

Cambridge IGCSE[™]

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 0580/02

Paper 2 Non-calculator (Extended)

For examination from 2025

Practice Test 2 2 hours

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.
- You may use tracing paper.
- You must show all necessary working clearly.

INFORMATION

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

List of formulas

Area, A, of triangle, base b, height h.

$$A = \frac{1}{2}bh$$

Area, A, of circle of radius r.

$$A = \pi r^2$$

Circumference, C, of circle of radius r.

$$C = 2\pi r$$

Curved surface area, A, of cylinder of radius r, height h.

$$A = 2\pi rh$$

Curved surface area, A, of cone of radius r, sloping edge l.

$$A = \pi r l$$

Surface area, A, of sphere of radius r.

$$A=4\pi r^2$$

Volume, V, of prism, cross-sectional area A, length l.

$$V = Al$$

Volume, V, of pyramid, base area A, height h.

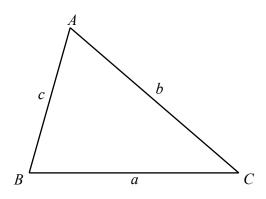
$$V = \frac{1}{3}Ah$$

Volume, V, of cylinder of radius r, height h.

$$V = \pi r^2 h$$

Volume, V, of cone of radius r, height h.

$$V = \frac{1}{3}\pi r^2 h$$


Volume, V, of sphere of radius r.

$$V = \frac{4}{3}\pi r^3$$

For the equation $ax^2 + bx + c = 0$, where $a \ne 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For the triangle shown,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Area =
$$\frac{1}{2}ab\sin C$$

Calculators must **not** be used in this paper.


1	Write 2.70486	correct to 3	decimal	nlaces
1	WITE 2./04 OC	0 0011601 10 3	uccilliai	praces

F 4 7

2 Simplify.

$$10y - 2y + 5y$$

3 The bar chart shows the marks scored by a group of students in a test.

(a) Write down the mode.

 г.	1 -	1
		ı
 	1	ı

(b) Work out the total number of students in the group.

 Г1	ı
 1	ı

(c) Find the median score.

4	The scale of	drawing	shows 1	the po	sition	of town A	and town	В.
---	--------------	---------	---------	--------	--------	-----------	----------	----

Town B is due north of town A. The scale of the drawing is 1 cm to 5 km.

Scale: 1 cm to 5 km

(a) Town C lies to the east of the line AB. It is 25 km from A and 40 km from B.

Using a ruler and a pair of compasses only, construct the position of town C on the scale drawing. [3]

4	(I.)	. 3.7 41	1 .	C 4	α c	
1	n	Measure the	nearing	or rown	(trom	town A
ч		111Cabale alle	Couring	01 10 11 11	CHOIL	CO 11 11 11

.....[1]

5 Write down the reciprocal of 9.

(a)	0.2	$\times 0.4$
\a,	0.2	$^{\wedge}$ $^{\circ}$

|--|

(b)
$$\frac{1}{3} + \frac{2}{3} \div \frac{7}{6}$$

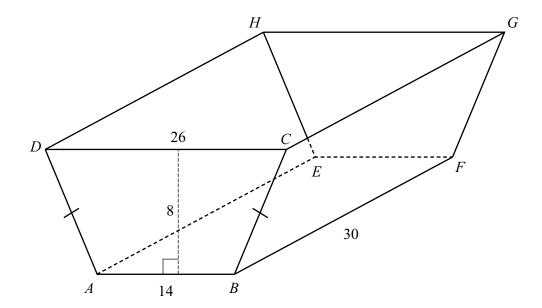
L .

7 Factorise.

$$12ab - 3a^2$$

0	1.1	1	•	1.1	C	4.	1 1	1	4	1
8	Mava	nas a	sommer	with	Iour	sections	numbered	1	w.	4

She spins the spinner 200 times.


Her results are shown in the table.

