
Focus on eLearning and Training
Read multiple articles focusing on different aspects of
eLearning and training

The Institute of Scientific and Technical Communicators
Autumn 2020

Read about MadCap Flare
2020

Understand the importance of
terminology management

Discover the latest developer
documentation trends

Learn the benefits of
HelpXplain from EC Software

Communicator

Communicator Autumn 2020

46 Trends

Developer documentation trends
How developer documentation trends differ from general
technical communication trends. By Tom Johnson.

Introduction
Despite excellent research on trends in the
technical communication space, so far no
survey has focused exclusively on trends within
developer documentation only. By developer
docs, I mean documentation written primarily
for developers and engineers. Two recent
surveys on the general tech comm space include
Saul Carliner’s Tech Comm Census results
(published in Dec 2018 STC Intercom) and Scott
Abel’s Benchmarking Survey (summarised in the
same issue).

Reading the results of these surveys, one would
assume that most technical writers use Microsoft
Word, Adobe FrameMaker, help authoring tools,
CCMSs, and DITA. However, these surveys miss
out on an important and sweeping tool change,
often referred to as “docs-as-code,” that is taking
place on the web. They also don’t explore many
other trends within the developer doc space.

Scott’s survey does include some API-related
information. He found that “Fifty-eight percent
of technical communication teams surveyed
say they currently document APIs; 10 percent
plan to in the future”. One challenge tech
writers face in documenting APIs is “using
software tools not optimised for ease-of-use
or writing efficiency, and lack of experience”.
Scott’s survey also found that 21% of technical
communicators use Markdown to create docs.

These responses about APIs are more relevant
to developer docs, but they don’t go far enough.
More developer-oriented topics are left out, such

as how writers integrate with engineering Scrum
teams, how writers interact with engineers on
documentation, how writers handle the OpenAPI
spec and other reference docs, and more.

Don’t get me wrong. I highly value these
general surveys and the information they
provide. But I was perplexed to see Adobe
FrameMaker and Microsoft Word used so
prominently. Admittedly, the tools usage
reported by these surveys wasn’t too far off
from previous WritersUA Tools surveys. For
example, in 2014, WritersUA found that 52%
of writers (199 out of 382 respondents) used
FrameMaker (2014 WritersUA Tools Survey).

Reading these surveys made me wonder — is
it really the case that so many tech writers are
still using FrameMaker and Word? That didn’t
match what I was seeing around me in Silicon
Valley. But was I living in a bubble, an anomaly
to the rest of the tech comm world? Were
trends toward docs-as-code tools much more
widespread and common in developer docs?
The general tech comm surveys left me with
more questions than answers.

A survey focusing on developer docs
To gather data about trends in developer docs,
I decided to create my own survey. In the first
developer documentation survey of its kind, I
created a list of 50 questions, mostly multiple
choice. I limited the audience to people writing
docs for developers/engineers only. I promoted
the survey on my blog, LinkedIn, and Twitter,

Figure 1. Response distribution

A glossary of terms is
available on page 45.

Communicator Autumn 2020

47

and left the survey open for about two months,
from January to March 2020.

A total of 405 people completed the entire
survey. Completing the survey means that after
the 50th question, they clicked Submit. However,
855 started the survey, and 337 dropped out
somewhere along the way. I allowed partial
responses even if users dropped out along the
way. So the actual number of respondents varied
between 405 and 855, with some questions
receiving more answers than others. About 37%
of the respondents were in the US, about 15% in
India, 5% in Germany, 5% in the UK, and smaller
percentages from other countries.

You can browse the results of the survey
directly at https://idratherbewriting.site/
devdoctrendsreport.

Survey question categories
After the survey, to make better sense of the
responses, I divided the 50 questions into five
categories:
1.	Tool responses
2.	Formats and outputs responses
3.	Process and workflow responses
4.	API responses
5.	Profile responses.
In the sections that follow, I’ll go through each
section and provide summaries, highlights, and
analyses. Percentages are rounded up or down.
For more granular details, feel free to browse the
survey results directly.

