: Use many variants of endpoints (as
with Eventbrite’s API), or provide lots of parameters to configure the same endpoint. Often there’s a
balance between the two. The trend seems to be toward providing separate endpoints rather than
supplying a host of potentially confusing parameters within the same endpoint. On the other hand,
GraphQL APIs (which | don’t cover in this course) provide one endpoint with different ways to query the
information the endpoint contains. See GraphQL And REST Differences Explained With Burgers [for a
good explanation about GraphQL versus REST.

As another example, the previous version of the Instagram API depicted a Relationships resource as
follows:

‘]mTagnum ﬁ Sandbox Invites 0 Manage Clients 1 Log in
Search Documentation
. . .
— Relationship Endpoints
Authentication
/users/self/follows Get the list of users this user follows.
Login Permissions
/users/self/followed-by Get the list of users this user is followed by.
Permissions Review
/users/self/requested-by List the users who have requested to follow.
Sandbox Mode
/users/ user-id /relationship Get information about a relationship to another user.
Secure Requests
/users/ user-id /relationship Modify the relationship with target user.

Endpoints

Users GET /users/self/follows

Relationships

https://api.instagram.com/v1/users/self/follows?access_token=ACCESS-TOKEN RESPONSE ~

Media
‘ Get the list of users this user follows.

Comments

REQL TS
Likes Scope: follower_list
Tags PARAMETERS

ACCESS_TOKEN A valid access token.

Locations

Documenting REST APIs Page 123

http://apievangelist.com/2018/06/29/graphql-and-rest-differences-explained-with-burgers/

Step 1: Resource description (API reference tutorial) PDF last generated: August 27, 2023

The Relationships resource isn’t described but rather acts as a container for relationship endpoints.
Descriptions are added for each of the resources grouped within the Relationships resource:

*+ GET /users/self/followsGet

* GET /users/self/followed-byGet

+ GET /users/self/requested-byList

« GET /users/user-id/relationshipGet

+ POST /users/user-id/relationshipModify

(Instagram has since shifted to a Graph API [4.)

The description of the resource is likely something you’ll re-use in different places — product overviews,
tutorials, code samples, quick references, etc. As a result, put a lot of effort into crafting it. Consider storing
the description in a re-usable snippet in your authoring tool so that you can list it without resorting to copy/
paste methods in your quick start guide (p. 412).

Terminology for describing the resource

The exact terminology for referring to resources varies. The “things” that you access using a URL can be
referred to in a variety of ways, but “resource” is the most common term because you access them through
a URL, or uniform resource locator. Other than “resources,” you might see terms such as AP/ calls,
endpoints, APl methods, calls, objects, services, and requests. Some docs get around the situation by not
calling them anything explicitly except “Reference.”

Despite the variety with terminology, generally an API has various “resources” that you access through
“endpoints.” The endpoints give you access to the resource. (But terminology isn’t standard, so expect
variety.)

For more on how API terminology varies, see The difference between resources, endpoints, objects, and
items in the bung API documentation .

Recognize the difference between reference docs versus user guides

Resource descriptions (as well as endpoint descriptions) are typically short, usually 1-3 sentences. What if
you have a lot more detail to add? In these situations, keep in mind the difference between reference
documentation and user guides/tutorials:

+ Reference documentation: Concise, bare-bones information that developers can quickly
reference.

+ User guides/tutorials: More elaborate detail about how to use the API, including step-by-step
instructions, code samples, concepts, and procedures. | go into much more detail about this
content in Documenting concepts sections (p. 358).

Although the description in an API reference topic provides a 1-3 sentence summary of the information that
the resource contains, you might expand on this with much greater detail in the user guide. (You could link
the reference description to the places in the guide where you provide more detail.)

Resource description for the surfreport endpoint

Let’s review the surf report wiki page (p. 115) (which contains the information about the resource) and try to
describe the resource in 1-3 sentences. Here’s my approach:

Documenting REST APIs Page 124

https://developers.facebook.com/docs/instagram-api/
https://developers.trello.com/v1.0/reference#introduction
https://medium.com/bunq-developers-corner/the-difference-between-resources-endpoints-objects-and-items-in-the-bunq-api-documentation-6b774473542
https://medium.com/bunq-developers-corner/the-difference-between-resources-endpoints-objects-and-items-in-the-bunq-api-documentation-6b774473542

Surfreport PDF last generated: August 27, 2023

Surfreport

Contains information about surfing conditions, including the surf height, water temperature, wind, and tide.
Also provides an overall recommendation about whether to go surfing.

Next steps

Now it’s time to list out the endpoints and methods (p. 126) for the resource.

Documenting REST APIs Page 125

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

Step 2: Endpoints and methods (API
reference tutorial)

STEP 1: STEP 2: STEP 3: STEP 4:

Resource Resource Parameters Request

description - URLs and - - example -
methods

STEP 5:

Response ex-

ample and

schema

The endpoints indicate how you access the resource, while the method indicates the allowed interactions
(such as GET, POST, or DELETE) with the resource.

The same resource usually has a variety of related endpoints, each with different paths and methods but
returning different information about the same resource. Endpoints usually have brief descriptions similar to
the overall resource description but shorter. Also, the endpoint shows the end path of a resource URL only,
not the base path common to all endpoints.

