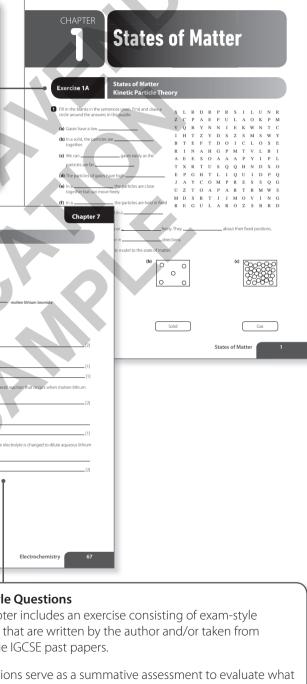


Endorsed for learner support

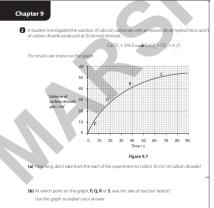
Cambridge IGCSETM Chemistry

Sian Orchard Richard McGrory

How to Use This Book

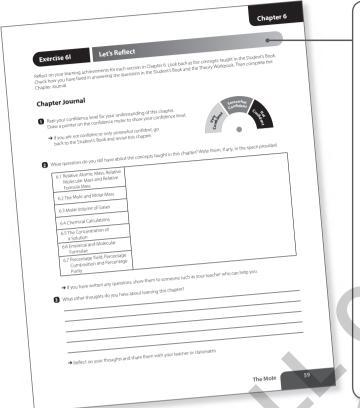

For further learner support, alongside the Student's Book, the Theory Workbook offers a range of exercises to reinforce and consolidate key terms and concepts learnt from each chapter.

This Theory Workbook is part of the Marshall Cavendish Education suite of resources that will support you as you follow the Cambridge IGCSETM Chemistry (0620/0971) syllabuses and prepare for your examinations.


Formative Exercises

These exercises are meant to evaluate how well you are learning each section in a chapter.

The questions in the exercises are set using a variety of formats, which include word searches, crosswords, fill-in-the-blanks, completing sentences, matching and labelling. They are intended to help build your subject literacy and boost your confidence in using English to understand and respond to science questions. For example, word searches can help to increase your familiarity with key words, and reinforce and improve spelling of those words.


Supplement content is clearly marked for those studying the extended syllabus.

Exam-style Questions

Each chapter includes an exercise consisting of exam-style questions that are written by the author and/or taken from Cambridge IGCSE past papers.

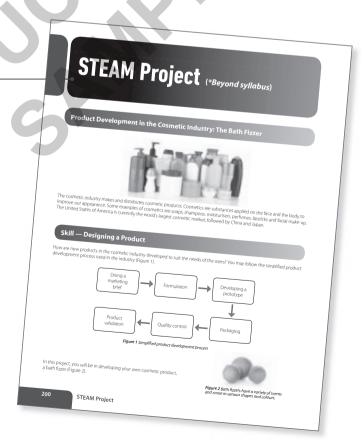
The questions serve as a summative assessment to evaluate what you have learnt. They also help you to be familiar with the format of the questions in the exam.

Let's Reflect

This exercise is included at the end of each chapter to help you identify knowledge gaps. It is designed for you to pause and reflect on your learning experience by evaluating your understanding of the concepts taught and completing the **Chapter Journal**.

The use of a **confidence meter** to rate your level of confidence is a simple tool for you to recognise your level of understanding of a chapter.

To make your self-reflection visible to yourself and others, you can pose new questions about the key areas of the chapter that you are still unsure. You are also encouraged to write down your personal thoughts about the chapter.


From what you have reflected, you can then address any areas that require a follow-up. For example, you may revise the chapter on your own or ask your teacher to further explain a concept or correct a misconception.

Quotable quote on the importance of reflection:

"We do not learn from experience... we learn from reflecting on experience." – John Dewey

STEAM Project (*Beyond syllabus)

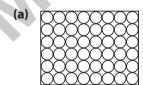
At the end of the Theory Workbook, there is a STEAM project for you and your classmates to undertake. STEAM stands for Science, Technology, Engineering, the Arts and Mathematics. This project allows you to work on a real-world application by using concepts across different areas that are interrelated. It helps to reinforce 21st century skills such as critical thinking, collaboration, communication, problem-solving and creativity. The STEAM project also provides you with the opportunity to develop as a confident, responsible, reflective, innovative and engaged learner. Find out more about the Cambridge Learner attributes at https://www.cambridgeinternational.org/whychoose-us/parents-and-students/in-class/thecambridge-learner-attributes/ or check the syllabus.