1. Tool responses

Survey summary:
	� Primary authoring tool: 22% static site

generators (such as Jekyll, Hugo, Gatsby,
Sphinx), 14% wikis, 11% XML tools, 8% HATs,
3% FrameMaker

	� Text editor 25% Visual Studio Code, 19%
Notepad++, 14% Atom

	� Source format: 37% Markdown, 15% HTML,
15% XML

	� Follow docs-as-code approach: 56% yes, 22%
somewhat, 20% no

	� Platform for publishing docs: 31% company’s
own web servers or infrastructure, 15% GitHub
Pages, 10% Gitlab

	� Computer type: 54% Windows, 40% Mac
	� How you manage content: 67% Git, 8% CMS,

5% CCMS

Summary and analysis
In the dev doc space, tech writers don’t use a
single tool for authoring, review, and publishing.
Writers use different tools for different scenarios
and purposes. For example, writers might use
Confluence, Word, or Google Docs for early content
development. When they transition the content
into their authoring/publishing system, they work
in Visual Studio Code or Atom as the text editor.

Within these text editors, they usually write in
Markdown formats with some YAML frontmatter.

Writers build the site output using a static
site generator, such as Hugo, Jekyll, Sphinx, or
MkDocs. To manage the content (for feature
branches or to pull in work from others),
they use Git. When it comes time to deploy
the site build on a web server, they often
have a continuous integration / continuous
deployment (CI/CD) model that pushes the
content onto GitHub, GitLab, or their company’s
own infrastructure through a few keystrokes
on the command line. This workflow is known
as a “docs-as-code” approach because it treats
documentation in a similar way to how software
developers treat code (to an extent).

Given this workflow, which would you say is the
author’s ‘tool’? It’s unclear. The days when writers
used an all-in-one purpose tool (for example, a
single help authoring tool) for authoring, review,
collaboration, and publishing are gone.

Complicating the tool question even more are
writers who don’t have any tools outside their
IDE (integrated development environment - for
example, IntelliJ IDEA). Some writers, usually
engineers who are also writing docs, work only
in code annotations and OpenAPI specifications.
There is no ‘authoring tool’. For these writers,
Markdown is their tool, as they might format
annotations with Markdown and use scripts to
export the Markdown into different systems.
Many systems can import or export Markdown,
making it a somewhat standard source format
in this space (despite the many variants of
Markdown flavours).

For examples of how multiple tools are
used together in different combinations and
solutions, see Jamstack examples. Jamstack
refers to serverless websites built with
JavaScript, APIs, and Markup and reflects
modern web development trends. Jamstack
excludes tools such as WordPress or other

Figure 2. Jamstack

Communicator Autumn 2020

48 Trends

web apps that would require a heavy backend
component on a server to run.

Overall, the survey results confirmed the
predominance of the docs-as-code approach
in the dev docs space. If you’re working with
developer docs, this approach is trending.
However, there’s also a decent amount of wikis,
Oxygen XML, and MadCap Flare use, probably
among those groups that have more robust
localisation and PDF requirements.

To read more thoughts about how source
formats affect not just how we write but what
we write, see my blog post, How you write
influences what you write — interpreting trends
through movements from PDF to web, DITA,
wikis, CCMSs, and docs-as-code.

2. Formats and output responses

Survey summary:
	� Primary output: 72% HTML, 23% PDF

	� Create video tutorials: 78% yes, 57% no, 14%
plan to

	� Docs plug into dev portal: 56% yes, 41% no

	� Localise your docs: 73% no, 14% 1-3
languages, 10% 4+ languages

	� Generate PDFs & distribute to audience: 57%
no, 30% yes, 9% internal review only

	� Significant role in developing publishing
solution: 53% yes, 19% no

Summary and analysis
Writers primarily create web content that fits
into a larger developer portal. A developer portal
is a centralised hub that serves as the home
for many different sets of documentation. The
developer portal might have a federated search, a
login where developers can get API keys or make
other configurations, and navigation to browse
the different doc sets and products.

Writers often help shape and build the developer
portal. They might help design the site, workflows,
strategies for content re-use, stylesheets, etc.
For example, a common task might be to brand
the static-site-generated documentation to fit
seamlessly into a React-based developer portal, as
well as to define the Git workflows around content
collaboration and publishing.

Localisation, video tutorials, and PDF aren’t
overwhelmingly produced in developer docs but
do constitute about 25% of the output. The low
amount of localisation eases up some pressure
on the tools. If you don’t have to push your
content into translation management systems,
you aren’t as constrained with compatible
format types and roundtrip workflows. (It’s still
possible to localise with static site generators,
just not as easy.)

I asked questions about video in the survey
because I had heard negative comments
about video formats from some developers.