Examples of endpoints

Here’s an example of the endpoints for the Relationships resource in the Instagram API:

Documenting REST APIs Page 126

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

C | @ Secure | https://www.instagram.com/developer/endpoints/relationships/ w @ 0®
Search Documentation
GET /users/self/follows
Overview
https://api.instagram. com/v1/users/sel f/fol lows?access_token=ACCESS-TOKEN RESPONSE ~

Authentication
Get the list of users this user follows.
Login Permissions
REQUIREMENTS

Permissions Review Scope: follower_list

Sandbox Mode
PARAMETERS

Secure Requests ACCESS_TOKEN A valid access token.
Endpoints
GET /users/self/followed-by
. Users
N . https://api.instagram. com/v1/users/sel f/followed-by?access_token-ACCESS-TOKEN RESPONSE ~
* Relationships
« Media Get the list of users this user is followed by.

s Comments &S

Scope: follower_list
¢ Likes

PARAMETERS

. Tags .
9 ACCESS_TOKEN A valid access token.

The endpoint is usually set off in a stylized way that gives it more visual attention. Much of the
documentation is built around the endpoint, so it might make sense to give each endpoint more visual
weight in your documentation.

The endpoint is arguably the most important aspect of APl documentation because this is what developers
will implement to make their requests.

Represent path parameters with curly braces

If you have path parameters (p. 136) in your endpoint, represent them through curly braces. For example,
here’s an example from Mailchimp’s API:

/campaigns/{campaign_id}/actions/send

If you can, put the path parameter in another color to set it off:

/campaigns/{campaign_id}/actions/send

Curly braces for path parameters are a convention that users will understand. In the above example, almost
no endpoint uses curly braces in the actual path syntax, so the {campaign_id} is an obvious placeholder.

Here’s an example from the Facebook API that colors the path parameter in an easily identifiable way:

Documenting REST APIs Page 127

https://www.instagram.com/developer/endpoints/relationships/
https://www.instagram.com/developer/endpoints/relationships/

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

Still using tomjoht@gmail.com? Visit your developer settings to update your email address and notification settings. x

All Docs & Docs |/ Graph API | Reference /| Achievement / On This Page v
Graph API Version v2.11 v
Graph API
Overview
. u
Using the Graph API 1
g the Grap Achievement /{achievement-1d}

Reference

Achievement Represents a user gaining an achievement in a Facebook game. Not to be confused with an

Achievement Type achievement type.

Album

Analytics App Events Export

App Link Host

App Request

Application Reading
Application Context

Async Session

Audience Insights Rule HTTP | PHP SDK | JavaScript SDK | Android SDK | iOS SDK | Graph APl Explorer » ‘
Comment GET /v2.11/{achie\ nt-id} HTTP/1.1
Conversation Host: graph.facebook.com

cument helpful?

When the parameters are described in Facebook’s docs, the same green color is used to set off the
parameters, which helps users recognize their meaning.

Path parameters aren’t always set off with a unique color (for example, some precede it with a colon), but
whatever the convention, make sure the path parameter is easily identifiable.

You can list the method next to the endpoint

It's common to list the method (GET, POST, and so on) next to the endpoint. The method defines the
operation with the resource. Briefly, each method is as follows:

« GET: Retrieves a resource

+ POST: Creates a resource

+ PUT: Updates or creates within an existing resource
+ PATCH: Partially modifies an existing resource

+ DELETE: Removes the resource

See Request methods (4 in Wikipedia's article on HTTP for more details. (There are some additional
methods, but they’re rarely used.)

Since there’s not much to say about the method itself, it makes sense to group the method with the
endpoint. Here’s an example from the Box API:

Documenting REST APIs Page 128

https://developers.facebook.com/docs/graph-api/reference/v2.11/achievement/
https://developers.facebook.com/docs/graph-api/reference/v2.11/achievement/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

box Quick Start Guides APIReference SDKs/Tools Support @ ~ My Apps Q

E23 List collection items

Comments Create comment

Comment

Comments /comments O Copy
m List file comments

EZ3 Get comment G Reguest RequestExample Response Bxampie

B Create comment
Adds a comment comment by the user to a specific file, or as areply to an other comment.
m Update comment

m Remove comment

Related Guides
Device pinners
Device pinner = Create Comment
Device pinners
2] Get device pin

EZ3 List enterprise device pins Request

PR Comova davica nin

Create Reply

And here’s an example from the Linkedin API:

Data Formats

Requesting data from the APls

Unless otherwise specified, all of LinkedIn's APls will return the information that you request in the XML
data format.

m https://api.linkedin.com/v1/people/~

sample response

<?xml version="1.0" encoding="UTF-8"7?>
<person>
<id>1R2RtA</id>
<first-name>Frodo</first-name>
<last-name>Baggins</last-name>
<headline>Jewelery Repossession in Middle Earth</headline>

n e o o nn FFL

Sometimes the method is referred to as the “verb.” GET, PUT, POST, PATCH, and DELETE are all verbs or
actions.

The endpoint shows the end path only

When you describe the endpoint, you list the end path only (hence the term “end point”). The full path that
contains both the base path and the endpoint is often called a resource URL.

Documenting REST APIs Page 129

https://developer.box.com/reference/post-comments/
https://developer.box.com/reference/post-comments/
https://developer.linkedin.com/docs/rest-api
https://developer.linkedin.com/docs/rest-api

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

In our sample API scenario, the endpoint is just /surfreport/{beachId} . You don’t have to list the full
resource URL every time (which would be https://api.openweathermap.org/surfreport/{beachId}).
Including the full resource URL would distract users from focusing on the path that matters. In your user
guide, you usually explain the full resource URL, along with the required authorization (p. 393), in an
introductory section (such as the Getting started tutorial (p. 379)).

