
API Workshop Activities
PDF printout of activities
Tom Johnson, I'd Rather Be Writing

This booklet contains a PDF of the activities listed in

https://idratherbewriting.com/learnapidoc/workshop.html in print

format. As you're working through the workshop activities, you might

find it easier to have the instructions printed out next to your laptop

rather than toggling between screens and windows.

Copyright 2019. All rights reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or other electronic or
mechanical methods, without the prior written permission of the publisher, except in the case of brief
quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.
For permission requests, contact Tom Johnson at tomjoht@gmail.com.

PDF last generated: August 29, 2019

API Workshop Activities ii

Activities
Activity 1a: Identify your goals... 2
Activity 2a: Explore OpenWeatherMap API ... 3
Activity 2b: Get OpenWeatherMap authorization keys.. 4
Activity 2c: Make requests with Postman ... 5
Activity 2d: Make requests with curl.. 9
Activity 2e: Make an API request on a web page.. 11
Activity 3a: What's wrong with this API reference topic.. 15
Activity 3b: Evaluate API ref docs to identify core elements 19
Activity 4a: Explore Swagger UI through the Petstore Demo.................................. 21
Activity 4b: Edit an existing OpenAPI specification document 25
Activity 4c: Create a SwaggerUI display ... 26
Activity 6a: Judge conceptual content and decide which is best 30
Activity 7a: Classify code documentation into one of the five types....................... 31
Activity 8a: Set up a GitHub wiki ... 32
Activity 8b: Clone your GitHub repo locally... 33
Activity 8c: Push local changes to the remote .. 35
Activity 9a: Look at API documentation jobs and requirements 38
Activity 9b: Find an open-source project .. 39

Activities PDF last generated: August 29, 2019

API Workshop Activities Page 1

Activity 1a: Identify your goals with API
documentation
Identify your goals here and make sure they align with this course. Think about the following questions:

• Why are you taking this course?
• What are your career ambitions related to API documentation?
• Are you in a place where developer documentation jobs are plentiful?
• What would you consider to be a success metric for this course?
• Do you have the technical mindset needed to excel in developer documentation fields?

For live workshops, we typically share responses in a get-to-know-everyone format. But if you’re taking this
course online, consider jotting down some thoughts in a journal or blog entry.

Activity 1a: Identify your goals with API documentation PDF last generated: August 29, 2019

API Workshop Activities Page 2

Activity 2a: Get familiar with the
OpenWeatherMap API
Let’s explore the basic sections in the OpenWeatherMap API (https://openweathermap.org/api/):

1. Go to the openweathermap.org (https://openweathermap.org)
2. Click API in the top navigation bar.
3. In the Current weather data section, click the API doc button.

Get a sense of the information this Current Weather Data API provides. The API calls provide
developers with ways to pull information into their applications. In other words, the APIs will
provide the data plumbing for the applications that developers build.

4. Answer the following questions about the Current Weather Data API endpoint:

◦ Does the API provide the information we need about temperature, wind speed, wind
direction, and current conditions? (Hint: Look at some of the sample API responses by
clicking links under “Examples of API calls.”)

◦ How many different ways can you specify the location for the weather information?
◦ What does a sample request look like?
◦ How many endpoints does the API have?
◦ What authorization credentials are required to get a response?

Activity 2a: Get familiar with the OpenWeatherMap API PDF last generated: August 29, 2019

API Workshop Activities Page 3

https://openweathermap.org/api/
https://openweathermap.org/

Activity 2b: Get an OpenWeatherMap
API key
To get an API key for the OpenWeatherMap API:

1. Go to openweathermap.org (https://openweathermap.org).
2. Click Sign Up in the top navigation bar and create an account.
3. After you sign up, your API key is sent to the email address you provide. You can also find it on

the Developer Dashboard in the site. Return to the OpenWeatherMap homepage and click Sign
in.

4. After signing in, you’ll see the developer dashboard. Click the API Keys tab (highlighted in the
screenshot below).

API Keys tab on OpenWeatherMap Developer Dashboard

5. Copy the key to a place you can easily find it.

(Note: It can take an hour or so for a new OpenWeatherMap API key to activate. If you have trouble with
your key, use one of the keys listed here (http://idratherbewriting.site/apikeys). Put your name next to the
key you’re using.)

Activity 2b: Get an OpenWeatherMap API key PDF last generated: August 29, 2019

API Workshop Activities Page 4

https://openweathermap.org/
http://idratherbewriting.site/apikeys

Activity 2c: Make requests with
Postman
Make a request

In this exercise, you’ll use Postman to make a request using OpenWeatherMap’s current weather data API
endpoint (https://openweathermap.org/current). To make the request:

1. If you haven’t already done so, download and install the Postman app at
https://www.getpostman.com/downloads/ (https://www.getpostman.com/downloads/). (Make
sure you download the app and not the deprecated Chrome extension.)

2. Start the Postman app.
3. Insert the following endpoint into the box next to GET: https://api.openweathermap.org/

data/2.5/weather .
4. Click the Params tab (below the box where you inserted the endpoint) and then add the following

three parameters in the key and value rows:

◦ key: zip / value: 95050

◦ key: units / value: imperial

◦ key: appid / value: <insert your own API key>

For the value for appid , use your own API key. (If you didn’t get an API key
(https://idratherbewriting.com/learnapidoc/docapis_get_auth_keys.html), use one of the keys
here (http://idratherbewriting.site/apikeys).) Your Postman UI should look like this:

Activity 2c: Make requests with Postman PDF last generated: August 29, 2019

API Workshop Activities Page 5

https://openweathermap.org/current
https://openweathermap.org/current
https://www.getpostman.com/downloads/
https://idratherbewriting.com/learnapidoc/docapis_get_auth_keys.html
https://idratherbewriting.com/learnapidoc/docapis_get_auth_keys.html
http://idratherbewriting.site/apikeys
http://idratherbewriting.site/apikeys

When you add these parameters, they appear as a query string to the endpoint URL in the GET
box. For example, your endpoint will now look like this: https://api.openweathermap.org/

data/2.5/

weather?zip=95050&units=imperial&appid=fd4698c940c6d1da602a70ac34f0b147 (but with
different query string values). Query string parameters appear after the question mark ? symbol
and are separated ampersands & . The order of query string parameters doesn’t matter.

Note that many APIs pass the API key in the header rather than as a query string parameter in the
request URL. (If that were the case, you would click the Headers tab and insert the required key-
value pairs in the header. But OpenWeatherMap passes the API key as a query string parameter.)

5. Click Send.

The response appears in the lower pane. For example:

Save the request

1. In Postman, click the Save button (next to Send). The Save Request dialog box appears.
2. In the Request Name box, type a friendly name for the request, such as “OpenWeatherMap

Current API.”
3. In the Request description (Optional) field, type a description such as “gets the current weather

for 95050 in imperial units.”
4. Scroll down a bit and click Create collection to create a folder to save the request in. Name your

new collection (e.g., “OpenWeatherMap”) and click the check mark. Then select the new
collection you just created.

After you create the collection, the Save button will be enabled. Your Postman collection should
look something like this:

Activity 2c: Make requests with Postman PDF last generated: August 29, 2019

API Workshop Activities Page 6

Collection dialog box

5. Click Save to [collection name]

Saved endpoints appear in the left side pane under Collections. (If you don’t see the Collections

pane, click the Show/Hide Sidebar button in the lower-left corner to expand it.

Make a request for the OpenWeatherMap 5 day forecast

Now instead of getting the current weather, let’s use another OpenWeatherMap endpoint to get the
forecast. Enter details into Postman for the 5 day forecast request (https://openweathermap.org/forecast5).
In Postman, you can click a new tab, or click the arrow next to Save and choose Save As. Then choose
your collection and request name.