Additionally, a lot of developer docs consist of
code, which might be tough to demonstrate in
a video (you basically watch someone code in
real time, which can be tedious and feel either
too slow or fast for the audience). However, the
survey found that most writers aren’t opposed
to creating video content. The main reason for
not creating video is due to lack of bandwidth,
constantly changing technology, or because
no one has asked for video — not necessarily
because of an aversion for video.

Finally, the number of writers generating
PDFs surprised me. It’s not so easy to generate
PDFs from docs-as-code tools, especially for
more long-form content with cross-references
and other book-style formatting. However, PDF
continues to be an important output, probably
because there isn’t a good alternative for
distributing content to beta partners prior to
release. With docs-as-code tools, you don’t often
have an authentication layer to gate the login. In
these scenarios, sending partners a pre-release
PDF is usually the easiest way to share content.

3. Process and workflow responses

Survey summary:
	� How do you interact with Scrum teams: 33%

participate in limited capacity, 27% participate
as full-fledged member, 19% have their own
documentation Scrum

	� How do you review docs: 25% code
review tools, 19% in-person meetings, 14%
collaborative annotation tools

	� How do engineers contribute to docs: 31%
pull requests, 31% wikis or similar, 22% direct
repo rights

	� Do you outsource docs offshore: 93% yes,
4% no

	� Do you publish docs with CI/CD: 48% yes,
33% no, 15% plan to

	� Do you have a style guide: 77% yes, 20% no

Summary and analysis
Most writers participate on Scrum teams,
sometimes in limited capacity; other times they
have their own documentation Scrum teams.
Scrum is the standard operating approach for
most engineering groups (for better or worse),
and technical writers plug into this rhythm for
documentation as well.

Writers review docs often using the same
tools that engineers use to review code (for
example, code review tools that show diffs
between commits). They also review docs
through in-person meetings or through
collaborative annotation tools like Google Docs.

The review process for docs has always been
multi-pathed, and what works at one company
might not work with another. Engineers
often prefer to review content through
code tools because it fits into how they’re

Communicator Autumn 2020

49

reviewing code, so they’re accustomed to this
approach. However, I find these tools exclude
non-engineers, which weakens the review
process — see my extended thoughts on this in
Treat code like code and prose like prose.

Engineers contribute content either through
pull requests to the doc source or by putting the
content on a wiki or equivalent (for example,
Google Docs, Quip). Other times engineers have
direct rights in the repo to work with the content.

Note that the survey did not filter out
documentation-writing engineers from dedicated
technical writers. Many companies don’t have the
luxury of technical writers, so engineers often
play roles as documentarians. In these cases, it
would be natural for engineers to have rights in
documentation repos, or to store documentation
in the same repos as the code. (See my blog post,
Integration documentation into engineering code
and workflows for a summary of an engaging
presentation about how Google’s internal doc
team transformed their documentation by moving
Markdown files directly inside of code repos.)

Outsourcing developer docs with an offshore
authoring agency is rare. I did not ask for reasons
why outsourcing isn’t more common, but there
might not be many outsourcing agencies that can
handle highly technical developer content. Or
perhaps there are IP concerns about documenting
the internal workings of APIs, or maybe the doc
shops are so small that no one would manage an
outsourced resource.

The publishing process for developer docs is
streamlined through continuous integration and
continuous deployment (CI/CD). This means
writers can kick off builds and deployments
with a few keystrokes on a command line. For
example, if you set up a service on a specific
branch, when you push changes to the branch,
the service can start a build process on the server
and then deploy the build onto a server. (For
example, GitHub Pages offers automatic builds
of Jekyll projects on any GitHub repository. You
could also do this through Travis CI.) You can
also run other verification scripts, such as link
checkers, in an automated way.

Some hosting and deployment solutions
like Netlify let you push out multiple builds,
allowing you to create different environments for
your content (alpha, beta, prod), with different
conditions exposing different content in each
environment. The automated publishing model
is one of the biggest advantages of the docs-as-
code approach. It allows you to constantly iterate
on your content because the bandwidth for
republishing requires such little effort.

Finally, most tech writers working with
developer docs follow a style guide. It’s worth
noting here that style guides for dev docs often
take into consideration many elements of API
design. Enforcing API styles (such as parameter
casing or endpoint names) isn’t too different

from doc style guides (where you enforce rules
about title casing and verb forms). Arnaud
Lauret’s The Design of Web APIs goes into this
topic in detail — see the reference API design
and usability for a summary of key points.