How to group multiple endpoints for the same resource

Another consideration in documenting endpoints and methods is how to group and list the endpoints,
particularly if you have a lot of endpoints for the same resource. In Examples of resource descriptions (p.
120), we looked at a variety of APIs. Many doc sites provide different designs for grouping or listing each

endpoint for the resource, so | won’t revisit all the same examples. Group the endpoints in some way that
makes sense, such as by method or by the type of information returned.

For example, suppose you have three GET endpoints and one POST endpoint, all of which relate to the
same resource. Some doc sites might list all the endpoints for the same resource on the same page.
Others might break them into separate pages. Others might create one group for the GET endpoints and
another for the POST endpoints. It depends how much you have to say about each endpoint.

If the endpoints are mostly the same, consolidating them on a single page could make sense. But if they’re
substantially unique (with different responses, parameters, and error messages), separating them onto
different pages is probably better (and easier to manage). Then again, with a more sophisticated website
design, you can make lengthy information navigable on the same page.

In a later section on design patterns (p. 540), | explain that long pages (p. 546) are common pattern with
developer docs, in part because they make content easily findable for developers using Ctrl + F.

How to refer to endpoints in tutorials

In tutorials and other conceptual content, how do you refer to the endpoints within an API reference topic?
Referring to the “ /agi endpoint” or to the “ /weatherdata ” endpoint doesn’t make a huge difference.
But with more complex APIls, using the endpoint to talk about the resource can be tricky.

At one company | worked at, our URLs for the Rewards endpoints looked like this:

/rewards

/rewards/{rewardId}

/users/{userId}/rewards

/users/{userId}/rewards/{rewardId}
And rewards in context of Missions looked like this:

/users/{userId}/rewards/{missionId}

/missions/{missionid}/rewards

To say that you could use the rewards resource wasn’t always specific enough, because there were
multiple rewards and missions endpoints.

Documenting REST APIs Page 130

Step 2: Endpoints and methods (API reference tutorial) PDF last generated: August 27, 2023

It can get awkward referring to the endpoint. For example, you might have a sentence like this: “When you
call /users/{userId}/rewards/ ,you get a list of all rewards. To get a specific reward for a specific
mission for a specific user, the /users/{userId}/rewards/{missionId} endpoint takes several
parameters...”

The longer the endpoint, the more cumbersome the reference becomes. These kinds of descriptions are
more common in the conceptual sections (p. 358) of your documentation. Generally, there’s not a clear
convention about how to refer to cumbersome endpoints. Adopt an approach that makes the most sense
for your API.

Endpoint for surfreport API

Let’s create the Endpoints and methods section for our fictitious surfreport API (p. 115). Here’s my
approach:

Endpoints
surfreport/{beachld}

Gets the surf conditions for a specific beach ID.

Next steps

Now that we’ve described the resource and listed the endpoints and methods, it's time to tackle one of the
most important parts of an API reference topic: the parameters section (p. 132).

Documenting REST APIs Page 131

Step 3: Parameters (APl reference tutorial) PDF last generated: August 27, 2023

Step 3: Parameters (API reference
tutorial)

STEP 1: STEP 2: STEP 3: STEP 4:

Resource Resource Parameters Request

description URLs and - example -
methods

STEP 5:

Response ex-

ample and

schema

Parameters are options you can pass with the endpoint (such as specifying the response format or the
amount returned) to influence the response. There are several types of parameters: header parameters,
path parameters, and query string parameters. Request bodies are closely similar to parameters but are not
technically a parameter.

The different types of parameters are often documented in separate groups on the same page. Not all
endpoints contain each type of parameter.

Examples of parameters

The following screenshot shows a sample parameters section with the Box API:

Documenting REST APIs Page 132

Step 3: Parameters (APl reference tutorial) PDF last generated: August 27, 2023

Update comment

https://api.box.com/2.0/comments/: commant_id q‘: Copy

GO Request

Update the message of a comment,

Request

Content-Type application/jseon

Path Parameters

required
comment_id string inpath
eample 12345
The |C-of the comment.
Query Parameters
eptional

fields stringarray inguery
evample id,type,name

Acommarseparated list of attributes to inchude in the response. This can be used to request fields that are not
normally returned ina standard response.

Be aware that specifying this parameter will have the effect that none of the standard fields are
response unless explicitly specified, instead only iields for the mini representation are retu
fields requested.

turned in the

Request Body

eptional

Sample parameters from Box API

In this example, the parameters are grouped by type: path parameters, query parameters, and body
parameters. The endpoint also sets off the path parameter (comment_id) in a recognizable way in the
endpoint definition.