A sample endpoint for the 5 day forecast, which specifies location by zip code, looks like this:

https://api.openweathermap.org/data/2.5/forecast?zip=95050,us

Add in the query parameters for the API key and units:

https://api.openweathermap.org/data/2.5/forecast?zip=95050&appid=APIKEY&unit
s=imperial

(In the above code, replace out APIKEY with your own API key.)

Observe how the response contains a list that provides the forecast details for five days.

Activity 2c: Make requests with Postman PDF last generated: August 29, 2019

API Workshop Activities Page 7

https://openweathermap.org/forecast5

Make one more OpenWeatherMap API request

Make one more OpenWeatherMap API request, this time changing the way you specify the location.
Instead of specifying the location by zip code, specify the location using lat and lon geocoordinates
instead. For example:

https://api.openweathermap.org/data/2.5/weather?lat=37.3565982&lon=-121.9689
848&units=imperial&appid=fd4698c940c6d1da602a70ac34f0b147

Postman has a lot of other functionality you can use. We’ll revisit Postman later in the course for some
other activities.

Activity 2c: Make requests with Postman PDF last generated: August 29, 2019

API Workshop Activities Page 8

Activity 2d: Make the OpenWeatherAPI
request using curl

1. Assuming you completed the exercises in the Postman tutorial (https://idratherbewriting.com/
learnapidoc/docapis_postman.html), go back into Postman.

2. On any call you’ve configured, and below the Save button in Postman, click the Code link.
3. In the Generate Code Snippets dialog box, select cURL from the drop-down list, and then click

Copy to Clipboard.

The Postman code for the OpenWeatherMap weather request in curl looks as follows:

curl -X GET \
'https://api.openweathermap.org/data/2.5/weather?zip=95050&units=im

perial&appid=fd4698c940c6d1da602a70ac34f0b147' \
-H 'Accept: */*' \
-H 'Accept-Encoding: gzip, deflate' \
-H 'Cache-Control: no-cache' \
-H 'Connection: keep-alive' \
-H 'Host: api.openweathermap.org' \
-H 'Postman-Token: 8a9aeae7-f063-42e8-b0e3-09d1a7069bd5,62f56707-3a

65-4d68-a774-8e677ef4487e' \
-H 'User-Agent: PostmanRuntime/7.15.2' \
-H 'cache-control: no-cache'

Postman adds its own header information (designated with -H). Do the following:

◦ Remove all the header (-H) tags.
◦ Remove the backslashes (\) (these are just added for readability).

Activity 2d: Make the OpenWeatherAPI request using curl PDF last generated: August 29, 2019

API Workshop Activities Page 9

https://idratherbewriting.com/learnapidoc/docapis_postman.html
https://idratherbewriting.com/learnapidoc/docapis_postman.html

◦ Put everything on one line
◦ If you’re on Windows, change the single quotation marks to double quotation marks.

Here’s the same curl call with these modifications:

curl -X GET "https://api.openweathermap.org/data/2.5/weather?zip=9505
0&units=imperial&appid=fd4698c940c6d1da602a70ac34f0b147"

4. curl is available on Mac and Windows 10 by default. (If you’re on an older Windows machine that
doesn’t have curl, see installing curl here (http://www.confusedbycode.com/curl/#downloads) for
details.)

5. Go to your Terminal (Mac) or Command Prompt (Windows).

You can open your Terminal / Command Crompt by doing the following:

◦ If you’re on Windows, go to Start and search for cmd to open up the command
prompt. Paste in the curl request and then press Enter. (If you can’t paste it in, look for
paste options on the right-click menu.)

◦ If you’re on a Mac, open Terminal by pressing Cmd + spacebar and typing Terminal.
(Or go to Applications > Utilities > Terminal). (You could also use iTerm
(https://www.iterm2.com/).) Paste in the curl request and then press Enter.

The response from the OpenWeatherMap weather request should look as follows:

{"coord":{"lon":-121.95,"lat":37.35},"weather":[{"id":802,"main":"Clo
uds","description":"scattered clouds","icon":"03d"}],"base":"station
s","main":{"temp":68.34,"pressure":1014,"humidity":73,"temp_min":6
3,"temp_max":72},"visibility":16093,"wind":{"speed":3.36},"cloud
s":{"all":40},"dt":1566664878,"sys":{"type":1,"id":5122,"message":0.0
106,"country":"US","sunrise":1566653501,"sunset":1566701346},"timezon
e":-25200,"id":0,"name":"Santa Clara","cod":200}

This response is minified. You can un-minify it by going to a site such as JSON pretty print
(http://jsonprettyprint.com/), or if you have Python installed (https://www.python.org/downloads/),
you can add | python -m json.tool at the end of your cURL request to minify the JSON in
the response (see this Stack Overflow thread (https://stackoverflow.com/questions/352098/how-
can-i-pretty-print-json-in-a-unix-shell-script) for details).

6. If you want additional practice, make a similar curl request for the 5 day forecast request that you
also have in Postman. And another curl request for the third OpenWeatherMap API request you
made in Postman.

Activity 2d: Make the OpenWeatherAPI request using curl PDF last generated: August 29, 2019

API Workshop Activities Page 10

http://www.confusedbycode.com/curl/#downloads
https://www.iterm2.com/
https://www.iterm2.com/
http://jsonprettyprint.com/
http://jsonprettyprint.com/
https://www.python.org/downloads/
https://stackoverflow.com/questions/352098/how-can-i-pretty-print-json-in-a-unix-shell-script
https://stackoverflow.com/questions/352098/how-can-i-pretty-print-json-in-a-unix-shell-script

Activity 2e: Make an API request on a
web page
For this activity, you’ll use JavaScript to display the API response on a web page. Specifically, you’ll use
some auto-generated jQuery code from Postman to create the AJAX request. You’ll get the wind speed
from the response and print it to the page.

1. Open a text editor such as Sublime Text.
2. Paste in the following code:

<html>
<meta charset="UTF-8">
<head>

<title>Sample page</title>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.1

1.1/jquery.min.js"></script>
<script>

var settings = {
"async": true,
"crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zi

p=95050&units=imperial&appid=fd4698c940c6d1da602a70ac34f0b147",
"method": "GET"
}

$.ajax(settings).done(function (response) {
console.log(response);
var content = response.wind.speed;
$("#windSpeed").append(content);

});

</script>
</head>
<body>

<h1>Sample Page</h1>
wind speed:

</body>
</html>

This code is explained in more detail in a section below.

3. Save the file as an HTML file named weather.html .
4. Start Chrome and open the JavaScript Console by going to View > Developer > JavaScript

Console.
5. In Chrome, press Cmd/Ctrl + O and select your weather.html file.

The weather response should be logged to the JavaScript Console (due to the
console.log(response) code in the request). If you expand the object returned to the console,

it will look as follows:

Activity 2e: Make an API request on a web page PDF last generated: August 29, 2019

API Workshop Activities Page 11

One of the properties in the response is wind.speed . The wind speed is shown on the page as
well.

Step-by-step explanation

The above activity simply had you paste a chunk of prewritten code onto a web page, without much
explanation. In this section, we’ll step through that code with details about how it was assembled.
However, we won’t dive too deeply into JavaScript and jQuery here, as this is somewhat beyond the scope
of the instruction.

To create the web page code from scratch:

1. In a text editor (such as Sublime Text), create a new HTML file and paste in the following
boilerplate template (which contains basic HTML tags and a reference to jQuery):

<html>
<meta charset="UTF-8">

<head>
<title>Sample page</title>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.1

1.1/jquery.min.js"></script>
</head>

<body>
<h2>Sample page</h2>

</body>
</html>

jQuery is necessary because we’re using the ajax method to make the API request.

2. Save your file (anywhere convenient) with a name such as weather.html.
3. Open Postman and go to the Current weather data (weather) endpoint that you configured in

an earlier activity (see Submit requests through Postman (https://idratherbewriting.com/
learnapidoc/docapis_postman.html) for more information).

