
File Handling

Input - Output

• Input is any information provided to the program

• Keyboard input

• Mouse input

• File input

• Sensor input (microphone, camera, photo cell, etc.)

• Output is any information (or effect) that a program produces:

• sounds, lights, pictures, text, motion, etc.

• on a screen, in a file, on a disk or tape, etc.

Need of Files

• Small businesses accumulate various types of data, such as financial

information related to revenues and expenses and data about

employees, customers and vendors.

• Traditional file organization describes storing data in paper files, within

folders and filing cabinets.

• Electronic file organization is a common alternative to paper filing; each

system has its benefits and drawbacks.

File Handling

• A file stores information or data in different formats in the permanent

storage/Hard disk of a computer system. The different types data

includes, audio files, video files, text files, binary files, etc.

• Files can be stored with different file extensions based on the software

in which the data is stored.

• MS Word files - doc or docx extension

• MS Excel files - xls or xlsx extension

• Notepad files - txt extension

• Wordpad files - dat extension

• Video files - mp4 extension

• Audio files - mp3 extension

File Handling

• Basically any file can store two types of data formats.

• Raw/Binary data

• Text/User readable data

• Text files: In this type of file, Each line of text is terminated with a

special character called EOL (End of Line), which is the new line

character (‘\n’) in python by default.

• Binary files: In this type of file, there is no terminator for a line and

the data is stored after converting it into machine-understandable

binary language.

File Operations

• Any file operation follows a sequence such as

• Open a file

• Read or Write (Perform operation)

• Close a file

Opening a File

• The open() function is used to open a file in Python. The open() function

return a file object and the file object is used to read or modify the file

contents. The syntax is

file object = open(“file name”, “mode”)

• File object is a variable storing the file object for open() function. File

name is the name of the file along with path and extension to be given.

In Mode, we have to specify whether we want read, write or append to

the file.

• We can also specify if we want to open the file in text mode or binary

mode. The default is reading in text mode.

Opening a File

Mode Description

r Opens a file for reading. (default)

w

Opens a file for writing. Creates a new file if it does not exist or

truncates the file if it exists and overwrites. Cursor/Handle is

positioned at the beginning of the file.

a
Opens a file for appending at the end of the file without truncating

it. Creates a new file if it does not exist.

t Opens in text mode. (default)

b Opens in binary mode.

+ Opens a file for updating (reading and writing)

Opening a File

Mode Description

r+

Both Read/Write [will not create the file if file is not present. Will

overwrite from the beginning of the file while writing][will not

truncate]

w+

Both Read/Write [Will create the file if file is not present and will

write from the beginning]. For an existing file, data is truncated

and over-written. The handle is positioned at the beginning of the

file.

a+
Appending/Reading [append and read][will create the file if file

not present]

Reading a File

• To read a file in Python, we must open the file in reading ’r’ mode. There

are various methods available with the file object.

Method Description

close()
Closes an opened file. It has no effect if the file is already

closed.

read(n)
Reads at most n characters from the file. Reads till end of file if

it is negative or None.

readline(n=-1)
Reads and returns one line from the file. Reads in at most n

bytes if specified.

readlines(n=-1)
Reads and returns a list of lines from the file. Reads in at most n

bytes/characters if specified.

Reading a File

file=open("a.txt", 'r') #Opens a file in read mode
print(file.read()) #Reads entire file contents
file.close() #Closes the file

file1=open("a.txt", mode='r')
print(file1.read())
file1.close()

file=open("C:\\Users\\Admin\\Desktop\\a.txt", 'rt')
#Opens a file in read mode in text format i.e. by default read mode in
text format only, so no need to mention ‘t’ along with ‘r’
print(file.read()) #Reads entire file contents
file.close() #Closing the file

file=open("C:/Users/Admin/Desktop/a.txt", 'r') #Try path this way
file=open(r"C:\Users\Admin\Desktop\a.txt", 'r') #Try path this way

Reading a File

file=open("a.txt", 'r') #Opening a file in read mode
print(file.read(10)) #Reads first 10 characters only
print(file.read(10)) #From the current position it reads 10 characters
file.close() #Closing the file

file=open("a.txt", 'r') #Opening a file in read mode
print(file.readline()) #Reads first one line only
print(file.readline()) #Reads second line only
print(file.readline()) #Reads third line only
file.close() #Closing the file

file1=open("a.txt", 'r') #Opening a file in read mode
print(file1.readlines()) #Reads all the lines and display as list of lines
file1.close() #Closing the file

Creating a New File

• To create a new file, we use open() function with one of the following

parameters.

"x" - Create - will create a file, returns an error if the file exists

"a" - Append - will create a file if the specified file does not exist

"w" - Write - will create a file if the specified file does not exist

>>>file=open("b.txt", ‘x')
>>>file=open(“c.txt", ‘a')
>>>file=open(“d.txt", 'w')

Writing to a File

• There are two ways to write into a file.

Method Description

write(s)
Writes the strings to the file and returns the number of

characters written.

writelines(lines) Writes a list of lines to the file.

write() : Inserts the string str1 in a single line in the text file.

file object.write(str1)

writelines() : For a list of string elements, each string is inserted in the text

file. Used to insert multiple strings at a single time.

file object.writelines(L) for L = [str1, str2, str3]

Writing to a File

f1=open("a.txt", 'w')
f1.write("Welcome to Python Programming")
f1.close()

f1=open("a.txt", 'w')
S1="Welcome to Python Programming"
print(f1.write(S1)) # Displays no. of characters written
f1.close()

f1=open("a.txt", 'w')
S1="Welcome to Python Programming"
L1=['first line\n', 'second line\n', 'third line']
print(f1.write(S1)) # Displays no. of characters written
print(f1.writelines(L1))
f1.close()

Writing to a File

f1=open(“c.txt", 'w')
f1.write("Welcome to Python Programming")
f1.close()

f1=open(“c.txt", ‘a') #Appending data to a file
L1=['first line\n', 'second line\n', 'third line']
print(f1.writelines(L1))
f1.close()

Writing to a File

#Writing integer values to a file
f1=open("aa.txt", "w")
for i in range(20):

f1.write('%d\n'%i)
f1.close()

#Writing integer values to a file
f1=open("ab.txt", "w")
for i in range(1,11):

f1.write(" This is line %d\n " %i)
f1.close()

Writing to a File

#Writing multiple integer values to a file
f1=open("a.txt", 'w')
for i in range(1,11):

f1.writelines(['%d\t'%i, '%d\n'%(10*i)])
f1.close()

#Writing floating point values to a file
f1=open("a.txt", 'w')
f1.write("The square root of first 10 numbers:\n")
for i in range(1,11):

f1.writelines(['%d\t'%i, '%f\n'%(i**0.5)])
f1.close()