4. API responses

Survey summary:
	� Documentation usually involves an API:

81% yes, 14% no
	� Most common type of API: 56% REST APIs,

17% native library APIs (for example, Java,
C++), 7% GraphQL, 7% SOAP

	� Use OpenAPI docs for REST APIs: 47% yes,
17% no, 16% sometimes

	� Who generates the OpenAPI spec: 36%
engineers, 26% both engineers and tech
writers, 6% tech writers

	� Who generates native library API docs:
32% engineers, 27% both engineers and tech
writers, 6% tech writers

	� Create OpenAPI spec manually or auto-
generate it: 23% auto-generated, 22%
manually, 22% both

	� How to render OpenAPI spec into
documentation: 27% Swagger UI, 17%
internally built tools, 8% ReDoc

	� Most common programming languages to
know: 24% JavaScript, 17% Java, 16% Python

	� Trending technologies you’re documenting:
13% machine learning, 11% artificial
intelligence, 11% big data, 9% Internet of
Things (IoT)

Summary and analysis
Although the survey focused on developer
documentation, not specifically API
documentation, most developer docs
involve some kind of API. As such, it’s fair
to use ‘developer documentation’ and ‘API
documentation’ somewhat synonymously, even
if the latter is a subset of the former.

What kind of APIs are writers mostly working
with? REST APIs, but only about half the time.
Other times, writers work with native library APIs
(such as Java or C++ APIs), GraphQL, or SOAP.

When documenting REST APIs, most teams
use the OpenAPI specification. This is a detailed
description of the API that follows a highly
structured YAML or JSON format. Usually,
either engineers create this spec, or engineers
collaborate with tech writers on it. The same
goes with reference documentation for native
library APIs.

Reference docs have traditionally been written
by engineers, so I imagine the collaboration here
is usually one where writers edit the material
rather than provide the annotations in source
code. While engineers will often lead the charge
with reference documentation, they rarely expand
beyond this scope to tackle other elements of

Communicator Autumn 2020

50 Trends

documentation, such as conceptual overviews,
getting started guides, tutorials, how-to content,
glossaries, troubleshooting, and FAQs.

In terms of processes for creating the
OpenAPI spec, there’s a split between manually
creating the spec and auto-generating it from
annotations in the source code. The former
approach embraces the spec as a blueprint or
contract that engineers code against; the latter
is used more by engineering documentarians
who might be wary of documentation drift,
or who find it more convenient to keep
documentation together with code.

The OpenAPI spec alone isn’t readable
documentation, but many tools can generate
out documentation from the OpenAPI spec. The
most common tools for this are Swagger UI,
custom-built tools, or ReDoc.

REST APIs are language agnostic, but there are
usually accompanying software development
kits (SDKs) that are language-specific
(companies provide them to help developers
implement the API). The most important
languages to know (likely because of the SDKs
that accompany APIs) are JavaScript, Java, and
Python. Outside of programming languages,
trending technologies include machine learning,
artificial intelligence, big data, and Internet of
Things (IoT).

5. Profile information

Survey summary:
	� Age range: 17% ages 36-40, 16% ages 31-35,

14% ages 26-30, 12% ages 41-45, 11% ages
56-50, 11% ages 56-60, 8% ages 51-55, 4%
61-65 ages

	� Gender: 52% male, 46% female
	� Company: 200+ different companies listed
	� College degree: 31% humanities, 28%

engineering, 15% tech comm
	� Satisfied with job: 38% agree, 37% strongly

agree
	� Team size: 34% lone writer, 31% team size 2-4

writers, 16% team size 8+ writers, 12% team
size 5-7 writers

	� Organisational model for tech comm: 40%
centralised, 21% decentralised, 19% hybrid/
distributed

	� Employment type: 86% full-time, 10%
contractor/vendor/temp

	� Community you have most affinity towards:
39% WTD, 31% none, 14% STC

	� Time spent learning to keep up: 28% 30 min/
day, 27% 20 min, 14% 60 min

	� Biggest challenges: technical know-how,
time/bandwidth, getting reviews, addressing
both novice and advanced users

Summary and analysis
This final section covers profile and
demographics data about the survey

respondents. First to note is that the age range
for writers in developer docs is fairly evenly
distributed. This is reassuring given that ageism
is a valid concern for senior workers in the
technology industry. (Apparently, there are
even resorts where aging tech workers in Silicon
Valley go, some still in their 30s, to cope with
anxiety about their increasing age.)