4. Click the Code link (below the Save button), and then select JavaScript > jQuery AJAX.

Activity 2e: Make an API request on a web page PDF last generated: August 29, 2019

API Workshop Activities Page 12

https://idratherbewriting.com/learnapidoc/assets/files/weather-plain.html
https://idratherbewriting.com/learnapidoc/assets/files/weather-plain.html
https://idratherbewriting.com/learnapidoc/docapis_postman.html
https://idratherbewriting.com/learnapidoc/docapis_postman.html

JavaScript Ajax code snippet

The AJAX code looks as follows:

var settings = {
"async": true,
"crossDomain": true,
"url": "https://api.openweathermap.org/data/2.5/weather?zip=95050&u

nits=imperial&appid=fd4698c940c6d1da602a70ac34f0b147",
"method": "GET",
"headers": {

"User-Agent": "PostmanRuntime/7.15.2",
"Accept": "*/*",
"Cache-Control": "no-cache",
"Postman-Token": "8a9aeae7-f063-42e8-b0e3-09d1a7069bd5,5468d865-c

341-4596-9acc-faba0e0c0c7d",
"Host": "api.openweathermap.org",
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
"cache-control": "no-cache"

}
}

$.ajax(settings).done(function (response) {
console.log(response);

});

5. Click Copy to Clipboard to copy the code sample.

Activity 2e: Make an API request on a web page PDF last generated: August 29, 2019

API Workshop Activities Page 13

6. In your HTML file, insert the copied code inside a pair of <script></script> inside the
header tags.

7. In the jQuery code, remove the entire headers object from the Postman code:

"headers": {
"User-Agent": "PostmanRuntime/7.15.2",
"Accept": "*/*",
"Cache-Control": "no-cache",
"Postman-Token": "8a9aeae7-f063-42e8-b0e3-09d1a7069bd5,5468d865-c34

1-4596-9acc-faba0e0c0c7d",
"Host": "api.openweathermap.org",
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
"cache-control": "no-cache"

}

8. Remove the extra comma after "method": "GET" to keep the JSON valid.
9. Below console.log(response); (but still inside the function’s closing brace });), create a

variable called content and set it equal to response.wind.speed . Then use the jQuery
append method to append content to an element called #windSpeed :

$.ajax(settings).done(function (response) {
console.log(response);
var content = response.wind.speed;
$("#windSpeed").append(content);

});

When ajax retrieves the response from the API, it assigns it to response . You can access the
properties in the response using dot notation (https://idratherbewriting.com/learnapidoc/
docapis_diving_into_dot_notation.html). The append method in jQuery allows you to append
content to a particular element.

10. Create an element on the page (below the h1 tags) with the id="windSpeed" :

<body>
<h1>Sample Page</h1>
wind speed:

</body>

11. Save the file and open it in Chrome. Open the JS Console to view the object logged.

You can view the file here: weather-plain.html (https://idratherbewriting.com/learnapidoc/assets/
files/weather-plain.html).

Activity 2e: Make an API request on a web page PDF last generated: August 29, 2019

API Workshop Activities Page 14

https://idratherbewriting.com/learnapidoc/docapis_diving_into_dot_notation.html
https://idratherbewriting.com/learnapidoc/docapis_diving_into_dot_notation.html
https://idratherbewriting.com/learnapidoc/assets/files/weather-plain.html
https://idratherbewriting.com/learnapidoc/assets/files/weather-plain.html

Activity 3a: What's wrong with this API
reference topic
The following is a sample API reference topic for an endpoint called surfreport . There are about 25
things wrong in the topic. A copy of this same content is available in a read-only Google Doc here
(https://idratherbewriting.site/whats-wrong-api). In Google Docs, go to File > Make a Copy to create your
own instance. Then make comments in Google docs to note as many errors as you can find.

Make a copy of this Google doc and make comments on it.

Here’s the same doc (with problems) displayed on the web:

Surfreport
Knowing whether the conditions are optimal for surfing is a necessary detail in every surfer’s life. This
endpoint includes information about surfing conditions, including the surf height, water temperature, wind,
and tide. Also provides an overall recommendation about whether to go surfing. As an added touch,
recommendations are expressed in surfer lingo. Surf’s up!

Endpoints
GET/POST surfreport/{:beachId}

Gets the surf conditions for a specific beach ID.

Parameters

Parameter Use Description Type of data

Activity 3a: What's wrong with this API reference topic PDF last generated: August 29, 2019

API Workshop Activities Page 15

https://idratherbewriting.site/whats-wrong-api
https://idratherbewriting.site/whats-wrong-api
https://idratherbewriting.site/whats-wrong-api
https://idratherbewriting.site/whats-wrong-api

{beachId} Required
Refers to the ID for the beach
you want to look up.

Number

days Optional
The number of days to include in
the response. Default is 3. Max
10.

Integer

time Optional The time you want the report for.
Integer. ISO 8601 format.
Example:
20180915T155300+0500

Sample request

https://api.openweathermap.org/data/2.5/surfreport/12345?zip=95050&appid=fd4
698c940c6d1da602a70ac34f0b147&days=1

Surfreport PDF last generated: August 29, 2019

API Workshop Activities Page 16

Sample response

{
"surfreport": [

{
"beach": "Santa Cruz",
"monday": {

"1pm": {
"tide": 5,
"wind": 15,
"watertemp": 80,
"surf_height": 5,

"riptide": "moderate",
"recommendation": "Carve it up, brah! The waves are cran

kin' wild out there."
},
"2pm": {

"tide": -1,
"wind": 1,
"watertemp": 50,
"surf_height": 3,

"riptide": extreme
"recommendation": "Waves are foam and frothy but rideabl

e in places. Gravitate to the impact zone, due, and hang loose."
},
"3pm": {

"tide": -1,
"wind": 10,
"watertemp": 65,
"surf_height": 1,
"recommendation": "Scene is blown out. Bail inland and c

hill on the beach instead or you’ll the one who’ll be shredded, due."
}
...

}
}

]
}

Response definitions
The following table describes each item in the response.

Response item Description Data type

beach

The beach you selected based on the beach ID in the
request. The beach name is the official name as
described in the National Park Service Geodatabase.

String

Surfreport PDF last generated: August 29, 2019

API Workshop Activities Page 17

{day} The day(s) of the week requested. object

{time} The time for the conditions. string

tide

The level of tide at the beach for a specific day and
time. Tide is the distance inland that the water rises to,
and can be a positive or negative number. When the
tide is out, the number is negative. When the tide is in,
the number is positive. The 0 point reflects the line when
the tide is neither going in nor out but is in transition
between the two states.

String

wind

The wind speed at the beach. Wind affects the surf
height and general wave conditions. Wind speeds of
more than 15 make surf conditions undesirable because
the wind creates white caps and choppy waters.

Int

watertemp

The temperature of the water. Water temperatures
below 70 usually require you to wear a wetsuit. With
temperatures below 60, you will need at least a 3mm
wetsuit and preferably booties to stay warm.

String

surfheight

The height of the waves, returned in either feet or
centimeters depending on the units you specify. A surf
height of 3 feet is the minimum size needed for surfing.
If the surf height exceeds 10 feet, it is not safe to surf.

Map

recommendation
An overall recommendation based on a combination of
the various factors (wind, watertemp, surfheight), etc.

String

Answers
You can view the answer key here: What’s wrong with this topic answer key (https://idratherbewriting.com/
learnapidoc/whats_wrong_answer_key.html).

Surfreport PDF last generated: August 29, 2019

API Workshop Activities Page 18

https://idratherbewriting.com/learnapidoc/whats_wrong_answer_key.html
https://idratherbewriting.com/learnapidoc/whats_wrong_answer_key.html

Activity 3b: Evaluate API reference
docs for core elements
In this activity, you’ll review API reference documentation and identify the common elements. To evaluate
the API reference docs:

1. Either from an open-source project (https://idratherbewriting.com/learnapidoc/
docapis_find_open_source_project.html) you might have identified or from this list of about 100
API doc sites here (https://idratherbewriting.com/learnapidoc/
pubapis_apilist.html#list_api_doc_sites), identify an API documentation site to analyze.