Many times parameters are simply listed in a table or definition list like this:

Parameter Required/Optional Data Type

format Optional String

Here’s an example from Yelp’s documentation:

Documenting REST APIs Page 133

https://developer.box.com/reference/put-comments-id/#request
https://developer.box.com/reference/put-comments-id/#request

Step 3: Parameters (APl reference tutorial)

Yelp Fusion SearCh API
Return to Yelp Fusion RequeSt
Name Method Description
APl v2 2/search GET Search for local businesses.
Get started Note: at this time, the API does not return businesses without any reviews.
API console General Search Parameters
Documentation Name Data Type Required / Optional Description
Introduction term string optional Search term (e.g. "food", "restaurants"). If term isn’t
included we search everything. The term keyword
also accepts business names such as "Starbucks".
Authentication
limit number optional Number of business results to return
Search API
offset number optional Offset the list of returned business results by this
Business API amount
Phone Search API sort number optional Sort mode: 0=Best matched (default), 1=Distance,
2=Highest Rated. If the mode is 1 or 2 a search may
iPhone Apps retrieve an additional 20 businesses past the initial
limit of the first 20 results. This is done by specifying
an offset and limit of 20. Sort by distance is only
Errors

Code samples

supported for a location or geographic search. The
rating sort is not strictly sorted by the rating value,
but by an adjusted rating value that takes into
account the number of ratings, similar to a bayesian

You can format the values in a variety of ways (aside from a table). If you’re using a definition list or other
non-table format, be sure to develop styles that make the values easily readable.

Several types of parameters

REST APIs have several types of parameters:

- Header parameters (p. 135): Parameters included in the request header, usually related to

authorization.

+ Path parameters (p. 136): Parameters within the path of the endpoint, before the query string

(7). These are usually set off within curly braces.
* Query string parameters (p. 136): Parameters in the query string of the endpoint, after the 7 .

Another property closely related to parameters, and which used to be referred to as a parameter in

PDF last generated: August 27, 2023

usually only used with CREATE or PUT methods and often includes a JSON object included in the body of

the request. More details are provided in Request bodies (p. 137).

The terms for each of these parameter types comes from the OpenAPI specification (p. 272), which defines
a formal specification that includes descriptions of each parameter type (see the Path object tutorial (p.
291)). Using industry standard terminology helps you develop a vocabulary to describe different elements

of an API.

What to note in parameter documentation

Regardless of the parameter type, define the following with each parameter:

+ Data type (p. 135)

+ Max and min value (p. 135)

Documenting REST APIs

Page 134

https://www.yelp.com/developers/documentation/v2/search_api
https://www.yelp.com/developers/documentation/v2/search_api
https://swagger.io/docs/specification/2-0/describing-request-body/
https://swagger.io/docs/specification/2-0/describing-request-body/
https://swagger.io/docs/specification/describing-request-body/
https://swagger.io/docs/specification/describing-request-body/

Step 3: Parameters (APl reference tutorial) PDF last generated: August 27, 2023

Data types for parameters

APIls may not process the parameter correctly if it’s the wrong data type or wrong format. Listing the data
type is usually a good idea with all parameter types but is especially true for request bodies, since these
are typically formatted in JSON.

These data types are the most common with REST APls:

+ string: An alphanumeric sequence of letters and/or numbers
+ integer: A whole number — can be positive or negative

+ boolean: True or false value

+ object: Key-value pairs in JSON format

+ array: A list of values

There are more data types in programming, and if you have more specific data types that are important to
note, be sure to document them. In Java, for example, it’s important to note the data type allowed because
Java allocates memory space based on the size of the data. As such, Java gets much more specific about
the size of the numbers. You have a byte, short, int, double, long, float, char, boolean, and so on. However,
you usually don’t have to specify this level of detail with a REST API.

Max and min values for parameters

In addition to specifying the data type, the parameters should indicate the maximum, minimum, and
allowed values if appropriate. For example, if the weather API allows only longitude and latitude
coordinates of specific countries, these limits should be described in the parameters documentation.
Omitting information about max/min values or other prohibited values (when applicable) is a common pitfall
in docs.

Not every parameter needs max and min values, however. Note these exceptions:

« Booleans: With Booleans, the only options are true or false, so there’s no need for max/min
values.

+ Strings that use enums: If a string restricts possible values to enums (an enumerated list), the
max/min values wouldn’t be appropriate. For example, a geo-related enum might allow only
these values: north, south, east, west. There is no max/min value in this case.

In general, as you document parameters, if the parameters allow more freeform values (outside of Booleans
and enums), consider ways that developers might break the API. For example, if the API provides an ID
field, try entering an ID that is 300 characters long. If you can submit a file attachment, try submitting an 80
MB file.

Your developer audience needs to know the limits applicable to fields. Many times your product team
might not even know what limitations exist. (Your QA team should know, though, since it’s their job to try to
push the system to its limits and break it.)

When you test an API, try running an endpoint without the required parameters, or with the wrong
parameters, or with values that exceed the max or min amounts. See what kind of error response comes
back. Include that response in your status and error codes section (p. 402). | talk more about the
importance of testing in Testing your docs (p. 342).

Header parameters

Header parameters are included in the request header. Usually, the header just includes authorization
parameters that are common across all endpoints; as a result, the header parameters aren’t usually
documented with each endpoint. Instead, the authorization details in header parameters are documented in
the authorization requirements section (p. 393).

Documenting REST APIs Page 135

Step 3: Parameters (APl reference tutorial) PDF last generated: August 27, 2023

However, if your endpoint requires unique parameters to be passed in the header, you would document
them in the parameters documentation within each endpoint.

Path parameters
Path parameters are part of the endpoint itself and are not optional. For example, in the following endpoint,
{user} and {bicycleId} are required path parameters:

/service/myresource/user/{user}/bicycles/{bicycleId}

Path parameters are usually set off with curly braces, but some API doc styles precede the value with a
colon or use a different syntax. When you document path parameters, indicate the default values, the
allowed values, and other details.