It seems the tech writer’s age is much less
relevant, perhaps because this role is seen as
supportive to engineers rather than a role where
risk-taking is essential (as might be required
for young tech entrepreneurs trying to disrupt
larger companies). For an age comparison with
developers, the 2020 Stack Overflow Developer
Survey reports that the average age of developers
(using Stack Overflow) is about 33.7 years.

The gender balance among dev doc writers is
also reassuring. The Stack Overflow Developer
survey found that 91.5% of their respondents
were men, 8.0% women. Tech has a bad
reputation for its ‘brogrammer culture.’ In
contrast, my survey found that the ratio for tech
writers is 52% male/46% female, which is much
more balanced.

Another reassuring finding is that not
everyone in this space is a former engineer.
Instead, 31% have humanities degrees, 15% have
technical communication degrees, and only
28% have engineering degrees. There’s often a
presumption that to excel in developer docs,
you need to be a former developer. Or if you are
a former developer, you’re can automatically
step to the front of the line. That doesn’t seem
to be the case.

Job satisfaction is also strong, with 75% of
people agreeing or strongly agreeing that they
are satisfied with their jobs. Compare this with
the 70% job satisfaction rate reported in Saul
Carliner’s Tech Comm Census. Developer docs
can be an intimidating space, where you’re
frequently documenting code that’s hard to
understand, where doc tools operate similar to
software development tools, and where engineers
have little patience to explain concepts to less
technical people. Perhaps the job satisfaction is
high because the salaries tend to be higher, the
job market more abundant, and you’re in a space
where you’re constantly learning.

Team sizes for writers in dev docs are small.
A third are lone writers, and another third are
on teams of 2-4 writers. Large teams of 8+
writers are less common, accounting for only
16% of respondents. Despite the small team
sizes, 40% are centralised on a tech comm team
within their company, while others are either
decentralised (embedded and reporting directly
within a product team), and others are in a
hybrid model somewhere between centralised
and decentralised.

As far as professional groups, more writers
in this space have an affinity for Write the

Communicator Autumn 2020

51

Docs, but many don’t have an affinity for any
professional group.

Finally, the biggest challenges writers in dev
docs face is having enough technical know-how
to write docs and enough time/bandwidth to
write it. Getting engineers to review docs is
also challenging, as is creating content that
addresses both novice and advanced groups.

Conclusion
The survey didn’t present any major surprises
to the trends that I’ve already observed in this
space. However, the answers provided more
definitive data that confirms how different and
unique developer docs are from other types of
documentation. Technical writers transitioning
into this space face a whirlwind of different
tools, practices, and challenges. With this data,
we can identify trends and see what standard
practices are emerging. These trends can serve
as a guide and reference as writers make their
way in this space.

But also note that this space changes quickly.
As JavaScript frameworks come and go, static
site generators tend to follow suit, and what’s
trending one year might fade the next. This is a
plastic space where new technologies and
experimentation can lead to overnight change. C

Tom Johnson� is a senior technical
writer for Amazon in Sunnyvale,
California. He is best known for his
blog, idratherbewriting.com, where he
posts regularly on technical

communication topics. The blog has one of the
largest followings of technical communicators online.
Additionally, he has created an extensive web API
documentation course at https://idratherbewriting.
com/learnapidoc that has helped hundreds of
technical writers transition into API documentation.
B: idratherbewriting.com
https://idratherbewriting.com/learnapidoc

2020 Developer Survey. Stack Overflow.
https://insights.stackoverflow.com/
survey/2020 (accessed 16 July 2020).

Abel S (2019). Slides: The State of Technical
Communication: 2019. The Content Wrangler.
http://public2.brighttalk.com/resource/
core/217857/the-state-of-technical-
communication_474463.pdf
(accessed 16 July 2020).

Abel S (2018). Survey Reveals Top Tools,
Trends, and Technologies in Use in Technical
Communication Teams. STC Intercom. Dec
2018. www.stc.org/intercom/2019/01/survey-
reveals-top-tools-trends-and-technologies-
in-use-in-technical-communication-teams
(STC login required).