2. In the API documentation, look for the API reference documentation section (the list of
endpoints).

3. In the reference documentation, identify each of the following sections:

◦ Resource description (https://idratherbewriting.com/learnapidoc/
docapis_resource_descriptions.html)

◦ Endpoints and methods (https://idratherbewriting.com/learnapidoc/
docapis_resource_endpoints.html)

◦ Parameters (https://idratherbewriting.com/learnapidoc/docapis_doc_parameters.html)
◦ Request example (https://idratherbewriting.com/learnapidoc/

docapis_doc_sample_requests.html)
◦ Response example and schema (https://idratherbewriting.com/learnapidoc/

docapis_doc_sample_responses_and_schema.html)

The section names will probably differ in the API doc sites you find, but they’re usually
recognizable to some degree. If you’re finding it somewhat difficult to locate them, this is part of
the wild west of terminology and organization when it comes to API documentation.

4. Assess the API reference documentation by answering the following questions for each section:

Resource description:

◦ Is the description action-oriented?
◦ Is it a brief 1-3 sentence summary?

Endpoints and methods:

◦ How are the endpoints grouped? (Are they listed all on the same page, or on different
pages? Are they grouped by method, or by resource?)

◦ How are the methods specified for each endpoint?

Parameters:

◦ How many types of parameters are there (header, path, query string, and request body
parameters) for the endpoints?

◦ Are the data types (string, boolean, etc.) defined for each parameter? Are max/min
values noted?

Request example:

◦ In what format or language is the request shown (e.g. curl, specific languages, other)?
◦ How many parameters does the sample request include?

Response example:

Activity 3b: Evaluate API reference docs for core elements PDF last generated: August 29, 2019

API Workshop Activities Page 19

https://idratherbewriting.com/learnapidoc/docapis_find_open_source_project.html
https://idratherbewriting.com/learnapidoc/docapis_find_open_source_project.html
https://idratherbewriting.com/learnapidoc/pubapis_apilist.html#list_api_doc_sites
https://idratherbewriting.com/learnapidoc/pubapis_apilist.html#list_api_doc_sites
https://idratherbewriting.com/learnapidoc/pubapis_apilist.html#list_api_doc_sites
https://idratherbewriting.com/learnapidoc/docapis_resource_descriptions.html
https://idratherbewriting.com/learnapidoc/docapis_resource_descriptions.html
https://idratherbewriting.com/learnapidoc/docapis_resource_endpoints.html
https://idratherbewriting.com/learnapidoc/docapis_resource_endpoints.html
https://idratherbewriting.com/learnapidoc/docapis_doc_parameters.html
https://idratherbewriting.com/learnapidoc/docapis_doc_sample_requests.html
https://idratherbewriting.com/learnapidoc/docapis_doc_sample_requests.html
https://idratherbewriting.com/learnapidoc/docapis_doc_sample_responses_and_schema.html
https://idratherbewriting.com/learnapidoc/docapis_doc_sample_responses_and_schema.html

◦ Is there both a sample response and a response schema? (And is each element in the
response actually described?)

◦ How does the doc site handle nested hierarchies in the response definitions?

Activity 3b: Evaluate API reference docs for core elements PDF last generated: August 29, 2019

API Workshop Activities Page 20

Activity 4a: Explore Swagger UI
through the Petstore Demo
Let’s get some hands-on experience with Swagger UI using the Petstore demo. The Petstore demo
provides a good example of how the OpenAPI specification can be rendered visually.

1. Go to the Swagger Pet Store Demo (https://petstore.swagger.io/).

As with most Swagger-based outputs, Swagger UI provides a “Try it out” button. To make it
work, you must first authorize Swagger by clicking Authorize and entering your API key in the
Authorization modal. However, the Petstore authorization modal is just for demo purposes. There
isn’t any real code authorizing those requests, so you can close the Authorization modal or skip it
altogether.

Authorization modal in Swagger UI

2. Expand the Pet endpoint.
3. Click Try it out.

Activity 4a: Explore Swagger UI through the Petstore Demo PDF last generated: August 29, 2019

API Workshop Activities Page 21

https://petstore.swagger.io/
http://petstore.swagger.io/
http://petstore.swagger.io/

Try it out button in Swagger UI

After you click Try it out, the example value in the Request Body field becomes editable.

4. In the example value, change the first id value to a unique (and unlikely repeated) whole
number. Change the name doggie to a pet name you can remember (e.g., Bentley).

5. Click Execute.

Activity 4a: Explore Swagger UI through the Petstore Demo PDF last generated: August 29, 2019

API Workshop Activities Page 22

http://petstore.swagger.io/
http://petstore.swagger.io/

Executing a sample Petstore request

Swagger UI submits the request and shows the curl (https://idratherbewriting.com/learnapidoc/
docapis_make_curl_call.html) that was submitted. For example, here’s the curl Swagger UI sent:

curl -X POST "https://petstore.swagger.io/v2/pet" -H "accept: applica
tion/xml" -H "Content-Type: application/json" -d "{ \"id\": 1000, \"c
ategory\": { \"id\": 0, \"name\": \"string\" }, \"name\": \"Bentle
y\", \"photoUrls\": [\"string\"], \"tags\": [{ \"id\": 0, \"nam
e\": \"string\" }], \"status\": \"available\"}"

Notice that, with the -d (data) parameter, the request body parameter is escaped and added
directly into the curl command rather than being loaded from a file (as explained in Common curl
commands related to REST (https://idratherbewriting.com/learnapidoc/
docapis_understand_curl.html#common)).

The Responses section in Swagger UI shows the response from the server. By default, the
response returns XML:

Activity 4a: Explore Swagger UI through the Petstore Demo PDF last generated: August 29, 2019

API Workshop Activities Page 23

http://petstore.swagger.io/
http://petstore.swagger.io/
https://idratherbewriting.com/learnapidoc/docapis_make_curl_call.html
https://idratherbewriting.com/learnapidoc/docapis_make_curl_call.html
https://idratherbewriting.com/learnapidoc/docapis_understand_curl.html#common
https://idratherbewriting.com/learnapidoc/docapis_understand_curl.html#common
https://idratherbewriting.com/learnapidoc/docapis_understand_curl.html#common

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Pet>

<category>
<id>0</id>
<name>string</name>

</category>
<id>1000</id>
<name>Bentley</name>
<photoUrls>

<photoUrl>string</photoUrl>
</photoUrls>
<status>available</status>
<tags>

<tag>
<id>0</id>
<name>string</name>

</tag>
</tags>

</Pet>

If you select JSON rather than XML in the “Response content type” drop-down box, you can
specify that JSON is returned rather than XML.

(http://petstore.swagger.io/)

6. The Petstore is a functioning API, and you have actually created a pet. For fun, expand the GET
/pet/{petId} endpoint, click Try it out, enter the pet id you used in the previous operation, and
then execute the request. You should see your pet’s name returned.

Activity 4a: Explore Swagger UI through the Petstore Demo PDF last generated: August 29, 2019

API Workshop Activities Page 24

http://petstore.swagger.io/
http://petstore.swagger.io/
http://petstore.swagger.io/

Activity 4b: Edit an existing OpenAPI
specification document
Use this simple Sunrise and sunset times API (https://sunrise-sunset.org/api) to get more familiar with the
process of creating an OpenAPI specification file. This Sunrise and sunset times API doesn’t require
authentication with requests, so it removes some of the more complicated authentication workflows (the
spec file doesn’t require the security object (https://idratherbewriting.com/learnapidoc/
pubapis_openapi_step6_security_object.html)). In this activity, you’ll edit some of the existing values in an
OpenAPI specification document that’s already written.

To edit the OpenAPI specification file:

1. Copy the code from this pre-built OpenAPI specification (https://idratherbewriting.com/
learnapidoc/assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml).