Color coding the path parameters

When you list the path parameters in your endpoint, it can help to color code the parameters to make them
more easily identifiable. Color coding the parameters makes it clear what’s a path parameter and what’s
not. Through color, you create an immediate connection between the endpoint and the parameter
definitions.

For example, you could color code your parameters like this:
/service/myresource/user/{user}/bicycles/{bicycleId}

You could then use the same color for these parameters in later descriptions:

URL Parameter Description
user Here's my description of the user parameter.
bicycleId Here's my description of the bicycles parameter.

By color coding the parameters, it's easy to see the parameter being defined and how it relates to the
endpoint definition.

Query string parameters

Query string parameters appear after a question mark (?) in the endpoint. The question mark followed by
the parameters and their values is referred to as the “query string.” In the query string, each parameter is
listed one right after the other with an ampersand (&) separating them. The order of the query string
parameters does not matter.

For example:
/surfreport/{beachId}?days=3&units=metric&time=1400

and

Documenting REST APIs Page 136

Step 3: Parameters (APl reference tutorial) PDF last generated: August 27, 2023

/surfreport/{beachId}?time=1400&units=metric&days=3

would return the same result.

However, with path parameters, the order does matter. If the parameter is part of the actual endpoint (not
added after the query string), you usually describe this value in the description of the endpoint itself.

Request bodies

Frequently, with POST requests (where you’re creating something), you submit a JSON object in the
request body. This is known as a request body, and the format is usually JSON. This JSON object may be
a lengthy list of key-value pairs with multiple levels of nesting.

For example, the endpoint may be something simple, such as /surfreport/{beachId} . Butin the body
of the request, you might include a JSON object with many key-value pairs, like this:

{

"days'": 2,

"units": "imperial",
"time": 1433524597

}

In OpenAPI v2.0, request bodies were classified as a type of parameter, but in v3.0, they are not
considered a parameter but rather a path property. Given that the request body functions like a parameter,
I’'ve decided to leave them classified as a parameter for now. However, note that in the OpenAPI spec,
request bodies are technically not a parameter.

Documenting complex request bodies

Documenting JSON data (both in request bodies and responses) is one of the trickier parts of API
documentation. Documenting a JSON object is easy if the object is simple, with just a few key-value pairs
at the same level. But if you have a JSON object with multiple objects inside objects, numerous levels of
nesting, and lengthy conditional data, it can be tricky. And if the JSON object spans more than 100 lines, or
1,000, you’ll need to think carefully about how you present the information.

Tables work all right for documenting JSON, but in a table, it can be hard to distinguish between top-level
and sub-level items. The object that contains an object that also contains an object, and another object,
etc., can be confusing to represent.

By all means, if the JSON object is relatively small, a table is probably your best option. But there are other
approaches that designers have taken as well.

Take a look at eBay'’s findltemsByProduct (4 resource. Here’s the request body (in this case, the format is
XML):

Documenting REST APIs Page 137

http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html

Step 3: Parameters (APl reference tutorial)

'Y/ " developers program
eBay Finding APl Version 1.13.0

Features Guide Users Guide Making a Call API Reference Tutorials

PDF last generated: August 27, 2023

Home All Docs Support Knowledge Base Forum

Release Notes

x
Input
» Call Index . 5 B . L . . B
) The box below lists all fields that could be included in the call request. To learn more about an individual field or its type, click its name in the box (or
Field Index down to find it in the table below the box).
Enumeration Index
Type Index See also Samples.
Errors by Number <?xml version="1.0" encoding="utf-8"?>
<findItemsByProductRequest xmlns="http://www.ebay.com/marketplace/search/vl/services">
<!-- Call-specific Input Fields -->

<itemFilter> ItemFilter

<name> ItemFilterType </name>

<paramName> token </paramName>

<paramValue> string </paramValue>
<value> string </value>

<!-- ... more value values allowed here ...

</itemFilter>

<!-- ... more itemFilter nodes allowed here ...

<outputSelector> O;
<!-- ... more outputSelector values allowed here ...

lectorTy,

-—>

-—>
</outputSelector>

<productId type="string"> ProductId (string) </productId>
<!-- Standard Input Fields -->

<affiliate> Affiliate

<customId> string </customId>
<geoTargeting> boolean </geoTargeting>

<networkId> string </networkId>

<trackingId> string </trackingId>

</affiliate>

<buyerPostalCode> string </buyerPostalCode>

<paginationInput> PaginationInput

<entriesPerPage> int </entriesPerPage>

-

</paginationInput>

<sortOrder> SortOrderType </sortOrder>
</findItemsByProductRequest>

Below the request body is a table that describes each parameter:

1Y/ " developers program
eBay Finding APl Version 1.13.0

Features Guide Users Guide Making a Call API| Reference Tutorials

Release Notes

x

Argument Type Occurrence
Call Index
Field Index Call-specific Input Fields [Jump to standard fields]
Enumeration Index itemFilter o Fiter gpg‘:a?::;\e 0.1
Type Index
Errors by Number itemFilter.name temFiterType Optional

itemFilter.paramName token Optional

string Optional

itemFilter.paramValue

Home All Docs Support Knowledge Base Forums Resourc

q

Meaning

Reduce the number of items returned by a find request using item filters. Use itemFilter
to specify name/value pairs. You can include multiple item filters in a single request.