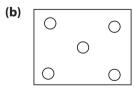
Contents

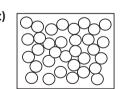
HOW TO US	SE THIS BOOK	iii	Exercise 6D	S Chemical Calculations	50
COMMAND	WORDS USED IN QUESTIONS	vii	Exercise 6E	The Concentration of a Solution	52
THE PERIO	DIC TABLE OF ELEMENTS	viii	Exercise 6F	S Empirical and Molecular Formulae	54
1 States	of Matter	1	Exercise 6G	S Percentage Yield, Percentage	
Exercise 1A	States of Matter			Composition and Percentage Purity	55
	Kinetic Particle Theory	1	Exercise 6H	Exam-style Questions	56
Exercise 1B	Changes of State of Matter and		Exercise 61	Let's Reflect	59
	the Kinetic Particle Theory	2	7 Electro	chemistry	60
Exercise 1C	Effects of Temperature and Pressure on the Volume of a Gas	5	Exercise 7A	Introducing Electrolysis	60
Exercise 1D	Diffusion	5	Exercise 7B	Electrolysis of Molten Ionic Compounds	61
Exercise 1E	Exam-style Questions	7	Exercise 7C	Electrolysis of Aqueous Solutions of	
Exercise 1F	Let's Reflect	9		Compounds	62
	nts, Compounds and Mixtures	10	Exercise 7D	Industrial Applications of Electrolysis	65
Exercise 2A		10	Exercise 7E	Hydrogen–Oxygen Fuel Cells	66
	Elements and Compounds		Exercise 7F	Exam-style Questions	67
Exercise 2B	Mixtures	13	Exercise 7G	Let's Reflect	69
Exercise 2C	Exam-style Questions	15		Changes	70
Exercise 2D	Let's Reflect	17	Exercise 8A	Exothermic and Endothermic Reactions	70
	c Structure	18	Exercise 8B	Reaction Pathway Diagrams	72
Exercise 3A	What Are Inside Atoms?	18	Exercise 8C	S Activation Energy	73
Exercise 3B	The Proton Number and Nucleon Number		Exercise 8D	S Bond Breaking and Bond Making	73
Exercise 3C	Arrangement of Electrons in Atoms	21	Exercise 8E	Exam-style Questions	75
Exercise 3D	Isotopes	22	Exercise 8F	Let's Reflect	77
Exercise 3E	Exam-style Questions	25	9 Rate of	Reaction	78
Exercise 3F	Let's Reflect	27	Exercise 9A	Physical and Chemical Changes	78
4 Ionic,	Covalent and Metallic Bonding	28	Exercise 9B	Factors Affecting the Rate of Reaction	79
Exercise 4A	Ionic Bonding	28	Exercise 9C	S Investigating the Rate of	
Exercise 4B	Covalent Bonding and Simple Molecules	30		Reaction in the Laboratory	79
Exercise 4C	Giant Covalent Structures	33	Exercise 9D	S The Collision Theory	81
Exercise 4D	S Metallic Bonding	34	Exercise 9E	Exam-style Questions	86
Exercise 4E	Exam-style Questions	36	Exercise 9F	Let's Reflect	89
Exercise 4F	Let's Reflect	38	10 Revers	ible Reactions and Equilibrium	90
5 Chemi	ical Formulae and Equations	39	Exercise 10A	Reversible Reactions	90
Exercise 5A	Chemical Formulae	39	Exercise 10B	Manufacturing Ammonia	
Exercise 5B	Chemical Equations	41		by the Haber Process	92
Exercise 5C	Exam-style Questions	43	Exercise 10C	Manufacturing Sulfur Trioxide	
Exercise 5D	Let's Reflect	46		by the Contact Process	94
6 The M	ole	47		Exam-style Questions	95
Exercise 6A	Relative Atomic Mass, Relative Molecular		Exercise 10E		96
	Mass and Relative Formula Mass	47		ion and Reduction	97
Exercise 6B	S The Mole and Molar Mass	49	Exercise 11A	Oxidation and Reduction as Gain or	
Exercise 6C	S Molar Volume of Gases	49		Loss of Oxygen	97