2. Paste the YAML content into the Swagger Editor (https://editor.swagger.io/).
3. Identify each of the root-level objects of the OpenAPI spec:

◦ Step 1: The openapi object (https://idratherbewriting.com/learnapidoc/
pubapis_openapi_step1_openapi_object.html)

◦ Step 2: The info object (https://idratherbewriting.com/learnapidoc/
pubapis_openapi_step2_info_object.html)

◦ Step 3: The servers object (https://idratherbewriting.com/learnapidoc/
pubapis_openapi_step3_servers_object.html)

◦ Step 4: The paths object (https://idratherbewriting.com/learnapidoc/
pubapis_openapi_step4_paths_object.html)

◦ Step 5: The components object (https://idratherbewriting.com/learnapidoc/
pubapis_openapi_step5_components_object.html)

◦ Step 8: The externalDocs object (https://idratherbewriting.com/learnapidoc/
pubapis_openapi_step8_externaldocs_object.html)

4. In the info object (near the top), make some changes to the description property and see
how the visual display in the right column gets updated.

5. In the parameters object, make some changes to one of the description properties and see
how the visual editor gets updated.

6. Look for the $ref pointer in the response object. Identify what it points to in components .
7. Change some spacing in a way that makes the spec invalid (such as inserting a space before

info), and look at the error that appears. Then revert the invalid space.
8. Expand the Get section and click Try it out. Then click Execute and look at the response.

Activity 4b: Edit an existing OpenAPI specification document PDF last generated: August 29, 2019

API Workshop Activities Page 25

https://sunrise-sunset.org/api
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step6_security_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step6_security_object.html
https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml
https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml
https://editor.swagger.io/
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step1_openapi_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step1_openapi_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step2_info_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step2_info_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step3_servers_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step3_servers_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step4_paths_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step4_paths_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step5_components_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step5_components_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step8_externaldocs_object.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_step8_externaldocs_object.html

Create a Swagger UI display with an
OpenAPI spec document
In this activity, you’ll create a Swagger UI display for an OpenAPI specification document. If you’re using
one of the pre-built OpenAPI files, you can see a demo of what we’ll build here: OpenWeatherMap
Swagger UI (https://idratherbewriting.com/learnapidoc/assets/files/swagger/) or Sunrise/sunset Swagger
UI (https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/index.html).

Demo of Swagger UI rendering an OpenWeatherMap OpenAPI specification document

To integrate your OpenAPI spec into Swagger UI:

1. Prepare a valid OpenAPI specification document:
◦ For instructions on creating an OpenAPI specification document from scratch, follow

the OpenAPI tutorial here (https://idratherbewriting.com/learnapidoc/
pubapis_openapi_tutorial_overview.html).

◦ To use a pre-built OpenAPI specification document, you can use the OpenWeatherMap
spec file (https://idratherbewriting.com/learnapidoc/docs/rest_api_specifications/
openapi_openweathermap.yml) or the Sunrise/sunset API spec file
(https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/
openapi_sunrise_sunset.yml). (Right-click the link and save the YAML file to your

Create a Swagger UI display with an OpenAPI spec document PDF last generated: August 29, 2019

API Workshop Activities Page 26

https://idratherbewriting.com/learnapidoc/assets/files/swagger/
https://idratherbewriting.com/learnapidoc/assets/files/swagger/
https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/index.html
https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/index.html
https://idratherbewriting.com/learnapidoc/assets/files/swagger/index.html
https://idratherbewriting.com/learnapidoc/assets/files/swagger/index.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_tutorial_overview.html
https://idratherbewriting.com/learnapidoc/pubapis_openapi_tutorial_overview.html
https://idratherbewriting.com/learnapidoc/docs/rest_api_specifications/openapi_openweathermap.yml
https://idratherbewriting.com/learnapidoc/docs/rest_api_specifications/openapi_openweathermap.yml
https://idratherbewriting.com/learnapidoc/docs/rest_api_specifications/openapi_openweathermap.yml
https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml
https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml
https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml

desktop.)

2. Make sure your OpenAPI specification is valid. Paste your OpenAPI specification code into the
Swagger online editor (http://editor.swagger.io/#/) and make sure no warnings appear. The view
on the right of the Swagger Editor shows a fully functional Swagger UI display.

3. Go to the Swagger UI GitHub project (https://github.com/swagger-api/swagger-ui).
4. Click Clone or download, and then click Download ZIP. Download the files to a convenient

location on your computer and extract the files.

The only folder you’ll be working with in the downloaded zip is the dist folder (short for
distribution). Everything else is used only if you’re recompiling the Swagger files, which is beyond
the scope of this tutorial.

5. Drag the dist folder out of the swagger-ui-master folder so that it stands alone. (Then
optionally delete the swagger-ui-master folder and zip file.)

6. Drag your OpenAPI specification file (from step 1) into the dist folder. (If you’re using the pre-
build OpenAPI files, the file is called either openapi_openweathermap.yml or
openapi_sunrise_sunset.yml .) Your file structure should look as follows:

├── dist
│ ├── favicon-16x16.png
│ ├── favicon-32x32.png
│ ├── index.html
│ ├── oauth2-redirect.html
│ ├── swagger-ui-bundle.js
│ ├── swagger-ui-bundle.js.map
│ ├── swagger-ui-standalone-preset.js
│ ├── swagger-ui-standalone-preset.js.map
│ ├── swagger-ui.css
│ ├── swagger-ui.css.map
│ ├── swagger-ui.js
│ ├── swagger-ui.js.map
│ ├── swagger30.yml
│ └── [your openapi specification file]

7. Inside your dist folder, open index.html in a text editor such as Atom editor
(https://atom.io/) or Sublime Text (https://www.sublimetext.com/).

8. Look for the following code:

url: "http://petstore.swagger.io/v2/swagger.json",

9. Change the url value from http://petstore.swagger.io/v2/swagger.json to a relative
path to your YAML file, and then save the file. For example:

url: "openapi_openweathermap.yml",

or

url: "openapi_sunrise_sunset.yml",

10. View the index.html file locally in your browser using a Python simple server. See the

Create a Swagger UI display with an OpenAPI spec document PDF last generated: August 29, 2019

API Workshop Activities Page 27

http://editor.swagger.io/#/
https://github.com/swagger-api/swagger-ui
https://atom.io/
https://atom.io/
https://www.sublimetext.com/

instructions in the next section for doing this.

View the Swagger UI file in a Python simple server

CORS security restrictions in Chrome and Firefox prevent you from viewing the Swagger UI file locally.
Swagger UI needs to load on a web server to fulfill the security requirements. You can create a local web
server running on your computer through Python’s SimpleHTTPServer module
(https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server). Mac
has a system version of Python installed by default, but Windows computers will need to install Python.

Windows: Run the Python simpler server:

1. Install Python 3x.

You can check if you already have Python by typing python --version on a command
prompt. If you don’t have Python already, download and install Python 3x
(https://www.python.org/downloads/).

When you install Python, be sure to select the check box that says “Add Python 3.7 to PATH.”
This check box isn’t selected by default. If you don’t select it, your command prompt won’t
recognize the word “python”.

Add Python 3.7 to PATH

2. After installing Python, close your command prompt and reopen it.
3. In your command prompt, browse to the Swagger UI dist directory.

To browse in the Windows command prompt, type cd <folder name> to move into the folder.
Type cd .. to move up a directory. Type dir to see a list of the current directory’s contents.

If you’re having trouble locating the dist directory in the command prompt, try this trick: type
cd , press the spacebar, and then drag the dist folder directly into the command prompt. The

path will be printed automatically.

4. After you’ve navigated into the dist folder, launch the server:

python -m http.server

The server starts:

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

Create a Swagger UI display with an OpenAPI spec document PDF last generated: August 29, 2019

API Workshop Activities Page 28

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://www.python.org/downloads/
https://www.python.org/downloads/

5. Copy the http://0.0.0.0:8000/ path to your browser’s address bar. This is the web server
address.

By default, web servers default to the index.html file in the directory, so it will show the
Swagger UI file automatically. If the browser doesn’t direct to index.html , add it manually:
http://0.0.0.0:8000/index.html .