Specify the name of the item filter you want to use. The itemFilter name must have a
corresponding value. You can apply multiple itemFilter Name/Value pairs in a single
request.

Applicable values: See name.
See:
ItemFilterType for more information about the allowed values, usage rules, and
dependencies
Call Sample: Using itemFilters to define a price range
findltemsAdvanced Call Sample: Using itemFilters to search for used Buy It Now items

In addition to filter Name/Value pairs, some it rs use an

Name/Value pair. Specifically, filters that use currency values (MaxPrice and MinPrice)
make use of addition parameters. When you use these itemFilters, set paramName to
Currency and provide the currency ID in paramValue.

For example, if you use the MaxPrice itemFilter, you will need to specify a parameter
Name of Currency with a parameter Value that specifies the type of currency desired.

Note that for MaxPrice and MinPrice itemFilters, the default value for paramName is
Currency.

The currency value i with the ive itemFilter Name.

Usually paramName is set to Currency and paramValue is set to the currency type in
which the monetary transaction occurs.

Note that for MaxPrice and MinPrice itemFilters. the default value for baramValue is

But the sample request also contains links to each of the parameters. When you click a parameter value in
the sample request, you go to a page that provides more details about that parameter value, such as the

complex and require detailed explanation.

The same parameter values might be used in other requests as well, so eBay’s approach likely facilitates
re-use. Even so, | dislike jumping around to other pages for the information | need.

Documenting REST APIs

Page 138

http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html
http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html
http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html
http://developer.ebay.com/DevZone/finding/CallRef/findItemsByProduct.html
http://developer.ebay.com/DevZone/finding/CallRef/types/ItemFilter.html
http://developer.ebay.com/DevZone/finding/CallRef/types/ItemFilter.html

Step 3: Parameters (APl reference tutorial) PDF last generated: August 27, 2023

Swagger Ul's approach to request bodies

Swagger Ul (p. 218), which we explore later and also demo (p. 240), provides another approach to
documenting the request bodies. Swagger Ul shows the request bodies in the format that you see below.
Swagger Ul lets you toggle between an “Example Value” and a “Model” view for both responses and

request bodies.

m /pet Add a new pet to the store a8
Parameters Try it out

Name Description

body * =auI*d Pet object that needs to be added to the store

bod:;
(body) Example Value Model

Pet v ¢
id integer ($int64)
catego
e Category v {
id integer($int64)
name string
}
name* string
example: doggie
photoUrls*
v I
xml: OrderedMap { "name": "photoUrl", "wrapped": true }
string]
t
ags w [i
xml: OrderedMap { "name"”: "tag”, "wrapped”: true }
Tag > {...}]
status string
pet status in the store
Enum:

v [available, pending, sold]

See the Swagger Petstore [4 to explore the demo here. The Example Value shows a sample of the syntax
along with examples. When you click the Model link, you see a sample request body and any descriptions
of each element.

The Model includes expand/collapse toggles with the values. (The Petstore demo 4 doesn’t include many

parameter descriptions in the Model, but if you include descriptions, they would appear here in the Model
rather than in the Example Value.)

We’'ll get into Swagger in much more detail in Introduction to the OpenAPI specification (p. 181). For now,
focus on these core elements of API reference documentation. You will see these same sections appear in
the OpenAPI specification.

You can see that there’s a lot of variety in documenting JSON and XML in request bodies. There’s no right
way to document the information. As always, choose the method that depicts your API’s parameters in the
clearest, easiest-to-read way.

If you have relatively simple parameters, your choice won’t matter that much. But if you have complex,
unwieldy parameters, you may have to resort to custom styling and templates to present them more
clearly. | explore this topic in more depth in the Response example and schema section (p. 154).

Documenting REST APIs Page 139

http://petstore.swagger.io/#/operations/pet/addPet
http://petstore.swagger.io/#/operations/pet/addPet
http://petstore.swagger.io/
http://petstore.swagger.io/

Step 3: Parameters (APl reference tutorial) PDF last generated: August 27, 2023

Parameters for the surfreport endpoint

For our new surfreport resource, let’s look through the parameters available and create a table describing
the parameters. Here’s what my parameter information looks like:

Parameters

Path parameters

Path parameter Description

The value for the beach you want to look up. Valid beachId values

{beachId} . .
are available from our site at sampleurl.com.

Query string parameters

Query

string Required / optional Description
parameter

The number of days to include in the

d Optional Integer
=i P response. Default is 3. 9
Integer. Unix
If you include the time, then only the forrr?at e
time Optional current hour will be returned in the))
respONSe since 1970) in
ponse. uTC.

Even if you use Markdown for docs, you might consider using HTML syntax with tables. You usually want
the control over column widths to make some columns wider or narrower. Markdown doesn’t allow that
granular level of control. With HTML, you can use a colgroup property to specify the col width for
each column.

Next steps

Now that we’ve documented the parameters, it’s time to show a sample request (p. 141) for the resource.

Documenting REST APIs Page 140

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Step 4: Request example (API
reference tutorial)

STEP 1: STEP 2: STEP 3: STEP 4:

Resource Resource Parameters Request

description - URLs and - - example -
methods

STEP 5:

Response ex-

ample and

schema

The request example includes a sample request using the endpoint, showing some parameters configured.
The request example usually doesn’t show all possible parameter configurations, but it should be as rich as
possible with parameters.