Abel S (2018). Webinar: The State of Technical
Communication: 2019. The Content Wrangler.
BrightTALK. Dec 13, 2018. www.brighttalk.
com/webcast/9273/338293/the-state-of-
technical-communication-2019
(accessed 16 July 2020).

Bowles N (2019). A New Luxury Retreat
Caters to Elderly Workers in Tech (Ages 30
and Up). New York Times. 4 March 2019.
www.nytimes.com/2019/03/04/technology/
modern-elder-resort-silicon-valley-ageism.
html (accessed 16 July 2020).

Carliner S and Chen Y (2018). Job and
Career Satisfaction Among Technical
Communicators. STC Intercom. Dec
2018. www.stc.org/intercom/2019/01/
job-and-career-satisfaction-among-technical-
communicators (STC login required).

Carliner S and Chen Y (2018). Professional
Development of Technical Communicators.
STC Intercom. Dec 2018. www.stc.
org/intercom/2019/01/professional-
development-of-technical-communicators
(STC login required).

Carliner S and Chen Y (2018). What Technical
Communicators Do. Carliner, Saul and Chen,
Yuan. STC Intercom. Jan 2019. STC Intercom.
Dec 2018. www.stc.org/intercom/2019/01/
what-technical-communicators-do (STC
login required).

Carliner S and Chen Y (2018). Who
Technical Communicators Are: A
Summary of Demographics, Backgrounds,
and Employment. STC Intercom. Dec
2018. www.stc.org/intercom/2019/01/
who-technical-communicators-are-a-
summary-of-demographics-backgrounds-
and-employment (accessed 16 July 2020).

Jamstack examples https://jamstack.org/
examples (accessed 16 July 2020).

Johnson T. API the Docs recording: How
Trends in API Documentation Differ from
other Tech Comm Trends. Idratherbewriting.
com. 4 June 2020. https://idratherbewriting.
com/blog/api-the-docs-virtual-series-fifth-
edition-api-doc-trends-design
(accessed 16 July 2020).

Johnson, Tom. 2020 Developer
documentation survey. Idratherbewriting.
com. 31 December 2019. https://
idratherbewriting.com/blog/developer-
documentation-survey-2020
(accessed 16 July 2020).

Johnson, Tom. Developer Documentation
Trends — Survey Results. https://
idratherbewriting.com/learnapidoc/docapis_
trends.html (accessed 16 July 2020).

Johnson T (2020). How you write influences
what you write — interpreting trends
through movements from PDF to web,
DITA, wikis, CCMSs, and docs-as-code.
Idratherbewriting.com. 20 February 2020.
https://idratherbewriting.com/blog/
how-you-write-influences-what-you-write
(accessed 16 July 2020).

Johnson T (2015). Integrating documentation
into engineering code and workflows.
Idratherbewriting.com. 26 May 2015.
https://idratherbewriting.com/2015/05/26/
integrating-documentation-into-
engineering-code-and-workflows
(accessed 16 July 2020).

Johnson T (2020). Treat code like code and
prose like prose. Idratherbewriting.com. 16
June 2020. https://idratherbewriting.com/
blog/treat-code-like-code-and-prose-like-
prose (accessed 16 July 2020).

Johnson T. API design and usability.
Idratherbewriting.com. https://
idratherbewriting.com/learnapidoc/
evaluating-api-design.html
(accessed 16 July 2020).

Lauret, A. The Design of Web APIs. Manning
Publications. 2019.
www.amazon.com/Design-Web-APIs-
Arnaud-Lauret/dp/1617295108.

Welinske J (2015). 2014 WritersUA Tools
Survey. WritersUA. 20 August 2015. www.
welinske.com/2014-writersua-tools-survey
(accessed 16 July 2020).