To stop the server, press Ctrl+C in your command prompt.

Mac: Run the Python simple server

1. In your terminal, browse to the Swagger UI dist directory.

To browse in your terminal, type cd <folder name> to move into the folder. Type cd .. to
move up a directory. Type ls to see a list of the current directory’s contents.

If you’re having trouble locating the dist directory in the command prompt, try this trick: type
cd , press the spacebar, and then drag the dist folder directly into the command prompt. The

path will be printed automatically.

2. Since Mac already has Python, you can just run the following in your terminal to launch simple
server:

python -m http.server

The server starts:

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

3. Copy the http://0.0.0.0:8000/ path to your browser’s address bar. This is the web server
address.

By default, web servers default to the index.html file in the directory, so it will show the
Swagger UI file automatically. If the browser doesn’t direct to index.html , add it manually:
http://0.0.0.0:8000/index.html .

To stop the server, press Ctrl+C in your terminal.

For more details on using the Python simple server, see How do you set up a local testing server?
(https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server) for
more details.

Other notes

If you can’t get the Python simple server to work, you can simply upload the OpenAPI files to a web server
and refer to the path there. If you prefer this approach, you can copy the path to
openapi_openweathermap.yml (https://idratherbewriting.com/learnapidoc/docs/rest_api_specifications/
openapi_openweathermap.yml) or openapi_sunrise_sunset.yml (https://idratherbewriting.com/learnapidoc/
assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml).

When you’re ready to publish your Swagger UI file, you just upload the dist folder (or whatever you want
to call it) to a web server and go to the index.html file. For example, if you called your directory dist

(leaving it unchanged), you would go to http://myserver.com/dist/ .

For more instructions in working with Swagger UI, see the Swagger.io docs (https://swagger.io/docs/open-
source-tools/swagger-ui/usage/installation/).

Create a Swagger UI display with an OpenAPI spec document PDF last generated: August 29, 2019

API Workshop Activities Page 29

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://idratherbewriting.com/learnapidoc/docs/rest_api_specifications/openapi_openweathermap.yml
https://idratherbewriting.com/learnapidoc/docs/rest_api_specifications/openapi_openweathermap.yml
https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml
https://idratherbewriting.com/learnapidoc/assets/files/swagger-sunrise-sunset/openapi_sunrise_sunset.yml
https://swagger.io/docs/open-source-tools/swagger-ui/usage/installation/
https://swagger.io/docs/open-source-tools/swagger-ui/usage/installation/

Activity 6a: Judge conceptual content
and decide which is best
The following are 6 common conceptual topics in API documentation. For each topic, examine the three
examples and decide which one is best.

API overview

• Box (https://developer.box.com/docs/overview)
• Hootsuite (https://developer.hootsuite.com/docs/the-hootsuite-platform)
• Watson Assistant (https://cloud.ibm.com/docs/services/assistant?topic=assistant-index#index)

API getting started

• Parse (https://docs.parseplatform.org/parse-server/guide/)
• Paypal (https://developer.paypal.com/docs/api/overview/)
• Google (https://developers.google.com/adsense/management/getting_started)

API authentication and authorization

• Sendgrid (https://sendgrid.com/docs/User_Guide/Settings/api_keys.html)
• Twitter (https://developer.twitter.com/en/docs/basics/authentication/guides/access-tokens.html)
• AWS (https://docs.aws.amazon.com/AWSECommerceService/latest/DG/HMACSignatures.html)

API status and error codes

• Clearbit (https://clearbit.com/docs?python#errors-error-types)
• Twitter (https://developer.twitter.com/en/docs/basics/response-codes)
• Mailchimp (http://developer.mailchimp.com/documentation/mailchimp/guides/error-glossary/)

API rate limiting and thresholds

• GitHub (https://developer.github.com/v3/rate_limit/)
• Linkedin (https://docs.microsoft.com/en-us/linkedin/shared/api-guide/concepts/rate-

limits?context=linkedin/consumer/context)
• Bitly (http://dev.bitly.com/rate_limiting.html)

API quick reference

• Eventful (http://api.eventful.com/docs)
• Parse (http://docs.parseplatform.org/rest/guide/#quick-reference)
• Veracode (https://help.veracode.com/reader/LMv_dtSHyb7iIxAQznC~9w/

FhxRdiWf5qejrtajmjGtpw)

Activity 6a: Judge conceptual content and decide which is best PDF last generated: August 29, 2019

API Workshop Activities Page 30

https://developer.box.com/docs/overview
https://developer.hootsuite.com/docs/the-hootsuite-platform
https://cloud.ibm.com/docs/services/assistant?topic=assistant-index#index
https://docs.parseplatform.org/parse-server/guide/
https://developer.paypal.com/docs/api/overview/
https://developers.google.com/adsense/management/getting_started
https://sendgrid.com/docs/User_Guide/Settings/api_keys.html
https://developer.twitter.com/en/docs/basics/authentication/guides/access-tokens.html
https://docs.aws.amazon.com/AWSECommerceService/latest/DG/HMACSignatures.html
https://clearbit.com/docs?python#errors-error-types
https://developer.twitter.com/en/docs/basics/response-codes
http://developer.mailchimp.com/documentation/mailchimp/guides/error-glossary/
https://developer.github.com/v3/rate_limit/
https://docs.microsoft.com/en-us/linkedin/shared/api-guide/concepts/rate-limits?context=linkedin/consumer/context
https://docs.microsoft.com/en-us/linkedin/shared/api-guide/concepts/rate-limits?context=linkedin/consumer/context
http://dev.bitly.com/rate_limiting.html
http://api.eventful.com/docs
http://docs.parseplatform.org/rest/guide/#quick-reference
https://help.veracode.com/reader/LMv_dtSHyb7iIxAQznC~9w/FhxRdiWf5qejrtajmjGtpw
https://help.veracode.com/reader/LMv_dtSHyb7iIxAQznC~9w/FhxRdiWf5qejrtajmjGtpw

Activity 7a: Classify code
documentation into one of the five
types
Find a code tutorial within one of the API documentation sites you’ve been exploring. Or look at one of the
API doc sites in this post by Nordic APIs on 5 Examples of Excellent API Documentation (and Why We
Think So) (https://nordicapis.com/5-examples-of-excellent-api-documentation/). This post lists five API doc
sets: Stripe (https://stripe.com/docs/api), Twilio (https://www.twilio.com/docs/usage/api), Dropbox
(https://www.dropbox.com/developers/documentation), GitHub (https://developer.github.com/v3/guides/
getting-started/), and Twitter (https://developer.twitter.com/en/docs/tweets/search/overview).

Find a code tutorial in the documentation. Figure out which approach the code documentation best aligns
with.

Activity 7a: Classify code documentation into one of the five types PDF last generated: August 29, 2019

API Workshop Activities Page 31

https://nordicapis.com/5-examples-of-excellent-api-documentation/
https://nordicapis.com/5-examples-of-excellent-api-documentation/
https://stripe.com/docs/api
https://www.twilio.com/docs/usage/api
https://www.dropbox.com/developers/documentation
https://www.dropbox.com/developers/documentation
https://developer.github.com/v3/guides/getting-started/
https://developer.github.com/v3/guides/getting-started/
https://developer.twitter.com/en/docs/tweets/search/overview

Activity 7a: Create a GitHub wiki and
publish content on a sample page
In this section, you will create a new GitHub repo and publish a sample file there.

1. Create a GitHub account at GitHub.com (http://github.com).
2. Go to GitHub (https://github.com) and sign in. After you’re signed in, click the + button in the

upper-right corner and select New repository.

Creating a new GitHub repository

3. Give the repo a Repository name, a short Description, select Public, select Initialize the repo
with a README, and then click Create repository. (Don’t worry about selecting the license or
gitignore settings for this activity.)