Sample requests sometimes include code snippets that show the same request in a variety of languages
(besides curl). Requests shown in other programming languages are optional and not always included in
the reference topics (but when available, users welcome them).

Examples of requests

The following example shows a sample request from the Callfire API (5:

Documenting REST APIs Page 141

https://developers.callfire.com/docs.html#pagination

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

curl C#.NET Java JS Python PHP

]

Fire

DEVELOPERS By default, most list endpoints return a maximum of 100 records

Pagination

Example Request

kpew page. You can change the number of records on a per-
request basis by passing a limit parameter in the request URL
parameters. Example: limit=50. When the response exceeds the
per-page maximum, you can paginate through the records by
increasing the offset parameter. Example: offset=200 will return
100 records starting from 200th. Along with returned data the

page response also returns limit, offset and totalCount fields

Errors

Pagination
"totalCoun
}

Partial Response

Calls

. skipped ...

Sample request from Callfire

The design of this API doc site arranges the sample requests and responses in the right column of a three-
column layout. The request is formatted in curl, which we explored earlier in Make a curl call (p. 80).

curl —-u "username:password" -H "Content-Type:application/json" -X GET "http
s://api.callfire.com/v2/texts?1limit=50&0ffset=200"
curl is a common format to show requests for several reasons:

+ curl is language agnostic, so it’s not specific to one particular programming language.
+ curl shows the header information required in the request.
+ curl shows the method used with the request.

In general, use curl to show your sample request. Here’s another example of a curl request in the Parse
API:

Documenting REST APIs Page 142

https://developers.callfire.com/docs.html#pagination
https://developers.callfire.com/docs.html#pagination

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Updating Objects

To change the data on an object that already exists, send a PUT request to the
Your Configuration

Getting Started
Quick Reference
Objects

object URL. Any keys you don’t specify will remain unchanged, so you can update
just a subset of the object’s data. For example, if we wanted to change the score

field of our object:

Object Format
Creating Objects
Retrieving Objects curl -X PUT \

Updating Objects -H "X-Parse-Application-Id: ${APPLICATION_ID3" \
-H "X-Parse-REST-API-Key: ${REST_API_KEY3" \
-H "Content-Type: application/json" \

Counters -d '{"score":734533'
Arrays https://YOUR.PARSE-SERVER.HERE /parse/classes/GameScore/EdlnugPvcm
Relations

Deleting Objects
Batch Operations
Data Types

Queries The response body is a JSON object containing just an updatedAt field with the

Users timestamp of the update.

You can add backslashes in curl to separate each parameter onto its own line (though, as | pointed out in
the curl tutorial (p. 81), Windows has trouble with backslashes).

Other API doc sites might use the full resource URL, such as this plain example from Twitter:

9 Developer Usecases Products Docs More Apply (o} ":

skip_status optional When set to either true, false false
tor 1statuses will not
be included in the
returned user objects.

include_user_entities optional The user object entities true false
node will not be
included when set to
false.

Example Request

GET https://api.twitter.com/1.1/friends/list.json?
cursor=-1&screen_name=twitterapi&skip_status=true&include_user_entities=false

Example Response

"previous_cursor": 0,
"previous_cursor_str": "0",
"next_cursor”: 1333504313713126852,
"users™: [
{
"profile_sidebar_fill_color": "252429",

Documenting REST APIs Page 143

http://docs.parseplatform.org/rest/guide/#updating-objects
http://docs.parseplatform.org/rest/guide/#updating-objects
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-list
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-list

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

The resource URL includes both the base path and the endpoint. One problem with showing the full
resource URL is that it doesn’t indicate if any header information needs to be passed to authorize the
request. (If your API consists of GET requests only and doesn’t require authorization, great, but few APIs
are set up this way.) curl requests can easily show any header parameters.

Multiple request examples

If you have a lot of parameters, consider including several request examples. In the CityGrid Places API,

https://api.citygridmedia.com/content/places/v2/search/where

However, there are literally 17 possible query string parameters [you can use with this endpoint. As a
result, the documentation includes several sample requests that show various parameter combinations:

Where Search Usage Examples
The following table provides some example uses and their corresponding URL with query parameters. Click on the links to try them out.
Usage URL

Find movie theaters in zip code 90045 https://api.citygridmedia.com/content/places/v2/search/whera?
type=movietheater&where=980045&publisher=test

Find ltalian restaurants in Chicago using https:/fapi.citygridmedia.com/content/places/v2/search/iwhere?

placement “sec-5" what=restaurant&where=chicago,|L&tag=11279&placement=sec-5&publisher=test
Find hotels in Boston, viewing results 1-5 in https:f/api.citygridmedia.com/content/places/v2/search/where?

alphabetical order what=hotels&where=boston,ma&page=18&rpp=58&sort=alpha&publisher=test

Find pharmacies near the L.A. County Music https://api.citygridmedia.com/content/places/v2/search/where?
Center, sorted by distance what=pharmacy&where=135+N+Grand, LosAngeles,cadsort=dist&publisher=test

Specifying the Where Parameter

To search for a location with a string, use the where endpoint and set the where parameter to the location’s name or zip code. The CityGrid service
will automatically parse the text and determine the geographical region to be searched.

