
Prioritise your tasks
Improve your way of working and become more efficient

Implement Swagger
with API docs

Misunderstandings around
women in techcomm

Create compliant manuals
for the US

Write a winning proposal

The Institute of Scientific and Technical Communicators
Autumn 2016

Communicator

Communicator Autumn 2016

42

Introduction
On a recent project, after I created documentation
for a new API (Application Programming
Interface), the project manager wanted to demo
the new functionality to some field engineers.
To prepare for the demo, the project manager
summarised, in a PowerPoint presentation, the
new endpoints that had been added. The request
and responses from each endpoint, along with
their parameters, were included as attractively as
possible in a number of PowerPoint slides.

During the demo, the project manager talked
through each of the slides, explaining the
new endpoints, the parameters the users can
configure, and the responses from the server.

How did the field engineers react to the
new demo?

The field engineers wanted to try out the
requests and see the responses for themselves.
They wanted to “push the buttons", so to
speak, and see how the API responded. I’m
not sure if they were sceptical of the API’s
advertised behaviour, or if they had questions
the slides failed to answer. But they insisted on
making actual calls themselves and seeing the
responses, despite what the project manager
had noted on each slide.

The field engineers’ insistence on trying
out every endpoint made me rethink my
API documentation. All the engineers I’ve
ever known have had similar inclinations to
explore and experiment on their own. I have a
mechanical engineering friend who once nearly
entirely dismantled his car’s engine to change
a head gasket: he simply loved to take things
apart and put them back together. It’s the
engineering mind. When you force engineers to
passively watch a PowerPoint presentation, they
quickly lose interest.

After the meeting, I wanted to make my
documentation more interactive, with options
for users to try out the calls themselves. I
had heard of Swagger (which is now called
the OpenAPI specification but still commonly
referred to as Swagger). I knew that Swagger
was a way to make my API documentation
interactive. Looking at the Swagger demo
(http://petstore.swagger.io), I knew I had to
figure it out.

About Swagger
Swagger is a specification for describing REST
APIs. This means Swagger provides a set of
objects, with a specific schema about their
naming, order, and contents, that you use to
describe each part of your API.

Implementing Swagger with API docs
Swagger creates interactive documentation for your
REST API. Tom Johnson explains more.

API reference

You can think of the Swagger specification
like DITA but for APIs. With DITA, you have a
number of elements that you use to describe
your help content (for example, task, step, cmd).
The elements have a specific order they have to
appear in. The cmd element must appear inside
a step, which must appear inside a task, and
so on. The elements have to be used correctly
according to the XML schema in order to be valid.

Many tools can parse valid DITA XML and
transform the content into different outputs.
The Swagger specification works similarly, only
the specification is entirely different, since
you’re describing an API instead of a help topic.

The official description of the Swagger
specification is available in a Github repository
here: https://github.com/OAI/OpenAPI-
Specification. Some of these elements are /
{path}, parameters, responses, and security.
Each of these elements is actually an “object”
(instead of an XML element) that holds a
number of fields and arrays.

In the Swagger specification, your endpoints
are “paths". If you had an endpoint called “pet",
your Swagger specification for this endpoint
might look as follows:
/pets:
 get:
 description: Returns all pets from the
system that the user has access to
 produces:
 - application/json
 responses:
 ‘200’:
 description: A list of pets.
 schema:
 type: array
 items:
 $ref: ‘#/definitions/pet’
/pets is the endpoint path. get is the HTTP
method. responses lists the response from
the request. 200 is the HTTP status code. $ref
is actually a reference to another part of your
implementation where the response is defined.
(Swagger has a lot of $ref references like this to
keep your code clean and to facilitate re-use.)

It can take quite a while to figure out the
Swagger specification. Give yourself a couple
of weeks and a lot of example specification
files to look at, especially in the context of the
actual API you’re documenting. Remember that
the Swagger specification is general enough to
describe nearly every REST API, so some parts
may be more applicable than others.