4. Click the Wiki tab on the top navigation bar of your new repository.
5. Click Create the first page. (Or if your wiki already has pages, click New Page.)
6. In the default page (“Home”), insert your own sample documentation content, preferably using

Markdown syntax. Or grab the sample Markdown page of a fake endpoint called surfreport here
(https://idratherbewriting.com/learnapidoc/assets/files/surfreportendpointdoc.md) and insert it
into the page.

7. In the Edit message box, type a description of what you updated (your commit message).
8. Click Save Page.

Notice how GitHub automatically converts the Markdown syntax into HTML and styles it in a readable way.
You could work with this GitHub wiki entirely in the browser as a way for multiple people to collaborate and
edit content. However, unlike other wikis, with GitHub you can also take all the content offline and edit
locally, and then commit your changes and push the changes back online.

Activity 7a: Create a GitHub wiki and publish content on a sample page PDF last generated: August 29, 2019

API Workshop Activities Page 32

http://github.com/
https://github.com/
https://github.com/new
https://github.com/new
https://idratherbewriting.com/learnapidoc/assets/files/surfreportendpointdoc.md
https://idratherbewriting.com/learnapidoc/assets/files/surfreportendpointdoc.md

Activity 7b: Clone your GitHub repo
locally
So far you’ve been working with GitHub in the browser. Now we’ll take the same content and work with it
locally. This is what makes the GitHub wiki unique from other wikis — it’s a Git repo, so you can manipulate
the content the same way as any other Git repo (working locally, pushing, pulling, merging, branching, etc.).

To clone the GitHub repo locally:

1. If you don’t already have Git installed, set it up on your computer. (You can check by typing git

--version in your terminal window. See Install Git (https://idratherbewriting.com/learnapidoc/
pubapis_github_wikis.html#git_install) for more information on installation.)

2. While viewing your the GitHub wiki in your browser, look for the section that says Clone this wiki
locally. Click the clipboard button. (This copies the clone URL to your clipboard.)

Clone this wiki locally

The wiki is a separate clone URL than the project’s repository. Make sure you’re viewing your
wiki and not your project. The clone URL will include .wiki .

In contrast to the “Clone this wiki locally” section, the “Clone in Desktop” button launches the
GitHub Desktop client (https://desktop.github.com/) and allows you to manage the repository
and your modified files, commits, pushes, and pull through the GitHub Desktop client. If you’re
interested in using the GitHub Client of the command line, see this other activity: Activity: Use the
GitHub Desktop client (https://idratherbewriting.com/learnapidoc/
pubapis_github_desktop_client.html).

3. Open your terminal emulator:

Activity 7b: Clone your GitHub repo locally PDF last generated: August 29, 2019

API Workshop Activities Page 33

https://idratherbewriting.com/learnapidoc/pubapis_github_wikis.html#git_install
https://idratherbewriting.com/learnapidoc/pubapis_github_wikis.html#git_install
https://desktop.github.com/
https://idratherbewriting.com/learnapidoc/pubapis_github_desktop_client.html
https://idratherbewriting.com/learnapidoc/pubapis_github_desktop_client.html
https://idratherbewriting.com/learnapidoc/pubapis_github_desktop_client.html

◦ If you’re a Windows user, open the Git BASH terminal emulator, which was installed
when you installed Git (https://gitforwindows.org/).

◦ If you’re a Mac user, go to Applications > Utilities > Terminal (or launch iTerm
(https://iterm2.com/), if you installed it instead).

4. In your terminal, either use the default directory or browse (cd) to a directory where you want to
download your repository.

5. Type the following, but replace the git URL with your own git URL that you copied earlier (it
should be on your clipboard). The command should look something like this:

git clone https://github.com/tomjoht/weatherapi.wiki.git

When you clone a repo, Git will show something like the following:

Cloning into 'weatherapi.wiki'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 9 (delta 0), reused 0 (delta 0), pack-reused 6
Unpacking objects: 100% (9/9), done.

The folder Git creates in the above example is called weatherapi.wiki .

Cloning the wiki gives you a copy of the content on your local machine. Git is distributed version
control software, so everyone has his or her own copy. When you clone the repo, you create a
copy on your local machine; the version in the cloud on GitHub is referred to as “origin.” Thus,
you have two instances of the content.

More than just copying the files, though, when you clone a repo, you initialize Git in the folder
where you clone the repo. Initializing Git means Git will create an invisible Git folder in that
directory, and Git can start tracking your edits to the files, providing version control. With Git
initialized, you can run pull commands to get updates from the online repository (origin) pulled
down to your local copy. You can also commit your changes and then push your changes
back up to origin.

6. Navigate to the directory where you cloned the repo (either using standard ways of browsing for
files on your computer or via the terminal with cd) to see the files you downloaded. For example,
type cd weatherapi.wiki and then ls (Mac) or dir (Windows) to see the files.

You don’t need to type the full directory name. Just start typing the first few letters and then
press your Tab key to autocomplete the rest.

You might also want to browse to this folder via Finder (Mac) or Explorer (Windows). If you can
view invisible files on your machine (for instructions on making hidden files visible, see one of the
following: Windows (https://support.microsoft.com/en-us/help/14201/windows-show-hidden-
files) or Mac (https://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/)),
you will also see a git folder.

Activity 7b: Clone your GitHub repo locally PDF last generated: August 29, 2019

API Workshop Activities Page 34

https://gitforwindows.org/
https://iterm2.com/
https://iterm2.com/
https://support.microsoft.com/en-us/help/14201/windows-show-hidden-files
https://support.microsoft.com/en-us/help/14201/windows-show-hidden-files
https://ianlunn.co.uk/articles/quickly-showhide-hidden-files-mac-os-x-mavericks/

Activity 7c: Push local changes to the
remote

1. In a text editor, open the Markdown file you downloaded in the GitHub repository.
2. Make a small change to the content and save it. For example, type your name below the page

title.
3. In your terminal, make sure you’re in the directory where you downloaded the GitHub project.

To look at the directories under your current path, type ls (Mac) or dir (Windows). Then use
cd {directory name} to drill into the folder, or cd ../ to move up a level.

4. See what files have changed:

git status

Git responds:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working direct
ory)
modified: Home.md

5. Add all the files to your staging area. The staging area contains all files that you want added to
your next commit:

git add .

Git doesn’t automatically track all files in the same folder where Git has been initialized. Git tracks
modifications only for the files that have been “added” to Git. By typing git add . or git add

--all , you’re telling Git to start tracking modifications to all files in this directory. You could also
type a specific file name here instead, such as git add Home.md , to just add a specific file
(rather than all files changed) to Git’s tracking.

After you run the git add command, Git adds the files into what’s called the staging area. As a
sports analogy, the staging area is like your on-deck circle. These files are ready to be committed
when you run git commit .

6. See the changes set in your staging area:

git status

Git responds with a message indicating which files are on-deck to be committed.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: Home.md

Activity 7c: Push local changes to the remote PDF last generated: August 29, 2019

API Workshop Activities Page 35

The staging area lists all the files that have been added to Git that you have modified in some
way. It’s a good practice to always type git status before committing files because you might
realize that by typing git add . , you might have accidentally added some files you didn’t
intend to track (such as large binary files). If you want to remove this file from the staging area,
you can type git reset HEAD Home.md to unstage it.

7. Commit the changes:

git commit -m "updated some content"

When you commit the changes, you’re creating a snapshot of the files at a specific point in time
for versioning.

The git commit -m command is a shortcut for committing and typing a commit message in the
same step. It’s much easier to commit updates this way.

If you type git commit only, you’ll be prompted with another window to describe the change.
On Windows, this new window will probably be a Notepad window. Describe the change on the
top line, and then save and close the Windows file.