Sources

http://idratherbewriting.com
https://idratherbewriting.com/learnapidoc
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
http://public2.brighttalk.com/resource/core/217857/the-state-of-technical-communication_474463.pdf
http://public2.brighttalk.com/resource/core/217857/the-state-of-technical-communication_474463.pdf
http://public2.brighttalk.com/resource/core/217857/the-state-of-technical-communication_474463.pdf
https://www.stc.org/intercom/2019/01/survey-reveals-top-tools-trends-and-technologies-in-use-in-tech
https://www.stc.org/intercom/2019/01/survey-reveals-top-tools-trends-and-technologies-in-use-in-tech
https://www.stc.org/intercom/2019/01/survey-reveals-top-tools-trends-and-technologies-in-use-in-tech
http://www.brighttalk.com/webcast/9273/338293/the-state-of-technical-communication-2019
http://www.brighttalk.com/webcast/9273/338293/the-state-of-technical-communication-2019
http://www.brighttalk.com/webcast/9273/338293/the-state-of-technical-communication-2019
http://www.nytimes.com/2019/03/04/technology/modern-elder-resort-silicon-valley-ageism.html
http://www.nytimes.com/2019/03/04/technology/modern-elder-resort-silicon-valley-ageism.html
http://www.nytimes.com/2019/03/04/technology/modern-elder-resort-silicon-valley-ageism.html
http://www.stc.org/intercom/2019/01/job-and-career-satisfaction-among-technical-communicators
http://www.stc.org/intercom/2019/01/job-and-career-satisfaction-among-technical-communicators
http://www.stc.org/intercom/2019/01/job-and-career-satisfaction-among-technical-communicators
http://www.stc.org/intercom/2019/01/professional-development-of-technical-communicators
http://www.stc.org/intercom/2019/01/professional-development-of-technical-communicators
http://www.stc.org/intercom/2019/01/professional-development-of-technical-communicators
http://www.stc.org/intercom/2019/01/what-technical-communicators-do
http://www.stc.org/intercom/2019/01/what-technical-communicators-do
http://www.stc.org/intercom/2019/01/who-technical-communicators-are-a-summary-of-demographics-backgrounds-a
http://www.stc.org/intercom/2019/01/who-technical-communicators-are-a-summary-of-demographics-backgrounds-a
http://www.stc.org/intercom/2019/01/who-technical-communicators-are-a-summary-of-demographics-backgrounds-a
http://www.stc.org/intercom/2019/01/who-technical-communicators-are-a-summary-of-demographics-backgrounds-a
https://jamstack.org/examples
https://jamstack.org/examples
https://idratherbewriting.com/blog/api-the-docs-virtual-series-fifth-edition-api-doc-trends-design
https://idratherbewriting.com/blog/api-the-docs-virtual-series-fifth-edition-api-doc-trends-design
https://idratherbewriting.com/blog/api-the-docs-virtual-series-fifth-edition-api-doc-trends-design
https://idratherbewriting.com/blog/developer-documentation-survey-2020
https://idratherbewriting.com/blog/developer-documentation-survey-2020
https://idratherbewriting.com/blog/developer-documentation-survey-2020
https://idratherbewriting.com/learnapidoc/docapis_trends.html
https://idratherbewriting.com/learnapidoc/docapis_trends.html
https://idratherbewriting.com/learnapidoc/docapis_trends.html
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write
https://idratherbewriting.com/blog/how-you-write-influences-what-you-write
https://idratherbewriting.com/2015/05/26/integrating-documentation-into-engineering-code-and-workflows
https://idratherbewriting.com/2015/05/26/integrating-documentation-into-engineering-code-and-workflows
https://idratherbewriting.com/2015/05/26/integrating-documentation-into-engineering-code-and-workflows
https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose
https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose
https://idratherbewriting.com/blog/treat-code-like-code-and-prose-like-prose
https://idratherbewriting.com/learnapidoc/evaluating-api-design.html
https://idratherbewriting.com/learnapidoc/evaluating-api-design.html
https://idratherbewriting.com/learnapidoc/evaluating-api-design.html
http://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
http://www.amazon.com/Design-Web-APIs-Arnaud-Lauret/dp/1617295108
http://www.welinske.com/2014-writersua-tools-survey
http://www.welinske.com/2014-writersua-tools-survey

	From the editor
	President’s view
	Your ISTC directory
	ISTC business affiliates
	ISTC groups and online
	Member news
	An insight into the ISTC Mentoring scheme
	Delivering engaging web-based training
	Moving classroom training online
	Principles of eLearning
	Transforming classroom materials
	An introduction to Storyline Articulate 360
	Adapting to our new normal
	The business of terminology
	Learning and training glossary
	MadCap Flare 2020
	Review of HelpXplain
	‘10’ types of people in this world
	Support, customer experience and docs
	API glossary
	Developer documentation trends
	Exploiting the power of Find Elements in Flare 2020
	Running a customer journey workshop
	Real-life dilemmas: Working from home during lockdown
	Real-life responses: Coronavirus (COVID-19)
	Language lessons
	A day in the life – James Bartley
	Book review – Effective onscreen editing