When you’re implementing the specification,
instead of working in a text editor, you can

There’s a
terminology table at
the end of the article

http://petstore.swagger.io
https://github.com/OAI/OpenAPI

Communicator Autumn 2016

43

Figure 1. The Swagger Editor. With each stroke you type, this editor lets you know if your Swagger specification file is valid.

write your code in the Swagger editor (http://
editor.swagger.io/). The Swagger Editor,
Figure 1, dynamically validates whether the
specification file you’re creating is valid.

While you’re coding in the Swagger Editor, if
you make an error, you can quickly fix it before
continuing, rather than waiting until a later time
to run a build and sort out errors.

For your specification file’s format, you
have the choice of working in either JSON or
YAML. The previous code sample is in YAML.
YAML refers to “YAML Ain’t Markup Language,”
meaning YAML doesn’t have any markup
tags (<>), as is common with other markup
languages such as XML.

YAML depends on spacing and colons to
establish the object syntax. This makes the code
more human-readable, but it’s also trickier to
get the spacing right.

Manual or automated?
So far I’ve been talking about creating the
Swagger specification file as if it’s the technical
writer’s task and requires manual coding
in a text editor based on close study of the
specification. That’s how I approached it, but
developers can also automate the specification
file through annotations in the programming
source code.

Swagger offers a variety of libraries that
you can add to your programming code.

These libraries will parse through your code’s
annotations and generate a specification file.
Of course, someone has to know exactly what
annotations to add and how to add them. Then
someone has to write content for each of the
annotation’s values (describing the endpoint,
the parameters, and so on).

Still, many developers get excited about
this approach because it offers a way to
“automatically” generate documentation from
code annotations, which is what developers
have been doing for years with other
programming languages such as Java (using
Javadoc) or C++ (using Doxygen). They usually
feel that generating documentation from the
code results in less documentation drift.

Although you can generate your specification
file from code annotations, not everyone
agrees that this is the best approach. In
Undisturbed REST: A Guide to Designing the
Perfect API, Michael Stowe recommends that
teams implement the specification by hand and
then treat the specification file as a contract
that developers use when doing the actual
coding. In other words, developers consult the
specification file to see what the parameter
names should be called, what the responses
should be, and so on. After this contract has
been established, Stowe says you can then put
the annotations in your code to auto-generate
the specification file.

http://editor.swagger.io
http://editor.swagger.io

Communicator Autumn 2016

44 API reference

Figure 2. Swagger UI Petstore Demo. This is how Swagger UI renders the Swagger specification file. Other tools can render the specification
file in different ways.

Too often, development teams quickly jump
to coding the API endpoints, parameters, and
responses without doing much user testing or
research into whether the API aligns with what
users want. Since versioning APIs is extremely
difficult (you have to support each new version
going forward with full backwards compatibility
to previous versions), you want to avoid
the try-quickly-and-fail approach that is so
commonly embraced with agile.

From the Swagger specification file, some
tools can generate a mock API that you can put
before users to have them try out the requests.
The mock API generates a response that looks
like it’s coming from a real server, but it’s really
just a pre-defined response in your code and
appears to be dynamic to the user.

With my project, our developers weren’t that
familiar with Swagger, so I simply created the
specification file by hand. Additionally, I didn’t
have free access to the programming source
code, and our developers spoke English as a
second or third language only. They weren’t
eager to be in the documentation business.

Parsing the Swagger specification
Once you have a valid Swagger specification file
that describes your API, you can then feed this
specification to different tools to parse it and
generate the interactive documentation similar
to the Petstore example I referenced earlier.

Probably the most common tool used to parse
the Swagger specification is Swagger UI (https://
github.com/swagger-api/swagger-ui). After you
download Swagger UI, you basically just open
up the index.html file inside the “dist” folder
(which contains the Swagger UI project build)
and reference your own Swagger specification
file in place of the default one.

The Swagger UI code generates a display that
looks like Figure 2.

Some designers criticise the Swagger UI’s
expandable/collapsible output as being dated. I
somewhat agree: the collapsed design makes it
difficult to scan the information and easily see
the details. However, at the same time, developers
find the one-page model attractive and like the
ability to zoom out or in for details.

As with most Swagger-based outputs, Swagger
UI provides a “Try it out” button. After you
populate the endpoint parameters with values
and click Try it out!, Swagger UI shows you
the cURL format of the request followed by the
request URL and response (see Figure 3). The
response is usually returned in JSON format.