Exercise 11B	S Oxidation and Reduction as Gain or		16 <i>l</i>	ا Intı	roduction to Organic Chemistry	152
	Loss of Electrons	97	Exercis	se 16A	Formulae, Functional Groups	
Exercise 11C	Oxidation Numbers	98			and Terminology	152
Exercise 11D	S Oxidation Agents and		Exercis	se 16B	S Structural Formulae and	
	Reducing Agents	101			Structural Isomers	153
	S Exam-style Questions	102			Naming Organic Compounds	155
Exercise 11F	Let's Reflect	104			Fossil Fuels	156
12 Acids,	Bases and Salts	105			Exam-style Questions	157
Exercise 12A	Acids	105			Let's Reflect	160
Exercise 12B	Bases and Alkalis	106			es and Alkenes	161
Exercise 12C	Strength of Acids				Alkanes	161
	The pH Scale	107			Chemical Properties of Alkanes	162
Exercise 12D	Oxides	110	Exercis	se 17C	S Substitution Reactions of Alkanes	163
Exercise 12E	Salts				Alkenes	164
	Preparation of Salts	111	Exercis	e 17E	Producing Alkenes by Cracking	165
	Exam-style Questions	113	Exercis	e 17F	S Chemical Properties of Alkenes	166
Exercise 12G		115	Exercis	e 17G	Exam-style Questions	167
	riodic Table	116	Exercis	e 17H	Let's Reflect	170
Exercise 13A	How Are Elements Arranged in	116	18	lcoho	ols and Carboxylic Acids	171
E	the Periodic Table?	116	Exercis	se 18A	Alcohols	171
	Periodic Trends	117	Exercis	e 18B	Properties and Uses of Alcohols	173
	Group I Elements	118	Exercis	e 18C	Carboxylic Acids	174
	Group VII Elements	119	Exercis	e 18D	S Producing Ethanoic Acid	175
	Transition Elements	121	Exercis	e 18E	S Esters	175
	Noble Gases	122	Exercis	e 18F	Exam-style Questions	177
	Exam-style Questions	122	Exercis	e 18G	Let's Reflect	179
Exercise 13H	Let's Reflect	125	19 F	Polym	ers	180
14 Metals		126			Polymers	
	Metals and Their Properties	126			Addition Polymerisation	180
Exercise 14B	Uses of Metals	128	Exercis	e 19B	S Condensation Polymerisation	181
Exercise 14C	Alloys and Their Properties	129	Exercis	e 19C	Plastics and Pollution	183
Exercise 14D	Reactivity Series	130	Exercis	e 19D	S Natural Polymers	184
Exercise 14E	Corrosion of Metals	132	Exercis	e 19E	Exam-style Questions	185
Exercise 14F	Extraction of Metals	133	Exercis	e 19F	Let's Reflect	187
Exercise 14G	Exam-style Questions	134	20 E	xperi	mental Techniques and	
Exercise 14H	Let's Reflect	137	(Chemi	cal Analysis	188
15 Chemi	stry of the Environment	138	Exercis	se 20A	Experimental Design	188
Exercise 15A	Water in Practical Chemistry	138	Exercis	se 20B	Common Terms Used in Experiments	190
Exercise 15B	Water from Natural Sources	139	Exercis	se 20C	Acid-Base Titrations	190
Exercise 15C	Purification of the Domestic Water Supply	140	Exercis	e 20D	Chromatography	191
Exercise 15D	Fertilisers	141	Exercis	e 20E	Separation and Purification	192
Exercise 15E	Composition of Air	142	Exercis	e 20F	Identification of lons and Gases	194
Exercise 15F	Air Pollution	143	Exercis	e 20G	Exam-style Questions	196
Exercise 15G	Global Warming	145	Exercis	e 20H	Let's Reflect	199
	Reducing Air Pollution	146	CTF A I	M D∞-'	o et	200
Exercise 15I	Exam-style Questions	147	STEAM	vi Proj	ect	200
Exercise 15J	Let's Reflect	151				