Number on spinner	1	2	3	4
Frequency	25	70	55	50

(a) (i) Write down	the relative	frequency	of the s	ninner la	nding o	n 2

		[1]
	(ii)	Maya says that this relative frequency is a good estimate for the probability of the spinner landing on 2.
		Explain why she is correct.
		[1]
(b)	May	va spins the spinner 500 times.
	Fino	the number of times Maya should expect the spinner to land on 2.

	line <i>P</i> is $5x + 2y = 13$. line <i>Q</i> is $y = 2x - 7$.	
(a) Find the gra	idient of line P.	
		[2]
(b) Find the coo	ordinates of the point of intersection of li	ne Q with the x -axis.
		() [2]
(c) Find the coo	ordinates of the point of intersection of li	ne P and line Q .

The diagram shows a container in the shape of a prism with an open top.

The cross-section of the prism, ABCD, is a trapezium.

AB = 14 cm, CD = 26 cm and BF = 30 cm.

The height of the container is 8 cm.

(a) Calculate the area of trapezium ABCD.

c	$m^2[2]$
---	----------

(b) Calculate the capacity of the container in litres.

..... litres [2]

(c)	Calculate the total surface area of the inside of the container.
	2 500
	cm ² [6]
(d)	A mathematically similar container has a height of 16 cm.
	Calculate the total surface area of the inside of the container with height 16 cm.
	Cure of the court cure and an or and another or and continues when the grave to care.
	cm ² [2]
	VIII [2]

11 Grey squares and white squares are used to make patterns in a sequence.

The first three patterns in the sequence are shown.

Pattern 4 is incomplete.

Pattern 1	Pattern 2	Pattern 3	Pattern 4

(a) Shade squares in Pattern 4 to continue the sequence.

[1]

(b) Complete the table for the patterns in the sequence.

Pattern number	1	2	3	4	5
Number of grey squares	4	7	10		
Number of white squares	2	8	18		

[2]

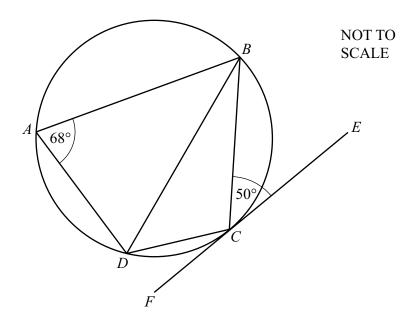
(c) (i) Write an expression, in terms of n, for the number of grey squares in Pattern n.

.....[2]

(ii) Write an expression, in terms of n, for the number of white squares in Pattern n.

.....[2]

d the total
[3]
[4]


12 The position vector of point A is $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$. $\overrightarrow{AB} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ and $\overrightarrow{AB} = \overrightarrow{BC}$.

Find the position vector of point C.

[2

13 Write $0.2\dot{3}$ as a fraction in its simplest form.

.....[3]

A, B, C and D are points on the circumference of a circle. EF is a tangent to the circle at C.

Angle $BAD = 68^{\circ}$ and angle $BCE = 50^{\circ}$.

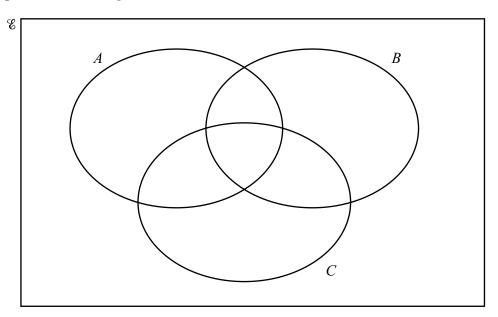
Find angle CBD.

Give a geometrical property to explain each step of your working.

•••••	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •

Angle *CBD* = [5]

15 Write $25^{-\frac{3}{2}}$ as a fraction in its simplest form.


.....[2]

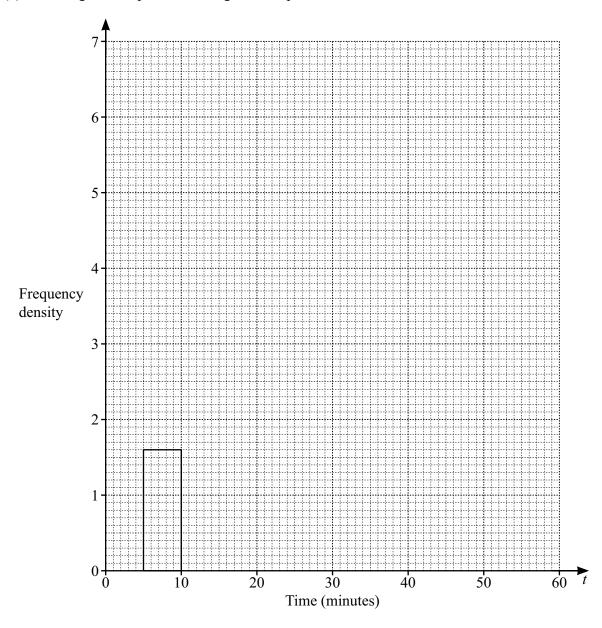
16
$$\mathscr{E} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