There are other tools besides Swagger UI that
can parse your Swagger specification file. Some
of these tools include Restlet Studio, Apiary,
Apigee, Lucybot, Gelato/Mashape, Readme.
io, swagger2postman, swagger-ui responsive
theme, and more. Some web designers have
created integrations of Swagger with static site

https://github.com/swagger-api/swagger
https://github.com/swagger-api/swagger
http://Readme.io
http://Readme.io

Communicator Autumn 2016

45

Figure 3. The “Try it out” feature in Swagger UI. Users can make requests to your API with their own values, and see the response directly on
the page.

generators such as Jekyll (see Carte, https://
github.com/Wiredcraft/carte). More tools roll
out regularly for parsing and displaying content
from a Swagger specification file.

In fact, once you have a valid Swagger
specification, using a tool called API Transformer
(https://apitransformer.com), you can even
transform it into other API specifications, such
as RAML or API Blueprint. In this way you can
expand your tool horizons even wider. (RAML
and API Blueprint are alternative specifications to
Swagger: they’re not as popular, but the logic of
the specifications is similar.)

Responses to Swagger documentation
With my project, I used the Swagger UI to parse
my Swagger specification. I customised Swagger
UI’s colours a bit, added a logo and a few other
features. I spliced in a reference to Bootstrap so
that I could have pop-up modals where users
could generate their authorisation codes. I even
added some collapse and expand features in
the description element to provide necessary
information to users about a sample project.

Beyond these simple modifications, however,
it takes a bit of web developer prowess to
significantly alter the Swagger UI display.

When I showed the results to the project
managers, they loved it. They quickly embraced
the Swagger output in place of the PowerPoint
slides and promoted it among the field engineers

and users. The Vice-President of Engineering
even decided that Swagger would be the default
approach for documenting all APIs.

Overall, delivering the Swagger output was
a huge feather in my cap at the company, and
it established an immediate credibility of my
technical documentation skills, since no one else
in the company had a clue about how to deliver
the Swagger output.

A slight trough of disillusionment
Despite Swagger’s interactive power to appeal
to the “let me try” desires of users, I began to
realise there were some downsides to Swagger.
Swagger’s output is still just a reference
document. It provides the basics about
each endpoint, including a description, the
parameters, a sample request, and a response. It
doesn’t provide space for a Hello World tutorial,
information about how to get API keys, how to
configure any API services, information about
rate limits, or the thousand other details that go
into a user guide.

So, even though you have this cool, interactive
tool for users to explore and learn about your
API, at the same time you still have to provide
a user guide. Similarly, delivering a Javadoc or
Doxygen output for a library-based API won’t
teach users how to actually use your API. You
still have to describe scenarios for using a class
or method, how to set your code up, what to

https://github.com/Wiredcraft/carte
https://github.com/Wiredcraft/carte
https://apitransformer.com

Communicator Autumn 2016

46 API reference

do with the response, how to troubleshoot
problems, and so on. In short, you still have to
write actual help guides and tutorials.

With Swagger in the mix, you now have some
additional challenges. You have two places
where you’re describing your endpoints and
parameters, and you have to either keep the two
in sync, or you have to link between the two.

Peter Gruenbaum, who has published several
tutorials on writing API documentation on
Udemy, says that automated tools such as
Swagger work best when the APIs are simple.
I agree. When you have endpoints that have
complex interdependencies and require special
setup workflows or other unintuitive treatment,
the straightforward nature of Swagger’s
Try-it-out interface will likely leave users
scratching their heads.

For example, if you must first configure an
API service before an endpoint returns anything,
and then use one endpoint to get a certain
object that you pass into the parameters of
another endpoint, and so on, the Try it out
features in the Swagger UI output won’t make a
lot of sense to users.

Additionally, some users may not realise that
clicking “Try it out!” makes actual calls against
their own accounts based on the API keys
they’re using. Mixing an invitation to use an
exploratory sandbox like Swagger with real data
can create some headaches later on when users
ask how they can remove all of the test data, or
why their actual data is now messed up. If your
API executes orders for supplies or makes other
transactions, it can be even more challenging.
(For these scenarios, I recommend setting up
sandbox or test accounts for users.)