CHAPTER


States of Matter


Exercise 1A

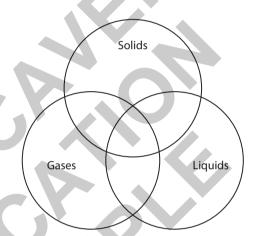

States of Matter Kinetic Particle Theory

	Il in the blanks in the sentences given. Find and draw a rcle around the answers in the puzzle.	X	L	R	D	R	P	R		I	L	U	N	R
Ci	refer around the answers in the pazzle.	Z	C	P	A	Е	F	U	L	Α	Ο	K	P	M
(a	a) Gases have a low	V	Q	В	Y	N	N	J	Е	K	W	N	T	C
(h) In a solid, the particles are	I	Н	T	Z	Y	D	S	Z			S	W	Y
(~	together.	В	Т	E	F	T	D	O	I	C	L	Ο	S	Е
1-	:) We can gases easily as the	R	I	N	A	Н	G	P	M	T	V	L	В	I
(C		A	Е	Е	S	О	A	A	A	P	Y	I	P	L
	particles are far	T	X	R	T	U	S	Q	Q	Н	N	D	X	О
(c	1) The particles of gases have high	Е.	P	G	Н	T	L	Ι	Q	U	I	D	P	Q
10	e) In a, the particles are close	J	A	Y	C	0	M	P	R	E	S	S	Q	G
(6	together but can move freely.	U	Z	T	O	A	P	A	R	T	R	M	W	S
,,		M	D	S	R	T	J	J	M	Ο	V	I	N	G
(T) In a, the particles are held in fixe	ea R	Е	G	U	L	A	R	Ο	Z	S	В	R	D
	positions and are arranged in a arrangement.													
(g	n) In a solid, the particles are not from the particles are not	eely. The	у					aboı	ut the	eir fix	ed p	ositi	ons.	
(h	The particles of gases move in d	lirections												

2 Draw lines to match the particle model to the state of matter.

Liquid

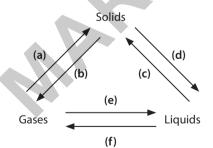
Solid


Gas

Chapter 1

3 Complete the table showing the properties of solids, liquids and gases.

	Solid	Liquid	Gas
How close are the particles?	Very close together		
How are the particles arranged?		Irregular arrangement	
How do the particles move?			Move very fast in any direction
Is the energy of the particles low or high?	Very low		


- 4 Complete the Venn diagram by writing the letters, A to I, to show the properties of solids, liquids and gases.
 - **A:** Can flow
 - **B:** Cannot be compressed
 - **C:** Definite shape
 - **D:** Definite volume
 - **E:** Made up of particles
 - **F:** Particles are close together
 - **G:** Particles move randomly
 - **H:** Particles vibrate in fixed positions
 - **I:** Particles are far apart

Exercise 1B

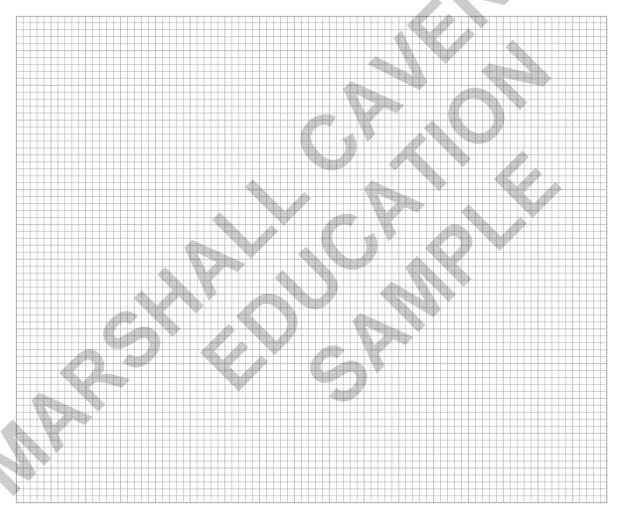
Changes of State of Matter and the Kinetic Particle Theory

1 Name the changes of state in (c) to (f). (a) and (b) have been done for you.

- (a) Deposition
- (b) Sublimation
- (c) _____
- (d)
- (e) _____
- (f) _____
- 2 State **three** differences between boiling and evaporation.

3 S Describe, using the kinetic particle theory, the change of state of a substance from the solid state to the liquid state and to the gaseous state. *Use the following to help you explain. Arrange the sentences in the correct order by writing the numbers 1 to 7 in the boxes.* (a) This is known as melting **(b)** The liquid continues to be heated and the particles gain more kinetic energy. (c) The particles break away from their fixed positions and are able to move around each other. The solid has changed to a liquid. **(d)** This is known as evaporation. (e) The particles at the surface eventually gain enough energy to overcome the forces of attraction between them and escape as gas particles. (f) As more energy is supplied, the particles have enough energy to overcome the forces of attraction between them. (g) When a solid is heated, the particles that vibrate about fixed positions gain energy and vibrate more vigorously. **4 S** Figure 1.1 shows a heating curve for substance X. Temperature / °C Time / min Figure 1.1 **(b)** Name the process that occurs from (a) Which state of matter is X in at (i) part A; (i) parts B to C; ____ (ii) part F? (ii) parts D to E. __ (c) What is happening to the particles in X from parts C to D? (d) The following shows the different arrangements of particles at parts A, B to C, C to D, D to E and F. State the parts of the curve that each arrangement of particles represent. (ii) (iii) _ (iv) (i)