On a Mac, a new window doesn’t open. Instead, the Vim editor (https://en.wikipedia.org/wiki/Vi)
mode opens up within the terminal. (“vi” stands for visual and “m” for mode, but it’s not a very
visual editor.) I don’t recommend using Vim. If you get stuck in this mode and need to escape,
press your Escape key. Then type q to quit. (See Vim commands (http://www.cs.rit.edu/~cslab/
vi.html) here.) Normally, you want an external editor such as Sublime Text to open from your
terminal. See Associating text editors with Git (https://help.github.com/articles/associating-text-
editors-with-git/) for details.

8. Push the changes to your repository:

git push

Unless you set up automatic GitHub authentication (https://idratherbewriting.com/learnapidoc/
pubapis_github_wikis.html#set-up-automatic-github-authentication), you will be prompted for
your GitHub username and password. (Note that your username is your GitHub login ID, such as
“jdoe,” not your friendly name, such as “John Doe.”)

Note that when you type git push or git pull and don’t specify the branch, GitHub uses
the default branch from origin. The default branch on GitHub is called master . Thus the
command actually passed is git push origin master (which means “push these changes to
the remote origin[al] repository, in the master branch”). Some developers prefer to specify the
repository and branch to ensure they are interacting with the right repositories and branches.

Your terminal window probably looks something like this:

Activity 7c: Push local changes to the remote PDF last generated: August 29, 2019

API Workshop Activities Page 36

https://en.wikipedia.org/wiki/Vi
http://www.cs.rit.edu/~cslab/vi.html
http://www.cs.rit.edu/~cslab/vi.html
https://help.github.com/articles/associating-text-editors-with-git/
https://help.github.com/articles/associating-text-editors-with-git/
https://idratherbewriting.com/learnapidoc/pubapis_github_wikis.html#set-up-automatic-github-authentication
https://idratherbewriting.com/learnapidoc/pubapis_github_wikis.html#set-up-automatic-github-authentication

Terminal window with git commands

9. Now verify that your changes took effect. Browse to your GitHub wiki repository and look to see
the changes.

Although there are many options for authoring and publishing tools with developer docs, at their core is a
probably a Git workflow. The Git workflow can be more powerful and complex than any authoring tool.
Interacting with Git might also be key for interacting with engineering repos to make edits to documentation
that appears inside code.

Activity 7c: Push local changes to the remote PDF last generated: August 29, 2019

API Workshop Activities Page 37

Activity 9a: Look at API documentation
jobs and requirements
In this activity, you’ll get a sense of the skills needed for the jobs in your location, and then draw up a plan.

1. Go to indeed.com (https://www.indeed.com/).
2. In the Where field, type your desired location.
3. Search for “API technical writer” or some combination of API + technical writer + developer

documentation jobs.
4. Read the descriptions of 5 jobs.
5. Note a few of the salient requirements for these jobs.
6. Assess where you’re currently at with the following:

◦ Portfolio with writing samples that include developer documentation
◦ Technical knowledge related to developer domain
◦ Experience writing developer documentation

7. Make a plan for how you’ll match up your portfolio, tech knowledge, and experience related to
what these job descriptions are asking for. You might need to dedicate more time to an open-
source documentation project (https://idratherbewriting.com/learnapidoc/
docapis_find_open_source_project.html) to build up the needed skills.

Activity 9a: Look at API documentation jobs and requirements PDF last generated: August 29, 2019

API Workshop Activities Page 38

https://www.indeed.com/
https://idratherbewriting.com/learnapidoc/docapis_find_open_source_project.html
https://idratherbewriting.com/learnapidoc/docapis_find_open_source_project.html
https://idratherbewriting.com/learnapidoc/docapis_find_open_source_project.html

Activity 9b: Find an open-source
project with API doc needs
To find an open-source project with API doc needs:

1. Go to the GitHub Advanced Search (https://github.com/search/advanced).
2. Under the Issues Options section, in the With the labels row, type help wanted . This is a

standard tag that teams use to attract volunteers to their project (but some teams that need help
might not use it).

Scroll to the top and notice that label: "help wanted" automatically populates in the field.

3. In this Advanced Search box at the top, add some additional keywords (such as
documentation and rest api) as well:

4. Click Search and browse the results (http://idratherbewriting.site/githubsearchopps).

In the results, you might want to look for a REST API project (rather than a native-library API
(https://idratherbewriting.com/learnapidoc/nativelibraryapis_overview.html) such as a Java API). It
might be hard to distinguish between the two, so include “REST” in your query. If you see doc
requests related to Java, C++, JavaScript, or some other programming-specific framework, it’s
probably not a REST API.

As you browse the results, are there any projects that look interesting or promising? If so, great. If
not, adjust some of the keywords and keep looking.

5. If searching GitHub doesn’t yield any appropriate projects, try the following resources:

◦ Trending GitHub projects (https://github.com/trending)
◦ Crowdforge (https://crowdforge.io/)
◦ Up for Grabs (http://up-for-grabs.net/#/)
◦ Bus Factor (https://libraries.io/experiments/bus-factor)
◦ Code Triage (https://www.codetriage.com/)
◦ Changelog (https://changelog.com/)

Activity 9b: Find an open-source project with API doc needs PDF last generated: August 29, 2019

API Workshop Activities Page 39

https://github.com/search/advanced
http://idratherbewriting.site/githubsearchopps
http://idratherbewriting.site/githubsearchopps
http://idratherbewriting.site/githubsearchopps
https://idratherbewriting.com/learnapidoc/nativelibraryapis_overview.html
https://idratherbewriting.com/learnapidoc/nativelibraryapis_overview.html
https://github.com/trending
https://crowdforge.io/
http://up-for-grabs.net/#/
https://libraries.io/experiments/bus-factor
https://www.codetriage.com/
https://changelog.com/

◦ 24-hour Pull Requests (https://24pullrequests.com)
◦ Programmableweb.com API directory (https://www.programmableweb.com/category/

all/apis)

Note: You could spend a long time evaluating and deciding on open source projects. For
this activity, it’s okay if you focus on a project that looks only mildly interesting. You don’t
need to commit to it. You can always change it later.

6. After selecting a project, make notes on the following:

◦ Does the project involve a REST API?
◦ How does the project tag documentation-related issues? For example, does it use the

“documentation” label?
◦ Identify the current state of the project’s documentation. Are the docs robust, skimpy,

nonexistent, extensive?
◦ How active is the project? (What is the frequency of commits?)
◦ How many contributors does the project have?

You don’t have to actually reach out or interact with the team yet. You’re just gathering
information and analyzing documentation needs here.

Activity 9b: Find an open-source project with API doc needs PDF last generated: August 29, 2019

API Workshop Activities Page 40

https://24pullrequests.com/
https://www.programmableweb.com/category/all/apis
https://www.programmableweb.com/category/all/apis

	Activities
	Activity 1a: Identify your goals with API documentation
	Activity 2a: Get familiar with the OpenWeatherMap API
	Activity 2b: Get an OpenWeatherMap API key
	Activity 2c: Make requests with Postman
	Make a request
	Save the request
	Make a request for the OpenWeatherMap 5 day forecast
	Make one more OpenWeatherMap API request

	Activity 2d: Make the OpenWeatherAPI request using curl
	Activity 2e: Make an API request on a web page
	Step-by-step explanation

	Activity 3a: What's wrong with this API reference topic
	Surfreport
	Endpoints
	Parameters
	Sample request
	Sample response
	Response definitions
	Answers

	Activity 3b: Evaluate API reference docs for core elements
	Activity 4a: Explore Swagger UI through the Petstore Demo
	Activity 4b: Edit an existing OpenAPI specification document
	Create a Swagger UI display with an OpenAPI spec document
	Activity 6a: Judge conceptual content and decide which is best
	Activity 7a: Classify code documentation into one of the five types
	Activity 7a: Create a GitHub wiki and publish content on a sample page
	Activity 7b: Clone your GitHub repo locally
	Activity 7c: Push local changes to the remote
	Activity 9a: Look at API documentation jobs and requirements
	Activity 9b: Find an open-source project with API doc needs