Finally, I found that only endpoints with
simple request body parameters tend to work
in Swagger. Another API I had to document
included requests with request body parameters
that were hundreds of lines long. With this sort
of request body parameter, Swagger UI’s display
fell hopelessly short of being usable. The team
reverted to much more primitive approaches
(such as tables and spreadsheets) for listing all
of the parameters and their descriptions.

Some consolations
Despite the shortcomings of Swagger, I still
highly recommend it for describing your API.
Swagger is quickly becoming a way for more
and more tools (from Postman Run buttons
to nearly every API platform) to quickly ingest
the information about your API and make
it discoverable and interactive with robust,
interactive tooling. Through your Swagger
specification, you can port your API onto many
platforms and systems, as well as automatically
set up unit testing and prototyping.

Swagger does provide a nice visual shape for
an API. You can easily see all the endpoints and
their parameters (like a quick-reference guide).
Based on this framework, you can help users
grasp the basics of your API.

Additionally, I found that learning the
Swagger specification and describing my API
helped shape my own API vocabulary. By
poring through the specification, I realised that
there were four types of parameters: “path”
parameters, “header” parameters, “query”
parameters, and “request body” parameters. I
learned that parameter data types with REST
were a “Boolean”, “number”, “integer”, or
“string.” I learned that responses provided
“objects” containing “strings” or “arrays.”

In short, implementing the specification
gave me an education about API terminology,
which in turn helped me describe the various
components of my API in credible ways.

Swagger may not be the right approach for
every API, but if your API has fairly simple
parameters, without many interdependencies
between endpoints, and if it’s practical to
explore the API without making the user’s
data problematic, Swagger can be a powerful
complement to your documentation. You can

Table 1. Terminology table

Term Description

API Application Programming Interface. Enables different systems
to interact with each other programmatically. Two types of
APIs are web services and library-based APIs.

cURL A command line utility often used to interact with REST API
endpoints. Used in documentation for request code samples.

Endpoint The end part of the request URL (after the base path). Also
sometimes used to refer to the entire API reference topic.

JSON JavaScript Object Notation. A lightweight syntax containing
objects and arrays, usually used (instead of XML) to return
information from a REST API.

OpenAPI The official name for Swagger. Now under the Open API
Initiative with the Linux Foundation (instead of SmartBear, the
original development group), the OpenAPI specification aims
to be vendor neutral.

REST API Stands for Representational State Transfer. Uses web protocols
(HTTP) to make requests and provide responses in a language-
agnostic way, meaning that users can choose whatever
programming language they want to make the calls.

Swagger An official specification for REST APIs. Provides objects used to
describe your endpoints, parameters, responses, and security.
Now called OpenAPI specification.

Swagger
Editor

Swagger specification validator. An online editor that dynamically
checks whether your Swagger specification file is valid.

Swagger UI A display framework. The most common way to parse a
Swagger specification file and produce the interactive
documentation as shown in the Petstore demo.

YAML Recursive acronym for “YAML Ain’t No Markup Language.” A
human- readable, space-sensitive syntax used in the Swagger
specification file.

Communicator Autumn 2016

47

FOUNDATION CERTIFICATION
STC’s Certi�ed Professional Technical Communicator (CPTC)

Learn more at www.stc.org/certi�cation

7

7-10 May

STC Summit 2017

Washington, DC in National Harbor, MD

Advance your Career and the Profession
Earn the CPTC Foundation Credential Today
The Certi�ed Professional Technical Communicator (CPTC)
credential assures employers, colleagues, and the public that
you have the knowledge and skill to handle complex technical
communication projects from the project planning stage through
production and delivery.

Bene�ts
Why earn the CPTC credential? Because the CPTC credential:

• Distinguishes you from your peers;

• Shows you have the most up-to-date
knowledge in the �eld;

• Opens up job opportunities
and enhances job mobility;

• Elevates the profession;

• Gives you a sense of pride in your career; and

• Demonstrates your commitment to the �eld.