Adding multiple request examples makes sense when the parameters wouldn’t usually be used together.
For example, there are few cases where you might actually include all 17 parameters in the same request,
so any sample will be limited in what it can show.

This example shows how to “Find hotels in Boston, viewing results 1-5 in alphabetical order”:

https://api.citygridmedia.com/content/places/v2/search/where?what=hotels&whe
re=boston,ma&page=1&rpp=5&sort=alpha&publisher=test&format=json

If you click the link (5, you can see the response directly. In the responses topic (p. 164), | get into more

detail about dynamically showing the response when users click a request.

How many different requests and responses should you show? There’s probably no easy answer, but
probably no more than a few. You decide what makes sense for your API. Users will usually understand the
pattern after a few examples.

Documenting REST APIs Page 144

http://docs.citygridmedia.com/display/citygridv2/Places+API#PlacesAPI-WhereSearchHTTPSEndpoint
http://docs.citygridmedia.com/display/citygridv2/Places+API#PlacesAPI-WhereSearchHTTPSEndpoint
http://docs.citygridmedia.com/display/citygridv2/Places+API#PlacesAPI-WhereSearchRequest
http://docs.citygridmedia.com/display/citygridv2/Places+API
http://docs.citygridmedia.com/display/citygridv2/Places+API
https://api.citygridmedia.com/content/places/v2/search/where?what=hotels&where=boston,ma&page=1&rpp=5&sort=alpha&publisher=test&format=json

Step 4: Request example (API reference tutorial) PDF last generated: August 27, 2023

Requests in various languages

As noted earlier, in What is a REST API? (p. 36), REST APIs are language agnostic. The universal protocol
helps facilitate widespread adoption across programming languages. Developers can code their
applications in any language, from Java to Ruby to JavaScript, Python, C#, Node JS, or something else. As
long as developers can make an HTTP web request in that language, they can use the API. The response
from the web request will contain the data in either JSON or XML.

Because you can’t entirely know which language your end users will be developing in, it’s kind of fruitless
to try to provide code samples in every language. Many APls just show the format for submitting requests
and a sample response, and the authors will assume that developers will know how to submit HTTP
requests in their particular programming language.

However, some APIs do show simple requests in a variety of languages. Here’s an example from Twilio:

+ SIGN UP = MENU & PRO

lio Voice API > Making Calls

Make an Outbound Call + 1/4 3
MAKING BALI—S JAVA v&p CODE OUTPUT 0D & % X

SDK Wersion: 6.x 7.x

e sa helper library f twi va/instal
Rate this page ‘;ﬁ{ 7‘:{ jf(‘jf({? CURL A
JAVA USyntaxException;
Using the Twilio REST API, you can make outgoing calls to lell= b .
PHP .Twilio;
phones, SIP-enabled endpcints, and Twilio PYTHON .rest.api.v2010.account.Call;
Client connections. RUBY .type.PhoneNumber;

puuLie wiuss caunple {
For a step-by-step guide complete with code samples, /7 Fin ir Account Sid and Token at twilio. cer/account
check out How to Make Outbound Phone Calls in your public static final String ACCOUNT_SID = "ACXOOOOOOO0COOOOOO000
public static final String AUTH_TOKEN = "your_auth_token";

web language of choice.

public static void main(String[] args) throws URISyntaxException {
Note that calls initiated via the REST API are rate-limited to Twilio.init(ACCOUNT_SID, AUTH_TOKEN);

one per second. You can queue up as many calls as you
Call call = Call.creator(new PhoneNumber("+14155551212"), new Pt

like as fast as you like, but each callis popped off the new URI("http://demo.twilio.com/docs/voice.xml")).create();

gueue at a rate of one per second.
Cuectam nut arintlnlecall AatCi A0

You can select which language you want for the sample request: C#, curl, Java, Node.js, PHP, Python, or

Ruby.

Here’s another example from the Clearbit API:

Documenting REST APIs Page 145

https://www.twilio.com/docs/api/rest/making-calls
https://www.twilio.com/docs/api/rest/making-calls

Step 4: Request example (API reference tutorial)

Combined API

A common use-case is looking up a person and company
simultaneously based on a email address. To save you making two

requests to do this, we offer a combined lookup API.

This endpoint expects an email address, and will return an object
containing both the person and company (if found). A call to the

combined lookup will only count as one API call.

HTTP REQUEST

GET https://person.clearbit.com/v2/combined/find?email=:email
(Where :email is the person’s email address)

HTTP GET PARAMS

Alongside the email address you may also provide any additional
attributes you have about the person, such as their given and family
names. Including more detail will help us be more accurate when

searching.

The supported parameters are:

param Description

email string (required)

The email address to look up.

PDF last generated: August 27, 2023

Shell Ruby Node Python

To lookup both a company and person based on an email address:

var clearbit = require('clearbit')

clearbit.Enrichment.find({
ean: truel)
.the nction (response) {
person = response.person;
company = response.company;

console.log('Name: ', person && person.name.fullName

P
b
(function Cerr) {
console.error(err);

s

The stream option ensures that the request blocks until Clearbit has
found some data on both the person & company. For cached
information this will return in the region of 300 milliseconds, for
uncached requests 2-4 seconds. If speed is key, you can omit the
stream option and try the request again later (if you receive a

pending response). Alternatively you can use our webhook API.

You can see the request in Shell (curl), Ruby, Node, or Python. Developers can easily copy the needed
code into their applications, rather than figuring out