Chapter 1


5 S Heating and cooling curves can be used to show what happens to the temperature of a substance as it is heated or cooled. Stearic acid was allowed to cool in a room with a temperature of 49°C. The temperature of the acid was measured every ten seconds.

The results are shown in Table 1.1.

Table 1.1

Time / s	10	20	30	40	50	60	70	80	90	100
Temperature / °C	89	84	80	75	71	70	70	70	69	67
Time / s	110	120	130	140	150	160	170	180	190	200
Temperature / °C	65	63	61	59	57	55	53	51	49	49

(a) Plot a graph of temperature against time.

- **(b)** What happens to the temperature of the stearic acid over time?
- (c) Label the point on the graph where stearic acid is
 - (i) a liquid;
- (ii) a solid.
- (d) Suggest the melting point of stearic acid.

Exercise 1C

Effects of Temperature and Pressure on the Volume of a Gas

1 Which of the following shows the correct changes in the volume of a gas when temperature and pressure are increased? Choose the correct answer and write your choice in the brackets.

	Changes in the volume of a gas							
	when temperature increases	when pressure increases						
Α	Decreases	Decreases						
В	Decreases	Increases						
С	Increases	Decreases						
D	Increases	Increases						

2 S Three gases in sealed round-bottomed flasks were placed in water-baths of different temperatures (Figure 1.2).

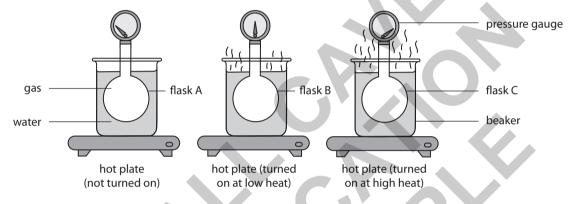


Figure 1.2

From Latin Country of Little Set 201		(. fll. / ll	1 +
Explain, using kinetic	particle theory.	wny the das ii	n tiask a nas the	lowest pressure:
Explain, daning imitetic	particle trices, j,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	THOSE THE	io i i est pi essaire.

Exercise 1D

Diffusion

1 Fill in the blanks in the sentence. Each term can be used once, more than once or not at all.

random collision gas particles energy lower higher

Diffusion is the movement of **(a)** _____ in a liquid or a **(b)** _____ as they move from a region of **(c)** _____ concentration.

2 S Figure 1.3 shows a set-up that is used to investigate the rate of diffusion of different gases. When ammonia gas from ammonia solution and hydrogen chloride gas from hydrochloric acid react, a white ring of ammonium chloride is formed. Choose the correct answer and write your choice in the brackets.

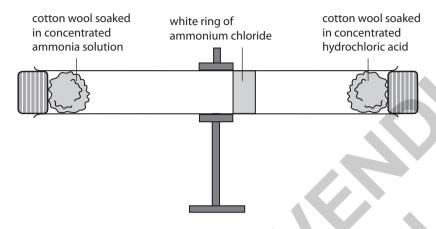


Figure 1.3

Which statement explains why the white ring was formed nearer the end with hydrogen chloride?

- A Ammonia gas has a higher relative molecular mass than hydrogen chloride gas, so it diffuses more quickly.
- **B** Ammonia gas has a lower relative molecular mass than hydrogen chloride gas, so it diffuses more quickly.
- **C** Both gases diffuse at the same rate.
- **D** Hydrogen chloride gas has a lower relative molecular mass than ammonia gas, so it diffuses more quickly. (
- A gas jar of air was inverted on top of a gas jar containing bromine vapour. A glass plate was used to separate the gas jars. Figure 1.4 shows the gas jars before and after the glass plate was removed.

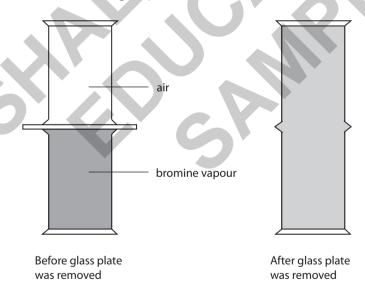


Figure 1.4

Explain, using kinetic particle theory, the colour inside the gas jars after the glass plate was removed.