Advance your Career and the
Profession — Earn the CPTC
Foundation Credential Today!

give users the ability to try out requests and
responses for themselves.

With this interactive element, your
documentation becomes more than just
information. Through Swagger, you create a
space for users to both read your documentation
and experiment with your API at the same time.
That combination tends to provide a powerful
learning experience for users. C

Tom Johnson is a technical writer at
Amazon Lab126 (www.lab126.com) in
Sunnyvale, California, USA. He is best
known in the community for his
technical communication blog:

idratherbewriting.com. Passionate about API
documentation, Tom has developed an extensive
online course about APIs that you can take on his site.
E: tom@idratherbewriting.com
W: http://idratherbewriting.com
T: @tomjohnson
API course: http://idratherbewriting.com/docapis_
course_overview

Choosing a training course is not easy.

Course providers can contact
education@istc.org.uk for more
details of the accreditation process

ISTC accredited training courses have
been reviewed by experienced technical
communicators and display the
Accredited Training Course logo.

For a list of currently accredited
courses, see the ISTC website

Resources and further reading
API Transformer https://apitransformer.com (accessed July 2016)

APIMATIC: www.apimatic.io (accessed July 2016)

Carte: https://github.com/Wiredcraft/carte (accessed July 2016)

Marshall E (2012) ‘Breaking into a speciality market: part 1’ Communicator,
Autumn 2012: 36-39

Marshall E (2012) ‘Breaking into a speciality market: part 2’ Communicator,
Winter 2012: 24-28

Swagger editor: http://editor.swagger.io (accessed July 2016)

Swagger Hub: https://swaggerhub.com (accessed July 2016)

Swagger Petstore demo: http://petstore.swagger.io (accessed July 2016)

Swagger Tools: http://swagger.io/tools (accessed July 2016)

Swagger tutorial (long): http://apihandyman.io/writing-openapi-swagger-
specification-tutorial-part-1-introduction (accessed July 2016)

Swagger tutorial (short): http://idratherbewriting.com/pubapis_swagger
(accessed July 2016)

Swagger/OpenAPI specification: https://github.com/OAI/OpenAPI-
Specification (accessed July 2016)

Swagger2postman: https://github.com/josephpconley/swagger2postman
(accessed July 2016)

Swagger-ui Responsive theme: https://github.com/jensoleg/swagger-ui
(accessed July 2016)

Swagger-ui: https://github.com/swagger-api/swagger-ui (accessed July 2016)

Undisturbed REST: A Guide to Designing the Perfect API, by Michael Stowe:
www.mulesoft.com/lp/ebook/api/restbook (accessed July 2016)

http://www.lab126.com
http://idratherbewriting.com
mailto:tom@idratherbewriting.com
http://idratherbewriting.com
http://www.twitter.com/@tomjohnson
http://idratherbewriting.com/docapis_course_overview
http://idratherbewriting.com/docapis_course_overview
https://apitransformer.com
http://www.apimatic.io
https://github.com/Wiredcraft/carte
http://editor.swagger.io
https://swaggerhub.com
http://petstore.swagger.io
http://swagger.io/tools
http://apihandyman.io/writing-openapi-swagger-specification-tutorial-part-1-introduction
http://idratherbewriting.com/pubapis_swagger
https://github.com/OAI/OpenAPI-Specification
https://github.com/josephpconley/swagger2postman
https://github.com/jensoleg/swagger-ui
https://github.com/swagger-api/swagger-ui
http://www.mulesoft.com/lp/ebook/api/restbook

	Contents
	From the editor
	Area groups
	President’s view
	Online groups
	Member news
	About the Mentoring Scheme
	MadWorld 2016: He said, She said
	Why soap! rocks?
	LavaCon Europe Conference 2016
	UA Europe conference 2016
	Communicator wins an APEX 2016 Grand Award!
	Prioritising your workload
	Top 10 proofreading tips
	Female practitioners: a qualitative study
	Creating compliant manuals for the US
	How to write a winning proposal
	Innovating techcomm education
	Implementing Swagger with API docs
	Procedures and functions
	Editing
	Your ISTC directory
	Ethical dilemmas
	MadCap tips
	Book review
	A day in the life