 $A = \{x : 6 \le x \le 10\}$

 $B = \{x: x \text{ is a factor of } 18\}$

 $C = \{x: x \text{ is a square number}\}\$

(a) Complete the Venn diagram.

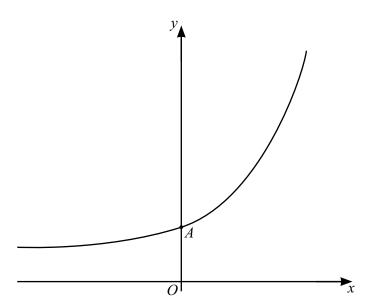

[3]

(b) Find $n(A \cap C \cap B')$.

17 The times some students take to travel to school one morning are shown in the table. The time is recorded in minutes.

Time (t minutes)	5 < <i>t</i> ≤ 10	10 < <i>t</i> ≤ 20	20 < t ≤ 25	$25 < t \leqslant 30$	$30 < t \leqslant 60$
Frequency	x	16	29	20	15

(a) On the grid, complete the histogram to represent this information.


(b) Jamila says the histogram shows that there are the same number of students in the $5 < t \le 10$ group as in the $10 < t \le 20$ group.

Explain why she is wrong.

.....

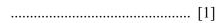
.....

[3]

The diagram shows a sketch of the graph of $y = 3 \times 2^x + 5$.

(a) The graph crosses the y-axis at point A.

Find the coordinates of point A.

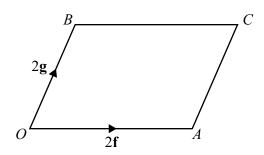

(•			•		•		•				•		•			,			•			•	•					•	•		 •	`)	ſ	-	2	,	ı
	٠.																		1																-		•			-	•

(b) Write down the equation of the asymptote to the graph of $y = 3 \times 2^x + 5$.

1	7

19 $I(x) - 3x + 2$ $g(x) - x - 3$ $I(x) - 7 - 3$	19	f(x) = 5x + 2	$g(x) = x^2 - 5$	h(x) = 7 - x
--	----	---------------	------------------	--------------

(a) Find f(3).



(b) Find gf(x). Give your answer in the form $ax^2 + bx + c$.

(c) Solve $\frac{3}{hf(x)} = -1$.

$$x =$$
 [3]

NOT TO SCALE

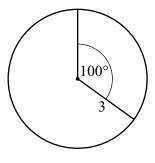
OACB is a parallelogram.

$$\overrightarrow{OA} = 2\mathbf{f}$$
 and $\overrightarrow{OB} = 2\mathbf{g}$.

X is a point on AB such that AX:XB = 3:1.

Find, as simply as possible, in terms of f and g

(a) \overrightarrow{AB}


→	
AB=	 [1]

(b) \overrightarrow{XC} .

$$\overrightarrow{XC}$$
=[3]

21 Write as a single fraction in its simplest form.

$$\frac{4}{3x-1} - \frac{5}{x+2}$$

NOT TO SCALE

The diagram shows a circle of radius 3 cm. The minor sector angle is 100° .

Calculate the area of the major sector. Give your answer in terms of π .

cm ²	[3
-----------------	----

23 (a) Write $x^2 - 6x - 19$ in the form $(x - a)^2 + b$.

.....[2]

(b) Using your answer to **part (a)**, write down the coordinates of the turning point of the graph of $y = x^2 - 6x - 19$.

(.....)[1]

24	(a)	Simplif	y. $\sqrt{75} + \sqrt{2}$	27	_,		
							 [2]

(b) Rationalise the denominator.

$$\frac{3}{2+\sqrt{5}}$$

Give your answer in its simplest form.

I	Γ 2
	פן