Exercise 1E

Exam-style Questions

1 S Figure 1.5 shows the heating curve of substance X.

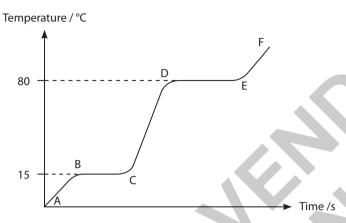


Figure 1.5

- (a) What is the melting point of substance X? ______[1]
- **(b)** Is substance X a solid, a liquid or a gas at room temperature (25°C)? _______[1]
- (c) Name the process taking place at part DE of the heating curve. _______[1]
- 2 This question is about bromine and compounds of bromine.
 - (a) Use the kinetic particle model to describe the arrangement and type of motion of the molecules in:
 - liquid bromine
 - bromine gas _______[4]
 - (b) The graph shows how the volume of bromine gas changes with temperature. The pressure is kept constant.

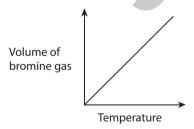


Figure 1.6

Describe how the volume of the bromine gas changes with temperature.

_____[1

[Cambridge IGCSE Chemistry (0620) Paper 32 Q4a, b, May/Jun 2019]

Chapter 1

	ains carbon dioxide gas. The pressure of the gas is due to the gas particles hitting the set the kinetic theory to explain why the pressure inside the container increases whered.	
able 1.2	sion of nitrogen and chlorine at room temperature.	
Gas Nitrogen	Relative molecular mass	
Chlorine	71	
a) What is diffusion?		
b) S Which gas, nitrogen or c	chlorine, diffuses more quickly? Explain your answer.	
c) S Explain, using kinetic par	rticle theory, why the rate of diffusion of nitrogen would be higher with increasing ten	npei

Exercise 1F

Let's Reflect

Reflect on your learning achievements for each section in Chapter 1. Look back at the concepts taught in the Student's Book. Check how you have fared in answering the questions in the Student's Book and the Theory Workbook. Then complete the Chapter Journal.

Chapter Journal

- 1 Rate your confidence level for your understanding of this chapter.

 Draw a pointer on the confidence meter to show your confidence level.
 - → If you are *not confident* or only *somewhat confident*, go back to the Student's Book and revise this chapter.

2 What questions do you still have about the concepts taught in this chapter? Write them, if any, in the space provided.

1.1 States of Matter	
1.2 Kinetic Particle Theory	
1.3 Changes of State of Matter and the Kinetic Particle Theory	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1.4 Effects of Temperature and Pressure on the Volume of a Gas	
1.5 Diffusion	(y) (5) (1)

- → If you have written any questions, show them to someone such as your teacher who can help you.
- What other thoughts do you have about learning this chapter?
 - → Reflect on your thoughts and share them with your teacher or classmates.

For over 60 years Marshall Cavendish Education has been empowering educators and students in over 80 countries with high-quality, research-based, Pre-K-12 educational solutions. We nurture world-ready global citizens by equipping students with crucial 21st century skills through our resources for schools and education centres worldwide, including Cambridge schools, catering to national and international curricula.

The Marshall Cavendish Education Cambridge IGCSE™ Chemistry series is designed for students preparing for the 0620/0971 syllabuses. The series translates insights from educational psychology classic "How People Learn" into highly effective learner-centred classroom practices.

TWB The Theory Workbook provides meaningful reinforcement of concepts covered in the Student's Book. Each chapter contains formative questions to assess topical understanding, exam-style questions to build exam readiness and a Chapter Journal to encourage self-reflection. The formative questions include multiple-choice questions, word jumbles, crosswords, and short-answer and structured questions – all of which are intended to foster subject literacy. A STEAM project offers the opportunity for group work, to encourage critical thinking and inquiry-based knowledge building.

This resource is endorsed by Cambridge Assessment International Education

- Provides learner support for the Cambridge IGCSE and IGCSE (9-1) Chemistry syllabuses (0620/0971) for examination from 2023
- Has passed Cambridge International's rigorous quality-assurance process
- Developed by subject experts
- For Cambridge schools worldwide

Series architecture

- Student's Book
- Theory Workbook
- Practical Workbook
- Teacher's Guide
- e-book

